| 	
		 ® 
					EI-5237   
					Ages 8+   
					Grades 3+   
					Download from Www.Somanuals.com. All Manuals Search And Download.   
				Where Are the Planets Now?   
					Because the planets are constantly moving as they orbit the sun, their locations change from day to day. The motions   
					of the planets follow very regular patterns. Scientists can calculate where each planet will be at any given time.   
					One way to describe the positions of the planets is in terms of their heliocentric longitude. This is a coordinate system   
					with the sun as its center: the Greek root helio means “sun.” Scientists use the sun’s equator as a reference point   
					to locate objects in space.   
					A planet moves in two main ways. It rotates   
					(spins) on its own axis. It revolves around, or   
					A planet’s heliocentric longitude is given in degrees, from 0º to 359º.   
					orbits, the sun. A “planetary day” is the length   
					Notice the numbered markings on the top and bottom of the central tower.   
					of time a planet takes to completely rotate on   
					These are “planetary addresses” or heliocentric longitude markings. Using   
					its axis. The time it takes for a planet to   
					these with the Heliocentric Longitude Chart below, you can arrange the   
					planets to closely approximate their current positions.   
					1. Locate the date nearest to the current date on the Heliocentric   
					completely revolve around the sun is called a   
					“planetary year.” See the “Creating a Living   
					Solar System Model” exercise on page 3 and the   
					chart on page 4 for related information.   
					Longitude Chart.   
					2. As you read across the row, you’ll see a number listed for each planet. This indicates the planet’s heliocentric   
					longitude.   
					3. Move each planet’s rod so that it lines up with the correct number marking. (The electrical power should be   
					turned off for this activity.)   
					Model Not to Scale   
					Explain to students that classroom solar system models cannot show planet sizes to scale. For example, the sun must   
					be shown much smaller in comparison to the planets than it actually is. In reality, the sun is about 108 times the Earth’s   
					diameter and is about 1 million times greater in volume: a million planets the size of Earth could fit inside it!   
					The distance between planets is also difficult to represent on a model. The planets are actually small compared to   
					the distances between them! If, for example, our model-sized dwarf planet Pluto were shown a correct relative   
					distance from our model-sized sun, it would need to be about 30 miles (48 km) away!   
					Heliocentric Longitude (Planetary Address) Chart*   
					DATE   
					1/1/10   
					2/1/10   
					3/1/10   
					4/1/10   
					5/1/10   
					6/1/10   
					7/1/10   
					8/1/10   
					9/1/10   
					10/1/10   
					11/1/10   
					12/1/10   
					1/1/11   
					2/1/11   
					3/1/11   
					4/1/11   
					5/1/11   
					6/1/11   
					7/1/11   
					8/1/11   
					9/1/11   
					10/1/11   
					11/1/11   
					12/1/11   
					1/1/12   
					2/1/12   
					3/1/12   
					4/1/12   
					5/1/12   
					6/1/12   
					7/1/12   
					8/1/12   
					9/1/12   
					10/1/12   
					11/1/12   
					12/1/12   
					1/1/13   
					2/1/13   
					3/1/13   
					4/1/13   
					5/1/13   
					6/1/13   
					7/1/13   
					8/1/13   
					9/1/13   
					10/1/13   
					11/1/13   
					12/1/13   
					Mercury   
					82º   
					223º   
					303º   
					94º   
					Venus   
					275º   
					324º   
					8º   
					Earth   
					101º   
					132º   
					161º   
					191º   
					221º   
					251º   
					279º   
					309º   
					339º   
					8º   
					Mars   
					117º   
					131º   
					143º   
					157º   
					170º   
					184º   
					197º   
					212º   
					227º   
					242º   
					259º   
					276º   
					294º   
					313º   
					331º   
					351º   
					9º   
					Jupiter   
					335º   
					337º   
					340º   
					343º   
					345º   
					348º   
					351º   
					354º   
					357º   
					359º   
					2º   
					5º   
					8º   
					11º   
					13º   
					16º   
					19º   
					22º   
					24º   
					27º   
					30º   
					33º   
					36º   
					38º   
					41º   
					44º   
					47º   
					49º   
					52º   
					55º   
					58º   
					60º   
					324°   
					66º   
					68º   
					71º   
					Saturn   
					179º   
					180º   
					181º   
					182º   
					183º   
					184º   
					185º   
					186º   
					187º   
