Mitsubishi Electronics Mitsubishi Digital Electronics Car Amplifier MR J3 T User Manual

General-Purpose AC Servo  
J3 Series  
Built-in Positioning Function  
MODEL  
MR-J3- T  
SERVO AMPLIFIER  
INSTRUCTION MANUAL  
(CC-Link)  
E
1. To prevent electric shock, note the following  
WARNING  
Before wiring or inspection, turn off the power and wait for 15 minutes or more until the charge lamp turns  
off. Then, confirm that the voltage between P( ) and N( ) is safe with a voltage tester and others.  
Otherwise, an electric shock may occur. In addition, always confirm from the front of the servo amplifier,  
whether the charge lamp is off or not.  
Connect the servo amplifier and servo motor to ground.  
Any person who is involved in wiring and inspection should be fully competent to do the work.  
Do not attempt to wire the servo amplifier and servo motor until they have been installed. Otherwise, you  
may get an electric shock.  
Operate the switches with dry hand to prevent an electric shock.  
The cables should not be damaged, stressed, loaded, or pinched. Otherwise, you may get an electric  
shock.  
During power-on or operation, do not open the front cover of the servo amplifier. You may get an electric  
shock.  
Do not operate the servo amplifier with the front cover removed. High-voltage terminals and charging area  
are exposed and you may get an electric shock.  
Except for wiring or periodic inspection, do not remove the front cover even of the servo amplifier if the  
power is off. The servo amplifier is charged and you may get an electric shock.  
2. To prevent fire, note the following  
CAUTION  
Install the servo amplifier, servo motor and regenerative resistor on incombustible material. Installing them  
directly or close to combustibles will lead to a fire.  
Always connect a magnetic contactor (MC) between the main circuit power supply and L1, L2, and L3 of  
the servo amplifier, and configure the wiring to be able to shut down the power supply on the side of the  
servo amplifier’s power supply. If a magnetic contactor (MC) is not connected, continuous flow of a large  
current may cause a fire when the servo amplifier malfunctions.  
When a regenerative resistor is used, use an alarm signal to switch main power off. Otherwise, a  
regenerative transistor fault or the like may overheat the regenerative resistor, causing a fire.  
3. To prevent injury, note the follow  
CAUTION  
Only the voltage specified in the Instruction Manual should be applied to each terminal, Otherwise, a  
burst, damage, etc. may occur.  
Connect the terminals correctly to prevent a burst, damage, etc.  
Ensure that polarity (  
,
) is correct. Otherwise, a burst, damage, etc. may occur.  
Take safety measures, e.g. provide covers, to prevent accidental contact of hands and parts (cables, etc.)  
with the servo amplifier heat sink, regenerative resistor, servo motor, etc. since they may be hot while  
power is on or for some time after power-off. Their temperatures may be high and you may get burnt or a  
parts may damaged.  
During operation, never touch the rotating parts of the servo motor. Doing so can cause injury.  
A - 2  
4. Additional instructions  
The following instructions should also be fully noted. Incorrect handling may cause a fault, injury, electric shock,  
etc.  
(1) Transportation and installation  
CAUTION  
Transport the products correctly according to their weights.  
Stacking in excess of the specified number of products is not allowed.  
Do not carry the servo motor by the cables, shaft or encoder.  
Do not hold the front cover to transport the servo amplifier. The servo amplifier may drop.  
Install the servo amplifier in a load-bearing place in accordance with the Instruction Manual.  
Do not climb or stand on servo equipment. Do not put heavy objects on equipment.  
The servo amplifier and servo motor must be installed in the specified direction.  
Leave specified clearances between the servo amplifier and control enclosure walls or other equipment.  
Do not install or operate the servo amplifier and servo motor which has been damaged or has any parts  
missing.  
Provide adequate protection to prevent screws and other conductive matter, oil and other combustible  
matter from entering the servo amplifier and servo motor.  
Do not drop or strike servo amplifier or servo motor. Isolate from all impact loads.  
When you keep or use it, please fulfill the following environmental conditions.  
Conditions  
Environment  
Servo amplifier  
0 to 55 (non-freezing)  
Servo motor  
[
[
[
[
]
]
]
]
0 to 40 (non-freezing)  
32 to 104 (non-freezing)  
In operation  
In storage  
32 to 131 (non-freezing)  
Ambient  
temperature  
20 to 65 (non-freezing)  
15 to 70 (non-freezing)  
5 to 158 (non-freezing)  
4 to 149 (non-freezing)  
In operation  
In storage  
90%RH or less (non-condensing)  
90%RH or less (non-condensing)  
80%RH or less (non-condensing)  
Ambient  
humidity  
Ambience  
Altitude  
Indoors (no direct sunlight) Free from corrosive gas, flammable gas, oil mist, dust and dirt  
Max. 1000m (3280 ft) above sea level  
HF-MP series  
HF-SP51 81  
HF-KP series  
HF-SP52 to 152  
HC-RP Series  
X
Y: 49  
HF-SP524 to 1524  
HC-UP72 152  
HF-SP121 201  
HF-SP2024 3524  
HF-SP301 421  
HF-SP5024 7024  
X
Y: 24.5  
HF-SP202 352  
HC-UP202 to 502  
HF-SP502 702  
X: 24.5 Y: 49  
X: 24.5 Y: 29.4  
(Note)  
Vibration  
[m/s2]  
5.9 or less  
HC-LP52 to 152  
HC-LP202 to 302  
X: 9.8 Y: 24.5  
X: 19.6 Y: 49  
HA-LP601 to 12K1  
HA-LP502 to 22K2  
HA-LP701M to 15K1M  
HA-LP6014 to 12K14  
X: 11.7 Y: 29.4  
HA-LP701M4 to 15K1M4 HA-LP11K24 to 22K24  
HA-LP15K1 to 25K1  
HA-LP15K14 to 20K14  
HA-LP37K1M  
HA-LP22K1M4  
X
Y: 9.8  
Note. Except the servo motor with a reduction gear.  
Securely attach the servo motor to the machine. If attach insecurely, the servo motor may come off during  
operation.  
The servo motor with a reduction gear must be installed in the specified direction to prevent oil leakage.  
Take safety measures, e.g. provide covers, to prevent accidental access to the rotating parts of the servo  
motor during operation.  
Never hit the servo motor or shaft, especially when coupling the servo motor to the machine. The encoder  
may become faulty.  
Do not subject the servo motor shaft to more than the permissible load. Otherwise, the shaft may break.  
When the equipment has been stored for an extended period of time, consult Mitsubishi.  
A - 3  
(2) Wiring  
CAUTION  
Wire the equipment correctly and securely. Otherwise, the servo motor may operate unexpectedly.  
Do not install a power capacitor, surge absorber or radio noise filter (FR-BIF-(H) option) between the  
servo motor and servo amplifier.  
Connect the wires to the correct phase terminals (U, V, W) of the servo amplifier and servo motor.  
Not doing so may cause unexpected operation.  
Connect the servo motor power terminal (U, V, W) to the servo motor power input terminal (U, V, W)  
directly. Do not let a magnetic contactor, etc. intervene.  
Servo amplifier  
U
Servo motor  
Servo amplifier  
U
Servo motor  
U
V
U
V
V
V
M
M
W
W
W
W
Do not connect AC power directly to the servo motor. Otherwise, a fault may occur.  
The surge absorbing diode installed on the DC output signal relay of the servo amplifier must be wired in  
the specified direction. Otherwise, the forced stop (EMG) and other protective circuits may not operate.  
Servo amplifier  
Servo amplifier  
24VDC  
24VDC  
DOCOM  
DICOM  
DOCOM  
DICOM  
Control  
output  
signal  
Control  
output  
signal  
RA  
RA  
When the cable is not tightened enough to the terminal block (connector), the cable or terminal block  
(connector) may generate heat because of the poor contact. Be sure to tighten the cable with specified  
torque.  
(3) Test run adjustment  
CAUTION  
Before operation, check the parameter settings. Improper settings may cause some machines to perform  
unexpected operation.  
The parameter settings must not be changed excessively. Operation will be insatiable.  
A - 4  
(4) Usage  
CAUTION  
Provide an external emergency stop circuit to ensure that operation can be stopped and power switched  
off immediately.  
Any person who is involved in disassembly and repair should be fully competent to do the work.  
Before resetting an alarm, make sure that the run signal of the servo amplifier is off to prevent an  
accident. A sudden restart is made if an alarm is reset with the run signal on.  
Do not modify the equipment.  
Use a noise filter, etc. to minimize the influence of electromagnetic interference, which may be caused by  
electronic equipment used near the servo amplifier.  
Burning or breaking a servo amplifier may cause a toxic gas. Do not burn or break a servo amplifier.  
Use the servo amplifier with the specified servo motor.  
The electromagnetic brake on the servo motor is designed to hold the motor shaft and should not be used  
for ordinary braking.  
For such reasons as service life and mechanical structure (e.g. where a ball screw and the servo motor  
are coupled via a timing belt), the electromagnetic brake may not hold the motor shaft. To ensure safety,  
install a stopper on the machine side.  
(5) Corrective actions  
CAUTION  
When it is assumed that a hazardous condition may take place at the occur due to a power failure or a  
product fault, use a servo motor with an electromagnetic brake or an external brake mechanism for the  
purpose of prevention.  
Configure the electromagnetic brake circuit so that it is activated not only by the servo amplifier signals  
but also by an external forced stop (EMG).  
Contacts must be open when  
Circuit must be  
servo-off, when an trouble (ALM)  
opened during  
and when an electromagnetic brake  
forced stop (EMG).  
interlock (MBR).  
EMG  
SON  
RA  
24VDC  
Electromagnetic brake  
When any alarm has occurred, eliminate its cause, ensure safety, and deactivate the alarm before  
restarting operation.  
When power is restored after an instantaneous power failure, keep away from the machine because the  
machine may be restarted suddenly (design the machine so that it is secured against hazard if restarted).  
(6) Maintenance, inspection and parts replacement  
CAUTION  
With age, the electrolytic capacitor of the servo amplifier will deteriorate. To prevent a secondary accident  
due to a fault, it is recommended to replace the electrolytic capacitor every 10 years when used in general  
environment. Please consult our sales representative.  
A - 5  
(7) General instruction  
To illustrate details, the equipment in the diagrams of this Specifications and Instruction Manual may have  
been drawn without covers and safety guards. When the equipment is operated, the covers and safety  
guards must be installed as specified. Operation must be performed in accordance with this  
Specifications and Instruction Manual.  
About processing of waste  
When you discard servo amplifier, a battery (primary battery), and other option articles, please follow the law of  
each country (area).  
FOR MAXIMUM SAFETY  
These products have been manufactured as a general-purpose part for general industries, and have not  
been designed or manufactured to be incorporated in a device or system used in purposes related to  
human life.  
Before using the products for special purposes such as nuclear power, electric power, aerospace,  
medicine, passenger movement vehicles or under water relays, contact Mitsubishi.  
These products have been manufactured under strict quality control. However, when installing the product  
where major accidents or losses could occur if the product fails, install appropriate backup or failsafe  
functions in the system.  
EEP-ROM life  
The number of write times to the EEP-ROM, which stores parameter settings, etc., is limited to 100,000. If  
the total number of the following operations exceeds 100,000, the servo amplifier and/or converter unit may  
fail when the EEP-ROM reaches the end of its useful life.  
Write to the EEP-ROM due to parameter setting changes  
Home position setting in the absolute position detection system  
Write to the EEP-ROM due to device changes  
Write to the EEP-ROM due to point table changes  
Precautions for Choosing the Products  
Mitsubishi will not be held liable for damage caused by factors found not to be the cause of Mitsubishi;  
machine damage or lost profits caused by faults in the Mitsubishi products; damage, secondary damage,  
accident compensation caused by special factors unpredictable by Mitsubishi; damages to products other  
than Mitsubishi products; and to other duties.  
A - 6  
COMPLIANCE WITH EC DIRECTIVES  
1. WHAT ARE EC DIRECTIVES?  
The EC directives were issued to standardize the regulations of the EU countries and ensure smooth  
distribution of safety-guaranteed products. In the EU countries, the machinery directive (effective in January,  
1995), EMC directive (effective in January, 1996) and low voltage directive (effective in January, 1997) of the  
EC directives require that products to be sold should meet their fundamental safety requirements and carry the  
CE marks (CE marking). CE marking applies to machines and equipment into which servo amplifiers have  
been installed.  
(1) EMC directive  
The EMC directive applies not to the servo units alone but to servo-incorporated machines and equipment.  
This requires the EMC filters to be used with the servo-incorporated machines and equipment to comply  
with the EMC directive. For specific EMC directive conforming methods, refer to the EMC Installation  
Guidelines (IB(NA)67310).  
(2) Low voltage directive  
The low voltage directive applies also to servo units alone. Hence, they are designed to comply with the low  
voltage directive.  
This servo is certified by TUV, third-party assessment organization, to comply with the low voltage directive.  
(3) Machine directive  
Not being machines, the servo amplifiers need not comply with this directive.  
2. PRECAUTIONS FOR COMPLIANCE  
(1) Servo amplifiers and servo motors used  
Use the servo amplifiers and servo motors which comply with the standard model.  
Servo amplifier  
Servo motor  
:MR-J3-10T to MR-J3-22KT  
MR-J3-10T1 to MR-J3-40T1  
MR-J3-60T4 to MR-J3-22KT4  
:HF-MP  
HF-KP  
HF-SP (Note)  
HF-SP 4 (Note)  
HC-RP  
HC-UP  
HC-LP  
HA-LP (Note)  
HA-LP 4 (Note)  
Note. For the latest information of compliance, contact Mitsubishi.  
A - 7  
(2) Configuration  
The control circuit provide safe separation to the main circuit in the servo amplifier.  
Control box  
Reinforced  
insulating type  
24VDC  
power  
supply  
No-fuse  
breaker  
Magnetic  
contactor  
Servo  
motor  
Servo  
amplifier  
M
MC  
NFB  
(3) Environment  
Operate the servo amplifier at or above the contamination level 2 set forth in IEC60664-1. For this purpose,  
install the servo amplifier in a control box which is protected against water, oil, carbon, dust, dirt, etc. (IP54).  
(4) Power supply  
(a) This servo amplifier can be supplied from star-connected supply with earthed neutral point of  
overvoltage category III set forth in IEC60664-1. However, when using the neutral point of 400V class  
for single-phase supply, a reinforced insulating transformer is required in the power input section.  
(b) When supplying interface power from external, use a 24VDC power supply which has been insulation-  
reinforced in I/O.  
(5) Grounding  
(a) To prevent an electric shock, always connect the protective earth (PE) terminals (marked ) of the  
servo amplifier to the protective earth (PE) of the control box.  
(b) Do not connect two ground cables to the same protective earth (PE) terminal (marked ). Always  
connect the cables to the terminals one-to-one.  
PE terminals  
PE terminals  
(c) If a leakage current breaker is used to prevent an electric shock, the protective earth (PE) terminals  
(marked ) of the servo amplifier must be connected to the corresponding earth terminals.  
A - 8  
(6) Wiring  
(a) The cables to be connected to the terminal block of the servo amplifier must have crimping terminals  
provided with insulating tubes to prevent contact with adjacent terminals.  
Crimping terminal  
Insulating tube  
Cable  
(b) Use the servo motor side power connector which complies with the EN Standard. The EN Standard  
compliant power connector sets are available from us as options. (Refer to section 14.1)  
(7) Auxiliary equipment and options  
(a) The no-fuse breaker and magnetic contactor used should be the EN or IEC standard-compliant  
products of the models described in section 14.10.  
Use a type B (Note) breaker. When it is not used, provide insulation between the servo amplifier and  
other device by double insulation or reinforced insulation, or install a transformer between the main  
power supply and servo amplifier.  
Note. Type A: AC and pulse detectable  
Type B: Both AC and DC detectable  
(b) The sizes of the cables described in section 14.9 meet the following requirements. To meet the other  
requirements, follow Table 5 and Appendix C in EN60204-1.  
Ambient temperature: 40 (104) [°C (°F)]  
Sheath: PVC (polyvinyl chloride)  
Installed on wall surface or open table tray  
(c) Use the EMC filter for noise reduction.  
(8) Performing EMC tests  
When EMC tests are run on a machine/device into which the servo amplifier has been installed, it must  
conform to the electromagnetic compatibility (immunity/emission) standards after it has satisfied the  
operating environment/electrical equipment specifications.  
For the other EMC directive guidelines on the servo amplifier, refer to the EMC Installation Guidelines  
(IB(NA)67310).  
A - 9  
CONFORMANCE WITH UL/C-UL STANDARD  
(1) Servo amplifiers and servo motors used  
Use the servo amplifiers and servo motors which comply with the standard model.  
Servo amplifier  
Servo motor  
:MR-J3-10T to MR-J3-22KT  
MR-J3-10T1 to MR-J3-40T1  
MR-J3-60T4 to MR-J3-22KT4  
:HF-MP  
HF-KP  
HF-SP (Note)  
HF-SP 4 (Note)  
HC-RP  
HC-UP  
HC-LP  
HA-LP (Note)  
HA-LP 4 (Note)  
Note. For the latest information of compliance, contact Mitsubishi.  
(2) Installation  
Install a fan of 100CFM (2.8m3/min) air flow 4[in] (10.16[cm]) above the servo amplifier or provide cooling  
of at least equivalent capability to ensure that the ambient temperature conforms to the environment  
conditions (55 or less).  
(3) Short circuit rating (SCCR: Short Circuit Current Rating)  
Suitable For Use In A Circuit Capable Of Delivering Not More Than 100 kA rms Symmetrical Amperes, 500  
Volts Maximum.  
(4) Capacitor discharge time  
The capacitor discharge time is as listed below. To ensure safety, do not touch the charging section for 15  
minutes after power-off.  
Discharge time  
Servo amplifier  
[min]  
MR-J3-10T 20T  
MR-J3-40T 60T(4) 10T1 20T1  
MR-J3-70T  
1
2
3
MR-J3-40T1  
4
MR-J3-100T(4)  
5
MR-J3-200T(4) 350T  
MR-J3-350T4 500T(4) 700T(4)  
MR-J3-11KT(4)  
9
10  
4
MR-J3-15KT(4)  
6
MR-J3-22KT(4)  
8
A - 10  
(5) Options and auxiliary equipment  
Use UL/C-UL standard-compliant products.  
(6) Attachment of a servo motor  
For the flange size of the machine side where the servo motor is installed, refer to “CONFORMANCE WITH  
UL/C-UL STANDARD” in the Servo Motor Instruction Manual (Vol.2).  
(7) About wiring protection  
For installation in United States, branch circuit protection must be provided, in accordance with the National  
Electrical Code and any applicable local codes.  
For installation in Canada, branch circuit protection must be provided, in accordance with the Canada  
Electrical Code and any applicable provincial codes.  
<<About the manuals>>  
This Instruction Manual and the MELSERVO Servo Motor Instruction Manual (Vol.2) are required if you use  
the General-Purpose AC servo MR-J3-T for the first time. Always purchase them and use the MR-J3-T  
safely.  
Relevant manuals  
Manual name  
MELSERVO-J3 Series Instructions and Cautions for Safe Use of AC Servos  
MELSERVO Servo Motor Instruction Manual (Vol.2)  
EMC Installation Guidelines  
Manual No.  
IB(NA)0300077  
SH(NA)030041  
IB(NA)67310  
<<About the wires used for wiring>>  
Wiring wires mentioned in this instruction manual are selected based on the ambient temperature of 40°C  
(104 ).  
A - 11  
MEMO  
A - 12  
CONTENTS  
1. FUNCTIONS AND CONFIGURATION  
1 - 1 to 1 -36  
1.1 Introduction............................................................................................................................................... 1 - 1  
1.1.1 Features of CC-Link communication functions ................................................................................ 1 - 1  
1.1.2 Function block diagram..................................................................................................................... 1 - 2  
1.1.3 System configuration......................................................................................................................... 1 - 5  
1.2 Servo amplifier standard specifications................................................................................................... 1 - 7  
1.3 Function list .............................................................................................................................................1 -13  
1.4 Model code definition..............................................................................................................................1 -15  
1.5 Combination with servo motor................................................................................................................1 -16  
1.6 Structure..................................................................................................................................................1 -17  
1.6.1 Parts identification............................................................................................................................1 -17  
1.6.2 Removal and reinstallation of the front cover..................................................................................1 -23  
1.7 Configuration including auxiliary equipment ..........................................................................................1 -26  
1.8 Selection of operation method................................................................................................................1 -34  
2. INSTALLATION  
2 - 1 to 2 - 4  
2.1 Installation direction and clearances ....................................................................................................... 2 - 1  
2.2 Keep out foreign materials....................................................................................................................... 2 - 3  
2.3 Cable stress ............................................................................................................................................. 2 - 3  
2.4 Inspection items ....................................................................................................................................... 2 - 4  
2.5 Parts having service lives ........................................................................................................................ 2 - 4  
3. CC-LINK COMMUNICATION FUNCTIONS  
3 - 1 to 3 -60  
3.1 Communication specifications................................................................................................................. 3 - 1  
3.2 System configuration ............................................................................................................................... 3 - 2  
3.2.1 Configuration example ...................................................................................................................... 3 - 2  
3.2.2 Wiring method ................................................................................................................................... 3 - 3  
3.2.3 Station number setting ...................................................................................................................... 3 - 5  
3.2.4 Communication baud rate setting..................................................................................................... 3 - 6  
3.2.5 Occupied station count setting.......................................................................................................... 3 - 6  
3.3 Functions.................................................................................................................................................. 3 - 7  
3.3.1 Function block diagram..................................................................................................................... 3 - 7  
3.3.2 Functions ........................................................................................................................................... 3 - 7  
3.4 Servo amplifier setting ............................................................................................................................. 3 - 8  
3.5 I/O signals (I/O devices) transferred to/from the programmable controller CPU................................... 3 - 9  
3.5.1 I/O signals (I/O devices).................................................................................................................... 3 - 9  
3.5.2 Detailed explanation of I/O signals..................................................................................................3 -12  
3.5.3 Monitor codes...................................................................................................................................3 -22  
3.5.4 Instruction codes (RWwn+2 RWwn+3) .........................................................................................3 -23  
3.5.5 Respond codes (RWrn+2) ...............................................................................................................3 -31  
3.5.6 Setting the CN6 external input signals ............................................................................................3 -32  
3.6 Data communication timing charts .........................................................................................................3 -34  
3.6.1 Monitor codes...................................................................................................................................3 -34  
3.6.2 Instruction codes ..............................................................................................................................3 -36  
1
3.6.3 Remote register-based position/speed setting................................................................................3 -38  
3.7 Function-by-function programming examples........................................................................................3 -41  
3.7.1 System configuration example.........................................................................................................3 -41  
3.7.2 Reading the servo amplifier status ..................................................................................................3 -44  
3.7.3 Writing the operation commands.....................................................................................................3 -45  
3.7.4 Reading the data..............................................................................................................................3 -46  
3.7.5 Writing the data ................................................................................................................................3 -49  
3.7.6 Operation..........................................................................................................................................3 -52  
3.8 Continuous operation program example................................................................................................3 -55  
3.8.1 System configuration example when 1 station is occupied ............................................................3 -55  
3.8.2 Program example when 1 station is occupied ................................................................................3 -56  
3.8.3 System configuration example when 2 stations are occupied........................................................3 -58  
3.8.4 Program example when 2 stations are occupied............................................................................3 -59  
4. SIGNALS AND WIRING  
4 - 1 to 4 -54  
4.1 Input power supply circuit ........................................................................................................................ 4 - 2  
4.2 I/O signal connection diagram ................................................................................................................4 -10  
4.3 Explanation of power supply system......................................................................................................4 -11  
4.3.1 Signal explanations..........................................................................................................................4 -11  
4.3.2 Power-on sequence .........................................................................................................................4 -12  
4.3.3 CNP1, CNP2, CNP3 wiring method ................................................................................................4 -14  
4.4 Connectors and signal arrangements ....................................................................................................4 -22  
4.5 Signal (device) explanation.....................................................................................................................4 -23  
4.5.1 I/O devices........................................................................................................................................4 -23  
4.5.2 Input signals .....................................................................................................................................4 -26  
4.5.3 Output signals...................................................................................................................................4 -26  
4.5.4 Power supply....................................................................................................................................4 -27  
4.6 Detailed description of signals (devices)................................................................................................4 -27  
4.6.1 Forward rotation start reverse rotation start temporary stop/restart...........................................4 -27  
4.6.2 Movement completion rough match in position ..........................................................................4 -28  
4.6.3 Torque limit.......................................................................................................................................4 -30  
4.7 Alarm occurrence timing chart................................................................................................................4 -31  
4.8 Interface...................................................................................................................................................4 -32  
4.8.1 Internal connection diagram ............................................................................................................4 -32  
4.8.2 Detailed description of interfaces.....................................................................................................4 -33  
4.8.3 Source I/O interfaces .......................................................................................................................4 -35  
4.9 Treatment of cable shield external conductor........................................................................................4 -36  
4.10 Connection of servo amplifier and servo motor ...................................................................................4 -37  
4.10.1 Connection instructions..................................................................................................................4 -37  
4.10.2 Power supply cable wiring diagrams.............................................................................................4 -38  
4.11 Servo motor with an electromagnetic brake.........................................................................................4 -48  
4.11.1 Safety precautions .........................................................................................................................4 -48  
4.11.2 Timing charts..................................................................................................................................4 -49  
4.11.3 Wiring diagrams (HF-MP series HF-KP series servo motor) .....................................................4 -52  
4.12 Grounding..............................................................................................................................................4 -53  
2
5. OPERATION  
5 - 1 to 5 -60  
5.1 Switching power on for the first time ....................................................................................................... 5 - 1  
5.1.1 Startup procedure.............................................................................................................................. 5 - 1  
5.1.2 Wiring check...................................................................................................................................... 5 - 2  
5.1.3 Surrounding environment.................................................................................................................. 5 - 3  
5.2 Startup ...................................................................................................................................................... 5 - 4  
5.2.1 Power on and off procedures............................................................................................................ 5 - 4  
5.2.2 Stop.................................................................................................................................................... 5 - 4  
5.2.3 Test operation.................................................................................................................................... 5 - 5  
5.2.4 Parameter setting.............................................................................................................................. 5 - 6  
5.2.5 Point table setting.............................................................................................................................. 5 - 7  
5.2.6 Actual operation ................................................................................................................................ 5 - 7  
5.3 Servo amplifier display............................................................................................................................. 5 - 8  
5.4 Automatic operation mode......................................................................................................................5 -10  
5.4.1 What is automatic operation mode?................................................................................................5 -10  
5.4.2 Automatic operation using point table .............................................................................................5 -12  
5.4.3 Remote register-based position/speed setting................................................................................5 -22  
5.5 Manual operation mode..........................................................................................................................5 -28  
5.5.1 JOG operation..................................................................................................................................5 -28  
5.5.2 Manual pulse generator ...................................................................................................................5 -29  
5.6 Manual home position return mode........................................................................................................5 -31  
5.6.1 Outline of home position return........................................................................................................5 -31  
5.6.2 Dog type home position return.........................................................................................................5 -34  
5.6.3 Count type home position return .....................................................................................................5 -36  
5.6.4 Data setting type home position return............................................................................................5 -38  
5.6.5 Stopper type home position return ..................................................................................................5 -39  
5.6.6 Home position ignorance (servo-on position defined as home position) .......................................5 -41  
5.6.7 Dog type rear end reference home position return.........................................................................5 -42  
5.6.8 Count type front end reference home position return .....................................................................5 -44  
5.6.9 Dog cradle type home position return .............................................................................................5 -46  
5.6.10 Dog type first Z-phase reference home position return ................................................................5 -48  
5.6.11 Dog type front end reference home position return method.........................................................5 -50  
5.6.12 Dogless Z-phase reference home position return method ...........................................................5 -52  
5.6.13 Home position return automatic return function............................................................................5 -54  
5.6.14 Automatic positioning function to the home position.....................................................................5 -55  
5.7 Roll feed display function in roll feed mode............................................................................................5 -56  
5.8 Absolute position detection system........................................................................................................5 -57  
6. PARAMETERS  
6 - 1 to 6 -40  
6.1 Basic setting parameters (No.PA  
)................................................................................................... 6 - 1  
6.1.1 Parameter list .................................................................................................................................... 6 - 1  
6.1.2 Parameter write inhibit ...................................................................................................................... 6 - 2  
6.1.3 Selection of command system.......................................................................................................... 6 - 3  
6.1.4 Selection of regenerative option ....................................................................................................... 6 - 3  
6.1.5 Using absolute position detection system ........................................................................................ 6 - 4  
6.1.6 Follow-up for absolute value command system in incremental system.......................................... 6 - 4  
6.1.7 Feeding function selection ................................................................................................................ 6 - 5  
3
6.1.8 Electronic gear................................................................................................................................... 6 - 6  
6.1.9 Auto tuning ........................................................................................................................................ 6 - 7  
6.1.10 In-position range.............................................................................................................................. 6 - 8  
6.1.11 Torque limit...................................................................................................................................... 6 - 9  
6.1.12 Selection of servo motor rotation direction....................................................................................6 -10  
6.1.13 Encoder output pulse .....................................................................................................................6 -10  
6.2 Gain/filter parameters (No. PB  
)......................................................................................................6 -12  
6.2.1 Parameter list ...................................................................................................................................6 -12  
6.2.2 Detail list ...........................................................................................................................................6 -13  
6.3 Extension setting parameters (No. PC  
).........................................................................................6 -20  
6.3.1 Parameter list ...................................................................................................................................6 -20  
6.3.2 Detail list ...........................................................................................................................................6 -21  
6.3.3 S-pattern acceleration/deceleration.................................................................................................6 -27  
6.3.4 Alarm history clear............................................................................................................................6 -27  
6.3.5 Rough match output.........................................................................................................................6 -27  
6.3.6 Software limit....................................................................................................................................6 -28  
6.4 I/O setting parameters (No. PD  
).....................................................................................................6 -29  
6.4.1 Parameter list ...................................................................................................................................6 -29  
6.4.2 Detail list ...........................................................................................................................................6 -30  
6.4.3 Stopping method when the forward stroke end (LSP) or reverse stroke end (LSN) is valid.........6 -38  
6.4.4 Stopping method when a software limit is detected........................................................................6 -39  
7. MR Configurator  
7 - 1 to 7 -26  
7.1 Specifications ........................................................................................................................................... 7 - 1  
7.2 System configuration ............................................................................................................................... 7 - 2  
7.3 Station selection....................................................................................................................................... 7 - 4  
7.4 Parameters............................................................................................................................................... 7 - 5  
7.5 Point table................................................................................................................................................. 7 - 7  
7.6 Device assignment method ..................................................................................................................... 7 - 9  
7.7 Test operation .........................................................................................................................................7 -13  
7.7.1 Jog operation....................................................................................................................................7 -13  
7.7.2 Positioning operation........................................................................................................................7 -15  
7.7.3 Motor-less operation ........................................................................................................................7 -18  
7.7.4 Output signal (DO) forced output.....................................................................................................7 -19  
7.7.5 Single-step feed ...............................................................................................................................7 -20  
7.8 Alarm .......................................................................................................................................................7 -23  
7.8.1 Alarm display....................................................................................................................................7 -23  
7.8.2 Batch display of data at alarm occurrence......................................................................................7 -24  
7.8.3 Alarm history.....................................................................................................................................7 -26  
8. PARAMETER UNIT (MR-PRU03)  
8 - 1 to 8 -20  
8.1 External appearance and key explanations............................................................................................ 8 - 2  
8.2 Specifications ........................................................................................................................................... 8 - 3  
8.3 Outline dimension drawings..................................................................................................................... 8 - 3  
8.4 Connection with servo amplifier............................................................................................................... 8 - 4  
8.4.1 Single axis ......................................................................................................................................... 8 - 4  
8.4.2 Multidrop connection......................................................................................................................... 8 - 5  
4
8.5 Display...................................................................................................................................................... 8 - 7  
8.5.1 Outline of screen transition ............................................................................................................... 8 - 7  
8.5.2 MR-PRU03 parameter unit setting ................................................................................................... 8 - 8  
8.5.3 Monitor mode (status display)........................................................................................................... 8 - 9  
8.5.4 Alarm/diagnostic mode ....................................................................................................................8 -11  
8.5.5 Parameter mode...............................................................................................................................8 -13  
8.5.6 Point table mode ..............................................................................................................................8 -14  
8.5.7 Test operation mode ........................................................................................................................8 -15  
8.6 Error message list ...................................................................................................................................8 -19  
9. GENERAL GAIN ADJUSTMENT  
9 - 1 to 9 -12  
9.1 Different adjustment methods.................................................................................................................. 9 - 1  
9.1.1 Adjustment on a single servo amplifier............................................................................................. 9 - 1  
9.1.2 Adjustment using MR Configurator................................................................................................... 9 - 2  
9.2 Auto tuning ............................................................................................................................................... 9 - 3  
9.2.1 Auto tuning mode .............................................................................................................................. 9 - 3  
9.2.2 Auto tuning mode operation.............................................................................................................. 9 - 4  
9.2.3 Adjustment procedure by auto tuning............................................................................................... 9 - 5  
9.2.4 Response level setting in auto tuning mode .................................................................................... 9 - 6  
9.3 Manual mode 1 (simple manual adjustment).......................................................................................... 9 - 7  
9.4 Interpolation mode ..................................................................................................................................9 -11  
9.5 Differences between MELSERVO-J2-Super and MELSERVO-J3 in auto tuning................................9 -12  
10. SPECIAL ADJUSTMENT FUNCTIONS  
10- 1 to 10-16  
10.1 Function block diagram.........................................................................................................................10- 1  
10.2 Adaptive filter ......................................................................................................................................10- 1  
10.3 Machine resonance suppression filter..................................................................................................10- 4  
10.4 Advanced vibration suppression control ..............................................................................................10- 6  
10.5 Low-pass filter ......................................................................................................................................10-10  
10.6 Gain changing function ........................................................................................................................10-10  
10.6.1 Applications ...................................................................................................................................10-10  
10.6.2 Function block diagram.................................................................................................................10-11  
10.6.3 Parameters....................................................................................................................................10-12  
10.6.4 Gain changing operation...............................................................................................................10-14  
11. TROUBLESHOOTING  
11- 1 to 11-14  
11.1 Trouble at start-up.................................................................................................................................11- 1  
11.2 Operation at error occurrence ..............................................................................................................11- 2  
11.3 CC-Link communication error...............................................................................................................11- 2  
11.4 When alarm or warning has occurred ..................................................................................................11- 3  
11.4.1 Alarms and warning list..................................................................................................................11- 3  
11.4.2 Remedies for alarms......................................................................................................................11- 4  
11.4.3 Remedies for warnings .................................................................................................................11-11  
11.5 Point table error....................................................................................................................................11-13  
5
12. OUTLINE DRAWINGS  
12- 1 to 12-12  
12.1 Servo amplifier ......................................................................................................................................12- 1  
12.2 Connector.............................................................................................................................................12-10  
13. CHARACTERISTICS  
13- 1 to 13-10  
13.1 Overload protection characteristics......................................................................................................13- 1  
13.2 Power supply equipment capacity and generated loss .......................................................................13- 3  
13.3 Dynamic brake characteristics..............................................................................................................13- 6  
13.3.1 Dynamic brake operation...............................................................................................................13- 6  
13.3.2 The dynamic brake at the load inertia moment.............................................................................13- 9  
13.4 Cable flexing life...................................................................................................................................13-10  
13.5 Inrush currents at power-on of main circuit and control circuit...........................................................13-10  
14. OPTIONS AND AUXILIARY EQUIPMENT  
14- 1 to 14-90  
14.1 Cable/connector sets ............................................................................................................................14- 1  
14.1.1 Combinations of cable/connector sets ..........................................................................................14- 2  
14.1.2 Encoder cable/connector sets .......................................................................................................14- 8  
14.1.3 Motor power supply cables...........................................................................................................14-17  
14.1.4 Motor brake cables........................................................................................................................14-18  
14.2 Regenerative options...........................................................................................................................14-19  
14.3 FR-BU2-(H) brake unit.........................................................................................................................14-32  
14.3.1 Selection........................................................................................................................................14-33  
14.3.2 Brake unit parameter setting.........................................................................................................14-33  
14.3.3 Connection example .....................................................................................................................14-34  
14.3.4 Outline dimension drawings..........................................................................................................14-41  
14.4 Power regeneration converter .............................................................................................................14-43  
14.5 Power regeneration common converter..............................................................................................14-46  
14.6 External dynamic brake .......................................................................................................................14-54  
14.7 Battery MR-J3BAT...............................................................................................................................14-59  
14.8 Heat sink outside mounting attachment (MR-J3ACN)........................................................................14-60  
14.9 Selection example of wires..................................................................................................................14-62  
14.10 No-fuse breakers, fuses, magnetic contactors .................................................................................14-68  
14.11 Power factor improving DC reactor ...................................................................................................14-69  
14.12 Power factor improving reactors........................................................................................................14-71  
14.13 Relays (recommended) .....................................................................................................................14-73  
14.14 Surge absorbers (recommended) .....................................................................................................14-73  
14.15 Noise reduction techniques ...............................................................................................................14-74  
14.16 Leakage current breaker....................................................................................................................14-81  
14.17 EMC filter (recommended) ................................................................................................................14-83  
14.18 MR-HDP01 manual pulse generator.................................................................................................14-88  
15. COMMUNICATION FUNCTION  
15- 1 to 15-46  
15.1 Configuration.........................................................................................................................................15- 1  
15.2 Communication specifications..............................................................................................................15- 3  
15.2.1 Communication overview...............................................................................................................15- 3  
15.2.2 Parameter setting...........................................................................................................................15- 4  
6
15.3 Protocol .................................................................................................................................................15- 5  
15.3.1 Transmission data configuration....................................................................................................15- 5  
15.3.2 Character codes.............................................................................................................................15- 6  
15.3.3 Error codes.....................................................................................................................................15- 7  
15.3.4 Checksum.......................................................................................................................................15- 7  
15.3.5 Time-out operation.........................................................................................................................15- 8  
15.3.6 Retry operation...............................................................................................................................15- 8  
15.3.7 Initialization.....................................................................................................................................15- 9  
15.3.8 Communication procedure example..............................................................................................15- 9  
15.4 Command and data No. list.................................................................................................................15-10  
15.4.1 Read commands...........................................................................................................................15-10  
15.4.2 Write commands ...........................................................................................................................15-14  
15.5 Detailed explanations of commands ...................................................................................................15-17  
15.5.1 Data processing ............................................................................................................................15-17  
15.5.2 Status display................................................................................................................................15-19  
15.5.3 Parameters....................................................................................................................................15-20  
15.5.4 External I/O signal statuses (DIO diagnosis) ...............................................................................15-23  
15.5.5 Device ON/OFF.............................................................................................................................15-28  
15.5.6 Disable/enable of I/O devices (DIO).............................................................................................15-29  
15.5.7 Input devices ON/OFF (test operation) ........................................................................................15-30  
15.5.8 Test operation mode .....................................................................................................................15-31  
15.5.9 Alarm history..................................................................................................................................15-37  
15.5.10 Current alarm ..............................................................................................................................15-38  
15.5.11 Point table....................................................................................................................................15-39  
15.5.12 Servo amplifier group designation..............................................................................................15-45  
15.5.13 Other commands.........................................................................................................................15-46  
16. INDEXER POSITIONING OPERATION  
16- 1 to 16-112  
16.1 Function.................................................................................................................................................16- 1  
16.1.1 Overview.........................................................................................................................................16- 1  
16.1.2 Servo amplifier standard specifications (functions only)...............................................................16- 1  
16.1.3 Function list ....................................................................................................................................16- 2  
16.2 I/O signals (I/O devices) transferred to/from the programmable controller CPU................................16- 3  
16.2.1 I/O signals (I/O devices).................................................................................................................16- 3  
16.2.2 Detailed explanation of I/O signals................................................................................................16- 5  
16.2.3 Monitor codes................................................................................................................................16-14  
16.2.4 Instruction codes (RWwn 2 RWwn 3)...................................................................................16-15  
16.2.5 Respond codes (RWrn 2) ..........................................................................................................16-22  
16.3 Signal....................................................................................................................................................16-23  
16.3.1 Signal (device) explanation...........................................................................................................16-23  
16.3.2 Detailed description of signals (devices)......................................................................................16-26  
16.4 Switching power on for the first time ...................................................................................................16-29  
16.4.1 Startup procedure .........................................................................................................................16-29  
16.4.2 Wiring check..................................................................................................................................16-30  
16.4.3 Surrounding environment .............................................................................................................16-31  
16.5 Startup..................................................................................................................................................16-32  
16.5.1 Power on and off procedures........................................................................................................16-32  
16.5.2 Stop................................................................................................................................................16-32  
7
16.5.3 Test operation ...............................................................................................................................16-33  
16.5.4 Parameter setting..........................................................................................................................16-34  
16.5.5 Point table setting..........................................................................................................................16-35  
16.5.6 Actual operation ............................................................................................................................16-35  
16.6 Servo amplifier display.........................................................................................................................16-36  
16.7 Automatic operation mode...................................................................................................................16-38  
16.7.1 What is automatic operation mode?.............................................................................................16-38  
16.7.2 Automatic operation mode 1 (Rotation direction specifying indexer)..........................................16-39  
16.7.3 Automatic operation mode 2 (Shortest rotating indexer).............................................................16-49  
16.8 Manual operation mode.......................................................................................................................16-58  
16.8.1 Indexer JOG operation..................................................................................................................16-58  
16.8.2 JOG operation...............................................................................................................................16-60  
16.9 Home position return mode .................................................................................................................16-61  
16.9.1 Outline of home position return.....................................................................................................16-61  
16.9.2 Torque limit changing dog type home position return..................................................................16-63  
16.9.3 Torque limit changing data setting type home position return.....................................................16-65  
16.9.4 Home position return automatic return function...........................................................................16-66  
16.10 Absolute position detection system...................................................................................................16-67  
16.11 Parameters.........................................................................................................................................16-70  
16.11.1 Basic setting parameters (No.PA  
16.11.2 Gain/filter parameters (No.PB  
).......................................................................................16-70  
)............................................................................................16-79  
16.11.3 Extension setting parameters (No.PC  
)...............................................................................16-87  
).......................................................................................16-93  
16.11.4 I/O setting parameters (No.PD  
16.12 TROUBLESHOOTING ......................................................................................................................16-98  
16.12.1 Trouble at start-up.......................................................................................................................16-98  
16.12.2 Operation at error occurrence.....................................................................................................16-99  
16.12.3 CC-Link communication error.....................................................................................................16-99  
16.12.4 When alarm or warning has occurred ......................................................................................16-100  
16.12.5 Point table error.........................................................................................................................16-112  
APPENDIX  
App.- 1 to App.-30  
App. 1 Parameter list..................................................................................................................................App.- 1  
App. 2 Signal layout recording paper ........................................................................................................App.- 3  
App. 3 Twin type connector: outline drawing for 721-2105/026-000(WAGO) .........................................App.- 4  
App. 4 Change of connector sets to the RoHS compatible products.......................................................App.- 5  
App. 5 MR-J3-200T-RT servo amplifier.....................................................................................................App.- 6  
App. 6 Selection example of servo motor power cable ...........................................................................App.-10  
App. 7 Parameter list.................................................................................................................................App.-11  
App. 8 Program example with MELSEC-A series programmable controllers  
(point table positioning operation).................App.-13  
8
1. FUNCTIONS AND CONFIGURATION  
1. FUNCTIONS AND CONFIGURATION  
1.1 Introduction  
The MR-J3- T CC-Link compatible servo amplifier can support the CC-Link communication functions. Up to 42  
axes of servo amplifiers can be controlled/monitored from the programmable controller side.  
As the servo, it has the function to perform positioning operation by merely setting the position data (target  
positions), servo motor speeds, acceleration and deceleration time constants, etc. to point tables as if setting  
them in parameters. The servo amplifier is the most appropriate to configure a program-free, simple positioning  
system or to simplify a system, for example.  
There are 31 points of point tables to be used when 1 station is occupied and 255 points when 2 stations are  
occupied.  
All servo motors are equipped with an absolute position encoder as standard. An absolute position detection  
system can be configured by merely adding a battery to the servo amplifier. Once the home position has been  
set, home position return is not required at power on, alarm occurrence, etc.  
The MR-J3-T is made easier to use and higher in function by using it with the MR Configurator.  
1.1.1 Features of CC-Link communication functions  
(1) Fast communication  
Fast communication can be made by cyclic transmission of not only bit data but also word data.  
(a) The highest communication speed is 10Mbps.  
(b) The broadcast polling system ensures as high as 3.9ms to 6.7ms even at the maximum link scan  
(10Mbps).  
(2) Variable communication speed/distance system  
Selection of speed/distance allows use in a wide range of areas from a system requiring high speed to a  
system requiring long distance.  
(3) System fault prevention (station separating function)  
Because of connection in the bus system, any remote or local station that has become faulty due to power-  
off or the like does not affect communications with normal remote and local stations.  
In addition, use of the two-piece terminal block allows the unit to be changed during data link.  
(4) Factory Automation compatible  
As the remote device stations of CC-Link, the servo amplifiers share a link system and can be  
controlled/monitored with programmable controller user programs.  
From the programmable controller side, the running speed, acceleration/deceleration time constant and  
other settings of servo motors can be changed/checked and the servo motors started and stopped.  
1 - 1  
1. FUNCTIONS AND CONFIGURATION  
1.1.2 Function block diagram  
The function block diagram of this servo is shown below.  
(1) MR-J3-350T or less MR-J3-200T4 or less  
Power factor  
improving DC Regenerative  
reactor  
option  
N(  
)
Servo amplifier  
P( ) C  
D
Servo motor  
U
P1  
P2  
Diode  
stack  
(Note 1)  
Relay  
NFB MC  
U
V
L1  
L2  
L3  
(Note 2)  
Power  
supply  
V
Current  
detector  
M
W
W
CHARGE  
lamp  
Regene-  
rative  
TR  
Dynamic  
brake  
(Note 4) Cooling fan  
RA  
L11  
Electro-  
magnetic  
brake  
Control  
circuit  
power  
supply  
24VDC B1  
B2  
L21  
Base  
amplifier  
Voltage Overcurrent Current  
detection protection detection  
Encoder  
Current  
control  
Point table  
Acceleration Deceleration  
Position  
data  
No.  
Speed time  
time  
Dwell Auxiliary  
constant  
constant  
1
2
3
4
5
6
7
8
1000 1000  
80  
100  
70  
80  
100  
60  
0
0
0
0
1
1
0
0
0
0
0
Speed  
control  
2000 2000  
4000 2000  
500 2000  
500  
1000  
0
60  
70  
1000 2000  
2000 1000  
1000 1000  
1000 10
1000  
80  
80  
80  
80  
0
Position  
control  
80  
80  
00  
100  
80  
100  
100  
80  
0
MR-J3BAT  
(Note 3)  
0
255 2000 2000  
0
Position  
command  
creation  
Optional battery  
(for absolute position  
detection system)  
USB  
CN5  
RS-422  
CN3  
CN6  
CN1  
Personal  
computer  
DI/O Control  
Servo on  
Start  
USB  
Controller  
RS-422  
CC-Link  
Failure, etc  
Note 1. The built-in regenerative resistor is not provided for the MR-J3-10T (1).  
2. For 1-phase 200 to 230VAC, connect the power supply to L1, L2 and leave L3 open.  
There is no L3 for 1-phase 100 to 120VAC power supply. Refer to section 1.2 for the power supply specification.  
3. For the case when 2 stations are occupied. When 1 station is occupied, the point table ends at No.31.  
4. Servo amplifiers MR-J3-70T or greater have a cooling fan.  
1 - 2  
1. FUNCTIONS AND CONFIGURATION  
(2) MR-J3-350T4 MR-J3-500T(4) MR-J3-700T(4)  
Power factor  
improving DC Regenerative  
reactor  
option  
N
Servo amplifier  
P
C
Servo motor  
U
P1  
P2  
Diode  
stack  
Relay  
NFB MC  
U
V
L1  
L2  
L3  
(Note 1)  
Power  
supply  
V
Current  
detector  
M
W
W
CHARGE  
lamp  
Regene-  
rative  
TR  
Dynamic  
brake  
Cooling fan  
RA  
L11  
Electro-  
magnetic  
brake  
Control  
24VDC B1  
B2  
circuit  
power  
supply  
L21  
Base  
amplifier  
Voltage Overcurrent Current  
detection protection detection  
Encoder  
Current  
control  
Point table  
Acceleration Deceleration  
Position  
data  
No.  
Speed time  
time  
Dwell Auxiliary  
constant  
constant  
1
2
3
4
5
6
7
8
1000 1000  
80  
100  
70  
80  
100  
60  
0
0
0
0
1
1
0
0
0
0
0
Speed  
control  
2000 2000  
4000 2000  
500 2000  
500  
1000  
0
60  
70  
1000 2000  
2000 1000  
1000 1000  
1000 10
1000  
80  
80  
80  
80  
0
Position  
control  
80  
80  
00  
100  
80  
100  
100  
80  
0
MR-J3BAT  
(Note 2)  
0
255 2000 2000  
0
Position  
command  
creation  
Optional battery  
(for absolute position  
detection system)  
USB  
CN5  
RS-422  
CN3  
CN6  
CN1  
Personal  
computer  
DI/O Control  
Servo on  
Start  
USB  
Controller  
RS-422  
CC-Link  
Failure, etc  
Note 1. Refer to section 1.2 for the power supply specification.  
2. For the case when 2 stations are occupied. When 1 station is occupied, the point table ends at No.31.  
1 - 3  
1. FUNCTIONS AND CONFIGURATION  
(3) MR-J3-11KT(4) to 22KT(4)  
Power factor  
improving DC Regenerative  
reactor  
option  
N
Servo amplifier  
P
C
Servo motor  
U
P1  
Diode  
stack  
Thyristor  
NFB MC  
U
V
L1  
L2  
L3  
(Note 1)  
Power  
supply  
V
Current  
detector  
M
W
W
CHARGE  
lamp  
Regene-  
rative  
TR  
Cooling fan  
RA  
L11  
Electro-  
magnetic  
brake  
Control  
24VDC B1  
B2  
circuit  
power  
supply  
L21  
Base  
amplifier  
Voltage Overcurrent Current  
detection protection detection  
Encoder  
Current  
control  
Point table  
Acceleration Deceleration  
Position  
data  
No.  
Speed time  
time  
Dwell Auxiliary  
constant  
constant  
1
2
3
4
5
6
7
8
1000 1000  
80  
100  
70  
80  
100  
60  
0
0
0
0
1
1
0
0
0
0
0
Speed  
control  
2000 2000  
4000 2000  
500 2000  
500  
1000  
0
60  
70  
1000 2000  
2000 1000  
1000 1000  
1000 10
1000  
80  
80  
80  
80  
0
Position  
control  
80  
80  
00  
100  
80  
100  
100  
80  
0
MR-J3BAT  
(Note 2)  
0
255 2000 2000  
0
Position  
command  
creation  
Optional battery  
(for absolute position  
detection system)  
USB  
CN5  
RS-422  
CN3  
CN6  
CN1  
Personal  
computer  
DI/O Control  
Servo on  
Start  
USB  
Controller  
RS-422  
CC-Link  
Failure, etc  
Note 1. Refer to section 1.2 for the power supply specification.  
2. For the case when 2 stations are occupied. When 1 station is occupied, the point table ends at No.31.  
1 - 4  
1. FUNCTIONS AND CONFIGURATION  
1.1.3 System configuration  
This section provides operations using this servo.  
Use of CC-Link enables you to freely configure any system from a single-axis system to an up to 42-axis  
system.  
Set the following values to the point table.  
Name  
Setting range  
Unit  
0.001[mm]  
0.01[mm]  
0.1[mm]  
1[mm]  
[r/min]  
[ms]  
Position data  
999999 to 999999  
Servo motor speed  
Acceleration time constant  
Deceleration time constant  
Dwell  
0 to max. speed  
0 to 20000  
0 to 20000  
[ms]  
0 to 20000  
[ms]  
0 to 3  
Auxiliary function  
(Refer to section 4.2)  
There are 31 points of point tables to be used when 1 station is occupied and 255 points when 2 stations are  
occupied.  
(1) Operation using CC-Link communication functions  
(a) Operation  
All devices can be controlled by CC-Link communication. Also, each point table setting, point table  
selection, parameter value change, setting, monitor, servo motor operation and others can be  
performed.  
(b) Configuration  
Programmable controller  
CC-Link master unit  
To the next axis  
Servo amplifier  
(Axis 1)  
Servo amplifier  
(Axis 2)  
CN1  
CN6  
CN1  
CN6  
CNP3  
CNP3  
CN2  
CN2  
1 - 5  
1. FUNCTIONS AND CONFIGURATION  
(2) Operation using CC-Link communication functions and external input signals  
(a) Operation  
Using parameter No.PD06 to PD08 and parameter No.PD12, PD14, input devices can be assigned to  
the external input devices of CN1A and CN1B. The signals assigned to the external input signals cannot  
be used with the CC-Link communication functions. Output devices can be used with the CN6  
connectors and CC-Link communication functions simultaneously.  
(b) Configuration  
Programmable controller  
To the next axis  
CC-Link master unit  
Servo amplifier  
(Axis 1)  
Servo amplifier  
(Axis 2)  
CN1  
CN6  
CN1  
CN6  
CNP3  
CNP3  
CN2  
CN2  
External I/O  
signal  
External I/O  
signal  
1 - 6  
1. FUNCTIONS AND CONFIGURATION  
1.2 Servo amplifier standard specifications  
(1) 200V class, 100V class  
Servo amplifier  
MR-J3-  
10T 20T 40T 60T 70T 100T 200T 350T 500T 700T 11KT 15KT 22KT 10T1 20T1 40T1  
Item  
Voltage/frequency  
3-phase or 1-phase 200 to  
230VAC, 50/60Hz  
1-phase 100V to  
120VAC, 50/60Hz  
1-phase 85 to  
132VAC  
3-phase 200 to 230VAC, 50/60Hz  
3-phase 170 to 253VAC  
Within 5%  
3-phase or 1-phase 200 to  
230VAC: 170 to 253VAC  
Permissible voltage fluctuation  
Permissible frequency  
fluctuation  
Power supply capacity  
Inrush current  
Voltage,  
Refer to section 13.2  
Refer to section 13.5  
1-phase 100 to  
120VAC, 50/60Hz  
1-phase 85 to  
132VAC  
1-phase 200 to 230VAC, 50/60Hz  
1-phase 170 to 253VAC  
frequency  
Permissible  
voltage fluctuation  
Control circuit  
Permissible  
frequency  
fluctuation  
Input  
power supply  
Within 5%  
30W  
45W  
30W  
Inrush current  
Voltage  
Refer to section 13.5  
24VDC 10%  
Interface power  
supply  
Power supply  
capacity  
(Note 1) 150mA  
Control System  
Dynamic brake  
Sine-wave PWM control, current control system  
Built-in External option  
Built-in  
Overcurrent shut-off, regenerative overvoltage shut-off, overload shut-off (electronic thermal relay),  
servo motor overheat protection, encoder error protection, regenerative brake error protection,  
undervoltage, instantaneous power failure protection, overspeed protection, excessive error  
protection  
Protective functions  
Operational  
specifications  
Positioning by specifying the point table No. (255 points)  
Position command Set in point table. 1-point feed length setting range: 1[ m] to 999.999[mm]  
Point table  
number  
input  
input  
Speed command Set in point table. Acceleration/deceleration time is set in point table.  
input  
S-pattern acceleration/deceleration time constant is set in parameter No.PC13.  
Signed absolute value command system, incremental value command system, signed absolute  
value command/incremental value command specifying system  
System  
Operational  
Remote register setting is used for positioning.  
specifications  
Position  
Position command Remote register is used to set position command data.  
input  
command  
data input  
(when 2  
Feed length input setting range: 1 m to 999.999m  
Remote register is used to make selection from point table.  
Speed command  
input  
Remote register is used to set speed command data (speed).  
S-pattern acceleration/deceleration time constant is set in parameter No.PC13.  
Signed absolute value command system, incremental value command system, signed absolute  
value command/incremental value command specifying system  
Point table number input, position data input system  
stations are  
occupied)  
System  
Point table  
Automatic  
operation  
mode  
Positioning operation is performed once in accordance with the position and speed commands.  
Varied speed operation (2 to 255 speeds), automatic continuous positioning operation (2 to 255  
points)  
Automatic  
continuous  
operation  
Jog operation is performed in accordance with the parameter-set speed command by contact input  
or through CC-Link communication function.  
Manual  
operation  
mode  
Jog  
Manual pulse  
generator  
Manual feed is made by manual pulse generator.  
Command pulse multiplication: 1, 10 or 100 is selected using parameter.  
1 - 7  
1. FUNCTIONS AND CONFIGURATION  
Servo amplifier  
MR-J3-  
10T 20T 40T 60T 70T 100T 200T 350T 500T 700T 11KT 15KT 22KT 10T1 20T1 40T1  
Item  
Home position return is made starting with Z-phase pulse after passage of proximity dog.  
Home position address may be set. Home position shift distance may be set. Home position return  
direction may be selected.  
Dog type  
Automatic at-dog home position return return/automatic stroke return function.  
Home position return is made by counting encoder pulses after contact with proximity dog.  
Home position address may be set. Home position shift value may be set. Home position return  
direction may be set.  
Count type  
Automatic at-dog home position return return/automatic stroke return function.  
Home position return is made without dog.  
Data setting type  
Stopper type  
Home position may be set at any position by manual operation, etc. Home position address may be  
set.  
Home position return is made by pressing machine part against stroke end.  
Home position address may be set. Home position return direction may be set.  
Position where servo-on (RYn0) is switched on is defined as home position.  
Home position address may be set.  
Home position  
ignorance  
(Servo-on position  
as home position)  
Home position return is made with respect to the rear end of a proximity dog.  
Dog type rear end Home position address may be set. Home position shift value may be set. Home position return  
Home  
reference  
direction may be set.  
position  
return  
Automatic at-dog home position return return/automatic stroke return function.  
Home position return is made with respect to the front end of a proximity dog.  
Home position address may be set. Home position shift value may be set. Home position return  
direction may be set.  
mode  
Count type front  
end reference  
Automatic at-dog home position return return/automatic stroke return function.  
Home position return is made with respect to the front end of a proximity dog by the first Z-phase  
pulse.  
Dog cradle type  
Home position address may be set. Home position shift value may be set. Home position return  
direction may be set.  
Automatic at-dog home position return return/automatic stroke return function.  
Home position return is made with respect to the front end of a proximity dog by the last Z-phase  
pulse.  
Dog type last  
Home position address may be set. Home position shift value may be set. Home position return  
direction may be set.  
Z-phase reference  
Automatic at-dog home position return return/automatic stroke return function.  
Home position return is made to the dog front end with respect to the front end of a proximity dog.  
Dog type front end Home position address may be set. Home position shift value may be set. Home position return  
reference  
direction may be set.  
Automatic at-dog home position return return/automatic stroke return function.  
Home position return is made with respect to the first Z-phase to the Z-phase.  
Home position address may be set. Home position shift value may be set. Home position return  
direction may be set.  
Dogless  
Z-phase reference  
Automatic positioning to home  
position  
High-speed automatic return to a defined home position.  
Absolute position detection, backlash function  
Overtravel prevention using external limit switch  
Software stroke limit  
Other functions  
Self-cooled, open  
(IP00)  
Self-cooled, open  
(IP00)  
Structure  
Force-cooling, open (IP00)  
1 - 8  
1. FUNCTIONS AND CONFIGURATION  
Servo amplifier  
MR-J3-  
10T 20T 40T 60T 70T 100T 200T 350T 500T 700T 11KT 15KT 22KT 10T1 20T1 40T1  
Item  
[
]
]
]
]
(Note 2) 0 to 55 (non-freezing)  
(Note 2) 32 to 131 (non-freezing)  
20 to 65 (non-freezing)  
In operation  
Ambient  
[
[
[
temperature  
In storage  
4 to 149 (non-freezing)  
Ambient  
humidity  
In operation  
In storage  
90%RH or less (non-condensing)  
Indoors (no direct sunlight)  
Free from corrosive gas, flammable gas, oil mist, dust and dirt  
Max. 1000m above sea level  
Ambient  
Altitude  
Vibration  
5.9 [m/s2] or less  
[kg] 0.8 0.8 1.0 1.0 1.4 1.4 2.1 2.3 4.6 6.2 18  
18  
19  
0.8  
0.8  
1.0  
Mass  
[lb] 1.76 1.76 2.21 2.21 3.09 3.09 4.63 5.07 10.1 13.7 39.7 39.7 41.9 1.76 1.76 2.21  
Note 1. 150mA is the value applicable when all I/O signals are used. The current capacity can be decreased by reducing the number of  
I/O points.  
2. When closely mounting the servo amplifier of 3.5kW or less, operate them at the ambient temperatures of 0 to 45 (32 to  
113 ) or at 75% or smaller effective load ratio.  
1 - 9  
1. FUNCTIONS AND CONFIGURATION  
(2) 400V class  
Servo amplifier  
MR-J3-  
60T4  
100T4  
200T4  
350T4  
500T4  
700T4  
11KT4  
15KT4  
22KT4  
Item  
Voltage/frequency  
3-phase 380 to 480VAC, 50/60Hz  
3-phase 323 to 528VAC  
Permissible voltage fluctuation  
Permissible frequency  
fluctuation  
Within 5%  
Power supply capacity  
Inrush current  
Refer to section 13.2  
Refer to section 13.5  
Voltage,  
1-phase 380 to 480VAC, 50/60Hz  
1-phase 323 to 528VAC  
frequency  
Permissible  
voltage fluctuation  
Control circuit  
Permissible  
frequency  
fluctuation  
Input  
power supply  
Within 5%  
30W  
45W  
Inrush current  
Voltage  
Refer to section 13.5  
24VDC 10%  
Interface power  
supply  
Power supply  
capacity  
(Note) 150mA  
Control System  
Dynamic brake  
Sine-wave PWM control, current control system  
Built-in  
External option  
Overcurrent shut-off, regenerative overvoltage shut-off, overload shut-off (electronic thermal relay),  
servo motor overheat protection, encoder error protection, regenerative brake error protection,  
undervoltage, instantaneous power failure protection, overspeed protection, excessive error  
protection  
Protective functions  
Operational  
specifications  
Positioning by specifying the point table No. (255 points)  
Position command Set in point table. 1-point feed length setting range: 1[ m] to 999.999[mm]  
Point table  
number  
input  
input  
Speed command Set in point table. Acceleration/deceleration time is set in point table.  
input  
S-pattern acceleration/deceleration time constant is set in parameter No.PC13.  
Signed absolute value command system, incremental value command system, signed absolute  
value command/incremental value command specifying system  
System  
Operational  
Remote register setting is used for positioning.  
specifications  
Position  
Position command Remote register is used to set position command data.  
input  
command  
data input  
(when 2  
Feed length input setting range: 1 m to 999.999m  
Remote register is used to make selection from point table.  
Speed command  
input  
Remote register is used to set speed command data (speed).  
S-pattern acceleration/deceleration time constant is set in parameter No.PC13.  
Signed absolute value command system, incremental value command system, signed absolute  
value command/incremental value command specifying system  
Point table number input, position data input system  
stations are  
occupied)  
System  
Point table  
Automatic  
operation  
mode  
Positioning operation is performed once in accordance with the position and speed commands.  
Varied speed operation (2 to 255 speeds), automatic continuous positioning operation (2 to 255  
points)  
Automatic  
continuous  
operation  
Jog operation is performed in accordance with the parameter-set speed command by contact input  
or through CC-Link communication function.  
Manual  
operation  
mode  
Jog  
Manual pulse  
generator  
Manual feed is made by manual pulse generator.  
Command pulse multiplication: 1, 10 or 100 is selected using parameter.  
1 - 10  
1. FUNCTIONS AND CONFIGURATION  
Servo amplifier  
MR-J3-  
60T4  
100T4  
200T4  
350T4  
500T4  
700T4  
11KT4  
15KT4  
22KT4  
Item  
Home position return is made starting with Z-phase pulse after passage of proximity dog.  
Home position address may be set. Home position shift distance may be set. Home position return  
direction may be selected.  
Dog type  
Automatic at-dog home position return return/automatic stroke return function.  
Home position return is made by counting encoder pulses after contact with proximity dog.  
Home position address may be set. Home position shift value may be set. Home position return  
direction may be set.  
Count type  
Automatic at-dog home position return return/automatic stroke return function.  
Home position return is made without dog.  
Data setting type  
Stopper type  
Home position may be set at any position by manual operation, etc. Home position address may be  
set.  
Home position return is made by pressing machine part against stroke end.  
Home position address may be set. Home position return direction may be set.  
Position where servo-on (RYn0) is switched on is defined as home position.  
Home position address may be set.  
Home position  
ignorance  
(Servo-on position  
as home position)  
Home position return is made with respect to the rear end of a proximity dog.  
Dog type rear end Home position address may be set. Home position shift value may be set. Home position return  
Home  
reference  
direction may be set.  
position  
return  
Automatic at-dog home position return return/automatic stroke return function.  
Home position return is made with respect to the front end of a proximity dog.  
Home position address may be set. Home position shift value may be set. Home position return  
direction may be set.  
mode  
Count type front  
end reference  
Automatic at-dog home position return return/automatic stroke return function.  
Home position return is made with respect to the front end of a proximity dog by the first Z-phase  
pulse.  
Dog cradle type  
Home position address may be set. Home position shift value may be set. Home position return  
direction may be set.  
Automatic at-dog home position return return/automatic stroke return function.  
Home position return is made with respect to the front end of a proximity dog by the last Z-phase  
pulse.  
Home position address may be set. Home position shift value may be set. Home position return  
direction may be set.  
Dog type last  
Z-phase reference  
Automatic at-dog home position return return/automatic stroke return function.  
Home position return is made to the dog front end with respect to the front end of a proximity dog.  
Dog type front end Home position address may be set. Home position shift value may be set. Home position return  
reference  
direction may be set.  
Automatic at-dog home position return return/automatic stroke return function.  
Home position return is made with respect to the first Z-phase to the Z-phase.  
Home position address may be set. Home position shift value may be set. Home position return  
direction may be set.  
Dogless  
Z-phase reference  
Automatic positioning to home  
position  
High-speed automatic return to a defined home position.  
Absolute position detection, backlash function  
Overtravel prevention using external limit switch  
Software stroke limit  
Other functions  
Self-cooled, open  
Force-cooling, open (IP00)  
(IP00)  
Structure  
1 - 11  
1. FUNCTIONS AND CONFIGURATION  
Servo amplifier  
MR-J3-  
60T4  
100T4  
200T4  
350T4  
500T4  
700T4  
11KT4  
15KT4  
22KT4  
Item  
Ambient  
[
]
]
]
]
0 to 55 (non-freezing)  
32 to 131 (non-freezing)  
20 to 65 (non-freezing)  
4 to 149 (non-freezing)  
In operation  
[
[
[
temperature  
In storage  
Ambient  
humidity  
In operation  
In storage  
90%RH or less (non-condensing)  
Indoors (no direct sunlight)  
Ambient  
Free from corrosive gas, flammable gas, oil mist, dust and dirt  
Max. 1000m above sea level  
Altitude  
Vibration  
5.9 [m/s2] or less  
[kg]  
[lb]  
1.7  
1.7  
2.1  
4.6  
4.6  
6.2  
18  
18  
19  
Mass  
3.75  
3.75  
4.63  
10.1  
10.1  
13.7  
39.7  
39.7  
41.9  
Note. 150mA is the value applicable when all I/O signals are used. The current capacity can be decreased by reducing the number of  
I/O points.  
1 - 12  
1. FUNCTIONS AND CONFIGURATION  
1.3 Function list  
The following table lists the functions of this servo. For details of the functions, refer to the reference field.  
Function  
Description  
Reference  
Select the required ones from among 31 preset point tables and perform  
operation in accordance with the set values.  
Positioning by automatic  
operation  
Section 5.4  
Use the external input signal or communication function to choose the point  
tables.  
Servo motor speed can be varied continuously until the preset moving  
distance is reached. (Max. set speeds: 255 speeds)  
Section 5.4.2  
(4)(b)  
Varied speed operation  
Automatic continuous positioning By merely choosing one point table and starting operation, positioning can  
Section 5.4.2 (4)  
operation  
be executed continuously in accordance with several point tables.  
Dog type, count type, data setting type, stopper type, home position  
Home position return  
ignorance, dog type rear end reference, count type front end reference, dog Section 5.6  
cradle type  
High-resolution encoder of 262144 pulses/rev is used as a servo motor  
encoder.  
High-resolution encoder  
Absolute position detection  
system  
By merely setting the home position once, home position return need not be  
Section 5.7  
done at each power on.  
You can switch between gains during rotation and gains during stop or use  
Section 10.6  
Gain changing function  
an input device to change gains during operation.  
Advanced vibration suppression  
control  
This function suppresses vibration at the arm end or residual vibration.  
Section 10.4  
Servo amplifier detects mechanical resonance and sets filter characteristics  
Section 10.2  
Adaptive filter  
Low-pass filter  
automatically to suppress mechanical vibration.  
Suppresses high-frequency resonance which occurs as servo system  
Section 10.5  
response is increased.  
Analyzes the frequency characteristic of the mechanical system by simply  
connecting a MR Configurator installed personal computer and servo  
amplifier.  
Machine analyzer function  
MR Configurator is necessary for this function.  
Can simulate machine motions on a personal computer screen on the basis  
of the machine analyzer results.  
Machine simulation  
Gain search function  
MR Configurator is necessary for this function.  
Personal computer changes gains automatically and searches for  
overshoot-free gains in a short time.  
MR Configurator is necessary for this function.  
Slight vibration suppression  
control  
Suppresses vibration of 1 pulse produced at a servo motor stop.  
Parameters No.  
PB24  
The electronic gear is used to make adjustment so that the servo amplifier  
setting matches the machine moving distance. Also, changing the electronic Parameter No.  
gear value allows the machine to be moved at any multiplication ratio to the PA06, PA07  
moving distance using the servo amplifier.  
Electronic gear  
Auto tuning  
Automatically adjusts the gain to optimum value if load applied to the servo  
Section 9.2  
motor shaft varies.  
S-pattern  
acceleration/deceleration time  
constant  
Acceleration/deceleration can be made smoothly.  
Parameters No.  
PC13  
Used when the built-in regenerative resistor of the servo amplifier does not  
Section 14.2  
Regenerative option  
have sufficient regenerative capability for the regenerative power generated.  
Used when the regenerative option cannot provide enough regenerative  
Brake unit  
power.  
Section 14.3  
Section 14.4  
Can be used with the servo amplifier of 5kW or more.  
Used when the regenerative option cannot provide enough regenerative  
power.  
Can be used with the servo amplifier of 5kW or more.  
Alarm history is cleared.  
Regeneration converter  
Alarm history clear  
Parameter No.  
PC18  
1 - 13  
1. FUNCTIONS AND CONFIGURATION  
Function  
Description  
Reference  
Any input device such as servo-on (SON) can be assigned to any pin of CN6 Parameter No.  
I/O signal selection (Device  
setting)  
connector.  
PD06 to PD08  
PD12 PD14  
Section 4.6.3  
Section 6.1.11  
Section 7.7.4  
Section 8.5.7(4)  
Servo motor-torque is limited.  
Torque limit  
Output signal can be forced on/off independently of the servo status.  
Use this function for output signal wiring check, etc.  
JOG operation positioning operation DO forced output single - step  
feed.  
Output signal (DO) forced output  
Section 7.7  
Test operation mode  
Section 8.5.7  
MR Configurator is necessary for this function.  
The servo motor travel region can be limited using the forward rotation  
stroke end (LSP)/reverse rotation stroke end (LSN).  
The travel region is limited using parameters in terms of address.  
The function similar to that of a limit switch is limited by parameter.  
Limit switch  
Software limit  
Section 6.3.6  
1 - 14  
1. FUNCTIONS AND CONFIGURATION  
1.4 Model code definition  
(1) Rating plate  
AC SERVO  
MITSUBISHI  
Model  
MODE
MR-J3-10T  
Capacity  
POWER : 100W  
0.9A 3PH+1PH200-230V 50Hz  
3PH+1PH200-230V 60Hz  
1.3A 1PH 200-230V 50/60Hz  
170V 0-360Hz 1.1A  
Applicable power supply  
INPUT  
:
Rated output current  
Serial number  
OUTPUT :  
SERIAL : A34230001  
PASSED  
MITSUBISHI ELECTRIC CORPORATION  
MADE IN JAPAN  
(2) Model  
MR-J3-100T(4) or less  
MR-J3-200T(4)  
With no regenerative resistor  
Series  
Symbol  
Description  
Indicates a servo  
amplifier of 11k to 22kW  
-PX that does not use a  
regenerative resistor as  
standard accessory.  
Power supply  
Symbol  
(Note 1)  
Description  
3-phase or 1-phase 200  
None to 230VAC  
Rating plate  
Rating plate  
(Note 2)  
1-phase 100 to 120VAC  
1
4
MR-J3-350T  
MR-J3-350T4 500T(4)  
3-phase 380 to 480VAC  
Note 1. 1-phase 200V to 230V is  
supported by 750W or less.  
2. 1-phase 100V to 120V is  
supported by 400W or less.  
Built-in positioning function  
Rated output  
Rated  
Symbol  
output [kW]  
10  
20  
0.1  
0.2  
0.4  
0.6  
0.75  
1
Rating plate  
40  
Rating plate  
60  
70  
MR-J3-700T(4)  
MR-J3-11KT(4) to 22KT(4)  
100  
200  
350  
500  
700  
11K  
15K  
22K  
2
3.5  
5
7
11  
15  
22  
Rating plate  
Rating plate  
1 - 15  
1. FUNCTIONS AND CONFIGURATION  
1.5 Combination with servo motor  
The following table lists combinations of servo amplifiers and servo motors. The same combinations apply to  
the servo motors with an electromagnetic brakes and the servo motors with a reduction gear.  
Servo motors  
Servo amplifier  
HF-SP  
1000r/min  
HF-MP  
HF-KP  
HC-RP  
HC-UP  
HC-LP  
2000r/min  
MR-J3-10T (1)  
MR-J3-20T (1)  
MR-J3-40T (1)  
MR-J3-60T  
053 13  
23  
053 13  
23  
43  
43  
51  
52  
52  
MR-J3-70T  
73  
73  
72  
MR-J3-100T  
MR-J3-200T  
MR-J3-350T  
MR-J3-500T  
MR-J3-700T  
MR-J3-11KT  
MR-J3-15KT  
MR-J3-22KT  
81  
121 201  
301  
102  
152 202  
352  
102  
152  
202  
302  
103 153  
203  
152  
202  
421  
502  
353 503  
352 502  
702  
Servo motors  
HA-LP  
Servo amplifier  
1000r/min  
1500r/min  
2000r/min  
502  
MR-J3-500T  
MR-J3-700T  
MR-J3-11KT  
MR-J3-15KT  
MR-J3-22KT  
601  
701M  
11K1M  
15K1M  
22K1M  
702  
801 12K1  
15K1  
11K2  
15K2  
22K2  
20K1 25K1  
Servo motors  
Servo amplifier  
HA-LP  
HF-SP  
1000r/min  
1500r/min  
2000r/min  
MR-J3-60T4  
MR-J3-100T4  
MR-J3-200T4  
MR-J3-350T4  
MR-J3-500T4  
MR-J3-700T4  
MR-J3-11KT4  
MR-J3-15KT4  
MR-J3-22KT4  
524  
1024  
1524 2024  
3524  
5024  
7024  
6014  
8014 12K14  
15K14  
701M4  
11K1M4  
15K1M4  
22K1M4  
11K24  
15K24  
22K24  
20K14  
1 - 16  
1. FUNCTIONS AND CONFIGURATION  
1.6 Structure  
1.6.1 Parts identification  
(1) MR-J3-100T or less  
Detailed  
explanation  
Name/Application  
Display  
Section 5.3  
Chapter 11  
The 3-digit, seven-segment LED shows the servo  
status and alarm number.  
Baud rate switch (MODE)  
5
0
MODE  
5
Section 3.2.4  
Select the CC-Link communication baud rate.  
0
5
5
Station number switches (STATION NO.)  
0
0
Set the station number of the servo amplifier.  
X10 STATION NO. X1  
5
5
Section 3.2.3  
Section 3.2.5  
0
0
Set the one place.  
Set the ten place.  
Occupied station count switch (SW1)  
SW1  
Set the number of occupied stations.  
Main circuit power supply connector (CNP1)  
Used to connect the input power supply.  
Section 4.1  
Section 4.3  
Section 12.1  
Communication alarm display section  
Indicates alarms in CC-Link communication.  
L.RUN  
Section 11.3  
SD  
RD  
L.ERR  
USB communication connector (CN5)  
Used to connect the personal computer.  
Chapter 7  
RS-422 communication connector (CN3)  
Used to connect the MR-PRU03 parameter unit or  
personal computer.  
Chapter 7  
Chapter 8  
Chapter 15  
CC-Link connector (CN1)  
Wire the CC-Link cable.  
Section 3.2.2  
Section 4.1  
Section 4.3  
Section 12.1  
Section 14.2  
Control circuit connector (CNP2)  
Used to connect the control circuit power supply/  
regenerative option.  
I/O signal connector (CN6)  
Used to connect digital I/O signals.  
Section 4.2  
Section 4.4  
Servo motor power connector (CNP3)  
Used to connect the servo motor.  
Section 4.1  
Section 4.3  
Section 12.1  
Encoder connector (CN2)  
Used to connect the servo motor encoder.  
Section 4.10  
Section 14.1  
Battery connector (CN4)  
Used to connect the battery for absolute position data  
backup.  
Section 5.8  
Section 14.7  
Charge lamp  
Lit to indicate that the main circuit is charged. While  
this lamp is lit, do not reconnect the cables.  
Battery holder  
Contains the battery for absolute position data backup.  
Section 5.8  
Section 1.4  
Rating plate  
Fixed part  
(2 places)  
Protective earth (PE) terminal (  
Ground terminal.  
)
Section 4.1  
Section 4.3  
Section 12.1  
1 - 17  
1. FUNCTIONS AND CONFIGURATION  
(2) MR-J3-200T(4) or less  
Detailed  
explanation  
Name/Application  
Display  
Section 5.3  
Chapter 11  
The 3-digit, seven-segment LED shows the servo  
status and alarm number.  
5
0
Baud rate switch (MODE)  
MODE  
5
Section 3.2.4  
Select the CC-Link communication baud rate.  
5
5
0
0
0
Station number switches (STATION NO.)  
Set the station number of the servo amplifier.  
X10 STATION NO. X1  
5
5
Section 3.2.3  
Section 3.2.5  
0
0
Set the one place.  
Set the ten place.  
Occupied station count switch (SW1)  
SW1  
Set the number of occupied stations.  
Main circuit power supply connector (CNP1)  
Used to connect the input power supply.  
Section 4.1  
Section 4.3  
Section 12.1  
Communication alarm display section  
Indicates alarms in CC-Link communication.  
L.RUN  
Section 11.3  
SD  
RD  
L.ERR  
USB communication connector (CN5)  
Used to connect the personal computer.  
Chapter 7  
(Note)  
RS-422 communication connector (CN3)  
Used to connect the MR-PRU03 parameter unit or  
personal computer.  
Chapter 7  
Chapter 8  
Chapter 15  
CC-Link connector (CN1)  
Wire the CC-Link cable.  
Section 3.2.2  
I/O signal connector (CN6)  
Used to connect digital I/O signals.  
Section 4.2  
Section 4.4  
Encoder connector (CN2)  
Used to connect the servo motor encoder.  
Section 4.10  
Section 14.1  
Battery connector (CN4)  
Used to connect the battery for absolute position data  
backup.  
Section 5.8  
Section 14.7  
Section 4.1  
Section 4.3  
Section 12.1  
Section 14.2  
Control circuit connector (CNP2)  
Used to connect the control circuit power supply/  
regenerative option.  
Section 4.1  
Section 4.3  
Section 12.1  
Servo motor power connector (CNP3)  
Used to connect the servo motor.  
Cooling fan  
Battery holder  
Contains the battery for absolute position data backup.  
Section 5.8  
Fixed part  
(3 places)  
Charge lamp  
Lit to indicate that the main circuit is charged. While  
this lamp is lit, do not reconnect the cables.  
Protective earth (PE) terminal (  
Ground terminal.  
)
Section 4.1  
Section 4.3  
Section 12.1  
Section 1.4  
Rating plate  
Note. Connectors (CNP1, CNP2, and CNP3) and appearance of MR-J3-200T servo amplifier have been changed from January 2008  
production. Model name of the existing servo amplifier is changed to MR-J3-200T-RT. For MR-J3-200T-RT, refer to appendix 5.  
1 - 18  
1. FUNCTIONS AND CONFIGURATION  
(3) MR-J3-350T  
Detailed  
explanation  
Name/Application  
Display  
Section 5.3  
Chapter 11  
The 3-digit, seven-segment LED shows the servo  
status and alarm number.  
5
0
Baud rate switch (MODE)  
MODE  
5
Section 3.2.4  
Select the CC-Link communication baud rate.  
0
5
5
0
0
Station number switches (STATION NO.)  
Set the station number of the servo amplifier.  
X10 STATION NO. X1  
5
5
Section 3.2.3  
Section 3.2.5  
0
0
Set the one place.  
Set the ten place.  
Occupied station count switch (SW1)  
SW1  
Set the number of occupied stations.  
Main circuit power supply connector (CNP1)  
Used to connect the input power supply.  
Section 4.1  
Section 4.3  
Section 12.1  
Communication alarm display section  
Indicates alarms in CC-Link communication.  
L.RUN  
SD  
Section 11.3  
RD  
L.ERR  
USB communication connector (CN5)  
Used to connect the personal computer.  
Chapter 7  
RS-422 communication connector (CN3)  
Used to connect the MR-PRU03 parameter unit or  
personal computer.  
Chapter 7  
Chapter 8  
Chapter 15  
CC-Link connector (CN1)  
Wire the CC-Link cable.  
Section 3.2.2  
Servo motor power connector (CNP3)  
Used to connect the servo motor.  
Section 4.1  
Section 4.3  
Section 12.1  
I/O signal connector (CN6)  
Used to connect digital I/O signals.  
Section 4.2  
Section 4.4  
Encoder connector (CN2)  
Used to connect the servo motor encoder.  
Section 4.10  
Section 14.1  
Battery connector (CN4)  
Used to connect the battery for absolute position data  
backup.  
Section 5.8  
Section 14.7  
Section 4.1  
Section 4.3  
Section 12.1  
Section 14.2  
Control circuit connector (CNP2)  
Used to connect the control circuit power supply/  
regenerative option.  
Cooling fan  
Battery holder  
Contains the battery for absolute position data backup.  
Section 5.8  
Fixed part  
(3 places)  
Charge lamp  
Lit to indicate that the main circuit is charged. While  
this lamp is lit, do not reconnect the cables.  
Protective earth (PE) terminal (  
Ground terminal.  
)
Section 4.1  
Section 4.3  
Section 12.1  
Section 1.4  
Rating plate  
1 - 19  
1. FUNCTIONS AND CONFIGURATION  
(4) MR-J3-350T4 MR-J3-500T(4)  
POINT  
The servo amplifier is shown without the front cover. For removal of the front  
cover, refer to section 1.6.2.  
Detailed  
explanation  
Name/Application  
Display  
Section 5.3  
Chapter 11  
The 3-digit, seven-segment LED shows the servo  
status and alarm number.  
Baud rate switch (MODE)  
MODE  
5
5
5
Section 3.2.4  
Select the CC-Link communication baud rate.  
0
0
0
5
Station number switches (STATION NO.)  
0
Set the station number of the servo amplifier.  
X10 STATION NO. X1  
5
5
Section 3.2.3  
Section 3.2.5  
0
0
Set the one place.  
Set the ten place.  
Occupied station count switch (SW1)  
SW1  
Set the number of occupied stations.  
Communication alarm display section  
Indicates alarms in CC-Link communication.  
Cooling fan  
L.RUN  
Section 11.3  
Chapter 7  
SD  
RD  
L.ERR  
USB communication connector (CN5)  
Used to connect the personal computer.  
RS-422 communication connector (CN3)  
Used to connect the MR-PRU03 parameter unit or  
personal computer.  
Chapter 7  
Chapter 8  
Chapter 15  
CC-Link connector (CN1)  
Wire the CC-Link cable.  
Section 3.2.2  
I/O signal connector (CN6)  
Used to connect digital I/O signals.  
Section 4.2  
Section 4.4  
Battery holder  
Contains the battery for absolute position data backup.  
Section 5.8  
Encoder connector (CN2)  
Used to connect the servo motor encoder.  
Section 4.10  
Section 14.1  
Battery connector (CN4)  
Used to connect the battery for absolute position data  
backup.  
Section 5.8  
Section 14.7  
Section 4.1  
Section 4.3  
DC reactor terminal block (TE3)  
Used to connect the DC reactor.  
Section 12.1  
Section 14.11  
Charge lamp  
Lit to indicate that the main circuit is charged. While  
this lamp is lit, do not reconnect the cables.  
Main circuit terminal block (TE1)  
Used to connect the input power supply and servo motor.  
Fixed part  
(4 places)  
Section 4.1  
Section 4.3  
Section 12.1  
Control circuit terminal block (TE2)  
Used to connect the control circuit power supply.  
Protective earth (PE) terminal (  
Ground terminal.  
)
Section 1.4  
Rating plate  
1 - 20  
1. FUNCTIONS AND CONFIGURATION  
(5) MR-J3-700T(4)  
POINT  
The servo amplifier is shown without the front cover. For removal of the front  
cover, refer to section 1.6.2.  
Detailed  
explanation  
Name/Application  
Display  
Section 5.3  
Chapter 11  
The 3-digit, seven-segment LED shows the servo  
status and alarm number.  
Baud rate switch (MODE)  
MODE  
5
5
5
Section 3.2.4  
Select the CC-Link communication baud rate.  
0
0
0
5
Station number switches (STATION NO.)  
0
Set the station number of the servo amplifier.  
X10 STATION NO. X1  
5
5
Section 3.2.3  
Section 3.2.5  
0
0
Set the one place.  
Set the ten place.  
Occupied station count switch (SW1)  
SW1  
Set the number of occupied stations.  
Cooling fan  
Communication alarm display section  
Indicates alarms in CC-Link communication.  
L.RUN  
Section 11.3  
Chapter 7  
SD  
RD  
L.ERR  
USB communication connector (CN5)  
Used to connect the personal computer.  
RS-422 communication connector (CN3)  
Used to connect the MR-PRU03 parameter unit or  
personal computer.  
Chapter 7  
Chapter 8  
Chapter 15  
CC-Link connector (CN1)  
Wire the CC-Link cable.  
Section 3.2.2  
I/O signal connector (CN6)  
Used to connect digital I/O signals.  
Section 4.2  
Section 4.4  
Battery holder  
Contains the battery for absolute position data backup.  
Section 5.8  
Encoder connector (CN2)  
Used to connect the servo motor encoder.  
Section 4.10  
Section 14.1  
Battery connector (CN4)  
Used to connect the battery for absolute position data  
backup.  
Section 5.8  
Section 14.7  
Section 4.1  
Section 4.3  
DC reactor terminal block (TE3)  
Used to connect the DC reactor.  
Section 12.1  
Section 14.11  
Charge lamp  
Lit to indicate that the main circuit is charged. While  
this lamp is lit, do not reconnect the cables.  
Control circuit terminal block (TE2)  
Used to connect the control circuit power supply.  
Fixed part  
(4 places)  
Section 4.1  
Section 4.3  
Section 12.1  
Main circuit terminal block (TE1)  
Used to connect the input power supply and servo motor.  
Protective earth (PE) terminal (  
Ground terminal.  
)
Section 1.4  
Rating plate  
1 - 21  
1. FUNCTIONS AND CONFIGURATION  
(6) MR-J3-11KT(4) to MR-J3-22KT(4)  
POINT  
The servo amplifier is shown without the front cover. For removal of the front  
cover, refer to section 1.6.2.  
Detailed  
explanation  
Name/Application  
Display  
Section 5.3  
Chapter 11  
The 3-digit, seven-segment LED shows the servo  
status and alarm number.  
Baud rate switch (MODE)  
MODE  
5
Section 3.2.4  
Select the CC-Link communication baud rate.  
0
Station number switches (STATION NO.)  
5
5
Set the station number of the servo amplifier.  
X10 STATION NO. X1  
5
5
0
0
Section 3.2.3  
Section 3.2.5  
0
0
5
Set the one place.  
Set the ten place.  
0
Occupied station count switch (SW1)  
SW1  
Set the number of occupied stations.  
Fixed part  
(4 places)  
Cooling fan  
Communication alarm display section  
Indicates alarms in CC-Link communication.  
L.RUN  
Section 11.3  
Chapter 7  
SD  
RD  
L.ERR  
USB communication connector (CN5)  
Used to connect the personal computer.  
RS-422 communication connector (CN3)  
Used to connect the MR-PRU03 parameter unit or  
personal computer.  
Chapter 7  
Chapter 8  
Chapter 15  
CC-Link connector (CN1)  
Wire the CC-Link cable.  
Section 3.2.2  
I/O signal connector (CN6)  
Used to connect digital I/O signals.  
Section 4.2  
Section 4.4  
Encoder connector (CN2)  
Used to connect the servo motor encoder.  
Section 4.10  
Section 14.1  
Battery connector (CN4)  
Used to connect the battery for absolute position data  
backup.  
Section 5.8  
Section 14.7  
Battery holder  
Contains the battery for absolute position data backup.  
Section 5.8  
Charge lamp  
Lit to indicate that the main circuit is charged. While  
this lamp is lit, do not reconnect the cables.  
Section 1.4  
Rating plate  
Section 4.1  
Section 4.3  
Protective earth (PE) terminal (  
Ground terminal.  
)
Section 12.1  
Section 14.11  
1 - 22  
1. FUNCTIONS AND CONFIGURATION  
1.6.2 Removal and reinstallation of the front cover  
Before removing or installing the front cover, turn off the power and wait for 15  
minutes or more until the charge lamp turns off. Then, confirm that the voltage  
between P( ) and N( ) is safe with a voltage tester and others. Otherwise, an  
electric shock may occur. In addition, always confirm from the front of the servo  
amplifier whether the charge lamp is off or not.  
WARNING  
(1) For MR-J3-350T4 MR-J3-500T(4) MR-J3-700T(4)  
Removal of the front cover  
a)  
a)  
Hold the ends of lower side of the front cover with  
both hands.  
Pull up the cover, supporting at point  
.
a)  
Pull out the front cover to remove.  
1 - 23  
1. FUNCTIONS AND CONFIGURATION  
Reinstallation of the front cover  
Front cover  
setting tab  
a)  
a)  
Insert the front cover setting tabs into the sockets of  
servo amplifier (2 places).  
Pull up the cover, supporting at point  
.
a)  
Setting tab  
Push the setting tabs until they click.  
1 - 24  
1. FUNCTIONS AND CONFIGURATION  
(2) For MR-J3-11KT(4) to MR-J3-22KT(4)  
Removal of the front cover  
c)  
b)  
a)  
1) Press the removing knob on the lower side of the  
front cover ( a) and b) ) and release the installation  
hook.  
3) Pull it to remove the front cover.  
2) Press the removing knob of c) and release the  
external hook.  
Reinstallation of the front cover  
(Note 1)  
(Note 1)  
d)  
c)  
(Note 2)  
b)  
a)  
Installation hook  
1) Fit the front cover installation hooks on the sockets 2) Push the front cover until you hear the clicking  
of body cover ( a) to d) ) to reinstall it.  
noise of the installation hook.  
Note 1. The cooling fan cover can be locked with enclosed screws (M4  
40).  
2. By drilling approximately 4 of a hole on the front cover, the front cover can be locked on the body with an enclosed screw (M4  
14).  
1 - 25  
1. FUNCTIONS AND CONFIGURATION  
1.7 Configuration including auxiliary equipment  
POINT  
Equipment other than the servo amplifier and servo motor are optional or  
recommended products.  
(1) MR-J3-100T or less  
(a) For 3-phase or 1-phase 200V to 230VAC  
R S T  
(Note 3)  
Power supply  
MR Configurator  
Personal  
computer  
No-fuse breaker  
(NFB) or fuse  
Servo amplifier  
Magnetic  
contactor  
(MC)  
(Note 2)  
CN5  
CN3  
CC-Link  
Line noise  
filter  
(FR-BSF01)  
CN1  
U
V
CN6  
I/O signal  
L1  
L2  
L3  
W
CN2  
CN4  
(Note 2)  
Power factor  
improving DC  
reactor  
(FR-BEL)  
P1  
(Note 1)  
Battery  
MR-J3BAT  
P2  
P
C
Servo motor  
Regenerative option  
Note 1. The battery (option) is used for the absolute position detection system in the position control mode.  
2. The AC reactor can also be used. In this case, the DC reactor cannot be used. When not using DC reactor, short P1 and P2.  
3. A 1-phase 200V to 230VAC power supply may be used with the servo amplifier of MR-J3-70T or less.  
For 1-phase 200V to 230VAC, connect the power supply to L1  
specification.  
L2 and leave L3 open. Refer to section 1.2 for the power supply  
1 - 26  
1. FUNCTIONS AND CONFIGURATION  
(b) For 1-phase 100V to 120VAC  
R
S
(Note 3)  
Power supply  
MR Configurator  
Personal  
computer  
No-fuse breaker  
(NFB) or fuse  
Servo amplifier  
Magnetic  
contactor  
(MC)  
Power factor  
improving DC  
reactor  
CN5  
CN3  
CC-Link  
(Note 2)  
(FR-BEL)  
Line noise  
filter  
(FR-BSF01)  
CN1  
U
V
W
CN6  
I/O signal  
L1  
L2  
CN2  
CN4  
(Note 1)  
Battery  
MR-J3BAT  
P
C
Servo motor  
Regenerative option  
Note 1. The battery (option) is used for the absolute position detection system in the position control mode.  
2. The power factor improving DC reactor cannot be used.  
3. Refer to section 1.2 for the power supply specification.  
1 - 27  
1. FUNCTIONS AND CONFIGURATION  
(2) MR-J3-60T4 MR-J3-100T4  
R S T  
(Note 3)  
Power supply  
Personal  
computer  
MR Configurator  
No-fuse breaker  
(NFB) or fuse  
Magnetic  
contactor  
(MC)  
Servo amplifier  
(Note 2)  
CN5  
CC-Link  
Line noise  
filter  
CN3  
(FR-BSF01)  
CN1  
CN6  
L1  
(Note 2)  
L2  
L3  
I/O signal  
Power factor  
improving DC  
reactor  
(FR-BEL-H)  
CN2  
CN4  
P1  
P2  
(Note 1)  
Battery  
MR-J3BAT  
Servo motor  
U V W  
P
C
Regenerative option  
L11  
L21  
Note 1. The battery (option) is used for the absolute position detection system in the position control mode.  
2. The AC reactor can also be used. In this case, the DC reactor cannot be used. When not using DC reactor, short P1 and P2.  
3. Refer to section 1.2 for the power supply specification.  
1 - 28  
1. FUNCTIONS AND CONFIGURATION  
(3) MR-J3-200T(4)  
R S T  
(Note 3)  
Power supply  
No-fuse breaker  
(NFB) or fuse  
Personal  
computer  
MR Configurator  
Magnetic  
contactor  
(MC)  
(Note 2)  
Line noise filter  
(FR-BSF01)  
Servo amplifier  
(Note 2)  
Power factor  
improving  
L1  
L2  
DC reactor  
(FR-BEL/  
L3  
FR-BEL-H)  
CN5  
CC-Link  
P1  
P2  
CN3  
(Note 4)  
Regenerative  
option  
P
C
CN1  
CN6  
L11  
L22  
I/O signal  
CN2  
CN4  
(Note 1)  
Battery  
MR-J3BAT  
U
V W  
Servo motor  
Note 1. The battery (option) is used for the absolute position detection system in the position control mode.  
2. The AC reactor can also be used. In this case, the DC reactor cannot be used. When not using DC reactor, short P1 and P2.  
3. Refer to section 1.2 for the power supply specification.  
4. Connectors (CNP1, CNP2, and CNP3) and appearance of MR-J3-200T servo amplifier have been changed from January 2008  
production. Model name of the existing servo amplifier is changed to MR-J3-200T-RT. For MR-J3-200T-RT, refer to appendix 5.  
1 - 29  
1. FUNCTIONS AND CONFIGURATION  
(4) MR-J3-350T  
(Note 3)  
Power supply  
R S T  
No-fuse breaker  
(NFB) or fuse  
Magnetic  
contactor  
(MC)  
MR Configurator  
Personal  
computer  
(Note 2)  
Servo amplifier  
Line noise filter  
(FR-BLF)  
(Note 2)  
Power factor  
improving DC  
reactor(FR-BEL)  
L1  
L2  
L3  
P1  
P2  
CN5  
CC-Link  
CN3  
CN1  
CN6  
Regenerative option  
P
C
I/O signal  
L11  
L21  
CN2  
CN4  
(Note 1)  
Battery  
MR-J3BAT  
U
U
V
W
Servo motor  
Note 1. The battery (option) is used for the absolute position detection system in the position control mode.  
2. The AC reactor can also be used. In this case, the DC reactor cannot be used. When not using DC reactor, short P1 and P2.  
3. Refer to section 1.2 for the power supply specification.  
1 - 30  
1. FUNCTIONS AND CONFIGURATION  
(5) MR-J3-350T4 MR-J3-500T(4)  
R S T  
(Note 3)  
Power supply  
MR Configurator  
Personal  
computer  
No-fuse breaker  
(NFB) or fuse  
Servo amplifier  
Magnetic  
contactor  
(MC)  
CN5  
CN3  
CC-Link  
(Note 1)  
Battery  
MR-J3BAT  
Line noise  
filter  
(FR-BLF)  
(Note 2)  
CN1  
CN6  
I/O signal  
CN2  
CN4  
L11 L21  
P1  
P2  
L3  
(Note 2)  
Power factor  
improving DC  
reactor  
L2  
L1  
(FR-BEL-(H))  
P
C
Regenerative option  
U
V W  
Servo motor  
Note 1. The battery (option) is used for the absolute position detection system in the position control mode.  
2. The AC reactor can also be used. In this case, the DC reactor cannot be used. When not using DC reactor, short P1 and P2.  
3. Refer to section 1.2 for the power supply specification.  
1 - 31  
1. FUNCTIONS AND CONFIGURATION  
(6) MR-J3-700T(4)  
R S T  
(Note 3)  
Power supply  
MR Configurator  
Personal  
computer  
No-fuse breaker  
(NFB) or fuse  
Servo amplifier  
Magnetic  
contactor  
(MC)  
CN5  
CC-Link  
(Note 2)  
(Note 1)  
Battery  
CN3  
Line noise  
filter  
MR-J3BAT  
(FR-BLF)  
L11 L21  
CN6  
I/O signal  
(Note 2)  
Power factor  
improving DC  
reactor  
CN2  
CN4  
(FR-BEL-(H))  
P2  
P1  
L3  
L2  
L1  
P
C
U
V
W
Regenerative option  
Servo motor  
Note 1. The battery (option) is used for the absolute position detection system in the position control mode.  
2. The AC reactor can also be used. In this case, the DC reactor cannot be used. When not using DC reactor, short P1 and P2.  
3. Refer to section 1.2 for the power supply specification.  
1 - 32  
1. FUNCTIONS AND CONFIGURATION  
(7) MR-J3-11KT(4) to MR-J3-22KT(4)  
R S T  
(Note 3)  
Power supply  
Personal  
computer  
MR Configurator  
No-fuse breaker  
(NFB) or fuse  
L21  
Servo amplifier  
L11  
Magnetic  
contactor  
(MC)  
(Note 2)  
Line noise  
filter  
(FR-BLF)  
CC-Link  
CN3  
CN5  
CN6  
(Note 1)  
Battery  
MR-J3BAT  
I/O signal  
CN2  
CN4  
L3  
L2  
L1  
(Note 2)  
Power factor  
improving DC  
reactor  
P1  
P
W V U  
(FR-BEL-(H))  
P
C
Regenerative option  
Servo motor  
Note 1. The battery (option) is used for the absolute position detection system in the position control mode.  
2. The AC reactor can also be used. In this case, the DC reactor cannot be used. When not using DC reactor, short P1 and P.  
3. Refer to section 1.2 for the power supply specification.  
1 - 33  
1. FUNCTIONS AND CONFIGURATION  
1.8 Selection of operation method  
Using the CC-Link communication functions, this servo enables a wide variety of operation methods. The  
operation method changes depending on the input device, parameter and point table setting.  
The flow of the operation method that changes depending on the device and parameter setting status is shown  
in the chart for your reference.  
Remote input-based point  
1 station  
table No. setting auxiliary  
occupied  
function valid  
(Refer to section 5.4)  
MR-J3-T occupied  
station count setting  
switch SW1  
OFF OFF  
Servo amplifier  
MR-J3-T  
OFF ON  
Remote input position/speed  
(Refer to section 3.2.5)  
specifying system selection  
(RY(n+2)A)  
OFF  
2 stations  
occupied  
ON  
Remote register-based  
point table No. setting  
auxiliary function invalid  
Parameter No.PA30  
0
Remote register-based  
position data setting/point  
table No. (speed) setting  
auxiliary function invalid  
1
2
Remote register-based  
position data/speed data  
setting auxiliary function  
invalid  
1 - 34  
1. FUNCTIONS AND CONFIGURATION  
Reference  
Main description  
Positioning is started by  
making the start signal  
valid after selection of  
the point table with the  
remote input. Using the  
auxiliary function,  
automatic continuous  
operation can be  
performed with multiple  
point tables.  
Positioning operation is  
executed once with  
position data handled  
as absolute value.  
Continuous positioning  
operation is executed with  
position data handled as  
absolute values.  
Section 3.8.2  
Section  
5.4.2 (1)  
Point table  
auxiliary function  
0
Section 3.8.2  
Section  
5.4.2 (4)(b)1)  
1
Absolute value  
command  
Positioning operation is  
executed once with  
position data handled  
as incremental value.  
2
Section 3.8.2  
Section  
5.4.2 (2)  
specifying system  
Parameter No.PA01  
3
0
Continuous positioning  
operation is executed with  
position data handled as  
incremental values.  
Section 3.8.2  
Section  
5.4.2 (4)(b)1)  
1
Point table  
auxiliary function  
Section 3.8.2  
Section  
5.4.2 (1)  
Positioning operation is  
executed once in  
0
Incremental value  
incremental value  
command system.  
command  
1
specifying system  
Continuous positioning  
operation is executed  
in incremental value  
command system.  
Section 3.8.2  
Section  
5.2.2 (4)(b)2)  
Remote input absolute  
value/incremental value  
selection (RY(n+2)B)  
Positioning is started by  
making the start signal  
valid after selection of  
the point table with the  
remote register. The  
auxiliary function cannot  
be used.  
Positioning operation is  
executed once with  
position data handled  
as absolute value.  
OFF  
Absolute value  
command  
specifying system  
Parameter No.PA01  
0
Section  
3.6.3 (1)  
Positioning operation is  
executed once with  
ON  
position data handled  
as incremental value.  
Section  
3.7.6 (3)  
1
Positioning operation is  
executed once in  
Incremental value  
command  
incremental value  
command system.  
specifying system  
Remote input absolute  
value/incremental value  
selection (RY(n+2)B)  
Set the position data  
directly with the remote  
register, and use the  
settings of the point table  
selected with the remote  
register as the servo  
motor speed and  
Positioning operation is  
executed once with  
position data handled  
as absolute value.  
Positioning operation is  
executed once with  
position data handled  
as incremental value.  
OFF  
Absolute value  
command  
specifying system  
Parameter No.PA01  
0
ON  
Section  
3.6.3 (2)  
acceleration/deceleration  
time constants.  
1
Positioning operation is  
executed once in  
Incremental value  
command  
Positioning is started by  
making the start signal  
valid. The auxiliary  
incremental value  
command system.  
specifying system  
function cannot be used.  
Remote input absolute  
value/incremental value  
selection (RY(n+2)B)  
Set the position data and  
Positioning operation is  
executed once with  
position data handled  
as absolute value.  
Section 3.6.3(3) servo motor speed  
Section 3.8.4  
Section 5.4.3(1) directly with the remote  
register.  
OFF  
Absolute value  
command  
specifying system  
Parameter No.PA01  
0
Use the settings of the  
Positioning operation is  
executed once with  
position data handled  
as incremental value.  
Section  
ON  
point table No.1 as the  
acceleration/deceleration  
time constants.  
3.6.3 (3)  
Section  
5.4.3 (2)  
1
Positioning is started by  
Positioning operation is  
executed once in  
incremental value  
command system.  
Incremental value  
command  
specifying system  
Section 3.6.3(3) making the start signal  
Section 3.7.6(2) valid. The auxiliary  
Section 5.4.3(3) function cannot be used.  
1 - 35  
1. FUNCTIONS AND CONFIGURATION  
MEMO  
1 - 36  
2. INSTALLATION  
2. INSTALLATION  
Stacking in excess of the limited number of products is not allowed.  
Install the equipment on incombustible material. Installing them directly or close to  
combustibles will lead to a fire.  
Install the equipment in a load-bearing place in accordance with this Instruction  
Manual.  
Do not get on or put heavy load on the equipment to prevent injury.  
Use the equipment within the specified environmental condition range. (For the  
environmental conditions, refer to section 1.2.)  
Provide an adequate protection to prevent screws, metallic detritus and other  
conductive matter or oil and other combustible matter from entering the servo  
amplifier.  
CAUTION  
Do not block the intake/exhaust ports of the servo amplifier. Otherwise, a fault may  
occur.  
Do not subject the servo amplifier to drop impact or shock loads as they are  
precision equipment.  
Do not install or operate a faulty servo amplifier.  
When the product has been stored for an extended period of time, consult  
Mitsubishi.  
When treating the servo amplifier, be careful about the edged parts such as the  
corners of the servo amplifier.  
2.1 Installation direction and clearances  
The equipment must be installed in the specified direction. Otherwise, a fault may  
occur.  
CAUTION  
Leave specified clearances between the servo amplifier and control box inside  
walls or other equipment.  
(1) 7kW or less  
(a) Installation of one servo amplifier  
Control box  
Control box  
40mm  
or more  
Servo amplifier  
Wiring allowance  
80mm  
or more  
Top  
10mm  
10mm  
or more  
or more  
Bottom  
40mm  
or more  
2 - 1  
2. INSTALLATION  
(b) Installation of two or more servo amplifiers  
POINT  
Close mounting is available for the servo amplifier of under 3.5kW for 200V  
class and 400W for 100V class.  
Leave a large clearance between the top of the servo amplifier and the internal surface of the control  
box, and install a cooling fan to prevent the internal temperature of the control box from exceeding the  
environmental conditions.  
When installing the servo amplifiers closely, leave a clearance of 1mm between the adjacent servo  
amplifiers in consideration of mounting tolerances.  
In this case, bring the ambient temperature within 0 to 45 (32 to 113 ), or use it at 75% or a smaller  
effective load ratio.  
Control box  
Control box  
100mm  
or more  
100mm  
or more  
1mm  
10mm  
or more  
1mm  
Top  
30mm  
30mm  
30mm  
30mm  
or more  
or more  
or more  
or more  
Bottom  
40mm or more  
40mm or more  
Mounting closely  
Leaving clearance  
(2) 11k to 22kW  
(a) Installation of one servo amplifier  
Control box  
Control box  
40mm or more  
Servo amplifier  
Wiring allowance  
80mm  
Top  
10mm  
10mm  
or more  
or more  
Bottom  
120mm  
or more  
2 - 2  
2. INSTALLATION  
(b) Installation of two or more servo amplifiers  
Leave a large clearance between the top of the servo amplifier and the internal surface of the control  
box, and install a cooling fan to prevent the internal temperature of the control box from exceeding the  
environmental conditions.  
Control box  
100mm  
or more  
10mm or more  
Top  
30mm  
30mm  
or more  
or more  
Bottom  
120mm or more  
(3) Others  
When using heat generating equipment such as the regenerative option, install them with full consideration  
of heat generation so that the servo amplifier is not affected.  
Install the servo amplifier on a perpendicular wall in the correct vertical direction.  
2.2 Keep out foreign materials  
(1) When installing the unit in a control box, prevent drill chips and wire fragments from entering the servo  
amplifier.  
(2) Prevent oil, water, metallic dust, etc. from entering the servo amplifier through openings in the control box  
or a cooling fan installed on the ceiling.  
(3) When installing the control box in a place where there are much toxic gas, dirt and dust, conduct an air  
purge (force clean air into the control box from outside to make the internal pressure higher than the  
external pressure) to prevent such materials from entering the control box.  
2.3 Cable stress  
(1) The way of clamping the cable must be fully examined so that flexing stress and cable's own weight stress  
are not applied to the cable connection.  
(2) For use in any application where the servo motor moves, fix the cables (encoder, power supply, brake) with  
having some slack from the connector connection part of the servo motor to avoid putting stress on the  
connector connection part. Use the optional encoder cable within the flexing life range. Use the power  
supply and brake wiring cables within the flexing life of the cables.  
(3) Avoid any probability that the cable sheath might be cut by sharp chips, rubbed by a machine corner or  
stamped by workers or vehicles.  
(4) For installation on a machine where the servo motor will move, the flexing radius should be made as large  
as possible. Refer to section 10.4 for the flexing life.  
2 - 3  
2. INSTALLATION  
2.4 Inspection items  
Before starting maintenance and/or inspection, turn off the power and wait for 15  
minutes or more until the charge lamp turns off. Then, confirm that the voltage  
between P( ) and N( ) is safe with a voltage tester and others. Otherwise, an  
electric shock may occur. In addition, always confirm from the front of the servo  
amplifier whether the charge lamp is off or not.  
WARNING  
Any person who is involved in inspection should be fully competent to do the work.  
Otherwise, you may get an electric shock. For repair and parts replacement,  
contact your safes representative.  
POINT  
Do not test the servo amplifier with a megger (measure insulation resistance),  
or it may become faulty.  
Do not disassemble and/or repair the equipment on customer side.  
It is recommended to make the following checks periodically.  
(1) Check for loose terminal block screws. Retighten any loose screws.  
(2) Check the cables and the like for scratches and cracks. Perform periodic inspection according to operating  
conditions.  
2.5 Parts having service lives  
The following parts must be changed periodically as listed below. If any part is found faulty, it must be changed  
immediately even when it has not yet reached the end of its life, which depends on the operating method and  
environmental conditions. For parts replacement, please contact your sales representative.  
Part name  
Life guideline  
Smoothing capacitor  
10 years  
Number of power-on and number of emergency stop  
times : 100,000 times  
Relay  
Servo amplifier  
Cooling fan  
10,000 to 30,000hours (2 to 3 years)  
Refer to section 5.8  
Absolute position battery  
(1) Smoothing capacitor  
Affected by ripple currents, etc. and deteriorates in characteristic. The life of the capacitor greatly depends  
on ambient temperature and operating conditions. The capacitor will reach the end of its life in 10 years of  
continuous operation in normal air-conditioned environment.  
(2) Relays  
Their contacts will wear due to switching currents and contact faults occur. Relays reach the end of their life  
when the cumulative number of power-on and emergency stop times is 100,000, which depends on the  
power supply capacity.  
(3) Servo amplifier cooling fan  
The cooling fan bearings reach the end of their life in 10,000 to 30,000 hours. Normally, therefore, the  
cooling fan must be changed in a few years of continuous operation as a guideline.  
It must also be changed if unusual noise or vibration is found during inspection.  
2 - 4  
3. CC-LINK COMMUNICATION FUNCTIONS  
3. CC-LINK COMMUNICATION FUNCTIONS  
3.1 Communication specifications  
POINT  
This servo is equivalent to a remote device station.  
For details of the programmable controller side specifications, refer to the CC-Link system master unit manual.  
Item  
Power supply  
Specifications  
5VDC supplied from servo amplifier  
Ver.1.10  
Applicable CC-Link version  
Communication speed  
Communication system  
Synchronization system  
Encoding system  
10M/5M/2.5M/625k/156kbps  
Broadcast polling system  
Frame synchronization system  
MRZI  
Transmission path format  
Error control system  
Connection cable  
Bus format (conforming to EIA RS485)  
CRC (X16+X12+X5+1)  
CC-Link Ver.1.10-compliant cable (Shielded 3-core twisted pair cable)  
Conforming to HDLC  
Transmission format  
Remote station number  
1 to 64  
Communication speed  
156Kbps  
1200m  
625Kbps  
900m  
2.5Mbps  
400m  
5Mbps  
160m  
10Mbps  
100m  
(Note)  
Cable  
length  
Maximum overall cable length  
Inter-station cable length  
0.2m or more  
Max. 42 (when 1 station is occupied by 1 servo amplifier), (max. 32 when 2  
stations are occupied by 1 servo amplifier), when there are only remote  
device stations. Can be used with other equipment.  
Number of servo amplifiers connected  
Note. If the system comprises of both CC-Link Ver.1.00- and Ver.1.10-compliant cables, Ver.1.00 specifications are applied to the  
overall cable length and the cable length between stations. For more information, refer to the CC-Link system master/local unit  
user's manual.  
3 - 1  
3. CC-LINK COMMUNICATION FUNCTIONS  
3.2 System configuration  
3.2.1 Configuration example  
(1) Programmable controller side  
Fit "Type QJ61BT11N", "Type A1SJ61BT11" or "Type A1SJ61QBT11" "Control & Communication Link  
system master/local module" to the main or extension base unit which is loaded with the programmable  
controller CPU used as the master station.  
(2) Wiring  
Connect the programmable controller CC-Link unit master station and the servo amplifier by a twisted pair  
cable (3-wire type).  
Programmable controller  
CC-Link unit  
CC-Link Ver.1.10-compliant cable  
3 - 2  
3. CC-LINK COMMUNICATION FUNCTIONS  
3.2.2 Wiring method  
(1) Communication connector  
The pin layout of the communication connector CN10 on the servo amplifier unit is shown below.  
Servo amplifier  
CN1  
CN1  
(2) Connection example  
The servo amplifier and programmable controller CC-Link master unit are wired as shown below. Refer to  
section 14.9 (3) for the CC-Link Ver.1.10-compliant cable used for connection.  
Programmable controller  
CC-Link master unit  
Servo amplifier  
CN1  
FG  
SLD  
DG  
DB  
DA  
FG  
SLD  
DG  
DB  
DA  
(3) Example of connecting multiple servo units  
As the remote I/O stations of CC-Link, servo amplifiers share the link system and can be  
controlled/monitored using programmable controller user programs.  
MR-J3- T option unit  
CC-Link connector (CN1)  
MR-J3- T option unit  
CC-Link connector (CN1)  
Programmable controller  
CC-Link master unit  
FG  
SLD  
DG  
(Note 1)  
Termination register  
Termination register  
DB  
DA  
(Note 2) CC-Link Ver.1.10-compliant cable  
Note 1. Use the termination resistor supplied with the programmable controller. The resistance of the termination resistor depends on  
the cable used. For details, refer to the open field network CC-Link catalog (L(NA)74108143).  
2. Refer to (4) in this section.  
3 - 3  
3. CC-LINK COMMUNICATION FUNCTIONS  
(4) How to wire the CC-Link connector (CN1)  
(a) Strip the sheath of the cable and separate the internal wires and braided shield.  
(b) Strip the sheaths of the braided shield and internal wires and twist the cores.  
Braided shield  
Approx. 10mm  
3-core twisted pair cable  
(c) Match and twist the wires and braided shield of the cable connected to the preceding axis or  
programmable controller and the corresponding wires and braided shield of the cable connected to the  
subsequent axis.  
(d) For the last axis, work the termination resistor supplied to the CC-Link master unit as shown below.  
Termination register  
(10mm) (10mm)  
Remove sheath Remove sheath  
Fold lead wire  
Cut  
Cut  
(e) Insert the core of the cable into the opening and tighten it with a flat-blade screwdriver so that it will not  
come off. (Tightening torque: 0.5 to 0.6N m) When inserting the wire into the opening, make sure that  
the terminal screw is fully loose.  
To the preceding station or  
programmable controller  
To the next  
station  
Tighten  
CC-Link connector (CN1)  
Loosen  
Flat blade screwdriver  
Tip thickness 0.4 to 0.6mm  
Full wide 2.5 to 3.5mm  
POINT  
Do not solder the cores as it may cause a contact fault.  
Use of a flat-blade torque screwdriver is recommended to manage the screw tightening torque. The  
following table indicates the recommended products of the torque screwdriver for tightening torque  
management and the flat-blade bit for torque screwdriver. When managing torque with a Phillips bit, please  
consult us.  
Product  
Torque screwdriver  
Bit for torque screwdriver  
Model  
Manufacturer/Representative  
Nakamura Seisakusho  
Shiro Sangyo  
N6L TDK  
B-30, flat-blade, H3.5 X 73L  
3 - 4  
3. CC-LINK COMMUNICATION FUNCTIONS  
3.2.3 Station number setting  
POINT  
Be sure to set the station numbers within the range of 1 to 64. Do not set the  
other values.  
(1) How to number the stations  
Set the servo station numbers before powering on the servo amplifiers. Note the following points when  
setting the station numbers.  
(a) Station numbers may be set within the range 1 to 64.  
(b) One servo amplifier occupies 1 or 2 stations. (One station of programmable controller remote device  
station)  
(c) Max. number of connected units: 42  
Note that the following conditions must be satisfied.  
{(1 a) (2 b) (3 c) (4 d)} 64  
a: Number of 1-station occupying units  
b: Number of 2-station occupying units  
c: Number of 3-station occupying units (not available for MR-J3-T)  
d: Number of 4-station occupying units (not available for MR-J3-T)  
{(16 A) (54 B) (88 C)} 2304  
A: Number of remote I/O stations 64  
B: Number of remote device stations 42  
C: Number of local stations 26  
(d) When the number of units connected is 4, station numbers can be set as shown below.  
Servo amplifier No.1  
(When 2 stations are  
occupied)  
Servo amplifier No.2  
(When 2 stations are  
occupied)  
Servo amplifier No.3  
(When 2 stations are  
occupied)  
Programmable controller  
remote I/O station  
(1 station occupied)  
CC-Link  
master unit  
Remote device station  
Remote device station  
Remote device station  
Station No.1  
Station No.2  
Station No.4  
Station No.6  
Number of connected units is 4.  
(2) Station number setting method  
Set the station number with the station number switches (STATION NO.) on the servo amplifier front. The  
station number that may be set is any of 1 to 64 in decimal. In the initial status, the station number is set to  
station 1.  
Servo amplifier  
X10 STATION No. X1  
5
5
0
0
Set the units. (initial value: 1)  
Set the tens. (initial value: 0)  
3 - 5  
3. CC-LINK COMMUNICATION FUNCTIONS  
3.2.4 Communication baud rate setting  
Set the transfer baud rate of CC-Link with the transfer baud rate switch (MODE) on the servo amplifier front.  
The initial value is set to 156kbps.  
The overall distance of the system changes with the transfer speed setting. For details, refer to the CC-Link  
system master/local unit user's manual.  
Servo amplifier  
MODE  
5
No.  
Baud rate  
0 (initial value)  
156kbps  
625kbps  
2.5Mbps  
5Mbps  
1
5
0
2
3
0
5
5
0
0
4
10Mbps  
Not used  
5 to 9  
3.2.5 Occupied station count setting  
Set the number of occupied stations with the occupied station count switch (SW1) on the servo amplifier front.  
The usable I/O device and the number of connectable units change with the set number of occupied stations.  
Refer to section 3.2.3. In the initial status, the number of stations occupied is set to 1.  
SW1 setting  
Number of occupied stations  
Servo amplifier  
1 station occupied  
Initial value  
5
0
5
5
(Note)  
Note.  
2 station occupied  
0
0
SW1  
This switch hidden under the cover is for manufacturer setting.  
Do not change this setting by any means.  
3 - 6  
3. CC-LINK COMMUNICATION FUNCTIONS  
3.3 Functions  
3.3.1 Function block diagram  
This section explains the transfer of I/O data to/from the servo amplifier in CC-Link, using function blocks.  
(1) Between the master station and servo amplifier in the CC-Link system, link refresh is normally performed at  
intervals of 3.5 to 18ms (512 points). The link scan time of link refresh changes with the communication  
speed. For details, refer to the CC-Link system master/local unit user's manual.  
(2) The I/O refresh and master station sequence program are executed asynchronously. Some programmable  
controllers allow link scans to be synchronized with programmable controller scans.  
(3) The FROM instruction from the buffer memory of the CC-Link system master/local unit is used to read data  
from the servo amplifier, and the TO instruction is used to write data. Some programmable controllers allow  
automatic refresh to be set to omit the FROM and TO instructions.  
Servo amplifier  
Programmable controller  
CC-Link unit  
3) CC-Link  
1) QJ61B11N  
I/O signal  
Input  
CPU  
Ver.1.10-  
compliant  
cable  
2) Buffer memory access  
Output  
Buffer  
memory  
3.3.2 Functions  
The following table lists the functions that may be performed from the programmable controller in the CC-Link  
system in the CC-Link operation mode or test operation mode.  
Operation mode  
Item  
CC-Link operation mode  
Test operation mode  
Monitor  
Operation  
Parameter write  
Parameter read  
Point table data write  
Point table data read  
3 - 7  
3. CC-LINK COMMUNICATION FUNCTIONS  
3.4 Servo amplifier setting  
(1) Servo amplifier side operation modes  
This servo amplifier has the following operation modes.  
Operation mode  
Description  
Parameter unit or personal computer in which MR Configurator is installed is used to run the  
Test operation mode  
servo motor.  
CC-Link communication functions are used to operate the servo with the programmable  
controller programs.  
CC-Link operation mode  
(2) Operation mode changing  
(a) Operation mode changing conditions  
Change the operation mode after making sure that.  
1) The servo motor is at a stop.  
2) The forward rotation start (RYn1) or reverse rotation start (RYn2) is OFF.  
(b) Operation mode changing method  
When changing from test operation to CC-Link operation, deselect test operation by switching power  
OFF/ON.  
Test operation mode is selected using a parameter unit  
or a personal computer in which MR Configurator is  
installed.  
CC-Link  
Test operation mode  
operation mode  
Deselect test operation mode by switching power  
OFF/ON.  
3 - 8  
3. CC-LINK COMMUNICATION FUNCTIONS  
3.5 I/O signals (I/O devices) transferred to/from the programmable controller CPU  
3.5.1 I/O signals (I/O devices)  
The input signals (input devices) may be used as either the CC-Link or CN6 external input signals. Make  
selection in parameter No.PD06 to PD11, PD12 and PD14. The output signals (output devices) can be used as  
both the CC-Link CN6 external output signals.  
POINT  
In the factory-shipped status, the forward rotation stroke end (LSP), reverse  
rotation stroke end (LSN) and proximity dog (DOG) are valid as the CN6  
external input signals.  
(1) When 1 station is occupied  
RYn/RXn: 32 points each, RWrn/RWwn: 4 points each  
Programmable controller  
Signal name  
Servo amplifier (RYn)  
Servo amplifier  
Programmable controller (RXn)  
Signal  
CN6  
CN6  
(Note)  
Signal  
(Note)  
connector  
pin No.  
Signal name  
connector  
pin No.  
Device No.  
abbreviation  
Device No.  
abbreviation  
RYn0  
RYn1  
Servo-on  
SON  
ST1  
RXn0  
RXn1  
RXn2  
RXn3  
RXn4  
RXn5  
RXn6  
RXn7  
RXn8  
Ready  
RD  
INP  
CPO  
ZP  
14  
16  
Forward rotation start  
Reverse rotation start  
Proximity dog  
In position  
RYn2  
ST2  
Rough match  
RYn3  
DOG  
LSP  
2
3
4
Home position return completion  
Limiting torque  
RYn4  
Forward rotation stroke end  
Reverse rotation stroke end  
Automatic/manual selection  
Temporary stop/Restart  
TLC  
RYn5  
LSN  
MDO  
TSTP  
Reserved  
RYn6  
Electromagnetic brake interlock  
Temporary stop  
Monitoring  
MBR  
PUS  
MOF  
RYn7  
RYn8  
Monitor output execution demand  
Instruction code execution demand  
Point table No. selection 1  
Point table No. selection 2  
Point table No. selection 3  
Point table No. selection 4  
Point table No. selection 5  
Clear  
MOR  
COR  
DI0  
RYn9  
Instruction code execution  
completion  
RXn9  
COF  
RYnA  
RYnB  
RYnC  
RYnD  
RYnE  
RYnF  
RY(n 1)0  
to  
DI1  
RXnA  
RXnB  
Warning  
WNG  
BWNG  
MEND  
DB  
DI2  
Battery warning  
Movement completion  
Dynamic brake interlock  
Position range output  
Reserved  
DI3  
RXnC  
DI4  
RXnD  
CR  
RXnE  
POT  
RXnF  
Reserved  
RX(n 1)1  
to  
RY(n 1)9  
Reserved  
RY(n 1)A Reset  
RY(n 1)B  
RES  
RX(n 1)9  
RX(n 1)A Trouble  
ALM  
CRD  
15  
to  
Reserved  
Remote station communication  
RX(n 1)B  
ready  
RY(n 1)F  
RX(n 1)C  
to  
Reserved  
RX(n 1)F  
Programmable controller  
Servo amplifier (RWwn)  
Signal name  
Servo amplifier  
Programmable controller (RWrn)  
Signal name  
Address No.  
