Fairchild FEB157 001 User Manual

www.fairchildsemi.com  
FEB157-001 Users Guide  
Offline High Brightness  
LED Driver Evaluation Board  
Featured Fairchild Product: FAN7554  
© 2007 Fairchild Semiconductor  
Page 1 of 17  
Rev 1.1 April 2007  
1. Introduction  
1.1 Product Description  
A high brightness LED evaluation board has been developed using the Fairchild Semiconductor  
FAN7554D PWM controller. The board has the capability of driving one, two or three Lumiled,  
or similar LEDs. The output current is user selectable at 350mA, 700mA, or 1A. The current is  
selectable by inserting or removing jumpers JP1 and JP2 on the evaluation board. The board is  
designed to operate over the universal AC line range of 90Vac to 270Vac. A picture of the board is  
shown in Figure 1.  
Figure 1: Offline High Brightness LED Driver Board  
1.2 Circuit Description  
The FEB157 evaluation board is an offline flyback converter utilizing the PWM controller,  
FAN7554D. Rather than controlling the output voltage, it is designed to control the LED load  
current. This is the preferred technique to drive high brightness LEDs. Controlling the LED current  
allows for a constant brightness as well as long life of the LEDs. The schematic of the FEB157 is  
shown in Figure 3 below.  
Referring to Figure 3, the input AC line voltage comes in through J1. Capacitor C1, and common  
mode line choke, LF1, form the conducted EMI filter. The dc resistance of LF1 and R1 limit the  
inrush current at turn on. Diode bridge BD1 and filter capacitor C2 convert the ac voltage to an  
unregulated dc voltage. Resistors R5 and R6 provide the initial startup current for the FAN7554D.  
Capacitor C8 off of pin 2 of the FAN7554D provides for soft start in that the pulse width will  
gradually increase slowly at turn on thereby decreasing the stress on Q1. Once the converter is up and  
running the operating bias voltage will come from the auxiliary winding (pins 4–5) on transformer T1.  
The oscillator frequency of the FAN7554D is set by an RC network, R10 and C9. In this board the  
frequency is set to 100kHz. However, the FAN7554D can be operated as high as 500kHz.  
The FAN7554D is a current mode PWM controller. Current mode operation implies that there are  
two control loops. An inside loop that controls the current through the primary winding of the  
transformer and an outer loop that controls the output voltage. However, as previously stated, in this  
application the outer loop will actually provide feedback information regarding the LED load current  
instead of the output voltage.  
© 2007 Fairchild Semiconductor  
Page 3 of 17  
Rev 1.1 April 2007  
Since the output current is being controlled instead of the output voltage, the output voltage will  
actually vary with the number of LEDs on the output. The same applies to the auxiliary winding that  
provides the bias supply to the FAN7554D. Consequently, the transformer had to be designed to  
provide enough bias when powering one LED. Then when powering three LEDs, the bias voltage is  
significantly higher. In order to maintain reliable operation, a regulator circuit consisting of R20, ZD1  
and Q3 is implemented. This circuit will regulate the voltage to the Vcc pin of the FAN7554 to 18V  
when there are multiple LEDs on the output. Please note that this circuit would not be needed in a  
conventional application where the number of LEDs on the output is known and fixed. In such an  
application, the transformer would then be designed to provide the required Vcc voltage for that  
particular number of LEDs.  
The FAN7554D will take feedback information from the sense resistor, R12, and from the feedback  
pin, pin 1, and generate a PWM signal that is applied to the FET at location Q1. This FET,  
FDQ2N80, is a 2A, 800V, N-channel MOSFET in a DPAK package. As with any flyback converter,  
energy is stored in the transformer while the FET is on, and released to the secondary when the FET  
is turned off. Since no transformer can be constructed with perfect coupling, the network consisting  
of resistors R2, R3, R4, diode D1 and capacitor C3 clamp the resulting leakage inductance spike so  
that it does not endanger Q1.  