					188º   
					189º   
					190º   
					191º   
					192º   
					193º   
					194º   
					195º   
					196º   
					197º   
					198º   
					199º   
					200º   
					201º   
					202º   
					203º   
					204º   
					205º   
					206º   
					207º   
					208º   
					209º   
					210º   
					174°   
					212º   
					213º   
					214º   
					214º   
					215º   
					216º   
					217º   
					218º   
					219º   
					220º   
					221º   
					222º   
					223º   
					224º   
					225º   
					Uranus   
					356º   
					356º   
					356º   
					357º   
					357º   
					357º   
					358º   
					358º   
					358º   
					359º   
					359º   
					359º   
					0º   
					Neptune   
					326º   
					326º   
					326º   
					326º   
					327º   
					327º   
					327º   
					327º   
					327º   
					328º   
					328º   
					328º   
					328º   
					328º   
					328º   
					329º   
					329º   
					329º   
					329º   
					329º   
					330º   
					330º   
					330º   
					330º   
					330º   
					330º   
					331º   
					331º   
					331º   
					331º   
					331º   
					332º   
					325°   
					332º   
					332º   
					332º   
					333º   
					333º   
					333º   
					333º   
					333º   
					333º   
					334º   
					334º   
					334º   
					334º   
					334º   
					335º   
					Pluto   
					273º   
					273º   
					273º   
					274º   
					274º   
					274º   
					274º   
					274º   
					274º   
					275º   
					275º   
					275º   
					275º   
					275º   
					276º   
					276º   
					276º   
					276º   
					276º   
					276º   
					277º   
					277º   
					277º   
					277º   
					277º   
					277º   
					278º   
					278º   
					278º   
					278º   
					278º   
					278º   
					272°   
					279º   
					279º   
					279º   
					279º   
					279º   
					280º   
					280º   
					280º   
					280º   
					280º   
					280º   
					281º   
					281º   
					281º   
					281º   
					58º   
					226º   
					317º   
					113º   
					237º   
					331º   
					136º   
					249º   
					344º   
					157º   
					260º   
					353º   
					166º   
					262º   
					12º   
					179º   
					274º   
					34º   
					194º   
					285º   
					52º   
					208º   
					298º   
					71º   
					217º   
					304º   
					96º   
					227º   
					317º   
					287°   
					238º   
					332º   
					138º   
					249º   
					349º   
					148º   
					255º   
					354º   
					167º   
					263º   
					14º   
					106º   
					156º   
					205º   
					255º   
					304º   
					351º   
					41º   
					39º   
					69º   
					89º   
					139º   
					189º   
					234º   
					283º   
					331º   
					20º   
					100º   
					132º   
					160º   
					191º   
					220º   
					250º   
					279º   
					309º   
					338º   
					8º   
					0º   
					0º   
					1º   
					1º   
					1º   
					2º   
					2º   
					2º   
					3º   
					3º   
					3º   
					4º   
					4º   
					4º   
					5º   
					5º   
					5º   
					6º   
					6º   
					354°   
					7º   
					7º   
					7º   
					8º   
					8º   
					8º   
					9º   
					9º   
					9º   
					10º   
					10º   
					10º   
					10º   
					11º   
					11º   
					28º   
					46º   
					63º   
					79º   
					68º   
					118º   
					169º   
					217º   
					267º   
					314º   
					3º   
					094º   
					109º   
					122º   
					136º   
					150º   
					163º   
					176º   
					189º   
					204º   
					218º   
					233º   
					56°   
					266º   
					284º   
					302º   
					322º   
					341º   
					359º   
					18º   
					36º   
					53º   
					70º   
					085º   
					101º   
					115º   
					129º   
					142º   
					38º   
					69º   
					100º   
					132º   
					161º   
					192º   
					221º   
					251º   
					280º   
					309º   
					339°   
					8º   
					053º   
					99º   
					150º   
					198º   
					248º   
					296º   
					345º   
					78°   
					82º   
					132º   
					181º   
					231º   
					280º   
					325º   
					14º   
					39º   
					69º   
					101º   
					132º   
					161º   
					192º   
					221º   
					251º   
					279º   
					309º   
					339º   
					8º   
					74º   
					77º   
					79º   
					82º   
					84º   
					87º   
					90º   
					92º   
					95º   
					97º   
					100º   
					102º   
					62º   
					112º   
					160º   
					211º   
					260º   
					308º   
					357º   
					45º   
					184º   
					274º   
					36º   
					39º   
					69º   
					195º   
					
					Download from Www.Somanuals.com. All Manuals Search And Download.   
