Agilent Technologies Oven E1441A User Manual

Agilent 75000 Series C  
Agilent E1441A  
Function/Arbitrary Waveform Generator  
User/Service and SCPI Programming Manual  
Where to Find it - Online and Printed Information:  
System installation (hardware/software) ............VXIbus Configuration Guide*  
Agilent VIC (VXI installation software)*  
Module configuration and wiring .......................This Manual  
SCPI programming .............................................This Manual  
SCPI example programs .....................................This Manual, Driver Disk  
SCPI command reference ..................................This Manual  
Register-Based Programming.............................This Manual  
VXIplug&play programming ............................VXIplug&play Online Help  
VXIplug&play example programs .....................VXIplug&play Online Help  
VXIplug&play function reference......................VXIplug&play Online Help  
Soft Front Panel information ..............................VXIplug&play Online Help  
VISA language information................................Agilent VISA User's Guide  
Agilent VEE programming information.............Agilent VEE User's Manual  
*Supplied with Agilent Command Modules, Embedded Controllers, and VXLink.  
*E1441-90003*  
Manual Part Number: E1441-90003  
Printed in Malaysia E0406  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Contents  
Agilent E1441A Function/Arbitrary Waveform Generator User’s Manual  
Edition 3  
AGILENT WARRANTY STATEMENT .................................................................... 7  
Safety Symbols ............................................................................................................. 8  
WARNINGS................................................................................................................. 8  
Declaration of Conformity............................................................................................ 9  
User Notes..............................................................................................................10-12  
Chapter 1  
Agilent E1441A Function/Arbitrary Waveform Generator Module Setup ........... 13  
General Information.................................................................................................... 13  
Setting the Module Address Switch............................................................................ 14  
Interrupt Priority ......................................................................................................... 15  
Installing into the Mainframe ..................................................................................... 15  
Faceplate Indicators and Connectors .......................................................................... 16  
Initial Operation.......................................................................................................... 17  
Example Programs .............................................................................................. 18  
Chapter 2  
Agilent E1441A Application Information ................................................................. 19  
Functional Capabilities ............................................................................................... 19  
Output Configuration .......................................................................................... 19  
Amplitude Modulation (AM) .............................................................................. 28  
Frequency Modulation (FM) ............................................................................... 30  
FM Carrier Waveform Shape .............................................................................. 31  
Burst Modulation ................................................................................................. 33  
Frequency-Shift Keying (FSK) Modulation ....................................................... 40  
Frequency Sweep ................................................................................................ 43  
Arbitrary Waveforms .......................................................................................... 46  
Built-In Arbitrary Waveforms ............................................................................. 48  
Phase-Lock Capabilities (Opt 001) ..................................................................... 49  
Triggering the Function Generator ...................................................................... 52  
System-Related Operations......................................................................................... 55  
Error Conditions .................................................................................................. 55  
Self-Test .............................................................................................................. 55  
Memory Locations .............................................................................................. 56  
Firmware Revision Query ................................................................................... 56  
SCPI Language Version Query ........................................................................... 56  
Power-On and Reset State ................................................................................... 57  
Application Program Examples .................................................................................. 58  
C Language Programs ......................................................................................... 58  
Compiling and Linking a C Program .................................................................. 58  
Example Programs .............................................................................................. 58  
Contents  
3
Download from Www.Somanuals.com. All Manuals Search And Download.  
Chapter 3  
Agilent E1441A SCPI Command Reference ............................................................. 65  
CALibration................................................................................................................ 73  
DATA ......................................................................................................................... 77  
FORMat ...................................................................................................................... 84  
MEMory...................................................................................................................... 85  
OUTPut....................................................................................................................... 87  
PHASe ........................................................................................................................ 90  
[SOURce:] .................................................................................................................. 92  
APPLy Commands ..................................................................................................... 96  
FM COMMANDS .................................................................................................... 104  
Frequency-Shift Keying (FSK) Commands ............................................................. 108  
Selecting an Arbitrary Waveform............................................................................. 110  
STATus..................................................................................................................... 117  
SYSTem.................................................................................................................... 120  
TRIGger .................................................................................................................... 121  
IEEE 488.2Common CommandReference .............................................................. 124  
Agilent E1441A Power-On and Reset State ............................................................. 130  
SCPI Command Quick Reference ............................................................................ 131  
Appendix A  
Agilent E1441A Specifications .................................................................................. 135  
Appendix B  
Agilent E1441A Error Messages .............................................................................. 141  
Execution Errors ....................................................................................................... 141  
Self-Test Errors......................................................................................................... 147  
Calibration Errors ..................................................................................................... 147  
Arbitrary Waveform Errors ...................................................................................... 149  
Option 001 Phase-Lock Errors ................................................................................. 151  
Appendix C  
Agilent E1441A Function Generator Tutorial ........................................................ 153  
Direct Digital Synthesis............................................................................................ 153  
Signal Imperfections................................................................................................. 155  
Output Amplitude Control........................................................................................ 156  
Floating Signal Generators ....................................................................................... 157  
Attributes of AC Signals........................................................................................... 157  
Modulation................................................................................................................ 158  
Appendix D  
Service Procedures ..................................................................................................... 163  
Closed-Case Electronic Calibration.......................................................................... 164  
Agilent Technologies Calibration Services .............................................................. 164  
Calibration Interval................................................................................................... 164  
Time Required for Calibration.................................................................................. 164  
Automated Verification and Calibration Procedures................................................ 164  
Recommended Test Equipment ................................................................................ 165  
4
Contents  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Test Considerations................................................................................................... 165  
Performance Verification Tests ................................................................................ 166  
Self-Test ............................................................................................................ 166  
Quick Performance Check ................................................................................ 167  
Performance Verification Tests ......................................................................... 167  
Frequency Verification ............................................................................................. 167  
Function Gain and Linearity Verification................................................................. 168  
DC Function Offset Verification .............................................................................. 168  
AC Amplitude Verification ...................................................................................... 169  
Amplitude Flatness Verification............................................................................... 171  
AM Modulation Depth Verification ......................................................................... 172  
Optional Performance Verification Tests ................................................................. 172  
Square Wave Duty Cycle Verification .............................................................. 172  
Distortion Verification ...................................................................................... 173  
Calibration Security Code......................................................................................... 174  
Unsecuring the Function Generator (Lost Security Code) ................................ 175  
Calibration Count...................................................................................................... 176  
Calibration Message ................................................................................................. 176  
General Calibration/Adjustment Procedure.............................................................. 177  
Aborting a Calibration in Progress ........................................................................... 178  
Frequency and Burst Rate Adjustment ..................................................................... 178  
Function Gain and Linearity Adjustment ................................................................. 179  
AC Amplitude Adjustment (High-Z)........................................................................ 180  
Modulation Adjustment ............................................................................................ 181  
AC Amplitude Adjustment (50 Ohms)..................................................................... 182  
DC Output Adjustment ............................................................................................. 184  
Duty Cycle Adjustment ............................................................................................ 185  
AC Amplitude Flatness Adjustment......................................................................... 185  
Error Messages ......................................................................................................... 188  
Performance Test Record.......................................................................................... 190  
Test Limits ......................................................................................................... 190  
Measurement Uncertainty ................................................................................. 190  
Test Accuracy Ratio (TAR) .............................................................................. 190  
Index .............................................................................................................................. 199  
Contents  
5
Download from Www.Somanuals.com. All Manuals Search And Download.  
6
Contents  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Certification  
Agilent Technologies, Inc. certifies that this product met its published specifications at the time of shipment from the factory. Agilent  
Technologies further certifies that its calibration measurements are traceable to the United States National Institute of Standards and  
Technology (formerly National Bureau of Standards), to the extent allowed by that organization's calibration facility, and to the  
calibration facilities of other International Standards Organization members.  
AGILENT TECHNOLOGIES WARRANTY STATEMENT  
PRODUCT: E1441A  
DURATION OF WARRANTY: 1 year  
1. Agilent warrants Agilent hardware, accessories and supplies against defects in materials and workmanship for the period specified  
above. If Aglent receives notice of such defects during the warranty period, Agilent will, at its option, either repair or replace products  
which prove to be defective. Replacement products may be either new or like-new.  
2. Agilent warrants that Agilent software will not fail to execute its programming instructions, for the period specified above, due to  
defects in material and workmanship when properly installed and used. If Agilent receives notice of such defects during the warranty  
period, Agilent will replace software media which does not execute its programming instructions due to such defects.  
3. Agilent does not warrant that the operation of Agilent products will be interrupted or error free. If Agilent is unable, within a reasonable  
time, to repair or replace any product to a condition as warranted, customer will be entitled to a refund of the purchase price upon prompt  
return of the product.  
4. Agilent products may contain remanufactured parts equivalent to new in performance or may have been subject to incidental use.  
5. The warranty period begins on the date of delivery or on the date of installation if installed by Agilent. If customer schedules or delays  
Agilent installation more than 30 days after delivery, warranty begins on the 31st day from delivery.  
6. Warranty does not apply to defects resulting from (a) improper or inadequate maintenance or calibration, (b) software, interfacing, parts  
or supplies not supplied by Agilent Technologies, (c) unauthorized modification or misuse, (d) operation outside of the published  
environmental specifications for the product, or (e) improper site preparation or maintenance.  
7. TO THE EXTENT ALLOWED BY LOCAL LAW, THE ABOVE WARRANTIES ARE EXCLUSIVE AND NO OTHER  
WARRANTY OR CONDITION, WHETHER WRITTEN OR ORAL, IS EXPRESSED OR IMPLIED AND AGILENT  
SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTY OR CONDITIONS OF MERCHANTABILITY, SATISFACTORY  
QUALITY, AND FITNESS FOR A PARTICULAR PURPOSE.  
8. Agilent will be liable for damage to tangible property per incident up to the greater of $300,000 or the actual amount paid for the product  
that is the subject of the claim, and for damages for bodily injury or death, to the extent that all such damages are determined by a court  
of competent jurisdiction to have been directly caused by a defective Agilent product.  
9. TO THE EXTENT ALLOWED BY LOCAL LAW, THE REMEDIES IN THIS WARRANTY STATEMENT ARE CUSTOMER’S  
SOLE AND EXLUSIVE REMEDIES. EXCEPT AS INDICATED ABOVE, IN NO EVENT WILL AGILENT OR ITS SUPPLIERS BE  
LIABLE FOR LOSS OF DATA OR FOR DIRECT, SPECIAL, INCIDENTAL, CONSEQUENTIAL (INCLUDING LOST PROFIT OR  
DATA), OR OTHER DAMAGE, WHETHER BASED IN CONTRACT, TORT, OR OTHERWISE.  
FOR CONSUMER TRANSACTIONS IN AUSTRALIA AND NEW ZEALAND: THE WARRANTY TERMS CONTAINED IN THIS  
STATEMENT, EXCEPT TO THE EXTENT LAWFULLY PERMITTED, DO NOT EXCLUDE, RESTRICT OR MODIFY AND ARE  
IN ADDITION TO THE MANDATORY STATUTORY RIGHTS APPLICABLE TO THE SALE OF THIS PRODUCT TO YOU.  
U.S. Government Restricted Rights  
The Software and Documentation have been developed entirely at private expense. They are delivered and licensed as "commercial  
computer software" as defined in DFARS 252.227- 7013 (Oct 1988), DFARS 252.211-7015 (May 1991) or DFARS 252.227-7014 (Jun  
1995), as a "commercial item" as defined in FAR 2.101(a), or as "Restricted computer software" as defined in FAR 52.227-19 (Jun  
1987)(or any equivalent agency regulation or contract clause), whichever is applicable. You have only those rights provided for such  
Software and Documentation by the applicable FAR or DFARS clause or the Agilent standard software agreement for the product  
involved.  
IEC Measurement Category II Overvoltage Protection  
This is a measurement Category II product designed for measurements at voltages up to 300V from earth, including measurements of  
voltages at typical mains socket outlets. The product should not be used to make voltage measurements on a fixed electrical installation  
including building wiring, circuit breakers, or service panels.  
E1441A Function/Arbitrary Waveform Generator User / Service and SCPI Programming Manual  
Edition 3 Rev 2  
Copyright © 1999-2006 Agilent Technologies, Inc. All Rights Reserved.  
7
Download from Www.Somanuals.com. All Manuals Search And Download.  
Documentation History  
All Editions and Updates of this manual and their creation date are listed below. The first Edition of the manual is Edition 1. The Edition  
number increments by 1 whenever the manual is revised. Updates, which are issued between Editions, contain replacement pages to  
correct or add additional information to the current Edition of the manual. Whenever a new Edition is created, it will contain all of the  
Update information for the previous Edition. Each new Edition or Update also includes a revised copy of this documentation history page.  
Edition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . October 1997  
Edition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . November 1997  
Edition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . January 1999  
Edition 3 Rev 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . April 2006  
Trademarks  
Microsoft® is a U.S. registered trademark of Microsoft Corporation  
Windows NT® is a U.S. registered trademark of Microsoft Corporation  
Windows® and MS Windows® are U.S. registered trademarks of Microsoft Corporation  
Safety Symbols  
Instruction manual symbol affixed to  
product. Indicates that the user must refer to  
Alternating current (AC)  
the manual for specific WARNING or  
CAUTION information to avoid personal  
injury or damage to the product.  
Direct current (DC).  
Indicates hazardous voltages.  
Indicates the field wiring terminal that must  
be connected to earth ground before  
operating the equipment—protects against  
electrical shock in case of fault.  
Calls attention to a procedure, practice, or  
condition that could cause bodily injury or  
death.  
WARNING  
CAUTION  
Calls attention to a procedure, practice, or  
conditionthat could possibly cause damage to  
equipment or permanent loss of data.  
Frame or chassis ground terminal—typically  
connects to the equipment's metal frame.  
or  
WARNINGS  
The following general safety precautions must be observed during all phases of operation, service, and repair of this product. Failure to  
comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and  
intended use of the product. Agilent Technologies, Inc. assumes no liability for the customer's failure to comply with these requirements.  
Ground the equipment: For Safety Class 1 equipment (equipment having a protective earth terminal), an uninterruptible safety earth  
ground must be provided from the mains power source to the product input wiring terminals or supplied power cable.  
DO NOT operate the product in an explosive atmosphere or in the presence of flammable gases or fumes.  
For continued protection against fire, replace the line fuse(s) only with fuse(s) of the same voltage and current rating and type. DO NOT  
use repaired fuses or short-circuited fuse holders.  
Keep away from live circuits: Operating personnel must not remove equipment covers or shields. Procedures involving the removal of  
covers or shields are for use by service-trained personnel only. Under certain conditions, dangerous voltages may exist even with the  
equipment switched off. To avoid dangerous electrical shock, DO NOT perform procedures involving cover or shield removal unless you  
are qualified to do so.  
DO NOT operate damaged equipment: Whenever it is possible that the safety protection features built into this product have been  
impaired, either through physical damage, excessive moisture, or any other reason, REMOVE POWER and do not use the product until  
safe operation can be verified by service-trained personnel. If necessary, return the product to an Agilent Technologies Sales and Service  
Office for service and repair to ensure that safety features are maintained.  
DO NOT service or adjust alone: Do not attempt internal service or adjustment unless another person, capable of rendering first aid and  
resuscitation, is present.  
DO NOT substitute parts or modify equipment: Because of the danger of introducing additional hazards, do not install substitute parts  
or perform any unauthorized modification to the product. Return the product to an Agilent Technologies Sales and Service Office for  
service and repair to ensure that safety features are maintained.  
8
Download from Www.Somanuals.com. All Manuals Search And Download.  
DECLARATION OF CONFORMITY  
According to ISO/IEC Guide 22 and CEN/CENELEC EN 45014  
Manufacturer’s Name:  
Manufacturer’s Address:  
Agilent Technologies, Incorporated  
Measurement Product Generation Unit  
815 14th ST. S.W.  
Loveland, CO 80537 USA  
Declares, that the product  
Product Name:  
Model Number:  
Product Options:  
Arbitrary Waveform Generator  
E1441A  
This declaration covers all options of the above product(s).  
Conforms with the following European Directives:  
The product herewith complies with the requirements of the Low Voltage Directive 73/23/EEC and the EMC Directive 89/336/EEC  
and carries the CE Marking accordingly  
Conforms with the following product standards:  
EMC  
Standard  
Limit  
IEC 61326-1:1997+A1:1998 / EN 61326-1:1997+A1:1998  
CISPR 11:1997 +A1:1997 / EN 55011:1998  
IEC 61000-4-2:1995+A1:1998 / EN 61000-4-2:1995  
IEC 61000-4-3:1995 / EN 61000-4-3:1995  
IEC 61000-4-4:1995 / EN 61000-4-4:1995  
IEC 61000-4-5:1995 / EN 61000-4-5:1995  
IEC 61000-4-6:1996 / EN 61000-4-6:1996  
IEC 61000-4-11:1994 / EN 61000-4-11:1994  
Group 1 Class A [1]  
4kV CD, 8kV AD  
3 V/m, 80-1000 MHz  
0.5kV signal lines, 1kV power lines  
0.5 kV line-line, 1 kV line-ground  
3V, 0.15-80 MHz  
I cycle, 100%  
Canada: ICES-001:1998  
Australia/New Zealand: AS/NZS 2064.1  
IEC 61010-1:1990+A1:1992+A2:1995 / EN 61010-1:1993+A2:1995  
Canada: CSA C22.2 No. 1010.1:1992  
UL 3111-1:1994  
Safety  
Supplemental Information:  
[1] The product was tested in a typical configuration with Agilent Technologies test systems.  
September 5, 2000  
Date  
Name  
Quality Manager  
Title  
For further information, please contact your local Agilent Technologies sales office, agent or distributor.  
Authorized EU-representative: Agilent Technologies Deutschland GmbH, Herrenberger Strabe 130, D 71034 Böblingen, Germany  
9
Download from Www.Somanuals.com. All Manuals Search And Download.  
Notes:  
10  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Notes:  
11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Notes:  
12  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Chapter 1  
Agilent E1441A  
Function/Arbitrary Waveform Generator  
Module Setup  
General Information  
This chapter provides general module information followed by the tasks you  
must perform to set up your module and verify your installation was  
successful. Chapter contents are:  
Setting the Module Address Switch . . . . . . . . . . . . . . . . . . . . page 14  
Interrupt Priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 15  
Installing into the Mainframe . . . . . . . . . . . . . . . . . . . . . . . . . page 15  
Faceplate Indicators and Connectors . . . . . . . . . . . . . . . . . . . page 16  
Initial Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 17  
The Agilent E1441A Function Generator and Arbitrary Waveform  
Generator (FUNC/ARB WAVEFORM GEN) is a VXIbus C-size  
message-based slave device.  
Programming the Agilent E1441A can either be through a command  
module using an GPIB interface or an embedded controller. In either  
case you can use the Standard Commands for Programmable  
Instruments (SCPI; See “Agilent E1441A SCPI Command Reference”  
on page 65.) with the Standard Instrument Control Language (SICL).  
A VXIplug&play driver is supplied on a CD Rom with the Agilent  
E1441A. All documentation for the use of this driver is contained  
on-line.  
Option 001 provides a ±1 ppm timebase which gives 10 times the  
frequency stability of the standard timebase. It also provides you the  
ability to control phase offset.  
Agilent E1441A Function/Arbitrary Waveform Generator Module Setup  
13  
Chapter 1  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Setting the Module Address Switch  
The logical address switch factory setting is 80. Valid addresses are from 1  
to 254 for static configuration (the address you set on the switch) and  
address 255 for dynamic configuration. The Agilent E1441A supports  
dynamic configuration of the address. This means the address is set  
program- matically by the resource manager when it encounters a module  
with address 255 that supports dynamic configuration.  
If you install more than one Function Generator, each module must have a  
different logical address. If you use a VXIbus command module, the logical  
address must be a multiple of eight (e.g., 80, 88, 96, etc.) Each instrument  
must have a unique secondary address which is the logical address divided  
by eight.  
Note When using an Agilent E1405A/B or E1406A as the VXIbus resource  
manager with SCPI commands, the Function Generator's address switch  
value must be a multiple of 8.  
Figure 1-1. Setting the Logical Address  
14 Agilent E1441A Function/Arbitrary Waveform Generator Module Setup  
Chapter 1  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Interrupt Priority  
The Agilent E1441A Function Generator / Arbitrary Waveform Generator  
is a VXIbus interrupter. However, there is no interrupt priority level setting  
to be made on the module. Interrupt priority level, setup and activation are  
configured on the resource manager. For example, you configure the  
interrupt priority on the Agilent E1405B and E1406A Command Modules  
using the DIAGnostic:INTerrupt command subsystem. Refer to your  
resource manager's documentation for information on setting your system's  
interrupt priority.  
Installing into the Mainframe  
The Agilent E1441A should always be installed to the right of an existing  
VXIbus module with no empty slots between them. The soft black gasket on  
the Agilent E1441A’s left panel must contact an adjacent module in order to  
provide the module’s specified Electromagnetic Compatibility (EMC).  
WARNING To prevent electical shock in the case of equipment or field  
wiring failure, tighten the faceplate (module retaining) screws.  
Agilent E1441A Function/Arbitrary Waveform Generator Module Setup  
15  
Chapter 1  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Faceplate Indicators and Connectors  
Faceplate Indicators  
"Failed" turns on momentarily during the function generator's power-on  
self-test. If the function generator successfully establishes internal  
communication, the indicator turns off. If the function generator fails to  
establish internal communication, the indicator remains on.  
"Access" turns on only when the resource manager is communicating with the  
function generator.  
"Errors" turns on only when an error is present in the function generator's  
error queue. The error can result from improperly executing a command or the  
function generator being unable to pass a part of self-test or calibration. Use  
the SYST:ERR? command repeatedly to clear the error queue. A response of  
+0,"No error" indicates the error queue is empty. See Appendix B, Agilent  
E1441A Function Generator Error Messages, for a list of all errors.  
"Overload" turns on when the function generator senses a signal applied to the  
output terminal that exceeds the present output level. The output terminal is  
disconnected while the "Overload" light is on.  
Option 001 Phase-Lock 10 MHz Reference Terminals  
These connectors allow synchronization between multiple Agilent E1441As  
or to an external 10 MHz clock signal. Additionally, option 001 allows phase  
offset control.  
Standard Input/Output Terminals  
The function generator's faceplate contains the following terminals:  
1. External Trigger/FSK/Burst modulation input terminal  
2. Sync signal output terminal for all standard output functions  
3. AM Modulation input terminal  
4. Output terminal  
Note The outer shell of the "Ext Trig/FSK/Burst" BNC connector is  
connected to chassis. All other BNC connectors are floating.  
Figure 1-2. Function Generator Terminals  
16 Agilent E1441A Function/Arbitrary Waveform Generator Module Setup  
Chapter 1  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Initial Operation  
To program the Function Generator using SCPI, you must select the  
interface address and SCPI commands to be used. Guidelines to select SCPI  
commands for the Function Generator follow. See the Agilent 75000 Series  
C Installation and Getting Started Guide for interface addressing.  
Note This discussion applies only to SCPI (Standard Commands for  
Programmable Instruments) programming. The program is written using  
Agilent VISA function calls. Agilent VISA allows you to execute on  
VXIplug&play system frameworks that have the VISA I/O layer installed  
(visa.h include file).  
Programming the Example: Perform a Function Generator Self-Test and Read the Result.  
Function Generator  
Programming the Function Generator using Standard Commands for  
Programmable Instruments (SCPI) requires that you select the controller  
language (e.g., C, C++, Basic, etc.), interface address and SCPI commands  
to be used. See the "C-Size Installation and Getting Started Guide" (or  
equivalent) for interfacing, addressing and controller information.  
The following C program verifies communication between the controller,  
mainframe and Function Generator. It resets the module (*RST), queries the  
identity of the module (*IDN?) and initiates a self-test of the Function  
Generator. See the program 1441init.c on the Instrument Drivers CD.  
#include <stdio.h>  
#include <visa.h>  
/*** FUNCTION PROTOTYPE ***/  
void err_handler (ViSession vi, ViStatus x);  
#define DEVICE_ADDRESS "GPIB0::9::10::INSTR"  
void main(void)  
{
char buf[512] = {0};  
#if defined(_BORLANDC_) && !defined(_WIN32_)  
_InitEasyWin();  
#endif  
ViStatus err;  
ViSession defaultRM, funcgen;  
/* Open resource manager and Function Generator sessions*/  
viOpenDefaultRM (&defaultRM);  
viOpen(defaultRM, DEVICE_ADDRESS,VI_NULL, VI_NULL, &funcgen);  
/* Set the timeout value to 10 seconds. */  
viSetAttribute(funcgen, VI_ATTR_TMO_VALUE, 10000);  
Agilent E1441A Function/Arbitrary Waveform Generator Module Setup  
17  
Chapter 1  
Download from Www.Somanuals.com. All Manuals Search And Download.  
/* Reset the module, and clear status regs. */  
err=viPrintf(funcgen, "*RST;*CLS\n");  
if(err != VI_SUCCESS) err_handler(funcgen, err);  
/* Query the module identification. */  
err=viPrintf(funcgen, "*IDN?\n");  
if(err != VI_SUCCESS) err_handler(funcgen, err);  
err=viScanf(funcgen, "%t", &buf);  
if(err != VI_SUCCESS) err_handler(funcgen, err);  
printf("Module ID = %s\n\n", buf);  
/* Perform a module self-test. */  
err=viQueryf(funcgen, "*TST?\n", "%t", &buf);  
if(err != VI_SUCCESS) err_handler(funcgen, err);  
printf("Self-test response (0 passed) = %s\n\n", buf);  
/* Check for system errors. */  
err=viQueryf(funcgen, "syst:err?\n", "%t", buf);  
if(err != VI_SUCCESS) err_handler(funcgen, err);  
printf("System error response = %s\n\n", buf);  
/* Close Instrument Session */  
err=viClose(funcgen);  
if(err != VI_SUCCESS) err_handler(funcgen, err);  
} /* end of main */  
/*** Error handling function ***/  
void err_handler(ViSession funcgen, ViStatus err)  
{
char buf[1024] = {0};  
viStatusDesc(funcgen, err, buf);  
printf("ERROR = %s\n", buf);  
return;  
}
Example Programs Several example programs, including a performance verification program  
and an adjustment program, can be found on the Agilent Universal  
Instrument Drivers CD. The directory path is <drive>:\examples\hpe1441.  
18 Agilent E1441A Function/Arbitrary Waveform Generator Module Setup  
Chapter 1  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Chapter 2  
Agilent E1441A Application Information  
This chapter provides information for using the Agilent E1441A Function /  
Arbitrary Waveform Generator in seven parts:  
Functional Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 19  
Phase-Lock Capabilities (Opt 001). . . . . . . . . . . . . . . . . . . . . page 49  
Triggering the Function Generator . . . . . . . . . . . . . . . . . . . . . page 52  
System-Related Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . page 55  
Power-On and Reset State. . . . . . . . . . . . . . . . . . . . . . . . . . . . page 57  
Application Program Examples . . . . . . . . . . . . . . . . . . . . . . . page 58  
Functional Capabilities  
This section provides detailed information about the functional capabilities  
of the function generator. This section is divided into the following topics:  
“Output Configuration” on page 19  
“Amplitude Modulation (AM)” on page 28  
“Frequency Modulation (FM)” on page 30  
“Burst Modulation” on page 33  
“Frequency-Shift Keying (FSK) Modulation” on page 40  
“Frequency Sweep” on page 43  
“Arbitrary Waveforms” on page 46  
See also“Command Index by Function” on page 65.  
Chapter 3, Agilent E1441A SCPI Command Reference, lists the syntax for  
the SCPI commands available to program the function generator.  
Throughout this manual, the following conventions are used for  
SCPI command syntax for remote interface programming.  
Square brackets ( [ ] ) indicate optional keywords or parameters.  
Triangle brackets ( < > ) indicate that you must substitute a value for the  
enclosed parameter.  
A vertical bar ( | ) separates multiple parameter choices.  
Output This section contains information to help you configure the function  
generator for outputting waveforms. You may never have to change some of  
the parameters discussed here, but they are provided to give you the  
Configuration  
flexibility you might need. Topics covered on output configuration are:  
Agilent E1441A Application Information  
19  
Chapter 2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Output Function  
Output Frequency  
Output Amplitude  
DC Offset Voltage  
Output Units  
Duty Cycle  
Output Termination  
SYNC Signal  
Instrument Storage State  
Note The Agilent E1441A functions do not all have the same maximum limit for  
frequency and amplitude. Therefore, when changing functions, you can  
generate a "Settings conflict" error when the new function's frequency or  
amplitude has a maximum value less than the current output setting. The  
function generator automatically adjusts to the maximum value of the  
function you specify and generates the new output signal.  
Output Function The function generator can output five standard waveforms including sine,  
square, triangle, ramp, and noise. You can also select one of five predefined  
arbitrary waveforms or download your own custom waveforms. You can  
internally modulate any of the standard waveforms (including arbitrary)  
using AM, FM, FSK, or burst modulation. Linear or logarithmic frequency  
sweeping is available for any of the standard waveforms (except noise) and  
arbitrary waveforms. The default function is sine wave.  
Possible Conflict with Output Frequency: The output frequency is  
automatically adjusted if you select a function whose maximum frequency  
is less than that of the currently active function. For example, if you output  
a 1 MHz sine wave and then change the function to triangle wave, the  
function generator will adjust the output to 100 kHz (the upper limit for  
triangle waves). See Table 2-1. A -221, “Settings conflict” error is  
generated and the frequency is adjusted.  
Possible Conflict with Output Amplitude: The output amplitude is  
automatically adjusted if you select a function whose maximum amplitude  
is less than that of the currently active function. This conflict may arise when  
the output units are Vrms or dBm due to the differences in crest factor for the  
output functions. For example, if you output a 5 Vrms square wave (into 50  
ohms) and then change the function to sine wave, the function generator will  
adjust the output amplitude to 3.535 Vrms (the upper limit for sine waves in  
Vrms). See Table 2-4. A -221, “Settings conflict” error is generated and the  
amplitude is adjusted.  
Valid Function/ Modulation Modes  
The following matrix shows which output functions are allowed with each  
modulation mode. Each “X” indicates a valid combination. If you change to  
a function that is not allowed with the selected modulation, the modulation  
mode is turned off  
20 Agilent E1441A Application Information  
Chapter 2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
.
Table 2-1.  
Sine Square Triangle Ramp Noise Arb  
AM Carrier  
AM Modulating Wave  
FM Carrier  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
FM Modulating Wave  
FSK Modulation  
Burst Modulation  
Frequency Sweep  
Use the following command to select the output function:  
FUNCtion:SHAPe SIN|SQU|TRI|RAMP|NOIS|USER|DC  
You can also use the APPLycommand to select the function, frequency,  
amplitude, and offset with a single command. Because the APPLy command  
also changes duty cycle, modulation type, trigger source, and trigger slope,  
you must place the APPLy command first in any sequence of configuration  
commands.  
Output Frequency As shown below, the output frequency range depends on the function  
currently selected. The table shows functions in decending order of the  
maximum frequency. The default frequency is 1 kHz for all functions.  
Table 2-2.  
Parameter Parameter  
Minimum  
Frequency Frequency  
Maximum  
Default  
Units  
Name  
Type  
Function  
Sine  
frequency  
numeric  
100 µHz  
100 µHz  
100 µHz  
100 µHz  
100 µHz  
15 MHz  
15 MHz  
5 MHz  
Hz  
Hz  
Hz  
Hz  
Hz  
Square  
Built-In Arbs  
Ramp  
100 kHz  
100 kHz  
Triangle  
Agilent E1441A Application Information  
21  
Chapter 2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
For arbitrary waveforms that you create and download to memory,  
the maximum frequency depends on the number of points specified in the  
waveform. As shown below, the maximum output frequency decreases as  
you specify more points in the waveform. The five built-in arbitrary  
waveforms can be output at a maximum of 5 MHz.  
Table 2-3.  
Number of Arb Points Minimum Frequency Maximum Frequency  
8 to 8,192 (8k)  
8,193 to 12,287 (12k)  
12,288 to 16,000  
100 mHz  
100 mHz  
100 mHz  
5 MHz  
2.5 MHz  
200 kHz  
Possible Conflict with Function Change: The output frequency is  
automatically adjusted if you select a function whose maximum frequency  
is less than that of the currently active function. For example, if you output  
a 1 MHz sine wave and then change the function to triangle wave, the  
function generator will adjust the output to 100 kHz (the upper limit for  
triangle waves). A -221, “Settings conflict” error is generated and the  
frequency is adjusted.  
Possible Conflict with Duty Cycle (square wave only): For output  
frequencies above 5 MHz, the duty cycle is limited to values between 40%  
and 60% (below 5 MHz, the range is 20% to 80%). The duty cycle is  
automatically adjusted if you select a frequency that is not valid with the  
present duty cycle. For example, if you set the duty cycle to 70% and then  
change the frequency to 8 MHz, the function generator will automatically  
adjust the duty cycle to 60% (the upper limit for this frequency). A -221,  
“Settings conflict” error is generated and the duty cycle is adjusted.  
Use the following command to set the output frequency:  
FREQuency <frequency>|MINimum|MAXimum  
You can also use the APPLycommand to select the function, frequency,  
amplitude, and offset with a single command. Because the APPLy command  
also changes duty cycle, modulation type, trigger source, and trigger slope,  
you must place the APPLy command first in any sequence of configuration  
commands.  
Output Amplitude As shown below, the output amplitude range depends on the function  
currently selected and the output termination. The default amplitude is  
100 mVpp (into 50 ohms) for all functions.  
22 Agilent E1441A Application Information  
Chapter 2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Table 2-4.  
Output  
Parameter Parameter  
Minimum  
Maximum  
Default  
Units  
Name  
Type  
Function Termination Amplitude Amplitude  
amplitude  
numeric  
Sine  
50Ω  
50Ω  
50Ω  
50Ω  
50Ω  
50Ω  
50 mVpp  
50 mVpp  
50 mVpp  
50 mVpp  
50 mVpp  
50 mVpp  
10 Vpp  
10 Vpp  
10 Vpp  
10 Vpp  
10 Vpp  
10 Vpp  
Vpp  
Square  
Triangle  
Ramp  
Noise  
Built-In  
Arbs  
amplitude  
numeric  
Sine  
Open Circuit  
Open Circuit  
Open Circuit  
Open Circuit  
Open Circuit  
Open Circuit  
100 mVpp  
100 mVpp  
100 mVpp  
100 mVpp  
100 mVpp  
100 mVpp  
20 Vpp  
20 Vpp  
20 Vpp  
20 Vpp  
20 Vpp  
20 Vpp  
Vpp  
Square  
Triangle  
Ramp  
Noise  
Built-In  
Arbs  
For arbitrary waveforms, the maximum amplitude will be limited if the data  
points do not span the full range of the output DAC (Digital- to-Analog  
Converter). For example, the built-in “SINC” waveform does not use the full  
range of values between 1 and therefore its maximum amplitude is 6.084  
Vpp (into 50 ohms).  
Possible Conflict with Function Change: The output amplitude is  
automatically adjusted if you select a function whose maximum amplitude  
is less than that of the currently active function. This conflict may arise when  
the output units are Vrms or dBm due to the differences in crest factor for the  
output functions. For example, if you output a 5 Vrms square wave (into 50  
ohms) and then change the function to sine wave, the function generator will  
adjust the output amplitude to 3.535 Vrms (the upper limit for sine waves in  
Vrms). A -221, “Settings conflict” error is generated and the amplitude is  
adjusted.  
Output Amplitude and Output Termination: The output amplitude is  
automatically adjusted (and no error is generated) if you change the output  
termination. For example, if you set the amplitude to 10 Vpp and then  
change the termination from 50 ohms to “high impedance”, the displayed  
amplitude will double to 20 Vpp. If you change from “high impedance” to  
50 ohms, the displayed amplitude will drop in half. See “Output  
Termination” on page 25. for more information.  
Offset Voltage Restrictions: The output amplitude (in Vpp) and the  
dc offset voltage must obey the following restrictions. If the specified  
amplitude is not valid, the function generator will automatically adjust it to  
Agilent E1441A Application Information  
23  
Chapter 2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
-------  
                                                                                            
-------  
                                                                                            
the maximum value allowed with the present offset voltage. (Vmax is either  
10 volts for a high impedance termination or 5 volts for a 50 ohm  
termination; Vpp is the output amplitude in volts peak-to-peak.)  
Vpp  
Voffset  
+
Vmax  
and  
Voffset 2Vpp  
2
A -221, “Settings conflict” error is generated and the amplitude is adjusted.  
A momentary glitch occurs in the output waveform at certain voltages due  
to output attenuator switching. This positive-going glitch occurs when the  
output voltage crosses the break-point voltage either from a lower voltage or  
a higher voltage. The voltages are shown below (inVpp) for a 0 volt dc  
offset: .252, .399, .502, .796, 1, 1.59, 2.0, 3.17, 3.99, 6.32, 7.96  
The output voltage will momentarily drop to 0 volts at certain voltages due  
to output relay switching. This occurs when the output voltage crosses the  
break-point voltage either from a lower voltage or a higher voltage. The  
voltages are shown below (in Vpp) for a 0 volt dc offset:  
.317, .632, 1.26, 2.52, 5.02  
You can set the units for output amplitude to Vpp, Vrms, or dBm. See  
“Output Units” on page 25. for more information.  
For dc volts, the output level is actually controlled by setting the offset  
voltage. You can set the dc voltage to any value between 5 Vdc into  
50 ohms or 10 Vdc into an open circuit. See “DC Offset Voltage” on  
page 24. for more information.  
Use the following command to set the output amplitude:  
VOLTage <amplitude>|MINimum|MAXimum  
You can also use the APPLycommand to select the function, frequency,  
amplitude, and offset with a single command. Because the APPLy command  
also changes duty cycle, modulation type, trigger source, and trigger slope,  
you must place the APPLy command first in any sequence of configuration  
commands.  
DC Offset Voltage At power-on, the dc offset is set to 0 volts. You can set the offset to a positive  
or negative number with the restrictions shown below. If the specified offset  
voltage is not valid, the function generator will automatically adjust it to the  
maximum dc voltage allowed with the present amplitude. (Vmax is either 10  
volts for a high impedance termination or 5 volts for a 50 ohm termination;  
Vpp is the output amplitude in volts peak-to-peak.)  
Vpp  
Voffset  
+
Vmax  
and  
Voffset 2Vpp  
2
A -221, “Settings conflict” error is generated and the offset is adjusted.  
DC Offset and Output Termination: The offset voltage is automatically  
adjusted (and no error is generated) if you change the output termination.  
For example, if you set the offset to 100 mVdc and then change the  
24 Agilent E1441A Application Information  
Chapter 2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
termination from 50 ohms to “high impedance”, the displayed offset will  
double to 200 mVdc. If you change from “high impedance” to 50 ohms, the  
displayed offset will drop in half. See “Output Termination” on page 25. for  
more information.  
For dc volts, the output level is actually controlled by setting the offset  
voltage. You can set the dc voltage to any value between 5 Vdc into  
50 ohms or 10 Vdc into an open circuit.  
Use the following command to set the dc offset:  
VOLTage:OFFSet <offset>|MINimum|MAXimum  
You can also use the APPLycommand to select the function, frequency,  
amplitude, and offset with a single command. Because the APPLy  
command also changes duty cycle, modulation type, trigger source, and  
trigger slope, you must place the APPLy command first in any sequence of  
configuration commands.  
Output Units Applies only to output amplitude (does not affect offset). At power-on,  
the units for output amplitude are volts peak-to-peak.  
Output units: Vpp, Vrms, or dBm. The default is Vpp.  
The unit setting is stored in volatile memory; the units are set to “Vpp” when  
power has been off or after a remote interface reset.  
Use the following command to select the units of the output signal:  
VOLTage:UNIT VPP|VRMS|DBM|DEFault  
Output Termination Applies only to output amplitude and offset voltage. The function generator  
has a fixed output impedance of 50 ohms on the OUTPUT terminal. You can  
specify whether you are terminating the output into a 50 ohm load or an open  
circuit. Incorrect impedance matching between the function generator and  
your load will result in an amplitude or offset which does not match the  
specified signal level.  
Output termination: 50or High impedance. The default is 50. See Table  
2-4 for a list of amplitude limits for all functions.  
The output termination setting is stored in volatile memory; 50is selected  
when power has been off or after a remote interface reset.  
The amplitude (or dc offset) is automatically adjusted (and no error is  
generated) if you change the output termination. For example, if you set the  
amplitude to 10 Vpp and then change the termination from 50 ohms to “high  
impedance”, the amplitude will double to 20 Vpp. If you change from “high  
impedance” to 50 ohms, the amplitude will drop in half.  
If you specify a 50 ohm termination but are actually terminating into an open  
circuit, the output will be twice the value specified. For example, if you set  
the offset to 100 mVdc (and specify a 50 ohm termination) but do not  
connect a 50 load, the actual offset will be 200 mVdc.  
Agilent E1441A Application Information  
25  
Chapter 2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Use the following command to set the output termination:  
OUTPut:LOAD 50|INFinity|MINimum|MAXimum  
Duty Cycle Applies only to square waves. Duty cycle is specified as a percentage and  
represents the amount of time per cycle that the square wave is high.  
Figure 2-1.  
Duty cycle: 20% to 80%, in 1% increments (frequency 5 MHz).  
40% to 60%, in 1% increments (frequency > 5 MHz).  
The default is 50%.  
The duty cycle is stored in volatile memory; the duty cycle is set to 50%  
when power has been off or after a remote interface reset. The APPLy  
command automatically sets the duty cycle to 50% for square waves.  
Before attempting to set the duty cycle, you must enable the square wave  
function. No error is generated, but the specified duty cycle is remembered  
when you change to the square wave function.  
The duty cycle setting is remembered when you change from square wave  
to another function. When you return to the square wave function, the  
previous duty cycle is used.  
Possible Conflict with Output Frequency: The duty cycle is automatically  
adjusted if you select a frequency that is not valid with the present duty  
cycle. For example, if you set the duty cycle to 70% and then change the  
frequency to 8 MHz, the function generator will automatically adjust the  
duty cycle to 60% (the upper limit for this frequency).  
Use the following command to set the duty cycle:  
PULSe:DCYCle <percent>|MINimum|MAXimum  
The APPLycommand automatically sets the duty cycle to 50% for square  
waves.  
Sync Signal A sync signal output is provided on the front-panel Sync terminal.  
All of the standard output functions (except dc and noise) have an associated  
sync signal. For certain applications where you may not want to output the  
26 Agilent E1441A Application Information  
Chapter 2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
sync signal, you can disable the Sync terminal.  
By default, the sync signal is routed to the Sync terminal (enabled).  
When the sync signal is disabled, the output level on the Sync terminal is  
indeterminate (it might be a TTL “high” or a TTL “low”).  
For sine, square, triangle, and ramp waveforms, the sync signal is a TTL  
“high” when the waveform's output is positive, relative to zero volts (or the  
dc offset value). The signal is a TTL “low” when the output is negative,  
relative to zero volts (or the dc offset value).  
For arbitrary waveforms, a momentary TTL “high” pulse (> 200 ns) is output  
which corresponds to the first downloaded point in the waveform.  
For AM and FM, the sync signal is referenced to the modulating signal (not  
the carrier). A momentary TTL “high” pulse (> 200 ns) is output at each  
zero-crossing point of the modulating signal.  
For the counted burst mode, a TTL “low” signal is output while the specified  
number of cycles is output (for the duration of the burst). After the specified  
number of cycles has been output, the sync signal goes “high” until the next  
burst.  
For the external gated burst mode, the sync signal is a TTL “high” when the  
output is positive, relative to zero volts (or the dc offset value). The signal is  
a TTL “low” when the output is negative, relative to zero volts (or the dc  
offset value).  
For FSK, a momentary TTL “high” pulse (> 200 ns) is output on the  
transition to the “hop” frequency.  
For frequency sweeps, the sync signal is a TTL “low” at the start of the sweep  
(when the start frequency is output) and is a TTL “high” at the end of the  
sweep (when the stop frequency is output).  
Use the following command to set the SYNC signal mode:  
OUTPut:SYNC OFF|ON  
Setting is stored in volatile  
memory.  
Instrument State Storage You can store up to four different instrument states in non-volatile memory.  
This enables you to recall the entire instrument configuration using the  
*RCLcommon command.  
Four memory locations (numbered 0, 1, 2, and 3) are available to store  
instrument configurations. The state storage feature “remembers” the  
function (including arbitrary waveforms), frequency, amplitude, dc offset,  
duty cycle, as well as any modulation parameters. To recall a stored state,  
you must use the same memory location used previously to store the state.  
The instrument state in memory location 0 can become the "*RST" or  
power-up state by setting MEMory:STATe:RECall:AUTO ON. See  
reference for this command on page 85  
You cannot recall the instrument state from a memory location that was not  
Agilent E1441A Application Information  
27  
Chapter 2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
previously specified as a storage location. For example, an error is generated  
if you attempt to recall from memory location “2” but have never stored to  
that location.  
A +810, “State has not been stored” error is generated if nothing is stored  
in the specified memory location.  
Any arbitrary waveforms downloaded to “VOLATILE” memory are not  
remembered. However, if an arbitrary waveform is being output from  
non-volatile memory when the state is stored, the waveform data is stored.  
The stored waveform is output when the instrument state is recalled.  
If you delete an arbitrary waveform after storing the state, the waveform data  
is lost and the function generator will output the “SINC” waveform in place  
of the deleted waveform when the state is recalled.  
Use the following commands to save and recall states:  
*SAV 0|1|2|3  
*RCL 0|1|2|3  
You can delete individual stored states and clear the memory location. If  
nothing is stored in the specified memory location, a +810, “State has not  
been stored” error is generated. Do not delete state 0 or an error +772 will  
be generated. See “772” on page 148.  
MEMory:STATe:DELete 0|1|2|3  
Amplitude A modulated waveform consists of a carrier waveform and a modulating  
waveform. In AM, the amplitude of the carrier is varied by the amplitude of  
Modulation (AM)  
the modulating waveform. The function generator will accept an internal  
modulating signal, an external modulating signal, or both. Topics covered  
on amplitude modulation are:  
AM Carrier Waveform Shape  
AM Carrier Frequency  
Amplitude Modulating Waveform Shape  
Amplitude Modulating Waveform Frequency  
Amplitude Modulation Depth  
Amplitude Modulating Source  
Only one modulation mode can be enabled at a time. When you enable AM,  
the previous modulation mode is turned off.  
Use the following command to select AM modulation: To ensure proper  
operation, you should enable AM after you have set up the other modulation  
parameters.  
AM:STATe OFF|ON  
AM Carrier Waveform AM carrier shape: Sine, Square, Triangle, Ramp, or Arbitrary waveform.  
The default is Sine.  
Shape  
28 Agilent E1441A Application Information  
Chapter 2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
You cannot use the noise function or dc volts as the AM carrier waveform.  
Use the following command to select the shape of the output function:  
FUNCtion:SHAPe SINusoid|SQUare|TRIangle|RAMP|USER|DC  
You can also use the APPLycommand to select the function, frequency,  
amplitude, and offset with a single command. Because the APPLy command  
also changes duty cycle, modulation type, trigger source, and trigger slope,  
you must place the APPLy command first in any sequence of configuration  
commands.  
AM Carrier Frequency Carrier frequency: 100 µHz to 15 MHz (100 kHz for triangle and ramp).  
The default is 1 kHz.  
For arbitrary waveforms, the maximum carrier frequency depends on the  
number of points specified in the waveform. The five built-in arbitrary  
waveforms can be output at a maximum of 5 MHz.  
