Agilent Technologies Water Dispenser 8156A User Manual

S
$JLOHQWꢀ7HFKQRORJLHVꢀꢁꢂꢃꢄ$ꢀ$WWHQXDWRUꢀ2SHUDWLQJꢀDQGꢀ  
3URJUDPPLQJꢀ*XLGH  
S1  
Download from Www.Somanuals.com. All Manuals Search And Download.  
6DIHW\ꢀ6XPPDU\  
The following general safety precautions must be observed during  
all phases of operation of this instrument. Failure to comply with  
these precautions or with specific warnings elsewhere in this  
manual violates safety standards of design, manufacture, and  
intended use of the instrument. Agilent Technologies assumes no  
liability for the customers failure to comply with these  
requirements.  
*(1(5$/  
This product is a Safety Class 1 instrument (provided with a  
protective earth terminal). The protective features of this product  
may be impaired if it is used in a manner not specified in the  
operation instructions.  
All Light Emitting Diodes (LEDs) used in this product are Class 1  
LEDs as per IEC 60825-1.  
(19,5210(17$/ꢀ&21',7,216  
This instrument is intended for indoor use in an installation category  
II, pollution degree 2 environment. It is designed to operate at a  
maximum relative humidity of 95% and at altitudes of up to 2000  
meters. Refer to the specifications tables for the ac mains voltage  
requirements and ambient operating temperature range.  
%()25(ꢀ$33/<,1*ꢀ32:(5  
Verify that the product is set to match the available line voltage, the  
correct fuse is installed, and all safety precautions are taken. Note  
the instruments external markings described under Safety Symbols.  
Download from Www.Somanuals.com. All Manuals Search And Download.  
*5281'ꢀ7+(ꢀ,167580(17  
To minimize shock hazard, the instrument chassis and cover must  
be connected to an electrical protective earth ground. The  
instrument must be connected to the ac power mains through a  
grounded power cable, with the ground wire firmly connected to an  
electrical ground (safety ground) at the power outlet. Any  
interruption of the protective (grounding) conductor or  
disconnection of the protective earth terminal will cause a potential  
shock hazard that could result in personal injury.  
)86(6  
Only fuses with the required rated current, voltage, and specified  
type (normal blow, time delay, etc.) should be used. Do not use  
repaired fuses or short-circuited fuse holders. To do so could cause  
a shock or fire hazard.  
'2ꢀ127ꢀ23(5$7(ꢀ,1ꢀ$1ꢀ(;3/26,9(ꢀ$70263+(5(  
Do not operate the instrument in the presence of flammable gases or  
fumes.  
'2ꢀ127ꢀ5(029(ꢀ7+(ꢀ,167580(17ꢀ&29(5  
Operating personnel must not remove instrument covers.  
Component replacement and internal adjustments must be made  
only by qualified service personnel.  
Instruments that appear damaged or defective should be made  
inoperative and secured against unintended operation until they can  
be repaired by qualified service personnel.  
Download from Www.Somanuals.com. All Manuals Search And Download.  
2WKHUꢀ6DIHW\ꢀ,QIRUPDWLRQ  
Adjustments described in this manual are performed with power  
supplied to the instrument while protective covers are removed.  
Be aware that energy at many points, if contacted, result in  
personal injury.  
Do not install substitute parts or perform any unauthorized  
modification to the instrument.  
Be aware that capacitors inside the instrument may still be  
charged even if the instrument has been connected from its  
source of supply.  
:$51,1*  
:$51,1*  
To avoid hazardous electrical shock, do not operate the instrument  
if there are any signs of damage to any portion of the outer  
enclosure (covers, panels, and so on).  
To avoid the possibility of injury or death, you must observe the  
following precautions before powering on the instrument.  
If this instrument is to be energized via an autotransformer for  
voltage reduction, ensure that the Common terminal connects  
to the earthed pole of the power source.  
Insert the power cable plug only into a socket outlet provided  
with a protective earth contact. Do not negate this protective  
action by the using an extension cord without a protective  
conductor.  
Before switching on the instrument, the protective earth  
terminal of the instrument must be connected to a protective  
conductor. You can do this by using the power cord supplied  
with the instrument.  
It is prohibited to interrupt the protective earth connection  
intentionally.  
Download from Www.Somanuals.com. All Manuals Search And Download.  
The following work should be carried out by a qualified  
electrician. All local electrical codes must be strictly observed:  
If the plug on the cable does not fit the power outlet, or if the cable  
is to be attached to a terminal block, cut the cable at the plug end  
and rewire it.  
The color coding used in the cable depends on the cable supplied. If  
you are connecting a new plug, it should meet the local safety  
requirements and include the following features:  
Adequate load-carrying capacity (see table of specifications).  
Ground connection.  
Cable clamp.  
:$51,1*  
:$51,1*  
To avoid the possibility of injury or death, please note that the  
Agilent 8156A does not have a floating earth.  
The Agilent 8156A is not designed for outdoor use. To prevent  
potential fire or shock hazard, do not expose the instrument to rain  
or other excessive moisture.  
:DUQLQJVꢀDQGꢀ&DXWLRQV  
:$51,1*  
The WARNING sign denotes a hazard. It calls attention to a  
procedure, practice, or the like, which, if not correctly performed or  
adhered to, could result in personal injury. Do not proceed beyond a  
WARNING sign until the indicated conditions are fully understood  
and met.  
Download from Www.Somanuals.com. All Manuals Search And Download.  
&$87,21  
The CAUTION sign denotes a hazard. It calls attention to an  
operating procedure, or the like, which, if not correctly performed  
or adhered to, could result in damage to or destruction of part or all  
of the product. Do not proceed beyond a CAUTION sign until the  
indicated conditions are fully understood and met.  
6DIHW\ꢀ6\PEROV  
&DXWLRQꢅꢀUHIHUꢀWRꢀDFFRPSDQ\LQJꢀGRFXPHQWV  
:DUQLQJꢅꢀULVNꢀRIꢀHOHFWULFꢀVKRFN  
)UDPHꢀRUꢀFKDVVLVꢀWHUPLQDO  
3URWHFWLYHꢀHDUWKꢀꢆJURXQGꢇꢀWHUPLQDO  
+D]DUGRXVꢀODVHUꢀUDGLDWLRQ  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
$ERXWꢀ7KLVꢀ0DQXDO  
7KHꢀ6WUXFWXUHꢀRIꢀWKLVꢀ0DQXDO  
This manual is divided into 4 parts:  
Chapter 1 tells you how to set up your Attenuator.  
Chapters 2 to 6 shows you what you can do with your Attenuator.  
Chapters 7 to 9 show you how you can remotely program your  
Attenuator, using GPIB commands.  
The appendices contain additional information not required for  
routine day-to-day use.  
Download from Www.Somanuals.com. All Manuals Search And Download.  
6HUYLFHꢀDQGꢀ6XSSRUW  
Any adjustment, maintenance, or repair of this product must be  
performed by qualified personnel. Contact your customer engineer  
through your local Agilent Technologies Service Center. You can  
find a list of local service representatives on the Web at:  
If you do not have access to the Internet, one of these centers can  
direct you to your nearest representative:  
8QLWHGꢀ6WDWHV  
7HVWꢀDQGꢀ0HDVXUHPHQWꢀ&DOOꢀ&HQWHU  
ꢆꢁꢈꢈꢇꢀꢉꢃꢊꢋꢉꢁꢉꢉꢀꢆ7ROOꢀIUHHꢀLQꢀ86ꢇ  
ꢆꢌꢈꢃꢇꢀꢊꢈꢄꢋꢉꢍꢊꢃ  
&DQDGD  
(XURSH  
-DSDQ  
ꢆꢎꢂꢀꢊꢈꢇꢀꢃꢉꢍꢀꢌꢌꢈꢈ  
0HDVXUHPHQWꢀ$VVLVWDQFHꢀ&HQWHU  
ꢆꢁꢂꢇꢀꢉꢊꢄꢀꢃꢄꢀꢍꢁꢎꢊ  
ꢆꢁꢂꢇꢀꢉꢊꢄꢀꢃꢄꢀꢍꢁꢉꢈꢀꢆ)$;ꢇ  
/DWLQꢀ$PHULFD  
ꢆꢎꢈꢃꢇꢀꢊꢄꢍꢀꢉꢊꢉꢃ  
ꢆꢎꢈꢃꢇꢀꢊꢄꢍꢀꢉꢊꢁꢁꢀꢆ)$;ꢇ  
$XVWUDOLDꢁ1HZꢀ  
=HDODQG  
ꢂꢀꢁꢈꢈꢀꢄꢊꢌꢀꢉꢁꢃꢀꢆ$XVWUDOLDꢇꢀ  
ꢈꢁꢈꢈꢀꢍꢎꢁꢀꢎꢍꢁꢀꢆ1HZꢀ=HDODQGꢇ  
$VLDꢂ3DFLILF  
ꢆꢁꢃꢊꢇꢀꢊꢃꢌꢌꢀꢍꢍꢍꢍ  
ꢆꢁꢃꢊꢇꢀꢊꢃꢈꢄꢀꢌꢊꢁꢃꢀꢆ)$;ꢇ  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Download from Www.Somanuals.com. All Manuals Search And Download.  
Using the Modify Keys ...................................................... 29  
Making an Automatic Sweep ............................................ 30  
1.3 The Manual Sweep .................................................31  
1.4 Using your Attenuator as a Variable Back Reflector  
1.5 Using the Through-Power Mode ..........................33  
1.6 Selecting the Wavelength Calibration and Its Function  
2.1 Setting Up the Hardware ......................................37  
2.2 Setting Up the Attenuation .....................................38  
Entering the Attenuation Factor ........................................ 38  
Entering a Calibration Factor ............................................ 39  
Entering the Wavelength ................................................... 40  
2.3 Example, Setting the Calibration ..........................42  
3 Making an Attenuation Sweep  
3.1 Configuring the Hardware ....................................47  
11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
3.2 The Automatic Sweep ............................................48  
Setting Up an Automatic Sweep ........................................48  
Executing the Automatic Sweep ........................................50  
3.3 The Manual Sweep .................................................51  
Setting Up a Manual Sweep ...............................................51  
Executing the Manual Sweep .............................................53  
flector  
4.1 Configuring the Hardware ....................................59  
Editing the Setup .................................................................60  
Executing the Back Reflector Application .........................61  
5.1 Setting the GPIB Address .....................................67  
Resetting the GPIB Address ...............................................67  
5.2 Selecting the Wavelength Calibration and Its Function  
67  
Setting the Function of the Wavelength Calibration ..........68  
Selecting the Wavelength Calibration Data .......................69  
12  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Table of Contents  
5.3 Selecting the Through-Power Mode .....................70  
Deselecting the Through-Power Mode ............................... 71  
5.4 Setting the Display Brightness ..............................71  
5.5 Selecting the Setting used at Power-On ...............72  
Resetting the Power-On Setting ........................................ 72  
5.6 Locking Out ENB/DIS .............................................72  
Resetting the ENB/DIS Lock Out ....................................... 73  
Resetting the Shutter State at Power On ............................ 73  
5.8 Setting the Display Resolution ..............................74  
Resetting the Display Resolution ...................................... 74  
6 Storing and Recalling Settings  
Resetting the Instrument .................................................... 77  
Recalling a User Setting .................................................... 77  
7 Programming the Attenuator  
7.1 GPIB Interface .......................................................81  
7.2 Setting the GPIB Address .....................................83  
13  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Table of Contents  
7.3 Returning the Instrument to Local Control ........83  
How the Input Queue Works ..............................................83  
The Output Queue ..............................................................84  
The Error Queue .................................................................84  
7.5 Some Notes about Programming and Syntax Diagram  
Short Form and Long Form ................................................85  
Command and Query Syntax .............................................86  
Common Status Information ..............................................93  
*CLS ...................................................................................95  
*ESE ...................................................................................95  
*IDN? .................................................................................97  
*OPC ..................................................................................98  
*OPT? ................................................................................98  
*RCL ..................................................................................99  
*RST ..................................................................................99  
*SAV ..................................................................................100  
*SRE ..................................................................................101  
*STB? .................................................................................102  
14  
Download from Www.Somanuals.com. All Manuals Search And Download.  
:STATus:OPERation:CONDition? .................................... 116  
:STATus:OPERation:ENABle .......................................... 117  
:STATus:OPERation[:EVENt]? ........................................ 117  
:STATus:OPERation:NTRansition ................................... 118  
:STATus:OPERation:PTRansition .................................... 118  
:STATus:QUEStionable:CONDition? ............................... 119  
:STATus:QUEStionable:ENABle ..................................... 119  
:STATus:QUEStionable[:EVENt]? ................................... 120  
:STATus:QUEStionable:NTRansition .............................. 120  
:STATus:QUEStionable:PTRansition ............................... 121  
:STATus:PRESet ............................................................... 122  
8.8 SYSTem Commands ...............................................122  
15  
Download from Www.Somanuals.com. All Manuals Search And Download.  
8.9 User Calibration Commands .................................123  
Entering the User Calibration Data ....................................123  
9 Programming Examples  
9.1 Example 1 - Checking Communication ................131  
9.3 Example 3 - Measuring and Including the Insertion  
A.1 Safety Considerations ...........................................143  
Replacing the Battery .........................................................146  
Replacing the Fuse .............................................................146  
A.4 Operating and Storage Environment ...................148  
Temperature ........................................................................148  
Humidity ............................................................................148  
Instrument Positioning and Cooling ...................................148  
A.5 Switching on the Attenuator .................................149  
16  
Download from Www.Somanuals.com. All Manuals Search And Download.  
A.6 Monitor Output ......................................................149  
A.7 Optical Output ......................................................150  
Disabling the Optical Output ............................................. 150  
A.8 GPIB Interface ......................................................150  
Connector ........................................................................... 151  
A.9 Claims and Repackaging .......................................152  
Return Shipments to Agilent Technologies ........................ 152  
B Accessories  
B.1 Instrument and Options .......................................157  
Straight Contact Connector ................................................ 158  
Option 201, Angled Contact Connector ............................. 160  
C.1 Definition of Terms ...............................................165  
C.2 Specifications ..........................................................167  
Supplementary Performance Characteristics ...................... 169  
C.3 Other Specifications ...............................................171  
C.4 Declaration of Conformity ....................................172  
17  
Download from Www.Somanuals.com. All Manuals Search And Download.  
D.2 Test Record .............................................................177  
D.5 Performance Test ...................................................178  
I. Total Insertion Loss Test .................................................179  
II. Linearity/Attenuation Accuracy Test .............................182  
III. Attenuation Repeatability Test ......................................184  
Polarization Dependant Loss Test (Mueller method) .........192  
Cleaning Instructions for this Instrument ............................248  
E.1 Safety Precautions ..................................................249  
E.3 What do I need for proper cleaning? ...................250  
Standard Cleaning Equipment .............................................250  
Additional Cleaning Equipment ..........................................253  
E.4 Preserving Connectors ...........................................256  
Making Connections ...........................................................256  
Dust Caps and Shutter Caps ................................................256  
Immersion Oil and Other Index Matching Compounds ......256  
18  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Procedure for Stubborn Dirt ............................................... 261  
E.10 How to clean bare fiber adapters ........................261  
Preferred Procedure ............................................................ 261  
Procedure for Stubborn Dirt ............................................... 262  
E.11 How to clean lenses ...............................................262  
Preferred Procedure ............................................................ 262  
face ..................................................................................263  
E.13 How to clean instruments with an optical glass plate  
264  
E.14 How to clean instruments with a physical contact in-  
terface .............................................................................264  
Preferred Procedure ............................................................ 265  
Procedure for Stubborn Dirt ............................................... 265  
19  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Alternative Procedure A ......................................................270  
Alternative Procedure B ......................................................271  
E.19 Other Cleaning Hints ...........................................271  
Making the connection ........................................................271  
Immersion oil and other index matching compounds .........272  
Cleaning the housing and the mainframe ............................272  
F Error messages  
F.1 Display Messages ...................................................275  
20  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Table of Contents  
F.2 GPIB Messages .......................................................276  
Command Errors ................................................................. 276  
Execution Errors ................................................................. 280  
Device-Specific Errors ....................................................... 281  
Query Errors ....................................................................... 282  
Instrument Specific Errors .................................................. 283  
21  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Table of Contents  
22  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Figure 2-2 The Attenuation Factor on the Display .................................................... 38  
Figure 3-2 The Parameters for an Automatic Sweep ................................................. 49  
Figure 3-3 Selecting the Automatic Sweep Application ........................................... 49  
Figure 9-1 Hardware Configuration for Attenuation Example - A ........................... 135  
Figure 9-2 Hardware Configuration for Attenuation Example - B ............................ 136  
Figure A-1 Line Power Cables - Plug Identification ................................................. 144  
Figure A-2 Rear Panel Markings ............................................................................... 145  
Figure A-3 Releasing the Fuse Holder ...................................................................... 147  
Figure A-4 The Fuse Holder ...................................................................................... 147  
Figure A-5 Correct Positioning of the Attenuator ..................................................... 149  
Figure A-6 GPIB Connector ...................................................................................... 151  
Figure B-1 Straight Contact Connector Configuration .............................................. 159  
23  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Figure D-6 Total Insertion Loss Test Setup 2, Option 350 ....................................... 182  
Figure D-7 Return Loss Test Setup 1, Options 100, 101, 121 .................................. 185  
Figure D-8 Return Loss Test Setup 2, Options 100, 101 .......................................... 187  
Figure D-9 Return Loss Test Setup 2, Option 121 .................................................... 187  
Figure D-10 Return Loss Test Setup 1, Options 201, 221 ........................................ 188  
Figure D-11 Return Loss Test Setup 2, Option 201 .................................................. 189  
Figure D-12 Return Loss Test Setup 2, Option 221 .................................................. 190  
Figure D-13 PDL Test Setup 1: Reference Measurement ......................................... 192  
Figure D-14 PDL Test Setup 2: Power after DUT .................................................... 198  
24  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Table 8-8 The Status Byte Register ............................................................................ 102  
Table 8-9 The Self Test Results.................................................................................. 103  
Table A-1 Temperature .............................................................................................. 148  
Table C-1 Specifications - Options 100, 101 and 201................................................ 167  
Table C-2 Monitor Output Options ........................................................................... 168  
Table C-3 Multimode Options ................................................................................... 169  
Table D-1 Equipment Required for the Agilent 8156A (1310/1550nm) ................... 176  
Table D-2 Equipment for the PDL test 1.................................................................... 191  
Table D-3 Performance Test Agilent 8156A ............................................................. 200  
25  
Download from Www.Somanuals.com. All Manuals Search And Download.  
List of Tables  
26  
Download from Www.Somanuals.com. All Manuals Search And Download.  
1
1
Getting Started  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Getting Started  
This chapter introduces the features of the Agilent Technologies  
8156A. More detail is given on these features in the following  
chapters.  
The main features of the Agilent 8156A, other than its use as an  
attenuator, are its built-in sweep and back reflector applications, its  
through-power mode (which displays the power at the output of the  
instrument, rather than the amount of attenuation set) and its  
selection of wavelength calibration possibilities.  
28  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Getting Started  
Using the Attenuator  
1.1 Using the Attenuator  
NOTE  
Before using the instrument, you should make sure that it is properly  
warmed up. The instrument is properly warmed up when it has been  
switched on for a minimum of 45 minutes. Failure to do this can cause  
errors of up to 0.04dB in the attenuation.  
Set the attenuation of the filter using ATT (attenuation factor), λ  
(wavelength), and CAL (calibration factor).  
Figure 1-1  
The Attenuator Keys  
The attenuation factor and the calibration factor set the position of  
the filter. The calibration factor allows you to offset the value of the  
attenuation factor.  
Att(dB) = Cal(dB) + Attenuationfilter(dB)  
In addition, you can use DISPCAL to transfer the current  
attenuation factor to the calibration factor.  
Using the Modify Keys  
There are four modify keys on the front panel of the attenuator.  
29  
Download from Www.Somanuals.com. All Manuals Search And Download.  
               
Getting Started  
Making an Attenuation Sweep  
Figure 1-2  
The Modify Keys  
Editing a Number  
Use and to move the cursor from digit to digit when editing a  
number. Use and to change the value of a digit when editing a  
number.  
Editing a Non-Numeric Parameter  
Use or to increment the parameter.  
Use or to decrement the parameter.  
1.2 Making an Attenuation Sweep  
There are two types of attenuation sweep, automatic and manual.  
Making an Automatic Sweep  
An automatic sweep is one where stepping from one attenuation  
factor to the next is done by the instrument.  
To select the automatic sweep press SWP, and make sure that  
SWEEPis set to AUTO. By pressing SWP repeatedly you view and  
30  
Download from Www.Somanuals.com. All Manuals Search And Download.  
             
Getting Started  
The Manual Sweep  
can edit the parameters for the sweep. STARTis the attenuation  
factor at which the sweep begins, STOPis the attenuation factor  
that ends the sweep, STEPis the size of the attenuation factor  
change, and DWELLis the time taken for each attenuation factor.  
Figure 1-3  
The Parameters for an Automatic Sweep  
If you have set up your sweep, then you press EXEC to run it.  
1.3 The Manual Sweep  
A manual sweep is one where stepping from one attenuation factor  
to the next is done by the user.  
To select the manual sweep press SWP, and make sure that SWEEP  
is set to MANUAL. By pressing SWP repeatedly you can view and  
edit the parameters for the sweep. STARTis the attenuation factor  
at which the sweep begins, STOPis the attenuation factor that ends  
the sweep, and STEPis the size of the attenuation factor change.  
If you have set up your sweep, then you press EXEC to run it. To go  
to the next attenuation factor in the sweep, press or . To go to  
the previous attenuation factor in the sweep, press or .  
31  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Getting Started  
Using your Attenuator as a Variable Back Reflector  
1.4 Using your Attenuator as a Variable Back  
Reflector  
NOTE  
Before using the instrument, you should make sure that it is properly  
warmed up. The instrument is properly warmed up when it has been  
switched on for a minimum of 45 minutes. Failure to do this can cause  
errors of up to 0.04dB in the attenuation.  
To use the attenuator as a back reflector, you need to set up the  
hardware as shown in the figure below.  
Figure 1-4  
The Hardware Configuration for the Back Reflector (Options 201 and  
203)  
Press BACK REFL to start operation as a back reflector. You need to  
enter measured values for the insertion loss of the attenuator (INS  
LOSS), the return loss of the attenuator (RL INPUT), and the  
reference return loss you are using (RL REF). The return loss (RL)  
is calculated according to the equation  
RLInput(dB)  
-------------------------------------  
10  
RLInput(dB)  
-------------------------------------  
10  
(2(Att(dB) + InsLoss(dB)) + RLRef(dB))  
---------------------------------------------------------------------------------------------------------------  
10  
RL(dB) = –10log 10  
+
1 – 10  
10  
You edit the value for the return loss while the application is  
running.  
32  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
Getting Started  
Using the Through-Power Mode  
1.5 Using the Through-Power Mode  
NOTE  
Before using the instrument, you should make sure that it is properly  
warmed up. The instrument is properly warmed up when it has been  
switched on for a minimum of 45 minutes. Failure to do this can cause  
errors of up to 0.04dB in the attenuation.  
In the through-power mode, the instrument shows the power that  
gets through the attenuator on the display (that is the power at the  
output) rather than the attenuation.  
When you select the through-power mode the attenuation factor (in  
dB) becomes the value for the through-power (in dBm). Set the  
calibration factor (see Entering a Calibration Factoron page 39)  
to get the attenuation factor to the value of the through-power.  
After measuring and setting this base power value, press SYST  
repeatedly until THRUPOWRis shown at the bottom of the display.  
Select ONto select the through-power mode.  
Edit the through-power factor by pressing ATT, and then the  
Modify keys.  
1.6 Selecting the Wavelength Calibration and Its  
Function  
The attenuation at any point on the filter is wavelength dependent.  
This dependence is measured and stored in the instrument, and is  
used, with the value for the wavelength entered by the user to  
compensate for the dependence. This is the wavelength calibration  
data.  
There are two ways in which this data can be used:  
33  
Download from Www.Somanuals.com. All Manuals Search And Download.  
           
Getting Started  
Selecting the Wavelength Calibration and Its Function  
to reposition the filter so that the attenuation stays constant, or  
to change the attenuation factor on the display to show the  
wavelength dependence. You use this to set the wavelength for  
an unknown source (you alter the wavelength until the displayed  
attenuation matches the measured attenuation).  
To set the function of the calibration data press SYST repeatedly  
until LAMBDCALis shown at the bottom of the display. Set  
LAMBDCALto OFFto use the calibration data to reposition the  
filter, and set LAMBDCALto ONto use the calibration data to  
change the attenuation factor.  
As well as the wavelength calibration data measured for and stored  
in your instrument in the factory, there is space reserved in memory  
for a set of your own user calibration data. (You load this data into  
the instrument over the GPIB. See User Calibration Commands”  
on page 123)  
Press SYST repeatedly until USERCALis shown at the bottom of the  
display. OFFselects the factory-made wavelength calibration data.  
ONselects the user wavelength calibration data.  
34  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
2
2
Using the Attenuator  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Using the Attenuator  
This chapter describes the use of the Agilent Technologies 8156A  
as an attenuator. There is an example given at the end of this  
chapter.  
36  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Using the Attenuator  
Setting Up the Hardware  
2.1 Setting Up the Hardware  
To use the attenuator, you need to set up the hardware as shown in  
the figure below.  
Figure 2-1  
The Hardware Configuration for the Attenuator  
NOTE  
Before using the instrument, you should make sure that it is properly  
warmed up. The instrument is properly warmed up when it has been  
switched on for a minimum of 45 minutes. Failure to do this can cause  
errors of up to 0.04dB in the attenuation.  
The connector interface you need depends on the connector type  
you are using (see Connector Interfaces and Other Accessories”  
on page 158).  
If you have option 121 or option 221, then the Monitor Output  
provides a signal for monitoring the power getting through the  
attenuator. The signal level is approximately 5% of the output  
power level. For the most accurate results, you should measure the  
coupling ratio, and its wavelength dependence, for the Monitor  
Output yourself.  
37  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
Using the Attenuator  
Setting Up the Attenuation  
2.2 Setting Up the Attenuation  
The attenuation can be set in two different ways. This section  
describes how to set the attenuation by specifying the attenuation  
factor and an offset (called a calibration factor).  
Selecting the Through-Power Modeon page 70 describes how to  
set the attenuation by specifying the power that gets through.  
Entering the Attenuation Factor  
The attenuation factor is shown at the top left of the display.  
Figure 2-2  
The Attenuation Factor on the Display  
Edit the attenuation factor using the modify keys.  
The filter attenuation is changed while you edit the attenuation  
factor according to the equation:  
Attfilter(dB) = Att(dB) - Cal(dB)  
To edit the attenuation factor,  
1. press ATT, and  
2. edit the factor using the Modify keys (see Using the Modify  
Keyson page 29).  
38  
Download from Www.Somanuals.com. All Manuals Search And Download.  
         
Using the Attenuator  
Setting Up the Attenuation  
Resetting the Attenuation Factor  
To reset the attenuation factor, press and hold ATT until the value  
resets (this takes approximately two seconds). The attenuation  
factor resets so that the filter attenuation is zero, that is  
Att(dB) = Cal(dB)  
Entering a Calibration Factor  
The calibration factor is shown at the bottom left of the display  
Figure 2-3  
The Calibration Factor on the Display  
This factor does not affect the filter attenuation. It is used to offset  
the values for the attenuation factor.  
There are two ways of entering the calibration factor.  
by editing, and  
by transferring  
Editing the Calibration Factor  
You would use this, for example, to enter an offset to compensate  
for the insertion loss (attenuation) of your hardware setup.  
The filter attenuation stays constant while you edit the calibration  
factor. This means that the attenuation factor, shown on the display,  
changes according to the formula below (from equation (1)):  
AttNEW(dB) = Attfilter(dB) + CalNEW(dB) = AttOLD(dB) -CalOLD(dB) + CalNEW(dB)  
To edit an external calibration factor,  
39  
Download from Www.Somanuals.com. All Manuals Search And Download.  
           
Using the Attenuator  
Setting Up the Attenuation  
1. press CAL, and  
2. edit the factor using the Modify keys (see Using the Modify  
Keyson page 29).  
Resetting the Calibration Factor  
To reset the calibration factor, press and hold CAL until the value  
resets to zero (this takes approximately two seconds). The  
calibration factor resets to zero.  
Transferring to the Calibration Factor  
You can transfer the attenuation factor shown on the display into  
the calibration factor, so that the attenuation factor is reset to zero.  
You would use this, for example, after you have set the power  
through the attenuator at a specific level. When you have reset the  
attenuation factor, you can edit it to get a relative attenuation.  
The filter attenuation stays constant when you transfer to the  
calibration factor. This means that the new calibration factor is  
calculated from the attenuation factor and the old calibration factor  
according to the formula below (from equation (1)):  
CalNEW(dB) = -Attfilter(dB) = CalOLD(dB) - AttOLD(dB)  
To transfer to the calibration factor, press DISPCAL.  
Entering the Wavelength  
The attenuation at any point on the filter is wavelength dependent.  
This dependence is measured and stored in the instrument, and is  
used, with the value for the wavelength entered by the user, to  
compensate for the dependence. This is the wavelength calibration  
data.  
NOTE  
There are two ways of using the wavelength calibration data,  
to reposition the filter so that the attenuation stays constant, or  
to change the attenuation factor on the display to show the  
wavelength dependence. You use this to set the wavelength for an  
40  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
Using the Attenuator  
unknown source (you alter the wavelength until the displayed  
attenuation matches the measured attenuation).  
There are two sets of wavelength calibration data, one made in the  
factory, individually, for your instrument. The user defines the other.  
For more details on these topics, see Selecting the Wavelength  
Calibration and Its Functionon page 67.  
The wavelength is shown at the top right of the display.  
Figure 2-4  
The Wavelength on the Display  
Edit the wavelength using the modify keys.  
To edit the wavelength,  
1. press λ, and  
2. edit the value using the Modify keys (see Using the Modify  
Keyson page 29).  
Resetting the Wavelength  
To reset the wavelength, press and hold ATT until the value resets  
(this takes approximately two seconds). The wavelength resets to  
1310nm.  
41  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Using the Attenuator  
Example, Setting the Calibration  
2.3 Example, Setting the Calibration  
This example uses the Agilent 8156A Attenuator, with a HP 8153A  
multimeter with one source and one sensor. The connectors for this  
system are all HMS-10.  
We set up the hardware, and measure the insertion loss of the  
system and use this value to set a calibration factor.  
1. Configure the hardware as shown in the figure below, making  
sure that all the connectors are clean:  
Figure 2-5  
Hardware Configuration for Attenuation Example - A  
a. Make sure that the power sensor is installed in the  
multimeter mainframe in channel A, and the source is in  
channel B.  
b. Connect both instruments to the electric supply.  
c. Switch on both instruments.  
42  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Using the Attenuator  
Example, Setting the Calibration  
NOTE  
Under normal circumstances you should leave the instruments to  
warmup. (The multimeter needs around 20 minutes to warmup. The  
attenuator needs around 45 minutes with the shutter open to warmup.)  
Warming up is necessary for accuracy of the sensor, and the output  
power of the source.  
d. Connect a patchcord from the source to the input of the  
sensor.  
2. Measure the insertion loss of the Hardware setup:  
a. On the multimeter:  
i. Set the wavelength for the sensor to that of the source.  
ii. Activate the source, by pressing the gray button on its  
front panel.  
iii. Start the loss application (press MODE and then LOSS,  
and EXEC).  
b. Reconfigure the hardware to include the attenuator:  
i. Disconnect the source from the sensor, and connect it to  
the input of the attenuator.  
Figure 2-6  
Hardware Configuration for Attenuation Example - B  
ii. Connect a patchcord from the output of the attenuator to  
the sensor.  
43  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Using the Attenuator  
Example, Setting the Calibration  
c. Set the wavelength on the attenuator to that of the source:  
i. Press λ.  
ii. Use the modify keys to edit the value for the  
wavelength.  
d. Reset the calibration factor, by pressing and holding CAL  
for two seconds.  
e. Reset the attenuation factor, by pressing and holding ATT  
for two seconds.  
f. Enable the output of the attenuator (press ENB/DIS so that  
the LED lights).  
g. Note the value for the loss read by the multimeter.  
3. Enter the insertion loss of the hardware setup.  
a. Press CAL.  
b. Edit the calibration factor so that it has the value shown on  
the multimeter display, using the modify keys.  
You should notice that the value for the attenuation factor changes,  
and always has the same value as that for the calibration factor. This  
is because the filter attenuation stays at zero (you should also notice  
that the display on the multimeter does not change).  
The attenuator now shows its full attenuation (including its own  
insertion loss) on the display.  
44  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
3
3
Making an Attenuation  
Sweep  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Making an Attenuation  
Sweep  
This chapter describes how to make an attenuation sweep with the  
Agilent Technologies 8156A Attenuator. An example is given at the  
end of the chapter.  
46  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Making an Attenuation Sweep  
Configuring the Hardware  
3.1 Configuring the Hardware  
To use the attenuator for a sweep, you need to set up the hardware  
as shown in the figure below. (This is the configuration as given for  
simple attenuation in chapter 2).  
Figure 3-1  
The Hardware Configuration for the Attenuator  
NOTE  
Before using the instrument, you should make sure that it is properly  
warmed up. The instrument is properly warmed up when it has been  
switched on for a minimum of 45 minutes. Failure to do this can cause  
errors of up to 0.04dB in the attenuation.  
The connector interface you need depends on the connector type  
you are using (see Connector Interfaces and Other Accessories”  
on page 158).  
If you have option 121 or option 221 (the monitor output), then the  
Monitor Output provides a signal for monitoring the power getting  
through the attenuator. The signal level is approximately 5% of the  
output power level. For the most accurate results, you should  
measure the coupling ratio, and its wavelength dependence, for the  
Monitor Output yourself.  
47  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
Making an Attenuation Sweep  
The Automatic Sweep  
3.2 The Automatic Sweep  
An automatic sweep is one where stepping from one attenuation  
factor to the next is done by the instrument.  
Setting Up an Automatic Sweep  
There are four parameters for the automatic sweep  
STARTis the attenuation factor at which the sweep begins.  
STOPis the attenuation factor that ends the sweep. If START  
and STEPare such that the sweep does not end exactly at  
STOP, then the sweep ends at the immediately previous value.  
STEPis the size of the attenuation factor change. This value is  
always positive, even for a sweep of decreasing attenuation  
factor. STEPcannot be set to a value greater than the difference  
between STARTand STOP.  
DWELLis the time taken for each attenuation factor.  
NOTE  
The dwell time includes the time it takes for the filter attenuation to  
change. The time taken to change depends on the size of the attenuation  
factor change, and is in the range 20 to 400ms (typical value is 200ms).  
48  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
Making an Attenuation Sweep  
The Automatic Sweep  
Figure 3-2  
The Parameters for an Automatic Sweep  
Starting the Setting Up  
To select the automatic sweep  
1. Press SWP.  
2. If it is not already set, use or to set SWEEPto AUTO.  
Figure 3-3  
Selecting the Automatic Sweep Application  
Editing the Parameters  
To edit the value of the parameters  
3. Press SWP again to get START.  
4. Edit the value of STARTwith the Modify keys.  
5. Press SWP again to get STOP.  
49  
Download from Www.Somanuals.com. All Manuals Search And Download.  
         