The transformer, T1, is constructed on an EFD20 core/bobbin. The energy stored in the transformer  
during the on time of Q1 is delivered to the secondary during the off time of Q1. Diode D4, and  
C11 rectify and filter the resulting secondary waveform to form a dc voltage. Inductor L1 and  
capacitor C12 provide additional attenuation of any residual switching spikes on the output voltage.  
Connector J2 is a Tyco six position connector (p/n 535676-5) that will mate with Future Electronics  
LED “Emitter” boards to carry the dc power to the LEDs. A picture of a three LED assembly is shown  
in Figure 2.  
Figure 2: Offline LED Driver and LED Assembly  
As previously mentioned, when driving high brightness LEDs the objective is to control the LED  
current. There are different ways of controlling the current. In this evaluation board a method utilizing  
sense resistors and an NPN transistor is used. Referring to the schematic in Figure 3, resistors R14,  
R15, and R16 are the resistors that sense the return current from the LED load. Jumpers JP1 and JP2  
allow the selection of the output current. Table 1 describes the jumper status for particular output  
currents.  
© 2007 Fairchild Semiconductor  
Page 4 of 17  
Rev 1.1 April 2007  
Table 1: Jumper JP1/JP2 Status and LED Current  
LED Current  
350mA  
JP1 Status  
JP2 Status  
Out  
In  
Out  
Out  
In  
700mA  
1A  
In  
Refer to the schematic in Figure 3. As the LED current returns back to the power supply, it develops a  
voltage across the sense resistor(s). Once this voltage reaches the base-emitter junction voltage of the  
NPN Q2, typically about 650mV, the transistor will conduct collector current. This current also flows  
through the photodiode inside the optocoupler, IC2. The optocoupler will transfer this feedback  
information optically across the primary-secondary boundary to the primary side of the supply  
thereby maintaining the necessary isolation. Thermistor RTH1, is a negative temperature coefficient  
device and compensates for changes in base-emitter voltage due to temperature change.  
© 2007 Fairchild Semiconductor  
Page 5 of 17  
Rev 1.1 April 2007  
2. Electrical Requirements  
2.1 Input Requirements  
Voltage range: 90Vrms to 270Vrms  
Frequency: 47Hz to 63Hz  
2.2 Output Requirements  
The FEB157 board will power one, two, or three high brightness LEDs (Lumiled or similar) at user  
selectable load currents of 350mA, 700mA, or 1A.  
© 2007 Fairchild Semiconductor  
Page 6 of 17  
Rev 1.1 April 2007  
3. Designed Solution  
3.1 Schematic  
LF1  
2
R2  
T1  
22kΩ  
2010  
C2  
C3  
EFD20 Core/Bobbin  
1
47µF  
450V  
1000pF  
1kV  
R1  
5.6Ω  
1W  
3
BD1  
R3  
DF10S  
22kΩ  
2010  
C1  
Lm = 610µH  
2
3
0.1µF  
D1  
RS1M  
R4  
F1  
C14  
R19 Prov. for 0805  
Prov. for 2010  
10Ω  
1206  
1A, 250V  
TP1  
1
R5  
R6  
L1  
2.2µH  
150kΩ  
2010  
150kΩ  
2010  
2
TP4  
D4  
Q1  
C15  
SS39  
R7  
8
FQD2N80  
100pF  
5
6
22Ω  
0805  
C11  
C12  
1000µF  
16V  
47µF  
50V  
R21  
R14  
R8  
J2  
47Ω  
1.8Ω, 2010  
JP1  
JP2  
10kΩ  
0603  
2010  
D2  
R15  
Prov. for MMBD4148  
ZD2  
2Ω, 2010  
Prov. for SOD-123  
TP3  
Q3  
MMBT2222A  
4
TP5  
R9  
D3  
R18  
100Ω  
0603  
R16  
1.8Ω  
2010  
4.7Ω  
0805  
BAS21  
C5  
0.1µF  
C4  
47µF  
50V  
R20  
5
TP6  
1kΩ  
RTH1  
10kΩ  
0805  
ZD1  
18 V  
2010  
TP2  
8
7
6
5
IC2  
FOD817A  
C13  
Vref Vcc Drive GND  
2200pF  
Y-cap  
R10  
10kΩ  
1%  
C6  
FAN7554D  
IC1  
R17  
0.01µF  
Q2  
MMBT2222AK  
510Ω  
0603  
0603  
FB  
S/S  
IS  
Rt/Ct  
4
1
2
3
R11  
1kΩ  
R12  
0805  
R13  
1.2Ω  
2512  
IC2  
C7  
C8  
C9  
C10  
Prov. for 2512  
FOD817A  
0.1µF  
1µF  
1800pF  
470pF  
Figure 3: Schematic of the FEB157 Offline High Brightness LED Driver Board  
© 2007 Fairchild Semiconductor  
Page 7 of 17  
Rev 1.1 April 2007  
3.2 Transformer  
Required Components  
Schematic  
Winding Stackup  
1
Core = EFD20  
Vcc 25 T  
1/2 Pri - 36 T  
Bobbin = 10 pin; SMD; Horizontal  
2
1/2 Primary - 36 T  
Secondary - 10T  
1/2 Primary - 36 T  
8
1/2 Pri - 36 T  
Output - 10 T  
3
4
6
Vcc - 25 T  
5
Electrical Specifications  
Pin  
Spec.  