Use the following command to set the carrier frequency:  
FREQuency <frequency>|MINimum|MAXimum  
Amplitude Modulating The function generator will accept an internal modulating signal, an external  
modulating signal, or both.  
Waveform Shape  
Modulating waveform shape (internal source): Sine, Square, Triangle,  
Ramp, Noise, or Arbitrary waveform. The default is Sine.  
You can use the noise function as the modulating waveform. However, you  
cannot use the noise function or dc volts as the carrier waveform.  
Use the following command to set the modulating waveform shape:  
AM:INTernal:FUNCtion SIN|SQU|TRI|RAMP|NOIS|USER  
Amplitude Modulating The function generator will accept an internal modulating signal, an external  
modulating signal, or both.  
Waveform Frequency  
Modulating frequency (internal source): 10 mHz to 20 kHz. The default is  
100 Hz.  
The sync signal for AM is referenced to the modulating signal (not the  
carrier). A momentary TTL “high” pulse (> 200 ns) is output at each  
zero-crossing point of the modulating signal. The signal is output from the  
front-panel SYNC terminal.  
Use the following command to set the modulating waveform frequency:  
AM:INTernal:FREQuency <frequency>|MINimum|MAXimum  
Amplitude Modulation The modulation depth is expressed as a percentage and represents the extent  
of the amplitude variation. At 0% modulation, the output amplitude is half  
of the selected value. At 100% modulation, the output amplitude equals the  
selected value.  
Depth  
Agilent E1441A Application Information  
29  
Chapter 2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Modulation depth: 0% to 120%. The default is 100%.  
Use the following command to set the modulation depth:  
AM:DEPTh <depth in percent>|MINimum|MAXimum  
Amplitude Modulating The function generator will accept an internal modulating signal, an external  
modulating signal, or both.  
Source  
Modulating source: Internal-External (both) or External only. The default  
is Both (internal-external).  
The External modulating source is always enabled.  
When both sources are enabled (internal-external), the function generator  
adds the internal and external modulating signals (the carrier waveform is  
actually modulated with two waveforms).  
When the internal source is disabled (external only), the carrier waveform is  
expecting a modulating signal on the AM Modulation terminal.  
You apply the external modulating waveform to the AM Modulation  
terminal. The modulation depth is controlled by the signal level present  
(5 volts peak corresponds to 100% modulation).  
Figure 2-2. AM Modulation Input Signal  
Use the following command to set the modulating source:  
AM:SOURce BOTH|EXTernal  
Frequency A modulated waveform consists of a carrier waveform and a modulating  
waveform. In FM, the frequency of the carrier is varied by the amplitude of  
the modulating waveform. The function generator will accept only an  
Modulation (FM)  
internal FM modulating signal (no external source is available). Topics  
covered on frequency modulation are:  
FM Carrier Waveform Shape  
30 Agilent E1441A Application Information  
Chapter 2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
FM Carrier Frequency  
Frequency Modulating Waveform Shape  
Frequency Modulating Waveform Frequency  
Peak Frequency Deviation  
Only one modulation mode can be enabled at a time. When you enable FM,  
the previous modulation mode is turned off.  
Use the following command to enable FM modulation: To ensure proper  
operation, you should enable FM after you have set up the other modulation  
parameters.  
FM:STATe OFF|ON  
FM Carrier FM carrier shape: Sine, Square, Triangle, Ramp, or Arbitrary waveform.  
The default is Sine.  
Waveform Shape  
You cannot use the noise function or dc volts as the FM carrier waveform.  
Use the following command to set the shape of the carrier waveform:  
FUNCtion:SHAPe SINusoid|SQUare|TRIangle|RAMP|USER  
You can also use the APPLycommand to select the function, frequency,  
amplitude, and offset with a single command. Because the APPLy command  
also changes duty cycle, modulation type, trigger source, and trigger slope,  
you must place the APPLy command first in any sequence of configuration  
commands.  
FM Carrier Frequency Carrier frequency: 10 mHz to 15 MHz (100 kHz for triangle and ramp).  
The default is 1 kHz.  
For arbitrary waveforms, the maximum carrier frequency depends on the  
number of points specified in the waveform. The five built-in arbitrary  
waveforms can be output at a maximum of 5 MHz.  
The carrier frequency must always be greater than or equal to the peak  
frequency deviation. If you attempt to set the carrier frequency to a value less  
than the deviation, the function generator will auto-matically adjust the  
carrier frequency to equal the present deviation. A -221, “Settings conflict”  
error is generated and the carrier frequency is adjusted.  
The sum of the carrier frequency and peak frequency deviation must be less  
than or equal to the maximum frequency for the selected function plus  
100 kHz (15.1 MHz for sine and square, 200 kHz for triangle and ramp,  
and 5.1 MHz for arbitrary waveforms). If you attempt to set the carrier  
frequency to a value that is not valid, the function generator will  
automatically adjust the carrier frequency to equal the present deviation. A  
-221, “Settings conflict” error is generated and the deviation is adjusted.  
Use the following command to set the carrier frequency:  
FREQuency <frequency>|MINimum|MAXimum  
Agilent E1441A Application Information  
31  
Chapter 2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
FM Waveform Shape The function generator will accept only an internal modulating signal. You  
cannot modulate with an external source.  
Modulating waveform shape (internal source): Sine, Square, Triangle,  
Ramp, Noise, or Arbitrary waveform. The default is Sine.  
You can use the noise function as the modulating waveform. However, you  
cannot use the noise function or dc volts as the carrier waveform.  
Use the following command to set the modulating waveform shape:  
FM:INTernal:FUNCtion SIN|SQU|TRI|RAMP|NOIS|USER  
FM Waveform Frequency The function generator will accept only an internal modulating signal. You  
cannot modulate with an external source.  
Modulating frequency: 10 mHz to 10 kHz. The default is 10 Hz.  
The sync signal for FM is referenced to the modulating signal (not the  
carrier). A momentary TTL “high” pulse (> 200 ns) is output at each  
zero-crossing point of the modulating signal. The signal is output from the  
front-panel SYNC terminal.  
Use the following command to set the modulating waveform frequency:  
FM:INTernal:FREQuency <frequency>|MINimum|MAXimum  
FM Peak Frequency The peak frequency deviation represents the variation in frequency of the  
modulating waveform from the carrier frequency.  
Deviation  
Peak frequency deviation: 10 mHz to 7.5 MHz. The default is 100 Hz.  
The carrier frequency must always be greater than or equal to the peak  
frequency deviation. If you attempt to set the deviation to a value greater  
than the carrier frequency (with FM enabled), the function generator will  
automatically adjust the deviation to equal the present carrier frequency. A  
-221, “Settings conflict” error is generated and the deviation is adjusted.  
The sum of the carrier frequency and peak frequency deviation must be less  
than or equal to the maximum frequency for the selected function plus 100  
kHz (15.1 MHz for sine and square, 200 kHz for triangle and ramp, and 5.1  
MHz for arbitrary waveforms). If you attempt to set the deviation to a value  
that is not valid, the function generator will automatically adjust the  
deviation to the maximum value allowed with the present carrier frequency.  
A -221, “Settings conflict” error is generated and the deviation is adjusted.  
Use the following command to set the peak frequency deviation:  
FM:DEViation <peak deviation in Hz>|MINimum|MAXimum  
32 Agilent E1441A Application Information  
Chapter 2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Burst Modulation You can configure the function generator to output a burst of waveform  
cycles. The function generator can produce a burst using sine, square,  
triangle, ramp, and arbitrary waveforms. Topics covered on burst  
modulation are:  
“Burst Modes” on page 33  
-- “Counted Burst Mode” on page 33  
-- “Gated Burst Mode” on page 35  
“Burst Trigger Source” on page 35  
-- “For Counted Burst Mode” on page 35  
-- “For Gated Burst Mode” on page 36  
“Burst Carrier Frequency” on page 36  
“Burst Count” on page 38  
“Burst Rate” on page 39  
“Burst Phase” on page 39  
Only one modulation mode can be enabled at a time. When you enable the  
burst mode, the previously enabled modulation mode is turned off.  
Use the following command to enable burst modulation: To ensure proper  
operation, you should enable the burst mode after you have set up the other  
modulation parameters.  
BM:STATe OFF|ON  
Burst Modes There are two major modes of burst modulation; the "counted" burst, and the  
"gated" burst modes. In counted mode, the length of the burst is controlled  
by cycle count (BM:NCYCles). In gated mode, the duration of the burst is  
controlled by an external "gate" signal. The BM:SOURce command selects  
between the two modes:  
BM:SOURce INTernal  
BM:SOURce EXTernal  
this selects the "counted" mode  
this selects the "gated" mode  
Counted Burst Mode  
A counted burst is started by a trigger signal from either an internal trigger  
timer (TRIG:SOUR INTernal), or an external signal  
(TRIG:SOUR EXTernal|TTLTRG<n>|BUS). The duration of the burst is  
set by specifying the number of waveform cycles (BM:NCYCles).  
Figure 2-3 shows the operation of the counted burst mode with internal  
Agilent E1441A Application Information  
33  
Chapter 2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
trigger source.  
Counted Burst Modulation Output  
burst ends when  
count reached  
burst starts on  
rising edge  
Burst Modulation Trigger Signal  
(INTernal timer shown)  
1/(Burst Rate)  
Figure 2-3. Counted Burst Mode with INTernal Trigger  
The command sequence to configure this mode is:  
APPLY:<shape> <freq>,<ampl>,<offset>  
set up wave form  
enable burst modulation  
this selects the "counted" mode  
trigger from internal trigger  
timer  
BM:STATE ON  
BM:SOURce INTernal  
TRIG:SOURce INTernal  
BM:NCYCles <cycle_count>  
set the burst count  
BM:INTernal:RATE <frequency>  
set the burst rep rate  
Figure 2-3 shows the operation of the counted burst mode with external  
trigger source.  
Counted Burst Modulation Output  
burst ends when  
count reached  
burst starts on edge  
set by TRIG:SLOPE  
Burst Modulation Trigger Signal  
(TRIG:SOUR EXT, :SLOPE POS)  
Figure 2-4. Counted Burst Mode with EXTernal Trigger  
The command sequence to configure this mode is:  
APPLY:<shape> <freq>,<ampl>,<offset>  
set up wave form  
enable burst modulation  
BM:STATE ON  
BM:SOURce INTernal  
this selects the "counted" mode  
TRIG:SOURce EXTernal|TTLTRG<0-7>|BUS  
use external trigger  
BM:NCYCles <cycle_count>  
set the burst count  
34 Agilent E1441A Application Information  
Chapter 2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Gated Burst Mode  
There is only one form of the gated burst mode. The burst is controlled by a  
gating signal that is supplied from an external trigger source. The burst starts  
when the trigger signal is set to a TTL "high" level. The burst ends when the  
gating signal returns to a TTL "low" level.  
Gated Burst Modulation Output  
off period  
(gate = 0)  
on period  
(gate = 1)  
Burst Modulation Gating Signal  
(selected by TRIG:SOUR  
either EXT or TTLTRG<0-7>)  
NOTE: TTLT polarity is always  
the opposite of the of EXT TRIG  
Figure 2-5. Gated Burst Mode  
The command sequence to configure this mode is:  
APPLy:<shape> <freq>,<ampl>,<offset>  
set up wave form  
this selects the "gated" mode  
trigger from external signal  
AFTER all modulation AND  
trigger selection, enable BMod  
BM:SOURce EXTernal  
TRIG:SOURce EXTernal|TTLTRG<0-7>  
BM:STATE ON  
Table 2-5 shows an overview of the allowable burst mode configurations  
Table 2-5. Burst Mode Configurations  
Burst Source  
(BM:SOUR)  
Trigger Source Burst Count  
Burst Rate  
(BM:INT:RATE)  
Burst Phase  
(BM:PHAS)  
TRIG:SOUR  
(BM:NCYC)  
Counted Burst Modes  
Gated Burst Mode  
INTernal  
External  
INTernal  
Available  
Available  
Available  
Not Used  
Available  
Available  
EXTernal, BUS,  
or TTLTRG<n>  
EXTernal or  
Not Used  
Not Used  
Not Used  
TTLTRG<n.>  
Burst Trigger Source For Counted Burst Mode  
When the burst mode is set to "counted" (BM:SOUR INTernal), a trigger  
Agilent E1441A Application Information  
35  
Chapter 2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
signal is required to start the waveform burst. The TRIGger:SOURce  
choices are:  
IMMediate  
Not available in Burst Modulation; specifying IMM  
actually selects EXTernal  
INTernal  
(the power-on/*RST default) This selects the internal  
trigger timer. The timer’s repetition rate is then set by  
the BM:INTernal:RATE command.  
BUS  
Burst can be triggered by a Group Execute Trigger  
(GET) IEEE-488.1 command or the *TRG IEEE-488.2  
common command.  
EXTernal  
This selects the "Ext Trig/FSK/Burst" connector as the  
source of the trigger signal.  
TTLTRG<n>  
Selects one of the 8 (TTLTRG0 through  
TTLTRG7)VXIbus TTL trigger lines as the trigger  
source.  
For Gated Burst Mode  
When the burst mode is "gated" (BM:SOUR EXTernal), the waveform  
burst is controlled (gated) by an an external trigger. The choices for  
TRIG:SOUR are:  
EXTernal  
Selects the "EXT Trig/FSK/Burst" connector as the  
source of the burst gating signal. Driven to a TTL  
"high", the waveform is output. When at a TTL "low",  
the output is at the DC offset voltage.  
TTLTrg<n>  
Selects one of the 8 (TTLTRG0 through  
TTLTRG7)VXIbus TTL trigger lines as the burst  
gating signal. When the TTLTRG line is true, the  
waveform is output. When the line is false, the output is  
at the DC offset voltage.  
Bus, IMM,  
and INT  
These are not valid choices for gated burst mode.  
Specifying any of these selects EXTernal.  
Use the following command to select a trigger source for burst modulation:  
TRIGger:SOURce EXTernal|BUS|TTLTrg<0 - 7>  
See “Triggering the Function Generator” on page 52. for more information  
Burst Carrier Frequency The carrier frequency defines the repetition rate of the burst waveform in the  
triggered and external gated modes. In the triggered mode, the number of  
cycles specified by the burst count are output at the frequency of the carrier  
signal. In the external gated mode, the carrier frequency is output when the  
external gate signal is true (TTL high).  
36 Agilent E1441A Application Information  
Chapter 2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Keep in mind that the carrier frequency is different than the “burst rate”  
which specifies the interval between bursts (triggered mode only).  
Burst Carrier frequency: 10 mHz to 5 MHz (100 kHz for triangle and  
ramp). The default is 1 kHz. You can use sine, square, ramp, triangle, or  
arbitrary waveforms for the carrier waveshape.  
Be sure to note the restrictions for carrier frequency and burst count shown  
on the following pages.  
For arbitrary waveforms used as the carrier waveform, the maximum  
frequency depends on the number of points specified in the waveform. The  
five built-in arbitrary waveforms can be output at a maximum of 5 MHz (be  
sure to note the restrictions below).  
Table 2-6.  
Number of Arb Points Minimum Frequency Maximum Frequency  
8 to 8,192 (8k)  
8,193 to 12,287 (12k)  
12,288 to 16,000  
100 mHz  
100 mHz  
100 mHz  
5 MHz  
2.5 MHz  
200 kHz  
For sine, square, and arbitrary waveforms (does not apply to ramp and  
triangle waveforms), the relationship between the carrier frequency and the  
minimum burst count is shown below.  
Table 2-7.  
Carrier Frequency  
Minimum  
Burst Count  
10 mHz to 1 MHz  
>1 MHz to 2 MHz  
>2 MHz to 3 MHz  
>3 MHz to 4 MHz  
>4 MHz to 5 MHz  
1
2
3
4
5
If you attempt to set the carrier frequency to a value that is not valid,  
the function generator will automatically adjust the frequency to the  
maximum value allowed with the present burst count. A -221, “Settings  
conflict” error is generated and the carrier frequency is adjusted.  
Agilent E1441A Application Information  
37  
Chapter 2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
For all waveforms used with burst, if the carrier frequency is set less than or  
equal to 100 Hz, the following relationship applies.  
Burst Count  
Carrier Frequency  
--------------------------------------------------  
500seconds for Carrier 100 Ηz  
If you attempt to set the carrier frequency to a value that is not valid, the  
function generator will automatically adjust the frequency to the minimum  
value allowed with the present burst count. A -221, “Settings conflict” error  
is generated and the frequency is adjusted.  
For the counted burst mode, the sync signal is a TTL “low” while the  
specified number of cycles is output (for the duration of the burst). After the  
specified number of cycles has been output, the sync signal goes “high” until  
the next burst. The sync signal is output from the front-panel SYNC terminal.  
For the external gated burst mode, the sync signal is a TTL “high” when the  
output is positive, relative to zero volts (or the dc offset value). The signal is  
a TTL “low” when the output is negative, relative to zero volts (or the dc  
offset value). The sync signal is output from the front-panel SYNC terminal.  
Use the following command to set the frequency:  
FREQuency <frequency>|MINimum|MAXimum  
You can also use the APPLy command to select the function, frequency,  
amplitude, and offset of the carrier with a single command. Because the  
APPLy command also changes duty cycle, modulation type, trigger source,  
and trigger slope, you must place the APPLy command first in any sequence  
of configuration commands.  
Burst Count The burst count defines the number of cycles to be output per burst. Used  
only in the "counted" burst mode (internal or external trigger).  
Certain combinations of burst count and carrier frequency are not allowed.  
If you attempt to specify a burst count that is not valid, the function  
generator will automatically adjust the count to the maximum value  
allowed with the present carrier frequency.  
Make sure you note the restrictions in “Burst Carrier Frequency” before  
setting the burst count.  
Burst count: 1 to 50,000 cycles, in 1 cycle increments. You can also select  
an infinite burst count. The default is 1 cycle.  
When the internal trigger timer is selected (TRIG:SOUR INT), the specified  
number of cycles is output each time the timed trigger occurs. the repetition  
rate of the trigger timer is set by BM:INTernal:RATE <freq>.  
When an external trigger source is selected  
(TRIG:SOUR EXT|TTLTRG<n>), the burst count and burst phase remain  
in effect but the burst rate is ignored. The specified number of cycles is  
output each time a trigger signal is applied to the selected trigger source. The  
38 Agilent E1441A Application Information  
Chapter 2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
function generator is triggered on the rising edge of the trigger source.  
When the "gated" burst mode is selected, the burst count, burst rate, and  
burst phase are ignored (these parameters are used for the counted burst  
mode only).  
Use the following command to set the burst count:  
BM:NCYCles <# cycles>|INFinity|MINimum|MAXimum  
Burst Rate The burst rate defines the frequency at which internally triggered bursts are  
generated. The burst rate frequency defines the interval between bursts.  
Used only in the counted burst mode (with TRIG:SOUR INTernal).  
Keep in mind that the burst rate is different than the “carrier frequency”  
which specifies the frequency of the burst signal.  
Burst rate: 10 mHz to 50 kHz. The default is 100 Hz.  
When in "counted" burst mode, but with an external trigger source selected  
(TRIG:SOUR EXT|TTLTRG<n>), the burst count and burst phase remain  
in effect but the burst rate is ignored.  
When the "gated" burst mode is selected, the burst count, burst rate, and  
burst phase are ignored (these parameters are used for the counted burst  
mode only).  
It is possible to specify a burst rate which is too fast for the function  
generator to output with the specified carrier frequency and burst count. If  
the burst rate is too high, the function generator will internally adjust it as  
needed to allow repeated triggering the burst. The adjustment is handled  
internally by the function generator (the burst queried will be the same as  
specified).  
Use the following command to set the burst rate:  
BM:INTernal:RATE <frequency>|MINimum|MAXimum  
Burst Phase The burst phase defines the starting phase of the burst.  
Burst phase: -360 degrees to +360 degrees, in 0.001 degree increments.  
The default is 0 degrees.  
For sine, square, triangle, and ramp waveforms, 0 degrees is the point at  
which the waveform crosses zero volts (or the dc offset value), in a  
positive-going direction.  
For arbitrary waveforms, 0 degrees is the first data point downloaded to  
memory.  
When the "gated" burst mode is selected, the burst count, burst rate, and  
burst phase are ignored (these parameters are used for the "counted" burst  
mode only).  
Agilent E1441A Application Information  
39  
Chapter 2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Use the following command to set the burst phase:  
BM:PHASe <degrees>|MINimum|MAXimum  
Frequency-Shift You can configure the function generator to “shift” its output frequency  
between two preset values using FSK modulation. The rate at which the  
output shifts between the two frequencies (called the “carrier frequency” and  
Keying (FSK)  
Modulation the “hop frequency”) is determined by the internal rate generator or the  
signal level on the"Ext Trig/FSK/Burst terminal". The function generator  
can produce an FSK waveform using sine, square, triangle, ramp, and  
arbitrary waveforms. Topics covered on frequency-shift keying modulation  
are:  
“FSK Carrier Frequency” on page 40  
“FSK “Hop” Frequency” on page 41  
“FSK Rate” on page 41  
“FSK "Hop" Source” on page 42  
-- “Internal Hop Source” on page 42  
-- “External Hop Source” on page 42  
Only one modulation mode can be enabled at a time. When you enable FSK,  
the previous modulation mode is turned off.  
Use the following command to enable frequency-shift keying: To ensure  
proper operation, you should enable FSK after you have set up the other  
modulation parameters.  
FSKey:STATe OFF|ON  
FSK Carrier Frequency FSK Carrier frequency: 10 mHz to 15 MHz (100 kHz for triangle  
and ramp). The default is 1 kHz. You can use sine, square, ramp, triangle, or  
arbitrary waveforms for the carrier waveform.  
For arbitrary waveforms, the maximum carrier frequency depends on the  
number of points specified in the waveform. The five built-in arbitrary  
waveforms can be output at a maximum of 5 MHz.  
Table 2-8.  
Number of Arb Points Minimum Frequency Maximum Frequency  
8 to 8,192 (8k)  
8,193 to 12,287 (12k)  
12,288 to 16,000  
100 mHz  
100 mHz  
100 mHz  
5 MHz  
2.5 MHz  
200 kHz  
For an externally-controlled FSK waveform, the carrier frequency is output  
when a "low" TTL level is applied to the source selected by the TRIG:SOUR  
command. The hop frequency is output when a “high” TTL level is applied.  
For FSK, the sync signal is referenced to the FSK “hop” signal (not the  
carrier). A momentary TTL “high” pulse (> 200 ns) is output on the transition  
to the “hop” frequency. The signal is output from the front- panel Sync  
terminal.  
40 Agilent E1441A Application Information  
Chapter 2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Use the following command to set the frequency:  
FREQuency <frequency>|MINimum|MAXimum  
You can also use the APPLycommand to select the function, frequency,  
amplitude, and offset of the carrier with a single command. Because the  
APPLy command also changes duty cycle, modulation type, trigger source,  
and trigger slope, you must place the APPLy command first in any sequence  
of configuration commands.  
FSK “Hop” Frequency Hop frequency: 10 mHz to 15 MHz (100 kHz for triangle and ramp). The  
default is 100 Hz. You can use sine, square, ramp, triangle, or arbitrary  
waveforms for the hop frequency waveshape.  
For arbitrary waveforms, the maximum hop frequency depends on the  
number of points specified in the waveform. The five built-in arbitrary  
waveforms can be output at a maximum of 5 MHz.  
Table 2-9.  
Number of Arb Points Minimum Frequency Maximum Frequency  
8 to 8,192 (8k)  
8,193 to 12,287 (12k)  
12,288 to 16,000  
100 mHz  
100 mHz  
100 mHz  
5 MHz  
2.5 MHz  
200 kHz  
For an externally-controlled FSK waveform, the carrier frequency is output  
when a “low” TTL level is applied to the FSK terminal. The hop frequency  
is output when a “high” TTL level is applied.  
For FSK, the sync signal is referenced to the FSK “hop” signal (not the  
carrier). A momentary TTL “high” pulse (> 200 ns) is output on the transition  
to the “hop” frequency. The signal is output from the front- panel SYNC  
terminal.  
Use the following command to set the FSK frequency:  
FSKey:FREQuency <frequency>|MINimum|MAXimum  
FSK Rate The FSK rate is the rate at which the output frequency “shifts” between the  
carrier frequency and the hop frequency when you select the internal FSK  
source (FSK:SOUR INTernal).  
FSK rate (internal source): 10 mHz to 50 kHz. The default is 10 Hz.  
The FSK rate is ignored when the external source is selected.  
Use the following command to set the FSK rate:  
FSKey:INTernal:RATE <rate in Hz>|MINimum|MAXimum  
Agilent E1441A Application Information  
41  
Chapter 2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
FSK "Hop" Source FSK source: Internal or External. The default is Internal.  
Internal Hop Source  
When FSK:SOUR is INTernal, the rate at which the output frequency  
“shifts” between the carrier frequency and hop frequency is determined by  
the FSK rate specified. Figure 2-6 shows FSK operation with INTernal hop  
control  
FSK Output (sine)  
Carrier period  
Hop period  
INTernal Hop Signal  
1/(FSK Rate)  
Figure 2-6. Frequency Shift Keying with INTernal Hop Signal  
External Hop Source  
When FSK:SOUR is EXTernal, the output frequency is determined by the  
signal level of the source selected by the TRIG:SOUR command. When a  
“low” TTL level is present on the Ext Trig BNC, the carrier frequency is  
output. When a “high” TTL level is present on the Ext Trig BNC, the hop  
frequency is output. This logic sense is inverted for the TTLTRG lines.  
Figure 2-7 shows FSK operation with external hop control  
FSK Output (sine)  
Carrier period  
Hop period  
External Hop Signal  
(selected by TRIG:SOUR  
either EXT or TTLTRG<0-7>)  
NOTE: TTLT polarity is always  
the opposite of the of EXT TRIG  
Figure 2-7. Frequency Shift Keying with EXTernal Hop Signal  
Use the following command to select the external FSK source:  
42 Agilent E1441A Application Information  
Chapter 2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
FSKey:SOURce EXTernal  
select ext FSK source  
TRIGger:SOURce EXT | TTLT<0-7>  
now select which ext source  
Frequency Sweep In the frequency sweep mode, the function generator “steps” from the start  
frequency to the stop frequency at a sweep rate which you specify. You can  
sweep up or down in frequency, and with either linear or logarithmic  
spacing. You can also configure the function generator to output a single  
sweep (one pass from start frequency to stop frequency) by applying an  
external trigger. The function generator can produce a frequency sweep for  
sine, square, triangle, ramp, or arbitrary waveforms. Topics covered on  
frequency sweep are:  
“Sweep Start and Stop Frequencies” on page 43  
“Sweep Time” on page 43  
“Sweep Mode” on page 44  
“Sweep Trigger Source” on page 44  
Only one modulation mode can be enabled at a time. When you enable the  
sweep mode, the previous modulation mode is turned off.  
Use the following command to enable the frequency sweep: To ensure  
proper operation, you should enable the sweep mode after you have set up  
the other modulation parameters.  
SWEep:STATe OFF|ON  
Sweep Start and Stop The start frequency and stop frequency set the upper and lower frequency  
bounds for the sweep. The function generator begins at the start frequency,  
sweeps to the stop frequency, and then resets back to the start frequency.  
Frequencies  
Start and Stop frequencies: 10 mHz to 15 MHz (100 kHz for triangle and  
ramp). The sweep is phase continuous over the full frequency range. The  
default start frequency is 100 Hz. The default stop frequency is 1 kHz. The  
*RST command sets the start frequency to 10 mHz (minimum) and the stop  
frequency to 15 MHz (maximum).  
For arbitrary waveforms, the maximum start or stop frequency depends on  
the number of points specified in the waveform. The five built-in arbitrary  
waveforms can be output at a maximum of 5 MHz.  
To sweep up in frequency, set the start frequency < stop frequency.  
To sweep down in frequency, set the start frequency > stop frequency.  
The sync signal is a TTL “low” at the start of the sweep (when the start  
frequency is output) and is a TTL “high” at the end of the sweep (when the  
stop frequency is output). The signal is output from the front-panel SYNC  
terminal.  
Use the following command set the start and stop frequencies:  
FREQuency:STARt <frequency>|MINimum|MAXimum  
FREQuency:STOP <frequency>|MINimum|MAXimum  
Sweep Time The sweep time specifies the number of seconds required to sweep from the  
Agilent E1441A Application Information  
43  
Chapter 2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
start frequency to the stop frequency. The number of frequency points in the  
sweep depends on the sweep time you select and is automatically calculated  
by the function generator.  
Sweep time: 1 ms to 500 seconds. The default is 1 second.  
The function generator computes between 2,048 and 4,096 frequency points  
from the start frequency to the stop frequency.  
Use the following command to set the sweep time:  
SWEep:TIME <seconds>|MINimum|MAXimum  
Sweep Mode You can sweep with either linear or logarithmic spacing. The output  
frequency of a linear sweep changes linearly during the duration of the  
sweep. For logarithmic spacing, the output frequency changes exponentially  
during the duration of the sweep.  
Sweep mode: Linear or Logarithmic. The default is Linear.  
Use the following command to set the sweep mode:  
SWEep:SPACing LINear|LOGarithmic  
Sweep Trigger Source External Sources  
In the triggered sweep mode (TRIG:SOUR other than IMMediate), the  
function generator outputs a single sweep each time a trigger is received.  
After one sweep from the start frequency to the stop frequency, the function  
generator waits for the next trigger while outputting the start  
frequency.Figure 2-8 shows the frequency sweep operation with "external"  
trigger (IMMediate, EXTernal, TTLTRG<n>, or BUS). The default is IMM.  
Frequency Sweep Output  
sweep start  
frequency  
idle at start  
sweep stop  
frequency  
frequency  
begin sweep  
begin sweep  
Sweep Trigger Signal  
(TRIG:SOUR is EXT|  
BUS|TTLTRG<N>)  
Figure 2-8. Frequency Sweep with "EXTernal" Trigger  
Internal Source  
When the internal trigger source is selected (TRIG:SOUR IMMediate), the  
function generator repeatedly outputs a frequency sweep at a rate  
44 Agilent E1441A Application Information  
Chapter 2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
determined by the sweep rate specified. Figure 2-9 shows the frequency  
sweep operation with internal trigger source.  
Frequency Sweep Output  
sweep start  
frequency  
sweep stop  
frequency  
sweep time  
Sweep Trigger Signal  
(TRIG:SOUR INT shown)  
Figure 2-9. Frequency Sweep with Internal Trigger  
Use the following command to set the sweep trigger source:  
TRIGger:SOURce IMMediate|EXTernal|TTLTRG<0-7>|BUS  
See “Triggering the Function Generator” on page 52. for more information.  
Agilent E1441A Application Information  
45  
Chapter 2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Arbitrary There are five built-in arbitrary waveforms stored in non-volatile memory.  
You can also download up to four user-defined arbitrary waveforms into  
non-volatile memory. Each waveform can contain between 8 and 16,000  
Waveforms  
data points. Topics covered on arbitrary waveforms are:  
Creating Arbitrary Waveforms  
Creating and Storing an Arbitrary Waveform  
Built-In Arbitrary Waveforms  
Creating Arbitrary For most applications, it is not necessary to create a waveform of any  
specific length since the function generator will automatically sample the  
Waveforms  
available data to produce an output signal. In fact, it is generally best to  
create arbitrary waveforms which use all available data (16,000 points long  
and the full range from 0 to 4,095 DAC codes). For the Agilent E1441A, you  
do not have to change the length of the waveform to change its output  
frequency. All you have to do is create a waveform of any length and then  
adjust the function generator's output frequency. Remember, if you create an  
arbitrary waveform that includes three cycles of the same waveshape , the  
output frequency will actually be three times the value you set with the  
frequency command.  
When creating arbitrary waveforms, you have control of both the amplitude  
quantization and phase truncation errors. For example, phase truncation  
harmonics will be generated when a waveform is created using the full  
amplitude range of the DAC (12 bits) but is created using only 1,000  
waveform data points. In this case, the amplitude quantization errors will be  
near the noise floor while the time quantization error will produce harmonics  
near the -60 dBc level. Similarly, amplitude quantization harmonics will be  
generated when you create a waveform using less than the full amplitude  
resolution of the function generator. For example, if you use only one-fifth  
of the available amplitude resolution, amplitude quantization will produce  
harmonics below the -60 dBc level.  
When importing data from instruments such as oscilloscopes, the data will  
generally range between 1,024 and 4,096 time points and between 64 and  
256 amplitude points.  
When creating arbitrary waveforms, the function generator will always  
attempt to replicate the finite-length time record to produce a periodic  
version of the data in waveform memory. As shown on the next page, it is  
possible that the shape and phase of a signal may be such that a transient is  
introduced at the end point. When the waveshape is repeated for all time, this  
end-point transient will introduce leakage error in the frequency domain  
because many spectral terms are required to describe the discontinuity.  
Leakage error is caused when the waveform record does not include an  
integer number of cycles of the fundamental frequency. Power from the  
fundamental frequency, and its harmonics, is transferred to spectral  
components of the rectangular sampling function. Instead of the expected  
narrow spectral lines, leakage can cause significant spreading around the  
desired spectral peaks. You can reduce leakage errors by adjusting the  
window length to include an integer number of cycles or by including more  
cycles within the window to reduce the residual end-point transient size.  
Some signals are composed of discrete, non-harmonically related  
46 Agilent E1441A Application Information  
Chapter 2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
frequencies. Since these signals are non-repetitive, all frequency  
components cannot be harmonically related to the window length. You  
should be careful in these situations to minimize end-point discontinuities  
and spectral leakage.  
Creating and Storing an The following is an overview of the steps required to download and output  
an arbitrary waveform. The commands used for arbitrary waveforms are  
listed on page  
Arbitrary Waveform  
Chapter 2, “Application Programs”, contains an example program which  
shows the use of arbitrary waveforms. You may find it useful to refer to the  
program after reading the following section in this chapter.  
1. Select the waveform frequency, amplitude, and offset.  
Use the APPLycommand or the equivalent FREQ, VOLT, and VOLT:OFFS  
commands to select the frequency, amplitude, and offset of the arbitrary  
waveform. Because the APPLy command also changes duty cycle,  
modulation type, trigger source, and trigger slope, you must place the  
APPLy command first in any sequence of configuration commands.  
2. Download the data points into volatile memory.  
You can download between 8 and 16,000 points per waveform.  
The waveform can be downloaded as floating-point values or binary integer  
values. Use the DATA VOLATILEcommand to download floating-point  
values between -1 and +1. Use the DATA:DAC VOLATILEcommand to  
download binary integer values between -2047 and +2047.  
To ensure that binary data is downloaded properly, you must select the order  
in which the bytes are downloaded using the FORM:BORDcommand.  
3. Copy the arbitrary waveform to non-volatile memory.  
You can output the arbitrary waveform directly from volatile memory (as  
described in step 2) or you can copy the waveform to non-volatile memory.  
Use the DATA:COPYcommand to copy the waveform to non-volatile  
memory.  
4. Select the arbitrary waveform to output.  
You can select one of the five built-in arbitrary waveforms, one of four  
user-defined waveforms, or the waveform currently downloaded to volatile  
memory. Use the FUNC:USERcommand to select the waveform.  
5. Output the currently selected arbitrary waveform.  
Use the FUNC:SHAP USERcommand to output the waveform previously  
selected with the FUNC:USERcommand.  
Agilent E1441A Application Information  
47  
Chapter 2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Built-In Arbitrary The five built-in arbitrary waveforms are shown below.  
Waveforms  
Figure 2-10.  
48 Agilent E1441A Application Information  
Chapter 2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Phase-Lock This section gives an overview of the basic techniques used to program the  
Phase-Lock option (option 001). This section is only an overview and does  
not give all of the details you will need to write your own application  
Capabilities  
(Opt 001) programs. Refer to “Application Program Examples,” later in this chapter  
for more details and examples. Also refer to the programming reference  
manual that came with your computer for details on outputting command  
strings and entering data.  
To Phase Lock to an The front-panel 10 MHz Ref In terminal allows you to synchronize one or  
more function generators with an external 10 MHz signal. The following  
statements show how to configure a single instrument for synchronization  
with an external signal:  
External Clock Signal  
(requires Option 001)  
APPL:SIN 10E+6, 5.0  
PHAS:ADJ -90 DEG  
PHAS:REF  
Select sine function at 10 MHz  
Set phase offset to -90 degrees  
Set phase reference to zero  
Figure 2-11.  
Agilent E1441A Application Information  
49  
Chapter 2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
To Phase Lock Multiple The front-panel 10 MHz Ref Out and 10 MHz Ref In terminals allow you to  
synchronize multiple function generators. The following statements show  
you how to synchronize two function generators at 10 kHz (send the  
commands to both function generators):  
Function Generators  
(requires Option 001)  
APPL:SIN 10E+3, 5.0  
PHAS:ADJ -90 DEG  
PHAS:REF  
Select sine function at 10 kHz  
Set phase offset to -90 degrees  
Set phase reference to zero  
Figure 2-12.  
50 Agilent E1441A Application Information  
Chapter 2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
To Phase Lock Using the In the counted burst mode, you can synchronize phase-lock signals using an  
external trigger from the faceplate Ext Trig terminal or VXIbus TTLTRG  
lines. The following statements show you how to synchronize two function  
generators in the counted burst mode using the Ext Trig terminal (send the  
Counted Burst Mode  
(requires Option 001)  
commands to both function generators):  
Send these commands to both function generators:  
APPL:SIN 10E+3, 5.0  
BM:NCYC INF  
TRIG:SOUR EXT  
BM:STAT ON  
Set both to the same frequency  
Set burst count to “INFINITY"  
Set trigger source to external  
Enable the BMod LAST  
Send this command only to the "left" function generator:  
OUTP:TRIG:IMM source trigger signal from "left"  
instrument to rught instrument  
Figure 2-13.  
To use TTLTRG lines send these commands to both generators:  
APPL:SIN 10E+3, 5.0  
BM:NCYC INF  
OUTP:TTLT4 ON  
TRIG:SOUR TTLT4  
BM:STAT ON  
Set both to the same frequency  
Set burst count to “INFINITY"  
Enable TTLT4 line to source  
Set trigger source toTTLT4 line  
Enable the burst mode LAST  
Send this command only to the "left" function generator:  
OUTP:TRIG:IMM  
source trigger signal from "left"  
You don’t have to connect between the Ext Trig terminals when using the  
TTLTRG lines.  
Agilent E1441A Application Information  
51  
Chapter 2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Triggering the Applies only to counted bursts and frequency sweep, not gated modes such  
as Gated Bursts, or FSK modulation. You can issue triggers for bursts and  
sweeps using internal triggering or external triggering. Topics covered on  
Function Generator  
triggering are:  
“Trigger Source Choices” on page 52  
“Ext Trig / FSK / Burst Input Terminal” on page 54  
Trigger Slope  
The Agilent E1441A includes a choice of trigger polarity when the source  
in an external or one of the 8 VXIbus TTLTRG lines. The command to select  
the trigger polarity is:  
TRIGger:SLOPe POSitive | NEGative  
Note TRIG:SLOPE selects the slope of the trigger source only. Where the  
external trigger sources ("Ext Trig" and TTLTRG lines) are being used as a  
gating signal for Burst and FSK, the setting of TRIG:SLOPE is ignored  
POS: (*RST state) For TRIG:SOUR EXT (Ext Trig/FSK/Burst terminal);  
triggers on positive going TTL signal.  
For TRIG:SOUR TTLT<0-7>; triggers on negative  
going signal on VXIbus TTLTRG line (ground true  
logic)  
NEG:  
For TRIG:SOUR EXT (Ext Trig/FSK/Burst terminal);  
triggers on negative going TTL signal.  
For TRIG:SOUR TTLT<0-7>; triggers on positive  
going signal on VXIbus TTLTRG line (+ true logic)  
Trigger Source Choices  
Again, the applies only to counted burst and sweep. You must specify the  
source from which the function generator will accept a trigger.  
The function generator will accept a software (bus) trigger, a hardware  
trigger from the Ext Trig terminal or VXIbus TTLTRG lines, or an  
immediate internal trigger.  
The trigger source setting is stored in volatile memory; the source is set to  
immediate when power has been off or after resetting the module.  
To select the trigger source, use the following command.  
TRIGger:SOURce BUS|EXTernal|IMMediate|TTLTrg<0-7>  
The APPLy command automatically sets the trigger source to IMMediate  
52 Agilent E1441A Application Information  
Chapter 2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Internal Triggering  
Internal triggering is enabled when you turn on the function generator. In  
this mode, the function generator uses a repetitive trigger signal that  
internally triggers waveform bursts or frequency sweeps. The rate at which  
the internal timer generates triggers is dependant on the burst rate, or sweep  
time set (See “Burst Rate” on page 39. and See “Sweep Time” on page 43.).  
To select the internal trigger source for counted bursts, use the following  
commands:  
SOUR:BM:STATe ON  
SOUR:BM:SOURCE INTernal  
TRIGGER:SOURCE INTernal  
To select the internal trigger source for frequency sweeps, use the following  
commands:  
SOUR:SWEEP:STATE ON  
TRIGGER:SOURCE IMMediate  
The *RST and APPLy commands automatically sets the trigger source to  
IMMediate.  
External Triggering (Including TTLTRG lines)  
In this trigger mode, the function generator will accept a hardware trigger  
applied to the Ext Trig terminal, or one of the VXIbus TTLTRG lines. The  
function generator outputs one burst or initiates one sweep each time one of  
these trigger inputs receives the proper polarity of signal edge (set by  
TRIG:SLOPE). NOTE that the default logical sense of the TTLTRG lines,  
as defined by the VXIbus standard, is negative true. See also“Ext  
Trig / FSK / Burst Input Terminal” on page 54.  
Use the following command to set the trigger source to external:  
TRIGger:SOURce EXTernal  
Use the following command to set the trigger source to one of the VXIbus  
TTLTRG lines:  
TRIGger:SOURce TTLTrg<0-7>  
Software (BUS) Triggering  
When TRIG:SOUR is BUS, the function generator can be triggered by  
sending an GPIB bus trigger command. The function generator outputs  
one burst or initiates one sweep each time the trigger command is received.  
To select the bus trigger source, send the following command.  
TRIGGER:SOURCE BUS  
To trigger the function generator send the *TRG (trigger) command.  
You can also trigger the function generator from the GPIB interface via the  
Agilent E1441A Application Information  
53  
Chapter 2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
command module by sending the IEEE-488 Group Execute Trigger (GET)  
message.  
Ext Trig / FSK / Burst The input requirement for an external trigger, FSK input or Burst input is a  
TTL positive-going (when TRIG:SLOPE is POS) or negative-going (when  
TRIG:SLOPE is NEG) pulse that must be >2 microsecond in duration.  
Input Terminal  
The Ext/FSK/Burst Input terminal is used in the following modes:  
Figure 2-14.  
Triggered Sweep Mode: Execute TRIG:SOUR EXT or TTLT<0-7> to  
enable the triggered sweep mode (sweeps must be enabled). When the edge  
(polarity set by TRIG:SLOPE) of a TTL pulse is received on the Ext Trig  
terminal or VXIbus TTLTRG line, the function generator outputs a single  
sweep.  
Externally-Modulated FSK Mode: To enable the externally-modulated  
mode, execute FSK:SOUR EXT when FSK is enabled. When a low TTL level  
is present, the FSK carrier frequency is output. When a high TTL level is  
present, the FSK “hop” frequency is output.  
Counted Burst Mode: Execute TRIG:SOUR EXTto enable the counted  
burst mode (burst must be enabled). When the rising edge of a TTL pulse is  
received, the function generator outputs a burst waveform with the specified  
number of cycles.  
External Gated Burst Mode: To enable the external gated mode, execute  
BM:SOUR EXTwhen burst is enabled. When a high TTL level is present, the  
function generator outputs the carrier waveform. When a low TTL level is  
present, the output is disabled.  
54 Agilent E1441A Application Information  
Chapter 2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
System-Related Operations  
This section gives information on topics such as error conditions and  
self-test. This information is not directly related to waveform generation but  
is an important part of operating the function generator. Topics covered on  
system-related operations are:  
Error Conditions  
Self-Test  
Memory State  
Firmware Revision Query  
SCPI Language Version Query  
Error Conditions When the faceplate Errors LED turns on, one or more command syntax or  
hardware errors have been detected. A record of up to 20 errors can be stored  
in the function generator's error queue. See Appendix B, “Error Messages,”  
for a complete listing of the errors.  
Errors are retrieved in first-in-first-out (FIFO) order. The first error returned  
is the first error that was stored. When you have read all errors from the  
queue, the Errors LED turns off.  
If more than 20 errors have occurred, the last error stored in the queue (the  
most recent error) is replaced with -350, “Too many errors”. No additional  
errors are stored until you remove errors from the queue. If no errors have  
occurred when you read the error queue, the function generator responds  
with +0, “No error”.  
The error queue is cleared when power has been off or after a *CLS (clear  
status) command has been executed. The *RST (reset) command does not  
clear the error queue.  
Use the following command to check for system errors:  
SYSTem:ERRor?  
Reads one error from the error  
queue  
Errors have the following format (the error string may contain up to 80  
characters):  
-113,"Undefined header"  
Self-Test A power-on self-test occurs automatically when you turn on the function  
generator. This limited test assures you that the function generator is  
operational.  
A complete self-test runs a series of tests and takes approximately  
10 seconds to execute. If all tests pass, you can have a high confidence that  
the function generator is fully operational.  
If the self-test fails, the Errors LED turns on the function generator should  
be returned to Agilent Technologies for service.  
Agilent E1441A Application Information  
55  
Chapter 2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Use the following command to perform a self-test:  
*TST?  
Returns “0” if the self-test passes or “1” if it fails. If the self-test fails, an  
error message is also generated with additional information on why the test  
failed. Use the SYSTem:ERRor? command to read the error queue.  
Memory Locations Four memory locations (numbered 0, 1, 2 and 3) are available to store  
instrument configuration states. See the *SAV, *RCL and MEMory  
commands for more information.  
Firmware Revision The function generator has two microprocessors for control of various  
internal systems. You can query the function generator to determine which  
Query  
revision of firmware is installed for each microprocessor.  
The function generator returns two numbers. The first number is the  
firmware revision number for the main generator processor and the second  
is for the input/output processor.  
Use the following command to query the firmware version:  
*IDN?  
Returns GPIB,E1441A,0,A.01.00-A.01.09”  
Be sure to dimension a string variable with at least 41 characters.  
SCPI Language You can determine the SCPI version with which the function generator is in  
compliance by sending a query from the remote interface.  
Version Query  
Use the following command to query the SCPI version:  
SYSTem:VERSion?  
Returns a string in the form “YYYY.V” where the “Y's” represent the year  
of the version, and the “V” represents a version number for that year  
(for example, 1993.0).  
56 Agilent E1441A Application Information  
Chapter 2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Power-On and  
Reset State  
Feature  
Power-On and Reset State  
Output Configuration  
Function  
Sine wave  
Frequency  
1 kHz  
Amplitude (into 50 ohms)  
Offset  
100 mV peak-to-peak  
0.00 Vdc  
Output Units  
Volts peak-to-peak  
50 ohms  
Output Termination  
Modulation  
AM Carrier Waveform  
AM Modulating Waveform  
AM Depth  
1 kHz Sine wave  
100 Hz Sine wave  
100%  
FM Carrier Waveform  
FM Modulating Waveform  
FM Peak Frequency Deviation  
Burst Carrier Frequency  
Burst Count  
1 kHz Sine wave  
10 Hz Sine wave  
100 Hz  
1 kHz Sine wave  
1 cycle  
Burst Rate  
100 Hz  
Burst Starting Phase  
FSK Carrier Frequency  
FSK"Hop" Frequency  
FSK Rate  
0 degrees  
1 kHz Sine wave  
100 Hz Sine wave  
10 Hz  
Modulation State  
Off  
Sweep Start / Stop Frequency  
Sweep Time  
100 Hz / 1 kHz  
1 second  
Sweep Mode  
Linear  
Triggering Operations  
Trigger Source  
Internal  
Calibration  
Calibration State  
Doesn’t change with *RST or  
power-down. See page 74  
Note The power-on state will state will be different if you have enabled the  
auto-recall mode. See “MEMory:STATe:RECall:AUTO OFF | ON | 0 | 1”  
on page 85.  
