Cypress CY7C1386F User Manual

CY7C1386D, CY7C1386F  
CY7C1387D, CY7C1387F  
18-Mbit (512K x 36/1 Mbit x 18) Pipelined DCD Sync SRAM  
Features  
Functional Description [1]  
• Supports bus operation up to 250 MHz  
The  
CY7C1386D/CY7C1387D/CY7C1386F/CY7C1387F  
SRAM integrates 512K x 36/1M x 18 SRAM cells with  
advanced synchronous peripheral circuitry and a two-bit  
counter for internal burst operation. All synchronous inputs are  
gated by registers controlled by a positive edge triggered clock  
input (CLK). The synchronous inputs include all addresses, all  
• Available speed grades are 250, 200, and 167 MHz  
• Registered inputs and outputs for pipelined operation  
• Optimal for performance (double-cycle deselect)  
• Depth expansion without wait state  
data inputs, address-pipelining chip enable (CE ), depth  
1
• 3.3V core power supply (V  
)
DD  
expansion chip enables (CE and CE  
), burst control inputs  
ADV), write enables ( , and BWE), and  
BW  
2
3
• 2.5V or 3.3V IO power supply (V  
• Fast clock-to-output times  
DDQ)  
(ADSC, ADSP,  
and  
X
global write (GW). Asynchronous inputs include the output  
enable (OE) and the ZZ pin.  
— 2.6 ns (for 250 MHz device)  
Addresses and chip enables are registered at rising edge of  
clock when either address strobe processor (ADSP) or  
address strobe controller (ADSC) are active. Subsequent  
burst addresses can be internally generated as controlled by  
the advance pin (ADV).  
• Provides high-performance 3-1-1-1 access rate  
®
®
• User selectable burst counter supporting Intel Pentium  
interleaved or linear burst sequences  
• Separate processor and controller address strobes  
• Synchronous self timed writes  
Address, data inputs, and write controls are registered on-chip  
to initiate a self timed write cycle.This part supports byte write  
• Asynchronous output enable  
• CY7C1386D/CY7C1387D available in JEDEC-standard  
on page 9 for further details). Write cycles can be  
Pb-free 100-pin TQFP, Pb-free and non Pb-free 165-ball  
FBGA package. CY7C1386F/CY7C1387F available in  
Pb-free and non Pb-free 119-ball BGA package  
one to four bytes wide as controlled by the byte write control  
inputs. GW active LOW causes all bytes to be written. This  
device incorporates an additional pipelined enable register  
which delays turning off the output buffers an additional cycle  
when a deselect is executed.This feature allows depth  
expansion without penalizing system performance.  
• IEEE 1149.1 JTAG-Compatible Boundary Scan  
• ZZ sleep mode option  
The  
CY7C1386D/CY7C1387D/CY7C1386F/CY7C1387F  
operates from a +3.3V core power supply while all outputs  
operate with a +3.3V or +2.5V supply. All inputs and outputs  
are JEDEC-standard and JESD8-5-compatible.  
Selection Guide  
250 MHz  
2.6  
200 MHz  
3.0  
167 MHz  
3.4  
Unit  
ns  
Maximum Access Time  
Maximum Operating Current  
Maximum CMOS Standby Current  
350  
300  
275  
mA  
mA  
70  
70  
70  
Notes  
1. For best practices or recommendations, please refer to the Cypress application note AN1064, SRAM System Design Guidelines on www.cypress.com.  
2. CE and CE are for TQFP and 165 FBGA packages only. 119 BGA is offered only in Single Chip Enable.  
3
2
Cypress Semiconductor Corporation  
Document Number: 38-05545 Rev. *E  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised Feburary 09, 2007  
   
CY7C1386D, CY7C1386F  
CY7C1387D, CY7C1387F  
Pin Configurations  
100-pin TQFP Pinout (3 Chip Enables)  
DQPC  
1
DQPB  
DQB  
DQB  
VDDQ  
VSSQ  
DQB  
DQB  
DQB  
DQB  
VSSQ  
VDDQ  
DQB  
DQB  
VSS  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
NC  
NC  
VDDQ  
VSSQ  
NC  
A
NC  
NC  
VDDQ  
VSSQ  
NC  
DQPA  
DQA  
DQA  
VSSQ  
VDDQ  
DQA  
DQA  
VSS  
NC  
1
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DQC  
2
DQC  
VDDQ  
VSSQ  
DQC  
3
4
5
6
DQC  
7
NC  
DQC  
8
DQB  
DQB  
VSSQ  
VDDQ  
DQB  
DQB  
NC  
VDD  
NC  
VSS  
DQB  
DQB  
VDDQ  
VSSQ  
DQB  
DQB  
DQPB  
NC  
DQC  
9
10  
11  
9
VSSQ  
VDDQ  
DQC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
12  
DQC  
13  
NC  
14  
VDD  
15  
NC  
VDD  
ZZ  
CY7C1387D  
(1M x 18)  
CY7C1386D  
(512K X 36)  
NC  
16  
VDD  
ZZ  
VSS  
17  
DQD  
18  
DQA  
DQA  
VDDQ  
VSSQ  
DQA  
DQA  
DQA  
DQA  
VSSQ  
VDDQ  
DQA  
DQA  
DQPA  
DQA  
DQA  
VDDQ  
VSSQ  
DQA  
DQA  
NC  
DQD  
19  
20  
21  
VDDQ  
VSSQ  
DQD  
22  
DQD  
23  
DQD  
24  
DQD  
25  
26  
27  
NC  
VSSQ  
VDDQ  
DQD  
DQD  
29  
VSSQ  
VDDQ  
NC  
NC  
NC  
VSSQ  
VDDQ  
NC  
NC  
NC  
28  
DQPD  
30  
Document Number: 38-05545 Rev. *E  
Page 3 of 30  
 
