Omega Engineering Barcode Reader OMB 1108 0901 User Manual

Users Guide  
Shop online at  
omega.com  
For latest product manuals:  
omegamanual.info  
OMB-DAQTEMP Series  
High Accuracy PCI Thermocouple / Multifunction Data Acquisition Systems  
OMB-1108-0901 rev 1.2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Warnings, Cautions, Notes, and Tips  
Refer all service to qualified personnel. This symbol warns of possible personal injury or equipment damage under  
noted conditions. Follow all safety standards of professional practice and the recommendations in this manual. Using  
this equipment in ways other than described in this manual can present serious safety hazards or cause equipment  
damage.  
This warning symbol is used in this manual or on the equipment to warn of possible injury or death from electrical  
shock under noted conditions.  
This ESD caution symbol urges proper handling of equipment or components sensitive to damage from electrostatic  
discharge. Proper handling guidelines include the use of grounded anti-static mats and wrist straps, ESD-protective  
bags and cartons, and related procedures.  
This symbol indicates the message is important, but is not of a Warning or Caution category. These notes can be of  
great benefit to the user, and should be read.  
In this manual, the book symbol always precedes the words “Reference Note.” This type of note identifies the location  
of additional information that may prove helpful. References may be made to other chapters or other documentation.  
Tips provide advice that may save time during a procedure, or help to clarify an issue. Tips may include additional  
reference.  
Specifications and Calibration  
Specifications are subject to change without notice. Significant changes will be addressed in an addendum or revision to  
the manual. As applicable, we calibrate our hardware to published specifications. Periodic hardware calibration is not  
covered under the warranty and must be performed by qualified personnel as specified in this manual. Improper  
calibration procedures may void the warranty.  
iii  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Your order was carefully inspected prior to shipment. When you receive your order, carefully  
unpack all items from the shipping carton and check for physical signs of damage that may have  
occurred during shipment. Promptly report any damage to the shipping agent and your sales  
representative. Retain all shipping materials in case the unit needs returned to the factory.  
CAUTION  
Using this equipment in ways other than described in this manual can cause  
personal injury or equipment damage. Before setting up and using your  
equipment, you should read all documentation that covers your system.  
Pay special attention to Warnings and Cautions.  
During software installation, Adobe® PDF versions of user manuals will automatically  
Note:  
install onto your hard drive as a part of product support. The default location is in the  
Programs group, which can be accessed from the Windows Desktop. Initial  
navigation is as follows:  
Start [Desktop “Start” pull-down menu]  
Programs  
Omega DaqX Software  
You can also access the PDF documents directly from the data acquisition CD by using  
the <View PDFs> button located on the opening screen.  
Refer to the PDF documentation for details regarding both hardware and software.  
A copy of the Adobe Acrobat Reader® is included on your CD. The Reader provides  
a means of reading and printing the PDF documents. Note that hardcopy versions of  
the manuals can be ordered from the factory.  
iv  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Manual Layout  
Chapter 1 – Overview and Theory of Operation. Explains what DaqTemps are, the differences between  
the four DaqTemp models, and discusses certain aspects of data acquisition in relation to DaqTemp,  
as well as the theory of operation for each DaqTemp model.  
Chapter 2 – How to Install DaqTemp. Instructs the user on how to (1) install software, (2) install the  
DaqTemp PCI board, (3) configure the PCI board, (4) test the PCI board, and (5) connect the  
DaqTemp module to its associated PCI board.  
Chapter 3 – Making Signal Connections. This chapter uses illustrations to identify the screw-type  
terminals that are associated with various signal types including, but not limited to, Digital I/O,  
Analog I/O, and Thermocouples. The chapter includes a thermocouple standards color-reference  
table for the following thermocouple types: J, K, T, E, N28, N14, S, R, and B. The chapter also  
includes important notes pertaining to thermocouples.  
Chapter 4 – Software for DaqTemp Applications. Provides a brief introduction to out-of-the-box and  
icon-driven software that can be used with DaqTemp. The chapter includes reference notes to  
associated pdf formatted documents which the user will need to refer to for detailed information.  
Chapter 5 – CE Compliance. Pertains to CE standards and conditions that are relevant to DaqTemps.  
The chapter includes CE Kit installation instructions.  
Chapter 6 Calibration. Discusses the use of the DaqCal application that is included as a part of  
product support.  
Chapter 7 – Specifications. Includes specifications for the four types of DaqTemps currently in  
production. DaqTemp7, DaqTemp7A, DaqTemp14, and DaqTemp14A.  
Reference Note:  
Page iv discusses additional documents that are of importance to DaqTemp Users.  
DaqTemp Series User’s Manual  
10-14-02  
v
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
vi  
10-14-02  
DaqTemp Series User’s Manual  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Table of Contents  
Features and General Information ……1-1  
Step 2 – Install the DaqTemp PCI Board …… 2-2  
5 – CE Compliance  
CE Standards and Directives ……5-1  
Safety Conditions ……5-2  
Emissions/Immunity Conditions ……5-2  
DaqTemp Series User’s Manual  
10-14-02  
vii  
Download from Www.Somanuals.com. All Manuals Search And Download.  
viii  
10-14-02  
DaqTemp Series User’s Manual  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Overview and Theory of Operation  
1
Features and General Information …… 1-1  
Features and General Information  
DaqTemps are reliable, accurate, and compact data acquisition solutions that evolved from a primary focus on  
thermocouple applications. There are presently four DaqTemp systems. Each includes the following hardware  
and software.  
DaqTemp Hardware  
DaqTemp Data Acquisition Module  
DaqTemp PCI plug-in board  
CA-195 Cable, 3 feet long  
DaqTemp Software  
DaqView  
DaqViewXL  
eZ-PostView  
Drivers for LabVIEW, DASYLab, and Windows  
DaqTemp’s Three Hardware Components  
(Module, Cable, and PCI Board)  
Card for Digital & Analog I/O  
T/C Terminal Block  
Card for Digital & Analog I/O  
T/C Terminal Block  
P4  
P4  
DaqTemp14 and DaqTemp14A Modules,  
Internal Layout*  
DaqTemp7 and DaqTemp7A Modules,  
Internal Layout*  
DaqTemp Features  
Counter/  
Frequency  
Timer/  
Pulse  
TC  
Inputs  
7
Voltage  
Analog  
Digital  
I/O  
24  
Inputs  
Inputs  
Outputs  
Outputs  
DaqTemp7  
7
7
7
7
4
4
4
4
2
2
2
2
0
2
0
4
DaqTemp7A  
DaqTemp14  
DaqTemp14A  
7
24  
14  
24  
14  
24  
*Note: The following pages include larger illustrations of the DaqTemp Internal Layouts.  
DaqTemp User’s Manual  
09-06-02  
Overview & Theory of Operation 1-1  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Thermocouple Channels (CH1 - CH7, CH9 - CH15)  
Each DaqTemp features on-board cold junction compensation (CJC) for direct measurement of type J,  
K, T, E, N28, N14, S, R, and B thermocouples. The following table provides the temperature range for  
each of these thermocouple types.  
Thermocouple Temperature Ranges  
T/C Type  
Temperature  
Range °C  
J
K
T
E
-270 to  
650  
N28  
-270 to  
400  
N14  
0 to  
1300  
S
-50 to  
1768  
R
-50 to  
1768  
B
50 to  
1780  
-200 to  
760  
-200 to  
1200  
-200 to  
400  
-328 to  
1400  
-328 to  
2192  
-328 to  
752  
-454 to  
1202  
-454 to  
752  
32 to  
2372  
-58 to  
3214  
-58 to  
3214  
122 to  
3236  
Temperature  
Range °F  
DaqTemps are known mainly for their input of thermocouple signals. Up to seven thermocouples [channels  
1 through 7] can be connected to a thermocouple terminal block located within the DaqTemp7 and  
DaqTemp7A modules. Both the DaqTemp7 and DaqTemp7A use channel 0 for CJC (cold-junction  
compensation).  
Thermocouple Channel Connections for  
DaqTemp7 and DaqTemp7A  
Thermocouple Channel Connections for  
DaqTemp14 and DaqTemp14A  
Up to fourteen thermocouples can be connected to a thermocouple terminal block located within the  
DaqTemp14 and DaqTemp14A modules. Channels 1 through 7 are used for the first seven thermocouples  
and channels 9 through 15 for the second set of seven. Both the DaqTemp14 and DaqTemp14A use two  
channels for CJC (cold-junction compensation). The CJC is measured on channels 0 and 8.  
The DaqTemp PCI board has 8 differential analog inputs. One of these inputs is used to measure the  
thermocouple channels, leaving the other 7 for general-purpose analog input measurement. The thermo-  
couple board has its own analog multiplexer that is driven by expansion channel address signals from the  
PCI board. The multiplexer chooses one of 16 signals for measurement (14 thermocouple inputs and  
2 CJC inputs.)  
Note: Each DaqTemp thermocouple input channel can be configured for a fixed voltage gain of 100.  
When in this mode, voltage can be measured in the range of ±100 mV.  
1-2 Overview & Theory of Operation  
09-06-02  
DaqTemp User’s Manual  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Differential Input Channels (1H / 1L - 7H / 7L)  
Each DaqTemp model has seven differential input channels for measuring voltage. The voltage channels  
are labeled from 1H / 1L to 7H / 7L, with the “H” and “L” representing channel high and channel low.  
The seven channels are located on the Analog I/O portion of the card.  
Each differential input channel also has a current shunt resistor that can be user-installed. The resistor will  
convert a current to a voltage, the voltage will then be measured by the DaqTemp PCI board. This is a  
handy way to measure 4-20mA current loops or make current-based measurements in general. The right-  
hand figure shows how the resistors are connected to both the low-side and high-side of each differential  
input. Note that R1 is matched to analog input 1, R2 to analog input 2, etc.  
Differential Input Channels 1 and 2  
with User-Installed Resistors  
Analog I/O Section of DaqTemp  
Digital and Analog I/O Card  
Analog Outputs (DAC0, DAC1, DAC2, and DAC3)  
The “A” model DaqTemps have Analog Output capability. DaqTemp7A has two digital-to-analog  
converters. These are designated as DAC0 and DAC1. DaqTemp14A has four DACs designated as DAC0,  
DAC1, DAC2, and DAC3. The DAC channel connections are represented in the above, left-hand figure.  
Note that the same Digital and Analog I/O Terminal Block Card is used in all DaqTemp models, regardless  
of the unit’s features. Because of this, the following should be realized:  
DAC2 and DAC3 do not apply to DaqTemp7A. However, the Digital and Analog I/O Terminal  
Block Card includes connection labels for DAC2 and DAC3.  
Analog Outputs do not apply to DaqTemp7 or to DaqTemp14. However, the Digital and  
Analog I/O Terminal Block Card includes connection labels for DAC0, DAC1, DAC2, and DAC3.  
DaqTemp User’s Manual  
09-06-02  
Overview & Theory of Operation 1-3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
24-Bit, General Purpose Digital I/O (Channels A0 - A7, B0 - B7, and C0 - C7)  
All DaqTemps have 24-bit, general purpose, digital I/O that can be used to directly control and monitor  
24 digital I/O lines. The 24-bit digital I/O is divided into three 8-bit ports, which are labeled: A0-A7,  
B0-B7, and C0-C7. Each port can be programmed as an 8-bit group for either input or output.  
Digital I/O Section of DaqTemp Digital and Analog I/O Card  