Agilent E1441A Application Information  
57  
Chapter 2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Application Program Examples  
This section provides programs that demonstrate several applications of the  
Agilent E1441A. You can use these examples to help you learn the  
capabilities of the Agilent E1441A and then to help you develop programs  
for your specific application.  
C Language All of the C Language example programs in this section are written for the  
Agilent 82341A GPIB Interface Card using the Agilent VISA I/O Library.  
Programs  
Compiling and You can find Specific instructions for compiling C language programs for  
the PC in the Agilent VISA User’s Guide. See the section "Compiling and  
Linking an Agilent VISA Program.  
Linking a C  
Program  
Example Programs  
Burst Modulation Program  
/* 1441brst.C - This program sets up a 10,000 cycle sine wave burst with */  
/* a 270 degree starting phase. An offset voltage is added to the burst */  
/* to create a haversine.  
*/  
#include <stdio.h>  
#include <visa.h>  
/*** FUNCTION PROTOTYPE ***/  
void err_handler (ViSession vi, ViStatus x);  
#define DEVICE_ADDRESS "GPIB-VXI0::80::INSTR"  
void main(void)  
{
char buf[512] = {0};  
ViStatus err;  
ViSession defaultRM, funcgen;  
/* Open resource manager and Function Generator sessions*/  
err=viOpenDefaultRM(&defaultRM);  
if(err != VI_SUCCESS) err_handler(funcgen, err);  
else printf("default RM opened OK\n");  
err=viOpen(defaultRM, DEVICE_ADDRESS, VI_NULL,VI_NULL, &funcgen);  
if(err != VI_SUCCESS) err_handler(funcgen, err);  
else printf("instrument session opened OK\n");  
/* Set the timeout value to 10 seconds. */  
viSetAttribute(funcgen, VI_ATTR_TMO_VALUE, 10000);  
/* Reset the module. */  
err=viPrintf(funcgen, "*RST\n");  
if(err != VI_SUCCESS) err_handler(funcgen, err);  
58 Agilent E1441A Application Information  
Chapter 2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
/* Set the output amplitude to be set for 50 ohm load. */  
err=viPrintf(funcgen, "OUTPut:LOAD 50\n");  
if(err != VI_SUCCESS) err_handler(funcgen, err);  
/* configure the E1441A to output a 5 Vp-p, 5 kHz sine wave */  
/* with a 2.5V offset  
*/  
err=viPrintf(funcgen, "SOURce:APPLy:SIN 5000, 2, 2.5\n");  
if(err != VI_SUCCESS) err_handler(funcgen, err);  
/* set the burst modulation source, set 10,000 burst cycles, */  
/* a 270 degree starting phase, a 1 Hz burst rate, enable  
/* the burst state, and output the burst when a negative  
/* going trigger is received on "EXT TRIG" BNC connector  
*/  
*/  
*/  
err=viPrintf(funcgen, "SOURce:BM:SOURce INTernal\n"); /* counted burst mode */  
if(err != VI_SUCCESS) err_handler(funcgen, err);  
err=viPrintf(funcgen, "SOURce:BM:NCYCles 10000\n"); /* 10000 cycle bursts */  
if(err != VI_SUCCESS) err_handler(funcgen, err);  
err=viPrintf(funcgen, "SOURce:BM:PHASe 270\n"); /* 270 degree phase */  
if(err != VI_SUCCESS) err_handler(funcgen, err);  
err=viPrintf(funcgen, "TRIGger:SOURce EXTernal\n"); /* "EXT" trig BNC */  
if(err != VI_SUCCESS) err_handler(funcgen, err);  
err=viPrintf(funcgen, "TRIGger:SLOPe NEG\n"); /* "trigger on negative edge */  
if(err != VI_SUCCESS) err_handler(funcgen, err);  
err=viPrintf(funcgen, "SOURce:BM:STATe ON\n"); /* enable burst mode */  
if(err != VI_SUCCESS) err_handler(funcgen, err);  
/* Now short "EXT TRIG" BNC connector to start 2 second burst */  
/* Check for system errors. */  
err=viQueryf(funcgen, "syst:err?\n", "%t", buf);  
if(err != VI_SUCCESS) err_handler(funcgen, err);  
printf("System error response = %s\n\n", buf);  
/* close the device session */  
viClose(funcgen);  
} /* end of main */  
/*** Error handling function ***/  
void err_handler(ViSession funcgen, ViStatus err)  
{
char buf[1024] = {0};  
viStatusDesc(funcgen, err, buf);  
printf("ERROR = %s\n", buf);  
return;  
}
Agilent E1441A Application Information  
59  
Chapter 2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
AM Modulation and Instrument State Storage  
/* 1441_AM.C - This program sets up the E1441A to output an AM waveform. */  
/* The program also stores the configuration in memory for subsequent  
*/  
/* recall.  
*/  
#include <stdio.h>  
#include <visa.h>  
/*** FUNCTION PROTOTYPE ***/  
void err_handler (ViSession vi, ViStatus x);  
#define DEVICE_ADDRESS "GPIB-VXI0::80::INSTR"  
void main(void)  
{
char buf[512] = {0};  
ViStatus err;  
ViSession defaultRM, funcgen;  
/* Open resource manager and Function Generator sessions*/  
err=viOpenDefaultRM(&defaultRM);  
if(err != VI_SUCCESS) err_handler(funcgen, err);  
err=viOpen(defaultRM, DEVICE_ADDRESS, VI_NULL,VI_NULL, &funcgen);  
if(err != VI_SUCCESS) err_handler(funcgen, err);  
/* Set the timeout value to 10 seconds. */  
viSetAttribute(funcgen, VI_ATTR_TMO_VALUE, 10000);  
/* Reset the module. */  
err=viPrintf(funcgen, "*RST\n");  
if(err != VI_SUCCESS) err_handler(funcgen, err);  
/* Set the output amplitude to be set for 50 ohm load. */  
err=viPrintf(funcgen, "OUTPut:LOAD 50\n");  
if(err != VI_SUCCESS) err_handler(funcgen, err);  
/* configure the E1441A to output a 5 Vp-p, 5 kHz sine wave */  
/* with a 2.5V offset. APPly command is first since it  
/* presets some functions that follow  
*/  
*/  
err=viPrintf(funcgen, "SOURce:APPLy:SIN 5000, 2, 2.5\n");  
if(err != VI_SUCCESS) err_handler(funcgen, err);  
/* set the amplitude modulation source, set a modulation depth */  
/* of 80%, the modulation waveshape to sine, the modulating  
/* frequency to 200 Hz, and enable AM modulation  
*/  
*/  
err=viPrintf(funcgen, "SOURce:AM:SOURce BOTH\n"); /* AM from internal */  
if(err != VI_SUCCESS) err_handler(funcgen, err);  
err=viPrintf(funcgen, "SOURce:AM:DEPTh 80\n"); /* mod depth 80% */  
if(err != VI_SUCCESS) err_handler(funcgen, err);  
err=viPrintf(funcgen, "SOURce:AM:INTernal:FUNCtion SIN\n"); /* AM shape SIN */  
if(err != VI_SUCCESS) err_handler(funcgen, err);  
err=viPrintf(funcgen, "SOURce:AM:INTernal:FREQuency 200\n"); /* AM freq 200 Hz */  
if(err != VI_SUCCESS) err_handler(funcgen, err);  
60 Agilent E1441A Application Information  
Chapter 2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
err=viPrintf(funcgen, "SOURce:AM:STATe ON\n"); /* enable AM mode */  
if(err != VI_SUCCESS) err_handler(funcgen, err);  
/* save this configuration in E1441A memory location 1, use a */  
err=viPrintf(funcgen, "*SAV 1\n");  
if(err != VI_SUCCESS) err_handler(funcgen, err);  
/* Check for system errors. */  
err=viQueryf(funcgen, "syst:err?\n", "%t", buf);  
if(err != VI_SUCCESS) err_handler(funcgen, err);  
printf("System error response = %s\n\n", buf);  
/* close the device session */  
viClose(funcgen);  
} /* end of main */  
/*** Error handling function ***/  
void err_handler(ViSession funcgen, ViStatus err)  
{
char buf[1024] = {0};  
viStatusDesc(funcgen, err, buf);  
printf("ERROR = %s\n", buf);  
return;  
}
Arbitrary Waveform Example  
/* 1441_arb.C - This program sets up the E1441A to output an AM waveform. */  
/* The program also stores the configuration in memory for subsequent  
*/  
/* recall.  
*/  
#include <stdio.h>  
#include <visa.h>  
#include <math.h>  
/*** FUNCTION PROTOTYPE ***/  
void err_handler (ViSession vi, ViStatus x);  
#define DEVICE_ADDRESS "GPIB-VXI0::80::INSTR"  
void main(void)  
{
char buf[512] = {0};  
ViStatus err;  
ViSession defaultRM, funcgen;  
/* program variables */  
ViInt16 i;  
ViReal64 j;  
ViReal64 sinxwave[4096];  
ViReal64 pi;  
ViReal64 max_v;  
ViInt16 idx;  
Agilent E1441A Application Information  
61  
Chapter 2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
/* define pi for sin(x)/x calculation, initalize other variables */  
pi = 3.141592654;  
max_v = 0;  
idx = 0;  
/* do this for Borland EasyWin programs */  
#if defined(__BORLANDC__) && !defined (__WIN32__)  
_InitEasyWin();  
#endif  
/* Open resource manager and Function Generator sessions*/  
err=viOpenDefaultRM(&defaultRM);  
if(err != VI_SUCCESS) err_handler(funcgen, err);  
err=viOpen(defaultRM, DEVICE_ADDRESS, VI_NULL, VI_NULL, &funcgen);  
if(err != VI_SUCCESS) err_handler(funcgen, err);  
/* Set the timeout value to 10 seconds. */  
viSetAttribute(funcgen, VI_ATTR_TMO_VALUE, 10000);  
/* compute sin(x)/x waveform */  
for (i=-2047; i<2048; i++)  
{
j = (ViReal64)i;  
if(i==0) j=1.E-38;  
sinxwave[i+2048] = ((sin(2*pi*0.53125*j/256))/(0.53125*j/256)*0.159154943092);  
}
/* download the computed waveform into E1441A volatile memory */  
err = viPrintf(funcgen,"DATA VOLATILE");  
for ( i=0; i < 4096; i++ )  
{
err = viPrintf( funcgen, ",%f", sinxwave[i] );  
}
err = viPrintf(funcgen,"\n");  
if(err != VI_SUCCESS) err_handler(funcgen, err);  
/* copy the arbitrary waveform data from volatile memory to a */  
/* named non-volatile memory location  
*/  
err=viPrintf(funcgen, "DATA:COPY MYSINE\n");  
if(err != VI_SUCCESS) err_handler(funcgen, err);  
/* select the user defined arbitrary waveform by name */  
err=viPrintf(funcgen, "SOURce:FUNCtion:USER MYSINE\n");  
if(err != VI_SUCCESS) err_handler(funcgen, err);  
/* configure the E1441A to output a 5 Vp-p, 5 kHz arb wave */  
/* APPly command is first since it sets some functions that */  
/* follow  
*/  
err=viPrintf(funcgen, "SOURce:APPLy:USER 5000, 5, 0\n");  
if(err != VI_SUCCESS) err_handler(funcgen, err);  
/* Check for system errors. */  
err=viQueryf(funcgen, "syst:err?\n", "%t", buf);  
if(err != VI_SUCCESS) err_handler(funcgen, err);  
printf("System error response = %s\n\n", buf);  
62 Agilent E1441A Application Information  
Chapter 2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
/* close the device session */  
viClose(funcgen);  
} /* end of main */  
/*** Error handling function ***/  
void err_handler(ViSession funcgen, ViStatus err)  
{
char buf[1024] = {0};  
viStatusDesc(funcgen, err, buf);  
printf("ERROR = %s\n", buf);  
return;  
}
Agilent E1441A Application Information  
63  
Chapter 2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
64 Agilent E1441A Application Information  
Chapter 2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Chapter 3  
Agilent E1441A SCPI Command Reference  
This chapter describes the Standard Commands for Programmable Instruments  
(SCPI) and IEEE 488.2 common (*) commands applicable to the Agilent E1441A  
Function / Arbitrary Waveform Generator.  
Command Index by Function. . . . . . . . . . . . . . . . . . . . . . . . . . page 65  
Command Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 70  
SCPI Command Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . page 72  
IEEE 488.2Common CommandReference . . . . . . . . . . . . . . page 124  
SCPI Command Quick Reference . . . . . . . . . . . . . . . . . . . . . page 131  
Command Index by Function  
The APPLy commands  
[SOURce:]APPLy:SINusoid [<frequency>[,<amplitude>[,<offset>]]]. . . . . . . . . . . . . . page 100  
[SOURce:]APPLy:SQUare [<frequency>[,<amplitude>[,<offset>]]]. . . . . . . . . . . . . . . page 101  
[SOURce:]APPLy:TRIangle [<frequency>[,<amplitude>[,<offset>]]]. . . . . . . . . . . . . . page 101  
[SOURce:]APPLy:RAMP [<frequency>[,<amplitude>[,<offset>]]] . . . . . . . . . . . . . . . page 100  
[SOURce:]APPLy:NOISe [<frequency|DEF>[,<amplitude|DEF>[, <offset>]]]. . . . . . . page 100  
[SOURce:]APPLy:DC[<frequency|DEF>[,<amplitude|DEF>[, <offset>]]] . . . . . . . . . . page 100  
[SOURce:]APPLy:USER [<frequency>[,<amplitude>[,<offset>]]] . . . . . . . . . . . . . . . . page 101  
[SOURce:]APPLy?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 101  
Output Configuration Commands  
[SOURce:]FUNCtion:SHAPe SIN|SQU|TRI|RAMP|NOIS|DC|USER. . . . . . . . . . . . . . . page 111  
[SOURce:]FUNCtion:SHAPe? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 112  
[SOURce:]FREQuency <frequency>|MIN|MAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 106  
[SOURce:]FREQuency? [MIN|MAX]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 107  
[SOURce:]PULSe:DCYCle <percent>|MIN|MAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 112  
[SOURce:]PULSe:DCYCle? [MIN|MAX] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 113  
[SOURce:]VOLTage <amplitude>|MIN|MAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 114  
[SOURce:]VOLTage? [MIN|MAX] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 115  
[SOURce:]VOLTage:OFFSet <offset>|MIN|MAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 115  
[SOURce:]VOLTage:OFFSet? [MIN|MAX] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 116  
[SOURce:]VOLTage:UNIT VPP|VRMS|DBM|DEF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 116  
[SOURce:]VOLTage:UNIT? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 116  
OUTPut:LOAD 50|INFinity|MIN|MAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 87  
OUTPut:LOAD? [MIN|MAX]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 87  
Agilent E1441A SCPI Command Reference  
65  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
OUTPut:SYNC OFF|ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 88  
OUTPut:SYNC?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 88  
MEMory:STATe:DELete 0|1|2|3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 85  
*SAV 0 | 1 | 2 | 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 128  
*RCL 0 | 1 | 2 | 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 127  
Modulation Commands  
[SOURce:]AM:DEPTh <depth in percent>|MIN|MAX. . . . . . . . . . . . . . . . . . . . . . . . . . . page 93  
[SOURce:]AM:DEPTh? [MIN|MAX] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 94  
[SOURce:]AM:INTernal:FUNCtion SIN|SQU|TRI|RAMP|NOIS|USER . . . . . . . . . . . . . page 94  
[SOURce:]AM:INTernal:FUNCtion? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 94  
[SOURce:]AM:INTernal:FREQuency<frequency>|MIN|MAX . . . . . . . . . . . . . . . . . . . . page 94  
[SOURce:]AM:INTernal:FREQuency? [MIN|MAX] . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 94  
[SOURce:]AM:SOURce BOTH|EXTernal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 94  
[SOURce:]AM:SOURce? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 95  
[SOURce:]AM:STATe OFF|ON. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 95  
[SOURce:]AM:STATe? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 95  
[SOURce:]FM:DEViation <peak deviation in Hz>|MIN|MAX. . . . . . . . . . . . . . . . . . . . page 105  
[SOURce:]FM:DEViation? [MIN|MAX]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 105  
[SOURce:]FM:INTernal:FUNCtion SIN|SQU|TRI|RAMP |NOIS |USER . . . . . . . . . . . page 106  
[SOURce:]FM:INTernal:FUNCtion?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 106  
[SOURce:]FM:INTernal:FREQuency <frequency>|MIN |MAX. . . . . . . . . . . . . . . . . . . page 105  
[SOURce:]FM:INTernal:FREQuency? [MIN|MAX] . . . . . . . . . . . . . . . . . . . . . . . . . . . page 106  
[SOURce:]FM:STATe OFF|ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 106  
[SOURce:]FM:STATe?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 106  
[SOURce:]BM:NCYCles <# cycles>|INFinity|MIN|MAX . . . . . . . . . . . . . . . . . . . . . . . page 102  
[SOURce:]BM:NCYCles? [MIN|MAX] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 102  
[SOURce:]BM:PHASe <degrees>|MIN|MAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 103  
[SOURce:]BM:PHASe? [MIN|MAX] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 103  
[SOURce:]BM:INTernal:RATE <frequency>|MIN|MAX. . . . . . . . . . . . . . . . . . . . . . . . page 103  
[SOURce:]BM:INTernal:RATE? [MIN|MAX] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 104  
[SOURce:]BM:SOURce INTernal|EXTernal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 104  
[SOURce:]BM:SOURce?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 104  
[SOURce:]BM:STATe OFF|ON. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 104  
[SOURce:]BM:STATe? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 104  
[SOURce:]FSKey:FREQuency <frequency>|MIN|MAX . . . . . . . . . . . . . . . . . . . . . . . . page 109  
[SOURce:]FSKey:FREQuency? [MIN|MAX]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 109  
[SOURce:]FSKey:INTernal:RATE <rate in Hz>|MIN|MAX . . . . . . . . . . . . . . . . . . . . . page 109  
[SOURce:]FSKey:INTernal:RATE? [MIN|MAX]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 109  
[SOURce:]FSKey:SOURce INTernal|EXTernal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 109  
[SOURce:]FSKey:SOURce? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 110  
[SOURce:]FSKey:STATe OFF|ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 110  
[SOURce:]FSKey:STATe? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 110  
TRIGger:SOURce BUS|EXTernal|IMMediate|TTLTrg<n> . . . . . . . . . . . . . . . . . . . . . . page 121  
TRIGger:SOURce? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 123  
66 Agilent E1441A SCPI Command Reference  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Sweep Commands  
[SOURce:]FREQuency:STARt <frequency>|MIN|MAX . . . . . . . . . . . . . . . . . . . . . . . . page 107  
[SOURce:]FREQuency:STARt? [MIN|MAX]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 108  
[SOURce:]FREQuency:STOP <frequency>|MIN|MAX . . . . . . . . . . . . . . . . . . . . . . . . . page 108  
[SOURce:]FREQuency:STOP? [MIN|MAX] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 108  
[SOURce:]SWEep:SPACing LINear|LOGarithmic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 113  
[SOURce:]SWEep:SPACing? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 113  
[SOURce:]SWEep:TIME <time>|MIN|MAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 113  
[SOURce:]SWEep:TIME? [MIN|MAX] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 113  
[SOURce:]SWEep:STATe OFF|ON. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 114  
[SOURce:]SWEep:STATe? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 114  
TRIGger:SOURce BUS|EXTernal|IMMediate|TTLTrg<n> . . . . . . . . . . . . . . . . . . . . . . page 121  
TRIGger:SOURce? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 123  
Arbitrary Waveform Commands  
[SOURce:]FUNCtion:USER <arb name>|VOLATILE . . . . . . . . . . . . . . . . . . . . . . . . . . . page 110  
[SOURce:]FUNCtion:USER? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 111  
[SOURce:]FUNCtion:SHAPe SIN|SQU|TRI|RAMP|NOIS|DC|USER. . . . . . . . . . . . . . . page 111  
[SOURce:]FUNCtion:SHAPe? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 112  
DATA VOLATILE, <value>, <value>,. . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 77  
DATA:DAC VOLATILE, <binary block>|(<value>, <value>, . . . ) . . . . . . . . . . . . . . . . page 78  
DATA:ATTRibute:AVERage? [<arb name>]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 79  
DATA:ATTRibute:CFACtor? [<arb name>] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 79  
DATA:ATTRibute:POINts? [<arb name>]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 80  
DATA:ATTRibute:PTPeak? [<arb name>] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 80  
DATA:CATalog?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 81  
DATA:COPY <destination arb name> [,VOLATILE]. . . . . . . . . . . . . . . . . . . . . . . . . . . . page 81  
DATA:DELete <arb name> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 82  
DATA:DELete:ALL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 83  
DATA:NVOLatile:CATalog? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 83  
DATA:NVOLatile:FREE? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 83  
FORMat:BORDer NORMal|SWAPped . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 84  
FORMat:BORDer?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 84  
Trigger Commands  
TRIGger:SLOPe Positive | NEGative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 121  
TRIGger:SLOPe? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 121  
TRIGger:SOURce BUS|EXTernal|IMMediate|TTLTrg<n> . . . . . . . . . . . . . . . . . . . . . . page 121  
TRIGger:SOURce? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 123  
*TRG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 129  
Agilent E1441A SCPI Command Reference  
67  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
System-Related Commands  
SYSTem:ERRor? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 120  
SYSTem:VERSion? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 120  
MEMory:STATe:DELete 0|1|2|3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 85  
MEMory:STATe:RECall:AUTO OFF | ON | 0 | 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 85  
MEMory:STATe:RECall:AUTO? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 86  
*IDN? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 126  
*RST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 127  
*TST? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 129  
*SAV 0 | 1 | 2 | 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 128  
*RCL 0 | 1 | 2 | 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 127  
Calibration Commands  
CALibration:COUNt? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 73  
CALibration:SECure:CODE <new code> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 74  
CALibration:SECure:STATe OFF | ON, <code> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 74  
CALibration:SECure:STATe? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 75  
CALibration:SETup <0 | 1 | 2 | 3 | . . . | 84> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 75  
CALibration:SETup? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 75  
CALibration:STRing <quoted string> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 75  
CALibration:STRing? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 76  
CALibration:VALue <cal_value> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 76  
CALibration:VALue? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 76  
Status Reporting Commands  
SYSTem:ERRor? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 120  
*CLS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 125  
*ESE <unmask>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 125  
*ESE? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 125  
*ESR?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 125  
*OPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 126  
*OPC? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 126  
*OPT?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 126  
*PSC 0 | 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 127  
*PSC? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 127  
*SRE <unmask>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 128  
*SRE?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 129  
*STB?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 129  
*WAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 129  
68 Agilent E1441A SCPI Command Reference  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
The IEEE-488.2 Common Commands  
*CLS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 125  
*ESE <unmask>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 125  
*ESE? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 125  
*ESR?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 125  
*IDN? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 126  
*OPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 126  
*OPC? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 126  
*OPT?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 126  
*PSC 0 | 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 127  
*PSC? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 127  
*RST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 127  
*SAV 0 | 1 | 2 | 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 128  
*RCL 0 | 1 | 2 | 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 127  
*SRE <unmask>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 128  
*SRE?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 129  
*STB?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 129  
*TST? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 129  
*WAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 129  
Option 001 Phase-Lock Commands  
PHASe:ADJust <radians>|<degrees>DEG |MIN|MAX. . . . . . . . . . . . . . . . . . . . . . . . . . page 90  
PHASe:ADJust? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 91  
PHASe:REFerence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 91  
PHASe:UNLock:ERRor:STATe OFF|ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 91  
PHASe:UNLock:ERRor:STATe? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 91  
OUTPut:TRIGger:IMMediate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 88  
OUTPut:TRIGger:STATe OFF|ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 88  
OUTPut:TRIGger:STATe? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 88  
OUTPut:TTLTrg<n>[:STATe] ON|OFF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 88  
OUTPut:TTLTrg<n>[:STATe]? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 89  
*OPT?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 126  
Agilent E1441A SCPI Command Reference  
69  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Command Fundamentals  
Commands are separated into two types: IEEE 488.2 Common Commands and SCPI  
Commands.  
Common The IEEE 488.2 standard defines the Common commands that perform functions  
like reset, self-test, status byte query, etc. Common commands are four or five  
characters in length, always begin with the asterisk character (*), and may include  
Command  
Format one or more parameters. The command keyword is separated from the first  
parameter by a space character. Some examples of common commands are shown  
below:  
*RST  
*ESR 32  
*STB?  
SCPI The SCPI commands perform functions such as making measurements, querying  
instrument states, or retrieving data. A command subsystem structure is a  
hierarchical structure that usually consists of a top level (or root) command, one or  
Command  
Format more low-level commands, and their parameters. The following example shows the  
root command CALibration and its lower-level subsystem commands:  
CALibration  
:COUNt?  
:SECure:CODe < new code>  
:SECure:STATe OFF | ON, <code>  
:SECure:STATe?  
:SETup < 0 | 1 | 2 | 3 | . . . | 84  
:SETup?  
:STRing < quoted string>  
:STRing?  
:VALue < value>  
:VALue?  
CALibration is the root command, COUNt?, SECure, SETup, SETup?, STRing and  
STRing? are second level commands, and CODE, STATe and STATe? are third  
level commands.  
Command A colon (:) always separates one command from the next lower level command as  
shown below:  
Separator  
CALibration:SECure:STATe?  
Colons separate the root command from the second level command  
(CALibration:SECure) and the second level from the third level (SECure:STATe?).  
Abbreviated The command syntax shows most commands as a mixture of upper and lower case  
letters. The upper case letters indicate the abbreviated spelling for the command.  
Commands  
For shorter program lines, send the abbreviated form. For better program  
readability, you may send the entire command. The instrument will accept either the  
abbreviated form or the entire command.  
For example, if the command syntax shows FREQuency, then FREQ and  
FREQUENCY are both acceptable forms. Other forms of FREQuency, such as  
FREQU or FREQUEN will generate an error. You may use upper or lower case  
letters. Therefore, FREQUENCY, frequency, and FrEqUeNcY are all acceptable.  
70 Agilent E1441A SCPI Command Reference  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Implied Implied commands are those which appear in square brackets ([ ]) in the command  
syntax. (Note that the brackets are not part of the command and are not sent to the  
Commands  
instrument.) Suppose you send a second level command but do not send the  
preceding implied command. In this case, the instrument assumes you intend to use  
the implied command and it responds as if you had sent it. Examine the partial  
SOURce subsystem shown below:  
[SOURce:]  
FUNCtion  
[:SHAPe] "<shape>"(e.g., <shape> = SQUare)  
[:SHAPe]?  
FREQuency <frequency> | MINimum | MAXimum  
FREQuency? [ MINimum|MAXimum ]  
The root command SOURce: is an implied command. For example, to set the  
function generator's function to a square wave, you can send either of the following  
command statements:  
SOUR:FUNC SQU  
or  
FUNC SQU  
Parameters Parameter Types. The following table contains explanations and examples of  
parameter types you might see later in this chapter.  
Parameter Type  
Explanations and Examples  
Numeric  
Accepts all commonly used decimal representations of number  
including optional signs, decimal points, and scientific notation.  
123, 123E2, -123, -1.23E2, .123, 1.23E-2, 1.23000E-01.  
Special cases include MINimum, MAXimum, and DEFault.  
Boolean  
Discrete  
Represents a single binary condition that is either true or false.  
ON, OFF, 1, 0  
Selects from a finite number of values. These parameters  
use mnemonics to represent each valid setting.  
An example is the TRIGger:SOURce <source> command where  
source can be BUS, EXT, or IMM.  
Optional Parameters. Parameters shown within square brackets ([ ]) are optional  
parameters. (Note that the brackets are not part of the command and are not sent to  
the instrument.) If you do not specify a value for an optional parameter, the  
instrument chooses a default value. For example, consider the AM:DEPTh? [MIN |  
MAX] command. If you send the command without specifying a MINimum or  
MAXimum parameter, the present AM:DEPTh value is returned. If you send the  
MIN parameter, the command returns the minimum AM modulation depth available.  
If you send the MAX parameter, the command returns the maximum AM  
modulation depth available. Be sure to place a space between the command and the  
parameter.  
Linking Linking IEEE 488.2 Common Commands with SCPI Commands. Use a  
semicolon between the commands. For example:  
Commands  
*RST;OUTP:LOAD INF  
or  
TRIG:SOUR BUS;*TRG  
Linking Multiple SCPI Commands. Use both a semicolon and a colon between  
the commands. For example:  
OUTP:LOAD 50;:APPL:RAMP  
Agilent E1441A SCPI Command Reference  
71  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
SCPI Command Reference  
This section describes the Standard Commands for Programmable Instruments  
(SCPI) for the Agilent E1441A Function / Arbitrary Waveform Generator.  
Commands are listed alphabetically by subsystem and also within each subsystem.  
Command Command guides are printed in the top margin of each page. The left guide indicates  
the first command listed on that page. The right guide indicates the last command  
listed on that page. If a single command appears on a page, the left and right guides  
Guides  
will be the same.  
72 Agilent E1441A SCPI Command Reference  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CALibration  
The CALibration command subsystem allows you to enter a security code to prevent  
accidental or unauthorized calibrations of the function generator. The function  
generator is secured when you receive it (see the factory- shipped security code in  
the CALibration:SECure:CODE command). You must unsecure the function  
generator by entering the correct security code before you can calibrate it (see  
CALibration:SECure:STATe OFF|ON command).  
Subsystem Syntax  
CALibration?  
CALibration  
:COUNt?  
:SECure:CODE <new code>  
:SECure:STATe OFF | ON, <code>  
:SECure:STATe?  
:SETup <0 | 1 | 2 | 3 | . . . | 86>  
:SETup?  
:STRing <quoted string>  
:STRing?  
:VALue <value>  
:VALue?  
CALibration?  
CALibration? performs a calibration using the specified calibration value set by the  
CALibration:VALue command.  
Comments  
Execution of this command begins the electronic adjustment for the function  
and range the function generator is set to. The adjustment is performed based  
on the value stated in the CAL:VAL command and the function generator  
expects that value at the input terminals.  
Returns "+0" to indicate there are no calibration errors and calibration was  
performed. A "1" is returned if a calibration error occurs and a calibration is  
unable to be performed.  
An error message is reported to the output buffer if a calibration is unable to be  
performed.  
You must set CALibration:SECure:STATe OFF <code> to allow a calibration  
to be performed. This requires that you know the calibration secure code. The  
secure state enabled prevents unauthorized calibration of the function  
generator.  
:COUNt?  
CALibration:COUNt? queries the function generator to determine the number of  
times a point calibration has occurred. A complete calibration of the function  
generator increases the count by the number of points calibrated. It is not a record of  
complete calibrations. The count is stored in non-volatile memory.  
Agilent E1441A SCPI Command Reference  
73  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Comments  
*RST does not change the calibration count stored in non-volatile memory.  
Example Querying the number of occurrences of point calibrations:  
CAL:COUN?  
Query the calibration count  
:SECure:CODE  
CALibration:SECure:CODE <new code> enters a new calibration security code.  
To change the security code, first unsecure the function generator using the old  
security code with CAL:SEC:STAT OFF, <old code>. Then, enter the new code  
with CAL:SEC:CODE <new code>. The calibration security code may contain  
up to 12 characters. The security code is stored in non-volatile memory.  
Comments  
The security code is set to "HP_E1441" when the function generator is shipped  
from the factory. The security code is stored in non-volatile memory, and does  
not change when power has been off or after a remote interface reset.  
The security code <new code> can contain up to 12 alphanumeric characters.  
The first character must be a letter. The remaining characters can be letters or  
numbers or an underscore. You do not have to use all 12 characters but the  
first character must be a letter.  
If you forget or lose the active security code, you can disable the security  
feature by adding a jumper inside the function generator . You then enter a new  
code and remove the jumper. See “Unsecuring the Function Generator (Lost  
Security Code)” on page 175.  
Example Enter a new calibration security code:  
CAL:SEC:STAT OFF, HP_E1441  
CAL:SEC:CODE the_new_code  
Unsecure with the old code.  
Enter a new calibration code  
(a maximum of 12 characters).  
:SECure:STATe  
CALibration:SECure:STATe OFF | ON, <code> unsecures or secures the  
function generator for calibration. The calibration code must be the code set by the  
CAL:SEC:CODE command. The state is stored in non-volatile memory.  
Parameters  
Parameter Name Parameter Type  
Range of Values  
Default Units  
none  
OFF|ON  
boolean  
discrete  
OFF | 0 | ON | 1  
code  
up to 12 characters  
set by :SEC:CODE  
none  
74 Agilent E1441A SCPI Command Reference  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Comments  
You can substitute decimal values for the OFF (“0”) and ON (“1”) parameters.  
The function generator calibration is secured when shipped from the factory  
and the security code is set to "HP_E1441".  
*RST does not change the state.  
Example Set the calibration state to unsecured:  
CAL:SEC:STAT OFF,HP_E1441  
Unsecure function generator calibration.  
:SECure:STATe?  
CALibration:SECure:STATe? returns a "1" or "0" to show whether the calibration  
security state is enabled (1) or disabled (0). The number is sent to the output buffer.  
Example Query the calibration security state:  
CAL:SEC:STAT?  
Query function generator calibration  
security state  
enter statement  
Enter value into computer.  
:SETup  
:SETup?  
:STRing  
CALibration:SETup <0 | 1 | 2 | 3 | . . . | 84> configure the function generator's  
internal state for each of the calibration steps to be performed.  
CALibration:SETup? queries the calibration setup number. Returns a value  
between 0 and 84.  
CALibration:STRing <quoted string> allows you to record calibration  
information about your function generator while CAL:SEC:STAT is OFF. For  
example, you can store information such as the last calibration date and/or the next  
calibration due date. The calibration message may contain up to 40 characters. The  
string is stored in non-volatile memory.  
Parameters  
Comments  
Parameter Name  
Parameter Type  
Range of Values  
Default Units  
quoted string  
discrete  
alphanumeric  
none  
The calibration message can contain up to 40 characters.  
Calibration security state must be OFF to store a string.  
Agilent E1441A SCPI Command Reference  
75  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
The calibration message is stored in non-volatile memory and does not change  
when power has been off or after a remote interface reset.  
Example Enter calibration information to record the next calibration date:  
CAL:STR 'Cal 4/4/YY, Due 10/4/YY'  
Enter a calibration message to record the  
cal date of April 4 and next cal due date  
as October 4 (YY = year of due date).  
:STRing?  
CALibration:STRing? queries the calibration message and returns a quoted string  
(or a null string " " if nothing is present).  
Example Query the calibration message:  
CAL:STR?  
enter statement  
Query the calibration message.  
Enter value into computer.  
:VALue  
CALibration:VALue <cal_value> specifies the value of the known calibration  
signal used by the calibration procedure. See “General Calibration/Adjustment  
Procedure” on page 177..  
Parameters  
Parameter Name  
Parameter Type  
Range of Values  
Default Units  
cal_value  
numeric  
See Cal/Adj on page 177  
none  
Comment  
*RST does not affect the calibration value.  
Example Enter the known value for the calibration source signal:  
CAL:VAL 10.0  
Enter calibration value .  
:VALue?  
CALibration:VALue? queries the present calibration value.  
Example Query the calibration value:  
CAL:VAL?  
enter statement  
Query the calibration value.  
Enter value into computer.  
76 Agilent E1441A SCPI Command Reference  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
DATA  
Subsystem  
Syntax  
DATA VOLATILE, <value>,<value>, . . .  
DATA:DAC VOLATILE, <binary block> | <value>,<value>, . . .  
DATA  
:ATTRibute:AVERage? [<arb name>]  
:ATTRibute:CFACtor? [<arb name>]  
:ATTRibute:POINts? [<arb name>]  
:ATTRibute:PTPeak? [<arb name>]  
:CATalog?  
:COPY <destination arb name> [,VOLATILE]  
:DELete <arb name>  
:DELete:ALL  
:NVOLatile:CATalog?  
:NVOLatile:FREE?  
VOLATILE  
DATA VOLATILE, <value>, <value>,. . . is used to download floating-point values  
between -1 and +1 into volatile memory. You can download between 8 and 16,000  
points per waveform.  
Comments  
The values -1 and +1 correspond to the peak values of the waveform.  
For example, if you set the amplitude to 10 Vpp, “-1” corresponds to -5 volts  
and “+1” corresponds to +5 volts.  
The maximum amplitude will be limited if the data points do not span the full  
range of the output DAC (Digital-to-Analog Converter). For example, the  
built-in “SINC” waveform does not use the full range of values between 1 and  
therefore its maximum amplitude is 6.084 Vpp (into 50 ohms).  
Downloading floating-point values (using DATA VOLATILE) is slower than  
downloading binary values (using DATA:DAC VOLATILE) but is more  
convenient when using trigonometric functions which return values between  
-1 and +1.  
The DATA VOLATILE command overwrites the previous waveform in  
VOLATILE memory (no error is generated). Use the DATA:COPY command to  
copy the waveform to non-volatile memory.  
Up to four user-defined waveforms can be stored in non-volatile memory. Use  
the DATA:DEL command to delete the waveform in VOLATILE memory or any  
of the four user-defined waveforms in non-volatile memory. Use the  
DATA:CAT? command to list all waveforms currently stored in volatile and  
non-volatile memory (and the built-in waveforms).  
After downloading the waveform data to memory, use the FUNC:USER  
command to choose the active waveform and the FUNC:SHAP USER  
command to output it.  
Agilent E1441A SCPI Command Reference  
77  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
The following statement shows how to use the DATA VOLATILE command to  
download nine points to volatile memory:  
"DATA VOLATILE, 1,.75,.5,.25,0,-.25,-.5,-.75,-1"  
:DAC VOLATILE  
DATA:DAC VOLATILE, <binary block>|(<value>, <value>, . . . ) downloadsbinary  
integer values between -2047 and +2047 into volatile memory. You can download  
between 8 and 16,000 points per waveform in IEEE-488.2 binary block format or as  
a list of values. The binary range of values corresponds to the values available using  
internal 12-bit DAC (Digital-to-Analog Converter) codes.  
Comments  
The values -2047 and +2047 correspond to the peak values of the waveform.  
For example, if you have set the output amplitude to 10 Vpp,  
“-2047” corresponds to -5 volts and “+2047” corresponds to +5 volts.  
The maximum amplitude will be limited if the data points do not span the full  
range of the output DAC (Digital-to-Analog Converter). For example, the  
built-in “SINC” waveform does not use the full range of values between 1 and  
therefore its maximum amplitude is 6.084 Vpp (into 50 ohms).  
The DATA:DAC VOLATILE command overwrites the previous waveform in  
VOLATILE memory (no error is generated). Use the DATA:COPY command to  
copy the waveform to non-volatile memory.  
Up to four user-defined waveforms can be stored in non-volatile memory. Use  
the DATA:DEL command to delete the waveform in VOLATILE memory or any  
of the four user-defined waveforms in non-volatile memory. Use the  
DATA:CAT? command to list all waveforms currently stored in volatile and  
non-volatile memory (and the built-in waveforms).  
After downloading the waveform data to memory, use the FUNC:USER  
command to choose the active waveform and the FUNC:SHAP USER  
command to output it.  
The following statement shows how to use the DATA:DAC VOLATILE  
command to download eight integer points using the binary block format (see  
also “Using the IEEE-488.2 Binary Block Format” below):  
"DATA:DAC VOLATILE, #216 Binary Data  
The following statement shows how to download eight integer points (eight  
<value>s) with the DATA:DAC VOLATILE command:  
"DATA:DAC VOLATILE, 2047,1536,1024,512,0,-512,-1536,-2047"  
78 Agilent E1441A SCPI Command Reference  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Downloading a Using the IEEE-488.2 Binary Block Format  
Binary Block of  
In the binary block format, a block header precedes the waveform data.  
The block header has the following format:  
Data  
#532000  
where:# = Start of data block  
5 = Number of digits to follow  
32000 = Even number of bytes to follow  
(32,000 bytes = 16,000 points)  
The function generator represents binary data as 12-bit integers;the data is sent  
as two bytes. Therefore, the total number of bytes is always twice the  
number of data points in the waveform (and must always be an even  
number ). For example, 32,000 bytes are required to download a waveform  
with 16,000 points.  
Use the FORM:BORD command to select the byte order for binary transfers in  
block mode. If you specify FORM:BORD NORM (default), the most-significant  
byte (MSB) of each data point is sent first. If you specify FORM:BORD SWAP,  
the least-significant byte (LSB) of each data point is sent first. Most PCs use  
the “swapped” byte order.  
:ATTRibute:AVERage?  
DATA:ATTRibute:AVERage? [<arb name>] queries the arithmetic average of all  
data points for the specified arbitrary waveform. The default arb name is the  
arbitrary waveform currently active (selected with FUNC:USER command).  
Parameters  
The arb name may contain up to 8 characters. The first character must be a  
letter (A-Z), but the remaining characters can be numbers (0-9) or the  
underscore character (“ _ ”). Blank spaces are not allowed. If you specify a  
name with more than 8 characters, a +783, “Arb waveform name too long”  
error is generated.  
The function generator does not distinguish between upper- and lower-case  
letters for the arbitrary waveform name. Therefore, ARB_1 and arb_1 are the  
same name. All characters are converted to upper case.  
Comments  
If you query a waveform that is not currently stored in memory, a +785,  
“Specified arb waveform does not exist” error is generated.  
:ATTRibute:CFACtor?  
DATA:ATTRibute:CFACtor? [<arb name>] queries the crest factor of all data  
points for the specified arbitrary waveform. Crest factor is the ratio of the peak value  
to the RMS value of the waveform. The default arb name is the arbitrary waveform  
currently active (selected with FUNC:USER command).  
Agilent E1441A SCPI Command Reference  
79  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Parameters  
The arb name may contain up to 8 characters. The first character must be a  
letter (A-Z), but the remaining characters can be numbers (0-9) or the  
underscore character (“ _ ”). Blank spaces are not allowed. If you specify a  
name with more than 8 characters, a +783, “Arb waveform name too long”  
error is generated.  
The function generator does not distinguish between upper- and lower-case  
letters for the arbitrary waveform name. Therefore, ARB_1 and arb_1 are the  
same name. All characters are converted to upper case.  
Comments  
If you query a waveform that is not currently stored in memory, a +785,  
“Specified arb waveform does not exist” error is generated.  
:ATTRibute:POINts?  
DATA:ATTRibute:POINts? [<arb name>] queries the number of points in the  
specified arbitrary waveform. Returns a value between 8 and 16,000 points. The  
default arb name is the arbitrary waveform currently active (selected with  
FUNC:USER command).  
Parameters  
The arb name may contain up to 8 characters. The first character must be a  
letter (A-Z), but the remaining characters can be numbers (0-9) or the  
underscore character (“ _ ”). Blank spaces are not allowed. If you specify a  
name with more than 8 characters, a +783, “Arb waveform name too long”  
error is generated.  
The function generator does not distinguish between upper- and lower-case  
letters for the arbitrary waveform name. Therefore, ARB_1 and arb_1 are the  
same name. All characters are converted to upper case.  
Comments  
If you query a waveform that is not currently stored in memory, a +785,  
“Specified arb waveform does not exist” error is generated.  
:ATTRibute:PTPeak?  
DATA:ATTRibute:PTPeak? [<arb name>] queries the peak-to-peak value of all  
data points for the specified arbitrary waveform. The default arb name is the  
arbitrary waveform currently active (selected with FUNC:USER command).  
Parameters  
The arb name may contain up to 8 characters. The first character must be a  
letter (A-Z), but the remaining characters can be numbers (0-9) or the  
underscore character (“ _ ”). Blank spaces are not allowed. If you specify a  
name with more than 8 characters, a +783, “Arb waveform name too long”  
error is generated.  
The function generator does not distinguish between upper- and lower-case  
letters for the arbitrary waveform name. Therefore, ARB_1 and arb_1 are the  
same name. All characters are converted to upper case.  
80 Agilent E1441A SCPI Command Reference  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Comments  
This command returns a value between “0” and “+1.0”, with “+1.0” indicating  
full amplitude available (100%).  
The maximum peak-to-peak amplitude will be limited if the data points do not  
span the full range of the output DAC (Digital-to- Analog Converter). For  
example, the built-in “SINC” waveform does not use the full range of values  
between 1 and therefore its maximum peak-to-peak amplitude is 6.084 Vpp  
(into 50 ohms).  
If you query a waveform that is not currently stored in memory, a +785,  
“Specified arb waveform does not exist” error is generated.  
:CATalog?  
DATA:CATalog? lists the names of all waveforms currently downloaded to  
memory. Returns the names of the five built-in waveforms (non-volatile memory),  
VOLATILE” if a waveform is currently downloaded to volatile memory, and all  
user-defined waveforms downloaded to non-volatile memory.  
Comments  
A series of quoted strings separated with commas is returned:  
"SINC","NEG_RAMP","EXP_RISE","EXP_FALL",  
"CARDIAC","VOLATILE","ARB_1","ARB_2"  
Use the DATA:DEL command to delete the waveform in VOLATILE memory or  
any of the user-defined waveforms in non-volatile memory.  
:COPY  
DATA:COPY <destination arb name> [,VOLATILE] copies the waveform from  
volatile memory to the specified name in non-volatile memory.  
The source to be copied is always the waveform in “VOLATILE” memory and the  
"copy to" destination is always in non-VOLATILE memory. You cannot copy to  
VOLATILE memory. Therefore, the VOLATILE parameter is optional and can be  
omitted.  
Parameters  
The arb name may contain up to 8 characters. The first character must be a  
letter (A-Z), but the remaining characters can be numbers (0-9) or the  
underscore character (“ _ ”). Blank spaces are not allowed. If you specify a  
name with more than 8 characters, a +783, “Arb waveform name too long”  
error is generated.  
The function generator does not distinguish between upper- and lower-case  
letters for the arbitrary waveform name. Therefore, ARB_1 and arb_1 are the  
same name. All characters are converted to upper case.  
Comments  
The following built-in waveform names are reserved and cannot be used with  
the DATA:COPY command: SINC, NEG_RAMP, EXP_RISE, EXP_FALL, and  
Agilent E1441A SCPI Command Reference  
81  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CARDIAC. If you specify one of the built-in waveforms, a +782, “Cannot  
overwrite a built-in arb waveform” error is generated.  
If you copy to a waveform name that already exists, the previous waveform is  
overwritten (no error is generated). The five built-in waveforms are protected;  
you cannot overwrite any of them.  
Up to four user-defined waveforms can be stored in non-volatile memory. If  
memory is full and you try to copy a new waveform to non-volatile memory, a  
+781, “Not enough memory” error is generated. Use the DATA:DEL  
command to delete the waveform in VOLATILE memory or any of the four  
user-defined waveforms in non-volatile memory. Use the DATA:CAT?  
command to list all waveforms currently stored in volatile and non-volatile  
memory.  
Example The following statement uses the DATA:COPY command to copy the waveform  
currently in volatile memory to non-volatile memory with file name ARB_1:  
"DATA:COPY ARB_1, VOLATILE"  
"DATA:COPY ARB_1"(optional "VOLATILE" parameter omitted)  
:DELete  
DATA:DELete <arb name> deletes the specified arbitrary waveform from memory.  