Making an Attenuation Sweep  
The Automatic Sweep  
6. Edit the value of STOPwith the Modify keys.  
7. Press SWP again to get STEP.  
8. Edit the value of STEPwith the Modify keys.  
9. Press SWP again to get DWELL.  
10. Edit the value of DWELLwith the Modify keys.  
See Using the Modify Keyson page 29 for information on  
editing with the Modify keys.  
Resetting the Parameters  
value resets (this takes approximately two seconds).  
STARTand STOPreset so that the filter attenuation (inside the  
instrument) is zero, that is  
Start = Cal  
or  
Stop = Cal  
See Entering a Calibration Factoron page 39 for information  
about setting the calibration factor, Cal.  
STEPresets to zero.  
DWELLresets to 0.2 seconds.  
Executing the Automatic Sweep  
If you have just set up your sweep, then you only need to press  
EXEC to run the application.  
If you have already set up the sweep, and are currently operating  
the instrument as an attenuator,  
1. Press SWP, and then,  
2. Press EXEC.  
50  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Making an Attenuation Sweep  
The Manual Sweep  
Figure 3-4  
Running the Automatic Sweep  
If there is something wrong with a parameter (if STEPis zero, for  
example), this parameter is shown on the display for editing. Edit  
the parameter, and press EXEC again.  
Repeating the Sweep  
When the sweep is finished (SWEEP READYis shown at the  
bottom of the display), you can press EXEC to start it again.  
Restarting the Sweep  
To restart the sweep at any time while it is running, press EXEC.  
3.3 The Manual Sweep  
A manual sweep is one where stepping from one attenuation factor  
to the next is done by the user.  
Setting Up a Manual Sweep  
There are three parameters for a manual sweep  
STARTis the attenuation factor at which the sweep begins.  
STOPis the attenuation factor that ends the sweep. If START  
and STEPare such that the sweep does not end exactly at STOP,  
then the sweep ends at the immediately previous value.  
51  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
Making an Attenuation Sweep  
The Manual Sweep  
STEPis the size of the attenuation factor change. This value is  
always positive, even for a sweep of decreasing attenuation  
factor. STEPcannot be set to a value greater than the difference  
between STARTand STOP.  
Starting the Setting Up  
To select the manual sweep  
1. Press SWP.  
2. If it is not already set, use the modify keys to set SWEEPto  
MANUAL.  
Editing the Parameters  
To edit the value of the parameters  
3. Press SWP again to get START.  
4. Edit the value of STARTwith the Modify keys.  
5. Press SWP again to get STOP.  
6. Edit the value of STOPwith the Modify keys.  
Figure 3-5  
Editing the STOP Parameter  
7. Press SWP again to get STEP.  
8. Edit the value of STEPwith the Modify keys.  
See Using the Modify Keyson page 29 for information on  
editing with the Modify keys.  
52  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
Making an Attenuation Sweep  
The Manual Sweep  
Resetting the Parameters  
value resets (this takes approximately two seconds).  
STARTand STOPreset so that the filter attenuation (inside the  
instrument) is zero, that is  
Start = Cal  
or  
Stop = Cal  
See Entering a Calibration Factoron page 39 for information  
about setting the calibration factor, Cal.  
STEPresets to zero.  
Executing the Manual Sweep  
If you have just set up your sweep, then you only need to press  
EXEC to run the application.  
If you have already set up the sweep, and are currently operating  
the instrument as an attenuator,  
1. Press SWP, and then,  
2. Press EXEC.  
Figure 3-6  
Running the Manual Sweep  
If there is something wrong with a parameter (if STEPis zero, for  
example), this parameter is shown on the display for editing. Edit  
the parameter, and press EXEC again.  
53  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
Making an Attenuation Sweep  
Example, an Automatic Attenuation Sweep  
Changing the Attenuation in a Manual Sweep  
To go to the next attenuation factor in the sweep, press or .  
To go to the previous attenuation factor in the sweep, press or .  
3.4 Example, an Automatic Attenuation Sweep  
This example uses the Agilent 8156A Attenuator on its own.  
We set up the instrument to sweep from 5dB to 0dB with an interval  
of 0.5dB, dwelling for a second at each attenuation factor.  
1. First we want to reset the instrument.  
NOTE  
If someone else is using this instrument, please check with them before  
resetting, or store their setting for later recall.  
a. Press RECALL.  
b. Press EXEC.  
2. Start the automatic sweep application.  
a. Press SWP.  
b. If the sweep parameter is set to MANUAL, press , or to set  
it to AUTO.  
3. Set the start attenuation factor.  
a. Press SWP.  
b. Use the Modify keys to set STARTto 5.000dB.  
4. Set the attenuation factor step size.  
a. Press SWP, to get the stop parameter. We do not need to edit  
this parameter.  
b. Press SWP to get the step parameter.  
54  
Download from Www.Somanuals.com. All Manuals Search And Download.  
           
Making an Attenuation Sweep  
Example, an Automatic Attenuation Sweep  
c. Use the Modify keys to set STEPto 0.500dB.  
5. Set the dwell time.  
a. Press SWP.  
b. Use the Modify keys to set DWELLto 1.00s.  
6. Execute the sweep  
a. Press SWP.  
b. Make sure the output is enabled (press ENB/DIS until the  
LED lights).  
c. Press EXEC.  
55  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Making an Attenuation Sweep  
Example, an Automatic Attenuation Sweep  
56  
Download from Www.Somanuals.com. All Manuals Search And Download.  
4
4
Using your Attenuator as a  
Variable Back Reflector  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Using your Attenuator  
as a Variable Back  
Reflector  
This chapter describes how you can use your attenuator as a  
variable back reflector. An example using the back reflector kit  
(option 203 with option 201) is given at the end of the chapter.  
58  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Using your Attenuator as a Variable Back Reflector  
Configuring the Hardware  
4.1 Configuring the Hardware  
To use the attenuator as a back reflector, you need to set up the  
hardware as shown in the figure below.  
NOTE  
If this your first time to use the attenuator as a back reflector, you first  
need to make some measurements. These require other setups before  
setting up the hardware as shown below (see Setting Up the Software”  
on page 60).  
Figure 4-1  
The Hardware Configuration for the Back Reflector  
NOTE  
Before using the instrument, you should make sure that it is properly  
warmed up. The instrument is properly warmed up when it has been  
switched on for a minimum of 45 minutes. Failure to do this can cause  
errors of up to 0.04dB in the attenuation.  
If you are not using option 201, the connector interfaces you need  
depends on the connector type you are using. Option 121 or option  
221 (the monitor output) is of no use when using the attenuator as a  
back reflector. The disruption to the back reflection performance by  
leaving this output open is negligible, though you may want to  
terminate it to eliminate any small effect it might have.  
59  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
Using your Attenuator as a Variable Back Reflector  
Setting Up the Software  
4.2 Setting Up the Software  
There are four factors that influence the back reflection of the  
attenuator. These are  
1. the insertion loss of the attenuator (INS LOSS),  
2. the return loss of the attenuator (RL INPUT),  
3. the reference return loss you are using (RL REF), and  
4. the filter attenuation.  
The return loss (RL) is calculated according to the equation  
RLInput(dB)  
-------------------------------------  
10  
RLInput(dB)  
-------------------------------------  
10  
(2(Att(dB) + InsLoss(dB)) + RLRef(dB))  
---------------------------------------------------------------------------------------------------------------  
10  
RL(dB) = 10log 10  
+
1 10  
10  
You edit the values for the insertion loss, the reference return loss,  
and the return loss of the attenuator while you are setting up the  
application.  
You edit the value for the return loss while the application is  
executing. The instrument calculates and sets the required value for  
the filter attenuation.  
Editing the Setup  
Before you start setting up the back reflector application, you may  
need to measure the following values, if you do not already know  
them:  
The insertion loss of the instrument (see Example, Setting the  
Calibrationon page 42,  
The return loss of the instrument (with the output properly  
terminated), and  
The reference return loss value.  
60  
Download from Www.Somanuals.com. All Manuals Search And Download.  
             
Using your Attenuator as a Variable Back Reflector  
Setting Up the Software  
To start setting up the Back Reflector application  
1. Press BACK REFL.  
After pressing this the first parameter (INS LOSS) is ready to for  
editing.  
2. Edit the value insertion loss with the Modify keys.  
3. Press BACK REFL.  
4. Edit the value reference return loss with the Modify keys.  
Figure 4-2  
Editing the Value for the Reference Return Loss  
5. Press BACK REFL.  
6. Edit the value attenuator return loss with the Modify keys.  
See Using the Modify Keyson page 29 for information on  
editing with the Modify keys.  
Resetting the Parameters  
To reset any of the back reflector parameters, press and hold BACK  
REFL until the value resets (this takes approximately two seconds).  
INS LOSSresets to 2.000dB.  
RL REFresets to 14.700dB (the return loss for the glass/air  
interface at an open connector)  
RL INPUTresets to 60.000dB.  
Executing the Back Reflector Application  
If you have just set up the application, then you only need to press  
EXEC to run the application.  
61  
Download from Www.Somanuals.com. All Manuals Search And Download.  
         
Using your Attenuator as a Variable Back Reflector  
Example, Setting a Return Loss  
If you have already set up the application, and are currently  
operating the instrument as an attenuator,  
1. Press BACK REFL, and then,  
2. Press EXEC.  
Figure 4-3  
Executing the Back Reflector Application  
The value shown at the top left of the display is the return loss of  
the instrument. You can edit the value of the return loss with the  
Modify keys.  
4.3 Example, Setting a Return Loss  
This example uses the Ahilent Technologies 8156A Attenuator with  
options 201, and 203.  
Assuming an insertion loss of 2.00dB and a return loss of 60.000dB  
for the instrument we set up the instrument to have a return loss of  
20dB.  
62  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Using your Attenuator as a Variable Back Reflector  
Example, Setting a Return Loss  
1. Configure the hardware as shown in the figure below:  
Figure 4-4  
Hardware Configuration for Variable Return Loss  
a. Connect the instrument to the electric supply.  
b. Switch on the instrument.  
2. Reset the instrument.  
NOTE  
If someone else is using this instrument, please check with them before  
resetting, or store their setting for later recall.  
a. Press RECALL.  
b. Press EXEC.  
3. Set the return loss reference value for the Agilent 81000BR  
reference reflector.  
a. Press BACK REFL twice to select the RL REFparameter.  
b. Edit the value, with the Modify keys to set it to 0.180dB  
4. Press EXEC to start the application  
5. Edit the return loss value, with the Modify keys, to set it to  
20.000dB.  
63  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Using your Attenuator as a Variable Back Reflector  
Example, Setting a Return Loss  
64  
Download from Www.Somanuals.com. All Manuals Search And Download.  
5
5
Setting Up the System  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Setting Up the System  
This chapter describes how to set the various system parameters for  
your attenuator.  
66  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Setting Up the System  
Setting the GPIB Address  
5.1 Setting the GPIB Address  
To set the GPIB address of the attenuator  
1. Press SYST.  
2. Edit the value for ADDRESSusing the Modify keys.  
Resetting the GPIB Address  
To reset ADDRESS, press and hold SYST until the value resets (this  
takes approximately two seconds).  
ADDRESSresets to 28.  
5.2 Selecting the Wavelength Calibration and Its  
Function  
The attenuation at any point on the filter is wavelength dependent.  
This dependence is measured and stored in the instrument, and is  
used, with the value for the wavelength entered by the user to  
compensate for the dependence. This is the wavelength calibration  
data.  
As well as the wavelength calibration data measured for and stored  
in your instrument in the factory, there is space reserved in memory  
for a set of your own user calibration data.  
There are two choices concerning the use of wavelength calibration  
data.  
Whether or not the data should be used to position the filter to  
compensate for wavelength dependence.  
Whether the factory-made wavelength calibration data is used,  
or the data entered by the user.  
67  
Download from Www.Somanuals.com. All Manuals Search And Download.  
                 
Setting Up the System  
Selecting the Wavelength Calibration and Its Function  
Setting the Function of the Wavelength Calibration  
This compensation can be used  
to reposition the filter so that the attenuation stays constant, or  
to change the attenuation factor on the display to show the  
wavelength dependence. You use this to set the wavelength for  
an unknown source (you alter the wavelength until the displayed  
attenuation matches the measured attenuation).  
To set the function of the wavelength calibration data  
1. Press SYST repeatedly until LAMBDCALis shown at the bottom  
of the display.  
2. Select the wavelength calibration data function using the Modify  
keys. Set LAMBDCALto OFFso that the function of the  
wavelength calibration data is not visible to the user. This keeps  
the attenuation value fixed, and alters the filter position. Set  
LAMBDCALto ONto keep the filter position fixed, and for the  
function of the wavelength calibration data to be visible to the  
user.  
While it is ON, LAMBDCALis shown at the bottom left of the  
display (U/L-CALis shown if the USERCALis also on).  
Figure 5-1  
The LAMBDCAL Indicator on the Display  
Resetting the Function of the Wavelength  
Calibration Data  
To reset LAMBDCAL, press and hold SYST until the value resets  
(this takes approximately two seconds).  
LAMBDCALresets to OFF.  
68  
Download from Www.Somanuals.com. All Manuals Search And Download.  
           
Setting Up the System  
Selecting the Wavelength Calibration and Its Function  
Selecting the Wavelength Calibration Data  
You enter the user wavelength calibration data over the GPIB (see  
User Calibration Commandson page 123).  
Using your own wavelength calibration data, you can use the  
attenuator to compensate for the total wavelength dependence of  
your hardware configuration.  
NOTE  
If you are using the instrument in an environment where the  
temperature changes, you should not use the user wavelength  
calibration data, as it lacks correction for temperature changes.  
To select the wavelength calibration data to use  
1. Press SYST repeatedly until USERCALis shown at the bottom of  
the display.  
2. Select the wavelength calibration data using the Modify keys.  
OFFmeans that the instrument uses the factory-made  
wavelength calibration data  
ONmeans that the user wavelength calibration data is used.  
While it is ON, USERCALis shown at the bottom left of the  
display (U/L-CALis shown if the LAMBDCALis also on).  
Figure 5-2  
The USERCAL Indicator on the Display  
Resetting the Wavelength Calibration Data Set  
To reset USERCAL, press and hold SYST until the value resets (this  
takes approximately two seconds).  
USERCALresets to OFF.  
69  
Download from Www.Somanuals.com. All Manuals Search And Download.  
           
Setting Up the System  
Selecting the Through-Power Mode  
5.3 Selecting the Through-Power Mode  
In the through-power mode, the instrument shows the power that  
gets through the attenuator on the display (that is the power at the  
output) rather than the attenuation.  
When you select the through-power mode the attenuation factor (in  
dB) becomes the value for the through-power (in dBm). That is, if  
the attenuation factor is at 32.000dB, and you switch the absolute  
power mode on, then the base value for the through-power is  
32.000dBm.  
Measure the power at the output of the attenuator, and then use the  
calibration factor (see Entering a Calibration Factoron page 39)  
to set the attenuation factor to the required value for use as the base  
value for the through-power  
CalNew = (ThrouhgPowerBase - Att) + CalCurrent  
After setting the calibration factor,  
1. Press SYST repeatedly until THRUPOWRis shown at the bottom  
of the display.  
2. Select ONto switch on the through-power mode.  
The through-power factor is shown at the upper left on the display,  
and you can edit it by pressing ATT, and using the Modify keys (see  
Using the Modify Keyson page 29).  
Figure 5-3  
The Display in Through-Power Mode  
70  
Download from Www.Somanuals.com. All Manuals Search And Download.  
         
Setting Up the System  
Setting the Display Brightness  
Deselecting the Through-Power Mode  
When you switch the through-power mode off, the last set  
calibration factor becomes active, and the attenuation factor is set  
so that the filter attenuation does not change.  
1. Press SYST repeatedly until THRUPOWRis shown at the bottom  
of the display.  
2. Select OFFto switch off the through-power mode.  
Resetting the Through-Power Mode  
To reset THRUPOWR, press and hold SYST until the value resets  
(this takes approximately two seconds).  
THRUPOWRresets to OFF.  
5.4 Setting the Display Brightness  
This parameter sets the brightness of the display. To set the  
brightness,  
1. Press SYST repeatedly until BRIGHTis shown at the bottom of  
the display.  
2. Use Modify keys to set the brightness.  
Resetting the Display Brightness  
To reset BRIGHT, press and hold SYST until the value resets (this  
takes approximately two seconds).  
BRIGHTresets to full brightness.  
71  
Download from Www.Somanuals.com. All Manuals Search And Download.  
                 
Setting Up the System  
Selecting the Setting used at Power-On  
5.5 Selecting the Setting used at Power-On  
This parameter selects the instrument setting that is used at power-  
on.  
1. Press SYST repeatedly until P ON SETis shown at the bottom  
of the display.  
2. Use Modify keys to select the setting.  
LASTis the setting that was in use when the instrument was  
switched off.  
DEFAULTis the default setting.  
a number is the number of the setting location where the user has  
saved a setting.  
Resetting the Power-On Setting  
To reset P ON SETpress and hold SYST until the value resets (this  
takes approximately two seconds).  
P ON SETis reset to LAST.  
5.6 Locking Out ENB/DIS  
This selects how the shutter enabling and disabling key operates  
while the instrument is being operated over the GPIB.  
1. Press SYST repeatedly until SHUTTERis shown at the bottom of  
the display.  
2. Use Modify keys to select the setting.  
NORMALmeans that the shutter can be enabled and disabled as  
usual with ENB/DIS.  
72  
Download from Www.Somanuals.com. All Manuals Search And Download.  
                       
Setting Up the System  
Selecting the Shutter State at Power On  
LOCKOUTmeans that the shutter cannot be enabled or disabled  
(Local Lock Out) while the instrument is being operated over the  
GPIB.  
Resetting the ENB/DIS Lock Out  
To reset SHUTTER, press and hold SYST until the value resets (this  
takes approximately two seconds).  
SHUTTERresets to NORMAL.  
5.7 Selecting the Shutter State at Power On  
This selects whether the shutter is open or closed at power-on.  
1. Press SYST repeatedly until SHUTTER@ PONis shown at the  
bottom of the display.  
2. Use Modify keys to select the setting.  
DISmeans that the shutter is disabled at power-on.  
LASTmeans that the shutter is the set to the state that was in use  
when the instrument was switched off.  
Resetting the Shutter State at Power On  
To reset SHUTTER@ PONpress and hold SYST until the value  
resets (this takes approximately two seconds).  
SHUTTER@ PONresets to LAST.  
73  
Download from Www.Somanuals.com. All Manuals Search And Download.  
                 
Setting Up the System  
Setting the Display Resolution  
5.8 Setting the Display Resolution  
This parameter sets the resolution of the attenuation factor and the  
calibration factor on the screen.  
1. Press SYST repeatedly until RESOLUTis shown at the bottom of  
the display.  
2. Use Modify keys to select the setting.  
1/100sets a resolution of 0.01.  
1/1000sets a resolution of 0.001.  
Resetting the Display Resolution  
To reset RESOLUT, press and hold SYST until the value resets (this  
takes approximately two seconds).  
RESOLUTresets to 1/100.  
74  
Download from Www.Somanuals.com. All Manuals Search And Download.  
           
6
6
Storing and Recalling  
Settings  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Storing and Recalling  
Settings  
This chapter describes how to store instrument settings to memory,  
and how to recall them.  
A setting consists of the wavelength, calibration and attenuation  
factors, all the application parameters, and the system parameters  
with the exceptions of the display resolution, the power on setting,  
and the GPIB address and command set.  
76  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Storing and Recalling Settings  
Storing the Setting  
6.1 Storing the Setting  
To store the current instrument setting  
1. Press STORE.  
2. Select the location where you want to store the setting, using the  
or the .  
3. Press EXEC.  
6.2 Recalling a Setting  
Resetting the Instrument  
To reset the instrument, you should recall the default setting  
1. Press RECALL. The DEFAULTlocation is shown on the display.  
Figure 6-1  
The Display when Recalling the Default Setting  
2. Press EXEC.  
Recalling a User Setting  
To recall a setting that is stored  
77  
Download from Www.Somanuals.com. All Manuals Search And Download.  
                   
Storing and Recalling Settings  
Recalling a Setting  
1. Press RECALL.  
2. Select the location from which you want to recall the setting,  
using the or the .  
3. Press EXEC.  
78  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
7
7
Programming the  
Attenuator  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Programming the  
Attenuator  
This chapter gives general information on how to control the  
attenuator remotely. Descriptions for the actual commands for the  
attenuator are given in the following chapters. The information in  
these chapters is specific to the attenuator, and assumes that you are  
already familiar with programming the GPIB.  
80  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Programming the Attenuator  
GPIB Interface  
7.1 GPIB Interface  
The interface used by the attenuator is the GPIB (General Purpose  
Interface Bus).  
This is the interface used for communication between a controller  
and an external device, such as the attenuator. The GPIB conforms  
to IEEE standard 488-1978, ANSII standard MC 1.1 and IEC  
recommendation 625-1.  
If you are not familiar with the GPIB, then refer to the following  
books:  
Hewlett-Packard Company. Tutorial Description of Hewlett-  
Packard Interface Bus, 1987.  
The International Institute of Electrical and Electronics  
Engineers. IEEE Standard 488.1-1987, IEEE Standard Digital  
Interface for Programmable Instrumentation. New York, NY,  
1987  
The International Institute of Electrical and Electronics  
Engineers. IEEE Standard 488.2-1987, IEEE Standard Codes,  
Formats, Protocols and Common Commands For Use with  
ANSI/IEEE Std 488.1-1987. New York, NY, 1987  
To obtain a copy of either of these last two documents, write to:  
The Institute of Electrical and Electronics Engineers, Inc.  
345 East 47th Street  
New York, NY 10017  
USA.  
In addition, the commands not from the IEEE-488.2 standard, are  
defined according to the Standard Commands for Programmable  
Instruments (SCPI). For an introduction to SCPI, and SCPI  
programming techniques, refer to the following documents:  
Hewlett-Packard Press (Addison-Wesley Publishing Company,  
Inc). A Beginners Guide to SCPI. Barry Eppler. 1991.  
81  
Download from Www.Somanuals.com. All Manuals Search And Download.  
                 
Programming the Attenuator  
GPIB Interface  
The SCPI Consortium. Standard Commands for Programmable  
Instruments. Published periodically by various publishers. To  
obtain a copy of this manual, contact your Agilent Technologies  
representative.  
The attenuator interfaces to the GPIB as defined by the IEEE  
Standards 488.1 and 488.2. The table shows the interface functional  
subset that the attenuator implements.  
Table 7-1  
GPIB Capabilities  
Mnemonic  
Function  
SH1  
AH1  
T6  
Complete source handshake capability  
Complete acceptor handshake capability  
Basic talker; serial poll; unaddressed to talk if  
addressed to listen  
L4  
Basic listener; unaddressed to listen if addressed  
to talk; no listen only  
SR1  
RL1  
PP0  
DC1  
DT0  
C0  
Complete service request capability  
Complete remote/local capability  
No parallel poll capability  
Device clear capability  
No device trigger capability  
No controller capability  
82  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Setting the GPIB Address  
7.2 Setting the GPIB Address  
You can only set the GPIB address from the front panel. See  
Setting the GPIB Addresson page 67.  
The default GPIB address is 28.  
7.3 Returning the Instrument to Local Control  
If the instrument has been operated in remote the only keys you can  
use are Locala and ENB/DIS. The Local key returns the instrument  
to local control. Local does not operate if local lockout has been  
enabled. ENB/DIS enables and disables the output from the  
attenuator. ENB/DIS does not operate if SHUTTERis set to  
LOCKOUT(see Locking Out Enb/Dison page 72).  
7.4 How the Attenuator Receives and Transmits  
Messages  
The attenuator exchanges messages using an input and an output  
queue. Error messages are kept in a separate error queue.  
How the Input Queue Works  
The input queue is a FIFO queue (first-in first-out). Incoming bytes  
are stored in the input queue as follows:  
1. Receiving a byte:  
a. Clears the output queue.  
83  
Download from Www.Somanuals.com. All Manuals Search And Download.  
                   
Programming the Attenuator  
How the Attenuator Receives and Transmits Messages  
b. Clears Bit 7 (MSB).  
2. No modification is made inside strings or binary blocks. Outside  
strings and binary blocks, the following modifications are made:  
a. Lower-case characters are converted to upper-case.  
b. The characters 0016 to 0916 and 0B16 to 1F16 are converted  
to spaces (2016).  
c. Two or more blanks are truncated to one.  
3. An EOI (End Or Identify) sent with any character is put into the  
input queue as the character followed by a line feed (LF, 0A16).  
If EOI is sent with a LF, only one LF is put into the input queue.  
4. The parser starts if the LF character is received or if the input  
queue is full.  
Clearing the Input Queue  
Switching the power off, or sending a Device Interface Clear signal,  
causes commands that are in the input queue, but have not been  
executed to be lost.  
The Output Queue  
The output queue contains responses to query messages. The  
attenuator transmits any data from the output queue when a  
controller addresses the instrument as a talker.  
Each response message ends with a LF (0A16), with EOI=TRUE. If  
no query is received, or if the query has an error, the output queue  
remains empty.  
The Message Available bit (MAV, bit 4) is set in the Status Byte  
register whenever there is data in the output queue.  
The Error Queue  
The error queue is 30 errors long. It is a FIFO queue (first-in first-  
out). That is, the first error read is the oldest error to have occurred.  
A new error is only put into the queue if it is not already in it.  
84  
Download from Www.Somanuals.com. All Manuals Search And Download.  
                   
Programming the Attenuator  
Some Notes about Programming and Syntax Diagram  
Conventions  
If more than 29 errors are put into the queue, the message -350  
<Queue Overflow>is placed as the last message in the queue.  
7.5 Some Notes about Programming and Syntax  
Diagram Conventions  
A program message is a message containing commands or queries  
that you send to the attenuator. The following are a few points about  
program messages:  
You can use either upper-case or lower-case characters.  
You can send several commands in a single message. Each  
command must be separated from the next one by a semicolon  
(;).  
You end a program message with a line feed (LF) character, or  
any character sent with End-Or-Identify (EOI).  
You can use any valid number/unit combination.  
Example  
1500nm, 1.5µm and 1.5e-6m are all equivalent.  
If you do not specify a unit, then the default unit is assumed.  
The default unit for the commands are given with command  
description in the next chapter.  
Short Form and Long Form  
The instrument accepts messages in short or long forms. For  
example, the message :INPUT:WAVELENGTH 1313is in long  
form, the short form of this message is :INP:WAV 1313.  
In this manual the messages are written in a combination of upper  
and lower case. Upper case characters are used for the short form of  
the message. For example, the above command would be written  
:INPut:WAVelength.  
85  
Download from Www.Somanuals.com. All Manuals Search And Download.  
               
Programming the Attenuator  
Some Notes about Programming and Syntax Diagram  
Conventions  
The first colon can be left out for the first command or query in  
your message. That is, the example given above could also be sent  
as INP:WAV 1313.  
Command and Query Syntax  
All characters not between angled brackets must be sent exactly as  
shown.  
The characters between angled brackets (<>) indicate the kind of  
data that you send, or that you get in a response. You do not type the  
angled brackets in the actual message. Descriptions of these items  
follow the syntax description. The most common of these are:  
string  
is ascii data. A string is contained between a ' at  
the start and the end, or a ' at the start and the  
end.  
value  
wsp  
is numeric data in integer (12), decimal (34.5)  
or exponential format (67.8E-9).  
is a white space.  
Other kinds of data are described as required.  
The characters between square brackets ([]) show optional  
information that you can include with the message.  
The bar (|) shows an either-or choice of data, for example, a|b  
means either a or b, but not both simultaneously.  
Extra spaces are ignored; they can be inserted to improve  
readability.  
86  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
8
8
Remote Commands  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Remote Commands  
This chapter gives a list of the remote commands, for use with the  
GPIB.  
In the remote command descriptions the parts given in upper-case  
characters must be given. The parts in lower-case characters can  
also be given, but they are optional.  
88  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Remote Commands  
Units  
8.1 Units  
The units and all the allowed mnemonics are given in the table  
below.  
Table 8-1  
Units and Allowed Mnemonics  
Unit  
Default  
Allowed Mnemonics  
deciBel  
DB  
DBM  
M
DB  
deciBel/1mW  
meter  
DBMDBMW  
PM, NM, UM, MM, M  
Where units are specified with a command, only the Default is  
shown, by the full range of mnemonics can be used.  
8.2 Command Summary  
Table 8-2  
Common Command Summary  
Parameter/  
Command  
Response  
Min  
Max  
Function  
*CLS  
*ESE  
Clear Status Command  
<value>  
0
255  
Standard Event Status Enable  
Command  
*ESE?  
*ESR?  
<value>  
<value>  
0
0
255  
255  
Standard Event Status Enable Query  
Standard Event Status Register  
Query  
*IDN?  
*OPC  
<string>  
Identification Query  
Operation Complete Command  
89  
Download from Www.Somanuals.com. All Manuals Search And Download.  
           
