| AlliedWareTM OS   Configure EPSR (Ethernet Protection Switching   Ring) to Protect a Ring from Loops   How To |   Introduction   Putting a ring of Ethernet switches at the core of a network is a simple way to increase the   network’s resilience—such a network is no longer susceptible to a single point of failure.   However, the ring must be protected from Layer 2 loops. Traditionally, STP-based   technologies are used to protect rings, but they are relatively slow to recover from link   failure. This can create problems for applications that have strict loss requirements, such as   voice and video traffic, where the speed of recovery is highly significant.   This How To Note describes a fast alternative to STP: Ethernet Protection Switching Ring   (EPSR). EPSR enables rings to recover rapidly from link or node failures—within as little as   50ms, depending on port type and configuration. This is much faster than STP at 30 seconds   or even RSTP at   1 to 3 seconds.   What information will you find in this document?   This How To Note begins by describing EPSR in the following sections:   • • • • • Next it gives step-by-step configuration details and examples in the following sections:   • • • C613-16092-00 REV D   Download from Www.Somanuals.com. All Manuals Search And Download.   How EPSR Works   How EPSR Works   EPSR operates on physical rings of switches (note, not on   meshed networks). When all nodes and links in the ring   are up, EPSR prevents a loop by blocking data transmission   across one port. When a node or link fails, EPSR detects   the failure rapidly and responds by unblocking the blocked   port so that data can flow around the ring.   EPSR Components   EPSR domain:   A protection scheme for an   Ethernet ring that consists of   one or more data VLANs and a   control VLAN.   In EPSR, each ring of switches forms an EPSR domain.   One of the domain’s switches is the master node and   the others are transit nodes. Each node connects to the   ring via two ports.   Master node:   The controlling node for a   domain, responsible for polling   the ring state, collecting error   messages, and controlling the   flow of traffic in the domain.   One or more data VLANs sends data around the ring,   and a control VLAN sends EPSR messages. A physical   ring can have more than one EPSR domain, but each   domain operates as a separate logical group of VLANs and   has its own control VLAN and master node.   Transit node:   Other nodes in the domain.   On the master node, one port is the primary port and   the other is the secondary port. When all the nodes in   the ring are up, EPSR prevents loops by blocking the data   VLAN on the secondary port.   Ring port:   A port that connects the node   to the ring. On the master node,   each ring port is either the   primary port or the secondary   port. On transit nodes, ring   ports do not have roles.   The master node does not need to block any port on the   control VLAN because loops never form on the control   VLAN. This is because the master node never forwards   any EPSR messages that it receives.   Primary port:   A ring port on the master node.   This port determines the   direction of the traffic flow, and   is always operational.   The following diagram shows a basic ring with all the   switches in the ring up.   End User Ports   Control VLAN is forwarding   Data VLAN is blocked   Control VLAN is forwarding   Data VLAN is forwarding   Secondary port:   A second ring port on the   master node. This port remains   active, but blocks all protected   VLANs from operating unless   the ring fails. Similar to the   blocking port in an STP/RSTP   instance.   S P Master   Node   Transit   Node   4 Transit   Node   1 End User Ports   End User Ports   Control VLAN:   Transit   Node   3 Transit   Node   2 The VLAN over which all   control messages are sent and   received. EPSR never blocks this   VLAN.   End User Ports   End User Ports   Data VLAN   A VLAN that needs to be   protected from loops. Each   EPSR domain has one or more   data VLANs.   Control VLAN   Control VLAN   Data VLAN_1   Data VLAN_2   Primary Port   P S Data VLAN_1   Data VLAN_2   Secondary Port   epsr-basic-ring   Page 3 | AlliedWare™ OS How To Note: EPSR   Download from Www.Somanuals.com. All Manuals Search And Download.   How EPSR Works   Establishing a Ring   Once you have configured EPSR on the switches, the following steps complete the EPSR ring:   1. The master node creates an EPSR Health message and sends it out the primary port. This   increments the master node’s Transmit: Health counter in the show epsr count   command.   2. The first transit node receives the Health message on one of its two ring ports and, using   a hardware filter, sends the message out its other ring port.   Note that transit nodes never generate Health messages, only receive them and forward   them with their switching hardware. This does not increment the transit node’s Transmit:   Health counter. However, it does increment the Transmit counter in the show switch   port command.   The hardware filter also copies the Health message to the CPU. This increments the   transit node’s Receive: Health counter. The CPU processes this message as required by   the state machines, but does not send the message anywhere because the switching   hardware has already done this.   3. The Health message continues around the rest of the transit nodes, being copied to the   CPU and forwarded in the switching hardware.   4. The master node eventually receives the Health message on its secondary port. The   master node's hardware filter copies the packet to the CPU (which increments the master   node’s Receive: Health counter). Because the master received the Health message on its   secondary port, it knows that all links and nodes in the ring are up.   When the master node receives the Health message back on its secondary port, it resets   the Failover timer. If the Failover timer expires before the master node receives the Health   message back, it concludes that the ring must be broken.   Note that the master node does not send that particular Health message out again. If it   did, the packet would be continuously flooded around the ring. Instead, the master node   generates a new Health message when the Hello timer expires.   Page 4 | AlliedWare™ OS How To Note: EPSR   Download from Www.Somanuals.com. All Manuals Search And Download.   How EPSR Works   Detecting a Fault   EPSR uses a fault detection scheme that alerts the ring   when a break occurs, instead of using a spanning tree-   like calculation to determine the best path. The ring   then automatically heals itself by sending traffic over a   protected reverse path.   Master Node States   Complete:   The state when there are no link or   node failures on the ring.   EPSR uses the following two methods to detect when   a transit node or a link goes down:   Failed:   The state when there is a link or   node failure on the ring. This state   indicates that the master node   received a Link-Down message or   that the failover timer expired before   the master node’s secondary port   received a Health message.   • Master node polling fault detection   To check the condition of the ring, the master   node regularly sends Health messages out its   primary port, as described in "Establishing a   Ring" on page 4. If all links and nodes in the ring are   up, the messages arrive back at the master node on   its secondary port.   Transit Node States   Idle:   This can be a relatively slow detection method,   because it depends on how often the node sends   Health messages.   The state when EPSR is first   Note that the master node only ever sends Health   messages out its primary port. If its primary port   goes down, it does not send Health messages.   configured, before the master node   determines that all links in the ring   are up. In this state, both ports on   the node are blocked for the data   VLAN. From this state, the node can   move to Links Up or Links Down.   • Transit node unsolicited fault detection   To speed up fault detection, EPSR transit nodes   directly communicate when one of their interfaces   goes down. When a transit node detects a fault at   one of its interfaces, it immediately sends a Link-   Down message over the link that remains up. This   notifies the master node that the ring is broken and   causes it to respond immediately.   Links Up:   The state when both the node’s ring   ports are up and forwarding. From   this state, the node can move to   Links Down.   Links Down:   The state when one or both of the   node’s ring ports are down. From this   state, the node can move to Pre-   forwarding   Recovering from a Fault   Fault in a link or a transit node   When the master node detects an outage somewhere   in the ring, using either detection method, it restores   traffic flow by:   Pre-forwarding:   The state when both ring ports are   up, but one has only just come up and   is still blocked to prevent loops. From   this state, the transit node can move   to Links Up if the master node blocks   its secondary port, or to Links Down   if another port goes down.   1. declaring the ring to be in a Failed state   2. unblocking its secondary port, which enables data   VLAN traffic to pass between its primary and   secondary ports   3. flushing its own forwarding database (FDB) for the   two ring ports   4. sending an EPSR Ring-Down-Flush-FDB control message to all the transit nodes, via   both its primary and secondary ports   The transit nodes respond to the Ring-Down-Flush-FDB message by flushing their   forwarding databases for each of their ring ports. As the data starts to flow in the ring’s   Page 5 | AlliedWare™ OS How To Note: EPSR   Download from Www.Somanuals.com. All Manuals Search And Download.   How EPSR Works   new configuration, the nodes (master and transit) re-learn their layer 2 addresses. During   this period, the master node continues to send Health messages over the control VLAN.   This situation continues until the faulty link or node is repaired.   For a multidomain ring, this process occurs separately for each domain within the ring.   The following figure shows the flow of control frames when a link breaks.   Control VLAN is forwarding   Data VLANs move from blocking   to forwarding   Control VLAN is forwarding   Data VLANs are forwarding   3 S P 2 1 Master   Node   Transit   Node   4 Transit   Node   1 Transit   Node   3 Transit   Node   2 Data ports move from   fowarding to blocking   1 2 3 Master Node Health Message   Transit Node Link-Down Message   Ring-Down-Flush-FDB Message   Control VLAN   epsr-broken-ring   Fault in the master node   If the master node goes down, the transit nodes simply continue forwarding traffic around   the ring—their operation does not change.   The only observable effects on the transit nodes are that:   • • They stop receiving Health messages and other messages from the master node.   The transit nodes connected to the master node experience a broken link, so they send   Link-Down messages. If the master node is down these messages are simply dropped.   Neither of these symptoms affect how the transit nodes forward traffic.   Once the master node recovers, it continues its function as the master node.   Page 6 | AlliedWare™ OS How To Note: EPSR   Download from Www.Somanuals.com. All Manuals Search And Download.   How EPSR Works   Restoring Normal Operation   Master Node   Once the fault has been fixed, the master node’s Health messages traverse the whole ring and   arrive at the master node’s secondary port. The master node then restores normal   conditions by:   1. declaring the ring to be in a state of Complete   2. blocking its secondary port for data VLAN traffic (but not for the control VLAN)   3. flushing its forwarding database for its two ring ports   4. sending a Ring-Up-Flush-FDB message from its primary port, to all transit nodes.   