Cypress CY8C20x46 User Manual

CY8C20x36/46/66, CY8C20396  
CapSense™ Applications  
Features  
1.71V to 5.5V Operating Range  
Versatile Analog Mux  
Common Internal Analog Bus  
Simultaneous Connection of IO  
High PSRR Comparator  
Low Dropout Voltage Regulator for All Analog Resources  
Low Power CapSense™ Block  
Configurable Capacitive Sensing Elements  
Supports Combination of CapSense Buttons, Sliders,  
Touchpads, Touch Screens, and Proximity Sensor  
Additional System Resources  
I C™ Slave:  
Powerful Harvard Architecture Processor  
M8C Processor Speeds Running to 24 MHz  
Low Power at High Speed  
2
• Selectable to 50 kHz, 100 kHz, or 400 kHz  
• No Clock Stretching Required (under most conditions)  
Interrupt Controller  
• Implementation During Sleep Modes with Less Than  
100 µA  
• Hardware Address Validation  
SPI™ Master and Slave: Configurable 46.9 kHz - 12 MHz  
Three 16-Bit Timers  
Watchdog and Sleep Timers  
Internal Voltage Reference  
Integrated Supervisory Circuit  
Temperature Range: -40°C to +85°C  
Flexible On-Chip Memory  
Three Program/Data Storage Size Options:  
• CY8C20x36: 8K Flash / 1K SRAM  
• CY8C20x46: 16K Flash / 2K SRAM  
• CY8C20x66: 32K Flash / 2K SRAM  
50,000 Flash Erase/Write Cycles  
Partial Flash Updates  
Complete Development Tools  
Free Development Tool (PSoC Designer™)  
Full Featured, In-Circuit Emulator and Programmer  
Full Speed Emulation  
Flexible Protection Modes  
In-System Serial Programming (ISSP)  
Full-Speed USB  
Available on CY8C20396 and CY8C20666 Only  
12 Mbps USB 2.0 Compliant  
Eight Unidirectional Endpoints  
One Bidirectional Control Endpoint  
Dedicated 512 Byte Buffer  
Complex Breakpoint Structure  
128K Trace Memory  
Package Options  
CY8C20x36:  
• 16-Pin 3 x 3 x 0.6 mm QFN  
• 24-Pin 4 x 4 x 0.6 mm QFN  
• 32-Pin 5 x 5 x 0.6 mm QFN  
CY8C20x46:  
• 16-Pin 3 x 3 x 0.6 mm QFN  
• 24-Pin 4 x 4 x 0.6 mm QFN  
• 32-Pin 5 x 5 x 0.6 mm QFN  
CY8C20396: 24-Pin 4 x 4 x 0.6 mm QFN  
CY8C20x66:  
Internally Regulated at 3.3V  
Precision, Programmable Clocking  
Internal Main Oscillator: 6/12/24 MHz ± 5%  
Internal Low Speed Oscillator at 32 kHz for Watchdog and  
Sleep Timers  
Precision 32 kHz Oscillator for Optional External Crystal  
(CY8C20x46/66 only)  
0.25% Accuracy for USB with No External Components  
(CY8C20396 and CY8C20666 only)  
• 32-Pin 5 x 5 x 0.6 mm QFN  
• 48-Pin 7 x 7 x 1.0 mm QFN (with USB)  
• 48-Pin SSOP  
Programmable Pin Configurations  
Up to 36 GPIO (Depending on Package)  
Dual Mode GPIO: All GPIO Support Digital IO and Analog  
Input  
25 mA Sink Current on All GPIO  
Pull up, High Z, Open Drain Modes on All GPIO  
CMOS Drive Mode(5 mA Source Current) on Ports 0 and 1:  
• 20 mA (at 3.0V) Total Source Current on Port 0  
• 20 mA (at 3.0V) Total Source Current on Port 1  
Selectable, Regulated Digital IO on Port 1  
Configurable Input Threshold on Port 1  
Hot Swap Capability on all Port 1 GPIO  
Cypress Semiconductor Corporation  
Document Number: 001-12696 Rev. *D  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised March 17, 2009  
CY8C20x36/46/66, CY8C20396  
®
Figure 1. Analog System Block Diagram  
PSoC Functional Overview  
The PSoC family consists of on-chip Controller devices. These  
devices are designed to replace multiple traditional MCU-based  
components with one, low cost single-chip programmable  
component. A PSoC device includes configurable analog and  
digital blocks, and programmable interconnect. This architecture  
allows the user to create customized peripheral configurations,  
to match the requirements of each individual application.  
Additionally, a fast CPU, Flash program memory, SRAM data  
memory, and configurable IO are included in a range of  
convenient pinouts.  
IDAC  
Vr  
The architecture for this device family, as shown in the Block  
Diagram on page 2, is comprised of three main areas: the Core,  
the CapSense Analog System, and the System Resources  
(including a full speed USB port). A common, versatile bus allows  
connection between IO and the analog system. Each  
Reference  
Buffer  
Cinternal  
CY8C20x36/46/66, CY8C20396 PSoC device includes  
a
dedicated CapSense block that provides sensing and scanning  
control circuitry for capacitive sensing applications. Depending  
on the PSoC package, up to 36 general purpose IO (GPIO) are  
also included. The GPIO provides access to the MCU and  
analog mux.  
Comparator  
Mux  
Mux  
Refs  
PSoC Core  
CapSenseCounters  
CSCLK  
The PSoC Core is a powerful engine that supports a rich  
instruction set. It encompasses SRAM for data storage, an  
interrupt controller, sleep and watchdog timers, and IMO  
(internal main oscillator) and ILO (internal low speed oscillator).  
The CPU core, called the M8C, is a powerful processor with  
speeds up to 24 MHz. The M8C is a four-MIPS, 8-bit Harvard  
architecture microprocessor.  
CapSense  
ClockSelect  
IMO  
Oscillator  
System Resources provide additional capability, such as  
configurable USB and I2C slave/SPI master-slave  
communication interface, three 16-bit programmable timers, and  
various system resets supported by the M8C.  
Analog Multiplexer System  
The Analog Mux Bus can connect to every GPIO pin. Pins are  
connected to the bus individually or in any combination. The bus  
also connects to the analog system for analysis with the  
CapSense block comparator.  
The Analog System is composed of the CapSense PSoC block  
and an internal 1.2V analog reference, which together support  
capacitive sensing of up to 36 inputs.  
Switch control logic enables selected pins to precharge  
continuously under hardware control. This enables capacitive  
measurement for applications such as touch sensing. Other  
multiplexer applications include:  
CapSense Analog System  
The Analog System contains the capacitive sensing hardware.  
Several hardware algorithms are supported. This hardware  
performs capacitive sensing and scanning without requiring  
external components. Capacitive sensing is configurable on  
each GPIO pin. Scanning of enabled CapSense pins are  
completed quickly and easily across multiple ports.  
Complex capacitive sensing interfaces, such as sliders and  
touchpads.  
Chip-wide mux that allows analog input from any IO pin.  
Crosspoint connection between any IO pin combinations.  
When designing capacitive sensing applications, refer to the  
latest signal-to-noise signal level requirements Application  
Notes, which can be found under http://www.cypress.com >>  
Documentation >> Application Notes. In general, and unless  
otherwise noted in the relevant Application Notes, the minimum  
signal-to-noise ratio (SNR) for CapSense applications is 5:1.  
Document Number: 001-12696 Rev. *D  
Page 3 of 34  
CY8C20x36/46/66, CY8C20396  
Additional System Resources  
Getting Started  
System Resources, some of which are listed in the previous  
sections, provide additional capability useful to complete  
systems. Additional resources include low voltage detection and  
power on reset. The merits of each system resource are listed  
here:  
The quickest way to understand PSoC silicon is to read this data  
sheet and then use the PSoC Designer Integrated Development  
Environment (IDE). This data sheet is an overview of the PSoC  
integrated circuit and presents specific pin, register, and  
electrical specifications.  
The I2C slave/SPI master-slave module provides 50/100/400  
kHz communication over two wires. SPI communication over  
three or four wires runs at speeds of 46.9 kHz to 3 MHz (lower  
for a slower system clock).  
For in depth information, along with detailed programming  
details, see the PSoC Programmable System-on-Chip™  
Technical Reference Manual for CY8C28xxx PSoC devices.  
®
For up-to-date ordering, packaging, and electrical specification  
The I2C hardware address recognition feature reduces the  
already low power consumption by eliminating the need for  
CPU intervention until a packet addressed to the target device  
is received.  
Application Notes  
Application notes are an excellent introduction to the wide variety  
of possible PSoC designs. They are located here:  
www.cypress.com/psoc. Select Application Notes under the  
Documentation tab.  
Low Voltage Detection (LVD) interrupts can signal the  
application of falling voltage levels, while the advanced POR  
(Power-On-Reset) circuit eliminates the need for a system  
supervisor.  
An internal reference provides an absolute reference for capac-  
itive sensing.  
Development Kits  
PSoC Development Kits are available online from Cypress at  
www.cypress.com/shop and through a growing number of  
regional and global distributors, which include Arrow, Avnet, Digi-  
Key, Farnell, Future Electronics, and Newark.  
The 5.5V maximum input, 1.8/2.5/3V-selectable output, low-  
dropout regulator (LDO) provides regulation for IOs. A register-  
controlled bypass mode allows the user to disable the LDO.  
Standard Cypress PSoC IDE tools are available for debugging  
the CY8C20x36/46/66, CY8C20396 family of parts. However,  
the additional trace length and a minimal ground plane in the  
Flex-Pod can create noise problems that make it difficult to  
debug a Power PSoC design. A custom bonded On-Chip  
Debug (OCD) device is available in an 48-pin QFN package.  
The OCD device is recommended for debugging designs that  
have high current and/or high analog accuracy requirements.  
The QFN package is compact and is connected to the ICE  
through a high density connector.  
Training  
training covers a wide variety of topics and skill levels to assist  
you in your designs.  
CYPros Consultants  
Certified PSoC Consultants offer everything from technical  
Solutions Library  
Visit our growing library of solution focused designs at  
www.cypress.com/solutions. Here you can find various  
application designs that include firmware and hardware design  
files that enable you to complete your designs quickly.  
Technical Support  
For assistance with technical issues, search KnowledgeBase  
articles and forums at www.cypress.com/support. If you cannot  
find an answer to your question, call technical support at 1-800-  
541-4736.  
Document Number: 001-12696 Rev. *D  
Page 4 of 34  
CY8C20x36/46/66, CY8C20396  
Development Tools  
PSoC Designer™ is a Microsoft® Windows-based, integrated  
development environment for the Programmable System-on-  
Chip (PSoC) devices. The PSoC Designer IDE and application  
runs on Windows XP and Windows Vista.  
Code Generation Tools  
PSoC Designer supports multiple third-party C compilers and  
assemblers. The code generation tools work seamlessly within  
the PSoC Designer interface and have been tested with a full  
range of debugging tools. The choice is yours.  
This system provides design database management by project,  
an integrated debugger with In-Circuit Emulator, in-system  
programming support, and built-in support for third-party assem-  
blers and C compilers.  