CY7C1386D, CY7C1386F  
CY7C1387D, CY7C1387F  
Pin Configurations (continued)  
119-Ball BGA Pinout (1 Chip Enable)  
CY7C1386F (512K x 36)  
1
2
3
4
5
6
7
A
V
A
A
A
A
V
DDQ  
ADSP  
ADSC  
DDQ  
A
A
B
C
NC/288M  
NC/144M  
A
A
A
A
A
A
NC/576M  
NC/1G  
V
DD  
D
E
F
DQ  
DQ  
DQP  
DQ  
V
NC  
CE  
V
DQP  
DQ  
DQ  
DQ  
C
C
C
SS  
SS  
SS  
SS  
SS  
SS  
B
B
B
V
V
V
V
C
1
B
V
DQ  
DQ  
V
DDQ  
OE  
ADV  
GW  
DDQ  
C
B
G
H
J
DQ  
DQ  
DQ  
BW  
V
BW  
V
DQ  
DQ  
DQ  
C
C
C
C
C
B
B
B
B
DQ  
DQ  
SS  
SS  
B
V
V
NC  
V
NC  
V
V
DDQ  
DDQ  
DD  
DD  
DD  
K
DQ  
DQ  
DQ  
DQ  
DQ  
V
CLK  
NC  
V
DQ  
DQ  
DQ  
DQ  
DQ  
D
D
D
SS  
SS  
A
A
A
L
M
N
DQ  
DQ  
BW  
V
BW  
A
D
D
D
A
A
A
D
V
V
V
V
DDQ  
BWE  
A1  
DDQ  
SS  
SS  
SS  
DQ  
V
V
DQ  
D
SS  
A
DQ  
DQP  
A
A0  
V
DQP  
A
DQ  
P
R
D
D
SS  
SS  
A
NC  
NC  
MODE  
V
NC  
A
NC  
DD  
T
NC/72M  
TMS  
A
A
A
NC/36M  
NC  
ZZ  
V
TDI  
TCK  
TDO  
V
DDQ  
U
DDQ  
CY7C1387F (1M x 18)  
2
1
3
A
A
A
4
5
A
A
A
6
A
A
A
7
V
A
A
V
DDQ  
A
B
C
D
E
F
ADSP  
ADSC  
DDQ  
NC/288M  
NC/576M  
NC/144M  
A
V
NC/1G  
NC  
DD  
DQ  
NC  
V
NC  
CE  
V
DQP  
B
SS  
SS  
SS  
SS  
SS  
SS  
A
NC  
DQ  
V
V
V
V
NC  
DQ  
B
A
1
V
NC  
DQ  
V
OE  
ADV  
GW  
DDQ  
A
DDQ  
NC  
DQ  
NC  
NC  
DQ  
G
H
J
BW  
V
B
A
B
DQ  
NC  
V
DQ  
NC  
B
SS  
SS  
A
V
V
NC  
V
NC  
V
V
DDQ  
DDQ  
DD  
DD  
DD  
K
NC  
DQ  
DQ  
V
CLK  
NC  
V
NC  
DQ  
DQ  
B
SS  
SS  
A
L
M
N
P
NC  
DQ  
NC  
NC  
BW  
B
A
A
V
V
V
V
V
NC  
DQ  
V
DDQ  
BWE  
A1  
DDQ  
B
SS  
SS  
SS  
SS  
DQ  
NC  
V
V
NC  
DQ  
B
SS  
SS  
A
NC  
DQP  
A0  
NC  
B
A
R
T
NC  
A
A
MODE  
A
V
NC  
A
A
A
NC  
ZZ  
DD  
NC/72M  
NC/36M  
TCK  
V
TMS  
TDI  
TDO  
NC  
V
DDQ  
U
DDQ  
Document Number: 38-05545 Rev. *E  
Page 4 of 30  
CY7C1386D, CY7C1386F  
CY7C1387D, CY7C1387F  
Pin Configurations (continued)  
165-Ball FBGA Pinout (3 Chip Enable)  
CY7C1386D (512K x 36)  
1
2
A
3
4
5
6
7
8
9
10  
A
11  
NC  
NC/288M  
NC/144M  
DQPC  
A
B
C
D
CE1  
BWC  
BWD  
VSS  
VDD  
BWB  
BWA  
VSS  
VSS  
CE  
ADSC  
BWE  
GW  
VSS  
VSS  
ADV  
ADSP  
VDDQ  
VDDQ  
3
A
CE2  
CLK  
VSS  
VSS  
A
NC/512M  
DQPB  
DQB  
OE  
VSS  
VDD  
NC  
DQC  
VDDQ  
VDDQ  
NC/1G  
DQB  
DQC  
DQC  
DQC  
DQC  
NC  
DQC  
DQC  
DQC  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
DQB  
DQB  
DQB  
NC  
DQB  
DQB  
DQB  
ZZ  
E
F
G
H
J
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
K
L
DQD  
DQPD  
NC  
DQD  
NC  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
A
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
DQA  
DQPA  
A
M
N
P
NC/72M  
TDI  
A1  
TDO  
A0  
MODE NC/36M  
A
A
TMS  
TCK  
A
A
A
A
R
CY7C1387D (1M x 18)  
1
2
A
3
4
5
NC  
6
7
8
9
10  
A
11  
A
NC/288M  
NC/144M  
NC  
A
B
C
D
BWB  
NC  
CE  
CE1  
CE2  
BWE  
GW  
VSS  
VSS  
ADSC  
OE  
ADV  
ADSP  
VDDQ  
VDDQ  
3
A
BWA  
VSS  
VSS  
CLK  
VSS  
VSS  
A
NC/576M  
DQPA  
DQA  
NC  
VDDQ  
VDDQ  
VSS  
VDD  
VSS  
NC/1G  
NC  
NC  
DQB  
VDD  
NC  
NC  
DQB  
DQB  
DQB  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
‘VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
NC  
NC  
DQA  
DQA  
DQA  
ZZ  
E
F
NC  
NC  
G
H
J
NC  
NC  
DQB  
DQB  
DQB  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQA  
DQA  
DQA  
NC  
NC  
NC  
K
L
NC  
NC  
DQB  
DQPB  
NC  
NC  
NC  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
A
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
NC  
NC  
A
M
N
P
NC/72M  
TDI  
A1  
A0  
TDO  
MODE NC/36M  
A
A
TMS  
TCK  
A
A
A
A
R
Document Number: 38-05545 Rev. *E  
Page 5 of 30  
CY7C1386D, CY7C1386F  
CY7C1387D, CY7C1387F  
Pin Definitions  
Name  
IO  
Description  
A , A , A  
Input-  
Synchronous  
Address inputs used to select one of the address locations. Sampled at the  
0
1
[2]  
rising edge of the CLK if ADSP or ADSC is active LOW, and CE , CE , and CE  
3
1
2
are sampled active. A1: A0 are fed to the two-bit counter.  
BW , BW  
Input-  
Byte write select inputs, active LOW. Qualified with BWE to conduct byte writes  
A
B
BW , BW  
Synchronous  
to the SRAM. Sampled on the rising edge of CLK.  
C
D
GW  
Input-  
Global write enable input, active LOW. When asserted LOW on the rising edge  
Synchronous  
of CLK, a global write is conducted (all bytes are written, regardless of the values  
on BW and BWE).  
X
BWE  
CLK  
Input-  
Synchronous  
Byte write enable input, active LOW. Sampled on the rising edge of CLK. This  
signal must be asserted LOW to conduct a byte write.  
Input-  
Clock  
Clock input. Used to capture all synchronous inputs to the device. Also used to  
increment the burst counter when ADV is asserted LOW, during a burst operation.  
CE  
CE  
CE  
Input-  
Synchronous  
Chip enable 1 input, active LOW. Sampled on the rising edge of CLK. Used in  
1
2
3
[2]  
conjunction with CE and CE  
to select or deselect the device. ADSP is ignored  
2
3
if CE is HIGH. CE is sampled only when a new external address is loaded.  
1
1
Input-  
Synchronous  
Chip enable 2 input, active HIGH. Sampled on the rising edge of CLK. Used in  
[2]  
conjunction with CE and CE  
to select or deselect the device. CE is sampled  
1
3
2
only when a new external address is loaded.  
Input-  
Chip enable 3 input, active LOW. Sampled on the rising edge of CLK. Used in  
Synchronous  
conjunction with CE and CE to select or deselect the device. Not connected for  
1
2
BGA. Where referenced, CE  
is assumed active throughout this document for  
3
BGA. CE is sampled only when a new external address is loaded.  
3
OE  
Input-  
Asynchronous  
Output enable, asynchronous input, active LOW. Controls the direction of the  
IO pins. When LOW, the IO pins behave as outputs. When deasserted HIGH, DQ  
pins are tri-stated, and act as input data pins. OE is masked during the first clock of  
a read cycle when emerging from a deselected state.  
ADV  
Input-  
Advance input signal, sampled on the rising edge of CLK, active LOW. When  
Synchronous  
asserted, it automatically increments the address in a burst cycle.  
ADSP  
Input-  
Synchronous  
Address strobe from processor, sampled on the rising edge of CLK, active  
LOW. When asserted LOW, addresses presented to the device are captured in the  
address registers. A1: A0 are also loaded into the burst counter. When ADSP and  
ADSC are both asserted, only ADSP is recognized. ASDP is ignored when CE is  
1
deasserted HIGH.  
ADSC  
ZZ  
Input-  
Synchronous  
Address strobe from controller, sampled on the rising edge of CLK, active  
LOW. When asserted LOW, addresses presented to the device are captured in the  
address registers. A1: A0 are also loaded into the burst counter. When ADSP and  
ADSC are both asserted, only ADSP is recognized.  
Input-  
Asynchronous  
ZZ sleep input, active HIGH. When asserted HIGH places the device in a non-time  
critical sleep condition with data integrity preserved. For normal operation, this pin  
has to be LOW. ZZ pin has an internal pull down.  
IO-  
Bidirectional data IO lines. As inputs, they feed into an on-chip data register that  
is triggered by the rising edge of CLK. As outputs, they deliver the data contained  
in the memory location specified by the addresses presented during the previous  
DQs, DQP  
X
Synchronous  
cycle. The direction of the pins is controlled by OE. When OE  
clock rise of the read  
is asserted LOW, the pins behave as outputs. When HIGH, DQs and DQP are  
X
placed in a tri-state condition.  
V
Power Supply  
Power supply inputs to the core of the device.  
DD  
Document Number: 38-05545 Rev. *E  
Page 6 of 30  
CY7C1386D, CY7C1386F  
CY7C1387D, CY7C1387F  
Pin Definitions (continued)  
Name  
IO  
Description  
Ground for the core of the device.  
V
V
V
Ground  
IO Ground  
SS  
Ground for the IO circuitry.  
SSQ  
DDQ  
IO Power Supply  
Power supply for the IO circuitry.  
MODE  
TDO  
TDI  
Input-  
Static  
Selects burst order. When tied to GND selects linear burst sequence. When tied  
to V or left floating selects interleaved burst sequence. This is a strap pin and  
must remain static during device operation. Mode pin has an internal pull up.  
DD  
JTAG serial output  
Synchronous  
Serial data-out to the JTAG circuit. Delivers data on the negative edge of TCK. If  
the JTAG feature is not used, this pin must be disconnected. This pin is not available  
on TQFP packages.  
JTAG serial  
input  
Serial data-in to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG  
feature is not used, this pin can be disconnected or connected to V . This pin is  
DD  
Synchronous  
not available on TQFP packages.  
TMS  
JTAG serial  
input  
Serial data-in to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG  
feature is not used, this pin can be disconnected or connected to V . This pin is  
DD  
Synchronous  
not available on TQFP packages.  
TCK  
NC  
JTAG-  
Clock  
Clock input to the JTAG circuitry. If the JTAG feature is not used, this pin must  
be connected to V . This pin is not available on TQFP packages.  
SS  
No Connects. Not internally connected to the die  
NC/(36M, 72M,  
144M, 288M,  
576M, 1G)  
These pins are not connected. They will be used for expansion to the 36M, 72M,  
144M, 288M, 576M, and 1G densities.  
Single Read Accesses  
Functional Overview  
This access is initiated when the following conditions are  
satisfied at clock rise: (1) ADSP or ADSC is asserted LOW, (2)  
chip selects are all asserted active, and (3) the write signals  
All synchronous inputs pass through input registers controlled  
by the rising edge of the clock. All data outputs pass through  
output registers controlled by the rising edge of the clock.  
(GW, BWE) are all deasserted HIGH. ADSP is ignored if CE  
1
The  
CY7C1386D/CY7C1387D/CY7C1386F/CY7C1387F  
is HIGH. The address presented to the address inputs is  
stored into the address advancement logic and the address  
register while being presented to the memory core. The  
corresponding data is allowed to propagate to the input of the  
output registers. At the rising edge of the next clock the data  
is allowed to propagate through the output register and onto  
supports secondary cache in systems using either a linear or  
interleaved burst sequence. The interleaved burst order  
®
supports Pentium and i486processors. The linear burst  
sequence is suited for processors that use a linear burst  
sequence. The burst order is user selectable, and is  
determined by sampling the MODE input. Accesses can  
initiated with either the processor address strobe (ADSP)  
be  
or  
the data bus within t if OE is active LOW. The only exception  
CO  
occurs when the SRAM is emerging from a deselected state  
to a selected state, its outputs are always tri-stated during the  
first cycle of the access. After the first cycle of the access, the  
outputs are controlled by the OE signal. Consecutive single  
read cycles are supported.  
the controller address strobe (ADSC). Address advancement  
through the burst sequence is controlled by the ADV input. A  
two-bit on-chip wraparound burst counter captures the first  
address in a burst sequence and automatically increments the  
address for the rest of the burst access.  
The CY7C1386D/CY7C1387D/CY7C1386F/CY7C1387F is a  
double cycle deselect part. Once the SRAM is deselected at  
clock rise by the chip select and either ADSP or ADSC signals,  
its output will tri-state immediately after the next clock rise.  
Byte write operations are qualified with the byte write enable  
(BWE) and byte write select (BW ) inputs. A global write  
X
enable (GW) overrides all byte write inputs and writes data to  
all four bytes. All writes are simplified with on-chip  
synchronous self timed write circuitry.  
Single Write Accesses Initiated by ADSP  
Synchronous chip selects CE , CE , CE  
3
and an  
This access is initiated when both of the following conditions  
are satisfied at clock rise: (1) ADSP is asserted LOW, and (2)  
chip select is asserted active. The address presented is  
loaded into the address register and the address  
advancement logic while being delivered to the memory core.  
1
2
asynchronous output enable (OE) provide for easy bank  
selection and output tri-state control. ADSP is ignored if CE  
is HIGH.  
1
Document Number: 38-05545 Rev. *E  
Page 7 of 30  
CY7C1386D, CY7C1386F  
CY7C1387D, CY7C1387F  
The write signals (GW, BWE, and  
ignored during this first cycle.  
) and ADV inputs are  
Burst Sequences  
The CY7C1386D/CY7C1387D/CY7C1386F/CY7C1387F  
BW  
X
ADSP triggered write accesses require two clock cycles to  
complete. If GW is asserted LOW on the second clock rise, the  
provides a two-bit wraparound counter, fed by A , that  
[1:0]  
implements either an interleaved or linear burst sequence. The  
interleaved burst sequence is designed specifically to support  
Intel Pentium applications. The linear burst sequence is  
designed to support processors that follow a linear burst  
sequence. The burst sequence is user selectable through the  
MODE input.  
data presented to the DQ inputs is written into the  
x
corresponding address location in the memory core. If GW is  
HIGH, then the write operation is controlled by BWE and BW  
signals.  
X
The  
CY7C1386D/CY7C1387D/CY7C1386F/CY7C1387F  
provides byte write capability that is described in the write  
cycle description table. Asserting the byte write enable input  
(BWE) with the selected byte write input, will selectively write  
to only the desired bytes. Bytes not selected during a byte  
write operation will remain unaltered. A synchronous self  
timed write mechanism has been provided to simplify the write  
operations.  
Asserting ADV LOW at clock rise will automatically increment  
the burst counter to the next address in the burst sequence.  
Both read and write burst operations are supported.  
Sleep Mode  
The ZZ input pin is an asynchronous input. Asserting ZZ  
places the SRAM in a power conservation sleep mode. Two  
clock cycles are required to enter into or exit from this sleep  
mode. While in this mode, data integrity is guaranteed.  
Accesses pending when entering the sleep mode are not  
considered valid nor is the completion of the operation  
guaranteed. The device must be deselected prior to entering  
the sleep mode. CEs, ADSP, and ADSC must remain inactive  
The CY7C1386D/CY7C1387D/CY7C1386F/CY7C1387F is a  
common IO device, the output enable (OE) must be  
deasserted HIGH before presenting data to the DQ inputs.  
Doing so will tri-state the output drivers. As a safety  
precaution, DQ are automatically tri-stated whenever a write  
cycle is detected, regardless of the state of OE.  
for the duration of t  
after the ZZ input returns LOW.  
ZZREC  
Single Write Accesses Initiated by ADSC  
ADSC write accesses are initiated when the following  
conditions are satisfied: (1) ADSC is asserted LOW, (2) ADSP  
is deasserted HIGH, (3) chip select is asserted active, and  
(4) the appropriate combination of the write inputs (GW, BWE,  
Interleaved Burst Address Table  
(MODE = Floating or VDD)  
First  
Address  
A1: A0  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
and  
) are asserted active to conduct a write to the desired  
BW  
X
byte(s). ADSC triggered write accesses require a single clock  
cycle to complete. The address presented is loaded into the  
address register and the address advancement logic while  
being delivered to the memory core. The ADV input is ignored  
during this cycle. If a global write is conducted, the data  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
presented to the DQ is written into the corresponding address  
X
location in the memory core. If a byte write is conducted, only  
the selected bytes are written. Bytes not selected during a byte  
write operation will remain unaltered. A synchronous self  
timed write mechanism has been provided to simplify the write  
operations.  
Linear Burst Address Table (MODE = GND)  
First  
Address  
A1: A0  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
The CY7C1386D/CY7C1387D/CY7C1386F/CY7C1387F is a  
common IO device, the output enable (OE) must be  
deasserted HIGH before presenting data to the DQ inputs.  
X
Doing so will tri-state the output drivers. As a safety  
precaution, DQ are automatically tri-stated whenever a write  
X
cycle is detected, regardless of the state of OE.  
ZZ Mode Electrical Characteristics  
Parameter  
Description  
Sleep mode standby current  
Device operation to ZZ  
Test Conditions  
ZZ > V – 0.2V  
Min  
Max  
80  
Unit  
mA  
ns  
I
t
t
t
t
DDZZ  
DD  
ZZ > V – 0.2V  
2t  
ZZS  
DD  
CYC  
ZZ recovery time  
ZZ < 0.2V  
2t  
ns  
ZZREC  
ZZI  
CYC  
ZZ Active to sleep current  
ZZ Inactive to exit sleep current  
This parameter is sampled  
This parameter is sampled  
2t  
ns  
CYC  
0
ns  
RZZI  
Document Number: 38-05545 Rev. *E  
Page 8 of 30  
CY7C1386D, CY7C1386F  
CY7C1387D, CY7C1387F  
Truth Table [4, 5, 6, 7, 8]  
Operation  
Add. Used CE  
CE  
CE ZZ ADSP ADSC ADV WRITE OE CLK  
DQ  
1
2
3
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Sleep Mode, Power Down  
Read Cycle, Begin Burst  
Read Cycle, Begin Burst  
Write Cycle, Begin Burst  
None  
None  
H
L
L
L
L
X
L
L
L
L
L
X
X
H
X
L
X
X
H
X
H
X
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
X
L
L
X
X
L
X
X
X
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
L
L-H Tri-State  
L-H Tri-State  
L-H Tri-State  
L-H Tri-State  
L-H Tri-State  
None  
X
L
L
None  
H
H
X
L
None  
X
X
H
H
H
H
H
X
X
X
L
None  
X
X
X
L
X
Tri-State  
Q
External  
External  
External  
External  
External  
Next  
L-H  
L
L
H
X
L
L-H Tri-State  
L
H
H
H
H
H
X
L-H  
L-H  
D
Q
Read Cycle, Begin Burst  
Read Cycle, Begin Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
L
L
H
H
H
H
H
L
L
H
L
L-H Tri-State  
L-H  
L-H Tri-State  
L-H  
L-H Tri-State  
X
X
X
H
H
H
Q
Next  
L
H
L
Next  
L
Q
Read Cycle, Continue Burst  
Write Cycle, Continue Burst  
Write Cycle, Continue Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Write Cycle, Suspend Burst  
Write Cycle, Suspend Burst  
Next  
Next  
H
X
H
X
X
H
H
X
H
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
L
L
L
L
L
L
L
L
L
X
H
X
H
H
X
X
H
X
H
H
H
H
H
H
H
H
H
L
L
H
L
H
X
X
L
L-H  
L-H  
L-H  
D
D
Q
Next  
L
L
Current  
Current  
Current  
Current  
Current  
Current  
H
H
H
H
H
H
H
H
H
H
L
H
L
L-H Tri-State  
L-H  
L-H Tri-State  
Q
H
X
X
L-H  
L-H  
D
D
L
Notes  
4. X = Don't Care, H = Logic HIGH, L = Logic LOW.  
5. WRITE = L when any one or more byte write enable signals, and BWE = L or GW = L. WRITE = H when all byte write enable signals, BWE, GW = H.  
6. The DQ pins are controlled by the current cycle and the OE signal. OE is asynchronous and is not sampled with the clock.  
7. The SRAM always initiates a read cycle when ADSP is asserted, regardless of the state of GW, BWE, or BW . Writes may occur only on subsequent clocks after  
X
the ADSP or with the assertion of . As a result, OE must be driven HIGH prior to the start of the write cycle to allow the outputs to tri-state. OE is a don't  
ADSC  
care for the remainder of the write cycle.  
8. OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle all data bits are tri-state when OE is  
inactive or when the device is deselected, and all data bits behave as output when OE is active (LOW).  
Document Number: 38-05545 Rev. *E  
Page 9 of 30  
           
