Cypress NoBL CY7C1357C User Manual

CY7C1355C  
CY7C1357C  
9-Mbit (256K x 36/512K x 18)  
Flow-Through SRAM with NoBL™ Architecture  
Functional Description[1]  
Features  
• No Bus Latency™ (NoBL™) architecture eliminates  
dead cycles between write and read cycles  
The CY7C1355C/CY7C1357C is a 3.3V, 256K x 36/512K x 18  
Synchronous Flow-through Burst SRAM designed specifically  
to support unlimited true back-to-back Read/Write operations  
• Can support up to 133-MHz bus operations with zero  
wait states  
without  
the  
insertion  
of  
wait  
states.  
The  
CY7C1355C/CY7C1357C is equipped with the advanced No  
Bus Latency (NoBL) logic required to enable consecutive  
Read/Write operations with data being transferred on every  
clock cycle. This feature dramatically improves the throughput  
of data through the SRAM, especially in systems that require  
frequent Write-Read transitions.  
— Data is transferred on every clock  
• Pin compatible and functionally equivalent to ZBT™  
devices  
• Internally self-timed output buffer control to eliminate  
the need to use OE  
All synchronous inputs pass through input registers controlled  
by the rising edge of the clock. The clock input is qualified by  
the Clock Enable (CEN) signal, which when deasserted  
suspends operation and extends the previous clock cycle.  
Maximum access delay from the clock rise is 6.5 ns (133-MHz  
device).  
• Registered inputs for flow-through operation  
• Byte Write capability  
• 3.3V/2.5V I/O power supply (V  
• Fast clock-to-output times  
)
DDQ  
— 6.5 ns (for 133-MHz device)  
Write operations are controlled by the two or four Byte Write  
Select (BW ) and a Write Enable (WE) input. All writes are  
conducted with on-chip synchronous self-timed write circuitry.  
• Clock Enable (CEN) pin to enable clock and suspend  
operation  
X
Three synchronous Chip Enables (CE , CE , CE ) and an  
• Synchronous self-timed writes  
• Asynchronous Output Enable  
1
2
3
asynchronous Output Enable (OE) provide for easy bank  
selection and output tri-state control. In order to avoid bus  
contention, the output drivers are synchronously tri-stated  
during the data portion of a write sequence.  
• Available in JEDEC-standard and lead-free 100-Pin  
TQFP, lead-free and non lead-free 119-Ball BGA  
package and 165-Ball FBGA package  
• Three chip enables for simple depth expansion.  
• Automatic Power-down feature available using ZZ  
mode or CE deselect  
• IEEE 1149.1 JTAG-Compatible Boundary Scan  
• Burst Capability—linear or interleaved burst order  
• Low standby power  
Selection Guide  
133 MHz  
6.5  
100 MHz  
7.5  
Unit  
ns  
Maximum Access Time  
Maximum Operating Current  
Maximum CMOS Standby Current  
250  
180  
mA  
mA  
40  
40  
Note:  
1. For best-practices recommendations, please refer to the Cypress application note System Design Guidelines on www.cypress.com.  
Cypress Semiconductor Corporation  
Document #: 38-05539 Rev. *E  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised September 14, 2006  
CY7C1355C  
CY7C1357C  
Pin Configurations  
100-Pin TQFP Pinout  
DQPC  
DQC  
DQC  
VDDQ  
VSS  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
1
DQPB  
DQB  
DQB  
VDDQ  
VSS  
2
3
4
5
DQC  
6
DQB  
BYTE C  
BYTE B  
DQB  
DQC  
DQC  
DQC  
VSS  
7
8
DQB  
DQB  
VSS  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
VDDQ  
DQC  
DQC  
Vss/DNU  
VDD  
VDDQ  
DQB  
DQB  
VSS  
CY7C1355C  
NC  
NC  
VDD  
ZZ  
VSS  
DQD  
DQD  
VDDQ  
VSS  
DQA  
DQA  
VDDQ  
VSS  
DQD  
DQA  
DQD  
DQA  
BYTE D  
BYTE A  
DQA  
DQD  
DQD  
VSS  
DQA  
VSS  
VDDQ  
DQD  
DQD  
DQPD  
VDDQ  
DQA  
DQA  
DQPA  
Document #: 38-05539 Rev. *E  
Page 3 of 28  
CY7C1355C  
CY7C1357C  
Pin Configurations (continued)  
100-Pin TQFP Pinout  
NC  
1
NC  
2
NC  
3
VDDQ  
4
VSS  
5
NC  
6
NC  
7
DQB  
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
A
NC  
NC  
VDDQ  
VSS  
NC  
DQPA  
DQA  
DQA  
VSS  
VDDQ  
DQA  
DQA  
VSS  
DQB  
VSS  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
VDDQ  
DQB  
DQB  
Vss/DNU  
VDD  
CY7C1357C  
BYTE A  
NC  
BYTE B  
NC  
VDD  
ZZ  
VSS  
DQB  
DQB  
VDDQ  
VSS  
DQA  
DQA  
VDDQ  
VSS  
DQA  
DQA  
NC  
DQB  
DQB  
DQPB  
NC  
NC  
VSS  
VSS  
VDDQ  
NC  
VDDQ  
NC  
NC  
NC  
NC  
NC  
Document #: 38-05539 Rev. *E  
Page 4 of 28  
CY7C1355C  
CY7C1357C  
Pin Configurations (continued)  
119-Ball BGA Pinout (3 Chip Enables with JTAG)  
CY7C1355C (256K x 36)  
1
2
3
4
5
6
7
A
V
A
A
NC/18M  
A
A
V
DDQ  
DDQ  
B
C
NC/576M  
NC/1G  
CE  
A
A
A
ADV/LD  
A
A
CE  
A
NC  
NC  
2
3
V
DD  
D
E
F
DQ  
DQ  
DQP  
DQ  
V
NC  
CE  
V
DQP  
DQ  
DQ  
DQ  
C
C
SS  
SS  
SS  
SS  
SS  
SS  
B
B
V
V
V
V
C
C
B
B
1
V
DQ  
DQ  
V
DDQ  
OE  
A
DDQ  
C
B
G
H
J
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
BW  
V
BW  
V
C
C
C
B
B
B
C
B
DQ  
DQ  
WE  
C
SS  
SS  
B
V
V
NC  
V
NC  
V
V
DDQ  
DDQ  
DD  
DD  
DD  
K
DQ  
DQ  
DQ  
DQ  
DQ  
V
CLK  
NC  
V
DQ  
DQ  
DQ  
DQ  
DQ  
D
D
D
SS  
SS  
A
A
A
L
M
N
DQ  
DQ  
BW  
V
BW  
A
D
D
D
A
A
A
D
V
V
V
V
DDQ  
CEN  
A1  
DDQ  
SS  
SS  
SS  
DQ  
V
V
DQ  
D
SS  
A
DQ  
DQP  
A
A0  
V
DQP  
A
DQ  
P
R
D
D
SS  
SS  
A
NC/144M  
NC  
MODE  
V
NC  
A
NC/288M  
ZZ  
DD  
T
NC/72M  
TMS  
A
A
A
NC/36M  
NC  
V
TDI  
TCK  
TDO  
V
U
DDQ  
DDQ  
CY7C1357C (512K x 18)  
2
A
1
3
A
A
A
4
5
A
A
A
6
7
V
NC/18M  
ADV/LD  
A
V
A
B
C
D
E
F
DDQ  
DDQ  
NC/576M  
NC/1G  
CE  
A
NC  
NC  
NC  
CE  
A
2
3
V
DD  
DQ  
NC  
DQ  
V
NC  
CE  
V
DQP  
B
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
A
NC  
V
V
V
V
V
V
NC  
DQ  
B
A
1
V
NC  
DQ  
DQ  
V
OE  
A
DDQ  
A
DDQ  
NC  
NC  
DQ  
G
H
J
BW  
V
B
A
B
DQ  
NC  
DQ  
NC  
WE  
B
SS  
A
V
V
NC  
V
NC  
V
V
DDQ  
DDQ  
DD  
DD  
DD  
K
NC  
DQ  
DQ  
V
CLK  
NC  
V
NC  
DQ  
DQ  
B
SS  
SS  
A
L
M
N
P
NC  
DQ  
V
V
V
V
NC  
BW  
B
SS  
SS  
SS  
SS  
A
A
V
V
V
V
NC  
DQ  
V
DDQ  
CEN  
A1  
DDQ  
B
SS  
SS  
SS  
DQ  
NC  
NC  
DQ  
B
A
NC  
DQP  
A0  
NC  
B
A
R
T
NC/144M  
NC/72M  
A
A
MODE  
A
V
NC  
A
A
A
NC/288M  
ZZ  
DD  
NC/36M  
TCK  
V
TMS  
TDI  
TDO  
NC  
V
U
DDQ  
DDQ  
Document #: 38-05539 Rev. *E  
Page 5 of 28  
CY7C1355C  
CY7C1357C  
Pin Configurations (continued)  
165-Ball FBGA Pinout (3 Chip enable with JTAG)  
CY7C1355C (256K x 36)  
1
2
A
3
CE1  
4
BWC  
5
BWB  
6
CE  
7
8
9
A
10  
A
11  
NC  
NC/576M  
NC/1G  
DQPC  
DQC  
CEN  
WE  
VSS  
VSS  
ADV/LD  
A
B
C
D
3
A
CE2  
VDDQ  
VDDQ  
BWD  
VSS  
BWA  
VSS  
VSS  
CLK  
VSS  
VSS  
OE  
VSS  
VDD  
NC/18M  
VDDQ  
A
NC  
NC  
DQC  
NC  
DQPB  
DQB  
VDD  
VDDQ  
DQB  
DQC  
DQC  
DQC  
DQC  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
DQB  
DQB  
DQB  
NC  
DQB  
E
F
DQC  
DQC  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DQB  
DQB  
ZZ  
G
H
J
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
K
L
DQD  
DQD  
NC  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
NC  
A1  
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
DQA  
DQPA  
M
N
P
DQPD  
NC/144M NC/72M  
TDI  
TDO  
NC/288M  
A0  