You can delete the waveform in volatile memory or any of the four user-defined  
waveforms in non-volatile memory.  
Parameters  
The arb name may contain up to 8 characters. The first character must be a  
letter (A-Z), but the remaining characters can be numbers (0-9) or the  
underscore character (“ _ ”). Blank spaces are not allowed. If you specify a  
name with more than 8 characters, a +783, “Arb waveform name too long”  
error is generated.  
The function generator does not distinguish between upper- and lower-case  
letters for the arbitrary waveform name. Therefore, ARB_1 and arb_1 are the  
same name. All characters are converted to upper case.  
Comments  
You cannot delete the arbitrary waveform that is currently being output. If you  
attempt to delete the waveform being output, a +787, “Cannot delete an active  
arb waveform” error is generated.  
You cannot delete any of the five built-in arbitrary waveforms. If you attempt  
to delete one of the built-in waveforms, a +786, “Cannot delete a built-in arb  
waveform” error is generated.  
Use the DATA:DEL:ALL command to delete the waveform in VOLATILE  
memory and all user-defined non-volatile waveforms all at once.  
If one of the waveforms is currently being output, a +787, “Cannot delete an  
active arb waveform” error is generated. The active waveform is not deleted  
but all of the other waveforms are deleted.  
82 Agilent E1441A SCPI Command Reference  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
:DEL:ALL  
DATA:DELete:ALL deletes all user-defined arbitrary waveforms from memory.  
This command deletes the waveform in VOLATILE memory and all user-defined  
waveforms in non-volatile memory. The five built-in waveforms in non-volatile  
memory are not deleted.  
Comments  
The colon before the ALL parameter is required.  
DATA:DELete:ALL  
If you insert a space instead of a colon, the function generator will attempt to  
delete an arbitrary waveform with the name “ALL”. If no such waveform is  
stored in memory, a +785, “Specified arb waveform does not exist” error is  
generated.  
You cannot delete the arbitrary waveform that is currently being output. If you  
attempt to delete the waveform being output, a  
+787, “Cannot delete an active arb waveform” error is generated.  
You cannot delete any of the five built-in arbitrary waveforms. If you attempt  
to delete one of the built-in waveforms, a +786, “Cannot delete a built-in arb  
waveform” error is generated.  
Use the DATA:DEL <arb name> command to delete stored waveforms one at a  
time.  
:NVOLatile:CATalog?  
DATA:NVOLatile:CATalog? lists the names of all user-defined arbitrary  
waveforms currently downloaded to non-volatile memory. Returns the names of up  
to four waveforms in non-volatile memory.  
Comments  
A series of quoted strings separated with commas is returned (see example  
below). If no user-defined waveforms are currently downloaded to  
non-volatile memory, the command returns a null string ( "" ).  
"ARB_1","ARB_2","ARB_3","ARB_4"  
Use the DATA:DEL command to delete the waveform in VOLATILE memory or  
any of the user-defined waveforms in non-volatile memory.  
:NVOLatile:FREE?  
DATA:NVOLatile:FREE? queries the number of non-volatile memory slots  
available to store user-defined waveforms. Non-volatile waveform memory is  
divided into four 16k-point slots. The command returns the available memory slots  
to store user-defined waveforms: “0” (memory full), “1”, “2”, “3”, or “4”.  
Agilent E1441A SCPI Command Reference  
83  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
FORMat  
The FORMat command is used to set the byte order for making binary block  
transfers.  
Subsystem Syntax  
FORMat  
:BORDer NORMal | SWAPped  
:BORDer?  
:BORDer  
FORMat:BORDer NORMal|SWAPped is used only for binary block transfers to  
specify the byte order during transfer. Select the byte order for binary transfers in the  
block mode using the DATA:DAC command. The default is NORM.  
Parameters  
Comments  
Parameter Name  
Description  
NORMal (default)  
The most-significant byte (MSB) of each data point is sent  
first.  
SWAPped  
The least-significant byte (LSB) of each data point is sent  
first. Most PCs use the “swapped” byte order.  
The function generator represents binary data as 12-bit integers, which are sent  
as two bytes. Each data point in the waveform requires 12 bits, which must be  
transferred as 16 bits (two bytes) on the function generator's 8-bit interface.  
Related Commands:  
*RST Condition: FORMat:BORDer NORMal  
Example Change byte-order from the default NORMal to SWAPped  
(least-significant byte of each data point is sent first).  
:BORDer?  
FORMat:BORDer? queries the byte order configuration (NORMal or SWAPped).  
Returns “NORM” or “SWAP”.  
84 Agilent E1441A SCPI Command Reference  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MEMory  
Subsystem Syntax  
MEMory  
:STATe:DELete 0 | 1 | 2 | 3  
:STATe:RECall:AUTO OFF | ON | O | 1  
:STATe:RECall:AUTO?  
:STATe:DELete  
MEMory:STATe:DELete 0|1|2|3 deletes a previously stored configuration state and  
clears the memory location. If nothing is stored in the specified memory location, a  
+810, “State has not been stored” error is generated.  
Comments  
Four memory locations, 0, 1, 2 and 3, are available to store configurations.The  
Agilent E1441A uses memory location "0" to store an alternate power-on state.  
If this state has been deleted (MEM:STAT:DEL 0), error 772 "Nonvolatile  
system memory checksum failure" will be generated when the instrument is  
powered up.  
The MEMory:STATe:DELete command deletes configuration states that were stored  
in non-volatile memory by the *SAV command.  
Related Commands: *RCL, *SAV  
:STATe:RECall:AUTO  
MEMory:STATe:RECall:AUTO OFF | ON | 0 | 1 You can configure the function  
generator to automatically recall the instrument state stored with the *SAV 0  
command. The stored state is recalled when the power is turned on or when the VXI  
Mainframe goes through a system reset (such as pressing the reset button on the  
Agilent E1406A Command Module). The "auto-recall" mode is disabled when the  
generator is shipped from the factory.  
comments  
When the auto-recall mode is "OFF" (factory default), the function generator  
powers up in its default configuration. (See “Agilent E1441A Power-On and  
Reset State” on page 130.)  
When the auto-recall mode is "ON", the function generator powers up with the  
*SAV 0 configuration.  
The *SAV 0 settings are stored in non-volatile memory, and do not change  
when power has been off or after a remote interface reset.  
Note The state of the auto-recall mode is itself part of the information stored with  
*SAV 0. You must execute MEM:STAT:REC:AUTO and then *SAV 0 to  
affect the auto-recall state.  
Agilent E1441A SCPI Command Reference  
85  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Any arbitrary waveforms downloaded to VOLATILE memory are not  
"remembered". However, if an arbitrary waveform is being output from  
NON-VOLATILE memory when the state is stored, that waveform is output  
when the state is recalled.  
Usage <set up the desired instrument state>  
MEM:STAT:REC:AUTO ON  
*SAV 0  
<change instrument settings>  
<cycle power>  
<*RCL 0 automatically done at power up>  
MEM:STAT:REC:AUTO OFF  
*SAV 0  
<instrument returns to default state at power up>  
STATe:RECall:AUTO?  
MEMory:STATe:RECall:AUTO? Queries the current setting of the "auto-recall"  
mode.  
Comments  
Returned Value: 0 or 1  
86 Agilent E1441A SCPI Command Reference  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
OUTPut  
Subsystem OUTPut  
:LOAD 50 | INFinity | MINimum | MAXimum  
:LOAD? MINimum | MAXimum  
Syntax  
:SYNC OFF | ON  
:SYNC?  
:TRIGger:IMMediate  
:TRIGger:STATe OFF | ON  
:TRIGger:STATe?  
:TTLTrg<n>[:STATe] <mode>  
:TTLTrg<n>[:STATe]?  
:LOAD  
OUTPut:LOAD 50|INFinity|MIN|MAX selects the output termination for output  
amplitude and offset voltage. The function generator has a fixed output impedance  
of 50 ohms on the "Output" terminal. You can specify whether you are terminating  
the output into a 50 ohm load or an open circuit. Incorrect impedance matching  
between the function generator and your load will result in an amplitude or offset  
which does not match the specified signal level. The output load setting is stored in  
volatile memory.  
Parameters  
Parameter Name  
50 (default)  
INFinity  
Sets output termination to:  
50  
"high impedance"  
50Ω  
MIN  
MAX  
"high impedance"  
Comments  
The amplitude (or dc offset) is automatically adjusted if you change the output  
termination (and no error is generated). For example, if you set the amplitude  
to 10 Vpp and then change the termination from 50 ohms to “high impedance”,  
the amplitude will double to 20 Vpp. If you change from “high impedance” to  
50 ohms, the amplitude will drop in half.  
If you specify a 50 ohm termination but are actually terminating into an open  
circuit, the output will be twice the value specified. For example, if you set the  
offset to 100 mVdc (and specify a 50 ohm termination) but are actually  
terminating the output into an open circuit, the actual offset will be 200 mVdc.  
*RST Condition: OUTPut:LOAD 50  
:LOAD?  
OUTPut:LOAD? [MIN|MAX] queries the output impedance. Returns “50” or  
“9.9E+37”.  
Agilent E1441A SCPI Command Reference  
87  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
:SYNC  
OUTPut:SYNC OFF|ON disables or enables output from the SYNC terminal.  
Parameters OFF disables the "Sync" output at the front panel BNC connector (see  
comment below about output level when disabled).  
ON enables the "Sync" output. The default is “ON”.  
The SYNC output mode is stored in volatile memory.  
Comments  
The output level on the SYNC terminal is indeterminate (it might be a TTL  
“high” or a TTL “low”) when the sync signal is disabled.  
*RST Condition: "ON"  
:SYNC?  
OUTPut:SYNC? queries the state of the SYNC terminal. Returns “0” (OFF) or “1”  
(ON).  
:TRIGger:IMMediate  
OUTPut:TRIGger:IMMediate outputs a TTL positive-going pulse from the  
front-panel Ext Trig terminal IMMEDIATELY regardless of the present setting of  
the OUTP:TRIG:STAT command. IF OUTP:TTLT<n>:STATE is ON, that VXIbus  
TTLTRG line will output a negative-going pulse.  
Comments  
You use this command to issue an immediate external trigger for synchronizing  
phase-lock signals using the Ext Trig terminal or VXIbus TTLTRG lines.  
:TRIGger:STATe  
OUTPut:TRIGger:STATe OFF|ON This command performs no operation. It is  
included for compatibility with the Agilent 33120A Function Generator.  
:TRIGger:STATe?  
OUTPut:TRIGger:STATe? This command performs no operation. It is included for  
compatibility with the Agilent 33120A Function Generator.  
:TTLTrg<n>[:STATe]  
OUTPut:TTLTrg<n>[:STATe] ON|OFF enables or disables the function generator  
from sourcing a trigger signal on a VXIbus TTLTRG line (value of <n> selects the  
line and can range from 0 through 7). The default setting is disabled (OFF). The  
setting is stored in volatile memory.  
88 Agilent E1441A SCPI Command Reference  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Usage OUTP:TTLT2 ON  
OUTPUT:TTLTRG7:STATE ON  
enable TTLTRG2 line to source a trigger  
enable TTLTRG7 line to source a trigger  
:TTLTrg<n>[:STATe]?  
OUTPut:TTLTrg<n>[:STATe]? queries the current state for TTLTRG line <n>.  
Return Value: Returns 0 or 1.  
Agilent E1441A SCPI Command Reference  
89  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
PHASe  
Only valid with The PHASe command subsystem is valid only with the Phase-Lock option (option  
001). This command allows you to control the phase offset of the output waveform.  
You can also enable the phase-lock error reporting to generate an error when  
phase-lock is lost (unlocked). See the STATus command for querying the  
questionable data registers and status byte to verify the unlock condition.  
Option 001  
Subsystem Syntax  
PHASe  
:ADJust <radians> | <degrees> DEG | MINimum | MAXimum  
:ADJust?  
:REFerence  
:UNLock:ERRor:STATe OFF | ON  
:UNLock:ERRor:STATe?  
:ADJust  
PHASe:ADJust <radians>|<degrees>DEG |MIN|MAX adjusts the phase offset of  
the output waveform in radians or in degrees (must specify DEG following the  
parameter if specified in degrees). Select from -2π radians to +2π radians. The  
default is 0 radians. MIN = -2π radians; MAX = +2π radians. The phase offset  
setting is stored in volatile memory.  
Parameters  
Parameter Name  
radians  
Parameter Type  
numeric  
Range of Values  
-2π to +2π  
Default Units  
radians  
degrees  
numeric  
-360° to +360°  
must specify  
DEG  
Comments  
You must specify "DEG" following the phase value if you specify the phase in  
degrees instead of radians. For example, to specify a -90° phase offset, use the  
following command:  
PHAS:ADJ -90 DEG  
For sine, square, triangle, and ramp waveforms:  
Zero (0) radians is the point at which the waveform crosses zero volts (or the  
dc offset value) in a positive-going direction.  
For arbitrary waveforms:  
Zero (0) radians is the first point downloaded to memory.  
The phase adjustment for phase-lock is independent of the burst phase as set by  
the BM:PHAS command. See “Burst Modulation” on page 33. for more  
information.  
90 Agilent E1441A SCPI Command Reference  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
:ADJust?  
PHASe:ADJust? queries the phase offset setting. Returns the phase offset value in  
radians (even if you specify the phase offset in degrees).  
:REFerence  
PHASe:REFerence sets the zero-phase reference point upon command execution.  
This command does not change the phase offset as set with the PHAS:ADJ command  
but only changes the phase reference. There is no query form to this command e.g.,  
there is no PHAS:REF? command.  
:UNLock:ERRor:STATe  
PHASe:UNLock:ERRor:STATe OFF|ON enables or disables the generation of an  
error if phase-lock is lost. The default setting is disabled (OFF). The setting is  
stored in volatile memory.  
Comments  
When you have enabled (ON) the unlock error state and phase-lock is lost,  
error 580, "Phase-locked loop is unlocked" is generated.  
:UNLock:ERRor:STATe?  
PHASe:UNLock:ERRor:STATe? queries the state of unlock error generation.  
Returns "0" if it is disabled (OFF) or "1" if it is enabled (ON).  
Agilent E1441A SCPI Command Reference  
91  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
[SOURce:]  
The SOURce subsystem commands allow you the flexibility to change individual  
parameters when programming the function generator. These are the instrument’s  
low-level commands.  
Subsystem Syntax  
[SOURce:]  
AM:DEPTh <depth in percent>|MINimum|MAXimum  
AM:DEPTh? [MINimum|MAXimum]  
AM:INTernal:FUNCtion SINusoid|SQUare|TRIangle|RAMP|NOISe|USER  
AM:INTernal:FUNCtion?  
AM:INTernal:FREQuency <frequency>|MINimum|MAXimum  
AM:INTernal:FREQuency?  
AM:SOURce BOTH|EXTernal  
AM:SOURce?  
AM:STATe OFF|ON  
AM:STATe?  
APPLy:DC [<frequency | DEFault>[,<amplitude | DEFault>[,<offset>]]]  
APPLy:NOISe [<frequency | DEFault>[,<amplitude | DEFault>[,<offset>]]]  
APPLy:RAMP [<frequency>[,<amplitude>[,<offset>]]]  
APPLy:SINusoid [<frequency>[,<amplitude>[,<offset>]]]  
APPLy:SQUare [<frequency>[,<amplitude>[,<offset>]]]  
APPLy:TRIangle [<frequency>[,<amplitude>[,<offset>]]]  
APPLy:USER [<frequency>[,<amplitude>[,<offset>]]]  
APPLy?  
BM:NCYCles <number of cycles>|MINimum|MAXimum  
BM:NCYCles? [MINimum|MAXimum]  
BM:PHASe <degrees>|MINimum|MAXimum  
BM:PHASe? [MINimum|MAXimum]  
BM:INTernal:RATE <frequency>|MINimum|MAXimum  
BM:INTernal:RATE? [MINimum|MAXimum]  
BM:SOURce INTernal|EXTernal  
BM:SOURce?  
BM:STATe OFF|ON  
BM:STATe?  
FM:DEViation <peak deviation in Hz>|MINimum|MAXimum  
FM:DEViation? [MINimum|MAXimum]  
FM:FUNCtion SINusoid|SQUare|TRIangle|RAMP|NOISe|USER  
FM:FUNCtion?  
FM:INTernal:FREQuency <frequency>|MINimum|MAXimum  
FM:INTernal:FREQuency? [MINimum|MAXimum]  
FM:STATe OFF|ON  
FM:STATe?  
FREQuency <frequency> | MINimum | MAXimum  
FREQuency? [ MINimum | MAXimum ]  
FREQuency:STARt <frequency> | MINimum | MAXimum  
FREQuency:STARt? [ MINimum | MAXimum ]  
FREQuency:STOP <frequency> | MINimum | MAXimum  
FREQuency:STOP? [ MINimum | MAXimum ]  
FSKey:FREQuency <frequency> | MINimum | MAXimum  
FSKey:FREQuency? [ MINimum | MAXimum ]  
FSKey:INTernal:RATE <rate in Hz> | MINimum | MAXimum  
FSKey:INTernal:RATE? [ MINimum | MAXimum ]  
FSKey:SOURce INTernal | EXTernal  
92 Agilent E1441A SCPI Command Reference  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
FSKey:SOURce?  
FSKey:STATe OFF|ON  
FSKey:STATe?  
FUNCtion:USER <arb name> | VOLATILE  
FUNCtion:USER?  
FUNCtion:SHAPe  
FUNCtion:SHAPe?  
PULSe:DCYCle <percent> | MINimum | MAXimum  
PULSe:DCYCle? [ MINimum | MAXimum ]  
SWEep:SPACing LINear | LOGarithmic  
SWEep:SPACing?  
SWEep:TIME <seconds> | MINimum | MAXimum  
SWEep:TIME? [ MINimum | MAXimum ]  
SWEep:STATe OFF | ON  
SWEep:STATe?  
VOLTage <amplitude> | MINimum | MAXimum  
VOLTage? [ MINimum | MAXimum ]  
VOLTage:OFFSet <offset> | MINimum | MAXimum  
VOLTage:OFFSet? [ MINimum | MAXimum ]  
VOLTage:UNIT VPP | VRMS | DBM | DEFault  
VOLTage:UNIT?  
Amplitude Modulation (AM) Commands  
Use the APPLy command or the equivalent FUNC:SHAP, FREQ, VOLT, and  
VOLT:OFFS commands to configure the carrier waveform. Set the carrier frequency  
between 100 µHz and 15 MHz (100 kHz maximum for triangle and ramp). The  
default is 1 kHz.  
AM:DEPTh  
[SOURce:]AM:DEPTh <depth in percent>|MIN|MAX sets the internal modulation  
depth in percent. Select from 0% to 120%. The default is 100%. MIN = 0%. MAX =  
120%. The percent of AM depth is stored in volatile memory.  
Parameters  
Parameter Name  
Parameter Type  
Range of Values  
Default Units  
depth in percent  
numeric  
0 to 120  
percent  
Comments  
If you select the external modulating source (AM:SOUR EXT), the  
modulation depth is controlled by the signal level present on the  
AM Modulation terminal (5 volts peak corresponds to 100% modulation).  
*RST Condition: 100%  
Agilent E1441A SCPI Command Reference  
93  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
AM:DEPTh?  
[SOURce:]AM:DEPTh? [MIN|MAX] queries the modulation depth. Returns a value  
in percent.  
AM:INTernal:FUNCtion  
[SOURce:]AM:INTernal:FUNCtion SIN|SQU|TRI|RAMP|NOIS|USER selects the  
shape of the modulating waveform.  
Used only when the internal modulation source is selected (AM:SOUR BOTH).  
You can use the noise function as the modulating waveform. However, you cannot  
use the noise function or dc volts as the carrier waveform. [ Stored in volatile  
memory ]  
*RST Condition: SINusoid  
AM:INTernal:FUNCtion?  
[SOURce:]AM:INTernal:FUNCtion? queries the shape of the internal modulating  
waveform. Returns “SIN”, “SQU”, “TRI”, “RAMP”, “NOIS”, or “USER”.  
AM:INTernal:FREQuency  
[SOURce:]AM:INTernal:FREQuency<frequency>|MIN|MAX sets the frequency of  
the modulating waveform. Used only when the internal modulation source is  
selected (AM:SOUR BOTH). Select from 10 mHz to 20 kHz. MIN = 10 mHz. MAX  
= 20 kHz. [ Stored in volatile memory ]  
*RST Condition: 100 Hz  
Parameters  
Parameter Name  
Parameter Type  
Range of Values  
Default Units  
frequency  
numeric  
10E-03 to 20E+03  
Hz  
AM:INTernal:FREQuency?  
[SOURce:]AM:INTernal:FREQuency? [MIN|MAX] queries the internal modulating  
frequency. Returns a value in hertz.  
AM:SOURce  
[SOURce:]AM:SOURce BOTH|EXTernal selects the source of the modulating  
signal. The function generator will accept an internal modulating signal, an external  
modulating signal, or both. [ Stored in volatile memory ]  
94 Agilent E1441A SCPI Command Reference  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Comments  
The External modulating source is always enabled.  
When both sources are enabled (internal-external), the function generator adds  
the internal and external modulating signals (the carrier waveform is actually  
modulated with two waveforms).  
When only the external source is enabled (AM:SOURce EXT, internal source  
disabled), the carrier waveform is modulated only by the external waveform.  
You apply the external modulating waveform to the AM Modulation (AM  
Mod) terminal. The modulation depth is controlled by the signal level present  
(5 volts peak corresponds to 100% modulation).  
*RST Condition: BOTH  
AM:SOURce?  
AM:STATe  
[SOURce:]AM:SOURce? queries the modulating source. Returns “BOTH” or “EXT”.  
[SOURce:]AM:STATe OFF|ON disables or enables Amplitude Modulation. To  
ensure proper operation, you should enable AM after you have set up the other  
modulation parameters. Only one modulation mode can be enabled at a time. When  
you enable AM, the previous modulation mode is turned off.  
*RST Condition: 0 (OFF)  
AM:STATe?  
[SOURce:]AM:STATe? queries the state of AM. Returns “0” (OFF) or “1” (ON).  
Agilent E1441A SCPI Command Reference  
95  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
APPLy Commands  
The APPLy command provides the most straightforward method to program the  
function generator. It allows you to select the output function, output frequency,  
output amplitude and a dc offset voltage on which the output signal resides in a single  
command.  
Note The APPLy commands not only set the instrument’s function, frequency,  
amplitude, and offset, it also sets Duty Cycle to 50%, turns Modulation  
OFF, sets the TRIG:SOUR to IMM, and sets the TRIG:SLOPE to POS.  
Because of this, where a sequence of commands is needed to configure the  
instrument, and one of them will be a SOUR:APPLY command, the APPLy  
command must be first.  
APPLy Command Parameters  
Each APPLy command specifies the function to be output followed by three  
parameters.  
Subsystem  
Syntax  
APPLy:<FUNCTION> [<frequency> | DEFault[,<amplitude> | DEFault[,<offset>]]]  
Syntax Example Executing the following statement will output a sine wave with frequency of 5 kHz  
and amplitude of 3 Vpp with a -2.5 volt offset:  
"APPL:SIN 5.0E+3, 3.0, -2.5"  
default units are hertz, Vpp, VDC  
Because of the use of optional parameters in the APPLy commands (enclosed in  
square brackets), you must specify frequency to use the amplitude parameter, and  
you must specify both frequency and amplitude to use the offset parameter. The  
following statement is valid (frequency and amplitude are specified; offset is  
omitted):  
"APPL:SIN 5.0E+3, 3.0"  
However, you CANNOT specify amplitude or amplitude and offset without specifying  
a frequency.  
Parameter  
Name  
Parameter  
Type  
Range of  
Values  
Default  
Setting  
frequency  
amplitude  
offset  
numeric  
numeric  
numeric  
100 µHz - 15 MHz  
1 kHz  
(see the following section  
titled "Output Frequency")  
50 mVpp - 20 Vpp  
(see the following section  
titled "Output Amplitude")  
100 mVpp  
(into 50 ohms)  
see equation below  
0 Vdc  
96 Agilent E1441A SCPI Command Reference  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
                                                                                       
-
Vpp  
------  
Voffset  
+
Vmax  
and  
Voffset 2Vpp  
2
You can substitute "MINimum", "MAXimum" or "DEFault" in place of a  
specific value for any of the above three parameters. MIN selects the lowest  
value, MAX selects the highest value and DEF selects the default setting.  
Output Frequency Minimum frequency is the same for all functions. Maximum frequency is dependent  
on the function selected as shown in the following table.  
Function  
Minimum  
Frequency  
Maximum Frequency  
Sine  
100 µHz  
100 µHz  
100 µHz  
100 µHz  
100 µHz  
15 MHz  
15 MHz  
Square  
Built-In Arbs a  
Ramp  
200 kHz, 2.5 MHz or 5 MHz b  
100 kHz  
Triangle  
100 kHz  
a.There are five built-in arbitrary waveforms stored in  
non-volatile memory: sinc, negative ramp,  
exponential rise, exponential fall and cardiac.  
These waveforms are shown on page 48. The five  
built-in arbitrary waveforms can be output at a  
maximum of 5 MHz.  
b. Maximum frequency for arbitrary waveforms you generate  
depends on the number of points  
specified in the waveform. The maximum output frequency  
decreases as you specify more points  
in the waveform (see below).  
.
Number of Arb Points Minimum Frequency Maximum Frequency  
8 to 8,192 (8k)  
100 µHz  
100 µHz  
100 µHz  
5 MHz  
2.5 MHz  
200 kHz  
8,193 to 12,287 (12k)  
12,288 to 16,000  
Possible Output Frequency Conflict with a Function Change: The output  
frequency is automatically adjusted if you change the function from SINE or  
SQUARE (MAX frequency = 15 MHz) to RAMP, TRIANGLE or a Built-In  
Arb, if the current frequency is greater than that of the maximum frequency of  
the new function. For example, the maximum frequency of a sine wave is 15  
MHz while the maximum frequency for a triangle wave is 100 kHz. If the  
current output is a sine wave at 1 MHz and you change the function to triangle  
wave which cannot output at 1 MHz, the function generator automatically  
adjusts the output to the upper frequency limit for a triangle wave (100 kHz).  
This function change will also generate a -221 "Settings conflict" error.  
Possible Conflict with Duty Cycle (square wave only): For output  
frequencies above 5 MHz, the duty cycle is limited to values between 40% and  
60% (below 5 MHz, the range is 20% to 80%). The duty cycle is  
Agilent E1441A SCPI Command Reference  
97  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
automatically adjusted if you select a frequency that is not valid with the  
present duty cycle. For example, if you set the duty cycle to 70% and then  
change the frequency to 8 MHz, the function generator will automatically  
adjust the duty cycle to 60% (the upper limit for this frequency). A -221  
"Settings conflict" error will be generated and the duty cycle is automatically  
adjusted.  
Output Amplitude The output amplitude range depends on the function currently selected and the  
output termination. You can substitute "MINimum", "MAXimum" or "DEFault" in  
place of a specific value for the amplitude parameter. MIN selects the smallest  
amplitude for the selected function (50 mVpp into 50 ohms). MAX selects the  
largest amplitude (10 Vpp into 50 ohms). The default units for amplitude is volts  
peak to peak (Vpp). This can be overridden by including a units suffix in each  
amplitude parameter (vpp, vrms, dbm), or to change the default units from Vpp to  
another, use the SOUR:VOLT:UNIT command. The default amplitude is 100 mVpp  
(into 50 ohms) for all functions.  
Output  
Termination  
Minimum  
Amplitude  
Maximum  
Amplitude  
Default  
Value  
Function  
Sine,  
Square,  
Triangle,  
Ramp,  
50Ω  
50 mVpp  
10 Vpp  
100 mVpp  
Noise,  
Built-In Arbs 1  
Sine,  
Square,  
Triangle,  
Ramp,  
Open Circuit  
100 mVpp  
20 Vpp  
100 mVpp  
Noise,  
Built-In Arbs 1  
1
There are five built-in arbitrary waveforms stored in non-volatile memory: sinc,  
negative ramp, exponential rise, exponential fall and cardiac. These waveforms are  
shown on page 48.  
For arbitrary waveforms, the maximum amplitude will be limited if the data  
points do not span the full range of the output DAC (Digital- to-Analog  
Converter). For example, the built-in “SINC” waveform does not use the full  
range of values between 1 and therefore its maximum amplitude is 6.084 Vpp  
(into 50 ohms).  
You can set the units for output amplitude to Vpp, Vrms, or dBm with the  
VOLTage:UNIT command. See “Output Units” on page 25. for more  
information.  
Possible Conflict with Function Change: The output amplitude is  
automatically adjusted if you select a function whose maximum amplitude is  
less than that of the currently active function. This conflict may arise when the  
output units are Vrms or dBm due to the differences in crest factor for the  
output functions. For example, if you output a 5 Vrms square wave (into 50  
ohms) and then change the function to sine wave, the function generator will  
adjust the output amplitude to 3.535 Vrms (the upper limit for sine waves in  
Vrms). A -221, “Settings conflict” error is generated and the amplitude is  
98 Agilent E1441A SCPI Command Reference  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
-------  
                                                                                       
automatically adjusted.  
Output Amplitude and Output Termination: The output amplitude is  
automatically adjusted (and no error is generated) if you change the output  
termination. For example, if you set the amplitude to 10 Vpp and then change  
the termination from 50 ohms to “high impedance”, the displayed amplitude  
will double to 20 Vpp. If you change from “high impedance” to 50 ohms, the  
displayed amplitude will drop in half. See “Output Termination” on  
page 25. for more information.  
A momentary glitch occurs in the output waveform at certain voltages due to  
output attenuator switching. This positive-going glitch occurs when the output  
voltage crosses the break-point voltage either from a lower voltage or a higher  
voltage. The voltages are shown below (inVpp) for a 0 volt dc offset:  
.252, .399, .502, .796, 1, 1.59, 2.0, 3.17, 3.99, 6.32, 7.96  
The output voltage will momentarily drop to 0 volts at certain voltages due to  
output relay switching. This occurs when the output voltage crosses the  
break-point voltage either from a lower voltage or a higher voltage. The  
voltages are shown below (in Vpp) for a 0 volt dc offset: .317, .632, 1.26, 2.52,  
5.02  
For the offset parameter of the APPLy command, you can substitute “MINimum”,  
MAXimum”, or “DEFault” in place of a specific value for the parameter. MIN selects  
the smallest dc offset voltage for the selected function (0 volts). MAX selects the  
largest offset for the selected function. The default offset voltage is 0 volts for all  
functions.  
You can set the offset to a positive or negative number with the restrictions  
shown below. If the specified offset voltage is not valid, the function generator  
will automatically adjust it to the maximum dc voltage allowed with the  
present amplitude. (Vmax is the maximum peak-to-peak amplitude for the  
selected output termination; Vpp is the output amplitude in volts  
peak-to-peak.) A -221, “Settings conflict” error is generated and the offset is  
automatically adjusted.  
Vpp  
Voffset  
+
Vmax  
and  
Voffset 2Vpp  
2
DC Offset and Output Termination: The offset voltage is automatically  
adjusted (and no error is generated) if you change the output termination. For  
example, if you set the offset to 100 mVdc and then change the termination  
from 50 ohms to “high impedance”, the displayed offset will double to  
200 mVdc. If you change from “high impedance” to 50 ohms, the displayed  
offset will drop in half.  
For dc volts, the output level is actually controlled by setting the offset voltage.  
You can set the dc voltage to any value between 5 Vdc into 50 ohms or  
10 Vdc into an open circuit.  
Agilent E1441A SCPI Command Reference  
99  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Comments  
Four low-level commands are required to program the function generator with  
the same output as the APPLy syntax example.  
"FUNC:SHAP SIN"  
"FREQ 5.0E+3"  
"VOLT 3.0"  
Select the function wave shape  
Set frequency to 5 kHz  
Set amplitude to 3 Vpp  
Set offset to -2.5 Vdc  
"VOLT:OFFS -2.5"  
APPLy:DC  
[SOURce:]APPLy:DC[<frequency|DEF>[,<amplitude|DEF>[, <offset>]]] is used  
to output a dc voltage with the amplitude level specified by the offset parameter.  
Comment The frequency and amplitude parameters are ignored in this command but you  
MUST specify a value or "DEF". If values are specified, they are stored and used  
when you make a subsequent function change without specifying new frequency or  
amplitude values. For example, to output a +5V dc voltage, execute the following  
command:  
"APPL:DC DEF, DEF, 5"  
APPLy:NOISe  
[SOURce:]APPLy:NOISe [<frequency|DEF>[,<amplitude|DEF>[, <offset>]]] is  
used to output noise with the specified amplitude and dc offset.  
Comment The frequency parameter is ignored for this command but you MUST specify a value  
or "DEF" to allow the command to accept the amplitude and offset parameters. If  
you specify a frequency value, the value is remembered when you change to a  
different function. For example:  
"APPL:NOIS DEF, 3.0, -2.5"  
APPLy:RAMP  
[SOURce:]APPLy:RAMP [<frequency>[,<amplitude>[,<offset>]]] is used to  
output a ramp wave with the specified frequency, amplitude, and dc offset. For  
example, a ramp wave with the same parameters as the syntax example is shown  
below:  
"APPL:RAMP 5.0E+3, 3.0, -2.5"  
APPLy:SINusoid  
[SOURce:]APPLy:SINusoid [<frequency>[,<amplitude>[,<offset>]]] is used to  
output a sine wave with the specified frequency, amplitude and dc offset. For  
example, the command for a sine wave shown in the syntax example for a 5 kHz, 3  
Vpp with -2.5Vdc offset is repeated below:  
"APPL:SIN 5.0E+3, 3.0, -2.5"  
100 Agilent E1441A SCPI Command Reference  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
APPLy:SQUare  
[SOURce:]APPLy:SQUare [<frequency>[,<amplitude>[,<offset>]]] is used to  
output a square wave with the specified frequency, amplitude and dc offset. For  
example, a square wave with the same parameters as the syntax example is shown  
below:  
"APPL:SQU 5.0E+3, 3.0, -2.5"  
Comments  
Square Wave Frequency and Possible Conflict with Duty Cycle:  
For output frequencies above 5 MHz, the duty cycle is limited to values  
between 40% and 60% (below 5 MHz, the range is 20% to 80%). The duty  
cycle is automatically adjusted if you select a frequency that is not valid with  
the present duty cycle. For example, if you set the duty cycle to 70% and then  
change the frequency to 8 MHz, the function generator will automatically  
adjust the duty cycle to 60% (the upper limit for this frequency). A -221  
"Settings conflict" error is also generated.  
APPLy:TRIangle  
APPLy:USER  
[SOURce:]APPLy:TRIangle [<frequency>[,<amplitude>[,<offset>]]] is used to  
output a triangle wave with the specified frequency, amplitude and dc offset. For  
example, a triangle wave with the same parameters as the syntax example is shown  
below:  
"APPL:TRI 5.0E+3, 3.0, -2.5"  
[SOURce:]APPLy:USER [<frequency>[,<amplitude>[,<offset>]]] is used to  
output the arbitrary waveform currently selected by the FUNC:USER command.  
The waveform is output using the specified frequency, amplitude and dc offset.  
Comments  
See “Arbitrary Waveforms” on page 46. for more information on creating and  
downloading user-defined arbitrary waveforms to non-volatile memory.  
APPLy?  
[SOURce:]APPLy? is used to query the function generator's present configuration  
and return a quoted string.  
Comments  
The function, frequency, amplitude and offset voltage are returned as shown in  
the sample string below (the quotation marks are returned as part of the string):  
"SIN +5.000000000000E+03,+3.000000E+00,-2.500000E+00"  
Agilent E1441A SCPI Command Reference  
101  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
BURST MODULATION COMMANDS  
Use the APPLy command or the equivalent FUNC:SHAP, FREQ, VOLT, and  
VOLT:OFFS commands to configure the carrier waveform. Set the carrier frequency  
between 100 µHz and 5 MHz (100 kHz maximum for triangle and ramp). The default  
is 1 kHz.  
BM:NCYCles  
[SOURce:]BM:NCYCles <# cycles>|INFinity|MIN|MAX sets the number of cycles  
to be output per burst (counted burst mode only). Select from 1 cycle  
to 50,000 cycles, in 1 cycle increments. The default is 1 cycle. MIN = 1 cycle. MAX =  
50,000 cycles. [ Stored in volatile memory ]  
Comments  
For sine, square, and arbitrary waveforms (does not apply to ramp and triangle  
waveforms), the relationship between the carrier frequency and the minimum  
burst count is shown below.  
Carrier Frequency  
10 mHz to 1 MHz  
>1 MHz to 2 MHz  
>2 MHz to 3 MHz  
>3 MHz to 4 MHz  
>4 MHz to 5 MHz  
Minimum Burst Count  
1
2
3
4
5
If you attempt to set the carrier frequency to a value that is not valid,  
the function generator will automatically adjust the frequency to the maximum  
value allowed with the present burst count. A -221, “Settings conflict” error is  
generated and the carrier frequency is adjusted.  
For all waveforms used with burst, if the carrier frequency is set less than or  
equal to 100 Hz, the following relationship applies.  
BurstCount  
CarrierFrequency  
------------------------------------------------  
500 seconds  
If you attempt to set the carrier frequency to a value that is not valid, the  
function generator will automatically adjust the frequency to the minimum  
value allowed with the present burst count. A -221, “Settings conflict” error is  
generated and the frequency is automatically adjusted.  
BM:NCYCles?  
[SOURce:]BM:NCYCles? [MIN|MAX] queries the burst count. Returns an integer  
between 1 and 50,000, or +9.90000E+37 (in the case of INF).  
102 Agilent E1441A SCPI Command Reference  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
BM:PHASe  
[SOURce:]BM:PHASe <degrees>|MIN|MAX sets the starting phase for the burst  
(counted burst mode only). Select from -360 degrees to +360 degrees, in 0.001  
degree increments. The default is 0 degrees. MIN = -360 degrees. MAX = +360  
degrees. [ Stored in volatile memory ]  
Parameters  
Parameter Name  
Parameter Type  
Range of Values  
Default Units  
degrees  
numeric  
-360 to +360  
degrees  
Comments  
For sine, square, triangle, and ramp waveforms, 0 degrees is the point at which  
the waveform crosses zero volts (or the dc offset value), in a positive-going  
direction. For arbitrary waveforms, 0 degrees is the first point downloaded to  
memory.  
BM:PHASe?  
[SOURce:]BM:PHASe? [MIN|MAX] queries the starting phase. Returns a value in  
degrees.  
BM:INTernal:RATE  
[SOURce:]BM:INTernal:RATE <frequency>|MIN|MAX sets the burst rate for  
internally triggered bursts (counted burst mode). The burst rate frequency defines the  
interval between bursts. Select from 10 mHz to 50 kHz. The default is 100 Hz. MIN  
= 10 mHz. MAX = 50 kHz. [ Stored in volatile memory ]  
Parameters  
Comments  
Parameter Name  
Parameter Type  
Range of Values  
Default Units  
frequency  
numeric  
10E-03 to 50E+03  
Hz  
The burst rate setting is used only when internal triggering is enabled  
(triggered mode). The burst rate is ignored when single triggering or external  
triggering is enabled.  
It is possible to specify a burst rate which is too fast for the function generator  
to output with the specified carrier frequency and burst count. If the burst rate  
is too high, the function generator will internally adjust it as needed to  
continuously re-trigger the burst. The adjustment is handled internally by the  
function generator (querying the burst rate returns the value specified not the  
adjusted to value).  
Agilent E1441A SCPI Command Reference  
103  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
BM:INTernal:RATE?  
[SOURce:]BM:INTernal:RATE? [MIN|MAX] queries the burst rate. Returns a value  
in hertz.  
BM:SOURce  
[SOURce:]BM:SOURce INTernal|EXTernal selects the burst modulation source. In  
the external gated burst mode, the output waveform is either “on” or “off ” based on  
the level of the signal applied to the front-panel Ext Trig terminal or VXIbus  
TTLTRG line selected by TRIG:SOUR). The default is INT. [ Stored in volatile  
memory ]  
Comments  
When the internal burst source is selected, the external gated mode is disabled.  
When the external gate source is selected, the output is enabled or disabled  
based on the logic level of the gate signal applied to the Ext Trig terminal.  
When the gate signal is true (TTL high), the function generator outputs a  
continuous waveform. When the gate signal is false (TTL low), the output is  
turned off (zero volts or the dc offset level).  
When the external gate source is selected, the burst count, burst rate, burst  
phase, and burst trigger source are ignored (these parameters are used for the  
counted burst mode only).  
BM:SOURce?  
BM:STATe  
[SOURce:]BM:SOURce? queries the present burst modulation source. Returns  
INT” or “EXT”.  
[SOURce:]BM:STATe OFF|ON disables or enables burst modulation. To ensure  
proper operation, you should enable the burst mode after you have set up the other  
modulation parameters. Only one modulation mode can be enabled at a time. When  
you enable the burst mode, the previous modulation mode is turned off.  
BM:STATe?  
[SOURce:]BM:STATe? queries the state of burst modulation. Returns “0” (OFF) or  
“1” (ON).  
FM COMMANDS  
Use the APPLy command or the equivalent FUNC:SHAP, FREQ, VOLT, and  
VOLT:OFFS commands to configure the carrier waveform. Set the carrier frequency  
104 Agilent E1441A SCPI Command Reference  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
between 100 µHz and 15 MHz (100 kHz maximum for triangle and ramp). The  
default is 1 kHz.  
FM:DEViation  
[SOURce:]FM:DEViation <peak deviation in Hz>|MIN|MAX sets the peak frequency  
deviation in hertz. This value represents the variation in frequency of the modulating  
waveform from the carrier frequency. Select from 10 mHz to 7.5 MHz. The default  
is 100 Hz.  
MIN = 10 mHz. MAX = 7.5 MHz. [ Stored in volatile memory ]  
Parameters  
Comments  
Parameter Name  
Parameter Type  
Range of Values  
Default Units  
frequency  
numeric  
10E-03 to 7.5E+06  
Hz  
The carrier frequency must always be greater than or equal to the peak  
frequency deviation. If you attempt to set the deviation to a value greater than  
the carrier frequency (with FM enabled), the function generator will  
automatically adjust the deviation to equal the present carrier frequency. A  
-221, “Settings conflict” error is generated and the deviation is adjusted.  
The sum of the carrier frequency and peak frequency deviation must be less  
than or equal to the maximum frequency for the selected function plus 100 kHz  
(15.1 MHz for sine and square, 200 kHz for triangle and ramp, and 5.1 MHz  
for arbitrary waveforms). If you attempt to set the deviation to a value that is  
not valid, the function generator will automatically adjust the deviation to the  
maximum value allowed with the present carrier frequency. A -221, “Settings  
conflict” error is generated and the deviation is adjusted.  
FM:DEViation?  
[SOURce:]FM:DEViation? [MIN|MAX] queries the peak frequency deviation.  
Returns a value in hertz.  
FM:INTernal:FREQuency  
[SOURce:]FM:INTernal:FREQuency <frequency>|MIN |MAX sets the frequency of  
the modulating waveform. Select from 10 mHz to 10 kHz. The default is 10 Hz. MIN  
= 10 mHz. MAX = 10 kHz. [ Stored in volatile memory ]  
Agilent E1441A SCPI Command Reference  
105  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Parameters  
Parameter Name  
Parameter Type  
Range of Values  
Default Units  
frequency  
numeric  
10E-03 to 10E+03  
Hz  
FM:INTernal:FREQuency?  
[SOURce:]FM:INTernal:FREQuency? [MIN|MAX] queries the modulating  
frequency. Returns a value in hertz.  
FM:INTernal:FUNCtion  
[SOURce:]FM:INTernal:FUNCtion SIN|SQU|TRI|RAMP |NOIS |USER selects the  
shape of the modulating waveform. You can use the noise function as the modulating  
waveform. However, you cannot use the noise function or dc volts as the carrier  
waveform. The default is SINusoid. [ Stored in volatile memory ]  
FM:INTernal:FUNCtion?  
[SOURce:]FM:INTernal:FUNCtion? queries the shape of the modulating  
waveform. Returns “SIN”, “SQU”, “TRI”, “RAMP”, “NOIS”, or “USER”.  
FM:STATe  
[SOURce:]FM:STATe OFF|ON disables or enables Frequency Modulation. To  
ensure proper operation, you should enable FM after you have set up the other  
modulation parameters. Only one modulation mode can be enabled at a time. When  
you enable FM, the previous modulation mode is turned off.  
FM:STATe?  
FREQuency  
[SOURce:]FM:STATe? queries the state of FM. Returns “0” (OFF) or “1” (ON).  
[SOURce:]FREQuency <frequency>|MIN|MAX sets the output frequency. MIN  
selects the lowest frequency allowed for the currently active function. MAX selects  
the highest frequency allowed for the currently active function. The default  
frequency is 1 kHz for all functions. Stored in volatile memory.  
106 Agilent E1441A SCPI Command Reference  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Parameters  
Parameter Parameter  
Minimum  
Frequency  
Maximum  
Frequency  
Default  
Units  
Name  
Type  
Function  
Sine  
frequency  
numeric  
100 µHz  
100 µHz  
100 µHz  
100 µHz  
100 µHz  
15 MHz  
15 MHz  
5 MHz  
Hz  
Hz  
Hz  
Hz  
Hz  
Square  
Built-In Arbs  
Ramp  
100 kHz  
100 kHz  
Triangle  
Comments  
For arbitrary waveforms that you create and download to memory,  
the maximum frequency depends on the number of points specified in the  
waveform. As shown below, the maximum output frequency decreases as you  
specify more points in the waveform. The five built-in arbitrary waveforms  
can be output at a maximum of 5 MHz.  
Number of Arb Points Minimum Frequency Maximum Frequency  
8 to 8,192 (8K)  
100 µHz  
100 µHz  
5 MHz  
8,193 to 12,787 (12K)  
2.5 MHz  
12,288 to 16,000  
100 µHz  
200 KHz  
Possible Conflict with Function Change: The output frequency is  
automatically adjusted if you select a function whose maximum frequency is  
less than that of the currently active function. For example, if you output a  
1 MHz sine wave and then change the function to triangle wave, the function  
generator will adjust the output to 100 kHz (the upper limit for triangle waves).  
A -221, “Settings conflict” error is generated and the frequency is adjusted.  
FREQuency?  
[SOURce:]FREQuency? [MIN|MAX] queries the frequency setting for the function  
currently active. Returns a value in hertz.  
FREQuency:STARt  
[SOURce:]FREQuency:STARt <frequency>|MIN|MAX sets the start frequency.  
Select from 10 mHz to 15 MHz (100 kHz for triangle and ramp). The sweep is phase  
continuous over the full frequency range. The default is 100 Hz. MIN = 10 mHz. MAX  
= 15 MHz. The start frequency setting is stored in volatile memory.  
Agilent E1441A SCPI Command Reference  
107  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Parameters  
Parameter Name  
Parameter Type  
Range of Values  
Default Units  
frequency  
numeric  
10E-03 to 15E+06  
Hz  
FREQuency:STARt?  
[SOURce:]FREQuency:STARt? [MIN|MAX] queries the start frequency. Returns a  
value in hertz.  
FREQuency:STOP  
[SOURce:]FREQuency:STOP <frequency>|MIN|MAX sets the stop frequency.  