Remote Commands  
Command Summary  
Parameter/  
Command  
Response  
Min  
Max  
Function  
*OPC?  
*OPT?  
*RCL  
<value>  
Operation Complete Query  
Options Query  
<string>  
<location>  
0
9
Recall Instrument Setting  
Reset Command  
*RST  
*SAV  
<location>  
<value>  
<value>  
<value>  
<value>  
1
0
0
0
0
9
Save Instrument Setting  
Service Request Enable Command  
Service Request Enable Query  
Read Status Byte Query  
Self Test Query  
*SRE  
255  
255  
255  
65535  
*SRE?  
*STB?  
*TST?  
*WAI  
Wait Command  
Table 8-3  
Command List  
Parameter  
Response  
Command  
Unit  
Min  
Max  
Default  
:DISPlay  
:BRIGhtness  
:BRIGhtness?  
<value>  
<value>  
0
1
:DISPlay  
:ENABle  
OFF|ON|0|1  
0|1  
:ENABle?  
:INPut  
0.000dB†  
60.000dB0.000dB†  
:ATTenuation  
<value>|MIN|DE DB  
F|MAX  
:ATTenuation?  
<value>  
DB  
DB  
DB  
DB  
:ATTenuation? MIN <value>  
:ATTenuation? DEF <value>  
:ATTenuation? MAX <value>  
:INPut  
90  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Remote Commands  
Command Summary  
Parameter  
Command  
:LCMode  
:LCMode?  
Response  
Unit  
Min  
Max  
Default  
OFF|ON|0|1  
0|1  
:INPut  
:OFFSet  
<value>|MIN|DE DB  
F|MAX  
-99.999dB 99.999dB  
0.000dB  
:DISPlay  
:OFFSet?  
<value>  
<value>  
<value>  
<value>  
DB  
DB  
DB  
DB  
:OFFSet? MIN  
:OFFSet? DEF  
:OFFSet? MAX  
:INPut  
:WAVelength  
<value>|MIN|DE M  
F|MAX  
1200nm  
1650nm  
1310nm  
:WAVelength?  
<value>  
M
M
M
M
:WAVelength? MIN <value>  
:WAVelength? DEF <value>  
:WAVelength? MAX <value>  
:OUTPut  
:APMode  
OFF|ON|0|1  
0|1  
:APMode?  
:OUTPut  
0.000dB†  
:POWer  
<value>|MIN|DE DBM  
F|MAX  
60.000dB0.000dB†  
:POWer?  
<value>  
<value>  
<value>  
<value>  
DBM  
DBM  
DBM  
DBM  
:POWer? MIN  
:POWer? DEF  
:POWer? MAX  
:OUTPut  
91  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Remote Commands  
Command Summary  
Parameter  
Command  
[:STATe]  
[:STATe?]  
:APOWeron  
:APOWeron?  
Response  
Unit  
Min  
Max  
Default  
OFF|ON|0|1  
0|1  
DIS|LAST|0|1  
0|1  
:STATus  
:OPERation  
[:EVENt]?  
<value>  
<value>  
<value>  
<value>  
<value>  
:CONDition?  
:ENABle  
:ENABle?  
:NTRansition  
:NTRansition? <value>  
:PTRansition <value>  
:PTRansition? <value>  
:QUEStionable  
[:EVENt]?  
<value>  
<value>  
<value>  
<value>  
<value>  
:CONDition?  
:ENABle  
:ENABle?  
:NTRansition  
:NTRansition? <value>  
:PTRansition <value>  
:PTRansition? <value>  
:PRESet  
:SYSTem  
:ERRor?  
<value>  
-32768  
32767  
:UCALibration  
:STARt  
<start_value>, M,M  
1200nm,0.0 ‡  
<step_value>  
1nm  
92  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Remote Commands  
The Common Commands  
Parameter  
Command  
:STARt?  
Response  
Unit  
Min  
Max  
Default  
<start_value>,<step_value>,  
<no_of_steps>  
M,M  
OFF|ON|0|1  
0|1  
:STATe  
:STATe?  
:STOP  
:VALue  
:VALue?  
<value>  
<value>  
DB  
DB  
-99.999dB 99.999dB  
These are specified minimum and maximum values, with the  
calibration factor (:INPut:OFFSet) set to zero. Actual values  
depend on the instrument, and the calibration factor.  
These values are interdependent  
start value + ((numberofstep-1) × step value) 1650nm  
8.3 The Common Commands  
The IEEE 488.2 standard has a list of reserved commands, called  
common commands. These are the commands that start with an  
asterisk. Some of these commands must be implemented by any  
describes the implemented commands.  
Common Status Information  
There are four registers for the common status information. Two of  
these are status-registers and two are enable-registers. These  
registers conform to the IEEE Standard 488.2-1987. You can find  
further descriptions of these registers under *ESEon page 95,  
*ESR?on page 96, *SREon page 101, and *STB?on  
page 102.  
93  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
Remote Commands  
The Common Commands  
The following figure shows how the registers are organized.  
Figure 8-1  
Common Status Registers  
*The questionable and operation status trees are described in  
STATus Commandson page 114.  
NOTE  
Unused bits in any of the registers return 0 when you read them.  
SRQ, The Service Request  
A service request (SRQ) occurs when a bit in the Status Byte  
register goes from 01AND the corresponding bit in the Service  
Request Enable Mask is set.  
The Request Service (RQS) bit is set to 1at the same time that the  
SRQ is caused. This bit can only be reset by reading it by a serial  
94  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
Remote Commands  
The Common Commands  
poll. The RQS bit is not affected by the condition that caused the  
SRQ. The serial poll command transfers the value of the Status  
Byte register to a variable.  
*CLS  
Syntax  
*CLS  
Definition  
The *CLS command clears the following:  
Error queue  
Standard event status register (ESR)  
Status byte register (STB)  
After the *CLScommand the instrument is left  
waiting for the next command. The instrument  
setting is unaltered by the command, though  
*OPC/*OPC?actions are canceled.  
If the *CLScommand occurs directly after a  
program message terminator, the output queue  
and MAV, bit 4, in the status byte register are  
cleared, and if condition bits 2-0 of the status  
byte register are zero, MSS, bit 6 of the status  
byte register is also zero.  
Example  
OUTPUT 728;"*CLS"  
*ESE  
Syntax  
*ESE<wsp><value>  
0 value 255  
Definition  
The *ESEcommand sets bits in the standard  
event status enable register (ESE) that enable  
the corresponding bits in the standard event  
status register (ESR).  
The register is cleared:  
At power-on  
95  
Download from Www.Somanuals.com. All Manuals Search And Download.  
                   
Remote Commands  
The Common Commands  
By sending a value of zero  
The register is not changed by the *RSTand  
*CLScommands.  
Table 8-4  
The Event Status Enable Register  
BIT  
MNEMONIC  
BIT VALUE  
7
6
5
4
3
2
1
0
Power On  
128  
64  
32  
16  
8
User Request  
Command Error  
Execution Error  
Device dependent Error  
Query Error  
4
Request Control  
Operation Complete  
2
1
*ESE?  
The standard event status enable query returns  
the contents of the standard event status enable  
register.  
Example  
OUTPUT 728;"*ESE 21"  
OUTPUT 728;"*ESE?"  
ENTER 728; A$  
*ESR?  
Syntax  
*ESR?  
Definition  
The standard event status register query returns  
the contents of the standard event status  
register. The register is cleared after being read.  
0 contents 255  
96  
Download from Www.Somanuals.com. All Manuals Search And Download.  
             
Remote Commands  
The Common Commands  
Table 8-5  
The Standard Event Status Register  
BITS MNEMONICS  
BIT VALUE  
7
6
5
4
3
2
1
0
Power On  
128  
64  
32  
16  
8
User Request  
Command Error  
Execution Error  
Device Dependent Error  
Query Error  
4
Request Control  
Operation Control  
2
1
Example  
OUTPUT 728;"*ESR?"  
ENTER 728; A$  
*IDN?  
Syntax  
*IDN?  
Definition  
The identification query commands the  
instrument to identify itself over the interface.  
Response: HEWLETT-PACKARD,  
HP8156A, mmmmmmmmmm, n.nn  
HEWLETT-PACKARD: manufacturer  
HP8156A: instrument model number  
mmmmmmmmmm: serial number (not supplied)  
n.nn: firmware revision level  
Example  
DIM A$ [100]  
OUTPUT 728;"*IDN?"  
ENTER 728; A$  
97  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
Remote Commands  
The Common Commands  
*OPC  
Syntax  
*OPC  
Definition  
The instrument parses and executes all  
program message units in the input queue and  
sets the operation complete bit in the standard  
event status register (ESR). This command can  
be used to avoid filling the input queue before  
the previous commands have finished  
executing.  
*OPC?  
This query causes all the program messages in  
the input queue to be parsed and executed.  
Once it has completed it places an ASCII 1in  
the output queue. There is a short delay  
between interpreting the command and putting  
the 1in the queue.  
Example  
OUTPUT 728;"*CLS;*ESE 1;*SRE  
32"  
OUTPUT 728;"*OPC"  
OUTPUT 728;"*CLS;*ESE 1;*SRE  
32"OUTPUT 728;"*OPC?"  
ENTER 728;A$  
*OPT?  
Syntax  
*OPT?  
Definition  
This query returns a string with the options  
installed in the attenuator. There are three  
fields, separated by commas. If an option is not  
present in the instrument, the corresponding  
field returns a "0".  
The three fields are High Performance,  
Monitor Output, High Return  
Loss. For example, if you have option 201  
98  
Download from Www.Somanuals.com. All Manuals Search And Download.  
               
Remote Commands  
The Common Commands  
(High performance, high return loss version),  
the string returned is High Performance,  
0,  
High Return Loss.  
Example  
OUTPUT 728;"*OPT?"  
ENTER 728;A$  
*RCL  
Syntax  
*RCL<wsp> <location>  
0 location 9  
Definition  
An instrument setting from the internal RAM is  
made the actual instrument setting (this does  
not include GPIB address or parser, the  
attenuation resolution or the power on setting).  
You recall user settings from locations 1-9. See  
*SAVon page 100. Location 0 contains the  
default setting, which is the same as that  
obtained by *RST.  
Example  
OUTPUT 728;"*RCL 3"  
*RST  
Syntax  
*RST  
Definition  
The reset setting (default setting) stored in  
ROM is made the actual setting.  
Instrument state: the instrument is placed in the  
idle state awaiting a command.  
The following are not changed:  
GPIB (interface) state  
Instrument interface address  
Output queue  
99  
Download from Www.Somanuals.com. All Manuals Search And Download.  
                 
Remote Commands  
The Common Commands  
Service request enable register (SRE)  
Standard event status enable register (ESE)  
The commands and parameters of the reset  
state are listed in the following table.  
Table 8-6  
Reset State (Default Setting)  
Parameter  
Reset Value  
Attenuation Factor  
Calibration Factor  
Wavelength  
Sweep  
0dB  
0dB  
1310nm  
Manual  
0.00dB  
0.00dB  
0.00dB  
0.2s  
Start  
Stop  
Step  
Dwell  
Back Refl.  
Ins. Loss  
RL Ref  
2.00dB  
14.70dB  
60.00dB  
Off  
RL-Input  
λ Cal  
User Cal  
Off  
Through Power Mode  
Display Brightness  
Power On Setting  
Off  
Full  
Last  
Shutter enable under GPIB  
Shutter at Power ON  
Resolution  
Normal  
Disabled  
1/100  
Example  
OUTPUT 728;"*RST"  
*SAV  
Syntax  
*SAV<wsp> <location>  
1 location 9  
100  
Download from Www.Somanuals.com. All Manuals Search And Download.  
           
Remote Commands  
The Common Commands  
Definition  
Example  
The instrument setting is stored in RAM. You  
can store settings in locations 1-9. The scope of  
the saved setting is identical with the scope of  
the standard setting described in *RSTon  
page 99.  
OUTPUT 728;"*SAV 3"  
*SRE  
Syntax  
*SRE<wsp> <value>  
0 value 255  
Definition  
The service request enable command sets bits  
in the service request enable register that  
enable the corresponding status byte register  
bits.  
The register is cleared:  
At power-on  
By sending a value of zero.  
The register is not changed by the *RSTand  
*CLScommands.  
Table 8-7  
The Service Request Enable Register  
BITS  
MNEMONICS  
BIT VALUE  
7
6
5
4
3
2
1
0
Operation Status  
Request Status  
Event Status Byte  
Message Available  
Questionable Status  
Not used  
128  
64  
32  
16  
8
0
Not used  
0
Not used  
0
101  
Download from Www.Somanuals.com. All Manuals Search And Download.  
           
Remote Commands  
The Common Commands  
NOTE  
Bit 6 cannot be masked.  
*SRE?  
The service request enable query returns the  
contents of the service request enable register.  
Example  
OUTPUT 728;"*SRE 48"  
OUTPUT 728;"*SRE?"  
ENTER 728; A$  
*STB?  
Syntax  
*STB?  
Definition  
The read status byte query returns the contents  
of the status byte register.  
0 contents 255  
Table 8-8  
The Status Byte Register  
BITS MNEMONICS  
BIT VALUE  
7
6
5
4
3
2
1
0
Operation Status  
Request Service  
Event Status Byte  
Message Available  
Questionable Status  
Not used  
128  
64  
32  
16  
8
0
Not used  
0
Not used  
0
Example  
OUTPUT 728;"*STB?"  
ENTER 728; A$  
102  
Download from Www.Somanuals.com. All Manuals Search And Download.  
             
Remote Commands  
The Common Commands  
*TST?  
Syntax  
*TST?  
Definition  
The self-test query commands the instrument  
to perform a self-test and place the results of  
the test in the output queue.  
Returned value: 0 value 65535. This value  
is the sum of the results for the individual tests  
Table 8-9  
The Self Test Results  
BITS  
MNEMONICS  
BIT VALUE  
8
7
6
5
4
3
2
1
0
Counter  
256  
128  
64  
32  
16  
8
Analog to Digital Converter  
General DSP Hardware  
DSP Timeout  
DSP Communications  
Calibration Data Corrupt  
Keypad  
4
Battery RAM  
2
Calibration Data  
Not Present/ Checksum Fail  
1
So 16 would mean that the DSP (Digital Signal  
Processor) Communications had failed, 18  
would mean that the DSP Communications had  
failed, and so had the Battery RAM. A value of  
zero indicates no errors.  
No further commands are allowed while the  
test is running.  
The instrument is returned to the setting that  
was active at the time the self-test query was  
processed.  
103  
Download from Www.Somanuals.com. All Manuals Search And Download.  
         
Remote Commands  
DISPlay Commands  
The self-test does not require operator  
interaction beyond sending the *TST?query.  
Example  
OUTPUT 728;"*TST?"  
ENTER 728; A$  
*WAI  
Syntax  
*WAI  
Definition  
The wait-to-continue command prevents the  
instrument from executing any further  
commands, all pending operations are  
completed.  
Example  
OUTPUT 728;"*WAI"  
8.4 DISPlay Commands  
:DISPlay:BRIGhtness  
Syntax  
:DISPlay:BRIGhtness<wsp> <value>  
Description  
This command sets the brightness of the  
display. The brightness is a floating point  
number in the range 0 (least bright) to 1  
(brightest). There are seven possible levels of  
intensity. The value input for the brightness is  
rounded to the closest of these seven values.  
The default brightness is 1.  
:DISPlay:BRIGhtness?  
Syntax  
:DISPlay:BRIGhtness?  
104  
Download from Www.Somanuals.com. All Manuals Search And Download.  
           
Remote Commands  
DISPlay Commands  
Description  
Example  
The query returns the brightness of the display,  
where 0 means least brightness, and 1 means  
full brightness.  
OUTPUT 728;":DISP:BRIG 0.5"  
OUTPUT 728;":DISP:BRIG?"  
ENTER 728;A$  
:DISPlay:ENABle  
Syntax  
:DISPlay:ENABle<wsp> OFF|ON|0|1  
Description  
This command enables or disables the front  
panel display.  
Set the state to OFFor 0to switch the display  
off, set the state to ONor 1to switch the  
display on. The default is for the display to be  
on.  
:DISPlay:ENABle?  
Syntax  
:DISPlay:ENABle?  
Description  
The query returns the current state of the  
display.  
A returned value of 0indicates that the display  
is off. A returned value of 1indicates that the  
display is on.  
Example  
OUTPUT 728;":DISP:ENAB ON"  
OUTPUT 728;":DISP:ENAB?"  
ENTER 728;A$  
105  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Remote Commands  
INPut Commands  
8.5 INPut Commands  
:INPut:ATTenuation  
Syntax  
:INPut:ATTenuation<wsp>  
<value>[DB]|MIN|DEF|MAX  
Description  
This command sets the attenuation factor for  
the instrument. The attenuation factor is used,  
with the calibration factor (see ) to set the filter  
attenuation.  
Attenuationfilter(dB) = Att(dB) - Cal(dB)  
You set the attenuation factor by sending a  
value (default units are dB), or by sending  
MIN, DEFor MAX, which specify the  
minimum, default and maximum values for the  
attenuation factor.  
The minimum value and the default value are  
those values for which Attenuationfilter = 0dB.  
The maximum value is that value for which  
Attenuationfilter is at its greatest.  
:INPut:ATTenuation?  
Syntax  
:INPut:ATTenuation?[<wsp>  
MIN|DEF|MAX]  
Description  
The query returns the current attenuation  
factor, in dB.  
Attenuationfilter(dB) = Att(dB) - Cal(dB)  
By sending MIN, DEF, or MAXwith the query  
the minimum, default or maximum value  
possible for the attenuation factor is returned.  
Example  
OUTPUT 728;":INP:ATT 32.15"  
106  
Download from Www.Somanuals.com. All Manuals Search And Download.  
           
Remote Commands  
INPut Commands  
OUTPUT 728;":INP:ATT?"  
ENTER 728;A$  
:INPut:LCMode  
Syntax  
:INPut:LCMode<wsp> OFF|ON|0|1  
Description  
This command sets the function of the  
wavelength calibration. That is, whether the  
wavelength calibration data is to be used to  
reposition the filter to keep the attenuation  
factor constant, or to alter the attenuation factor  
with the filter kept in a fixed position.  
Switch the mode on (using OFFor 0) to keep  
the attenuation value fixed, and alter the filter  
position. Switch the mode off (using ONor 1)  
to keep the filter position fixed, and alter the  
attenuation factor.  
:INPut:LCMode?  
Syntax  
:INPut:LCMode?  
Description  
The query returns the current function of the  
wavelength calibration.  
0indicates that the instrument is keeping the  
attenuation value fixed, and altering the filter  
position. 1indicates the instrument is keeping  
the filter position fixed, and altering the  
attenuation factor.  
Example  
OUTPUT 728;":INP:LCM ON"  
OUTPUT 728;":INP:LCM?"  
ENTER 728;A$  
:INPut:OFFSet  
Syntax  
:INPut:OFFSet<wsp>  
<value>[DB]|MIN|DEF|MAX  
107  
Download from Www.Somanuals.com. All Manuals Search And Download.  
             
Remote Commands  
INPut Commands  
Description  
This command sets the calibration factor for  
the instrument. This factor does not affect the  
filter attenuation. It is used to offset the values  
for the attenuation factor. The calibration factor  
is used, with the attenuation factor (see  
:INPut:ATTenuationon page 106) to set the  
attenuation of the filter.  
Attenuationfilter(dB) = Att(dB) - Cal(dB)  
You set the calibration by sending a value  
(default units are dB), or by sending MIN, DEF  
or MAX, which specify the minimum, default  
and maximum values for the calibration factor.  
The minimum value for the calibration factor is  
-99.999dB. The default value is 0dB. The  
maximum value is 99.999dB.  
:INPut:OFFSet?  
Syntax  
:INPut:OFFSet?[<wsp> MIN|DEF|MAX]  
Description  
The query returns the current calibration factor,  
in dB.  
By sending MIN, DEF, or MAXwith the query  
the minimum, default or maximum value  
possible for the calibration factor is returned.  
Example  
OUTPUT 728;":INP:OFFS 32.15"  
OUTPUT 728;":INP:OFFS?"  
ENTER 728;A$  
:INPut:OFFSet:DISPlay  
Syntax  
:INPut:OFFSet:DISPlay  
108  
Download from Www.Somanuals.com. All Manuals Search And Download.  
         
Remote Commands  
INPut Commands  
Description  
This command sets the calibration factor for  
the instrument from the current attenuation  
factor. The filter attenuation is not affected.  
The offset is set so that the attenuation factor  
becomes zero.  
Cal  
(dB) = -Att  
(dB) = Cal  
(dB) - Att  
(dB)  
NEW  
filter  
OLD  
OLD  
Example  
OUTPUT 728;":INP:OFFS:DISP"  
OUTPUT 728;":INP:OFFS?"  
ENTER 728;A$  
:INPut:WAVelength  
Syntax  
:INPut:WAVelength<wsp>  
<value>[DB]|MIN|DEF|MAX  
Description  
This command sets the wavelength for the  
instrument. The value is used to make the  
compensation for the wavelength dependence  
of the filter, using the wavelength calibration  
NOTE  
There are two sets of wavelength calibration data, one is made in the  
factory, individually, for your instrument. The other is left for the you  
to define. Using your own wavelength calibration data, you can use the  
attenuator to compensate for the total wavelength dependence of your  
hardware configuration.  
For more details on this topic, see Selecting the Wavelength  
Calibration and Its Functionon page 67.  
You set the wavelength by sending a value  
(default units are meters), or by sending MIN,  
DEFor MAX, which specify the minimum,  
default and maximum values for the  
wavelength.  
109  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
Remote Commands  
OUTPut Commands  
The minimum value for the wavelength is  
1200nm. The default value is 1310nm. The  
maximum value is 1650nm.  
:INPut:WAVelength?  
Syntax  
:INPut:WAVelength?[<wsp>  
MIN|DEF|MAX]  
Description  
The query returns the current wavelength, in  
meters.  
By sending MIN, DEF, or MAXwith the query  
the minimum, default or maximum value  
possible for the wavelength is returned.  
Example  
OUTPUT 728;":INP:WAV 1550nm"  
OUTPUT 728;":INP:WAV?"  
ENTER 728;A$  
8.6 OUTPut Commands  
:OUTPut:APMode  
Syntax  
:OUTPut:APMode<wsp> OFF|ON|0|1  
Description  
This command sets the whether you set the  
attenuation factor, or the through-power to alter  
the attenuation of the filter.  
When you are switching the absolute power  
mode ON, the attenuation factor (in dB)  
becomes the base value for the through-power  
(in dBm), at the time at which this command is  
processed. That is, if the attenuation factor is  
set to 32.000dB, and the absolute power mode  
is switched on, then the base value for the  
through-power is set to 32.000dBm. Use the  
110  
Download from Www.Somanuals.com. All Manuals Search And Download.  
             
Remote Commands  
OUTPut Commands  
calibration factor (see ) to set the attenuation  
factor to the required value for use as the base  
value for the through-power  
CalNew = (Through - PowerBase - Att) + CalCurrent  
When you switch the absolute power mode  
OFF, the last set calibration factor becomes  
the filter attenuation does not change. That is  
Att(dB) = Attenuationfilter(dB) + Cal(dB)  
NOTE  
Using any of the :INPut:ATTenuation commands or queries, or  
any of the :INPut:OFFSet commands or queries, switches the  
absolute power mode off automatically.  
See :OUTPut:POWeron page 112 for  
information on setting the through-power.  
Switch the mode off (using OFFor 0) to set the  
attenuation of the filter by specifying the  
attenuation and calibration factors. Switch the  
mode on (using ONor 1) to set the attenuation  
of the filter by specifying the through-power.  
:OUTPut:APMode?  
Syntax  
:OUTPut:APMode?  
Description  
The query returns whether the attenuation of  
the filter is set by the attenuation and  
calibration factors, or by the through-power.  
0indicates the instrument sets the attenuation  
of the filter from the attenuation and calibration  
factors. 1indicates that the instrument sets the  
attenuation of the filter from the through-  
power.  
111  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Remote Commands  
OUTPut Commands  
Example  
OUTPUT 728;":INP:ATT?"  
ENTER 728; Att  
OUTPUT 728;":INP:OFFS?"  
ENTER 728; Cal  
Newcal = Basepow - Att + Cal  
OUTPUT 728;":INP:OFFS ";Newcal  
OUTPUT 728;":OUTP:APM ON"  
OUTPUT 728;":OUTP:APM?"  
ENTER 728;A$  
:OUTPut:POWer  
Syntax  
:OUTPut:POWer<wsp>  
<value>[DBM]|MIN|DEF|MAX  
Description  
This command sets the through-power for the  
instrument. The through-power is used to set  
the attenuation of the filter.  
Att  
(dB) = ThroughPower  
(dBm) - ThroughPower(dBm) + Att  
(dB)  
filter@Base  
filter  
Base  
You set the through-power by sending a value  
(default units are dBm), or by sending MIN,  
DEFor MAX, which specify the minimum,  
default and maximum values for the through-  
power.  
The maximum value and the default value are  
those values for which Attenuationfilter = 0dB.  
The minimum value is that value for which  
Attenuationfilter is at its greatest. For example,  
if you have set INP:ATT 10and INP:OFFS  
2and then switched UTP:APM ON, then the  
through power is set to 12dBm. The maximum  
through power, and the default through power,  
in this case is 22dBm. The minimum through  
power in this case is -38dBm.  
112  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Remote Commands  
OUTPut Commands  
:OUTPut:POWer?  
Syntax  
:OUTPut:POWer?[<wsp> MIN|DEF|MAX]  
Description  
The query returns the current through-power,  
in dBm.  
ThroughPower(dBm) = ThroughPower  
(dBm) + Att  
(dB) - Att  
(dB)  
filter  
Base  
filter@Base  
By sending MIN, DEF, or MAXwith the query  
the minimum, default or maximum value  
possible for the through-power is returned.  
Example  
OUTPUT 728;":OUTP:POW 32.15"  
OUTPUT 728;":OUTP:POW?"  
ENTER 728;A$  
:OUTPut:[:STATe]  
Syntax  
:OUTPut[:STATe]<wsp> OFF|ON|0|1  
Description  
This command sets the state of the output  
shutter, that is, whether it is open or closed.  
OFFor 0closes the shutter, and no power gets  
through. ONor 1opens the shutter, and power  
gets through.  
:OUTPut[:STATe]?  
Syntax  
:OUTPut[:STATe]?  
Description  
The query returns whether the output shutter is  
open or closed.  
0indicates the shutter is closed (no power is  
getting through). 1indicates that the shutter is  
open (power is getting through).  
Example  
OUTPUT 728;":OUTP ON"  
OUTPUT 728;":OUTP?"  
ENTER 728;A$  
113  
Download from Www.Somanuals.com. All Manuals Search And Download.  
             
Remote Commands  
STATus Commands  
:OUTPut:[:STATe]:APOWeron  
Syntax  
:OUTPut[:STATe]:APOWeron<wsp>  
DIS|LAST|0|1  
Description  
This command sets the state of the output  
shutter at power on, that is, whether it is closed,  
or takes the state at power-off.  
DISor 0closes the shutter at power on, and no  
power gets through. LASTor 1sets the shutter  
to the state at power-off.  
:OUTPut[:STATe]:APOWeron?  
Syntax  
:OUTPut[:STATe]:APOWeron?  
Description  
The query returns whether the output shutter is  
closed at power on, or set to the state at power-  
off.  
0indicates the shutter is closed (no power is  
getting through). 1indicates that the shutter is  
set to the state at power-off.  
Example  
OUTPUT 728;":OUTP:APOW OFF"  
OUTPUT 728;":OUTP:APOW?"  
ENTER 728;A$  
8.7 STATus Commands  
There are two nodesin the status circuitry. The OPERation node  
indicates things that can happen during normal operation. The  
QUEStionable node indicates error conditions.  
Each node of the status circuitry has five registers:  
114  
Download from Www.Somanuals.com. All Manuals Search And Download.  
           
Remote Commands  
STATus Commands  
A condition register (CONDition), which contains the current  
status.This register is updated continuously. It is not changed by  
having its contents read.  
The event register (EVENt), which contains the output from the  
transition registers. The contents of this register are cleared  
when it is read.  
A positive transition register (PTRansition), which, when  
enabled, puts a 1 into the event register, when the corresponding  
bit in the condition register goes from 0 to 1.  
The power-on condition for this register is for all the bits to be  
disabled.  
A negative transition register (NTRansition), which, when  
enabled, puts a 1 into the event register, when the corresponding  
bit in the condition register goes from 1 to 0.  
The power-on condition for this register is for all the bits to be  
disabled.  
The enable register (ENABle), which enables changes in the  
event register to affect the Status Byte.  
The status registers for the attenuator are organized as shown:  
115  
Download from Www.Somanuals.com. All Manuals Search And Download.  
           
Remote Commands  
STATus Commands  
Figure 8-2  
The Status Registers  
:STATus:OPERation:CONDition?  
Syntax  
:STATus:OPERation:CONDition?  
Description  
This query reads the contents of the  
OPERation:CONDition register. Only three  
bits of the condition register are used:  
Bit 1, which is 1 when the motor that  
positions the attenuator filter is settling.  
Bit 3, which is 1 while the instrument is  
performing an attenuation sweep.  
116  
Download from Www.Somanuals.com. All Manuals Search And Download.  
             
Remote Commands  
STATus Commands  
Bit 7, which is 1 after the instrument has  
repositioned the attenuator filter due to a  
change in temperature.  
Example  
OUTPUT 728;":STAT:OPER:COND?"  
ENTER 728;A$  
:STATus:OPERation:ENABle  
Syntax  
:STATus:OPERation:ENABle<wsp>  
<value>  
Description  
This command sets the bits in the ENABle  
register that enable the contents of the EVENt  
register to affect the Status Byte (STB). Setting  
a bit in this register to 1 enables the  
corresponding bit in the EVENt register to  
affect bit 7 of the Status Byte.  
:STATus:OPERation:ENABle?  
Syntax  
:STATus:OPERation:ENABle?  
Description  
This query returns the current contents of the  
OPERation:ENABle register.  
Example  
OUTPUT 728;":STAT:OPER:ENAB  
138"  
OUTPUT 728;":STAT:OPER:ENAB?"  
ENTER 728;A$  
:STATus:OPERation[:EVENt]?  
Syntax  
:STATus:OPERation[:EVENt]?  
Description  
This query reads the contents of the  
OPERation:EVENt register. Only three bits of  
the event register are used (whether these bits  
contain information depends on the transition  
register configuration):  
117  
Download from Www.Somanuals.com. All Manuals Search And Download.  
             
Remote Commands  
STATus Commands  
Bit 1, which is 1 when the motor that  
positions the attenuator filter is settling.  
Bit 3, which is 1 while the instrument is  
performing an attenuation sweep.  
Bit 7, which is 1 after the instrument has  
repositioned the attenuator filter due to a  
change in temperature.  
Example  
OUTPUT 728;":STAT:OPER?"  
ENTER 728;A$  
:STATus:OPERation:NTRansition  
Syntax  
:STATus:OPERation:NTRansition  
<wsp> <value>  
Description  
This command sets the bits in the NTRansition  
register. Setting a bit in this register enables a  
negative transition (10) in the corresponding  
bit in the CONDition register to set the bit in  
the EVENt register.  
:STATus:OPERation:NTRansition?  
Syntax  
:STATus:OPERation:NTRansition?  
Description  
This query returns the current contents of the  
OPERation:NTRansition register.  
Example  
OUTPUT 728;":STAT:OPER:NTR 138"  
OUTPUT 728;":STAT:OPER:NTR?"  
ENTER 728;A$  
:STATus:OPERation:PTRansition  
Syntax  
:STATus:OPERation:PTRansition  
<wsp> <value>  
118  
Download from Www.Somanuals.com. All Manuals Search And Download.  
                   
Remote Commands  
STATus Commands  
Description  
This command sets the bits in the PTRansition  
register. Setting a bit in this register enables a  
positive transition (01) in the corresponding  
bit in the CONDition register to set the bit in  
the EVENt register.  
:STATus:OPERation:PTRansition?  
Syntax  
:STATus:OPERation:PTRansition?  
Description  
This query returns the current contents of the  
OPERation:PTRansition register.  
Example  
OUTPUT 728;":STAT:OPER:PTR 138"  
OUTPUT 728;":STAT:OPER:PTR?"  
ENTER 728;A$  
:STATus:QUEStionable:CONDition?  
Syntax  
:STATus:QUEStionable:CONDition?  
Description  
This query reads the contents of the  
QUEStionable:CONDition register. Only one  
bit of the condition register is used:  
Bit 8, which is 1 when the wavelength is not  
within the range of the user wavelength  
calibration data.  
Example  
OUTPUT 728;":STAT:QUES:COND?"  
ENTER 728;A$  
:STATus:QUEStionable:ENABle  
Syntax  
:STATus:QUEStionable:ENABle  
<wsp> <value>  
Description  
This command sets the bits in the ENABle  
register that enable the contents of the EVENt  
register to affect the Status Byte (STB). Setting  
119  
Download from Www.Somanuals.com. All Manuals Search And Download.  
                 
Remote Commands  
STATus Commands  
a bit in this register to 1 enables the  
corresponding bit in the EVENt register to  
affect bit 3 of the Status Byte.  
:STATus:QUEStionable:ENABle?  
Syntax  
:STATus:QUEStionable:ENABle?  
Description  
This query returns the current contents of the  
QUEStionable:ENABle register.  
Example  
OUTPUT 728;":STAT:QUES:ENAB  
256"  
OUTPUT 728;":STAT:QUES:ENAB?"  
ENTER 728;A$  
:STATus:QUEStionable[:EVENt]?  
Syntax  
:STATus:QUEStionable[:EVENt]?  
Description  
This query reads the contents of the  
QUEStionable:EVENt register. Only one bit of  
the event register is used (whether these bits  
contain information depends on the transition  
register configuration):  
Bit 8, which is 1 when the wavelength is not  
within the range of the user wavelength  
calibration data.  
Example  
OUTPUT 728;":STAT:QUES 256"  
OUTPUT 728;":STAT:QUES?"  
ENTER 728;A$  
:STATus:QUEStionable:NTRansition  
Syntax  
:STATus:QUEStionable:NTRansitio  
n<wsp> <value>  
120  
Download from Www.Somanuals.com. All Manuals Search And Download.  
                 