MODE  
NC/36M  
A
A
TMS  
TCK  
A
A
A
A
R
CY7C1357C (512K x 18)  
1
NC/576M  
NC/1G  
NC  
2
A
3
CE1  
4
BWB  
5
NC  
6
CE  
7
8
9
A
10  
A
11  
A
CEN  
WE  
VSS  
VSS  
ADV/LD  
A
B
C
D
3
A
CE2  
VDDQ  
VDDQ  
NC  
VSS  
VDD  
BWA  
VSS  
VSS  
CLK  
VSS  
VSS  
OE  
VSS  
VDD  
NC/18M  
VDDQ  
A
NC  
NC  
DQB  
NC  
NC  
DQPA  
DQA  
NC  
VDDQ  
NC  
DQB  
DQB  
DQB  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
NC  
NC  
DQA  
E
F
NC  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DQA  
DQA  
ZZ  
NC  
G
H
J
NC  
NC  
DQB  
DQB  
DQB  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQA  
DQA  
DQA  
NC  
NC  
NC  
K
L
NC  
NC  
DQB  
NC  
NC  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
NC  
A1  
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
NC  
NC  
M
N
P
DQPB  
NC/144M NC/72M  
MODE NC/36M  
TDI  
TDO  
NC/288M  
A0  
A
A
TMS  
TCK  
A
A
A
A
R
Document #: 38-05539 Rev. *E  
Page 6 of 28  
CY7C1355C  
CY7C1357C  
Pin Definitions  
Name  
I/O  
Description  
Address Inputs used to select one of the address locations. Sampled at the rising edge  
are fed to the two-bit burst counter.  
A , A , A  
Input-  
0
1
Synchronous of the CLK. A  
[1:0]  
BW , BW  
Input-  
Byte Write Inputs, active LOW. Qualified with WEto conduct Writes to the SRAM. Sampled  
A
B
BW , BW  
Synchronous on the rising edge of CLK.  
C
D
WE  
Input-  
Write Enable Input, active LOW. Sampled on the rising edge of CLK if CEN is active LOW.  
Synchronous This signal must be asserted LOW to initiate a write sequence.  
ADV/LD  
Input-  
Advance/Load Input. Used to advance the on-chip address counter or load a new address.  
Synchronous When HIGH (and CEN is asserted LOW) the internal burst counter is advanced. When LOW,  
a new address can be loaded into the device for an access. After being deselected, ADV/LD  
should be driven LOW in order to load a new address.  
CLK  
Input-  
Clock  
Clock Input. Used to capture all synchronous inputs to the device. CLK is qualified with  
CEN. CLK is only recognized if CEN is active LOW.  
CE  
CE  
CE  
Input-  
Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction  
1
2
3
Synchronous with CE , and CE to select/deselect the device.  
2
3
Input-  
Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK. Used in conjunction  
Synchronous with CE and CE to select/deselect the device.  
1
3
Input-  
Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction  
Synchronous with CE and CE to select/deselect the device.  
1
2
OE  
Input-  
Output Enable, asynchronous input, active LOW. Combined with the synchronous logic  
Asynchronous block inside the device to control the direction of the I/O pins. When LOW, the I/O pins are  
allowed to behave as outputs. When deasserted HIGH, I/O pins are tri-stated, and act as  
input data pins. OE is masked during the data portion of a write sequence, during the first  
clock when emerging from a deselected state, when the device has been deselected.  
CEN  
ZZ  
Input-  
Clock Enable Input, active LOW. When asserted LOW the Clock signal is recognized by  
Synchronous the SRAM. When deasserted HIGH the Clock signal is masked. Since deasserting CEN  
does not deselect the device, CEN can be used to extend the previous cycle when required.  
Input-  
ZZ “Sleep” Input. This active HIGH input places the device in a non-time critical “sleep”  
Asynchronous condition with data integrity preserved. For normal operation, this pin has to be LOW or left  
floating. ZZ pin has an internal pull-down.  
I/O-  
Synchronous triggered by the rising edge of CLK. As outputs, they deliver the data contained in the  
memory location specified by the addresses presented during the previous  
Bidirectional Data I/O lines. As inputs, they feed into an on-chip data register that is  
DQ  
s
clock rise of the  
Read cycle. The direction of the pins is controlled by OE. When OE is asserted LOW, the  
pins behave as outputs. When HIGH, DQ and DQP are placed in a tri-state condition.The  
s
X
outputs are automatically tri-stated during the data portion of a Write sequence, during the  
first clock when emerging from a deselected state, and when the device is deselected,  
regardless of the state of OE.  
I/O-  
Bidirectional Data Parity I/O Lines. Functionally, these signals are identical to DQ .During  
DQP  
s
X
Synchronous Write sequences, DQP is controlled by BW correspondingly.  
X
X
MODE  
Input Strap Pin Mode Input. Selects the burst order of the device. When tied to Gnd selects linear burst  
sequence. When tied to V or left floating selects interleaved burst sequence.  
DD  
V
V
Power Supply Power supply inputs to the core of the device.  
DD  
I/O Power  
Supply  
Power supply for the I/O circuitry.  
DDQ  
V
Ground  
Ground for the device.  
SS  
TDO  
JTAG serial output Serial data-out to the JTAG circuit. Delivers data on the negative edge of TCK. If the JTAG  
Synchronous feature is not being utilized, this pin should be left unconnected. This pin is not available on  
TQFP packages.  
TDI  
JTAG serial input Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG feature  
Synchronous is not being utilized, this pin can be left floating or connected to V through a pull up resistor.  
DD  
This pin is not available on TQFP packages.  
Document #: 38-05539 Rev. *E  
Page 7 of 28  
CY7C1355C  
CY7C1357C  
Pin Definitions (continued)  
Name  
I/O  
Description  
TMS  
JTAG serial input Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG feature  
Synchronous is not being utilized, this pin can be disconnected or connected to V . This pin is not  
DD  
available on TQFP packages.  
TCK  
NC  
JTAG  
Clock  
Clock input to the JTAG circuitry. If the JTAG feature is not being utilized, this pin must  
be connected to V . This pin is not available on TQFP packages.  
SS  
No Connects. Not internally connected to the die. 18 Mbit, 36 Mbit, 72 Mbit, 144 Mbit, 288  
Mbit, 576 Mbit and 1G are address expansion pins and are not internally connected to the  
die.  
V
/DNU  
Ground/DNU This pin can be connected to Ground or should be left floating.  
SS  
Burst Read Accesses  
The CY7C1355C/CY7C1357C has an on-chip burst counter  
that allows the user the ability to supply a single address and  
conduct up to four Reads without reasserting the address  
inputs. ADV/LD must be driven LOW in order to load a new  
address into the SRAM, as described in the Single Read  
Access section above. The sequence of the burst counter is  
determined by the MODE input signal. A LOW input on MODE  
selects a linear burst mode, a HIGH selects an interleaved  
burst sequence. Both burst counters use A0 and A1 in the  
burst sequence, and will wrap around when incremented suffi-  
ciently. A HIGH input on ADV/LD will increment the internal  
burst counter regardless of the state of chip enable inputs or  
WE. WE is latched at the beginning of a burst cycle. Therefore,  
the type of access (Read or Write) is maintained throughout  
the burst sequence.  
