Cypress CY7C2565KV18 User Manual

CY7C2561KV18, CY7C2576KV18  
CY7C2563KV18, CY7C2565KV18  
PRELIMINARY  
72-Mbit QDR™-II+ SRAM 4-Word Burst  
Architecture (2.5 Cycle Read Latency) with ODT  
Features  
Configurations  
Separate independent read and write data ports  
Supports concurrent transactions  
With Read Cycle Latency of 2.5 cycles:  
CY7C2561KV18 – 8M x 8  
550 MHz clock for high bandwidth  
CY7C2576KV18 – 8M x 9  
CY7C2563KV18 – 4M x 18  
CY7C2565KV18 – 2M x 36  
4-word burst for reducing address bus frequency  
Double Data Rate (DDR) interfaces on both read and write  
ports (data transferred at 1100 MHz) at 550 MHz  
Functional Description  
Available in 2.5 clock cycle latency  
The CY7C2561KV18, CY7C2576KV18, CY7C2563KV18, and  
CY7C2565KV18 are 1.8V Synchronous Pipelined SRAMs,  
equipped with QDR-II+ architecture. Similar to QDR-II archi-  
tecture, QDR-II+ architecture consists of two separate ports: the  
read port and the write port to access the memory array. The  
read port has dedicated data outputs to support read operations  
and the write port has dedicated data inputs to support write  
operations. QDR-II+ architecture has separate data inputs and  
data outputs to completely eliminate the need to “turn-around”  
the data bus that exists with common IO devices. Each port is  
accessed through a common address bus. Addresses for read  
and write addresses are latched on alternate rising edges of the  
input (K) clock. Accesses to the QDR-II+ read and write ports are  
completely independent of one another. To maximize data  
throughput, both read and write ports are equipped with DDR  
interfaces. Each address location is associated with four 8-bit  
words (CY7C2561KV18), 9-bit words (CY7C2576KV18), 18-bit  
words (CY7C2563KV18), or 36-bit words (CY7C2565KV18) that  
burst sequentially into or out of the device. Because data is trans-  
ferred into and out of the device on every rising edge of both input  
clocks (K and K), memory bandwidth is maximized while simpli-  
fying system design by eliminating bus “turn-arounds”.  
Two input clocks (K and K) for precise DDR timing  
SRAM uses rising edges only  
Echo clocks (CQ and CQ) simplify data capture in high-speed  
systems  
Data valid pin (QVLD) to indicate valid data on the output  
On-Die Termination (ODT) feature  
Supported for D  
, BWS  
, and K/K inputs  
[x:0]  
[x:0]  
Single multiplexed address input bus latches address inputs  
for read and write ports  
Separate port selects for depth expansion  
Synchronous internally self-timed writes  
QDR™-II+ operates with 2.5 cycle read latency when DOFF is  
asserted HIGH  
Operates similar to QDR-I device with 1 cycle read latency  
when DOFF is asserted LOW  
Available in x8, x9, x18, and x36 configurations  
These devices have an On-Die Termination feature supported  
Full data coherency, providing most current data  
for D  
, BWS  
, and K/K inputs, which helps eliminate  
[x:0]  
[x:0]  
Core V = 1.8V± 0.1V; IO V  
= 1.4V to V  
DD  
external termination resistors, reduce cost, reduce board area,  
and simplify board routing.  
DD  
DDQ  
Supports both 1.5V and 1.8V IO supply  
Depth expansion is accomplished with port selects, which  
enables each port to operate independently.  
HSTL inputs and variable drive HSTL output buffers  
Available in 165-Ball FBGA package (13 x 15 x 1.4 mm)  
Offered in both Pb-free and non Pb-free packages  
JTAG 1149.1 compatible test access port  
All synchronous inputs pass through input registers controlled by  
the K or K input clocks. All data outputs pass through output  
registers controlled by the K or K input clocks. Writes are  
conducted with on-chip synchronous self-timed write circuitry.  
Phase Locked Loop (PLL) for accurate data placement  
Table 1. Selection Guide  
Description  
550 MHz  
550  
500 MHz  
500  
450 MHz  
450  
400 MHz  
400  
Unit  
MHz  
mA  
Maximum Operating Frequency  
Maximum Operating Current  
x8  
x9  
900  
830  
760  
690  
900  
830  
760  
690  
x18  
x36  
920  
850  
780  
710  
1310  
1210  
1100  
1000  
Note  
1. The Cypress QDR-II+ devices surpass the QDR consortium specification and can support V  
= 1.4V to V  
.
DD  
DDQ  
Cypress Semiconductor Corporation  
Document Number: 001-15887 Rev. *E  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised April 24, 2009  
 
CY7C2561KV18, CY7C2576KV18  
CY7C2563KV18, CY7C2565KV18  
PRELIMINARY  
Logic Block Diagram (CY7C2563KV18)  
18  
D
[17:0]  
Write Write Write Write  
20  
Address  
Register  
A
Reg  
Reg  
Reg  
Reg  
(19:0)  
20  
Address  
Register  
A
(19:0)  
RPS  
K
Control  
Logic  
CLK  
Gen.  
K
DOFF  
Read Data Reg.  
CQ  
CQ  
72  
36  
V
REF  
18  
18  
18  
18  
Reg.  
Reg.  
Reg.  
Control  
Logic  
WPS  
BWS  
18  
36  
Q
[17:0]  
[1:0]  
QVLD  
Logic Block Diagram (CY7C2565KV18)  
36  
D
[35:0]  
Write Write Write Write  
19  
Address  
Register  
A
Reg  
Reg  
Reg  
Reg  
(18:0)  
19  
Address  
Register  
A
(18:0)  
RPS  
K
Control  
Logic  
CLK  
Gen.  
K
DOFF  
Read Data Reg.  
CQ  
CQ  
144  
72  
V
REF  
36  
36  
36  
36  
Reg.  
Reg.  
Reg.  
Control  
Logic  
WPS  
BWS  
36  
72  
Q
[35:0]  
[3:0]  
QVLD  
Document Number: 001-15887 Rev. *E  
Page 3 of 29  
CY7C2561KV18, CY7C2576KV18  
CY7C2563KV18, CY7C2565KV18  
PRELIMINARY  
Pin Configuration  
[2]  
The pin configuration for CY7C2561KV18, CY7C2576KV18, CY7C2563KV18, and CY7C2565KV18 follow.  
165-Ball FBGA (13 x 15 x 1.4 mm) Pinout  
CY7C2561KV18 (8M x 8)  
1
CQ  
NC  
NC  
NC  
NC  
NC  
NC  
DOFF  
NC  
NC  
NC  
NC  
NC  
NC  
TDO  
2
3
4
WPS  
A
5
6
K
7
8
RPS  
A
9
10  
A
11  
CQ  
Q3  
D3  
NC  
Q2  
NC  
NC  
ZQ  
D1  
NC  
Q0  
D0  
NC  
NC  
TDI  
A
B
C
D
E
F
A
A
NWS  
NC/144M  
A
1
NC  
NC  
D4  
NC  
NC  
D5  
NC  
NC  
NC  
Q4  
NC  
Q5  
NC/288M  
A
K
NWS  
A
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
D2  
NC  
NC  
0
V
V
NC  
V
V
SS  
SS  
SS  
SS  
V
V
V
V
V
V
V
V
V
V
V
V
V
SS  
SS  
DD  
DD  
DD  
DD  
DD  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
DD  
DD  
DD  
DD  
DD  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
V
V
V
V
V
V
V
V
V
V
G
H
J
V
V
V
V
REF  
REF  
DDQ  
DDQ  
NC  
NC  
NC  
Q1  
K
L
NC  
Q6  
NC  
D6  
NC  
NC  
Q7  
A
NC  
NC  
NC  
NC  
NC  
A
NC  
NC  
V
V
V
V
SS  
SS  
SS  
SS  
M
N
P
R
NC  
D7  
V
V
NC  
SS  
SS  
SS  
V
A
A
A
A
A
A
A
V
NC  
SS  
NC  
TCK  
A
A
QVLD  
ODT  
A
A
NC  
TMS  
CY7C2576KV18 (8M x 9)  
1
CQ  
NC  
NC  
NC  
NC  
NC  
NC  
DOFF  
NC  
NC  
NC  
NC  
NC  
NC  
TDO  
2
3
4
5
NC  
6
K
7
8
9
10  
A
11  
CQ  
Q4  
D4  
NC  
Q3  
NC  
NC  
ZQ  
D2  
NC  
Q1  
D1  
NC  
Q0  
TDI  
A
B
C
D
E
F
A
A
WPS  
A
NC/144M  
RPS  
A
A
NC  
NC  
D5  
NC  
NC  
D6  
NC  
NC  
NC  
Q5  
NC  
Q6  
NC/288M  
A
K
BWS  
A
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
D3  
NC  
NC  
0
V
V
NC  
V
V
SS  
SS  
SS  
SS  
V
V
V
V
V
V
V
V
V
V
V
V
V
SS  
SS  
DD  
DD  
DD  
DD  
DD  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
DD  
DD  
DD  
DD  
DD  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
V
V
V
V
V
V
V
V
V
V
G
H
J
V
V
V
V
REF  
REF  
DDQ  
DDQ  
NC  
NC  
Q7  
NC  
NC  
Q2  
NC  
NC  
NC  
NC  
D0  
K
L
NC  
D7  
NC  
NC  
Q8  
A
NC  
NC  
NC  
NC  
NC  
A
V
V
V
V
SS  
SS  
SS  
SS  
M
N
P
R
NC  
D8  
V
V
SS  
SS  
SS  
V
A
A
A
A
A
A
A
V
SS  
NC  
TCK  
A
A
QVLD  
ODT  
A
A
TMS  
Note  
2. NC/144M and NC/288M are not connected to the die and can be tied to any voltage level.  
Document Number: 001-15887 Rev. *E  
Page 4 of 29  
 
