| CY7C1386DV25, CY7C1386FV25   CY7C1387DV25, CY7C1387FV25   18-Mbit (512K x 36/1M x 18) Pipelined DCD Sync SRAM   Features   Functional Description [1]   • Supports bus operation up to 250 MHz   The   CY7C1386DV25/CY7C1387DV25/CY7C1386FV25/   CY7C1387FV25 SRAM integrates 512K x 36 and 1M x 18   SRAM cells with advanced synchronous peripheral circuitry   and a two-bit counter for internal burst operation. All   synchronous inputs are gated by registers controlled by a   positive edge triggered clock input (CLK). The synchronous   inputs include all addresses, all data inputs, address-pipelining   • Available speed grades are 250, 200, and 167 MHz   • Registered inputs and outputs for pipelined operation   • Optimal for performance (Double-Cycle deselect)   • Depth expansion without wait state   • 2.5V + 5% power supply (V   ) DD   chip enable (CE ), depth expansion chip enables (CE and   1 2 • Fast clock-to-output times, 2.6 ns (for 250 MHz device)   • Provides high-performance 3-1-1-1 access rate   CE   ), burst control inputs (ADSC, ADSP, and ADV), write   3 enables (BW , and BWE), and global write (GW).   X ® ® Asynchronous inputs include the output enable (OE) and the   ZZ pin.   • User selectable burst counter supporting Intel Pentium   interleaved or linear burst sequences   • Separate processor and controller address strobes   • Synchronous self timed writes   Addresses and chip enables are registered at rising edge of   clock when either address strobe processor (ADSP) or   address strobe controller (ADSC) are active. Subsequent   burst addresses can be internally generated as controlled by   the advance pin (ADV).   • Asynchronous output enable   • CY7C1386DV25/CY7C1387DV25 available in   JEDEC-standard Pb-free 100-pin TQFP, Pb-free and non   Pb-free 165-ball FBGA package.   CY7C1386FV25/CY7C1387FV25 available in Pb-free and   non Pb-free 119-ball BGA package   Address, data inputs, and write controls are registered on-chip   to initiate a self timed write cycle.This part supports byte write   on page 9 for further details). Write cycles can be   • IEEE 1149.1 JTAG-Compatible Boundary Scan   • ZZ sleep mode option   one to four bytes wide as controlled by the byte write control   inputs. GW   This   causes all bytes to be written.   active   LOW   device incorporates an additional pipelined enable register   which delays turning off the output buffers an additional cycle   when a deselect is executed.This feature allows depth   expansion without penalizing system performance.   The   CY7C1386DV25/CY7C1387DV25/CY7C1386FV25/   CY7C1387FV25 operates from a +2.5V power supply. All   inputs   and   outputs   are   JEDEC-standard   and   JESD8-5-compatible.   Selection Guide   250 MHz   200 MHz   3.0   167 MHz   3.4   Unit   ns   Maximum Access Time   2.6   350   70   Maximum Operating Current   Maximum CMOS Standby Current   300   275   mA   mA   70   70   Notes   1. For best practices or recommendations, please refer to the Cypress application note AN1064, SRAM System Design Guidelines on www.cypress.com.   2. CE CE are for TQFP and 165 FBGA packages only. 119 BGA is offered only in 1 chip enable.   3,   2 Cypress Semiconductor Corporation   Document Number: 38-05548 Rev. *E   • 198 Champion Court   • San Jose, CA 95134-1709   • 408-943-2600   Revised Feburary 15, 2007   CY7C1386DV25, CY7C1386FV25   CY7C1387DV25, CY7C1387FV25   Pin Configurations   100-pin TQFP Pinout (3 Chip Enables)   DQPC   1 DQPB   DQB   DQB   VDDQ   VSSQ   DQB   DQB   DQB   DQB   VSSQ   VDDQ   DQB   DQB   VSS   80   79   78   77   76   75   74   73   72   71   70   69   68   67   66   65   64   63   62   61   60   59   58   57   56   55   54   53   52   51   NC   NC   NC   VDDQ   VSSQ   NC   A NC   NC   VDDQ   VSSQ   NC   DQPA   DQA   DQA   VSSQ   VDDQ   DQA   DQA   VSS   NC   1 2 3 4 5 6 7 8 80   79   78   77   76   75   74   73   72   71   70   69   68   67   66   65   64   63   62   61   60   59   58   57   56   55   54   53   52   51   DQC   2 DQC   VDDQ   VSSQ   DQC   3 4 5 6 DQC   7 NC   DQC   8 DQB   DQB   VSSQ   VDDQ   DQB   DQB   NC   VDD   NC   VSS   DQB   DQB   VDDQ   VSSQ   DQB   DQB   DQPB   NC   DQC   9 10   11   9 VSSQ   VDDQ   DQC   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   12   DQC   13   NC   14   VDD   NC   VSS   NC   VDD   ZZ   15   CY7C1387DV25   (1M x 18)   CY7C1386DV25   (512K X 36)   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   VDD   ZZ   DQD   DQD   VDDQ   VSSQ   DQD   DQD   DQD   DQD   VSSQ   VDDQ   DQD   DQD   DQPD   DQA   DQA   VDDQ   VSSQ   DQA   DQA   DQA   DQA   VSSQ   VDDQ   DQA   DQA   DQPA   DQA   DQA   VDDQ   VSSQ   DQA   DQA   NC   NC   VSSQ   VDDQ   NC   NC   NC   VSSQ   VDDQ   NC   NC   NC   Document Number: 38-05548 Rev. *E   Page 3 of 30   CY7C1386DV25, CY7C1386FV25   CY7C1387DV25, CY7C1387FV25   Pin Configurations (continued)   119-Ball BGA (1 Chip Enable)   CY7C1386FV25 (512K x 36)   1 2 3 4 5 6 7 A V A A A A V DDQ   ADSP   ADSC   DDQ   A A NC/288M   NC/144M   A A A A A A NC/576M   NC/1G   B C V DD   D E F DQ   DQ   DQP   V NC   V DQP   DQ   DQ   C C C SS   SS   SS   SS   SS   SS   B B B DQ   DQ   V V CE   V V DQ   DQ   C 1 B V V DDQ   OE   ADV   GW   DDQ   C B G H J DQ   DQ   DQ   BW   V BW   V DQ   DQ   DQ   C C C C C B B B B DQ   DQ   SS   SS   B V V NC   V NC   V V DDQ   DDQ   DD   DD   DD   K DQ   DQ   DQ   DQ   DQ   V CLK   NC   V DQ   DQ   DQ   DQ   DQ   D D D SS   SS   A A A L M N DQ   DQ   BW   V BW   A D D D A A A D V V V V DDQ   BWE   A1   DDQ   SS   SS   SS   DQ   V V DQ   D SS   A DQ   DQP   A A0   V DQP   A DQ   P R D D SS   SS   A NC   NC   MODE   V NC   A NC   DD   T NC/72M   TMS   A A A NC/36M   NC   ZZ   V TDI   TCK   TDO   V DDQ   U DDQ   CY7C1387FV25 (1M x 18)   2 1 3 A A A 4 5 A A A 6 A A A 7 A B C D E F V A A V DDQ   ADSP   ADSC   DDQ   NC/288M   NC/576M   NC/1G   NC   NC/144M   A V DD   DQ   NC   DQ   V NC   V DQP   A B SS   SS   SS   SS   SS   SS   NC   V V V V NC   DQ   DQ   CE   B A 1 V NC   DQ   V OE   ADV   GW   DDQ   A DDQ   G H J NC   NC   NC   DQ   DQ   BW   V B A B DQ   NC   V NC   B SS   SS   A V V NC   V NC   V V DDQ   DD   DD   DD   DDQ   K NC   DQ   V CLK   NC   V NC   DQ   DQ   A B SS   SS   DQ   NC   DQ   NC   NC   L M N P BW   B A A V V V V V NC   DQ   V DDQ   BWE   A1   DDQ   B SS   SS   SS   SS   DQ   NC   V V NC   B SS   SS   A NC   DQP   A0   NC   DQ   A B R T NC   A A MODE   A V NC   A A A NC   ZZ   DD   NC/72M   NC/36M   TCK   U V TMS   TDI   TDO   NC   V DDQ   DDQ   Document Number: 38-05548 Rev. *E   Page 4 of 30   CY7C1386DV25, CY7C1386FV25   CY7C1387DV25, CY7C1387FV25   Pin Configurations (continued)   165-Ball FBGA Pinout (3 Chip Enable)   CY7C1386DV25 (512K x 36)   1 2 A 3 4 5 6 7 8 9 10   A 11   NC   NC/288M   NC/144M   DQPC   A B C D CE1   BWC   BWD   VSS   VDD   BWB   BWA   VSS   VSS   CE   ADSC   BWE   GW   VSS   VSS   ADV   ADSP   VDDQ   VDDQ   3 A CE2   CLK   VSS   VSS   A NC/576M   DQPB   DQB   OE   VSS   VDD   NC   DQC   VDDQ   VDDQ   NC/1G   DQB   DQC   DQC   DQC   DQC   NC   DQC   DQC   DQC   NC   VDDQ   VDDQ   VDDQ   NC   VDD   VDD   VDD   VDD   VDD   VDD   VDD   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VDD   VDD   VDD   VDD   VDD   VDD   VDD   VDDQ   VDDQ   VDDQ   NC   DQB   DQB   DQB   NC   DQB   DQB   DQB   ZZ   E F G H J DQD   DQD   DQD   DQD   DQD   DQD   VDDQ   VDDQ   VDDQ   VDDQ   VDDQ   VDDQ   DQA   DQA   DQA   DQA   DQA   DQA   K L DQD   DQPD   NC   DQD   NC   VDDQ   VDDQ   A VDD   VSS   A VSS   NC   VSS   A VSS   NC   VDD   VSS   A VDDQ   VDDQ   A DQA   NC   A DQA   DQPA   A M N P NC/72M   TDI   A1   TDO   A0   MODE NC/36M   A A TMS   TCK   A A A A R CY7C1387DV25 (1M x 18)   1 2 A 3 4 5 NC   6 7 8 9 10   A 11   A NC/288M   NC/144M   NC   A B C D BWB   NC   CE   CE1   CE2   BWE   GW   VSS   VSS   ADSC   OE   ADV   ADSP   VDDQ   VDDQ   3 A BWA   VSS   VSS   CLK   VSS   VSS   A NC/576M   DQPA   DQA   NC   VDDQ   VDDQ   VSS   VDD   VSS   NC/1G   NC   NC   DQB   VDD   NC   NC   DQB   DQB   DQB   NC   VDDQ   VDDQ   VDDQ   NC   VDD   VDD   VDD   VDD   VDD   VDD   VDD   VSS   VSS   VSS   VSS   ‘VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VDD   VDD   VDD   VDD   VDD   VDD   VDD   VDDQ   VDDQ   VDDQ   NC   NC   NC   DQA   DQA   DQA   ZZ   E F NC   NC   G H J NC   NC   DQB   DQB   DQB   NC   VDDQ   VDDQ   VDDQ   VDDQ   VDDQ   VDDQ   DQA   DQA   DQA   NC   NC   NC   K L NC   NC   DQB   DQPB   NC   NC   NC   VDDQ   VDDQ   A VDD   VSS   A VSS   NC   VSS   A VSS   NC   VDD   VSS   A VDDQ   VDDQ   A DQA   NC   A NC   NC   A M N P NC/72M   TDI   A1   A0   TDO   MODE NC/36M   A A TMS   TCK   A A A A R Document Number: 38-05548 Rev. *E   Page 5 of 30   CY7C1386DV25, CY7C1386FV25   CY7C1387DV25, CY7C1387FV25   Pin Definitions   Name   IO   Description   A , A , A   Input-   Synchronous   Address inputs used to select one of the address locations. Sampled at the   0 1 rising edge of the CLK if ADSP or ADSC is active LOW, and CE , CE , and CE   3 1 2 are sampled active. A1: A0 are fed to the two-bit counter.   . BW , BW   Input-   Byte write select inputs, active LOW. Qualified with BWE to conduct byte writes   A B BW , BW   Synchronous   to the SRAM. Sampled on the rising edge of CLK.   C D GW   Input-   Global write enable input, active LOW. When asserted LOW on the rising edge   Synchronous   of CLK, a global write is conducted (all bytes are written, regardless of the values   on BW and BWE).   X BWE   CLK   Input-   Synchronous   Byte write enable input, active LOW. Sampled on the rising edge of CLK. This   signal must be asserted LOW to conduct a byte write.   Input-   Clock   Clock input. Used to capture all synchronous inputs to the device. Also used to   increment the burst counter when ADV is asserted LOW, during a burst operation.   CE   CE   CE   Input-   Synchronous   Chip enable 1 input, active LOW. Sampled on the rising edge of CLK. Used in   1 2 3 conjunction with CE and CE   to select or deselect the device. ADSP is ignored   2 3 if CE is HIGH. CE is sampled only when a new external address is loaded.   1 1 Input-   Synchronous   Chip enable 2 input, active HIGH. Sampled on the rising edge of CLK. Used in   conjunction with CE and CE   to select or deselect the device. CE is sampled   1 3 2 only when a new external address is loaded.   Input-   Chip enable 3 input, active LOW. Sampled on the rising edge of CLK. Used in   Synchronous   conjunction with CE and CE to select or deselect the device. Not connected for   1 2 BGA. Where referenced, CE   is assumed active throughout this document for   3 BGA. CE3 is sampled only when a new external address is loaded.   OE   Input-   Output enable, asynchronous input, active LOW. Controls the direction of the   Asynchronous IO pins. When LOW, the IO pins behave as outputs. When deasserted HIGH, DQ   pins are tri-stated, and act as input data pins. OE is masked during the first clock   of a read cycle when emerging from a deselected state.   ADV   Input-   Advance input signal, sampled on the rising edge of CLK, active LOW. When   Synchronous   asserted, it automatically increments the address in a burst cycle.   ADSP   Input-   Synchronous   Address strobe from processor, sampled on the rising edge of CLK, active   LOW. When asserted LOW, addresses presented to the device are captured in the   address registers. A1: A0 are also loaded into the burst counter. When ADSP and   ADSC are both asserted, only ADSP is recognized. ASDP is ignored when CE is   1 deasserted HIGH.   ADSC   ZZ   Input-   Synchronous   Address strobe from controller, sampled on the rising edge of CLK, active   LOW. When asserted LOW, addresses presented to the device are captured in the   address registers. A1: A0 are also loaded into the burst counter. When ADSP and   ADSC are both asserted, only ADSP is recognized.   Input-   ZZ sleep input, active HIGH. When asserted HIGH places the device in a   Asynchronous non-time-critical sleep condition with data integrity preserved. For normal operation,   this pin has to be LOW or left floating. ZZ pin has an internal pull down.   IO-   Bidirectional data IO lines. As inputs, they feed into an on-chip data register that   is triggered by the rising edge of CLK. As outputs, they deliver the data contained   in the memory location specified by the addresses presented during the previous   clock rise of the read cycle. The direction of the pins is controlled by OE. When OE   DQs, DQPs   Synchronous   is asserted LOW, the pins behave as outputs. When HIGH, DQs and DQP are   X placed in a tri-state condition.   V Power Supply Power supply inputs to the core of the device.   DD   Document Number: 38-05548 Rev. *E   Page 6 of 30   CY7C1386DV25, CY7C1386FV25   CY7C1387DV25, CY7C1387FV25   Pin Definitions (continued)   Name   IO   Description   V V V Ground   Ground for the core of the device.   Ground for the IO circuitry.   SS   IO Ground   SSQ   DDQ   IO Power Supply Power supply for the IO circuitry.   MODE   TDO   TDI   Input-   Static   Selects burst order. When tied to GND selects linear burst sequence. When tied   to V or left floating selects interleaved burst sequence. This is a strap pin and   DD   must remain static during device operation. Mode pin has an internal pull up.   JTAGserialoutput Serial data-out to the JTAG circuit. Delivers data on the negative edge of TCK.   Synchronous   If the JTAG feature is not used, this pin must be disconnected. This pin is not   available on TQFP packages.   JTAG serial input Serial data-in to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG   Synchronous   feature is not used, this pin can be disconnected or connected to V . This pin is   DD   not available on TQFP packages.   TMS   JTAG serial input Serial data-in to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG   Synchronous   feature is not used, this pin can be disconnected or connected to V . This pin is   DD   not available on TQFP packages.   TCK   NC   JTAG-   Clock   Clock input to the JTAG circuitry. If the JTAG feature is not used, this pin must   be connected to V . This pin is not available on TQFP packages.   SS   – – No Connects. Not internally connected to the die   NC/(36M, 72M, 144M,   288M, 576M, 1G)   These pins are not connected. They will be used for expansion to the 36M, 72M,   144M, 288M, 576M, and 1G densities.   Single Read Accesses   Functional Overview   This access is initiated when the following conditions are   satisfied at clock rise: (1) ADSP or ADSC is asserted LOW, (2)   chip selects are all asserted active, and (3) the write signals   All synchronous inputs pass through input registers controlled   by the rising edge of the clock. All data outputs pass through   output registers controlled by the rising edge of the clock.   (GW, BWE) are all deasserted HIGH. ADSP is ignored if CE   1 The   CY7C1386DV25/CY7C1387DV25/CY7C1386FV25/   is HIGH. The address presented to the address inputs is   stored into the address advancement logic and the address   register while being presented to the memory core. The   corresponding data is allowed to propagate to the input of the   output registers. At the rising edge of the next clock the data   is allowed to propagate through the output register and onto   CY7C1387FV25 supports secondary cache in systems using   either a linear or interleaved burst sequence. The interleaved   burst order supports Pentium and i486™ processors. The   linear burst sequence is suited for processors that use a linear   burst sequence. The burst order is user selectable, and is   ® determined by sampling the MODE input. Accesses can   initiated with either the processor address strobe (ADSP)   the controller address strobe (ADSC). Address advancement   through the burst sequence is controlled by the ADV input. A   two-bit on-chip wraparound burst counter captures the first   address in a burst sequence and automatically increments the   address for the rest of the burst access.   