Functional Overview  
The CY7C1355C/CY7C1357C is a synchronous flow-through  
burst SRAM designed specifically to eliminate wait states  
during Write-Read transitions. All synchronous inputs pass  
through input registers controlled by the rising edge of the  
clock. The clock signal is qualified with the Clock Enable input  
signal (CEN). If CEN is HIGH, the clock signal is not recog-  
nized and all internal states are maintained. All synchronous  
operations are qualified with CEN. Maximum access delay  
from the clock rise (t  
) is 6.5 ns (133-MHz device).  
CDV  
Accesses can be initiated by asserting all three Chip Enables  
(CE , CE , CE ) active at the rising edge of the clock. If Clock  
1
2
3
Enable (CEN) is active LOW and ADV/LD is asserted LOW,  
the address presented to the device will be latched. The  
access can either be a Read or Write operation, depending on  
Single Write Accesses  
the status of the Write Enable (WE). BW can be used to  
conduct Byte Write operations.  
X
Write access are initiated when the following conditions are  
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE , CE ,  
1
2
Write operations are qualified by the Write Enable (WE). All  
writes are simplified with on-chip synchronous self-timed Write  
circuitry.  
and CE are ALL asserted active, and (3) the Write signal WE  
3
is asserted LOW. The address presented to the address bus  
is loaded into the address register. The write signals are  
latched into the Control Logic block. The data lines are  
automatically tri-stated regardless of the state of the OE input  
signal. This allows the external logic to present the data on  
Three synchronous Chip Enables (CE , CE , CE ) and an  
1
2
3
asynchronous Output Enable (OE) simplify depth expansion.  
All operations (Reads, Writes, and Deselects) are pipelined.  
ADV/LD should be driven LOW once the device has been  
deselected in order to load a new address for the next  
operation.  
DQs and DQP .  
X
On the next clock rise the data presented to DQs and DQP  
X
(or a subset for byte write operations, see Truth Table for  
details) inputs is latched into the device and the write is  
complete. Additional accesses (Read/Write/Deselect) can be  
initiated on this cycle.  
Single Read Accesses  
A read access is initiated when the following conditions are  
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE , CE ,  
The data written during the Write operation is controlled by  
1
2
and CE are ALL asserted active, (3) the Write Enable input  
BW signals. The CY7C1355C/CY7C1357C provides byte  
3
X
signal WE is deasserted HIGH, and 4) ADV/LD is asserted  
LOW. The address presented to the address inputs is latched  
into the address register and presented to the memory array  
and control logic. The control logic determines that a read  
access is in progress and allows the requested data to  
propagate to the output buffers. The data is available within 7.5  
ns (133-MHz device) provided OE is active LOW. After the first  
clock of the read access, the output buffers are controlled by  
OE and the internal control logic. OE must be driven LOW in  
order for the device to drive out the requested data. On the  
subsequent clock, another operation (Read/Write/Deselect)  
can be initiated. When the SRAM is deselected at clock rise  
by one of the chip enable signals, its output will be tri-stated  
immediately.  
write capability that is described in the Truth Table. Asserting  
the Write Enable input (WE) with the selected Byte Write  
Select input will selectively write to only the desired bytes.  
Bytes not selected during a byte write operation will remain  
unaltered. A synchronous self-timed Write mechanism has  
been provided to simplify the Write operations. Byte Write  
capability has been included in order to greatly simplify  
Read/Modify/Write sequences, which can be reduced to  
simple Byte Write operations.  
Because the CY7C1355C/CY7C1357C is a common I/O  
device, data should not be driven into the device while the  
outputs are active. The Output Enable (OE) can be deasserted  
HIGH before presenting data to the DQs and DQP inputs.  
X
Doing so will tri-state the output drivers. As a safety  
Document #: 38-05539 Rev. *E  
Page 8 of 28  
CY7C1355C  
CY7C1357C  
precaution, DQs and DQP are automatically tri-stated during  
the data portion of a write cycle, regardless of the state of OE.  
Interleaved Burst Address Table  
(MODE = Floating or VDD)  
X
Burst Write Accesses  
First  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
Address  
A1: A0  
The CY7C1355C/CY7C1357C has an on-chip burst counter  
that allows the user the ability to supply a single address and  
conduct up to four Write operations without reasserting the  
address inputs. ADV/LD must be driven LOW in order to load  
the initial address, as described in the Single Write Access  
section above. When ADV/LD is driven HIGH on the subse-  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
quent clock rise, the Chip Enables (CE , CE , and CE ) and  
1
2
3
WE inputs are ignored and the burst counter is incremented.  
Linear Burst Address Table (MODE = GND)  
The correct BW inputs must be driven in each cycle of the  
X
burst write, in order to write the correct bytes of data.  
First  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
Address  
A1: A0  
Sleep Mode  
The ZZ input pin is an asynchronous input. Asserting ZZ  
places the SRAM in a power conservation “sleep” mode. Two  
clock cycles are required to enter into or exit from this “sleep”  
mode. While in this mode, data integrity is guaranteed.  
Accesses pending when entering the “sleep” mode are not  
considered valid nor is the completion of the operation  
guaranteed. The device must be deselected prior to entering  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
the “sleep” mode. CE , CE , and CE , must remain inactive  
1
2
3
for the duration of t  
after the ZZ input returns LOW.  
ZZREC  
.
.
ZZ Mode Electrical Characteristics  
Parameter  
Description  
Sleep mode standby current  
Device operation to ZZ  
Test Conditions  
ZZ > V – 0.2V  
Min.  
Max.  
50  
Unit  
mA  
ns  
I
t
t
t
t
DDZZ  
DD  
ZZ > V – 0.2V  
2t  
ZZS  
DD  
CYC  
ZZ recovery time  
ZZ < 0.2V  
2t  
ns  
ZZREC  
ZZI  
CYC  
ZZ active to sleep current  
ZZ Inactive to exit sleep current  
This parameter is sampled  
This parameter is sampled  
2t  
ns  
CYC  
0
ns  
RZZI  
Truth Table[2, 3, 4, 5, 6, 7, 8]  
Address  
Used CE CE CE ZZ ADV/LD WE BW OE CEN CLK  
Operation  
Deselect Cycle  
DQ  
1
2
3
X
None  
None  
H
X
X
X
L
X
X
L
X
H
X
X
L
L
L
L
L
L
L
L
L
L
L
L
L
X
X
X
X
H
X
H
X
L
X
X
X
X
X
X
X
X
L
X
X
X
X
L
L
L
L
L
L
L
L
L
L
L
L->H  
L->H  
L->H  
L->H  
Tri-State  
Tri-State  
Tri-State  
Tri-State  
Deselect Cycle  
Deselect Cycle  
None  
L
Continue Deselect Cycle  
READ Cycle (Begin Burst)  
READ Cycle (Continue Burst)  
NOP/DUMMY READ (Begin Burst)  
DUMMY READ (Continue Burst)  
WRITE Cycle (Begin Burst)  
None  
X
H
X
H
X
H
X
H
L
External  
Next  
L->H Data Out (Q)  
L->H Data Out (Q)  
X
L
X
L
H
L
L
External  
Next  
H
H
X
X
L->H  
L->H  
Tri-State  
Tri-State  
X
L
X
L
H
L
External  
Next  
L->H Data In (D)  
L->H Data In (D)  
WRITE Cycle (Continue Burst)  
X
X
H
X
L
Notes:  
2. X = “Don't Care.” H = Logic HIGH, L = Logic LOW. BWx = L signifies at least one Byte Write Select is active, BWx = Valid signifies that the desired Byte Write  
Selects are asserted, see Truth Table for details.  
3. Write is defined by BW , and WE. See Truth Table for Read/Write.  
X
4. When a Write cycle is detected, all I/Os are tri-stated, even during Byte Writes.  
5. The DQs and DQP pins are controlled by the current cycle and the OE signal. OE is asynchronous and is not sampled with the clock.  
X
6. CEN = H, inserts wait states.  
7. Device will power-up deselected and the I/Os in a tri-state condition, regardless of OE.  
8. OE is asynchronous and is not sampled with the clock rise. It is masked internally during Write cycles. During a Read cycle DQs and DQP = Tri-state when OE  
X
is inactive or when the device is deselected, and DQs and DQP = data when OE is active.  