Transit Nodes with One Port Down   As soon as the fault has been fixed, the transit nodes on each side of the (previously) faulty   link section detect that link connectivity has returned. They change their ring port state from   Links Down to Pre-Forwarding, and wait for the master node to send a Ring-Up-Flush-FDB   control message.   Once these transit nodes receive the Ring-Up-Flush-FDB message, they:   • • flush the forwarding databases for both their ring ports   change the state of their ports from blocking to forwarding for the data VLAN, which   allows data to flow through their previously-blocked ring ports   The transit nodes do not start forwarding traffic on the previously-down ports until after   they receive the Ring-Up-Flush-FDB message. This makes sure the previously-down transit   node ports stay blocked until after the master node blocks its secondary port. Otherwise,   the ring could form a loop because it had no blocked ports.   Transit Nodes with Both Ports Down   The Allied Telesis implementation includes an extra feature to improve handling of double   link failures. If both ports on a transit node are down and one port comes up, the node:   1. puts the port immediately into the forwarding state and starts forwarding data out that   port. It does not need to wait, because the node knows there is no loop in the ring—   because the other ring port on the node is down   2. remains in the Links Down state   3. starts a DoubleFailRecovery timer with a timeout of four seconds   4. waits for the timer to expire. At that time, if one port is still up and one is still down, the   transit node sends a Ring-Up-Flush-FDB message out the port that is up. This message is   usually called a “Fake Ring Up message”.   Sending this message allows any ports on other transit nodes that are blocking or in the Pre-   forwarding state to move to forwarding traffic in the Links Up state. The timer delay lets the   device at the other end of the link that came up configure its port appropriately, so that it is   ready to receive the transmitted message.   Note that the master node would not send a Ring-Up-Flush-FDB message in these   circumstances, because the ring is not in a state of Complete. The master node’s secondary   port remains unblocked.   Page 7 | AlliedWare™ OS How To Note: EPSR   Download from Www.Somanuals.com. All Manuals Search And Download.   How To Configure EPSR   How To Configure EPSR   This section first outlines, step-by-step, how to configure EPSR. Then it discusses changing   the settings for the control VLAN, if you need to do this after initial configuration.   Configuring EPSR   1. Connect your switches into a ring   EPSR does not in itself limit the number of nodes that can exist on any given ring. Each switch   can participate in up to 16 rings.   If you already have a ring in a live network, disconnect the cable between any two of the   nodes before you start configuring EPSR, to prevent a loop.   2. On each switch, configure EPSR   On each switch, perform the following configuration steps. Configuration of the master node   and each transit node is very similar.   i. Configure the control VLAN   This step creates the control VLAN and adds the ring ports to it as tagged ports.   Enter the commands:   create vlan=control-vlan-name vid=control-vid   add vlan=control-vid port=ring-ports frame=tagged   Note that you can use trunk groups for the ring ports.   ii. Configure the data VLAN   This step creates the data VLAN (or VLANs—you can have as many as you want) and   adds the ring ports as tagged ports.   Enter the commands:   create vlan=data-vlan-name vid=data-vid   add vlan=data-vid port=ring-ports frame=tagged   The two ring ports must belong to the control VLAN and all data VLANs.   Page 8 | AlliedWare™ OS How To Note: EPSR   Download from Www.Somanuals.com. All Manuals Search And Download.   How To Configure EPSR   iii. Remove the ring ports from the default VLAN   If you leave all the ring ports in the default VLAN (vlan1), they will create a loop, unless   vlan   1 is part of the EPSR domain. To avoid loops, you need to do one of the following:   make vlan a data VLAN, or   remove the ring ports from vlan   remove at least one of the ring ports from vlan   • • • 1 1 , or   1 on at least one of the switches.   We do not recommend this option, because the action you have taken is less   obvious when maintaining the network later.   In this How To Note, we remove the ring ports from the default VLAN. Use the   command:   delete vlan=1 port=ring-ports   iv. Configure the EPSR domain   This step creates the domain, specifying whether the switch is the master node or a   transit node. It also specifies which VLAN is the control VLAN, and on the master node   which port is the primary port.   Enter one of the following commands:   On the master node:   create epsr=name mode=master controlvlan=control-vlan-name   primaryport=port-number   On each transit node:   create epsr=name mode=transit controlvlan=control-vlan-name   This step also adds the data VLAN to the domain. Enter the command:   add epsr=name datavlan=data-vlan-name   v. Enable EPSR   This step enables the domain on each switch. Enter the command:   enable epsr=name   3. Configure other ports and protocols as required   On each switch, configure the other ports and protocols that are required for your network.   Page 9 | AlliedWare™ OS How To Note: EPSR   Download from Www.Somanuals.com. All Manuals Search And Download.   How To Configure EPSR   Modifying the Control VLAN   You cannot modify the control VLAN while EPSR is enabled. If you try to remove or add   ports to the control VLAN, the switch generates an error message as follows:   Manager> delete vlan=1000 port=1   Error (3089409): VLAN 1000 is a control VLAN in EPSR and cannot be modified   Disable the EPSR domain and then make the required changes. Note that disabling EPSR will   create a loop, so is not recommended on a network with live data. Of course, in a live   network, you can manually prevent a loop by disconnecting the cable between any two of the   nodes.   Page 10 | AlliedWare™ OS How To Note: EPSR   Download from Www.Somanuals.com. All Manuals Search And Download.   Example 1: A Basic Ring   Example 1: A Basic Ring   This example builds a simple 3-switch ring with one data VLAN, as shown in the following   diagram. Control packets are transmitted around the ring on vlan1000 and data packets on   vlan2.   End User Ports   port 1: primary   port 2: secondary   P S Master   Node   (A)   port 1: ring   port 1: ring   End User Ports   End User Ports   port 2: ring   port 2: ring   Transit   Node   (B)   Transit   Node   (C)   epsr-example-basic-ring   Configure the Master Node (A)   1. Create the control VLAN   create vlan=vlan1000 vid=1000   2. Add the ring ports to the control VLAN   add vlan=1000 port=1-2 frame=tagged   3. Create the data VLAN   create vlan=vlan2 vid=2   4. Add the ring ports to the data VLAN   The two ring ports must belong to the control VLAN and all data VLANs.   add vlan=2 port=1-2 frame=tagged   Page 11 | AlliedWare™ OS How To Note: EPSR   Download from Www.Somanuals.com. All Manuals Search And Download.   Example 1: A Basic Ring   5. Remove the ring ports from the default VLAN   delete vlan=1 port=1-2   6. Create the EPSR domain   This step creates the domain, specifying that this switch is the master node. It also specifies   which VLAN is the control VLAN and which port is the primary port.   create epsr=test mode=master controlvlan=vlan1000 primaryport=1   7. Add the data VLAN to the domain   add epsr=test datavlan=vlan2   8. Enable EPSR   enable epsr=test   Configure the Transit Nodes (B and C)   Each of the transit nodes has the same EPSR configuration in this example.   1. Create the control VLAN   create vlan=vlan1000 vid=1000   2. Add the ring ports to the control VLAN   add vlan=1000 port=1-2 frame=tagged   3. Create the data VLAN   create vlan=vlan2 vid=2   4. Add the ring ports to the data VLAN   The two ring ports must belong to both the control VLAN and all data VLANs.   add vlan=2 port=1-2 frame=tagged   5. Remove the ring ports from the default VLAN   delete vlan=1 port=1-2   Page 12 | AlliedWare™ OS How To Note: EPSR   Download from Www.Somanuals.com. All Manuals Search And Download.   Example 1: A Basic Ring   6. Create the EPSR domain   This step creates the domain, specifying that this switch is the transit node. It also specifies   which VLAN is the control VLAN.   create epsr=test mode=transit controlvlan=vlan1000   7. Add the data VLAN to the domain   add epsr=test datavlan=vlan2   8. Enable EPSR   enable epsr=test   Page 13 | AlliedWare™ OS How To Note: EPSR   Download from Www.Somanuals.com. All Manuals Search And Download.   Example 2: A Double Ring   Example 2: A Double Ring   This example adds to the previous ring by making two domains, as shown in the following   diagram.   Master   Node   (A)   Master   Node   (C)   port 4:   primary   port 1:   primary   port 2:   secondary   port 5:   secondary   port 1   port 2   port 4   port 5   Domain 1   control VLAN: 1000   data VLAN: 2   Domain 2   control VLAN: 40   data VLAN: 50   Transit   Node   (E)   port 4   port 1   port 2   port 5   Transit   Node   (B)   Transit   Node   (D)   epsr-example-double-ring   1. Configure the master node (switch A) for domain   1 The master node for domain   domain has been renamed).   1 is the same as in the previous example (except that the   create vlan=vlan1000 vid=1000   add vlan=1000 port=1-2 frame=tagged   create vlan=vlan2 vid=2   add vlan=2 port=1-2 frame=tagged   delete vlan=1 port=1-2   create epsr=domain1 mode=master controlvlan=vlan1000 primaryport=1   add epsr=domain1 datavlan=vlan2   enable epsr=domain1   Page 14 | AlliedWare™ OS How To Note: EPSR   Download from Www.Somanuals.com. All Manuals Search And Download.   Example 2: A Double Ring   2. Configure the transit node (switch B) that belongs just to domain   1 This transit node is the same as in the previous example (except that the domain has been   renamed).   create vlan=vlan1000 vid=1000   add vlan=1000 port=1-2 frame=tagged   create vlan=vlan2 vid=2   add vlan=2 port=1-2 frame=tagged   delete vlan=1 port=1-2   create epsr=domain1 mode=transit controlvlan=vlan1000   add epsr=domain1 datavlan=vlan2   enable epsr=domain1   3. Configure the master node (switch C) for domain 2   Configure the control VLAN:   create vlan=vlan40 vid=40   add vlan=40 port=4-5 frame=tagged   Configure the data VLAN:   create vlan=vlan50 vid=50   add vlan=50 port=4-5 frame=tagged   Remove the ring ports from the default VLAN:   delete vlan=1 port=4-5   Configure EPSR:   create epsr=domain2 mode=master controlvlan=vlan40 primaryport=4   add epsr=domain2 datavlan=vlan50   enable epsr=domain2   4. Configure the transit node (switch D) that belongs just to domain 2   Configure the control VLAN:   create vlan=vlan40 vid=40   add vlan=40 port=4-5 frame=tagged   Configure the data VLAN:   create vlan=vlan50 vid=50   add vlan=50 port=4-5 frame=tagged   Remove the ring ports from the default VLAN:   delete vlan=1 port=4-5   Page 15 | AlliedWare™ OS How To Note: EPSR   Download from Www.Somanuals.com. All Manuals Search And Download.   Example 2: A Double Ring   Configure EPSR:   create epsr=domain2 mode=transit controlvlan=vlan40   add epsr=domain2 datavlan=vlan50   enable epsr=domain2   5. Configure the transit node (switch E) that belongs to both domains   Two separate EPSR domains are configured on this switch.   