				Classroom Activities   
					Where Will the Planets Be When…?   
					After students have arranged the planets in their current positions, use the Heliocentric Longitude Chart to see   
					where the planets will be on other dates. Try the end of the school year, different winter holidays, or perhaps a   
					student’s birthday.   
					Creating a Living Solar System Model   
					Younger students will enjoy “acting out” the movement of the solar system. This activity works best outdoors, in a   
					paved area with plenty of space.   
					1. Spend time before class making nine signs, one for the sun and one for each planet. If you wish, draw a 10th   
					sign for Pluto. Write each planet’s name and symbol on a large card or on a sheet of paper. The symbols are   
					listed in the Planetary Features Chart on page 4. (The sun’s symbol is located on the sun sphere.)   
					2. Begin the lesson by drawing a circle about two feet in diameter on the pavement with chalk. This circle   
					will be your sun’s position.   
					3. Next, draw another circle surrounding it. Draw seven more circles, each encircling the previous one. These   
					circles will represent the orbits of the planets. Space the circles widely enough so that students walking   
					along the orbits will not bump into each other. If you wish, draw an extra circle for Pluto.   
					4. Choose students to enact the roles of the sun and the planets. Pass out the cards. The “sun” should stand   
					in the central circle. Each “planet” will walk along its orbital path around the sun.   
					5. Here’s the tricky part: The planets and the sun rotate on their axes. They all spin eastward, except for   
					Venus, which spins retrograde, or backward. The student portraying Venus should spin to the right,   
					while the other students spin to the left.   
					6. Tell your “planets” to spin slowly or they’ll dizzily spin out of orbit! In reality, the planets never stop moving,   
					but ask your “planets” to rest if they get dizzy!   
					Calculating Revolution Periods for the Planets   
					In the Motorized Solar System model, all of the planets take the same amount of time to make one revolution   
					around the sun. In reality, the planets orbit the sun at very different speeds. In this activity, students will time Earth’s   
					revolution, then use the information in the Planetary Features Chart to calculate what the revolution times for   
					other planets should be.   
					1. Position Earth at 0º longitude.   
					2. Start timing (with a stopwatch or digital watch) as you switch on the Motorized Solar System.   
					3. Write down how long it takes Earth to make a complete revolution and reach 0º again.   
					4. The Planetary Features Chart lists that it takes 88 Earth days for Mercury to orbit the sun, and 365 days   
					88   
					for Earth to orbit the sun. Multiply your recorded time by 365 . Your result will be the amount of time it   
					would take Mercury to complete one orbit of the sun if Earth used your recorded time and if the relative   
					speeds in the model were accurate.   
					5. Relative revolution periods can be found for other planets in the same way, but make sure students don’t   
					confuse years with days. For example, it takes Neptune 164 Earth years to orbit the sun. There’s no need   
					to convert that figure to Earth days, since we know that 365 days equals one Earth year. Simply multiply   
					your recorded time by 164.   