Frequency/Counter Inputs (CNT0, CNT1, CNT2, and CNT3)  
Each DaqTemp has four frequency/counter inputs that can be used for counting pulses. A 16-bit counter,  
capable of counting up to 65,536 TTL-level transitions, resides behind each counter input. These inputs are  
labeled CNT0, CNT1, CNT2, and CNT3 on the Digital and Analog I/O Terminal Block Card, as indicated  
in the preceding figure.  
Each of the four counters is capable of accepting frequency inputs of up to 10 MHz. The counters can be  
cascaded to 32-bits, allowing over four billion counts to be totalized. As with all other inputs, the counters  
can be read asynchronously under program control, or synchronously as a part of an analog and digital scan  
group.  
16-Bit Timer Outputs (TMR0 and TMR1)  
Two 16-bit timer outputs are built into every DaqTemp. Each timer-output can generate square waves  
within a programmable frequency range of 16 Hz to 1 MHz. These outputs are labeled TMR0 and TMR1  
on the Digital and Analog I/O Terminal Block Card, as indicated in the preceding figure.  
Pacer Clock I/O (A/ICLK and A/OCLK)  
All DaqTemp models have two signals that can be used as inputs for externally clocking the acquisition and  
analog output DACs. A TTL input can be applied to A/ICLK that will start a scan every time a rising edge  
occurs on the applied TTL input. Likewise, a TTL input can be applied to A/OCLK that will update the  
DAC outputs every time a rising edge occurs on the applied TTL input. The pacer clock connection points  
are indicated in the preceding figure. When using the internal pacer clock generator, the A/ICLK and the  
A/OCLK can each be programmed as an output.  
Hardware Trigger Input (TTLTRG)  
All DaqTemp models have a TTLTRG input that can be used to trigger the start of an acquisition. The  
connection point is indicated in the preceding figure.  
Power Output (+5V, DGND)  
All DaqTemp models have a power output connection on the Digital and Analog IO card. The power  
supplied has a voltage of 5V (+/-10%) and is sourced from the computer where the DaqTemp PCI board is  
installed. No more than 500mA should be sourced out of this connection. See the preceding figure for the  
power output connection points.  
1-4 Overview & Theory of Operation  
09-06-02  
DaqTemp User’s Manual  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Scanning  
Every DaqTemp has an on-board scan sequencer that permits the user to select any combination of up to  
512 channel/range combinations. The sequencer scans all channels contained in the sequence at the rate of  
5 µs/channel, thereby minimizing the time-skew from channel-to-channel. The user can also set the time  
between scan groups, from 0 to 6 hours. In addition to scanning analog inputs, the sequencer can scan  
digital inputs and counter inputs.  
DaqTemp Scanning Example  
(1) Channels can be sampled dynamically by the sequencer.  
(2) Gain can be programmed, for each channel, dynamically by the sequencer.  
(3) Unipolar or Bipolar operation can be programmed, for each channel, dynamically by the sequencer.  
(4) Thermocouples can be of the following types: J, K, T, E, N28, N14, S, R, B  
(5) Counter Inputs [any of four] can be scanned along with the analog and digital inputs.  
(6) Digital Input Ports can be sampled along with Analog Inputs.  
The DaqTemp PCI board’s 512-location scan sequencer allows you to select each channel and associated  
input amplifier gain. All channels are scanned at 200 kHz (5 µs/channel). In addition, the digital and  
frequency inputs can be scanned using the same scan sequencer employed for analog inputs, enabling the  
time correlation of acquired digital data to acquired analog data. The PCI board permits each scan group,  
which can contain up to 512 channel/gain combinations, to be repeated immediately or at programmable  
intervals of up to 6 hours. Within each scan group, consecutive channels are measured at a fixed rate of  
5 µs per channel, or 10 µs per channel  
DaqTemp User’s Manual  
09-06-02  
Overview & Theory of Operation 1-5  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Triggering  
Triggering can be the most critical aspect of acquiring data. The DaqTemp PCI Board supports a full  
complement of trigger modes to accommodate a wide variety of applications.  
Hardware Analog Triggering. Many data acquisition products claim analog triggering, but rely on the  
PC to take readings and make a decision, which leads to uncertain and potentially long latencies. The  
DaqTemp PCI Board uses true analog triggering, whereby the trigger level programmed by the user, sets an  
analog DAC, which is then compared in hardware to the analog input level on the selected channel. The  
result is analog trigger latency that is guaranteed to be less than 5 µs, significantly shorter than most data  
acquisition devices. Any analog channel can be selected as the trigger channel. The user can program both  
the trigger level, as well as the edge (rising or falling).  
Digital Triggering (P1). A separate digital trigger input line is provided, allowing TTL-level triggering,  
again with latencies guaranteed to be less than 5 µs. Both the logic levels (1 or 0), as well as the edge (rising  
or falling), can be programmed for the discrete digital trigger input. The digital trigger input is labeled  
TTLTRG on the Digital and Analog I/O Board.  
Digital Pattern Triggering (P2). The DaqTemp PCI Board also supports digital pattern triggering,  
whereby the user can designate any of the digital input ports as the trigger port. The programmed digital  
pattern, including the ability to mask or ignore specific bits, is then compared to the actual input until a  
match is detected, after which the sequencer begins the scan sequence.  
Counter Triggering. Triggering can also be programmed to occur when one of the counters reaches,  
exceeds, or is within a programmed level. Any of the built-in counter/totalizer channels can be programmed  
as a trigger source.  
Software-Based Triggering. Software-based triggering differs from the modes described above because  
the readings, analog, digital, or counter, are interrogated by the PC to detect the trigger event, not in the  
hardware as described above. The advantage of this mode is to permit triggering based on more complex -  
situations, such as on a specific temperature, which was derived from the acquisition of at least two analog  
measurements, plus the calculation of the measured temperature using linearization algorithms.  
Normally software-based triggering results in long latencies from the time that a trigger condition is  
detected, until the actual capturing of data commences. However, the DaqTemp PCI Board circumvents this  
undesirable phenomenon by use of pre-trigger data. Specifically, when software-based triggering is  
employed, and the PC detects that a trigger condition has occurred, (which may be thousands of readings  
later than the actual occurrence of the signal), the DaqTemp PCI Board driver automatically looks back to  
the location in memory where the actual trigger-causing measurement occurred. The acquired data that is  
presented to the user actually begins at the point where the trigger-causing measurement occurs. The latency  
in this mode is equal to one scan cycle.  
Pre- and Post-Triggering Modes. Six modes of pre- and post-triggering are supported, providing a wide  
variety of options to accommodate any measurement requirement. When using pre-trigger, the user must use  
software-based triggering to initiate an acquisition.  
No pre-trigger, post-trigger stop event. This, the simplest of modes, acquires data upon receipt of the  
trigger, and stops acquiring upon receipt of the stop-trigger event.  
Fixed pre-trigger with post-trigger stop event. In this mode, the user specifies the number of pre-  
trigger readings to be acquired, after which, acquisition continues until a stop-trigger event occurs.  
No pre-trigger, infinite post-trigger. No pre-trigger data is acquired in this mode. Instead, data is  
acquired beginning with the trigger event, and is terminated when the operator issues a command to  
halt the acquisition.  
Fixed pre-trigger with infinite post-trigger. The user specifies the amount of pre-trigger data to  
acquire, after which the system continues to acquire data until the program issues a command to halt  
acquisition.  
1-6 Overview & Theory of Operation  
09-06-02  
DaqTemp User’s Manual  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Variable pre-trigger with post trigger stop event (driver support only). Unlike the previous pre-  
trigger modes, this mode does not have to satisfy the pre-trigger number of readings before  
recognizing the trigger event. Thus the number of pre-trigger readings acquired is variable and  
dependent on the time of the trigger event relative to the start. In this mode, data continues to be  
acquired until the stop trigger event is detected.  
Variable pre-trigger with infinite post trigger (driver support only). This is similar to the mode just  
described, except that the acquisition is terminated upon receipt of a command from the program.  
Stop Trigger. Any of the software trigger modes described above can be used to stop an acquisition.  
Thus an acquisition can be programmed to begin on one event, such as a temperature level, and then  
stopped on another, such as a digital pattern event.  
Theory of Operation  
As implied by the following matrix, the operational material does not apply globally to every DaqTemp  
Series PCI board. For example, the PCI boards for DaqTemp7 and DaqTemp14 have no analog output.  
I/O Comparison Matrix  
I/O Comparison Matrix  
for DaqTemp Series PCI Boards  
Thermocouple  
Channels  
Analog Input  
Channels  
Analog Output  
Channels  
Digital I/O  
Channels  
Counter/  
Timers  
DaqTemp  
PCI Board  
T/C  
7
7
7
7
2
4
0
0
24  
24  
24  
24  
4 Counters  
2 Timers  
DaqTemp7A  
7
14  
7
4 Counters  
2 Timers  
DaqTemp14A  
DaqTemp7  
4 Counters  
2 Timers  
4 Counters  
2 Timers  
DaqTemp14  
14  
Synchronous Input Operations  
The DaqTemp Series devices allow synchronous scanning and acquisition of Analog Input, Digital Input  
and Counter Input Data at up to 200 kHz aggregate scanning rates. The Analog Input data can be either  
voltage input or thermocouple input channels. The Digital Input data can be any of the 8-bit ports,  
designated as Port A (A0 through A7), Port B (B0 through B7), and Port C (C0 through C7).  
DaqTemp User’s Manual  
09-06-02  
Overview & Theory of Operation 1-7  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Analog Input Channels  
The DaqTemp Series PCI Boards allow analog input configuration for the voltage input channels and the  
thermocouple input channels.  
Channel Selection and Mode Settings  
The DaqTemp module accepts up to 7 differential inputs.  
Channel Range and Polarity  
Each of the seven differential voltage input channels may be programmed for either unipolar or bipolar  
mode with gain settings of 1, 2, 4, 8, 16, 32 or 64.  
Digital Input Channels  
The DaqTemp Series PCI Boards allow either synchronous scanning of digital input channels or  
asynchronous I/O operations for all configured digital channels.  
Counter Input Channels  
The DaqTemp Series PCI Boards allow synchronous scanning of the 4 16-bit counter input channels. The  
four 16-bit counter channels can also be cascaded into two 32-bit counter channels. For either cascaded or  
non-cascaded counter channels each channel can be configured for:  
Pulse Counting Mode – specifies that each counter should be cleared upon being read and placed into  
the input scan.  
Totalize Counting Mode – specifies that each counter is to free-run and not be cleared during the input  
acquisition.  
Synchronous Input Acquisition Clocking  
The DaqTemp Series PCI boards allow clocking of the synchronized inputs either by an internal,  
programmable pacer clock or by external clocking. These products use a sequencer to implement a  
