Emerson Computer Accessories MVME2500 User Manual

Embedded Computing for  
Business-Critical ContinuityTM  
MVME2500  
Installation and Use  
P/N: 6806800L01H  
January 2014  
Contents  
3
MVME2500 Installation and Use (6806800L01H)  
Contents  
4
MVME2500 Installation and Use (6806800L01H)  
Contents  
5
MVME2500 Installation and Use (6806800L01H)  
Contents  
6
MVME2500 Installation and Use (6806800L01H)  
Contents  
7
MVME2500 Installation and Use (6806800L01H)  
List of Tables  
9
MVME2500 Installation and Use (6806800L01H)  
List of Tables  
10  
MVME2500 Installation and Use (6806800L01H)  
List of Figures  
11  
MVME2500 Installation and Use (6806800L01H)  
List of Figures  
12  
MVME2500 Installation and Use (6806800L01H)  
About this Manual  
Overview of Contents  
This manual is divided into the following chapters and appendices.  
Introduction gives an overview of the features of the product, standard compliances,  
mechanical data, and ordering information.  
Hardware Preparation and Installation outlines the installation requirements, hardware  
accessories, switch settings, and installation procedures.  
Controls, LEDs, and Connectors describes external interfaces of the board. This includes  
connectors and LEDs.  
Functional Description includes a block diagram and functional description of major  
components of the product.  
Memory Maps and Registers contains information on system resources including system  
control and status registers and external timers.  
Boot System describes the boot loader software.  
Programming Model contains additional programming information for the board.  
Replacing the Battery contains the procedures for replacing the battery.  
Related Documentation provides a listing of related product documentation,  
manufacturer’s documents, and industry standard specifications.  
Safety Notes summarizes the safety instructions in the manual.  
Sicherheitshinweise is a German translation of the Safety Notes chapter.  
Abbreviations  
This document uses the following abbreviations:  
Term  
CPLD  
DDR  
DDR3  
DMI  
Definition  
Complex Programmable Logic Device  
Double Data Rate  
Double Data Rate 3  
Direct Media Interface  
13  
MVME2500 Installation and Use (6806800L01H)  
   
About this Manual  
Term  
DUART  
EEPROM  
FCC  
Definition  
Dual UART  
Erasable Programmable Read-Only Memory  
Federal Communications Commission  
GigaByte  
GB  
Gbit  
Gbps  
I/O  
Gigabit  
Gigabits per second  
Input/Output  
IEEE  
Institute of Electrical and Electronics Engineers  
Light Emitting Diode  
LED  
MHz  
MCP  
MRAM  
OS  
Megahertz  
Multi-Chip Package  
Magnetoresistive Random Access Memory  
Operating System  
PCB  
Printed Circuit Board  
PCI  
Peripheral Component Interconnect  
PCI Express  
PCI-E  
PCI-X  
PIM  
Peripheral Component Interconnect eXtended  
PCI Mezzanine Card Input/Output Module  
Programmable Logic Device  
PCI Mezzanine Card (IEEE P1386.1)  
Processor PCI Mezzanine Card  
Real-Time Clock  
PLD  
PMC  
PrPMC  
RTC  
RTM  
SATA  
UART  
Rear Transition Module  
Serial AT Attachment  
Universal Asynchronous Receiver-Transmitter  
14  
MVME2500 Installation and Use (6806800L01H)  
About this Manual  
Term  
USB  
Definition  
Universal Serial Bus  
VITA  
VME  
XMC  
VMEbus International Trade Association  
Versa Module Eurocard  
PCI Express Mezzanine Card  
Conventions  
The following table describes the conventions used throughout this manual.  
Notation  
Description  
0x00000000  
Typical notation for hexadecimal numbers (digits are  
0 through F), for example used for addresses and  
offsets  
0b0000  
bold  
Same for binary numbers (digits are 0 and 1)  
Used to emphasize a word  
Screen  
Used for on-screen output and code-related  
elements or commands in body text  
Courier + Bold  
Used to characterize user input and to separate it  
from system output  
Reference  
Used for references and for table and figure  
descriptions  
File > Exit  
<text>  
[text]  
Notation for selecting a submenu  
Notation for variables and keys  
Notation for software buttons to click on the screen  
and parameter description  
...  
Repeated item for example node 1, node 2, ..., node  
12  
.
.
.
Omission of information from example/command  
that is not necessary at the time being  
..  
Ranges, for example: 0..4 means one of the integers  
0,1,2,3, and 4 (used in registers)  
15  
MVME2500 Installation and Use (6806800L01H)  
 
About this Manual  
Notation  
|
Description  
Logical OR  
Indicates a hazardous situation which, if not avoided,  
could result in death or serious injury  
Indicates a hazardous situation which, if not avoided,  
may result in minor or moderate injury  
Indicates a property damage message  
No danger encountered. Pay attention to important  
information  
16  
MVME2500 Installation and Use (6806800L01H)  
About this Manual  
Summary of Changes  
This manual has been revised and replaces all prior editions.  
Part Number  
6806800L01A  
6806800L01B  
Publication Date  
June 2010  
Description  
First edition  
October 2010  
This version includes updates and revisions  
for the EA release of the MVME2500.  
Table 1.3. Added mechanical data.  
Table 4-3. Removed the following  
commands: brd_reset, irqinfo, mac. Added  
soft_reset.  
Table 4-1. Removed: L2 SRAM, L1 for stack  
and Boot Page entries.  
Changed all instances of "via" to "through".  
Impelemented editorial changes.  
6806800L01C  
May 2011  
adding the following.  
Applied editorial edits  
6806800L01D  
May 2011  
17  
MVME2500 Installation and Use (6806800L01H)  
About this Manual  
Part Number  
6806800L01E  
Publication Date  
July 2011  
Description  
6806800L01F  
August 2011  
Changed title of Section 3.4.1 to Front Panel  
page 35 to include proper label for XMC  
connectors.  
Updated Safety Notes and  
6806800L01G  
6806800L01H  
January 2013  
January 2014  
18  
MVME2500 Installation and Use (6806800L01H)  
Chapter 1  
Introduction  
1.1  
Overview  
The MVME2500 is a VMEbus board based on the Freescale QorlQ P2010 (single-core) or P2020  
(dual-core) processor. It has a 6U form-factor and has an expansion slot for an optional PCI  
Mezzanine Card (PMC) or PCI eXpress Mezzanine Card (XMC). It comes with either 1 GB or 2 GB  
of DDR3 SDRAM, and is offered with either IEEE 1101.10 compliant or SCANBE ejector handles.  
The front panel I/O configuration consists of two RJ45 10/100/1000BASE-T Ethernet ports, a  
USB 2.0 port, a Micro DB9 RS-232 serial console port, and a reset/abort switch. It also has an  
LED to signal board failure and another LED that can be configured in the LED register.  
The rear I/O includes support for VMEbus (Legacy VME, VME 64, VME64x, and 2eSST), rear  
PMC/XMC I/O, RTM I/O (through VME P2), two 10/100/1000BASE-T Ethernet, four UART, and  
RTM I2C/Presence/Power. See the table below for a summary of the features of the  
MVME2500.  
Table 1-1 Key Features of the MVME2500  
Function  
Processor  
Features  
Freescale QorIQ P2010 (single-core) or P2020 (dual-core)  
800 MHz or 1000 MHz core frequency  
512 KB L2 cache  
Three 10/100/1000 Mbps enhanced three-speed Ethernet  
controllers (eTSECs)  
Two PCI-E 1.0a x1 interface controllers  
One PCI-E 1.0a x2 interface controller  
USB 2.0 interface  
Enhanced secure digital host controller  
DDR3 memory controller at 800 MT/s  
SPI interface (four chip selects, but only two are used on the  
board)  
Enhanced local bus controller  
UART  
Two I2C interfaces  
Programmable interrupt controller  
Memory  
1 GB or 2 GB DDR3 soldered chip memory without ECC  
19  
MVME2500 Installation and Use (6806800L01H)  
       
Introduction  
Table 1-1 Key Features of the MVME2500 (continued)  
Function  
Features  
Front panel I/O  
Backplane I/O  
Expansion  
Micro DB9 RS-232 serial console port  
USB 2.0  
Two RJ45 10/100/1000BASE-T Ethernet  
Reset/Abort switch  
Fail LED and User LED  
PMC/XMC front panel I/O (optional)  
VME Bus  
RTM I/O (through VME P2)  
PMC/XMC I/O with P4 I/O  
Two 10/100/1000BASE-T Ethernet  
Four UART  
RTM I2C/Presence/Power  
Expansion site 1:  
PMC supporting PCI-X 64/33 interface  
XMC supporting PCI-E 1.0a x2 interface  
Expansion site 2:  
SATA drive kit  
Boot Flash  
16 MB SPI Flash  
512 KB MRAM  
SDHC Socket  
Persistent Data Storage  
User Flash  
I2C Devices  
Real-Time Clock  
Board Temperature Sensor  
8 KB VPD EEPROM  
Two 64 KB User EEPROM  
CPLD  
Watchdog, timers, and registers  
Boot Firmware  
U-Boot-based firmware image in 16 MB SPI Flash. This flash is split  
into two 8 MB chips.  
20  
MVME2500 Installation and Use (6806800L01H)  
Introduction  
Table 1-1 Key Features of the MVME2500 (continued)  
Function  
Features  
Operating System  
Based from BSP provided by Freescale which is based from  
standard Linux version 2.6.32-rc3  
Development tool is ltib 9.1.1 (Linux Target Image Builder)  
from Freescale  
VxWorks  
1.2  
Standard Compliances  
The product is designed to meet the following standards. Results are pending until testing is  
finished.  
Table 1-2 Board Standard Compliances  
Standard  
Description  
EN 60950-1/A11:2009  
Safety Requirements (legal)  
IEC 60950-1:2005 2nd Edition  
CAN/CSA C22.2 No 60950-1  
FCC Part 15, Subpart B, Class A (non-  
residential)  
EMC requirements (legal) on system level  
(predefined Emerson system)  
ICES-003, Class A (non-residential)  
EMC Directive 89/336/EEC  
EN55022 Class B  
EN55024  
AS/NZS CISPR 22, Class A  
EN300386  
ETSI EN 300 019 series  
Directive 2011/65/EU  
Environmental Requirements  
Directive on the restriction of the use of certain  
hazardous substances in electrical and electronic  
equipment (RoHS)  
For Declaration of Conformity, refer MVME2500 Series Declaration of Conformity.  
21  
MVME2500 Installation and Use (6806800L01H)  
         
Introduction  
1.3  
Mechanical Data  
The following table provides details about the dimensions and weight of the board.  
Table 1-3 Mechanical Data  
Feature  
Value  
Height  
233.44 mm (9.2 inches)  
160.0 mm (6.3 inches)  
261.8 mm (10.3 inches)  
19.8 mm (0.8 inches)  
Depth  
Front Panel Height  
Width  
Max. Component Height  
Weight  
14.8 mm (0.58 inches)  
400 grams (standard variant), 700 grams (ET variants)  
1.4  
Ordering Information  
As of the printing date of this manual, this guide supports the models listed below.  
Table 1-4 Available Board Variants  
Order Number  
Processor  
Speed  
Memory  
1 GB  
Ejector  
MVME2500-0163  
MVME2500-0161  
MVME2500-0173  
MVME2500-0171  
MVME2500ET-0173  
MVME2500ET-0171  
QorIQ P2010 (single-core)  
QorIQ P2010 (single-core)  
QorIQ P2020 (dual-core)  
QorIQ P2020 (dual-core)  
QorIQ P2020 (dual-core)  
QorIQ P2020 (dual-core)  
800 MHz  
800 MHz  
1200 MHz  
1200 MHz  
1000 MHz  
1000 MHz  
IEEE  
1 GB  
SCANBE  
IEEE  
2 GB  
2 GB  
SCANBE  
IEEE ENP2  
SCANBE ENP2  
2 GB  
2 GB  
22  
MVME2500 Installation and Use (6806800L01H)  
         
Introduction  
As of the printing date of this manual, the following board accessories are available.  
Table 1-5 Available Board Accessories  
Order Number  
Description  
VME-HDMNTKIT  
VME-64GBSSDKIT  
MVME7216E-101  
MVME7216E-102  
MVME721ET-101  
MVME721ET-102  
VME HD mounting kit  
VME 64GB SSD and mounting kit  
VME RTM (IEEE handle)  
VME RTM (SCANBE Handle)  
VME RTM Extended Temperature (IEEE handle)  
VME RTM Extended Temperature (SCANBE Handle)  
Female - to -male micro-mini DB-9 to DB9 adapter cable  
SERIAL-MINI-D (30-  
W2400E01A)  
23  
MVME2500 Installation and Use (6806800L01H)  
   
Introduction  
1.5  
Product Identification  
The following graphics shows the location of the serial number label.  
Figure 1-1 Serial Number Location  
24  
MVME2500 Installation and Use (6806800L01H)  
   
Chapter 2  
Hardware Preparation and Installation  
2.1  
Overview  
This chapter provides installation and safety instructions for this product. Installation  
instructions for the optional PMC and transition module are also included.  
A fully implemented MVME2500 consists of the base board plus:  
PCI Mezzanine Card (PMC) or PCI-E Mezzanine Card (XMC) for added versatility  
Rear transition module  
SATA kit  
The following are the things that need to be done before using the board. Be sure to read the  
entire chapter, including all caution and warning notes, before you begin.  
1. Unpack the hardware. Refer to Unpacking and Inspecting the Board on page 26  
2. Configure the hardware by setting jumpers on the board and RTM. Refer to Configuring the  
3. Install the transition module in the chassis. Refer to Rear Transition Module on page 30.  
4. Install PMC module (if required). Refer to PMC/XMC Support on page 31.  
5. Install XMC span module (if required). Refer to PMC/XMC Support on page 31.  
6. Install the board in the chassis. Refer to Installing and Removing the Board on page 32.  
7. Attach cables and apply power. Refer to Completing the Installation on page 34.  
25  
MVME2500 Installation and Use (6806800L01H)  
     
Hardware Preparation and Installation  
2.2  
Unpacking and Inspecting the Board  
Read all notices and cautions prior to unpacking the product.  
Damage of Circuits  
Electrostatic discharge and incorrect installation and removal can damage circuits or  
shorten its life.  
Before touching the board or electronic components, make sure that you are working  
in an ESD-safe environment.  
Shipment Inspection  
1. Verify that you have received all items of your shipment.  
2. Check for damage and report any damage or differences to customer service.  
3. Remove the desiccant bag shipped together with the board and dispose of it according to  
your country’s legislation.  
The product is thoroughly inspected before shipment. If any damage occurred during  
transportation or any items are missing, contact customer service immediately.  
2.3  
Requirements  
Make sure the board meets the requirements specified in the next sections when the board is  
operated in your particular system configuration.  
26  
MVME2500 Installation and Use (6806800L01H)  
     
Hardware Preparation and Installation  
2.3.1  
Environmental Requirements  
Operating temperatures refer to the temperature of the air circulating around the board and  
not to the component temperature.  
Table 2-1 Environmental Requirements  
Characteristics  
Commercial Versions  
Extended Temperature Versions  
Applicable Variants  
MVME2500-0163  
MVME2500-0161  
MVME2500-0173  
MVME2500-0171  
MVME2500ET-0173  
MVME2500ET-0171  
1
1
Cooling Method  
Forced Air 7 CFM  
Forced Air 7 CFM  
Operating  
0°C to +55°C  
-40°C to +71°C  
Temperature  
Storage  
-40°C to +85°C  
-50°C to +100°C  
Vibration Sine  
(10min/axis)  
2 G, 5 to 2000 Hz  
10 G, 15 to 2000 Hz  
Vibration Random  
(1hr/axis)  
0.01g2/Hz, 15 to 2000 Hz  
0.04g2/Hz, 15 to 2000 Hz (8  
GRMS)  
2
Shock  
20g/11 mS  
30g/11 mS  
Humidity  
1. ft3/min  
to 95% RH (non-condensing)  
to 100% RH (non-condensing)  
2. Flat 15-1000Hz, -6db/octave 1000Hz - 2000Hz [MIL-STD 810F Figure 514.5C-17]  
27  
MVME2500 Installation and Use (6806800L01H)  
     
Hardware Preparation and Installation  
Product Damage  
High humidity and condensation on the board surface causes short circuits.  
Do not operate the board outside the specified environmental limits.  
Make sure the board is completely dry and there is no moisture on any surface before  
applying power.  
2.3.2  
Power Requirements  
The board uses +5.0 V from the VMEbus backplane. On board power supply generates the  
required voltages for the various ICs. The MVME2500 connects the +12 V and -12 V supplies  
from the backplane to the PMC sites, while the +3.3 V power supplied to the PMC sites comes  
from the +5.0 V backplane power. A maximum of 10 A of +3.3 V power is available to the PMC  
sites, however the 90 W +5.0 V limit must be observed as well as any cooling limitations.  
The following table provides an estimate of the typical and maximum power required.  
Table 2-2 Power Requirements  
Board Variant  
Maximum (Calculated)  
Typical (Measured Operating)  
MVME2500-0163  
MVME2500-0161  
MVME2500-0173  
MVME2500-0171  
MVME2500ET-0173  
MVME2500ET-0171  
18.5 W  
18.5 W  
24 W  
14.8 W  
14.8 W  
16.6 W  
16.6 W  
16.6 W  
16.6 W  
24 W  
24 W  
24 W  
The power is measured when the board is in standby (Linux prompt). Power will significantly  
increase when adding hard drives or a XMC/PMC card.  
28  
MVME2500 Installation and Use (6806800L01H)  
   
Hardware Preparation and Installation  
The following table shows the power available when the MVME2500 is installed in either a  
three row or five row chassis and when PMCs are present.  
Chassis Type  
Three Row  
Five Row  
Available Power  
70 W maximum  
90 W maximum  
Power With PMCs  
below 70 W  
below 90 W  
Keep below power limit. Cooling limitations must be considered.  
2.3.3  
Equipment Requirements  
The following are recommended to complete a MVME2500 system:  
VMEbus system enclosure  
System console terminal  
Operating system (and/or application software)  
Transition module and connecting cables  
2.4  
Configuring the Board  
The board provides software control over most options. Settings can be modified to fit the  
user's specifications. To configure, set the bits in the control register after installing the board  
in a system. Make sure that all user-defined switches are properly set before installing a  
PMC/XMC module. For more information, see Switches on page 57.  
29  
MVME2500 Installation and Use (6806800L01H)  
     
Hardware Preparation and Installation  
2.5  
Installing Accessories  
2.5.1  
Rear Transition Module  
The MVME2500 does not support hot swap. Remove power to the rear slot or system before  
installing the module. A PCMI/O Module (PIM) needs to be manually configured and installed  
before placing the transition module.  
Damage of Circuits  
Electrostatic discharge and incorrect installation and removal can damage circuits or  
shorten its life.  
Before touching the board or electronic components, make sure that you are working  
in an ESD-safe environment.  
Product Damage  
Only use injector handles for board insertion to avoid damage to the front panel and/or  
PCB. Deformation of the front panel can cause an electrical short or other board  
malfunction.  
Board Malfunction  
Switches marked as “reserved” might carry production-related functions and can cause  
the board to malfunction if their setting is changed.  
Do not change settings of switches marked as “reserved”. The setting of switches which  
are not marked as “reserved” has to be checked and changed before board installation.  
Installation and Removal Procedure  
1. Turn OFF all equipment and disconnect the power cable from the AC power source.  
2. Remove the chassis cover.  
3. Remove the filler panel(s) from the appropriate card slot(s) at the rear of the chassis (if the  
chassis has a rear card cage).  
30  
MVME2500 Installation and Use (6806800L01H)  
     
Hardware Preparation and Installation  
4. Install the top and bottom edge of the transition module into the rear guides of the chassis.  
5. Ensure that the levers of the two injector/ejectors are in the outward position.  
6. Slide the transition module into the chassis until resistance is felt.  
7. Move the injector/ejector levers in an inward direction.  
8. Verify that the transition module is properly seated and secure it to the chassis using the  
two screws adjacent to the injector/ejector levers.  
9. Connect the cables to the transition module.  
To remove the transition module from the chassis, reverse the procedure and press the red  
locking tabs (IEEE handles only) to extract the board.  
2.5.2  
PMC/XMC Support  
Installation Procedure  
Read all notices and follow these steps to install a PMC on the baseboard.  
Damage of Circuits  
Electrostatic discharge and incorrect installation and removal can damage circuits or  
shorten its life.  
Before touching the board or electronic components, make sure that you are working  
in an ESD-safe environment.  
Product Damage  
Inserting or removing modules with power applied may result in damage to module  
components.  
Before installing or removing additional devices or modules, read the documentation  
that came with the product.  
31  
MVME2500 Installation and Use (6806800L01H)  
     