Remote Commands  
STATus Commands  
Description  
This command sets the bits in the NTRansition  
register. Setting a bit in this register enables a  
negative transition (10) in the corresponding  
bit in the CONDition register to set the bit in  
the EVENt register.  
:STATus:QUEStionable:NTRansition?  
Syntax  
:STATus:QUEStionable:NTRansitio  
n?  
Description  
Example  
This query returns the current contents of the  
QUEStionable:NTRansition register.  
OUTPUT 728;":STAT:QUES:NTR 256"  
OUTPUT 728;":STAT:QUES:NTR?"  
ENTER 728;A$  
:STATus:QUEStionable:PTRansition  
Syntax  
:STATus:QUEStionable:PTRansitio  
n<wsp> <value>  
Description  
This command sets the bits in the PTRansition  
register. Setting a bit in this register enables a  
positive transition (01) in the corresponding  
bit in the CONDition register to set the bit in  
the EVENt register.  
:STATus:QUEStionable:PTRansition?  
Syntax  
:STATus:QUEStionable:PTRansitio  
n?  
Description  
Example  
This query returns the current contents of the  
QUEStionable:PTRansition register.  
OUTPUT 728;":STAT:QUES:PTR 256"  
121  
Download from Www.Somanuals.com. All Manuals Search And Download.  
           
Remote Commands  
SYSTem Commands  
OUTPUT 728;":STAT:QUES:PTR?"  
ENTER 728;A$  
:STATus:PRESet  
Syntax  
:STATus:PRESet  
Description  
This command presets all the enable registers  
and transition filters for both the OPERation  
and QUEStionable nodes.  
All the bits in the ENABle registers are set to  
0
All the bits in the PTRansition registers are  
set to 1  
All the bits in the NTRansition registers are  
set to 0  
Example  
OUTPUT 728;":STAT:PRES"  
8.8 SYSTem Commands  
:SYSTem:ERRor?  
Syntax  
:SYSTem:ERRor?  
Description  
queue (see The Error Queueon page 84).  
Each error consists of the error code and a short  
description of the error, separated by a comma,  
for example 0,"No error". Error codes are  
numbers in the range -32768 and +32767.  
Negative error numbers are defined by the  
SCPI standard. Positive error numbers are  
device dependent. The errors are listed in  
Display Messageson page 275  
122  
Download from Www.Somanuals.com. All Manuals Search And Download.  
                   
Remote Commands  
User Calibration Commands  
Example  
OUTPUT 728;":SYST:ERR?"  
ENTER 728;A$  
8.9 User Calibration Commands  
Entering user calibration data can only be done over the GPIB. This  
is done using the commands described here.  
Entering the User Calibration Data  
To enter the data for the user calibration data, you will need a power  
meter, a tunable laser source and the attenuator. If you are going to  
use the attenuator to compensate for some other device, this should  
be included in the setup as well.  
The steps to enter the user calibration data are  
1. Set up the hardware.  
The following steps can be programmed to make the procedure  
easy, as the calibration values must be entered using the GPIB  
anyway.  
2. Disable the tunable laser source.  
3. Execute a zero on the power meter.  
4. Set the attenuation to 0.  
5. Set the wavelength on the tunable laser source, the attenuator  
and the power meter to the start wavelength.  
6. Enable the tunable laser source and the attenuator.  
7. Set the power meter to dB, and execute a Display-to-Reference.  
8. Set the desired attenuation on the attenuator.  
9. Start the user calibration (with the data for the start wavelength  
and the wavelength stepsize).  
123  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
Remote Commands  
User Calibration Commands  
This is done with the :UCALibration:STARtcommand  
10. λ=λStart  
11. Repeat the following steps until λ>λStop.  
a. Set λ on the tunable laser source, the attenuator and the  
power meter.  
b. Read the power (Power).  
c. Power = -Power.  
d. Set the user calibration value to Power.  
This is done with the :UCALibration:VALuecommand  
e. λ = λ + λStepsize  
12. Stop the user calibration.  
This is done with the :UCALibration:STOPcommand  
:UCALibration:STARt  
Syntax  
:UCALibration:STARt<wsp>  
<start_value> , <step_value>  
Description  
This command starts the entering of the user  
calibration data.  
You must send two values with this command,  
the wavelength of the first calibration point,  
and the spacing between the calibration points.  
The default units for both values are meters.  
The minimum value for the start wavelength is  
1200nm, and the minimum value for the step  
size is 0.1nm, the maximum value for the step  
size is 10nm. Other than this, the start and step  
values must satisfy the formula  
start value + ((number of step - 1) × step value} 1650nm  
where the number of steps must be in the range  
10 to 401.  
124  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Remote Commands  
User Calibration Commands  
The error -221 indicates that there is a conflict  
inherent in the start parameters for the user  
calibration. That is, the start_value and/or  
step_value is invalid.  
The error 201 indicates that the user calibration  
is currently on, and calibration data cannot be  
changed. Switch the user calibration state off  
(see :UCALibration:STATeon page 125) and  
try again.  
:UCALibration:STARt?  
Syntax  
:UCALibration:STARt?  
Description  
The query starts returning the data for the user  
wavelength calibration.  
Three values are returned in response to this  
query.  
1. The wavelength value for the first calibration data point (in  
meters).  
2. The step-size between the data calibration points (in meters).  
3. The number of data points that have been stored for the full  
calibration.  
Syntax  
:UCALibration:STATe<wsp>  
OFF|ON|0|1  
Description  
This command selects the wavelength  
calibration to be used. The choice is the factory  
made calibration for the instrument, or the  
calibration data entered into the instrument by  
the user (see Selecting the Wavelength  
Calibration and Its Functionon page 67).  
125  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Remote Commands  
User Calibration Commands  
Switch the state off (using OFFor 0) to use the  
factory-made calibration. Switch the state on  
(using ONor 1) to use the user calibration data.  
NOTE  
If you are using the instrument in an environment where the  
temperature changes, you should not use the user wavelength  
calibration data, as it lacks correction for temperature changes.  
:UCALibration:STATe?  
Syntax  
:UCALibration:STATe?  
Description  
The query returns the current wavelength  
calibration state.  
0indicates the instrument is using the factory-  
made wavelength calibration data. 1indicates  
that the instrument is using the user calibration  
data.  
Example  
OUTPUT 728;":UCAL:STAT ON"  
OUTPUT 728;":UCAL:STAT?"  
ENTER 728;A$  
:UCALibration:STOP  
Syntax  
:UCALibration:STOP  
Description  
This command ends the entering of the user  
calibration data.  
The error 203 indicates that entering the data  
points cannot be stopped, because it has not  
been started.  
:UCALibration:VALue  
Syntax  
:UCALibration:VALue<wsp> <value>  
Description  
This command enters a value for the user  
wavelength calibration data.  
126  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Remote Commands  
User Calibration Commands  
The value that you send with this command, is  
the attenuation for the next calibration point.  
The wavelength of the calibration point is  
updated automatically. The first piece of data is  
for the start wavelength specified by the  
:UCAL:STARTcommand. The default value  
for the value is dB.  
The value can be in the range 0.001dB to  
99.999dB.  
:UCALibration:VALue?  
Syntax  
:UCALibration:VALue?  
Description  
The query returns a value from the user  
wavelength calibration data.  
The value returned is the attenuation for the  
next calibration point. The wavelength of the  
calibration point is updated automatically. The  
first piece of data is for the start wavelength as  
returned by the :UCAL:START?query. The  
values returned are in dB.  
The error 204 indicates that there are no more  
data points to be read.  
127  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Remote Commands  
User Calibration Commands  
128  
Download from Www.Somanuals.com. All Manuals Search And Download.  
9
9
Programming Examples  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Programming Examples  
This chapter gives some programming examples. The language  
used for the programming is BASIC 5.1 Language System used on  
HP 9000 Series 200/300 computers.  
These programming examples do not cover the full command set  
for the instrument. They are intended only as an introduction to the  
method of programming the instrument. The programming  
examples use the GPIB.  
130  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Programming Examples  
Example 1 - Checking Communication  
9.1 Example 1 - Checking Communication  
Function  
This program sends a queries, and displays the reply.  
Listing  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
!------------------------------------  
!
! Agilent 8156A Programming Example 1  
!
! A Simple Communications Check  
!
!------------------------------------  
!
! Definitions and initialisations  
!
110  
Att=728  
This statement sets the address of the attenuator. The first 7 is to  
access the GPIB card in the controller, the 28 is the GPIB address  
of the attenuator  
120  
130  
150  
tions"  
160  
170  
180  
190  
200  
210  
220  
230  
DIM String$[50]  
!
PRINT TABXY(5,10);"Programming Example 1, Simple Communica  
!
! Send an IDN query and get the Identification  
!
OUTPUT Att;"*IDN?"  
ENTER Att;String$  
PRINT TABXY(10,12);"Identification : ";String$  
!
END  
131  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Programming Examples  
Example 2 - Status Registers and Queues  
9.2 Example 2 - Status Registers and Queues  
Function  
This program sends a commands and queries typed in by the user.  
The contents of the status byte and the standard event status register  
are displayed. These registers are updated for each new command,  
and each time a Service ReQuest (SRQ) occurs. The number of the  
most recent error, and the most recent contents of the output queue  
is also displayed.  
Listing  
10  
!--------------------------------------------------  
20  
!
30  
! Agilent 8156A Programming Example 2  
40  
!
50  
! Status Structure, and a useful self learning tool  
60  
!
70  
!--------------------------------------------------  
80  
!
90  
! Declarations and initializations  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
!
INTEGER Value,Bit,Quot,Xpos,Ypos  
DIM Inp$[100]  
DIM A$[300]  
Att=728  
ON INTR 7 GOSUB Pmm_srq  
!
! Mask the registers  
!
OUTPUT Att;"*SRE 248;*ESE 255"  
The *SRE 248 command enables bits 7 (Operation Status Summary), 5 (ESB), 4 (MAV), and 3  
(Questionable Status Summary) in the status byte (bit 6 (SRQ) cannot be disabled in this  
register). The *ESE 255 command enables all of the bits in the Event Status Register.  
200  
210  
220  
230  
240  
250  
260  
270  
280  
290  
300  
310  
320  
330  
!
! Set up the screen  
!
CLEAR SCREEN  
PRINT TABXY(40,3);"Status Byte"  
PRINT TABXY(4,1);" OPS SRQ ESB MAV QUE"  
PRINT TABXY(4,2);" +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+"  
PRINT TABXY(4,3);" :  
PRINT TABXY(4,4);" +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+"  
PRINT TABXY(4,5);"  
PRINT TABXY(4,6);"  
PRINT TABXY(4,7);" +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+"  
PRINT TABXY(4,8);" : OR :"  
PRINT TABXY(4,9);" +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+"  
:
:
:
:
:
:
:
:"  
^"  
:"  
132  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Programming Examples  
Example 2 - Status Registers and Queues  
340  
350  
360  
370  
380  
390  
400  
410  
420  
430  
440  
errors  
450  
460  
470  
480  
490  
500  
510  
520  
530  
540  
550  
560  
PRINT TABXY(4,10);"  
PRINT TABXY(4,11);" +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+"  
PRINT TABXY(4,12);" : :"  
PRINT TABXY(4,13);" +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+"  
PRINT TABXY(4,14);" PON URQ CME EXE DDE QYE RQC OPC"  
PRINT TABXY(40,12);"Standard Event Status Register"  
PRINT TABXY(4,16);"Last Command :"  
^
^
^
^
^
^
^
^"  
:
:
:
:
:
:
:
PRINT TABXY(4,17);"Last Error  
:"  
PRINT TABXY(4,18);"Output Queue :"  
!
! Start the program loop and enable the interrupt for the  
!
Ende=0  
GOSUB Pmm_srq  
ENABLE INTR 7;2  
!
! The Central Loop  
!
REPEAT  
INPUT "Command ? ",Inp$  
GOSUB Pmm_srq  
OUTPUT Att;Inp$  
PRINT TABXY(21,16);"  
"
570  
580  
590  
600  
610  
620  
PRINT TABXY(21,16);Inp$  
WAIT 1.0  
UNTIL Ende=1  
GOTO 1380  
!
!----------------------------------------------------  
630 Pmm_srq: ! Interrupt Handling Subroutine to display the  
640  
650  
660  
670  
680  
690  
700  
710  
720  
730  
! status and the error and output queues  
!----------------------------------------------------  
!
! Get the value for the Status Byte  
!
Value=SPOLL(Att)  
!
! Initialize and start the display of the registers  
!
PRINT TABXY(21,17);"  
"
740  
PRINT TABXY(21,18);"  
"
750  
760  
770  
780  
790  
800  
810  
820  
830  
840  
850  
860  
870  
880  
Ypos=3  
FOR Z=0 TO 1  
Bit=128  
Xpos=7  
!
! Do it for each bit  
!
REPEAT  
Quot=Value DIV Bit  
!
! If the bit is set then display 1  
!
IF Quot>0 THEN  
PRINT TABXY(Xpos,Ypos);"1"  
133  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Programming Examples  
Example 2 - Status Registers and Queues  
890  
Value=Value-Bit  
900  
!
910  
! If MAV is set, then get and display the output que  
ue contents  
920  
!
930  
IF Z=0 THEN  
940  
IF Bit=16 THEN  
950  
ENTER Att;A$  
960  
PRINT TABXY(21,18);A$  
970  
END IF  
980  
END IF  
990  
!
1000  
! If the bit is not set, then display 0  
1010  
!
1020  
1030  
1040  
1050  
1060  
1070  
1080  
1090  
1100  
1110  
1120  
d Events  
1130  
1140  
1150  
1160  
1170  
1180  
1190  
1200  
ELSE  
PRINT TABXY(Xpos,Ypos);"0"  
END IF  
!
! Set up for the next iteration  
!
Bit=Bit DIV 2  
Xpos=Xpos+4  
UNTIL Bit=0  
!
! Now that the status byte is displayed, get the Standar  
! Status Register  
!
OUTPUT Att;"*ESR?"  
ENTER Att;Value  
!
! Set up to display the ESR  
!
Ypos=12  
1210 NEXT Z  
1220 !  
1230 ! Read and display any messages in the error queue  
1240 !  
1250 REPEAT  
1260  
OUTPUT Att;"SYSTEM:ERROR?"  
1270  
ENTER Att;Value,A$  
The SYSTEM:ERROR? query gets the number of the last error in the error queue.  
1280 IF Value<>0 THEN PRINT TABXY(21,17);Value,A$  
1290 UNTIL Value=0  
1300 !  
1310 ! Clear the Status structure and reenable the interrupt be  
fore returning  
1320 !  
1330 OUTPUT Att;"*CLS"  
1340 ENABLE INTR 7  
1350 !  
1360 RETURN  
1370 !  
1380 END  
134  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Programming Examples  
Example 3 - Measuring and Including the Insertion Loss  
9.3 Example 3 - Measuring and Including the  
Insertion Loss  
Function  
This program performs the same sequence as the sample session  
given in chapter 1. That is, to measure the insertion loss of the  
attenuator, and put this into the calibration factor to that it is  
included in all future loss values.  
Requirements  
This example uses the Agilent 8156A Attenuator, with a 8153A  
multimeter with one source and one sensor. The connectors for this  
system are all HMS-10.  
Setting Up the Equipment  
1. At the beginning, configure the hardware as shown in the figure  
below, making sure that all the connectors are clean:  
Figure 9-1  
Hardware Configuration for Attenuation Example - A  
a. Make sure that the power sensor is installed in the  
multimeter mainframe in channel A, and the source is in  
channel B.  
135  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Programming Examples  
Example 3 - Measuring and Including the Insertion Loss  
b. Connect both instruments to the electric supply.  
c. Switch on both instruments.  
NOTE  
Under normal circumstances you should leave the instruments to  
warmup. (The multimeter needs around 20 minutes to warmup. The  
attenuator needs around 45 minutes with the shutter open to warmup.)  
Warming up is necessary for accuracy of the sensor, and the output  
power of the source.  
d. Connect a patchcord from the source to the input of the  
sensor.  
2. For the second part of the example reconfigure the hardware to  
include the attenuator:  
a. Disconnect the source from the sensor, and connect it to the  
input of the attenuator.  
Figure 9-2  
Hardware Configuration for Attenuation Example - B  
b. Connect a patchcord from the output of the attenuator to the  
sensor.  
136  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Programming Examples  
Example 3 - Measuring and Including the Insertion Loss  
Listing  
10  
20  
30  
40  
50  
60  
70  
80  
90  
!-----------------------------------------  
!
! Programming Example 3  
!
! Measuring the Insertion Loss and using it as a Cal factor  
!
!-----------------------------------------  
!
! Definitions and Initializations  
100 !  
110 Att=728  
120 Mm=722  
130 !  
140 OUTPUT Mm;"*rst;*cls"  
150 OUTPUT Att;"*rst;*cls"  
160 !  
170 ! Setup the instruments, with the output of the source connected  
180 ! to the input of the sensor and wait for the ENTER key to  
190 ! be pressed before continuing  
200 !  
210 CLEAR SCREEN  
220 PRINT TABXY(4,17);""  
230 INPUT "Connect the Source to the Sensor and then press ENTER",Inp$  
240 !  
250 ! Set the sensor wavelength to that of the source  
260 !  
270 OUTPUT Mm;"sour2:pow:wave?"  
280 ENTER Mm;Wvl  
290 OUTPUT Mm;"sens1:pow:wave ";Wvl  
300 !  
310 ! Activate the source  
320 !  
330 OUTPUT Mm;"sour2:pow:stat on"  
340 !  
350 ! Set the instrument to measure in dB, and take the current power  
360 ! as the reference.  
370 !  
380 OUTPUT Mm;"sens1:pow:ref:stat on"  
390 WAIT 2  
Let everything settle before making a reading  
400 OUTPUT Mm;"sens1:pow:ref:disp"  
410 !  
420 ! Switch off the source and prompt for the next hardware se  
tup  
430 !  
440 OUTPUT Mm;"sour2:pow:stat off"  
450 PRINT TABXY(4,17);""  
460 INPUT "Connect the Attenuator into the setup and press ENTE  
R to continue:,Inp$  
470 !  
480 ! Set the wavelength on the attenuator  
490 !  
500 OUTPUT Att;"inp:wave ";Wvl  
510 !  
520 ! Switch on the source, enable the attenuator  
137  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Programming Examples  
Example 3 - Measuring and Including the Insertion Loss  
530 !  
540 OUTPUT Mm;"sour2:pow:stat on"  
550 OUTPUT Att;"outp on"  
560 !  
570 ! Read in the power now (the insertion loss of the attenuat  
or)  
580 ! and put it into the calibration factor on the attenuator.  
590 !  
600 OUTPUT Mm;"read1:pow?"  
610 ENTER Mm;Insloss  
620 OUTPUT Att;"inp:offs "; -Insloss  
The ‘-sign is here because the value from the attenuator is the insertion gain  
630 END  
138  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Programming Examples  
Example 4 - Running an Attenuation Sweep  
9.4 Example 4 - Running an Attenuation Sweep  
Function  
We set up the instrument to sweep from 0dB to 5dB with an interval  
of 0.5dB, dwelling for a second at each attenuation factor.  
The requirements are an Agilent 8156A Attenuator.  
Listing  
10  
20  
30  
40  
50  
60  
70  
80  
90  
!-------------------------------------------------  
!
! Agilent 8156A Programming Example 4  
!
! Running an Attenuation Sweep  
!
!-------------------------------------------------  
!
! Definitions and Initializations  
100 !  
110 Att=728  
130 !  
140 Startatt=0.0  
150 Stopatt=5.0  
160 Stepatt=0.5  
170 Dwell=1  
180 !  
190 ! Initialise the instrument  
200 !  
210 OUTPUT Att;"*rst;*cls"  
220 !  
230 ! Do the sweep  
240 !  
250 FOR Value=Startatt TO Stopatt STEP Stepatt  
260  
270  
OUTPUT Att;"inp:att ";Value  
WAIT Dwell  
280 NEXT Value  
290 END  
139  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Programming Examples  
Example 4 - Running an Attenuation Sweep  
140  
Download from Www.Somanuals.com. All Manuals Search And Download.  
A
A
Installation  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Installation  
This appendix provides installation instructions for the attenuator. It  
also includes information about initial inspection and damage  
claims, preparation for use, packaging, storage, and shipment.  
142  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Installation  
Safety Considerations  
A.1 Safety Considerations  
The attenuator is a Class 1 instrument (that is, an instrument with an  
exposed metal chassis directly connected to earth via the power  
supply cable). The symbol used to show a protective earth terminal  
in the instrument is  
Before operation, review the instrument and manual for safety  
markings and instructions. You must follow these to ensure safe  
operation and to maintain the instrument in safe condition.  
A.2 Initial Inspection  
Inspect the shipping container for damage. If there is damage to the  
container or cushioning, keep them until you have checked the  
contents of the shipment for completeness and verified the  
instrument both mechanically and electrically.  
The Function Test gives a procedure for checking the operation of  
the instrument. If the contents are incomplete, mechanical damage  
or defect is apparent, or if an instrument does not pass the operators  
checks, notify the nearest Agilent Technologies office.  
WARNING  
To avoid hazardous electrical shock, do not perform electrical tests  
when there are signs of shipping damage to any portion of the outer  
enclosure (covers, panels, etc.).  
143  
Download from Www.Somanuals.com. All Manuals Search And Download.  
           
Installation  
AC Line Power Supply Requirements  
A.3 AC Line Power Supply Requirements  
The Agilent Technologies 8156A can operate from any single-  
phase AC power source that supplies between 100V and 240V at a  
frequency in the range from 50 to 60Hz. The maximum power  
consumption is 40VA with all options installed.  
Line Power Cable  
In accordance with international safety standards, this instrument  
has a three-wire power cable. When connected to an appropriate  
AC power receptacle, this cable earths the instrument cabinet. The  
type of power cable shipped with each instrument depends on the  
country of destination. Refer to Figure A-1 for the part numbers of  
the power cables available.  
Figure A-1  
Line Power Cables - Plug Identification  
WARNING  
To avoid the possibility of injury or death, you must observe the  
following precautions before switching on the instrument.  
If this instrument is to be energized via an autotransformer for  
voltage reduction, ensure that the Common terminal connects to the  
earth pole of the power source.  
Insert the power cable plug only into a socket outlet provided with a  
protective earth contact. Do not negate this protective action by the  
using an extension cord without a protective conductor.  
144  
Download from Www.Somanuals.com. All Manuals Search And Download.  
             
Installation  
AC Line Power Supply Requirements  
Before switching on the instrument, the protective earth terminal of  
the instrument must be connected to a protective conductor. You  
can do this by using the power cord supplied with the instrument.  
It is prohibited to interrupt the protective earth connection  
intentionally.  
The following work should be carried out by a qualified electrician.  
All local electrical codes must be strictly observed. If the plug on  
the cable does not fit the power outlet, or if the cable is to be  
attached to a terminal block, cut the cable at the plug end and rewire  
it.  
The color coding used in the cable depends on the cable supplied. If  
you are connecting a new plug, it should meet the local safety  
requirements and include the following features:  
Adequate load-carrying capacity (see table of specifications).  
Ground connection.  
Cable clamp.  
The AC power requirements are summarized on the rear panel of  
the instrument.  
Figure A-2  
Rear Panel Markings  
145  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Installation  
AC Line Power Supply Requirements  
Replacing the Battery  
This instrument contains a lithium battery. Replacing thebattery  
should be carried out only by a qualified electrician or by Agilent  
Technologies service personnel.  
There is a danger of explosion if the battery is incorrectly replaced.  
Replace only with the same or an equivalent type (Agilent part  
number 1420-0394). Discard used batteries according to local  
regulations.  
Replacing the Fuse  
There is one fuse in this instrument. This is a T1A/250V (time-lag)  
(Agilent Part No. 2110-0007). The fuse holder is at the rear of the  
instrument, beside the line power connector. To replace the fuse,  
1. Release the fuse holder: use the blade of a flat-headed  
screwdriver to depress the catch at the side of the holder and then  
pull the holder out a little.  
146  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
Installation  
AC Line Power Supply Requirements  
Figure A-3  
Releasing the Fuse Holder  
2. Pull the fuse holder out of the instrument.  
The Fuse Holder  
Figure A-4  
3. Check and replace the fuse as necessary making sure that the  
fuse is always in the top position of the fuse holder, and the  
bridge is in the bottom.  
4. Place the fuse holder back in the instrument, and push it until the  
catch clicks back into place.  
147  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Installation  
Operating and Storage Environment  
A.4 Operating and Storage Environment  
The following summarizes the Agilent 8156A operating  
environment ranges. In order for the attenuator to meet  
specifications, the operating environment must be within these  
limits.  
WARNING  
The Agilent 8156A is not designed for outdoor use. To prevent potential  
fire or shock hazard, do not expose the instrument to rain or other  
excessive moisture.  
Temperature  
Protect the instrument from temperature extremes and changes in  
temperature that may cause condensation within it.  
The storage and operating temperature for the Agilent 8156A is  
given in the table below.  
Table A-1  
Temperature  
Operating Range  
Storage Range  
Specified  
0°C to 55°C  
-40°C to 70°C  
Humidity  
The operating humidity for the Agilent 8156A is 15% to 95% from  
0°C to 40°C.  
Instrument Positioning and Cooling  
The attenuator has a cooling fan mounted internally. Mount or  
position the instrument upright and horizontally so that air can  
circulate through it freely. When operating the attenuator, choose a  
location that provides at least 75mm (3inches) of clearance at the  
148  
Download from Www.Somanuals.com. All Manuals Search And Download.  
               
Installation  
Switching on the Attenuator  
rear, and at least 25mm (1inch) of clearance at each side. Failure to  
provide adequate air clearance may result in excessive internal  
temperature, reducing instrument reliability.  
Figure A-5  
Correct Positioning of the Attenuator  
A.5 Switching on the Attenuator  
When you switch on the attenuator it goes through self test. This is  
the same as the self test described in *TST?on page 103.  
A.6 Monitor Output  
If you have option 121 or option 221(the monitor output), then the  
Monitor Output provides a signal for monitoring the power getting  
through the attenuator. The signal level is approximately 5% of the  
output power level. For the most accurate results, measure the  
149  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Installation  
Optical Output  
coupling ratio, and its wavelength dependence, for the Monitor  
Output yourself.  
A.7 Optical Output  
CAUTION  
The attenuator is supplied with either a straight contact connector or  
an angled contact connector (Option 201). Make sure that you only use  
the correct cables with your chosen output. See Connector Interfaces  
and Other Accessorieson page 158 for further details on connector  
interfaces and accessories.  
Disabling the Optical Output  
If the optical output is enabled (that is, the green LED is lit), you  
can disable it by pressing ENB/DIS.  
NOTE  
Depending on the attenuation setting, it can take up to 3 seconds for the  
output to be disabled (typically delay, 1 second).  
A.8 GPIB Interface  
You can connect your GPIB interface into a star network, a linear  
network, or a combination star and linear network. The limitations  
imposed on this network are as follows:  
The total cable length cannot exceed 20 meters  
The maximum cable length per device is 2 meters  
No more than 15 devices may be interconnected on one bus.  
150  
Download from Www.Somanuals.com. All Manuals Search And Download.  
             
Installation  
GPIB Interface  
Connector  
The following figure shows the connector and pin assignments.  
Connector Part Number: 1251-0293  
Figure A-6  
GPIB Connector  
CAUTION  
CAUTION  
Agilent Technologies products delivered now are equipped with  
connectors having ISO metric- threaded lock screws and stud mounts  
(ISO M3.5×0.6) that are black in color. Earlier connectors may have  
lock screws and stud mounts with imperial-threaded lock screws and  
stud mounts (6-32 UNC) that have a shiny nickel finish.  
It is recommended that you do not stack more than three connectors,  
one on top of the other.  
Hand-tighten the connector lock screws. Do not use a screwdriver.  
151  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Installation  
Claims and Repackaging  
GPIB Logic Levels  
The attenuator GPIB lines use standard TTL logic, as follows:  
True = Low = digital ground or 0Vdc to 0.4Vdc  
False = High = open or 2.5Vdc to 5Vdc  
All GPIB lines have LOW assertion states. High states are held at  
3.0Vdc by pull-ups within the instrument. When a line functions as  
an input, it requires approximately 3.2mA to pull it low through a  
closure to digital ground. When a line functions as an output, it can  
sink up to 48mA in the low state and approximately 0.6mA in the  
high state.  
NOTE  
The GPIB line screens are not isolated from ground.  
A.9 Claims and Repackaging  
If physical damage is evident or if the instrument does not meet  
specification when received, notify the carrier and the nearest  
Agilent Technologies Service Office. The Sales/Service Office will  
arrange for repair or replacement of the unit without waiting for  
settlement of the claim against the carrier.  
Return Shipments to Agilent Technologies  
If the instrument is to be shipped to an Agilent Technologies/  
Service Office, attach a tag showing owner, return address, model  
number and full serial number and the type of service required.  
The original shipping carton and packing material may be reusable,  
but the Agilent Technologies/Service Office will provide  
information and recommendation on materials to be used if the  
original packing is no longer available or reusable. General  
instructions for repacking are as follows:  
152  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
Installation  
Claims and Repackaging  
1. Wrap instrument in heavy paper or plastic.  
2. Use strong shipping container. A double wall carton made of  
350-pound test material is adequate.  
3. Use enough shock absorbing material (3 to 4 inch layer) around  
all sides of the instrument to provide a firm cushion and prevent  
movement inside container. Protect control panel with  
cardboard.  
4. Seal shipping container securely.  
5. Mark shipping container FRAGILE to encourage careful  
handling.  
6. In any correspondence, refer to instrument by model number and  
serial number.  
153  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Installation  
Claims and Repackaging  
154  
Download from Www.Somanuals.com. All Manuals Search And Download.  
B
B
Accessories  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Accessories  
156  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Accessories  
Instrument and Options  
B.1 Instrument and Options  
Mainframe  
Table B-1  
Description  
Model No.  
Optical Attenuator  
Agilent 8156A  
Option 100  
Option 101  
Option 201  
Option 121  
Option 221  
Option 203  
Standard  
High Performance Version  
High Performance, High Return Loss Version  
Monitor Output  
Monitor Output  
Back Reflector Kit for option 201*  
(Additional) Operating and  
Programming Manual  
Option 0B2  
* Kit consists of 1 ea Agilent 81000SI, Agilent 81000FI,  
Agilent 81113PC, Agilent 81000UM, Agilent 81000BR  
B.2 GPIB Cables and Adapters  
The GPIB connector is compatible with the connectors on the  
following cables and adapters.  
GPIB Cable, 10833A, 1 m (3.3 ft.)  
GPIB Cable, 10833B, 2 m (6.6 ft.)  
GPIB Cable, 10833C, 4 m (13.2 ft.)  
157  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
Accessories  
Connector Interfaces and Other Accessories  
GPIB Cable, 10833D, 0.5 m (1.6 ft.)  
GPIB Adapter, 10834A, 2.3 cm extender.  
B.3 Connector Interfaces and Other Accessories  
The attenuator is supplied with one of three connector interface  
options.  
All options other than option 201 are supplied with a straight  
contact connector  
Option 201 with an angled contact connector  
Straight Contact Connector  
If you want to use straight connectors (such as FC/PC, Diamond  
HMS-10, DIN, Biconic, SC, ST, or D4) to connect to the  
instrument, you must  
1. attach your connector interface (see the list of connector  
interfaces below) to the interface adapter,  
2. then connect your cable.  
158  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
Accessories  
Connector Interfaces and Other Accessories  
Figure B-1  
Straight Contact Connector Configuration  
Table B-2  
Connector Interface  
Description  
Biconic  
Agilent Model No.  
81000WI  
81000GI  
81000AI  
81000SI  
81000FI  
81000KI  
81000VI  
D4  
Diamond HMS-10/HP  
DIN 47256  
FC/PC  
SC  
ST  
159  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Accessories  
Connector Interfaces and Other Accessories  
Option 201, Angled Contact Connector  
If you want to use angled contact connectors (such as FC/APC,  
Diamond HRL-10, DIN, or SC/APC) to connect to the instrument,  
you must  
1. attach your connector interface (see the list of connector  
interfaces below) to the interface adapter,  
2. then connect your cable.  
Figure B-2  
Angled Contact Connector Configuration  
160  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
Accessories  
Connector Interfaces and Other Accessories  
Table B-3  
Connector Interface  
Description  
AgilentModel No.  
Diamond HRL-10 (DIN)  
FC/APC  
81000SI  
81000FI  
81000KI  
SC/APC  
161  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Accessories  
Connector Interfaces and Other Accessories  
162  
Download from Www.Somanuals.com. All Manuals Search And Download.  
C
C
Specifications  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Specifications  
164  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Specifications  
Definition of Terms  
C.1 Definition of Terms  
Attenuation accuracy  
The difference between the displayed loss and excess loss.  
Conditions: Attenuation adjustment prior to measurement. That is,  
adjustment of the measured attenuation at the highest setting so that  
it equals the attenuation setting, for example by adjusting the  
wavelength setting.  
Measurement: with laser source or LED and optical power meter.  
Attenuation range  
The range of displayed attenuations.  
Excess loss  
The difference between actual loss (at an arbitrary attenuation  
setting) and [rightarrow]insertion loss (at 0 dB setting).  
Insertion loss  
The change of power levels after inserting the attenuator between  
two connectorized patchcords, with the attenuation set to 0 dB.  
Conditions: Arbitrary wavelength setting, temperature within  
operating temperature range, jumper cables with high quality  
connectors.  
Measurement: with laser source or LED and optical power.  
Polarization dependent loss  
The dependence of the attenuation on the input polarization state,  
expressed as the difference between the highest and the lowest  
displayed attenuation, in dB.  
Conditions: Fabry-Perot type laser source with variable  
polarization state and polarization-independent power, generation  
of all polarization states (covering the entire Poincar sphere),  
jumper cables with high-quality connectors.  
165  
Download from Www.Somanuals.com. All Manuals Search And Download.  
               