Assemblers. The assemblers allow assembly code to be  
merged seamlessly with C code. Link libraries automatically use  
absolute addressing or are compiled in relative mode, and linked  
with other software modules to get absolute addressing.  
PSoC Designer also supports C language compilers developed  
specifically for the devices in the PSoC family.  
C Language Compilers. C language compilers are available  
that support the PSoC family of devices. The products allow you  
to create complete C programs for the PSoC family devices.  
PSoC Designer Software Subsystems  
System-Level View  
The system-level view is a drag-and-drop visual embedded  
system design environment based on PSoC Express. In this  
view you solve design problems the same way you might think  
about the system. Select input and output devices based upon  
system requirements. Add a communication interface and define  
the interface to the system (registers). Define when and how an  
output device changes state based upon any/all other system  
devices. Based upon the design, PSoC Designer automatically  
selects one or more PSoC devices that match your system  
requirements.  
The optimizing C compilers provide all the features of C tailored  
to the PSoC architecture. They come complete with embedded  
libraries providing port and bus operations, standard keypad and  
display support, and extended math functionality.  
Debugger  
PSoC Designer has a debug environment that provides  
hardware in-circuit emulation, allowing you to test the program in  
a physical system while providing an internal view of the PSoC  
device. Debugger commands allow the designer to read and  
program and read and write data memory, read and write IO  
registers, read and write CPU registers, set and clear break-  
points, and provide program run, halt, and step control. The  
debugger also allows the designer to create a trace buffer of  
registers and memory locations of interest.  
PSoC Designer generates all embedded code, then compiles  
and links it into a programming file for a specific PSoC device.  
Chip-Level View  
The chip-level view is a more traditional integrated development  
environment (IDE) based on PSoC Designer 4.x. You choose a  
base device to work with and then select different onboard  
analog and digital components called user modules that use the  
PSoC blocks. Examples of user modules are ADCs, DACs,  
Amplifiers, and Filters. You configure the user modules for your  
chosen application and connect them to each other and to the  
proper pins. Then you generate your project. This prepopulates  
your project with APIs and libraries that you can use to program  
your application.  
Online Help System  
The online help system displays online, context-sensitive help  
for the user. Designed for procedural and quick reference, each  
functional subsystem has its own context-sensitive help. This  
system also provides tutorials and links to FAQs and an Online  
Support Forum to aid the designer in getting started.  
In-Circuit Emulator  
A low cost, high functionality ICE (In-Circuit Emulator) is  
available for development support. This hardware has the  
capability to program single devices.  
The tool also supports easy development of multiple configura-  
tions and dynamic reconfiguration. Dynamic reconfiguration  
allows for changing configurations at run time.  
The emulator consists of a base unit that connects to the PC by  
way of a USB port. The base unit is universal and operates with  
all PSoC devices. Emulation pods for each device family are  
available separately. The emulation pod takes the place of the  
PSoC device in the target board and performs full speed (24  
MHz) operation.  
Hybrid Designs  
You can begin in the system-level view, allow it to choose and  
configure your user modules, routing, and generate code, then  
switch to the chip-level view to gain complete control over on-  
chip resources. All views of the project share common code  
editor, builder, and common debug, emulation, and programming  
tools.  
Document Number: 001-12696 Rev. *D  
Page 5 of 34  
CY8C20x36/46/66, CY8C20396  
Designing with PSoC Designer  
The development process for the PSoC device differs from that  
of a traditional fixed function microprocessor. The configurable  
analog and digital hardware blocks give the PSoC architecture a  
unique flexibility that pays dividends in managing specification  
change during development and by lowering inventory costs.  
These configurable resources, called PSoC Blocks, have the  
ability to implement a wide variety of user-selectable functions.  
Organize and Connect  
You build signal chains at the chip level by interconnecting user  
modules to each other and the IO pins, or connect system-level  
inputs, outputs, and communication interfaces to each other with  
valuator functions.  
In the system-level view selecting a potentiometer driver to  
control a variable speed fan driver and setting up the valuators  
to control the fan speed based on input from the pot selects,  
places, routes, and configures a programmable gain amplifier  
(PGA) to buffer the input from the potentiometer, an analog-to-  
digital converter (ADC) to convert the potentiometer’s output to  
a digital signal, and a PWM to control the fan.  
The PSoC development process can be summarized in the  
following four steps:  
1. Select Components  
2. Configure Components  
3. Organize and Connect  
4. Generate, Verify, and Debug  
In the chip-level view, you perform the selection, configuration,  
and routing so that you have complete control over the use of all  
on-chip resources.  
Select Components  
Both the system-level and chip-level views provide a library of  
pre-built, pre-tested hardware peripheral components. In the  
system-level view these components are called “drivers” and  
correspond to inputs (a thermistor, for example), outputs (a  
brushless DC fan, for example), communication interfaces (I C-  
bus, for example), and the logic to control how they interact with  
one another (called valuators).  
Generate, Verify, and Debug  
When you are ready to test the hardware configuration or move  
on to developing code for the project, you perform the “Generate  
Configuration Files” step. This causes PSoC Designer to  
generate source code that automatically configures the device to  
your specification and provides the software for the system.  
2
Both system-level and chip-level designs generate software  
based on your design. The chip-level design provides application  
programming interfaces (APIs) with high-level functions to  
control and respond to hardware events at run time and interrupt  
service routines that you can adapt as needed. The system-level  
design also generates a C main() program that completely  
controls the chosen application and contains placeholders for  
custom code at strategic positions allowing you to further refine  
the software without disrupting the generated code.  
In the chip-level view the components are called “user modules.”  
User modules make selecting and implementing peripheral  
devices simple, and come in analog, digital, and programmable  
system-on-chip varieties.  
Configure Components  
Each of the components you select establishes the basic register  
settings that implement the selected function. They also provide  
parameters and properties that allow you to tailor their precise  
configuration to your particular application. For example, a Pulse  
Width Modulator (PWM) User Module configures one or more  
digital PSoC blocks, one for each 8 bits of resolution. The user  
module parameters permit you to establish the pulse width and  
duty cycle. Configure the parameters and properties to corre-  
spond to your chosen application. Enter values directly or by  
selecting values from drop-down menus.  
A complete code development environment allows you to  
develop and customize your applications in C, assembly  
language, or both.  
The last step in the development process takes place inside  
PSoC Designer’s Debugger (access by clicking the Connect  
icon). PSoC Designer downloads the HEX image to the In-Circuit  
Emulator (ICE) where it runs at full speed. PSoC Designer  
debugging capabilities rival those of systems costing many times  
more. In addition to traditional single-step, run-to-breakpoint and  
watch-variable features, the debug interface provides a large  
trace buffer and allows you to define complex breakpoint events  
that include monitoring address and data bus values, memory  
locations and external signals.  
Both the system-level drivers and chip-level user modules are  
documented in data sheets that are viewed directly in PSoC  
Designer. These data sheets explain the internal operation of the  
component and provide performance specifications. Each data  
sheet describes the use of each user module parameter or driver  
property, and other information you may need to successfully  
implement your design.  
Document Number: 001-12696 Rev. *D  
Page 6 of 34  
CY8C20x36/46/66, CY8C20396  
Document Conventions  
Acronyms Used  
Units of Measure  
The following table lists the acronyms that are used in this  
document.  
A units of measure table is located in the Electrical Specifications  
section. Table 9 on page 15 lists all the abbreviations used to  
measure the PSoC devices.  
Table 1. Acronyms  
Numeric Naming  
Acronym  
AC  
Description  
alternating current  
Hexadecimal numbers are represented with all letters in  
uppercase with an appended lowercase ‘h’ (for example, ‘14h’ or  
‘3Ah’). Hexadecimal numbers may also be represented by a ‘0x’  
prefix, the C coding convention. Binary numbers have an  
appended lowercase ‘b’ (for example, 01010100b’ or  
‘01000011b’). Numbers not indicated by an ‘h’, ‘b’, or 0x are  
decimal.  
API  
application programming interface  
central processing unit  
direct current  
CPU  
DC  
FSR  
GPIO  
GUI  
full scale range  
general purpose IO  
graphical user interface  
in-circuit emulator  
ICE  
ILO  
internal low speed oscillator  
internal main oscillator  
input/output  
IMO  
IO  
LSb  
least-significant bit  
LVD  
low voltage detect  
MSb  
POR  
PPOR  
PSoC®  
SLIMO  
SRAM  
most-significant bit  
power on reset  
precision power on reset  
Programmable System-on-Chip™  
slow IMO  
static random access memory  
Document Number: 001-12696 Rev. *D  
Page 7 of 34  
CY8C20x36/46/66, CY8C20396  
Pinouts  
The CY8C20x36/46/66, CY8C20396 PSoC device is available in a variety of packages which are listed and illustrated in the following  
tables. Every port pin (labeled with a “P”) is capable of Digital IO and connection to the common analog bus. However, Vss, Vdd, and  
XRES are not capable of Digital IO.  
16-Pin QFN  
[2]  
Table 2. Pin Definitions - CY8C20236, CY8C20246 PSoC Device  
Type  
Figure 2. CY8C20236, CY8C20246 PSoC Device  
Pin  
No.  
Name  
Description  
Digital Analog  
1
2
3
4
5
6
IO  
I
I
I
I
I
I
P2[5] Crystal output (XOut)  
P2[3] Crystal input (XIn)  
P1[7] I2C SCL, SPI SS  
P1[5] I2C SDA, SPI MISO  
P1[3] SPI CLK  
IO  
AI, XOut, P2[5]  
AI, XIn, P2[3]  
1
2
P0[4], AI  
IOHR  
IOHR  
IOHR  
IOHR  
12  
11  
10  
QFN  
(Top View)  
XRES  
P1[4], EXTCLK, AI  
P1[2], AI  
AI, I2C SCL, SPI SS, P1[7]  
AI, I2C SDA, SPI MISO, P1[5]  
3
4
9
P1[1] ISSP CLK , I2C SCL, SPI  
MOSI  
7
8
Power  
Vss Ground connection  
IOHR  
I
P1[0] ISSP DATA , I2C SDA, SPI  
CLK  
9
IOHR  
IOHR  
I
I
P1[2]  
10  
P1[4] Optional external clock  
(EXTCLK)  
11  
Input  
XRES Active high external reset with  
internal pull down  
12  
13  
14  
15  
16  
IOH  
Power  
I
P0[4]  
Vdd Supply voltage  
P0[7]  
IOH  
IOH  
IOH  
I
I
I
P0[3] Integrating input  
P0[1] Integrating input  
LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.  
Notes  
1. These are the ISSP pins, which are not High Z at POR (Power On Reset).  
2. During power up or reset event, device P1[1] and P1[0] may disturb the I2C bus. Use alternate pins if you encounter any issues.  
Document Number: 001-12696 Rev. *D  
Page 8 of 34  
   
CY8C20x36/46/66, CY8C20396  
24-Pin QFN  
Table 3. Pin Definitions - CY8C20336, CY8C20346  
Type  
Pin  
Figure 3. CY8C20336, CY8C20346 PSoC Device  
Name  
Description  
No.  