RWwn  
Address No.  
RWrn  
Monitor 1  
Monitor 1 data  
Monitor 2 data  
Respond code  
Reading data  
RWwn  
RWwn  
RWwn  
1
2
3
Monitor 2  
RWrn  
RWrn  
RWrn  
1
2
3
Instruction code  
Writing data  
Note. "n" depends on the station number setting.  
3 - 9  
3. CC-LINK COMMUNICATION FUNCTIONS  
(2) When 2 stations are occupied  
RXn/RYn: 64 points each, RWrn/RWwn: 8 points each  
Programmable controller  
Signal name  
Servo amplifier (RYn)  
Servo amplifier  
Programmable controller (RXn)  
Signal  
CN6  
connector  
CN6  
connector  
(Note 1)  
Signal  
(Note 1)  
Signal name  
Device No.  
abbreviation  
Device No.  
abbreviation  
pin No.  
pin No.  
14  
RYn0  
RYn1  
RYn2  
RYn3  
RYn4  
RYn5  
RYn6  
RYn7  
RYn8  
Servo-on  
SON  
ST1  
RXn0  
RXn1  
RXn2  
RXn3  
RXn4  
RXn5  
RXn6  
RXn7  
RXn8  
Ready  
RD  
INP  
CPO  
ZP  
Forward rotation start  
Reverse rotation start  
Proximity dog  
In position  
ST2  
Rough match  
DOG  
LSP  
2
3
4
Home position return completion  
Limiting torque  
16  
Forward rotation stroke end  
Reverse rotation stroke end  
Automatic/manual selection  
Temporary stop/Restart  
TLC  
LSN  
MDO  
TSTP  
Reserved  
Electromagnetic brake interlock  
Temporary stop  
Monitoring  
MBR  
PUS  
MOF  
Monitor output execution demand  
Instruction code execution  
demand  
MOR  
Instruction code execution  
completion  
RYn9  
COR  
RXn9  
COF  
RYnA  
RYnB  
Point table No. selection 1  
Point table No. selection 2  
Point table No. selection 3  
Point table No. selection 4  
Point table No. selection 5  
Clear  
DI0  
DI1  
DI2  
DI3  
DI4  
CR  
RXnA  
RXnB  
RXnC  
RXnD  
RXnE  
RXnF  
Warning  
WNG  
BWNG  
MEND  
DB  
Battery warning  
Movement completion  
Dynamic brake interlock  
Position range output  
RYnC  
RYnD  
RYnE  
POT  
RYnF  
RY(n 1)0  
to  
to  
Reserved  
Reserved  
RX(n 1)F  
RY(n 1)F  
Position instruction execution  
completion  
RX(n 2)0  
RX(n 2)1  
Position instruction execution  
demand (Note)  
RY(n 2)0  
RY(n 2)1  
Speed instruction execution  
completion  
Speed instruction execution  
demand (Note)  
RX(n 2)2 Point table No. output 1  
RX(n 2)3 Point table No. output 2  
RX(n 2)4 Point table No. output 3  
RX(n 2)5 Point table No. output 4  
RX(n 2)6 Point table No. output 5  
RX(n 2)7 Point table No. output 6  
RX(n 2)8 Point table No. output 7  
RX(n 2)9 Point table No. output 8  
RX(n 2)A  
PT0  
PT1  
PT2  
PT3  
PT4  
PT5  
PT6  
PT7  
RY(n 2)2 Reserved  
RY(n 2)3 Point table No. selection 6  
RY(n 2)4 Point table No. selection 7  
RY(n 2)5 Point table No. selection 8  
RY(n 2)6 Internal torque limit selection  
RY(n 2)7 Proportion control  
RY(n 2)8 Gain changing  
DI5  
DI6  
DI7  
TL1  
PC  
CDP  
RY(n 2)9 Reserved  
Position/speed specifying system  
to  
Reserved  
RY(n 2)A  
selection  
RX(n 2)F  
RX(n 3)0  
to  
Absolute value/incremental value  
RY(n 2)B  
selection  
Reserved  
RY(n 2)C  
RX(n 3)9  
to  
Reserved  
Reserved  
RX(n 3)A Trouble  
ALM  
CRD  
15  
RY(n 2)F  
RY(n 3)0  
to  
Remote station communication  
RX(n 3)B  
ready  
RX(n 3)C  
to  
RY(n 3)9  
Reserved  
RY(n 3)A Reset  
RY(n 3)B  
RES  
RX(n 3)F  
to  
Reserved  
RY(n 3)F  
Note. "n" depends on the station number setting.  
3 - 10  
3. CC-LINK COMMUNICATION FUNCTIONS  
Programmable controller  
Servo amplifier (RWwn)  
Signal name  
Servo amplifier  
Programmable controller (RWrn)  
Signal name  
(Note 1)  
(Note 1)  
Address No.  
RWwn  
Address No.  
RWrn  
(Note 2) Monitor 1  
(Note 2) Monitor 2  
Instruction code  
Writing data  
Monitor 1 data lower 16 bit  
RWwn  
RWwn  
RWwn  
RWwn  
RWwn  
RWwn  
RWwn  
1
2
3
4
5
6
7
RWwn  
RWwn  
RWwn  
RWwn  
RWwn  
RWwn  
RWwn  
1
2
3
4
5
6
7
Monitor 1 data upper 16 bit  
Respond code  
Reading data  
(Note 3) Position command data lower 16 bit/Point table No.  
Position command data upper 16 bit  
(Note 4) Speed command data/Point table No.  
Reserved  
Monitor 2 data lower 16 bit  
Monitor 2 data upper 16 bit  
Reserved  
Note 1. "n" depends on the station number setting.  
2. Specify the code of the lower 16 bit as the monitor code of 32-bit data.  
3. When the parameter No.PC30 setting is " 0", specify the point table No. in RWwn 4. When the parameter No.PC30  
setting is " 1" or " 2", specify the position data in RWwn 4/RWwn 5 and turn ON Position instruction execution  
demand (RY(n 2)0).  
4. When the parameter No.PC30 setting is "  
setting is " 2", specify the speed data in RWwn 6, and turn ON Speed instruction execution demand (RY(n 2)1). When  
1", specify the point table No. in RWwn 6. When the parameter No.PC30  
setting the parameter No.PC30 to "  
2", always set the acceleration/deceleration time constant in the point table No.1.  
0", the RWwn 6 value is not used.  
When the parameter No.PC30 setting is "  
3 - 11  
3. CC-LINK COMMUNICATION FUNCTIONS  
3.5.2 Detailed explanation of I/O signals  
(1) Input signals (Input devices)  
The note signs in the remarks column indicates the following descriptions.  
1: Can be used as external input signals of CN6 connector by setting parameters No.PD06 to PD08 and  
parameter No.PD12 PD14.  
2: Can be automatic turned ON internally by setting parameters No.PD01 PD04.  
The device whose Device No. field has an oblique line cannot be used in CC-Link.  
Device No.  
Signal name  
Description  
Remarks  
1
1 station  
occupied  
2 stations  
occupied  
(Device name)  
Servo-on  
Turning RYn0 ON powers on the base circuit, making  
operation ready to start. (Servo on status)  
RYn0  
RYn0  
Turning it OFF powers off the base circuit, coasting the servo  
motor. (Servo off status)  
Forward rotation start  
1. In absolute value command system  
RYn1  
RYn1  
1
Turning RYn1 ON for automatic operation executes  
positioning once on the basis of the position data set to the  
point table.  
Turning RYn1 ON for a home position return immediately  
starts a home position return.  
Keeping RYn1 ON for JOG operation performs rotation in  
the forward rotation direction.  
Forward rotation indicates the address increasing direction.  
2. In incremental value command system  
Turning RYn1 ON for automatic operation executes  
positioning once in the forward rotation direction on the basis  
of the position data set to the point table.  
Turning RYn1 ON for a home position return immediately  
starts a home position return.  
Keeping RYn1 ON for JOG operation performs rotation in  
the forward rotation direction.  
Forward rotation indicates the address increasing direction.  
Use this device in the incremental value command system.  
Turning RYn2 ON for automatic operation executes positioning  
once in the reverse rotation direction on the basis of the  
position data set to the point table.  
Reverse rotation start  
RYn2  
RYn2  
1
Keeping RYn2 ON for JOG operation performs rotation in the  
reverse rotation direction.  
Reverse rotation indicates the address decreasing direction.  
Reverse rotation start (RYn2) is also used as the start signal of  
the high-speed automatic positioning function to the home  
position.  
3 - 12  
3. CC-LINK COMMUNICATION FUNCTIONS  
Device No.  
Signal name  
Description  
Remarks  
1
1 station  
2 stations  
occupied  
occupied  
RYn3  
Proximity dog  
In the shipment status, the proximity dog external input signal  
(CN6-2) is valid. For use in CC-Link, make it usable in  
parameter No.PD14. When RYn3 is turned OFF, the proximity  
dog is detected. The polarity of dog detection can be changed  
using parameter No.PD16.  
RYn3  
Proximity dog (RYn3) detection polarity  
Parameter No.PD16  
0
1
(initial value)  
OFF  
ON  
Forward rotation stroke end  
Reverse rotation stroke end  
In the factory-shipped status, the forward rotation stroke end is  
valid as the external input signal (CN6-3) and the reverse  
rotation stroke end is valid as the external input signal (CN6-4).  
Before operation, short between CN6-3 and DOCOM, and  
between CN6-4 and DOCOM. Opening them causes a sudden  
stop, resulting in servo lock.  
RYn4  
RYn5  
RYn4  
RYn5  
1
2
For use in CC-Link, make it usable in parameter No.PD12.  
When starting operation, turn RYn4/RYn5 to ON. Turning it to  
OFF causes a sudden stop, resulting in servo lock. A stopping  
method can be changed in parameter No.PD20.  
When not using the forward/reverse rotation stroke end, set  
"Automatic ON" in parameter No.PD01.  
(Note) Input signal  
Operation  
CCW direction CW direction  
RYn4  
RYn5  
1
0
1
0
1
1
0
0
Note. 0: OFF 1: ON  
Automatic/manual selection  
Temporary stop/Restart  
Turning RYn6 ON selects the automatic operation mode, and  
turning it OFF selects the manual operation mode.  
Turning RYn7 ON during automatic operation makes a  
temporary stop.  
RYn6  
RYn7  
RYn6  
RYn7  
1
Turning RYn7 ON again makes a restart.  
Forward rotation start (RYn1) or Reverse rotation start (RYn2)  
is ignored if it is turned ON during a temporary stop.  
When the automatic operation mode is changed to the manual  
operation mode during a temporary stop, the movement  
remaining distance is erased.  
During a home position return or during JOG operation,  
Temporary stop/Restart input is ignored.  
3 - 13  
3. CC-LINK COMMUNICATION FUNCTIONS  
Device No.  
Signal name  
Description  
Remarks  
1 station  
2 stations  
occupied  
occupied  
RYn8  
Monitor output execution  
demand  
When RYn8 is turned ON, the following data and signals are  
set. At the same time, RXn8 turns ON. While RYn8 is ON, the  
monitor values are kept updated.  
RYn8  
1) When 1 station is occupied  
Remote register RWrn: Data demanded by Monitor 1  
(RWwn)  
Remote register RWrn 1: Data demanded by Monitor 2  
(RWwn+1)  
Remote register RWrn 2: Respond code indicating normal  
or error  
2) When 2 stations are occupied  
Remote register RWrn: Lower 16 bits of data demanded by  
Monitor 1 (RWwn)  
Remote register RWrn 1: Upper 16 bits of data demanded  
by Monitor 1 (RWwn)  
Remote register RWrn 5: Lower 16 bits of data demanded  
by Monitor 2 (RWwn+2)  
Remote register RWrn 6: Upper 16 bits of data demanded  
by Monitor 2 (RWwn+2)  
Remote register RWrn 2: Respond code indicating normal  
or error  
Instruction code execution  
demand  
Turning RYn9 ON executes the processing corresponding to  
the instruction code stored in remote register RWwn 2.  
After completion of instruction code execution, the respond  
code indicating normal or error is set to RWrn 2. At the same  
time, RXn9 turns ON.  
RYn9  
RYn9  
Refer to section 16.2.4 for details.  
Point table No. selection 1  
Point table No. selection 2  
The point table No. and the home position return are selected  
by RYnA to RY(n 2)5.  
RYnA  
RYnB  
RYnA  
RYnB  
1
2
(Note 1) Remote input  
Point  
RY  
RY  
RY  
table No.  
RYnE RYnD RYnC RYnB RYnA  
Point table No. selection 3  
Point table No. selection 4  
Point table No. selection 5  
Point table No. selection 6  
Point table No. selection 7  
Point table No. selection 8  
Clear  
RYnC  
RYnD  
RYnE  
RYnC  
RYnD  
(n+2)5 (n+2)4 (n+2)3  
(Note 2)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
2
3
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
RYnE  
0
RY(n 2)3  
RY(n 2)4  
RY(n 2)5  
RYnF  
254  
255  
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
Note 1. 0: OFF 1: ON  
2. Home position return is a setting  
When the parameter No.PD22 setting is "  
1", the position  
RYnF  
1
2
control counter droop pulses is cleared at the leading edge of  
RYnF. The pulse width should be 10ms or more.  
When the parameter No.PD22 setting is "  
are always cleared while RYnF is on.  
2", the pulses  
3 - 14  
3. CC-LINK COMMUNICATION FUNCTIONS  
Device No.  
Signal name  
Description  
Remarks  
1 station  
occupied  
2 stations  
occupied  
Position instruction demand  
When RY(n 2)0 is turned ON, the point table No. or position  
command data set to remote register RWwn 4/RWwn 5 is  
set.  
RY(n 2)0  
When it is set to the servo amplifier, the respond code  
indicating normal or error is set to RWrn 2. At the same time,  
RX(n 2)0 turns ON.  
Refer to section 3.6.3 for details.  
Speed instruction demand  
When RY(n 2)1 is turned ON, the point table No. or speed  
command data set to remote register RWwn 6 is set.  
When it is set to the servo amplifier, the respond code  
indicating normal or error is set to RWrn 2. At the same time,  
RX(n 2)1 turns ON.  
RY(n 2)1  
Refer to section 3.6.3 for details.  
Internal torque limit selection Turning RY(n 2)6 OFF makes the torque limit value of  
parameter No.PA11 (forward rotation torque limit) parameter  
No.PA12 (reverse rotation torque limit) valid, and turning it ON  
makes that of parameter No.PC35 (internal torque limit). (Refer  
to section 4.6.3)  
RY(n 2)6  
RY(n 2)7  
1
Proportion control  
When RY(n 2)7 is turned ON, the speed amplifier is switched  
from the proportional integral type to the proportional type.  
If the servo motor at a stop is rotated even one pulse by an  
external factor, it develops torque in an attempt to compensate  
for a position shift. When the shaft is locked mechanically after  
Movement completion (RXnC) is turned OFF, for example,  
turning Proportion control (RY(n 2)7) ON as soon as  
Movement completion (RXnC) turns OFF allows control of  
unnecessary torque developed in an attempt to compensate for  
a position shift.  
1
2
When the shaft is to be locked for an extended period of time,  
turn Internal torque limit selection (RY(n 2)6) ON  
simultaneously with Proportion control (RY(n 2)7) to make the  
torque not more than the rated torque using Internal torque  
limit (parameter No.PC35).  
Gain changing  
When RY(n 2)8 is turned ON, the load inertia moment ratio  
and the corresponding gain values change to the values of  
parameter No.PB29 to PB32. To change the gain using  
RY(n 2)8, make the auto tuning invalid.  
RY(n+2)8  
1
Position/speed specifying  
system selection  
Select how to give a position command/speed command.  
(Refer to section 3.6.3.)  
RY(n 2)A  
OFF: Remote input-based position/speed specifying system  
Specifying the point table No. with Point table No.  
selection (RYnA to RYnE) gives a position  
command/speed command.  
ON : Remote register-based position/speed specifying system  
Setting the instruction code to the remote register  
(RWwn 4 to RWwn 6) gives a position  
command/speed command.  
Set the parameter No.PC30 (direct specification  
selection) to "  
2".  
3 - 15  
3. CC-LINK COMMUNICATION FUNCTIONS  
Device No.  
Signal name  
Description  
Remarks  
1 station  
occupied  
2 stations  
occupied  
Absolute value/incremental  
value selection  
RY(n 2)B is made valid when the remote register-based  
position/speed specifying system is selected with  
Position/speed specifying system selection (RY(n 2)A) and  
the absolute value command system is selected in parameter  
No.PD10. Turn RY(n 2)B OFF or ON to select whether the  
set position data is in the absolute value command system or  
incremental value command system.  
RY(n 2)B  
OFF: Position data is handled as an absolute value.  
ON : Position data is handled as an incremental value.  
Keeping RY(n 1)A or RY(n 3)A ON for 50ms or longer  
allows an alarm to be deactivated.  
Reset  
RY(n 1)A RY(n 3)A  
1
Some alarms cannot be deactivated by Reset RY(n 1)A or  
RY(n 3)A. (Refer to section 11.4.1.)  
If RY(n 1)A or RY(n 3)A is turned ON with no alarm  
occurring, the base circuit will not be shut off. When "  
1
"
is set in parameter No.PD20 (function selection D-1), the base  
circuit is shut off.  
This device is not designed to make a stop. Do not turn it ON  
during operation.  
Forced stop  
This device is exclusively used as a CN6 external input signal.  
It cannot be used for CC-Link.  
Turn EMG off to bring the motor to an forced stop state, in  
which the base circuit is shut off and the dynamic brake is  
operated.  
Turn EMG on in the forced stop state to reset that state.  
3 - 16  
3. CC-LINK COMMUNICATION FUNCTIONS  
(2) Output signals (Output device)  
POINT  
The output devices can be used for both the remote output and the external  
output signals of CN6 connector.  
The signal whose Device No. field has an oblique line cannot be used in CC-Link.  
Device No.  
Signal name  
Description  
1 station  
2 stations  
occupied  
occupied  
RXn0  
Ready  
In the factory-shipped status, a ready is assigned to the CN6-14 pin as an  
external output signal. RXn0 turns ON when the servo amplifier is ready to  
operate after servo-on.  
RXn0  
In position  
RXn1 turns ON when the droop pulse value is within the preset in-position  
range.  
RXn1  
RXn1  
The in-position range can be changed using parameter No.PA10.  
Increasing the in-position range may result in a continuous conduction  
status during low-speed rotation.  
RXn1 turns ON at servo-on.  
Rough match  
RXn2 turns ON when the command remaining distance becomes less than  
the rough match output range set in the parameter.  
RXn2 turns ON at servo-on.  
RXn2  
RXn3  
RXn2  
RXn3  
Home position return  
completion  
In the factory-shipped status, the home position return completion is  
assigned to the CN6-16 pin as an external output signal. RXn3 turns ON  
when a home position return is completed. RXn3 turns ON at completion of  
a home position return.  
In an absolute position detection system, RXn3 turns ON when operation is  
ready to start, but turns OFF in any of the following cases.  
1) Servo-on (RYn0) is turned OFF.  
2) Forced stop (EMG) is turned OFF.  
3) Reset (RY(n 1)A or RY(n 3)A) is turned ON.  
4) Alarm occurs.  
5) Forward rotation stroke end (RYn4) or Reverse rotation stroke end  
(RYn5) is turned OFF.  
6) Home position return has not been made after product purchase.  
7) Home position return has not been made after occurrence of Absolute  
position erase (A25) or Absolute position counter warning (AE3).  
8) Home position return has not been made after electronic gear change.  
9) Home position return has not been made after the absolute position  
detection system was changed from invalid to valid.  
10) Parameter No.PA14 (Rotation direction selection) has been changed.  
11) Software limit is valid.  
12) While a home position return is being made.  
When any of 1) to 12) has not occurred and a home position return is  
already completed at least once, Home position return completion (RXn3)  
turns to the same output status as Ready (RXn0).  
RXn4 turns ON when the torque is reached at the time of torque  
generation.  
Limiting torque  
RXn4  
RXn6  
RXn7  
RXn4  
RXn6  
RXn7  
Electromagnetic brake  
interlock  
RXn6 turns OFF at servo-off or alarm occurrence. At alarm occurrence, it  
turns OFF independently of the base circuit status.  
RXn7 turns ON when deceleration is started to make a stop by Temporary  
stop/Restart (RYn7). When Temporary stop/Restart (RYn7) is made valid  
again to resume operation, RXn7 turns OFF.  
Temporary stop  
Monitoring  
Refer to Monitor output execution demand (RYn8).  
RXn8  
RXn8  
3 - 17  
3. CC-LINK COMMUNICATION FUNCTIONS  
Device No.  
Signal name  
Description  
1 station  
2 stations  
occupied  
occupied  
RXn9  
Instruction code execution  
completion  
Refer to Instruction code execution demand (RYn9).  
RXn9  
Warning  
RXnA turns ON when a warning occurs.  
When no warning has occurred, RXnA turns OFF within about 1s after  
power-on.  
RXnA  
RXnB  
RXnC  
RXnD  
RXnA  
Battery warning  
RXnB turns ON when Open battery cable warning (A92) or Battery  
warning (A9F) occurs. When no battery warning has occurred, RXnB  
turns OFF within about 1s after power-on.  
RXnB  
RXnC  
RXnD  
Movement completion  
Dynamic brake interlock  
RXnC turns ON when In position (RXn1) turns ON and the command  
remaining distance is "0".  
RXnC turns ON at servo-on.  
RXnD turns off simultaneously when the dynamic brake is operated.  
When using the external dynamic brake on the servo amplifier of 11 kW  
or more, this device is required. (Refer to section 14.6.) For the servo  
amplifier of 7kw or less, it is not necessary to use this device.  
RXnE turns ON when the actual current position falls within the range  
set in the parameter.  
Position range  
RXnE  
RXnE  
It is OFF when a home position return is not yet completed or while the  
base circuit is off.  
Position instruction execution Refer to Speed instruction execution demand (RY(n+2)0).  
completion  
RX(n+2)0  
RX(n+2)1  
Speed instruction execution  
completion  
Refer to Position instruction execution demand (RY(n+2)1). This device  
is required when using the external dynamic brake with a servo  
amplifier of 11kW or more. (Refer to section 14.6.)  
This is not required with servo amplifiers of 7kW or less.  
As soon as Movement completion (RXnC) turns ON, the point table No.  
is output in 8-bit code.  
Point table No. output 1  
Point table No. output 2  
Point table No. output 3  
Point table No. output 4  
Point table No. output 5  
Point table No. output 6  
Point table No. output 7  
Point table No. output 8  
RX(n+2)2  
RX(n+2)3  
RX(n+2)4  
RX(n+2)5  
RX(n+2)6  
RX(n+2)7  
RX(n+2)8  
RX(n+2)9  
(Note) Remote output  
Point  
RX  
RX  
RX  
RX  
RX  
RX  
RX  
RX  
table No.  
(n+2)9 (n+2)8 (n+2)7 (n+2)6 (n+2)5 (n+2)4 (n+2)3 (n+2)2  
0
0
0
0
0
0
0
0
0
0
1
1
1
1
2
3
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
1
1
1
1
1
1
1
1
1
1
254  
255  
1
1
1
0
1
1
Note. 0: OFF 1: ON  
RX(n+2)2 to RX(n+2)9 turn OFF in any of the following statuses.  
Power on  
Servo off  
During home position return  
Home position return completion  
In any of the following statuses, RX(n+2)2 to RX(n+2)9 maintain their  
pre-change status (ON/OFF).  
When operation mode is changed  
When Automatic/manual selection (RYn6) is turned from OFF to ON  
or from ON to OFF to change the operation mode.  
During manual operation  
During execution of automatic positioning to home position  
3 - 18  
3. CC-LINK COMMUNICATION FUNCTIONS  
Device No.  
Signal name  
Description  
1 station  
2 stations  
occupied  
occupied  
Trouble  
A trouble is assigned to the CN6-15 pin as an external output signal.  
RX(n 1)A or RX(n 3)A turns ON when the protective circuit is  
activated to shut off the base circuit.  
RX(n 1)A  
RX(n 3)A  
When no alarm has occurred, RX(n 1)A or RX(n 3)A turns OFF within  
about 1.5s after power is switched ON.  
Remote station  
This signal turns ON at power-on and turns off at a trouble occurrence  
or in the reset (RY(n 1)A or RY(n 3)A) ON status.  
RX(n 1)B  
RX(n 3)B  
communication ready  
(3) Remote registers  
The signal whose Remote Register field has an oblique line cannot be used.  
(a) Input (Programmable controller Servo amplifier)  
Remote register  
Signal name  
Description  
Setting range  
1 station  
occupied  
2 stations  
occupied  
RWwn  
RWwn  
Monitor 1  
Demands the status indication data of the servo amplifier.  
1) When 1 station is occupied  
Refer to section  
3.5.3.  
Setting the monitor code of the status indication item to  
be monitored to RWwn and turning RYn8 to ON sets data  
to RWrn. RXn8 turns on at the same time.  
2) When 2 stations are occupied  
Setting the monitor code of the status indication item to  
be monitored to RWwn and turning RYn8 to ON sets data  
to RWrn. RXn8 turns on at the same time.  
When demanding 32-bit data, specifying the lower 16-bit  
code No. and turning RYn8 to ON sets the lower 16-bit  
data to RWwn and the upper 16-bit data to RWrn. Data is  
stored in the RXn8. RXn8 turns on at the same time.  
Refer to section 3.5.3 for the item of the monitor code of  
the status indication.  
RWwn 1  
RWwn 1 Monitor 2  
Demands the status indication data of the servo amplifier.  
1) When 1 station is occupied  
Refer to section  
3.5.3.  
Setting the monitor code of the status indication item to  
be monitored to RWwn 1 and turning RYn8 to ON sets  
data to RWrn 1. RXn8 turns on at the same time.  
2) When 2 stations are occupied  
Setting the monitor code of the status indication item to  
be monitored to RWwn 1 and turning RYn8 to ON sets  
data to RWrn 5. RXn8 turns on at the same time.  
When demanding 32-bit data, specifying the lower 16-bit  
code No. and turning RYn8 to ON sets the lower 16-bit  
data to RWwn 5 and the upper 16-bit data to RWrn 6.  
Data is stored in the RXn8. RXn8 turns on at the same  
time.  
Refer to section 3.5.3 for the item of the monitor code of  
the status indication.  
3 - 19  
3. CC-LINK COMMUNICATION FUNCTIONS  
Remote register  
Signal name  
Description  
Setting range  
1 station  
occupied  
2 stations  
occupied  
RWwn+2  
RWwn+2  
RWwn+3  
RWwn+4  
Instruction code  
Sets the instruction code used to perform parameter or  
point table data read and write, alarm reference or the like.  
Setting the instruction code No. to RWwn+2 and turning  
RYn9 to ON executes the instruction. RXn9 turns to ON on  
completion of instruction execution.  
Refer to section  
3.5.4 (1).  
Refer to section 3.5.4 (1) for instruction code No. definitions.  
Sets the written data used to perform parameter or point  
table data write, alarm history clear or the like.  
RWwn+3  
Writing data  
Refer to section  
3.5.4 (2).  
Setting the written data to RWwn+3 and turning RYn9 to ON  
writes the data to the servo amplifier. RXn9 turns to ON on  
completion of write.  
Refer to section 3.5.4 (2) for written data definitions.  
Set the point table No. to be executed in the automatic  
operation mode when 2 stations are occupied.  
Point table  
Point table No.:  
0 to 255  
No./Position  
command data  
lower 16 bit  
When the point table No. is set to RWwn+4 and RY(n+2)0 is Absolute value  
turned ON, the point table No. is set to the servo amplifier.  
On completion of setting, RX(n+2)0 turns ON.  
When the point table is not used, set the position command  
data.  
command: Position  
command data:  
999999 to 999999  
Incremental value  
command: Position  
command data:  
0 to 999999  
When the lower 16 bits are set to RWwn+4 and the upper  
16 bits to RWwn+5, and RY(n+2)0 is turned ON, the  
position command data in the upper and lower 16 bits are  
written. On complete of write, RX(n+2)0 turns ON.  
Use parameter No.PC30 to select whether point table No.  
setting or position command data setting will be made.  
Refer to section 3.6.3 for details of Point table No./Position  
command data.  
RWwn+5  
RWwn+6  
Position command  
data upper 16 bit  
Point table  
When the point table is not used, set the point table No. to  
be executed or the speed command data (servo motor  
speed [r/min]).  
Point table No.:  
0 to 255  
No./Speed  
command data  
Speed command  
When the point table No. is set to RWwn+6 and RY(n+2)1 is data:  
turned ON, the point table No. or speed command data is  
set to the servo amplifier. On completion of setting,  
RX(n+2)1 turns ON.  
0 to permissible  
speed  
Use parameter No.PC30 to select whether point table No.  
setting or speed command data setting will be made.  
Refer to section 3.6.3 for details of Point table No./Speed  
command data.  
When setting the servo motor speed in this remote register,  
always set the acceleration/deceleration time constant in  
the point table No.1.  
3 - 20  
3. CC-LINK COMMUNICATION FUNCTIONS  
(b) Output (Servo amplifier Programmable controller)  
Note that the data set to RWrn and RWrn+1 depends on whether 1 station or 2 stations are occupied.  
If you set inappropriate code No. or data to the remote register input, the error code is set to respond  
code (RWrn+2). Refer to section 3.5.5 for the error code.  
When 1 station is occupied  
Remote register  
RWrn  
Signal name  
Monitor 1 data  
Description  
The data of the monitor code set to RWwn is set.  
The data of the monitor code set to RWwn+1 is set.  
"0000" is set when the codes set to RWwn to RWwn+3 are executed  
normally.  
RWrn+1  
Monitor 2 data  
Respond code  
Reading data  
RWrn+2  
RWrn+3  
Data corresponding to the read code set to RWwn+2 is set.  
When 2 stations are occupied  
Remote register  
Signal name  
Description  
RWrn  
Monitor 1 data lower 16bit  
Monitor 1 data upper 16bit  
The lower 16 bits of the data of the monitor code set to RWwn are set.  
The upper 16 bits of the data of the monitor code set to RWwn are set. A  
sign is set if there are no data in the upper 16 bits.  
"0000" is set when the codes set to RWwn to RWwn+6 are executed  
normally.  
RWrn+1  
Respond code  
Reading data  
RWrn+2  
RWrn+3  
RWrn+4  
RWrn+5  
Data corresponding to the read code set to RWwn+2 is set.  
Monitor 2 data lower 16bit  
Monitor 2 data upper 16bit  
The lower 16 bits of the data of the monitor code set to RWwn+1 are set.  
The upper 16 bits of the data of the monitor code set to RWwn+1 are set. A  
sign is set if there are no data in the upper 16 bits.  
RWrn+6  
RWrn+7  
3 - 21  
3. CC-LINK COMMUNICATION FUNCTIONS  
3.5.3 Monitor codes  
To demand 32-bit data when 2 stations are occupied, specify the lower 16-bit code No. Use any of the  
instruction codes 0101 to 011C to read the decimal point position (multiplying factor) of the status indication.  
Setting any code No. that is not given in this section will set the error code (  
(RWrn+2). At this time, "0000" is set to RWrn, RWrn+1, RWrn+5 and RWrn+6.  
For monitor data, refer to section 8.5.3 (2).  
1 ) to respond code  
Answer data  
Code No.  
(Servo amplifier  
Monitored item  
Programmable controller)  
1 station  
occupied  
2 stations  
occupied  
Data length  
Unit  
0000h  
0001h  
0002h  
0003h  
0004h  
0005h  
0006h  
0007h  
0008h  
0009h  
000Ah  
000Bh  
000Ch  
000Dh  
000Eh  
000Fh  
0010h  
0011h  
0012h  
0013h  
0014h  
0015h  
0016h  
0017h  
0018h  
0019h  
001Ah  
001Bh  
001Ch  
001Dh  
0000h  
0001h  
Current position lower 16bit  
16bit  
16bit  
16bit  
16bit  
16bit  
16bit  
Current position upper 16bit  
STM  
0003h  
0005h  
Command position lower 16bit  
Command position upper 16bit  
Command remaining distance lower 16bit  
Command remaining distance upper 16bit  
10  
[mm] or  
STM  
10  
[inch]  
0007h  
0008h  
Point table No.  
16bit  
[No.]  
000Ah  
Feedback pulse value lower 16bit  
Feedback pulse value upper 16bit  
16bit  
16bit  
[pulse]  
[pulse]  
000Eh  
Droop pulse value lower 16bit  
Droop pulse value upper 16bit  
16bit  
16bit  
[pulse]  
[pulse]  
0010h  
0011h  
0012h  
0013h  
Regenerative load factor  
Effective load factor  
16bit  
16bit  
16bit  
16bit  
16bit  
16bit  
16bit  
16bit  
16bit  
16bit  
16bit  
16bit  
16bit  
[%]  
[%]  
Peak load factor  
[%]  
Instantaneously occurring torque  
ABS counter  
[%]  
0015h  
0016h  
[rev]  
Motor speed lower 16bit  
Motor speed upper 16bit  
Bus voltage  
0.1[rev/min]  
0.1[rev/min]  
[V]  
0018h  
0019h  
ABS position lower 16bit  
ABS position middle 16bit  
ABS position upper 16bit  
Within one-revolution position lower 16bit  
Within one-revolution position upper 16bit  
[pulse]  
[pulse]  
001Bh  
001Ch  
[pulse]  
[pulse]  
[pulse]  
3 - 22  
3. CC-LINK COMMUNICATION FUNCTIONS  
3.5.4 Instruction codes (RWwn+2 RWwn+3)  
Refer to section 3.6.2 for the instruction code timing charts.  
(1) Read instruction codes  
The word data requested to be read with the instruction code 0000h to 0AFFh is read by Read code  
(RWrn+3).  
Set the command code No. corresponding to the item to RWrn+2. The codes and answer data are all 4-  
digit hexadecimal numbers.  
Setting any command code No. that is not given in this section will set the error code (  
code (RWrn+2). At this time, "0000" is set to Reading data (RWrn+3).  
1 ) to respond  
Reading data (RWrn 3) contents  
Code No.  
0000h  
Item/Function  
(Servo amplifier  
Programmable controller)  
Operation mode  
0000: CC-Link operation mode  
0001: Test operation mode  
Reads the current operation mode.  
Travel multiplying factor  
0002h  
Reads the multiplying factor of the position  
data in the point table set in parameter No.  
PA05.  
Travel multiplying factor  
0300: 1000  
0200: 100  
0100: 10  
0000:  
1
0010h  
Current alarm (warning) reading  
Reads the alarm No. or warning No. occurring  
currently.  
0 0  
0 0  
Occurring alarm No./warning No.  
Alarm No. that occurred in past  
0020h  
0021h  
0022h  
0023h  
0024h  
0025h  
0030h  
0031h  
0032h  
0033h  
0034h  
0035h  
Alarm number in alarm history  
(most recent alarm)  
Alarm number in alarm history  
(first recent alarm)  
Alarm number in alarm history  
(second recent alarm)  
Alarm number in alarm history  
(third recent alarm)  
Alarm number in alarm history  
(fourth recent alarm)  
Alarm number in alarm history  
(fifth recent alarm)  
Alarm occurrence time in alarm history  
(most recent alarm)  
Alarm occurrence time in alarm history  
(first recent alarm)  
Occurrence time of alarm that occurred in past  
Alarm occurrence time in alarm history  
(second recent alarm)  
Alarm occurrence time in alarm history  
(third recent alarm)  
Alarm occurrence time in alarm history  
(fourth recent alarm)  
Alarm occurrence time in alarm history  
(fifth recent alarm)  
3 - 23  
3. CC-LINK COMMUNICATION FUNCTIONS  
Reading data (RWrn 3) contents  
Code No.  
0040h  
Item/Function  
Input device status 0  
(Servo amplifier  
Programmable controller)  
bit 0 to bit F indicate the OFF/ON statuses of the corresponding input  
devices. Refer to section 3.5.1 for the meanings of the abbreviations.  
Reads the statuses (OFF/ON) of the input  
devices.  
bitF  
bit0  
When 2 stations are occupied, DI0, DI1 and DI2 do not function and  
therefore they are always "0".  
bit0: SON  
bit1: ST1  
bit2: ST2  
bit3: DOG  
bit4: LSP  
bit5: LSN  
bit8: MOR  
bit9: COR  
bitC: DI2  
bitD: DI3  
bitE: DI4  
bitF:  
bit6: MDO bitA: DI0  
bit7: TSTP bitB: DI1  
0041h  
0042h  
0050h  
Input device status 1  
bit 0 to bit F indicate the OFF/ON statuses of the corresponding input  
devices. Refer to section 3.5.1 for the meanings of the abbreviations.  
Reads the statuses (OFF/ON) of the input  
devices.  
bitF  
bit0  
bit0: PSR  
bit1: SPR  
bit2:  
bit4: DI6  
bit5: DI7  
bit6: TL1  
bit7: PC  
bit8: CDP  
bit9:  
bitC:  
bitD:  
bitE:  
bitF:  
bitA: CSL  
bitB: INC  
bit3: DI5  
Input device status 2  
bit 0 to bit F indicate the OFF/ON statuses of the corresponding input  
devices. Refer to section 3.5.1 for the meanings of the abbreviations.  
Reads the statuses (OFF/ON) of the input  
devices.  
bitF  
bit0  
bit0:  
bit1:  
bit2:  
bit3:  
bit4:  
bit5:  
bit6:  
bit7:  
bit8:  
bitC:  
bitD:  
bitE:  
bitF:  
bit9:  
bitA: RES  
bitB:  
Output device status 0  
bit 0 to bit F indicate the OFF/ON statuses of the corresponding  
output devices. Refer to section 3.5.1 for the meanings of the  
abbreviations.  
Reads the statuses (OFF/ON) of the Output  
devices.  
bitF  
bit0  
bit0: RD  
bit1: INP  
bit2: CPO  
bit3: ZP  
bit4: TLC  
bit5:  
bit8: MOF  
bit9: COF  
bitC: MEND  
bitD:  
bit6: MBR bitA: WNG bitE: POT  
bit7: PUS bitB: BWNG bitF:  
0051h  
Output device status 1  
bit 0 to bit F indicate the OFF/ON statuses of the corresponding  
output devices. Refer to section 3.5.1 for the meanings of the  
abbreviations.  
Reads the statuses (OFF/ON) of the Output  
devices.  
bitF  
bit0  
bit0: PSF  
bit1: SPF  
bit2: PT0  
bit3: PT1  
bit4: PT2  
bit5: PT3  
bit6: PT4  
bit7: PT5  
bit8: PT6  
bit9: PT7  
bitA:  
bitC:  
bitD:  
bitE:  
bitF:  
bitB:  
3 - 24  
3. CC-LINK COMMUNICATION FUNCTIONS  
Reading data (RWrn 3) contents  
Code No.  
0052h  
Item/Function  
Output device status 2  
(Servo amplifier  
Programmable controller)  
bit 0 to bit F indicate the OFF/ON statuses of the corresponding  
output devices. Refer to section 3.5.1 for the meanings of the  
abbreviations.  
Reads the statuses (OFF/ON) of the Output  
devices.  
bitF  
bit0  
bit0:  
bit1:  
bit2:  
bit3:  
bit4:  
bit5:  
bit6:  
bit7:  
bit8:  
bitC:  
bitD:  
bitE:  
bitF:  
bit9:  
bitA: ALM  
bitB: CRD  
0081h  
0082h  
00A0h  
00B0h  
00B1h  
00B2h  
00C0h  
Energization time  
Returns the energization time [h].  
Reads the energization time from shipment.  
Energization time  
Returns the number of power-on times.  
Power ON frequency  
Reads the number of power-on times from  
shipment.  
Power ON frequency  
Ratio of load inertia moment  
Return unit [times].  
Return unit [pulses].  
Return unit [pulses].  
Return unit [rev].  
Reads the estimated ratio of load inertia  
moment to servo motor shaft inertia moment.  
Ratio of load inertia moment  
Cycle counter value  
Home position within-1-revolution position  
lower 16bit (CYC0)  
Reads the lower 16 bits of the cycle counter  
value of the absolute home position.  
Home position within-1-revolution position  
upper 16bit  
Reads the upper 16 bits of the cycle counter  
value of the absolute home position.  
Cycle counter value  
Home position Multi-revolution data (ABS0)  
Multi-revolution counter value of absolute  
home position reading.  
Multi-revolution counter value  
Error parameter No./Point data No. reading  
Reads the parameter No./point table No. in  
error.  
Parameter No. or point table No.  
Parameter group  
0: Basic setting parameters (No.PA  
1: Gain/filter parameters (No.PB  
)
)
2: Extension setting parameters (No.PC  
3: I/O setting parameters (No.PD  
Type  
)
)
1: Parameter No.  
2: Point table No.  
3 - 25  
3. CC-LINK COMMUNICATION FUNCTIONS  
Reading data (RWrn 3) contents  
(Servo amplifier Programmable controller)  
Code No.  
Item/Function  
Monitor multiplying factor  
0100h  
to  
Reads the multiplying factor of the data to be  
read with the monitor code.  
011Dh  
The instruction codes 0100 to 011D  
correspond to the monitor codes 0000 to  
001D.  
Monitor multiplying factor  
0003: 1000  
0002: 100  
0001: 10  
0000 applies to the instruction code that does  
not correspond to the monitor code.  
0000:  
1
Parameter group reading  
0200h  
0 0 0  
Reads the parameter group to be read with  
code No.8200h to be written.  
Parameter group  
0: Basic setting parameters (No.PA  
1: Gain/filter parameters (No.PB  
)
)
2: Extension setting parameters (No.PC  
3: I/O setting parameters (No.PD  
)
)
Parameter data reading  
0201h  
to  
The value set in the parameter No. corresponding to the requested  
group name is stored.  
Reads the set value of each No. of the  
parameter group read with code No.0200h.  
The decimal value converted from the 2 lower  
digits of the code No. corresponds to the  
parameter No.  
02FFh  
If the instruction code is set outside the range  
set in parameter No.PA19, an error code is  
returned and the data cannot be read.  
Data form of parameter  
Reads the data format of each No. of the  
parameter group read with code No.0200h.  
The decimal value converted from the 2 lower  
digits of the code No. corresponds to the  
parameter No.  
0301h  
to  
The value set in the parameter No. corresponding to the requested  
group name is stored.  
03FFh  
0
Decimal point position  
0: Without decimal point  
1: First least significant digit  
(without decimal point)  
If the instruction code is set outside the range  
set in parameter No.PA19, an error code is  
returned and the data cannot be read.  
Data format  
2: Second least significant digit  
3: Third least significant digit  
4: Fourth least significant digit  
0: Used unchanged  
as hexadecimal  
1: Must be converted  
into decimal  
Parameter write type  
0: Valid after write  
1: Valid when power is switched on again after write  
Position data of point table No.1 to 255  
Reads the point table data of point table No.1 point table No. is returned.  
The position data (upper 16 bits or lower 16 bits) set in the requested  
0401h  
to  
to 255.  
04FFh  
0400 to 04FF: Position data in lower 16 bits of  
point table No.1 to 255  
0501h  
to  
0500 to 05FF: Position data in upper 16 bits  
of point table No.1 to 255  
Example  
05FFh  
Instruction code 0413: Lower 16 bits of point  
table No.19  
Instruction code 0513: Upper 16 bits of point  
table No.19  
3 - 26  
3. CC-LINK COMMUNICATION FUNCTIONS  
Reading data (RWrn 3) contents  
Code No.  
Item/Function  
(Servo amplifier  
Programmable controller)  
Servo motor speed of point table No.1 to 255  
The decimal value converted from the 2 lower  
digits of the code No. corresponds to the point  
table No.  
0601h  
to  
The servo motor speed set to the requested point table No. is  
returned.  
06FFh  
Servo motor speed  
Acceleration time constant of point table No.1  
to 255  
0701h  
to  
The acceleration time constant set to the requested point table No. is  
returned.  
The decimal value converted from the 2 lower  
digits of the code No. corresponds to the point  
table No.  
07FFh  
Deceleration time constant of point table No.1  
to 255  
0801h  
to  
The deceleration time constant set to the requested point table No. is  
returned.  
The decimal value converted from the 2 lower  
digits of the code No. corresponds to the point  
table No.  
08FFh  
Dwell of point table No.1 to 255  
The decimal value converted from the 2 lower  
digits of the code No. corresponds to the point  
table No.  
0901h  
to  
The dwell set to the requested point table No. is returned.  
09FFh  
Auxiliary function of point table No.1 to 255  
The decimal value converted from the 2 lower  
digits of the code No. corresponds to the point  
table No.  
0A01h  
to  
The Auxiliary function set to the requested point table No. is returned.  
0AFFh  
(2) Write instruction codes  
Set the data, which was requested to be written with the instruction code 8010h to 91FFh.  
Set the instruction code No. corresponding to the item to Instruction code (RWwn+2) and the written data to  
Writing data (RWwn+3). The codes and answer data are all 4-digit hexadecimal numbers.  
When the instruction code which has not been described in this section is set, the error code (  
stored in respond code (RWrn+2).  
1 ) is  
Writing data (RWwn 3) contents  
Code No.  
8010h  
Item  
Alarm reset command  
(Programmable controller  
Servo amplifier)  
1EA5  
1EA5  
Deactivates the alarm that occurred.  
Feedback pulse value display data is clear  
Resets the display data of the status  
indication "feedback pulse value" to 0.  
Parameter group write command  
Writes the group of parameters that are  
written to with codes No.8201h to 82FFh and  
8301h to 83FFh.  
8101h  
8200h  
0 0 0  
Parameter group  
Writes the group of parameters that are read  
with codes No.0201h to 02FFh and 0301h to  
03FFh.  
0: Basic setting parameters (No.PA  
1: Gain/filter parameters (No.PB  
)
)
2: Extension setting parameters (No.PC  
3: I/O setting parameters (No.PD  
)
)
3 - 27  
3. CC-LINK COMMUNICATION FUNCTIONS  
Writing data (RWwn+3) contents  
Code No.  
Item  
(Programmable controller  
Servo amplifier)  
Data RAM instruction of parameter  
8201h  
to  
Convert the decimal values into hexadecimal before setting.  
Writes the set value of each No. of the  
parameter group written by code No.8200h to  
RAM. These values are cleared when power  
is switched off.  
82FFh  
The decimal value converted from the 2 lower  
digits of the code No. corresponds to the  
parameter No.  
An error code is returned if an instruction  
code outside the range set in parameter No.  
PA19 or a value outside the setting range of  
the corresponding parameter is written.  
Data EEP-ROM instruction of parameter  
Writes the set value of each No. of the  
parameter group written with code No.8200h  
to EEP-ROM. Written to EEP-ROM, these  
values are held if power is switched off.  
The decimal value converted from the 2 lower  
digits of the code No. corresponds to the  
parameter No.  
8301h  
to  
Convert the decimal values into hexadecimal before setting.  
83FFh  
An error code is returned if an instruction  
code outside the range set in parameter No.  
PA19 or a value outside the setting range of  
the corresponding parameter is written.  
Position data RAM command of point table  
Writes the position data of point table No. 1 to  
255 to RAM. These values are cleared when  
power is switched off.  
8401h  
to  
Convert the values into hexadecimal before setting.  
84FFh  
8501h  
to  
Point  
85FFh  
A set of the upper and lower bits makes position data. When changing the  
data, always set the data of both lower and upper bits in order of lower 16-  
bit data and upper 16-bit data.  
8400h to 84FFh: Position data in lower 16 bits of point table No.1 to 255  
8500h to 85FFh: Position data in upper 16 bits of point table No.1 to 255  
Example  
Instruction code 8413h: Lower 16 bits of point table No.19  
Instruction code 8513h: Upper 16 bits of point table No.19  
Motor speed of point table  
8601h  
to  
Convert the values into hexadecimal before setting.  
Writes the motor speeds of point table No.1 to  
255 to RAM. These values are cleared when  
power is switched off.  
86FFh  
The decimal value converted from the 2 lower  
digits of the code No. corresponds to the point  
table No.  
Acceleration time constant data RAM  
command of point table  
8701h  
to  
Convert the values into hexadecimal before setting.  
Writes the acceleration time constants of point  
table No.1 to 255 to RAM. These values are  
cleared when power is switched off.  
The decimal value converted from the 2 lower  
digits of the code No. corresponds to the point  
table No.  
87FFh  
3 - 28  
3. CC-LINK COMMUNICATION FUNCTIONS  
Writing data (RWwn 3) contents  
Code No.  
Item  
(Programmable controller  
Servo amplifier)  
Deceleration time constant data RAM  
command of point table  
8801h  
to  
Convert the values into hexadecimal before setting.  
Writes the deceleration time constants of  
point table No.1 to 255 to RAM. These values  
are cleared when power is switched off.  
The decimal value converted from the 2 lower  
digits of the code No. corresponds to the point  
table No.  
88FFh  
Dwell data RAM command of point table  
Writes the dwell data of point table No.0 to  
255 to RAM. These values are cleared when  
power is switched off.  
8901h  
to  
Convert the values into hexadecimal before setting.  
89FFh  
The decimal value converted from the 2 lower  
digits of the code No. corresponds to the point  
table No.  
Auxiliary function data RAM command of  
point table  
8A01h  
to  
Convert the values into hexadecimal before setting.  
Writes the auxiliary function data of point table  
No.0 to 31 to RAM. These values are cleared  
when power is switched off.  
8AFFh  
The decimal value converted from the 2 lower  
digits of the code No. corresponds to the point  
table No.  
Position data EEP-ROM command of point  
table  
8B01h  
to  
Convert the values into hexadecimal before setting.  
Writes the position data of point table No.1 to  
255 to EEP-ROM. Written to EEP-ROM,  
these values are held if power is switched off.  
8BFFh  
8C01h  
to  
8CFFh  
Point  
A set of the upper and lower bits makes position data. When changing the  
data, always set the data of both lower and upper bits in order of lower 16-  
bit data and upper 16-bit data.  
8B01h to 8BFFh: Position data in lower 16 bits of point table No.1 to 255  
8C01h to 8CFFh: Position data in upper 16 bits of point table No.1 to 255  
Example  
Instruction code 8B13h: Lower 16 bits of point table No.19  
Instruction code 8C13h: Upper 16 bits of point table No.19  
Servo motor speed data EEP-ROM command  
8D01h  
to  
Convert the values into hexadecimal before setting.  
of point table  
Writes the servo motor speeds of point table  
No.1 to 255 to EEP-ROM. Written to EEP-  
ROM, these values are held if power is  
switched off.  
8DFFh  
The decimal value converted from the 2 lower  
digits of the code No. corresponds to the point  
table No.  
3 - 29  
3. CC-LINK COMMUNICATION FUNCTIONS  
Writing data (RWwn+3) contents  
Code No.  
Item  
(Programmable controller  
Servo amplifier)  
Acceleration time constant data EEP-ROM  
command of point table  
8E01h  
to  
Convert the values into hexadecimal before setting.  
Writes the acceleration time constants of point  
table No.1 to 255 to EEP-ROM. Written to  
EEP-ROM, these values are held if power is  
switched off.  
8EFFh  
The decimal value converted from the 2 lower  
digits of the code No. corresponds to the point  
table No.  
Deceleration time constant data EEP-ROM  
command of point table  
8F01h  
to  
Convert the values into hexadecimal before setting.  
Writes the deceleration time constants of  
point table No.1 to 255 to EEP-ROM. Written  
to EEP-ROM, these values are held if power  
is switched off.  
8FFFh  
The decimal value converted from the 2 lower  
digits of the code No. corresponds to the point  
table No.  
Dwell data EEP-ROM command of point table  
Writes the dwell data of point table No.1 to  
255 to EEP-ROM. Written to EEP-ROM,  
these values are held if power is switched off.  
The decimal value converted from the 2 lower  
digits of the code No. corresponds to the point  
table No.  
9001h  
to  
Convert the values into hexadecimal before setting.  
90FFh  
Auxiliary function data EEP-ROM command  
of point table  
9101h  
to  
Convert the values into hexadecimal before setting.  
Writes the auxiliary function data of point table  
No.1 to 255 to EEP-ROM. Written to EEP-  
ROM, these values are held if power is  
switched off.  
91FFh  
The decimal value converted from the 2 lower  
digits of the code No. corresponds to the point  
table No.  
3 - 30  
3. CC-LINK COMMUNICATION FUNCTIONS  
3.5.5 Respond codes (RWrn+2)  
If any of the monitor codes, instruction codes, position command data/point table Nos., speed command  
data/point table Nos. set to the remote register is outside the setting range, the corresponding error code is set  
to respond code (RWwn+2). "0000" is set if they are normal.  
Error related to Monitor code 1/Monitor code 2  
Error related to Instruction code/Writing data  
Error related to Position instruction data/Point table No.  
Error related to Speed instruction data/Point table No.  
Code No.  
0
Error  
Normal answer  
Details  
Instruction was completed normally.  
Code error  
The monitor code not in the specifications was set.  
Read/write of the point table of No.255 or later was set.  
The parameter No. disabled for reference was set.  
1
2
3
Parameter point table  
selection error  
Write range error  
An attempt was made to write the parameter or point table data outside  
the setting range.  
3 - 31  
3. CC-LINK COMMUNICATION FUNCTIONS  
3.5.6 Setting the CN6 external input signals  
Using parameter No.PD06 to PD08, PD12 and PD14, you can assign the input devices as the CN6 external  
input signals. The signals assigned as the CN6 external input devices cannot be used in CC-Link. Refer to  
section 4.5.1 for the pins to which signals can be assigned.  
In the initial status, the forward rotation stroke end, reverse rotation stroke end and proximity dog are preset to  
be usable as the CN6 external input signals.  
Parameter No.PD12  
Initial value  
Device name  
BIN  
0
HEX  
0
0
Servo-on (SON)  
Reset (RES)  
0
0
Initial value  
Device name  
BIN  
0
HEX  
Proportion control (PC)  
0
0
Clear (CR)  
0
Forward rotation start (ST1)  
0
Initial value  
Device name  
BIN  
0
HEX  
Reverse rotation start (ST2)  
Internal torque limit  
selection (TL1)  
0
1
1
C
Forward rotation stroke end  
(LSP)  
Reverse rotation stroke end  
(LSN)  
Initial value  
Device name  
BIN  
0
HEX  
Gain changing (CDP)  
0
0
0
0
BIN 0: Used in CC-Link  
BIN 1: Used as CN6 external input signal  
3 - 32  
3. CC-LINK COMMUNICATION FUNCTIONS  
Parameter No.PD14  
0
Initial value  
Device name  
BIN  
HEX  
Automatic/manual selection  
(MD0)  
0
0
0
0
0
Initial value  
Device name  
BIN  
0
HEX  
0
0
0
Temporary stop/Restart  
(TSTP)  
0
Initial value  
Device name  
BIN  
0
HEX  
0
8
0
Proximity dog (DOG)  
BIN 0: Used in CC-Link  
1
BIN 1: Used as CN6 external input signal  
3 - 33  
3. CC-LINK COMMUNICATION FUNCTIONS  
3.6 Data communication timing charts  
3.6.1 Monitor codes  
(1) When 1 station is occupied  
Monitor 1  
(RWwn)  
Monitor 2  
(RWwn+1)  
ON  
OFF  
ON  
Monitor execution  
demand (RYn8)  
Monitoring  
(RXn8)  
OFF  
Monitor 1 data  
(RWrn)  
Monitor 2 data  
(RWrn+1)  
Respond code  
(RWrn+2)  
Data HOLD  
Set the monitor codes (refer to section 3.5.3) to Monitor 1 (RWwn) and Monitor 2 (RWwn+1) and turn Monitor  
output execution demand (RYn8) to ON. Turning Monitor execution demand (RYn8) to ON sets the next data.  
Data are all hexadecimal numbers. At this time, Monitoring (RXn8) turns to ON at the same time.  
Monitor data 1 (RWrn): Data demanded by Monitor 1 (RWwn)  
Monitor data 2 (RWrn+1): Data demanded by Monitor 2 (RWwn+1)  
For 32-bit data, set the lower 16 bits of the monitor code to Monitor 1 (RWwn) and the upper 16 bits to Monitor  
2 (RWwn+1) and read them simultaneously.  
The monitor data set to the remote register are always updated while Monitor execution demand (RYn8) is ON.  
When Monitoring (RXn8) turns to OFF, the data set to Monitor data RWrn, RWrn+1 are held. If the monitor  
code not in the specifications is set to either Monitor 1 (RWwn) or Monitor 2 (RWwn+1), the corresponding  
error code (  
1) is set to respond code.  
3 - 34  
3. CC-LINK COMMUNICATION FUNCTIONS  
(2) When 2 stations are occupied  
Monitor 1  
(RWwn)  
Monitor 2  
(RWwn+1)  
ON  
Monitor execution  
demand (RYn8)  
OFF  
ON  
Monitoring  
(RXn8)  
OFF  
Monitor 1 data  
Lower 16bit (RWrn)  
Monitor 1 data  
Upper 16bit (RWrn+1)  
Monitor 2 data  
Lower 16bit (RWrn+5)  
Monitor 2 data  
Upper 16bit (RWrn+6)  
Respond code  
(RWrn+2)  
Data HOLD  
Set the monitor codes (refer to section 3.5.3) to Monitor 1 (RWwn) and Monitor 2 (RWwn+1) and turn Monitor  
output execution demand (RYn8) to ON. Turning Monitor execution demand (RYn8) to ON sets the next data.  
32-bit data are all divided into the upper 16 bits and lower 16 bits, and set to the remote register. Data are all  
hexadecimal numbers. At this time, Monitoring (RXn8) turns to ON at the same time.  
Monitor data 1 lower 16 bit (RWrn): Lower 16 bits of data demanded by Monitor 1 (RWwn)  
Monitor data 1 upper 16 bit (RWrn+1): Upper 16 bits of data demanded by Monitor 1 (RWwn)  
Monitor data 2 lower 16 bit (RWrn+5): Lower 16 bits of data demanded by Monitor 2 (RWwn+1)  
Monitor data 2 upper 16 bit (RWrn+6): Upper 16 bits of data demanded by Monitor 2 (RWwn+1)  
A sign is set if data does not exist in RWrn+1 RWrn+6. A " " sign is indicated by "0000", and " " by "FFFF".  
The monitor data set to the remote register are always updated while Monitoring (RXn8) is ON.  
When Monitoring (RXn8) turns to OFF, the data set to Monitor data RWrn, RWrn+1, RWrn+5, RWrn+6 are  
held.  
If the monitor code not in the specifications is set to either Monitor 1 (RWwn) or Monitor 2 (RWwn+1), the  
corresponding error code (  
1) is set to respond code.  
3 - 35  
3. CC-LINK COMMUNICATION FUNCTIONS  
3.6.2 Instruction codes  
(1) Read instruction codes (0000h to 0A1Fh)  
Instruction code  
(RWwn+2)  
Instruction code  
execution demand  
(RYn9)  
Instruction code  
execution completion  
(RXn9)  
Reading data  
(RWrn+3)  
Respond code  
(RWrn+2)  
Data read period  
Set the read instruction code (refer to section 3.5.4 (1)) to Instruction code (RWwn+2) and turn Instruction  
code execution demand (RYn9) to ON. Turning Instruction code execution demand (RYn9) to ON sets the  
data corresponding to the preset read code to Reading data (RWrn+3). Data are all hexadecimal numbers.  
At this time, Instruction code execution completion (RXn9) turns to ON at the same time.  
Read the read data set to Reading data (RWrn+3) while Instruction code execution completion (RXn9) is  
ON. The data set to Reading data (RWrn+3) is held until the next read instruction code is set and  
Instruction code execution demand (RYn9) is turned to ON.  
If the instruction code not in the specifications is set to Instruction code (RWwn+2), the corresponding error  
code (  
error code (  
Turn Instruction code execution demand (RYn9) to OFF after completion of data read.  
1 ) is set to respond code. If any unusable parameter, point table is read, the corresponding  
2 ) is set.  
3 - 36  
3. CC-LINK COMMUNICATION FUNCTIONS  
(2) Write instruction codes (8000h to 911Fh)  
Instruction code  
(RWwn+2)  
Writing data  
(RWwn+3)  
Instruction code  
execution demand  
(RYn9)  
Instruction code  
processing  
Write in execution  
Instruction code  
execution completion  
(RXn9)  
Respond code  
(RWrn+2)  
Set the write instruction code (refer to section 3.5.4 (2)) to Instruction code (RWwn+2) and the data to be  
written (data to be executed) to Writing data (RWwn+3) in hexadecimal, and turn Instruction code execution  
demand (RYn9) to ON.  
Turning instruction code execution completion to ON sets the data set in Wiring data (RWwn+3) to the item  
corresponding to the write instruction code. When write is executed, Instruction code execution completion  
(RXn9) turns to ON.  
If the instruction code not in the specifications is set to Instruction code (RWwn+2), the corresponding error  
code (  
1 ) is set to respond code.  
Turn Instruction code execution demand (RYn9) to OFF after Instruction code execution completion (RXn9)  
has turned to ON.  
3 - 37  
3. CC-LINK COMMUNICATION FUNCTIONS  
3.6.3 Remote register-based position/speed setting  
The functions in this section are usable when Position/speed specifying system selection (RY(n+2)A) is ON  
(remote register-based position/speed specifying system is selected) with 2 stations occupied.  
The position command/speed command necessary for positioning can be selected by parameter No.PC30  
setting as indicated below.  
Parameter No.PC30  
Set value  
Speed command  
Position command  
0
1
2
Specify the point table No.  
Specify the point table No.  
Set the servo motor speed.  
Set the position data.  
(1) When setting the point table No.  
Specify the point table No. stored in the servo amplifier and execute positioning.  
Preset "  
0" (initial value) in parameter No.PC30 to enable point table No.-setting operation.  
Point table No.  
(RWwn+4)  
Position instruction  
demand  
(RY(n+2)0)  
ON  
OFF  
Point table No.  
designation  
(Note) Data reserved  
Position instruction  
execution  
ON  
completion  
(RX(n+2)0)  
OFF  
Respond code  
(RWrn+2)  
6ms  
Forward/reverse  
rotation start  
(RYn1 RYn2)  
ON  
OFF  
Note. This data is stored into RAM of the servo amplifier. Hence, the data is cleared when power is switched off.  
Set the point table No. to point table No. (RWwn+4) and turn Position instruction demand (RY(n+2)0) to  
ON.  
Turning RY(n+2)0 to ON stores the position block No. into RAM of the servo amplifier.  
When the data is stored, Position instruction execution completion (RX(n+2)0) turns to ON.  
If data outside the setting range is set to Position block No. (RWwn+4), the error code (refer to section  
3.5.5) is set to respond code.  
Turn Forward rotation start (RYn1)/Reverse rotation start (RYn2) to ON after Position instruction execution  
completion (RX(n+2)0) has turned to ON.  
3 - 38  
3. CC-LINK COMMUNICATION FUNCTIONS  
(2) When setting the position command data/point table No. (speed command)  
Specify the position address with the remote register, and specify the speed command data by specifying  
the point table No. to use the preset servo motor speed, acceleration time constant and deceleration time  
constant the speed command data, and execute positioning.  
Preset "  
1" in parameter No.PC30 to enable position command data-set and point table No. (speed  
instruction)-setting operation.  
Position instruction data  
Lower 16bit (RWwn+4)  
Position instruction data  
Upper 16bit (RWwn+5)  
Point table No.  
(RWwn+6)  
Position instruction  
demand  
(RY(n+2)0)  
Speed instruction  
demand  
(RY(n+2)1)  
ON  
OFF  
ON  
OFF  
Position data setting  
Point table No.  
designation  
(Note) Data reserved  
Position instruction  
execution completion  
(RX(n+2)0)  
ON  
OFF  
Speed instruction  
execution completion  
(RX(n+2)1)  
ON  
OFF  
Respond code  
(RWrn+2)  
6ms  
Forward rotation  
Reverse rotation  
start  
ON  
OFF  
(RYn1 RYn2)  
Note. This data is stored into RAM of the servo amplifier. Hence, the data is cleared when power is switched off.  
Set the lower 16 bits of the position instruction data to Position instruction data lower 16 bit (RWwn+4), the  
upper 16 bits of the position instruction data to Position instruction data upper 16 bit (RWwn+5), and point  
table for speed command No. to point table No. (RWwn+6), and turn Position instruction demand  
(RY(n+2)0) and Speed instruction demand (RY(n+2)1) to ON.  
Turning RY(n+2)0 and RY(n+2)1 to ON stores the position command data and point table No. into RAM of  
the servo amplifier.  
When the data are stored, Position instruction execution completion (RX(n+2)0) and Speed instruction  
execution completion (RX(n+2)1) turn to ON.  
If data outside the setting range is set to any of Position instruction data lower 16 bit (RWwn+4), Position  
instruction data upper 16 bit (RWwn+5) and point table No. (RWwn+6), the error code (refer to section  
3.5.5) is set to respond code.  
Turn Forward rotation start (RYn1) Reverse rotation start (RYn2) to ON after Position instruction execution  
completion (RX(n+2)0) and Speed instruction execution completion (RX(n+2)1) have turned to ON.  
3 - 39  
3. CC-LINK COMMUNICATION FUNCTIONS  
(3) When setting the position command data and speed command data  
Specify the position address and servo motor speed with the remote register, and execute positioning. At  
this time, use the acceleration time constant and deceleration time constant set in point table No.1.  
Preset "  
2" in parameter No.PC30 to enable position command data- and speed command data-set  
operation.  
Position instruction data  
Lower 16bit (RWwn+4)  
Position instruction data  
Upper 16bit (RWwn+5)  
Speed instruction data  
(RWwn+6)  
Position instruction  
demand  
(RY(n+2)0)  
ON  
OFF  
ON  
Speed instruction  
demand  
(RY(n+2)1)  
OFF  
Position speed  
data setting  
(Note) Data reserved  
Position instruction  
execution completion  
(RX(n+2)0)  
ON  
OFF  
Speed instruction  
execution completion  
(RX(n+2)1)  
ON  
OFF  
Respond code  
(RWrn+2)  
6ms  
Forward rotation  
Reverse rotation  
start  
ON  
OFF  
(RYn1 RYn2)  
Note. This data is stored into RAM of the servo amplifier. Hence, the data is cleared when power is switched off.  
Set the lower 16 bits of the position instruction data to Position instruction data lower 16 bit (RWwn+4), the  
upper 16 bits of the position instruction data to Position instruction data upper 16 bit (RWwn+5), and speed  
instruction data to Speed instruction data (RWwn+6), and turn Position instruction demand (RY(n+2)0) and  
Speed instruction demand (RY(n+2)1) to ON.  
Turning RY(n+2)0 and RY(n+2)1 to ON stores the position command data and speed command data into  
RAM of the servo amplifier.  
When the data are stored, Position instruction execution completion (RX(n+2)0) and Speed instruction  
execution completion (RX(n+2)1) turn to ON.  
If data outside the setting range is set to any of Position instruction data lower 16 bit (RWwn+4), Position  
instruction data upper 16 bit (RWwn+5) and Speed command data (RWwn+6), the error code (refer to  
section 3.5.5) is set to respond code.  
Turn Forward rotation start (RYn1) Reverse rotation start (RYn2) to ON after Position instruction execution  
completion (RX(n+2)0) and Speed instruction execution completion (RX(n+2)1) have turned to ON.  
3 - 40  
3. CC-LINK COMMUNICATION FUNCTIONS  
3.7 Function-by-function programming examples  
This section explains specific programming examples for servo operation, monitor, parameter read and write,  
and others on the basis of the equipment makeup shown in section 3.7.1.  
3.7.1 System configuration example  
As shown below, the CC-Link system master local unit is loaded to run two servo amplifiers (1 station  
occupied / 2 stations occupied).  
(1) System configuration  
Programmable controller  
Master station Input module Output module  
Power supply  
Q62P  
CPU  
Q02HCPU  
QJ61BT11N  
QX40  
QY40P  
(X/Y00 to 1F) (X20 to X2F) (Y30 to Y3F)  
X20 to  
Station No.1  
Y30  
Terminating  
resistor  
Station No.2  
Servo amplifier  
Servo amplifier  
(1 station occupied)  
(2 stations occupied)  
Terminating  
resistor  
(2) Master station network parameter setting  
In the programming examples, network parameters are set as below.  
Item  
Setting condition  
Item  
Setting condition  
W0  
Start I/O No.  
0000  
Clear  
Remote register (RWr)  
Refresh device  
Data link disorder  
(No check on  
"Hold input data")  
Remote register (RWw)  
Refresh device  
station settings  
W100  
SB0  
Operational setting  
Case of CPU  
STOP setting  
Special relay (SB)  
Refresh device  
Refresh  
Type  
Master station  
Remote net  
(Ver.1 mode)  
2
Special relay (SW)  
Refresh device  
SW0  
Mode  
Retry count  
3
All connect count  
Remote input (RX)  
Refresh device  
Automatic reconnection station count  
CPU down select  
Scan mode setting  
1
Stop  
X1000  
Y1000  
Asynchronous  
Remote output (RY)  
Refresh device  
3 - 41  
3. CC-LINK COMMUNICATION FUNCTIONS  
(3) Relationship of remote I/O (RX, RY)  
The following shows a relationship between the devices of the programmable controller CPU and the  
remote I/Os (RX, RY) of the remote device stations.  
Shaded area shows the devices actually used.  
Remote device  
(Station No.1)  
Programmable  
controller CPU  
(1 station occupied)  
X100F to X1000  
X101F to X1010  
X102F to X1020  
X103F to X1030  
X104F to X1040  
X105F to X1050  
X106F to X1060  
X107F to X1070  
RX0F to RX00  
RX1F to RX10  
RY0F to RY00  
RY1F to RY10  
Remote device  
(Station No.2)  
(2 stations occupied)  
Y100F to Y1000  
Y101F to Y1010  
Y102F to Y1020  
Y103F to Y1030  
Y104F to Y1040  
Y105F to Y1050  
Y106F to Y1060  
Y107F to Y1070  
RX0F to RX00  
RX1F to RX10  
RX2F to RX20  
RX3F to RX30  
RY0F to RY00  
RY1F to RY10  
RY2F to RY20  
RY3F to RY30  
3 - 42  
3. CC-LINK COMMUNICATION FUNCTIONS  
(4) Relationship of remote register (RWw, RWr)  
The following shows a relationship between the devices of the programmable controller CPU and the  
remote registers (RWw, RWr) of the remote device stations.  
Shaded area shows the devices actually used.  
Remote device  
(Station No.1)  
Programmable  
controller CPU  
(1 station occupied)  
For writing  
W100  
W101  
W102  
W103  
W104  
W105  
W106  
W107  
W108  
W109  
W10A  
W10B  
W10C  
W10D  
W10E  
W10F  
For reading  
W000  
W001  
W002  
W003  
W004  
W005  
W006  
W007  
W008  
W009  
W00A  
W00B  
W00C  
W00D  
W00E  
W00F  
RWw0  
RWw1  
RWw2  
RWw3  
RWr0  
RWr1  
RWr2  
RWr3  
Remote device  
(Station No.2)  
(2 stations occupied)  
RWw0  
RWw1  
RWw2  
RWw3  
RWw4  
RWw5  
RWw6  
RWw7  
RWr0  
RWr1  
RWr2  
RWr3  
RWr4  
RWr5  
RWr6  
RWr7  
3 - 43  
3. CC-LINK COMMUNICATION FUNCTIONS  
3.7.2 Reading the servo amplifier status  
When the servo amplifier on station number 1 becomes ready for the remote station communication, Y30 of  
the output module turns on.  
The program is for turning on Y30 when CC-Link communication is normal.  
Checks data link status of station No.1.  
Turns on output module (Y30).  
Remote station communication ready  
X100F  
b15  
X1000  
b0  
Remote input  
RX0F to RX00  
RX1F to RX10  
b10  
0
b5  
*
1 station  
*
0
*
0
*
0
*
0
0
0
0
0
0
0
*
0
*
0
*
0
*
0
[Servo amplifier status]  
X101F  
b15  
X1010  
b0  
b10  
b5  
*
*: Set 0 or 1 as the bit is not used.  
*
0
*
*
*
*
*
[Servo amplifier status]  
Servo amplifier status (1 station occupied)  
X1000: Ready (RD)  
X1008: Monitoring (MOF)  
X1009: Instruction code execution  
completion (COF)  
X1010:  
X1011:  
X1012:  
X1013:  
X1014:  
X1015:  
X1016:  
X1018:  
X1019:  
X1001: In position (INP)  
X1002: Rough match (CPO)  
X1003: Home position return completion  
(ZP)  
X101A: Trouble (ALM)  
X101B: Remote station  
X100A: Warning (WNG)  
X100B: Battery warning (BWNG)  
X100C: Movement completion  
(MEND)  
communication ready  
(CRD)  
X1004: Limiting torque (TLC)  
X1005:  
X101C:  
X101D:  
X101E:  
X101F:  
X1006: Electromagnetic brake interlock  
(MBR)  
X100D: Dynamic brake interlock (DB) X1017:  
X100E: Position range (POT)  
X100F:  
X1007: Temporary stop (PUS)  
3 - 44  
3. CC-LINK COMMUNICATION FUNCTIONS  
3.7.3 Writing the operation commands  
Perform positioning operation of point table No.2 for the servo amplifier of station 2.  
Start the operation by turning on X20.  
Checks data link status of station No.1.  
Servo-on command (RY00)  
Servo-on command  
Point table No. selection command (bit1) (RY0B)  
Automatic/manual selection command (RY06)  
Point table establishment time 4ms *1  
Forward rotation start command (RY01)  
Operation command  
Command demand time 6ms *1  
Forward rotation start command reset  
*1: This is when the high-speed timer limit is set to 1ms.  
Setting time for the timer should be larger than the command processing  
time or twice the link scan time whichever larger. When the setting time  
is short, the command cannot be received properly.  
Y100F  
b15  
Y1000  
Remote input  
RY0F to RY00  
RY1F to RY10  
b10  
1
b5  
1
b0  
0
0
0
0
0
0
0
0
1
1
0
0
1
1
Station No.1  
1: ON  
0: OFF  
[Operation command]  
*: Set 0 as the bit is not used.  
Servo-on  
Point table  
Automatic/manual  
selection  
Forward  
rotation start  
selection (bit1)  
Y101F  
b15  
Y1010  
b0  
b10  
0
b5  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
[Operation command]  
Operation commands  
(1 station occupied)  
Y1008: Monitor output execution demand Y1010:  
Y1018:  
Y1000: Servo-on (SON)  
Y1001: Forward rotation start (ST1)  
Y1002: Reverse rotation start (ST2)  
Y1003: Proximity dog (DOG)  
Y1004: Forward rotation stroke end  
(LSP)  
(MOR)  
Y1011:  
Y1012:  
Y1013:  
Y1019:  
Y1009: Instruction code execution  
demand (COR)  
Y101A: Reset (RES)  
Y101B:  
Y100A: Point table No. selection 1 (DI0) Y1014:  
Y100B: Point table No. selection 2 (DI1) Y1015:  
Y100C: Point table No. selection 3 (DI2) Y1016:  
Y100D: Point table No. selection 4 (DI3) Y1017:  
Y100E: Point table No. selection 5 (DI4)  
Y100F: Clear (CR)  
Y101C:  
Y101D:  
Y101E:  
Y1005: Reverse rotation stroke end  
(LSN)  
Y101F:  
Y1006: Automatic/manual selection  
(MDO)  
Y1007: Temporary stop/Restart (TSTP)  
3 - 45  
3. CC-LINK COMMUNICATION FUNCTIONS  
3.7.4 Reading the data  
Read various data of the servo amplifier.  
(1) Reading the monitor value  
Read the (feedback pulse value) of the servo amplifier of station 2 to D1.  
Data No.  
H000A  
Description  
Cumulative feedback pulse data (hexadecimal)  
Read the cumulative feedback pulse monitor by turning on X20.  
Checks data link status of station No.2.  
Sets monitor code (H000A) of feedback pulse in  
RWw4.  
Read  
Turns on Monitor output execution demand  
(RY28).  
command  
Reads feedback pulse (RWr4, RWr5) to D10  
and D11 when monitoring (RX28) turns on.  
3 - 46  
3. CC-LINK COMMUNICATION FUNCTIONS  
(2) Reading the parameter  
Read parameter No.PA04 "Function selection A-1" of the servo amplifier of station 2 to D1.  
Data No.  
H8200  
Description  
Parameter group selection  
Parameter No.PA04 setting (hexadecimal)  
H2024  
Read the parameter No.PA04 by turning on X20.  
The respond code at instruction code execution is set to D2.  
Checks data link status of station No.2.  
Read command  
Writes parameter group No. write (H8200) to  
RWw6 and parameter group PA (H0000) to  
RWw7.  
Turns on instruction code execution demand  
(RY29).  
Turns off instruction code execution demand  
(RY29) when instruction code execution  
completion (RX29) turns on.  
Writes parameter No.PA04 read (H0204) to  
RWw6.  
Turns on instruction code execution demand  
(RY29).  
Reads function selection A-1 (RWr7) and  
respond code (RWr6) to D1 and D2 when  
instruction code execution demand (RX29)  
turns on.  
Turns off instruction code execution demand  
(RY29).  
3 - 47  
3. CC-LINK COMMUNICATION FUNCTIONS  
(3) Reading the alarm definition  
Read the alarm definition of the servo amplifier of station 2 to D1.  
Data No.  
H0010  
Description  
Occurring alarm/warning No. (hexadecimal)  
Read current alarms by turning on X20.  
The respond code at instruction code execution is set to D2.  
Checks data link status of station No.2.  
Read command  
Writes current alarm read (H0010) to RWw6.  
Turns on instruction code execution demand  
(RY29).  
Reads current alarm (RWr7) and respond code  
(RWr6) to D1 and D2 when instruction code  
execution demand (RX29) turns on.  
Turns off instruction code execution demand  
(RY29).  
3 - 48  
3. CC-LINK COMMUNICATION FUNCTIONS  
3.7.5 Writing the data  
This section explains the programs for writing various data to the servo amplifier.  
(1) Writing the servo motor speed data of point table  
Change the servo motor speed data in the point table No.1 of the servo amplifier of station 2 to "100".  
The following shows a program example for writing data to the servo amplifier when two stations are  
occupied. Writing is disabled for the servo amplifier when one station is occupied.  
Code No.  
H8D01  
Description  
Write of servo motor speed data of point table No.1  
(hexadecimal)  
Set data  
K100  
Description  
Servo motor speed data of point table No.1  
(decimal)  
Write the data to the servo motor speed data of point table No.1 by turning on X20.  
The respond code at instruction code execution is set to D2.  
Checks data link status of station No.2.  
Write  
command  
In position  
Writes speed data (H8D01) of point table No.1  
to RWw6, and speed data (K100) to RWw7.  
Turns on instruction code execution demand  
(RY29).  
Reads respond code (RWr6) to D2 when  
instruction code execution completion (RX29)  
turns on.  
Turns off instruction code execution demand  
(RY29).  
3 - 49  
3. CC-LINK COMMUNICATION FUNCTIONS  
(2) Writing the parameter  
The following shows a program example when two stations are occupied.  
Change parameter No.PC12 (JOG speed) of the servo amplifier of station 2 to "100".  
The parameter group PC is specified as follows.  
Code No.  
8200h  
Description  
Parameter group selection  
Set data  
H0002  
Description  
Set data (hexadecimal)  
The parameter No.12 is changed to "100" as follows.  
Code No.  
H820C  
Description  
Parameter No.PC12 write (hexadecimal)  
Set data  
K100  
Description  
Set data (decimal)  
Write the data to the parameter No.PC12 by turning on X20.  
The respond code at instruction code execution is set to D2.  
Checks data link status of station No.2.  
Write command  
Writes parameter group No. write (H8200) to  
RWw6 and parameter group PC (H0002) to  
RWw7.  
Turns on instruction code execution demand  
(RY29).  
Turns off instruction code execution demand  
(RY29) when instruction code execution  
completion (RX29) turns on.  
Writes parameter No.PC12 write (H820C) to  
RWw6 and data (K100) to RWw7.  
Turns on instruction code execution demand  
(RY29).  
Reads RWw6 to D2 when instruction code  
execution completion (RX29) turns on.  
Turns off instruction code execution demand  
(RY29).  
3 - 50  
3. CC-LINK COMMUNICATION FUNCTIONS  
(3) Servo amplifier alarm resetting program examples  
(a) Deactivate the alarm of the servo amplifier of station 2 by issuing a command from the programmable  
controller.  
Reset the servo amplifier on the occurrence of a servo alarm by turning on X20.  
Checks data link status of station No.2.  
Turns on reset command (RY5A).  
Turns off reset command (RY5A) when trouble  
flag (RX5A) turns off.  
Trouble Reset  
flag  
command  
(b) Deactivate the alarm of the servo amplifier of station 2 using the instruction code.  
Code No.  
H8010  
Description  
Alarm reset command (hexadecimal)  
Set data  
H1EA5  
Description  
Execution data (hexadecimal)  
Reset the servo amplifier by turning on X20.  
The respond code at instruction code execution is set to D2.  
Checks data link status of station No.2.  
Reset command  
Writes alarm reset command (H8010) to  
RWw6 and execution data (H1EA5) to RWw7.  
Turns on instruction code execution demand  
(RY29).  
Reads respond code (RWr6) to D2 when  
instruction code execution completion (RX29)  
turns on.  
Turns off instruction code execution demand  
(RY29).  
3 - 51  
3. CC-LINK COMMUNICATION FUNCTIONS  
3.7.6 Operation  
This section explains the operation programs of the servo amplifier.  
(1) JOG operation  
Perform JOG operation of the servo amplifier of station 1 and read the "current position" data.  
Code No.  
H0001  
Description  
Lower 16-bit data of current position (hexadecimal)  
Upper 16-bit data of current position (hexadecimal)  
H0002  
Start the forward rotation JOG operation by turning on X22.  
Start the reverse rotation JOG operation by turning on X23.  
Checks data link status of station No.1.  
Servo-on command (RY00).  
Forward rotation start (RY01).  
Remote station  
communication  
ready  
Forward rotation  
Ready Automatic/  
JOG command  
manual  
Reverse rotation start (RY02).  
selection  
Reverse rotation  
JOG command  
Sets monitor code (H0001) of current position  
(lower 16 bits) to RWw0.  
Sets monitor code (H0002) of current  
position (upper 16 bits) to RWw1.  
Turns on monitor command (RY08).  
Reads current position (RWr0, RWr1) to D10  
and D11 when monitoring (RX08) turns on.  
3 - 52  
3. CC-LINK COMMUNICATION FUNCTIONS  
(2) Remote register-based position data/speed data setting  
The following program example is only applicable when two stations are occupied.  
Operate the servo amplifier of station 2 after specifying the position data as "100000" and the speed data  
as "1000" in the direct specification mode.  
Preset "  
2" in parameter No.PC30.  
Set data  
Description  
K100000  
K1000  
Position command data (decimal)  
Speed command data (decimal)  
Execute positioning operation with position and speed settings specified in the remote register by turning on  
X20.  
Checks data link status of station No.2.  
Servo-on command (RY20)  
Automatic operation mode selection (RY26)  
Position/speed specifying system selection  
(RY4A)  
Operation In position  
command  
Writes position command data (K100000) to  
RWw8, RWw9, and speed data (K1000) to  
RWwA.  
Turns on position instruction demand (RY40).  
Turns on speed instruction demand (RY41).  
Reads respond code (RWr6) to D2 when  
position instruction execution completion (RX40)  
and speed instruction execution completion  
(RX41) turn on.  
Position and speed data establishment time  
4ms *1  
Turns on forward rotation start command  
(RY21).  
Command request time 6ms *1  
Turns off forward rotation start command  
(RY21).  
Turns off position instruction demand (RY40).  
Turns off speed instruction demand (RY41).  
*1: This is when the high-speed timer limit is set to 1ms.  
Setting time for the timer should be larger than the command processing  
time or twice the link scan time whichever larger. When the setting time  
is short, the command cannot be received properly.  
3 - 53  
3. CC-LINK COMMUNICATION FUNCTIONS  
(3) Remote register-based point table No. setting (incremental value command system)  
The following program example is only applicable when two stations are occupied.  
Operate the servo amplifier of station 2 with incremental values after specifying the point table No.5 in the  
direct specification mode.  
Preset "  
0" in parameter No.PA01 and "  
0" in parameter No.PA30.  
Set data  
K5  
Description  
Point table No. (decimal)  
Execute positioning operation to the point table No.5 by turning on X20.  
Checks data link status of station No.2.  
Servo-on command (RY20)  
Automatic operation mode selection (RY26)  
Position/speed specifying system selection  
(RY4A)  
Incremental value selection (RY4B)  
Operation  
command  
In position  
Writes point table No.5 (K5) to RWw8.  
Turns on position instruction demand (RY40).  
Reads respond code (RWr6) to D2 when  
position instruction execution completion (RX40)  
turns on.  
Point table establishment time 4ms *1  
Turns on forward rotation start command  
(RY21).  
Command request time 6ms *1  
Turns off forward rotation start command  
(RY21).  
Turns off position instruction demand (RY40).  
*1: This is when the high-speed timer limit is set to 1ms.  
Setting time for the timer should be larger than the command processing  
time or twice the link scan time whichever larger. When the setting time  
is short, the command cannot be received properly.  
3 - 54  
3. CC-LINK COMMUNICATION FUNCTIONS  
3.8 Continuous operation program example  
This section shows a program example which includes a series of communication operations from a servo  
start. The program will be described on the basis of the equipment makeup shown in section 3.8.1, 3.8.3.  
3.8.1 System configuration example when 1 station is occupied  
As shown below, the CC-Link system master local unit is loaded to run one servo amplifier (1 station  
occupied).  
Programmable controller  
Master station Input module  
Power supply  
Q62P  
CPU  
Q02HCPU  
QJ61BT11N  
QX40  
(X/Y00 to 1F) (X20 to X2F)  
X20 to X2C  
Station No.1  
Terminating  
resistor  
Servo amplifier  
(1 station occupied)  
Terminating  
resistor  
Input signal assignment  
Input signal  
X20  
Signal name  
Reset command  
General operation when the input is on  
Resets the servo amplifier on an occurrence of a servo alarm.  
Turns on the servo motor. (Servo-on status)  
X21  
Servo-on command  
Forward rotation JOG  
command  
X22  
X23  
X24  
X25  
X26  
Executes a forward JOG operation in the manual operation mode.  
Executes a reverse JOG operation in the manual operation mode.  
Reverse rotation JOG  
command  
OFF: Manual operation mode  
Automatic/manual selection  
ON: Automatic operation mode  
Home position return  
command  
Executes a dog type home position return when home position return  
is incomplete in the automatic operation mode.  
OFF: Proximity dog is on. (Note)  
Proximity dog command  
ON: Proximity dog is off.  
Executes a positioning operation to the point table number specified  
by X28 to X2C when home position return is incomplete in the  
automatic operation mode.  
X27  
Positioning start command  
X28  
X29  
X2A  
X2B  
X2C  
No. selection 1  
No. selection 2  
No. selection 3  
No. selection 4  
No. selection 5  
Specifies the position for the point table No. selection 1  
Specifies the position for the point table No. selection 2  
Specifies the position for the point table No. selection 3  
Specifies the position for the point table No. selection 4  
Specifies the position for the point table No. selection 5  
Note. This is when the parameter No.PD16 is set to "  
0 (initial value)" (detects the dog at off).  
3 - 55  
3. CC-LINK COMMUNICATION FUNCTIONS  
3.8.2 Program example when 1 station is occupied  
POINT  
To execute a dog type home position return with the CC-Link communication  
functions, set " 0 " in parameter No.PD14 and use Proximity dog (DOG)  
with the remote input (RY03) in this example.  
Operate the servo amplifier of station 1 in the positioning mode and read the "current position" data.  
Operation: Alarm reset, dog type home position return, JOG operation, automatic operation under point table  
command  
Code No.  
H0001  
Description  
Lower 16-bit data of current position (hexadecimal)  
Upper 16-bit data of current position (hexadecimal)  
H0002  
Checks data link status of station No.1.  
Writes current alarm read (H0010) to RWw2 at  
trouble (RY1A) occurrence.  
Turns on instruction code execution demand  
(RY09).  
Reads current alarm (RWr3) and respond code  
(RWr2) to D11 and D12 when instruction code  
execution completion (RX09) turns on.  
Turns off instruction code execution demand  
(RY09).  
Alarm reset command (RY1A)  
Reset command  
Servo-on command  
Servo-on command (RY00)  
Automatic operation mode selection (RY06)  
Manual operation mode selection (RY06)  
Home position return request  
Automatic/manual selection  
Automatic/manual selection  
Home position return  
command  
Home position return completion  
Point table establishment time 4ms *1  
Forward rotation start request  
Command request time 6ms *1  
Forward rotation start request reset  
Proximity dog command (RY03)  
Proximity dog command  
Forward rotation JOG command  
Reverse rotation JOG command  
Forward rotation start request  
Reverse rotation start request  
3 - 56  
3. CC-LINK COMMUNICATION FUNCTIONS  
Positioning start command  
Positioning start command  
In  
Rough Home position  
position match return completion  
Point table establishment time 4ms *1  
Forward rotation start request  
Command request time 6ms *1  
Forward rotation start request reset  
Point table No. selection 1 (RY0A)  
Point table No. selection 2 (RY0B)  
Point table No. selection 3 (RY0C)  
Point table No. selection 4 (RY0D)  
No.selection 1  
No.selection 2  
No.selection 3  
No.selection 4  
No.selection 5  
Point table No. selection 5 (RY0E)  
Forward rotation start (RY01)  
Reverse rotation start (RY02)  
Sets monitor code (H001) of current position  
(lower 16 bits) in RWw0.  
Sets monitor code (H002) of current position  
(upper 16 bits) in RWw1.  
Turns on monitor output execution demand  
(RY08).  
Reads current position (Rwr0, RWr1) to D120  
and D121 when monitoring (RX08) turns on.  
*1: This is when the high-speed timer limit is set to 1ms.  
Setting time for the timer should be larger than the command processing  
time or twice the link scan time whichever larger. When the setting time  
is short, the command cannot be received properly.  
3 - 57  
3. CC-LINK COMMUNICATION FUNCTIONS  
3.8.3 System configuration example when 2 stations are occupied  
As shown below, the CC-Link system master local unit is loaded to run one servo amplifiers (2 station  
occupied).  
Programmable controller  
Master station Input module  
Power supply  
Q62P  
CPU  
Q02HCPU  
QJ61BT11N  
QX40  
(X/Y00 to 1F) (X20 to X2F)  
X20 to X28  
Station No.1  
Terminating  
resistor  
Servo amplifier  
(2 stations occupied)  
Terminating  
resistor  
Input signal assignment  
Input signal  
X20  
Signal name  
Reset command  
General operation when the input is on  
Resets the servo amplifier on an occurrence of a servo alarm.  
Turns on the servo motor. (Servo-on status)  
X21  
Servo-on command  
Forward rotation JOG  
command  
X22  
X23  
X24  
X25  
X26  
Executes a forward JOG operation in the manual operation mode.  
Executes a reverse JOG operation in the manual operation mode.  
Reverse rotation JOG  
command  
OFF: Manual operation mode  
Automatic/manual selection  
ON: Automatic operation mode  
Home position return  
command  
Executes a dog type home position return when home position return  
is incomplete in the automatic operation mode.  
OFF: Proximity dog is on. (Note)  
Proximity dog command  
ON: Proximity dog is off.  
Executes a positioning operation with position and speed settings  
specified in the remote register when home position return is  
completed in the automatic operation mode.  
X27  
X28  
Positioning start command  
Position/speed setting system  
changing command  
Changes to position/speed specification by the remote register.  
Note. This is when the parameter No.PD16 is set to "  
0 (initial value)" (detects the dog at off).  
3 - 58  
3. CC-LINK COMMUNICATION FUNCTIONS  
3.8.4 Program example when 2 stations are occupied  
POINT  
To execute a dog type home position return with the CC-Link communication  
functions, set " 0 " in parameter No.PD14 and use Proximity dog (DOG)  
with the remote input (RY03) in this example.  
Operate the servo amplifier of station 1 in the positioning mode and read the "motor speed" data.  
Preset the parameter No.PC30 to "  
2".  
Operation: Alarm reset, dog type home position return, JOG operation, automatic operation under point table  
command  
Code No.  
H0016  
Description  
32-bit data of motor speed (hexadecimal)  
Code No.  
K50000  
K100  
Description  
Position command data (decimal)  
Speed command data (decimal)  
Checks data link status of station No.1.  
Writes current alarm read (H0010) to RWw2 at  
trouble (RX3A) occurrence.  
Turns on instruction code execution demand  
(RY09).  
Reads current alarm (RWr3) and respond code  
(RWr2) to D11 and D12 when instruction code  
execution completion (RX09) turns on.  
Turns off instruction code execution demand  
(RY09).  
Alarm reset command (RY3A)  
Reset command  
Servo-on command  
Servo-on command (RY00)  
Automatic operation mode selection (RY06)  
Manual operation mode selection (RY06)  
Automatic/manual selection  
Automatic/manual selection  
Home position return  
Home position return request  
Home position return completion  
command  
Point table establishment time 4ms *1  
Forward rotation start request  
Command request time 6ms *1  
Forward rotation start request reset  
Proximity dog command (RY03)  
Proximity dog command  
Forward rotation start request  
Reverse rotation start request  
Forward rotation JOG command  
Reverse rotation JOG command  
3 - 59  
3. CC-LINK COMMUNICATION FUNCTIONS  
Positioning start command  
Position/speed specifying system selection  
(RY2A)  
Position/speed setting system changing command  
In  
Rough Home position  
position match return completion  
Writes position command data (K50000) to  
RWw4, RWw5, and speed data (K100) to  
RWw6.  
Turns on position instruction demand (RY20).  
Turns on speed instruction demand (RY21).  
Reads respond code (RWr2) to D2 when  
position instruction execution completion (RX20)  
and speed instruction execution completion  
(RX21) turn on.  
Position and speed data establishment time  
4ms *1  
Positioning start command  
Command request time 6ms *1  
Positioning start command reset  
Turns off position instruction demand (RY20).  
Turns off speed instruction demand (RY21).  
Forward rotation start (RY01)  
Reverse rotation start (RY02)  
Sets monitor code (H0016) of motor speed to  
RWw0.  
Turns on monitor output execution demand  
(RY08).  
Reads motor speed (RWr0, RWr1) to D120 and  
D121 when monitoring (RX08) turns on.  
*1: This is when the high-speed timer limit is set to 1ms.  
Setting time for the timer should be larger than the command processing  
time or twice the link scan time whichever larger. When the setting time  
is short, the command cannot be received properly.  
3 - 60  
4. SIGNALS AND WIRING  
4. SIGNALS AND WIRING  
Any person who is involved in wiring should be fully competent to do the work.  
Before wiring, turn off the power and wait for 15 minutes or more until the charge  
lamp turns off. Then, confirm that the voltage between P( ) and N( ) is safe with  
a voltage tester and others. Otherwise, an electric shock may occur. In addition,  
always confirm from the front of the servo amplifier whether the charge lamp is off  
or not.  
WARNING  
Ground the servo amplifier and the servo motor securely.  
Do not attempt to wire the servo amplifier and servo motor until they have been  
installed. Otherwise, you may get an electric shock.  
The cables should not be damaged, stressed excessively, loaded heavily, or  
pinched. Otherwise, you may get an electric shock.  
Wire the equipment correctly and securely. Otherwise, the servo motor may  
operate unexpectedly, resulting in injury.  
Connect cables to correct terminals to prevent a burst, fault, etc.  
Ensure that polarity ( , ) is correct. Otherwise, a burst, damage, etc. may occur.  
The surge absorbing diode installed to the DC relay designed for control output  
should be fitted in the specified direction. Otherwise, the signal is not output due to  
a fault, disabling the forced stop (EMG) and other protective circuits.  
Servo amplifier  
Servo amplifier  
24VDC  
24VDC  
DOCOM  
DICOM  
DOCOM  
DICOM  
Control output  
signal  
Control output  
signal  
RA  
RA  
CAUTION  
Use a noise filter, etc. to minimize the influence of electromagnetic interference,  
which may be given to electronic equipment used near the servo amplifier.  
Do not install a power capacitor, surge suppressor or radio noise filter (FR-BIF-(H)  
option) with the power line of the servo motor.  
When using the regenerative resistor, switch power off with the alarm signal.  
Otherwise, a transistor fault or the like may overheat the regenerative resistor,  
causing a fire.  
Do not modify the equipment.  
During power-on, do not open or close the motor power line. Otherwise, a  
malfunction or faulty may occur.  
4 - 1  
4. SIGNALS AND WIRING  
4.1 Input power supply circuit  
Always connect a magnetic contactor (MC) between the main circuit power supply  
and L1, L2, and L3 of the servo amplifier, and configure the wiring to be able to shut  
down the power supply on the side of the servo amplifier’s power supply. If a  
magnetic contactor (MC) is not connected, continuous flow of a large current may  
cause a fire when the servo amplifier malfunctions.  
CAUTION  
Use the trouble (ALM) to switch power off. Otherwise, a regenerative transistor  
fault or the like may overheat the regenerative resistor, causing a fire.  
Wire the power supply and main circuit as shown below so that the servo-on (RYn0) turns off as soon as alarm  
occurrence is detected and power is shut off.  
A no-fuse breaker (NFB) must be used with the input cables of the power supply.  
(1) For 3-phase 200 to 230VAC power supply to MR-J3-10T to MR-J3-350T  
Forced  
stop  
ON  
MC  
RA  
OFF  
MC  
SK  
Servo amplifier  
Servo motor  
NFB  
MC  
CNP1  
L1  
L2  
L3  
N(  
P1  
P2  
3-phase  
200 to  
230VAC  
CNP3  
U
(Note 5)  
U
V
2
3
4
1
Motor  
M
V
W
)
W
(Note 1)  
(Note 2)  
PE  
CNP2  
P(  
)
C
D
(Note 3)  
Encoder cable  
CN2  
Encoder  
L11  
L21  
CN6  
CN6  
24VDC  
RA  
DOCOM  
EMG  
Forced stop  
(Note 4)  
DOCOM  
DICOM  
(Note 4)  
ALM  
Trouble  
Note 1. Always connect P1 and P2. (Factory-wired.) When using the power factor improving DC reactor, refer to section 14.11.  
2. Always connect P( ) and D. (Factory-wired.) When using the regenerative option, refer to section 14.2.  
3. For encoder cable, use of the option cable is recommended. Refer to section 14.1 for selection of the cable.  
4. For the sink I/O interface. For the source I/O interface, refer to section 4.8.3.  
5. Refer to section 4.10.  
4 - 2  
4. SIGNALS AND WIRING  
(2) For 1-phase 200 to 230VAC power supply to MR-J3-10T to MR-J3-70T  
Forced  
stop  
ON  
MC  
RA  
OFF  
MC  
SK  
Servo amplifier  
Servo motor  
NFB  
MC  
CNP1  
L1  
L2  
L3  
N
1-phase  
200 to  
230VAC  
CNP3  
U
(Note 5)  
U
V
2
3
4
1
Motor  
M
V
W
W
P1  
P2  
(Note 1)  
(Note 2)  
PE  
CNP2  
P
C
D
(Note 3)  
Encoder cable  
CN2  
Encoder  
L11  
L21  
CN6  
CN6  
24VDC  
RA  
DOCOM  
EMG  
Forced stop  
(Note 4)  
DOCOM  
DICOM  
(Note 4)  
ALM  
Trouble  
Note 1. Always connect P1 and P2. (Factory-wired.) When using the power factor improving DC reactor, refer to section 14.11.  
2. Always connect P and D. (Factory-wired.) When using the regenerative option, refer to section 14.2.  
3. For encoder cable, use of the option cable is recommended. Refer to section 14.1 for selection of the cable.  
4. For the sink I/O interface. For the source I/O interface, refer to section 4.8.3.  
5. Refer to section 4.10.  
4 - 3  
4. SIGNALS AND WIRING  
(3) MR-J3-10T1 to MR-J3-40T1  
Forced  
stop  
ON  
MC  
RA  
OFF  
MC  
SK  
Servo amplifier  
Servo motor  
NFB  
MC  
CNP1  
L1  
1-phase  
100 to  
120VAC  
CNP3  
U
(Note 5)  
Blank  
U
V
2
3
4
1
Motor  
M
L2  
N
V
W
W
P1  
P2  
(Note 1)  
(Note 2)  
PE  
P
C
D
(Note 3)  
Encoder cable  
CN2  
Encoder  
L11  
L21  
CN6  
CN6  
24VDC  
RA  
DOCOM  
EMG  
Forced stop  
(Note 4)  
DOCOM  
DICOM  
(Note 4)  
ALM  
Trouble  
Note 1. Always connect P1 and P2. (Factory-wired.) The power factor improving DC reactor cannot be used.  
2. Always connect P and D. (Factory-wired.) When using the regenerative option, refer to section 14.2.  
3. For encoder cable, use of the option cable is recommended. Refer to section 14.1 for selection of the cable.  
4. For the sink I/O interface. For the source I/O interface, refer to section 4.8.3.  
5. Refer to section 4.10.  
4 - 4  
4. SIGNALS AND WIRING  
(4) MR-J3-60T4 to MR-J3-200T4  
Forced  
stop  
ON  
MC  
RA  
OFF  
MC  
SK  
(Note 6)  
Stepdown  
transformer  
Servo amplifier  
Servo motor  
NFB  
MC  
CNP1  
L1  
L2  
L3  
N
3-phase  
380 to  
480VAC  
CNP3  
U
(Note 5)  
U
V
2
3
4
1
Motor  
M
V
W
W
P1  
P2  
(Note 1)  
(Note 2)  
PE  
CNP2  
P
C
D
(Note 3)  
Encoder cable  
CN2  
Encoder  
L11  
L21  
CN6  
CN6  
24VDC  
RA  
DOCOM  
EMG  
Forced stop  
(Note 4)  
DOCOM  
DICOM  
(Note 4)  
ALM  
Trouble  
Note 1. Always connect P1 and P2. (Factory-wired.) When using the power factor improving DC reactor, refer to section 14.11.  
2. Always connect P and D. (Factory-wired.) When using the regenerative option, refer to section 14.2.  
3. For encoder cable, use of the option cable is recommended. Refer to section 14.1 for selection of the cable.  
4. For the sink I/O interface. For the source I/O interface, refer to section 4.8.3.  
5. Refer to section 4.10.  
6. Stepdown transformer is required for coil voltage of magnetic contactor more than 200V class.  
4 - 5  
4. SIGNALS AND WIRING  
(5) MR-J3-500T MR-J3-700T  
Forced  
stop  
ON  
MC  
RA  
OFF  
(Note 6)  
Power supply  
of cooling fan  
MC  
SK  
Servo amplifier  
TE1  
Servo motor  
NFB  
MC  
L1  
L2  
L3  
P
3-phase  
200 to  
230VAC  
(Note 5)  
Built-in  
regenerative  
resistor  
U
V
2
3
4
1
U
V
Motor  
M
W
W
(Note 2)  
C
TE2  
L11  
PE  
NFB  
L21  
TE3  
N
(Note 3)  
Encoder cable  
CN2  
Encoder  
P1  
(Note 1)  
P2  
BU  
BV  
Cooling fan  
CN6  
EMG  
DOCOM  
CN6  
24VDC  
RA  
DOCOM  
Forced stop  
(Note 4)  
DICOM  
(Note 4)  
Trouble  
ALM  
Note 1. Always connect P1 and P2. (Factory-wired.) When using the power factor improving DC reactor, refer to section 14.11.  
2. Always connect P and D. (Factory-wired.) When using the regenerative option, refer to section 14.2.  
3. For encoder cable, use of the option cable is recommended. Refer to section 14.1 for selection of the cable.  
4. For the sink I/O interface. For the source I/O interface, refer to section 4.8.3.  
5. Refer to section 4.10.  
6. A cooling fan is attached to the HA-LP601 and the HA-LP701M servo motors. For power supply specification of the cooling fan,  
refer to section 4.10.2 (3) (b).  
4 - 6  
4. SIGNALS AND WIRING  
(6) MR-J3-350T4 to MR-J3-700T4  
Forced  
stop  
ON  
MC  
RA  
OFF  
(Note 7)  
Power supply  
of cooling fan  
MC  
SK  
(Note 6)  
Stepdown  
transformer  
Servo amplifier  
TE1  
Servo motor  
NFB  
MC  
L1  
L2  
L3  
P
3-phase  
380 to  
480VAC  
(Note 5)  
Built-in  
regenerative  
resistor  
U
V
2
3
4
1
U
V
Motor  
M
W
W
(Note 2)  
C
TE2  
L11  
PE  
NFB  
L21  
TE3  
N
(Note 3)  
Encoder cable  
CN2  
Encoder  
P1  
(Note 1)  
P2  
BU  
BV  
Cooling fan  
CN6  
EMG  
DOCOM  
CN6  
24VDC  
RA  
DOCOM  
Forced stop  
(Note 4)  
DICOM  
(Note 4)  
ALM  
Trouble  
Note 1. Always connect P1 and P2. (Factory-wired.) When using the power factor improving DC reactor, refer to section 14.11.  
2. When using the regenerative option, refer to section 14.2.  
3. For encoder cable, use of the option cable is recommended. Refer to section 14.1 for selection of the cable.  
4. For the sink I/O interface. For the source I/O interface, refer to section 4.8.3.  
5. Refer to section 4.10.  
6. Stepdown transformer is required for coil voltage of magnetic contactor more than 200V class.  
7. A cooling fan is attached to the HA-LP6014 and the HA-LP701M4 servo motors. For power supply specification of the cooling  
fan, refer to section 4.10.2 (3) (b).  
4 - 7  
4. SIGNALS AND WIRING  
(7) MR-J3-11KT to MR-J3-22KT  
Servo motor  
thermal relay  
RA2  
Forced  
stop  
Trouble  
RA1  
ON  
MC  
OFF  
MC  
SK  
Servo amplifier  
Servo motor  
Dynamic  
break  
(Option)  
NFB  
MC  
TE  
L1  
3-phase  
380 to  
480VAC  
U
V
L2  
L3  
C
U
V
Motor  
M
W
W
(Note 5)  
(Note 2)  
(Note 1)  
P
Regenerative  
resistor  
P1  
NFB  
PE  
L11  
L21  
(Note 3)  
Encoder cable  
CN2  
Encoder  
BU  
BV  
BW  
Cooling fan  
(Note 6)  
OHS1  
OHS2  
Servo motor  
thermal relay  
24VDC  
power supply  
RA2  
CN6  
EMG  
DOCOM  
CN6  
24VDC  
RA  
DOCOM  
Forced stop  
(Note 4)  
DICOM  
(Note 4)  
ALM  
Trouble  
Note 1. Always connect P1 and P2. (Factory-wired.) When using the power factor improving DC reactor, refer to section 14.11.  
2. Connect the regenerative resistor. When using the regenerative option, refer to section 14.2.  
3. For the encoder cable, use of the option cable is recommended. Refer to section 14.1 for selection of the cable.  
4. For the sink I/O interface. For the source I/O interface, refer to section 4.8.3.  
5. Refer to section 4.10.  
6. Cooling fan power supply of the HA-LP11K2 servo motor is 1-phase. Power supply specification of the cooling fan is different  
from that of the servo amplifier. Therefore, separate power supply is required.  
4 - 8  
4. SIGNALS AND WIRING  
(8) MR-J3-11KT4 to MR-J3-22KT4  
Servo motor  
thermal relay  
RA2  
Forced  
stop  
Trouble  
RA1  
ON  
MC  
OFF  
MC  
SK  
(Note 7)  
Stepdown  
transformer  
Servo amplifier  
Servo motor  
Dynamic  
break  
(Option)  
NFB  
MC  
TE  
L1  
3-phase  
200 to  
230VAC  
U
V
L2  
L3  
C
U
V
Motor  
M
W
W
(Note 5)  
(Note 2)  
(Note 1)  
P
Regenerative  
resistor  
P1  
NFB  
PE  
L11  
L21  
(Note 3)  
Encoder cable  
CN2  
Encoder  
BU  
BV  
BW  
Cooling fan  
(Note 6)  
OHS1  
OHS2  
Servo motor  
thermal relay  
24VDC  
power supply  
RA2  
CN6  
EMG  
DOCOM  
CN6  
24VDC  
RA1  
DOCOM  
Forced stop  
(Note 4)  
DICOM  
(Note 4)  
Trouble  
ALM  
Note 1. Always connect P1 and P2. (Factory-wired.) When using the power factor improving DC reactor, refer to section 14.11.  
2. Connect the regenerative resistor. When using the regenerative option, refer to section 14.2.  
3. For encoder cable, use of the option cable is recommended. Refer to section 14.1 for selection of the cable.  
4. For the sink I/O interface. For the source I/O interface, refer to section 4.8.3.  
5. Refer to section 4.10.  
6. Servo amplifiers does not have BW when the cooling fan power supply is 1-phase.  
7. Stepdown transformer is required for coil voltage of magnetic contactor more than 200V class.  
4 - 9  
4. SIGNALS AND WIRING  
4.2 I/O signal connection diagram  
Servo amplifier  
CN6  
(Note 4)  
(Note 2)  
24VDC  
power  
supply  
RA1  
14  
RD  
Ready  
CN6  
DICOM  
DOCOM  
EMG  
DOG  
LSP  
5
RA2  
RA3  
(Note 9)  
15 ALM  
Trouble (Note 6)  
17  
1
16  
ZP  
Home position  
return completion  
Forced stop  
Proximity dog  
(Note 3, 5)  
(Note 5)  
2
10m or less  
(Note 9)  
3
Forward rotation stroke end  
Reverse rotation stroke end  
LSN  
4
13  
LZ  
Encoder Z-phase pulse  
(differential line driver)  
26 LZR  
11 LA  
24 LAR  
12 LB  
25 LBR  
23 LG  
Plate SD  
10m or less  
(Note 8)  
Encoder A-phase pulse  
(differential line driver)  
(Note 7)  
MR Configurator  
Personal  
computer  
Encoder B-phase pulse  
(differential line driver)  
Control common  
MR-J3USBCBL3M  
(Option)  
CN5  
+
(Note 1)  
CN1  
CC-Link  
Note 1. To prevent an electric shock, always connect the protective earth (PE) terminal (terminal marked ) of the servo amplifier to  
the protective earth (PE) of the control box.  
2. Connect the diode in the correct direction. If it is connected reversely, the servo amplifier will be faulty and will not output  
signals, disabling the emergency stop (EMG) and other protective circuits.  
3. The forced stop switch (normally closed contact) must be installed.  
4. Supply 24VDC 10% 150mA current for interfaces from the outside. 150mA is the value applicable when all I/O signals are  
used. The current capacity can be decreased by reducing the number of I/O points. Refer to section 4.8.2 (1) that gives the  
current value necessary for the interface.  
5. When starting operation, always turn on forced stop (EMG) and Forward/Reverse rotation stroke end (LSP/LSN). (Normally  
closed contacts)  
6. Trouble (ALM) turns on in normal alarm-free condition.  
7. Use MRZJW3-SETUP 211E.  
8. Personal computers or parameter modules can also be connected via the CN3 connector, enabling RS-422 communication.  
Note that using the USB communication function (CN5 connector) prevents the RS-422 communication function (CN3  
connector) from being used, and vice versa. They cannot be used together.  
Personal computer  
RS-232C/RS-422 conversion cable  
Recommended product: Interface cable  
DSV-CABV  
(Diatrend)  
Servo amplifier  
CN3  
To RS232C connector  
or  
MR-PRU03  
parameter module  
EIA568-compliant cable (10BASE-T cable, etc.)  
9. For the sink I/O interface. For the source I/O interface, refer to section 4.8.3.  
4 - 10  
4. SIGNALS AND WIRING  
4.3 Explanation of power supply system  
4.3.1 Signal explanations  
POINT  
For the layout of connector and terminal block, refer to outline drawings in  
chapter 12.  
Connection target  
(Application)  
Abbreviation  
Description  
Supply the following power to L1, L2, L3. For the 1-phase 200V to 230VAC power supply, connect  
the power supply to L1, L2, and keep L3 open.  
Servo amplifier  
MR-J3-  
10T to  
70T  
MR-J3-  
100T to  
22KT  
MR-J3-  
10T1 to  
40T1  
Power supply  
3-phase 200V to 230VAC, 50/60Hz  
1-phase 200V to 230VAC, 50/60Hz  
1-phase 100V to 120VAC, 50/60Hz  
L1 L2 L3  
L1  
L2  
L3  
Main circuit power  
supply  
L1 L2  
L1 L2  
Servo amplifier  
MR-J3-  
60T4 to  
22KT4  
Power supply  
3-phase 380V to 480VAC, 50/60Hz  
L1 L2 L3  
1) MR-J3-700T(4) or less  
When not using the power factor improving DC reactor, connect P1 and P2. (Factory-wired.)  
When using the power factor improving DC reactor, disconnect P1 and P2, and connect the  
power factor improving DC reactor to P1 and P2.  
2) MR-J3-11KT(4) to 22KT(4)  
MR-J3-11KT(4) to 22KT(4) do not have P2.  
Power factor  
improving DC  
reactor  
P1  
P2  
When not using the power factor improving reactor, connect P1 and P. (Factory-wired)  
When using the power factor improving reactor, connect it to P1 and P.  
Refer to section 14.11.  
1) MR-J3-350T or less  
MR-J3-200T4 or less  
When using servo amplifier built-in regenerative resistor, connect P( ) and D. (Factory-wired)  
When using regenerative option, disconnect P( ) and D, and connect regenerative option to  
P and C.  
2) MR-J3-350T4 500T(4) 700T(4)  
MR-J3-350T4 500T(4) and 700T(4) do not have D.  
When using servo amplifier built-in regenerative resistor, connect P and C. (Factory-wired)  
When using regenerative option, disconnect P and C, and connect regenerative option to P  
and C.  
P
C
D
Regenerative  
option  
3) MR-J3-11KT(4) to 22KT(4)  
MR-J3-11KT(4) to 22KT(4) do not have D.  
When not using the power regenerative converter and the brake unit, make sure to connect  
the regenerative option to P and C.  
Refer to section 14.2 to 14.5.  
Supply the following power to L11 L21.  
Servo amplifier  
MR-J3-  
10T to  
22KT  
MR-J3-  
10T1 to  
40T1  
MR-J3-  
60T4 to  
22KT4  
L11  
L21  
Control circuit  
power supply  
Power supply  
1-phase 200V to 230VAC, 50/60Hz  
1-phase 100V to 120VAC, 50/60Hz  
1-phase 380V to 480VAC, 50/60Hz  
L11 L21  
L11 L21  
L11 L21  
U
V
W
Connect to the servo motor power supply terminals (U, V, W). During power-on, do not open or  
close the motor power line. Otherwise, a malfunction or faulty may occur.  
Servo motor power  
Regenerative  
converter  
Brake unit  
Protective earth  
(PE)  
When using the power regenerative converter/brake unit, connect it to P and N.  
Do not connect to servo amplifier MR-J3-350T(4) or less.  
For details, refer to section 14.3 to 14.5.  
Connect to the earth terminal of the servo motor and to the protective earth (PE) of the control  
box to perform grounding.  
N
4 - 11  
4. SIGNALS AND WIRING  
4.3.2 Power-on sequence  
(1) Power-on procedure  
1) Always wire the power supply as shown in above section 4.1 using the magnetic contactor with the  
main circuit power supply (three-phase: L , L , L , single-phase: L , L ). Configure up an external  
1
2
3
1
2
sequence to switch off the magnetic contactor as soon as an alarm occurs.  
2) Switch on the control circuit power supply L , L simultaneously with the main circuit power supply  
11 21  
or before switching on the main circuit power supply. If the main circuit power supply is not on, the  
display shows the corresponding warning. However, by switching on the main circuit power supply,  
the warning disappears and the servo amplifier will operate properly.  
3) The servo amplifier can accept the servo-on (RYn0) about 1 to 2s after the main circuit power supply  
is switched on. Therefore, when servo-on (RYn0) is switched on simultaneously with the main circuit  
power supply, the base circuit will switch on in about 1 to 2s, and the ready (RD) will switch on in  
further about 5ms, making the servo amplifier ready to operate. (Refer to paragraph (2) in this  
section.)  
4) When the reset (RY(n+1)A or RY(n+3)A) is switched on, the base circuit is shut off and the servo  
motor shaft coasts.  
(2) Timing chart  
Servo-on (RYn0) accepted  
(2 to 2.5s)  
Main circuit  
ON  
Control circuit  
Power supply  
OFF  
ON  
Base circuit  
OFF  
95ms  
10ms  
10ms  
ON  
Servo-on  
(RYn0)  
OFF  
95ms  
Reset  
(RY(n+1)A  
or RY(n+3)A)  
ON  
OFF  
5ms  
10ms 5ms  
10ms 5ms  
10ms  
Ready  
(RD)  
ON  
OFF  
Power-on timing chart  
4 - 12  
4. SIGNALS AND WIRING  
(3) Forced stop  
Provide an external forced stop circuit to ensure that operation can be stopped and  
power switched off immediately.  
CAUTION  
Make up a circuit that shuts off main circuit power as soon as EMG is turned off at a forced stop. When  
EMG is turned off, the dynamic brake is operated to bring the servo motor to a sudden stop. At this time,  
the display shows the servo forced stop warning (AE6).  
During ordinary operation, do not use the external forced stop (EMG) to alternate stop and run.  
The servo amplifier life may be shortened.  
Also, if the forward rotation start (RYn1) and reverse rotation start (RYn2) are on or a pulse train is input  
during a forced stop, the servo motor will rotate as soon as the warning is reset. During a forced stop,  
always shut off the run command. Note also that during a forced stop, RYn1 and RYn2 must be off.  
Servo amplifier  
24VDC  
DICOM  
(Note)  
DOCOM  
Forced stop  
EMG  
Note. For the sink I/O interface. For the source I/O interface, refer to section 4.8.3.  
4 - 13  
4. SIGNALS AND WIRING  
4.3.3 CNP1, CNP2, CNP3 wiring method  
POINT  
Refer to table 14.1 in section 14.9 for the wire sizes used for wiring.  
MR-J3-500T to more, MR-J3-350T4 or more does not have these connectors.  
Use the supplied servo amplifier power supply connectors for wiring of CNP1, CNP2 and CNP3.  
(1) MR-J3-10T to MR-J3-100T  
(a) Servo amplifier power supply connectors  
(Note)  
Servo amplifier power supply connectors  
Connector for CNP1  
54928-0670 (Molex)  
Servo amplifier  
<Applicable cable example>  
Cable finish OD: to 8.8mm  
CNP1  
Connector for CNP2  
54928-0520 (Molex)  
CNP2  
CNP3  
Connector for CNP3  
54928-0370 (Molex)  
Note. These connectors are of insert type. As the crimping type, the following connectors (Molex) are recommended.  
For CNP1: 51241-0600 (connector), 56125-0118 (terminal)  
For CNP2: 51240-0500 (connector), 56125-0118 (terminal)  
For CNP3: 51241-0300 (connector), 56125-0118 (terminal)  
Crimping tool: CNP57349-5300  
<Connector applicable cable example>  
Cable finish OD: to 3.8mm  
(b) Termination of the cables  
Solid wire: After the sheath has been stripped, the cable can be used as it is.  
Sheath  
Core  
8 to 9mm  
Twisted wire: Use the cable after stripping the sheath and twisting the core. At this time, take care to avoid  
a short caused by the loose wires of the core and the adjacent pole. Do not solder the core as  
it may cause a contact fault. Alternatively, a bar terminal may be used to put the wires  
together.  
Cable size  
Bar terminal type  
For 1 cable (Note 1) For 2 cable  
AI-TWIN2 1.5-10BK  
Crimping tool (Note 2)  
Variocrimp 4 206-204  
2
[mm ]  
AWG  
16  
1.25/1.5  
2/2.5  
AI1.5-10BK  
AI2.5-10BU  
14  
Note 1. Manufacturer: Phoenix Contact  
2. Manufacturer: WAGO  
4 - 14  
4. SIGNALS AND WIRING  
(c) The twin type connector for CNP2 (L11 L21): 721-2105/026-000 (WAGO)  
Using this connector enables passing a wire of control circuit power supply.  
Refer to appendix 3 for details of connector.  
Twin type connector for CNP2  
CNP2  
L11  
L11  
Power supply  
or Front axis  
Rear axis  
L21  
L21  
(2) MR-J3-200T MR-J3-60T4 to MR-J3-200T4  
(a) Servo amplifier power supply connectors  
Servo amplifier power supply connectors  
Connector for CNP1  
721-207/026-000(Plug)  
(WAGO)  
Servo amplifier  
<Applicable cable example>  
Cable finish OD: 4.1mm or less  
CNP1  
Connector for CNP2  
721-205/026-000(Plug)  
(WAGO)  
CNP2  
CNP3  
Connector for CNP3  
721-203/026-000(Plug)  
(WAGO)  
(b) Termination of the cables  
Solid wire: After the sheath has been stripped, the cable can be used as it is.  
Sheath  
Core  
8 to 9mm  
Twisted wire: Use the cable after stripping the sheath and twisting the core. At this time, take care to avoid  
a short caused by the loose wires of the core and the adjacent pole. Do not solder the core as  
it may cause a contact fault. Alternatively, a bar terminal may be used to put the wires  
together.  
Cable size  
Bar terminal type  
For 1 cable (Note 1) For 2 cable  
AI-TWIN2 1.5-10BK  
Crimping tool (Note 2)  
Variocrimp 4 206-204  
2
[mm ]  
AWG  
16  
1.25/1.5  
2/2.5  
AI1.5-10BK  
AI2.5-10BU  
14  
Note 1. Manufacturer: Phoenix Contact  
2. Manufacturer: WAGO  
4 - 15  
4. SIGNALS AND WIRING  
(c) The twin type connector for CNP2 (L11 L21): 721-2105/026-000 (WAGO)  
Using this connector enables passing a wire of control circuit power supply.  
Refer to appendix 3 for details of connector.  
Twin type connector for CNP2  
CNP2  
L11  
L11  
Power supply  
or Front axis  
Rear axis  
L21  
L21  
(3) MR-J3-350T  
(a) Servo amplifier power supply connectors  
Servo amplifier power supply connectors  
Connector for CNP1  
PC4/6-STF-7.62-CRWH  
(Phoenix Contact)  
Servo amplifier  
<Applicable cable example>  
Cable finish OD: to 5mm  
CNP1  
Connector for CNP3  
PC4/3-STF-7.62-CRWH  
(Phoenix Contact)  
CNP3  
CNP2  
Connector for CNP2  
54928-0520 (Molex)  
<Applicable cable example>  
Cable finish OD: to 3.8mm  
(b) Termination of the cables  
1) CNP1 CNP3  
Solid wire: After the sheath has been stripped, the cable can be used as it is.  
Sheath  
Core  
7mm  
Twisted wire: Use the cable after stripping the sheath and twisting the core. At this time, take care to avoid  
a short caused by the loose wires of the core and the adjacent pole. Do not solder the core as  
it may cause a contact fault. Alternatively, a bar terminal may be used to put the wires  
together.  
Cable size  
Bar terminal type  
For 1 cable For 2 cables  
AI1.5-8BK  
Crimping tool  
Manufacturer  
2
[mm ]  
AWG  
16  
1.25/1.5  
2.0/2.5  
3.5  
AI-TWIN2 1.5-8BK  
AI-TWIN2 2.5-10BU  
14  
AI2.5-8BU  
AI4-10Y  
CRIMPFOX-ZA3  
Phoenix Contact  
12  
2) CNP2  
CNP2 is the same as MR-J3-100T or smaller capacities. Refer to (1) (b) in this section.  
4 - 16  
4. SIGNALS AND WIRING  
(4) Insertion of cable into Molex and WAGO connectors  
Insertion of cable into 54928-0670, 54928-0520, 54928-0370 (Molex) connectors and 721-207/026-000,  
721-205/026-000 and 721-203/026-000 (WAGO) connectors are as follows.  
The following explains for Molex, however use the same procedures for inserting WAGO connectors as  
well.  
POINT  
It may be difficult for a cable to be inserted to the connector depending on  
wire size or bar terminal configuration. In this case, change the wire type or  
correct it in order to prevent the end of bar terminal from widening, and then  
insert it.  
How to connect a cable to the servo amplifier power supply connector is shown below.  
(a) When using the supplied cable connection lever  
1) The servo amplifier is packed with the cable connection lever.  
a) 54932-0000 (Molex)  
[Unit: mm]  
20.6  
10  
Approx.4.9  
M X J  
5 4 9 3 2  
3.4  
b) 231-131 (WAGO)  
[Unit: mm]  
20.3  
10  
16  
1.3  
1.5  
17.5  
4 - 17  
4. SIGNALS AND WIRING  
2) Cable connection procedure  
Cable connection lever  
1) Attach the cable connection lever to the housing.  