be   or   the data bus within t if OE is active LOW. The only exception   CO   occurs when the SRAM is emerging from a deselected state   to a selected state, its outputs are always tri-stated during the   first cycle of the access. After the first cycle of the access, the   outputs are controlled by the OE signal. Consecutive single   read cycles are supported.   The   CY7C1386DV25/CY7C1387DV25/CY7C1386FV25/   Byte write operations are qualified with the byte write enable   CY7C1387FV25 is a double-cycle deselect part. Once the   SRAM is deselected at clock rise by the chip select and either   ADSP or ADSC signals, its output will tri-state immediately   after the next clock rise.   (BWE) and byte write select (BW ) inputs. A global write   X enable (GW) overrides all byte write inputs and writes data to   all four bytes. All writes are simplified with on-chip   synchronous self timed write circuitry.   Single Write Accesses Initiated by ADSP   Synchronous chip selects CE , CE , CE   3 and an   1 2 This access is initiated when both of the following conditions   are satisfied at clock rise: (1) ADSP is asserted LOW, and (2)   chip select is asserted active. The address presented is   loaded into the address register and the address   advancement logic while being delivered to the memory core.   asynchronous output enable (OE) provide for easy bank   selection and output tri-state control. ADSP is ignored if CE   is HIGH.   1 Document Number: 38-05548 Rev. *E   Page 7 of 30   CY7C1386DV25, CY7C1386FV25   CY7C1387DV25, CY7C1387FV25   The write signals (GW, BWE, and   ignored during this first cycle.   ) and ADV inputs are   Burst Sequences   The CY7C1386DV25/CY7C1387DV25/CY7C1386FV25/   CY7C1387FV25 provides a two-bit wraparound counter, fed   by A , that implements either an interleaved or linear burst   BW   X ADSP triggered write accesses require two clock cycles to   complete. If GW is asserted LOW on the second clock rise, the   [1:0]   sequence. The interleaved burst sequence is designed   specifically to support Intel Pentium applications. The linear   burst sequence is designed to support processors that follow   a linear burst sequence. The burst sequence is user selectable   through the MODE input.   data presented to the DQ inputs is written into the   corresponding address location in the memory core. If GW is   x HIGH, then the write operation is controlled by BWE and BW   signals.   X The   CY7C1386DV25/CY7C1387DV25/CY7C1386FV25/   Asserting ADV LOW at clock rise will automatically increment   the burst counter to the next address in the burst sequence.   Both read and write burst operations are supported.   CY7C1387FV25 provides byte write capability that is   described in the write cycle description table. Asserting the   byte write enable input (BWE) with the selected byte write   input will selectively write to only the desired bytes. Bytes not   selected during a byte write operation will remain unaltered. A   synchronous self timed write mechanism has been provided   to simplify the write operations.   Sleep Mode   The ZZ input pin is an asynchronous input. Asserting ZZ   places the SRAM in a power conservation sleep mode. Two   clock cycles are required to enter into or exit from this sleep   mode. While in this mode, data integrity is guaranteed.   Accesses pending when entering the sleep mode are not   considered valid nor is the completion of the operation   guaranteed. The device must be deselected prior to entering   the sleep mode. CEs, ADSP, and ADSC must remain inactive   The   CY7C1386DV25/CY7C1387DV25/CY7C1386FV25/   CY7C1387FV25 is a common IO device, the output enable   (OE) must be deasserted HIGH before presenting data to the   DQ inputs. Doing so will tri-state the output drivers. As a safety   precaution, DQ are automatically tri-stated whenever a write   cycle is detected, regardless of the state of OE.   for the duration of t   after the ZZ input returns LOW   . ZZREC   Single Write Accesses Initiated by ADSC   Interleaved Burst Address Table   (MODE = Floating or VDD)   ADSC write accesses are initiated when the following   conditions are satisfied: (1) ADSC is asserted LOW, (2) ADSP   is deasserted HIGH, (3) chip select is asserted active, and (4)   the appropriate combination of the write inputs (GW, BWE,   First   Second   Address   A1: A0   Third   Address   A1: A0   Fourth   Address   A1: A0   Address   A1: A0   and   ) are asserted active to conduct a write to the desired   BW   X byte(s). ADSC triggered write accesses require a single clock   cycle to complete. The address presented is loaded into the   address register and the address advancement logic while   being delivered to the memory core. The ADV input is ignored   during this cycle. If a global write is conducted, the data   00   01   10   11   01   00   11   10   10   11   00   01   11   10   01   00   presented to the DQ is written into the corresponding address   X Linear Burst Address Table (MODE = GND)   location in the memory core. If a byte write is conducted, only   the selected bytes are written. Bytes not selected during a byte   write operation will remain unaltered. A synchronous self   timed write mechanism has been provided to simplify the write   operations.   First   Address   A1: A0   Second   Address   A1: A0   Third   Address   A1: A0   Fourth   Address   A1: A0   00   01   10   11   01   10   11   00   10   11   00   01   11   00   01   10   The   CY7C1386DV25/CY7C1387DV25/CY7C1386FV25/   CY7C1387FV25 is a common IO device, the output enable   (OE) must be deasserted HIGH before presenting data to the   DQ inputs. Doing so will tri-state the output drivers. As a   X safety precaution, DQ are automatically tri-stated whenever   X a write cycle is detected, regardless of the state of OE.   Document Number: 38-05548 Rev. *E   Page 8 of 30   CY7C1386DV25, CY7C1386FV25   CY7C1387DV25, CY7C1387FV25   ZZ Mode Electrical Characteristics   Parameter   Description   Sleep mode standby current   Device operation to ZZ   Test Conditions   ZZ > V – 0.2V   Min.   Max.   Unit   mA   ns   I t t t t 80   DDZZ   DD   ZZ > V – 0.2V   2t   ZZS   DD   CYC   CYC   ZZ recovery time   ZZ < 0.2V   2t   ns   ZZREC   ZZI   CYC   ZZ Active to sleep current   ZZ Inactive to exit sleep current   This parameter is sampled   This parameter is sampled   2t   ns   0 ns   RZZI   Operation   Add. Used CE   CE   CE   3 ZZ ADSP ADSC ADV WRITE OE CLK   DQ   1 2 Deselect Cycle, Power Down   Deselect Cycle, Power Down   Deselect Cycle, Power Down   Deselect Cycle, Power Down   Deselect Cycle, Power Down   Sleep Mode, Power Down   READ Cycle, Begin Burst   None   None   H L X L X X H X H X L L L L L L H L L L L L L L L L L L L L L L L L X L L X X L X X X X X X X X X X X L X X X X X X X X L X X X X X X L L-H Tri-State   L-H Tri-State   L-H Tri-State   L-H Tri-State   L-H Tri-State   None   L X L L None   L H H X L None   L X X H H H H H X X X X X X X X X X X X L None   X L X X X L X Tri-State   Q External   External   External   External   External   Next   L-H   READ Cycle, Begin Burst   L L L H X L L-H Tri-State   WRITE Cycle, Begin Burst   READ Cycle, Begin Burst   L L H H H H H X X H X H H X X H X L-H   L-H   D Q L L L H H H H H H L READ Cycle, Begin Burst   L L L H L L-H Tri-State   L-H   L-H Tri-State   L-H   L-H Tri-State   READ Cycle, Continue Burst   READ Cycle, Continue Burst   READ Cycle, Continue Burst   READ Cycle, Continue Burst   WRITE Cycle, Continue Burst   WRITE Cycle, Continue Burst   READ Cycle, Suspend Burst   READ Cycle, Suspend Burst   READ Cycle, Suspend Burst   READ Cycle, Suspend Burst   WRITE Cycle, Suspend Burst   WRITE Cycle, Suspend Burst   X X H H X H X X H H X H X X X X X X X X X X X X H H H H H H H H H H H H Q Next   L H L Next   L Q Next   L H X X L Next   L L-H   L-H   L-H   D D Q Next   L L Current   Current   Current   Current   Current   Current   H H H H H H H H H H L H L L-H Tri-State   L-H   L-H Tri-State   Q H X X L-H   L-H   D D L Notes   4. X = Don't Care, H = Logic HIGH, L = Logic LOW.   5. WRITE = L when any one or more byte write enable signals and BWE = L or GW = L. WRITE = H when all byte write enable signals, BWE, GW = H.   6. The DQ pins are controlled by the current cycle and the signal. is asynchronous and is not sampled with the clock.   