| CY7C0850AV, CY7C0851AV   CY7C0852AV, CY7C0853AV   FLEx36™ 3.3V 32K/64K/128K/256K x 36   Synchronous Dual-Port RAM   Features   Functional Description   ■ True dual-ported memory cells that allow simultaneous access   of the same memory location   The FLEx36™ family includes 1M, 2M, 4M, and 9M pipelined,   synchronous, true dual-port static RAMs that are high-speed,   low-power 3.3V CMOS. Two ports are provided, permitting   independent, simultaneous access to any location in memory.   The result of writing to the same location by more than one port   at the same time is undefined. Registers on control, address, and   data lines allow for minimal setup and hold time.   ■ Synchronous pipelined operation   ■ Organization of 1-Mbit, 2-Mbit, 4-Mbit, and 9-Mbit devices   ■ Pipelined output mode allows fast operation   ■ 0.18-micron CMOS for optimum speed and power   ■ High-speed clock to data access   During a Read operation, data is registered for decreased cycle   time. Each port contains a burst counter on the input address   register. After externally loading the counter with the initial   address, the counter increments the address internally (more   details to follow). The internal Write pulse width is independent   of the duration of the R/W input signal. The internal Write pulse   is self-timed to allow the shortest possible cycle times.   ■ 3.3V low power   ❐ Active as low as 225 mA (typ)   ❐ Standby as low as 55 mA (typ)   ■ Mailbox function for message passing   ■ Global master reset   A HIGH on CE0 or LOW on CE1 for one clock cycle powers down   the internal circuitry to reduce the static power consumption. One   cycle with chip enables asserted is required to reactivate the   outputs.   ■ Separate byte enables on both ports   ■ Commercial and industrial temperature ranges   ■ IEEE 1149.1-compatible JTAG boundary scan   ■ 172-Ball FBGA (1 mm pitch) (15 mm × 15 mm)   ■ 176-Pin TQFP (24 mm × 24 mm × 1.4 mm)   Additional features include: readback of burst-counter internal   address value on address lines, counter-mask registers to   control the counter wrap-around, counter interrupt (CNTINT)   flags, readback of mask register value on address lines,   retransmit functionality, interrupt flags for message passing,   JTAG for boundary scan, and asynchronous Master Reset   (MRST).   ■ Counter wrap around control   The CY7C0853AV device in this family has limited features.   Please see See “Address Counter and Mask Register   Operations” on page 8. for details.   ❐ Internal mask register controls counter wrap-around   ❐ Counter-interrupt flags to indicate wrap-around   ❐ Memory block retransmit operation   ■ Counter readback on address lines   ■ Mask register readback on address lines   ■ Dual Chip Enables on both ports for easy depth expansion   Table 1. Product Selection Guide   1-Mbit   2-Mbit   4-Mbit   9-Mbit   Density   (32K x 36)   CY7C0850AV   167   (64K x 36)   (128K x 36)   (256K x 36)   Part Number   CY7C0851AV   CY7C0852AV   CY7C0853AV   133   Max. Speed (MHz)   167   4.0   167   4.0   Max. Access Time - Clock to Data (ns)   Typical operating current (mA)   Package   4.0   4.7   225   225   225   270   176TQFP   172FBGA   176TQFP   172FBGA   176TQFP   172FBGA   172FBGA   Cypress Semiconductor Corporation   Document #: 38-06070 Rev. *H   • 198 Champion Court   • San Jose, CA 95134-1709   • 408-943-2600   Revised July 29, 2008   CY7C0850AV, CY7C0851AV   CY7C0852AV, CY7C0853AV   Pin Configurations   Figure 1. 172-Ball BGA (Top View)   1 DQ32L   A0L   2 3 CNTINTL   DQ29L   DQ31L   DQ35L   CE1L   A7L   4 VSS   5 6 7 8 9 10   DQ13R   DQ14R   INTR   11   VSS   12   CNTINTR   DQ29R   DQ31R   DQ35R   CE1R   A7R   13   DQ30R   DQ33R   A1R   14   DQ32R   A0R   DQ30L   DQ33L   A1L   DQ13L   DQ14L   INTL   VDD   DQ11L   DQ9L   DQ10L   VSS   DQ11R   DQ9R   DQ10R   VSS   VDD   A B C D E F DQ17L   DQ27L   DQ34L   B0L   DQ12L   DQ15L   DQ16L   VSS   DQ12R   DQ15R   DQ16R   VDD   DQ17R   DQ27R   DQ34R   B0R   NC   NC   A2L   A3L   DQ28L   VDD   DQ28R   VDD   A3R   A2R   A4L   A5L   A5R   A4R   VDD   A6L   B1L   VDD   VSS   B1R   A6R   VDD   CY7C0850AV   CY7C0851AV   CY7C0852AV   OEL   B2L   B3L   CE0L   CLKL   ADSL   CNTRSTL   DQ26L   DQ18L   DQ6L   VSS   CE0R   CLKR   ADSR   B3R   B2R   OER   G H J VSS   R/WL   A10L   A12L   A13L   A14L   DQ20L   DQ21L   A8L   A8R   R/WR   A10R   A12R   A13R   A14R   DQ20R   DQ21R   VSS   A9L   VSS   VSS   VDD   VDD   VDD   MRST   A9R   [2]   A11L   CNT/MSKL   A15L   VDD   DQ19L   DQ7L   DQ3L   VDD   VSS   DQ19R   DQ7R   DQ3R   VDD   CNTRSTR A15R   A11R   CNT/MSKR   K L CNTENL   DQ22L   DQ8L   DQ25L   TDI   VSS   VSS   DQ25R   TCK   DQ26R   DQ18R   DQ6R   VSS   CNTENR   A16L   DQ2L   DQ0L   DQ1L   DQ2R   DQ0R   DQ1R   DQ22R   DQ8R   TMS   A16R   M N P DQ24L   DQ23L   DQ5L   DQ4L   DQ5R   DQ4R   DQ24R   DQ23R   TDO   Note   2. For CY7C0851AV, pins M1 and M14 are NC. For CY7C0850AV, pins K3, K12 M1, and M14 are NC   Document #: 38-06070 Rev. *H   Page 3 of 32   CY7C0850AV, CY7C0851AV   CY7C0852AV, CY7C0853AV   Pin Configurations (continued)   Figure 2. 172-Ball BGA (Top View)   1 2 3 4 5 6 7 8 9 10   11   12   13   14   DQ32L   A0L   DQ30L   DQ33L   A1L   NC   VSS   DQ13L   DQ14L   INTL   VDD   DQ11L   DQ9L   DQ10L   VSS   DQ11R   DQ9R   VDD   DQ13R   VSS   NC   DQ30R DQ32R   A B C D E F DQ29L   DQ31L   DQ35L   VDD   A7L   DQ17L   DQ27L   DQ34L   B0L   DQ12L   DQ15L   DQ16L   VSS   DQ12R DQ14R DQ17R DQ29R DQ33R   A0R   A17R   A2R   A17L   A2L   DQ10R DQ15R   INTR   DQ27R DQ31R   A1R   A3R   A3L   DQ28L   VDD   VSS   DQ16R DQ28R DQ34R DQ35R   A4L   A5L   VDD   VDD   VSS   B0R   B1R   VDD   A7R   A5R   A4R   VDD   OEL   A6L   B1L   VDD   A6R   VDD   OER   VSS   A9R   CY7C0853AV   B2L   B3L   VSS   VSS   CLKR   VSS   VDD   B3R   B2R   G H J VSS   R/WL   A10L   A12L   A13L   A14L   DQ20L   DQ21L   A8L   CLKL   VSS   A8R   R/WR   A10R   A12R   A13R   A14R   A9L   VSS   VSS   VDD   VDD   VDD   MRST   A15R   VSS   A11L   VDD   A16L   DQ24L   DQ23L   A15L   VSS   VDD   VDD   VSS   A11R   VDD   A16R   K L DQ26L   DQ18L   DQ6L   VSS   DQ25L   TDI   DQ19L   DQ7L   DQ3L   VDD   VSS   DQ2L   DQ0L   DQ1L   VSS   DQ19R DQ25R DQ26R   DQ22L   DQ8L   TDO   DQ2R   DQ0R   DQ1R   DQ7R   DQ3R   VDD   TCK   DQ18R DQ22R   M N P DQ5L   DQ4L   DQ5R   DQ4R   DQ6R   VSS   DQ8R   TMS   DQ20R DQ24R   DQ21R DQ23R   Document #: 38-06070 Rev. *H   Page 4 of 32   CY7C0850AV, CY7C0851AV   CY7C0852AV, CY7C0853AV   Pin Configurations (continued)   Figure 3. 