Select from 10 mHz to 15 MHz (100 kHz for triangle and ramp). The sweep is phase  
continuous over the full frequency range. The default is 1 kHz. MIN = 10 mHz. MAX  
= 15 MHz. [ Stored in volatile memory ]  
Parameters  
Parameter Name  
Parameter Type  
Range of Values  
Default Units  
frequency  
numeric  
10E-03 to 15E+06  
Hz  
FREQuency:STOP?  
[SOURce:]FREQuency:STOP? [MIN|MAX] queries the stop frequency. Returns a  
value in hertz.  
Frequency-Shift Keying (FSK) Commands  
Use the APPLy command or the equivalent FUNC:SHAP, FREQ, VOLT, and  
VOLT:OFFS commands to configure the carrier waveform. Set the carrier frequency  
between 100 µHz and 15 MHz (100 kHz maximum for triangle and ramp). The  
default is 1 kHz.  
108 Agilent E1441A SCPI Command Reference  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
FSKey:FREQuency  
[SOURce:]FSKey:FREQuency <frequency>|MIN|MAX sets the FSK “hop”  
frequency. Select from 10 mHz to 15 MHz (100 kHz for triangle and ramp). The  
default is 100 Hz. MIN = 10 mHz. MAX = 15 MHz. The FSK frequency setting is  
stored in volatile memory.  
Parameters  
Parameter Name  
Parameter Type  
Range of Values  
Default Units  
frequency  
numeric  
10E-03 to 15E+06  
Hz  
FSKey:FREQuency?  
[SOURce:]FSKey:FREQuency? [MIN|MAX] queries the FSK “hop” frequency.  
Returns a value in hertz.  
FSKey:INTernal:RATE  
[SOURce:]FSKey:INTernal:RATE <rate in Hz>|MIN|MAX sets the rate at which the  
output frequency “shifts” between the carrier and hop frequency (FSK:SOUR INT  
only). Select from 10 mHz to 50 kHz. The default is 10 Hz. MIN = 10 mHz. MAX =  
50 kHz. The FSK internal rate setting is stored in volatile memory.  
Parameters  
Comments  
Parameter Name  
Parameter Type  
Range of Values  
Default Units  
rate  
numeric  
10E-03 to 50E+03  
Hz  
The FSK rate is ignored when the external source is selected (FSK:SOUR  
EXT).  
FSKey:INTernal:RATE?  
[SOURce:]FSKey:INTernal:RATE? [MIN|MAX] queries the FSK rate. Returns a  
value in hertz.  
FSKey:SOURce  
Comments  
[SOURce:]FSKey:SOURce INTernal|EXTernal selects an internal or external FSK  
source. The default is INT. [ Stored in volatile memory ]  
When the internal source is selected, the rate at which the output frequency  
“shifts” between the carrier frequency and hop frequency is determined by the  
FSK rate specified (FSK:INT:RATE).  
Agilent E1441A SCPI Command Reference  
109  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
When the external source is selected, the output frequency is determined by the  
signal level on the source selected by the TRIG:SOUR command. When a  
“low” TTL level is present, the carrier frequency is output. When a “high” TTL  
level is present, the hop frequency is output.  
The maximum external FSK rate is 1 MHz.  
FSKey:SOURce?  
FSKey:STATe  
[SOURce:]FSKey:SOURce? queries the internal FSK source. Returns “INT” or  
EXT”.  
[SOURce:]FSKey:STATe OFF|ON disables or enables FSK modulation. To ensure  
proper operation, you should enable FSK after you have set up the other modulation  
parameters. Only one modulation mode can be enabled at a time. When you enable  
FSK, the previous modulation mode is turned off.  
FSKey:STATe?  
[SOURce:]FSKey:STATe? queries the state of the FSK mode. Returns “0” (OFF) or  
“1” (ON).  
Selecting an Arbitrary Waveform  
FUNCtion:USER  
[SOURce:]FUNCtion:USER <arb name>|VOLATILE selects one of the five built-in  
arbitrary waveforms, one of four user-defined waveforms, or the waveform currently  
downloaded to VOLATILE memory.  
Parameters  
The arb name may contain up to 8 characters. The first character must be a  
letter (A-Z), but the remaining characters can be numbers (0-9) or the  
underscore character (“ _ ”). Blank spaces are not allowed. If you specify a  
name with more than 8 characters, a +783, “Arb waveform name too long”  
error is generated.  
The function generator does not distinguish between upper- and lower-case  
letters for the arbitrary waveform name. Therefore, ARB_1 and arb_1 are the  
same name. All characters are converted to upper case.  
110 Agilent E1441A SCPI Command Reference  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Comments  
The names of the five built-in arbitrary waveforms are:  
SINC”  
NEG_RAMP”  
EXP_RISE”  
EXP_FALL”  
CARDIAC”  
To select the waveform currently stored in volatile memory, specify the  
VOLATILE parameter. The keyword “VOLATILE” does not have a short form.  
The correct syntax is: "FUNC:USER VOLATILE"  
The FUNC:USER command does not output the selected waveform. Use the  
FUNC:SHAP USER command to output the waveform.  
If you select an arbitrary waveform name that is not currently downloaded, a  
+785, “Specified arb waveform does not exist” error is generated.  
Use the DATA:CAT? command to list the names of the five built-in waveforms  
(non-volatile), “VOLATILE” if a waveform is currently downloaded to volatile  
memory, and the names of any user-defined waveforms (non-volatile).  
Example The following statement shows how to use the FUNC:USER command:  
"FUNC:USER NEG_RAMP"  
FUNCtion:USER?  
[SOURce:]FUNCtion:USER? queries the arbitrary waveform currently selected.  
Returns “SINC”, “NEG_RAMP”, “EXP_RISE”, “EXP_FALL”, “CARDIAC”, “VOLATILE”,  
or the name of any user-defined waveforms in non-volatile memory.  
FUNCtion:SHAPe  
[SOURce:]FUNCtion:SHAPe SIN|SQU|TRI|RAMP|NOIS|DC|USER selects the  
function specified. The USER parameter will output the arbitrary waveform  
currently selected by the FUNC:USER command. The specified waveform is output  
using the previously selected frequency, amplitude, and offset settings.  
Comments  
Use the FREQ, VOLT, and VOLT:OFFS commands to select the frequency,  
amplitude, and offset of the waveform. Or, use the APPLy command to select  
the function, frequency, amplitude, and offset with a single command.  
As shown in the following table, you can use the arbitrary waveform function  
with all of the modulation modes. Each “X” indicates a valid combination.  
Agilent E1441A SCPI Command Reference  
111  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Sine  
X
Square Triangle  
Ramp  
Noise  
Arb  
X
AM Carrier  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
AM Modulating Wave  
FM Carrier  
X
X
X
X
X
X
FM Modulating Wave  
FSK Modulation  
Burst Modulation  
Frequency Sweep  
X
X
X
X
X
X
X
X
For arbitrary waveforms, the maximum amplitude will be limited if the data  
points do not span the full range of the output DAC (Digital- to-Analog  
Converter). For example, the built-in “SINC” waveform does not use the full  
range of values between 1 and therefore its maximum amplitude is 6.084 Vpp  
(into 50 ohms).  
For arbitrary waveforms an inherent offset may be present (if the average of  
the waveform is not equal to zero). The function generator calculates the  
average of the data points and compares the average to zero volts. If the  
average is not within two DAC (Digital-to-Analog Converter) counts of zero  
volts, an inherent offset is present.  
FUNCtion:SHAPe?  
[SOURce:]FUNCtion:SHAPe? queries the output function. Returns “SIN”, “SQU”,  
TRI”, “RAMP”, “NOIS”, “DC”, or “USER”.  
PULSe:DCYCle  
[SOURce:]PULSe:DCYCle <percent>|MIN|MAX sets the duty cycle in percent for  
square waves only. Duty cycle represents the amount of time per cycle that the  
square wave is high. The default is 50%. [ Stored in volatile memory ]  
Parameters  
Comments  
Parameter Name  
Parameter Type  
Range of Values  
Default Units  
percent  
numeric  
20 to 80  
(see comments)  
percent  
Duty cycle: 20% to 80%, in 1% increments (frequency 5 MHz).  
40% to 60%, in 1% increments (frequency > 5 MHz).  
The default is 50%.  
The duty cycle setting is remembered when you change from square wave to  
another function. When you return to the square wave function, the previous  
duty cycle is used. The APPLy command automatically sets the duty cycle to  
112 Agilent E1441A SCPI Command Reference  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
50% for square waves.  
Possible Conflict with Output Frequency: The duty cycle is auto- matically  
adjusted if you select a frequency that is not valid with the present duty cycle.  
For example, if you set the duty cycle to 70% and then change the frequency to  
8 MHz, the function generator will automatically adjust the duty cycle to 60%  
(the upper limit for this frequency). A -221, “Settings conflict” error is  
generated and the duty cycle is adjusted.  
PULSe:DCYCle?  
SWEep:SPACing  
[SOURce:]PULSe:DCYCle? [MIN|MAX] queries the duty cycle setting. Returns a  
value in percent.  
[SOURce:]SWEep:SPACing LINear|LOGarithmic selects linear or logarithmic  
spacing for the sweep. The default is Linear. [ Stored in volatile memory ]  
SWEep:SPACing?  
[SOURce:]SWEep:SPACing? queries the sweep mode. Returns “LIN” or “LOG”.  
SWEep:TIME  
[SOURce:]SWEep:TIME <time>|MIN|MAX sets the number of seconds required to  
sweep from the start frequency to the stop frequency. Select from 1 ms to 500  
seconds. The default is 1 second. MIN = 1 ms. MAX = 500 seconds. The sweep time  
setting is stored in volatile memory.  
Parameters  
Parameter Name  
Parameter Type  
Range of Values  
Default Units  
seconds  
time  
numeric  
1 ms to 500 sec  
Comments  
The number of frequency points in the sweep depends on the sweep time you  
select and is automatically calculated by the function generator.  
SWEep:TIME?  
[SOURce:]SWEep:TIME? [MIN|MAX] queries the sweep time. Returns a value with  
units of seconds.  
Agilent E1441A SCPI Command Reference  
113  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
SWEep:STATe  
[SOURce:]SWEep:STATe OFF|ON disables or enables the sweep mode. To ensure  
proper operation, you should enable the sweep mode after you have set up the other  
sweep parameters. Only one modulation mode can be enabled at a time. When you  
enable the sweep mode, the previous modulation mode is turned off.  
SWEep:STATe?  
VOLTage  
[SOURce:]SWEep:STATe? queries the state of the sweep mode. Returns “0” (OFF)  
or “1” (ON).  
[SOURce:]VOLTage <amplitude>|MIN|MAX sets the output amplitude for the  
currently active function. MIN selects the smallest amplitude allowed for the selected  
function (50 mVpp into 50 ohms). MAX selects the largest amplitude allowed (10  
Vpp into 50 ohms). The default amplitude is 100 mVpp (into 50 ohms). [ Stored  
in volatile memory ]  
Parameters  
Parameter Parameter Function  
Name Type  
Output  
Minimum Maximum Default  
Termination Amplitude Amplitude Units  
amplitude numeric  
Sine  
50Ω  
50Ω  
50Ω  
50Ω  
50Ω  
50Ω  
50 mVpp 10 Vpp  
50 mVpp 10 Vpp  
50 mVpp 10 Vpp  
50 mVpp 10 Vpp  
50 mVpp 10 Vpp  
50 mVpp 10 Vpp  
Vpp  
Square  
Triangle  
Ramp  
Noise  
Built-In  
Arbs  
amplitude numeric  
Sine  
Open Circuit 100 mVpp 20 Vpp  
Open Circuit 100 mVpp 20 Vpp  
Open Circuit 100 mVpp 20 Vpp  
Open Circuit 100 mVpp 20 Vpp  
Open Circuit 100 mVpp 20 Vpp  
Open Circuit 100 mVpp 20 Vpp  
Vpp  
Square  
Triangle  
Ramp  
Noise  
Built-In  
Arbs  
Comments  
For arbitrary waveforms, the maximum amplitude will be limited if the data  
points do not span the full range of the output DAC (Digital- to-Analog  
Converter). For example, the built-in “SINC” waveform does not use the full  
range of values between 1 and therefore its maximum amplitude is 6.084 Vpp  
(into 50 ohms).  
114 Agilent E1441A SCPI Command Reference  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
You can set the units for output amplitude to Vpp, Vrms, or dBm. See the  
VOLT:UNIT command for more information.  
For dc volts, the output level is actually controlled by setting the offset voltage.  
You can set the dc voltage to any value between 5 Vdc into 50 ohms or  
10 Vdc into an open circuit. See the VOLT:OFFS command for more  
information.  
Possible Conflict with Function Change: The output amplitude is  
automatically adjusted if you select a function whose maximum amplitude is  
less than that of the currently active function. This conflict may arise when the  
output units are Vrms or dBm due to the differences in crest factor for the  
output functions. For example, if you output a 5 Vrms square wave (into 50  
ohms) and then change the function to sine wave, the function generator will  
adjust the output amplitude to 3.535 Vrms (the upper limit for sine waves in  
Vrms). A-221, “Settings conflict” error is generated and the amplitude is  
adjusted.  
Output Amplitude and Output Termination: The output amplitude is  
automatically adjusted (and no error is generated) if you change the output  
termination. For example, if you set the amplitude to 10 Vpp and then change  
the termination from 50 ohms to “high impedance”, the amplitude will double  
to 20 Vpp. If you change from “high impedance” to 50 ohms, the amplitude  
will drop in half. See the OUTP:LOAD command for more information.  
VOLTage?  
[SOURce:]VOLTage? [MIN|MAX] queries the output amplitude for the currently  
selected function. Returns the magnitude of the output amplitude. Units are not  
returned but are in the units set by the most recent VOLT:UNIT command.  
VOLTage:OFFSet  
[SOURce:]VOLTage:OFFSet <offset>|MIN|MAX sets the dc offset voltage for the  
currently active function. MIN selects the smallest dc offset voltage for the selected  
function (0 volts). MAX selects the largest offset for the selected function. The default  
offset voltage is 0 volts for all functions. The offset voltage setting is stored in  
volatile memory.  
Parameters  
Parameter Name  
Parameter Type  
Range of Values  
Default Units  
offset  
numeric  
0V to MAX  
Vdc  
(see comments)  
Comments  
You can set the offset to a positive or negative number with the restrictions  
shown below. If the specified offset voltage is not valid, the function generator  
will automatically adjust it to the maximum dc voltage allowed with the  
present amplitude. (Vmax is the maximum peak-to-peak amplitude for the  
Agilent E1441A SCPI Command Reference  
115  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
-------  
                                                                                       
selected output termination; Vpp is the output amplitude in volts  
peak-to-peak.) A -221, “Settings conflict” error is generated and the offset is  
adjusted.  
Vpp  
Voffset  
+
Vmax  
and  
Voffset 2Vpp  
2
DC Offset and Output Termination: The offset voltage is automatically  
adjusted (and no error is generated) if you change the output termination. For  
example, if you set the offset to 100 mVdc and then change the termination  
from 50 ohms to “high impedance”, the offset will double to 200 mVdc. If you  
change from “high impedance” to 50 ohms, the offset will drop in half. See the  
OUTP:LOAD command for more information.  
For dc volts, the output level is actually controlled by setting the offset voltage.  
You can set the dc voltage to any value between 5 Vdc into 50 ohms or  
10 Vdc into an open circuit.  
VOLTage:OFFSet?  
[SOURce:]VOLTage:OFFSet? [MIN|MAX] queries the dc offset voltage for the  
currently selected function. Returns a value in dc volts.  
VOLTage:UNIT  
VOLTage:UNIT?  
[SOURce:]VOLTage:UNIT VPP|VRMS|DBM|DEF selects the output units for  
amplitude only (does not affect offset). The default is VPP. [ Stored in volatile  
memory ]  
[SOURce:]VOLTage:UNIT? queries the units selected. Returns “VPP”, “VRMS”,  
or “DBM”.  
116 Agilent E1441A SCPI Command Reference  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
STATus  
The STATus subsystem reports the bit values of the Questionable Data/Signal  
Register. It also allows you to unmask the bits you want reported from the Standard  
Event Register and to read the summary bits from the Status Byte Register.  
The Questionable Data/Signal Register group consists of a condition register, and  
event register and an enable register. The commands in the STATus:QUEStionable  
subsystem control and monitor these registers.  
Subsystem Syntax  
STATus  
:PRESet  
:QUEStionable  
[:EVENt]?  
:CONDition?  
:ENABle <unmask>  
:ENABle?  
Comments  
The STATus system contains four registers, two of which are under IEEE  
488.2 control; the Standard Event Status Register (*ESE?) and the Status Byte  
Register (*STB?). The Operational Status bit (OPR), Service Request bit  
(RSQ), Standard Event summary bit (ESB), Message Available bit (MAV) and  
Questionable Data bit (QUE) in the Status Byte Register (bits 7, 6, 5, 4 and 3  
respectively) can be queried with the *STB? command. Use the *ESE?  
command to query the "unmask" value for the Standard Event Status Register  
(the bits you want logically OR'd into the summary bit). The registers are  
queried using decimal weighted bit values. See Figure 3-1 on page 119.  
:PRESet  
STATus:PRESet command affects only the enable register by setting all enable  
register bits to 0. It does not affect either the "status byte" or the "standard event  
status". PRESet does not clear any of the event registers.  
:QUEStionable :CONDition?  
STATus:QUEStionable:CONDition? returns a decimal-weighted number  
representing the bits set in the Questionable Data condition register.  
:QUEStionable [:EVENt]?  
STATus:QUEStionable[:EVENt]? returns a decimal-weighted number  
representing the bits set in the Questionable Data/Signal Register's event register.  
This command clears all bits in the event register when executed.  
Agilent E1441A SCPI Command Reference  
117  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
:QUEStionable :ENABle  
STATus:QUEStionable:ENABle <unmask> enables (unmasks) bits in the  
Questionable Data/Signal Register's enable register to be reported to the summary bit  
(setting Status Byte Register bit 3 true). The event register bits are not reported in the  
Status Bytes Register unless specifically enabled.  
:QUEStionable :ENABle?  
STATus:QUEStionable:ENABle? returns a decimal-weighted number representing  
the bits enabled in the Questionable Data/Signal Register's enable register signifying  
which bits will set QUE in the Status Byte.  
118 Agilent E1441A SCPI Command Reference  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Figure 3-1.  
Agilent E1441A SCPI Command Reference  
119  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
SYSTem  
The SYSTem command subsystem returns error numbers and their associated  
messages from the error queue. You can also query the SCPI version to which this  
instrument complies.  
Subsystem Syntax  
SYSTem  
:ERRor?  
:VERSion?  
:ERRor?  
SYSTem:ERRor? returns the error numbers and corresponding error messages in  
the error queue. See Appendix B in this manual for a listing of the error numbers,  
messages and descriptions.  
Comments  
When an error is generated by the function generator, it stores an error number  
and corresponding message in the error queue.  
One error is removed from the error queue each time the SYSTem:ERRor?  
command is executed. The errors are cleared in a first-in, first-out (FIFO)  
order. This means that if several errors are waiting in the queue, each  
SYSTem:ERRor? query returns the oldest (not the most recent) error. That  
error is then removed from the queue.  
When the error queue is empty, subsequent SYSTem:ERRor? queries return  
+0,"No error". To clear all errors from the queue, execute the *CLS  
command.  
The error queue has a maximum capacity of 20 errors. If the queue overflows,  
the last error is replaced with -350, "Too many errors". No additional errors  
are accepted by the queue until space becomes available (until you remove  
some of the errors by reading them).  
Example Reading the Error Queue  
SYST:ERR?  
Query the error queue.  
enter statement  
Enter readings into computer.  
:VERSion?  
SYSTem:VERSion? returns the SCPI version number to which this instrument  
complies.  
Comments  
The information returned is in the format "YYYY.R" where "YYYY" is the  
year and "R" is the revision number within that year.  
120 Agilent E1441A SCPI Command Reference  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
TRIGger  
Applies only to burst modulation, FSK, and frequency sweep. You can issue triggers  
for bursts and sweeps using an immediate trigger, an external trigger, or a bus  
trigger. For gated burst modulation and FSK, the external trigger source acts as a gate  
signal rather than a trigger signal. That is, while the signal source supplies a high  
level, the gated burst outputs, and the FSK "hop"frequency is output. While the  
"trigger" signal source is low, no burst is output, and FSK outputs its carrier  
frequency. The TRIGger command subsystem allows you to specify the source of  
the trigger as well as the polarity of the active edge.  
NOTE that the default logical sense of the TTLTRG lines, as defined by the VXIbus  
standard, is negative true.  
Subsystem Syntax  
TRIGger  
:SLOPe POSitive | NEGative  
:SLOPe?  
:SOURce BUS | EXTernal | IMMediate | TTLTrg0-7  
:SOURce?  
:SLOPe  
TRIGger:SLOPe Positive | NEGative selects the slope if the trigger source only.  
Where the external trigger sources are being used as a gating signal for Burst and  
FSK, TRIG:SLOPE will be ignored.  
Parameters POS: (*RST state) For TRIG:SOUR EXT (Ext Trig/FSK/Burst terminal); triggers  
on positive going TTL signal.  
For TRIG:SOUR TTLT<0-7>; triggers on negative going  
signal on VXIbus TTLTRG line (ground true logic)  
NEG:  
For TRIG:SOUR EXT (Ext Trig/FSK/Burst terminal); triggers  
on negative going TTL signal.  
For TRIG:SOUR TTLT<0-7>; triggers on positive going  
signal on VXIbus TTLTRG line (+ true logic)  
:SLOPe?  
TRIGger:SLOPe? returns the currently set trigger slope.  
Returns: "POS" or "NEG"  
Comments  
:SOURce  
TRIGger:SOURce BUS|EXTernal|IMMediate|TTLTrg<n> selects the source from  
which the function generator will accept a trigger.  
Parameters  
BUS: A software trigger; the Group Execute Trigger (GET) bus command or  
Agilent E1441A SCPI Command Reference  
121  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
the *TRG IEEE-488.2 common command.  
EXT: A hardware trigger input to the function generator's faceplate External  
Trigger ("Ext Trig") BNC connector. The trigger signal must have a pulse  
period greater than one (2) microseconds.  
IMMediate: The trigger system is always true (an internal trigger is always  
present and accepted upon issuing a trigger command).  
TTLTrg0-7: One of the eight VXIbus trigger lines (TTLT0 through TTLT7)  
The default trigger source is IMMediate. The trigger source setting is stored in  
volatile memory  
Comments  
When the Immediate (internal) source is selected, the function generator  
outputs continuously when the burst mode or sweep mode is enabled.  
The APPLy command automatically sets the trigger source to IMMediate.  
When the External source is selected, the function generator will accept a  
hardware trigger applied to the front-panel Ext Trig terminal. The function  
generator outputs one burst or initiates one sweep each time each time Ext Trig  
receives the edge of a TTL pulse (polarity set by TRIG:SLOPE). For FSK and  
Gated Burst mode, the level of the signal on Ext Trig gates the FSK "hop"  
frequency, or gates the burst signal on or off (TRIG:SLOPE has no effect on  
the gating sense).  
Except for its actual polarity always being the reverse of the Ext Trig input, the  
TTLTrg<0-7> lines control the function generator in the same way as  
described above in External.  
When the Bus (software) source is selected, the function generator outputs one  
burst or initiates one sweep each time a bus trigger command is received. BUS  
only applies to functions that are truly triggered (counted bursts and frequency  
sweeps), not to gated functions (gated bursts and FSK). To trigger the function  
generator, send a VXIbus trigger (TTLT0-7) or use the *TRG (trigger)  
command. You can also trigger the function generator from the GPIB  
interface by sending the IEEE-488 Group Execute Trigger (GET) message  
(e.g., TRIGGER 70911).  
Send the *WAI (wait) command to ensure synchronization when the Bus  
source is selected. The function generator waits for all pending operations to  
complete following the *WAI command before it executes any additional  
commands. For example, the following command string guarantees that the  
first trigger is accepted and executed before the second trigger is recognized.  
"TRIG:SOUR BUS;*TRG;*WAI;*TRG;*WAI"  
You can use the *OPC? (operation complete query) command or the *OPC  
(operation complete) command to signal when the burst or sweep is complete.  
The *OPC? command returns “1” to the output buffer when the burst or sweep  
is complete. The *OPC command sets the “operation complete” bit (bit 0) in  
the Standard Event register when the burst or sweep is complete.  
For FSK operation, the trigger sources of "IMM" and "BUS" will actually use  
122 Agilent E1441A SCPI Command Reference  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
the external trigger faceplate BNC connector.  
Related Commands:  
*RST Condition: TRIG:SOUR IMM  
Example Setting an External Trigger Source to Trigger a 5V peak-to-peak,  
5 Second Logarithmic Sweep from 2 MHz to 10 MHz for Each  
External Trigger:  
APPL:SIN 2E06,5  
Function: 2 MHz, 5 Vpp sinewave (0V  
offset).  
FREQ:STAR 2E06  
FREQ:STOP 1E07  
SWE:TIME 5  
SWE:SPAC LOG  
TRIG:SOUR EXT  
Sweep start frequency = 2 MHz.  
Sweep stop frequency = 10 MHz.  
Sweep time = 5 seconds.  
Sweep spacing is logarithmic.  
Trigger source is "Ext Trig" BNC on front  
panel.  
SWE:STAT ON  
Sweep state is enabled.  
:SOURce?  
TRIGger:SOURce? queries the present trigger source setting. Returns “IMM”,  
EXT”, or “BUS”.The quoted string is sent to the output buffer.  
Example Querying the Trigger Source  
TRIG:SOUR EXT  
TRIG:SOUR?  
Trigger source is external BNC on  
function generator front panel.  
Query function generator to return  
trigger source setting.  
enter statement  
Enter quoted string into computer.  
Agilent E1441A SCPI Command Reference  
123  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
IEEE 488.2Common CommandReference  
The following table lists the IEEE 488.2 Common (*) Commands listed by  
functional group that can be executed by the Agilent E1441A Function / Arbitrary  
Waveform Generator. However, commands are listed alphabetically in the  
reference. Examples are shown in the reference when the command has parameters  
or returns a non-trivial response; otherwise, the command string is as shown in the  
table. For additional information, refer to IEEE Standard 488.2-1987.  
Category  
Command  
*IDN?  
Title  
Description  
System Data  
Identification  
Returns the identification string and  
function generator firmware versions.  
HEWLETT-PACKARD,E1441A,0,A.0x.0x-A.0x.0x  
Returns "1:PLL" if the phase-lock option  
001 is present.  
*OPT?  
*RCL  
*RST  
Option query  
Internal  
Operations  
Recall state from memory  
Reset  
Recalls the specified stored instrument  
configurationstate (one of four).  
Resets the function generator to the  
settings shown in the "Power-On and  
Reset State" table following the individual  
common command descriptions.  
Saves the present instrument configuration  
state in the specified memory location (one  
of four locations).  
*SAV  
Save state to memory  
Self-Test  
Internal  
Operations  
*TST?  
Returns "0" if self-test passes. Returns "1"  
if self-test fails. Use SYST:ERR? to  
retrieve the error from the function  
generator. See "Self-Test Errors" in  
Appendix B for a complete list of error  
numbers and their description. Return  
function generator to Agilent Technologies  
for repair if repair is required.  
Synchronization *OPC  
Operation Complete  
Operation Complete Query  
Wait to Complete  
Operation Complete Command  
Operation Complete Query  
Wait-to-Continue Command  
*OPC?  
*WAI  
Status & Event  
*CLS  
Clear Status  
Clear Status Command  
Standard Event Status Enable Command  
*ESE <mask> Event Status Enable  
*ESE?  
*ESR?  
Event Status Enable Query  
Event Status Register Query Standard Event Status Register Query  
Standard Event Status Enable Query  
*SRE <mask> Service Request Enable  
Service Request Enable Command  
Service Request Enable Query  
Read Status Byte Query  
*SRE?>  
*STB?  
Service Request Enable  
Query  
Read Status Byte Query  
Bus Operation  
*TRG  
Bus Trigger  
When the function generator is in the  
wait-for-trigger state and the trigger source  
is TRIGger:SOURce BUS use *TRG to  
trigger the function generator.  
Figure 3-2.  
124 Agilent E1441A SCPI Command Reference  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
*CLS  
*CLS clears the Standard Event Status Register, the Operation Status Register, the  
Questionable Signal Register and the error queue. This clears the corresponding  
summary bits (3, 5, and 7) in the Status Byte Register. *CLS does not affect the  
enable masks of any of the Status Registers.  
Comments  
Coupled command: No  
Related Commands: STATus:PRESet  
*RST Condition: none  
*ESE  
*ESE <unmask> enables one or more event bits of the Standard Event Status  
Register to be reported in bit 5 (the Standard Event Status Summary Bit) of the Status  
Byte Register. unmask is the sum of the decimal weights of the bits to be enabled.  
The query form returns the current enable mask.  
Parameters  
Comments  
ParameterName  
ParameterType  
numeric  
Range of Values  
0 through 255  
Default Units  
none  
unmask  
A 1 in a bit position enables the corresponding event; a 0 disables it.  
Coupled command: No  
Related Commands: *ESR?, *SRE, *STB?  
*RST Condition: unaffected  
Power-On Condition: no events are enabled  
Example Enable all error events  
*ESE 60  
Enable error events  
*ESE?  
*ESR?  
*ESE? queries the current setting of the Event Status Enable mask register.  
*ESR? returns the value of the Standard Event Status Register. The register is then  
cleared (all bits 0).  
Comments  
Coupled command: No  
*RST Condition: none  
Power-On Condition: register is cleared  
Agilent E1441A SCPI Command Reference  
125  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
*IDN?  
*IDN? returns identification information for the Agilent E1441A. The response  
consists of four fields:  
HEWLETT-PACKARD,E1441A,0,A.01.00-A.01.09  
The first two fields identify this instrument as model number Agilent E1441A  
manufactured by Agilent Technologies (Agilent spun off of HP in November 1999;  
firmware will still say Hewlett-Packard). The third field is 0 since the serial number  
of the Agilent E1441A is unknown to the firmware. The last field indicates the  
revision level of the inguard-outguard firmware.  
Note The firmware revision field will change whenever the firmware is revised.  
A.01.00-A.01.00 is the initial revision. The first two digits indicate the  
major revision number, and increment when functional changes are made.  
The last two digits indicate the functional fix level.  
Comments  
Comments  
Comments  
Coupled command: No  
*RST Condition: none  
Power-On Condition: register is cleared  
*OPC  
*OPC causes the Agilent E1441A to wait for all pending operations to complete.  
The Operation Complete bit (bit 0) in the Standard Event Status Register is then set.  
Coupled command: No  
Related commands: *OPC?, *WAI  
*RST Condition: none  
*OPC?  
*OPC? causes the Agilent E1441A to wait for all pending operations to complete. A  
single ASCII "1" is then placed in the output queue.  
Coupled command: No  
Related commands: *OPC, *WAI  
*RST Condition: none  
*OPT? (option 001)  
*OPT? queries the presence of the Phase-Lock option (option 001). Returns  
"1:PLL" if the option is present or "0" if the option is not present. The "10 MHz Ref"  
In and Out BNC connectors accompany this option.  
126 Agilent E1441A SCPI Command Reference  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
*PSC  
*PSC 0 | 1 enables/disables power-on status clear. Clears the Status Byte and  
Stadard Event register enable masks when power is turned on (*PSC 1). When *PSC  
0 is in effect, the Status Byte and Standard Event register enable masks are not  
cleared when power is turned on. The default setting is 1 (enabled to clear).  
Note In order for the *PSC setting to remain in effect through a power failure, a  
*SAV 0 must be executed after the *PSC command.  
*PSC?  
*RCL  
*PSC? queries the PSC setting. Returns "0" (*PSC 0) or "1" (*PSC 1).  
*RCL 0 | 1 | 2 | 3 recalls a previously stored instrument configuration. Four  
memory locations, 0, 1, 2 and 3, are available to store configurations.  
Comments  
You cannot recall the instrument configuration from a memory location that  
was not previously specified as a storage location. For example, an error is  
generated if you attempt to recall from memory location "2" but have not  
saved to that location with the *SAV command. A +810, "State has not been  
stored" error is generated if nothing is stored in the specified memory location  
you are trying to recall.  
Coupled command: No  
Related commands: *SAV, MEMory:STATe:DELete  
*RST Condition: none  
*RST  
*RST resets the Agilent E1441A as follows:  
Sets all commands to the power-on/reset state (see the table following these  
common commands or at the end of Chapter 2).  
Aborts all pending operations.  
*RST does not affect:  
The output queue  
The Service Request and Standard Event Status Enable Registers  
The enable masks for the Questionable Signal Registers  
Calibration data  
Comments  
Coupled command: No  
*RST Condition: none  
Agilent E1441A SCPI Command Reference  
127  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
*SAV  
*SAV 0 | 1 | 2 | 3 saves up to four different instrument configurations. Four  
memory locations, 0, 1, 2 and 3, are available to store configurations. This  
configuration storage feature "remembers" the function (including arbitrary  
waveforms), frequency, amplitude, dc offset, duty cycle, as well as any modulation  
parameters.  
Comments  
Configurations saved to location 0 are recalled when the function generator is  
powered-up.  
Any arbitrary waveforms downloaded to "VOLATILE" memory are not saved.  
However, if an arbitrary waveform is being output from non-volatile memory  
when the configuration is stored, the waveform data is stored. The stored  
waveform is output when its correspond- ing instrument configuration is  
recalled.  
If you delete an arbitrary waveform after storing a configuration containing  
that waveform, the waveform data is lost and the function generator will  
output the "SINC" built-in arbitrary waveform when the corresponding  
configuration is recalled.  
Coupled command: No  
Related commands: *RCL, MEMory:STATe:DELete  
*RST Condition: none  
*SRE  
*SRE <unmask> specifies which bits of the Status Byte Register are enabled to  
generate a IEEE-488.1 service request. Event and summary bits are always set and  
cleared in the Status Byte Register regardless of the enable mask. unmask is the sum  
of the decimal weights of the bits to be enabled.  
The query form returns the current enable mask.  
Parameters  
Comments  
Parameter Parameter  
Range of  
Values  
Default  
Units  
Name  
Type  
numeric  
0 through 255  
none  
unmask  
A 1 in a bit position enables service request generation when the corresponding  
Status Byte Register bit is set; a 0 disables it.  
Coupled command: No  
*RST Condition: unaffected  
Power-On Condition: no bits are enabled  
Example Enable service request on Message Available bit  
*SRE 16  
Enable request on MAV  
128 Agilent E1441A SCPI Command Reference  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
*SRE?  
*STB?  
*SRE? queries the Status Byte Enable register. The function generator returns a  
decimal value that corresponds to the binary-weighted sum of all bits set in the  
register.  
*STB? returns the value of the Status Byte Register. Bit 6 (decimal weight 64) is set  
if a service request is pending.  
Comments  
Coupled command: No  
Related commands: *SRE  
*RST Condition: none  
*TRG  
*TRG causes the Agilent E1441A to trigger if the TRIG:SOUR is BUS. Triggers are  
used to start Burst Mode and Sweep Mode only.  
Comments  
Coupled command: Yes  
*RST Condition: TRIGger:SOURce IMMediate  
*TST?  
*TST? causes the Agilent E1441A to execute its internal self-test and returns a value  
indicating the results of the test.  
A zero response indicates that the self-test passed. Any non-zero response indicates  
that the test failed. Use the SYST:ERR? command to read the error and description  
from the error queue. Note the error number and description returned in the error  
message. See Appendix B, Error Messages, for information on interpreting the error  
number and description response(s).  
The settings for all SCPI commands are unchanged by this command.  
Comments  
Sending a Device Clear interface command to the Agilent E1441A while  
self-test is executing may generate self-test errors.  
Coupled command: No  
*RST Condition: none  
*WAI  
*WAI causes the Agilent E1441A to wait for all pending operations to complete  
before executing any further commands.  
Comments  
Related commands: *OPC, *OPC?  
Agilent E1441A SCPI Command Reference  
129  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Agilent E1441A Power-On and Reset State  
Feature  
Power-On and Reset State  
Output Configuration  
Sine wave  
Function  
Frequency  
1 kHz  
Amplitude (into 50 ohms)  
Offset  
100 mV peak-to-peak  
0.00 Vdc  
Output Units  
Volts peak-to-peak  
50 ohms  
Output Termination  
Modulation  
AM Carrier Waveform  
AM Modulating Waveform  
AM Depth  
1 kHz Sine wave  
100 Hz Sine wave  
100%  
FM Carrier Waveform  
FM Modulating Waveform  
FM Peak Frequency Deviation  
Burst Carrier Frequency  
Burst Count  
1 kHz Sine wave  
10 Hz Sine wave  
100 Hz  
1 kHz Sine wave  
1 cycle  
Burst Rate  
100 Hz  
Burst Starting Phase  
FSK Carrier Frequency  
FSK"Hop" Frequency  
FSK Rate  
0 degrees  
1 kHz Sine wave  
100 Hz Sine wave  
10 Hz  
Modulation State  
Off  
Sweep Start / Stop Frequency  
Sweep Time  
100 Hz / 1 kHz  
1 second  
Sweep Mode  
Linear  
Triggering Operations  
Trigger Source  
Internal  
Calibration  
Calibration State  
Does not change with *RST or  
power-down. See page 74  
Note The power-on state will state will be different if you have enabled the  
auto-recall mode. See “MEMory:STATe:RECall:AUTO OFF | ON | 0 | 1”  
on page 85.  
130 Agilent E1441A SCPI Command Reference  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
SCPI Command Quick Reference  
The following tables summarize SCPI commands for the Agilent E1441A Function  
/ Arbitrary Waveform Generator.  
Command  
Description  
CALibration  
:COUNt?  
Query number of cal operations.  
Enters a new security code.  
Enables/disables the security code.  
Queries the security state.  
:SECure:CODE <new code>  
:SECure:STATe 1 | 0 | ON | OFF, <code>  
:SECure:STATe?  
:STRing <quoted string>  
:STRing?  
Lets you store info about your calibration.  
Queries the cal string.  
:VALue <cal value>  
:VALue?  
:ZERO:AUTO 1 | 0 | ON | OFF  
:ZERO:AUTO?  
Sets the calibration value.  
Queries the calibration value.  
Enable/disable autozero mode.  
Query autozero mode.  
CALibration?  
DATA  
Initiates the calibration process using  
the cal valueset by CAL:VALue.  
VOLATILE  
:DAC VOLATILE  
:ATTRibute:AVERage? [<arb name>]  
:ATTRibute:CFACtor? [<arb name>]  
:ATTRibute:POINts? [<arb name>]  
:ATTRibute:PTPeak? [<arb name>]  
:CATalog?  
:COPY <destination arb name> [,VOLATILE]  
:DELete <arb name>  
:DELete:ALL  
:NVOLatile:CATalog?  
:NVOLatile:FREE?  
FORMat  
:BORDer NORMal | SWAPped  
:BORDer?  
MEMory  
OUTPut  
:STATe:DELete 0 | 1 | 2 | 3  
:LOAD 50 | INFinity | MIN | MAX  
:LOAD? MIN | MAX  
:SYNC OFF | ON  
:SYNC?  
:TRIGger:IMMediate  
:TRIGger:STATe OFF | ON  
:TRIGger:STATe?  
Opt. 001: "Ext Trig" BNC output.  
Opt. 001: Enables/disables "Ext Trig".  
Opt. 001: Queries trigger state.  
:TTLTrg<n>[:STATe] ON | OFF  
:TTLTrg<n>[:STATe]?  
PHASe  
:ADJust?  
:REFerence  
:UNLock:ERRor:STATe OFF | ON  
:UNLock:ERRor:STATe?  
Opt. 001: Query the phase offset setting.  
Opt. 001: Set zero-phase reference point.  
Opt. 001: Enable/disable error reporting.  
Opt. 001: Query error reporting state.  
Agilent E1441A SCPI Command Reference  
131  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Command  
Description  
[SOURce:]  
AM:DEPTh <depth in percent> | MIN | MAX  
AM:DEPTh? [MIN | MAX]  
AM:INTernal:FUNCtion  
SINusoid|SQUare|TRIangle|RAMP|  
NOISe|USER  
AM:INTernal:FUNCtion?  
AM:INTernal:FREQuency <frequency> | MIN | MAX  
AM:INTernal:FREQuency?  
AM:SOURce BOTH|EXTernal  
AM:SOURce?  
AM:STATe OFF | ON  
AM:STATe?  
APPLy:SINusoid [<frequency>[,<amplitude>[,<offset>]]]  
APPLy:SQUare [<frequency>[,<amplitude>[,<offset>]]]  
APPLy:TRIangle [<frequency>[,<amplitude>[,<offset>]]]  
APPLy:RAMP [<frequency>[,<amplitude>[,<offset>]]]  
APPLy:NOISe [<frequency>[,<amplitude>[,<offset>]]]  
APPLy:DC [<frequency>[,<amplitude>[,<offset>]]]  
APPLy:USER [<frequency>[,<amplitude>[,<offset>]]]  
APPLy?  
BM:NCYCles <number of cycles> | MIN | MAX  
BM:NCYCles? [ MIN | MAX ]  
BM:PHASe <degrees> | MIN | MAX  
BM:PHASe? [MIN | MAX]  
BM:INTernal:RATE <frequency> | MIN | MAX  
BM:INTernal:RATE? [ MIN | MAX]  
BM:SOURce INTernal | EXTernal  
BM:SOURce?  
BM:STATe OFF | ON  
BM:STATe?  
FM:DEViation <peak deviation in Hz> | MIN | MAX  
FM:DEViation? [MIN | MAX]  
FM:FUNCtion  
SINusoid|SQUare|TRIangle|RAMP|NOISe|  
USER  
FM:FUNCtion?  
FM:INTernal:FREQuency <frequency> | MIN | MAX  
FM:INTernal:FREQuency? [MIN | MAX]  
FM:STATe OFF | ON  
FM:STATe?  
FREQuency <frequency> | MIN | MAX  
FREQuency? [ MIN | MAX ]  
FREQuency:STARt <frequency> | MIN | MAX  
FREQuency:STARt? [ MIN | MAX ]  
FREQuency:STOP <frequency> | MIN | MAX  
FREQuency:STOP? [MIN | MAX]  
132 Agilent E1441A SCPI Command Reference  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Command  
Description  
[SOURce:]  
FSKey:FREQuency <frequency> | MIN | MAX  
FSKey:FREQuency? [ MIN | MAX ]  
FSKey:INTernal:RATE <rate in Hz> | MIN | MAX  
FSKey:INTernal:RATE? [ MIN | MAX ]  
FSKey:SOURce INTernal | EXTernal  
FSKey:SOURce?  
FSKey:STATe OFF|ON  
FSKey:STATe?  
FUNCtion:USER <arb name> | VOLATILE  
FUNCtion:USER?  
FUNCtion[:SHAPe] USER  
FUNCtion[:SHAPe]?  
PULSe:DCYCle <percent> | MIN | MAX  
PULSe:DCYCle? [ MIN | MAX ]  
SWEep:SPACing LINear | LOGarithmic  
SWEep:SPACing?  
SWEep:TIME <seconds> | MIN | MAX  
SWEep:TIME? [ MIN | MAX ]  
SWEep:STATe OFF | ON  
SWEep:STATe?  
VOLTage <amplitude> | MIN | MAX  
VOLTage? [ MIN | MAX ]  
VOLTage:OFFSet <offset> | MIN | MAX  
VOLTage:OFFSet? [ MIN | MAX ]  
VOLTage:UNIT VPP | VRMS | DBM | DEFault  
VOLTage:UNIT?  
SYSTem  
TRIGger  
:ERRor?  
Return error number/message from  
error queue.  
Return the function generator's SCPI  
version.  
:VERSion?  
:SLOPe POSitive | NEGative  
:SLOPe?  
:SOURce BUS | EXT | IMM | TTLT<0 - 7>  
:SOURce?  
Specify trigger edge polarity  
Query trigger polarity  
Specify trigger source.  
Query trigger source.  
Agilent E1441A SCPI Command Reference  
133  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
134 Agilent E1441A SCPI Command Reference  
Chapter 3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Appendix A  
Agilent E1441A Specifications  
Waveforms Standard Waveforms:  
Sine, Square, Triangle, Ramp, Noise, DC  
volts, Sine (x)/x, Negative Ramp,  
Exponential Rise, Exponential fall, Cardiac  
Arbitrary Waveforms:  
Waveform Length:  
8 to 16,000 points  
Amplitude Resolution: 12 bits (including sign)  
Sample Rate: 40 MSa / sec  
Non-Volatile Memory: Four (4) 16k waveforms  
Frequency Sine:  
100 µHz - 15 MHz  
100 µHz - 15 MHz  
100 µHz - 100 kHz  
100 µHz - 100 kHz  
10 MHz bandwidth  
Square:  
Characteristics  
Triangle:  
Ramp:  
Noise (Gaussian):  
Arbitrary Waveforms:  
8 to 8,192 points  
8,193 to 12,287 points  
12,288 to 16,000 points 100 µHz to 200 kHz  
100 µHz - 5 MHz  
100 µHz - 2.5 MHz  
Resolution:  
Accuracy:  
10 µHz or 10 digits  
10 ppm in 90 days  
20 ppm in 1 year  
18° C - 28° C  
Temperature Coefficient: <2 ppm/ ° C  
Aging:  
<10 ppm/yr  
Sinewave Spectral Purity Harmonic Distortion  
DC to 20 kHz:  
< -70 dBc  
< -60 dBc  
< -45 dBc  
< -35 dBc  
20 kHz to 100 kHz:  
100 kHz to 1 Mhz:  
1 Mhz to 15 Mhz:  
Total Harmonic Distortion  
DC to 20 kHz:  
< 0.04%  
Spurious (non-harmonic)  
Output (DC to 1 Mhz): < -65 dBc  
Output ( 1 Mhz):  
< -65 dBc + 6 dB/octave  
Phase Noise:  
< -52 dBc in a 30 kHz band  
Agilent E1441A Specifications  
135  
Appendix A  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Signal Characteristics Square wave  
Rise/Fall Time:  
< 20 ns  
Overshoot:  
Asymmetry:  
Duty Cycle:  
< 2%  
1% + 5 ns  
20% to 80% (to 5 MHz)  
40% to 60% (to 15 MHz)  
Triangle, Ramp, Arb  
Rise/Fall Time:  
Linearity:  
100 ns (typical)  
< 0.1% of peak output  
< 250 ns to 0.5% of final value  
< 25 ns  
Settling Time:  
Jitter:  
(2)  
Output Characteristics (1,5) Amplitude (into 50):  
50 mVpp - 10 Vpp  
1% of specified output  
(sine wave relative to 1 kHz)  
1%(0.1 dB)  
Accuracy (at 1 kHz):  
Flatness  
100 kHz:  
100 kHz to 1 Mhz:  
1 Mhz to 15 Mhz:  
1.5%(0.15 dB)  
2%(0.2 dB)  
(3)  
Offset (into 50):  
5 Vpk ac + dc  
(4)  
Accuracy:  
2% of setting + 2 mV  
Output Impedance:  
Resolution:  
50 ohms fixed  
3 digits, Amplitude and Offset  
Vpp, Vrms, dBm  
Output Units:  
Isolation:  
42 Vpk maximum to earth  
Protection:  
Short-circuit protected  
15 Vpk overdrive < 1 minute  
(1) Add 1/10th of output amplitude and offset specification per ° C for  
operation outside of 18° C to 28° C range.  
(2) 100 mVpp - 20 Vpp amplitude into open-circuit load.  
(3) Offset 2 X peak-to-peak amplitude.  
(4) For square wave outputs, add 2% of output amplitude additional error.  
(5) See “Option 001 Specifications” on page 139.  