CY7C1386D, CY7C1386F  
CY7C1387D, CY7C1387F  
Truth Table for Read/Write [6, 9]  
Function (CY7C1386D/CY7C1386F)  
GW  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
BWE  
H
L
BW  
X
H
H
H
H
H
H
H
H
L
BW  
X
H
H
H
H
L
BW  
X
H
H
L
BW  
A
D
C
B
Read  
Read  
X
H
L
Write Byte A – (DQ and DQP )  
L
A
A
Write Byte B – (DQ and DQP )  
L
H
L
B
B
Write Bytes B, A  
Write Byte C – (DQ and DQP )  
L
L
L
H
H
L
H
L
C
C
Write Bytes C, A  
Write Bytes C, B  
Write Bytes C, B, A  
L
L
L
L
H
L
L
L
L
Write Byte D – (DQ and DQP )  
L
H
H
H
H
L
H
H
L
H
L
D
D
Write Bytes D, A  
Write Bytes D, B  
Write Bytes D, B, A  
Write Bytes D, C  
L
L
L
L
H
L
L
L
L
L
L
H
H
L
H
L
Write Bytes D, C, A  
Write Bytes D, C, B  
Write All Bytes  
L
L
L
L
L
L
H
L
L
L
L
L
Write All Bytes  
X
X
X
X
X
Truth Table for Read/Write [6, 9]  
Function (CY7C1387D/CY7C1387F)  
GW  
H
BWE  
BW  
X
BW  
A
B
Read  
Read  
H
L
L
L
L
X
X
H
L
H
H
H
L
Write Byte A – (DQ and DQP )  
H
A
A
Write Byte B – (DQ and DQP )  
H
H
L
B
B
Write All Bytes  
Write All Bytes  
H
L
L
X
X
Note  
9. Table only lists a partial listing of the byte write combinations. Any Combination of BW is valid Appropriate write will be done based on which byte write is active.  
X
Document Number: 38-05545 Rev. *E  
Page 10 of 30  
 