					Locating the Planets in the Night Sky   
					Using the Heliocentric Longitude Chart on page 2, choose a particular day and align the planets on their support   
					rods according to their degree locations. Look at Earth’s location. The portion of Earth always pointed at the sun   
					represents noontime or midday. Taking a straight-edge, veer off to the left—keeping the sun below the horizon,   
					represented by the straight-edge—from Earth. Any planets that are above the horizon should be visible in the night   
					sky. Depending on the day, you could see Saturn, Jupiter, Mars, Venus, or Mercury with the unaided eye. Viewing   
					depends on clear, dark skies.   
					Download from Www.Somanuals.com. All Manuals Search And Download.   
				Planetary Features Chart   
					Position   
					relative   
					to sun   
					Average   
					distance   
					from sun   
					“Year”: Period Average “Day”: Time it   
					Diameter   
					Planet Symbol   
					of time to   
					orbit sun   
					Atmosphere   
					Moons* Temperature   
					orbital   
					speed   
					takes to   
					at equator   
					rotate on axis   
					almost non-existent;   
					trace amounts of   
					hydrogen and helium   
					35,980,000 mi   
					(57,900,000 km)   
					30 mi/sec   
					(48 km/sec)   
					-279 to 801 ºF   
					(-173 to 427 ºC)   
					3,031 mi   
					(4,879 km)   
					Mercury   
					Venus   
					Earth   
					88 Earth days   
					224.7 Earth days   
					365.26 Earth days   
					1.88 Earth years   
					11.86 Earth years   
					29.42 Earth years   
					83.75 Earth years   
					164 Earth years   
					248 Earth years   
					0 
					1st   
					2nd   
					3rd   
					4th   
					5th   
					6th   
					7th   
					8th   
					59 Earth days   
					243 Earth days   
					mostly carbon dioxide;   
					sulfuric acid clouds obscure   
					view of surface   
					67,210,000 mi   
					(108,200,000 km)   
					22 mi/sec   
					(35 km/sec)   
					900 ºF average   
					(482 ºC average)   
					7,521 mi   
					(12,104 km)   
					0 
					78% nitrogen, 21% oxygen,   
					1% argon, carbon dioxide,   
					and trace gases   
					92,960,000 mi   
					(149,600,000 km)   
					18.5 mi/sec   
					(30 km/sec)   
					-129 to 136 ºF   
					(-90 to 58 ºC)   
					7,926 mi   
					(12,756 km)   
					23 hours,   
					56 minutes   
					1 
					141,700,000 mi   
					(227,900,000 km)   
					15 mi/sec   
					(24 km/sec)   
					-185 to 50 ºF   
					(-140 to 20 ºC)   
					4,222 mi   
					(6,794 km)   
					24 hours,   
					37 minutes   
					Mars   
					primarily carbon dioxide   
					2 
					average cloud   
					483,700,000 mi   
					(778,300,000 km)   
					8 mi/sec   
					(13 km/sec)   
					90% hydrogen   
					10% helium   
					88,846 mi   
					(142,980 km)   
					9 hours,   
					51 minutes   
					Jupiter   
					Saturn   
					Uranus   
					Neptune   
					Pluto   
					60   
					33   
					21   
					11   
					1 
					temperature   
					-186 ºF (-121 ºC)   
					average cloud   
					temperature   
					-193 ºF (-125 ºC)   
					888,200,000 mi   
					(1,429,400,000 km)   
					6 mi/sec   
					(10 km/sec)   
					97% hydrogen   
					3% helium   
					74,898 mi   
					(120,540 km)   
					10 hours,   
					39 minutes   
					83% hydrogen   
					15% helium   
					2% methane   
					average cloud   
					temperature   
					-193 ºF (-125 ºC)   
					1,786,500,000 mi   
					(2,875,000,000 km)   
					4 mi/sec   
					(7 km/sec)   
					31,763 mi   
					(51,120 km)   
					17 hours,   
					14 minutes   
					74% hydrogen   
					25% helium   
					1% methane   
					average cloud   
					temperature   
					-315 ºF (-193 ºC)   
					2,799,100,000 mi   
					(4,504,400,000 km)   
					3 mi/sec   
					(5 km/sec)   
					30,800 mi   
					(49,500 km)   
					16 hours,   
					7 minutes   
					6 Earth days,   
					9 hours,   
					18 minutes   