136 Agilent E1441A Specifications  
Appendix A  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Modulation AM Modulation  
Carrier -3dB Freq:  
15 MHz (typical)  
Characteristics  
Modulation:  
Frequency:  
Any internal waveform plus Arb  
10 mHz to 20 kHz ( 0.05% to 2.5 kHz, then  
decreases linearly to 0.4% at upper limit)  
0% to 120%  
Depth:  
Source:  
Internal/External  
FM Modulation  
Modulation:  
Frequency:  
Any internal waveform plus Arb  
10 mHz to 10 kHz ( 0.05% to 600 Hz, then  
decreases linearly to 0.8% at upper limit)  
10 mHz to 15 MHz  
Peak Deviation:  
Source:  
Internal Only  
Burst Modulation  
Carrier Frequency:  
Count:  
5 MHz max.  
1 to 50,000 cycles, or Infinite  
-360° to +360°  
10 mHz to 50 kHz 1%  
Internal or External Gate (1)  
Single, External, or Internal Rate  
Start Phase:  
Internal Rate:  
Gate Source:  
Trigger Source:  
FSK Modulation  
Frequency Range:  
10 mHz to 15 MHz ( 0.05% to 600 Hz, then  
decreases linearly to 4% at upper limit)  
10 mHz to 50 kHz  
Internal Rate:  
Source:  
Single, External, or Internal  
Frequency Sweep Type:  
Linear or Logarithmic  
Up or Down  
10 mHz to 15 MHz  
1 ms to 500 sec 0.1%  
Single, External, or Internal  
Direction:  
Start F / Stop F:  
Time:  
Source:  
Faceplate Inputs(5) External AM  
5 Vpk = 100% Modulation  
5 kInput Resistance  
Modulation:  
External Trigger/FSK  
(1)  
Burst Gate:  
Latency:  
Jitter:  
TTL (high true)  
1.3 µs  
25 ns  
VXIbus TTLTRG inputs TTLT<0-7> Trigger/FSK  
(1)  
Burst Gate:  
TTLTRG (low true)  
1.15 µs  
25 ns  
Latency:  
Jitter:  
Agilent E1441A Specifications  
137  
Appendix A  
Download from Www.Somanuals.com. All Manuals Search And Download.  
(2)  
System Characteristics Configuration Times  
(3)  
Function Change:  
Frequency Change:  
80 ms  
10 ms  
(3)  
(3)  
Amplitude Change:  
Offset Change:  
30 ms  
20 ms  
550 ms  
Select User Arb:  
Modulation Parameter  
Change:  
<350 ms  
Arb Download Times:  
Table 3-1.  
Arb Length Binary ASCII Integer ASCII Real  
(4)  
16,000 points  
8,192 points  
4,096 points  
2,048 points  
8 sec  
4 sec  
81 sec  
42 sec  
21 sec  
11 sec  
100 sec  
51 sec  
26 sec  
13 sec  
2.5 sec  
1.5 sec  
(1) Trigger source ignored when External Gate is selected.  
(2) Time to change parameter and output the new signal.  
(3) Modulation or sweep off.  
(4) Times for 5-digit and 12-digit numbers.  
(5) See “Option 001 Specifications” on page 139.  
General Specifications Agilent E1441A Available Power (Amps):  
+5V: peak measurement (Ipm):  
0.50  
dynamic measurement (Idm): 0.10  
+12V:peak measurement (Ipm):  
2.50  
dynamic measurement (Idm); 0.12  
Cooling/Slot:  
Average Watts/Slot:  
25.0  
0.10  
2.00  
deltaP mm H2O:  
Air Flow liters/s:  
Operating Environment:  
0° C to 55° C (Option 001 to 50° C  
65% Relative Humidity to 40° C  
Storage Environment:  
-40° C to 70° C  
State Storage Memory: Four memory locations available (0, 1, 2 and 3)  
Warm-up Time:  
30 minutes  
Programming Language:  
SCPI-1993, IEEE-488.2  
138 Agilent E1441A Specifications  
Appendix A  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Option 001 Specifications Timebase Accuracy:  
Setability:  
Stability:  
Aging:  
< 0.01 ppm  
±1 ppm 0°C - 50°C  
< 1 ppm in first 30 days (continuous operation)  
10–7  
month  
---------------  
(after first 30 days)  
Faceplate Input: (Ext Ref In terminal)  
Lock Range:  
Level:  
10 MHz ±50 Hz  
-10 dBm to +15 dBm,  
+25 dBm or 10Vpp absolute maximum input  
50±2%, 42 Vpk isolation from earth  
< 2 seconds  
Impedance:  
Lock Time:  
Faceplate Output: (Ref Out terminal)  
Frequency:  
Level:  
10 MHz  
>1 Vpp squarewave into 50Ω  
Phase Offset:  
Range:  
±360 degrees  
0.001 degrees  
25 ns  
Resolution:  
Accuracy:  
Trigger:  
Level:  
5 V "zero-going" pulse  
Pulse Width:  
Fanout:  
> 2 µs  
Four (4) Agilent E1441As (or Agilent E33120As)  
Agilent E1441A Specifications  
139  
Appendix A  
Download from Www.Somanuals.com. All Manuals Search And Download.  
140 Agilent E1441A Specifications  
Appendix A  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Appendix B  
Agilent E1441A Error Messages  
Errors are retrieved in first-in-first-out (FIFO) order. The first error returned  
(SYST:ERR? command) is the first error that was stored. When you have  
read all errors from the queue, the next execution of SYST:ERR? returns  
+0, "No error". Since no indication is given that an operation has caused an  
error, your application program should query the error queue regularly.  
If more than 20 errors have occurred, the last error stored in the queue (the  
most recent error) is replaced with -350, “Too many errors”. No additional  
errors are stored until you remove errors from the queue. If no errors have  
occurred when you read the error queue, the function generator responds  
with +0, “No error”.  
The error queue is cleared when power has been off or after a *CLS (clear  
status) command has been executed. The *RST (reset) command does not  
clear the error queue.  
SYSTem:ERRor?  
Reads one error from the error queue  
Errors have the following format (the error string may contain  
up to 80 characters):  
-113,"Undefined header"  
Execution Errors  
-101 Invalid character  
An invalid character was found in the command string. You may have  
inserted a character such as #, $, or % in the command header or within a  
parameter. Example: TRIG:SOUR BUS#  
-102 Syntax error  
Invalid syntax was found in the command string. You may have inserted a  
blank space before or after a colon (or before a comma) in the command  
header. Example: APPL:SIN ,1  
-103 Invalid separator  
An invalid separator was found in the command string. You may have used  
a comma instead of a colon, semicolon, or blank space – or you may have  
used a blank space instead of a comma. Example: TRIG:SOUR,BUS  
or APPL:SIN 1 1000  
-105 GET not allowed  
A Group Execute Trigger (GET) is not allowed within a command string.  
Agilent E1441A Error Messages  
141  
Appendix B  
Download from Www.Somanuals.com. All Manuals Search And Download.  
-108 Parameter not allowed  
More parameters were received than were expected for the command.  
You may have entered an extra parameter, or you added a parameter to a  
command that does not accept a parameter. Example: APPL? 10  
-109 Missing parameter  
Fewer parameters were received than were expected for the command.  
You omitted one or more parameters that are required for the command.  
Example: OUTP:LOAD  
-112 Program mnemonic too long  
A command header was received which contained more than the maximum  
12 characters allowed. Example: OUTP:SYNCHRONIZATION ON  
-113 Undefined header  
A command was received that is not valid for the function generator. You  
may have misspelled the command or it may not be a valid command. If you  
are using the short form of the command, remember that it may contain up  
to four letters. Example: TRIGG:SOUR BUS  
-121 Invalid character in number  
An invalid character was found in the number specified for a parameter  
value. Example: *ESE #B01010102  
-123 Exponent too large  
A numeric parameter was found whose exponent was larger than 32,000.  
Example: BMOD:NCYC 1E34000  
-124 Too many digits  
A numeric parameter was found whose mantissa contained more than 255  
digits, excluding leading zeros.  
-128 Numeric data not allowed  
A numeric parameter was received but a character string was expected.  
Example: DISP:TEXT 123  
-131 Invalid suffix  
A suffix was incorrectly specified for a numeric parameter. You may have  
misspelled the suffix. Example: SWE:TIME 0.5 SECS  
-138 Suffix not allowed  
A suffix was received following a numeric parameter which does not accept  
a suffix. Example: BM:PHAS 10 DEG (this command does not allow a  
suffix).  
-148 Character data not allowed  
A discrete parameter was received but a character string or a numeric  
parameter was expected. Check the list of parameters to verify that you have  
used a valid parameter type. Example: DISP:TEXT ON  
142 Agilent E1441A Error Messages  
Appendix B  
Download from Www.Somanuals.com. All Manuals Search And Download.  
-151 Invalid string data  
An invalid character string was received. Check to see if you have enclosed  
the character string in single or double quotes and that the string contains  
valid ASCII characters.  
-158 String data not allowed  
A character string was received but is not allowed for the command. Check  
the list of parameters to verify that you have used a valid parameter type.  
Example: BMOD:NCYC 'TEN'  
-161 Invalid block data  
Applies only to the DATA:DAC VOLATILE command. For a definite-  
length block, the number of bytes of data sent does not match the number of  
bytes that you specified in the block header. For an indefinite-length block,  
an EOI (End-or-Identify) was received without an accompanying <new  
line> character.  
-168 Block data not allowed  
Block data was received but is not allowed for the command. Check to see  
if you have sent the correct data type with the command.  
-170 to -178 Expression errors  
The function generator does not accept mathematical expressions.  
-211 Trigger ignored  
A Group Execute Trigger (GET) or *TRG was received but the trigger was  
ignored. Make sure that you have selected the correct trigger source.  
-221 Settings conflict; amplitude has been adjusted  
The requested output amplitude is not valid. The output amplitude is  
automatically adjusted to be compatible with the present configuration. This  
error will be generated in the following instances:  
The output amplitude is automatically adjusted if you select a function  
whose maximum amplitude is less than that of the currently active function.  
This conflict may arise when the output units are Vrms or dBm due to the  
differences in crest factor.  
If the specified amplitude is not valid, the function generator will  
automatically adjust it to the maximum value allowed with the present offset  
voltage. The output amplitude (in Vpp) and the dc offset voltage must obey  
the following restrictions. (Vmax is either 10 volts for a high impedance  
termination or 5 volts for a 50 ohm termination.)  
-221 Settings conflict; cannot adjust phase in present configuration  
Option 001 Phase-Lock Only. The phase cannot be adjusted real-time if an  
arbitrary waveform is selected, a modulation mode (other that burst)  
is enabled, or if burst is enabled with a burst count other than infinity.  
Agilent E1441A Error Messages  
143  
Appendix B  
Download from Www.Somanuals.com. All Manuals Search And Download.  
-221 Settings conflict; duty cycle has been adjusted  
The requested duty cycle is not valid. For output frequencies above 5 MHz,  
the duty cycle is limited to values between 40% and 60% (below 5 MHz, the  
range is 20% to 80%). The duty cycle is automatically adjusted if you select  
a frequency that is not valid with the present duty cycle percentage. For  
example, if you set the duty cycle to 70% and then change the frequency to  
8 MHz, the function generator will automatically adjust the duty cycle to  
60% (the upper limit for this frequency).  
-221 Settings conflict; fm deviation has been adjusted  
The requested FM peak frequency deviation is not valid. The sum of the  
carrier frequency and peak frequency deviation must be less than or equal  
to the maximum frequency for the selected function plus 100 kHz (15.1 MHz  
for sine and square, 200 kHz for triangle and ramp, and 5.1 MHz for  
arbitrary waveforms). If you attempt to set the deviation to a value that is not  
valid, the function generator will automatically adjust the deviation to the  
maximum value allowed with the present carrier frequency.  
-221 Settings conflict; frequency has been adjusted  
The requested output (or carrier) frequency is not valid. The output  
frequency is automatically adjusted if you select a function whose maximum  
frequency is less than that of the currently active function. For example, if  
you output a 1 MHz sine wave and then change the function to triangle  
wave, the function generator will adjust the output to 100 kHz (the upper  
limit for triangle waves).  
-221 Settings conflict; fsk frequency has been adjusted  
The requested FSK “hop” frequency is not valid. The FSK frequency is  
automatically adjusted if you select a function whose maximum frequency  
is less than that of the currently active function. For example, if you set the  
FSK frequency to 1 MHz in the sine function and then change the function to  
triangle wave, the function generator will adjust the frequency to 100 kHz  
(the upper limit for triangle waves).  
-221 Settings conflict; offset has been adjusted  
The requested offset voltage is not valid with the present output amplitude.  
The offset is automatically adjusted to the maximum value allowed with the  
present output amplitude. The output amplitude (in Vpp) and the dc offset  
voltage must obey the following restrictions. (Vmax is either 10 volts for a  
high impedance termination or 5 volts for a 50 ohm termination.)  
-221 Settings conflict; start frequency has been adjusted  
The requested start frequency is not valid. The start frequency is  
automatically adjusted if you select a function whose maximum frequency  
is less than that of the currently active function. For example, if you set the  
start frequency to 200 kHz in the sine wave function and then change the  
function to triangle wave, the function generator will adjust the output to  
100 kHz (the upper limit for triangle waves).  
144 Agilent E1441A Error Messages  
Appendix B  
Download from Www.Somanuals.com. All Manuals Search And Download.  
-221 Settings conflict; stop frequency has been adjusted  
The requested stop frequency is not valid. The stop frequency is  
automatically adjusted if you select a function whose maximum frequency  
is less than that of the currently active function. For example, if you set the  
stop frequency to 1 MHz in the sine wave function and then change the  
function to triangle wave, the function generator will adjust the output to  
100 kHz (the upper limit for triangle waves).  
-221 Settings conflict; previous modulation has been disabled  
Only one modulation state can be enabled at a time. When you enable a  
modulation state, the previous modulation state is turned off. For example,  
if AM is on and then you enable FM, the function generator will turn off AM  
first.  
-222 Data out of range  
A numeric parameter value is outside the valid range for the command.  
Example: BMOD:NCYC -3 or FREQ 16 MHZ  
-222 Data out of range; amplitude  
The requested output amplitude exceeds the upper limit for the selected  
function. This error applies only to the APPLy command. See “Output  
Amplitude”.  
-222 Data out of range; frequency  
The requested output (or carrier) frequency exceeds the upper limit for the  
selected function. This error applies only to the APPLy command. See  
“Output Frequency”.  
-222 Data out of range; offset  
The requested offset voltage exceeds the upper limit for the selected  
function or output amplitude. This error applies only to the APPLy  
command. See “DC Offset Voltage”.  
-223 Too much data  
A character string was received but could not be executed because the string  
length was more than 60 characters. This error can be generated by the  
CALibration:STRing and DISPlay:TEXT commands.  
-224 Illegal parameter value  
A discrete parameter was received which was not a valid choice for  
the command. You may have used an invalid parameter choice.  
Example: DISP:STAT XYZ (XYZ is not a valid choice).  
-330 Self-test failed  
The function generator's self-test failed from the remote interface (*TST?  
command). In addition to this error, one or more specific errors may be  
reported. See also “Self-Test Errors,” .  
Agilent E1441A Error Messages  
145  
Appendix B  
Download from Www.Somanuals.com. All Manuals Search And Download.  
-350 Too many errors  
The error queue is full because more than 20 errors have occurred.  
No additional errors are stored until you remove errors from the queue.  
The error queue is cleared when power has been off, or after a *CLS  
(clear status) command has been executed.  
-410 Query INTERRUPTED  
A command was received which sends data to the output buffer, but the  
output buffer contained data from a previous command (the previous data is  
not overwritten). The output buffer is cleared when power has been off, or  
after a device clear has been executed.  
-420 Query UNTERMINATED  
The function generator was addressed to talk (i.e., to send data over the  
interface) but a command has not been received which sends data to the  
output buffer. For example, you may have executed an APPLy command  
(which does not generate data) and then attempted an ENTER statement to  
read data from the remote interface.  
-430 Query DEADLOCKED  
A command was received which generates too much data to fit in the output  
buffer and the input buffer is also full. Command execution continues but all  
data is lost.  
-440 Query UNTERMINATED after indefinite response  
The *IDN? command must be the last query command within a command  
string. Example: *IDN?;:SYST:VERS?  
501 Isolator UART framing error  
502 Isolator UART overrun error  
511 RS-232 framing error  
512 RS-232 overrun error  
513 RS-232 parity error  
521 Input buffer overflow  
522 Output buffer overflow  
550 Command not allowed in local  
You should always execute the SYSTem:REMote command before sending  
other commands over the RS-232 interface. This error is also generated if  
you attempt to execute the DISP:TEXT command while in the local mode  
(this command is allowed in remote only).  
580 Phase-locked loop is unlocked  
Option 001 Phase-Lock Only. The function generator has detected an  
“unlock” condition. You must execute the PHAS:UNL:ERR:STAT ON  
146 Agilent E1441A Error Messages  
Appendix B  
Download from Www.Somanuals.com. All Manuals Search And Download.  
command to enable this error.  
800 Block length must be even  
The function generator represents binary data for arbitrary waveforms as a  
12-bit integers, which is sent as two bytes (DATA:DAC VOLATILE  
command only). An odd number of bytes is not accepted because the  
function generator would not know how to interpret the last single byte.  
810 State has not been stored  
The memory location specified in the *RCL command was not used in a  
previous *SAV command. You cannot recall the instrument state from a  
memory location that was not previously specified as a storage location.  
Self-Test Errors  
The following errors indicate failures that may occur during a self-test. Refer  
to the Service Guide for more information.  
590 I/O processor reset  
601 Trigger test failed  
602 RAM read/write failed  
603 Waveform RAM readback failed  
604 Modulation RAM readback failed  
606 Waveform ASIC failed  
607 SYNC signal detection failure, Bessel filter path  
608 SYNC signal detection failure, Elliptic filter path  
625 I/O processor does not respond  
626 I/O processor failed self-test  
Calibration Errors  
The following errors indicate failures that may occur during a calibration.  
Refer to the Service Guide for more information.  
701 Cal security disabled by jumper  
The calibration security feature has been disabled with a jumper inside the  
function generator. When applicable, this error will occur at power-on to  
warn you that the function generator is unsecured.  
Agilent E1441A Error Messages  
147  
Appendix B  
Download from Www.Somanuals.com. All Manuals Search And Download.  
702 Cal secured  
The function generator is secured against calibration.  
703 Invalid secure code  
An invalid calibration security code was received when attempting to  
unsecure or secure the function generator. You must use the same security  
code to unsecure the function generator as was used to secure it, and vice  
versa. The security code may contain up to 12 alphanumeric characters. The  
first character must be a letter.  
704 Secure code too long  
A security code was received which contained more than 12 characters.  
705 Cal aborted  
A calibration in progress is aborted when you press any front-panel key,  
send a device clear, or change the local/remote state of the instrument.  
706 Cal value out of range  
The specified calibration value (CAL:VALUE) is invalid for the presently  
selected function.  
707 Cal signal measurement out of range  
The specified calibration value (CAL:VALUE) does not match the signal  
applied to the function generator.  
708 Flatness cal failed  
760 RAM checksum failure  
770 Nonvolatile arb waveform memory checksum failure  
771 Nonvolatile cal memory checksum failure  
772 Nonvolatile system memory checksum failure  
This error may occur at power-up if memory location "0" has been deleted  
(MEM:STAT:DEL 0 executed). Use *SAV 0 to store any valid state.  
Please see the “MEMory:STATe:RECall:AUTO OFF | ON | 0 | 1” command  
on page 85 for details on using the *SAV 0 state for an alternate power-up  
state  
773 Nonvolatile state memory checksum failure  
774 Nonvolatile memory erase failure  
775 Nonvolatile memory write failure  
780 to 788 See “Arbitrary Waveform Errors” on page 149.  
800 Block length must be even  
The function generator represents binary data for arbitrary waveforms as a  
12-bit integers, which is sent as two bytes (DATA:DAC VOLATILE  
148 Agilent E1441A Error Messages  
Appendix B  
Download from Www.Somanuals.com. All Manuals Search And Download.  
command only). An odd number of bytes is not accepted because the  
function generator would not know how to interpret the last single byte.  
810 State has not been stored  
The memory location specified in the *RCL command was not used in a  
previous *SAV command. You cannot recall the instrument state from a  
memory location that was not previous specified as a storage location.  
850 Cal setup invalid  
851 Negative offset gain cal required (CAL:SETup 50)  
852 Flatness DAC gain cal required (CAL:SETup 64)  
853 AM cal 1 required (CAL:SETup 30)  
854 AM cal 2 required (CAL:SETup 31)  
855 Cal load resistance not specified (CAL:SETup 33)  
856 Square wave positive offset cal required (CAL:SETup 60)  
857 Square wave 50% duty cycle cal required (CAL:SETup 62)  
Arbitrary Waveform Errors  
The following errors indicate failures that may occur during an arbitrary  
waveform download. Refer to the Arbitrary Waveform Commands for more  
information specific to the use of arbitrary waveform commands. These  
commands are summarized on page <Reference> in the "Table of Contents  
by Function" for Chapter 3, SCPI Command Reference.  
780 VOLATILE arb waveform has not been loaded  
The DATA:COPY command copies the waveform downloaded into  
VOLATILE memory to the specified name. You must download the  
waveform using the DATA VOLATILE or DATA:DAC VOLATILE  
command prior to a copy operation.  
781 Not enough memory to store new arb waveform; use DATA:DELete  
Up to four user-defined waveforms can be stored in non-volatile memory.  
Use the DATA:DEL command to delete the waveform in VOLATILE  
memory or any of the four user-defined waveforms in non-volatile memory.  
Use the DATA:CAT? command to list all waveforms currently stored in  
volatile and non-volatile memory.  
782 Cannot overwrite a built-in arb waveform  
You cannot overwrite the names of the five built-in arbitrary waveforms.  
The following names are reserved and cannot be used with the  
DATA:COPY command: SINC, NEG_RAMP, EXP_RISE, EXP_FALL, and  
CARDIAC.  
Agilent E1441A Error Messages  
149  
Appendix B  
Download from Www.Somanuals.com. All Manuals Search And Download.  
783 Arb waveform name too long  
The arb name can contain up to 8 characters (used with DATA:COPY  
command). The first character must be a letter (A-Z), but the remaining  
characters can be numbers (0-9) or the underscore character (“ _ ”). Blank  
spaces are not allowed.  
784 Name of source arb waveform for copy must be VOLATILE  
The DATA:COPY command copies the arbitrary waveform downloaded  
into VOLATILE memory to the specified name. The source for the copy  
operation is always “VOLATILE” (you cannot copy from any other name).  
785 Specified arb waveform does not exist  
The arb name specified with the FUNC:USER or DATA:DEL command has  
not been downloaded into memory. Use the DATA:CAT? command to list  
all waveforms currently downloaded. To download a waveform into  
memory, use the DATA VOLATILE or DATA:DAC VOLATILE  
commands.  
This error may also be generated if you insert a space instead of a colon  
before the ALL parameter in the DATA:DEL:ALL command. The colon  
before the ALL parameter is required – otherwise, the function generator will  
attempt to delete the arbitrary waveform with the name “ALL”.  
786 Cannot delete a built-in arb waveform  
You cannot delete any of the five built-in arbitrary waveforms.  
The following names are reserved and cannot be deleted with the  
DATA:DEL command: SINC, NEG_RAMP, EXP_RISE, EXP_FALL, and  
CARDIAC.  
787 Cannot delete the currently selected active arb waveform  
You cannot delete the arbitrary waveform that is currently being output.  
Either select a different arbitrary waveform or change to a different output  
function.  
788 Cannot copy to VOLATILE arb waveform  
The DATA:COPY command copies the arbitrary waveform from volatile  
memory to the specified name in non-volatile memory. The source for the  
copy operation is always “VOLATILE” (you cannot copy from any other  
name) and you cannot copy to VOLATILE.  
800 Block length must be even  
The function generator represents binary data as a 12-bit integers, which is  
sent as two bytes (DATA:DAC VOLATILE command only). An odd  
number of bytes is not accepted because the function generator would not  
know how to interpret the last single byte.  
810 State has not been stored  
The memory location specified in the *RCL command was not used in a  
previous *SAV command. You cannot recall the instrument state from a  
memory location that was not previously specified as a storage location.  
150 Agilent E1441A Error Messages  
Appendix B  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Option 001 Phase-Lock Errors  
-221 Settings conflict; cannot adjust phase in present configuration  
The phase cannot be adjusted real-time if an arbitrary waveform is selected,  
a modulation mode (other than burst) is enabled, or if burst is enabled with  
a burst count other than infinity. Occurs only with Option 001 Phase-Lock.  
580 Phase-locked loop is unlocked  
The function generator has detected an "unlock" condition. You must  
execute the PHAS:UNL:ERR:STAT ON command to enable this error.  
Agilent E1441A Error Messages  
151  
Appendix B  
Download from Www.Somanuals.com. All Manuals Search And Download.  
152 Agilent E1441A Error Messages  
Appendix B  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Appendix C  
Agilent E1441A Function Generator  
Tutorial  
The Agilent E1441A is capable of producing a variety of signal waveshapes. You  
may want to learn more about the internal operations of the instrument in order to  
achieve the greatest performance from the function generator. This appendix serves  
that purpose by describing basic signal generation concepts and giving specific  
details on the internal operations of the Agilent E1441A function generator.  
Direct Digital Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 153  
Signal Imperfections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 155  
Output Amplitude Control . . . . . . . . . . . . . . . . . . . . . . . . . . page 156  
Attributes of AC Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . page 157  
Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 158  
Direct Digital Synthesis  
Digital signal processing methods are used in many everyday applications. Whether  
it is a digital audio compact disc player, an electronic synthesized piano, or a  
voice-synthesized telephone message system, complex waveforms can be easily  
created or reproduced using digital signal generation methods.  
The Agilent E1441A uses a signal-generation technique called direct digital  
synthesis or DDS. The basic principle behind DDS is not unlike an audio compact  
disc. As shown below for digital audio, a stream of digital data representing the  
sampled analog signal shape is sequentially addressed from a disc. This data is  
applied to the digital port of a digital-to-analog converter (DAC) which is clocked at  
a constant rate. The digital data is then converted into a series of voltage steps  
approximating the original analog signal shape. After filtering the voltage steps, the  
original analog waveshape will be recovered. The incoming data can be of any  
arbitrary shape, as long as it matches the requirements of the particular DAC (16 bits  
for digital audio players).  
Figure C-1.  
A direct digital synthesis (DDS) signal generator differs from a digital audio player  
because of its very precise control of the data stream input to the DAC. In a DDS  
system, the amplitude values for one complete cycle of the output waveshape are  
stored sequentially in random access memory (RAM) as shown in the figure below.  
As RAM addresses are changed, the DAC converts the waveshape data into a voltage  
Agilent E1441A Function Generator Tutorial  
153  
Appendix C  
Download from Www.Somanuals.com. All Manuals Search And Download.  
waveform (whose data values are loaded in RAM). The frequency of the voltage  
waveform is proportional to the rate at which the RAM addresses are changed.  
The Agilent E1441A represents amplitude values by 4,096 discrete voltage levels  
(or 12-bit vertical resolution). Waveforms may contain between 8 points and 16,000  
points of 12-bit amplitude values. The number of points in RAM representing one  
complete cycle of the waveshape (or 360°) is called its length or horizontal  
resolution. Each RAM address corresponds to a phase increment equal to 360° /  
points, where points is the waveform length. Therefore, sequential RAM addresses  
contain the amplitude values for the individual points (0° to 360° ) of the waveform.  
Figure C-2.  
Direct digital synthesis (DDS) generators use a phase accumulation technique to  
control waveform RAM addressing. Instead of using a counter to generate sequential  
RAM addresses, an “adder” is used. On each clock cycle, the constant loaded into  
the phase increment register (PIR) is added to the present result in the phase  
accumulator (see below). The most- significant bits of the phase accumulator output  
14  
are used to address waveform RAM — the upper 14 bits (2 = 16,384 RAM  
addresses) for the Agilent E1441A. By changing the PIR constant, the number of  
clock cycles required to step through the entire waveform RAM changes, thus  
changing the output frequency. When a new PIR constant is loaded into the register,  
the waveformoutputfrequencychangesphasecontinuously following thenext clock  
cycle.  
48  
The Agilent E1441A uses a 48-bit phase accumulator which yields Fclk /2 or  
approximately 142 nHz frequency resolution internally. The phase accumulator  
output (the upper 14 bits) will step sequentially through each RAM address for  
smaller PIR values (lower frequencies). However, when the PIR is loaded with a  
larger value, the phase accumulator output will skip some RAM addresses,  
automatically “sampling” the data stored in RAM. Therefore, as the output frequency  
is increased, the number of output samples per waveshape cycle will decrease.  
In fact, different groups of points may be output on successive waveform cycles.  
Figure C-3.  
154 Agilent E1441A Function Generator Tutorial  
Appendix C  
Download from Www.Somanuals.com. All Manuals Search And Download.  
The maximum output frequency, with the condition that every waveshape point in  
RAM is output every waveform cycle, is defined by:  
Fout = Fclk / Points  
The minimum number of points required to accurately reproduce a waveshape will  
determine the maximum useful output frequency using the same equation.  
The rule governing waveforms is referred to as the Nyquist Sampling Theorem, which  
states that you must include atleasttwo pointsfrom thehighest frequency component  
of the signal you are attempting to reproduce.  
Signal Imperfections  
Most signal imperfections are easiest to observe in the frequency domain using a  
spectrum analyzer. Sampling theory predicts the location and size of spurious signals  
resulting from the sampling processes used by DDS generators. In fact, since DDS  
generators use a fixed sampling rate (40 MHz for the Agilent E1441A), spurious  
signals can be removed with a fixed frequency “anti-alias” filter. A 17 MHz,  
ninth-order elliptical filter providing a sharp cut-off (in excess of 60 dB attenuation  
for signals greater than 19 MHz) is used for sine wave outputs. A 10 MHz,  
seventh-order Bessel filter is used for non-sine wave outputs. The Bessel filter  
provides slower amplitude roll-off for anti-alias filtering, but maintains linear phase  
response to minimize shape distortion for complex waveshapes. The Agilent  
E1441A automatically selects the appropriate filter when the output function is  
selected.  
All digital-to-analog converters, including those used in DDS generators, produce  
spurious signals resulting from non-ideal performance. These spurious signals are  
harmonically related to the desired output signal. At lower frequencies, the Agilent  
E1441A's 12-bit waveform DAC produces spurious signals near the -74 dBc level  
(decibels below the carrier or output signal) as described by the equation on the  
following page. The Agilent E1441A uses the complete vertical resolution (N=1) of  
the DAC for all internal waveshapes, thus minimizing amplitude quantization error.  
At higher output frequencies, additional DAC errors produce non-harmonic spurious  
outputs. These are signals “folded back” or aliased to a frequency within the signal  
bandwidth. A “perfect” DAC will also produce a wideband noise floor due to  
amplitude quantization. The noise floor for a 12-bit DAC will be near the -74 dBc  
level; this corresponds to a noise density of -148 dBc/Hz for sine wave outputs from  
the Agilent E1441A.  
Amplitude Quantization ( 20 x log ( N x 4096 ) + 1.8 ) dBc  
10  
where “N” is the fraction of available DAC codes used to describe  
the signal waveshape (0 N 1).  
Another type of waveform error visible in the frequency domain is phase truncation  
error. This error results from time quantization of the output waveform. Whenever  
a waveshape is described by a finite number of horizontal points (length), it has been  
sampled in time (or quantized) causing a phase truncation error. Spurious signals  
caused by phase truncation introduce jitter into the output waveform. This may be  
regarded as time (and phase) displacement of output zero crossings.  
Phase truncation causes phase modulation of the output signal which results in  
spurious harmonics (see the equation below). For lower output frequencies, the  
phase accumulator periodically does not advance RAM addresses, causing the DAC  
to deliver the same voltage as recorded on the previous clock cycle. Therefore, the  
phase “slips” back by 360° / points before continuing to move forward again. When  
RAM address increments are the same on each cycle of the output, phase truncation  
error (and jitter) are essentially zero. All standard waveshapes in the Agilent E1441A  
are generated with at least 16,000 waveform points which results in spurious signals  
below the wide-band noise floor of the DAC.  
Agilent E1441A Function Generator Tutorial  
155  
Appendix C  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Phase Truncation Harmonics 20 x log (P) dBc  
10  
where “P” is the number of waveform points in RAM.  
Output Amplitude Control  
The Agilent E1441A uses a 12-bit digital-to-analog converter (DAC) to convert the  
digital representation of a signal to an analog output voltage. The DAC can create  
12  
waveformsrepresented by 4,096 (2 ) discrete amplitudelevels. All 4,096amplitude  
codes are used for the built-in waveforms. Output levels from full maximum to  
minimum output are controlled by applying varying amounts of signal gain or  
attenuation to the signal created by the DAC as shown in the block diagram below.  
The output waveform is always described by the full 12-bit vertical resolution. You  
can download user-defined arbitrary waveforms using less than the full 12-bit  
vertical resolution; however, it is recommended that you always use the full DAC  
amplitude resolution to minimize amplitude quantization errors as previously  
discussed.  
Figure C-4.  
The Agilent E1441A has a fixed output source resistance of 50 ohms (see next  
diagram). During calibration, output amplitudes are calibrated for both the  
open-circuit voltage (no load) and the terminated output voltage (loaded). The  
terminated output amplitude is calibrated for an exact 50 ohm load. Since the  
function generator's output resistance and the load resistance form a voltage divider,  
the measured output voltage of the function generator will vary with load resistance  
value and accuracy. When the function generator's output is loaded with a 0.2%  
accuracy termination, an additional (negligible) 0.2% amplitude error is created.  
Using a 5% accuracy termination will add 5% additional error to specified output  
amplitudes.  
Figure C-5.  
If the function generator's output is measured with no load connected, the output will  
be approximately twice the displayed amplitude (Vgen instead of Vload). In some  
applications, you might continually use the function generator in a “no-load”  
conditions. In such applications, remembering to double the function generator's  
displayed amplitude can cause many errors. The Agilent E1441A allows you to  
specify the function generator's load condition using the OUTPUT:LOAD  
command; thus enabling the function generator to display the correct output  
amplitude.  
156 Agilent E1441A Function Generator Tutorial  
Appendix C  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Floating Signal Generators  
Many applications require a test signal which is isolated from earth ground for  
connection to powered circuits, to avoid ground loops, or to minimize other common  
mode noise. A floating signal generator such as the Agilent E1441A has both sides  
of the output BNC connector isolated from chassis (earth) ground. As shown in the  
figure below, any voltage difference between the two ground reference points  
(Vground) causes a current to flow through the function generator's output common  
lead. This can cause errors such as noise and offset voltage (usually power- line  
frequency related), which are added to the output voltage.  
The best way to eliminate ground loops is to maintain the function generator's  
isolation from earth ground. The function generator's isolation impedance will be  
reduced as the frequency of the Vground source increases due to low-to-earth  
capacitance Cle (approximately 4000 pF for the Agilent E1441A). If the function  
generator must be earth-referenced, be sure to connect it (and the load) to the same  
common ground point. This will reduce or eliminate the voltage difference between  
devices. Also, make sure the function generator and load are connected to the same  
electrical outlet if possible.  
Attributes of AC Signals  
The most common ac signal is the sine wave. In fact, all periodic waveshapes are  
composed of sine waves of varying frequency, amplitude, and phase added together.  
The individual sine waves are harmonically related to each other — that is to say,  
the sine wave frequencies are integer multiples of the lowest (or fundamental)  
frequency of the waveform. Unlike dc signals, the amplitude of ac waveforms varies  
with time as shown in the following figure.  
A sine wave can be uniquely described by any of the parameters indicated -- the  
peak-to-peak value, or RMS value, and its period (T) or frequency (1/T).  
The magnitude of a sine wave can be described by the RMS value (effective heating  
value), the peak-to-peak value (2 x zero-to-peak), or the average value. Each value  
conveys information about the sine wave. The table below shows several common  
waveforms with their respective peak and RMS values.  
Each waveshape exhibits a zero-to-peak value of "V" volts. Crest factor refers to  
the ratio of the peak-to-RMS value of the waveform.  
RMS The RMS value is the only measured amplitude characteristic of a waveform  
that does not depend on waveshape. Therefore, the RMS value is the most useful way  
to specify ac signal amplitudes. The RMS value (or equivalent heating value)  
specifies the ability of the ac signal to deliver power to a resistive load (heat). The  
RMS value is equal to the dc value which produces the same amount of heat as the  
ac waveform when connected to the same resistive load.  
For a dc voltage, this heat is directly proportional to the amount of power dissipated  
in the resistance. For an ac voltage, the heat in a resistive load is proportional to the  
average of the instantaneous power dissipated in the resistance. This has meaning  
only for periodic signals. The RMS value of a periodic waveform can be obtained by  
taking the dc values at each point along one complete cycle, squaring the values at  
each point, finding the average value of the squared terms, and taking the square-root  
of the average value. This method leads to the RMS value of the waveform regardless  
of the signal shape.  
Peak-to-Peak and Peak Value The zero-to-peak value is the maximum positive  
voltage of a waveform. Likewise, the peak-to-peak value is the magnitude of the  
voltage from the maximum positive voltage to the most negative voltage peak. The  
peak or peak-to-peak amplitude of a complex ac waveform does not necessarily  
correlate to the RMS heating value of the signal. When the specific waveform is  
known, you can apply a correction factor to convert peak or peak-to- peak values to  
the correct RMS value for the waveform.  
Agilent E1441A Function Generator Tutorial  
157  
Appendix C  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Average Value The average value of an ac waveform is the average of the  
instantaneous values measured over one complete cycle. For sine waves, the average  
amplitude is zero since the waveform has equal positive and negative half cycles.  
Since the quantity of interest is the heating value of the signal, the average value of  
a sine wave is taken to mean the average of the full-wave rectified waveform. The  
RMS value of a sine wave is equal to 1.11 times the sine wave average amplitude.  
This relationship does not hold true for other waveshapes.  
dBm The decibel (dB) is commonly used to describe RMS voltage or power ratios  
between two signals. By itself, a decibel value has no particular meaning. Decibels  
are a ratio or comparison unit and have no absolute meaning without knowledge of  
a reference or comparison unit. When power comparisons are made to a 1 mW  
reference level, the letter m is added to give “dBm”. For power ratios such as dBm,  
it is common to specify the resistance loading the voltage source. Often the system  
resistance is added to the units by indicating “dBm (50)” for a 50resistance  
system.  
dB = 10 x log ( P / Pref )  
10  
dBm = 10 x log ( P / 0.001 )  
10  
2
where power P = V /R  
For a 50resistance, 1 mW of power corresponds to 0.224 VRMS.  
Use the following conversions to determine dBm levels when connecting 75or  
600load resistances.  
dBm (75 ) = dBm (50 ) 1.75  
dBm (600 ) = dBm (50 ) 10.79  
Modulation  
Modulation is the process of combining a high-frequency carrier signal and a  
low-frequency information signal. How these signals are combined is determined  
by the specific type of modulation used. The two most common types of modulation  
are amplitude modulation (AM) and frequency modulation (FM). The information  
signal that modulates (or varies) the carrier waveform can be of any form — sine  
wave, square wave, arbitrary wave, or random noise. In general, the carrier signal  
may also be of any shape, but it is usually a sine wave of constant amplitude and  
frequency for most communications systems. During modulation, the simple carrier  
waveform is converted into a complex waveform by the lower-frequency  
information signal. Generally, the higher-frequency carrier waveform is used to  
efficiently transmit the complex modulated signal over long distances.  
Amplitude Modulation (AM) Amplitude Modulation is a process of producing  
a waveform whose amplitude varies as a function of the instantaneous amplitude of  
the modulating information signal. In other words, the information signal creates an  
amplitude “envelope” around the carrier signal. The Agilent E1441A implements  
“double sideband transmitted carrier” amplitude modulation similar to a typical AM  
radio station.  
A constant is added to the AM modulating signal so that the sum is always greater  
than zero (for <100% modulation) as this equation shows:  
1 + D × Am t⟩) × sin(2π × Fc × T  
-------------------------------------------------------------------------------------------  
2
where: "D" is the modulation depth (0 D 1.2).  
"A " is the modulating signal with peak amplitude 1.  
m
"F " is the carrier frequency.  
c
An AM waveform with 80% modulation depth. The carrier waveform is a 5 kHz  
sine wave and the modulating waveform is a 200 Hz sine wave.  
158 Agilent E1441A Function Generator Tutorial  
Appendix C  
Download from Www.Somanuals.com. All Manuals Search And Download.  
In amplitude modulation, the amplitude of the carrier varies between zero and twice  
its normal value for 100% modulation. The percent modulation depth is the ratio of  
the peak information signal amplitude to the constant. When amplitude modulation  
is selected, the Agilent E1441A automatically reduces its peak-to-peak amplitude by  
one-half so that a 100% modulation depth signal can be output. Amplitude settings  
are defined to set the 100% peak-to-peak amplitude independent of the modulation  
depth setting. Vrms and dBm amplitude settings are not accurate in AM since signals  
are very complex.  
Frequency Modulation (FM) Frequency Modulation is a process of producing a  
wave whose frequency varies as a function of the instantaneous amplitude of the  
modulating information signal. The extent of carrier frequency change is called  
deviation. The frequency deviations are caused by the amplitude changes of the  
modulating information signal. You can set the amount of the peak frequency in FM  
with the deviation parameter.  
In frequency modulation, “100% modulation” has a different meaning than in AM.  
Modulation of 100% in FM indicates a variation of the carrier by the amount of the  
full permissible deviation. Since the modulating signal only varies frequency, the  
amplitude of the signal remains constant regardless of the modulation. The function  
generator uses the deviation parameter to describe the peak frequency change above  
or below the carrier in response to a corresponding amplitude peak of the modulating  
signal. For FM signals, the bandwidth of the modulated signal can be approximated  
by:  
BW 2 x (Deviation + Information Signal Bandwidth)  
BW 2 x (Information Signal Bandwidth)  
For wideband FM  
For narrowband FM  
Narrowband FM occurs when the ratio of the deviation frequency to the information  
signal bandwidth is approximately 0.01 or less. Wideband commercial FM radio  
stations in the United States use a 75 kHz peak deviation (150 kHz peak-to-peak)  
and audio signals band-limited to 15 kHz to achieve 200 kHz channel-to-channel  
spacing from the 180 kHz bandwidth.  
Frequency Sweep The Agilent E1441A performs phase-continuous frequency  
sweeping — stepping from the sweep start frequency to the sweep stop frequency  
with between 2,048 and 4,096 discrete frequency steps. The direction of frequency  
sweeps can be varied by setting the stop frequency either above or below the start  
frequency. Individual frequency steps are either linearly or logarithmically spaced  
based on the sweep mode setting. Like FSK modulation (described on the next page),  
the sweep function is also a special case of frequency modulation (FM). All of the  
FM operations described on the previous page also apply to sweep when the  
following translations are applied:  
Start Frequency + Stop Frequency  
--------------------------------------------------------------------------------------------  
Carrier Frequency =  
2
Start Frequency – Stop Frequency  
------------------------------------------------------------------------------------  
Deviation =  
2
The modulation waveshape for sweeps is a ramp wave or exponential wave for linear  
or log sweeps, respectively. The logic sense of the ramp or exponential modulation  
signal (positive or negative ramp) is selected when the stop frequency is either larger  
or smaller than the start frequency. Like the FM function, changes to sweep  
parameters cause the generator to automatically compute a modulation signal and  
download it into modulation RAM. Similarly, the sweep time parameter adjusts the  
period of the modulating waveform. The sweep function also allows triggered  
operation. This is like frequency modulating with a single cycle burst of the  
modulating signal beginning when a trigger is received. Trigger signals can come  
Agilent E1441A Function Generator Tutorial  
159  
Appendix C  
Download from Www.Somanuals.com. All Manuals Search And Download.  
from the front-panel Ext Trig terminal or from BUS triggers.  
A sine wave sweep from 50 Hz to 5 kHz with linear 1 second sweep time.  
Frequency Shift Key Modulation In Frequency-Shift Keying modulation (FSK),  
the function generator's output frequency alternates between the carrier frequency  
and a second “hop” frequency. The rate of frequency hops is controlled either by an  
internal source or from an external logic input. FSK is essentially a special case of  
frequency modulation (FM) where the hop frequency is another way of specifying  
both the deviation and the modulating signal shape.  
The modulating signal shape is always a square wave with an amplitude of zero to  
+1. The deviation is either positive or negative depending on whether the hop  
frequency is larger or smaller than the present carrier frequency (as shown below).  
The internal FSK rate generator specifies the period of the modulating square wave  
signal. When selected, the external FSKinput replaces the internal FSKrate generator  
to directly control the frequency hop rate. A TTL “low” input always selects the  
carrier frequency and a TTL “high” always selects the hop frequency. The logic sense  
of the external FSK input can effectively be changed by interchanging the carrier and  
hop frequency values.  
Deviation = Hop Frequency Carrier Frequency  
An FSK waveform with a 3 kHz carrier waveform and 500 Hz "hop" waveform (the  
FSK rate is 100 Hz).  
Burst Modulation In burst modulation, the function generator turns the carrier  
wave output “on” and “off ” in a controlled manner. The carrier output can be  
controlled using either triggered or externally- gated methods.  
When configured for triggered operation, the function generator can output a carrier  
waveform with a user-specified number of complete cycles. Each time a trigger is  
received, the specified number of complete cycles is output. You can also specify a  
starting waveform phase in triggered operation. Zero degrees is defined as the first  
data point in waveform memory. The function generator will output the start phase  
as a dc output level while waiting for the next trigger. Output dc offset voltages are  
not affected by burst modulation — they are independently produced and summed  
into the function generator's output amplifier.  
A three-cycle bursted sine wave with 100 Hz burst rate.  
In gated burst mode operation, the front-panel Burst terminal is used to directly (and  
asynchronously) turn off the waveform DAC output. The burst count, burst rate, and  
burst phase settings have no effect in this mode. When the burst signal is true (TTL  
“high”), the function generator outputs the carrier waveform continuously. When  
the burst signal is false (TTL “low”), the waveform DAC is forced to a zero output  
level. Like triggered burst operation, the output dc offset voltage is not affected by  
the external burst gate signal.  
For triggered burst operation, the function generator creates an internal modulation  
signal which is exactly synchronous with the carrier waveform. This internal  
modulation signal is used to halt waveform memory addressing when the last data  
point is reached. Thismodulation signal effectively “gates” the output “on” and “off”  
for the specified number of carrier wave cycles. The modulation signal is then  
triggered by another internal burst rate signal generator which controls how often  
the specified carrier burst is output. In external triggered burst operation, the  
modulationsignal trigger source issetto the functiongenerator'sfront-panel Ext Trig  
terminal. This source replaces the internal burst rate signal generator for pacing  
triggered bursts.  
Changes to the burst count, burst rate, burst phase, or carrier frequency will cause  
the function generator to automatically compute a new modulation signal and  
download it into modulation RAM. It is not possible for the function generator to  
burst single cycles for all carrier frequencies because the internal modulation signal  
generator is not as capable as the main carrier signal generator.  
160 Agilent E1441A Function Generator Tutorial  
Appendix C  
Download from Www.Somanuals.com. All Manuals Search And Download.  
The table below shows the function generator's carrier frequency and burst count  
limitations (for sine, square and arbitrary waveforms only).  
Table C-1.  