537.0 - 656.0 uH  
Remarks  
Inductance  
Leakage  
1 - 3  
1 - 3  
100 kHz, 0.10 Vrms  
All other windings shorted  
3.3 Bill of Materials  
Sch Ref  
Vendor  
Part Number  
Description  
BD1  
Fairchild  
DF10S  
1.5A, 1000 V Bridge  
C1  
C2  
NIC Components or Equivalent  
NIC Components  
NPX104M275VX2M  
0.1µF, X2 cap  
NREH470M450V18X36F  
ESMH451ESN470MN25S  
C4520X7R3A102KT  
47µF, 450V  
UCC  
47µF, 450V  
C3  
TDK  
1000 pF, 1kV, SMD  
47µF, 50V, SMD  
0.1µF, 50V, 0603  
0.01µF, 50V, 0603  
0.1µF, 50V, 0603  
1.0µF, 16V, 0603  
1800 pF, 25V, 0603, NPO  
470 pF, 50V, 0603  
1000µF, 16V, Leaded  
47µF, 50V, SMD  
2200pF, Y-rated cap  
Prov. for 0805  
C4  
NIC Components or Equivalent  
NIC Components or Equivalent  
NIC Components or Equivalent  
NIC Components or Equivalent  
NIC Components or Equivalent  
NIC Components or Equivalent  
NIC Components or Equivalent  
NIC Components or Equivalent  
NIC Components or Equivalent  
Panasonic  
NACK470M50V6.3X8TR  
NMC0603X7R104K50TRP  
NMC0603X7R103K50TRP  
NMC0603X7R104K50TRP  
NMC0603X7R105K16TRP  
NMC0603NPO182F25TRP  
NMC0603X7R471K50TRP  
NRSJ102M16V10X16TB  
NACK470M50V6.3X8TR  
ECK-NVS222ME  
C5  
C6  
C7  
C8  
C9  
C10  
C11  
C12  
C13  
C14  
C15  
TDK  
C4520CH3F101K  
100 pF, 3kV, SMD  
© 2007 Fairchild Semiconductor  
Page 8 of 17  
Rev 1.1 April 2007  
3.3 Bill of Materials (Continued)  
Sch Ref  
Conn1  
Conn2  
D1  
Vendor  
Part Number  
Description  
Phoenix Contact  
1729018  
2 position terminal block  
Tyco  
535676-5  
6 position connector  
1A, 1000V, SMA  
Fairchild  
RS1M  
D2  
Fairchild  
Prov. for MMBD4148  
BAS21  
D3  
Fairchild  
0.2A, 250V, SOT-23  
3A, 90V, SMC  
D4  
Fairchild  
SS39  
F1  
Littlefuse  
3721100  
1A, 250V, Slo-Blo  
PWM Controller, SO-8  
Optocoupler  
IC1  
IC2  
JP1  
Fairchild  
FAN7554D  
Fairchild  
FOD817A  
Sullins  
PRPN021PAEN-RC  
PRPN021PAEN-RC  
STN02SYBN-RC  
STN02SYBN-RC  
DO1608C-222  
UU9LFBNP-B322  
FQD2N80  
2 pin header (2mm)  
2 pin header (2mm)  
2 pin shunt  
JP2  
Sullins  
JP1  
Sullins  
JP2  
Sullins  
2 pin shunt  
L1  
Coilcraft  
2.2µH  
LF1  
Q1  
Q2  
Q3  
R1  
Sumida  
3.2mH  
Fairchild  
2A, 800V, N-channel, DPAK  