(Detachable)  
2) Push the cable connection lever in the direction  
of arrow.  
3) Hold down the cable connection lever and insert  
the cable in the direction of arrow.  
4) Release the cable connection lever.  
4 - 18  
4. SIGNALS AND WIRING  
(b) Inserting the cable into the connector  
1) Applicable flat-blade screwdriver dimensions  
Always use the screwdriver shown here to do the work.  
[Unit: mm]  
Approx.R0.3  
Approx.22  
3
Approx.R0.3  
2) When using the flat-blade screwdriver - part 1  
1) Insert the screwdriver into the square hole.  
Insert it along the top of the square hole to insert it smoothly.  
2) If inserted properly, the screwdriver is held.  
3) With the screwdriver held, insert the cable in the direction  
of arrow. (Insert the cable as far as it will go.)  
4) Releasing the screwdriver connects the cable.  
4 - 19  
4. SIGNALS AND WIRING  
3) When using the flat-blade screwdriver - part 2  
1) Insert the screwdriver into the  
square window at top of the  
connector.  
2) Push the screwdriver in the  
direction of arrow.  
3) With the screwdriver pushed, insert the cable in the  
direction of arrow. (Insert the cable as far as it will go.)  
4) Releasing the screwdriver connects the cable.  
4 - 20  
4. SIGNALS AND WIRING  
(5) How to insert the cable into Phoenix Contact connector  
POINT  
Do not use a precision driver because the cable cannot be tightened with  
enough torque.  
Insertion of cables into Phoenix Contact connector PC4/6-STF-7.62-CRWH or PC4/3-STF-7.62-CRWH is  
shown as follows.  
Before inserting the cable into the opening, make sure that the screw of the terminal is fully loose. Insert the  
core of the cable into the opening and tighten the screw with a flat-blade screwdriver. When the cable is not  
tightened enough to the connector, the cable or connector may generate heat because of the poor contact.  
(When using a cable of 1.5mm2 or less, two cables may be inserted into one opening.)  
Secure the connector to the servo amplifier by tightening the connector screw.  
For securing the cable and the connector, use a flat-blade driver with 0.6mm blade edge thickness and  
3.5mm diameter (Recommended flat-blade screwdriver: Phoenix Contact SZS 0.6 3.5). Apply 0.5 to 0.6  
N m torque to screw.  
[Unit: mm]  
Flat-blade  
screwdriver  
180  
100  
To loosen To tighten  
Wire  
Opening  
Recommended flat-blade screwdriver dimensions  
To loosen  
To tighten  
Connector screw  
Flat-blade  
screwdriver  
Servo amplifier power  
supply connector  
4 - 21  
4. SIGNALS AND WIRING  
4.4 Connectors and signal arrangements  
POINT  
The pin configurations of the connectors are as viewed from the cable  
connector wiring section.  
The servo amplifier front view shown is that of the MR-J3-20T or less. Refer to chapter 12 Outline Drawings for  
the appearances and connector layouts of the other servo amplifiers.  
CN5 (USB connector)  
Personal computer  
CN6  
CN3  
MR-PRU03  
parameter module  
1
EMG  
3
14  
RD  
16  
2
DOG  
4
15  
CN1  
CC-Link  
communication  
ALM  
17  
LSP  
5
ZP  
18  
DOCOM  
LSN  
6
19  
NP  
21  
DICOM  
7
OPC  
20  
PP  
8
9
22  
10  
23  
LG  
CN2  
11  
LA  
13  
LZ  
24  
LAR  
26  
2
LG  
6
5
10  
12  
LB  
25  
4
8
MRR  
MDR  
LBR  
1
P5  
9
BAT  
3
7
The frames of the CN1 and CN6  
connectors are connected to the  
MR  
MD  
LZR  
PE (earth) terminal ( ) in the amplifier.  
The 3M make connector is shown.  
When using any other connector,  
refer to section 14.1.2.  
4 - 22  
4. SIGNALS AND WIRING  
4.5 Signal (device) explanation  
4.5.1 I/O devices  
The CN6 connector provides three pins for inputs and three other pins for outputs. Devices assigned to these  
pins are changeable. To make this change, configure parameter settings of Nos. PD06 to PD11, PD12, and  
PD14. Refer to section 4.8.2 for the I/O interfaces (symbols in the I/O Division field in the table) of the  
corresponding connector pins.  
Parameter of change  
Pin type  
CN6 connector pin No.  
I/O division  
DI-1  
Device in initial status  
target device  
Input-only pins  
1
2
Forced stop (EMG)  
Proximity dog (DOG)  
No.PD06  
No.PD07  
No.PD08  
No.PD09  
No.PD10  
No.PD11  
3
Forward rotation stroke end (LSP)  
Reverse rotation stroke end (LSN)  
Ready (RD)  
4
Output-only pins  
14  
15  
16  
DO-1  
Trouble (ALM)  
Home position return completion (ZP)  
4 - 23  
4. SIGNALS AND WIRING  
(1) Input device  
POINT  
Input devices assigned to the CN6 connector pins cannot be used with the  
remote input of the CC-Link communication function.  
Connector  
Device  
Symbol  
Functions/Applications  
pin No.  
Forced stop (EMG) is fixed at CN6-1. Assigning this device to any other pin is  
not allowed. For device details, refer to section 3.5.1 (1).  
For device details, refer to section 3.5.1 (1).  
Forced stop  
EMG  
CN6-1  
Servo-on  
SON  
ST1  
ST2  
Forward rotation start  
Reverse rotation start  
CN6-2  
(Note)  
CN6-3  
(Note)  
CN6-4  
(Note)  
Proximity dog  
DOG  
LSP  
LSN  
Forward rotation stroke end  
Reverse rotation stroke end  
Automatic/manual selection  
Temporary stop/Restart  
Internal torque limit  
selection  
MD0  
TSTP  
TL1  
Proportion control  
Gain changing  
Reset  
PC  
CDP  
RES  
CR  
Clear  
Turn CR on to clear the position control counter droop pulses on its leading  
edge. The pulse width should be 10ms or more.  
When the parameter No.PD22 setting is "  
cleared while CR is on.  
1", the pulses are always  
Manual pulse generator  
multiplication 1  
TP0  
TP1  
Used to select the multiplication factor of the manual pulse generator.  
When it is not selected, the parameter No.PA05 setting is made valid.  
Manual pulse generator  
multiplication 2  
Manual pulse generator  
multiplication factor  
(Note) Input device  
TP1  
0
TP0  
0
Parameter No.PA05 setting  
0
1
1 time  
10 times  
100 times  
1
0
1
1
Note. 0: OFF  
1: ON  
Note. These are pin Nos. assigned at default.  
4 - 24  
4. SIGNALS AND WIRING  
(2) Output device  
POINT  
Output devices assigned to the CN6 connector pins can be used with the  
remote output of the CC-Link communication function.  
Connector  
Device  
Symbol  
Functions/Applications  
pin No.  
Ready  
CN6-14 For device details, refer to section 3.5.1 (2).  
RD  
(Note)  
Trouble  
ALM  
CN6-15 ALM turns off when power is switched off or the protective circuit is activated to  
(Note)  
shut off the base circuit. Without alarm occurring, ALM turns on within 1.5s after  
power-on.  
The significance of this device is opposite of that of remote output (RX (n 1)A  
or RX (n 3)A).  
Home position return  
completion  
CN6-16 For device details, refer to section 3.5.1 (2).  
(Note)  
ZP  
In position  
INP  
CPO  
TLC  
Rough match  
Limiting torque  
Electromagnetic brake  
interlock  
MBR  
Temporary stop  
PUS  
WNG  
BWNG  
MEND  
DB  
Warning  
Battery warning  
Movement completion  
dynamic brake interlock  
Position range  
POT  
PT0  
Point table No. output 1  
Point table No. output 2  
Point table No. output 3  
Point table No. output 4  
Point table No. output 5  
Point table No. output 6  
Point table No. output 7  
Point table No. output 8  
Speed command reached  
PT1  
PT2  
PT3  
PT4  
PT5  
PT6  
PT7  
SA  
SA turns on when servo-on (SON) is on and the commanded speed is at the  
target speed.  
SA always turns on when servo-on (SON) is on and the commanded speed is  
0r/min.  
SA turns off when servo-on (SON) is off or the commanded speed is in  
acceleration/deceleration.  
4 - 25  
4. SIGNALS AND WIRING  
Connector  
pin No.  
Device  
Zero speed  
Symbol  
ZSP  
Functions/Applications  
ZSP turns on when the servo motor speed is zero speed (50r/min) or less. Zero  
speed can be changed using parameter No.PC17.  
Example  
Zero speed is 50r/min  
1)  
OFF level  
70r/min  
ON level  
50r/min  
Forward  
rotation  
direction  
20r/min  
(Hysteresis width)  
3)  
2)  
Parameter  
No.PC17  
Servo motor  
speed  
0r/min  
Parameter  
No.PC17  
ON level  
50r/min  
OFF level  
70r/min  
Reverse  
rotation  
direction  
20r/min  
(Hysteresis width)  
4)  
zero speed  
(ZSP)  
ON  
OFF  
ZSP turns on 1) when the servo motor is decelerated to 50r/min, and ZSP turns  
off 2) when the servo motor is accelerated to 70r/min again.  
ZSP turns on 3) when the servo motor is decelerated again to 50r/min, and turns  
off 4) when the servo motor speed has reached -70r/min.  
The range from the point when the servo motor speed has reached ON level, and  
ZSP turns on, to the point when it is accelerated again and has reached OFF  
level is called hysteresis width.  
Hysteresis width is 20r/min for this servo amplifier.  
Variable gain selection  
CDPS  
CDPS is on during gain changing.  
Note. These are pin Nos. assigned at default.  
4.5.2 Input signals  
Connector  
pin No.  
Device  
Symbol  
Functions/Applications  
Manual pulse generator  
PP  
NP  
CN6-6  
Used to connect the manual pulse generator (MR-HDP01). (Refer to section  
14.18.)  
CN6-19  
4.5.3 Output signals  
Refer to section 4.8.2 for the output interfaces (symbols in the I/O Division field in the table) of the  
corresponding connector pins.  
Connector  
pin No.  
I/O  
division  
Signal  
Symbol  
Functions/Applications  
DO-2  
Encoder A-phase pulse  
(differential line driver)  
LA  
CN6-11  
CN6-24  
Outputs pulses per servo motor revolution set in parameter No.PA15  
in the differential line driver system. In CCW rotation of the servo  
motor, the encoder B-phase pulse lags the encoder A-phase pulse  
by a phase angle of /2.  
LAR  
Encoder B-phase pulse  
(differential line driver)  
LB  
CN6-12  
CN6-25  
The relationships between rotation direction and phase difference of  
the A- and B-phase pulses can be changed using parameter No.  
PC19.  
LBR  
Encoder Z-phase pulse  
(differential line driver)  
DO-2  
LZ  
CN6-13  
CN6-26  
Outputs the zero-point signal of the encoder in the differential line  
driver system. One pulse is output per servo motor revolution. This  
signal turns on when the zero-point position is reached. (Negative  
logic)  
LZR  
The minimum pulse width is about 400 s. For home position return  
using this pulse, set the creep speed to 100r/min. or less.  
4 - 26  
4. SIGNALS AND WIRING  
4.5.4 Power supply  
Connector  
pin No.  
I/O  
division  
Signal  
Symbol  
DICOM  
Functions/Applications  
Digital I/F power supply  
input  
CN6-5  
Used to input 24VDC (24VDC 10% 150mA) for I/O interface. The  
power supply capacity changes depending on the number of I/O  
interface points to be used.  
Connect the plus of 24VDC terminal external power supply for the  
sink interface.  
Digital I/F common  
DOCOM  
OPC  
CN6-17  
CN6-18  
Common terminal for input signals such as DOG and EMG. Pins are  
connected internally. Separated from LG.  
Connect the plus of 24VDC terminal external power supply for the  
source interface.  
When using the MR-HDP01 manual pulse generator, connect OPC  
and DICOMD, and supply OPC with the positive ( ) voltage of  
24VDC.  
Open collector power input  
Control common  
Shield  
LG  
SD  
CN6-23  
Plate  
Common terminal for the differential line driver of the encoder pulses  
(LA LAR LB LBR LZ LZR).  
Connect the external conductor of the shield cable.  
4.6 Detailed description of signals (devices)  
4.6.1 Forward rotation start reverse rotation start temporary stop/restart  
(1) A forward rotation start (RYn1) or a reverse rotation start (RYn2) should make the sequence which can be  
used after the main circuit has been established. These signals are invalid if it is switched on before the  
main circuit is established.  
Normally, it is interlocked with the ready signal (RD).  
(2) A start in the servo amplifier is made when a forward rotation start (RYn1) or a reverse rotation start (RYn2)  
changes from OFF to ON. The delay time of the servo amplifier's internal processing is max. 3ms. The  
delay time of other devices is max. 10ms.  
3ms or less  
3ms or less  
Forward  
rotation  
0r/min  
Servo motor speed  
10ms  
or less  
Forward rotation start (RYn1)  
or reverse rotation start (RYn2)  
6ms or more  
Temporary stop/Restart (RYn7)  
(3) When a programmable controller is used, the ON time of a forward rotation start (RYn1), a reverse rotation  
start (RYn2) or temporary start/stop (RYn7) signal should be 6ms or longer to prevent a malfunction.  
(4) During operation, the forward rotation start (RYn1) or reverse rotation start (RYn2) is not accepted. The  
next operation should always be started after the rough match (RXn2) is output with the rough match output  
range set to “0” or after the movement completion (RXnC) is output.  
4 - 27  
4. SIGNALS AND WIRING  
4.6.2 Movement completion rough match in position  
POINT  
If an alarm cause, etc. are removed and servo-on occurs after a stop is made  
by servo-off, alarm occurrence or Forced stop (EMG) ON during automatic  
operation, Movement completion (MEND), Rough-match, (CPO) and In  
position (INP) are turned on. To resume operation, confirm the current  
position and the selected point table No. for preventing unexpected operation.  
(1) Movement completion  
The following timing charts show the output timing relationships between the position command generated  
in the servo amplifier and the movement completion (RYnC). This timing can be changed using parameter  
No.PA10 (in-position range). RYnC turns ON in the servo-on status.  
ON  
Forward rotation start (RYn1)  
or reverse rotation start (RYn2)  
OFF  
Position command  
3ms or less  
Servo motor speed  
Position command and  
Forward  
servo motor speed  
rotation  
In-position range  
0r/min  
ON  
Movement completion (RXnC)  
OFF  
When parameter No.PA10 is small  
ON  
Forward rotation start (RYn1)  
or reverse rotation start (RYn2)  
OFF  
Position command  
Servo motor speed  
3ms or less  
Position command and  
servo motor speed  
Forward  
rotation  
In-position range  
0r/min  
ON  
Movement completion (RXnC)  
OFF  
When parameter No.PA10 is large  
4 - 28  
4. SIGNALS AND WIRING  
(2) Rough match  
The following timing charts show the relationships between the signal and the position command generated  
in the servo amplifier. This timing can be changed using parameter No.PC11 (rough match output range).  
RXn2 turns ON in the servo-on status.  
ON  
Forward rotation start (RYn1)  
or reverse rotation start (RYn2)  
OFF  
3ms or less  
Forward  
rotation  
Position command  
0r/min  
ON  
Rough match (RXn2)  
OFF  
When "0" is set in parameter No.PC11  
ON  
OFF  
Forward rotation start (RYn1)  
Rough match output range  
3ms or less  
or reverse rotation start (RYn2)  
Forward  
rotation  
0r/min  
Position command  
ON  
Rough match (RXn2)  
OFF  
When more than "0" is set in parameter No.PC11  
(3) In position  
The following timing chart shows the relationship between the signal and the feedback pulse of the servo  
motor. This timing can be changed using parameter No.PA10 (in-position range). turns on RYn1 in the  
servo-on status.  
ON  
Forward rotation start (RYn1)  
or reverse rotation start (RYn2)  
OFF  
In-position range  
3ms or less  
Servo motor speed  
Forward  
rotation  
0r/min  
ON  
In position (RXn1)  
OFF  
When positioning operation is performed once  
ON  
Forward rotation start (RYn1)  
or reverse rotation start (RYn2)  
OFF  
3ms or less  
In-position range  
Forward  
rotation  
Servo motor speed  
0 r/min  
Reverse  
rotation  
ON  
In position (RXn1)  
OFF  
When servo motor reverses rotation direction during automatic continuous operation  
4 - 29  
4. SIGNALS AND WIRING  
4.6.3 Torque limit  
If the torque limit is canceled during servo lock, the servo motor may suddenly  
rotate according to position deviation in respect to the command position.  
CAUTION  
(1) Torque limit and torque  
By setting parameter No.PA11 (forward rotation torque limit) or parameter No.PA12 (reverse rotation torque  
limit), torque is always limited to the maximum value during operation. A relationship between the limit  
value and servo motor torque is shown below.  
CW direction  
Max. torque  
CCW direction  
[%]  
100  
100  
0
Torque limit value in Torque limit value in  
parameter No.PA12 parameter No.PA11  
(2) Torque limit value selection  
As shown below, the forward rotation torque limit (parameter No.PA11), reverse rotation torque limit  
(parameter No.PA12) or internal torque limit 2 (parameter No.PC35) can be chosen using the external  
torque limit selection (RY(n 2)6).  
Torque limit to be enabled  
(Note) RY(n 2) 6  
0
Limit value status  
CCW driving/CW  
regeneration  
CW driving/CCW  
regeneration  
Parameter No.PA11  
Parameter No.PA12  
Parameter No.PA11  
Parameter No.PC35  
Parameter No.PC35  
Parameter No.PA11  
Parameter No.PA12  
Parameter No.PA12  
Parameter No.PA11  
Parameter No.PA12  
1
Parameter No.PC35  
Parameter No.PC35  
Note. 0: OFF  
1: ON  
(3) Limiting torque (RXn4)  
RXn4 turns on when the servo motor torque reaches the torque limited.  
4 - 30  
4. SIGNALS AND WIRING  
4.7 Alarm occurrence timing chart  
When an alarm has occurred, remove its cause, make sure that the operation  
signal is not being input, ensure safety, and reset the alarm before restarting  
operation.  
CAUTION  
As soon as an alarm occurs, turn off Servo-on (RYn0) and power off.  
When an alarm occurs in the servo amplifier, the base circuit is shut off and the servo motor is coated to a  
stop. Switch off the main circuit power supply in the external sequence. To reset the alarm, switch the control  
circuit power supply from off to on, press the "SET" button on the current alarm screen, or turn the reset  
(RY(n 1)A or RY(n 3)A) from off to on. However, the alarm cannot be reset unless its cause is removed.  
(Note 1)  
Main circuit  
control circuit  
power supply  
ON  
OFF  
ON  
Power off  
Power on  
Base circuit  
OFF  
Dynamic brake  
Valid  
Invalid  
Brake operation  
Brake operation  
Servo-on  
(RYn0)  
ON  
OFF  
ON  
Ready  
(RD)  
OFF  
ON  
Trouble  
(ALM)  
OFF  
ON  
1.5s  
Reset  
(RY(n+1)A  
or RY(n+3)A)  
OFF  
50ms or more  
15 to 60ms (Note 2)  
Alarm occurs.  
Remove cause of trouble.  
Note 1. Shut off the main circuit power as soon as an alarm occurs.  
2. Changes depending on the operating status.  
(1) Overcurrent, overload 1 or overload 2  
If operation is repeated by switching control circuit power off, then on to reset the overcurrent (A32),  
overload 1 (A50) or overload 2 (A51) alarm after its occurrence, without removing its cause, the  
servo amplifier and servo motor may become faulty due to temperature rise. Securely remove the  
cause of the alarm and also allow about 30 minutes for cooling before resuming operation.  
(2) Regenerative alarm  
If operation is repeated by switching control circuit power off, then on to reset the regenerative (A30)  
alarm after its occurrence, the external regenerative resistor will generate heat, resulting in an  
accident.  
(3) Instantaneous power failure  
Undervoltage (A10) occurs when the input power is in either of the following statuses.  
A power failure of the control circuit power supply continues for 60ms or longer and the control  
circuit is not completely off.  
The bus voltage dropped to 200VDC or less for the MR-J3- T, to 158VDC or less for the MR-J3-  
T1, or to 380VDC or less for the MR-J3- T4.  
(4) Incremental system  
When an alarm occurs, the home position is lost. When resuming operation after deactivating the  
alarm, make a home position return.  
4 - 31  
4. SIGNALS AND WIRING  
4.8 Interface  
4.8.1 Internal connection diagram  
Servo amplifier  
CN6  
CN6  
24VDC  
DICOM  
RA  
RA  
5
14 RD  
(Note 1, 2)  
DOCOM  
17  
15 ALM  
16 ZP  
Forced stop  
Approx.5.6k  
Approx.5.6k  
EMG  
DOG  
LSP  
1
2
3
4
Note 2  
Note 1  
LSN  
<Isolated>  
CN6  
13  
LZ  
26 LZR  
11 LA  
24 LAR  
12 LB  
25 LBR  
23 LG  
CN5  
Differential line  
driver output  
(35mA or less)  
VBUS  
1
2
3
5
D
USB  
D
GND  
Servo motor  
Encoder  
CN2  
7
8
3
4
2
MD  
MDR  
MR  
MRR  
LG  
E
M
Note 1. Devices assigned to these pins can be changed in the parameter settings.  
2. For this sink I/O interface. For the source I/O interface, refer to section 4.8.3.  
4 - 32  
4. SIGNALS AND WIRING  
4.8.2 Detailed description of interfaces  
This section provides the details of the I/O signal interfaces (refer to the I/O division in the table) given in  
section 4.5.1. Refer to this section and make connection with the external equipment.  
(1) Digital input interface DI-1  
Give a signal with a relay or open collector transistor. Refer to section 4.8.3 for the source input.  
Servo amplifier  
For transistor  
EMG,  
etc.  
5.6k  
Approx. 5mA  
Switch  
TR  
DICOM  
VCES 1.0V  
ICEO 100  
24VDC 10%  
150mA  
A
(2) Digital output interface DO-1  
A lamp, relay or photocoupler can be driven. Install a diode (D) for an inductive load, or install an inrush  
current suppressing resistor (R) for a lamp load. (Rated current: 40mA or less, maximum current: 50mA or  
less, inrush current: 100mA or less) A maximum of 2.6V voltage drop occurs in the servo amplifier.  
Refer to section 4.8.3 for the source output.  
If polarity of diode is  
reversed, servo  
Servo amplifier  
amplifier will fail.  
ALM,  
etc.  
Load  
DOCOM  
(Note)  
24VDC 10%  
150mA  
Note. If the voltage drop (maximum of 2.6V) interferes with the relay operation, apply high voltage (up to  
26.4V) from external source.  
4 - 33  
4. SIGNALS AND WIRING  
(3) Encoder output pulse DO-2 (Differential line driver system)  
(a) Interface  
Max. output current: 35mA  
Servo amplifier  
Servo amplifier  
LA  
(LB, LZ)  
LA  
(LB, LZ)  
Am26LS32 or equivalent  
150  
High-speed photocoupler  
100  
LAR  
LAR  
(LBR, LZR)  
(LBR, LZR)  
LG  
SD  
SD  
(b) Output pulse  
Servo motor CCW rotation  
LA  
Time cycle (T) is determined by the settings  
of parameter No.PA15 and PC19.  
LAR  
LB  
T
LBR  
/2  
LZ  
LZR  
400 s or more  
OP  
4 - 34  
4. SIGNALS AND WIRING  
4.8.3 Source I/O interfaces  
In this servo amplifier, source type I/O interfaces can be used. In this case, all DI-1 input signals and DO-1  
output signals are of source type. Perform wiring according to the following interfaces.  
(1) Digital input interface DI-1  
Servo amplifier  
EMG,  
Approx. 5.6k  
etc.  
Switch  
DICOM  
24VDC 10%  
150mA  
Approx. 5mA  
VCES 1.0V  
ICEO 100 A  
(2) Digital output interface DO-1  
A maximum of 2.6V voltage drop occurs in the servo amplifier.  
If polarity of diode is  
reversed, servo  
amplifier will fail.  
Servo amplifier  
ALM,  
etc.  
Load  
DOCOM  
(Note)  
24VDC 10%  
150mA  
Note. If the voltage drop (maximum of 2.6V) interferes with the relay operation, apply high voltage (up to  
26.4V) from external source.  
4 - 35  
4. SIGNALS AND WIRING  
4.9 Treatment of cable shield external conductor  
In the case of the CN2 and CN6 connectors, securely connect the shielded external conductor of the cable to  
the ground plate as shown in this section and fix it to the connector shell.  
External conductor  
Sheath  
Core  
External conductor  
Pull back the external conductor to cover the sheath.  
Sheath  
Strip the sheath.  
(1) For CN6 connector (3M connector)  
Screw  
Cable  
Screw  
Ground plate  
(2) For CN2 connector (3M or Molex connector)  
Cable  
Ground plate  
Screw  
4 - 36  
4. SIGNALS AND WIRING  
4.10 Connection of servo amplifier and servo motor  
During power-on, do not open or close the motor power line. Otherwise, a  
malfunction or faulty may occur.  
WARNING  
4.10.1 Connection instructions  
Insulate the connections of the power supply terminals to prevent an electric  
WARNING  
shock.  
Connect the wires to the correct phase terminals (U, V, W) of the servo amplifier  
and servo motor. Not doing so may cause unexpected operation.  
CAUTION  
Do not connect AC power supply directly to the servo motor. Otherwise, a fault  
may occur.  
POINT  
Refer to section 14.1 for the selection of the encoder cable.  
This section indicates the connection of the servo motor power (U, V, W). Use of the optional cable and  
connector set is recommended for connection between the servo amplifier and servo motor. When the options  
are not available, use the recommended products. Refer to section 14.1 for details of the options.  
(1) For grounding, connect the earth cable of the servo motor to the protective earth (PE) terminal ( ) of the  
servo amplifier and connect the ground cable of the servo amplifier to the earth via the protective earth of  
the control box. Do not connect them directly to the protective earth of the control panel.  
Control box  
Servo  
amplifier  
Servo motor  
PE terminal  
(2) Do not share the 24VDC interface power supply between the interface and electromagnetic brake. Always  
use the power supply designed exclusively for the electromagnetic brake.  
4 - 37  
4. SIGNALS AND WIRING  
4.10.2 Power supply cable wiring diagrams  
(1) HF-MP service HF-KP series servo motor  
(a) When cable length is 10m or less  
10m or less  
MR-PWS1CBL M-A1-L  
MR-PWS1CBL M-A2-L  
MR-PWS1CBL M-A1-H  
MR-PWS1CBL M-A2-H  
Servo amplifier  
Servo motor  
U
CNP3  
AWG 19(red)  
U
V
AWG 19(white)  
AWG 19(black)  
AWG 19(green/yellow)  
V
M
W
W
(b) When cable length exceeds 10m  
When the cable length exceeds 10m, fabricate an extension cable as shown below. In this case, the  
motor power supply cable pulled from the servo motor should be within 2m long.  
Refer to section 14.9 for the wire used for the extension cable.  
2m or less  
MR-PWS1CBL2M-A1-L  
MR-PWS1CBL2M-A2-L  
MR-PWS1CBL2M-A1-H  
MR-PWS1CBL2M-A2-H  
MR-PWS2CBL03M-A1-L  
MR-PWS2CBL03M-A2-L  
50m or less  
Servo amplifier  
Servo motor  
U
Extension cable  
CNP3  
AWG 19(red)  
U
V
AWG 19(white)  
AWG 19(black)  
AWG 19(green/yellow)  
V
M
W
W
(Note)  
(Note)  
a) Relay connector for  
extension cable  
b)  
Relay connector for motor  
power supply cable  
Note. Use of the following connectors is recommended when ingress protection (IP65) is necessary.  
Protective  
structure  
IP65  
Relay connector  
Description  
Connector: RM15WTPZ-4P(71)  
a) Relay connector  
for extension cable  
Cord clamp: RM15WTP-CP(5)(71)  
(Hirose Electric)  
Numeral changes depending on the cable OD.  
Connector: RM15WTJA-4S(71)  
b) Relay connector  
for motor power  
supply cable  
IP65  
Cord clamp: RM15WTP-CP(8)(71)  
Numeral changes depending on the cable OD  
(Hirose Electric)  
4 - 38  
4. SIGNALS AND WIRING  
(2) HF-SP series HC-RP series HC-UP series HC-LP series servo motor  
POINT  
B Insert a contact in the direction shown in the figure. If inserted in the wrong  
direction, the contact is damaged and falls off.  
Soldered part or  
crimping part  
facing down  
Soldered part  
or crimping part  
facing up  
Pin No.1  
Pin No.1  
For CM10-SP10S-  
For CM10-SP2S-  
(a) Wiring diagrams  
Refer to section 14.9 for the cables used for wiring.  
1) When the power supply connector and the electromagnetic brake connector are separately supplied.  
50m or less  
Servo amplifier  
Servo motor  
U
V
U
V
M
W
W
CN3  
24VDC  
DOCOM  
DICOM  
RA1  
RA2  
ALM  
(Note 2) MBR  
Electromagnetic  
Forced  
stop  
(EMG)  
brake interlock Trouble  
(MBR) (ALM)  
RA2  
RA1  
24VDC power  
supply for  
electromagnetic  
brake  
B1  
B2  
(Note 1)  
Note 1. There is no polarity in electromagnetic brake terminals B1 and B2.  
2. When using a servo motor with an electromagnetic brake, assign the electromagnetic brake interlock (MBR) to  
external output signal in the parameters No.PD09 to PD11.  
4 - 39  
4. SIGNALS AND WIRING  
2) When the power supply connector and the electromagnetic brake connector are shared.  
50m or less  
Servo amplifier  
Servo motor  
U
V
U
V
M
W
W
CN3  
24VDC  
DOCOM  
DICOM  
RA1  
RA2  
ALM  
(Note 2)  
MBR  
Electromagnetic  
Forced  
stop  
(EMG)  
brake interlock Trouble  
(MBR) (ALM)  
RA2  
RA1  
24VDC power  
supply for  
electromagnetic  
brake  
B1  
B2  
(Note 1)  
Note 1. There is no polarity in electromagnetic brake terminals B1 and B2.  
2. When using a servo motor with an electromagnetic brake, assign the electromagnetic brake interlock (MBR) to  
external output signal in the parameters No.PD09 to PD11.  
(b) Connector and signal allotment  
The connector fitting the servo motor is prepared as optional equipment. Refer to section 14.1. For  
types other than those prepared as optional equipment, refer to chapter 3 in Servo Motor Instruction  
Manual (Vol.2), to select.  
Servo motor side connectors  
Servo motor  
Electromagnetic  
brake  
Encoder  
Power supply  
MS3102A18-10P  
MS3102A22-22P  
HF-SP52(4) to 152(4)  
HF-SP51 81  
CM10-R2P  
(DDK)  
HF-SP202(4) to 502(4)  
HF-SP121 to 301  
HF-SP421 702(4)  
HC-RP103 to 203  
HC-RP353 503  
HC-UP72 152  
CE05-2A32-17PD-B  
CE05-2A22-23PD-B  
CE05-2A24-10PD-B  
CE05-2A22-23PD-B  
a
CM10-R10P  
(DDK)  
The connector for  
power is shared  
c
b
HC-UP202 to 502  
CE05-2A24-10PD-B MS3102A10SL-4P  
The connector for  
power is shared  
CE05-2A24-10PD-B MS3102A10SL-4P  
HC-LP52 to 152  
HC-LP202 302  
CE05-2A22-23PD-B  
4 - 40  
4. SIGNALS AND WIRING  
Power supply connector signal allotment  
MS3102A18-10P  
Encoder connector signal allotment  
CM10-R10P  
Power supply connector signal allotment  
CE05-2A22-23PD-B  
MS3102A22-22P  
CE05-2A32-17PD-B  
Terminal  
Terminal  
Signal  
No.  
Terminal  
Signal  
Signal  
7
6
5
4
G
H
A
No.  
1
No.  
A
10  
9
3
2
1
C
B
D
A
F
E
B
MR  
A
B
C
U
V
U
V
8
2
MRR  
B
C
D
3
W
C
W
View a  
4
BAT  
LG  
View b  
View b  
D
D
5
(earth)  
(earth)  
6
E
F
7
8
P5  
B2  
(Note)  
B1  
G
H
9
10  
SHD  
(Note)  
Note. For the motor with  
an electromagnetic  
brake, supply  
electromagnetic  
brake power  
(24VDC). There is  
no polarity.  
Power supply connector signal allotment  
CE05-2A24-10PD-B  
Brake connector signal allotment  
CM10-R2P  
Brake connector signal allotment  
MS3102A10SL-4P  
Terminal  
Signal  
No.  
Terminal  
Terminal  
Signal  
Signal  
No.  
No.  
A
C
F
2
1
A
B
C
U
V
B1  
(Note)  
B2  
B1  
(Note)  
B2  
E
G
B
A
B
1
A
D
W
2
B
View c  
View b  
View c  
(Note)  
(Note)  
D
E
(earth)  
B1  
Note. For the motor with  
an electromagnetic  
brake, supply  
Note. For the motor with  
an electromagnetic  
brake, supply  
(Note)  
B2  
electromagnetic  
brake power  
electromagnetic  
brake power  
F
(Note)  
(24VDC). There is  
no polarity.  
(24VDC). There is  
no polarity.  
G
Note. For the motor with  
an electromagnetic  
brake, supply  
electromagnetic  
brake power  
(24VDC). There is  
no polarity.  
4 - 41  
4. SIGNALS AND WIRING  
(3) HA-LP series servo motor  
(a) Wiring diagrams  
Refer to section 14.9 for the cables used for wiring.  
1) 200V class  
NFB  
50m or less  
Servo amplifier  
Servo motor  
M
MC  
TE  
L1  
L2  
L3  
U
U
V
V
W
W
BU  
BV  
CN3  
DOCOM  
DICOM  
BW  
24VDC  
Cooling fan  
(Note 2)  
RA1  
RA2  
ALM  
MBR  
(Note 4)  
Electromagnetic  
Forced  
stop  
(EMG)  
brake interlock Trouble  
(MBR) (ALM)  
RA2  
RA1  
24VDC power  
B1  
B2  
supply for  
electromagnetic  
brake  
(Note 1)  
OHS1  
OHS2 Servo motor  
thermal relay  
24VDC  
power supply  
(Note 3)  
RA3  
Note 1. There is no polarity in electromagnetic brake terminals B1 and B2.  
2. There is no BW when the power supply of the cooling fan is a 1-phase.  
3. Configure the power supply circuit which turns off the magnetic contactor after detection of servo motor thermal.  
4. When using a servo motor with an electromagnetic brake, assign the electromagnetic brake interlock (MBR) to external  
output signal in the parameters No.PD09 to PD11.  
4 - 42  
4. SIGNALS AND WIRING  
2) 400V class  
(Note4)  
Cooling fan power supply  
50m or less  
Servo amplifier  
Servo motor  
MC  
TE  
U
L1  
L2  
L3  
U
V
V
NFB  
M
W
W
BU  
BV  
CN3  
DOCOM  
24VDC  
BW  
Cooling fan  
(Note 2)  
DICOM  
RA1  
RA2  
ALM  
(Note 5)  
MBR  
Electromagnetic  
Forced  
stop  
(EMG)  
brake interlock Trouble  
(MBR) (ALM)  
RA2  
RA1  
24VDC power  
supply for  
electromagnetic  
brake  
B1  
B2  
(Note 1)  
OHS1  
OHS2 Servo motor  
thermal relay  
24VDC  
power supply  
(Note 3)  
RA3  
Note 1. There is no polarity in electromagnetic brake terminals B1 and B2.  
2. There is no BW when the power supply of the cooling fan is a 1-phase.  
3. Configure the power supply circuit which turns off the magnetic contactor after detection of servo motor thermal.  
4. For the cooling fan power supply, refer to (3) (b) in this section.  
5. When using a servo motor with an electromagnetic brake, assign the electromagnetic brake interlock (MBR) to external  
output signal in the parameters No.PD09 to PD11.  
4 - 43  
4. SIGNALS AND WIRING  
(b) Servo motor terminals  
Encoder connector  
CM10-R10P  
Brake connector  
MS3102A10SL-4P  
Terminal box  
Encoder connector signal  
allotment  
Terminal  
No.  
Brake connector signal  
Terminal  
No.  
Signal  
Signal  
allotment  
CM10-R10P  
MS3102A10SL-4P  
1
2
MR  
B1  
1
2
(Note)  
MRR  
7
3
B2  
10  
9
3
2
1
1
2
6
5
4
(Note)  
4
BAT  
LG  
5
Note. For the motor with an  
electromagnetic brake,  
supply electromagnetic  
brake power (24VDC).  
There is no polarity.  
8
6
7
8
P5  
9
10  
SHD  
Terminal box inside (HA-LP601(4) 701M(4) 11K2(4))  
Thermal sensor  
terminal block  
(OHS1 OHS2) M4 screw  
Motor power supply  
terminal block  
Cooling fan  
terminal block  
(U V W) M6 screw  
(BU BV) M4 screw  
Terminal block signal  
arrangement  
Earth terminal  
M6 screw  
Encoder connector  
CM10-R10P  
OHS1OHS2  
BU BV  
U
V
W
4 - 44  
4. SIGNALS AND WIRING  
Terminal box inside (HA-LP801(4) 12K1(4) 11K1M(4) 15K1M(4) 15K2(4) 22K2(4))  
Cooling fan terminal  
block  
Thermal sensor  
terminal block  
(BU BV BW) M4 screw  
(OHS1 OHS2) M4 screw  
Terminal block signal  
arrangement  
Motor power supply  
terminal block  
Encoder connector  
CM10-R10P  
(U V W) M8 screw  
BU BV BW OHS1OHS2  
U
V
W
Earth terminal M6 screw  
Terminal box inside (HA-LP15K1(4) 20K1(4) 22K1M(4))  
Encoder connector  
CM10-R10P  
U
V
W
Earth terminal  
M6 screw  
Terminal block signal arrangement  
Motor power supply  
terminal block  
(U V W) M8 screw  
Cooling fan  
terminal block  
Thermal sensor terminal block  
BU BV BW OHS1OHS2  
U
V
W
(BU BV BW) M4 screw (OHS1 OHS2) M4 screw  
4 - 45  
4. SIGNALS AND WIRING  
Terminal box inside (HA-LP25K1)  
Motor power supply  
terminal block  
Encoder connector  
CM10-R10P  
(U  
V
W) M10 screw  
BU BV BW OHS1OHS2  
U
V
W
Thermal sensor terminal  
block  
(OHS1 OHS2) M4 screw  
Cooling fan terminal block  
(BU BV BW) M4 screw  
Earth terminal(  
M6 screw  
)
Terminal block signal arrangement  
BU BV BW OHS1OHS2  
U
V
W
4 - 46  
4. SIGNALS AND WIRING  
Signal name  
Power supply  
Abbreviation  
Description  
Connect to the motor output terminals (U, V, W) of the servo amplifier. During power-on, do  
not open or close the motor power line. Otherwise, a malfunction or faulty may occur.  
Supply power which satisfies the following specifications.  
U
V
W
Power  
consumption  
[W]  
Rated  
current  
[A]  
Voltage  
division  
Voltage/  
Servo motor  
frequency  
HA-LP601, 701M,  
11K2  
200V 1-phase 200 to 220VAC  
class  
42(50Hz)  
0.21(50Hz)  
0.25(60Hz)  
50Hz 54(60Hz)  
1-phase 200 to 230VAC  
60Hz  
3-phase 200 to 230VAC  
HA-LP801, 12K1,  
11K1M, 15K1M,  
15K2, 22K2  
62(50Hz)  
0.18(50Hz)  
0.17(60Hz)  
50Hz/60Hz 76(60Hz)  
HA-LP15K1, 20K1,  
22K1M  
65(50Hz)  
85(60Hz)  
120(50Hz)  
175(60Hz)  
42(50Hz)  
0.20(50Hz)  
0.22(60Hz)  
0.65(50Hz)  
0.80(60Hz)  
0.21(50Hz)  
0.25(60Hz)  
(Note)  
HA-LP25K1  
Cooling fan  
BU BV BW  
HA-LP6014,  
400V 1-phase 200 to 220VAC  
class  
701M4, 11K24  
50Hz 54(60hz)  
1-phase 200 to 230VAC  
60Hz  
3-phase 380 to 440VAC  
50Hz 76(60Hz)  
3-phase 380 to 480VAC  
60Hz  
3-phase 380 to 460VAC  
50Hz 85(60Hz)  
HA-LP8014, 12K14,  
11K1M4, 15K1M4,  
15K24, 22K24  
62(50Hz)  
0.14(50Hz)  
0.11(60Hz)  
HA-LP15K14,  
20K14, 22K1M4  
HA-LP25K14  
65(50Hz)  
0.12(50Hz)  
0.14(60Hz)  
0.20(50Hz)  
0.22(60Hz)  
3-phase 380 to 480VAC  
60Hz  
110(50Hz)  
150(60Hz)  
OHS1 OHS2 are opened when heat is generated to an abnormal temperature.  
Motor thermal relay OHS1 OHS2 Maximum rating: 125VAC/DC, 3A or 250VAC/DC, 2A  
Minimum rating: 6VAC/DC, 0.15A  
For grounding, connect to the earth of the control box via the earth terminal of the servo  
amplifier.  
Earth terminal  
Note. There is no BW when the power supply of the cooling fan is a 1-phase.  
4 - 47  
4. SIGNALS AND WIRING  
4.11 Servo motor with an electromagnetic brake  
4.11.1 Safety precautions  
Configure the electromagnetic brake operation circuit so that it is activated not only  
by the servo amplifier signals but also by an external forced stop signal.  
Contacts must be open when  
Circuit must be  
servo-off, when an trouble (ALM)  
opened during  
and when an electromagnetic brake  
forced stop (EMG).  
interlock (MBR).  
EMG  
SON  
RA  
CAUTION  
24VDC  
Electromagnetic brake  
The electromagnetic brake is provided for holding purpose and must not be used  
for ordinary braking.  
Before performing the operation, be sure to confirm that the electromagnetic brake  
operates properly.  
POINT  
Refer to the Servo Motor Instruction Manual (Vol.2) for specifications such as  
the power supply capacity and operation delay time of the electromagnetic  
brake.  
Note the following when the servo motor equipped with an electromagnetic brake is used.  
1) Do not share the 24VDC interface power supply between the interface and electromagnetic brake.  
Always use the power supply designed exclusively for the electromagnetic brake.  
2) The brake will operate when the power (24VDC) switches off.  
3) Switch off the servo-on (RYn0) after the servo motor has stopped.  
Using parameter No.PC16 (electromagnetic brake sequence output), set a time delay (Tb) at servo-off from  
electromagnetic brake operation to base circuit shut-off as in the timing chart shown in section 4.11.2 in this  
section.  
4 - 48  
4. SIGNALS AND WIRING  
4.11.2 Timing charts  
(1) Servo-on (RYn0) command (from controller) ON/OFF  
Tb [ms] after the servo-on (RYn0) is switched off, the servo lock is released and the servo motor coasts. If  
the electromagnetic brake is made valid in the servo lock status, the brake life may be shorter. Therefore,  
when using the electromagnetic brake in a vertical lift application or the like, set Tb to about the same as  
the electromagnetic brake operation delay time to prevent a drop.  
Coasting  
Servo motor speed  
Base circuit  
0 r/min  
ON  
(95ms)  
(95ms)  
Tb  
OFF  
Electromagnetic  
brake operation  
delay time  
Electromagnetic  
brake interlock  
(MBR)  
(Note 1) ON  
OFF  
ON  
Servo-on(RYn0)  
OFF  
(Note 3)  
Forward rotation start  
(RYn1) or reverse  
rotation start (RYn2)  
ON  
OFF  
Release  
Activate  
Electromagnetic  
brake  
Release delay time and external relay (Note 2)  
Note 1. ON: Electromagnetic brake is not activated.  
OFF: Electromagnetic brake is activated.  
2. Electromagnetic brake is released after delaying for the release delay time of electromagnetic brake and operation time of  
external circuit relay. For the release delay time of electromagnetic brake, refer to the Servo Motor Instruction Manual (Vol.2).  
3. After the electromagnetic brake is released, turn ON the RYn1 or RYn2.  
(2) Forced stop (EMG) ON/OFF  
Dynamic brake  
Dynamic brake  
Electromagnetic brake  
Electromagnetic brake  
Forward  
rotation  
0r/min  
Servo motor speed  
Base circuit  
Electromagnetic brake release  
(210ms)  
(10ms)  
ON  
OFF  
(210ms)  
(Note) ON  
Electromagnetic brake  
operation delay time  
Electromagnetic  
brake interlock (MBR)  
OFF  
Invalid(ON)  
Valid (OFF)  
Forced stop (EMG)  
Note. ON: Electromagnetic brake is not activated.  
OFF: Electromagnetic brake is activated.  
4 - 49  
4. SIGNALS AND WIRING  
(3) Alarm occurrence  
Dynamic brake  
Dynamic brake  
Electromagnetic brake  
Forward  
rotation  
Servo motor speed  
Base circuit  
Electromagnetic brake  
0r/min  
(10ms)  
ON  
OFF  
Electromagnetic brake  
operation delay time  
(Note) ON  
Electromagnetic  
brake interlock (MBR)  
OFF  
No (ON)  
Yes (OFF)  
Yes (ON)  
No (OFF)  
ALM  
Trouble  
RX(n+1)A  
or RX(n+3)  
Note. ON: Electromagnetic brake is not activated.  
OFF: Electromagnetic brake is activated.  
(4) Both main and control circuit power supplies off  
Dynamic brake  
Dynamic brake  
Electromagnetic brake  
(10ms)  
Forward  
rotation  
(Note 1)  
15 to 60ms  
Servo motor speed  
Base circuit  
Electromagnetic brake  
0r/min  
ON  
OFF  
10ms  
(Note 2) ON  
Electromagnetic  
brake interlock (MBR)  
OFF  
No (ON)  
Yes (OFF)  
Yes (ON)  
No (OFF)  
ON  
Electromagnetic brake  
operation delay time  
ALM  
Trouble  
RX(n+1)A  
or RX(n+3)A  
Main circuit  
power  
Control circuit  
OFF  
Note 1. Changes with the operating status.  
2. ON: Electromagnetic brake is not activated.  
OFF: Electromagnetic brake is activated.  
4 - 50  
4. SIGNALS AND WIRING  
(5) Only main circuit power supply off (control circuit power supply remains on)  
Dynamic brake  
Dynamic brake  
(10ms)  
Electromagnetic brake  
Forward  
rotation  
(Note 1)  
Servo motor speed  
Base circuit  
Electromagnetic brake  
15ms or more  
0r/min  
ON  
OFF  
(Note 3) ON  
Electromagnetic  
brake interlock (MBR)  
OFF  
No (ON)  
Yes (OFF)  
Yes (ON)  
No (OFF)  
ON  
Electromagnetic brake  
operation delay time  
(Note 2)  
ALM  
Trouble  
RX(n+1)A  
or RX(n+3)A  
Main circuit  
power supply  
OFF  
Note 1. Changes with the operating status.  
2. When the main circuit power supply is off in a motor stop status, the main circuit off warning (AE9) occurs and  
the trouble (ALM) does not turn off.  
3. ON: Electromagnetic brake is not activated.  
OFF: Electromagnetic brake is activated.  
4 - 51  
4. SIGNALS AND WIRING  
4.11.3 Wiring diagrams (HF-MP series HF-KP series servo motor)  
POINT  
For HF-SP series HC-RP series HC-UP series HC-LP series servo  
motors, refer to section 4.10.2 (2).  
(1) When cable length is 10m or less  
10m or less  
24VDC power  
supply for  
MR-BKS1CBL M-A1-L  
MR-BKS1CBL M-A2-L  
MR-BKS1CBL M-A1-H  
MR-BKS1CBL M-A2-H  
electromagnetic  
brake  
Forced  
stop  
(EMG)  
(Note 3)  
Electromagnetic  
brake (MBR)  
Servo motor  
(Note 2)  
B1  
Trouble  
(ALM)  
AWG20  
AWG20  
+
-
(Note 1)  
B2  
Note 1. Connect a surge absorber as close to the servo motor as possible.  
2. There is no polarity in electromagnetic brake terminals (B1 and B2).  
3. When using a servo motor with an electromagnetic brake, assign the electromagnetic brake interlock (MBR) to external output  
signal in the parameters No.PD09 to PD11.  
When fabricating the motor brake cable MR-BKS1CBL- M-H, refer to section 14.1.4.  
(2) When cable length exceeds 10m  
When the cable length exceeds 10m, fabricate an extension cable as shown below on the customer side. In  
this case, the motor brake cable should be within 2m long.  
Refer to section 14.9 for the wire used for the extension cable.  
2m or less  
MR-BKS1CBL2M-A1-L  
MR-BKS1CBL2M-A2-L  
MR-BKS1CBL2M-A1-H  
MR-BKS1CBL2M-A2-H  
MR-BKS2CBL03M-A1-L  
MR-BKS2CBL03M-A2-L  
24VDC power  
supply for  
electromagnetic  
brake  
50m or less  
Extension cable  
(Note 4)  
Electromagnetic  
brake (MBR)  
Servo motor  
(Note 3)  
B1  
(To be fabricated)  
Trouble  
(ALM)  
Forced stop (EMG)  
AWG20  
AWG20  
+
-
(Note 1)  
(Note 2)  
B2  
(Note 2)  
a) Relay connector for b) Relay connector for motor  
extension cable brake cable  
Note 1. Connect a surge absorber as close to the servo motor as possible.  
2. Use of the following connectors is recommended when ingress protection (IP65) is necessary.  
Protective  
structure  
IP65  
Relay connector  
Description  
CM10-CR2P-  
(DDK)  
a) Relay connector  
for extension  
cable  
Wire size: S, M, L  
CM10-SP2S-  
(DDK)  
b) Relay connector  
for motor brake  
cable  
IP65  
Wire size: S, M, L  
3. There is no polarity in electromagnetic brake terminals (B1 and B2).  
4. When using a servo motor with an electromagnetic brake, assign the electromagnetic brake interlock (MBR) to external output  
signal in the parameters No.PD09 to PD11.  
4 - 52  
4. SIGNALS AND WIRING  
4.12 Grounding  
Ground the servo amplifier and servo motor securely.  
To prevent an electric shock, always connect the protective earth (PE) terminal  
(terminal marked ) of the servo amplifier with the protective earth (PE) of the  
control box.  
WARNING  
The servo amplifier switches the power transistor on-off to supply power to the servo motor. Depending on the  
wiring and ground cable routing, the servo amplifier may be affected by the switching noise (due to di/dt and  
dv/dt) of the transistor. To prevent such a fault, refer to the following diagram and always ground.  
To conform to the EMC Directive, refer to the EMC Installation Guidelines (IB(NA)67310).  
Control box  
Servo amplifier  
Servo motor  
NFB  
CN2  
MC  
L1  
L2  
L3  
Encoder  
(Note)  
Power supply  
L11  
L21  
U
V
U
V
M
W
W
CN3  
Ensure to connect it to PE  
terminal of the servo amplifier.  
Do not connect it directly to  
the protective earth of  
the control panel.  
Outer  
box  
Protective earth(PE)  
Note. For 1-phase 200 to 230VAC or 1-phase 100 to 120VAC, connect the power supply to L1 L2 and leave L3 open.  
There is no L3 for 1-phase 100 to 120VAC power supply. Refer to section 1.2 for the power supply specification.  
4 - 53  
4. SIGNALS AND WIRING  
MEMO  
4 - 54  
5. OPERATION  
5. OPERATION  
WARNING  
Do not operate the switches with wet hands. You may get an electric shock.  
Before starting operation, check the parameters. Some machines may perform  
unexpected operation.  
Take safety measures, e.g. provide covers, to prevent accidental contact of hands  
and parts (cables, etc.) with the servo amplifier heat sink, regenerative resistor,  
servo motor, etc. since they may be hot while power is on or for some time after  
power-off. Their temperatures may be high and you may get burnt or a parts may  
damaged.  
CAUTION  
During operation, never touch the rotating parts of the servo motor. Doing so can  
cause injury.  
5.1 Switching power on for the first time  
When switching power on for the first time, follow this section to make a startup.  
5.1.1 Startup procedure  
Wiring check  
Check whether the servo amplifier and servo motor are wired  
correctly using visual inspection, DO forced output function  
(Section 7.7.4, 8.5.7 (4)), etc. (Refer to section 5.1.2.)  
Surrounding environment check  
Parameter setting  
Check the surrounding environment of the servo amplifier and  
servo motor. (Refer to section 5.1.3.)  
Set the parameters as necessary, such as the used control  
mode and regenerative option selection with the parameter unit  
or MR Configurator. (Refer to chapter 6.)  
Test operation of servo motor  
alone in test operation mode  
For the test operation, with the servo motor disconnected from  
the machine and operated at the speed as low as possible, and  
check whether the servo motor rotates correctly. (Refer to  
sections 7.7 and 8.5.7.)  
Test operation of servo motor  
alone by commands  
For the test operation with the servo motor disconnected from  
the machine and operated at the speed as low as possible, and  
check whether the servo motor rotates correctly.  
Test operation with servo motor  
and machine connected  
Connect the servo motor with the machine, give operation  
commands from the host command device, and check machine  
motions.  
Gain adjustment  
Actual operation  
Make gain adjustment to optimize the machine motions. (Refer  
to chapter 9.)  
Stop  
Stop giving commands and stop operation.  
5 - 1  
5. OPERATION  
5.1.2 Wiring check  
(1) Power supply system wiring  
Before switching on the main circuit and control circuit power supplies, check the following items.  
(a) Power supply system wiring  
The power supplied to the power input terminals (L1, L2, L3, L11, L21) of the servo amplifier should satisfy  
the defined specifications. (Refer to section 1.2.)  
(b) Connection of servo amplifier and servo motor  
1) The servo motor power supply terminals (U, V, W) of the servo amplifier match in phase with the  
power input terminals (U, V, W) of the servo motor.  
Servo amplifier  
U
Servo motor  
U
V
V
M
W
W
2) The power supplied to the servo amplifier should not be connected to the servo motor power supply  
terminals (U, V, W). To do so will fail the connected servo amplifier and servo motor.  
Servo amplifier  
Servo motor  
M
U
V
W
U
V
W
3) The earth terminal of the servo motor is connected to the PE terminal of the servo amplifier.  
Servo amplifier  
Servo motor  
M
4) P1-P2 (For 11kW or more, P1-P) should be connected.  
Servo amplifier  
P1  
P2  
(c) When option and auxiliary equipment are used  
1) When regenerative option is used under 3.5kW for 200V class and 2kW for 400V class  
The lead between P terminal and D terminal of CNP2 connector should not be connected.  
The generative brake option should be connected to P terminal and C terminal.  
A twisted cable should be used. (Refer to section 14.2.)  
5 - 2  
5. OPERATION  
2) When regenerative option is used over 5kW for 200V class and 3.5kW for 400V class  
The lead of built-in regenerative resistor connected to P terminal and C terminal of TE1 terminal  
block should not be connected.  
The generative brake option should be connected to P terminal and C terminal.  
A twisted cable should be used when wiring is over 5m and under 10m. (Refer to section 14.2.)  
3) When brake unit and power regenerative converter are used over 5kW  
The lead of built-in regenerative resistor connected to P terminal and C terminal of TE1 terminal  
block should not be connected.  
Brake unit, power regenerative converter or power regeneration common converter should be  
connected to P terminal and N terminal. (Refer to section 14.3 to 14.5.)  
4) The power factor improving DC reactor should be connected P1 and P2 (For 11kW or more, P1 and  
P). (Refer to section 14.11.)  
Power factor  
improving DC  
Servo amplifier  
reactor  
P1  
(Note)  
P2  
Note. Always disconnect P1 and P2 (For 11kW or more, P1 and P).  
(2) I/O signal wiring  
(a) The I/O signals should be connected correctly.  
Use DO forced output to forcibly turn on/off the pins of the CN6 connector. This function can be used to  
perform a wiring check. (Refer to section 7.7.4.) In this case, switch on the control circuit power supply  
only.  
(b) 24VDC or higher voltage is not applied to the pins of connectors CN6.  
(c) SD and DOCOM of connector CN6 is not shorted.  
Servo amplifier  
CN6  
DOCOM  
SD  
5.1.3 Surrounding environment  
(1) Cable routing  
(a) The wiring cables are free from excessive force.  
(b) The encoder cable should not be used in excess of its flex life. (Refer to section 13.4.)  
(c) The connector part of the servo motor should not be strained.  
(2) Environment  
Signal cables and power cables are not shorted by wire offcuts, metallic dust or the like.  
5 - 3  
5. OPERATION  
5.2 Startup  
5.2.1 Power on and off procedures  
(1) Power-on  
Switch power on in the following procedure. Always follow this procedure at power-on.  
1) Switch off the servo-on (RYn0).  
2) Make sure that the Forward rotation start (RYn1) and Reverse rotation start (RYn2) are off.  
3) Switch on the main circuit power supply and control circuit power supply.  
When main circuit power/control circuit power is switched on, the servo amplifier display shows  
"b01" (if the servo amplifier has the station number of 1).  
In the absolute position detection system, first power-on results in the absolute position lost (A25)  
alarm and the servo system cannot be switched on.  
The alarm can be deactivated then switching power off once and on again.  
Also in the absolute position detection system, if power is switched on at the servo motor speed of  
3000r/min or higher, position mismatch may occur due to external force or the like. Power must  
therefore be switched on when the servo motor is at a stop.  
(2) Power-off  
1) Make sure that the Forward rotation start (RYn1) and Reverse rotation start (RYn2) are off.  
2) Switch off the Servo-on (RYn0).  
3) Switch off the main circuit power supply and control circuit power supply.  
5.2.2 Stop  
In any of the following statuses, the servo amplifier interrupts and stops the operation of the servo motor.  
Refer to section 4.11 for the servo motor equipped with an electromagnetic brake.  
(a) Servo-on (RYn0) OFF  
The base circuit is shut off and the servo motor coasts.  
(b) Alarm occurrence  
When an alarm occurs, the base circuit is shut off and the dynamic brake is operated to bring the servo  
motor to a sudden stop.  
(c) Forced stop (EMG) OFF  
The base circuit is shut off and the dynamic brake is operated to bring the servo motor to a sudden stop.  
The servo forced stop warning (AE6) occurs.  
(d) Forward rotation stroke end (LSP), reverse rotation stroke end (LSN) OFF  
The droop pulse value is erased and the servo motor is stopped and servo-locked. It can be run in the  
opposite direction.  
5 - 4  
5. OPERATION  
5.2.3 Test operation  
Before starting actual operation, perform test operation to make sure that the machine operates normally.  
Refer to section 5.2.1 for the power on and off methods of the servo amplifier.  
Test operation of servo motor  
alone in JOG operation of test  
operation mode  
In this step, confirm that the servo amplifier and servo motor  
operate normally.  
With the servo motor disconnected from the machine, use the  
test operation mode and check whether the servo motor  
correctly rotates at the slowest speed. Refer to section 7.7 and  
8.5.7 for the test operation mode.  
Test operation of servo motor  
alone by commands  
In this step, confirm that the servo motor correctly rotates at the  
slowest speed under the commands from the command device.  
Make sure that the servo motor rotates in the following  
procedure.  
1) Switch on the Forced stop (EMG) and Servo-on (RYn0).  
When the servo amplifier is put in a servo-on status, the  
Ready (RD) switches on.  
2) Switch on the Forward rotation stroke end (LSP) or Reverse  
rotation stroke end (LSN).  
3) When the point table is designated to switch on the forward  
rotation start (RYn1) or reverse rotation start (RYn2), the  
servo motor starts rotating. Give a low speed command at  
first and check the rotation direction, etc. of the servo motor.  
If the servo motor does not operate in the intended direction,  
check the input signal.  
Test operation with servo motor  
and machine connected  
In this step, connect the servo motor with the machine and  
confirm that the machine operates normally under the  
commands from the command device.  
Make sure that the servo motor rotates in the following  
procedure.  
1) Switch on the Forced stop (EMG) and Servo-on (RYn0).  
When the servo amplifier is put in a servo-on status, the  
Ready (RD) switches on.  
2) Switch on the Forward rotation stroke end (LSP) or Reverse  
rotation stroke end (LSN).  
3) When the point table is specified from the command device  
and the forward rotation start (RYn1) or reverse rotation start  
(RYn2) is turned ON, the servo motor starts rotating. Give a  
low speed command at first and check the operation  
direction, etc. of the machine. If the machine does not  
operate in the intended direction, check the input signal. In  
the status display, check for any problems of the servo motor  
speed, load ratio, etc.  
4) Then, check automatic operation with the program of the  
command device.  
5 - 5  
5. OPERATION  
5.2.4 Parameter setting  
POINT  
The encoder cable MR-EKCBL M-L/H for the HF-MP series HF-KP series  
servo motor requires the parameter No.PC22 setting to be changed  
depending on its length. Check whether the parameter is set correctly. If it is  
not set correctly, the encoder error 1 (A16) will occur at power-on.  
Encoder cable  
MR-EKCBL20M-L/H  
MR-EKCBL30M-H  
MR-EKCBL40M-H  
MR-EKCBL50M-H  
Parameter No.PC22 setting  
(initial value)  
0
1
The servo amplifier can be used by merely changing the basic setting parameters (No.PA  
) mainly.  
) and I/O  
As necessary, set the gain filter parameters (No.PB ), extension setting parameters (No.PC  
setting parameters (No.PD  
).  
Parameter group  
Main description  
Basic setting parameter  
Set the basic setting parameters first. Generally, operation can be performed by merely setting this  
parameter group.  
(No.PA  
)
In this parameter group, set the following items.  
Control mode selection (select the position control mode)  
Regenerative option selection  
Absolute position detection system selection  
Setting of command input pulses per revolution  
Electronic gear setting  
Auto tuning selection and adjustment  
In-position range setting  
Torque limit setting  
Command pulse input form selection  
Servo motor rotation direction selection  
Encoder output pulse setting  
Gain filter parameter  
(No.PB  
If satisfactory operation cannot be achieved by the gain adjustment made by auto tuning, execute in-  
depth gain adjustment using this parameter group.  
This parameter group must also be set when the gain changing function is used.  
This parameter group is unique to MR-J3- T servo amplifier.  
)
Extension setting parameter  
(No.PC  
I/O setting parameter  
(No.PD  
)
Used when changing the I/O devices of the servo amplifier.  
)
5 - 6  
5. OPERATION  
5.2.5 Point table setting  
Set necessary items to the point table before starting operation. The following table indicates the items that  
must be set.  
Name  
Description  
Position data  
Set the position data for movement.  
Servo motor speed  
Acceleration time constant  
Deceleration time constant  
Dwell  
Set the command speed of the servo motor for execution of positioning.  
Set the acceleration time constant.  
Set the deceleration time constant.  
Set the waiting time when performing automatic continuous operation.  
Set when performing automatic continuous operation.  
Auxiliary function  
Refer to section 5.4.2 for details of the point table.  
5.2.6 Actual operation  
Start actual operation after confirmation of normal operation by test operation and completion of the  
corresponding parameter settings. Perform a home position return as necessary.  
5 - 7  
5. OPERATION  
5.3 Servo amplifier display  
On the servo amplifier display (three-digit, seven-segment display), check the status of communication with the  
CC-Link controller at power-on, check the station number, and diagnose a fault at occurrence of an alarm.  
(1) Display sequence  
Servo amplifier power ON  
(Note 3)  
Waiting for CC-Link communication  
(Note 1)  
When alarm warning  
No. is displayed  
CC-Link master module power ON  
CC-Link communication beginning  
At occurrence of overload  
Flicker  
display  
(Note 3)  
Not ready  
At occurrence of overload  
warning (Note 2)  
Flicker  
display  
Servo ON  
During forced stop  
(Note 3)  
Ready  
Flicker  
display  
When alarm occurs,  
alarm code appears.  
Alarm reset or  
warning  
2s later  
Point table No. display  
2s later  
Servo amplifier power OFF  
Note 1. Only alarm and warning No. are displayed, but no station No. is displayed.  
2. If warning other than AE6 occurs during the servo on, flickering the second place of decimal point indicates that it is during the  
servo on.  
3. The right-hand segments of b01, c02 and d16 indicate the axis number.  
(Below example indicates Station No.1)  
Station Station  
No.1 No.2  
Station  
No.64  
5 - 8  
5. OPERATION  
(2) Indication list  
Indication  
Status  
Description  
Power of the CC-Link master module was switched on at the condition that the power of  
CC-Link master module is OFF.  
Waiting for CC-Link  
communication  
b # #  
d # #  
The CC-Link master module is faulty.  
The servo was switched on after completion of initialization and the servo amplifier is ready  
to operate. (This is indicated for 2 seconds.)  
(Note 1)  
Ready  
C # #  
$ $ $  
(Note 1)  
(Note 2)  
(Note 3)  
Not ready  
The servo amplifier is being initialized or an alarm has occurred.  
Two seconds have passed after the servo amplifier is ready to operate by turning ON the  
servo-on (RYn1).  
Ready for operation  
A
Alarm Warning  
CPU error  
The alarm No./warning No. that occurred is displayed. (Refer to section 11.4.)  
CPU watchdog error has occurred.  
8 8 8  
JOG operation positioning operation programmed operation DO forced output single-  
step feed  
b 0 0.  
(Note 4)  
(Note 1)  
(Note 4)  
d # #.  
C # #.  
Test operation mode  
Motor-less operation  
Note 1. ## denotes any of numerals 00 to 16 and what it means is listed below.  
##  
00  
01  
02  
03  
:
Description  
Set to the test operation mode.  
Station number 1  
Station number 2  
Station number 3  
:
:
:
62  
63  
64  
Station number 62  
Station number 63  
Station number 64  
Note 2. $$$ indicates numbers from 0 to 255, and the number indicates the executing point table number.  
3. indicates the warning/alarm No.  
4. Requires MR Configurator or MR-PRU03 parameter module.  
5 - 9  
5. OPERATION  
5.4 Automatic operation mode  
5.4.1 What is automatic operation mode?  
(1) Command system  
After selection of preset point tables using the input signals or communication, operation is started by the  
forward rotation start (RYn1) or reverse rotation start (RYn2). Automatic operation has the absolute value  
command system, incremental value command system.  
(a) Absolute value command system  
As position data, set the target address to be reached.  
Setting range: 999999 to 999999 [ 10STM m] (STM feed length multiplication parameter No.PA05)  
999999  
999999  
Position data setting range  
10STM m]  
[
(b) Incremental value command system  
As position data, set the moving distance from the current address to the target address.  
Setting range: 0 to 999999 [ 10STM m] (STM feed length multiplication parameter No.PA05)  
Current address  
Target address  
Position data |target address - current address|  
(2) Point table  
(a) Point table setting  
Up to 255 point tables may be set.  
Set the point tables using the MR Configurator Software, the MR-PRU03 parameter unit or CC-Link write  
instruction code.  
The following table lists what to set: Refer to section 5.4.2 for details of the settings.  
Name  
Description  
Position data  
Set the position data for movement.  
Servo motor speed  
Acceleration time constant  
Deceleration time constant  
Dwell  
Set the command speed of the servo motor for execution of positioning.  
Set the acceleration time constant.  
Set the deceleration time constant.  
Set the waiting time when performing automatic continuous operation.  
Set when performing automatic continuous operation.  
Auxiliary function  
5 - 10  
5. OPERATION  
(b) Selection of point table  
Using the input signal or CC-Link, select the point table No. with the remote input and remote register  
from the command device (controller) such as a personal computer.  
The following table lists the point table No. selected in response to the remote input. When 2 stations  
are occupied, the point table No. can be selected by remote register setting. (Refer to section 3.6.3.)  
Remote input (0: OFF 1: ON)  
Selected point  
2 stations occupied  
table No.  
1 station occupied  
RY(n 2)5 RY(n 2)4 RY(n 2)3  
RYnE  
RYnD  
RYnC  
RYnB  
RYnA  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
1
0
1
0
1
0
1
2
3
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
254  
255  
5 - 11  
5. OPERATION  
5.4.2 Automatic operation using point table  
(1) Absolute value command system  
(a) Point table  
Set the point table values using the MR Configurator, the MR-PRU03 parameter unit or the remote  
register of CC-Link.  
Set the position data, motor speed, acceleration time constant, deceleration time constant, dwell and  
auxiliary function to the point table. The following table gives a setting example. However, this function  
cannot be used when the point table No. is selected using the remote register of CC-Link.  
Name  
Setting range  
Unit  
Description  
(1) When using this point table as absolute value command system  
Set the target address (absolute value).  
Position data  
999999 to 999999  
10STM  
m
(2) When using this point table as incremental value command system  
Set the moving distance. A "-" sign indicates a reverse rotation command.  
Set the command speed of the servo motor for execution of positioning.  
The setting should be equal to or less than the instantaneous permissible  
speed of the servo motor.  
Motor speed  
0 to permissible speed  
r/min  
Acceleration  
time constant  
Deceleration  
time constant  
Set the time until the rated speed of the servo motor is reached.  
0 to 20000  
0 to 20000  
ms  
ms  
Set the time until the servo motor running at rated speed comes to a stop.  
This function is valid when the point table is selected using the input signal or  
the remote input of CC-Link. It cannot be used when the point table No. is  
selected using the remote register of CC-Link.  
Set "0" in the auxiliary function to make the dwell invalid.  
Set "1" in the auxiliary function and 0 in the dwell to perform continuous  
operation.  
Dwell  
0 to 20000  
ms  
When the dwell is set, the position command of the selected point table is  
completed, and after the set dwell has elapsed, the position command of the  
next point table is started.  
This function is valid when the point table is selected using the input signal or  
the remote input of CC-Link. It cannot be used when the point table No. is  
selected using the remote register of CC-Link.  
(1) When using this point table in the absolute value command system  
0: Automatic operation is performed in accordance with a single point table  
chosen.  
1: Operation is performed in accordance with consecutive point tables without  
a stop.  
Auxiliary  
function  
(2) When using this point table in the incremental value command system  
2: Automatic operation is performed in accordance with a single point table  
chosen.  
0 to 3  
3: Operation is performed in accordance with consecutive point tables without  
a stop.  
When a different rotation direction is set, smoothing zero (command  
output) is confirmed and the rotation direction is then reversed.  
Setting "1" in point table No.255 results in an error.  
For full information, refer to (4) in this section.  
(b) Parameter setting  
Set the following parameters to perform automatic operation.  
1) Command mode selection (parameter No.PA01)  
Select the absolute value command system.  
Parameter No.PA01  
0
Absolute value command system  
5 - 12  
5. OPERATION  
2) Rotation direction selection (parameter No.PA14)  
Choose the servo motor rotation direction at the time when the forward rotation start (RYn1) is  
switched on.  
Servo motor rotation direction  
Parameter No.PA14 setting  
when forward rotation start (RYn1) is switched on  
CCW rotation with position data  
0
CW rotation with  
position data  
CW rotation with position data  
1
CCW rotation with  
position data  
CCW  
CW  
3) Feed length multiplication selection (parameter No.PA05)  
Set the unit multiplication factor (STM) of position data.  
Parameter No.PA05 setting  
Feed unit [μm]  
Position data input range [mm]  
999.999 to 999.999  
9999.99 to 9999.99  
99999.9 to 99999.9  
999999 to 999999  
0
1
2
3
1
10  
100  
1000  
(c) Operation  
Choosing the point table using RYnA to RYnE, RY(n 2)3 to RY(n 2)5 and turning RYn1 ON starts  
positioning to the position data at the preset speed, acceleration time constant and deceleration time  
constant. At this time, reverse rotation start (RYn2) is invalid.  
Item  
Setting method  
Description  
Turn RYn6 ON.  
Automatic operation mode selection  
Automatic/manual selection (RYn6)  
Point table No. selection 1 (RYnA)  
Point table No. selection 2 (RYnB)  
Point table No. selection 3 (RYnC)  
Point table No. selection 4 (RYnD)  
Point table No. selection 5 (RYnE)  
Point table No. selection 6 (RY(n 2)3)  
Point table No. selection 7 (RY(n 2)4)  
Point table No. selection 8 (RY(n 2)5)  
Forward rotation start (RYn1)  
Point table selection  
Refer to section 5.4.1(2).  
Turn RYn1 ON to start.  
Start  
5 - 13  
5. OPERATION  
(2) Incremental value command system  
(a) Point table  
Set the point table values using the MR Configurator, the MR-PRU03 parameter unit or the remote  
register of CC-Link.  
Set the position data, motor speed, acceleration time constant, deceleration time constant, dwell and  
auxiliary function to the point table. The following table gives a setting example.  
Name  
Setting range  
Unit  
Description  
Set the moving distance.  
Position data  
0 to 999999  
10STM  
m
The unit can be changed using feed length multiplication factor selection of  
parameter No.PA05.  
Set the command speed of the servo motor for execution of positioning.  
The setting should be equal to or less than the instantaneous permissible  
speed of the servo motor.  
Servo motor  
speed  
0 to permissible speed  
r/min  
Acceleration  
time constant  
Deceleration  
time constant  
0 to 20000  
0 to 20000  
ms  
ms  
Set the time until the rated speed of the servo motor is reached.  
Set the time until the servo motor running at rated speed comes to a stop.  
This function is valid when the point table is selected using the input signal  
or the remote input of CC-Link. It cannot be used when the point table No. is  
selected using the remote register of CC-Link.  
Set "0" in the auxiliary function to make the dwell invalid.  
Set "1" in the auxiliary function and 0 in the dwell to perform continuous  
operation.  
Dwell  
0 to 20000  
ms  
When the dwell is set, the position command of the selected point table is  
completed, and after the set dwell has elapsed, the position command of the  
next point table is started.  
This function is valid when the point table is selected using the input signal  
or the remote input of CC-Link. It cannot be used when the point table No. is  
selected using the remote register of CC-Link.  
0: Automatic operation is performed in accordance with a single point table  
chosen.  
Auxiliary  
function  
0
1
1: Operation is performed in accordance with consecutive point tables  
without a stop.  
When a different rotation direction is set, smoothing zero (command  
output) is confirmed and the rotation direction is then reversed.  
Setting "1" in point table No.255 results in an error.  
For full information, refer to (4) in this section.  
(b) Parameter setting  
Set the following parameters to perform automatic operation.  
1) Command mode selection (parameter No.PA01)  
Select the incremental value command system.  
Parameter No.PA01  
1
Incremental value command system  
5 - 14  
5. OPERATION  
2) Forward rotation direction selection (parameter No.PA14)  
Choose the servo motor rotation direction at the time when the forward rotation start (RYn1) signal or  
reverse rotation start (RYn2) signal is switched on.  
Servo motor rotation direction  
Parameter No.PA14 setting  
Forward rotation start (RYn1) ON  
CCW rotation (address incremented)  
CW rotation (address incremented)  
Reverse rotation start (RYn2) ON  
CW rotation (address decremented)  
CCW rotation (address decremented)  
0
1
RYn1: ON  
CCW  
RYn2: ON  
CCW  
CW  
RYn2: ON  
CW  
RYn1: ON  
Parameter No.PA14: 0  
Parameter No.PA14: 1  
3) Feed length multiplication selection (parameter No.PA05)  
Set the unit multiplication factor (STM) of position data.  
Parameter No.PA05 setting  
Feed unit [μm]  
Position data input range [mm]  
0 to 999.999  
0
1
2
3
1
10  
0 to 9999.99  
100  
1000  
0 to 99999.9  
0 to 999999  
(c) Operation  
Choosing the point table using RYnA to RYnE, RY(n 2)3 to RY(n 2)5 and turning RYn1 ON starts a  
motion in the forward rotation direction over the moving distance of the position data at the preset speed  
and acceleration time constant.  
Turning RYn2 ON starts a motion in the reverse rotation direction according to the values set to the  
selected point table.  
Item  
Setting method  
Description  
Turn RYn6 ON.  
Automatic operation mode  
selection  
Automatic/manual selection (RYn6)  
Point table No. selection 1 (RYnA)  
Point table No. selection 2 (RYnB)  
Point table No. selection 3 (RYnC)  
Point table No. selection 4 (RYnD)  
Point table No. selection 5 (RYnE)  
Point table No. selection 6 (RY(n 2)3)  
Point table No. selection 7 (RY(n 2)4)  
Point table No. selection 8 (RY(n 2)5)  
Point table selection  
Refer to section 5.4.1(2).  
Turn RYn1 ON to start motion in forward  
rotation direction.  
Forward rotation start (RYn1)  
Reverse rotation start (RYn2)  
Start  
Turn RYn2 ON to start motion in reverse  
rotation direction.  
5 - 15  
5. OPERATION  
(3) Automatic operation timing chart  
The timing chart is shown below.  
ON  
Automatic/manual  
selection (RYn6)  
OFF  
ON  
Servo-on (RYn0)  
Point table No.  
OFF  
1
2
(Note 2)  
4ms or more  
ON  
Forward rotation start  
(RYn1)  
OFF  
ON  
(Note 2) 4ms or more  
6ms or more  
3ms or less  
Reverse rotation start  
(RYn2) (Note 1)  
OFF  
6ms or more  
Forward  
rotation  
Point table No.1  
Servo motor speed  
0r/min  
Reverse  
rotation  
Point table No.2  
ON  
In position (RXn1)  
OFF  
ON  
Rough match (RXn2)  
OFF  
ON  
Movement completion  
(RXnC)  
OFF  
Point table No. output  
(RX(n+2)2 to RX(n+2)9)  
1
2
ON  
Ready (RXn0)  
Trouble (ALM)  
OFF  
ON  
OFF  
Note 1. Reverse rotation start (RYn2) is invalid in the absolute value command system.  
2. Configure a sequence that changes the point table selection earlier, considering the delay time of CC-Link communication.  
5 - 16  
5. OPERATION  
(4) Automatic continuous operation  
POINT  
This function is valid when the point table is selected using the input signal or  
the remote input of CC-Link. It cannot be used when the point table No. is  
selected using the remote register of CC-Link.  
(a) What is automatic continuous operation?  
By merely choosing one point table and making a start (RYn1 or RYn2), operation can be performed in  
accordance with the point tables having consecutive numbers.  
Automatic operation is available in two types: varied speed operation and automatic continuous  
positioning operation.  
Either type may be selected as follows.  
1) In absolute value command specifying system  
Point table setting  
Auxiliary function  
Dwell  
When position data is  
absolute value  
When position data is  
incremental value  
Speed changing operation  
Automatic continuous  
operation  
0
1
1
3
3
Automatic continuous  
positioning operation  
1 or more  
2) In incremental value command system  
Point table setting  
Dwell  
Auxiliary function  
Speed changing operation  
Automatic continuous  
operation  
0
1
1
Automatic continuous  
positioning operation  
1 or more  
(b) Varied speed operation  
Speed during positioning operation can be changed by setting the auxiliary function of the point table.  
Use the number of point tables equal to the number of speeds to be set.  
By setting "1" to the auxiliary function, operation is performed at the speed set in the next point table  
during positioning. The position data valid at this time is the data selected at start and the acceleration  
and deceleration time constants of the subsequent point tables are made invalid.  
By setting "1" to the auxiliary function of up to point table No.254, operation can be performed at a  
maximum of 255 speeds. Set "0" to the auxiliary function of the last point table.  
When performing varied speed operation, always set "0" to the dwell. If "1" or more is set, automatic  
continuous positioning operation is made valid.  
The following table gives a setting example.  
Point table No.  
Dwell [ms] (Note 1)  
Auxiliary function  
Variable speed operation  
1
0
0
0
0
0
0
0
1
Consecutive point table data  
2
1
3
0 (Note 2)  
4
1
5
1
1
Consecutive point table data  
6
7
0 (Note 2)  
Note 1. Always set "0".  
2. Always set "0" or "2" to the auxiliary function of the last point table among the consecutive point tables.  
5 - 17  
5. OPERATION  
1) Absolute value command specifying system  
This system is an auxiliary function for point tables to perform automatic operation by specifying the  
absolute value command or incremental value command.  
Positioning in single direction  
The operation example given below assumes that the set values are as indicated in the following  
table. Here, the point table No.1 uses the absolute value command system, the point table No.2 the  
incremental value command system, the point table No.3 the absolute value system, and the point  
table No.4 the incremental value command system.  
Point table Position data Servo motor  
Acceleration time constant  
[ms]  
Deceleration time constant  
[ms]  
Dwell [ms]  
(Note 1)  
Auxiliary  
function  
No.  
1
[
10STM m]  
speed [r/min]  
3000  
5.00  
100  
150  
0
0
0
0
1
2
3.00  
2000  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
3
1
3
10.00  
6.00  
1000  
4
500  
0 (Note 2)  
Note 1. Always set "0".  
2. Always set "0" or "2" to the auxiliary function of the last point table among the consecutive point tables.  
0: When point table is used in absolute value command system  
1: When point table is used in incremental value command system  
Acceleration time constant of  
Deceleration time constant  
point table No.1 (100)  
of point table No.1 (150)  
Speed  
(1000)  
Forward  
rotation  
Speed  
(3000)  
Servo motor speed  
Position address  
Speed  
(2000)  
Speed (500)  
0r/min  
3.00  
6.00  
0
5.00  
8.00  
1
10.00  
16.00  
Selected point table No.  
ON  
Forward rotation start  
(RYn1)  
OFF  
Point table No. out put  
(RX(n+2)2 to RX(n+2)9)  
1
5 - 18  
5. OPERATION  
Positioning that reverses the direction midway  
The operation example given below assumes that the set values are as indicated in the following  
table. Here, the point table No.1 uses the absolute value command system, the point table No.2 the  
incremental value command system, and the point table No.3 the absolute value system.  
Point table Position data Servo motor  
Acceleration time constant  
[ms]  
Deceleration time constant  
[ms]  
Dwell [ms]  
(Note 1)  
Auxiliary  
function  
No.  
1
[
10STM m]  
speed [r/min]  
3000  
5.00  
100  
150  
0
0
0
1
1
2
7.00  
2000  
Invalid  
Invalid  
Invalid  
Invalid  
3
8.00  
1000  
0 (Note 2)  
Note 1. Always set "0".  
2. Always set "0" or "2" to the auxiliary function of the last point table among the consecutive point tables.  
0: When point table is used in absolute value command system  
1: When point table is used in incremental value command system  
Acceleration time constant  
Deceleration time constant  
of point table No.1 (100)  
of point table No.1 (150)  
Speed  
(3000)  
Speed  
(2000)  
Forward  
rotation  
Servo motor speed  
Position address  
0r/min  
Speed (1000)  
Reverse  
rotation  
Acceleration time constant  
of point table No.1 (100)  
7.00  
0
5.00  
12.00  
8.00  
1
Selected point table No.  
ON  
Forward rotation start  
(RYn1)  
OFF  
Point table No. out put  
(RX(n+2)2 to RX(n+2)9)  
1
5 - 19  
5. OPERATION  
2) Incremental value command system  
The position data of the incremental value command system is the sum of the position data of the  
consecutive point tables.  
The operation example given below assumes that the set values are as indicated in the following  
table.  
Point table Position data Servo motor  
Acceleration time constant  
[ms]  
Deceleration time constant  
[ms]  
Dwell [ms]  
(Note 1)  
Auxiliary  
function  
No.  
1
[
10STM m]  
speed [r/min]  
3000  
5.00  
100  
150  
0
0
0
1
1
2
6.00  
2000  
Invalid  
Invalid  
Invalid  
Invalid  
3
3.00  
1000  
0 (Note 2)  
Note 1. Always set "0".  
2. Always set "0" to the auxiliary function of the last point table among the consecutive point tables.  
Acceleration time constant  
of point table No.1 (100)  
Deceleration time constant  
of point table No.1 (150)  
Forward  
rotation  
Speed  
(3000)  
Servo motor speed  
Position address  
Speed  
(2000)  
Speed  
(1000)  
0r/min  
5.00  
6.00  
3.00  
0
5.00  
11.00  
14.00  
1
Selected point table No.  
(Note)  
ON  
Forward rotation start (RYn1)  
OFF  
Point table No. out put  
(RX(n+2)2 to RX(n+2)9)  
1
Note. Turning on Reverse rotation start (RYn2) starts positioning in the reverse rotation direction.  
5 - 20  
5. OPERATION  
(c) Temporary stop/restart  
When RYn7 is turned ON during automatic operation, the motor is decelerated to a temporary stop at  
the deceleration time constant in the point table being executed. When RYn7 is turned ON again, the  
remaining distance is executed.  
If the forward/reverse rotation start signal (RYn1 or RYn2) is ignored if it is switched on during a  
temporary stop.  
The remaining moving distance is cleared when the operation mode is changed from the automatic  
mode to the manual mode during a temporary stop.  
The temporary stop/restart input is ignored during zeroing and jog operation.  
1) When the servo motor is rotating  
Acceleration time constant  
of point table No.n  
Deceleration time constant  
of point table No.n  
Forward  
rotation  
0r/min  
Remaining  
distance  
Servo motor speed  
No.n  
Point table  
Forward rotation start (RYn1)  
or reverse rotation start (RYn2)  
ON  
OFF  
ON  
OFF  
Temporary stop/Restart (RYn7)  
Temporary stop (RXn7)  
Rough match (RXn2)  
ON  
OFF  
ON  
OFF  
ON  
OFF  
In position (RXn1)  
ON  
OFF  
Movement completion (RXnC)  
Point table No. out put  
(RX(n+2)2 to RX(n+2)9)  
No.n  
2) During dwell  
Point table No.n  
1
Point table No.n  
Dwell ta tb  
tb  
ta  
Forward  
rotation  
0r/min  
Servo motor speed  
No.n  
Point table  
Forward rotation start (RYn1)  
ON  
or reverse rotation start (RYn2) OFF  
ON  
Temporary stop/Restart (RYn7)  
OFF  
ON  
Temporary stop (RXn7)  
OFF  
ON  
Rough match (RXn2)  
OFF  
ON  
OFF  
In position (RXn1)  
ON  
OFF  
Movement completion (RXnC)  
Point table No. out put  
(RX(n+2)2 to RX(n+2)9)  
No.n  
5 - 21  
5. OPERATION  
5.4.3 Remote register-based position/speed setting  
This operation can be used when 2 stations are occupied. This section explains operation to be performed  
when the remote register is used to specify the position command data/speed command data.  
(1) Absolute value command positioning in absolute value command system  
The position data set in the absolute value command system are used as absolute values in positioning.  
Set the input devices and parameters as indicated below.  
Item  
Used device/parameter  
Description  
Turn RYn6 ON.  
Automatic operation mode  
Remote register-based position/speed  
setting  
Automatic/manual selection (RYn6)  
Position/speed specifying system selection  
(RY(n 2)A)  
Turn RY(n 2)A ON.  
0 : Absolute value command  
Command system  
Parameter No.PA01  
system is selected.  
2 : Remote register-based  
position/speed specifying  
system is selected. In the  
case, always set an  
Remote register-based position/speed  
specifying system selection  
Parameter No.PC30  
acceleration/deceleration  
time constant in the point  
table No.1.  
Position command data lower 16 bit  
(RWwn 4)  
Set the lower 16 bits of position data  
to RWwn 4, and the upper 16 bits  
to RWwn 5.  
Position data  
Position command data upper 16 bit  
(RWwn 5)  
Setting range: 999999 to 999999  
Servo motor speed  
Speed command data (RWwn 6)  
Set the servo motor speed.  
Set the position data to RWwn 4/RWwn 5, and the speed command data to RWwn 6, and store them  
into the servo amplifier.  
In the absolute value command system, Absolute value/incremental value selection (RY(n 2)B) can be  
used to select whether the values set to the position data are absolute values or incremental values. The  
position data set to RWwn 4/RWwn 5 are handled as absolute values when RY(n 2)B is turned OFF or  
as incremental values when it is turned ON. During operation, how the position data will be handled  
(absolute values or incremental values) depends on the status of RY(n 2)B when Forward rotation start  
(RYn1) is turned ON.  
Here, RY(n 2)B is turned OFF since the position data are handled as absolute values.  
5 - 22  
5. OPERATION  
Automatic/manual selection  
(RYn6)  
ON  
OFF  
ON  
Servo-on (RYn0)  
OFF  
ON  
Position/speed specifying  
system selection (RY(n 2)A)  
OFF  
ON  
Incremental value/absolute  
value selection (RY(n 2)B)  
OFF  
Position data  
Position data 1  
Speed data 1  
Position data 2  
Speed data 2  
(RWwn  
4
RWwn 5)  
Speed data (RWwn 6)  
(Note 2)  
ON  
Position instruction execution  
demand (RY(n 2)0)  
OFF  
ON  
Position instruction execution  
completion (RX(n 2)0)  
OFF  
ON  
(Note 2)  
Speed instruction execution  
demand (RY(n 2)1)  
OFF  
ON  
Speed instruction execution  
completion (RX(n 2)1)  
OFF  
ON  
6ms or more  
6ms or more  
(Note 1)  
(Note 1)  
Forward rotation start (RYn1)  
OFF  
3ms or less  
Incremental  
value data 1  
Forward  
rotation  
0r/min  
Servo motor speed  
Incremental  
value data 2  
Reverse  
rotation  
ON  
In position (RXn1)  
OFF  
ON  
Rough match (RXn2)  
OFF  
ON  
Movement completion (RXnC)  
Ready (RD)  
OFF  
ON  
OFF  
ON  
Trouble (ALM)  
OFF  
Note 1. Configure a sequence that changes the point table selection earlier, considering the delay time of CC-Link communication.  
2. For details of the operation timing of RY(n 2)0 and RY(n 2)1, refer to the section 3.6.2 (3).  
5 - 23  
5. OPERATION  
(2) Incremental value command positioning in absolute value command system  
The position data set in the absolute value command system are used as incremental values in positioning.  
Set the input devices and parameters as indicated below.  
Item  
Used device/parameter  
Description  
Turn RYn6 ON.  
Automatic operation mode  
Remote register-based position/speed  
setting  
Automatic/manual selection (RYn6)  
Position/speed specifying system selection  
(RY(n 2)A)  
Turn RY(n 2)A ON.  
0 : Absolute value command  
Command system  
Parameter No.PA01  
system is selected.  
2 : Remote register-based  
position/speed specifying  
system is selected.  
Remote register-based position/speed  
specifying system selection  
Parameter No.PC30  
Position command data lower 16 bit  
(RWwn 4)  
Set the lower 16 bits of position data  
to RWwn 4, and the upper 16 bits to  
RWwn 5.  
Position data  
Position command data upper 16 bit  
(RWwn 5)  
Setting range: 999999 to 999999  
Servo motor speed  
Speed command data (RWwn 6)  
Set the servo motor speed.  
Here, Absolute value/incremental value selection RY(n 2)B is turned ON since the position data are  
handled as incremental values.  
5 - 24  
5. OPERATION  
ON  
Automatic/manual selection  
(RYn6)  
OFF  
ON  
Servo-on (RYn0)  
OFF  
ON  
Position/speed specifying  
system selection (RY(n 2)A)  
OFF  
ON  
Incremental value/absolute  
value selection (RY(n 2)B)  
OFF  
Position data  
Position data 1  
Speed data 1  
Position data 2  
Speed data 2  
(RWwn 4 RWwn 5)  
Speed data (RWwn 6)  
(Note 2)  
ON  
Position instruction execution  
demand (RY(n 2)0)  
OFF  
ON  
Position instruction execution  
completion (RX(n 2)0)  
(Note 2)  
Speed instruction execution  
demand (RY(n 2)1)  
OFF  
ON  
OFF  
ON  
Speed instruction execution  
completion (RX(n 2)1)  
OFF  
ON  
6ms or more  
6ms or more  
(Note 1)  
(Note 1)  
Forward rotation start  
(RYn1)  
OFF  
3ms or less  
Incremental  
value data 1  
Forward  
rotation  
0r/min  
Servo motor speed  
Incremental  
value data 2  
Reverse  
rotation  
ON  
In position (RXn1)  
OFF  
ON  
Rough match (RXn2)  
OFF  
ON  
Movement completion (RXnC)  
Ready (RD)  
OFF  
ON  
OFF  
ON  
Trouble (ALM)  
OFF  
Note 1. Configure a sequence that changes the point table selection earlier, considering the delay time of CC-Link communication.  
2. For details of the operation timing of RY(n 2)0 and RY(n 2)1, refer to the section 3.6.2 (3).  
5 - 25  
5. OPERATION  
(3) Positioning in incremental value command system  
Execute positioning in the incremental value command system. Set the input signals and parameters as  
indicated below.  
Item  
Used device/parameter  
Description  
Turn RYn6 ON.  
Automatic operation mode  
Remote register-based position/speed  
setting  
Automatic/manual selection (RYn6)  
Position/speed specifying system selection  
(RY(n 2)A)  
Turn RY(n 2)A ON.  
1 : Incremental value  
Command system  
Parameter No.PA01  
command system is  
selected.  
2 : Remote register-based  
position/speed specifying  
system is selected. In the  
case, always set an  
Remote register-based position/speed  
specifying system selection  
Parameter No.PC30  
acceleration/deceleration  
time constant in the point  
table No.1.  
Position command data lower 16 bit  
(RWwn 4)  
Set the lower 16 bits of position data  
to RWwn 4, and the upper 16 bits to  
RWwn 5.  
Position data  
Position command data upper 16 bit  
(RWwn 5)  
Setting range: 0 to 999999  
Servo motor speed  
Speed command data (RWwn 6)  
Set the servo motor speed.  
Set "  
1" in parameter No.PA01 to select the incremental value command system. In the incremental  
value command system, the position data are handled as incremental values. Hence, Absolute  
value/incremental value selection (RY(n 2)B) is invalid.  
5 - 26  
5. OPERATION  
ON  
Automatic/manual selection  
(RYn6)  
OFF  
ON  
Servo-on (RYn0)  
OFF  
ON  
Position/speed specifying  
system selection (RY(n 2)A)  
OFF  
Position data  
Position data 1  
Speed data 1  
Position data 2  
Speed data 2  
(RWwn  
4
RWwn 5)  
Speed data (RWwn 6)  
(Note 2)  
ON  
Position instruction execution  
demand (RY(n 2)0)  
OFF  
ON  
Position instruction execution  
completion (RX(n 2)0)  
OFF  
ON  
(Note 2)  
Speed instruction execution  
demand (RY(n 2)1)  
OFF  
ON  
Speed instruction execution  
completion (RX(n 2)1)  
OFF  
ON  
6ms or more  
(Note 1)  
Forward rotation start (RYn1)  
OFF  
ON  
6ms or more  
(Note 1)  
Reverse rotation start  
(RYn2)  
OFF  
3ms or less  
Incremental  
value data 1  
Forward  
rotation  
0r/min  
Servo motor speed  
Incremental  
value data 2  
Reverse  
rotation  
ON  
In position (RXn1)  
OFF  
ON  
Rough match (RXn2)  
OFF  
ON  
Movement completion (RXnC)  
Ready (RD)  
OFF  
ON  
OFF  
ON  
Trouble (ALM)  
OFF  
Note 1. Configure a sequence that changes the point table selection earlier, considering the delay time of CC-Link communication.  
2. For details of the operation timing of RY(n 2)0 and RY(n 2)1, refer to the section 3.6.2 (3).  
5 - 27  
5. OPERATION  
5.5 Manual operation mode  
For machine adjustment, home position matching, etc., jog operation or a manual pulse generator may be  
used to make a motion to any position.  
5.5.1 JOG operation  
(1) Setting  
Set the input device and parameters as follows according to the purpose of use. In this case, the point table  
No. selection 1 to 8 (RYnA to RYnE, RY(n 2)3 to RY(n 2)5) are invalid.  
Item  
Manual operation mode selection  
Servo motor rotation direction  
Jog speed  
Used device/parameter  
Automatic/manual selection (RYn6)  
Parameter No.PA14  
Description  
Turn RYn6 OFF.  
Refer to (2) in this section.  
Parameter No.PC12  
Set the speed of the servo motor.  
Use the acceleration/deceleration  
time constants in point table No.1.  
Acceleration/deceleration time constant  
Point table No.1  
(2) Servo motor rotation direction  
Servo motor rotation direction  
Parameter No.PA14 setting  
Forward rotation start (RYn1) ON  
CCW rotation  
Reverse rotation start (RYn2) ON  
0
1
CW rotation  
CW rotation  
CCW rotation  
RYn1: ON  
CCW  
RYn2: ON  
CCW  
CW  
RYn2: ON  
CW  
RYn1: ON  
Parameter No.PA14: 0  
Parameter No.PA14: 1  
(3) Operation  
By turning RYn1 ON, operation is performed under the conditions of the jog speed set in the parameter and  
the acceleration and deceleration time constants in set point table No.1. For the rotation direction, refer to  
(2) in this section. By turning RYn2 ON, the servo motor rotates in the reverse direction to forward rotation  
start (RYn1).  
5 - 28  
5. OPERATION  
(4) Timing chart  
ON  
Automatic/manual selection  
(RYn6)  
OFF  
ON  
Servo-on (RYn0)  
OFF  
100ms  
ON  
Forward rotation start (RYn1)  
Reverse rotation start (RYn2)  
Forward rotation jog  
OFF  
ON  
Reverse rotation jog  
OFF  
Forward  
rotation  
Servo motor speed  
0r/min  
Reverse  
rotation  
ON  
Rough match (RXn2)  
OFF  
ON  
Movement completion (RXnC)  
OFF  
ON  
Ready (RD)  
OFF  
ON  
Trouble (ALM)  
OFF  
5.5.2 Manual pulse generator  
(1) Setting  
Set the input signal and parameters as follows according to the purpose of use. In this case, the point table  
No. selection 1 to 8 (RYnA to RYnE, RY(n 2)3 to RY(n 2)5) are invalid.  
Item  
Setting method  
Description  
Turn RYn6 OFF.  
Manual operation mode selection  
Automatic/manual selection (RYn6)  
For more information, refer to (3) in  
this section.  
Manual pulse generator multiplication  
Servo motor rotation direction  
Parameter No.PA05  
Parameter No.PA14  
Refer to (2) in this section.  
(2) Servo motor rotation direction  
Servo motor rotation direction  
Parameter No.PA14 setting  
Manual pulse generator: forward rotation  
Manual pulse generator: reverse rotation  
CW rotation  
0
1
CCW rotation  
CW rotation  
CCW rotation  
CCW  
CW  
Forward rotation  
5 - 29  
5. OPERATION  
(3) Manual pulse generator multiplication  
(a) Using the parameter for setting  
Use parameter No.PA05 to set the multiplication ratio of the servo motor rotation to the manual pulse  
generator rotation.  
Multiplication ratio of servo motor rotation to  
Parameter No.PA05 setting  
Moving distance  
manual pulse generator rotation  
0
1
2
1 time  
10 times  
100 times  
1[ m]  
10[ m]  
100[ m]  
(b) Using the input signals for setting (devices)  
Set the pulse generator multiplication 1 (TP0) and the pulse generator multiplication 2 (TP1) to the CN6  
connector pins in the parameters of Nos. PD06 to PD08.  
(Note)  
(Note)  
Multiplication ratio of servo motor rotation  
to manual pulse generator rotation  
Pulse generator multiplication 2 Pulse generator multiplication 1  
Moving distance  
(TP1)  
(TP0)  
0
0
1
1
0
1
0
1
Parameter No.PA05 setting valid  
1 time  
10 times  
100 times  
1[ m]  
10[ m]  
100[ m]  
Note. 0: OFF  
1: ON  
(4) Operation  
Turn the manual pulse generator to rotate the servo motor. For the rotation direction of servo motor, refer to  
(2) in this section.  
5 - 30  
5. OPERATION  
5.6 Manual home position return mode  
5.6.1 Outline of home position return  
Home position return is performed to match the command coordinates with the machine coordinates. In the  
incremental system, home position return is required every time input power is switched on. In the absolute  
position detection system, once home position return is done at the time of installation, the current position is  
retained if power is switched off. Hence, home position return is not required when power is switched on again.  
This servo amplifier has the home position return methods given in this section. Choose the most appropriate  
method for your machine structure and application.  
This servo amplifier has the home position return automatic return function which executes home position  
return by making an automatic return to a proper position if the machine has stopped beyond or at the  
proximity dog. Manual motion by jog operation or the like is not required.  
5 - 31  
5. OPERATION  
(1) Home position return types  
Choose the optimum home position return according to the machine type, etc.  
Type  
Home position return method  
Features  
General home position return method using a  
proximity dog.  
Repeatability of home position return is  
excellent.  
With deceleration started at the front end of a proximity  
dog, the position where the first Z-phase signal is given  
past the rear end of the dog or a motion has been  
made over the home position shift distance starting  
from the Z-phase signal is defined as a home position.  
Dog type home position  
return  
The machine is less burdened.  
Used when the width of the proximity dog can  
be set greater than the deceleration distance of  
the servo motor.  
With deceleration started at the front end of a proximity  
dog, the position where the first Z-phase signal is given  
Home position return method using a proximity  
dog.  
Count type home position after advancement over the preset moving distance  
return  
after the proximity dog or a motion has been made  
over the home position shift distance starting from the  
Z-phase signal is defined as a home position.  
Used when it is desired to minimize the length  
of the proximity dog.  
Data setting type home  
position return  
An arbitrary position is defined as a home position.  
No proximity dog required.  
Since the machine part collides with the  
machine be fully lowered.  
The position where the machine stops when its part is  
pressed against a machine stopper is defined as a  
home position.  
Stopper type home  
position return  
The machine and stopper strength must be  
increased.  
Home position ignorance  
(Servo-on position as  
home position)  
The position where servo is switched on is defined as  
a home position.  
The position where the axis, which had started  
decelerating at the front end of a proximity dog, has  
moved the after-proximity dog moving distance and  
home position shift distance after it passed the rear  
end is defined as a home position.  
Dog type rear end  
reference  
The Z-phase signal is not needed.  
The Z-phase signal is not needed.  
The position where the axis, which had started  
decelerating at the front end of a proximity dog, has  
moved the after-proximity dog moving distance and  
home position shift distance is defined as a home  
position.  
Count type front end  
reference  
The position where the first Z-phase signal is issued  
after detection of the proximity dog front end is defined  
as a home position.  
Dog cradle type  
After the proximity dog front end is detected, the  
current position moves away from the proximity dog in  
the reverse direction. In this movement, the home  
position is defined to be where the first Z-phase signal  
is issued or the position that is the home position shift  
distance away from where the first Z-phase signal is  
issued.  
Dog type first Z-phase  
reference  
Dog type front end  
reference  
The home position is the front end of the proximity dog.  
The Z-phase signal is not needed.  
The home position is defined to be where the first Z-  
phase signal is issued or the position that is the home  
position shift distance away from where the first Z-  
phase signal is issued.  
Dogless Z-phase  
reference  
5 - 32  
5. OPERATION  
(2) Home position return parameter  
When performing home position return, set each parameter as follows.  
(a) Choose the home position return method with parameter No.PC02 (Home position return type).  
Parameter No.PC02  
0 0 0  
Home position return method  
0: Dog type  
1: Count type  
2: Data setting type  
3: Stopper type  
4: Home position ignorance (Servo-on position as home position)  
5: Dog type rear end reference  
6: Count type front end reference  
7: Dog cradle type  
8: Dog type first Z-phase reference  
9: Dog type front end reference  
A: Dogless Z-phase reference  
(b) Choose the starting direction of home position return with parameter No.PC03 (Home position return  
direction). Set "0" to start home position return in the direction in which the address is incremented from  
the current position, or "1" to start home position return in the direction in which the address is  
decremented.  
Parameter No.PC03  
0 0 0  
Home position return direction  
0: Address increment direction  
1: Address decrement direction  
(c) Choose the polarity at which the proximity dog is detected with parameter No.PD16 (Input polarity  
setting). Set "0" to detect the dog when the proximity dog device (DOG) is OFF, or "1" to detect the dog  
when the device is ON.  
Parameter No.PD16  
0 0 0  
Proximity dog input polarity  
0: OFF indicates detection of the dog  
1: ON indicates detection of the dog  
(3) Instructions  
1) Before starting home position return, always make sure that the limit switch operates.  
2) Confirm the home position return direction. Incorrect setting will cause the machine to run reversely.  
3) Confirm the proximity dog input polarity. Not doing so may cause unexpected operation.  
5 - 33  
5. OPERATION  
5.6.2 Dog type home position return  
A home position return method using a proximity dog. With deceleration started at the front end of the proximity  
dog, the position where the first Z-phase signal is given past the rear end of the dog or a motion has been  
made over the home position shift distance starting from the Z-phase signal is defined as a home position.  
(1) Devices, parameters  
Set the input devices and parameters as follows.  
Item  
Device/Parameter used  
Description  
Automatic/manual selection (RYn6)  
Point table No. selection 1 to 8  
Turn RYn6 ON.  
Manual home position return mode  
selection  
RYnA to RYnE, RY(n 2)3 to RY(n 2)5  
are turned off.  
(RYnA to RYnE, RY(n 2)3 to RY(n 2)5)  
Remote register-based  
position/speed setting  
(Only when two stations are  
occupied)  
Position/speed specifying system selection  
(RY(n 2)A)  
Turn RY(n 2)A ON.  
0 :Dog type home position return is  
selected.  
Dog type home position return  
Home position return direction  
Dog input polarity  
Parameter No.PC02  
Parameter No.PC03  
Parameter No.PD16  
Refer to section 5.6.1 (2) and choose home  
position return direction.  
Refer to section 5.6.1 (2) and choose dog  
input polarity.  
Home position return speed  
Creep speed  
Parameter No.PC04  
Parameter No.PC05  
Set speed until detection of dog.  
Set speed after detection of dog.  
Set when shifting the home position starting  
at the first Z-phase signal after passage of  
proximity dog rear end.  
Home position shift distance  
Parameter No.PC06  
Point table No.1  
Home position return  
acceleration/deceleration time  
constants  
Use the acceleration/deceleration time  
constants of point table No.1.  
Set the current position at home position  
return completion.  
Home position return position data Parameter No.PC07  
(2) Length of proximity dog  
To ensure that the Z-phase signal of the servo motor is generated during detection of the proximity dog  
(DOG), the proximity dog should have the length which satisfies formulas (5.1) and (5.2).  
V
60  
td  
2
.............................................................................. (5.1)  
L1  
L
1
: Proximity dog length [mm]  
V
: Home position return speed [mm/min]  
td : Deceleration time [s]  
L
L
2
S.................................................................................... (5.2)  
2
: Proximity dog length [mm]  
2
S : Moving distance per servo motor revolution [mm]  
5 - 34  
5. OPERATION  
(3) Timing chart  
ON  
Automatic/manual selection  
(RYn6)  
OFF  
0
Selected point table No.  
(Note)  
4ms or more  
6ms or more  
ON  
Forward rotation start  
(RYn1)  
OFF  
ON  
Reverse rotation start  
(RYn2)  
OFF  
Point table No.1  
deceleration time constant  
Point table No.1  
acceleration time  
constant  
Home position return speed  
parameter No.PC04  
Home position shift distance  
parameter No.PC06  
Creep speed  
parameter No.PC05  
Forward  
rotation  
0r/min  
Home position  
Servo motor speed  
td  
3ms or less  
Home position address  
parameter No.PC07  
Proximity dog  
ON  
Z-phase  
OFF  
ON  
Proximity dog (DOG)  
Rough match (RXn2)  
OFF  
ON  
OFF  
ON  
Movement completion  
(RXnC)  
OFF  
ON  
Home position return  
completion (RXn3/ZP)  
OFF  
Note. Configure a sequence that changes the point table selection earlier, considering the delay time of CC-Link communication.  
The parameter No.PC07 (home position return position data) setting value is the positioning address after  
the home position return is completed.  
(4) Adjustment  
In dog type home position return, adjust to ensure that the Z-phase signal is generated during dog  
detection. Locate the rear end of the proximity dog (DOG) at approximately the center of two consecutive Z-  
phase signals.  
The position where the Z-phase signal is generated can be monitored in "Within one-revolution position" of  
"Status display" of the MR Configurator or the parameter unit.  
0
131072  
0
Servo motor  
Z-phase  
Proximity  
dog  
Proximity dog  
ON  
(DOG) OF  
5 - 35  
5. OPERATION  
5.6.3 Count type home position return  
In count type home position return, a motion is made over the distance set in parameter No.PC08 (moving  
distance after proximity dog) after detection of the proximity dog front end. The position where the first Z-phase  
signal is given after that is defined as a home position. Hence, if the proximity dog (DOG) is 10ms or longer,  
there is no restriction on the dog length. This home position return method is used when the required proximity  
dog length cannot be reserved to use dog type home position return or when the proximity dog (DOG) is  
entered electrically from a controller or the like.  
(1) Devices, parameters  
Set the input devices and parameters as follows.  
Item  
Device/Parameter used  
Automatic/manual selection (RYn6)  
Point table No. selection 1 to 8  
Description  
Turn RYn6 ON.  
Manual home position return mode  
selection  
RYnA to RYnE, RY(n 2)3 to RY(n 2)5 are  
turned off.  
(RYnA to RYnE, RY(n 2)3 to RY(n 2)5)  
Remote register-based  
position/speed setting  
(Only when two stations are  
occupied)  
Position/speed specifying system selection  
(RY(n 2)A)  
Turn RY(n 2)A ON.  
1: Count type home position return is  
selected.  
Count type home position return  
Home position return direction  
Dog input polarity  
Parameter No.PC02  
Parameter No.PC03  
Parameter No.PD16  
Refer to section 5.6.1 (2) and choose home  
position return direction.  
Refer to section 5.6.1 (2) and choose dog  
input polarity.  
Home position return speed  
Creep speed  
Parameter No.PC04  
Parameter No.PC05  
Set speed until detection of dog.  
Set speed after detection of dog.  
Set when shifting the home position, starting  
at the first Z-phase signal given after passage  
of the proximity dog front end and movement  
over the moving distance.  
Home position shift distance  
Parameter No.PC06  
Set the moving distance after passage of  
proximity dog front end.  
Moving distance after proximity dog Parameter No.PC08  
Home position return  
Use the acceleration/deceleration time  
constants of point table No.1.  
acceleration/deceleration time  
constants  
Point table No.1  
Set the current position at home position  
return completion.  
Home position return position data Parameter No.PC07  
5 - 36  
5. OPERATION  
(2) Timing chart  
ON  
Automatic/manual selection  
(RYn6)  
OFF  
Selected point table No.  
0
(Note)  
4ms or more  
6ms or more  
ON  
Forward rotation start (RYn1)  
Reverse rotation start (RYn2)  
OFF  
ON  
OFF  
Home position  
Point table No.1  
deceleration time constant  
shift distance  
Point table No.1  
acceleration time  
constant  
Home position return speed  
parameter No.PC04  
parameter No.PC06  
Creep speed  
parameter No.PC05  
Home position  
Forward  
Servo motor speed  
rotation  
0r/min  
3ms or less  
Home position address  
parameter No.PC07  
Moving distance after  
proximity dog  
parameter No.PC08  
Proximity dog  
ON  
Z-phase  
OFF  
ON  
Proximity dog (DOG)  
OFF  
ON  
Rough match (RXn2)  
OFF  
ON  
Movement completion  
(RXnC)  
OFF  
ON  
Home position return  
completion (RXn3/ZP)  
OFF  
Note. Configure a sequence that changes the point table selection earlier, considering the delay time of CC-Link communication.  
The parameter No.PC07 (home position return position data) setting value is the positioning address after  
the home position return is completed.  
5 - 37  
5. OPERATION  
5.6.4 Data setting type home position return  
Data setting type home position return is used when it is desired to determine any position as a home position.  
JOG operation can be used for movement.  
(1) Devices, parameters  
Set the input devices and parameters as follows.  
Item  
Device/Parameter used  
Description  
Turn RYn6 ON.  
Automatic/manual selection (RYn6)  
Point table No. selection 1 to 8  
Manual home position return mode  
selection  
RYnA to RYnE, RY(n 2)3 to  
RY(n 2)5 are turned off.  
(RYnA to RYnE, RY(n 2)3 to RY(n 2)5)  
Remote register-based  
position/speed setting  
(Only when two stations are  
occupied)  
Position/speed specifying system selection  
(RY(n 2)A)  
Turn RY(n 2)A ON.  
Data setting type home position  
return  
2: Data setting type home  
position return is selected.  
Parameter No.PC02  
Parameter No.PC07  
Set the current position at home  
position return completion.  
Home position return position data  
(2) Timing chart  
ON  
Automatic/manual selection  
(RYn6)  
OFF  
Selected point table No.  
0
(Note)  
4ms or more  
6ms or more  
ON  
Forward rotation start (RYn1)  
OFF  
ON  
Reverse rotation start (RYn2)  
OFF  
Home position address  
parameter No.PC07  
Forward  
rotation  
Servo motor speed  
Rough match (RXn2)  
0r/min  
3ms or less  
ON  
OFF  
ON  
Movement completion (RXnC)  
OFF  
ON  
Home position return  
completion (RXn3/ZP)  
OFF  
Movement to the home position  
Operation for home position return  
Note. Configure a sequence that changes the point table selection earlier, considering the delay time of CC-Link communication.  
The parameter No.PC07 (home position return position data) setting value is the positioning address after  
the home position return is completed.  
5 - 38  
5. OPERATION  
5.6.5 Stopper type home position return  
In stopper type home position return, a machine part is pressed against a stopper or the like by jog operation to  
make a home position return and that position is defined as a home position.  
(1) Devices, parameters  
Set the input devices and parameters as follows.  
Item  
Device/Parameter used  
Description  
Automatic/manual selection (RYn6)  
Point table No. selection 1 to 8  
Turn RYn6 ON.  
Manual home position return  
mode selection  
RYnA to RYnE, RY(n 2)3 to RY(n 2)5 are  
turned off.  
(RYnA to RYnE, RY(n 2)3 to RY(n 2)5)  
Remote register-based  
position/speed setting  
(Only when two stations are  
occupied)  
Position/speed specifying system selection  
(RY(n 2)A)  
Turn RY(n 2)A ON.  
Stopper type home position  
return  
3:Stopper type home position return is  
selected.  
Parameter No.PC02  
Refer to section 5.6.1 (2) and choose the home  
position return direction.  
Home position return direction Parameter No.PC03  
Home position return speed  
Parameter No.PC04  
Set the speed till contact with the stopper.  
Time from when the part makes contact with the  
stopper to when home position return data is  
obtained to output home position return  
completion (ZP).  
Stopper time  
Parameter No.PC09  
Stopper type home position  
return torque limit value  
Home position return  
acceleration time constant  
Home position return position  
data  
Set the servo motor torque limit value for  
execution of stopper type home position return.  
Use the acceleration time constant of point table  
No.1.  
Parameter No.PC10  
Point table No.1  
Set the current position at home position return  
completion.  
Parameter No.PC07  
5 - 39  
5. OPERATION  
(2) Timing chart  
ON  
Automatic/manual selection  
(RYn6)  
OFF  
Selected point table No.  
0
(Note 1)  
4ms or more  
ON  
6ms or more  
Forward rotation start (RYn1)  
OFF  
ON  
Reverse rotation start (RYn2)  
Torque limit value  
OFF  
Parameter No.PC35  
(Note 3) Parameter No.PC10  
Parameter No.PC35  
Home position address  
parameter No.PC07  
Point table No.1  
acceleration time constant  
Home position return speed  
parameter No.PC04  
Forward  
rotation  
Servo motor speed  
0r/min  
3ms or less  
Stopper  
Stopper time  
parameter No.PC09  
ON  
Limiting torque (RYn4)  
Rough match (RYn2)  
(Note 2)  
OFF  
ON  
OFF  
ON  
Movement completion (RXnC)  
OFF  
ON  
Home position return  
completion (RXn3/ZP)  
OFF  
Note 1. Configure a sequence that changes the point table selection earlier, considering the delay time of CC-Link communication.  
2. Turns ON when the torque reaches the value set to Forward rotation torque limit (parameter No.PA11), Reverse rotation  
torque limit (parameter No.PA12) or Internal torque limit (parameter No.PC35).  
3. The torque limit that is enabled at this point is as follows.  
(Note)  
Internal torque  
limit selection  
(RY(n 2)6)  
Torque limit to be  
enabled  
Limit value status  
0
Parameter No.PC10  
Parameter No.PC10  
Parameter No.PC35  
Parameter No.PC35  
Parameter No.PC35  
Parameter No.PC10  
Parameter No.PC10  
1
Note. 0: OFF  
1: ON  
The parameter No.PC07 (home position return position data) setting value is the positioning address after  
the home position return is completed.  
5 - 40  
5. OPERATION  
5.6.6 Home position ignorance (servo-on position defined as home position)  
The position where servo is switched on is defined as a home position.  
POINT  
When executing this home position return, changing to the home position  
return mode is not necessary.  
(1) Devices, parameter  
Set the input devices and parameter as follows.  
Item  
Device/Parameter used  
Parameter No.PC02  
Description  
Home position ignorance  
4: Home position ignorance is selected.  
Set the current position at home position return  
completion.  
Home position return position data Parameter No.PC07  
(2) Timing chart  
ON  
Servo-on (RYn0)  
OFF  
Home position address  
parameter No.PC07  
0r/min  
Servo motor speed  
ON  
Rough match (RXn2)  
OFF  
ON  
Movement completion  
(RXnC)  
OFF  
ON  
Home position return  
completion (RXn3/ZP)  
OFF  
ON  
Ready (RD)  
OFF  
The parameter No.PC07 (home position return position data) setting value is the positioning address after  
the home position return is completed.  
5 - 41  
5. OPERATION  
5.6.7 Dog type rear end reference home position return  
POINT  
This home position return method depends on the timing of reading Proximity  
dog (DOG) that has detected the rear end of a proximity dog. Hence, if a  
home position return is made at the creep speed of 100r/min, an error of  
400 pulses will occur in the home position. The error of the home position is  
larger as the creep speed is higher.  
The position where the axis, which had started decelerating at the front end of a proximity dog, has moved the  
after-proximity dog moving distance and home position shift distance after it passed the rear end is defined as  
a home position. A home position return that does not depend on the Z-phase signal can be made.  
(1) Devices, parameters  
Set the input devices and parameters as indicated below.  
Item  
Device/Parameter used  
Automatic/manual selection (RYn6)  
Point table No. selection 1 to 8  
Description  
Turn RYn6 ON.  
RYnA to RYnE, RY(n 2)3 to RY(n 2)5 are  
Manual home position return mode  
selection  
(RYnA to RYnE, RY(n 2)3 to RY(n 2)5) turned off.  
Remote register-based  
position/speed setting  
(Only when two stations are  
occupied)  
Position/speed specifying system selection  
Turn RY(n  
2)A ON.  
(RY(n 2)A)  
Dog type rear end reference home  
position return  
5: Select the dog type rear end  
reference.  
Parameter No.PC02  
Parameter No.PC03  
Parameter No.PD16  
Refer to section 5.6.1 (2) and select the home  
position return direction.  
Home position return direction  
Dog input polarity  
Refer to section 5.6.1 (2) and select the dog  
input polarity.  
Home position return speed  
Creep speed  
Parameter No.PC04  
Parameter No.PC05  
Set the speed till the dog is detected.  
Set the speed after the dog is detected.  
Set when the home position is moved from  
where the axis has passed the proximity dog  
rear end.  
Home position shift distance  
Parameter No.PC06  
Set the moving distance after the axis has  
passed the proximity dog rear end.  
Use the acceleration/deceleration time  
constant of point table No.1.  
Moving distance after proximity dog Parameter No.PC08  
Home position return acceleration/  
Point table No.1  
deceleration time constants  
Set the current position at home position return  
completion.  
Home position return position data Parameter No.PC07  
5 - 42  
5. OPERATION  
(2) Timing chart  
ON  
Automatic/manual selection  
(RYn6)  
OFF  
Selected point table No.  
0
4ms or more (Note)  
6ms or more  
ON  
Forward rotation start (RYn1)  
OFF  
ON  
Reverse rotation start (RYn2)  
OFF  
Moving distance after proximity dog  
Home position shift distance  
Home position return speed  
Forward  
rotation  
0r/min  
Creep speed  
Servo motor speed  
3ms or less  
Home position address  
parameter No.PC07  
Proximity dog  
ON  
Proximity dog (DOG)  
OFF  
ON  
Rough match (RXn2)  
OFF  
ON  
Movement completion (RXnC)  
OFF  
ON  
Home position return  
completion (RXn3/ZP)  
OFF  
Note. Configure a sequence that changes the point table selection earlier, considering the delay time of CC-Link communication.  
The parameter No.PC17 (home position return position data) setting value is the positioning address after  
the home position return is completed.  
5 - 43  
5. OPERATION  
5.6.8 Count type front end reference home position return  
POINT  
This home position return method depends on the timing of reading Proximity  
dog (DOG) that has detected the front end of a proximity dog. Hence, if a  
home position return is made at the home position return speed of 100r/min,  
an error of 400 pulses will occur in the home position. The error of the home  
position is larger as the home position return speed is higher.  
The position where the axis, which had started decelerating at the front end of a proximity dog, has moved the  
after-proximity dog moving distance and home position shift distance is defined as a home position. A home  
position return that does not depend on the Z-phase signal can be made. The home position may change if the  
home position return speed varies.  
(1) Devices, parameters  
Set the input devices and parameters as indicated below.  
Item  
Device/Parameter used  
Description  
Turn RYn6 ON.  
Automatic/manual selection (RYn6)  
Point table No. selection 1 to 8  
Manual home position return mode  
selection  
RYnA to RYnE, RY(n 2)3 to  
RY(n 2)5 are turned off.  
(RYnA to RYnE, RY(n 2)3 to RY(n 2)5)  
Remote register-based  
position/speed setting  
(Only when two stations are  
occupied)  
Position/speed specifying system selection  
(RY(n 2)A)  
Turn RY(n 2)A ON.  
Count type dog front end reference  
home position return  
6: Select the count type dog  
front end reference.  
Parameter No.PC02  
Parameter No.PC03  
Parameter No.PD16  
Refer to section 5.6.1 (2) and select the  
home position return direction.  
Refer to section 5.6.1 (2) and select the  
dog input polarity.  
Home position return direction  
Dog input polarity  
Home position return speed  
Creep speed  
Parameter No.PC04  
Parameter No.PC05  
Set the speed till the dog is detected.  
Set the speed after the dog is detected.  
Set when the home position is moved  
from where the axis has passed the  
proximity dog rear end.  
Home position shift distance  
Parameter No.PC06  
Set the moving distance after the axis  
has passed the proximity dog rear end.  
Use the acceleration/deceleration time  
constant of point table No.1.  
Moving distance after proximity dog  
Parameter No.PC08  
Point table No.1  
Home position return acceleration/  
deceleration time constants  
Set the current position at home  
position return completion.  
Home position return position data  
Parameter No.PC07  
5 - 44  
5. OPERATION  
(2) Timing chart  
ON  
Automatic/manual selection  
(RYn6)  
OFF  
Selected point table No.  
0
4ms or more (Note)  
6ms or more  
ON  
Forward rotation start (RYn1)  
OFF  
ON  
Reverse rotation start (RYn2)  
OFF  
Moving distance after proximity dog  
Home position shift distance  
Home position return speed  
Forward  
rotation  
0r/min  
Creep speed  
Servo motor speed  
3ms or less  
Home position address  
parameter No.PC07  
Proximity dog (DOG)  
ON  
Proximity dog (DOG)  
OFF  
ON  
Rough match (RXn2)  
OFF  
ON  
Movement completion (RXnC)  
OFF  
ON  
Home position return  
completion (RXn3/ZP)  
OFF  
Note. Configure a sequence that changes the point table selection earlier, considering the delay time of CC-Link communication.  
The parameter No.PC07 (home position return position data) setting value is the positioning address after  
the home position return is completed.  
5 - 45  
5. OPERATION  
5.6.9 Dog cradle type home position return  
The position where the first Z-phase signal is issued after detection of the proximity dog front end can be  
defined as a home position.  
(1) Devices, parameters  
Set the input devices and parameters as indicated below.  
Item  
Device/Parameter used  
Description  
Turn RYn6 ON.  
Automatic/manual selection (RYn6)  
Point table No. selection 1 to 8  
Manual home position return mode  
selection  
RYnA to RYnE, RY(n 2)3 to  
RY(n 2)5 are turned off.  
(RYnA to RYnE, RY(n 2)3 to RY(n 2)5)  
Remote register-based  
position/speed setting  
(Only when two stations are  
occupied)  
Position/speed specifying system selection  
Turn RY(n 2)A ON.  
(RY(n  
2)A)  
Dog cradle type home position return Parameter No.PC02  
7: Select the dog cradle type.  
Refer to section 5.6.1 (2) and select the  
home position return direction.  
Home position return direction  
Dog input polarity  
Parameter No.PC03  
Parameter No.PD16  
Refer to section 5.6.1 (2) and select the  
dog input polarity.  
Home position return speed  
Creep speed  
Parameter No.PC04  
Parameter No.PC05  
Set the speed till the dog is detected.  
Set the speed after the dog is detected.  
Set when the home position is moved  
from the Z-phase signal position.  
Home position shift distance  
Parameter No.PC06  
Home position return  
acceleration/deceleration time  
constants  
Use the acceleration/deceleration time  
constant of point table No.1.  
Point table No.1  
Set the current position at home  
position return completion.  