multiplexing approach to gathering the input data. This means that with either internal or external clocking  
the entire channel scan (including the sampling time for each channel) may not exceed the maximum  
aggregate rate of 200kHz.  
External clocking for acquisition is accomplished by applying a TTL clock input to the A/ICLK on the  
Digital and Analog IO board. With external clocking, the DaqTemp PCI board will start a scan every  
time there is a rising edge on the A/ICLK input. All channels [analog and digital] within the scan group are  
still measured at the 5 us/channel [or 10 µs/channel] rate, the scan stored in the sequencer will be repeated  
at the rate of the A/ICLK input.  
Synchronous Output Operations  
The DaqTemp7A and DaqTemp14A PCI Boards allow synchronous output of any 2 or 4 DACS,  
respectively. All D/A channels available may have output streamed to them and clocked out synchronously.  
DAC output channels can be updated at the rate of an internal DAC pacer clock that is fully programmable  
and separate from the acquisition pacer clock.  
External clocking for analog output is also available by applying a TTL clock input to the A/OCLK on the  
Digital and Analog IO board. With external clocking, the DaqTemp PCI board will update the DAC(s)  
every time there is a rising edge on the A/OCLK input. All DAC channels that are enabled will be updated  
at the same time. Alternatively, the DACs can be updated at the acquisition rate (either internally or  
externally via A/ICLK) so that an entire scan is measured every time a DAC update is done.  
1-8 Overview & Theory of Operation  
09-06-02  
DaqTemp User’s Manual  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Output Channel Configuration  
Analog Output Channels  
Each D/A channel can be configured for waveform output individually. If the D/A channel is not  
configured for waveform output, it then is available for asynchronous output operations.  
Synchronous Output Clocking  
The DaqTemp Series PCI Boards allow clocking of the synchronized output by the acquisition clock  
source, an internal, programmable pacer clock or by an external clock source. When the clock source  
generates a new clock signal all outputs are updated concurrently. Regardless of the clock source, the clock  
may not exceed the maximum update rate of 100kHz.  
Synchronous Output Data Source  
The DaqTemp Series PCI Boards allow the data source for synchronized output operations to be that of a  
memory based buffer or a file located on a mass storage medium. With either type of output data source,  
the output data for all the channels are contained in the buffer and/or file. The file path may be any file  
located on the machine or network accessible file.  
Asynchronous I/O Operations  
The DaqTemp Series PCI boards allow asynchronous input of any counter or digital channel that is not  
currently configured for synchronous acquisition. The PCI boards for DaqTemp7A and DaqTemp14A also  
allow for asynchronous output to any D/A channels that are not currently configured for waveform output.  
In addition, the timer outputs can be programmed at any time regardless of the current state of synchronous  
or asynchronous operations on other channels.  
Digital I/O Channels [Local 8255 Channels]  
The DaqTemp Series PCI Boards have an Intel 8255 core in the digital I/O logic on the P2 port of the  
product. With the Intel 8255 there are three 8-bit wide ports available for I/O and one 8-bit wide port for  
configuration purposes. The configuration port is used to configure the other three 8-bit ports for either  
input or output operations.  
Pulse Stream Output Using Timers  
The boards allow the generation of output pulses based upon a programmable setting. These output timers  
can be set at any time regardless of the state of any synchronous or asynchronous operations which are  
currently taking place on other channels.  
Analog Output Channels  
The boards that have analog output capabilities have the ability to output analog data to any of the available  
(up to four) D/A channels. Each D/A channel may be asynchronously updated by an application if the D/A  
channel is not currently being used for waveform output operations.  
Frequency/Counter Input Channels  
The DaqTemp Series PCI boards have counter input capabilities and have the ability to read counter input  
[if the counter channel is not configured for synchronous acquisition]. As in the case of synchronous  
operations the 4 16-bit counter input channels can be used individually or cascaded into 2 32-bit counter  
channels. For either cascaded or non-cascaded counter channels each channel can be configured for:  
Clear on Read Mode - specifies that each counter should be cleared (reset to 0) upon being read.  
Continuous Totalize Mode – specifies that each counter is to free-run and not be cleared during  
the read operation.  
DaqTemp User’s Manual  
09-06-02  
Overview & Theory of Operation 1-9  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Operation Matrix  
DaqTemp7A DaqTemp14A DaqTemp7 and  
Operation  
PCI Board  
PCI Board  
DaqTemp14  
PCI Board  
Synchronous Input  
Analog Inputs  
Counter Inputs  
Digital Inputs  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Synchronous Output  
Analog D/A Waveform Output  
Yes(2)  
Yes(4)  
No (0)  
Asynchronous IO  
Digital I/O  
Yes  
Yes  
Yes  
Timer Output (Pulse Generation)  
Analog Output  
Yes  
Yes(2)  
Yes  
Yes(4)  
Yes  
No (0)  
Block Diagram  
DACs apply to DaqTemp7A and DaqTemp14A (see Note 1).  
DaqTemp7 and DaqTemp14 have no DACs.  
DaqTemp PCI Board Block Diagram  
1-10 Overview & Theory of Operation  
09-06-02  
DaqTemp User’s Manual  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Each DaqTemp makes use of one high-speed, multi-function, PCI plug-and-play data acquisition board. The PCI  
board features a 16-bit, 200-kHz A/D converter (ADC), digital calibration, bus mastering DMA, 24 digital I/O lines,  
four counters, and two timers. In addition, the DaqTemp7A has two16-bit 100 kHz D/A converters (DACs); and the  
DaqTemp14A has four DACs.  
DaqTemp modules provide access to all of the system’s input and output signals. A 100-pin connector on each  
module connects to a mating connector on the associated PCI board. The connection is made via a CA-195, 100-  
conductor ribbon cable.  
Signal types applicable to the DaqTemps are:  
Analog Input: 7 differential analog inputs with 13 software programmable ranges  
(±10 V to ±156 mV full scale).  
General purpose: 24 lines for Digital I/O.  
4 Counter Inputs, 2 Timer Outputs  
2 Analog Outputs for DaqTemp7A  
4 Analog Outputs for DaqTemp14A  
7 Thermocouple Inputs for DaqTemp7A and DaqTemp7  
14 Thermocouple Inputs for DaqTemp14A and DaqTemp14  
The PCI board’s scan sequencer lets you select up to 512 channel/range combinations. The sequencer scans all  
channels of the scan at 5µs per channel, or 10 µs per channel.  
Bus mastering allows analog and digital/counter input data, as well as analog and digital output data, to flow between  
the PC and the DaqTemp without consuming CPU time.  
DaqTemps support a full complement of trigger modes including:  
Hardware analog triggering – A user-programmed trigger level sets an analog DAC, which is  
compared in hardware to the analog input level on the selected channel. Trigger latency is < 5 µs.  
Digital and pattern triggering – The boards have separate digital trigger input line, allowing TTL-level  
triggering and latencies less than 5 µs. The trigger can be programmed for logic level or edge triggering.  
In pattern triggering, any of the digital input ports acts as the trigger port. You can program the digital  
pattern.  
Software-based triggering – The PC detects the trigger event from readings, either analog, digital, or  
counter. Six pre- and post-triggering modes are supported.  
Additional features:  
24 TTL-level digital I/O lines. They are divided into three 8-bit ports.  
Four 16-bit counters. Each can accept frequency inputs up to 10 MHz.  
The counters can be cascaded into two 32-bit counters.  
Two 16-bit timer outputs. Each can generate square waves from 16 Hz to 1 MHz.  
Configuration through software. The DaqTemp modules and PCI boards have no switches or  
jumpers.  
Analog Outputs, DaqTemp7A and DaqTemp14A only. The 16-bit, 100-kHz analog output channels  
have an output range of -10 V to +10 V. (These channels are separate from the D/As used to determine  
analog trigger levels.) Using Bus Mastering DMA, each D/A can output a waveform. Bus Mastering  
DMA also allows for digital pattern generation on the 16-bit high-speed digital I/O port.  
DaqTemp User’s Manual  
09-06-02  
Overview & Theory of Operation 1-11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
1-12 Overview & Theory of Operation  
09-06-02  
DaqTemp User’s Manual  
Download from Www.Somanuals.com. All Manuals Search And Download.  
How to Install DaqTemp  
2
Step 2 – Install the DaqTemp PCI Board …… 2-2  
Note: You should keep your DaqTemp serial numbers and your DaqView/2000 authorization code (if  
applicable) with this document. Space is provided below. The PCI board serial number is located  
on its 100-pin P4 connector.  
Important Numbers for Future Reference  
DaqTemp Module Serial Number  
DaqTemp PCI Board Serial Number  
PCI Bus-Slot Location  
Authorization Code (if applicable)  
CAUTION  
Take ESD precautions (packaging, proper handling, grounded wrist strap, etc.)  
Use care to avoid touching board surfaces and onboard components. Only handle  
boards by their edges (or ORBs, if applicable). Ensure boards do not come into contact  
with foreign elements such as oils, water, and industrial particulate.  
Reference Note:  
Each DaqTemp’s PCI board plugs into a PCI bus-slot on a host PC. If needed, consult your  
PC documentation in regard to its PCI bus and the associated slots.  
DaqTemp Installation, A Pictorial Overview  
DaqTemp User’s Manual  
10-14-02  
How to Install DaqTemp 2-1  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Step 1 Install Software  
IMPORTANT: Software must be installed before installing hardware.  
1. Remove previous version Daq drivers, if present. You can do this through Microsoft’s Add/Remove  
Programs feature.  
2. Place the Data Acquisition CD into the CD-ROM drive. Wait for PC to auto-run the CD. This may take a  
few moments, depending on your PC. If the CD does not auto-run, use the Desktop’s Start/Run/Browse  
feature.  
3. After the intro-screen appears, follow the screen prompts.  
Upon completing the software installation, continue with step 2, Install the DaqTemp PCI Board.  
Step 2 Install the DaqTemp PCI Board  
IMPORTANT: Software must be installed before installing hardware.  
IMPORTANT: Bus Mastering DMA must be Enabled.  
For a DaqTemp to operate properly, Bus Mastering DMA must be enabled. Prior to installation,  
verify that your computer is capable of performing Bus Mastering DMA for the applicable PCI  
bus-slot. Note that some computers have BIOS settings that enable [or disable] Bus Mastering  
DMA. If your computer has this BIOS option, ensure that Bus Mastering DMA is Enabled on the  
appropriate PCI slot. Refer to your PC’s owner manual for additional information regarding Bus  
Mastering DMA.  
CAUTION  
Turn off power to, and UNPLUG the host PC prior to removing the PC’s cover and installing a  
DaqTemp PCI board. Electric shock or damage to equipment can result even under low-voltage  
conditions.  
Take ESD precautions (packaging, proper handling, grounded wrist strap, etc.)  
Use care to avoid touching board surfaces and onboard components. Only handle boards by their  
edges (or ORBs, if applicable). Ensure boards do not come into contact with foreign elements such  
as oils, water, and industrial particulate.  
1. Turn off power to, and UNPLUG the host PC and externally connected equipment.  
2. Remove the PC’s cover. Refer to your PC Owner’s Manual as needed.  
3. Choose an available PCI bus-slot.  