Hardware Preparation and Installation  
1. Attach an ESD strap to your wrist. Attach the other end of the strap to the chassis as a  
ground. Make sure that it is securely fastened throughout the procedure.  
2. Remove the PMC/XMC filler plate from the front panel cut-out.  
3. Slide the front bezel of the PMC/XMC into the cut-out from behind. The front bezel of the  
PMC/XMC module will be flushed with the board when the connectors on the module align  
with the mating connectors on the board.  
4. Align the mating connectors properly and apply minimal pressure to the PMC/XMC until it  
is seated to the board.  
5. Insert the four PMC/XMC mounting screws through the mounting holes on the bottom side  
of the board, and then thread the four mount points on the PMC/XMC. Tighten the screws.  
6. Install the board into the appropriate card slot. Make sure that the board is well seated into  
the backplane connectors. Do not damage or bend connector pins.  
7. Replace the chassis or system cover.  
8. Reconnect the system to the power source and then turn on the system.  
When removing the PMC/XMC, hold it by its long side and exert minimal force when pulling  
it from the baseboad to prevent pin damage.  
2.6  
Installing and Removing the Board  
This section describes the recommended procedure for installing the board in a chassis. Read  
all warnings and instructions before installing the board.  
The MVME2500 does not support hot swap. Power off the slot or system and make sure that  
the serial ports and switches are properly configured.  
32  
MVME2500 Installation and Use (6806800L01H)  
   
Hardware Preparation and Installation  
Damage of Circuits  
Electrostatic discharge and incorrect installation and removal can damage circuits or  
shorten its life.  
Before touching the board or electronic components, make sure that you are working  
in an ESD-safe environment.  
Product Damage  
Only use injector handles for board insertion to avoid damage to the front panel and/or  
PCB. Deformation of the front panel can cause an electrical short or other board  
malfunction.  
1. Attach an ESD strap to your wrist. Attach the other end of the strap to an electrical ground.  
Make sure that it is securely fastened throughout the procedure.  
2. Remove VME filler panels from the VME enclosures, as appropriate.  
3. Install the top and bottom edge of the board into the guides of the chassis.  
4. Ensure that the levers of the two injector/ejectors are in the outward position.  
5. Slide the board into the chassis until resistance is felt.  
6. Simultaneously move the injector/ejector levers in an inward direction.  
7. Verify that the board is properly seated and secure it to the chassis using the two screws  
located adjacent to the injector/ejector levers.  
8. Connect the appropriate cables to the board.  
To remove the board from the chassis, reverse the procedure and press the red locking tabs  
(IEEE handles only) to extract the board.  
33  
MVME2500 Installation and Use (6806800L01H)  
Hardware Preparation and Installation  
2.7  
Completing the Installation  
The board is designed to operate as an application-specific computer blade or an intelligent I/O  
board/carrier. It can be used in any slot in a VME chassis. Once the board is installed, you are  
ready to connect peripherals and apply power to the board.  
Product Damage  
RJ-45 connectors on modules are either twisted-pair Ethernet (TPE) or E1/T1/J1  
network interfaces. Connecting an E1/T1/J1 line to an Ethernet connector may damage  
your system.  
Make sure that TPE connectors near your working area are clearly marked as network  
connectors.  
Verify that the length of an electric cable connected to a TPE bushing does not exceed  
100 meters.  
Make sure the TPE bushing of the system is connected only to safety extra low voltage  
circuits (SELV circuits).  
If in doubt, ask your system administrator.  
The console settings for the MVME2500 are:  
Eight bits per character  
One stop bit per character  
Parity disabled (no parity)  
Baud rate of 9600 baud  
Verify that hardware is installed and the power/peripheral cables connected are appropriate  
for your system configuration.  
Replace the chassis or system cover, reconnect the chassis to power source, and turn the  
equipment power on.  
34  
MVME2500 Installation and Use (6806800L01H)  
 
Chapter 3  
Controls, LEDs, and Connectors  
3.1  
Board Layout  
The following figure shows the components and connectors on the MVME2500.  
Figure 3-1 Component Layout  
35  
MVME2500 Installation and Use (6806800L01H)  
             
Controls, LEDs, and Connectors  
3.2  
Front Panel  
The following components are found on the MVME2500 front panel.  
Figure 3-2  
Front Panel LEDs, Connectors and Switches  
36  
MVME2500 Installation and Use (6806800L01H)  
   
Controls, LEDs, and Connectors  
3.2.1  
Reset Switch  
The MVME2500 has a single push button switch that has both the abort and reset functions.  
Pressing the switch for less than three seconds generates an abort interrupt to the P20x0 QorIQ  
PIC. Holding it down for more than three seconds will generate a hard reset. The VME SYSRESET  
is generated if the MVME2500 is the VMEbus system controller.  
3.3  
LEDs  
The MVME2500 utilizes light emitting diodes (LEDs) to provide a visible status indicator on the  
front panel. These LEDs show power failures, power up states, Ethernet link/speed, ethernet  
activity, SATA link and activity and PCI-E valid lane status. There are also a few user configurable  
LEDs. Each LED description is necessary for troubleshooting and debugging.  
3.3.1  
Front Panel LEDs  
The front panel LEDs are listed below.  
Figure 3-3  
Front Panel LEDs  
37  
MVME2500 Installation and Use (6806800L01H)  
       
Controls, LEDs, and Connectors  
Table 3-1 Front Panel LEDs  
Label  
Function  
Location  
Color  
Description  
By default  
USER 1  
User Defined  
Front panel  
Off  
Yellow  
User Software Controllable. Refer to  
the "User LED Register."  
User Software Controllable. Refer to  
the "User LED Register."  
Red  
Off  
FAIL  
Board Fail  
Front panel  
Normal operation after successful  
firmware boot.  
One or more on-board power rails  
has failed and the board has  
Red  
shutdown to protect the hardware.  
Normal during power up, during  
hardware reset (such as a front panel  
reset). May be asserted by the BDFAIL  
bit in the Tsi148 VSTAT register.  
GENET1  
SPEED  
TSEC1  
Link/Speed  
Front panel  
Integrated  
RJ45 LED  
Off  
No link  
Amber  
Green  
10/100BASE-T operation  
1000 BASE-T operation  
GENET1  
ACT  
TSEC1  
Activity  
Front panel  
Integrated  
RJ45 LED  
Off  
No activity  
Blinking Green Activity proportional to bandwidth  
utilization  
GENET2  
SPEED  
TSEC2  
Link/Speed  
Front panel  
Integrated  
RJ45 LED  
(Left)  
Off  
No link  
Amber  
Green  
10/100BASE-T operation  
1000BASE-T operation  
GENET2  
ACT  
TSEC2  
Activity  
Front panel  
Integrated  
RJ45 LED  
Off  
No activity  
Blinking Green Activity proportional to bandwidth  
utilization  
38  
MVME2500 Installation and Use (6806800L01H)  
   
Controls, LEDs, and Connectors  
3.3.2  
Onboard LEDs  
The onboard LEDs are listed below. To view its location on the board, see Figure 3-1 on page 35.  
Figure 3-4 Onboard LEDs  
Table 3-2 Onboard LEDs Status  
Label  
D9  
Function  
Color  
Red  
Description  
Power Fail  
This indicator is illuminated when one or more of the on-  
board voltage rails fails.  
D33  
D34  
D35  
User Defined  
User Defined  
User Defined  
Amber  
Amber  
Amber  
Controlled by the FPGA. Used for boot-up sequence  
indicator.  
Controlled by the FPGA. Used for boot-up sequence  
indicator.  
Controlled by the FPGA. Used for boot-up sequence  
indicator.  
D36  
D37  
D38  
Early Power Fail Amber  
This indicator is lit when the early 3.3V power supply fails.  
Controlled by the FPGA  
User Defined  
User Defined  
Amber  
Amber  
Controlled by the FPGA  
3.4  
Connectors  
This section describes the pin assignments and signals for the connectors on the MVME2500.  
39  
MVME2500 Installation and Use (6806800L01H)  
           
Controls, LEDs, and Connectors  
3.4.1  
Front Panel Connectors  
The following connectors are found on the outside of the MVME2500. These connectors are  
divided between the front panel connectors and the backplane connectors. The front panel  
connectors include the J1 and J5 connectors. The backplane connectors include the P1 and P2  
connectors.  
3.4.1.1 RJ45 with Integrated Magnetics (J1)  
The MVME2500 uses an X2 RJ45.  
Table 3-3 Front Panel Tri-Speed Ethernet Connector (J1)  
Pin Name  
1A  
Signal Description  
GND  
2A  
NC  
3A  
Port A TRD3 -  
4A  
Port A TRD3 +  
5A  
Port A TRD2 -  
6A  
Port A TRD2 +  
7A  
Port A TRD1 -  
8A  
Port A TRD1 +  
9A  
Port A TRD0 -  
10A  
D1A  
D2A  
D3A  
D4A  
1B  
Port A TRD0 +  
Port A Green LED1 Anode/ Yellow LED1 Cathode  
Port A Yellow LED1 Anode/ Green LED1 Cathode  
Port A Green LED2 Anode/ Yellow LED2 Cathode  
Port A Yellow LED2 Anode/ Green LED2 Cathode  
GND  
2B  
NC  
3B  
Port B TRD3 -  
Port B TRD3 +  
Port B TRD2 -  
4B  
5B  
40  
MVME2500 Installation and Use (6806800L01H)  
       
Controls, LEDs, and Connectors  
Table 3-3 Front Panel Tri-Speed Ethernet Connector (J1) (continued)  
Pin Name  
6B  
Signal Description  
Port B TRD2 +  
Port B TRD1 -  
Port B TRD1 +  
Port B TRD0 -  
Port B TRD0 +  
7B  
8B  
9B  
10B  
D1B  
D2B  
D3B  
D4B  
Port B Green LED1Anode/ Yellow LED1 Cathode  
Port B Yellow LED1 Anode/ Green LED1 Cathode  
Port B Green LED2Anode/ Yellow LED2 Cathode  
Port B Yellow LED2 Anode/ Green LED2 Cathode  
3.4.1.2 Front Panel Serial Port (J4)  
There is one front access asynchronous serial port interface that is routed to the micro mini DB-  
9 front panel connector. A male-to-male micro-mini DB9 adapter cable is available under  
Emerson part number SERIAL-MINI-D (30-W2400E01A). The pin assignments for these  
connectors are as follows:  
Table 3-4 Front Panel Serial Port (J4)  
Pin  
1
Signal Description  
NC  
2
RX  
3
TX  
4
NC  
5
GND  
NC  
6
7
RTS  
CTS  
NC  
8
9
41  
MVME2500 Installation and Use (6806800L01H)  
     
Controls, LEDs, and Connectors  
3.4.1.3 USB Connector (J5)  
The MVME2500 uses upright USB receptable mounted in the front panel.  
Table 3-5 USB Connector (J5)  
Pin Name  
Signal Description  
+5 V  
1
2
Data -  
3
Data +  
4
GND  
MTG  
MTG  
MTG  
MTG  
Mounting Ground  
Mounting Ground  
Mounting Ground  
Mounting Ground  
3.4.1.4 VMEBus P1 Connector  
The VME P1 connector is a 160-pin DIN. The P1 connector provides power and VME signals for  
24-bit address and 16-bit data. The pin assignments for the P1 connector is as follows:  
Table 3-6 VMEbus P1 Connector  
Pin  
1
Row A  
DATA 0  
DATA 1  
DATA 2  
DATA 3  
DATA 4  
DATA 5  
DATA 6  
DATA 7  
GND  
Row B  
Row C  
Row D  
+5V  
GND  
NC  
Row Z  
NC  
BBSY  
DATA 8  
DATA 9  
DATA 10  
DATA 11  
DATA 12  
DATA 13  
DATA 14  
DATA 15  
GND  
2
BCLR  
GND  
NC  
3
ACFAIL  
BGIN0  
BGOUT0  
BGIN1  
BGOUT1  
BGIN2  
BGOUT2  
4
NC  
GND  
NC  
5
NC  
6
NC  
GND  
NC  
7
NC  
8
NC  
GND  
NC  
9
GAP  
42  
MVME2500 Installation and Use (6806800L01H)  
         
Controls, LEDs, and Connectors  
Table 3-6 VMEbus P1 Connector (continued)  
Pin  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
Row A  
SYSCLK  
GND  
Row B  
BGIN3  
BGOUT3  
BR0  
Row C  
Row D  
GA0  
Row Z  
GND  
NC  
SYSFAIL  
BERR  
GA1  
DS1  
SYSRESET  
LWORD  
AM 5  
+3.3V (not used) GND  
GA2 NC  
+3.3V (not used) GND  
GA3 NC  
+3.3V (not used) GND  
GA4 NC  
+3.3V (not used) GND  
NC NC  
+3.3V (not used) GND  
NC NC  
+3.3V (not used) GND  
NC NC  
+3.3V (not used) GND  
NC NC  
+3.3V (not used) GND  
NC NC  
+3.3V (not used) GND  
NC NC  
DS0  
BR1  
WRITE  
GND  
BR2  
BR3  
ADD 23  
ADD 24  
ADD 25  
ADD 26  
ADD 27  
ADD 28  
ADD 29  
ADD 30  
ADD 31  
ADD 32  
ADD 33  
ADD 34  
ADD 35  
ADD 36  
ADD 37  
ADD 38  
+12V  
DTACK  
GND  
AM 0  
AM 1  
AM 2  
AM 3  
GND  
NC  
AS  
GND  
IACK  
IACKIN  
IACKOUT  
AM 4  
NC  
GND  
IRQ7  
IRQ6  
IRQ5  
IRQ4  
IRQ3  
IRQ2  
IRQ1  
NC  
ADD 7  
ADD 6  
ADD 5  
ADD 4  
ADD 3  
ADD 2  
ADD 1  
-12V  
+3.3V (not used) GND  
+12V  
+5V  
+5V  
+5V  
+5V  
43  
MVME2500 Installation and Use (6806800L01H)  
Controls, LEDs, and Connectors  
3.4.1.5 VMEBus P2 Connector  
The VME P2 connector is a 160-pin DIN. Row B of the P2 connector provides power to the  
MVME2500 and to the upper eight VMEbus address lines and additional 16 VMEbus data lines.  
The Z, A, C, and D pin assignments for the P2 connector are the same for both the MVME2500  
and MVME7216E/ MVME721E, and are as follows:  
Table 3-7 VMEbus P2 Connector  
Pin  
1
Row A  
Row B  
Row C  
Row D  
Row Z  
PMC IO 2  
PMC IO 4  
PMC IO 6  
PMC IO 8  
PMC IO 10  
PMC IO 12  
PMC IO 14  
PMC IO 16  
PMC IO 18  
PMC IO 20  
PMC IO 22  
PMC IO 24  
PMC IO 26  
PMC IO 28  
PMC IO 30  
PMC IO 32  
PMC IO 34  
PMC IO 36  
PMC IO 38  
PMC IO 40  
PMC IO 42  
PMC IO 44  
+5V  
PMC IO 1  
PMC IO 3  
PMC IO 5  
PMC IO 7  
PMC IO 9  
PMC IO 11  
PMC IO 13  
PMC IO 15  
PMC IO 17  
PMC IO 19  
PMC IO 21  
PMC IO 23  
PMC IO 25  
PMC IO 27  
PMC IO 29  
PMC IO 31  
PMC IO 33  
PMC IO 35  
PMC IO 37  
PMC IO 39  
PMC IO 41  
PMC IO 43  
GE3_0 +  
GE3_0 -  
GND  
Serial 1 RX  
GND  
2
GND  
3
RETRY  
Serial 1 TX  
GND  
4
ADDRESS 24  
ADDRESS 25  
ADDRESS 26  
ADDRESS 27  
ADDRESS 28  
ADDRESS 29  
ADDRESS 30  
ADDRESS 31  
GND  
GE3_1 +  
GE3_1 -  
GND  
5
Serial 1 CTS  
GND  
6
7
GE3_2 +  
GE3_2 -  
GND  
Serial 1 RTS  
GND  
8
9
Serial 2 RX  
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
GE3_3 +  
GE3_3 -  
GND  
Serial 2 TX  
GND  
+5V  
I2C DATA  
I2C CLK  
Serial 2 CTS  
GND  
DATA 16  
DATA 17  
DATA 18  
DATA 19  
DATA 20  
DATA 21  
DATA 22  
DATA 23  
GND  
GE3_LINK_ LED Serial 2 RTS  
GE3_ACT_LED  
GE4_LINK_LED  
GE4_A_LED  
GND  
GND  
Serial 3 RX  
GND  
Serial 3 TX  
GND  
GE4_3 -  
GE4_3 +  
Serial 3 CTS  
GND  
GND  
44  
MVME2500 Installation and Use (6806800L01H)  
     
Controls, LEDs, and Connectors  
Table 3-7 VMEbus P2 Connector (continued)  
Pin  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
Row A  
Row B  
Row C  
Row D  
GE4_2 -  
GE4_2+  
GND  
Row Z  
PMC IO 46  
PMC IO 48  
PMC IO 50  
PMC IO 52  
PMC IO 54  
PMC IO 56  
PMC IO 58  
PMC IO 60  
PMC IO 62  
PMC IO 64  
DATA 24  
DATA 25  
DATA 26  
DATA 27  
DATA 28  
DATA 29  
DATA 30  
DATA 31  
GND  
PMC IO 45  
PMC IO 47  
PMC IO 49  
PMC IO 51  
PMC IO 53  
PMC IO 55  
PMC IO 57  
PMC IO 59  
PMC IO 61  
PMC IO 63  
Serial 3 RTS  
GND  
Serial 4 RX  
GND  
GE4_1 -  
GE4_1 +  
GND  
Serial 4 TX  
GND  
GE4_0 -  
GE4_0 +  
GND  
Serial 4 CTS  
GND  
Serial 4 RTS  
GND  
+5V  
+5V  
3.4.2  
Onboard Connectors  
3.4.2.1 Flash Program Connector (P7)  
The Flash Program Connector is depopulated in the production version of the MVME2500.  
However, each pin is exposed for the 60-pin header connector for the JTAG boundary scan.  
Table 3-8 Flash Programming Header (P7)  
Pin  
1
Signal Description  
HOLD 1  
2
Chip Select 1  
Chip Select 0  
Programmer's VCC  
Master In Slave OUT (MISO)  
HOLD 0  
3
4
5
6
7
Keying  
8
CLOCK  
45  
MVME2500 Installation and Use (6806800L01H)  
       
Controls, LEDs, and Connectors  
Table 3-8 Flash Programming Header (P7) (continued)  
Pin  
Signal Description  
GND  
10  
Master OUT Slave IN (MOSI)  
3.4.2.2 SATA Connector (J3)  
The onboard customized SATA connector is compatible with the Emerson SATA kit, namely  
VME-64GBSSDKIT and IVME7210-MNTKIT.  
Table 3-9 Custom SATA Connector (J3)  
Pin  
1
Signal Description  
GND  
Pin  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
Signal Description  
GND  
2
GND  
SATA POWER ENABLE  
3
NC  
NC  
4
SATA TX +  
NC  
SATA DETECT  
NC  
5
6
SATA TX -  
GND  
GND  
NC  
7
8
GND  
GND  
GND  
GND  
+3.3V  
+5V  
9
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
GND  
NC  
SATA RX -  
NC  
+3.3V  
+5V  
SATA RX +  
GND  
+3.3V  
+5V  
GND  
NC  
+3.3V  
+5V  
GND  
46  
MVME2500 Installation and Use (6806800L01H)  
   