0.6A, 40V, NPN  
0.6A, 40V, NPN  
5.6, 1 W  
Fairchild  
MMBT2222AK  
MMBT2222AK  
NCF100J5R6TR  
NRC50J223TR  
NRC50J223TR  
NRC12J100TR  
NRC50J154TR  
NRC50J154TR  
NRC10J220TR  
NRC06J103TR  
NRC10J4R7TR  
NRC06F1002TR  
NRC10J102TR  
NRC100J1R2TR  
Fairchild  
NIC Components or Equivalent  
NIC Components or Equivalent  
NIC Components or Equivalent  
NIC Components or Equivalent  
NIC Components or Equivalent  
NIC Components or Equivalent  
NIC Components or Equivalent  
NIC Components or Equivalent  
NIC Components or Equivalent  
NIC Components or Equivalent  
NIC Components or Equivalent  
NIC Components or Equivalent  
R2  
22k, 1/2 W, 2010  
22k, 1/2 W, 2010  
10, 1/4 W, 1206  
150k, 1/2 W, 2010  
150k, 1/2 W, 2010  
22, 1/8 W, 0805  
10k, 1/10 W, 0603  
4.7, 1/8 W, 0805  
10k, 1/10 W, 1%, 0603  
1k, 1/8 W, 0805  
1.2, 1 W, 2512  
Prov. for 2512  
R3  
R4  
R5  
R6  
R7  
R8  
R9  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
NIC Components or Equivalent  
NIC Components or Equivalent  
NIC Components or Equivalent  
NRC50J1R8TR  
NRC50J2R0TR  
NRC50J1R8TR  
1.8, 3/4 W, 2010  
2.0, 3/4 W, 2010  
1.8, 3/4 W, 2010  
© 2007 Fairchild Semiconductor  
Page 9 of 17  
Rev 1.1 April 2007  
3.3 Bill of Materials (Continued)  
Sch Ref  
Vendor  
Part Number  
Description  
R17  
NIC Components or Equivalent  
NIC Components or Equivalent  
NRC06J511TR  
510, 1/10 W, 0603  
R18  
R19  
R20  
R21  
RTH1  
T1  
NRC06J101TR  
100, 1/10 W, 0603  
Prov. for 2010  
NIC Components or Equivalent  
NRC50J102TR  
NRC50J470TR  
NCT08AJ104334TR  
CTX0117893  
5002  
1k, 3/4 W, 2010  
47, 3/4 W, 2010  
10k, NTC Thermistor, Beta = 3340  
EFD20 Core/Bobbin Transformer  
PC Test Point-White  
NIC Components or Equivalent  
NIC Components or Equivalent  
Cooper  
TP1  
TP2  
TP3  
TP4  
TP5  
TP6  
ZD1  
ZD2  
Keystone  
Keystone  
5001  
PC Test Point-Black  
Keystone  
5000  
PC Test Point-Red  
Keystone  
5000  
PC Test Point-Red  
Keystone  
5001  
PC Test Point-Black  
Keystone  
5003  
PC Test Point-Orange  
18V, 1/2W, SOD-123  
Prov. for SOD-123  
Fairchild  
MMSZ5248B  
3.4 Printed Circuit Board  
The PCB is a double sided board made of FR4 with 1oz copper.  