Carrier Frequency  
Minimum  
Burst Count  
10 mHz to 1 MHz  
>1 MHz to 2 MHz  
>2 MHz to 3 MHz  
>3 MHz to 4 MHz  
>4 MHz to 5 MHz  
1
2
3
4
5
Internal Modulation Source Internally, the function generator incorporates a  
second, lower speed and lower resolution DDS arbitrary waveform generator to  
produce the modulating signal independent of the carrier signal. Internal modulation  
waveshapes range in length from 2,048 points to 4,096 points. User-defined arbitrary  
waveforms are automatically expanded or compressed in length as needed to fit  
within the required modulation waveform constraints. Linear interpolation is  
performed on user-defined arbitrary waveforms while the lengths of standard  
waveshapes are varied by decimation. Due to the modulation sample rate and  
waveform size limitations, the best case modulation signal frequency accuracy is  
approximately 0.05% of setting.  
Unlike the main signal output discussed previously, modulation waveshapes are  
sampled using a variable “point clock” to sample data loaded in modulation  
waveform RAM. Internally, the modulation point clock (C) and modulation  
waveform length are automatically adjusted to produce the modulation signal  
frequency desired. For frequencies greater than C/2048, all modulation shapes are  
sampled up to the maximum modulating frequency. A new modulation waveform  
is computed and loaded into modulation RAM each time the modulation type,  
modulation waveshape, or modulation frequency is changed. Data in standard  
arbitrary waveform memory is not affected by modulation signal changes (data is  
expanded or compressed and loaded directly into separate modulation RAM  
following computation). No expansion or compression is performed on the  
modulation waveform data for certain modulation frequencies.  
You can use the equations on the next page to determine specific waveform lengths  
and modulation frequencies when more precise control is needed. Normally, you  
should not have to perform these calculations.  
The function generator incorporates an internal 8-bit ( 7 bits peak) digital-to-analog  
converter (DAC) to create an analog copy of the modulation signal for amplitude  
modulation (AM). This signal is internally applied to a conventional four-quadrant  
analog multiplier circuit to achieve amplitude modulation. Similarly, the generator  
uses digital signal processing to combine the carrier and modulation signals for  
frequency modulation (FM). The FM modulation signal maintains 12-bit resolution  
for frequency values.  
The following equations and example describe the capabilities and limitations of the  
Agilent E1441A's internal modulation signal generator.  
Parameter Definitions:  
Maximum Point Clock (C) = 5 MSa/ s  
(for AM)  
1.25 MSa/ s (for FM)  
20  
Modulation Prescaler (S) = integer numbers (truncated) from 1, 2, 3, ... 2  
Constant (k) = 4,900 (for AM)  
624 (for FM)  
Modulation Frequency (F) = 10 mHz to 20 kHz (for AM)  
10 mHz to 10 kHz (for FM)  
Points (P) =  
values from 2,048 to 4,096,  
Agilent E1441A Function Generator Tutorial  
161  
Appendix C  
Download from Www.Somanuals.com. All Manuals Search And Download.  
even numbers only (rounded down)  
Equations:  
Compute the modulation pre-scaler divider:  
k
F
---  
S =  
(truncated to integer value 1)  
Compute the number of points for the modulation waveform length:  
2 × C  
---------------------------  
P =  
(rounded down to even number)  
(1 + S) × F  
Waveshapes are automatically expanded or compressed to match length “P”  
computed above and downloaded into modulation RAM.  
Example: Assume that you need to phase-continuously frequency hop between  
the following nine frequencies every 200 µs.  
15.0 MHz, 1.001 MHz, 9.780 MHz, 12.375 MHz, 0.5695 MHz,  
3.579 MHz, 0.8802 MHz, 0.6441 MHz, and 10.230 MHz.  
Solution: Create a modulation arbitrary waveform that is precisely sampled in FM  
modulation.  
Fs = 1 / (9 x 200 µs) = 555.555 kHz  
(effective point clock)  
Points (P) = (C/S) / Fs = 2250  
S=1. If P greater than 4096, divide C by the smallest S to bring  
P within range. Round down to an even P value.  
Modulation Frequency (F) = (C/S) / 2 x 2250 = 555.55555 Hz  
Round down in sixth digit to get modulation frequency to set.  
Set the modulation frequency to 555.555 Hz.  
Set the carrier frequency to (Max F + Min F) / 2 = 7.784750 MHz.  
Set deviation (pk) frequency to (Max F – Min F) / 2 = 7.215250 MHz  
Create and download a nine-segment arbitrary waveform with the values shown  
below. Each segment is 250 points long (2250/9) for a total of 2,250 points. Use the  
DATA VOLATILE command download to achieve 12-bit frequency resolution for  
each point.  
y = mX + b  
To Check: Enable FM by sending the following commands:  
"FM:STATE ON"  
"FM:INT:FREQ 555.555"  
"DIAG:PEEK? 0,0,0"  
enter results < Prescale# (S) >,< Points (P) >  
162 Agilent E1441A Function Generator Tutorial  
Appendix C  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Appendix D  
Service Procedures  
This chapter contains procedures for verification of the function generator's  
performance followed by procedures for making adjustments (calibration).  
The chapter is divided into the following sections:  
Closed-Case Electronic Calibration . . . . . . . . . . . . . . . . . . . page 164  
Agilent Technologies Calibration Services. . . . . . . . . . . . . . page 164  
Calibration Interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 164  
Time Required for Calibration . . . . . . . . . . . . . . . . . . . . . . . page 164  
Automated Verification and Calibration Procedures . . . . . . page 164  
Recommended Test Equipment. . . . . . . . . . . . . . . . . . . . . . . page 165  
Test Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 165  
Performance Verification Tests . . . . . . . . . . . . . . . . . . . . . . . page 166  
Frequency Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 167  
Function Gain and Linearity Verification . . . . . . . . . . . . . . . page 168  
DC Function Offset Verification . . . . . . . . . . . . . . . . . . . . . . page 168  
AC Amplitude Verification . . . . . . . . . . . . . . . . . . . . . . . . . . page 169  
Amplitude Flatness Verification . . . . . . . . . . . . . . . . . . . . . . page 171  
AM Modulation Depth Verification . . . . . . . . . . . . . . . . . . . page 172  
Optional Performance Verification Tests . . . . . . . . . . . . . . . page 172  
Calibration Security Code. . . . . . . . . . . . . . . . . . . . . . . . . . . page 174  
Unsecuring the Function Generator (Lost Security Code) . . page 175  
Calibration Count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 176  
Calibration Message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 176  
General Calibration/Adjustment Procedure . . . . . . . . . . . . . page 177  
Aborting a Calibration in Progress . . . . . . . . . . . . . . . . . . . . page 178  
Frequency and Burst Rate Adjustment . . . . . . . . . . . . . . . . . page 178  
Function Gain and Linearity Adjustment . . . . . . . . . . . . . . . page 179  
AC Amplitude Adjustment (High-Z) . . . . . . . . . . . . . . . . . . page 180  
Modulation Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 181  
AC Amplitude Adjustment (50 Ohms) . . . . . . . . . . . . . . . . . page 182  
DC Output Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 184  
Duty Cycle Adjustment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 185  
AC Amplitude Flatness Adjustment . . . . . . . . . . . . . . . . . . . page 185  
Error Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 188  
Error Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 188  
Service Procedures  
163  
Appendix D  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Closed-Case Electronic Calibration  
The function generator features closed-case electronic calibration since no  
internal mechanical adjustments are required for calibration. The function  
generator calculates correction factors based upon the input reference value  
you set. The new correction factors are stored in non-volatile memory until  
the next calibration adjustment is performed. (Non-volatile memory does not  
change when power has been off or after a remote interface reset.)  
Agilent Technologies Calibration Services  
When your function generator is due for calibration, contact your local  
Agilent Technologies Service Center for a low-cost recalibration. The  
Agilent E1441A Function Generator is supported on automated calibration  
systems which allows Agilent to provide this service at competitive prices.  
Calibrations to MIL-STD-45662 are also available competitively.  
Calibration Interval  
The function generator should be calibrated on a regular interval determined  
by the measurement accuracy requirements of your application. A 1-year or  
2-year interval is adequate for most applications. Agilent Technologies does  
not recommend extending calibration intervals beyond 2 years for any  
application.  
Whatever calibration interval you select, Agilent Technologies recommends  
that complete re-adjustment always be performed at the calibration interval.  
This will increase your confidence that the Agilent E1441A will remain  
within specification for the next calibration interval. This criteria for  
re-adjustment provides the best long-term stability. Performance data  
measured using this method can be used to extend future calibration intervals.  
Time Required for Calibration  
The Agilent E1441A can be automatically calibrated under computer  
control. With computer control you can perform the complete calibration  
procedure and performance verification tests in less than 15 minutes. Manual  
calibrations using the recommended test equipment will take approximately  
45 minutes.  
Automated Verification and Calibration Procedures  
Performance verification and adjustment programs are provided on the  
Agilent Universal Instrument Drivers CD. The directory path to these  
programs is <drive>:\examples\hpe1441. The program names are 1441ver.c  
and 1441adj.c for verification and adjustment respectively.  
These programs were developed on a 486 IBM compatible PC running  
Windows NT®. The computer is equipped with an Agilent 82341 GPIB  
interface and Agilent VISA for GPIB software.  
The programs automate the majority of the procedures using an Agilent  
34401A benchtop Multimeter or an Agilent E1412A VXI Multimeter.  
164 Service Procedures  
Appendix D  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Recommended Test Equipment  
The test equipment recommended for the performance verification and  
adjustmentprocedures islistedbelow. If the exactinstrument isnotavailable,  
use the accuracy requirements shown to select substitute calibration  
standards.  
Table D-1. Recommended Test Equipment  
a
Instrument  
Requirements  
50 0.1 Ω  
Recommended Model  
Use  
50 feedthrough load  
Q,P,O,T  
Q,P,T  
6 1/2 digit Digital  
Multimeter (DMM)  
20 VDC 0.01%  
Integrating ACrms  
10 VACrms 0.1%  
Agilent 34401A  
Thermal Voltage Converter 1kHz to 15 MHz  
Ballantine 1395A-3  
Q,P  
(50 termination, 3V input)  
(or equivalent 3V TVC)  
or  
Power Meter  
or  
100 kHz to 15 MHz  
Agilent 437A with  
Agilent 8482A  
and 20 dB attenuator  
Wideband ACrms Meter  
1 VAC rms 0.5%  
1 kHz to 20 MHz  
Frequency Meter  
Oscilloscope  
1 ppm accuracy  
100 MHz  
Agilent 53131A  
Agilent 54602A  
Agilent 3588A  
Q,P,T  
T
Spectrum Analyzer  
Response to 90 MHz  
O
a.Q = Quick Verification O= Optional Verification Tests  
P = Performance Verification Tests T = Troubleshooting  
Test Considerations  
Verify that you have selected the correct power line voltage prior to  
attempting any test procedure to ensure proper instrument operation.  
For optimum performance, all test procedures should comply with the  
following recommendations:  
Verify the function generator is set to its reset state (*RST).  
Assure that the calibration ambient temperature is stable and between  
18° C and 28° C.  
Assure ambient relative humidity is less than 80%.  
Allow a 30 minute warm-up period before verification or adjustment.  
Use only RG-58 or equivalent 50 cable.  
Keep cables as short as possible, consistent with the impedance  
requirements.  
Service Procedures  
165  
Appendix D  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Performance Verification Tests  
The performance verification tests use the function generator's specifications  
listed in “Agilent E1441A Specifications” on page 135.  
You can perform four different levels of performance verification tests:  
Self-Test A series of internal verification tests that give a high  
confidence that the function generator is operational.  
Q
P
Quick Verification A combination of the internal self-tests and  
selected verification tests.  
Performance Verification Tests An extensive set of tests that are  
recommended as an acceptance test when you first receive the  
function generator or after performing adjustments.  
O
Optional Verification Tests Tests not performed with every  
calibration. These tests can be used to verify additional instrument  
specifications following repairs to specific circuits.  
In all cases, the function generator’s command set is used to configure its  
output. Use the "Agilent E1441A" column in the following verification  
tables to determine which commands to use and what parameter value should  
be sent with them.  
Self-Test A power-on self-test occurs automatically when you turn on the function  
generator. This limited test assures you that the function generator is  
operational.  
A complete self-test runs a series of tests and takes approximately  
10 seconds to execute. If all tests pass, you can have a high confidence that  
the function generator is fully operational.  
If the self-test fails, the faceplate Errors LED turns on.  
Use the following command to perform a self-test:  
*TST?  
Returns “0” if the self-test passes or “1” if it fails. If the self-test fails, an  
error message is also generated with additional information on why the test  
failed. Use the SYSTem:ERRor? command to read the error queue. See  
“Self-Test Errors” on page 147 for more information.  
166 Service Procedures  
Appendix D  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Quick Performance The quick performance check is a combination of internal self-test and an  
abbreviated performance test (specified by the letter Q in the performance  
Check  
verification tests). This test provides a simple method to achieve high  
confidence inthe functiongenerator's abilitytofunctionallyoperate andmeet  
specifications. These tests represent the absolute minimum set of  
performance checks recommended following any service activity. Auditing  
the function generator's performance for the quick check points (designated  
by a Q) verifies performance for “normal” accuracy drift mechanisms. This  
test does not check for abnormal component failures.  
To perform the quick performance check, do the following:  
Set the function generator to reset state (*RST).  
Perform a complete self-test (*TST?).  
Perform only the performance verification tests indicated with the  
letter Q.  
If the function generator fails the quick performance check, adjustment or  
repair is required.  
Performance The performance verification tests are recommended as acceptance tests  
when you first receive the function generator. The acceptance test results  
Verification Tests  
should be compared against the 1 year test limits. After acceptance, you  
should repeat the performance verification tests at every calibration interval.  
If the function generator fails performance verification, adjustment or repair  
is required.  
Frequency Verification  
This test verifies the frequency accuracy of the two sources in the function  
generator. All output frequencies are derived from a single generated  
frequency, and only one frequency point is checked. The second test verifies  
the burst rate frequency.  
Set the function generator for each output indicated in the table below. Use  
a frequency meter to measure the output frequency. Compare the measured  
results to the test limits shown in the table. This is a 50 output termination  
test.  
Table D-2. Frequency Verification  
Agilent E1441A  
Out Ampl  
Measurement  
Function  
Freq  
Burst  
Rate  
Burst  
Count  
Nominal  
Error  
a
Term  
50 3.5 Vrms 1.00 kHz  
Q
Q
Sine wave  
1.00 kHz  
500 Hz  
0.01 Hz  
5 Hz  
Square wave  
50 3.5 Vrms 1.00 kHz 500 Hz 1 CYC  
a.The E1441A has a fixed output impedance of 50 on the "Output" terminal. Use the  
OUTPut:LOAD 50 | INFinity | MIN | MAX command to set the output termination. HIGH Z  
assumes no load on output. 50 assumes a 50 0.1 load on output.  
Service Procedures  
167  
Appendix D  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Function Gain and Linearity Verification  
This test verifies the output amplitude accuracy specification for  
sine wave, triangle wave, ramp, and square wave outputs.  
Set the function generator for each output indicated in the table below. Use  
a DMM to measure the function generator ACrms output voltage. Compare  
the measured results to the test limits shown in the table. This is a HIGH Z  
output termination test.  
Table D-3. Function Gain and Linearity Verification  
Agilent E1441A  
Out  
Measurement  
Function  
Ampl  
Freq  
Nominal  
Error  
a
Term  
Q
Q
Sine wave  
Sine wave  
HIGH Z  
HIGH Z  
7.0 Vrms  
5.7 Vrms  
5.7 Vrms  
5.7 Vrms  
1.0 kHz  
1.0 kHz  
100 Hz  
100 Hz  
100 Hz  
100 Hz  
7.0 Vrms  
5.7 Vrms  
5.7 Vrms  
5.7 Vrms  
10.0 Vrms  
8.0 Vrms  
0.07 Vrms  
0.057 Vrms  
0.057 Vrms  
0.057 Vrms  
0.1 Vrms  
Triangle wave HIGH Z  
Ramp wave HIGH Z  
Square wave HIGH Z 10.0 Vrms  
Square wave HIGH Z 8.0 Vrms  
0.08 Vrms  
a.The E1441A has a fixed output impedance of 50 on the "Output" terminal. Use  
the OUTPut:LOAD 50 | INFinity | MIN | MAX command to set the output  
termination. HIGH Z assumes no load on output. 50 assumes a 50 0.1 Ω  
load on output.  
DC Function Offset Verification  
This test verifies the DC offset and DC output specifications.  
Set the function generator for each output indicated in the table below. Use  
a DMM to measure the function generator DCV output. Compare the  
measured results to the test limits shown in the table. This is a HIGH Z output  
termination test.  
Table D-4. DC Function Offset Verification  
Agilent E1441A  
Measurement  
Function  
Out  
Ampl  
Nominal  
Error  
a
Term  
Q
DC Volts  
DC Volts  
HIGH Z  
HIGH Z  
10.0 VDC  
-10.0 VDC  
10.0 VDC  
-10.0 VDC  
0.20 VDC  
0.20 VDC  
a.The E1441A has a fixed output impedance of 50 on the "Output"  
terminal. Use the OUTPut:LOAD 50 | INFinity | MIN | MAX command to  
set the output termination. HIGH Z assumes no load on output. 50 Ω  
assumes a 50 0.1 load on output.  
168 Service Procedures  
Appendix D  
Download from Www.Somanuals.com. All Manuals Search And Download.  
AC Amplitude Verification  
This procedure is used to check the output amplitude calibration of the  
function generator. Verification checks are performed to check the accuracy  
of the pre-attenuator and post attenuator. Make sure you have read “Test  
Considerations” on page 165.  
Set the function generator for each output indicated in the table on the next  
page. Use a DMM to measure the ACrms output voltage of the function  
generator. Compare the measured results to the test limits shown in the table.  
This is a HIGH Z output termination test.  
Table D-5. AC Amplitude Verification (High Z)  
Agilent E1441A  
Out Ampl  
Measurement  
Function  
Freq  
Nominal  
Error  
a
Term  
Q
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
HIGH Z  
HIGH Z  
HIGH Z  
HIGH Z  
HIGH Z  
HIGH Z  
HIGH Z  
HIGH Z  
HIGH Z  
HIGH Z  
HIGH Z  
HIGH Z  
HIGH Z  
HIGH Z  
HIGH Z  
HIGH Z  
HIGH Z  
HIGH Z  
HIGH Z  
HIGH Z  
HIGH Z  
HIGH Z  
HIGH Z  
HIGH Z  
HIGH Z  
7.0 Vrms  
5.7 Vrms  
1.00 kHz  
1.00 kHz  
1.00 kHz  
1.00 kHz  
1.00 kHz  
1.00 kHz  
1.00 kHz  
1.00 kHz  
1.00 kHz  
1.00 kHz  
1.00 kHz  
1.00 kHz  
1.00 kHz  
1.00 kHz  
1.00 kHz  
1.00 kHz  
1.00 kHz  
1.00 kHz  
1.00 kHz  
1.00 kHz  
1.00 kHz  
1.00 kHz  
1.00 kHz  
1.00 kHz  
1.00 kHz  
7.0 Vrms  
5.7 Vrms  
0.070 Vrms  
0.057 Vrms  
0.055 Vrms  
0.044 Vrms  
0.035 Vrms  
0.028 Vrms  
0.022 Vrms  
0.017 Vrms  
0.014 Vrms  
0.011 Vrms  
5.5 Vrms  
5.5 Vrms  
4.4 Vrms  
4.4 Vrms  
3.5 Vrms  
3.5 Vrms  
2.8 Vrms  
2.8 Vrms  
2.2 Vrms  
2.2 Vrms  
1.7 Vrms  
1.7 Vrms  
1.4 Vrms  
1.4Vrms  
1.1 Vrms  
1.1 Vrms  
Q
0.88 Vrms  
0.70 Vrms  
0.55 Vrms  
0.44 Vrms  
0.35 Vrms  
0.28 Vrms  
0.22 Vrms  
0.17 Vrms  
0.14 Vrms  
0.11 Vrms  
0.088 Vrms  
0.070 Vrms  
0.055 Vrms  
0.044 Vrms  
0.036 Vrms  
0.88 Vrms  
0.70 Vrms  
0.55 Vrms  
0.44 Vrms  
0.35 Vrms  
0.28 Vrms  
0.22 Vrms  
0.17 Vrms  
0.14 Vrms  
0.11 Vrms  
0.088Vrms  
0.070 Vrms  
0.055 Vrms  
0.044 Vrms  
0.036 Vrms  
0.0088 Vrms  
0.0070 Vrms  
0.0055 Vrms  
0.0044 Vrms  
0.0035 Vrms  
0.0028 Vrms  
0.0022 Vrms  
0.0017 Vrms  
0.0014 Vrms  
0.0011 Vrms  
0.00088 Vrms  
0.00070 Vrms  
0.00055 Vrms  
0.00044 Vrms  
0.00036 Vrms  
Q
Q
a.The E1441A has a fixed output impedance of 50 on the "Output" terminal. Use the  
OUTPut:LOAD 50 | INFinity | MIN | MAX command to set the output termination.  
HIGH Z assumes no load on output. 50 assumes a 50 0.1 load on output.  
Service Procedures  
169  
Appendix D  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Install the 50 feedthrough load between the DMM and the function  
generator output. Set the function generator for each output indicated in the  
table on the next page. Use a DMM to measure the ACrms output voltage of  
the function generator. Compare the measured results to the test limits shown  
in the table. This is a 50 output termination test.  
Table D-6. AC Amplitude Verification (50 Ohms)  
Agilent E1441A  
Out Ampl  
Measurement  
Function  
Freq  
Nominal  
Error  
a
Term  
50 Ω  
50 Ω  
50 Ω  
50 Ω  
50 Ω  
50 Ω  
50 Ω  
50 Ω  
50 Ω  
50 Ω  
50 Ω  
50 Ω  
50 Ω  
50 Ω  
50 Ω  
50 Ω  
50 Ω  
Q
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
3.5 Vrms  
2.8 Vrms  
2.2 Vrms  
1.7 Vrms  
1.4Vrms  
1.1 Vrms  
1.0000 kHz  
1.0000 kHz  
1.0000 kHz  
1.0000 kHz  
1.0000 kHz  
1.0000 kHz  
3.5 Vrms  
2.8 Vrms  
0.035 Vrms  
0.028 Vrms  
2.2 Vrms  
0.022 Vrms  
1.7 Vrms  
0.017 Vrms  
1.4Vrms  
0.014 Vrms  
1.1 Vrms  
0.011 Vrms  
Q
0.88 Vrms 1.0000 kHz  
0.70 Vrms 1.0000 kHz  
0.55 Vrms 1.0000 kHz  
0.44 Vrms 1.0000 kHz  
0.35 Vrms 1.0000 kHz  
0.28 Vrms 1.0000 kHz  
0.22 Vrms 1.0000 kHz  
0.17 Vrms 1.0000 kHz  
0.14 Vrms 1.0000 kHz  
0.88 Vrms  
0.70 Vrms  
0.55 Vrms  
0.44 Vrms  
0.35 Vrms  
0.28 Vrms  
0.22 Vrms  
0.17 Vrms  
0.14 Vrms  
0.11 Vrms  
0.088Vrms  
0.070 Vrms  
0.055 Vrms  
0.044 Vrms  
0.035 Vrms  
0.028 Vrms  
0.022 Vrms  
0.018 Vrms  
0.0088 Vrms  
0.0070 Vrms  
0.0055 Vrms  
0.0044 Vrms  
0.0035 Vrms  
0.0028 Vrms  
0.0022 Vrms  
0.0017 Vrms  
0.0014 Vrms  
0.0011 Vrms  
0.00088 Vrms  
0.00070 Vrms  
0.00055 Vrms  
0.00044 Vrms  
0.00035 Vrms  
0.00028 Vrms  
0.00022 Vrms  
0.00018 Vrms  
0.11 Vrms  
1.0000 kHz  
0.088Vrms 1.0000 kHz  
50 0.070 Vrms 1.0000 kHz  
50 0.055 Vrms 1.0000 kHz  
50 0.044 Vrms 1.0000 kHz  
50 0.035 Vrms 1.0000 kHz  
50 0.028 Vrms 1.0000 kHz  
50 0.022 Vrms 1.0000 kHz  
50 0.018 Vrms 1.0000 kHz  
Q
a.The E1441A has a fixed output impedance of 50 on the "Output" terminal. Use  
the OUTPut:LOAD 50 | INFinity | MIN | MAX command to set the output  
termination. HIGH Z assumes no load on output. 50 assumes a 50 0.1 Ω  
load on output.  
170 Service Procedures  
Appendix D  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Amplitude Flatness Verification  
This test verifies the output amplitude flatness specification at selected  
frequencies. If you use a Temperature Voltage Converter (TVC) (the  
recommended method)  
or a wide band ACrms voltmeter (with a 50 feed through load), perform  
this procedure as described. If you are using a measurement device that  
requires a transfer measurement (for example, a power meter), make the  
transfer in the reference measurement at 100 kHz.  
Set the function generator to the first output indicated in the table below and  
make a reference measurement. Set each function generator output shown in  
the table below. Measure the output of the function generator. Compare the  
amplitude level measured to the reference measurement +/- the error shown  
in the table. This test is a 50 output termination test.  
Table D-7. Amplitude Flatness Verification  
Agilent E1441A  
Out Ampl  
Measurement  
Function  
Freq  
Nominal  
Error  
a
Term  
50 Ω  
50 Ω  
50 Ω  
50 Ω  
50 Ω  
50 Ω  
50 Ω  
50 Ω  
50 Ω  
50 Ω  
50 Ω  
Q
Q
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
3.0 Vrms  
3.0 Vrms  
3.0 Vrms  
3.0 Vrms  
3.0 Vrms  
3.0 Vrms  
3.0 Vrms  
3.0 Vrms  
3.0 Vrms  
3.0 Vrms  
3.0 Vrms  
1.00 kHz  
100.00 kHz  
500.00 kHz  
1.00 MHz  
3.00 MHz  
5.00 MHz  
7.00 MHz  
9.00 MHz  
11.00 MHz  
13.00 MHz  
15.00 MHz  
<reference>  
<reference>  
<reference>  
<reference>  
<reference>  
<reference>  
<reference>  
<reference>  
<reference>  
<reference>  
<reference>  
0.03 Vrms  
0.045 Vrms  
0.045 Vrms  
0.06 Vrms  
0.06 Vrms  
0.06 Vrms  
0.06 Vrms  
0.06 Vrms  
0.06 Vrms  
0.06 Vrms  
Q
a.The E1441A has a fixed output impedance of 50 on the "Output" terminal.  
Use the OUTPut:LOAD 50 | INFinity | MIN | MAX command to set the output  
termination. HIGH Z assumes no load on output. 50 assumes a 50 0.1 Ω  
load on output.  
Service Procedures  
171  
Appendix D  
Download from Www.Somanuals.com. All Manuals Search And Download.  
AM Modulation Depth Verification  
This test verifies the modulation depth specification.  
Select each function generator output in the table below. Use a DMM to  
measure the function generator ACrms output voltage. Compare the  
measured results to the test limits shown in the table. This is a HIGH Z output  
termination test.  
Table D-8. AM Modulation Verification  
Agilent E1441A  
Measurement  
+
AM Modulation  
Shape Freq  
Function  
Out  
Ampl  
Freq  
Depth Nominal  
Error  
a
Term  
Q
Sine wave HIGH Z 1.0 Vrms 1.00 kHz Sinewave 100 Hz  
Sine wave HIGH Z 1.0 Vrms 1.00 kHz Sinewave 100 Hz  
0%  
0.50 Vrms  
0.005 Vrms  
100% 0.61 Vrms  
0.0061 Vrms  
a.The E1441A has a fixed output impedance of 50 on the "Output" terminal. Use the OUTPut:LOAD  
50 | INFinity | MIN | MAX command to set the output termination. HIGH Z assumes no load on output.  
50 assumes a 50 0.1 load on output.  
Optional Performance Verification Tests  
These tests are not intended to be performed with every calibration. They are  
provided as an aid for verifying additional instrument specifications.  
Square Wave Duty This test verifies the duty cycle specification of the squarewave output.  
Select each function generator output in the table below. Use an integrating  
Cycle Verification  
DMM to measure the VDC output of the function generator. Compare the  
measured results to the test limits shown in the table. This is a HIGH Z output  
termination test.  
NOTE: You make a DC voltage measurement on this test.  
Table D-9. Square Wave Duty Cycle Verification  
Function  
Out  
Ampl  
Freq  
Duty  
Cycle  
Nominal  
Error  
a
Term  
O
O
O
Square wave HIGH Z  
Square wave HIGH Z  
Square wave HIGH Z  
1.0 Vrms  
1.0 Vrms  
1.0 Vrms  
300.00 Hz  
300.00 Hz  
300.00 Hz  
50%  
0.00 VDC  
0.020 VDC  
0.020 VDC  
0.020 VDC  
25% - 0.50 VDC  
75% + 0.50 VDC  
a.The E1441A has a fixed output impedance of 50 on the "Output" terminal. Use the  
OUTPut:LOAD 50 | INFinity | MIN | MAX command to set the output termination.  
HIGH Z assumes no load on output. 50 assumes a 50 0.1 load on output.  
Note  
The DMM used for this test must be an integrating multimeter. If the first  
step does not measure 0 VDC, use an oscilloscope for this test.  
Do not use an auto-ranging function on the DMM for this test. Fix the  
DMM measurement range at 10 VDC.  
172 Service Procedures  
Appendix D  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Distortion This test checks the Harmonic Distortion at selected frequencies and  
harmonics. This test requires the use of a spectrum analyzer with dynamic  
Verification  
range, frequency range, and resolution bandwidth adequate for the  
measurement.  
Select each function generator output in the table below. Use a spectrum  
analyzer connected to the function generator output. Set the fundamental  
frequency reference to 0 dB and measure the 2nd through 5th harmonic  
frequencies relative to this reference. This test is a 50 output termination  
test.  
Table D-10. Distortion Verification  
Measurement  
Agilent E1441A  
harmonic  
Function  
Out  
Ampl  
Freq  
Fundamental  
2nd  
3rd  
4th  
5th  
Amt below  
reference  
a
Term  
O
O
O
O
Sine wave 50 Ω  
Sine wave 50 Ω  
Sine wave 50 Ω  
Sine wave 50 Ω  
1.1 Vrms 20.00 kHz  
1.1 Vrms 100.00 kHz  
reference  
reference  
reference  
reference  
40 kHz 60 kHz 80 kHz 100 kHz  
200 kHz 300 kHz 400 kHz 500 kHz  
> 70 dB  
> 60 dB  
> 45 dB  
> 35 dB  
1.1 Vrms  
1.00 MHz  
2 MHz  
3 MHz  
4 MHz  
5 MHz  
1.1 Vrms 15.00 MHz  
30 MHz 45 MHz 60 MHz 75 MHz  
a.The E1441A has a fixed output impedance of 50 on the "Output" terminal. Use the OUTPut:LOAD 50 | INFinity  
| MIN | MAX command to set the output termination. HIGH Z assumes no load on output. 50 assumes a 50 Ω  
0.1 load on output.  
Service Procedures  
173  
Appendix D  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Calibration Security Code  
This feature allows you to enter a security code (electronic key) to prevent  
accidental or unauthorized calibrations of the function generator. When you  
first receive your function generator, it is secured. Before you can adjust  
calibration constants you must unsecure the function generator by entering  
the correct security code.  
The security code is set to “HP_E1441” when the function generator is  
shipped from the factory. The security code is stored in non-volatile  
memory, and does not change when power has been off or after a  
remote interface reset.  
To secure the function generator from the remote interface, the  
security code may contain up to 12 alphanumeric characters as shown  
below. The first character must be a letter, but the remaining  
characters can be letters or numbers. You do not have to use all 12  
characters but the first character must always be a letter.  
A _ _ _ _ _ _ _ _ _ _ _  
(12 characters)  
To unsecure for calibration  
Use the following command:  
CALibration:SECure:STATe ON | OFF,<secure code>  
use ON or OFF to control the security state (ON for secured, OFF for  
unsecured). When OFF, <secure code> string must match that sent  
with state ON.  
Since the function generator is shipped from the factory with the security  
code "HP_E1441", you can initially unsecure the module by sending the  
following command:  
CAL:SEC:STAT OFF,HP_E1441  
To re-secure  
Once you have unsecured the instrument, you can re-secure by sending the  
CAL:SEC:STAT command with state ON, optionally including the  
securitycode.  
CAL:SEC:STAT ON[,YOUR_CODE]  
secure code not required to  
re-enable security.  
If you forget your security code, you can disable the security feature by  
connecting a jumper inside the function generator, and then entering a  
new code. See the procedure on the following page.  
To change security code  
Once you have unsecured the instrument, you can change the security code  
by sending the CAL:SEC:CODE <new code> command.  
CAL:SEC:CODE YOUR_NEWCODE  
be sure to remember this code  
174 Service Procedures  
Appendix D  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Unsecuring the To unsecure the function generator without the correct security code, follow  
the steps below. A procedure to unsecure the function generator is given on  
Function Generator  
page 174. Also see “Electrostatic Discharge (ESD) Precautions” in chapter  
(Lost Security Code)  
6 before beginning this procedure.  
1. Turn off power to the VXI mainframe, disconnect all input  
connection, and remove the module from the mainframe.  
2. Remove the instrument’s left cover (tall cover):  
A. First loosen the nuts around each BNC connectors. This is to avoid  
damaging the cover-to-faceplate EMC gasket.  
B. Remove the seven Torx screws holding the cover.  
C. While gently pulling the right side of the faceplate away from the  
cover’s EMC gasket, lift that end of the cover. Once the gasket is  
clear of the faceplate, remove the cover from the instrument.  
3. Install a VXIbus extender card into the mainframe and install the  
instrument into the extender.  
4. Apply power to the mainframe.  
5. Apply a short between the two exposed metal pads on JM101 (located  
near U106 and U205) Figure D-1.  
Figure D-1. Unsecuring the Agilent E1441A (without security code)  
6. While maintaining the short, enter any unsecure code. The function  
generator is now unsecured.  
Service Procedures  
175  
Appendix D  
Download from Www.Somanuals.com. All Manuals Search And Download.  
7. Remove the short at JM101.  
8. Turn off and reassemble the function generator, taking particular care  
to avoid damaging the cover’s EMC gasket. Do not over-tighten the  
BNC connector nuts as the connector bodies are insulating plastic.  
9. The function generator is now unsecured and you can enter a new  
security code. Be sure you take note of the new security code.  
Calibration Count  
The calibration count feature provides an independent “serialization” of your  
calibrations. You can determine the number of times that your function  
generator has been calibrated. By monitoring the calibration count, you can  
determine whether an unauthorized calibration has been performed. Since  
the value increments by one for each calibration, a complete calibration  
increases the value by approximately 85 counts.  
The calibration count is stored in non-volatile memory and does not  
change when power has been off or after a remote interface reset. Your  
function generator was calibrated before it left the factory. When you  
receive your function generator, read the calibration count to  
determine its value.  
The calibration count increments up to a maximum of 32,767 after  
which it wraps around to 0. There is no way provided to program or  
reset the calibration count. It is an independent electronic calibration  
“serialization” value.  
Calibration Message  
You can use the calibration message feature to record calibration information  
about your function generator. For example, you can store such information  
as the last calibration date, the next calibration due date, the function  
generator's serial number, or even the name and phone number of the person  
to contact for a new calibration.  
You can record information in the calibration message only from the remote  
interface. You can read the message from either the front-panel menu or the  
remote interface.  
The calibration message may contain up to 40 characters. The function  
generator can display up to 11 characters of the message on the front  
panel; any additional characters are truncated.  
The calibration message is stored in non-volatile memory, and does  
not change when power has been off or after a remote interface reset.  
176 Service Procedures  
Appendix D  
Download from Www.Somanuals.com. All Manuals Search And Download.  
General Calibration/Adjustment Procedure  
The adjustment procedures described in in this appendix use the CALibrate  
subsystem commands to generate and set internal calibration constants. This  
general SCPI command procedure is the same for all calibration setups.  
1. Unsecure the function generator See “Calibration Security Code” on  
page 174. Use the following SCPI command  
CAL:SEC:STAT OFF,<sec_code>  
2. Send the Calibration Setup. Use the following SCPI commands:  
CALibrate:SETup <setup_number>  
set secure state off; enable cal  
configures the output  
3. Use the reccomended instrument to measure the actual output of the  
Agilent E1441A  
4. Send the measured value to the Agilent E1441A with the  
CAL:VALue command. The function generator will correct its output  
and store the new calibration constant. Use the following SCPI  
command:  
CAL:VALue <measured_val>  
5. Initiate the calibration process. Use the command:  
set the calibration value  
CAL?  
performs calibration and  
updates the cal constant  
<read the CAL? response; 0 = cal OK, 1 = cal error>  
6. Repeat steps 2 through 5 for each calibration setup.  
Calibration Example  
The following example command sequence demonstrates making the  
Frequency and Burst Rate adjustments.  
/* Adjust main frequency generator */  
CAL:SEC:STAT OFF,<sec_code>  
CALibrate:SETup 00  
secure state off  
configure frequency cal  
(setup 00)  
*OPC?  
wait for output to stabilize  
<enter "1" from *opc? when complete>  
<read the frequency counter value>  
CAL:VALue <counter_value>  
CAL?  
set calibration value  
perform calibration  
<read the CAL? response; "0"=cal OK, "1"=cal error>  
/* Adjust burst rate timing, pulse output */  
CALibrate:SETup 01  
configures burst rate cal  
(setup 01)  
*OPC?  
wait for output to stabilize  
<enter "1" from *opc? when complete>  
<read the frequency counter value>  
CAL:VALue <counter_value>  
CAL?  
set calibration value  
perform calibration  
Service Procedures  
177  
Appendix D  
Download from Www.Somanuals.com. All Manuals Search And Download.  
<read the CAL? response; "0"=cal OK, "1"=cal error>  
Aborting a Calibration in Progress  
Sometimes it may be necessary to abort a calibration after the procedure has  
already been initiated. When performing a calibration from the remote  
interface, you can abort a calibration by issuing a remote interface device  
clear message.  
Frequency and Burst Rate Adjustment  
The function generator stores two calibration constants related to frequency  
and burst rate output. The constants are calculated from the adjustment value  
entered and are stored at the completion of each setup.  
1. Use a frequency meter to measure the function generator output  
frequency for SETUP 00 in the following table. These adjustments  
use a 50output termination.  
Table D-11. Frequency and Burst Rate Adjustment Setups  
Nominal Output  
SETUP  
FREQUENCY AMPLITUDE  
a
00  
1.00 kHz  
10 Vpp  
Adjustment for main frequency  
generator, sine wave output  
01  
500 Hz  
10 Vpp  
Adjustment for burst rate timing,  
pulse output.  
a. A new calibration (SETUP 86 - Rev 4.0) has been added as an  
alternative to SETUP 00. The new calibration outputs a 10 MHz sine  
wave, rather than the 1 MHz signal used for SETUP 00. The new  
calibration reduces slew rate dependent errors in the frequency  
measurement and is especially important when calibrating the  
Phase-Lock Assembly (Option 001). Note that either setup is sufficient  
to calibrate the carrier frequency and you don’t need to perform both.  
2. Send the CAL:VALue <measured frequency> to the function  
generator.  
3. Send the CAL? command to the function generator to initiate the  
calibration.  
4. Repeat steps 1, 2 and 3 for SETUP 01.  
5. Perform the “Frequency Verification” on page 167.  
178 Service Procedures  
Appendix D  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Function Gain and Linearity Adjustment  
The function generator stores six calibration constants related to function  
gain and linearity. The constants are calculated from the adjustment value  
entered. If the calibration procedure is aborted before all setup steps have  
been completed, no calibration constants are stored.  
1. Use a DMM to measure the function generator ACrms output voltage  
for SETUP 02 in the following table. These adjustments use a HIGH  
Z output termination.  
Table D-12. Function Gain and Linearity Adjustment Setups  
Nominal Output  
SETUP  
02  
FREQUENCY  
1 kHz  
AMPLITUDE  
7.07 V rms  
5.6 V rms  
5.6 V rms  
5.6 V rms  
10.0 V rms  
1.1 Vrms  
Adjustment for sine wave gain.  
Adjustment for amplitude linearity.  
Adjustment for triangle wave gain.  
Adjustment for ramp gain.  
03  
1 kHz  
04  
100 Hz  
100 Hz  
100 Hz  
100 Hz  
05  
06  
Adjustment for square wave gain.  
Adjustment for square wave linearity.  
07  
2. Send the CAL:VALue <measured Vac> to the function generator.  
3. Send the CAL? command to the function generator to initiate the  
calibration.  
4. Repeat steps 1, 2 and 3 for SETUP 03 through 07.  
5. Perform the “Function Gain and Linearity Verification” on page 168.  
Service Procedures  
179  
Appendix D  
Download from Www.Somanuals.com. All Manuals Search And Download.  
AC Amplitude Adjustment (High-Z)  
The function generator stores twenty-two calibration constants related to  
HIGH Z output, and sixteen calibration constants related to 50 output. The  
constants are calculated from the adjustment value entered. The calibration  
constants are stored following completion of SETUP 22 (HIGH Z output)  
and the calibration procedure may be aborted after that point. No calibration  
constants are stored if the procedures are aborted at any other setup.  
1. Use a DMM to measure the function generator ACrms output voltage  
for SETUP 08. These adjustments use a HIGH Z output termination.  
Table D-13. AC Amplitude (High Z) Adjustment Setups  
Nominal Output  
SETUP  
08  
09  
10  
11  
FREQUENCY  
1 kHz  
1 kHz  
1 kHz  
1 kHz  
1 kHz  
1 kHz  
1 kHz  
1 kHz  
1 kHz  
1 kHz  
1 kHz  
1 kHz  
1 kHz  
1 kHz  
1 kHz  
1 kHz  
1 kHz  
1 kHz  
1 kHz  
1 kHz  
1 kHz  
1 kHz  
AMPLITUDE  
5.5 V rms  
4.4 V rms  
3.5 V rms  
2.8 V rms  
2.2 V rms  
1.7 V rms  
1.4 V rms  
1.1 V rms  
0.88 V rms  
0.70 V rms  
0.55 V rms  
0.44 V rms  
0.35 V rms  
0.28 V rms  
0.22 V rms  
5.5 V rms  
4.4 V rms  
3.5 V rms  
2.8 V rms  
2.2V rms  
Adjustment for:  
2 dB Output Attenuator  
4 dB Output Attenuator  
6 dB Output Attenuator  
8 dB Output Attenuator  
10 dB Output Attenuator  
12 dB Output Attenuator  
14 dB Output Attenuator  
16 dB Output Attenuator  
18 dB Output Attenuator  
20 dB Output Attenuator  
22 dB Output Attenuator  
24 dB Output Attenuator  
26 dB Output Attenuator  
28 dB Output Attenuator  
30 dB Output Attenuator  
2 dB Pre-attenuator  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
4 dB Pre-attenuator  
6 dB Pre-attenuator  
8 dB Pre-attenuator  
10 dB Pre-attenuator  
12 dB Pre-attenuator  
14 dB Pre-attenuator  
1.7 V rms  
1.4 Vrms  
2. Send the CAL:VALue <measured Vac> to the function generator.  
3. Send CAL? command to the function generator to initiate calibration.  
4. Repeat steps 1, 2 and 3 for SETUP 09 through 29.  
5. Perform the “AC Amplitude Verification” on page 169.  
180 Service Procedures  
Appendix D  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Modulation Adjustment  
The function generator stores three calibration constants related to amplitude  
modulation depth. The constants are calculated from the adjustment value  
entered. If the calibration procedure is aborted before all setup steps have  
been completed, no calibration constants are stored.  
1. Use a DMM to measure the function generator ACrms output voltage  
for SETUP 30 in the following table. These adjustments use a HIGH  
Z output termination.  
Table D-14. Modulation Adjustment Setups  
Nominal Output  
SETUP  
30  
FREQUENCY  
1 kHz  
AMPLITUDE  
3.5 Vrms  
Adjustment for:  
0% modulation depth.  
50% modulation depth.  
100% modulation depth.  
31  
1 kHz  
0.707 Vrms  
6.36 Vrms  
32  
1 kHz  
2. Send the CAL:VALue <measured Vac> to the function generator.  
3. Send the CAL? command to the function generator to initiate the  
calibration.  
4. Repeat steps 1, 2 and 3 for SETUP 31 through 32.  
5. Perform the “AM Modulation Depth Verification” on page 172.  
Note NEW CALIBRATION: A new calibration (SETUP 85 Rev 4.0) has been  
added to eliminate a small residual error in the AM amplitude system which  
could potentially cause a failure of the AM amplitude verification.  
The new calibration operates just like the other AM calibrations (SETUP  
30, 31, 32) in that the external measurement is AC Vrms with no load. The  
new calibration is not allowed until the other AM gain calibrations (SETUP  
30, 31, 32) are performed.  
The new algorithm is designed such that the calibration should not be  
required again once the function generator has been calibrated at the  
factory. However, if you change any critical analog components which  
determine amplitude in AM modulation, you should perform the calibration  
again.  
Service Procedures  
181  
Appendix D  
Download from Www.Somanuals.com. All Manuals Search And Download.  
AC Amplitude Adjustment (50 Ohms)  
1. The function generator stores sixteen calibration constants related to  
50 output. The constants are calculated from the adjustment value  
entered. The calibration constants are stored following completion of  
SETUP 49 and the calibration procedure may be aborted after that  
point. No calibration constants are stored if the procedures are  
aborted at any other setup.  
2. Use the DMM to measure the resistance of a 50 feedthrough load.  
Record the measurement for step 3. You can measure the load and  
cable resistance (recommended procedure) or just the load as shown  
below.  
Figure D-2. 50 Ohm Feedthrough/Cable Resistance Measurement  
3. Enter the following SETUP 33 and measure the value of the 50 Ω  
feedthrough load (and cable). Send the CAL:VALue <measured >  
to the function generator. This number will be used to calculate the 50  
output amplitude calibration constants.  
Table D-15. 50 Ohm Adjustment Setup  
Nominal Input  
SETUP  
33  
LOAD Z  
50 Ω  
Enter measured value of load.  
Note Once the value of the 50 load and cable are entered, use the SAME load  
and cable for all 50 tests.  
4. Use the DMM to measure the function generator ACrms output  
voltage for SETUP 34 in the table on the next page. These  
adjustments use the 50 load and cable measured in step 2 and  
connected as shown in Figure D-3.  
182 Service Procedures  
Appendix D  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Figure D-3. AC Amplitude (50 Ohms) Adjustment Connection  
Table D-16. AC Amplitude (50 Ohms) Adjustment Setups  
Nominal Output+  
SETUP  
34  
FREQUENCY AMPLITUDE  
Adjustment for:  
1 kHz  
1 kHz  
1 kHz  
1 kHz  
1 kHz  
1 kHz  
1 kHz  
1 kHz  
1 kHz  
1 kHz  
1 kHz  
1 kHz  
1 kHz  
1 kHz  
1 kHz  
1 kHz  
3.5 Vrms  
2.8 Vrms  
0 dB Output Attenuator  
2 dB Output Attenuator  
4 dB Output Attenuator  
6 dB Output Attenuator  
8 dB Output Attenuator  
10 dB Output Attenuator  
12 dB Output Attenuator  
14 dB Output Attenuator  
16 dB Output Attenuator  
18 dB Output Attenuator  
20 dB Output Attenuator  
22 dB Output Attenuator  
24 dB Output Attenuator  
26 dB Output Attenuator  
28 dB Output Attenuator  
30 dB Output Attenuator  
35  
36  
2.23 Vrms  
1.77 Vrms  
1.41 Vrms  
1.12 Vrms  
.887 Vrms  
.704 Vrms  
.559 Vrms  
.442 Vrms  
.350 Vrms  
.281 Vrms  
.223 Vrms  
.177 Vrms  
.141 Vrms  
.112 Vrms  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
5. Send the CAL:VALue <measured Vac> to the function generator.  
6. Send CAL? command to the function generator to initiate calibration.  
7. Repeat steps 4, 5 and 6 for SETUP 35 through 49.  
8. Perform the “AC Amplitude Verification” on page 169.  
Service Procedures  
183  
Appendix D  
Download from Www.Somanuals.com. All Manuals Search And Download.  