Controls, LEDs, and Connectors  
Table 3-9 Custom SATA Connector (J3) (continued)  
Pin  
19  
20  
Signal Description  
Pin  
39  
40  
Signal Description  
NC  
+3.3V  
+5V  
GND  
3.4.2.3 PMC Connectors  
The MVME2500 supports only one PMC site. It utilizes J14 to support PMC I/O that goes to the  
RTM PMC. The tables below show the pinout detail of J11, J12, J13 and J14. See Figure 3-1 for  
the location of the PMC connectors.  
Table 3-10 PMC J11 Connector  
Pin  
1
Signal Description  
JTAG TCK  
-12V  
Pin  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
Signal Description  
FRAME  
GND  
2
3
GND  
GND  
4
INT A  
IRDY  
5
INT B  
DEVSEL  
+5V  
6
INT C  
7
PRESENT SIGNAL  
+5V  
PCIXCAP  
LOCK  
8
9
INT D  
NC  
10  
11  
12  
13  
14  
15  
16  
17  
NC  
NC  
GND  
PAR  
NC  
GND  
PCI CLK  
GND  
+3.3V  
AD 15  
AD 12  
AD 11  
AD 9  
GND  
GNT A  
REQ A  
47  
MVME2500 Installation and Use (6806800L01H)  
   
Controls, LEDs, and Connectors  
Table 3-10 PMC J11 Connector (continued)  
Pin  
18  
Signal Description  
+5V  
Pin  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
Signal Description  
+5V  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
+3.3V  
AD 31  
AD 28  
AD 27  
AD 25  
GND  
GND  
CBE0  
AD 6  
AD 5  
AD 4  
GND  
GND  
+3.3V  
AD 3  
CBE3  
AD 22  
AD 21  
AD 19  
+5V  
AD 2  
AD 1  
AD 0  
+5V  
+3.3V  
AD 17  
GND  
REQ64  
Table 3-11 PMC J12 Connector  
Pin  
1
Signal Description  
+12V  
Pin  
33  
34  
35  
36  
37  
38  
39  
40  
41  
Signal Description  
GND  
2
JTAG TRST  
JTAG TMS  
JTAG TDO  
JTAG TDI  
GND  
IDSELB  
TRDY  
3
4
+3.3V  
5
GND  
6
STOP  
7
GND  
PERR  
8
NC  
GND  
9
NC  
+3.3V  
48  
MVME2500 Installation and Use (6806800L01H)  
 
Controls, LEDs, and Connectors  
Table 3-11 PMC J12 Connector (continued)  
Pin  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
Signal Description  
Pin  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
Signal Description  
SERR  
NC  
BUSMODE2 (Pulled UP)  
CBE1  
+3.3V  
GND  
PCI RESET  
AD 14  
AD 13  
M66EN  
AD 10  
AD 8  
BUSMODE3 (PULLED DWN)  
+3.3V  
BUSMODE4 (PULLED DWN)  
NC  
GND  
+3.3V  
AD 7  
AD 30  
AD 29  
GND  
REQB  
+3.3V  
GNTB  
NC  
AD 26  
AD 24  
+3.3V  
IDSEL  
AD 23  
+3.3V  
AD 28  
AD 18  
GND  
GND  
NC  
EREADY  
GND  
RSTOUT  
ACK64  
+3.3V  
GND  
AD 16  
CBE2  
NC  
Table 3-12 PMC J13 Connector  
Pin  
1
Signal Description  
NC  
Pin  
33  
Signal Description  
GND  
49  
MVME2500 Installation and Use (6806800L01H)  
 
Controls, LEDs, and Connectors  
Table 3-12 PMC J13 Connector (continued)  
Pin  
Signal Description  
GND  
Pin  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
Signal Description  
AD48  
AD 47  
AD 52  
AD 45  
GND  
2
3
GND  
4
CBE7  
CBE6  
CBE5  
CBE4  
GND  
5
6
7
+3.3V  
AD 40  
AD 43  
AD 42  
AD 41  
GND  
8
9
+3.3V  
PAR64  
+3.3V  
AD 62  
AD 61  
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
GND  
AD 40  
AD 39  
AD 38  
AD 37  
GND  
GND  
AD 60  
AD 59  
AD 58  
AD 57  
GND  
GND  
AD 36  
AD 35  
AD 34  
AD 33  
GND  
+3.3V  
AD 56  
AD 55  
AD 54  
AD 53  
GND  
+3.3V  
AD 32  
NC  
GND  
GND  
NC  
50  
MVME2500 Installation and Use (6806800L01H)  
Controls, LEDs, and Connectors  
Table 3-12 PMC J13 Connector (continued)  
Pin  
29  
30  
31  
32  
Signal Description  
AD 51  
Pin  
61  
62  
63  
64  
Signal Description  
NC  
AD 50  
GND  
GND  
NC  
AD 49  
GND  
Table 3-13 PMC J14 Connector  
Pin  
1
Signal Description  
PMC IO 1  
Pin  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
Signal Description  
PMC IO 33  
PMC IO 34  
PMC IO 35  
PMC IO 36  
PMC IO 37  
PMC IO 38  
PMC IO 39  
PMC IO 40  
PMC IO 41  
PMC IO 42  
PMC IO 43  
PMC IO 44  
PMC IO 45  
PMC IO 46  
PMC IO 47  
PMC IO 48  
PMC IO 49  
PMC IO 50  
PMC IO 51  
PMC IO 52  
2
PMC IO 2  
3
PMC IO 3  
4
PMC IO 4  
5
PMC IO 5  
6
PMC IO 6  
7
PMC IO 7  
8
PMC IO 8  
9
PMC IO 9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
PMC IO 10  
PMC IO 11  
PMC IO 12  
PMC IO 13  
PMC IO 14  
PMC IO 15  
PMC IO 16  
PMC IO 17  
PMC IO 18  
PMC IO 19  
PMC IO 20  
51  
MVME2500 Installation and Use (6806800L01H)  
 
Controls, LEDs, and Connectors  
Table 3-13 PMC J14 Connector (continued)  
Pin  
21  
Signal Description  
PMC IO 21  
Pin  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
Signal Description  
PMC IO 53  
PMC IO 54  
PMC IO 55  
PMC IO 56  
PMC IO 57  
PMC IO 58  
PMC IO 59  
PMC IO 60  
PMC IO 61  
PMC IO 62  
PMC IO 63  
PMC IO 64  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
PMC IO 22  
PMC IO 23  
PMC IO 24  
PMC IO 25  
PMC IO 26  
PMC IO 27  
PMC IO 28  
PMC IO 29  
PMC IO 30  
PMC IO 31  
PMC IO 32  
3.4.2.4 JTAG Connector (P6)  
The JTAG Connector can be used in conjunction with the JTAG board and ASSET hardware.  
Table 3-14 JTAG Connector (P6)  
Pin  
1
Signal Description  
NC  
Pin  
2
Signal Description  
+3.3V FROM +5V  
SPI CS 0  
3
SPI HOLD 0  
SPI CLK  
4
5
6
SPI CS 1  
7
SPI HOLD 1  
SPI MISO  
8
SPI MOSI  
9
10  
12  
14  
16  
18  
GND  
11  
13  
15  
17  
SPI VCC  
SCAN 1 TCK  
GND  
SCAN 1 TDI  
SCAN 1 TRST  
SCAN 1 TMS  
SCAN 1 TDO  
+3.3V  
52  
MVME2500 Installation and Use (6806800L01H)  
   
Controls, LEDs, and Connectors  
Table 3-14 JTAG Connector (P6) (continued)  
Pin  
19  
21  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
47  
49  
51  
53  
55  
57  
59  
Signal Description  
GPO0  
Pin  
20  
22  
24  
26  
28  
30  
32  
34  
36  
38  
40  
42  
44  
46  
48  
50  
52  
54  
56  
58  
60  
Signal Description  
NC  
NC  
SCAN 2 TMS  
SCAN 2 TDO  
+3.3V FROM +5V  
SCAN 2 TDI  
NC  
NC  
SCAN 2 TCK  
GND  
NC  
SCAN 3 TMS  
SCAN 3 TDO  
+2.5V  
SCAN 3 TCK1  
SCAN 3 TCK 2  
SCAN 3 TCK 3  
GND  
SCAN 3 TDI  
SCAN 3 TRST  
SCAN 4 TCK 1  
GND  
SCAN 3 TCK3  
SCAN 4 TMS  
SCAN 4 TDO  
+3.3V  
SCAN 4 TCK 2  
GND  
SCAN 4 TDI  
SCAN 4 TRST  
SCAN 5  
SCAN 4 TCK 3  
SCAN 5 TMS  
SCAN 5 TDO  
+3.3V  
GND  
SCAN5 TCK2  
GND  
SCAN 5 TDI  
SCAN 5 TRST  
NC  
53  
MVME2500 Installation and Use (6806800L01H)  
Controls, LEDs, and Connectors  
3.4.2.5 COP Connector (P6)  
The COP header is used for the CPU debug. The pin assignment is dictated by Freescale and is  
compatible with the processor’s debugging tool.  
Table 3-15 COP Header (P10)  
Pin  
1
Signal Description  
JTAG TDI  
2
COP QACK  
3
JTAG TDO  
4
COP TRST  
5
COP RUNSTOP (Pulled UP)  
COP VDD SENSE  
JTAG TCK  
6
7
8
COP CHECK STOP IN  
JTAG TMS  
9
10  
11  
12  
13  
14  
15  
16  
NC  
P2020 SW RESET  
COP PRESENT  
COP HARD RESET  
KEYING  
COP CHECK STOP OUT  
GND  
3.4.2.6 SD Connector (J2)  
Table 3-16 SD Connector (J2)  
Pin  
1
Signal Description  
DATA 3  
54  
MVME2500 Installation and Use (6806800L01H)  
       
Controls, LEDs, and Connectors  
Table 3-16 SD Connector (J2) (continued)  
Pin  
2
Signal Description  
COMMAND  
GND  
3
4
VCC (+3.3V)  
CLOCK  
5
6
GND  
7
DATA 0  
8
DATA 1  
9
DATA 2  
10  
11  
12  
WRITE PROTECT  
CARD DETECT  
GND  
3.4.2.7 XMC Connector (XJ2)  
The MVME2500 has one XMC connector (XJ2) that supports XMC cards with J15 connector. It  
can also support XMC cards with J16 connector without encountering any mechanical  
interference.  
Table 3-17 XMC Connector (XJ2) Pinout  
Pin  
1
Row A  
RX0 +  
GND  
NC  
Row B  
RX0 -  
GND  
NC  
Row C  
Row D  
RX1+  
GND  
NC  
Row E  
RX1 -  
GND  
NC  
Row F  
+3.3V  
HRESET  
+3.3V  
+3.3V  
2
JTAG TRST  
+3.3V  
3
4
GND  
GND  
JTAG TCK  
GND  
GND  
MRSTO  
(PULLED UP)  
5
6
7
8
NC  
NC  
+3.3V  
NC  
NC  
+3.3V  
+12V  
+3.3V  
-12V  
GND  
NC  
GND  
NC  
JTAG TMS  
+3.3V  
GND  
NC  
GND  
NC  
GND  
GND  
JTAG TMS  
GND  
GND  
55  
MVME2500 Installation and Use (6806800L01H)  
   
Controls, LEDs, and Connectors  
Table 3-17 XMC Connector (XJ2) Pinout (continued)  
Pin  
9
Row A  
NC  
Row B  
NC  
Row C  
NC  
Row D  
NC  
Row E  
NC  
Row F  
+3.3V  
GA 0  
10  
11  
GND  
TX0  
GND  
TX0 -  
JTAG TDO  
GND  
TX1 +  
GND  
TX1 -  
BIST (PULLED  
UP)  
+3.3V  
12  
13  
14  
15  
16  
GND  
NC  
GND  
NC  
GA 1  
NC  
GND  
NC  
GND  
NC  
PRESENT  
+3.3V  
GND  
NC  
GND  
NC  
GA 2  
NC  
GND  
NC  
GND  
NC  
I2C DATA  
+3.3V  
GND  
GND  
MVMRO  
(PULLED  
DOWN)  
GND  
GND  
I2C CLOCK  
17  
18  
19  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
GND  
CLK +  
GND  
CLK -  
GND  
NC  
GND  
ROOT0  
(PULLED UP)  
3.4.2.8 Miscellaneous P2020 Debug Connectors  
Table 3-18 P20x0 Debug Header  
Pin  
1
Signal Description  
MSRCDI0  
GND  
2
3
MSRCDI1  
MDVAL  
4
5
MSRCDI2  
TRIG_OUT  
MSRCDI3  
6
7
56  
MVME2500 Installation and Use (6806800L01H)  
   
Controls, LEDs, and Connectors  
Table 3-18 P20x0 Debug Header (continued)  
Pin  
8
Signal Description  
TRIG_IN  
9
MSRCID4  
GND  
10  
3.5  
Switches  
These switches control the configuration of the MVME2500.  
Board Malfunction  
Switches marked as “reserved” might carry production-related functions and can cause  
the board to malfunction if their settings are changed.  
Do not change settings of switches marked as “reserved”. The setting of switches which  
are not marked as “reserved” has to be checked and changed before board installation.  
3.5.1  
Geographical Address Switch (S1)  
The Tsi148 VMEbus Status Register provides the VMEbus geographical address of the  
MVM2500. The switch reflects the inverted states of the geographical address signals.  
Applications not using the five row backplane can use the geographical address switch to  
assign a geographical address based on the following diagram.  
57  
MVME2500 Installation and Use (6806800L01H)  
     
Controls, LEDs, and Connectors  
Note that this switch is wired in parallel with the geographical address pins on the 5-row  
connector. These switches must be in the "OFF" position when installed in a 5-row chassis in  
order to get the correct address from the P1 connector. This switch also includes the SCON  
control switches.  
Figure 3-5  
Geographical Address Switch  
Table 3-19 Geographical Address Switch  
Position  
S1-1  
S1-2  
S1-3  
S1-4  
S1-5  
S1-6  
S1-7  
S1-8  
Function  
Default  
1
VME SCON Auto  
Auto-SCON  
2
VME SCON SEL  
Non-SCON  
GAP  
1
1
1
1
1
1
GAP4  
GAP3  
GAP2  
GAP1  
GAP0  
1. The VME SCON MAN switch is "OFF" to select Auto-SCON mode. The switch is "ON" to select  
manual SCON mode whichworks in conjunction with the VME SCON SEL switch.  
2. The VME SCON SEL switch is OFF to select non-SCON mode. The switch is ON to select always  
SCON mode. This switch is only effective when the VME SCON MAN switch is "ON".  
58  
MVME2500 Installation and Use (6806800L01H)  
   
Controls, LEDs, and Connectors  
3.5.2  
SMT Configuration Switch (S2)  
This eight position SMT configuration switch controls the flash bank write-protect, selects the  
flash boot image, and controls the safe start ENV settings. The default setting on all switch  
positions is "OFF" and is indicated by brackets in Table 3-20.  
Figure 3-6  
SMT Configuration Switch Position  
Table 3-20 Geographical Address Switch Settings  
SW2  
1
DEFAULT  
Signal Name  
Description  
Notes  
OFF (Normal Env)  
NORMAL_ENV  
Safe Start ("ON"= Use  
normal ENV, "OFF"= Use  
safe ENV)  
2
3
4
OFF (Flash Block A)  
OFF (WP Disabled)  
OFF (PMC)  
BOOT_BLOCK_A  
FLASH_WP_N  
PMC_XMC_SEL  
Boot Block B Select  
SPI Flash Write-Protect  
XMC or PMC selection  
switch  
Will select if XMC card or  
PMC card is used  
5
OFF (133 MHz)  
PMC_133  
PCI frequency selection  
59  
MVME2500 Installation and Use (6806800L01H)  
       
Controls, LEDs, and Connectors  
Table 3-20 Geographical Address Switch Settings (continued)  
SW2  
6
DEFAULT  
Signal Name  
Description  
Notes  
OFF (WP Enabled)  
MASTER_WP_DISA Write-Protect Disable  
For I2C write-protect only.  
BLED  
switch  
7
OFF (Front)  
GBE_MUX_SEL  
User Defined switch that  
will select if the GBE PHY  
will function on the front  
panel or on the Back  
PLANE  
8
OFF (CPU Reset  
Deasserted)  
Reserved  
Should be "OFF" for normal  
operation.  
60  
MVME2500 Installation and Use (6806800L01H)  
Chapter 4  
Functional Description  
4.1  
Block Diagram  
The MVME2500 block diagram is illustrated in Figure 4-1. All variants provide front panel  
access to one serial port via a micro-mini DB-9 connector, two 10/100/1000 Ethernet port  
(one is configurable to be routed on the front panel or to the rear panel) through a ganged RJ45  
connector and one Type A USB Port. It includes Board Fail LED indicator, user-defined LED  
indicator and a ABORT/RESET switch.  
Figure 4-1  
Block Diagram  
4.2  
Chipset  
The MVME2500 utilizes the QorIQ P20x0 integrated processor. It offers an excellent  
combination of protocol and interface support including dual high performance CPU cores, a  
large L2 cache, a DDR2/DDR3 memory controller, three enhanced three-speed Ethernet  
controllers, two Serial RapidIO interfaces with a messaging unit, a secure digital interface, a  
USB 2.0 interface and three PCI express controllers.  
61  
MVME2500 Installation and Use (6806800L01H)  
               
Functional Description  
This section describes the protocol and interfaces provided in the QorIQ P20x0 integrated and  
is utilized by the MVME2500.  
4.2.1  
4.2.2  
e500 Processor Core  
The QorIQ integrated processors offer dual high performance e500v2 core (P2020) and a  
single e500v2 core (P2010). It operates from 800 MHz up to 1.2GHz core frequency. The e500  
processor core is a low-power implementation of the family of reduced instruction set  
computing (RISC) embedded processor that implement the Book E definition of the PowerPC  
architecture. The e500 is a 32-bit implementation of the Book E architecture using the lower  
words of 64-bit general-purpose registers (GPRs) while E500v2 uses 36 bit physical addressing  
and some improvement from the previous version.  
Integrated Memory Controller  
A fully programmable DDR SDRAM controller supports most JEDEC standard DDR2 and DDR3  
memories available. Unbuffered registered DIMMs are also supported. A built-in error checking  
and correction (ECC) ensures very low bit-error rates for reliable high-frequency operation.  
Though ECC is not implemented on MVME2500, the board includes a place holder for  
additional chips for ECC whenever it is needed in the future.  
The memory controller supports the following:  
16 GB of memory  
Asynchronous clocking from platform clock, with programmable settings that meets all  
the SDRAM timing parameters.  
Up to four physical banks; each bank can be independently addressed to 64 Mbit to 4 Gbit  
memory devices (depending on the internal device configuration with x8/x16/x32 data  
ports).  
Chip set interleaving and partial array self-refresh.  
Data mask signal and read-modify-write for sub-double-word writes when ECC is enabled.  
Double-bit error detection and single-bit error correction ECC, 8-bit check work across 64-  
bit data.  
Address parity for registered DIMMs.  
62  
MVME2500 Installation and Use (6806800L01H)  
   
Functional Description  
Automatic DRAM initialization sequence or software-controlled initialization sequence  
and automatic DRAM data initialization.  
Write leveling for DDR3 memories and supports up to eight posted refreshes.  
4.2.3  
4.2.4  
PCI Express Interface  
The PCI Express interface is compatible with the PCI Express Base Specification Rev. 1.0a. The  
PCI Express controller connects the internal platform to a 2.5 GHz serial interface. The P20x0  
has the options for up to three PCI-E interfaces with up to x4 link width. The PCI-E controller can  
be configured to operate as either PCI-E root complex (RC) or as an endpoint (EP) device.  
Local Bus Controller (LBC)  
The main component of the enhanced LBC is the memory controller that provides a 16-bit  
interface to various types of memory devices and peripherals. The memory controller is  
responsible for controlling eight memory banks shared by the following: a general purpose  
chip select machine (GPCM); a flash controller machine (FCM) and user programmable  
machines (UPMs).  
4.2.5  
Secure Digital Hub Controller (SDHC)  
The SDHC/eSDHC provides an interface between the host system and the memory cards such  
as the MMC and SD. It is compatible with the SD Host Controller Standard Specification Ver. 2.0  
and supports the following: SD, miniSD, SD Combo, MMC+ and RS-MMC card.  
2
4.2.6  
4.2.7  
I C Interface  
2
The MVME2500 uses only one of the two independent I C buses on the processor. For more  
information, see I2C Devices, on page 73.  
USB Interface  
The P20x0 implements a USB 2.0 compliant serial interface engine. For more information, see  
63  
MVME2500 Installation and Use (6806800L01H)  
         