CY7C2561KV18, CY7C2576KV18  
CY7C2563KV18, CY7C2565KV18  
PRELIMINARY  
Pin Configuration  
[2]  
The pin configuration for CY7C2561KV18, CY7C2576KV18, CY7C2563KV18, and CY7C2565KV18 follow. (continued)  
165-Ball FBGA (13 x 15 x 1.4 mm) Pinout  
CY7C2563KV18 (4M x 18)  
1
CQ  
NC  
NC  
NC  
NC  
NC  
NC  
DOFF  
NC  
NC  
NC  
NC  
NC  
NC  
TDO  
2
NC/144M  
Q9  
3
4
WPS  
A
5
BWS  
NC  
A
6
K
7
8
RPS  
A
9
10  
A
11  
CQ  
Q8  
D8  
D7  
Q6  
Q5  
D5  
ZQ  
D4  
Q3  
Q2  
D2  
D1  
Q0  
TDI  
A
B
C
D
E
F
A
NC/288M  
A
1
D9  
K
BWS  
A
NC  
NC  
NC  
NC  
NC  
NC  
NC  
Q7  
NC  
D6  
NC  
NC  
0
NC  
D10  
Q10  
Q11  
D12  
Q13  
V
V
NC  
V
V
SS  
SS  
SS  
SS  
D11  
V
V
V
V
V
V
V
V
V
V
V
V
V
SS  
SS  
DD  
DD  
DD  
DD  
DD  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
DD  
DD  
DD  
DD  
DD  
NC  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
Q12  
D13  
V
V
V
V
V
V
V
V
V
V
G
H
J
V
V
V
V
REF  
REF  
DDQ  
DDQ  
NC  
NC  
D14  
NC  
Q4  
K
L
Q14  
D15  
D16  
Q16  
Q17  
A
NC  
NC  
NC  
NC  
NC  
A
D3  
NC  
Q1  
Q15  
NC  
V
V
V
V
SS  
SS  
SS  
SS  
M
N
P
R
V
V
SS  
SS  
SS  
D17  
NC  
V
A
A
A
A
A
A
A
V
NC  
D0  
SS  
A
A
QVLD  
ODT  
A
A
TCK  
TMS  
CY7C2565KV18 (2M x 36)  
1
2
NC/288M  
Q18  
3
4
5
BWS  
BWS  
A
6
K
7
BWS  
BWS  
A
8
9
10  
NC/144M  
Q17  
11  
CQ  
Q8  
D8  
D7  
Q6  
Q5  
D5  
ZQ  
D4  
Q3  
Q2  
D2  
D1  
Q0  
TDI  
A
B
C
D
E
F
CQ  
A
WPS  
A
RPS  
A
A
2
3
1
0
Q27  
D27  
D28  
Q29  
Q30  
D30  
DOFF  
D31  
Q32  
Q33  
D33  
D34  
Q35  
TDO  
D18  
D19  
Q19  
Q20  
D21  
Q22  
K
D17  
D16  
Q16  
Q15  
D14  
Q13  
Q28  
V
V
NC  
V
V
Q7  
SS  
SS  
SS  
SS  
D20  
V
V
V
V
V
V
V
V
V
V
V
V
V
D15  
SS  
SS  
DD  
DD  
DD  
DD  
DD  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
DD  
DD  
DD  
DD  
DD  
D29  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
D6  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
Q21  
V
V
V
V
V
V
V
V
V
V
Q14  
G
H
J
D22  
D13  
V
V
V
V
REF  
REF  
DDQ  
DDQ  
Q31  
D32  
Q24  
Q34  
D26  
D35  
TCK  
D23  
D12  
Q4  
D3  
K
L
Q23  
D24  
D25  
Q25  
Q26  
A
Q12  
D11  
D10  
Q10  
Q9  
V
V
V
V
Q11  
Q1  
SS  
SS  
SS  
SS  
M
N
P
R
V
V
SS  
SS  
SS  
V
A
A
A
A
A
A
A
V
D9  
SS  
A
A
QVLD  
ODT  
A
A
D0  
A
TMS  
Document Number: 001-15887 Rev. *E  
Page 5 of 29  
CY7C2561KV18, CY7C2576KV18  
CY7C2563KV18, CY7C2565KV18  
PRELIMINARY  
Table 2. Pin Definitions  
Pin Name  
IO  
Pin Description  
Data Input Signals. Sampled on the rising edge of K and K clocks when valid write operations are active.  
D
Input-  
[x:0]  
Synchronous CY7C2561KV18 D  
[7:0]  
CY7C2576KV18 D  
[8:0]  
CY7C2563KV18 D  
[17:0]  
[35:0]  
CY7C2565KV18 D  
WPS  
Input-  
Write Port Select Active LOW. Sampled on the rising edge of the K clock. When asserted active, a  
Synchronous write operation is initiated. Deasserting deselects the write port. Deselecting the write port ignores D  
.
[x:0]  
NWS ,  
Input-  
Nibble Write Select 0, 1 Active LOW (CY7C2561KV18 Only). Sampled on the rising edge of the K  
0
Synchronous and K clocks  
. Used to select which nibble is written into the device  
NWS ,  
when write operations are active  
during the current portion of the write operations.  
All the Nibble Write Selects are sampled on the same edge as the data. Deselecting a Nibble Write Select  
ignores the corresponding nibble of data and it is not written into the device  
1
NWS controls D  
and NWS controls D  
.
0
[3:0]  
1
[7:4]  
.
BWS ,  
Input-  
Byte Write Select 0, 1, 2 and 3 Active LOW. Sampled on the rising edge of the K and K clocks when  
0
BWS ,  
Synchronous write operations are active. Used to select which byte is written into the device during the current portion  
of the write operations. Bytes not written remain unaltered.  
1
BWS ,  
2
BWS  
CY7C2576KV18 BWS controls D  
3
0
[8:0]  
[8:0]  
[8:0]  
CY7C2563KV18 BWS controls D  
and BWS controls D  
0
1
[17:9].  
CY7C2565KV18 BWS controls D  
, BWS controls D  
,
0
1
[17:9]  
BWS controls D  
and BWS controls D  
2
[26:18]  
3
[35:27].  
All the Byte Write Selects are sampled on the same edge as the data. Deselecting a Byte Write Select  
ignores the corresponding byte of data and it is not written into the device  
.
A
Input-  
Address Inputs. Sampled on the rising edge of the K clock during active read and write operations. These  
Synchronous address inputs are multiplexed for both read and write operations. Internally, the device is organized as  
8M x 8 (4 arrays each of 2M x 8) for CY7C2561KV18, 8M x 9 (4 arrays each of 2M x 9) for CY7C2576KV18,  
4M x 18 (4 arrays each of 1M x 18) for CY7C2563KV18 and 2M x 36 (4 arrays each of 512K x 36) for  
CY7C2565KV18. Therefore, only 21 address inputs are needed to access the entire memory array of  
CY7C2561KV18 and CY7C2576KV18, 20 address inputs for CY7C2563KV18 and 19 address inputs for  
CY7C2565KV18. These inputs are ignored when the appropriate port is deselected.  
Q
Outputs-  
Synchronous data is driven out on the rising edge of the K and K clocks during read operations. On deselecting the  
read port, Q are automatically tri-stated.  
Data Output Signals. These pins drive out the requested data when the read operation is active. Valid  
[x:0]  
[x:0]  
CY7C2561KV18 Q  
CY7C2576KV18 Q  
CY7C2563KV18 Q  
CY7C2565KV18 Q  
[7:0]  
[8:0]  
[17:0]  
[35:0]  
RPS  
Input-  
Read Port Select Active LOW. Sampled on the rising edge of positive input clock (K). When active, a  
Synchronous read operation is initiated. Deasserting deselects the read port. When deselected, the pending access is  
allowed to complete and the output drivers are automatically tri-stated following the next rising edge of  
the K clock. Each read access consists of a burst of four sequential transfers.  
QVLD  
Valid output Valid Output Indicator. The Q Valid indicates valid output data. QVLD is edge aligned with CQ and CQ.  
indicator  
ODT  
On-Die  
On-Die Termination Input. This pin is used for On-Die termination of the input signals. ODT range  
Termination selection is made during power up initialization. A LOW on this pin selects a low range that follows RQ/3.33  
input pin  
for 175Ω < RQ < 350Ω (where RQ is the resistor tied to ZQ pin). A HIGH on this pin selects a high range  
that follows RQ/1.66 for 175Ω < RQ < 250Ω (where RQ is the resistor tied to ZQ pin). When left floating,  
a high range termination value is selected by default.  
Note  
3. On-Die Termination (ODT) feature is supported for D  
, BWS  
, and K/K inputs.  
[x:0]  
[x:0]  
Document Number: 001-15887 Rev. *E  
Page 6 of 29  
 
