Cypress CY14B108N User Manual

PRELIMINARY  
CY14B108L, CY14B108N  
8 Mbit (1024K x 8/512K x 16) nvSRAM  
Features  
Functional Description  
20 ns, 25 ns, and 45 ns Access Times  
The Cypress CY14B108L/CY14B108N is a fast static RAM, with  
a nonvolatile element in each memory cell. The memory is  
Internally organized as 1024K x 8 (CY14B108L) or 512K x 16  
(CY14B108N)  
organized as 1024 Kbytes of 8 bits each or 512K words of 16 bits  
each. The embedded nonvolatile elements incorporate  
QuantumTrap technology, producing the world’s most reliable  
nonvolatile memory. The SRAM provides infinite read and write  
cycles, while independent nonvolatile data resides in the highly  
reliable QuantumTrap cell. Data transfers from the SRAM to the  
nonvolatile elements (the STORE operation) takes place  
automatically at power down. On power up, data is restored to  
the SRAM (the RECALL operation) from the nonvolatile memory.  
Both the STORE and RECALL operations are also available  
under software control.  
Hands off Automatic STORE on power down with only a small  
Capacitor  
®
STORE to QuantumTrap nonvolatile elements initiated by  
®
Software, device pin, or AutoStore on power down  
RECALL to SRAM initiated by Software or power up  
Infinite Read, Write, and RECALL Cycles  
200,000 STORE cycles to QuantumTrap  
20 year data retention  
Single 3V +20%, -10% operation  
Commercial and Industrial Temperatures  
48-ball FBGA and 44-pin and 54-pin TSOP-II packages  
Pb-free and RoHS compliant  
Logic Block Diagram[1, 2, 3]  
VCAP  
VCC  
Quatrum Trap  
2048 X 2048 X 2  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
POWER  
R
CONTROL  
STORE  
O
W
RECALL  
STORE/RECALL  
CONTROL  
D
E
C
O
D
E
R
HSB  
STATIC RAM  
ARRAY  
2048 X 2048 X 2  
A7  
A8  
A17  
SOFTWARE  
DETECT  
A14 - A2  
A18  
A19  
DQ0  
DQ1  
DQ2  
DQ3  
I
DQ4  
DQ5  
DQ6  
N
P
U
T
B
U
F
F
E
R
S
DQ7  
COLUMN I/O  
DQ8  
DQ9  
DQ10  
OE  
COLUMN DEC  
WE  
DQ11  
DQ12  
DQ13  
DQ14  
CE  
BLE  
A9 A10 A11 A12 A13 A14 A15 A16  
DQ15  
BHE  
Note  
1. Address A - A for x8 configuration and Address A - A for x16 configuration.  
0
19  
0
18  
2. Data DQ - DQ for x8 configuration and Data DQ - DQ for x16 configuration.  
0
7
0
15  
3. BHE and BLE are applicable for x16 configuration only.  
Cypress Semiconductor Corporation  
Document #: 001-45523 Rev. *B  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised March 19, 2009  
     
PRELIMINARY  
CY14B108L, CY14B108N  
Table 1. Pin Definitions  
Pin Name  
I/O Type  
Description  
A – A  
Input  
Address Inputs Used to Select one of the 1,048,576 bytes of the nvSRAM for x8 Configuration.  
0
19  
18  
A – A  
Address Inputs Used to Select one of the 524,288 words of the nvSRAM for x16 Configuration.  
0
DQ – DQ  
Input/Output Bidirectional Data IO Lines for x8 Configuration. Used as input or output lines depending on  
0
7
operation.  
DQ – DQ  
Bidirectional Data IO Lines for x16 Configuration. Used as input or output lines depending on  
0
15  
operation.  
WE  
Input  
Write Enable Input, Active LOW. When selected LOW, data on the IO pins is written to the specific  
address location.  
Input  
Input  
Chip Enable Input, Active LOW. When LOW, selects the chip. When HIGH, deselects the chip.  
CE  
OE  
Output Enable, Active LOW. The active LOW OE input enables the data output buffers during read  
cycles. IO pins are tri-stated on deasserting OE HIGH.  
Input  
Input  
Byte High Enable, Active LOW. Controls DQ - DQ .  
BHE  
BLE  
15  
8
Byte Low Enable, Active LOW. Controls DQ - DQ .  
7
0
V
Ground  
Ground for the Device. Must be connected to the ground of the system.  
SS  
V
Power Supply Power Supply Inputs to the Device.  
CC  
Input/Output Hardware STORE Busy (HSB). When LOW this output indicates that a Hardware STORE is in  
progress. When pulled LOW external to the chip it initiates a nonvolatile STORE operation. A weak  
internal pull up resistor keeps this pin HIGH if not connected (connection optional). After each STORE  
operation HSB will be driven HIGH for short time with standard output high current.  
HSB  
V
Power Supply AutoStore Capacitor. Supplies power to the nvSRAM during power loss to store data from SRAM to  
CAP  
nonvolatile elements.  
NC  
No Connect No Connect. This pin is not connected to the die.  
Document #: 001-45523 Rev. *B  
Page 3 of 24  
PRELIMINARY  
CY14B108L, CY14B108N  
Figure 3 shows the proper connection of the storage capacitor  
(V ) for automatic STORE operation. Refer to DC Electrical  
Device Operation  
CAP  
The CY14B108L/CY14B108N nvSRAM is made up of two  
functional components paired in the same physical cell. They are  
a SRAM memory cell and a nonvolatile QuantumTrap cell. The  
SRAM memory cell operates as a standard fast static RAM. Data  
in the SRAM is transferred to the nonvolatile cell (the STORE  
operation), or from the nonvolatile cell to the SRAM (the RECALL  
operation). Using this unique architecture, all cells are stored and  
recalled in parallel. During the STORE and RECALL operations,  
SRAM read and write operations are inhibited. The  
CY14B108L/CY14B108N supports infinite reads and writes  
similar to a typical SRAM. In addition, it provides infinite RECALL  
operations from the nonvolatile cells and up to 200K STORE  
page 16 for a complete description of read and write modes.  