Figure 4: Silkscreen/Component Placement of PCB Layout  
© 2007 Fairchild Semiconductor  
Page 10 of 17  
Rev 1.1 April 2007  
Figure 5: Silkscreen/Component Placement of Top Side Layer  
Figure 6: Silkscreen/Component Placement of Bottom Side Layer  
© 2007 Fairchild Semiconductor  
Page 11 of 17  
Rev 1.1 April 2007  
4. Test Results  
4.1 Regulation  
4.1.1 Line Regulation  
This graph illustrates the regulation of the output current over line voltage for the three possible  
settings, 350mA, 700mA, and 1A.  
1200  
1000  
800  
1 LED  
2 LEDs  
3 LEDs  
600  
400  
200  
0
90  
120  
270  
Input Voltage (Vac)  
Figure 7: LED Current vs. Line Voltage  
© 2007 Fairchild Semiconductor  
Page 12 of 17  
Rev 1.1 April 2007  
4.2 Efficiency  
The efficiency data shown is for the converter with a load of one, two and three LEDs driven at 1A.  
90  
80  
70  
60  
1 LED @ 1 A  
50  
2 LEDs @ 1 A  
40  
3 LEDs @ 1 A  
30  
20  
10  
0
90  
120  
270  
Input Voltage (V)  
Figure 8: Converter Efficiency Data Plotted Against Increasing Line Input  
for LED Current of 1A.  
© 2007 Fairchild Semiconductor  
Page 13 of 17  
Rev 1.1 April 2007  
4.3 Steady State Operation  
Figure 9: Steady State Waveforms at 90Vac with Three LEDs at 1A  
Figure 10: Steady State Waveforms at 270Vac with One LED at 350mA  
© 2007 Fairchild Semiconductor  
Page 14 of 17  
Rev 1.1 April 2007  
4.4 Start up  
The startup profile is captured at 90Vac and 270Vac with a load of three LEDs operating at a current  
of 1A.  
Figure 11: Startup Profile at 90 Vac with Three LEDs at 1A  
Figure 12: Startup Profile at 270Vac with Three LEDs at 1A  
© 2007 Fairchild Semiconductor  
Page 15 of 17  
Rev 1.1 April 2007  
Warning and Disclaimer:  
This Evaluation Board may employ high voltages so appropriate safety precautions should be used  
when operating this board. Replace components on the Evaluation Board only with those parts shown  
on the parts list in the User's Guide. Contact an authorized Fairchild representative with any  
questions.  