Digital Analog  
1
2
3
4
5
6
7
IO  
I
I
I
I
I
I
I
P2[5]  
P2[3]  
P2[1]  
P1[7]  
P1[5]  
P1[3]  
P1[1]  
Crystal output (XOut)  
Crystal input (XIn)  
IO  
18  
17  
16  
15  
AI, XOut, P2[5]  
AI, XIn, P2[3]  
1
2
3
4
5
6
P0[4], AI  
P0[2], AI  
P0[0], AI  
P2[0], AI  
XRES  
IO  
IOHR  
IOHR  
IOHR  
IOHR  
I2C SCL, SPI SS  
I2C SDA, SPI MISO  
SPI CLK  
ISSP CLK[1], I2C SCL, SPI  
MOSI  
AI, P2[1]  
QFN  
(Top View)  
AI, I2C SCL, SPI SS, P1[7]  
AI, I2C SDA, SPI MISO, P1[5]  
AI, SPI CLK, P1[3]  
14  
13  
P1[6], AI  
8
NC  
No connection  
9
Power  
Vss  
P1[0]  
Ground connection  
ISSP DATA[1], I2C SDA, SPI  
CLK  
10  
IOHR  
I
11  
12  
IOHR  
IOHR  
I
I
P1[2]  
P1[4]  
Optional external clock input  
(EXTCLK)  
13  
14  
IOHR  
I
P1[6]  
Input  
XRES Active high external reset with  
internal pull down  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
CP  
IO  
I
I
I
I
I
P2[0]  
P0[0]  
P0[2]  
P0[4]  
P0[6]  
IOH  
IOH  
IOH  
IOH  
Power  
Power  
Vdd  
Supply voltage  
IOH  
IOH  
IOH  
IOH  
I
I
I
I
P0[7]  
P0[5]  
P0[3]  
P0[1]  
Vss  
Integrating input  
Integrating input  
Center pad must be connected  
to ground  
LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.  
Note  
3. The center pad (CP) on the QFN package must be connected to ground (Vss) for best mechanical, thermal, and electrical performance. If not connected to ground, it  
must be electrically floated and not connected to any other signal.  
Document Number: 001-12696 Rev. *D  
Page 9 of 34  
CY8C20x36/46/66, CY8C20396  
24-Pin QFN with USB Pinout  
Table 4. Pin Definitions - CY8C20396 PSoC Device  
Type  
Pin No.  
Name  
Description  
Figure 4. CY8C20396 PSoC Device  
Digital Analog  
1
2
IO  
I
I
I
I
I
I
I
P2[5]  
P2[3]  
P2[1]  
P1[7]  
P1[5]  
P1[3]  
P1[1]  
VSS  
D+  
IO  
3
IO  
18  
17  
16  
15  
P2[5]  
P2[3]  
1
2
P0[2]  
4
IOHR  
IOHR  
IOHR  
IOHR  
I2C SCL, SPI SS  
P0[0]  
XRES  
P2[1]  
3
4
5
6
QFN  
(Top View)  
5
I2C SDA, SPI MISO  
SPI CLK  
I2C SCL, SPI SS, P1[7]  
I2C SDA, SPI MISO, P1[5]  
SPI CLK, P1[3]  
P1[6]  
P1[4], EXTCLK  
P1[2]  
6
14  
13  
7
ISSP CLK, I2C SCL, SPI MOSI  
Ground  
8
Power  
9
IO  
IO  
I
I
USB D+  
10  
11  
12  
13  
14  
D-  
USB D-  
Power  
VDD  
P1[0]  
P1[2]  
P1[4]  
Supply  
IOHR  
IOHR  
IOHR  
I
I
I
ISSP DATA, I2C SDA  
Optional external clock input  
(EXTCLK)  
15  
16  
IOHR  
I
P1[6]  
RESET INPUT  
XRES  
Active high external reset with  
internal pull down  
17  
18  
19  
20  
21  
22  
23  
24  
CP  
IOH  
IOH  
IOH  
IOH  
IOH  
IOH  
IOH  
IOH  
I
I
I
I
I
I
I
I
P0[0]  
P0[2]  
P0[4]  
P0[6]  
P0[7]  
P0[5]  
P0[3]  
P0[1]  
VSS  
Integrating input  
Integrating input  
Power  
Thermal pad must be  
connected to Ground  
LEGEND I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output  
Document Number: 001-12696 Rev. *D  
Page 10 of 34  
CY8C20x36/46/66, CY8C20396  
32-Pin QFN  
Table 5. Pin Definitions - CY8C20436/46/66 PSoC Device  
Type  
Pin  
Figure 5. CY8C20436/46/66 PSoC Device  
Name  
Description  
No.  
Digital Analog  
1
IOH  
IO  
I
I
I
I
I
I
I
I
I
I
I
P0[1]  
P2[7]  
P2[5]  
P2[3]  
P2[1]  
P3[3]  
P3[1]  
P1[7]  
P1[5]  
P1[3]  
P1[1]  
Vss  
Integrating input  
2
3
IO  
Crystal output (XOut)  
Crystal input (XIn)  
AI, P0[1]  
AI, P2[7]  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
P0[0], AI  
P2[6], AI  
P2[4], AI  
P2[2], AI  
P2[0], AI  
P3[2], AI  
P3[0], AI  
XRES  
4
IO  
AI, XOut, P2[5]  
AI, XIn, P2[3]  
AI, P2[1]  
5
IO  
QFN  
(Top View)  
6
IO  
7
IO  
AI, P3[3]  
AI, P3[1]  
AI, I2C SCL, SPI SS, P1[7]  
8
IOHR  
IOHR  
IOHR  
IOHR  
I2C SCL, SPI SS  
I2C SDA, SPI MISO  
SPI CLK.  
9
10  
11  
12  
13  
14  
15  
ISSP CLK[1], I2C SCL, SPI MOSI.  
Power  
Ground connection.  
ISSP DATA[1], I2C SDA., SPI CLK  
IOHR  
IOHR  
IOHR  
I
I
I
P1[0]  
P1[2]  
P1[4]  
Optional external clock input  
(EXTCLK)  
16  
17  
IOHR  
I
P1[6]  
Input  
XRES Active high external reset with  
internal pull down  
18  
IO  
I
P3[0]  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
CP  
IO  
IO  
I
I
I
I
I
I
I
I
I
P3[2]  
P2[0]  
P2[2]  
P2[4]  
P2[6]  
P0[0]  
P0[2]  
P0[4]  
P0[6]  
IO  
IO  
IO  
IOH  
IOH  
IOH  
IOH  
Power  
Vdd  
Supply voltage  
IOH  
IOH  
IOH  
I
I
I
P0[7]  
P0[5]  
P0[3]  
Vss  
Integrating input  
Power  
Power  
Ground connection  
Vss  
Center pad must be connected to  
ground  
LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.  
Document Number: 001-12696 Rev. *D  
Page 11 of 34  
CY8C20x36/46/66, CY8C20396  
48-Pin QFN  
[2, 3]  
Table 6. Pin Definitions - CY8C20666 PSoC Device  
Figure 6. CY8C20666 PSoC Device  
Pin  
No.  
Name  
Description  
1
NC  
No connection  
NC  
AI, P2[7]  
P2[6],AI  
P2[4],AI  
36  
35  
34  
33  
32  
31  
1
2
2
IO  
IO  
I
I
I
I
I
I
I
I
I
I
I
I
P2[7]  
P2[5]  
P2[3]  
P2[1]  
P4[3]  
P4[1]  
P3[7]  
P3[5]  
P3[3]  
P3[1]  
P1[7]  
P1[5]  
NC  
3
Crystal output (XOut)  
Crystal input (XIn)  
AI, XOut, P2[5]  
3
4
5
6
P2[2],AI  
P2[0],AI  
P4[2],AI  
P4[0],AI  
4
IO  
AI, XIn , P2[3]  
AI, P2[1]  
5
IO  
AI, P4[3]  
QFN  
(Top View)  
6
IO  
AI, P4[1]  
AI, P3[7]  
30  
29  
28  
27  
P3[6],AI  
P3[4], AI  
7
8
9
10  
7
IO  
AI, P3[5]  
AI, P3[3]  
AI, P3[1]  
P3[2],AI  
8
IO  
], AI  
P3[0  
9
IO  
XRES  
26  
25  
11  
12  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
IO  
AI, I2C SCL, SPI SS, P1[7]  
P1[6], AI  
IO  
IOHR  
IOHR  
I2C SCL, SPI SS  
I2C SDA, SPI MISO  
No connection  
No connection  
SPI CLK  
NC  
IOHR  
IOHR  
I
I
P1[3]  
P1[1]  
Vss  
ISSP CLK[1], I2C SCL, SPI MOSI  
Power  
Ground connection  
IO  
IO  
D+  
D-  
Power  
Vdd  
Supply voltage  
ISSP DATA[1], I2C SDA, SPI CLK  
IOHR  
IOHR  
IOHR  
I
I
I
P1[0]  
P1[2]  
P1[4]  
Optional external clock input  
(EXTCLK)  
25  
26  
IOHR  
I
P1[6]  
Input  
XRES Active high external reset with  
internal pull down  
27  
28  
29  
IO  
IO  
IO  
I
I
I
P3[0]  
P3[2]  
P3[4]  
Pin  
No.  
Name  
Description  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
IO  
IO  
I
I
I
I
I
I
I
I
I
I
P3[6]  
P4[0]  
P4[2]  
P2[0]  
P2[2]  
P2[4]  
P2[6]  
P0[0]  
P0[2]  
P0[4]  
40  
41  
42  
43  
44  
45  
46  
47  
48  
CP  
IOH  
I
P0[6]  
Vdd  
Power  
Supply voltage  
IO  
NC  
No connection  
No connection  
IO  
NC  
IO  
IOH  
I
I
I
P0[7]  
P0[5]  
P0[3]  
Vss  
IO  
IOH  
IOH  
IO  
Integrating input  
IOH  
IOH  
IOH  
Power  
Ground connection  
IOH  
I
P0[1]  
Vss  
Power  
Center pad must be connected to ground  
LEGEND A = Analog, I = Input, O = Output, NC = No Connection H = 5 mA High Output Drive, R = Regulated Output.  