. The voltage on  
CAP  
the V  
pin is driven to V by a regulator on the chip. A pull  
CAP  
CC  
up should be placed on WE to hold it inactive during power up.  
This pull up is effective only if the WE signal is tri-state during  
power up. Many MPUs tri-state their controls on power up. This  
should be verified when using the pull up. When the nvSRAM  
comes out of power-on-recall, the MPU must be active or the WE  
held inactive until the MPU comes out of reset.  
To reduce unnecessary nonvolatile STOREs, AutoStore and  
Hardware STORE operations are ignored unless at least one  
write operation has taken place since the most recent STORE or  
RECALL cycle. Software initiated STORE cycles are performed  
regardless of whether a write operation has taken place. The  
HSB signal is monitored by the system to detect if an AutoStore  
cycle is in progress.  
SRAM Read  
Figure 3. AutoStore Mode  
The CY14B108L/CY14B108N performs a read cycle when CE  
and OE are LOW and WE and HSB are HIGH. The address  
Vcc  
specified on pins A  
or A  
determines which of the  
0-19  
0-18  
1,048,576 data bytes or 524,288 words of 16 bits each are  
accessed. Byte enables (BHE, BLE) determine which bytes are  
enabled to the output, in the case of 16-bit words. When the read  
is initiated by an address transition, the outputs are valid after a  
0.1uF  
Vcc  
delay of t (read cycle 1). If the read is initiated by CE or OE,  
AA  
the outputs are valid at t  
or at t  
, whichever is later (read  
ACE  
DOE  
cycle 2). The data output repeatedly responds to address  
WE  
VCAP  
changes within the t access time without the need for transi-  
AA  
tions on any control input pins. This remains valid until another  
address change or until CE or OE is brought HIGH, or WE or  
HSB is brought LOW.  
VCAP  
VSS  
SRAM Write  
A write cycle is performed when CE and WE are LOW and HSB  
is HIGH. The address inputs must be stable before entering the  
write cycle and must remain stable until CE or WE goes HIGH at  
Hardware STORE Operation  
the end of the cycle. The data on the common I/O pins DQ  
0–15  
The CY14B108L/CY14B108N provides the HSB pin to control  
and acknowledge the STORE operations. Use the HSB pin to  
request a Hardware STORE cycle. When the HSB pin is driven  
LOW, the CY14B108L/CY14B108N conditionally initiates a  
are written into the memory if the data is valid t before the end  
SD  
of a WE controlled write or before the end of an CE controlled  
write. The Byte Enable inputs (BHE, BLE) determine which bytes  
are written, in the case of 16-bit words. Keep OE HIGH during  
the entire write cycle to avoid data bus contention on common  
I/O lines. If OE is left LOW, internal circuitry turns off the output  
STORE operation after t  
. An actual STORE cycle only  
DELAY  
begins if a write to the SRAM has taken place since the last  
STORE or RECALL cycle. The HSB pin also acts as an open  
drain driver that is internally driven LOW to indicate a busy  
condition when the STORE (initiated by any means) is in  
progress.  
buffers t  
after WE goes LOW.  
HZWE  
AutoStore Operation  
SRAM read and write operations that are in progress when HSB  
is driven LOW by any means are given time to complete before  
the STORE operation is initiated. After HSB goes LOW, the  
CY14B108L/CY14B108N continues SRAM operations for  
The CY14B108L/CY14B108N stores data to the nvSRAM using  
one of the following three storage operations: Hardware STORE  
activated by HSB; Software STORE activated by an address  
sequence; AutoStore on device power down. The AutoStore  
operation is a unique feature of QuantumTrap technology and is  
enabled by default on the CY14B108L/CY14B108N.  
t
. If a write is in progress when HSB is pulled LOW it is  
DELAY  
enabled a time, t  
to complete. However, any SRAM write  
DELAY  
cycles requested after HSB goes LOW are inhibited until HSB  
returns HIGH. In case the write latch is not set, HSB is not driven  
LOW by the CY14B108L/CY14B108N. But any SRAM read and  
write cycles are inhibited until HSB is returned HIGH by MPU or  
other external source.  
During a normal operation, the device draws current from V to  
CC  
charge a capacitor connected to the V  
pin. This stored  
CAP  
charge is used by the chip to perform a single STORE operation.  
If the voltage on the V pin drops below V , the part  
CC  
SWITCH  
automatically disconnects the V  
pin from V . A STORE  
CAP  
CC  
During any STORE operation, regardless of how it is initiated,  
the CY14B108L/CY14B108N continues to drive the HSB pin  
LOW, releasing it only when the STORE is complete. Once the  
operation is initiated with power provided by the V  
capacitor.  
CAP  
Document #: 001-45523 Rev. *B  
Page 4 of 24  
 
PRELIMINARY  
CY14B108L, CY14B108N  
STORE operation is completed, the CY14B108L/CY14B108N  
remains disabled until the HSB pin returns HIGH. Leave the HSB  
unconnected if it is not used.  
The software sequence may be clocked with CE controlled reads  
or OE controlled reads. After the sixth address in the sequence  
is entered, the STORE cycle commences and the chip is  
disabled. HSB is driven LOW. It is important to use read cycles  
and not write cycles in the sequence, although it is not necessary  
Hardware RECALL (Power Up)  
During power up or after any low power condition  
that OE be LOW for a valid sequence. After the t  
cycle time  
STORE  
is fulfilled, the SRAM is activated again for the read and write  
operation.  
(V < V  
), an internal RECALL request is latched. When  
CC  
SWITCH  
V
again exceeds the sense voltage of V  
cycle is automatically initiated and takes t  
, a RECALL  
to complete.  
CC  
SWITCH  
HRECALL  
Software RECALL  
During this time, HSB is driven LOW by the HSB driver.  
Transfer the data from the nonvolatile memory to the SRAM with  
a software address sequence. A Software RECALL cycle is  
initiated with a sequence of read operations in a manner similar  
to the Software STORE initiation. To initiate the RECALL cycle,  
the following sequence of CE controlled read operations must be  
performed.  