CY7C2561KV18, CY7C2576KV18  
CY7C2563KV18, CY7C2565KV18  
PRELIMINARY  
Table 2. Pin Definitions (continued)  
Pin Name  
IO  
Pin Description  
K
Input Clock Positive Input Clock Input. The rising edge of K is used to capture synchronous inputs to the device  
and to drive out data through Q . All accesses are initiated on the rising edge of K.  
[x:0]  
K
Input Clock Negative Input Clock Input. K is used to capture synchronous inputs being presented to the device and  
to drive out data through Q  
.
[x:0]  
CQ  
CQ  
ZQ  
Echo Clock Synchronous Echo Clock Outputs. This is a free running clock and is synchronized to the input clock  
(K) of the QDR-II+. The timings for the echo clocks are shown in the Switching Characteristics on page 24.  
Echo Clock Synchronous Echo Clock Outputs. This is a free running clock and is synchronized to the input clock  
(K) of the QDR-II+.The timings for the echo clocks are shown in the Switching Characteristics on page 24.  
Input  
Output Impedance Matching Input. This input is used to tune the device outputs to the system data bus  
impedance. CQ, CQ, and Q output impedance are set to 0.2 x RQ, where RQ is a resistor connected  
[x:0]  
between ZQ and ground. Alternatively, this pin can be connected directly to V  
, which enables the  
DDQ  
minimum impedance mode. This pin cannot be connected directly to GND or left unconnected.  
DOFF  
Input  
PLL Turn Off Active LOW. Connecting this pin to ground turns off the PLL inside the device. The timings  
in the PLL turned off operation differs from those listed in this data sheet. For normal operation, this pin  
can be connected to a pull up through a 10 KΩ or less pull up resistor. The device behaves in QDR-I  
mode when the PLL is turned off. In this mode, the device can be operated at a frequency of up to 167  
MHz with QDR-I timing.  
TDO  
Output  
Input  
Input  
Input  
N/A  
TDO for JTAG.  
TCK  
TCK Pin for JTAG.  
TDI  
TDI Pin for JTAG.  
TMS  
TMS Pin for JTAG.  
NC  
Not Connected to the Die. Can be tied to any voltage level.  
Not Connected to the Die. Can be tied to any voltage level.  
Not Connected to the Die. Can be tied to any voltage level.  
Reference Voltage Input. Static input used to set the reference level for HSTL inputs, outputs, and AC  
NC/144M  
NC/288M  
N/A  
N/A  
V
Input-  
REF  
Reference measurement points.  
V
V
V
Power Supply Power Supply Inputs to the Core of the Device.  
DD  
Ground  
Ground for the Device.  
SS  
Power Supply Power Supply Inputs for the Outputs of the Device.  
DDQ  
Document Number: 001-15887 Rev. *E  
Page 7 of 29  
CY7C2561KV18, CY7C2576KV18  
CY7C2563KV18, CY7C2565KV18  
PRELIMINARY  
clock rise. Doing so pipelines the data flow such that data is  
transferred out of the device on every rising edge of the input  
clocks (K and K).  
Functional Overview  
The CY7C2561KV18, CY7C2576KV18, CY7C2563KV18,  
CY7C2565KV18 are synchronous pipelined Burst SRAMs  
equipped with a read port and a write port. The read port is  
dedicated to read operations and the write port is dedicated to  
write operations. Data flows into the SRAM through the write port  
and flows out through the read port. These devices multiplex the  
address inputs to minimize the number of address pins required.  
By having separate read and write ports, the QDR-II+ completely  
eliminates the need to “turn-around” the data bus and avoids any  
possible data contention, thereby simplifying system design.  
Each access consists of four 8-bit data transfers in the case of  
CY7C2561KV18, four 9-bit data transfers in the case of  
CY7C2576KV18, four 18-bit data transfers in the case of  
CY7C2563KV18, and four 36-bit data transfers in the case of  
CY7C2565KV18, in two clock cycles.  
When the read port is deselected, the CY7C2563KV18 first  
completes the pending read transactions. Synchronous internal  
circuitry automatically tri-states the outputs following the next  
rising edge of the negative input clock (K). This enables for a  
seamless transition between devices without the insertion of wait  
states in a depth expanded memory.  
Write Operations  
Write operations are initiated by asserting WPS active at the  
rising edge of the positive input clock (K). On the following K  
clock rise the data presented to D  
is latched and stored into  
[17:0]  
the lower 18-bit write data register, provided BWS  
are both  
[1:0]  
asserted active. On the subsequent rising edge of the negative  
input clock (K) the information presented to D is also stored  
[17:0]  
These devices operate with a read latency of two and half cycles  
when DOFF pin is tied HIGH. When DOFF pin is set LOW or  
into the write data register, provided BWS  
are both asserted  
[1:0]  
active. This process continues for one more cycle until four 18-bit  
words (a total of 72 bits) of data are stored in the SRAM. The 72  
bits of data are then written into the memory array at the specified  
location. Therefore, write accesses to the device can not be  
initiated on two consecutive K clock rises. The internal logic of  
the device ignores the second write request. Write accesses can  
be initiated on every other rising edge of the positive input clock  
(K). Doing so pipelines the data flow such that 18 bits of data can  
be transferred into the device on every rising edge of the input  
clocks (K and K).  
connected to V then device behaves in QDR-I mode with a  
SS  
read latency of one clock cycle.  
Accesses for both ports are initiated on the positive input clock  
(K). All synchronous input and output timing are referenced from  
the rising edge of the input clocks (K and K).  
All synchronous data inputs (D  
) pass through input registers  
[x:0]  
controlled by the input clocks (K and K). All synchronous data  
outputs (Q ) outputs pass through output registers controlled  
[x:0]  
by the rising edge of the input clocks (K and K) as well.  
When deselected, the write port ignores all inputs after the  
pending write operations have been completed.  
All synchronous control (RPS, WPS, NWS , BWS  
pass through input registers controlled by the rising edge of the  
input clocks (K and K).  
) inputs  
[x:0]  
[x:0]  
Byte Write Operations  
CY7C2563KV18 is described in the following sections. The  
same basic descriptions apply to CY7C2561KV18,  
CY7C2576KV18 and CY7C2565KV18.  
Byte write operations are supported by the CY7C2563KV18. A  
write operation is initiated as described in the Write Operations  
section. The bytes that are written are determined by BWS and  
0
BWS , which are sampled with each set of 18-bit data words.  
1
Read Operations  
Asserting the appropriate Byte Write Select input during the data  
portion of a write latches the data being presented and writes it  
into the device. Deasserting the Byte Write Select input during  
the data portion of a write enables the data stored in the device  
for that byte to remain unaltered. This feature can be used to  
simplify read, modify, or write operations to a byte write  
operation.  
The CY7C2563KV18 is organized internally as four arrays of 1M  
x 18. Accesses are completed in a burst of four sequential 18-bit  
data words. Read operations are initiated by asserting RPS  
active at the rising edge of the positive input clock (K). The  
address presented to the address inputs is stored in the read  
address register. Following the next two K clock rise, the corre-  
sponding lowest order 18-bit word of data is driven onto the  
Concurrent Transactions  
Q
using K as the output timing reference. On the subse-  
[17:0]  
quent rising edge of K, the next 18-bit data word is driven onto  
the Q . This process continues until all four 18-bit data words  
The read and write ports on the CY7C2563KV18 operates  
completely independently of one another. As each port latches  
the address inputs on different clock edges, the user can read or  
write to any location, regardless of the transaction on the other  
port. If the ports access the same location when a read follows  
a write in successive clock cycles, the SRAM delivers the most  
recent information associated with the specified address  
location. This includes forwarding data from a write cycle that  
was initiated on the previous K clock rise.  
[17:0]  
have been driven out onto Q  
. The requested data is valid  
[17:0]  
0.45 ns from the rising edge of the input clock (K or K). To  
maintain the internal logic, each read access must be allowed to  
complete. Each read access consists of four 18-bit data words  
and takes two clock cycles to complete. Therefore, read  
accesses to the device can not be initiated on two consecutive  
K clock rises. The internal logic of the device ignores the second  
read request. Read accesses can be initiated on every other K  
Document Number: 001-15887 Rev. *E  
Page 8 of 29  
 
CY7C2561KV18, CY7C2576KV18  
CY7C2563KV18, CY7C2565KV18  
PRELIMINARY  
Read access and write access must be scheduled such that one  
transaction is initiated on any clock cycle. If both ports are  
selected on the same K clock rise, the arbitration depends on the  
previous state of the SRAM. If both ports are deselected, the  
read port takes priority. If a read was initiated on the previous  
cycle, the write port takes priority (as read operations can not be  
initiated on consecutive cycles). If a write was initiated on the  
previous cycle, the read port takes priority (as write operations  
can not be initiated on consecutive cycles). Therefore, asserting  
both port selects active from a deselected state results in alter-  
nating read or write operations being initiated, with the first  
access being a read.  
Valid Data Indicator (QVLD)  
QVLD is provided on the QDR-II+ to simplify data capture on high  
speed systems. The QVLD is generated by the QDR-II+ device  
along with data output. This signal is also edge-aligned with the  
echo clock and follows the timing of any data pin. This signal is  
asserted half a cycle before valid data arrives.  
On-Die Termination (ODT)  
These devices have an On-Die Termination feature for Data  
inputs (D  
), Byte Write Selects (BWS  
), and Input Clocks (K  
[x:0]  
[x:0]  
and K). The termination resistors are integrated within the chip.  
The ODT range selection is enabled through ball R6 (ODT pin).  
The ODT termination tracks value of RQ where RQ is the resistor  
tied to the ZQ pin. ODT range selection is made during power up  
initialization. A LOW on this pin selects a low range that follows  
RQ/3.33 for 175Ω < RQ < 350Ω (where RQ is the resistor tied to  
ZQ pin). A HIGH on this pin selects a high range that follows  
RQ/1.66 for 175Ω < RQ < 250Ω (where RQ is the resistor tied to  
ZQ pin). When left floating, a high range termination value is  
selected by default. For a detailed description on the ODT imple-  
mentation, refer to the application note, On-Die Termination for  
QDRII+/DDRII+ SRAMs.  
Depth Expansion  
The CY7C2563KV18 has a port select input for each port. This  
enables for easy depth expansion. Both port selects are sampled  
on the rising edge of the positive input clock only (K). Each port  
select input can deselect the specified port. Deselecting a port  
does not affect the other port. All pending transactions (read and  
write) are completed before the device is deselected.  
Programmable Impedance  
An external resistor, RQ, must be connected between the ZQ pin  
on the SRAM and V to allow the SRAM to adjust its output  
PLL  
SS  
driver impedance. The value of RQ must be 5X the value of the  
intended line impedance driven by the SRAM, the allowable  
range of RQ to guarantee impedance matching with a tolerance  
These chips use a PLL that is designed to function between 120  
MHz and the specified maximum clock frequency. During power  
up, when the DOFF is tied HIGH, the PLL is locked after 20 μs  
of stable clock. The PLL can also be reset by slowing or stopping  
the input clocks K and K for a minimum of 30 ns. However, it is  
not necessary to reset the PLL to lock to the desired frequency.  
The PLL automatically locks 20 μs after a stable clock is  
presented. The PLL may be disabled by applying ground to the  
DOFF pin. When the PLL is turned off, the device behaves in  
QDR-I mode (with one cycle latency and a longer access time).  
For information, refer to the application note, PLL Considerations  
in QDRII/DDRII/QDRII+/DDRII+.  
of ±15% is between 175Ω and 350Ω, with V  
= 1.5V. The  
DDQ  
output impedance is adjusted every 1024 cycles upon power up  
to account for drifts in supply voltage and temperature.  
Echo Clocks  
Echo clocks are provided on the QDR-II+ to simplify data capture  
on high-speed systems. Two echo clocks are generated by the  
QDR-II+. CQ is referenced with respect to K and CQ is refer-  
enced with respect to K. These are free-running clocks and are  
synchronized to the input clock of the QDR-II+. The timing for the  
echo clocks is shown in the Switching Characteristics on page  
Document Number: 001-15887 Rev. *E  
Page 9 of 29  
CY7C2561KV18, CY7C2576KV18  
CY7C2563KV18, CY7C2565KV18  
PRELIMINARY  
Application Example  
Figure 1 shows two QDR-II+ used in an application.  
Figure 1. Application Example  
RQ = 250 ohms  
RQ = 250 ohms  
ZQ  
ODT  
CQ/CQ  
Q
ZQ  
ODT  
SRAM #1  
SRAM #2  
Vt  
CQ/CQ  
Q
D
D
A
R
BWS  
K
A RPS WPS  
K
K
K
BWS  
RPS WPS  
DATA IN  
DATA OUT  
Address  
R
R
Vt  
Vt  
RPS  
BUS MASTER  
WPS  
BWS  
(CPU or ASIC)  
CLKIN1/CLKIN1  
CLKIN2/CLKIN2  
Source K  
Source K  
R
ODT  
R = 50ohms, Vt = V  
/2  
DDQ  
Table 3. Truth Table  
The truth table for CY7C2561KV18, CY7C2576KV18, CY7C2563KV18, and CY7C2565KV18 follows.  
Operation  
Write Cycle:  
K
RPS WPS  
DQ  
DQ  
DQ  
DQ  
L-H  
H
L
D(A) at K(t + 1)D(A + 1) at K(t + 1)D(A + 2) at K(t + 2)D(A + 3) at K(t + 2)↑  
Load address on the rising  
edge of K; input write data  
on two consecutive K and  
K rising edges.  
Read Cycle:  
L-H  
L
X
Q(A) at K(t + 2)Q(A + 1) at K(t + 3)Q(A + 2) at K(t + 3)Q(A + 3) at K(t + 4)↑  
(2.5 cycle Latency)  
Load address on the rising  
edge of K; wait two and  
half cycles; read data on  
two consecutive K and K  
rising edges.  
NOP: No Operation  
L-H  
H
X
H
X
D = X  
Q = High-Z  
D = X  
Q = High-Z  
D = X  
Q = High-Z  
D = X  
Q = High-Z  
Standby: Clock Stopped Stopped  
Previous State  
Previous State  
Previous State  
Previous State  
Notes  
4. X = “Don't Care,” H = Logic HIGH, L = Logic LOW, represents rising edge.  
5. Device powers up deselected with the outputs in a tri-state condition.  
6. “A” represents address location latched by the devices when transaction was initiated. A + 1, A + 2, and A + 3 represents the address sequence in the burst.  
7. “t” represents the cycle at which a read/write operation is started. t + 1, t + 2, and t + 3 are the first, second and third clock cycles respectively succeeding the “t” clock cycle.  
8. Data inputs are registered at K and K rising edges. Data outputs are delivered on K and K rising edges as well.  
9. Ensure that when clock is stopped K = K and C = C = HIGH. This is not essential, but permits most rapid restart by overcoming transmission line charging symmetrically.  
10. If this signal was LOW to initiate the previous cycle, this signal becomes a “Don’t Care” for this operation.  
11. This signal was HIGH on previous K clock rise. Initiating consecutive read or write operations on consecutive K clock rises is not permitted. The device ignores the  
second read or write request.  
Document Number: 001-15887 Rev. *E  
Page 10 of 29  
                 