Document Number: 001-12696 Rev. *D  
Page 12 of 34  
CY8C20x36/46/66, CY8C20396  
48-Pin SSOP  
Table 7. Pin Definitions - CY8C20566 PSoC Device  
Figure 7. CY8C20566 PSoC Device  
Name  
Description  
P0[7]  
P0[5]  
P0[3]  
P0[1]  
P2[7]  
1
2
3
4
5
6
VDD  
P0[6]  
P0[4]  
P0[2]  
P0[0]  
P2[6]  
P2[4]  
P2[2]  
P2[0]  
P3[6]  
P3[4]  
P3[2]  
P3[0]  
XRES  
NC  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
1
IOH  
IOH  
IOH  
IOH  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
P0[7]  
P0[5]  
P0[3]  
P0[1]  
P2[7]  
P2[5]  
P2[3]  
P2[1]  
NC  
2
3
P2[5]  
P2[3]  
4
7
8
9
5
P2[1]  
NC  
NC  
P4[3]  
P4[1]  
NC  
6
IO  
XTAL Out  
XTAL In  
7
IO  
10  
11  
12  
13  
14  
8
IO  
9
No connection  
No connection  
SSOP  
10  
NC  
P3[7]  
11 IO  
12 IO  
13  
IO  
IO  
P4[3]  
P4[1]  
NC  
P3[5] 15  
P3[3] 16  
P3[1] 17  
NC  
NC  
No connection  
NC  
NC  
P1[7]  
18  
19  
20  
NC  
NC  
NC  
P1[6]  
14 IO  
15 IO  
16 IO  
17 IO  
18  
IO  
IO  
IO  
IO  
P3[7]  
P3[5]  
P3[3]  
P3[1]  
NC  
P1[5] 21  
P1[3]  
P1[1] 23  
22  
P1[4]  
P1[2]  
No connection  
VSS  
24  
P1[0]  
19  
NC  
No connection  
20 IOHR IO  
21 IOHR IO  
22 IOHR IO  
23 IOHR IO  
24  
P1[7]  
P1[5]  
P1[3]  
P1[1]  
VSS  
P1[0]  
P1[2]  
P1[4]  
P1[6]  
NC  
I2C SCL, SPI SS  
I2C SDA, SPI MISO  
SPI CLK  
TC CLK[1], I2C SCL, SPI MOSI  
Ground Pin  
TC DATA[1], I2C SDA, SPI CLK  
25 IOHR IO  
26 IOHR IO  
27 IOHR IO  
28 IOHR IO  
29  
EXT CLK  
No connection  
No connection  
No connection  
No connection  
30  
NC  
31  
NC  
32  
NC  
Name  
Description  
33  
34  
35  
NC  
NC  
No connection  
No connection  
41  
42  
IO  
IO  
IO  
IO  
IO  
IO  
P2[2]  
P2[4]  
P2[6]  
XRES Active high external reset with internal 43  
pull down  
36 IO  
37 IO  
38 IO  
39 IO  
40 IO  
IO  
IO  
IO  
IO  
IO  
P3[0]  
P3[2]  
P3[4]  
P3[6]  
P2[0]  
44  
45  
46  
47  
48  
IOH IO  
IOH IO  
IOH IO  
IOH IO  
Power  
P0[0]  
P0[2]  
P0[4]  
P0[6]  
Vdd  
Power Pin  
LEGEND A = Analog, I = Input, O = Output, NC = No Connection, H = 5 mA High Output Drive, R = Regulated Output Option.  
Document Number: 001-12696 Rev. *D  
Page 13 of 34  
CY8C20x36/46/66, CY8C20396  
48-Pin QFN OCD  
The 48-pin QFN part is for the CY8C20066 On-Chip Debug (OCD) PSoC device. Note that this part is only used for in-circuit  
[4]  
debugging.  
[2, 3]  
Table 8. Pin Definitions - CY8C20066 PSoC Device  
Figure 8. CY8C20066 PSoC Device  
Pin  
No.  
Name  
Description  
1
OCDOE  
P2[7]  
P2[5]  
P2[3]  
P2[1]  
P4[3]  
P4[1]  
P3[7]  
P3[5]  
P3[3]  
P3[1]  
P1[7]  
P1[5]  
CCLK  
HCLK  
P1[3]  
P1[1]  
Vss  
OCD mode direction pin  
OCDO  
2
IO  
IO  
I
I
I
I
I
I
I
I
I
I
I
I
P2[6], AI  
P2[4], AI  
36  
35  
34  
33  
32  
31  
1
2
E
A
I
, P2[7]  
3
Crystal output (XOut)  
Crystal input (XIn)  
AI, XOut, P2[5]  
3
4
5
6
P2[2], AI  
P2[0], AI  
P4[2], AI  
P4[0], AI  
4
IO  
AI, XIn , P2[3]  
AI, P2[1]  
5
IO  
6
IO  
AI, P4[3]  
QFN  
(Top View)  
AI, P4[1]  
AI, P3[7]  
30  
29  
28  
27  
P3[6], AI  
P3[4], AI  
7
8
9
10  
7
IO  
8
IO  
AI, P3[5]  
AI, P3[3]  
P3[2], AI  
P3[0], AI  
9
IO  
AI, P3[1]  
XRES  
26  
25  
11  
12  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
IO  
AI, I2C SCL, SPI SS, P1[7]  
P1[6], AI  
IO  
IOHR  
IOHR  
I2C SCL, SPI SS  
I2C SDA, SPI MISO  
OCD CPU clock output  
OCD high speed clock output  
SPI CLK.  
IOHR  
IOHR  
I
I
ISSP CLK[1], I2C SCL, SPI MOSI  
Power  
Ground connection  
IO  
IO  
D+  
D-  
Power  
Vdd  
Supply voltage  
ISSP DATA(1), I2C SDA, SPI CLK  
IOHR  
IOHR  
I
I
P1[0]  
P1[2]  
Pin  
No.  
Name  
Description  
24  
IOHR  
IOHR  
I
I
P1[4]  
Optional external clock input  
(EXTCLK)  
37  
IOH  
I
P0[0]  
25  
26  
P1[6]  
38  
39  
IOH  
IOH  
I
I
P0[2]  
P0[4]  
Input  
XRES  
Active high external reset with  
internal pull down  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
I
I
I
I
I
I
I
I
I
I
P3[0]  
P3[2]  
P3[4]  
P3[6]  
P4[0]  
P4[2]  
P2[0]  
P2[2]  
P2[4]  
P2[6]  
40  
41  
42  
43  
44  
45  
46  
47  
48  
CP  
IOH  
I
P0[6]  
Vdd  
Power  
Supply voltage  
OCDO OCD even data IO  
OCDE OCD odd data output  
IOH  
IOH  
IOH  
I
I
I
P0[7]  
P0[5]  
P0[3]  
Vss  
Integrating input  
Power  
IOH  
Power  
Ground connection  
I
P0[1]  
Vss  
Center pad must be connected to ground  
LEGEND A = Analog, I = Input, O = Output, NC = No Connection H = 5 mA High Output Drive, R = Regulated Output.  
Note  
4. This part is available in limited quantities for In-Circuit Debugging during prototype development. It is not available in production volumes.  
Document Number: 001-12696 Rev. *D  
Page 14 of 34  
CY8C20x36/46/66, CY8C20396  
Electrical Specifications  
This section presents the DC and AC electrical specifications of the CY8C20x36/46/66, CY8C20396 PSoC devices. For the latest  
electrical specifications, confirm that you have the most recent data sheet by visiting the web at http://www.cypress.com/psoc.  
Figure 9. Voltage versus CPU Frequency  
Figure 10. IMO Frequency Trim Options  
5.5V  
5.5V  
SLIMO SLIMO SLIMO  
Mode  
= 01  
Mode  
= 00  
Mode  
= 10  
1.71V  
1.71V  
750 kHz  
3 MHz  
750 kHz  
3 MHz  
6 MHz 12 MHz 24 MHz  
24 MHz  
IMO Frequency  
CPU Frequency  
The following table lists the units of measure that are used in this section.  
Table 9. Units of Measure  
Symbol  
Unit of Measure  
degree Celsius  
Symbol  
Unit of Measure  
°C  
mA  
ms  
mV  
nA  
ns  
milli-ampere  
milli-second  
milli-volts  
dB  
decibels  
fF  
femto farad  
hertz  
Hz  
nanoampere  
nanosecond  
nanovolts  
KB  
Kbit  
kHz  
ksps  
kΩ  
1024 bytes  
1024 bits  
nV  
Ω
kilohertz  
ohm  
kilo samples per second  
kilohm  
pA  
pF  
pp  
ppm  
ps  
picoampere  
picofarad  
MHz  
MΩ  
μA  
megahertz  
megaohm  
microampere  
microfarad  
microhenry  
microsecond  
microwatts  
peak-to-peak  
parts per million  
picosecond  
μF  
sps  
s
samples per second  
μH  
μs  
sigma: one standard deviation  
volts  
V
μW  
Document Number: 001-12696 Rev. *D  
Page 15 of 34  
CY8C20x36/46/66, CY8C20396  
Comparator User Module Electrical Specifications  
The following table lists the guaranteed maximum and minimum specifications. Unless stated otherwise, the specifications are for the  
entire device voltage and temperature operating range: –40°C <= TA <= 85°C, 1.71V <= Vdd <= 5.5V.  
Table 10. Comparator User Module Electrical Specifications  
Symbol  
Description  
Min  
Typ  
70  
Max  
100  
30  
Units  
ns  
Conditions  
50 mV overdrive  
T
Comparator Response Time  
COMP  
Offset  
2.5  
20  
mV  
Current  
PSRR  
80  
µA Average DC current, 50 mV  
overdrive  
Supply voltage >2V  
Supply voltage <2V  
80  
40  
dB Power Supply Rejection Ratio  
dB Power Supply Rejection Ratio  
V
Input  
0
1.5  
Range  
ADC Electrical Specifications  
Table 11. ADC User Module Electrical Specifications  
Symbol  
Input  
Description  
Min  
Typ  
Max  
Units  
Conditions  
V
Input Voltage Range  
Vss  
1.3  
V
This gives 72% of maximum  
code  
IN  
C
Input Capacitance  
Resolution  
5
pF  
IN  
RES  
S8  
8
10  
Bits Settings 8, 9, or 10  
8-Bit Sample Rate  
23.4375  
5.859  
ksps Data Clock set to 6 MHz.  
Sample Rate = 0.001/  
(2^Resolution/Data clock)  
S10  
10-Bit Sample Rate  
ksps Data Clock set to 6 MHz.  
Sample Rate = 0.001/  
(2^Resolution/Data clock)  
DC Accuracy  
DNL  
INL  
Differential Nonlinearity  
-1  
-2  
0
+2  
+2  
LSB For any configuration  
Integral Nonlinearity  
Offset Error  
LSB For any configuration  
Eoffset  
15  
90  
mV  
I
Operating Current  
Data Clock  
275  
350  
12  
μA  
ADC  
F
2.25  
MHz Source is chip’s internal main  
oscillator. See device data  
sheet for accuracy.  
CLK  
PSRR Power Supply Rejection Ration  
PSRR (Vdd>3.0V)  
24  
30  
12  
0
dB  
PSRR (2.2 < Vdd < 3.0)  
PSRR (2.0 < Vdd < 2.2)  
PSRR (Vdd < 2.0)  
dB  
dB  
dB  
Egain Gain Error  
1
5
%FSR For any resolution  
R
Input Resistance  
1/(500fF*  
1/(400fF*  
1/(300fF*  
Ω
Equivalent switched cap input  
resistance for 8-, 9-, or 10-bit  
resolution.  
IN  
Data-Clock) Data-Clock) Data-Clock)  
Note  
5. Monotonicity is not guaranteed.  
Document Number: 001-12696 Rev. *D  
Page 16 of 34  
 
CY8C20x36/46/66, CY8C20396  
Absolute Maximum Ratings  
Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.  
Table 12. Absolute Maximum Ratings  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Units  
T
Storage Temperature  
Higher storage temperatures reduces data  
retention time. Recommended Storage  
Temperature is +25°C ± 25°C. Extended  
–55  
+25  
+125  
°C  
STG  
o
duration storage temperatures above 85 C  
degrades reliability.  