CY7C1386D, CY7C1386F  
CY7C1387D, CY7C1387F  
Test Data-In (TDI)  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
The TDI ball is used to serially input information into the  
registers and can be connected to the input of any of the  
registers. The register between TDI and TDO is chosen by the  
instruction that is loaded into the TAP instruction register. TDI  
is internally pulled up and can be unconnected if the TAP is  
unused in an application. TDI is connected to the most signif-  
icant bit (MSB) of any register. (See TAP Controller Block  
Diagram).  
The  
CY7C1386D/CY7C1387D/CY7C1386F/CY7C1387F  
incorporates a serial boundary scan test access port (TAP).  
This part is fully compliant with 1149.1. The TAP operates  
using JEDEC-standard 3.3V or 2.5V IO logic levels.  
The  
CY7C1386D/CY7C1387D/CY7C1386F/CY7C1387F  
contains a TAP controller, instruction register, boundary scan  
register, bypass register, and ID register.  
Disabling the JTAG Feature  
Test Data-Out (TDO)  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, TCK must be tied LOW  
The TDO output ball is used to serially clock data out from the  
registers. The output is active depending upon the current  
state of the TAP state machine. The output changes on the  
falling edge of TCK. TDO is connected to the least significant  
bit (LSB) of any register. (See TAP Controller State Diagram).  
(V ) to prevent clocking of the device. TDI and TMS are  
SS  
internally pulled up and may be unconnected. They may  
alternately be connected to V  
through a pull up resistor.  
DD  
TDO can be left unconnected. Upon power up, the device will  
come up in a reset state which will not interfere with the  
operation of the device.  
TAP Controller Block Diagram  
0
TAP Controller State Diagram  
Bypass Register  
TEST-LOGIC  
1
2
1
0
0
0
RESET  
0
Selection  
Circuitry  
Instruction Register  
31 30 29  
Identification Register  
S
election  
TDI  
TDO  
1
1
1
RUN-TEST/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
0
Circuitr  
y
.
.
.
2
1
0
0
1
1
CAPTURE-DR  
CAPTURE-IR  
x
.
.
.
.
.
2
1
0
0
Boundary Scan Register  
SHIFT-DR  
0
SHIFT-IR  
0
1
1
1
1
EXIT1-DR  
EXIT1-IR  
TCK  
TMS  
TAP CONTROLLER  
0
0
PAUSE-DR  
1
0
PAUSE-IR  
1
0
0
0
Performing a TAP Reset  
EXIT2-DR  
1
EXIT2-IR  
1
A Reset is performed by forcing TMS HIGH (V ) for five rising  
DD  
edges of TCK. This Reset does not affect the operation of the  
SRAM and may be performed while the SRAM is operating.  
UPDATE-DR  
UPDATE-IR  
1
0
1
0
At power up, the TAP is reset internally to ensure that TDO  
comes up in a High-Z state.  
TAP Registers  
The 0 or 1 next to each state represents the value of TMS at  
the rising edge of TCK.  
Registers are connected between the TDI and TDO balls and  
allow data to be scanned into and out of the SRAM test  
circuitry. Only one register can be selected at a time through  
the instruction register. Data is serially loaded into the TDI ball  
on the rising edge of TCK. Data is output on the TDO ball on  
the falling edge of TCK.  
Test Access Port (TAP)  
Test Clock (TCK)  
The test clock is used only with the TAP controller. All inputs  
are captured on the rising edge of TCK. All outputs are driven  
from the falling edge of TCK.  
Instruction Register  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the  
TDI and TDO balls as shown in the TAP Controller Block  
Diagram. Upon power up, the instruction register is loaded  
with the IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state as  
described in the previous section.  
Test Mode Select (TMS)  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. This pin may be left  
unconnected if the TAP is not used. The ball is pulled up  
internally, resulting in a logic HIGH level.  
Document Number: 38-05545 Rev. *E  
Page 11 of 30  
   