176-Pin Thin Quad Flat Pack (TQFP) (Top View)   DQ   DQ   NC   34R   35R   132   131   130   129   128   127   126   125   124   123   122   121   120   119   118   117   116   115   114   113   112   111   110   109   108   107   106   105   104   103   102   101   100   99   1 2 DQ   DQ   34L   35L   3 NC   A 0R   4 A 0L   A 1R   5 A 1L   A 2R   6 A 2L   A V 3R   7 A V 3L   SS   DD   SS   8 V DD   9 V A A A A 4R   5R   6R   7R   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   A A A A 4L   5L   6L   7L   B 0R   1R   B 0L   1L   B B CE   1R   CE   1L   B B 2R   3R   B B 2L   3L   OE   CE   R OE   CE   L 0R   CY7C0850AV   CY7C0851AV   CY7C0852AV   0L   V DD   V DD   V DD   V DD   V SS   V SS   V SS   V SS   R/W   CLK   R R/W   L R CLK   L MRST   ADS   V SS   R ADS   L CNTEN   R CNTEN   L CNTRST   R CNTRST   L CNT/MSK   R CNT/MSK   L A A 8R   A A 8L   9R   9L   A 10R   11R   12R   A 10L   11L   12L   A A 98   A A 97   V SS   96   V SS   DD   13L   V A DD   95   V A 13R   94   A A 14R   93   A 14L   15L   16L   [2]   [2]   [2]   15R   16R   92   A A [2]   A 91   DQ   DQ   24R   90   DQ   DQ   24L   20L   89   20R   Document #: 38-06070 Rev. *H   Page 5 of 32   CY7C0850AV, CY7C0851AV   CY7C0852AV, CY7C0853AV   Pin Definitions   Left Port   Right Port   Description   [1]   A –A   A –A   Address Inputs.   0L   17L   0R   17R   ADS   ADS   Address Strobe Input. Used as an address qualifier. This signal should be asserted LOW for   the part using the externally supplied address on the address pins and for loading this address   into the burst address counter.   L R CE0   CE0   Active LOW Chip Enable Input.   L R CE1   CLK   CE1   CLK   Active HIGH Chip Enable Input.   L R Clock Signal. Maximum clock input rate is f   . L R MAX   CNTEN   CNTEN   Counter Enable Input. Asserting this signal LOW increments the burst address counter of its   respective port on each rising edge of CLK. The increment is disabled if ADS or CNTRST are   asserted LOW.   L R CNTRST   CNTRST   Counter Reset Input. Asserting this signal LOW resets to zero the unmasked portion of the burst   L R address counter of its respective port. CNTRST is not disabled by asserting ADS or CNTEN.   CNT/MSK   CNT/MSK   Address Counter Mask Register Enable Input. Asserting this signal LOW enables access to   the mask register. When tied HIGH, the mask register is not accessible and the address counter   operations are enabled based on the status of the counter control signals.   L R DQ –DQ   DQ –DQ   Data Bus Input/Output.   0L   35L   0R   35R   OE   OE   Output Enable Input. This asynchronous signal must be asserted LOW to enable the DQ data   pins during Read operations.   L R INTL   INTR   Mailbox Interrupt Flag Output. The mailbox permits communications between ports. The upper   two memory locations can be used for message passing. INT is asserted LOW when the right   L port writes to the mailbox location of the left port, and vice versa. An interrupt to a port is   deasserted HIGH when it reads the contents of its mailbox.   CNTINT   CNTINT   Counter Interrupt Output. This pin is asserted LOW when the unmasked portion of the counter   L R is incremented to all “1s.”   R/W   R/W   Read/Write Enable Input. Assert this pin LOW to write to, or HIGH to Read from the dual port   memory array.   L R B –B   B –B   3R   Byte Select Inputs. Asserting these signals enables Read and Write operations to the corre-   sponding bytes of the memory array.   0L   3L   0R   MRST   TMS   Master Reset Input. MRST is an asynchronous input signal and affects both ports. Asserting   MRST LOW performs all of the reset functions as described in the text. A MRST operation is   required at power up.   JTAG Test Mode Select Input. It controls the advance of JTAG TAP state machine. State   machine transitions occur on the rising edge of TCK.   TDI   JTAG Test Data Input. Data on the TDI input is shifted serially into selected registers.   TCK   TDO   JTAG Test Clock Input.   JTAG Test Data Output. TDO transitions occur on the falling edge of TCK. TDO is normally   three-stated except when captured data is shifted out of the JTAG TAP.   V V Ground Inputs.   SS   Power Inputs.   DD   Note   3. These pins are not available for CY7C0853AV device.   Document #: 38-06070 Rev. *H   Page 6 of 32   CY7C0850AV, CY7C0851AV   CY7C0852AV, CY7C0853AV   in order to set the INT flag, a Write operation by the left port to   Master Reset   R address 3FFFF asserts INT LOW. At least one byte has to be   R active for a Write to generate an interrupt. A valid Read of the   The FLEx36 family devices undergo a complete reset by taking   its MRST input LOW. The MRST input can switch asynchro-   nously to the clocks. The MRST initializes the internal burst   counters to zero, and the counter mask registers to all ones   (completely unmasked). The MRST also forces the Mailbox   Interrupt (INT) flags and the Counter Interrupt (CNTINT) flags   HIGH. The MRST must be performed on the FLEx36 family   devices after power up.   3FFFF location by the right port resets INT HIGH. At least one   R byte has to be active in order for a Read to reset the interrupt.   When one port Writes to the other port’s mailbox, the INT of the   port that the mailbox belongs to is asserted LOW. The INT is   reset when the owner (port) of the mailbox Reads the contents   of the mailbox. The interrupt flag is set in a flow-thru mode (i.e.,   it follows the clock edge of the writing port). Also, the flag is reset   in a flow-thru mode (i.e., it follows the clock edge of the reading   port).   Mailbox Interrupts   Each port can read the other port’s mailbox without resetting the   interrupt. And each port can write to its own mailbox without   setting the interrupt. If an application does not require message   passing, INT pins should be left open.   The upper two memory locations may be used for message   passing and permit communications between ports. Table 2   shows the interrupt operation for both ports of CY7C0853AV.   The highest memory location, 3FFFF is the mailbox for the right   Table 2. Interrupt Operation Example   Left Port   Function   Right Port   R/W   CE   L A INT   X R/W   CE   X A INT   L L L 0L–17L   L R R 0R–17R   R Set Right INT Flag   L X X H 3FFFF   X X H L X R Reset Right INT Flag   X X L 3FFFF   3FFFE   X H R Set Left INT Flag   X X L L X L Reset Left INT Flag   L 3FFFE   H X X X L Table 3. Address Counter and Counter-Mask Register Control Operation (Any Port)   CLK MRST CNT/MSK   CNTRST   ADS   CNTEN   Operation   Description   X L X X X X Master Reset   Reset address counter to all 0s and mask   register to all 1s.   H H H H L X L X L Counter Reset   Counter Load   Reset counter unmasked portion to all 0s.   H Load counter with external address value   presented on address lines.   H H H L H Counter Readback Read out counter internal value on address   lines.   H H H H H H H H L Counter Increment Internally increment address counter value.   H Counter Hold   Constantly hold the address value for   multiple clock cycles.   H H L L L X L X L Mask Reset   Mask Load   Reset mask register to all 1s.   