Specifications  
Definition of Terms  
Measurement: either with a fiber-loop type polarization controller  
using the polarization scanning method, or with a wavelength type  
polarization controller using the Mueller method.  
Polarization mode dispersion  
The change of transit time caused by changing the input  
polarization state, expressed in fs (10-15 seconds).  
Conditions: Generation of all polarization states (covering the  
entire Poincar sphere.  
Measurement: with the Agilent Technologies polarization  
analyzer.  
Repeatability  
The random uncertainty in reproducing the attenuation after  
changing and re-setting the attenuation. The repeatability is ± half  
the span between the maximum and the minimum attenuations,  
expressed in dB.  
Conditions: uninterrupted line voltage, constant wavelength  
setting, temperature within ±1 K, constant input polarization state.  
Measurement: with an optical power meter.  
Return loss  
The ratio of the incident power to the reflected power, expressed in  
dB.  
Conditions: jumper cables with high-quality connectors on both  
attenuator ports. Arbitrary attenuation setting. Applicable to both  
attenuator ports, with the respective second port terminated (zero  
reference).  
Measurement: with a return loss meter, using a Fabry-Perot type  
laser source. The measurement result includes attenuator-internal  
reflectances and reflectances from both attenuator ports.  
Wavelength range The range of wavelengths to which the  
specifications apply.  
166  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
Specifications  
Specifications  
C.2 Specifications  
Specifications describe the instruments warranted performance.  
Supplementary performance characteristics describe the  
instruments non-warranted typical performance.  
Specifications are measured at 1310nm and 1550nm using a laser  
source, single-mode fiber and Agilent 81000AI or Agilent 81000SI  
connector interfaces.  
Table C-1  
Specifications - Options 100, 101 and 201  
Option 100  
Option 101  
Option 201  
Standard  
High  
Performance  
High Return  
Loss  
Wavelength Range  
1200 - 1650nm  
Attenuation Range  
Fiber Type  
60dB (excluding insertion loss)  
9/125µm single-mode  
Connector Type  
straight contact  
>45dB  
angled contact  
>60dB  
2.5dB  
Return Loss[1]  
>35dB  
4.5dB  
Insertion Loss (typ)[2]  
Attenuation Accuracy (linearity)[3]  
typical  
<±0.2dB[4]  
<±0.1dB[4]  
<±0.1dB  
<±0.05dB  
Repeatability  
typical  
<±0.01dB  
<±0.005dB  
<0.08dBpp  
<0.02dBpp  
Polarization Dependent Loss  
typical  
<0.15dBpp  
<0.075dBpp  
Polarization Mode Dispersion  
Useful Back-Reflection Range  
4fs  
9.0 to 35dB  
5.0 to 45dB  
5.0 to 60dB  
[1] Typical, depends on performance of external connector  
167  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Specifications  
Specifications  
[2] Includes insertion loss of two HMS-10 connectors. Typical  
variation over temperature range <0.3dBpp.  
[3] Measured at constant temperature.  
[4] With narrow linewidth lasers, such as DFB lasers, power  
fluctuations up to 0.2dBpp may occur.  
Table C-2  
Monitor Output Options  
Option 121  
Option 221  
High  
Performance  
High Return  
Loss  
Wavelength Range  
Attenuation Range  
Fiber Type  
1200 - 1650nm  
60dB (excluding insertion loss)  
9/125µm single-mode  
Connector Type  
straight contact angled contact  
Return Loss[1]  
Insertion Loss (typ)[2]  
>45dB  
>60dB  
3.3dB  
Attenuation Accuracy (linearity)[3]  
typical  
<±0.1dB  
<±0.05dB  
Repeatability  
typical  
<±0.01dB  
<±0.005dB  
Polarization Dependent Loss  
<0.1dBpp  
typical  
<0.03dBpp  
Polarization Mode Dispersion  
Monitor Output (typ.)  
6fs  
13dB tap (1:20)  
Useful Back-Reflection Range  
6.6 to 45dB  
6.6 to 60dB  
[1] Typical, depends on performance of external connector  
[2] Includes insertion loss of two HMS-10 connectors. Typical  
variation over temperature range <0.3dBpp.  
[3] Measured at constant temperature.  
168  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Specifications  
Specifications  
Table C-3  
Multimode Options  
Option 350  
Wavelength Range  
Attenuation Range  
1200 - 1650nm  
60dB (excluding  
insertion loss)  
Fiber Type  
50/125µm multimode  
straight contact  
22dB  
Connector Type  
Return Loss[1]  
Insertion Loss (typ)[2]  
3dB  
Attenuation Accuracy (linearity)[3]  
typical  
<±0.1dB  
<±0.08dB  
Repeatability  
typical  
<±0.01dB  
<±0.005dB  
[1] Typical, depends on performance of external connector  
[2] Includes insertion loss of two HMS-10 connectors. Typical  
variation over temperature range <0.3dBpp.  
[3] Measured at constant temperature.  
Supplementary Performance Characteristics  
Minimum Attenuation Step: 0.001dB  
Switching Time: 20ms to 400ms (depending on actual setting)  
Maximum Input Power: 23dBm (200mW)  
Operating Modes  
Att: Attenuation is shown on the display and can be varied.  
169  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Specifications  
Specifications  
λ: Entering of wavelength for automatic correction of attenuation  
using typical correction values.  
Cal: Offset factor to adjust the attenuation factor on the display  
within ±99.999dB range.  
DispCal: Sets attenuation value on the display to 0.000dB.  
Swp: Manual or automatic up or down attenuation sweep. Start,  
stop, step size and dwell time (not for manual sweep) can be  
entered.  
Back Refl: Desired return loss (back reflection level) can be  
entered. Requires Agilent 81000BR back reflector, or Option 203.  
Enb/Dis: Optical signal path interrupted with shutter (>80dB  
isolation).  
Store/Recall: 9 user-selectable parameter settings may be stored  
and recalled. Recall of default setting.  
General  
Recalibration period: 1 year.  
Warm-up time: 45 Minutes. Not required if previously stored  
within operating temperature range.  
GPIB Capability: All modes and parameters can be  
programmed, SCPI command set, 8157A compatibility mode.  
GPIB Interface Function Code: SH1, AH1, T6, L4, SR1,  
RL1, PP0, DC2, DT0, C0  
Environmental  
Storage temperature: -40 to +70°C  
Operating temperature: 0 to +55°C  
Humidity: <95% R.H. (to 40°C)  
Altitude: to 10,000 feet  
170  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Specifications  
Other Specifications  
Installation Category (IEC 664) II  
Pollution Degree (IEC 664) 2  
Specifications valid at non-condensing conditions.  
Power:  
100/110/220/240Vrms, ±10%, 90VA max, 48-400Hz.  
Battery Back-Up: (for non-volatile memory) With the  
instrument switched off all current modes and data will be  
maintained for at least 10 years after delivery when stored at room  
temperature.  
Dimensions: 89mm H, 21s2.35mm W, 345mm D  
(3.5×8.36×13.6)  
Weight: net 5.3kg (11.8lbs), shipping 9.6kg (21.2lbs)  
C.3 Other Specifications  
Acoustic Noise Emission:  
Geräuschemissionswerte:  
For ambient temperature up to 30°C Bei einer Umgebungstemperatur bis 30°C  
Lp = 41 dB(A)  
Lp = 41 dB(A)  
Lw = 4.3 Bel  
Lw = 4.3 Bel  
Typical operator position,  
normal operation.  
am Arbeitsplatz,  
normaler Betrieb.  
Data are results from type  
Die Angabe ist das Ergebnis einer  
tests per ISO 7779(EN 27779).  
Typprüfung gemäß ISO 7779(EN 27779).  
171  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Specifications  
Declaration of Conformity  
C.4 Declaration of Conformity  
Manufacturer:  
Agilent Technologies  
Deutschland GmbH  
Optical Communication Measurement Division  
Herrenberger Str. 130  
D-71034 Böblingen  
We declare the system  
Product Name: Optical Attenuator  
Model Numbers: 8156A  
Product Options: All  
conforms to the following standards  
Safety:  
EMC:  
IEC 1010-1+A1:1992 EN 61010:1993  
EN 55011 1990/CINSPR 11 Group 1, Class B (I)  
EN 50082-1 (1992)  
IEC 801-2 (1991)  
IEC 801-3: (1991)  
IEC 801-4: (1988)  
ESD  
Radiated Immunity 3 V/m  
Fast Transients 0.5 kV, 1 kV  
4 kV cd, 8 kV ad  
Supplementary Information:  
The product also conforms to other standards not listed here. If further  
information on conformance is needed, please contact your local  
Agilent Technologies Representative.  
(I) The product was tested in a typical configuration with Agilent systems  
(Type test).  
Böblingen, September 1st, 1993  
Hans Baisch  
Updated, February 2000  
BID Regulations Consultant  
172  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
D
D
Performance Tests  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Performance Tests  
The procedures in this section test the optical performance of the  
instrument. The complete specifications to which the Agilent  
Technologies 8156A is tested are given in Appendix C. All tests  
can be performed without access to the interior of the instrument.  
The performance tests referspecifically to tests using the Diamond  
HMS-10/Agilent connector.  
174  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Performance Tests  
Equipment Required  
D.1 Equipment Required  
The equipment required for the performance test is listed in the  
table below. Any equipment which satisfies the critical  
specifications of the equipment given in the table, may be  
substituted for the recommended models.  
175  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Performance Tests  
Equipment Required  
Table D-1  
Equipment Required for the Agilent 8156A (1310/1550nm)  
Recommended HP/  
Instrument/Accessory  
Agilent Model  
Required for Option  
100 101 121 201 221 350  
Power Meter  
8153A Mainframe with  
x
x
x
x
x
x
CW Laser Sources 1310/1550nm 81552SM and 81553SM  
or 81554SM  
x
-
x
-
x
-
x
-
x
-
-
x
LED Source 1300nm  
81542MM  
Opt. Sensor Module  
Return Loss Module  
81532A  
81534A  
x
x
x
x
x
x
x
x
x
x
x
-
Reference Reflector  
Universal Through Adapter  
Back Reflector Kit  
81000BR  
81000UM  
8156A Option 203  
1005-0255  
x
x
-
x
x
-
x
x
-
-
-
x
x
-
-
x
x
-
-
-
-
DIN Through Adapter  
-
-
-
Optical Isolator  
Optical Isolator  
x
x
x
x
x
x
-
-
-
-
-
-
Connector Interface (6ea)  
Connector Interface (4ea)  
Connector Interface (1ea)  
Connector Interface (1ea)  
Connector Interface (4ea)  
Connector Interface (1ea)  
81000AI  
81000AI  
81000AI  
81000FI  
81000SI  
81000SI  
x
-
-
-
-
-
x
-
-
-
-
-
x
-
x
-
-
-
-
-
x
x
x
-
-
-
x
x
x
x
-
x
-
-
-
-
Single Mode Fiber (1ea)  
Single Mode Fiber (1ea)  
Single Mode Fiber (1ea)  
Single Mode Fiber (1ea)  
Single Mode Fiber (1ea)  
Single Mode Fiber (1ea)  
81101AC  
81101AC  
81102SC  
81102SC  
81109AC  
81113PC  
x
-
-
-
x
-
x
-
-
-
x
-
x
x
-
-
x
-
-
-
x
-
-
-
-
x
x
-
-
-
-
-
-
-
x
x
Multi Mode Fiber (2ea)  
81501AC  
-
-
-
-
-
x
176  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Performance Tests  
Test Record  
D.2 Test Record  
Results of the performance test may be tabulated on the Test Record  
provided at the end of the test procedures. It is recommended that  
you fill out the Test Record and refer to it while doing the test.  
Since the test limits and setup information are printed on the Test  
Record for easy reference, the record can also be used as an  
abbreviated test procedure (if you are already familiar with the test  
procedures). The Test Record can also be used as a permanent  
record and may be reproduced without written permission from  
Agilent Technologies.  
D.3 Test Failure  
If the Agilent 8156A fails any performance test, return the  
instrument to the nearest Agilent Technologies Sales/Service Office  
for repair.  
D.4 Instrument Specification  
Specifications are the performance characteristics of the instrument  
which are certified. These specifications, listed in Definition of  
Termson page 165, are the performance standards or limits  
against which the Agilent 8156A can be tested. The specifications  
also list some supplemental characteristics of the Agilent 8156A.  
Supplemental characteristics should be considered as additional  
information.  
Any changes in the specifications due to manufacturing changes,  
design, or traceability to the National Institute of Standards and  
177  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Performance Tests  
Performance Test  
Technology (NIST), will be covered in a manual change  
supplement, or revised manual. Such specifications supersede any  
that were previously published.  
D.5 Performance Test  
The performance test given in this section includes the Total  
Insertion Loss Test, the Attenuation Accuracy Test, the Attenuation  
Repeatability Test, and the Return Loss Test. Perform each step in  
the order given, using the corresponding test equipment.  
The performance test should be performed once at 1310nm, and  
then repeated at 1550nm.  
NOTE  
NOTE  
If you are testing options 100, 101 or 121, you will need to change the  
isolator when changing wavelength.  
If you are using two separate sources, you will need to change them  
when changing wavelength.  
Make sure that all optical connections of the test setups given in the  
procedure are dry and clean. DO NOT USE INDEX MATCHING OIL.  
Make sure that all optical connectors are undamaged. The value for  
insertion loss depends on the quality of the connectors.  
The optical cables from the laser source to and from the Agilent 8156A  
Attenuator to the power meter must be fixed on the table to ensure  
minimum cable movement during the tests.  
The environmental conditions (temperature and relative humidity)  
must remain constant during the tests.  
178  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Performance Tests  
Performance Test  
I. Total Insertion Loss Test  
Specifications  
Agilent 8156A  
Typ.  
Insertion loss (including both connectors) Option 100  
<5.4dB  
<3.0dB  
<4.2dB  
<3.0dB  
<3.3dB  
<3.0dB  
Option 101  
Option 121  
Option 201  
Option 221  
Option 350  
Carry out the following Insertion Loss Test at 1310nm and 1550nm  
with single-mode fibers using the the equipment listed previously.  
1. Turn the instruments on and allow the instruments to warm up.  
2. Connect the equipment as shown in the appropriate Total  
Insertion Loss Test Setup 1.  
Figure D-1  
Total Insertion Loss Test Setup 1, Options 100, 101, 121  
179  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Performance Tests  
Performance Test  
Figure D-2  
Total Insertion Loss Test Setup 1, Options 201, 221  
Figure D-3  
Total Insertion Loss Test Setup 1, Option 350  
3. On the DUT, press and hold ATT to reset the attenuation to  
minimum (any attenuation shown on the display is due to the  
calibration factor).  
4. Zero the Power-meter and select Autorange. Display [dB]  
5. Enable the laser source and set Display to Reference on the  
power meter.  
6. Connect the equipment as shown in the appropriate Total  
Insertion Loss Test Setup 2.  
180  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Performance Tests  
Performance Test  
Figure D-4  
Total Insertion Loss Test Setup 2, Options 100, 101, 121  
Figure D-5  
Total Insertion Loss Test Setup 2, Options 201, 221  
181  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Performance Tests  
Performance Test  
Figure D-6  
Total Insertion Loss Test Setup 2, Option 350  
7. Enable the attenuator output and record the power meter reading  
(in dB) in the Test Record and check that it is within  
specifications.  
II. Linearity/Attenuation Accuracy Test  
Specifications Agilent 8156A  
Linearity  
Option 100  
Option 101  
Option 121  
Option 201  
Option 221  
Option 350  
<±0.2dB  
<±0.1dB  
<±0.1dB  
<±0.1dB  
<±0.1dB  
<±0.1dB  
Carry out the following Attenuation Accuracy tests at 1310nm and  
1550nm with single-mode fibers using the equipment listed  
previously.  
182  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Performance Tests  
Performance Test  
1. Set the attenuator as follows:  
λ
as required  
to 0.00 dB  
to 0.00 dB  
CAL  
ATT  
2. Connect the equipment as shown in the appropriate Total  
Insertion Loss Test Setup 2.  
NOTE  
Use a tape to fix the fibers on the table. Dont touch the fibers during  
the measurement to prevent changes of state of polarization.  
3. Zero the power meter channel and make sure that the parameters  
are set as follows:  
λ
as required  
to 0.000 dB  
to 500ms  
CAL  
T
4. Set the power meter to AUTOrange, then enable the laser source  
and the attenuator output.  
5. On the power meter select display in dB (dB key)  
6. Press DISPREF for the power meter.  
7. Set the DUT attenuation to 60dB  
8. If the powermeter does not show 60.00dB, set [lambda] on the  
DUT so that the power meter shows 60.00dB. Tuning the DUT  
in 0.1nm steps is sufficient to accomplish this. This is necessary  
to eliminate the wavelength dependence of the DUT.  
9. Press and hold ATT until the attenuation resets to 0.000dB.  
10. Press DISPREF for the power meter.  
11. Increase the DUT attenuation in steps as shown below and note  
the power meter reading in the Test Record.  
183  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Performance Tests  
Performance Test  
0.00dB REFERENCE  
1 dB  
2 dB  
3 dB  
4 dB  
5 dB  
6 dB  
7 dB  
8 dB  
9 dB  
10 dB  
14 dB  
54 dB  
11 dB  
24 dB  
60 dB  
12 dB  
34 dB  
13 dB  
44 dB  
III. Attenuation Repeatability Test  
Specifications  
Agilent 8156A  
Repeatability after any parameter has been changed and reset <±0.01 dB.  
Use the same equipment, test setup and instrument settings as used  
for the Attenuation Accuracy test (see the appropriate Total  
Insertion Loss Test Setup 2).  
1. Set the Agilent 8156A attenuation to 1 dB and press DISPREF  
on the power meter.  
2. Set the Agilent 8156A attenuation to any other value (e.g.  
0.00 dB), wait until it settles at this value (The time taken to  
change depends on the size of the attenuation factor change, and  
is in the range 20 to 400ms (typical value is 200ms)). Then  
change the attenuation back to the previous value. Note the  
deviation (dB) in the Test Record and check that it is within  
±0.01 dB.  
3. Repeat steps 1 and 2 for the following attenuation settings:  
5 dB  
12 dB  
53 dB  
24 dB  
60 dB  
36 dB  
48 dB  
184  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Performance Tests  
Performance Test  
IV. Return Loss Test  
Options 100, 101, and 121  
Specifications  
Agilent 8156A  
Return Loss  
Option 100  
Option 101  
Option 121  
>35dB  
>45dB  
>45dB  
1. Make sure that all connectors are carefully cleaned.  
2. Connect the source to the HP 81534A Input. Attach the high  
return loss connector of the patchcord to the Output (the high  
return loss connector on these cables is the connector with the  
orange sleeve). Using tape, fix the cables to the table.  
Figure D-7  
Return Loss Test Setup 1, Options 100, 101, 121  
3. Make sure that the instrument has warmed up.  
4. Disable the source, cover the end of the patchcord (for instance,  
using the blue cap supplied with the fiber) and press ZERO to  
remove offsets in the power meter.  
5. Press PARAM to select the T parameter. Set the averaging time  
to 1s.  
185  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Performance Tests  
Performance Test  
6. Press PARAM to select the [lambda] parameter. Edit this  
parameter and set it to the current wavelength of the source.  
7. Enable the source.  
8. Press PARAM to select the CAL REF parameter (the current  
value for the known return loss is displayed with R: at the side  
of the character field).  
9. Attach the Agilent 81000BR Reference Reflector to the  
patchcord. (Use the Agilent 81000UM, with a connector  
interface to do this)  
10. Set the reflection reference (R:) to 0.18dB, the default value of  
the return loss of the reference reflector.  
11. Press DISPREF (the value read should now be 0.18dB, the  
same as the value entered for R:).  
NOTE  
If this is the first time that you have transferred this value to the  
reference after switch on, it might not be displayed properly. In this  
case, repeat the step to correct the display.  
12. Press PARAM to select the REF AUX parameter.  
13. Terminate the cable by wrapping the fiber five times around the  
shaft of a screwdriver.  
14. Press DISPREF (the instrument sets the termination  
parameter).  
15. Disable the DUT.  
NOTE  
If you have the monitor option (option 121), make sure that the cable at  
the monitor output is terminated.  
16. Connect the 81109AC patchcord to the 8156A input, and note  
the Return Loss result in the Test Record.  
17. Connect the 81109AC patchcord to the 8156A output, and note  
the Return Loss result in the Test Record.  
186  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Performance Tests  
Performance Test  
Figure D-8  
Return Loss Test Setup 2, Options 100, 101  
Figure D-9  
Return Loss Test Setup 2, Option 121  
Options 201 and 221  
Specifications  
Agilent 8156A  
Return Loss  
Option 201  
Option 221  
>60dB  
>60dB  
187  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Performance Tests  
Performance Test  
1. Make sure that all connectors are carefully cleaned.  
2. Connect the source to the HP 81534A Input. Attach the high  
return loss connector of the patchcord to the Output (the high  
return loss connector on these cables is the connector with the  
orange sleeve). Using tape, fix the cables to the table.  
Figure D-10  
Return Loss Test Setup 1, Options 201, 221  
3. Make sure that the instrument has warmed up.  
4. Disable the source, cover the end of the patchcord (for instance,  
using the blue cap supplied with the fiber) and press ZERO to  
remove offsets in the power meter.  
5. Press PARAM to select the T parameter. Set the averaging time  
to 1s.  
6. Press PARAM to select the λ parameter. Edit this parameter and  
set it to the current wavelength of the source.  
7. Enable the source.  
8. Press PARAM to select the CAL REF parameter (the current  
value for the known return loss is displayed with R: at the side  
of the character field).  
9. Attach the option 203 to the patchcord. (Use the DIN Through  
Adapter (Agilent P/N 1005-0255) to do this)  
10. Set the reflection reference (R:) to 0.98dB, the default value of  
the return loss of the reference reflector.  
188  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Performance Tests  
Performance Test  
11. Press DISPREF (the value read should now be 0.98dB, the  
same as the value entered for R:).  
12. Press PARAM to select the REF AUX parameter.  
13. Terminate the cable by wrapping the fiber five times around the  
shaft of a screwdriver.  
14. Press DISPREF (the instrument sets the termination  
parameter).  
15. Disable the DUT.  
NOTE  
If you have the monitor option (option 221), make sure that the cable at  
the monitor output is terminated.  
16. Connect the 81102SC patchcord to the 8156A input, and note the  
Return Loss result in the Test Record.  
17. Connect the 81102SC patchcord to the 8156A output, and note  
the Return Loss result in the Test Record.  
Figure D-11  
Return Loss Test Setup 2, Option 201  
189  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Performance Tests  
Performance Test  
Figure D-12  
Return Loss Test Setup 2, Option 221  
190  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Performance Tests  
V. Polarization Dependent Loss (PDL): Optional  
D.6 V. Polarization Dependent Loss (PDL):  
Optional  
Table D-2  
Equipment for the PDL test 1  
Instrument/Accessory  
Recommended HP/  
Agilent Model  
Required for Option  
100 101 102 201 202  
8169A #0211  
8153A  
81533B  
81552SM and  
Polarization Controller  
1
1
1
1
1
Lightwave Multimeter Mainframe  
Optical Head Interface  
CW Laser Source 1310nm  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1550nm 81533SM  
or 1310/1550nm 81544SM  
Optical Head2  
81521B  
Depolarizing Filter  
Connector Interface  
Connector Interface  
Connector Interface  
Connector Adapter  
Connector Adapter  
Single Mode Fiber  
Single Mode Fiber  
Single Mode Fiber  
Isolator  
81000DF  
81000AI  
81000FI  
81000SI  
81000AA  
81000SA  
81101AC  
81113PC  
81113SC  
1
6
-
-
1
-
3
-
-
1
6
-
-
1
-
3
-
-
1
6
-
-
1
-
3
-
-
1
2
1
2
-
1
1
1
1
1
1
2
1
2
-
1
1
1
1
1
1
1
1
1 The equipment is described for a test setup with a polarization  
controller with option 021 (straight connector). If you want to use a  
polarization controller with a different connector option you have to  
use interfaces, adapters and patchcords depending on this option.  
191  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Performance Tests  
V. Polarization Dependent Loss (PDL): Optional  
2 Instead of a standard HP 81521B+ Depolarizing Filter Agilent  
81000DF, an HP 81521B #001 can also be used, as this option is  
especially designed for low PDL.  
Polarization Dependant Loss Test (Mueller method)  
1. Connect the equipment as shown in Figure D-13  
a. Make sure that the connectors, lenses and detector windows  
are clean. Refer to the cleaning procedure.  
b. Ensure that the instruments have warmed up.  
Figure D-13  
PDL Test Setup 1: Reference Measurement  
2. Using the setup of Figure D-13:  
Use a tape to fix the patchcords on the table.  
192  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Performance Tests  
V. Polarization Dependent Loss (PDL): Optional  
CAUTION  
The patchcord from the source to the polarization controller - with the  
isolator - must not move during and between all measurements.  
The patchcords between the polarization controller and the optical  
head must not move from the beginning of the reference measurements  
until these are finished.  
3. Zero the 8153A.  
a. Ensure that the laser source is switched off.  
b. Press MENU to change the Measure Mode.  
c. Press ZERO and wait while zeroing.  
4. Set up the laser source.  
a. Set the laser source to 1550 nm (nominal), switch the laser  
on, and allow 5 minutes for the laser to settle.  
b. Note the actual wavelength in the test record.  
5. Set up the power meter.  
a. Set the power meter to the actual wavelength.  
Press PARAM until the wavelength is displayed, then use the  
modify cursor keys to set the actual wavelength.  
b. Set the averaging time to 100 ms.  
Press PARAM until the averaging time is displayed, then use  
the modify cursor keys to set the averaging time to 100 ms.  
c. Set the display to W.  
Press DBM/W.  
6. Set the polarization filter of the 8169A to maximize the signal.  
a. Reset the position of all plates.  
Press HOME on the polarization controller.  
b. Select the polarization filter.  
You may need to press POS and/or Pol if the filter is not  
193  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Performance Tests  
V. Polarization Dependent Loss (PDL): Optional  
already selected.  
c. Modify the filter setting to find the maximum signal  
transmission through the polarization controller:  
Select the most significant digit by using the cursor key.  
Use the Modify knob to adjust the displayed angle  
slowly until the power reading on the multimeter shows  
the maximum value.  
Select the next digit with the cursor key.  
Use the Modify knob to adjust the displayed angle  
slowly until the power reading on the multimeter shows  
the maximum value.  
Select the least significant digit by using the cursor key.  
Use the Modify knob to adjust the displayed angle  
slowly until the power reading on the multimeter shows  
the maximum value.  
Press ENTER  
Note the displayed angle of the polarization filter as  
"Polarizer Setting, Linear Horizontal Polarization" in the  
Test Record.  
For the following steps, the polarizer is kept constant.  
Set plates for Linear Horizontal polarization  
7. Set the λ/4 Retarder Plate for Linear Horizontal polarization.  
a. Select the λ/4 Retarder Plate.  
Press λ/4  
b. Modify the λ/4 plate setting to the same angle as the  
polarization filter found in item 6c.  
c. Press ENTER  
d. Note the angle as "λ/4 Plate Setting, Linear Horizontal  
Polarization" in the Test Record.  
8. Set the λ/2 Retarder Plate for Linear Horizontal polarization.  
194  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Performance Tests  
V. Polarization Dependent Loss (PDL): Optional  
a. Select the λ/2 Retarder Plate.  
Press λ/2  
b. Modify the λ/2 plate setting to the same angle as the  
polarization filter found in item 6c.  
c. Press ENTER  
d. Note the angle as "λ/2 Plate Setting, Linear Horizontal  
Polarization" in the Test Record.  
Determine settings for Linear Vertical, Linear Diagonal, and  
Right Hand Circular Polarization  
9. In order to get the required polarization, the λ/2 and λ/4 retarder  
plates need to be set to the appropriate values. The corrected  
positions of the polarizer plates depend on the actual wavelength  
and have to be taken from Table D-3.  
In the case of Linear Horizontal polarized light no correction is  
to be done. The table lists corrections for every 20 nm step. For  
wavelengths between listed values, a linear approximation  
should be used.  
The value taken from the table (possible by approximation) is to  
be added to the values of the λ/4 and λ/2 retarder plate setting for  
Linear Horizontal polarized light determined in steps 7. and 8.  
respectively:  
Get the values for the wavelength dependent offset  
positions for each type of polarization from Table D-3.  
Add these values to those for Linear Horizontal polarized  
light.  
Note the calculated "corrected wavelength dependent  
position" values in the Test Record for the λ/4 Plate  
Setting and the λ/2 Plate setting for Linear Vertical,  
Linear Diagonal and Right Hand Circular polarization.  
Example: actual wavelength 1552 nm. Find the maximum  
transmission for the Linear Horizontal polarized light at a  
polarization filter setting of 15.4°.  
In Table D-3, wavelength dependent positions can be found and  
195  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Performance Tests  
V. Polarization Dependent Loss (PDL): Optional  
approximated:  
Linear vertical  
Linear diagonal  
RH circular  
λ
1560nm  
1552nm  
1540nm  
λ/4 Plate  
1.2°  
λ/2 Plate  
45.6°  
45.4°  
45°  
λ/4 Plate  
λ/2 Plate  
22.9°  
λ/4 Plate  
44°  
λ/2 Plate  
-16.5°  
0.8°  
0.5°  
0°  
0.7°  
22.7°  
44.4°  
45°  
-15.9°  
0°  
22.5°  
-15.1°  
The associated Test record will look like this by adding the  
appropriate values to those of the Linear Horizontal polarized  
light.  
Polarization  
Linear  
Horizontal  
15.4°  
Linear  
Vertical  
n/a  
Linear  
Diagonal  
n/a  
Right Hand  
Circular  
n/a  
Polarizer Setting  
λ/4 Plate Setting  
λ/2 Plate Setting  
15.4°  
n/a  
n/a  
n/a  
15.4°  
n/a  
n/a  
n/a  
Corrected wavelength  
dependent positions:  
λ/4 Plate Setting  
n/a  
n/a  
16.1°  
60.8°  
15.9°  
38.1°  
59.8°  
-0.5°  
λ/2 Plate Setting  
10. Measure the Reference Power  
a. Linear Horizontal polarized light.  
Keep the setting from the polarizer and the λ/4 and λ/2 Retarder  
Plates from steps 6. to 8.  
Read the power that is displayed on the power meter and  
note it as P01 in the test record.  
196  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Performance Tests  
V. Polarization Dependent Loss (PDL): Optional  
b. Linear Vertical polarized light.  
Set the λ/4 and λ/2 Retarder Plates to the "corrected  
wavelength dependent positions" for Linear Vertical  
polarized light.  
You need to select the λ/4 and λ/2 Retarder plates by  
pressing λ/4 and λ/2 respectively.  
Type the appropriate value and press ENTER after each  
entry.  
Read the power that is displayed on the power meter and  
note it as P02 in the test record.  
c. Linear Diagonal polarized light.  
Set the λ/4 and λ/2 Retarder Plates to the "corrected  
wavelength dependent positions" for Linear Diagonal  
polarized light.  
You need to select the λ/4 and λ/2 Retarder plates by  
pressing λ/4 and λ/2 respectively.  
Type the appropriate value and press ENTER after each  
entry.  
Read the power that is displayed on the power meter and  
note it as P03 in the test record.  
d. Right Hand Circular polarized light.  
Set the λ/4 and λ/2 Retarder Plates to the "corrected  
wavelength dependent positions" for Right Hand  
Circular polarized light.  
You need to select the λ/4 and λ/2 Retarder plates by  
pressing λ/4 and λ/2 respectively.  
Type the appropriate value and press ENTER after each  
entry.  
Read the power that is displayed on the power meter and  
note it as P04 in the test record.  
11. Connect the equipment as shown in Figure D-14.  
197  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Performance Tests  
V. Polarization Dependent Loss (PDL): Optional  
CAUTION  
Figure D-14  
The patchcords between the polarization controller and the optical  
head must not move until the measurements are finished.  
12. Set the 8156A Attenuator (DUT) to 0dB using the modify keys.  
PDL Test Setup 2: Power after DUT  
13. Measure the optical power after the DUT  
a. Linear Horizontal polarized light.  
Set the λ/4 and λ/2 Retarder Plates for Linear Horizontal  
polarization. You need to select the λ/4 and λ/2 Retarder  
plates by pressing λ/4 and λ/2 respectively.  
Type the appropriate value and press ENTER after each  
entry.  
198  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Performance Tests  
V. Polarization Dependent Loss (PDL): Optional  
Read the power that is displayed on the power meter and  
note it as PDUT01 in the test record.  
b. Linear Vertical polarized light.  
Set the λ/4 and λ/2 Retarder Plates to the "corrected  
wavelength dependent positions" for Linear Vertical  
polarized light.  
You need to select the λ/4 and λ/2 Retarder plates by  
pressing λ/4 and λ/2 respectively.  
Type the appropriate value and press ENTER after each  
entry.  
Read the power that is displayed on the power meter and  