Functional Description  
4.2.8  
4.2.9  
DUART  
The chipset provides two universal asynchronous receiver/transmitter (UART), each of which  
acts independently of the other. Each UART is clocked by the CCB clock and is compatible with  
PC16522D. As a full-duplex interface, it provides a 16-byte FIFO for both transmitter and  
receiver mode.  
DMA Controller  
The DMA controller transfers blocks of data between the various interfaces and functional  
blocks of P20x0 that are independent of the e500 cores. The P20x0 DMA controller has three  
high-speed DMA channels, all of which capable of complex data movement and advanced  
transaction chaining.  
4.2.10 Enhanced Three-Speed Ethernet Controller (eTSEC)  
The eTSEC controller of the device communicates to the 10 Mbps, 100 Mbps, and 1 Gbps  
Ethernet/IEE 802.3 networks, as well as to devices with generic 8 to 16-bit FIFO ports. The  
MVME2500 uses the eTSEC using the RGMII interface.  
4.2.11 General Purpose I/O (GPIO)  
The P20x0 has a total of sixteen I/O ports. Four of these ports are used alternately used as  
external input interrupt. All sixteen ports have open drain capabitilies.  
The P20x0 processor provides a Serial Rapid I/O interface. However, this interface is not  
utilized by the MVME2500.  
4.2.12 Security Engine (SEC) 3.1  
The integrated security engine of the P20x0 is designed to off-load intensive security functions  
like key generation and exchange, authenticaion and bulk encryption from the processor core.  
It includes eight different execution units where data flows in and out of an EU.  
64  
MVME2500 Installation and Use (6806800L01H)  
         
Functional Description  
4.2.13 Common On-Chip Processor (COP)  
The COP is the debug interface of the QorIQ P20x0 Processor. It allows a remote computer  
system to access and control the internal operation of the processor. The COP interface  
connects primarily through the JTAG and has additional status monitoring signals. The COP has  
additional features like breakpoints, watch points, register and memory  
examination/modification and other standard debugging features.  
4.2.14 P20x0 Hardware Configuration Pins  
A series of strapping pins are required to initialize the P20x0. These pins are samples during the  
assertion of HRESET and return to their assigned function after HRESET is deasserted.  
4.3  
System Memory  
The processor integrated memory controller supports both DDR2 and DDR3 memory devices.  
It has one channel and can be configured for up to four memory banks with x8, x16 and x32  
devices. Using 4 GB devices allows support of up to 16 GB of memory. ECC is not supported.  
The MVME2500 has a total of eight board variants, half of which has soldered 2 GB memory,  
while the remaining half has 16 GB memeory. The x8 or 1 Gbit device forms 2 GB and 1 GB  
memory capacity. A total of 16 devices for 2 GB and eight devices are used to form 16 GB.  
MVME2500 supports ENP1 and ENP2 operating environment. The ENP1 environment uses  
Samsung for all variants including the commercial grade devices, while the ENP2 variants use  
Micron.  
4.4  
Timers  
There are various timer functions implemented in the MVME2500 platform:  
4.4.1  
Real Time Clock  
This operates on a 3.3 V supply monitoring and battery control function (MAX6364PUT29), a  
32.768 KHz clock generator (DS32KHZS) and an RTC with alarm (DS1375T).  
65  
MVME2500 Installation and Use (6806800L01H)  
               
Functional Description  
See Real-Time Clock Battery, on page 77 for more information on the real time clock back-up  
battery.  
4.4.2  
4.4.3  
Internal Timer  
The processor's internal timer is composed of eight global timers divided into two groups of  
four timers each. Each time has four individual configuration registers and they cannot be  
cascaded together.  
Watchdog Timer  
The onboard FPGA provides programmable 16-bit watchdog timers. It has a 1 ms resolution  
and generates a board reset when the counter expires. Interrupt is generated to the processor  
when this occurs. Default value is 60 seconds.  
4.4.4  
FPGA Tick Timer  
The MVME2500 supports three independent 32-bit timers that are implemented on the FPGA  
to provide fully programmable registers for the timers.  
4.5  
Ethernet Interfaces  
The MVME2500 has three eTSEC controllers. Each one supports RGII, GMII, and SGMII interface  
to the external PHY. All controllers can only be untilized when using the RGMII interface. Using  
the GMII allows only up to two usable controllers.  
MVME2500 provides two 10/100/1000 Ethernet interfaces on the front panel and another two  
are routed to the RTM through the backplane connector. Due to controller limitations, one  
controller is designed to be routed to the front panel or to the RTM. This setting is possible by  
using a third party gigabit Ethernet LAN switch with a single enable switch such as PERICOM’s  
P13L301D. The routing direction can be configured through the on-board dip switch.  
Each Ethernet controller has a single dedicated Broadcom BCM54616S with integrated MAC  
and PHY. The registers of the PHY can be accessed through the processor’s two-wire Ethernet  
management interface.The front panel RJ45 connector has integrated speed and and activity  
status indicator LEDs. Isolation transformers are provided onboard for each port.  
66  
MVME2500 Installation and Use (6806800L01H)  
             
Functional Description  
4.6  
SPI Bus Interface  
The enhanced serial peripheral interface (eSPI) allows the device to exchange data with  
peripheral devices such as EEPROMs, RTC, Flash and the like. The eSPI is a full-duplex  
synchronous, character-oriented channel that supports a simple interface such as receive,  
transmit, clock and chip selects. The eSPI receiver and transmitter each have a FIFO of 32 Bytes.  
P20x0 supports up to four chip selects and RapidS full clock cycle operation. It can operate both  
full-duplex and half duplex. It works with a range of 4-bit to 16-bit data characters and is a  
single-master environment. MVME2500 is configured such that the eSPI can operate up to 200  
MHz clock rate and can support booting process.The firmware boot flash resides in the P20x0  
eSPI bus interface.  
4.6.1  
4.6.2  
SPI Flash Memory  
The MVME2500 has two 8 MB onboard serial flash. Both contain the ENV variables and the U-  
Boot firmware image, which is about 513 KB in size. Both SPI flash contain the same  
programming for firmware redundancy and crisis recovery. The SPI flash can be programmed  
through the JTAG interface or through an onboard SPI flash programming header.  
For information on U-boot and ENV Variables location see, Flash Memory Map, Table 5-2 on  
SPI Flash Programming  
The MVME2500 has three headers: a 10-pin header for SPI Flash programming, an 80-pin  
header for the JTAG connectivity and a 20-pin JTAG header for ASSET hardware connectivity.  
The following options are used to program the onboard flash:  
Using onboard SPI header - The MVME2500 uses the 10-pin header with a Dual SPI Flash in-  
circuit programming configuration. The pin connection is compatible with DediProg SPI  
Unversal Pin Header.  
Using 60-pin external JTAG header - An external JTAG board with a JTAG multiplexer is  
compatible with the MVME2500 and can be attached using an external cable. It can be  
used to update the boot loader in the field. Using this method, programming can be done  
through the JTAG interface or by using the dedicated SPI Flash programming header on the  
JTAG board.  
67  
MVME2500 Installation and Use (6806800L01H)  
       
Functional Description  
Factory Pre-Programming - Programming the SPI Flash usually takes a while. Ideally, the  
SPI Flash should be pre-programmed in the factory before shipment.  
ICT Programming - This programming is done on exposed test points using a bed of nails  
tester.  
The board power should be switched on before programming. The switch S2-8 should also be  
powered on to successfully detect the SPI Flash chip.  
4.6.3  
Firmware Redundancy  
The MVME2500 uses two physically separate boot devices to provide boot firmware  
redundancy. Although the P20x0 provides four SPI Bus chip-selects, the P20x0 is only capable  
of booting from the SPI Device controlled by Chip Select 0. External SPI multiplexing logic is  
implemented on the MVME2500 to accomodate this chipset limitation.  
68  
MVME2500 Installation and Use (6806800L01H)  
 
Functional Description  
The MVME2500 FPGA controls the chip select to SPI devices A and B. The FPGA chip select  
control is based on the Switch Bank (S2-2).  
Figure 4-2  
SPI Device Multiplexing Logic  
At power-up, the selection of the SPI boot device is strictly based upon the Switch Bank (S2-2)  
setting. Depending on the S2-2 setting, SPI_SEL0 is routed to one of two SPI devices. The  
selected SPI device must contain a boot image. Once the boot image is copied into memory  
and executed, the FPGA will wait and once the P20x0 will write on one bit of the FPGA  
watchdog register, the FPGA will then pass through the SPI chip select from the P20x0 to SPI  
device chip selects. The software can now perform read/write processes on any SPI device,  
including copying from one SPI device to another.  
With this flexible approach to firmware redundancy, one should always be able to recover from  
a corrupt active firmware image, as long as a healthy firmware image is maintained in single  
bootable SPI Device.  
69  
MVME2500 Installation and Use (6806800L01H)  
 
Functional Description  
The MVME2500 supports automatic switch over. If booting one device is not successful, the  
watchdog will trigger the board reset and it will automatically boot on the other device.  
4.6.4  
Crisis Recovery  
The MVME2500 provides an independent boot firmware recovery mechanism for the  
operating system. The firmware recovery can be performed without leaving the firmware  
environment.  
During crisis recovery, the healthy boot image contained in SPI Device B is copied to SPI Device  
A, replacing the corrupt boot image contained in SPI Device A.  
Crisis recovery is performed as follows:  
1. Power off the board.  
2. Set Switch S2-2 to "ON" to point to SPI Device B (crisis image).  
3. Power on the board.  
4. Press "h" on the keyboard to go to the U-Boot prompt.  
5. Type "moninit fru" to copy the crisis image to SPI Device A.  
6. Once the U-Boot prompt is visible, power off the board.  
7. Set the S2-3 back to "OFF" to point to the SPI Device A.  
8. Power on the board to boot from the newly recovered image on the SPI Device A.  
The board will automatically switch over if one of the devices is corrupted.  
4.7  
Front UART Control  
The MVME2500 utilizes one of the two UART functions provided in the male micro-mini DB-9  
front panel. A male-to-male micro-mini DB-9 to DB9 adapter cable is available under Emerson  
Part Number SERIAL-MINI-D (30-W2400E01A) and is approximately 12 inches in length.  
70  
MVME2500 Installation and Use (6806800L01H)  
   
Functional Description  
Only 115200 bps and 9600 bps are supported. The default baud rate on the front panel serial  
is 9600 kbps.  
4.8  
4.9  
Rear UART Control  
The MVME2500 utilizes the Exar ST16C554 quad UART (QUART) to provide four additional  
ports to the RTM. These devices feature 16 bytes of transmit and receive first-in first-out (FIFO)  
with selectable receive FIFO trigger levels and data rates of up to 1.5 Mbps. Each UART has a set  
of registers that provide the user with operating status and control. The QUART are 8-bit  
devices connected to the processor through the local bus controller using LBC chipset CS1,  
CS2, CS3 and CS4.  
These four serial interfaces are routed to P2 I/O for RTM accessibility. There are a total of five  
serial ports available on the MVME2500.  
PMC/XMC Sites  
The MVME2500 hosts only one PMC/XMC site and accepts either a PMC or an XMC add-on  
card. Only an XMC or a PMC may be populated at any given time as both occupy the same  
physical space on the PCB. Combination PMC/XM cards are not supported by the MVME2500.  
The site provides a rear PMC I/O.  
The PMC site is fully compliant with the following:  
1. VITA 39 –PCI-X for PMC  
2. VITA 35-2000 for PMC P4 to VME P2 Connection  
3. PCI Rev 2.2 for PCI Local Bus Specification.  
4. PCI-X PT 2.0 for PCI-X Protocol Addendum to the PCI Local Bus Specs.  
5. IEEE Standard P1386-2001 for Standard for Common Mezzanine Card Family  
6. IEEE Standard P1386.1-2001 for Standard Physical and Environmental Layer for PCI  
Mezzanine Card.  
7. VITA 42 for XMC  
8. VITA 42.3 , PCIe for XMC  
71  
MVME2500 Installation and Use (6806800L01H)  
   
Functional Description  
PMC/XMC sites are keyed for 3.3V PMC signaling. PMC and XMC add-on cards must have a hole  
in the 3.3 V PMC keying position in order to be populated on the MVME2500. The XMC  
specification accommodates this since it is expected that carrier cards will host both XMC and  
PMC capable add-on cards.  
MVME2500 utilizes the P20x0 x2 link PCI Express interface. It is designed such that the same  
PCI-E interface is used for either PMC or XMC through Pericom’s PI2PCIE2412. It is PCI-E Gen2  
compliant with four differential channel input and 2:1 MUX switch with single enable. The  
enable pin is controlled by FPGA through onboard switch.  
The onboard switch S2-4 determines the direction of the PCI-E MUX switch. The default setting  
"OFF" routes the differential lines to the PMC. Otherwise, it is routed to the XMC connector.  
4.9.1  
4.9.2  
PMC Add-on Card  
The MVME2500 PMC interface utilizes IDT’s TSI384 as the PCie/PCI-X bridge. It can support up  
to 8.5 Gbps (64 bits x 133 Mhz). The onboard switch S2-7 configures the TSI384 to run on  
either 100 Mhz or 133 Mhz, with 133 Mhz as default.  
The MVME2500 supports multi-function PMCs and processor PMCs (PrPMCs). The PMC site  
has two IDSELs, two REQ/GNT pairs, and EREADY to support PrPMC as defined by VITA39.  
XMC Add-on Card  
The x2 links the PCI-E Gen 1 and is directly routed to the P15 XM connector through Pericom  
MUX Switch. The onboard switch S2-4 should be set to "ON".  
XMC add-on cards are required to operate at +5V or +12V (from carrier to XMC). The  
MVME2500 provides +5V to the XMC VPWR (Variable Power) pins. The MVME2500 does not  
provide +12V to the XMC VPWR pins. Voltage tolerances for VPWR and all carrier supplied  
voltage (+3.3 V, +12 V, -12 V) are defined by the base XMC standard.  
4.10 SATA Interface  
The MVME2500 supports an optional 2.5" SATA HDD. The connector interface is compatible  
with the Emerson SATAMNKIT, which contains the following: one SSD/HDD, one SATA board,  
screws and a mounting guide. The SATA connector can support a horizontal mounted  
SSD/HDD.  
72  
MVME2500 Installation and Use (6806800L01H)  
     
Functional Description  
The MVME2500 uses Marvell's 88SE6121B2-NAA2C000 SATA controller and supports up to 1.5  
Gbps (SATA Gen 1). For status indicators, it has an onboard green LED, D12 and D13 for SATA  
link and SATA activity status respectively.  
4.11 VME Support  
The MVME2500 can operate in either System Controller (SCON) mode or non-SCON mode, as  
determined by the the switch setting of S1-1 and S1-2.  
The P20x0 x1 link is used for the VME backplane connectivity through the Tsi384 (PCI-E/PCI-X)  
and Tsi148 (PCI-X/VMEBus) bridges.  
information.  
4.11.1 Tsi148 VME Controller  
The VMEbus interface for the MVME2500 is provided by the Tsi148 VMEbus controller. The  
Tsi148 provides the required VME, VME extensions, and 2eSST functions. TI  
SN74VMEH22501transceivers are used to buffer the VME signals between the Tsi148 and the  
VME backplane. Refer to the Tsi148 user's manual for additional details and/or programming  
information.  
4.12 USB  
The MVME2500 processor implements a dual-role (DR) USB 2.0 compliant serial interface  
engine. DC power to the front panel USB port is supplied using a USB power switch which  
provides soft-start, current limiting, over current detection, and power enable for port 1.  
2
4.13 I C Devices  
2
The MVME2500 utilizes one of the two I2C ports provided by the board's processor. The I C bus  
is a two-wire , serial data (SDA) and serial clock (SCL), synchronous, multi-master bi-directional  
serial bus that allows data exchance between this device and other devices such as VPD, SPD,  
EEPROM, RTC, temperature sensor, RTM, XMC and IDT clocking.  
73  
MVME2500 Installation and Use (6806800L01H)  
       
Functional Description  
The RTM I2C address can be configured by the user and should not contain duplicate addresses  
to avoid conflict. For more information, see I2C Bus Device Addressing, on page 118.  
4.14 Reset/Control FPGA  
The FPGA provides the following functions:  
Power control and fault detection  
Reset sequence and reset management  
Status and control registers  
Miscellaneous control logic  
Watchdog timer  
32-bit Tick Timer  
Clock generator  
Switch decoder and LED controller  
4.15 Power Management  
The MVME2500 backplane is utilized to derive +3.3V, +2.5V, +1.8V, +1.5V, +1.2V, +1.05V  
voltage rail. Each voltage rail is controlled by the FPGA through an enable pin of the regulator,  
while the output is monitored through power good signal. If a voltage rail fails. the FPGA will  
disable each supply. To restart the system, the chassis power switch must be powercycled.  
4.15.1 Onboard Voltage Supply Requirement  
The onboard power supply is considered to be out of regulation if the output voltage level is  
below the minimum required power or goes beyond the maximum.  
Table 4-1 Voltage Supply Requirement  
Voltage Rail Requirement  
Voltage Rail  
+3.3 V  
Minimum  
3.15 V  
Maximum  
3.45 V  
74  
MVME2500 Installation and Use (6806800L01H)  
       
Functional Description  
Table 4-1 Voltage Supply Requirement  
Voltage Rail Requirement  
Minimum  
Voltage Rail  
+2.5 V  
Maximum  
2.625 V  
1.9 V  
2.375 V  
1.7 V  
+1.8 V  
+1.5 V  
1.425 V  
1.14 V  
1.14 V  
1.0 V  
1.575 V  
1.26 V  
1.26 V  
1.1 V  
+1.2 V  
+1.2 V_SW  
+1.05 V  
4.15.2 Power Up Sequencing Requirements  
The power up sequence describes the voltage rail power up timing, which is designed to  
support all the chip supply voltage sequencing requirement.  
75  
MVME2500 Installation and Use (6806800L01H)  
 
Functional Description  
4.16 Clock Structure  
A total of three IDT chips, a discrete oscillator and crystal to support all the clock requirements  
of MVME2500.  
Figure 4-3  
Clock Distribution Diagram  
4.17 Reset Structure  
MVME2500 reset will initiate after the power up sequence if the 1.5 V power supply is "GOOD".  
When the board is at "ready" state, the reset logic will monitor the reset sources and implement  
the necessary reset function.  
76  
MVME2500 Installation and Use (6806800L01H)  
     
Functional Description  
4.17.1 Reset Sequence  
The timing of the reset sequence supports each chip reset requirements with respect to the  
power supply.  
4.18 Thermal Management  
The MVME2500 utilizes two on-board temperature sensors: one for the board and the other for  
the CPU temperature sensor. The board temperature sensor is located near the dual RJ45  
connector near the front panel. The CPU temperature sensor is located near the P2020 CPU.  
The MVME2500 thermal management support will interrupt the process only to show the  
current board and CPU temperature. This interrupt is routed directly to one of the processor’s  
IRQ4.  
The table below shows the low and high threshold temperature in order for the interrupt to be  
asserted.  
Table 4-2 Thermal Interrupt Threshold  
Board  
CPU Temperature  
Temperature Limit Limit  
Board Variant  
Board Temperature Limit  
0°C to +55°C  
Low  
0°C  
High  
70°C  
90°C  
Low  
0°C  
High  
90°C  
100°C  
Standard Variant  
Extended Temperature  
Variant  
-55°C to +71°C  
-40°C  
-40°C  
4.19 Real-Time Clock Battery  
A back-up battery based on the CR2325 specification is provided. It helps support the RTC  
hold-up requirements that maintain the correct date and time for at least two hours after the  
backplane power is switched off.  
77  
MVME2500 Installation and Use (6806800L01H)  
       
Functional Description  
4.20 Debugging Support  
The following information shows the details of Emerson debugging support as applied to the  
MVME2500.  
4.20.1 POST Code Indicator  
The following table shows the LED status of the POST Codes. For the location of the POST Code  
Logic 1 means LED is "ON", Logic 2 means LED is "OFF"  
Table 4-3 POST Code Indicator on the LED  
Sequence  
D33  
0
D32  
0
D35  
0
Description  
1
2
U-boot has been copied from SPI flash to CPU cache.  
0
1
0
Serial console has been initialized, some text is visible  
on the terminal.  
3
0
1
1
DDR has been initialized using SPD parameters,  
Execution is still in the cache.  
4
5
6
7
8
1
1
1
1
0
0
0
1
1
0
0
1
0
1
0
Execution has been relocated to RAM.  
PCI has been initialized.  
POST routines are finished.  
Additional SW routines are finished.  
U-boot prompt is visible on the terminal, can start  
loading OS image from USB, Ethernet, SATA SSD, SD.  
4.20.2 JTAG Chain and Board  
The MVME2500 is designed to work with separate JTAG board rather than with an onboard  
JTAG multiplexer. The chip can support up to a 6-scan port and the board’s boundary scan  
requires the following to function: ASSET hardware, JTAG board and JTAG cable. The  
MVME2500 provides a 60-pin header that can connect to the JTAG board using a custom cable.  
78  
MVME2500 Installation and Use (6806800L01H)  
       
