| CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   EZ-USB FX2LP™ USB Microcontroller   High-Speed USB Peripheral Controller   ■ GPIF (General Programmable Interface)   ❐ Enables direct connection to most parallel interfaces   ❐ Programmable waveform descriptors and configuration reg-   isters to define waveforms   ❐ Supports multiple Ready (RDY) inputs and Control (CTL) out-   puts   1. Features (CY7C68013A/14A/15A/16A)   ■ USB 2.0 USB IF high-speed certified (TID # 40460272)   ■ Single chip integrated USB 2.0 transceiver, smart SIE, and   enhanced 8051 microprocessor   ■ Fit, form and function compatible with the FX2   ❐ Pin compatible   ❐ Object-code-compatible   ■ Integrated, industry standard enhanced 8051   ❐ 48 MHz, 24 MHz, or 12 MHz CPU operation   ❐ Four clocks per instruction cycle   ❐ Two USARTS   ❐ Functionally compatible (FX2LP is a superset)   ■ Ultra Low power: I no more than 85 mA in any mode   ❐ Three counter/timers   CC   ❐ Expanded interrupt system   ❐ Two data pointers   ❐ Ideal for bus and battery powered applications   ■ Software: 8051 code runs from:   ■ 3.3V operation with 5V tolerant inputs   ❐ Internal RAM, which is downloaded via USB   ❐ Internal RAM, which is loaded from EEPROM   ❐ External memory device (128 pin package)   ■ Vectored USB interrupts and GPIF/FIFO interrupts   ■ Separate data buffers for the Setup and Data portions of a   CONTROL transfer   ■ 16 KBytes of on-chip Code/Data RAM   2 ■ Four programmable BULK/INTERRUPT/ISOCHRONOUS   endpoints   ❐ Buffering options: double, triple, and quad   ■ Integrated I C controller, runs at 100 or 400 kHz   ■ Four integrated FIFOs   ❐ Integrated glue logic and FIFOs lower system cost   ❐ Automatic conversion to and from 16-bit buses   ❐ Master or slave operation   ❐ Uses external clock or asynchronous strobes   ❐ Easy interface to ASIC and DSP ICs   ■ Additional programmable (BULK/INTERRUPT) 64 byte   endpoint   ■ 8-bit or 16-bit external data interface   ■ Smart Media Standard ECC generation   ■ Available in Commercial and Industrial temperature grade (all   packages except VFBGA)   Cypress Semiconductor Corporation   Document #: 38-08032 Rev. *L   • 198 Champion Court   • San Jose, CA 95134-1709   •408-943-2600   Revised February 8, 2008   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   frequency is 12 MHz. The clock frequency of the 8051 can be   changed by the 8051 through the CPUCS register, dynamically.   2. Applications   ■ Portable video recorder   ■ MPEG/TV conversion   ■ DSL modems   Figure 1. Crystal Configuration   24 MHz   C1   C2   ■ ATA interface   12 pf   12 pf   ■ Memory card readers   ■ Legacy conversion devices   ■ Cameras   20 × PLL   ■ Scanners   12-pF capacitor values assumes a trace capacitance   of 3 pF per side on a four-layer FR4 PCA   ■ Home PNA   The CLKOUT pin, which can be three-stated and inverted using   internal control bits, outputs the 50% duty cycle 8051 clock, at   the selected 8051 clock frequency: 48 MHz, 24 MHz, or 12 MHz.   ■ Wireless LAN   ■ MP3 players   ■ Networking   3.2.2 USARTS   The “Reference Designs” section of the Cypress web site   provides additional tools for typical USB 2.0 applications. Each   reference design comes complete with firmware source and   object code, schematics, and documentation. Visit the Cypress   web site for more information.   FX2LP contains two standard 8051 USARTs, addressed via   Special Function Register (SFR) bits. The USART interface pins   are available on separate IO pins, and are not multiplexed with   port pins.   UART0 and UART1 can operate using an internal clock at   230 KBaud with no more than 1% baud rate error. 230 KBaud   operation is achieved by an internally derived clock source that   generates overflow pulses at the appropriate time. The internal   clock adjusts for the 8051 clock rate (48 MHz, 24 MHz, and 12   MHz) such that it always presents the correct frequency for 230   3. Functional Overview   3.1 USB Signaling Speed   FX2LP operates at two of the three rates defined in the USB   Specification Revision 2.0, dated April 27, 2000:   KBaud operation.   ■ Full-speed, with a signaling bit rate of 12 Mbps   3.2.3 Special Function Registers   ■ High-speed, with a signaling bit rate of 480 Mbps.   Certain 8051 SFR addresses are populated to provide fast   access to critical FX2LP functions. These SFR additions are   enhanced 8051 registers. The two SFR rows that end with “0”   and “8” contain bit addressable registers. The four IO ports A to   D use the SFR addresses used in the standard 8051 for ports 0   to 3, which are not implemented in FX2LP. Because of the faster   and more efficient SFR addressing, the FX2LP IO ports are not   addressable in external RAM space (using the MOVX   instruction).   FX2LP does not support the low speed signaling mode of   1.5 Mbps.   3.2 8051 Microprocessor   The 8051 microprocessor embedded in the FX2LP family has   256 bytes of register RAM, an expanded interrupt system, three   timer/counters, and two USARTs.   3.2.1 8051 Clock Frequency   2 FX2LP has an on-chip oscillator circuit that uses an external 24   MHz (±100 ppm) crystal with the following characteristics:   3.3 I C Bus   2 FX2LP supports the I C bus as a master only at 100-/400- KHz.   SCL and SDA pins have open-drain outputs and hysteresis   inputs. These signals must be pulled up to 3.3V, even if no I C   device is connected.   ■ Parallel resonant   2 ■ Fundamental mode   ■ 500-μW drive level   3.4 Buses   ■ 12-pF (5% tolerance) load capacitors   All packages, 8-bit or 16-bit “FIFO” bidirectional data bus, multi-   plexed on IO ports B and D. 128-pin package: adds 16-bit   output-only 8051 address bus, 8-bit bidirectional data bus.   An on-chip PLL multiplies the 24 MHz oscillator up to 480 MHz,   as required by the transceiver/PHY and internal counters divide   it down for use as the 8051 clock. The default 8051 clock   Note   1. 115 KBaud operation is also possible by programming the 8051 SMOD0 or SMOD1 bits to a “1” for UART0, UART1, or both respectively.   Document #: 38-08032 Rev. *L   Page 3 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   Table 1. Special Function Registers   x 0 1 2 3 4 5 6 7 8 9 A B C D E F 8x   IOA   9x   IOB   Ax   Bx   Cx   Dx   Ex   Fx   IOC   IOD   SCON1   SBUF1   PSW   ACC   B SP   EXIF   INT2CLR   INT4CLR   IOE   DPL0   DPH0   DPL1   DPH1   DPS   MPAGE   OEA   OEB   OEC   OED   OEE   PCON   TCON   TMOD   TL0   SCON0   SBUF0   IE   IP   T2CON   EICON   EIE   EIP   AUTOPTRH1   AUTOPTRL1   reserved   EP2468STAT   EP24FIFOFLGS   EP68FIFOFLGS   EP01STAT   GPIFTRIG   RCAP2L   RCAP2H   TL2   TL1   TH0   TH1   AUTOPTRH2   AUTOPTRL2   reserved   GPIFSGLDATH   GPIFSGLDATLX   TH2   CKCON   AUTOPTRSET-UP GPIFSGLDATLNOX   Two control bits in the USBCS (USB Control and Status) register,   control the ReNumeration process: DISCON and RENUM. To   simulate a USB disconnect, the firmware sets DISCON to 1. To   reconnect, the firmware clears DISCON to 0.   3.5 USB Boot Methods   2 During the power up sequence, internal logic checks the I C port   for the connection of an EEPROM whose first byte is either 0xC0   or 0xC2. If found, it uses the VID/PID/DID values in the EEPROM   in place of the internally stored values (0xC0), or it boot-loads the   EEPROM contents into internal RAM (0xC2). If no EEPROM is   detected, FX2LP enumerates using internally stored descriptors.   The default ID values for FX2LP are VID/PID/DID (0x04B4,   Before reconnecting, the firmware sets or clears the RENUM bit   to indicate whether the firmware or the Default USB Device   handles device requests over endpoint zero: if RENUM = 0, the   Default USB Device handles device requests; if RENUM = 1, the   firmware services the requests.   0x8613, 0xAxxx where xxx = Chip revision).   Table 2. Default ID Values for FX2LP   Default VID/PID/DID   3.7 Bus-powered Applications   The FX2LP fully supports bus powered designs by enumerating   with less than 100 mA as required by the USB 2.0 specification.   Vendor ID   Product ID   0x04B4 Cypress Semiconductor   0x8613 EZ-USB FX2LP   3.8 Interrupt System   Device release 0xAnnn Depends on chip revision   (nnn = chip revision where first   silicon = 001)   3.8.1 INT2 Interrupt Request and Enable Registers   FX2LP implements an autovector feature for INT2 and INT4.   There are 27 INT2 (USB) vectors, and 14 INT4 (FIFO/GPIF)   vectors. See EZ-USB Technical Reference Manual (TRM) for   more details.   3.6 ReNumeration™   Because the FX2LP’s configuration is soft, one chip can take on   the identities of multiple distinct USB devices.   3.8.2 USB Interrupt Autovectors   When first plugged into USB, the FX2LP enumerates automati-   cally and downloads firmware and USB descriptor tables over   the USB cable. Next, the FX2LP enumerates again, this time as   a device defined by the downloaded information. This patented   two step process called ReNumeration™ happens instantly when   the device is plugged in, without a hint that the initial download   step has occurred.   The main USB interrupt is shared by 27 interrupt sources. To   save the code and processing time that is required to identify the   individual USB interrupt source, the FX2LP provides a second   level of interrupt vectoring, called Autovectoring. When a USB   interrupt is asserted, the FX2LP pushes the program counter   onto its stack then jumps to the address 0x0043 where it expects   to find a “jump” instruction to the USB Interrupt service routine.   Note   2 2. The I C bus SCL and SDA pins must be pulled up, even if an EEPROM is not connected. Otherwise this detection method does not work properly.   Document #: 38-08032 Rev. *L   Page 4 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   The FX2LP jump instruction is encoded as follows:   Table 3. INT2 USB Interrupts   USB INTERRUPT TABLE FOR INT2   Source   Priority   1 INT2VEC Value   Notes   00   04   08   0C   10   14   18   1C   20   24   28   2C   30   34   38   3C   40   44   48   4C   50   54   58   5C   60   64   68   6C   70   74   78   7C   SUDAV   Setup Data Available   2 SOF   Start of Frame (or microframe)   Setup Token Received   3 SUTOK   4 SUSPEND   USB RESET   HISPEED   EP0ACK   USB Suspend request   5 Bus reset   6 Entered high-speed operation   FX2LP ACK’d the CONTROL Handshake   reserved   7 8 9 EP0-IN   EP0-OUT   EP1-IN   EP1-OUT   EP2   EP0-IN ready to be loaded with data   EP0-OUT has USB data   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   EP1-IN ready to be loaded with data   EP1-OUT has USB data   IN: buffer available. OUT: buffer has data   IN: buffer available. OUT: buffer has data   IN: buffer available. OUT: buffer has data   IN: buffer available. OUT: buffer has data   IN-Bulk-NAK (any IN endpoint)   reserved   EP4   EP6   EP8   IBN   EP0PING   EP1PING   EP2PING   EP4PING   EP6PING   EP8PING   ERRLIMIT   EP0 OUT was Pinged and it NAK’d   EP1 OUT was Pinged and it NAK’d   EP2 OUT was Pinged and it NAK’d   EP4 OUT was Pinged and it NAK’d   EP6 OUT was Pinged and it NAK’d   EP8 OUT was Pinged and it NAK’d   Bus errors exceeded the programmed limit   reserved   reserved   EP2ISOERR   EP4ISOERR   EP6ISOERR   EP8ISOERR   ISO EP2 OUT PID sequence error   ISO EP4 OUT PID sequence error   ISO EP6 OUT PID sequence error   ISO EP8 OUT PID sequence error   If Autovectoring is enabled (AV2EN = 1 in the INTSET-UP   register), the FX2LP substitutes its INT2VEC byte. Therefore, if   the high byte (“page”) of a jump-table address is preloaded at the   location 0x0044, the automatically inserted INT2VEC byte at   0x0045 directs the jump to the correct address out of the 27   addresses within the page.   3.8.3 FIFO/GPIF Interrupt (INT4)   Just as the USB Interrupt is shared among 27 individual USB   interrupt sources, the FIFO/GPIF interrupt is shared among 14   individual FIFO/GPIF sources. The FIFO/GPIF Interrupt, like the   priority and INT4VEC values for the 14 FIFO/GPIF interrupt   sources.   Document #: 38-08032 Rev. *L   Page 5 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   Table 4. Individual FIFO/GPIF Interrupt Sources   Priority   INT4VEC Value   Source   EP2PF   EP4PF   EP6PF   EP8PF   EP2EF   EP4EF   EP6EF   EP8EF   EP2FF   EP4FF   EP6FF   EP8FF   GPIFDONE   GPIFWF   Notes   1 2 80   84   88   8C   90   94   98   9C   A0   A4   A8   AC   B0   B4   Endpoint 2 Programmable Flag   Endpoint 4 Programmable Flag   Endpoint 6 Programmable Flag   Endpoint 8 Programmable Flag   Endpoint 2 Empty Flag   Endpoint 4 Empty Flag   Endpoint 6 Empty Flag   Endpoint 8 Empty Flag   Endpoint 2 Full Flag   3 4 5 6 7 8 9 10   11   12   13   14   Endpoint 4 Full Flag   Endpoint 6 Full Flag   Endpoint 8 Full Flag   GPIF Operation Complete   GPIF Waveform   If Autovectoring is enabled (AV4EN = 1 in the INTSET-UP   register), the FX 2LP substitutes its INT4VEC byte. Therefore, if   the high byte (“page”) of a jump-table address is preloaded at   location 0x0054, the automatically inserted INT4VEC byte at   0x0055 directs the jump to the correct address out of the 14   addresses within the page. When the ISR occurs, the FX2LP   pushes the program counter onto its stack then jumps to address   0x0053, where it expects to find a “jump” instruction to the ISR   Interrupt service routine.   the CY7C680xxA the reset period must allow for the stabilization   of the crystal and the PLL. This reset period must be approxi-   mately 5 ms after VCC reaches 3.0V. If the crystal input pin is   driven by a clock signal the internal PLL stabilizes in 200 μs after   [3]   VCC has reached 3.0V.   applied during operation. A power on reset is defined as the time   reset that is asserted while power is being applied to the circuit.   A powered reset is when the FX2LP powered on and operating   and the RESET# pin is asserted.   3.9 Reset and Wakeup   Cypress provides an application note which describes and   recommends power on reset implementation. For more infor-   mation about reset implementation for the FX2 family of products   3.9.1 Reset Pin   The input pin, RESET#, resets the FX2LP when asserted. This   pin has hysteresis and is active LOW. When a crystal is used with   Note   3. If the external clock is powered at the same time as the CY7C680xxA and has a stabilization wait period, it must be added to the 200 μs.   Document #: 38-08032 Rev. *L   Page 6 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   Figure 2. Reset Timing Plots   RESET#   RESET#   V IL   V IL   3.3V   3.0V   3.3V   VCC   VCC   0V   0V   T T RESET   RESET   Power on Reset   Powered Reset   Table 5. Reset Timing Values   3.10 Program/Data RAM   Condition   T RESET   3.10.1 Size   Power on Reset with Crystal   5 ms   The FX2LP has 16 KBytes of internal program/data RAM, where   PSEN#/RD# signals are internally ORed to enable the 8051 to   access it as both program and data memory. No USB control   registers appear in this space.   Power on Reset with External 200 μs + Clock stability time   Clock   Powered Reset   200 μs   Two memory maps are shown in the following diagrams:   3.9.2 Wakeup Pins   The 8051 puts itself and the rest of the chip into a power down   mode by setting PCON.0 = 1. This stops the oscillator and PLL.   When WAKEUP is asserted by external logic the oscillator   restarts after the PLL stabilizes, and the 8051 receives a wakeup   interrupt. This applies whether or not FX2LP is connected to the   USB.   3.10.2 Internal Code Memory, EA = 0   This mode implements the internal 16 KByte block of RAM   (starting at 0) as combined code and data memory. When   external RAM or ROM is added, the external read and write   strobes are suppressed for memory spaces that exist inside the   chip. This enables the user to connect a 64 KByte memory   without requiring address decodes to keep clear of internal   memory spaces.   The FX2LP exits the power down (USB suspend) state using one   of the following methods:   ■ USB bus activity (if D+/D– lines are left floating, noise on these   lines may indicate activity to the FX2LP and initiate a wakeup)   Only the internal 16 KBytes and scratch pad 0.5 KBytes RAM   spaces have the following access:   ■ External logic asserts the WAKEUP pin   ■ USB download   ■ USB upload   ■ External logic asserts the PA3/WU2 pin   The second wakeup pin, WU2, can also be configured as a   general purpose IO pin. This enables a simple external R-C   network to be used as a periodic wakeup source. WAKEUP is by   default active LOW.   ■ Setup data pointer   2 ■ I C interface boot load.   3.10.3 External Code Memory, EA = 1   The bottom 16 KBytes of program memory is external and   therefore the bottom 16 KBytes of internal RAM is accessible   only as a data memory.   