CY7C2561KV18, CY7C2576KV18  
CY7C2563KV18, CY7C2565KV18  
PRELIMINARY  
Table 4. Write Cycle Descriptions  
The write cycle description table for CY7C2561KV18 and CY7C2563KV18 follows.  
BWS / BWS /  
0
1
K
Comments  
K
NWS  
NWS  
1
0
L
L
L
L
L–H  
During the data portion of a write sequence:  
CY7C2561KV18 both nibbles (D  
) are written into the device.  
[7:0]  
CY7C2563KV18 both bytes (D  
) are written into the device.  
[17:0]  
L–H  
L-H During the data portion of a write sequence:  
CY7C2561KV18 both nibbles (D  
) are written into the device.  
) are written into the device.  
[7:0]  
CY7C2563KV18 both bytes (D  
[17:0]  
L
H
H
L
During the data portion of a write sequence:  
CY7C2561KV18 only the lower nibble (D  
) is written into the device, D  
) is written into the device, D  
remains unaltered.  
remains unaltered.  
[17:9]  
[3:0]  
[7:4]  
CY7C2563KV18 only the lower byte (D  
[8:0]  
L
L–H During the data portion of a write sequence:  
CY7C2561KV18 only the lower nibble (D  
) is written into the device, D  
) is written into the device, D  
remains unaltered.  
remains unaltered.  
[3:0]  
[7:4]  
CY7C2563KV18 only the lower byte (D  
[8:0]  
[17:9]  
H
H
L–H  
During the data portion of a write sequence:  
CY7C2561KV18 only the upper nibble (D  
) is written into the device, D  
) is written into the device, D  
remains unaltered.  
[3:0]  
[7:4]  
CY7C2563KV18 only the upper byte (D  
remains unaltered.  
[17:9]  
[8:0]  
L
L–H During the data portion of a write sequence :  
CY7C2561KV18 only the upper nibble (D  
) is written into the device, D  
) is written into the device, D  
remains unaltered.  
remains unaltered.  
[7:4]  
[3:0]  
[8:0]  
CY7C2563KV18 only the upper byte (D  
[17:9]  
H
H
H
H
L–H  
No data is written into the devices during this portion of a write operation.  
L–H No data is written into the devices during this portion of a write operation.  
Table 5. Write Cycle Descriptions  
The write cycle description table for CY7C2576KV18 follows.  
BWS  
K
L–H  
K
Comments  
During the data portion of a write sequence, the single byte (D  
0
L
L
) is written into the device.  
) is written into the device.  
[8:0]  
L–H During the data portion of a write sequence, the single byte (D  
[8:0]  
H
H
L–H  
No data is written into the device during this portion of a write operation.  
L–H No data is written into the device during this portion of a write operation.  
Note  
12. Is based on a write cycle that was initiated in accordance with the Write Cycle Descriptions table. NWS , NWS , BWS , BWS , BWS , and BWS can be altered on  
0
1
0
1
2
3
different portions of a write cycle, as long as the setup and hold requirements are achieved.  
Document Number: 001-15887 Rev. *E  
Page 11 of 29  
   