Functional Description  
The JTAG board provides three different connectors for the ASSET hardware, flash  
programming and the MVME2500 JTAG connector. The board is equipped with TTL buffers to  
help improve the signal quality as it traverses over the wires.  
4.20.3 Custom Debugging  
Custom debugging makes use of the common on-chip processor. Refer to Common On-Chip  
4.21 Rear Transition Module (RTM)  
The MVME2500 is compatible with the MVME721x RTM.  
The MVME721X RTM is for I/O routing through the rear of a compact VMEbus chassis. It  
connects directly to the VME backplane in chassis with an 80 mm deep rear transition area. The  
MVME721X RTM is designed for use with the MVME7100, MVME2500, iVME7210, and MVME  
4100. It has the following features:  
Table 4-4 Transition Module Features  
Function  
I/O  
Features  
One five-row P2 backplane connector for serial and Ethernet I/O passed from the  
SBC  
Four RJ-45 connectors for rear panel I/O: four asynchronous serial channels  
Two RJ-45 connectors with integrated LEDs for rear panel I/O: two 10/100/1000  
Ethernet channels  
One PIM site with rear panel I/O  
For more information, refer to the MVME721x RTM Installation and Use. See Appendix B,  
Related Documentation, on page 129 for details on how to obtain and download the document.  
79  
MVME2500 Installation and Use (6806800L01H)  
     
Functional Description  
80  
MVME2500 Installation and Use (6806800L01H)  
Chapter 5  
Memory Maps and Registers  
5.1  
5.2  
Overview  
System resources including system control and status registers, external timers, and the  
QUART are mapped into 16 MB address range accessible from the MVME2500 local bus  
through the P20x0 QorIQ LBC.  
Memory Map  
The following table shows the physical address map of the MVME2500.  
Table 5-1 Physical Address Map  
Device Name  
DDR  
Start Address  
0x0000_0000  
0x8000_0000  
0xa000_0000  
0xc000_0000  
0xffc0_0000  
0xffc1_0000  
0xffc2_0000  
0xffc4_0000  
0xffc5_0000  
0xffc6_0000  
0xffc7_0000  
0xffc8_0000  
0xffdf_0000  
0xffe0_0000  
0xfff0_0000  
End Address  
0x7fff_ffff  
0x9fff_ffff  
0xbfff_ffff  
0xdfff_ffff  
0xffc0_ffff  
0xffc1_ffff  
0xffc2_ffff  
0xffc4_ffff  
0xffc5_ffff  
0xffc6_ffff  
0xffc7_ffff  
0xffc8_ffff  
0xffdf_0fff  
0xffef_ffff  
0xfff7_ffff  
Size  
2 GB  
PCIE 3 Mem  
PCIE 2 Mem  
PCIE 1 Mem  
PCIE 3 IO  
PCIE 2 IO  
PCIE 1 IO  
UART0  
512 MB  
512 MB  
512 MB  
64 KB  
64 KB  
64 KB  
64 KB  
64 KB  
64 KB  
64 KB  
64 KB  
4 KB  
UART1  
UART2  
UART3  
Timer  
FPGA  
CCSR  
1 MB  
MRAM  
512 KB  
81  
MVME2500 Installation and Use (6806800L01H)  
         
Memory Maps and Registers  
5.3  
5.4  
Flash Memory Map  
The table below lists the memory range designated to U-boot and ENV variables.  
Table 5-2 Flash Memory Map  
Description  
U-boot  
Memory Area  
0x00000000 0x0008ffff  
0x00090000 0x0009ffff  
0x00100000 0x0011ffff  
0x00120000 0x007fffff  
Reserved  
ENV Variables  
Available Flash  
Linux Devices Memory Map  
The table below lists the memory ranges designated to different devices in Linux.  
Table 5-3 Linux Devices Memory Map  
Device Memory Range  
Ram Mem  
PCIE3 Mem  
PCIE2 Mem  
PCIE1 Mem  
MRAM  
Memory Area  
Size  
0x00000000 0x7fffffff  
0x80000000 0x9fffffff  
0xa0000000 0xbfffffff  
0xc0000000 0xdfffffff  
0xfff00000 0xfff7ffff  
0xffc00000 0xffc0fff  
0xffc10000 0xffc1ffff  
0xffc20000 0xffc2ffff  
0xffc40000 0xffc4ffff  
0xffc50000 0xffc5ffff  
0xffc60000 0xffc6ffff  
0xffc70000 0xffc7ffff  
0xffc80000 0xffc8ffff  
2 GB  
512 MB  
512 MB  
512 MB  
512 KB  
64 KB  
64 KB  
64 KB  
64 KB  
64 KB  
64 KB  
64 KB  
64 KB  
PCIE3 IO  
PCIE2 IO  
PCIE1 IO  
QUART0  
QUART1  
QUART2  
QUART3  
Timer  
82  
MVME2500 Installation and Use (6806800L01H)  
           
Memory Maps and Registers  
Table 5-3 Linux Devices Memory Map  
Device Memory Range  
FPGA  
Memory Area  
Size  
0xffdf0000 0xffdf0fff  
0xffe00000 0xffe00ffff  
0xffe01000 0xffe01fff  
0xffe02000 0xffe02fff  
0xffe03000 0xffe030ff  
0xffe03100 0xffe031ff  
0xffe04500 0xffe045ff  
0xffe04600 0xffe046ff  
0xffe05000 0xffe05fff  
0xffe07000 0xffe07fff  
0xffe08000 0xffe08fff  
0xffe09000 0xffe09fff  
0xffe0a000 0xffe0afff  
0xffe0c100 0xffe0c303  
0xffe0fc00 0xffe0fcff  
0xffe20000 0xffe20fff  
0xffe21100 0xffe21303  
0xffe22000 0xffe22fff  
0xffe24000 0xffe24fff  
0xffe25000 0xffe25fff  
0xffe26000 0xffe26fff  
0xffe2e000 0xffe2efff  
0xffe30000 0xffe3ffff  
0xffe41600 0xffe4167f  
0xffe40000 0xffe7ffff  
0xffee0000 0xffee0fff  
0xf0f80000 0xf0ffffff  
4 KB  
ecm local access window CCSR  
ecm (Error Correction Module) CCSR  
Memory Controller CCSR  
I2C1 CCSR  
4 KB  
4 KB  
4 KB  
256 B  
256 B  
256 B  
256 B  
4 KB  
I2C2 CCSR  
UART0 CCSR  
UART1CCSR  
ELBC CCSR  
SPI CCSR  
4 KB  
PCIE3 CCSR  
4 KB  
PCIE2 CCSR  
4 KB  
PCIE1CCSR  
4 KB  
DMA2 CCSR  
516 B  
256 B  
4 KB  
GPIO CCSR  
L2 Cache CCSR  
DMA1 CCSR  
516 B  
4 KB  
USB CCSR  
ETSEC1 CCSR  
ETSEC2 CCSR  
ETSEC3 CCSR  
SDHCI CCSR  
4 KB  
4 KB  
4 KB  
4 KB  
Crypto CCSR  
64 KB  
128 B  
256 KB  
4 KB  
msi CCSR  
mpic CCSR  
Global Utilities CCSR  
L2 Cache Mem  
512 KB  
83  
MVME2500 Installation and Use (6806800L01H)  
Memory Maps and Registers  
5.5  
Programmable Logic Device (PLD) Registers  
5.5.1  
PLD Revision Register  
The MVME2500 provides a PLD revision register that can be read by the system software to  
determine the current version of the timers/registers PLD.  
Table 5-4 PLD Revision Register  
REG  
PLD Revision Register - 0xFFDF0000  
Bit  
7
6
5
4
3
2
1
0
Field  
OPER  
RESET  
PLD Rev  
R
03  
Field Description  
PLD_REV  
8-bit field containing the current timer/register PLD revision. The  
revision number starts at 01.  
5.5.2  
PLD Year Register  
The MVME2500 PLD provides an 8-bit register which contains the build year of the  
timers/registers PLD.  
Table 5-5 PLD Year Register  
REG  
PLD Year Register - 0xFFDF0004  
Bit  
7
6
5
4
3
2
1
0
Field  
OPER  
RESET  
PLD Rev  
R
0A  
84  
MVME2500 Installation and Use (6806800L01H)  
         
Memory Maps and Registers  
5.5.3  
5.5.4  
5.5.5  
PLD Month Register  
The MVME2500 PLD provides an 8-bit register which contains the build month of the  
timers/registers PLD.  
Table 5-6 PLD Month Register  
REG  
PLD Year Register - 0xFFDF0005  
Bit  
7
6
5
4
3
2
1
0
Field  
OPER  
RESET  
PLD Rev  
R
0A  
PLD Day Register  
MVME2500 PLD provides an 8-bit register which contains the build day of the timers/registers  
PLD.  
Table 5-7 PLD Day Register  
REG  
PLD Revision Register - 0xFFDF0006  
Bit  
7
6
5
4
3
2
1
0
Field  
OPER  
RESET  
PLD Rev  
R
0E  
PLD Sequence Register  
The MVME2500 PLD provides an 8-bit register which contains the sequence of the PLD which  
is in synchrony with the PCB version.  
Table 5-8 PLD Sequence Register  
REG  
Bit  
PLD Revision Register - 0xFFDF0007  
7
6
5
4
3
2
1
0
85  
MVME2500 Installation and Use (6806800L01H)  
           
Memory Maps and Registers  
Table 5-8 PLD Sequence Register  
REG  
PLD Revision Register - 0xFFDF0007  
Bit  
7
6
5
4
3
2
1
0
Field  
OPER  
RESET  
PLD Rev  
R
02  
5.5.6  
PLD Power Good Monitor Register  
The MVME2500 PLD provides an 8-bit register which indicates the instantaneous status of the  
supply’s power good signals.  
Table 5-9 PLD Power Good Monitor Register  
REG  
Bit  
PLD PWRDG_MNTR - 0xFFDF0012  
7
6
5
4
3
2
1
0
Field  
RSVD  
PWR_V  
1P05_P  
WRGD  
PWR_V  
PWR_V  
PWR_V  
PWR_V  
PWR_V  
PWR_V  
1P2_PW 1P8_PW 3P3_PW 2P5_PW 1P2_SW 1P5_PW  
RGD  
RGD  
RGD  
RGD  
_PWRG  
D
RGD  
OPER  
R
0
RESET  
0
0
0
0
0
0
0
Field Description  
PWR_V1P05_PWRGD  
PWR_V1P2_PWRGD  
PWR_V1P8_PWRGD  
1.05V Core supply power good indicator  
1.2V Supply power good indicator  
1.8V Supply power good indicator  
86  
MVME2500 Installation and Use (6806800L01H)  
   
Memory Maps and Registers  
PWR_V3P3_PWRGD  
PWR_V2P5_PWRGD  
3.3V Supply power good indicator  
2.5V Supply power good indicator  
PWR_V1P2_SW_PWRG  
D
1.2V SW Supply power good indicator  
PWR_V1P5_PWRGD  
1.5V Supply power good indicator  
1 - Supply Good and Stable  
0 - Otherwise  
5.5.7  
PLD LED Control Register  
The MVME2500 PLD provides an 8-bit register which controls the eight LEDs.  
Table 5-10 PLD LED Control Register  
REG  
Bit  
PLD LED_CTRL - 0xFFDF001C  
7
6
5
4
3
2
1
0
Field  
D1  
D35  
D34  
D33  
D38  
D37  
D2 Red  
D2  
Yellow  
OPER  
R/W  
1
RESET  
0
0
0
0
0
0
0
1 - LED on  
0 - LED off  
For more information on LEDs, refer to Table "Front Panel LEDs" on page 38 and Table "Onboard  
87  
MVME2500 Installation and Use (6806800L01H)  
   
Memory Maps and Registers  
5.5.8  
PLD PCI/PMC/XMC Monitor Register  
The MVME2500 PLD provides an 8-bit register which indicates the status of the PCI/PMC/XMC  
interface signals.  
Table 5-11 PLD PCI/PMC/XMC Monitor Register  
REG  
Bit  
PLD PCI_PMC_XMC_MNTR - 0xFFDF001D  
7
6
5
4
3
2
1
0
Field  
RSVD  
RSVD  
RSVD  
PMC_X  
PMC1_E PMC1P_ XMCP1_ PCI1_PC  
MC_SEL READY  
N
N
IXCAP  
OPER  
R
0
RESET  
0
0
X
X
X
X
X
Field Description  
PMC_XMC_SEL  
XMC or PMC Selection Switch  
1 - XMC  
0 - PMC  
PMC1_EREADY  
Indicates that the PrPMC module is installed in PMC  
site.  
1 - PrPMC is ready for enumeration or no PrPMC is  
installed.  
0 - PrPMC is not ready for enumeration.  
PMC1P_N  
PMC Presence Indicator  
1 - PMC is not present  
0 - PMC is present  
XMCP1_N  
XMC Presence Indicator  
1 - XMC is not present  
0 - XMC is present  
PCI1_PCIXCAP  
PCI Capability Indicator  
1 - PCI-X capable  
0 - PCI capable  
88  
MVME2500 Installation and Use (6806800L01H)  
   
Memory Maps and Registers  
5.5.9  
PLD U-Boot and TSI Monitor Register  
The MVME2500 PLD provides an 8-bit register which indicates the status of the U-Boot's  
normal environment switch and TSI interface signals.  
Table 5-12 PLD U-Boot and TSI Monitor Register  
REG  
PLD PCI_PMC_XMC_MNTR - 0xFFDF001F  
Bit  
7
6
5
4
3
2
1
0
Field  
OPER  
RESET  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
BDFAIL_N  
NORMAL_ENV  
SCON  
R
0
0
0
0
0
X
X
X
Field Description  
BDFAIL_N  
TSI148 BDFAIL_N Pin out  
1 - No TSI Fail  
0 - TSI Fail  
NORMAL_ENV  
SCON  
Normal Environment Switch Indicator  
1 - Use safe ENV  
0 - Use normal ENV  
System Controller Indicator  
1 - System Controller  
0 - Non-system Controller  
5.5.10 PLD Boot Bank Register  
The MVME2500 PLD provides an 8-bit register which is used to declare successful U-Boot  
loading, indicating the SPI boot bank priority and actual SPI bank it booted from.  
Table 5-13 PLD Boot Bank Register  
REG  
Bit  
PLD Boot Bank - 0xFFDF0050  
7
6
5
4
3
2
1
0
89  
MVME2500 Installation and Use (6806800L01H)  
       
Memory Maps and Registers  
Table 5-13 PLD Boot Bank Register  
REG  
PLD Boot Bank - 0xFFDF0050  
SPI_GOODReg  
Field  
BOOT_B BOOT_S  
LOCK_A PI  
(write 0xA4 into this reg to indicate successful loading of the U-  
Boot.  
OPER  
R/W  
R
X
R
0
RESET  
0
0
0
0
0
0
Field Description  
BOOT_BLOCK_A  
Boot Block Manual Selector Switch  
1 - SPI0  
0 - SPI1  
BOOT_SPI  
Actual Boot Bank  
1 - SP1  
0 - SPI0  
90  
MVME2500 Installation and Use (6806800L01H)  
Memory Maps and Registers  
5.5.11 PLD Write Protect and I2C Debug Register  
The MVME2500 PLD provides an 8-bit register which is used to indicate the status of I2C and  
SPI write-protect manual switches and is used to control the SPI write-enable. I2C debug ports  
are also provided in this register which can be used in controlling the bus’ status.  
Table 5-14 PLD Write Protect and I2C Debug Register  
REG  
Bit  
PLD Write Protect I2C Debug- 0xFFDF0054  
7
6
5
4
3
2
1
0
Field  
RSVD  
MASTER FLASH_  
_WP_DI WP_N  
SABLED  
I2C_DEB SERIAL_ RSVD  
I2C_1_  
D
I2C_1_C  
UG_EN  
FLASH_  
WP  
OPER  
R
0
R
1
R
0
R/W  
0
R/W  
1
R
0
R/W  
1
R/W  
1
RESET  
Field Description  
MASTER_WP_DISABLED  
I2C devices manual switch write-protect status  
1 - Write-protect enabled  
0 - Write-protect disabled  
FLASH_WP_N  
SPI devices manual switch write-protect status  
1 - Write-protect disabled  
0 - Write-protect enabled  
91  
MVME2500 Installation and Use (6806800L01H)  
     
Memory Maps and Registers  
I2C_DEBUG_EN  
SERIAL_FLASH_WP  
I2C_1_D  
I2C debug ports (I2C_1_D and I2C_1_C) enable  
1 - Drive Enabled  
0 - Drive Disabled  
SPI devices write-protect register  
1 - Write-protect enabled  
0 - Write-protect disabled  
I2C debug port-Data  
I2C_DEBUG_EN=0  
HiZ - Tri-Stated  
I2C_DEBUG_EN-1  
1 - Driven High  
0 - Driven Low  
I2C_1_C  
I2C debug port-Clock  
I2C_DEBUG_EN=0  
HiZ - Tri-Stated  
I2C_DEBUG_EN-1  
1 - Driven High  
0 - Driven Low  
When SERIAL_FLASH_WP is set to "Low", this port will automatically read as low due to "AND"  
connection between the two ports.  
92  
MVME2500 Installation and Use (6806800L01H)  
Memory Maps and Registers  
5.5.12 PLD Test Register 1  
The MVME2500 PLD provides an 8-bit general purpose read/write register which can be used  
by the software for PLD testing or general status bit storage.  
Table 5-15 PLD Test Register 1  
PLD Test Register 1- 0xFFDF0080  
REG  
Bit  
7
6
5
4
3
2
1
0
Field  
OPER  
RESET  
TEST_REG1  
R/W  
00  
Field Description  
TEST_REG1  
General purpose 8-bit R/W field  
5.5.13 PLD Test Register 2  
The MVME2500 PLD provides an 8-bit general purpose read/write register which can be used  
by the software for PLD testing or general status bit storage.  
Table 5-16 PLD Test Register 2  
PLD Test Register 2- 0xFFDF0081  
REG  
Bit  
7
6
5
4
3
2
1
0
Field  
OPER  
RESET  
TEST_REG2  
R/W  
00  
Field Description  
TEST_REG2  
General purpose 8-bit R/W field  
93  
MVME2500 Installation and Use (6806800L01H)  
       
Memory Maps and Registers  
5.5.14 PLD GPIO2 Interrupt Register  
The Abort switch, Tick Timer 0, 1 and 2 interrupts are ORed together. The MVME2500 provides  
an interrupt register that the system software reads to determine which device the interrupt  
originated from. GPIO2 will be driven "low" if any of the interrupts asserts.  
Table 5-17 PLD GPIO2 Interrupt Register  
REG  
PLD Write Protect I2C Debug- 0xFFDF0095  
Bit  
7
6
5
4
3
2
1
0
Field  
OPER  
RESET  
RSVD  
RSVD  
RSVD  
RSVD  
NMI  
TICK0_INT  
TICK1_INT  
TICK2_INT  
R
0
0
0
0
0
0
0
0
Field Description  
NMI  
Abort switch interrupt if pressed less than three seconds.  
1 - Interrupt enabled  
0 - No Interrupt  
TICK0_INT  
TICK1_INT  
TICK2_INT  
Tick Timer 0 interrupt  
1 - Interrupt enabled  
0 - No Interrupt  
Tick Timer 1 interrupt  
1 - Interrupt enabled  
0 - No Interrupt  
Tick Timer 2 interrupt  
1 - Interrupt enabled  
0 - No Interrupt  
94  
MVME2500 Installation and Use (6806800L01H)  
   