Document #: 38-08032 Rev. *L   Page 7 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   Figure 3. Internal Code Memory, EA = 0   Inside FX2LP   Outside FX2LP   FFFF   7.5 KBytes   USB regs and   4K FIFO buffers   (OK to populate   data memory   here—RD#/WR#   strobes are not   active)   (RD#,WR#)   E200   E1FF   0.5 KBytes RAM   Data (RD#,WR#)*   E000   48 KBytes   External   Code   Memory   (PSEN#)   40 KBytes   External   Data   Memory   (RD#,WR#)   3FFF   (Ok to populate   data memory   here—RD#/WR#   strobes are not   active)   (OK to populate   program   memory here—   PSEN# strobe   is not active)   16 KBytes RAM   Code and Data   (PSEN#,RD#,WR#)*   0000   Data   2 Code   *SUDPTR, USB upload/download, I C interface boot access   Document #: 38-08032 Rev. *L   Page 8 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   Figure 4. External Code Memory, EA = 1   Inside FX2LP Outside FX2LP   FFFF   7.5 KBytes   (OK to populate   USB regs and   4K FIFO buffers   (RD#,WR#)   data memory   here—RD#/WR#   strobes are not   active)   E200   E1FF   0.5 KBytes RAM   Data (RD#,WR#)*   E000   40 KBytes   External   Data   Memory   (RD#,WR#)   64 KBytes   External   Code   Memory   (PSEN#)   3FFF   (Ok to populate   data memory   here—RD#/WR#   strobes are not   active)   16 KBytes   RAM   Data   (RD#,WR#)*   0000   Data   2 Code   *SUDPTR, USB upload/download, I C interface boot access   3.11 Register Addresses   FFFF   4 KBytes EP2-EP8   buffers   (8 x 512)   F000   EFFF   2 KBytes RESERVED   E800   E7FF   64 Bytes EP1IN   E7C0   E7BF   E780   64 Bytes EP1OUT   E77F   E740   64 Bytes EP0 IN/OUT   E73F   64 Bytes RESERVED   E700   E6FF   8051 Addressable Registers   (512)   E500   E4FF   Reserved (128)   E480   E47F   128 bytes GPIF Waveforms   E400   E3FF   E200   Reserved (512)   E1FF   512 bytes   8051 xdata RAM   E000   Document #: 38-08032 Rev. *L   Page 9 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   3.12.3 Setup Data Buffer   3.12 Endpoint RAM   A separate 8 byte buffer at 0xE6B8-0xE6BF holds the setup data   from a CONTROL transfer.   3.12.1 Size   ■ 3× 64 bytes   (Endpoints 0 and 1)   3.12.4 Endpoint Configurations (High -speed Mode)   ■ 8 × 512 bytes (Endpoints 2, 4, 6, 8)   Endpoints 0 and 1 are the same for every configuration. Endpoint   0 is the only CONTROL endpoint, and endpoint 1 can be either   BULK or INTERRUPT.   3.12.2 Organization   ■ EP0   The endpoint buffers can be configured in any 1 of the 12 config-   urations shown in the vertical columns. When operating in the   full-speed BULK mode only the first 64 bytes of each buffer are   used. For example, in high-speed, the max packet size is 512   bytes but in full-speed it is 64 bytes. Even though a buffer is   configured to a 512 byte buffer, in full-speed only the first 64   bytes are used. The unused endpoint buffer space is not   available for other operations. An example endpoint configu-   ration is the EP2–1024 double buffered; EP6–512 quad buffered   (column 8).   ■ Bidirectional endpoint zero, 64 byte buffer   ■ EP1IN, EP1OUT   ■ 64 byte buffers, bulk or interrupt   ■ EP2, 4, 6, 8   ■ Eight 512 byte buffers, bulk, interrupt, or isochronous. EP4 and   EP8 can be double buffered; EP2 and 6 can be either double,   triple, or quad buffered. For high-speed endpoint configuration   Figure 5. Endpoint Configuration   64   64   64   64   64   64   64   64   64   64   64   64   64   64   64   64   64   64   64   64   64   64   64   64   64   64   64   64   64   64   64   64   64   64   64   64   EP0 IN&OUT   EP1 IN   EP1 OUT   EP2   512   EP2   EP2   EP2 EP2   EP2 EP2   EP2   512   EP2   EP2   512   EP2   EP2   512   512   512   512   512   512   512   1024   1024   1024   1024   512   512   512   512   512   1024   EP4   512   EP4 EP4   512   512   512   512   512   512   512   512   EP6   1024   1024   1024   1024   1024   512   512   512   512   EP6   512   EP6   512   EP6   EP6   512   EP6   EP6   512   EP6   EP6 EP6   512   512   1024   1024   512   512   1024   1024   1024   512   512   512   512   512   512   EP8   512   EP8   512   EP8   512   EP8   512   EP8   512   1024   512   512   512   512   512   512   1024   1024   1024   512   512   512   512   512   10   11   12   9 4 5 8 1 2 3 6 7 Document #: 38-08032 Rev. *L   Page 10 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   3.12.5 Default Full-Speed Alternate Settings   Table 6. Default Full-Speed Alternate Settings   Alternate Setting   0 64   0 1 2 3 ep0   64   64   64   ep1out   ep1in   ep2   64 bulk   64 bulk   64 int   64 int   64 int   0 64 int   0 64 bulk out (2×)   64 bulk out (2×)   64 bulk in (2×)   64 bulk in (2×)   64 int out (2×)   64 bulk out (2×)   64 int in (2×)   64 iso out (2×)   64 bulk out (2×)   64 iso in (2×)   64 bulk in (2×)   ep4   0 ep6   0 ep8   0 64 bulk in (2×)   3.12.6 Default High-Speed Alternate Settings   Table 7. Default High-Speed Alternate Settings   Alternate Setting   0 1 2 3 ep0   64   0 64   64   64   ep1out   ep1in   ep2   512 bulk   512 bulk   64 int   64 int   0 64 int   64 int   0 512 bulk out (2×)   512 bulk out (2×)   512 bulk in (2×)   512 bulk in (2×)   512 int out (2×)   512 bulk out (2×)   512 int in (2×)   512 bulk in (2×)   512 iso out (2×)   512 bulk out (2×)   512 iso in (2×)   512 bulk in (2×)   ep4   0 ep6   0 ep8   0 8051-IO domain. The blocks can be configured as single,   double, triple, or quad buffered as previously shown.   3.13 External FIFO Interface   3.13.1 Architecture   The IO control unit implements either an internal master (M for   master) or external master (S for Slave) interface.   The FX2LP slave FIFO architecture has eight 512 byte blocks in   the endpoint RAM that directly serve as FIFO memories and are   controlled by FIFO control signals (such as IFCLK, SLCS#,   SLRD, SLWR, SLOE, PKTEND, and flags).   In Master (M) mode, the GPIF internally controls FIFOADR[1..0]   to select a FIFO. The RDY pins (two in the 56-pin package, six   in the 100-pin and 128-pin packages) can be used as flag inputs   from an external FIFO or other logic if desired. The GPIF can be   run from either an internally derived clock or externally supplied   clock (IFCLK), at a rate that transfers data up to 96 Megabytes/s   (48-MHz IFCLK with 16-bit interface).   In operation, some of the eight RAM blocks fill or empty from the   SIE, while the others are connected to the IO transfer logic. The   transfer logic takes two forms, the GPIF for internally generated   control signals and the slave FIFO interface for externally   controlled transfers.   In Slave (S) mode, the FX2LP accepts either an internally   derived clock or externally supplied clock (IFCLK, max frequency   48 MHz) and SLCS#, SLRD, SLWR, SLOE, PKTEND signals   from external logic. When using an external IFCLK, the external   clock must be present before switching to the external clock with   the IFCLKSRC bit. Each endpoint can individually be selected   for byte or word operation by an internal configuration bit and a   Slave FIFO Output Enable signal SLOE enables data of the   selected width. External logic must ensure that the output enable   signal is inactive when writing data to a slave FIFO. The slave   interface can also operate asynchronously, where the SLRD and   SLWR signals act directly as strobes, rather than a clock qualifier   as in synchronous mode. The signals SLRD, SLWR, SLOE and   PKTEND are gated by the signal SLCS#.   3.13.2 Master/Slave Control Signals   The FX2LP endpoint FIFOS are implemented as eight physically   distinct 256x16 RAM blocks. The 8051/SIE can switch any of the   RAM blocks between two domains, the USB (SIE) domain and   the 8051-IO Unit domain. This switching is done virtually instan-   taneously, giving essentially zero transfer time between “USB   FIFOS” and “Slave FIFOS.” Because they are physically the   same memory no bytes are actually transferred between buffers.   At any given time, some RAM blocks are filling/emptying with   USB data under SIE control, while other RAM blocks are   available to the 8051, the IO control unit or both. The RAM blocks   operate as single port in the USB domain, and dual port in the   Notes   4. “0” means “not implemented.”   5. “2×” means “double buffered.”   6. Even though these buffers are 64 bytes, they are reported as 512 for USB 2.0 compliance. The user must never transfer packets larger than 64 bytes to EP1.   Document #: 38-08032 Rev. *L   Page 11 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   3.13.3 GPIF and FIFO Clock Rates   An 8051 register bit selects one of two frequencies for the inter-   nally supplied interface clock: 30 MHz and 48 MHz. Alternatively,   an externally supplied clock of 5 MHz–48 MHz feeding the IFCLK   pin can be used as the interface clock. IFCLK can be configured   to function as an output clock when the GPIF and FIFOs are   internally clocked. An output enable bit in the IFCONFIG register   turns this clock output off, if desired. Another bit within the   IFCONFIG register inverts the IFCLK signal whether internally or   externally sourced.   The EZ-USB can calculate ECCs (Error Correcting Codes) on   data that passes across its GPIF or Slave FIFO interfaces. There   are two ECC configurations: Two ECCs, each calculated over   256 bytes (SmartMedia Standard); and one ECC calculated over   512 bytes.   The ECC can correct any one-bit error or detect any two-bit error.   3.15.1 ECC Implementation   The two ECC configurations are selected by the ECCM bit:   ECCM = 0   3.14 GPIF   The GPIF is a flexible 8-bit or 16-bit parallel interface driven by   a user programmable finite state machine. It enables the   CY7C68013A/15A to perform local bus mastering and can   implement a wide variety of protocols such as ATA interface,   printer parallel port, and Utopia.   Two 3 byte ECCs, each calculated over a 256 byte block of data.   This configuration conforms to the SmartMedia Standard.   Write any value to ECCRESET, then pass data across the GPIF   or Slave FIFO interface. The ECC for the first 256 bytes of data   is calculated and stored in ECC1. The ECC for the next 256 bytes   is stored in ECC2. After the second ECC is calculated, the values   in the ECCx registers do not change until ECCRESET is written   again, even if more data is subsequently passed across the   interface.   The GPIF has six programmable control outputs (CTL), nine   address outputs (GPIFADRx), and six general-purpose ready   inputs (RDY). The data bus width can be 8 or 16 bits. Each GPIF   vector defines the state of the control outputs, and determines   what state a ready input (or multiple inputs) must be before   proceeding. The GPIF vector can be programmed to advance a   FIFO to the next data value, advance an address, etc. A   sequence of the GPIF vectors make up a single waveform that   is executed to perform the desired data move between the   FX2LP and the external device.   ECCM = 1   One 3 byte ECC calculated over a 512 byte block of data.   Write any value to ECCRESET then pass data across the GPIF   or Slave FIFO interface. The ECC for the first 512 bytes of data   is calculated and stored in ECC1; ECC2 is unused. After the   ECC is calculated, the values in ECC1 do not change even if   more data is subsequently passed across the interface, till   ECCRESET is written again.   3.14.1 Six Control OUT Signals   The 100-pin and 128-pin packages bring out all six Control   Output pins (CTL0-CTL5). The 8051 programs the GPIF unit to   define the CTL waveforms. The 56-pin package brings out three   of these signals, CTL0–CTL2. CTLx waveform edges can be   programmed to make transitions as fast as once per clock (20.8   ns using a 48-MHz clock).   3.16 USB Uploads and Downloads   The core has the ability to directly edit the data contents of the   internal 16 KByte RAM and of the internal 512 byte scratch pad   RAM via a vendor specific command. This capability is normally   used when soft downloading user code and is available only to   and from internal RAM, only when the 8051 is held in reset. The   available RAM spaces are 16 KBytes from 0x0000–0x3FFF   (code/data) and 512 bytes from 0xE000–0xE1FF (scratch pad   3.14.2 Six Ready IN Signals   The 100-pin and 128-pin packages bring out all six Ready inputs   (RDY0–RDY5). The 8051 programs the GPIF unit to test the   RDY pins for GPIF branching. The 56-pin package brings out two   of these signals, RDY0–1.   data RAM).   3.17 Autopointer Access   3.14.3 Nine GPIF Address OUT Signals   FX2LP provides two identical autopointers. They are similar to   the internal 8051 data pointers but with an additional feature:   they can optionally increment after every memory access. This   capability is available to and from both internal and external   RAM. The autopointers are available in external FX2LP registers   under control of a mode bit (AUTOPTRSET-UP.0). Using the   external FX2LP autopointer access (at 0xE67B – 0xE67C)   enables the autopointer to access all internal and external RAM   to the part.   Nine GPIF address lines are available in the 100-pin and 128-pin   packages, GPIFADR[8..0]. The GPIF address lines enable   indexing through up to a 512 byte block of RAM. If more address   lines are needed IO port pins are used.   3.14.4 Long Transfer Mode   In the master mode, the 8051 appropriately sets GPIF trans-   action count registers (GPIFTCB3, GPIFTCB2, GPIFTCB1, or   32   GPIFTCB0) for unattended transfers of up to 2 transactions.   Also, the autopointers can point to any FX2LP register or   endpoint buffer space. When autopointer access to external   memory is enabled, location 0xE67B and 0xE67C in XDATA and   code space cannot be used.   The GPIF automatically throttles data flow to prevent under or   overflow until the full number of requested transactions   complete. The GPIF decrements the value in these registers to   represent the current status of the transaction.   Notes   7. To use the ECC logic, the GPIF or Slave FIFO interface must be configured for byte-wide operation.   8. After the data has been downloaded from the host, a “loader” can execute from internal RAM to transfer downloaded data to external memory.   Document #: 38-08032 Rev. *L   Page 12 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   2 2 3.18.2 I C Interface Boot Load Access   3.18 I C Controller   2 2 At power on reset the I C interface boot loader loads the   FX2LP has one I C port that is driven by two internal controllers,   VID/PID/DID configuration bytes and up to 16 KBytes of   program/data. The available RAM spaces are 16 KBytes from   0x0000–0x3FFF and 512 bytes from 0xE000–0xE1FF. The 8051   is in reset. I C interface boot loads only occur after power on   reset.   one that automatically operates at boot time to load VID/PID/DID   and configuration information, and another that the 8051 uses   when running to control external I C devices. The I C port   operates in master mode only.   2 2 2 2 3.18.1 I C Port Pins   2 3.18.3 I C Interface General-Purpose Access   2 The I C pins SCL and SDA must have external 2.2 kΩ pull up   2 The 8051 can control peripherals connected to the I C bus using   resistors even if no EEPROM is connected to the FX2LP.   External EEPROM device address pins must be configured   2 2 the I CTL and I2DAT registers. FX2LP provides I C master   2 control only, it is never an I C slave.   Table 8. Strap Boot EEPROM Address Lines to These Values   3.19 Compatible with Previous Generation   EZ-USB FX2   Bytes   16   Example EEPROM   A2   N/A   0 A1   N/A   0 A0   N/A   0 The EZ-USB FX2LP is form, fit and with minor exceptions   functionally compatible with its predecessor, the EZ-USB FX2.   This makes for an easy transition for designers wanting to   upgrade their systems from the FX2 to the FX2LP. The pinout   and package selection are identical and a vast majority of   firmware previously developed for the FX2 functions in the   FX2LP.   24LC00   128   256   4K   24LC01   24LC02   24LC32   24LC64   24LC128   0 0 0 0 0 1 8K   0 0 1 16K   0 0 1 For designers migrating from the FX2 to the FX2LP a change in   the bill of material and review of the memory allocation (due to   increased internal memory) is required. For more information   about migrating from EZ-USB FX2 to EZ-USB FX2LP, see the   application note titled Migrating from EZ-USB FX2 to EZ-USB   Table 9. Part Number Conversion Table   EZ-USB FX2   Part Number   EZ-USB FX2LP   Part Number   Package Description   CY7C68013-56PVC   CY7C68013-56PVCT   CY7C68013-56LFC   CY7C68013-100AC   CY7C68013-128AC   CY7C68013A-56PVXC or CY7C68014A-56PVXC 56-pin SSOP   CY7C68013A-56PVXCT or CY7C68014A-56PVXCT 56-pin SSOP – Tape and Reel   CY7C68013A-56LFXC or CY7C68014A-56LFXC 56-pin QFN   CY7C68013A-100AXC or CY7C68014A-100AXC 100-pin TQFP   CY7C68013A-128AXC or CY7C68014A-128AXC 128-pin TQFP   Note   9. This EEPROM does not have address pins.   Document #: 38-08032 Rev. *L   Page 13 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   3.20 CY7C68013A/14A and CY7C68015A/16A   Differences   4. Pin Assignments   types. The following pages illustrate the individual pin diagrams,   plus a combination diagram showing which of the full set of   signals are available in the 128-pin, 100-pin, and 56-pin   packages.   CY7C68013A is identical to CY7C68014A in form, fit, and   functionality. CY7C68015A is identical to CY7C68016A in form,   fit, and functionality. CY7C68014A and CY7C68016A have a   lower suspend current than CY7C68013A and CY7C68015A   respectively and are ideal for power sensitive battery applica-   tions.   The signals on the left edge of the 56-pin package in Figure 6   on page 15 are common to all versions in the FX2LP family with   the noted differences between the CY7C68013A/14A and the   CY7C68015A/16A.   CY7C68015A and CY7C68016A are available in 56-pin QFN   package only. Two additional GPIO signals are available on the   CY7C68015A and CY7C68016A to provide more flexibility when   neither IFCLK or CLKOUT are needed in the 56-pin package.   Three modes are available in all package versions: Port, GPIF   master, and Slave FIFO. These modes define the signals on the   right edge of the diagram. The 8051 selects the interface mode   using the IFCONFIG[1:0] register bits. Port mode is the power on   default configuration.   USB developers wanting to convert their FX2 56-pin application   to a bus-powered system directly benefit from these additional   signals. The two GPIOs give developers the signals they need   for the power control circuitry of their bus-powered application   without pushing them to a high pincount version of FX2LP.   