note it as PDUT02 in the test record.  
c. Linear Diagonal polarized light.  
Set the λ/4 and λ/2 Retarder Plates to the "corrected  
wavelength dependent positions" for Linear Diagonal  
polarized light.  
You need to select the λ/4 and λ/2 Retarder plates by  
pressing λ/4 and λ/2 respectively.  
Type the appropriate value and press ENTER after each  
entry.  
Read the power that is displayed on the power meter and  
note it as PDUT03 in the test record.  
d. Right Hand Circular polarized light.  
Set the λ/4 and λ/2 Retarder Plates to the "corrected  
wavelength dependent positions" for Right Hand  
Circular polarized light.  
You need to select the λ/4 and λ/2 Retarder plates by  
pressing λ/4 and λ/2 respectively.  
Type the appropriate value and press ENTER after each  
entry.  
Read the power that is displayed on the power meter and  
note it as PDUT04 in the test record.  
199  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Performance Tests  
V. Polarization Dependent Loss (PDL): Optional  
14. Calculate  
a. the Mueller coefficients  
b. the Minimum and Maximum transmission, and finally  
c. the Polarization Dependent Loss (PDL)  
as described in the test record.  
15. Laser set up for the higher wavelength  
a. Set the laser source to 1310nm (nominal)  
b. Switch the laser on and allow to settle for about 5 minutes  
c. Note the actual wavelength in the test record  
d. Repeat steps 6. to 14. for this wavelength as well.  
Table D-3  
Performance Test Agilent 8156A  
Linear vertical  
Linear diagonal  
λ/4-Plate λ/2-Plate  
RH Circular  
λ
λ/4-Plate  
λ/2-Plate  
46.2°  
45.6°  
45.0°  
44.3°  
43.6°  
36.2°  
35.1°  
34.0°  
32.9°  
31.7°  
λ/4-Plate  
λ/2-Plate  
-17.1°  
-16.5°  
-15.1°  
-13.8°  
-12.4°  
-0.7°  
1°  
1580nm  
1560nm  
1540nm  
1520nm  
1500nm  
1340nm  
1320nm  
1300nm  
1280nm  
1260nm  
2.5°  
1.2°  
1.7°  
0.8°  
23.3°  
22.9°  
22.5°  
22.0°  
21.4°  
12.8°  
11.0°  
8.9°  
42.9°  
44.0°  
45.0°  
46.2°  
47.4°  
58.1°  
59.6°  
61.2°  
62.9°  
64.7°  
0°  
0°  
-1.4°  
-2.7°  
-14.7°  
-16.3°  
-17.9°  
-19.6°  
-21.2°  
-1°  
-2°  
-13.9°  
-16°  
-18.5°  
-21.2°  
-24.2°  
3°  
6.5°  
5.1°  
7.4°  
3.9°  
200  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Performance Tests  
V. Polarization Dependent Loss (PDL): Optional  
Performance Test for the Agilent 8156A  
Page 1 of 8  
Test Facility:  
______________________________________ Report No. ____________________________  
______________________________________ Date:  
____________________________  
______________________________________ Customer: ____________________________  
______________________________________ Tested By: ____________________________  
Model: Agilent 8156A Attenuator  
Serial No.  
Options  
___________________ Ambient temperature ______ °C  
___________________ Relative humidity  
___________________ Line frequency  
______ %  
______ Hz  
Firmware Rev.  
Special Notes:  
______________________________________________________________________________  
______________________________________________________________________________  
______________________________________________________________________________  
______________________________________________________________________________  
______________________________________________________________________________  
______________________________________________________________________________  
______________________________________________________________________________  
______________________________________________________________________________  
201  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Performance Tests  
V. Polarization Dependent Loss (PDL): Optional  
Performance Test for the Agilent 8156A Option 100  
Page 2 of 8  
Model __ __________ Module Report No. _______ Date ________  
Test Equipment Used:  
Description  
Model No. Trace No. Cal. Due Date  
1. Power Meter  
8153A  
________ __ / ___ /___  
________ __ / ___ /___  
________ __ / ___ /___  
2a1. CW Laser Sources 1310nm  
2a2. CW Laser Sources 1550nm  
2b. CW Laser Sources 1310/1550nm  
3. Opt Sensor Module  
81552SM  
81553SM  
or 81554SM ________ __ / ___ /___  
81532A  
________ __ / ___ /___  
________ __ / ___ /___  
________ __ / ___ /___  
________ __ / ___ /___  
________ __ / ___ /___  
________ __ / ___ /___  
________ __ / ___ /___  
________ __ / ___ /___  
________ __ / ___ /___  
4. Return Loss Module  
81534A  
5. Reference Reflector  
81000BR  
81000UM  
6. Universal Through Adapter  
7.1 Optical Isolator 1310nm  
7.2 Optical Isolator 1550nm  
8. Connector Interface (6ea)  
9.1 Single Mode Fiber (1ea)  
9.2 Single Mode Fiber  
81210LI  
Opt011  
81310LI  
Opt011  
81000AI  
81101AC  
81109AC  
10. ___________________________________________ __________ ________ __ / ___ /___  
11. ___________________________________________ __________ ________ __ / ___ /___  
12. ___________________________________________ __________ ________ __ / ___ /___  
13. ___________________________________________ __________ ________ __ / ___ /___  
14. ___________________________________________ __________ ________ __ / ___ /___  
15. ___________________________________________ __________ ________ __ / ___ /___  
16. ___________________________________________ __________ ________ __ / ___ /___  
202  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Performance Tests  
V. Polarization Dependent Loss (PDL): Optional  
Performance Test for the Agilent 8156A Option 100  
Page 3 of 8  
Model Agilent 8156A Attenuator Option 100  
No. _______________ Date_______________  
Test Test Description  
Minimum Maximum Measurement  
No. performed at _________________nm Spec.  
Spec.  
Uncertainty  
Result  
I.  
Total Insertion Loss Test  
typ. <4.5dB  
dB  
±0.60dB  
measured at __________________nm  
with singlemode fiber  
5.4 dB  
_________  
II. Linearity/Att. Acc.  
Attenuation  
±0.05dB  
Setting:  
0dB  
1dB  
2dB  
3dB  
4dB  
5dB  
6dB  
7dB  
8dB  
9dB  
10dB  
REF  
0.8dB  
1.8dB  
2.8dB  
3.8dB  
4.8dB  
5.8dB  
6.8dB  
7.8dB  
8.8dB  
9.8dB  
1.2dB  
2.2dB  
3.2dB  
4.2dB  
5.2dB  
6.2dB  
7.2dB  
8.2dB  
9.2dB  
10.2dB  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
203  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Performance Tests  
V. Polarization Dependent Loss (PDL): Optional  
Performance Test for the Agilent 8156A Option 100  
Page 4 of 8  
Model Agilent 8156A Attenuator Option 100  
No. _______________ Date_______________  
Test Test Description  
Minimum Maximum Measurement  
No. performed at _________________nm Spec.  
II. Linearity/Att. Acc.  
Result  
Spec.  
Uncertainty  
±0.05dB  
Attenuation  
Setting:  
11dB  
12dB  
13dB  
14dB  
24dB  
34dB  
44dB  
54dB  
60dB  
10.8dB  
11.8dB  
12.8dB  
13.8dB  
23.8dB  
33.8dB  
43.8dB  
53.8dB  
59.8dB  
11.2dB  
12.2dB  
13.2dB  
14.2dB  
24.2dB  
34.2dB  
44.2dB  
54.2dB  
60.2dB  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
204  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Performance Tests  
V. Polarization Dependent Loss (PDL): Optional  
Performance Test for the Agilent 8156A Option 100  
Page 5 of 8  
Model Agilent 8156A Attenuator Option 100  
Test Test Description  
No. performed at _________________nm  
III. Att. Repeatability Test  
No. _______________ Date_______________  
Minimum  
Spec.  
Maximum Measurement  
Result  
Spec.  
Uncertainty  
±0.01dB  
Attenuation  
Setting:  
1dB DispRef  
5dB DispRef  
12dB DispRef  
24dB DispRef  
36dB DispRef  
48dB DispRef  
53dB DispRef  
60dB DispRef  
-0.01dB  
-0.01dB  
-0.01dB  
-0.01dB  
-0.01dB  
-0.01dB  
-0.01dB  
-0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
IV. Return Loss Test  
±0.60dB  
±0.60dB  
Input  
Output  
30dB  
30dB  
_________  
_________  
typ. >35dB  
205  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Performance Tests  
V. Polarization Dependent Loss (PDL): Optional  
Performance Test for the Agilent 8156A Option 100  
Page 6 of 8  
Model Agilent 8156A Attenuator Option 100  
No. _______________ Date_______________  
Test Test Description  
Minimum Maximum Measurement  
No. performed at _________________nm Spec.  
Result  
dB  
Spec.  
Uncertainty  
±0.60dB  
I.  
Total Insertion Loss Test  
typ. <4.5dB  
measured at __________________nm  
with SM fiber  
5.4 dB  
_________  
II. Linearity/Att. Acc.  
Attenuation  
±0.05dB  
Setting:  
0dB  
1dB  
2dB  
3dB  
4dB  
5dB  
6dB  
7dB  
8dB  
9dB  
10dB  
REF  
0.8dB  
1.8dB  
2.8dB  
3.8dB  
4.8dB  
5.8dB  
6.8dB  
7.8dB  
8.8dB  
9.8dB  
1.2dB  
2.2dB  
3.2dB  
4.2dB  
5.2dB  
6.2dB  
7.2dB  
8.2dB  
9.2dB  
10.2dB  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
206  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Performance Tests  
V. Polarization Dependent Loss (PDL): Optional  
Performance Test for the Agilent 8156A Option 100  
Page 7 of 8  
Model Agilent 8156A Attenuator Option 100  
No. _______________ Date_______________  
Test Test Description  
Minimum Maximum Measurement  
No. performed at _________________nm Spec.  
II. Linearity/Att. Acc.  
Result  
Spec.  
Uncertainty  
±0.05dB  
Attenuation  
Setting:  
11dB  
12dB  
13dB  
14dB  
24dB  
34dB  
44dB  
54dB  
60dB  
11.2dB  
12.2dB  
13.2dB  
14.2dB  
24.2dB  
34.2dB  
44.2dB  
54.2dB  
60.2dB  
10.8dB  
11.8dB  
12.8dB  
13.8dB  
23.8dB  
33.8dB  
43.8dB  
53.8dB  
59.8dB  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
207  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Performance Tests  
V. Polarization Dependent Loss (PDL): Optional  
Performance Test for the Agilent 8156A Option 100  
Page 8 of 8  
Model Agilent 8156A Attenuator Option 100  
Test Test Description  
No. performed at _________________nm  
III. Att. Repeatability Test  
No. _______________ Date_______________  
Minimum  
Spec.  
Maximum Measurement  
Result  
Spec.  
Uncertainty  
±0.01dB  
Attenuation  
Setting:  
1dB DispRef  
5dB DispRef  
12dB DispRef  
24dB DispRef  
36dB DispRef  
48dB DispRef  
53dB DispRef  
60dB DispRef  
-0.01dB  
-0.01dB  
-0.01dB  
-0.01dB  
-0.01dB  
-0.01dB  
-0.01dB  
-0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
IV. Return Loss Test  
±0.60dB  
±0.60dB  
Input  
Output  
30dB  
30dB  
_________  
_________  
typ. >35dB  
208  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Performance Tests  
V. Polarization Dependent Loss (PDL): Optional  
Performance Test for the Agilent 8156A Option 101  
Page 2 of 8  
Model __ __________ Module Report No. _______ Date ________  
Test Equipment Used:  
Description  
Model No. Trace No. Cal. Due Date  
1. Power Meter  
8153A  
________ __ / ___ /___  
________ __ / ___ /___  
________ __ / ___ /___  
2a1. CW Laser Sources 1310nm  
2a2. CW Laser Sources 1550nm  
2b. CW Laser Sources 1310/1550nm  
3. Opt Sensor Module  
81552SM  
81553SM  
or 81554SM ________ __ / ___ /___  
81532A  
________ __ / ___ /___  
________ __ / ___ /___  
________ __ / ___ /___  
________ __ / ___ /___  
________ __ / ___ /___  
4. Return Loss Module  
81534A  
5. Reference Reflector  
81000BR  
81000UM  
81210LI  
6. Universal Through Adapter  
7.1 Optical Isolator 1310nm  
7.2 Optical Isolator 1550nm  
8. Connector Interface (6ea)  
9.1 Single Mode Fiber (1ea)  
9.2 Single Mode Fiber  
or 81310LI ________ __ / ___ /___  
Opt 011  
81000AI  
81101AC  
81109AC  
________ __ / ___ /___  
________ __ / ___ /___  
________ __ / ___ /___  
10. ___________________________________________ __________ ________ __ / ___ /___  
11. ___________________________________________ __________ ________ __ / ___ /___  
12. ___________________________________________ __________ ________ __ / ___ /___  
13. ___________________________________________ __________ ________ __ / ___ /___  
14. ___________________________________________ __________ ________ __ / ___ /___  
15. ___________________________________________ __________ ________ __ / ___ /___  
16. ___________________________________________ __________ ________ __ / ___ /___  
209  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Performance Tests  
V. Polarization Dependent Loss (PDL): Optional  
Performance Test for the Agilent 8156A Option 101  
Page 3 of 8  
Model Agilent 8156A Attenuator Option 101  
No. _______________ Date_______________  
Test Test Description  
Minimum Maximum Measurement  
No. performed at _________________nm Spec.  
Result  
dB  
Spec.  
Uncertainty  
±0.60dB  
I.  
Total Insertion Loss Test  
typ. <2.5dB  
measured at __________________nm  
with singlemode fiber  
3.0 dB  
_________  
II. Linearity/Att. Acc.  
Attenuation  
±0.05dB  
Setting:  
0dB  
1dB  
2dB  
3dB  
4dB  
5dB  
6dB  
7dB  
8dB  
9dB  
10dB  
REF  
0.9dB  
1.9dB  
2.9dB  
3.9dB  
4.9dB  
5.9dB  
6.9dB  
7.9dB  
8.9dB  
9.9dB  
1.1dB  
2.1dB  
3.1dB  
4.1dB  
5.1dB  
6.1dB  
7.1dB  
8.1dB  
9.1dB  
10.1dB  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
210  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Performance Tests  
V. Polarization Dependent Loss (PDL): Optional  
Performance Test for the Agilent 8156A Option 101  
Page 4 of 8  
Model Agilent 8156A Attenuator Option 101  
No. _______________ Date_______________  
Test Test Description  
Minimum Maximum Measurement  
No. performed at _________________nm Spec.  
II. Linearity/Att. Acc. (cont.)  
Result  
Spec.  
Uncertainty  
±0.05dB  
Attenuation  
Setting:  
11dB  
12dB  
13dB  
14dB  
24dB  
34dB  
44dB  
54dB  
60dB  
11.1dB  
12.1dB  
13.1dB  
14.1dB  
24.1dB  
34.1dB  
44.1dB  
54.1dB  
60.1dB  
10.9dB  
11.9dB  
12.9dB  
13.9dB  
23.9dB  
33.9dB  
43.9dB  
53.9dB  
59.9dB  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
211  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Performance Tests  
V. Polarization Dependent Loss (PDL): Optional  
Performance Test for the Agilent 8156A Option 101  
Page 5 of 8  
Model Agilent 8156A Attenuator Option 101  
Test Test Description  
No. performed at _________________nm  
III. Att. Repeatability Test  
No. _______________ Date_______________  
Minimum  
Spec.  
Maximum Measurement  
Result  
Spec.  
Uncertainty  
±0.01dB  
Attenuation  
Setting:  
1dB DispRef  
5dB DispRef  
12dB DispRef  
24dB DispRef  
36dB DispRef  
48dB DispRef  
53dB DispRef  
60dB DispRef  
-0.01dB  
-0.01dB  
-0.01dB  
-0.01dB  
-0.01dB  
-0.01dB  
-0.01dB  
-0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
IV. Return Loss Test  
±0.60dB  
±0.60dB  
Input  
Output  
40dB  
40dB  
_________  
_________  
typ. >45dB  
212  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Performance Tests  
V. Polarization Dependent Loss (PDL): Optional  
Performance Test for the Agilent 8156A Option 101  
Page 6 of 8  
Model Agilent 8156A Attenuator Option 101  
No. _______________ Date_______________  
Test Test Description  
Minimum Maximum Measurement  
No. performed at _________________nm Spec.  
Result  
Spec.  
Uncertainty  
I.  
Total Insertion Loss Test  
typ. <2.5dB  
dB  
±0.60dB  
measured at __________________nm  
with SM fiber  
3.0 dB  
_________  
II. Linearity/Att. Acc.  
Attenuation  
±0.05dB  
Setting:  
0dB  
1dB  
2dB  
3dB  
4dB  
5dB  
6dB  
7dB  
8dB  
9dB  
10dB  
REF  
0.9dB  
1.9dB  
2.9dB  
3.9dB  
4.9dB  
5.9dB  
6.9dB  
7.9dB  
8.9dB  
9.9dB  
1.1dB  
2.1dB  
3.1dB  
4.1dB  
5.1dB  
6.1dB  
7.1dB  
8.1dB  
9.1dB  
10.1dB  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
213  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Performance Tests  
V. Polarization Dependent Loss (PDL): Optional  
Performance Test for the Agilent 8156A Option 101  
Page 7 of 8  
Model Agilent 8156A Attenuator Option 101  
No. _______________ Date_______________  
Test Test Description  
Minimum Maximum Measurement  
No. performed at _________________nm Spec.  
Result  
Spec.  
Uncertainty  
II.  
±0.05dB  
Linearity/Att. Acc. (cont.)  
Attenuation  
Setting:  
11dB  
12dB  
13dB  
14dB  
24dB  
34dB  
44dB  
54dB  
60dB  
11.1dB  
12.1dB  
13.1dB  
14.1dB  
24.1dB  
34.1dB  
44.1dB  
54.1dB  
60.1dB  
10.9dB  
11.9dB  
12.9dB  
13.9dB  
23.9dB  
33.9dB  
43.9dB  
53.9dB  
59.9dB  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
214  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Performance Tests  
V. Polarization Dependent Loss (PDL): Optional  
Performance Test for the Agilent 8156A Option 101  
Page 8 of 8  
Model Agilent 8156A Attenuator Option 101  
Test Test Description  
No. performed at _________________nm  
III. Att. Repeatability Test  
No. _______________ Date_______________  
Minimum  
Spec.  
Maximum Measurement  
Result  
Spec.  
Uncertainty  
±0.01dB  
Attenuation  
Setting:  
1dB DispRef  
5dB DispRef  
12dB DispRef  
24dB DispRef  
36dB DispRef  
48dB DispRef  
53dB DispRef  
60dB DispRef  
-0.01dB  
-0.01dB  
-0.01dB  
-0.01dB  
-0.01dB  
-0.01dB  
-0.01dB  
-0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
IV. Return Loss Test  
±0.60dB  
±0.60dB  
Input  
Output  
40dB  
40dB  
_________  
_________  
typ. >45dB  
215  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Performance Tests  
V. Polarization Dependent Loss (PDL): Optional  
Performance Test for the Agilent 8156A Option 121  
Page 2 of 8  
Model __ __________ Module Report No. _______ Date ________  
Test Equipment Used:  
Description  
Model No. Trace No. Cal. Due Date  
1. Power Meter  
8153A  
________ __ / ___ /___  
________ __ / ___ /___  
________ __ / ___ /___  
2a1. CW Laser Sources 1310nm  
2a2. CW Laser Sources 1550nm  
2b. CW Laser Sources 1310/1550nm  
3. Opt Sensor Module  
81552SM  
81553SM  
or 81554SM ________ __ / ___ /___  
81532A  
________ __ / ___ /___  
________ __ / ___ /___  
________ __ / ___ /___  
________ __ / ___ /___  
________ __ / ___ /___  
________ __ / ___ /___  
________ __ / ___ /___  
________ __ / ___ /___  
________ __ / ___ /___  
4. Return Loss Module  
81534A  
5. Reference Reflector  
81000BR  
81000UM  
81210LI  
6. Universal Through Adapter  
7.1 Optical Isolator 1310nm  
7.2 Optical Isolator 1550nm  
8. Connector Interface (7ea)  
9.1 Single Mode Fiber (1ea)  
9.2 Single Mode Fiber  
81310LI  
Opt011  
81000AI  
81101AC  
81109AC  
10. ___________________________________________ __________ ________ __ / ___ /___  
11. ___________________________________________ __________ ________ __ / ___ /___  
12. ___________________________________________ __________ ________ __ / ___ /___  
13. ___________________________________________ __________ ________ __ / ___ /___  
14. ___________________________________________ __________ ________ __ / ___ /___  
15. ___________________________________________ __________ ________ __ / ___ /___  
16. ___________________________________________ __________ ________ __ / ___ /___  
216  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Performance Tests  
V. Polarization Dependent Loss (PDL): Optional  
Performance Test for the Agilent 8156A Option 121  
Page 3 of 8  
Model Agilent 8156A Attenuator Option 121  
No. _______________ Date_______________  
Test Test Description  
Minimum Maximum Measurement  
No. performed at _________________nm Spec.  
Result  
dB  
Spec.  
Uncertainty  
±0.60dB  
I.  
Total Insertion Loss Test  
typ. <3.3dB  
measured at __________________nm  
with singlemode fiber  
4.2 dB  
_________  
II. Linearity/Att. Acc.  
Attenuation  
±0.05dB  
Setting:  
0dB  
1dB  
2dB  
3dB  
4dB  
5dB  
6dB  
7dB  
8dB  
9dB  
10dB  
REF  
0.9dB  
1.9dB  
2.9dB  
3.9dB  
4.9dB  
5.9dB  
6.9dB  
7.9dB  
8.9dB  
9.9dB  
1.1dB  
2.1dB  
3.1dB  
4.1dB  
5.1dB  
6.1dB  
7.1dB  
8.1dB  
9.1dB  
10.1dB  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
217  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Performance Tests  
V. Polarization Dependent Loss (PDL): Optional  
Performance Test for the Agilent 8156A Option 121  
Page 4 of 8  
Model Agilent 8156A Attenuator Option 121  
No. _______________ Date_______________  
Test Test Description  
Minimum Maximum Measurement  
No. performed at _________________nm Spec.  
II. Linearity/Att. Acc. (cont.)  
Result  
Spec.  
Uncertainty  
±0.05dB  
Attenuation  
Setting:  
11dB  
12dB  
13dB  
14dB  
24dB  
34dB  
44dB  
54dB  
60dB  
11.1dB  
12.1dB  
13.1dB  
14.1dB  
24.1dB  
34.1dB  
44.1dB  
54.1dB  
60.1dB  
10.9dB  
11.9dB  
12.9dB  
13.9dB  
23.9dB  
33.9dB  
43.9dB  
53.9dB  
59.9dB  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
218  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Performance Tests  
V. Polarization Dependent Loss (PDL): Optional  
Performance Test for the Agilent 8156A Option 121  
Page 5 of 8  
Model Agilent 8156A Attenuator Option 121  
Test Test Description  
No. performed at _________________nm  
III. Att. Repeatability Test  
No. _______________ Date_______________  
Minimum  
Spec.  
Maximum Measurement  
Result  
Spec.  
Uncertainty  
±0.01dB  
Attenuation  
Setting:  
1dB DispRef  
5dB DispRef  
12dB DispRef  
24dB DispRef  
36dB DispRef  
48dB DispRef  
53dB DispRef  
60dB DispRef  
-0.01dB  
-0.01dB  
-0.01dB  
-0.01dB  
-0.01dB  
-0.01dB  
-0.01dB  
-0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
IV. Return Loss Test  
±0.60dB  
±0.60dB  
Input  
Output  
40dB  
40dB  
_________  
_________  
typ. >45dB  
219  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Performance Tests  
V. Polarization Dependent Loss (PDL): Optional  
Performance Test for the Agilent 8156A Option 121  
Page 6 of 8  
Model Agilent 8156A Attenuator Option 121  
No. _______________ Date_______________  
Test Test Description  
Minimum Maximum Measurement  
No. performed at _________________nm Spec.  
Result  
dB  
Spec.  
Uncertainty  
±0.60dB  
I.  
Total Insertion Loss Test  
typ. <3.3dB  
measured at __________________nm  
with SM fiber  
4.2 dB  
_________  
II. Linearity/Att. Acc.  
Attenuation  
±0.05dB  
Setting:  
0dB  
1dB  
2dB  
3dB  
4dB  
5dB  
6dB  
7dB  
8dB  
9dB  
10dB  
REF  
0.9dB  
1.9dB  
2.9dB  
3.9dB  
4.9dB  
5.9dB  
6.9dB  
7.9dB  
8.9dB  
9.9dB  
1.1dB  
2.1dB  
3.1dB  
4.1dB  
5.1dB  
6.1dB  
7.1dB  
8.1dB  
9.1dB  
10.1dB  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
220  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Performance Tests  
V. Polarization Dependent Loss (PDL): Optional  
Performance Test for the Agilent 8156A Option 121  
Page 7 of 8  
Model Agilent 8156A Attenuator Option 121  
No. _______________ Date_______________  
Test Test Description  
Minimum Maximum Measurement  
No. performed at _________________nm Spec.  
Result  
Spec.  
Uncertainty  
II.  
±0.05dB  
Linearity/Att. Acc. (cont.)  
Attenuation  
Setting:  
11dB  
12dB  
13dB  
14dB  
24dB  
34dB  
44dB  
54dB  
60dB  
11.1dB  
12.1dB  
13.1dB  
14.1dB  
24.1dB  
34.1dB  
44.1dB  
54.1dB  
60.1dB  
10.9dB  
11.9dB  
12.9dB  
13.9dB  
23.9dB  
33.9dB  
43.9dB  
53.9dB  
59.9dB  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
221  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Performance Tests  
V. Polarization Dependent Loss (PDL): Optional  
Performance Test for the Agilent 8156A Option 121  
Page 8 of 8  
Model Agilent 8156A Attenuator Option 121  
Test Test Description  
No. performed at _________________nm  
III. Att. Repeatability Test  
No. _______________ Date_______________  
Minimum  
Spec.  
Maximum Measurement  
Result  
Spec.  
Uncertainty  
±0.01dB  
Attenuation  
Setting:  
1dB DispRef  
5dB DispRef  
12dB DispRef  
24dB DispRef  
36dB DispRef  
48dB DispRef  
53dB DispRef  
60dB DispRef  
-0.01dB  
-0.01dB  
-0.01dB  
-0.01dB  
-0.01dB  
-0.01dB  
-0.01dB  
-0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
IV. Return Loss Test  
±0.60dB  
±0.60dB  
Input  
Output  
40dB  
40dB  
_________  
_________  
typ. >45dB  
222  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Performance Tests  
V. Polarization Dependent Loss (PDL): Optional  
Performance Test for the Agilent 8156A Option 201  
Page 2 of 8  
Model __ __________ Module Report No. _______ Date ________  
Test Equipment Used:  
Description  
Model No. Trace No. Cal. Due Date  
1. Power Meter  
8153A  
________ __ / ___ /___  
________ __ / ___ /___  
________ __ / ___ /___  
________ __ / ___ /___  
________ __ / ___ /___  
________ __ / ___ /___  
2a1. CW Laser Sources 1310nm  
2a2. CW Laser Sources 1550nm  
2b. CW Laser Sources 1310/1550nm  
3. Opt Sensor Module  
81552SM  
81553SM  
81554SM  
81532A  
81534A  
4. Return Loss Module  
5. Back Reflector Kit  
8156A #203 ________ __ / ___ /___  
1005-0255 ________ __ / ___ /___  
6. DIN Through Adapter  
7.1. Connector Interface (4ea)  
7.2. Connector Interface  
7.3. Connector Interface  
8.1 Single Mode Fiber  
81000SI  
81000FI  
81000AI  
81113PC  
81102SC  
________ __ / ___ /___  
________ __ / ___ /___  
________ __ / ___ /___  
________ __ / ___ /___  
________ __ / ___ /___  
8.2 Single Mode Fiber  
9. ___________________________________________ __________ ________ __ / ___ /___  
10. ___________________________________________ __________ ________ __ / ___ /___  
11. ___________________________________________ __________ ________ __ / ___ /___  
12. ___________________________________________ __________ ________ __ / ___ /___  
13. ___________________________________________ __________ ________ __ / ___ /___  
14. ___________________________________________ __________ ________ __ / ___ /___  
15. ___________________________________________ __________ ________ __ / ___ /___  
16. ___________________________________________ __________ ________ __ / ___ /___  
223  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Performance Tests  
V. Polarization Dependent Loss (PDL): Optional  
Performance Test for the Agilent 8156A Option 201  
Page 3 of 8  
Model Agilent 8156A Attenuator Option 201  
No. _______________ Date_______________  
Test Test Description  
Minimum Maximum Measurement  
No. performed at _________________nm Spec.  
Result  
dB  
Spec.  
Uncertainty  
±0.60dB  
I.  
Total Insertion Loss Test  
typ. <2.5dB  
measured at __________________nm  
with singlemode fiber  
3.0 dB  
_________  
II. Linearity/Att. Acc.  
Attenuation  
±0.05dB  
Setting:  
0dB  
1dB  
2dB  
3dB  
4dB  
5dB  
6dB  
7dB  
8dB  
9dB  
10dB  
REF  
0.9dB  
1.9dB  
2.9dB  
3.9dB  
4.9dB  
5.9dB  
6.9dB  
7.9dB  
8.9dB  
9.9dB  
1.1dB  
2.1dB  
3.1dB  
4.1dB  
5.1dB  
6.1dB  
7.1dB  
8.1dB  
9.1dB  
10.1dB  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
224  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Performance Tests  
V. Polarization Dependent Loss (PDL): Optional  
Performance Test for the Agilent 8156A Option 201  
Page 4 of 8  
Model Agilent 8156A Attenuator Option 201  
No. _______________ Date_______________  
Test Test Description  
Minimum Maximum Measurement  
No. performed at _________________nm Spec.  
II. Linearity/Att. Acc. (cont.)  
Result  
Spec.  
Uncertainty  
±0.05dB  
Attenuation  
Setting:  
11dB  
12dB  
13dB  
14dB  
24dB  
34dB  
44dB  
54dB  
60dB  
11.1dB  
12.1dB  
13.1dB  
14.1dB  
24.1dB  
34.1dB  
44.1dB  
54.1dB  
60.1dB  
10.9dB  
11.9dB  
12.9dB  
13.9dB  
23.9dB  
33.9dB  
43.9dB  
53.9dB  
59.9dB  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
225  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Performance Tests  
V. Polarization Dependent Loss (PDL): Optional  
Performance Test for the Agilent 8156A Option 201  
Page 5 of 8  
Model Agilent 8156A Attenuator Option 201  
Test Test Description  
No. performed at _________________nm  
III. Att. Repeatability Test  
No. _______________ Date_______________  
Minimum  
Spec.  
Result  
Maximum Measurement  
Spec.  
Uncertainty  
±0.01dB  
Attenuation  
Setting:  
1dB DispRef  
5dB DispRef  
12dB DispRef  
24dB DispRef  
36dB DispRef  
48dB DispRef  
53dB DispRef  
60dB DispRef  
-0.01dB  
-0.01dB  
-0.01dB  
-0.01dB  
-0.01dB  
-0.01dB  
-0.01dB  
-0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
IV. Return Loss Test  
±0.60dB  
±0.60dB  
Input  
Output  
55dB  
55dB  
_________  
_________  
typ. >60dB  
226  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Performance Tests  
V. Polarization Dependent Loss (PDL): Optional  
Performance Test for the Agilent 8156A Option 201  
Page 6 of 8  
Model Agilent 8156A Attenuator Option 201  
No. _______________ Date_______________  
Test Test Description  
Minimum Maximum Measurement  
No. performed at _________________nm Spec.  
Result  
dB  
Spec.  
Uncertainty  
±0.60dB  
I.  
Total Insertion Loss Test  
typ. <2.5dB  
measured at __________________nm  
with SM fiber  
3.0 dB  
_________  
II. Linearity/Att. Acc.  
Attenuation  
±0.05dB  
Setting:  
0dB  
1dB  
2dB  
3dB  
4dB  
5dB  
6dB  
7dB  
8dB  
9dB  
10dB  
REF  
0.9dB  
1.9dB  
2.9dB  
3.9dB  
4.9dB  
5.9dB  
6.9dB  
7.9dB  
8.9dB  
9.9dB  
1.1dB  
2.1dB  
3.1dB  
4.1dB  
5.1dB  
6.1dB  
7.1dB  
8.1dB  
9.1dB  
10.1dB  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
227  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Performance Tests  
V. Polarization Dependent Loss (PDL): Optional  
Performance Test for the Agilent 8156A Option 201  
Page 7 of 8  
Model Agilent 8156A Attenuator Option 201  
No. _______________ Date_______________  
Test Test Description  
Minimum Maximum Measurement  
No. performed at _________________nm Spec.  
Result  
Spec.  
Uncertainty  
II.  
±0.05dB  
Linearity/Att. Acc. (cont.)  
Attenuation  
Setting:  
11dB  
12dB  
13dB  
14dB  
24dB  
34dB  
44dB  
54dB  
60dB  
10.9dB  
11.9dB  
12.9dB  
13.9dB  
23.9dB  
33.9dB  
43.9dB  
53.9dB  
59.9dB  
11.1dB  
12.1dB  
13.1dB  
14.1dB  
24.1dB  
34.1dB  
44.1dB  
54.1dB  
60.1dB  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
228  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Performance Tests  
V. Polarization Dependent Loss (PDL): Optional  
Performance Test for the Agilent 8156A Option 201  
Page 8 of 8  
Model Agilent 8156A Attenuator Option 201  
Test Test Description  
No. performed at _________________nm  
III. Att. Repeatability Test  
No. _______________ Date_______________  
Minimum  
Spec.  
Maximum Measurement  
Result  
Spec.  
Uncertainty  
±0.01dB  
Attenuation  
Setting:  
1dB DispRef  
5dB DispRef  
12dB DispRef  
24dB DispRef  
36dB DispRef  
48dB DispRef  
53dB DispRef  
-0.01dB  
-0.01dB  
-0.01dB  
-0.01dB  
-0.01dB  
-0.01dB  
-0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
IV. Return Loss Test  
±0.60dB  
±0.60dB  
Input  
Output  
55dB  
55dB  
_________  
_________  
typ. >60dB  
229  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Performance Tests  
V. Polarization Dependent Loss (PDL): Optional  
Performance Test for the Agilent 8156A Option 221  
Page 2 of 8  
Model __ __________ Module Report No. _______ Date ________  
Test Equipment Used:  
Description  
Model No. Trace No. Cal. Due Date  
1. Power Meter  
8153A  
________ __ / ___ /___  
________ __ / ___ /___  
________ __ / ___ /___  
________ __ / ___ /___  
________ __ / ___ /___  
________ __ / ___ /___  
2a1. CW Laser Sources 1310nm  
2a2. CW Laser Sources 1550nm  
2b. CW Laser Sources 1310/1550nm  
3. Opt Sensor Module  
81552SM  
81553SM  
81554SM  
81532A  
81534A  
4. Return Loss Module  
5. Back Reflector Kit  
8156A #203 ________ __ / ___ /___  
1005-0255 ________ __ / ___ /___  
6. DIN Through Adapter  
7.1. Connector Interface (5ea)  
7.2. Connector Interface  
81000SI  
81000FI  
81000AI  
81113PC  
81102SC  
________ __ / ___ /___  
________ __ / ___ /___  
________ __ / ___ /___  
________ __ / ___ /___  
________ __ / ___ /___  
7.3. Connector Interface  
8.1 Single Mode Fiber  
8.2 Single Mode Fiber (2ea)  
9. ___________________________________________ __________ ________ __ / ___ /___  
10. ___________________________________________ __________ ________ __ / ___ /___  
11. ___________________________________________ __________ ________ __ / ___ /___  
12. ___________________________________________ __________ ________ __ / ___ /___  
13. ___________________________________________ __________ ________ __ / ___ /___  
14. ___________________________________________ __________ ________ __ / ___ /___  
15. ___________________________________________ __________ ________ __ / ___ /___  
16. ___________________________________________ __________ ________ __ / ___ /___  
230  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Performance Tests  
V. Polarization Dependent Loss (PDL): Optional  
Performance Test for the Agilent 8156A Option 221  
Page 3 of 8  
Model Agilent 8156A Attenuator Option 221  
No. _______________ Date_______________  
Test Test Description  
Minimum Maximum Measurement  
No. performed at _________________nm Spec.  
Result  
dB  
Spec.  
Uncertainty  
±0.60dB  
I.  
Total Insertion Loss Test  
typ. <3.3dB  
measured at __________________nm  
with singlemode fiber  
4.2 dB  
_________  
II. Linearity/Att. Acc.  
Attenuation  
±0.05dB  
Setting:  
0dB  
1dB  
2dB  
3dB  
4dB  
5dB  
6dB  
7dB  
8dB  
9dB  
10dB  
REF  
0.9dB  
1.9dB  
2.9dB  
3.9dB  
4.9dB  
5.9dB  
6.9dB  
7.9dB  
8.9dB  
9.9dB  
1.1dB  
2.1dB  
3.1dB  
4.1dB  
5.1dB  
6.1dB  
7.1dB  
8.1dB  
9.1dB  
10.1dB  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
231  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Performance Tests  
V. Polarization Dependent Loss (PDL): Optional  
Performance Test for the Agilent 8156A Option 221  
Page 4 of 8  
Model Agilent 8156A Attenuator Option 221  
No. _______________ Date_______________  
Test Test Description  
Minimum Maximum Measurement  
No. performed at _________________nm Spec.  
II. Linearity/Att. Acc. (cont.)  
Result  
Spec.  
Uncertainty  
±0.05dB  
Attenuation  
Setting:  
11dB  
12dB  
13dB  
14dB  
24dB  
34dB  
44dB  
54dB  
60dB  
10.9dB  
11.9dB  
12.9dB  
13.9dB  
23.9dB  
33.9dB  
43.9dB  
53.9dB  
59.9dB  
11.1dB  
12.1dB  
13.1dB  