Home position return position data  
Parameter No.PC07  
5 - 46  
5. OPERATION  
(2) Timing chart  
ON  
Automatic/manual selection  
(RYn6)  
OFF  
Selected point table No.  
0
4ms or more (Note)  
6ms or more  
ON  
Forward rotation start (RYn1)  
OFF  
ON  
Reverse rotation start (RYn2)  
OFF  
Home position return speed  
Creep speed  
Home position shift distance  
Forward  
rotation  
0r/min  
Reverse  
rotation  
Servo motor speed  
3ms or less  
Home position address  
parameter No.PC07  
Proximity dog  
ON  
Z-phase  
OFF  
ON  
Proximity dog (DOG)  
OFF  
ON  
Rough match (RXn2)  
OFF  
ON  
Movement completion (RXnC)  
OFF  
ON  
Home position return  
completion (RXn3/ZP)  
OFF  
Note. Configure a sequence that changes the point table selection earlier, considering the delay time of CC-Link communication.  
The parameter No.PC07 (home position return position data) setting value is the positioning address after  
the home position return is completed.  
5 - 47  
5. OPERATION  
5.6.10 Dog type first Z-phase reference home position return  
After the proximity dog front end is detected, the current position moves in the reverse direction at creep  
speed. After this moving away from the proximity dog, the home position is determined to be where the first Z-  
phase pulse is issued.  
(1) Devices, parameters  
Set the input devices and parameters as indicated below.  
Item  
Device/Parameter used  
Description  
Turn RYn6 ON.  
Automatic/manual selection (RYn6)  
Point table No. selection 1 to 8  
Manual home position return mode  
selection  
RYnA to RYnE, RY(n 2)3 to  
RY(n 2)5 are turned off.  
(RYnA to RYnE, RY(n 2)3 to RY(n 2)5)  
Remote register-based  
position/speed setting  
(Only when two stations are  
occupied)  
Position/speed specifying system selection  
(RY(n 2)A)  
Turn RY(n 2)A ON.  
Dog cradle type home position return Parameter No.PC02  
8: Select the dog cradle type.  
Refer to section 5.6.1 (2) and select the  
home position return direction.  
Home position return direction  
Dog input polarity  
Parameter No.PC03  
Parameter No.PD16  
Refer to section 5.6.1 (2) and select the  
dog input polarity.  
Home position return speed  
Creep speed  
Parameter No.PC04  
Parameter No.PC05  
Set the speed till the dog is detected.  
Set the speed after the dog is detected.  
Set when the home position is moved  
from the Z-phase signal position.  
Home position shift distance  
Parameter No.PC06  
Home position return  
acceleration/deceleration time  
constants  
Use the acceleration/deceleration time  
constant of point table No.1.  
Point table No.1  
Set the current position at home  
position return completion.  
Home position return position data  
Parameter No.PC07  
5 - 48  
5. OPERATION  
(2) Timing chart  
ON  
Automatic/manual selection  
(RYn6)  
OFF  
Selected point table No.  
0
4ms or more (Note)  
6ms or more  
ON  
Forward rotation start (RYn1)  
OFF  
ON  
Reverse rotation start (RYn2)  
OFF  
Home position return speed  
Home position shift distance  
Forward  
rotation  
0r/min  
Reverse  
rotation  
Home position address  
parameter No.PC07  
Servo motor speed  
3ms or less  
Creep speed  
Proximity dog  
ON  
Z-phase  
OFF  
ON  
Proximity dog (DOG)  
OFF  
ON  
Rough match (RXn2)  
OFF  
ON  
Movement completion (RXnC)  
OFF  
ON  
Home position return  
completion (RXn3/ZP)  
OFF  
Note. Configure a sequence that changes the point table selection earlier, considering the delay time of CC-Link communication.  
The parameter No.PC07 (home position return position data) setting value is the positioning address after  
the home position return is completed.  
5 - 49  
5. OPERATION  
5.6.11 Dog type front end reference home position return method  
The home position is determined to be the position of the front end of the proximity dog.  
(1) Devices, parameters  
Set the input devices and parameters as indicated below.  
Item  
Device/Parameter used  
Description  
Turn RYn6 ON.  
Automatic/manual selection (RYn6)  
Point table No. selection 1 to 8  
Manual home position return mode  
selection  
RYnA to RYnE, RY(n 2)3 to  
RY(n 2)5 are turned off.  
(RYnA to RYnE, RY(n 2)3 to RY(n 2)5)  
Remote register-based  
position/speed setting  
(Only when two stations are  
occupied)  
Position/speed specifying system selection  
(RY(n 2)A)  
Turn RY(n 2)A ON.  
Dog cradle type home position return Parameter No.PC02  
9: Select the dog cradle type.  
Refer to section 5.6.1 (2) and select  
the home position return direction.  
Refer to section 5.6.1 (2) and select  
the dog input polarity.  
Home position return direction  
Parameter No.PC03  
Dog input polarity  
Parameter No.PD16  
Parameter No.PC04  
Parameter No.PC05  
Home position return speed  
Creep speed  
Set the speed till the dog is detected.  
Set the speed after the dog is  
detected.  
Set when the home position is moved  
from the Z-phase signal position.  
Home position shift distance  
Parameter No.PC06  
Point table No.1  
Home position return  
acceleration/deceleration time  
constants  
Use the acceleration/deceleration time  
constant of point table No.1.  
Set the current position at home  
position return completion.  
Home position return position data  
Parameter No.PC07  
5 - 50  
5. OPERATION  
(2) Timing chart  
ON  
Automatic/manual selection  
(RYn6)  
OFF  
Selected point table No.  
0
4ms or more (Note)  
6ms or more  
ON  
Forward rotation start (RYn1)  
OFF  
ON  
Reverse rotation start (RYn2)  
OFF  
Home position return speed  
Forward  
rotation  
0r/min  
Reverse  
rotation  
Moving distance after proximity dog  
Home position shift distance  
Servo motor speed  
3ms or less  
Proximity dog  
ON  
Proximity dog (DOG)  
OFF  
ON  
Rough match (RXn2)  
OFF  
ON  
Movement completion (RXnC)  
OFF  
ON  
Home position return  
completion (RXn3/ZP)  
OFF  
Note. Configure a sequence that changes the point table selection earlier, considering the delay time of CC-Link communication.  
The parameter No.PC07 (home position return position data) setting value is the positioning address after  
the home position return is completed.  
5 - 51  
5. OPERATION  
5.6.12 Dogless Z-phase reference home position return method  
The home position is determined to be where the first Z-phase pulse is issued after the home position return is  
started.  
(1) Devices, parameters  
Set the input devices and parameters as indicated below.  
Item  
Device/Parameter used  
Description  
Turn RYn6 ON.  
Automatic/manual selection (RYn6)  
Point table No. selection 1 to 8  
Manual home position return mode  
selection  
RYnA to RYnE, RY(n 2)3 to  
RY(n 2)5 are turned off.  
(RYnA to RYnE, RY(n 2)3 to RY(n 2)5)  
Remote register-based  
position/speed setting  
(Only when two stations are  
occupied)  
Position/speed specifying system selection  
(RY(n 2)A)  
Turn RY(n 2)A ON.  
Dog cradle type home position return Parameter No.PC02  
A: Select the dog cradle type.  
Refer to section 5.6.1 (2) and select  
the home position return direction.  
Set the speed till the dog is detected.  
Set the speed after the dog is  
detected.  
Home position return direction  
Home position return speed  
Creep speed  
Parameter No.PC03  
Parameter No.PC04  
Parameter No.PC05  
Set when the home position is moved  
from the Z-phase signal position.  
Home position shift distance  
Parameter No.PC06  
Point table No.1  
Home position return  
acceleration/deceleration time  
constants  
Use the acceleration/deceleration time  
constant of point table No.1.  
Set the current position at home  
position return completion.  
Home position return position data  
Parameter No.PC07  
5 - 52  
5. OPERATION  
(2) Timing chart  
ON  
Automatic/manual selection  
(RYn6)  
OFF  
Selected point table No.  
0
4ms or more (Note)  
6ms or more  
ON  
Forward rotation start (RYn1)  
OFF  
ON  
Reverse rotation start (RYn2)  
OFF  
Home position return speed  
Forward  
rotation  
0r/min  
Reverse  
rotation  
Home position shift distance  
Servo motor speed  
3ms or less  
Creep speed  
ON  
Z-phase  
OFF  
ON  
Rough match (RXn2)  
Movement completion (RXnC)  
OFF  
ON  
OFF  
ON  
Home position return  
completion (RXn3/ZP)  
OFF  
Note. Configure a sequence that changes the point table selection earlier, considering the delay time of CC-Link communication.  
The parameter No.PC07 (home position return position data) setting value is the positioning address after  
the home position return is completed.  
5 - 53  
5. OPERATION  
5.6.13 Home position return automatic return function  
If the current position is at or beyond the proximity dog in the home position return using the proximity dog, this  
function starts home position return after making a return to the position where the home position return can be  
made.  
(1) When the current position is at the proximity dog  
When the current position is at the proximity dog, an automatic return is made before home position return.  
Home position return direction  
Proximity dog  
Home position return  
start position  
Makes an automatic return to a position  
before the proximity dog, then executes  
home position return at this position.  
(2) When the current position is beyond the proximity dog  
At a start, a motion is made in the home position return direction and an automatic return is made on  
detection of the stroke end (LSP or LSN). The motion stops past the front end of the proximity dog, and  
home position return is resumed at that position. If the proximity dog cannot be detected, the motion stops  
on detection of the LSP or LSN switch and A90 occurs.  
Stroke end  
(LSP or LSN)  
Home position return direction  
Proximity dog  
Home position return  
start position  
Makes an automatic return to a position  
before the proximity dog, then executes  
home position return at this position.  
Software limit cannot be used with these functions.  
5 - 54  
5. OPERATION  
5.6.14 Automatic positioning function to the home position  
POINT  
You cannot perform automatic positioning from outside the position data  
setting range to the home position. In this case, make a home position return  
again using a manual home position return.  
If this function is used when returning to the home position again after performing a manual home position  
return after a power-on and deciding the home position, automatic positioning can be carried out to the home  
position at high speed. In an absolute position detection system, manual home position return is not required  
after power-on.  
Please perform a manual home position return beforehand after a power-on.  
Set the input signals and parameter as follows.  
Item  
Device/Parameter used  
Automatic/manual selection (RYn6)  
Point table No. selection 1 to 8  
Description  
Turn RYn6 ON.  
RYnA to RYnE, RY(n 2)3 to RY(n 2)5 are  
Manual home position return mode  
selection  
(RYnA to RYnE, RY(n 2)3 to RY(n 2)5) turned off.  
Home position return speed  
Home position return  
acceleration/deceleration time  
constants  
Parameter No.PC04  
Set the speed till the dog is detected.  
Use the acceleration/deceleration time constant  
of point table No.1.  
Point table No.1  
Set up the home position return speed of the automatic positioning function to the home position by parameter  
No.PC04. Use the data of point table No.1 to set the acceleration time constant and deceleration time  
constant. When reverse rotation start (RYn2) is ON, it will position automatically at the home position.  
ON  
Forward rotation start (RYn1)  
OFF  
ON  
Reverse rotation start (RYn2)  
OFF  
Home position return speed  
parameter No.PC04  
Deceleration time constant  
of point table No.1  
Forward  
rotation  
Servo motor speed  
0r/min  
Acceleration time constant  
of point table No.1  
Home position  
5 - 55  
5. OPERATION  
5.7 Roll feed display function in roll feed mode  
With the roll feed display function, the servo amplifier can operate in the roll feed mode. The roll feed mode  
uses the incremental system.  
(1) Parameter settings  
Digit to  
be set  
Setting  
value  
No.  
Name  
Setting item  
Description  
0
Make sure to set the incremental  
system. The absolute position  
detection system cannot be used.  
Absolute position  
detection system  
PA03  
Operation system  
(initial  
value)  
Selection between current  
position display and command  
position display  
PC28 Function selection C-7  
1
Select roll feed display.  
(2) Roll feed display function  
At start up, the roll feed display function clears the status display of the current position and command  
position to zero.  
Forward  
Servo motor speed  
rotation  
0r/min  
Display of current position  
or command position  
0
Start  
10.00  
0
Start  
8.00  
(3) Operation procedure  
Changes are made only on the status display of the current position and commanded position. The same  
operation procedure as that in each operation mode can be used.  
Operation procedure  
Details  
Section 5.4.2  
Automatic operation  
Manual operation  
Automatic operation according to the point table  
JOG operation  
Section 5.5.1  
Section 5.5.2  
Section 5.6  
Manual pulse generator operation  
Home position return mode  
5 - 56  
5. OPERATION  
5.8 Absolute position detection system  
If an absolute position erase alarm (A25) or an absolute position counter warning  
(AE3) has occurred, always perform home position setting again. Not doing so  
may cause unexpected operation.  
CAUTION  
POINT  
If the encoder cable is disconnected, absolute position data will be lost in the  
following servo motor series. HF-MP, HF-KP, HC-SP, HC-RP, HC-UP, HC-  
LP, and HA-LP. After disconnecting the encoder cable, always execute home  
position setting and then positioning operation.  
When the following parameters are changed, the home position is lost when  
turning on the power after the change. Execute the home position return  
again when turning on the power.  
Parameter No.PA06 (Electronic gear numerator)  
Parameter No.PA07 (Electronic gear denominator)  
Parameter No.PA14 (Rotation direction selection)  
Parameter No.PC07 (Home position return position data)  
This servo amplifier contains a single-axis controller. Also, all servo motor encoders are compatible with an  
absolute position detection system. Hence, an absolute position detection system can be configured up by  
merely loading an absolute position data back-up battery and setting parameter values.  
(1) Restrictions  
An absolute position detection system cannot be built under the following conditions.  
1) Stroke-less coordinate system, e.g. rotary shaft, infinite positioning.  
2) Operation performed in incremental value command type positioning system.  
(2) Specifications  
Item  
Description  
Electronic battery backup system.  
System  
Battery  
1 piece of lithium battery ( primary battery, nominal 3.6V)  
Type: MR-J3BAT.  
Maximum revolution range  
Home position 32767 rev.  
(Note 1) Maximum speed at power failure  
(Note 2) Battery backup time  
Battery storage period  
3000r/min  
Approx. 10,000 hours (battery life with power off)  
5 years from date of manufacture.  
Note 1. Maximum speed available when the shaft is rotated by external force at the time of power failure or the like.  
2. Time to hold data by a battery with power off. It is recommended to replace the battery in three years  
independently of whether power is kept on or off.  
5 - 57  
5. OPERATION  
(3) Structure  
Component  
Description  
Servo amplifier  
Servo motor  
Battery  
Use standard models.  
MR-J3BAT  
Encoder cable  
Use a standard model. (Refer to section 14.1.)  
(4) Outline of absolute position detection data communication  
For normal operation, as shown below, the encoder consists of a detector designed to detect a position  
within one revolution and a cumulative revolution counter designed to detect the number of revolutions.  
The absolute position detection system always detects the absolute position of the machine and keeps it  
battery-backed, independently of whether the general-purpose programming controller power is on or off.  
Therefore, once the home position is defined at the time of machine installation, home position return is not  
needed when power is switched on thereafter.  
If a power failure or a fault occurs, restoration is easy.  
Servo amplifier  
Home position return  
data  
Point table No. selection,  
etc.  
EEP-ROM memory  
I/O circuit  
Current position  
LSO  
1XO  
1X  
Backup at  
power off  
LS  
Position data, speed data  
(current position read)  
Detection of position  
within one revolution  
Speed detection  
MR-J3BAT  
Servo motor  
1 pulse/rev. Cumulative revolution counter  
Within one-revolution counter  
High-speed serial  
communication  
(5) Battery installation procedure  
Before installing a battery, turn off the main circuit power while keeping the control  
circuit power on. Wait for 15 minutes or more until the charge lamp turns off. Then,  
confirm that the voltage between P( ) and N( ) is safe with a voltage tester and  
others. Otherwise, an electric shock may occur. In addition, always confirm from  
the front of the servo amplifier whether the charge lamp is off or not.  
WARNING  
POINT  
The internal circuits of the servo amplifier may be damaged by static electricity.  
Always take the following precautions.  
Ground human body and work bench.  
Do not touch the conductive areas, such as connector pins and electrical  
parts, directly by hand.  
Before starting battery changing procedure, make sure that the main circuit  
power is switched OFF with the control circuit power ON. When battery is  
changed with the control power OFF, the absolute position data is lost.  
5 - 58  
5. OPERATION  
(a) For MR-J3-350T or less MR-J3-200T4 or less  
POINT  
For the servo amplifier with a battery holder on the bottom, it is not possible to  
wire for the earth with the battery installed. Insert the battery after executing  
the earth wiring of the servo amplifier.  
Insert connector into CN4.  
(b) For MR-J3-500T or more MR-J3-350T4 or more  
Insert connector into CN4.  
(c) Parameter setting  
Set parameter No.PA03 (Absolute position detection system) as indicated below to make the absolute  
position detection system valid.  
Parameter No.PA03  
1
Selection of absolute position detection system  
0: Incremental system  
1: Absolute position detection system  
5 - 59  
5. OPERATION  
MEMO  
5 - 60  
6. PARAMETERS  
6. PARAMETERS  
CAUTION  
Never adjust or change the parameter values extremely as it will make operation  
instable.  
POINT  
For any parameter whose symbol is preceded by *, set the parameter value  
and switch power off once, then switch it on again to make that parameter  
setting valid.  
In this servo amplifier, the parameters are classified into the following groups on a function basis.  
Parameter group  
Main description  
Basic setting parameters  
Make basic setting with these parameters. Generally, the operation is possible only with these  
parameter settings.  
(No.PA  
Gain/filter parameters  
(No.PB  
Extension setting parameters  
(No.PC  
I/O setting parameters  
(No.PD  
)
Use these parameters when making gain adjustment manually.  
)
These parameters are inherent to the MR-J3- T servo amplifier.  
)
Use these parameters when changing the I/O devices of the servo amplifier.  
)
Mainly setting the basic setting parameters (No.PA  
time of introduction.  
) allows the setting of the basic parameters at the  
6.1 Basic setting parameters (No.PA  
6.1.1 Parameter list  
)
No. Symbol  
Name  
Initial value  
Unit  
PA01 *STY Control mode  
0000h  
0000h  
0000h  
0000h  
0000h  
1
PA02 *REG Regenerative option  
PA03 *ABS Absolute position detection system  
PA04 *AOP1 Function selection A-1  
PA05 *FTY Feeding function selection  
PA06 *CMX Electronic gear numerator  
PA07 *CDV Electronic gear denominator  
PA08 ATU Auto tuning mode  
1
0001h  
12  
PA09 RSP Auto tuning response  
PA10  
PA11  
PA12  
PA13  
INP  
In-position range  
100  
m
%
%
TLP Forward rotation torque limit  
TLN Reverse rotation torque limit  
For manufacturer setting  
100.0  
100.0  
0002h  
0
PA14 *POL Rotation direction selection  
PA15 *ENR Encoder output pulses  
4000  
0000h  
0000h  
0000h  
000Ch  
pulse/rev  
PA16  
PA17  
PA18  
For manufacturer setting  
PA19 *BLK Parameter write inhibit  
6 - 1  
6. PARAMETERS  
6.1.2 Parameter write inhibit  
Parameter  
Initial  
value  
Unit  
Setting range  
No. Symbol  
Name  
PA19 *BLK Parameter write inhibit  
000Ch  
Refer to the text.  
POINT  
This parameter is made valid when power is switched off, then on after  
setting.  
In the factory setting, this servo amplifier allows changes to the basic setting parameter, gain/filter parameter  
and extension setting parameter settings. With the setting of parameter No.PA19, write can be disabled to  
prevent accidental changes.  
The following table indicates the parameters which are enabled for reference and write by the setting of  
parameter No.PA19. Operation can be performed for the parameters marked  
.
Basic setting  
parameters  
No.PA  
Gain/Filter  
parameters  
No.PB  
Extension setting  
parameters  
No.PC  
I/O setting  
parameters  
No.PD  
Parameter No.PA19  
setting  
Setting operation  
Reference  
Write  
0000h  
000Bh  
Reference  
Write  
000Ch  
Reference  
Write  
(initial value)  
Reference  
100Bh  
100Ch  
Parameter No.  
PA19 only  
Write  
Reference  
Write  
Parameter No.  
PA19 only  
6 - 2  
6. PARAMETERS  
6.1.3 Selection of command system  
Parameter  
Initial  
value  
Unit  
Setting range  
No. Symbol  
Name  
PA01 *STY Control mode  
0000h  
Refer to the text.  
POINT  
This parameter is made valid when power is switched off, then on after  
setting.  
Select the command system.  
Parameter No.PA01  
0 0 0  
Selection of command system  
(Refer to section 5.4)  
0: Absolute value command system  
1: Incremental value command system  
6.1.4 Selection of regenerative option  
Parameter  
Initial  
value  
Unit  
Setting range  
No. Symbol  
Name  
PA02 *REG Regenerative option  
0000h  
Refer to the text.  
POINT  
This parameter is made valid when power is switched off, then on after  
setting.  
Wrong setting may cause the regenerative option to burn.  
If the regenerative option selected is not for use with the servo amplifier,  
parameter error (A37) occurs.  
Set this parameter when using the regenerative option, brake unit, power regeneration converter, or power  
regeneration common converter.  
Parameter No.PA02  
0 0  
Selection of regenerative option  
00: Regenerative option is not used  
For servo amplifier of 100W, regenerative resistor is not used.  
For servo amplifier of 200 to 7kW, built-in regenerative resistor is used.  
Supplied regenerative resistors or regenerative option is used with  
the servo amplifier of 11k to 22kW.  
01: FR-BU2-(H) FR-RC-(H) FR-CV-(H)  
02: MR-RB032  
03: MR-RB12  
04: MR-RB32  
05: MR-RB30  
06: MR-RB50(Cooling fan is required)  
08: MR-RB31  
09: MR-RB51(Cooling fan is required)  
80: MR-RB1H-4  
81: MR-RB3M-4(Cooling fan is required)  
82: MR-RB3G-4(Cooling fan is required)  
83: MR-RB5G-4(Cooling fan is required)  
84: MR-RB34-4(Cooling fan is required)  
85: MR-RB54-4(Cooling fan is required)  
FA: When the supplied regenerative resistor is cooled by the cooling  
fan to increase the ability with the servo amplifier of 11k to 22kW.  
6 - 3  
6. PARAMETERS  
6.1.5 Using absolute position detection system  
Parameter  
Initial  
value  
Unit  
Setting range  
No. Symbol  
Name  
PA03 *ABS Absolute position detection system  
0000h  
Refer to the text.  
POINT  
This parameter is made valid when power is switched off, then on after  
setting.  
Set this parameter when using the absolute position detection system.  
Parameter No.PA03  
0 0 0  
Selection of absolute position detection system (refer to section 5.7)  
0: Used in incremental system  
1: Used in absolute position detection system  
6.1.6 Follow-up for absolute value command system in incremental system  
Parameter  
Initial  
value  
Unit  
Setting range  
No. Symbol  
Name  
PA04 *AOP1 Function selection A-1  
0000h  
Refer to the text.  
POINT  
This parameter is made valid when power is switched off, then on after  
setting.  
If this parameter is made valid, the home position is not lost in the servo-off or forced stop state, and the  
operation can be resumed when the servo-on (RYn0) or forced stop (EMG) is deactivated.  
Parameter No.PA04  
0 0 0  
Servo-on (RYn0) -off, forced stop (EMG) -off  
follow-up for absolute value command  
in incremental system  
0: Invalid  
1: Valid  
Normally, when this servo amplifier is used  
in the absolute value command method of the  
incremental system, placing it in a servo off or  
forced stop status will erase the home position.  
When "1" is set in this parameter, the home  
position will not be erased if the servo amplifier is  
placed in a servo-off or forced stop status or if the  
alarm that can be deactivated by resetting occurs.  
The operation can be resumed when the servo-on  
(RYn0) or forced stop (EMG) is deactivated or an  
alarm is deactivated by resetting (RES).  
6 - 4  
6. PARAMETERS  
6.1.7 Feeding function selection  
Parameter  
Initial  
value  
Unit  
Setting range  
No. Symbol  
Name  
PA05 *FTY Feeding function selection  
0000h  
Refer to the text.  
POINT  
This parameter is made valid when power is switched off, then on after  
setting.  
Select the feed length multiplication and the manual pulse generator input multiplication.  
Parameter No.PA05  
0 0  
Feed length  
multiplication  
factor (STM)  
[times]  
Position data input range [mm]  
Setting  
value  
Feed unit  
[ m]  
Absolute value  
Incremental value  
command system  
command system  
0
1
2
3
1
1
999.999 to 999.999  
9999.99 to 9999.99  
99999.9 to 99999.9  
999999 to 999999  
0 to 999.999  
0 to 9999.99  
0 to 99999.9  
0 to 999999  
10  
10  
100  
1000  
100  
1000  
Manual pulse generator multiplication factor  
0: 1 time  
1: 10 times  
2: 100 times  
6 - 5  
6. PARAMETERS  
6.1.8 Electronic gear  
Parameter  
Initial  
value  
Unit  
Setting range  
No. Symbol  
Name  
PA06 *CMX Electronic gear numerator  
PA07 *CDV Electronic gear denominator  
1
1
0 to 65535  
1 to 65535  
False setting will result in unexpected fast rotation, causing injury.  
POINT  
CAUTION  
This parameter is made valid when power is switched off, then on after  
setting.  
1
10  
CMX  
CDV  
2000  
. If you set any  
The range of the electronic gear setting is  
value outside this range, a parameter error (A37) occurs.  
Setting "0" in parameter No.PA06 automatically sets the encoder resolution  
pulse.  
(1) Concept of electronic gear  
Use the electronic gear (parameters No.PA06, PA07) to make adjustment so that the servo amplifier setting  
matches the moving distance of the machine. Also, by changing the electronic gear value, the machine can  
be moved at any multiplication ratio to the moving distance on the servo amplifier.  
Motor  
CMX  
CDV  
Parameters No.PA06  
Parameters No.PA07  
+
-
Deviation  
counter  
CMX  
CDV  
Encoder feedback pulses  
Electronic gear  
Parameters No.PA06,PA07  
Encoder  
The following examples are used to explain how to calculate the electronic gear value.  
POINT  
The following specification symbols are needed for electronic gear  
calculation.  
Pb : Ball screw lead [mm]  
n
: Reduction ratio  
Pt : Servo motor resolution [pulse/rev]  
S : Travel per servo motor revolution [mm/rev]  
(a) Ball screw setting example  
n
n=NL/NM=1/2  
NL  
Machine specifications  
Ball screw lead: Pb 10 [mm]  
Pb=10[mm]  
NM  
Servo motor 262144[pulse/rev]  
Reduction ratio: n 1/2  
Servo motor resolution: Pt 262144 [pulse/rev]  
pt  
pb  
pt  
32768  
625  
262144  
5000  
262144  
1/2 10 1000  
CMX  
CDV  
n
1000  
S
Hence, set 32768 to CMX and 625 to CDV.  
6 - 6  
6. PARAMETERS  
r=160[mm]  
(b) Conveyor setting example  
Machine specifications  
Pulley diameter: r 160 [mm]  
Servo motor  
262144[pulse/rev]  
n
Reduction ratio: n 1/3  
NL  
NM  
Servo motor resolution: Pt 262144 [pulse/rev]  
n=NL/NM=1/3  
pt  
pt  
262144  
1/3 160  
32768  
20944  
CMX  
CDV  
262144  
167551.61  
1000  
S
n r  
1000  
Reduce CMX and CDV to the setting range or less, and round off the first decimal place.  
Hence, set 32768 to CMX and 20944 to CDV.  
6.1.9 Auto tuning  
Parameter  
Initial  
value  
Unit  
Setting range  
No. Symbol  
Name  
PA08 ATU Auto tuning mode  
PA09 RSP Auto tuning response  
0001h  
12  
Refer to the text.  
1 to 32  
Make gain adjustment using auto tuning. Refer to section 9.2 for details.  
(1) Auto tuning mode (parameter No.PA08)  
Select the gain adjustment mode.  
Parameter No.PA08  
0 0 0  
Gain adjustment mode setting  
Setting Gain adjustment mode Automatically set parameter No. (Note)  
0
1
2
3
Interpolation mode  
Auto tuning mode 1  
Auto tuning mode 2  
Manual mode  
PB06 PB08 PB09 PB10  
PB06 PB07 PB08 PB09 PB10  
PB07 PB08 PB09 PB10  
Note. The parameters have the following names.  
Parameter No. Name  
PB06  
PB07  
PB08  
PB09  
PB10  
Ratio of load inertia moment to servo motor inertia moment  
Model loop gain  
Position loop gain  
Speed loop gain  
Speed integral compensation  
6 - 7  
6. PARAMETERS  
(2) Auto tuning response (parameter No.PA09)  
If the machine hunts or generates large gear sound, decrease the set value. To improve performance, e.g.  
shorten the settling time, increase the set value.  
Guideline for machine  
Guideline for machine  
Setting  
Response  
Setting  
Response  
resonance frequency [Hz]  
resonance frequency [Hz]  
1
2
Low response  
10.0  
11.3  
12.7  
14.3  
16.1  
18.1  
20.4  
23.0  
25.9  
29.2  
32.9  
37.0  
41.7  
47.0  
52.9  
59.6  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
Low response  
67.1  
75.6  
3
85.2  
4
95.9  
5
108.0  
121.7  
137.1  
154.4  
173.9  
195.9  
220.6  
248.5  
279.9  
315.3  
355.1  
400.0  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
Middle response  
Middle response  
6.1.10 In-position range  
Parameter  
Name  
Initial  
Unit  
m
Setting range  
0 to 10000  
value  
100  
No. Symbol  
PA10  
INP  
In-position range  
Set the range, where In position (RXn1) and Movement completion (RXnC) are output, in the command pulse  
unit before calculation of the electronic gear. With the setting of parameter No.PC24, the range can be  
changed to the encoder output pulse unit.  
Servo motor Droop pulse  
Command pulse  
Droop pulse  
Command pulse  
In-position range [ m]  
ON  
In position (RXn1)  
OFF  
6 - 8  
6. PARAMETERS  
6.1.11 Torque limit  
Parameter  
Initial  
value  
Unit  
Setting range  
No. Symbol  
Name  
PA11  
PA12  
TLP Forward rotation torque limit  
TLN Reverse rotation torque limit  
100.0  
100.0  
%
%
0 to 100.0  
0 to 100.0  
The torque generated by the servo motor can be limited.  
(1) Forward rotation torque limit (parameter No.PA11)  
Set this parameter on the assumption that the maximum torque is 100[%]. Set this parameter when limiting  
the torque of the servo motor in the CCW driving mode or CW regeneration mode. Set this parameter to  
"0.0" to generate no torque.  
(2) Reverse rotation torque limit (parameter No.PA12)  
Set this parameter on the assumption that the maximum torque is 100[%]. Set this parameter when limiting  
the torque of the servo motor in the CW driving mode or CCW regeneration mode. Set this parameter to  
"0.0" to generate no torque.  
6 - 9  
6. PARAMETERS  
6.1.12 Selection of servo motor rotation direction  
Parameter  
Initial  
value  
Unit  
Setting range  
No. Symbol  
Name  
PA14 *POL Rotation direction selection  
0
0
1
POINT  
This parameter is made valid when power is switched off, then on after  
setting.  
Select servo motor rotation direction relative to the input pulse train.  
Servo Motor Rotation Direction  
Parameter No.PA14  
Setting  
Forward rotation start (Ryn1)  
Reverse rotation start (Ryn2)  
ON  
ON  
CCW  
CW  
0
1
CW  
CCW  
Forward rotation (CCW)  
Reverse rotation (CW)  
6.1.13 Encoder output pulse  
Parameter  
Name  
Initial  
value  
Unit  
Setting range  
1 to 65535  
No. Symbol  
pulse/  
rev  
PA15 *ENR Encoder output pulse  
4000  
POINT  
This parameter is made valid when power is switched off, then on after  
setting.  
Used to set the encoder pulses (A-phase, B-phase) output by the servo amplifier.  
Set the value 4 times greater than the A-phase or B-phase pulses.  
You can use parameter No.PC19 to choose the output pulse setting or output division ratio setting.  
The number of A/B-phase pulses actually output is 1/4 times greater than the preset number of pulses.  
The maximum output frequency is 4.6Mpps (after multiplication by 4). Use this parameter within this range.  
6 - 10  
6. PARAMETERS  
(1) For output pulse designation  
Set "  
0
" (initial value) in parameter No.PC19.  
Set the number of pulses per servo motor revolution.  
Output pulse set value [pulses/rev]  
For instance, set "5600" to Parameter No.PA15, the actually output A/B-phase pulses are as indicated  
below.  
5600  
4
A B-phase output pulses  
1400[pulse]  
(2) For output division ratio setting  
Set " " in parameter No.PC19.  
1
The number of pulses per servo motor revolution is divided by the set value.  
Resolution per servo motor revolution  
Output pulse  
[pulses/rev]  
Set value  
For instance, set "8" to Parameter No.PA15, the actually output A/B-phase pulses are as indicated below.  
262144 1  
A B-phase output pulses  
8192[pulse]  
8
4
(3) When outputting pulse train similar to command pulses  
Set parameter No.PC19 to " ". The feedback pulses from the servo motor encoder are processed  
2
and output as shown below. The feedback pulses can be output in the same pulse unit as the command  
pulses.  
Motor  
Feedback pulses  
Encoder  
Parameter No.PA06 PA07  
CDV  
A-phase/B-phase output pulses  
CMX  
6 - 11  
6. PARAMETERS  
6.2 Gain/filter parameters (No.PB  
6.2.1 Parameter list  
)
No. Symbol  
Name  
Initial value  
Unit  
PB01 FILT Adaptive tuning mode (Adaptive filter  
)
0000h  
0000h  
PB02 VRFT Vibration suppression control tuning mode  
(Advanced vibration suppression control)  
PB03  
PB04  
PB05  
For manufacturer setting  
FFC Feed forward gain  
For manufacturer setting  
0000h  
0
%
500  
7.0  
PB06 GD2 Ratio of load inertia moment to servo motor inertia moment  
Multiplier  
(
1)  
PB07  
PB08  
PB09  
PB10  
PG1 Model loop gain  
PG2 Position loop gain  
VG2 Speed loop gain  
24  
37  
rad/s  
rad/s  
rad/s  
ms  
823  
VIC  
Speed integral compensation  
33.7  
980  
PB11 VDC Speed differential compensation  
PB12  
PB13  
For manufacturer setting  
0
NH1 Machine resonance suppression filter 1  
4500  
0000h  
4500  
0000h  
Hz  
Hz  
PB14 NHQ1 Notch shape selection 1  
PB15 NH2 Machine resonance suppression filter 2  
PB16 NHQ2 Notch shape selection 2  
PB17  
PB18  
Automatic setting parameter  
Low-pass filter  
LPF  
3141  
100.0  
100.0  
0.00  
0.00  
0000h  
0000h  
0000h  
0000h  
10  
rad/s  
Hz  
PB19 VRF1 Vibration suppression control vibration frequency setting  
PB20 VRF2 Vibration suppression control resonance frequency setting  
Hz  
PB21  
PB22  
For manufacturer setting  
PB23 VFBF Low-pass filter selection  
PB24 *MVS Slight vibration suppression control selection  
PB25  
PB26 *CDP Gain changing selection  
PB27 CDL Gain changing condition  
For manufacturer setting  
PB28 CDT Gain changing time constant  
1
ms  
PB29 GD2B Gain changing ratio of load inertia moment to servo motor inertia moment  
7.0  
Multiplier  
(
1)  
PB30 PG2B Gain changing position loop gain  
37  
823  
rad/s  
rad/s  
ms  
PB31 VG2B Gain changing speed loop gain  
PB32 VICB Gain changing speed integral compensation  
33.7  
100.0  
100.0  
0.00  
0.00  
100  
PB33 VRF1B Gain changing vibration suppression control vibration frequency setting  
PB34 VRF2B Gain changing vibration suppression control resonance frequency setting  
Hz  
Hz  
PB35  
PB36  
PB37  
PB38  
PB39  
PB40  
PB41  
PB42  
PB43  
PB44  
PB45  
For manufacturer setting  
0
0
0
1125  
1125  
0004h  
0000h  
0000h  
6 - 12  
6. PARAMETERS  
6.2.2 Detail list  
Setting  
range  
No. Symbol  
Name and function  
Initial value  
0000h  
Unit  
PB01 FILT Adaptive tuning mode (Adaptive filter  
)
Select the setting method for filter tuning. Setting this parameter to "  
(filter tuning mode 1) automatically changes the machine resonance  
1"  
suppression filter 1 (parameter No.PB13) and notch shape selection (parameter  
No.PB14).  
Machine resonance point  
Frequency  
Frequency  
Notch frequency  
0 0 0  
Filter tuning mode selection  
Setting Filter adjustment mode Automatically set parameter  
0
1
2
Filter OFF  
(Note)  
Parameter No.PB13  
Parameter No.PB14  
Filter tuning mode  
Manual mode  
Note. Parameter No.PB13 and PB14 are fixed to the initial values.  
When this parameter is set to "  
1", the tuning is completed after  
positioning is done the predetermined number or times for the predetermined  
period of time, and the setting changes to "  
not necessary, the setting changes to "  
2". When the filter tuning is  
0". When this parameter is set to  
"
0", the initial values are set to the machine resonance suppression filter  
1 and notch shape selection. However, this does not occur when the servo off.  
6 - 13  
6. PARAMETERS  
Setting  
range  
No. Symbol  
Name and function  
Initial value  
0000h  
Unit  
PB02 VRFT Vibration suppression control tuning mode (Advanced vibration suppression  
control)  
The vibration suppression is valid when the parameter No.PA08 (auto tuning)  
setting is "  
suppression is always invalid.  
Select the setting method for vibration suppression control tuning. Setting this  
parameter to " 1" (vibration suppression control tuning mode)  
2" or "  
3". When PA08 is "  
1", vibration  
automatically changes the vibration suppression control - vibration frequency  
(parameter No.PB19) and vibration suppression control - resonance frequency  
(parameter No.PB20) after positioning is done the predetermined number of  
times.  
Droop pulse  
Command  
Droop pulse  
Command  
Automatic  
adjustment  
Machine side  
position  
Machine side  
position  
0 0 0  
Vibration suppression control tuning mode  
Vibration suppression  
control tuning mode  
Automatically set  
parameter  
Setting  
0
Vibration suppression  
control OFF  
(Note)  
Vibration suppression  
control tuning mode  
(Advanced vibration  
suppression control)  
Parameter No.PB19  
Parameter No.PB20  
1
2
Manual mode  
Note. Parameter No.PB19 and PB20 are fixed to the initial values.  
When this parameter is set to "  
positioning is done the predetermined number or times for the predetermined  
period of time, and the setting changes to " 2". When the vibration  
suppression control tuning is not necessary, the setting changes to "  
When this parameter is set to " 0", the initial values are set to the  
1", the tuning is completed after  
0".  
vibration suppression control - vibration frequency and vibration suppression  
control - resonance frequency. However, this does not occur when the servo off.  
For manufacturer setting  
PB03  
PB04  
0000h  
0
Do not change this value by any means.  
FFC Feed forward gain  
%
0
to  
Set the feed forward gain. When the setting is 100%, the droop pulses during  
operation at constant speed are nearly zero. However, sudden  
acceleration/deceleration will increase the overshoot. As a guideline, when the  
feed forward gain setting is 100%, set 1s or more as the  
100  
acceleration/deceleration time constant up to the rated speed.  
6 - 14  
6. PARAMETERS  
Setting  
range  
No. Symbol  
Name and function  
Initial value  
500  
Unit  
PB05  
For manufacturer setting  
Do not change this value by any means.  
PB06 GD2 Ratio of load inertia moment to servo motor inertia moment  
Used to set the ratio of the load inertia moment to the servo motor shaft inertia  
moment. When auto tuning mode 1 and interpolation mode is selected, the  
result of auto tuning is automatically used.  
7.0  
Multiplier  
0
to  
(
1)  
300.0  
(Refer to section 9.1.1)  
In this case, it varies between 0 and 100.0.  
PB07 PG1 Model loop gain  
24  
37  
rad/s  
rad/s  
1
to  
Set the response gain up to the target position.  
Increase the gain to improve track ability in response to the command.  
When auto turning mode 1,2 is selected, the result of auto turning is  
automatically used.  
2000  
PB08 PG2 Position loop gain  
1
to  
Used to set the gain of the position loop.  
Set this parameter to increase the position response to level load disturbance.  
Higher setting increases the response level but is liable to generate vibration  
and/or noise.  
1000  
When auto tuning mode 1,2 and interpolation mode is selected, the result of  
auto tuning is automatically used.  
PB09 VG2 Speed loop gain  
823  
rad/s  
20  
to  
Set this parameter when vibration occurs on machines of low rigidity or large  
backlash.  
50000  
Higher setting increases the response level but is liable to generate vibration  
and/or noise.  
When auto tuning mode 1 2 manual mode and interpolation mode is selected,  
,
the result of auto tuning is automatically used.  
Speed integral compensation  
PB10  
VIC  
33.7  
980  
ms  
0.1  
to  
Used to set the integral time constant of the speed loop.  
Lower setting increases the response level but is liable to generate vibration  
and/or noise.  
1000.0  
When auto tuning mode 1 2 and interpolation mode is selected, the result of  
,
auto tuning is automatically used.  
PB11 VDC Speed differential compensation  
Used to set the differential compensation.  
0
to  
Made valid when the proportion control (RY(n 2)7) is switched on.  
For manufacturer setting  
Do not change this value by any means.  
PB13 NH1 Machine resonance suppression filter 1  
Set the notch frequency of the machine resonance suppression filter 1.  
1000  
PB12  
0
4500  
Hz  
100  
to  
Setting parameter No.PB01 (filter tuning mode 1) to "  
changes this parameter.  
1" automatically  
4500  
When the parameter No.PB01 setting is "  
is ignored.  
0", the setting of this parameter  
6 - 15  
6. PARAMETERS  
Setting  
range  
No. Symbol  
Name and function  
Initial value  
0000h  
Unit  
PB14 NHQ1 Notch shape selection 1  
Refer to  
name and  
function  
Used to selection the machine resonance suppression filter 1.  
0
0
column.  
Notch depth selection  
Setting value Depth  
Gain  
-40dB  
-14dB  
-8dB  
0
1
2
3
Deep  
to  
Shallow -4dB  
Notch width  
Setting value Width  
0
1
2
3
Standard  
2
3
4
5
to  
Wide  
Setting parameter No.PB01 (filter tuning mode 1) to "  
changes this parameter.  
1" automatically  
When the parameter No.PB01 setting is "  
is ignored.  
0", the setting of this parameter  
100  
to  
PB15 NH2 Machine resonance suppression filter 2  
4500  
Hz  
Set the notch frequency of the machine resonance suppression filter 2.  
4500  
Set parameter No.PB16 (notch shape selection 2) to "  
parameter valid.  
1" to make this  
PB16 NHQ2 Notch shape selection 2  
0000h  
Refer to  
name and  
function  
Select the shape of the machine resonance suppression filter 2.  
0
column.  
Machine resonance suppression filter 2 selection  
0: Invalid  
1: Valid  
Notch depth selection  
Setting value Depth  
Gain  
-40dB  
-14dB  
-8dB  
0
1
2
3
Deep  
to  
Shallow -4dB  
Notch width  
Setting value Width  
0
1
2
3
Standard  
2
3
4
5
to  
Wide  
PB17  
Automatic setting parameter  
The value of this parameter is set according to a set value of parameter  
No.PB06 (Ratio of load inertia moment to servo motor inertia moment).  
6 - 16  
6. PARAMETERS  
Setting  
range  
No. Symbol  
Name and function  
Initial value  
3141  
Unit  
PB18  
LPF Low-pass filter  
Set the low-pass filter.  
rad/s  
100  
to  
Setting parameter No.PB23 (low-pass filter selection) to "  
automatically changes this parameter.  
0
"
18000  
When parameter No.PB23 is set to "  
manually.  
1
", this parameter can be set  
PB19 VRF1 Vibration suppression control vibration frequency setting  
Set the vibration frequency for vibration suppression control to suppress low-  
frequency machine vibration, such as enclosure vibration.  
100.0  
100.0  
Hz  
Hz  
0.1  
to  
100.0  
Setting parameter No.PB02 (vibration suppression control tuning mode) to "  
1" automatically changes this parameter. When parameter No.PB02 is set to  
"
2", this parameter can be set manually.  
PB20 VRF2 Vibration suppression control resonance frequency setting  
Set the resonance frequency for vibration suppression control to suppress low-  
frequency machine vibration, such as enclosure vibration.  
0.1  
to  
100.0  
Setting parameter No.PB02 (vibration suppression control tuning mode) to "  
1" automatically changes this parameter. When parameter No.PB02 is set to  
"
2", this parameter can be set manually.  
PB21  
PB22  
For manufacturer setting  
0.00  
0.00  
Do not change this value by any means.  
PB23 VFBF Low-pass filter selection  
Select the low-pass filter.  
0000h  
Refer to  
name and  
function  
0 0  
0
column.  
Low-pass filter selection  
0: Automatic setting  
1: Manual setting (parameter No.PB18 setting)  
When automatic setting has been selected, select the filter that has the band  
VG2 10  
width close to the one calculated with  
[rad/s]  
1 + GD2  
PB24 *MVS Slight vibration suppression control selection  
Select the slight vibration suppression control.  
0000h  
Refer to  
name and  
function  
When parameter No.PA08 (auto tuning mode) is set to "  
parameter is made valid.  
3", this  
column.  
0 0 0  
Slight vibration suppression control selection  
0: Invalid  
1: Valid  
6 - 17  
6. PARAMETERS  
Setting  
range  
No. Symbol  
Name and function  
Initial value  
0000h  
Unit  
PB25  
For manufacturer setting  
Do not change this value by any means.  
PB26 *CDP Gain changing selection  
0000h  
Refer to  
name and  
function  
Select the gain changing condition. (Refer to section 10.6.)  
0 0  
column.  
Gain changing selection  
Under any of the following conditions, the gains  
change on the basis of the parameter No.PB29 to  
PB32 settings.  
0: Invalid  
1: Gain changing (RX(n+2)8) is ON  
2: Command frequency (Parameter No.PB27 setting)  
3: Droop pulse value (Parameter No.PB27 setting)  
4: Servo motor speed (Parameter No.PB27 setting)  
Gain changing condition  
0: Valid at more than condition (Valid when gain  
changing (RX(n+2)8) is ON)  
1: Valid at less than condition (Valid when gain  
changing (RX(n+2)8) is OFF)  
PB27 CDL Gain changing condition  
10  
kpps  
pulse  
r/min  
0
to  
Used to set the value of gain changing condition (command frequency, droop  
pulses, servo motor speed) selected in parameter No.PB26. The set value unit  
changes with the changing condition item. (Refer to section 10.6.)  
9999  
PB28 CDT Gain changing time constant  
1
ms  
0
to  
Used to set the time constant at which the gains will change in response to the  
conditions set in parameters No.PB26 and PB27. (Refer to section 10.6.)  
PB29 GD2B Gain changing ratio of load inertia moment to servo motor inertia moment  
Used to set the ratio of load inertia moment to servo motor inertia moment when  
gain changing is valid.  
100  
0
7.0  
Multiplier  
(
1)  
to  
300.0  
This parameter is made valid when the auto tuning is invalid (parameter No.  
PA08:  
PB30 PG2B Gain changing position loop gain  
Set the position loop gain when the gain changing is valid.  
This parameter is made valid when the auto tuning is invalid (parameter No.  
PA08: 3).  
PB31 VG2B Gain changing speed loop gain  
Set the speed loop gain when the gain changing is valid.  
This parameter is made valid when the auto tuning is invalid (parameter No.  
PA08: 3).  
3).  
37  
rad/s  
rad/s  
1
to  
2000  
823  
20  
to  
20000  
Note. The setting range of 50000 applies to the servo amplifier whose software  
version is A3 or later. The setting range of the servo amplifier whose  
software version is older than A3 is 20 to 20000. When the software  
version of MR Configurator is A3 or earlier, 20001 or more cannot be set.  
Use the display/operation section of the servo amplifier to set 20001 or  
more.  
PB32 VICB Gain changing speed integral compensation  
33.7  
ms  
0.1  
to  
Set the speed integral compensation when the gain changing is valid.  
This parameter is made valid when the auto tuning is invalid (parameter No.  
5000.0  
PA08:  
3).  
6 - 18  
6. PARAMETERS  
Setting  
range  
No. Symbol  
Name and function  
Initial value  
100.0  
Unit  
Hz  
PB33 VRF1B Gain changing vibration suppression control vibration frequency setting  
Set the vibration frequency for vibration suppression control when the gain  
changing is valid. This parameter is made valid when the parameter No.PB02  
0.1  
to  
100.0  
setting is "  
2" and the parameter No.PB26 setting is "  
1".  
When using the vibration suppression control gain changing, always execute  
the changing after the servo motor has stopped.  
PB34 VRF2B Gain changing vibration suppression control resonance frequency setting  
Set the resonance frequency for vibration suppression control when the gain  
changing is valid. This parameter is made valid when the parameter No.PB02  
100.0  
Hz  
0.1  
to  
100.0  
setting is "  
2" and the parameter No.PB26 setting is "  
1".  
When using the vibration suppression control gain changing, always execute  
the changing after the servo motor has stopped.  
For manufacturer setting  
PB35  
PB36  
PB37  
PB38  
PB39  
PB40  
PB41  
PB42  
PB43  
PB44  
PB45  
0.00  
0.00  
100  
Do not change this value by any means.  
0
0
0
1125  
1125  
0004h  
0000h  
0000h  
6 - 19  
6. PARAMETERS  
6.3 Extension setting parameters (No.PC  
6.3.1 Parameter list  
)
No. Symbol  
PC01  
Name and function  
Initial value  
0000h  
0000h  
0001h  
500  
Unit  
For manufacturer setting  
PC02 *ZTY Home position return type  
PC03 *ZDIR Home position return direction  
PC04 ZRF Home position return speed  
PC05 CRF Creep speed  
r/min  
r/min  
m
10  
PC06  
ZST Home position shift distance  
0
PC07 *ZPS Home position return position data  
PC08 DCT Moving distance after proximity dog  
PC09 ZTM Stopper type home position return stopper time  
0
10STM  
10STM  
ms  
m
m
1000  
100  
PC10  
ZTT  
Stopper type home position return torque limit value  
15.0  
0
%
PC11 CRP Rough match output range  
PC12 JOG Jog speed  
10STM  
r/min  
ms  
m
100  
PC13 *STC S-pattern acceleration/deceleration time constant  
PC14 *BKC Backlash compensation  
0
0
pulse  
PC15  
For manufacturer setting  
0000h  
100  
PC16 MBR Electromagnetic brake sequence output  
PC17 ZSP Zero speed  
ms  
50  
r/min  
PC18 *BPS Alarm history clear  
0000h  
0000h  
0
PC19 *ENRS Encoder output pulse selection  
PC20 *SNO Station number setting  
station  
PC21 *SOP RS-422 communication function selection  
PC22 *COP1 Function selection C-1  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0
PC23  
PC24 *COP3 Function selection C-3  
PC25 For manufacturer setting  
PC26 *COP5 Function selection C-5  
PC27 For manufacturer setting  
PC28 *COP7 Function selection C-7  
PC29 For manufacturer setting  
For manufacturer setting  
PC30 *DSS Remote register-based position/speed specifying system selection  
10STM  
10STM  
%
m
m
PC31 LMPL Software limit  
PC32 LMPH  
PC33 LMNL Software limit  
PC34 LMNH  
0
PC35  
PC36  
TL2  
Internal torque limit 2  
100.0  
0000h  
0
For manufacturer setting  
m
m
PC37 *LPPL Position range output address  
PC38 *LPPH  
10STM  
10STM  
PC39 *LNPL Position range output address  
PC40 *LNPH  
0
PC41  
PC42  
PC43  
PC44  
PC45  
PC46  
PC47  
PC48  
For manufacturer setting  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
6 - 20  
6. PARAMETERS  
No. Symbol  
Name and function  
Initial value  
0000h  
Unit  
PC49  
PC50  
For manufacturer setting  
0000h  
6.3.2 Detail list  
No. Symbol  
PC01  
Name and function  
Initial value  
Unit  
Setting range  
For manufacturer setting  
Do not change this value by any means.  
PC02 *ZTY Home position return type  
Used to set the home position return system. (Refer to section 5.6.)  
0000h  
0000h  
Refer to  
name and  
function  
0 0 0  
column.  
Home position return system  
0: Dog type  
1: Count type  
2: Data setting type  
3: Stopper type  
4: Home position ignorance  
(Servo-on position as home position)  
5: Dog type rear end reference  
6: Count type front end reference  
7: Dog cradle type  
8: Dog type right-before Z-phase reference  
9: Dog type front end reference  
A: Dogless Z-phase reference  
PC03 *ZDIR Home position return direction  
Used to set the home position return direction.  
0001h  
Refer to  
name and  
function  
0 0 0  
column.  
Home position return direction  
0: Address increment direction  
1: Address decrement direction  
PC04  
ZRF Home position return speed  
500  
10  
r/min  
r/min  
m
0 to  
permissible  
speed  
0 to  
Used to set the servo motor speed for home position return.  
(Refer to section 5.6.)  
PC05 CRF Creep speed  
Used to set the creep speed after proximity dog detection.  
permissible  
speed  
0
(Refer to section 5.6.)  
PC06  
ZST Home position shift distance  
0
Used to set the shift distance starting at the Z-phase pulse detection position  
inside the encoder. (Refer to section 5.6.)  
to  
65535  
32768  
to  
10STM  
10STM  
ms  
m
m
PC07 *ZPS Home position return position data  
Used to set the current position on completion of home position return.  
0
(Refer to section 5.6.)  
32767  
0
PC08 DCT Moving distance after proximity dog  
1000  
100  
Used to set the moving distance after proximity dog in count type home  
to  
position return. (Refer to section 5.6.)  
65535  
5
PC09 ZTM Stopper type home position return stopper time  
In stopper type home position return, used to set the time from when the  
to  
machine part is pressed against the stopper and the torque limit set in  
parameter No.PC10 is reached to when the home position is set.  
(Refer to section 5.6.5.)  
1000  
6 - 21  
6. PARAMETERS  
No. Symbol  
Name and function  
Initial value  
15.0  
Unit  
%
Setting range  
PC10  
ZTT Stopper type home position return torque limit value  
Used to set the torque limit value relative to the max. torque in [%] in stopper  
type home position return. (Refer to section 5.6.5.)  
1
to  
100.0  
PC11 CRP Rough match output range  
Used to set the command remaining distance range where the rough match  
(RXn2) is output.  
PC12 JOG Jog speed  
0
100  
0
10STM  
r/min  
ms  
m
0
to  
65535  
0
Used to set the jog speed command.  
to permissible  
speed  
0
PC13 *STC S-pattern acceleration/deceleration time constant  
Set when inserting S-pattern time constant into the acceleration/deceleration  
to  
time constant of the point table. (Refer to section 6.3.3.)  
This time constant is invalid for home position return.  
1000  
PC14 *BKC Backlash compensation  
0
pulse  
0
to  
Used to set the backlash compensation made when the command  
direction is reversed.  
32000  
This function compensates for the number of backlash pulses in the  
opposite direction to the home position return direction.  
For the home position ignorance (servo-on position as home position), this  
function compensates for the number of backlash pulses in the opposite  
direction to the first rotating direction after establishing the home position  
by switching ON the servo-on (RYn0).  
In the absolute position detection system, this function compensates for  
the backlash pulse count in the direction opposite to the operating direction  
at power-on.  
PC15  
For manufacturer setting  
0000h  
100  
Do not change this value by any means.  
PC16 MBR Electromagnetic brake sequence output  
Used to set the delay time (Tb) between when the electromagnetic brake  
interlock (MBR) switches off and when the base circuit is shut off.  
PC17 ZSP Zero speed  
ms  
0
to  
1000  
50  
r/min  
0
Used to set the output range of the zero speed (ZSP).  
to  
Zero speed signal detection has hysteresis width of 20r/min.  
10000  
Refer to  
name and  
function  
column.  
PC18 *BPS Alarm history clear  
0000h  
Used to clear the alarm history.  
0 0 0  
Alarm history clear  
0: Invalid  
1: Valid  
When alarm history clear is made valid,  
the alarm history is cleared at next power-on.  
After the alarm history is cleared, the setting  
is automatically made invalid (reset to 0).  
6 - 22  
6. PARAMETERS  
No. Symbol  
Name and function  
Initial value  
0000h  
Unit  
Setting range  
PC19 *ENRS Encoder output pulse selection  
Use to select the, encoder output pulse direction and encoder output  
Refer to  
name and  
function  
pulse setting.  
column.  
0 0  
Encoder output pulse phase changing  
Changes the phases of A, B-phase encoder pulses  
output .  
Servo motor rotation direction  
Set value  
0
CCW  
CW  
A-phase  
B-phase  
A-phase  
B-phase  
A-phase  
B-phase  
A-phase  
B-phase  
1
Encoder output pulse setting selection (refer to parameter No.PA15).  
0: Output pulse designation  
1: Division ratio setting  
2: Ratio is automatically set to command pulse unit  
Setting "2" makes the parameter No.PA15 (encoder output pulse)  
setting invalid.  
PC20 *SNO Station number setting  
0
station  
0
Used to specify the station number for RS-422 serial communication and  
USB communication.  
to  
31  
Always set one station to one axis of servo amplifier. If one station  
number is set to two or more stations, normal communication cannot be  
made.  
PC21 *SOP RS-422 communication function selection  
0000h  
Refer to  
name and  
function  
Select the communication I/F and select the RS-422 communication  
conditions.  
column.  
0
0
RS-422 communication baud rate selection  
0: 9600 [bps]  
1: 19200 [bps]  
2: 38400 [bps]  
3: 57600 [bps]  
4: 115200[bps]  
RS-422 communication response delay time  
0: Invalid  
1: Valid, reply sent after delay time of 800 s or more  
PC22 *COP1 Function selection C-1  
Select the encoder cable communication system selection.  
0000h  
Refer to the  
name and  
function  
field.  
0 0 0  
Encoder cable communication system selection  
0: Two-wire type  
1: Four-wire type  
The following encoder cables are of 4-wire type.  
MR-EKCBL30M-L  
MR-EKCBL30M-H  
MR-EKCBL40M-H  
MR-EKCBL50M-H  
The other encoder cables are all of 2-wire type.  
Incorrect setting will result in an encoder alarm 1  
(A16) or encoder alarm 2 (A20).  
6 - 23  
6. PARAMETERS  
No. Symbol  
Name and function  
Initial value  
0000h  
Unit  
Setting range  
PC23  
For manufacturer setting  
Do not change this value by any means.  
PC24 *COP3 Function selection C-3  
Select the unit of the in-position range.  
0000h  
Refer to  
name and  
function  
0 0 0  
column.  
In-position range unit selection  
0: Command input unit  
1: Servo motor encoder unit  
PC25  
For manufacturer setting  
0000h  
0000h  
Do not change this value by any means.  
PC26 *COP5 Function selection C-5  
Select the stroke limit warning (A99).  
Refer to  
name and  
function  
0 0 0  
column.  
Stroke limit warning (A99) selection  
0: Valid  
1: Invalid  
When this parameter is set to "1", A99 will not  
occur if the forward rotation stroke end (LSP) or  
reverse rotation stroke end (LSN) turns OFF.  
PC27  
For manufacturer setting  
0000h  
0000h  
Do not change this value by any means.  
PC28 *COP7 Function selection C-7  
Select the display method of the current position and command position.  
Refer to  
name and  
function  
0 0  
column.  
Electronic gear fraction clear selection  
0: Invalid  
1: Valid  
By setting it to "1", the fraction of the last command  
by the electronic gear is cleared when starting  
automatic operation.  
Current position and command position display  
selection  
Status display  
Setting  
value  
Display  
method  
Operation  
mode  
Current position  
Command position  
0
Positioning Automatic The actual current  
The command current  
position where the  
machine home  
display  
position where the  
machine home  
position is assumed  
as 0 is displayed.  
Manual  
position is assumed  
as 0 is displayed.  
The count starts from  
0 when the start signal  
is turned on, and the  
command current  
position to the target  
position is displayed.  
During a stop, the  
command position of  
the selected point  
table is displayed.  
The command  
1
Roll feed  
display  
Automatic The actual current  
position where the  
automatic operation  
start position is  
assumed as 0 is  
displayed.  
Manual  
position of the  
selected point table is  
displayed.  
6 - 24  
6. PARAMETERS  
No. Symbol  
Name and function  
Initial value  
0000h  
Unit  
Setting range  
PC29  
For manufacturer setting  
Do not change this value by any means  
PC30 *DSS Remote register-based position/speed specifying system selection  
This parameter is made valid when Position/speed specification selection  
(RY(n 2)A) is turned ON with 2 stations occupied. Select how to receive the  
position command and speed command.  
0000h  
Refer to  
name and  
function  
column.  
When 1 station is occupied, selection of "0001" or "0002" will result in a  
parameter error.  
0 0 0  
Set value  
Speed command  
Position command  
0
1
2
Specify the point table No.  
Specify the point table No.  
Set the position data.  
Settheservomotorspeed.(Note)  
Note. In the case, always set an acceleration/deceleration time constant in  
the point table No.1.  
10STM  
999999  
to  
m
PC31 LMPL Software limit  
0
Used to set the address increment side software stroke limit. The software  
limit is made invalid if this value is the same as in "software limit ".  
(Refer to section 6.3.6.)  
PC32 LMPH  
999999  
Set the same sign to parameters No.PC31 and No.PC32. Setting of different  
signs will result in a parameter error.  
Set address:  
Lower 3  
digits  
Upper 3  
digits  
Parameter No.PC31  
Parameter No.PC32  
The software limit is a set of upper digits and lower digits. To change the  
value, set in the order of lower digits to upper digits.  
PC33 LMNL Software limit  
Used to set the address decrement side software stroke limit. The software  
0
10STM  
999999  
to  
m
PC34 LMNH  
limit is made invalid if this value is the same as in "software limit ".  
(Refer to section 6.3.6.)  
999999  
Set the same sign to parameters No.PC33 and PC34. Setting of different  
signs will result in a parameter error.  
Set address:  
Lower 3  
digits  
Upper 3  
digits  
Parameter No.PC33  
Parameter No.PC34  
The software limit is a set of upper digits and lower digits. To change the  
value, set in the order of lower digits to upper digits.  
Internal torque limit 2  
PC35  
PC36  
TL2  
100.0  
%
0
to  
Set this parameter to limit servo motor torque on the assumption that the  
maximum torque is 100[%].  
100.0  
When 0 is set, torque is not produced.  
For manufacturer setting  
0000h  
Do not change this value by any means.  
6 - 25  
6. PARAMETERS  
No. Symbol  
Name and function  
Initial value  
0
Unit  
10STM  
Setting range  
Position range output address  
PC37 *LPPL  
PC38 *LPPH  
m
999999  
to  
Used to set the address increment side position range output address. Set  
the same sign to parameters No.PC37 and PC38. Setting of different signs  
will result in a parameter error.  
999999  
In parameters No.PC37 to PC40, set the range where position range (RXnE)  
turns on.  
Set address:  
Upper 3  
digits  
Lower 3  
digits  
Parameter No.PC37  
Parameter No.PC38  
Position range output address is a set of upper digits and lower digits. To  
change the value, set in the order of lower digits to upper digits.  
10STM  
999999  
to  
m
PC39 *LNPL Position range output address  
0
Used to set the address decrement side position range output address. Set  
PC40 *LNPH  
the same sign to parameters No.PC39 and PC40. Setting of different signs  
will result in a parameter error.  
999999  
Set address:  
Lower 3  
digits  
Upper 3  
digits  
Parameter No.PC39  
Parameter No.PC40  
Position range output address  
is a set of upper digits and lower digits.  
To change the value, set in the order of lower digits to upper digits.  
For manufacturer setting  
PC41  
PC42  
PC43  
PC44  
PC45  
PC46  
PC47  
PC48  
PC49  
PC50  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
Do not change this value by any means.  
6 - 26  
6. PARAMETERS  
6.3.3 S-pattern acceleration/deceleration  
In servo operation, linear acceleration/deceleration is usually made. By setting the S-pattern acceleration/  
deceleration time constant (parameter No.PC13), a smooth start/stop can be made. When the S-pattern time  
constant is set, smooth positioning is executed as shown below. Note that the time equivalent to the S-pattern  
time constant setting increases until positioning (RXnC) is complete.  
Acceleration time  
constant  
Deceleration time  
constant  
Rated  
speed  
Preset  
speed  
Servo motor  
speed  
0 [r/min]  
Tb Ts  
Tb  
Ta  
Ta Ts  
Ta: Time until preset speed is reached  
Tb: Time until stop  
Ts: S-pattern acceleration/deceleration time constant  
(parameter No.PC13)  
Setting range 0 to 1000ms  
6.3.4 Alarm history clear  
The alarm history can be confirmed by using the MR Configurator. The servo amplifier stores one current  
alarm and five past alarms from when its power is switched on first. To control alarms which will occur during  
operation, clear the alarm history using parameter No.PC18 (alarm history clear) before starting operation.  
Clearing the alarm history automatically returns to "  
0".  
This parameter is made valid by switching power off, then on after setting.  
Parameter No.16  
0 0 0  
Alarm history clear  
0: Invalid (not cleared)  
1: Valid (cleared)  
6.3.5 Rough match output  
Rough match (RXn2) is output when the command remaining distance reaches the value set in parameter  
No.PC11 (rough match output range). The setting range is 0 to 65535 [ 10STM m].  
Command remaining distance ( 10STM m)  
set in parameter No.PC11  
Actual servo motor speed  
Servo motor  
Command pulse  
speed  
Rough match  
(RXn2)  
ON  
OFF  
ON  
OFF  
In position (RXnC)  
6 - 27  
6. PARAMETERS  
6.3.6 Software limit  
A limit stop using a software limit (parameter No.PC31 to PC34) is made as in stroke end operation. When a  
motion goes beyond the setting range, the motor is stopped and servo-locked. This function is made valid at  
power-on but made invalid during home position return. This function is made invalid when the software limit  
setting is the same as the software limit setting. A parameter error (A37) will occur if the software limit  
setting is less than the software limit setting.  
Inhibited area  
Movable area  
Movable  
Unmovable  
Current position  
Software limit  
6 - 28  
6. PARAMETERS  
6.4 I/O setting parameters (No.PD  
6.4.1 Parameter list  
)
No. Symbol  
Name  
Initial value  
0000h  
0000h  
0000h  
0000h  
0000h  
002Bh  
000Ah  
000Bh  
0002h  
0003h  
0024h  
0C00h  
0000h  
0800h  
0000h  
0000h  
0000h  
0000h  
0002h  
0010h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
Unit  
PD01 *DIA1 Input signal automatic ON selection 1  
PD02 For manufacturer setting  
PD03 *DIA3 Input signal automatic ON selection 3  
PD04 *DIA4 Input signal automatic ON selection 4  
PD05  
For manufacturer setting  
PD06 *DI2 Input signal device selection 2 (CN6-2)  
PD07 *DI3 Input signal device selection 3 (CN6-3)  
PD08 *DI4 Input signal device selection 4 (CN6-4)  
PD09 *DO1 Output signal device selection 1 (CN6-14)  
PD10 *DO2 Output signal device selection 2 (CN6-15)  
PD11 *DO3 Output signal device selection 3 (CN6-16)  
PD12 DIN1 External DI function selection 1  
PD13  
PD14 DIN3 External DI function selection 3  
PD15 For manufacturer setting  
PD16 *DIAB Input polarity selection  
For manufacturer setting  
PD17  
PD18  
For manufacturer setting  
PD19 *DIF Response level setting  
PD20 *DOP1 Function selection D-1  
PD21  
PD22 *DOP3 Function selection D-3  
PD23 For manufacturer setting  
PD24 *DOP5 Function selection D-5  
For manufacturer setting  
PD25  
PD26  
PD27  
PD28  
PD29  
PD30  
For manufacturer setting  
6 - 29  
6. PARAMETERS  
6.4.2 Detail list  
Initial  
value  
Setting  
range  
No. Symbol  
Name and function  
Unit  
PD01 *DIA1 Input signal automatic ON selection 1  
Select the input devices to be automatically turned ON.  
0000h  
Refer to  
name and  
function  
part is for manufacturer setting. Do not set the value by any means.  
column.  
Initial value  
Device name  
BIN  
0
HEX  
0
0
Servo-on (SON)  
0
0
Initial value  
Device name  
BIN  
0
HEX  
Proportion control (PC)  
0
0
0
0
Initial value  
Device name  
BIN  
0
HEX  
0
Forward rotation  
stroke end (LSP)  
0
0
0
Reverse rotation  
stroke end (LSN)  
Initial value  
Device name  
BIN  
0
HEX  
Forced stop (EMG)  
0
0
0
0
BIN 0: Used in CC-Link or as external  
input signal.  
BIN 1: Automatic ON  
For example, to turn ON SON, the setting is "  
4".  
PD02  
For manufacturer setting  
0000h  
Do not change this value by any means.  
6 - 30  
6. PARAMETERS  
Initial  
value  
Setting  
range  
No. Symbol  
Name and function  
Unit  
PD03 *DIA3 Input signal automatic ON selection 3  
Select the input devices to be automatically turned ON.  
part is for manufacturer setting. Do not set the value by any means.  
0000h  
Refer to  
name and  
function  
column.  
0
0
0
Initial value  
Device name  
BIN  
HEX  
Automatic/manual  
selection (MD0)  
0
0
0
0
0
BIN 0: Used in CC-Link or as external  
input signal.  
BIN 1: Automatic ON  
PD04 *DIA4 Input signal automatic ON selection 4  
Select the input devices to be automatically turned ON.  
0000h  
Refer to  
name and  
function  
0
0
column.  
Initial value  
Device name  
BIN  
HEX  
Point table No.  
selection 1 (DI0)  
0
Point table No.  
selection 2 (DI1)  
0
0
0
Point table No.  
selection 3 (DI2)  
Point table No.  
selection 4 (DI3)  
0
Initial value  
Device name  
BIN  
HEX  
Point table No.  
selection 5 (DI4)  
0
Point table No.  
selection 6 (DI5)  
0
0
0
Point table No.  
selection 7 (DI6)  
Point table No.  
selection 8 (DI7)  
0
BIN 0: Used in CC-Link or as external  
input signal.  
BIN 1: Automatic ON  
PD05  
For manufacturer setting  
Do not change this value by any means.  
0000h  
6 - 31  
6. PARAMETERS  
Initial  
value  
Setting  
range  
No. Symbol  
Name and function  
Unit  
PD06 *DI2 Output signal device selection 2 (CN6-2)  
Any input device can be assigned to the CN6-2 pin.  
002Bh  
Refer to  
name and  
function  
0 0  
column.  
Select the input device of the CN6-2 pin  
The devices that can be assigned are indicated in the following table.  
Setting  
(Note)  
Input device  
Name  
Abbreviation  
00  
02  
03  
04  
06  
07  
08  
09  
0A  
0B  
0D  
20  
24  
25  
27  
2B  
No assignment function  
Servo-on  
SON  
RES  
PC  
Reset  
Proportion control  
Clear  
CR  
Forward rotation start  
Reverse rotation start  
Internal torque limit selection  
Forward rotation stroke end  
Reverse rotation stroke end  
Gain changing  
ST1  
ST2  
TL1  
LSP  
LSN  
CDP  
MD0  
TP0  
TP1  
TSTP  
DOG  
Automatic/manual selection  
Manual pulse generator multiplication 1  
Manual pulse generator multiplication 2  
Temporary stop/restart  
Proximity dog  
Note. The other setting values than shown in this table are for manufacturer  
setting.  
PD07 *DI3 Output signal device selection 3 (CN6-3)  
000Ah  
Refer to  
name and  
function  
Any input device can be assigned to the CN6-3 pin.  
The devices that can be assigned and the setting method are the same as in  
parameter No.PD06.  
column.  
0 0  
Select the input device of the CN6-3 pin  
PD08 *DI4 Output signal device selection 4 (CN6-4)  
000Bh  
Refer to  
name and  
function  
Any input device can be assigned to the CN6-4 pin.  
The devices that can be assigned and the setting method are the same as in  
parameter No.PD06.  
column.  
0 0  
Select the input device of the CN6-4 pin  
6 - 32  
6. PARAMETERS  
Initial  
value  
Setting  
range  
No. Symbol  
Name and function  
Unit  
PD09 *DO1 Output signal device selection 1 (CN6-14)  
Any output signal can be assigned to the CN6-14 pin.  
0002h  
Refer to  
name and  
function  
0 0  
column.  
Select the output device of the CN6-14 pin  
The devices that can be assigned are indicated in the following table.  
Setting  
(Note)  
Output device  
Name  
Symbol  
00  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0C  
0F  
23  
24  
25  
26  
27  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
Always OFF  
Ready  
RD  
ALM  
INP  
Trouble  
In position  
Electromagnetic brake interlock  
Dynamic brake interlock  
Limiting torque  
MBR  
DB  
TLC  
WNG  
BWNG  
SA  
Warning  
Battery warning  
Speed command reached  
Zero speed  
ZSP  
CDPS  
CPO  
ZP  
Variable gain selection  
Rough match  
Home position return completion  
Position range  
POT  
PUS  
MEND  
PT0  
PT1  
PT2  
PT3  
PT4  
PT5  
PT6  
PT7  
Temporary stop  
Movement completion  
Point table No. output 1  
Point table No. output 2  
Point table No. output 3  
Point table No. output 4  
Point table No. output 5  
Point table No. output 6  
Point table No. output 7  
Point table No. output 8  
Note. The other setting values than shown in this table are for manufacturer  
setting.  
PD10 *DO2 Output signal device selection 2 (CN6-15)  
0003h  
Refer to  
name and  
function  
Any output signal can be assigned to the CN6-15 pin.  
The devices that can be assigned and the setting method are the same as in  
parameter No.PD09.  
column.  
0 0  
Select the output device of the CN6-15 pin  
6 - 33  
6. PARAMETERS  
Initial  
value  
Setting  
range  
No. Symbol  
Name and function  
Unit  
PD11 *DO3 Output signal device selection 3 (CN6-16)  
Any output signal can be assigned to the CN6-16 pin.  
The devices that can be assigned and the setting method are the same as in  
parameter No.PD09.  
0024h  
Refer to  
name and  
function  
column.  
0 0  
Select the output device of the CN6-16 pin  
PD12 DIN1 External DI function selection 1  
0C00h  
Refer to  
name and  
function  
This function sets any signal imported from the CN6 connector.  
part is for manufacturer setting. Do not set the value by any means.  
column.  
Initial value  
Device name  
BIN  
0
HEX  
0
0
Servo-on (SON)  
Reset (RES)  
0
0
Initial value  
Device name  
BIN  
0
HEX  
Proportion control (PC)  
0
Clear (CR)  
0
0
Forward rotation start  
(ST1)  
0
Initial value  
Device name  
BIN  
HEX  
Reverse rotation start  
(ST2)  
0
Internal torque limit  
(TL1)  
0
1
C
Forward rotation  
stroke end (LSP)  
Reverse rotation  
stroke end (LSN)  
1
Initial value  
Device name  
BIN  
0
HEX  
Gain changing (CDP)  
0
0
0
0
BIN 0: Used in CC-Link  
BIN 1: Used in CN6 external input signal  
PD13  
For manufacturer setting  
Do not change this value by any means.  
0000h  
6 - 34  
6. PARAMETERS  
Initial  
value  
Setting  
range  
No. Symbol  
Name and function  
Unit  
PD14 DIN3  
External DI function selection 3  
0800h  
Refer to  
name and  
function  
This function sets any signal imported from the CN6 connector.  
part is for manufacturer setting. Do not set the value by any means.  
column.  
0
Initial value  
Device name  
BIN  
HEX  
Automatic/manual  
selection (MD0)  
0
0
0
0
0
Initial value  
Device name  
BIN  
0
HEX  
0
0
0
Temporary  
stop/Restart (TSTP)  
0
Initial value  
Device name  
BIN  
0
HEX  
0
8
0
1
Proximity dog (DOG)  
BIN 0: Used in CC-Link  
BIN 1: Used in CN6 external input signal  
PD15  
For manufacturer setting  
Do not change this value by any means.  
PD16 *DIAB Input polarity selection  
Used to set the proximity dog input polarity. (Refer to section 5.6.)  
0000h  
0000h  
Refer to  
name and  
function  
0 0 0  
column.  
Proximity dog input polarity  
0: OFF indicates detection of the dog  
1: ON indicates detection of the dog  
PD17  
For manufacturer setting  
0000h  
0000h  
0002h  
Do not change this value by any means.  
PD18  
PD19 *DIF  
Response level setting  
Used to select the input.  
Refer to  
name and  
function  
0 0 0  
column.  
Input filter  
If external input signal causes chattering due  
to noise, etc., input filter is used to suppress it.  
0: None  
1: 0.88[ms]  
2: 1.77[ms]  
3: 2.66[ms]  
4: 3.55[ms]  
5: 4.44[ms]  
6 - 35  
6. PARAMETERS  
Initial  
value  
Setting  
range  
No. Symbol  
Name and function  
Unit  
PD20 *DOP1 Function selection D-1  
0010h  
Refer to  
name and  
function  
Select the stop processing at forward rotation stroke end (LSN)/reverse rotation  
stroke end (LSN) OFF and the base circuit status at reset (RY(N 1)A or  
RY(n 3)A) ON.  
column.  
0
Stopping method used when forward rotation  
stroke end (LSP), reverse rotation stroke  
end (LSN) device or software limit is valid  
0: Sudden stop (home position erased)  
1: Slow stop (home position erased)  
2: Slow stop (Deceleration to a stop by deceleration time constant)  
3: Sudden stop (Stop by remaining move distance clear)  
Selection of base circuit status at reset (RY(n+1)A or RY(n+3)A)ON  
0: Base circuit not switched off  
1: Base circuit switched off  
Stopping method used when software limit is valid  
0: Sudden stop (home position erased)  
1: Slow stop (home position erased)  
2: Slow stop (Deceleration to a stop by deceleration time constant)  
3: Sudden stop (Stop by remaining move distance clear)  
As in the following parameter settings, when the home position is lost by the  
forward rotation stroke end, reverse rotation stroke end, or the software limit  
detection, the home position return completion (ZP) turns on by turning OFF/ON  
the servo-on (RYn0). In this case, there is no need to perform the home position  
return again.  
1. In absolute position detection system  
Parameter No.PA03:  
Parameter No.PA01:  
2. In incremental system  
Parameter No.PA03:  
Parameter No.PA01:  
Parameter No.PA04:  
For manufacturer setting  
1 (Select the absolute position detection system)  
0 (Select the absolute value command system)  
0 (Select the incremental system)  
0 (Select the absolute value command system)  
1 (Follow-up valid)  
PD21  
0000h  
0000h  
Do not change this value by any means.  
PD22 *DOP3 Function selection D-3  
Set the clear (RYnF).  
Refer to  
name and  
function  
0 0 0  
column.  
Clear (RYnF) selection  
0: Droop pulses are cleared on the leading  
edge.  
1: While on, droop pulses are always cleared.  
PD23  
For manufacturer setting  
Do not change this value by any means.  
0000h  
6 - 36  
6. PARAMETERS  
Initial  
value  
Setting  
range  
No. Symbol  
Name and function  
Unit  
PD24 *DOP5 Function selection D-5  
0000h  
Select the output status of the warning (WNG).  
0 0  
0
Selection of output device at warning occurrence  
Select the warning (RXnA) and trouble (RX(n+1)A or  
RX(n+3)A) output status at warning occurrence.  
(Note) Device status  
Setting  
1
0
1
RXnA  
Remote  
output  
RX(n+1)A or  
RX(n+3)A  
0
0
ON  
OFF  
ON  
OFF  
WNG  
ALM  
Output  
device  
Warning  
occurred.  
1
0
1
RXnA  
Remote  
output  
RX(n+1)A or  
RX(n+3)A  
0
ON  
OFF  
ON  
OFF  
WNG  
ALM  
Output  
device  
1
Warning  
occurred.  
Note. 0: OFF  
1: ON  
PD25  
PD26  
PD27  
PD28  
PD29  
PD30  
For manufacturer setting  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
Do not change this value by any means.  
6 - 37  
6. PARAMETERS  
6.4.3 Stopping method when the forward stroke end (LSP) or reverse stroke end (LSN) is valid  
The setting of the first digit of parameter No.PD20 enables to select a stopping method of the servo motor  
when the forward rotation stroke end (LSP) or reverse rotation stroke end (LSN) turns off.  
Parameter No.PD20  
Stopping method used when forward rotation stroke end (LSP) or  
reverse rotation stroke end (LSN) is valid  
0: Sudden stop (home position erased)  
1: Slow stop (home position erased)  
2: Slow stop (Deceleration to a stop by deceleration time constant)  
3: Sudden stop (Stop by remaining move distance clear)  
Setting  
value of  
Operation status  
Remarks  
parameter  
No.PD20  
When rotating at constant speed  
When decelerating to stop  
Clears droop pulses  
and stops.  
0
Without S-pattern  
Without S-pattern  
acceleration/deceleration  
acceleration/deceleration  
With S-pattern  
(Initial  
value)  
With S-pattern  
acceleration/deceleration  
acceleration/deceleration  
Erases the home  
position.  
A difference occurs  
between the command  
position and the current  
position.  
Servo motor  
speed  
Servo motor  
speed  
0r/min  
0r/min  
LSP  
or  
LSN  
LSP  
or  
LSN  
ON  
ON  
Execute a home  
position return again.  
Moves for the amount  
of droop pulse and  
stops.  
OFF  
OFF  
1
Without S-pattern  
Without S-pattern  
acceleration/deceleration  
With S-pattern  
acceleration/deceleration  
With S-pattern  
acceleration/deceleration  
acceleration/deceleration  
Amount of  
droop pulse  
Erases the home  
position.  
Amount of  
droop pulse  
A difference occurs  
between the command  
position and the current  
position.  
Execute a home  
position return again.  
Servo motor  
speed  
Servo motor  
speed  
0r/min  
0r/min  
LSP  
or  
LSN  
LSP  
or  
LSN  
ON  
ON  
OFF  
OFF  
Decelerates to stop at  
the deceleration time  
constant. Continues to  
rotate for the amount of  
S-pattern  
Without S-pattern  
2
acceleration/deceleration  
With S-pattern  
Without S-pattern  
acceleration/deceleration  
acceleration/deceleration  
With S-pattern  
Acceleration/  
Deceleration  
time constant  
acceleration/deceleration  
S-pattern  
acceleration/  
deceleration  
time constant  
acceleration/decelerati  
on time constant delay.  
Keeps the home  
Servo motor  
speed  
Acceleration/  
Deceleration  
time constant  
0r/min  
Servo motor  
speed  
Continues  
decelerating  
to stop  
0r/min  
position.  
LSP  
or  
LSN  
Decelerates to stop  
ON  
OFF  
LSP  
or  
LSN  
ON  
OFF  
Moves for the amount  
of droop pulse and  
stops. Continues to  
rotate for the amount of  
S-pattern  
Without S-pattern  
3
Without S-pattern  
acceleration/deceleration  
With S-pattern  
acceleration/deceleration  
With S-pattern  
acceleration/deceleration  
acceleration/deceleration  
S-pattern  
S-pattern  
acceleration/  
deceleration  
time constant  
acceleration/  
deceleration  
time constant  
amount of  
amount of  
acceleration/decelerati  
on time constant delay.  
Keeps the home  
droop pulse  
droop pulse  
Amount of  
Amount of droop  
droop pulse  
Servo motor  
speed  
pulse  
Servo motor  
speed  
0r/min  
0r/min  
position.  
LSP  
or  
LSN  
LSP  
or  
LSN  
ON  
ON  
OFF  
OFF  
6 - 38  
6. PARAMETERS  
6.4.4 Stopping method when a software limit is detected  
A stopping method of the servo motor when a software limit (parameter No.PC31 to PC34) is detected can be  
selected. The software limit imposes a limit on the command position, which is controlled in the servo amplifier.  
Therefore, actual stop position does not reach to the software limit set position.  
Parameter No.PD20  
Stopping method used when software limit is detected  
0: Sudden stop (home position erased)  
1: Slow stop (home position erased)  
2: Slow stop (Deceleration to a stop by deceleration time constant)  
3: Sudden stop (Stop by remaining move distance clear)  
Setting  
value of  
Operation status  
Remarks  
parameter  
No.PD20  
When rotating at constant speed  
When decelerating to stop  
Clears droop pulses  
and stops.  
0
Without S-pattern  
Without S-pattern  
acceleration/deceleration  
With S-pattern  
acceleration/deceleration  
(Initial  
value)  
With S-pattern  
acceleration/deceleration  
Erases the home  
position.  
acceleration/deceleration  
A difference occurs  
between the command  
position and the current  
position.  
Servo motor  
speed  
Servo motor  
speed  
0r/min  
0r/min  
Execute a home  
position return again.  
Moves for the amount  
of droop pulse and  
stops.  
Software limit detected  
Software limit detected  
1
Without S-pattern  
Without S-pattern  
acceleration/deceleration  
With S-pattern  
acceleration/deceleration  
With S-pattern  
acceleration/deceleration  
acceleration/deceleration  
Erases the home  
position.  
Amount of  
droop pulse  
Amount of  
droop pulse  
A difference occurs  
between the command  
position and the current  
position.  
Servo motor  
speed  
Servo motor  
speed  
0r/min  
0r/min  
Software limit detected  
Software limit detected  
Execute a home  
position return again.  
2
Without S-pattern  
Decelerates to stop at  
the deceleration time  
constant. Continues to  
rotate for the amount of  
S-pattern  
acceleration/deceleration  
With S-pattern  
Without S-pattern  
acceleration/deceleration  
acceleration/deceleration  
With S-pattern  
Acceleration/  
Deceleration  
time constant  
acceleration/deceleration  
S-pattern  
acceleration/  
deceleration  
time constant  
acceleration/decelerati  
on time constant delay.  
Keeps the home  
Servo motor  
speed  
Acceleration/  
Deceleration  
time constant  
0r/min  
Servo motor  
speed  
Continues  
decelerating  
to stop  
0r/min  
Decelerates to stop  
position.  
Software limit detected  
Software limit detected  
3
Without S-pattern  
Moves for the amount  
of droop pulse and  
stops. Continues to  
rotate for the amount of  
S-pattern  
Without S-pattern  
acceleration/deceleration  
With S-pattern  
acceleration/deceleration  
With S-pattern  
acceleration/deceleration  
acceleration/deceleration  
S-pattern  
S-pattern  
acceleration/  
deceleration  
time constant  
acceleration/  
deceleration  
time constant  
amount of  
amount of  
droop pulse  
droop pulse  
acceleration/decelerati  
on time constant delay.  
Keeps the home  
Amount of  
Amount of droop  
pulse  
Servo motor  
speed  
Servo motor  
speed  
droop pulse  
0r/min  
0r/min  
position.  
Software limit detected  
Software limit detected  
6 - 39  
6. PARAMETERS  
MEMO  
6 - 40  
7. MR Configurator  
7. MR Configurator  
The MR Configurator uses the communication function of the servo amplifier to perform parameter setting  
changes, graph display, test operation, etc. on a personal computer.  
7.1 Specifications  
Item  
Description  
The following table shows MR Configurator software version for each servo amplifier.  
MR Configurator  
Compatible servo amplifier  
100V class  
400V class  
200V class  
Compatibility with a  
servo amplifier  
Model  
Software version  
B0  
MRZJW3-SETUP221E  
C0 or later  
Baud rate [bps]  
Monitor  
115200, 57600, 38400, 19200, 9600  
Display, I/O interface display, high speed monitor, trend graph  
Display, history, amplifier data  
Alarm  
Diagnostic  
Parameters  
No motor rotation, system information, tuning data, absolute encoder data, Axis name setting.  
Parameter list, device setting, turning, change list, detailed information  
Jog operation, positioning operation, motor-less operation, Do forced output, program operation,  
single-step feed, parameter copy.  
Test operation  
Advanced function  
Point data  
Machine analyzer, gain search, machine simulation, Robust disturbance compensation.  
Point table  
File operation  
Others  
Data read, save, delete, print  
Automatic demo, help display  
7 - 1  
7. MR Configurator  
7.2 System configuration  
(1) Components  
To use this software, the following components are required in addition to the servo amplifier and servo  
motor.  
Equipment  
(Note 1) Description  
IBM PC/AT compatible where the English version of WindowsR 98, Windows R Me,  
WindowsR 2000 Professional, Windows R XP Professional, WindowsR XP Home Edition,  
Windows VistaR Home Basic, Windows VistaR Home Premium, Windows VistaR Business,  
Windows VistaR Ultimate, Windows VistaR Enterprise operates  
OS  
PentiumR 133MHz or more (WindowsR 98, WindowsR 2000 Professional)  
PentiumR 150MHz or more (WindowsR Me)  
Processor PentiumR 300MHz or more (WindowsR XP Professional, WindowsR XP Home Edition)  
32-bit (x86) processor of 1GHz or higher (Windows VistaR Home Basic, Windows VistaR Home  
Premium, Windows VistaR Business, Windows VistaR Ultimate, Windows VistaR Enterprise)  
24MB or more (WindowsR 98)  
(Note 2, 3)  
Personal computer  
32MB or more (WindowsR Me, Windows R 2000 Professional)  
128MB or more (WindowsR XP Professional, WindowsR XP Home Edition)  
Memory  
512MB or more (Windows VistaR Home Basic)  
1GB or more (Windows VistaR Home Premium, Windows VistaR Business, Windows VistaR  
Ultimate, Windows VistaR Enterprise)  
Hard Disk 130MB or more of free space  
Browser  
Display  
Internet Explorer 4.0 or more  
One whose resolution is 800 600 or more and that can provide a high color (16 bit) display.  
Connectable with the above personal computer.  
Connectable with the above personal computer.  
Connectable with the above personal computer.  
Connectable with the above personal computer.  
MR-J3USBCBL3M  
Keyboard  
Mouse  
Printer  
USB cable  
RS-422/232C conversion cable DSV-CABV (Diatrend) is recommended.  
Note 1. Windows and Windows Vista are the registered trademarks of Microsoft Corporation in the United States and other  
countries.  
Pentium is the registered trademarks of Intel Corporation.  
2. On some personal computers, MR Configurator may not run properly.  
3. 64-bit Windows XP and 64-bit Windows Vista are not supported.  
7 - 2  
7. MR Configurator  
(2) Connection with servo amplifier  
(a) For use of USB  
Personal computer  
Servo amplifier  
USB cable  
MR-J3USBCBL3M  
(Option)  
To USB  
connector  
CN5  
(b) For use of RS-422  
Personal computer  
Servo amplifier  
RS-422/232C conversion cable  
To RS-232C  
connector  
DSV-CABV  
(Diatrend)  
CN3  
(c) For use of RS-422 to make multidrop connection  
Servo amplifier  
Servo amplifier  
Servo amplifier  
CN3  
CN3  
CN3  
Personal computer  
(Note 2)  
(Note 2)  
(Note 2)  
(Note 3)  
RS-422/232C  
conversion cable  
DSV-CABV  
(Diatrend)  
(Note 1)  
To RS-232C  
connector  
Note 1. Refer to section 15.1 for cable wiring.  
2. The BMJ-8 (Hakko Electric Machine Works) is recommended as the branch connector.  
3. The final axis must be terminated between RDP (pin No. 3) and RDN (pin No.6) on the receiving side (servo amplifier) with a  
150 resistor.  
7 - 3  
7. MR Configurator  
7.3 Station selection  
Click "Setup" on the menu bar and click "System settings" on the menu.  
When the above choices are made, the following window appears.  
a)  
(1) Station number selection  
Choose the station number in the combo box ( a) ).  
POINT  
This setting should be the same as the station number which has been set in  
the parameter in the servo amplifier used for communication.  
(2) Closing of the station selection window  
Click the "OK" button to close the window.  
7 - 4  
7. MR Configurator  
7.4 Parameters  
Click "Parameters" on the menu bar and click "Parameter list" on the menu.  
When the above choices are made, the following window appears.  
j)  
g)  
h)  
i)  
k) l)  
c)  
a)  
d)  
b)  
e)  
f)  
(1) Parameter value write ( a) )  
Click the parameter whose setting was changed and press the "Write" button to write the new parameter  
setting to the servo amplifier.  
(2) Parameter value verify ( b) )  
Click the "Verify" button to verify all parameter values being displayed and the parameter values of the  
servo amplifier.  
(3) Parameter value batch-read ( c) )  
Click the "Read All" button to read and display all parameter values from the servo amplifier.  
7 - 5  
7. MR Configurator  
(4) Parameter value batch-write ( d) )  
Click the "Write All" button to write all parameter values to the servo amplifier.  
(5) Parameter default value indication ( e) )  
Click the "Set to default" button to show the initial value of each parameter.  
(6) Basic settings for parameters ( g) )  
Used to make the basic settings such as control mode selection and absolute position detection system  
selection.  
(7) Basic setting parameters ( h) )  
Used to make the basic settings for the servo amplifier. Select a parameter to be changed the setting, enter  
a new value to "Set value" and click "Enter".  
(8) Gain/Filter parameters ( i) )  
Used to adjust the gain manually. Select a parameter to be changed, enter a new value to "Set value" and  
click "Enter".  
(9) Extension setting parameters ( j) )  
Used to make the setting unique to MR-J3- T servo amplifier. Select a parameter to be changed, enter a  
new value to "Set value" and click "Enter".  
(10) I/O setting parameters ( k) )  
Used to change the I/O device of the servo amplifier. Select a parameter to be changed, enter a new  
value to "Set value" and click "Enter".  
(11) Parameter block ( l) )  
Used to set the availability of parameter write.  
(12) Parameter data file read  
Used to read and display the parameter values stored in the file. Use the "Project" menu on the menu  
bar to read.  
(13) Parameter value storage  
Used to store all parameter values being displayed on the window into the specified file. Use the  
"Project" menu on the menu bar to store.  
(14) Parameter data list print  
Used to print all parameter values being displayed on the window. Use the "Project" menu on the menu  
bar to print.  
(15) Parameter list window closing ( f) )  
Click the "Close" button to close the window. If the "Close" button is clicked without (1) parameter value  
write or (4) parameter value batch-write being performed, the parameter value changed is made invalid.  
7 - 6  
7. MR Configurator  
7.5 Point table  
POINT  
The value of the parameter No. PA05 set on the parameter setting screen is  
not engaged with the STM (feed length multiplication) value on the point table  
list screen. Set the STM (feed length multiplication) value to the same as set  
in the parameter No. PA05 on the point table list screen.  
Click "Point-data" on the menu bar and click "Point table" on the menu.  
When the above choices are made, the following window appears.  
g)  
f)  
e)  
a)  
b)  
d)  
c)  
h)  
(1) Point table data write ( a) )  
Click the point table data changed and press the "Write" button to write the new point table data to the  
servo amplifier.  
(2) Point table data verify ( b) )  
Click the "Verify" button to verify all data being displayed and the data of the servo amplifier.  
(3) Point table data batch-read ( c) )  
Click the "Read All" button to read and display all point table data from the servo amplifier.  
(4) Point table data batch-write ( d) )  
Click the "Write All" button to write all point table data to the servo amplifier.  
7 - 7  
7. MR Configurator  
(5) Point table data insertion ( e) )  
Click the "Insert" button to insert one block of data into the position before the point table No. chosen. The  
blocks after the chosen point table No. are shifted down one by one.  
(6) Point table data deletion ( f) )  
Click the "Delete" button to delete all data in the point table No. chosen. The blocks after the chosen point  
table No. are shifted up one by one.  
(7) Point table data change ( g) )  
Click the data to be changed, enter a new value into the "Enter" input field, and press the enter key or Enter  
Data button.  
(8) Point table data file read  
Used to read and display the point table data stored in the file. Use the "Project" menu on the menu bar to  
read.  
(9) Point table data storage  
Used to store all point table data being displayed on the window into the specified file. Use the "Project"  
menu on the menu bar to store.  
(10) Point table data list print  
Used to print all point table data being displayed on the window. Use the "Project" menu on the menu bar  
to print.  
(11) Point table data list window closing ( h) )  
Click the "Close" button to close the window.  
7 - 8  
7. MR Configurator  
7.6 Device assignment method  
POINT  
To use a device as an external I/O signal, the settings for the parameter No.  
PD12 and PD14 are required after the device is assigned according to the  
device setting described below.  
(1) How to open the setting screen  
Click "Parameters" on the menu bar and click "Device setting" in the menu.  
Making selection displays the following window.  
7 - 9  
7. MR Configurator  
(2) Screen explanation  
(a) DIDO device setting window screen  
This is the device assignment screen of the servo amplifier displays the pin assignment status of the  
servo amplifier.  
a)  
b)  
d)  
c)  
1) Read of function assignment ( a) )  
Click the "Read" button reads and displays all functions assigned to the pins from the servo amplifier.  
2) Write of function assignment ( b) )  
Click the "Write" button writes all pins that are assigned the functions to the servo amplifier.  
3) Verify of function assignment ( c) )  
Click the "Verify" button verifies the function assignment in the servo amplifier with the device  
information on the screen.  
4) Initial setting of function assignment ( d) )  
Click the "Set to Default" button initializes the function assignment.  
7 - 10  
7. MR Configurator  
(b) DIDO function display window screen  
This screen is used to select the device assigned to the pins.  
The functions displayed below * and * are assignable.  
a)  
b)  
Move the pointer to the place of the function to be assigned. Drag and drop it as-is to the pin you want  
to assign in the DIDO device setting window.  
1) Assignment checking, automatic ON setting ( a) )  
Press this button to display the screen that shows the assignment list and enables auto ON setting.  
Refer to (2)(c) in this section for more information.  
2) Quitting  
Click "Close" button to exit from the window. ( b) )  
7 - 11  
7. MR Configurator  
(c) Function device assignment checking auto ON setting display  
Click the "Assignment check / auto ON setting" button in the DIDO function display window displays the  
following window.  
a)  
b)  
c)  
d)  
e)  
The assigned functions are indicated by.  
The functions assigned by auto ON are grayed. When you want to set auto ON to the function that is  
enabled for auto ON, click the corresponding cell. Clicking it again disables auto ON.  
1) Auto ON read of function assignment ( a) )  
Click "Read" button reads the functions set for auto ON from the interface unit and extension IO unit.  
2) Auto ON write of function assignment ( b) )  
Click "Write" button writes the functions currently set for auto ON to the interface unit and extension  
IO unit.  
3) Auto ON verify of function assignment ( c) )  
Click "Verify" button verifies the current auto ON setting in the interface unit and extension IO unit  
with the auto ON setting on the screen.  
4) Auto ON initial setting of function assignment ( d) )  
Click "Set to Default" button initializes the auto ON setting.  
5) Quitting the function device assignment checking/auto ON setting window ( e) )  
Click "Close" button exits from the window.  
7 - 12  
7. MR Configurator  
7.7 Test operation  
When confirming the machine operation in the test operation mode, use the  
machine after checking that the safety mechanism such as the forced stop (EMG)  
operates.  
CAUTION  
If any operational fault has occurred, stop operation using the forced stop (EMG).  
7.7.1 Jog operation  
POINT  
For the program operation, refer to the manual of MR Configurator.  
The servo motor will not operate if the forced stop (EMG), forward rotation  
stroke end (LSP) and reverse rotation stroke end (LSN) are off. Make  
automatic ON setting to turn on these devices or make device setting to  
assign them as external input signals and turn on across these signals and  
SG. (Refer to section 7.6.)  
When an alarm occurs, the JOG operation is automatically canceled.  
Click "Test" on the menu bar and choose "Jog" on the menu.  
Clicking displays the confirmation window for switching to the test operation mode.  
Click the "OK" button to display the setting screen of the Jog operation.  
During the servo on, the confirmation window indicating that the next operation is in the stop status is  
displayed.  
Turn the servo off, confirm that the operation is in the stop status, and click the "OK" button to display the  
setting screen for the Jog operation.  
7 - 13  
7. MR Configurator  
c)  
a)  
b)  
d)  
e)  
g)  
h)  
f)  
(1) Servo motor speed setting ( a) )  
Enter a new value into the "Motor speed" input field and press the enter key.  
(2) Acceleration/deceleration time constant setting ( b) )  
Enter a new value into the "Accel/decel time" input field and press the enter key.  
(3) Start button operation selection  
Check the check box for operating the servo motor only while pressing the button. Uncheck the check box  
for stopping the operation by pressing the "Stop" or "Software forced stop" button.  
(4) Servo motor start ( c), d) )  
(a) When stopping the operation by pressing the "Stop" or "Software forced stop" button  
Click the "Forward" button to rotate the servo motor in the CCW rotation direction.  
Click the "Reverse" button to rotate the servo motor in the CW rotation direction.  
(b) When operating the servo motor only while pressing the button  
While pressing the "Forward" button, the servo motor rotates in the CCW rotation direction.  
While pressing the "Reverse" button, the servo motor rotates in the CW rotation direction.  
(5) Servo motor stop ( e) )  
(a) When stopping the operation by pressing the "Stop" or "Software forced stop" button  
Click the "Stop" button to stop the rotation of the servo motor.  
(b) When operating the servo motor only while pressing the button  
Release the "Forward" or "Reverse" button to stop the rotation of the servo motor.  
(6) LSP/LSN (stroke end) automatic ON setting ( g) )  
Put a check mark in the check box to automatically turn ON LSP/LSN. After selecting the check box, the  
LSP and the LSN of external signal are ignored.  
(7) Servo motor software forced stop ( h) )  
Click the "Software forced stop" button to stop the servo motor rotation immediately. When the "Software  
forced stop" button is enabled, the "Forward" and "Reverse" buttons cannot be used. Click the "Software  
forced stop" button again to make the "Forward" and "Reverse" buttons enabled.  
(8) Jog operation window closing ( f) )  
Click the "Close" button to cancel the jog operation mode and close the window.  
(9) Switching to CC-Link operation mode  
To switch from the test operation mode to the CC-Link operation mode, turn OFF the power of the servo  
amplifier.  
7 - 14  
7. MR Configurator  
7.7.2 Positioning operation  
POINT  
The servo motor will not operate if the forced stop (EMG), forward rotation  
stroke end (LSP) and reverse rotation stroke end (LSN) are off. Make  
automatic ON setting to turn on these devices or make device setting to  
assign them as external input signals and turn on across these signals and  
DOCOM. (Refer to section 7.6.)  
When an alarm occurs, the positioning operation is automatically canceled.  
Click "Test" on the menu bar and click "Positioning" on the menu.  
Clicking displays the confirmation window for switching to the test operation mode.  
Click the "OK" button to display the setting screen of the Positioning operation.  
During the servo on, the confirmation window indicating that the next operation is in the stop status is  
displayed.  
After confirming that the operation is in the stop status, click the "OK" button to display the setting screen for  
the positioning operation.  
7 - 15  
7. MR Configurator  
a)  
b)  
c)  
d)  
e)  
f)  
g)  
h)  
i)  
j)  
l)  
k)  
m)  
(1) Servo motor speed setting ( a) )  
Enter a new value into the "Motor speed" input field and press the enter key.  
(2) Acceleration/deceleration time constant setting ( b) )  
Enter a new value into the "Accel/decel time" input field and press the enter key.  
(3) Moving distance setting ( c) )  
Enter a new value into the "Move distance" input field and press the enter key.  
(4) Servo motor start ( d), e) )  
Click the "Forward" button to rotate the servo motor in the forward rotation direction.  
Click the "Reverse" button to rotate the servo motor in the reverse rotation direction.  
(5) Temporary stop of servo motor ( f) )  
Click the "Pause" button to stop the servo motor temporarily.  
(6) Servo motor restart ( g) )  
Click the "Restart" button during the temporary stop to restart the rotations for the remaining move distance.  
Enter a new value into the "Motor speed" input field and press the enter key.  
(7) Move distance clear ( h) )  
Click the "Remaining distance clear" during the temporary stop to clear the remaining move distance.  
(8) LSP/LSN (stroke end) automatic ON setting ( i) )  
Put a check mark in the check box to automatically turn ON LSP/LSN. After selecting the check box, the  
LSP and the LSN of external signal are ignored.  
(9) Automatic ON setting for the movement to the Z-phase signal ( j) )  
To move to the first Z-phase signal of the move distance + move direction, put a check mark in the check  
box.  
7 - 16  
7. MR Configurator  
(10) Pulse move distance unit selection (k)  
Select with the option buttons whether the moving distance set is in the command input pulse unit or in the  
encoder pulse unit.  
(11) Servo motor software forced stop (1))  
Click the "Software forced stop" button to stop the servo motor rotation immediately. When the "Software  
forced stop" button is enabled, the "Forward" and "Reverse" buttons cannot be used. Click the "Software  
forced stop" button again to make the "Forward" and "Reverse" buttons enabled.  
(12) Positioning operation window closing ( m) )  
Click the "Close" button to cancel the positioning operation mode and close the window.  
(13) Switching to CC-Link operation mode  
To switch from the test operation mode to the CC-Link operation mode, turn OFF the power of the servo  
amplifier.  
7 - 17  
7. MR Configurator  
7.7.3 Motor-less operation  
POINT  
When this operation is used in an absolute position detection system, the  
home position cannot be restored properly.  
Without a servo motor being connected, the output signals are provided and the servo amplifier display shows  
the status as if a servo motor is actually running in response to the external I/O signals.  
The sequence of the host programmable controller (PC) can be checked without connection of a servo motor.  
Click "Test" on the menu bar and click "Operation w/o Motor" on the menu.  
When the above choices are made, the following window appears.  
a)  
b)  
(1) Execution of motor-less operation ( a) )  
Click "Start" to perform motor-less operation.  
(2) Termination of motor-less operation ( b) )  
Click "Close" to close the window.  
Note that just clicking the "Close" button does not cancel motor-less operation. To cancel motor-less  
operation, turn ON the power of the servo amplifier and switch to the CC-Link operation mode once.  
7 - 18  
7. MR Configurator  
7.7.4 Output signal (DO) forced output  
POINT  
When an alarm occurs, the DO forced output is automatically canceled.  
Each servo amplifier output signal is forcibly switched on/off independently of the output condition of the output  
signal.  
Click "Test" on the menu bar and click "Forced output" on the menu.  
Clicking displays the confirmation window for switching to the test operation mode.  
Click the "OK" button to display the setting screen of the DO forced output.  
During the servo on, the confirmation window indicating that the next operation is in the stop status is  
displayed.  
After confirming that the operation is in the stop status, click the "OK" button to display the setting screen for  
the DO forced output.  
When the above choices are made, the following window appears.  
a)  
b)  
c)  
7 - 19  
7. MR Configurator  
(1) Signal ON/OFF setting ( a), b) )  
Choose the signal name or pin number and click the "ON" or "OFF" button to write the corresponding signal  
status to the servo amplifier.  
(2) DO forced output window closing ( c) )  
Click the "Close" button to cancel the DO forced output mode and close the window.  
(3) Switching to CC-Link operation mode  
To switch from the test operation mode to the CC-Link operation mode, turn OFF the power of the servo  
amplifier.  
7.7.5 Single-step feed  
POINT  
The servo motor will not operate if the forced stop (EMG), forward rotation  
stroke end (LSP) and reverse rotation stroke end (LSN) are off. Make  
automatic ON setting to turn on these devices or make device setting to  
assign them as external input signals and turn on across these signals and  
SG. (Refer to section 7.6.)  
When an alarm occurs, the 1-step feed is automatically canceled.  
Operation is performed in accordance with the preset point table No.  
Click "Test" on the menu bar and click "Single-step Feed" on the menu.  
Clicking displays the confirmation window for switching to the test operation mode.  
7 - 20  
7. MR Configurator  
Click the "OK" button to display the setting screen of the Single-step feed.  
During the servo on, the confirmation window indicating that the next operation is in the stop status is  
displayed.  
After confirming that the operation is in the stop status, click the "OK" button.  
b)  
c)  
a)  
d)  
e)  
f)  
g)  
(1) Point table No. setting ( a) )  
Enter the point table No. into the "Point table No." input field and press the enter key.  
(2) Servo motor start ( b) )  
Click the "Start" button to rotate the servo motor.  
(3) Temporary stop of servo motor ( c) )  
Press the "Pause" button to stop the servo motor temporarily.  
(4) Servo motor stop ( c) )  
Click the "Pause" button again during a temporary stop of the servo motor to clear the remaining moving  
distance.  
(5) Servo motor restart ( d) )  
Click the "Restart" button during the temporary stop to restart the rotations for the remaining move distance.  
(6) Move distance clear ( e) )  
Click the "Remaining distance clear" during the temporary stop to clear the remaining move distance.  
7 - 21  
7. MR Configurator  
(7) Servo motor software forced stop ( f) )  
Click the "Software forced stop" button to stop the servo motor rotation immediately. When the "Software  
forced stop" button is enabled, the "Start" button cannot be used. Click the "Software forced stop" button  
again to make the "Start" button enabled.  
(8) Single-step feed window closing ( g) )  
Click the "Close" button to cancel the single-step feed mode and close the window.  
(9) Switching to CC-Link operation mode  
To switch from the test operation mode to the CC-Link operation mode, turn OFF the power of the servo  
amplifier.  
7 - 22  
7. MR Configurator  
7.8 Alarm  
7.8.1 Alarm display  
POINT  
If a menu is clicked or any other operation is performed during alarm  
occurrence, the following message window appears. The example given here  
is the window that indicates an occurrence of Encoder error 1 (A16).  
The current alarm can be displayed.  
To display the current alarm, click "Alarm" on the menu bar and click "Display" on the menu.  
When the above choices are made, the following window appears.  
a)  
b)  
7 - 23  
7. MR Configurator  
(1) Current alarm display  
The window shows the alarm number, name, cause and occurrence time.  
The following example is the window that indicates an occurrence of Encoder error 1 (A16).  
(2) Alarm reset ( a) )  
Click the "Reset alarm" button to reset the current alarm and clear alarms on the window. The alarm at this  
time is stored as the latest alarm.  
(3) Closing the current alarm window ( b) )  
Click the "Close" button to close the window.  
7.8.2 Batch display of data at alarm occurrence  
Monitor data during alarm occurrence is displayed.  
To display monitor data, click "Alarm" on the menu bar and click "Amplifier data" on the menu.  
When the above choices are made, the following window appears.  
7 - 24  
7. MR Configurator  
Click the "Read" button to read the monitor data at error occurrence from the servo amplifier. Read results are  
displayed as follows.  
7 - 25  
7. MR Configurator  
7.8.3 Alarm history  
Click "Alarm" on the menu bar and click "History" on the menu.  
When the above choices are made, the following window appears.  
a)  
b)  
(1) Alarm history display  
The most recent six alarms are displayed. The smaller numbers indicate newer alarms.  
(2) Alarm history clear ( a) )  
Click the "Clear" button to clear the alarm history stored in the servo amplifier.  
(3) Closing of alarm history window ( b) )  
Click the "Close" button to close the window.  
7 - 26  
8. PARAMETER UNIT (MR-PRU03)  
8. PARAMETER UNIT (MR-PRU03)  
POINT  
Do not use MR-PRU03 parameter unit and MR Configurator together.  
Perform simple data setting, test operation, parameter setting, etc. without MR Configurator by connecting the  
MR-PRU03 parameter unit to the servo amplifier.  
8 - 1  
8. PARAMETER UNIT (MR-PRU03)  
8.1 External appearance and key explanations  
This section gives the external appearance and explanations of the keys.  
Key explanations  
Key  
Monitor mode key  
MON  
Used to display the monitor screen.  
ALM/ Alarm/diagnosis mode  
DGN  
Display  
Used to display the alarm/DO forced output/diagnosis selection  
screen.  
LCD (16 characters x 4 lines)  
Used to display the following or others:  
Parameter setting  
Parameter mode key  
DATA  
PARAM  
Used to display parameter selection screen.  
Press this key while holding down the "SHIFT" key to display the  
point table setting screen.  
Monitor  
Test operation mode key  
PRU03  
TEST  
Fn  
Used to display the exit/JOG operation/positioning operation/motor-  
less operation/DO forced output/single-step feed selection screen.  
Function key  
Used to perform various operations in the test operation mode.  
Used to display the parameter range and point table setting range.  
SHIFT key  
SHIFT  
ESC  
Used to enter hexadecimal values. Press the "4" to "9" keys while  
holding down the "SHIFT" key to enter A to F.  
Press the "  
to the previous or next screen.  
ALM/  
DGN  
DATA  
PARAM  
TEST  
MON  
Fn  
" keys while holding down the "SHIFT" key to move  
ESC  
SHIFT  
ESC key  
Used to display the screen at one step upper hierarchical level. (not  
the pervious screen)  
Used to display the setting selection screen (the initial screen) of the  
monitor mode.  
E8  
B5  
F9  
C6  
3
D7  
A4  
1
FWD  
REV  
Scroll key  
Used to move the cursor across the screen or scroll the screen.  
Press this key while holding down the "SHIFT" key to move to the  
previous or next screen.  
2
Used to change parameter No. or point table No.  
1STEP  
STOP  
RESET  
0
Forward rotation key  
FWD  
REV  
Used to start the forward rotation in the test operation mode (JOG  
operation/positioning operation).  
Symbol key/reverse rotation key  
Used to start the reverse rotation in the test operation mode (JOG  
operation/positioning operation).  
Used together with the "SHIFT" key to enter negative values. To exit  
the negative value entry mode, press the "SHIFT" key again and  
press the "-" key. ("-" disappears.)  
STOP  
RESET  
Stop/reset key  
Used to stop temporarily in the JOG operation/positioning  
operation/single-step feed.  
The "RESET" key is valid when the "Fn" key is not pressed (i.e. at a  
stop).  
Used to reset alarms or alarm history, or clear cumulated monitor  
data or inputs.  
Normal operation cannot be stopped with this key.  
Enter key  
Used to determine the selection, numerical values, etc.  
Used to determine to exit the test operation mode, or enter the  
motor-less operation.  
Used to switch ON/OFF in the DO output screen.  
Numerical keys  
0
to  
Used to enter parameter No., setting values, etc.  
Press the "4" to "9" keys while holding down the "SHIFT" key to enter  
A to F.  
F9  
1STEP Decimal point key  
Used to enter a decimal point.  
Used to start the single-step feed.  
8 - 2  
8. PARAMETER UNIT (MR-PRU03)  
8.2 Specifications  
Item  
Description  
Model  
MR-PRU03  
Power supply  
Supplied from the servo amplifier  
Basic setting parameters, Gain/filter parameters, Extension setting  
parameters, I/O setting parameters  
Parameter mode  
Current position, Command position, Command remaining distance, Point  
table No., Feedback pulse value, Servo motor speed, Droop pulse value,  
Regenerative load factor, Effective load factor, Peak load factor,  
Instantaneous torque, Within one-revolution position, ABS counter, Load  
inertia moment ratio, Bus voltage  
Monitor mode (Status display)  
Diagnosis mode  
Alarm mode  
External I/O display, motor information  
Current alarm, Alarm history  
Jog operation, Positioning operation, DO forced output, Motor-less operation,  
Single-step feed  
Test operation mode  
Point table mode  
Point data, Servo motor speed, Acceleration/deceleration time constant,  
Dwell, Auxiliary function  
Display section  
LCD system (16 characters  
4 lines)  
Ambient temperature  
Ambient humidity  
10 to 55 (14 to 131 ) (non-freezing)  
90%RH or less (non-condensing)  
Storage temperature range  
Storage humidity range  
20 to 65  
(
4 to 149 ) (non-freezing)  
90%RH or less (non-condensing)  
Indoors (no direct sunlight) Free from corrosive gas, flammable gas, oil mist,  
Ambience  
dust and dirt  
130 (0.287)  
Mass [g] ([lb])  
8.3 Outline dimension drawings  
[Unit: mm]  
16.5  
24  
72  
15  
10.5  
48  
13  
23.75  
11.75  
Punched hole  
1.25  
5-M3 screw  
5- 4 hole  
40  
Panel cut dimension  
40  
Front face  
Side face  
Back face  
8 - 3  
8. PARAMETER UNIT (MR-PRU03)  
8.4 Connection with servo amplifier  
8.4.1 Single axis  
(1) Configuration diagram  
Operate the single-axis servo amplifier. It is recommended to use the following cable.  
Servo amplifier  
Parameter unit  
(MR-PRU03)  
CN3  
10BASE-T cable, etc.  
(EIA568-compliant cable)  
(2) Cable internal wiring diagram  
Parameter unit  
(MR-PRU03)  
connector side  
Servo amplifier  
CN3 connector  
(RJ45 connector)  
GND  
5V  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
LG  
P5D  
RDP  
SDN  
SDP  
RDN  
LG  
TXD  
RXD  
RXD  
TXD  
GND  
NC  
NC  
10m or less  
8 - 4  
8. PARAMETER UNIT (MR-PRU03)  
8.4.2 Multidrop connection  
(1) Configuration diagram  
Up to 32 axes of servo amplifiers from stations 0 to 31 can be operated on the same bus.  
Servo amplifier  
Servo amplifier  
Servo amplifier  
CN3  
CN3  
CN3  
Parameter unit  
(MR-PRU03)  
(Note 2)  
(Note 1)  
(Note 2)  
(Note 1)  
(Note 2)  
(Note 1)  
(Note 2)  
(Note 2)  
(Note 2)  
(Note 3)  
Note 1. The BMJ-8 (Hakko Electric Machine Works) is recommended as the branch connector.  
2. Use the 10BASE-T cable (EIA568-compliant), etc.  
3. The final axis must be terminated between RDP (pin No.3) and RDN (pin No.6) on the receiving side (servo amplifier) with a  
150 resistor.  
8 - 5  
8. PARAMETER UNIT (MR-PRU03)  
(2) Cable internal wiring diagram  
Wire the cables as shown below.  
(Note 3) 30m or less  
(Note 1)  
(Note 1)  
(Note 1, 7)  
Axis n servo amplifier  
CN3 connector  
Axis 2 servo amplifier  
CN3 connector  
Axis 1 servo amplifier  
CN3 connector  
(RJ45 connector)  
(RJ45 connector)  
(RJ45 connector)  
(Note 4, 5)  
(Note 4)  
(Note 4)  
1
2
3
4
5
6
7
8
LG  
1
2
3
4
5
6
7
8
LG  
1
2
3
4
5
6
7
8
LG  
P5D  
RDP  
SDN  
SDP  
RDN  
LG  
P5D  
RDP  
SDN  
SDP  
RDN  
LG  
P5D  
RDP  
SDN  
SDP  
RDN  
LG  
NC  
NC  
NC  
Parameter  
unit  
1 2 3 4 5 6 7 8  
1 2 3 4 5 6 7 8  
1 2 3 4 5 6 7 8  
(Note 5)  
(Note 5)  
(Note 5)  
GND  
5V  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
RDP  
SDP  
(Note 2)  
RDN  
RDP  
150  
RDN  
SDN  
GND  
NC  
(Note 6) Branch connector  
(Note 6) Branch connector  
(Note 6) Branch connector  
Note 1. Recommended connector (Hirose Electric)  
Plug: TM10P-88P  
Connection tool: CL250-0228-1  
2. The final axis must be terminated between RDP (pin No.3) and RDN (pin No.6) on the receiving side (servo amplifier) with a  
150 resistor.  
3. The overall length is 30m or less in low-noise environment.  
4. The wiring between the branch connector and servo amplifier should be as short as possible.  
5. Use the EIA568-compliant cable (10BASE-T cable, etc.).  
6. Recommended branch connector: BMJ-8 (Hakko Electric Machine Works)  
7. n 32 (Up to 32 axes can be connected.)  
8 - 6  
8. PARAMETER UNIT (MR-PRU03)  
8.5 Display  
Connect the MR-PRU03 parameter unit to the servo amplifier, and turn ON the power of the servo amplifier. In  
this section, the screen transition of the MR-PRU03 parameter unit is explained, together with the operation  
procedure in each mode.  
8.5.1 Outline of screen transition  
Servo amplifier power ON  
MR-PRU03  
parameter unit setting  
Initializing  
(Note)  
ESC  
Normal transition  
(i.e. no communication  
error is detected)  
ALM/  
DGN  
DATA  
PARAM  
DATA  
PARAM  
TEST  
SHIFT  
Alarm/  
Diagnosis mode  
MON  
Parameter  
mode  
Point table  
mode  
Test operation  
mode  
Monitor mode  
Note. If initialization communication fails, a communication error is displayed. Press the "ESC" key to return to the PRU setting screen.  
8 - 7  
8. PARAMETER UNIT (MR-PRU03)  
8.5.2 MR-PRU03 parameter unit setting  
Set and enter the station number.  
(e.g. To enter 31th axis)  
MR-PRU03  
parameter unit setting  
Station number  
3
1
ESC  
Baud rate selection  
Contrast adjustment  
Buzzer  
Press the "  
" keys to select,  
" key to set.  
and press the "  
Press the "  
" keys to select  
from 0 to 63, and press the "  
to set.  
" key  
Press the "  
" key to select ON or  
1
the "  
the "  
" key to select OFF, and press  
" key to set.  
0
Version info  
PRU03 software number is displayed.  
Note. Press the "SHIFT" key and "ESC" key together on any screen to return to the station number setting screen.  
8 - 8  
8. PARAMETER UNIT (MR-PRU03)  
8.5.3 Monitor mode (status display)  
(1) Monitor display  
The servo status during operation is shown on the display. Refer to (2) in this section for details.  
11. Regenerative load ratio  
MON  
1. Current position  
12. Effective load ratio  
13. Peak load ratio  
2. Command position  
3. Command remaining distance  
4. Point table No.  
14. Instantaneous torque  
15. Within one-revolution position  
16. ABS counter  
5. Cumulative feedback pulses  
6. Servo motor speed  
17. Load inertia moment ratio  
18. Bus voltage  
7. Droop pulses  
8. For manufacturer setting  
9. For manufacturer setting  
10. For manufacturer setting  
19. For manufacturer setting  
20. For manufacturer setting  
21. For manufacturer setting  
8 - 9  
8. PARAMETER UNIT (MR-PRU03)  
(2) Monitor display list  
The following table lists the items and descriptions of monitor display.  
Display on  
Status display  
parameter  
unit  
Unit  
Description  
Display range  
10STM  
mm  
The current position from the machine home position of 0 is  
displayed.  
9999999 to  
9999999  
Current position  
Cur posit  
10STM  
9999999 to  
9999999  
Command position  
Cmd Posit  
The command position is displayed.  
mm  
Command remaining  
distance  
10STM  
mm  
The command remaining distance of the currently selected  
point table is displayed.  
999999999 to  
999999999  
Cmd remin  
Pnttbl No  
0 to 255  
Point table No.  
The point table No. being executed is displayed.  
Feedback pulses from the servo motor encoder are counted  
and displayed.  
Cumulative feedback  
pulses  
When the value exceeds 999999, characters are displayed  
smaller.  
999999999 to  
999999999  
Pulse F/B  
Speed F/B  
Droop Pls  
Regn Load  
pulse  
r/min  
pulse  
Press the "RESET" key of the parameter unit to reset the  
display value to zero.  
The servo motor speed is displayed.  
"-" is added to the speed of the servo motor rotating in the  
reverse rotation.  
7200 to 7200  
Servo motor speed  
The value rounded off is displayed in 0.1r/min.  
The number of droop pulses in the deviation counter is  
displayed.  
"- " is added to the reverse pulses.  
999999999 to  
999999999  
Droop pulse  
When the value exceeds ±999999, characters are displayed  
smaller.  
The number of pulses displayed is in the encoder pulse unit.  
The ratio of regenerative power to permissible regenerative  
power is displayed in %.  
Regenerative load  
ratio  
0 to 100  
When regenerative option is used, the ratio to the permissible  
regenerative power is displayed.  
The continuous effective load current is displayed.  
The effective value is displayed relative to the rated current of  
100%.  
0 to 300  
0 to 400  
0 to 400  
Effective load ratio  
Peak load ratio  
Effc Load  
Peak Load  
Instn Trq  
The maximum torque is displayed.  
The highest value in the past 15 seconds is displayed relative  
to the rated torque of 100%.  
Torque that occurred instantaneously is displayed.  
The value of the torque that occurred is displayed in real time  
relative to the rate torque of 100%.  
Instantaneous  
torque  
Position within one revolution is displayed in encoder pulses.  
The value returns to 0 when it exceeds the maximum number  
of pulses.  
Within one-revolution  
position  
0 to 262143  
Cyc posit  
Abs count  
pulse  
rev  
The value is incremented in the CCW direction of rotation.  
Travel value from the home position in the absolute position  
detection systems is displayed in terms of the absolute  
position detectors counter value.  
32768 to 32767  
ABS counter  
Load inertia moment  
ratio  
Multiplier The estimated ratio of the load inertia moment to the servo  
0.0 to 300.0  
0 to 900  
Moment Rt  
P-N Volt  
(
1)  
motor shaft inertia moment is displayed.  
The voltage (across P-N or P - N ) of the main circuit  
converter is displayed.  