Memory Maps and Registers  
5.5.15 PLD Shutdown and Reset Control and Reset Reason Register  
The MVME2500 provides an 8-bit register to execute the shutdown and reset commands. The  
board's reset reason is also included in this register.  
Table 5-18 PLD Shutdown and Reset Control and Reset Reason Register  
REG  
Bit  
PLD Shutdown and Reset Reason- 0xFFDF00FF  
7
6
5
4
3
2
1
0
Field  
AUTO_SH Shutdown Soft_RST  
DN_MASK  
Clear_Cause  
CPU_RESET  
WD_TIME LRSTO  
OUT  
Sft_RST  
OPER  
R/W  
0
W
0
W
0
W
0
R
X
RESET  
X
X
X
Field Description  
AUTO_SHDN_MASK  
Automatic Shutdown Mask  
1 - Auto Shutdown Mask Enable  
0 - Auto Shutdown Mask Disable  
Note: Automatic shutdown is generated after 1 second whenever a power good signal de-  
asserts.  
Shutdown  
Board Shutdown Register  
1 - Shutdown Enable  
0 - Shutdown Disable  
Note: If a board entered the shutdown state (by writing a '1' in this register), the chassis' power  
needs to be cycled to power up the board again.  
Soft_RST  
Board Soft Reset (self clearing)  
1 - Execute soft reset  
0 - No reset  
Clear_Cause  
Clear Reset Reason (self clearing)  
1 - Clear Reason  
0 - None  
95  
MVME2500 Installation and Use (6806800L01H)  
   
Memory Maps and Registers  
CPU_RESET  
WD_TIMEOUT  
LRSTO  
CPU_HRESET_REQ_L Reset Reason  
1 - Reset is due to CPU_HRESET_REQ_L signal  
0 -None  
Watchdog Timeout Reset Reason  
1 - Reset is due to watchdog timing out  
0 - None  
TSI LRSTO Reset Reason  
1 - Reset is due to LRSTO signal  
0 - None  
Sft_RST  
Soft Reset - Reset Reason  
1 - Reset is due to Soft_RST register being set, or the front  
panel switch being pressed more than three  
0 - None  
5.5.16 PLD Watchdog Timer Refresh Register  
The MVME2500 provides a watchdog timer refresh register.  
Table 5-19 PLD Watchdog Timer Refresh Register  
REG  
Bit  
PLD Watch Dog Timer Load - 0xFFC80600  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Field  
OPER  
RSVD  
R
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
Refresh  
RESET 0000  
Field Description  
Refresh  
Counter Refresh. When the pattern 0x00DB is written, the watchdog counter  
will be reset to zero.  
96  
MVME2500 Installation and Use (6806800L01H)  
   
Memory Maps and Registers  
5.5.17 PLD Watchdog Control Register  
The MVME2500 provides a watchdog control register.  
Table 5-20 PLD Watchdog Control Register  
REG  
Bit  
PLD Watch Dog Timer Load - 0xFFC80604  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
Watchdog_EN RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD  
Field  
OPER R/W  
RESET 0000  
R
Field Description  
EN  
Enable. If cleared, the watchdog timer is disabled. If set, the watchdog timer is  
enabled.  
5.5.18 PLD Watchdog Timer Count Register  
The MVME2500 provides a watchdog timer count register.  
Table 5-21 PLD Watchdog Timer Count Register  
REG  
PLD Watchdog Timer Count - 0xffc80606  
Bit  
15:0  
Field  
OPER  
RESET  
Count  
R/W  
0xEA60 (60secs)  
97  
MVME2500 Installation and Use (6806800L01H)  
       
Memory Maps and Registers  
Field Description  
Count  
Count. These bits define the watchdog timer count value. When the  
watchdog counter is enabled, it will count up from zero (reset value) with a 1  
ms resolution until it reaches the COUNT value set by this register. Watchdog  
will generate a soft reset signal if it bites.  
Setting this register to 0xEA60 or 60,000 counts will provide a watchdog  
timeout of 60 seconds.  
5.6  
External Timer Registers  
The MVME2500 provides a set of tick timer registers to access the three external timers  
implemented in the timers/registers PLD. These registers are 32-bit and are word writable. The  
following sections describe the timer prescaler and control registers.  
5.6.1  
Prescaler Register  
The prescaler adjust value is determined by this formula:  
Prescaler Adjust = 256-(CLKIN/CLKOUT)  
CLKIN is the input clock source in MHz, and CLKOUT is the desired output clock reference in  
MHz.  
Table 5-22 Prescaler Register  
REG  
Bit  
Prescaler Register - 0xFFC80100  
15 14 13 12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Field  
OPER  
RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD Prescaler Register (8-bits)  
R/W  
RESET 0x00e7  
The prescaler provides the clock required by each of the three times. The tick timers require a  
1 MHz clock input. The input clock to the prescaler is 25 MHz. The default value is set for  
0x00E7, which gives a 1 MHz reference clock for a 25 MHz input clock source.  
98  
MVME2500 Installation and Use (6806800L01H)  
     
Memory Maps and Registers  
5.6.2  
Control Registers  
Table 5-23 Control Registers  
Tick Timer 0 Control Register - 0xFFC80202  
Tick Timer 1 Control Register - 0xFFC80302  
Tick Timer 2 Control Register - 0xFFC80402  
REG  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
ENINT  
RSVD  
COVF  
Field  
OPER  
INTS CINT  
OVF  
COC ENC  
R/W  
RESET 0x0000  
Field Description  
ENC  
Enable counter. When the bit is set, the counter increments. When the bit is  
cleared, the counter does not increment.  
COC  
Clear Counter on Compare. When the bit is set, the counter is reset to 0 when  
it compares with the compare register. When the bit is cleared the counter is  
not reset.  
COVF  
OVF  
Clear Overflow Bits. The overflow counter is cleared when a 1 is written to this  
bit.  
Overflow Bits are the output of the overflow counter. It increments each time  
the tick timer sends an interrupt to the local bus interrupter. The overflow  
counter can be cleared by writing a 1 to the COVF bit.  
ENINT  
Enable Interrupt. When the bit is set, the interrupt is enabled. When the bit is  
cleared, the interrupt is not enabled.  
CINT  
INTS  
RSVD  
Clear Interrupt.  
Interrupt Status.  
Reserved for future implementation.  
99  
MVME2500 Installation and Use (6806800L01H)  
   
Memory Maps and Registers  
5.6.3  
Compare High and Low Word Registers  
The tick timer counter is compared to the Compare Register. When the values are equal, the  
tick timer interrupt is asserted and the overflow counter increments. If the clear-on-compare  
mode is enable, the counter is also cleared. For periodic interrupts, this equation should be  
used to calculate the compare value for a specific period (T):  
Compare register value=T (us)  
When programming the tick timer for periodic interrupt, the counter should be cleared to zero  
by software and then enabled. If the counter does not initially start at zero, the time to the first  
interrupt may be longer or shorter than expected. Note that the rollover time for the counter  
is 71.6 minutes.  
Since the processor is 16-bits and the tick timer is 32-bits, the compare register was split in half.  
Accessing the whole register will require two transactions.  
Table 5-24 Compare High Word Registers  
Tick Timer 0 Compare Value High Word - 0xFFC80204  
Tick Timer 1 Compare Value High Word - 0xFFC80304  
REG  
Bit  
Tick Timer 2 Compare Value High Word - 0xFFC80404  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
Field  
OPER  
TickTimer Compare Value High Word (16-bits)  
R/W  
RESET 0x0000  
Table 5-25 Compare Low Word Registers  
Tick Timer 0 Compare Value Low Word - 0xFFC80206  
Tick Timer 1 Compare Value Low Word - 0xFFC80306  
Tick Timer 2 Compare Value Low Word - 0xFFC80406  
REG  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Field  
OPER  
TickTimer Compare Value Low Word (16-bits)  
R/W  
RESET 0x0000  
100  
MVME2500 Installation and Use (6806800L01H)  
     
Memory Maps and Registers  
5.6.4  
Counter High and Low Word Registers  
When enabled, the tick timer counter register increments every microsecond. Software may  
read or write the counter at any time.  
Table 5-26 Counter High Word Registers  
Tick Timer 0 Counter Value High Word - 0xFFC80208  
Tick Timer 1 Counter Value High Word - 0xFFC80308  
Tick Timer 2 Counter Value High Word - 0xFFC80408  
REG  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Field  
OPER  
TickTimer Counter Value High Word (16-bits)  
R/W  
RESET 0x0000  
Table 5-27 Counter Low Word Registers  
Tick Timer 0 Counter Value Low Word - 0xFFC8020A  
Tick Timer 1 Counter Value Low Word - 0xFFC8030A  
Tick Timer 2 Counter Value Low Word - 0xFFC8040A  
REG  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Field  
OPER  
TickTimer Counter Value Low Word (16-bits)  
R/W  
RESET 0x0000  
101  
MVME2500 Installation and Use (6806800L01H)  
     
Memory Maps and Registers  
102  
MVME2500 Installation and Use (6806800L01H)  
Chapter 6  
Boot System  
6.1  
Overview  
The MVME2500 uses Das U-Boot, a boot loader software based on the GNU Public License. It  
boots the blade and is the first software to be executed after the system is powered on.  
Its main functions are:  
Initialize the hardware  
Pass boot parameters to the Linux kernel  
Start the Linux kernel  
Update Linux kernel and U-Boot images  
This section describes U-Boot features and procedures that are specific to the MVME2500. For  
general information on U-Boot, see http://www.denx.de/wiki/UBoot/WebHome.  
6.2  
Accessing U-Boot  
1. Connect the board to a computer with a serial interface connector and a terminal emulation  
software running on it. The serial connector of the board is found on the face plate.  
2. Configure the terminal software to use the access parameters that are specified in U-Boot.  
By default, the access parameters are as follows:  
Baud rate: 9600  
PC ANSI  
8 data bits  
No parity  
1 stop bit  
These serial access parameters are the default values. These can be changed from within the  
U-Boot. For details, refer to the U-Boot documentation.  
3. Boot the MVME2500.  
4. When prompted, press the "h" key.  
103  
MVME2500 Installation and Use (6806800L01H)  
       
Boot System  
U-Boot aborts the boot sequence and enters into a command line interface mode.  
Enter the command setenv bootdelay -1; saveenvto disable the U-Boot auto-boot  
feature and let the U-Boot directly enter the command line interface after the next  
reboot/power up.  
6.3  
Boot Options  
6.3.1  
Booting from a Network  
In this mode, U-Boot downloads and boots the Linux kernel from an external TFTP server and  
mounts a root file system located on a network server.  
1. Make sure that the kernel, dtb,and ramdiskare accessible to the board from the  
TFTP server.  
2. Configure U-Boot environment variables:  
setenv ipaddr <IP address of MVME2500>  
setenv serverip <IP address of TFTP server>  
setenv gatewayip <gateway IP>  
setenv netmask <netmask>  
setenv bootargs 'root=/dev/ram rw console=ttyS0,9600n8  
ramdisk_size=700000 cache-sram-size=0x10000'  
saveenv  
3. Transfer the files through the TFTP from the server to the local memory.  
tftp 1000000 <kernel_image>  
tftp 2000000 <ramdisk>  
tftp C00000 <kernel dtb>  
4. Boot the Linux from the memory.  
bootm 1000000 2000000 c00000  
104  
MVME2500 Installation and Use (6806800L01H)  
   
Boot System  
6.3.2  
Booting from an Optional SATA Drive  
1. Make sure that the kernel, dtb, and ramdiskare saved in the SATA drive with ext2  
partition.  
2. Configure U-Boot environment variable:  
setenv File_uImage <kernel_image>  
setenv File_dtp <kernel dtb>  
setenv File_ramdisk <ramdisk>  
saveenv  
3. Copy the files from the SATA drive to the memory:  
# option: scsi - interface, 0:1 - device 0 partition 1  
ext2load scsi 0:1 1000000 $File_uImage  
ext2load scsi 0:1 2000000 $File_ramdisk  
ext2load scsi 0:1 c00000 $File_dtp  
4. Boot the Linux in memory.  
bootm 1000000 2000000 c00000  
6.3.3  
Booting from a USB Drive  
1. Make sure that the kernel, dtb, and ramdiskare saved in the USB drive with FAT  
partition.  
2. Configure the U-Boot environment variable:  
setenv File_uImage <kernel_image>  
setenv File_dtp <kernel dtb>  
setenv File_ramdisk <ramdisk>  
saveenv  
3. Initialize USB drive:  
usb start  
4. Load the files from the USB drive to the memory:  
# option: usb - interface, 0:1 - device 0 partition 1  
fatload usb 0:1 1000000 $File_uImage  
fatload usb 0:1 2000000 $File_ramdisk  
fatload usb 0:1 c00000 $File_dtb  
5. Boot the Linux in memory:  
bootm 1000000 2000000 c00000  
105  
MVME2500 Installation and Use (6806800L01H)  
   
Boot System  
6.3.4  
Booting from an SD Card  
1. Make sure that the kernel, dtb, and ramdiskare saved in the SD card with FAT  
partition.  
2. Configure the U-Boot environment variable:  
setenv File_uImage <kernel_image>  
setenv File_dtp <kernel dtb>  
setenv File_ramdisk <ramdisk>  
saveenv  
3. Initialize SD card:  
mmcinfo  
4. Load the files from the SD card to the memory:  
# option: mmc - interface, 0:1 - device 0 partition 1  
fatload mmc 0:1 1000000 $File_uImage  
fatload mmc 0:1 2000000 $File_ramdisk  
fatload mmc 0:1 c00000 $File_dtp  
5. Boot the Linux in memory:  
bootm 1000000 2000000 c00000  
6.3.5  
Booting VxWorks Through the Network  
In this mode, the U-Boot downloads and boots VxWorks from an external TFTP server.  
1. Make sure that the VxWorks image is accessible by the board from the TFTP server.  
2. Configure U-Boot environment variables:  
setenv ipaddr <IP address of MVME2500>  
setenv serverip <IP address of TFTP server>  
setenv gatewayip <gateway IP>  
setenv netmask <netmask>  
setenv vxboot 'tftpboot $vxbootfile && setenv bootargs  
$vxbootargs && bootvx'  
setenv vxbootfile <VxWorks_image>  
setenv vxbootargs 'motetsec(0,0)<IP address of TFTP  
server>:VxWorks h=<IP address of TFTP server> e=<IP address of  
MVME2500>:ffffff00 b=<unused IP> u=vxworks pw=vxworks f=0x80'  
saveenv  
106  
MVME2500 Installation and Use (6806800L01H)  
   
Boot System  
3. TFTP the files from the server to local memory, then boot:  
run vxboot  
6.4  
Using the Persistent Memory Feature  
Persistent memory means that the RAM's memory is not deleted during a reset. Power cycling,  
or by temporarily removing the power and then powering up the blade again, will delete the  
memory content. Persistent memory feature is enabled by default.  
This feature can be useful in many situations, including:  
Analyzing kernel logs after a Linux kernel panic  
Defining a particular memory region for the persistent storage of application specific data  
Analyzing Kernel Log Files after a Kernel Panic  
When a board that is running the Linux OS indicates a kernel panic, issue a reset (through the  
face plate button, for example) to analyze the cause, then subsequently analyze kernel log files.  
The persistent memory feature keeps the log files available in the memory.  
To analyze the kernel log files:  
1. Issue a reset.  
2. Connect to U-Boot. For more information, see Accessing U-Boot on page 103.  
3. Enter the following command to obtain memory addresses of the kernel log  
files:.locate_kernel_log (1)  
The memory addresses of any found kernel log files will be displayed.  
4. Enter the following command to display the kernel logfile at any of these memory  
addresses: .printf (<memory address>)  
The persistent memory is useful in application-specific data storage. The standard U-Boot  
variable pram can be used to reserve a memory region at the end of the physical memory to  
prevent it from being overwritten. U-Boot reports less memory to the Linux kernel through the  
memparameter, indicating that the operating system should not use it either.  
For more information, see the U-Boot documentation.  
107  
MVME2500 Installation and Use (6806800L01H)  
 
Boot System  
6.5  
MVME2500 Specific U-Boot Commands  
Table 6-1 MVME2500 Specific U-Boot Commands  
Command  
base  
Description  
Print or set address offset  
bdinfo  
boot  
Print board info structure  
Boot default, i.e., run 'bootcmd'  
Boot default, i.e., run 'bootcmd'  
Boot from an ELF image in memory  
Boot application image from memory  
Boot image through network using BOOTP/TFTP protocol  
Boot VxWorks from an ELF image  
Memory compare  
bootd  
bootelf  
bootm  
bootp  
bootvx  
cmp  
coninfo  
cp  
Print console devices and information  
Memory copy  
cpu  
Multiprocessor CPU boot manipulation and release  
Checksum calculation  
crc32  
date  
Get/set/reset date & time  
diags  
echo  
Runs POST diags  
Echo args to console  
exit  
Exit script  
ext2load  
ext2ls  
fatinfo  
fatload  
fatls  
Load binary file from a Ext2 file system  
List files in a directory (default /)  
Print information about file system  
Load binary file from a DOS file system  
List files in a directory (default /)  
Flattened device tree utility commands  
Start application at address 'addr'  
fdt  
go  
108  
MVME2500 Installation and Use (6806800L01H)  
   
Boot System  
Table 6-1 MVME2500 Specific U-Boot Commands (continued)  
Command  
help  
Description  
Print online help  
i2c  
I2C sub-system  
iminfo  
imxtract  
interrupts  
itest  
Print header information for application image  
Extract a part of a multi-image  
Enable or disable interrupts  
Return true/false on integer compare  
Load binary file over serial line (kermit mode)  
Load S-Record file over serial line  
Load binary file over serial line (ymodem mode)  
Infinite loop on address range  
Memory display  
loadb  
loads  
loady  
loop  
md  
memmap  
mii  
Displays memory map  
MII utility commands  
mm  
Memory modify (auto-incrementing address)  
MMC sub system  
mmc  
mmcinfo  
moninit  
mtest  
mw  
Display MMC info  
Reset nvram, serial#, and write monitor to SPI flash  
Simple RAM read/write test  
Memory write (fill)  
nfs  
Boot image through network using NFS protocol  
Memory modify (constant address)  
List and access PCI Configuration Space  
Show information about devices on PCI bus  
Send ICMP ECHO_REQUEST to network host  
Print environment variables  
nm  
pci  
pci_info  
ping  
printenv  
rarpboot  
reset  
Boot image through network using RARP/TFTP protocol  
Perform RESET of the CPU  
109  
MVME2500 Installation and Use (6806800L01H)  
Boot System  
Table 6-1 MVME2500 Specific U-Boot Commands (continued)  
Command  
Description  
run  
Run commands in an environment variable  
Save environment variables to persistent storage  
Run a ';' delimited, ';;' terminated list of commands  
SCSI sub-system  
saveenv  
script  
scsi  
scsiboot  
setenv  
setexpr  
sf  
Boot from SCSI device  
Set environment variables  
Set environment variable as the result of eval expression  
SPI flash sub-system  
showvar  
sleep  
Print local hushshell variables  
Delay execution for some time  
Soft reset the board  
soft_reset  
source  
test  
Run script from memory  
Minimal test like /bin/sh  
tftpboot  
tsi148  
usb  
Boot image through network using TFTP protocol  
Initialize and configure Tundra Tsi148  
USB sub-system  
usbboot  
version  
Boot from USB device  
Print monitor version  
6.6  
Updating U-Boot  
To update the U-Boot, place the image in the RAM (address 0x1000000 in this example) before  
copying it to the SPI flash.  
The following procedure will replace the image in SPI bank 0:  
1. Disable SPI write-protect in FPGA register PLD Write Protect and I2C Debug Register.  
2. Ensure FLASH_WP_N in SMT Configuration Switch (S2) is in the "OFF" position.  
3. Select SPI flash # 0:  
110  
MVME2500 Installation and Use (6806800L01H)  
 