Software STORE  
Transfer data from the SRAM to the nonvolatile memory with a  
software address sequence. The CY14B108L/CY14B108N  
Software STORE cycle is initiated by executing sequential CE  
controlled read cycles from six specific address locations in  
exact order. During the STORE cycle an erase of the previous  
nonvolatile data is first performed, followed by a program of the  
nonvolatile elements. After a STORE cycle is initiated, further  
input and output are disabled until the cycle is completed.  
1. Read Address 0x4E38 Valid READ  
2. Read Address 0xB1C7 Valid READ  
3. Read Address 0x83E0 Valid READ  
4. Read Address 0x7C1F Valid READ  
5. Read Address 0x703F Valid READ  
6. Read Address 0x4C63 Initiate RECALL Cycle  
Because a sequence of READs from specific addresses is used  
for STORE initiation, it is important that no other read or write  
accesses intervene in the sequence, or the sequence is aborted  
and no STORE or RECALL takes place.  
Internally, RECALL is a two-step procedure. First, the SRAM  
data is cleared; then, the nonvolatile information is transferred  
To initiate the Software STORE cycle, the following read  
sequence must be performed.  
into the SRAM cells. After the t  
cycle time, the SRAM is  
RECALL  
again ready for read and write operations. The RECALL  
operation does not alter the data in the nonvolatile elements.  
1. Read Address 0x4E38 Valid READ  
2. Read Address 0xB1C7 Valid READ  
3. Read Address 0x83E0 Valid READ  
4. Read Address 0x7C1F Valid READ  
5. Read Address 0x703F Valid READ  
6. Read Address 0x8FC0 Initiate STORE Cycle  
Document #: 001-45523 Rev. *B  
Page 5 of 24  
PRELIMINARY  
CY14B108L, CY14B108N  
Table 2. Mode Selection  
A
- A  
X
Mode  
IO  
Power  
Standby  
Active  
CE  
WE  
OE, BHE, BLE  
15  
0
H
X
X
Not Selected  
Read SRAM  
Write SRAM  
Output High Z  
Output Data  
Input Data  
L
L
L
H
L
L
X
L
X
X
Active  
[6]  
H
0x4E38  
0xB1C7  
0x83E0  
0x7C1F  
0x703F  
0x8B45  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
AutoStore  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Active  
Disable  
[6]  
L
L
L
H
H
H
L
L
L
0x4E38  
0xB1C7  
0x83E0  
0x7C1F  
0x703F  
0x4B46  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
AutoStore Enable  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Active  
0x4E38  
0xB1C7  
0x83E0  
0x7C1F  
0x703F  
0x8FC0  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Nonvolatile  
STORE  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
Active I  
CC2  
[6]  
0x4E38  
0xB1C7  
0x83E0  
0x7C1F  
0x703F  
0x4C63  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Nonvolatile  
RECALL  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
Active  
Notes  
5. While there are 20 address lines on the CY14B108L (19 address lines on the CY14B108N), only the 13 address lines (A - A ) are used to control software modes.  
14  
2
Rest of the address lines are don’t care.  
6. The six consecutive address locations must be in the order listed. WE must be HIGH during all six cycles to enable a nonvolatile cycle.  
Document #: 001-45523 Rev. *B  
Page 6 of 24  
     
PRELIMINARY  
CY14B108L, CY14B108N  
Preventing AutoStore  
Noise Considerations  
The AutoStore function is disabled by initiating an AutoStore  
disable sequence. A sequence of read operations is performed  
in a manner similar to the Software STORE initiation. To initiate  
the AutoStore disable sequence, the following sequence of CE  
controlled read operations must be performed:  
Best Practices  
nvSRAM products have been used effectively for over 15 years.  
While ease-of-use is one of the product’s main system values,  
experience gained working with hundreds of applications has  
resulted in the following suggestions as best practices:  
1. Read address 0x4E38 Valid READ  
2. Read address 0xB1C7 Valid READ  
3. Read address 0x83E0 Valid READ  
4. Read address 0x7C1F Valid READ  
5. Read address 0x703F Valid READ  
6. Read address 0x8B45 AutoStore Disable  
ThenonvolatilecellsinthisnvSRAMproductaredeliveredfrom  
Cypress with 0x00 written in all cells. Incoming inspection  
routines at customer or contract manufacturer’s sites  
sometimes reprogram these values. Final NV patterns are  
typically repeating patterns of AA, 55, 00, FF, A5, or 5A. End  
product’s firmware should not assume an NV array is in a set  
programmed state. Routines that check memory content  
values to determine first time system configuration, cold or  
warm boot status, and so on should always program a unique  
NV pattern (that is, complex 4-byte pattern of 46 E6 49 53 hex  
or more random bytes) as part of the final system manufac-  
turing test to ensure these system routines work consistently.  
The AutoStore is re-enabled by initiating an AutoStore enable  
sequence. A sequence of read operations is performed in a  
manner similar to the Software RECALL initiation. To initiate the  
AutoStore enable sequence, the following sequence of CE  
controlled read operations must be performed:  
1. Read address 0x4E38 Valid READ  
2. Read address 0xB1C7 Valid READ  
3. Read address 0x83E0 Valid READ  
4. Read address 0x7C1F Valid READ  
5. Read address 0x703F Valid READ  
6. Read address 0x4B46 AutoStore Enable  
Power up boot firmware routines should rewrite the nvSRAM  
into the desired state (for example, autostore enabled). While  
the nvSRAM is shipped in a preset state, best practice is to  
again rewrite the nvSRAM into the desired state as a safeguard  
against events that might flip the bit inadvertently such as  
program bugs and incoming inspection routines.  
If the AutoStore function is disabled or re-enabled, a manual  
STORE operation (Hardware or Software) must be issued to  
save the AutoStore state through subsequent power down  
cycles. The part comes from the factory with AutoStore enabled.  