OE   OE   7. CE , CE , and CE are available only in the TQFP package. BGA package has only 2 chip selects CE and CE .   1 2 3 1 2 8. The SRAM always initiates a read cycle when ADSP is asserted, regardless of the state of GW, BWE, or BW . Writes may occur only on subsequent clocks after   X the ADSP or with the assertion of ADSC. As a result, OE must be driven HIGH prior to the start of the write cycle to allow the outputs to tri-state. OE is a don't   care for the remainder of the write cycle.   9. OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle all data bits are tri-state when OE is   inactive or when the device is deselected, and all data bits behave as output when OE is active (LOW).   Document Number: 38-05548 Rev. *E   Page 9 of 30   CY7C1386DV25, CY7C1386FV25   CY7C1387DV25, CY7C1387FV25   Partial Truth Table for Read/Write [5, 10]   Function (CY7C1386DV25/CY7C1386FV25)   GW   BWE   BW   BW   BW   BW   A D C B Read   Read   H H H H H H H H H H H H H H H H H L H L L L L L L L L L L L L L L L L X X H H H H H H H H L X H H H H L X H H L X H L Write Byte A – (DQ and DQP )   A A Write Byte B – (DQ and DQP )   H L B B Write Bytes B, A   Write Byte C – (DQ and DQP )   L H H L H L C C Write Bytes C, A   Write Bytes C, B   Write Bytes C, B, A   L L H L L L Write Byte D – (DQ and DQP )   H H H H L H H L H L D D Write Bytes D, A   Write Bytes D, B   Write Bytes D, B, A   Write Bytes D, C   L L H L L L L H H L H L Write Bytes D, C, A   Write Bytes D, C, B   Write All Bytes   L L L L H L L L L Write All Bytes   X X X X Truth Table for Read/Write [5, 10]   Function (CY7C1387DV25/CY7C1387FV25)   GW   BWE   BW   BW   A B Read   Read   H H H H H L H L L L L X X H H L X H L Write Byte A – (DQ and DQP )   A A Write Byte B – (DQ and DQP )   H L B B Write All Bytes   Write All Bytes   L X X Note   10. Table only lists a partial listing of the byte write combinations. Any combination of BW is valid appropriate write will be done based on which byte write is active.   X Document Number: 38-05548 Rev. *E   Page 10 of 30   CY7C1386DV25, CY7C1386FV25   CY7C1387DV25, CY7C1387FV25   unconnected if the TAP is not used. The ball is pulled up   internally, resulting in a logic HIGH level.   IEEE 1149.1 Serial Boundary Scan (JTAG)   The   CY7C1386DV25/CY7C1387DV25/CY7C1386FV25/   Test Data-In (TDI)   CY7C1387FV25 incorporates a serial boundary scan test   access port (TAP).This part is fully compliant with 1149.1. The   TAP operates using JEDEC-standard 3.3V or 2.5V IO logic   levels.   The TDI ball is used to serially input information into the   registers and can be connected to the input of any of the   registers. The register between TDI and TDO is chosen by the   instruction that is loaded into the TAP instruction register. For   information on loading the instruction register, see TAP   Controller State Diagram. TDI is internally pulled up and can   be unconnected if the TAP is unused in an application. TDI is   connected to the most significant bit (MSB) of any register.   The   CY7C1386DV25/CY7C1387DV25/CY7C1386FV25/   CY7C1387FV25 contains a TAP controller, instruction register,   boundary scan register, bypass register, and ID register.   Disabling the JTAG Feature   It is possible to operate the SRAM without using the JTAG   feature. To disable the TAP controller, TCK must be tied LOW   Test Data-Out (TDO)   (V ) to prevent clocking of the device. TDI and TMS are   SS   The TDO output ball is used to serially clock data out from the   registers. The output is active depending upon the current   state of the TAP state machine. The output changes on the   falling edge of TCK. TDO is connected to the least significant   internally pulled up and may be unconnected. They may   alternately be connected to V   through a pull up resistor.   DD   TDO should be left unconnected. Upon power up, the device   will come up in a reset state which will not interfere with the   operation of the device.   TAP Controller Block Diagram   TAP Controller State Diagram   TEST-LOGIC   1 0 RESET   0 Bypass Register   1 1 1 RUN-TEST/   IDLE   SELECT   DR-SCAN   SELECT   IR-SCAN   0 2 1 0 0 0 0 0 Selection   Circuitry   Instruction Register   31 30 29   Identification Register   S election   1 1 TDI   TDO   CAPTURE-DR   CAPTURE-IR   Circuitr   y . . . 2 1 0 0 SHIFT-DR   0 SHIFT-IR   0 x . . . . . 2 1 1 1 Boundary Scan Register   1 1 EXIT1-DR   EXIT1-IR   0 0 PAUSE-DR   1 0 PAUSE-IR   1 0 TCK   TMS   TAP CONTROLLER   0 0 EXIT2-DR   1 EXIT2-IR   1 UPDATE-DR   UPDATE-IR   Performing a TAP Reset   1 0 1 0 A RESET is performed by forcing TMS HIGH (V ) for five   DD   rising edges of TCK. This RESET does not affect the operation   of the SRAM and may be performed while the SRAM is   operating.   The 0 or 1 next to each state represents the value of TMS at   the rising edge of TCK.   At power up, the TAP is reset internally to ensure that TDO   comes up in a High-Z state.   Test Access Port (TAP)   TAP Registers   Test Clock (TCK)   Registers are connected between the TDI and TDO balls and   allow data to be scanned into and out of the SRAM test   circuitry. Only one register can be selected at a time through   the instruction register. Data is serially loaded into the TDI ball   on the rising edge of TCK. Data is output on the TDO ball on   the falling edge of TCK.   The test clock is used only with the TAP controller. All inputs   are captured on the rising edge of TCK. All outputs are driven   from the falling edge of TCK.   Test MODE SELECT (TMS)   The TMS input is used to give commands to the TAP controller   and is sampled on the rising edge of TCK. This pin may be left   Document Number: 38-05548 Rev. *E   Page 11 of 30   CY7C1386DV25, CY7C1386FV25   CY7C1387DV25, CY7C1387FV25   Instruction Register   To execute the instruction once it is shifted in, the TAP   controller needs to be moved into the Update-IR state.   Three-bit instructions can be serially loaded into the instruction   register. This register is loaded when it is placed between the   TDI and TDO balls as shown in the TAP Controller Block   Diagram. Upon power up, the instruction register is loaded   with the IDCODE instruction. It is also loaded with the IDCODE   instruction if the controller is placed in a reset state as   described in the previous section.   EXTEST   The EXTEST instruction enables the preloaded data to be   driven out through the system output pins. This instruction also   selects the boundary scan register to be connected for serial   access between the TDI and TDO in the Shift-DR controller   state.   When the TAP controller is in the Capture-IR state, the two   least significant bits are loaded with a binary ‘01’ pattern to   allow for fault isolation of the board-level serial test data path.   IDCODE   The IDCODE instruction causes a vendor specific 32-bit code   to be loaded into the instruction register. It also places the   instruction register between the TDI and TDO balls and allows   the IDCODE to be shifted out of the device when the TAP   controller enters the Shift-DR state.   