Boot System  
sf probe 0  
4. Erase 0x90000 bytes starting at SPI address 0:  
sf erase 0 0x90000  
5. Write 0x90000 bytes from RAM address 0x1000000 starting at SPI address 0:  
sf write 0x1000000 0 0x90000  
To replace the image in SPI bank 1, replace step 2 with Select SPI flash # 1:  
sf probe 1  
111  
MVME2500 Installation and Use (6806800L01H)  
Boot System  
112  
MVME2500 Installation and Use (6806800L01H)  
Chapter 7  
Programming Model  
7.1  
7.2  
Overview  
This chapter includes additional programming information for the MVME2500.  
Reset Configuration  
The MVME2500 supports the power-on reset (POR) pin sampling method for processor reset  
configuration. Each option and the corresponding default setting are described in the  
following table.  
Table 7-1 POR Configuration Settings  
CONFIG  
CONFIG PINS  
LA[29:31]  
CONFIG  
000  
SELECTION  
REMARKS  
1
2
CCB Config  
41: CCB CLOCK-400 MHz  
8:1 DDR PLL-800 MHz  
DDR PLL Config TSEC_1588_CLK_O  
UT  
001  
DDR rate is twice the  
value of the DDR  
controller frequency,  
which is then divided by  
two through the  
software.  
TSEC_1588_PULSE_  
OUT1  
TSEC_1588_PULSE_  
OUT2  
3
4
5
Core 0 PLL  
Core 1 PLL  
LBCTL, LALE  
110  
100  
3:1 CORE CLOCK PLL  
(1200 MHz)  
For 1200 MHz board  
configuration  
LGPL2/LOE/LFRE  
2:1 CORE CLOCK PLL (800 For 800 MHz board  
MHz)  
configuration  
LWE0, UART_SOUT1 110  
100  
3:1 CORE CLOCK PLL  
(1200 MHz)  
For 1200 MHz board  
configuration  
2:1 CORE CLOCK PLL (800 For 800 MHz board  
MHz)  
configuration  
CPU Boot  
Config  
LA27, LA16  
10  
e500 core 0 is allowed to  
boot without waiting for  
configuration by an  
external master, while  
e500 core 1 is prevented  
from booting until  
configured by an external  
master or the other core.  
113  
MVME2500 Installation and Use (6806800L01H)  
         
Programming Model  
Table 7-1 POR Configuration Settings (continued)  
CONFIG  
CONFIG PINS  
CONFIG  
11  
SELECTION  
REMARKS  
6
7
Boot Sequence  
LGPL3/LFWP, LGPL5  
CFG_BOOT_SEQ[1:0] =  
BOOT SEQUENCE  
DISABLED  
Memory Debug DMA2_DACK0  
Config  
1
1
Debug information from  
the DDR SDRAM  
controller is driven on the  
MSPCID and MDVAL signs  
(default)  
8
DDR Debug  
Config  
DMA2_DDONE0  
Debug information is not  
driven on ECC pins. ECC  
function in their normal  
mode (default).  
9
ELBCECC Enable MSRCID0  
Config  
0
1
1
0
1
0
1
Default operation: eLBC  
ECC checking is disabled  
10  
11  
12  
13  
14  
15  
16  
Platform Speed LA23  
CFG_PLAT_SPEED:1=CCB  
CLOCK > = 333 MHz  
CORE 0 Speed  
CORE 1 Speed  
LA24  
LA26  
LA26  
CFG_CORE0_SPEED:1=C  
ORE FREQ>= 1000 MHz  
For 1200 MHz board  
configuration  
CFG_CORE0_SPEED:0=C  
ORE FREQ<=1000 MHz  
For 800 MHz board  
configuration  
CFG_CORE1_SPEED:1=C  
ORE FREQ>=1000 MHz  
For 1200 MHz board  
configuration  
CFG_CORE1_SPEED:0=C  
ORE FREQ<=1000 MHz  
For 800 MHz board  
configuration  
DDR Controller  
Speed  
CFG_DDR_SPEED:1=DDR  
FREQ>= 500 MHz  
Engineering use LA[22:20]  
UART_SOUT[0],  
111111  
11  
Default (for future use)  
TRIG_OUT,  
MSRCID[1],  
MSRCID[4],  
DMA1_DDONE_B[0]  
17  
SerDes Ref  
Clock Config  
TSEC_1588_ALARM  
_OUT1  
1
SerDes expects a 100  
MHz reference clock  
frequency (default).  
114  
MVME2500 Installation and Use (6806800L01H)  
Programming Model  
Table 7-1 POR Configuration Settings (continued)  
CONFIG  
CONFIG PINS  
LGPL1  
CONFIG  
1
SELECTION  
REMARKS  
18  
ETSEC2 SGMII  
Mode  
eTSEC2 Ethernet  
interface operates in  
standard parallel  
interface mode and uses  
the TSEC_2’pins  
(default).  
19  
ETSEC3 SGMMI  
Mode  
TSEC_1588_ALARM  
_OUT2  
1
eTSEC3 Ethernet  
interface operates in  
standard parallel  
interface mode and uses  
the TSEC_3’pins  
(default).  
20  
21  
ETSEC1 and  
ETSEC2 Width  
EC_MDC  
0
eTSEC1 and eTSEC2  
Ethernet interfaces  
operate in reduced pin  
mode (either RTBI, RGMI,  
RMII or 8-bit FIFO mode).  
ETSEC1  
Protocol  
TSEC1_TXD0,  
TSEC1_TXD7  
10  
The eTSEC2 controller  
operates using the GMII  
protocol (or RGMII, if  
configured in reduced  
mode) if its not  
configured to operate in  
SGMII mode.  
22  
23  
ETSEC2  
Protocol  
TSEC2_TXD0,  
TSEC2_TXD7  
10  
10  
The eTSEC2 controller  
operates using the GMII  
protocol (or RGMII, if  
configured in reduced  
mode) if its not  
configured to operate in  
SGMII mode.  
ETSEC3  
Protocol  
UART_RTS0,  
UART_RTS1  
The eTSEC3 controller  
operates using the RGMII  
protocol if not configured  
to operate in SGMII  
mode.  
115  
MVME2500 Installation and Use (6806800L01H)  
Programming Model  
Table 7-1 POR Configuration Settings (continued)  
CONFIG  
CONFIG PINS  
CONFIG  
011X  
SELECTION  
REMARKS  
24  
25  
BOOT ROM  
Location  
TSEC1_TXD[6:4],  
TSEC1_TX_ER  
On-chip boot ROM-SPI  
configuration (x=0),  
SDHC (x=1)  
Host/Agent  
Config  
LWE1/LBS1,  
LA[18:19]  
111  
The processor acts as the  
host/root complex for all  
PCI-E/Serial Rapid IO  
interfaces (default).  
26  
I/O Port Select  
TSEC1_TXD[3:1],  
TSEC2_TX_ER  
0010  
PCI-E 1 (x1) (2.5 Gbps) -  
SerDes lane 0  
PCI-E 2 (x1) (2.5 Gbps) -  
SerDes lane 2  
PCI-E 3 (x2) (2.5 Gbps) -  
SerDes lane 2-3  
27  
28  
DDR SDRAM  
TYPE  
TSEC2_TXD1  
1
1
DDR31.5 V. CKE low at  
reset (default)  
SerDesPLLTime TRIG_OUT  
Out Enable  
Disable PLL lock time-out  
counter. The power-on-  
reset sequence waits  
indefinitely for the SerDes  
PLL to lock (default).  
29  
30  
31  
System Speed  
LA[28]  
1
1
SYSCLOCK is above 66  
MHz  
SDHC Card  
Detect Polarity  
TSEC2_TXD_5  
Not Inverted  
RAPID System  
Size  
Default  
RapidIO is not used  
116  
MVME2500 Installation and Use (6806800L01H)  
Programming Model  
7.3  
Interrupt Controller  
The MVME2500 uses the MPC8548E integrated programmable interrupt controller (PIC) to  
manage locally generated interrupts. Currently defined external interrupting devices and  
interrupt assignments, along with corresponding edge/levels and polarities, are shown in the  
following table.  
Table 7-2 MVME2500 Interrupt List  
Interrupt Usage  
Interrupt Line  
IRQ0  
(Schematic)  
Interface to CPU  
Description  
None  
Reserved for VME interrupt  
RTB Quart Interrupt  
RTB Quart Interrupt  
RTB Quart Interrupt  
IRQ1  
QUART_IRQ1  
QUART_IRQ2  
QUART_IRQ3  
LBC  
LBC  
LBC  
I2C  
IRQ2  
IRQ3  
IRQ4  
Temperature  
Interrupt  
Two onboard Thermal Sensors:  
one is for CPU temp and the  
other is for board temp  
IRQ5  
Ethernet 1  
Ethernet 3  
Ethernet 2  
Management I2C  
Management I2C  
Management I2C  
12C  
Ethernet interrupt is handled by  
PHY/ Connected for flexibility  
IRQ6  
Ethernet interrupt is handled by  
PHY/ Connected for flexibility  
IRQ7/ GPIO0  
IRQ8/ GPIO1  
Ethernet interrupt is handled by  
PHY/ Connected for flexibility  
RTC (Real Time  
Clock)  
IRQ9/ GPIO2  
FPGA Interrupt  
FPGA Interrupt  
QUART_IRQ0  
LBC  
LBC  
LBC  
NMI and 3 Tick Timer Interrupts  
Power Interruption  
IRQ10// GPIO3  
IRQ11// GPIO4  
RTB Quart Interrupt  
117  
MVME2500 Installation and Use (6806800L01H)  
   
Programming Model  
7.4  
I2C Bus Device Addressing  
The following table contains the I2C devices used for the MVME2500 and its assigned device  
address.  
Table 7-3 I2C Bus Device Addressing  
I2C Bus Address  
0x50  
Device Function  
SPD  
Size  
Notes  
256 x 8  
N/A  
0x4C  
ADT 7461 Temperature Sensor  
DS 1375 real-time clock  
VPD  
0x68  
N/A  
0x54  
8192 x 8  
65536 x 8  
65536 x 8  
8192 X 8  
N/A  
1
0x52  
User configuration  
User configuration  
RTM EEPROM  
1
0x53  
1
0x55  
1, 2  
3
0x56  
XMC EEPROM  
1. This is a dual address serial EEPROM.  
2. The RTM Bus address can be manually changed through the S1 Switch on RTM. The default  
switch configuration will set the address to 0x55. Make sure that the address is unique to  
the RTM Bus address when setting the switch.  
3. The address of the XMC EEPROM is configured through Geographic Address resistor on  
board.  
7.5  
Ethernet PHY Address  
The assigned Ethernet PHY on the MII management bus is shown in the following table.  
Table 7-4 PHY Types and MII Management Bus Address  
PHY MIIM  
Ethernet Port Function / Location  
TSEC1 Gigabit Ethernet port routed to front panel  
PHY Types  
BCM54616  
Address  
1
118  
MVME2500 Installation and Use (6806800L01H)  
         
Programming Model  
Table 7-4 PHY Types and MII Management Bus Address  
PHY MIIM  
Ethernet Port Function / Location  
PHY Types  
Address  
TSEC2  
Gigabit Ethernet port routed to front or back panel, BCM54616  
set by GBE_MUX_SEL in S2  
7
TSEC3  
Gigabit Ethernet port routed to back panel  
BCM54616  
3
7.6  
Other Software Considerations  
This section provides programming information in relation to various board components.  
7.6.1  
MRAM  
The MVME2500 provides 512 K bytes of fast, non-volatile storage in the form of  
Magnetoresistive Random Access Memory (MRAM). The MRAM is directly accessible by  
software using processor load and store instructions similar to the DRAM. The difference is that  
the MRAM retains its contents even if the board is power cycled. The MRAM is accessed through  
the LBC.  
7.6.2  
7.6.3  
Real Time Clock  
The MVME2500 provides a battery backed-up DS1375 Real Time Clock (RTC) chip. The RTC  
chip provides time keeping and alarm interrupts. It is an I2C device and is accessed through the  
I2C bus address at 0x68.  
Quad UART  
The MVME2500 console RS232 port is driven by the UART built into the P20x0 QorIQ chip.  
Additionally, the MVME2500 has a Quad UART chip which provides four additional 16550  
compatible UART. These additional UART are internally accessed through the LBC bus. The  
Quad UART chip clock input (which is internally divided to generate the baud rate) is 1.8432  
MHz. The four UART physically connect to RS232 DB9 serial ports through the RTM.  
119  
MVME2500 Installation and Use (6806800L01H)  
       
Programming Model  
7.6.4  
LBC Timing Parameters  
The following table defines the timing parameters for the devices on the local bus.  
Table 7-5 LBC Timing Parameters  
0
1
2
3
4
5
6
MRAM  
UART 0  
UART 1  
UART 2  
UART 3  
FPGA  
Timers  
BCTLD  
CSNT  
ACS  
0
0
0
0
0
0
0
1
1
1
1
1
1
1
10  
10  
10  
10  
10  
10  
10  
XACS  
SCY  
0
0
0
0
0
0
0
0011  
0011  
0011  
0011  
0011  
0011  
0011  
SETA  
TRLX  
EHTR  
EAD  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Field Description  
BCTLD  
Buffer control disable.  
0 - LBCTL is asserted upon access to the current memory bank.  
CSNT  
ACS  
Chip Select negation time.  
1 - LCSn and LWE are negated one quarter of the bus clock cycle earlier  
Address to chip-select setup.  
10 - LCSn is outputted one quarter bus clock cycle after the address lines.  
XACS  
SCY  
Extra Address to chip-select setup  
0 - Address to chip-select setup is determined by ORx[ACS]  
Cycle length in bus clocks  
0011 - Three bus clock cycle wait state  
120  
MVME2500 Installation and Use (6806800L01H)  
   
Programming Model  
SETA  
External address termination  
0 - Access is terminated internally by the memory controller unless the  
external device asserts LGTA earlier to terminate the access.  
TRLX  
EHTR  
Timing Relaxed  
0 - Normal timing is generated by the GPCM.  
Extended hold time on read accesses.  
0 - The memory controller generates normal timing. No additional cycles  
are inserted  
EAD  
External address latch delay  
0 - No additional bus clock cycles (LALE asserted for one bus clock cycle  
only)  
7.7  
Clock Distribution  
The clock function generates and distributes all of the clocks required for system operation.  
The ICS9FG108 is used to generate all the required PCI-E clocks. The 25 MHz clocks for the  
Ethernet PHY and SATA bridge are supplied by ICS83905. Most of the QorIQ P2020 clocks are  
generated by ICS840S07I chip. Additional clocks required by individual devices are generated  
near the devices using individual oscillators. The following table lists the clocks required on the  
MVME2500 along with the frequency and source.  
Table 7-6 Clock Distribution  
Device  
Clock Signal  
Frequency  
100MHz  
100MHz  
133Mhz  
125Mhz  
25Mhz  
Clock Tree Source  
ICS840S07I  
VIO  
QorIQ P20x0  
QorIQ P20x0  
QorIQ P20x0  
QorIQ P20x0  
ICS840S07I  
88SE6121  
CPU_SYSCLK  
+3.3V  
+3.3V  
+3.3V  
+3.3V  
+3.3V  
+3.3V  
+3.3V  
+3.3V  
+3.3V  
CPU_DDR_CLK  
ICS840S07I  
CLK_PCI_BR3  
ICS840S07I  
EC_GTX_CLK125  
ICS840S07I  
CLK_25MHZ_ICS840S07  
CLK_88SE6121_25MHZ  
CLK_25MHZ_ICS9FG108  
BP_PHY_25MHZ_CLK  
FP_PHY_25MHZ_CLK  
ICS83905AGILF  
ICS83905AGILF  
ICS83905AGILF  
ICS83905AGILF  
ICS83905AGILF  
25Mhz  
ICS9FG108  
BCM54616S  
BCM54616S  
25Mhz  
25Mhz  
25Mhz  
121  
MVME2500 Installation and Use (6806800L01H)  
   
Programming Model  
Table 7-6 Clock Distribution (continued)  
Device  
Clock Signal  
SW_25MHZ_CLK  
CLK_XMC1  
Frequency  
25Mhz  
Clock Tree Source  
ICS83905AGILF  
ICS9FG108  
VIO  
BCM54616S  
XMC  
+3.3V  
DIFF  
DIFF  
DIFF  
DIFF  
DIFF  
100MHz  
100MHz  
100MHz  
100MHz  
QorIQ P20x0  
TSI384  
SD_REF_CLK  
CLK_PCIEC1  
CLK_PCIEC3  
ICS9FG109  
ICS9FG110  
TSI384  
ICS9FG111  
88SE6121  
CLK_88SE6121_PCIE_100MH 100MHz  
Z
ICS9FG112  
FPGA  
CLK_CPLD  
1.8432MHz  
Oscillator  
Oscillator  
FPGA  
+3.3V  
+3.3V  
+3.3V  
+3.3V  
USB  
CLK_USB_1_24MHZ  
CPU_RTC  
24MHz  
1MHz  
QorIQ P20x0  
PMC  
CLK_PMC1  
33/66/100/133M  
hz  
TSI384  
TSI148  
RTC  
CLK_PCI_BR3  
CLK_32K  
133Mhz  
ICS840S07I  
DS32KHz  
+3.3V  
+3.3V  
+3.3V  
+3.3V  
+3.3V  
32.768KHz  
25MHz  
FPGA  
CPU_LCK0  
QorIQ P20x0  
FPGA  
QUART  
ICS83905  
CLK_QUART  
1.8432MHz  
25Mhz  
CLK_25MHZ_ICS9FG108  
ICS83905AGILF  
7.7.1  
System Clock  
The system and DDR clock is driven by ICS840S07I. The following table defines the clock  
frequency.  
Table 7-7 System Clock  
SYSCLK  
CORE  
CCB Clock (Platform)  
400 MHz  
DDR3  
LBC  
100MHz  
800/1200 MHz  
400MHz  
25MHz  
122  
MVME2500 Installation and Use (6806800L01H)  
   
Programming Model  
7.7.2  
7.7.3  
Real Time Clock Input  
The RTC clock input is driven by a 1 MHz clock generated by the FPGA. This provides a fixed  
clock reference for the QorIQ P20x0 PIC timers which the software can use as a known time  
reference.  
Local Bus Controller Clock Divisor  
The local bus controller (LBC) clock output is connected to the FPGA for LBC bus transaction. It  
is also the source of 1 MHz (CPU_RTC) and FPGA tick timers.  
123  
MVME2500 Installation and Use (6806800L01H)  
   
Programming Model  
124  
MVME2500 Installation and Use (6806800L01H)  
Appendix A  
A
Replacing the Battery  
A.1 Replacing the Battery  
The figure below shows the location of the board battery.  
Figure A-1  
Battery Location  
125  
MVME2500 Installation and Use (6806800L01H)  
         
Replacing the Battery  
The battery provides seven years of data retention, summing up all periods of actual data use.  
Emerson therefore assumes that there is usually no need to replace the battery except, for  
example, in case of long-term spare part handling.  
Board/System Damage  
Incorrect replacement of lithium batteries can result in a hazardous explosion.  
When replacing the on-board lithium battery, make sure that the new and the old  
battery are exactly the same battery models.  
If the respective battery model is not available, contact your local Emerson sales  
representative for the availability of alternative, officially approved battery models.  
Data Loss  
Replacing the battery can result in loss of time settings. Backup power prevents the loss  
of data during replacement.  
Quickly replacing the battery may save time settings.  
Data Loss  
If the battery has low or insufficient power the RTC is initialized.  
Replace the battery before seven years of actual battery use have elapsed.  
PCB and Battery Holder Damage  
Removing the battery with a screw driver may damage the PCB or the battery holder. To  
prevent damage, do not use a screw driver to remove the battery from its holder.  
126  
MVME2500 Installation and Use (6806800L01H)  
Replacing the Battery  
Replacement Procedure  
To replace the battery, proceed as follows:  
1. Remove the old battery.  
2. Install the new battery with the plus sign (+) facing up.  
3. Dispose of the old battery according to your country’s legislation and in an environmentally  
safe way.  
127  
MVME2500 Installation and Use (6806800L01H)  
Replacing the Battery  
128  
MVME2500 Installation and Use (6806800L01H)  
Appendix B  
B
Related Documentation  
B.1  
Emerson Network Power - Embedded  
Computing Documents  
The publications listed below are referenced in this manual. You can obtain electronic copies of  
Emerson Network Power - Embedded Computing publications by contacting your local  
Emerson sales office. For released products, you can also visit our Web site for the latest copies  
of our product documentation.  
1. Go to www.Emerson.com/EmbeddedComputing.The Emerson Embedded Computing  
website opens.  
2. Click on Technical Documentation link.  
3. Click on Search Our Technical Documentation Archive link.  
4. In the Search box, type the publication number of the manual you are looking for.  
Table B-1 Emerson Network Power - Embedded Computing Publications  
Document Title  
Publication Number  
6806800L02B  
6806800L03A  
6806800L13A  
6806800M42C  
6806800M53A  
6806800M54A  
MVME2500 Release Notes  
MVME2500 Quick Start Guide  
MVME2500 Safety Notes  
MVME7216 RTM Installation and Use  
MVME7216 RTM Quick Start Guide  
MVME7216 RTM Safety Notes  
129  
MVME2500 Installation and Use (6806800L01H)  
         