Configure the control VLAN for domain   1:   create vlan=vlan1000 vid=1000   add vlan=1000 port=1-2 frame=tagged   Configure the control VLAN for domain 2:   create vlan=vlan40 vid=40   add vlan=40 port=4-5 frame=tagged   Configure the data VLAN for domain   1:   create vlan=vlan2 vid=2   add vlan=2 port=1-2 frame=tagged   Configure the data VLAN for domain 2:   create vlan=vlan50 vid=50   add vlan=50 port=4-5 frame=tagged   Remove the ring ports from the default VLAN:   delete vlan=1 port=1-2,4-5   Configure EPSR for domain 1. This switch is a transit node:   create epsr=domain1 mode=transit controlvlan=vlan1000   add epsr=domain1 datavlan=vlan2   enable epsr=domain1   Configure EPSR for domain 2. This switch is a transit node:   create epsr=domain2 mode=transit controlvlan=vlan40   add epsr=domain2 datavlan=vlan50   enable epsr=domain2   Page 16 | AlliedWare™ OS How To Note: EPSR   Download from Www.Somanuals.com. All Manuals Search And Download.   Example 3: EPSR and RSTP   Example 3: EPSR and RSTP   This example uses EPSR to protect one ring and RSTP to protect another overlapping ring.   RSTP   Master   Switch   Node   (C)   port 1:   primary   (A)   port 10   port 2:   port 11   secondary   port 1   port 2   port 10   port 11   Domain 1   RSTP:   control VLAN: 1000   data VLAN: 2   STP VLAN: 10   Switch   (E)   port 1   port 10   port 2   port 11   RSTP   Switch   (D)   Transit   Node   (B)   epsr-example-rstp   1. Configure the master node (switch A) for the EPSR domain   The master node is the same as in the previous example.   create vlan=vlan1000 vid=1000   add vlan=1000 port=1-2 frame=tagged   create vlan=vlan2 vid=2   add vlan=2 port=1-2 frame=tagged   delete vlan=1 port=1-2   create epsr=domain1 mode=master controlvlan=vlan1000 primaryport=1   add epsr=domain1 datavlan=vlan2   enable epsr=domain1   Page 17 | AlliedWare™ OS How To Note: EPSR   Download from Www.Somanuals.com. All Manuals Search And Download.   Example 3: EPSR and RSTP   2. Configure the transit node (switch B) that belongs just to the EPSR domain   This transit node (B) is the same as in the previous example.   create vlan=vlan1000 vid=1000   add vlan=1000 port=1-2 frame=tagged   create vlan=vlan2 vid=2   add vlan=2 port=1-2 frame=tagged   delete vlan=1 port=1-2   create epsr=domain1 mode=transit controlvlan=vlan1000   add epsr=domain1 datavlan=vlan2   enable epsr=domain1   3. Configure the switches that belong to the RSTP instance (switches C and D)   Switches C and D have the same configuration in this example.   Configure the STP VLAN:   create vlan=vlan10 vid=10   add vlan=10 port=10-11 frame=tagged   Remove the STP VLAN’s ports from the default VLAN:   delete vlan=1 port=10-11   Configure STP:   create stp=example   add stp=example vlan=vlan10   enable stp=example   set stp=example mode=rapid   Page 18 | AlliedWare™ OS How To Note: EPSR   Download from Www.Somanuals.com. All Manuals Search And Download.   Example 3: EPSR and RSTP   4. Configure switch E for EPSR and RSTP   Configure the control VLAN for EPSR:   create vlan=vlan1000 vid=1000   add vlan=1000 port=1-2 frame=tagged   Configure the data VLAN for EPSR:   create vlan=vlan2 vid=2   add vlan=2 port=1-2 frame=tagged   Remove the ring ports from the default VLAN:   delete vlan=1 port=1-2   Configure EPSR:   create epsr=domain1 mode=transit controlvlan=vlan1000   add epsr=domain1 datavlan=vlan2   enable epsr=domain1   Configure the STP VLAN:   create vlan=vlan10 vid=10   add vlan=10 port=10-11 frame=tagged   Remove the STP VLAN’s ports from the default VLAN:   delete vlan=1 port=10-11   Configure STP:   create stp=example   add stp=example vlan=vlan10   enable stp=example   set stp=example mode=rapid   Page 19 | AlliedWare™ OS How To Note: EPSR   Download from Www.Somanuals.com. All Manuals Search And Download.   Example 4: EPSR with Nested VLANs   Example 4: EPSR with Nested VLANs   In this example:   • • • • • client switches A and C are in the same end-user VLAN (vlan20)   client switches B and D are in the same end-user VLAN (vlan200)   traffic for vlan20 and vlan200 is nested inside vlan50 for transmission around the core   vlan50 is the data VLAN for the EPSR domain   vlan   1 00 is the control VLAN for the EPSR domain   Client   Switch   (E)   Client   Switch   (H)   port 20   port 10   port 22   port 22   port 2:   secondary   port 2   Master   Node   (A)   Transit   Node   (D)   port 1   port 1:   primary   EPSR Domain   control VLAN: 100   data VLAN: 50   Transit   Node   (B)   Transit   Node   (C)   port 1   port 1   port 2   port 2   port 22   port 22   port 10   port 20   Client   Switch   (F)   Client   Switch   (G)   epsr-example-nested   Page 20 | AlliedWare™ OS How To Note: EPSR   Download from Www.Somanuals.com. All Manuals Search And Download.   Example 4: EPSR with Nested VLANs   1. Configure the master node (switch A) for the EPSR domain   Configure the EPSR control VLAN:   create vlan=vlan100 vid=100   add vlan=100 port=1-2 frame=tagged   Configure vlan50. This VLAN acts as both the nested VLAN and the EPSR data VLAN. The   following commands create vlan50 and configure it as a nested VLAN:   create vlan=vlan50 vid=50 nested   add vlan=50 port=22 nestedtype=customer   add vlan=50 port=1-2 nestedtype=core   Remove the ring ports from the default VLAN:   delete vlan=1 port=1-2   Configure EPSR:   create epsr=example mode=master controlvlan=vlan100 primaryport=1   add epsr=example datavlan=vlan50   enable epsr=example   2. Configure the transit nodes (switches B, C and D) for the EPSR domain   Each of the transit nodes has the same EPSR configuration in this example.   Configure the EPSR control VLAN:   create vlan=vlan100 vid=100   add vlan=100 port=1-2 frame=tagged   Configure vlan50, which acts as both the nested VLAN and the EPSR data VLAN:   create vlan=vlan50 vid=50 nested   add vlan=50 port=22 nestedtype=customer   add vlan=50 port=1-2 nestedtype=core   Remove the ring ports from the default VLAN:   delete vlan=1 port=1-2   Configure EPSR:   create epsr=example mode=transit controlvlan=vlan100   add epsr=example datavlan=vlan50   enable epsr=example   Page 21 | AlliedWare™ OS How To Note: EPSR   Download from Www.Somanuals.com. All Manuals Search And Download.   Example 4: EPSR with Nested VLANs   3. Configure client switch E (connected to the master node)   create vlan=vlan20 vid=20   add vlan=20 port=20 frame=tagged   enable ip   add ip interface=vlan20 ip=192.168.20.10   4. Configure client switch F (connected to transit node B)   create vlan=vlan200 vid=200   add vlan=200 port=10 frame=tagged   enable ip   add ip interface=vlan200 ip=192.168.200.1   5. Configure client switch G (connected to transit node C)   create vlan=vlan20 vid=20   add vlan=20 port=20 frame=tagged   enable ip   add ip int=vlan20 ip=192.168.20.1   6. Configure client switch H (connected to transit node D)   create vlan=vlan200 vid=200   add vlan=200 port=10 frame=tagged   enable ip   add ip interface=vlan200 ip=192.168.200.10   Page 22 | AlliedWare™ OS How To Note: EPSR   Download from Www.Somanuals.com. All Manuals Search And Download.   Example 5: EPSR with management stacking   Example 5: EPSR with management stacking   In this example:   • three switches are stacked together, so you can manage all three switches by entering   commands into the CLI of any one of them   • • the three switches are also configured as an EPSR domain   vlan1000 is used as the stacking VLAN and as the EPSR control VLAN. Stacked switches   use the stacking VLAN to communicate with each other   • • the data VLAN for EPSR is vlan20   ports on the stacked switches are numbered using the stacking scheme of hostid.0.port   vlan45   P S port 1.0.1:   primary   port 1.0.2:   secondary   Master   Node   (host1)   port 2.0.1   port 3.0.1   Transit   Node   (host2)   Transit   Node   (host3)   port 2.0.2   port 3.0.2   vlan30   epsr-example-stack   Page 23 | AlliedWare™ OS How To Note: EPSR   Download from Www.Somanuals.com. All Manuals Search And Download.   Example 5: EPSR with management stacking   1. Configure stacking on the master node for the EPSR domain (host   1)   The following commands must be entered into the CLI of this particular switch.   First, give the switch a host ID number so that the stack can identify it:   set system hostid=1 serialnumber=12345678   set system name=host1   Create the stacking VLAN and add the ring ports to it. Note the port numbering notation—   these are ports and 2 on stacking host . Because this VLAN will also be the EPSR control   1 1 VLAN, this step also adds the ring ports to the control VLAN. Use the commands:   create vlan=stack vid=1000   add vlan=1000 port=1.0.1-1.0.2 frame=tagged   delete vlan=1 port=1.0.1-1.0.2   Add the stacking VLAN to the stack and enable stacking:   add stack interface=vlan1000   enable stack   2. Configure stacking on the first transit node (host2)   These commands must be entered into the CLI of this particular switch.   set system hostid=2 serialnumber=23456789   set system name=host2   create vlan=stack vid=1000   add vlan=1000 port=2.0.1-2.0.2 frame=tagged   delete vlan=1 port=2.0.1-2.0.2   add stack interface=vlan1000   enable stack   3. Configure stacking on the second transit node (host3)   These commands must be entered into the CLI of this particular switch.   set system hostid=3 serialnumber=34567890   set system name=host3   create vlan=stack vid=1000   add vlan=1000 port=3.0.1-3.0.2 frame=tagged   delete vlan=1 port=3.0.1-3.0.2   add stack interface=vlan1000   enable stack   Page 24 | AlliedWare™ OS How To Note: EPSR   Download from Www.Somanuals.com. All Manuals Search And Download.   Example 5: EPSR with management stacking   4. Configure the other VLANs on the stacked switches   The stack now exists, so you can configure all three switches from the CLI of the master   node (or any other of the switches). However, the ports and IP addresses are different for   each switch, so you need to make most of the commands host-directed.   Create the EPSR data VLAN. This command will propagate to all three switches:   create vlan=vlan20 vid=20   Assign ports and an IP address to the data VLAN on each switch. You can type the following   commands into any switch in the stack. To apply them to the correct switches, make them   host-directed by starting each command with the host ID number of the target switch.   Therefore, use the following commands:   1: add vlan=20 port=1.0.1-1.0.2 frame=tagged   1: add ip int=vlan20 ip=192.168.20.1   2: add vlan=20 port=2.0.1-2.0.2 frame=tagged   2: add ip int=vlan20 ip=192.168.20.2   3: add vlan=20 port=3.0.1-3.0.2 frame=tagged   3: add ip int=vlan20 ip=192.168.20.3   Configure other VLANs as required. In this example, two of the switches have other VLANs   attached:   1: create vlan=vlan45 vid=45   1: add vlan=45 port=1.0.23-1.0.24 frame=tagged   1: add ip int=vlan45 ip=192.168.45.1   2: create vlan=vlan30 vid=30   2: add vlan=30 port=2.0.10 frame=tagged   2: add ip int=vlan30 ip=192.168.30.1   Enable IP on the whole stack:   enable ip   5. Configure EPSR on the stacked switches   Create the EPSR domain:   1: create epsr=example mode=master controlvlan=stack primary=1.0.1   2: create epsr=example mode=transit controlvlan=stack   3: create epsr=example mode=transit controlvlan=stack   Specify the data VLAN:   add epsr=example datavlan=vlan20   Enable the EPSR domain:   enable epsr=example   Page 25 | AlliedWare™ OS How To Note: EPSR   Download from Www.Somanuals.com. All Manuals Search And Download.   Example 6: EPSR with an iMAP   Example 6: EPSR with an iMAP   This example is the same as "Example   three switches is an iMAP. We used an AT-TN7   the iMAP are 5.0 and 5. . The example first shows the configuration script for the iMAP as   the master node, then as the transit node. For the configuration of the other two switches,   see Example   : A Basic Ring" on page 11 except that one of the   1 00 iMAP running 6. 0. The ring ports on   1.1   1 1.   Configure the AT-TN7100 iMAP as Master Node   The following diagram shows a partial script for the iMAP, with the commands for configuring   it as a EPSR master node and other relevant commands.   