The VCAP value specified in this data sheet includes a minimum  
and a maximum value size. Best practice is to meet this  
requirementandnotexceedthemaximumVCAPvaluebecause  
the nvSRAM internal algorithm calculates VCAP charge and  
Data Protection  
discharge time based on this max V  
value. Customers that  
CAP  
want to use a larger VCAP value to make sure there is extra  
store charge and store time should discuss their VCAP size  
selection with Cypress to understand any impact on the VCAP  
voltage level at the end of a tRECALL period.  
The CY14B108L/CY14B108N protects data from corruption  
during low voltage conditions by inhibiting all externally initiated  
STORE and write operations. The low voltage condition is  
detected when V < V  
. If the CY14B108L/CY14B108N  
CC  
SWITCH  
is in a write mode (both CE and WE are LOW) at power up, after  
a RECALL or STORE, the write is inhibited until the SRAM is  
enabled after t  
(HSB to output active). This protects against  
LZHSB  
inadvertent writes during power up or brown out conditions.  
Document #: 001-45523 Rev. *B  
Page 7 of 24  
PRELIMINARY  
CY14B108L, CY14B108N  
Transient Voltage (<20 ns) on  
Any Pin to Ground Potential................ ..–2.0V to V + 2.0V  
Maximum Ratings  
CC  
Exceeding maximum ratings may impair the useful life of the  
device. These user guidelines are not tested.  
Package Power Dissipation  
Capability (T = 25°C)....................................................1.0W  
A
Storage Temperature ..................................–65°C to +150°C  
Maximum Accumulated Storage Time  
Surface Mount Pb Soldering  
Temperature (3 Seconds)...........................................+260°C  
DC Output Current (1 output at a time, 1s duration) ....15 mA  
At 150°C Ambient Temperature..........................1000h  
At 85°C Ambient Temperature.................... ..20 Years  
Static Discharge Voltage ......................................... > 2001V  
(per MIL-STD-883, Method 3015)  
Ambient Temperature with  
Power Applied.............................................–55°C to +150°C  
Latch Up Current................................................... > 200 mA  
Supply Voltage on V Relative to GND.......... –0.5V to 4.1V  
Operating Range  
CC  
Voltage Applied to Outputs  
Range  
Commercial  
Industrial  
Ambient Temperature  
0°C to +70°C  
V
CC  
in High-Z State ...................................... –0.5V to V + 0.5V  
CC  
2.7V to 3.6V  
2.7V to 3.6V  
Input Voltage ..........................................0.5V to Vcc + 0.5V  
–40°C to +85°C  
DC Electrical Characteristics  
Over the Operating Range (V = 2.7V to 3.6V)  
CC  
Parameter  
Description  
Average V Current  
Test Conditions  
Min  
Max  
Unit  
I
t
t
t
= 20 ns  
= 25 ns  
= 45 ns  
Commercial  
Industrial  
70  
70  
55  
mA  
mA  
mA  
CC1  
CC  
RC  
RC  
RC  
Values obtained without output loads (I  
= 0 mA)  
= 0 mA).  
OUT  
OUT  
75  
75  
57  
mA  
mA  
mA  
I
I
Average V Current All Inputs Don’t Care, V = Max  
20  
mA  
CC2  
CC  
CC  
during STORE  
Average current for duration t  
STORE  
AverageV Currentat All I/P cycling at CMOS levels.  
40  
mA  
CC3  
CC  
t
= 200 ns, 3V, 25°C Values obtained without output loads (I  
RC  
typical  
I
I
Average V  
Current All Inputs Don’t Care, V = Max  
10  
10  
mA  
mA  
CC4  
CAP  
CC  
during AutoStore Cycle Average current for duration t  
STORE  
V
Standby Current CE > (V – 0.2V). All others V < 0.2V or > (V – 0.2V). Standby  
CC IN CC  
SB  
CC  
current level after nonvolatile cycle is complete.  
Inputs are static. f = 0 MHz.  
[8]  
IX  
I
Input Leakage Current V = Max, V < V < V  
(except HSB)  
–2  
–200  
–2  
+2  
+2  
+2  
μA  
μA  
μA  
V
CC  
SS  
IN  
CC  
Input Leakage Current V = Max, V < V < V  
CC  
SS  
IN  
CC  
(for HSB)  
I
Off-State Output  
Leakage Current  
V
= Max, V < V  
< V , CE or OE > V or BHE/BLE > V  
IH  
OZ  
CC  
SS  
OUT  
CC  
IH  
or WE < V  
IL  
V
Input HIGH Voltage  
2.0  
V
+
IH  
CC  
0.5  
V
V
V
V
Input LOW Voltage  
Output HIGH Voltage  
Output LOW Voltage  
Storage Capacitor  
V
– 0.5  
ss  
0.8  
V
V
IL  
I
I
= –2 mA  
= 4 mA  
2.4  
OH  
OL  
OUT  
0.4  
V
OUT  
Between V  
pin and V , 5V Rated  
122  
360  
μF  
CAP  
CAP  
SS  
Notes  
7. Typical conditions for the active current shown on the DC Electrical characteristics are average values at 25°C (room temperature), and V = 3V. Not 100% tested.  
CC  
8. The HSB pin has I  
= -2 uA for V of 2.4V when both active HIGH and LOW drivers are disabled. When they are enabled standard V and V are valid. This  
OUT  
O
H
O
H
O
L
parameter is characterized but not tested.  
V (Storage capacitor) nominal value is 150uF.  
CAP  
9.  
Document #: 001-45523 Rev. *B  
Page 8 of 24  
       
PRELIMINARY  
CY14B108L, CY14B108N  
Data Retention and Endurance  
Parameter  
Description  
Min  
20  
Unit  
Years  
K
DATA  
Data Retention  
R
NV  
Nonvolatile STORE Operations  
200  
C
Capacitance  
In the following table, the capacitance parameters are listed.  
Parameter Description  
Input Capacitance  
Output Capacitance  
Test Conditions  
Max  
14  
Unit  
C
C
T = 25°C, f = 1 MHz,  
pF  
pF  
IN  
A
V
= 0 to 3.0V  
CC  
14  
OUT  
Thermal Resistance  
In the following table, the thermal resistance parameters are listed.  