The 100-pin package adds functionality to the 56-pin package by   adding these pins:   The CY7C68015A is only available in the 56-pin QFN package   ■ PORTC or alternate GPIFADR[7:0] address signals   Table 10. CY7C68013A/14A and CY7C68015A/16A Pin Dif-   ferences   ■ PORTE or alternate GPIFADR[8] address signal and seven   additional 8051 signals   CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A   ■ Three GPIF Control signals   IFCLK   PE0   PE1   ■ Four GPIF Ready signals   CLKOUT   ■ Nine 8051 signals (two USARTs, three timer inputs, INT4,and   INT5#)   ■ BKPT, RD#, WR#.   The 128-pin package adds the 8051 address and data buses   plus control signals. Note that two of the required signals, RD#   and WR#, are present in the 100-pin version.   In the 100-pin and 128-pin versions, an 8051 control bit can be   set to pulse the RD# and WR# pins when the 8051 reads   from/writes to PORTC. This feature is enabled by setting   PORTCSTB bit in CPUCS register.   Section 10.5 displays the timing diagram of the read and write   strobing function on accessing PORTC.   Document #: 38-08032 Rev. *L   Page 14 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   Figure 6. Signal   GPIF Master   Port   Slave FIFO   PD7   PD6   PD5   PD4   PD3   PD2   PD1   PD0   PB7   PB6   PB5   PB4   PB3   PB2   PB1   PB0   FD[15]   FD[14]   FD[13]   FD[12]   FD[11]   FD[10]   FD[9]   FD[8]   FD[7]   FD[6]   FD[5]   FD[4]   FD[3]   FD[2]   FD[1]   FD[0]   FD[15]   FD[14]   FD[13]   FD[12]   FD[11]   FD[10]   FD[9]   FD[8]   FD[7]   FD[6]   FD[5]   FD[4]   FD[3]   FD[2]   FD[1]   FD[0]   XTALIN   XTALOUT   RESET#   WAKEUP#   SCL   SDA   56   SLRD   SLWR   RDY0   RDY1   **PE0 replaces IFCLK   & PE1 replaces CLKOUT   on CY7C68015A/16A   FLAGA   FLAGB   FLAGC   CTL0   CTL1   CTL2   **PE0   **PE1   INT0#/PA0   INT1#/PA1   PA2   WU2/PA3   PA4   INT0#/ PA0   INT1#/ PA1   SLOE   INT0#/PA0   INT1#/PA1   PA2   WU2/PA3   PA4   PA5   PA6   IFCLK   CLKOUT   WU2/PA3   FIFOADR0   FIFOADR1   PKTEND   DPLUS   DMINUS   PA5   PA6   PA7   PA7/FLAGD/SLCS#   PA7   CTL3   CTL4   CTL5   RDY2   RDY3   RDY4   RDY5   100   BKPT   PORTC7/GPIFADR7   PORTC6/GPIFADR6   PORTC5/GPIFADR5   PORTC4/GPIFADR4   PORTC3/GPIFADR3   PORTC2/GPIFADR2   PORTC1/GPIFADR1   PORTC0/GPIFADR0   RxD0   TxD0   RxD1   TxD1   INT4   INT5#   T2   PE7/GPIFADR8   PE6/T2EX   PE5/INT6   PE4/RxD1OUT   PE3/RxD0OUT   PE2/T2OUT   PE1/T1OUT   PE0/T0OUT   T1   T0   RD#   WR#   CS#   OE#   PSEN#   D7   D6   D5   D4   D3   D2   D1   D0   A15   A14   A13   A12   A11   A10   A9   128   A8   A7   A6   A5   A4   A3   EA   A2   A1   A0   Document #: 38-08032 Rev. *L   Page 15 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   Figure 7. CY7C68013A/CY7C68014A 128-pin TQFP Pin Assignment   1 102   101   100   99   98   97   96   95   94   93   92   91   90   89   88   87   86   85   84   83   82   81   80   79   78   77   76   75   74   73   72   71   70   69   68   67   66   65   CLKOUT   VCC   GND   PD0/FD8   *WAKEUP   VCC   2 3 4 RDY0/*SLRD   RDY1/*SLWR   RDY2   RDY3   RDY4   RDY5   AVCC   XTALOUT   XTALIN   AGND   NC   RESET#   5 CTL5   6 A3   A2   A1   A0   7 8 9 10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   GND   PA7/*FLAGD/SLCS#   PA6/*PKTEND   PA5/FIFOADR1   PA4/FIFOADR0   D7   NC   NC   D6   D5   AVCC   DPLUS   DMINUS   AGND   A11   A12   A13   A14   A15   VCC   GND   INT4   T0   T1   T2   CY7C68013A/CY7C68014A   128-pin TQFP   PA3/*WU2   PA2/*SLOE   PA1/INT1#   PA0/INT0#   VCC   GND   PC7/GPIFADR7   PC6/GPIFADR6   PC5/GPIFADR5   PC4/GPIFADR4   PC3/GPIFADR3   PC2/GPIFADR2   PC1/GPIFADR1   PC0/GPIFADR0   CTL2/*FLAGC   CTL1/*FLAGB   CTL0/*FLAGA   VCC   *IFCLK   RESERVED   BKPT   EA   SCL   SDA   CTL4   CTL3   GND   OE#   * denotes programmable polarity   Document #: 38-08032 Rev. *L   Page 16 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   Figure 8. CY7C68013A/CY7C68014A 100-pin TQFP Pin Assignment   1 80   79   78   77   76   75   74   73   72   71   70   69   68   67   66   65   64   63   62   61   60   59   58   57   56   55   54   53   52   51   VCC   GND   PD0/FD8   *WAKEUP   VCC   RESET#   2 3 RDY0/*SLRD   RDY1/*SLWR   RDY2   RDY3   RDY4   RDY5   AVCC   XTALOUT   XTALIN   AGND   NC   4 5 CTL5   GND   6 7 PA7/*FLAGD/SLCS#   PA6/*PKTEND   PA5/FIFOADR1   PA4/FIFOADR0   PA3/*WU2   8 9 10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   PA2/*SLOE   PA1/INT1#   PA0/INT0#   NC   NC   CY7C68013A/CY7C68014A   100-pin TQFP   VCC   GND   AVCC   DPLUS   DMINUS   AGND   VCC   GND   INT4   T0   T1   PC7/GPIFADR7   PC6/GPIFADR6   PC5/GPIFADR5   PC4/GPIFADR4   PC3/GPIFADR3   PC2/GPIFADR2   PC1/GPIFADR1   PC0/GPIFADR0   CTL2/*FLAGC   CTL1/*FLAGB   CTL0/*FLAGA   VCC   T2   *IFCLK   RESERVED   BKPT   SCL   CTL4   CTL3   SDA   * denotes programmable polarity   Document #: 38-08032 Rev. *L   Page 17 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   Figure 9. CY7C68013A/CY7C68014A 56-pin SSOP Pin Assignment   CY7C68013A/CY7C68014A   56-pin SSOP   1 56   55   54   53   52   51   50   49   48   47   46   45   44   43   42   41   40   39   38   37   36   35   34   33   32   31   30   29   PD5/FD13   PD4/FD12   PD3/FD11   PD2/FD10   PD1/FD9   PD0/FD8   *WAKEUP   VCC   2 PD6/FD14   PD7/FD15   GND   CLKOUT   VCC   3 4 5 6 7 GND   8 RDY0/*SLRD   RDY1/*SLWR   AVCC   XTALOUT   XTALIN   AGND   RESET#   9 GND   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   PA7/*FLAGD/SLCS#   PA6/PKTEND   PA5/FIFOADR1   PA4/FIFOADR0   PA3/*WU2   PA2/*SLOE   PA1/INT1#   PA0/INT0#   VCC   AVCC   DPLUS   DMINUS   AGND   VCC   GND   *IFCLK   RESERVED   SCL   SDA   VCC   CTL2/*FLAGC   CTL1/*FLAGB   CTL0/*FLAGA   GND   VCC   GND   PB7/FD7   PB6/FD6   PB5/FD5   PB4/FD4   PB0/FD0   PB1/FD1   PB2/FD2   PB3/FD3   * denotes programmable polarity   Document #: 38-08032 Rev. *L   Page 18 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   Figure 10. CY7C68013A/14A/15A/16A 56-pin QFN Pin Assignment   RESET#   RDY0/*SLRD   RDY1/*SLWR   AVCC   1 2 42   41   40   39   38   37   36   35   34   33   32   31   30   GND   PA7/*FLAGD/SLCS#   PA6/*PKTEND   PA5/FIFOADR1   PA4/FIFOADR0   PA3/*WU2   3 XTALOUT   XTALIN   4 CY7C68013A/CY7C68014A   5 & AGND   6 CY7C68015A/CY7C68016A   AVCC   7 PA2/*SLOE   PA1/INT1#   DPLUS   8 56-pin QFN   DMINUS   AGND   9 PA0/INT0#   10   11   12   13   14   VCC   VCC   CTL2/*FLAGC   CTL1/*FLAGB   GND   *IFCLK/**PE0   RESERVED   29 CTL0/*FLAGA   * denotes programmable polarity   ** denotes CY7C68015A/CY7C68016A pinout   Document #: 38-08032 Rev. *L   Page 19 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   Figure 11. CY7C68013A 56-pin VFBGA Pin Assignment - Top View   1 2 3 4 5 6 7 8 1A   1B   1C   2A   2B   2C   3A   3B   3C   4A   4B   4C   5A   5B   5C   6A   6B   6C   7A   7B   7C   8A   8B   8C   A B C D 1D   2D   7D   8D   1E   1F   1G   1H   2E   2F   2G   2H   7E   7F   7G   7H   8E   8F   8G   8H   E 3F   4F   5F   6F   F G H 3G   3H   4G   4H   5G   5H   6G   6H   Document #: 38-08032 Rev. *L   Page 20 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   4.1 CY7C68013A/15A Pin Descriptions   The FX2LP Pin Descriptions follows.   Table 11. FX2LP Pin Descriptions   128 100   56   56 56 VF-   Name   AVCC   Type Default   Description   TQFP TQFP SSOP QFN BGA   10   17   9 10   14   3 7 2D   1D   Power   N/A Analog VCC. Connect this pin to 3.3V power source.   This signal provides power to the analog section of the   chip.   16   AVCC   Power   N/A Analog VCC. Connect this pin to 3.3V power source.   This signal provides power to the analog section of the   chip.   13   20   12   19   13   17   6 2F   1F   AGND   AGND   Ground   Ground   N/A AnalogGround. Connecttogroundwithasshortapath   as possible.   10   N/A AnalogGround. Connecttogroundwithasshortapath   as possible.   19   18   18   17   16   15   9 8 1E   2E   DMINUS   DPLUS   A0   IO/Z   IO/Z   Z Z L L L L L L L L L L L L L L L L Z Z Z Z Z Z Z Z H USB D– Signal. Connect to the USB D– signal.   USB D+ Signal. Connect to the USB D+ signal.   94   Output   Output   Output   Output   Output   Output   Output   Output   Output   Output   Output   Output   Output   Output   Output   Output   IO/Z   8051 Address Bus. This bus is driven at all times.   When the 8051 is addressing internal RAM it reflects   the internal address.   95   A1   96   A2   97   A3   117   118   119   120   126   127   128   21   A4   A5   A6   A7   A8   A9   A10   A11   A12   A13   A14   A15   D0   22   23   24   25   59   8051 Data Bus. This bidirectional bus is high   impedance when inactive, input for bus reads, and   output for bus writes. The data bus is used for external   8051 program and data memory. The data bus is active   only for external bus accesses, and is driven LOW in   suspend.   60   D1   IO/Z   61   D2   IO/Z   62   D3   IO/Z   63   D4   IO/Z   86   D5   IO/Z   87   D6   IO/Z   88   D7   IO/Z   39   PSEN#   Output   Program Store Enable. This active-LOW signal   indicates an 8051 code fetch from external memory. It   is active for program memory fetches from   0x4000–0xFFFF when the EA pin is LOW, or from   0x0000–0xFFFF when the EA pin is HIGH.   Note   10. Unused inputs must not be left floating. Tie either HIGH or LOW as appropriate. Outputs should only be pulled up or down to ensure signals at power up and in   standby. Note also that no pins should be driven while the device is powered down.   Document #: 38-08032 Rev. *L   Page 21 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   Table 11. FX2LP Pin Descriptions (continued)   128 100 56 56 56 VF-   Name   BKPT   Type Default   Description   TQFP TQFP SSOP QFN BGA   34   28   Output   L Breakpoint. Thispingoesactive(HIGH)whenthe8051   address bus matches the BPADDRH/L registers and   breakpoints are enabled in the BREAKPT register   (BPEN = 1). If the BPPULSE bit in the BREAKPT   register is HIGH, this signal pulses HIGH for eight   12-/24-/48-MHz clocks. If the BPPULSE bit is LOW, the   signal remains HIGH until the 8051 clears the BREAK   bit (by writing 1 to it) in the BREAKPT register.   99   35   77   11   49   12   42   8B   1C   RESET#   EA   Input   Input   N/A Active LOW Reset. Resets the entire chip. See section   3.9 ”Reset and Wakeup” on page 6 for more details.   N/A External Access. This pin determines where the 8051   fetches code between addresses 0x0000 and 0x3FFF.   If EA = 0 the 8051 fetches this code from its internal   RAM. IF EA = 1 the 8051 fetches this code from external   memory.   12   5 XTALIN   Input   N/A Crystal Input. Connect this signal to a 24-MHz   parallel-resonant, fundamental mode crystal and load   capacitor to GND.   It is also correct to drive XTALIN with an external   24-MHz square wave derived from another clock   source. When driving from an external source, the   driving signal should be a 3.3V square wave.   11   1 10   11   5 4 2C   2B   XTALOUT   Output   O/Z   N/A Crystal Output. Connect this signal to a 24-MHz   parallel-resonant, fundamental mode crystal and load   capacitor to GND.   If an external clock is used to drive XTALIN, leave this   pin open.   100   54   CLKOUT on   CY7C68013A   and   12 MHz CLKOUT: 12-, 24- or 48-MHz clock, phase locked to the   24-MHz input clock. The 8051 defaults to 12-MHz   operation. The 8051 may three-state this output by   setting CPUCS.1 = 1.   CY7C68014A   ------------------ ----------- ---------- ------------------------------------------------------------------------   PE1 on   IO/Z   I PE1 is a bidirectional IO port pin.   CY7C68015A   and   CY7C68016A   Port A   82   67   68   69   40   41   42   33   34   35   8G   6G   8F   PA0 or   INT0#   IO/Z   I Multiplexed pin whose function is selected by   (PA0) PORTACFG.0   PA0 is a bidirectional IO port pin.   INT0# is the active-LOW 8051 INT0 interrupt input   signal, which is either edge triggered (IT0 = 1) or level   triggered (IT0 = 0).   83   84   PA1 or   INT1#   IO/Z   IO/Z   I Multiplexed pin whose function is selected by:   (PA1) PORTACFG.1   PA1 is a bidirectional IO port pin.   INT1# is the active-LOW 8051 INT1 interrupt input   signal, which is either edge triggered (IT1 = 1) or level   triggered (IT1 = 0).   PA2 or   I Multiplexed pin whose function is selected by two bits:   SLOE or   (PA2) IFCONFIG[1:0].   PA2 is a bidirectional IO port pin.   SLOE is an input-only output enable with program-   mable polarity (FIFOPINPOLAR.4) for the slave FIFOs   connected to FD[7..0] or FD[15..0].   Document #: 38-08032 Rev. *L   Page 22 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   Table 11. FX2LP Pin Descriptions (continued)   128 100 56 56 56 VF-   Name   Type Default   Description   TQFP TQFP SSOP QFN BGA   85   70   43   36   7F   PA3 or   WU2   IO/Z   I Multiplexed pin whose function is selected by:   (PA3) WAKEUP.7 and OEA.3   PA3 is a bidirectional IO port pin.   WU2 is an alternate source for USB Wakeup, enabled   by WU2EN bit (WAKEUP.1) and polarity set by   WU2POL (WAKEUP.4). If the 8051 is in suspend and   WU2EN = 1, a transition on this pin starts up the oscil-   lator and interrupts the 8051 to enable it to exit the   suspend mode. Asserting this pin inhibits the chip from   suspending, if WU2EN = 1.   89   90   91   71   72   73   44   45   46   37   38   39   6F   8C   7C   PA4 or   FIFOADR0   IO/Z   IO/Z   IO/Z   I Multiplexed pin whose function is selected by:   (PA4) IFCONFIG[1..0].   PA4 is a bidirectional IO port pin.   FIFOADR0 is an input-only address select for the slave   FIFOs connected to FD[7..0] or FD[15..0].   PA5 or   FIFOADR1   I Multiplexed pin whose function is selected by:   (PA5) IFCONFIG[1..0].   PA5 is a bidirectional IO port pin.   FIFOADR1 is an input-only address select for the slave   FIFOs connected to FD[7..0] or FD[15..0].   PA6 or   PKTEND   I Multiplexed pin whose function is selected by the   (PA6) IFCONFIG[1:0] bits.   PA6 is a bidirectional IO port pin.   PKTEND is an input used to commit the FIFO packet   data to the endpoint and whose polarity is program-   mable via FIFOPINPOLAR.5.   92   74   47   40   6C   PA7 or   FLAGD or   IO/Z   I Multiplexed pin whose function is selected by the   (PA7) IFCONFIG[1:0] and PORTACFG.7 bits.   SLCS#   PA7 is a bidirectional IO port pin.   FLAGD is a programmable slave-FIFO output status   flag signal.   SLCS# gates all other slave FIFO enable/strobes   Port B   44   34   35   36   37   44   25   26   27   28   29   18   19   20   21   22   3H   4F   4H   4G   5H   PB0 or   FD[0]   IO/Z   IO/Z   IO/Z   IO/Z   IO/Z   I Multiplexed pin whose function is selected by the   (PB0) following bits: IFCONFIG[1..0].   PB0 is a bidirectional IO port pin.   FD[0] is the bidirectional FIFO/GPIF data bus.   45   46   47   54   PB1 or   FD[1]   I Multiplexed pin whose function is selected by the   (PB1) following bits: IFCONFIG[1..0].   PB1 is a bidirectional IO port pin.   FD[1] is the bidirectional FIFO/GPIF data bus.   PB2 or   FD[2]   I Multiplexed pin whose function is selected by the   (PB2) following bits: IFCONFIG[1..0].   PB2 is a bidirectional IO port pin.   FD[2] is the bidirectional FIFO/GPIF data bus.   PB3 or   FD[3]   I Multiplexed pin whose function is selected by the   (PB3) following bits: IFCONFIG[1..0].   PB3 is a bidirectional IO port pin.   FD[3] is the bidirectional FIFO/GPIF data bus.   PB4 or   FD[4]   I Multiplexed pin whose function is selected by the   (PB4) following bits: IFCONFIG[1..0].   PB4 is a bidirectional IO port pin.   FD[4] is the bidirectional FIFO/GPIF data bus.   Document #: 38-08032 Rev. *L   Page 23 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   Table 11. FX2LP Pin Descriptions (continued)   128 100 56 56 56 VF-   Name   Type Default   Description   TQFP TQFP SSOP QFN BGA   55   56   57   45   46   47   30   31   32   23   24   25   5G   5F   6H   PB5 or   FD[5]   IO/Z   IO/Z   IO/Z   I Multiplexed pin whose function is selected by the   (PB5) following bits: IFCONFIG[1..0].   PB5 is a bidirectional IO port pin.   FD[5] is the bidirectional FIFO/GPIF data bus.   PB6 or   FD[6]   I Multiplexed pin whose function is selected by the   (PB6) following bits: IFCONFIG[1..0].   PB6 is a bidirectional IO port pin.   FD[6] is the bidirectional FIFO/GPIF data bus.   PB7 or   FD[7]   I Multiplexed pin whose function is selected by the   (PB7) following bits: IFCONFIG[1..0].   PB7 is a bidirectional IO port pin.   FD[7] is the bidirectional FIFO/GPIF data bus.   PORT C   57   72   73   74   75   76   77   78   79   PC0 or   GPIFADR0   IO/Z   IO/Z   IO/Z   IO/Z   IO/Z   IO/Z   IO/Z   IO/Z   I Multiplexed pin whose function is selected by   (PC0) PORTCCFG.0   PC0 is a bidirectional IO port pin.   GPIFADR0 is a GPIF address output pin.   58   59   60   61   62   63   64   PC1 or   GPIFADR1   I Multiplexed pin whose function is selected by   (PC1) PORTCCFG.1   PC1 is a bidirectional IO port pin.   GPIFADR1 is a GPIF address output pin.   PC2 or   GPIFADR2   I Multiplexed pin whose function is selected by   (PC2) PORTCCFG.2   PC2 is a bidirectional IO port pin.   GPIFADR2 is a GPIF address output pin.   PC3 or   GPIFADR3   I Multiplexed pin whose function is selected by   (PC3) PORTCCFG.3   PC3 is a bidirectional IO port pin.   GPIFADR3 is a GPIF address output pin.   PC4 or   GPIFADR4   I Multiplexed pin whose function is selected by   (PC4) PORTCCFG.4   PC4 is a bidirectional IO port pin.   GPIFADR4 is a GPIF address output pin.   PC5 or   GPIFADR5   I Multiplexed pin whose function is selected by   (PC5) PORTCCFG.5   PC5 is a bidirectional IO port pin.   GPIFADR5 is a GPIF address output pin.   PC6 or   GPIFADR6   I Multiplexed pin whose function is selected by   (PC6) PORTCCFG.6   PC6 is a bidirectional IO port pin.   GPIFADR6 is a GPIF address output pin.   PC7 or   I Multiplexed pin whose function is selected by   GPIFADR7   (PC7) PORTCCFG.7   PC7 is a bidirectional IO port pin.   GPIFADR7 is a GPIF address output pin.   