Bypass Register   To save time when serially shifting data through registers, it is   sometimes advantageous to skip certain chips. The bypass   register is a single-bit register that can be placed between the   TDI and TDO balls. This allows data to be shifted through the   SRAM with minimal delay. The bypass register is set LOW   The IDCODE instruction is loaded into the instruction register   upon power up or whenever the TAP controller is given a test   logic reset state.   (V ) when the BYPASS instruction is executed.   SS   SAMPLE Z   Boundary Scan Register   The SAMPLE Z instruction causes the boundary scan register   to be connected between the TDI and TDO balls when the TAP   controller is in a Shift-DR state. The SAMPLE Z command   places all SRAM outputs into a High-Z state.   The boundary scan register is connected to all the input and   bidirectional balls on the SRAM.   The boundary scan register is loaded with the contents of the   RAM input and output ring when the TAP controller is in the   Capture-DR state and is then placed between the TDI and   TDO balls when the controller is moved to the Shift-DR state.   SAMPLE/PRELOAD   SAMPLE/PRELOAD is a 1149.1 mandatory instruction. When   the SAMPLE/PRELOAD instructions are loaded into the   instruction register and the TAP controller is in the Capture-DR   state, a snapshot of data on the input and output pins is   captured in the boundary scan register.   The EXTEST, SAMPLE/PRELOAD, and SAMPLE   Z instructions can be used to capture the contents of the input   and output ring.   The boundary scan order tables show the order in which the   bits are connected. Each bit corresponds to one of the bumps   on the SRAM package. The MSB of the register is connected   to TDI, and the LSB is connected to TDO.   The user must be aware that the TAP controller clock can only   operate at a frequency up to 20 MHz, while the SRAM clock   operates more than an order of magnitude faster. As there is   a large difference in the clock frequencies, it is possible that   during the Capture-DR state, an input or output will undergo a   transition. The TAP may then try to capture a signal while in   transition (metastable state). This will not harm the device, but   there is no guarantee as to the value that will be captured.   Repeatable results may not be possible.   Identification (ID) Register   The ID register is loaded with a vendor specific, 32-bit code   during the Capture-DR state when the IDCODE command is   loaded in the instruction register. The IDCODE is hardwired   into the SRAM and can be shifted out when the TAP controller   is in the Shift-DR state. The ID register has a vendor code and   other information described in the Identification Register   To guarantee that the boundary scan register will capture the   correct value of a signal, the SRAM signal must be stabilized   long enough to meet the TAP controller's capture setup plus   TAP Instruction Set   hold times (t and t ). The SRAM clock input might not be   CS CH   captured correctly if there is no way in a design to stop (or   slow) the clock during a SAMPLE/PRELOAD instruction. If this   is an issue, it is still possible to capture all other signals and   simply ignore the value of the CK and CK captured in the   boundary scan register.   Overview   Eight different instructions are possible with the three bit   instruction register. All combinations are listed in Identification   Codes on page 15. Three of these instructions are listed as   RESERVED and should not be used. The other five   instructions are described in detail below.   Once the data is captured, it is possible to shift out the data by   putting the TAP into the Shift-DR state. This places the   boundary scan register between the TDI and TDO pins.   Instructions are loaded into the TAP controller during the   Shift-IR state when the instruction register is placed between   TDI and TDO. During this state, instructions are shifted   through the instruction register through the TDI and TDO balls.   PRELOAD allows an initial data pattern to be placed at the   latched parallel outputs of the boundary scan register cells pri-   or to the selection of another boundary scan test operation.   Document Number: 38-05548 Rev. *E   Page 12 of 30   CY7C1386DV25, CY7C1386FV25   CY7C1387DV25, CY7C1387FV25   The shifting of data for the SAMPLE and PRELOAD phases   can occur concurrently when required; that is, while data   captured is shifted out, the preloaded data can be shifted in.   the TAP controller, it will directly control the state of the output   (Q-bus) pins, when the EXTEST is entered as the current   instruction. When HIGH, it will enable the output buffers to   drive the output bus. When LOW, this bit will place the output   bus into a High-Z condition.   BYPASS   When the BYPASS instruction is loaded in the instruction   register and the TAP is placed in a Shift-DR state, the bypass   register is placed between the TDI and TDO balls. The   advantage of the BYPASS instruction is that it shortens the   boundary scan path when multiple devices are connected   together on a board.   This bit can be set by entering the SAMPLE/PRELOAD or   EXTEST command, and then shifting the desired bit into that   cell, during the Shift-DR state. During Update-DR, the value   loaded into that shift-register cell will latch into the preload   register. When the EXTEST instruction is entered, this bit will   directly control the output Q-bus pins. Note that this bit is   preset HIGH to enable the output when the device is powered   up, and also when the TAP controller is in the Test-Logic-Reset   state.   EXTEST Output Bus Tri-State   IEEE Standard 1149.1 mandates that the TAP controller be   able to put the output bus into a tri-state mode.   Reserved   The boundary scan register has a special bit located at bit #85   (for 119-BGA package) or bit #89 (for 165-fBGA package).   When this scan cell, called the “extest output bus tri-state,” is   latched into the preload register during the Update-DR state in   These instructions are not implemented but are reserved for   future use. Do not use these instructions.   TAP Timing   1 2 3 4 5 6 Test Clock   (TCK)   t t t TH   CYC   TL   t t t t TMSS   TDIS   TMSH   Test Mode Select   (TMS)   TDIH   Test Data-In   (TDI)   t TDOV   t TDOX   Test Data-Out   (TDO)   DON’T CARE   UNDEFINED   Document Number: 38-05548 Rev. *E   Page 13 of 30   CY7C1386DV25, CY7C1386FV25   CY7C1387DV25, CY7C1387FV25   TAP AC Switching Characteristics   Over the Operating Range   Parameter   Clock   Description   Min.   Max.   Unit   t t t t TCK Clock Cycle Time   TCK Clock Frequency   TCK Clock HIGH time   TCK Clock LOW time   50   ns   MHz   ns   TCYC   TF   20   20   20   TH   ns   TL   Output Times   t t TCK Clock LOW to TDO Valid   10   ns   ns   TDOV   TDOX   TCK Clock LOW to TDO Invalid   0 Setup Times   t t t TMS Setup to TCK Clock Rise   TDI Setup to TCK Clock Rise   Capture Setup to TCK Rise   5 5 5 ns   ns   ns   TMSS   TDIS   CS   Hold Times   t t t TMS Hold after TCK Clock Rise   TDI Hold after Clock Rise   5 5 5 ns   ns   ns   TMSH   TDIH   CH   Capture Hold after Clock Rise   TAP AC Test Conditions   TAP AC Output Load Equivalent   Input pulse levels.................................................V to 2.5V   1.25V   SS   Input rise and fall time..................................................... 1 ns   Input timing reference levels.........................................1.25V   Output reference levels.................................................1.25V   Test load termination supply voltage.............................1.25V   50Ω   TDO   ZO= 50 Ω   20pF   TAP DC Electrical Characteristics And Operating Conditions   (0°C < TA < +70°C; V = 2.5V ±0.165V unless otherwise noted)   DD   Parameter   Description   Output HIGH Voltage   Output HIGH Voltage   Output LOW Voltage   Output LOW Voltage   Input HIGH Voltage   Input LOW Voltage   Input Load Current   Test Conditions   = –1.0 mA   Min.   1.7   Max.   