ADD IP INTERFACE=MGMT IPADDRESS=172.28.9.3 SUBNETMASK=255.255.255.0   CARD=ACTCFC GATEWAY=172.28.9.1   # SET SWITCH AGEINGTIMER=300   # SET SYSTEM PROVMODE=AUTO   SET SYSTEM GATEWAY=172.28.9.1   # CREATE EPSR=test MASTER HELLOTIME=1 FAILOVERTIME=2 RINGFLAPTIME=0   # CREATE VLAN=vlan2 VID=2 FORWARDINGMODE=STD   CREATE VLAN=vlan1000 VID=1000 FORWARDINGMODE=STD   # ADD VLAN=2 INTERFACE=ETH:[5.0-1] FRAME=TAGGED   ADD VLAN=1000 INTERFACE=ETH:[5.0-1] FRAME=TAGGED   # DELETE VLAN=1 INTERFACE=ETH:[5.0-1]   # SET INTERFACE=ETH:[5.0-1] ACCEPTABLE=VLAN   # ADD EPSR=test INTERFACE=ETH:[5.0] TYPE=PRIMARY   ADD EPSR=test INTERFACE=ETH:[5.1] TYPE=SECONDARY   ADD EPSR=test VLAN=1000 TYPE=CONTROL   ADD EPSR=test VLAN=2 TYPE=DATA   # ENABLE EPSR=test   Page 26 | AlliedWare™ OS How To Note: EPSR   Download from Www.Somanuals.com. All Manuals Search And Download.   Example 6: EPSR with an iMAP   Checking the Master Node Configuration   To see a summary, use the command:   show epsr   The following diagram shows the expected output.   --- EPSR Domain Information ---------------------------------------------------   EPSR Domain Node Type Domain Status/ Control Interface(s) (PhysicalState,   State   Vlan   Type, State)   --------------- --------- --------------- ------- ----------------------------   test   MASTER   EN/COMPLETE   1000 5.0 (UP,DNSTRM,FWDING ),   5.1 (UP,DNSTRM,BLOCKED)   -------------------------------------------------------------------------------   To see details, use the command:   show epsr=test   The following diagram shows the expected output.   --- EPSR Domain Information ---------------------------------------------------   EPSR Domain Name...................... test   EPSR Domain Node Type................. Master   EPSR Domain State..................... COMPLETE   MAC Address of Master Node............ 00:00:CD:28:06:19   EPSR Domain Status.................... Enabled   Control Vlan.......................... 1000   Primary Interface..................... 5.0   Physical State of Primary Interface... UP   Primary Interface Type................ DOWNSTREAM   Primary Interface State............... FORWARDING   Secondary Interface................... 5.1   Physical State of Secondary Interface. UP   Secondary Interface Type.............. DOWNSTREAM   Secondary Interface State............. BLOCKED   Hello Timer (seconds.................. 1   Failover Timer (seconds).............. 2   RingFlap Timer (seconds).............. 0   Hello Time Remaining (seconds)........ 1   Failover Time Remaining (seconds)..... 0   RingFlap Time Remaining (seconds)..... 0   Hello Sequence........................ 526   Data Vlans............................ 2   -------------------------------------------------------------------------------   Page 27 | AlliedWare™ OS How To Note: EPSR   Download from Www.Somanuals.com. All Manuals Search And Download.   Example 6: EPSR with an iMAP   Configure the AT-TN7100 iMAP as a Transit Node   The following diagram shows a partial script for the iMAP, with the commands for configuring   it as a transit node.   CREATE EPSR=test TRANSIT   # CREATE VLAN=vlan2 VID=2 FORWARDINGMODE=STD   CREATE VLAN=vlan1000 VID=1000 FORWARDINGMODE=STD   # DISABLE INTERFACE=0.0-0.15,1.0-1.15,2.0-2.15,4.0-4.1,5.0-5.1   # ADD VLAN=2 INTERFACE=ETH:[5.0-1] FRAME=TAGGED   ADD VLAN=1000 INTERFACE=ETH:[5.0-1] FRAME=TAGGED   # DELETE VLAN=1 INTERFACE=ETH:[5.0-1]   # SET INTERFACE=0.0-0.15,1.0-1.15,2.0-2.15,4.0-4.1,5.0-5.1   PROFILE=AutoProv   SET INTERFACE=ETH:[5.0-1] ACCEPTABLE=VLAN   # ADD EPSR=test INTERFACE=ETH:[5.0-1]   ADD EPSR=test VLAN=1000 TYPE=CONTROL   ADD EPSR=test VLAN=2 TYPE=DATA   # ENABLE EPSR=test   # ENABLE INTERFACE=0.0-0.15,1.0-1.15,2.0-2.15,4.0-4.1,5.0-5.1   Checking the Transit Node Configuration   To see a summary, use the command:   show epsr   The following diagram shows the expected output.   --- EPSR Domain Information ---------------------------------------------------   EPSR Domain Node Type Domain Status/ Control Interface(s) (PhysicalState,   State   Vlan   Type, State)   --------------- --------- --------------- ------- ----------------------------   test   TRANSIT   EN/LINKS-UP   1000 5.0 (UP,UPSTRM,FWDING ),   5.1 (UP,DNSTRM,FWDING )   -------------------------------------------------------------------------------   Page 28 | AlliedWare™ OS How To Note: EPSR   Download from Www.Somanuals.com. All Manuals Search And Download.   Classifiers and Hardware Filters   To see details, use the command:   show epsr=test   The following diagram shows the expected output.   --- EPSR Domain Information ---------------------------------------------------   EPSR Domain Name...................... test   EPSR Domain Node Type................. Transit   EPSR Domain State..................... LINKS-UP   MAC Address of Master Node............ 00:00:CD:24:02:4F   EPSR Domain Status.................... Enabled   Control Vlan.......................... 1000   Ring Interface # 1.................... 5.0   Physical State of Ring Interface # 1.. UP   Ring Interface # 1 Type............... UPSTREAM   Ring Interface # 1 State.............. FORWARDING   Ring Interface # 2.................... 5.1   Physical State of Ring Interface # 2.. UP   Ring Interface # 2 Type............... DOWNSTREAM   Ring Interface # 2 State.............. FORWARDING   Hello Timer (seconds.................. N/A   Failover Timer (seconds).............. N/A   Ringflap Timer (seconds).............. N/A   Hello Time Remaining (seconds)........ N/A   Failover Time Remaining (seconds)..... N/A   Ringflap Time Remaining (seconds)..... N/A   Hello Sequence........................ N/A   Data Vlans............................ 2   -------------------------------------------------------------------------------   Classifiers and Hardware Filters   On AT-8948, AT-9900, AT-9900s, and x900 series switches, the switching hardware has a limit   of 16 bytes to use for matching on incoming packets.   EPSR creates a hardware filter that uses 2 bytes for VLAN identification (since version   29 -04). This means that you have to design your network carefully when using EPSR with   1 DHCP snooping, QoS, or other hardware filters.   For example:   • • DHCP snooping uses 5 bytes to match on the source and destination UDP ports and the   protocol field. With EPSR and DHCP snooping both enabled, 7 out of the   used.   16 bytes are   IP addresses use 4 bytes. So if you configured EPSR, DHCP snooping, and a QoS policy   that classified on source IP address, then 11 of the 6 bytes would be used.   1 Page 29 | AlliedWare™ OS How To Note: EPSR   Download from Www.Somanuals.com. All Manuals Search And Download.   Ports and Recovery Times   Ports and Recovery Times   In practice, recovery time in an EPSR ring is generally between 50 and 100ms. However, it   depends on the port type, because this determines how long it takes for the port to report   that it is down and send a Link-Down message.   The following ports report that they are down immediately or within a few milliseconds,   which leads to an EPSR recovery time of 50 to 100ms:   • • • • 1 0/   tri-speed copper RJ-45 ports operating at   fiber 000M ports   0G ports   100M copper RJ-45 ports   10 or 100M   1 1 However, for tri-speed copper RJ-45 ports operating at   either 350ms or 750ms—before the port reports that it is down. This is because the IEEE   standard for 000BASE-T specifies that a port must wait for a certain length of time after a   link goes down before it decides that the link is actually down (see Section 40.4.5.2 of   IEEE Std 802.3-2002). The length of the wait depends on whether the 000BASE-T port is   “master” or “slave” end of the link (“master” and “slave” are determined when the port   1000M, there is a short delay—   1 1 autonegotiates and are not related to the master node of EPSR). If a   master the wait is 750ms; if it is the slave, the wait is 350ms.   1 000BASE-T port is the   This means that if a 1000M copper   link goes down between two   transit nodes, EPSR recovers after   approximately 350ms. The EPSR   nodes at both ends of the broken   link send a Link-Down message   when they detect that the link has   gone down. As the diagram shows,   the node at the slave end of the   link sends a Link-Down message in   350ms. The node at the master   end does not send a Link-Down   message until 750ms have passed,   but by then the EPSR master node   has already handled the first Link-   Down message. You can see the   messages in the debugging output   Master   Node   Link-Down   1 after 350ms   Transit   Node   Transit   Node   slave end   of link   Transit   Node   Link-Down   after 750ms   2 master end   of link   epsr-copper   For almost all networks, this slight delay in recovery has no practical effect. For networks   with extremely stringent failover requirements, we recommend using fiber   instead of copper.   1000M ports   Page 30 | AlliedWare™ OS How To Note: EPSR   Download from Www.Somanuals.com. All Manuals Search And Download.   IGMP Snooping and Recovery Times   IGMP Snooping and Recovery Times   Since Software Version 281-03, IGMP snooping includes query solicitation, a new feature   that minimises loss of multicast data after a topology change.   When IGMP snooping is enabled on a VLAN, and EPSR changes the underlying link layer   topology of that VLAN, this can interrupt multicast data flow for a significant length of time.   Query solicitation prevents this by monitoring the VLAN for any topology changes. When it   detects a change, it generates a special IGMP Leave message known as a Query Solicit, and   floods the Query Solicit message to all ports. When the IGMP Querier receives the message,   it responds by sending a General Query. This refreshes snooped group membership   information in the network.   Query solicitation functions by default (without you enabling it) on the EPSR master node. By   default, the master node always sends a Query Solicit message when the topology changes.   On other switches in the network, the query solicitation is disabled by default, but you can   enable it by using the command:   set igmpsnooping vlan={vlan-name|1..4094|all}   querysolicit={on|yes|true}   If you enable query solicitation on an EPSR transit node, both that node and the master node   send a Query Solicit message.   Once the Querier receives the Query Solicit message, it sends out a General Query and   waits for responses, which update the snooping information throughout the network. If   necessary, you can reduce the time this takes by tuning the IGMP timers, especially the   queryresponseinterval parameter. For more information, see the “IGMP Timers and   Counters” section of “How To Configure IGMP on Allied Telesyn Routers and Switches for   Multicasting”. This How To Note is available in the Resource Center of the Documentation   and Tools CDROM for Software Version 2.8.1, or from:   Query solicitation also works with networks that use Spanning Tree (STP, RSTP, or MSTP).   Health Message Priority   EPSR uses Health messages to check that the ring is intact. If switches in the ring were to   drop Health messages, this could make the ring unstable. Therefore, Health messages are   sent to the highest priority queue (queue 7), which uses strict priority scheduling by default.   This makes sure that the switches forward Health messages even if the network is congested.   We recommend that you leave queue 7 as the highest priority queue, leave it using strict   priority scheduling, and only send essential control traffic to it.   In the unlikely event that this is impossible, you can increase the failover time so that the   master node only changes the ring topology if several Health messages in a row fail to arrive.   