X
Document #: 38-05539 Rev. *E  
Page 9 of 28  
CY7C1355C  
CY7C1357C  
Truth Table[2, 3, 4, 5, 6, 7, 8]  
Address  
Used CE CE CE ZZ ADV/LD WE BW OE CEN CLK  
Operation  
DQ  
Tri-State  
Tri-State  
1
2
3
X
NOP/WRITE ABORT (Begin Burst)  
WRITE ABORT (Continue Burst)  
IGNORE CLOCK EDGE (Stall)  
SLEEP MODE  
None  
Next  
L
X
X
X
H
X
X
X
L
X
X
X
L
L
L
H
X
X
L
X
X
X
H
H
X
X
X
X
X
X
L
L
L->H  
L->H  
L->H  
X
Current  
None  
L
H
X
H
Tri-State  
Partial Truth Table for Read/Write[2, 3, 9]  
Function (CY7C1355C)  
WE  
BW  
BW  
BW  
BW  
D
A
B
C
Read  
H
X
H
L
X
H
H
L
X
X
Write No bytes written  
L
L
L
L
L
L
H
H
H
L
H
H
H
H
L
Write Byte A – (DQ and DQP )  
A
A
Write Byte B – (DQ and DQP )  
H
H
H
L
B
B
Write Byte C – (DQ and DQP )  
H
H
L
C
C
Write Byte D – (DQ and DQP )  
H
L
D
D
Write All Bytes  
L
Truth Table for Read/Write[2, 3,9]  
Function (CY7C1357C)  
WE  
BW  
BW  
B
A
Read  
H
L
L
L
L
X
H
H
H
L
X
H
H
H
L
Write - No bytes written  
Write Byte A – (DQ and DQP )  
A
A
Write Byte B – (DQ and DQP )  
B
B
Write All Bytes  
Note:  
9. Table only lists a partial listing of the byte write combinations. Any combination of BW is valid. Appropriate write will be done based on which byte write is active.  
X
Document #: 38-05539 Rev. *E  
Page 10 of 28  
CY7C1355C  
CY7C1357C  
Test MODE SELECT (TMS)  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. It is allowable to  
leave this ball unconnected if the TAP is not used. The ball is  
pulled up internally, resulting in a logic HIGH level.  
The CY7C1355C/CY7C1357C incorporates a serial boundary  
scan test access port (TAP) in the BGA package only. The  
TQFP package does not offer this functionality. This part  
operates in accordance with IEEE Standard 1149.1-1900, but  
doesn’t have the set of functions required for full 1149.1  
compliance. These functions from the IEEE specification are  
excluded because their inclusion places an added delay in the  
critical speed path of the SRAM. Note the TAP controller  
functions in a manner that does not conflict with the operation  
of other devices using 1149.1 fully compliant TAPs. The TAP  
operates using JEDEC-standard 3.3V or 2.5V I/O logic levels.  
Test Data-In (TDI)  
The TDI ball is used to serially input information into the  
registers and can be connected to the input of any of the  
registers. The register between TDI and TDO is chosen by the  
instruction that is loaded into the TAP instruction register. TDI  
is internally pulled up and can be unconnected if the TAP is  
unused in an application. TDI is connected to the most signif-  
icant bit (MSB) of any register. (See Tap Controller Block  
Diagram.)  
The CY7C1355C/CY7C1357C contains a TAP controller,  
instruction register, boundary scan register, bypass register,  
and ID register.  
Test Data-Out (TDO)  
Disabling the JTAG Feature  
The TDO output ball is used to serially clock data-out from the  
registers. The output is active depending upon the current  
state of the TAP state machine. The output changes on the  
falling edge of TCK. TDO is connected to the least significant  
bit (LSB) of any register. (See Tap Controller State Diagram.)  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, TCK must be tied  
LOW(VSS) to prevent clocking of the device. TDI and TMS are  
internally pulled up and may be unconnected. They may alter-  
nately be connected to VDD through a pull-up resistor. TDO  
should be left unconnected. Upon power-up, the device will  
come up in a reset state which will not interfere with the  
operation of the device.  
TAP Controller Block Diagram  
0
Bypass Register  
TAP Controller State Diagram  
2
1
0
0
0
TEST-LOGIC  
1
Selection  
Circuitry  
RESET  
0
Instruction Register  
31 30 29  
Identification Register  
Selection  
Circuitry  
TDI  
TDO  
.
.
.
2
1
1
1
1
RUN-TEST/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
0
0
0
1
1
x
.
.
.
.
.
2
1
CAPTURE-DR  
CAPTURE-IR  
Boundary Scan Register  
0
0
SHIFT-DR  
0
SHIFT-IR  
0
1
1
TCK  
TMS  
1
1
EXIT1-DR  
EXIT1-IR  
TAP CONTROLLER  
0
0
PAUSE-DR  
0
PAUSE-IR  
0
Performing a TAP Reset  
1
1
0
0
A RESET is performed by forcing TMS HIGH (VDD) for five  
rising edges of TCK. This RESET does not affect the operation  
of the SRAM and may be performed while the SRAM is  
operating.  
EXIT2-DR  
1
EXIT2-IR  
1
UPDATE-DR  
UPDATE-IR  
At power-up, the TAP is reset internally to ensure that TDO  
comes up in a High-Z state.  
1
0
1
0
TAP Registers  
The 0/1 next to each state represents the value of TMS at the  
rising edge of the TCK.  
Registers are connected between the TDI and TDO balls and  
allow data to be scanned into and out of the SRAM test  
circuitry. Only one register can be selected at a time through  
the instruction register. Data is serially loaded into the TDI ball  
on the rising edge of TCK. Data is output on the TDO ball on  
the falling edge of TCK.  
Test Access Port (TAP)  
Test Clock (TCK)  
The test clock is used only with the TAP controller. All inputs  
are captured on the rising edge of TCK. All outputs are driven  
from the falling edge of TCK.  
Instruction Register  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the  
TDI and TDO balls as shown in the Tap Controller Block  
Document #: 38-05539 Rev. *E  
Page 11 of 28  
CY7C1355C  
CY7C1357C  
Diagram. Upon power-up, the instruction register is loaded  
with the IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state as  
described in the previous section.  
SAMPLE Z  
The SAMPLE Z instruction causes the boundary scan register  
to be connected between the TDI and TDO pins when the TAP  
controller is in a Shift-DR state. The SAMPLE Z command puts  
the output bus into a High-Z state until the next command is  
given during the “Update IR” state.  
When the TAP controller is in the Capture-IR state, the two  
least significant bits are loaded with a binary “01” pattern to  
allow for fault isolation of the board-level serial test data path.  
SAMPLE/PRELOAD  
Bypass Register  
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. When  
the SAMPLE/PRELOAD instructions are loaded into the in-  
struction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the inputs and output pins is cap-  
tured in the boundary scan register.  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain chips. The bypass  
register is a single-bit register that can be placed between the  
TDI and TDO balls. This allows data to be shifted through the  
SRAM with minimal delay. The bypass register is set LOW  
(VSS) when the BYPASS instruction is executed.  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 20 MHz, while the SRAM clock  
operates more than an order of magnitude faster. Because  
there is a large difference in the clock frequencies, it is possi-  
ble that during the Capture-DR state, an input or output will  
undergo a transition. The TAP may then try to capture a signal  
while in transition (metastable state). This will not harm the  
device, but there is no guarantee as to the value that will be  
captured. Repeatable results may not be possible.  
Boundary Scan Register  
The boundary scan register is connected to all the input and  
bidirectional balls on the SRAM.  
The boundary scan register is loaded with the contents of the  
RAM I/O ring when the TAP controller is in the Capture-DR  
state and is then placed between the TDI and TDO balls when  
the controller is moved to the Shift-DR state. The EXTEST,  
SAMPLE/PRELOAD and SAMPLE Z instructions can be used  
to capture the contents of the I/O ring.  
To guarantee that the boundary scan register will capture the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controller's capture set-up plus  
hold times (t and t ). The SRAM clock input might not be  
The Boundary Scan Order tables show the order in which the  
bits are connected. Each bit corresponds to one of the bumps  
on the SRAM package. The MSB of the register is connected  
to TDI, and the LSB is connected to TDO.  
CS  
CH  
captured correctly if there is no way in a design to stop (or  
slow) the clock during a SAMPLE/PRELOAD instruction. If this  
is an issue, it is still possible to capture all other signals and  
simply ignore the value of the CK and CK# captured in the  
boundary scan register.  
Identification (ID) Register  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired  
into the SRAM and can be shifted out when the TAP controller  
is in the Shift-DR state. The ID register has a vendor code and  
other information described in the Identification Register  
Definitions table.  
Once the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the bound-  
ary scan register between the TDI and TDO pins.  
PRELOAD allows an initial data pattern to be placed at the  
latched parallel outputs of the boundary scan register cells pri-  
or to the selection of another boundary scan test operation.  
The shifting of data for the SAMPLE and PRELOAD phases  
can occur concurrently when required—that is, while data  
captured is shifted out, the preloaded data can be shifted in.  
TAP Instruction Set  
Overview  
BYPASS  
Eight different instructions are possible with the three bit  
instruction register. All combinations are listed in the  
Instruction Codes table. Three of these instructions are listed  
as RESERVED and should not be used. The other five instruc-  
tions are described in detail below.  