Unit   V V V V V V I I I I V V OH1   OH   OH   OL   OL   = –100 µA   = 1.0 mA   2.1   OH2   OL1   OL2   IH   0.4   0.2   V = 100 µA   V 1.7   –0.3   –5   V + 0.3   V DD   0.7   5 V IL   I GND < V < V   DDQ   µA   X IN   Note   11. t and t refer to the setup and hold time requirements of latching data from the boundary scan register.   CS   CH   12. Test conditions are specified using the load in TAP AC test conditions. t /t = 1ns.   R F 13. All voltages referenced to V (GND).   SS   Document Number: 38-05548 Rev. *E   Page 14 of 30   CY7C1386DV25, CY7C1386FV25   CY7C1387DV25, CY7C1387FV25   Identification Register Definitions   CY7C1386DV25/   CY7C1386FV25   CY7C1387DV25/   CY7C1387FV25   Instruction Field   Description   Revision Number (31:29)   Device Depth (28:24)   000   000   Describes the version number.   Reserved for internal use   01011   01011   Device Width (23:18) 119-BGA   101110   101110   Defines the memory type and   architecture.   Device Width (23:18) 165-FBGA   000110   000110   Defines the memory type and   architecture.   Cypress Device ID (17:12)   100101   010101   Defines the width and density   Cypress JEDEC ID Code (11:1)   00000110100   00000110100   Allows unique identification of SRAM   vendor.   ID Register Presence Indicator (0)   1 1 Indicates the presence of an ID register.   Scan Register Sizes   Register Name   Bit Size (x18)   Bit Size (x36)   Instruction   Bypass   ID   3 3 1 1 32   85   89   32   85   89   Boundary Scan Order (119-ball BGA package)   Boundary Scan Order (165-ball fBGA package)   Identification Codes   Instruction   EXTEST   Code   Description   000   Captures IO ring contents. Places the boundary scan register between TDI and TDO.   Forces all SRAM outputs to High-Z state.   IDCODE   001   010   Loads the ID register with the vendor ID code and places the register between TDI and   TDO. This operation does not affect SRAM operations.   SAMPLE Z   Captures IO ring contents. Places the boundary scan register between TDI and TDO.   Forces all SRAM output drivers to a High-Z state.   RESERVED   011   100   Do Not Use. This instruction is reserved for future use.   SAMPLE/PRELOAD   Captures IO ring contents. Places the boundary scan register between TDI and TDO.   Does not affect SRAM operation.   RESERVED   RESERVED   BYPASS   101   110   111   Do Not Use. This instruction is reserved for future use.   Do Not Use. This instruction is reserved for future use.   Places the bypass register between TDI and TDO. This operation does not affect SRAM   operations.   Document Number: 38-05548 Rev. *E   Page 15 of 30   CY7C1386DV25, CY7C1386FV25   CY7C1387DV25, CY7C1387FV25   Bit #   1 Ball ID   Bit #   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   Ball ID   F6   Bit #   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   Ball ID   G4   A4   G3   C3   B2   B3   A3   C2   A2   B1   C1   D2   E1   F2   Bit #   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   Ball ID   L1   H4   T4   T5   T6   R5   L5   2 E7   D7   H7   G6   E6   D6   C7   B7   C6   A6   C5   B5   G5   B6   D4   B4   F4   M2   N1   3 4 P1   5 K1   6 L2   7 R6   U6   R7   T7   P6   N7   M6   L7   N2   P2   8 9 R3   10   11   12   13   14   15   16   17   18   19   20   21   22   T1   R1   T2   L3   R2   K6   P7   N6   L6   G1   H2   D1   E2   G2   H1   J3   T3   L4   N4   P4   K7   J5   M4   A5   K4   E4   Internal   H6   G7   2K   Notes   14. Balls that are NC (No Connect) are preset LOW.   15. Bit #85 is preset HIGH.   Document Number: 38-05548 Rev. *E   Page 16 of 30   CY7C1386DV25, CY7C1386FV25   CY7C1387DV25, CY7C1387FV25   165-Ball BGA Boundary Scan Order [14, 16]   Bit #   1 Ball ID   N6   Bit #   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   Ball ID   D10   C11   A11   B11   A10   B10   A9   Bit #   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   Ball ID   G1   D2   E2   2 N7   3 N10   P11   P8   4 F2   5 G2   H1   H3   J1   6 R8   7 R9   8 P9   B9   9 P10   R10   R11   H11   N11   M11   L11   K11   J11   M10   L10   K10   J10   H9   C10   A8   K1   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   L1   B8   M1   J2   A7   B7   K2   B6   L2   A6   M2   N1   N2   P1   B5   A5   A4   B4   R1   R2   P3   B3   A3   A2   R3   P2   H10   G11   F11   E11   D11   G10   F10   E10   B2   C2   R4   P4   B1   A1   N5   P6   C1   D1   R6   Internal   E1   F1   Note   16. Bit #89 is preset HIGH.   Document Number: 38-05548 Rev. *E   Page 17 of 30   CY7C1386DV25, CY7C1386FV25   CY7C1387DV25, CY7C1387FV25   DC Input Voltage ................................... –0.5V to V + 0.5V   Maximum Ratings   DD   Current into Outputs (LOW) ........................................ 20 mA   Exceeding the maximum ratings may impair the useful life of   the device. For user guidelines, not tested.   Static Discharge Voltage........................................... >2001V   (per MIL-STD-883, Method 3015)   Storage Temperature .................................–65°C to +150°C   Latch-up Current .................................................... >200 mA   Ambient Temperature with   Power Applied.............................................–55°C to +125°C   Operating Range   Supply Voltage on V Relative to GND ....... –0.5V to +3.6V   DD   Ambient   Range   V V DDQ   DD   Temperature   Supply Voltage on V   Relative to GND ...... –0.5V to +V   DD   DDQ   Commercial 0°C to +70°C   2.5V ±5%   2.5V –5%   DC Voltage Applied to Outputs   in Tri-State........................................... –0.5V to V   to V   + 0.5V   DD   Industrial   –40°C to +85°C   DDQ   Electrical Characteristics   Over the Operating Range   Parameter   Description   Power Supply Voltage   IO Supply Voltage   Test Conditions   Min.   2.375   2.375   2.0   Max.   2.625   Unit   V V DD   DDQ   OH   OL   IH   V V V V V I for 2.5V IO   for 2.5V IO, I = –1.0 mA   V V DD   Output HIGH Voltage   Output LOW Voltage   V OH   for 2.5V IO, I = 1.0 mA   0.4   + 0.3V   V OL   Input HIGH Voltage   Input LOW Voltage   for 2.5V IO   for 2.5V IO   1.7   –0.3   –5   V V DD   0.7   5 V IL   Input Leakage Current GND ≤ V ≤ V   except ZZ and MODE   µA   X I DDQ   Input Current of MODE Input = V   –30   –5   µA   µA   SS   Input = V   5 DD   Input Current of ZZ   Input = V   Input = V   µA   SS   DD   30   5 µA   I I Output Leakage Current GND ≤ V ≤ V   Output Disabled   –5   µA   OZ   I DDQ,   V Operating Supply   V f = f   = Max., I   = 0 mA,   4.0-ns cycle, 250 MHz   5-ns cycle, 200 MHz   6-ns cycle, 167 MHz   350   300   275   160   150   140   70   mA   mA   mA   mA   mA   mA   mA   DD   DD   DD   OUT   CYC   Current   = 1/t   MAX   I Automatic CE   Power Down   Current—TTL Inputs   V = Max, Device Deselected, 4.0-ns cycle, 250 MHz   DD   SB1   V ≥ V or V ≤ V   IN   IH   IN   IL   5-ns cycle, 200 MHz   6-ns cycle, 167 MHz   f = f   = 1/t   MAX CYC   I I Automatic CE   Power Down   Current—CMOS Inputs f = 0   V = Max, Device Deselected, All speeds   DD   SB2   SB3   V ≤ 0.3V or V > V – 0.3V,   IN   IN   DDQ   Automatic CE   Power Down   Current—CMOS Inputs f = f   V = Max, Device Deselected, 4.0-ns cycle, 250 MHz   135   130   125   80   mA   mA   mA   mA   DD   or V ≤ 0.3V or V > V   – 0.3V   IN   IN   DDQ   5-ns cycle, 200 MHz   6-ns cycle, 167 MHz   = 1/t   MAX   CYC   I Automatic CE   V = Max, Device Deselected, All Speeds   DD   SB4   Power Down   Current—TTL Inputs   V ≥ V or V ≤ V , f = 0   IN   IH IN IL   Notes   17. Overshoot: V (AC) < V +1.5V (pulse width less than t   /2), undershoot: V (AC) > –2V (pulse width less than t /2).   