Parameter  
Description  
Test Conditions  
Test conditions follow standard test methods  
48-FBGA 44-TSOP II 54-TSOP II Unit  
ΘJA  
Thermal Resistance  
(Junction to Ambient) and procedures for measuring thermal  
28.82  
31.11  
30.73  
°C/W  
impedance, in accordance with EIA/JESD51.  
ΘJC  
Thermal Resistance  
(Junction to Case)  
7.84  
5.56  
6.08  
°C/W  
Figure 4. AC Test Loads  
577 Ω  
for tri-state specs  
577 Ω  
3.0V  
OUTPUT  
3.0V  
OUTPUT  
R1  
R1  
R2  
789 Ω  
R2  
789 Ω  
5 pF  
30 pF  
AC Test Conditions  
Input Pulse Levels ....................................................0V to 3V  
Input Rise and Fall Times (10% - 90%)........................ <3 ns  
Input and Output Timing Reference Levels .................... 1.5V  
Note  
10. These parameters are guaranteed but not tested.  
Document #: 001-45523 Rev. *B  
Page 9 of 24  
 
PRELIMINARY  
CY14B108L, CY14B108N  
AC Switching Characteristics  
Parameters  
20 ns  
25 ns  
45 ns  
Description  
Unit  
Cypress  
Alt  
Min  
Max  
Min  
Max  
Min  
Max  
Parameters Parameters  
SRAM Read Cycle  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Chip Enable Access Time  
Read Cycle Time  
20  
25  
45  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ACE  
RC  
ACS  
RC  
AA  
20  
25  
45  
Address Access Time  
20  
10  
25  
12  
45  
20  
AA  
Output Enable to Data Valid  
Output Hold After Address Change  
Chip Enable to Output Active  
Chip Disable to Output Inactive  
Output Enable to Output Active  
Output Disable to Output Inactive  
Chip Enable to Power Active  
Chip Disable to Power Standby  
Byte Enable to Data Valid  
DOE  
OHA  
OE  
OH  
LZ  
3
3
3
3
3
3
LZCE  
HZCE  
LZOE  
8
8
10  
10  
15  
15  
HZ  
0
0
0
0
0
0
OLZ  
OHZ  
PA  
HZOE  
PU  
PD  
20  
10  
25  
12  
45  
20  
PS  
-
-
-
DBE  
Byte Enable to Output Active  
Byte Disable to Output Inactive  
0
0
0
LZBE  
HZBE  
8
10  
15  
SRAM Write Cycle  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Write Cycle Time  
20  
15  
15  
8
25  
20  
20  
10  
0
45  
30  
30  
15  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
WC  
PWE  
SCE  
SD  
WC  
WP  
CW  
DW  
DH  
Write Pulse Width  
Chip Enable To End of Write  
Data Setup to End of Write  
Data Hold After End of Write  
Address Setup to End of Write  
Address Setup to Start of Write  
Address Hold After End of Write  
Write Enable to Output Disable  
Output Active after End of Write  
Byte Enable to End of Write  
0
HD  
15  
0
20  
0
30  
0
AW  
AW  
AS  
SA  
0
0
0
HA  
WR  
WZ  
OW  
8
10  
15  
HZWE  
3
3
3
LZWE  
BW  
-
15  
20  
30  
Switching Waveforms  
Figure 5. SRAM Read Cycle #1: Address Controlled  
tRC  
Address  
Address Valid  
tAA  
Output Data Valid  
Previous Data Valid  
tOHA  
Data Output  
Notes  
11. WE must be HIGH during SRAM read cycles.  
12. Device is continuously selected with CE, OE and BHE / BLE LOW.  
13. Measured ±200 mV from steady state output voltage.  
14. If WE is LOW when CE goes LOW, the outputs remain in the high impedance state.  
15. HSB must remain HIGH during READ and WRITE cycles.  
Document #: 001-45523 Rev. *B  
Page 10 of 24  
         
PRELIMINARY  
CY14B108L, CY14B108N  
Figure 6. SRAM Read Cycle #2: CE and OE Controlled  
Address  
CE  
Address Valid  
tRC  
tHZCE  
tACE  
tAA  
tLZCE  
tHZOE  
tDOE  
OE  
tHZBE  
tLZOE  
tDBE  
BHE, BLE  
tLZBE  
High Impedance  
Data Output  
Output Data Valid  
tPU  
tPD  
Active  
ICC  
Standby  
Figure 7. SRAM Write Cycle #1: WE Controlled  
W:&  
$GGUHVV  
$GGUHVVꢀ9DOLG  
W6&(  
W+$  
&(  
W%:  
%+(ꢁꢀ%/(  
W$:  
W3:(  
:(  
'DWDꢀ,QSXW  
'DWDꢀ2XWSXW  
W6$  
W+'  
W6'  