Vdd  
Supply Voltage Relative to Vss  
DC Input Voltage  
–0.5  
Vss – 0.5  
Vss –0.5  
–25  
+6.0  
Vdd + 0.5  
Vdd + 0.5  
+50  
V
V
V
V
IO  
IOZ  
MIO  
DC Voltage Applied to Tri-state  
Maximum Current into any Port Pin  
Electro Static Discharge Voltage  
Latch up Current  
V
I
mA  
V
ESD  
LU  
Human Body Model ESD  
2000  
In accordance with JESD78 standard  
200  
mA  
Operating Temperature  
Table 13. Operating Temperature  
Symbol  
Description  
Ambient Temperature  
Conditions  
Min  
Typ  
Max  
Units  
T
–40  
+85  
°C  
A
T
Operational Die Temperature  
The temperature rise fromambientto junction  
is package specific. Refer the table Thermal  
Impedances per Package on page 28. The  
user must limit the power consumption to  
comply with this requirement.  
J
–40  
+100  
°C  
DC Chip-Level Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 14. DC Chip-Level Specifications  
Symbol  
Vdd  
Description  
Supply Voltage  
Conditions  
Min  
Typ  
Max  
Units  
Refer the table DC POR and LVD  
Specifications on page 21  
1.71  
5.5  
V
I
I
I
Supply Current, IMO = 24 MHz  
Supply Current, IMO = 12 MHz  
Supply Current, IMO = 6 MHz  
Deep Sleep Current  
Conditions are Vdd = 3.0V, T = 25°C,  
CPU = 24 MHz. CapSense running at 12  
MHz, no IO sourcing current  
2.88  
1.71  
1.16  
4.0  
2.6  
1.8  
mA  
mA  
mA  
DD24  
DD12  
DD6  
A
Conditions are Vdd = 3.0V, T = 25°C,  
A
CPU = 12 MHz. CapSense running at 12  
MHz, no IO sourcing current  
Conditions are Vdd = 3.0V, T = 25°C,  
A
CPU = 6 MHz. CapSense running at 6 MHz,  
no IO sourcing current  
I
I
Vdd = 3.0V, T = 25°C, IO regulator turned off  
0.1  
μA  
SB0  
A
Standby Current with POR, LVD and Vdd = 3.0V, T = 25°C, IO regulator turned off  
Sleep Timer  
1.07  
1.5  
μA  
SB1  
A
Document Number: 001-12696 Rev. *D  
Page 17 of 34  
 
CY8C20x36/46/66, CY8C20396  
DC General Purpose IO Specifications  
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 3.0V to 5.5V and  
–40°C T 85°C, 2.4V to 3.0V and –40°C T 85°C, or 1.71V to 2.4V and –40°C T 85°C, respectively. Typical parameters  
A
A
A
apply to 5V and 3.3V at 25°C and are for design guidance only.  
Table 15. 3.0V to 5.5V DC GPIO Specifications  
Symbol  
Description  
Pull up Resistor  
Conditions  
Min  
Typ  
5.6  
Max  
8
Units  
kΩ  
R
4
PU  
V
V
V
High Output Voltage  
Port 2 or 3 Pins  
IOH < 10 μA, maximum of 10 mA source Vdd - 0.2  
current in all IOs  
V
OH1  
High Output Voltage  
Port 2 or 3 Pins  
IOH = 1 mA, maximum of 20 mA source  
current in all IOs  
Vdd - 0.9  
V
V
OH2  
OH3  
High Output Voltage  
Port 0 or 1 Pins with LDO Regulator current in all IOs  
IOH < 10 μA, maximum of 10 mA source Vdd - 0.2  
Disabled for Port 1  
V
V
V
V
V
V
V
V
High Output Voltage  
Port 0 or 1 Pins with LDO Regulator current in all IOs  
Disabled for Port 1  
IOH = 5 mA, maximum of 20 mA source  
Vdd - 0.9  
2.85  
2.20  
2.35  
1.90  
1.60  
1.20  
3.00  
3.3  
V
V
V
V
V
V
V
V
OH4  
OH5  
OH6  
OH7  
OH8  
OH9  
OH10  
OL  
High Output Voltage  
Port 1 Pins with LDO Regulator  
Enabled for 3V Out  
IOH < 10 μA, Vdd > 3.1V, maximum of  
4 IOs all sourcing 5 mA  
High Output Voltage  
Port 1 Pins with LDO Regulator  
Enabled for 3V Out  
IOH = 5 mA, Vdd > 3.1V, maximum of  
20 mA source current in all IOs  
High Output Voltage  
Port 1 Pins with LDO Enabled for 2.5V 20 mA source current in all IOs  
Out  
IOH < 10 μA, Vdd > 2.7V, maximum of  
2.50  
2.75  
High Output Voltage  
Port 1 Pins with LDO Enabled for 2.5V 20 mA source current in all IOs  
Out  
IOH = 2 mA, Vdd > 2.7V, maximum of  
High Output Voltage  
Port 1 Pins with LDO Enabled for 1.8V 20 mA source current in all IOs  
Out  
IOH < 10 μA, Vdd > 2.7V, maximum of  
1.80  
2.1  
High Output Voltage  
Port 1 Pins with LDO Enabled for 1.8V 20 mA source current in all IOs  
Out  
IOH = 1 mA, Vdd > 2.7V, maximum of  
Low Output Voltage  
IOL = 25 mA, Vdd > 3.3V, maximum of  
60 mA sink current on even port pins (for  
example, P0[2] and P1[4]) and 60 mA sink  
current on odd port pins (for example, P0[3]  
and P1[5])  
0.75  
V
V
V
I
Input Low Voltage  
2.00  
0.80  
V
V
IL  
IH  
H
Input High Voltage  
Input Hysteresis Voltage  
Input Leakage (Absolute Value)  
Pin Capacitance  
80  
1
5
mV  
μA  
pF  
0.001  
1.7  
IL  
C
Package and pin dependent  
Temp = 25°C  
0.5  
PIN  
Document Number: 001-12696 Rev. *D  
Page 18 of 34  
 
CY8C20x36/46/66, CY8C20396  
Table 16. 2.4V to 3.0V DC GPIO Specifications  
Symbol Description  
Pull up Resistor  
Conditions  
Min  
4
Typ  
5.6  
Max  
8
Units  
kΩ  
R
PU  
V
V
V
High Output Voltage  
Port 2 or 3 Pins  
IOH < 10 μA, maximum of 10 mA  
source current in all IOs  
Vdd - 0.2  
V
OH1  
High Output Voltage  
Port 2 or 3 Pins  
IOH = 0.2 mA, maximum of 10 mA  
source current in all IOs  
Vdd - 0.4  
Vdd - 0.2  
V
V
OH2  
OH3  
High Output Voltage  
Port 0 or 1 Pins with LDO Regulator  
IOH < 10 μA, maximum of 10 mA  
source current in all IOs  
Disabled for Port 1  
V
V
V
V
High Output Voltage  
Port 0 or 1 Pins with LDO Regulator  
Disabled for Port 1  
IOH = 2 mA, maximum of 10 mA source Vdd - 0.5  
current in all IOs  
1.80  
2.1  
V
V
V
V
OH4  
OH5A  
OH6A  
OL  
High Output Voltage  
Port 1 Pins with LDO Enabled for 1.8V 20 mA source current in all IOs  
Out  
IOH < 10 μA, Vdd > 2.4V, maximum of  
1.50  
1.20  
High Output Voltage  
Port 1 Pins with LDO Enabled for 1.8V 20 mA source current in all IOs  
Out  
IOH = 1 mA, Vdd > 2.4V, maximum of  
Low Output Voltage  
IOL = 10 mA, maximum of 30 mA sink  
current on even port pins (for example,  
P0[2] and P1[4]) and 30 mA sink  
current on odd port pins (for example,  
P0[3] and P1[5])  
0.75  
V
V
V
I
Input Low Voltage  
1.4  
0.72  
V
V
IL  
IH  
H
Input High Voltage  
Input Hysteresis Voltage  
Input Leakage (Absolute Value)  
Capacitive Load on Pins  
80  
1
5
mV  
μA  
pF  
0.001  
1.7  
IL  
C
Package and pin dependent  
Temp = 25 C  
0.5  
PIN  
o
Table 17. 1.71V to 2.4V DC GPIO Specifications  
Symbol Description  
Pull up Resistor  
Conditions  
Min  
4
Typ  
5.6  
Max  
8
Units  
kΩ  
R
PU  
V
V
V
High Output Voltage  
Port 2 or 3 Pins  
IOH = 10 μA, maximum of 10 mA  
source current in all IOs  
Vdd - 0.2  
V
OH1  
High Output Voltage  
Port 2 or 3 Pins  
IOH = 0.5 mA, maximum of 10 mA  
source current in all IOs  
Vdd - 0.5  
Vdd - 0.2  
V
V
OH2  
OH3  
High Output Voltage  
Port 0 or 1 Pins with LDO Regulator  
Disabled for Port 1  
IOH = 100 μA, maximum of 10 mA  
source current in all IOs  
V
High Output Voltage  
Port 0 or 1 Pins with LDO Regulator  
Disabled for Port 1  
IOH=2mA, maximumof10mAsource Vdd - 0.5  
current in all IOs  
V
V
OH4  
OL  
V
Low Output Voltage  
IOL = 5 mA, maximum of 20 mA sink  
current on even port pins (for example,  
P0[2] and P1[4]) and 30 mA sink  
current on odd port pins (for example,  
P0[3] and P1[5])  
0.4  
V
V
Input Low Voltage  
Input High Voltage  
0.3 x Vdd  
V
V
IL  
0.65 x Vdd  
IH  
Document Number: 001-12696 Rev. *D  
Page 19 of 34  
CY8C20x36/46/66, CY8C20396  
Table 17. 1.71V to 2.4V DC GPIO Specifications (continued)  
Symbol  
Description  
Input Hysteresis Voltage  
Input Leakage (Absolute Value)  
Capacitive Load on Pins  
Conditions  
Min  
Typ  
80  
Max  
Units  
mV  
μA  
V
1
5
H
I
0.001  
1.7  
IL  
C
Package and pin dependent  
Temp = 25 C  
0.5  
pF  
PIN  
o
Table 18.DC Characteristics – USB Interface  
Symbol  
Rusbi  
Rusba  
Vohusb  
Volusb  
Vdi  
Description  
USB D+ Pull Up Resistance  
USB D+ Pull Up Resistance  
Static Output High  
Conditions  
With idle bus  
Min  
0.900  
1.425  
2.8  
Typ  
Max  
1.575  
3.090  
3.6  
Units  
kΩ  
kΩ  
V
-
-
-
-
-
-
While receiving traffic  
Static Output Low  
0.3  
V
Differential Input Sensitivity  
0.2  
0.8  
V
Vcm  
Differential Input Common Mode  
Range  
2.5  
V
Vse  
Cin  
Single Ended Receiver Threshold  
Transceiver Capacitance  
0.8  
-
2.0  
50  
V
-
-
pF  
μA  
kΩ  
Ω
Iio  
Hi-Z State Data Line Leakage  
PS/2 Pull Up Resistance  
On D+ or D- line  
-10  
3
+10  
7
Rps2  
Rext  
5
External USB Series Resistor  
In series with each USB pin  
21.78  
22.0  
22.22  
DC Analog Mux Bus Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 19. DC Analog Mux Bus Specifications  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Units  
R
Switch Resistance to Common Analog  
Bus  
800  
Ω
SW  
R
Resistance of Initialization Switch to  
Vss  
800  
Ω
GND  
The maximum pin voltage for measuring R  
and R  
is 1.8V  
GND  
SW  
DC Low Power Comparator Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 20. DC Comparator Specifications  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Units  
V
Low Power Comparator (LPC)  
common mode  
Maximum voltage limited to Vdd  
0.0  
1.8  
V
LPC  
I
LPC supply current  
LPC voltage offset  
10  
40  
30  
μA  
LPC  
V
2.5  
mV  
OSLPC  
Document Number: 001-12696 Rev. *D  
Page 20 of 34  
CY8C20x36/46/66, CY8C20396  
DC POR and LVD Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 21. DC POR and LVD Specifications  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Units  
Vdd Value for PPOR Trip  
Vdd must be greater than or equal to  
V
PORLEV[1:0] = 00b, HPOR = 0 1.71Vduringstartup, resetfromtheXRES  
PORLEV[1:0] = 00b, HPOR = 1 pin, or reset from watchdog.  