CYC   IH   DD   CYC   IL   18. T   : assumes a linear ramp from 0V to V (min.) within 200 ms. During this time V < V and V   < V   DDQ DD.   power up   DD   IH   DD   Document Number: 38-05548 Rev. *E   Page 18 of 30   CY7C1386DV25, CY7C1386FV25   CY7C1387DV25, CY7C1387FV25   Capacitance [19]   100 TQFP   Package   119 BGA   Package   165 FBGA   Package   Parameter   Description   Test Conditions   Unit   C C C Input Capacitance   T = 25°C, f = 1 MHz,   DD DDQ   5 5 5 8 8 8 9 9 9 pF   pF   pF   IN   A V /V   = 2.5V   Clock Input Capacitance   Input/Output Capacitance   CLK   IO   Thermal Resistance [19]   100 TQFP   Package   119 BGA   Package   165 FBGA   Package   Parameter   Description   Test Conditions   Unit   Θ Thermal Resistance   (Junction to Ambient)   Test conditions follow standard   test methods and procedures   for measuring thermal   28.66   23.8   20.7   °C/W   JA   Θ Thermal Resistance   (Junction to Case)   4.08   6.2   4.0   °C/W   JC   impedance, per EIA/JESD51.   AC Test Loads and Waveforms   2.5V IO Test Load   R = 1667Ω   2.5V   OUTPUT   ALL INPUT PULSES   90%   VDDQ   GND   OUTPUT   90%   10%   Z = 50Ω   0 10%   R = 50Ω   L 5 pF   R = 1538Ω   ≤ 1 ns   ≤ 1 ns   V = 1.25V   T INCLUDING   JIG AND   SCOPE   (c)   (a)   (b)   Note   19. Tested initially and after any design or process change that may affect these parameters.   Document Number: 38-05548 Rev. *E   Page 19 of 30   CY7C1386DV25, CY7C1386FV25   CY7C1387DV25, CY7C1387FV25   Switching Characteristics   Over the Operating Range   250 MHz   200 MHz   167 MHz   Parameter   Description   (Typical) to the first Access   DD   Unit   Min.   Max.   Min.   Max.   Min.   Max.   t V 1 1 1 ms   POWER   Clock   t t t Clock Cycle Time   Clock HIGH   4.0   1.7   1.7   5.0   2.0   2.0   6.0   2.2   2.2   ns   ns   ns   CYC   CH   Clock LOW   CL   Output Times   t t t t t t t Data Output Valid After CLK Rise   Data Output Hold After CLK Rise   2.6   3.0   3.4   ns   ns   ns   ns   ns   ns   ns   CO   1.0   1.0   1.3   1.3   1.3   1.3   DOH   CLZ   Clock to Low-Z   Clock to High-Z   2.6   2.6   3.0   3.0   3.4   3.4   CHZ   OEV   OELZ   OEHZ   OE LOW to Output Valid   OE LOW to Output Low-Z   OE HIGH to Output High-Z   0 0 0 2.6   3.0   3.4   Setup Times   t t t t t t Address Setup Before CLK Rise   ADSC, ADSP Setup Before CLK Rise   ADV Setup Before CLK Rise   1.2   1.2   1.2   1.2   1.2   1.2   1.4   1.4   1.4   1.4   1.4   1.4   1.5   1.5   1.5   1.5   1.5   1.5   ns   ns   ns   ns   ns   ns   AS   ADS   ADVS   WES   DS   GW, BWE, BW Setup Before CLK Rise   X Data Input Setup Before CLK Rise   Chip Enable SetUp Before CLK Rise   CES   Hold Times   t t t t t t Address Hold After CLK Rise   ADSP, ADSC Hold After CLK Rise   ADV Hold After CLK Rise   0.3   0.3   0.3   0.3   0.3   0.3   0.4   0.4   0.4   0.4   0.4   0.4   0.5   0.5   0.5   0.5   0.5   0.5   ns   ns   ns   ns   ns   ns   AH   ADH   ADVH   WEH   DH   GW, BWE, BW Hold After CLK Rise   X Data Input Hold After CLK Rise   Chip Enable Hold After CLK Rise   CEH   Notes   20. Timing reference level is 1.25V when V   = 2.5V.   DDQ   21. Test conditions shown in (a) of AC Test Loads unless otherwise noted.   22. This part has a voltage regulator internally; t   can be initiated.   is the time that the power needs to be supplied above V (minimum) initially before a read or write operation   DD   POWER   23. t   , t   ,t   , and t   are specified with AC test conditions shown in part (b) of AC Test Loads and Waveforms on page 19. Transition is measured ± 200   CHZ CLZ OELZ   OEHZ   mV from steady-state voltage.   24. At any given voltage and temperature, t   is less than t   and t   is less than t   to eliminate bus contention between SRAMs when sharing the same   CLZ   OEHZ   OELZ   CHZ   data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed   to achieve High-Z prior to Low-Z under the same system conditions.   25. This parameter is sampled and not 100% tested.   Document Number: 38-05548 Rev. *E   Page 20 of 30   CY7C1386DV25, CY7C1386FV25   CY7C1387DV25, CY7C1387FV25   Switching Waveforms   Read Cycle Timing   t CYC   CLK   t t CL   CH   t t ADH   ADS   ADSP   ADSC   t t ADH   ADS   t t AH   AS   A1   A2   A3   ADDRESS   Burst continued with   new base address   t t WEH   WES   GW, BWE,BW   X Deselect   cycle   t t CEH   CES   CE   t t ADVH   ADVS   ADV   OE   ADV suspends burst   t t OEV   CO   t t CHZ   t t t OELZ   OEHZ   DOH   CLZ   t Q(A2)   Q(A2 + 1)   Q(A2 + 2)   Q(A2 + 3)   Q(A2)   Q(A2 + 1)   Q(A3)   Q(A1)   Data Out (DQ)   High-Z   CO   Burst wraps around   to its initial state   Single READ   BURST READ   DON’T CARE   UNDEFINED   Note   26. On this diagram, when CE is LOW, CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH, CE is HIGH or CE is LOW or CE is HIGH.   1 2 3 1 2 3 Document Number: 38-05548 Rev. *E   Page 21 of 30   CY7C1386DV25, CY7C1386FV25   CY7C1387DV25, CY7C1387FV25   Switching Waveforms (continued)   Write Cycle Timing   t CYC   CLK   t t CL   CH   t t ADH   ADS   ADSP   ADSC   ADSC extends burst   t t ADH   ADS   t t ADH   ADS   t t AH   AS   A1   A2   A3   ADDRESS   BWE,   Byte write signals are ignored for first cycle when   ADSP initiates burst   t t WEH   WES   BW   X t t WEH   WES   GW   t t CEH   CES   CE   t t ADVH   ADVS   ADV   OE   ADV suspends burst   t DH   t DS   D(A2)   D(A2 + 1)   D(A2 + 3)   D(A3)   D(A3 + 1)   D(A1)   High-Z   Data in (D)   t OEHZ   Data Out (Q)   BURST READ   BURST WRITE   Single WRITE   Extended BURST WRITE   DON’T CARE   UNDEFINED   Note   27.   Full width write can be initiated by either GW LOW, or by GW HIGH, BWE LOW and BW LOW.   X Document Number: 38-05548 Rev. *E   Page 22 of 30   CY7C1386DV25, CY7C1386FV25   CY7C1387DV25, CY7C1387FV25   Switching Waveforms (continued)   Read/Write Cycle Timing   t CYC   CLK   t t CL   CH   t t ADH   ADS   ADSP   ADSC   t t AH   AS   A1   A2   A3   A4   A5   A6   ADDRESS   t t WEH   WES   BWE, BW   X t t CEH   CES   CE   ADV   OE   t t DH   t CO   DS   t OELZ   Data In (D)   High-Z   D(A3)   D(A5)   D(A6)   t t OEHZ   CLZ   Data Out (Q)   Q(A1)   Back-to-Back READs   Q(A2)   Q(A4)   Q(A4+3)   High-Z   BURST READ   Back-to-Back   WRITEs   Single WRITE   DON’T CARE   UNDEFINED   Notes   28. The data bus (Q) remains in high-Z following a write cycle, unless a new read access is initiated by ADSP or ADSC.   29. GW is HIGH.   Document Number: 38-05548 Rev. *E   Page 23 of 30   CY7C1386DV25, CY7C1386FV25   CY7C1387DV25, CY7C1387FV25   Switching Waveforms (continued)   ZZ Mode Timing   CLK   t t ZZ   ZZREC   ZZ   t ZZI   I SUPPLY   I DDZZ   t RZZI   ALL INPUTS   (except ZZ)   DESELECT or READ Only   Outputs (Q)   High-Z   DON’T CARE   Notes   30. Device must be deselected when entering ZZ sleep mode. See cycle descriptions table for all possible signal conditions to deselect the device.   31. DQs are in high-Z when exiting ZZ sleep mode.   