When the BYPASS instruction is loaded in the instruction  
register and the TAP is placed in a Shift-DR state, the bypass  
register is placed between the TDI and TDO pins. The  
advantage of the BYPASS instruction is that it shortens the  
boundary scan path when multiple devices are connected  
together on a board.  
Instructions are loaded into the TAP controller during the  
Shift-IR state when the instruction register is placed between  
TDI and TDO. During this state, instructions are shifted  
through the instruction register through the TDI and TDO balls.  
To execute the instruction once it is shifted in, the TAP  
controller needs to be moved into the Update-IR state.  
EXTEST  
The EXTEST instruction enables the preloaded data to be  
driven out through the system output pins. This instruction also  
selects the boundary scan register to be connected for serial  
access between the TDI and TDO in the shift-DR controller  
state.  
IDCODE  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the instruction register. It also places the  
instruction register between the TDI and TDO balls and allows  
the IDCODE to be shifted out of the device when the TAP  
controller enters the Shift-DR state.The IDCODE instruction is  
loaded into the instruction register upon power-up or  
whenever the TAP controller is given a test logic reset state.  
Reserved  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
Document #: 38-05539 Rev. *E  
Page 12 of 28  
CY7C1355C  
CY7C1357C  
TAP Timing  
1
2
3
4
5
6
Test Clock  
(TCK)  
t
t
t
TH  
CYC  
TL  
t
t
t
t
TMSS  
TDIS  
TMSH  
Test Mode Select  
(TMS)  
TDIH  
Test Data-In  
(TDI)  
t
TDOV  
t
TDOX  
Test Data-Out  
(TDO)  
DON’T CARE  
UNDEFINED  
[10, 11]  
TAP AC Switching Characteristics Over the Operating Range  
Parameter  
Clock  
Description  
Min.  
Max.  
Unit  
t
t
t
t
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH Time  
TCK Clock LOW Time  
50  
ns  
MHz  
ns  
TCYC  
TF  
20  
20  
20  
TH  
ns  
TL  
Output Times  
t
t
TCK Clock LOW to TDO Valid  
TCK Clock LOW to TDO Invalid  
10  
ns  
ns  
TDOV  
TDOX  
0
Set-up Times  
t
t
t
TMS Set-Up to TCK Clock Rise  
TDI Set-Up to TCK Clock Rise  
Capture Set-Up to TCK Rise  
5
5
5
ns  
ns  
ns  
TMSS  
TDIS  
CS  
Hold Times  
t
t
t
TMS Hold after TCK Clock Rise  
TDI Hold after Clock Rise  
5
5
5
ns  
ns  
ns  
TMSH  
TDIH  
CH  
Capture Hold after Clock Rise  
Notes:  
10. t and t refer to the set-up and hold time requirements of latching data from the boundary scan register.  
CS  
CH  
11. Test conditions are specified using the load in TAP AC Test Conditions. t /t = 1 ns.  
R
F
Document #: 38-05539 Rev. *E  
Page 13 of 28  
CY7C1355C  
CY7C1357C  
3.3V TAP AC Test Conditions  
2.5V TAP AC Test Conditions  
Input pulse levels ................................................ V to 3.3V  
Input pulse levels.................................................V to 2.5V  
SS  
SS  
Input rise and fall times................................................... 1 ns  
Input timing reference levels...........................................1.5V  
Output reference levels...................................................1.5V  
Test load termination supply voltage...............................1.5V  
Input rise and fall time .....................................................1 ns  
Input timing reference levels......................................... 1.25V  
Output reference levels ................................................ 1.25V  
Test load termination supply voltage ............................ 1.25V  
3.3V TAP AC Output Load Equivalent  
2.5V TAP AC Output Load Equivalent  
1.5V  
1.25V  
50  
50  
TDO  
TDO  
ZO= 50Ω  
ZO= 50Ω  
20pF  
20pF  
TAP DC Electrical Characteristics And Operating Conditions (0°C < T < +70°C; V = 3.3V ± 0.165V unless  
A
DD  
[12]  
otherwise noted)  
Parameter  
Description  
Conditions  
Min.  
2.4  
2.0  
2.9  
2.1  
Max.  
Unit  
V
V
V
V
V
V
V
Output HIGH Voltage  
I
I
= –4.0 mA, V  
= –1.0 mA, V  
= 3.3V  
= 2.5V  
OH1  
OH2  
OL1  
OL2  
IH  
OH  
OH  
DDQ  
DDQ  
V
Output HIGH Voltage  
Output LOW Voltage  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage  
Input Load Current  
I
= –100 µA  
V
V
V
V
V
V
V
V
V
V
= 3.3V  
= 2.5V  
= 3.3V  
= 2.5V  
= 3.3V  
= 2.5V  
= 3.3V  
= 2.5V  
= 3.3V  
= 2.5V  
V
OH  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
V
I
I
I
= 8.0 mA  
= 8.0 mA  
= 100 µA  
0.4  
0.4  
0.2  
0.2  
V
OL  
OL  
OL  
V
V
V
2.0  
1.7  
V
V
+ 0.3  
V
DD  
DD  
+ 0.3  
V
–0.5  
–0.3  
–5  
0.7  
V
IL  
0.7  
5
V
I
GND < V < V  
DDQ  
µA  
X
IN  
Identification Register Definitions  
CY7C1355C  
(256Kx36)  
CY7C1357C  
(512Kx18)  
Instruction Field  
Revision Number (31:29)  
Device Depth (28:24)  
Description  
010  
01010  
010  
Describes the version number  
Reserved for Internal Use  
01010  
001001  
010110  
Device Width (23:18)  
001001  
100110  
00000110100  
1
Defines memory type and architecture  
Defines width and density  
Cypress Device ID (17:12)  
Cypress JEDEC ID Code (11:1)  
ID Register Presence Indicator (0)  
00000110100 Allows unique identification of SRAM vendor  
Indicates the presence of an ID register  
1
Note:  
12. All voltages referenced to V (GND).  
SS  
Document #: 38-05539 Rev. *E  
Page 14 of 28  
CY7C1355C  
CY7C1357C  
Scan Register Sizes  
Register Name  
Bit Size (x36)  
Bit Size (x18)  
Instruction  
3
3
Bypass  
1
1
ID  
32  
69  
69  
32  
69  
69  
Boundary Scan Order (119-ball BGA package)  
Boundary Scan Order (165-ball FBGA package)  
Identification Codes  
Instruction  
EXTEST  
Code  
Description  
000  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM outputs to High-Z state. This instruction is not 1149.1 compliant.  
IDCODE  
001  
010  
Loads the ID register with the vendor ID code and places the register between TDI and  
TDO. This operation does not affect SRAM operations.  
SAMPLE Z  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM output drivers to a High-Z state.  
RESERVED  
011  
100  
Do Not Use: This instruction is reserved for future use.  
SAMPLE/PRELOAD  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Does not affect SRAM operation. This instruction does not implement 1149.1 preload  
function and is therefore not 1149.1 compliant.  
RESERVED  
RESERVED  
BYPASS  
101  
110  
111  
Do Not Use: This instruction is reserved for future use.  
Do Not Use: This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not affect SRAM  
operations.  