					3,676,200,000 mi   
					(5,915,800,000 km)   
					3 mi/sec   
					(5 km/sec)   
					methane gases frozen into   
					ice for most of its orbit   
					-387 to -369 ºF   
					(-233 to 223 ºC)   
					Dwarf   
					Planet   
					1,430 mi   
					(2,300 km)   
					*Scientists are constantly discovering new planetary moons and space objects. For the most up-to-date information, check one of NASA’s websites   
					
					Interpreting the Planetary Features Chart   
					Both younger and older students can benefit from a discussion about the Planetary Features Chart. Duplicate   
					this chart and distribute copies to the students. Begin your discussion by posing some simple riddles that students   
					can answer by using the chart. For example, “I spin the fastest on my axis” (Jupiter), or “I’m the smallest planet”   
					(Mercury). Then explore some of the topics below. Each begins with questions you might raise to get students   
					thinking about the characteristics of the planets.   
					Which are the hottest planets? Where are they located?   
					Which are the coldest planets? Where are they located?   
					The planets closest to the sun tend to be the hottest. As you would expect, it gets very hot on Mercury, the   
					planet closest to the sun. During Mercury’s night (which lasts 59 Earth days), however, it can be much colder   
					than the lowest temperatures ever recorded on Earth. This is because Mercury has almost no atmosphere to   
					hold in the heat and because the night lasts so long. Venus has an atmosphere much denser than Earth’s.   
					Its thick atmosphere traps and holds the heat of the sun. Combined with its closeness to the sun, this makes   
					Venus the most consistently hot planet with surface temperatures high enough to melt lead!   
					Which are the four smallest planets? What are they made of?   
					Which are the four biggest planets? What are they made of?   
					The four inner planets—Mercury, Venus, Earth, and Mars—are small and dense. They are made up of   
					rocks and metals. Scientists call these terrestrial, or earth-like, planets.   
					Jupiter, Saturn, Uranus, and Neptune are often called the “gas giants.” They are made mostly of gases,   
					liquid, and ice. They are made up mainly of the elements hydrogen and helium. Because they consist mostly   
					of gas, they are much less dense than the inner planets. This means that they contain less matter per   
					unit of volume. Saturn’s density is less than water. In fact, Saturn could float on a giant body of either   
					fresh or salt water.   
					Very little is known about the dwarf planet, Pluto. Scientists believe it is made largely of ice.   
					Download from Www.Somanuals.com. All Manuals Search And Download.   
				Which planets have the most moons? Are they large or small planets?   
					The larger planets have a stronger gravitational pull, so they often have many satellites, or moons. These   
					larger planets can “capture” or pull moons into their gravitational fields more easily because objects (such   
					as moons) move more slowly in space.   
					Which planet has a “day” that is longer than its “year”?   
					Venus rotates very slowly on its axis: one day is as long as 243 days on Earth! Yet Venus completes an   
					orbit around the sun in only 225 days.   
					Which planets have the fastest orbital speeds? Are the faster planets near the sun or far from the sun?   
					The planets closer to the sun move through space faster.   
					What else is out there?   
					Beyond Neptune there is a ring of thousands of small bodies orbiting the sun. This disk-shaped ring   
					of icy objects is called the Kuiper (KI-per) Belt. Pluto and its moon, Charon, are part of the Kuiper Belt.   
					There are also a number of comets in this region. The Kuiper Belt has been called the ”Final Frontier”   
					of our solar system.   