CY7C1386D, CY7C1386F  
CY7C1387D, CY7C1387F  
When the TAP controller is in the Capture-IR state, the two  
least significant bits are loaded with a binary ‘01’ pattern to  
allow for fault isolation of the board-level serial test data path.  
the IDCODE to be shifted out of the device when the TAP  
controller enters the Shift-DR state.  
The IDCODE instruction is loaded into the instruction register  
upon power up or whenever the TAP controller is given a test  
logic reset state.  
Bypass Register  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain chips. The bypass  
register is a single-bit register that can be placed between the  
TDI and TDO balls. This allows data to be shifted through the  
SRAM with minimal delay. The bypass register is set LOW  
SAMPLE Z  
The SAMPLE Z instruction causes the boundary scan register  
to be connected between the TDI and TDO balls when the TAP  
controller is in a Shift-DR state. The SAMPLE Z command  
places all SRAM outputs into a High-Z state.  
(V ) when the BYPASS instruction is executed.  
SS  
Boundary Scan Register  
SAMPLE/PRELOAD  
The boundary scan register is connected to all the input and  
bidirectional balls on the SRAM.  
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. When  
the SAMPLE/PRELOAD instructions are loaded into the  
instruction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the input and output pins is  
captured in the boundary scan register.  
The boundary scan register is loaded with the contents of the  
RAM input and output ring when the TAP controller is in the  
Capture-DR state and is then placed between the TDI and  
TDO balls when the controller is moved to the Shift-DR state.  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 20 MHz, while the SRAM clock  
operates more than an order of magnitude faster. As there is  
a large difference in the clock frequencies, it is possible that  
during the Capture-DR state, an input or output will undergo a  
transition. The TAP may then try to capture a signal while in  
transition (metastable state). This will not harm the device, but  
there is no guarantee as to the value that will be captured.  
Repeatable results may not be possible.  
The EXTEST, SAMPLE/PRELOAD, and SAMPLE  
Z
instructions can be used to capture the contents of the input  
and output ring.  
The boundary scan order tables show the order in which the  
bits are connected. Each bit corresponds to one of the bumps  
on the SRAM package. The MSB of the register is connected  
to TDI, and the LSB is connected to TDO.  
Identification (ID) Register  
To guarantee that the boundary scan register will capture the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controller's capture setup plus  
The ID register is loaded with a vendor specific 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired  
into the SRAM and can be shifted out when the TAP controller  
is in the Shift-DR state. The ID register has a vendor code and  
other information described in the Identification Register  
hold times (t and t ). The SRAM clock input might not be  
CS  
CH  
captured correctly if there is no way in a design to stop (or  
slow) the clock during a SAMPLE/PRELOAD instruction. If this  
is an issue, it is still possible to capture all other signals and  
simply ignore the value of the CK and CK captured in the  
boundary scan register.  
TAP Instruction Set  
Once the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the  
boundary scan register between the TDI and TDO pins.  
Overview  
Eight different instructions are possible with the three bit  
instruction register. All combinations are listed in Identification  
Codes on page 15. Three of these instructions are listed as  
RESERVED and must not be used. The other five instructions  
are described in detail below.  
PRELOAD allows an initial data pattern to be placed at the  
latched parallel outputs of the boundary scan register cells  
prior to the selection of another boundary scan test operation.  
The shifting of data for the SAMPLE and PRELOAD phases  
can occur concurrently when required; that is, while data  
captured is shifted out, the preloaded data can be shifted in.  
Instructions are loaded into the TAP controller during the  
Shift-IR state when the instruction register is placed between  
TDI and TDO. During this state, instructions are shifted  
through the instruction register through the TDI and TDO balls.  
To execute the instruction once it is shifted in, the TAP  
controller needs to be moved into the Update-IR state.  
BYPASS  
When the BYPASS instruction is loaded in the instruction  
register and the TAP is placed in a Shift-DR state, the bypass  
register is placed between the TDI and TDO balls. The  
advantage of the BYPASS instruction is that it shortens the  
boundary scan path when multiple devices are connected  
together on a board.  
EXTEST  
The EXTEST instruction enables the preloaded data to be  
driven out through the system output pins. This instruction also  
selects the boundary scan register to be connected for serial  
access between the TDI and TDO in the Shift-DR controller  
state.  
EXTEST Output Bus Tri-State  
IEEE Standard 1149.1 mandates that the TAP controller be  
able to put the output bus into a tri-state mode.  
IDCODE  
The boundary scan register has a special bit located at bit #85  
(for 119-BGA package) or bit #89 (for 165-FBGA package).  
When this scan cell, called the “extest output bus tri-state,” is  
latched into the preload register during the Update-DR state in  
The IDCODE instruction causes a vendor specific 32-bit code  
to be loaded into the instruction register. It also places the  
instruction register between the TDI and TDO balls and allows  
Document Number: 38-05545 Rev. *E  
Page 12 of 30  
CY7C1386D, CY7C1386F  
CY7C1387D, CY7C1387F  
the TAP controller, it will directly control the state of the output  
(Q-bus) pins, when the EXTEST is entered as the current  
instruction. When HIGH, it will enable the output buffers to  
drive the output bus. When LOW, this bit will place the output  
bus into a High-Z condition.  
register. When the EXTEST instruction is entered, this bit will  
directly control the output Q-bus pins. Note that this bit is  
preset HIGH to enable the output when the device is powered  
up, and also when the TAP controller is in the Test-Logic-Reset  
state.  
This bit can be set by entering the SAMPLE/PRELOAD or  
EXTEST command, and then shifting the desired bit into that  
cell, during the Shift-DR state. During Update-DR, the value  
loaded into that shift-register cell will latch into the preload  
Reserved  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
TAP Timing  
1
2
3
4
5
6
Test Clock  
(TCK)  
t
t
t
TH  
CYC  
TL  
t
t
t
t
TMSS  
TDIS  
TMSH  
Test Mode Select  
(TMS)  
TDIH  
Test Data-In  
(TDI)  
t
TDOV  
t
TDOX  
Test Data-Out  
(TDO)  
DON’T CARE  
UNDEFINED  
TAP AC Switching Characteristics  
Over the Operating Range  
Parameter  
Clock  
Description  
Min  
Max  
Unit  
t
t
t
t
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH time  
TCK Clock LOW time  
50  
ns  
MHz  
ns  
TCYC  
TF  
20  
20  
20  
TH  
ns  
TL  
Output Times  
t
t
TCK Clock LOW to TDO Valid  
TCK Clock LOW to TDO Invalid  
10  
ns  
ns  
TDOV  
TDOX  
0
Set-up Times  
t
t
t
TMS Set-up to TCK Clock Rise  
TDI Set-up to TCK Clock Rise  
Capture Set-up to TCK Rise  
5
5
5
ns  
ns  
ns  
TMSS  
TDIS  
CS  
Hold Times  
t
t
t
TMS Hold after TCK Clock Rise  
TDI Hold after Clock Rise  
5
5
5
ns  
ns  
ns  
TMSH  
TDIH  
CH  
Capture Hold after Clock Rise  
Notes  
10. t and t refer to the setup and hold time requirements of latching data from the boundary scan register.  
CS  
CH  
11. Test conditions are specified using the load in TAP AC test conditions. t /t = 1 ns.  
R
F
Document Number: 38-05545 Rev. *E  
Page 13 of 30  
   
CY7C1386D, CY7C1386F  
CY7C1387D, CY7C1387F  
3.3V TAP AC Test Conditions  
2.5V TAP AC Test Conditions  
Input pulse levels.................................................V to 3.3V  
Input pulse levels.................................................V to 2.5V  
SS  
SS  
Input rise and fall times .................................................. 1 ns  
Input timing reference levels...........................................1.5V  
Output reference levels...................................................1.5V  
Test load termination supply voltage...............................1.5V  
Input rise and fall time .....................................................1 ns  
Input timing reference levels ........................................ 1.25V  
Output reference levels ................................................ 1.25V  
Test load termination supply voltage ............................ 1.25V  
3.3V TAP AC Output Load Equivalent  
2.5V TAP AC Output Load Equivalent  
1.5V  
1.25V  
50  
50  
TDO  
TDO  
ZO= 50 Ω  
20pF  
ZO= 50 Ω  
20pF  
TAP DC Electrical Characteristics And Operating Conditions  
(0°C < TA < +70°C; V = 3.3V ±0.165V unless otherwise noted)  
DD  
Parameter  
Description  
Test Conditions  
Min  
Max  
Unit  
V
V
V
V
V
V
V
Output HIGH Voltage  
I
I
I
= –4.0 mA, V  
= –1.0 mA, V  
= –100 µA  
= 3.3V  
= 2.5V  
2.4  
2.0  
2.9  
2.1  
OH1  
OH  
OH  
OH  
DDQ  
DDQ  
V
Output HIGH Voltage  
Output LOW Voltage  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage  
Input Load Current  
V
V
= 3.3V  
= 2.5V  
V
OH2  
OL1  
OL2  
IH  
DDQ  
DDQ  
V
I
I
I
= 8.0 mA, V  
= 8.0 mA, V  
= 100 µA  
= 3.3V  
= 2.5V  
0.4  
0.4  
0.2  
0.2  
V
OL  
OL  
OL  
DDQ  
V
DDQ  
V
V
= 3.3V  
= 2.5V  
V
DDQ  
DDQ  
V
V
V
V
V
= 3.3V  
= 2.5V  
= 3.3V  
= 2.5V  
2.0  
1.7  
V
V
+ 0.3  
V
DDQ  
DDQ  
DDQ  
DDQ  
DD  
DD  
+ 0.3  
V
–0.5  
–0.3  
–5  
0.7  
V
IL  
0.7  
5
V
I
GND < V < V  
µA  
X
IN  
DDQ  
Note  
12. All voltages referenced to V (GND).  
SS  
Document Number: 38-05545 Rev. *E  
Page 14 of 30  
 