Bus voltage  
V
8 - 10  
8. PARAMETER UNIT (MR-PRU03)  
8.5.4 Alarm/diagnostic mode  
(1) Alarm display  
The flowchart below shows the procedure of settings involving alarms, alarm history, external I/O signal  
(DIDO) display, device and diagnosis.  
ALM/  
DGN  
Current alarm  
(When undervoltage (A10) occurred.)  
When parameter error (A37)  
occurred.  
Alarm  
The alarm number of the current The parameter No. of the erroneous parameter is displayed  
alarm is displayed. when parameter error (A37) occurred.  
This screen is displayed once an Parameter error (A37) also occurs in response to a point  
alarm occurred regardless of the table error. (Refer to section 11.5.)  
display mode selected.  
STOP  
RESET  
Alarms are reset by the error  
reset command.Press the  
"1" key to execute, or the "0"  
key to cancel.  
Alarm history  
For six alarms including the latest alarm and  
five other alarms in alarm history (0 to 5), their  
alarm numbers and energization time elapsed  
before the alarm occurrence are displayed.  
The alarm history can be cleared. (Refer to (2)  
in this section.)  
I/O display  
Diagnosis  
ON/OFF status of DIDO is displayed.  
: ON  
: OFF  
Software number  
The software number is displayed.  
The motor information is displayed.  
Motor information  
Total power-on time  
The total power-on time (P-on) and the number of power-on  
times (SW.) since shipped are displayed.  
8 - 11  
8. PARAMETER UNIT (MR-PRU03)  
(2) Alarm history clear  
The servo amplifier stores one current alarm and five past alarms from when its power is switched on first.  
To control alarms which will occur during operation, clear the alarm history before starting operation.  
ALM/  
DGN  
Select "ALM Hist".  
For six alarms including the latest  
alarm and five other alarms in  
alarm history (0 to 5), their alarm  
numbers and energization time  
elapsed before the alarm  
STOP  
RESET  
occurrence are displayed.  
The alarm history clear menu is  
displayed.  
Select "1" to clear the alarm  
history.  
1)  
8 - 12  
8. PARAMETER UNIT (MR-PRU03)  
8.5.5 Parameter mode  
The flowchart below shows the procedure for setting parameters.  
DATA  
PARAM  
Select a parameter group.  
e.g. To set setting  
value "1234",  
press:  
e.g. To select the  
gain/filter parameter,  
press:  
e.g. To select  
parameter No.PB10,  
press:  
1
0
1
2
3
4
The parameter number,  
abbreviation and setting value  
are displayed.  
First parameter number  
is displayed.  
Write  
Press the "Fn" key to display  
the range.  
Write is completed.  
The following message  
appears if switching  
power off or on is needed  
to enable the setting.  
8 - 13  
8. PARAMETER UNIT (MR-PRU03)  
8.5.6 Point table mode  
The flowchart below shows the procedure for setting point table data.  
DATA  
SHIFT  
e.g. To set setting  
value "4567.89",  
press:  
PARAM  
Select an item with  
e.g. To set point  
"
"
table No."255"  
press:  
the  
keys  
or numeric keys.  
4
5
8
6
9
7
Position data display  
Table read screen  
1STEP  
2
5
5
Servo motor speed display  
Point table data is  
displayed.  
Select a point table No.  
Enter  
POS  
: Point data  
SPD  
: Servo motor  
Acceleration time  
constant display  
speed  
ACC  
DEC  
: Acceleration  
time constant  
: Deceleration  
time constant  
Deceleration time  
constant display  
DWELL : Dwell  
AUX  
: Auxiliary  
function  
(Note)  
Dwell display  
e.g. To set setting  
value "0", press:  
Auxiliary function display  
0
Enter  
Press the "Fn" key  
to display the range.  
Note. This applies to all types of data.  
8 - 14  
8. PARAMETER UNIT (MR-PRU03)  
8.5.7 Test operation mode  
When confirming the machine operation in the test operation mode, use the  
machine after checking that the safety mechanism such as the forced stop (EMG)  
operates.  
CAUTION  
If any operational fault has occurred, stop operation using the forced stop (EMG).  
POINT  
Test operation cannot be executed without turning the servo OFF.  
Exiting test/JOG operation/positioning operation/motor-less operation/DO forced stop/single-step feed can be  
performed in this mode. The following shows how to set each operation.  
When the servo motor equipped with an electromagnetic brake is used, make sure to program a sequence  
circuit which will operate the electromagnetic brake by the servo amplifier electromagnetic brake interlock  
(MBR).  
TEST  
JOG operation  
Positioning operation  
Motor-less operation  
DO forced output  
Single-step feed  
8 - 15  
8. PARAMETER UNIT (MR-PRU03)  
(1) Jog operation  
Jog operation can be performed when there is no command from the external command device.  
Connect EMG-DOCOM to start jog operation.  
(a) Operation/cancel  
You can change the operation conditions with the parameter unit. The initial conditions and setting  
ranges for operation are listed below.  
Item  
Initial setting  
200  
Setting range  
0 to instantaneous permissible speed  
0 to 20000  
Speed [r/min]  
(Note) Acceleration/deceleration time constant [ms]  
1000  
Note. Acceleration time constant refers to time required to reach the rated speed from stop status (0r/min), and deceleration time  
constant refers to time required to reach 0r/min from the rated speed.  
The following shows the operation condition settings and the operation procedures.  
e.g. 4000r/min is set  
JOG operation  
Servo motor speed  
4
0
0
0
Servo motor speed in JOG operation is displayed.  
Acceleration/deceleration  
e.g. 4000ms is set  
time constant  
4
0
0
0
Acceleration/deceleration time constant in JOG operation is displayed.  
Operation screen  
FWD  
Hold down the "  
Hold down the "  
" and "  
" keys to run the servo motor in the forward rotation direction.  
Fn  
Fn  
" and " REV " keys to run the servo motor in the reverse rotation direction.  
FWD  
Fn  
Take off the "  
" or "  
" key while holding down the "  
" key to stop.  
REV  
Take off the " Fn " key to stop immediately.  
Test operation mode cancel  
Test operation mode has  
been canceled.  
ESC  
Returns to the initial screen  
of the test operation mode.  
Select "RESTORE".  
This screen is also displayed  
when "RESTORE" is selected  
in the initial screen of the test  
operation mode with no test  
operation being performed.  
If the parameter unit cable is disconnected during jog operation, the servo motor will be decelerated to a  
stop.  
To switch from the test operation mode to the CC-Link operation mode, turn OFF the power of the servo  
amplifier.  
(b) Status display  
You can monitor the status display even during JOG operation. At this time, the "FWD", "REV" and  
"STOP" keys can be used.  
8 - 16  
8. PARAMETER UNIT (MR-PRU03)  
(2) Positioning operation  
Positioning operation can be performed once when there is no command from the external command  
device.  
Connect EMG-DOCOM to start positioning operation.  
(a) Operation/cancel  
You can change the operation conditions with the parameter unit. The initial conditions and setting  
ranges for operation are listed below.  
Item  
Initial setting  
200  
Setting range  
0 to instantaneous permissible speed  
0 to 20000  
Speed [r/min]  
(Note 2) Acceleration/deceleration time constant [ms]  
(Note 1) Travel distance [pulse]  
1000  
4000  
0 to 99999999  
Note 1. The unit of move distance can be changed using feed length multiplication factor selection of parameter No.PA05.  
2. Acceleration time constant refers to time required to reach the rated speed from stop status (0r/min), and deceleration time  
constant refers to time required to reach 0r/min from the rated speed.  
The following shows the operation condition settings and the operation procedures.  
e.g. 1500r/min is set  
Servo motor speed  
Positioning operation  
1
5
0
0
Servo motor speed in positioning operation is displayed.  
Acceleration/deceleration  
e.g. 2000r/min is set  
time constant  
2
0
0
0
Acceleration/deceleration time constant in positioning operation is displayed.  
Pulse unit  
Select a unit of pulse move distance.  
0: CMD (in command pulse unit)  
1: ENC (in encoder pulse unit)  
e.g. To set move distance  
10000, press:  
Move distance  
1
0
0
0
0
Move distance is displayed.  
Operation screen  
Press the " Fn " and "  
FWD  
" keys to start rotating the servo motor in the forward direction.  
When the preset move distance is reached, the servo motor stops.  
Press the " Fn " and " REV " keys to start rotating the servo motor in the reverse direction.  
When the preset move distance is reached, the servo motor stops.  
STOP  
Fn  
Press the "  
" key to stop the motor temporarily, and press the "  
" or "  
" key to restart.  
REV  
RESET  
Fn  
Take off the "  
" key to stop the motor immediately and clear the remaining distance.  
Test operation mode has  
been canceled.  
Test operation mode cancel  
ESC  
This screen is also displayed  
when "RESTORE" is selected  
in the initial screen of the test  
operation mode with no test  
operation being performed.  
Returns to the initial screen  
of the test operation mode.  
Select "RESTORE".  
8 - 17  
8. PARAMETER UNIT (MR-PRU03)  
If the communication cable is disconnected during positioning operation, the servo motor will come to a  
sudden stop.  
(b) Status display  
You can monitor the status display even during positioning operation. At this time, the "FWD", "REV"  
and "STOP" keys can be used.  
(3) Motor-less operation  
Without connecting the servo motor, you can provide output signals or monitor the status display as if the  
servo motor is running in response to external input devices. This operation can be used to check the  
sequence of a sequencer or the like.  
(a) Operation/cancel  
After turning off the SON signal, choose motor-less operation. After that, perform external operation as  
in ordinary operation.  
The following shows the operation procedures.  
Enter  
Motor-less operation  
Being executed  
To cancel motor-less operation,  
turn ON the power of the servo  
amplifier and switch to the  
The screen appears asking whether  
to execute motor-less operation.  
CC-Link operation mode once.  
(b) Status display  
You can monitor the status display even during motor-less operation.  
(4) DO forced output  
Each output signal can be forced on/off independently of the servo status. This function is used for the  
servo wiring check, etc.  
Connect EMG-DOCOM to start DO forced output.  
The following shows the operation procedures.  
e.g. To turn ON output of CN6-3,  
press the "  
" keys to select,  
" key to set.  
and press the "  
DO forced output  
Output pins and their status are displayed.  
: Output ON  
: Output OFF  
Test operation mode has  
been canceled.  
Test operation mode cancel  
ESC  
Returns to the initial screen  
of the test operation mode.  
Select "RESTORE".  
This screen is also displayed  
when "RESTORE" is selected  
in the initial screen of the test  
operation mode with no test  
operation being performed.  
8 - 18  
8. PARAMETER UNIT (MR-PRU03)  
(5) Single-step feed  
Operation is performed in accordance with the preset point table No.  
Connect EMG-DOCOM to start single-step feed.  
The following shows the operation condition settings and the operation procedures.  
e.g. To select point  
table No.255,  
press:  
Single-step feed  
2
5
5
1STEP  
The point table No. setting  
screen is displayed.  
Fn  
Press the "  
keys to start.  
" and "  
"
STOP  
After the start, press the " RESET  
key while holding down  
Fn  
"
the "  
" key to stop temporarily.  
Fn  
Take off the "  
" key to  
stop immediately.  
When stopped, the remaining  
distance is cleared.  
Test operation mode has  
been canceled.  
Test operation mode cancel  
ESC  
Returns to the initial screen  
of the test operation mode.  
Select "RESTORE".  
This screen is also displayed  
when "RESTORE" is selected  
in the initial screen of the test  
operation mode with no test  
operation being performed.  
8.6 Error message list  
When using the MR-PRU03 parameter unit, the following error messages may be displayed. When displayed,  
refer to this section to remove cause.  
(1) Error messages  
Operation  
Message  
Cause  
Communication error  
1. Hardware reason  
2. Mismatch in station number  
3. Mismatch in baud rate  
Setting error  
Incorrect input, etc.  
Write error  
Value is written while write is disabled.  
EEP-ROM write error  
1. Parts in the MR-PRU03 parameter unit are faulty.  
2. EEP-ROM built in the MR-PRU03 parameter unit has been overwritten  
more than 100000 times.  
8 - 19  
8. PARAMETER UNIT (MR-PRU03)  
(2) Messages  
Message  
Description  
Valid parameters were written when power is off.  
The MR-PRU03 parameter unit was used to set a station number and perform transition during the test  
operation mode.  
Operation mode is the test operation mode.  
The test mode was changed due to external factor.  
Reading settings specified for the parameter write disable (parameter No.PA19) was attempted.  
In the test operation, the "ESC" key was pressed while the "Fn" key was held down to switch the screen to the  
MR-PRU03 parameter unit setting screen.  
The ready cannot be turned ON due to alarm, etc.  
Operation mode can be switched to the test operation mode at servo-on.  
Station number change was attempted in the test operation mode.  
Point table No. change was attempted in the single-step feed operation.  
8 - 20  
9 GENERAL GAIN ADJUSTMENT  
9. GENERAL GAIN ADJUSTMENT  
9.1 Different adjustment methods  
9.1.1 Adjustment on a single servo amplifier  
The gain adjustment in this section can be made on a single servo amplifier. For gain adjustment, first execute  
auto tuning mode 1. If you are not satisfied with the results, execute auto tuning mode 2 and manual mode in  
this order.  
(1) Gain adjustment mode explanation  
Parameter No.  
PA08 setting  
Estimation of load inertia  
moment ratio  
Automatically set  
parameters  
Gain adjustment mode  
Manually set parameters  
Auto tuning mode 1  
(initial value)  
0001  
Always estimated  
GD2 (parameter No.PB06) Response level setting of  
PG2 (parameter No.PB08) parameter No.2  
PG1 (parameter No.PB07)  
VG2 (parameter No.PB09)  
VIC (parameter No.PB10)  
Auto tuning mode 2  
Manual mode  
0002  
0003  
0000  
Fixed to parameter No. PG2 (parameter No.PB08) GD2 (parameter No.PB06)  
PB06 value  
PG1 (parameter No.PB07) Response level setting of  
VG2 (parameter No.PB09) parameter No.PA09  
VIC (parameter No.PB10)  
PG1 (parameter No.PB07)  
GD2 (parameter No.PB06)  
VG2 (parameter No.PB09)  
VIC (parameter No.PB10)  
Interpolation mode  
Always estimated  
GD2 (parameter No.PB06) PG1 (parameter No.PB07)  
PG2 (parameter No.PB08)  
VG2 (parameter No.PB09)  
VIC (parameter No.PB10)  
9 - 1  
9. GENERAL GAIN ADJUSTMENT  
(2) Adjustment sequence and mode usage  
START  
Usage  
Yes  
Used when you want to match  
the position gain (PG1)  
between 2 or more axes.  
Normally not used for other  
purposes.  
Interpolation  
made for 2 or more  
axes?  
Interpolation mode  
Operation  
No  
Allows adjustment by merely  
changing the response level  
setting.  
Auto tuning mode 1  
Operation  
First use this mode to make  
adjustment.  
Yes  
No  
Used when the conditions of  
auto tuning mode 1 are not  
met and the load inertia  
moment ratio could not be  
estimated properly, for  
example.  
OK?  
OK?  
Yes  
No  
Auto tuning mode 2  
Operation  
Yes  
OK?  
No  
You can adjust all gains  
manually when you want to do  
fast settling or the like.  
Manual mode  
END  
9.1.2 Adjustment using MR Configurator  
This section gives the functions and adjustment that may be performed by using the servo amplifier with the  
MR Configurator which operates on a personal computer.  
Function  
Description  
Adjustment  
Machine analyzer  
With the machine and servo motor coupled,  
the characteristic of the mechanical system  
You can grasp the machine resonance frequency and  
determine the notch frequency of the machine resonance  
suppression filter.  
can be measured by giving  
a
random  
vibration command from the personal  
computer to the servo and measuring the  
machine response.  
You can automatically set the optimum gains in response  
to the machine characteristic. This simple adjustment is  
suitable for a machine which has large machine resonance  
and does not require much settling time.  
Gain search  
Executing gain search under to-and-fro  
positioning command measures settling  
characteristic while simultaneously changing  
gains, and automatically searches for gains  
which make settling time shortest.  
You can automatically set gains which make positioning  
settling time shortest.  
Machine simulation  
Response at positioning settling of  
a
You can optimize gain adjustment and command pattern  
on personal computer.  
machine can be simulated from machine  
analyzer results on personal computer.  
9 - 2  
9. GENERAL GAIN ADJUSTMENT  
9.2 Auto tuning  
9.2.1 Auto tuning mode  
The servo amplifier has a real-time auto tuning function which estimates the machine characteristic (load  
inertia moment ratio) in real time and automatically sets the optimum gains according to that value. This  
function permits ease of gain adjustment of the servo amplifier.  
(1) Auto tuning mode 1  
The servo amplifier is factory-set to the auto tuning mode 1.  
In this mode, the load inertia moment ratio of a machine is always estimated to set the optimum gains  
automatically.  
The following parameters are automatically adjusted in the auto tuning mode 1.  
Parameter No.  
PB06  
Abbreviation  
GD2  
Name  
Ratio of load inertia moment to servo motor inertia moment  
Model loop gain  
PB07  
PG1  
PB08  
PG2  
Position loop gain  
PB09  
VG2  
Speed loop gain  
PB10  
VIC  
Speed integral compensation  
POINT  
The auto tuning mode 1 may not be performed properly if the following  
conditions are not satisfied.  
Time to reach 2000r/min is the acceleration/deceleration time constant of 5s or  
less.  
Speed is 150r/min or higher.  
The ratio of load inertia moment to servo motor inertia moment is 100 times or  
less.  
The acceleration/deceleration torque is 10% or more of the rated torque.  
Under operating conditions which will impose sudden disturbance torque  
during acceleration/deceleration or on a machine which is extremely loose,  
auto tuning may not function properly, either. In such cases, use the auto  
tuning mode 2 or manual mode to make gain adjustment.  
(2) Auto tuning mode 2  
Use the auto tuning mode 2 when proper gain adjustment cannot be made by auto tuning mode 1. Since  
the load inertia moment ratio is not estimated in this mode, set the value of a correct load inertia moment  
ratio (parameter No.PB06).  
The following parameters are automatically adjusted in the auto tuning mode 2.  
Parameter No.  
PB07  
Abbreviation  
PG1  
Name  
Model loop gain  
PB08  
PG2  
Position loop gain  
PB09  
VG2  
Speed loop gain  
PB10  
VIC  
Speed integral compensation  
9 - 3  
9. GENERAL GAIN ADJUSTMENT  
9.2.2 Auto tuning mode operation  
The block diagram of real-time auto tuning is shown below.  
Load inertia  
moment  
Automatic setting  
Encoder  
Loop gains  
Command  
Current  
control  
Servo  
motor  
PG1,VG1  
PG2,VG2,VIC  
Current feedback  
Real-time auto  
tuning section  
Position/speed  
feedback  
Set 0 or 1 to turn on.  
Load inertia  
moment ratio  
estimation section  
Gain  
table  
Switch  
Speed feedback  
Parameter No.PB06  
Load inertia moment  
Parameter No.PA08 Parameter No.PA09  
ratio estimation value  
0 0 0  
Response  
setting  
Gain adjustment mode  
selection  
When a servo motor is accelerated/decelerated, the load inertia moment ratio estimation section always  
estimates the load inertia moment ratio from the current and speed of the servo motor. The results of  
estimation are written to parameter No.PB06 (the ratio of load inertia moment to servo motor). These results  
can be confirmed on the status display screen of the MR Configurator section.  
If the value of the load inertia moment ratio is already known or if estimation cannot be made properly, chose  
the "auto tuning mode 2" (parameter No.PA08: 0002) to stop the estimation of the load inertia moment ratio  
(Switch in above diagram turned off), and set the load inertia moment ratio (parameter No.34) manually.  
From the preset load inertia moment ratio (parameter No.PB06) value and response level (parameter  
No.PA09), the optimum loop gains are automatically set on the basis of the internal gain tale.  
The auto tuning results are saved in the EEP-ROM of the servo amplifier every 60 minutes since power-on. At  
power-on, auto tuning is performed with the value of each loop gain saved in the EEP-ROM being used as an  
initial value.  
POINT  
If sudden disturbance torque is imposed during operation, the estimation of  
the inertia moment ratio may malfunction temporarily. In such a case, choose  
the "auto tuning mode 2" (parameter No.PA08: 0002) and set the correct load  
inertia moment ratio in parameter No.PB06.  
When any of the auto tuning mode 1 and auto tuning mode settings is  
changed to the manual mode 2 setting, the current loop gains and load inertia  
moment ratio estimation value are saved in the EEP-ROM.  
9 - 4  
9. GENERAL GAIN ADJUSTMENT  
9.2.3 Adjustment procedure by auto tuning  
Since auto tuning is made valid before shipment from the factory, simply running the servo motor automatically  
sets the optimum gains that match the machine. Merely changing the response level setting value as required  
completes the adjustment. The adjustment procedure is as follows.  
Auto tuning adjustment  
Acceleration/deceleration repeated  
Yes  
Load inertia moment ratio  
estimation value stable?  
No  
Auto tuning  
conditions not satisfied.  
(Estimation of load inertia  
moment ratio is difficult)  
No  
Yes  
Choose the auto tuning mode 2  
(parameter No.PA08 : 0002) and  
set the load inertia moment ratio  
(parameter No.PB06) manually.  
Adjust response level setting  
so that desired response is  
achieved on vibration-free level.  
Acceleration/deceleration repeated  
Requested  
No  
performance satisfied?  
Yes  
END  
To manual mode  
9 - 5  
9. GENERAL GAIN ADJUSTMENT  
9.2.4 Response level setting in auto tuning mode  
Set the response (The first digit of parameter No.PA09) of the whole servo system. As the response level  
setting is increased, the track ability and settling time for a command decreases, but a too high response level  
will generate vibration. Hence, make setting until desired response is obtained within the vibration-free range.  
If the response level setting cannot be increased up to the desired response because of machine resonance  
beyond 100Hz, filter tuning mode (parameter No.PB01) or machine resonance suppression filter (parameter  
No.PB13 to PB16) may be used to suppress machine resonance. Suppressing machine resonance may allow  
the response level setting to increase. Refer to section 10.3 for filter tuning mode and machine resonance  
suppression filter.  
Setting of parameter No.PA09  
Machine characteristic  
Response level setting  
Machine resonance  
frequency guideline  
Machine rigidity  
Low  
Guideline of corresponding machine  
1
10.0  
11.3  
2
3
12.7  
4
14.3  
5
16.1  
6
18.1  
7
20.4  
8
23.0  
9
25.9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
29.2  
32.9  
Large conveyor  
37.0  
41.7  
47.0  
Arm robot  
52.9  
Middle  
59.6  
General machine  
tool conveyor  
67.1  
Precision  
working  
machine  
75.6  
85.2  
95.9  
Inserter  
Mounter  
Bonder  
108.0  
121.7  
137.1  
154.4  
173.9  
195.9  
220.6  
248.5  
279.9  
315.3  
355.1  
400.0  
High  
9 - 6  
9. GENERAL GAIN ADJUSTMENT  
9.3 Manual mode 1 (simple manual adjustment)  
If you are not satisfied with the adjustment of auto tuning, you can make simple manual adjustment with three  
parameters.  
POINT  
If machine resonance occurs, filter tuning mode (parameter No.PB01) or  
machine resonance suppression filter (parameter No.PB13 to PB16) may be  
used to suppress machine resonance. (Refer to section 10.1.)  
(1) For speed control  
(a) Parameters  
The following parameters are used for gain adjustment.  
Parameter No.  
PB06  
Abbreviation  
GD2  
Name  
Ratio of load inertia moment to servo motor inertia moment  
Model loop gain  
PB07  
PG1  
PB09  
VG2  
Speed loop gain  
PB10  
VIC  
Speed integral compensation  
(b) Adjustment procedure  
Step  
Operation  
Description  
1
2
Brief-adjust with auto tuning. Refer to section 9.2.3.  
Change the setting of auto tuning to the manual mode (Parameter  
No.PA08: 0003).  
3
Set an estimated value to the ratio of load inertia moment to servo motor  
inertia moment. (If the estimate value with auto tuning is correct, setting  
change is not required.)  
4
5
6
7
8
Set a slightly smaller value to the model loop gain  
Set a slightly larger value to the speed integral compensation.  
Increase the speed loop gain within the vibration- and unusual noise-free Increase the speed loop gain.  
range, and return slightly if vibration takes place.  
Decrease the speed integral compensation within the vibration-free range, Decrease the time constant of the speed  
and return slightly if vibration takes place.  
integral compensation.  
Increase the model loop gain, and return slightly if overshooting takes Increase the model loop gain.  
place.  
If the gains cannot be increased due to mechanical system resonance or Suppression of machine resonance.  
the like and the desired response cannot be achieved, response may be Refer to section 10.2, 10.3.  
increased by suppressing resonance with filter tuning mode or machine  
resonance suppression filter and then executing steps 2 and 3.  
9
While checking the settling characteristic and rotational status, fine-adjust Fine adjustment  
each gain.  
9 - 7  
9. GENERAL GAIN ADJUSTMENT  
(c) Adjustment description  
1) Speed loop gain (parameter No.PB09)  
This parameter determines the response level of the speed control loop. Increasing this value  
enhances response but a too high value will make the mechanical system liable to vibrate. The  
actual response frequency of the speed loop is as indicated in the following expression.  
Speed loop gain setting  
Speed loop response  
frequency(Hz)  
(1 ratio of load inertia moment to servo motor inertia moment)  
2
2) Speed integral compensation (VIC: parameter No.PB10)  
To eliminate stationary deviation against a command, the speed control loop is under proportional  
integral control. For the speed integral compensation, set the time constant of this integral control.  
Increasing the setting lowers the response level. However, if the load inertia moment ratio is large or  
the mechanical system has any vibratory element, the mechanical system is liable to vibrate unless  
the setting is increased to some degree. The guideline is as indicated in the following expression.  
2000 to 3000  
Speed integral compensation  
setting(ms)  
Speed loop gain setting/  
(1 ratio of load inertia moment to  
servo motor inertia moment setting 0.1)  
3) Model loop gain (PG1: Parameter No.PB07)  
This parameter determines the response level to a position command. Increasing the model loop  
gain improves track ability to a position command, but a too high value will make overshooting liable  
to occur at the time of setting.  
Model loop gain  
guideline  
Speed loop gain setting  
1
4
1
8
to  
(1 ratio of load inertia moment to servo mortar inertia moment)  
9 - 8  
9. GENERAL GAIN ADJUSTMENT  
(2) For position control  
(a) Parameters  
The following parameters are used for gain adjustment.  
Parameter No.  
PB06  
Abbreviation  
GD2  
Name  
Ratio of load inertia moment to servo motor inertia moment  
Model loop gain  
PB07  
PG1  
PB08  
PG2  
Position loop gain  
PB09  
VG2  
Speed loop gain  
PB10  
VIC  
Speed integral compensation  
(b) Adjustment procedure  
Step  
Operation  
Description  
1
2
Brief-adjust with auto tuning. Refer to section 9.2.3.  
Change the setting of auto tuning to the manual mode (Parameter  
No.PA08: 0003).  
3
4
Set an estimated value to the ratio of load inertia moment to servo motor  
inertia moment. (If the estimate value with auto tuning is correct, setting  
change is not required.)  
Set a slightly smaller value to the model loop gain and the position loop  
gain.  
Set a slightly larger value to the speed integral compensation.  
Increase the speed loop gain within the vibration- and unusual noise-free Increase the speed loop gain.  
range, and return slightly if vibration takes place.  
5
6
Decrease the speed integral compensation within the vibration-free range, Decrease the time constant of the speed  
and return slightly if vibration takes place.  
integral compensation.  
7
8
Increase the position loop gain, and return slightly if vibration takes place. Increase the position loop gain.  
Increase the model loop gain, and return slightly if overshooting takes Increase the position loop gain.  
place.  
9
If the gains cannot be increased due to mechanical system resonance or Suppression of machine resonance.  
the like and the desired response cannot be achieved, response may be Refer to section 10.2 10.3.  
increased by suppressing resonance with filter tuning mode or machine  
resonance suppression filter and then executing steps 3 to 5.  
10  
While checking the settling characteristic and rotational status, fine-adjust Fine adjustment.  
each gain.  
9 - 9  
9. GENERAL GAIN ADJUSTMENT  
(c) Adjustment description  
1) Speed loop gain (VG2: parameter No.PB09)  
This parameter determines the response level of the speed control loop. Increasing this value  
enhances response but a too high value will make the mechanical system liable to vibrate. The actual  
response frequency of the speed loop is as indicated in the following expression.  
Speed loop gain 2 setting  
Speed loop response  
frequency(Hz)  
(1 ratio of load inertia moment to servo motor inertia moment)  
2
2) Speed integral compensation (VIC: parameter No.PB10)  
To eliminate stationary deviation against a command, the speed control loop is under proportional  
integral control. For the speed integral compensation, set the time constant of this integral control.  
Increasing the setting lowers the response level. However, if the load inertia moment ratio is large or  
the mechanical system has any vibratory element, the mechanical system is liable to vibrate unless  
the setting is increased to some degree. The guideline is as indicated in the following expression.  
2000 to 3000  
Speed integral  
Speed loop gain 2 setting/ (1 ratio of load inertia moment to  
servo motor inertia moment 2 setting)  
compensation setting(ms)  
3) Model loop gain (PG1: Parameter No.PB07)  
This parameter determines the response level to a position command. Increasing the model loop  
gain improves track ability to a position command, but a too high value will make overshooting liable  
to occur at the time of setting.  
Speed loop gain setting  
Model control gain  
guideline  
1
4
1
8
to  
(1 ratio of load inertia moment to servo mortar inertia moment)  
4) Model loop gain (PG1: parameter No.PB07)  
This parameter determines the response level to a position command. Increasing model loop gain  
improves track ability to a position command but a too high value will make overshooting liable to  
occur at the time of settling.  
1
1
8
Speed loop gain 2 setting  
Model loop gain  
guideline  
to  
(4 )  
(1 ratio of load inertia moment to servo motor inertia moment)  
9 - 10  
9. GENERAL GAIN ADJUSTMENT  
9.4 Interpolation mode  
The interpolation mode is used to match the position loop gains of the axes when performing the interpolation  
operation of servo motors of two or more axes for an X-Y table or the like. In this mode, manually set the model  
loop gain that determines command track ability. Other parameters for gain adjustment are set automatically.  
(1) Parameter  
(a) Automatically adjusted parameters  
The following parameters are automatically adjusted by auto tuning.  
Parameter No.  
PB06  
Abbreviation  
GD2  
Name  
Ratio of load inertia moment to servo motor inertia moment  
Position loop gain  
PB08  
PG2  
PB09  
VG2  
Speed loop gain  
PB10  
VIC  
Speed integral compensation  
(b) Manually adjusted parameters  
The following parameters are adjustable manually.  
Parameter No.  
PB07  
Abbreviation  
PG1  
Name  
Model loop gain  
(2) Adjustment procedure  
Step  
Operation  
Description  
1
Set to the auto tuning mode.  
Select the auto tuning mode 1.  
During operation, increase the response level setting (parameter No.PA09), and  
return the setting if vibration occurs.  
2
Adjustment in auto tuning mode 1.  
3
4
Check the values of model loop gain.  
Check the upper setting limits.  
Select the interpolation mode.  
Set the interpolation mode (parameter No.PA08: 0000).  
Set the model loop gain of all the axes to be interpolated to the same value. At that  
time, adjust to the setting value of the axis, which has the smallest model loop gain.  
Looking at the interpolation characteristic and rotation status, fine-adjust the gains  
and response level setting.  
5
6
Set position loop gain.  
Fine adjustment.  
(3) Adjustment description  
(a) Model loop gain (parameter No.PB07)  
This parameter determines the response level of the position control loop. Increasing model loop gain  
improves track ability to a position command but a too high value will make overshooting liable to occur  
at the time of settling. The droop pulse value is determined by the following expression.  
Rotation speed (r/min)  
262144(pulse)  
60  
Droop pulse value (pulse)  
Model loop gain setting  
9 - 11  
9. GENERAL GAIN ADJUSTMENT  
9.5 Differences between MELSERVO-J2-Super and MELSERVO-J3 in auto tuning  
To meet higher response demands, the MELSERVO-J3 series has been changed in response level setting  
range from the MR-J2-Super. The following table lists comparison of the response level setting.  
MELSERVO-J2-Super  
MELSERVO-J3  
Guideline for machine resonance  
Guideline for machine resonance  
Parameter No.3 setting  
Parameter No.PA09 setting  
frequency [Hz]  
frequency [Hz]  
10.0  
1
2
11.3  
3
12.7  
1
2
15  
20  
4
14.3  
5
16.1  
6
18.1  
7
20.4  
8
23.0  
3
4
25  
30  
9
25.9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
29.2  
32.9  
5
35  
37.0  
41.7  
6
7
45  
55  
47.0  
52.9  
59.6  
8
9
70  
85  
67.1  
75.6  
85.2  
95.9  
A
105  
108.0  
121.7  
137.1  
154.4  
173.9  
195.9  
220.6  
248.5  
279.9  
315.3  
355.1  
400.0  
B
C
130  
160  
D
E
F
200  
240  
300  
Note that because of a slight difference in gain adjustment pattern, response may not be the same if the  
resonance frequency is set to the same value.  
9 - 12  
10. SPECIAL ADJUSTMENT FUNCTIONS  
10. SPECIAL ADJUSTMENT FUNCTIONS  
POINT  
The functions given in this chapter need not be used generally. Use them if  
you are not satisfied with the machine status after making adjustment in the  
methods in chapter 9.  
If a mechanical system has a natural resonance point, increasing the servo system response level may cause  
the mechanical system to produce resonance (vibration or unusual noise) at that resonance frequency.  
Using the machine resonance suppression filter and adaptive tuning can suppress the resonance of the  
mechanical system.  
10.1 Function block diagram  
Speed  
control  
Current  
command  
Parameter  
No.PB23  
Parameter  
No.PB16  
Parameter  
No.PB01  
Low-pass  
filter  
Servo  
motor  
Machine resonance  
suppression filter  
Encoder  
Machine resonance  
suppression filter 2  
Adaptive tuning  
Manual setting  
1
10.2 Adaptive filter  
(1) Function  
Adaptive filter (adaptive tuning) is a function in which the servo amplifier detects machine vibration for a  
predetermined period of time and sets the filter characteristics automatically to suppress mechanical  
system vibration. Since the filter characteristics (frequency, depth) are set automatically, you need not be  
conscious of the resonance frequency of a mechanical system.  
Machine resonance point  
Machine resonance point  
Mechanical  
system  
Mechanical  
system  
response  
level  
response  
level  
Frequency  
Frequency  
Notch  
depth  
Notch  
depth  
Frequency  
Frequency  
Notch frequency  
Notch frequency  
When machine resonance is large and frequency is low When machine resonance is small and frequency is high  
POINT  
The machine resonance frequency which adaptive tuning mode can respond  
to is about 100 to 2.25kHz. Adaptive vibration suppression control has no  
effect on the resonance frequency outside this range.  
Adaptive vibration suppression control may provide no effect on a mechanical  
system which has complex resonance characteristics.  
10 - 1  
10. SPECIAL ADJUSTMENT FUNCTIONS  
(2) Parameters  
The operation of adaptive tuning mode (parameter No.PB01).  
Parameter No.PB01  
0 0 0  
Filter tuning mode selection  
Setting Filter adjustment mode Automatically set parameter  
0
1
2
Filter OFF  
(Note)  
Parameter No.PB13  
Parameter No.PB14  
Filter tuning mode  
Manual mode  
Note. Parameter No.PB19 and PB20 are fixed to the initial values.  
10 - 2  
10. SPECIAL ADJUSTMENT FUNCTIONS  
(3) Adaptive tuning mode procedure  
Adaptive tuning adjustment  
Operation  
Yes  
Is the target response  
reached?  
No  
Increase the response setting.  
No  
Has vibration or unusual noise  
occurred?  
Yes  
Execute or re-execute adaptive  
tuning. (Set parameter No.PB01 to  
"0001".)  
Tuning ends automatically after the  
predetermined period of time.  
(Parameter No.PB01 turns to "0002"  
or "0000".)  
If assumption fails after tuning is executed at  
a large vibration or oscillation, decrease the  
response setting temporarily down to the  
vibration level and execute again.  
Yes  
Has vibration or unusual noise  
been resolved?  
No  
Factor  
The response has increased to the  
machine limit.  
Decrease the response until vibration Using the machine analyzer, set the  
or unusual noise is resolved. filter manually.  
The machine is too complicated to  
provide the optimum filter.  
End  
10 - 3  
10. SPECIAL ADJUSTMENT FUNCTIONS  
POINT  
"Filter OFF" enables a return to the factory-set initial value.  
When adaptive tuning is executed, vibration sound increases as an excitation  
signal is forcibly applied for several seconds.  
When adaptive tuning is executed, machine resonance is detected for a  
maximum of 10 seconds and a filter is generated. After filter generation, the  
adaptive tuning mode automatically shifts to the manual mode.  
Adaptive tuning generates the optimum filter with the currently set control  
gains. If vibration occurs when the response setting is increased, execute  
adaptive tuning again.  
During adaptive tuning, a filter having the best notch depth at the set control  
gain is generated. To allow a filter margin against machine resonance,  
increase the notch depth in the manual mode.  
10.3 Machine resonance suppression filter  
(1) Function  
The machine resonance suppression filter is a filter function (notch filter) which decreases the gain of the  
specific frequency to suppress the resonance of the mechanical system. You can set the gain decreasing  
frequency (notch frequency), gain decreasing depth and width.  
Machine resonance point  
Mechanical  
system  
response  
level  
Frequency  
Notch width  
Notch  
depth  
Notch depth  
Frequency  
Notch frequency  
You can use the machine resonance suppression filter 1 (parameter No.PB13, PB14) and machine  
resonance suppression filter 2 (parameter No.PB15, PB16) to suppress the vibration of two resonance  
frequencies. Execution of adaptive tuning in the filter tuning mode automatically adjusts the machine  
resonance suppression filter. When adaptive tuning is ON, the adaptive tuning mode shifts to the manual  
mode after the predetermined period of time. The manual mode enables manual setting using the machine  
resonance suppression filter 1.  
Machine resonance point  
Mechanical  
system  
response  
level  
Frequency  
Notch  
depth  
Frequency  
Parameter No.PB01, Parameter No.PB15,  
PB13, PB14  
PB16  
10 - 4  
10. SPECIAL ADJUSTMENT FUNCTIONS  
(2) Parameters  
(a) Machine resonance suppression filter 1 (parameter No.PB13, PB14)  
Set the notch frequency, notch depth and notch width of the machine resonance suppression filter 1  
(parameter No.PB13, PB14)  
When you have made adaptive filter tuning mode (parameter No.PB01) "manual mode", set up the  
machine resonance suppression filter 1 becomes effective.  
POINT  
The machine resonance suppression filter is a delay factor for the servo  
system. Hence, vibration may increase if you set a wrong resonance  
frequency or a too deep notch.  
If the frequency of machine resonance is unknown, decrease the notch  
frequency from higher to lower ones in order. The optimum notch frequency is  
set at the point where vibration is minimal.  
A deeper notch has a higher effect on machine resonance suppression but  
increases a phase delay and may increase vibration.  
A deeper notch has a higher effect on machine resonance suppression but  
increases a phase delay and may increase vibration.  
The machine characteristic can be grasped beforehand by the machine  
analyzer on the MR Configurator. This allows the required notch frequency  
and depth to be determined.  
10 - 5  
10. SPECIAL ADJUSTMENT FUNCTIONS  
10.4 Advanced vibration suppression control  
(1) Operation  
Vibration suppression control is used to further suppress machine side vibration, such as workpiece end  
vibration and base shake. The motor side operation is adjusted for positioning so that the machine does not  
shake.  
Motor side  
Motor side  
Machine side  
Machine side  
t
t
Vibration suppression control OFF  
(Nomal control)  
Vibration suppression control ON  
When the advanced vibration suppression control (vibration suppression control tuning mode parameter  
No.PB02) is executed, the vibration frequency at machine side can automatically be estimated to suppress  
machine side vibration.  
In the vibration suppression control tuning mode, this mode shifts to the manual mode after operation is  
performed the predetermined number of times. The manual mode enables manual setting using the  
vibration suppression control vibration frequency setting (parameter No.PB19) and vibration suppression  
control resonance frequency setting (parameter No.PB20).  
(2) Parameter  
Select the operation of the vibration suppression control tuning mode (parameter No.PB02).  
Parameter No.PB02  
0 0 0  
Vibration suppression control  
tuning mode  
Setting Vibration suppression control tuning mode  
Automatically set parameter  
0
1
2
Vibration suppression control OFF  
Vibration suppression control tuning mode  
(Advanced vibration suppression control)  
Manual mode  
(Note)  
Parameter No.PB19  
Parameter No.PB20  
Note. Parameter No.PB19 and PB20 are fixed to the initial values.  
POINT  
The function is made valid when the auto tuning mode (parameter No.PA08)  
is the auto tuning mode 2 ("0002") or manual mode ("0003").  
The machine resonance frequency supported in the vibration suppression  
control tuning mode is 1.0Hz to 100.0Hz. The function is not effective for  
vibration outside this range.  
Stop the motor before changing the vibration suppression control-related  
parameters (parameter No.PB02, PB19, PB20, PB33, PB34). A failure to do  
so will cause a shock.  
For positioning operation during execution of vibration suppression control  
tuning, provide a stop time to ensure a stop after full vibration damping.  
Vibration suppression control tuning may not make normal estimation if the  
residual vibration at the motor side is small.  
Vibration suppression control tuning sets the optimum parameter with the  
currently set control gains. When the response setting is increased, set  
vibration suppression control tuning again.  
10 - 6  
10. SPECIAL ADJUSTMENT FUNCTIONS  
(3) Vibration suppression control tuning mode procedure  
Vibration suppression control  
tuning adjustment  
Operation  
Yes  
Is the target response  
reached?  
No  
Increase the response setting.  
No  
Has vibration of workpiece  
end/device increased?  
Yes  
Stop operation.  
Execute or re-execute vibration  
suppression control tuning. (Set  
parameter No.PB02 to "0001".)  
Resume operation.  
Tuning ends automatically after  
operation is performed the  
predetermined number of times.  
(Parameter No.PB02 turns to "0002"  
or "0000".)  
Yes  
Has vibration of workpiece  
end/device been resolved?  
No  
Factor  
Estimation cannot be made as  
Using the machine analyzer or from  
machine side vibration waveform,  
set the vibration suppression control  
manually.  
Decrease the response until vibration  
of workpiece end/device is resolved.  
machine side vibration has not been  
transmitted to the motor side.  
The response of the model loop gain  
has increased to the machine side  
vibration frequency (vibration  
suppression control limit).  
End  
10 - 7  
10. SPECIAL ADJUSTMENT FUNCTIONS  
(4) Vibration suppression control manual mode  
Measure work side vibration and device shake with the machine analyzer or external measuring instrument,  
and set the vibration suppression control vibration frequency (parameter No.PB19) and vibration  
suppression control resonance frequency (parameter No.PB20) to set vibration suppression control  
manually.  
(a) When a vibration peak can be confirmed using MR Configurator, machine analyzer or external FFT  
equipment  
Gain characteristic  
1Hz  
100Hz  
Resonance of more  
than 100Hz is not the  
target of control.  
Vibration suppression control Vibration suppression  
vibration frequency control resonance  
(Anti-resonance frequency) frequency  
Parameter No.PB19 Parameter No.PB20  
Phase  
-90deg.  
(b) When vibration can be confirmed using monitor signal or external sensor  
Motor side vibration  
(Droop pulses)  
External acceleration pick signal, etc.  
Position command frequency  
t
t
Vibration suppression control  
vibration frequency  
Vibration cycle [Hz]  
Vibration cycle [Hz]  
Vibration suppression control  
resonance frequency  
Set the same value.  
10 - 8  
10. SPECIAL ADJUSTMENT FUNCTIONS  
POINT  
When machine side vibration does not show up in motor side vibration, the  
setting of the motor side vibration frequency does not produce an effect.  
When the anti-resonance frequency and resonance frequency can be  
confirmed using the machine analyzer or external FFT device, do not set the  
same value but set different values to improve the vibration suppression  
performance.  
A vibration suppression control effect is not produced if the relationship  
between the model loop gain (parameter No.PB07) value and vibration  
frequency is as indicated below. Make setting after decreasing PG1, e.g.  
reduce the response setting.  
1
(1.5 PG1) vibration frequency  
2
10 - 9  
10. SPECIAL ADJUSTMENT FUNCTIONS  
10.5 Low-pass filter  
(1) Function  
When a ball screw or the like is used, resonance of high frequency may occur as the response level of the  
servo system is increased. To prevent this, the low-pass filter is factory-set to be valid for a torque  
command. The filter frequency of this low-pass filter is automatically adjusted to the value in the following  
expression.  
VG2  
1 + GD2  
Filter frequency(rad/s)  
10  
When parameter No.PB23 is set to "  
(2) Parameter  
1
", manual setting can be made with parameter No.PB18.  
Set the operation of the low-pass filter selection (parameter No.PB23.)  
Parameter No.PB23  
Low-pass filter selection  
0: Automatic setting (initial value)  
1: Manual setting (parameter No.PB18 setting)  
10.6 Gain changing function  
This function can change the gains. You can change between gains during rotation and gains during stop or  
can use an input device to change gains during operation.  
10.6.1 Applications  
This function is used when.  
(1) You want to increase the gains during servo lock but decrease the gains to reduce noise during rotation.  
(2) You want to increase the gains during settling to shorten the stop settling time.  
(3) You want to change the gains using an input device to ensure stability of the servo system since the load  
inertia moment ratio varies greatly during a stop (e.g. a large load is mounted on a carrier).  
10 - 10  
10. SPECIAL ADJUSTMENT FUNCTIONS  
10.6.2 Function block diagram  
The valid loop gains PG2, VG2, VIC and GD2 of the actual loop are changed according to the conditions  
selected by gain changing selection CDP (parameter No.PB26) and gain changing condition CDS (parameter  
No.PB27).  
CDP  
Parameter No.PB26  
Input device CDP  
Command pulse  
frequency  
Droop pulses  
Changing  
Model speed  
Comparator  
CDS  
Parameter No.PB27  
GD2  
Parameter No.PB06  
Valid  
GD2 value  
GD2B  
Parameter No.PB29  
PG2  
Parameter No.PB08  
Valid  
PG2 value  
PG2B  
Parameter No.PB30  
VG2  
Parameter No.PB09  
Valid  
VG2 value  
VG2B  
Parameter No.PB31  
VIC  
Parameter No.PB10  
Valid  
VIC value  
VICB  
Parameter No.PB32  
VRF1  
Parameter No.PB19  
Valid  
VRF1 value  
VRF1B  
Parameter No.PB33  
VRF2  
Parameter No.PB20  
Valid  
VRF2 value  
VRF2B  
Parameter No.PB34  
10 - 11  
10. SPECIAL ADJUSTMENT FUNCTIONS  
10.6.3 Parameters  
When using the gain changing function, always set "  
3" in parameter No.PA08 (auto tuning) to choose the  
manual mode of the gain adjustment modes. The gain changing function cannot be used in the auto tuning  
mode.  
Parameter  
Abbreviation  
GD2  
Name  
Unit  
Description  
No.  
Ratio of load inertia moment to  
servo motor inertia moment  
Multi- Control parameters before changing.  
plier  
PB06  
(
1)  
Model loop gain  
Position and speed gains of a model used to set the response  
level to a command. Always valid.  
PB07  
PG1  
rad/s  
PB08  
PB09  
PB10  
PG2  
VG2  
VIC  
Position loop gain  
rad/s  
rad/s  
ms  
Speed loop gain  
Speed integral compensation  
Gain changing ratio of load inertia Multi- Used to set the ratio of load inertia moment to servo motor  
PB29  
GD2B  
moment to servo motor inertia  
moment  
plier inertia moment after changing.  
(
1)  
PB30  
PB31  
PG2B  
VG2B  
Gain changing position loop gain  
Gain changing speed loop gain  
Gain changing speed integral  
compensation  
rad/s Used to set the value of the after-changing position loop gain.  
rad/s Used to set the value of the after-changing speed loop gain.  
Used to set the value of the after-changing speed integral  
PB32  
PB26  
VICB  
CDP  
ms  
compensation.  
Gain changing selection  
Gain changing condition  
Used to select the changing condition.  
kpps Used to set the changing condition values.  
PB27  
PB28  
PB33  
CDS  
CDT  
pulse  
r/min  
Gain changing time constant  
You can set the filter time constant for a gain change at  
ms  
changing.  
Gain changing vibration  
suppression control vibration  
frequency setting  
Used to set the value of the after-changing vibration  
Hz suppression control vibration frequency setting.  
VRF1B  
Gain changing vibration  
suppression control resonance  
frequency setting  
Used to set the value of the after-changing vibration  
Hz suppression control resonance frequency setting.  
PB34  
VRF2B  
10 - 12  
10. SPECIAL ADJUSTMENT FUNCTIONS  
(1) Parameters No.PB06 to PB10  
These parameters are the same as in ordinary manual adjustment. Gain changing allows the values of  
ratio of load inertia moment to servo motor inertia moment, position loop gain, speed loop gain and speed  
integral compensation to be changed.  
(2) Gain changing ratio of load inertia moment to servo motor inertia moment (GD2B: parameter No.PB29)  
Set the ratio of load inertia moment to servo motor inertia moment after changing. If the load inertia moment  
ratio does not change, set it to the same value as ratio of load inertia moment to servo motor inertia  
moment (parameter No.PB06).  
(3) Gain changing position loop gain (parameter No.PB30), Gain changing speed loop gain (parameter  
No.PB31), Gain changing speed integral compensation (parameter No.PB32)  
Set the values of after-changing position loop gain, speed loop gain and speed integral compensation.  
(4) Gain changing selection (parameter No.PB26)  
Used to set the gain changing condition. Choose the changing condition in the first digit and second digit. If  
you set "1" in the first digit here, you can use the gain changing (RY(n 2)) input device for gain changing.  
0 0  
Gain changing selection  
Under any of the following conditions, the gains  
change on the basis of the parameter No.PB29 to  
PB32 settings.  
0: Invalid  
1: Gain changing (RY(n+2)) is ON  
2: Command frequency (Parameter No.PB27 setting)  
3: Droop pulse value (Parameter No.PB27 setting)  
4: Servo motor speed (Parameter No.PB27 setting)  
Gain changing condition  
0: Valid at more than condition (Valid when gain changing (RY(n+2) is ON)  
1: Valid at less than condition (Valid when gain changing (RY(n+2) is OFF)  
(5) Gain changing condition (parameter No.PB27)  
When you selected "command frequency", "droop pulses" or "servo motor speed" in gain changing  
selection (parameter No.PB26), set the gain changing level.  
The setting unit is as follows.  
Gain changing condition  
Command frequency  
Droop pulses  
Unit  
kpps  
pulse  
r/min  
Servo motor speed  
(6) Gain changing time constant (parameter No.PB28)  
You can set the primary delay filter to each gain at gain changing. This parameter is used to suppress  
shock given to the machine if the gain difference is large at gain changing, for example.  
10 - 13  
10. SPECIAL ADJUSTMENT FUNCTIONS  
10.6.4 Gain changing operation  
This operation will be described by way of setting examples.  
(1) When you choose changing by input device  
(a) Setting  
Parameter  
Abbreviation  
PG1  
Name  
Setting  
100  
Unit  
No.  
PB07  
Model loop gain  
rad/s  
Ratio of load inertia moment to servo motor  
inertia moment  
Multiplier  
PB06  
GD2  
4.0  
(
1)  
PB08  
PB09  
PB10  
PG2  
VG2  
VIC  
Position loop gain  
120  
3000  
20  
rad/s  
rad/s  
Speed loop gain  
Speed integral compensation  
Gain changing ratio of load inertia moment to  
servo motor inertia moment  
ms  
Multiplier  
PB29  
GD2B  
10.0  
(
1)  
PB30  
PB31  
PB32  
PG2B  
VG2B  
VICB  
Gain changing position loop gain  
Gain changing speed loop gain  
Gain changing speed integral compensation  
84  
rad/s  
rad/s  
ms  
4000  
50  
0001  
PB26  
PB28  
CDP  
CDT  
Gain changing selection  
(Changed by ON/OFF of Input device)  
100  
Gain changing time constant  
ms  
Hz  
Used to set the value of the after-changing  
vibration suppression control vibration  
frequency setting.  
Gain changing vibration suppression control  
vibration frequency setting  
PB33  
PB34  
VRF1B  
VRF2B  
Used to set the value of the after-changing  
vibration suppression control resonance  
frequency setting.  
Gain changing vibration suppression control  
resonance frequency setting  
Hz  
(b) Changing operation  
OFF  
OFF  
ON  
After-changing gain  
Gain changing  
(RY(n+2))  
Before-changing gain  
Change of  
each gain  
CDT 100ms  
Model loop gain 1  
100  
Ratio of load inertia moment  
to servo motor inertia moment  
Position loop gain  
4.0  
10.0  
4.0  
120  
3000  
20  
84  
4000  
50  
120  
3000  
20  
Speed loop gain  
Speed integral compensation  
10 - 14  
10. SPECIAL ADJUSTMENT FUNCTIONS  
(2) When you choose changing by droop pulses  
(a) Setting  
Parameter  
Abbreviation  
PG1  
Name  
Setting  
100  
Unit  
No.  
PB07  
Model loop gain  
rad/s  
Ratio of load inertia moment to servo motor  
inertia moment  
Multiplier  
PB06  
GD2  
4.0  
(
1)  
PB08  
PB09  
PB10  
PG2  
VG2  
VIC  
Position loop gain  
120  
3000  
20  
rad/s  
rad/s  
Speed loop gain  
Speed integral compensation  
Gain changing ratio of load inertia moment to  
servo motor inertia moment  
ms  
Multiplier  
PB29  
GD2B  
10.0  
(
1)  
PB30  
PB31  
PB32  
PG2B  
VG2B  
VICB  
Gain changing position loop gain  
Gain changing speed loop gain  
Gain changing speed integral compensation  
84  
rad/s  
rad/s  
ms  
4000  
50  
0003  
PB26  
CDP  
Gain changing selection  
(Changed by droop pulses)  
PB27  
PB28  
CDS  
CDT  
Gain changing condition  
50  
pulse  
ms  
Gain changing time constant  
100  
(b) Changing operation  
Command pulse  
Droop pulses  
CDS  
Droop pulses [pulses]  
0
CDS  
After-changing gain  
Before-changing gain  
Change of each gain  
CDT 100ms  
Model loop gain  
100  
Ratio of load inertia moment  
to servo motor inertia moment  
Position loop gain  
4.0  
10.0  
4.0  
10.0  
120  
3000  
20  
84  
4000  
50  
120  
3000  
20  
84  
4000  
50  
Speed loop gain  
Speed integral compensation  
10 - 15  
10. SPECIAL ADJUSTMENT FUNCTIONS  
MEMO  
10 - 16  
11. TROUBLESHOOTING  
11. TROUBLESHOOTING  
11.1 Trouble at start-up  
Excessive adjustment or change of parameter setting must not be made as it will  
CAUTION  
make operation instable.  
POINT  
Using the MR Configurator, you can refer to unrotated servo motor reasons,  
etc.  
The following faults may occur at start-up. If any of such faults occurs, take the corresponding action.  
No.  
1
Start-up sequence  
Power on  
Fault  
Investigation  
Possible cause  
Reference  
LED is not lit.  
LED flickers.  
Not improved if connectors  
CN2, CN3 and CN6 are  
disconnected.  
1. Power supply voltage fault  
2. Servo amplifier is faulty.  
Improved when connectors  
CN6 is disconnected.  
Improved when connector  
CN2 is disconnected.  
Power supply of CN6 cabling is  
shorted.  
1. Power supply of encoder  
cabling is shorted.  
2. Encoder is faulty.  
Power supply of CN3 cabling is  
shorted.  
Improved when connector  
CN3 is disconnected.  
Alarm occurs.  
Alarm occurs.  
Refer to section 14.4 and remove cause.  
Refer to section 14.4 and remove cause.  
Section 14.4  
Section 14.4  
2
Switch on servo-on  
(RYn0) signal.  
Servo motor shaft is 1. Check the display to see if 1. Servo-on (RYn0) is not input. Section 8.5.4  
not servo-locked  
(is free).  
the servo amplifier is ready  
to operate.  
(Wiring mistake)  
2. 24VDC power is not supplied  
to DICOM.  
2. Check the external I/O  
signal indication to see if  
the servo-on (RYn0) signal  
is ON.  
3
Gain adjustment  
Rotation ripples  
(speed fluctuations)  
are large at low  
speed.  
Make gain adjustment in the  
following procedure.  
Gain adjustment fault  
Chapter 9  
1. Increase the auto tuning  
response level.  
2. Repeat acceleration and  
deceleration several times  
to complete auto tuning.  
Large load inertia  
moment causes the  
servo motor shaft to  
If the servo motor may be run Gain adjustment fault  
with safety, repeat  
Chapter 9  
acceleration and deceleration  
oscillate side to side. several times to complete  
auto tuning.  
4
Cyclic operation  
Position shift occurs Confirm the cumulative  
Pulse counting error, etc.  
command pulses, cumulative due to noise.  
feedback pulses and actual  
servo motor position.  
11 - 1  
11. TROUBLESHOOTING  
11.2 Operation at error occurrence  
An error occurring during operation will result in any of the statuses indicated in the following table.  
Operation mode  
Error location  
Description  
Test operation  
Stop  
CC-Link operation  
Stop  
Servo side alarm  
occurrence  
Servo operation  
CC-Link data communication  
Servo operation  
Continued  
Stop  
Continued  
Stop  
Option unit  
communication error  
CC-Link data communication  
Servo operation  
Stop  
Stop  
CC-Link  
Stop  
Stop  
communication error  
CC-Link data communication  
Servo operation  
Stop  
Stop  
Programmable  
Continued  
Stop  
Stop  
controller error/STOP  
CC-Link data communication  
Servo operation  
Stop  
Servo side warning  
occurrence  
Stop  
Continued  
Continued  
CC-Link data communication  
Continued  
11.3 CC-Link communication error  
This section gives the definitions of the indications given in the communication alarm display section.  
The servo amplifier has four LED indications.  
L.RUN : Lit at normal receive of refresh data. Extinguished when data is not received for a given period of  
time.  
SD  
RD  
: Lit when send data is "0".  
: Lit when the carrier of receive data is detected.  
L.ERR : Lit when the data addressed to the host is in CRC or abort error.  
(Note) Communication alarm display LED  
Operation  
L.RUN  
SD  
RD  
L.ERR  
Normal communication is made, but a CRC error sometimes occurs due to noise.  
Normal communication  
Hardware fault  
Hardware fault  
Receive data results in CRC error, disabling a response.  
Data does not reach the host.  
Hardware fault  
Hardware fault  
Polling response is made, but refresh receive is in CRC error.  
Hardware fault  
Hardware fault  
Hardware fault  
Data addressed to the host resulted in CRC error.  
Data does not reach the host, or the data addressed to the host cannot be received due to  
noise.  
Hardware fault  
Baud rate setting illegal  
Station number setting illegal  
Baud rate or station number setting changed midway (ERROR flickers for about 4s)  
Data cannot be received due to power-off, power supply failure, open cable, etc.  
WDT error occurrence (hardware fault)  
Note.  
: Lit  
: Extinguished  
: Flicker  
11 - 2  
11. TROUBLESHOOTING  
11.4 When alarm or warning has occurred  
POINT  
Configure up a circuit which will detect the trouble (ALM) signal and turn off the  
servo-on (RYn0) at occurrence of an alarm.  
11.4.1 Alarms and warning list  
When a fault occurs during operation, the corresponding alarm or warning is displayed. If any alarm or warning  
has occurred, refer to section 11.4.2 or 11.4.3 and take the appropriate action. When an alarm occurs, ALM  
turns off.  
After its cause has been removed, the alarm can be deactivated in any of the methods marked in the alarm  
deactivation column.  
Alarm deactivation  
(Note3)  
Display  
A90  
Name  
Home positioning incomplete  
warning  
(Note2)  
Alarm  
reset  
MR  
Configurator  
parameter  
unit  
Display  
Name  
Power  
OFF ON  
A92 Open battery cable warning  
A96 Home position setting error  
A98 Software limit warning  
A99 Stroke limit warning  
(RES)  
A10 Undervoltage  
A12 Memory error 1 (RAM)  
A13 Clock error  
A9D CC-Link warning 1  
A9E CC-Link warning 2  
Memory error 2  
A15  
A9F Battery warning  
(EEP-ROM)  
AE0 Excessive regeneration warning  
AE1 Overload warning 1  
Encoder error 1  
A16  
(At power on)  
AE3 Absolute position counter warning  
AE6 Servo emergency stop warning  
A17 Board error  
Memory error 3  
A19  
Cooling fan speed reduction  
warning  
AE8  
(Flash-ROM)  
A1A Motor combination error  
A20 Encoder error 2  
AE9 Main circuit off warning  
AEC Overload warning 2  
A24 Main circuit error  
AED Output watt excess warning  
A25 Absolute position erase  
(Note 1)  
(Note 1) (Note 1)  
A30 Regenerative error  
A31 Overspeed  
A32 Overcurrent  
A33 Overvoltage  
A35 Command pulse frequency alarm  
A37 Parameter error  
(Note 1)  
(Note 1)  
(Note 1) (Note 1)  
(Note 1) (Note 1)  
A45 Main circuit device overheat  
A46 Servo motor overheat  
A47 Cooling fan alarm  
A50 Overload 1  
(Note 1)  
(Note 1)  
(Note 1) (Note 1)  
(Note 1) (Note 1)  
A51 Overload 2  
A52 Error excessive  
A61 Operation alarm  
A8A Serial communication time-out  
A8D CC-Link alarm  
A8E Serial communication error  
888  
Watchdog  
Note 1. Deactivate the alarm about 30 minutes of cooling time after removing the cause of occurrence.  
2. Turns on RY(n+1)A or RY(n+3)A.  
3. Clicking the "Alarm reset" button on the "Alarm display" screen of MR Configurator allows an alarm to be deactivated.  
Pressing the "STOP RESET" key of the parameter unit allows an alarm to be deactivated.  
11 - 3  
11. TROUBLESHOOTING  
11.4.2 Remedies for alarms  
When any alarm has occurred, eliminate its cause, ensure safety, then reset the  
alarm, and restart operation. Otherwise, injury may occur.  
If an absolute position erase (A25) occurred, always make home position setting  
again. Not doing so may cause unexpected operation.  
CAUTION  
As soon as an alarm occurs, turn off Servo-on (RYn0) and power off.  
POINT  
When any of the following alarms has occurred, do not deactivate the alarm  
and resume operation repeatedly. To do so will cause the servo amplifier/servo  
motor to fail. Remove the cause of occurrence, and leave a cooling time of  
more than 30 minutes before resuming operation.  
Regenerative error (A30)  
Overload 1 (A50)  
Overload 2 (A51)  
For the alarm deactivation method, refer to section 11.4.1.  
When an alarm occurs, the trouble (ALM) switches off and the dynamic brake is operated to stop the servo  
motor. At this time, the display indicates the alarm No.  
The servo motor comes to a stop. Remove the cause of the alarm in accordance with this section. Use the MR  
Configurator to refer to a factor of alarm occurrence.  
Display  
A10  
Name  
Definition  
Cause  
Action  
Undervoltage  
Power supply  
voltage dropped.  
MR-J3- T:  
1. Power supply voltage is low.  
2. There was an instantaneous control  
power failure of 60ms or longer.  
3. Shortage of power supply capacity  
caused the power supply voltage to  
drop at start, etc.  
Check the power supply.  
160VAC or less  
MR-J3- T1:  
83VAC or less  
MR-J3- T4:  
4. The bus voltage dropped to the  
following value or less.  
280VAC or less  
MR-J3- T: 200VDC  
MR-J3- T1: 158VDC  
MR-J3- T4: 380VDC  
Change the servo amplifier.  
5. Faulty parts in the servo amplifier.  
Checking method  
Alarm (A10) occurs if power is  
switched on after disconnection  
of all cables but the control  
circuit power supply cables.  
A12  
A13  
Memory error 1 RAM, memory fault Faulty parts in the servo amplifier.  
Change the servo amplifier.  
(RAM)  
Checking method  
Alarm (any of A12 and A13)  
occurs if power is switched on  
after disconnection of all cables  
but the control circuit power  
supply cables.  
Clock error  
Printed board fault  
11 - 4  
11. TROUBLESHOOTING  
Cause  
Display  
A15  
Name  
Definition  
Action  
Memory error 2 EEP-ROM fault  
(EEP-ROM)  
1. Faulty parts in the servo amplifier  
Change the servo amplifier.  
Checking method  
Alarm (A15) occurs if power is  
switched on after disconnection  
of all cables but the control circuit  
power supply cables.  
2. The number of write times to EEP-  
ROM exceeded 100,000.  
A16  
Encoder error 1 Communication error 1. Encoder connector (CN2)  
Connect correctly.  
(At power on)  
occurred between  
encoder and servo  
amplifier.  
disconnected.  
2. Encoder fault  
Change the servo motor.  
3. Encoder cable faulty  
(Wire breakage or shorted)  
Repair or change the cable.  
4. Encoder cable type (2-wire, 4-wire) Correct the setting in the fourth digit of  
selection was wrong in parameter parameter No.PC22.  
setting.  
A17  
A19  
Board error  
CPU/parts fault  
Faulty parts in the servo amplifier  
Checking method  
Alarm (A17 or A19) occurs if  
power is switched on after  
Change the servo amplifier.  
Memory error 3 ROM memory fault  
(Flash ROM)  
disconnection of all cables but the  
control circuit power supply cable.  
A1A  
A20  
Motor  
Wrong combination Wrong combination of servo amplifier Use correct combination.  
combination  
error  
of servo amplifier  
and servo motor.  
and servo motor connected.  
Encoder error 2 Communication error 1. Encoder connector (CN2)  
Connect correctly.  
occurred between  
encoder and servo  
amplifier.  
disconnected.  
2. Encoder cable faulty  
(Wire breakage or shorted)  
3. Encoder fault  
Repair or change the cable.  
Change the servo motor.  
A24  
Main circuit error Ground fault  
1. Power input wires and servo motor Connect correctly.  
power wires are in contact.  
occurred at the servo  
motor power (U,V  
and W phases) of  
the servo amplifier.  
2. Sheathes of servo motor power  
cables deteriorated, resulting in  
ground fault.  
Change the cable.  
3. Main circuit of servo amplifier failed. Change the servo amplifier.  
Checking method  
Alarm (A24) occurs if the servo is  
switched on after disconnecting  
the U, V, W power cables from  
the servo amplifier.  
A25  
Absolute  
Absolute position  
data in error  
1. Voltage drop in encoder  
(Battery disconnected.)  
After leaving the alarm occurring for a few  
position erase  
minutes, switch power off, then on again.  
Always make home position setting again.  
2. Battery voltage low  
Change the battery.  
Always make home position setting again.  
3. Battery cable or battery is faulty.  
Power was switched 4. Home position not set.  
on for the first time in  
After leaving the alarm occurring for a few  
minutes, switch power off, then on again.  
Always make home position setting again.  
the absolute position  
detection system.  
11 - 5  
11. TROUBLESHOOTING  
Cause  
Display  
A30  
Name  
Definition  
Permissible  
Action  
Regenerative  
error  
1. Wrong setting of parameter No.  
PA02  
Set correctly.  
regenerative power  
of the built-in  
2. Built-in regenerative resistor or  
regenerative option is not  
connected.  
Connect correctly  
regenerative resistor  
or regenerative  
option is exceeded.  
3. High-duty operation or continuous  
1. Reduce the frequency of positioning.  
regenerative operation caused the 2. Use the regenerative option of larger  
permissible regenerative power of  
the regenerative option to be  
exceeded.  
capacity.  
3. Reduce the load.  
Checking method  
Call the status display and check  
the regenerative load ratio.  
4. Power supply voltage is abnormal. Check the power supply  
MR-J3- T:260VAC or more  
MR-J3- T1:More than 135VAC  
5. Built-in regenerative resistor or  
regenerative option faulty.  
Change the servo amplifier or regenerative  
option.  
Regenerative  
transistor fault  
6. Regenerative transistor faulty.  
Change the servo amplifier.  
Checking method  
1) The regenerative option has  
overheated abnormally.  
2) The alarm occurs even after  
removal of the built-in  
regenerative resistor or  
regenerative option.  
A31  
Overspeed  
Speed has  
1. Input command pulse frequency  
exceeded the permissible  
Set command pulses correctly.  
exceeded the  
instantaneous  
permissible speed.  
instantaneous speed frequency.  
2. Small acceleration/deceleration time Increase acceleration/deceleration time  
constant caused overshoot to be  
large.  
constant.  
3. Servo system is instable to cause  
overshoot.  
1. Re-set servo gain to proper value.  
2. If servo gain cannot be set to proper  
value.  
1) Reduce load inertia moment ratio; or  
2) Reexamine acceleration/  
deceleration time constant.  
Set correctly.  
4. Electronic gear ratio is large  
(parameters No.PA06, PA07)  
5. Encoder faulty.  
Change the servo motor.  
11 - 6  
11. TROUBLESHOOTING  
Definition  
Cause  
Display  
A32  
Name  
Action  
Current that flew is  
higher than the  
Overcurrent  
1. Short occurred in servo motor power Correct the wiring.  
(U, V, W).  
permissible current  
of the servo  
2. Transistor (IPM, IGBT) of the servo Change the servo amplifier.  
amplifier faulty.  
amplifier. (If the  
alarm (A32) occurs  
again when turning  
ON the servo after  
resetting the alarm  
by turning OFF/ON  
the power when the  
alarm (A32) first  
occurred, the  
Checking method  
Alarm (A32) occurs if power is  
switched on after U,V and W are  
disconnected.  
3. Ground fault occurred in servo motor Correct the wiring.  
power (U, V, W).  
4. External noise caused the  
overcurrent detection circuit to  
misoperate.  
Take noise suppression measures.  
transistor (IPM,  
IGBT) of the servo  
amplifier may be at  
fault. In the case, do  
not repeat to turn  
OFF/ON the power.  
Check the transistor  
with the checking  
method of “Cause  
2”.)  
A33  
Overvoltage  
The following shows 1. Regenerative option is not used.  
Use the regenerative option.  
Set correctly.  
the input value of  
converter bus  
voltage.  
2. Though the regenerative option is  
used, the parameter No.PA02  
setting is "  
00 (not used)".  
MR-J3- T(1):  
400VDC or more  
MR-J3- T4:  
3. Lead of built-in regenerative resistor 1. Change the lead.  
or regenerative option is open or  
disconnected.  
2. Connect correctly.  
800VDC or more  
4. Regenerative transistor faulty.  
5. Wire breakage of built-in  
regenerative resistor or regenerative  
option.  
Change the servo amplifier  
1. For wire breakage of built-in regenerative  
resistor, change the servo amplifier.  
2. For wire breakage of regenerative option,  
change the regenerative option.  
Add regenerative option or increase  
capacity.  
6. Capacity of built-in regenerative  
resistor or regenerative option is  
insufficient.  
7. Power supply voltage high.  
Check the power supply.  
8. Ground fault occurred in servo motor Correct the wiring.  
power (U, V, W).  
9. The jumper across BUE-SD of the  
Fit the jumper across BUE-SD.  
FR-BU2 brake unit is removed.  
A35  
Command pulse Input pulse  
frequency error frequency of the  
command pulse is  
1. Pulse frequency of the manual pulse Change the pulse frequency to a proper  
generator is too high.  
value.  
2. Noise entered the pulses of the  
manual pulse generator.  
Take action against noise.  
too high.  
3. Manual pulse generator failure.  
Change the manual pulse generator.  
11 - 7  
11. TROUBLESHOOTING  
Definition  
Cause  
Display  
A37  
Name  
Action  
Parameter error Parameter setting is 1. Servo amplifier fault caused the  
Change the servo amplifier.  
wrong.  
parameter setting to be rewritten.  
2. Regenerative option not used with  
servo amplifier was selected in  
parameter No.PA02.  
Set parameter No.PA02 correctly.  
3. Value outside setting range has  
been set in electronic gear.  
Set parameters No.PA06, PA07 correctly.  
Set parameters No.PC31 to PC34 correctly.  
4. Opposite sign has been set in  
software limit increasing side  
(parameters No.PC31, PC32).  
Similarly, opposite sign has been set  
in software limit decreasing side  
(parameters No.PC33, PC34).  
5. Opposite sign has been set in  
position range output address  
increasing side (parameters No.  
PC37, PC38). Similarly, opposite  
sign has been set in position range  
output address decreasing side  
(parameters No.PC39, PC40).  
Set parameters No.PC37 to PC40 correctly.  
6. The number of write times to EEP- Change the servo amplifier.  
ROM exceeded 100,000 due to  
parameter write, etc.  
7. The torque limit switching dog  
These home position return types cannot be  
system or torque limit switching data used. Set the parameter No.PC02 correctly.  
set system is selected for home  
position return in the point table  
positioning operation. (Parameter  
No.PC02)  
Point table setting is 8. Setting value is out of the setting  
Set it correctly.  
wrong.  
range.  
A45  
Main circuit  
Main circuit device  
1. Servo amplifier faulty.  
Change the servo amplifier.  
The drive method is reviewed.  
device overheat overheat.  
2. The power supply was turned on  
and off continuously by overloaded  
status.  
3. Ambient temperature of servo  
motor is over 55 (131 ).  
4. Used beyond the specifications of  
close mounting.  
Check environment so that ambient  
temperature is 0 to 55 (32 to 131 ).  
Use within the range of specifications.  
A46  
Servo motor  
overheat  
Servo motor  
1. Ambient temperature of servo  
motor is over 40 (104 ).  
2. Servo motor is overloaded.  
Check environment so that ambient  
temperature is 0 to 40 (32 to 104 ).  
1. Reduce load.  
temperature rise  
actuated the thermal  
sensor.  
2. Check operation pattern.  
3. Use servo motor that provides larger  
output.  
3. Thermal sensor in encoder is  
faulty.  
Change the servo motor.  
A47  
Cooling fan  
alarm  
The cooling fan of  
the servo amplifier  
stopped, or its speed  
decreased to or  
below the alarm  
level.  
1. Cooling fan life expiration (Refer to Change the cooling fan of the servo  
section 2.5.)  
amplifier.  
2. Foreign matter caught in the  
cooling fan stopped rotation.  
3. The power supply of the cooling  
fan failed.  
Remove the foreign matter.  
Change the servo amplifier.  
11 - 8  
11. TROUBLESHOOTING  
Display  
A50  
Name  
Definition  
Cause  
Action  
Overload 1  
Load exceeded  
overload protection  
characteristic of  
servo amplifier.  
1. Servo amplifier is used in excess of 1. Reduce load.  
its continuous output current.  
2. Check operation pattern.  
3. Use servo motor that provides larger  
output.  
2. Servo system is instable and  
hunting.  
1. Repeat acceleration/deceleration to  
execute auto tuning.  
2. Change auto tuning response setting.  
3. Set auto tuning to OFF and make gain  
adjustment manually.  
3. Machine struck something.  
1. Check operation pattern.  
2. Install limit switches.  
4. Wrong connection of servo motor.  
Servo amplifier's output terminals  
U, V, W do not match servo motor's  
input terminals U, V, W.  
Connect correctly.  
5. Encoder faulty.  
Change the servo motor.  
Checking method  
When the servo motor shaft is  
rotated with the servo off, the  
cumulative feedback pulses do not  
vary in proportion to the rotary angle  
of the shaft but the indication skips  
or returns midway.  
6. After Overload 2 (A51) occurred,  
turn OFF/ON the power supply to  
1. Reduce load.  
2. Check operation pattern.  
clear the alarm. Then the overload 3. Use servo motor that provides larger  
operation is repeated.  
output.  
A51  
Overload 2  
Machine collision or 1. Machine struck something.  
the like caused max.  
1. Check operation pattern.  
2. Install limit switches.  
Connect correctly.  
For the time of the  
alarm occurrence,  
refer to the section  
13.1.  
2. Wrong connection of servo motor.  
Servo amplifier's output terminals  
U, V, W do not match servo motor's  
input terminals U, V, W.  
3. Servo system is instable and  
hunting.  
1. Repeat acceleration/deceleration to  
execute auto tuning.  
2. Change auto tuning response setting.  
3. Set auto tuning to OFF and make gain  
adjustment manually.  
4. Encoder faulty.  
Checking method  
Change the servo motor.  
When the servo motor shaft is  
rotated with the servo off, the  
cumulative feedback pulses do not  
vary in proportion to the rotary angle  
of the shaft but the indication skips  
or returns midway.  
11 - 9  
11. TROUBLESHOOTING  
Display  
A52  
Name  
Definition  
Cause  
Action  
Error excessive The difference  
between the model  
position and the  
1. Acceleration/deceleration time  
constant is too small.  
Increase the acceleration/deceleration time  
constant.  
2. Forward rotation torque limit  
(parameter No.PA11) or reverse  
rotation torque limit (parameter  
No.PA12) are too small.  
Increase the torque limit value.  
actual servo motor  
position exceeds  
three rotations.  
(Refer to the function  
block diagram in  
3. Motor cannot be started due to  
torque shortage caused by power  
supply voltage drop.  
1. Check the power supply capacity.  
2. Use servo motor which provides larger  
output.  
section 1.1.2.)  
4. Position loop gain (parameter  
No.PB08) value is small.  
Increase set value and adjust to ensure  
proper operation.  
5. Servo motor shaft was rotated by  
external force.  
1. When torque is limited, increase the limit  
value.  
2. Reduce load.  
3. Use servo motor that provides larger  
output.  
6. Machine struck something.  
1. Check operation pattern.  
2. Install limit switches.  
Change the servo motor.  
Connect correctly.  
7. Encoder faulty.  
8. Wrong connection of servo motor.  
Servo amplifier’s output terminals U,  
V, W do not match servo motor’s  
input terminals U, V, W.  
"1" or "3" is set for the auxiliary  
function of point table No.255.  
1. Communication cable breakage.  
2. Communication cycle longer than  
regulated time.  
A61  
A8A  
Operation alarm Setting mistake of  
auxiliary function.  
Set "0" or "2" for the value of auxiliary  
function.  
Serial  
Communication  
Repair or change the communication cable.  
Shorten the communication cycle.  
communication stopped for longer  
time-out error  
than the specified  
time.  
3. Wrong protocol.  
Correct protocol.  
A8D  
CC-Link alarm Normal  
communication with  
1. The station number switch  
(STATION NO.) setting is 0 or not  
less than 65.  
Set the station number to within the range 1  
to 64, and switch power on.  
the master station  
cannot be made.  
2. The baud rate switch (MODE)  
setting is outside the range 0 to 4.  
3. The transmission status is  
abnormal.  
Set the baud rate switch (MODE) to within  
the range 0 to 4.  
Reexamine the wiring.  
4. CC-Link twisted cable wiring  
incorrect.  
1. Repair or change the CC-Link twisted  
cable.  
2. Connect the cable or connector correctly.  
5. CC-Link twisted cable faulty.  
6. The CC-Link connector has come  
off.  
7. The terminating resistor is not  
connected.  
Connect the terminating resistor correctly.  
8. Noise entered the CC-Link twisted  
cable.  
9. The programmable controller CC-  
Link unit was reset.  
A8E  
Serial  
Serial communication 1. Communication cable fault  
Repair or change the cable.  
communication error occurred  
(Open cable or short circuit).  
error  
between servo  
amplifier and  
2. Communication device (e.g.  
personal computer) faulty.  
Change the communication device (e.g.  
personal computer).  
communication  
device (e.g. personal  
computer).  
11 - 10  
11. TROUBLESHOOTING  
Display  
Name  
Definition  
Cause  
Action  
(Note)  
888  
Watchdog  
CPU, parts faulty.  
Fault of parts in servo amplifier.  
Change the servo amplifier.  
Checking method  
Alarm (888) occurs if power is  
switched on after disconnection of  
all cables but the control circuit  
power supply cable.  
Note. At power-on, "888" appears instantaneously, but it is not an error.  
11.4.3 Remedies for warnings  
If an absolute position counter warning (AE3) occurred, always make home  
position setting again. Not doing so may cause unexpected operation.  
CAUTION  
POINT  
When any of the following alarms has occurred, do not resume operation by  
switching power of the servo amplifier OFF/ON repeatedly. The servo amplifier  
and servo motor may become faulty. If the power of the servo amplifier is  
switched OFF/ON during the alarms, allow more than 30 minutes for cooling  
before resuming operation.  
Excessive regenerative warning (AE0)  
Overload warning 1 (AE1)  
If AE6 occur, the servo off status is established. If any other warning occurs, operation can be continued but an  
alarm may take place or proper operation may not be performed.  
Remove the cause of warning according to this section. Use the MR Configurator to refer to a factor of warning  
occurrence.  
Display  
A90  
Name  
Definition  
Cause  
Action  
Home position  
Positioning operation 1. Positioning operation was performed  
Perform home position return.  
return incomplete  
was performed  
without home  
position return.  
without home position return.  
Home position return 2. Home position return speed could not be Check home position return  
ended abnormally.  
decreased to creep speed.  
3. Limit switch was actuated during home  
position return starting at other than  
position beyond dog.  
speed/creep speed/moving  
distance after proximity dog.  
Positioning operation 1. Positioning operation was performed  
Perform home position setting.  
was performed  
without home  
position setting.  
without home position setting.  
Home position  
setting ended  
abnormally.  
2. Home position setting speed could not be Check home position setting  
decreased to creep speed.  
3. Limit switch was actuated during home  
position setting starting at other than  
position beyond dog.  
speed/creep speed/moving  
distance after proximity dog.  
Operation was  
performed without  
making home  
position setting while  
an absolute position  
erase (A25) is being  
occurred.  
4. Voltage drop in encoder  
(Battery disconnected.)  
After leaving the alarm occurring  
for a few minutes, switch power  
off, then on again. Always make  
home position setting again.  
5. Battery voltage low  
Change the battery.  
Always make home position  
setting again.  
6. Battery cable or battery is faulty.  
11 - 11  
11. TROUBLESHOOTING  
Display  
A92  
Name  
Definition  
Cause  
Action  
Repair cable or changed.  
Change the battery.  
Open battery cable Absolute position  
warning  
1. Battery cable is open.  
detection system battery  
voltage is low.  
2. Battery voltage supplied from the servo  
amplifier to the encoder fell to about 3V or  
less.  
(Detected with the encoder)  
A96  
A98  
Home position  
setting warning  
Home position setting  
could not be made.  
1. Droop pulses remaining are greater than Remove the cause of droop pulse  
the in-position range setting. occurrence  
2. Command pulse entered after clearing of Do not enter command pulse  
droop pulses.  
after clearing of droop pulses.  
Reduce creep speed.  
Set parameter No.PC31 to PC34  
correctly.  
3. Creep speed high.  
Software limit  
warning  
Software limit set in  
1. Software limit was set within actual  
operation range.  
parameter is reached.  
2. Point table of position data in excess of  
software limit was executed.  
3. Software limit was reached during JOG  
operation or manual pulse generator  
operation.  
Set point table correctly.  
Perform operation within software  
limit range.  
A99  
A9D  
Stroke limit  
warning  
The limit switch become The stroke end (LSP or LSN) of the  
valid.  
Reexamine the operation pattern  
direction which gave instructions was turned to turn LSP/LSN ON.  
off.  
CC-Link warning 1 The station number switch 1. The station number switch position was Return to the setting at power-on.  
or baud rate switch  
position was changed  
from the setting at power-  
on.  
changed from the setting at power-on.  
2. The baud rate switch position was  
changed from the setting at power-on.  
3. The occupied station count switch  
position was changed from the setting at  
power-on.  
A9E  
CC-Link warning 2 Communication error of  
cable.  
1. The transmission status is abnormal.  
2. CC-Link twisted cable wiring incorrect.  
3. CC-Link twisted cable faulty.  
Take measures against noise.  
1. Change the CC-Link twisted  
cable.  
2. Connect the cable or connector  
correctly.  
4. The CC-Link connector has come off.  
5. The terminating resistor is not connected. Connect the terminating resistor  
correctly.  
6. Noise entered the CC-Link twisted cable.  
Battery voltage fell to 3.2V or less.  
(Detected with the servo amplifier)  
A9F  
AE0  
Battery warning  
Voltage of battery for  
absolute position  
Change the battery.  
detection system reduced.  
Excessive  
regenerative  
warning  
There is a possibility that Regenerative power increased to 85% or  
regenerative power may more of permissible regenerative power of  
1. Reduce frequency of  
positioning.  
built-in regenerative resistor or regenerative 2. Change the regenerative  
exceed permissible  
regenerative power of  
built-in regenerative  
resistor or regenerative  
option.  
option.  
option for the one with larger  
capacity.  
3. Reduce load.  
Checking method  
Call the status display and check  
regenerative load ratio.  
AE1  
AE3  
Overload warning There is a possibility that Load increased to 85% or more of overload Refer to A50, A51.  
overload alarm 1 or 2 may alarm 1 or 2 occurrence level.  
1
Cause, checking method  
occur.  
Refer to A50, A51.  
Absolute position Absolute position encoder 1. Noise entered the encoder.  
Take noise suppression  
measures.  
counter warning  
pulses faulty.  
2. Encoder faulty.  
Change the servo motor.  
Make home position setting  
again.  
The multi-revolution  
counter value of the  
absolute position encoder  
exceeded the maximum  
revolution range.  
3. The movement amount from the home  
position exceeded a 32767 rotation or  
37268 rotation in succession.  
AE6  
Servo forced stop EMG is off.  
warning  
External forced stop was made valid. (EMG Ensure safety and deactivate  
was turned off.)  
forced stop.  
11 - 12  
11. TROUBLESHOOTING  
Display  
AE8  
Name  
Definition  
Cause  
Action  
Cooling fan speed The speed of the servo  
Cooling fan life expiration (Refer to section Change the cooling fan of the  
reduction warning amplifier decreased to or 2.5.)  
below the warning level.  
servo amplifier.  
This warning is not  
displayed with MR-J3-  
70T/100T among servo  
amplifiers equipped with a  
cooling fan.  
The power supply of the cooling fan is  
broken.  
Change the servo amplifier.  
AE9  
AEC  
Main circuit off  
warning  
Servo-on (SON) was  
switched on with main  
circuit power off.  
Switch on main circuit power.  
Overload warning Operation, in which a  
current exceeding the  
rating flew intensively in phases of the servo motor occurred  
During a stop, the status in which a current 1. Reduce the positioning  
2
flew intensively in any of the U, V and W  
frequency at the specific  
positioning address.  
2. Reduce the load.  
3. Replace the servo amplifier/  
servo motor with the one of  
larger capacity.  
any of the U, V and W  
phases of the servo  
motor, was repeated.  
repeatedly, exceeding the warning level.  
AED  
Output watt excess The status, in which the  
warning output wattage (speed  
torque) of the servo motor servo motor exceeding 150% of the rated  
Continuous operation was performed with  
1. Reduce the servo motor  
the output wattage (speed  
torque) of the speed.  
2. Reduce the load.  
exceeded the rated  
output.  
output, continued steadily.  
11.5 Point table error  
When a point table error occurs, the parameter error (A37) occurs. After the parameter No. of parameter error  
(A37), the point table error details are displayed.  
A L 3 7  
P B 1 0  
P B 1 2  
# 0 0  
P B 1 1  
P B 1 6  
P o s 0 0 1  
Point table error details  
For the point table No.1 position data error  
Point table No. with error  
Error item  
Pos: position data  
Spd: speed  
Acc: acceleration time constant  
Dec: deceleration time constant  
Dwl: dwell  
Aux: auxiliary function  
11 - 13  
11. TROUBLESHOOTING  
MEMO  
11 - 14  
12. OUTLINE DRAWINGS  
12. OUTLINE DRAWINGS  
12.1 Servo amplifier  
(1) MR-J3-10T MR-J3-20T  
MR-J3-10T1 MR-J3-20T1  
[Unit: mm]  
40  
Rating plate  
6 mounting hole  
4
6
Approx. 80  
135  
(Note)  
CNP1  
CN1  
CNP2  
CNP3  
6
Approx. 68  
Approx. 25.5  
With MR-J3BAT  
Note. This data applies to the 3-phase or 1-phase 200 to 230VAC power supply models.  
For a single-phase, 100 to 120VAC power supply, refer to the terminal signal layout.  
Mass: 0.8 [kg] (1.76 [lb])  
Terminal signal layout  
For 3-phase or  
Approx.  
40  
For 1-phase  
1-phase  
PE terminal  
6
100 to 120VAC 200 to 230VAC  
L1  
L1  
L2  
L3  
N
L2  
N
CNP1  
CNP1  
2-M5 screw  
Screw size: M4  
Tightening torque: 1.2 [N m] (10.6 [lb in])  
P1  
P1  
2
P
2
P
P
C
P
C
CNP2  
CNP3  
CNP2  
CNP3  
D
D
L11  
L21  
L11  
L21  
U
V
U
V
Mounting hole process drawing  
Mounting screw  
W
W
Screw size: M5  
Tightening torque: 3.24[N m] (28.7[lb in])  
12 - 1  
12. OUTLINE DRAWINGS  
(2) MR-J3-40T MR-J3-60T  
MR-J3-40T1  
[Unit: mm]  
40  
Rating plate  
5
6
6 mounting hole  
(Note)  
Approx. 80  
170  
CNP1  
CN1  
CNP2  
CNP3  
6
Approx. 68  
Approx. 25.5  
With MR-J3BAT  
Note. This data applies to the 3-phase or 1-phase 200 to 230VAC power supply models.  
For a single-phase, 100 to 120VAC power supply, refer to the terminal signal layout.  
Mass: 1.0 [kg] (2.21 [lb])  
Terminal signal layout  
For 3-phase or  
Approx.  
40  
For 1-phase  
100 to 120VAC 200 to 230VAC  
1-phase  
PE terminal  
6
L1  
L1  
L2  
L3  
N
L2  
N
2-M5 screw  
CNP1  
CNP1  
Screw size: M4  
Tightening torque: 1.2 [N m] (10.6 [lb in])  
P1  
P2  
P1  
P2  
P
C
P
C
CNP2  
CNP3  
CNP2  
CNP3  
D
D
L11  
L21  
L11  
L21  
Mounting hole process drawing  
Mounting screw  
Screw size: M5  
Tightening torque: 3.24[N m] (28.7[lb in])  
U
V
U
V
W
W
12 - 2  
12. OUTLINE DRAWINGS  
(3) MR-J3-70T MR-J3-100T  
[Unit: mm]  
60  
Rating plate  
6 mounting hole  
12  
Approx. 80  
6
185  
CNP1  
CNP2  
CNP3  
CN1  
Cooling fan  
wind direction  
Approx.  
25.5  
Approx. 68  
6
12  
42  
With MR-J3BAT  
Mass: 1.4 [kg] (3.09 [lb])  
Terminal signal layout  
PE terminal  
Approx. 60  
L1  
L2  
L3  
N
CNP1  
P1  
P2  
Screw size: M4  
Tightening torque:  
1.2 [N m] (10.6 [lb in])  
3-M5 screw  
U
V
CNP3  
CNP2  
42 0.3  
W
Approx. 12  
Approx. 6  
P
C
Mounting hole process drawing  
D
Mounting screw  
Screw size: M5  
Tightening torque: 3.24[N m] (28.7[lb in])  
L11  
L21  
12 - 3  
12. OUTLINE DRAWINGS  
(4) MR-J3-60T4 MR-J3-100T4  
[Unit: mm]  
6 mounting hole  
Approx. 80  
60  
195  
Rating plate  
6
12  
CNP1  
CN1  
CNP2  
CNP3  
Approx.  
25.5  
Approx. 68  
6
12  
With MR-J3BAT  
42  
Mass: 1.4 [kg] (3.09 [lb])  
Terminal signal layout  
Approx. 60  
PE terminal  
L1  
L2  
L3  
CNP1  
N
Screw size: M4  
Tightening torque:  
P1  
1.2 [N m] (10.6 [lb in])  
3-M5 screw  
P2  
P
42 0.3  
C
D
CNP2  
CNP3  
Approx. 12  
Approx. 6  
L11  
L21  
Mounting hole process drawing  
Mounting screw  
Screw size: M5  
Tightening torque: 3.24[N m] (28.7[lb in])  
U
V
W
12 - 4  
12. OUTLINE DRAWINGS  
(5) MR-J3-200T(4)  
POINT  
Connectors (CNP1, CNP2, and CNP3) and appearance of MR-J3-200T servo  
amplifier have been changed from January 2008 production. Model name of  
the existing servo amplifier is changed to MR-J3-200T-RT. For MR-J3-200T-  
RT, refer to appendix 5.  
[Unit: mm]  
90  
85  
6 mounting hole  
Approx. 80  
195  
Rating plate  
6
45  
CNP1  
CN1  
CNP2  
CNP3  
Cooling fan  
wind direction  
Approx.  
25.5  
Approx. 68  
6
6
78  
6
With MR-J3BAT  
Mass: 2.1 [kg] (4.63 [lb])  
Terminal signal layout  
Approx. 90  
PE terminal  
L1  
L2  
L3  
CNP1  
N
Screw size: M4  
Tightening torque:  
P1  
P2  
1.2 [N m] (10.6 [lb in])  
3-M5 screw  
P
C
D
CNP2  
CNP3  
Approx. 6  
Mounting hole process drawing  
Mounting screw  
Screw size: M5  
Tightening torque: 3.24[N m] (28.7[lb in])  
Approx. 6  
78 0.3  
L11  
L21  
U
V
W
12 - 5  
12. OUTLINE DRAWINGS  
(6) MR-J3-350T  
[Unit: mm]  
90  
85  
6 mounting hole  
Approx. 80  
6
45  
195  
Rating plate  
21.4  
CNP1  
CN1  
CNP3  
CNP2  
Approx.  
25.5  
Cooling fan  
wind direction  
Approx. 68  
6
6
78  
6
With MR-J3BAT  
Mass: 2.3 [kg] (5.07 [lb])  
Terminal signal layout  
PE terminal  
Approx. 90  
L1  
L2  
L3  
N
CNP1  
P1  
P2  
Screw size: M4  
Tightening torque:  
3-M5 screw  
Approx. 6  
1.2 [N m] (10.6 [lb in])  
U
V
CNP3  
CNP2  
W
Approx. 6  
78 0.3  
P
C
Mounting hole process drawing  
Mounting screw  
D
Screw size: M5  
Tightening torque: 3.24[N m] (28.7[lb in])  
L11  
L21  
12 - 6  
12. OUTLINE DRAWINGS  
(7) MR-J3-350T4 MR-J3-500T(4)  
[Unit: mm]  
2- 6 mounting hole  
130  
Approx. 80  
200  
131.5  
68.5  
Cooling fan  
Terminal layout  
(Terminal cover open)  
6
118  
6
wind direction  
Cooling fan  
Rating  
plate  
TE2  
TE3  
TE1  
CHARGE  
With MR-J3BAT  
20.5  
6
3 places for  
ground (M4)  
Built-in regenerative  
resistor lead terminal  
fixing screw  
Mass: 4.6 [kg] (10.1 [lb])  
Approx. 130  
Terminal signal layout  
Approx. 6  
Approx. 6  
118 0.5  
TE1  
L1  
Terminal screw: M4  
Tightening torque: 1.2[N m]  
4-M5 screw  
P
C
U
V
W
L2  
L3  
(10.6 [lb in])  
TE2  
L11  
Terminal screw: M3.5(Note)  
Tightening torque: 0.8[N m]  
(7.08 [lb in])  
L21  
P1  
TE3  
Terminal screw: M4  
Tightening torque: 1.2[N m]  
(10.6 [lb in])  
N
P2  
PE terminal  
Terminal screw: M4  
Tightening torque: 1.2[N m]  
(10.6 [lb in])  
Built-in regenerative resistor lead  
terminal fixing screw  
Mounting hole process drawing  
Mounting screw  
Screw size: M5  
Tightening torque: 3.24[N m] (28.7[lb in])  
Note. Screw size is M3.5 for the control circuit terminal block (TE2) of the servo  
amplifier manufactured in April 2007 or later. Screw size is M3 for the control  
terminal block (TE2) of the servo amplifier manufactured in March 2007 or  
earlier.  
12 - 7  
12. OUTLINE DRAWINGS  
(8) MR-J3-700T(4)  
[Unit: mm]  
172  
Approx. 80  
200  
6
6
160  
Cooling fan  
2- 6 mounting hole  
wind direction  
CN1  
Rating plate  
TE3  
34 13 13  
With MR-J3BAT  
75  
99.8  
102.6  
31  
13  
13  
TE2  
TE1  
24.5  
6
14.5  
10  
13  
13 91  
149.2  
7
Built-in regenerative resistor lead  
terminal fixing screw  
Mass: 6.2 [kg] (13.7[lb])  
Approx. 172  
160 0.5  
Terminal signal layout  
Approx. 6  
Approx. 6  
TE1  
Terminal screw: M4  
Tightening torque: 1.2[N m]  
P
C
U
V
W
4-M5 screw  
L1  
L2  
L21  
P1  
L3  
(10.6 [lb in])  
TE2  
L11  
Terminal screw: M3.5(Note)  
Tightening torque: 0.8[N m]  
(7.08 [lb in])  
TE3  
Terminal screw: M4  
Tightening torque: 1.2[N m]  
(10.6 [lb in])  
N
P2  
PE terminal  
Terminal screw: M4  
Tightening torque: 1.2[N m]  
(10.6 [lb in])  
Built-in regenerative resistor lead  
terminal fixing screw  
Mounting hole process drawing  
Mounting screw  
Screw size: M5  
Tightening torque: 3.24[N m] (28.7[lb in])  
Note. Screw size is M3.5 for the control circuit terminal block (TE2) of the servo  
amplifier manufactured in April 2007 or later. Screw size is M3 for the control  
terminal block (TE2) of the servo amplifier manufactured in March 2007 or  
earlier.  
12 - 8  
12. OUTLINE DRAWINGS  
(9) MR-J3-11KT(4) to 22KT(4)  
[Unit: mm]  
260  
236  
Approx. 80  
12  
12  
260  
Cooling fan  
wind direction  
2-12 mounting hole  
CN1  
With MR-J3BAT  
Rating plate  
123  
13  
12  
183  
227  
TE  
26  
52  
6
26 156  
Approx. 260  
236 0.5  
Approx. 12  
Approx. 12  
4-M10 screw  
Servo amplifier  
MR-J3-11KT(4)  
MR-J3-15KT(4)  
MR-J3-22KT(4)  
Mass[kg]([lb])  
18.0(39.7)  
18.0(39.7)  
19.0(41.9)  
Mounting hole process drawing  
Terminal signal layout  
TE  
L1  
Mounting screw  
Tightening torque  
[N m]([Ib in])  
Servo  
amplifier  
Screw  
size  
L11 L21  
N
U
L2  
P
L3  
C
V
W
P1  
MR-J3-11KT(4)  
MR-J3-15KT(4) M10  
MR-J3-22KT(4)  
26.5  
(234.5)  
1
2
3
L
C
L
L
U
N
V
W
L11 L21  
M4  
P1  
P
Screw size  
M6  
3.0  
M8  
6.0  
MR-J3-11KT(4)  
MR-J3-15KT(4)  
Tightening torque  
[(lb:in)][N m]  
1.2  
Screw size  
M4  
Tightening torque  
[(lb:in)][N m]  
MR-J3-22KT(4)  
1.2  
12 - 9  
12. OUTLINE DRAWINGS  
12.2 Connector  
(1) Miniature delta ribbon (MDR) system (3M)  
(a) One-touch lock type  
[Unit: mm]  
E
A
C
Logo etc, are indicated here.  
B
12.7  
Each type of dimension  
Connector  
Shell kit  
A
B
C
D
E
10150-3000PE  
10350-52F0-008  
41.1  
52.4  
18.0  
14.0  
17.0  
(b) Jack screw M2.6 type  
This is not available as option.  
[Unit: mm]  
E
F
A
C
Logo etc, are indicated here.  
B
12.7  
Each type of dimension  
Connector  
Shell kit  
A
B
C
D
E
F
10150-3000PE  
10350-52A0-008  
41.1  
52.4  
18.0  
14.0  
17.0  
46.5  
12 - 10  
12. OUTLINE DRAWINGS  
(2) SCR connector system (3M)  
Receptacle: 36210-0100PL  
Shell kit  
: 36310-3200-008  
39.5  
34.8  
12 - 11  
12. OUTLINE DRAWINGS  
MEMO  
12 - 12  
13. CHARACTERISTICS  
13. CHARACTERISTICS  
13.1 Overload protection characteristics  
An electronic thermal relay is built in the servo amplifier to protect the servo motor and servo amplifier from  
overloads. Overload 1 alarm (A50) occurs if overload operation performed is above the electronic thermal relay  
protection curve shown in any of Figs 13.1. Overload 2 alarm (A51) occurs if the maximum current flew  
continuously for several seconds due to machine collision, etc. Use the equipment on the left-hand side area of  
the continuous or broken line in the graph.  
In a machine like the one for vertical lift application where unbalanced torque will be produced, it is  
recommended to use the machine so that the unbalanced torque is 70% or less of the rated torque.  
When you carry out adhesion mounting of the servo amplifier, make circumference temperature into 0 to 45  
(32 to 113 ), or use it at 75% or smaller effective load ratio.  
1000  
1000  
During operation  
During operation  
100  
100  
During servo lock  
During servo lock  
10  
1
10  
1
0.1  
0
0.1  
0
50  
100  
150  
200  
250  
300  
50  
100  
150  
200  
250  
300  
(Note) Load ratio [%]  
(Note) Load ratio [%]  
MR-J3-10T(1)  
MR-J3-20T(1) MR-J3-40T(1)  
MR-J3-60T(4) to MR-J3-100T(4)  
10000  
1000  
1000  
100  
During operation  
During operation  
During servo lock  
During servo lock  
10  
1
100  
10  
0.1  
0
1
0
50  
100  
150  
200  
250  
300  
50  
100  
150  
200  
250  
300  
(Note) Load ratio [%]  
(Note) Load ratio [%]  
MR-J3-200T(4) MR-J3-350T(4)  
MR-J3-500T(4) MR-J3-700T(4)  
13 - 1  
13 CHARACTERISTICS  
10000  
1000  
100  
During operation  
During servo lock  
10  
1
0
100  
200  
300  
(Note) Load ratio [%]  
MR-J3-11KT(4) to MR-J3-22KT(4)  
Note. If operation that generates torque more than 100% of the rating is performed with an abnormally high frequency in a servo motor  
stop status (servo lock status) or in a 30r/min or less low-speed operation status, the servo amplifier may fail even when the  
electronic thermal relay protection is not activated.  
Fig 13.1 Electronic thermal relay protection characteristics  
13 - 2  
13 CHARACTERISTICS  
13.2 Power supply equipment capacity and generated loss  
(1) Amount of heat generated by the servo amplifier  
Table 13.1 indicates servo amplifiers' power supply capacities and losses generated under rated load. For  
thermal design of an enclosure, use the values in Table 13.1 in consideration for the worst operating  
conditions. The actual amount of generated heat will be intermediate between values at rated torque and  
servo off according to the duty used during operation. When the servo motor is run at less than the  
maximum speed, the power supply capacity will be smaller than the value in the table, but the servo  
amplifier's generated heat will not change.  
Table 13.1 Power supply capacity and generated heat per servo amplifier at rated output  
(Note 1)  
(Note 2)  
Area required for  
heat dissipation  
[m2]  
Servo amplifier  
MR-J3-10T (1)  
Servo motor  
Power supply  
capacity [kVA]  
Servo amplifier-generated heat[W]  
At rated torque  
25  
With servo off  
HF-MP053  
0.3  
0.3  
0.3  
0.5  
0.5  
0.9  
0.9  
1.0  
1.0  
1.0  
1.3  
1.3  
1.3  
1.7  
1.5  
1.7  
2.5  
3.5  
2.1  
3.5  
1.8  
2.5  
2.5  
2.5  
5.5  
3.5  
3.5  
3.5  
4.8  
7.5  
5.5  
7.5  
5.5  
7.5  
4.5  
7.5  
6.7  
15  
0.5  
0.5  
0.5  
0.5  
0.5  
0.7  
0.7  
0.8  
0.8  
0.8  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.8  
1.8  
1.8  
1.8  
1.0  
1.8  
1.8  
1.8  
2.7  
1.8  
1.8  
1.8  
2.4  
3.9  
2.7  
3.9  
3.9  
3.9  
2.4  
3.9  
3.2  
HF-MP13  
25  
15  
HF-KP053 13  
HF-MP23  
25  
15  
25  
15  
MR-J3-20T (1)  
MR-J3-40T (1)  
HF-KP23  
25  
15  
HF-MP43  
35  
15  
HF-KP43  
35  
15  
HF-SP52 (4)  
HF-SP51  
40  
15  
MR-J3-60T (4)  
MR-J3-70T  
40  
15  
HC-LP52  
40  
15  
HF-MP73  
50  
15  
HF-KP73  
50  
15  
HC-UP72  
50  
15  
HF-SP102 (4)  
HF-SP81  
50  
15  
MR-J3-100T (4)  
50  
15  
HC-LP102  
HF-SP152 (4)  
HF-SP202 (4)  
HF-SP121  
HF-SP201  
HC-RP103  
HC-RP153  
HC-UP152  
HC-LP152  
HF-SP352 (4)  
HC-RP203  
HC-UP202  
HC-LP202  
HF-SP301  
HF-SP502 (4)  
HC-RP353  
HC-RP503  
HC-UP352  
HC-UP502  
HC-LP302  
HA-LP502  
HF-SP421  
50  
15  
90  
20  
90  
20  
90  
20  
90  
20  
MR-J3-200T (4)  
MR-J3-350T (4)  
MR-J3-500T (4)  
50  
15  
90  
20  
90  
20  
90  
20  
130  
90  
20 (25) (Note 3)  
20  
20  
20  
20  
25  
25  
25  
25  
25  
25  
25  
25  
90  
90  
120  
195  
135  
195  
195  
195  
120  
195  
160  
13 - 3  
13 CHARACTERISTICS  
(Note 1)  
(Note 2)  
Area required for  
heat dissipation  
[m2]  
Servo amplifier  
MR-J3-700T (4)  
Servo motor  
Power supply  
capacity [kVA]  
Servo amplifier-generated heat[W]  
At rated torque  
300  
With servo off  
HF-SP702 (4)  
HA-LP702  
10.0  
10.6  
10.0  
11.0  
16.0  
12.0  
18.0  
16.0  
22.0  
22.0  
22.0  
33.0  
30.1  
37.6  
33.0  
25  
25  
25  
25  
45  
45  
45  
45  
45  
45  
45  
55  
55  
55  
55  
6.0  
6.0  
300  
HA-LP601 (4)  
HA-LP701M (4)  
HC-LP11K2 (4)  
HC-LP801 (4)  
HC-LP12K1 (4)  
HC-LP11K1M (4)  
HC-LP15K2 (4)  
HC-LP15K1 (4)  
HC-LP15K1M (4)  
HC-LP22K2 (4)  
HC-LP20K1 (4)  
HC-LP25K1  
260  
5.2  
300  
6.0  
530  
11.0  
7.8  
390  
MR-J3-11KT (4)  
MR-J3-15KT (4)  
MR-J3-22KT (4)  
580  
11.6  
11.0  
13.0  
13.0  
13.0  
17.0  
15.5  
19.4  
17.0  
530  
640  
640  
640  
850  
775  
970  
HC-LP22K1M (4)  
850  
Note 1. Note that the power supply capacity will vary according to the power supply impedance. This value assumes that the power  
factor improving reactor is not used.  
2. Heat generated during regeneration is not included in the servo amplifier-generated heat. To calculate heat generated by the  
regenerative option, refer to section 14.2.  
3. For 400V class, the value is within the ( ).  
13 - 4  
13 CHARACTERISTICS  
(2) Heat dissipation area for enclosed servo amplifier  
The enclosed control box (hereafter called the control box) which will contain the servo amplifier should be  
designed to ensure that its temperature rise is within 10 ( 50 ) at the ambient temperature of 40  
(104 ). (With a 5 (41 ) safety margin, the system should operate within a maximum 55 (131 ) limit.)  
The necessary enclosure heat dissipation area can be calculated by Equation 13.1.  
P
............................................................................................................................................. (13.1)  
A
K
T
where, A  
P
: Heat dissipation area [m2]  
: Loss generated in the control box [W]  
: Difference between internal and ambient temperatures [  
: Heat dissipation coefficient [5 to 6]  
T
K
]
When calculating the heat dissipation area with Equation 13.1, assume that P is the sum of all losses  
generated in the enclosure. Refer to Table 13.1 for heat generated by the servo amplifier. "A" indicates the  
effective area for heat dissipation, but if the enclosure is directly installed on an insulated wall, that extra  
amount must be added to the enclosure's surface area.  
The required heat dissipation area will vary wit the conditions in the enclosure. If convection in the  
enclosure is poor and heat builds up, effective heat dissipation will not be possible. Therefore, arrangement  
of the equipment in the enclosure and the use of a cooling fan should be considered.  
Table 13.1 lists the enclosure dissipation area for each servo amplifier when the servo amplifier is operated  
at the ambient temperature of 40 (104 ) under rated load.  
(Outside)  
(Inside)  
Air flow  
Fig. 13.2 Temperature distribution in enclosure  
When air flows along the outer wall of the enclosure, effective heat exchange will be possible, because the  
temperature slope inside and outside the enclosure will be steeper.  
13 - 5  
13 CHARACTERISTICS  
13.3 Dynamic brake characteristics  
13.3.1 Dynamic brake operation  
(1) Calculation of coasting distance  
Fig. 13.3 shows the pattern in which the servo motor comes to a stop when the dynamic brake is operated.  
Use Equation 13.2 to calculate an approximate coasting distance to a stop. The dynamic brake time  
constant varies with the servo motor and machine operation speeds. (Refer to (2)(a), (b) in this section.)  
ON  
Forced stop(EMG)  
OFF  
Time constant  
V0  
Machine speed  
Time  
te  
Fig. 13.3 Dynamic brake operation diagram  
JL  
JM  
V0  
60  
....................................................................................................................... (13.2)  
Lmax  
te  
1
Lmax  
Vo  
JM  
: Maximum coasting distance .................................................................................................... [mm][in]  
: Machine rapid feed rate..............................................................................................[mm/min][in/min]  
: Servo motor inertial moment..................................................................................... [kg cm2][oz in2]  
: Load inertia moment converted into equivalent value on servo motor shaft ............ [kg cm2][oz in2]  
: Brake time constant .......................................................................................................................... [s]  
: Delay time of control section............................................................................................................. [s]  
For 7kW or less servo, there is internal relay delay time of about 30ms. For 11k to 22kW servo,  
there is delay time of about 100ms caused by a delay of the external relay and a delay of the  
magnetic contactor built in the external dynamic brake.  
JL  
t
e
(2) Dynamic brake time constant  
The following shows necessary dynamic brake time constant for the equations (13.2).  
(a) 200V class servo motor  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
73  
23  
73  
23  
053  
43  
13  
053  
43  
13  
0
0
0
1000 2000 3000 4000 5000 6000  
Speed [r/min]  
0
1000 2000 3000 4000 5000 6000  
Speed [r/min]  
HF-MP series  
HF-KP series  
13 - 6  
13 CHARACTERISTICS  
120  
100  
80  
60  
40  
20  
0
60  
50  
40  
52  
51  
352  
81  
421  
30  
20  
10  
0
102  
702  
301  
2000  
201  
202  
152  
121  
1500  
502  
0
500 1000 1500 2000 2500 3000  
0
500  
1000  
Speed [r/min]  
Speed [r/min]  
HF-SP1000r/min series  
HF-SP2000r/min series  
18  
16  
14  
12  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
72  
502  
352  
103  
503  
8
6
153  
4
2
0
353  
202  
203  
152  
0
500 1000 1500 2000 2500 3000  
Speed [r/min]  
0
500  
1000 1500 2000  
Speed [r/min]  
HC-RP series  
HC-UP2000r/min series  
70  
73  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
20K1  
43  
12K1  
15K1  
23  
13  
801  
601  
25K1  
0
200 400 600 800 1000 1200  
Speed[r/min]  
0
50 500 10001500200025003000  
Speed [r/min]  
HC-UP3000r/min series  
HA-LP1000r/min series  
13 - 7  
13 CHARACTERISTICS  
120  
80  
60  
40  
20  
0
22K1M  
15K2  
702  
100  
11K1M  
11K2  
80  
60  
22K2  
502  
15K1M  
40  
701M  
1500  
20  
0
0
500  
1000  
2000  
0
500  
1000  
Speed[r/min]  
1500  
2000  
Speed[r/min]  
HA-LP1500r/min series  
HA-LP2000r/min series  
200  
160  
120  
80  
40  
0
52  
202  
302  
102  
152  
2000  
0
500  
1000  
1500  
Speed[r/min]  
HC-LP series  
(b) 400V class servo motor  
90  
35  
2024  
1024  
30  
25  
20  
15  
10  
5
20K14  
75  
60  
45  
524  
12K14  
8014  
3524  
15K14  
30  
15  
0
5024  
1524  
2000  
7024  
0
0
400  
800  
1200  
0
1000  
3000  
Speed[r/min]  
Speed[r/min]  
HF-SP2000r/min series  
HA-LP1000r/min series  
20  
40  
35  
30  
16  
25  
12  
8
11K1M4  
701M4  
15K24  
15K1M4  
20  
15  
11K24  
10  
4
22K1M4  
1000 1500  
5
0
22K2  
0
0
500  
Speed[r/min]  
0
500  
1000 1500 2000  
Speed[r/min]  
HA-LP1500r/min series  
HA-LP2000r/min series  
13 - 8  
13 CHARACTERISTICS  
13.3.2 The dynamic brake at the load inertia moment  
Use the dynamic brake under the load inertia moment ratio indicated in the following table. If the load inertia  
moment is higher than this value, the built-in dynamic brake may burn. If there is a possibility that the load  
inertia moment may exceed the value, contact Mitsubishi.  
The values of the load inertia moment ratio in the table are the values at the maximum rotation speed of the  
servo motor.  
Servo motor  
Servo  
HA-  
amplifier  
HF-KP  
HF-MP  
HF-SP  
1
HF-SP  
2
HC-RP  
HC-UP  
HC-LP  
HA-LP  
1
HA-LP  
2
LP 1M  
MR-J3-10T(1)  
MR-J3-20T(1)  
MR-J3-40T(1)  
MR-J3-60T  
30  
30  
30  
30  
30  
30  
30  
30  
30  
MR-J3-70T  
30  
30  
30  
MR-J3-100T  
MR-J3-200T  
MR-J3-350T  
MR-J3-500T  
MR-J3-700T  
30  
30  
16  
15  
30  
30  
16  
15  
30  
30  
16  
15  
30  
16  
15  
30  
16  
15  
15  
5 (Note 1) 5 (Note 1) 5 (Note 1)  
5 (Note 1)  
MR-J3-11KT  
(Note 2)  
30  
30  
30  
30  
30  
30  
30  
30  
30  
MR-J3-15KT  
(Note 2)  
MR-J3-22KT  
(Note 2)  
Servo motor  
HA-  
Servo  
amplifier  
HF-SP 4 HA-LP 14  
HA-LP 24  
LP 1M4  
MR-J3-60T4 5 (Note 1)  
MR-J3-100T4 5 (Note 1)  
MR-J3-200T4 5 (Note 1)  
MR-J3-350T4 5 (Note 1)  
MR-J3-500T4 5 (Note 1)  
MR-J3-700T4 5 (Note 1)  
MR-J3-11KT4  
10  
30  
10  
30  
30  
30  
30  
(Note 2)  
MR-J3-15KT4  
(Note 2)  
30  
30  
30  
30  
MR-J3-22KT4  
(Note 2)  
Note 1. The load inertia moment ratio is 15 at the rated rotation speed.  
2. When the external dynamic brake is used.  
13 - 9  
13 CHARACTERISTICS  
13.4 Cable flexing life  
The flexing life of the cables is shown below. This graph calculated values. Since they are not guaranteed  
values, provide a little allowance for these values.  
1
5
108  
107  
a
1
5
107  
106  
a : Long flex life encoder cable  
Long flex life motor power cable  
Long flex life motor brake cable  
1
5
106  
105  
b : Standard encoder cable  
Standard motor power cable  
Standard motor brake cable  
1
5
105  
104  
1
5
104  
103  
b
1
103  
4
7
10  
20  
40  
70 100  
200  
Flexing radius [mm]  
13.5 Inrush currents at power-on of main circuit and control circuit  
The following table indicates the inrush currents (reference data) that will flow when the maximum permissible  
voltage (200V class: 253VAC, 400V class: 528VAC) is applied at the power supply capacity of 2500kVA and  
the wiring length of 1m.  
Inrush currents (A0-p)  
Servo amplifier  
Main circuit power supply (L1, L2, L3)  
38A (Attenuated to approx. 14A in 10ms)  
30A (Attenuated to approx. 5A in 10ms)  
54A (Attenuated to approx. 12A in 10ms)  
120A (Attenuated to approx. 12A in 20ms)  
44A (Attenuated to approx. 20A in 20ms)  
88A (Attenuated to approx. 20A in 20ms)  
Control circuit power supply (L11, L21)  
MR-J3-10T1 to 40T1  
MR-J3-10T to 60T  
MR-J3-70T 100T  
MR-J3-200T 350T  
MR-J3-500T  
20 to 30A  
(Attenuated to approx. 0A in 1 to 2ms)  
MR-J3-700T  
30A (Attenuated to approx. 0A in 3ms)  
MR-J3-11KT  
235A (Attenuated to approx. 20A in 20ms)  
MR-J3-15KT  
MR-J3-22KT  
MR-J3-60T4 100T4  
MR-J3-200T4  
MR-J3-350T4 500T4  
MR-J3-700T4  
100A (Attenuated to approx. 5A in 10ms)  
120A (Attenuated to approx. 12A in 20ms)  
66A (Attenuated to approx. 10A in 20ms)  
67A (Attenuated to approx. 34A in 20ms)  
40 to 50A  
(Attenuated to approx. 0A in 2ms)  
41A (Attenuated to approx. 0A in 3ms)  
45A (Attenuated to approx. 0A in 3ms)  
MR-J3-11KT4  
325A (Attenuated to approx. 20A in 20ms)  
MR-J3-15KT4  
MR-J3-22KT4  
Since large inrush currents flow in the power supplies, always use no-fuse breakers and magnetic contactors.  
(Refer to section 14.10.)  
When circuit protectors are used, it is recommended to use the inertia delay type that will not be tripped by an  
inrush current.  
13 - 10  
14. OPTIONS AND AUXILIARY EQUIPMENT  
14. OPTIONS AND AUXILIARY EQUIPMENT  
Before connecting any option or peripheral equipment, turn off the power and wait  
for 15 minutes or more until the charge lamp turns off. Then, confirm that the  
voltage between P( ) and N( ) is safe with a voltage tester and others.  
Otherwise, an electric shock may occur. In addition, always confirm from the front  
of the servo amplifier whether the charge lamp is off or not.  
WARNING  
Use the specified auxiliary equipment and options. Unspecified ones may lead to a  
fault or fire.  
CAUTION  
14.1 Cable/connector sets  
POINT  
Protective structure indicated for cables and connecters is for a cable or  
connector alone. When the cables and connectors are used to connect the  
servo amplifier and servo motor, and if protective structures of the servo  
amplifier and servo motor are lower than that of the cable and connector,  
specifications of the servo amplifier and servo motor apply.  
As the cables and connectors used with this servo, purchase the options indicated in this section.  
14 - 1  
14. OPTIONS AND AUXILIARY EQUIPMENT  
14.1.1 Combinations of cable/connector sets  
33)  
Servo amplifier  
Personal computer  
1) 2)  
CN5  
CN3  
CN1  
32)  
Note  
CNP1  
CNP2  
CNP3  
CN6  
CN2  
CN4  
Direct connection type (cable length 10m or less, IP65)  
15) 16) 17) 18)  
31)  
Junction type (cable length more than 10m, IP20)  
21) 22)  
19) 20)  
Battery  
MR-J3BAT  
23)  
13) 14)  
To 24VDC power  
supply for  
electromagnetic  
brake  
9) 10) 11) 12)  
7) 8)  
Servo  
motor  
3) 4) 5) 6)  
HF-MP  
HF-KP  
Power supply  
connector  
Brake  
connector connector  
Encoder  
To next page b)  
To next page a)  
Note. Connectors for 3.5kW or less For 5kW or more, terminal blocks  
14 - 2  
14. OPTIONS AND AUXILIARY EQUIPMENT  
a)  
b)  
26)  
24) 25)  
27)  
Servo motor  
HF-SP  
28) 29)  
30)  
Power supply  
connector  
Brake  
connector connector  
Encoder  
26)  
24) 25)  
34)  
Servo motor  
HC-RP  
HC-UP  
30) 35) 36)  
HC-LP  
Power supply  
connector  
Brake  
connector connector  
Encoder  
26)  
24) 25)  
Servo motor  
HA-LP  
Terminal box  
14 - 3  
14. OPTIONS AND AUXILIARY EQUIPMENT  
No.  
1) Servo  
amplifier  
Product  
Model  
Description  
Application  
Supplied with  
servo  
power supply  
connector  
amplifiers of  
1kW or less in  
100V class  
and 200V  
class  
CNP1  
CNP2  
CNP3  
connector: 54928-0670 connector: 54928-0520 connector: 54928-0370  
(Molex)  
(Molex)  
(Molex)  
<Applicable cable example>  
Wire size: 0.14mm2(AWG26) to 2.5mm2  
(AWG14)  
REC. Lever:  
Cable finish OD: to 3.8mm  
54932-0000  
(Molex)  
2) Servo  
Supplied with  
servo  
amplifier  
power supply  
connector  
amplifiers of  
3.5kW in 200V  
class  
CNP1 connector:  
PC4/6-STF-7.62-  
CNP2 connector:  
54928-0520  
(Molex)  
CNP3 connector:  
PC4/3-STF-7.62-  
CRWH  
CRWH  
(Phoenix Contact)  
(Phoenix Contact)  
<Applicable cable example>  
Wire size: 0.2mm2 (AWG24) to 5.5mm2  
(AWG10)  
REC. Lever:  
54932-0000  
(Molex)  
Cable finish OD: to 5mm  
Supplied with  
servo  
amplifiers of  
2kW in 200V  
class and 2kW  
or less in 400V  
class  
CNP1 connector:  
721-207/026-000  
(Plug)  
CNP2 connector:  
721-205/026-000  
(Plug)  
CNP3 connector:  
721-203/026-000  
(Plug)  
(WAGO)  
(WAGO)  
(WAGO)  
<Applicable cable example>  
Wire size: 0.08mm2 (AWG28) to 2.5mm2  
(AWG12)  
REC. Lever: 231-131  
(WAGO)  
Cable finish OD: to  
mm  
4.1  
3) Motor power MR-PWS1CBL M-A1-L  
supply cable Cable length: 2 10m  
4) Motor power MR-PWS1CBL M-A1-H  
supply cable Cable length: 2 10m  
IP65  
Power supply connector  
5
Load side lead  
IP65  
HF-MP series  
HF-KP series  
5
Load side lead  
Long flex life  
Refer to section 14.1.3 for details.  
5) Motor power MR-PWS1CBL M-A2-L  
supply cable Cable length: 2 10m  
IP65  
Power supply connector  
5
Opposite-to-  
load side lead  
IP65  
HF-MP series  
HF-KP series  
6) Motor power MR-PWS1CBL M-A2-H  
supply cable Cable length: 2 10m  
5
Opposite-to-  
load side lead  
Long flex life  
Refer to section 14.1.3 for details.  
14 - 4  
14. OPTIONS AND AUXILIARY EQUIPMENT  
No.  
Product  
Model  
Description  
Power supply connector  
Application  
IP55  
7) Motor power MR-PWS2CBL03M-A1-L  
supply cable Cable length: 0.3m  
Load side lead  
HF-MP series  
HF-KP series  
Refer to section 14.1.3 for details.  
Refer to section 14.1.3 for details.  
Refer to section 14.1.4 for details.  
Refer to section 14.1.4 for details.  
8) Motor power MR-PWS2CBL03M-A2-L  
supply cable Cable length: 0.3m  
IP55  
Power supply connector  
Opposite-to-  
load side lead  
HF-MP series  
HF-KP series  
9) Motor brake MR-BKS1CBL M-A1-L  
IP65  
Brake connector  
cable  
10) Motor brake MR-BKS1CBL M-A1-H  
cable Cable length: 2 10m  
Cable length: 2  
5
10m  
Load side lead  
IP65  
HF-MP series  
HF-KP series  
5
Load side lead  
Long flex life  
11) Motor brake MR-BKS1CBL M-A2-L  
cable Cable length: 2 10m  
IP65  
Brake connector  
5
Opposite-to-  
load side lead  
IP65  
HF-MP series  
HF-KP series  
12) Motor brake MR-BKS1CBL M-A2-H  
cable Cable length: 2 10m  
5
Opposite-to-  
load side lead  
Long flex life  
IP55  
13) Motor brake MR-BKS2CBL03M-A1-L  
cable Cable length: 0.3m  
Brake connector  
Load side lead  
HF-MP series  
HF-KP series  
Refer to section 14.1.4 for details.  