H Load mask register with value presented on   the address lines.   H H L L H H L H X Mask Readback   Reserved   Read out mask register value on address   lines.   H Operation undefined   Notes   4. CE is internal signal. CE = LOW if CE = LOW and CE = HIGH. For a single Read operation, CE only needs to be asserted once at the rising edge of the CLK and   0 1 can be deasserted after that. Data is out after the following CLK edge and is three-stated after the next CLK edge.   5. OE is “Don’t Care” for mailbox operation.   6. At least one of B0, B1, B2, or B3 must be LOW.   7. A16x is a NC for CY7C0851AV, therefore the Interrupt Addresses are FFFF and EFFF; A16x and A15x are NC for CY7C0850AV, therefore the Interrupt Addresses   are 7FFF and 6FFF.   8. “X” = “Don’t Care,” “H” = HIGH, “L” = LOW.   9. Counter operation and mask register operation is independent of chip enables.   Document #: 38-06070 Rev. *H   Page 7 of 32   CY7C0850AV, CY7C0851AV   CY7C0852AV, CY7C0853AV   will reset the counter and mirror registers to 00000, as will master   reset (MRST).   Address Counter and Mask Register   Operations   Counter Load Operation   This section   describes the features only apply to   The address counter and mirror registers are both loaded with   the address value presented at the address lines.   CY7C0850AV/CY7C0851AV/CY7C0852AV devices, but not to   the CY7C0853AV device. Each port of these devices has a   programmable burst address counter. The burst counter   contains three registers: a counter register, a mask register, and   a mirror register.   Counter Readback Operation   The internal value of the counter register can be read out on the   address lines. Readback is pipelined; the address is valid t   The counter register contains the address used to access the   RAM array. It is changed only by the Counter Load, Increment,   Counter Reset, and by master reset (MRST) operations.   CA2   after the next rising edge of the port’s clock. If address readback   occurs while the port is enabled (CE0 LOW and CE1 HIGH), the   block diagram of the operation.   The mask register value affects the Increment and Counter   Reset operations by preventing the corresponding bits of the   counter register from changing. It also affects the counter   interrupt output (CNTINT). The mask register is changed only by   the Mask Load and Mask Reset operations, and by the MRST.   The mask register defines the counting range of the counter   register. It divides the counter register into two regions: zero or   more “0s” in the most significant bits define the masked region,   one or more “1s” in the least significant bits define the unmasked   region. Bit 0 may also be “0,” masking the least significant   counter bit and causing the counter to increment by two instead   of one.   Counter Increment Operation   Once the address counter register is initially loaded with an   external address, the counter can internally increment the   address value, potentially addressing the entire memory array.   Only the unmasked bits of the counter register are incremented.   The corresponding bit in the mask register must be a “1” for a   counter bit to change. The counter register is incremented by 1   if the least significant bit is unmasked, and by 2 if it is masked. If   all unmasked bits are “1,” the next increment wraps the counter   back to the initially loaded value. If an Increment results in all the   unmasked bits of the counter being “1s,” a counter interrupt flag   (CNTINT) is asserted. The next Increment returns the counter   register to its initial value, which was stored in the mirror register.   The mirror register is used to reload the counter register on   increment operations (see “retransmit,” below). It always   contains the value last loaded into the counter register, and is   changed only by the Counter Load operation, and by the MRST.   The counter address can instead be forced to loop to 00000 by   externally connecting CNTINT to CNTRST.   An increment that   and the required input control signals. The MRST control signal   port’s CLK. All these counter and mask operations are   independent of the port’s chip enable inputs (CE0 and CE1).   results in one or more of the unmasked bits of the counter being   “0” deasserts the counter interrupt flag. The example in Figure 5   on page 11 shows the counter mask register loaded with a mask   value of 0003Fh unmasking the first 6 bits with bit “0” as the LSB   and bit “16” as the MSB. The maximum value the mask register   can be loaded with is 1FFFFh. Setting the mask register to this   value allows the counter to access the entire memory space. The   address counter is then loaded with an initial value of 8h. The   base address bits (in this case, the 6th address through the 16th   address) are loaded with an address value but do not increment   once the counter is configured for increment operation. The   counter address starts at address 8h. The counter increments its   internal address value till it reaches the mask register value of   3Fh. The counter wraps around the memory block to location 8h   at the next count. CNTINT is issued when the counter reaches   its maximum value.   Counter enable (CNTEN) inputs are provided to stall the   operation of the address input and utilize the internal address   generated by the internal counter for fast, interleaved memory   applications. A port’s burst counter is loaded when the port’s   address strobe (ADS) and CNTEN signals are LOW. When the   port’s CNTEN is asserted and the ADS is deasserted, the   address counter increments on each LOW to HIGH transition of   that port’s clock signal. This will Read/Write one word from/into   each successive address location until CNTEN is deasserted.   The counter can address the entire memory array, and loops   back to the start. Counter reset (CNTRST) is used to reset the   unmasked portion of the burst counter to 0s. A counter-mask   register is used to control the counter wrap.   Counter Hold Operation   The value of all three registers can be constantly maintained   unchanged for an unlimited number of clock cycles. Such   operation is useful in applications where wait states are needed,   or when address is available a few cycles ahead of data in a   shared bus interface.   Counter Reset Operation   All unmasked bits of the counter are reset to “0.” All masked bits   remain unchanged. The mirror register is loaded with the value   of the burst counter. A Mask Reset followed by a Counter Reset   Notes   10. This section describes the CY7C0852AV, which have 17 address bits and a maximum address value of 1FFFF. The CY7C0851AV has 16 address bits, register lengths   of 16 bits, and a maximum address value of FFFF. The CY7C0850AV has 15 address bits, register lengths of 15 bits, and a maximum address value of 7FFF.   11. CNTINT and CNTRST specs are guaranteed by design to operate properly at speed grade operating frequency when tied together.   