PORT D   102   80   52   53   45   46   8A   7A   PD0 or   FD[8]   IO/Z   IO/Z   I Multiplexed pin whose function is selected by the   (PD0) IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits.   FD[8] is the bidirectional FIFO/GPIF data bus.   103   81   PD1 or   FD[9]   I Multiplexed pin whose function is selected by the   (PD1) IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits.   FD[9] is the bidirectional FIFO/GPIF data bus.   Document #: 38-08032 Rev. *L   Page 24 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   Table 11. FX2LP Pin Descriptions (continued)   128 100 56 56 56 VF-   Name   Type Default   Description   TQFP TQFP SSOP QFN BGA   104   105   121   122   123   124   82   83   95   96   97   98   54   55   56   1 47   48   49   50   51   52   6B   6A   3B   3A   3C   2A   PD2 or   FD[10]   IO/Z   IO/Z   IO/Z   IO/Z   IO/Z   IO/Z   I Multiplexed pin whose function is selected by the   (PD2) IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits.   FD[10] is the bidirectional FIFO/GPIF data bus.   PD3 or   FD[11]   I Multiplexed pin whose function is selected by the   (PD3) IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits.   FD[11] is the bidirectional FIFO/GPIF data bus.   PD4 or   FD[12]   I Multiplexed pin whose function is selected by the   (PD4) IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits.   FD[12] is the bidirectional FIFO/GPIF data bus.   PD5 or   FD[13]   I Multiplexed pin whose function is selected by the   (PD5) IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits.   FD[13] is the bidirectional FIFO/GPIF data bus.   2 PD6 or   FD[14]   I Multiplexed pin whose function is selected by the   (PD6) IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits.   FD[14] is the bidirectional FIFO/GPIF data bus.   3 PD7 or   FD[15]   I Multiplexed pin whose function is selected by the   (PD7) IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits.   FD[15] is the bidirectional FIFO/GPIF data bus.   Port E   108   86   PE0 or   T0OUT   IO/Z   I Multiplexed pin whose function is selected by the   (PE0) PORTECFG.0 bit.   PE0 is a bidirectional IO port pin.   T0OUT is an active-HIGH signal from 8051   Timer-counter0. T0OUT outputs a high level for one   CLKOUT clock cycle when Timer0 overflows. If Timer0   is operated in Mode 3 (two separate timer/counters),   T0OUT is active when the low byte timer/counter   overflows.   109   87   PE1 or   T1OUT   IO/Z   I Multiplexed pin whose function is selected by the   (PE1) PORTECFG.1 bit.   PE1 is a bidirectional IO port pin.   T1OUT is an active-HIGH signal from 8051   Timer-counter1. T1OUT outputs a high level for one   CLKOUT clock cycle when Timer1 overflows. If Timer1   is operated in Mode 3 (two separate timer/counters),   T1OUT is active when the low byte timer/counter   overflows.   110   111   88   89   PE2 or   T2OUT   IO/Z   IO/Z   I Multiplexed pin whose function is selected by the   (PE2) PORTECFG.2 bit.   PE2 is a bidirectional IO port pin.   T2OUT is the active-HIGH output signal from 8051   Timer2. T2OUT is active (HIGH) for one clock cycle   when Timer/Counter 2 overflows.   PE3 or   RXD0OUT   I Multiplexed pin whose function is selected by the   (PE3) PORTECFG.3 bit.   PE3 is a bidirectional IO port pin.   RXD0OUT is an active-HIGH signal from 8051 UART0.   If RXD0OUT is selected and UART0 is in Mode 0, this   pin provides the output data for UART0 only when it is   in sync mode. Otherwise it is a 1.   Document #: 38-08032 Rev. *L   Page 25 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   Table 11. FX2LP Pin Descriptions (continued)   128 100 56 56 56 VF-   Name   Type Default   Description   TQFP TQFP SSOP QFN BGA   112   90   PE4 or   RXD1OUT   IO/Z   I Multiplexed pin whose function is selected by the   (PE4) PORTECFG.4 bit.   PE4 is a bidirectional IO port pin.   RXD1OUT is an active-HIGH output from 8051 UART1.   When RXD1OUT is selected and UART1 is in Mode 0,   this pin provides the output data for UART1 only when   it is in sync mode. In Modes 1, 2, and 3, this pin is HIGH.   113   114   91   92   PE5 or   INT6   IO/Z   IO/Z   I Multiplexed pin whose function is selected by the   (PE5) PORTECFG.5 bit.   PE5 is a bidirectional IO port pin.   INT6is the 8051 INT6 interruptrequestinput signal. The   INT6 pin is edge-sensitive, active HIGH.   PE6 or   T2EX   I Multiplexed pin whose function is selected by the   (PE6) PORTECFG.6 bit.   PE6 is a bidirectional IO port pin.   T2EX is an active-HIGH input signal to the 8051 Timer2.   T2EX reloads timer 2 on its falling edge. T2EX is active   only if the EXEN2 bit is set in T2CON.   115   4 93   3 PE7 or   GPIFADR8   IO/Z   I Multiplexed pin whose function is selected by the   (PE7) PORTECFG.7 bit.   PE7 is a bidirectional IO port pin.   GPIFADR8 is a GPIF address output pin.   8 9 1 2 1A   1B   RDY0 or   SLRD   Input   N/A Multiplexed pin whose function is selected by the   following bits:   IFCONFIG[1..0].   RDY0 is a GPIF input signal.   SLRD is the input-only read strobe with programmable   polarity (FIFOPINPOLAR.3) for the slave FIFOs   connected to FD[7..0] or FD[15..0].   5 4 RDY1 or   SLWR   Input   N/A Multiplexed pin whose function is selected by the   following bits:   IFCONFIG[1..0].   RDY1 is a GPIF input signal.   SLWR is the input-only write strobe with programmable   polarity (FIFOPINPOLAR.2) for the slave FIFOs   connected to FD[7..0] or FD[15..0].   6 7 5 6 RDY2   RDY3   RDY4   RDY5   Input   Input   Input   Input   O/Z   N/A RDY2 is a GPIF input signal.   N/A RDY3 is a GPIF input signal.   N/A RDY4 is a GPIF input signal.   N/A RDY5 is a GPIF input signal.   8 7 9 8 69   54   36   29   7H   CTL0 or   FLAGA   H Multiplexed pin whose function is selected by the   following bits:   IFCONFIG[1..0].   CTL0 is a GPIF control output.   FLAGA is a programmable slave-FIFO output status   flag signal.   Defaults to programmable for the FIFO selected by the   FIFOADR[1:0] pins.   Document #: 38-08032 Rev. *L   Page 26 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   Table 11. FX2LP Pin Descriptions (continued)   128 100 56 56 56 VF-   Name   Type Default   Description   TQFP TQFP SSOP QFN BGA   70   55   37   30   7G   CTL1 or   FLAGB   O/Z   H Multiplexed pin whose function is selected by the   following bits:   IFCONFIG[1..0].   CTL1 is a GPIF control output.   FLAGB is a programmable slave-FIFO output status   flag signal.   Defaults to FULL for the FIFO selected by the   FIFOADR[1:0] pins.   71   56   38   31   8H   CTL2 or   FLAGC   O/Z   H Multiplexed pin whose function is selected by the   following bits:   IFCONFIG[1..0].   CTL2 is a GPIF control output.   FLAGC is a programmable slave-FIFO output status   flag signal.   Defaults to EMPTY for the FIFO selected by the   FIFOADR[1:0] pins.   66   67   98   32   51   52   76   26   CTL3   CTL4   CTL5   O/Z   H H H Z CTL3 is a GPIF control output.   CTL4 is a GPIF control output.   CTL5 is a GPIF control output.   Output   Output   IO/Z   20   13   2G   IFCLK on   CY7C68013A   and   Interface Clock, used for synchronously clocking data   into or out of the slave FIFOs. IFCLK also serves as a   timing reference for all slave FIFO control signals and   GPIF. When internal clocking is used (IFCONFIG.7 = 1)   the IFCLK pin can be configured to output 30/48 MHz   by bits IFCONFIG.5 and IFCONFIG.6. IFCLK may be   inverted, whether internally or externally sourced, by   setting the bit IFCONFIG.4 =1.   CY7C68014A   ------------------ ----------- ---------- -----------------------------------------------------------------------   PE0 on   IO/Z   I PE0 is a bidirectional IO port pin.   CY7C68015A   and   CY7C68016A   28   106   31   22   84   25   INT4   INT5#   T2   Input   Input   Input   N/A INT4is the 8051 INT4 interruptrequestinput signal. The   INT4 pin is edge-sensitive, active HIGH.   N/A INT5# is the 8051 INT5 interrupt request input signal.   The INT5 pin is edge-sensitive, active LOW.   N/A T2 is the active-HIGH T2 input signal to 8051 Timer2,   which provides the input to Timer2 when C/T2 = 1.   When C/T2 = 0, Timer2 does not use this pin.   30   29   24   23   T1   T0   Input   Input   N/A T1 is the active-HIGH T1 signal for 8051 Timer1, which   provides the input to Timer1 when C/T1 is 1. When C/T1   is 0, Timer1 does not use this bit.   N/A T0 is the active-HIGH T0 signal for 8051 Timer0, which   provides the input to Timer0 when C/T0 is 1. When C/T0   is 0, Timer0 does not use this bit.   53   52   43   42   RXD1   TXD1   Input   N/A RXD1is an active-HIGH input signal for 8051 UART1,   which provides data to the UART in all modes.   Output   H TXD1is an active-HIGH output pin from 8051 UART1,   which provides the output clock in sync mode, and the   output data in async mode.   51   41   RXD0   Input   N/A RXD0 is the active-HIGH RXD0 input to 8051 UART0,   which provides data to the UART in all modes.   Document #: 38-08032 Rev. *L   Page 27 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   Table 11. FX2LP Pin Descriptions (continued)   128 100 56 56 56 VF-   Name   TXD0   Type Default   Description   TQFP TQFP SSOP QFN BGA   50   40   Output   H TXD0 is the active-HIGH TXD0 output from 8051   UART0, which provides the output clock in sync mode,   and the output data in async mode.   42   41   CS#   Output   Output   H H CS# is the active-LOW chip select for external memory.   32   31   WR#   WR# is the active-LOW write strobe output for external   memory.   40   38   RD#   OE#   Output   Output   H H RD# is the active-LOW read strobe output for external   memory.   OE# is the active-LOW output enable for external   memory.   33   27   79   21   51   14   44   2H   7B   Reserved   WAKEUP   Input   Input   N/A Reserved. Connect to ground.   101   N/A USB Wakeup. If the 8051 is in suspend, asserting this   pin starts up the oscillator and interrupts the 8051 to   enable it to exit the suspend mode. Holding WAKEUP   ® asserted inhibits the EZ-USB chip from suspending.   This pin has programmable polarity (WAKEUP.4).   2 36   37   29   30   22   23   15   16   3F   SCL   SDA   OD   OD   Z Z Clock for the I C interface. Connect to VCC with a 2.2K   2 resistor, even if no I C peripheral is attached.   2 3G   Data for I C-compatible interface. Connect to VCC   with a 2.2K resistor, even if no I C-compatible   2 peripheral is attached.   2 1 6 55   11   17   5A   1G   7E   VCC   VCC   VCC   VCC   VCC   VCC   VCC   VCC   VCC   Power   Power   Power   Power   Power   Power   Power   Power   Power   N/A VCC. Connect to 3.3V power source.   N/A VCC. Connect to 3.3V power source.   N/A VCC. Connect to 3.3V power source.   N/A VCC. Connect to 3.3V power source.   N/A VCC. Connect to 3.3V power source.   N/A VCC. Connect to 3.3V power source.   N/A VCC. Connect to 3.3V power source.   N/A VCC. Connect to 3.3V power source.   N/A VCC. Connect to 3.3V power source.   26   20   33   38   49   53   66   78   85   18   24   43   48   64   34   27   8E   68   81   39   50   32   43   5C   5B   100   107   3 2 7 56   12   4B   1H   GND   GND   GND   GND   GND   GND   GND   GND   GND   Ground   Ground   Ground   Ground   Ground   Ground   Ground   Ground   Ground   N/A Ground.   N/A Ground.   N/A Ground.   N/A Ground.   N/A Ground.   N/A Ground.   N/A Ground.   N/A Ground.   N/A Ground.   27   21   39   48   50   65   75   94   99   19   49   58   33   35   26   28   7D   8D   65   80   93   48   4 41   53   4C   4A   116   125   14   15   16   13   14   15   NC   NC   NC   N/A   N/A   N/A   N/A No Connect. This pin must be left open.   N/A No Connect. This pin must be left open.   N/A No Connect. This pin must be left open.   Document #: 38-08032 Rev. *L   Page 28 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   5. Register Summary   FX2LP register bit definitions are described in the FX2LP TRM in greater detail.   Table 12. FX2LP Register Summary   Hex Size Name   Description   b7   b6   b5   b4   b3   b2   b1   b0   Default   Access   GPIF Waveform Memories   E400 128 WAVEDATA   GPIF Waveform   Descriptor 0, 1, 2, 3 data   D7   D6   D5   D4   D3   D2   D1   D0   xxxxxxxx RW   E480 128 reserved   GENERAL CONFIGURATION   E50D   GPCR2   General Purpose Configu-reserved   ration Register 2   reserved   0 reserved   FULL_SPEE reserved   D_ONLY   reserved   reserved   reserved   00000000 R   E600   E601   1 1 CPUCS   CPU Control & Status   0 PORTCSTB CLKSPD1 CLKSPD0 CLKINV   CLKOE   IFCFG1   8051RES   IFCFG0   00000010 rrbbbbbr   10000000 RW   IFCONFIG   Interface Configuration   (Ports, GPIF, slave FIFOs)   IFCLKSRC 3048MHZ   IFCLKOE   FLAGB1   FLAGD1   0 IFCLKPOL ASYNC   GSTATE   FLAGA2   FLAGC2   EP2   E602   E603   E604   1 1 1 PINFLAGSAB   Slave FIFO FLAGA and FLAGB3   FLAGB Pin Configuration   FLAGB2   FLAGD2   0 FLAGB0   FLAGD0   0 FLAGA3   FLAGC3   EP3   FLAGA1   FLAGC1   EP1   FLAGA0   FLAGC0   EP0   00000000 RW   00000000 RW   PINFLAGSCD   Slave FIFO FLAGC and FLAGD3   FLAGD Pin Configuration   FIFORESET   Restore FIFOS to default NAKALL   state   xxxxxxxx   W E605   E606   E607   E608   1 1 1 1 BREAKPT   BPADDRH   BPADDRL   UART230   Breakpoint Control   0 0 0 0 BREAK   A11   A3   BPPULSE BPEN   0 00000000 rrrrbbbr   xxxxxxxx RW   xxxxxxxx RW   Breakpoint Address H   Breakpoint Address L   A15   A7   0 A14   A6   0 A13   A5   0 A12   A4   0 A10   A2   0 A9   A1   A8   A0   230 Kbaud internally   generated ref. clock   0 230UART1 230UART0 00000000 rrrrrrbb   [11]   E609   1 FIFOPINPOLAR   Slave FIFO Interface pins 0   polarity   0 PKTEND   SLOE   rv4   SLRD   rv3   SLWR   rv2   EF   FF   00000000 rrbbbbbb   E60A 1   E60B 1   REVID   Chip Revision   rv7   rv6   0 rv5   0 rv1   rv0   RevA   00000001   R REVCTL   Chip Revision Control   0 0 0 0 0 dyn_out   enh_pkt   00000000 rrrrrrbb   UDMA   E60C 1   3 GPIFHOLDAMOUNT MSTB Hold Time   (for UDMA)   0 0 0 0 0 HOLDTIME1 HOLDTIME0 00000000 rrrrrrbb   reserved   ENDPOINT CONFIGURATION   E610   E611   1 1 EP1OUTCFG   Endpoint 1-OUT   Configuration   VALID   VALID   0 0 TYPE1   TYPE1   TYPE0   TYPE0   0 0 0 0 0 0 0 0 10100000 brbbrrrr   10100000 brbbrrrr   EP1INCFG   Endpoint 1-IN   Configuration   E612   E613   E614   E615   1 1 1 1 2 1 EP2CFG   EP4CFG   EP6CFG   EP8CFG   reserved   Endpoint 2 Configuration VALID   Endpoint 4 Configuration VALID   Endpoint 6 Configuration VALID   Endpoint 8 Configuration VALID   DIR   DIR   DIR   DIR   TYPE1   TYPE1   TYPE1   TYPE1   TYPE0   TYPE0   TYPE0   TYPE0   SIZE   0 0 0 0 0 BUF1   0 BUF0   0 10100010 bbbbbrbb   10100000 bbbbrrrr   11100010 bbbbbrbb   11100000 bbbbrrrr   SIZE   0 BUF1   0 BUF0   0 [11]   [11]   [11]   [11]   E618   E619   EP2FIFOCFG   Endpoint 2 / slave FIFO   configuration   0 0 0 0 INFM1   INFM1   INFM1   INFM1   OEP1   OEP1   OEP1   OEP1   AUTOOUT AUTOIN   AUTOOUT AUTOIN   AUTOOUT AUTOIN   AUTOOUT AUTOIN   ZEROLENIN 0   ZEROLENIN 0   ZEROLENIN 0   ZEROLENIN 0   WORDWIDE 00000101 rbbbbbrb   WORDWIDE 00000101 rbbbbbrb   WORDWIDE 00000101 rbbbbbrb   WORDWIDE 00000101 rbbbbbrb   1 EP4FIFOCFG   EP6FIFOCFG   EP8FIFOCFG   reserved   Endpoint 4 / slave FIFO   configuration   E61A 1   E61B 1   E61C 4   Endpoint 6 / slave FIFO   configuration   Endpoint 8 / slave FIFO   configuration   E620   E621   E622   E623   E624   E625   E626   E627   1 1 1 1 1 1 1 1 EP2AUTOINLENH Endpoint 2 AUTOIN   0 0 0 0 0 PL10   PL2   0 PL9   PL8   PL0   PL8   PL0   PL8   PL0   PL8   PL0   00000010 rrrrrbbb   00000000 RW   Packet Length H   EP2AUTOINLENL   Endpoint 2 AUTOIN   Packet Length L   PL7   0 PL6   0 PL5   0 PL4   0 PL3   0 PL1   PL9   PL1   PL9   PL1   PL9   PL1   EP4AUTOINLENH Endpoint 4 AUTOIN   00000010 rrrrrrbb   00000000 RW   Packet Length H   EP4AUTOINLENL   Endpoint 4 AUTOIN   Packet Length L   PL7   0 PL6   0 PL5   0 PL4   0 PL3   0 PL2   PL10   PL2   0 EP6AUTOINLENH Endpoint 6 AUTOIN   00000010 rrrrrbbb   00000000 RW   Packet Length H   EP6AUTOINLENL   Endpoint 6 AUTOIN   Packet Length L   PL7   0 PL6   0 PL5   0 PL4   0 PL3   0 EP8AUTOINLENH Endpoint 8 AUTOIN   00000010 rrrrrrbb   00000000 RW   Packet Length H   EP8AUTOINLENL   Endpoint 8 AUTOIN   Packet Length L   PL7   PL6   PL5   PL4   PL3   PL2   E628   E629   1 1 ECCCFG   ECCRESET   ECC1B0   ECC Configuration   ECC Reset   0 0 0 0 0 0 0 ECCM   x 00000000 rrrrrrrb   00000000 W   x x x x x x x E62A 1   ECC1 Byte 0 Address   LINE15   LINE14   LINE13   LINE12   LINE11   LINE10   LINE9   LINE8   00000000 R   Note   11. Read and writes to these registers may require synchronization delay, see Technical Reference Manual for “Synchronization Delay.”   Document #: 38-08032 Rev. *L   Page 29 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   Table 12. FX2LP Register Summary (continued)   Hex Size Name   Description   b7   b6   b5   b4   b3   b2   b1   b0   Default   Access   E62B 1   E62C 1   E62D 1   E62E 1   E62F 1   ECC1B1   ECC1 Byte 1 Address   ECC1 Byte 2 Address   ECC2 Byte 0 Address   ECC2 Byte 1 Address   ECC2 Byte 2 Address   LINE7   COL5   LINE15   LINE7   COL5   LINE6   COL4   LINE14   LINE6   COL4   PKTSTAT   LINE5   COL3   LINE13   LINE5   COL3   LINE4   COL2   LINE12   LINE4   COL2   LINE3   COL1   LINE11   LINE3   COL1   LINE2   COL0   LINE10   LINE2   COL0   0 LINE1   LINE17   LINE9   LINE1   0 LINE0   LINE16   LINE8   LINE0   0 00000000 R   ECC1B2   00000000 R   ECC2B0   00000000 R   ECC2B1   00000000 R   ECC2B2   00000000 R   [11]   [11]   E630   H.S.   1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 EP2FIFOPFH   Endpoint 2 / slave FIFO DECIS   Programmable Flag H   IN:PKTS[2] IN:PKTS[1] IN:PKTS[0]   OUT:PFC12 OUT:PFC11 OUT:PFC10   PFC9   PFC8   10001000 bbbbbrbb   E630   F.S.   EP2FIFOPFH   Endpoint 2 / slave FIFO DECIS   Programmable Flag H   PKTSTAT   PFC6   OUT:PFC12 OUT:PFC11 OUT:PFC10 0   PFC9   PFC1   PFC1   0 IN:PKTS[2] 10001000 bbbbbrbb   OUT:PFC8   [11]   E631   H.S.   