14) Motor brake MR-BKS2CBL03M-A2-L  
IP55  
Brake connector  
cable  
Cable length: 0.3m  
Opposite-to-  
load side lead  
HF-MP series  
HF-KP series  
Refer to section 14.1.4 for details.  
15) Encoder  
cable  
MR-J3ENCBL M-A1-L  
IP65  
Encoder connector  
Cable length: 2  
MR-J3ENCBL M-A1-H  
Cable length: 2 10m  
5
10m  
Load side lead  
IP65  
16) Encoder  
cable  
HF-MP series  
HF-KP series  
5
Opposite-to-  
load side lead  
Long flex life  
Refer to section 14.1.2 (1) for details.  
17) Encoder  
cable  
MR-J3ENCBL M-A2-L  
Cable length: 2 10m  
IP65  
Encoder connector  
5
Opposite-to-  
load side lead  
IP65  
HF-MP series  
HF-KP series  
18) Encoder  
cable  
MR-J3ENCBL M-A2-H  
Cable length: 2 10m  
5
Opposite-to-  
load side lead  
Long flex life  
Refer to section 14.1.2 (1) for details.  
14 - 5  
14. OPTIONS AND AUXILIARY EQUIPMENT  
No.  
Product  
Model  
Description  
Encoder connector  
Application  
IP20  
19) Encoder  
cable  
MR-J3JCBL03M-A1-L  
Cable length: 0.3m  
Load side lead  
HF-MP series  
HF-KP series  
Refer to section 14.1.2 (3) for details.  
Encoder connector  
20) Encoder  
cable  
MR-J3JCBL03M-A2-L  
Cable length: 0.3m  
IP20  
Opposite-to-  
load side lead  
HF-MP series  
HF-KP series  
Refer to section 14.1.2 (3) for details.  
21) Encoder  
cable  
MR-EKCBL M-L  
Cable length: 20 30m  
MR-EKCBL M-H  
Cable length:  
IP20  
22) Encoder  
cable  
IP20  
Long flex life  
For HF-MP HF-KP series  
20 30 40 50m  
MR-ECNM  
Refer to section 14.1.2 (2) for details.  
23) Encoder  
connector  
set  
IP20  
For HF-MP HF-KP series  
Refer to section 14.1.2 (2) for details.  
24) Encoder  
cable  
MR-J3ENSCBL M-L  
Cable length:  
IP67  
Standard flex  
life  
2
5
10 20 30m  
For HF-SP HA-LP HC-UP HC-LP HC-RP series  
Refer to section 14.1.2 (4) for details.  
25) Encoder  
cable  
MR-J3ENSCBL M-H  
Cable length:  
IP67  
Long flex life  
2
5
10 20 30 40  
50m  
26) Encoder  
connector  
set  
MR-J3SCNS  
IP67  
For HF-SP HA-LP HC-UP HC-LP HC-RP series  
Refer to section 14.1.2 (4) for details.  
Straight plug: CM10-SP2S-L  
Socket contact: CM10-#22SC(S2)-100  
(DDK)  
27) Brake  
connector  
set  
MR-BKCNS1  
MR-PWCNS4  
IP67  
IP67  
For HF-SP series  
28) Power  
supply  
Plug: CE05-6A18-10SD-B-BSS  
Cable clamp: CE3057-10A-1 (D265)  
(DDK)  
connector  
set  
For HF-SP51 81  
For HF-SP52 152  
Example of applicable cable  
Applicable wire size: 2mm2 (AWG14) to 3.5mm2  
(AWG12)  
Cable finish D: 10.5 to 14.1mm  
Plug: CE05-6A22-22SD-D-BSS  
Cable clamp: CE3057-12A-1-D (D265)  
(DDK)  
29) Power  
supply  
MR-PWCNS5  
IP67  
connector  
set  
For HF-SP121 to  
301  
Example of applicable cable  
Applicable wire size: 5.5mm2 (AWG10) to 8mm2  
(AWG8)  
For HF-SP202 to  
502  
Cable finish D: 12.5 to 16mm  
14 - 6  
14. OPTIONS AND AUXILIARY EQUIPMENT  
No.  
30)  
Product  
Power  
Model  
MR-PWCNS3  
Description  
Plug: CE05-6A32-17SD-D-BSS  
Application  
IP67  
supply  
connector  
set  
Cable clamp: CE3057-20A-1-D (D265)  
(DDK)  
Be sure to use  
this when  
For HF-SP421  
For HF-SP702  
For HA-LP702  
Example of applicable cable  
Applicable wire size: 14mm2 (AWG6) to 22mm2  
(AWG4)  
corresponding  
to EN  
Standard.  
Cable finish  
D:  
22 to 23.8mm  
31) Cable for  
connecting  
battery  
MR-J3BTCBL03M  
For connection  
of battery  
Refer to section 14.1.2 (5) for details.  
32) USB cable  
MR-J3USBCBL3M  
Cable length: 3m  
For CN5 connector  
For personal computer connector  
A connector  
For connection  
with PC-AT  
compatible  
personal  
minB connector (5-pin)  
computer  
33) Connector  
set  
MR-J2CMP2  
MR-BKCN  
Connector: 10126-3000PE  
Shell kit: 10326-52F0-008(3M or equivalent)  
34) Break  
Plug: D/MS3106A10SL-4S(D190) (DDK)  
For cable connector : YS010-5-8(Daiwa Dengyo)  
Example of applicable cable  
EN standard  
compliant  
IP65  
connector set  
Applicable wire size: 0.3mm2 (AWG22) to  
1.25mm2 (AWG16)  
For HA-LP  
For HC-UP  
For HC-LP  
Cable finish: 5 to 8.3mm  
35) Power supply MR-PWCNS1  
connector set  
Plug: CE05-6A22-23SD-D-BSS  
Cable clamp: CE3057-12A-2-D (DDK)  
Example of applicable cable  
Applicable wire size: 2mm2 (AWG14) to 3.5mm2  
(AWG12)  
Be sure to use  
this when  
corresponding  
to EN standard  
IP65  
For HC-UP  
For HC-LP  
For HC-RP  
Cable finish: 9.5 to 13mm  
Plug: CE05-6A24-10SD-D-BSS  
Cable clamp: CE3057-16A-2-D (DDK)  
Example of applicable cable  
Applicable wire size: 5.5mm2 (AWG10) to 8mm2  
(AWG8)  
36) Power supply MR-PWCNS2  
connector set  
For HA-LP  
For HC-UP  
For HC-LP  
For HC-RP  
Cable finish: 13 to 15.5mm  
14 - 7  
14. OPTIONS AND AUXILIARY EQUIPMENT  
14.1.2 Encoder cable/connector sets  
(1) MR-J3ENCBL M-A1-L/H MR-J3ENCBL M-A2-L/H  
These cables are encoder cables for the HF-MP HF-KP series servo motors. The numerals in the Cable  
Length field of the table are the symbols entered in the part of the cable model. The cables of the lengths  
with the symbols are available.  
Cable length  
20m  
Protective  
structure  
Cable model  
Flex life  
Application  
2m  
2
5m  
5
10m  
10  
30m  
40m  
50m  
For HF-MP HF-KP servo  
motor  
MR-J3ENCBL M-A1-L  
MR-J3ENCBL M-A1-H  
MR-J3ENCBL M-A2-L  
MR-J3ENCBL M-A2-H  
IP65  
IP65  
IP65  
IP65  
Standard  
Long flex  
life  
2
2
2
5
5
5
10  
10  
10  
Load side lead  
Standard  
For HF-MP HF-KP servo  
motor  
Long flex  
life  
Opposite-to-load side lead  
(a) Connection of servo amplifier and servo motor  
Servo amplifier  
MR-J3ENCBL M-A1-L  
MR-J3ENCBL M-A1-H  
2)  
Servo motor  
HF-MP  
HF-KP  
1)  
or  
MR-J3ENCBL M-A2-L  
MR-J3ENCBL M-A2-H  
2)  
Servo motor  
HF-MP  
CN2  
HF-KP  
1)  
Cable model  
1) For CN2 connector  
2) For encoder connector  
MR-J3ENCBL M-  
A1-L  
Connector set: 54599-1019(Molex)  
Connector: 1674320-1  
Crimping tool for ground clip:  
1596970-1  
Receptacle: 36210-0100PL  
Shell kit: 36310-3200-008  
(3M)  
Crimping tool for receptacle  
contact: 1596847-1  
(Tyco Electronics)  
MR-J3ENCBL M-  
A1-H  
(Note) Signal layout  
(Note) Signal layout  
2
6
5
10  
(Note) Signal layout  
2
4
6
5
8
7
10  
LG  
4
8
7
MRR  
LG  
MRR  
SHD  
9
7
5
3
1
or  
1
P5  
9
BAT  
MR-J3ENCBL M-  
A2-L  
8
6
4
2
1
3
9
BAT  
3
MR  
P5 MR  
MR  
P5  
P5G  
MRR  
BAT  
View seen from wiring side.  
View seen from wiring side.  
MR-J3ENCBL M-  
A2-H  
View seen from wiring side.  
Note. Keep open the pins shown with  
. Especially, pin 10 is provided  
for manufacturer adjustment. If it is connected with any other pin, the  
servo amplifier cannot operate normally.  
Note. Keep open the pin shown  
with an  
.
14 - 8  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(b) Cable internal wiring diagram  
MR-J3ENCBL2M-L/-H  
MR-J3ENCBL5M-L/-H  
MR-J3ENCBL10M-L/-H  
Encoder side  
connector  
Servo amplifier  
side connector  
P5  
1
2
3
4
3
6
5
4
2
9
P5  
LG  
LG  
MR  
MRR  
BAT  
SD  
MR  
MRR  
BAT  
SHD  
9
Plate  
(2) MR-EKCBL M-L/H  
POINT  
The following encoder cables are of four-wire type. When using any of these  
encoder cables, set parameter No.PC22 to "1  
type.  
" to select the four-wire  
MR-EKCBL30M-L  
MR-EKCBL30M-H  
MR-EKCBL40M-H  
MR-EKCBL50M-H  
The servo amplifier and servo motor cannot be connected with these cables only. The servo motor side  
encoder cable (MR-J3JCBL03M-A1-L or MR-J3JCBL03M-A2-L) is required.  
The numerals in the Cable Length field of the table are the symbols entered in the part of the cable  
model. The cables of the lengths with the symbols are available.  
Cable length  
20m  
Protective  
structure  
Cable model  
Flex life  
Application  
2m  
5m  
10m  
30m  
40m  
50m  
For HF-MP HF-KP servo  
motor  
(Note)  
30  
MR-EKCBL M-L  
20  
20  
IP20  
IP20  
Standard  
Use in combination with MR-  
J3JCBL03M-A1-L or MR-  
J3JCBL03M-A2-L.  
(Note) (Note) (Note)  
30 40 50  
Long flex  
life  
MR-EKCBL M-H  
Note. Four-wire type cable.  
14 - 9  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(a) Connection of servo amplifier and servo motor  
Servo amplifier  
MR-EKCBL M-L  
MR-EKCBL M-H  
MR-J3JCBL03M-L  
Cable length: 0.3m  
Servo motor  
HF-MP  
HF-KP  
CN2  
1)  
2)  
Cable model  
1) Servo amplifier side connector  
Receptacle: 36210-0100PL Connector set: 54599-1019  
(Molex)  
2) Encoder side connector  
MR-EKCBL M-L  
Housing: 1-172161-9  
Shell kit: 536310-3200-008  
(3M)  
Connector pin: 170359-1  
(Tyco Electronics or equivalent)  
Cable clamp: MTI-0002  
(Toa Electric Industries)  
(Note) Signal layout  
(Note) Signal layout  
2
6
5
10  
Signal layout  
2
4
6
5
8
10  
LG  
4
8
MRR  
MDR  
LG  
MRR  
MDR  
or  
1
2
3
1
P5  
9
BAT  
1
3
7
MD  
9
BAT  
MR MRR BAT  
3
MR  
7
MD  
P5 MR  
MR-EKCBL M-H  
4
5
6
MD MDR CONT  
View seen from wiring side.  
View seen from wiring side.  
7
8
9
P5 LG SHD  
Note. Keep open the pins shown with  
. Especially, pin 10 is provided  
View seen from wiring side.  
for manufacturer adjustment. If it is connected with any other pin, the  
servo amplifier cannot operate normally.  
14 - 10  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(b) Internal wiring diagram  
MR-EKCBL20M-L  
MR-EKCBL30M-L  
Servo amplifier side Encoder side  
Servo amplifier side  
Encoder side  
P5  
LG  
1
2
7
8
P5E  
P5  
LG  
1
2
7
8
P5E  
P5G  
P5G  
MR  
3
4
1
2
3
9
MR  
MR  
3
4
7
8
9
1
2
4
5
3
6
9
MR  
MRR  
BAT  
SD  
MRR  
BAT  
SHD  
MRR  
MD  
MRR  
MD  
9
Plate  
MDR  
BAT  
MDR  
BAT  
CONT  
SHD  
(Note)  
Plate  
SD  
(Note)  
MR-EKCBL20M-H  
MR-EKCBL30M-H  
MR-EKCBL40M-H  
MR-EKCBL50M-H  
Servo amplifier side  
Encoder side  
Servo amplifier side  
Encoder side  
P5  
LG  
1
2
7
8
P5E  
P5G  
P5  
LG  
1
2
7
8
P5E  
P5G  
MR  
3
4
1
2
3
9
MR  
MRR  
BAT  
SD  
MRR  
BAT  
SHD  
MR  
3
4
7
8
9
1
2
4
5
3
6
9
MR  
9
MRR  
MD  
MRR  
MD  
Plate  
(Note)  
MDR  
BAT  
MDR  
BAT  
CONT  
SHD  
SD  
Plate  
(Note)  
Note. Always make connection for use in an absolute position detection system. Wiring is not necessary for use in an incremental  
system.  
When fabricating the cable, use the wiring diagram corresponding to the length indicated below.  
Applicable wiring diagram  
Cable flex life  
Less than 10m  
MR-EKCBL20M-L  
MR-EKCBL20M-H  
30m to 50m  
Standard  
Long flex life  
MR-EKCBL30M-H  
MR-EKCBL40M-H  
MR-EKCBL50M-H  
14 - 11  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(c) When fabricating the encoder cable  
When fabricating the cable, prepare the following parts and tool, and fabricate it according to the wiring  
diagram in (b). Refer to section 14.9 for the specifications of the used cable.  
Parts/Tool  
Description  
Connector set  
MR-ECNM  
Servo amplifier side connector  
Receptacle: 36210-0100PL  
Shell kit: 536310-3200-008  
(3M)  
Encoder side connector  
Housing: 1-172161-9  
Connector pin: 170359-1  
(Tyco Electronics or equivalent)  
Cable clamp: MTI-0002  
(Toa Electric Industries)  
Or  
Connector set: 54599-1019(Molex)  
(3) MR-J3JCBL03M-A1-L MR-J3JCBL03M-A2-L  
The servo amplifier and servo motor cannot be connected with these cables only. The servo motor side  
encoder cable (MR-EKCBL M-L/H) is required.  
Protective  
Cable model  
Cable length  
Flex life  
Application  
structure  
MR-J3JCBL03M-A1-L  
For HF-MP HF-KP servo motor  
Load side lead  
Use in combination with MR-EKCBL  
M-L/H.  
0.3m  
IP20  
Standard  
MR-J3JCBL03M-A2-L  
For HF-MP HF-KP servo motor  
Opposite-to-load side lead  
Use in combination with MR-EKCBL  
M-L/H.  
14 - 12  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(a) Connection of servo amplifier and servo motor  
MR-J3JCBL03M-A1-L  
2)  
Servo amplifier  
Servo motor  
HF-MP  
HF-KP  
1)  
MR-EKCBL M-L/-H  
or  
MR-J3JCBL03M-A2-L  
2)  
Servo motor  
HF-MP  
HF-KP  
CN2  
1)  
Cable model  
1) Junction connector  
2) For encoder connector  
MR-J3JCBL03M-A1-L Housing: 1-172169-9  
Contact: 1473226-1  
Connector: 1674320-1  
Crimping tool for ground clip: 1596970-1  
Crimping tool for receptacle contact: 1596847-1  
(Tyco Electronics)  
Cable clamp: 316454-1  
(Tyco Electronics)  
Signal layout  
Signal layout  
9 SHD  
3
2
1
7 MDR 8 MD  
5 MR 6 P5G  
BAT MRR MR  
MR-J3JCBL03M-A2-L  
6
CONT  
9
5
4
3
P5 4 MRR  
MDR MD  
8
1 CONT 2 BAT  
7
SHD LG P5  
View seen from wiring side.  
View seen from wiring side.  
(b) Internal wiring diagram  
MR-J3JCBL03M-A1-L  
Junction  
connector  
Encoder side  
connector  
P5  
7
8
1
3
6
5
4
8
7
2
1
P5  
LG  
MR  
P5G  
MR  
MRR  
MD  
2
4
5
3
6
MRR  
MD  
MDR  
BAT  
SEL  
MDR  
BAT  
CONT  
SHD  
9
9
SHD  
14 - 13  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(4) MR-J3ENSCBL M-L MR-J3ENSCBL M-H  
These cables are detector cables for HF-SP HA-LP HC-RP HC-UP HC-LP series servo motors. The  
number in the cable length column of the table indicates the symbol filling the square in the cable model.  
Cable lengths corresponding to the specified symbols are prepared.  
Cable length  
Protective  
structure  
Cable model  
Flex life  
Application  
2m  
2
5m  
5
10m  
10  
20m  
20  
30m  
30  
40m  
40  
50m  
50  
MR-J3ENSCBL M-L  
MR-J3ENSCBL M-H  
IP67  
IP67  
Standard  
Long flex  
life  
For HF-SP HA-LP HC-  
RP HC-UP HC-LP servo  
motor  
2
5
10  
20  
30  
(a) Connection of servo amplifier and servo motor  
Servo amplifier  
MR-J3ENSCBL M-L  
MR-J3ENSCBL M-H  
2)  
Servo motor  
HF-SP  
CN2  
1)  
Cable model  
1) For CN2 connector  
2) For encoder connector  
In case of 10m or shorter cables  
Straight plug: CM10-SP10S-M  
Socket contact: CM10-  
#22SC(C1)-100  
MR-J3ENSCBL  
M-L  
Receptacle: 36210-0100PL  
Shell kit: 536310-3200-008  
(3M)  
Connector set: 54599-1019  
(Molex)  
Crimping tool: 357J-50446  
(DDK)  
(Note) Signal layout  
(Note) Signal layout  
Applicable cable AWG20 to 22  
2
6
5
10  
2
4
6
5
8
7
10  
LG  
4
8
7
MRR  
LG  
MRR  
In case of 20m or longer cables  
Straight plug: CM10-SP10S-M  
Socket contact: CM10-  
#22SC(C2)-100  
or  
1
P5  
9
BAT  
1
3
9
BAT  
3
MR  
P5 MR  
Crimping tool: 357J-50447  
(DDK)  
View seen from wiring side.  
View seen from wiring side.  
Applicable cable AWG23 to 28  
Note. Keep open the pins shown with  
. Especially, pin 10 is provided  
MR-J3ENSCBL  
M-H  
(Note) Signal layout  
for manufacturer adjustment. If it is connected with any other pin, the  
servo amplifier cannot operate normally.  
3
2
1
MRR  
MR  
7
6
5
4
LG  
BAT  
10  
9
8
SHD  
P5  
View seen from wiring side  
Note. Keep open the pin shown  
with an  
.
14 - 14  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(b) Internal wiring diagram  
MR-J3ENSCBL2M-L/H  
MR-J3ENSCBL5M-L/H  
MR-J3ENSCBL10M-L/H  
MR-J3ENSCBL20M-L  
MR-J3ENSCBL30M-L  
MR-J3ENSCBL20M-H  
MR-J3ENSCBL30M-H  
MR-J3ENSCBL40M-H  
MR-J3ENSCBL50M-H  
Encoder side  
connector  
Servo amplifier  
side connector  
Encoder side  
connector  
Servo amplifier  
side connector  
Encoder side  
connector  
Servo amplifier  
side connector  
P5  
1
2
8
5
P5  
LG  
LG  
1
8
P5  
P5  
P5  
1
2
8
5
P5  
2
3
5
1
LG  
LG  
LG  
LG  
MR  
MRR  
BAT  
SD  
MR  
4
2
MRR  
BAT  
SHD  
9
4
MR  
3
4
1
2
4
MR  
10  
Plate  
MRR  
BAT  
SD  
MRR  
BAT  
9
10 SHD  
Plate  
MR  
3
4
9
1
2
4
MR  
MRR  
BAT  
SD  
MRR  
BAT  
10 SHD  
Plate  
(c) When fabricating the encoder cable  
When fabricating the cable, prepare the following parts and tool, and fabricate it according to the wiring  
diagram in (b). Refer to section 14.9 for the specifications of the used cable.  
Parts/Tool  
Description  
Connector set  
MR- J3SCNS (Option)  
Servo amplifier side connector  
Receptacle: 36210-0100PL  
Shell kit: 536310-3200-008  
(3M)  
Encoder side connector  
Straight plug: CM10-SP10S-M  
Socket contact: CM10-#22SC(S1)-100  
Applicable wire size: AWG20 or less  
Recommended tightening jig: 357J-51456T  
(DDK)  
Or  
Connector set: 54599-1019  
(Molex)  
14 - 15  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(5) MR-J3BTCBL03M  
This cable is a battery connection cable. Use this cable to retain the current position even if the detector  
cable is disconnected from the servo amplifier.  
Cable model  
Cable length  
0.3m  
Application  
MR-J3BTCBL03M  
For HF-MP HF-KP HF-SP servo motor  
(a) Connection of servo amplifier and servo motor  
Servo amplifier  
1)  
MR-J3BTCBL03M  
2)  
(Note)  
Encoder cable  
Servo motor  
CN2  
Battery  
3)  
Note. For the detector cable, refer to (1), (2), (3) and (4) in this section.  
Cable model  
1) For CN2 connector  
2) Junction connector  
Plug: 36110-3000FD  
3) For battery connector  
MR-J3BTCBL03M  
Receptacle: 36210-0100PL  
Connector: DF3-2EP-2C  
Contact: DF3-EP2428PCA  
(Hirose Denki)  
Shell kit: 536310-3200-008  
Shell kit: 36310-F200-008  
(3M)  
(3M)  
Or  
Connector set: 54599-1019  
(Molex)  
14 - 16  
14. OPTIONS AND AUXILIARY EQUIPMENT  
14.1.3 Motor power supply cables  
These cables are motor power supply cables for the HF-MP HF-KP series servo motors. The numerals in the  
Cable Length field of the table are the symbols entered in the part of the cable model. The cables of the  
lengths with the symbols are available.  
Refer to section 4.10 when wiring.  
Cable length  
Protective  
structure  
Cable model  
Flex life  
Application  
0.3m  
2m  
5m  
10m  
10  
For HF-MP HF-KP servo motor  
Load side lead  
MR-PWS1CBL M-A1-L  
MR-PWS1CBL M-A2-L  
MR-PWS1CBL M-A1-H  
MR-PWS1CBL M-A2-H  
MR-PWS2CBL M-A1-L  
MR-PWS2CBL M-A2-L  
2
5
IP65  
IP65  
IP65  
IP65  
IP55  
IP55  
Standard  
Standard  
For HF-MP HF-KP servo motor  
Opposite-to-load side lead  
For HF-MP HF-KP servo motor  
Load side lead  
2
2
2
5
5
5
10  
10  
10  
Long flex  
life  
Long flex  
life  
For HF-MP HF-KP servo motor  
Opposite-to-load side lead  
For HF-MP HF-KP servo motor  
Load side lead  
03  
03  
Standard  
Standard  
For HF-MP HF-KP servo motor  
Opposite-to-load side lead  
(1) Connection of servo amplifier and servo motor  
MR-PWS1CBL M-A1-L  
MR-PWS1CBL M-A1-H  
MR-PWS2CBL03M-A1-L  
1)  
Servo amplifier  
Servo motor  
HF-MP  
or  
HF-KP  
MR-PWS1CBL M-A2-L  
MR-PWS1CBL M-A2-H  
MR-PWS2CBL03M-A2-L  
CNP3 connector  
supplied with servo  
amplifier  
1)  
Servo motor  
HF-MP  
CNP3  
HF-KP  
Cable model  
1) For motor power supply connector  
Connector: JN4FT04SJ1-R  
Hod, socket insulator  
Bushing, ground nut  
Contact: ST-TMH-S-C1B-100-(A534G)  
Crimping tool: CT160-3-TMH5B  
(Japan Aviation Electronics Industry)  
MR-PWS1CBL M-A1-L  
MR-PWS1CBL M-A2-L  
MR-PWS1CBL M-A1-H  
MR-PWS1CBL M-A2-H  
Signal layout  
1
2 U  
3 V  
4
W
Connector: JN4FT04SJ2-R  
Hod, socket insulator  
MR-PWS2CBL03M-A1-L  
Bushing, ground nut  
View seen from wiring side.  
Contact: ST-TMH-S-C1B-100-(A534G)  
Crimping tool: CT160-3-TMH5B  
(Japan Aviation Electronics Industry)  
MR-PWS2CBL03M-A2-L  
(2) Internal wiring diagram  
MR-PWS1CBL M-A1-H MR-PWS1CBL M-A2-H  
MR-PWS2CBL03M-A1-L MR-PWS2CBL03M-A2-L  
AWG 19 (Red) (Note)  
U
V
W
AWG 19 (White)  
AWG 19 (Black)  
AWG 19 (Green/yellow)  
Note. These are not shielded cables.  
14 - 17  
14. OPTIONS AND AUXILIARY EQUIPMENT  
14.1.4 Motor brake cables  
These cables are motor brake cables for the HF-MP HF-KP series servo motors. The numerals in the Cable  
Length field of the table are the symbols entered in the part of the cable model. The cables of the lengths  
with the symbols are available.  
Refer to section 4.11 when wiring.  
Cable length  
Protective  
structure  
Cable model  
Flex life  
Application  
0.3m  
2m  
5m  
10m  
10  
For HF-MP HF-KP servo motor  
Load side lead  
MR-PWS1CBL M-A1-L  
MR-PWS1CBL M-A2-L  
MR-PWS1CBL M-A1-H  
MR-PWS1CBL M-A2-H  
MR-PWS2CBL M-A1-L  
MR-PWS2CBL M-A2-L  
2
5
IP65  
IP65  
IP65  
IP65  
IP55  
IP55  
Standard  
Standard  
For HF-MP HF-KP servo motor  
Opposite-to-load side lead  
For HF-MP HF-KP servo motor  
Load side lead  
2
2
2
5
5
5
10  
10  
10  
Long flex  
life  
Long flex  
life  
For HF-MP HF-KP servo motor  
Opposite-to-load side lead  
For HF-MP HF-KP servo motor  
Load side lead  
03  
03  
Standard  
Standard  
For HF-MP HF-KP servo motor  
Opposite-to-load side lead  
(1) Connection of servo amplifier and servo motor  
MR-BKS1CBL M-A1-L  
MR-BKS1CBL M-A1-H  
MR-BKS2CBL03M-A1-L  
1)  
Servo motor  
HF-MP  
HF-KP  
24VDC power  
supply for  
electromagnetic  
brake  
or  
MR-BKS1CBL M-A2-L  
MR-BKS1CBL M-A2-H  
MR-BKS2CBL03M-A2-L  
1)  
Servo motor  
HF-MP  
HF-KP  
Cable model  
1) For motor brake connector  
Connector: JN4FT02SJ1-R  
Hod, socket insulator  
Bushing, ground nut  
Contact: ST-TMH-S-C1B-100-(A534G)  
Crimping tool: CT160-3-TMH5B  
(Japan Aviation Electronics Industry)  
MR-BKS1CBL M-A1-L  
MR-BKS1CBL M-A2-L  
MR-BKS1CBL M-A1-H  
MR-BKS1CBL M-A2-H  
Signal layout  
1 B1  
2 B2  
View seen from wiring side.  
Connector: JN4FT02SJ2-R  
Hod, socket insulator  
MR-BKS2CBL03M-A1-L  
MR-BKS2CBL03M-A2-L  
Bushing, ground nut  
Contact: ST-TMH-S-C1B-100-(A534G)  
Crimping tool: CT160-3-TMH5B  
(Japan Aviation Electronics Industry)  
(2) Internal wiring diagram  
MR-BKS1CBL M-A1-H  
MR-BKS2CBL03M-A1-L  
MR-BKS1CBL M-A2-H  
MR-BKS2CBL03M-A2-L  
(Note)  
B1  
AWG 20  
AWG 20  
B2  
Note. These are not shielded cables.  
14 - 18  
14. OPTIONS AND AUXILIARY EQUIPMENT  
14.2 Regenerative options  
The specified combinations of regenerative options and servo amplifiers may only  
be used. Otherwise, a fire may occur.  
CAUTION  
(1) Combination and regenerative power  
The power values in the table are resistor-generated powers and not rated powers.  
Regenerative power[W]  
Built-in  
(Note 1)  
MR-RB50  
[13 ]  
(Note 1)  
MR-MB51  
[6.7 ]  
Servo amplifier  
MR-RB032  
[40 ]  
MR-RB12  
[40 ]  
MR-RB30  
[13 ]  
MR-RB31  
[6.7 ]  
MR-RB32  
[40 ]  
regenerative  
resistor  
MR-J3-10T (1)  
MR-J3-20T (1)  
MR-J3-40T (1)  
MR-J3-60T  
30  
30  
30  
30  
30  
30  
10  
10  
100  
100  
100  
100  
100  
10  
MR-J3-70T  
20  
300  
300  
MR-J3-100T  
MR-J3-200T  
MR-J3-350T  
MR-J3-500T  
MR-J3-700T  
20  
100  
100  
130  
170  
300  
300  
500  
500  
300  
300  
500  
500  
Regenerative power[W]  
(Note 1) (Note 1) (Note 1)  
Built-in  
regenerative  
resistor  
(Note 1)  
(Note 1)  
Servo amplifier  
MR-RB1H-4  
[82 ]  
MR-RB3M-4 MR-RB3G-4 MR-RB5G-4 MR-RB34-4 MR-RB54-4  
[120 ]  
300  
[47 ]  
[47 ]  
[26 ]  
[26 ]  
MR-J3-60T4  
MR-J3-100T4  
MR-J3-200T4  
MR-J3-350T4  
MR-J3-500T4  
MR-J3-700T4  
15  
100  
100  
15  
300  
100  
100  
130  
170  
300  
300  
500  
500  
300  
300  
500  
500  
(Note 2) Regenerative power[W]  
Servo amplifier  
External regenerative  
resistor (Accessory)  
MR-RB5E  
MR-RB9P  
[4.5 ]  
MR-RB9F  
[3 ]  
MR-RB6B-4 MR-RB60-4 MR-RB6K-4  
[6 ]  
[20 ]  
[12.5 ]  
[10 ]  
MR-J3-11KT  
MR-J3-15KT  
MR-J3-22KT  
MR-J3-11KT4  
MR-J3-15KT4  
MR-J3-22KT4  
500 (800)  
850 (1300)  
850 (1300)  
500 (800)  
850 (1300)  
850 (1300)  
500 (800)  
850 (1300)  
850 (1300)  
500 (800)  
850 (1300)  
850 (1300)  
Note 1. Always install a cooling fan.  
2. Values in parentheses assume the installation of a cooling fan.  
14 - 19  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(2) Selection of the regenerative option  
Use the following method when regeneration occurs continuously in vertical motion applications or when it  
is desired to make an in-depth selection of the regenerative option.  
(a) Regenerative energy calculation  
Use the following table to calculate the regenerative energy.  
tf(1 cycle)  
No  
Up  
Time  
Down  
M
t1  
Tpsa1  
t2  
t3  
t4  
Tpsd1  
Tpsa2  
Tpsd2  
Friction  
torque  
1)  
( )  
(Driving)  
2)  
TF  
4)  
8)  
5)  
TU  
6)  
3)  
7)  
(Regenerative)  
( )  
Formulas for calculating torque and energy in operation  
Torque applied to servo motor [N m]  
Regenerative power  
Energy [J]  
0.1047  
2
(JL JM)  
1
Tpsa1  
N0  
E1  
N0 T1 Tpsa1  
T1  
TU  
TF  
1)  
2)  
104  
9.55  
T2 TU TF  
E2 0.1047 N0 T2 t1  
0.1047  
(JL JM)  
1
N0  
104  
E3  
N0 T3 Tpsd1  
T3  
TU  
TF  
3)  
2
Tpsd1  
9.55  
T4 TU  
E4 0 (No regeneration)  
0.1047  
4), 8)  
5)  
(JL JM)  
1
Tpsa2  
N0  
E5  
N0 T5 Tpsa2  
T5  
T6  
T7  
TU TF  
9.55 104  
TU TF  
2
E6 0.1047 N0 T6 t3  
0.1047  
6)  
(JL JM)  
1
N0  
104  
N0  
E7  
T7 Tpsd2  
TU TF  
7)  
2
Tpsd2  
9.55  
From the calculation results in 1) to 8), find the absolute value (Es) of the sum total of negative energies.  
14 - 20  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(b) Losses of servo motor and servo amplifier in regenerative mode  
The following table lists the efficiencies and other data of the servo motor and servo amplifier in the  
regenerative mode.  
Servo amplifier Inverse efficiency[%] Capacitor charging[J]  
Servo amplifier Inverse efficiency[%] Capacitor charging[J]  
MR-J3-10T  
MR-J3-10T1  
MR-J3-20T  
MR-J3-20T1  
MR-J3-40T  
MR-J3-40T1  
MR-J3-60T(4)  
MR-J3-70T  
MR-J3-100T  
MR-J3-100T4  
55  
55  
70  
70  
85  
85  
85  
80  
80  
80  
9
4
MR-J3-200T  
85  
85  
85  
85  
90  
90  
90  
90  
90  
40  
25  
MR-J3-200T4  
MR-J3-350T  
9
40  
4
MR-J3-350T4  
MR-J3-500T(4)  
MR-J3-700T(4)  
MR-J3-11KT(4)  
MR-J3-15KT(4)  
MR-J3-22KT(4)  
36  
11  
10  
11  
18  
18  
12  
45  
70  
120  
170  
250  
Inverse efficiency ( )  
:Efficiency including some efficiencies of the servo motor and servo amplifier  
when rated (regenerative) torque is generated at rated speed. Since the  
efficiency varies with the speed and generated torque, allow for about 10%.  
Capacitor charging (Ec) :Energy charged into the electrolytic capacitor in the servo amplifier.  
Subtract the capacitor charging from the result of multiplying the sum total of regenerative energies by the  
inverse efficiency to calculate the energy consumed by the regenerative option.  
ER [J]  
Es Ec  
Calculate the power consumption of the regenerative option on the basis of single-cycle operation period tf [s]  
to select the necessary regenerative option.  
PR [W] ER/tf  
14 - 21  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(3) Parameter setting  
Set parameter No.PA02 according to the option to be used.  
Parameter No.PA02  
0 0  
Selection of regenerative option  
00: Regenerative option is not used  
For servo amplifier of 100W, regenerative resistor is not used.  
For servo amplifier of 200 to 7kW, built-in regenerative resistor is used.  
Supplied regenerative resistors or regenerative option is used with  
the servo amplifier of 11k to 22kW.  
01: FR-BU2-(H) FR-RC-(H) FR-CV-(H)  
02: MR-RB032  
03: MR-RB12  
04: MR-RB32  
05: MR-RB30  
06: MR-RB50(Cooling fan is required)  
08: MR-RB31  
09: MR-RB51(Cooling fan is required)  
80: MR-RB1H-4  
81: MR-RB3M-4(Cooling fan is required)  
82: MR-RB3G-4(Cooling fan is required)  
83: MR-RB5G-4(Cooling fan is required)  
84: MR-RB34-4(Cooling fan is required)  
85: MR-RB54-4(Cooling fan is required)  
FA: When the supplied regenerative resistor is cooled by the cooling  
fan to increase the ability with the servo amplifier of 11k to 22kW.  
Setting  
value  
00  
Regenerative resistor, regenerative option  
Standard supplied regenerative resistor  
Standard supplied regenerative resistor  
(with a cooling fan to cool it)  
MR-RB5E  
FA  
00  
FA  
00  
FA  
00  
FA  
00  
FA  
00  
FA  
00  
FA  
MR-RB5E (with a cooling fan to cool it)  
MR-RB9P  
MR-RB9P (with a cooling fan to cool it)  
MR-RB9F  
MR-RB9F (with a cooling fan to cool it)  
MR-RB6B-4  
MR-RB6B-4 (with a cooling fan to cool it)  
MR-RB60-4  
MR-RB60-4 (with a cooling fan to cool it)  
MR-RB6K-4  
MR-RB6K-4 (with a cooling fan to cool it)  
(4) Connection of the regenerative option  
POINT  
When the MR-RB50 MR-RB51 MR-RB3M-4 MR-RB3G-4 MR-RB5G-4  
MR-RB34-4 MR-RB54-4 is used, a cooling fan is required to cool it. The  
cooling fan should be prepared by the customer.  
For the sizes of wires used for wiring, refer to section 14.9.  
The regenerative option will cause a temperature rise of 100 relative to the ambient temperature. Fully  
examine heat dissipation, installation position, used cables, etc. before installing the option. For wiring, use  
flame-resistant cables and keep them clear of the regenerative option body. Always use twisted cables of  
max. 5m length for connection with the servo amplifier.  
14 - 22  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(a) MR-J3-350T or less MR-J3-200T4 or less  
Always remove the wiring from across P-D and fit the regenerative option across P-C.  
The G3 and G4 terminals act as a thermal sensor. G3-G4 is disconnected when the regenerative option  
overheats abnormally.  
Always remove the lead from across P-D.  
Servo amplifier  
Regenerative option  
P
P
C
D
C
G3  
(Note 2)  
5m (16.4 ft) max.  
G4  
Cooling fan (Note 1)  
Note 1. When using the MR-RB50, MR-RB3M-4, MR-RB3G-4 or MR-RB5G-4, forcibly cool it with  
a cooling fan (92 92, minimum air flow : 1.0m3).  
2. Make up a sequence which will switch off the magnetic contactor (MC) when abnormal  
heating occurs.  
G3-G4 contact specifications  
Maximum voltage: 120V AC/DC  
Maximum current: 0.5A/4.8VDC  
Maximum capacity: 2.4VA  
For the MR-RB50, MR-RB3M-4, MR-RB3G-4 or MR-RB5G-4 install the cooling fan as shown.  
[Unit : mm(in)]  
Cooling fan installation screw hole dimensions  
2-M3 screw hole  
Top  
(for cooling fan installation)  
Depth 10 or less  
Cooling fan  
Terminal block  
(Screw hole already  
machined)  
Thermal relay  
Bottom  
82.5  
40 (1.58)  
(3.25)  
Installation surface  
Horizontal installation  
Vertical  
installation  
14 - 23  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(b) MR-J3-350T4 MR-J3-500T(4) MR-J3-700T(4)  
Always remove the wiring (across P-C) of the servo amplifier built-in regenerative resistor and fit the  
regenerative option across P-C.  
The G3 and G4 terminals act as a thermal sensor. G3-G4 is opened when the regenerative option  
overheats abnormally.  
Always remove wiring (across P-C) of servo  
amplifier built-in regenerative resistor.  
Servo amplifier  
Regenerative option  
P
P
C
C
G3  
(Note 2)  
G4  
5m or less  
Cooling fan (Note 1)  
Note 1. When using the MR-RB51, MR-RB3G-4, MR-RB5G-4, MR-RB34-4 or MR-RB54-4,  
forcibly cool it with a cooling fan (92 92, minimum air flow : 1.0m3).  
2. Make up a sequence which will switch off the magnetic contactor (MC) when abnormal  
heating occurs.  
G3-G4 contact specifications  
Maximum voltage: 120V AC/DC  
Maximum current: 0.5A/4.8VDC  
Maximum capacity: 2.4VA  
When using the regenerative resistor option, remove the servo amplifier's built-in regenerative resistor  
terminals (across P-C), fit them back to back, and secure them to the frame with the accessory screw as  
shown below.  
Mounting method  
Accessory screw  
14 - 24  
14. OPTIONS AND AUXILIARY EQUIPMENT  
The drawing below shows the MR-J3-350T4 and MR-J3-500T(4). Refer to section 12.1 (6) Outline  
drawings for the position of the fixing screw for MR-J3-700T(4).  
Built-in regenerative resistor  
lead terminal fixing screw  
For the MR-RB51, MR-RB3G-4, MR-RB5G-4, MR-RB34-4 or MR-RB54-4 install the cooling fan as  
shown.  
[Unit : mm(in)]  
Cooling fan installation screw hole dimensions  
2-M3 screw hole  
Top  
(for cooling fan installation)  
Depth 10 or less  
Cooling fan  
Terminal block  
(Screw hole already  
machined)  
Thermal relay  
Bottom  
82.5  
40 (1.58)  
(3.25)  
Installation surface  
Horizontal installation  
Vertical  
installation  
14 - 25  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(c) MR-J3-11KT(4) to MR-J3-22KT(4) (when using the supplied regenerative resistor)  
When using the regenerative resistors supplied to the servo amplifier, the specified number of resistors  
(4 or 5 resistors) must be connected in series. If they are connected in parallel or in less than the  
specified number, the servo amplifier may become faulty and/or the regenerative resistors burn. Install  
the resistors at intervals of about 70mm. Cooling the resistors with two cooling fans (92 92, minimum  
air flow : 1.0m3) improves the regeneration capability. In this case, set "  
FA" in parameter No.PA02.  
5m or less  
Do not remove  
Servo amplifier  
the short bar.  
P1  
P
C
(Note) Series connection  
Cooling fan  
Note. The number of resistors connected in series depends on the resistor type. The thermal sensor is not mounted on the  
attached regenerative resistor. An abnormal heating of resistor may be generated at a regenerative circuit failure. Install a  
thermal sensor near the resistor and establish a protective circuit to shut off the main circuit power supply when abnormal  
heating occurs. The detection level of the thermal sensor varies according to the settings of the resistor. Set the thermal  
sensor in the most appropriate position on your design basis or use the thermal sensor built-in regenerative option (MR-  
RB5E, 9P, 9F, 6B-4, 60-4 and 6K-4) provided by Mitsubishi Electric Corporation.  
Regenerative  
resistor  
Regenerative power [W] Resistance  
Number of  
resistors  
Servo amplifier  
[ ]  
Normal  
500  
Cooling  
800  
MR-J3-11KT  
MR-J3-15KT  
MR-J3-22KT  
MR-J3-11KT4  
MR-J3-15KT4  
MR-J3-22KT4  
GRZG400-1.5  
GRZG400-0.9  
GRZG400-0.6  
GRZG400-5.0  
GRZG400-2.5  
GRZG400-2.0  
6
4.5  
3
4
5
5
4
5
5
850  
1300  
1300  
800  
850  
500  
20  
850  
1300  
1300  
12.5  
10  
850  
14 - 26  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(d) MR-J3-11KT(4)-PX to MR-J3-22KT(4)-PX (when using the regenerative option)  
The MR-J3-11KT(4)-PX to MR-J3-22KT(4)-PX servo amplifiers are not supplied with regenerative  
resistors. When using any of these servo amplifiers, always use the MR-RB5E, 9P, 9F, 6B-4, 60-4 and  
6K-4 regenerative option.  
The MR-RB5E, 9P, 9F, 6B-4, 60-4 and 6K-4 are regenerative options that have encased the GRZG400-  
1.5 , GRZG400-0.9 , GRZG400-0.6 , GRZG400-5.0 , GRZG400-2.5 , GRZG400-2.0 respectively.  
When using any of these regenerative options, make the same parameter setting as when using the  
GRZG400-1.5 , GRZG400-0.9 , GRZG400-0.6 , GRZG400-5.0 , GRZG400-2.5 , GRZG400-2.0  
(supplied regenerative resistors or regenerative option is used with 11kW or more servo amplifier).  
Cooling the regenerative option with cooling fans improves regenerative capability.  
The G3 and G4 terminals are for the thermal protector. G3-G4 is opened when the regenerative option  
overheats abnormally.  
Servo amplifier  
Do not remove  
Regenerative option  
the short bar.  
P1  
P
C
P
C
G3  
G4  
(Note)  
Configure up a circuit which  
shuts off main circuit power  
when thermal protector operates.  
Note. Specifications of contact across G3-G4  
Maximum voltage : 120V AC/DC  
Maximum current : 0.5A/4.8VDC  
Maximum capacity : 2.4VA  
Regenerative power [W]  
Regenerative option  
Servo amplifier  
model  
Resistance [ ]  
Without  
With  
cooling fans  
cooling fans  
MR-J3-11KT-PX  
MR-J3-15KT-PX  
MR-J3-22KT-PX  
MR-J3-11KT4-PX  
MR-J3-15KT4-PX  
MR-J3-22KT4-PX  
MR-RB5E  
MR-RB9P  
6
4.5  
3
500  
850  
850  
500  
850  
850  
800  
1300  
1300  
800  
MR-RB9F  
MR-RB6B-4  
MR-RB60-4  
MR-RB6K-4  
20  
12.5  
10  
1300  
1300  
When using cooling fans, install them using the mounting holes provided in the bottom of the  
regenerative option. In this case, set "  
FA" in parameter No.PA02.  
Top  
MR-RB5E 9P 9F 6B-4 60-4 6K-4  
Bottom  
TE1  
2 cooling fans  
(92 92, minimum air flow: 1.0m3)  
TE  
G4 G3 C  
P
Mounting screw  
4-M3  
14 - 27  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(5) Outline dimension drawings  
(a) MR-RB032 MR-RB12  
[Unit: mm (in)]  
TE1  
Terminal block  
G3  
G4  
P
6 mounting hole  
LA  
LB  
C
Terminal screw: M3  
Tightening torque: 0.5 to 0.6 [N m]  
(4 to 5 [lb in])  
MR-RB  
Mounting screw  
Screw size: M5  
Tightening torque: 3.24 [N m]  
(28.7 [lb in])  
5
G3  
G4  
P
TE1  
C
1.6  
6
Approx. 20  
LD  
LC  
Regenerative  
Variable dimensions  
Mass  
option  
LA  
30  
40  
LB  
15  
15  
LC  
119  
169  
LD  
99  
[kg] [lb]  
0.5 1.1  
1.1 2.4  
MR-RB032  
MR-RB12  
149  
14 - 28  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(b) MR-RB30 MR-RB31 MR-RB32 MR-RB34-4 MR-RB3M-4 MR-RB3G-4  
[Unit: mm (in)]  
TE1  
Terminal block  
Cooling fan mounting  
screw (2-M4 screw)  
P
C
G3  
G4  
Terminal screw: M4  
Tightening torque: 1.2 [N m] (10.62 [lb in])  
Mounting screw  
7
101.5  
82.5  
318  
10  
90  
A
100  
B
Screw size: M6  
Wind blows in the  
arrow direction  
Tightening torque: 5.4 [N m] (47.79 [lb in])  
Variable  
Regenerative  
option  
Mass  
dimensions  
[kg] (Ib)  
A
B
MR-RB30  
MR-RB31  
17  
335  
MR-RB32  
2.9 (6.4)  
MR-RB34-4  
MR-RB3M-4  
MR-RB3G-4  
23  
341  
(c) MR-RB50 MR-RB51 MR-RB54-4 MR-RB5G-4  
[Unit: mm (in)]  
Terminal block  
Cooling fan mounting  
screw (2-M3 screw)  
On opposite side  
P
C
G3  
G4  
49  
82.5  
Terminal screw: M4  
Tightening torque: 1.2 [N m] (10.62 [lb in])  
Mounting screw  
7 14  
slot  
Screw size: M6  
Tightening torque: 5.4 [N m] (47.79 [lb in])  
Wind blows  
in the arrow  
direction  
Variable  
Regenerative  
option  
Mass  
dimensions  
[kg] (Ib)  
A
B
MR-RB50  
MR-RB51  
17  
217  
2.3  
7
5.6 (12.3)  
200  
B
A
12  
108  
120  
(30)  
MR-RB54-4  
MR-RB5G-4  
23  
233  
8
14 - 29  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(d) MR-RB5E MR-RB9P MR-RB9F MR-RB6B-4 MR-RB60-4 MR-RB6K-4  
[Unit: mm (in)]  
Terminal block  
G4 G3 C  
2- 10  
mounting hole  
P
Terminal screw: M5  
Tightening torque: 2.0 [N m] (17.70 [lb in])  
Mounting screw  
Screw size: M8  
Tightening torque: 13.2 [N m] (116.83 [lb in])  
Regenerative  
option  
Mass  
TE1  
[kg]  
10  
11  
11  
10  
11  
11  
[Ib]  
G4 G3 C P  
MR-RB5E  
MR-RB9P  
22.0  
24.3  
24.3  
22.0  
24.3  
24.3  
10  
2.3  
15  
230  
260  
230  
215  
MR-RB9F  
Cooling fan mounting screw  
4-M3 screw  
MR-RB6B-4  
MR-RB60-4  
MR-RB6K-4  
82.5 82.5  
(e) GRZG400-1.5  
GRZG400-0.9  
GRZG400-0.6  
GRZG400-5.0  
GRZG400-2.5  
GRZG400-  
2.0 (standard accessories)  
Approx.  
10  
C
Variable  
Tightening  
Approx. A  
Approx. 2.4  
Regenerative  
brake  
Mounting  
Mass [kg]  
([lb])  
dimensions  
torque  
[N m]  
([lb in])  
screw size  
A
C
K
GRZG400-1.5  
GRZG400-0.9  
GRZG400-0.6  
GRZG400-5.0  
GRZG400-2.5  
GRZG400-2.0  
10  
16  
5.5  
8.2  
39  
46  
Approx. 330  
385  
9.5  
40  
13.2  
0.8  
(1.76)  
411  
M8  
(116.83)  
Approx. 47  
10  
5.5  
39  
14 - 30  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(f) MR-RB1H-4  
[Unit: mm (in)]  
Terminal screw: M3  
Tightening torque: 0.5 to 0.6 [N m]  
(4.43 to 5.31 [lb in])  
40  
36  
G3  
G4  
P
15  
6 mounting hole  
C
Mounting screw  
Screw size: M5  
Tightening torque: 3.2 [N m]  
(28.32 [lb in])  
Regenerative  
Mass [kg] ([lb])  
option  
TE1  
MR-RB1H-4  
1.1 (2.4)  
2
6
6
Approx. 24  
149  
173  
14 - 31  
14. OPTIONS AND AUXILIARY EQUIPMENT  
14.3 FR-BU2-(H) brake unit  
POINT  
Use a 200V class brake unit and a resistor unit with a 200V class servo  
amplifier, and a 400V class brake unit and a resistor unit with a 400V class  
servo amplifier. Combination of different voltage class units and servo  
amplifier cannot be used.  
Install a brake unit and a resistor unit on a flat surface vertically. When the  
unit is installed horizontally or diagonally, the heat dissipation effect  
diminishes.  
Temperature of the resistor unit case rises to higher than 100 . Keep cables  
and flammable materials away from the case.  
Ambient temperature condition of the brake unit is between 10 (14 ) and  
50 (122 ). Note that the condition is different from the ambient  
temperature condition of the servo amplifier (between 0 (32 ) and 55  
(131 )).  
Configure the circuit to shut down the power-supply with the alarm output of  
the brake unit and resistor unit under abnormal condition.  
Use the brake unit with a combination indicated in section 14.3.1.  
For executing a continuous regenerative operation, use FR-RC-(H) power  
regeneration converter or FR-CV-(H) power regeneration common converter.  
Brake unit and regenerative options (Regenerative resistor) cannot be used  
simultaneously.  
Connect the brake unit to the bus of the servo amplifier. As compared to the MR-RB regenerative option, the  
brake unit can return larger power. Use the brake unit when the regenerative option cannot provide sufficient  
regenerative capability.  
When using the brake unit, set the parameter No.PA02 of the servo amplifier to "  
01".  
When using the brake unit, always refer to the FR-BU2-(H) Brake Unit Instruction Manual.  
14 - 32  
14. OPTIONS AND AUXILIARY EQUIPMENT  
14.3.1 Selection  
Use a combination of servo amplifier, brake unit and resistor unit listed below.  
Number of  
connected  
units  
Permissible  
continuous  
power [kW]  
Total  
Applicable servo  
amplifier  
Brake unit  
Resistor unit  
resistance  
[
]
200V FR-BU2-15K  
class  
FR-BR-15K  
1
0.99  
1.98  
8
4
MR-J3-500T (Note)  
MR-J3-500T  
MR-J3-700T  
MR-J3-11KT  
MR-J3-15KT  
MR-J3-500T  
MR-J3-700T  
MR-J3-11KT  
MR-J3-15KT  
MR-J3-11KT  
MR-J3-15KT  
MR-J3-22KT  
MR-J3-22KT  
MR-J3-500T4  
MR-J3-700T4  
MR-J3-11KT4  
MR-J3-11KT4  
MR-J3-15KT4  
MR-J3-22KT4  
MR-J3-22KT4  
2 (parallel)  
FR-BU2-30K  
FR-BU2-55K  
FR-BR-30K  
FR-BR-55K  
1
1
1.99  
3.91  
4
2
2
MT-BR5-55K  
FR-BR-H30K  
1
1
5.5  
400V FR-BU2-H30K  
class  
1.99  
16  
FR-BU2-H55K  
FR-BR-H55K  
1
3.91  
8
FR-BU2-H75K  
MT-BR5-H75K  
1
7.5  
6.5  
Note. The combination is limited only when using with the servo motors HC-LP302, HC-RP353, HA-LP502 or HC-UP352.  
14.3.2 Brake unit parameter setting  
Normally, when using the FR-BU2-(H), changing parameters is not necessary. Whether a parameter can be  
changed or not is listed below.  
Parameter  
Name  
Change  
possible/  
impossible  
Remarks  
No.  
0
1
Brake mode switchover  
Impossible  
Possible  
Do not change the parameter.  
Refer to the FR-BU2-(H) Brake Unit  
Instruction Manual.  
Monitor display data selection  
2
3
Input terminal function selection 1  
Input terminal function selection 2  
Parameter write selection  
Impossible  
Do not change the parameter.  
77  
78  
Cumulative energization time  
carrying-over times  
CLr Parameter clear  
ECL Alarm history clear  
C1  
For manufacturer setting  
14 - 33  
14. OPTIONS AND AUXILIARY EQUIPMENT  
14.3.3 Connection example  
POINT  
Connecting PR terminal of the brake unit to P terminal of the servo amplifier  
results in brake unit malfunction. Always connect the PR terminal of the brake  
unit to the PR terminal of the resistor unit.  
(1) Combination with FR-BR-(H) resistor unit  
(a) When connecting a brake unit to a servo amplifier  
(Note 8) Servo motor (Note 11)  
thermal relay  
RA2  
ALM  
RA1  
ON  
MC  
EMG  
OFF  
MC  
SK  
(Note 5)  
NFB  
Servo amplifier  
CN6  
MC  
1
17  
EMG  
L1  
(Note 1)  
Power  
supply  
DOCOM  
DICOM  
ALM  
L2  
24VDC  
RA1  
FR-BR-(H)  
(Note 6) TH1  
TH2  
5
L3  
(Note 11)  
P
L11  
L21  
PR  
P1  
(Note 3)  
FR-BU2-(H)  
P2  
PR  
P/  
MSG  
SD  
P(  
N(  
)
(Note 4)  
A
B
C
(Note 9)  
N/  
)
C
BUE  
SD  
(Note 10)  
(Note 7)  
(Note 2)  
Note 1. For power supply specifications, refer to section 1.2.  
2. For the servo amplifier of 5k and 7kW, always disconnect the lead of built-in regenerative resistor, which is connected to the P  
and C terminals. For the servo amplifier of 11k to 22kW, do not connect a supplied regenerative resistor to the P and C  
terminals.  
3. Always connect P1 and P2 terminals (P1 and P for the servo amplifier of 11k to 22kW) (Factory-wired). When using the power  
factor improving DC reactor, refer to section 14.11.  
4. Connect the P/ and N/ terminals of the brake unit to a correct destination. Wrong connection results in servo amplifier and  
brake unit malfunction.  
5. For 400VAC class, a step-down transformer is required.  
6. Contact rating: 1b contact, 110VAC_5A/220VAC_3A  
Normal condition: TH1-TH2 is conducting. Abnormal condition: TH1-TH2 is not conducting.  
7. Contact rating: 230VAC_0.3A/30VDC_0.3A  
Normal condition: B-C is conducting/A-C is not conducting. Abnormal condition: B-C is not conducting/A-C is conducting.  
8. For the servo amplifier of 3.5kW, always disconnect P and D terminals.  
9. Do not connect more than one cable to each P( ) to N( ) terminals of the servo amplifier.  
10. Always connect BUE and SD terminals (Factory-wired).  
11. The diagram is for when outputting the trouble (ALM) is enabled by changing the parameter. When disabling to output the  
trouble (ALM), configure the power supply circuit to turn off the magnetic contactor after detecting an alarm occurrence on the  
controller side.  
14 - 34  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(b) When connecting two brake units to a servo amplifier  
POINT  
To use brake units with a parallel connection, use two sets of FR-BU2 brake  
unit. Combination with other brake unit results in alarm occurrence or  
malfunction.  
Always connect the master and slave terminals (MSG and SD) of the two  
brake units.  
Do not connect the servo amplifier and brake units as below. Connect the  
cables with a terminal block to distribute as indicated in this section.  
Servo amplifier  
Brake unit  
Servo amplifier  
Brake unit  
P (  
N (  
)
)
P/  
N/  
P (  
N (  
)
)
P/  
N/  
Brake unit  
Brake unit  
P/  
N/  
P/  
N/  
Connecting two cables to  
P and N terminals  
Passing wiring  
14 - 35  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(Note 7) Servo motor (Note 12)  
thermal relay ALM  
ON  
MC  
EMG  
OFF  
RA2  
RA1  
MC  
SK  
Servo amplifier  
CN6  
NFB  
MC  
1
EMG  
DOCOM  
L1  
(Note 1)  
Power  
supply  
17  
L2  
24VDC  
RA1  
FR-BR  
(Note 5)  
DICOM  
5
L3  
TH1  
TH2  
(Note 12)  
ALM  
P
L11  
L21  
PR  
P1  
(Note 3)  
(Note 11)  
FR-BU2-(H)  
P2  
PR  
P/  
MSG  
(Note 10)  
P(  
)
SD  
A
(Note 4)  
N/  
(Note 8)  
B
C
N(  
)
BUE  
(Note 6)  
(Note 9)  
C
SD  
Terminal  
block  
(Note 2)  
FR-BR  
(Note 5)  
TH1  
TH2  
P
PR  
FR-BU2-(H)  
PR  
P/  
MSG  
(Note 10)  
SD  
A
(Note 4)  
N/  
B
C
BUE  
(Note 9)  
(Note 6)  
SD  
Note 1. For power supply specifications, refer to section 1.2.  
2. For the servo amplifier of 5k and 7kW, always disconnect the lead of built-in regenerative resistor, which is connected to the P  
and C terminals. For the servo amplifier of 11k and 15kW, do not connect a supplied regenerative resistor to the P and C  
terminals.  
3. Always connect P1 and P2 terminals (P1 and P for the servo amplifier of 11k and 15kW) (Factory-wired). When using the power  
factor improving DC reactor, refer to section 14.11.  
4. Connect the P/ and N/ terminals of the brake unit to a correct destination. Wrong connection results in servo amplifier and  
brake unit malfunction.  
5. Contact rating: 1b contact, 110VAC_5A/220VAC_3A  
Normal condition: TH1-TH2 is conducting. Abnormal condition: TH1-TH2 is not conducting.  
6. Contact rating: 230VAC_0.3A/30VDC_0.3A  
Normal condition: B-C is conducting/A-C is not conducting. Abnormal condition: B-C is not conducting/A-C is conducting.  
7. For the servo amplifier of 11kW or more, connect the thermal relay censor of the servo amplifier.  
8. Do not connect more than one cable to each P and N terminals of the servo amplifier.  
9. Always connect BUE and SD terminals (Factory-wired).  
10. Connect the MSG and SD terminals of the brake unit to a correct destination. Wrong connection results in servo amplifier and  
brake unit malfunction.  
11. For the cable to connect the terminal block and the P and N terminals of the servo amplifier, use the cable indicated in (4) (b) in  
this section.  
12. The diagram is for when outputting the trouble (ALM) is enabled by changing the parameter. When disabling to output the  
trouble (ALM), configure the power supply circuit to turn off the magnetic contactor after detecting an alarm occurrence on the  
controller side.  
14 - 36  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(2) Combination with MT-BR5-(H) resistor unit  
Servo motor (Note 9)  
thermal relay ALM  
ON  
MC  
EMG  
OFF  
RA2  
RA1  
RA3  
MC  
SK  
(Note 4)  
NFB  
Servo amplifier  
CN6  
MC  
1
EMG  
DOCOM  
L1  
(Note 1)  
Power  
supply  
17  
SK  
L2  
24VDC  
RA1  
MT-BR5-(H)  
(Note 5)  
DICOM  
5
L3  
TH1  
TH2  
(Note 9)  
ALM  
P
RA3  
L11  
L21  
PR  
FR-BU2-(H)  
C
(Note 10)  
PR  
P/  
MSG  
P1  
(Note 2)  
P(  
N(  
)
)
SD  
A
(Note 3)  
(Note 7)  
N/  
B
C
BUE  
(Note 8)  
(Note 6)  
SD  
Note 1. For power supply specifications, refer to section 1.2.  
2. Always connect P1 and P( ) terminals (Factory-wired). When using the power factor improving DC reactor, refer to section  
14.11.  
3. Connect the P/ and N/ terminals of the brake unit to a correct destination. Wrong connection results in servo amplifier and  
brake unit malfunction.  
4. For the servo amplifier of 400V class, a step-down transformer is required.  
5. Contact rating: 1a contact, 110VAC_5A/220VAC_3A  
Normal condition: TH1-TH2 is not conducting. Abnormal condition: TH1-TH2 is conducting.  
6. Contact rating: 230VAC_0.3A/30VDC_0.3A  
Normal condition: B-C is conducting/A-C is not conducting. Abnormal condition: B-C is not conducting/A-C is conducting.  
7. Do not connect more than one cable to each P( ) and N( ) terminals of the servo amplifier.  
8. Always connect BUE and SD terminals (Factory-wired).  
9. The diagram is for when outputting the trouble (ALM) is enabled by changing the parameter. When disabling to output the  
trouble (ALM), configure the power supply circuit to turn off the magnetic contactor after detecting an alarm occurrence on the  
controller side.  
10. For the servo amplifier of 22kW, do not connect a supplied regenerative resistor to the P and C terminals.  
14 - 37  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(3) Precautions for wiring  
The cables between the servo amplifier and the brake unit, and between the resistor unit and the brake unit  
should be as short as possible. Always twist the cable longer than 5m (twist five times or more per one  
meter). Even when the cable is twisted, the cable should be less than 10m. Using cables longer than 5m  
without twisting or twisted cables longer than 10m, may result in the brake unit malfunction.  
Servo amplifier  
Servo amplifier  
Brake unit  
Resistor unit  
Brake unit  
Resistor unit  
Twist  
Twist  
P(  
N(  
)
)
P
N
P
PR  
P
PR  
P(  
N(  
)
)
P
N
P
PR  
P
PR  
5m or less  
5m or less  
10m or less  
10m or less  
(4) Cables  
(a) Cables for the brake unit  
For the brake unit, HIV wire (600V Grade heat-resistant polyvinyl chloride insulated wire) is  
recommended.  
1) Main circuit terminal  
Main  
circuit  
terminal  
screw  
size  
Crimping  
terminal  
Wire size  
Tightening  
torque  
N/ , P/ , PR,  
Brake unit  
[N m]  
N/ , P/  
PR,  
,
HIV wire [mm2]  
AWG  
([Ib in])  
200V FR-BU2-15K  
class FR-BU2-30K  
FR-BU2-55K  
M4  
M5  
M6  
M4  
M5  
M6  
5.5-4  
5.5-5  
14-6  
5.5-4  
5.5-5  
14-6  
1.5(13.3)  
2.5(22.1)  
4.4(38.9)  
1.5(13.3)  
2.5(22.1)  
4.4(38.9)  
3.5  
5.5  
14  
12  
10  
6
N/  
P/  
PR  
400V FR-BU2-H30K  
class FR-BU2-H55K  
FR-BU2-H75K  
3.5  
5.5  
14  
12  
10  
6
Terminal block  
14 - 38  
14. OPTIONS AND AUXILIARY EQUIPMENT  
2) Control circuit terminal  
POINT  
Undertightening can cause a cable disconnection or malfunction.  
Overtightening can cause a short circuit or malfunction due to damage to the  
screw or the brake unit.  
Sheath  
RES  
MSG MSG  
SD  
SD SD  
Core  
BUE  
PC  
SD  
Jumper  
A
B
C
6mm  
Terminal block  
Wire the stripped cable after twisting to prevent the cable  
from becoming loose. In addition, do not solder it.  
Screw size: M3  
Tightening torque: 0.5N m to 0.6N  
Wire size: 0.3mm2 to 0.75 mm2  
m
Screw driver: Small flat-blade screwdriver  
(Tip thickness: 0.4mm/Tip width 2.5mm)  
(b) Cables for connecting the servo amplifier and a distribution terminal block when connecting two sets of  
the brake unit  
Wire size  
Brake unit  
HIV wire [mm2]  
8
AWG  
8
FR-BU2-15K  
14 - 39  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(5) Crimping terminals for P and N terminals of servo amplifier  
(a) Recommended crimping terminals  
POINT  
Always use recommended crimping terminals or equivalent since some  
crimping terminals cannot be installed depending on the size.  
Number of  
(Note 1)  
Applicable  
tool  
Servo amplifier  
Brake unit  
connected  
units  
Crimping terminal (Manufacturer)  
200V MR-J3-500T  
class  
FR-BU2-15K  
1
2
FVD5.5-S4(Japan Solderless Terminal)  
c
8-4NS(Japan Solderless Terminal)  
(Note 2)  
d
FR-BU2-30K  
FR-BU2-15K  
1
2
FVD5.5-S4(Japan Solderless Terminal)  
c
MR-J3-700T  
MR-J3-11KT  
8-4NS(Japan Solderless Terminal)  
(Note 2)  
d
FR-BU2-30K  
FR-BU2-15K  
FR-BU2-30K  
FR-BU2-55K  
FR-BU2-15K  
FR-BU2-30K  
FR-BU2-55K  
FR-BU2-55K  
FR-BU2-H30K  
FR-BU2-H30K  
FR-BU2-H30K  
FR-BU2-H55K  
FR-BU2-H55K  
FR-BU2-H55K  
FR-BU2-H75K  
1
2
1
1
2
1
1
1
1
1
1
1
1
1
1
FVD5.5-S4(Japan Solderless Terminal)  
FVD8-6(Japan Solderless Terminal)  
FVD5.5-6(Japan Solderless Terminal)  
FVD14-6(Japan Solderless Terminal)  
FVD8-6(Japan Solderless Terminal)  
FVD5.5-6(Japan Solderless Terminal)  
FVD14-6(Japan Solderless Terminal)  
FVD14-8(Japan Solderless Terminal)  
FVD5.5-S4(Japan Solderless Terminal)  
FVD5.5-S4(Japan Solderless Terminal)  
FVD5.5-6(Japan Solderless Terminal)  
FVD5.5-6(Japan Solderless Terminal)  
FVD5.5-6(Japan Solderless Terminal)  
FVD5.5-8(Japan Solderless Terminal)  
FVD14-8(Japan Solderless Terminal)  
c
a
c
b
a
c
b
b
c
c
c
c
c
c
b
MR-J3-15KT  
MR-J3-22KT  
400V MR-J3-500T4  
class MR-J3-700T4  
MR-J3-11KT4  
MR-J3-15KT4  
MR-J3-22KT4  
Note 1. Symbols in the applicable tool field indicate applicable tools in (5)(b) in this section.  
2. Coat the crimping part with an insulation tube.  
(b) Applicable tool  
Servo amplifier side crimping terminals  
Symbol  
Crimping  
terminal  
Applicable tool  
Head  
Manufacturer  
Body  
Dice  
a
b
FVD8-6  
YF-1 E-4  
YNE-38  
DH-111 DH121  
FVD14-6  
FVD14-8  
FDV5.5-S4  
FDV5.5-6  
8-4NS  
YF-1 E-4  
YNE-38  
DH-112 DH122  
Japan Solderless  
Terminal  
c
YNT-1210S  
YHT-8S  
d
14 - 40  
14. OPTIONS AND AUXILIARY EQUIPMENT  
14.3.4 Outline dimension drawings  
(1) FR-BU2- (H) brake unit  
[Unit: mm]  
FR-BU2-15K  
5 hole  
(Screw size: M4)  
Rating  
plate  
4
5
18.5  
6
56  
68  
6
52  
62  
132.5  
FR-BU2-30K  
FR-BU2-H30K  
2- 5 hole  
(Screw size: M4)  
Rating  
plate  
5
5
96  
6
6
18.5  
52  
59  
108  
129.5  
FR-BU2-55K  
FR-BU2-H55K, H75K  
2- 5 hole  
(Screw size: M4)  
Rating  
plate  
5
5
18.5  
6
158  
170  
6
52  
72  
142.5  
14 - 41  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(2) FR-BR- (H) resistor unit  
[Unit: mm]  
2
C
(Note)  
Control circuit  
terminal  
(Note)  
Main circuit  
terminal  
C
C
Approx. 35  
Approx. 35  
W1  
1
For FR-BR-55K/FR-BR-H55K, a hanging bolt  
is placed on two locations (Indicated below).  
Hanging bolt  
204  
W
5
Note. Ventilation ports are provided on both sides and the top. The bottom is open.  
Approximate  
Resistor unit  
W
W1  
H
H1  
H2  
H3  
D
D1  
C
mass  
[kg]([Ib])  
FR-BR-15K  
FR-BR-30K  
FR-BR-55K  
FR-BR-H30K  
FR-BR-H55K  
170 100 450 410 20 432 220 3.2  
340 270 600 560 20 582 220  
480 410 700 620 40 670 450 3.2  
340 270 600 560 20 582 220  
480 410 700 620 40 670 450 3.2  
6
15(33.1)  
30(66.1)  
70(154)  
30(66.1)  
70(154)  
200V  
class  
4
10  
12  
10  
12  
400V  
class  
4
(3) MT-BR5- (H) resistor unit  
[Unit: mm]  
Approximate  
mass  
Resistance  
value  
Resistor unit  
[kg]([Ib])  
NP  
200V  
class  
400V  
class  
MT-BR5-55K  
2.0  
6.5  
50(110)  
70(154)  
MT-BR5-H75K  
M4  
M6  
193  
189  
37  
60 10 21  
480  
510  
75  
300  
450  
75  
4
15 mounting hole  
7.5  
7.5  
14 - 42  
14. OPTIONS AND AUXILIARY EQUIPMENT  
14.4 Power regeneration converter  
When using the power regeneration converter, set "  
01" in parameter No.PA02.  
(1) Selection  
The converters can continuously return 75% of the nominal regenerative power. They are applied to the  
servo amplifiers of the 5k to 22kW.  
Nominal  
Power regeneration  
regenerative power  
(kW)  
Servo amplifier  
500  
converter  
300  
200  
MR-J3-500T  
MR-J3-700T  
MR-J3-11KT  
MR-J3-15KT  
MR-J3-22KT  
MR-J3-500T4  
MR-J3-700T4  
MR-J3-11KT4  
MR-J3-15KT4  
MR-J3-22KT4  
FR-RC-15K  
15  
100  
FR-RC-30K  
FR-RC-55K  
FR-RC-H15K  
30  
55  
15  
50  
30  
20  
0
50  
75 100  
150  
FR-RC-H30K  
FR-RC-H55K  
30  
55  
Nominal regenerative power (%)  
14 - 43  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(2) Connection example  
Servo amplifier  
L11  
L21  
Power factor improving reactor  
NFB  
MC  
FR-BAL  
L1  
(Note 7)  
Power  
supply  
L2  
L3  
24VDC  
RA  
CN6  
EMG  
CN6  
DOCOM  
Forced  
stop  
DICOM  
DOCOM  
(Note 3, 5)  
ALM  
Trouble  
(Note 2)  
P1 P2  
N
C P  
P/  
5m or less  
(Note 4)  
N/  
RDY  
SE  
A
B
(Note 6)  
Ready  
RDY  
B
C
output  
C
R/L1  
S/L2  
T/L3  
Alarm  
output  
RX  
R
(Note 1)  
SX  
S
Phase detection  
terminals  
TX  
T
Power regeneration  
converter FR-RC-(H)  
Operation ready  
ON  
FR-RC-(H)  
ALM  
RA  
EMG  
OFF  
B
C
MC  
SK  
MC  
Note 1. When not using the phase detection terminals, fit the jumpers across RX-R, SX-S and TX-T. If the jumpers remain removed, the  
FR-RC-(H) will not operate.  
2. When using servo amplifiers of 5kW and 7kW, always remove the lead of built-in regenerative resistor connected to P terminal  
and C terminal.  
3. For sink input-output interface. Refer to section 4.8.3 for source input-output interface.  
4. When using the servo amplifier of 11k to 22kW, always connect P1 and P. (Factory-wired.) When using the power factor  
improving DC reactor, refer to section 14.11.  
5. When setting not to output Trouble (ALM) with parameter change, configure power supply circuit for turning magnet contactor off  
after detecting an occurrence of alarm on the controller side.  
6. Stepdown transformer is required for coil voltage of magnetic contactor more than 200V class in 400V class servo amplifiers.  
7. Refer to section 1.2 for the power supply specification.  
14 - 44  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(3) Outside dimensions of the power regeneration converters  
[Unit : mm]  
Mounting foot (removable)  
Mounting foot  
movable  
2- D hole  
Rating plate  
Front cover  
Display  
panel  
window  
Cooling fan  
K
D
F
AA  
A
C
Heat generation area outside mounting dimension  
Power  
Approx. mass  
[kg(Ib)]  
regeneration  
converter  
A
AA  
200  
270  
410  
B
BA  
C
D
E
EE  
8
K
F
19  
FR-RC-15K  
270  
340  
480  
450  
600  
700  
432  
582  
670  
195  
195  
250  
10  
10  
12  
10  
10  
15  
3.2  
3.2  
3.2  
87  
(41.888)  
FR-RC-H15K  
FR-RC-30K  
FR-RC-H30K  
FR-RC-55K  
FR-RC-H55K  
31  
8
90  
(68.343)  
55  
15  
135  
(121.3)  
(4) Mounting hole machining dimensions  
When the power regeneration converter is fitted to a totally enclosed type box, mount the heat generating  
area of the converter outside the box to provide heat generation measures. At this time, the mounting hole  
having the following dimensions is machined in the box.  
[Unit : mm]  
Model  
a
b
D
AA  
BA  
(2- D hole)  
(AA)  
FR-RC-15K  
FR-RC-H15K  
FR-RC-30K  
FR-RC-H30K  
FR-RC-55K  
FR-RC-H55K  
260  
412  
10  
200  
432  
330  
470  
562  
642  
10  
12  
270  
410  
582  
670  
(Mounting hole)  
a
14 - 45  
14. OPTIONS AND AUXILIARY EQUIPMENT  
14.5 Power regeneration common converter  
POINT  
Use the FR-CV for the servo amplifier of 200V class and the FR-CV-H for that  
of 400V class.  
For details of the power regeneration common converter FR-CV-(H), refer to  
the FR-CV-(H) Installation Guide (IB(NA)0600075).  
Do not supply power to the main circuit power supply terminals (L1, L2, L3) of  
the servo amplifier. Doing so will fail the servo amplifier and FR-CV-(H).  
Connect the DC power supply between the FR-CV-(H) and servo amplifier  
with correct polarity. Connection with incorrect polarity will fail the FR-CV-(H)  
and servo amplifier.  
Two or more FR-CV-(H)'s cannot be installed to improve regeneration  
capability. Two or more FR-CV-(H)'s cannot be connected to the same DC  
power supply line.  
When using the power regeneration common converter, set parameter No.PA02 to "  
01".  
(1) Model  
Capacity  
Symbol  
7.5K  
11K  
Capacity [kW]  
7.5  
11  
15  
22  
30  
37  
55  
15K  
22K  
30K  
37K  
55K  
Symbol  
None  
H
Voltage class  
200V class  
400V class  
(2) Selection  
The power regenerative common converter FR-CV can be used for the servo amplifier of 200V class with  
3.5k to 22kW and that of 400V class with 11k to 22kW. The following shows the restrictions on using the  
FR-CV-(H).  
(a) Up to six servo amplifiers can be connected to one FR-CV-(H).  
(b) FR-CV-(H) capacity [W] Total of rated capacities [W] of servo amplifiers connected to FR-CV-(H).  
(c) The total of used servo motor rated currents should be equal to or less than the applicable current [A] of  
the FR-CV-(H).  
(d) Among the servo amplifiers connected to the FR-CV-(H), the servo amplifier of the maximum capacity  
should be equal to or less than the maximum connectable capacity [W].  
14 - 46  
14. OPTIONS AND AUXILIARY EQUIPMENT  
The following table lists the restrictions.  
FR-CV-  
22K  
6
Item  
7.5K  
11K  
15K  
30K  
37K  
55K  
Maximum number of connected servo amplifiers  
Total of connectable servo amplifier capacities [kW]  
Total of connectable servo motor rated currents [A]  
Maximum servo amplifier capacity [kW]  
3.75  
33  
5.5  
46  
5
7.5  
61  
7
11  
15  
115  
15  
18.5  
145  
15  
27.5  
215  
22  
90  
3.5  
11  
FR-CV-H  
Item  
22K  
30K  
37K  
55K  
Maximum number of connected servo amplifiers  
Total of connectable servo amplifier capacities [kW]  
Total of connectable servo motor rated currents [A]  
Maximum servo amplifier capacity [kW]  
6
11  
90  
11  
15  
115  
15  
18.5  
145  
15  
27.5  
215  
22  
When using the FR-CV-(H), always install the dedicated stand-alone reactor (FR-CVL-(H)).  
Power regeneration common converter  
FR-CV-7.5K(-AT)  
FR-CV-11 K(-AT)  
FR-CV-15K(-AT)  
FR-CV-22K(-AT)  
FR-CV-30K(-AT)  
FR-CV-37K  
Dedicated stand-alone reactor  
FR-CVL-7.5K  
FR-CVL-11K  
FR-CVL-15K  
FR-CVL-22K  
FR-CVL-30K  
FR-CVL-37K  
FR-CV-55K  
FR-CVL-55K  
FR-CV-H22K(-AT)  
FR-CV-H30K(-AT)  
FR-CV-H37K  
FR-CVL-H22K  
FR-CVL-H30K  
FR-CVL-H37K  
FR-CVL-H55K  
FR-CV-H55K  
14 - 47  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(3) Connection diagram  
(a) 200V class  
Servo amplifier  
Servo motor  
FR-CVL  
R2/L12  
FR-CV  
NFB  
MC  
U
V
U
V
L11  
L21  
P1  
P
R/L11  
S/L21  
T/L31  
R2/L1  
3-phase  
200 to  
S2/L22  
T2/L32  
S2/L2  
T2/L3  
Thermal  
relay  
(Note 7)  
W
W
230VAC  
0HS2  
0HS1  
P/L  
N/L  
(Note 6)  
(Note 2)  
N
CN2  
R/L11  
S/L21  
EMG  
RA1  
(Note 5)  
(Note 1)  
EMG  
P24  
T/MC1  
DOCOM  
SD  
RESET  
DICOM  
RES  
RDYB  
RDYA  
RSO  
Servo system  
controller  
(Note 3)  
SD  
(Note 4)  
(Note 1)  
EMG  
(Note 1)  
SE  
A
ON  
RA1 RA2  
OFF  
RA1  
(Note 1)  
MC  
MC  
SK  
B
C
24VDC  
power  
RA2  
supply  
Note 1. Configure a sequence that will shut off main circuit power at an emergency stop or at FR-CV or servo amplifier alarm  
occurrence.  
2. For the servo motor with thermal relay, configure a sequence that will shut off main circuit power when the thermal relay  
operates.  
3. For the servo amplifier, configure a sequence that will switch the servo on after the FR-CV is ready.  
4. For the FR-CV, the RSO signal turns off when it is put in a ready-to-operate status where the reset signal is input.  
Configure a sequence that will make the servo inoperative when the RSO signal is on.  
5. Configure a sequence that will make a stop with the emergency stop input of the programmable controller if an alarm occurs  
in the FR-CV. When the programmable controller does not have an emergency stop input, use the forced stop input of the  
servo amplifier to make a stop as shown in the diagram.  
6. When using the servo amplifier of 7kW or less, make sure to disconnect the wiring of built-in regeneration resistor (3.5kW or  
less: P-D, 5k/7kW: P-C).  
7. When using the servo amplifier of 11k to 22kW, make sure to connect P1 and P. (Factory-wired.)  
14 - 48  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(b) 400V class  
Servo amplifier  
Servo motor  
U
FR-CVL  
FR-CV-H  
NF  
MC  
U
V
L11  
L21  
P1  
R/L11  
R2/L12  
S2/L22  
T2/L32  
R2/L1  
S2/L2  
T2/L3  
3-phase  
380 to  
V
S/L21  
T/L31  
Thermal  
W
W
480VAC  
(Note 7)  
relay  
(Note 6)  
OHS2  
OHS1  
P/L  
N/L  
P(  
)
(Note 2)  
N( ) CN2  
R/L11  
S/L21  
EMG  
RA1  
(Note 1)  
(Note 5)  
(Note 8)  
EMG  
P24  
SD  
Stepdown  
transformer  
T/MC1  
DOCOM  
DICOM  
RESET  
RES  
RDYB  
RDYA  
RSO  
Servo system  
controller  
SD  
(Note 3)  
(Note 4)  
(Note 1)  
(Note 1)  
SE  
A
EMG  
ON  
RA1 RA2  
OFF  
(Note 1)  
RA1  
MC  
B
C
MC  
SK  
24VDC  
RA2  
power  
supply  
Note 1. Configure a sequence that will shut off main circuit power at an emergency stop or at FR-CV-H or servo amplifier alarm  
occurrence.  
2. For the servo motor with thermal relay, configure a sequence that will shut off main circuit power when the thermal relay  
operates.  
3. For the servo amplifier, configure a sequence that will switch the servo on after the FR-CV-H is ready.  
4. For the FR-CV-H, the RSO signal turns off when it is put in a ready-to-operate status where the reset signal is input.  
Configure a sequence that will make the servo inoperative when the RSO signal is on.  
5. Configure a sequence that will make a stop with the emergency stop input of the servo system controller if an alarm occurs  
in the FR-CV-H. When the servo system controller does not have an emergency stop input, use the forced stop input of the  
servo amplifier to make a stop as shown in the diagram.  
6. When using the servo amplifier of 7kW or less, make sure to disconnect the wiring of built-in regenerative resistor (2kW or  
less: P-D, 3.5k to 7kW: P-C.  
7. When using the servo amplifier of 11k to 22kW, make sure to connect P1 and P. (Factory-wired.)  
8. Stepdown transformer is required for coil voltage of magnetic contactor more than 200V class servo amplifiers.  
14 - 49  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(4) Selection example of wires used for wiring  
POINT  
Selection condition of wire size is as follows.  
Wire type: 600V Polyvinyl chloride insulated wire (IV wire)  
Construction condition: One wire is constructed in the air  
(a) Wire sizes  
1) Across P-P( ), N-N(  
)
The following table indicates the connection wire sizes of the DC power supply (P, N terminals)  
between the FR-CV and servo amplifier.  
Total of servo amplifier capacities [kW]  
Wires [mm2]  
1 or less  
2
2
5
3.5  
5.5  
8
7
11  
15  
22  
14  
22  
50  
The following table indicates the connection wire sizes of the DC power supply (P( ), N(  
terminals) between the FR-CV-H and servo amplifier.  
)
Total of servo amplifier capacities [kW]  
Wires [mm2]  
1 or less  
2
3.5  
5.5  
8
2
5
7
11  
15  
22  
8
22  
22  
2) Grounding  
For grounding, use the wire of the size equal to or greater than that indicated in the following  
table, and make it as short as possible.  
Power regeneration common converter  
FR-CV-7.5K to FR-CV-15K  
FR-CV-22K FR-CV-30K  
Grounding wire size [mm2 ]  
14  
22  
38  
8
FR-CV-37K FR-CV-55K  
FR-CV-H22K FR-CV-H30K  
FR-CV-H37K FR-CV-H55K  
22  
14 - 50  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(b) Example of selecting the wire sizes  
When connecting multiple servo amplifiers, always use junction terminals for wiring the servo amplifier  
terminals P, N. Also, connect the servo amplifiers in the order of larger to smaller capacities.  
1) 200V class  
Wire as short as possible.  
50mm2  
22mm2  
FR-CV-55K  
Servo amplifier (15kW)  
First unit:  
P/L  
N/L  
P
N
R2/L1  
S2/L2  
T2/L3  
50mm2 assuming that the total of servo amplifier  
capacities is 27.5kW since 15kW + 7kW + 3.5kW  
+ 2.0kW = 27.5kW.  
(Note)  
22mm2  
8mm2  
3.5mm2  
2mm2  
Servo amplifier (7kW)  
Second unit:  
P
N
R/L11  
22mm2 assuming that the total of servo amplifier  
capacities is 15kW since 7kW + 3.5kW + 2.0kW =  
12.5kW.  
(Note)  
S/L21  
T/MC1  
8mm2  
2mm2  
Servo amplifier (3.5kW)  
Third unit:  
P
N
8mm2 assuming that the total of servo amplifier  
capacities is 7kW since 3.5kW + 2.0kW = 5.5kW.  
(Note)  
Servo amplifier (2kW)  
Fourth unit:  
P
N
2mm2 assuming that the total of servo amplifier  
capacities is 2kW since 2.0kW = 2.0kW.  
(Note)  
Junction terminals  
Overall wiring length 5m or less  
Note. When using the servo amplifier of 7kW or less, make sure to disconnect the wiring of built-in regeneration resistor (3.5kW or  
less: P-D, 5k/7kW: P-C).  
14 - 51  
14. OPTIONS AND AUXILIARY EQUIPMENT  
2) 400V class  
Wire as short as possible.  
Servo amplifier (15kW)  
22mm2  
14mm2  
FR-CV-H55K  
First unit:  
P/L+  
N/L-  
P
N
R2/L1  
S2/L2  
T2/L3  
22mm2 assuming that the total of servo amplifier  
capacities is 30kW since 15kW + 7kW + 3.5kW  
+ 2.0kW = 27.5kW.  
14mm2  
5.5mm2  
Servo amplifier (7kW)  
Second unit:  
P
N
R/L11  
14mm2 assuming that the total of servo amplifier  
capacities is 15kW since 7kW + 3.5kW + 2.0kW =  
12.5kW.  
S/L21  
T/MC1  
5.5mm2  
2mm2  
Servo amplifier (3.5kW)  
Third unit:  
P
N
5.5mm2 assuming that the total of servo amplifier  
capacities is 7kW since 3.5kW + 2.0kW = 5.5kW.  
2mm2  
2mm2  
Servo amplifier (2kW)  
Fourth unit:  
P
N
2mm2 assuming that the total of servo amplifier  
capacities is 2kW since 2.0kW = 2.0kW.  
Junction terminals  
Overall wiring length 5m or less  
(5) Other precautions  
(a) Always use the FR-CVL-(H) as the power factor improving reactor. Do not use the FR-BAL or FR-BEL.  
(b) The inputs/outputs (main circuits) of the FR-CV-(H) and servo amplifiers include high-frequency  
components and may provide electromagnetic wave interference to communication equipment  
(such as AM radios) used near them. In this case, interference can be reduced by installing the  
radio noise filter (FR-BIF-(H)) or line noise filter (FR-BSF01, FR-BLF).  
(c) The overall wiring length for connection of the DC power supply between the FR-CV-(H) and servo  
amplifiers should be 5m or less, and the wiring must be twisted.  
14 - 52  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(6) Specifications  
Power regeneration common converter  
FR-CV-  
7.5K  
11K  
15K  
22K  
30K  
37K  
55K  
Item  
Total of connectable servo amplifier capacities [kW]  
3.75  
3.5  
5.5  
5
7.5  
7
11  
11  
15  
15  
18.5  
15  
27.5  
22  
Maximum servo amplifier capacity  
[kW]  
Total of connectable servo motor  
33  
46  
61  
90  
115  
145  
215  
rated currents  
[A]  
Short-time  
Output  
Total capacity of applicable servo motors, 300% torque, 60s (Note 1)  
100% torque  
Regenerative  
braking torque  
rating  
Continuous  
rating  
Rated input AC voltage/frequency  
Permissible AC voltage fluctuation  
Permissible frequency fluctuation  
Power supply capacity (Note 2) [kVA]  
Three-phase 200 to 220V 50Hz, 200 to 230V 60Hz  
Three-phase 170 to 242V 50Hz, 170 to 253V 60Hz  
5%  
Power supply  
17  
20  
28  
41  
52  
66  
100  
Protective structure (JEM 1030), cooling system  
Ambient temperature  
Open type (IP00), forced cooling  
-10 to +50 (14 to 122 ) (non-freezing)  
90%RH or less (non-condensing)  
Environment  
Ambient humidity  
Ambience  
Indoors (without corrosive gas, flammable gas, oil mist, dust and dirt)  
1000m or less above sea level, 5.9m/s2 or less  
Altitude, vibration  
30AF  
30A  
50AF  
50A  
100AF  
75A  
100AF  
100A  
225AF  
125A  
225AF  
125A  
225AF  
175A  
No-fuse breaker or leakage current breaker  
Magnetic contactor  
S-N20  
S-N35  
S-N50  
S-N65  
S-N95  
S-N95  
S-N125  
Power regeneration common converter  
FR-CV-H  
22K  
30K  
37K  
55K  
Item  
Total of connectable servo amplifier capacities [kW]  
11  
11  
15  
15  
18.5  
15  
27.5  
22  
Maximum servo amplifier capacity  
[kW]  
Total of connectable servo motor  
43  
57  
71  
110  
rated currents  
[A]  
Short-time  
Total capacity of applicable servo motors, 300%  
torque, 60s (Note1)  
Output  
Regenerative  
braking torque  
rating  
Continuous  
rating  
100% torque  
Rated input AC voltage/frequency  
Permissible AC voltage fluctuation  
Permissible frequency fluctuation  
Three-phase 380 to 480V, 50Hz/60Hz  
Three-phase 323 to 528V, 50Hz/60Hz  
5%  
Power supply  
Power supply capacity  
[kVA]  
41  
52  
66  
100  
Protective structure (JEM 1030), cooling system  
Ambient temperature  
Open type (IP00), forced cooling  
-10 to +50 (14 to 122 ) (non-freezing)  
90%RH or less (non-condensing)  
Ambient humidity  
Environment  
Indoors (without corrosive gas, flammable gas, oil  
mist, dust and dirt)  
Ambience  
Altitude, vibration  
1000m or less above sea level, 5.9m/s2 or less  
60AF  
60A  
100AF  
175A  
100AF  
175A  
225AF  
125A  
No-fuse breaker or leakage current breaker  
Magnetic contactor  
S-N25  
S-N35  
S-N35  
S-N65  
Note 1. This is the time when the protective function of the FR-CV is activated. The protective function of the servo amplifier is activated  
in the time indicated in section 13.1.  
2. When connecting the capacity of connectable servo amplifier, specify the value of servo amplifier.  
14 - 53  
14. OPTIONS AND AUXILIARY EQUIPMENT  
14.6 External dynamic brake  
POINT  
Configure up a sequence which switches off the contact of the brake unit after  
(or as soon as) it has turned off the servo on signal at a power failure or  
failure.  
For the braking time taken when the dynamic brake is operated, refer to  
section 13.3.  
The brake unit is rated for a short duration. Do not use it for high duty.  
When using the 400V class dynamic brake, the power supply voltage is  
restricted to 1-phase 380VAC to 463VAC (50Hz/60Hz).  
(1) Selection of dynamic brake  
The dynamic brake is designed to bring the servo motor to a sudden stop when a power failure occurs  
or the protective circuit is activated, and is built in the 7kW or less servo amplifier. Since it is not built  
in the 11kW or more servo amplifier, purchase it separately if required. Assign the dynamic brake interlock  
(DB) to any of CN6-14, CN6-15, and CN6-16 pins in parameter No.PD09, PD10 or PD11.  
Servo amplifier  
MR-J3-11KT  
MR-J3-15KT  
MR-J3-22KT  
MR-J3-11KT4  
MR-J3-15KT4  
MR-J3-22KT4  
Dynamic brake  
DBU-11K  
DBU-15K  
DBU-22K  
DBU-11K-4  
DBU-22K-4  
14 - 54  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(2) Connection example  
Operation-ready  
Servo amplifier  
ALM  
ON  
RA1  
EMG  
OFF  
Servo motor  
M
MC  
SK  
U
V
MC  
U
V
W
W
NFB  
MC  
(Note 4)  
L1  
L2  
(Note 5)  
Power  
supply  
CN6  
L3  
RA1  
RA2  
15 ALM  
L11  
L21  
P
(Note 3)  
DB  
DICOM  
5
17  
1
(Note 2)  
P1  
DOCOM  
24VDC  
EMG  
Plate SD  
(Note 1)  
14  
13  
U
V
W
(Note 6)  
a
b
RA2  
External dynamic brake  
Note 1. Terminals 13, 14 are normally open contact outputs. If the dynamic brake is seized, terminals 13, 14 will open.  
Therefore, configure up an external sequence to prevent servo-on.  
2. When using the servo amplifier of 11k to 22kW, make sure to connect P1 and P. (Factory-wired.)  
When using the power factor DC reactor, refer to section 14.11.  
3. Assign the dynamic brake interlock (DB) in the parameters No.PD12 to PD14.  
4. Stepdown transformer is required for coil voltage of magnetic contactor more than 200V class in 400V class servo amplifiers.  
5. Refer to section 1.2 for the power supply specification.  
6. The power supply voltage of the inside magnet contactor for 400V class dynamic brake DBU-11K-4 and DBU-22K-4 is restricted  
as follows. When using these dynamic brakes, use them within the range of the power supply.  
Dynamic brake  
DBU-11K-4  
DBU-22K-4  
Power supply voltage  
1-phase 380 to 463VAC 50Hz/60Hz  
14 - 55  
14. OPTIONS AND AUXILIARY EQUIPMENT  
Coasting  
Forward  
Coasting  
Dynamic brake  
rotation  
Servo motor  
rotation  
Dynamic brake  
0r/min  
Present  
ALM  
Absent  
ON  
Base  
OFF  
ON  
OFF  
RA1  
Invalid  
Valid  
Dynamic brake  
Short  
Open  
Forced stop  
(EMG)  
a. Timing chart at alarm occurrence  
b. Timing chart at Forced stop (EMG) validity  
Coasting  
Dynamic brake  
Forward  
rotation  
0r/min  
Electro magnetic  
brake interlock  
Servo motor speed  
Base circuit  
(Note 1)7ms  
10ms  
ON  
OFF  
Electro magnetic  
Invalid (ON)  
brake interlock(MBR)  
Valid (OFF)  
Electro magnetic  
brake operation  
delay time  
(Note 2)15 to 60ms  
Invalid  
Valid  
ON  
ALM  
Main circuit  
Control circuit  
Power  
OFF  
ON  
RA1  
OFF  
Invalid (ON)  
Valid (OFF)  
Dynamic brake  
Note 1. When powering OFF,the RA1 of external dynamic brake circuit will be turned OFF,  
and the base circuit is turned OFF earlier than usual before an output shortage occurs.  
(Only when assigning the DB as the output signal in the parameter No.PD12 and PD14)  
2. Variable according to the operation status.  
c. Timing chart when both of the main and control circuit power are OFF  
14 - 56  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(3) Outline dimension drawing  
(a) DBU-11K DBU-15K DBU-22K  
[Unit: mm]  
5
5
G
F
100  
D
D
2.3  
C
Terminal block  
E
U
V
W
a
b
13 14  
(GND)  
Screw : M4  
Tightening torque: 1.2 [N m](10.6 [lb in])  
Screw : M3.5  
Tightening torque: 0.8 [N m](7 [lb in])  
Mass  
Connection wire  
[mm2] (Note)  
Dynamic brake  
A
B
C
D
E
F
G
[kg]([Ib])  
DBU-11K  
200  
250  
190  
238  
140  
150  
20  
25  
5
6
170  
235  
163.5  
228  
2 (4.41)  
5.5  
5.5  
DBU-15K, 22K  
6 (13.23)  
Note. Selection condition of wire size is as follows.  
Wire type: 600V Polyvinyl chloride insulated wire (IV wire)  
Construction condition: One wire is constructed in the air  
14 - 57  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(b) DBU-11K-4 DBU-22K-4  
[Unit: mm]  
2- 7mounting hole  
51 73.75  
150  
7
2.3  
15  
25  
25  
15  
195  
210  
200  
15  
170  
Mass: 6.7[kg] (14.8 [lb])  
Terminal block  
TE1  
TE2  
U
a
b
13 14  
V
W
Screw: M3.5  
Screw: M4  
Tightening torque: 1.2[N m](10.6[lb in])  
Tightening torque: 0.8[N m](7[lb in])  
Wire [mm2] (Note)  
Dynamic brake  
a
b
U
V
W
DBU-11K-4  
DBU-22K-4  
2
2
5.5  
5.5  
Note. Selection condition of wire size is as follows.  
Wire type: 600V Polyvinyl chloride insulated wire (IV wire)  
Construction condition: One wire is constructed in the air  
14 - 58  
14. OPTIONS AND AUXILIARY EQUIPMENT  
14.7 Battery MR-J3BAT  
POINT  
The revision (Edition 44) of the Dangerous Goods Rule of the International Air  
Transport Association (IATA) went into effect on January 1, 2003 and was  
enforced immediately. In this rule, "provisions of the lithium and lithium ion  
batteries" were revised to tighten the restrictions on the air transportation of  
batteries. However, since this battery is non-dangerous goods (non-Class 9),  
air transportation of 24 or less batteries is outside the range of the  
restrictions. Air transportation of more than 24 batteries requires packing  
compliant with the Packing Standard 903. When a self-certificate is necessary  
for battery safety tests, contact our branch or representative. For more  
information, consult our branch or representative. (As of Jun, 2008).  
(1) Purpose of use for MR-J3BAT  
This battery is used to construct an absolute position detection system. Refer to section 14.3 for the fitting  
method, etc.  
(2) Year and month when MR-J3BAT is manufactured  
The year and month when MR-J3BAT is manufactured are written down in Serial No. on the rating plate of  
the battery back face.  
The year and month of manufacture are indicated by the last one digit of the year and 1 to 9, X(10), Y(11),  
Z(12).  
For October 2004, the Serial No. is like, "SERIAL 4X  
".  
MELSERVO  
3.6V,2000mAh  
SERIAL 4X  
MR-J3BAT  
MITSUBISHI ELECTRIC CORPORATION  
MADE IN JAPAN  
The year and month of manufacture  
14 - 59  
14. OPTIONS AND AUXILIARY EQUIPMENT  
14.8 Heat sink outside mounting attachment (MR-J3ACN)  
Use the heat sink outside mounting attachment to mount the heat generation area of the servo amplifier in the  
outside of the control box to dissipate servo amplifier-generated heat to the outside of the box and reduce the  
amount of heat generated in the box, thereby allowing a compact control box to be designed.  
In the control box, machine a hole having the panel cut dimensions, fit the heat sink outside mounting  
attachment to the servo amplifier with the fitting screws (4 screws supplied), and install the servo amplifier to  
the control box.  
The environment outside the control box when using the heat sink outside mounting attachment should be  
within the range of the servo amplifier operating environment conditions.  
The heat sink outside mounting attachment of MR-J3ACN can be used for MR-J3-11KT(4) to MR-J3-22KT(4).  
(1) Panel cut dimensions  
[Unit : mm]  
203  
4-M10 Screw  
Punched  
hole  
236  
255  
270  
(2) How to assemble the attachment for a heat sink outside mounting attachment  
Attachment  
Screw  
(2 places)  
14 - 60  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(3) Fitting method  
Attachment  
Punched  
hole  
Servo  
amplifier  
Fit using the  
assembling  
screws.  
Servo  
amplifier  
Control box  
Attachment  
a. Assembling the heat sink outside mounting attachment  
b. Installation to the control box  
(4) Outline dimension drawing  
[Unit: mm]  
20  
Panel  
Servo  
amplifier  
Servo amplifier  
Attachment  
Panel  
3.2  
155  
Approx.260  
236  
280  
Approx.11.5  
105  
Mounting  
hole  
Approx.260  
14 - 61  
14. OPTIONS AND AUXILIARY EQUIPMENT  
14.9 Selection example of wires  
POINT  
Wires indicated in this section are separated wires. When using a cable for  
power line (U, V, and W) between the servo amplifier and servo motor, use a  
600V grade EP rubber insulated chloroprene sheath cab-tire cable (2PNCT).  
For selection of cables, refer to appendix 6.  
To comply with the UL/C-UL (CSA) Standard, use UL-recognized copper  
wires rated at 60 (140 ) or more for wiring. To comply with other  
standards, use a wire that is complied with each standard  
Selection condition of wire size is as follows.  
Construction condition: One wire is constructed in the air  
Wire length: 30m or less  
(1) Wires for power supply wiring  
The following diagram shows the wires used for wiring. Use the wires given in this section or equivalent.  
1) Main circuit power supply lead  
3) Motor power supply lead  
Servo motor  
Servo amplifier  
Power supply  
L1  
U
V
U
V
L2  
L3  
(Note)  
Motor  
W
W
2) Control power supply lead  
L11  
L21  
4) Electromagnetic  
brake lead  
8) Power regeneration converter lead  
Electro-  
magnetic  
brake  
B1  
B2  
Power regeneration  
converter  
N
C
Regenerative option  
P
C
Encoder  
P
Encoder cable  
(Refer to (2) in this section.)  
Power supply  
4) Regenerative option lead  
Cooling fan  
CC-Link cable  
(Refer to (3)  
in this section.)  
BU  
BV  
BW  
CN1  
6) Fan lead  
7) Thermal  
Thermal  
OHS1  
OHS2  
Note. There is no L3 for 1-phase 100 to 120VAC power supply.  
14 - 62  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(a) When using the 600V Polyvinyl chloride insulated wire (IV wire)  
Selection example of wire size when using IV wires is indicated below.  
Table 14.1 Wire size selection example 1 (IV wire)  
Wires [mm2] (Note 1, 4)  
Servo amplifier  
1)  
3)  
6)  
7)  
2) L11 L21  
4) P  
C
5) B1 B2  
L1 L2 L3  
U
V
W
BU BV BW OHS1 OHS2  
MR-J3-10T(1)  
MR-J3-20T(1)  
MR-J3-40T(1)  
MR-J3-60T  
MR-J3-70T  
MR-J3-100T  
MR-J3-200T  
MR-J3-350T  
MR-J3-500T  
(Note 2)  
1.25(AWG16)  
2(AWG14)  
1.25(AWG16)  
2(AWG14)  
2(AWG14)  
3.5(AWG12)  
3.5(AWG12)  
5.5(AWG10): a  
5.5(AWG10): a 2(AWG14): g  
1.25(AWG16):  
h
MR-J3-700T  
(Note 2)  
2(AWG14)  
(Note 3)  
1.25(AWG16)  
(Note 3)  
8(AWG8): b  
14(AWG6): c  
22(AWG4): d  
8(AWG8): b  
22(AWG4): d  
30(AWG2): e  
3.5(AWG12): a  
MR-J3-11KT  
(Note 2)  
5.5(AWG10): j 1.25(AWG16)  
MR-J3-15KT  
(Note 2)  
1.25(AWG16):  
g
2(AWG14)  
1.25(AWG16)  
MR-J3-22KT  
(Note 2)  
50(AWG1/0):  
f
60(AWG2/0): f 5.5(AWG10): k  
MR-J3-60T4  
MR-J3-100T4  
MR-J3-200T4  
MR-J3-350T4  
MR-J3-500T4  
(Note 2)  
1.25(AWG16)  
2(AWG14)  
2(AWG14)  
1.25(AWG16)  
2(AWG14)  
2(AWG14): g  
2(AWG14): g  
1.25(AWG16):  
h
2(AWG14): g  
5.5(AWG10): a  
5.5(AWG10): a  
MR-J3-700T4  
(Note 2)  
2(AWG14)  
(Note 3)  
1.25(AWG16)  
(Note 3)  
MR-J3-11KT4  
(Note 2)  
8(AWG8): l  
8(AWG8): l  
3.5(AWG12): j  
5.5(AWG10): j  
5.5(AWG10): k  
MR-J3-15KT4  
(Note 2)  
1.25(AWG16):  
g
14(AWG6): c  
14(AWG6): m  
22(AWG4): d  
22(AWG4): n  
2(AWG14)  
1.25(AWG16)  
MR-J3-22KT4  
(Note 2)  
Note 1. Alphabets in the table indicate crimping tools. For crimping terminals and applicable tools, refer to (1) (c) in this section.  
2. When connecting to the terminal block, be sure to use the screws which are provided with the terminal block.  
3. For the servo motor with a cooling fan.  
4. Wires are selected based on the highest rated current among combining servo motors.  
Use wires 8) of the following sizes with the power regeneration converter (FR-RC-(H)).  
2
Model  
Wires[mm ]  
14(AWG6)  
14(AWG6)  
22(AWG4)  
14(AWG6)  
14(AWG6)  
14(AWG6)  
FR-RC-15K  
FR-RC-30K  
FR-RC-55K  
FR-RC-H15K  
FR-RC-H30K  
FR-RC-H55K  
14 - 63  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(b) When using the 600V Grade heat-resistant polyvinyl chloride insulated wire (HIV wire)  
Selection example of wire size when using HIV wires is indicated below. For the wire ( 8)) for power  
regeneration converter (FR-RC-(H)), use the IV wire indicated in (1) (a) in this section.  
Table 14.2 Wire size selection example 2 (HIV wire)  
Wires [mm2] (Note 1, 4)  
Servo amplifier  
1)  
3)  
6)  
7)  
2) L11 L21  
4) P  
C
5) B1 B2  
L1 L2 L3  
U
V
W
BU BV BW OHS1 OHS2  
MR-J3-10T(1)  
MR-J3-20T(1)  
MR-J3-40T(1)  
MR-J3-60T  
MR-J3-70T  
MR-J3-100T  
MR-J3-200T  
MR-J3-350T  
MR-J3-500T  
(Note 2)  
1.25(AWG16)  
2(AWG14)  
1.25(AWG16)  
2(AWG14)  
1.25(AWG16)  
2(AWG14)  
3.5(AWG12)  
3.5(AWG12)  
5.5(AWG10): a  
5.5(AWG10): a 2(AWG14): g  
1.25(AWG16):  
h
MR-J3-700T  
(Note 2)  
1.25(AWG16) 1.25(AWG16)  
(Note 3) (Note 3)  
8(AWG8): b  
14(AWG6): c  
22(AWG4): d  
38(AWG1): p  
8(AWG8): b  
14(AWG6): c  
22(AWG4): d  
38(AWG1): p  
1.25(AWG16)  
2(AWG14): g  
MR-J3-11KT  
(Note 2)  
3.5(AWG12): j 1.25(AWG16)  
MR-J3-15KT  
(Note 2)  
1.25(AWG16):  
g
1.25(AWG16) 1.25(AWG16)  
MR-J3-22KT  
(Note 2)  
5.5(AWG10): k  
2(AWG14)  
MR-J3-60T4  
MR-J3-100T4  
MR-J3-200T4  
MR-J3-350T4  
MR-J3-500T4  
(Note 2)  
2(AWG14)  
1.25(AWG16)  
2(AWG14)  
2(AWG14): g  
2(AWG14): g  
1.25(AWG16):  
h
3.5(AWG12): a  
5.5(AWG10): a  
8(AWG8): l  
2(AWG14): g  
3.5(AWG12): a  
MR-J3-700T4  
(Note 2)  
1.25(AWG16) 1.25(AWG16)  
(Note 3) (Note 3)  
MR-J3-11KT4  
(Note 2)  
5.5(AWG10): j  
8(AWG8): l  
2(AWG14): q  
3.5(AWG12): j  
MR-J3-15KT4  
(Note 2)  
1.25(AWG16):  
g
14(AWG6): c  
1.25(AWG16) 1.25(AWG16)  
MR-J3-22KT4  
(Note 2)  
14(AWG6): m  
14(AWG6): m 3.5(AWG12): k  
Note 1. Alphabets in the table indicate crimping tools. For crimping terminals and applicable tools, refer to (1) (c) in this section.  
2. When connecting to the terminal block, be sure to use the screws which are provided with the terminal block.  
3. For the servo motor with a cooling fan.  
4. Wires are selected based on the highest rated current among combining servo motors.  
14 - 64  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(c) Selection example of crimping terminals  
Selection example of crimping terminals for the servo amplifier terminal box when using the wires  
mentioned in (1) (a) and (b) in this section is indicated below.  
Servo amplifier side crimping terminals  
(Note 2)  
Crimping  
terminal  
Applicable tool  
Symbol  
a
Manufacturer  
Body  
Head  
Dice  
FVD5.5-4  
YNT-1210S  
YHT-8S  
(Note 1)b 8-4NS  
c
FVD14-6  
FVD22-6  
DH-112 DH122  
DH-113 DH123  
YF-1 E-4  
YNE-38  
d
YPT-60-21  
YF-1 E-4  
YPT-60-21  
YF-1 E-4  
(Note 1)e 38-6  
(Note 1)f R60-8  
TD-112 TD-124  
YET-60-1  
YET-60-1  
TD-113 TD-125 Japan Solderless  
Terminal  
g
h
j
FVD2-4  
YNT-1614  
FVD2-M3  
FVD5.5-6  
FVD5.5-8  
FVD8-6  
YNT-1210S  
k
l
DH-111 DH121  
DH-112 DH122  
DH-113 DH123  
YF-1 E-4  
YNE-38  
m
n
FVD14-8  
FVD22-8  
YPT-60-21  
YF-1 E-4  
YNT-1614  
(Note 1)p R38-8  
FVD2-6  
TD-112 TD-124  
YET-60-1  
q
Note 1. Coat the part of crimping with the insulation tube.  
2. Some crimping terminals may not be mounted depending on the size. Make sure to use the  
recommended ones or equivalent ones.  
14 - 65  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(2) Wires for cables  
When fabricating a cable, use the wire models given in the following table or equivalent.  
Table 14.3 Wires for option cables  
Characteristics of one core  
(Note 3)  
Finishing  
OD [mm]  
Insulation  
coating OD  
d [mm]  
Length Core size Number  
Conductor  
resistance  
Type  
Model  
Wire model  
Structure  
[wires/mm]  
[m(ft)]  
[mm2]  
of cores  
[
/mm]  
(Note 1)  
(Note 3)  
VSVP 7/0.26 (AWG#22 or  
equivalent)-3P  
MR-J3ENCBL M-A1-L  
MR-J3ENCBL M-A2-L  
MR-J3ENCBL M-A1-H  
MR-J3ENCBL M-A2-H  
MR-J3JCBL03M-A1-L  
MR-J3JCBL03M-A2-L  
6
53  
or less  
2 to 10 AWG22  
2 to 10 AWG22  
7/0.26  
70/0.08  
30/0.08  
1.2  
1.2  
1.2  
7.1 0.3  
(3 pairs)  
Ban-gi-shi-16823  
(Note 3)  
6
56  
or less  
7.1 0.3 ETFE SVP 70/0.08 (AWG#22 or  
equivalent)-3P Ban-gi-shi-16824  
(3 pairs)  
(Note 5)  
7.1 0.3 T/2464-1061/II A-SB 4P  
26AWG  
8
233  
or less  
0.3  
AWG26  
(4 pairs)  
4
65.7  
or less  
234  
or less  
63.6  
or less  
105  
or less  
105  
or less  
0.3mm2  
12/0.18  
7/0.127  
12/0.18  
40/0.08  
40/0.08  
1.3  
0.67  
1.2  
(Note 3)  
(2 pairs)  
2 to 10  
7.3  
20276 composite 4-pair shielded  
cable (A-TYPE)  
4
0.08mm2  
MR-EKCBL M-L  
MR-EKCBL M-H  
MR-J3ENSCBL M-L  
(2 pairs)  
12  
(6 pairs)  
12  
(6 pairs)  
14  
Encoder  
cable  
20 30 0.3mm2  
0.2mm2  
8.2  
7.2  
8.0  
UL20276 AWG#23 6pair(BLACK)  
(Note 3) A14B2343 6P  
20  
0.88  
0.88  
30 to 50 0.2mm2  
(Note 3) J14B0238(0.2*7P)  
(Note 3)  
7.1 0.3 VSVP 7/0.26 (Equivalent to  
AWG#22)-3P Ban-gi-shi-16823  
(Note 3)  
(7 pairs)  
6
53  
or less  
2 to 10 AWG22  
7/0.26  
12/0.18  
70/0.08  
40/0.08  
1.2  
1.2  
(3 pairs)  
12  
(6 pairs)  
63.3  
or less  
20 30 AWG23  
2 to 10 AWG22  
20 to 50 AWG24  
8.2 0.3 20276 VSVCAWG#23 6P  
Ban-gi-shi-15038  
(Note 3)  
6
56  
or less  
1.2  
7.1 0.3 ETFE SVP 70/0.08 (Equivalent to  
AWG#22)-3P Ban-gi-shi-16824  
(Note 3)  
(3 pairs)  
MR-J3ENSCBL M-H  
12  
(6 pairs)  
105  
or less  
0.88  
7.2  
ETRE SVP 40/0.08mm 6P  
Ban-gi-shi-15266  
MR-PWS1CBL M-A1-L 2 to 10  
MR-PWS1CBL M-A2-L 2 to 10  
Motor power MR-PWS1CBL M-A1-H 2 to 10 (Note 6)  
supply cable AWG19  
25.40  
or less  
(Note 4)  
UL Style 2103 AWG19 4 cores  
4
2
50/0.08  
1.8  
1.3  
5.7 0.3  
MR-PWS1CBL M-A2-H 2 to 10  
MR-PWS2CBL03M-A1-L  
MR-PWS2CBL03M-A2-L  
MR-BKS1CBL M-A1-L  
MR-BKS1CBL M-A2-L  
0.3  
0.3  
2 to 10  
2 to 10  
Motor brake MR-BKS1CBL M-A1-H 2 to 10 (Note 6)  
cable AWG20  
38.14  
or less  
(Note 4)  
UL Style 2103 AWG20 2 cores  
100/0.08  
4.0 0.3  
MR-BKS1CBL M-A2-H 2 to 10  
MR-BKS2CBL03M-A1-L  
MR-BKS2CBL03M-A2-L  
0.3  
0.3  
Note 1. d is as shown below.  
d
Conductor Insulation sheath  
2. Purchased from Toa Electric Industry  
3. Standard OD. Max. OD is about 10% greater.  
4. Kurabe  
5. Taiyo Electric Wire and Cable  
6. These wire sizes assume that the UL-compliant wires are used at the wiring length of 10m.  
14 - 66  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(3) CC-Link twisted cable  
POINT  
For the cables other than the one indicated here, refer to the open field  
network CC-Link catalog (L(NA)74108143).  
The specifications of the twisted cable usable in CC-Link and the recommended cable are indicated below.  
If the cable used is other than the recommended cable indicated in the following table, we cannot guarantee  
the performance of CC-Link. For inquiries on CC-Link compatible cables, contact the nearest Mitsubishi  
Electric System Service.  
Item  
Specifications  
FANC-110SBH  
Kuramo Electric  
For fixed parts  
Model  
Manufacturer  
Application  
Size  
20AWG  
3
Insulator material  
Insulator color  
Polyethylene foam  
Blue, white, and yellow  
Oil resistant vinyl  
Brown  
Sheath  
Braided screen  
Tape  
Sheath material  
Sheath color  
Insulator  
Operating temperature range (Note)  
Tensile strength  
0 to 75  
(32 to 167  
49N  
)
Conductor  
Inclusion  
Ground wire  
Minimum bend radius  
Outline dimension  
Approximate mass  
35mm  
Approx. 7.6mm  
70kg/km  
Fig. 14.1 Structure  
Conductor resistance (20  
Characteristic impedance  
)
34.5 /km or lower  
110 15  
UL AWM Style 2464  
CAN/CSA-C22.2  
No.210.2-M90(cUL)  
Applicable specification  
Note. An upper limit of the operating temperature range shows a heat-resistant temperature of the cable material.  
In high-temperature environment, the transmittable distance may be reduced.  
14 - 67  
14. OPTIONS AND AUXILIARY EQUIPMENT  
14.10 No-fuse breakers, fuses, magnetic contactors  
Always use one no-fuse breaker and one magnetic contactor with one servo amplifier. When using a fuse  
instead of the no-fuse breaker, use the one having the specifications given in this section.  
No-fuse breaker  
Fuse  
Magnetic  
contactor  
Not using power  
Servo amplifier  
Using power factor  
improving reactor  
Voltage  
AC [V]  
factor improving  
reactor  
(Note) Class Current [A]  
MR-J3-10T (1)  
MR-J3-20T  
30A frame 5A  
30A frame 5A  
30A frame 10A  
30A frame 10A  
30A frame 15A  
30A frame 20A  
30A frame 30A  
50A frame 50A  
100A frame 75A  
30A frame 5A  
30A frame 5A  
30A frame 10A  
30A frame 5A  
30A frame 10A  
30A frame 15A  
30A frame 30A  
50A frame 40A  
50A frame 50A  
10  
10  
S-N10  
MR-J3-20T1  
15  
MR-J3-40T  
15  
MR-J3-60T 70T 100T 40T1  
MR-J3-200T  
20  
40  
S-N18  
S-N20  
S-N35  
S-N50  
S-N65  
S-N95  
S-N125  
250  
MR-J3-350T  
70  
MR-J3-500T  
125  
150  
200  
MR-J3-700T  
MR-J3-11KT  
100A frame 100A 100A frame 75A  
225A frame 125A 100A frame 100A  
225A frame 175A 225A frame 150A  
MR-J3-15KT  
T
250  
350  
10  
MR-J3-22KT  
MR-J3-60T4  
30A frame 5A  
30A frame 10A  
30A frame 15A  
30A frame 20A  
30A frame 30A  
50A frame 40A  
60A frame 60A  
100A frame 75A  
30A frame 5A  
30A frame 10A  
30A frame 15A  
30A frame 20A  
30A frame 30A  
50A frame 30A  
50A frame 50A  
60A frame 60A  
MR-J3-100T4  
MR-J3-200T4  
MR-J3-350T4  
MR-J3-500T4  
MR-J3-700T4  
MR-J3-11KT4  
MR-J3-15KT4  
MR-J3-22KT4  
15  
S-N10  
25  
35  
600  
50  
S-N18  
S-N20  
S-N25  
S-N35  
S-N65  
65  
100  
150  
175  
225A frame 125A 100A frame 100A  
Note. When not using the servo amplifier as a UL/C-UL Standard compliant product, K5 class fuse can be used.  
14 - 68  
14. OPTIONS AND AUXILIARY EQUIPMENT  
14.11 Power factor improving DC reactor  
POINT  
For the 100V power supply type (MR-J3- T1), the power factor improving DC  
reactor cannot be used.  
The power factor improving DC reactor increases the form factor of the servo amplifier's input current to  
improve the power factor. It can decrease the power supply capacity. As compared to the power factor  
improving AC reactor (FR-BAL), it can decrease the loss. The input power factor is improved to about 95%.  
It is also effective to reduce the input side harmonics.  
When connecting the power factor improving DC reactor to the servo amplifier, always disconnect P1 and P2  
(For 11kW or more, disconnect P1 and P). If it remains connected, the effect of the power factor improving DC  
reactor is not produced.  
When used, the power factor improving DC reactor generates heat. To release heat, therefore, leave a 10cm or  
more clearance at each of the top and bottom, and a 5cm or more clearance on each side.  
[Unit: mm]  
Rating plate Terminal box - screw size G  
Rating plate  
(Note 1)Terminal cover  
Screw size G  
Servo amplifier  
FR-BEL-(H)  
Servo amplifier  
FR-BEL-(H)  
P1  
(Note 2)  
P2  
P1  
(Note 2)  
(Note 3)  
P2  
5m or less  
E
H
5m or less  
A or less  
B or less  
E
H
2-F L notch  
A or less  
B or less  
2-F L notch  
Mounting leg  
F
Mounting leg  
F
Fig. 14.2  
Fig. 14.3  
Note 1. Since the terminal cover is supplied, attach it after connecting a wire.  
2. When using DC reactor, disconnect P1 and P2.  
3. When over 11kW, "P2" becomes "P" respectively.  
14 - 69  
14. OPTIONS AND AUXILIARY EQUIPMENT  
Power factor  
improving DC  
reactor  
Dimensions [mm]  
Outline  
Mounting  
screw size  
Mass  
[kg(lb)]  
Wire  
[mm2] (Note)  
Servo amplifier  
drawing  
A
B
C
D
E
F
L
G
H
MR-J3-10T 20T  
MR-J3-40T  
FR-BEL-0.4K  
FR-BEL-0.75K  
FR-BEL-1.5K  
110  
120  
130  
50  
53  
65  
65  
75  
75  
93  
94  
1.6  
1.6  
1.6  
1.6  
2.0  
2.0  
2.3  
95  
6
6
6
6
6
6
6
12  
12  
12  
12  
12  
12  
14  
M3.5  
M4  
M4  
M4  
M4  
M5  
M5  
25  
25  
30  
30  
40  
40  
50  
M5  
M5  
M5  
M5  
M5  
M5  
M5  
0.5(1.10)  
0.7(1.54)  
1.1(2.43)  
1.2(2.65)  
1.7(3.75)  
102  
110  
110  
102  
126  
132  
105  
115  
115  
135  
135  
155  
MR-J3-60T 70T  
MR-J3-100T  
MR-J3-200T  
MR-J3-350T  
MR-J3-500T  
MR-J3-700T  
MR-J3-11KT  
MR-J3-15KT  
MR-J3-22KT  
MR-J3-60T4  
MR-J3-100T4  
MR-J3-200T4  
MR-J3-350T4  
MR-J3-500T4  
MR-J3-700T4  
MR-J3-11KT4  
MR-J3-15KT4  
MR-J3-22KT4  
2(AWG14)  
FR-BEL-2.2K Fug. 14.2 130  
FR-BEL-3.7K  
FR-BEL-7.5K  
FR-BEL-11K  
150  
150  
170  
2.3(5.07) 3.5(AWG12)  
3.1(6.83) 5.5(AWG10)  
8(AWG8)  
3.8(8.38)  
FR-BEL-15K  
170  
93  
170  
2.3  
155  
6
14  
M8  
56  
M5  
22(AWG4)  
Fig. 14.3  
FR-BEL-22K  
FR-BEL-30K  
185  
185  
130  
130  
119  
119  
63  
182  
201  
89  
2.6  
2.6  
1.6  
1.6  
2
165  
165  
115  
115  
135  
135  
155  
7
7
6
6
6
6
6
15  
15  
12  
12  
12  
12  
14  
M8  
M8  
70  
70  
32  
32  
40  
40  
50  
M6  
M6  
M5  
M5  
M5  
M5  
M5  
5.4(11.91) 30(AWG2)  
6.7(14.77) 60(AWG2/0)  
0.9(1.98)  
FR-BEL-H1.5K  
FR-BEL-H2.2K  
M3.5  
M3.5  
M4  
63  
101  
102  
124  
132  
1.1(2.43)  
2(AWG14)  
1.7(3.75)  
FR-BEL-H3.7K Fig. 14.2 150  
75  
FR-BEL-H7.5K  
FR-BEL-H11K  
150  
170  
75  
2
M4  
2.3(5.07)  
93  
2.3  
M5  
3.1(6.83) 5.5(AWG10)  
FR-BEL-H15K  
170  
93  
160  
2.3  
155  
6
14  
M6  
56  
M5  
3.7(8.16)  
8(AWG8)  
Fig. 14.3  
FR-BEL-H22K  
FR-BEL-H30K  
185  
185  
119  
119  
171  
189  
2.6  
2.6  
165  
165  
7
7
15  
15  
M6  
M6  
70  
70  
M6  
M6  
5.0(11.02)  
6.7(14.77)  
22(AWG4)  
Note. Selection condition of wire size is as follows.  
Wire type: 600V Polyvinyl chloride insulated wire (IV wire)  
Construction condition: One wire is constructed in the air  
14 - 70  
14. OPTIONS AND AUXILIARY EQUIPMENT  
14.12 Power factor improving reactors  
The power factor improving reactors improve the phase factor by increasing the form factor of servo amplifier's  
input current.  
It can reduce the power capacity.  
The input power factor is improved to be about 90%. For use with a 1-phase power supply, it may be slightly  
lower than 90%.  
In addition, it reduces the higher harmonic of input side.  