,QSXWꢀ'DWDꢀ9DOLG  
W/=:(  
W+=:(  
+LJKꢀ,PSHGDQFH  
3UHYLRXVꢀ'DWD  
Notes  
16. CE or WE must be >V during address transitions.  
IH  
Document #: 001-45523 Rev. *B  
Page 11 of 24  
 
PRELIMINARY  
CY14B108L, CY14B108N  
Figure 8. SRAM Write Cycle #2: CE Controlled  
tWC  
Address Valid  
Address  
tSA  
tSCE  
tHA  
CE  
tBW  
BHE, BLE  
tPWE  
WE  
tHD  
tSD  
Input Data Valid  
Data Input  
High Impedance  
Data Output  
Figure 9. SRAM Write Cycle #3: BHE and BLE Controlled  
tWC  
Address  
CE  
Address Valid  
tSCE  
tSA  
tHA  
tBW  
BHE, BLE  
WE  
tAW  
tPWE  
tSD  
tHD  
Data Input  
Input Data Valid  
High Impedance  
Data Output  
Document #: 001-45523 Rev. *B  
Page 12 of 24  
PRELIMINARY  
CY14B108L, CY14B108N  
AutoStore/Power Up RECALL  
20 ns  
25 ns  
45 ns  
Parameters  
Description  
Unit  
Min  
Max  
Min  
Max  
20  
Min  
Max  
20  
t
t
t
Power Up RECALL Duration  
STORE Cycle Duration  
20  
8
ms  
ms  
ns  
V
HRECALL  
8
8
STORE  
DELAY  
Time Allowed to Complete SRAM Cycle  
Low Voltage Trigger Level  
VCC Rise Time  
20  
25  
25  
V
t
2.65  
2.65  
2.65  
SWITCH  
150  
150  
150  
μs  
V
VCCRISE  
V
HSB Output Driver Disable Voltage  
HSB To Output Active Time  
HSB High Active Time  
1.9  
5
1.9  
5
1.9  
5
HDIS  
LZHSB  
HHHD  
t
t
μs  
ns  
500  
500  
500  
Switching Waveforms  
Figure 10. AutoStore or Power Up RECALL  
VSWITCH  
VHDIS  
Note18  
Note18  
VVCCRISE  
tSTORE  
tSTORE  
Note21  
tHHHD  
tHHHD  
HSB OUT  
Autostore  
tDELAY  
tLZHSB  
tLZHSB  
tDELAY  
POWER-  
UP  
RECALL  
tHRECALL  
tHRECALL  
Read & Write  
Inhibited  
(RWI)  
Read & Write  
Read & Write  
POWER-UP  
RECALL  
BROWN  
OUT  
Autostore  
POWER  
DOWN  
Autostore  
POWER-UP  
RECALL  
Notes  
17. t  
starts from the time V rises above V  
SWITCH.  
HRECALL  
CC  
18. If an SRAM write has not taken place since the last nonvolatile cycle, no AutoStore or Hardware Store takes place.  
19. On a Hardware STORE, Software STORE / RECALL, AutoStore Enable / Disable and AutoStore initiation, SRAM operation continues to be enabled for time t  
.
DELAY  
20. Read and Write cycles are ignored during STORE, RECALL, and while V is below V  
CC  
SWITCH.  
21. HSB pin is driven HIGH to V only by internal 100kOhm resistor, HSB driver is disabled.  
CC  
Document #: 001-45523 Rev. *B  
Page 13 of 24  
       
PRELIMINARY  
CY14B108L, CY14B108N  
Software Controlled STORE/RECALL Cycle  
In the following table, the software controlled STORE and RECALL cycle parameters are listed.  
20 ns  
Max  
25 ns  
Max  
45 ns  
Max  
Parameters  
Description  
Unit  
Min  
20  
0
Min  
25  
0
Min  
45  
0
t
t
t
t
t
STORE/RECALL Initiation Cycle Time  
Address Setup Time  
ns  
ns  
ns  
ns  
μs  
RC  
SA  
Clock Pulse Width  
15  
0
20  
0
30  
0
CW  
Address Hold Time  
HA  
RECALL Duration  
200  
200  
200  
RECALL  
Switching Waveforms  
Figure 11. CE and OE Controlled Software STORE/RECALL Cycle  
tRC  
tRC  
Address  
CE  
Address #1  
tCW  
Address #6  
tCW  
tSA  
tHA  
tHA  
tHA  
tSA  
tHA  
OE  
tDELAY  
tHHHD  
tHZCE  
HSB (STORE only)  
DQ (DATA)  
tLZCE  
tLZHSB  
High Impedance  
tSTORE/tRECALL  
RWI  
Figure 12. Autostore Enable/Disable Cycle  
tRC  
tRC  
Address  
Address #1  
tCW  
Address #6  
tCW  
tSA  
CE  
tSA  
tHA  
tHA  
tHA  
tHA  
OE  
tSS  
tHZCE  
tLZCE  
tDELAY  
DQ (DATA)  
Notes  
22. The software sequence is clocked with CE controlled or OE controlled reads.  
23. The six consecutive addresses must be read in the order listed in Table 2 on page 6. WE must be HIGH during all six consecutive cycles.  
Document #: 001-45523 Rev. *B  
Page 14 of 24  
   
PRELIMINARY  
CY14B108L, CY14B108N  
Hardware STORE Cycle  
20 ns  
25 ns  
45 ns  
Parameters  
Description  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
t
t
t
HSB To Output Active Time when write latch not set  
Hardware STORE Pulse Width  
20  
25  
25  
ns  
ns  
μs  
DHSB  
15  
15  
15  
PHSB  
Soft Sequence Processing Time  
100  
100  
100  
SS  
Switching Waveforms  
Figure 13. Hardware STORE Cycle  
Write latch set  
tPHSB  
HSB (IN)  
tSTORE  
tHHHD  
tDELAY  
HSB (OUT)  
DQ (Data Out)  
RWI  
tLZHSB  
Write latch not set  
tPHSB  
HSB pin is driven high to VCC only by Internal  
100kOhm resistor,  
HSB (IN)  
HSB driver is disabled  
SRAM is disabled as long as HSB (IN) is driven low.  
tDELAY  
tDHSB  
tDHSB  
HSB (OUT)  
RWI  
Figure 14. Soft Sequence Processing  
tSS  
tSS  
Soft Sequence  
Command  
Soft Sequence  
Command  
Address  
Address #1  
tSA  
Address #6  
tCW  
Address #1  
Address #6  
tCW  
CE  
VCC  
Notes  
24. This is the amount of time it takes to take action on a soft sequence command. Vcc power must remain HIGH to effectively register command.  
25. Commands such as STORE and RECALL lock out IO until operation is complete which further increases this time. See the specific command.  
Document #: 001-45523 Rev. *B  
Page 15 of 24  
   
PRELIMINARY  
CY14B108L, CY14B108N  
Truth Table For SRAM Operations  
HSB should remain HIGH for SRAM Operations.  