Document #: 38-06070 Rev. *H   Page 8 of 32   CY7C0850AV, CY7C0851AV   CY7C0852AV, CY7C0853AV   Counter Interrupt   Mask Load Operation   The counter interrupt (CNTINT) is asserted LOW when an   increment operation results in the unmasked portion of the   counter register being all “1s.” It is deasserted HIGH when an   Increment operation results in any other value. It is also   de-asserted by Counter Reset, Counter Load, Mask Reset and   Mask Load operations, and by MRST.   The mask register is loaded with the address value presented at   the address lines. Not all values permit correct increment opera-   n n tions. Permitted values are of the form 2 – 1 or 2 – 2. From the   most significant bit to the least significant bit, permitted values   have zero or more “0s,” one or more “1s,” or one “0.” Thus   1FFFF, 003FE, and 00001 are permitted values, but 1F0FF,   003FC, and 00000 are not.   Retransmit   Mask Readback Operation   Retransmit is a feature that allows the Read of a block of memory   more than once without the need to reload the initial address.   This eliminates the need for external logic to store and route   data. It also reduces the complexity of the system design and   saves board space. An internal “mirror register” is used to store   the initially loaded address counter value. When the counter   unmasked portion reaches its maximum value set by the mask   register, it wraps back to the initial value stored in this “mirror   register.” If the counter is continuously configured in increment   mode, it increments again to its maximum value and wraps back   to the value initially stored into the “mirror register.” Thus, the   repeated access of the same data is allowed without the need   for any external logic.   The internal value of the mask register can be read out on the   address lines. Readback is pipelined; the address is valid t   CM2   after the next rising edge of the port’s clock. If mask readback   occurs while the port is enabled (CE0 LOW and CE1 HIGH), the   block diagram of the operation.   Counting by Two   When the least significant bit of the mask register is “0,” the   counter increments by two. This may be used to connect the   CY7C0850AV/CY7C0851AV/CY7C0852AV as a 72-bit single   port SRAM in which the counter of one port counts even   addresses and the counter of the other port counts odd   addresses. This even-odd address scheme stores one half of the   72-bit data in even memory locations, and the other half in odd   memory locations.   Mask Reset Operation   The mask register is reset to all “1s,” which unmasks every bit of   the counter. Master reset (MRST) also resets the mask register   to all “1s.”   Document #: 38-06070 Rev. *H   Page 9 of 32   CY7C0850AV, CY7C0851AV   CY7C0852AV, CY7C0853AV   Figure 4. Counter, Mask, and Mirror Logic Block Diagram   CNT/MSK   CNTEN   ADS   Decode   Logic   CNTRST   MRST   Bidirectional   Address   Lines   Mask   Register   Counter/   Address   Register   Address   Decode   RAM   Array   CLK   Load/Increment   17   17   From   Address   Lines   Mirror   Counter   To Readback   and Address   Decode   1 0 1 0 From   Increment   Logic   Mask   Register   17   Wrap   17   17   17   Bit 0   From   Mask   From   Counter   +1   +2   Wrap   Detect   Wrap   To   1 0 17   1 0 Counter   Document #: 38-06070 Rev. *H   Page 10 of 32   CY7C0850AV, CY7C0851AV   CY7C0852AV, CY7C0853AV   Figure 5. Programmable Counter-Mask Register Operation   CNTINT   H Example:   Load   Counter-Mask   Register = 3F   0 0 0s   0 1 1 1 1 1 1 16 15   6 5 4 3 2 1 0 Mask   2 2 2 2 2 2 2 2 2 Register   bit-0   Masked Address   Unmasked Address   Load   Address   Counter = 8   H L X X Xs   Xs   Xs   X 0 0 1 0 0 0 16 15   6 6 5 5 4 3 2 1 0 2 2 2 2 2 2 2 2 2 2 Address   Counter   bit-0   Max   Address   Register   X X X 2 1 1 1 1 1 1 16 15   4 3 2 1 0 2 2 2 2 2 2 2 Max + 1   Address   Register   H X X X 0 0 1 0 0 0 16 15   6 5 4 3 2 1 0 2 2 2 2 2 2 2 2 2 Document #: 38-06070 Rev. *H   Page 11 of 32   CY7C0850AV, CY7C0851AV   CY7C0852AV, CY7C0853AV   IEEE 1149.1 Serial Boundary Scan (JTAG) [13]   Performing a TAP Reset   A reset is performed by forcing TMS HIGH (V ) for five rising   DD   The CY7C0850AV/CY7C0851AV/CY7C0852AV/CY7C0853AV   incorporates an IEEE 1149.1 serial boundary scan test access   port (TAP). The TAP controller functions in a manner that does   not conflict with the operation of other devices using   edges of TCK. This reset does not affect the operation of the   devices, and may be performed while the devices are operating.   An MRST must be performed on the devices after power up.   Performing a Pause/Restart   1149.1-compliant   TAPs.   The   TAP   operates   using   JEDEC-standard 3.3V I/O logic levels. It is composed of three   input connections and one output connection required by the test   logic defined by the standard.   When a SHIFT-DR PAUSE-DR SHIFT-DR is performed the scan   chain outputs the next bit in the chain twice. For example, if the   value expected from the chain is 1010101, the device outputs a   11010101. This extra bit causes some testers to report an   erroneous failure for the devices in a scan test. Therefore the   tester should be configured to never enter the PAUSE-DR state.   Table 4. Identification Register Definitions   Instruction Field   Revision Number (31:28)   Cypress Device ID (27:12)   Value   0h   Description   Reserved for version number.   C001h   C002h   C092h   034h   1 Defines Cypress part number for the CY7C0851AV   Defines Cypress part number for the CY7C0852AV and CY7C0853AV   Defines Cypress part number for the CY7C0850AV   Allows unique identification of the DP family device vendor.   Indicates the presence of an ID register.   Cypress JEDEC ID (11:1)   ID Register Presence (0)   Table 5. Scan Registers Sizes   Register Name   Bit Size   Instruction   Bypass   4 1 Identification   Boundary Scan   32   n Table 6. Instruction Identification Codes   Instruction   EXTEST   Code   0000   1111   1011   0111   Description   Captures the Input/Output ring contents. Places the BSR between the TDI and TDO.   Places the BYR between TDI and TDO.   BYPASS   IDCODE   HIGHZ   Loads the IDR with the vendor ID code and places the register between TDI and TDO.   Places BYR between TDI and TDO. Forces all CY7C0851AV/CY7C0852AV/   CY7C0853AV output drivers to a High-Z state.   CLAMP   0100   1000   1100   Controls boundary to 1/0. Places BYR between TDI and TDO.   SAMPLE/PRELOAD   NBSRST   Captures the input/output ring contents. Places BSR between TDI and TDO.   Resets the non-boundary scan logic. Places BYR between TDI and TDO.   