EP2FIFOPFL   Endpoint 2 / slave FIFO PFC7   Programmable Flag L   PFC5   PFC4   PFC4   PFC3   PFC3   PFC2   PFC2   PFC0   PFC0   PFC8   PFC8   PFC0   PFC0   PFC8   00000000 RW   E631   F.S   EP2FIFOPFL   Endpoint 2 / slave FIFO IN:PKTS[1] IN:PKTS[0] PFC5   Programmable Flag L OUT:PFC7 OUT:PFC6   00000000 RW   E632   H.S.   EP4FIFOPFH   Endpoint 4 / slave FIFO DECIS   Programmable Flag H   PKTSTAT   PKTSTAT   PFC6   0 IN: PKTS[1] IN: PKTS[0] 0   OUT:PFC10 OUT:PFC9   10001000 bbrbbrrb   10001000 bbrbbrrb   00000000 RW   [11]   E632   F.S   EP4FIFOPFH   Endpoint 4 / slave FIFO DECIS   Programmable Flag H   0 OUT:PFC10 OUT:PFC9   0 0 [11]   E633   H.S.   EP4FIFOPFL   Endpoint 4 / slave FIFO PFC7   Programmable Flag L   PFC5   PFC4   PFC4   PFC3   PFC3   PFC2   PFC2   0 PFC1   PFC1   PFC9   PFC9   PFC1   PFC1   0 E633   F.S   EP4FIFOPFL   Endpoint 4 / slave FIFO IN: PKTS[1] IN: PKTS[0] PFC5   Programmable Flag L OUT:PFC7 OUT:PFC6   00000000 RW   E634   H.S.   EP6FIFOPFH   Endpoint 6 / slave FIFO DECIS   Programmable Flag H   PKTSTAT   PKTSTAT   PFC6   IN:PKTS[2] IN:PKTS[1] IN:PKTS[0]   OUT:PFC12 OUT:PFC11 OUT:PFC10   00001000 bbbbbrbb   [11]   E634   F.S   EP6FIFOPFH   Endpoint 6 / slave FIFO DECIS   Programmable Flag H   OUT:PFC12 OUT:PFC11 OUT:PFC10 0   IN:PKTS[2] 00001000 bbbbbrbb   OUT:PFC8   [11]   E635   H.S.   EP6FIFOPFL   Endpoint 6 / slave FIFO PFC7   Programmable Flag L   PFC5   PFC4   PFC4   PFC3   PFC3   PFC2   PFC2   PFC0   PFC0   PFC8   PFC8   PFC0   PFC0   00000000 RW   E635   F.S   EP6FIFOPFL   Endpoint 6 / slave FIFO IN:PKTS[1] IN:PKTS[0] PFC5   Programmable Flag L OUT:PFC7 OUT:PFC6   00000000 RW   E636   H.S.   EP8FIFOPFH   Endpoint 8 / slave FIFO DECIS   Programmable Flag H   PKTSTAT   PKTSTAT   PFC6   0 IN: PKTS[1] IN: PKTS[0] 0   OUT:PFC10 OUT:PFC9   00001000 bbrbbrrb   00001000 bbrbbrrb   00000000 RW   [11]   E636   F.S   EP8FIFOPFH   Endpoint 8 / slave FIFO DECIS   Programmable Flag H   0 OUT:PFC10 OUT:PFC9   0 0 E637   H.S.   EP8FIFOPFL   EP8FIFOPFL   reserved   Endpoint 8 / slave FIFO PFC7   Programmable Flag L   PFC5   PFC4   PFC4   PFC3   PFC3   PFC2   PFC2   PFC1   PFC1   E637   F.S   Endpoint 8 / slave FIFO IN: PKTS[1] IN: PKTS[0] PFC5   Programmable Flag L OUT:PFC7 OUT:PFC6   00000000 RW   8 1 E640   E641   E642   E643   EP2ISOINPKTS   EP4ISOINPKTS   EP6ISOINPKTS   EP8ISOINPKTS   reserved   EP2 (if ISO) IN Packets AADJ   per frame (1-3)   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 INPPF1   INPPF1   INPPF1   INPPF1   INPPF0   INPPF0   INPPF0   INPPF0   00000001 brrrrrbb   00000001 brrrrrrr   00000001 brrrrrbb   00000001 brrrrrrr   1 1 1 EP4 (if ISO) IN Packets AADJ   per frame (1-3)   EP6 (if ISO) IN Packets AADJ   per frame (1-3)   EP8 (if ISO) IN Packets AADJ   per frame (1-3)   E644   E648   E649   4 1 7 [11]   INPKTEND   Force IN Packet End   Skip   0 0 0 0 0 0 EP3   EP3   EP2   EP2   EP1   EP1   EP0   EP0   xxxxxxxx   xxxxxxxx   W W [11]   OUTPKTEND   Force OUT Packet End Skip   INTERRUPTS   E650   E651   E652   E653   E654   E655   E656   E657   E658   E659   1 1 1 1 1 1 1 1 1 1 EP2FIFOIE   Endpoint 2 slave FIFO   Flag Interrupt Enable   0 0 0 0 0 0 0 0 0 0 0 0 0 EDGEPF   0 PF   EF   EF   EF   EF   EF   EF   EF   EF   EP1   EP1   0 FF   00000000 RW   EP2FIFOIRQ   Endpoint 2 slave FIFO   Flag Interrupt Request   0 0 0 PF   FF   00000000 rrrrrbbb   00000000 RW   EP4FIFOIE   Endpoint 4 slave FIFO   Flag Interrupt Enable   0 0 0 EDGEPF   0 PF   FF   EP4FIFOIRQ   Endpoint 4 slave FIFO   Flag Interrupt Request   0 0 0 PF   FF   00000000 rrrrrbbb   00000000 RW   EP6FIFOIE   Endpoint 6 slave FIFO   Flag Interrupt Enable   0 0 0 EDGEPF   0 PF   FF   EP6FIFOIRQ   Endpoint 6 slave FIFO   Flag Interrupt Request   0 0 0 PF   FF   00000000 rrrrrbbb   00000000 RW   EP8FIFOIE   EP8FIFOIRQ   IBNIE   Endpoint 8 slave FIFO   Flag Interrupt Enable   0 0 0 EDGEPF   0 PF   FF   Endpoint 8 slave FIFO   Flag Interrupt Request   0 0 0 PF   FF   00000000 rrrrrbbb   00000000 RW   IN-BULK-NAK Interrupt   Enable   0 EP8   EP8   EP4   EP4   EP6   EP6   EP2   EP2   EP4   EP2   EP2   EP0   EP0   SUTOK   EP0   EP0   IBN   IBN   SUDAV   [12]   IBNIRQ   IN-BULK-NAK interrupt   Request   0 EP4   00xxxxxx rrbbbbbb   00000000 RW   E65A 1   E65B 1   E65C 1   NAKIE   Endpoint Ping-NAK / IBN EP8   Interrupt Enable   EP6   EP6   EP0ACK   EP1   [12]   NAKIRQ   Endpoint Ping-NAK / IBN EP8   Interrupt Request   EP1   0 xxxxxx0x bbbbbbrb   00000000 RW   USBIE   USB Int Enables   0 HSGRANT URES   SUSP   SOF   Note   12. The register can only be reset, it cannot be set.   Document #: 38-08032 Rev. *L   Page 30 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   Table 12. FX2LP Register Summary (continued)   Hex Size Name   Description   b7   0 b6   b5   b4   b3   b2   b1   b0   Default   Access   [12]   E65D 1   E65E 1   USBIRQ   USB Interrupt Requests   EP0ACK   EP6   HSGRANT URES   SUSP   EP1OUT   SUTOK   EP1IN   SOF   SUDAV   EP0IN   0xxxxxxx rbbbbbbb   00000000 RW   EPIE   Endpoint Interrupt   Enables   EP8   EP4   EP4   EP2   EP2   EP0OUT   E65F 1   EPIRQ   Endpoint Interrupt   Requests   EP8   EP6   EP1OUT   EP1IN   EP0OUT   EP0IN   0 RW   E660   E661   E662   1 1 1 GPIFIE   GPIF Interrupt Enable   GPIF Interrupt Request   0 0 0 0 0 0 0 0 0 0 GPIFWF   GPIFWF   0 GPIFDONE 00000000 RW   GPIFDONE 000000xx RW   GPIFIRQ   0 0 0 0 USBERRIE   USB Error Interrupt   Enables   ISOEP8   ISOEP6   ISOEP4   ISOEP2   ERRLIMIT   ERRLIMIT   LIMIT0   00000000 RW   [12]   E663   E664   1 1 USBERRIRQ   USB Error Interrupt   Requests   ISOEP8   EC3   ISOEP6   EC2   ISOEP4   EC1   ISOEP2   EC0   0 0 0 0000000x bbbbrrrb   xxxx0100 rrrrbbbb   ERRCNTLIM   USB Error counter and   limit   LIMIT3   LIMIT2   LIMIT1   E665   E666   1 1 CLRERRCNT   INT2IVEC   Clear Error Counter EC3:0 x   x x x x x x x xxxxxxxx   W Interrupt 2 (USB)   Autovector   0 1 0 I2V4   I2V3   I2V2   I2V1   I2V0   0 0 00000000 R   10000000 R   00000000 RW   E667   1 INT4IVEC   Interrupt 4 (slave FIFO &   GPIF) Autovector   0 0 I4V3   0 I4V2   0 I4V1   I4V0   0 0 0 E668   E669   1 7 INTSET-UP   reserved   Interrupt 2&4 setup   AV2EN   INT4SRC   AV4EN   INPUT / OUTPUT   PORTACFG   E670   E671   E672   1 1 1 IO PORTA Alternate   Configuration   FLAGD   GPIFA7   GPIFA8   SLCS   GPIFA6   T2EX   0 0 0 0 INT1   INT0   00000000 RW   00000000 RW   00000000 RW   PORTCCFG   PORTECFG   IO PORTC Alternate   Configuration   GPIFA5   INT6   GPIFA4   GPIFA3   GPIFA2   GPIFA1   T1OUT   GPIFA0   T0OUT   IO PORTE Alternate   Configuration   RXD1OUT RXD0OUT T2OUT   E673   E677   E678   4 1 1 reserved   reserved   2 I CS   I²C Bus   START   STOP   d6   LASTRD   ID1   d4   0 ID0   d3   0 BERR   d2   ACK   d1   DONE   d0   000xx000 bbbrrrrr   xxxxxxxx RW   00000000 RW   xxxxxxxx RW   xxxxxxxx RW   Control & Status   E679   1 I2DAT   I²C Bus   Data   d7   0 d5   0 2 E67A 1   E67B 1   E67C 1   I CTL   I²C Bus   Control   0 0 STOPIE   D1   400KHZ   D0   XAUTODAT1   XAUTODAT2   UDMA CRC   Autoptr1 MOVX access, D7   when APTREN=1   D6   D6   D5   D5   D4   D4   D3   D3   D2   D2   Autoptr2 MOVX access, D7   when APTREN=1   D1   D0   E67D 1   E67E 1   E67F 1   UDMACRCH   UDMA CRC MSB   UDMA CRC LSB   UDMA CRC Qualifier   CRC15   CRC14   CRC6   0 CRC13   CRC5   0 CRC12   CRC4   0 CRC11   CRC3   CRC10   CRC2   CRC9   CRC1   CRC8   CRC0   01001010 RW   10111010 RW   [11]   UDMACRCL   CRC7   UDMACRC-   QUALIFIER   QENABLE   QSTATE   QSIGNAL2 QSIGNAL1 QSIGNAL0 00000000 brrrbbbb   USB CONTROL   USBCS   E680   E681   E682   E683   E684   E685   E686   E687   E688   1 1 1 1 1 1 1 1 2 USB Control & Status   Put chip into suspend   HSM   x 0 0 0 DISCON   NOSYNSOF RENUM   SIGRSUME x0000000 rrrrbbbb   SUSPEND   WAKEUPCS   TOGCTL   x x x x x x x xxxxxxxx   W Wakeup Control & Status WU2   WU   S WU2POL   WUPOL   0 DPEN   EP2   FC10   FC2   MF2   FA2   WU2EN   EP1   FC9   FC1   MF1   FA1   WUEN   EP0   FC8   FC0   MF0   FA0   xx000101 bbbbrbbb   x0000000 rrrbbbbb   00000xxx R   Toggle Control   Q R IO   EP3   0 USBFRAMEH   USBFRAMEL   MICROFRAME   FNADDR   USB Frame count H   USB Frame count L   Microframe count, 0-7   USB Function address   0 0 0 0 FC7   0 FC6   0 FC5   0 FC4   0 FC3   0 xxxxxxxx   00000xxx R   0xxxxxxx R   R 0 FA6   FA5   FA4   FA3   reserved   ENDPOINTS   E68A 1   E68B 1   E68C 1   E68D 1   EP0BCH   Endpoint 0 Byte Count H (BC15)   Endpoint 0 Byte Count L (BC7)   (BC14)   BC6   (BC13)   BC5   (BC12)   BC4   (BC11)   BC3   (BC10)   BC2   (BC9)   BC1   (BC8)   BC0   xxxxxxxx RW   xxxxxxxx RW   [11]   EP0BCL   reserved   EP1OUTBC   Endpoint 1 OUT Byte   Count   0 BC6   BC5   BC4   BC3   BC2   BC1   BC0   0xxxxxxx RW   E68E 1   E68F 1   reserved   EP1INBC   Endpoint 1 IN Byte Count 0   Endpoint 2 Byte Count H   Endpoint 2 Byte Count L BC7/SKIP   BC6   0 BC5   0 BC4   0 BC3   0 BC2   BC10   BC2   BC1   BC9   BC1   BC0   BC8   BC0   0xxxxxxx RW   00000xxx RW   xxxxxxxx RW   E690   E691   E692   E694   E695   E696   E698   E699   1 1 2 1 1 2 1 1 EP2BCH   0 [11]   EP2BCL   BC6   BC5   BC4   BC3   reserved   EP4BCH   Endpoint 4 Byte Count H   0 0 0 0 0 0 BC9   BC1   BC8   BC0   000000xx RW   xxxxxxxx RW   [11]   EP4BCL   Endpoint 4 Byte Count L BC7/SKIP   BC6   BC5   BC4   BC3   BC2   reserved   EP6BCH   Endpoint 6 Byte Count H   0 0 0 0 0 BC10   BC2   BC9   BC1   BC8   BC0   00000xxx RW   xxxxxxxx RW   [11]   EP6BCL   Endpoint 6 Byte Count L BC7/SKIP   BC6   BC5   BC4   BC3   E69A 2   E69C 1   reserved   EP8BCH   Endpoint 8 Byte Count H   0 0 0 0 0 0 BC9   BC8   000000xx RW   Document #: 38-08032 Rev. *L   Page 31 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   Table 12. FX2LP Register Summary (continued)   Hex Size Name   Description   b7   b6   b5   b4   b3   b2   b1   b0   Default   Access   [11]   E69D 1   E69E 2   E6A0 1   EP8BCL   Endpoint 8 Byte Count L BC7/SKIP   BC6   BC5   BC4   BC3   BC2   BC1   BC0   xxxxxxxx RW   reserved   EP0CS   Endpoint 0 Control and HSNAK   Status   0 0 0 0 0 BUSY   BUSY   BUSY   0 STALL   STALL   STALL   STALL   STALL   STALL   STALL   FF   10000000 bbbbbbrb   00000000 bbbbbbrb   00000000 bbbbbbrb   00101000 rrrrrrrb   00101000 rrrrrrrb   00000100 rrrrrrrb   00000100 rrrrrrrb   00000010 R   E6A1 1   E6A2 1   E6A3 1   E6A4 1   E6A5 1   E6A6 1   E6A7 1   E6A8 1   E6A9 1   E6AA 1   E6AB 1   E6AC 1   E6AD 1   E6AE 1   E6AF 1   E6B0 1   E6B1 1   E6B2 1   E6B3 1   E6B4 1   E6B5 1   EP1OUTCS   EP1INCS   Endpoint 1 OUT Control   and Status   0 0 0 0 0 0 Endpoint 1 IN Control and 0   Status   0 0 0 0 0 EP2CS   Endpoint 2 Control and   Status   0 NPAK2   NPAK1   NPAK0   NPAK0   NPAK0   NPAK0   0 FULL   FULL   FULL   FULL   0 EMPTY   EMPTY   EMPTY   EMPTY   PF   EP4CS   Endpoint 4 Control and   Status   0 0 NPAK1   0 EP6CS   Endpoint 6 Control and   Status   0 NPAK2   NPAK1   0 EP8CS   Endpoint 8 Control and   Status   0 0 NPAK1   0 EP2FIFOFLGS   EP4FIFOFLGS   EP6FIFOFLGS   EP8FIFOFLGS   EP2FIFOBCH   EP2FIFOBCL   EP4FIFOBCH   EP4FIFOBCL   EP6FIFOBCH   EP6FIFOBCL   EP8FIFOBCH   EP8FIFOBCL   SUDPTRH   Endpoint 2 slave FIFO   Flags   0 0 0 EF   Endpoint 4 slave FIFO   Flags   0 0 0 0 0 PF   EF   FF   00000010 R   Endpoint 6 slave FIFO   Flags   0 0 0 0 0 PF   EF   FF   00000110 R   Endpoint 8 slave FIFO   Flags   0 0 0 0 0 PF   EF   FF   00000110 R   Endpoint 2 slave FIFO   total byte count H   0 0 0 BC12   BC4   0 BC11   BC3   0 BC10   BC2   BC10   BC2   BC10   BC2   BC10   BC2   A10   A2   BC9   BC1   BC9   BC1   BC9   BC1   BC9   BC1   A9   BC8   BC0   BC8   BC0   BC8   BC0   BC8   BC0   A8   00000000 R   Endpoint 2 slave FIFO   total byte count L   BC7   0 BC6   0 BC5   0 00000000 R   Endpoint 4 slave FIFO   total byte count H   00000000 R   Endpoint 4 slave FIFO   total byte count L   BC7   0 BC6   0 BC5   0 BC4   0 BC3   BC11   BC3   0 00000000 R   Endpoint 6 slave FIFO   total byte count H   00000000 R   Endpoint 6 slave FIFO   total byte count L   BC7   0 BC6   0 BC5   0 BC4   0 00000000 R   Endpoint 8 slave FIFO   total byte count H   00000000 R   Endpoint 8 slave FIFO   total byte count L   BC7   BC6   A14   A6   0 BC5   A13   A5   0 BC4   A12   A4   BC3   A11   A3   00000000 R   Setup Data Pointer high A15   address byte   xxxxxxxx RW   xxxxxxx0 bbbbbbbr   SUDPTRL   Setup Data Pointer low ad-A7   dress byte   A1   0 SUDPTRCTL   Setup Data Pointer Auto   Mode   0 0 0 0 0 SDPAUTO 00000001 RW   2 reserved   E6B8 8   SET-UPDAT   8 bytes of setup data   D7   D6   D5   D4   D3   D2   D1   D0   xxxxxxxx   R SET-UPDAT[0] =   bmRequestType   SET-UPDAT[1] =   bmRequest   SET-UPDAT[2:3] = wVal-   ue   SET-UPDAT[4:5] = wInd-   ex   SET-UPDAT[6:7] =   wLength   GPIF   E6C0 1   E6C1 1   GPIFWFSELECT   GPIFIDLECS   Waveform Selector   SINGLEWR1 SINGLEWR0 SINGLERD1 SINGLERD0 FIFOWR1 FIFOWR0   FIFORD1   0 FIFORD0   IDLEDRV   11100100 RW   10000000 RW   GPIF Done, GPIF IDLE DONE   drive mode   0 0 0 0 0 E6C2 1   E6C3 1   E6C4 1   E6C5 1   GPIFIDLECTL   GPIFCTLCFG   Inactive Bus, CTL states   CTL Drive Type   0 0 CTL5   CTL5   0 CTL4   CTL4   0 CTL3   CTL3   0 CTL2   CTL2   0 CTL1   CTL1   0 CTL0   11111111 RW   00000000 RW   00000000 RW   00000000 RW   TRICTL   0 0 CTL0   GPIFADRH   GPIF Address H   0 GPIFA8   GPIFA0   [11]   GPIFADRL   GPIF Address L   GPIFA7   GPIFA6   GPIFA5   GPIFA4   GPIFA3   GPIFA2   GPIFA1   FLOWSTATE   FLOWSTATE   E6C6 1   Flowstate Enable and   Selector   FSE   0 0 0 0 FS2   FS1   FS0   00000000 brrrrbbb   E6C7 1   E6C8 1   FLOWLOGIC   Flowstate Logic   LFUNC1   CTL0E3   LFUNC0   CTL0E2   TERMA2   TERMA1   TERMA0   CTL3   TERMB2   CTL2   TERMB1   CTL1   TERMB0   CTL0   00000000 RW   00000000 RW   FLOWEQ0CTL   CTL-Pin States in   Flowstate   (when Logic = 0)   CTL0E1/   CTL5   CTL0E0/   CTL4   E6C9 1   E6CA 1   FLOWEQ1CTL   CTL-Pin States in Flow- CTL0E3   state (when Logic = 1)   CTL0E2   CTL0E1/   CTL5   CTL0E0/   CTL4   CTL3   CTL2   CTL1   CTL0   00000000 RW   00010010 RW   FLOWHOLDOFF   Holdoff Configuration   HOPERIOD3 HOPERIOD2 HOPERIOD1 HOPERIOD HOSTATE HOCTL2   0 HOCTL1   HOCTL0   Document #: 38-08032 Rev. *L   Page 32 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   Table 12. FX2LP Register Summary (continued)   Hex Size Name   Description   b7   b6   b5   b4   b3   0 b2   b1   b0   Default   Access   E6CB 1   FLOWSTB   Flowstate Strobe   Configuration   SLAVE   RDYASYNC CTLTOGL   SUSTAIN   MSTB2   MSTB1   MSTB0   00100000 RW   E6CC 1   FLOWSTBEDGE   Flowstate Rising/Falling   Edge Configuration   0 0 0 0 0 0 FALLING   RISING   00000001 rrrrrrbb   E6CD 1   E6CE 1   FLOWSTBPERIOD Master-Strobe Half-Period D7   D6   D5   D4   D3   D2   D1   D0   00000010 RW   00000000 RW   GPIFTCB3   GPIFTCB2   GPIFTCB1   GPIFTCB0   GPIF Transaction Count TC31   Byte 3   TC30   TC29   TC28   TC27   TC26   TC25   TC24   E6CF 1   E6D0 1   E6D1 1   2 GPIF Transaction Count TC23   Byte 2   TC22   TC14   TC6   TC21   TC13   TC5   TC20   TC12   TC4   TC19   TC11   TC3   TC18   TC10   TC2   TC17   TC9   TC1   TC16   TC8   TC0   00000000 RW   00000000 RW   00000001 RW   00000000 RW   GPIF Transaction Count TC15   Byte 1   GPIF Transaction Count TC7   Byte 0   reserved   reserved   reserved   [11]   E6D2 1   E6D3 1   EP2GPIFFLGSEL   Endpoint 2 GPIF Flag   select   0 0 x 0 0 x 0 0 x 0 0 x 0 0 x 0 0 x FS1   0 FS0   00000000 RW   EP2GPIFPFSTOP   Endpoint 2 GPIF stop   transaction on prog. flag   FIFO2FLAG 00000000 RW   E6D4 1   3 EP2GPIFTRIG   Endpoint 2 GPIF Trigger   x x xxxxxxxx   W reserved   reserved   reserved   [11]   E6DA 1   E6DB 1   EP4GPIFFLGSEL   Endpoint 4 GPIF Flag   select   0 0 x 0 0 x 0 0 x 0 0 x 0 0 x 0 0 x FS1   0 FS0   00000000 RW   EP4GPIFPFSTOP   Endpoint 4 GPIF stop   transaction on GPIF Flag   FIFO4FLAG 00000000 RW   E6DC 1   3 EP4GPIFTRIG   Endpoint 4 GPIF Trigger   x x xxxxxxxx   W reserved   reserved   reserved   [11]   E6E2 1   E6E3 1   EP6GPIFFLGSEL   Endpoint 6 GPIF Flag   select   0 0 x 0 0 x 0 0 x 0 0 x 0 0 x 0 0 x FS1   0 FS0   00000000 RW   EP6GPIFPFSTOP   Endpoint 6 GPIF stop   transaction on prog. flag   FIFO6FLAG 00000000 RW   E6E4 1   3 EP6GPIFTRIG   Endpoint 6 GPIF Trigger   x x xxxxxxxx   W reserved   reserved   reserved   [11]   E6EA 1   E6EB 1   EP8GPIFFLGSEL   Endpoint 8 GPIF Flag   select   0 0 x 0 0 x 0 0 x 0 0 x 0 0 x 0 0 x FS1   0 FS0   00000000 RW   EP8GPIFPFSTOP   Endpoint 8 GPIF stop   transaction on prog. flag   FIFO8FLAG 00000000 RW   E6EC 1   3 EP8GPIFTRIG   Endpoint 8 GPIF Trigger   x x xxxxxxxx   W reserved   E6F0 1   XGPIFSGLDATH   GPIF Data H   D15   D14   D6   D13   D12   D4   D4   0 D11   D3   D3   0 D10   D2   D2   0 D9   D1   D1   0 D8   D0   D0   0 xxxxxxxx RW   xxxxxxxx RW   (16-bit mode only)   E6F1 1   E6F2 1   E6F3 1   XGPIFSGLDATLX   Read/Write GPIF Data L & D7   trigger transaction   D5   XGPIFSGLDATL-   NOX   Read GPIF Data L, no   transaction trigger   D7   D6   D5   xxxxxxxx   R GPIFREADYCFG   InternalRDY,Sync/Async, INTRDY   RDY pin states   SAS   TCXRDY5   00000000 bbbrrrrr   E6F4 1   E6F5 1   E6F6 2   GPIFREADYSTAT   GPIFABORT   GPIF Ready Status   0 x 0 x RDY5   x RDY4   x RDY3   x RDY2   x RDY1   x RDY0   x 00xxxxxx R   Abort GPIF Waveforms   xxxxxxxx   W reserved   ENDPOINT BUFFERS   E740 64 EP0BUF   EP0-IN/-OUT buffer   EP1-OUT buffer   EP1-IN buffer   D7   D7   D7   D6   D6   D6   D5   D5   D5   D4   D4   D4   D3   D3   D3   D2   D2   D2   D1   D1   D1   D0   D0   D0   xxxxxxxx RW   xxxxxxxx RW   xxxxxxxx RW   RW   E780 64 EP10UTBUF   E7C0 64 EP1INBUF   E800 2048 reserved   F000 1024 EP2FIFOBUF   512/1024byteEP2/slave D7   FIFO buffer (IN or OUT)   D6   D6   D5   D5   D4   D4   D3   D3   D2   D2   D1   D1   D0   D0   xxxxxxxx RW   F400 512 EP4FIFOBUF   512 byte EP 4 / slave FIFO D7   buffer (IN or OUT)   xxxxxxxx RW   F600 512 reserved   F800 1024 EP6FIFOBUF   512/1024byteEP6/slave D7   FIFO buffer (IN or OUT)   D6   D6   D5   D5   D4   D4   D3   D3   