For x8 Configuration  
[2]  
CE  
H
L
WE  
X
OE  
X
Inputs/Outputs  
Mode  
Power  
Standby  
Active  
High Z  
Data Out (DQ –DQ );  
Deselect/Power down  
Read  
H
L
0
7
L
H
H
High Z  
Data in (DQ –DQ );  
Output Disabled  
Write  
Active  
L
L
X
Active  
0
7
For x16 Configuration  
[2]  
CE  
H
L
WE  
X
OE  
X
BHE  
X
BLE  
X
Inputs/Outputs  
Mode  
Power  
Standby  
High-Z  
High-Z  
Deselect/Power down  
Output Disabled  
Read  
X
X
H
H
Active  
Active  
Active  
L
H
L
L
L
Data Out (DQ –DQ  
)
0
15  
L
H
L
H
L
Data Out (DQ –DQ );  
Read  
0
7
DQ –DQ in High-Z  
8
15  
L
H
L
L
H
Data Out (DQ –DQ );  
Read  
Active  
8
15  
DQ –DQ in High-Z  
0
7
L
L
L
L
L
H
H
H
L
H
H
H
X
X
L
H
L
L
L
H
L
L
High-Z  
Output Disabled  
Output Disabled  
Output Disabled  
Write  
Active  
Active  
Active  
Active  
Active  
High-Z  
High-Z  
L
Data In (DQ –DQ  
)
15  
0
L
H
Data In (DQ –DQ );  
Write  
0
7
DQ –DQ in High-Z  
8
15  
L
L
X
L
H
Data In (DQ –DQ );  
Write  
Active  
8
15  
DQ –DQ in High-Z  
0
7
Document #: 001-45523 Rev. *B  
Page 16 of 24  
 
PRELIMINARY  
CY14B108L, CY14B108N  
Ordering Information  
Speed  
(ns)  
Package  
Diagram  
Operating  
Range  
Ordering Code  
Package Type  
20  
CY14B108L-ZS20XCT  
CY14B108L-ZS20XC  
CY14B108L-ZS20XIT  
CY14B108L-ZS20XI  
CY14B108L-BA20XCT  
CY14B108L-BA20XC  
CY14B108L-BA20XIT  
CY14B108L-BA20XI  
CY14B108N-BA20XCT  
CY14B108N-BA20XC  
CY14B108N-BA20XIT  
CY14B108N-BA20XI  
CY14B108N-ZSP20XCT  
CY14B108N-ZSP20XC  
CY14B108N-ZSP20XIT  
CY14B108N-ZSP20XI  
CY14B108L-ZS25XCT  
CY14B108L-ZS25XC  
CY14B108L-ZS25XIT  
CY14B108L-ZS25XI  
CY14B108L-BA25XCT  
CY14B108L-BA25XC  
CY14B108L-BA25XIT  
CY14B108L-BA25XI  
CY14B108N-BA25XCT  
CY14B108N-BA25XC  
CY14B108N-BA25XIT  
CY14B108N-BA25XI  
CY14B108N-ZSP25XCT  
CY14B108N-ZSP25XC  
CY14B108N-ZSP25XIT  
CY14B108N-ZSP25XI  
51-85087  
51-85087  
51-85087  
51-85087  
51-85128  
51-85128  
51-85128  
51-85128  
51-85128  
51-85128  
51-85128  
51-85128  
51-85160  
51-85160  
51-85160  
51-85160  
51-85087  
51-85087  
51-85087  
51-85087  
51-85128  
51-85128  
51-85128  
51-85128  
51-85128  
51-85128  
51-85128  
51-85128  
51-85160  
51-85160  
51-85160  
51-85160  
44-pin TSOP II  
44-pin TSOP II  
Commercial  
44-pin TSOP II  
44-pin TSOP II  
48-ball FBGA  
48-ball FBGA  
48-ball FBGA  
48-ball FBGA  
48-ball FBGA  
48-ball FBGA  
48-ball FBGA  
48-ball FBGA  
54-pin TSOP II  
54-pin TSOP II  
54-pin TSOP II  
54-pin TSOP II  
44-pin TSOP II  
44-pin TSOP II  
44-pin TSOP II  
44-pin TSOP II  
48-ball FBGA  
48-ball FBGA  
48-ball FBGA  
48-ball FBGA  
48-ball FBGA  
48-ball FBGA  
48-ball FBGA  
48-ball FBGA  
54-pin TSOP II  
54-pin TSOP II  
54-pin TSOP II  
54-pin TSOP II  
Industrial  
Commercial  
Industrial  
Commercial  
Industrial  
Commercial  
Industrial  
25  
Commercial  
Industrial  
Commercial  
Industrial  
Commercial  
Industrial  
Commercial  
Industrial  
Document #: 001-45523 Rev. *B  
Page 17 of 24  
PRELIMINARY  
CY14B108L, CY14B108N  
Ordering Information (continued)  
Speed  
Package  
Diagram  
Operating  
Range  
Ordering Code  
(ns)  
Package Type  
45  
CY14B108L-ZS45XCT  
CY14B108L-ZS45XC  
CY14B108L-ZS45XIT  
CY14B108L-ZS45XI  
CY14B108L-BA45XCT  
CY14B108L-BA45XC  
CY14B108L-BA45XIT  
CY14B108L-BA45XI  
CY14B108N-BA45XCT  
CY14B108N-BA45XC  
CY14B108N-BA45XIT  
CY14B108N-BA45XI  
CY14B108N-ZSP45XCT  
CY14B108N-ZSP45XC  
CY14B108N-ZSP45XIT  
CY14B108N-ZSP45XI  
51-85087  
51-85087  
51-85087  
51-85087  
51-85128  
51-85128  
51-85128  
51-85128  
51-85128  
51-85128  
51-85128  
51-85128  
51-85160  
51-85160  
51-85160  
51-85160  
44-pin TSOP II  
44-pin TSOP II  
Commercial  
44-pin TSOP II  
44-pin TSOP II  
48-ball FBGA  
48-ball FBGA  
48-ball FBGA  
48-ball FBGA  
48-ball FBGA  
48-ball FBGA  
48-ball FBGA  
48-ball FBGA  
54-pin TSOP II  
54-pin TSOP II  
54-pin TSOP II  
54-pin TSOP II  
Industrial  
Commercial  
Industrial  
Commercial  
Industrial  
Commercial  
Industrial  
All parts are Pb-free. The above table contains Preliminary information. Please contact your local Cypress sales representative for availability of these parts.  