RESERVED   All other codes Other combinations are reserved. Do not use other than the above.   Notes   12. The “X” in this diagram represents the counter upper bits.   13. Boundary scan is IEEE 1149.1-compatible. See “Performing a Pause/Restart” for deviation from strict 1149.1 compliance.   14. See details in the device BSDL files.   Document #: 38-06070 Rev. *H   Page 12 of 32   CY7C0850AV, CY7C0851AV   CY7C0852AV, CY7C0853AV   DC Input Voltage .............................. –0.5V to V + 0.5V   Maximum Ratings   DD   Output Current into Outputs (LOW)............................. 20 mA   Exceeding maximum ratings   device. These user guidelines are not tested.   may impair the useful life of the   Static Discharge Voltage........................................... > 2000V   (JEDEC JESD22-A114-2000B)   Storage Temperature................................ –65°C to + 150°C   Ambient Temperature with   Latch-up Current .................................................... > 200 mA   Power Applied ........................................... –55°C to + 125°C   Operating Range   Supply Voltage to Ground Potential...............–0.5V to + 4.6V   Range   Commercial   Industrial   Ambient Temperature   V DD   DC Voltage Applied to   0°C to +70°C   –40°C to +85°C   3.3V ± 165 mV   3.3V ± 165 mV   Outputs in High-Z State ......................... –0.5V to V + 0.5V   DD   Electrical Characteristics   Over the Operating Range   -167   -133   -100   Parameter   Description   Output HIGH Voltage (V = Min., I = –4.0 mA) 2.4   Unit   Min Typ. Max Min Typ. Max Min Typ. Max   V V V V I 2.4   2.4   V V OH   OL   IH   DD   OH   Output LOW Voltage (V = Min., I = +4.0 mA)   0.4   0.4   0.4   DD   OL   Input HIGH Voltage   Input LOW Voltage   2.0   2.0   2.0   V 0.8   10   10   0.8   10   10   0.8   10   10   V IL   Output Leakage Current   –10   –10   –0.1   –10   –10   –10   –10   μA   μA   OZ   I I I Input Leakage Current Except TDI, TMS, MRST   Input Leakage Current TDI, TMS, MRST   IX1   1.0 –0.1   225 300   1.0 –0.1   225 300   1.0 mA   mA   IX2   CC   Operating Current for   (V = Max.,I = 0 mA),   Outputs Disabled   CY7C0850AV   CY7C0851AV   CY7C0852AV   DD   OUT   CY7C0853AV   270 400   90 115   200 310   90 115 mA   I I I I I Standby Current (Both Ports TTL Level)   90   160 210   55 75   115   SB1   SB2   SB3   SB4   SB5   CE and CE ≥ V , f = f   L R IH   MAX   Standby Current (One Port TTL Level)   160 210   55 75   160 210   70 100   160 210 mA   55 75 mA   160 210 mA   CE | CE ≥ V , f = f   L R IH   MAX   Standby Current (Both Ports CMOS Level)   CE and CE ≥ V – 0.2V, f = 0   L R DD   Standby Current (One Port CMOS Level)   160 210   CE | CE ≥ V , f = f   L R IH   MAX   Operating Current   (V = Max, I   CY7C0853AV   70   100 mA   = 0 mA, f = 0)   OUT   DD   Outputs Disabled   Capacitance   Part Number   Parameter   Description   Test Conditions   Max   13   Unit   pF   CY7C0850AV,   CY7C0851AV, CY7C0852AV   C C C C Input Capacitance   Output Capacitance   Input Capacitance   Output Capacitance   T = 25°C, f = 1 MHz,   IN   A V = 3.3V   DD   10   pF   OUT   IN   CY7C0853AV   22   pF   20   pF   OUT   Notes   15. The voltage on any input or I/O pin can not exceed the power pin during power up.   16. Pulse width < 20 ns.   17. C   also references C   . OUT   I/O   18. I   , I   , I   and I   are not applicable for CY7C0853AV because it can not be powered down by using chip enable pins.   SB1 SB2 SB3   SB4   Document #: 38-06070 Rev. *H   Page 13 of 32   CY7C0850AV, CY7C0851AV   CY7C0852AV, CY7C0853AV   Figure 6. AC Test Load and Waveforms   3.3V   Z0 = 50Ω   R = 50Ω   OUTPUT   R1 = 590 Ω   OUTPUT   C = 10 pF   C = 5 pF   R2 = 435 Ω   VTH = 1.5V   (a) Normal Load (Load 1)   (b) Three-state Delay (Load 2)   3.0V   90%   10%   90%   10%   ALL INPUT PULSES   VSS   < 2 ns   < 2 ns   Switching Characteristics   Over the Operating Range   -167   -133   -100   CY7C0850AV CY7C0850AV   CY7C0851AV CY7C0851AV CY7C0853AV CY7C0853AV Unit   CY7C0852AV CY7C0852AV   Parameter   Description   Min   Max   Min   Max   Min   Max   Min   Max   f t t t t t t t t t t t t t t t t t t t t t t t Maximum Operating Frequency   Clock Cycle Time   167   133   133   100   MHz   ns   ns   ns   ns   ns   ns   ns   ns   ns   ns   ns   ns   ns   ns   ns   ns   ns   ns   ns   ns   ns   ns   ns   MAX2   CYC2   CH2   6.0   2.7   2.7   7.5   3.0   3.0   7.5   3.0   3.0   10.0   4.0   Clock HIGH Time   Clock LOW Time   4.0   CL2   Clock Rise Time   2.0   2.0   2.0   2.0   2.0   2.0   3.0   3.0   R F Clock Fall Time   Address Setup Time   Address Hold Time   Byte Select Setup Time   Byte Select Hold Time   Chip Enable Setup Time   Chip Enable Hold Time   R/W Setup Time   2.3   0.6   2.3   0.6   2.3   0.6   2.3   0.6   2.3   0.6   2.3   0.6   2.3   0.6   2.3   0.6   2.3   0.6   2.5   0.6   2.5   0.6   2.5   0.6   2.5   0.6   2.5   0.6   2.5   0.6   2.5   0.6   2.5   0.6   2.5   0.6   2.5   0.6   2.5   0.6   NA   NA   2.5   0.6   2.5   0.6   NA   NA   NA   NA   NA   NA   NA   NA   3.0   0.6   3.0   0.6   NA   NA   3.0   0.6   3.0   0.6   NA   NA   NA   NA   NA   NA   NA   NA   SA   HA   SB   HB   SC   HC   SW   R/W Hold Time   HW   SD   Input Data Setup Time   Input Data Hold Time   ADS Setup Time   HD   SAD   HAD   SCN   HCN   SRST   HRST   SCM   HCM   ADS Hold Time   CNTEN Setup Time   CNTEN Hold Time   CNTRST Setup Time   CNTRST Hold Time   CNT/MSK Setup Time   CNT/MSK Hold Time   Note   19. Except JTAG signals (t and t < 10 ns [max.]).   r f Document #: 38-06070 Rev. *H   Page 14 of 32   CY7C0850AV, CY7C0851AV   CY7C0852AV, CY7C0853AV   Switching Characteristics   Over the Operating Range (continued)   -167   -133   -100   CY7C0850AV CY7C0850AV   CY7C0851AV CY7C0851AV CY7C0853AV CY7C0853AV Unit   CY7C0852AV CY7C0852AV   Parameter   Description   Min   Max   Min   Max   Min   Max   Min   Max   t t t t t t t t t t t t t Output Enable to Data Valid   OE to Low Z   4.0   4.4   4.7   5.0   ns   ns   ns   ns   ns   ns   ns   ns   ns   ns   ns   ns   ns   OE   0 0 0 0 0 0 0 0 OLZ   OHZ   OE to High Z   4.0   4.0   4.0   4.0   4.4   4.4   4.4   4.4   4.7   4.7   NA   NA   5.0   5.0   NA   NA   Clock to Data Valid   CD2   CA2   CM2   DC   Clock to Counter Address Valid   Clock to Mask Register Readback Valid   Data Output Hold After Clock HIGH   Clock HIGH to Output High Z   Clock HIGH to Output Low Z   Clock to INT Set Time   1.0   0 1.0   0 1.0   0 1.0   0 4.0   4.0   6.7   6.7   5.0   5.0   4.4   4.4   7.5   7.5   5.7   5.7   4.7   4.7   7.5   7.5   NA   NA   5.0   5.0   10   CKHZ   CKLZ   1.0   0.5   0.5   0.5   0.5   1.0   0.5   0.5   0.5   0.5   1.0   0.5   0.5   NA   NA   1.0   0.5   0.5   NA   NA   SINT   Clock to INT Reset Time   Clock to CNTINT Set Time   Clock to CNTINT Reset time   10   RINT   NA   NA   SCINT   RCINT   Port to Port Delays   t Clock to Clock Skew   5.2   6.0   6.0   8.0   ns   CCS   Master Reset Timing   t t t t t Master Reset Pulse Width   7.0   6.0   6.0   7.5   6.0   7.5   7.5   6.0   7.5   10.0   8.5   ns   ns   ns   ns   ns   RS   Master Reset Setup Time   RSS   Master Reset Recovery Time   Master Reset to Outputs Inactive   10.0   RSR   10.0   10.0   10.0   10.0   10.0   NA   10.0   NA   RSF   Master Reset to Counter Interrupt Flag   Reset Time   RSCNTINT   Notes   20. This parameter is guaranteed by design, but it is not production tested.   