D2   D2   D1   D1   D0   D0   xxxxxxxx RW   xxxxxxxx RW   FC00 512 EP8FIFOBUF   FE00 512 reserved   512 byte EP 8 / slave FIFO D7   buffer (IN or OUT)   Document #: 38-08032 Rev. *L   Page 33 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   Table 12. FX2LP Register Summary (continued)   Hex Size Name   Description   b7   0 b6   b5   0 b4   0 b3   0 b2   0 b1   0 b0   Default   Access   xxxx   I²C Configuration Byte   DISCON   400KHZ   xxxxxxxx n/a   [14]   Special Function Registers (SFRs)   [13]   80   81   82   83   84   85   86   87   88   1 1 1 1 1 1 1 1 1 IOA   Port A (bit addressable) D7   D6   D6   A6   A14   A6   A14   0 D5   D5   A5   A13   A5   A13   0 D4   D4   A4   A12   A4   A12   0 D3   D3   A3   A11   A3   A11   0 D2   D2   A2   A10   A2   A10   0 D1   D1   A1   A9   A1   A9   0 D0   xxxxxxxx RW   00000111 RW   00000000 RW   00000000 RW   00000000 RW   00000000 RW   00000000 RW   00110000 RW   00000000 RW   SP   Stack Pointer   D7   D0   DPL0   DPH0   Data Pointer 0 L   Data Pointer 0 H   Data Pointer 1 L   Data Pointer 1 H   Data Pointer 0/1 select   Power Control   A7   A0   A15   A7   A8   DPL1   DPH1   A0   [13]   A15   0 A8   [13]   DPS   SEL   IDLE   IT0   PCON   TCON   SMOD0   TF1   x 1 1 x x x Timer/Counter Control   (bit addressable)   TR1   TF0   TR0   IE1   IT1   IE0   89   1 TMOD   Timer/Counter Mode   Control   GATE   CT   M1   M0   GATE   CT   M1   M0   00000000 RW   8A   8B   8C   8D   8E   8F   90   91   92   1 1 1 1 1 1 1 1 1 TL0   Timer 0 reload L   Timer 1 reload L   Timer 0 reload H   Timer 1 reload H   Clock Control   D7   D7   D15   D15   x D6   D6   D14   D14   x D5   D4   D3   D2   D1   D0   00000000 RW   00000000 RW   00000000 RW   00000000 RW   00000001 RW   TL1   D5   D4   D3   D2   D1   D0   TH0   D13   D13   T2M   D12   D12   T1M   D11   D11   T0M   D10   D10   MD2   D9   D8   TH1   D9   D8   CKCON   MD1   MD0   reserved   [13]   IOB   Port B (bit addressable) D7   External Interrupt Flag(s) IE5   D6   D5   D4   D3   1 D2   0 D1   0 D0   0 xxxxxxxx RW   00001000 RW   00000000 RW   [13]   EXIF   IE4   A14   I²CINT   A13   USBNT   A12   [13]   MPAGE   Upper Addr Byte of MOVX A15   using @R0 / @R1   A11   A10   A9   A8   93   98   5 1 reserved   SCON0   Serial Port 0 Control   (bit addressable)   SM0_0   SM1_0   SM2_0   REN_0   TB8_0   RB8_0   TI_0   RI_0   00000000 RW   99   9A   9B   9C   9D   9E   9F   A0   A1   A2   A3   A8   1 1 1 1 1 1 1 1 1 1 5 1 SBUF0   Serial Port 0 Data Buffer D7   Autopointer 1 Address H A15   Autopointer 1 Address L A7   D6   D5   D4   D3   A11   A3   D2   D1   A9   A1   D0   A8   A0   00000000 RW   00000000 RW   00000000 RW   [13]   AUTOPTRH1   A14   A6   A13   A5   A12   A4   A10   A2   AUTOPTRL1   reserved   [13]   AUTOPTRH2   Autopointer 2 Address H A15   Autopointer 2 Address L A7   A14   A6   A13   A5   A12   A4   A11   A3   A10   A2   A9   A1   A8   A0   00000000 RW   00000000 RW   AUTOPTRL2   reserved   IOC   Port C (bit addressable) D7   D6   x D5   x D4   x D3   x D2   x D1   x D0   x xxxxxxxx RW   [13]   INT2CLR   Interrupt 2 clear   Interrupt 4 clear   x x xxxxxxxx   xxxxxxxx   W W [13]   INT4CLR   x x x x x x x reserved   IE   Interrupt Enable   (bit addressable)   EA   ES1   ET2   ES0   ET1   EX1   ET0   EX0   00000000 RW   A9   AA   1 1 reserved   [13]   EP2468STAT   Endpoint 2,4,6,8 status   flags   EP8F   EP8E   EP6F   EP6E   EP4F   EP4E   EP2F   EP2E   01011010 R   00100010 R   01100110 R   AB   AC   1 1 EP24FIFOFLGS   Endpoint 2,4 slave FIFO   status flags   0 0 EP4PF   EP8PF   EP4EF   EP8EF   EP4FF   EP8FF   0 0 EP2PF   EP6PF   EP2EF   EP6EF   EP2FF   EP6FF   EP68FIFOFLGS   Endpoint 6,8 slave FIFO   status flags   AD   AF   B0   B1   2 1 1 1 reserved   [13]   AUTOPTRSETUP   Autopointer 1&2 setup   0 0 0 0 0 APTR2INC APTR1INC APTREN   00000110 RW   xxxxxxxx RW   xxxxxxxx RW   IOD   Port D (bit addressable) D7   D6   D6   D5   D5   D4   D4   D3   D3   D2   D2   D1   D1   D0   D0   [13]   IOE   Port E   (NOT bit addressable)   D7   B2   B3   B4   B5   B6   B7   B8   1 1 1 1 1 1 1 OEA   Port A Output Enable   Port B Output Enable   Port C Output Enable   Port D Output Enable   Port E Output Enable   D7   D7   D7   D7   D7   D6   D6   D6   D6   D6   D5   D5   D5   D5   D5   D4   D4   D4   D4   D4   D3   D3   D3   D3   D3   D2   D2   D2   D2   D2   D1   D1   D1   D1   D1   D0   D0   D0   D0   D0   00000000 RW   00000000 RW   00000000 RW   00000000 RW   00000000 RW   OEB   [13]   OEC   [13]   OED   OEE   reserved   IP   Interrupt Priority (bit ad-   dressable)   1 PS1   PT2   PS0   PT1   PX1   PT0   PX0   10000000 RW   B9   BA   1 1 reserved   [13]   EP01STAT   Endpoint 0&1 Status   0 0 0 0 0 0 0 0 0 EP1INBSY EP1OUTBS EP0BSY   Y 00000000 R   BB   1 GPIFTRIG   Endpoint 2,4,6,8 GPIF   slave FIFO Trigger   DONE   RW   EP1   EP0   10000xxx brrrrbbb   BC   BD   1 1 reserved   GPIFSGLDATH   GPIF Data H (16-bit mode D15   only)   D14   D13   D12   D11   D10   D9   D8   xxxxxxxx RW   Note   13. SFRs not part of the standard 8051 architecture.   14. If no EEPROM is detected by the SIE then the default is 00000000.   Document #: 38-08032 Rev. *L   Page 34 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   Table 12. FX2LP Register Summary (continued)   Hex Size Name   Description   b7   b6   b5   b4   b3   b2   b1   b0   Default   xxxxxxxx RW   xxxxxxxx   Access   BE   BF   1 1 GPIFSGLDATLX   GPIFSGLDATL-   GPIF Data L w/ Trigger D7   GPIF Data L w/ No Trigger D7   D6   D6   D5   D5   D4   D4   D3   D3   D2   D2   D1   D1   D0   D0   R [13]   NOX   [13]   C0   1 SCON1   Serial Port 1 Control (bit SM0_1   addressable)   SM1_1   D6   SM2_1   D5   REN_1   D4   TB8_1   D3   RB8_1   D2   TI_1   D1   RI_1   D0   00000000 RW   00000000 RW   [13]   C1   C2   C8   1 6 1 SBUF1   Serial Port 1 Data Buffer D7   reserved   T2CON   Timer/Counter 2 Control TF2   (bit addressable)   EXF2   RCLK   TCLK   EXEN2   TR2   CT2   CPRL2   00000000 RW   C9   CA   1 1 reserved   RCAP2L   Capture for Timer 2, au- D7   to-reload, up-counter   D6   D6   D5   D5   D4   D4   D3   D3   D2   D2   D1   D1   D0   D0   00000000 RW   00000000 RW   CB   1 RCAP2H   Capture for Timer 2, au- D7   to-reload, up-counter   CC   CD   CE   D0   1 1 2 1 TL2   Timer 2 reload L   Timer 2 reload H   D7   D6   D5   D4   D3   D2   D1   D9   D0   D8   00000000 RW   00000000 RW   TH2   D15   D14   D13   D12   D11   D10   reserved   PSW   Program Status Word (bit CY   addressable)   AC   F0   RS1   RS0   OV   F1   P 00000000 RW   D1   D8   D9   E0   7 1 7 1 reserved   [13]   EICON   External Interrupt Control SMOD1   1 ERESI   D5   RESI   D4   INT6   D3   0 0 0 01000000 RW   00000000 RW   reserved   ACC   Accumulator (bit address- D7   able)   D6   D2   D1   D0   E1   E8   7 1 reserved   [13]   EIE   External Interrupt En-   able(s)   1 1 1 EX6   EX5   EX4   EI²C   EUSB   11100000 RW   E9   F0   F1   F8   7 1 7 1 reserved   B B (bit addressable)   D7   1 D6   1 D5   1 D4   D3   D2   D1   D0   00000000 RW   11100000 RW   reserved   [13]   EIP   External Interrupt Priority   Control   PX6   PX5   PX4   PI²C   PUSB   F9   7 reserved   R = all bits read-only   W = all bits write-only   r = read-only bit   w = write-only bit   b = both read/write bit   Document #: 38-08032 Rev. *L   Page 35 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   6. Absolute Maximum Ratings   Storage Temperature..................................................................................................................................................... 65°C to +150°C   Ambient Temperature with Power Supplied (Commercial)................................................................................................ 0°C to +70°C   Ambient Temperature with Power Supplied (Industrial).............................................................................................. –40°C to +105°C   Supply Voltage to Ground Potential................................................................................................................................ –0.5V to +4.0V   DC Input Voltage to Any Input Pin   ............................................................................................................................................5.25V   DC Voltage Applied to Outputs in High Z State .................................................................................................... –0.5V to VCC + 0.5V   Power Dissipation......................................................................................................................................................................300 mW   Static Discharge Voltage.............................................................................................................................................................>2000V   Max Output Current, per IO port...................................................................................................................................................10 mA   Max Output Current, all five IO ports (128- and 100-pin packages) .............................................................................................50 mA   7. Operating Conditions   T (Ambient Temperature Under Bias) Commercial......................................................................................................... 0°C to +70°C   A T (Ambient Temperature Under Bias) Industrial......................................................................................................... –40°C to +105°C   A Supply Voltage............................................................................................................................................................ +3.00V to +3.60V   Ground Voltage...................................................................................................................................................................................0V   F (Oscillator or Crystal Frequency).......................................................................................24 MHz ± 100 ppm, Parallel Resonant   OSC   8. Thermal Characteristics   The following table displays the thermal characteristics of various packages:   Table 13. Thermal Characteristics   θJc   θCa   θJa   θa   Junction to Case Case to Ambient   Junction toθAJmcb+ieθnCt aTemperature   Ambient Temperature   Package   Temperature   Temperature   (°C)   (°C/W)   24.4   11.9   (°C/W)   23.3   34.0   27.7   14.6   27.7   (°C/W)   47.7   45.9   43.2   25.2   58.6   56 SSOP   100 TQFP   128 TQFP   56 QFN   70   70   70   70   70   15.5   10.6   30.9   56 VFBGA   The Junction Temperature θj, can be calculated using the following equation: θj = P*θJa + θa   where,   P = Power   θJa = Junction to Ambient Temperature (θJc + θCa)   θa = Ambient Temperature (70 C)   The Case Temperature θc, can be calculated using the following equation: θc = P*θCa + θa   where,   P = Power   θCa = Case to Ambient Temperature   θa = Ambient Temperature (70 C)   Note   15. Do not power IO with chip power off.   Document #: 38-08032 Rev. *L   Page 36 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   9. DC Characteristics   Table 14. DC Characteristics   Parameter   VCC   VCC Ramp Up 0 to 3.3V   Description   Conditions   Min   3.00   200   2 Typ   Max   Unit   V Supply Voltage   3.3   3.60   μs   V V V V V Input HIGH Voltage   5.25   0.8   IH   Input LOW Voltage   –0.5   2 V IL   Crystal Input HIGH Voltage   Crystal Input LOW Voltage   Input Leakage Current   Output Voltage HIGH   Output LOW Voltage   Output Current HIGH   Output Current LOW   Input Pin Capacitance   5.25   0.8   V IH_X   IL_X   –0.5   V I 0< V < VCC   ±10   μA   V I IN   V V I I = 4 mA   2.4   OH   OUT   OUT   = –4 mA   0.4   4 V OL   I I mA   mA   pF   pF   μA   μA   mA   mA   mA   mA   mS   μS   OH   OL   4 C Except D+/D–   10   15   IN   D+/D–   I Suspend Current   Connected   300   100   0.5   0.3   50   380   150   SUSP   CY7C68014/CY7C68016   Suspend Current   Disconnected   Connected   1.2   1.0   CY7C68013/CY7C68015   Supply Current   Disconnected   I 8051 running, connected to USB HS   8051 running, connected to USB FS   VCC min = 3.0V   85   65   CC   35   T Reset Time after Valid Power   Pin Reset after powered on   5.0   RESET   200   9.1 USB Transceiver   USB 2.0 compliant in full-speed and high-speed modes.   10. AC Electrical Characteristics   10.1 USB Transceiver   USB 2.0 compliant in full-speed and high-speed modes.   Note   16. Measured at Max VCC, 25°C.   Document #: 38-08032 Rev. *L   Page 37 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   10.2 Program Memory Read   Figure 12. Program Memory Read Timing Diagram   t CL   CLKOUT   t t AV   AV   A[15..0]   t t STBH   STBL   PSEN#   D[7..0]   ACC1   t DH   t data in   t SOEL   OE#   CS#   t SCSL   Table 15. Program Memory Read Parameters   Parameter Description   1/CLKOUT Frequency   Min   Typ   Max   Unit   ns   ns   ns   ns   ns   ns   ns   ns   ns   ns   Notes   48 MHz   24 MHz   12 MHz   t 20.83   41.66   83.2   CL   t t t t t t t Delay from Clock to Valid Address   Clock to PSEN Low   Clock to PSEN High   Clock to OE Low   0 0 0 10.7   8 AV   STBL   STBH   SOEL   SCSL   DSU   8 11.1   13   Clock to CS Low   Data Setup to Clock   Data Hold Time   9.6   0 DH   Notes   17. CLKOUT is shown with positive polarity.   18. t   is computed from the above parameters as follows:   ACC1   ACC1   ACC1   t t (24 MHz) = 3*t – t – t   = 106 ns   = 43 ns.   CL   AV   DSU   DSU   (48 MHz) = 3*t – t – t   CL   AV   Document #: 38-08032 Rev. *L   Page 38 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   10.3 Data Memory Read   Figure 13. Data Memory Read Timing Diagram   t CL   Stretch = 0   CLKOUT   t t AV   AV   A[15..0]   RD#   t t STBH   STBL   t SCSL   CS#   OE#   t SOEL   t DSU   t DH   t ACC1   D[7..0]   data in   Stretch = 1   t CL   CLKOUT   t AV   A[15..0]   RD#   CS#   t DSU   t DH   t ACC1   D[7..0]   data in   Table 16. Data Memory Read Parameters   Parameter Description   1/CLKOUT Frequency   Min   Typ   20.83   41.66   83.2   Max   Unit   ns   ns   ns   ns   ns   ns   ns   ns   ns   ns   Notes   48 MHz   24 MHz   12 MHz   t CL   t t t t t t t Delay from Clock to Valid Address   Clock to RD LOW   10.7   11   AV   STBL   STBH   SCSL   SOEL   DSU   Clock to RD HIGH   11   Clock to CS LOW   13   Clock to OE LOW   11.1   Data Setup to Clock   Data Hold Time   9.6   0 DH   When using the AUTPOPTR1 or AUTOPTR2 to address external memory, the address of AUTOPTR1 is only active while either   RD# or WR# are active. The address of AUTOPTR2 is active throughout the cycle and meets the above address valid time for   which is based on the stretch value   Note   19. t   and t   are computed from the above parameters as follows:   ACC2   ACC2   ACC2   ACC3   ACC3   ACC3   t t t t (24 MHz) = 3*t – t –t   = 106 ns   (48 MHz) = 3*t – t – t = 43 ns   DSU   CL   AV DSU   CL   AV   (24 MHz) = 5*t – t –t = 190 ns   (48 MHz) = 5*t – t – t = 86 ns.   DSU   CL   AV DSU   CL   AV   Document #: 38-08032 Rev. *L   Page 39 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   10.4 Data Memory Write   Figure 14. Data Memory Write Timing Diagram   t CL   CLKOUT   A[15..0]   t AV   t t t STBL   STBH   AV   WR#   CS#   t SCSL   t ON1   t OFF1   data out   D[7..0]   Stretch = 1   t CL   CLKOUT   A[15..0]   t AV   WR#   CS#   t ON1   t OFF1   data out   D[7..0]   Table 17. Data Memory Write Parameters   Parameter Description   Delay from Clock to Valid Address   Min   0 Max   10.7   11.2   11.2   13.0   13.1   13.1   Unit   ns   Notes   t t t t t t AV   Clock to WR Pulse LOW   Clock to WR Pulse HIGH   Clock to CS Pulse LOW   Clock to Data Turn-on   Clock to Data Hold Time   0 ns   STBL   STBH   SCSL   ON1   0 ns   ns   0 0 ns   ns   OFF1   When using the AUTPOPTR1 or AUTOPTR2 to address external memory, the address of AUTOPTR1 is only active while either RD#   or WR# are active. The address of AUTOPTR2 is active throughout the cycle and meets the above address valid time for which is   based on the stretch value.   Document #: 38-08032 Rev. *L   Page 40 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   10.5 PORTC Strobe Feature Timings   The RD# and WR# are present in the 100-pin version and the   128-pin package. In these 100-pin and 128-pin versions, an   8051 control bit can be set to pulse the RD# and WR# pins when   the 8051 reads from or writes to PORTC. This feature is enabled   by setting PORTCSTB bit in CPUCS register.   The RD# signal prompts the external logic to prepare the next   data byte. Nothing gets sampled internally on assertion of the   RD# signal itself, it is just a prefetch type signal to get the next   data byte prepared. So, using it with that in mind easily meets the   setup time to the next read.   The RD# and WR# strobes are asserted for two CLKOUT cycles   when PORTC is accessed.   The purpose of this pulsing of RD# is to allow the external   peripheral to know that the 8051 is done reading PORTC and the   data was latched into PORTC three CLKOUT cycles before   asserting the RD# signal. After the RD# is pulsed, the external   logic can update the data on PORTC.   The WR# strobe is asserted two clock cycles after PORTC is   updated and is active for two clock cycles after that, as shown in   Following is the timing diagram of the read and write strobing   Section 10.4 for details on propagation delay of RD# and WR#   signals.   As for read, the value of PORTC three clock cycles before the   assertion of RD# is the value that the 8051 reads in. The RD# is   pulsed for 2 clock cycles after 3 clock cycles from the point when   the 8051 has performed a read function on PORTC.   