4. Carefully remove the DaqTemp PCI board from its anti-static protective bag. If you have not already  
done so, write down the serial number of your board. Space has been provided on page 2-1 for  
recording the serial number.  
2-2 How to Install DaqTemp  
10-14-02  
DaqTemp User’s Manual  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
5. On the PC’s rear panel, loosen and remove the screw for the blank adapter plate that corresponds with  
the chosen PCI bus. See the following figure.  
Removing a Blank Adapter Plate from  
the Host Computer’s Rear Panel (Steps 5 and 6)  
6. Remove the adapter plate. Refer to your PC Owner’s Manual if needed.  
7. Align groove in the DaqTemp PCI board’s edge-connector with the ridge of the desired PCI slot, and  
with the corresponding rear-panel slot on the PC. See following figure.  
Installing a DaqTemp PCI Board (Steps 7, 8, and 9)  
8. Push the board firmly into the PCI slot. The board will snap into position.  
9. Secure the board by inserting the rear-panel adapter-plate screw.  
10. Replace the computer’s side cover and plug in all cords and cables that were removed in step 1 of this  
procedure.  
11. Apply power to, and start up the PC.  
Note: At this point some PCs may prompt you to insert an installation disk. While this is rare, if you do  
receive such a prompt simply place the install CD-ROM into the disk drive and follow additional  
screen prompts.  
DaqTemp User’s Manual  
10-14-02  
How to Install DaqTemp 2-3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Step 3 Configure the DaqTemp PCI Board  
DaqTemp PCI boards have no jumpers or switches to set. Configuration is performed, in its entirety,  
through software. Refer to the following figure and steps to complete the configuration.  
1. Run the Daq Configuration control panel applet. Navigation  
from the desktop to the applet is as follows:  
Start Settings Control Panel Daq*Configuration  
(double-click).  
2. Double-click on the Device Inventory’s DaqTemp icon. The  
DaqTemp Properties tab will appear.  
If the DaqTemp icon is not present, skip to the following  
section, Using ‘Add Device.’  
Configuring DaqTemp via the Properties Tab  
3. Enter a “Device Name” in the text box, or use the default “DaqTemp.” Device Name is for identifying  
the DaqTemp board. However, the Device Name actually refers to the PCI slot and not to the board.  
4. Verify that the “Device Type” is a DaqTemp PCI board, for example, “DaqBoard/2000,” as indicated  
in the above figure. Available device types can be viewed via the pull-down list (M).  
5. Confirm that the DaqTemp text box shows a Bus #, Slot #, and Serial Number. If this text box is  
empty, use its pull-down list (M) and select the serial number that matches the one for your board.  
In the above figure we see that the Bus number is 2, the Slot number is 9, and the Serial Number  
(S/N) is 171972.  
2-4 How to Install DaqTemp  
10-21-02  
DaqTemp User’s Manual  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Using “Add Device”  
This method is for users who have accessed the Daq  
Configuration control panel applet, but have no  
DaqTemp icon.  
(A) After accessing the Daq Configuration control  
panel applet, click on the Add Device button (see  
figure, right). The Select Device Type window will  
appear.  
(B) Using the Device Type’s pull-down list, select the  
applicable board. In the example at the right  
DaqTemp7 is selected.  
(C) Click the OK button. The DaqTemp Properties tab  
will appear.  
At this point, complete steps 3 through 5, above.  
Using “Add Device”  
Step 4 Test the DaqTemp PCI Board  
Use the following steps to test the DaqTemp. Note that these steps are continued from those listed under the  
previous section, “Configure the DaqTemp PCI Board.”  
1. Select the “Test Hardware” tab.  
2. Click the “Resource Test” button.  
3. After the test is complete, click “OK.”  
System capability is now tested for the  
DaqTemp PCI board.  
Test results will be displayed on the screen.  
At this point we are ready to connect the  
DaqTemp module to the PCI board.  
Test Hardware Tab  
(Condensed Screen Image)  
DaqTemp User’s Manual  
10-14-02  
How to Install DaqTemp 2-5  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Step 5 Connect the DaqTemp Module to its PCI Board  
Connecting the DaqTemp Module to the PCI Board  
CAUTION  
Turn off power to and unplug the host PC prior to connecting the DaqTemp to  
the computer. Failure to do so could possible result in equipment damage.  
Prior to mating the CA-195 cable’s P4 connectors to the PCI board and the  
DaqTemp, be sure to align the P4 orientation indicators (L) of the connectors  
that are being mated.  
Connect the DaqTemp module to its PC-based PCI board as follows.  
1. Turn off and unplug the PC.  
2. Ensure that the P4 connector alignment indicators (L) on cable CA-195 and the DaqTemp module are  
in alignment, and make the connection of cable to DaqTemp module.  
3. Align the cable’s remaining P4 connector with the PCI board’s P4 connector, then make the  
connection.  
At this point you can connect the signal lines to the DaqTemp module’s terminal blocks.  
Refer to chapter 3 for details.  
2-6 How to Install DaqTemp  
10-14-02  
DaqTemp User’s Manual  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Making Signal Connections  
3
Connect the signal lines to the intended terminals on DaqTemp’s card-mounted terminal blocks for Digital  
or Analog I/O, and/or to the chassis-mounted terminal blocks for thermocouple connections.  
In regard to thermocouples …  
DaqTemp7 and DaqTemp7A provide input connections for channels 1 through 7.  
DaqTemp14 and DaqTemp14A provide input connections for channels 1 through 7 and  
for channels 9 through 15.  
Card with Terminal Blocks for  
Digital I/O and Analog I/O  
Terminal Blocks for  
Thermocouples  
DaqTemp7A and DaqTemp7, Internal Layout  
DaqTemp14A and DaqTemp14, Internal Layout  
Thermocouple wire is standardized, color-coded, and polarized, as noted in the following table. Note that  
the DaqTemp T/C input connections are labeled “H” for Channel High (+) and “L” for Channel Low (-).  
Thermocouple Standards  
T/C  
Type  
J
(+) Lead to  
Channel High  
White  
(-) Lead to  
Channel Low  
Red  
K
Yellow  
Red  
T
Blue  
Red  
E
Violet  
Red  
N28  
N14  
S
Orange  
Orange  
Black  
Red  
Red  
Red  
R
Black  
Red  
B
Gray  
Red  
DaqTemp User’s Manual  
09-03-02  
Making Signal Connections 3-1  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
For isothermal performance, an exposed, grounded copper plane surrounds the input  
connectors. It is important that non-insulated input wires do not contact the grounded  
plane since such contact can degrade measurement integrity.  
It should be noted that thermocouples output very small voltages and that long thermocouple leads can  
pickup a large amount of noise. However, the DaqTemp modules inherently provide a high level of noise  
immunity via their 4 Hz signal bandwidth and input filtering. If desired, further noise reduction can be  
achieved through the use of shielded thermocouples and/or averaging.  
You can minimize the effect of noise by (1) using shielded thermocouples,  
(2) averaging readings, or (3) employing both of these practices.  
To accommodate shielding, grounded connections, labeled “SHIELD,” are provided. A typical use of the  
connection would be the attachment of the shield to a shielded thermocouple.  
If a thermocouple shield is connected to a DaqTemp’s SHIELD connection,  
leave the shield unconnected at the other end of the thermocouple.  
Open Thermocouple Detection  
DaqTemps are equipped with open thermocouple detection for each T/C channel. This means that a broken  
thermocouple wire [or otherwise unconnected input that is measured] will result in an off-scale reading.  
This is accomplished by applying a small bias current to each of the channel inputs. Whenever a valid input  
is absent, the bias current saturates the input amplifier, resulting in the off-scale reading.  
3-2  
Making Signal Connections  
09-03-02  
DaqTemp User’s Manual  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Software for DaqTemp Applications  
4
DaqView, Channel Setup Tab Selected  
DaqTemp devices are intended for use with two categories of software:  
(1) Ready-to-use graphical programs, also referred to as out-of-the-box programs. These include  
DaqView, DaqViewXL, eZ-PostView, eZ-TimeView, ands eZ-FrequencyView.  
(2) Icon-driven software. This category includes DASYLab and LabView and their associated third-  
party drivers.  
The ready-to-use programs are convenient for DaqTemp applications, as no programming knowledge is  
required to acquire data and obtain meaningful data display.  
DaqView is a Windows-based program for basic set-up and data acquisition. DaqView lets you select  
desired channels, gains, thermocouple types, and a host of other parameters with a click of a PC mouse.  
DaqView lets you stream data to disk and display data in numerical and graphical formats.  
DaqViewXL allows you to interface directly with Microsoft Excel to enhance data handling and display.  
Within Excel you have a full-featured Daq control panel and all the data display capabilities of Excel.  
The eZ-PostView application can be launched from DaqView, or independently. From this program you  
can view and analyze historical (post-acquisition) data. eZ-PostView is included free as a part of DaqTemp  
product support.  
eZ-TimeView and eZ-FrequencyView are post acquisition data viewing applications, which are available  
for purchase. Though similar to eZ-PostView, these applications contain many additional features.  
eZ-TimeView and eZ-FrequencyView can be used freely during a 30-day trial period  
Note: The Daq Configuration control panel allows for interface configuration, testing, and  
troubleshooting.  
DaqTemp User’s Manual  
10-14-02  
Software for DaqTemp Applications 4-1  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Reference Note:  
During software installation, Adobe® PDF versions of user manuals will automatically  
install onto your hard drive as a part of product support. The default location is in the  
Programs group, which can be accessed from the Windows Desktop. Initial navigation is  
as follows:  
Start [Desktop “Start” pull-down menu]  
Programs  
Omega DaqX Software  
You can also access the PDF documents directly from the data acquisition CD by using the  
<View PDFs> button located on the opening screen.  
Refer to the PDF documentation for details regarding both hardware and software.  
A copy of the Adobe Acrobat Reader® is included on your CD. The Reader provides  
a means of reading and printing the PDF documents. Note that hardcopy versions of the  
manuals can be ordered from the factory.  
Reference Note:  
For information regarding DASYLab, or LabVIEW, refer to third-party documentation.  
4-2  
Software for DaqTemp Applications  
10-14-02  
DaqTemp User’s Manual  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CE-Compliance  
5
Overview ……5-1  
CE Standards and Directives …… 5-1  
Safety Conditions ……5-2  
Emissions/Immunity Conditions ……5-2  
Overview  
CE-compliant products bear the “CE” mark and include a Declaration of Conformity stating the  
particular specifications and conditions that apply. The test records and supporting documentation  
that validate the compliance are kept on file at the factory.  
The European Union established CE standards in 1985. The standards include specifications for safety,  
EMI emissions, and immunity from electromagnetic interference. Products that are intended for placement  
in the European Union must meet or exceed the standards and bear the "CE" mark.  
Although not required in the USA, meeting or exceeding the CE standards is considered good engineering  
practice, since doing so enhances safety while reducing noise and ESD problems.  
In contracted and in-house testing, most Daq products met the required specifications. In many cases,  