By default, the failover time is set to two seconds, which means that the master node decides   that the ring is down if two Health messages in a row fail to arrive.   Page 31 | AlliedWare™ OS How To Note: EPSR   Download from Www.Somanuals.com. All Manuals Search And Download.   EPSR State and Settings   EPSR State and Settings   To display the EPSR state, the attached VLANs, the ring ports, and the timer values, use the   command:   show epsr   Master Node The following diagram shows the output for a master node in a ring that is in a state of   in a Complete   Ring   Complete. As well as giving the state as Complete, it also shows that port   port and port 2 is the secondary port. Note that the secondary port is blocked, so does not   1 is the primary   forward packets over the data VLAN (vlan2).   EPSR Information   ------------------------------------------------------------------------   Name ........................ test   Mode .......................... Master   Status ........................ Enabled   State ......................... Complete   Control Vlan .................. vlan1000 (1000)   Data VLAN(s) .................. vlan2 (2)   Primary Port .................. 1   Primary Port Status ........... Forwarding   Secondary Port ................ 2   Secondary Port Status ......... Blocked   Hello Time .................... 1 s   Failover Time ................. 2 s   Ring Flap Time ................ 0 s   Trap .......................... Enabled   ------------------------------------------------------------------------   Transit Node The following diagram shows the output for a transit node in a ring that is in a state of   in a Complete   Ring   Complete. Note that the State is Links-Up, not Complete. Only the master node shows   Complete as the state.   EPSR Information   ------------------------------------------------------------------------   Name ........................ test   Mode .......................... Transit   Status ........................ Enabled   State ......................... Links-Up   Control Vlan .................. vlan1000 (1000)   Data VLAN(s) .................. vlan2 (2)   First Port .................... 1   First Port Status ............. Forwarding   First Port Direction .......... Upstream   Second Port ................... 2   Second Port Status ............ Forwarding   Second Port Direction ......... Downstream   Trap .......................... Enabled   Master Node ................... 00-00-cd-28-06-19   ------------------------------------------------------------------------   Page 32 | AlliedWare™ OS How To Note: EPSR   Download from Www.Somanuals.com. All Manuals Search And Download.   EPSR State and Settings   Master Node In contrast, the following diagram shows the output for a master node in a ring that is in a   in a Failed Ring   Failed state. Both ring ports are now forwarding.   EPSR Information   ------------------------------------------------------------------------   Name ........................ domain1   Mode .......................... Master   Status ........................ Enabled   State ......................... Failed   Control Vlan .................. vlan1000 (1000)   Data VLAN(s) .................. vlan2 (2)   Primary Port .................. 1   Primary Port Status ........... Forwarding   Secondary Port ................ 2   Secondary Port Status ......... Forwarding   Hello Time .................... 1 s   Failover Time ................. 2 s   Ring Flap Time ................ 0 s   Trap .......................... Enabled   ------------------------------------------------------------------------   Page 33 | AlliedWare™ OS How To Note: EPSR   Download from Www.Somanuals.com. All Manuals Search And Download.   SNMP Traps   SNMP Traps   You can use SNMP traps to notify you when events occur in the EPSR ring.   Download the latest version of the Allied Telesis Enterprise MIB from   www.alliedtelesis.co.nz/support/updates/patches.html. The EPSR Group is contained in the   sub-file called atr-epsr.mib.   The EPSR Group has the object identifier prefix epsr ({ modules   collection of objects and traps for monitoring EPSR states.   136}), and contains a   The following trap is defined under the epsrEvents ({ epsr 0}) subtree:   atrEpsrNodeTrap ({ epsrEvents }) is the trap type of the EPSR node trap (master/transit).   • 1 The following objects are defined under the epsrEventVariables ({ epsr   1}) subtree:   • atrEpsrNodeTrapType ({epsrEventVariables   (master/transit).   1}) is the trap type of the EPSR node trap   • • atrEpsrDomainName ({epsrEventVariables 2}) is the name assigned to the EPSR domain.   atrEpsrFromState ({epsrEventVariables 3}) is the defined state that an EPSR domain is   transitioning from.   • • atrEpsrToState ({epsrEventVariables 4}) is the state that an EPSR domain is transitioning   to.   atrEpsrControlVLANId ({epsrEventVariables 5}) is the VLAN identifier for the control   VLAN.   • • atrEpsrPrimaryIfIndex ({epsrEventVariables 6}) is the ifIndex of the primary interface.   atrEpsrPrimaryIfState ({epsrEventVariables 7}) is the current state of the primary   interface.   • • atrEpsrSecondaryIfIndex ({epsrEventVariables 8}) is the ifIndex of the secondary   interface.   atrEpsrSecondaryIfState ({epsrEventVariables 9}) is the current state of the secondary   interface.   Page 34 | AlliedWare™ OS How To Note: EPSR   Download from Www.Somanuals.com. All Manuals Search And Download.   Counters   Counters   The EPSR counters record the number of EPSR messages that the CPU received and   transmitted. To display the counters, use the command:   show epsr=domain1 count   Master node in The following diagram shows the counters for a master node in a ring that has never had a   a Complete   ring   link or node fail.   EPSR Counters   ------------------------------------------------------------------------   Name: domain1   Receive:   Total EPSR Packets   Health   Transmit:   Total EPSR Packets   Health   1093   1092   1093   1092   Ring Up   Ring Down   Link Down   Invalid EPSR Packets   1 0 0 0 Ring Up   Ring Down   Link Down   1 0 0 ------------------------------------------------------------------------   Note that the node has generated 1093 EPSR packets (and sent them out its primary port)   and has received the same number of EPSR packets (on its secondary port).   However, it is very common to see a few Link Down, Ring Down, and Ring Up entries in the   output of a ring that has never been in a Failed state. These messages are produced when you   first enable EPSR, if some ring nodes establish before others.   Transit Node In contrast, the following diagram shows the counters for a transit node in a ring that has   in a ring that   had failures   been in a Failed state twice.   EPSR Counters   ------------------------------------------------------------------------   Name: domain1   Receive:   Total EPSR Packets   Health   Transmit:   Total EPSR Packets   Health   1425   1423   2 0 0 0 2 Ring Up   Ring Down   Link Down   Invalid EPSR Packets   2 0 0 0 Ring Up   Ring Down   Link Down   ------------------------------------------------------------------------   Here, the transit node has received 1421 Health messages, which it will have forwarded on if   its ports were up. These messages do not show in the transmit counters because they are   transmitted by the switching hardware, not the CPU.   The node has also generated two Link-Down messages, indicating that on two separate   occasions one of its links has gone down.   Page 35 | AlliedWare™ OS How To Note: EPSR   Download from Www.Somanuals.com. All Manuals Search And Download.   Debugging   Debugging   This section walks you through the EPSR debugging output as links go down and come back   The output shows what happened when we took down two separate links in turn:   • • To enable debugging on the domain called “test”, use the command:   enable epsr=test debug=all   Note that the master node transmits Health messages every second by default. The   debugging displays every message, including all Health messages. Therefore, we recommend   that you capture the debugging output for separate analysis, to make analysis simpler.   Link Down Between Master Node and Transit Node   This section shows the debugging output when the link between the master node’s primary   port and transit node B goes down and comes back up again. It shows the debugging output   for the complete failure and recovery cycle:   • • first on the master node   then on transit node B.   Master Node (Node A) Debug Output   The following debugging output starts with the ring established and in a state of Complete.   1. The master node sends Health messages   Each time the Hello timer expires, the master node sends a Health message out its primary   port (port 1). As long as the ring is in a state of Complete, it receives each Health message   again on its secondary port (port 2). Note that in the System field, this output shows the   MAC address of the source of the message—the master node in this case.   Manager x900-48-A>   epsrHelloTimeout: EPSR test Hello Timer expired   EPSR Port1 Tx: 00e02b00 00040000 cd280619 8100e3e8 005caaaa 0300e02b   00bb0100 00541f2a 00000000 0000cd28 0619990b 00400105 03e80000   00000000 cd280619 00010002 010000be   EPSR Port1 Tx:   -----------------------------------------------------------------------   TYPE = HEALTH   CTRL VLAN = 1000   HELLO TIME = 1   STATE = COMPLETE   SYSTEM = 00-00-cd-28-06-19   FAIL TIME = 2   HELLO SEQ = 190   -----------------------------------------------------------------------   EPSR Port2 Rx: 00e02b00 00040000 cd280619 8100e3e8 005caaaa 0300e02b   00bb0100 00541f2a 00000000 0000cd28 0619990b 00400105 03e80000   00000000 cd280619 00010002 010000be   EPSR Port2 Rx:   -----------------------------------------------------------------------   TYPE = HEALTH   CTRL VLAN = 1000   HELLO TIME = 1   STATE = COMPLETE   SYSTEM = 00-00-cd-28-06-19   FAIL TIME = 2   HELLO SEQ = 190   -----------------------------------------------------------------------   Page 36 | AlliedWare™ OS How To Note: EPSR   Download from Www.Somanuals.com. All Manuals Search And Download.   Debugging   2. The master node continues sending Health messages   The master node continues sending Health messages, and increments the Hello Sequence   number with each message. If all nodes and links in the ring are intact, these Health messages   are the only debugging output you see.   . . . Manager x900-48-A>   epsrHelloTimeout: EPSR test Hello Timer expired   EPSR Port1 Tx: 00e02b00 00040000 cd280619 8100e3e8 005caaaa 0300e02b   00bb0100 00541eef 00000000 0000cd28 0619990b 00400105 03e80000   00000000 cd280619 00010002 010000f9   EPSR Port1 Tx:   -----------------------------------------------------------------------   TYPE = HEALTH   CTRL VLAN = 1000   HELLO TIME = 1   STATE = COMPLETE   SYSTEM = 00-00-cd-28-06-19   FAIL TIME = 2   HELLO SEQ = 249   -----------------------------------------------------------------------   EPSR Port2 Rx: 00e02b00 00040000 cd280619 8100e3e8 005caaaa 0300e02b   00bb0100 00541eef 00000000 0000cd28 0619990b 00400105 03e80000   00000000 cd280619 00010002 010000f9   EPSR Port2 Rx:   -----------------------------------------------------------------------   TYPE = HEALTH   CTRL VLAN = 1000   HELLO TIME = 1   STATE = COMPLETE   SYSTEM = 00-00-cd-28-06-19   FAIL TIME = 2   HELLO SEQ = 249   -----------------------------------------------------------------------   3. The primary port goes down   The link between the master node’s primary port and the neighbouring transit node goes   down. Therefore, the master node detects that its primary port (port 1) has gone down.   EPSR test, Port 1 port down   Flush FDB EPSR: test vid: 2   Page 37 | AlliedWare™ OS How To Note: EPSR   Download from Www.Somanuals.com. All Manuals Search And Download.   