When using power factor improving reactors for two servo amplifiers or more, be sure to connect a power factor  
improving reactor to each servo amplifier.  
If using only one power factor improving reactor, enough improvement effect of phase factor cannot be  
obtained unless all servo amplifiers are operated.  
[Unit : mm]  
Servo amplifier  
MR-J3- T(4)  
FR-BAL-(H)  
MC  
NFB  
3-phase  
200 to  
230VAC  
or  
3-phase  
380 to  
480VAC  
R
S
T
X
Y
Z
L1  
L2  
L3  
Servo amplifier  
FR-BAL  
MR-J3-  
T
MC  
NFB  
W
D1  
R
S
T
X
Y
Z
L1  
Installation screw  
(Note)  
1-phase  
200v to 230VAC  
L2  
L3  
RXSYT Z  
W1  
Servo amplifier  
MR-J3- T1  
C
FR-BAL  
MC  
NFB  
R
S
T
X
Y
Z
1-phase  
100 to120VAC  
L1  
Blank  
L2  
Note. For the 1-phase 200V to 230V power supply, Connect the power  
supply to L1, L2 and leave L3 open.  
14 - 71  
14. OPTIONS AND AUXILIARY EQUIPMENT  
Dimensions [mm]  
Mounting  
Terminal  
Mass  
Servo amplifier  
Model  
screw size screw size  
[kg (lb)]  
W
W1  
H
D
D1  
C
0
-2.5  
FR-BAL-0.4K  
FR-BAL-0.75K  
FR-BAL-1.5K  
FR-BAL-2.2K  
FR-BAL-3.7K  
FR-BAL-7.5K  
FR-BAL-11K  
MR-J3-10T 20T 10T1  
MR-J3-40T 20T1  
MR-J3-60T 70T 40T1  
MR-J3-100T  
135  
135  
160  
160  
220  
220  
280  
120  
120  
145  
145  
200  
200  
255  
115  
115  
140  
140  
192  
194  
220  
59  
69  
45  
57  
7.5  
7.5  
7.5  
7.5  
10  
M4  
M4  
M4  
M4  
M5  
M5  
M6  
M3.5  
M3.5  
M3.5  
M3.5  
M4  
2.0 (4.41)  
2.8 (6.17)  
0
-2.5  
0
-2.5  
71  
55  
3.7 (8.16)  
0
-2.5  
91  
75  
5.6 (12.35)  
8.5 (18.74)  
14.5 (31.97)  
19 (41.89)  
0
-2.5  
MR-J3-200T  
90  
70  
0
-2.5  
MR-J3-350T  
120  
135  
100  
100  
10  
M5  
0
-2.5  
MR-J3-500T  
12.5  
M6  
MR-J3-700T  
0
-2.5  
FR-BAL-15K  
295  
270  
275  
133  
110  
12.5  
M6  
M6  
27 (59.53)  
MR-J3-11KT  
FR-BAL-22K  
170 5  
MR-J3-15KT  
290  
290  
160  
160  
220  
220  
280  
240  
240  
145  
145  
200  
200  
255  
301  
301  
140  
140  
190  
192  
226  
199  
219  
87  
25  
25  
M8  
M8  
M4  
M4  
M5  
M5  
M6  
M8  
M8  
35 (77.16)  
43 (94.80)  
5.3 (11.68)  
5.9 (13.01)  
8.5 (18.74)  
14 (30.87)  
18.5 (40.79)  
FR-BAL-30K  
190 5  
MR-J3-22KT  
0
-2.5  
FR-BAL-H1.5K  
FR-BAL-H2.2K  
FR-BAL-H3.7K  
FR-BAL-H7.5K  
FR-BAL-H11K  
MR-J3-60T4  
70  
7.5  
7.5  
10  
M3.5  
M3.5  
M3.5  
M4  
0
-2.5  
MR-J3-100T4  
MR-J3-200T4  
MR-J3-350T4  
MR-J3-500T4  
MR-J3-700T4  
MR-J3-11KT4  
91  
75  
0
-2.5  
90  
70  
100 5  
100 5  
120  
130  
10  
12.5  
M5  
FR-BAL-H15K  
FR-BAL-H22K  
FR-BAL-H30K  
295  
290  
290  
270  
240  
240  
244  
269  
290  
130  
199  
219  
110 5  
170 5  
190 5  
12.5  
25  
M6  
M8  
M8  
M5  
M8  
M8  
27 (59.53)  
Approx.35  
(Approx.77.16)  
Approx.43  
MR-J3-15KT4  
MR-J3-22KT4  
25  
(Approx.94.80)  
14 - 72  
14. OPTIONS AND AUXILIARY EQUIPMENT  
14.13 Relays (recommended)  
The following relays should be used with the interfaces.  
Interface  
Selection example  
Relay used for digital input command signals (interface DI-1) To prevent defective contacts , use a relay for small signal  
(twin contacts).  
(Ex.) Omron : type G2A , MY  
Relay used for digital output signals (interface DO-1)  
Small relay with 12VDC or 24VDC of rated current 40mA or  
less  
(Ex.) Omron : type MY  
14.14 Surge absorbers (recommended)  
A surge absorber is required for the electromagnetic brake. Use the following surge absorber or equivalent.  
When using the surge absorber, perform insulation beforehand to prevent short-circuit.  
Maximum rating  
Static  
capacity  
(reference  
value)  
Maximum  
Varistor voltage  
Permissible circuit  
voltage  
Surge  
Energy  
Rated  
power  
limit voltage  
rating (range) V1mA  
immunity  
immunity  
AC [Vma]  
DC [V]  
180  
[A]  
[J]  
5
[W]  
0.4  
[A]  
25  
[V]  
[pF]  
[V]  
220  
(Note)  
140  
360  
300  
500/time  
(198 to 242)  
Note. 1 time  
8
20 s  
[Unit: mm]  
13.5  
4.7 1.0  
(Example) ERZV10D221 (Matsushita Electric Industry)  
TNR-10V221K (Nippon chemi-con)  
Outline drawing [mm] (ERZ-C10DK221)  
0.8  
14 - 73  
14. OPTIONS AND AUXILIARY EQUIPMENT  
14.15 Noise reduction techniques  
Noises are classified into external noises which enter the servo amplifier to cause it to malfunction and those  
radiated by the servo amplifier to cause peripheral devices to malfunction. Since the servo amplifier is an  
electronic device which handles small signals, the following general noise reduction techniques are required.  
Also, the servo amplifier can be a source of noise as its outputs are chopped by high carrier frequencies. If  
peripheral devices malfunction due to noises produced by the servo amplifier, noise suppression measures  
must be taken. The measures will vary slightly with the routes of noise transmission.  
(1) Noise reduction techniques  
(a) General reduction techniques  
Avoid laying power lines (input and output cables) and signal cables side by side or do not bundle  
them together. Separate power lines from signal cables.  
Use shielded, twisted pair cables for connection with the encoder and for control signal transmission,  
and connect the shield to the SD terminal.  
Ground the servo amplifier, servo motor, etc. together at one point (refer to section 4.12).  
(b) Reduction techniques for external noises that cause the servo amplifier to malfunction  
If there are noise sources (such as a magnetic contactor, an electromagnetic brake, and many relays  
which make a large amount of noise) near the servo amplifier and the servo amplifier may malfunction,  
the following countermeasures are required.  
Provide surge absorbers on the noise sources to suppress noises.  
Attach data line filters to the signal cables.  
Ground the shields of the encoder connecting cable and the control signal cables with cable clamp  
fittings.  
Although a surge absorber is built into the servo amplifier, to protect the servo amplifier and other  
equipment against large exogenous noise and lightning surge, attaching a varistor to the power input  
section of the equipment is recommended.  
14 - 74  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(c) Techniques for noises radiated by the servo amplifier that cause peripheral devices to malfunction  
Noises produced by the servo amplifier are classified into those radiated from the cables connected to  
the servo amplifier and its main circuits (input and output circuits), those induced electromagnetically or  
statically by the signal cables of the peripheral devices located near the main circuit cables, and those  
transmitted through the power supply cables.  
Noise radiated directly  
from servo amplifier  
Noises produced  
by servo amplifier  
Noises transmitted  
in the air  
Route 1)  
Route 2)  
Route 3)  
Noise radiated from the  
power supply cable  
Noise radiated from  
servo motor cable  
Magnetic induction  
noise  
Routes 4) and 5)  
Static induction  
noise  
Route 6)  
Noises transmitted  
through electric  
channels  
Noise transmitted through  
power supply cable  
Route 7)  
Route 8)  
Noise sneaking from  
grounding cable due to  
leakage current  
5)  
7)  
7)  
2)  
1)  
7)  
Sensor  
power  
supply  
Servo  
amplifier  
2)  
Instrument  
Receiver  
3)  
8)  
6)  
Sensor  
4)  
3)  
Servo motor  
M
14 - 75  
14. OPTIONS AND AUXILIARY EQUIPMENT  
Noise transmission route  
Suppression techniques  
When measuring instruments, receivers, sensors, etc. which handle weak signals and may malfunction  
due to noise and/or their signal cables are contained in a control box together with the servo amplifier or  
run near the servo amplifier, such devices may malfunction due to noises transmitted through the air. The  
following techniques are required.  
1. Provide maximum clearance between easily affected devices and the servo amplifier.  
2. Provide maximum clearance between easily affected signal cables and the I/O cables of the servo  
amplifier.  
1) 2) 3)  
3. Avoid laying the power lines (Input cables of the servo amplifier) and signal cables side by side or  
bundling them together.  
4. Insert a line noise filter to the I/O cables or a radio noise filter on the input line.  
5. Use shielded wires for signal and power cables or put cables in separate metal conduits.  
When the power lines and the signal cables are laid side by side or bundled together, magnetic  
induction noise and static induction noise will be transmitted through the signal cables and malfunction  
may occur. The following techniques are required.  
1. Provide maximum clearance between easily affected devices and the servo amplifier.  
2. Provide maximum clearance between easily affected signal cables and the I/O cables of the servo  
amplifier.  
4) 5) 6)  
3. Avoid laying the power lines (I/O cables of the servo amplifier) and signal cables side by side or  
bundling them together.  
4. Use shielded wires for signal and power cables or put the cables in separate metal conduits.  
When the power supply of peripheral devices is connected to the power supply of the servo amplifier  
system, noises produced by the servo amplifier may be transmitted back through the power supply  
cable and the devices may malfunction. The following techniques are required.  
1. Insert the radio noise filter (FR-BIF) on the power cables (Input cables) of the servo amplifier.  
2. Insert the line noise filter (FR-BSF01 FR-BLF) on the power cables of the servo amplifier.  
When the cables of peripheral devices are connected to the servo amplifier to make a closed loop  
circuit, leakage current may flow to malfunction the peripheral devices. If so, malfunction may be  
prevented by disconnecting the grounding cable of the peripheral device.  
7)  
8)  
(2) Noise reduction products  
(a) Data line filter (Recommended)  
Noise can be prevented by installing a data line filter onto the encoder cable, etc.  
For example, the ZCAT3035-1330 of TDK and the ESD-SR-25 of NEC TOKIN make are available as  
data line filters.  
As a reference example, the impedance specifications of the ZCAT3035-1330 (TDK) are indicated  
below.  
This impedance is reference values and not guaranteed values.  
Impedance[ ]  
[Unit: mm]  
10 to 100MHz  
80  
100 to 500MHz  
150  
39  
34  
1
1
Loop for fixing the  
cable band  
TDK  
Product name Lot number  
Outline drawing (ZCAT3035-1330)  
14 - 76  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(b) Surge suppressor  
The recommended surge suppressor for installation to an AC relay, AC valve, or the like near the servo  
amplifier is shown below. Use this product or equivalent.  
MC  
Relay  
Surge suppressor  
Surge suppressor  
This distance should be short  
(within 20cm).  
(Ex.) 972A.2003 50411  
(Matsuo Electric Co.,Ltd. 200VAC rating)  
Rated  
voltage  
AC[V]  
Outline drawing [Unit: mm]  
Vinyl sheath  
C [ F]  
0.5  
R [ ]  
Test voltage AC[V]  
18 1.5  
Blue vinyl cord  
Red vinyl cord  
50  
Across  
200  
6
(1W)  
T-C 1000(1 to 5s)  
10 or less  
10 or less  
4
10 3  
10 3  
15 1  
31  
200  
48 1.5  
200  
or more  
or more  
Note that a diode should be installed to a DC relay, DC valve or  
the like.  
RA  
Maximum voltage: Not less than 4 times the drive voltage of the  
relay or the like  
Diode  
Maximum current: Not less than twice the drive current of the  
relay or the like  
14 - 77  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(c) Cable clamp fitting AERSBAN - SET  
Generally, the earth of the shielded cable may only be connected to the connector's SD terminal.  
However, the effect can be increased by directly connecting the cable to an earth plate as shown below.  
Install the earth plate near the servo amplifier for the encoder cable. Peel part of the cable sheath to  
expose the external conductor, and press that part against the earth plate with the cable clamp. If the  
cable is thin, clamp several cables in a bunch.  
The clamp comes as a set with the earth plate.  
[Unit: mm]  
Cable  
Cable clamp  
Earth plate  
(A,B)  
Strip the cable sheath of  
the clamped area.  
cutter  
cable  
External conductor  
Clamp section diagram  
Outline drawing  
[Unit: mm]  
Earth plate  
Clamp section diagram  
2- 5 hole  
installation hole  
17.5  
L or less  
10  
22  
6
(Note)M4 screw  
35  
Note. Screw hole for grounding. Connect it to the earth plate of the control box.  
Type  
A
B
C
Accessory fittings  
clamp A: 2pcs.  
clamp B: 1pc.  
Clamp fitting  
L
AERSBAN-DSET  
AERSBAN-ESET  
100  
70  
86  
56  
30  
A
B
70  
45  
14 - 78  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(d) Line noise filter (FR-BSF01, FR-BLF)  
This filter is effective in suppressing noises radiated from the power supply side and output side of the  
servo amplifier and also in suppressing high-frequency leakage current (zero-phase current) especially  
within 0.5MHz to 5MHz band.  
Connection diagram  
Outline drawing [Unit: mm]  
FR-BSF01 (for wire size 3.5mm2 (AWG12) or less)  
Use the line noise filters for wires of the main power supply  
(L1 L2 L3) and of the motor power supply (U  
V
W). Pass  
Approx.110  
each of the 3-phase wires through the line noise filter an equal  
number of times in the same direction. For the main power supply,  
the effect of the filter rises as the number of passes increases, but  
generally four passes would be appropriate. For the motor power  
supply, passes must be four times or less. Do not pass the  
grounding (earth) wire through the filter, or the effect of the filter  
will drop. Wind the wires by passing through the filter to satisfy the  
required number of passes as shown in Example 1. If the wires  
are too thick to wind, use two or more filters to have the required  
number of passes as shown in Example 2. Place the line noise  
filters as close to the servo amplifier as possible for their best  
performance.  
2-  
5
95 0.5  
Approx.65  
33  
Example 1  
NFB MC  
Servo amplifier  
FR-BLF(for wire size 5.5mm2 (AWG10) or more)  
7
Power  
supply  
L1  
L2  
L3  
Line noise  
filter  
(Number of turns: 4)  
130  
85  
Example 2  
MC  
NFB  
Servo amplifier  
Power  
supply  
L1  
L2  
L3  
Line noise  
filter  
160  
180  
Two filters are used  
(Total number of turns: 4)  
(e) Radio noise filter (FR-BIF-(H))  
This filter is effective in suppressing noises radiated from the power supply side of the servo amplifier  
especially in 10MHz and lower radio frequency bands. The FR-BIF-(H) is designed for the input only.  
Connection diagram  
Outline drawing (Unit: mm)  
Leakage current: 4mA  
Make the connection cables as short as possible.  
Grounding is always required.  
Red White Blue  
Green  
When using the FR-BIF with a single-phase power supply, always  
insulate the wires that are not used for wiring.  
Servo amplifier  
NFB  
MC  
L1  
29  
Power  
supply  
L2  
5
hole  
L3  
29  
58  
Radio noise  
filter FR-BIF-  
(H)  
7
200V class: FR-BIF  
400V class: FR-BIF-H  
44  
14 - 79  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(f) Varistors for input power supply (Recommended)  
Varistors are effective to prevent exogenous noise and lightning surge from entering the servo amplifier.  
When using a varistor, connect it between each phase of the input power supply of the equipment. For  
varistors, the TND20V-431K, TND20V-471K and TND20V-102K, manufactured by NIPPON CHEMI-  
CON, are recommended. For detailed specification and usage of the varistors, refer to the manufacturer  
catalog.  
Maximum rating  
Static  
capacity  
(reference  
value)  
Varistor voltage  
rating (range)  
V1mA  
Maximum limit  
voltage  
Power  
supply  
voltage  
Rated  
pulse  
power  
[W]  
Permissible circuit Surge current  
Energy  
Varistor  
voltage  
immunity  
immunity  
AC[Vrms]  
DC[V]  
350  
8/20 s[A]  
2ms[J]  
195  
[A]  
[V]  
710  
775  
[pF]  
1300  
1200  
[V]  
100V class TND20V-431K  
200V class TND20V-471K  
275  
300  
10000/1 time  
7000/2 time  
7500/1 time  
6500/2 time  
430(387 to 473)  
470(423 to 517)  
385  
215  
1.0  
100  
400V class TND20V-102K  
625  
825  
400  
1650  
500  
1000(900 to 1100)  
[Unit: mm]  
D
H
T
E
1.0  
(Note)L  
min.  
d
W
D
T
Model  
Max.  
Max.  
Max.  
0.05  
1.0  
TND20V-431K  
TND20V-471K  
TND20V-102K  
6.4  
6.6  
9.5  
3.3  
3.5  
6.4  
21.5  
24.5  
20  
0.8  
10.0  
22.5  
25.5  
Note. For special purpose items for lead length (L), contact the manufacturer.  
W
E
d
14 - 80  
14. OPTIONS AND AUXILIARY EQUIPMENT  
14.16 Leakage current breaker  
(1) Selection method  
High-frequency chopper currents controlled by pulse width modulation flow in the AC servo circuits.  
Leakage currents containing harmonic contents are larger than those of the motor which is run with a  
commercial power supply.  
Select a leakage current breaker according to the following formula, and ground the servo amplifier, servo  
motor, etc. securely.  
Make the input and output cables as short as possible, and also make the grounding cable as long as  
possible (about 30cm) to minimize leakage currents.  
Rated sensitivity current 10 {Ig1 Ign Iga K (Ig2 Igm)} [mA] (14.1)  
K: Constant considering the harmonic contents  
Cable  
Leakage current breaker  
K
Mitsubishi  
products  
Type  
Noise  
filter  
NV  
Servo  
amplifier  
Cable  
Ig2  
NV-SP  
NV-SW  
NV-CP  
NV-CW  
NV-L  
M
Models provided with  
harmonic and surge  
reduction techniques  
1
3
Ig1 Ign  
Iga  
Igm  
BV-C1  
NFB  
General models  
NV-L  
Ig1:  
Ig2:  
Leakage current on the electric channel from the leakage current breaker to the input terminals of the  
servo amplifier (Found from Fig. 14.4.)  
Leakage current on the electric channel from the output terminals of the servo amplifier to the  
servo motor (Found from Fig. 14.4.)  
Ign:  
Iga:  
Igm:  
Leakage current when a filter is connected to the input side (4.4mA per one FR-BIF-(H))  
Leakage current of the servo amplifier (Found from Table 14.5.)  
Leakage current of the servo motor (Found from Table 14.4.)  
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
[mA]  
[mA]  
0
2
5.5 14 38 100  
2
3.5 8 1422 38 80 150  
5.5  
30 60 100  
3.5  
8
22 60 150  
30 80  
Cable size[mm2]  
b. 400V class  
Cable size[mm2]  
a. 200V class  
Fig. 14.4 Leakage current example (lg1, lg2) for CV cable run in metal conduit  
14 - 81  
14. OPTIONS AND AUXILIARY EQUIPMENT  
Table 14.4 Servo motor’s leakage current example (Igm)  
Table 14.5 Servo amplifier's leakage current example (Iga)  
Servo motor output [kW]  
Leakage current [mA]  
Servo amplifier capacity [kW]  
0.1 to 0.6  
Leakage current [mA]  
0.05 to 1  
0.1  
0.2  
0.3  
0.5  
0.7  
1.0  
1.3  
2.3  
0.1  
0.15  
2
2
3.5  
5
0.75 to 3.5 (Note)  
5
7
11 15  
22  
5.5  
7
7
11  
15  
22  
Note. For the 3.5kW of 400V class, leakage current is 2mA,  
which is the same as for 5kW and 7kW.  
Table 14.6 Leakage circuit breaker selection example  
Rated sensitivity current of leakage  
Servo amplifier  
circuit breaker [mA]  
15  
MR-J3-10T to MR-J3-350T  
MR-J3-10T1 to MR-J3-40T1  
MR-J3-60T4 to MR-J3-350T4  
MR-J3-500T(4)  
30  
50  
MR-J3-700T(4)  
MR-J3-11KT(4) to MR-J3-22KT(4)  
100  
(2) Selection example  
Indicated below is an example of selecting a leakage current breaker under the following conditions.  
2mm2 5m  
2mm2 5m  
NV  
Servo  
amplifier  
MR-J3-40T  
M
HF-KP43  
Ig1  
Iga  
Ig2  
Igm  
Use a leakage current breaker generally available.  
Find the terms of Equation (14.1) from the diagram.  
5
1000  
Ig1  
Ig2  
20  
20  
0.1 [mA]  
0.1 [mA]  
5
1000  
Ign 0 (not used)  
Iga 0.1 [mA]  
Igm 0.1 [mA]  
Insert these values in Equation (14.1).  
Ig 10 {0.1 0 0.1 1 (0.1 0.1)}  
4.0 [mA]  
According to the result of calculation, use a leakage current breaker having the rated sensitivity current (Ig)  
of 4.0[mA] or more. A leakage current breaker having Ig of 15[mA] is used with the NV-SP/SW/CP/CW/HW  
series.  
14 - 82  
14. OPTIONS AND AUXILIARY EQUIPMENT  
14.17 EMC filter (recommended)  
For compliance with the EMC directive of the EN Standard, it is recommended to use the following filter. Some  
EMC filters are large in leakage current.  
(1) Combination with the servo amplifier  
Recommended filter (Soshin Electric)  
Servo amplifier  
Mass [kg]([lb])  
3 (6.61)  
Model  
Leakage current [mA]  
MR-J3-10T to MR-J3-100T  
MR-J3-10T1 to MR-J3-40T1  
MR-J3-250T MR-J3-350T  
MR-J3-500T MR-J3-700T  
MR-J3-11KT to MR-J3-22KT  
MR-J3-60T4 to MR-J3-100T4  
MR-J3-200T4 to MR-J3-700T4  
MR-J3-11KT4  
(Note) HF3010A-UN  
5
(Note) HF3030A-UN  
(Note) HF3040A-UN  
(Note) HF3100A-UN  
TF3005C-TX  
5.5 (12.13)  
6.0 (13.23)  
15 (33.07)  
1.5  
6.5  
6(13.23)  
7.5(16.54)  
12.5(27.56)  
TF3020C-TX  
5.5  
TF3030C-TX  
MR-J3-15KT4  
TF3040C-TX  
MR-J3-22KT4  
TF3060C-TX  
Note. A surge protector is separately required to use any of these EMC filters.  
(2) Connection example  
EMC filter  
Servo amplifier  
NFB  
MC  
1
2
3
4
5
6
E
L1  
L2  
L3  
(Note 1)  
Power supply  
L11  
L21  
(Note 2)  
Surge protector 1  
(RAV-781BYZ-2)  
1
2
3
(OKAYA Electric Industries Co., Ltd.)  
(Note 2)  
Surge protector 2  
(RAV-781BXZ-4)  
1
2
3
(OKAYA Electric Industries Co., Ltd.)  
Note 1. For 1-phase 200V to 230VAC power supply, connect the power supply to L1,L2 and leave L3 open.  
There is no L3 for 1-phase 100 to 120VAC power supply. Refer to section 1.3 for the power supply specification.  
2. The example is when a surge protector is connected.  
14 - 83  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(3) Outline drawing  
(a) EMC filter  
HF3010A-UN  
[Unit: mm]  
3-M4  
4-5.5  
7
3-M4  
M4  
IN  
Approx.41  
258  
273  
288  
300  
4
2
4
5
65  
4
HF3030A-UN HF-3040A-UN  
6-K  
3-L  
3-L  
M
J
2
C
1
C
1
H
2
B
A
2
5
Dimensions [mm]  
Model  
A
B
C
D
E
F
G
H
J
K
L
M
R3.25,  
length  
8
HF3030A-UN  
HF3040A-UN  
260  
210  
85  
155  
140  
125  
44  
140  
70  
M5  
M4  
14 - 84  
14. OPTIONS AND AUXILIARY EQUIPMENT  
HF3100A-UN  
2- 6.5  
2-6.5  
8
M8  
M8  
M6  
380 1  
400 5  
TF3005C-TX TX3020C-TX TF3030C-TX  
[Unit: mm]  
3-M4  
6-R3.25 length8  
M4 M4  
3 M4  
M4  
IN  
Approx.67.5  
3
100 1  
100 1  
290 2  
308 5  
332 5  
150 2  
Approx.160  
170 5  
14 - 85  
14. OPTIONS AND AUXILIARY EQUIPMENT  
TF3040C-TX TF3060C-TX  
[Unit: mm]  
3-M6  
8-M  
M4 M4  
3-M6  
M6  
IN  
D 1  
D 1  
C 2  
B 5  
A 5  
D 1  
L
K 2  
J
H 5  
Dimensions [mm]  
Model  
A
B
C
D
E
F
G
H
J
K
L
M
R3.25  
length 8  
(M6)  
TF3040C-TX  
TF3060C-TX  
438 412 390 100 175 160 145 200  
Approx.190  
180 Approx.91.5  
14 - 86  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(b) Surge protector  
RAV-781BYZ-2  
[Unit: mm]  
1)  
2)  
3)  
Black Black Black  
4.2 0.2  
UL-1015AWG16  
1
2
3
41 1.0  
RAV-781BXZ-4  
[Unit: mm]  
1)  
2)  
3)  
4)  
4.2 0.2  
UL-1015AWG16  
1
2
3
41 1.0  
14 - 87  
14. OPTIONS AND AUXILIARY EQUIPMENT  
14.18 MR-HDP01 manual pulse generator  
Use the MR-HDP01 manual pulse generator to rotate the servo motor. Using external input signals, the moving  
distance of the servo motor can be specified in accordance with pulses generated from MR-HDP01. To do this  
specification, in the parameter No.PD06 to PD08, assign the manual pulse generator multiplication 1 (TP0) and  
2 (TP1) to the CN6 connector pins.  
(1) Specifications  
Item  
Voltage  
Specifications  
4.5 to 13.2VDC  
60mA or less  
Power supply  
Current  
consumption  
interface  
Output current max. 20mA for open collector output  
A-phase, B-phase, 2 signals of 90 phase difference  
100pulse/rev  
Pulse signal form  
Pulse resolution  
Max. speed  
600r/min moment, 200r/min normally  
Operating temperature range  
Storage temperature range  
10 to 60 (14 to 140  
)
30 to 80 22 to 176  
(
)
(2) Connection example  
Servo amplifier  
CN6  
Manual pulse generator multiplication 1  
Manual pulse generator multiplication 2  
TP0  
TP1  
(Note)  
(Note)  
5VDC  
power  
supply  
5V  
to 12  
DOCOM  
17  
6
Manual pulse  
generator  
MR-HDP01  
0V  
A
PP  
B
NP  
19  
OPC 18  
DICOM  
5
SD  
Plate  
Note. Assign TP0 and TP1 using parameter No.PD06 to PD08 PD12 PD14.  
14 - 88  
14. OPTIONS AND AUXILIARY EQUIPMENT  
(3) Terminal layout  
Signal  
Description  
5 to  
12V 0V  
5 to 12V Power input  
A
B
0V  
A
Common for power and signal  
A-phase pulse output  
B
B-phase pulse output  
(4) Installation  
Panel cut  
3- 4.8  
Equally spaced  
(5) Outline drawing  
[Unit: mm]  
3.6  
Packing t2.0  
3-M4 stud L10  
P.C.D72 equally spaced  
5V to  
12V 0V  
A
B
M3 6 may only be installed  
8.89  
7.6  
27.0 0.5  
16  
20  
14 - 89  
14. OPTIONS AND AUXILIARY EQUIPMENT  
MEMO  
14 - 90  
15. COMMUNICATION FUNCTION  
15. COMMUNICATION FUNCTION  
Using the serial communication function of RS-422, this servo amplifier enables servo operation, parameter  
change, monitor function, etc.  
15.1 Configuration  
(1) Single axis  
Operate the single-axis servo amplifier. It is recommended to use the following cable.  
Personal computer  
Servo amplifier  
10m or less  
CN3  
RS-422/232C conversion cable  
DSV-CABV (Diatrend)  
To RS-232C  
connector  
(2) Multidrop connection  
(a) Diagrammatic sketch  
Up to 32 axes of servo amplifiers from stations 0 to 31 can be operated on the same bus.  
Servo amplifier  
Servo amplifier  
Servo amplifier  
CN3  
CN3  
CN3  
Personal computer  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 2)  
RS-422/232C  
conversion cable  
DSV-CABV  
(Diatrend)  
To RS-232C  
connector  
Note 1. The BMJ-8 (Hakko Electric Machine Works) is recommended as the branch connector.  
2. The final axis must be terminated between RDP (pin No.3) and RDN (pin No.6) on the receiving side (servo amplifier)  
with a 150 resistor.  
15 - 1  
15. COMMUNICATION FUNCTION  
(b) Cable connection diagram  
Wire the cables as shown below.  
(Note 3) 30m or less  
(Note 1)  
(Note 1)  
(Note 1, 7)  
Axis n servo amplifier  
CN3 connector  
Axis 1 servo amplifier  
CN3 connector  
Axis 2 servo amplifier  
CN3 connector  
(RJ45 connector)  
(RJ45 connector)  
(RJ45 connector)  
(Note 4, 5)  
(Note 4, 5)  
(Note 4, 5)  
1
2
3
4
5
6
7
8
LG  
1
2
3
4
5
6
7
8
LG  
1
2
3
4
5
6
7
8
LG  
P5D  
RDP  
SDN  
SDP  
RDN  
LG  
P5D  
RDP  
SDN  
SDP  
RDN  
LG  
P5D  
RDP  
SDN  
SDP  
RDN  
LG  
NC  
NC  
NC  
1 2 3 4 5 6 7 8  
1 2 3 4 5 6 7 8  
1 2 3 4 5 6 7 8  
(Note 5)  
(Note 5)  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
RDP  
(Note 8)  
(Note 2)  
150  
RDN  
(Note 6) Branch connector  
(Note 6) Branch connector  
(Note 6) Branch connector  
Note 1. Recommended connector (Hirose Electric)  
Plug: TM10P-88P  
Connection tool: CL250-0228-1  
2. The final axis must be terminated between RDP (pin No.3) and RDN (pin No.6) on the receiving side (servo amplifier) with  
a 150 resistor.  
3. The overall length is 30m or less in low-noise environment.  
4. The wiring between the branch connector and servo amplifier should be as short as possible.  
5. Use the EIA568-compliant cable (10BASE-T cable, etc.).  
6. Recommended branch connector: BMJ-8 (Hakko Electric Machine Works)  
7. n 32 (Up to 32 axes can be connected.)  
8. RS-422/232C conversion cable DSV-CABV (Diatrend).  
15 - 2  
15. COMMUNICATION FUNCTION  
15.2 Communication specifications  
15.2.1 Communication overview  
This servo amplifier is designed to send a reply on receipt of an instruction. The device which gives this  
instruction (e.g. personal computer) is called a master station and the device which sends a reply in response  
to the instruction (servo amplifier) is called a slave station. When fetching data successively, the master station  
repeatedly commands the slave station to send data.  
Item  
Description  
Baud rate  
9600/19200/38400/57600/115200 asynchronous system  
Start bit  
Data bit  
Parity bit  
Stop bit  
: 1 bit  
: 8 bits  
Transfer code  
: 1 bit (even)  
: 1 bit  
Transfer protocol  
Character system, half-duplex communication system  
(LSB)  
(MSB)  
7
Next  
start  
Start  
Parity  
Stop  
0
1
2
3
4
5
6
Data  
1 frame (11bits)  
15 - 3  
15. COMMUNICATION FUNCTION  
15.2.2 Parameter setting  
When the USB/RS-422 communication function is used to operate the servo, set the communication  
specifications of the servo amplifier in the corresponding parameters.  
After setting the values of these parameters, they are made valid by switching power off once, then on again.  
(1) Serial communication baud rate  
Choose the communication speed. Match this value to the communication speed of the sending end  
(master station).  
Parameter No.PC21  
Communication baud rate  
0: 9600[bps]  
1: 19200[bps]  
2: 38400[bps]  
3: 57600[bps]  
4: 115200[bps]  
(2) RS-422 communication response delay time  
Set the time from when the servo amplifier (slave station) receives communication data to when it sends  
back data. Set "0" to send back data in less than 800 s or "1" to send back data in 800 s or more.  
Parameter No.PC21  
RS-422 communication response delay time  
0: Invalid  
1: Valid, reply sent in 800 s or more  
(3) Station number setting  
Set the station number of the servo amplifier in parameter No.PC20. The setting range is station 0 to 31.  
15 - 4  
15. COMMUNICATION FUNCTION  
15.3 Protocol  
15.3.1 Transmission data configuration  
Since up to 32 axes may be connected to the bus, add a station number or group to the command, data No.,  
etc. to determine the destination servo amplifier of data communication. Set the station number to each servo  
amplifier using the parameter and set the group to each station using the communication command.  
Transmission data is valid for the servo amplifier of the specified station number or group.  
When "*" is set as the station number added to the transmission data, the transmission data is made valid for  
all servo amplifiers connected. However, when return data is required from the servo amplifier in response to  
the transmission data, set "0" to the station number of the servo amplifier which must provide the return data.  
(1) Transmission of data from the controller to the servo  
10 frames (data)  
S
O
H
S
T
X
E
T
X
Controller side  
(Master station)  
Data  
No.  
Check  
sum  
Station number  
Data*  
or  
group  
S
T
X
E
T
X
Servo side  
(Slave station)  
Station number  
Check  
sum  
or  
group  
6 frames  
Positive response: Error code  
A
Negative response: Error code other than A  
(2) Transmission of data request from the controller to the servo  
10 frames  
S
O
H
S
T
X
E
T
X
Data  
No.  
Check  
sum  
Station number  
Controller side  
(Master station)  
or  
group  
S
T
X
E
T
X
Station number  
Check  
sum  
Servo side  
(Slave station)  
Data*  
or  
group  
6 frames (data)  
(3) Recovery of communication status by time-out  
EOT causes the servo to return to  
the receive neutral status.  
E
O
T
Controller side  
(Master station)  
Servo side  
(Slave station)  
(4) Data frames  
The data length depends on the command.  
or  
Data  
Data  
or 12 frames or 16 frames  
4 frames  
8 frames  
15 - 5  
15. COMMUNICATION FUNCTION  
15.3.2 Character codes  
(1) Control codes  
Hexadecimal  
Personal computer terminal key operation  
(General)  
Code name  
Description  
(ASCII code)  
SOH  
STX  
ETX  
EOT  
01H  
02H  
03H  
04H  
start of head  
start of text  
ctrl  
ctrl  
ctrl  
ctrl  
A
B
C
D
end of text  
end of transmission  
(2) Codes for data  
ASCII codes are used.  
b
8
b
7
b
6
b
5
0
0
0
0
0
0
0
1
0
0
1
0
0
0
1
1
0
1
0
0
0
1
0
1
0
1
1
0
0
1
1
1
b to  
C
8
b
4
b
3
b
2
b
1
0
1
2
3
4
5
6
7
b
R
5
0
0
0
0
0
NUL DLE Space  
0
1
2
3
4
5
6
7
8
9
:
@
A
B
C
D
E
F
P
Q
R
S
T
`
a
b
c
d
e
f
p
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
2
3
4
5
6
7
8
9
SOH DC  
!
q
1
2
3
STX  
ETX  
DC  
DC  
r
#
$
%
&
s
t
U
V
W
X
Y
Z
u
v
G
H
I
g
h
i
w
(
x
)
y
10  
11  
12  
13  
14  
15  
J
j
z
;
K
L
[
k
l
{
,
|
}
M
N
O
]
m
n
o
.
/
^
_
¯
?
DEL  
(3) Station numbers  
You may set 32 station numbers from station 0 to station 31 and the ASCII unit codes are used to specify  
the stations.  
Station number  
ASCII code  
0
0
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10  
A
11  
B
12  
C
13  
D
14  
E
15  
F
Station number  
ASCII code  
16  
G
17  
H
18  
I
19  
J
20  
K
21  
L
22  
M
23  
N
24  
O
25  
P
26  
Q
27  
R
28  
S
29  
T
30  
U
31  
V
For example, "30H" is transmitted in hexadecimal for the station number of "0" (axis 1).  
(4) Group  
Group  
ASCII code  
a
a
b
b
c
c
d
d
e
e
f
f
All group  
For example, "61H" is transmitted in hexadecimal for group a.  
15 - 6  
15. COMMUNICATION FUNCTION  
15.3.3 Error codes  
Error codes are used in the following cases and an error code of single-code length is transmitted.  
On receipt of data from the master station, the slave station sends the error code corresponding to that data to  
the master station.  
The error code sent in upper case indicates that the servo is normal and the one in lower case indicates that an  
alarm occurred.  
Error code  
Error name  
Description  
Remarks  
Servo normal  
Servo alarm  
[A]  
[B]  
[C]  
[a]  
[b]  
[c]  
Normal operation  
Parity error  
Data transmitted was processed properly.  
Parity error occurred in the transmitted data.  
Checksum error occurred in the transmitted data.  
Character not existing in the specifications was  
transmitted.  
Positive response  
Checksum error  
[D]  
[E]  
[F]  
[d]  
[e]  
[f]  
Character error  
Command error  
Data No. error  
Negative response  
Command not existing in the specifications was  
transmitted.  
Data No. not existing in the specifications was  
transmitted.  
15.3.4 Checksum  
The checksum is a ASCII-coded hexadecimal representing the lower two digits of the sum of ASCII-coded  
hexadecimal numbers up to ETX, with the exception of the first control code (STX or SOH).  
Station number  
(Example)  
or  
group  
S
T
X
E
T
X
[0] [A] [1] [2] [5] [F]  
[5] [2]  
02H 30H 41H 31H 32H 35H 46H 03H  
STX or  
SOH  
ETX Check  
30H 41H 31H 32H 35H 46H 03H  
152H  
Checksum range  
Lower 2 digits 52 is sent after conversion into ASCII code [5][2].  
15 - 7  
15. COMMUNICATION FUNCTION  
15.3.5 Time-out operation  
The master station transmits EOT when the slave station does not start reply operation (STX is not received)  
300ms after the master station has ended communication operation. 100ms after that, the master station  
retransmits the message. Time-out occurs if the slave station does not answer after the master station has  
performed the above operation three times. (Communication error)  
100ms  
100ms  
100ms  
*Time-out  
300ms  
300ms  
300ms  
300ms  
E
O
T
E
O
T
E
O
T
Controller  
(Master station)  
Servo  
(Slave station)  
15.3.6 Retry operation  
When a fault occurs in communication between the master and slave stations, the error code in the response  
data from the slave station is a negative response code ([B] to [F], [b] to [f]). In this case, the master station  
retransmits the message which was sent at the occurrence of the fault (Retry operation). A communication  
error occurs if the above operation is repeated and results in the error three or more consecutive times.  
*Communication error  
Controller  
(Master station)  
Servo  
(Slave station)  
S
T
X
S
T
X
S
T
X
Station number  
Station number  
Station number  
or  
or  
or  
group  
group  
group  
Similarly, when the master station detects a fault (e.g. checksum, parity) in the response data from the slave  
station, the master station retransmits the message which was sent at the occurrence of the fault. A  
communication error occurs if the retry operation is performed three times.  
15 - 8  
15. COMMUNICATION FUNCTION  
15.3.7 Initialization  
After the slave station is switched on, it cannot reply to communication until the internal initialization processing  
terminates. Hence, at power-on, ordinary communication should be started after.  
(1) 1s or more time has elapsed after the slave station is switched on; and  
(2) Making sure that normal communication can be made by reading the parameter or other data which does  
not pose any safety problems.  
15.3.8 Communication procedure example  
The following example reads the set value of alarm history (last alarm) from the servo amplifier of station 0.  
Data item  
Station number  
Command  
Value  
0
Description  
Servo amplifier station 0  
Read command  
33  
Data No.  
10  
Alarm history (last alarm)  
Axis No. Command  
Data No.  
Start  
Data [0] 3 3 STX 1 0 ETX  
[0][3][3] [1][0]  
Data make-up  
STX  
ETX  
Checksum 30H 33H 33H 02H 31H 30H 03H FCH  
Checksum calculation and  
addition  
Transmission data SOH  
0
3 3 STX 1 0 ETX F C 46H 43H  
Master station slave station  
Addition of SOH to make  
up transmission data  
Data transmission  
Data receive  
Master station slave station  
No  
Is there receive data?  
Yes  
No  
300ms elapsed?  
Yes  
No  
3 consecutive times?  
Yes  
Master station slave station  
Yes  
Other than error code  
[A] [a]?  
100ms after EOT transmission  
No  
3 consecutive times?  
No  
Error processing  
Yes  
Receive data analysis  
Error processing  
End  
15 - 9  
15. COMMUNICATION FUNCTION  
15.4 Command and data No. list  
POINT  
If the command and data No. are the same, the description may be different  
depending on models of servo amplifiers.  
15.4.1 Read commands  
(1) Status display (Command [0][1])  
Command  
[0] [1]  
Data No.  
[0] [0]  
[0] [1]  
[0] [2]  
[0] [3]  
[0] [4]  
[0] [5]  
[0] [6]  
[0] [7]  
[0] [8]  
[0] [9]  
[0] [A]  
[0] [B]  
[0] [C]  
[0] [D]  
[0] [E]  
[0] [F]  
[1] [0]  
[1] [1]  
[8] [0]  
[8] [1]  
[8] [2]  
[8] [3]  
[8] [4]  
[8] [5]  
[8] [6]  
[8] [7]  
[8] [8]  
[8] [9]  
[8] [A]  
[8] [B]  
[8] [C]  
[8] [D]  
[8] [E]  
[8] [F]  
[9] [0]  
[9] [1]  
Description  
Display item  
Frame length  
16  
Status display name and unit  
Current position  
Command position  
Command remaining distance  
Point table No.  
Cumulative feedback pulses  
Servo motor speed  
Droop pulses  
Regenerative load ratio  
Effective load ratio  
Peak load ratio  
Instantaneous torque  
Within one-revolution position  
ABS counter  
Load inertia moment ratio  
Bus voltage  
Status display data value and  
processing information  
Current position  
12  
Command position  
Command remaining distance  
Point table No.  
Cumulative feedback pulses  
Servo motor speed  
Droop pulses  
Regenerative load ratio  
Effective load ratio  
Peak load ratio  
Instantaneous torque  
Within one-revolution position  
ABS counter  
Load inertia moment ratio  
Bus voltage  
15 - 10  
15. COMMUNICATION FUNCTION  
(2) Parameters (Command [0][4] [0][5] [0][6] [0][7] [0][8] [0][9])  
Command  
[0] [4]  
Data No.  
[0] [1]  
Description  
Frame length  
4
Parameter group read  
0000: Basic setting parameter (No.PA  
0001: Gain filter parameter (No.PB  
)
)
0002: Extension setting parameter (No.PC  
0003: I/O setting parameter (No.PD  
[0] [1] to [F] [F] Current values of parameters  
)
)
[0] [5]  
8
8
Reads the current values of the parameters in the parameter group specified with  
the command [8][5] + data No. [0][0]. Before reading the current values, therefore,  
always specify the parameter group with the command [8][5] + data No. [0][0].  
The decimal equivalent of the data No. value (hexadecimal) corresponds to the  
parameter number.  
[0] [6]  
[0] [1] to [F] [F] Upper limit values of parameter setting ranges  
Reads the permissible upper limit values of the parameters in the parameter group  
specified with the command [8][5] + data No. [0][0]. Before reading the upper limit  
values, therefore, always specify the parameter group with the command [8][5] +  
data No. [0][0].  
The decimal equivalent of the data No. value (hexadecimal) corresponds to the  
parameter number.  
[0] [7]  
[0] [1] to [F] [F] Lower limit values of parameter setting ranges  
8
Reads the permissible lower limit values of the parameters in the parameter group  
specified with the command [8][5] + data No. [0][0]. Before reading the lower limit  
values, therefore, always specify the parameter group with the command [8][5] +  
data No. [0][0].  
The decimal equivalent of the data No. value (hexadecimal) corresponds to the  
parameter number.  
[0] [8]  
[0] [1] to [F] [F] Abbreviations of parameters  
12  
Reads the abbreviations of the parameters in the parameter group specified with the  
command [8][5] + data No. [0][0]. Before reading the abbreviations, therefore, always  
specify the parameter group with the command [8][5] + data No. [0][0].  
The decimal equivalent of the data No. value (hexadecimal) corresponds to the  
parameter number.  
[0] [9]  
[0] [1] to [F] [F] Write enable/disable of parameters  
4
Reads write enable/disable of the parameters in the parameter group specified with  
the command [8][5] + data No. [0][0]. Before reading write enable/disable, therefore,  
always specify the parameter group with the command [8][5] + data No. [0][0].  
0000: Write enabled  
0001: Write disabled  
(3) External I/O signals (Command [1][2])  
Command  
[1] [2]  
Data No.  
[0] [0]  
[0] [1]  
[4] [0]  
[6] [0]  
[6] [1]  
[8] [0]  
[8] [1]  
[C] [0]  
Description  
Frame length  
8
Input device status  
External input pin status  
Status of input device turned ON by communication  
Output device status  
External output pin status  
15 - 11  
15. COMMUNICATION FUNCTION  
(4) Alarm history (Command [3][3])  
Command  
[3] [3]  
Data No.  
[1] [0]  
[1] [1]  
[1] [2]  
[1] [3]  
[1] [4]  
[1] [5]  
[2] [0]  
[2] [1]  
[2] [2]  
[2] [3]  
[2] [4]  
[2] [5]  
Description  
Alarm occurrence sequence  
most recent alarm  
Frame length  
4
Alarm number in alarm history  
first alarm in past  
second alarm in past  
third alarm in past  
fourth alarm in past  
fifth alarm in past  
most recent alarm  
first alarm in past  
second alarm in past  
third alarm in past  
fourth alarm in past  
fifth alarm in past  
Alarm occurrence time in alarm history  
8
(5) Current alarm (Command [0][2], [3][5])  
Command  
[0] [2]  
Data No.  
[0][0]  
[0][0]  
[0][1]  
[0][2]  
[0][3]  
[0][4]  
[0][5]  
[0][6]  
[0][7]  
[0][8]  
[0][9]  
[0][A]  
[0][B]  
[0][C]  
[0][D]  
[0][E]  
[0][F]  
[1][0]  
[1][1]  
[0][0]  
[0][1]  
[0][2]  
[0][3]  
[0][4]  
[0][5]  
[0][6]  
[0][7]  
[0][8]  
[0][9]  
[0][A]  
[0][B]  
[0][C]  
[0][D]  
[0][E]  
[0][F]  
[1][0]  
[1][1]  
Description  
Frame length  
Current alarm number  
Status display name and unit at Current position  
4
[3] [5]  
16  
alarm occurrence  
Command position  
Command remaining distance  
Point table No.  
Cumulative feedback pulses  
Servo motor speed  
Droop pulses  
Regenerative load ratio  
Effective load ratio  
Peak load ratio  
Instantaneous torque  
Within one-revolution position  
ABS counter  
Load inertia moment ratio  
Bus voltage  
Status display data value and  
processing information at alarm  
occurrence  
Current position  
12  
Command position  
Command remaining distance  
Point table No.  
Cumulative feedback pulses  
Servo motor speed  
Droop pulses  
Regenerative load ratio  
Effective load ratio  
Peak load ratio  
Instantaneous torque  
Within one-revolution position  
ABS counter  
Load inertia moment ratio  
Bus voltage  
15 - 12  
15. COMMUNICATION FUNCTION  
(6) Point table/position data (Command [4][0])  
Command  
[4][0]  
Data No.  
Description  
Frame length  
8
[0][1] to [F][F] Position data read  
The decimal equivalent of the data No. value (hexadecimal) corresponds to the Point  
table No.  
(7) Point table/speed data (Command [5][0])  
Command  
[5][0]  
Data No.  
Description  
Frame length  
8
[0][1] to [F][F] Speed data read  
The decimal equivalent of the data No. value (hexadecimal) corresponds to the Point  
table No.  
(8) Point table/acceleration time constant (Command [5][4])  
Command  
[5][4]  
Data No.  
Description  
Frame length  
8
[0][1] to [F][F] Acceleration time constant read  
The decimal equivalent of the data No. value (hexadecimal) corresponds to the Point  
table No.  
(9) Point table/deceleration time constant (Command [5][8])  
Command  
[5][8]  
Data No.  
Description  
Frame length  
8
[0][1] to [F][F] Deceleration time constant read  
The decimal equivalent of the data No. value (hexadecimal) corresponds to the Point  
table No.  
(10) Point table/dwell (Command [6][0])  
Command  
[6][0]  
Data No.  
Description  
Frame length  
8
[0][1] to [F][F] Dwell read  
The decimal equivalent of the data No. value (hexadecimal) corresponds to the Point  
table No.  
(11) Point table/auxiliary function (Command [6][4])  
Command  
[6][4]  
Data No.  
Description  
Frame length  
8
[0][1] to [F][F] Auxiliary function read  
The decimal equivalent of the data No. value (hexadecimal) corresponds to the Point  
table No.  
(12) Group setting (Command [1][F])  
Command  
[1][F]  
Data No.  
[0][0]  
Description  
Frame length  
4
Reading of group setting value  
(13) Test operation mode (Command [0][0])  
Command  
[0] [0]  
Data No.  
[1] [2]  
Description  
Frame length  
4
Test operation mode read  
0000: Normal mode (not test operation mode)  
0001: JOG operation  
0002: Positioning operation  
0003: Motorless operation  
0004: Output signal (DO) forced output  
0005: Single-step feed  
15 - 13  
15. COMMUNICATION FUNCTION  
(14) Others  
Command  
[0] [2]  
Data No.  
[9] [0]  
Description  
Servo motor side pulse unit absolute position  
Frame length  
8
8
[9] [1]  
Command unit absolute position  
Software version  
[7] [0]  
16  
15.4.2 Write commands  
(1) Status display (Command [8][1])  
Command  
[8] [1]  
Data No.  
[0] [0]  
Description  
Description  
Setting range  
Setting range  
Frame length  
4
Status display data erasure  
1EA5  
(2) Parameters (Command [8][4] [8][5])  
Command  
[8] [4]  
Data No.  
Frame length  
8
[0][1] to [F][F] Write of parameters  
Depending on the  
Writes the values of the parameters in the parameter parameter  
group specified with the command  
[8][5] + data No. [0][0]. Before writing the values,  
therefore, always specify the parameter group with the  
command [8][5] + data No. [0][0].  
The decimal equivalent of the data No. value  
(hexadecimal) corresponds to the parameter number.  
[8] [5]  
[0] [0]  
Parameter group write  
0000 to 0003  
4
0000: Basic setting parameter (No.PA  
0001: Gain filter parameter (No.PB  
)
)
0002: Extension setting parameter (No.PC  
0003: I/O setting parameter (No.PD  
)
)
(3) External I/O signal (Command [9][2])  
Command  
[9] [2]  
Data No.  
[6] [0]  
Description  
Setting range  
Frame length  
8
Communication input device signal  
Refer to section 15.5.5  
[6] [1]  
(4) Alarm history (Command [8][2])  
Command  
[8] [2]  
Data No.  
[2] [0]  
Description  
Description  
Setting range  
1EA5  
Frame length  
4
Alarm history erasure  
(5) Current alarm (Command [8][2])  
Command  
[8] [2]  
Data No.  
[0] [0]  
Setting range  
1EA5  
Frame length  
4
Alarm erasure  
(6) Point table/position data (Command [C][0])  
Command  
[C][0]  
Data No.  
Description  
Setting range  
Frame length  
8
[0][1] to [F][F] Position data write  
999999 to 999999  
The decimal equivalent of the data No. value  
(hexadecimal) corresponds to the Point table No.  
15 - 14  
15. COMMUNICATION FUNCTION  
(7) Point table/speed data (Command [C][6])  
Command  
[C][6]  
Data No.  
Description  
Setting range  
Frame length  
8
[0][1] to [F][F] Speed data write  
0 to Permissible  
The decimal equivalent of the data No. value  
(hexadecimal) corresponds to the Point table No.  
instantaneous speed  
(8) Point table/acceleration time constant (Command [C][7])  
Command  
[C][7]  
Data No.  
[0][1] to [F][F] Acceleration time constant write  
The decimal equivalent of the data No. value  
(hexadecimal) corresponds to the Point table No.  
Description  
Setting range  
0 to 20000  
Frame length  
8
(9) Point table/deceleration time constant (Command [C][8])  
Command  
[C][8]  
Data No.  
[0][1] to [F][F] Deceleration time constant write  
The decimal equivalent of the data No. value  
(hexadecimal) corresponds to the Point table No.  
Description  
Setting range  
0 to 20000  
Frame length  
8
(10) Point table/dwell (Command [C][A])  
Command  
[C][A]  
Data No.  
Description  
Setting range  
0 to 20000  
Frame length  
8
[0][1] to [F][F] Dwell write  
The decimal equivalent of the data No. value  
(hexadecimal) corresponds to the Point table No.  
(11) Point table/auxiliary function (Command [C][B])  
Command  
[C][B]  
Data No.  
Description  
Setting range  
0 to 3  
Frame length  
8
[0][1] to [F][F] Auxiliary function write  
The decimal equivalent of the data No. value  
(hexadecimal) corresponds to the Point table No.  
(12) External input signal disable (Command [9][0])  
Command  
[9][0]  
Data No.  
[0][0]  
Description  
Setting range  
1EA5  
Frame length  
4
Turns off the input devices, external analog input signals  
and pulse train inputs with the exception of EMG, LSP and  
LSN, independently of the external ON/OFF statuses.  
Disables all output devices (DO).  
[9][0]  
[9][0]  
[0][3]  
[1][0]  
1EA5  
1EA5  
4
4
Enables the disabled input devices (DI), external analog  
input signals and pulse train inputs with the exception of  
EMG, LSP and LSN.  
[9][0]  
[1][3]  
Enables the disabled output devices (DO).  
1EA5  
4
(13) Operation mode selection (Command [8][B])  
Command  
[8] [B]  
Data No.  
[0] [0]  
Description  
Operation mode switching  
Setting range  
0000 to 0005  
Frame length  
4
0000: Test operation mode cancel  
0001: JOG operation  
0002: Positioning operation  
0003: Motorless operation  
0004: Output signal (DO) forced output  
0005: Single-step feed  
15 - 15  
15. COMMUNICATION FUNCTION  
(14) Test operation mode data (Command [9][2] [A][0])  
Command  
[9] [2]  
Data No.  
[0] [0]  
Description  
Input signal for test operation  
Setting range  
Frame length  
8
Refer to section 15.5.7.  
[0] [1]  
[A] [0]  
[1] [0]  
Forced output of signal pin  
Refer to section 15.5.9.  
0000 to 7FFF  
8
4
[A] [0]  
Writes the speed in the test operation mode (JOG  
operation, positioning operation).  
[1] [1]  
Writes the acceleration/deceleration time constant in the  
test operation mode (JOG operation, positioning  
operation).  
00000000 to  
7FFFFFFF  
8
[2] [0]  
[2] [1]  
Sets the moving distance in the test operation mode  
(JOG operation, positioning operation).  
00000000 to  
7FFFFFFF  
8
4
Selects the positioning direction of test operation  
(positioning operation).  
0000 to 0001  
0
0
0: Forward rotation direction  
1: Reverse rotation direction  
0: Command pulse unit  
1: Encoder pulse unit  
[4] [0]  
[4] [1]  
Test operation (positioning operation) start command.  
1EA5  
4
4
Used to make a temporary stop during test operation  
(positioning operation). in the data indicates a blank.  
STOP: Temporary stop  
STOP  
G0  
CLR  
G0  
: Restart for remaining distance  
CLR : Remaining distance clear.  
(15) Group setting (Command [9][F])  
Command  
[9] [F]  
Data No.  
[0] [0]  
Description  
Setting range  
a to f  
Frame length  
4
Setting of group  
15 - 16  
15. COMMUNICATION FUNCTION  
15.5 Detailed explanations of commands  
15.5.1 Data processing  
When the master station transmits a command data No. or a command data No. data to a slave station,  
the servo amplifier returns a reply or data according to the purpose.  
When numerical values are represented in these send data and receive data, they are represented in decimal,  
hexadecimal, etc.  
Therefore, data must be processed according to the application.  
Since whether data must be processed or not and how to process data depend on the monitoring, parameters,  
etc., follow the detailed explanation of the corresponding command.  
The following methods are how to process send and receive data when reading and writing data.  
(1) Processing the read data  
When the display type is 0, the eight-character data is converted from hexadecimal to decimal and a  
decimal point is placed according to the decimal point position information.  
When the display type is 1, the eight-character data is used unchanged.  
The following example indicates how to process the receive data "003000000929" given to show.  
The receive data is as follows.  
0 0 3 0 0 0 0 0 0 9 2 9  
Data 32-bit length (hexadecimal representation)  
(Data conversion is required as indicated in the display type)  
Display type  
0: Data must be converted into decimal.  
1: Data is used unchanged in hexadecimal.  
Decimal point position  
0: No decimal point  
1: First least significant digit (normally not used)  
2: Second least significant digit  
3: Third least significant digit  
4: Forth least significant digit  
5: Fifth least significant digit  
6: Sixth least significant digit  
Since the display type is "0" in this case, the hexadecimal data is converted into decimal.  
00000929H 2345  
As the decimal point position is "3", a decimal point is placed in the third least significant digit.  
Hence, "23.45" is displayed.  
15 - 17  
15. COMMUNICATION FUNCTION  
(2) Writing the processed data  
When the data to be written is handled as decimal, the decimal point position must be specified. If it is not  
specified, the data cannot be written. When the data is handled as hexadecimal, specify "0" as the decimal  
point position.  
The data to be sent is the following value.  
0
Data is transferred in hexadecimal.  
Decimal point position  
0: No decimal point  
1: First least significant digit  
2: Second least significant digit  
3: Third least significant digit  
4: Forth least significant digit  
5: Fifth least significant digit  
By way of example, here is described how to process the set data when a value of "15.5" is sent.  
Since the decimal point position is the second digit, the decimal point position data is "2".  
As the data to be sent is hexadecimal, the decimal data is converted into hexadecimal.  
155 9B  
Hence, "0200009B" is transmitted.  
15 - 18  
15. COMMUNICATION FUNCTION  
15.5.2 Status display  
(1) Reading the status display name and unit  
Read the status display name and unit.  
(a) Transmission  
Transmit command [0][1] and the data No. corresponding to the status display item to be read, [0][0] to  
[0][E]. (Refer to section 15.4.1.)  
(b) Reply  
The slave station sends back the status display name and unit requested.  
0 0  
Unit characters (5 digits)  
Name characters (9 digits)  
(2) Status display data read  
Read the status display data and processing information.  
(a) Transmission  
Transmit command [0][1] and the data No. corresponding to the status display item to be read.  
Refer to section 15.4.1.  
(b) Reply  
The slave station sends back the status display data requested.  
0 0  
Data 32 bits long (represented in hexadecimal)  
(Data conversion into display type is required)  
Display type  
[0]: Used unchanged in hexadecimal  
[1]: Conversion into decimal required  
Decimal point position  
[0]: No decimal point  
[1]: Lower first digit (usually not used)  
[2]: Lower second digit  
[3]: Lower third digit  
[4]: Lower fourth digit  
[5]: Lower fifth digit  
[6]: Lower sixth digit  
(3) Status display data clear  
The cumulative feedback pulse data of the status display is cleared. Send this command immediately after  
reading the status display item. The data of the status display item transmitted is cleared to zero.  
Command  
[8][1]  
Data No.  
[0][0]  
Data  
[1][E][A][5]  
For example, after sending command [0][1] and data No. [8][0] and receiving the status display data, send  
command [8][1], data No. [0][0] and data [1EA5] to clear the cumulative feedback pulse value to zero.  
15 - 19  
15. COMMUNICATION FUNCTION  
15.5.3 Parameters  
(1) Specify the parameter group  
The group of the parameters to be operated must be specified in advance to read or write the parameter  
settings, etc. Write data to the servo amplifier as described below to specify the parameter group to be  
operated.  
Command  
[8] [5]  
Data No.  
[0] [0]  
Transmission data  
Parameter group  
Basic setting parameter (No.PA  
Gain filter parameter (No.PB  
Extension setting parameter (No.PC  
I/O setting parameter (No.PD  
0000  
0001  
0002  
0003  
)
)
)
)
(2) Reading the parameter group  
Read the parameter group.  
(a) Transmission  
Send command [0][4] and data No.[0][1].  
Command  
[0] [4]  
Data No.  
[0] [1]  
(b) Reply  
The slave station sends back the preset parameter group.  
0 0 0  
Parameter group  
0: Basic setting parameter (No.PA  
1: Gain filter parameter (No.PB  
2: Extension setting parameter (No.PC  
3: I/O setting parameter (No.PD  
)
)
)
)
(3) Reading the symbol  
Read the parameter name. Specify the parameter group in advance (refer to (1) in this section).  
(a) Transmission  
Transmit command [0][8] and the data No. corresponding to the parameter No., [0][0] to [F][F]. (Refer to  
section 15.4.1.)  
The data No. is expressed in hexadecimal. The decimal equivalent of the data No. value corresponds to  
the parameter number.  
(b) Reply  
The slave station sends back the name of the parameter No. requested.  
0 0  
0
Name characters (9 digits)  
15 - 20  
15. COMMUNICATION FUNCTION  
(4) Reading the setting  
Read the parameter setting. Specify the parameter group in advance (refer to (1) in this section).  
(a) Transmission  
Transmit command [0][5] and the data No. corresponding to the parameter No., [0][0] to [F][F]. (Refer to  
section 15.4.1.)  
The data No. is expressed in hexadecimal. The decimal equivalent of the data No. value corresponds to  
the parameter number.  
(b) Reply  
The slave station sends back the data and processing information of the parameter No. requested.  
Data is transferred in hexadecimal.  
Decimal point position  
[0]: No decimal point  
[1]: Lower first digit  
[2]: Lower second digit  
[3]: Lower third digit  
0
[4]: Lower fourth digit  
[5]: Lower fifth digit  
Display type  
0: Used unchanged in hexadecimal.  
1: Must be converted into decimal.  
Parameter write type  
0: Valid after write  
1: Valid when power is switched on again after write  
Read enable/disable  
0: Read enable  
1: Read disable  
For example, data "1200270F" means 999.9 (decimal display format) and data "0003ABC" means  
3ABC (hexadecimal display format).  
When the display type is "0" (hexadecimal) and the decimal point position is other than 0, the display  
type is a special hexadecimal display format and "F" of the data value is handled as a blank. Data  
"01FFF053" means 053 (special hexadecimal display format).  
"1 (Read disable)" is transferred to the "Read enable/disable" section and "000000" is transferred to the  
data section when the parameter that was read is the one inaccessible for write/reference in the  
parameter write disable setting of parameter No.PA19.  
(5) Reading the setting range  
Read the parameter setting range. Specify the parameter group in advance (refer to (1) in this section).  
(a) Transmission  
When reading the upper limit value, transmit command [0][6] and the data No. corresponding to the  
parameter No., [0][0] to [F][F]. When reading the lower limit value, transmit command [0][7] and the data  
No. corresponding to the parameter No., [0][0] to [F][F]. (Refer to section 15.4.1.)  
The data No. is expressed in hexadecimal. The decimal equivalent of the data No. value corresponds to  
the parameter number.  
(b) Reply  
The slave station sends back the data and processing information of the parameter No. requested.  
0 0  
Data is transferred in hexadecimal.  
For example, data "10FFFFEC" means -20.  
15 - 21  
15. COMMUNICATION FUNCTION  
(6) Parameter write  
POINT  
If setting values need to be changed with a high frequency (i.e. one time or  
more per one hour), write the setting values to the RAM, not the EEP-ROM.  
The EEP-ROM has a limitation in the number of write times and exceeding  
this limitation causes the servo amplifier to malfunction. Note that the number  
of write times to the EEP-ROM is limited to approximately 100, 000.  
Write the parameter setting into EEP-ROM of the servo amplifier. Specify the parameter group in advance  
(refer to (1) in this section).  
Write the value within the setting enabled range. For the setting enabled range, refer to chapter 6 or read  
the setting range by performing operation in (3) in this section.  
Transmit command [8][4], the data No. , and the set data.  
The data No. is expressed in hexadecimal. The decimal equivalent of the data No. value corresponds to the  
parameter number.  
When the data to be written is handled as decimal, the decimal point position must be specified. If it is not  
specified, data cannot be written. When the data is handled as hexadecimal, specify 0 as the decimal point  
position.  
Write the data after making sure that it is within the upper/lower limit value range.  
Read the parameter data to be written, confirm the decimal point position, and create transmission data to  
prevent error occurrence. On completion of write, read the same parameter data to verify that data has  
been written correctly.  
Command  
[8][4]  
Data No.  
Set data  
See below.  
[0][1] to  
[F][F]  
Data is transferred in hexadecimal.  
Decimal point position  
0: No decimal point  
1: Lower first digit  
2: Lower second digit  
3: Lower third digit  
4: Lower forth digit  
5: Lower fifth digit  
Write mode  
0: Write to EEP-ROM  
3: Write to RAM  
When the parameter data is changed frequently through communication,  
set "3" to the write mode to change only the RAM data in the servo amplifier.  
When changing data frequently (once or more within one hour),  
do not write it to the EEP-ROM.  
15 - 22  
15. COMMUNICATION FUNCTION  
15.5.4 External I/O signal statuses (DIO diagnosis)  
(1) Reading of input device statuses  
Read the statuses of the input devices.  
(a) Transmission  
Transmit command [1][2] and the data No. corresponding to the input device.  
Command  
[1][2]  
Data No.  
[0][0]  
[0][1]  
(b) Reply  
The slave station sends back the statuses of the input pins.  
b31  
b1 b0  
1:ON  
0:OFF  
Command of each bit is transmitted to the master  
station as hexadecimal data.  
Data No. [0][0]  
bit  
Data No. [0][1]  
Device name  
Device name  
Symbol  
SON  
LSP  
Symbol  
0
Servo-on  
1
Forward rotation stroke end  
Reverse rotation stroke end  
2
LSN  
3
4
Internal torque limit selection  
TL1  
PC  
5
Proportion control  
Reset  
6
RES  
CR  
7
Clear  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
Forward rotation start  
Reverse rotation start  
ST1  
ST2  
Automatic/manual selection  
Proximity dog  
MD0  
DOG  
Override selection  
OVR  
Temporary stop/Restart  
TSTP Point table No. selection 1  
Point table No. selection 2  
Point table No. selection 3  
CDP Point table No. selection 4  
Point table No. selection 5  
Point table No. selection 6  
Point table No. selection 7  
Point table No. selection 8  
DI0  
DI1  
DI2  
DI3  
DI4  
DI5  
DI6  
DI7  
Gain changing  
15 - 23  
15. COMMUNICATION FUNCTION  
(2) External input pin status read  
Read the ON/OFF statuses of the external output pins.  
(a) Transmission  
Transmit command [1][2] and data No. [4][0].  
Command  
[1][2]  
Data No.  
[4][0]  
(b) Reply  
The ON/OFF statuses of the input pins are sent back.  
b31  
b1 b0  
1:ON  
0:OFF  
Command of each bit is transmitted to the master  
station as hexadecimal data.  
bit  
0
1
2
3
4
5
6
7
CN6 connector pin  
bit  
8
CN6 connector pin  
bit  
16  
17  
18  
19  
20  
21  
22  
23  
CN6 connector pin  
bit  
24  
25  
26  
27  
28  
29  
30  
31  
CN6 connector pin  
1
2
3
4
9
10  
11  
12  
13  
14  
15  
15 - 24  
15. COMMUNICATION FUNCTION  
(3) Read of the statuses of input devices switched on through communication  
Read the ON/OFF statuses of the input devices switched on through communication.  
(a) Transmission  
Transmit command [1][2] and the data No. corresponding to the input device.  
Command  
[1][2]  
Data No.  
[6][0]  
[6][1]  
(b) Reply  
The slave station sends back the statuses of the input pins.  
b31  
b1 b0  
1:ON  
0:OFF  
Command of each bit is transmitted to the master  
station as hexadecimal data.  
Data No. [6][0]  
bit  
Data No. [6][1]  
Device name  
Device name  
Symbol  
SON  
LSP  
Symbol  
0
Servo-on  
1
Forward rotation stroke end  
Reverse rotation stroke end  
2
LSN  
3
4
Internal torque limit selection  
TL1  
PC  
5
Proportion control  
Reset  
6
RES  
CR  
7
Clear  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
Forward rotation start  
Reverse rotation start  
ST1  
ST2  
Automatic/manual selection  
Proximity dog  
MD0  
DOG  
Override selection  
OVR  
Temporary stop/Restart  
TSTP Point table No. selection 1  
Point table No. selection 2  
Point table No. selection 3  
CDP Point table No. selection 4  
Point table No. selection 5  
Point table No. selection 6  
Point table No. selection 7  
Point table No. selection 8  
DI0  
DI1  
DI2  
DI3  
DI4  
DI5  
DI6  
DI7  
Gain changing  
15 - 25  
15. COMMUNICATION FUNCTION  
(4) External output pin status read  
Read the ON/OFF statuses of the external output pins.  
(a) Transmission  
Transmit command [1][2] and data No. [C][0].  
Command  
[1][2]  
Data No.  
[C][0]  
(b) Reply  
The slave station sends back the ON/OFF statuses of the output pins.  
b31  
b1 b0  
1:ON  
0:OFF  
Command of each bit is transmitted to the master  
station as hexadecimal data.  
bit  
0
1
2
3
4
5
6
7
CN6 connector pin  
bit  
8
CN6 connector pin  
bit  
16  
17  
18  
19  
20  
21  
22  
23  
CN6 connector pin  
bit  
24  
25  
26  
27  
28  
29  
30  
31  
CN6 connector pin  
14  
15  
16  
9
10  
11  
12  
13  
14  
15  
15 - 26  
15. COMMUNICATION FUNCTION  
(5) Read of the statuses of output devices  
Read the ON/OFF statuses of the output devices.  
(a) Transmission  
Transmit command [1][2] and the data No. corresponding to the output device.  
Command  
[1][2]  
Data No.  
[8][0]  
[8][1]  
(b) Reply  
The slave station sends back the statuses of the output devices.  
b31  
b1 b0  
1:ON  
0:OFF  
Command of each bit is transmitted to the master  
station as hexadecimal data.  
Data No. [8][0]  
bit  
Data No. [8][1]  
Device name  
Device name  
Symbol  
Symbol  
0
1
2
3
4
5
6
7
8
9
Ready  
RD  
Zero speed  
ZSP  
TLC  
Limiting torque  
In position  
INP  
Warning  
Trouble  
WNG  
ALM  
Electromagnetic  
interlock  
brake  
10  
MBR  
DB  
11  
12  
13  
14  
15  
16  
dynamic brake interlock  
Battery warning  
Rough match  
BWNG  
CPO  
Home  
position  
return  
17  
ZP  
completion  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
Position range output  
Temporary stop  
POT  
PUS  
Point table No. output 1  
Point table No. output 2  
Point table No. output 3  
Point table No. output 4  
PT0  
PT1  
PT2  
PT3  
PT4  
PT5  
PT6  
PT7  
Variable gain selection  
Movement completion  
CDPS  
MEND Point table No. output 5  
Point table No. output 6  
Point table No. output 7  
Point table No. output 8  
15 - 27  
15. COMMUNICATION FUNCTION  
15.5.5 Device ON/OFF  
POINT  
The ON/OFF states of all devices in the servo amplifier are the states of the  
data received last. Hence, when there is a device which must be kept ON,  
send data which turns that device ON every time.  
Each input device can be switched on/off. However, when the device to be switched off exists in the external  
input signal, also switch off that input signal.  
Send command [9][2], data No. corresponding to the input device and data.  
Command  
[9][2]  
Data No.  
[6][0]  
Set data  
See below.  
[6][1]  
b31  
b1 b0  
1:ON  
0:OFF  
Command of each bit is transmitted to the slave  
station as hexadecimal data.  
Data No. [6][0]  
bit  
Data No. [6][1]  
Device name  
Device name  
Symbol  
SON  
LSP  
Symbol  
0
Servo-on  
1
Forward rotation stroke end  
Reverse rotation stroke end  
2
LSN  
3
4
Internal torque limit selection  
TL1  
PC  
5
Proportion control  
Reset  
6
RES  
CR  
7
Clear  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
Forward rotation start  
Reverse rotation start  
ST1  
ST2  
Automatic/manual selection  
Proximity dog  
MD0  
DOG  
Override selection  
OVR  
Temporary stop/Restart  
TSTP Point table No. selection 1  
Point table No. selection 2  
Point table No. selection 3  
CDP Point table No. selection 4  
Point table No. selection 5  
Point table No. selection 6  
Point table No. selection 7  
Point table No. selection 8  
DI0  
DI1  
DI2  
DI3  
DI4  
DI5  
DI6  
DI7  
Gain changing  
15 - 28  
15. COMMUNICATION FUNCTION  
15.5.6 Disable/enable of I/O devices (DIO)  
Inputs can be disabled independently of the I/O devices ON/OFF. When inputs are disabled, the input signals  
(devices) are recognized as follows. Among the input devices, EMG, LSP and LSN cannot be disabled.  
Signal  
Input devices (DI)  
Status  
OFF  
(1) Disabling/enabling the input devices (DI), external analog input signals and pulse train inputs with the  
exception of EMG, LSP and LSN.  
Transmit the following communication commands.  
(a) Disable  
Command  
[9][0]  
Data No.  
[0][0]  
Data  
1EA5  
(b) Enable  
Command  
[9][0]  
Data No.  
[1][0]  
Data  
1EA5  
(2) Disabling/enabling the output devices (DO)  
Transmit the following communication commands.  
(a) Disable  
Command  
[9][0]  
Data No.  
[0][3]  
Data  
1EA5  
(b) Enable  
Command  
[9][0]  
Data No.  
[1][3]  
Data  
1EA5  
15 - 29  
15. COMMUNICATION FUNCTION  
15.5.7 Input devices ON/OFF (test operation)  
Each input devices can be turned on/off for test operation. when the device to be switched off exists in the  
external input signal, also switch off that input signal.  
Send command [9] [2], data No. corresponding to the input device and data.  
Command  
[9][2]  
Data No.  
[0][0]  
Set data  
See below  
[0][1]  
b31  
b1 b0  
1: ON  
0: OFF  
Command of each bit is transmitted to the slave  
station as hexadecimal data.  
Data No. [0][0]  
bit  
Data No. [0][1]  
Device name  
Device name  
Symbol  
Symbol  
0
Servo-on  
SON  
LSP  
LSN  
1
Forward rotation stroke end  
Reverse rotation stroke end  
2
3
4
Internal torque limit selection  
TL1  
PC  
5
Proportion control  
Reset  
6
RES  
CR  
7
Clear  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
Forward rotation start  
Reverse rotation start  
ST1  
ST2  
Automatic/manual selection  
Proximity dog  
MD0  
DOG  
Override selection  
OVR  
Temporary stop/Restart  
TSTP Point table No. selection 1  
Point table No. selection 2  
Point table No. selection 3  
CDP Point table No. selection 4  
Point table No. selection 5  
Point table No. selection 6  
Point table No. selection 7  
Point table No. selection 8  
DI0  
DI1  
DI2  
DI3  
DI4  
DI5  
DI6  
DI7  
Gain changing  
15 - 30  
15. COMMUNICATION FUNCTION  
15.5.8 Test operation mode  
POINT  
The test operation mode is used to confirm operation. Do not use it for actual  
operation.  
If communication stops for longer than 0.5s during test operation, the servo  
amplifier decelerates to a stop, resulting in servo lock. To prevent this,  
continue communication all the time, e.g. monitor the status display.  
Even during operation, the servo amplifier can be put in the test operation  
mode.  
In this case, as soon as the test operation mode is selected, the base circuit  
is shut off, coasting the servo amplifier.  
(1) Preparation and cancel of test operation mode  
(a) Preparation of test operation mode  
Set the test operation mode type in the following procedure.  
Send the command [8][B] + data No. [0][0] to select the test operation mode.  
Command  
[8][B]  
Data No.  
[0][0]  
Transmission Data  
Test Operation Mode Selection  
JOG operation  
0001  
0002  
0003  
0004  
0005  
Positioning operation  
Motorless operation  
DO forced output  
Single-step feed  
2) Confirmation of test operation mode  
Read the test operation mode set for the slave station, and confirm that it is set correctly.  
a. Transmission  
Send the command [0][0] + data No. [1][2].  
Command  
[0][0]  
Data No.  
[1][2]  
b. Return  
The slave station returns the set test operation mode.  
0 0 0  
Test operation mode read  
0: Normal mode (not test operation mode)  
1: JOG operation  
2: Positioning operation  
3: Motorless operation  
4: DO forced output  
5: Single-step feed  
15 - 31  
15. COMMUNICATION FUNCTION  
(2) JOG operation  
Send the command, data No. and data as indicated below to execute JOG operation.  
Start  
Select the JOG operation in the test  
operation mode.  
Command: [8][B]  
Data No. : [0][0]  
Data  
: 0001(JOG operation)  
Servo motor speed setting  
Command: [A][0]  
Data No. : [1][0]  
Data  
: Write the speed [r/min] in  
hexadecimal.  
Set the operation pattern.  
Acceleration/deceleration time  
constant setting  
Command: [A][0]  
Data No. : [1][1]  
Data  
: Write the acceleration/  
deceleration time constant  
[ms] in hexadecimal.  
When LSP/LSN was turned OFF by  
external input signal  
When LSP/LSN was turned OFF by  
external input signal or automatically  
Start  
Start  
Command : [9][2]  
Data No. : [0][0]  
Command: [9][2]  
Data No. : [0][0]  
Data  
: Forward rotation direction  
00000807  
Data  
: Forward rotation direction  
Start.  
00000801  
(SON, LSP, LSN, ST1 turned ON)  
Reverse rotation direction  
00001007  
(SON, ST1 turned ON)  
Reverse rotation direction  
00001001  
(SON, LSP, LSN, ST2 turned ON)  
(SON, ST2 turned ON)  
Stop  
Stop  
Command: [9][2]  
Data No. : [0][0]  
Command: [9][2]  
Data No. : [0][0]  
Stop.  
Data  
: 00000001  
(SON turned ON)  
Data  
: 00000007  
(SON, LSP, LSN turned ON)  
End  
Command: [8][B]  
Data No. : [0][0]  
Data : 0000  
Cancel the JOG operation.  
(JOG operation cancel)  
Power on the servo amplifier.  
Shift to the CC-Link operation mode.  
15 - 32  
15. COMMUNICATION FUNCTION  
(3) Positioning operation  
(a) Operation procedure  
Send the command, data No. and data as indicated below to execute positioning operation.  
Start  
Select the positioning operation in  
the test operation mode.  
Command: [8][B]  
Data No. : [0][0]  
Data  
: 0002 (positioning operation)  
Servo motor speed setting  
Command: [A][0]  
Data No. : [1][0]  
Data  
: Write the speed [r/min] in  
hexadecimal.  
Acceleration/deceleration time  
constant setting  
Command: [A][0]  
Data No. : [1][1]  
Data  
: Write the acceleration  
/deceleration time constant  
[ms] in hexadecimal.  
Set the operation pattern.  
Movement distance setting  
Command: [A][0]  
Data No. : [2][0]  
Data  
: Write the movement distance  
[pulse] in hexadecimal.  
Rotation direction selection  
Command: [A][0]  
Data No. : [2][0]  
Data  
: 0000(forward rotation direction)  
0001(reverse rotation)  
When LSP/LSN was turned OFF by  
external input signal  
When LSP/LSN was turned OFF by external  
input signal or automatically turned ON  
Make input device valid  
Make input device valid  
Command: [9][2]  
Data No. : [0][0]  
Command: [9][2]  
Data No. : [0][0]  
Turn ON Servo-on (SON) to make  
the servo amplifier ready.  
Data  
: 00000007  
Data  
: 00000001  
(SON, LSP, LSN turned ON)  
(SON turned ON)  
(Note)  
Positioning start  
Command: [A][0]  
Data No. : [4][0]  
Data : 1EA5  
Start.  
End  
Command: [8][B]  
Data No. : [0][0]  
Cancel the positioning operation.  
Data  
: 0000  
(Positioning operation cancel)  
Power on the servo amplifier.  
Shift to the CC-Link operation mode.  
Note. There is a 100ms delay.  
15 - 33  
15. COMMUNICATION FUNCTION  
(b) Temporary stop/restart/remaining distance clear  
Send the following command, data No. and data during positioning operation to make deceleration to a  
stop.  
Command  
[A][0]  
Data No.  
[4][1]  
Data  
STOP  
Send the following command, data No. and data during a temporary stop to make a restart.  
Command  
[A][0]  
Data No.  
[4][1]  
(Note) Data  
GO  
Note. indicates a blank.  
Send the following command, data No. and data during a temporary stop to stop positioning operation  
and erase the remaining movement distance.  
Command  
[A][0]  
Data No.  
[4][1]  
(Note) Data  
CLR  
Note. indicates a blank.  
15 - 34  
15. COMMUNICATION FUNCTION  
(4) Single-step feed  
Set necessary items to the point table before starting the single-step feed.  
Send the command, data No. and data as indicated below to execute single-step feed.  
Start  
Command: [8][B]  
Data No. : [0][0]  
Select the single-step feed in the  
test operation mode.  
Data  
: 0005 (Single-step feed)  
Point table No. setting  
Command: [9][2]  
Data No. : [0][1]  
Set the point table No.  
Data  
: Write the point table No. in  
hexadecimal.  
When LSP/LSN was turned OFF by  
external input signal  
When LSP/LSN was turned OFF by external  
input signal or automatically turned ON  
Make input device valid  
Make input device valid  
Command: [9][2]  
Data No. : [0][0]  
Command: [9][2]  
Data No. : [0][0]  
Turn ON Servo-on (SON) to make  
the servo amplifier ready.  
Data  
: 00020007  
Data  
: 00020001  
(SON, LSP, LSN, MD0  
turned ON)  
(SON, MD0 turned ON)  
(Note)  
(Note)  
Operation start  
Operation start  
Command: [9][2]  
Data No. : [0][0]  
Command: [9][2]  
Data No. : [0][0]  
Start.  
Data  
: 00020807  
(ST1 is ON)  
Data  
: 00020801  
(ST1 is ON)  
End  
Command: [8][B]  
Data No. : [0][0]  
Cancel the single-step feed.  
Data  
: 0000  
(Single-step feed cancel)  
Power on the servo amplifier.  
Shift to the CC-Link operation mode.  
Note. Start operation after home position return completion (ZP) is confirmed. Refer to 17th bit of the data read with command [1][2] and  
data No.[8][0].  
15 - 35  
15. COMMUNICATION FUNCTION  
(5) Output signal pin ON/OFF output signal (DO) forced output  
In the test operation mode, the output signal pins can be turned on/off independently of the servo status.  
Using command [9][0], disable the output signals in advance.  
(a) Choosing DO forced output in test operation mode  
Transmit command [8][B] data No. [0][0] data "0004" to choose DO forced output.  
0 0 0 4  
Selection of test operation mode  
4: DO forced output (output signal forced output)  
(b) External output signal ON/OFF  
Transmit the following communication commands.  
Command  
[9][2]  
Data No.  
[A][0]  
Setting data  
See below.  
b31  
b1 b0  
1: ON  
0: OFF  
Command of each bit is sent to the slave station in hexadecimal.  
bit  
0
1
2
3
4
5
6
7
CN6 connector pin  
bit  
8
CN6 connector pin  
bit  
16  
17  
18  
19  
20  
21  
22  
23  
CN6 connector pin  
bit  
24  
25  
26  
27  
28  
29  
30  
31  
CN6 connector pin  
14  
15  
16  
9
10  
11  
12  
13  
14  
15  
(c) Canceling DO forced output  
Transmit command [8][B] + data No. [0][0] + data to cancel DO forced output.  
Command  
[8][B]  
Data No.  
[0][0]  
Transmission data  
0000  
Description  
Cancel DO forced output  
(6) Motorless operation  
(a) Performing motorless operation  
Transmit command [8][B] + data No. [0][0] + data "0003" to perform motorless operation.  
0 0 0 3  
Selection of test operation mode  
3: Motorless operation  
To perform operation after performing the motorless operation, issue a command from the host  
controller.  
(b) Canceling motorless operation  
The motorless operation cannot be canceled in the same way as the test operation mode (transmit  
command [8][B] + data No. [0][0] + data "0000"). To cancel the motorless operation, power on the servo  
amplifier and shift to the CC-Link operation mode beforehand.  
15 - 36  
15. COMMUNICATION FUNCTION  
15.5.9 Alarm history  
(1) Alarm No. read  
Read the alarm No. which occurred in the past. The alarm numbers and occurrence times of No. 0 (last  
alarm) to No. 5 (sixth alarm in the past) are read.  
(a) Transmission  
Send command [3][3] and data No. [1][0] to [1][5]. Refer to section 15.4.1.  
(b) Reply  
The alarm No. corresponding to the data No. is provided.  
0 0  
Alarm No. is transferred in hexadecimal.  
For example, "0032" means A32 and "00FF" means A_ _ (no alarm).  
(2) Alarm occurrence time read  
Read the occurrence time of alarm which occurred in the past.  
The alarm occurrence time corresponding to the data No. is provided in terms of the total time beginning  
with operation start, with the minute unit omitted.  
(a) Transmission  
Send command [3][3] and data No. [2][0] to [2][5].  
Refer to section 15.4.1.  
(b) Reply  
The alarm occurrence time is transferred in hexadecimal.  
Hexadecimal must be converted into decimal.  
For example, data "01F5" means that the alarm occurred in 501 hours after start of operation.  
(3) Alarm history clear  
Erase the alarm history.  
Send command [8][2] and data No. [2][0].  
Command  
[8][2]  
Data No.  
[2][0]  
Data  
1EA5  
15 - 37  
15. COMMUNICATION FUNCTION  
15.5.10 Current alarm  
(1) Current alarm read  
Read the alarm No. which is occurring currently.  
(a) Transmission  
Send command [0][2] and data No. [0][0].  
Command  
[0][2]  
Data No.  
[0][0]  
(b) Reply  
The slave station sends back the alarm currently occurring.  
0 0  
Alarm No. is transferred in hexadecimal.  
For example, "0032" means A32 and "00FF" means A_ _ (no alarm).  
(2) Read of the status display at alarm occurrence  
Read the status display data at alarm occurrence. When the data No. corresponding to the status display  
item is transmitted, the data value and data processing information are sent back.  
(a) Transmission  
Send command [3][5] and any of data No. [8][0] to [8][E] corresponding to the status display item to be  
read. Refer to section 15.4.1.  
(b) Reply  
The slave station sends back the requested status display data at alarm occurrence.  
0 0  
Data 32 bits long (represented in hexadecimal)  
(Data conversion into display type is required)  
Display type  
0: Conversion into decimal required  
1: Used unchanged in hexadecimal  
Decimal point position  
0: No decimal point  
1: Lower first digit (usually not used)  
2: Lower second digit  
3: Lower third digit  
4: Lower fourth digit  
5: Lower fifth digit  
6: Lower sixth digit  
(3) Current alarm clear  
As by the reset (RES) on, reset the servo amplifier alarm to make the servo amplifier ready to operate. After  
removing the cause of the alarm, reset the alarm with no command entered.  
Command  
[8][2]  
Data No.  
[0][0]  
Data  
1EA5  
15 - 38  
15. COMMUNICATION FUNCTION  
15.5.11 Point table  
(1) Data read  
(a) Position data  
Read the position data of the point table.  
1) Transmission  
Transmit command [4][0] and any of data No. [0][1] to [F][F] corresponding to the point table to be  
read. Refer to section 15.4.1.  
2) Reply  
The slave station sends back the position data of the requested point table.  
Hexadecimal data  
Decimal point position  
0: No decimal point  
1: Lower first digit (usually not used)  
2: Lower second digit  
3: Lower third digit  
4: Lower fourth digit  
0 0  
5: Lower fifth digit  
6: Lower sixth digit  
Display type  
0: Used unchanged in hexadecimal  
1: Conversion into decimal required  
Position data write type  
0: Valid after write  
1: Valid when power is switched on again after write  
(b) Speed data  
Read the speed data of the point table.  
1) Transmission  
Transmit command [5][0] and any of data No. [0][1] to [F][F] corresponding to the point table to be  
read. Refer to section 15.4.1.  
2) Reply  
The slave station sends back the speed data of the requested point table.  
0
Hexadecimal data  
0 0  
Display type  
0: Used unchanged in hexadecimal  
1: Conversion into decimal required  
Speed data write type  
0: Valid after write  
1: Valid when power is switched on again after write  
15 - 39  
15. COMMUNICATION FUNCTION  
(c) Acceleration time constant  
Read the acceleration time constant of the point table.  
1) Transmission  
Transmit command [5][4] and any of data No. [0][1] to [F][F] corresponding to the point table to be  
read. Refer to section 15.4.1.  
2) Reply  
The slave station sends back the acceleration time constant of the requested point table.  
0
Hexadecimal data  
0 0  
Display type  
0: Used unchanged in hexadecimal  
1: Conversion into decimal required  
Deceleration time constant write type  
0: Valid after write  
1: Valid when power is switched on again after write  
(d) Deceleration time constant  
Read the deceleration time constant of the point table.  
1) Transmission  
Transmit command [5][8] and any of data No. [0][1] to [F][F] corresponding to the point table to be  
read. Refer to section 15.4.1.  
2) Reply  
The slave station sends back the deceleration time constant of the requested point table.  
0
Hexadecimal data  
0 0  
Display type  
0: Used unchanged in hexadecimal  
1: Conversion into decimal required  
Deceleration time constant write type  
0: Valid after write  
1: Valid when power is switched on again after write  
15 - 40  
15. COMMUNICATION FUNCTION  
(e) Dwell  
Read the dwell of the point table.  
1) Transmission  
Transmit command [6][0] and any of data No. [0][1] to [F][F] corresponding to the point table to be  
read. Refer to section 15.4.1.  
2) Reply  
The slave station sends back the dwell of the requested point table.  
0
Hexadecimal data  
0 0  
Display type  
0: Used unchanged in hexadecimal  
1: Conversion into decimal required  
Dwell write type  
0: Valid after write  
1: Valid when power is switched on again after write  
(f) Auxiliary function  
Read the auxiliary function of the point table.  
1) Transmission  
Transmit command [6][4] and any of data No. [0][1] to [F][F] corresponding to the point table to be  
read. Refer to section 15.4.1.  
2) Reply  
The slave station sends back the auxiliary function of the requested point table.  
0
Hexadecimal data  
0 0  
Display type  
0: Used unchanged in hexadecimal  
1: Conversion into decimal required  
Auxiliary function write type  
0: Valid after write  
1: Valid when power is switched on again after write  
15 - 41  
15. COMMUNICATION FUNCTION  
(2) Data write  
POINT  
If setting values need to be changed with a high frequency (i.e. one time or  
more per one hour), write the setting values to the RAM, not the EEP-ROM.  
The EEP-ROM has a limitation in the number of write times and exceeding  
this limitation causes the servo amplifier to malfunction. Note that the number  
of write times to the EEP-ROM is limited to approximately 100, 000.  
(a) Position data  
Write the position data of the point table.  
Transmit command [C][0], any of data No. [0][1] to [F][F] corresponding to the point table to be written  
to, and the data. Refer to section 15.4.2.  
Command  
[C][0]  
Data No.  
Data  
[0][1] to [F][F]  
See below.  
Hexadecimal data  
Decimal point position  
0: No decimal point  
1: Lower first digit  
2: Lower second digit  
3: Lower third digit  
4: Lower fourth digit  
5: Lower fifth digit  
6: Lower sixth digit  
The decimal point position should be the same as  
the feed length multiplication (STM) set in parameter  
No. 1. The slave station will not accept the decimal  
point position which is different from the STM setting.  
Write mode  
0: EEP-ROM, RAM write  
1: RAM write  
When the position data is changed frequently through communication,  
set "1" to the write mode to change only the RAM data in the servo amplifier.  
When changing data frequently (once or more within one hour),  
do not write it to the EEP-ROM.  
(b) Speed data  
Write the speed data of the point table.  
Transmit command [C][6], any of data No. [0][1] to [F][F] corresponding to the point table to be written  
to, and the data. Refer to section 15.4.2.  
Command  
[C][6]  
Data No.  
Data  
[0][1] to [F][F]  
See below.  
0
Hexadecimal data  
Write mode  
0: EEP-ROM, RAM write  
1: RAM write  
When the speed data is changed frequently through communication,  
set "1" to the write mode to change only the RAM data in the servo amplifier.  
When changing data frequently (once or more within one hour),  
do not write it to the EEP-ROM.  
15 - 42  
15. COMMUNICATION FUNCTION  
(c) Acceleration time constant  
Write the acceleration time constant of the point table.  
Transmit command [C][7], any of data No. [0][1] to [F][F] corresponding to the point table to be written  
to, and the data. Refer to section 15.4.2.  
Command  
[C][7]  
Data No.  
Data  
[0][1] to [F][F]  
See below.  
0
Hexadecimal data  
Write mode  
0: EEP-ROM, RAM write  
1: RAM write  
When the acceleration time constant is changed frequently through communication,  
set "1" to the write mode to change only the RAM data in the servo amplifier.  
When changing data frequently (once or more within one hour),  
do not write it to the EEP-ROM.  
(d) Deceleration time constant  
Write the deceleration time constant of the point table.  
Transmit command [C][8], any of data No. [0][1] to [F][F] corresponding to the point table to be written  
to, and the data. Refer to section 15.4.2.  
Command  
[C][8]  
Data No.  
Data  
[0][1] to [F][F]  
See below.  
0
Hexadecimal data  
Write mode  
0: EEP-ROM, RAM write  
1: RAM write  
When the deceleration time is changed frequently through communication,  
set "1" to the write mode to change only the RAM data in the servo amplifier.  
When changing data frequently (once or more within one hour),  
do not write it to the EEP-ROM.  
(e) Dwell  
Write the dwell of the point table.  
Transmit command [C][A], any of data No. [0][1] to [F][F] corresponding to the point table to be written  
to, and the data. Refer to section 15.4.2.  
Command  
[C][A]  
Data No.  
Data  
[0][1] to [F][F]  
See below.  
0
Hexadecimal data  
Write mode  
0: EEP-ROM, RAM write  
1: RAM write  
When the dwell constant is changed frequently through communication,  
set "1" to the write mode to change only the RAM data in the servo amplifier.  
When changing data frequently (once or more within one hour),  
do not write it to the EEP-ROM.  
15 - 43  
15. COMMUNICATION FUNCTION  
(f) Auxiliary function  
Write the auxiliary function of the point table.  
Transmit command [C][B], any of data No. [0][1] to [F][F] corresponding to the point table to be written  
to, and the data. Refer to section 15.4.2.  
Command  
[C][B]  
Data No.  
Data  
[0][1] to [F][F]  
See below.  
0
Hexadecimal data  
Write mode  
0: EEP-ROM, RAM write  
1: RAM write  
When the auxiliary function constant is changed frequently through communication,  
set "1" to the write mode to change only the RAM data in the servo amplifier.  
When changing data frequently (once or more within one hour),  
do not write it to the EEP-ROM.  
15 - 44  
15. COMMUNICATION FUNCTION  
15.5.12 Servo amplifier group designation  
With group setting made to the slave stations, data can be transmitted simultaneously to two or more slave  
stations set as a group.  
(1) Group setting write  
Write the group designation value to the slave station.  
(a) Transmission  
Transmit command [9][F], data No. [0][0] and data.  
Command  
[9][F]  
Data No.  
[0][0]  
Data  
See below.  
0
0
Group designation  
0: No group designation  
1: Group a  
2: Group b  
3: Group c  
4: Group d  
5: Group e  
6: Group f  
Response command enable  
Set whether data can be sent back or not in  
response to the read command of the master station.  
0: Response disable  
Data cannot be set back.  
1: Response enable  
Data can be set back.  
(2) Group setting read  
Read the set group designation value from the slave station.  
(a) Transmission  
Transmit command [1][F] and data No. [0][0].  
Command  
[1][F]  
Data No.  
[0][0]  
(b) Reply  
The slave station sends back the group setting of the point table requested.  
0
0
Group designation  
0: No group designation  
1: Group a  
2: Group b  
3: Group c  
4: Group d  
5: Group e  
6: Group f  
Response command enable  
0: Response disable  
1: Response enable  
15 - 45  
15. COMMUNICATION FUNCTION  
15.5.13 Other commands  
(1) Servo motor side pulse unit absolute position  
Read the absolute position in the servo motor side pulse unit.  
Note that overflow will occur in the position of 8192 or more revolutions from the home position.  
(a) Transmission  
Send command [0][2] and data No. [9][0].  
Command  
[0][2]  
Data No.  
[9][0]  
(b) Reply  
The slave station sends back the requested servo motor side pulses.  
Absolute value is sent back in hexadecimal in  
the servo motor side pulse unit.  
(Must be converted into decimal)  
For example, data "000186A0" is 100000 [pulse] in the motor side pulse unit.  
(2) Command unit absolute position  
Read the absolute position in the command unit.  
(a) Transmission  
Send command [0][2] and data No. [9][1].  
Command  
[0][2]  
Data No.  
[9][1]  
(b) Reply  
The slave station sends back the requested command pulses.  
Absolute value is sent back in hexadecimal in the  
command unit.  
(Must be converted into decimal)  
For example, data "000186A0" is 100000 [pulse] in the command unit.  
(3) Software version  
Reads the software version of the servo amplifier.  
(a) Transmission  
Send command [0][2] and data No.[7][0].  
Command  
[0][2]  
Data No.  
[7][0]  
(b) Reply  
The slave station returns the software version requested.  
Software version (15 digits)  
Space  
15 - 46  
16. INDEXER POSITIONING OPERATION  
16. INDEXER POSITIONING OPERATION  
POINT  
To execute the indexer positioning operation, parameter needs to be  
changed. Set the parameter No.PA01 to "1 ".  
This chapter provides the indexer positioning operation method using MR-J3- T servo amplifier. Any matters  
not described in this chapter are the same as those of the point table positioning operation. For more  
information, refer to chapters up to 15.  
16.1 Function  
16.1.1 Overview  
Using the next station selection 1 (RYnA) to the next station selection 8 (RY(n 2)5) devices, stations from  
No.0 to No.254 can be specified.  
Settings of servo motor speed and acceleration/deceleration time constant are carried out by specifying the  
point table number from 1 to 8 using the speed selection 1 (RY(n 2)C) to the speed selection 3 (RY(n 2)E)  
devices. Speed command data can be directly specified by using the remote register when two stations are  
occupied.  
16.1.2 Servo amplifier standard specifications (functions only)  
Item  
Description  
Available with CC-Link communication  
Station command  
input  
CC-Link communication (1 station occupied): 31 stations  
CC-Link communication (2 stations occupied): 255 stations  
Available with CC-Link communication (2 stations occupied)  
Set the speed command data (speed) by the remote register.  
Command  
system  
Remote  
Speed  
command  
input  
register  
Speed  
Select a speed and acceleration/deceleration time constant by the point table  
No. input  
Rotation direction  
specifying indexer  
Shortest rotating  
indexer  
Automatic  
Positioning operation is executed to the set station. Rotation direction can be specified.  
operation  
mode  
Positioning operation is executed to the set station. The servo motor rotates in the closest  
direction from current position.  
Turning on the start signal (RYn1) makes the servo motor rotate in the direction specified by  
the rotation direction specifying.  
Indexer JOG  
operation  
Manual  
operation  
mode  
Turning off the start signal (RYn1) makes the servo motor perform positioning operation to the  
closest station where the motor can decelerate to stop.  
In accordance with the speed data set in parameters, JOG operation is performed by using  
CC-Link communication  
JOG operation  
Home position return is performed by the Z-phase pulse count after passing proximity dog.  
Home position address may be set. Home position shift distance may be set. Home position  
return direction may be selected.  
Torque limit  
Home  
position  
return  
mode  
changing dog type  
Automatic at-dog home position return return/automatic stroke return function.  
Automatic torque limit changing function  
Home position return is made without dog.  
Torque limit  
changing data  
setting type  
Home position may be set at any position by manual operation, etc. Home position address may  
be set.  
Automatic torque limit changing function  
Automatic positioning to home  
position  
High-speed automatic return to a defined home position.  
16 - 1  
16. INDEXER POSITIONING OPERATION  
16.1.3 Function list  
The following table lists the functions of this servo. For details of the functions, refer to the reference field.  
Function  
Description  
Reference  
Automatic operation mode 1  
(Rotation direction specifying  
indexer)  
In this operation mode, the servo motor rotates in the specified direction and  
performs a positioning operation to the next station divided in 2 to 255.  
Section 16.7.2  
Automatic operation mode 2  
(Shortest rotating indexer)  
In this operation mode, the servo motor rotates in the shortest direction and  
performs a positioning operation to the next station divided in 2 to 255.  
1. Indexer JOG operation  
Section 16.7.3  
When stopping, this JOG operation enables the servo motor to perform  
positioning to the station where the servo motor can decelerate to stop.  
2. JOG operation  
Manual operation mode  
Section 16.8  
Section 16.9  
When stopping, this JOG operation enables the servo motor to decelerate  
to stop regardless of stations.  
Home position return  
Torque limit changing dog type, torque limit changing data setting type  
High-resolution encoder of 262144 pulses/rev is used as a servo motor  
encoder.  
High-resolution encoder  
Absolute position detection  
system  
By merely setting the home position once, home position return need not be  
done at each power on.  
Section 16.10  
Section 10.6  
Section 10.4  
Section 10.2  
Section 10.5  
You can switch between gains during rotation and gains during stop or use  
an input device to change gains during operation.  
Gain changing function  
Advanced vibration suppression  
control  
This function suppresses vibration at the arm end or residual vibration.  
Servo amplifier detects mechanical resonance and sets filter characteristics  
automatically to suppress mechanical vibration.  
Suppresses high-frequency resonance which occurs as servo system  
response is increased.  
Adaptive filter  
Low-pass filter  
Analyzes the frequency characteristic of the mechanical system by simply  
connecting a MR Configurator installed personal computer and servo  
amplifier.  
Machine analyzer function  
MR Configurator is necessary for this function.  
Can simulate machine motions on a personal computer screen on the basis  
of the machine analyzer results.  
Machine simulation  
Gain search function  
MR Configurator is necessary for this function.  
Personal computer changes gains automatically and searches for  
overshoot-free gains in a short time.  
MR Configurator is necessary for this function.  
Slight vibration suppression  
control  
Parameters No.  
PB24  
Suppresses vibration of 1 pulse produced at a servo motor stop.  
The electronic gear is used to make adjustment so that the servo amplifier  
setting matches the machine moving distance. Also, changing the electronic Parameter No.  
gear value allows the machine to be moved at any multiplication ratio to the PA06, PA07  
moving distance using the servo amplifier.  
Electronic gear  
Automatically adjusts the gain to optimum value if load applied to the servo  
Auto tuning  
Section 9.2  
motor shaft varies.  
Used when the built-in regenerative resistor of the servo amplifier does not  
Section 14.2  
Regenerative option  
have sufficient regenerative capability for the regenerative power generated.  
Used when the regenerative option cannot provide enough regenerative  
Brake unit  
power.  
Section 14.3  
Section 14.4  
Can be used with the servo amplifier of 5kW or more.  
Used when the regenerative option cannot provide enough regenerative  
power.  
Regeneration converter  
Alarm history clear  
Can be used with the servo amplifier of 5kW or more.  
Parameter No.  
PC18  
Alarm history is cleared.  
16 - 2  
16. INDEXER POSITIONING OPERATION  
Function  
Description  
Reference  
Section 16.3.2 (3)  
Section 16.11.1 (9)  
Section 7.7.4  
Torque limit  
Servo motor-torque is limited.  
Output signal can be forced on/off independently of the servo status.  
Use this function for output signal wiring check, etc.  
Output signal (DO) forced output  
Test operation mode  
Limit switch  
Section 8.5.7(4)  
Section 7.7  
Section 8.5.7  
JOG operation positioning operation DO forced output.  
MR Configurator is necessary for this function.  
The servo motor travel region can be limited using the forward rotation  
stroke end (LSP)/reverse rotation stroke end (LSN).  
16.2 I/O signals (I/O devices) transferred to/from the programmable controller CPU  
16.2.1 I/O signals (I/O devices)  
(1) When 1 station is occupied  
RYn/RXn: 32 points each, RWrn/RWwn: 4 points each  
Programmable controller  
Servo amplifier (RYn)  
Device name  
Servo amplifier  
Programmable controller (RXn)  
Device name  
(Note)  
(Note)  
Device No.  
Device No.  
RYn0  
RYn1  
RYn2  
RYn3  
to  
Servo-on  
Start  
RXn0  
RXn1  
RXn2  
RXn3  
RXn4  
RXn5  
RXn6  
RXn7  
RXn8  
RXn9  
RXnA  
RXnB  
RXnC  
RXnD  
RXnE  
to  
Ready  
In position  
Rough match  
Rotation direction specifying  
Home position return completion  
Limiting torque  
Not available  
RYn5  
RYn6  
RYn7  
RYn8  
RYn9  
RYnA  
RYnB  
RYnC  
RYnD  
RYnE  
RYnF  
to  
Not available  
Operation mode selection 1  
Operation mode selection 2  
Electromagnetic brake interlock  
Temporary stop  
Monitor output execution demand  
Instruction code execution demand  
Next station selection 1  
Monitoring  
Instruction code execution completion  
Warning  
Next station selection 2  
Battery warning  
Next station selection 3  
Movement completion  
Dynamic brake interlock  
Next station selection 4  
Next station selection 5  
Not available  
Not available  
RX(n 1)9  
RY(n 1)9  
RX(n 1)A Trouble  
RY(n 1)A Reset  
RY(n 1)B  
RX(n 1)B Remote station communication ready  
RX(n 1)C  
to  
Not available  
to  
Not available  
RY(n 1)F  
RX(n 1)F  
Programmable controller  
Servo amplifier (RWwn)  
Signal  
Servo amplifier  
Programmable controller (RWrn)  
Signal  
Address No.  
RWwn  
Address No.  
RWrn  
Monitor 1  
Monitor 1 data  
Monitor 2 data  
Respond code  
Reading data  
RWwn  
RWwn  
RWwn  
1
2
3
Monitor 2  
RWrn  
RWrn  
RWrn  
1
2
3
Instruction code  
Writing data  
Note. "n" depends on the station number setting.  
16 - 3  
16. INDEXER POSITIONING OPERATION  
(2) When 2 stations are occupied  
RXn/RYn: 64 points each, RWrn/RWwn: 8 points each  
Programmable controller  
Servo amplifier (RYn)  
Device name  
Servo amplifier  
Programmable controller (RXn)  
Device name  
(Note)  
(Note)  
Device No.  
Device No.  
RYn0  
RYn1  
RYn2  
RYn3  
to  
Servo-on  
Start  
RXn0  
RXn1  
RXn2  
RXn3  
RXn4  
RXn5  
RXn6  
RXn7  
RXn8  
RXn9  
RXnA  
RXnB  
RXnC  
RXnD  
RXnE  
to  
Ready  
In position  
Rough match  
Rotation direction specifying  
Home position return completion  
Limiting torque  
Not available  
RYn5  
RYn6  
RYn7  
RYn8  
RYn9  
RYnA  
RYnB  
RYnC  
RYnD  
RYnE  
RYnF  
to  
Not available  
Operation mode selection 1  
Operation mode selection 2  
Electromagnetic brake interlock  
Temporary stop  
Monitor output execution demand  
Instruction code execution demand  
Next station selection 1  
Monitoring  
Instruction code execution completion  
Warning  
Next station selection 2  
Battery warning  
Next station selection 3  
Movement completion  
Dynamic brake interlock  
Next station selection 4  
Next station selection 5  
Not available  
Not available  
RX(n 1)F  
RY(n 1)F  
RX(n 2)0 Position instruction execution completion  
RX(n 2)1 Speed instruction execution completion  
RX(n 2)2 Station output 1  
RX(n 2)3 Station output 2  
RX(n 2)4 Station output 3  
RX(n 2)5 Station output 4  
RX(n 2)6 Station output 5  
RX(n 2)7 Station output 6  
RX(n 2)8 Station output 7  
RX(n 2)9 Station output 8  
RX(n 2)A  
RY(n 2)0 Position instruction execution demand  
RY(n 2)1 Speed instruction execution demand  
RY(n 2)2 Not available  
RY(n 2)3 Next station selection 6  
RY(n 2)4 Next station selection 7  
RY(n 2)5 Next station selection 8  
RY(n 2)6 Internal torque limit selection  
RY(n 2)7 Proportion control  
RY(n 2)8 Gain changing  
RY(n 2)9 Not available  
RY(n 2)A Position/speed specifying system selection  
RY(n 2)B Not available  
to  
Not available  
RX(n 3)9  
RY(n 2)C Speed selection 1  
RX(n 3)A Trouble  
RY(n 2)D Speed selection 2  
RX(n 3)B Remote station communication ready  
RX(n 3)C  
RY(n 2)E Speed selection 3  
RY(n 2)F  
to  
Not available  
to  
Not available  
RX(n 3)F  
RY(n 3)9  
RY(n 3)A Reset  
RY(n 3)B  
to  
Not available  
RY(n 3)F  
Note. "n" depends on the station number setting.  
16 - 4  
16. INDEXER POSITIONING OPERATION  
Programmable controller  
Servo amplifier (RWwn)  
Signal  
Servo amplifier  
Programmable controller (RWrn)  
Signal  
(Note 1)  
(Note 1)  
Address No.  
RWwn  
Address No.  
RWrn  
Monitor 1 (Note 2)  
Monitor 2 (Note 2)  
Instruction code  
Writing data  
Monitor 1 data lower 16 bit  
RWwn  
RWwn  
RWwn  
RWwn  
RWwn  
RWwn  
RWwn  
1
2
3
4
5
6
7
RWwn  
RWwn  
RWwn  
RWwn  
RWwn  
RWwn  
RWwn  
1
2
3
4
5
6
7
Monitor 1 data upper 16 bit  
Respond code  
Reading data  
Next station  
Monitor 2 data lower 16 bit  
Monitor 2 data upper 16 bit  
Not available  
Point table No./Speed command data (Note 3)  
Not available  
Note 1. "n" depends on the station number setting.  
2. Specify the code of the lower 16 bit as the monitor code of 32-bit data.  
3. When the parameter No.PC30 setting is " ", specify the point table No. in RWwn 6. When the parameter No.PC30  
setting is " ", specify the speed data in RWwn 6, and turn ON Speed instruction execution demand (RY(n 2)1). When  
setting the parameter No.PC30 to "  
0
1
1
", always set the acceleration/deceleration time constant in the point table No.1.  
16.2.2 Detailed explanation of I/O signals  
(1) Input signals (Input devices)  
The note signs in the remarks column indicates the following descriptions.  
*: Can be automatic turned ON internally by setting parameters No.PD01.  
Device No.  
Signal name  
Description  
Remarks  
*
1 station  
2 stations  
occupied  
(Device name)  
occupied  
RYn0  
Servo-on  
Turning RYn0 ON powers on the base circuit, making  
operation ready to start. (Servo on status)  
Turning it OFF powers off the base circuit, coasting the servo  
motor. (Servo off status)  
RYn0  
Start  
1. Automatic operation mode 1 and 2  
RYn1  
RYn1  
Turning on RYn1 performs positioning operation once to the  
specified station number.  
2. Manual operation mode  
Turning on RYn1 in the indexer JOG operation makes the  
servo motor rotate in the RYn2 specified direction only while  
RYn1 is on. Turning it off makes the servo motor perform  
positioning to the station where the servo motor can  
decelerate to stop.  
Turning on RYn1 in JOG operation makes the servo motor  
rotate in the RYn2 specified direction only while RYn1 is on.  
Turning it off makes the servo motor decelerate to stop  
regardless of stations.  
3. Home position return mode  
Turning on RYn1 immediately starts a home position return.  
16 - 5  
16. INDEXER POSITIONING OPERATION  
Device No.  
Signal name  
Description  
Remarks  
1 station  
2 stations  
occupied  
(Device name)  
occupied  
RYn2  
Rotation direction specifying  
Turning on/off RYn2 specifies the rotation direction at start.  
1. Automatic operation mode 1  
RYn2  
Rotation direction changes according to the parameter  
No.PA14 setting. RYn2 is used only for the automatic  
operation mode 1 (Rotation direction specifying indexer). It is  
not used for the automatic operation mode 2 (Shortest  
rotating indexer).  
Parameter  
No.PA14  
Servo motor  
(Note) RYn2  
rotation direction  
0
1
0
1
CCW  
CW  
0
1
CW  
CCW  
Note. 0: OFF  
1: ON  
2. Manual operation mode  
It is not affected by the parameter No.PA14.  
Parameter  
No.PA14  
Servo motor  
(Note) RYn2  
rotation direction  
0
1
0
1
0
1
CCW  
CW  
Note. 0: OFF  
1: ON  
3. Home position return mode  
RYn2 is invalid. Specify the rotation direction in the home  
position return mode by using the parameter No.PC03.  
Select the operation mode.  
Operation mode selection 1  
Operation mode selection 2  
RYn6  
RYn7  
RYn6  
RYn7  
(Note)  
Operation mode  
Remote input  
Ryn7 Ryn6  
0
0
0
1
Home position return mode  
Manual operation mode  
Automatic operation mode 1  
(Rotation direction specifying indexer)  
Automatic operation mode 2  
(Shortest rotating indexer)  
1
1
0
1
Note. 0: OFF  
1: ON  
16 - 6  
16. INDEXER POSITIONING OPERATION  
Device No.  
Signal name  
Description  
Remarks  
1 station  
2 stations  
occupied  
(Device name)  
occupied  
RYn8  
Monitor output execution  
demand  
When RYn8 is turned ON, the following data and signals are  
set. At the same time, RXn8 turns ON. While RYn8 is ON, the  
monitor values are kept updated.  
RYn8  
1) When 1 station is occupied  
Remote register RWrn: Data demanded by Monitor 1  
(RWwn)  
Remote register RWrn 1: Data demanded by Monitor 2  
(RWwn 1)  
Remote register RWrn 2: Respond code indicating normal  
or error  
2) When 2 stations are occupied  
Remote register RWrn: Lower 16 bits of data demanded by  
Monitor 1 (RWwn)  
Remote register RWrn 1: Upper 16 bits of data demanded  
by Monitor 1 (RWwn)  
Remote register RWrn 5: Lower 16 bits of data demanded  
by Monitor 2 (RWwn 2)  
Remote register RWrn 6: Upper 16 bits of data demanded  
by Monitor 2 (RWwn 2)  
Remote register RWrn 2: Respond code indicating normal  
or error  
Instruction code execution  
demand  
Turning RYn9 ON executes the processing corresponding to  
the instruction code stored in remote register RWwn 2.  
After completion of instruction code execution, the respond  
code indicating normal or error is set to RWrn 2. At the same  
time, RXn9 turns ON.  
RYn9  
RYn9  
Refer to section 16.2.4 for details.  
Next station selection 1  
Next station selection 2  
Next station selection 3  
Next station selection 4  
Next station selection 5  
Next station selection 6  
Next station selection 7  
Next station selection 8  
Select the station number by using RYnA to RY(n 2)5.  
RYnA  
RYnB  
RYnC  
RYnD  
RYnE  
RYnA  
RYnB  
(Note 1) Remote input  
Station  
RY  
RY  
RY  
No.  
RYnE RYnD RYnC RYnB RYnA  
(n+2)5 (n+2)4 (n+2)3  
RYnC  
0
1
2
3
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
RYnD  
RYnE  
RY(n 2)3  
RY(n 2)4  
RY(n 2)5  
254  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
(Note 2)  
Note 1. 0: OFF  
1: ON  
2. When setting “1” for all RYnA to RYnE and RY(n 2)3  
to RY(n 2)5, the station warning (A97) occurs.  
16 - 7  
16. INDEXER POSITIONING OPERATION  
Device No.  
Signal name  
Description  
Remarks  
1 station  
occupied  
2 stations  
occupied  
(Device name)  
Position instruction execution When RY(n 2) is turned on, the next station number set in the  
RY(n 2)0  
demand  
remote register RWwn 4 is set.  
When it is set to the servo amplifier, the respond code  
indicating normal or error is set to RWrn 2. At the same time,  
RX(n 2)0 turns ON.  
Refer to section 3.6.3 for details.  
Speed instruction demand  
When RY(n 2)1 is turned ON, the point table No. or speed  
command data set to remote register RWwn 6 is set.  
When it is set to the servo amplifier, the respond code  
indicating normal or error is set to RWrn 2. At the same time,  
RX(n 2)1 turns ON.  
RY(n 2)1  
Refer to section 3.6.3 for details.  
Internal torque limit selection Turning RY(n 2)6 OFF makes the torque limit value of  
parameter No.PA11 (forward rotation torque limit) parameter  
No.PA12 (reverse rotation torque limit) valid, and turning it ON  
makes that of parameter No.PC35 (internal torque limit). (Refer  
to section 16.3.2 (3))  
RY(n 2)6  
RY(n 2)7  
Proportion control  
When RY(n 2)7 is turned ON, the speed amplifier is switched  
from the proportional integral type to the proportional type.  
If the servo motor at a stop is rotated even one pulse by an  
external factor, it develops torque in an attempt to compensate  
for a position shift. When the shaft is locked mechanically after  
Movement completion (RXnC) is turned OFF, for example,  
turning Proportion control (RY(n 2)7) ON as soon as  
Movement completion (RXnC) turns OFF allows control of  
unnecessary torque developed in an attempt to compensate for  
a position shift.  
*
When the shaft is to be locked for an extended period of time,  
turn Internal torque limit selection (RY(n 2)6) ON  
simultaneously with Proportion control (RY(n 2)7) to make the  
torque not more than the rated torque using Internal torque  
limit (parameter No.PC35).  
Gain changing  
When RY(n 2)8 is turned ON, the load inertia moment ratio  
and the corresponding gain values change to the values of  
parameter No.PB29 to PB32. To change the gain using  
RY(n 2)8, make the auto tuning invalid.  
RY(n 2)8  
RY(n 2)A  
Position/speed specifying  
system selection  
Select how to give a speed command. (Refer to section 3.6.3.)  
OFF: Remote input-based speed specifying system  
Specifying the point table No. with Point table No.  
selection (RYnA to RYnE) gives a speed command.  
ON : Remote register-based speed specifying system  
Setting the instruction code to the remote register  
(RWwn 4 to RWwn 6) gives a speed command.  
Set the parameter No.PC30 (direct specification  
selection) to "  
2".  
16 - 8  
16. INDEXER POSITIONING OPERATION  
Device No.  
Signal name  
Description  
Remarks  
1 station  
occupied  
2 stations  
occupied  
(Device name)  
Speed selection 1  
Set the servo motor speed, acceleration time constant, and  
deceleration time constant for positioning operation by  
selecting the point table number from 1 to 8 using RY(n 2)C,  
RY(n 2)D, and RY(n 2)E.  
RY(n 2)C  
RY(n 2)D  
RY(n 2)E  
Speed selection 2  
Speed selection 3  
(Note) Remoto input  
Point table No.  
RY(n 2)E RY(n 2)D RY(n 2)C  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
2
3
4
5
6
7
8
Note. 0: OFF  
1: ON  
Reset  
Keeping RY(n 1)A or RY(n 3)A ON for 50ms or longer  
allows an alarm to be deactivated.  
RY(n 1)A RY(n 3)A  
Some alarms cannot be deactivated by Reset RY(n 1)A or  
RY(n 3)A. (Refer to section 16.12.4 (1))  
If RY(n 1)A or RY(n 3)A is turned ON with no alarm  
occurring, the base circuit will not be shut off. When "  
1
"
is set in parameter No.PD20 (function selection D-1), the base  
circuit is shut off.  
This device is not designed to make a stop. Do not turn it ON  
during operation.  
16 - 9  
16. INDEXER POSITIONING OPERATION  
(2) Output signals (Output device)  
POINT  
The output devices can be used for both the remote output and the external  
output signals of CN6 connector.  
The signal whose Device No. field has an oblique line cannot be used in CC-Link.  
Device No.  
Signal name  
Description  
1 station  
2 stations  
occupied  
(Device name)  
occupied  
RXn0  
Ready  
A ready is assigned to the CN6-14 pin as an external output signal. RXn0  
turns ON when the servo amplifier is ready to operate after servo-on.  
RXn1 turns ON when the droop pulse value is within the preset in-position  
range.  
RXn0  
In position  
RXn1  
RXn1  
The in-position range can be changed using parameter No.PA10.  
Increasing the in-position range may result in a continuous conduction  
status during low-speed rotation.  
RXn1 turns ON at servo-on.  
Rough match  
RXn2 turns ON when the command remaining distance becomes less than  
the rough match output range set in the parameter.  
RXn2 turns ON at servo-on.  
RXn2  
RXn3  
RXn2  
RXn3  
Home position return  
completion  
The home position return completion is assigned to the CN6-16 pin as an  
external output signal. RXn3 turns ON when a home position return is  
completed. RXn3 turns ON at completion of a home position return.  
In an absolute position detection system, RXn3 turns ON when operation is  
ready to start, but turns OFF in any of the following cases.  
1) Servo-on (RYn0) is turned OFF.  
2) Forced stop (EMG) is turned OFF.  
3) Reset (RY(n 1)A or RY(n 3)A) is turned ON.  
4) Alarm occurs.  
5) Forward rotation stroke end (RYn4) or Reverse rotation stroke end  
(RYn5) is turned OFF.  
6) Home position return has not been made after product purchase.  
7) Home position return has not been made after occurrence of Absolute  
position erase (A25) or Absolute position counter warning (AE3).  
8) Home position return has not been made after electronic gear change.  
9) Home position return has not been made after the absolute position  
detection system was changed from invalid to valid.  
10) Parameter No.PA14 (Station No. direction selection) has been  
changed.  
11) While a home position return is being made.  
When any of 1) to 11) has not occurred and a home position return is  
already completed at least once, Home position return completion (RXn3)  
turns to the same output status as Ready (RXn0).  
RXn4 turns ON when the torque is reached at the time of torque  
generation.  
Limiting torque  
RXn4  
RXn6  
RXn4  
RXn6  
Electromagnetic brake  
interlock  
RXn6 turns OFF at servo-off or alarm occurrence. At alarm occurrence, it  
turns OFF independently of the base circuit status.  
Refer to Monitor output execution demand (RYn8).  
Refer to Instruction code execution demand (RYn9).  
Monitoring  
RXn8  
RXn9  
RXn8  
RXn9  
Instruction code execution  
completion  
16 - 10  
16. INDEXER POSITIONING OPERATION  
Device No.  
Signal name  
Description  
1 station  
2 stations  
occupied  
RXnA  
(Device name)  
occupied  
RXnA  
RXnA turns ON when a warning occurs.  
Warning  
When no warning has occurred, RXnA turns OFF within about 1s after  
power-on.  
RXnB turns ON when Open battery cable warning (A92) or Battery warning  
(A9F) occurs. When no battery warning has occurred, RXnB turns OFF  
within about 1s after power-on.  
RXnB  
RXnC  
RXnD  
RXnB  
RXnC  
RXnD  
Battery warning  
Movement completion  
Dynamic brake interlock  
RXnC turns ON when In position (RXn1) turns ON and the command  
remaining distance is "0".  
RXnC turns ON at servo-on.  
RXnD turns off simultaneously when the dynamic brake is operated. When  
using the external dynamic brake on the servo amplifier of 11kW or more,  
this device is required. (Refer to section 14.6.) For the servo amplifier of  
7kw or less, it is not necessary to use this device.  
Refer to Speed instruction execution demand (RY(n 2)0).  
Position instruction  
execution completion  
Speed instruction  
RX(n 2)0  
RX(n 2)1  
RX(n 2)2  
Refer to Position instruction execution demand (RY(n 2)1).  
execution completion  
As soon as the movement completion (RXnC) turns on, the station number  
is output in 8-bit code.  
Station output 1  
RX(n 2)3  
(Note 1) Remote output  
Station  
Station output 2  
RX  
RX  
RX  
RX  
RX  
RX  
RX  
RX  
No.  