21. Test conditions used are Load 2.   Document #: 38-06070 Rev. *H   Page 15 of 32   CY7C0850AV, CY7C0851AV   CY7C0852AV, CY7C0853AV   JTAG Timing   167/133/100   Unit   Parameter   Description   Min   Max   f t t t t t t t t t Maximum JTAG TAP Controller Frequency   TCK Clock Cycle Time   10   MHz   ns   ns   ns   ns   ns   ns   ns   ns   ns   JTAG   TCYC   TH   100   40   40   10   10   10   10   TCK Clock HIGH Time   TCK Clock LOW Time   TL   TMS Setup to TCK Clock Rise   TMS Hold After TCK Clock Rise   TDI Setup to TCK Clock Rise   TDI Hold After TCK Clock Rise   TCK Clock LOW to TDO Valid   TCK Clock LOW to TDO Invalid   TMSS   TMSH   TDIS   TDIH   TDOV   TDOX   30   0 Figure 7. JTAG Switching Waveform   t t TL   TH   Test Clock   TCK   t TCYC   t TMSS   t TMSH   Test Mode Select   TMS   t TDIS   t TDIH   Test Data-In   TDI   Test Data-Out   TDO   t TDOX   t TDOV   Document #: 38-06070 Rev. *H   Page 16 of 32   CY7C0850AV, CY7C0851AV   CY7C0852AV, CY7C0853AV   Switching Waveforms   Figure 8. Master Reset   tRS   MRST   tRSF   ALL   ADDRESS/   DATA   tRSS   INACTIVE   LINES   tRSR   ALL   OTHER   INPUTS   ACTIVE   TMS   CNTINT   INT   TDO   Figure 9. Read Cycle   tCYC2   tCH2   tCL2   CLK   CE   tSC   tHC   tSC   tHC   tSB   tHB   B0–B3   R/W   tSW   tSA   tHW   tHA   ADDRESS   DATAOUT   An   An+1   An+2   An+3   tDC   1 Latency   tCD2   Qn   Qn+1   Qn+2   tOHZ   tCKLZ   tOLZ   OE   t OE   Notes   22. OE is asynchronously controlled; all other inputs (excluding MRST and JTAG) are synchronous to the rising clock edge.   23. ADS = CNTEN = LOW, and MRST = CNTRST = CNT/MSK = HIGH.   24. The output is disabled (high-impedance state) by CE = V following the next rising edge of the clock.   IH   25. Addresses do not have to be accessed sequentially since ADS = CNTEN = V with CNT/MSK = V constantly loads the address on the rising edge of the CLK.   IL   IH   Numbers are for reference only.   Document #: 38-06070 Rev. *H   Page 17 of 32   CY7C0850AV, CY7C0851AV   CY7C0852AV, CY7C0853AV   Switching Waveforms (continued)   Figure 10. Bank Select Read   t CYC2   t t CL2   CH2   CLK   t t t HA   SA   A 3 A 4 ADDRESS   A 5 A A A 2 (B1)   0 1 t HC   SC   CE   (B1)   t t t t CKHZ   t t t CD2   CD2   CD2   HC   CKHZ   SC   Q Q Q 3 DATA   1 0 OUT(B1)   t t HA   SA   t t t CKLZ   DC   DC   A A 4 A ADDRESS   A 0 A A 3 5 (B2)   1 2 t t HC   SC   CE   (B2)   t t t CD2   t CD2   CKHZ   t SC   HC   DATA   OUT(B2)   Q Q 4 2 t t CKLZ   CKLZ   Figure 11. Read-to-Write-to-Read (OE = LOW)   tCYC2   tCH2   tCL2   CLK   CE   tSC   tHC   tSW   tHW   R/W   tSW   tHW   An   An+1   An+2   An+2   An+3   An+4   ADDRESS   DATAIN   tSD tHD   tSA   tHA   Dn+2   tCD2   tCD2   tCD2   tCKHZ   Qn   Qn+3   Qn+1   DATAOUT   tCKLZ   READ   NO OPERATION   WRITE   READ   Notes   26. In this depth-expansion example, B1 represents Bank #1 and B2 is Bank #2; each bank consists of one Cypress CY7C0851AV/CY7C0852AV device from this data   sheet. ADDRESS = ADDRESS   . (B2)   (B1)   27. ADS = CNTEN= B0 – B3 = OE = LOW; MRST = CNTRST = CNT/MSK = HIGH.   28. Output state (HIGH, LOW, or high-impedance) is determined by the previous cycle control signals.   29. During “No Operation,” data in memory at the selected address may be corrupted and should be rewritten to ensure data integrity.   30. CE = OE = B0 – B3 = LOW; CE = R/W = CNTRST = MRST = HIGH.   0 1 31. CE = B0 – B3 = R/W = LOW; CE = CNTRST = MRST = CNT/MSK = HIGH. When R/W first switches low, since OE = LOW, the Write operation cannot be completed   0 1 (labelled as no operation). One clock cycle is required to three-state the I/O for the Write operation on the next rising edge of CLK.   Document #: 38-06070 Rev. *H   Page 18 of 32   CY7C0850AV, CY7C0851AV   CY7C0852AV, CY7C0853AV   Switching Waveforms (continued)   Figure 12. Read-to-Write-to-Read (OE Controlled)   tCYC2   tCH2   tCL2   CLK   CE   tSC   tHC   tHW   tSW   R/W tSW   tHW   An   An+1   An+2   An+3   An+4   An+5   ADDRESS   tSA   tHA   tSD tHD   Dn+2   DATAIN   Dn+3   tCD2   tCD2   tCD2   DATAOUT   Qn   Qn+4   Qn+1   tOHZ   OE   READ   WRITE   READ   Figure 13. Read with Address Counter Advance   tCYC2   tCL2   tCH2   CLK   tSA   tHA   ADDRESS   An   tSAD   tHAD   ADS   tSAD   tHAD   CNTEN   tSCN   tHCN   tSCN   tHCN   tCD2   Qx–1   Qx   tDC   Qn   Qn+1   COUNTER HOLD   Qn+2   DATAOUT   Qn+3   READ   READ WITH COUNTER   READ WITH COUNTER   EXTERNAL   ADDRESS   Document #: 38-06070 Rev. *H   Page 19 of 32   CY7C0850AV, CY7C0851AV   CY7C0852AV, CY7C0853AV   Switching Waveforms (continued)   Figure 14. Write with Address Counter Advance   tCYC2   tCL2   tCH2   CLK   tSA   tHA   An   ADDRESS   INTERNAL   ADDRESS   An   An+1   An+2   An+3   An+4   tSAD   tHAD   ADS   CNTEN   DATAIN   tSCN   tHCN   Dn   Dn+1   Dn+1   Dn+2   Dn+3   Dn+4   tSD   tHD   WRITE EXTERNAL   ADDRESS   WRITE WITH WRITE COUNTER   COUNTER HOLD   WRITE WITH COUNTER   Figure 15. Disabled-to-Read-to-Read-to-Read-to-Write   tCYC2   tCL2   tCH2   CLK   tSC   tHC   CE   tSW   tHW   R/W   tSW tHW   tHA   tHA   tSA   tSA   An+4   An   An+3   An+1   An+2   ADDRESS   OE   tHD   tSD   DATAIN   Dn+3   tCD2   DATAOUT   Qn+1   Qn   Qn+2   DISABLED   READ   READ   READ   WRITE   READ   Document #: 38-06070 Rev. *H   Page 20 of 32   CY7C0850AV, CY7C0851AV   CY7C0852AV, CY7C0853AV   Switching Waveforms (continued)   Figure 16. Disabled-to-Write-to-Read-to-Write-to-Read   tCYC2   tCH2   tCL2   CLK   tSC   tHC   CE   tHW   tSW   R/W   tSA   tHA   An+4   An+3   An+2   ADDRESS   OE   An   An+1   tOE   tHD   tSD   Dn   DATAIN   Dn+2   tCD2   Qn+3   Qn+1   DATAOUT   DISABLED   WRITE   READ   READ   READ   WRITE   Figure 17. Disabled-to-Read-to-Disabled-to-Write   t CYC2   t t CL2   CH2   CLK   CE   t t HC   SC   R/W   t t HW   SW   A A ADDRESS   A A A n+4   n+3   n+2   n+1   n t t HA   SA   t OE   OE   t OHZ   t t HD   SD   DATAIN   D n+2   t CD2   DATAOUT   Qn+3   Q n DISABLED   READ   DISABLED   WRITE   READ   READ   Document #: 38-06070 Rev. *H   Page 21 of 32   CY7C0850AV, CY7C0851AV   CY7C0852AV, CY7C0853AV   Switching Waveforms (continued)   Figure 18. Read-to-Readback-to-Read-to-Read (R/W = HIGH)   tCYC2   tCH2   tCL2   CLK   ADS   tHAD   tSAD   CNTEN   tSCN   tHCN   tSA   tHA   An+1   ADDRESS   COUNTER   INTERNAL   ADDRESS   An   An+1   An+2   An+3   An+4   OE   DATAOUT   Qn+1   Qn+3   Qn+2   READ   INCREMENT   NO OPERATION   READ   READ   READ   READBACK   INCREMENT   INCREMENT   INCREMENT   Document #: 38-06070 Rev. *H   Page 22 of 32   CY7C0850AV, CY7C0851AV   CY7C0852AV, CY7C0853AV   Switching Waveforms (continued)   Figure 19. Counter Reset   tCYC2   tCH2 tCL2   CLK   tHA   Am   tSA   Ap   An   ADDRESS   INTERNAL   Ax   Ap   An   1 0 Am   ADDRESS   tHW   tSW   R/W   ADS   CNTEN   CNTRST   tHRST   tSRST   tHD   tSD   DATAIN   D0   tCD2   tCD2   DATAOUT   Q0   Qn   Q1   tCKLZ   READ   ADDRESS 0   READ   ADDRESS 1   READ   ADDRESS An   COUNTER   RESET   WRITE   ADDRESS 0   READ   ADDRESS Am   Notes   32. CE = B0 – B3 = LOW; CE = MRST = CNT/MSK = HIGH.   0 1 33. No dead cycle exists during counter reset. A Read or Write cycle may be coincidental with the counter reset.   