CY7C1386D, CY7C1386F  
CY7C1387D, CY7C1387F  
Identification Register Definitions  
CY7C1386D/CY7C1386F CY7C1387D/CY7C1387F  
Instruction Field  
Description  
(512K × 36)  
(1M × 18)  
Revision Number (31:29)  
000  
000  
Describes the version number  
Reserved for internal use.  
Device Depth (28:24)  
01011  
101110  
01011  
101110  
Device Width (23:18) 119-BGA  
Device Width (23:18) 165-FBGA  
Defines the memory type and  
architecture.  
000110  
000110  
Defines the memory type and  
architecture.  
Cypress Device ID (17:12)  
100101  
010101  
Defines the width and density.  
Cypress JEDEC ID Code (11:1)  
00000110100  
00000110100  
Allows unique identification of SRAM  
vendor.  
ID Register Presence Indicator (0)  
1
1
Indicates the presence of an ID  
register.  
Scan Register Sizes  
Register Name  
Bit Size (x18)  
Bit Size (x36)  
Instruction  
Bypass  
ID  
3
3
1
1
32  
85  
89  
32  
85  
89  
Boundary Scan Order (119-ball BGA package)  
Boundary Scan Order (165-ball FBGA package)  
Identification Codes  
Instruction  
EXTEST  
Code  
Description  
000  
Captures IO ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM outputs to High-Z state.  
IDCODE  
001  
010  
Loads the ID register with the vendor ID code and places the register between TDI and  
TDO. This operation does not affect SRAM operations.  
SAMPLE Z  
RESERVED  
Captures IO ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM output drivers to a High-Z state.  
011  
100  
Do Not Use. This instruction is reserved for future use.  
SAMPLE/PRELOA  
D
Captures IO ring contents. Places the boundary scan register between TDI and TDO.  
Does not affect SRAM operation.  
RESERVED  
RESERVED  
BYPASS  
101  
110  
111  
Do Not Use. This instruction is reserved for future use.  
Do Not Use. This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not affect SRAM  
operations.  
Note  
13. Bit #24 is 1 in the register definitions for both 2.5V and 3.3V versions of this device.  
Document Number: 38-05545 Rev. *E  
Page 15 of 30  
     
CY7C1386D, CY7C1386F  
CY7C1387D, CY7C1387F  
119-Ball BGA Boundary Scan Order [14, 15]  
Bit #  
1
Ball ID  
Bit #  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
Ball ID  
F6  
Bit #  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
Ball ID  
G4  
A4  
G3  
C3  
B2  
B3  
A3  
C2  
A2  
B1  
C1  
D2  
E1  
F2  
Bit #  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
Ball ID  
L1  
H4  
T4  
T5  
T6  
R5  
L5  
2
E7  
D7  
H7  
G6  
E6  
D6  
C7  
B7  
C6  
A6  
C5  
B5  
G5  
B6  
D4  
B4  
F4  
M2  
N1  
3
4
P1  
5
K1  
6
L2  
7
R6  
U6  
R7  
T7  
P6  
N7  
M6  
L7  
N2  
P2  
8
9
R3  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
T1  
R1  
T2  
L3  
R2  
K6  
P7  
N6  
L6  
G1  
H2  
D1  
E2  
G2  
H1  
J3  
T3  
L4  
N4  
P4  
K7  
J5  
M4  
A5  
K4  
E4  
Internal  
H6  
G7  
2K  
Notes  
14. Balls that are NC (No Connect) are preset LOW.  
15. Bit#85 is preset HIGH.  
Document Number: 38-05545 Rev. *E  
Page 16 of 30  
   
CY7C1386D, CY7C1386F  
CY7C1387D, CY7C1387F  
165-Ball BGA Boundary Scan Order [14, 16]  
Bit #  
1
Ball ID  
N6  
Bit #  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
Ball ID  
D10  
C11  
A11  
B11  
A10  
B10  
A9  
Bit #  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
Ball ID  
G1  
D2  
E2  
2
N7  
3
N10  
P11  
P8  
4
F2  
5
G2  
H1  
H3  
J1  
6
R8  
7
R9  
8
P9  
B9  
9
P10  
R10  
R11  
H11  
N11  
M11  
L11  
K11  
J11  
M10  
L10  
K10  
J10  
H9  
C10  
A8  
K1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
L1  
B8  
M1  
J2  
A7  
B7  
K2  
B6  
L2  
A6  
M2  
N1  
N2  
P1  
B5  
A5  
A4  
B4  
R1  
R2  
P3  
B3  
A3  
A2  
R3  
P2  
H10  
G11  
F11  
E11  
D11  
G10  
F10  
E10  
B2  
C2  
R4  
P4  
B1  
A1  
N5  
P6  
C1  
D1  
R6  
Internal  
E1  
F1  
Note  
16. Bit#89 is preset HIGH.  
Document Number: 38-05545 Rev. *E  
Page 17 of 30  
 
CY7C1386D, CY7C1386F  
CY7C1387D, CY7C1387F  
DC Input Voltage ................................... –0.5V to V + 0.5V  
Maximum Ratings  
DD  
Current into Outputs (LOW) ........................................ 20 mA  
Exceeding the maximum ratings may impair the useful life of  
the device. For user guidelines, not tested.  
Static Discharge Voltage.......................................... > 2001V  
(per MIL-STD-883, Method 3015)  
Storage Temperature .................................65°C to +150°C  
Latch-up Current ................................................... > 200 mA  
Ambient Temperature with  
Power Applied.............................................55°C to +125°C  
Operating Range  
Supply Voltage on V Relative to GND ....... –0.5V to +4.6V  
DD  
Ambient  
Range  
V
V
DDQ  
DD  
Temperature  
Supply Voltage on V  
Relative to GND ...... –0.5V to +V  
DD  
DDQ  
Commercial 0°C to +70°C 3.3V –5%/+10% 2.5V – 5%  
DC Voltage Applied to Outputs  
in Tri-State........................................... –0.5V to V  
to V  
+ 0.5V  
DD  
Industrial  
–40°C to +85°C  
DDQ  
Electrical Characteristics  
Over the Operating Range  
Parameter  
Description  
Power Supply Voltage  
IO Supply Voltage  
Test Conditions  
Min  
3.135  
3.135  
2.375  
2.4  
Max  
Unit  
V
V
3.6  
DD  
V
V
V
V
V
I
for 3.3V IO  
for 2.5V IO  
for 3.3V IO, I = –4.0 mA  
V
V
DDQ  
DD  
2.625  
V
Output HIGH Voltage  
Output LOW Voltage  
V
OH  
OL  
IH  
OH  
for 2.5V IO, I = –1.0 mA  
2.0  
V
OH  
for 3.3V IO, I = 8.0 mA  
0.4  
0.4  
V
OL  
for 2.5V IO, I = 1.0 mA  
V
OL  
Input HIGH Voltage  
Input LOW Voltage  
for 3.3V IO  
for 2.5V IO  
for 3.3V IO  
for 2.5V IO  
2.0  
1.7  
V
V
+ 0.3V  
V
DD  
DD  
+ 0.3V  
V
–0.3  
–0.3  
–5  
0.8  
V
IL  
0.7  
5
V
Input Leakage Current GND V V  
except ZZ and MODE  
µA  
X
I
DDQ  
Input Current of MODE Input = V  
–30  
–5  
µA  
µA  
SS  
Input = V  
5
DD  
Input Current of ZZ  
Input = V  
Input = V  
µA  
SS  
DD  
30  
5
µA  
I
I
Output Leakage Current GND V V  
Output Disabled  
–5  
µA  
OZ  
I
DDQ,  
V
Operating Supply  
V
f = f  
= Max., I  
= 0 mA,  
4-ns cycle, 250 MHz  
5-ns cycle, 200 MHz  
6-ns cycle, 167 MHz  
4-ns cycle, 250 MHz  
5-ns cycle, 200 MHz  
6-ns cycle, 167 MHz  
All speeds  
350  
300  
275  
160  
150  
140  
70  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
DD  
DD  
DD  
OUT  
= 1/t  
MAX CYC  
Current  
I
Automatic CE  
Power Down  
Current—TTL Inputs  
V = Max, Device Deselected,  
DD  
SB1  
V
V or V V  
IN  
IH  
IN  
IL  
f = f  
= 1/t  
MAX CYC  
I
I
Automatic CE  
Power Down  
Current—CMOS Inputs f = 0  
V = Max, Device Deselected,  
DD  
SB2  
SB3  
V
0.3V or V > V – 0.3V,  
IN  
IN  
DDQ  
Automatic CE  
Power Down  
Current—CMOS Inputs f = f  
V
V
= Max, Device Deselected, or 4-ns cycle, 250 MHz  
135  
130  
125  
80  
mA  
mA  
mA  
mA  
DD  
0.3V or V > V  
– 0.3V  
IN  
IN  
DDQ  
5-ns cycle, 200 MHz  
6-ns cycle, 167 MHz  
All Speeds  
= 1/t  
MAX  
CYC  
I
Automatic CE  
V = Max, Device Deselected,  
DD  
SB4  
Power Down  
Current—TTL Inputs  
V
V or V V , f = 0  
IN  
IH IN IL  
Notes  
17. Overshoot: V (AC) < V +1.5V (pulse width less than t  
/2), undershoot: V (AC) > –2V (pulse width less than t /2).  
CYC  
IH  
DD  
CYC  
IL  
18. T  
: assumes a linear ramp from 0V to V (min) within 200 ms. During this time V < V and V  
< V  
.
Power up  
DD  
IH  
DD  
DDQ  
DD  
Document Number: 38-05545 Rev. *E  
Page 18 of 30  
   