Debugging   4. The master node receives a Link-Down message on its secondary port   The master node receives a Link-Down message on its secondary port (port 2) from transit   node B, which is at the other end of the broken link.   EPSR Port2 Rx: 00e02b00 00040000 cd24024f 8100e3e8 005caaaa 0300e02b   00bb0100 00542484 00000000 0000cd24 024f990b 00400108 03e80000   00000000 cd24024f 00000000 04000000   EPSR Port2 Rx:   -----------------------------------------------------------------------   TYPE = LINK-DOWN   CTRL VLAN = 1000   HELLO TIME = 0   HELLO SEQ = 0   STATE = LINK-DOWN   SYSTEM = 00-00-cd-24-02-4f   FAIL TIME = 0   -----------------------------------------------------------------------   In the System field, this output shows the MAC address of the source of the message—the   transit node in this case.   5. The master node transmits a Ring-Down-Flush-FDB message   The master switch responds to the break in the ring by sending a Ring-Down-Flush-FDB   message, which tells each transit node to learn the new topology. The master node also   unblocks its secondary port for the data VLAN (vlan2), flushes its FDB, sends an SNMP trap,   and changes the EPSR state to Failed. Note that the master node sends the Ring-Down-   Flush-FDB message only out its secondary port, because the link between the primary port   and the neighbouring transit node is down.   EPSR Port2 Tx: 00e02b00 00040000 cd280619 8100e3e8 005caaaa 0300e02b   00bb0100 00541ee9 00000000 0000cd28 0619990b 00400107 03e80000   00000000 cd280619 00000000 02000000   EPSR Port2 Tx:   -----------------------------------------------------------------------   TYPE = RING-DOWN-FLUSH-FDB   CTRL VLAN = 1000   HELLO TIME = 0   HELLO SEQ = 0   STATE = FAILED   SYSTEM = 00-00-cd-28-06-19   FAIL TIME = 0   -----------------------------------------------------------------------   Unblock EPSR:test port:2 VLAN:2   Flush FDB EPSR: test vid: 2   EPSR INFO: Send trap EPSR:test oldState:COMPLETE newState:FAILED   nodeType:MASTER   EPSR test oldState:COMPLETE newState:FAILED   Page 38 | AlliedWare™ OS How To Note: EPSR   Download from Www.Somanuals.com. All Manuals Search And Download.   Debugging   6. The Hello timer expires   The Hello timer expires, which would normally trigger the master node to send a Health   message out the primary port. However, the link between the primary port and the   neighbouring transit node is down, so the master node does not send the Health message.   Manager x900-48-A>   epsrHelloTimeout: EPSR test Hello Timer expired   Manager x900-48-A>   epsrHelloTimeout: EPSR test Hello Timer expired   Manager x900-48-A>   epsrHelloTimeout: EPSR test Hello Timer expired   Manager x900-48-A>   epsrHelloTimeout: EPSR test Hello Timer expired   7. The primary port comes back up   The primary port comes back up. The master node immediately blocks that port for vlan2 to   prevent a loop.   Manager x900-48-A>   EPSR test, Port 1 port up   Block EPSR:test port:1 VLAN:2   8. The Hello timer expires again   The Hello timer expires again. Port   1 is now up, so this time the master node sends a Health   message. The Health message shows that the EPSR state is Failed.   Note that the hello sequence number increments from the number it was before the primary   port went down, because the master node could not transmit Health messages while the   port was down.   Manager x900-48-A>   epsrHelloTimeout: EPSR test Hello Timer expired   EPSR Port1 Tx: 00e02b00 00040000 cd280619 8100e3e8 005caaaa 0300e02b   00bb0100 00541dee 00000000 0000cd28 0619990b 00400105 03e80000   00000000 cd280619 00010002 020000fa   EPSR Port1 Tx:   -----------------------------------------------------------------------   TYPE = HEALTH   CTRL VLAN = 1000   HELLO TIME = 1   STATE = FAILED   SYSTEM = 00-00-cd-28-06-19   FAIL TIME = 2   HELLO SEQ = 250   -----------------------------------------------------------------------   Page 39 | AlliedWare™ OS How To Note: EPSR   Download from Www.Somanuals.com. All Manuals Search And Download.   Debugging   9. The master node receives the Health message on its secondary port   The master node receives the Health message on its secondary port (port 2). This tells it   that all links on the ring are up again.   EPSR Port2 Rx: 00e02b00 00040000 cd280619 8100e3e8 005caaaa 0300e02b   00bb0100 00541dee 00000000 0000cd28 0619990b 00400105 03e80000   00000000 cd280619 00010002 020000fa   EPSR Port2 Rx:   -----------------------------------------------------------------------   TYPE = HEALTH   CTRL VLAN = 1000   HELLO TIME = 1   STATE = FAILED   SYSTEM = 00-00-cd-28-06-19   FAIL TIME = 2   HELLO SEQ = 250   ----------------------------------------------------------------------   10. The master node returns the ring to a state of Complete   The master node blocks its secondary port for the data VLAN, unblocks its primary port,   transmits a Ring-Up-Flush-FDB message, flushes its FDB, sends a trap, and changes the EPSR   state to Complete.   Block EPSR:test port:2 VLAN:2   Unblock EPSR:test port:1 VLAN:2   EPSR Port1 Tx: 00e02b00 00040000 cd280619 8100e3e8 005caaaa 0300e02b   00bb0100 00541fea 00000000 0000cd28 0619990b 00400106 03e80000   00000000 cd280619 00000000 01000000   EPSR Port1 Tx:   -----------------------------------------------------------------------   TYPE = RING-UP-FLUSH-FDB   CTRL VLAN = 1000   HELLO TIME = 0   HELLO SEQ = 0   STATE = COMPLETE   SYSTEM = 00-00-cd-28-06-19   FAIL TIME = 0   -----------------------------------------------------------------------   Flush FDB EPSR: test vid: 2   EPSR INFO: Send trap EPSR:test oldState:FAILED newState:COMPLETE   nodeType:MASTER   EPSR test oldState:FAILED newState:COMPLETE   11. The master node receives the Ring-Up-Flush-FDB message on port 2   The master node receives the Ring-Up-Flush-FDB message back on its secondary port,   because the packet traversed the whole ring. The master node ignores the message.   EPSR Port2 Rx: 00e02b00 00040000 cd280619 8100e3e8 005caaaa 0300e02b   00bb0100 00541fea 00000000 0000cd28 0619990b 00400106 03e80000   00000000 cd280619 00000000 01000000   EPSR Port2 Rx:   -----------------------------------------------------------------------   TYPE = RING-UP-FLUSH-FDB   CTRL VLAN = 1000   HELLO TIME = 0   HELLO SEQ = 0   STATE = COMPLETE   SYSTEM = 00-00-cd-28-06-19   FAIL TIME = 0   -----------------------------------------------------------------------   Page 40 | AlliedWare™ OS How To Note: EPSR   Download from Www.Somanuals.com. All Manuals Search And Download.   Debugging   12. The master node transmits and receives Health messages   The master node continues transmitting and receiving Health messages for as long as the ring   stays in a state of Complete.   Manager x900-48-A>   epsrHelloTimeout: EPSR test Hello Timer expired   EPSR Port1 Tx: 00e02b00 00040000 cd280619 8100e3e8 005caaaa 0300e02b   00bb0100 00541eed 00000000 0000cd28 0619990b 00400105 03e80000   00000000 cd280619 00010002 010000fb   EPSR Port1 Tx:   -----------------------------------------------------------------------   TYPE = HEALTH   CTRL VLAN = 1000   HELLO TIME = 1   STATE = COMPLETE   SYSTEM = 00-00-cd-28-06-19   FAIL TIME = 2   HELLO SEQ = 251   -----------------------------------------------------------------------   EPSR Port2 Rx: 00e02b00 00040000 cd280619 8100e3e8 005caaaa 0300e02b   00bb0100 00541eed 00000000 0000cd28 0619990b 00400105 03e80000   00000000 cd280619 00010002 010000fb   EPSR Port2 Rx:   -----------------------------------------------------------------------   TYPE = HEALTH   CTRL VLAN = 1000   HELLO TIME = 1   STATE = COMPLETE   SYSTEM = 00-00-cd-28-06-19   FAIL TIME = 2   HELLO SEQ = 251   -----------------------------------------------------------------------   . . . Page 41 | AlliedWare™ OS How To Note: EPSR   Download from Www.Somanuals.com. All Manuals Search And Download.   Debugging   Transit Node (Node B) Debug Output   The following debugging shows the same events as the previous section, but on the transit   node instead of the master node. It starts with the ring established and in a state of   Complete.   1. The transit node receives Health messages   The transit node receives Health messages on port 1, because that port is connected to the   master node’s primary port. Note that in the System field, this output shows the MAC   address of the source of the message—the master node in this case.   EPSR Port1 Rx: 00e02b00 00040000 cd280619 8100e3e8 005caaaa 0300e02b   00bb0100 00541f2a 00000000 0000cd28 0619990b 00400105 03e80000   00000000 cd280619 00010002 010000be   EPSR Port1 Rx:   -----------------------------------------------------------------------   TYPE = HEALTH   CTRL VLAN = 1000   HELLO TIME = 1   STATE = COMPLETE   SYSTEM = 00-00-cd-28-06-19   FAIL TIME = 2   HELLO SEQ = 190   -----------------------------------------------------------------------   Manager 9924-B>   EPSR Port1 Rx: 00e02b00 00040000 cd280619 8100e3e8 005caaaa 0300e02b   00bb0100 00541f29 00000000 0000cd28 0619990b 00400105 03e80000   00000000 cd280619 00010002 010000bf   EPSR Port1 Rx:   -----------------------------------------------------------------------   TYPE = HEALTH   CTRL VLAN = 1000   HELLO TIME = 1   STATE = COMPLETE   SYSTEM = 00-00-cd-28-06-19   FAIL TIME = 2   HELLO SEQ = 191   -----------------------------------------------------------------------   . . . Manager 9924-B>   EPSR Port1 Rx: 00e02b00 00040000 cd280619 8100e3e8 005caaaa 0300e02b   00bb0100 00541eef 00000000 0000cd28 0619990b 00400105 03e80000   00000000 cd280619 00010002 010000f9   EPSR Port1 Rx:   -----------------------------------------------------------------------   TYPE = HEALTH   CTRL VLAN = 1000   HELLO TIME = 1   STATE = COMPLETE   SYSTEM = 00-00-cd-28-06-19   FAIL TIME = 2   HELLO SEQ = 249   -----------------------------------------------------------------------   Page 42 | AlliedWare™ OS How To Note: EPSR   Download from Www.Somanuals.com. All Manuals Search And Download.   Debugging   2. Port   1 on the transit node goes down   The transit node detects that port   gone down. The transit node flushes its forwarding database, blocks port   1 (between the transit node and the master node) has   for the data   1 VLAN (to prevent a loop from forming when the master node comes back up), sends a Link-   Down message towards the master node, sends a trap, and changes the EPSR state to Link-   Down.   EPSR test, Port 1 port down   Flush FDB EPSR: test vid: 2   Block EPSR:test port:1 VLAN:2   EPSR Port2 Tx: 00e02b00 00040000 cd24024f 8100e3e8 005caaaa 0300e02b   00bb0100 00542484 00000000 0000cd24 024f990b 00400108 03e80000   00000000 cd24024f 00000000 04000000   EPSR Port2 Tx:   -----------------------------------------------------------------------   TYPE = LINK-DOWN   CTRL VLAN = 1000   HELLO TIME = 0   HELLO SEQ = 0   STATE = LINK-DOWN   SYSTEM = 00-00-cd-24-02-4f   FAIL TIME = 0   -----------------------------------------------------------------------   EPSR INFO: Send trap EPSR:test oldState:LINK-UP newState:LINK-DOWN   nodeType:TRANSIT   EPSR test oldState:LINK-UP newState:LINK-DOWN   3. The transit node receives a Ring-Down-Flush-FDB message.   In response to the Link-Down message, the master node sends a Ring-Down-Flush-FDB   message. However, this transit node does not need to flush its database—it already did.   EPSR Port2 Rx: 00e02b00 00040000 cd280619 8100e3e8 005caaaa 0300e02b   00bb0100 00541ee9 00000000 0000cd28 0619990b 00400107 03e80000   00000000 cd280619 00000000 02000000   EPSR Port2 Rx:   -----------------------------------------------------------------------   TYPE = RING-DOWN-FLUSH-FDB   CTRL VLAN = 1000   HELLO TIME = 0   HELLO SEQ = 0   STATE = FAILED   SYSTEM = 00-00-cd-28-06-19   FAIL TIME = 0   -----------------------------------------------------------------------   Page 43 | AlliedWare™ OS How To Note: EPSR   Download from Www.Somanuals.com. All Manuals Search And Download.   