DC Output Adjustment  
The function generator stores nine calibration constants related to DC volts  
output. The constants are calculated from the adjustment value entered. The  
calibration constants are stored following completion of SETUP 59. No  
calibration constants are stored if the procedures are aborted at any other  
setup.  
1. Use a DMM to measure the function generator DCV output voltage  
for SETUP 50 in the following table. These adjustments use a HIGH  
Z output termination.  
Table D-17. DC Output Adjustment Setups  
Nominal Output  
SETUP  
50  
DC Volts  
- 8.0 VDC  
8.0 VDC  
0.0 VDC  
0.0 VDC  
0.0 VDC  
0.0 VDC  
0.0 VDC  
0.0 VDC  
0.0 VDC  
0.0 VDC  
Adjustment for:  
Negative offset gain  
51  
Positive offset gain  
52  
AM offset  
53  
2 dB Pre-attenuator offset.  
4 dB Pre-attenuator offset.  
6 dB Pre-attenuator offset.  
8 dB Pre-attenuator offset.  
10 dB Pre-attenuator offset.  
12 dB Pre-attenuator offset.  
14 dB Pre-attenuator offset.  
54  
55  
56  
57  
58  
59  
2. Send the CAL:VALue <measured Vdc> to the function generator.  
3. Send the CAL? command to the function generator to initiate the  
calibration.  
4. Repeat steps 1, 2 and 3 for SETUP 51 through 59.  
5. Perform the “DC Function Offset Verification” on page 168.  
184 Service Procedures  
Appendix D  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Duty Cycle Adjustment  
The function generator storestwo calibrationconstantsrelatedtosquarewave  
offset and two calibration constants related to squarewave duty cycle. The  
constants are calculated from the adjustment value entered. The calibration  
constants are stored following completion of SETUP 63. No calibration  
constants are stored if the procedures are aborted at any other setup.  
1. Use a DMM to measure the function generator DCV output voltage  
for SETUP 60 in the following table. These adjustments use a HIGH  
Z output termination.  
Note For this test, the DMM must be set to a fixed range capable of measuring  
from +10 V to -10 V. Do not use an auto-ranging function for this test.  
Table D-18. Duty Cycle Adjustment Setups  
Nominal  
Output  
+
SETUP  
60  
FREQUENCY AMPLITUDE  
10.0 VDC  
-10.0 VDC  
0.0 VDC  
Positive squarewave offset.  
Negative squarewave offset.  
50% duty cycle squarewave.  
75% duty cycle squarewave  
61  
62  
300 Hz  
300 Hz  
63  
5.0 VDC  
2. Send the CAL:VALue <measured Vdc> to the function generator.  
3. Send the CAL? command to the function generator to initiate the  
calibration.  
4. Repeat steps 1, 2 and 3 for SETUP 61 through 63.  
5. Perform the “Square Wave Duty Cycle Verification” on page 172.  
AC Amplitude Flatness Adjustment  
The function generator stores eleven calibration constants related to AC  
Amplitude Flatness from 1 kHz to 15 MHz. The constants are calculated  
from the adjustment value entered and one of two calculation constants  
related to the type of measurement device you are using. The calibration  
constants are stored following completion of SETUP 82. No calibration  
constants are stored if the procedures are aborted at any other setup.  
This procedure can be performed with one of three types of measurement  
device; a broadband ACrms voltmeter, a power meter, or a thermal voltage  
converter. The procedure differs slightly depending upon the type of  
measurement device used. These adjustments use a 50 output termination.  
Service Procedures  
185  
Appendix D  
Download from Www.Somanuals.com. All Manuals Search And Download.  
1. Use a broadband ACrms voltmeter to measure the ACrms output  
voltage of the function generator for SETUP 64 in table D-19 then go  
to step 3 to enter that value. Go to step 2 if using a power meter.  
Table D-19. AC Flatness Adjustment Setup (broadband AC Voltmeter)  
Nominal  
Output  
+
SETUP  
64  
FREQUENCY AMPLITUDE  
1 kHz 3.0 V rms  
Reference for:  
1 kHz flatness DAC gain  
2. A. If you are using a broadband ACrms voltmeter, proceed to step 3.  
B. If you are using a power meter capable of measurements at 1 kHz,  
use the power meter to measure the function generator output for  
SETUP 83 in table D-20 then go to step 3 to enter that value. (If your  
power meter does not measure to 1 kHz, see the transfer measurement  
procedure below).  
Table D-20. AC Flatness Adjustment Setup (power meter)  
Nominal Out-  
put  
+
SETUP  
83  
FREQUENCY AMPLITUDE  
1 kHz 3.0 V rms  
Reference for:  
V rms, dBm  
Power Meter Transfer Measurement Procedure (> 1 kHz)  
If you are using a power meter not capable of measurement to 1 kHz,  
you can perform the transfer measurement at a different frequency.  
For example, the Agilent 437A Power Meter with the Agilent 8482A  
probe and 20 dB attenuator are specified to a low frequency of 100  
kHz. To use this measurement device, perform step 1, then use SETUP  
65 (instead of SETUP 64) to obtain a 100 kHz output. Measure the  
output with the power meter, record the measured value, perform  
SETUP 83 and enter the recorded value from SETUP 64 (not a new  
measurement). Then, perform step 3 (you will use SETUP 65 twice).  
This procedure assumes the function generator output is flat from  
1 kHz to 100 kHz.  
C. If you are using a Thermal Voltage Converter (TVC), use the TVC  
to measure the function generator output and enter the measure- ment  
for SETUP 84 in table D-21. (TVC values entered are in mVDC).  
Table D-21. AC Flatness Adjustment Setup (thermal converter)  
SETUP  
84  
FREQUENCY AMPLITUDE  
1 kHz 3.0 V rms  
Reference for:  
Thermal Voltage Converter  
186 Service Procedures  
Appendix D  
Download from Www.Somanuals.com. All Manuals Search And Download.  
3. Send the CAL:VALue <measured Vac> to the function generator.  
4. Send the CAL? command to the function generator to initiate the  
calibration.  
5. Configure SETUP 65 in Table D-22 and repeat steps 3 and 4 for  
SETUP 65 through 82 in table D-22.  
Table D-22. AC Flatness Adjustment Setups  
Nominal Output  
SETUP  
65  
FREQUENCY AMPLITUDE  
Adjustment for:  
100 kHz  
500 kHz  
1 MHz  
3.0 V rms  
3.0 V rms  
3.0 V rms  
3.0 V rms  
3.0 V rms  
3.0 V rms  
3.0 V rms  
3.0 V rms  
3.0 V rms  
3.0 V rms  
3.0 V rms  
3.0 V rms  
3.0 V rms  
3.0 V rms  
3.0 V rms  
3.0 V rms  
3.0 V rms  
3.0 V rms  
100 kHz amplitude flatness  
500 kHz amplitude flatness  
1 MHz amplitude flatness  
3 MHz amplitude flatness  
5 MHz amplitude flatness  
7 MHz amplitude flatness  
9 MHz amplitude flatness  
10 MHz amplitude flatness  
10.5 MHz amplitude flatness  
11 MHz amplitude flatness  
11.5 MHz amplitude flatness  
12 MHz amplitude flatness  
12.5 MHz amplitude flatness  
13 MHz amplitude flatness  
13.5 MHz amplitude flatness  
14 MHz amplitude flatness  
14.5 MHz amplitude flatness  
15 MHz amplitude flatness  
66  
67  
68  
3 MHz  
69  
5 MHz  
70  
7 MHz  
71  
9 MHz  
72  
10 MHz  
10.5 MHz  
11 MHz  
11.5 MHz  
12 MHz  
12.5 MHz  
13 MHz  
13.5 MHz  
14 MHz  
14.5 MHz  
15 MHz  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
6. Perform the “Amplitude Flatness Verification” on page 171.  
Service Procedures  
187  
Appendix D  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Error Messages  
The following tables are abbreviated lists of function generator's error  
messages. They are intended to include errors which are likely to be  
encountered during the procedures described in this chapter. See  
“Agilent E1441A Error Messages” on page 141 for a more complete list of  
error messages.  
Table D-23. System Error Messages  
Error  
-330  
-350  
501  
502  
521  
522  
550  
Error Message  
Self-test Failed  
Too many errors  
Isolator UART framing error  
Isolator UART overrun error  
Input buffer overflow  
Output buffer overflow  
Command not allowed in Local  
Table D-24. Self-Test Error Messages  
Error  
Error Message  
602  
603  
604  
605  
606  
607  
608  
625  
626  
627  
RAM read/write fail  
Waveform RAM readback failed  
Modulation RAM readback failed  
Serial configuration readback failed  
Waveform ASIC failed  
SYNC signal detection failure  
SYNC signal detection failure  
I/O Processor not responding  
I/O Processor failed self-test  
I/O Processor reset; possible low  
power line voltage  
188 Service Procedures  
Appendix D  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Table D-25. Calibration Error Messages  
Error Message  
Error  
701  
702  
703  
704  
705  
706  
707  
708  
709  
760  
850  
851  
852  
853  
854  
855  
856  
857  
858  
Cal security disabled by jumper  
Cal secured  
Invalid secure code  
Secure code too long  
Cal aborted  
Cal value out of range  
Cal signal measurement out of range  
Flatness cal failed  
Cannot calibrate frequency while externally locked (Option 001)  
RAM checksum failure  
Cal setup invalid  
Negative offset gain cal required (CAL:SETup 50)  
Flatness DAC gain cal required (CAL:SETup 64)  
AM cal 1 required (CAL:SETup 30)  
AM cal 2 required (CAL:SETup 31)  
Cal load resistance not specified (CAL:SETup 33)  
Square wave positive offset cal required (CAL:SETup 60)  
Square wave 50% duty cycle cal required (CAL:SETup 62)  
AM cal 3 required (CAL:SETup 32)  
Service Procedures  
189  
Appendix D  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Performance Test Record  
Copy and use Table D-26, Performance Test Record, to record performance  
verification test results for the Agilent E1441A. This table shows Agilent  
E1441A instrument accuracy, Agilent 34401A/E1412A Multimeter  
measurement uncertainty, and test accuracy ratio (TAR) values.  
Test Limits Test limits are defined using the specifications in Appendix A of this manual.  
Measurement For the performance verification tests in this manual, the measurement  
uncertainties are based on the 90-day accuracy specifications for the Agilent  
Uncertainty  
34401A Multimeter and the Agilent E1412A VXI Multimeter.  
Test Accuracy Ratio Test Accuracy Ratio (TAR) for the Agilent E1441A is defined as Agilent  
E1441A Accuracy divided by Measurement Uncertainty, where accuracy =  
(TAR)  
maximum allowable value - expected reading. That is:  
MaximumValue ExpectedReading  
----------------------------------------------------------------------------------------------  
TAR =  
MeasurementUncertainty  
For TARs that exceed 10:1, the entry is ">10:1".  
190 Service Procedures  
Appendix D  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Table D-26. Performance Test Record for the Agilent E1441A (Page 1 of 7)  
Test Facility:  
Name __________________________________  
Address _________________________________  
City/State ________________________________  
Phone __________________________________  
Report No. ______________________________  
Date ___________________________________  
Customer _______________________________  
Tested by _______________________________  
o
Model _________________________________  
Serial No. ________________________________  
Options ________________________________  
Firmware Rev. ____________________________  
Ambient temperature _____________________ C  
Relative humidity _________________________%  
Line frequency __________________ Hz (nominal)  
Special Notes:  
______________________________________________________________________________________________  
______________________________________________________________________________________________  
______________________________________________________________________________________________  
______________________________________________________________________________________________  
______________________________________________________________________________________________  
______________________________________________________________________________________________  
______________________________________________________________________________________________  
______________________________________________________________________________________________  
______________________________________________________________________________________________  
______________________________________________________________________________________________  
______________________________________________________________________________________________  
______________________________________________________________________________________________  
______________________________________________________________________________________________  
______________________________________________________________________________________________  
191  
Appendix D  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Table D-26. Performance Test Record for the Agilent E1441A (Page 2 of 7)  
Test Equipment Used:  
Description  
Model No.  
Trace No.  
Cal Due Date  
1. ___________________________  
2. ___________________________  
3. ___________________________  
4. ___________________________  
5. ___________________________  
6. ___________________________  
7. ___________________________  
8. ___________________________  
9. ___________________________  
10. ___________________________  
11. ___________________________  
12. ___________________________  
13. ___________________________  
14. ___________________________  
15. ___________________________  
16. ___________________________  
17. ___________________________  
18. ___________________________  
19. ___________________________  
20.___________________________  
______________  
______________  
______________  
______________  
______________  
______________  
______________  
______________  
______________  
______________  
______________  
______________  
______________  
______________  
______________  
______________  
______________  
______________  
______________  
______________  
______________  
______________  
______________  
______________  
______________  
______________  
______________  
______________  
______________  
______________  
______________  
______________  
______________  
______________  
______________  
______________  
______________  
______________  
______________  
______________  
______________  
______________  
______________  
______________  
______________  
______________  
______________  
______________  
______________  
______________  
______________  
______________  
______________  
______________  
______________  
______________  
______________  
______________  
______________  
______________  
192  
Appendix D  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Table D-26. Performance Test Record for the Agilent E1441A (Page 3 of 7)  
Agilent E1441A Frequency Accuracy  
Function  
Sine wave  
Square wave  
Output  
Minimum  
999.99 Hz  
495 Hz  
Measured  
Maximum  
1000.01 Hz  
505 Hz  
M.U.  
0.55e-3  
1e-4  
TAR  
>10:1  
>10:1  
3.5V @ 1.0 kHz  
3.5V @ 1.0 kHz  
500 Hz burst rate  
Agilent E1441A Function Gain and Linearity  
Function  
Sine wave  
Output  
Minimum  
6.93 Vrms  
5.643 Vrms  
5.643 Vrms  
5.643 Vrms  
9.9 Vrms  
Measured  
Maximum  
7.07 Vrms  
5.757 Vrms  
5.757 Vrms  
5.757 Vrms  
10.1 Vrms  
8.08 Vrms  
M.U.  
6.5e-3  
5.9e-3  
5.9e-3  
5.9e-3  
8e-3  
TAR  
>10:1  
9.7:1  
9.7:1  
9.7:1  
12.5:1  
11.4:1  
7.0V @ 1.0 kHz  
5.7V @ 1.0 kHz  
5.7V @ 100 Hz  
5.7V @ 100 Hz  
10V @ 100 Hz  
8.0 V @ 100 Hz  
Sine wave  
Triangle wave  
Ramp wave  
Square wave  
Square wave  
7.92 Vrms  
7e-3  
Agilent E1441A DC Function Offset  
Minimum Measured  
Function  
DC Volts  
DC Volts  
Output  
Maximum  
10.2 Vdc  
-9.8 Vdc  
M.U.  
TAR  
10.0 Vdc  
-10.0 Vdc  
9.8 Vdc  
-10.2 Vdc  
0.25e-3  
0.25e-3  
>10:1  
>10:1  
193  
Appendix D  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Table D-26. Performance Test Record for the Agilent E1441A (Page 4 of 7)  
Agilent E1441A AC Amplitude (High Z)  
Function  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Output  
Minimum  
Measured  
Maximum  
7.07 Vrms  
M.U.  
TAR  
7V @ 1 kHz  
6.930 Vrms  
5.643 Vrms  
4.950 Vrms  
4.356 Vrms  
3.465 Vrms  
2.772 Vrms  
2.178 Vrms  
1.683 Vrms  
1.386 Vrms  
1.089 Vrms  
0.8712 Vrms  
0.6930 Vrms  
0.5445 Vrms  
0.4356 Vrms  
0.3465 Vrms  
0.2772 Vrms  
0.2178 Vrms  
0.1683 Vrms  
0.1386 Vrms  
0.1089 Vrms  
6.50e-3  
5.85e-3  
5.75e-3  
5.20e-3  
4.75e-3  
4.40e-3  
4.10e-3  
3.85e-3  
3.70e-3  
3.55e-3  
0.74e-3  
0.65e-3  
0.58e-3  
0.52e-3  
0.48e-3  
0.44e-3  
0.41e-3  
0.39e-3  
0.37e-3  
0.36e-3  
80e-6  
>10:1  
9.74:1  
9.56:1  
8.46:1  
7.36:1  
6.36:1  
5.36:1  
4.42:1  
3.78:1  
3.10:1  
>10:1  
>10:1  
9.48:1  
8.46:1  
7.29:1  
6.36:1  
5.36:1  
4.36:1  
3.78:1  
3.06:1  
>10:1  
9.3:1  
5.7V @ 1 kHz  
5.5V @ 1 kHz  
4.4V @ 1 kHz  
3.5V @ 1 kHz  
2.8V @ 1 kHz  
2.2V @ 1 kHz  
1.7V @ 1 kHz  
1.4V @ 1 kHz  
1.1V @ 1 kHz  
0.88V @ 1 kHz  
0.70V @ 1 kHz  
0.55V @ 1 kHz  
0.44V @ 1 kHz  
0.35V @ 1 kHz  
0.28V @ 1 kHz  
0.22V @ 1 kHz  
0.17V @ 1 kHz  
0.14V @ 1 kHz  
0.11V @ 1 kHz  
5.757 Vrms  
5.555 Vrms  
4.444 Vrms  
3.535 Vrms  
2.828 Vrms  
2.222 Vrms  
1.717 Vrms  
1.414 Vrms  
1.111 Vrms  
0.8888 Vrms  
0.7070 Vrms  
0.5555 Vrms  
0.4444 Vrms  
0.3535 Vrms  
0.2828 Vrms  
0.2222 Vrms  
0.1717 Vrms  
0.1414 Vrms  
0.1111 Vrms  
0.08888 Vrms  
0.07070 Vrms  
0.05555 Vrms  
0.04444 Vrms  
0.03636 Vrms  
0.088V @ 1 kHz 0.08712 Vrms  
0.070V @ 1 kHz 0.06930 Vrms  
0.055V @ 1kHz 0.05445 Vrms  
0.044V @ 1 kHz 0.04356 Vrms  
0.036V @ 1 kHz 0.03564 Vrms  
75e-6  
68e-6  
8.1:1  
62e-6  
7.1:1  
58e-6  
6.2:1  
194  
Appendix D  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Table D-26. Performance Test Record for the Agilent E1441A (Page 5 of 7)  
Agilent E1441A AC Amplitude (50 Ohms)  
Function  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Output  
Minimum  
Measured  
Maximum  
3.535 Vrms  
M.U.  
TAR  
3.5V @ 1 kHz  
2.8V @ 1 kHz  
2.2V @ 1 kHz  
1.7V @ 1 kHz  
1.4V @ 1 kHz  
1.1V @ 1 kHz  
0.88V @ 1 kHz  
0.70V @ 1 kHz  
0.55V @ 1 kHz  
0.44V @ 1 kHz  
0.35V @ 1 kHz  
0.28V @ 1 kHz  
0.22V @ 1 kHz  
0.17V @ 1 kHz  
0.14V @ 1 kHz  
0.11V @ 1 kHz  
3.465 Vrms  
2.772 Vrms  
2.178 Vrms  
1.683 Vrms  
1.386 Vrms  
1.089 Vrms  
0.8712 Vrms  
0.6930 Vrms  
0.5445 Vrms  
0.4356 Vrms  
0.3465 Vrms  
0.2772 Vrms  
0.2178 Vrms  
0.1683 Vrms  
0.1386 Vrms  
0.1089 Vrms  
4.75e-3  
4.40e-3  
4.10e-3  
3.85e-3  
3.70e-3  
3.55e-3  
0.74e-3  
0.65e-3  
0.57e-3  
0.52e-3  
0.47e-3  
0.44e-3  
0.41e-3  
0.38e-3  
0.37e-3  
0.35e-3  
84e-6  
7.37:1  
6.36:1  
5.37:1  
4.42:1  
3.78:1  
3.10:1  
>10:1  
>10:1  
9.65:1  
8.46:1  
7.45:1  
6.36:1  
5.37:1  
4.47:1  
3.78:1  
3.14:1  
>10:1  
9.30:1  
8.10:1  
7.10:1  
6.03:1  
5.19:1  
4.31:1  
3.67:1  
2.828 Vrms  
2.222 Vrms  
1.717 Vrms  
1.414 Vrms  
1.111 Vrms  
0.8888 Vrms  
0.7070 Vrms  
0.5555 Vrms  
0.4444 Vrms  
0.3535 Vrms  
0.2828 Vrms  
0.2222 Vrms  
0.1717 Vrms  
0.1414 Vrms  
0.1111 Vrms  
0.08888 Vrms  
0.07070 Vrms  
0.05555 Vrms  
0.04444 Vrms  
0.03535 Vrms  
0.02828 Vrms  
0.02222 Vrms  
0.01818 Vrms  
0.088V @ 1 kHz 0.08712 Vrms  
0.070V @ 1 kHz 0.06930 Vrms  
0.055V @ 1 kHz 0.05445 Vrms  
0.044V @ 1 kHz 0.04356 Vrms  
0.035V @ 1 kHz 0.03465 Vrms  
0.028V @ 1 kHz 0.02772 Vrms  
0.022V @ 1 kHz 0.02178 Vrms  
0.018V @ 1 kHz 0.01782 Vrms  
75e-6  
68e-6  
62e-6  
58e-6  
54e-6  
51e-6  
49e-6  
195  
Appendix D  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Table D-26. Performance Test Record for the Agilent E1441A (Page 6 of 7)  
Agilent E1441A Amplitude Flatness  
Function  
Output  
Minimum  
Measured  
Maximum  
M.U.  
TAR  
Sine wave  
3.0V @ 1 kHz  
reference  
reference  
NA  
Pass  
/Fail  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
Sine wave  
3.0V @ 100 kHz  
3.0V @ 500 kHz  
3.0V @ 1 MHz  
3.0V @ 3 MHz  
3.0V @ 5 MHz  
3.0V @ 7 MHz  
3.0V @ 9 MHz  
3.0V @ 11 MHz  
3.0V @ 13 MHz  
3.0V @ 15 MHz  
ref - 0.030V  
ref - 0.045V  
ref - 0.045V  
ref - 0.060V  
ref - 0.060V  
ref - 0.060V  
ref - 0.060V  
ref - 0.060V  
ref - 0.060V  
ref - 0.060V  
ref + 0.030V  
ref + 0.045V  
ref + 0.045V  
ref + 0.060V  
ref + 0.060V  
ref + 0.060V  
ref + 0.060V  
ref + 0.060V  
ref + 0.060V  
ref + 0.060V  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
Pass  
/Fail  
Pass  
/Fail  
Pass  
/Fail  
Pass  
/Fail  
Pass  
/Fail  
Pass  
/Fail  
Pass  
/Fail  
Pass  
/Fail  
Pass  
/Fail  
Pass  
/Fail  
Agilent E1441A AM Modulation  
Function  
Output  
Minimum  
Measured  
Maximum  
M.U.  
TAR  
Sine wave  
Modulated  
1.0V @ 1 kHz  
100 Hz, 0%  
0.495 Vrms  
0.505 Vrms  
0.8e-3  
6.25:1  
Sine wave  
Modulated  
1.0V @ 1 kHz  
100 Hz, 100%  
0.6039 Vrms  
0.6161 Vrms  
0.8e-3  
7.63:1  
196  
Appendix D  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Optional Performance Verification Tests  
Table D-26. Performance Test Record for the Agilent E1441A (Page 7 of 7)  
Agilent E1441A Square Wave Duty Cycle  
Function  
Output  
Minimum  
Measured  
Maximum  
M.U.  
TAR  
Square wave  
1V @ 300 Hz  
-0.02Vdc  
0.02Vdc  
25e-6  
>10:1  
50% duty cycle  
Square wave  
Square wave  
1V @ 300 Hz  
25% duty cycle  
-0.52Vdc  
0.48Vdc  
-0.48Vdc  
0.52Vdc  
25e-6  
25e-6  
>10:1  
>10:1  
1V @ 300 Hz  
75% duty cycle  
Agilent E1441A Distortion  
Minimum Measured  
Function  
Output  
1.1V @ 20 kHz  
40 kHz  
Maximum  
reference  
NA  
M.U.  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
TAR  
Pass/Fail  
Pass/Fail  
Pass/Fail  
Pass/Fail  
Pass/Fail  
Pass/Fail  
Pass/Fail  
Pass/Fail  
Pass/Fail  
Pass/Fail  
Pass/Fail  
Pass/Fail  
Pass/Fail  
Pass/Fail  
Pass/Fail  
Pass/Fail  
Pass/Fail  
Pass/Fail  
Pass/Fail  
Pass/Fail  
Sine wave  
reference  
>70dB  
>70dB  
>70dB  
>70dB  
reference  
>60dB  
>60dB  
>60dB  
>60dB  
reference  
>45dB  
>45dB  
>45dB  
>45dB  
reference  
>35dB  
>35dB  
>35dB  
>35dB  
2nd Harmonic  
3rd Harmonic  
4th Harmonic  
5th Harmonic  
Sine wave  
60 kHz  
NA  
80 kHz  
NA  
100 kHz  
NA  
1.1V @ 100 kHz  
200 kHz  
reference  
NA  
2nd Harmonic  
3rd Harmonic  
4th Harmonic  
5th Harmonic  
Sine wave  
300 kHz  
NA  
400 kHz  
NA  
500 kHz  
NA  
1.1V @ 1 MHz  
2 MHz  
reference  
NA  
2nd Harmonic  
3rd Harmonic  
4th Harmonic  
5th Harmonic  
Sine wave  
3 MHz  
NA  
4 MHz  
NA  
5 MHz  
NA  
1.1V @ 15 MHz  
30 MHz  
reference  
NA  
2nd Harmonic  
3rd Harmonic  
4th Harmonic  
5th Harmonic  
45 MHz  
NA  
60 MHz  
NA  
75 MHz  
NA  
197  
Appendix D  
Download from Www.Somanuals.com. All Manuals Search And Download.  
198  
Appendix D  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Index  
Agilent E1441 Function/Arbitrary Waveform Generator SCPI User’s Manual  
and output termination, 23, 114115  
Symbols  
arb waveform limitations, 112, 114  
*CLS, 124125  
conflict with function, 23, 115  
*ESE, 124  
limits, 22, 114  
*ESE?, 124  
restrictions with offset, 23  
*ESR?, 124125  
selecting units, 2425, 115  
*IDN?, 56, 124, 126  
selection, 22, 114  
*OPC, 122, 124, 126  
*OPC?, 122, 124, 126  
Amplitude Control, 156  
Amplitude Flatness Verification, 171  
*RCL, 127  
angle, burst modulation, 39, 103  
*RST, 124, 127  
APPLy command, optional parameters, 96  
*SAV, 128  
APPLy command, parameters, 96  
*SRE, 124, 128  
APPLy command, using with option 001, 50  
*SRE?, 124, 129  
APPLy commands (SOURce subsystem), 96  
*STB?, 124, 129  
APPLy:DC, 100  
*TRG, 53, 122, 124, 129  
*TST?, 124, 129  
APPLy:NOISe, 100  
APPLy:RAMP, 100  
*WAI, 122, 124, 129  
APPLy:SINusoid, 100  
APPLy:SQUare, 101  
A
APPLy:TRIangle, 101  
APPLy:USER, 101  
APPLy?, 101  
abbreviated commands, 70  
Aborting a Calibration in Progress, 178  
AC Amplitude Adjustment (50 Ohms), 182  
AC Amplitude Adjustment (High-Z), 180  
AC Amplitude Flatness Adjustment, 185  
AC Amplitude Verification, 169  
AC signals, 157  
ac signals, attribute diagram, 157  
Access indicator, 16  
address switch  
location, 14  
setting, 14  
Agilent Technologies Calibration Services, 164  
AM (amplitude modulation)  
carrier frequency range, 29  
carrier waveshape, 28  
arbitrary waveform  
amplitude limitations, 112, 114  
average value, 79  
binary data, 78  
built-in waveforms, 48, 111  
catalog listing, 81, 83  
copy name, 81  
crest factor value, 79  
delete waveform, 82  
floating-point data, 77  
frequency limits, 22, 107  
inherent offset, 112  
internal operation, 46  
memory available, 83  
memory limitations, 82  
modulation matrix, 111  
name rules, 7982, 110  
peak-to-peak value, 80  
query points, 80  
modulating frequency range, 29, 94  
modulating source, 30, 94  
modulating waveshape, 29, 94  
modulation depth, 29, 93  
operation, 28  
sync signal, 29  
recalling arbs with a stored configuration, 127  
reserved names, 81  
technical description, 158  
AM Modulation Depth Verification, 172  
AM Modulation terminal, 30, 93  
amplitude  
storing arbs with configuration (*SAV), 128  
arbitrary waveform errors, 149  
arbitrary waveforms, built-in, 48  
Index  
199  
Download from Www.Somanuals.com. All Manuals Search And Download.  
attributes, 157  
Calibration Security Code, 174  
calibration security code  
changing, 74  
Attributes of AC signals, 157  
Automating Calibration Procedures, 164  
average value, 158  
disabling, 74  
average, of arb data points, 79  
enabling, 74  
CALibration subsystem, 73  
CALibration  
B
COUNt?, 73  
SECure  
binary block format, 7879  
binary block header, 79  
binary data  
CODE, 74  
STATe, 74  
STATe?, 75  
block format, 78  
byte order, 84  
SETup, 75  
SETup?, 75  
STRing, 75  
STRing?, 76  
VALue, 76  
VALue?, 76  
binary, arb waveform data, 78  
block format, binary data, 78  
block header, binary, 79  
boolean parameters, 71  
built-in arb waveforms, 111  
burst  
burst modulation, 160  
burst count, 38, 102  
restrictions, 3738, 102  
burst frequency, 39, 103  
Burst input terminal, 54  
burst modulation  
CALibration?, 73  
carrier frequency  
AM, 29  
burst modulation, 36  
FM, 31  
FSK, 40  
carrier waveshape  
burst count restrictions, 3738, 102  
burst count selection, 38  
burst count setting, 102  
carrier frequency range, 36  
gate source, 104  
internal rate, 39, 103  
operation, 33  
AM, 28  
FM, 31  
catalog, of arb waveform names, 81, 83  
clearing the error queue, 120  
clearing the status conditions at power-up, 127  
closed-case electronic, 164  
Closed-case electronic calibration, 164  
*CLS, 124125  
starting phase, 39, 103  
sync signal, 38  
command Fundamentals, 70  
command reference, 65, 72  
(*) common commands, 124  
CALibration subsystem, 73  
DATA subsystem, 77  
FORMat subsystem, 84  
MEMory subsystem, 85  
OUTPut subsystem, 87  
PHASe subsystem, 90  
SOURce subsystem, 92  
STATus subsystem, 117118  
SYSTem subsystem, 120  
TRIGger subsystem, 121  
command reference, SCPI commands, 72  
command separator, 70  
command subsystems, description, 65  
commands  
technical description, 160  
trigger source, 35  
burst phase, 39, 103  
burst rate, 39, 103  
bus triggering, 53, 122  
byte order, binary data, 84  
C
Calibration, 164, 174, 177  
calibration, 176  
Calibration Count, 176  
calibration errors, 147  
Calibration Interval, 164  
Calibration Message, 176  
calibration message  
string length, 176  
calibration procedure related, 188  
abbreviated, 70  
200 Index  
Download from Www.Somanuals.com. All Manuals Search And Download.  
alphabetical listing, 65  
common command format, 70  
implied, 71  
CATalog?, 81  
COPY, 81  
DACVOLATILE, 78  
DELete, 82  
linking, 71  
parameter types, 71  
quick reference, 131  
SCPI command format, 70  
separators, 70  
ALL, 83  
NVOLatile  
CATalog?, 83  
FREE?, 83  
DATAVOLATILE, 77  
upper case vs. lower case, 70  
common (*) command  
*CLS, 124125  
dBm, 25, 116  
dBm value, 158  
DC Function Offset Verification, 168  
dc offset  
*ESE, 124125  
*ESE?, 124125  
*ESR?, 124125  
*IDN?, 124, 126  
*OPC, 124, 126  
*OPC?, 124, 126  
*RCL, 127  
*RST, 124, 127  
*SAV, 128  
*SRE, 124, 128  
*SRE?, 124, 129  
*STB?, 124, 129  
*TRG, 124, 129  
*TST?, 124, 129  
*WAI, 124, 129  
format, 70  
PSC, 127  
reference, 124  
and arb waveforms, 112  
and dc voltage function, 25, 116  
and output termination, 24, 116  
selection, 24, 115  
DC Output Adjustment, 184  
degrees (DEG)  
phase offset setting, 90  
deviation, peak frequency, 32, 105  
direct digital synthesis, 153  
discrete parameters, 71  
Distortion Verification, 173  
download  
binary data, 78  
floating-point data, 77  
downloading a binary block of data, 79  
duty cycle  
common (*) commands  
conflict with frequency, 26, 112  
definition, 26  
selection, 26, 112  
*PSC?, 127  
Common Command Reference, 124  
configuration state  
deleting, 85  
Duty Cycle Adjustment, 185  
dynamic addressing, 14  
recalling, 127  
saving, 128  
E
Connectors, faceplate, 16  
copy, arb waveform name, 81  
Count, 176  
crest factor, of arb data points, 79  
cycles, number of, 38, 102  
Error Messages, 188  
error messages, 141150  
error queue  
capacity, 120  
clearing, 55, 120, 141  
reading, 120  
D
ERRor, see SYSTem subsystem, 120  
errors  
error queue, 55  
Errors indicator, 16  
*ESE, 124125  
*ESE?, 124125  
*ESR?, 124125  
data points, number in arb waveform, 80  
DATA subsystem, 77  
DATA  
ATTRibute  
AVERage?, 79  
CFACtor?, 79  
POINts?, 80  
example programs, 18  
Example programs (VXIplug&play). See online help.  
PTPeak?, 80  
Index  
201  
Download from Www.Somanuals.com. All Manuals Search And Download.  
execution errors, 141  
Ext Trig Terminal, 54  
operation, 40  
source, 42, 109  
Ext Trig/FSK/Burst input terminal, 54  
logic levels, 54  
external rate, FSK, 110  
external source, sweep, 44  
external triggering, 53, 122  
sync signal, 40  
technical description, 160  
FSK input terminal, 54  
Function Gain and Linearity Adjustment, 179  
Function Gain and Linearity Verification, 168  
Function Generator Tutorial, 153  
Function reference (VXIplug&play). See online help.  
function, conflict with amplitude, 20  
function, conflict with frequency, 20  
function, modulation matrix, 20  
F
Faceplate indicators and Connectors, 16  
Face-plate Inputs, 137  
Failed indicator, 16  
firmware revision, 56  
floating, 157  
G
Floating signal generators, 157  
floating-point, arb waveform data, 77  
FM (frequency modulation)  
carrier frequency range, 31  
carrier waveshape, 31  
modulating frequency range, 32, 105  
modulating waveshape, 32, 106  
operation, 30  
gate source, burst modulation, 104  
General Calibration/Adjustment Procedure, 177  
General Information, 13  
general procedure, 177  
General Specifications, 138  
GET (group execute trigger), 53, 122  
ground loops, 157  
Group Execute Trigger (GET), 53, 122  
peak frequency deviation, 105  
sync signal, 32  
technical description, 159  
format  
H
hop frequency, FSK, 41, 109  
common command, 70  
SCPI command, 70  
FORMat subsystem, 84  
I
*IDN?, 124, 126  
FORMat  
IEEE 488.2 Common Commands, 124  
implied commands, 71  
Indicators, faceplate, 16  
inherent offset, arb waveforms, 112  
initial operation, 17  
interface triggering, 53, 122  
internal burst rate, 39, 103  
internal FSK rate, 41, 109  
internal operations, arbitrary waveforms, 46  
internal triggering, 53, 122  
interrupt priority, 15  
BORDer, 84  
BORDer?, 84  
frequency  
arb waveform limits, 22, 107  
conflict with duty cycle, 22  
conflict with function, 22, 107  
limits, 106  
selection, 21, 106  
Frequency and Burst Rate Adjustment, 178  
Frequency Characteristics, 135  
frequency deviation, FM, 32, 105  
Frequency Sweep, 137  
frequency sweep, 43  
J
Jumper, security, 175  
sweep, 43  
Frequency Verification, 167  
Frequency-Shift Keying (FSK), 40  
FSK  
L
linear spacing, sweep, 44, 113  
linking commands, 71  
logarithmic spacing, sweep, 44, 113  
logic levels  
carrier frequency range, 40  
internal rate, 41, 109  
maximum external rate, 110  
modulating (hop) frequency, 41, 109  
Ext Trig/FSK/Burst input terminal, 54  
202 Index  
Download from Www.Somanuals.com. All Manuals Search And Download.  
REFerence, 91  
UNLock  
M
Measurement Uncertainty, 190  
memory available, arb waveforms, 83  
memory locations, 128  
memory locations "0, 1, 2 & 3", 85, 127  
MEMory subsystem, 85  
MEMory  
ERRor  
STATe, 91  
STATe?, 91  
option 001 phase-lock errors, 151  
optional parameters, 71  
optional parameters, APPLy command, 96  
Optional Performance Verification Tests, 172  
Output, 156  
STATe  
DELete, 85  
messages, error, 141  
modulating frequency  
AM, 29, 94  
Output Amplifier Adjustment (Optional), 188  
output amplitude  
and output termination, 23, 114115  
arb waveform limitations, 112, 114  
conflict with function, 23, 115  
limits, 22, 114  
restrictions with offset, 23  
selecting units, 2425, 115  
selection, 22, 114  
FM, 32, 105  
FSK, 41, 109  
modulating source, AM, 30, 94  
modulating waveshape  
AM, 29, 94  
FM, 32, 106  
Modulation, 158  
Output Amplitude Control, 156  
Output Characteristics, 136  
Output Configuration, 19  
output frequency  
Modulation Adjustment, 181  
Modulation Characteristics, 137  
modulation depth  
AM, 29, 93  
arb waveform limits, 22, 107  
conflict with duty cycle, 22  
conflict with function, 22, 107  
limits, 106  
with external source, 30, 93  
N
noise, and FM, 106  
number of cycles, burst modulation, 38, 102  
numeric parameters, 71  
Nyquist Sampling Theorem, 155  
selection, 21, 106  
output function  
conflict with amplitude, 20  
conflict with frequency, 20  
modulation matrix, 20  
OUTPut subsystem, 87  
OUTPut  
O
offset  
LOAD, 87  
LOAD?, 87  
SYNC, 88  
SYNC?, 88  
and arb waveforms, 112  
and dc voltage function, 25, 116  
and output termination, 24, 116  
selection, 24, 115  
*OPC, 124, 126  
*OPC?, 124, 126  
Option 001  
Specifications, 139  
Option 001 commands  
OUTPut  
TRIGger  
IMMediate (option 001), 88  
STATe (option 001), 88  
STATe? (option 001), 88  
output termination  
selection, 25, 87  
output termination, schematic, 156  
output units  
amplitude, 115  
output amplitude, 25, 116  
Overload indicator, 16  
TRIGger  
IMMediate, 88  
STATe, 88  
STATe?, 88  
PHASe  
ADJust, 90  
ADJust?, 91  
Index  
203  
Download from Www.Somanuals.com. All Manuals Search And Download.  
P
R
radians  
parameters  
boolean, 71  
discrete, 71  
phase offset setting, 90  
*RCL, 127  
numeric, 71  
optional, 71  
types of, 71  
reading the error queue, 120  
recalling an instrument configuration, 127  
Recommended Test Equipment, 165  
reserved names, arb waveforms, 81  
reset state, 57, 130  
revision number, firmware, 56  
RMS value, 157  
peak deviation, FM, 32, 105  
peak frequency deviation, FM, 32, 105  
peak value, 157  
peak-to-peak value, 157  
of arb data points, 80  
percent modulation (depth), 29  
modulation depth, 29  
percentage, duty cycle, 112  
Performance Test Record, 190  
Performance Verification Tests, 166167  
phase offset setting, 90  
phase offset, querying, 91  
phase reference, setting, 91  
PHASe subsystem (option 001), 90  
PHASe  
*RST, 124, 127  
rules, arb waveform names, 81  
S
*SAV, 128  
saving instrument configurations, 128  
SCPI command reference, 72, 131  
SCPI commands  
abbreviated, 70  
command format, 70  
implied, 71  
linking with common (*) commands, 71  
parameters, 71  
quick reference, 131  
specifying, 17  
ADJust, 90  
ADJust?, 91  
REFerence, 91  
UNLock  
ERRor  
SCPI, programming examples  
application SCPI command strings, 58  
SCPI, version query, 56  
Security Code, 174  
security code  
lost code, 175  
security code, calibration  
STATe, 91  
STATe?, 91  
phase, burst modulation, 39, 103  
phase-lock error  
enabling, 91  
generation, 91  
querying, 91  
changing, 74  
disabling, 74  
enabling, 74  
phase-lock errors (option 001), 151  
Plug&Play  
VXIplug&play, 13  
Security jumper, 175  
self-test  
complete, 55, 166  
power-on, 55, 166  
self-test errors, 147  
shift rate, FSK, 41, 109  
SICL, Standard Instrument Control Language, 13  
Signal Characteristics, 136  
Signal generators, 157  
Signal Imperfections, 155  
Sinewave Spectral Purity, 135  
soft front panel  
VXIplug&play Online Help, 13  
Soft front panel (VXIplug&play). See online help.  
software triggering, 53, 122  
Plug&Play. See online help.  
points, number in arb waveform, 80  
power-down  
recalling the last instrument configuration, 127  
power-on state, 57, 130  
programming the function generator, 17  
programs  
example, 18  
Q
Quick Performance Check, 167  
quick reference  
IEEE 488.2 Common Commands, 124  
SCPI commands, 131  
204 Index  
Download from Www.Somanuals.com. All Manuals Search And Download.  
SOURce, 92  
AM  
SHAPe, 111  
SHAPe?, 112  
USER, 110  
USER?, 111  
DEPTh, 93  
DEPTh?, 94  
INTernal  
PULSe  
FREQuency, 94  
FUNCtion, 94  
FUNCtion?, 94  
DCYCle, 112  
DCYCle?, 113  
STATe?, 95  
SWEep  
SPACing, 113  
SOURce, 94  
SOURce?, 95  
SPACing?, 113  
STATe, 114  
STATe?, 114  
TIME, 113  
STATe, 95  
APPLY?, 101  
BM  
INTernal  
RATE, 103  
TIME?, 113  
NCYCles, 102  
NCYCles?, 102  
PHASe, 103  
VOLTage, 114  
OFFSet, 115  
OFFSet?, 116  
PHASe?, 103  
RATE?, 104  
SOURce, 104  
SOURce?, 104  
STATe, 104  
UNIT, 116  
UNIT?, 116  
VOLTage?, 115  
spacing, linear sweep, 44, 113  
spacing, logarithmic sweep, 44, 113  
Specifications  
STATe?, 104  
Option 001, 139  
FM  
Square Wave Duty Cycle Verification, 172  
*SRE, 124, 128  
*SRE?, 124, 129  
DEViation, 105  
INTernal  
FREQuency, 105  
FREQuency?, 106  
FUNCtion, 106  
FUNCtion?, 106  
STATe, 106  
Standard Commands for Programmable Instrument  
SCPI, 13, 65  
start frequency, sweep, 43, 107  
starting phase, burst modulation, 39, 103  
state storage  
STATe?, 106  
FREQuency, 106  
operation, 27  
state storage (configuration state)  
STARt, 107  
STOP, 108  
STOP?, 108  
delete state, 85  
state, power-on and reset, 57, 130  
STATus subsystem, 117118  
STATus:PRESet, 117  
FREQuency?, 94, 107108  
STATus:QUEStionable:CONDition?, 117  
STATus:QUEStionable:ENABle, 118  
STATus:QUEStionable:ENABle?, 118  
STATus:QUEStionable[[:EVENt]]?, 117  
*STB?, 124, 129  
stop frequency, sweep, 43, 108  
stored configuration states  
delete state, 85  
FSKey  
FREQuency, 109  
FREQuency?, 109  
INTernal  
RATE, 109  
RATE?, 109  
SOURce, 109  
SOURce?, 110  
STATe, 110  
STATe?, 110  
FUNCtion  
stored states  
operation, 27  
storing instrument configurations, 128  
Index  
205  
Download from Www.Somanuals.com. All Manuals Search And Download.  
swapped byte order, 84  
sweep  
TRIGger subsystem, 121  
TRIGger  
linear spacing, 44, 113  
logarithmic spacing, 44, 113  
operation, 43  
start frequency, 43, 107  
stop frequency, 43, 108  
sweep time, 43, 113  
sweep time query, 113  
sync signal, 43  
SOURce, 121  
SOURce?, 123  
trigger, sources, 52  
triggering  
external, 53, 122  
internal, 53  
internal (immediate), 122  
overview, 52  
technical description, 159  
trigger source, 44  
sweep example, logarithmic, 123  
sync signal  
software (bus), 53, 122  
troubleshooting, error messages, 141  
*TST?, 124, 129  
AM, 29  
enabling/disabling, 26, 88  
FM, 32  
for all functions, 26  
FSK, 40  
gated burst mode, 38  
sweep, 43  
U
units  
amplitude, 115  
output amplitude, 25, 116  
unlocked error, phase-lock loop (option 001), 151  
Unsecure the Function Generator, 175  
Unsecuring (without code), 175  
triggered burst mode, 38  
SYNC terminal, 27, 88  
System Characteristics, 138  
SYSTem subsystem, 120  
SYSTem  
ERRor?, 120  
VERSion?, 120  
SYStem subsystem, 120  
V
Vpp, 25, 116  
Vrms, 25, 116  
VXIbus TTLTRG inputs, 137  
VXIplug&play information, 13  
VXIplug&play. See online help.  
T
W
terminal, Ext Trig/FSK/Burst, 54  
Ext Trig/FSK/Burst input terminal, 54  
terminals  
*WAI, 124, 129  
WARNINGS  
Electical shock, tighten screws, 15  
Waveforms, 135  
input, 16  
termination, schematic, 156  
termination, selection, 25, 87  
Test Accuracy Ratio (TAR), 190  
Test Considerations, 165  
time  
Z
zero-phase reference point, 91  
sweep time, 43, 113  
sweep time query, 113  
Time Required for Calibration, 164  
*TRG, 124, 129  
TRIGger, 121  
SLOPe, 121  
SLOPe?, 121  
trigger source, 121  
FSK, 42, 109  
sweep, 44  
triggered burst mode, 35  
206 Index  
Download from Www.Somanuals.com. All Manuals Search And Download.  

3D Connexion Swimming Pool XT1500 User Manual
Acer Car Video System MMP3400 User Manual
Acer Flat Panel Television X233H User Manual
Addonics Technologies Computer Drive AESNAPMRI User Manual
Akai Musical Instrument MPC5000 User Manual
AKG Acoustics Microphone C 535 EB User Manual
Alcatel Carrier Internetworking Solutions Switch 4324 User Manual
American Audio CD Player CDS 1 User Manual
Audiovox Stereo System AV 2000 User Manual
Axor Indoor Furnishings 04182XX0 User Manual