Figure 15. WR# Strobe Function when PORTC is Accessed by 8051   t CLKOUT   CLKOUT   PORTC IS UPDATED   WR#   t t STBL   STBH   Figure 16. RD# Strobe Function when PORTC is Accessed by 8051   t CLKOUT   CLKOUT   8051 READS PORTC   RD#   DATA CAN BE UPDATED BY EXTERNAL LOGIC   DATA MUST BE HELD FOR 3 CLK CYLCES   t t STBL   STBH   Document #: 38-08032 Rev. *L   Page 41 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   10.6 GPIF Synchronous Signals   Figure 17. GPIF Synchronous Signals Timing Diagram   t IFCLK   IFCLK   t SGA   GPIFADR[8:0]   RDY   X t SRY   t RYH   DATA(input)   valid   t SGD   t DAH   CTLX   t XCTL   DATA(output)   N N+1   t XGD   Table 18. GPIF Synchronous Signals Parameters with Internally Sourced IFCLK   Parameter Description Min   Max   Unit   ns   ns   ns   ns   ns   ns   ns   ns   t t t t t t t t IFCLK Period   RDY to Clock Setup Time   20.83   8.9   0 IFCLK   SRY   RYH   SGD   DAH   SGA   XGD   XCTL   X Clock to RDY   X GPIF Data to Clock Setup Time   9.2   0 GPIF Data Hold Time   Clock to GPIF Address Propagation Delay   Clock to GPIF Data Output Propagation Delay   7.5   11   Clock to CTL Output Propagation Delay   6.7   X Table 19. GPIF Synchronous Signals Parameters with Externally Sourced IFCLK   Parameter Description Min.   Max.   Unit   ns   ns   ns   ns   ns   ns   ns   ns   t t t t t t t t IFCLK Period   RDY to Clock Setup Time   20.83   2.9   200   IFCLK   SRY   RYH   SGD   DAH   SGA   XGD   XCTL   X Clock to RDY   3.7   X GPIF Data to Clock Setup Time   3.2   GPIF Data Hold Time   4.5   Clock to GPIF Address Propagation Delay   Clock to GPIF Data Output Propagation Delay   11.5   15   Clock to CTL Output Propagation Delay   10.7   X Notes   20. Dashed lines denote signals with programmable polarity.   21. GPIF asynchronous RDY signals have a minimum Setup time of 50 ns when using internal 48-MHz IFCLK.   x 22. IFCLK must not exceed 48 MHz.   Document #: 38-08032 Rev. *L   Page 42 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   10.7 Slave FIFO Synchronous Read   Figure 18. Slave FIFO Synchronous Read Timing Diagram   t IFCLK   IFCLK   SLRD   t RDH   t SRD   t XFLG   FLAGS   DATA   N+1   N t t XFD   OEon   t OEoff   SLOE   Table 20. Slave FIFO Synchronous Read Parameters with Internally Sourced IFCLK   Parameter   Description   Min   20.83   18.7   0 Max   Unit   ns   t t t t t t t IFCLK Period   IFCLK   SLRD to Clock Setup Time   ns   SRD   Clock to SLRD Hold Time   ns   RDH   OEon   OEoff   XFLG   XFD   SLOE Turn-on to FIFO Data Valid   SLOE Turn-off to FIFO Data Hold   Clock to FLAGS Output Propagation Delay   Clock to FIFO Data Output Propagation Delay   10.5   10.5   9.5   ns   ns   ns   11   ns   Table 21. Slave FIFO Synchronous Read Parameters with Externally Sourced IFCLK   Parameter   Description   Min.   20.83   12.7   3.7   Max.   Unit   ns   t t t t t t t IFCLK Period   200   IFCLK   SLRD to Clock Setup Time   ns   SRD   Clock to SLRD Hold Time   ns   RDH   OEon   OEoff   XFLG   XFD   SLOE Turn-on to FIFO Data Valid   SLOE Turn-off to FIFO Data Hold   Clock to FLAGS Output Propagation Delay   Clock to FIFO Data Output Propagation Delay   10.5   10.5   13.5   15   ns   ns   ns   ns   Document #: 38-08032 Rev. *L   Page 43 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   10.8 Slave FIFO Asynchronous Read   Figure 19. Slave FIFO Asynchronous Read Timing Diagram   t RDpwh   SLRD   t RDpwl   t XFLG   t FLAGS   XFD   DATA   SLOE   N+1   N t t OEoff   OEon   Table 22. Slave FIFO Asynchronous Read Parameters   Parameter Description   SLRD Pulse Width LOW   SLRD Pulse Width HIGH   Min   Max   Unit   ns   t t t t t t 50   50   RDpwl   ns   RDpwh   XFLG   XFD   SLRD to FLAGS Output Propagation Delay   SLRD to FIFO Data Output Propagation Delay   SLOE Turn-on to FIFO Data Valid   70   15   ns   ns   10.5   10.5   ns   OEon   OEoff   SLOE Turn-off to FIFO Data Hold   ns   Note   23. Slave FIFO asynchronous parameter values use internal IFCLK setting at 48 MHz.   Document #: 38-08032 Rev. *L   Page 44 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   10.9 Slave FIFO Synchronous Write   Figure 20. Slave FIFO Synchronous Write Timing Diagram   t IFCLK   IFCLK   SLWR   t WRH   t SWR   DATA   N Z Z t t FDH   SFD   FLAGS   t XFLG   Table 23. Slave FIFO Synchronous Write Parameters with Internally Sourced IFCLK   Parameter   Description   Min   20.83   10.4   0 Max   Unit   ns   t t t t t t IFCLK Period   IFCLK   SLWR to Clock Setup Time   ns   SWR   WRH   SFD   Clock to SLWR Hold Time   ns   FIFO Data to Clock Setup Time   Clock to FIFO Data Hold Time   Clock to FLAGS Output Propagation Time   9.2   0 ns   ns   FDH   9.5   ns   XFLG   Table 24. Slave FIFO Synchronous Write Parameters with Externally Sourced IFCLK   Parameter   Description   Min   20.83   12.1   3.6   Max   Unit   ns   t t t t t t IFCLK Period   200   IFCLK   SLWR to Clock Setup Time   ns   SWR   WRH   SFD   Clock to SLWR Hold Time   ns   FIFO Data to Clock Setup Time   Clock to FIFO Data Hold Time   Clock to FLAGS Output Propagation Time   3.2   ns   4.5   ns   FDH   13.5   ns   XFLG   Document #: 38-08032 Rev. *L   Page 45 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   10.10 Slave FIFO Asynchronous Write   Figure 21. Slave FIFO Asynchronous Write Timing Diagram   t WRpwh   SLWR   t WRpwl   t t FDH   SFD   DATA   t XFD   FLAGS   Table 25. Slave FIFO Asynchronous Write Parameters with Internally Sourced IFCLK   Parameter   Description   Min   50   Max   Unit   ns   t t t t t SLWR Pulse LOW   SLWR Pulse HIGH   WRpwl   70   ns   WRpwh   SFD   SLWR to FIFO DATA Setup Time   FIFO DATA to SLWR Hold Time   10   ns   10   ns   FDH   SLWR to FLAGS Output Propagation Delay   70   ns   XFD   10.11 Slave FIFO Synchronous Packet End Strobe   Figure 22. Slave FIFO Synchronous Packet End Strobe Timing Diagram   IFCLK   t PEH   PKTEND   FLAGS   t SPE   t XFLG   Table 26. Slave FIFO Synchronous Packet End Strobe Parameters with Internally Sourced IFCLK   Parameter   Description   Min   20.83   14.6   0 Max   Unit   ns   t t t t IFCLK Period   IFCLK   PKTEND to Clock Setup Time   ns   SPE   Clock to PKTEND Hold Time   ns   PEH   XFLG   Clock to FLAGS Output Propagation Delay   9.5   ns   Table 27. Slave FIFO Synchronous Packet End Strobe Parameters with Externally Sourced IFCLK   Parameter   Description   Min   20.83   8.6   Max   Unit   ns   t t t t IFCLK Period   200   IFCLK   PKTEND to Clock Setup Time   ns   SPE   Clock to PKTEND Hold Time   2.5   ns   PEH   XFLG   Clock to FLAGS Output Propagation Delay   13.5   ns   Document #: 38-08032 Rev. *L   Page 46 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   There is no specific timing requirement that should be met for   asserting PKTEND pin to asserting SLWR. PKTEND can be   asserted with the last data value clocked into the FIFOs or there-   caused the last byte or word to be clocked into the previous auto   the AUTOINLEN register is set to when the IN endpoint is   configured to be in auto mode.   after. The setup time t   and the hold time t   must be met.   SPE   PEH   Although there are no specific timing requirements for the   PKTEND assertion, there is a specific corner case condition that   needs attention while using the PKTEND to commit a one byte   or word packet. There is an additional timing requirement that   needs to be met when the FIFO is configured to operate in auto   mode and it is required to send two packets back to back: a full   packet (full defined as the number of bytes in the FIFO meeting   the level set in AUTOINLEN register) committed automatically   followed by a short one byte or word packet committed manually   using the PKTEND pin. In this scenario, the user must ensure to   assert PKTEND at least one clock cycle after the rising edge that   Figure 23 shows a scenario where two packets are committed.   The first packet gets committed automatically when the number   of bytes in the FIFO reaches X (value set in AUTOINLEN   register) and the second one byte/word short packet being   committed manually using PKTEND.   Note that there is at least one IFCLK cycle timing between the   assertion of PKTEND and clocking of the last byte of the previous   packet (causing the packet to be committed automatically).   Failing to adhere to this timing results in the FX2 failing to send   the one byte or word short packet.   Figure 23. Slave FIFO Synchronous Write Sequence and Timing Diagram   t IFCLK   IFCLK   t t SFA   FAH   FIFOADR   >= t   WRH   >= t   SWR   SLWR   DATA   t t t FDH   t t t FDH   t t t SFD   t SFD   FDH   SFD   t SFD   t FDH   SFD   SFD   FDH   FDH   X-4   X-2   X-1   1 X-3   X At least one IFCLK cycle   t SPE   t PEH   PKTEND   10.12 Slave FIFO Asynchronous Packet End Strobe   Figure 24. Slave FIFO Asynchronous Packet End Strobe Timing Diagram   t PEpwh   PKTEND   FLAGS   t PEpwl   t XFLG   Table 28. Slave FIFO Asynchronous Packet End Strobe Parameters   Parameter Description   PKTEND Pulse Width LOW   Min   50   Max   Unit   t t t ns   ns   ns   PEpwl   PKTEND Pulse Width HIGH   50   PWpwh   XFLG   PKTEND to FLAGS Output Propagation Delay   115   Document #: 38-08032 Rev. *L   Page 47 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   10.13 Slave FIFO Output Enable   Figure 25. Slave FIFO Output Enable Timing Diagram   SLOE   t OEoff   t OEon   DATA   Table 29. Slave FIFO Output Enable Parameters   Parameter   Description   Min   Max   10.5   10.5   Unit   ns   t t SLOE Assert to FIFO DATA Output   SLOE Deassert to FIFO DATA Hold   OEon   OEoff   ns   10.14 Slave FIFO Address to Flags/Data   Figure 26. Slave FIFO Address to Flags/Data Timing Diagram   FIFOADR [1.0]   t XFLG   FLAGS   DATA   t XFD   N N+1   Table 30. Slave FIFO Address to Flags/Data Parameters   Parameter   Description   FIFOADR[1:0] to FLAGS Output Propagation Delay   FIFOADR[1:0] to FIFODATA Output Propagation Delay   Min   Max   10.7   14.3   Unit   ns   t t XFLG   XFD   ns   Document #: 38-08032 Rev. *L   Page 48 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   10.15 Slave FIFO Synchronous Address   Figure 27. Slave FIFO Synchronous Address Timing Diagram   IFCLK   SLCS/FIFOADR [1:0]   t t FAH   SFA   Table 31. Slave FIFO Synchronous Address Parameters   Parameter   Description   Interface Clock Period   Min   20.83   25   Max   Unit   ns   t t t 200   IFCLK   FIFOADR[1:0] to Clock Setup Time   Clock to FIFOADR[1:0] Hold Time   ns   SFA   FAH   10   ns   10.16 Slave FIFO Asynchronous Address   Figure 28. Slave FIFO Asynchronous Address Timing Diagram   SLCS/FIFOADR [1:0]   t FAH   t SFA   SLRD/SLWR/PKTEND   Table 32. Slave FIFO Asynchronous Address Parameters   Parameter   Description   Min   10   Max   Unit   ns   t t FIFOADR[1:0] to SLRD/SLWR/PKTEND Setup Time   RD/WR/PKTEND to FIFOADR[1:0] Hold Time   SFA   10   ns   FAH   Document #: 38-08032 Rev. *L   Page 49 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   10.17 Sequence Diagram   10.17.1 Single and Burst Synchronous Read Example   Figure 29. Slave FIFO Synchronous Read Sequence and Timing Diagram   t IFCLK   IFCLK   t t SFA   SFA   t t FAH   FAH   FIFOADR   t=0   T=0   t t >= t   SRD   >= t   RDH   RDH   SRD   SLRD   SLCS   t=3   t=2   T=3   T=2   t XFLG   FLAGS   DATA   SLOE   t t t XFD   t XFD   XFD   XFD   N+4   Data Driven: N   N+2   N+3   N+1   N+1   t t t OEoff   OEon   t OEoff   OEon   t=4   T=4   T=1   t=1   Figure 30. Slave FIFO Synchronous Sequence of Events Diagram   IFCLK   IFCLK   N IFCLK   N+1   IFCLK   N+1   IFCLK   N+1   IFCLK   N+2   IFCLK   N+3   IFCLK   N+4   IFCLK   N+4   IFCLK   N+4   N FIFO POINTER   SLOE   SLRD   SLOE   SLRD   SLOE   SLRD   SLRD   SLOE   FIFO DATA BUS Not Driven   Driven: N   N+1   Not Driven   N+1   N+2   N+3   N+4   N+4   Not Driven   signals during a synchronous FIFO read using IFCLK as the   synchronizing clock. The diagram illustrates a single read   followed by a burst read.   If the SLCS signal is used, it must be asserted before SLRD is   asserted (The SLCS and SLRD signals must both be asserted   to start a valid read condition).   ■ The FIFO pointer is updated on the rising edge of the IFCLK,   while SLRD is asserted. This starts the propagation of data   from the newly addressed location to the data bus. After a   ■ At t = 0 the FIFO address is stable and the signal SLCS is   asserted (SLCS may be tied low in some applications). Note   that t   has a minimum of 25 ns. This means when IFCLK is   propagation delay of t   (measured from the rising edge of   SFA   XFD   running at 48 MHz, the FIFO address setup time is more than   one IFCLK cycle.   IFCLK) the new data value is present. N is the first data value   read from the FIFO. To have data on the FIFO data bus, SLOE   MUST also be asserted.   ■ At t = 1, SLOE is asserted. SLOE is an output enable only,   whose sole function is to drive the data bus. The data that is   driven on the bus is the data that the internal FIFO pointer is   currently pointing to. In this example it is the first data value in   the FIFO. Note: the data is pre-fetched and is driven on the bus   when SLOE is asserted.   The same sequence of events are shown for a burst read and   are marked with the time indicators of T = 0 through 5.   Note For the burst mode, the SLRD and SLOE are left asserted   during the entire duration of the read. In the burst read mode,   when SLOE is asserted, data indexed by the FIFO pointer is on   the data bus. During the first read cycle, on the rising edge of the   clock the FIFO pointer is updated and increments to point to   address N+1. For each subsequent rising edge of IFCLK, while   the SLRD is asserted, the FIFO pointer is incremented and the   next data value is placed on the data bus.   ■ At t = 2, SLRD is asserted. SLRD must meet the setup time of   t (time from asserting the SLRD signal to the rising edge of   SRD   the IFCLK) and maintain a minimum hold time of t   from the IFCLK edge to the deassertion of the SLRD signal).   (time   RDH   Document #: 38-08032 Rev. *L   Page 50 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   10.17.2 Single and Burst Synchronous Write   Figure 31. Slave FIFO Synchronous Write Sequence and Timing Diagram   t IFCLK   IFCLK   t t SFA   t SFA   t FAH   FAH   FIFOADR   >= t   WRH   t=0   t t >= t   T=0   SWR   WRH   SWR   SLWR   SLCS   T=2   T=5   t=2   t=3   t XFLG   t XFLG   FLAGS   DATA   t t t t t FDH   t t t SFD   FDH   SFD   FDH   SFD   SFD   FDH   N+1   N+3   N N+2   T=4   T=3   t=1   T=1   t SPE   t PEH   PKTEND   signals during a synchronous write using IFCLK as the synchro-   nizing clock. The diagram illustrates a single write followed by   burst write of 3 bytes and committing all 4 bytes as a short packet   using the PKTEND pin.   FIFO data bus is written to the FIFO on every rising edge of   IFCLK. The FIFO pointer is updated on each rising edge of   SLWR is deasserted. The short 4 byte packet can be committed   to the host by asserting the PKTEND signal.   There is no specific timing requirement that should be met for   asserting PKTEND signal with regards to asserting the SLWR   signal. PKTEND can be asserted with the last data value or   ■ At t = 0 the FIFO address is stable and the signal SLCS is   asserted. (SLCS may be tied low in some applications) Note   that t   has a minimum of 25 ns. This means when IFCLK is   SFA   thereafter. The only requirement is that the setup time t   and   running at 48 MHz, the FIFO address setup time is more than   one IFCLK cycle.   SPE   the hold time t   PEH   number of data values committed includes the last value written   to the FIFO. In this example, both the data value and the   PKTEND signal are clocked on the same rising edge of IFCLK.   PKTEND can also be asserted in subsequent clock cycles. The   FIFOADDR lines should be held constant during the PKTEND   assertion.   ■ At t = 1, the external master/peripheral must outputs the data   value onto the data bus with a minimum set up time of t   SFD   before the rising edge of IFCLK.   ■ At t = 2, SLWR is asserted. The SLWR must meet the setup   time of t   (time from asserting the SLWR signal to the rising   SWR   edgeofIFCLK)andmaintainaminimumholdtimeoft   (time   Although there are no specific timing requirement for the   PKTEND assertion, there is a specific corner case condition that   needs attention while using the PKTEND to commit a one   byte/word packet. Additional timing requirements exists when   the FIFO is configured to operate in auto mode and it is desired   to send two packets: a full packet (full defined as the number of   bytes in the FIFO meeting the level set in AUTOINLEN register)   committed automatically followed by a short one byte or word   packet committed manually using the PKTEND pin.   WRH   from the IFCLK edge to the deassertion of the SLWR signal).   If the SLCS signal is used, it must be asserted with SLWR or   before SLWR is asserted (The SLCS and SLWR signals must   both be asserted to start a valid write condition).   ■ While the SLWR is asserted, data is written to the FIFO and on   the rising edge of the IFCLK, the FIFO pointer is incremented.   The FIFO flag is also updated after a delay of t   from the   XFLG   rising edge of the clock.   In this case, the external master must ensure to assert the   PKTEND pin at least one clock cycle after the rising edge that   caused the last byte or word that needs to be clocked into the   previous auto committed packet (the packet with the number of   bytes equal to what is set in the AUTOINLEN register). Refer to   Figure 23 for further details on this timing.   The same sequence of events are also shown for a burst write   and are marked with the time indicators of T = 0 through 5.   