CY7C1386D, CY7C1386F  
CY7C1387D, CY7C1387F  
Capacitance [19]  
100 TQFP  
Max.  
119 BGA  
Max  
165 FBGA  
Max  
Parameter  
Description  
Test Conditions  
Unit  
C
C
C
Input Capacitance  
T = 25°C, f = 1 MHz,  
5
5
5
8
8
8
9
9
9
pF  
pF  
pF  
IN  
A
V
V
= 3.3V  
DD  
Clock Input Capacitance  
Input/Output Capacitance  
CLK  
IO  
= 2.5V  
DDQ  
Thermal Resistance [19]  
100 TQFP  
Package  
119 BGA  
Package  
165 FBGA  
Package  
Parameter  
Description  
Test Conditions  
Unit  
Θ
Thermal Resistance  
(Junction to Ambient)  
Test conditions follow standard  
test methods and procedures  
for measuring thermal  
impedance, in accordance with  
EIA/JESD51.  
28.66  
23.8  
20.7  
°C/W  
JA  
Θ
Thermal Resistance  
(Junction to Case)  
4.08  
6.2  
4.0  
°C/W  
JC  
AC Test Loads and Waveforms  
3.3V IO Test Load  
R = 317Ω  
3.3V  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
GND  
OUTPUT  
90%  
10%  
Z = 50Ω  
0
10%  
R = 50Ω  
L
5 pF  
R = 351Ω  
1 ns  
1 ns  
V = 1.5V  
T
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
2.5V IO Test Load  
R = 1667Ω  
2.5V  
OUTPUT  
R = 50Ω  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
GND  
90%  
10%  
Z = 50Ω  
0
10%  
L
5 pF  
R = 1538Ω  
1 ns  
1 ns  
V = 1.25V  
T
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
Note  
19. Tested initially and after any design or process change that may affect these parameters.  
Document Number: 38-05545 Rev. *E  
Page 19 of 30  
 
CY7C1386D, CY7C1386F  
CY7C1387D, CY7C1387F  
Switching Characteristics Over the Operating Range  
–250  
Max  
–200  
–167  
Max  
Description  
Parameter  
Unit  
Min  
Min  
Max  
Min  
t
V
(Typical) to the First Access  
1
1
1
ms  
POWER  
DD  
Clock  
t
t
t
Clock Cycle Time  
Clock HIGH  
4.0  
1.7  
1.7  
5.0  
2.0  
2.0  
6.0  
2.2  
2.2  
ns  
ns  
ns  
CYC  
CH  
Clock LOW  
CL  
Output Times  
t
t
t
t
t
t
t
Data Output Valid after CLK Rise  
Data Output Hold after CLK Rise  
2.6  
3.0  
3.4  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CO  
1.0  
1.0  
1.3  
1.3  
1.3  
1.3  
DOH  
CLZ  
Clock to Low-Z  
Clock to High-Z  
2.6  
2.6  
3.0  
3.0  
3.4  
3.4  
CHZ  
OEV  
OELZ  
OEHZ  
OE LOW to Output Valid  
OE LOW to Output Low-Z  
OE HIGH to Output High-Z  
0
0
0
2.6  
3.0  
3.4  
Set-up Times  
t
t
t
t
t
t
Address Set-up Before CLK Rise  
ADSC, ADSP Set-up Before CLK Rise  
ADV Set-up Before CLK Rise  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
AS  
ADS  
ADVS  
WES  
DS  
GW, BWE, BW Set-up Before CLK Rise  
X
Data Input Set-up Before CLK Rise  
Chip Enable Set-Up Before CLK Rise  
CES  
Hold Times  
t
t
t
t
t
t
Address Hold After CLK Rise  
ADSP, ADSC Hold After CLK Rise  
ADV Hold After CLK Rise  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
AH  
ADH  
ADVH  
WEH  
DH  
GW, BWE, BW Hold After CLK Rise  
X
Data Input Hold After CLK Rise  
Chip Enable Hold After CLK Rise  
CEH  
Notes  
20. Timing reference level is 1.5V when V  
= 3.3V and is 1.25V when V  
= 2.5V.  
DDQ  
DDQ  
21. Test conditions shown in (a) of AC Test Loads unless otherwise noted.  
22. This part has a voltage regulator internally; t  
can be initiated.  
is the time that the power needs to be supplied above V (minimum) initially before a read or write operation  
DD  
POWER  
23. t  
, t  
,t  
, and t  
are specified with AC test conditions shown in (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.  
OEHZ  
CHZ CLZ OELZ  
24. At any given voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same  
OEHZ  
OELZ  
CHZ  
CLZ  
data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed  
to achieve High-Z prior to Low-Z under the same system conditions.  
25. This parameter is sampled and not 100% tested.  
Document Number: 38-05545 Rev. *E  
Page 20 of 30  
           
CY7C1386D, CY7C1386F  
CY7C1387D, CY7C1387F  
Switching Waveforms  
Read Cycle Timing  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
ADH  
ADS  
t
t
AH  
AS  
A1  
A2  
A3  
ADDRESS  
Burst continued with  
new base address  
t
t
WEH  
WES  
GW, BWE,BW  
X
Deselect  
cycle  
t
t
CEH  
CES  
CE  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV suspends burst  
t
t
OEV  
CO  
t
t
CHZ  
t
t
t
OELZ  
OEHZ  
DOH  
CLZ  
t
Q(A2)  
Q(A2 + 1)  
Q(A2 + 2)  
Q(A2 + 3)  
Q(A2)  
Q(A2 + 1)  
Q(A3)  
Q(A1)  
Data Out (DQ)  
High-Z  
CO  
Burst wraps around  
to its initial state  
Single READ  
BURST READ  
DON’T CARE  
UNDEFINED  
Note  
26. On this diagram, when CE is LOW, CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH: CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
Document Number: 38-05545 Rev. *E  
Page 21 of 30  
 
CY7C1386D, CY7C1386F  
CY7C1387D, CY7C1387F  
Switching Waveforms (continued)  
Write Cycle Timing  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC extends burst  
t
t
ADH  
ADS  
t
t
ADH  
ADS  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
ADDRESS  
Byte write signals are ignored for first cycle when  
ADSP initiates burst  
t
t
WEH  
WES  
BWE,  
BW X  
t
t
WEH  
WES  
GW  
CE  
t
t
CEH  
CES  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV suspends burst  
t
DH  
t
DS  
D(A2)  
D(A2 + 1)  
D(A2 + 3)  
D(A3)  
D(A3 + 1)  
D(A1)  
High-Z  
Data in (D)  
t
OEHZ  
Data Out (Q)  
BURST READ  
BURST WRITE  
Single WRITE  
Extended BURST WRITE  
DON’T CARE  
UNDEFINED  
Note  
27.  
Full width write can be initiated by either GW LOW, or by GW HIGH, BWE LOW, and BW LOW.  
X
Document Number: 38-05545 Rev. *E  
Page 22 of 30  
 
CY7C1386D, CY7C1386F  
CY7C1387D, CY7C1387F  
Switching Waveforms (continued)  
[26, 28, 29]  
Read/Write Cycle Timing  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
A4  
A5  
A6  
ADDRESS  
t
t
WEH  
WES  
BWE, BW  
X
t
t
CEH  
CES  
CE  
ADV  
OE  
t
t
DH  
t
CO  
DS  
t
OELZ  
Data In (D)  
High-Z  
D(A3)  
D(A5)  
D(A6)  
t
t
OEHZ  
CLZ  
Data Out (Q)  
Q(A1)  
Back-to-Back READs  
Q(A2)  
Q(A4)  
Q(A4+3)  
High-Z  
BURST READ  
Back-to-Back  
WRITEs  
Single WRITE  
DON’T CARE  
UNDEFINED  
Notes  
28. The data bus (Q) remains in high-Z following a Write cycle, unless a new read access is initiated by ADSP or ADSC.  
29. GW is HIGH.  
Document Number: 38-05545 Rev. *E  
Page 23 of 30  
   
CY7C1386D, CY7C1386F  
CY7C1387D, CY7C1387F  
Switching Waveforms (continued)  
ZZ Mode Timing  
CLK  
t
t
ZZ  
ZZREC  
ZZ  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
Notes  
30. Device must be deselected when entering ZZ sleep mode. See cycle descriptions table for all possible signal conditions to deselect the device.  
31. DQs are in high-Z when exiting ZZ sleep mode.  
Document Number: 38-05545 Rev. *E  
Page 24 of 30  
   