Debugging   4. Port   1 comes back up   The transit node detects that port   1 has come back up. It sends a trap and changes the EPSR   state to Pre-forwarding. Note that it leaves port   1 blocked for vlan2, to make sure there are   no loops.   Manager 9924-B>   Block EPSR:test port:1 VLAN:2   EPSR test, Port 1 port up   EPSR INFO: Send trap EPSR:test oldState:LINK-DOWN newState:PRE-FORWARDING   nodeType:TRANSIT   EPSR test oldState:LINK-DOWN newState:PRE-FORWARDING   5. Transit node receives a Health message   Now that the master node’s primary port is up again, it sends a Health message. Now that   the transit node’s port   message. This demonstrates that the transit node has only blocked port   1 is up again for the control VLAN, the transit node receives the   for the data VLAN,   1 not the control VLAN. EPSR control messages never loop because the master node never   forwards them between its ring ports.   Note that the hello sequence number increments from the number it was before the primary   port went down, because the master node could not transmit Health messages while the   port was down.   Manager 9924-B>   EPSR Port1 Rx: 00e02b00 00040000 cd280619 8100e3e8 005caaaa 0300e02b   00bb0100 00541dee 00000000 0000cd28 0619990b 00400105 03e80000   00000000 cd280619 00010002 020000fa   EPSR Port1 Rx:   -----------------------------------------------------------------------   TYPE = HEALTH   CTRL VLAN = 1000   HELLO TIME = 1   STATE = FAILED   SYSTEM = 00-00-cd-28-06-19   FAIL TIME = 2   HELLO SEQ = 250   -----------------------------------------------------------------------   Page 44 | AlliedWare™ OS How To Note: EPSR   Download from Www.Somanuals.com. All Manuals Search And Download.   Debugging   6. Transit node receives a Ring-Up-Flush-FDB message.   The Health message from the previous step reaches the master node and shows it that all   links in the ring are now up. The master node sends a Ring-Up-Flush-FDB message. When it   receives the message, the transit node unblocks port   trap, and changes the state to Link-Up.   1 for vlan2, flushes its FDB, sends a   EPSR Port1 Rx: 00e02b00 00040000 cd280619 8100e3e8 005caaaa 0300e02b   00bb0100 00541fea 00000000 0000cd28 0619990b 00400106 03e80000   00000000 cd280619 00000000 01000000   EPSR Port1 Rx:   -----------------------------------------------------------------------   TYPE = RING-UP-FLUSH-FDB   CTRL VLAN = 1000   HELLO TIME = 0   HELLO SEQ = 0   STATE = COMPLETE   SYSTEM = 00-00-cd-28-06-19   FAIL TIME = 0   -----------------------------------------------------------------------   Unblock EPSR:test port:1 VLAN:2   Flush FDB EPSR: test vid: 2   EPSR INFO: Send trap EPSR:test oldState:PRE-FORWARDING newState:LINK-UP   nodeType:TRANSIT   EPSR test oldState:PRE-FORWARDING newState:LINK-UP   Page 45 | AlliedWare™ OS How To Note: EPSR   Download from Www.Somanuals.com. All Manuals Search And Download.   Debugging   7. The transit node receives Health messages   The transit node continues receiving Health messages for as long as the ring stays in a state of   Complete.   Manager 9924-B>   EPSR Port1 Rx: 00e02b00 00040000 cd280619 8100e3e8 005caaaa 0300e02b   00bb0100 00541eed 00000000 0000cd28 0619990b 00400105 03e80000   00000000 cd280619 00010002 010000fb   EPSR Port1 Rx:   -----------------------------------------------------------------------   TYPE = HEALTH   CTRL VLAN = 1000   HELLO TIME = 1   STATE = COMPLETE   SYSTEM = 00-00-cd-28-06-19   FAIL TIME = 2   HELLO SEQ = 251   -----------------------------------------------------------------------   Manager 9924-B>   EPSR Port1 Rx: 00e02b00 00040000 cd280619 8100e3e8 005caaaa 0300e02b   00bb0100 00541eec 00000000 0000cd28 0619990b 00400105 03e80000   00000000 cd280619 00010002 010000fc   EPSR Port1 Rx:   -----------------------------------------------------------------------   TYPE = HEALTH   CTRL VLAN = 1000   HELLO TIME = 1   STATE = COMPLETE   SYSTEM = 00-00-cd-28-06-19   FAIL TIME = 2   HELLO SEQ = 252   -----------------------------------------------------------------------   . . . Page 46 | AlliedWare™ OS How To Note: EPSR   Download from Www.Somanuals.com. All Manuals Search And Download.   Debugging   Link Down Between Two Transit Nodes   This section shows the debugging output when the link between transit node B and transit   node C goes down and comes back up again. It shows the debugging output for the complete   failure and recovery cycle:   • on the master node, and then   Master Node (Node A) Debug Output   The following debugging output starts with the ring established and in a state of Complete.   1. The master node sends Health messages   Each time the Hello timer expires, the master node sends a Health message out its primary   port (port 1). As long as the ring is in a state of Complete, it receives each Health message   again on its secondary port (port 2).   Manager x900-48-A>   epsrHelloTimeout: EPSR test Hello Timer expired   EPSR Port1 Tx: 00e02b00 00040000 cd280619 8100e3e8 005caaaa 0300e02b   00bb0100 00541ea1 00000000 0000cd28 0619990b 00400105 03e80000 00000000   cd280619 00010002 01000147   EPSR Port1 Tx:   -----------------------------------------------------------------------   TYPE = HEALTH   CTRL VLAN = 1000   HELLO TIME = 1   STATE = COMPLETE   SYSTEM = 00-00-cd-28-06-19   FAIL TIME = 2   HELLO SEQ = 327   -----------------------------------------------------------------------   EPSR Port2 Rx: 00e02b00 00040000 cd280619 8100e3e8 005caaaa 0300e02b   00bb0100 00541ea1 00000000 0000cd28 0619990b 00400105 03e80000 00000000   cd280619 00010002 01000147   EPSR Port2 Rx:   -----------------------------------------------------------------------   TYPE = HEALTH   CTRL VLAN = 1000   HELLO TIME = 1   STATE = COMPLETE   SYSTEM = 00-00-cd-28-06-19   FAIL TIME = 2   HELLO SEQ = 327   -----------------------------------------------------------------------   Page 47 | AlliedWare™ OS How To Note: EPSR   Download from Www.Somanuals.com. All Manuals Search And Download.   Debugging   2. The link between the two transit nodes goes down   When the link goes down, the master node transmits a Health message but does not receive   it on its secondary port.   Manager x900-48-A>   epsrHelloTimeout: EPSR test Hello Timer expired   EPSR Port1 Tx: 00e02b00 00040000 cd280619 8100e3e8 005caaaa 0300e02b   00bb0100 00541ea0 00000000 0000cd28 0619990b 00400105 03e80000 00000000   cd280619 00010002 01000148   EPSR Port1 Tx:   -----------------------------------------------------------------------   TYPE = HEALTH   CTRL VLAN = 1000   HELLO TIME = 1   STATE = COMPLETE   SYSTEM = 00-00-cd-28-06-19   FAIL TIME = 2   HELLO SEQ = 328   -----------------------------------------------------------------------   3. The master node receives a Link-Down message on its secondary port   The master node receives a Link-Down message, which tells it that a link in the ring is   broken. This message came from the transit node on one side of the broken link.   EPSR Port2 Rx: 00e02b00 00040000 cd20f101 8100e3e8 005caaaa 0300e02b   00bb0100 00544726 00000000 0000cd20 f101990b 00400108 03e80000 00000000   cd20f101 00000000 04000000   EPSR Port2 Rx:   -----------------------------------------------------------------------   TYPE = LINK-DOWN   CTRL VLAN = 1000   HELLO TIME = 0   HELLO SEQ = 0   STATE = LINK-DOWN   SYSTEM = 00-00-cd-20-f1-01   FAIL TIME = 0   -----------------------------------------------------------------------   Page 48 | AlliedWare™ OS How To Note: EPSR   Download from Www.Somanuals.com. All Manuals Search And Download.   Debugging   4. The master node transmits a Ring-Down-Flush-FDB message   In response to the Link-Down message, the master node transmits a Ring-Down-Flush-FDB   message out both its primary and secondary ports. The message has to go out both ports to   make sure it reaches the nodes on both sides of the broken link. The master node also   unblocks its secondary port for vlan2, flushes its forwarding database, sends a trap, and   changes the EPSR state to Failed.   EPSR Port1 Tx: 00e02b00 00040000 cd280619 8100e3e8 005caaaa 0300e02b   00bb0100 00541ee9 00000000 0000cd28 0619990b 00400107 03e80000 00000000   cd280619 00000000 02000000   EPSR Port1 Tx:   -----------------------------------------------------------------------   TYPE = RING-DOWN-FLUSH-FDB   CTRL VLAN = 1000   HELLO TIME = 0   HELLO SEQ = 0   STATE = FAILED   SYSTEM = 00-00-cd-28-06-19   FAIL TIME = 0   -----------------------------------------------------------------------   EPSR Port2 Tx: 00e02b00 00040000 cd280619 8100e3e8 005caaaa 0300e02b   00bb0100 00541ee9 00000000 0000cd28 0619990b 00400107 03e80000 00000000   cd280619 00000000 02000000   EPSR Port2 Tx:   -----------------------------------------------------------------------   TYPE = RING-DOWN-FLUSH-FDB   CTRL VLAN = 1000   HELLO TIME = 0   HELLO SEQ = 0   STATE = FAILED   SYSTEM = 00-00-cd-28-06-19   FAIL TIME = 0   -----------------------------------------------------------------------   Unblock EPSR:test port:2 VLAN:2   Flush FDB EPSR: test vid: 2   EPSR INFO: Send trap EPSR:test oldState:COMPLETE newState:FAILED   nodeType:MASTER   EPSR test oldState:COMPLETE newState:FAILED   5. The master node receives a second Link-Down message   The master node receives a Link-Down message from the transit node on the other side of   the broken link. This message arrived after a delay because the ring ports are 1000M ports   response to this message, because it already responded to the broken link.   Manager x900-48-A>   EPSR Port1 Rx: 00e02b00 00040000 cd24024f 8100e3e8 005caaaa 0300e02b   00bb0100 00542484 00000000 0000cd24 024f990b 00400108 03e80000 00000000   cd24024f 00000000 04000000   EPSR Port1 Rx:   -----------------------------------------------------------------------   TYPE = LINK-DOWN   CTRL VLAN = 1000   HELLO TIME = 0   HELLO SEQ = 0   STATE = LINK-DOWN   SYSTEM = 00-00-cd-24-02-4f   FAIL TIME = 0   -----------------------------------------------------------------------   Page 49 | AlliedWare™ OS How To Note: EPSR   Download from Www.Somanuals.com. All Manuals Search And Download.   Debugging   6. The master node continues sending Health messages   The master node continues sending Health messages out its primary port. It does not receive   any of these at the secondary port, which tells it that the link is still down.   Manager x900-48-A>   epsrHelloTimeout: EPSR test Hello Timer expired   EPSR Port1 Tx: 00e02b00 00040000 cd280619 8100e3e8 005caaaa 0300e02b   00bb0100 00541d9f 00000000 0000cd28 0619990b 00400105 03e80000 00000000   cd280619 00010002 02000149   EPSR Port1 Tx:   -----------------------------------------------------------------------   TYPE = HEALTH   CTRL VLAN = 1000   HELLO TIME = 1   STATE = FAILED   SYSTEM = 00-00-cd-28-06-19   FAIL TIME = 2   HELLO SEQ = 329   -----------------------------------------------------------------------   . . . 7. The master node receives a Health message   The master node transmits a Health message and receives it at the secondary port. This   indicates that the link is back up.   Manager x900-48-A>   epsrHelloTimeout: EPSR test Hello Timer expired   EPSR Port1 Tx: 00e02b00 00040000 cd280619 8100e3e8 005caaaa 0300e02b   00bb0100 00541d72 00000000 0000cd28 0619990b 00400105 03e80000 00000000   cd280619 00010002 02000176   EPSR Port1 Tx:   -----------------------------------------------------------------------   TYPE = HEALTH   CTRL VLAN = 1000   HELLO TIME = 1   STATE = FAILED   SYSTEM = 00-00-cd-28-06-19   FAIL TIME = 2   HELLO SEQ = 374   -----------------------------------------------------------------------   EPSR Port2 Rx: 00e02b00 00040000 cd280619 8100e3e8 005caaaa 0300e02b   00bb0100 00541d72 00000000 0000cd28 0619990b 00400105 03e80000 00000000   cd280619 00010002 02000176   EPSR Port2 Rx:   -----------------------------------------------------------------------   TYPE = HEALTH   CTRL VLAN = 1000   HELLO TIME = 1   STATE = FAILED   SYSTEM = 00-00-cd-28-06-19   FAIL TIME = 2   HELLO SEQ = 374   -----------------------------------------------------------------------   Page 50 | AlliedWare™ OS How To Note: EPSR   Download from Www.Somanuals.com. All Manuals Search And Download.   