34. Retransmit happens if the counter remains in increment mode after it wraps to initially loaded value.   Document #: 38-06070 Rev. *H   Page 23 of 32   CY7C0850AV, CY7C0851AV   CY7C0852AV, CY7C0853AV   Switching Waveforms (continued)   Figure 20. Readback State of Address Counter or Mask Register   tCYC2   tCH2 tCL2   CLK   tCA2 or tCM2   tSA   tHA   EXTERNAL   An*   An   ADDRESS   A0–A16   INTERNAL   ADDRESS   A A A A n+4   n+3   A n+1   n+2   n tSAD   tHAD   ADS   CNTEN   tSCN   tHCN   tCD2   tCKHZ   Qn   tCKLZ   DATAOUT   Qn+1   Qx-1   Qn+2   Qx-2   Q n+3   LOAD   EXTERNAL   ADDRESS   READBACK   COUNTER   INTERNAL   ADDRESS   INCREMENT   Notes   35. CE = OE = B0 – B3 = LOW; CE = R/W = CNTRST = MRST = HIGH.   0 1 36. Address in output mode. Host must not be driving address bus after t   in next clock cycle.   CKLZ   37. Address in input mode. Host can drive address bus after t   . CKHZ   38. An * is the internal value of the address counter (or the mask register depending on the CNT/MSK level) being Read out on the address lines.   Document #: 38-06070 Rev. *H   Page 24 of 32   CY7C0850AV, CY7C0851AV   CY7C0852AV, CY7C0853AV   Switching Waveforms (continued)   Figure 21. Left_Port (L_Port) Write to Right_Port (R_Port) Read   tCYC2   tCL2   tCH2   CLKL   tHA   tSA   L_PORT   ADDRESS   An   tSW   tHW   R/WL   tCKHZ   tSD   tHD   tCKLZ   L_PORT   DATAIN   Dn   tCCS   tCYC2   tCL2   CLKR   tCH2   tSA   tHA   R_PORT   ADDRESS   An   R/WR   tCD2   R_PORT   DATAOUT   Qn   tDC   Notes   39. CE = OE = ADS = CNTEN = B0 – B3 = LOW; CE = CNTRST = MRST = CNT/MSK = HIGH.   0 1 40. This timing is valid when one port is writing, and other port is reading the same location at the same time. If t   is violated, indeterminate data is Read out.   CCS   41. If t   < minimum specified value, then R_Port is Read the most recent data (written by L_Port) only (2 * t   + t   ) after the rising edge of R_Port's clock. If t   CCS   CYC2   CD2 CCS   > minimum specified value, then R_Port is Read the most recent data (written by L_Port) (t   + t   ) after the rising edge of R_Port's clock.   CYC2   CD2   Document #: 38-06070 Rev. *H   Page 25 of 32   CY7C0850AV, CY7C0851AV   CY7C0852AV, CY7C0853AV   Switching Waveforms (continued)   Figure 22. Counter Interrupt and Retransmit   tCYC2   tCL2   tCH2   CLK   tSCM   tHCM   CNT/MSK   ADS   CNTEN   COUNTER   INTERNAL   ADDRESS   1FFFE   tSCINT   1FFFC   Last_Loaded   1FFFD   1FFFF   tRCINT   Last_Loaded +1   CNTINT   Notes   42. CE = OE = B0 – B3 = LOW; CE = R/W = CNTRST = MRST = HIGH.   0 1 43. CNTINT is always driven.   44. CNTINT goes LOW when the unmasked portion of the address counter is incremented to the maximum value.   45. The mask register assumed to have the value of 1FFFFh.   Document #: 38-06070 Rev. *H   Page 26 of 32   CY7C0850AV, CY7C0851AV   CY7C0852AV, CY7C0853AV   Switching Waveforms (continued)   Figure 23. MailBox Interrupt Timing   tCYC2   tCL2   tCH2   CLKL   tSA tHA   3FFFF   L_PORT   ADDRESS   An+1   An   An+2   An+3   tSINT   tRINT   INTR   tCYC2   tCL2   tCH2   CLKR   tSA tHA   Am   R_PORT   ADDRESS   Am+1   3FFFF   Am+3   Am+4   Table 7. Read/Write and Enable Operation (Any Port)   Inputs   Outputs   Operation   OE   CLK   CE   CE   R/W   DQ – DQ   0 1 0 35   X H X X High-Z   Deselected   Deselected   Write   X X L X L L L L H H H X L High-Z   D IN   H X D Read   OUT   H X High-Z   Outputs Disabled   Notes   46. CE = OE = ADS = CNTEN = LOW; CE = CNTRST = MRST = CNT/MSK = HIGH.   0 1 47. Address “3FFFF” is the mailbox location for R_Port of a 9M device.   48. L_Port is configured for Write operation, and R_Port is configured for Read operation.   49. At least one byte enable (B0 – B3) is required to be active during interrupt operations.   50. Interrupt flag is set with respect to the rising edge of the Write clock, and is reset with respect to the rising edge of the Read clock.   51. OE is an asynchronous input signal.   52. When CE changes state, deselection and Read happen after one cycle of latency.   Document #: 38-06070 Rev. *H   Page 27 of 32   CY7C0850AV, CY7C0851AV   CY7C0852AV, CY7C0853AV   Ordering Information   256K   × 36 (9M) 3.3V Synchronous CY7C0853AV Dual-Port SRAM   Package   Speed   (MHz)   Operating   Range   Ordering Code   Package Type   Diagram   133 CY7C0853AV-133BBC   CY7C0853AV-133BBI   51-85114 172-Ball Grid Array (15 x 15 x 1.25 mm) with 1 mm pitch   51-85114 172-Ball Grid Array (15 x 15 x 1.25 mm) with 1 mm pitch   172-Ball Grid Array (15 x 15 x 1.25 mm) with 1 mm pitch (Pb-Free)   51-85114 172-Ball Grid Array (15 x 15 x 1.25 mm) with 1 mm pitch   51-85114 172-Ball Grid Array (15 x 15 x 1.25 mm) with 1 mm pitch   Commercial   Industrial   CY7C0853AV-133BBXI   100 CY7C0853AV-100BBC   CY7C0853AV-100BBI   Commercial   Industrial   128K   × 36 (4M) 3.3V Synchronous CY7C0852AV Dual-Port SRAM   Speed   (MHz)   Package   Diagram   Operating   Range   Ordering Code   Package Type   167 CY7C0852AV-167BBC   CY7C0852AV-167AC   CY7C0852AV-167AXC   133 CY7C0852AV-133BBC   CY7C0852AV-133AC   CY7C0852AV-133AXC   CY7C0852AV-133BBI   CY7C0852AV-133AI   51-85114 172-Ball Grid Array (15 x 15 x 1.25 mm) with 1 mm pitch   51-85132 176-Pin Thin Quad Flat Pack (24 x 24 x 1.4 mm)   176-Pin Thin Quad Flat Pack (24 x 24 x 1.4 mm) (Pb-Free)   51-85114 172-Ball Grid Array (15 x 15 x 1.25 mm) with 1 mm pitch   51-85132 176-Pin Thin Quad Flat Pack (24 x 24 x 1.4 mm)   176-Pin Thin Quad Flat Pack (24 x 24 x 1.4 mm) (Pb-Free)   51-85114 172-Ball Grid Array (15 x 15 x 1.25 mm) with 1 mm pitch   51-85132 176-Pin Thin Quad Flat Pack (24 x 24 x 1.4 mm)   176-Pin Thin Quad Flat Pack (24 x 24 x 1.4 mm) (Pb-Free)   Commercial   Commercial   Industrial   CY7C0852AV-133AXI   64K   × 36 (2M) 3.3V Synchronous CY7C0851AV Dual-Port SRAM   Speed   (MHz)   Package   Diagram   Operating   Range   Ordering Code   Package Type   167 CY7C0851AV-167BBC   CY7C0851AV-167BBXC   