CY7C2561KV18, CY7C2576KV18  
CY7C2563KV18, CY7C2565KV18  
PRELIMINARY  
Table 6. Write Cycle Descriptions  
The write cycle description table for CY7C2565KV18 follows.  
[4, 12]  
BWS  
BWS  
BWS  
BWS  
3
K
K
Comments  
0
1
2
L
L
L
L
L–H  
During the data portion of a write sequence, all four bytes (D  
the device.  
) are written into  
) are written into  
[35:0]  
L
L
L
H
H
L
L
H
H
H
H
L
L
H
H
H
H
H
H
L
L–H  
L–H During the data portion of a write sequence, all four bytes (D  
the device.  
[35:0]  
During the data portion of a write sequence, only the lower byte (D  
) is written  
) is written  
[8:0]  
[8:0]  
into the device. D  
remains unaltered.  
[35:9]  
L
L–H During the data portion of a write sequence, only the lower byte (D  
into the device. D remains unaltered.  
[35:9]  
H
H
H
H
H
H
L–H  
During the data portion of a write sequence, only the byte (D  
) is written into  
[17:9]  
the device. D  
and D  
remains unaltered.  
[8:0]  
[35:18]  
L
L–H During the data portion of a write sequence, only the byte (D  
the device. D and D remains unaltered.  
) is written into  
[17:9]  
[8:0]  
[35:18]  
H
H
H
H
L–H  
During the data portion of a write sequence, only the byte (D  
) is written into  
) is written into  
) is written into  
) is written into  
[26:18]  
[26:18]  
[35:27]  
[35:27]  
the device. D  
and D  
remains unaltered.  
[17:0]  
[35:27]  
L
L–H During the data portion of a write sequence, only the byte (D  
the device. D and D remains unaltered.  
[17:0]  
[35:27]  
H
H
L–H  
During the data portion of a write sequence, only the byte (D  
the device. D remains unaltered.  
[26:0]  
L
L–H During the data portion of a write sequence, only the byte (D  
the device. D remains unaltered.  
[26:0]  
H
H
H
H
H
H
H
H
L–H  
No data is written into the device during this portion of a write operation.  
L–H No data is written into the device during this portion of a write operation.  
Document Number: 001-15887 Rev. *E  
Page 12 of 29  
CY7C2561KV18, CY7C2576KV18  
CY7C2563KV18, CY7C2565KV18  
PRELIMINARY  
Instruction Register  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the TDI  
and TDO pins, as shown in TAP Controller Block Diagram on  
page 16. Upon power up, the instruction register is loaded with  
the IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state, as described  
in the previous section.  
These SRAMs incorporate a serial boundary scan Test Access  
Port (TAP) in the FBGA package. This part is fully compliant with  
IEEE Standard #1149.1-2001. The TAP operates using JEDEC  
standard 1.8V IO logic levels.  
Disabling the JTAG Feature  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, TCK must be tied LOW  
When the TAP controller is in the Capture-IR state, the two least  
significant bits are loaded with a binary “01” pattern to allow for  
fault isolation of the board level serial test path.  
(V ) to prevent clocking of the device. TDI and TMS are inter-  
SS  
nally pulled up and may be unconnected. They may alternatively  
be connected to V through a pull up resistor. TDO must be left  
unconnected. Upon power up, the device comes up in a reset  
state, which does not interfere with the operation of the device.  
Bypass Register  
DD  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain chips. The bypass  
register is a single-bit register that can be placed between TDI  
and TDO pins. This enables shifting of data through the SRAM  
with minimal delay. The bypass register is set LOW (V ) when  
the BYPASS instruction is executed.  
Test Access Port—Test Clock  
The test clock is used only with the TAP controller. All inputs are  
captured on the rising edge of TCK. All outputs are driven from  
the falling edge of TCK.  
SS  
Boundary Scan Register  
Test Mode Select (TMS)  
The boundary scan register is connected to all of the input and  
output pins on the SRAM. Several No Connect (NC) pins are also  
included in the scan register to reserve pins for higher density  
devices.  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. This pin may be left  
unconnected if the TAP is not used. The pin is pulled up inter-  
nally, resulting in a logic HIGH level.  
The boundary scan register is loaded with the contents of the  
RAM input and output ring when the TAP controller is in the  
Capture-DR state and is then placed between the TDI and TDO  
pins when the controller is moved to the Shift-DR state. The  
EXTEST, SAMPLE/PRELOAD, and SAMPLE Z instructions can  
be used to capture the contents of the input and output ring.  
Test Data-In (TDI)  
The TDI pin is used to serially input information into the registers  
and can be connected to the input of any of the registers. The  
register between TDI and TDO is chosen by the instruction that  
is loaded into the TAP instruction register. For information about  
loading the instruction register, see the TAP Controller State  
Diagram on page 15. TDI is internally pulled up and can be  
unconnected if the TAP is unused in an application. TDI is  
connected to the most significant bit (MSB) on any register.  
The Boundary Scan Order on page 19 shows the order in which  
the bits are connected. Each bit corresponds to one of the bumps  
on the SRAM package. The MSB of the register is connected to  
TDI, and the LSB is connected to TDO.  
Identification (ID) Register  
Test Data-Out (TDO)  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired into  
the SRAM and can be shifted out when the TAP controller is in  
the Shift-DR state. The ID register has a vendor code and other  
The TDO output pin is used to serially clock data out from the  
registers. The output is active, depending upon the current state  
of the TAP state machine (see Instruction Codes on page 18).  
The output changes on the falling edge of TCK. TDO is  
connected to the least significant bit (LSB) of any register.  
Performing a TAP Reset  
A Reset is performed by forcing TMS HIGH (V ) for five rising  
TAP Instruction Set  
DD  
edges of TCK. This Reset does not affect the operation of the  
SRAM and can be performed while the SRAM is operating. At  
power up, the TAP is reset internally to ensure that TDO comes  
up in a high-Z state.  
Eight different instructions are possible with the three-bit  
instruction register. All combinations are listed in Instruction  
Codes on page 18. Three of these instructions are listed as  
RESERVED and must not be used. The other five instructions  
are described in this section in detail.  
TAP Registers  
Instructions are loaded into the TAP controller during the Shift-IR  
state when the instruction register is placed between TDI and  
TDO. During this state, instructions are shifted through the  
instruction register through the TDI and TDO pins. To execute  
the instruction after it is shifted in, the TAP controller must be  
moved into the Update-IR state.  
Registers are connected between the TDI and TDO pins to scan  
the data in and out of the SRAM test circuitry. Only one register  
can be selected at a time through the instruction registers. Data  
is serially loaded into the TDI pin on the rising edge of TCK. Data  
is output on the TDO pin on the falling edge of TCK.  
Document Number: 001-15887 Rev. *E  
Page 13 of 29  
CY7C2561KV18, CY7C2576KV18  
CY7C2563KV18, CY7C2565KV18  
PRELIMINARY  
IDCODE  
PRELOAD places an initial data pattern at the latched parallel  
outputs of the boundary scan register cells before the selection  
of another boundary scan test operation.  
The IDCODE instruction loads a vendor-specific, 32-bit code into  
the instruction register. It also places the instruction register  
between the TDI and TDO pins and shifts the IDCODE out of the  
device when the TAP controller enters the Shift-DR state. The  
IDCODE instruction is loaded into the instruction register at  
power up or whenever the TAP controller is supplied a  
Test-Logic-Reset state.  
The shifting of data for the SAMPLE and PRELOAD phases can  
occur concurrently when required, that is, while the data  
captured is shifted out, the preloaded data can be shifted in.  
BYPASS  
When the BYPASS instruction is loaded in the instruction  
register and the TAP is placed in a Shift-DR state, the bypass  
register is placed between the TDI and TDO pins. The advantage  
of the BYPASS instruction is that it shortens the boundary scan  
path when multiple devices are connected together on a board.  
SAMPLE Z  
The SAMPLE Z instruction connects the boundary scan register  
between the TDI and TDO pins when the TAP controller is in a  
Shift-DR state. The SAMPLE Z command puts the output bus  
into a High-Z state until the next command is supplied during the  
Update IR state.  
EXTEST  
The EXTEST instruction drives the preloaded data out through  
the system output pins. This instruction also connects the  
boundary scan register for serial access between the TDI and  
TDO in the Shift-DR controller state.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. When  
the SAMPLE/PRELOAD instructions are loaded into the  
instruction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the input and output pins is captured  
in the boundary scan register.  
EXTEST OUTPUT BUS TRI-STATE  
IEEE Standard 1149.1 mandates that the TAP controller be able  
to put the output bus into a tri-state mode.  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 20 MHz, while the SRAM clock  
operates more than an order of magnitude faster. Because there  
is a large difference in the clock frequencies, it is possible that  
during the Capture-DR state, an input or output undergoes a  
transition. The TAP may then try to capture a signal while in  
transition (metastable state). This does not harm the device, but  
there is no guarantee as to the value that is captured.  
Repeatable results may not be possible.  
The boundary scan register has a special bit located at bit #108.  
When this scan cell, called the “extest output bus tri-state,” is  
latched into the preload register during the Update-DR state in  
the TAP controller, it directly controls the state of the output  
(Q-bus) pins, when the EXTEST is entered as the current  
instruction. When HIGH, it enables the output buffers to drive the  
output bus. When LOW, this bit places the output bus into a  
High-Z condition.  
To guarantee that the boundary scan register captures the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controller's capture setup plus hold  
times (t and t ). The SRAM clock input might not be captured  
correctly if there is no way in a design to stop (or slow) the clock  
during a SAMPLE/PRELOAD instruction. If this is an issue, it is  
still possible to capture all other signals and simply ignore the  
value of the CK and CK captured in the boundary scan register.  
This bit can be set by entering the SAMPLE/PRELOAD or  
EXTEST command, and then shifting the desired bit into that  
cell, during the Shift-DR state. During Update-DR, the value  
loaded into that shift-register cell latches into the preload  
register. When the EXTEST instruction is entered, this bit directly  
controls the output Q-bus pins. Note that this bit is preset HIGH  
to enable the output when the device is powered up, and also  
when the TAP controller is in the Test-Logic-Reset state.  
CS  
CH  
After the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the boundary  
scan register between the TDI and TDO pins.  
Reserved  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
Document Number: 001-15887 Rev. *E  
Page 14 of 29  
CY7C2561KV18, CY7C2576KV18  
CY7C2563KV18, CY7C2565KV18  
PRELIMINARY  
Figure 2. TAP Controller State Diagram  
The state diagram for the TAP controller follows.  
TEST-LOGIC  
RESET  
1
0
0
1
1
1
SELECT  
IR-SCAN  
TEST-LOGIC/  
IDLE  
SELECT  
DR-SCAN  
0
0
1
1
CAPTURE-DR  
CAPTURE-IR  
0
0
0
1
0
1
SHIFT-DR  
1
SHIFT-IR  
1
EXIT1-DR  
0
EXIT1-IR  
0
0
0
PAUSE-DR  
1
PAUSE-IR  
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
UPDATE-IR  
0
UPDATE-DR  
1
1
0
Note  
13. The 0/1 next to each state represents the value at TMS at the rising edge of TCK.  
Document Number: 001-15887 Rev. *E  
Page 15 of 29  
   
CY7C2561KV18, CY7C2576KV18  
CY7C2563KV18, CY7C2565KV18  
PRELIMINARY  
Figure 3. TAP Controller Block Diagram  
0
Bypass Register  
2
1
1
1
0
0
0
Selection  
Circuitry  
Selection  
Circuitry  
TDI  
TDO  
Instruction Register  
31 30  
29  
.
.
2
Identification Register  
.
108  
.
.
.
2
Boundary Scan Register  
TCK  
TMS  
TAP Controller  
TAP Electrical Characteristics  
Over the Operating Range  
Parameter  
Description  
Output HIGH Voltage  
Test Conditions  
= 2.0 mA  
Min  
1.4  
1.6  
Max  
Unit  
V
V
V
V
V
V
I
I
I
I
I
V
V
OH1  
OH2  
OL1  
OL2  
IH  
OH  
OH  
OL  
OL  
Output HIGH Voltage  
Output LOW Voltage  
Output LOW Voltage  
Input HIGH Voltage  
= 100 μA  
= 2.0 mA  
0.4  
0.2  
V
= 100 μA  
V
0.65V  
V
+ 0.3  
V
DD  
DD  
Input LOW Voltage  
–0.3  
–5  
0.35V  
5
V
IL  
DD  
Input and Output Load Current  
GND V V  
DD  
μA  
X
I
Notes  
14. These characteristics pertain to the TAP inputs (TMS, TCK, TDI and TDO). Parallel load levels are specified in the Electrical Characteristics Table.  
15. Overshoot: V (AC) < V + 0.35V (Pulse width less than t /2).  
/2), Undershoot: V (AC) > 0.3V (Pulse width less than t  
IH  
DDQ  
CYC  
IL  
CYC  
16. All Voltage referenced to Ground.  
Document Number: 001-15887 Rev. *E  
Page 16 of 29  
       