products that were not originally in compliance were redesigned accordingly. In noted instances, alternate  
product versions, shield plates, edge guards, special connectors, or add-on kits are required to meet CE  
compliance.  
CE Standards and Directives  
The electromagnetic compatibility (EMC) directives specify two basic requirements:  
1. The device must not interfere with radio or telecommunications.  
2. The device must be immune from electromagnetic interference from RF transmitters, etc.  
The standards are published in the Official Journal of European Union under direction of CENELEC  
(European Committee for Electrotechnical Standardization). The specific standards relevant to Daq  
equipment are listed on the product’s Declaration of Conformity and include: CISPR22:1985;  
EN55022:1988 (Information Technology Equipment, Class A for commercial/industrial use); and  
EN50082-1:1992 for various categories of EMI immunity.  
The safety standard that applies to Daq products is EN 61010-1 : 1993 (Safety Requirements for Electrical  
Equipment for Measurement, Control, and Laboratory Use, Part 1: General Requirements).  
Environmental conditions include the following:  
indoor use  
altitude up to 2000 m  
temperature 5°C to 40°C (41°F to 104°F)  
maximum relative humidity 80% for temperatures up to 31°C (87.8°F) decreasing linearly  
to 50% relative humidity at 40°C (104°F)  
mains supply voltage fluctuations not to exceed ±10% of the nominal voltage  
other supply voltage fluctuations as stated by the manufacturer  
transient overvoltage according to installation categories (overvoltage categories) I, II and III  
For mains supply, the minimum and normal category is II  
pollution degree I or II in accordance with IEC 664  
DaqTemp Series User’s Manual  
08-27-02  
CE-Compliance 5-1  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
For clarification, terms used in some Declarations of Conformity include:  
pollution degree: any addition of foreign matter, solid, liquid or gaseous (ionized gases) that may  
produce a reduction of dielectric strength or surface resistivity. Pollution Degree I has no influence  
on safety and implies: the equipment is at operating temperature with non-condensing humidity  
conditions; no conductive particles are permitted in the atmosphere; warm-up time is sufficient to  
avert any condensation or frost; no hazardous voltages are applied until completion of the warm-up  
period. Pollution Degree II implies the expectation of occasional condensation.  
overvoltage (installation) category: classification with limits for transient overvoltage, dependent  
on the nominal line voltage to earth. Category I implies signals without high transient values.  
Category II applies to typical mains power lines with some transients.  
Safety Conditions  
Users must comply with all relevant safety conditions in the user’s manual and the Declarations of  
Conformity. This manual and Daq hardware make use of the following Warning and Caution symbols:  
If you see either of these symbols on a product, carefully read the related information and be alert to the  
possibility of personal injury.  
This warning symbol is used in this manual or on the equipment to warn of possible  
injury or death from electrical shock under noted conditions.  
This warning/caution symbol is used to warn of possible personal injury or equipment  
damage under noted conditions.  
Daq products contain no user-serviceable parts; refer all service to qualified personnel. The specific  
safety conditions for CE compliance vary by product; but general safety conditions include:  
The operator must observe all safety cautions and operating conditions specified in the  
documentation for all hardware used.  
The host computer and all connected equipment must be CE compliant.  
All power must be off to the device and externally connected equipment before internal access to the  
device is permitted.  
Isolation voltage ratings: do not exceed documented voltage limits for power and signal inputs.  
All wire insulation and terminal blocks in the system must be rated for the isolation voltage in use.  
Voltages above 30 Vrms or ±60 VDC must not be applied if any condensation has formed on the  
device.  
Current and power use must not exceed specifications. Do not defeat fuses or other over-current  
protection.  
Emissions/Immunity Conditions  
The specific immunity conditions for CE compliance vary by product; but general immunity conditions  
include:  
Cables must be shielded, braid-type with metal-shelled connectors. Input terminal connections are to  
be made with shielded wire. The shield should be connected to the chassis ground with the hardware  
provided.  
The host computer must be properly grounded.  
In low-level analog applications, some inaccuracy is to be expected when I/O leads are exposed to  
RF fields or transients over 3 or 10 V/m as noted on the Declaration of Conformity.  
5-2 CE-Compliance  
08-27-02  
DaqTemp Series User’s Manual  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
CE Cable Kit for DaqTemps  
CAUTION  
Turn OFF the power to, and UNPLUG the host PC and externally connected equipment prior to  
removing the PC’s cover and removing (or installing) the DaqTemp Series PCI Board. Electric  
shock or damage to equipment can result even under low-voltage conditions.  
Take ESD precautions (packaging, proper handling, grounded wrist strap, etc.)  
Use care to avoid touching board surfaces and onboard components. Only handle boards by their  
edges (or ORBs, if applicable). Ensure boards do not come into contact with foreign elements such  
as oils, water, and industrial particulate.  
Note: The part number of the CE Cable Kit that is used with DaqTemp Series Boards is CA-209.  
By following these instructions correctly, your DaqTemp will be CE Compliant in accordance with the  
conditions stated on your DaqTemp board’s Declaration of Conformity.  
If your board is already installed, you will need to remove it from the PC before proceeding. If your board  
is not yet installed, proceed to the section entitled Install the CE ORB.  
Remove the DaqTemp Series Board from the Host PC  
1. Turn the host PC’s power OFF.  
2. Turn power OFF to externally connected equipment.  
3. UNPLUG the host PC and all externally connected equipment.  
4. Remove the PC’s cover. Refer to your PC Owner’s Manual as needed.  
5. Locate the DaqTemp PCI Board and carefully remove it from the PCI slot.  
Install the CE ORB  
1. Remove the two screws that secure the standard [non-CE] ORB to the board (see following figures).  
2. Using the same screws, mount the CE ORB to the board. Tighten the screws snug, but do not over  
tighten.  
Mounting a DaqTemp Series PCI Board to a CE ORB  
DaqTemp Series User’s Manual  
08-27-02  
CE-Compliance 5-3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Install the DaqTemp PCI Board with its CE ORB  
If you are installing the DaqTemp Series Board for the first time, refer to chapter 2 of this manual,  
How to Install DaqTemp.  
1. If you have not already done so, turn off power to, and UNPLUG the host PC and externally  
connected equipment. Then remove the PC’s cover. Refer to your PC Owner’s Manual as needed.  
2. Install the DaqTemp Series PCI Board [with CE ORB] as follows (see following figure).  
(a) Align the groove in the edge connector with the ridge on the PCI slot.  
(b) Push the DaqTemp PCI Board firmly into the PCI slot.  
(c) Replace the rear panel adapter screw.  
3. Replace the PC’s cover.  
Installing a DaqTemp PCI Board  
5-4 CE-Compliance  
08-27-02  
DaqTemp Series User’s Manual  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Connect the CA-195CE Cable to the Board  
DaqTemp Module  
1. Connect one end of the CA-195CE Cable to DaqBoard/2000 Series Board’s  
P4 connector. Note that either end of the cable can be connected to the  
board; however, the white locator triangles must align with each other.  
2. Align the Cable Clamp (1033-2009) with the  
CE ORB and secure the items with two  
4-40 x 3/16 screws (provided).  
DaqTemp PCI Board  
Note: In the right hand figure, the cable is not shown to  
allow for greater clarity of parts.  
Secure the Grounding Pigtail to Cable CA-195CE  
Using Cable Clamps 1033-2009, 1033-2010, and two 4-40 x 5/16 screws, secure the Grounding Pigtail to  
the cable. Note that the Clamps must be positioned over the cable’s Copper Band as indicated in the first  
figure on this page. Tighten screws snug, but do not over tighten.  
Note: In the following figure, the cable is not shown to allow for greater clarity of parts.  
DaqTemp Series User’s Manual  
08-27-02  
CE-Compliance 5-5  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Connect Cable and Grounding Pigtail to the DaqTemp Module  
1. Verify that the P4 connectors of the CA-195CE Cable and the DaqTemp Module are  
correctly aligned. Correct alignment is indicated when the P4 locator triangles face  
each other (see figure). The triangles locate pin A1.  
2. Complete the connection.  
3. Connect the open end of the Grounding Pigtail to the threaded insert located to the  
right of DaqTemp’s P4 connector. See following figure.  
DaqTemp Module  
At this point your board will be CE compliant, providing that the conditions listed on your DaqTemp PCI  
board’s Declaration of Conformity are satisfied. You can return power to the system and commence with  
normal operation of your DaqTemp system.  
5-6 CE-Compliance  
08-27-02  
DaqTemp Series User’s Manual  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Calibration  
6
Overview …… 6-1  
Using DaqCal.exe …… 6-1  
Overview  
DaqTemp PCI Boards are digitally calibrated at the factory. The digital method involves storing a  
correction factor for each range [on the DaqTemp PCI Board] at the time of calibration. Whenever a  
particular range is selected, the appropriate calibration constant is automatically applied to a compensating  
DAC, thereby calibrating the specific range. The result is that readings generated by the A/D are already  
calibrated, and do not require additional processing.  
This is significantly better than calibration methods used by many other products, in which readings are  
adjusted in software after they are transferred to the PC. That method reduces the dynamic range of the  
A/D, and can adversely affect the speed at which the PC obtains a calibrated reading.  
The DaqTemp PCI Board offers a user-cal mode, whereby the user can adjust the calibration of the board,  
without destroying the supplied factory calibration. This is accomplished by having two distinct calibration  
tables in the unit’s on-board EPROM, one which contains the factory calibration factors, and the other  
which is available for user calibration.  
Using DaqCal.exe  
When calibration adjustments are needed they should be completed in the following order:  
1. PGA Input and Output Offset  
2. Sample/Hold Offset  
3. A/D Offset and Gain  
4. VDC Voltage Reference  
5. DAC0 Full-Scale  
6. DAC1 Full-Scale  
7. DAC2 Full-Scale  
8. DAC3 Full-Scale  
A Windows-based program, DaqCal.exe, is used to calibrate Daq systems, including analog expansion  
cards. DaqCal.exe is used in conjunction with:  
a 4.5 digit, digital multi-meter  
an adjustable voltage calibrator  
an ambient temperature meter  
To use the calibration program:  
1. Launch DaqCal.  
Note: DaqCal is installed automatically from your data acquisition CD as a part of product  
support. This takes place during software installation. DaqCal’s default location is the  
Omega DaqX Software folder, in the Programs group.  
2. When DaqCal opens you will be prompted to select your device from a list. After doing so,  
simply follow the illustrated on-screen instructions.  
DaqTemp User’s Manual  
10-14-02  
Calibration 6-1  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Reference Note:  
If the ambient temperature of the operating environment is below 18°C or above 28°C, or if  