Document #: 38-05539 Rev. *E  
Page 15 of 28  
CY7C1355C  
CY7C1357C  
119-ball BGA Boundary Scan Order  
CY7C1355C (256K x 36)  
CY7C1357C (512K x 18)  
Signal  
Signal  
Signal  
Name  
Signal  
Name  
Bit# ball ID  
Name  
CLK  
WE  
CEN  
OE  
Bit#  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
ball ID  
R6  
T5  
Bit#  
1
ball Id  
Name  
CLK  
WE  
Bit#  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
ball Id  
1
A
R6  
A
K4  
H4  
M4  
F4  
B4  
G4  
C3  
B3  
D6  
H7  
G6  
E6  
D7  
E7  
F6  
G7  
H6  
T7  
K7  
L6  
K4  
H4  
2
A
A
2
T5  
A
3
T3  
3
M4  
CEN  
OE  
T3  
A
4
R2  
R3  
P2  
A
4
F4  
R2  
A
5
ADV/LD  
A
MODE  
5
B4  
ADV/LD  
A
R3  
MODE  
Internal  
Internal  
Internal  
Internal  
6
DQP  
6
G4  
Internal  
Internal  
Internal  
Internal  
P2  
D
7
A
P1  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
7
C3  
A
D
8
A
L2  
8
B3  
A
D
D
D
D
D
D
D
9
DQP  
K1  
9
T2  
A
B
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
N2  
N1  
M2  
L1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
Internal  
Internal  
Internal  
D6  
Internal  
Internal  
Internal  
DQP  
B
B
N1  
DQ  
DQ  
DQ  
DQ  
B
B
B
B
B
B
B
B
M2  
B
B
B
DQP  
L1  
A
K2  
E7  
DQ  
DQ  
DQ  
DQ  
K2  
A
A
A
A
Internal  
H1  
G2  
E2  
Internal  
F6  
Internal  
H1  
Internal  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
G7  
DQ  
DQ  
DQ  
DQ  
C
C
C
C
C
C
C
C
B
B
B
B
H6  
G2  
ZZ  
T7  
ZZ  
E2  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
D1  
H2  
G1  
F2  
K7  
DQ  
DQ  
DQ  
DQ  
D1  
A
A
A
A
A
A
A
A
A
A
A
A
L6  
Internal  
Internal  
Internal  
Internal  
Internal  
C2  
Internal  
Internal  
Internal  
Internal  
Internal  
A
N6  
P7  
N7  
M6  
L7  
N6  
P7  
E1  
Internal  
Internal  
Internal  
Internal  
Internal  
T6  
Internal  
D2  
C2  
A2  
DQP  
A
Internal  
C
Internal  
K6  
P6  
T4  
A3  
C5  
B5  
A5  
C6  
A6  
P4  
N4  
A
Internal  
A2  
A
DQP  
E4  
CE  
CE  
Internal  
E4  
CE  
CE  
A
1
1
2
A
A
B2  
A
A
B2  
2
L3  
BW  
BW  
A3  
Internal  
G3  
Internal  
BW  
D
C
A
G3  
G5  
L5  
C5  
A
B
A
BWB  
BW  
B5  
A
Internal  
L5  
Internal  
BW  
A
A5  
A
A
A
A
B6  
CE  
C6  
A
B6  
CE  
3
3
A
A6  
A
A0  
A1  
P4  
A0  
A1  
N4  
Document #: 38-05539 Rev. *E  
Page 16 of 28  
CY7C1355C  
CY7C1357C  
165-ball FBGA Boundary Scan Order  
CY7C1355C (256K x 36)  
CY7C1357C (512K x 18)  
Signal  
Signal  
Name  
Signal  
Name  
Signal  
Name  
Bit# ball ID  
Name  
CLK  
WE  
CEN  
OE  
Bit#  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
ball ID  
R4  
P4  
Bit#  
1
ball ID  
B6  
Bit#  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
ball ID  
R4  
1
B6  
B7  
A
CLK  
WE  
A
2
A
A
2
B7  
P4  
A
3
A7  
R3  
P3  
3
A7  
CEN  
OE  
R3  
A
4
B8  
A
4
B8  
P3  
A
5
A8  
ADV/LD  
A
R1  
N1  
L2  
MODE  
5
A8  
ADV/LD  
A
R1  
MODE  
Internal  
Internal  
Internal  
Internal  
6
A9  
DQP  
6
A9  
Internal  
Internal  
Internal  
Internal  
N1  
D
7
B10  
A10  
C11  
E10  
F10  
G10  
D10  
D11  
E11  
F11  
G11  
H11  
J10  
K10  
L10  
M10  
J11  
K11  
L11  
M11  
N11  
R11  
R10  
P10  
R9  
A
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
7
B10  
A
D
8
A
K2  
8
A10  
A
D
D
D
D
D
D
D
9
DQP  
J2  
9
A11  
A
B
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
M2  
M1  
L1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
Internal  
Internal  
Internal  
C11  
Internal  
Internal  
Internal  
DQP  
B
B
M1  
DQ  
DQ  
DQ  
DQ  
B
B
B
B
B
B
B
B
L1  
B
B
B
K1  
DQP  
K1  
A
J1  
D11  
DQ  
DQ  
DQ  
DQ  
J1  
A
A
A
A
Internal  
G2  
F2  
Internal  
E11  
Internal  
G2  
Internal  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
F11  
DQ  
DQ  
DQ  
DQ  
C
C
C
C
C
C
C
C
B
B
B
B
G11  
H11  
F2  
ZZ  
E2  
ZZ  
E2  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
D2  
G1  
F1  
J10  
DQ  
DQ  
DQ  
DQ  
D2  
A
A
A
A
A
A
A
A
A
A
A
A
K10  
Internal  
Internal  
Internal  
Internal  
Internal  
B2  
Internal  
Internal  
Internal  
Internal  
Internal  
A
L10  
E1  
M10  
Internal  
Internal  
Internal  
Internal  
Internal  
R11  
D1  
C1  
B2  
Internal  
DQP  
A
Internal  
C
Internal  
A2  
A
Internal  
A2  
A
DQP  
A3  
CE  
CE  
Internal  
A3  
CE  
CE  
A
1
1
2
A
A
B3  
A
A
B3  
2
B4  
BW  
BW  
BW  
R10  
P10  
Internal  
Internal  
A4  
Internal  
Internal  
D
C
B
A
A4  
A
A
A5  
R9  
A
BW  
B
P9  
A
B5  
BW  
P9  
A
B5  
BW  
A
A
3
R8  
A
A6  
CE  
R8  
A
A6  
CE  
3
P8  
A
P8  
A
R6  
A0  
A1  
R6  
A0  
A1  
P6  
P6  
Document #: 38-05539 Rev. *E  
Page 17 of 28  
CY7C1355C  
CY7C1357C  
DC Input Voltage ................................... –0.5V to V + 0.5V  
Maximum Ratings  
DD  
Current into Outputs (LOW)......................................... 20 mA  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Static Discharge Voltage...........................................> 2001V  
(per MIL-STD-883, Method 3015)  
Storage Temperature .................................65°C to +150°C  
Latch-up Current....................................................> 200 mA.  
Ambient Temperature with  
Power Applied.............................................55°C to +125°C  
Operating Range  
Supply Voltage on V Relative to GND........ –0.5V to +4.6V  
DD  
Ambient  
Supply Voltage on V  
Relative to GND ......0.5V to +V  
Range  
Temperature  
V
V
DDQ  
DDQ  
DD  
DD  
DC Voltage Applied to Outputs  
in Tri-State........................................... –0.5V to V  
Commercial 0°C to +70°C 3.3V – 5%/+10% 2.5V – 5%  
+ 0.5V  
to V  
DDQ  
DD  
Industrial  
–40°C to +85°C  
[13, 14]  
Electrical Characteristics Over the Operating Range  
Parameter  
Description  
Power Supply Voltage  
I/O Supply Voltage  
Test Conditions  
Min.  
3.135  
3.135  
2.375  
2.4  
Max.  
Unit  
V
V
3.6  
DD  
V
V
V
V
V
I
for 3.3V I/O  
for 2.5V I/O  
V
V
DDQ  
DD  
2.625  
Output HIGH Voltage  
Output LOW Voltage  
for 3.3V I/O, I = 4.0 mA  
V
V
OH  
OL  
IH  
OH  
for 2.5V I/O, I = 1.0 mA  
2.0  
OH  
for 3.3V I/O, I = 8.0 mA  
0.4  
0.4  
V
OL  
for 2.5V I/O, I = 1.0 mA  
V
OL  
[13]  
Input HIGH Voltage  
for 3.3V I/O  
for 2.5V I/O  
for 3.3V I/O  
for 2.5V I/O  
2.0  
1.7  
V
V
+ 0.3V  
V
DD  
DD  
+ 0.3V  
V
[13]  
Input LOW Voltage  
–0.3  
–0.3  
–5  
0.8  
V
IL  
0.7  
5
V
Input Leakage Current GND V V  
except ZZ and MODE  
µA  
X
I
DDQ  
Input Current of MODE Input = V  
–30  
–5  
µA  
µA  
µA  
µA  
µA  
mA  
mA  
mA  
SS  
Input = V  
5
DD  
Input Current of ZZ  
Input = V  
Input = V  
SS  
30  
5
DD  
I
I
Output Leakage Current GND V V  
Output Disabled  
–5  
OZ  
I
DDQ,  
V
Operating Supply  
V
f = f  
= Max., I  
= 0 mA,  
7.5-ns cycle, 133 MHz  
10-ns cycle, 100 MHz  
250  
180  
110  
DD  
DD  
DD  
OUT  
= 1/t  
MAX CYC  
Current  
I
I
I
I
Automatic CE  
V = Max, Device Deselected, All speeds  
DD  
SB1  
Power-down  
Current—TTL Inputs  
V
f = f  
V or V V  
IN  
IH IN IL  
, inputs switching  
MAX  
Automatic CE  
Power-down  
Current—CMOS Inputs f = 0, inputs static  
V = Max, Device Deselected, All speeds  
DD  
40  
100  
40  
mA  
mA  
mA  
SB2  
SB3  
SB4  
V
0.3V or V > V – 0.3V,  
IN  
IN  
DD  
Automatic CE  
Power-down  
Current—CMOS Inputs f = f  
V =Max, DeviceDeselected, or All speeds  
DD  
V
0.3V or V > V – 0.3V  
IN  
IN  
DDQ  
, inputs switching  
MAX  
Automatic CE  
Power-down  
Current—TTL Inputs  
V = Max, Device Deselected, All Speeds  
DD  
V
V or V V , f = 0, inputs  
IN  
IH IN IL  
static  
Notes:  
13. Overshoot: V (AC) < V +1.5V (Pulse width less than t  
/2), undershoot: V (AC) > –2V (Pulse width less than t /2).  