CY7C2561KV18, CY7C2576KV18  
CY7C2563KV18, CY7C2565KV18  
PRELIMINARY  
TAP AC Switching Characteristics  
Over the Operating Range  
Parameter  
Description  
Min  
Max  
Unit  
ns  
t
t
t
t
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH  
50  
TCYC  
TF  
20  
MHz  
ns  
20  
20  
TH  
TCK Clock LOW  
ns  
TL  
Setup Times  
t
t
t
TMS Setup to TCK Clock Rise  
TDI Setup to TCK Clock Rise  
Capture Setup to TCK Rise  
5
5
5
ns  
ns  
ns  
TMSS  
TDIS  
CS  
Hold Times  
t
t
t
TMS Hold after TCK Clock Rise  
TDI Hold after Clock Rise  
5
5
5
ns  
ns  
ns  
TMSH  
TDIH  
CH  
Capture Hold after Clock Rise  
Output Times  
t
t
TCK Clock LOW to TDO Valid  
TCK Clock LOW to TDO Invalid  
10  
ns  
ns  
TDOV  
TDOX  
0
TAP Timing and Test Conditions  
Figure 4 shows the TAP timing and test conditions.  
Figure 4. TAP Timing and Test Conditions  
0.9V  
ALL INPUT PULSES  
1.8V  
50Ω  
0.9V  
TDO  
0V  
Z = 50  
Ω
0
C = 20 pF  
L
tTL  
tTH  
GND  
(a)  
Test Clock  
TCK  
tTCYC  
tTMSH  
tTMSS  
Test Mode Select  
TMS  
tTDIS  
tTDIH  
Test Data In  
TDI  
Test Data Out  
TDO  
tTDOV  
tTDOX  
Notes  
17. t and t refer to the setup and hold time requirements of latching data from the boundary scan register.  
CS  
CH  
18. Test conditions are specified using the load in TAP AC Test Conditions. t /t = 1 ns.  
R
F
Document Number: 001-15887 Rev. *E  
Page 17 of 29  
     
CY7C2561KV18, CY7C2576KV18  
CY7C2563KV18, CY7C2565KV18  
PRELIMINARY  
Table 7. Identification Register Definitions  
Value  
Instruction Field  
Description  
CY7C2561KV18  
CY7C2576KV18  
CY7C2563KV18  
000  
CY7C2565KV18  
Revision Number  
(31:29)  
000  
000  
000  
Version number.  
Cypress Device ID 11010010001000100 11010010001001100 11010010001010100 11010010001100100 Defines the type of  
(28:12)  
SRAM.  
Cypress JEDEC ID  
(11:1)  
00000110100  
1
00000110100  
1
00000110100  
1
00000110100  
1
Allows unique  
identification of  
SRAM vendor.  
ID Register  
Presence (0)  
Indicates the  
presence of an ID  
register.  
Table 8. Scan Register Sizes  
Register Name  
Bit Size  
Instruction  
Bypass  
3
1
ID  
32  
109  
Boundary Scan  
Table 9. Instruction Codes  
Instruction  
EXTEST  
Code  
000  
Description  
Captures the input and output ring contents.  
IDCODE  
001  
Loads the ID register with the vendor ID code and places the register between TDI and TDO.  
This operation does not affect SRAM operation.  
SAMPLE Z  
010  
Captures the input and output contents. Places the boundary scan register between TDI and  
TDO. Forces all SRAM output drivers to a High-Z state.  
RESERVED  
011  
100  
Do Not Use: This instruction is reserved for future use.  
SAMPLE/PRELOAD  
Captures the input and output ring contents. Places the boundary scan register between TDI  
and TDO. Does not affect the SRAM operation.  
RESERVED  
RESERVED  
BYPASS  
101  
110  
111  
Do Not Use: This instruction is reserved for future use.  
Do Not Use: This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not affect SRAM  
operation.  
Document Number: 001-15887 Rev. *E  
Page 18 of 29  
   
CY7C2561KV18, CY7C2576KV18  
CY7C2563KV18, CY7C2565KV18  
PRELIMINARY  
Table 10. Boundary Scan Order  
Bit #  
0
Bump ID  
6R  
Bit #  
Bump ID  
10G  
9G  
Bit #  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
Bump ID  
6A  
5B  
5A  
4A  
5C  
4B  
3A  
2A  
1A  
2B  
3B  
1C  
1B  
3D  
3C  
1D  
2C  
3E  
2D  
2E  
1E  
2F  
Bit #  
84  
Bump ID  
1J  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
1
6P  
85  
2J  
2
6N  
11F  
11G  
9F  
86  
3K  
3
7P  
87  
3J  
4
7N  
88  
2K  
5
7R  
10F  
11E  
10E  
10D  
9E  
89  
1K  
6
8R  
90  
2L  
7
8P  
91  
3L  
8
9R  
92  
1M  
1L  
9
11P  
10P  
10N  
9P  
93  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
10C  
11D  
9C  
94  
3N  
95  
3M  
1N  
96  
10M  
11N  
9M  
9D  
97  
2M  
3P  
11B  
11C  
9B  
98  
99  
2N  
9N  
100  
101  
102  
103  
104  
105  
106  
107  
108  
2P  
11L  
11M  
9L  
10B  
11A  
10A  
9A  
1P  
3R  
4R  
10L  
11K  
10K  
9J  
4P  
8B  
5P  
7C  
3F  
5N  
6C  
1G  
1F  
5R  
9K  
8A  
Internal  
10J  
11J  
11H  
7A  
3G  
2G  
1H  
7B  
6B  
Document Number: 001-15887 Rev. *E  
Page 19 of 29  
 
CY7C2561KV18, CY7C2576KV18  
CY7C2563KV18, CY7C2565KV18  
PRELIMINARY  
PLL Constraints  
Power Up Sequence in QDR-II+ SRAM  
PLL uses K clock as its synchronizing input. The input must  
have low phase jitter, which is specified as t  
QDR-II+ SRAMs must be powered up and initialized in a  
predefined manner to prevent undefined operations.  
.
KC Var  
The PLL functions at frequencies down to 120 MHz.  
Power Up Sequence  
If the input clock is unstable and the PLL is enabled, then the  
PLL may lock onto an incorrect frequency, causing unstable  
SRAM behavior. To avoid this, provide 20 μs of stable clock to  
relock to the desired clock frequency.  
Apply power and drive DOFF either HIGH or LOW (All other  
inputs can be HIGH or LOW).  
Apply V before V  
.
DD  
DDQ  
Apply V  
before V  
or at the same time as V  
.
DDQ  
REF  
REF  
Drive DOFF HIGH.  
Provide stable DOFF (HIGH), power and clock (K, K) for 20 μs  
to lock the PLL  
Figure 5. Power Up Waveforms  
K
K
Unstable Clock  
> 20Ps Stable clock  
Stable)  
DDQ  
Start Normal  
Operation  
/
V
Clock Start (Clock Starts after V  
DD  
Stable (< +/- 0.1V DC per 50ns )  
/
/
V
VDDQ  
V
VDD  
DD  
DDQ  
Fix HIGH (or tie to V  
)
DDQ  
DOFF  
Document Number: 001-15887 Rev. *E  
Page 20 of 29  
CY7C2561KV18, CY7C2576KV18  
CY7C2563KV18, CY7C2565KV18  
PRELIMINARY  
Maximum Ratings  
Exceeding maximum ratings may impair the useful life of the  
device. These user guidelines are not tested.  
Current into Outputs (LOW) ........................................ 20 mA  
Static Discharge Voltage (MIL-STD-883, M. 3015).. > 2001V  
Latch-up Current ................................................... > 200 mA  
Storage Temperature ................................. –65°C to +150°C  
Ambient Temperature with Power Applied.. –55°C to +125°C  
Operating Range  
Supply Voltage on V Relative to GND........–0.5V to +2.9V  
DD  
Ambient  
Supply Voltage on V  
Relative to GND.......–0.5V to +V  
DD  
DDQ  
Range  
Commercial  
Industrial  
Temperature (T )  
V
V
DDQ  
A
DD  
DC Applied to Outputs in High-Z ........ –0.5V to V  
+ 0.3V  
DDQ  
0°C to +70°C  
1.8 ± 0.1V  
1.4V to  
DC Input Voltage  
.............................. –0.5V to V + 0.3V  
DD  
V
DD  
–40°C to +85°C  
Electrical Characteristics  
DC Electrical Characteristics  
Over the Operating Range  
Parameter  
Description  
Power Supply Voltage  
IO Supply Voltage  
Test Conditions  
Min  
1.7  
1.4  
Typ  
Max  
Unit  
V
1.8  
1.5  
1.9  
V
V
DD  
V
V
V
V
V
V
V
I
V
DD  
DDQ  
OH  
Output HIGH Voltage  
Output LOW Voltage  
Output HIGH Voltage  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage  
Note 20  
Note 21  
V
V
/2 – 0.12  
/2 – 0.12  
– 0.2  
V
V
/2 + 0.12  
/2 + 0.12  
V
DDQ  
DDQ  
DDQ  
V
OL  
DDQ  
I
I
= 0.1 mA, Nominal Impedance  
V
V
V
OH(LOW)  
OL(LOW)  
IH  
OH  
OL  
DDQ  
DDQ  
= 0.1 mA, Nominal Impedance  
V
0.2  
V
SS  
V
+ 0.1  
V
+ 0.15  
V
REF  
DDQ  
–0.15  
V
– 0.1  
V
IL  
REF  
Input Leakage Current  
Output Leakage Current  
Input Reference Voltage  
GND V V  
2  
2  
2
μA  
μA  
V
X
I
DDQ  
I
GND V V  
Output Disabled  
2
OZ  
I
DDQ,  
V
Typical Value = 0.75V  
0.68  
0.75  
0.95  
900  
900  
920  
1310  
830  
830  
850  
1210  
760  
760  
780  
1100  
690  
690  
710  
1000  
REF  
I
V
Operating Supply  
V
= Max,  
550 MHz  
500 MHz  
450 MHz  
400 MHz  
(x8)  
(x9)  
mA  
DD  
DD  
DD  
I
= 0 mA,  
OUT  
f = f  
= 1/t  
MAX  
CYC  
(x18)  
(x36)  
(x8)  
mA  
mA  
mA  
(x9)  
(x18)  
(x36)  
(x8)  
(x9)  
(x18)  
(x36)  
(x8)  
(x9)  
(x18)  
(x36)  
Notes  
19. Power up: Assumes a linear ramp from 0V to V (min) within 200 ms. During this time V < V and V  
< V .  
DD  
DD  
IH  
DD  
DDQ  
20. Output are impedance controlled. I = (V  
/2)/(RQ/5) for values of 175 ohms <= RQ <= 350 ohms.  
/2)/(RQ/5) for values of 175 ohms <= RQ <= 350 ohms.  
DDQ  
OH  
DDQ  
21. Output are impedance controlled. I = (V  
OL  
22. V  
(min) = 0.68V or 0.46V  
, whichever is larger, V  
(max) = 0.95V or 0.54V  
, whichever is smaller.  
REF  
DDQ  
REF  
DDQ  
23. The operation current is calculated with 50% read cycle and 50% write cycle.  
Document Number: 001-15887 Rev. *E  
Page 21 of 29  
           