PORLEV[1:0] = 01b, HPOR = 1  
1.61  
1.66  
2.36  
2.60  
2.82  
1.71  
2.41  
2.66  
2.95  
V
V
V
V
PPOR0  
PPOR1  
PPOR2  
PPOR3  
V
V
V
PORLEV[1:0] = 10b, HPOR = 1  
Vdd Value for LVD Trip  
VM[2:0] = 000b  
VM[2:0] = 001b  
VM[2:0] = 010b  
VM[2:0] = 011b  
VM[2:0] = 100b  
VM[2:0] = 101b  
VM[2:0] = 110b  
VM[2:0] = 111b  
[6]  
V
V
V
V
V
V
V
V
2.40  
2.64  
2.85  
2.45  
2.71  
2.92  
3.02  
3.13  
1.90  
1.80  
4.73  
2.51  
2.78  
2.99  
3.09  
3.20  
2.32  
1.84  
4.83  
V
V
V
V
V
V
V
V
LVD0  
LVD1  
LVD2  
LVD3  
LVD4  
LVD5  
LVD6  
LVD7  
[7]  
[8]  
2.95  
3.06  
1.84  
[9]  
1.75  
4.62  
DC Programming Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 22. DC Programming Specifications  
Symbol  
Vdd  
Description  
Conditions  
Min  
Typ  
Max  
Units  
Supply Voltage for Flash Write  
Operations  
1.71  
V
IWRITE  
I
Supply Current During  
Programming or Verify  
5
25  
mA  
V
DDP  
V
V
Input Low Voltage During  
Programming or Verify  
See the appropriate DC General Purpose  
V
IL  
ILP  
Input High Voltage During  
Programming or Verify  
See appropriate DC General Purpose IO  
15 or 16  
V
V
IHP  
IH  
I
I
Input Current when Applying Vilp Driving internal pull down resistor  
to P1[0] or P1[1] During  
Programming or Verify  
0.2  
1.5  
mA  
mA  
ILP  
Input Current when Applying Vihp Driving internal pull down resistor  
to P1[0] or P1[1] During  
IHP  
Programming or Verify  
V
V
Output Low Voltage During  
Programming or Verify  
Vss + 0.75  
Vdd  
V
V
OLP  
Output High Voltage During  
Programming or Verify  
See appropriate DC General Purpose IO  
V
OH  
OHP  
16. For Vdd > 3V use V  
OH4  
Flash  
Flash  
Flash Write Endurance  
Flash Data Retention  
Erase/write cycles per block  
50,000  
10  
-
ENPB  
Following maximum Flash write cycles;  
ambient temperature of 55°C  
20  
Years  
DR  
Notes  
6. Always greater than 50 mV above V  
7. Always greater than 50 mV above V  
8. Always greater than 50 mV above V  
9. Always greater than 50 mV above V  
voltage for falling supply.  
PPOR1  
PPOR2  
PPOR3  
PPOR0  
voltage for falling supply.  
voltage for falling supply.  
voltage for falling supply.  
Document Number: 001-12696 Rev. *D  
Page 21 of 34  
CY8C20x36/46/66, CY8C20396  
AC Chip-Level Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 23. AC Chip-Level Specifications  
Symbol  
Description  
Conditions  
Min  
24  
Typ  
Max  
Units  
MHz  
MHz  
kHz  
F
F
F
F
Maximum Operating Frequency  
Maximum Processing Frequency  
Internal Low Speed Oscillator Frequency  
MAX  
24  
CPU  
19  
32  
24  
50  
25.2  
32K1  
IMO24  
Internal Main Oscillator Frequency at 24  
MHz Setting  
22.8  
MHz  
F
F
Internal Main Oscillator Frequency at 12  
MHz Setting  
11.4  
5.7  
12  
12.6  
6.3  
MHz  
MHz  
IMO12  
IMO6  
Internal Main Oscillator Frequency at 6  
MHz Setting  
6.0  
DC  
T
Duty Cycle of IMO  
Supply Ramp Time  
40  
0
50  
60  
%
μs  
ms  
μs  
IMO  
RAMP  
XRST  
XRST2  
T
T
External Reset Pulse Width at Power Up After supply voltage is valid  
1
External Reset Pulse Width after Power Applies after part has booted  
Up  
10  
AC General Purpose IO Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 24. AC GPIO Specifications  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Units  
F
GPIO Operating Frequency  
Normal Strong Mode Port 0, 1  
0
6 MHz for  
1.71V<Vdd<2.4V  
MHz  
GPIO  
0
12 MHz for  
2.4V<Vdd<5.5V  
TRise23  
Rise Time, Strong Mode, Cload = 50 pF Vdd = 3.0 to 3.6V, 10% – 90%  
Ports 2 or 3  
15  
15  
10  
10  
10  
10  
80  
80  
50  
80  
50  
70  
ns  
ns  
ns  
ns  
ns  
ns  
TRise23L Rise Time, Strong Mode Low Supply,  
Cload = 50 pF, Ports 2 or 3  
Vdd = 1.71 to 3.0V, 10% – 90%  
TRise01  
Rise Time, Strong Mode, Cload = 50 pF Vdd = 3.0 to 3.6V, 10% – 90%  
Ports 0 or 1  
LDO enabled or disabled  
TRise01L Rise Time, Strong Mode Low Supply,  
Cload = 50 pF, Ports 0 or 1  
Vdd = 1.71 to 3.0V, 10% – 90%  
LDO enabled or disabled  
TFall  
Fall Time, Strong Mode, Cload = 50 pF Vdd = 3.0 to 3.6V, 10% – 90%  
All Ports  
TFallL  
Fall Time, Strong Mode Low Supply,  
Cload = 50 pF, All Ports  
Vdd = 1.71 to 3.0V, 10% – 90%  
Document Number: 001-12696 Rev. *D  
Page 22 of 34  
CY8C20x36/46/66, CY8C20396  
Figure 11. GPIO Timing Diagram  
90%  
GPIO Pin  
Output  
Voltage  
10%  
TRise23  
TRise01  
TRise23L  
TRise01L  
TFall  
TFallL  
Table 25.AC Characteristics – USB Data Timings  
Symbol  
Tdrate  
Description  
Full speed data rate  
Conditions  
Min  
12–0.25%  
-18.5  
-9  
Typ  
12  
Max  
Units  
Average bit rate  
To next transition  
To pair transition  
To next transition  
To pair transition  
To SE0 transition  
12 + 0.25% MHz  
Tdjr1  
Receiver data jitter tolerance  
Receiver data jitter tolerance  
Driver differential jitter  
Driver differential jitter  
18.5  
9
ns  
ns  
ns  
ns  
ns  
Tdjr2  
Tudj1  
Tudj2  
Tfdeop  
-3.5  
3.5  
4.0  
5
-4.0  
Source jitter for differential  
transition  
-2  
Tfeopt  
Tfeopr  
Tfst  
Source SE0 interval of EOP  
Receiver SE0 interval of EOP  
160  
82  
175  
14  
ns  
ns  
ns  
Width of SE0 interval during  
differential transition  
Table 26.AC Characteristics – USB Driver  
Symbol Description  
Transition rise time  
Conditions  
Min  
4
Typ  
Max  
20  
Units  
ns  
Tr  
Tf  
50 pF  
50 pF  
Transition fall time  
4
20  
ns  
TR  
Rise/fall time matching  
Output signal crossover voltage  
90.00  
1.3  
111.1  
2.0  
%
Vcrs  
V
AC Comparator Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 27. AC Low Power Comparator Specifications  
Symbol  
Description  
Comparator Response Time, 50 50 mV overdrive does not include  
mV Overdrive offset voltage.  
Conditions  
Min  
Typ  
Max  
Units  
T
100  
ns  
LPC  
AC Analog Mux Bus Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 28. AC Analog Mux Bus Specifications  
Symbol  
Description  
Switch Rate  
Conditions  
Min  
Typ  
Max  
Units  
F
Maximumpinvoltagewhenmeasuring  
switch rate is 1.8Vp-p  
6.3  
MHz  
SW  
Document Number: 001-12696 Rev. *D  
Page 23 of 34  
CY8C20x36/46/66, CY8C20396  
AC External Clock Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 29. AC External Clock Specifications  
Symbol  
Description  
Conditions  
Min  
0.750  
20.6  
20.6  
150  
Typ  
Max  
25.2  
5300  
Units  
MHz  
ns  
F
Frequency  
High Period  
Low Period  
OSCEXT  
ns  
Power Up IMO to Switch  
μs  
AC Programming Specifications  
Figure 12. AC Waveform  
SCLK (P1[1])  
TRSCLK  
TFSCLK  
SDATA (P1[0])  
TSSCLK  
THSCLK  
TDSCLK  
The following table lists the guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 30. AC Programming Specifications  
Symbol  
Description  
Rise Time of SCLK  
Conditions  
Min  
1
Typ  
Max  
20  
20  
Units  
ns  
T
RSCLK  
FSCLK  
SSCLK  
HSCLK  
SCLK  
T
T
T
F
T
T
T
T
T
Fall Time of SCLK  
1
ns  
Data Set up Time to Falling Edge of SCLK  
Data Hold Time from Falling Edge of SCLK  
Frequency of SCLK  
40  
40  
0
ns  
ns  
8
MHz  
ms  
ms  
ns  
Flash Erase Time (Block)  
18  
25  
60  
85  
130  
ERASEB  
WRITE  
DSCLK  
DSCLK3  
DSCLK2  
Flash Block Write Time  
Data Out Delay from Falling Edge of SCLK 3.6 < Vdd  
Data Out Delay from Falling Edge of SCLK 3.0 Vdd 3.6  
ns  
Data Out Delay from Falling Edge of SCLK 1.71 Vdd 3.0  
ns  
Document Number: 001-12696 Rev. *D  
Page 24 of 34  
CY8C20x36/46/66, CY8C20396  
AC SPI Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 31. AC SPI Specifications  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Units  
F
Output clock frequency is half  
of input clock rate.  