Note For the burst mode, SLWR and SLCS are left asserted for   the entire duration of writing all the required data values. In this   burst write mode, after the SLWR is asserted, the data on the   Document #: 38-08032 Rev. *L   Page 51 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   10.17.3 Sequence Diagram of a Single and Burst Asynchronous Read   Figure 32. Slave FIFO Asynchronous Read Sequence and Timing Diagram   t t t t FAH   SFA   SFA   FAH   FIFOADR   t=0   t t t RDpwh   t t t RDpwl   t t T=0   RDpwl   RDpwl   RDpwl   RDpwh   RDpwh   RDpwh   SLRD   SLCS   t=3   t=2   T=2   T=3   T=5   T=4   T=6   t XFLG   t XFLG   FLAGS   DATA   SLOE   t t XFD   t XFD   XFD   t XFD   Data (X)   Driven   N+3   N N+1   N+2   N t t OEon   t t OEoff   OEoff   OEon   t=4   T=1   T=7   t=1   Figure 33. Slave FIFO Asynchronous Read Sequence of Events Diagram   SLOE   SLRD   SLRD   SLOE   SLOE   SLRD   N+1   SLRD   N+1   SLRD   N+2   SLRD   N+2   SLOE   FIFO POINTER   N N N N N+1   N N+1   N+3   N+2   N+3   FIFO DATA BUS Not Driven   Driven: X   Not Driven   N N+1   N+1   N+2   Not Driven   signals during an asynchronous FIFO read. It shows a single   read followed by a burst read.   ■ The data that is driven, after asserting SLRD, is the updated   data from the FIFO. This data is valid after a propagation delay   of t   XFD   is the first valid data read from the FIFO. For data to appear on   the data bus during the read cycle (SLRD is asserted), SLOE   must be in an asserted state. SLRD and SLOE can also be tied   together.   ■ At t = 0 the FIFO address is stable and the SLCS signal is   asserted.   ■ At t = 1, SLOE is asserted. This results in the data bus being   driven. The data that is driven on to the bus is previous data,   it data that was in the FIFO from a prior read cycle.   The same sequence of events is also shown for a burst read   marked with T = 0 through 5.   ■ At t = 2, SLRD is asserted. The SLRD must meet the minimum   Note In burst read mode, during SLOE is assertion, the data bus   is in a driven state and outputs the previous data. After SLRD is   asserted, the data from the FIFO is driven on the data bus (SLOE   must also be asserted) and then the FIFO pointer is incre-   mented.   active pulse of t   and minimum de-active pulse width of   RDpwl   t . If SLCS is used then, SLCS must be asserted before   RDpwh   SLRD is asserted (The SLCS and SLRD signals must both be   asserted to start a valid read condition.)   Document #: 38-08032 Rev. *L   Page 52 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   10.17.4 Sequence Diagram of a Single and Burst Asynchronous Write   Figure 34. Slave FIFO Asynchronous Write Sequence and Timing Diagram   t t t FAH   t SFA   SFA   FAH   FIFOADR   t=0   T=0   t t t t t t t t WRpwh   WRpwl   WRpwh   WRpwl   WRpwl   WRpwh   WRpwh   WRpwl   SLWR   SLCS   t =1   t=3   T=1   T=4   T=3   T=7   T=6   T=9   t XFLG   t XFLG   FLAGS   DATA   t t t t t t t SFD   t SFD FDH   SFD FDH   SFD FDH   FDH   N N+1   N+2   N+3   t=2   T=8   T=2   T=5   t t PEpwl   PEpwh   PKTEND   Figure 34 shows the timing relationship of the SLAVE FIFO write   in an asynchronous mode. The diagram shows a single write   followed by a burst write of 3 bytes and committing the 4 byte   short packet using PKTEND.   The FIFO flag is also updated after t   edge of SLWR.   from the deasserting   XFLG   The same sequence of events are shown for a burst write and is   indicated by the timing marks of T = 0 through 5.   ■ At t = 0 the FIFO address is applied, insuring that it meets the   Note In the burst write mode, after SLWR is deasserted, the data   is written to the FIFO and then the FIFO pointer is incremented   to the next byte in the FIFO. The FIFO pointer is post incre-   mented.   setup time of t   . If SLCS is used, it must also be asserted   SFA   (SLCS may be tied low in some applications).   ■ At t = 1 SLWR is asserted. SLWR must meet the minimum   active pulse of t   and minimum de-active pulse width of   SLWR is deasserted, the short 4 byte packet can be committed   to the host using the PKTEND. The external device should be   designed to not assert SLWR and the PKTEND signal at the   same time. It should be designed to assert the PKTEND after   SLWR is deasserted and met the minimum deasserted pulse   width. The FIFOADDR lines have to held constant during the   PKTEND assertion.   WRpwl   t . If the SLCS is used, it must be asserted with SLWR or   WRpwh   before SLWR is asserted.   ■ At t = 2, data must be present on the bus t   deasserting edge of SLWR.   before the   SFD   ■ At t = 3, deasserting SLWR causes the data to be written from   the data bus to the FIFO and then increments the FIFO pointer.   Document #: 38-08032 Rev. *L   Page 53 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   11. Ordering Information   Table 33. Ordering Information   8051 Address   /Data Busses   Ordering Code   Package Type   RAM Size   # Prog IOs   Ideal for battery powered applications   CY7C68014A-128AXC   128 TQFP – Lead-Free   100 TQFP – Lead-Free   56 SSOP – Lead-Free   56 QFN – Lead-Free   56 VFBGA – Lead-Free   56 QFN – Lead-Free   16K   16K   16K   16K   16K   16K   40   40   24   24   24   26   16/8 bit   CY7C68014A-100AXC   – – – – – CY7C68014A-56PVXC   CY7C68014A-56LFXC   CY7C68014A-56BAXC   CY7C68016A-56LFXC   Ideal for non-battery powered applications   CY7C68013A-128AXC   CY7C68013A-128AXI   128 TQFP – Lead-Free   16K   16K   16K   16K   16K   16K   16K   16K   16K   16K   40   40   40   40   24   24   24   24   26   24   16/8 bit   128 TQFP – Lead-Free (Industrial)   100 TQFP – Lead-Free   16/8 bit   CY7C68013A-100AXC   CY7C68013A-100AXI   – – – – – – – – 100 TQFP – Lead-Free (Industrial)   56 SSOP – Lead-Free   CY7C68013A-56PVXC   CY7C68013A-56PVXI   56 SSOP – Lead-Free (Industrial)   56 QFN – Lead-Free   CY7C68013A-56LFXC   CY7C68013A-56LFXI   56 QFN – Lead-Free (Industrial)   56 QFN – Lead-Free   CY7C68015A-56LFXC   CY7C68013A-56BAXC   56 VFBGA – Lead-Free   Development Tool Kit   CY3684   EZ-USB FX2LP Development Kit   Reference Design Kit   CY4611B   USB 2.0 to ATA/ATAPI Reference Design using EZ-USB FX2LP   Document #: 38-08032 Rev. *L   Page 54 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   12. Package Diagrams   The FX2LP is available in five packages:   ■ 56-pin SSOP   ■ 56-pin QFN   ■ 100-pin TQFP   ■ 128-pin TQFP   ■ 56-ball VFBGA   Package Diagrams   Figure 35. 56-lead Shrunk Small Outline Package O56 (51-85062)   51-85062-*C   Document #: 38-08032 Rev. *L   Page 55 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   Package Diagrams (continued)   Figure 36. 56-Lead QFN 8 x 8 mm LF56A (51-85144)   SIDE VIEW   BOTTOM VIEW   TOP VIEW   0.08[0.003]   C 7.90[0.311]   A 1.00[0.039] MAX.   0.80[0.031] MAX.   8.10[0.319]   6.1   0.05[0.002] MAX.   0.20[0.008] REF.   0.18[0.007]   0.28[0.011]   7.70[0.303]   7.80[0.307]   PIN1 ID   0.20[0.008] R.   N N 1 2 1 2 0.45[0.018]   0.80[0.031]   DIA.   SOLDERABLE   EXPOSED   PAD   6.1   0.24[0.009]   0.60[0.024]   (4X)   0°-12°   0.30[0.012]   0.50[0.020]   0.50[0.020]   C SEATING PLANE   6.45[0.254]   6.55[0.258]   NOTES:   1.   HATCH AREA IS SOLDERABLE EXPOSED METAL.   2. REFERENCE JEDEC#: MO-220   3. PACKAGE WEIGHT: 0.162g   4. ALL DIMENSIONS ARE IN MM [MIN/MAX]   5. PACKAGE CODE   PART #   DESCRIPTION   LF56   LY56   STANDARD   PB-FREE   (SUBCON PUNCH TYPE PKG with 6.1 x 6.1 EPAD)   51-85144-*G   Document #: 38-08032 Rev. *L   Page 56 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   Package Diagrams (continued)   Figure 37. 100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A100RA (51-85050)   16.00 0.20   14.00 0.10   1.40 0.05   100   81   80   1 0.30 0.08   0.65   TYP.   12° 1°   (8X)   SEE DETAIL   A 30   51   31   50   0.20 MAX.   1.60 MAX.   R 0.08 MIN.   0.20 MAX.   0° MIN.   SEATING PLANE   STAND-OFF   0.05 MIN.   0.15 MAX.   NOTE:   1. JEDEC STD REF MS-026   0.25   GAUGE PLANE   2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH   MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE   R 0.08 MIN.   0.20 MAX.   BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH   3. DIMENSIONS IN MILLIMETERS   0°-7°   0.60 0.15   1.00 REF.   51-85050-*B   0.20 MIN.   DETAIL   A Document #: 38-08032 Rev. *L   Page 57 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   Package Diagrams (continued)   Figure 38. 128-Lead Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A128 (51-85101)   16.00 0.20   14.00 0.10   1.40 0.05   128   1 0.22 0.05   12° 1°   (8X)   SEE DETAIL   A 0.50   TYP.   0.20 MAX.   1.60 MAX.   R 0.08 MIN.   0.20 MAX.   0° MIN.   SEATING PLANE   STAND-OFF   NOTE:   1. JEDEC STD REF MS-026   0.05 MIN.   0.15 MAX.   0.25   GAUGE PLANE   2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH   MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE   R 0.08 MIN.   0.20 MAX.   BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH   51-85101-*C   0°-7°   3. DIMENSIONS IN MILLIMETERS   0.60 0.15   1.00 REF.   0.20 MIN.   DETAIL   A Document #: 38-08032 Rev. *L   Page 58 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   Package Diagrams (continued)   Figure 39. 56 VFBGA (5 x 5 x 1.0 mm) 0.50 Pitch, 0.30 Ball BZ56 (001-03901)   TOP VIEW   BOTTOM VIEW   Ø0.05 M C   Ø0.15 M C A B   A1 CORNER   PIN A1 CORNER   Ø0.30 0.05(56X)   1 2 3 4 5 6 6 8 8 7 6 5 4 3 2 1 A B C D E A B C D E F F G H G H 0.50   3.50   -B-   -A-   5.00 0.10   SIDE VIEW   5.00 0.10   0.10(4X)   REFERENCE JEDEC: MO-195C   PACKAGE WEIGHT: 0.02 grams   -C-   SEATING PLANE   001-03901-*B   13. PCB Layout Recommendations   Follow these recommendations to ensure reliable high perfor-   mance operation:   ■ Bypass and flyback caps on VBus, near connector, are recom-   mended.   ■ Four layer impedance controlled boards are required to   maintain signal quality.   ■ DPLUS and DMINUS trace lengths should be kept to within 2   mm of each other in length, with preferred length of 20 to   30 mm.   ■ Specify impedance targets (ask your board vendor what they   can achieve).   ■ Maintain a solid ground plane under the DPLUS and DMINUS   traces. Do not allow the plane to split under these traces.   ■ To control impedance, maintain trace widths and trace spacing.   ■ Do not place vias on the DPLUS or DMINUS trace routing.   ■ Minimize stubs to minimize reflected signals.   ■ Isolate the DPLUS and DMINUS traces from all other signal   traces by no less than 10 mm.   ■ Connections between the USB connector shell and signal   ground must be near the USB connector.   Note   24. Source for recommendations: EZ-USB FX2™PCB Design Recommendations, http://www.cypress.com/cfuploads/support/app_notes/FX2_PCB.pdf and   High-Speed USB Platform Design Guidelines, http://www.usb.org/developers/docs/hs_usb_pdg_r1_0.pdf.   Document #: 38-08032 Rev. *L   Page 59 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   14. Quad Flat Package No Leads (QFN) Package Design Notes   Electrical contact of the part to the Printed Circuit Board (PCB)   is made by soldering the leads on the bottom surface of the   package to the PCB. Hence, special attention is required to the   heat transfer area below the package to provide a good thermal   bond to the circuit board. Design a Copper (Cu) fill in the PCB as   a thermal pad under the package. Heat is transferred from the   FX2LP through the device’s metal paddle on the bottom side of   the package. Heat from here is conducted to the PCB at the   thermal pad. It is then conducted from the thermal pad to the   PCB inner ground plane by a 5 x 5 array of via. A via is a plated   through hole in the PCB with a finished diameter of 13 mil. The   QFN’s metal die paddle must be soldered to the PCB’s thermal   pad. Solder mask is placed on the board top side over each via   to resist solder flow into the via. The mask on the top side also   minimizes outgassing during the solder reflow process.   For further information on this package design refer to Appli-   cation Notes for Surface Mount Assembly of Amkor's MicroLead-   Frame (MLF) Packages. You can find this on Amkor's website   The application note provides detailed information about board   mounting guidelines, soldering flow, rework process, etc.   a cross-sectional area underneath the   package. The cross section is of only one via. The solder paste   template should be designed to allow at least 50% solder   coverage. The thickness of the solder paste template should be   5 mil. Use the No Clean type 3 solder paste for mounting the part.   Nitrogen purge is recommended during reflow.   displays an X-Ray image of the assembly (darker areas indicate   solder).   Figure 40. Cross-section of the Area Underneath the QFN Package   0.017” dia   Solder Mask   Cu Fill   Cu Fill   0.013” dia   PCB Material   PCB Material   Via hole for thermally connecting the   This figure only shows the top three layers of the   circuit board: Top Solder, PCB Dielectric, and   the Ground Plane   QFN to the circuit board ground plane.   Figure 41. Plot of the Solder Mask (White Area)   Figure 42. X-ray Image of the Assembly   Document #: 38-08032 Rev. *L   Page 60 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   Document History Page   Document Title: CY7C68013A, CY7C68014A, CY7C68015A, CY7C68016A, EZ-USB FX2LP™ USB Microcontroller   High-Speed USB Peripheral Controller   Document Number: 38-08032   Issue Orig. of   REV. ECN NO.   **   Description of Change   Date Change   124316 03/17/03 VCS New data sheet   *A 128461 09/02/03 VCS Added PN CY7C68015A throughout data sheet   2 Removed word “compatible” where associated with I C   Corrected grammar and formatting in various locations   Added Sections 3.15, 3.18.4, 3.20   *B 130335 10/09/03 KKV Restored PRELIMINARY to header (had been removed in error from rev. *A)   *C 131673 02/12/04 KKU Section 8.1 changed “certified” to “compliant”   and V   IL_X   IH_X   Added Sequence diagrams Section 9.16   Updated Ordering information with lead-free parts   Updated Registry Summary   Section 3.12.4:example changed to column 8 from column 9   Updated section 3.9 (reset)   Updated section 3.15 ECC Generation   *D 230713 See ECN KKU Changed Lead free Marketing part numbers in Table 33 as per spec change in 28-00054.   *E 242398 See ECN TMD Minor Change: data sheet posted to the web,   *F   271169 See ECN MON Added USB-IF Test ID number   Added USB 2.0 logo   Added values for Isusp, Icc, Power Dissipation, Vih_x, Vil_x   Changed VCC from + 10% to + 5%   Changed E-Pad size to 4.3 mm x 5.0 mm   Changed PKTEND to FLAGS output propagation delay (asynchronous interface) in   *G   *H   316313 See ECN MON Removed CY7C68013A-56PVXCT part availability   Added parts ideal for battery powered applications: CY7C68014A, CY7C68016A   Provided additional timing restrictions and requirement about the use of PKETEND pin to   commit a short one byte/word packet subsequent to committing a packet automatically   (when in auto mode).   Added Min Vcc Ramp Up time (0 to 3.3v)   338901 See ECN MON Added information about the AUTOPTR1/AUTOPTR2 address timing with regards to data   memory read/write timing diagram.   Removed TBD for Min value of Clock to FIFO Data Output Propagation Delay (t   Slave FIFO Synchronous Read   ) for   XFD   powered applications   Added register GPCR2 in register summary   *I   371097 See ECN MON Added timing for strobing RD#/WR# signals when using PortC strobe feature (Section 10.5)   *J   397239 See ECN MON Removed XTALINSRC register from register summary.   Changed Vcc margins to +10%   Added 56-pin VFBGA Pin Package Diagram   Added 56-pin VFBGA definition in pin listing   Added RDK part number to the Ordering Information table   Document #: 38-08032 Rev. *L   Page 61 of 62   CY7C68013A, CY7C68014A   CY7C68015A, CY7C68016A   Document Title: CY7C68013A, CY7C68014A, CY7C68015A, CY7C68016A, EZ-USB FX2LP™ USB Microcontroller   High-Speed USB Peripheral Controller   Document Number: 38-08032   Issue Orig. of   Date Change   REV. ECN NO.   Description of Change   Removed indications that SLRD can be asserted simultaneously with SLCS in Section   *L 2064406 See ECN CMCC/ Changed TID number   PYRS Removed T0OUT and T1OUT from CY7C68015A/16A   SWR   Updated 56-lead QFN package diagram   © Cypress Semiconductor Corporation, 2003-2008. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of   any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for   medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as   critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems   application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.   Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),   United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,   and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress   integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without   the express written permission of Cypress.   Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES   OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not   assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where   a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer   assumes all risk of such use and in doing so indemnifies Cypress against all charges.   Use may be limited by and subject to the applicable Cypress software license agreement.   Document #: 38-08032 Rev. *L   Revised February 8, 2008   Page 62 of 62   2 2 2 Purchase of I C components from Cypress, or one of its sublicensed Associated Companies, conveys a license under the Philips I C Patent Rights to use these components in an I C system, provided   2 that the system conforms to the I C Standard Specification as defined by Philips. EZ-USB FX2LP, EZ-USB FX2 and ReNumeration are trademarks, and EZ-USB is a registered trademark, of Cypress   Semiconductor Corporation. All product and company names mentioned in this document are the trademarks of their respective holders.   |