					Fun Facts   
					Pluto was discovered in 1930. For 76 years it was considered a planet. In 2006, Pluto was reclassified as a   
					dwarf planet. Since its discovery, Pluto has completed only 31% of one revolution around the sun. By the   
					year 2178, it will have completed one revolution (or one Plutonian year).   
					Jupiter spins the fastest on its axis. Its day lasts less than 10 hours. It also spins so fast that the round planet has a   
					flattened appearance.   
					In 1543, the Polish astronomer and priest Nicolaus Copernicus noted that Earth revolved around the sun. Before   
					then, people believed that the sun revolved around Earth.   
					The sun is very large compared to the planets. However, compared to other stars, the sun is an average-sized star.   
					The sun is our closest star.   
					Using the Star Dome   
					Here’s a second way to explore space: create your own classroom planetarium! The   
					star dome converts the solar system model into a planetarium projector.   
					1. Remove the top half of the sun sphere. Put the star dome in its place. Make   
					sure the tab on the edge of the star dome fits into the notch on the lower half   
					of the sun sphere.   
					2. The projected image will look best in a darkened room. If possible, turn off   
					the lights and close the shades.   
					3. Switch on the light at the base of the tower. Stars, constellation names, and   
					constellation outlines will be projected onto the walls and ceiling of the room.   
					The farther light travels before hitting a surface, the bigger the image will   
					appear. Moving the tower closer to and further from the walls or ceiling will   
					alter the image. To get the best image, experiment with different distances.   
					Star Dome Classroom Activities   
					Constellations are clusters of stars whose patterns resemble shapes and figures. Breaking the 1,000 to 1,500 stars visible   
					on a dark night into constellations helps people easily find and remember the names and locations of stars. For   
					thousands of years, different cultures have divided the night sky into different constellations. They used the stars to help   
					them navigate, to plan when to plant crops, and for religious purposes. The Greeks and Romans named their   
					constellations after the gods and heroes in their mythology. In 1929 the International Astronomical Union   
					divided the stars into 88 official constellations that are used by astronomers today. Most of these constellations   
					come from the Greek and Roman view of the sky. The next page lists constellations that are on this model’s star   
					dome. As your class observes this stellar display, try some of the activities provided. Note: Southern Hemisphere   
					constellations are not included in this list.   
					Download from Www.Somanuals.com. All Manuals Search And Download.   
				Northern Hemisphere Constellations   
					Andromeda (Andromeda)   
					Aquila (Eagle)   
					Hydra (Water Monster)   
					Lacerta (Lizard)   
					Aries (Ram)   
					Leo (Lion)   
					Auriga (Charioteer)   
					Boötes (Herdsman)   
					Camelopardus (Giraffe)   
					Cancer (Crab)   
					Canes Venatici (Hunting Dogs)   
					Canis Minor (Little Dog)   
					Cassiopeia (Cassiopeia)   
					Cepheus (Cepheus)   
					Cetus (Whale)   
					Leo Minor (Little Lion)   
					Lynx (Lynx)   
					Lyra (Lyre)   
					Ophiuchus (Serpent Holder)   
					Orion (Orion/hunter)   
					Pegasus (Pegasus)   
					Perseus (Perseus)   
					Pisces (Fishes)   
					Polaris (North Star)*   
					Sagitta (Arrow)   
					Serpens (Serpent)   
					Taurus (Bull)   
					Coma Berenices (Berenice’s Hair)   
					Corona Borealis (Northern Crown)   
					Cygnus (Swan)   
					Delphinus (Dolphin)   
					Draco (Dragon)   
					Equuleus (Little Horse)   
					Gemini (Twins)   
					Triangulum (Triangle)   
					Ursa Major (Great Bear)   
					Ursa Minor (Little Bear)   
					Virgo (Virgin)   
					Hercules (Hercules)   
					*not a constellation   
					Pictures in the Sky   
					Ask students whether they think the constellations projected by the star dome resemble the names   
					they’ve been given. Tell each student to choose a constellation. What kind of figure or object do they   
					see in the pattern of stars? Encourage creativity: students might look at the constellation traditionally   
					called the Great Bear and see a skunk, a man waving hello, or a frying pan. Students should copy   
					down the pattern of stars, draw a figure around them, and name their constellation. Have your students   
					write stories and create histories around their invented constellations.   