12  
MHz  
Maximum Input Clock Frequency Selection,  
Master 2.4V<Vdd<5.5V  
SPIM  
Output clock frequency is half  
of input clock rate  
6
MHz  
Maximum Input Clock Frequency Selection,  
Master(21)1.71V<Vdd<2.4V  
F
T
Maximum Input Clock Frequency Selection,  
Slave 2.4<Vdd<5.5V  
12  
6
MHz  
MHz  
ns  
SPIS  
Maximum Input Clock Frequency Selection,  
Slave 1.71V<Vdd<2.4V  
Width of SS_ Negated Between Transmissions  
50  
SS  
2
AC I C Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
2
Table 32. AC Characteristics of the I C SDA and SCL Pins  
Standard Mode Fast Mode  
Symbol  
Description  
Units  
Min  
0
Max  
100  
Min Max  
F
T
SCL Clock Frequency  
0
400  
kHz  
SCLI2C  
Hold Time (repeated) START Condition. After this period, the first clock pulse is  
generated.  
4.0  
0.6  
μs  
HDSTAI2C  
T
T
T
T
T
LOW Period of the SCL Clock  
HIGH Period of the SCL Clock  
Setup Time for a Repeated START Condition  
Data Hold Time  
4.7  
4.0  
4.7  
0
1.3  
0.6  
0.6  
0
μs  
μs  
μs  
μs  
ns  
LOWI2C  
HIGHI2C  
SUSTAI2C  
HDDATI2C  
SUDATI2C  
[1  
Data Setup Time  
250  
100  
0]  
T
T
T
Setup Time for STOP Condition  
4.0  
4.7  
0.6  
1.3  
0
μs  
μs  
ns  
SUSTOI2C  
BUFI2C  
SPI2C  
Bus Free Time Between a STOP and START Condition  
Pulse Width of spikes are suppressed by the input filter.  
50  
2
Figure 13. Definition for Timing for Fast/Standard Mode on the I C Bus  
SDA  
SCL  
TSPI2C  
T
LOWI2C  
TSUDATI2C  
THDSTAI2C  
TBUFI2C  
TSUSTOI2C  
TSUSTAI2C  
THDDATI2C  
THDSTAI2C  
THIGHI2C  
S
Sr  
P
S
Note  
10. A Fast-Mode I2C-bus device can be used in a Standard Mode I2C-bus system, but the requirement t  
250 ns must then be met. This automatically be the case  
SU;DAT  
if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit to the  
SDA line t + t = 1000 + 250 = 1250 ns (according to the Standard-Mode I2C-bus specification) before the SCL line is released.  
rmax  
SU;DAT  
Document Number: 001-12696 Rev. *D  
Page 25 of 34  
CY8C20x36/46/66, CY8C20396  
Packaging Information  
This section illustrates the packaging specifications for the CY8C20x36/46/66, CY8C20396 PSoC device, along with the thermal  
impedances for each package.  
Important Note Emulation tools may require a larger area on the target PCB than the chip’s footprint. For a detailed description of  
the emulation tools’ dimensions, refer to the document titled PSoC Emulator Pod Dimensions at  
http://www.cypress.com/design/MR10161.  
Figure 14. 16-Pin Chip On Lead 3x3 mm (Sawn)  
001-09116 *D  
Figure 15. 24-Pin (4x4 x 0.6 mm) QFN  
001-13937 *B  
Document Number: 001-12696 Rev. *D  
Page 26 of 34  
CY8C20x36/46/66, CY8C20396  
Figure 16. 32-Pin (5x5 x 0.6 mm) QFN  
SEE NOTE 1  
TOP VIEW  
BOTTOM VIEW  
SIDE VIEW  
NOTES:  
1. HATCH AREA IS SOLDERABLE EXPOSED PAD  
2. BASED ON REF JEDEC # MO-248  
3. PACKAGE WEIGHT: 0.0388g  
001-42168 *C  
4. DIMENSIONS ARE IN MILLIMETERS  
Figure 17. 48-Pin (300 MIL) SSOP  
.020  
1
24  
0.395  
0.420  
0.292  
0.299  
DIMENSIONS IN INCHES MIN.  
MAX.  
25  
48  
0.620  
0.630  
0.005  
0.010  
SEATING PLANE  
.010  
0.088  
0.092  
0.095  
0.110  
GAUGE PLANE  
0.004  
0.024  
0.040  
0.025  
BSC  
0°-8°  
0.008  
0.016  
0.008  
0.0135  
51-85061 *C  
Document Number: 001-12696 Rev. *D  
Page 27 of 34  
CY8C20x36/46/66, CY8C20396  
Figure 18. 48-Pin (7x7 mm) QFN  
001-13191 *C  
Important Notes  
For information on the preferred dimensions for mounting QFN packages, see the following Application Note at  
Pinned vias for thermal conduction are not required for the low power PSoC device.  
Thermal Impedances  
Table 33. Thermal Impedances per Package  
[11]  
Package  
Typical θ  
JA  
o
32.69 C/W  
16 QFN  
o
[12]  
20.90 C/W  
24 QFN  
32 QFN  
o
[12]  
19.51 C/W  
o
69 C/W  
48 SSOP  
o
[12]  
17.68 C/W  
48 QFN  
Solder Reflow Peak Temperature  
This table lists the minimum solder reflow peak temperature to achieve good solderability.  
Table 34. Solder Reflow Peak Temperature  
Package  
16 QFN  
24 QFN  
32 QFN  
48 SSOP  
48 QFN  
Maximum Peak Temperature  
Minimum Peak Temperature  
o
o
240 C  
260 C  
o
o
240 C  
260 C  
o
o
240 C  
260 C  
o
o
220 C  
260 C  
o
o
240 C  
260 C  
Notes  
11. T = T + Power x θ .  
JA  
J
A
12. To achieve the thermal impedance specified for the QFN package, the center thermal pad must be soldered to the PCB ground plane.  
o
o
13. Higher temperatures may be required based on the solder melting point. Typical temperatures for solder are 220 ± 5 C with Sn-Pb or 245 ± 5 C with Sn-Ag-Cu paste.  
Refer to the solder manufacturer specifications.  
Document Number: 001-12696 Rev. *D  
Page 28 of 34  
     
CY8C20x36/46/66, CY8C20396  
Development Tool Selection  
Software  
Development Kits  
All development kits are sold at the Cypress Online Store.  
PSoC Designer™  
At the core of the PSoC development software suite is PSoC  
Designer. This is used by thousands of PSoC developers. This  
robust software is facilitating PSoC designs for half a decade.  
PSoC Designer is available free of charge at  
http://www.cypress.com under DESIGN RESOURCES >>  
Software and Drivers.  
CY3215-DK Basic Development Kit  
The CY3215-DK is for prototyping and development with PSoC  
Designer. This kit supports in-circuit emulation and the software  
interface enables users to run, halt, and single step the  
processor and view the content of specific memory locations.  
PSoC Designer supports the advance emulation features also.  
The kit includes:  
PSoC Programmer  
PSoC Designer Software CD  
PSoC Programmer is flexible enough and is used on the bench  
in development and is also suitable for factory programming.  
PSoC Programmer works either as a standalone programming  
application or operates directly from PSoC Designer or PSoC  
Express. PSoC Programmer software is compatible with both  
PSoC ICE Cube In-Circuit Emulator and PSoC MiniProg. PSoC  
programmer is available free of charge at  
ICE-Cube In-Circuit Emulator  
ICE Flex-Pod for CY8C29x66 Family  
Cat-5 Adapter  
Mini-Eval Programming Board  
110 ~ 240V Power Supply, Euro-Plug Adapter  
iMAGEcraft C Compiler (Registration Required)  
ISSP Cable  
C Compilers  
PSoC Designer comes with a free HI-TECH C Lite C compiler.  
The HI-TECH C Lite compiler is free, supports all PSoC devices,  
integrates fully with PSoC Designer and PSoC Express, and  
runs on Windows versions up to 32-bit Vista. Compilers with  
additional features are available at additional cost from their  
manufactures.  
USB 2.0 Cable and Blue Cat-5 Cable  
2 CY8C29466-24PXI 28-PDIP Chip Samples  
CY3210-ExpressDK PSoC Express Development Kit  
HI-TECH C PRO for the PSoC is available from  
The CY3210-ExpressDK is for advanced prototyping and  
development with PSoC Express (used with ICE-Cube In-Circuit  
Emulator). It provides access to I C buses, voltage reference,  
2
switches, upgradeable modules, and more. The kit includes:  
PSoC Express Software CD  
Express Development Board  
Four Fan Modules  
Two Proto Modules  
MiniProg In-System Serial Programmer  
MiniEval PCB Evaluation Board  
Jumper Wire Kit  
USB 2.0 Cable  
Serial Cable (DB9)  
110 ~ 240V Power Supply, Euro-Plug Adapter  
2 CY8C24423A-24PXI 28-PDIP Chip Samples  
2 CY8C27443-24PXI 28-PDIP Chip Samples  
2 CY8C29466-24PXI 28-PDIP Chip Samples  
Document Number: 001-12696 Rev. *D  
Page 29 of 34  
CY8C20x36/46/66, CY8C20396  
Device Programmers  
Evaluation Tools  
All device programmers are purchased from the Cypress Online  
Store.  
All evaluation tools are sold at the Cypress Online Store.  
CY3210-MiniProg1  
CY3216 Modular Programmer  
The CY3210-MiniProg1 kit enables the user to program PSoC  
devices via the MiniProg1 programming unit. The MiniProg is a  
small, compact prototyping programmer that connects to the PC  
via a provided USB 2.0 cable. The kit includes:  
The CY3216 Modular Programmer kit features a modular  
programmer and the MiniProg1 programming unit. The modular  
programmer includes three programming module cards and  
supports multiple Cypress products. The kit includes:  
MiniProg Programming Unit  
Modular Programmer Base  
Three Programming Module Cards  
MiniProg Programming Unit  
PSoC Designer Software CD  
Getting Started Guide  
MiniEval Socket Programming and Evaluation Board  
28-Pin CY8C29466-24PXI PDIP PSoC Device Sample  
28-Pin CY8C27443-24PXI PDIP PSoC Device Sample  
PSoC Designer Software CD  
Getting Started Guide  
USB 2.0 Cable  
USB 2.0 Cable  
CY3207ISSP In-System Serial Programmer (ISSP)  
CY3210-PSoCEval1  
The CY3207ISSP is a production programmer. It includes  
protection circuitry and an industrial case that is more robust than  
the MiniProg in a production programming environment.  