the DaqTemp is near or outside its one-year calibration interval, then the absolute accuracy  
may be improved through the use of an external temperature calibrator.  
Refer to the document, System Calibration and Unit Conversion Using mx + b, p/n 457-0949  
for detailed information. A PDF version of the document is included on your data acquisition  
CD.  
6-2  
Calibration  
10-14-02  
DaqTemp User’s Manual  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Specifications  
7
There are currently four different models of DaqTemp, as indicated by the following table. Each DaqTemp includes a signal  
connection module, a 3 foot cable, a DaqTemp PCI plug-in board, DaqView software, and drivers for DASYLab, LabVIEW,  
and Windows languages.  
Counter/  
Frequency  
Inputs  
Timer/  
Pulse  
Outputs Outputs  
TC  
Inputs  
7
Voltage  
Inputs  
Analog  
Digital  
I/O  
Module  
DaqTemp7  
DaqTemp7A  
DaqTemp14  
DaqTemp14A  
7
7
7
7
4
4
4
4
2
2
2
2
0
2
0
4
24  
7
24  
14  
24  
14  
24  
General  
Supply Voltage Range: 4.75 VDC to 5.25 VDC (from PCI Bus)  
Power Consumption: 5.5 W  
Operating Temperature: 0° to +60°C  
Storage Temperature: -40° to +80°C  
Relative Humidity: 0 to 95%, non-condensing  
Vibration: MIL STD 810E  
PCI Board Dimensions: 165 mm W x 15 mm D x 108 mm H (6.5” x 0.6” x 4.2”)  
Signal Connection Module Dimensions: 86 mmW x 240 mm D x 42 mm H (3.4” x 9.44” x 1.65”)  
A/D Specifications  
Type: Successive approximation  
Resolution: 16 bit  
Conversion Time: 5 us  
Maximum Sample Rate: 200 kHz  
Nonlinearity (Integral): 1 LSB  
Nonlinearity (Differential): No missing codes  
Voltage Inputs  
Channels: 7 differential inputs, programmable on a per-channel basis for unipolar or bipolar  
Bandwidth: 500 kHz  
Settling Time: 5 us to 1 LSB for full-scale step  
Temperature Coefficient: (10ppm +0.3 LSB)/°C  
Input Impedance: 20M Ohm (differential)  
Bias Current: <1nA (0 to 35°C)  
Voltage Accuracy** One Year, 0 to 35°C  
(% reading+% range)  
Absolute  
Transfer †  
(% reading+% range)  
-5 to +5V  
Absolute  
Transfer †  
0 to +10V  
0.015 + 0.005  
0.015 + 0.005  
0.015 + 0.005  
0.015 + 0.008  
0.015 + 0.008  
0.015 + 0.008  
0.015 + 0.005  
0.004 + 0.002  
0.004 + 0.002  
0.004 + 0.002  
0.004 + 0.002  
0.004 + 0.002  
0.004 + 0.003  
0.004 + 0.001  
0.015 + 0.005  
0.015 + 0.005  
0.015 + 0.005  
0.015 + 0.008  
0.015 + 0.008  
0.020 + 0.008  
0.004 + 0.001  
0.004 + 0.001  
0.004 + 0.001  
0.004 + 0.001  
0.004 + 0.0015  
0.004 + 0.0015  
0 to +5V  
-2.5 to +2.5V  
0 to +2.5V  
-1.25 to +1.25V  
-0.625 to +0.625V  
-0.3125 to +0.3125V  
-0.156 to +0.156V  
0 to +1.25V  
0 to +0.625V  
0 to +0.3125V  
-10 to +10V  
* Specifications assume differential input, single-channel scan, 200-kHz scan rate, unfiltered.  
** The accuracy specification is exclusive of noise.  
† Transfer accuracy assumes calibration inside computer; applicable for measurements made 5°C from ambient temperature at calibration.  
DaqTemp User’s Manual  
09-04-02  
Specifications 7-1  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Common Mode Rejection: 86 dB, DC to 60 Hz for gains < =8; >100 dB for gains > =16  
Maximum Input Voltage: 11V relative to analog common  
Over-Voltage Protection: 35V  
Ranges: Software or sequencer selectable on a per-channel basis, from 156mV FS to 10V FS  
Crosstalk: 100 dB DC to 60 Hz; 86 dB @10 kHz  
Thermocouple Inputs  
Channels: 7 or 14 differential TC/mV inputs  
TC types: J, K, S, T, E, B R, N  
Input Voltage Range: +/- 100mV  
Input Impedance: 40M Ohm  
Input Bandwidth: 4 Hz  
Input Bias Current: 10 nA typ  
CMRR: 100dB typ  
Maximum Working Voltage (Signal + Common Mode): ±10V  
Over Voltage Protection: +/- 40V  
Voltage Accuracy: +/- (0.2% of rdg + 50uV)  
TC Accuracy: See table below. Valid for one year, 18 deg C to 28 deg C.  
Minimum TC resolution: 0.1 deg C for all TC types  
TC Accuracy at Measurement Temperature in °C (±°C)  
Type  
J
Min  
-200  
-200  
-200  
-270  
-50  
Max  
760  
-100  
0.6  
0.7  
0.7  
0.6  
0
100  
0.5  
0.6  
0.6  
0.5  
1.8  
1.6  
300  
0.6  
0.7  
0.6  
0.5  
1.5  
1.5  
3.7  
0.7  
0.7  
500  
0.7  
0.8  
700  
0.7  
0.8  
900  
1100  
1400  
0.5  
0.6  
0.6  
0.5  
2.3  
2.3  
1200  
400  
0.9  
1.0  
K
T
650  
0.6  
1.5  
1.4  
2.4  
E
1768  
1768  
1780  
400  
1.4  
1.4  
2.1  
1.5  
1.3  
1.8  
1.6  
1.4  
1.7  
1.6  
1.5  
1.5  
S
-50  
R
50  
B
-270  
0
0.9  
0.7  
0.7  
0.7  
0.7  
N28  
N14  
1300  
0.8  
0.8  
0.9  
1.0  
Accuracy conditions:  
Data is based on the use of a calibrated DaqTemp PCI Board  
The table reflects total system absolute accuracy, including accuracy of the CJC and DaqTemp PCI Board  
Excludes possible error from thermocouples  
Excludes noise  
VCM = 0  
7-2 Specifications  
09-04-02  
DaqTemp User’s Manual  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Input Sequencer  
Temperature, voltage, digital and frequency inputs can be scanned synchronously, based on either an internal programmable  
timer, or an external clock source. Analog and digital outputs can be synchronized to either of these clocks. Bus Mastering  
DMA provides CPU and system-independent data transfers, ensuring data acquisition performance irrespective of other  
system activities.  
Scan Clock Sources: 2  
1. Internal, programmable from 5 us to 5.96 hours in 5 us steps  
2. External, TTL level input up to 200 kHz max  
Programmable Parameters per Scan: Channel (random order), gain, unipolar/bipolar  
Depth: 512 locations  
On-Board Channel-to-Channel Scan Rate: 5 µs or 10 µs per channel, programmable  
Pacer Clock, also referred to as  
External Acquisition Scan Clock Input (A/ICLK and A/OCLK)  
Maximum Rate: 200 kHz  
Clock Signal Range: 0V to +5V  
Minimum Pulse Width: 50 ns high, 50 ns low  
Triggering  
Trigger Sources: 6, individually selectable for starting and stopping an acquisition. Stop acquisition can occur on a different  
channel than start acquisition; stop acquisition can be triggered via modes 2, 4, 5 or 6 described below. Pre-trigger is  
supported with fixed or variable pre-trigger periods.  
1. Single-Channel Analog Hardware Trigger  
Any voltage or TC input channel can be software programmed to be the analog trigger channel  
Input Signal Range: -10V to +10V max  
Trigger Level: Programmable (11-bit resolution)  
Hysteresis: Programmable (11-bit resolution)  
Latency: 5 µs max  
2. Single-Channel Analog Software Trigger  
Any voltage or TC input channel can be selected as the software trigger. If the trigger channel is a thermocouple, then the  
driver automatically compensates for the reading delay, resulting in a maximum latency of one scan period.  
Input Signal Range: Anywhere within range of the selected trigger channel  
Trigger Level: Programmable (16-bit resolution), including “window triggering”  
Latency: One scan period max.  
3. Single-Channel Digital Trigger  
A separate digital input is provided for digital triggering.  
Input Signal Range: -15V to +15V  
Trigger Level: TTL  
Minimum Pulse Width: 50 ns high, 50 ns low  
Latency: 5 µs max  
4. Digital Pattern Triggering  
8- or 16-bit pattern triggering on the digital input port. Programmable for trigger on equal, above, below, or within/outside of  
a window. Individual bits can be masked for “don’t care” condition.  
Latency: One scan period max.  
5. Counter/Totalizer Triggering  
Counter/totalizer inputs can trigger an acquisition. User can select to trigger on a frequency or on total counts that are equal,  
above, below, or within/outside of a window.  
Latency: One scan period max.  
6. Software Triggering  
Trigger can be initiated under program control.  
Analog Output  
DaqTemp User’s Manual  
09-04-02  
Specifications 7-3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
For DaqTemp7A and DaqTemp14A, analog output channels can be updated synchronously relative to scanned inputs, and  
clocked from either an internal onboard clock, or an external clock source. Analog outputs can also be updated  
asynchronously, independent of any other scanning in the system. Bus Mastering DMA provides CPU and system-  
independent data transfers, ensuring accurate outputs that are irrespective of other system activities. Streaming from disk or  
memory is supported, allowing continuous, nearly infinite length, waveform outputs (limited only by available PC system  
resources).  
Analog Output Channels:  
2 for DaqTemp7A, designated as DAC0 and DAC1  
4 for DaqTemp14A, designated as DAC0, DAC1, DAC2, and DAC3  
Resolution: 16 bits  
Output Voltage Range: 10V  
Output Current: 10 mA  
Offset Error: 0.0045V max  
Gain Error: 0.01%  
Update Rate: 100 kHz max, 1.5 Hz min (no minimum with external clock)  
Settling Time: 10 us max to 1 LSB for full-scale step  
Clock Sources: 4, programmable  
1. Onboard D/A clock, independent of scanning input clock  
2. Onboard scanning input clock  
3. External D/A input clock, independent of external scanning input clock  
4. External scanning input clock  
Digital I/O  
Channels: 24  
Input Scanning Modes: 2, programmable  
1. Asynchronous, under program control at any time relative to input scanning  
2. Synchronous with input scanning  
Ports: 3 x 8-bit (82C55 emulation); each port is programmable as input or output  
Input Characteristics: 100 Ohm series, 20 pF to common.  
I/O Levels: TTL  
Sampling/Update Rate: 200 kHz max®  
Frequency/Counters  
Counter inputs can be scanned synchronously along with voltage, TC and digital scanned inputs, based either on internal  
programmable timer, or an external clock source. Bus Mastering DMA provides CPU and system-independent data transfers  
ensuring data acquisition performance irrespective of other system activities. Counters can be configured to clear when read,  
or to totalize and clear under program control.  
Channels: 4 x 16-bit; can be cascaded as 2 x 32-bit  
Frequency Measurement Rate: 10 MHz max  
Input Signal Range: -15V to +15V  
Trigger Level: TTL  
Minimum Pulse Width: 50 ns high, 50 ns low  
Timer/Pulse Outputs  
Channels: 2 x 16-bit  
Output Waveform: Square wave  
Output Rate: 1 MHz base rate divided by 1 to 65535 (programmable)  
High-Level Output Voltage: 2.0V min @ -3.75 mA; 3.0V min @ -2.5 mA  
Low-Level Output Voltage: 0.4V max @ 2.5 mA  
NNE  
7-4 Specifications  
09-04-02  
DaqTemp User’s Manual  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Software  
The following software is included with DaqTemp: DaqView, Windows drivers for Visual Basic and C++, and drivers for  
LabVIEW and DASYLab.  
An optional software application, DaqView XL, provides a direct link from DaqView to Excel spreadsheets.  
Ordering Information  
All DaqTemp systems include a PCI measurement board; a 3 foot long, 100-conductor ribbon cable; a signal connection  
module; and software (see below). All relevant documentation is included, in PDF format, on the CD ROM that is supplied  
with the system.  
All DaqTemp models include the following I/O:  
7 differential voltage inputs  
24 digital I/O  
4 counter inputs  
2 timer outputs  
In addition to the above listed I/O, specific DaqTemp models provide the connections for the following:  
DaqTemp7 – 7 differential thermocouple inputs  
DaqTemp7A – 7 differential thermocouple inputs, and 2 analog outputs  
DaqTemp14 – 14 differential thermocouple inputs  
DaqTemp14A – 14 differential thermocouple inputs, and 4 analog outputs  
CE Cable Kit, p/n CA-209 – This kit includes:  
CE ORB  
CA-195CE, 100 conductor ribbon cable with copper bands  
cable clamps  
grounding pigtail  
associated screws  
instruction sheet  
See chapter 5 of this manual, CE Compliance, for additional information regarding the CA-209 CE Cable Kit.  
DaqTemp User’s Manual  
09-04-02  
Specifications 7-5  
Download from Www.Somanuals.com. All Manuals Search And Download.  
7-6 Specifications  
09-04-02  
DaqTemp User’s Manual  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Glossary  
Acquisition  
Analog  
A collection of scans acquired at a specified rate as controlled by the sequencer.  
A signal of varying voltage or current that communicates data.  