CY7C1386D, CY7C1386F  
CY7C1387D, CY7C1387F  
Ordering Information  
Not all of the speed, package, and temperature ranges are available. Please contact your local sales representative or visit  
www.cypress.com for actual products offered.  
Speed  
(MHz)  
Package  
Diagram  
Operating  
Range  
Part and Package Type  
Ordering Code  
CY7C1386D-167AXC  
CY7C1387D-167AXC  
CY7C1386F-167BGC  
CY7C1387F-167BGC  
167  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
Commercial  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
CY7C1386F-167BGXC 51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Pb-Free  
CY7C1387F-167BGXC  
CY7C1386D-167BZC  
CY7C1387D-167BZC  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
CY7C1386D-167BZXC 51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm) Pb-Free  
CY7C1387D-167BZXC  
CY7C1386D-167AXI  
CY7C1387D-167AXI  
CY7C1386F-167BGI  
CY7C1387F-167BGI  
CY7C1386F-167BGXI  
CY7C1387F-167BGXI  
CY7C1386D-167BZI  
CY7C1387D-167BZI  
CY7C1386D-167BZXI  
CY7C1387D-167BZXI  
CY7C1386D-200AXC  
CY7C1387D-200AXC  
CY7C1386F-200BGC  
CY7C1387F-200BGC  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
Industrial  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Pb-Free  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm) Pb-Free  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
200  
Commercial  
CY7C1386F-200BGXC 51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Pb-Free  
CY7C1387F-200BGXC  
CY7C1386D-200BZC  
CY7C1387D-200BZC  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
CY7C1386D-200BZXC 51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm) Pb-Free  
CY7C1387D-200BZXC  
CY7C1386D-200AXI  
CY7C1387D-200AXI  
CY7C1386F-200BGI  
CY7C1387F-200BGI  
CY7C1386F-200BGXI  
CY7C1387F-200BGXI  
CY7C1386D-200BZI  
CY7C1387D-200BZI  
CY7C1386D-200BZXI  
CY7C1387D-200BZXI  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
Industrial  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Pb-Free  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm) Pb-Free  
Document Number: 38-05545 Rev. *E  
Page 25 of 30  
CY7C1386D, CY7C1386F  
CY7C1387D, CY7C1387F  
Ordering Information (continued)  
Not all of the speed, package, and temperature ranges are available. Please contact your local sales representative or visit  
www.cypress.com for actual products offered.  
250  
CY7C1386D-250AXC  
CY7C1387D-250AXC  
CY7C1386F-250BGC  
CY7C1387F-250BGC  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
Commercial  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
CY7C1386F-250BGXC 51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Pb-Free  
CY7C1387F-250BGXC  
CY7C1386D-250BZC  
CY7C1387D-250BZC  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
CY7C1386D-250BZXC 51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm) Pb-Free  
CY7C1387D-250BZXC  
CY7C1386D-250AXI  
CY7C1387D-250AXI  
CY7C1386F-250BGI  
CY7C1387F-250BGI  
CY7C1386F-250BGXI  
CY7C1387F-250BGXI  
CY7C1386D-250BZI  
CY7C1387D-250BZI  
CY7C1386D-250BZXI  
CY7C1387D-250BZXI  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
Industrial  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Pb-Free  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm) Pb-Free  
Document Number: 38-05545 Rev. *E  
Page 26 of 30  
CY7C1386D, CY7C1386F  
CY7C1387D, CY7C1387F  
Package Diagrams  
Figure 1. 100-Pin Thin Plastic Quad Flat pack (14 x 20 x 1.4 mm) (51-85050)  
16.00 0.20  
14.00 0.10  
1.40 0.05  
100  
81  
80  
1
0.30 0.08  
0.65  
TYP.  
12° 1°  
(8X)  
SEE DETAIL  
A
30  
51  
31  
50  
0.20 MAX.  
1.60 MAX.  
R 0.08 MIN.  
0.20 MAX.  
0° MIN.  
SEATING PLANE  
STAND-OFF  
0.05 MIN.  
0.15 MAX.  
NOTE:  
1. JEDEC STD REF MS-026  
0.25  
GAUGE PLANE  
2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH  
MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE  
R 0.08 MIN.  
0.20 MAX.  
BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH  
3. DIMENSIONS IN MILLIMETERS  
0°-7°  
0.60 0.15  
0.20 MIN.  
51-85050-*B  
1.00 REF.  
DETAIL  
A
Document Number: 38-05545 Rev. *E  
Page 27 of 30  
CY7C1386D, CY7C1386F  
CY7C1387D, CY7C1387F  
Package Diagrams (continued)  
Figure 2. 119-Ball BGA (14 x 22 x 2.4 mm) (51-85115)  
51-85115-*B  
Document Number: 38-05545 Rev. *E  
Page 28 of 30  
CY7C1386D, CY7C1386F  
CY7C1387D, CY7C1387F  
Package Diagrams (continued)  
Figure 3. 165-Ball FBGA (13 x 15 x 1.4 mm) (51-85180)  
BOTTOM VIEW  
PIN 1 CORNER  
TOP VIEW  
Ø0.05 M C  
Ø0.25 M C A B  
PIN 1 CORNER  
-0.06
Ø0.50 (165X)  
+0.14  
3  
1
2
3
4
5
6
7
8
9
10  
11  
11 10  
9
8
7
6
5
4
2
1
A
B
A
B
C
D
C
D
E
E
F
F
G
G
H
J
H
J
K
K
L
L
M
M
N
P
R
N
P
R
A
A
1.00  
5.00  
10.00  
B
13.00 0.10  
B
13.00 0.10  
0.15(4X)  
NOTES :  
SOLDER PAD TYPE : NON-SOLDER MASK DEFINED (NSMD)  
PACKAGE WEIGHT : 0.475g  
JEDEC REFERENCE : MO-216 / DESIGN 4.6C  
PACKAGECODE:BB0AC
SEATING PLANE  
C
51-85180-*A  
Intel and Pentium are registered trademarks, and i486 is a trademark of Intel Corporation. PowerPC is a trademark of IBM  
Corporation. All product and company names mentioned in this document are the trademarks of their respective holders.  
Document Number: 38-05545 Rev. *E  
Page 29 of 30  
© Cypress Semiconductor Corporation, 2006-2007. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for  
the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended  
to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
CY7C1386D, CY7C1386F  
CY7C1387D, CY7C1387F  
Document History Page  
Document Title: CY7C1386D/CY7C1387D/CY7C1386F/CY7C1387F, 18-Mbit (512K x 36/1 Mbit x 18) Pipelined DCD Sync  
SRAM  
Document Number: 38-05545  
Orig. of  
Change  
REV.  
ECN NO. Issue Date  
Description of Change  
**  
254550  
288531  
See ECN  
See ECN  
RKF  
New data sheet  
*A  
SYT  
Edited description under “IEEE 1149.1 Serial Boundary Scan (JTAG)” for  
non-compliance with 1149.1  
Removed 225Mhz Speed Bin  
Added Pb-free information for 100-pin TQFP, 119 BGA and 165 FBGA  
Packages.  
Added comment of ‘Pb-free BG packages availability’ below the Ordering  
Information  
*B  
326078  
See ECN  
PCI  
Address expansion pins/balls in the pinouts for all packages are modified as  
per JEDEC standard  
Added description on EXTEST Output Bus Tri-State  
Changed description on the Tap Instruction Set Overview and Extest  
Changed Device Width (23:18) for 119-BGA from 000110 to 101110  
Added separate row for 165 -FBGA Device Width (23:18)  
Changed Θ and Θ for TQFP Package from 31 and 6 °C/W to 28.66 and  
JA  
JC  
4.08 °C/W respectively  
Changed Θ and Θ for BGA Packagefrom 45 and 7 °C/W to 23.8 and 6.2  
JA  
JC  
°C/W respectively  
Changed Θ and Θ for FBGA Package from 46 and 3 °C/W to 20.7 and  
JA  
JC  
4.0 °C/W respectively  
Modified V test conditions  
V
OL, OH  
Removed comment of ‘Pb-free BG packages availability’ below the Ordering  
Information  
Updated Ordering Information Table  
*C  
418125  
See ECN  
NXR  
Converted from Preliminary to Final.  
Changed address of Cypress Semiconductor Corporation on Page# 1 from  
“3901 North First Street” to “198 Champion Court”  
Changed the description of I from Input Load Current to Input Leakage  
X
Current on page# 18.  
Changed the I current values of MODE on page # 18 from –5 µA and 30 µA  
X
to –30 µA and 5 µA.  
Changed the I current values of ZZ on page # 18 from –30 µA and 5 µA  
X
to –5 µA and 30 µA.  
Changed V < V to V < V on page # 18.  
IH  
DD  
IH  
DD  
Replaced Package Name column with Package Diagram in the Ordering  
Information table.  
Updated Ordering Information Table.  
*D  
*E  
475009  
793579  
See ECN  
See ECN  
VKN  
VKN  
Added the Maximum Rating for Supply Voltage on V  
Relative to GND  
DDQ  
Changed t , t from 25 ns to 20 ns and t  
from 5 ns to 10 ns in TAP  
TH TL  
TDOV  
AC Switching Characteristics table.  
Updated the Ordering Information table.  
Added Part numbers CY7C1386F and CY7C1387F  
Added footnote# 3 regarding Chip Enable  
Updated Ordering Information table  
Document Number: 38-05545 Rev. *E  
Page 30 of 30  

Hitachi 50FX18B User Manual
Hanns G HH221HPB User Manual
GE 28031xx4 User Manual
Frigidaire 318068140 User Manual
Elo TouchSystems 1825L Series User Manual
Diamond Multimedia VC500 User Manual
Black Box Computer Hardware ACX048 User Manual
Black Box Computer Hardware 802 3af PoE Gigabit Injector, 1 Port User Manual
Audiovox LCMR6CT User Manual
Asus Computer Hardware P5K3 User Manual