The Evaluation Board is for demonstration purposes only and neither the Board nor this User's Guide  
constitute a sales contract or create any kind of warranty, whether express or implied, as to the  
applications or products involved. Fairchild warranties that its products will meet Fairchild's published  
specifications but does not guarantee that its products will work in any specific application. Fairchild  
reserves the right to make changes without notice to any products described herein to improve  
reliability, function or design. Either the applicable sales contract signed by Fairchild and Buyer, or if  
no contract exists Fairchild's Standard Terms and Conditions on the back of Fairchild invoices, govern  
the terms of sale of the products described herein.  
© 2007 Fairchild Semiconductor  
Page 16 of 17  
Rev 1.1 April 2007  
:$51,1*ꢀ$1'ꢀ',6&/$,0(5  
5HSODFHꢀFRPSRQHQWVꢀRQꢀWKHꢀ(YDOXDWLRQꢀ%RDUGꢀRQO\ꢀZLWKꢀWKRVHꢀSDUWVꢀVKRZQꢀRQꢀWKHꢀSDUWVꢀOLVWꢀLQꢀWKHꢀ8VHU¶Vꢀ*XLGHꢁꢀꢀ&RQWDFW  
DQꢀDXWKRUL]HGꢀ)DLUFKLOGꢀUHSUHVHQWDWLYHꢀZLWKꢀDQ\ꢀTXHVWLRQVꢁ  
7KHꢀ(YDOXDWLRQꢀERDUGꢀLVꢀIRUꢀGHPRQVWUDWLRQꢀSXUSRVHVꢀRQO\ꢀDQGꢀQHLWKHUꢀWKHꢀ%RDUGꢀQRUꢀWKLVꢀ8VHU¶Vꢀ*XLGHꢀFRQVWLWXWHꢀDꢀVDOHV  
FRQWUDFWꢀRUꢀFUHDWHꢀDQ\ꢀNLQGꢀRIꢀZDUUDQW\ꢂꢀZKHWKHUꢀH[SUHVVꢀRIꢀLPSOLHGꢂꢀDVꢀWRꢀWKHꢀDSSOLFDWLRQVꢀRUꢀSURGXFWVꢀLQYROYHGꢁꢀꢀ)DLUFKLOG  
ZDUUDQWLHVꢀWKDWꢀLWVꢀSURGXFWVꢀZLOOꢀPHHWꢀ)DLUFKLOG¶VꢀSXEOLVKHGꢀVSHFLILFDWLRQVꢀEXWꢀGRHVꢀQRWꢀJXDUDQWHHꢀWKDWꢀLWVꢀSURGXFWVꢀZLOOꢀZRUN  
LQꢀDQ\ꢀVSHFLILFꢀDSSOLFDWLRQꢁꢀꢀ)DLUFKLOGꢀUHVHUYHVꢀWKHꢀULJKWꢀWRꢀPDNHVꢀFKDQJHVꢀZLWKRXWꢀQRWLFHꢀWRꢀDQ\ꢀSURGXFWVꢀGHVFULEHGꢀKHUHLQ  
WRꢀLPSURYHꢀUHOLDELOLW\ꢂꢀIXQFWLRQꢂꢀRUꢀGHVLJQꢁꢀꢀ(LWKHUꢀWKHꢀDSSOLFDEOHꢀVDOHVꢀFRQWUDFWꢀVLJQHGꢀE\ꢀ)DLUFKLOGꢀDQGꢀ%X\HUꢂꢀRUꢀLIꢀQR  
FRQWUDFWꢀH[LVWVꢀ)DLUFKLOG¶Vꢀ6WDQGꢀ7HUPVꢀDQGꢀ&RQGLWLRQVꢀRQꢀWKHꢀEDFNꢀRIꢀ)DLUFKLOGꢀLQYRLFHVꢂꢀJRYHUQꢀWKHꢀWHUPVꢀRIꢀVDOHꢀRIꢀWKH  
SURGXFWVꢀGHVFULEHGꢀKHUHLQꢁ  
/,)(ꢀ6833257ꢀ32/,&<  
)$,5&+,/'¶6ꢀ352'8&76ꢀ$5(ꢀ127ꢀ$87+25,=('ꢀ)25ꢀ86(ꢀ$6ꢀ&5,7,&$/ꢀ&20321(176ꢀ,1ꢀ/,)(ꢀ6833257  
'(9,&(6ꢀ25ꢀ6<67(06ꢀ:,7+287ꢀ7+(ꢀ(;35(66ꢀ:5,77(1$33529$/ꢀ2)ꢀ)$,5&+,/'ꢀ6(0,&21'8&725ꢀ&25325$7,21ꢁ  
$VXVHGKHUHLQꢃ  