Analog-to-Digital  
Converter (ADC)  
A circuit or device that converts analog values into digital values, such as binary bits, for use in  
digital computer processing.  
API  
Application Program Interface. The interface program within the Daq system’s driver that  
includes function calls specific to Daq hardware and can be used with user-written programs  
(several languages supported).  
Bipolar  
Buffer  
A range of analog signals with positive and negative values (e.g., -5 to +5 V); see unipolar.  
Buffer refers to a circuit or device that allows a signal to pass through it, while providing  
isolation, or another function, without altering the signal. Buffer usually refers to:  
(a) A device or circuit that allows for the temporary storage of data during data transfers. Such  
storage can compensate for differences in data flow rates. In a FIFO (First In - First Out)  
buffer, the data that is stored first is also the first data to leave the buffer.  
(b) A follower stage used to drive a number of gates without overloading the preceding stage.  
(c) An amplifier which accepts high source impedance input and results in low source  
impedance output (effectively, an impedance buffer).  
Buffer Amplifier  
Channel  
An amplifier used primarily to match two different impedance points, and isolate one stage from  
a succeeding stage in order to prevent an undesirable interaction between the two stages. (Also  
see, Buffer).  
In reference to Daq devices, channel simply refers to a single input, or output entity.  
In a broader sense, an input channel is a signal path between the transducer at the point of  
measurement and the data acquisition system. A channel can go through various stages  
(buffers, multiplexers, or signal conditioning amplifiers and filters). Input channels are  
periodically sampled for readings.  
An output channel from a device can be digital or analog. Outputs can vary in a programmed  
way in response to an input channel signal.  
Common mode  
Common mode pertains to signals that are identical in amplitude and duration; also can be used  
in reference to signal components.  
Common mode  
voltage  
Common mode voltage refers to a voltage magnitude (referenced to a common point) that is  
shared by two or more signals. Example: referenced to common, Signal 1 is +5 VDC and  
Signal 2 is +6 VDC. The common mode voltage for the two signals is +5.5 VDC [(5 + 6)/2].  
Crosstalk  
Digital  
An undesired transfer of signals between systems or system components. Crosstalk causes signal  
interference, more commonly referred to as noise.  
A digital signal is one of discrete value, in contrast to a varying signal. Combinations of binary  
digits (0s and 1s) represent digital data.  
Glossary  
08-23-02  
G-1  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Digital-to-Analog  
Converter (DAC)  
A circuit or device that converts digital values (binary bits), into analog signals.  
DIP switch  
A DIP switch is a group of miniature switches in a small Dual In-line Package (DIP). Typically,  
users set these switches to configure their particular application.  
Differential mode  
The differential mode measures a voltage between 2 signal lines for a single channel. (Also see  
single-ended mode).  
Differential mode  
voltage  
Differential mode voltage refers to a voltage difference between two signals that are referenced to  
a common point. Example: Signal 1 is +5 VDC referenced to common. Signal 2 is +6 VDC  
referenced to common.  
If the +5 VDC signal is used as the reference, the differential mode voltage is +1 VDC  
(+ 6 VDC - +5 VDC = +1 VDC).  
If the +6 VDC signal is used as the reference, the differential mode voltage is -1 VDC  
(+ 5 VDC - +6 VDC = -1 VDC).  
ESD  
Electrostatic discharge (ESD) is the transfer of an electrostatic charge between bodies having  
different electrostatic potentials. This transfer occurs during direct contact of the bodies, or  
when induced by an electrostatic field. ESD energy can damage an integrated circuit (IC).  
Excitation  
Some transducers [e.g. strain gages, thermistors, and resistance temperature detectors (RTDs)]  
require a known voltage or current. Typically, the variation of this signal through the  
transducer corresponds to the condition measured.  
Gain  
The degree to which an input signal is amplified (or attenuated) to allow greater accuracy and  
resolution; can be expressed as ×n or ±dB.  
Isolation  
The arrangement or operation of a circuit so that signals from another circuit or device do not  
affect the isolated circuit.  
In reference to Daq devices, isolation usually refers to a separation of the direct link between the  
signal source and the analog-to-digital converter (ADC). Isolation is necessary when measuring  
high common-mode voltage.  
Linearization  
Some transducers produce a voltage in linear proportion to the condition measured. Other  
transducers (e.g., thermocouples) have a nonlinear response. To convert nonlinear signals into  
accurate readings requires software to calibrate several points in the range used and then  
interpolate values between these points.  
Multiplexer (MUX)  
Sample (reading)  
A device that collects signals from several inputs and outputs them on a single channel.  
The value of a signal on a channel at an instant in time. When triggered, the ADC reads the  
channel and converts the sampled value into a 12- or 16-bit value.  
Scan  
The channels that are selected for sampling.  
Sequencer  
A programmable device that manages channels and channel-specific settings.  
Simultaneous  
Sample-and-Hold  
An operation that gathers samples from multiple channels at the same instant and holds these  
values until all are sequentially converted to digital values.  
Single-ended mode  
The single-ended mode measures a voltage between a signal line and a common reference that  
may be shared with other channels. (Also see differential mode).  
G-2  
08-23-02  
Glossary  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Trigger  
An event to start a scan or mark an instant during an acquisition. The event can be defined in  
various ways; e.g., a TTL signal, a specified voltage level in a monitored channel, a button  
manually or mechanically engaged, a software command, etc. Some applications may use pre-  
and post-triggers to gather data around an instant or based on signal counts.  
TTL  
Transistor-Transistor Logic (TTL) is a circuit in which a multiple-emitter transistor has replaced  
the multiple diode cluster (of the diode-transistor logic circuit); typically used to communicate  
logic signals at 5 V.  
Unipolar  
A range of analog signals that is always zero or positive (e.g., 0 to 10 V). Evaluating a signal in  
the right range (unipolar or bipolar) allows greater resolution by using the full-range of the  
corresponding digital value. See bipolar.  
Glossary  
08-23-02  
G-3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
G-4  
08-23-02  
Glossary  
Download from Www.Somanuals.com. All Manuals Search And Download.  
WARRANTY/DISCLAIMER  
OMEGA ENGINEERING, INC. warrants this unit to be free of defects in materials and workmanship for a  
period of 13 months from date of purchase. OMEGA’s WARRANTY adds an additional one (1) month  
grace period to the normal one (1) year product warranty to cover handling and shipping time. This  
ensures that OMEGA’s customers receive maximum coverage on each product.  
If the unit malfunctions, it must be returned to the factory for evaluation. OMEGA’s Customer Service  
Department will issue an Authorized Return (AR) number immediately upon phone or written request.  
Upon examination by OMEGA, if the unit is found to be defective, it will be repaired or replaced at no  
charge. OMEGA’s WARRANTY does not apply to defects resulting from any action of the purchaser,  
including but not limited to mishandling, improper interfacing, operation outside of design limits,  
improper repair, or unauthorized modification. This WARRANTY is VOID if the unit shows evidence of  
having been tampered with or shows evidence of having been damaged as a result of excessive corrosion;  
or current, heat, moisture or vibration; improper specification; misapplication; misuse or other operating  
conditions outside of OMEGA’s control. Components in which wear is not warranted, include but are not  
limited to contact points, fuses, and triacs.  
OMEGA is pleased to offer suggestions on the use of its various products. However,  
OMEGA neither assumes responsibility for any omissions or errors nor assumes liability for any  
damages that result from the use of its products in accordance with information provided by  
OMEGA, either verbal or written. OMEGA warrants only that the parts manufactured by the  
company will be as specified and free of defects. OMEGA MAKES NO OTHER WARRANTIES OR  
REPRESENTATIONS OF ANY KIND WHATSOEVER, EXPRESSED OR IMPLIED, EXCEPT THAT OF  
TITLE, AND ALL IMPLIED WARRANTIES INCLUDING ANY WARRANTY OF MERCHANTABILITY  
AND FITNESS FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. LIMITATION OF  
LIABILITY: The remedies of purchaser set forth herein are exclusive, and the total liability of  
OMEGA with respect to this order, whether based on contract, warranty, negligence,  
indemnification, strict liability or otherwise, shall not exceed the purchase price of the  
component upon which liability is based. In no event shall OMEGA be liable for  
consequential, incidental or special damages.  
CONDITIONS: Equipment sold by OMEGA is not intended to be used, nor shall it be used: (1) as a “Basic  
Component” under 10 CFR 21 (NRC), used in or with any nuclear installation or activity; or (2) in medical  
applications or used on humans. Should any Product(s) be used in or with any nuclear installation or  
activity, medical application, used on humans, or misused in any way, OMEGA assumes no responsibility  
as set forth in our basic WARRANTY/DISCLAIMER language, and, additionally, purchaser will indemnify  
OMEGA and hold OMEGA harmless from any liability or damage whatsoever arising out of the use of the  
Product(s) in such a manner.  
RETURN REQUESTS/INQUIRIES  
Direct all warranty and repair requests/inquiries to the OMEGA Customer Service Department. BEFORE  
RETURNING ANY PRODUCT(S) TO OMEGA, PURCHASER MUST OBTAIN AN AUTHORIZED RETURN  
(AR) NUMBER FROM OMEGAS CUSTOMER SERVICE DEPARTMENT (IN ORDER TO AVOID  
PROCESSING DELAYS). The assigned AR number should then be marked on the outside of the return  
package and on any correspondence.  
The purchaser is responsible for shipping charges, freight, insurance and proper packaging to prevent  
breakage in transit.  
FOR WARRANTY RETURNS, please have the  
following information available BEFORE  
contacting OMEGA:  
FOR NON-WARRANTY REPAIRS, consult OMEGA  
for current repair charges. Have the following  
information available BEFORE contacting OMEGA:  
1. Purchase Order number under which the product  
was PURCHASED,  
1. Purchase Order number to cover the COST  
of the repair,  
2. Model and serial number of the product under  
warranty, and  
3. Repair instructions and/or specific problems  
relative to the product.  
2. Model and serial number of the product, and  
3. Repair instructions and/or specific problems  
relative to the product.  
OMEGA’s policy is to make running changes, not model changes, whenever an improvement is possible. This affords  
our customers the latest in technology and engineering.  
OMEGA is a registered trademark of OMEGA ENGINEERING, INC.  
© Copyright 2005 OMEGA ENGINEERING, INC. All rights reserved. This document may not be copied, photocopied,  
reproduced, translated, or reduced to any electronic medium or machine-readable form, in whole or in part, without the  
prior written consent of OMEGA ENGINEERING, INC.  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Where Do I Find Everything I Need for  
Process Measurement and Control?  
OMEGA…Of Course!  
Shop online at omega.com  
TEMPERATURE  
ߜ
 