14.1dB  
24.1dB  
34.1dB  
44.1dB  
54.1dB  
60.1dB  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
232  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Performance Tests  
V. Polarization Dependent Loss (PDL): Optional  
Performance Test for the Agilent 8156A Option 221  
Page 5 of 8  
Model Agilent 8156A Attenuator Option 221  
Test Test Description  
No. performed at _________________nm  
III. Att. Repeatability Test  
No. _______________ Date_______________  
Minimum  
Spec.  
Maximum Measurement  
Result  
Spec.  
Uncertainty  
±0.01dB  
Attenuation  
Setting:  
1dB DispRef  
5dB DispRef  
12dB DispRef  
24dB DispRef  
36dB DispRef  
48dB DispRef  
53dB DispRef  
60dB DispRef  
-0.01dB  
-0.01dB  
-0.01dB  
-0.01dB  
-0.01dB  
-0.01dB  
-0.01dB  
-0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
IV. Return Loss Test  
±0.60dB  
±0.60dB  
Input  
Output  
55dB  
55dB  
_________  
_________  
typ. >60dB  
233  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Performance Tests  
V. Polarization Dependent Loss (PDL): Optional  
Performance Test for the Agilent 8156A Option 221  
Page 6 of 8  
Model Agilent 8156A Attenuator Option 221  
No. _______________ Date_______________  
Test Test Description  
Minimum Maximum Measurement  
No. performed at _________________nm Spec.  
Result  
dB  
Spec.  
Uncertainty  
±0.60dB  
I.  
Total Insertion Loss Test  
typ. <3.3dB  
measured at __________________nm  
with SM fiber  
4.2 dB  
_________  
II. Linearity/Att. Acc.  
Attenuation  
±0.05dB  
Setting:  
0dB  
1dB  
2dB  
3dB  
4dB  
5dB  
6dB  
7dB  
8dB  
9dB  
10dB  
REF  
0.9dB  
1.9dB  
2.9dB  
3.9dB  
4.9dB  
5.9dB  
6.9dB  
7.9dB  
8.9dB  
9.9dB  
1.1dB  
2.1dB  
3.1dB  
4.1dB  
5.1dB  
6.1dB  
7.1dB  
8.1dB  
9.1dB  
10.1dB  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
234  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Performance Tests  
V. Polarization Dependent Loss (PDL): Optional  
Performance Test for the Agilent 8156A Option 221  
Page 7 of 8  
Model Agilent 8156A Attenuator Option 221  
No. _______________ Date_______________  
Test Test Description  
Minimum Maximum Measurement  
No. performed at _________________nm Spec.  
Result  
Spec.  
Uncertainty  
II.  
±0.05dB  
Linearity/Att. Acc. (cont.)  
Attenuation  
Setting:  
11dB  
12dB  
13dB  
14dB  
24dB  
34dB  
44dB  
54dB  
60dB  
11.1dB  
12.1dB  
13.1dB  
14.1dB  
24.1dB  
34.1dB  
44.1dB  
54.1dB  
60.1dB  
10.9dB  
11.9dB  
12.9dB  
13.9dB  
23.9dB  
33.9dB  
43.9dB  
53.9dB  
59.9dB  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
235  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Performance Tests  
V. Polarization Dependent Loss (PDL): Optional  
Performance Test for the Agilent 8156A Option 221  
Page 8 of 8  
Model Agilent 8156A Attenuator Option 221  
Test Test Description  
No. performed at _________________nm  
III. Att. Repeatability Test  
No. _______________ Date_______________  
Minimum  
Spec.  
Maximum Measurement  
Result  
Spec.  
Uncertainty  
±0.01dB  
Attenuation  
Setting:  
1dB DispRef  
5dB DispRef  
12dB DispRef  
24dB DispRef  
36dB DispRef  
48dB DispRef  
53dB DispRef  
-0.01dB  
-0.01dB  
-0.01dB  
-0.01dB  
-0.01dB  
-0.01dB  
-0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
IV. Return Loss Test  
±0.60dB  
±0.60dB  
Input  
Output  
55dB  
55dB  
_________  
_________  
typ. >60dB  
236  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Performance Tests  
V. Polarization Dependent Loss (PDL): Optional  
Performance Test for the Agilent 8156A Option 350  
Page 2 of 5  
Model __ __________ Module Report No. _______ Date ________  
Test Equipment Used:  
Description  
Model No. Trace No. Cal. Due Date  
1. Power Meter  
8153A  
________ __ / ___ /___  
________ __ / ___ /___  
________ __ / ___ /___  
________ __ / ___ /___  
________ __ / ___ /___  
2. LED Source 1300nm  
3. Opt Sensor Module  
81542SM  
81532A  
81000AI  
81501AC  
4. Connector Interface (4ea)  
5. Multi Mode Fiber (2ea)  
6. ___________________________________________ __________ ________ __ / ___ /___  
7. ___________________________________________ __________ ________ __ / ___ /___  
8. ___________________________________________ __________ ________ __ / ___ /___  
9. ___________________________________________ __________ ________ __ / ___ /___  
10. ___________________________________________ __________ ________ __ / ___ /___  
11. ___________________________________________ __________ ________ __ / ___ /___  
12. ___________________________________________ __________ ________ __ / ___ /___  
237  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Performance Tests  
V. Polarization Dependent Loss (PDL): Optional  
Performance Test for the Agilent 8156A Option 350  
Page 3 of 5  
Model Agilent 8156A Attenuator Option 350  
No. _______________ Date_______________  
Test Test Description  
Minimum Maximum Measurement  
No. performed at _________________nm Spec.  
Result  
dB  
Spec.  
Uncertainty  
±0.60dB  
I.  
Total Insertion Loss Test  
typ. <3.0dB  
measured at __________________nm  
with multimode fiber  
3.9 dB  
_________  
II. Linearity/Att. Acc.  
Attenuation  
±0.05dB  
Setting:  
0dB  
1dB  
2dB  
3dB  
4dB  
5dB  
6dB  
7dB  
8dB  
9dB  
10dB  
REF  
0.9dB  
1.9dB  
2.9dB  
3.9dB  
4.9dB  
5.9dB  
6.9dB  
7.9dB  
8.9dB  
9.9dB  
1.1dB  
2.1dB  
3.1dB  
4.1dB  
5.1dB  
6.1dB  
7.1dB  
8.1dB  
9.1dB  
10.1dB  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
238  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Performance Tests  
V. Polarization Dependent Loss (PDL): Optional  
Performance Test for the Agilent 8156A Option 350  
Page 4 of 5  
Model Agilent 8156A Attenuator Option 350  
No. _______________ Date_______________  
Test Test Description  
Minimum Maximum Measurement  
No. performed at _________________nm Spec.  
II. Linearity/Att. Acc. (cont.)  
Result  
Spec.  
Uncertainty  
±0.05dB  
Attenuation  
Setting:  
11dB  
12dB  
13dB  
14dB  
24dB  
34dB  
44dB  
54dB  
60dB  
10.9dB  
11.9dB  
12.9dB  
13.9dB  
23.9dB  
33.9dB  
43.9dB  
53.9dB  
59.9dB  
11.1dB  
12.1dB  
13.1dB  
14.1dB  
24.1dB  
34.1dB  
44.1dB  
54.1dB  
60.1dB  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
_________  
239  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Performance Tests  
V. Polarization Dependent Loss (PDL): Optional  
Performance Test for the Agilent 8156A Option 350  
Page 5 of 5  
Model Agilent 8156A Attenuator Option 350  
Test Test Description  
No. performed at _________________nm  
III. Att. Repeatability Test  
No. _______________ Date_______________  
Minimum  
Spec.  
Maximum Measurement  
Result  
Spec.  
Uncertainty  
±0.01dB  
Attenuation  
Setting:  
1dB DispRef  
5dB DispRef  
12dB DispRef  
24dB DispRef  
36dB DispRef  
48dB DispRef  
53dB DispRef  
60dB DispRef  
-0.01dB  
-0.01dB  
-0.01dB  
-0.01dB  
-0.01dB  
-0.01dB  
-0.01dB  
-0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
_________ + 0.01dB  
240  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Performance Tests  
V. Polarization Dependent Loss (PDL): Optional  
Performance Test Agilent 8156A:  
V. Polarization Dependent Loss Test (optional)  
Page 1 of 6  
Test Facility:  
______________________________________ Report No. ____________________________  
______________________________________ Date: ____________________________  
______________________________________ Customer: ____________________________  
______________________________________ Tested By: ____________________________  
Model:  
___________________  
Serial No.  
Options  
___________________ Ambient temperature ______ °C  
___________________ Relative humidity  
___________________ Line frequency  
______ %  
______ Hz  
Firmware Rev.  
Special Notes:  
______________________________________________________________________________  
______________________________________________________________________________  
______________________________________________________________________________  
______________________________________________________________________________  
______________________________________________________________________________  
______________________________________________________________________________  
______________________________________________________________________________  
______________________________________________________________________________  
241  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Performance Tests  
V. Polarization Dependent Loss (PDL): Optional  
Performance Test Agilent 8156A:  
V. Polarization Dependent Loss Test  
Page 2 of 6  
Test Equipment Used:  
Description  
HP/Agilent  
Model No.  
Trace No.  
Cal. Due Date  
1.  
2.  
3.  
Polarization Controller  
8169A #021  
___________ ___________ ____/____/____  
___________ ___________ ____/____/____  
___________ ___________ ____/____/____  
___________ ___________ ____/____/____  
___________ ___________ ____/____/____  
___________ ___________ ____/____/____  
___________ ___________ ____/____/____  
Lightwave Multimeter  
Mainframe  
Optical Head Interface  
81533B  
4a. CW Laser Source  
1310nm  
4b. CW Laser Source  
1550nm  
4c. CW Laser Source  
1310/1550nm  
5.  
Optical Head  
81521B  
242  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Performance Tests  
V. Polarization Dependent Loss (PDL): Optional  
Performance Test Agilent 8156A:  
V. Polarization Dependent Loss Test  
Page 3 of 6  
Model Agilent 8156A Optical Attenuator  
Option: _____________________  
Date ________  
No. _______________________________________  
Wavelength 1310nm (nominal)  
Actual wavelength: ______________________nm  
Polarization  
Linear  
Horizontal  
___________deg  
___________deg  
___________deg  
Linear  
Vertical  
n/a  
n/a  
n/a  
Linear  
Diagonal  
n/a  
Right Hand  
Circular  
n/a  
Polarizer Setting  
λ/4 Plate Setting  
λ/2 Plate Setting  
n/a  
n/a  
n/a  
n/a  
Corrected wavelength  
dependent positions:  
λ/4 Plate Setting  
n/a  
n/a  
___________deg ___________deg ___________deg  
___________deg ___________deg ___________deg  
λ/2 Plate Setting  
Measurement Results  
of the Reference Power  
P01= ______µW P02=______ µW P03= ______µW P04=______ µW  
PDUT01=___ µW PDUT02= ___µW PDUT03= ___µW PDUT04= ___µW  
Measurement Results  
of the Power  
after the DUT  
Mueller Coefficients:  
m11 = (PDUT01 / P01 + PDUT02 / P02) /2 = _____________________  
m
m
m
12 = (PDUT01 / P01 - PDUT02 / P02) /2 = _____________________  
13 = (PDUT03 / P03) - m11 = ______________________________  
14 = (PDUT04 / P04) - m11 = ______________________________  
243  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Performance Tests  
V. Polarization Dependent Loss (PDL): Optional  
Performance Test Agilent 8156A:  
V. Polarization Dependent Loss Test  
Page 4 of 6  
Minimum and maximum transmission:  
TMax = m11  
+
m122 + m123 + m124 = ____________________________  
m122 + m123 + m124 = ____________________________  
TMin = m11  
Polarization Dependent Loss  
PDLdB = 10log(TMax/TMin  
____________________dBpp  
Maximum Specification  
Measurement  
Uncertainties  
)
#100  
#101, #201  
0.08dBpp  
#121, #221  
0.10dBpp  
0.15dBpp  
0.02dBpp  
244  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Performance Tests  
V. Polarization Dependent Loss (PDL): Optional  
Performance Test Agilent 8156A:  
V. Polarization Dependent Loss Test  
Page 5 of 6  
Model Agilent 8156A Optical Attenuator  
Option: _____________________  
Date ________  
No. _______________________________________  
Wavelength 1550nm (nominal)  
Actual wavelength: ______________________nm  
Polarization  
Linear  
Horizontal  
___________deg  
___________deg  
___________deg  
Linear  
Vertical  
n/a  
n/a  
n/a  
Linear  
Diagonal  
n/a  
Right Hand  
Circular  
n/a  
Polarizer Setting  
λ/4 Plate Setting  
λ/2 Plate Setting  
n/a  
n/a  
n/a  
n/a  
Corrected wavelength  
dependent positions:  
λ/4 Plate Setting  
n/a  
n/a  
___________deg ___________deg ___________deg  
___________deg ___________deg ___________deg  
λ/2 Plate Setting  
Measurement Results  
of the Reference Power  
P01= ______µW P02=______ µW P03= ______µW P04=______ µW  
PDUT01=___ µW PDUT02= ___µW PDUT03= ___µW PDUT04= ___µW  
Measurement Results  
of the Power  
after the DUT  
Mueller Coefficients:  
m11 = (PDUT01 / P01 + PDUT02 / P02) /2 = _____________________  
m
m
m
12 = (PDUT01 / P01 - PDUT02 / P02) /2 = _____________________  
13 = (PDUT03 / P03) - m11 = ______________________________  
14 = (PDUT04 / P04) - m11 = ______________________________  
245  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Performance Tests  
V. Polarization Dependent Loss (PDL): Optional  
Performance Test Agilent 8156A:  
V. Polarization Dependent Loss Test  
Page 6 of 6  
Minimum and maximum transmission  
TMax = m11  
+
m122 + m123 + m124 = ____________________________  
m122 + m123 + m124 = ____________________________  
TMin = m11  
Polarization Dependent Loss  
PDLdB = 10log(TMax/TMin  
____________________dBpp  
Maximum Specification  
Measurement  
Uncertainties  
)
#100  
#101, #201  
0.08dBpp  
#121, #221  
0.10dBpp  
0.15dBpp  
0.02dBpp  
246  
Download from Www.Somanuals.com. All Manuals Search And Download.  
E
E
Cleaning Information  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Cleaning Information  
The following Cleaning Instructions contain some general safety  
precautions, which must be observed during all phases of cleaning.  
Consult your specific optical device manuals or guides for full  
information on safety matters.  
Please try, whenever possible, to use physically contacting  
connectors, and dry connections. Clean the connectors, interfaces,  
and bushings carefully after use.  
Agilent Technologies assume no liability for the customers failure  
to comply with these requirements.  
Cleaning Instructions for this Instrument  
The Cleaning Instructions apply to a number of different types of  
Optical Equipment. The following section is relevant for this  
instrument.  
How to clean instruments with a physical contact interfaceon  
page 264  
248  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Cleaning Information  
Safety Precautions  
E.1 Safety Precautions  
Please follow the following safety rules:  
Do not remove instrument covers when operating.  
Ensure that the instrument is switched off throughout the  
cleaning procedures.  
Use of controls or adjustments or performance of procedures  
other than those specified may result in hazardous radiation  
exposure.  
Make sure that you disable all sources when you are cleaning  
any optical interfaces.  
Under no circumstances look into the end of an optical device  
attached to optical outputs when the device is operational. The  
laser radiation is not visible to the human eye, but it can seriously  
damage your eyesight.  
To prevent electrical shock, disconnect the instrument from the  
mains before cleaning. Use a dry cloth, or one slightly dampened  
with water, to clean the external case parts. Do not attempt to  
clean internally.  
Do not install parts or perform any unauthorized modification to  
optical devices.  
Refer servicing only to qualified and authorized personnel.  
E.2 Why is it important to clean optical devices ?  
In transmission links optical fiber cores are about 9 µm (0.00035")  
in diameter. Dust and other particles, however, can range from  
tenths to hundredths of microns in diameter. Their comparative size  
249  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Cleaning Information  
What do I need for proper cleaning?  
means that they can cover a part of the end of a fiber core, and as a  
result will reduce the performance of your system.  
Furthermore, the power density may burn dust into the fiber and  
cause additional damage (for example, 0 dBm optical power in a  
single mode fiber causes a power density of approximately 16  
million W/m2). If this happens, measurements become inaccurate  
and non-repeatable.  
Cleaning is, therefore, an essential yet difficult task. Unfortunately,  
when comparing most published cleaning recommendations, you  
will discover that they contain several inconsistencies. In this  
section, we want to suggest ways to help you clean your various  
optical devices, and thus significantly improve the accuracy and  
E.3 What do I need for proper cleaning?  
Some Standard Cleaning Equipment is necessary for cleaning your  
instrument. For certain cleaning procedures, you may also require  
certain Additional Cleaning Equipment.  
Standard Cleaning Equipment  
Before you can start your cleaning procedure you need the  
Dust and shutter caps  
Isopropyl alcohol  
Cotton swabs  
Soft tissues  
Pipe cleaner  
Compressed air  
250  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Cleaning Information  
What do I need for proper cleaning?  
Dust and shutter caps  
All of Agilent Technologieslightwave instruments are delivered  
with either laser shutter caps or dust caps on the lightwave adapter.  
Any cables come with covers to protect the cable ends from  
damage or contamination.  
We suggest these protected coverings should be kept on the  
equipment at all times, except when your optical device is in use.  
Be careful when replacing dust caps after use. Do not press the  
bottom of the cap onto the fiber too hard, as any dust in the cap can  
scratch or pollute your fiber surface.  
If you need further dust caps, please contact your nearest Agilent  
Technologies sales office.  
Isopropyl alcohol  
This solvent is usually available from any local pharmaceutical  
supplier or chemist's shop.  
If you use isopropyl alcohol to clean your optical device, do not  
immediately dry the surface with compressed air (except when you  
are cleaning very sensitive optical devices). This is because the dust  
and the dirt is solved and will leave behind filmy deposits after the  
alcohol is evaporated. You should therefore first remove the alcohol  
and the dust with a soft tissue, and then use compressed air to blow  
away any remaining filaments.  
If possible avoid using denatured alcohol containing additives.  
Instead, apply alcohol used for medical purposes.  
Never try to drink this alcohol, as it may seriously damage to your  
health.  
Do not use any other solvents, as some may damage plastic  
materials and claddings. Acetone, for example, will dissolve the  
epoxy used with fiber optic connectors. To avoid damage, only use  
isopropyl alcohol.  
Cotton swabs  
We recommend that you use swabs such as Q-tips or other cotton  
swabs normally available from local distributors of medical and  
251  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Cleaning Information  
What do I need for proper cleaning?  
hygiene products (for example, a supermarket or a chemists shop).  
You may be able to obtain various sizes of swab. If this is the case,  
select the smallest size for your smallest devices.  
Ensure that you use natural cotton swabs. Foam swabs will often  
leave behind filmy deposits after cleaning.  
Use care when cleaning, and avoid pressing too hard onto your  
optical device with the swab. Too much pressure may scratch the  
surface, and could cause your device to become misaligned. It is  
advisable to rub gently over the surface using only a small circular  
movement.  
Swabs should be used straight out of the packet, and never used  
twice. This is because dust and dirt in the atmosphere, or from a  
first cleaning, may collect on your swab and scratch the surface of  
your optical device.  
Soft tissues  
These are available from most stores and distributors of medical  
and hygiene products such as supermarkets or chemistsshops.  
We recommend that you do not use normal cotton tissues, but  
multi-layered soft tissues made from non-recycled cellulose.  
Cellulose tissues are very absorbent and softer. Consequently, they  
will not scratch the surface of your device over time.  
Use care when cleaning, and avoid pressing on your optical device  
with the tissue. Pressing too hard may lead to scratches on the  
surface or misalignment of your device. Just rub gently over the  
surface using a small circular movement.  
Use only clean, fresh soft tissues and never apply them twice. Any  
dust and dirt from the air which collects on your tissue, or which  
has gathered after initial cleaning, may scratch and pollute your  
optical device.  
Pipe cleaner  
Pipe cleaners can be purchased from tobacconists, and come in  
various shapes and sizes.The most suitable one to select for  
252  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Cleaning Information  
What do I need for proper cleaning?  
cleaning purposes has soft bristles, which will not produces  
scratches.  
There are many different kinds of pipe cleaner available from  
tobacco shops.  
The best way to use a pipe cleaner is to push it in and out of the  
device opening (for example, when cleaning an interface). While  
you are cleaning, you should slowly rotate the pipe cleaner.  
Only use pipe cleaners on connector interfaces or on feed through  
adapters. Do not use them on optical head adapters, as the center of  
a pipe cleaner is hard metal and can damage the bottom of the  
adapter.  
Your pipe cleaner should be new when you use it. If it has collected  
any dust or dirt, this can scratch or contaminate your device.  
The tip and center of the pipe cleaner are made of metal. Avoid  
accidentally pressing these metal parts against the inside of the  
device, as this can cause scratches.  
Compressed air  
Compressed air can be purchased from any laboratory supplier.  
It is essential that your compressed air is free of dust, water and oil.  
Only use clean, dry air. If not, this can lead to filmy deposits or  
scratches on the surface of your connector. This will reduce the  
performance of your transmission system.  
When spraying compressed air, hold the can upright. If the can is  
held at a slant, propellant could escape and dirty your optical  
device. First spray into the air, as the initial stream of compressed  
air could contain some condensation or propellant. Such  
condensation leaves behind a filmy deposit.  
Please be friendly to your environment and use a CFC-free aerosol.  
Additional Cleaning Equipment  
Some Cleaning Procedures need the following equipment, which is  
not required to clean each instrument:  
253  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Cleaning Information  
What do I need for proper cleaning?  
Microscope with a magnification range about 50X up to 300X  
Ultrasonic bath  
Warm water and liquid soap  
Premoistened cleaning wipes  
Polymer film  
Infrared Sensor Card  
Microscope with a magnification range about 50X up to 300X  
A microscope can be found in most photography stores, or can be  
obtained through or specialist mail order companies. Special fiber-  
scopes are available from suppliers of splicing equipment.  
Ideally, the light source on your microscope should be very flexible.  
This will allow you to examine your device closely and from  
different angles.  
A microscope helps you to estimate the type and degree of dirt on  
your device. You can use a microscope to choose an appropriate  
cleaning method, and then to examine the results. You can also use  
your microscope to judge whether your optical device (such as a  
connector) is severely scratched and is, therefore, causing  
inaccurate measurements.  
Ultrasonic bath  
Ultrasonic baths are also available from photography or laboratory  
suppliers or specialist mail order companies.  
An ultrasonic bath will gently remove fat and other stubborn dirt  
from your optical devices. This helps increase the life span of the  
optical devices.  
Only use isopropyl alcohol in your ultrasonic bath, as other solvents  
may damage.  
Warm water and liquid soap  
Only use water if you are sure that there is no other way of cleaning  
your optical device without corrosion or damage. Do not use hot  
254  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Cleaning Information  
What do I need for proper cleaning?  
water, as this may cause mechanical stress, which can damage your  
optical device.  
Ensure that your liquid soap has no abrasive properties or perfume  
in it. You should also avoid normal washing-up liquid, as it can  
cover your device in an iridescent film after it has been air-dried.  
Some lenses and mirrors also have a special coating, which may be  
sensitive to mechanical stress, or to fat and liquids. For this reason  
we recommend you do not touch them.  
If you are not sure how sensitive your device is to cleaning, please  
contact the manufacturer or your sales distributor.  
Premoistened cleaning wipes  
Use pre-moistened cleaning wipes as described in each individual  
cleaning procedure. Cleaning wipes may be used in every instance  
where a moistened soft tissue or cotton swab is applied.  
Polymer film  
Polymer film is available from laboratory suppliers or specialist  
mail order companies.  
Using polymer film is a gentle method of cleaning extremely  
sensitive devices, such as reference reflectors and mirrors.  
Infrared Sensor Card  
Infrared sensor cards are available from laboratory suppliers or  
specialist mail order companies.  
With this card you are able to control the shape of laser light  
emitted. The invisible laser beam is projected onto the sensor card,  
then becomes visible to the normal eye as a round spot.  
Take care never to look into the end of a fiber or any other optical  
component, when they are in use. This is because the laser can  
seriously damage your eyes.  
255  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Cleaning Information  
Preserving Connectors  
E.4 Preserving Connectors  
Listed below are some hints on how best to keep your connectors in  
the best possible condition.  
Making Connections  
Before you make any connection you must ensure that all cables  
and connectors are clean. If they are dirty, use the appropriate  
cleaning procedure.  
When inserting the ferrule of a patchcord into a connector or an  
adapter, make sure that the fiber end does not touch the outside of  
the mating connector or adapter. Otherwise you will rub the fiber  
end against an unsuitable surface, producing scratches and dirt  
deposits on the surface of your fiber.  
Dust Caps and Shutter Caps  
Be careful when replacing dust caps after use. Do not press the  
bottom of the cap onto the fiber as any dust in the cap can scratch or  
dirty your fiber surface.  
When you have finished cleaning, put the dust cap back on, or close  
the shutter cap if the equipment is not going to be used  
immediately.  
Keep the caps on the equipment always when it is not in use.  
All of Agilent Technologieslightwave instruments and accessories  
are shipped with either laser shutter caps or dust caps. If you need  
additional or replacement dust caps, contact your nearest Agilent  
Technologies Sales/Service Office.  
Immersion Oil and Other Index Matching  
Compounds  
Where it is possible, do not use immersion oil or other index  
matching compounds with your device. They are liable to impair  
256  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
Cleaning Information  
Cleaning Instrument Housings  
and dirty the surface of the device. In addition, the characteristics of  
your device can be changed and your measurement results affected.  
E.5 Cleaning Instrument Housings  
Use a dry and very soft cotton tissue to clean the instrument  
housing and the keypad. Do not open the instruments as there is a  
danger of electric shock, or electrostatic discharge. Opening the  
instrument can cause damage to sensitive components, and in  
addition your warranty will be voided.  
E.6 Which Cleaning Procedure should I use ?  
Light dirt  
If you just want to clean away light dirt, observe the following  
procedure for all devices:  
Use compressed air to blow away large particles.  
Clean the device with a dry cotton swab.  
Use compressed air to blow away any remaining filament left by  
the swab.  
Heavy dirt  
If the above procedure is not enough to clean your instrument,  
follow one of the procedures below. Please consult XXXX for the  
procedure relevant for this instrument.  
If you are unsure of how sensitive your device is to cleaning, please  
contact the manufacturer or your sales distributor  
257  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
Cleaning Information  
How to clean connectors  
E.7 How to clean connectors  
Cleaning connectors is difficult as the core diameter of a single-  
mode fiber is only about 9 µm. This generally means you cannot  
see streaks or scratches on the surface. To be certain of the  
condition of the surface of your connector and to check it after  
cleaning, you need a microscope.  
In the case of scratches, or of dust that has been burnt onto the  
surface of the connector, you may have no option but to polish the  
connector. This depends on the degree of dirtiness, or the depth of  
the scratches. This is a difficult procedure and should only be  
performed by skilled personal, and as a last resort as it wears out  
your connector.  
WARNING  
Never look into the end of an optical cable that is connected to an active  
source.  
To assess the projection of the emitted light beam you can use an  
infrared sensor card. Hold the card approximately 5 cm from the  
output of the connector. The invisible emitted light is project onto  
the card and becomes visible as a small circular spot.  
Preferred Procedure  
Use the following procedure on most occasions.  
1. Clean the connector by rubbing a new, dry cotton-swab over the  
surface using a small circular movement.  
2. Blow away any remaining lint with compressed air.  
Procedure for Stubborn Dirt  
Use this procedure particularly when there is greasy dirt on the  
connector:  
258  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Cleaning Information  
How to clean connector adapters  
1. Moisten a new cotton-swab with isopropyl alcohol.  
2. Clean the connector by rubbing the cotton-swab over the surface  
using a small circular movement.  
3. Take a new, dry soft-tissue and remove the alcohol, dissolved  
sediment and dust, by rubbing gently over the surface using a  
small circular movement.  
4. Blow away any remaining lint with compressed air.  
An Alternative Procedure  
A better, more gentle, but more expensive cleaning procedure is to  
use an ultrasonic bath with isopropyl alcohol.  
1. Hold the tip of the connector in the bath for at least three  
minutes.  
2. Take a new, dry soft-tissue and remove the alcohol, dissolved  
sediment and dust, by rubbing gently over the surface using a  
small circular movement.  
3. Blow away any remaining lint with compressed air.  
E.8 How to clean connector adapters  
CAUTION  
Some adapters have an anti-reflection coating on the back to reduce  
back reflection. This coating is extremely sensitive to solvents and  
mechanical abrasion. Extra care is needed when cleaning these  
adapters.  
Preferred Procedure  
Use the following procedure on most occasions.  
259  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Cleaning Information  
How to clean connector interfaces  
1. Clean the adapter by rubbing a new, dry cotton-swab over the  
surface using a small circular movement.  
2. Blow away any remaining lint with compressed air.  
Procedure for Stubborn Dirt  
Use this procedure particularly when there is greasy dirt on the  
adapter:  
1. Moisten a new cotton-swab with isopropyl alcohol.  
2. Clean the adapter by rubbing the cotton-swab over the surface  
using a small circular movement.  
3. Take a new, dry soft-tissue and remove the alcohol, dissolved  
sediment and dust, by rubbing gently over the surface using a  
small circular movement.  
4. Blow away any remaining lint with compressed air.  
E.9 How to clean connector interfaces  
CAUTION  
Be careful when using pipe-cleaners, as the core and the bristles of the  
pipe-cleaner are hard and can damage the interface.  
Do not use pipe-cleaners on optical head adapters, as the hard core of  
normal pipe cleaners can damage the bottom of an adapter.  
Preferred Procedure  
Use the following procedure on most occasions.  
1. Clean the interface by pushing and pulling a new, dry pipe-  
cleaner into the opening. Rotate the pipe-cleaner slowly as you  
do this.  
2. Then clean the interface by rubbing a new, dry cotton-swab over  
260  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Cleaning Information  
How to clean bare fiber adapters  
the surface using a small circular movement.  
3. Blow away any remaining lint with compressed air.  
Procedure for Stubborn Dirt  
Use this procedure particularly when there is greasy dirt on the  
interface:  
1. Moisten a new pipe-cleaner with isopropyl alcohol.  
2. Clean the interface by pushing and pulling the pipe-cleaner into  
the opening. Rotate the pipe-cleaner slowly as you do this.  
3. Moisten a new cotton-swab with isopropyl alcohol.  
4. Clean the interface by rubbing the cotton-swab over the surface  
using a small circular movement.  
5. Using a new, dry pipe-cleaner, and a new, dry cotton-swab  
remove the alcohol, any dissolved sediment and dust.  
6. Blow away any remaining lint with compressed air.  
E.10 How to clean bare fiber adapters  
Bare fiber adapters are difficult to clean. Protect from dust unless  
they are in use.  
CAUTION  
Never use any kind of solvent when cleaning a bare fiber adapter as  
solvents can damage the foam inside some adapters.  