ꢄꢁ/LIHVXSSRUWGHYLFHVRUV\VWHPVDUHGHYLFHVRU  
V\VWHPVꢀZKLFKꢂꢀꢅDꢆꢀDUHꢀLQWHQGHGꢀIRUꢀVXUJLFDOꢀLPSODQWꢀLQWR  
WKHERG\ꢂRUEꢆVXSSRUWRUVXVWDLQOLIHꢂRUFꢆZKRVH  
IDLOXUHWRSHUIRUPZKHQSURSHUO\XVHGLQDFFRUGDQFH  
ZLWKꢀLQVWUXFWLRQVꢀIRUꢀXVHꢀSURYLGHGꢀLQꢀWKHꢀODEHOLQJꢂꢀFDQꢀEH  
UHDVRQDEO\ꢀH[SHFWHGꢀWRꢀUHVXOWꢀLQꢀVLJQLILFDQWꢀLQMXU\ꢀWRꢀWKH  
XVHUꢁ  
ꢇꢁꢀ$ꢀFULWLFDOꢀFRPSRQHQWꢀLVꢀDQ\ꢀFRPSRQHQWꢀRIꢀDꢀOLIH  
VXSSRUWꢀGHYLFHꢀRUꢀV\VWHPꢀZKRVHꢀIDLOXUHꢀWRꢀSHUIRUPꢀFDQ  
EHꢀUHDVRQDEO\ꢀH[SHFWHGꢀWRꢀFDXVHꢀWKHꢀIDLOXUHꢀRIꢀWKHꢀOLIH  
VXSSRUWGHYLFHRUV\VWHPꢂRUWRDIIHFWLWVVDIHW\RU  
HIIHFWLYHQHVVꢁ  
75$'(0$5.6  
7KHꢀIROORZLQJꢀDUHꢀUHJLVWHUHGꢀDQGꢀXQUHJLVWHUHGꢀWUDGHPDUNVꢀ)DLUFKLOGꢀ6HPLFRQGXFWRUꢀRZQVꢀRUꢀLVꢀDXWKRUL]HGꢀWRꢀXVHꢀDQGꢀLV  
QRWꢀLQWHQGHGꢀWRꢀEHꢀDQꢀH[KDXVWLYHꢀOLVWꢀRIꢀDOOꢀVXFKꢀWUDGHPDUNVꢁ  
)$67¡  
$&([Œ  
323Œ  
630Œ  
,QWHOOL0$;Œ  
,623/$1$5Œ  
ꢀꢀꢀ/LWWOH)(7Œ  
0,&52&283/(5Œ  
0LFUR)(7Œ  
0LFUR3DNŒ  
0,&52:,5(Œ  
06;Œ  
$FWLYH$UUD\Œ  
%RWWRPOHVVŒ  
3RZHUꢇꢈꢉŒ  
3RZHU(GJHŒ  
3RZHU6DYHUŒ  
3RZHU7UHQFK¡  
4)(7¡  
6WHDOWKŒ  
)$67UŒ  
6XSHU)(7Œ  
6XSHU627Œꢊꢋ  
6XSHU627Œꢊꢌ  
6XSHU627Œꢊꢍ  
6\QF)(7Œ  
ꢀꢀꢀꢀꢀꢀꢀꢀ)36Œ  
&RRO)(7Œ  
&526692/7Œ  
'20(Œ  
)5)(7Œ  
*OREDO2SWRLVRODWRUŒ  
*72Œ  
(FR63$5.Œ  
(&026Œ  
(Q6LJQDŒ  
)$&7Œ  
46Œ  
+L6H&Œ  
47ꢀ2SWRHOHFWURQLFVŒ 7LQ\/RJLF¡  
,&Œ  
4XLHWꢀ6HULHVŒ  
5DSLG&RQILJXUHŒ  
5DSLG&RQQHFWŒ  
M6HU'HVŒ  
7,1<2372Œ  
7UX7UDQVODWLRQŒ  
8+&Œ  
06;3URŒ  
Lꢀ/RŒ  
2&;Œ  
,PSOLHG'LVFRQQHFWŒ  
)$&7ꢀ4XLHWꢀ6HULHVŒ  
2&;3URŒ  
8OWUD)(7¡  
2372/2*,&¡  
$FURVVꢀWKHꢀERDUGꢁ$URXQGꢀWKHꢀZRUOGꢁŒ  
6,/(17ꢀ6:,7&+(5¡ 8QL)(7Œ  
23723/$1$5Œ  
3$&0$1Œ  
7KHꢀ3RZHUꢀ)UDQFKLVH¡  
60$57ꢀ67$57Œ  
9&;Œ  
3URJUDPPDEOH$FWLYHꢀ'URRSŒ  
© 2007 Fairchild Semiconductor  
Page 17 of 17  
Rev 1.1 April 2007  

HP Hewlett Packard Hewlett Packard Computer Monitor LV2011 User Manual
HP Hewlett Packard Hewlett Packard Computer Monitor LA1951G User Manual
GN Netcom GN 8050 TCA User Manual
Epson A881381 User Manual
Electrolux 922094 User Manual
Eizo GX220 User Manual
Eiki LC XB29N User Manual
Cuisinart TOB 160BCW User Manual
Atlantis Land A05 17AM C06 User Manual
Asus Z9PE D8 WS User Manual