CY7C2561KV18, CY7C2576KV18  
CY7C2563KV18, CY7C2565KV18  
PRELIMINARY  
Electrical Characteristics (continued)  
DC Electrical Characteristics  
[16]  
Over the Operating Range  
Parameter  
Description  
Test Conditions  
Min  
Typ  
Max  
380  
380  
380  
380  
360  
360  
360  
360  
340  
340  
340  
340  
320  
320  
320  
320  
Unit  
I
Automatic Power down  
Current  
Max V  
,
550 MHz  
500 MHz  
450 MHz  
400 MHz  
(x8)  
(x9)  
mA  
SB1  
DD  
Both Ports Deselected,  
V
V or V V  
IN  
IH  
IN  
IL  
(x18)  
(x36)  
(x8)  
f = f  
= 1/t  
,
MAX  
CYC  
Inputs Static  
mA  
mA  
mA  
(x9)  
(x18)  
(x36)  
(x8)  
(x9)  
(x18)  
(x36)  
(x8)  
(x9)  
(x18)  
(x36)  
AC Electrical Characteristics  
Over the Operating Range  
Parameter  
Description  
Input HIGH Voltage  
Input LOW Voltage  
Test Conditions  
Min  
+ 0.2  
Typ  
Max  
Unit  
V
V
V
V
+ 0.24  
DDQ  
IH  
IL  
REF  
V
–0.24  
V
– 0.2  
V
REF  
Capacitance  
Tested initially and after any design or process change that may affect these parameters.  
Parameter  
Description  
Input Capacitance  
Output Capacitance  
Test Conditions  
Max  
Unit  
C
T = 25°C, f = 1 MHz, V = 1.8V, V = 1.5V  
DDQ  
2
3
pF  
pF  
IN  
O
A
DD  
C
Thermal Resistance  
Tested initially and after any design or process change that may affect these parameters.  
165 FBGA  
Package  
Parameter  
Description  
Test Conditions  
Unit  
Θ
Thermal Resistance  
(Junction to Ambient)  
Test conditions follow standard test methods  
and procedures for measuring thermal  
impedance, in accordance with EIA/JESD51.  
With Still Air  
13.7  
12.56  
3.73  
°C/W  
JA  
(0m/s)  
With Air flow  
(1m/s)  
Θ
Thermal Resistance  
(Junction to Case)  
°C/W  
JC  
Document Number: 001-15887 Rev. *E  
Page 22 of 29  
CY7C2561KV18, CY7C2576KV18  
CY7C2563KV18, CY7C2565KV18  
PRELIMINARY  
AC Test Loads and Waveforms  
V
REF = 0.75V  
0.75V  
VREF  
VREF  
0.75V  
R = 50Ω  
OUTPUT  
ALL INPUT PULSES  
1.25V  
Z = 50Ω  
0
OUTPUT  
Device  
Under  
Test  
R = 50Ω  
L
0.75V  
Device  
Under  
0.25V  
5 pF  
VREF = 0.75V  
Slew Rate = 2 V/ns  
ZQ  
Test  
ZQ  
RQ =  
RQ =  
250Ω  
250Ω  
INCLUDING  
JIG AND  
SCOPE  
(a)  
(b)  
Note  
24. Unless otherwise noted, test conditions are based on signal transition time of 2V/ns, timing reference levels of 0.75V, Vref = 0.75V, RQ = 250Ω, V  
= 1.5V, input  
DDQ  
pulse levels of 0.25V to 1.25V, and output loading of the specified I /I and load capacitance shown in (a) of AC Test Loads and Waveforms.  
OL OH  
Document Number: 001-15887 Rev. *E  
Page 23 of 29  
   
CY7C2561KV18, CY7C2576KV18  
CY7C2563KV18, CY7C2565KV18  
PRELIMINARY  
Switching Characteristics  
Over the Operating Range  
550 MHz  
500 MHz  
450 MHz  
400 MHz  
Cypress Consortium  
Parameter Parameter  
Description  
Unit  
Min Max Min Max Min Max Min Max  
t
t
t
t
t
V
(Typical) to the First Access  
1
1
1
1
ms  
ns  
ns  
ns  
ns  
POWER  
CYC  
KH  
DD  
t
t
t
t
K Clock Cycle Time  
1.81 8.4 2.0 8.4 2.2 8.4 2.5 8.4  
KHKH  
KHKL  
KLKH  
KHKH  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
Input Clock (K/K) HIGH  
Input Clock (K/K) LOW  
KL  
0.77  
0.85  
0.94  
1.06  
K Clock Rise to K Clock Rise  
(rising edge to rising edge)  
KHKH  
Setup Times  
t
t
t
t
t
t
Address Setup to K Clock Rise  
0.23  
0.23  
0.25  
0.25  
0.20  
0.275  
0.275  
0.22  
0.4  
0.4  
ns  
ns  
ns  
SA  
AVKH  
IVKH  
IVKH  
Control Setup to K Clock Rise (RPS, WPS)  
SC  
Double Data Rate Control Setup to Clock (K/K) 0.18  
Rise (BWS , BWS , BWS , BWS )  
0.28  
SCDDR  
0
1
2
3
t
t
0.18  
0.20  
0.22  
0.28  
ns  
D
Setup to Clock (K/K) Rise  
SD  
DVKH  
[X:0]  
Hold Times  
t
t
t
t
t
t
0.23  
0.23  
0.25  
0.25  
0.20  
0.275  
0.275  
0.28  
0.4  
0.4  
ns  
ns  
ns  
Address Hold after K Clock Rise  
Control Hold after K Clock Rise (RPS, WPS)  
HA  
KHAX  
KHIX  
KHIX  
HC  
Double Data Rate Control Hold after Clock (K/K) 0.18  
Rise (BWS , BWS , BWS , BWS )  
0.28  
HCDDR  
0
1
2
3
t
t
0.18  
0.20  
0.28  
0.28  
ns  
D
Hold after Clock (K/K) Rise  
HD  
KHDX  
[X:0]  
Output Times  
t
t
t
t
0.29  
0.33  
0.37  
0.45 ns  
ns  
K/K Clock Rise to Data Valid  
CO  
CHQV  
CHQX  
–0.29  
–0.33  
–0.37  
–0.45  
Data Output Hold after Output K/K Clock Rise  
(Active to Active)  
DOH  
t
t
t
t
t
t
t
t
t
t
t
t
0.29  
0.33  
0.37  
0.45 ns  
ns  
0.20 ns  
K/K Clock Rise to Echo Clock Valid  
Echo Clock Hold after K/K Clock Rise  
Echo Clock High to Data Valid  
CCQO  
CQOH  
CQD  
CHCQV  
CHCQX  
CQHQV  
CQHQX  
CQHCQL  
CQHCQH  
–0.29  
–0.33  
–0.37  
–0.45  
0.15  
0.15  
0.15  
Echo Clock High to Data Invalid  
–0.15  
0.655  
0.655  
–0.15  
0.75  
0.75  
–0.15  
0.85  
0.85  
–0.20  
1.0  
ns  
ns  
ns  
CQDOH  
CQH  
Output Clock (CQ/CQ) HIGH  
CQ Clock Rise to CQ Clock Rise  
1.0  
CQHCQH  
(rising edge to rising edge)  
t
t
0.29  
0.33  
0.37  
0.45 ns  
ns  
Clock (K/K) Rise to High-Z  
(Active to High-Z)  
CHZ  
CHQZ  
t
t
t
t
–0.29  
–0.33  
–0.37  
–0.45  
Clock (K/K) Rise to Low-Z  
CLZ  
CHQX1  
Echo Clock High to QVLD Valid  
–0.15 0.15 –0.15 0.15 –0.15 0.15 –0.20 0.20 ns  
QVLD  
CQHQVLD  
PLL Timing  
t
t
t
t
t
t
Clock Phase Jitter  
PLL Lock Time (K)  
0.15  
0.15  
0.15  
0.20 ns  
KC Var  
KC Var  
20  
30  
20  
30  
20  
30  
20  
30  
μs  
KC lock  
KC Reset  
KC lock  
KC Reset  
K Static to PLL Reset  
ns  
Notes  
25. When a part with a maximum frequency above 400 MHz is operating at a lower clock frequency, it requires the input timings of the frequency range in which it is being  
operated and outputs data with the output timings of that frequency range.  
26. This part has a voltage regulator internally; t  
initiated.  
is the time that the power must be supplied above V minimum initially before a read or write operation can be  
DD  
POWER  
27. These parameters are extrapolated from the input timing parameters (t  
/2 - 250 ps, where 250 ps is the internal jitter). These parameters are only guaranteed by  
CYC  
design and are not tested in production.  
28. t  
, t  
, are specified with a load capacitance of 5 pF as in (b) of AC Test Loads and Waveforms. Transition is measured ± 100 mV from steady-state voltage.  
CHZ CLZ  
29. At any given voltage and temperature t  
is less than t  
and t  
less than t  
.
CO  
CHZ  
CLZ  
CHZ  
30. t  
spec is applicable for both rising and falling edges of QVLD signal.  
QVLD  
31. Hold to >V or <V .  
IH  
IL  
Document Number: 001-15887 Rev. *E  
Page 24 of 29  
               