ߜ
 
ߜ
 
ߜ
 
ߜ
 
Thermocouple, RTD & Thermistor Probes, Connectors, Panels & Assemblies  
Wire: Thermocouple, RTD & Thermistor  
Calibrators & Ice Point References  
Recorders, Controllers & Process Monitors  
Infrared Pyrometers  
PRESSURE, STRAIN AND FORCE  
ߜ
 
ߜ
 
ߜ
 
ߜ
 
Transducers & Strain Gages  
Load Cells & Pressure Gages  
Displacement Transducers  
Instrumentation & Accessories  
FLOW/LEVEL  
ߜ
 
ߜ
 
ߜ
 
ߜ
 
Rotameters, Gas Mass Flowmeters & Flow Computers  
Air Velocity Indicators  
Turbine/Paddlewheel Systems  
Totalizers & Batch Controllers  
pH/CONDUCTIVITY  
ߜ
 
ߜ
 
ߜ
 
ߜ
 
pH Electrodes, Testers & Accessories  
Benchtop/Laboratory Meters  
Controllers, Calibrators, Simulators & Pumps  
Industrial pH & Conductivity Equipment  
DATA ACQUISITION  
ߜ
 
ߜ
 
ߜ
 
ߜ
 
ߜ
 
Data Acquisition & Engineering Software  
Communications-Based Acquisition Systems  
Plug-in Cards for Apple, IBM & Compatibles  
Datalogging Systems  
Recorders, Printers & Plotters  
HEATERS  
ߜ
 
ߜ
 
ߜ
 
ߜ
 
ߜ
 
Heating Cable  
Cartridge & Strip Heaters  
Immersion & Band Heaters  
Flexible Heaters  
Laboratory Heaters  
ENVIRONMENTAL  
MONITORING AND CONTROL  
ߜ
 
ߜ
 
ߜ
 
ߜ
 
ߜ
 
ߜ
 
Metering & Control Instrumentation  
Refractometers  
Pumps & Tubing  
Air, Soil & Water Monitors  
Industrial Water & Wastewater Treatment  
pH, Conductivity & Dissolved Oxygen Instruments  
M3882/1205  
Download from Www.Somanuals.com. All Manuals Search And Download.  

Miller Electric Welder XMT 456 CC User Manual
Milwaukee Power Hammer 1 1 2 User Manual
Multiquip Marine Instruments Model WM45H User Manual
Net2Phone Network Card Max 420 SIP User Manual
Palsonic Microwave Oven COD 30537 User Manual
Panasonic All in One Printer KX F1070 User Manual
Panasonic Camcorder AG AF100P User Manual
Panasonic Digital Camera BB HCM311 User Manual
Panasonic Plumbing Product EVQP4 User Manual
Panasonic Printer DX 2000 User Manual