CYC  
IH  
DD  
CYC  
IL  
14. T  
: Assumes a linear ramp from 0V to V (min.) within 200 ms. During this time V < V and V  
< V  
.
Power-up  
DD  
IH  
DD  
DDQ  
DD  
Document #: 38-05539 Rev. *E  
Page 18 of 28  
CY7C1355C  
CY7C1357C  
Capacitance[15]  
100 TQFP  
Max.  
119 BGA 165 FBGA  
Parameter  
Description  
Input Capacitance  
Test Conditions  
T = 25°C, f = 1 MHz,  
Max.  
Max.  
Unit  
pF  
C
C
C
5
5
5
5
5
7
5
5
7
IN  
A
V
= 3.3V.  
= 2.5V  
DD  
Clock Input Capacitance  
Input/Output Capacitance  
pF  
CLK  
I/O  
V
DDQ  
pF  
Thermal Resistance[15]  
100 TQFP  
Package  
119 BGA  
Package  
165 FBGA  
Package  
Parameter  
Description  
Test Conditions  
Unit  
Θ
Θ
Thermal Resistance  
(Junction to Ambient)  
Test conditions follow standard  
test methods and procedures  
for measuring thermal  
29.41  
34.1  
16.8  
°C/W  
JA  
Thermal Resistance  
(Junction to Case)  
6.31  
14.0  
3.0  
°C/W  
JC  
impedance, per EIA/JESD51.  
AC Test Loads and Waveforms  
3.3V I/O Test Load  
R = 317Ω  
3.3V  
OUTPUT  
R = 50Ω  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
90%  
10%  
Z = 50Ω  
0
10%  
L
GND  
5 pF  
R = 351Ω  
1 ns  
1 ns  
V = 1.5V  
T
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
2.5V I/O Test Load  
R = 1667Ω  
2.5V  
OUTPUT  
R = 50Ω  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
GND  
90%  
10%  
Z = 50Ω  
0
10%  
L
5 pF  
R = 1538Ω  
1 ns  
1 ns  
INCLUDING  
JIG AND  
SCOPE  
V = 1.25V  
T
(a)  
(b)  
(c)  
Note:  
15. Tested initially and after any design or process change that may affect these parameters  
Document #: 38-05539 Rev. *E  
Page 19 of 28  
CY7C1355C  
CY7C1357C  
[16, 17]  
Switching Characteristics Over the Operating Range  
–133  
–100  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Unit  
[18]  
t
V
(Typical) to the First Access  
1
1
ms  
POWER  
DD  
Clock  
t
t
t
Clock Cycle Time  
Clock HIGH  
7.5  
3.0  
3.0  
10  
4.0  
4.0  
ns  
ns  
ns  
CYC  
CH  
Clock LOW  
CL  
Output Times  
t
t
t
t
t
t
t
Data Output Valid after CLK Rise  
Data Output Hold after CLK Rise  
6.5  
7.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CDV  
DOH  
CLZ  
2.0  
0
2.0  
0
[19, 20, 21]  
Clock to Low-Z  
[19, 20, 21]  
Clock to High-Z  
3.5  
3.5  
3.5  
3.5  
CHZ  
OEV  
OELZ  
OEHZ  
OE LOW to Output Valid  
[19, 20, 21]  
OE LOW to Output Low-Z  
0
0
[19, 20, 21]  
OE HIGH to Output High-Z  
3.5  
3.5  
Set-up Times  
t
t
t
t
t
t
Address Set-up before CLK Rise  
ADV/LD Set-up before CLK Rise  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
AS  
ALS  
WES  
CENS  
DS  
WE, BW Set-up before CLK Rise  
X
CEN Set-up before CLK Rise  
Data Input Set-up before CLK Rise  
Chip Enable Set-Up before CLK Rise  
CES  
Hold Times  
t
t
t
t
t
t
Address Hold after CLK Rise  
ADV/LD Hold after CLK Rise  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
AH  
ALH  
WEH  
CENH  
DH  
WE, BW Hold after CLK Rise  
X
CEN Hold after CLK Rise  
Data Input Hold after CLK Rise  
Chip Enable Hold after CLK Rise  
CEH  
Notes:  
16. Timing reference level is 1.5V when V  
= 3.3V and is 1.25V when V  
= 2.5V.  
DDQ  
DDQ  
17. Test conditions shown in (a) of AC Test Loads unless otherwise noted.  
18. This part has a voltage regulator internally; t  
is the time that the power needs to be supplied above V (minimum) initially, before a Read or Write operation  
POWER  
DD  
can be initiated.  
19. t  
, t  
,t  
, and t  
are specified with AC test conditions shown in part (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.  
OEHZ  
CHZ CLZ OELZ  
20. At any given voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same  
OEHZ  
OELZ  
CHZ  
CLZ  
data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed  
to achieve High-Z prior to Low-Z under the same system conditions.  
21. This parameter is sampled and not 100% tested.  
Document #: 38-05539 Rev. *E  
Page 20 of 28  
CY7C1355C  
CY7C1357C  
Switching Waveforms  
[22, 23, 24]  
Read/Write Waveforms  
t
1
2
3
4
5
6
7
8
9
10  
CYC  
t
CLK  
t
t
t
t
t
CENS  
CES  
CENH  
CEH  
CL  
CH  
CEN  
CE  
ADV/LD  
WE  
BWX  
A1  
A2  
A4  
A3  
A5  
A6  
A7  
ADDRESS  
DQ  
t
CDV  
t
t
AS  
AH  
t
t
t
t
DOH  
OEV  
CLZ  
CHZ  
D(A1)  
t
D(A2)  
D(A2+1)  
Q(A3)  
Q(A4)  
Q(A4+1)  
D(A5)  
Q(A6)  
D(A7)  
t
OEHZ  
t
DS  
DH  
t
DOH  
t
OELZ  
OE  
COMMAND  
WRITE  
D(A1)  
WRITE  
D(A2)  
BURST  
WRITE  
READ  
Q(A3)  
READ  
Q(A4)  
BURST  
READ  
WRITE  
D(A5)  
READ  
Q(A6)  
WRITE  
D(A7)  
DESELECT  
D(A2+1)  
Q(A4+1)  
DON’T CARE  
UNDEFINED  
Notes:  
For this waveform ZZ is tied LOW.  
22.  
23. When CE is LOW, CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH, CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
24. Order of the Burst sequence is determined by the status of the MODE (0 = Linear, 1 = Interleaved). Burst operations are optional.  
Document #: 38-05539 Rev. *E  
Page 21 of 28  
CY7C1355C  
CY7C1357C  
Switching Waveforms (continued)  
[22, 23, 25]  
NOP, STALL and DESELECT Cycles  
t
1
2
3
4
5
6
7
8
9
10  
CYC  
CLK  
CEN  
t
t
t
t
t
t
CENS  
CES  
CENH  
CEH  
CL  
CH  
CE  
ADV/LD  
WE  
BWX  
A1  
A2  
A4  
A3  
A5  
A6  
A7  
ADDRESS  
DQ  
t
CDV  
t
t
AS  
AH  
t
t
t
t
DOH  
OEV  
CLZ  
CHZ  
D(A1)  
t
D(A2)  
D(A2+1)  
Q(A3)  
Q(A4)  
Q(A4+1)  
D(A5)  
Q(A6)  
D(A7)  
t
OEHZ  
t
DS  
DH  
t
DOH  
t
OELZ  
OE  
COMMAND  
WRITE  
D(A1)  
WRITE  
D(A2)  
BURST  
WRITE  
READ  
Q(A3)  
READ  
Q(A4)  
BURST  
READ  
WRITE  
D(A5)  
READ  
Q(A6)  
WRITE  
D(A7)  
DESELECT  
D(A2+1)  
Q(A4+1)  
DON’T CARE  
UNDEFINED  
Note:  
25. The IGNORE CLOCK EDGE or STALL cycle (Clock 3) illustrates CEN being used to create a pause. A write is not performed during this cycle.  
Document #: 38-05539 Rev. *E  
Page 22 of 28  
CY7C1355C  
CY7C1357C  
Switching Waveforms (continued)  
[26, 27]  
ZZ Mode Timing  
CLK  
t
t
ZZ  
ZZREC  
ZZ  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
Notes:  
26. Device must be deselected when entering ZZ mode. See truth table for all possible signal conditions to deselect the device.  