Debugging   8. The master node returns the ring to a state of Complete   Now that the ring is back up, the master node blocks its secondary port for the data VLAN,   transmits a Ring-Up-Flush-FDB message, flushes its FDB, sends a trap, and changes the EPSR   state to Complete.   Block EPSR:test port:2 VLAN:2   EPSR Port1 Tx: 00e02b00 00040000 cd280619 8100e3e8 005caaaa 0300e02b   00bb0100 00541fea 00000000 0000cd28 0619990b 00400106 03e80000 00000000   cd280619 00000000 01000000   EPSR Port1 Tx:   -----------------------------------------------------------------------   TYPE = RING-UP-FLUSH-FDB   CTRL VLAN = 1000   HELLO TIME = 0   HELLO SEQ = 0   STATE = COMPLETE   SYSTEM = 00-00-cd-28-06-19   FAIL TIME = 0   -----------------------------------------------------------------------   Flush FDB EPSR: test vid: 2   EPSR INFO: Send trap EPSR:test oldState:FAILED newState:COMPLETE   nodeType:MASTER   EPSR test oldState:FAILED newState:COMPLETE   9. The master node receives the Ring-Up-Flush-FDB message on port 2   The master node receives the Ring-Up-Flush-FDB message back on its secondary port,   because the packet traversed the whole ring. The master node ignores the message.   EPSR Port2 Rx: 00e02b00 00040000 cd280619 8100e3e8 005caaaa 0300e02b   00bb0100 00541fea 00000000 0000cd28 0619990b 00400106 03e80000 00000000   cd280619 00000000 01000000   EPSR Port2 Rx:   -----------------------------------------------------------------------   TYPE = RING-UP-FLUSH-FDB   CTRL VLAN = 1000   HELLO TIME = 0   HELLO SEQ = 0   STATE = COMPLETE   SYSTEM = 00-00-cd-28-06-19   FAIL TIME = 0   -----------------------------------------------------------------------   Page 51 | AlliedWare™ OS How To Note: EPSR   Download from Www.Somanuals.com. All Manuals Search And Download.   Debugging   10. The master node transmits and receives Health messages   The master node continues transmitting and receiving Health messages for as long as the ring   stays in a state of Complete.   Manager x900-48-A>   epsrHelloTimeout: EPSR test Hello Timer expired   EPSR Port1 Tx: 00e02b00 00040000 cd280619 8100e3e8 005caaaa 0300e02b   00bb0100 00541e71 00000000 0000cd28 0619990b 00400105 03e80000 00000000   cd280619 00010002 01000177   EPSR Port1 Tx:   -----------------------------------------------------------------------   TYPE = HEALTH   CTRL VLAN = 1000   HELLO TIME = 1   STATE = COMPLETE   SYSTEM = 00-00-cd-28-06-19   FAIL TIME = 2   HELLO SEQ = 375   -----------------------------------------------------------------------   EPSR Port2 Rx: 00e02b00 00040000 cd280619 8100e3e8 005caaaa 0300e02b   00bb0100 00541e71 00000000 0000cd28 0619990b 00400105 03e80000 00000000   cd280619 00010002 01000177   EPSR Port2 Rx:   -----------------------------------------------------------------------   TYPE = HEALTH   CTRL VLAN = 1000   HELLO TIME = 1   STATE = COMPLETE   SYSTEM = 00-00-cd-28-06-19   FAIL TIME = 2   HELLO SEQ = 375   -----------------------------------------------------------------------   . . . Page 52 | AlliedWare™ OS How To Note: EPSR   Download from Www.Somanuals.com. All Manuals Search And Download.   Debugging   Transit Node (Node B) Debug Output   The following debugging shows the same events as the previous section, but on the transit   node instead of the master node. It starts with the ring established and in a state of   Complete.   1. The transit node receives Health messages   The transit node receives Health messages on port 1, because that port is connected to the   master node’s primary port. Note that the message shows that the ring state is Complete.   Manager 9924-B>   EPSR Port1 Rx: 00e02b00 00040000 cd280619 8100e3e8 005caaaa 0300e02b   00bb0100 00541ea1 00000000 0000cd28 0619990b 00400105 03e80000 00000000   cd280619 00010002 01000147   EPSR Port1 Rx:   -----------------------------------------------------------------------   TYPE = HEALTH   CTRL VLAN = 1000   HELLO TIME = 1   STATE = COMPLETE   SYSTEM = 00-00-cd-28-06-19   FAIL TIME = 2   HELLO SEQ = 327   -----------------------------------------------------------------------   . . . 2. The link between the two transit nodes goes down   The transit node receives Health message 328. At this stage, the message does not indicate   that anything is wrong. However, between messages 327 and 328, the link went down. This   means that message 328 will not make it back to the master node.   Manager 9924-B>   EPSR Port1 Rx: 00e02b00 00040000 cd280619 8100e3e8 005caaaa 0300e02b   00bb0100 00541ea0 00000000 0000cd28 0619990b 00400105 03e80000 00000000   cd280619 00010002 01000148   EPSR Port1 Rx:   -----------------------------------------------------------------------   TYPE = HEALTH   CTRL VLAN = 1000   HELLO TIME = 1   STATE = COMPLETE   SYSTEM = 00-00-cd-28-06-19   FAIL TIME = 2   HELLO SEQ = 328   -----------------------------------------------------------------------   Page 53 | AlliedWare™ OS How To Note: EPSR   Download from Www.Somanuals.com. All Manuals Search And Download.   Debugging   3. The transit node receives a Ring-Down-Flush-FDB message   In the meanwhile, the master node has received a Link-Down message from the switch at the   the ring is broken and acts accordingly. As part of the recovery process, the master node   sends a Ring-Down-Flush-FDB message. The transit node receives this message and flushes   its forwarding database.   EPSR Port1 Rx: 00e02b00 00040000 cd280619 8100e3e8 005caaaa 0300e02b   00bb0100 00541ee9 00000000 0000cd28 0619990b 00400107 03e80000 00000000   cd280619 00000000 02000000   EPSR Port1 Rx:   -----------------------------------------------------------------------   TYPE = RING-DOWN-FLUSH-FDB   CTRL VLAN = 1000   HELLO TIME = 0   HELLO SEQ = 0   STATE = FAILED   SYSTEM = 00-00-cd-28-06-19   FAIL TIME = 0   -----------------------------------------------------------------------   Flush FDB EPSR: test vid: 2   4. The transit node sends a Link-Down message   The transit node realises that its port is down, sends a Link-Down message, sends a trap, and   changes its state to Link-Down. The transit node sends this message some time after the link   Times" on page 30). Note that by this stage the ring has already changed topology to restore   traffic flow. The master node detected the link failure by receiving a Link-Down message   from the other side of the link.   Manager 9924-B>   EPSR test, Port 2 port down   Flush FDB EPSR: test vid: 2   Block EPSR:test port:2 VLAN:2   EPSR Port1 Tx: 00e02b00 00040000 cd24024f 8100e3e8 005caaaa 0300e02b   00bb0100 00542484 00000000 0000cd24 024f990b 00400108 03e80000 00000000   cd24024f 00000000 04000000   EPSR Port1 Tx:   -----------------------------------------------------------------------   TYPE = LINK-DOWN   CTRL VLAN = 1000   HELLO TIME = 0   HELLO SEQ = 0   STATE = LINK-DOWN   SYSTEM = 00-00-cd-24-02-4f   FAIL TIME = 0   -----------------------------------------------------------------------   EPSR INFO: Send trap EPSR:test oldState:LINK-UP newState:LINK-DOWN   nodeType:TRANSIT   EPSR test oldState:LINK-UP newState:LINK-DOWN   Page 54 | AlliedWare™ OS How To Note: EPSR   Download from Www.Somanuals.com. All Manuals Search And Download.   Debugging   5. The transit node receives Health messages   The transit node receives Health messages from the master node. These have a state of   Failed, which shows that the ring is still broken.   Manager 9924-B>   EPSR Port1 Rx: 00e02b00 00040000 cd280619 8100e3e8 005caaaa 0300e02b   00bb0100 00541d9f 00000000 0000cd28 0619990b 00400105 03e80000 00000000   cd280619 00010002 02000149   EPSR Port1 Rx:   -----------------------------------------------------------------------   TYPE = HEALTH   CTRL VLAN = 1000   HELLO TIME = 1   STATE = FAILED   SYSTEM = 00-00-cd-28-06-19   FAIL TIME = 2   HELLO SEQ = 329   -----------------------------------------------------------------------   . . . 6. The link comes back up   The transit node detects that the broken link has come back up. It blocks the port to prevent   a loop from occurring, sends a trap, and changes the EPSR state to Pre-forwarding.   Manager 9924-B>   Block EPSR:test port:2 VLAN:2   EPSR test, Port 2 port up   EPSR INFO: Send trap EPSR:test oldState:LINK-DOWN newState:PRE-FORWARDING   nodeType:TRANSIT   EPSR test oldState:LINK-DOWN newState:PRE-FORWARDING   7. The transit node receives another Health message   The transit node receives another Health message. This message will make it back to the   master node’s secondary port, because the link between the two transit nodes is now up.   Manager 9924-B>   EPSR Port1 Rx: 00e02b00 00040000 cd280619 8100e3e8 005caaaa 0300e02b   00bb0100 00541d72 00000000 0000cd28 0619990b 00400105 03e80000 00000000   cd280619 00010002 02000176   EPSR Port1 Rx:   -----------------------------------------------------------------------   TYPE = HEALTH   CTRL VLAN = 1000   HELLO TIME = 1   STATE = FAILED   SYSTEM = 00-00-cd-28-06-19   FAIL TIME = 2   HELLO SEQ = 374   -----------------------------------------------------------------------   Page 55 | AlliedWare™ OS How To Note: EPSR   Download from Www.Somanuals.com. All Manuals Search And Download.   8. The transit node receives a Ring-Up-Flush-FDB message   The transit node receives a Ring-Up-Flush-FDB message, which indicates that the master   node knows that all links in the ring are up again. The transit node unblocks port 2 for vlan2,   flushes its FDB, sends a trap, and changes state to Link-Up.   EPSR Port1 Rx: 00e02b00 00040000 cd280619 8100e3e8 005caaaa 0300e02b   00bb0100 00541fea 00000000 0000cd28 0619990b 00400106 03e80000 00000000   cd280619 00000000 01000000   EPSR Port1 Rx:   -----------------------------------------------------------------------   TYPE = RING-UP-FLUSH-FDB   CTRL VLAN = 1000   HELLO TIME = 0   HELLO SEQ = 0   STATE = COMPLETE   SYSTEM = 00-00-cd-28-06-19   FAIL TIME = 0   -----------------------------------------------------------------------   Unblock EPSR:test port:2 VLAN:2   Flush FDB EPSR: test vid: 2   EPSR INFO: Send trap EPSR:test oldState:PRE-FORWARDING newState:LINK-UP   nodeType:TRANSIT   EPSR test oldState:PRE-FORWARDING newState:LINK-UP   9. The transit node receives Health messages   The transit node continues receiving Health messages for as long as the ring stays in a state of   Complete.   Manager 9924-B>   EPSR Port1 Rx: 00e02b00 00040000 cd280619 8100e3e8 005caaaa 0300e02b   00bb0100 00541e71 00000000 0000cd28 0619990b 00400105 03e80000 00000000   cd280619 00010002 01000177   EPSR Port1 Rx:   -----------------------------------------------------------------------   TYPE = HEALTH   CTRL VLAN = 1000   HELLO TIME = 1   STATE = COMPLETE   SYSTEM = 00-00-cd-28-06-19   FAIL TIME = 2   HELLO SEQ = 375   ----------------------------------------------------------------------   . . . USA Headquarters | 19800 North Creek Parkway | Suite 200 | Bothell | WA 98011 | USA | T: +1 800 424 4284 | F: +1 425 481 3895   European Headquarters |Via Motta 24 | 6830 Chiasso | Switzerland | T: +41 91 69769.00 | F: +41 91 69769.11   Asia-Pacific Headquarters | 11 Tai Seng Link | Singapore | 534182 | T: +65 6383 3832 | F: +65 6383 3830   © 2007 AlliedTelesis, Inc. All rights reserved. Information in this document is subject to change without notice. AlliedTelesis is a trademark or registered trademark of AlliedTelesis, Inc. in the United States and other countries.   All company names, logos, and product designs that are trademarks or registered trademarks are the property of their respective owners.   C613-16092-00 REV D   Download from Www.Somanuals.com. All Manuals Search And Download.   |