CY7C0851AV-167AC   51-85114 172-Ball Grid Array (15 x 15 x 1.25 mm) with 1 mm pitch   172-Ball Grid Array (15 x 15 x 1.25 mm) with 1 mm pitch (Pb-Free)   51-85132 176-Pin Thin Quad Flat Pack (24 x 24 x 1.4 mm)   176-Pin Thin Quad Flat Pack (24 x 24 x 1.4 mm) (Pb-Free)   51-85114 172-Ball Grid Array (15 x 15 x 1.25 mm) with 1 mm pitch   51-85132 176-Pin Thin Quad Flat Pack (24 x 24 x 1.4 mm)   176-Pin Thin Quad Flat Pack (24 x 24 x 1.4 mm) (Pb-Free)   51-85114 172-Ball Grid Array (15 x 15 x 1.25 mm) with 1 mm pitch   51-85132 176-Pin Thin Quad Flat Pack (24 x 24 x 1.4 mm)   176-Pin Thin Quad Flat Pack (24 x 24 x 1.4 mm) (Pb-Free)   Commercial   CY7C0851AV-167AXC   133 CY7C0851AV-133BBC   CY7C0851AV-133AC   Commercial   Industrial   CY7C0851AV-133AXC   CY7C0851AV-133BBI   CY7C0851AV-133AI   CY7C0851AV-133AXI   32K   × 36 (1M) 3.3V Synchronous CY7C0850AV Dual-Port SRAM   Speed   (MHz)   Package   Diagram   Operating   Range   Ordering Code   Package Type   167 CY7C0850AV-167BBC   CY7C0850AV-167AC   51-85114 172-Ball Grid Array (15 x 15 x 1.25 mm) with 1 mm pitch   51-85132 176-Pin Thin Quad Flat Pack (24 x 24 x 1.4 mm)   51-85114 172-Ball Grid Array (15 x 15 x 1.25 mm) with 1 mm pitch   51-85132 176-Pin Thin Quad Flat Pack (24 x 24 x 1.4 mm)   51-85114 172-Ball Grid Array (15 x 15 x 1.25 mm) with 1 mm pitch   51-85132 176-Pin Thin Quad Flat Pack (24 x 24 x 1.4 mm)   Commercial   Commercial   Industrial   133 CY7C0850AV-133BBC   CY7C0850AV-133AC   CY7C0850AV-133BBI   CY7C0850AV-133AI   Document #: 38-06070 Rev. *H   Page 28 of 32   CY7C0850AV, CY7C0851AV   CY7C0852AV, CY7C0853AV   Package Diagrams   Figure 24. 172-Ball FBGA (15 x 15 x 1.25 mm) (51-85114)   51-85114-*B   Document #: 38-06070 Rev. *H   Page 29 of 32   CY7C0850AV, CY7C0851AV   CY7C0852AV, CY7C0853AV   Package Diagrams   Figure 25. 176-Pin Thin Quad Flat Pack (24 × 24 × 1.4 mm) (51-85132)   51-85132-**   Document #: 38-06070 Rev. *H   Page 30 of 32   CY7C0850AV, CY7C0851AV   CY7C0852AV, CY7C0853AV   Document History Page   Document Title: CY7C0850AV/CY7C0851AV/CY7C0852AV/CY7C0853AV, FLEx36™ 3.3V 32K/64K/128K/256K x 36   Synchronous Dual-Port RAM   Document Number: 38-06070   Submis-   sion Date   Orig. of   Change   REV.   ECN NO.   Description of Change   **   127809   08/04/03   SPN   This data sheet has been extracted from another data sheet: the 2M/4M/9M   data sheet. The following changes have been made from the original as   pertains to this device:   Updated capacitance values   Updated “Read-to-Write-to-Read (OE Controlled)” waveform   Revised static discharge voltage   Corrected 0853 pins L3 and L12   Added discussion of Pause/Restart for JTAG boundary scan   Power up requirements added to Maximum Ratings information   Revise tcd2, tOE, tOHZ, tCKHZ, tCKLZ for the CY7C0853V to 4.7 ns   Updated Icc numbers   Updated tHA, tHB, tHD for -100 speed   Separated out from the 4M data sheet   Added 133-MHz Industrial device to Ordering Information table   *A   *B   *C   210948   216190   231996   See ECN   YDT   Changed mailbox addresses from 1FFFE and 1FFFF to 3FFFE and 3FFFF.   See ECN YDT/Dcon Corrected Revision of Document. CMS does not reflect this rev change   See ECN   YDT   Removed “A particular port can write to a certain location while another port is   reading that location.” from Functional Description.   *D   238938   See ECN   WWZ   Merged 0853 (9Mx36) with 0852 (4Mx36) and 0851(2Mx36), add 0850 (1M x36),   to the data sheet.   Added product selection table.   Added JTAG ID code for 1M device.   Added note 14.   Updated boundary scan section.   Updated function description for the merge and addition.   *E   *F   329122   389877   See ECN   See ECN   SPN   KGH   Updated Marketing part numbers   Updated Read-to-Write-to-Read timing diagram to reflect accurate bus   turnaround scheme.   Added I   Changed t   Changed t   SB5   to 10ns   to 10ns   RSCNTINT   RSF   Added figure Disabled-to-Read-to-Read-to-Read-to-Write   Added figure Disabled-to-Write-to-Read-to-Write-to-Read   Added figure Disabled-to-Read-to-Disabled-to-Write   Added figure Read-to-Readback-to-Read-to-Read (R/W = HIGH)   Updated Read-to-Write-to-Read timing diagram to correct the data out schemes   Updated Disabled-to-Read-to-Read-to-Read-to-Write timing diagram to correct   the chip enable, data in, and data out schemes   Updated Disabled-to-Write-to-Read-to-Write-to-Read timing diagram to correct   the chip enable and output enable schemes   Updated Disabled-to-Read-to-Disabled-to-Write timing diagram to correct the   chip enable and output enable schemes   *G   *H   391597   See ECN   SPN   Updated counter reset section to reflect mirror register behavior   2544945   07/29/08 VKN/AESA Updated Template. Updated ordering information   Document #: 38-06070 Rev. *H   Page 31 of 32   CY7C0850AV, CY7C0851AV   CY7C0852AV, CY7C0853AV   Sales, Solutions, and Legal Information   Worldwide Sales and Design Support   Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office   closest to you, visit us at cypress.com/sales.   Products   PSoC   PSoC Solutions   General   psoc.cypress.com   clocks.cypress.com   wireless.cypress.com   memory.cypress.com   image.cypress.com   psoc.cypress.com/solutions   psoc.cypress.com/low-power   psoc.cypress.com/precision-analog   psoc.cypress.com/lcd-drive   psoc.cypress.com/can   Clocks & Buffers   Wireless   Low Power/Low Voltage   Precision Analog   LCD Drive   Memories   Image Sensors   CAN 2.0b   USB   psoc.cypress.com/usb   © Cypress Semiconductor Corporation, 2003-2008. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use   of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used   for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use   as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support   systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.   Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),   United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,   and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress   integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without   the express written permission of Cypress.   Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES   OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not   assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where   a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer   assumes all risk of such use and in doing so indemnifies Cypress against all charges.   Use may be limited by and subject to the applicable Cypress software license agreement.   Document #: 38-06070 Rev. *H   Revised July 29, 2008   Page 32 of 32   FLEx36 is a trademark of Cypress Semiconductor Corporation. All product and company names mentioned in this document may be the trademarks of their respective holders.   |