Related Documentation  
B.2  
Manufacturers’ Documents  
For additional information, refer to the following table for manufacturers’ data sheets or user  
manuals. As an additional help, a source for the listed document is provided. Please note that  
while these sources have been verified, the information is subject to change without notice.  
Table B-2 Manufacturers’ Publications  
Company  
Freescale  
Document  
Freescale Semiconductor, QorIQ™ P2020 Integrated Processor Reference  
Manual, Rev. 0  
Tundra  
Tsi148™ PCI/X-to-VME Bus Bridge User Manual, March 2009  
Semiconductor  
Corporation  
B.3  
Related Specifications  
For additional information, refer to the following table for related specifications. As an  
additional help, a source for the listed document is provided. Please note that, while these  
sources have been verified, the information is subject to change without notice.  
Table B-3 Related Specifications  
Organization  
Document  
American National  
Standards Institute  
ANSI/VITA 1.0-1994 (R2002), VME64 Standard  
ANSI/VITA 1.1-1997 (R2003), VME64x Extensions  
ANSI/VITA 1.5-2003, VME 2eSST  
(ANSI)  
VITA Standards  
Organization  
ANSI/VITA 35-2000, Pin Assignments for PMC P4 Connector  
ANSI/VITA 39-2003, PCI-X for PMC and Processor PMC  
VITA Standards  
Organization  
XMC - High Speed, Switched Interconnect Protocols on PMC VITA 42.0 -  
2005  
XMC General Purpose I/O Standard VITA 42.10  
XMC PCI Express Protocol Layer Standard VITA 42.3 - 2006  
130  
MVME2500 Installation and Use (6806800L01H)  
           
Related Documentation  
Table B-3 Related Specifications  
Organization  
IEEE  
Document  
IEEE 802.3 LAN/MAN CSMA/CD Access Method IEEE 802.3-2005  
IEEE Standard for a Common Mezzanine Card (CMC) Family IEEE Std  
1386-2001  
IEEE Standard Physical and Environmental Layers for PCI Mezzanine Cards  
(PMC) IEEE Std 1386.1-2001  
IEEE Standard Test Access Port and Boundary-Scan Architecture IEEE Std  
1149.1-2001  
Low Pin Count Interface Specification (LPC) Revision 1.1  
PCI Express Base Specification Revision 2.0  
PCI Local Bus Specification PCI Rev 3.0  
Peripheral Component  
Interconnect Special  
Interest Group  
PCI-X Electrical and Mechanical Addendum to the PCI Local Bus  
Specification (PCI-X EM) Revision 2.0a  
(PCI-SIG)  
PCI-X Protocol Addendum to the PCI Local Bus Specification (PCI-X PT)  
Revision 2.0a  
Serial ATA International  
Organization  
Serial ATA (SATA) Specification Revision 2.6  
Serial ATA II: Extensions to Serial ATA 1.0 Revision 1.0  
(SATA-IO)  
Trusted Computing  
Group (TCG)  
TPM Specification 1.2, Level 2 Revision 103 Version 1.2  
Universal Serial Bus Specification (USB) Revision 2.0  
USB Implementers  
Forum (USB-IF)  
131  
MVME2500 Installation and Use (6806800L01H)  
Related Documentation  
132  
MVME2500 Installation and Use (6806800L01H)  
Safety Notes  
This section provides warnings that precede potentially dangerous procedures throughout  
this manual. Instructions contained in the warnings must be followed during all phases of  
operation, service, and repair of this equipment. You should also employ all other safety  
precautions necessary for the operation of the equipment in your operating environment.  
Failure to comply with these precautions or with specific warnings elsewhere in this manual  
could result in personal injury or damage to the equipment.  
Emerson intends to provide all necessary information to install and handle the product in this  
manual. Because of the complexity of this product and its various uses, we do not guarantee  
that the given information is complete. If you need additional information, ask your Emerson  
representative.  
This product is a Safety Extra Low Voltage (SELV) device designed to meet the EN60950-1  
requirements for Information Technology Equipment. The use of the product in any other  
application may require safety evaluation specific to that application.  
Only personnel trained by Emerson or persons qualified in electronics or electrical engineering  
are authorized to install, remove or maintain the product.  
The information given in this manual is meant to complete the knowledge of a specialist and  
must not be used as replacement for qualified personnel.  
Keep away from live circuits inside the equipment. Operating personnel must not remove  
equipment covers. Only Factory Authorized Service Personnel or other qualified service  
personnel may remove equipment covers for internal subassembly or component replacement  
or any internal adjustment.  
Do not install substitute parts or perform any unauthorized modification of the equipment or  
the warranty may be voided. Contact your local Emerson representative for service and repair  
to make sure that all safety features are maintained.  
EMC (Results pending testing)  
This equipment has been tested and found to comply with the limits for a Class A digital device,  
pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable  
protection against harmful interference when the equipment is operated in a commercial  
environment. This equipment generates, uses, and can radiate radio frequency energy and, if  
not installed and used in accordance with the instruction manual, may cause harmful  
interference to radio communications.  
133  
MVME2500 Installation and Use (6806800L01H)  
   
Safety Notes  
Operation of this equipment in a residential area is likely to cause harmful interference in which  
case the user will be required to correct the interference at his own expense. Changes or  
modifications not expressly approved by Emerson Network Power could void the user's  
authority to operate the equipment. Board products are tested in a representative system to  
show compliance with the above mentioned requirements. A proper installation in a  
compliant system will maintain the required performance. Use only shielded cables when  
connecting peripherals to assure that appropriate radio frequency emissions compliance is  
maintained.  
Operation  
Product Damage  
High humidity and condensation on the board surface causes short circuits.  
Do not operate the board outside the specified environmental limits.  
Make sure the board is completely dry and there is no moisture on any surface before applying  
power.  
Damage of Circuits  
Electrostatic discharge and incorrect installation and removal can damage circuits or shorten  
its life.  
Before touching the board or electronic components, make sure that you are working in an  
ESD-safe environment.  
Board Malfunction  
Switches marked as “reserved” might carry production-related functions and can cause the  
board to malfunction if their setting is changed.  
Do not change settings of switches marked as “reserved”. The setting of switches which are  
not marked as “reserved” has to be checked and changed before board installation.  
Installation  
Data Loss  
Powering down or removing a board before the operating system or other software running  
on the board has been properly shut down may cause corruption of data or file systems.  
134  
MVME2500 Installation and Use (6806800L01H)  
Safety Notes  
Make sure all software is completely shut down before removing power from the board or  
removing the board from the chassis.  
Product Damage  
Only use injector handles for board insertion to avoid damage to the front panel and/or PCB.  
Deformation of the front panel can cause an electrical short or other board malfunction.  
Product Damage  
Inserting or removing modules with power applied may result in damage to module  
components.  
Before installing or removing additional devices or modules, read the documentation that  
came with the product.  
Cabling and Connectors  
Product Damage  
RJ-45 connectors on modules are either twisted-pair Ethernet (TPE) or E1/T1/J1 network  
interfaces. Connecting an E1/T1/J1 line to an Ethernet connector may damage your system.  
Make sure that TPE connectors near your working area are clearly marked as network  
connectors.  
Verify that the length of an electric cable connected to a TPE bushing does not exceed 100  
meters.  
Make sure the TPE bushing of the system is connected only to safety extra low voltage  
circuits (SELV circuits).  
If in doubt, ask your system administrator.  
135  
MVME2500 Installation and Use (6806800L01H)  
Safety Notes  
Battery  
Board/System Damage  
Incorrect exchange of lithium batteries can result in a hazardous explosion.  
When exchanging the on-board lithium battery, make sure that the new and the old  
battery are exactly the same battery models.  
If the respective battery model is not available, contact your local Emerson sales  
representative for the availability of alternative, officially approved battery models.  
Data Loss  
Exchanging the battery can result in loss of time settings. Backup power prevents the loss of  
data during exchange.  
Quickly replacing the battery may save time settings.  
Data Loss  
If the battery has low or insufficient power the RTC is initialized.  
Exchange the battery before seven years of actual battery use have elapsed.  
PCB and Battery Holder Damage  
Removing the battery with a screw driver may damage the PCB or the battery holder. To  
prevent damage, do not use a screw driver to remove the battery from its holder.  
136  
MVME2500 Installation and Use (6806800L01H)  
Sicherheitshinweise  
Dieses Kapitel enthält Hinweise, die potentiell gefährlichen Prozeduren innerhalb dieses  
Handbuchs vorrangestellt sind. Beachten Sie unbedingt in allen Phasen des Betriebs, der  
Wartung und der Reparatur des Systems die Anweisungen, die diesen Hinweisen enthalten  
sind. Sie sollten außerdem alle anderen Vorsichtsmaßnahmen treffen, die für den Betrieb des  
Produktes innerhalb Ihrer Betriebsumgebung notwendig sind. Wenn Sie diese  
Vorsichtsmaßnahmen oder Sicherheitshinweise, die an anderer Stelle diese Handbuchs  
enthalten sind, nicht beachten, kann das Verletzungen oder Schäden am Produkt zur Folge  
haben.  
Emerson ist darauf bedacht, alle notwendigen Informationen zum Einbau und zum Umgang  
mit dem Produkt in diesem Handbuch bereit zu stellen. Da es sich jedoch um ein komplexes  
Produkt mit vielfältigen Einsatzmöglichkeiten handelt, können wir die Vollständigkeit der im  
Handbuch enthaltenen Informationen nicht garantieren. Falls Sie weitere Informationen  
benötigen sollten, wenden Sie sich bitte an die für Sie zuständige Geschäftsstelle von Emerson.  
Das Produkt wurde entwickelt, um die Sicherheitsanforderungen für SELV Geräte nach der  
Norm EN 60950-1 für informationstechnische Einrichtungen zu erfüllen. Die Verwendung des  
Produkts in einer anderen Anwendung erfordert eine Sicherheitsüberprüfung für diese  
spezifische Anwendung.  
Einbau, Wartung und Betrieb dürfen nur von durch Emerson ausgebildetem oder im Bereich  
Elektronik oder Elektrotechnik qualifiziertem Personal durchgeführt werden. Die in diesem  
Handbuch enthaltenen Informationen dienen ausschließlich dazu, das Wissen von  
Fachpersonal zu ergänzen, können dieses jedoch nicht ersetzen.  
Halten Sie sich von stromführenden Leitungen innerhalb des Produktes fern. Entfernen Sie auf  
keinen Fall Abdeckungen am Produkt. Nur werksseitig zugelassenes Wartungspersonal oder  
anderweitig qualifiziertes Wartungspersonal darf Abdeckungen entfernen, um Komponenten  
zu ersetzen oder andere Anpassungen vorzunehmen.  
Installieren Sie keine Ersatzteile oder führen Sie keine unerlaubten Veränderungen am Produkt  
durch, sonst verfällt die Garantie. Wenden Sie sich für Wartung oder Reparatur bitte an die für  
Sie zuständige Geschäftsstelle von Emerson. So stellen Sie sicher, dass alle  
sicherheitsrelevanten Aspekte beachtet werden.  
137  
MVME2500 Installation and Use (6806800L01H)  
   
Sicherheitshinweise  
EMV  
Das Produkt wurde in einem Emerson Standardsystem getestet. Es erfüllt die für digitale  
Geräte der Klasse A gültigen Grenzwerte in einem solchen System gemäß den FCC-Richtlinien  
Abschnitt 15 bzw. EN 55022 Klasse A. Diese Grenzwerte sollen einen angemessenen Schutz  
vor Störstrahlung beim Betrieb des Produktes in Gewerbe- sowie Industriegebieten  
gewährleisten.  
Das Produkt arbeitet im Hochfrequenzbereich und erzeugt Störstrahlung. Bei  
unsachgemäßem Einbau und anderem als in diesem Handbuch beschriebenen Betrieb können  
Störungen im Hochfrequenzbereich auftreten.  
Wird das Produkt in einem Wohngebiet betrieben, so kann dies mit grosser Wahrscheinlichkeit  
zu starken Störungen führen, welche dann auf Kosten des Produktanwenders beseitigt werden  
müssen. Änderungen oder Modifikationen am Produkt, welche ohne ausdrückliche  
Genehmigung von Emerson Network Power durchgeführt werden, können dazu führen, dass  
der Anwender die Genehmigung zum Betrieb des Produktes verliert. Boardprodukte werden  
in einem repräsentativen System getestet, um zu zeigen, dass das Board den oben  
aufgeführten EMV-Richtlinien entspricht. Eine ordnungsgemässe Installation in einem System,  
welches die EMV-Richtlinien erfüllt, stellt sicher, dass das Produkt gemäss den EMV-Richtlinien  
betrieben wird. Verwenden Sie nur abgeschirmte Kabel zum Anschluss von Zusatzmodulen. So  
ist sichergestellt, dass sich die Aussendung von Hochfrequenzstrahlung im Rahmen der  
erlaubten Grenzwerte bewegt.  
Warnung! Dies ist eine Einrichtung der Klasse A. Diese Einrichtung kann im Wohnbereich  
Funkstörungen verursachen. In diesem Fall kann vom Betreiber verlangt werden,  
angemessene Maßnahmen durchzuführen.  
Betrieb  
1 Beschädigung des Produktes  
Hohe Luftfeuchtigkeit und Kondensat auf der Oberfläche des Produktes können zu  
Kurzschlüssen führen.  
Betreiben Sie das Produkt nur innerhalb der angegebenen Grenzwerte für die  
relative Luftfeuchtigkeit und Temperatur. Stellen Sie vor dem Einschalten des  
Stroms sicher, dass sich auf dem Produkt kein Kondensat befindet.  
138  
MVME2500 Installation and Use (6806800L01H)  
Sicherheitshinweise  
Beschädigung von Schaltkreisen  
Elektrostatische Entladung und unsachgemäßer Ein- und Ausbau des Produktes kann  
Schaltkreise beschädigen oder ihre Lebensdauer verkürzen.  
Bevor Sie das Produkt oder elektronische Komponenten berühren, vergewissern Sie  
sich, daß Sie in einem ESD-geschützten Bereich arbeiten.  
Fehlfunktion des Produktes  
Schalter, die mit 'Reserved' gekennzeichnet sind, können mit produktionsrelevanten  
Funktionen belegt sein. Das Ändern dieser Schalter kann im normalen Betrieb Störungen  
auslösen.  
Verstellen Sie nur solche Schalter, die nicht mit 'Reserved' gekennzeichnet sind.  
Prüfen und ggf. ändern Sie die Einstellungen der nicht mit 'Reserved'  
gekennzeichneten Schalter, bevor Sie das Produkt installieren.  
Installation  
Datenverlust  
Das Herunterfahren oder die Deinstallation eines Boards bevor das Betriebssystem oder  
andere auf dem Board laufende Software ordnungsmemäss beendet wurde, kann zu  
partiellem Datenverlust sowie zu Schäden am Filesystem führen.  
Stellen Sie sicher, dass sämtliche Software auf dem Board ordnungsgemäss  
beendet wurde, bevor Sie das Board herunterfahren oder das Board aus dem  
Chassis entfernen.  
Beschädigung des Produktes  
Fehlerhafte Installation des Produktes kann zu einer Beschädigung des Produktes führen.  
Verwenden Sie die Handles, um das Produkt zu installieren/deinstallieren. Auf diese  
Weise vermeiden Sie, dass das Face Plate oder die Platine deformiert oder zerstört  
wird.  
Beschädigung des Produktes und von Zusatzmodulen  
Fehlerhafte Installation von Zusatzmodulen, kann zur Beschädigung des Produktes und der  
Zusatzmodule führen.  
Lesen Sie daher vor der Installation von Zusatzmodulen die zugehörige  
Dokumentation.  
139  
MVME2500 Installation and Use (6806800L01H)  
Sicherheitshinweise  
Kabel und Stecker  
Beschädigung des Produktes  
Bei den RJ-45-Steckern, die sich an dem Produkt befinden, handelt es sich entweder um  
Twisted-Pair-Ethernet (TPE) oder um E1/T1/J1-Stecker. Beachten Sie, dass ein versehentliches  
Anschließen einer E1/T1/J1-Leitung an einen TPE-Stecker das Produkt zerstören kann.  
Kennzeichnen Sie deshalb TPE-Anschlüsse in der Nähe Ihres Arbeitsplatzes deutlich als  
Netzwerkanschlüsse.  
Stellen Sie sicher, dass die Länge eines mit Ihrem Produkt verbundenen TPE-Kabels 100 m  
nicht überschreitet.  
Das Produkt darf über die TPE-Stecker nur mit einem Sicherheits-Kleinspannungs-  
Stromkreis (SELV) verbunden werden.  
Bei Fragen wenden Sie sich an Ihren Systemverwalter.  
Batterie  
Beschädigung des Blades  
Ein unsachgemäßer Einbau der Batterie kann gefährliche Explosionen und  
Beschädigungen des Blades zur Folge haben.  
Verwenden Sie deshalb nur den Batterietyp, der auch bereits eingesetzt wurde und  
befolgen Sie die Installationsanleitung.  
Datenverlust  
Wenn Sie die Batterie austauschen, können die Zeiteinstellungen verloren gehen. Eine  
Backupversorgung verhindert den Datenverlust während des Austauschs.  
Wenn Sie die Batterie schnell austauschen, bleiben die Zeiteinstellungen möglicherweise  
erhalten.  
140  
MVME2500 Installation and Use (6806800L01H)  
Sicherheitshinweise  
Datenverlust  
Wenn die Batterie wenig oder unzureichend mit Spannung versorgt wird, wird der RTC  
initialisiert.  
Tauschen Sie die Batterie aus, bevor sieben Jahre tatsächlicher Nutzung vergangen sind.  
Schäden an der Platine oder dem Batteriehalter  
Wenn Sie die Batterie mit einem Schraubendreher entfernen, können die Platine oder der  
Batteriehalter beschädigt werden.  
Um Schäden zu vermeiden, sollten Sie keinen Schraubendreher zum Ausbau der Batterie  
verwenden.  
Umweltschutz  
Entsorgen Sie alte Batterien und/oder Blades/Systemkomponenten/RTMs stets gemäß der in  
Ihrem Land gültigen Gesetzgebung, wenn möglich immer umweltfreundlich.  
141  
MVME2500 Installation and Use (6806800L01H)  
Sicherheitshinweise  
142  
MVME2500 Installation and Use (6806800L01H)  
Index  
A
T
abbreviations 13  
accessories 30  
timers 65  
FPGA tick timer 66  
internal timer 66  
real time clock 65  
watchdog timer 66  
B
block diagram 61  
board accessories 23  
board configuration 29  
C
chipset 61  
conventions 15  
D
disposal 26  
disposal of product 21  
E
environmental requirements 27  
I
installating and removing the board 32  
installation 31  
M
memory  
system memory 65  
P
PMC 31  
PMC/PrPMC 31  
product 21  
related standards 21  
R
related  
data sheets 130  
documents 129  
specifications 130  
replacing the battery 125  
S
standard compliances 21  
143  
MVME2500 Installation and Use (6806800L01H)  
 
Index  
MVME2500 Installation and Use (6806800L01H)  
144  
HOW TO REACH LITERATURE AND TECHNICAL SUPPORT:  
For literature, training, and technical assistance and support programs, visit  
Emerson Network Power.  
The global leader in enabling Business-Critical Continuity  
AC Power Systems  
Connectivity  
DC Power Systems  
Embedded Computing  
Embedded Power  
Integrated Cabinet Solutions  
Outside Plant  
Power Switching & Control  
Precision Cooling  
Services  
Site Monitoring  
Surge & Signal Protection  
Emerson, Business-Critical Continuity, Emerson Network Power and the Emerson Network Power logo are trademarks and service marks of Emerson Electric Co.  
All other product or service names are the property of their respective owners.  
© 2014 Emerson Electric Co.  

Motorola i760 User Manual
Maxtor STM3320820AS User Manual
Marantz SA8400 User Manual
iLive IC618B User Manual
Hitachi Travelstar HTS722080K9A300 User Manual
Hitachi Computer Drive HTS541680J9SA00 User Manual
Emerson CKD3630 User Manual
Capresso ADX13 User Manual
Blackberry Pearl 8100 User Manual
APC UPB80 User Manual