Document #: 001-45523 Rev. *B  
Page 18 of 24  
PRELIMINARY  
CY14B108L, CY14B108N  
Part Numbering Nomenclature  
CY 14 B 108L-ZS P 20 X C T  
Option:  
T - Tape & Reel  
Blank - Std.  
Temperature:  
C - Commercial (0 to 70°C)  
I - Industrial (–40 to 85°C)  
Speed:  
20 - 20 ns  
Pb-Free  
25 - 25 ns  
45 - 45 ns  
P - 54 Pin  
Blank - 44 Pin/48 Ball  
Package:  
BA - 48 FBGA  
ZS - TSOP II  
Data Bus:  
L - x8  
N - x16  
Density:  
108 - 8 Mb  
Voltage:  
B - 3.0V  
NVSRAM  
14 - Auto Store + Software STORE + Hardware STORE  
Cypress  
Document #: 001-45523 Rev. *B  
Page 19 of 24  
PRELIMINARY  
CY14B108L, CY14B108N  
Package Diagrams  
Figure 15. 44-Pin TSOP II (51-85087)  
DIMENSION IN MM (INCH)  
MAX  
MIN.  
PIN 1 I.D.  
22  
1
R
O
E
K
A
X
S G  
EJECTOR PIN  
23  
44  
TOP VIEW  
BOTTOM VIEW  
10.262 (0.404)  
10.058 (0.396)  
0.400(0.016)  
0.300 (0.012)  
0.800 BSC  
(0.0315)  
BASE PLANE  
0.10 (.004)  
0.210 (0.0083)  
0.120 (0.0047)  
0°-5°  
18.517 (0.729)  
18.313 (0.721)  
0.597 (0.0235)  
0.406 (0.0160)  
SEATING  
PLANE  
51-85087-*A  
Document #: 001-45523 Rev. *B  
Page 20 of 24  
PRELIMINARY  
CY14B108L, CY14B108N  
Package Diagrams (continued)  
Figure 16. 48-Ball FBGA - 6 mm x 10 mm x 1.2 mm (51-85128)  
BOTTOM VIEW  
A1 CORNER  
TOP VIEW  
Ø0.05 M C  
Ø0.25 M C A B  
A1 CORNER  
Ø0.30 0.05(48X)  
1
2
3
4
5
6
6
5
4
3
2
1
A
A
B
C
D
B
C
D
E
E
F
F
G
G
H
H
1.875  
A
A
0.75  
B
6.00 0.10  
3.75  
B
6.00 0.10  
0.15(4X)  
SEATING PLANE  
C
51-85128-*D  
Document #: 001-45523 Rev. *B  
Page 21 of 24  
PRELIMINARY  
CY14B108L, CY14B108N  
Package Diagrams (continued)  
Figure 17. 54-Pin TSOP II (51-85160)  
51-85160-**  
Document #: 001-45523 Rev. *B  
Page 22 of 24  
PRELIMINARY  
CY14B108L, CY14B108N  
Document History Page  
Document Title: CY14B108L/CY14B108N 8 Mbit (1024K x 8/512K x 16) nvSRAM  
Document Number: 001-45523  
Submission  
Rev. ECN No. Orig. of Change  
Description of Change  
Date  
**  
2428826  
2520023  
GVCH  
See ECN  
06/23/08  
New Data Sheet  
Updated I for tRC=20ns, 25ns and 45ns access speed for both industrial  
*A  
GVCH/PYRS  
CC1  
and Commercial temperature Grade  
Updated Thermal resistance values for 48-FBGA,44-TSOP II and 54-TSOP II  
packages  
Changed t  
value from 16ns to 15ns  
CW  
*B  
2676670  
GVCH/PYRS  
03/20/2009 Added maximum accumulated storage time for 150°C and 85°C Temperature  
Added best practices  
Changed I  
Changed I  
Changed I  
from 12mA to 20mA  
from 38mA to 40mA  
from 12mA to 10mA  
CC2  
CC3  
CC4  
Changed I from 6mA to 10mA  
SB  
Changed V  
from 164uF to 360uF  
CAP  
Changed Input Rise and Fall Times from 5ns to 3ns  
Updated I  
Changed t  
Changed t  
, I  
, I and I Test conditions  
to 20ns, 25ns, 25ns for 15ns, 20ns, 45ns part respectively  
from 15ms to 8ms  
CC1 CC3 SB OZ  
DELAY  
STORE  
Added V  
, t  
and t  
parameters  
HDIS HHHD  
LZHSB  
Software controlled STORE/RECALL cycle table: Changed t to t  
AS  
SA  
Changed t  
to t  
parameter  
GHAX  
HA  
Added t  
DHSB  
Changed t  
to t  
HLHX  
PHSB  
Updated t from 70us to 100us  
SS  
Added Truth table for SRAM operations  
Updated ordering information  
Document #: 001-45523 Rev. *B  
Page 23 of 24  
PRELIMINARY  
CY14B108L, CY14B108N  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at cypress.com/sales.  
Products  
PSoC  
PSoC Solutions  
General  
Clocks & Buffers  
Wireless  
Low Power/Low Voltage  
Precision Analog  
LCD Drive  
Memories  
Image Sensors  
CAN 2.0b  
USB  
© Cypress Semiconductor Corporation, 2008-2009. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of  
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for  
medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as  
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems  
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document #: 001-45523 Rev. *B  
Revised March 19, 2009  
Page 24 of 24  
AutoStore and QuantumTrap are registered trademarks of Cypress Semiconductor Corporation. All products and company names mentioned in this document are the trademarks of their respective  
holders.  

HP Hewlett Packard Hewlett Packard Computer Monitor LA2205WG User Manual
Gateway Computer Monitor User Manual
Fisher Price COLOR ME GEMZ N1128N1128 User Manual
Fisher Paykel CE704DT User Manual
Event electronic PS5 User Manual
Emerson ET 13P2, ET 19P2 User Manual
Electrolux 922217 User Manual
Eizo Nanao Computer Monitor CG301W User Manual
Datel DKT2104 CT User Manual
Dacor Cooktop DR30GIFS User Manual