They can deposit dissolved dirt in the groove, which can then dirty the  
surface of an inserted fiber.  
Preferred Procedure  
Use the following procedure on most occasions.  
261  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Cleaning Information  
How to clean lenses  
1. Blow away any dust or dirt with compressed air.  
Procedure for Stubborn Dirt  
Use this procedure particularly when there is greasy dirt on the  
adapter:  
1. Clean the adapter by pushing and pulling a new, dry pipe-cleaner  
into the opening. Rotate the pipe-cleaner slowly as you do this.  
CAUTION  
Be careful when using pipe-cleaners, as the core and the bristles of the  
pipe-cleaner are hard and can damage the adapter.  
2. Clean the adapter by rubbing a new, dry cotton-swab over the  
surface using a small circular movement.  
3. Blow away any remaining lint with compressed air.  
E.11 How to clean lenses  
Some lenses have special coatings that are sensitive to solvents,  
grease, liquid and mechanical abrasion. Take extra care when  
cleaning lenses with these coatings.  
Lens assemblies consisting of several lenses are not normally  
sealed. Therefore, use as little alcohol as possible, as it can get  
between the lenses and in doing so can change the properties of  
projection.  
Preferred Procedure  
Use the following procedure on most occasions.  
1. Clean the lens by rubbing a new, dry cotton-swab over the  
surface using a small circular movement.  
2. Blow away any remaining lint with compressed air.  
262  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Cleaning Information  
How to clean instruments with a fixed connector interface  
Procedure for Stubborn Dirt  
Use this procedure particularly when there is greasy dirt on the  
lens:  
1. Moisten a new cotton-swab with isopropyl alcohol.  
2. Clean the lens by rubbing the cotton-swab over the surface using  
a small circular movement.  
3. Using a new, dry cotton-swab remove the alcohol, any dissolved  
sediment and dust.  
4. Blow away any remaining lint with compressed air.  
E.12 How to clean instruments with a fixed  
connector interface  
You should only clean instruments with a fixed connector interface  
when it is absolutely necessary. This is because it is difficult to  
remove any used alcohol or filaments from the input of the optical  
block.  
It is important, therefore, to keep dust caps on the equipment at all  
times, except when your optical device is in use.  
If you do discover filaments or particles, the only way to clean a  
fixed connector interface and the input of the optical block is to use  
compressed air.  
If there are fluids or fat in the connector, please refer the instrument  
to the skilled personnel of Agilents service team.  
CAUTION  
Only use clean, dry compressed air. Make sure that the air is free of  
dust, water, and oil. If the air that you use is not clean and dry, this can  
lead to filmy deposits or scratches on the surface of your connector  
interface. This will degrade the performance of your transmission  
system.  
263  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Cleaning Information  
How to clean instruments with an optical glass plate  
Never try to open the instrument and clean the optical block by  
yourself, because it is easy to scratch optical components, and cause  
them to be misaligned.  
E.13 How to clean instruments with an optical  
glass plate  
Some instruments, for example, the optical heads from Agilent  
Technologies have an optical glass plate to protect the sensor. Clean  
this glass plate in the same way as optical lenses (see How to clean  
lenseson page 262).  
E.14 How to clean instruments with a physical  
contact interface  
Remove any connector interfaces from the optical output of the  
instrument before you start the cleaning procedure.  
Cleaning interfaces is difficult as the core diameter of a single-  
mode fiber is only about 9 µm. This generally means you cannot  
see streaks or scratches on the surface. To be certain of the degree  
of pollution on the surface of your interface and to check whether it  
has been removed after cleaning, you need a microscope.  
WARNING  
Never look into an optical output, because this can seriously damage  
your eyesight.  
To assess the projection of the emitted light beam you can use an  
infrared sensor card. Hold the card approximately 5 cm from the  
264  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Cleaning Information  
How to clean instruments with a recessed lens interface  
interface. The invisible emitted light is project onto the card and  
becomes visible as a small circular spot.  
Preferred Procedure  
Use the following procedure on most occasions.  
1. Clean the interface by rubbing a new, dry cotton-swab over the  
surface using a small circular movement.  
2. Blow away any remaining lint with compressed air.  
Procedure for Stubborn Dirt  
Use this procedure particularly when there is greasy dirt on the  
interface:  
1. Moisten a new cotton-swab with isopropyl alcohol.  
2. Clean the interface by rubbing the cotton-swab over the surface  
using a small circular movement.  
3. Take a new, dry soft-tissue and remove the alcohol, dissolved  
sediment and dust, by rubbing gently over the surface using a  
small circular movement.  
4. Blow away any remaining lint with compressed air.  
E.15 How to clean instruments with a recessed  
lens interface  
WARNING  
For instruments with a deeply recessed lens interface (for example the  
Agilent Technologies 81633A and 81634A Power Sensors) do NOT  
follow ths procedure. Alcohol and compressed air could damage your  
lens even further.  
265  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Cleaning Information  
How to clean instruments with a recessed lens interface  
Keep your dust and shutter caps on, when your instrument is not in use.  
This should prevent it from getting too dirty. If you must clean such  
instruments, please refer the instrument to the skilled personnel of  
Agilents service team.  
Preferred Procedure  
Use the following procedure on most occasions.  
1. Blow away any dust or dirt with compressed air. If this is not  
sufficient, then  
2. Clean the interface by rubbing a new, dry cotton-swab over the  
surface using a small circular movement.  
3. Blow away any remaining lint with compressed air.  
Procedure for Stubborn Dirt  
Use this procedure particularly when there is greasy dirt on the  
interface, and using the procedure for light dirt is not sufficient.  
Using isopropyl alcohol should be your last choice for recessed lens  
interfaces because of the difficulty of cleaning out any dirt that is  
washed to the edge of the interface:  
1. Moisten a new cotton-swab with isopropyl alcohol.  
2. Clean the interface by rubbing the cotton-swab over the surface  
using a small circular movement.  
3. Take a new, dry soft-tissue and remove the alcohol, dissolved  
sediment and dust, by rubbing gently over the surface using a  
small circular movement.  
4. Blow away any remaining lint with compressed air.  
266  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Cleaning Information  
How to clean optical devices which are sensitive to mechanical  
stress and pressure  
E.16 How to clean optical devices which are  
sensitive to mechanical stress and pressure  
Some optical devices, such as the Agilent 81000BR Reference  
Reflector, which has a gold plated surface, are very sensitive to  
mechanical stress or pressure. Do not use cotton-swabs, soft-tissues  
or other mechanical cleaning tools, as these can scratch or destroy  
the surface.  
Preferred Procedure  
Use the following procedure on most occasions.  
1. Blow away any dust or dirt with compressed air.  
Procedure for Stubborn Dirt  
To clean devices that are extremely sensitive to mechanical stress or  
pressure you can also use an optical clean polymer film. This  
procedure is time-consuming, but you avoid scratching or  
destroying the surface.  
1. Put the film on the surface and wait at least 30 minutes to make  
sure that the film has had enough time to dry.  
2. Remove the film and any dirt with special adhesive tapes.  
Alternative Procedure  
For these types of optical devices you can often use an ultrasonic  
bath with isopropyl alcohol. Only use the ultrasonic bath if you are  
sure that it wont cause any damage anything to the device.  
1. Put the device into the bath for at least three minutes.  
2. Blow away any remaining liquid with compressed air.  
If there are any streaks or drying stains on the surface, repeat the  
cleaning procedure.  
267  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
Cleaning Information  
How to clean metal filters or attenuator gratings  
E.17 How to clean metal filters or attenuator  
gratings  
This kind of device is extremely fragile. A misalignment of the  
grating leads to inaccurate measurements. Never touch the surface  
of the metal filter or attenuator grating. Be very careful when using  
or cleaning these devices. Do not use cotton-swabs or soft-tissues,  
as there is the danger that you cannot remove the lint and that the  
device will be destroyed by becoming mechanically distorted.  
Preferred Procedure  
Use the following procedure on most occasions.  
1. Use compressed air at a distance and with low pressure to  
remove any dust or lint.  
Procedure for Stubborn Dirt  
Do not use an ultrasonic bath as this can damage your device.  
Use this procedure particularly when there is greasy dirt on the  
device:  
1. Put the optical device into a bath of isopropyl alcohol, and wait  
at least 10 minutes.  
2. Remove the fluid using compressed air at some distance and  
with low pressure. If there are any streaks or drying stains on the  
surface, repeat the whole cleaning procedure.  
E.18 Additional Cleaning Information  
The following cleaning procedures may be used with other optical  
equipment:  
268  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
Cleaning Information  
Additional Cleaning Information  
How to clean bare fiber ends  
How to clean large area lenses and mirrors  
How to clean bare fiber ends  
Bare fiber ends are often used for splices or, together with other  
optical components, to create a parallel beam. The end of a fiber  
can often be scratched. You make a new cleave. To do this:  
1. Strip off the cladding.  
2. Take a new soft-tissue and moisten it with isopropyl alcohol.  
3. Carefully clean the bare fiber with this tissue.  
4. Make your cleave and immediately insert the fiber into your bare  
fiber adapter in order to protect the surface from dirt.  
How to clean large area lenses and mirrors  
Some mirrors, as those from a monochromator, are very soft and  
sensitive. Therefore, never touch them and do not use cleaning  
tools such as compressed air or polymer film.  
Some lenses have special coatings that are sensitive to solvents,  
grease, liquid and mechanical abrasion. Take extra care when  
cleaning lenses with these coatings.  
Lens assemblies consisting of several lenses are not normally  
sealed. Therefore, use as little liquid as possible, as it can get  
between the lenses and in doing so can change the properties of  
projection.  
Preferred Procedure  
Use the following procedure on most occasions.  
269  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Cleaning Information  
Additional Cleaning Information  
1. Blow away any dust or dirt with compressed air.  
Procedure for Stubborn Dirt  
Use this procedure particularly when there is greasy dirt on the  
lens:  
CAUTION  
Only use water if you are sure that your device does not corrode.  
Do not use hot water as this can lead to mechanical stress, which can  
damage your device.  
Make sure that your liquid soap has no abrasive properties or perfume  
in it, because they can scratch and damage your device.  
Do not use normal washing-up liquid as sometimes an iridescent film  
remains.  
1. Moisten the lens or the mirror with water.  
2. Put a little liquid soap on the surface and gently spread the liquid  
over the whole area.  
3. Wash off the emulsion with water, being careful to remove it all,  
as any remaining streaks can impair measurement accuracy.  
4. Take a new, dry soft-tissue and remove the water, by rubbing  
gently over the surface using a small circular movement.  
5. Blow away remaining lint with compressed air.  
Alternative Procedure A  
To clean lenses that are extremely sensitive to mechanical stress or  
pressure you can also use an optical clean polymer film. This  
procedure is time-consuming, but you avoid scratching or  
destroying the surface.  
1. Put the film on the surface and wait at least 30 minutes to make  
sure that the film has had enough time to dry.  
2. Remove the film and any dirt with special adhesive tapes.  
270  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Cleaning Information  
Other Cleaning Hints  
Alternative Procedure B  
If your lens is sensitive to water then:  
1. Moisten the lens or the mirror with isopropyl alcohol.  
2. Take a new, dry soft-tissue and remove the alcohol, dissolved  
sediment and dust, by rubbing gently over the surface using a  
small circular movement.  
3. Blow away remaining lint with compressed air.  
E.19 Other Cleaning Hints  
Selecting the correct cleaning method is an important element in  
maintaining your equipment and saving you time and money. This  
Appendix highlights the main cleaning methods, but cannot address  
every individual circumstance.  
This section contain some additional hints which we hope will help  
you further. For further information, please contact your local  
Agilent Technologies representative.  
Making the connection  
Before you make any connection you must ensure that all lightwave  
cables and connectors are clean. If not, then use appropriate the  
cleaning methods.  
When you insert the ferrule of a patchcord into a connector or an  
adapter, ensure that the fiber end does not touch the outside of the  
mating connector or adapter. Otherwise, the fiber end will rub up  
against something which could scratch it and leave deposits.  
Lens cleaning papers  
Note that some special lens cleaning papers are not suitable for  
cleaning optical devices like connectors, interfaces, lenses, mirrors  
271  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
Cleaning Information  
Other Cleaning Hints  
and so on. To be absolutely certain that a cleaning paper is  
applicable, please ask the salesperson or the manufacturer.  
Immersion oil and other index matching compounds  
Do not use immersion oil or other index matching compounds with  
optical sensors equipped with recessed lenses. They are liable to  
dirty the detector and impair its performance. They may also alter  
the property of depiction of your optical device, thus rendering your  
measurements inaccurate.  
Cleaning the housing and the mainframe  
When cleaning either the mainframe or the housing of your  
instrument, only use a dry and very soft cotton tissue on the  
surfaces and the numeric pad.  
Never open the instruments as they can be damaged. Opening the  
instruments puts you in danger of receiving an electrical shock  
from your device, and renders your warranty void.  
272  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
F
F
Error messages  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Error Messages  
274  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Error Messages  
Display Messages  
F.1 Display Messages  
FAILnnnn  
indicates that the self test has failed. The number nnnn is a four  
digit hexadecimal number that indicates which part of the self test  
has failed.  
Hexadecimal  
Bits  
8
Mnemonics  
Value  
Counter  
010016  
008016  
004016  
002016  
001016  
000816  
000416  
000216  
000116  
7
Analog to Digital Convertor  
General DSP Hardware  
DSP Timeout  
6
5
4
DSP Communications  
Calibration Data  
Keypad  
3
2
1
Battery RAM  
0
Calibration Data Checksum  
So FAIL0010would mean that the DSP (Digital Signal Processor)  
Communications had failed, FAIL0012would mean that the DSP  
Communications had failed, and so had the Battery RAM.  
275  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Error Messages  
GPIB Messages  
F.2 GPIB Messages  
Command Errors  
These are error messages in the range -100 to -199. They indicate  
that a syntax error has been detected by the parser in a command,  
such as incorrect data, incorrect commands, or misspelled or  
mistyped commands.  
A command error is signaled by the command error bit (bit 5) in the  
event status register.  
-100 Command error  
This indicates that the parser has found a command error but cannot  
be more specific.  
-101 Invalid character  
The command contains an invalid or unrecognized character.  
-102 Syntax error  
The command or data could not be recognized.  
-103 Invalid separator  
The parser was expecting a separator (for example, a semicolon (;)  
between commands) but did not find one.  
-104 Data type error  
The parser was expecting one data type, but found another (for  
example, was expecting a string, but received numeric data).  
-105 GET not allowed  
A Group Execute Trigger was received within a program message  
(see IEEE 488.2, 7.7)  
276  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Error Messages  
GPIB Messages  
-108 Parameter not allowed  
More parameters were received for a command than were expected.  
-109 Missing parameter  
Fewer parameters were received than the command requires.  
-110 Command header error  
A command header is the mnemonic part of the command (the part  
not containing parameter information. This error indicates that the  
parser has found an error in the command header but cannot be  
more specific.  
-111 Header separator error  
A character that is not a valid header separator was encountered.  
-112 Program mnemonic too long  
The program mnemonic must be 12 characters or shorter.  
-113 Undefined header  
This header is not defined for use with the instrument.  
-114 Header suffix out of range  
The header contained an invalid character. This message sometimes  
occurs because the parser is trying to interpret a non-header as a  
header.  
-120 Numeric data error  
This error indicates that the parser has found an error in numeric  
data (including nondecimal numeric data) but cannot be more  
specific.  
277  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Error Messages  
GPIB Messages  
-121 Invalid character in number  
An invalid character was found in numeric data (note, this may  
include and alphabetic character in a decimal data, or a "9" in octal  
data).  
-123 Exponent too large  
The exponent must be less than 32000.  
-124 Too many digits  
The mantissa of a decimal number can have a maximum of 255  
digits (leading zeros are not counted).  
-128 Numeric data not allowed  
Another data type was expected for this command.  
-130 Suffix error  
The suffix is the unit, and the unit multiplier for the data. This error  
indicates that the parser has found an error in suffix but cannot be  
more specific.  
-131 Invalid suffix  
The suffix is incorrect or inappropriate.  
-134 Suffix too long  
A suffix can have a maximum of 12 characters.  
-138 Suffix not allowed  
A suffix was found where none is allowed.  
-140 Character data error  
This error indicates that the parser has found an error in character  
data but cannot be more specific.  
278  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Error Messages  
GPIB Messages  
-141 Invalid character data  
The character data is incorrect or inappropriate.  
-144 Character data too long  
Character data can have a maximum of 12 characters.  
-148 Character data not allowed  
Character data was found where none is allowed.  
-150 String data error  
This error indicates that the parser has found an error in string data  
but cannot be more specific.  
-151 Invalid string data  
The string data is incorrect, (for example, an END message was  
received before the terminal quote character).  
-158 String data not allowed  
String data was found where none is allowed.  
-160 Block data error  
This error indicates that the parser has found an error in block data  
but cannot be more specific.  
-161 Invalid block data  
The block data is incorrect (for example, an END message was  
received before the length was satisfied).  
-168 Block data not allowed  
Block data was found where none is allowed.  
279  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Error Messages  
GPIB Messages  
Execution Errors  
These are error messages in the range -200 to -299. They indicate  
that an execution error has been detected by the execution control  
block.  
An execution error is signaled by the execution error bit (bit 4) in  
the event status register.  
-200 Execution error  
This indicates that an execution error has occurred but the control  
block cannot be more specific.  
-201 Invalid while in local  
This command is invalid because it conflicts with the configuration  
under local control.  
-202 Settings lost due to rtl  
A local setting was lost when the instrument was changing from  
remote to local control, or from local to remote control.  
-220 Parameter error  
This indicates that a parameter error has occurred but the control  
block cannot be more specific.  
-221 Settings conflict  
A valid parameter was received, but could not be used during  
execution because of a conflict with the current state of the  
instrument.  
-222 Data out of range  
The data, though valid, was outside the range allowed by the  
instrument.  
280  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Error Messages  
GPIB Messages  
-223 Too much data  
The block, expression, or string data was too long for the  
instrument to handle.  
-224 Illegal parameter value  
One value from a list of possible values was expected. The  
parameter received was not found in the list.  
-240 Hardware error  
Indicates that a command could not be executed due to a hardware  
error but the control block cannot be more specific.  
-241 Hardware missing  
Indicates that a command could not be executed because of missing  
instrument hardware.  
Device-Specific Errors  
These are error messages in the range -300 to -399, or between 1  
and 32767. They indicate that an error has been detected that is  
specific to the operation of the attenuator.  
An device-specific error is signaled by the device-specific error bit  
(bit 3) in the event status register.  
-300 Device-specific error  
This indicates that a device-specific error has occurred. No more  
specific information is available.  
-310 System error  
An instrument system error has occurred.  
-311 Memory error  
A memory error has been detected.  
281  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Error Messages  
GPIB Messages  
-314 Save/recall memory lost  
The nonvolatile data saved by the *SAVcommand has been lost.  
-315 Configuration memory lost  
The nonvolatile configuration data saved by the instrument has  
been lost.  
-330 Self-test failed  
Further information about the self-test failure is available by using  
*TST?.  
-350 Queue overflow  
The error queue has overflown. This error is written to the last  
position in the queue, no further errors are recorded.  
Query Errors  
These are error messages in the range -400 to -499. They indicate  
that an error has been detected by the output queue control.  
An device-specific error is signaled by the query error bit (bit 2) in  
the event status register.  
-300 Query error  
This indicates that a query error has occurred. No more specific  
information is available.  
-410 Query INTERRUPTED  
A condition occurred which interrupted the transmission of the  
response to a query (for example, a query followed by a DAB or a  
GET before the response was completely sent).  
-420 Query UNTERMINATED  
A condition occurred that interrupted the reception of a query (for  
example, the instrument was addressed to talk and an incomplete  
program message was received).  
282  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Error Messages  
GPIB Messages  
-430 Query DEADLOCKED  
A condition causing a deadlocked query has occurred (for example,  
both the input and the output buffer are full and the device cannot  
continue).  
-440 Query UNTERMINATED after indefinite  
response  
Two queries were received in the same message. The error occurs  
on the second query if the first requests an indefinite response, and  
was already executed.  
Instrument Specific Errors  
These are errors with positive error numbers, and are specific to this  
instrument.  
201  
The user calibration is currently on, and calibration data cannot be  
changed. Switch the user calibration state to off (see ) and try again.  
202  
There is no user wavelength calibration data, or the data is invalid.  
203  
Entering the data points cannot be stopped, because it has not been  
started.  
204  
There no more data points to be read.  
283  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Error Messages  
GPIB Messages  
284  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Default .............40,  
108  
Minimum ..........108  
Transferring to ....29, 40  
Capital letters (when pro-  
gramming) ......85  
106  
99, ................101  
Maximum ..........106  
Minimum ..........106  
Resetting ...........39  
Attenuation range ....165  
Attenuation Sweep ...116,  
Case sensitivity .......85  
Common commands .93  
CONDition register ..115  
119  
159, ..............160  
Attenuation sweep ....30, 47  
ATTenuation? .........106  
AUTO ...................49, 54  
Autotransformer ......144  
*SAV ....................100  
*SRE .....................101  
*SRE? ...................102  
*STB? ...................102  
*TST? ...................103  
B
BACK REFL  
Declaration of Conformity  
171  
DEFAULT .............72, 77  
DIS .......................73  
Disabling the Optical Output  
150  
DISPlay .................104,  
Brightness ..........104  
Brightness, Default 104  
Display  
Hardware setup ....59  
Back Reflector ........32, 59  
Back reflector  
Calculation .........60  
Replacing ..........146  
BRIGHT ................71  
BRIGhtness ............104  
A
AC power cable .......144  
AC power requirements 144  
ADDRESS .............67  
ANSI MC 1.1 ..........81  
APMode ................110  
APMode? ...............111  
APOWeron .............114  
APOWeron? ...........114  
ATTenuation ...........106  
Attenuation  
C
Brightness ..........71  
Brightness, Default 71  
Brightness, Resetting 71  
Resolution .........74  
DWELL  
Cable  
GPIB ................157  
Calibration  
Wavelength ........33, 67  
Calibration factor .....29,  
39, ................44,  
107, ..............108  
Automatic sweep ..30,  
Calculation .........29, 38  
Hardware setup ....37, 43  
Attenuation accuracy 165  
48, .....49, 55  
Default .............50  
285  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Repositioning ......33,  
I
34, .....68,  
116, ...118  
Settling .............116,  
118  
Function Test ..........143  
Address .............81  
IEEE 488.1-1987 .....81  
IEEE 488.2-1987 .....81, 93  
IEEE 488-1978 ........81  
Initial Inspection ......143  
Input queue .............83, 98  
Clearing ............84  
INS LOSS ..............60  
Default .............61  
Insertion loss ...........165  
Measuring ..........43  
Inspection  
Initial ...............143  
Institute of Electrical and  
Inc.  
Address .............81  
Interface Adapter .....158,  
160  
Editing  
Non-numeric .......30  
ENABle register ......115,  
122  
117, ..............120  
95, ................122  
275  
Replacing ..........146  
General Purpose Interface  
Bus ................81  
Address .............67, 83  
Capabilities ........82  
Command summary 89  
Default address ....67, 83  
Interface functional subset  
82  
Event Status Enable Register  
96  
Reference works ..81  
Resetting address .67  
GPIB Adapter .........157  
GPIB Cable ............157  
GPIB Connector ......151  
GPIB Interface ........150  
GPIB Logic Levels ...152  
Event Status Enable register  
94, ................95,  
96, ................100  
Event Status Register 94,  
98, ................101,  
102  
H
L
HP-IB  
Address .............99  
Humidity  
Excess loss .............165  
LAMBDCAL ..........34,  
68, ................107  
Default .............68  
F
Operating ..........148  
Resetting ...........68  
LAST ....................72, 73  
LCMode ................107  
LCMode? ...............107  
Filter  
Fixed ................33,  
34, .....68  
286  
Download from Www.Somanuals.com. All Manuals Search And Download.  
P
P ON SET ..............72  
Default .............72  
Resetting ...........72  
POWer? .................113  
Power-on ...............144  
Power-on Setting .....72  
O
M
OFFSet? .................108  
OPERation .............116,  
Maintenance ...........143  
Manufacturer ..........97  
95, ................101,  
102  
Message available ....84  
Message exchange ...83  
Reception ..........83  
Input ................84, 85  
Output ..............84  
Messages  
Long form ..........85  
Short form .........85  
Model number .........97  
Modify keys ............29  
Monitor Output  
Operation ...............143  
Operation status .......101,  
Condition register .116  
Enable register ....117  
Event register ......117  
Negative transition register  
118, ...119  
Option ...................157  
201 ..................59  
Query ...............98  
OUTPut .................110,  
111, ..............112,  
113, ..............114  
Output queue ..........84,  
98, ................99,  
103  
Coupling ratio .....37, 47  
message) .........85  
General .............85  
Protective earth symbol 143  
PTRansition ............118,  
121  
PTRansition register .115,  
122  
PTRansition? ..........119,  
121  
N
Node (STATus) .......114  
NORMAL ..............72  
Notices ..................2  
NTRansition ...........118,  
120  
NTRansition register 115,  
122  
Q
QUEStionable .........119,  
120, ..............121  
287  
Download from Www.Somanuals.com. All Manuals Search And Download.  
STARt? ..................125  
OUTPut .................113,  
102, ..............114,  
115, ..............122  
Condition register .119  
Enable register ....119,  
120  
Serial number ..........97  
Service Request .......94  
Service Request Enable 94  
Event register ......120  
Negative transition register  
Positive transition register  
121  
Setting ...................99  
Contents ............77,  
100  
R
Default .............77, 99  
Recalling ...........77, 99  
100  
Status Byte .............94,  
Status byte ..............84  
STEP  
Repeatability ...........166  
Request Service .......94  
Resetting the instrument 54,  
Settling time  
Filter ................48  
Short form ..............85  
Default .............73  
Resetting ...........73  
Power-on ...........73,  
114  
Return loss .............166  
Calculation .........32  
Automatic sweep ..30,  
Default .............50, 53  
Manual sweep .....31,  
51, .....52  
RL INPUT ..............60  
Default .............61  
Automatic sweep ..30,  
48, .....49  
Default .............73  
Resetting ...........73  
Specifications ..........165  
SRQ ......................94  
Standard Commands for Pro-  
grammable Instruments  
81  
Resetting ...........61  
RQS ......................94,  
101, ..............102  
Default .............50, 53  
Manual sweep .....31,  
51, .....52  
S
Resetting ...........50, 53  
SWP  
Hardware setup ....47  
Syntax ...................86  
SYSTem ................122  
Safety ....................143  
Safety class .............143  
SCPI .....................81  
Long form ..........85  
START  
Automatic sweep ..30,  
48, .....49, 54  
Default .............50, 53  
Manual sweep .....31,  
Reference works ..81  
288  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Temperature considerations  
69  
User .................34,  
67, .....69  
Temperature  
Operating ..........148  
Storing ..............148  
Temperature variation 116,  
118  
VALue ..................126  
The .......................60  
Through power ........112,  
113  
Default .............113  
Maximum ..........113  
Minimum ..........113  
Through power mode 33,  
70, ................110,  
111  
THRUPOWR ..........33,  
Resetting ...........71  
Setting up ..........33, 70  
WAVelength ...........109  
Wavelength ............33,  
Default .............41,  
110  
Minimum ..........109,  
110  
Resetting ...........41  
Wavelength calibration data  
Invalid ..............119,  
120  
User .................123  
Wavelength range ....166  
WAVelength? .........110  
U
U/L-CAL ...............68, 69  
UCALibration .........124,  
125, ..............126,  
127  
Units  
Mnemonics ........89  
Programming ......85, 89  
USERCAL .............34, 69  
Default .............69  
Factory .............34, 67  
Resetting ...........69  
289  
Download from Www.Somanuals.com. All Manuals Search And Download.  

Acroprint Time Clock ATR 120 User Manual
Adder Technology Switch AV4DVI User Manual
Addlogix TV Converter Box HKDW 702 User Manual
Addonics Technologies Computer Drive HDU11SITDR User Manual
Advantech Computer Hardware PCM 9588 User Manual
AEG Double Oven D4100 1 User Manual
Aiphone Wheelchair GTW LC User Manual
AOC Flat Panel Television L22W898 User Manual
Apple Network Card PCI or AGP Card User Manual
Baldor Microwave Oven MN781 SUP User Manual