27. DQs are in high-Z when exiting ZZ sleep mode.  
Document #: 38-05539 Rev. *E  
Page 23 of 28  
CY7C1355C  
CY7C1357C  
Ordering Information  
Not all of the speed, package and temperature ranges are available. Please contact your local sales representative or  
visit www.cypress.com for actual products offered.  
Speed  
(MHz)  
Package  
Diagram  
Operating  
Range  
Ordering Code  
Part and Package Type  
133 CY7C1355C-133AXC  
CY7C1357C-133AXC  
CY7C1355C-133BGC  
CY7C1357C-133BGC  
CY7C1355C-133BGXC  
CY7C1357C-133BGXC  
CY7C1355C-133BZC  
CY7C1357C-133BZC  
CY7C1355C-133BZXC  
CY7C1357C-133BZXC  
CY7C1355C-133AXI  
CY7C1357C-133AXI  
CY7C1355C-133BGI  
CY7C1357C-133BGI  
CY7C1355C-133BGXI  
CY7C1357C-133BGXI  
CY7C1355C-133BZI  
CY7C1357C-133BZI  
CY7C1355C-133BZXI  
CY7C1357C-133BZXI  
100 CY7C1355C-100AXC  
CY7C1357C-100AXC  
CY7C1355C-100BGC  
CY7C1357C-100BGC  
CY7C1355C-100BGXC  
CY7C1357C-100BGXC  
CY7C1355C-100BZC  
CY7C1357C-100BZC  
CY7C1355C-100BZXC  
CY7C1357C-100BZXC  
CY7C1355C-100AXI  
CY7C1357C-100AXI  
CY7C1355C-100BGI  
CY7C1357C-100BGI  
CY7C1355C-100BGXI  
CY7C1357C-100BGXI  
CY7C1355C -100BZI  
CY7C1357C-100BZI  
CY7C1355C-100BZXI  
CY7C1357C-100BZXI  
51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
Commercial  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Lead-Free  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm) Lead-Free  
51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
lndustrial  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Lead-Free  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm) Lead-Free  
51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
Commercial  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Lead-Free  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm) Lead-Free  
51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
lndustrial  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Lead-Free  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm) Lead-Free  
Document #: 38-05539 Rev. *E  
Page 24 of 28  
CY7C1355C  
CY7C1357C  
Package Diagrams  
100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) (51-85050)  
16.00 0.20  
14.00 0.10  
1.40 0.05  
100  
81  
80  
1
0.30 0.08  
0.65  
TYP.  
12° 1°  
(8X)  
SEE DETAIL  
A
30  
51  
31  
50  
0.20 MAX.  
1.60 MAX.  
R 0.08 MIN.  
0.20 MAX.  
0° MIN.  
SEATING PLANE  
STAND-OFF  
0.05 MIN.  
0.15 MAX.  
NOTE:  
1. JEDEC STD REF MS-026  
0.25  
GAUGE PLANE  
2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH  
MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE  
R 0.08 MIN.  
0.20 MAX.  
BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH  
3. DIMENSIONS IN MILLIMETERS  
0°-7°  
0.60 0.15  
0.20 MIN.  
51-85050-*B  
1.00 REF.  
DETAIL  
A
Document #: 38-05539 Rev. *E  
Page 25 of 28  
CY7C1355C  
CY7C1357C  
Package Diagrams (continued)  
119-Ball BGA (14 x 22 x 2.4 mm) (51-85115)  
Ø0.05 M C  
Ø0.25 M C A B  
A1 CORNER  
Ø0.75 0.15(119X)  
Ø1.00(3X) REF.  
1
2
3
4
5
6
7
7
6
5
4
3
2
1
A
B
C
D
E
A
B
C
D
E
F
F
G
H
G
H
J
K
L
J
K
L
M
N
P
R
T
M
N
P
R
T
U
U
1.27  
0.70 REF.  
A
3.81  
12.00  
7.62  
B
14.00 0.20  
0.15(4X)  
30° TYP.  
51-85115-*B  
SEATING PLANE  
C
Document #: 38-05539 Rev. *E  
Page 26 of 28  
CY7C1355C  
CY7C1357C  
Package Diagrams (continued)  
165-Ball FBGA (13 x 15 x 1.4 mm) (51-85180)  
BOTTOM VIEW  
PIN 1 CORNER  
TOP VIEW  
Ø0.05 M C  
PIN 1 CORNER  
Ø0.25 M C A B  
-0.06  
Ø0.50
(165X)  
+0.14  
1
2
3
4
5
6
7
8
9
10  
11  
11 10  
9
8
7
6
5
4
3
2
1
A
A
B
B
C
D
C
D
E
E
F
F
G
G
H
J
H
J
K
K
L
L
M
M
N
P
R
N
P
R
A
A
1.00  
5.00  
10.00  
13.00 0.10  
B
B
13.00 0.10  
0.15(4X)  
NOTES :  
SOLDER PAD TYPE : NON-SOLDER MASK DEFINED (NSMD)  
PACKAGE WEIGHT : 0.475g  
JEDECREFERENCE: MO-216 / DESIGN 4.6C  
PACKAGE CODE : BB0AC  
SEATING PLANE  
C
51-85180-*A  
NoBL and No Bus Latency are trademarks of Cypress Semiconductor Corporation. ZBT is a trademark of Integrated Device  
Technology, Inc. All product and company names mentioned in this document are the trademarks of their respective holders  
Document #: 38-05539 Rev. *E  
Page 27 of 28  
© Cypress Semiconductor Corporation, 2006. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be  
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its  
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
CY7C1355C  
CY7C1357C  
Document History Page  
Document Title: CY7C1355C/CY7C1357C 9-Mbit (256K x 36/512K x 18) Flow-Through SRAM with NoBL™ Architecture  
Document Number: 38-05539  
Orig. of  
REV.  
**  
ECN NO.  
242032  
332059  
Issue Date Change  
Description of Change  
See ECN  
See ECN  
RKF  
PCI  
New data sheet  
*A  
Changed Boundary Scan Order to match the B rev of these devices  
Removed description on Extest Output Bus Tri-state  
Removed 117 MHz Speed Bin  
Changed I  
Changed I  
from 35 mA to 50 mA on Pg # 9  
DDZZ  
and I  
from 40 mA to 110 and 100 mA respectively  
SB1  
SB3  
Address expansion pins/balls in the pinouts for all packages are modified as  
per JEDEC standard  
Modified V  
Corrected I  
V
test conditions  
OL, OH  
Test Condition from (V V – 0.3V or V 0.3V) to (V V  
SB4  
IN  
DD  
IN  
IN  
IH  
or V V ) in the Electrical Characteristic Table on Pg #18  
IN  
IL  
Changed Θ and Θ for TQFP Package from 25 and 9 °C/W to 29.41 and  
JA  
Jc  
6.13 °C/W  
respectively  
Changed Θ and Θ for BGA Package from 25 and 6 °C/W to 34.1 and 14.0  
JA  
Jc  
°C/W  
respectively  
Changed Θ and Θ for FBGA Package from 27 and 6 °C/W to 16.8 and 3.0  
JA  
Jc  
°C/W respectively  
Added lead-free information for 100-pin TQFP, 119 BGA and 165 FBGA  
Packages  
Updated Ordering Information Table  
Changed from Preliminary to Final  
*B  
351895  
See ECN  
PCI  
Changed I  
Updated Ordering Information Table  
from 30 to 40 mA  
SB2  
*C  
*D  
377095  
408298  
See ECN  
See ECN  
PCI  
Modified test condition in note# 14 from V < V to V < V  
DD  
IH  
DD  
IH  
RXU  
Changed address of Cypress Semiconductor Corporation on Page# 1 from  
“3901 North First Street” to “198 Champion Court”  
Modified “Input Load” to “Input Leakage Current except ZZ and MODE” in the  
Electrical Characteristics Table  
Changed three-state to tri-state  
Replaced Package Name column with Package Diagram in the Ordering  
Information table  
Updated Ordering Information Table  
*E  
501793  
See ECN  
VKN  
Added the Maximum Rating for Supply Voltage on V  
Relative to GND  
DDQ  
Changed t , t from 25 ns to 20 ns and t  
from 5 ns to 10 ns in TAP AC  
TH TL  
TDOV  
Switching Characteristics table.  
Updated the Ordering Information table.  
Document #: 38-05539 Rev. *E  
Page 28 of 28  

GE Profile JP938CCCC User Manual
Elo TouchSystems AMM18TK User Manual
Electrolux 726374 User Manual
Diamond Multimedia ATI Radeon HD 4800 Series User Manual
Dell E1909WDD User Manual
Cypress Perform CY14E108N User Manual
Cres Cor CO151F1818 User Manual
AT T CL82400 User Manual
Asus Widescreen Lcd Monitor VS247H P User Manual
Asus Computer Monitor VW199 User Manual