					What’s in a Name?   
					Assign names from the list above such as Hercules, Orion, or   
					Cassiopeia. Have your students research and write about these   
					mythological figures. Who was Hercules? What did he do? Why   
					was he important?   
					Star Stories   
					Other cultures view the evening sky differently. For example, Native   
					American groups see different patterns than those previously discussed.   
					These constellations have rich stories and traditions behind them. This topic is   
					called “archaeoastronomy.” Have your students research the Lakota, the Navajo, and other groups   
					and compare findings. Research additional non-Western cultures in a similar fashion.   
					Related Websites   
					
					NASA’s informative website with links for students and educators   
					http://www.nasm.si.edu/ceps/etp/ The Smithsonian’s National Air and Space Museum’s “Exploring the   
					Planets” website   
					Download from Www.Somanuals.com. All Manuals Search And Download.   
				Adapter Use   
					Always follow these steps when using the Motorized Solar System and Planetarium   
					with an adapter.   
					1. Turn the on/off switch to the OFF position.   
					2. Plug the AC adapter jack into the AC adapter port at the base of the tower.   
					3. Carefully plug the AC adapter into a wall socket.   
					4. Turn the on/off switch to ON.   
					5. Adapters used with this are to be regularly examined for damage to the cord, plug enclosure and other parts, and   
					that, in the event of such damage, this item must not be used with this adapter until the damage has been repaired.   
					Battery Installation   
					1. Use a screwdriver to carefully open the battery compartment on the   
					bottom of the tower.   
					2. Install four fresh C-size batteries in a two-on-two format, following the   
					illustration here.   
					Batteries must be installed with the correct polarity.   
					Only batteries of the same or equivalent type are to be used.   
					Alkaline batteries are preferable.   
					Do not mix old and new batteries.   
					Do not mix different types of batteries: alkaline, standard   
					(carbon-zinc), or rechargeable (nickel-cadmium) batteries.   
					Do not use rechargeable batteries.   
					The supply terminals must not be short-circuited.   
					Non-rechargeable batteries are not to be recharged.   
					Remove exhausted batteries from the unit.   
					3. Secure the compartment door.   
					4. To prevent battery corrosion, it is recommended that the batteries be   
					removed from the unit if it is not in use for two weeks.   
					Bulb Replacement   
					This krypton bulb’s product number is: KPR113. When replacing the bulb, refer to this product number.   
					Please also note these additional specifications:   
					Bulb Type: 4.5V 0.5A krypton lamp   
					Current Voltage: 4.5V   
					Current Rating: 500MA   
					Filament Shape: C-2R   
					Caution: While the unit is in operation, the light bulb gets hot. Warn students not to touch the bulb. If the bulb   
					burns out, wait until it has cooled before replacing it.   
					Cleaning Instructions   
					1. Disconnect the AC adapter before cleaning.   
					2. Clean the product with a dry or damp cloth.   
					3. Do not immerse or spray any liquid or water on the product.   
					Developed in Southern California by Educational Insights.   
					© Educational Insights, Inc., Gardena, CA (U.S.A.). All rights reserved. Learning   
					Resources Ltd., King’s Lynn, Norfolk (U.K.). Please retain this information.   
					Made in China.   
					
					Fabriqué en Chine. Informations à conserver.   
					Made in China.   
					Bitte bewahren Sie unsere   
					Adresse für spätere Nachfragen auf.   
					Conservar estos datos.   
					Hecho en China.   
					Download from Www.Somanuals.com. All Manuals Search And Download.   
				 |