Document Number: 38-05548 Rev. *E   Page 24 of 30   CY7C1386DV25, CY7C1386FV25   CY7C1387DV25, CY7C1387FV25   Ordering Information   Not all of the speed, package, and temperature ranges are available. Please contact your local sales representative or   Speed   (MHz)   Package   Diagram   Operating   Range   Part and Package Type   Ordering Code   167   CY7C1386DV25-167AXC   CY7C1387DV25-167AXC   CY7C1386FV25-167BGC   CY7C1387FV25-167BGC   51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free   Commercial   51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm)   CY7C1386FV25-167BGXC 51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Pb-Free   CY7C1387FV25-167BGXC   CY7C1386DV25-167BZC   CY7C1387DV25-167BZC   51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)   CY7C1386DV25-167BZXC 51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm) Pb-Free   CY7C1387DV25-167BZXC   CY7C1386DV25-167AXI   CY7C1387DV25-167AXI   CY7C1386FV25-167BGI   CY7C1387FV25-167BGI   CY7C1386FV25-167BGXI   CY7C1387FV25-167BGXI   CY7C1386DV25-167BZI   CY7C1387DV25-167BZI   CY7C1386DV25-167BZXI   CY7C1387DV25-167BZXI   CY7C1386DV25-200AXC   CY7C1387DV25-200AXC   CY7C1386FV25-200BGC   CY7C1387FV25-200BGC   51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free   Industrial   51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm)   51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Pb-Free   51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)   51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm) Pb-Free   51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free   51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm)   200   Commercial   CY7C1386FV25-200BGXC 51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Pb-Free   CY7C1387FV25-200BGXC   CY7C1386DV25-200BZC   CY7C1387DV25-200BZC   51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)   CY7C1386DV25-200BZXC 51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm) Pb-Free   CY7C1387DV25-200BZXC   CY7C1386DV25-200AXI   CY7C1387DV25-200AXI   CY7C1386FV25-200BGI   CY7C1387FV25-200BGI   CY7C1386FV25-200BGXI   CY7C1387FV25-200BGXI   CY7C1386DV25-200BZI   CY7C1387DV25-200BZI   CY7C1386DV25-200BZXI   CY7C1387DV25-200BZXI   51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free   Industrial   51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm)   51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Pb-Free   51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)   51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm) Pb-Free   Document Number: 38-05548 Rev. *E   Page 25 of 30   CY7C1386DV25, CY7C1386FV25   CY7C1387DV25, CY7C1387FV25   Ordering Information (continued)   Not all of the speed, package, and temperature ranges are available. Please contact your local sales representative or   250   CY7C1386DV25-250AXC   CY7C1387DV25-250AXC   CY7C1386FV25-250BGC   CY7C1387FV25-250BGC   51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free   Commercial   51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm)   CY7C1386FV25-250BGXC 51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Pb-Free   CY7C1387FV25-250BGXC   CY7C1386DV25-250BZC   CY7C1387DV25-250BZC   51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)   CY7C1386DV25-250BZXC 51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm) Pb-Free   CY7C1387DV25-250BZXC   CY7C1386DV25-250AXI   CY7C1387DV25-250AXI   CY7C1386FV25-250BGI   CY7C1387FV25-250BGI   CY7C1386FV25-250BGXI   CY7C1387FV25-250BGXI   CY7C1386DV25-250BZI   CY7C1387DV25-250BZI   CY7C1386DV25-250BZXI   CY7C1387DV25-250BZXI   51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free   Industrial   51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm)   51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Pb-Free   51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)   51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm) Pb-Free   Document Number: 38-05548 Rev. *E   Page 26 of 30   CY7C1386DV25, CY7C1386FV25   CY7C1387DV25, CY7C1387FV25   Package Diagrams   Figure 1. 100-Pin Plastic Quad Flat pack (14 x 20 x 1.4 mm) (51-85050)   16.00 0.20   14.00 0.10   1.40 0.05   100   81   80   1 0.30 0.08   0.65   TYP.   12° 1°   (8X)   SEE DETAIL   A 30   51   31   50   0.20 MAX.   1.60 MAX.   R 0.08 MIN.   0.20 MAX.   0° MIN.   SEATING PLANE   STAND-OFF   0.05 MIN.   0.15 MAX.   NOTE:   1. JEDEC STD REF MS-026   0.25   GAUGE PLANE   2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH   MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE   R 0.08 MIN.   0.20 MAX.   BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH   3. DIMENSIONS IN MILLIMETERS   0°-7°   0.60 0.15   0.20 MIN.   51-85050-*B   1.00 REF.   DETAIL   A Document Number: 38-05548 Rev. *E   Page 27 of 30   CY7C1386DV25, CY7C1386FV25   CY7C1387DV25, CY7C1387FV25   Package Diagrams (continued)   Figure 2. 119-Ball BGA (14 x 22 x 2.4 mm) (51-85115)   51-85115-*B   Document Number: 38-05548 Rev. *E   Page 28 of 30   CY7C1386DV25, CY7C1386FV25   CY7C1387DV25, CY7C1387FV25   Package Diagrams (continued)   Figure 3. 165-Ball FBGA (13 x 15 x 1.4 mm) (51-85180)   BOTTOM VIEW   PIN 1 CORNER   TOP VIEW   Ø0.05 M C   PIN 1 CORNER   Ø0.25 M C A B   -0.06   Ø0.50 (165X)   +0.14   1 2 3 4 5 6 7 8 9 10   11   11 10   9 8 7 6 5 4 3 2 1 A A B B C D C D E E F F G G H J H J K K L L M M N P R N P R A A 1.00   5.00   10.00   13.00 0.10   B B 13.00 0.10   0.15(4X)   NOTES :   SOLDER PAD TYPE : NON-SOLDER MASK DEFINED (NSMD)   PACKAGE WEIGHT : 0.475g   JEDECREFERENCE: MO-216 / DESIGN 4.6C   PACKAGE CODE : BB0AC   SEATING PLANE   C 51-85180-*A   i486 is a trademark, and Intel and Pentium are registered trademarks of Intel Corporation. PowerPC is a trademark of IBM   Corporation. All product and company names mentioned in this document are the trademarks of their respective holders.   Document Number: 38-05548 Rev. *E   Page 29 of 30   © Cypress Semiconductor Corporation, 2006-2007. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for   the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended   to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize   its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress   products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.   CY7C1386DV25, CY7C1386FV25   CY7C1387DV25, CY7C1387FV25   Document History Page   DocumentTitle:CY7C1386DV25/CY7C1387DV25/CY7C1386FV25/CY7C1387FV2518-Mbit(512Kx36/1Mx18)Pipelined   DCD Sync SRAM   Document Number: 38-05548   Orig. of   Change   REV.   ECN NO. Issue Date   Description of Change   **   254550   288531   See ECN   See ECN   RKF   New data sheet   *A   SYT   Edited description under “IEEE 1149.1 Serial Boundary Scan (JTAG)” for   non-compliance with 1149.1   Removed 225 Mhz Speed Bin   Added Pb-free information for 100-Pin TQFP, 119 BGA and 165 FBGA   Packages   Added comment of ‘Pb-free BG packages availability’ below the Ordering   Information   *B   326078   See ECN   PCI   Address expansion pins/balls in the pinouts for all packages are modified as   per JEDEC standard   Added description on EXTEST Output Bus Tri-State   Changed description on the Tap Instruction Set Overview and Extest   Changed Device Width (23:18) for 119-BGA from 000110 to 101110   Added separate row for 165 -FBGA Device Width (23:18)   Changed Θ and Θ for TQFP Package from 31 and 6 °C/W to 28.66 and   JA   JC   4.08 °C/W respectively   Changed Θ and Θ for BGA Packagefrom 45 and 7 °C/W to 23.8 and 6.2   JA   JC   °C/W respectively   Changed Θ and Θ for FBGA Package from 46 and 3 °C/W to 20.7 and   JA   JC   4.0 °C/W respectively   Modified V test conditions   V OL, OH   Removed shading on DC Table for 200 MHz speed bin   Removed comment of ‘Pb-free BG packages availability’ below the Ordering   Information   *C   418125   See ECN   NXR   Changed address of Cypress Semiconductor Corporation on Page# 1 from   “3901 North First Street” to “198 Champion Court”   Changed the description of I from Input Load Current to Input Leakage   X Current on page# 18   Changed the I current values of MODE on page # 18 from –5 µA and 30 µA   X to –30 µA and 5 µA   Changed the I current values of ZZ on page # 18 from –30 µA and 5 µA   X to °5 µA and 30 µA   Changed V < V to V < V on page # 18   IH   DD   IH   DD   Updated Ordering Information Table   *D   *E   475009   793579   See ECN   See ECN   VKN   VKN   Converted from Preliminary to Final.   Added the Maximum Rating for Supply Voltage on V   Relative to GND   from 5 ns to 10 ns in TAP   DDQ   Changed t , t from 25 ns to 20 ns and t   TH TL   TDOV   AC Switching Characteristics table.   Updated the Ordering Information table.   Added Part numbers CY7C1386FV25 and CY7C1387FV25   Added footnote# 3 regarding Chip Enable   Updated Ordering Information table   Document Number: 38-05548 Rev. *E   Page 30 of 30   |