Note that CY3207ISSP needs special software and is not  
compatible with PSoC Programmer. The kit includes:  
The CY3210-PSoCEval1 kit features an evaluation board and  
the MiniProg1 programming unit. The evaluation board includes  
an LCD module, potentiometer, LEDs, and plenty of bread-  
boarding space to meet all of your evaluation needs. The kit  
includes:  
CY3207 Programmer Unit  
PSoC ISSP Software CD  
Evaluation Board with LCD Module  
MiniProg Programming Unit  
110 ~ 240V Power Supply, Euro-Plug Adapter  
USB 2.0 Cable  
28-Pin CY8C29466-24PXI PDIP PSoC Device Sample (2)  
PSoC Designer Software CD  
Getting Started Guide  
USB 2.0 Cable  
CY3214-PSoCEvalUSB  
The CY3214-PSoCEvalUSB evaluation kit features  
a
development board for the CY8C24794-24LFXI PSoC device.  
Special features of the board include both USB and capacitive  
sensing development and debugging support. This evaluation  
board also includes an LCD module, potentiometer, LEDs, an  
enunciator and plenty of bread boarding space to meet all of your  
evaluation needs. The kit includes:  
PSoCEvalUSB Board  
LCD Module  
MIniProg Programming Unit  
Mini USB Cable  
PSoC Designer and Example Projects CD  
Getting Started Guide  
Wire Pack  
Document Number: 001-12696 Rev. *D  
Page 30 of 34  
CY8C20x36/46/66, CY8C20396  
Accessories (Emulation and Programming)  
Table 35. Emulation and Programming Accessories  
[14]  
[15]  
Part Number  
CY8C20236-24LKXI  
CY8C20336-24LQXI  
CY8C20436-24LQXI  
CY8C20396-24LQXI  
CY8C20246-24LKXI  
CY8C20346-24LQXI  
CY8C20446-24LQXI  
CY8C20466-24LQXI  
CY8C20566-24PVXI  
CY8C20666-24LTXI  
Pin Package  
16 QFN  
Flex-Pod Kit  
Foot Kit  
Adapter  
CY3250-20266QFN  
CY3250-20366QFN  
CY3250-20466QFN  
CY3250-16QFN-RK  
CY3250-20366QFN  
CY3250-32QFN-RK  
See note 15  
See note 15  
See note 15  
24 QFN  
32 QFN  
Not Available  
16 QFN  
24 QFN  
32 QFN  
32 QFN  
48 SSOP  
48 QFN  
CY3250-20266QFN  
CY3250-20366QFN  
CY3250-20466QFN  
CY3250-20466QFN  
CY3250-20X66  
CY3250-16QFN-FK  
CY3250-24QFN-FK  
CY3250-32QFN-FK  
CY3250-32QFN-FK  
CY3250-48SSOP-FK  
CY3250-48QFN-FK  
CY3250-20666QFN  
Third-Party Tools  
Build a PSoC Emulator into Your Board  
Several tools have been specially designed by the following  
third-party vendors to accompany PSoC devices during  
development and production. Specific details for each of these  
tools can be found at http://www.cypress.com under  
Documentation >> Evaluation Boards.  
For details on how to emulate your circuit before going to volume  
production using an on-chip debug (OCD) non-production PSoC  
device, refer Application Note “Debugging - Build a PSoC  
AN2323.  
Notes  
14. Flex-Pod kit includes a practice flex-pod and a practice PCB, in addition to two flex-pods.  
15. Foot kit includes surface mount feet that can be soldered to the target PCB.  
16. Programming adapter converts non-DIP package to DIP footprint. Specific details and ordering information for each of the adapters can be found at  
Document Number: 001-12696 Rev. *D  
Page 31 of 34  
     
CY8C20x36/46/66, CY8C20396  
Ordering Information  
The following table lists the CY8C20x36/46/66, CY8C20396 PSoC devices key package features and ordering codes.  
Table 36. PSoC Device Key Features and Ordering Information  
Flash  
SRAM CapSense Digital IO Analog XRES  
Package  
Ordering Code  
USB  
(Bytes) (Bytes)  
Blocks  
Pins  
Inputs  
Pin  
Yes  
Yes  
16-Pin (3x3x0.6mm) QFN  
CY8C20236-24LKXI  
CY8C20236-24LKXIT  
8K  
8K  
1K  
1K  
1
1
13  
13  
No  
No  
16-Pin (3x3x0.6mm) QFN  
(Tape and Reel)  
13  
13  
24-Pin (4x4x0.6mm) QFN  
CY8C20336-24LQXI  
CY8C20336-24LQXIT  
8K  
8K  
1K  
1K  
1
1
20  
20  
20  
20  
Yes  
Yes  
No  
No  
24-Pin (4x4x0.6mm) QFN  
(Tape and Reel)  
32-Pin (5x5x0.6mm) QFN  
CY8C20436-24LQXI  
CY8C20436-24LQXIT  
8K  
8K  
1K  
1K  
1
1
28  
28  
28  
28  
Yes  
Yes  
No  
No  
32-Pin (5x5x0.6mm) QFN  
(Tape and Reel)  
24-Pin (4x4x0.6mm) QFN  
CY8C20396-24LQXI  
CY8C20396-24LQXIT  
16K  
16K  
2K  
2K  
1
1
19  
19  
19  
19  
Yes  
Yes  
Yes  
Yes  
24-Pin (4x4x0.6mm) QFN  
(Tape and Reel)  
16 Pin (3x3 x 0.6 mm) QFN  
CY8C20246-24LKXI  
CY8C20246-24LKXIT  
16K  
16K  
2048  
2048  
1
1
13  
13  
Yes  
Yes  
No  
No  
13  
16 Pin (3x3 x 0.6 mm) QFN  
(Tape and Reel)  
13  
24 Pin (4x4 x 0.6 mm) QFN  
CY8C20346-24LQXI  
CY8C20346-24LQXIT  
16K  
16K  
2048  
2048  
1
1
20  
20  
Yes  
Yes  
No  
No  
20  
24 Pin (4x4 x 0.6 mm) QFN  
(Tape and Reel)  
20  
32 Pin (5x5 x 0.6 mm) QFN  
CY8C20446-24LQXI  
CY8C20446-24LQXIT  
16K  
16K  
2048  
2048  
1
1
28  
28  
Yes  
Yes  
No  
No  
28  
32 Pin (5x5 x 0.6 mm) QFN  
(Tape and Reel)  
28  
32 Pin (5x5 x 0.6 mm) QFN  
CY8C20466-24LQXI  
CY8C20466-24LQXIT  
32K  
32K  
2048  
2048  
1
1
28  
28  
Yes  
Yes  
No  
No  
28  
32 Pin (5x5 x 0.6 mm) QFN  
(Tape and Reel)  
28  
48-Pin SSOP  
CY8C20566-24PVXI  
CY8C20566-24PVXIT  
32K  
32K  
2048  
2048  
1
1
36  
36  
Yes  
Yes  
No  
No  
36  
48-Pin SSOP  
(Tape and Reel)  
36  
48 Pin (7x7 mm) QFN  
CY8C20666-24LTXI  
CY8C20666-24LTXIT  
32K  
32K  
2048  
2048  
1
1
36  
36  
Yes  
Yes  
Yes  
Yes  
36  
48 Pin (7x7 mm) QFN  
(Tape and Reel)  
36  
[4]  
48 Pin (7x7 mm) QFN (OCD)  
CY8C20066-24LTXI  
32K  
2048  
1
36  
Yes  
Yes  
36  
Notes  
17. Dual-function Digital IO Pins also connect to the common analog mux.  
Document Number: 001-12696 Rev. *D  
Page 32 of 34  
 
CY8C20x36/46/66, CY8C20396  
Document History Page  
Document Title: CY8C20x36/46/66, CY8C20396 CapSenseTM Applications  
Document Number: 001-12696  
Revision  
**  
ECN  
Origin of Change Submission Date  
Description of Change  
766857  
HMT  
See ECN  
See ECN  
New silicon and document (Revision **).  
*A  
*B  
1242866 HMT  
Add features. Update all applicable sections. Update specs.  
Fix 24-pin QFN pinout moving pins inside. Update package  
revisions. Update and add to Emulation and Programming  
Accessories table.  
2174006 AESA  
See ECN  
Added 48-Pin SSOP Part Pinout  
Modified symbol R  
Specification  
to R  
in Table DC Analog Mux Bus  
VDD  
GND  
Added footnote in Table DC Analog Mux Bus Specification  
Added 16K FLASH Parts. Updated Notes, Package Diagrams  
and Ordering Information table. Updated Thermal Impedance  
and Solder Reflow tables  
*C  
2587518 TOF/JASM/MNU/ 10/13/08  
HMT  
Converted from Preliminary to Final  
Fixed broken links. Updated data sheet template.  
Added operating voltage ranges with USB  
ADC resolution changed from 10-bit to 8-bit  
Included ADC specifications table  
Included Comparator specification table  
Included Voh7, Voh8, Voh9, Voh10 specs  
Flash data retention – condition added to Note  
Input leakage spec changed to 1 μA max  
GPIO rise time for ports 0,1 and ports 2,3 made common  
AC Programming specifications updated  
Included AC Programming cycle timing diagram  
AC SPI specification updated  
The VIH for 3.0<Vdd<2.4 changed to 1.6 from 2.0  
Added USB specification  
Added SPI CLK to P1[0]  
Updated package diagrams  
Updated thermal impedances for QFN packages  
Updated F  
Updated voltage ranges for F  
parameter in Table 23  
GPIO  
and F  
in Table 30  
SPIM  
SPIS  
Update Development Tools, add Designing with PSoC  
Designer. Edit, fix links, notes and table format. Update R  
IN  
formula, fix TRise parameter names in GPIO figure, fix Switch  
Rate note. Update maximum data in Table 20. DC POR and  
LVD Specifications.  
*D  
2649637 SNV/AESA  
03/17/2009  
Changed title to “CY8C20x36/46/66, CY8C20396  
CapSense™ Applications”. Updated data sheet Features, pin  
information, and ordering information sections. Updated  
package diagram 001-42168 to *C.  
Document Number: 001-12696 Rev. *D  
Page 33 of 34  
CY8C20x36/46/66, CY8C20396  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at cypress.com/sales.  
Products  
PSoC  
PSoC Solutions  
General  
Clocks & Buffers  
Wireless  
Low Power/Low Voltage  
Precision Analog  
LCD Drive  
Memories  
Image Sensors  
CAN 2.0b  
USB  
CapSense™, PSoC Designer™, and Programmable System-on-Chip™ are trademarks and PSoC® is a registered trademark of Cypress Semiconductor Corporation. All other trademarks or registered  
trademarks referenced herein are property of the respective corporations. Purchase of I2C components from Cypress or one of its sublicensed Associated Companies conveys a license under the  
Philips I2C Patent Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips. All products and company names  
mentioned in this document may be the trademarks of their respective holders.  
© Cypress Semiconductor Corporation, 2007-2009. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of  
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for  
medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as  
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems  
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document Number: 001-12696 Rev. *D  
Revised March 17, 2009  
Page 34 of 34  

Hotpoint Cooktop 52 TCW S User Manual
Hawking Technology ET 350 User Manual
GE ZBD6500 User Manual
Geemarc AMPLIDECT 350 User Manual
Electrolux 922004 User Manual
Eizo FlexScan M1900 User Manual
Dynex DX R27TV User Manual
Cecilware CCB 1812 User Manual
AT T KX TG5423 User Manual
AT T E5654B User Manual