CY7C2561KV18, CY7C2576KV18  
CY7C2563KV18, CY7C2565KV18  
PRELIMINARY  
Switching Waveforms  
Read/Write/Deselect Sequence [32, 33, 34]  
Figure 6. Waveform for 2.5 Cycle Read Latency  
WRITE  
3
READ  
4
NOP  
1
READ  
2
WRITE  
5
NOP  
6
7
8
K
t
t
KL  
t
t
KH  
CYC  
KHKH  
K
RPS  
t
t
SC HC  
t
t
SC  
HC  
WPS  
A
A0  
A1  
A2  
A3  
t
t
HD  
t
t
HD  
SA  
HA  
t
SD  
t
SD  
D11  
D12  
D30  
D32  
D33  
t
D10  
QVLD  
D13  
D31  
D
QVLD  
t
QVLD  
t
DOH  
t
t
CQDOH  
CO  
t
t
CHZ  
t
CLZ  
t
CQD  
Q
Q00 Q01 Q02  
CCQO  
Q20 Q21 Q22  
Q23  
Q03  
(Read Latency = 2.5 Cycles)  
CQOH  
CQ  
CQ  
CCQO  
t
t
t
CQHCQH  
CQH  
CQOH  
DON’T CARE  
UNDEFINED  
Notes  
32. Q00 refers to output from address A0. Q01 refers to output from the next internal burst address following A0, that is, A0+1.  
33. Outputs are disabled (High-Z) one clock cycle after a NOP.  
34. In this example, if address A2 = A1, then data Q20 = D10, Q21 = D11, Q22 = D12, and Q23 = D13. Write data is forwarded immediately as read results. This note  
applies to the whole diagram.  
Document Number: 001-15887 Rev. *E  
Page 25 of 29  
     
CY7C2561KV18, CY7C2576KV18  
CY7C2563KV18, CY7C2565KV18  
PRELIMINARY  
Ordering Information  
The following table lists all possible speed, package and temperature range options supported for these devices. Note that some  
options listed may not be available for order entry. To verify the availability of a specific option, visit the Cypress website at  
www.cypress.com and refer to the product summary page at http://www.cypress.com/products or contact your local sales  
representative for the status of availability of parts.  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives and distributors. To find the office  
Table 11. Ordering Information  
Speed  
(MHz)  
Package  
Diagram  
Operating  
Range  
Ordering Code  
Package Type  
550 CY7C2561KV18-550BZC  
CY7C2576KV18-550BZC  
CY7C2563KV18-550BZC  
CY7C2565KV18-550BZC  
CY7C2561KV18-550BZXC  
CY7C2576KV18-550BZXC  
CY7C2563KV18-550BZXC  
CY7C2565KV18-550BZXC  
CY7C2561KV18-550BZI  
CY7C2576KV18-550BZI  
CY7C2563KV18-550BZI  
CY7C2565KV18-550BZI  
CY7C2561KV18-550BZXI  
CY7C2576KV18-550BZXI  
CY7C2563KV18-550BZXI  
CY7C2565KV18-550BZXI  
500 CY7C2561KV18-500BZC  
CY7C2576KV18-500BZC  
CY7C2563KV18-500BZC  
CY7C2565KV18-500BZC  
CY7C2561KV18-500BZXC  
CY7C2576KV18-500BZXC  
CY7C2563KV18-500BZXC  
CY7C2565KV18-500BZXC  
CY7C2561KV18-500BZI  
CY7C2576KV18-500BZI  
CY7C2563KV18-500BZI  
CY7C2565KV18-500BZI  
CY7C2561KV18-500BZXI  
CY7C2576KV18-500BZXI  
CY7C2563KV18-500BZXI  
CY7C2565KV18-500BZXI  
51-85180 165-Ball Fine Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
51-85180 165-Ball Fine Pitch Ball Grid Array (13 x 15 x 1.4 mm) Pb-Free  
51-85180 165-Ball Fine Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
51-85180 165-Ball Fine Pitch Ball Grid Array (13 x 15 x 1.4 mm) Pb-Free  
51-85180 165-Ball Fine Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
51-85180 165-Ball Fine Pitch Ball Grid Array (13 x 15 x 1.4 mm) Pb-Free  
51-85180 165-Ball Fine Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
51-85180 165-Ball Fine Pitch Ball Grid Array (13 x 15 x 1.4 mm) Pb-Free  
Commercial  
Industrial  
Commercial  
Industrial  
Document Number: 001-15887 Rev. *E  
Page 26 of 29  
CY7C2561KV18, CY7C2576KV18  
CY7C2563KV18, CY7C2565KV18  
PRELIMINARY  
Table 11. Ordering Information (continued)  
Speed  
(MHz)  
Package  
Diagram  
Operating  
Range  
Ordering Code  
Package Type  
450 CY7C2561KV18-450BZC  
CY7C2576KV18-450BZC  
CY7C2563KV18-450BZC  
CY7C2565KV18-450BZC  
CY7C2561KV18-450BZXC  
CY7C2576KV18-450BZXC  
CY7C2563KV18-450BZXC  
CY7C2565KV18-450BZXC  
CY7C2561KV18-450BZI  
CY7C2576KV18-450BZI  
CY7C2563KV18-450BZI  
CY7C2565KV18-450BZI  
CY7C2561KV18-450BZXI  
CY7C2576KV18-450BZXI  
CY7C2563KV18-450BZXI  
CY7C2565KV18-450BZXI  
400 CY7C2561KV18-400BZC  
CY7C2576KV18-400BZC  
CY7C2563KV18-400BZC  
CY7C2565KV18-400BZC  
CY7C2561KV18-400BZXC  
CY7C2576KV18-400BZXC  
CY7C2563KV18-400BZXC  
CY7C2565KV18-400BZXC  
CY7C2561KV18-400BZI  
CY7C2576KV18-400BZI  
CY7C2563KV18-400BZI  
CY7C2565KV18-400BZI  
CY7C2561KV18-400BZXI  
CY7C2576KV18-400BZXI  
CY7C2563KV18-400BZXI  
CY7C2565KV18-400BZXI  
51-85180 165-Ball Fine Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
51-85180 165-Ball Fine Pitch Ball Grid Array (13 x 15 x 1.4 mm) Pb-Free  
51-85180 165-Ball Fine Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
51-85180 165-Ball Fine Pitch Ball Grid Array (13 x 15 x 1.4 mm) Pb-Free  
51-85180 165-Ball Fine Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
51-85180 165-Ball Fine Pitch Ball Grid Array (13 x 15 x 1.4 mm) Pb-Free  
51-85180 165-Ball Fine Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
51-85180 165-Ball Fine Pitch Ball Grid Array (13 x 15 x 1.4 mm) Pb-Free  
Commercial  
Industrial  
Commercial  
Industrial  
Document Number: 001-15887 Rev. *E  
Page 27 of 29  
CY7C2561KV18, CY7C2576KV18  
CY7C2563KV18, CY7C2565KV18  
PRELIMINARY  
Package Diagram  
Figure 7. 165-Ball FBGA (13 x 15 x 1.4 mm), 51-85180  
BOTTOM VIEW  
PIN 1 CORNER  
TOP VIEW  
Ø0.05 M C  
Ø0.25 M C A B  
PIN 1 CORNER  
-0.06  
Ø0.50 (165X)  
+0.14  
1
2
3
4
5
6
7
8
9
10  
11  
11 10  
9
8
7
6
5
4
3
2
1
A
B
A
B
C
D
C
D
E
E
F
F
G
G
H
J
H
J
K
K
L
L
M
M
N
P
R
N
P
R
A
A
1.00  
5.00  
10.00  
13.00 0.10  
B
13.00 0.10  
B
0.15(4X)  
NOTES :  
SOLDER PAD TYPE : NON-SOLDER MASK DEFINED (NSMD)  
PACKAGE WEIGHT : 0.475g  
JEDEC REFERENCE : MO-216 / DESIGN 4.6C  
PACKAGE CODE : BB0AC  
SEATING PLANE  
C
51-85180-*A  
Document Number: 001-15887 Rev. *E  
Page 28 of 29  
CY7C2561KV18, CY7C2576KV18  
CY7C2563KV18, CY7C2565KV18  
PRELIMINARY  
Document History Page  
Document Title: CY7C2561KV18/CY7C2576KV18/CY7C2563KV18/CY7C2565KV18, 72-Mbit QDR™-II+ SRAM 4-Word Burst  
Architecture (2.5 Cycle Read Latency) with ODT  
Document Number: 001-15887  
Orig. Of  
Change  
Submission  
Date  
Rev.  
Ecn No.  
Description Of Change  
**  
1120252  
VKN  
See ECN  
See ECN  
New datasheet  
*A  
1246904 VKN/AESA  
Added 550 and 500 MHz speed bins  
Removed 375, 333, and 300 MHz speed bins  
Made ODT applicable only for DDR inputs  
Added footnote# 2  
*B  
*C  
1739343 VKN/AESA  
2088787 VKN/AESA  
See ECN  
See ECN  
Converted from Advance Information to Preliminary  
Changed PLL lock time from 2048 cycles to 20 μs  
Added footnote #23 related to I  
DD  
Corrected typo in the footnote #27  
*D  
*E  
2612244 VKN/AESA  
2697841 04/24/2009  
11/25/08  
VKN  
Changed JTAG ID [31:29] from 001 to 000,  
Updated Power-up sequence waveform and it’s description,  
Included Thermal Resistance values,  
Changed the package size from 15 x 17 x 1.4 mm to 13 x 15 x 1.4 mm.  
Moved to external web  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at cypress.com/sales.  
Products  
PSoC  
PSoC Solutions  
General  
Clocks & Buffers  
Wireless  
Low Power/Low Voltage  
Precision Analog  
LCD Drive  
Memories  
Image Sensors  
CAN 2.0b  
USB  
© Cypress Semiconductor Corporation, 2007-2009. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used  
for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use  
as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support  
systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document Number: 001-15887 Rev. *E  
Revised April 24, 2009  
Page 29 of 29  
QDR RAMs and Quad Data Rate RAMs comprise a new family of products developed by Cypress, IDT, NEC, Renesas, and Samsung. All product and company names mentioned in this document  
are the trademarks of their respective holders.  

GE MULTI HANDSET 28213 User Manual
Fisher Paykel Cooktop CI604DT User Manual
Extron electronic Extron Electronics Computer Hardware RGB 118 PLUS User Manual
Emerson Computer Hardware ATCA 9305 User Manual
Electrolux Cooktop E36IC80ISS User Manual
Cypress CY7C1386F User Manual
BenQ Computer Monitor G2220HD User Manual
Asus M5A78L M LX3 PLUS User Manual
Antec NSK 6000 User Manual
Acer L2245w User Manual