(n+2)9 (n+2)8 (n+2)7 (n+2)6 (n+2)5 (n+2)4 (n+2)3 (n+2)2  
RX(n 2)4  
RX(n 2)5  
RX(n 2)6  
RX(n 2)7  
RX(n 2)8  
RX(n 2)9  
Station output 3  
Station output 4  
Station output 5  
Station output 6  
Station output 7  
Station output 8  
(Note 2)  
0
1
1
1
0
1
1
1
0
1
1
1
0
1
1
1
0
1
1
1
0
1
1
1
0
1
1
0
0
1
0
1
0
1
2
253  
254  
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
Note 1. 0: OFF  
1: ON  
2. All station outputs turn to “0” (OFF) when the current position is  
out of the in-position range.  
At power-on, emergency stop or alarm occurrence, if the current position is  
within the in-position range of each station, corresponding station number  
is output.  
While operating in the automatic operation mode, if the current position is  
within the in-position range of the target next station, corresponding station  
number is output.  
While operating in the indexer JOG operation of manual operation mode, if  
the current position is within the in-position range of the station where the  
servo motor stops by turning off the start (RYn1), corresponding station  
number is output.  
When home position return is incomplete, station number is not output.  
16 - 11  
16. INDEXER POSITIONING OPERATION  
Device No.  
Signal name  
Description  
1 station  
2 stations  
occupied  
(Device name)  
occupied  
Trouble  
A trouble is assigned to the CN6-15 pin as an external output signal.  
RX(n 1)A or RX(n 3)A turns ON when the protective circuit is activated to  
shut off the base circuit.  
RX(n 1)A  
RX(n 3)A  
When no alarm has occurred, RX(n 1)A or RX(n 3)A turns OFF within  
about 1.5s after power is switched ON.  
Remote station  
This signal turns ON at power-on and turns off at a trouble occurrence or in RX(n 1)B  
the reset (RY(n 1)A or RY(n 3)A) ON status.  
RX(n 3)B  
communication ready  
(3) Remote registers  
The signal whose Remote Register field has an oblique line cannot be used.  
(a) Input (Programmable controller servo amplifier)  
Remote register  
Signal name  
Description  
Setting range  
1 station  
occupied  
2 stations  
occupied  
RWwn  
RWwn  
Monitor 1  
Demands the status indication data of the servo amplifier.  
1) When 1 station is occupied  
Refer to section  
16.2.3.  
Setting the monitor code of the status indication item to be  
monitored to RWwn and turning RYn8 to ON sets data to  
RWrn. RXn8 turns on at the same time.  
2) When 2 stations are occupied  
Setting the monitor code of the status indication item to be  
monitored to RWwn and turning RYn8 to ON sets data to  
RWrn. RXn8 turns on at the same time.  
When demanding 32-bit data, specifying the lower 16-bit  
code No. and turning RYn8 to ON sets the lower 16-bit data  
to RWwn and the upper 16-bit data to RWrn. data is stored  
in the RXn8. RXn8 turns on at the same time.  
Refer to section 16.2.3 for the item of the monitor code of  
the status indication.  
RWwn 1  
RWwn 1 Monitor 2  
Demands the status indication data of the servo amplifier.  
1) When 1 station is occupied  
Refer to section  
16.2.3.  
Setting the monitor code of the status indication item to be  
monitored to RWwn 1 and turning RYn8 to ON sets data to  
RWrn 1. RXn8 turns on at the same time.  
2) When 2 stations are occupied  
Setting the monitor code of the status indication item to be  
monitored to RWwn 1 and turning RYn8 to ON sets data to  
RWrn 5. RXn8 turns on at the same time.  
When demanding 32-bit data, specifying the lower 16-bit  
code No. and turning RYn8 to ON sets the lower 16-bit data  
to RWwn 5 and the upper 16-bit data to RWrn 6. Data is  
stored in the RXn8. RXn8 turns on at the same time.  
Refer to section 16.2.3 for the item of the monitor code of  
the status indication.  
RWwn  
2
RWwn  
2
Instruction code  
Sets the instruction code used to perform parameter or point Refer to section  
table data read and write, alarm reference or the like.  
Setting the instruction code No. to RWwn 2 and turning  
RYn9 to ON executes the instruction. RXn9 turns to ON on  
completion of instruction execution.  
16.2.4 (1).  
Refer to section 16.2.4 (1) for instruction code No. definitions.  
16 - 12  
16. INDEXER POSITIONING OPERATION  
Remote register  
Signal name  
Description  
Setting range  
1 station  
occupied  
2 stations  
occupied  
RWwn  
3
RWwn  
3
Writing data  
Sets the written data used to perform parameter or point  
table data write, alarm history clear or the like.  
Setting the written data to RWwn 3 and turning RYn9 to ON  
writes the data to the servo amplifier. RXn9 turns to ON on  
completion of write.  
Refer to section  
16.2.4 (2).  
Refer to section 16.2.4 (2) for written data definitions.  
(b) Output (Servo amplifier Programmable controller)  
Note that the data set to RWrn and RWrn 1 depends on whether 1 station or 2 stations are occupied.  
If you set inappropriate code No. or data to the remote register input, the error code is set to respond  
code (RWrn 2). Refer to section 3.5.5 for the error code.  
When 1 station is occupied  
Remote register  
RWrn  
Signal name  
Monitor 1 data  
Description  
The data of the monitor code set to RWwn is set.  
The data of the monitor code set to RWwn 1 is set.  
"0000" is set when the codes set to RWwn to RWwn 3 are executed  
normally.  
RWrn  
RWrn  
RWrn  
1
2
3
Monitor 2 data  
Respond code  
Reading data  
Data corresponding to the read code set to RWwn 2 is set.  
When 2 stations are occupied  
Remote register  
RWrn  
Signal name  
Description  
Monitor 1 data lower 16bit  
The lower 16 bits of the data of the monitor code set to RWwn are set.  
The upper 16 bits of the data of the monitor code set to RWwn are set. A  
sign is set if there are no data in the upper 16 bits.  
RWrn  
RWrn  
1
2
Monitor 1 data upper 16bit  
"0000" is set when the codes set to RWwn to RWwn 6 are executed  
normally.  
Respond code  
Reading data  
RWrn  
RWrn  
RWrn  
3
4
5
Data corresponding to the read code set to RWwn 2 is set.  
Monitor 2 data lower 16bit  
Monitor 2 data upper 16bit  
The lower 16 bits of the data of the monitor code set to RWwn 1 are set.  
The upper 16 bits of the data of the monitor code set to RWwn 1 are set. A  
sign is set if there are no data in the upper 16 bits.  
RWrn  
RWrn  
6
7
16 - 13  
16. INDEXER POSITIONING OPERATION  
16.2.3 Monitor codes  
To demand 32-bit data when 2 stations are occupied, specify the lower 16-bit code No. Use any of the  
instruction codes 0101 to 011C to read the decimal point position (multiplying factor) of the status indication.  
Setting any code No. that is not given in this section will set the error code (  
(RWrn 2). At this time, "0000" is set to RWrn, RWrn 1, RWrn 5 and RWrn 6.  
1 ) to respond code  
Answer data  
Code No.  
(Servo amplifier  
Monitored item  
Programmable controller)  
1 station  
occupied  
2 stations  
occupied  
Data length  
Unit  
0000h  
0001h  
0002h  
0003h  
0004h  
0005h  
0006h  
0007h  
0008h  
0009h  
000Ah  
000Bh  
000Ch  
000Dh  
000Eh  
000Fh  
0010h  
0011h  
0012h  
0013h  
0014h  
0015h  
0016h  
0017h  
0018h  
0019h  
001Ah  
001Bh  
001Ch  
001Dh  
001Eh  
0000h  
0001h  
Not used in indexer positioning operation.  
0003h  
0005h  
0007h  
0008h  
Point table No.  
16bit  
[No.]  
000Ah  
Feedback pulse value lower 16bit  
Feedback pulse value upper 16bit  
16bit  
16bit  
[pulse]  
[pulse]  
000Eh  
Droop pulse value lower 16bit  
Droop pulse value upper 16bit  
16bit  
16bit  
[pulse]  
[pulse]  
0010h  
0011h  
0012h  
0013h  
0014h  
0015h  
0016h  
Regenerative load factor  
Effective load factor  
16bit  
16bit  
16bit  
16bit  
16bit  
16bit  
16bit  
16bit  
[%]  
[%]  
Peak load factor  
[%]  
Instantaneously occurring torque  
ABS counter  
[%]  
[rev]  
Motor speed lower 16bit  
Motor speed upper 16bit  
Bus voltage  
0.1[rev/min]  
0.1[rev/min]  
[V]  
0018h  
0019h  
Not used in indexer positioning operation.  
001Bh  
001Ch  
Within one-revolution position lower 16bit  
Within one-revolution position upper 16bit  
Station No.  
16bit  
16bit  
16bit  
[pulse]  
[pulse]  
[No.]  
001Eh  
16 - 14  
16. INDEXER POSITIONING OPERATION  
16.2.4 Instruction codes (RWwn 2 RWwn 3)  
Refer to section 3.6.2 for the instruction code timing charts.  
(1) Read instruction codes  
The word data requested to be read with the instruction code 0000h to 0AFFh is read by Read code  
(RWrn 3).  
Set the command code No. corresponding to the item to RWrn 2. The codes and answer data are all 4-  
digit hexadecimal numbers.  
Setting any command code No. that is not given in this section will set the error code (  
code (RWrn 2). At this time, "0000" is set to Reading data (RWrn 3).  
1 ) to respond  
Reading data (RWrn 3) contents  
Code No.  
0000h  
Item/Function  
(Servo amplifier  
Programmable controller)  
Operation mode  
0000: CC-Link operation mode  
0001: Test operation mode  
Reads the current operation mode.  
Travel multiplying factor  
0002h  
Reads the multiplying factor of the position  
data in the point table set in parameter  
No.PA05.  
Travel multiplying factor  
0300: 1000  
0200: 100  
0100: 10  
0000:  
1
0010h  
Current alarm (warning) reading  
Reads the alarm No. or warning No. occurring  
currently.  
0 0  
0 0  
Occurring alarm No./warning No.  
Alarm No. that occurred in past  
0020h  
0021h  
0022h  
0023h  
0024h  
0025h  
0030h  
0031h  
0032h  
0033h  
0034h  
0035h  
Alarm number in alarm history  
(most recent alarm)  
Alarm number in alarm history  
(first recent alarm)  
Alarm number in alarm history  
(second recent alarm)  
Alarm number in alarm history  
(third recent alarm)  
Alarm number in alarm history  
(fourth recent alarm)  
Alarm number in alarm history  
(fifth recent alarm)  
Alarm occurrence time in alarm history  
(most recent alarm)  
Alarm occurrence time in alarm history  
(first recent alarm)  
Occurrence time of alarm that occurred in past  
Alarm occurrence time in alarm history  
(second recent alarm)  
Alarm occurrence time in alarm history  
(third recent alarm)  
Alarm occurrence time in alarm history  
(fourth recent alarm)  
Alarm occurrence time in alarm history  
(fifth recent alarm)  
16 - 15  
16. INDEXER POSITIONING OPERATION  
Reading data (RWrn 3) contents  
Code No.  
0040h  
Item/Function  
Input device status 0  
(Servo amplifier  
Programmable controller)  
bit 0 to bit F indicate the OFF/ON statuses of the corresponding input  
devices.  
Reads the statuses (OFF/ON) of the input  
devices.  
bitF  
bit0  
bit  
Device  
bit  
8
Device  
0
1
2
Servo-on  
Start  
Monitor output execution  
demand  
Rotation direction  
specifying  
9
Instruction code execution  
demand  
3
4
Proximity dog  
A
B
C
D
E
F
Next station selection 1  
Next station selection 2  
Next station selection 3  
Next station selection 4  
Next station selection 5  
Forward rotation stroke  
end  
5
Reverse rotation stroke  
end  
6
7
Operation mode selection 1  
Operation mode selection 2  
0041h  
Input device status 1  
bit 0 to bit F indicate the OFF/ON statuses of the corresponding input  
devices.  
Reads the statuses (OFF/ON) of the input  
devices.  
bitF  
bit0  
bit  
Device  
Position instruction  
execution demand  
Speed instruction  
execution demand  
bit  
7
Device  
Proportion control  
Gain changing  
0
8
1
9
A
Position/speed specifying  
system selection  
2
3
4
5
6
Next station selection 6  
Next station selection 7  
Next station selection 8  
Internal torque limit  
selection  
B
C
D
E
F
Speed selection 1  
Speed selection 2  
Speed selection 3  
For manufacturer setting  
0042h  
Input device status 2  
bit 0 to bit F indicate the OFF/ON statuses of the corresponding input  
devices.  
Reads the statuses (OFF/ON) of the input  
devices.  
bitF  
bit0  
bit  
Device  
bit  
8
Device  
0
1
2
3
4
5
6
7
9
A
B
C
D
E
F
Reset  
16 - 16  
16. INDEXER POSITIONING OPERATION  
Reading data (RWrn 3) contents  
Code No.  
0050h  
Item/Function  
Output device status 0  
(Servo amplifier  
Programmable controller)  
bit 0 to bit F indicate the OFF/ON statuses of the corresponding  
output devices.  
Reads the statuses (OFF/ON) of the Output  
devices.  
bitF  
bit0  
bit  
Device  
bit  
8
Device  
Monitoring  
0
1
2
3
Ready  
In position  
9
Instruction code execution  
completion  
Rough match  
Home position return  
completion  
A
B
C
D
E
F
Warning  
Battery warning  
Movement completion  
Dynamic brake  
4
5
6
Limiting torque  
Electromagnetic brake  
interlock  
7
0051h  
Output device status 1  
bit 0 to bit F indicate the OFF/ON statuses of the corresponding  
output devices.  
Reads the statuses (OFF/ON) of the Output  
devices.  
bitF  
bit0  
bit  
Device  
Position instruction  
execution completion  
Speed instruction  
execution completion  
Station output 1  
bit  
7
Device  
Station output 6  
Station output 7  
Station output 8  
Station output 9  
0
8
1
9
A
B
C
D
E
F
2
3
4
5
6
Station output 2  
Station output 3  
Station output 4  
Station output 5  
For manufacturer setting  
0052h  
Output device status 2  
bit 0 to bit F indicate the OFF/ON statuses of the corresponding  
output devices.  
Reads the statuses (OFF/ON) of the Output  
devices.  
bitF  
bit0  
bit  
Device  
bit  
9
Device  
0
1
2
3
4
5
6
7
8
A
Trouble  
Remote station  
communication ready  
B
C
D
E
F
16 - 17  
16. INDEXER POSITIONING OPERATION  
Reading data (RWrn 3) contents  
(Servo amplifier Programmable controller)  
Returns the energization time [h].  
Code No.  
0081h  
Item/Function  
Energization time  
Reads the energization time from shipment.  
Energization time  
Returns the number of power-on times.  
0082h  
00A0h  
00B0h  
00B1h  
00B2h  
00C0h  
Power ON frequency  
Reads the number of power-on times from  
shipment.  
Power ON frequency  
Ratio of load inertia moment  
Return unit [times].  
Return unit [pulses].  
Return unit [pulses].  
Return unit [rev].  
Reads the estimated ratio of load inertia  
moment to servo motor shaft inertia moment.  
Ratio of load inertia moment  
Cycle counter value  
Home position within-1-revolution position  
lower 16bit (CYC0)  
Reads the lower 16 bits of the cycle counter  
value of the absolute home position.  
Home position within-1-revolution position  
upper 16bit  
Reads the upper 16 bits of the cycle counter  
value of the absolute home position.  
Cycle counter value  
Home position Multi-revolution data (ABS0)  
Multi-revolution counter value of absolute  
home position reading.  
Multi-revolution counter value  
Error parameter No./Point data No. reading  
Reads the parameter No./point table No. in  
error.  
Parameter No. or point table No.  
Parameter group  
0: Basic setting parameters (No.PA  
1: Gain/filter parameters (No.PB  
)
)
2: Extension setting parameters (No.PC  
3: I/O setting parameters (No.PD  
Type  
)
)
1: Parameter No.  
2: Point table No.  
Monitor multiplying factor  
Reads the multiplying factor of the data to be  
read with the monitor code.  
0100h  
to  
011Dh  
The instruction codes 0100 to 011D  
correspond to the monitor codes 0000 to  
001D.  
Monitor multiplying factor  
0003: 1000  
0002: 100  
0001: 10  
0000 applies to the instruction code that does  
not correspond to the monitor code.  
0000:  
1
16 - 18  
16. INDEXER POSITIONING OPERATION  
Reading data (RWrn 3) contents  
(Servo amplifier Programmable controller)  
Code No.  
0200h  
Item/Function  
Parameter group reading  
0 0 0  
Reads the parameter group to be read with  
code No.8200h to be written.  
Parameter group  
0: Basic setting parameters (No.PA  
1: Gain/filter parameters (No.PB  
)
)
2: Extension setting parameters (No.PC  
3: I/O setting parameters (No.PD  
)
)
Parameter data reading  
0201h  
to  
The value set in the parameter No. corresponding to the requested  
group name is stored.  
Reads the set value of each No. of the  
parameter group read with code No.0200h.  
The decimal value converted from the 2 lower  
digits of the code No. corresponds to the  
parameter No.  
02FFh  
If the instruction code is set outside the range  
set in parameter No.PA19, an error code is  
returned and the data cannot be read.  
Data form of parameter  
0301h  
to  
The value set in the parameter No. corresponding to the requested  
group name is stored.  
Reads the data format of each No. of the  
parameter group read with code No.0200h.  
The decimal value converted from the 2 lower  
digits of the code No. corresponds to the  
parameter No.  
If the instruction code is set outside the range  
set in parameter No.PA19, an error code is  
returned and the data cannot be read.  
03FFh  
0
Decimal point position  
0: Without decimal point  
1: First least significant digit  
(without decimal point)  
Data format  
2: Second least significant digit  
3: Third least significant digit  
4: Fourth least significant digit  
0: Used unchanged  
as hexadecimal  
1: Must be converted  
into decimal  
Parameter write type  
0: Valid after write  
1: Valid when power is switched on again after write  
Servo motor speed of point table No.1 to 255  
The decimal value converted from the 2 lower  
digits of the code No. corresponds to the point  
table No.  
0601h  
to  
The servo motor speed set to the requested point table No. is  
returned.  
06FFh  
Servo motor speed  
Acceleration time constant of point table No.1  
to 255  
0701h  
to  
The acceleration time constant set to the requested point table No. is  
returned.  
The decimal value converted from the 2 lower  
digits of the code No. corresponds to the point  
table No.  
07FFh  
Deceleration time constant of point table No.1  
to 255  
0801h  
to  
The deceleration time constant set to the requested point table No. is  
returned.  
The decimal value converted from the 2 lower  
digits of the code No. corresponds to the point  
table No.  
08FFh  
16 - 19  
16. INDEXER POSITIONING OPERATION  
(2) Write instruction codes  
Set the data, which was requested to be written with the instruction code 8010h to 91FFh.  
Set the instruction code No. corresponding to the item to Instruction code (RWwn 2) and the written data  
to Writing data (RWwn 3). The codes and answer data are all 4-digit hexadecimal numbers.  
When the instruction code which has not been described in this section is set, the error code (  
stored in respond code (RWrn 2).  
1 ) is  
Writing data (RWwn 3) contents  
Code No.  
8010h  
Item  
Alarm reset command  
(Programmable controller  
Servo amplifier)  
1EA5  
1EA5  
Deactivates the alarm that occurred.  
Feedback pulse value display data is clear  
Resets the display data of the status  
indication "feedback pulse value" to 0.  
Parameter group write command  
Writes the group of parameters that are  
written to with codes No.8201h to 82FFh and  
8301h to 83FFh.  
8101h  
8200h  
0 0 0  
Parameter group  
Writes the group of parameters that are read  
with codes No.0201h to 02FFh and 0301h to  
03FFh.  
0: Basic setting parameters (No.PA  
1: Gain/filter parameters (No.PB  
)
)
2: Extension setting parameters (No.PC  
3: I/O setting parameters (No.PD  
)
)
Data RAM instruction of parameter  
Writes the set value of each No. of the  
parameter group written by code No.8200h to  
RAM. These values are cleared when power  
is switched off.  
8201h  
to  
Convert the decimal values into hexadecimal before setting.  
Convert the decimal values into hexadecimal before setting.  
Convert the values into hexadecimal before setting.  
82FFh  
The decimal value converted from the 2 lower  
digits of the code No. corresponds to the  
parameter No.  
An error code is returned if an instruction  
code outside the range set in parameter No.  
PA19 or a value outside the setting range of  
the corresponding parameter is written.  
Data EEP-ROM instruction of parameter  
Writes the set value of each No. of the  
parameter group written with code No.8200h  
to EEP-ROM. Written to EEP-ROM, these  
values are held if power is switched off.  
The decimal value converted from the 2 lower  
digits of the code No. corresponds to the  
parameter No.  
An error code is returned if an instruction  
code outside the range set in parameter  
No.PA19 or a value outside the setting range  
of the corresponding parameter is written.  
Motor speed of point table  
8301h  
to  
83FFh  
8601h  
to  
Writes the motor speeds of point table No.1 to  
255 to RAM. These values are cleared when  
power is switched off.  
86FFh  
The decimal value converted from the 2 lower  
digits of the code No. corresponds to the point  
table No.  
16 - 20  
16. INDEXER POSITIONING OPERATION  
Writing data (RWwn 3) contents  
Code No.  
Item  
(Programmable controller  
Servo amplifier)  
Acceleration time constant data RAM  
command of point table  
8701h  
to  
Convert the values into hexadecimal before setting.  
Writes the acceleration time constants of point  
table No.1 to 255 to RAM. These values are  
cleared when power is switched off.  
The decimal value converted from the 2 lower  
digits of the code No. corresponds to the point  
table No.  
87FFh  
Deceleration time constant data RAM  
command of point table  
8801h  
to  
Convert the values into hexadecimal before setting.  
Writes the deceleration time constants of  
point table No.1 to 255 to RAM. These values  
are cleared when power is switched off.  
The decimal value converted from the 2 lower  
digits of the code No. corresponds to the point  
table No.  
88FFh  
Servo motor speed data EEP-ROM command  
of point table  
8D01h  
to  
Convert the values into hexadecimal before setting.  
Writes the servo motor speeds of point table  
No.1 to 255 to EEP-ROM. Written to EEP-  
ROM, these values are held if power is  
switched off.  
8DFFh  
The decimal value converted from the 2 lower  
digits of the code No. corresponds to the point  
table No.  
Acceleration time constant data EEP-ROM  
command of point table  
8E01h  
to  
Convert the values into hexadecimal before setting.  
Writes the acceleration time constants of point  
table No.1 to 255 to EEP-ROM. Written to  
EEP-ROM, these values are held if power is  
switched off.  
8EFFh  
The decimal value converted from the 2 lower  
digits of the code No. corresponds to the point  
table No.  
Deceleration time constant data EEP-ROM  
command of point table  
8F01h  
to  
Convert the values into hexadecimal before setting.  
Writes the deceleration time constants of  
point table No.1 to 255 to EEP-ROM. Written  
to EEP-ROM, these values are held if power  
is switched off.  
8FFFh  
The decimal value converted from the 2 lower  
digits of the code No. corresponds to the point  
table No.  
16 - 21  
16. INDEXER POSITIONING OPERATION  
16.2.5 Respond codes (RWrn 2)  
If any of the monitor codes, instruction codes, Next station, Point table Nos./Speed command data set to the  
remote register is outside the setting range, the corresponding error code is set to respond code (RWwn 2).  
"0000" is set if they are normal.  
Error related to Monitor code 1/Monitor code 2  
Error related to Instruction code/Writing data  
Error related to Next station  
Error related to point table No./Speed command data  
Code No.  
0
Error  
Normal answer  
Details  
Instruction was completed normally.  
Code error  
The monitor code not in the specifications was set.  
Read/write of the point table of No.255 or later was set.  
The parameter No. disabled for reference was set.  
1
2
3
Parameter point table  
selection error  
Write range error  
An attempt was made to write the parameter or point table data outside the  
setting range.  
16 - 22  
16. INDEXER POSITIONING OPERATION  
16.3 Signal  
16.3.1 Signal (device) explanation  
POINT  
In the indexer positioning operation, devices assigned to the CN6 connector  
cannot be changed.  
(1) I/O device  
(a) Input device  
Connector  
Device  
Forced stop  
Symbol  
Functions/Applications  
pin No.  
CN6-1  
EMG  
Turn EMG off (open between commons) to bring the motor to an emergency  
stop state, in which the base circuit is shut off and the dynamic brake is  
operated. Turn EMG on (short between commons) in the emergency stop state  
to reset that state.  
Proximity dog  
DOG  
CN6-2  
When DOG is turned OFF, the proximity dog is detected. The polarity of dog  
detection can be changed using parameter No.PD16.  
Proximity dog (DOG)  
Parameter No.PD16  
detection polarity  
0
1
(initial value)  
OFF  
ON  
Forward rotation stroke end  
Reverse rotation stroke end  
LSP  
LSN  
CN6-3  
CN6-4  
When starting operation, turn LSP/LSN to ON. Turning it to OFF causes a  
sudden stop, resulting in servo lock. A stopping method can be changed in  
parameter No.PD20.  
When not using the forward/reverse rotation stroke end, set "Automatic ON" in  
parameter No.PD01.  
(Note) Input signal  
Operation  
CCW  
direction  
CW  
LSP  
LSN  
direction  
1
0
1
0
1
1
0
0
Note. 0: OFF  
1: ON  
16 - 23  
16. INDEXER POSITIONING OPERATION  
(b) Output device  
POINT  
Output devices assigned to the CN6 connector pins can be used with the  
remote output of the CC-Link communication function.  
Connector  
Device  
Symbol  
Functions/Applications  
pin No.  
Ready  
RD  
CN6-14 RD turns ON when the servo amplifier is ready to operate after servo-on.  
CN6-15 ALM turns off when power is switched off or the protective circuit is activated to  
shut off the base circuit. Without alarm occurring, ALM turns on within 1.5s after  
power-on.  
Trouble  
ALM  
The significance of this device is opposite of that of remote output (RX (n 1)A  
or RX (n 3)A).  
Home position return  
completion  
ZP  
CN6-16 ZP turns ON when a home position return is completed. ZP turns ON at  
completion of a home position return.  
In an absolute position detection system, RXn3 turns ON when operation is  
ready to start, but turns OFF in any of the following cases.  
1) Servo-on (RYn0) is turned OFF.  
2) Forced stop (EMG) is turned OFF.  
3) Reset (RY(n 1)A or RY(n 3)A) is turned ON.  
4) Alarm occurs.  
5) Forward rotation stroke end (LSP) or Reverse rotation stroke end (LSN) is  
turned OFF.  
6) Home position return has not been made after product purchase.  
7) Home position return has not been made after occurrence of Absolute  
position erase (A25) or Absolute position counter warning (AE3).  
8) Home position return has not been made after electronic gear change.  
9) Home position return has not been made after the absolute position detection  
system was changed from invalid to valid.  
10) Parameter No.PA14 (Station No. direction selection) has been changed.  
11) While a home position return is being made.  
When any of 1) to 11) has not occurred and a home position return is already  
completed at least once, Home position return completion (ZP) turns to the  
same output status as Ready (RD).  
(2) Input signals  
Connector  
Device  
Symbol  
Functions/Applications  
pin No.  
Manual pulse generator  
PP  
NP  
CN6-6  
Not used in indexer positioning operation.  
CN6-19  
16 - 24  
16. INDEXER POSITIONING OPERATION  
(3) Output signals  
Refer to section 4.8.2 for the output interfaces (symbols in the I/O Division field in the table) of the  
corresponding connector pins.  
Connecto  
r pin No.  
I/O  
Device  
Symbol  
Functions/Applications  
division  
Encoder A-phase pulse  
(differential line driver)  
LA  
CN6-11 Outputs pulses per servo motor revolution set in parameter No.PA15  
DO-2  
LAR  
CN6-24  
in the differential line driver system. In CCW rotation of the servo  
motor, the encoder B-phase pulse lags the encoder A-phase pulse by  
Encoder B-phase pulse  
(differential line driver)  
LB  
CN6-12 a phase angle of /2.  
LBR  
CN6-25  
The relationships between rotation direction and phase difference of  
the A- and B-phase pulses can be changed using parameter  
No.PC19  
Encoder Z-phase pulse  
(differential line driver)  
LZ  
CN6-13 Outputs the zero-point signal of the encoder in the differential line  
DO-2  
LZR  
CN6-26  
driver system. One pulse is output per servo motor revolution. This  
signal turns on when the zero-point position is reached. (Negative  
logic)  
The minimum pulse width is about 400 s. For home position return  
using this pulse, set the creep speed to 100r/min. or less.  
(4) Power supply  
Connector  
pin No.  
I/O  
Signal  
Symbol  
DICOM  
Functions/Applications  
division  
Digital I/F power supply  
input  
CN6-5  
Used to input 24VDC (24VDC 10% 150mA) for I/O interface. The  
power supply capacity changes depending on the number of I/O  
interface points to be used.  
Connect the plus of 24VDC terminal external power supply for the  
sink interface.  
Digital I/F common  
DOCOM  
OPC  
CN6-17  
CN6-18  
Common terminal for input signals such as DOG and EMG. Pins are  
connected internally. Separated from LG.  
Connect the plus of 24VDC terminal external power supply for the  
source interface.  
Not used in indexer positioning operation.  
MR-HDP01 open collector  
power input  
Control common  
LG  
SD  
CN6-23  
Plate  
Common terminal for the differential line driver of the encoder pulses  
(LA LAR LB LBR LZ LZR).  
Shield  
Connect the external conductor of the shield cable.  
16 - 25  
16. INDEXER POSITIONING OPERATION  
16.3.2 Detailed description of signals (devices)  
(1) Forward rotation start reverse rotation start temporary stop/restart  
(a) A start (RYn1) should make the sequence which can be used after the main circuit has been  
established. These signals are invalid if it is switched on before the main circuit is established.  
Normally, it is interlocked with the ready signal (RD).  
(b) A start in the servo amplifier is made when a start (RYn1) changes from OFF to ON. The delay time of  
the servo amplifier's internal processing is max. 3ms. The delay time of other devices is max. 10ms.  
(c) When a programmable controller is used, the ON time of a start (RYn1), should be 6ms or longer to  
prevent a malfunction.  
(d) During operation, the start (RYn1) is not accepted. The next operation should always be started after  
the rough match (RXn2) is output with the rough match output range set to “0” or after the movement  
completion (RXnC) is output.  
(2) Movement completion rough match in position  
POINT  
If an alarm cause, etc. are removed and servo-on occurs after a stop is made  
by servo-off, alarm occurrence or Forced stop (EMG) ON during automatic  
operation, Movement completion (MEND), Rough-match, (CPO) and In  
position (INP) are turned on. To resume operation, confirm the current  
position and the selected point table No. for preventing unexpected operation.  
(a) Movement completion  
The following timing charts show the output timing relationships between the position command  
generated in the servo amplifier and the movement completion (RYnC). This timing can be changed  
using parameter No.PA10 (in-position range). RYnC turns ON in the servo-on status.  
ON  
Start (RYn1)  
OFF  
Position command  
3ms or less  
Servo motor speed  
Position command and  
Forward  
servo motor speed  
rotation  
In-position range  
0r/min  
ON  
Movement completion (RXnC)  
OFF  
When parameter No.PA10 is small  
ON  
Start (RYn1)  
OFF  
Position command  
3ms or less  
Servo motor speed  
Position command and  
Forward  
rotation  
servo motor speed  
In-position range  
0r/min  
ON  
Movement completion (RXnC)  
OFF  
When parameter No.PA10 is large  
16 - 26  
16. INDEXER POSITIONING OPERATION  
(b) Rough match  
The following timing charts show the relationships between the signal and the position command  
generated in the servo amplifier. This timing can be changed using parameter No.PC11 (rough match  
output range). RXn2 turns ON in the servo-on status.  
ON  
Start (RYn1)  
OFF  
3ms or less  
Forward  
rotation  
Position command  
0r/min  
ON  
Rough match (RXn2)  
OFF  
When "0" is set in parameter No.PC11  
ON  
Start (RYn1)  
OFF  
3ms or less  
Rough match output range  
Forward  
rotation  
Position command  
0r/min  
ON  
Rough match (RXn2)  
OFF  
When more than "0" is set in parameter No.PC11  
(c) In position  
The following timing chart shows the relationship between the signal and the feedback pulse of the  
servo motor. This timing can be changed using parameter No.PA10 (in-position range). turns on RYn1  
in the servo-on status.  
ON  
Start (RYn1)  
OFF  
In-position range  
3ms or less  
Servo motor speed  
Forward  
rotation  
0r/min  
ON  
In position (RXn1)  
OFF  
When positioning operation is performed once  
16 - 27  
16. INDEXER POSITIONING OPERATION  
(3) Torque limit  
If the torque limit is canceled during servo lock, the servo motor may suddenly  
CAUTION  
rotate according to position deviation in respect to the command position.  
POINT  
In the indexer positioning operation, the torque limit 2 becomes automatically  
effective depending on the operation status.  
(a) Torque limit and torque  
By setting parameter No.PA11 (forward rotation torque limit) or parameter No.PA12 (reverse rotation  
torque limit), torque is always limited to the maximum value during operation. A relationship between the  
limit value and servo motor torque is shown below.  
CW direction  
Max. torque  
CCW direction  
[%]  
100  
100  
0
Torque limit value in Torque limit value in  
parameter No.PA12 parameter No.PA11  
(b) Torque limit value selection  
As shown below, the forward rotation torque limit (parameter No.PA11), reverse rotation torque limit  
(parameter No.PA12) or internal torque limit 2 (parameter No.PC35) can be chosen using the external  
torque limit selection (RY(n 2)6).  
Torque limit to be enabled  
(Note) RY(n 2) 6  
0
Limit value status  
CCW driving/CW  
regeneration  
CW driving/CCW  
regeneration  
Parameter No.PA11  
Parameter No.PA12  
Parameter No.PA11  
Parameter No.PC35  
Parameter No.PC35  
Parameter No.PA11  
Parameter No.PA12  
Parameter No.PA12  
Parameter No.PA11  
Parameter No.PA12  
1
Parameter No.PC35  
Parameter No.PC35  
Note. 0: OFF  
1: ON  
(c) Limiting torque (RXn4)  
RXn4 turns on when the servo motor torque reaches the torque limited.  
16 - 28  
16. INDEXER POSITIONING OPERATION  
16.4 Switching power on for the first time  
Do not operate the switches with wet hands. You may get an electric shock.  
WARNING  
CAUTION  
Before starting operation, check the parameters. Some machines may perform  
unexpected operation.  
Take safety measures, e.g. provide covers, to prevent accidental contact of hands  
and parts (cables, etc.) with the servo amplifier heat sink, regenerative resistor,  
servo motor, etc. since they may be hot while power is on or for some time after  
power-off. Their temperatures may be high and you may get burnt or a parts may  
damaged.  
During operation, never touch the rotating parts of the servo motor. Doing so can  
cause injury.  
When switching power on for the first time, follow this section to make a startup.  
16.4.1 Startup procedure  
Wiring check  
Check whether the servo amplifier and servo motor are wired  
correctly using visual inspection, DO forced output function  
(Section 7.7.4, 8.5.7 (4)), etc. (Refer to section 16.4.3.)  
Surrounding environment check  
Parameter setting  
Check the surrounding environment of the servo amplifier and  
servo motor. (Refer to section 16.4.3.)  
Set the parameters as necessary, such as the used control mode  
and regenerative option selection with the parameter unit or MR  
Configurator. (Refer to chapter 6.)  
Test operation of servo motor alone  
in test operation mode  
For the test operation, with the servo motor disconnected from the  
machine and operated at the speed as low as possible, and check  
whether the servo motor rotates correctly. (Refer to sections 7.7  
and 8.5.7.)  
Test operation of servo motor alone  
by commands  
For the test operation with the servo motor disconnected from the  
machine and operated at the speed as low as possible, and check  
whether the servo motor rotates correctly.  
Test operation with servo motor and  
machine connected  
Connect the servo motor with the machine, give operation  
commands from the host command device, and check machine  
motions.  
Gain adjustment  
Actual operation  
Make gain adjustment to optimize the machine motions. (Refer to  
chapter 9.)  
Stop  
Stop giving commands and stop operation.  
16 - 29  
16. INDEXER POSITIONING OPERATION  
16.4.2 Wiring check  
(1) Power supply system wiring  
Before switching on the main circuit and control circuit power supplies, check the following items.  
(a) Power supply system wiring  
The power supplied to the power input terminals (L1, L2, L3, L11, L21) of the servo amplifier should satisfy  
the defined specifications. (Refer to section 1.2.)  
(b) Connection of servo amplifier and servo motor  
1) The servo motor power supply terminals (U, V, W) of the servo amplifier match in phase with the  
power input terminals (U, V, W) of the servo motor.  
Servo amplifier  
U
Servo motor  
U
V
V
M
W
W
2) The power supplied to the servo amplifier should not be connected to the servo motor power supply  
terminals (U, V, W). To do so will fail the connected servo amplifier and servo motor.  
Servo amplifier  
Servo motor  
M
U
V
W
U
V
W
3) The earth terminal of the servo motor is connected to the PE terminal of the servo amplifier.  
Servo amplifier  
Servo motor  
M
4) P1-P2 (For 11kW or more, P1-P) should be connected.  
Servo amplifier  
P1  
P2  
(c) When option and auxiliary equipment are used  
1) When regenerative option is used under 3.5kW for 200V class and 2kW for 400V class  
The lead between P terminal and D terminal of CNP2 connector should not be connected.  
The generative brake option should be connected to P terminal and C terminal.  
A twisted cable should be used. (Refer to section 14.2.)  
16 - 30  
16. INDEXER POSITIONING OPERATION  
2) When regenerative option is used over 5kW for 200V class and 3.5kW for 400V class  
The lead of built-in regenerative resistor connected to P terminal and C terminal of TE1 terminal  
block should not be connected.  
The generative brake option should be connected to P terminal and C terminal.  
A twisted cable should be used when wiring is over 5m and under 10m. (Refer to section 14.2.)  
3) When brake unit and power regenerative converter are used over 5kW  
The lead of built-in regenerative resistor connected to P terminal and C terminal of TE1 terminal  
block should not be connected.  
Brake unit, power regenerative converter or power regeneration common converter should be  
connected to P terminal and N terminal. (Refer to section 14.3 to 14.5.)  
4) The power factor improving DC reactor should be connected P1 and P2 (For 11kW or more, P1 and  
P). (Refer to section 14.11.)  
Power factor  
improving DC  
Servo amplifier  
reactor  
P1  
(Note)  
P2  
Note. Always disconnect P1 and P2 (For 11kW or more, P1 and P).  
(2) I/O signal wiring  
(a) The I/O signals should be connected correctly.  
Use DO forced output to forcibly turn on/off the pins of the CN6 connector. This function can be used to  
perform a wiring check. (Refer to section 7.7.4.) In this case, switch on the control circuit power supply  
only.  
(b) 24VDC or higher voltage is not applied to the pins of connectors CN6.  
(c) SD and DOCOM of connector CN6 is not shorted.  
Servo amplifier  
CN6  
DOCOM  
SD  
16.4.3 Surrounding environment  
(1) Cable routing  
(a) The wiring cables are free from excessive force.  
(b) The encoder cable should not be used in excess of its flex life. (Refer to section 13.4.)  
(c) The connector part of the servo motor should not be strained.  
(2) Environment  
Signal cables and power cables are not shorted by wire offcuts, metallic dust or the like.  
16 - 31  
16. INDEXER POSITIONING OPERATION  
16.5 Startup  
16.5.1 Power on and off procedures  
(1) Power-on  
Switch power on in the following procedure. Always follow this procedure at power-on.  
1) Switch off the servo-on (RYn0).  
2) Make sure that the start (RYn1) is off.  
3) Switch on the main circuit power supply and control circuit power supply.  
When main circuit power/control circuit power is switched on, the servo amplifier display shows "b01"  
(if the servo amplifier has the station number of 1).  
In the absolute position detection system, first power-on results in the absolute position lost (A25)  
alarm and the servo system cannot be switched on.  
The alarm can be deactivated then switching power off once and on again.  
Also in the absolute position detection system, if power is switched on at the servo motor speed of  
3000r/min or higher, position mismatch may occur due to external force or the like. Power must  
therefore be switched on when the servo motor is at a stop.  
(2) Power-off  
1) Make sure that the start (RYn1) is off.  
2) Switch off the Servo-on (RYn0).  
3) Switch off the main circuit power supply and control circuit power supply.  
16.5.2 Stop  
In any of the following statuses, the servo amplifier interrupts and stops the operation of the servo motor.  
Refer to section 4.11 for the servo motor equipped with an electromagnetic brake.  
(a) Servo-on (RYn0) OFF  
The base circuit is shut off and the servo motor coasts.  
(b) Alarm occurrence  
When an alarm occurs, the base circuit is shut off and the dynamic brake is operated to bring the servo  
motor to a sudden stop.  
(c) Forced stop (EMG) OFF  
The base circuit is shut off and the dynamic brake is operated to bring the servo motor to a sudden stop.  
The servo forced stop warning (AE6) occurs.  
(d) Forward rotation stroke end (LSP), reverse rotation stroke end (LSN) OFF  
The droop pulse value is erased and the servo motor is stopped and servo-locked. It can be run in the  
opposite direction.  
16 - 32  
16. INDEXER POSITIONING OPERATION  
16.5.3 Test operation  
Before starting actual operation, perform test operation to make sure that the machine operates normally.  
Refer to section 16.5.1 for the power on and off methods of the servo amplifier.  
Test operation of servo motor  
alone in JOG operation of test  
operation mode  
In this step, confirm that the servo amplifier and servo motor  
operate normally.  
With the servo motor disconnected from the machine, use the test  
operation mode and check whether the servo motor correctly  
rotates at the slowest speed. Refer to section 7.7 and 8.5.7 for the  
test operation mode.  
Test operation of servo motor  
alone by commands  
In this step, confirm that the servo motor correctly rotates at the  
slowest speed under the commands from the command device.  
Make sure that the servo motor rotates in the following procedure.  
1) Switch on the Forced stop (EMG) and Servo-on (RYn0). When  
the servo amplifier is put in a servo-on status, the Ready (RD)  
switches on.  
2) Switch on the Forward rotation stroke end (LSP) or Reverse  
rotation stroke end (LSN).  
3) When the point table is designated to switch on the start (RYn1)  
the servo motor starts rotating. Give a low speed command at  
first and check the rotation direction, etc. of the servo motor. If  
the servo motor does not operate in the intended direction,  
check the input signal.  
Test operation with servo motor  
and machine connected  
In this step, connect the servo motor with the machine and confirm  
that the machine operates normally under the commands from the  
command device.  
Make sure that the servo motor rotates in the following procedure.  
1) Switch on the Forced stop (EMG) and Servo-on (RYn0). When  
the servo amplifier is put in a servo-on status, the Ready (RD)  
switches on.  
2) Switch on the Forward rotation stroke end (LSP) or Reverse  
rotation stroke end (LSN).  
3) When the point table is specified from the command device and  
the start (RYn1) is turned ON, the servo motor starts rotating.  
Give a low speed command at first and check the operation  
direction, etc. of the machine. If the machine does not operate  
in the intended direction, check the input signal. In the status  
display, check for any problems of the servo motor speed, load  
ratio, etc.  
4) Then, check automatic operation with the program of the  
command device.  
16 - 33  
16. INDEXER POSITIONING OPERATION  
16.5.4 Parameter setting  
POINT  
The encoder cable MR-EKCBL M-L/H for the HF-MP series HF-KP series  
servo motor requires the parameter No.PC22 setting to be changed  
depending on its length. Check whether the parameter is set correctly. If it is  
not set correctly, the encoder error 1 (A16) will occur at power-on.  
Encoder cable  
MR-EKCBL20M-L/H  
MR-EKCBL30M-H  
MR-EKCBL40M-H  
MR-EKCBL50M-H  
Parameter No.PC22 setting  
(initial value)  
0
1
The servo amplifier can be used by merely changing the basic setting parameters (No.PA  
) mainly.  
) and I/O  
As necessary, set the gain filter parameters (No.PB ), extension setting parameters (No.PC  
setting parameters (No.PD  
).  
Parameter group  
Main description  
Basic setting parameter  
Set the basic setting parameters first. Generally, operation can be performed by merely setting this  
parameter group.  
(No.PA  
)
In this parameter group, set the following items.  
Control mode selection (select the position control mode)  
Regenerative option selection  
Absolute position detection system selection  
Setting of command input pulses per revolution  
Electronic gear setting  
Auto tuning selection and adjustment  
In-position range setting  
Torque limit setting  
Command pulse input form selection  
Servo motor rotation direction selection  
Encoder output pulse setting  
Gain filter parameter  
(No.PB  
If satisfactory operation cannot be achieved by the gain adjustment made by auto tuning, execute  
in-depth gain adjustment using this parameter group.  
This parameter group must also be set when the gain changing function is used.  
This parameter group is unique to MR-J3- T servo amplifier.  
)
Extension setting parameter  
(No.PC  
I/O setting parameter  
(No.PD  
)
Set the stopping method of the stroke end (LSP and LSN), torque limit delay time and others.  
)
16 - 34  
16. INDEXER POSITIONING OPERATION  
16.5.5 Point table setting  
Set necessary items to the point table before starting operation. The following table indicates the items that  
must be set.  
Name  
Description  
Not used in indexer positioning operation.  
Do not change this value by any means.  
Position data  
Servo motor speed  
Set the command speed of the servo motor for execution of positioning.  
Set the acceleration time constant.  
Acceleration time constant  
Deceleration time constant  
Set the deceleration time constant.  
Not used in indexer positioning operation.  
Do not change this value by any means.  
Not used in indexer positioning operation.  
Do not change this value by any means.  
Dwell  
Auxiliary function  
16.5.6 Actual operation  
Start actual operation after confirmation of normal operation by test operation and completion of the  
corresponding parameter settings. Perform a home position return as necessary.  
16 - 35  
16. INDEXER POSITIONING OPERATION  
16.6 Servo amplifier display  
On the servo amplifier display (three-digit, seven-segment display), check the status of communication with the  
CC-Link controller at power-on, check the station number, and diagnose a fault at occurrence of an alarm.  
(1) Display sequence  
Servo amplifier power ON  
(Note 3)  
Waiting for CC-Link communication  
(Note 1)  
When alarm warning  
No. is displayed  
CC-Link master module power ON  
CC-Link communication beginning  
At occurrence of overload  
Flicker  
display  
(Note 3)  
Not ready  
At occurrence of overload  
warning (Note 2)  
Flicker  
display  
Servo ON  
During forced stop  
(Note 3)  
Ready  
Flicker  
display  
When alarm occurs,  
alarm code appears.  
Alarm reset or  
warning  
2s later  
Station No. display  
2s later  
Servo amplifier power OFF  
Note 1. Only alarm and warning No. are displayed, but no station No. is displayed.  
2. If warning other than AE6 occurs during the servo on, flickering the second place of decimal point indicates that it is  
during the servo on.  
3. The right-hand segments of b01, c02 and d16 indicate the axis number.  
(Below example indicates Station No.1)  
Station Station  
No.1 No.2  
Station  
No.64  
16 - 36  
16. INDEXER POSITIONING OPERATION  
(2) Indication list  
Indication  
Status  
Description  
Power of the CC-Link master module was switched on at the condition that the power of  
CC-Link master module is OFF.  
Waiting for CC-Link  
communication  
b # #  
The CC-Link master module is faulty.  
The servo was switched on after completion of initialization and the servo amplifier is  
ready to operate. (This is indicated for 2 seconds.)  
d # #  
C # #  
$ $ $  
(Note 1)  
(Note 1)  
(Note 2)  
(Note 3)  
Ready  
Not ready  
The servo amplifier is being initialized or an alarm has occurred.  
Two seconds have passed after the servo amplifier is ready to operate by turning ON the  
servo-on (RYn1).  
Ready for operation  
A
Alarm Warning  
CPU error  
The alarm No./warning No. that occurred is displayed. (Refer to section 16.12.4.)  
CPU watchdog error has occurred.  
8 8 8  
b 0 0.  
d # #.  
C # #.  
(Note 4)  
(Note 1)  
JOG operation positioning operation programmed operation DO forced output  
(Note 4)  
Test operation mode  
Motor-less operation  
Note 1. ## denotes any of numerals 00 to 16 and what it means is listed below.  
##  
00  
01  
02  
03  
:
Description  
Set to the test operation mode.  
Station number 1  
Station number 2  
Station number 3  
:
:
:
62  
63  
64  
Station number 62  
Station number 63  
Station number 64  
Note 2. $$$ indicates numbers from 0 to 254, and the number indicates the executing station number.  
3. indicates the warning/alarm No.  
4. Requires MR Configurator or MR-PRU03 parameter module.  
16 - 37  
16. INDEXER POSITIONING OPERATION  
16.7 Automatic operation mode  
POINT  
In the absolute position detection system, the following restriction condition  
applies for the number of gears on machine-side (parameter No.PA06 CMX)  
and servo motor speed (N).  
When CMX  
When CMX  
2000, N  
2000, N  
3076.7 r/min  
3276.7–CMX r/min  
When the servo motor is operated at servo motor speed higher than the limit  
value, the absolute position counter warning (AE3) occurs.  
16.7.1 What is automatic operation mode?  
(1) Concept of indexer  
Select the station, which is dividing the circumference (360 degrees) of the machine side into up to 255,  
using 8-bit device of the next station selection 1 to 8 (RYnA to RYnE, and RY(n 2)3 to RY(n 2)5), and  
execute positioning.  
Station No.253  
Station No.254  
Station No.2  
Station No.1  
Station No.0  
Set the number of stations in the parameter No.PC46.  
(2) Rotation direction  
There are two types of operation methods: Rotation direction specifying indexer, which is to always rotate in  
the fixed direction and execute positioning to a station, and Shortest rotating indexer, which is to  
automatically change the rotation direction for the shortest distance and execute positioning to a station.  
Rotation direction specifying indexer  
Shortest rotating indexer  
16 - 38  
16. INDEXER POSITIONING OPERATION  
16.7.2 Automatic operation mode 1 (Rotation direction specifying indexer)  
In this operation mode, the servo motor rotates in the fixed direction and executes positioning to a station.  
(1) When not using the remote register  
Select the station number using 8-bit device of the next station selection 1 to 8 (RYnA to RYnE, and  
RY(n 2)3 to RY(n 2)5), and execute positioning. For the servo motor speed and acceleration/  
deceleration time constant during operation, the value set in the point table is used.  
(a) Device/Parameter  
Set the input devices and parameters as indicated below.  
Item  
Device/Parameter  
Parameter No.PA01  
Setting description  
Indexer positioning operation  
selection  
1
: Select the indexer positioning  
operation.  
Automatic operation mode 1  
(Rotation direction specifying indexer)  
selection  
Operation mode selection 1 (RYn6)  
Operation mode selection 2 (RYn7)  
Turn off RYn6.  
Turn on RYn7.  
(b) Other parameter settings  
1) Setting the allocation direction of station numbers  
Select the allocation direction of station numbers using the parameter No.PA14 (Station No. direction  
selection).  
Parameter No.PA14  
setting  
Station No. allocation direction  
Start (RYn1) ON  
0 (Initial value)  
1
Station No. is allocated in CW direction in order of 1, 2, 3…  
Station No. is allocated in CCW direction in order of 1, 2, 3…  
CCW  
CW  
CCW  
direction  
CW  
direction  
4
4
3
2
1
3
2
1
Station No.  
Station No.  
Parameter No.PA14: 0 (Initial value)  
Parameter No.PA14: 1  
16 - 39  
16. INDEXER POSITIONING OPERATION  
2) Setting the number of stations  
Set the number of stations in the parameter No.PC46.  
Parameter No.PC46 setting value  
0000 to 0002  
2
0003  
3
0004  
4
00FF  
255  
Number of stations  
Station No.  
No.1  
No.2  
No.0  
No.2  
No.1  
No.3  
No.1  
No.254  
No.1  
No.0  
No.0  
No.0  
(c) Setting the speed data  
Set the servo motor speed, acceleration time constant, and deceleration time constant in the point table  
number 1 to 8.  
Name  
Setting range  
Unit  
Description  
Set the command speed of the servo motor for execution of positioning.  
The setting should be equal to or less than the instantaneous permissible  
speed of the servo motor.  
Servo motor  
speed  
0 to permissible  
speed  
r/min  
Acceleration  
time constant  
Deceleration  
time constant  
Set the time until the rated speed of the servo motor is reached.  
0 to 20000  
0 to 20000  
ms  
ms  
Set the time until the servo motor running at rated speed comes to a stop.  
(d) Operation  
Select the station number for positioning, using 8-bit device of the next station selection 1 to 8 (RYnA to  
RYnE, and RY(n 2)3 to RY(n 2)5).  
(Note) Device  
Station No.  
2 stations occupied  
1 stations occupied  
RY(n 2)5 RY(n 2)4 RY(n 2)3  
RYnE  
RYnD  
RYnC  
RYnB  
RYnA  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
1
0
1
0
1
2
3
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
0
253  
254  
Note. 0: OFF  
1: ON  
16 - 40  
16. INDEXER POSITIONING OPERATION  
Select the point table using the speed selection 1 (RY(n 2)C) to speed selection 3 (RY(n 2)E). Turn  
on the start (RYn1) to execute positioning with the speed data set in the point table. Rotation direction of  
the servo motor is the direction set in the rotation direction specifying (RYn2). When one station is  
occupied, RY(n 2)C, RY(n 2)D, and RY(n 2)E are not available so that the point table number  
cannot be selected. Use point table No.1 when one station is occupied.  
(Note) Device  
Point table No.  
RY(n 2)E RY(n 2)D RY(n 2)C  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
2
3
4
5
6
7
8
Note. 0: OFF  
1: ON  
16 - 41  
16. INDEXER POSITIONING OPERATION  
(e) Timing chart  
POINT  
Always execute a home position return. The home positioning incomplete  
(A90) occurs when turning on the start (RYn1) without executing a home  
position return.  
The timing chart is shown below.  
ON  
Operation mode selection 1  
(RYn6)  
OFF  
ON  
Operation mode selection 2  
(RYn7)  
OFF  
ON  
Servo-on (RYn0)  
OFF  
(Note 2)  
No.1  
Point table No.1  
No.3  
No.1  
Next station selection 1 to 8  
(RYnA to RYnE RY(n 2)3 to RY(n 2)5)  
(Note 4)  
Speed selection 1 to 3  
Point table No.2  
(RY(n 2)C to RY(n 2)E)  
(Note 1)  
4ms or more  
4ms or more  
(Note 3)  
ON  
Start (RYn1)  
OFF  
6ms or more  
ON  
Rotation direction specifying  
OFF  
(RYn2)  
3ms or less  
*1  
*3  
Forward  
rotation  
(Note 5)  
Servo motor speed  
0r/min  
Reverse  
rotation  
ON  
*2  
(Note 7)  
In position (RXn1)  
OFF  
ON  
Rough match (RXn2)  
OFF  
ON  
Movement completion (RXnC)  
OFF  
Station output 1 to 8  
(RX(n 2)2 to RX(n 2)9)  
No.1  
No.3  
No.1  
Out of in-position  
range  
Out of in-position  
range  
Out of in-position  
range  
ON  
Torque limit value to be effective  
OFF  
(Note 6)  
(Note 6)  
(Note 6)  
Parameter No.PC35  
Parameter No.PC35  
Parameter No.PC35  
Parameter No.PC35  
Parameter No.PA11, PA12  
Parameter No.PA11, PA12  
Parameter No.PA11, PA12  
16 - 42  
16. INDEXER POSITIONING OPERATION  
Note 1. Configure a sequence that changes the next station selection (RYnA to RYnE and RY(n 2)3 to RY(n 2)5) and speed  
selection (RY(n 2)C to RY(n 2)E) earlier, considering the delay time of CC-Link communication.  
2. When the selected station number exceeds the value that is dividing number set in the parameter No.PC46 minus one, the next  
station warning (A97) occurs.  
3. The start (RYn1) is invalid even if it is turned on during operation. When executing another operation, turn on RYn1 after the  
movement completion (RXnC) turns on.  
4. Change of the servo motor speed and acceleration/deceleration time constant by the speed selection 1 (RY(n 2)C) to speed  
selection 3 (RY(n 2)E) becomes effective when the start (RYn1) turns on. Even if the speed selection 1 to 3 are changed  
during servo motor rotation, they do not become effective.  
5. The following shows the operation to be executed.  
Operation  
Station  
*1  
*2  
*3  
No.1  
No.3  
No.1  
Servo motor speed  
Acceleration/deceleration  
time constant  
Point table No.1  
Point table No.1  
Point table No.2  
2
3
1
1
3
2
0
0
2
Positioning  
0
1
3
6. Delay time from when RXn1 turns on until the torque limit value changes to the parameter No.PC35 value can be set in the  
parameter No.PD26.  
7. After power-on, if the current position is within the in-position range of each station, the in position (RXn1) turns on.  
(2) When using the remote register  
Select the station number using the next station (RWwn 4) remote register and execute positioning. For  
the speed data during operation, select the point table number using the point table No./Speed command  
data (RWwn 6) remote register, or directly set the servo motor speed.  
(a) Device/Parameter  
Set the input devices and parameters as indicated below.  
Item  
Device/Parameter  
Parameter No.PA01  
Setting description  
Indexer positioning operation  
selection  
1
: Select the indexer positioning  
operation.  
Speed data setting method selection  
Parameter No.PC30  
Select the setting method for speed data.  
0
1
: Uses the point table setting value.  
: Uses the servo motor speed setting  
value for the point table No./Speed  
command data (RWwn+6) remote  
register. In the case, always set the  
acceleration/deceleration time  
constant in the point table No.1.  
(Refer to (2) (c) in this section.)  
Automatic operation mode 1  
(Rotation direction specifying indexer)  
selection  
Operation mode selection 1 (RYn6)  
Operation mode selection 2 (RYn7)  
Turn off RYn6.  
Turn on RYn7.  
Position/speed specifying system  
selection  
Position/speed specifying system  
selection (RY(n 2)A)  
Turn on RY(n 2)A.  
16 - 43  
16. INDEXER POSITIONING OPERATION  
(b) Other parameter settings  
1) Setting the servo motor rotation direction and allocation direction of station numbers  
Select the allocation direction of station numbers using the parameter No.PA14 (Station No. direction  
selection). Setting is the same as that for when not using the remote register. Refer to (1) (b) 1) in this  
section.  
2) Setting the number of stations  
Set the number of stations in the parameter No.PC46. Setting is the same as that for when not using  
the remote register. Refer to (1) (b) 2) in this section.  
(c) Setting the speed data  
1) When using the speed data of point table  
Set the servo motor speed, acceleration time constant, and deceleration time constant in the point  
table number 1 to 8.  
Name  
Setting range  
Unit  
Description  
Set the command speed of the servo motor for execution of positioning.  
The setting should be equal to or less than the instantaneous permissible  
speed of the servo motor.  
Servo motor  
speed  
0 to permissible  
speed  
r/min  
Acceleration  
time constant  
Deceleration  
time constant  
Set the time until the rated speed of the servo motor is reached.  
0 to 20000  
0 to 20000  
ms  
ms  
Set the time until the servo motor running at rated speed comes to a stop.  
(2) When directly setting the servo motor speed (only when two stations are occupied)  
Set the followings because the acceleration time constant and deceleration time constant of the point table  
No.1 are used.  
Name  
Setting range  
Unit  
Description  
Setting is not required.  
Servo motor  
speed  
0 to permissible  
speed  
r/min  
Acceleration  
time constant  
Deceleration  
time constant  
Set the time until the rated speed of the servo motor is reached.  
0 to 20000  
0 to 20000  
ms  
ms  
Set the time until the servo motor running at rated speed comes to a stop.  
(d) Operation  
1) When using the speed data of point table  
Set the station number for positioning by using the next station (RWwn 4) remote register. Set the  
point table number in the point table No./Speed command data (RWwn 6) remote register. Turn on  
the start (RYn1) to execute positioning with the speed data set in the point table.  
2) When directly setting the servo motor speed (only when two stations are occupied)  
Set the station number for positioning by using the next station (RWwn 4) remote register. Set the  
servo motor speed in the point table No./Speed command data (RWwn 6) remote register. Turn on  
the start (RYn1) to execute positioning with the servo motor speed set in RWwn 6 and the  
acceleration time constant and deceleration time constant set in the point table No.1.  
16 - 44  
16. INDEXER POSITIONING OPERATION  
(e) Timing chart  
POINT  
Always execute a home position return. The home positioning incomplete  
(A90) occurs when turning on the start (RYn1) without executing a home  
position return.  
The timing chart is shown below.  
1) When using the speed data of point table  
ON  
Operation mode selection 1  
OFF  
ON  
(RYn6)  
Operation mode selection 2  
(RYn7)  
OFF  
ON  
Servo-on (RYn0)  
OFF  
ON  
Position/speed specifying system  
selection (RYn 2)A  
OFF  
(Note 2)  
Next station (RWwn 4)  
No.1  
No.1  
No.3  
No.1  
No.1  
No.2  
Point table No./speed command data  
(RWwn 6)  
(Note 4)  
ON  
Position instruction execution  
demand (RY(n 2)0)  
OFF  
ON  
Position instruction execution  
completion (RX(n 2)0)  
(Note 4)  
Speed instruction execution  
demand (RY(n 2)1)  
Speed instruction execution  
completion (RX(n 2)1)  
OFF  
ON  
OFF  
ON  
OFF  
4ms or more  
(Note 1) (Note 3)  
6ms or more  
ON  
Start (RYn1)  
OFF  
ON  
Rotation direction specifying  
(RYn2)  
OFF  
3ms or less  
*1  
*3  
Forward  
rotation  
0r/min  
(Note 5)  
Servo motor speed  
Reverse  
rotation  
*2  
(Note 7)  
ON  
In position (RXn1)  
OFF  
ON  
Rough match (RXn2)  
Movement completion (RXnC)  
OFF  
ON  
OFF  
Station output 1 to 8  
(RX(n 2)2 to RX(n 2)9)  
No.1  
No.3  
No.1  
Out of in-position  
range  
Out of in-position  
range  
Out of in-position  
range  
ON  
Torque limit value to be effective  
OFF  
(Note 6)  
(Note 6)  
(Note 6)  
Parameter No.PC35  
Parameter No.PC35  
Parameter No.PC35  
Parameter No.PC35  
Parameter No.PA11, PA12  
Parameter No.PA11, PA12  
Parameter No.PA11, PA12  
16 - 45  
16. INDEXER POSITIONING OPERATION  
Note 1. Configure a sequence that changes RWwn 4 and RWwn 6 earlier, considering the delay time of CC-Link communication.  
2. When the selected station number exceeds the value that is dividing number set in the parameter No.PC46 minus one, the next  
station warning (A97) occurs  
3. The start (RYn1) is invalid even if it is turned on during operation. When executing another operation, turn on RYn1 after the  
movement completion (RXnC) turns on.  
4. For details of the operation timing of RY(n 2)0 and RY(N 2)1, refer to the section 3.6.2 (3).  
5. The following shows the operation to be executed.  
Operation  
Station  
*1  
*2  
*3  
No.1  
No.2  
No.3  
Servo motor speed  
Acceleration/deceleration  
time constant  
Point table No.1  
Point table No.1  
Point table No.2  
2
3
1
1
3
2
0
0
2
Positioning  
0
1
3
6. Delay time from when RXn1 turns on until the torque limit value changes to the parameter No.PC35 value can be set in the  
parameter No.PD26.  
7. After power-on, if the current position is with the in-position range of each station, the in position (RXn1) turns on.  
16 - 46  
16. INDEXER POSITIONING OPERATION  
2) When directly setting the servo motor speed  
ON  
Operation mode selection 1  
OFF  
ON  
(RYn6)  
Operation mode selection 2  
(RYn7)  
OFF  
ON  
Servo-on (RYn0)  
OFF  
ON  
Position/speed specifying system  
selection (RYn 2)A  
OFF  
(Note 2)  
Next station (RWwn 4)  
No.1  
No.3  
No.1  
Point table No./Speed command data  
(RWwn 6)  
Speed 1  
Speed 2  
Speed 3  
(Note 4)  
Position instruction execution  
ON  
demand (RY(n 2)0)  
OFF  
ON  
Position instruction execution  
completion (RX(n 2)0)  
OFF  
ON  
(Note 4)  
Speed instruction execution  
demand (RY(n 2)1)  
Speed instruction execution  
completion (RX(n 2)1)  
OFF  
ON  
OFF  
4ms or more  
(Note 1)(Note 3)  
6ms or more  
Start (RYn1)  
ON  
OFF  
ON  
Rotation direction specifying  
(RYn2)  
OFF  
3ms or less  
*1  
*3  
Forward  
(Note 5)  
Servo motor speed  
rotation  
0r/min  
Reverse  
rotation  
*2  
(Note 7)  
ON  
In position (RXn1)  
OFF  
ON  
Rough match (RXn2)  
Movement completion (RXnC)  
OFF  
ON  
OFF  
Station output 1 to 8  
(RX(n 2)2 to RX(n 2)9)  
No.1  
No.3  
No.1  
Out of in-position  
range  
Out of in-position  
range  
Out of in-position  
range  
ON  
Torque limit value to be effective  
OFF  
(Note 6)  
(Note 6)  
(Note 6)  
Parameter No.PC35  
Parameter No.PC35  
Parameter No.PC35  
Parameter No.PC35  
Parameter No.PA11, PA12  
Parameter No.PA11, PA12  
Parameter No.PA11, PA12  
16 - 47  
16. INDEXER POSITIONING OPERATION  
Note 1. Configure a sequence that changes RWwn 4 and RWwn 6 earlier, considering the delay time of CC-Link communication.  
2. When the selected station number exceeds the value that is dividing number set in the parameter No.PC46 minus one, the next  
station warning (A97) occurs.  
3. The start (RYn1) is invalid even if it is turned on during operation. When executing another operation, turn on RYn1 after the  
movement completion (RXnC) turns on.  
4. For details of the operation timing of RY(n 2)0 and RY(N 2)1, refer to the section 3.6.2 (3).  
5. The following shows the operation to be executed.  
Operation  
Station  
*1  
*2  
*3  
No.1  
No.3  
No.1  
Servo motor speed  
Acceleration/deceleration  
time constant  
Speed 1  
Speed 2  
Speed 3  
Point table No.1  
Point table No.1  
Point table No.1  
2
3
1
1
3
2
0
0
2
Positioning  
0
1
3
6. Delay time from when RXn1 turns on until the torque limit value changes to the parameter No.PC35 value can be set in the  
parameter No.PD26.  
7. After power-on, if the current position is with the in-position range of each station, the in position (RXn1) turns on.  
16 - 48  
16. INDEXER POSITIONING OPERATION  
16.7.3 Automatic operation mode 2 (Shortest rotating indexer)  
In this operation mode, the servo motor automatically changes the direction for the shortest distance and  
executes positioning.  
(1) When not using the remote register  
Select the station number using 8-bit device of the next station selection 1 to 8 (RYnA to RYnE, and  
RY(n 2)3 to RY(n 2)5), and execute positioning. For the servo motor speed and acceleration/  
deceleration time constant during operation, the value set in the point table is used.  
(a) Device/Parameter  
Set the input devices and parameters as indicated below.  
Item  
Device/Parameter  
Parameter No.PA01  
Setting description  
Indexer positioning operation  
selection  
1
: Select the indexer positioning  
operation.  
Automatic operation mode 2  
(Rotation direction specifying indexer)  
selection  
Operation mode selection 1 (RYn6)  
Operation mode selection 2 (RYn7)  
Turn on MD0.  
Turn on MD1.  
(b) Other parameter settings (Setting the number of stations)  
Set the number of stations in the parameter No.PC46. Setting is the same as that for the automatic  
operation mode 1. Refer to (1) (b) 2) in section 16.7.2.  
In the automatic operation mode 2, the station No. direction selection (parameter No.PA14) is not  
used.  
(c) Setting the speed data  
Set the servo motor speed, acceleration time constant, and deceleration time constant in the point table  
number 1 to 8. Setting is the same as that for the automatic operation mode 1. Refer to (1) (c) in section  
16.7.2.  
(d) Operation  
Select the station number for positioning, using 8-bit device of the next station selection 1 to 8 (RYnA to  
RYnE, and RY(n 2)3 to RY(n 2)5).  
(Note) Device  
Station No.  
2 stations occupied  
1 stations occupied  
RY(n 2)5 RY(n 2)4 RY(n 2)3  
RYnE  
RYnD  
RYnC  
RYnB  
RYnA  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
1
0
1
0
1
2
3
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
253  
254  
Note. 0: OFF  
1: ON  
16 - 49  
16. INDEXER POSITIONING OPERATION  
Select the point table using the speed selection 1 (RY(n 2)C) to speed selection 3 (RY(n 2)E). Turn  
on the start (RYn1) to execute positioning with the speed data set in the point table. When one station is  
occupied, RY(n 2)C, RY(n 2)D, and RY(n 2)E are not available so that the point table number  
cannot be selected. Use the point table No.1 when one station is occupied.  
(Note) Device  
Pint table No.  
RY(n 2)E RY(n 2)D RY(n 2)C  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
2
3
4
5
6
7
8
Note. 0: OFF  
1: ON  
16 - 50  
16. INDEXER POSITIONING OPERATION  
(e) Timing chart  
POINT  
Always execute a home position return. The home positioning incomplete  
(A90) occurs when turning on the start (RYn1) without executing a home  
position return.  
The timing chart is shown below.  
ON  
Operation mode selection 1  
(RYn6)  
OFF  
ON  
Operation mode selection 2  
(RYn7)  
OFF  
ON  
Servo-on (RYn0)  
OFF  
(Note 2)  
No.1  
Point table No.1  
No.3  
No.1  
Next station selection 1 to 8  
(RYnA to RYnE RY(n 2)3 to RY(n 2)5)  
(Note 4)  
Speed selection 1 to 3  
Point table No.1  
(RY(n 2)C to RY(n 2)E)  
(Note 1)  
4ms or more  
(Note 3)  
ON  
Start (RYn1)  
OFF  
6ms or more  
3ms or less  
Forward  
rotation  
0r/min  
Reverse  
rotation  
*1  
*2  
(Note 5)  
Servo motor speed  
*3  
(Note 7)  
ON  
In position (RXn1)  
OFF  
ON  
Rough match (RXn2)  
Movement completion (RXnC)  
OFF  
ON  
OFF  
Station output 1 to 8  
(RX(n 2)2 to RX(n 2)9)  
No.1  
No.3  
No.1  
Out of in-position  
range  
Out of in-position  
range  
Out of in-position  
range  
ON  
Torque limit value to be effective  
OFF  
(Note 6)  
(Note 6)  
(Note 6)  
Parameter No.PC35  
Parameter No.PC35  
Parameter No.PC35  
Parameter No.PC35  
Parameter No.PA11, PA12  
Parameter No.PA11, PA12 Parameter No.PA11, PA12  
16 - 51  
16. INDEXER POSITIONING OPERATION  
Note 1. Configure a sequence that changes the next station selection (RYnA to RYnE and RY(n 2)3 to RY(n 2)5) and speed  
selection (RY(n 2)C to RY(n 2)E) earlier, considering the delay time of CC-Link communication.  
2. When the selected station number exceeds the value that is dividing number set in the parameter No.PC46 minus one, the next  
station warning (A97) occurs.  
3. The start (RYn1) is invalid even if it is turned on during operation. When executing another operation, turn on RYn1 after the  
movement completion (RXnC) turns on.  
4. Change of the servo motor speed and acceleration/deceleration time constant by the speed selection 1 (RY(n 2)C) to speed  
selection 3 (RY(n 2)E) becomes effective when the start (RYn1) turns on. Even if the speed selection 1 to 3 are changed  
during servo motor rotation, they do not become effective.  
5. The following shows the operation to be executed.  
Operation  
Station  
*1  
*2  
*3  
No.1  
No.3  
No.1  
Servo motor speed  
Acceleration/deceleration  
time constant  
Point table No.1  
Point table No.1  
Point table No.2  
2
3
1
1
3
2
0
0
2
Positioning  
0
1
3
6. Delay time from when RXn1 turns on until the torque limit value changes to the parameter No.PC35 value can be set in the  
parameter No.PD26.  
7. After power-on, if the current position is with the in-position range of each station, the in position (RXn1) turns on.  
(2) When using the remote register  
Select the station number using the next station (RWwn 4) remote register and execute positioning. For  
the speed data during operation, select the point table number using the point table No./Speed command  
data (RWwn 6) remote register, or directly set the servo motor speed.  
(a) Device/Parameter  
Set the input devices and parameters as indicated below.  
Item  
Device/Parameter  
Parameter No.PA01  
Setting description  
Indexer positioning operation  
selection  
1
: Select the indexer positioning  
operation.  
Speed data setting method selection  
Parameter No.PC30  
Select the setting method for speed data.  
0
1
: Uses the point table setting value.  
: Uses the servo motor speed setting  
value for the point table No./Speed  
command data (RWwn 6) remote  
register. In the case, always set the  
acceleration/deceleration time  
constant in the point table No.1.  
(Refer to (2) (c) in this section.)  
Automatic operation mode 2  
(Rotation direction specifying indexer)  
selection  
Operation mode selection 1 (RYn6)  
Operation mode selection 2 (RYn7)  
Turn on RYn6.  
Turn on RYn7.  
Position/speed specifying system  
selection  
Position/speed specifying system  
selection (RY(n 2)A)  
Turn on RY(n 2)A.  
16 - 52  
16. INDEXER POSITIONING OPERATION  
(b) Other parameter settings (Setting the number of stations)  
Set the number of stations in the parameter No.PC46. Setting is the same as that for the automatic  
operation mode 1. Refer to (1) (b) 2) in section 16.7.2.  
In the automatic operation mode 2, the station No. direction selection (parameter No.PA14) is not  
used.  
(c) Setting the speed data  
1) When using the speed data of point table  
Set the servo motor speed, acceleration time constant, and deceleration time constant in the point  
table number 1 to 7. Setting is the same as that for the automatic operation mode 1. Refer to (2) (c)  
1) in section 16.7.2.  
2) When directly setting the servo motor speed (only when two stations are occupied)  
Set the followings because the acceleration time constant and deceleration time constant of the point  
table No.1 are used. Setting is the same as that for the automatic operation mode 1. Refer to (2) (c)  
2) in section 16.7.2.  
(d) Operation  
1) When using the speed data of point table  
Set the station number for positioning by using the next station (RWwn 4) remote register. Set the  
point table number in the point table No./Speed command data (RWwn 6) remote register. Turn on  
the start (RYn1) to execute positioning with the speed data set in the point table.  
2) When directly setting the servo motor speed (only when two stations are occupied)  
Set the station number for positioning by using the next station (RWwn 4) remote register. Set the  
servo motor speed in the point table No./Speed command data (RWwn 6) remote register. Turn on  
the start (RYn1) to execute positioning with the servo motor speed set in RWwn 6 and the  
acceleration time constant and deceleration time constant set in the point table No.1.  
16 - 53  
16. INDEXER POSITIONING OPERATION  
(e) Timing chart  
POINT  
Always execute a home position return. The home positioning incomplete  
(A90) occurs when turning on the start (RYn1) without executing a home  
position return.  
The timing chart is shown below.  
1) When using the speed data of point table  
ON  
Operation mode selection 1  
OFF  
ON  
(RYn6)  
Operation mode selection 2  
(RYn7)  
OFF  
ON  
Servo-on (RYn0)  
OFF  
ON  
Position/speed specifying system  
selection (RYn 2)A  
OFF  
(Note 2)  
Next station (RWwn 4)  
No.1  
No.1  
No.3  
No.1  
No.1  
No.2  
Point table No./Speed command data  
(RWwn 6)  
(Note 4)  
ON  
Position instruction execution  
demand (RY(n 2)0)  
OFF  
ON  
Position instruction execution  
completion (RX(n 2)0)  
(Note 4)  
Speed instruction execution  
demand (RY(n 2)1)  
Speed instruction execution  
completion (RX(n 2)1)  
OFF  
ON  
OFF  
ON  
OFF  
4ms or more  
(Note 1) (Note 3)  
ON  
Start (RYn1)  
OFF  
6ms or more  
3ms or less  
Forward  
*1  
*2  
rotation  
0r/min  
(Note 5)  
Servo motor speed  
Reverse  
rotation  
*3  
(Note 7)  
ON  
In position (RXn1)  
OFF  
ON  
Rough match (RXn2)  
Movement completion (RXnC)  
OFF  
ON  
OFF  
Station output 1 to 8  
(RX(n 2)2 to RX(n 2)9)  
No.1  
No.3  
No.1  
Out of in-position  
range  
Out of in-position  
range  
Out of in-position  
range  
ON  
Torque limit value to be effective  
OFF  
(Note 6)  
(Note 6)  
(Note 6)  
Parameter No.PC35  
Parameter No.PC35  
Parameter No.PC35  
Parameter No.PC35  
Parameter No.PA11, PA12  
Parameter No.PA11, PA12  
Parameter No.PA11, PA12  
16 - 54  
16. INDEXER POSITIONING OPERATION  
Note 1. Configure a sequence that changes RWwn 4 and RWwn 6 earlier, considering the delay time of CC-Link communication.  
2. When the selected station number exceeds the value that is dividing number set in the parameter No.PC46 minus one, the next  
station warning (A97) occurs.  
3. The start (RYn1) is invalid even if it is turned on during operation. When executing another operation, turn on RYn1 after the  
movement completion (RXnC) turns on.  
4. For details of the operation timing of RY(n 2)0 and RY(N 2)1, refer to the section 3.6.2 (3).  
5. The following shows the operation to be executed.  
Operation  
Station  
*1  
*2  
*3  
No.1  
No.3  
No.1  
Servo motor speed  
Acceleration/deceleration  
time constant  
Point table No.1  
Point table No.1  
Point table No.2  
2
3
1
1
3
2
0
0
2
Positioning  
0
1
3
6. Delay time from when RXn1 turns on until the torque limit value changes to the parameter No.PC35 value can be set in the  
parameter No.PD26.  
7. After power-on, if the current position is with the in-position range of each station, the in position (RXn1) turns on.  
16 - 55  
16. INDEXER POSITIONING OPERATION  
2) When directly setting the servo motor speed (only when 2 stations are occupied)  
ON  
Operation mode selection 1  
OFF  
ON  
(RYn6)  
Operation mode selection 2  
(RYn7)  
OFF  
ON  
Servo-on (RYn0)  
OFF  
ON  
Position/speed specifying system  
selection (RYn 2)A  
OFF  
(Note 2)  
Next station (RWwn 4)  
No.1  
No.3  
No.1  
Point table No./speed command data  
(RWwn 6)  
Speed 1  
Speed 2  
Speed 3  
(Note 4)  
ON  
Position instruction execution  
demand (RY(n 2)0)  
OFF  
ON  
Position instruction execution  
completion (RX(n 2)0)  
(Note 4)  
Speed instruction execution  
demand (RY(n 2)1)  
Speed instruction execution  
completion (RX(n 2)1)  
OFF  
ON  
OFF  
ON  
OFF  
4ms or more  
(Note 1) (Note 3)  
ON  
Start (RYn1)  
OFF  
6ms or more  
3ms or less  
Forward  
*1  
*2  
rotation  
0r/min  
(Note 5)  
Servo motor speed  
Reverse  
rotation  
*3  
(Note 7)  
ON  
In position (RXn1)  
OFF  
ON  
Rough match (RXn2)  
Movement completion (RXnC)  
OFF  
ON  
OFF  
Station output 1 to 8  
(RX(n 2)2 to RX(n 2)9)  
No.1  
No.3  
No.1  
Out of in-position  
range  
Out of in-position  
range  
Out of in-position  
range  
ON  
OF  
Torque limit value to be effective  
(Note 6)  
(Note 6)  
(Note 6)  
Parameter No.PC35  
Parameter No.PC35  
Parameter No.PC35  
Parameter No.PC35  
Parameter No.PA11, PA12  
Parameter No.PA11, PA12  
Parameter No.PA11, PA12  
16 - 56  
16. INDEXER POSITIONING OPERATION  
Note 1. Configure a sequence that changes RWwn 4 and RWwn 6 earlier, considering the delay time of CC-Link communication.  
2. When the selected station number exceeds the value that is dividing number set in the parameter No.PC46 minus one, the next  
station warning (A97) occurs.  
3. The start (RYn1) is invalid even if it is turned on during operation. When executing another operation, turn on RYn1 after the  
movement completion (RXnC) turns on.  
4. For details of the operation timing of RY(n 2)0 and RY(N 2)1, refer to the section 3.6.2 (3).  
5. The following shows the operation to be executed.  
Operation  
Station  
*1  
*2  
*3  
No.1  
No.3  
No.1  
Servo motor speed  
Acceleration/deceleration  
time constant  
Speed 1  
Speed 2  
Speed 3  
Point table No.1  
Point table No.1  
Point table No.1  
2
3
1
1
3
2
0
0
2
Positioning  
0
1
3
6. Delay time from when RXn1 turns on until the torque limit value changes to the parameter No.PC35 value can be set in the  
parameter No.PD26.  
7. After power-on, if the current position is with the in-position range of each station, the in position (RXn1) turns on.  
16 - 57  
16. INDEXER POSITIONING OPERATION  
16.8 Manual operation mode  
For adjusting the machine or home position, JOG operation or indexer JOG operation can be used to move the  
position to any position.  
16.8.1 Indexer JOG operation  
(1) Setting  
Set the devices and parameters as indicated below according to the purpose of use. In this case, the next  
station selection 1 to 8 (RYnA to RYnE and RY(n 2)3 to RY(n 2)5) and the speed selection 1 to 3  
(RY(n 2)C to RY(n 2)E) are invalid.  
Item  
Device/Parameter  
Parameter No.PA01  
Setting description  
Indexer positioning operation  
selection  
1
: Select the indexer positioning  
operation.  
Manual operation mode selection  
Operation mode selection 1 (RYn6)  
Operation mode selection 2 (RYn7)  
Parameter No.PC45  
Turn on RYn6.  
Turn off RYn7.  
Set it to "  
Indexer JOG operation selection  
Station No. direction  
JOG speed  
0 (Initial value)"  
Parameter No.PA14  
Refer to (2) in this section.  
Point table No.1  
Use the servo motor speed in the point table  
No.1.  
Acceleration/deceleration time  
constant  
Point table No.1  
Use the acceleration/deceleration time constant  
in the point table No.1.  
(2) Setting the allocation direction of station numbers  
Select the allocation direction of station numbers using the parameter No.PA14 (Station No. direction  
selection).  
Parameter No.PA14  
setting  
Station No. allocation direction  
Start (RYn1) ON  
0 (Initial value)  
1
Station No. is allocated in CW direction in order of 1, 2, 3…  
Station No. is allocated in CCW direction in order of 1, 2, 3…  
CCW  
CW  
CCW  
direction  
CW  
direction  
4
4
3
2
1
3
2
1
Station No.  
Station No.  
Parameter No.PA14: 0 (Initial value)  
Parameter No.PA14: 1  
16 - 58  
16. INDEXER POSITIONING OPERATION  
(3) Operation  
Turn on the start (RYn1) to operate the servo motor with the servo motor speed, acceleration time constant,  
and deceleration time constant set in the point table No.1. Turning off RYn1 makes the servo motor  
execute positioning to the station where the servo motor can decelerate to stop. For the rotation direction,  
refer to (2) in this section.  
(4) Timing chart  
The following timing chart shows an example when executing the indexer JOG operation from the status  
where the servo motor is at a stop on the station No.0 when the servo-on is turned on.  
ON  
Operation mode selection 1  
OFF  
ON  
(RYn6)  
Operation mode selection 2  
(RYn7)  
OFF  
4ms or more  
6ms or more  
4ms or more  
(Note 2)  
ON  
Start (RYn1)  
OFF  
ON  
Rotation direction specifying  
(RYn2)  
OFF  
Forward  
rotation  
0r/min  
Servo motor speed  
Reverse  
rotation  
0
1
2
3
4
4
5
6
7
8
8
7
6
5
4
Current station No.  
In position (RXn1)  
ON  
OFF  
Station output 1 to 8  
(RX(n 2)2 to RX(n 2)9)  
No.0  
No.4  
No.8  
No.4  
Out of in-position  
range  
Out of in-position  
range  
Out of in-position  
range  
ON  
Torque limit value to be effective  
OFF  
(Note 1)  
(Note 1)  
(Note 1)  
Parameter No.PC35  
Parameter No.PC35 Parameter No.PC35 Parameter No.PC35  
Parameter No.PA11, PA12  
Parameter No.PA11, PA12 Parameter No.PA11, PA12  
Note 1. Torque limit delay time can be set in the parameter No.PD26.  
2. The start (RYn1) is invalid even if it is turned on during operation. When executing another operation, turn on RYn1 after  
the movement completion (RXnC) turns on.  
16 - 59  
16. INDEXER POSITIONING OPERATION  
16.8.2 JOG operation  
(1) Setting  
Set the devices and parameters as indicated below for the purpose of use. In this case, the next station  
selection 1 to 8 (RYnA to RYnE and RY(n 2)3 to RY(n 2)5) and the speed selection 1 to 3 (RY(n 2)C  
to RY(n 2)E) are invalid.  
Item  
Device/Parameter  
Parameter No.PA01  
Setting description  
Indexer positioning operation  
selection  
1
: Select the indexer positioning  
operation.  
Operation mode selection 1 (RYn6)  
Operation mode selection 2 (RYn7)  
Parameter No.PC45  
Turn on RYn6  
Turn off RYn7  
Set it to "  
Manual operation mode selection  
JOG operation selection  
Station No. direction  
1".  
Parameter No.PA14  
Refer to (2) in this section.  
The setting is the same as for the indexer JOG  
operation. Refer to (2) in section 16.8.1.  
Use the acceleration/deceleration time constant  
in the point table No.1.  
JOG speed  
Point table No.1  
Point table No.1  
Acceleration/deceleration time  
constant  
(2) Operation  
Turn on the start (RYn1) to operate the servo motor with the servo motor speed, acceleration time constant,  
and deceleration time constant set in the point table No.1. Turning off RYn1 makes the servo motor  
decelerate to stop regardless of stations. For the rotation direction, refer to (2) in section 16.8.1.  
(3) Timing chart  
The following timing chart shows an example when executing the indexer JOG operation from the status  
where the servo motor is at a stop on the station No.0 when the servo-on is turned on.  
ON  
Operation mode selection 1  
(RYn6)  
OFF  
ON  
Operation mode selection 2  
(RYn7)  
OFF  
6ms or more  
4ms or more  
ON  
Start (RYn1)  
OFF  
ON  
Rotation direction specifying  
(RYn2)  
OFF  
Forward  
rotation  
0r/min  
Servo motor speed  
Reverse  
rotation  
ON  
In position (RXn1)  
OFF  
Station output 1 to 8  
(RX(n 2)2 to RX(n 2)9)  
No.0  
Out of in-position range  
ON  
Torque limit value to be effective  
OFF  
(Note)  
Parameter No.PC35  
Parameter No.PA11, PA12  
Parameter No.PC35  
Parameter No.PA11, PA12  
Parameter No.PC35  
Note. Torque limit delay time can be set in the parameter No.PD26.  
16 - 60  
16. INDEXER POSITIONING OPERATION  
16.9 Home position return mode  
16.9.1 Outline of home position return  
Home position return is performed to match the command coordinates with the machine coordinates. In the  
incremental system, home position return is required every time input power is switched on. In the absolute  
position detection system, once home position return is done at the time of installation, the current position is  
retained if power is switched off. Hence, home position return is not required when power is switched on again.  
This servo amplifier has the home position return methods given in this section. Choose the most appropriate  
method for your machine structure and application.  
This servo amplifier has the home position return automatic return function which executes home position  
return by making an automatic return to a proper position if the machine has stopped beyond or at the  
proximity dog. Manual motion by jog operation or the like is not required.  
(1) Home position return types  
Choose the optimum home position return according to the machine type, etc.  
Type  
Home position return method  
Features  
General home position return method using a  
proximity dog.  
Repeatability of home position return is  
excellent.  
With deceleration started at the front end of a  
proximity dog, the position where the first  
The machine is less burdened.  
Used when the width of the proximity dog can  
be set greater than the deceleration distance of  
the servo motor.  
Torque limit changing dog Z-phase signal is given past the rear end of the dog or  
type home position return a motion has been made over the home position shift  
distance starting from the Z-phase signal is defined as  
a home position.  
Torque limit value by the parameter No.PC35  
(Internal torque limit 2) becomes effective while  
the servo motor at stop.  
Torque limit changing  
No proximity dog required.  
data setting type home  
position return  
An arbitrary position is defined as a home position.  
Torque limit value turns to “0” in the home  
position return mode.  
16 - 61  
16. INDEXER POSITIONING OPERATION  
(2) Home position return parameter  
When performing home position return, set each parameter as follows.  
(a) Choose the home position return method with parameter No.PC02 (Home position return type).  
Parameter No.PC02  
0 0 0  
Home position return method  
0:  
1:  
2:  
3:  
4:  
5:  
6:  
7:  
8:  
9:  
A:  
Not used in indexer postioning operation.  
C: Torque limit changing dog type  
D: Torque limit changing data setting type  
(b) Choose the starting direction of home position return with parameter No.PC03 (Home position return  
direction). Set "0" to start home position return in the direction in which the station No. is incremented  
from the current position, or "1" to start home position return in the direction in which the address is  
decremented.  
Parameter No.PC03  
0 0 0  
Home position return direction  
0: Station No. increment direction  
1: Station No. decrement direction  
(c) Choose the polarity at which the proximity dog is detected with parameter No.PD16 (Input polarity  
setting). Set "0" to detect the dog when the proximity dog device (DOG) is OFF, or "1" to detect the dog  
when the device is ON.  
Parameter No.PD16  
0 0 0  
Proximity dog input polarity  
0: OFF indicates detection of the dog  
1: ON indicates detection of the dog  
(3) Instructions  
1) Before starting home position return, always make sure that the limit switch operates.  
2) Confirm the home position return direction. Incorrect setting will cause the machine to run reversely.  
3) Confirm the proximity dog input polarity. Not doing so may cause unexpected operation.  
16 - 62  
16. INDEXER POSITIONING OPERATION  
16.9.2 Torque limit changing dog type home position return  
A home position return method using a proximity dog. With deceleration started at the front end of the proximity  
dog, the position where the first Z-phase signal is given past the rear end of the dog or a motion has been  
made over the home position shift distance starting from the Z-phase signal is defined as a home position. A  
limit can be put on the servo motor torque at home position return execution and at stop separately.  
(1) Devices, parameters  
Set the input devices and parameters as follows.  
Item  
Device/Parameter used  
Operation mode selection 1 (RYn6)  
Operation mode selection 2 (RYn7)  
Description  
Home position return mode  
selection  
Turn off RYn6.  
Turn off RYn7.  
Torque limit changing dog type  
home position return  
C: Torque limit changing dog type  
home position return is selected.  
Refer to section 16.9.1 (2) and choose  
home position return direction.  
Parameter No.PC02  
Parameter No.PC03  
Parameter No.PD16  
Home position return direction  
Dog input polarity  
Refer to section 16.9.1 (2) and choose dog  
input polarity.  
Home position return speed  
Creep speed  
Parameter No.PC04  
Parameter No.PC05  
Set speed until detection of dog.  
Set speed after detection of dog.  
Set when shifting the home position starting  
at the first Z-phase signal after passage of  
proximity dog rear end.  
Home position shift distance  
Parameter No.PC06  
Home position return  
acceleration/deceleration time  
constants  
Use the acceleration/deceleration time  
constants of point table No.1.  
Point table No.1  
Set the torque limit value for the forward  
rotation direction at home position return  
execution.  
Point table No.PA11  
Torque limit value at home position  
return execution  
Set the torque limit value for the reverse  
rotation direction at home position return  
execution.  
Point table No.PA12  
Point table No.PC35  
Set the torque limit value at stop.  
Torque limit value at stop  
(2) Length of proximity dog  
Adjust the length of proximity dog or home position return speed so that the servo motor speed reaches to  
the creep speed while detecting the proximity dog (DOG).  
V
60  
td  
2
CDV  
CMX  
L1  
360  
L
: Angle that proximity dog holds on the circumference of machine side [degree]  
: Home position return speed of motor side [r/min]  
1
V
td : Deceleration time of motor side [s]  
16 - 63  
16. INDEXER POSITIONING OPERATION  
(3) Timing chart  
ON  
Operation mode selection 1  
(RYn6)  
OFF  
ON  
Operation mode selection 2  
(RYn7)  
(Note)  
4ms or  
more  
OFF  
ON  
6ms or more  
Start (RYn1)  
OFF  
Point table No.1  
deceleration time  
constant  
Creep speed  
parameter No.PC05  
Point table No.1  
acceleration  
Home position return speed  
parameter No.PC04  
Home position shift distance  
parameter No.PC06  
time constant  
3ms or less  
Forward  
Home  
position  
rotation  
0r/min  
Servo motor speed  
td  
Proximity dog  
ON  
Z-phase  
OFF  
ON  
Proximity dog (DOG)  
Rough match (RXn2)  
In position (RXn1)  
OFF  
ON  
OFF  
ON  
OFF  
Station output 1 to 8  
(RX(n 2)2 to RX(n 2)9)  
Out of in-position range  
No.0  
ON  
Home position return completion  
(RXn3/ZP)  
OFF  
ON  
Parameter No.PA11, PA12  
Parameter No.PC35  
Torque limit value to be effective  
OFF  
Parameter No.PC35  
Note. Configure a sequence that changes the operation mode earlier, considering the delay time of CC-Link communication.  
16 - 64  
16. INDEXER POSITIONING OPERATION  
16.9.3 Torque limit changing data setting type home position return  
POINT  
Torque limit becomes effective after completing the torque limit changing data  
setting type home position return, so that when the servo motor is rotated by  
the external force, a difference occurs in between the command position and  
the current position. In the home position return mode, even if a difference  
occurs in between the command position and the current position, the error  
excessive alarm (A52) does not occur. Therefore, when the mode is changed  
from home position return to automatic operation, depending on the size of  
difference between the command position and the current position, the error  
excessive alarm (A52) occurs. Note that if the error excessive alarm (A52)  
does not occur, the servo motor rotates to eliminate the difference.  
Use the torque limit changing data setting type home position return to set the home position in any place. JOG  
operation can be used for moving a position. For this home position return, torque generation is stopped at the  
same time when the mode is changed to the home position return mode. Home position can be set for any  
position by rotating the axis with external force.  
The proximity dog (DOG) cannot be used. The proximity dog (DOG) is disabled even if it is turned off.  
(1) Device/Parameter  
Set the input devices and parameters as indicated below.  
Item  
Device/Parameter  
Setting description  
Operation mode selection 1 (RYn6)  
Operation mode selection 2 (RYn7)  
Turn off RYn6.  
Turn off RYn7.  
Home position return mode selection  
Position/speed specifying system by  
remote register  
Position/speed specifying system  
selection (RY(n 2)A)  
Turn off RY(n 2)A.  
(only when 2 stations are occupied)  
Torque limit changing data setting  
type home position return  
D: Select the torque limit changing data  
Parameter No.PC02  
setting type.  
ON  
Operation mode selection 1  
(RYn6)  
OFF  
ON  
Operation mode selection 2  
(RYn7)  
(Note)  
OFF  
4ms or  
more  
6ms or more  
ON  
Start (RYn1)  
OFF  
ON  
In position (RXn1)  
OFF  
Station output 1 to 8  
(RX(n 2)2 to RX(n 2)9)  
No.0  
3ms or more  
ON  
Home position return completion  
(RXn3/ZP)  
OFF  
ON  
0
Torque limit value to be effective  
OFF  
Parameter No.PC35  
Parameter No.PC35  
Note. Configure a sequence that changes the operation mode earlier, considering the delay time of CC-Link  
communication.  
16 - 65  
16. INDEXER POSITIONING OPERATION  
16.9.4 Home position return automatic return function  
If the current position is at or beyond the proximity dog in the home position return using the proximity dog, this  
function starts home position return after making a return to the position where the home position return can be  
made.  
(1) When the current position is at the proximity dog  
When the current position is at the proximity dog, an automatic return is made before home position return.  
Home position return direction  
Proximity dog  
Home position return  
start position  
Makes an automatic return to a position  
before the proximity dog, then executes  
home position return at this position.  
(2) When the current position is beyond the proximity dog  
At a start, a motion is made in the home position return direction and an automatic return is made on  
detection of the stroke end (LSP or LSN). The motion stops past the front end of the proximity dog, and  
home position return is resumed at that position. If the proximity dog cannot be detected, the motion stops  
on detection of the LSP or LSN switch and A90 occurs.  
Stroke end  
(LSP or LSN)  
Home position return direction  
Proximity dog  
Home position return  
start position  
Makes an automatic return to a position  
before the proximity dog, then executes  
home position return at this position.  
Software limit cannot be used with these functions.  
16 - 66  
16. INDEXER POSITIONING OPERATION  
16.10 Absolute position detection system  
If an absolute position erase alarm (A25) or an absolute position counter warning  
(AE3) has occurred, always perform home position setting again. Not doing so  
may cause unexpected operation.  
CAUTION  
POINT  
If the encoder cable is disconnected, absolute position data will be lost in the  
following servo motor series. HF-MP, HF-KP, HC-SP, HC-RP, HC-UP, HC-  
LP, and HA-LP. After disconnecting the encoder cable, always execute home  
position setting and then positioning operation.  
When the following parameters are changed, the home position is lost when  
turning on the power after the change. Execute the home position return  
again when turning on the power.  
Parameter No.PA06 (Number of gears on machine-side)  
Parameter No.PA07 (Number of gears on servo motor-side)  
Parameter No.PA14 (Station No. direction selection)  
Parameter No.PC07 (Home position return position data)  
This servo amplifier contains a single-axis controller. Also, all servo motor encoders are compatible with an  
absolute position detection system. Hence, an absolute position detection system can be configured up by  
merely loading an absolute position data back-up battery and setting parameter values.  
(1) Restrictions  
In the absolute position detection system, the following restriction condition applies for the number of gears  
on machine-side (parameter No.PA06 CMX) and servo motor speed (N).  
When CMX  
When CMX  
2000, N  
2000, N  
3076.7 r/min  
3276.7 - CMX r/min  
When the servo motor is operated at servo motor speed higher than the limited value, the absolute position  
counter warning (AE3) occurs.  
(2) Specifications  
Item  
Description  
Electronic battery backup system.  
System  
Battery  
1 piece of lithium battery ( primary battery, nominal 3.6V)  
Type: MR-J3BAT.  
Maximum revolution range  
Home position 32767 rev.  
(Note 1) Maximum speed at power failure  
(Note 2) Battery backup time  
Battery storage period  
3000r/min  
Approx. 10,000 hours (battery life with power off)  
5 years from date of manufacture.  
Note 1. Maximum speed available when the shaft is rotated by external force at the time of power failure or the like.  
2. Time to hold data by a battery with power off. It is recommended to replace the battery in three years independently of  
whether power is kept on or off.  
16 - 67  
16. INDEXER POSITIONING OPERATION  
(3) Structure  
Component  
Servo amplifier  
Description  
Use standard models.  
MR-J3BAT  
Servo motor  
Battery  
Encoder cable  
Use a standard model. (Refer to section 14.1.)  
(4) Outline of absolute position detection data communication  
For normal operation, as shown below, the encoder consists of a detector designed to detect a position  
within one revolution and a cumulative revolution counter designed to detect the number of revolutions.  
The absolute position detection system always detects the absolute position of the machine and keeps it  
battery-backed, independently of whether the general-purpose programming controller power is on or off.  
Therefore, once the home position is defined at the time of machine installation, home position return is not  
needed when power is switched on thereafter.  
If a power failure or a fault occurs, restoration is easy.  
Servo amplifier  
Home position return  
data  
Point table No. selection,  
etc.  
EEP-ROM memory  
I/O circuit  
Current position  
LSO  
1XO  
1X  
Backup at  
power off  
LS  
Position data, speed data  
(current position read)  
Detection of position  
within one revolution  
Speed detection  
MR-J3BAT  
Servo motor  
1 pulse/rev. Cumulative revolution counter  
Within one-revolution counter  
High-speed serial  
communication  
(5) Battery installation procedure  
Before installing a battery, turn off the main circuit power while keeping the control  
circuit power on. Wait for 15 minutes or more until the charge lamp turns off. Then,  
confirm that the voltage between P( ) and N( ) is safe with a voltage tester and  
others. Otherwise, an electric shock may occur. In addition, always confirm from  
the front of the servo amplifier whether the charge lamp is off or not.  
WARNING  
POINT  
The internal circuits of the servo amplifier may be damaged by static electricity.  
Always take the following precautions.  
Ground human body and work bench.  
Do not touch the conductive areas, such as connector pins and electrical  
parts, directly by hand.  
Before starting battery changing procedure, make sure that the main circuit  
power is switched OFF with the control circuit power ON. When battery is  
changed with the control power OFF, the absolute position data is lost.  
16 - 68  
16. INDEXER POSITIONING OPERATION  
(a) For MR-J3-350T or less MR-J3-200T4 or less  
POINT  
For the servo amplifier with a battery holder on the bottom, it is not possible to  
wire for the earth with the battery installed. Insert the battery after executing  
the earth wiring of the servo amplifier.  
Insert connector into CN4.  
(b) For MR-J3-500T or more MR-J3-350T4 or more  
Insert connector into CN4.  
(c) Parameter setting  
Set parameter No.PA03 (Absolute position detection system) as indicated below to make the absolute  
position detection system valid.  
Parameter No.PA03  
1
Selection of absolute position detection system  
0: Incremental system  
1: Absolute position detection system  
16 - 69  
16. INDEXER POSITIONING OPERATION  
16.11 Parameters  
Never adjust or change the parameter values extremely as it will make operation  
CAUTION  
instable.  
POINT  
For any parameter whose symbol is preceded by *, set the parameter value  
and switch power off once, then switch it on again to make that parameter  
setting valid.  
In this servo amplifier, the parameters are classified into the following groups on a function basis.  
Parameter group  
Main description  
Basic setting parameters  
Make basic setting with these parameters. Generally, the operation is possible only with these  
parameter settings.  
(No.PA  
Gain/filter parameters  
(No.PB  
Extension setting parameters  
(No.PC  
I/O setting parameters  
(No.PD  
)
Use these parameters when making gain adjustment manually.  
)
These parameters are inherent to the MR-J3- T servo amplifier.  
)
Use these parameters when changing the I/O devices of the servo amplifier.  
)
Mainly setting the basic setting parameters (No.PA  
time of introduction.  
) allows the setting of the basic parameters at the  
16.11.1 Basic setting parameters (No.PA  
(1) Parameter list  
)
Initial  
Unit  
No. Symbol  
Name  
value  
0000h  
0000h  
0000h  
0000h  
0000h  
1
PA01 *STY Control mode  
PA02 *REG Regenerative option  
PA03 *ABS Absolute position detection system  
PA04  
PA05  
Not used in indexer positioning operation.  
Do not change the parameter.  
PA06 *CMX Number of gears on machine-side  
PA07 *CDV Number of gears on servo motor-side  
1
PA08  
PA09  
PA10  
PA11  
PA12  
PA13  
ATU  
Auto tuning mode  
0001h  
12  
RSP Auto tuning response  
INP  
TLP  
TLN  
In-position range  
100  
100.0  
100.0  
0002h  
0
pulse  
%
Forward rotation torque limit  
Reverse rotation torque limit  
For manufacturer setting  
%
PA14 *POL Rotation direction selection  
PA15 *ENR Encoder output pulses  
4000  
0000h  
0000h  
0000h  
000Ch  
pulse/rev  
PA16  
PA17  
PA18  
PA19  
For manufacturer setting  
Do not change this valve by any means.  
*BLK Parameter write inhibit  
16 - 70  
16. INDEXER POSITIONING OPERATION  
(2) Parameter write inhibit  
Parameter  
Initial  
value  
Unit  
Setting range  
No. Symbol  
Name  
PA19 *BLK Parameter write inhibit  
000Ch  
Refer to the text.  
POINT  
This parameter is made valid when power is switched off, then on after  
setting.  
In the factory setting, this servo amplifier allows changes to the basic setting parameter, gain/filter  
parameter and extension setting parameter settings. With the setting of parameter No.PA19, write can be  
disabled to prevent accidental changes.  
The following table indicates the parameters which are enabled for reference and write by the setting of  
parameter No.PA19. Operation can be performed for the parameters marked  
.
Basic setting  
parameters  
No.PA  
Gain/Filter  
parameters  
No.PB  
Extension setting  
parameters  
No.PC  
I/O setting  
parameters  
No.PD  
Parameter No.PA19  
setting  
Setting operation  
Reference  
Write  
0000h  
000Bh  
Reference  
Write  
000Ch  
Reference  
Write  
(initial value)  
Reference  
100Bh  
100Ch  
Parameter No.  
PA19 only  
Write  
Reference  
Write  
Parameter No.  
PA19 only  
(3) Selection of command system  
Parameter  
Initial  
Unit  
Setting range  
value  
No. Symbol  
Name  
PA01 *STY Control mode  
0000h  
Refer to the text.  
POINT  
This parameter is made valid when power is switched off, then on after  
setting.  
Select the command system.  
Parameter No.PA01  
0 0 0  
Operation method  
0: Point table positioning operation  
1: Indexer positioning operation  
16 - 71  
16. INDEXER POSITIONING OPERATION  
(4) Selection of regenerative option  
Parameter  
Initial  
value  
Unit  
Setting range  
No. Symbol  
Name  
PA02 *REG Regenerative option  
0000h  
Refer to the text.  
POINT  
This parameter is made valid when power is switched off, then on after  
setting.  
Wrong setting may cause the regenerative option to burn.  
If the regenerative option selected is not for use with the servo amplifier,  
parameter error (A37) occurs.  
Set this parameter when using the regenerative option, brake unit, power regeneration converter, or power  
regeneration common converter.  
Parameter No.PA02  
0 0  
Selection of regenerative option  
00: Regenerative option is not used  
For servo amplifier of 100W, regenerative resistor is not used.  
For servo amplifier of 200 to 7kW, built-in regenerative resistor is used.  
Supplied regenerative resistors or regenerative option is used with  
the servo amplifier of 11k to 22kW.  
01: FR-BU2-(H) FR-RC-(H) FR-CV-(H)  
02: MR-RB032  
03: MR-RB12  
04: MR-RB32  
05: MR-RB30  
06: MR-RB50(Cooling fan is required)  
08: MR-RB31  
09: MR-RB51(Cooling fan is required)  
80: MR-RB1H-4  
81: MR-RB3M-4(Cooling fan is required)  
82: MR-RB3G-4(Cooling fan is required)  
83: MR-RB5G-4(Cooling fan is required)  
84: MR-RB34-4(Cooling fan is required)  
85: MR-RB54-4(Cooling fan is required)  
FA: When the supplied regenerative resistor is cooled by the cooling  
fan to increase the ability with the servo amplifier of 11k to 22kW.  
(5) Using absolute position detection system  
Parameter  
Initial  
value  
Unit  
Setting range  
No. Symbol  
Name  
PA03 *ABS Absolute position detection system  
0000h  
Refer to the text.  
POINT  
This parameter is made valid when power is switched off, then on after  
setting.  
Set this parameter when using the absolute position detection system.  
Parameter No.PA03  
0 0 0  
Selection of absolute position detection system (refer to section 16.10)  
0: Used in incremental system  
1: Used in absolute position detection system  
16 - 72  
16. INDEXER POSITIONING OPERATION  
(6) Electronic gear  
Parameter  
Initial  
value  
Unit  
Setting range  
No. Symbol  
Name  
PA06 *CMX Number of gears on machine-side  
1
1
1 to 16384  
1 to 16384  
PA07 *CDV Number of gears on servo motor-side  
False setting will result in unexpected fast rotation, causing injury.  
POINT  
CAUTION  
This parameter is made valid when power is switched off, then on after  
setting.  
Set the electronic gear within the following condition range.  
(1) 1/9999 CMX/CDV 9999  
(2) CDV STN 32767  
(3) CMX CDV 100000  
When a value out of the condition range is set, the parameter error (A37)  
occurs. If the setting of electronic gear ratio is small, the servo motor may not  
operate with the set servo motor speed.  
Setting range of the parameters No.PA06 and PA07 for the indexer  
positioning operation is 1 to 16384. It is different from the setting range for the  
point table positioning operation.  
Use the parameters No. PA06 and PA07 to adjust the rotation amount “m” on the servo motor shaft that is  
necessary to rotate the machine side “n” times. A setting example for electronic gear is shown next.  
16 - 73  
16. INDEXER POSITIONING OPERATION  
(a) Example 1  
When the number of pulley teeth on the machine-side is 50, and the number of pulley teeth on the servo  
motor side is 20.  
Parameter No.PA06: 50  
Parameter No.PA07: 20  
Number of pulley teeth on  
macine side: 50  
Number of pulley teeth on  
servo motor side: 20  
(b) Example 2  
When the number of pulley teeth on the machine-side is 50, the number of pulley teeth on the servo  
motor side is 20, and using the servo motor with 1/9 reduction gear.  
50  
20  
9
1
450  
20  
Number of pulley teeth on  
macine side: 50  
Parameter No.PA06: 450  
Parameter No.PA07: 20  
Number of pulley teeth on  
servo motor side: 20  
Reduction ratio of servo motor with a  
reduction gear: 1/9  
16 - 74  
16. INDEXER POSITIONING OPERATION  
(7) Auto tuning  
Parameter  
Initial  
value  
Unit  
Setting range  
No. Symbol  
Name  
PA08 ATU Auto tuning mode  
PA09 RSP Auto tuning response  
0001h  
12  
Refer to the text.  
1 to 32  
Make gain adjustment using auto tuning. Refer to section 9.2 for details.  
(a) Auto tuning mode (parameter No.PA08)  
Select the gain adjustment mode.  
Parameter No.PA08  
0 0 0  
Gain adjustment mode setting  
Setting Gain adjustment mode Automatically set parameter No. (Note)  
0
1
2
3
Interpolation mode  
Auto tuning mode 1  
Auto tuning mode 2  
Manual mode  
PB06 PB08 PB09 PB10  
PB06 PB07 PB08 PB09 PB10  
PB07 PB08 PB09 PB10  
Note. The parameters have the following names.  
Parameter No.  
Name  
PB06  
PB07  
PB08  
PB09  
PB10  
Ratio of load inertia moment to servo motor inertia moment  
Model loop gain  
Position loop gain  
Speed loop gain  
Speed integral compensation  
(b) Auto tuning response (parameter No.PA09)  
If the machine hunts or generates large gear sound, decrease the set value. To improve performance,  
e.g. shorten the settling time, increase the set value.  
Guideline for machine  
Guideline for machine  
Setting  
Response  
Setting  
Response  
resonance frequency [Hz]  
resonance frequency [Hz]  
1
2
Low response  
10.0  
11.3  
12.7  
14.3  
16.1  
18.1  
20.4  
23.0  
25.9  
29.2  
32.9  
37.0  
41.7  
47.0  
52.9  
59.6  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
Low response  
67.1  
75.6  
3
85.2  
4
95.9  
5
108.0  
121.7  
137.1  
154.4  
173.9  
195.9  
220.6  
248.5  
279.9  
315.3  
355.1  
400.0  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
Middle response  
Middle response  
16 - 75  
16. INDEXER POSITIONING OPERATION  
(8) In-position range  
Parameter  
Initial  
value  
Unit  
Setting range  
0 to 10000  
No. Symbol  
PA10 INP  
Name  
In-position range  
100  
pulse  
Set the range for outputting the movement completion (RXnC) and the in position (RXn1) in command  
pulse unit.  
Servo motor Droop pulse  
Command pulse  
Droop pulse  
Command pulse  
In-position range [pulse]  
ON  
In position (RXn1)  
OFF  
(9) Torque limit  
Parameter  
Initial  
Unit  
Setting range  
value  
No. Symbol  
Name  
PA11  
PA12  
TLP Forward rotation torque limit  
TLN Reverse rotation torque limit  
100.0  
100.0  
%
%
0 to 100.0  
0 to 100.0  
The torque generated by the servo motor can be limited.  
(a) Forward rotation torque limit (parameter No.PA11)  
Set this parameter on the assumption that the maximum torque is 100[%]. Set this parameter when  
limiting the torque of the servo motor in the CCW driving mode or CW regeneration mode. Set this  
parameter to "0.0" to generate no torque.  
(b) Reverse rotation torque limit (parameter No.PA12)  
Set this parameter on the assumption that the maximum torque is 100[%]. Set this parameter when  
limiting the torque of the servo motor in the CW driving mode or CCW regeneration mode. Set this  
parameter to "0.0" to generate no torque.  
16 - 76  
16. INDEXER POSITIONING OPERATION  
(10)Station No. direction selection  
Parameter  
Initial  
value  
Unit  
Setting range  
No. Symbol  
Name  
PA14 *POL Station No. direction selection  
0
0
1
POINT  
This parameter is made valid when power is switched off, then on after  
setting.  
Select the allocation direction of station numbers using the parameter No.PA14 (Station No. direction  
selection).  
Station No. allocation direction  
Start (RYn1) ON  
Parameter No.PA14  
setting  
0 (Initial value)  
1
Station No. is allocated in CW direction in order of 1, 2, 3...  
Station No. is allocated in CCW direction in order of 1, 2, 3...  
CCW  
CW  
CCW  
direction  
CW  
direction  
4
4
3
2
1
3
2
1
Station No.  
Station No.  
Parameter No.PA14: 0 (Initial value)  
Parameter No.PA14: 1  
16 - 77  
16. INDEXER POSITIONING OPERATION  
(11)Encoder output pulse  
Parameter  
Initial  
value  
Unit  
Setting range  
1 to 65535  
No. Symbol  
Name  
pulse/  
rev  
PA15 *ENR Encoder output pulse  
4000  
POINT  
This parameter is made valid when power is switched off, then on after  
setting.  
Used to set the encoder pulses (A-phase, B-phase) output by the servo amplifier.  
Set the value 4 times greater than the A-phase or B-phase pulses.  
You can use parameter No.PC19 to choose the output pulse setting or output division ratio setting.  
The number of A/B-phase pulses actually output is 1/4 times greater than the preset number of pulses.  
The maximum output frequency is 4.6Mpps (after multiplication by 4). Use this parameter within this range.  
(a) For output pulse designation  
Set "  
0
" (initial value) in parameter No.PC19.  
Set the number of pulses per servo motor revolution.  
Output pulse set value [pulses/rev]  
For instance, set "5600" to Parameter No.PA15, the actually output A/B-phase pulses are as indicated  
below.  
5600  
4
A B-phase output pulses  
1400[pulse]  
(b) For output division ratio setting  
Set " 1 " in parameter No.PC19.  
The number of pulses per servo motor revolution is divided by the set value.  
Resolution per servo motor revolution  
Output pulse  
[pulses/rev]  
Set value  
For instance, set "8" to Parameter No.PA15, the actually output A/B-phase pulses are as indicated  
below.  
262144 1  
A B-phase output pulses  
8192[pulse]  
8
4
16 - 78  
16. INDEXER POSITIONING OPERATION  
16.11.2 Gain/filter parameters (No.PB  
)
(1) Parameter list  
No. Symbol  
Name  
Initial value  
0000h  
Unit  
PB01 FILT Adaptive tuning mode (Adaptive filter  
)
Vibration suppression control tuning mode  
(Advanced vibration suppression control)  
For manufacturer setting  
PB02 VRFT  
PB03  
0000h  
0000h  
0
PB04  
PB05  
FFC Feed forward gain  
%
For manufacturer setting  
500  
7.0  
PB06 GD2 Ratio of load inertia moment to servo motor inertia moment  
Multiplier  
(
1)  
PB07 PG1 Model loop gain  
PB08 PG2 Position loop gain  
PB09 VG2 Speed loop gain  
24  
37  
rad/s  
rad/s  
rad/s  
ms  
823  
PB10  
PB11 VDC Speed differential compensation  
PB12 For manufacturer setting  
VIC  
Speed integral compensation  
33.7  
980  
0
PB13 NH1 Machine resonance suppression filter 1  
PB14 NHQ1 Notch shape selection 1  
4500  
0000h  
4500  
0000h  
Hz  
Hz  
PB15 NH2 Machine resonance suppression filter 2  
PB16 NHQ2 Notch shape selection 2  
PB17  
PB18  
Automatic setting parameter  
Low-pass filter  
LPF  
3141  
100.0  
100.0  
0.00  
0.00  
0000h  
0000h  
0000h  
0000h  
10  
rad/s  
Hz  
PB19 VRF1 Vibration suppression control vibration frequency setting  
PB20 VRF2 Vibration suppression control resonance frequency setting  
Hz  
PB21  
PB22  
For manufacturer setting  
PB23 VFBF Low-pass filter selection  
PB24 *MVS Slight vibration suppression control selection  
PB25  
For manufacturer setting  
PB26 *CDP Gain changing selection  
PB27 CDL Gain changing condition  
PB28 CDT Gain changing time constant  
1
ms  
PB29 GD2B Gain changing ratio of load inertia moment to servo motor inertia moment  
7.0  
Multiplier  
(
1)  
PB30 PG2B Gain changing position loop gain  
37  
823  
rad/s  
rad/s  
ms  
PB31 VG2B Gain changing speed loop gain  
PB32 VICB Gain changing speed integral compensation  
33.7  
100.0  
100.0  
0.00  
0.00  
100  
PB33 VRF1B Gain changing vibration suppression control vibration frequency setting  
PB34 VRF2B Gain changing vibration suppression control resonance frequency setting  
Hz  
Hz  
PB35  
PB36  
PB37  
PB38  
PB39  
PB40  
PB41  
PB42  
PB43  
PB44  
PB45  
For manufacturer setting  
0
0
0
1125  
1125  
0004h  
0000h  
0000h  
16 - 79  
16. INDEXER POSITIONING OPERATION  
(2) Detail list  
Setting  
range  
No. Symbol  
Name and function  
Initial value  
0000h  
Unit  
PB01 FILT Adaptive tuning mode (Adaptive filter  
)
Select the setting method for filter tuning. Setting this parameter to "  
(filter tuning mode 1) automatically changes the machine resonance  
1"  
suppression filter 1 (parameter No.PB13) and notch shape selection (parameter  
No.PB14).  
Machine resonance point  
Frequency  
Frequency  
Notch frequency  
0 0 0  
Filter tuning mode selection  
Setting Filter adjustment mode Automatically set parameter  
0
1
2
Filter OFF  
(Note)  
Parameter No.PB13  
Parameter No.PB14  
Filter tuning mode  
Manual mode  
Note. Parameter No.PB13 and PB14 are fixed to the initial values.  
When this parameter is set to "  
1", the tuning is completed after  
positioning is done the predetermined number or times for the predetermined  
period of time, and the setting changes to "  
not necessary, the setting changes to "  
2". When the filter tuning is  
0". When this parameter is set to  
"
0", the initial values are set to the machine resonance suppression filter  
1 and notch shape selection. However, this does not occur when the servo off.  
16 - 80  
16. INDEXER POSITIONING OPERATION  
Setting  
range  
No. Symbol  
Name and function  
Initial value  
0000h  
Unit  
PB02 VRFT Vibration suppression control tuning mode (Advanced vibration suppression  
control)  
The vibration suppression is valid when the parameter No.PA08 (auto tuning)  
setting is "  
2" or "  
3". When PA08 is "  
1", vibration suppression  
is always invalid.  
Select the setting method for vibration suppression control tuning. Setting this  
parameter to " 1" (vibration suppression control tuning mode)  
automatically changes the vibration suppression control vibration frequency  
(parameter No.PB19) and vibration suppression control resonance frequency  
(parameter No.PB20) after positioning is done the predetermined number of  
times.  
Droop pulse  
Command  
Droop pulse  
Command  
Automatic  
adjustment  
Machine side  
position  
Machine side  
position  
0 0 0  
Vibration suppression control tuning mode  
Automatically set parameter  
Vibration suppression  
Setting  
0
control tuning mode  
Vibration suppression  
control OFF  
(Note)  
Vibration suppression  
control tuning mode  
(Advanced vibration  
suppression control)  
Parameter No.PB19  
Parameter No.PB20  
1
2
Manual mode  
Note. Parameter No.PB19 and PB20 are fixed to the initial values.  
When this parameter is set to "  
positioning is done the predetermined number or times for the predetermined  
period of time, and the setting changes to " 2". When the vibration  
suppression control tuning is not necessary, the setting changes to "  
When this parameter is set to " 0", the initial values are set to the vibration  
1", the tuning is completed after  
0".  
suppression control - vibration frequency and vibration suppression control -  
resonance frequency. However, this does not occur when the servo off.  
For manufacturer setting  
PB03  
PB04  
0000h  
0
Do not change this value by any means.  
FFC Feed forward gain  
%
0
to  
Set the feed forward gain. When the setting is 100%, the droop pulses during  
operation at constant speed are nearly zero. However, sudden  
acceleration/deceleration will increase the overshoot. As a guideline, when the  
feed forward gain setting is 100%, set 1s or more as the  
100  
acceleration/deceleration time constant up to the rated speed.  
16 - 81  
16. INDEXER POSITIONING OPERATION  
Setting  
range  
No. Symbol  
PB05  
Name and function  
Initial value  
500  
Unit  
For manufacturer setting  
Do not change this value by any means.  
PB06 GD2 Ratio of load inertia moment to servo motor inertia moment  
Used to set the ratio of the load inertia moment to the servo motor shaft inertia  
moment. When auto tuning mode 1 and interpolation mode is selected, the  
result of auto tuning is automatically used.  
7.0  
Multiplier  
0
to  
(
1)  
300.0  
(Refer to section 9.1.1)  
In this case, it varies between 0 and 100.0.  
PB07 PG1 Model loop gain  
24  
37  
rad/s  
rad/s  
1
to  
Set the response gain up to the target position.  
Increase the gain to improve track ability in response to the command.  
When auto turning mode 1,2 is selected, the result of auto turning is  
automatically used.  
2000  
PB08 PG2 Position loop gain  
1
to  
Used to set the gain of the position loop.  
Set this parameter to increase the position response to level load disturbance.  
Higher setting increases the response level but is liable to generate vibration  
and/or noise.  
1000  
When auto tuning mode 1,2 and interpolation mode is selected, the result of  
auto tuning is automatically used.  
PB09 VG2 Speed loop gain  
823  
rad/s  
20  
to  
Set this parameter when vibration occurs on machines of low rigidity or large  
backlash.  
50000  
Higher setting increases the response level but is liable to generate vibration  
and/or noise.  
When auto tuning mode 1 2 manual mode and interpolation mode is selected,  
,
the result of auto tuning is automatically used.  
Speed integral compensation  
PB10  
VIC  
33.7  
980  
ms  
0.1  
to  
Used to set the integral time constant of the speed loop.  
Lower setting increases the response level but is liable to generate vibration  
and/or noise.  
1000.0  
When auto tuning mode 1 2 and interpolation mode is selected, the result of  
,
auto tuning is automatically used.  
PB11 VDC Speed differential compensation  
Used to set the differential compensation.  
0
to  
Made valid when the proportion control (RY(n 2)7) is switched on.  
For manufacturer setting  
Do not change this value by any means.  
PB13 NH1 Machine resonance suppression filter 1  
Set the notch frequency of the machine resonance suppression filter 1.  
1000  
PB12  
0
4500  
Hz  
100  
to  
Setting parameter No.PB01 (filter tuning mode 1) to "  
changes this parameter.  
1" automatically  
4500  
When the parameter No.PB01 setting is "  
is ignored.  
0", the setting of this parameter  
16 - 82  
16. INDEXER POSITIONING OPERATION  
Setting  
range  
No. Symbol  
Name and function  
Initial value  
0000h  
Unit  
PB14 NHQ1 Notch shape selection 1  
Refer to  
name and  
function  
Used to selection the machine resonance suppression filter 1.  
0
0
column.  
Notch depth selection  
Setting value Depth  
Gain  
-40dB  
-14dB  
-8dB  
0
1
2
3
Deep  
to  
Shallow -4dB  
Notch width  
Setting value Width  
0
1
2
3
Standard  
2
3
4
5
to  
Wide  
Setting parameter No.PB01 (filter tuning mode 1) to "  
changes this parameter.  
1" automatically  
When the parameter No.PB01 setting is "  
is ignored.  
0", the setting of this parameter  
100  
to  
PB15 NH2 Machine resonance suppression filter 2  
4500  
Hz  
Set the notch frequency of the machine resonance suppression filter 2.  
4500  
Set parameter No.PB16 (notch shape selection 2) to "  
parameter valid.  
1" to make this  
PB16 NHQ2 Notch shape selection 2  
0000h  
Refer to  
name and  
function  
Select the shape of the machine resonance suppression filter 2.  
0
column.  
Machine resonance suppression filter 2 selection  
0: Invalid  
1: Valid  
Notch depth selection  
Setting value Depth  
Gain  
-40dB  
-14dB  
-8dB  
0
1
2
3
Deep  
to  
Shallow -4dB  
Notch width  
Setting value Width  
0
1
2
3
Standard  
2
3
4
5
to  
Wide  
PB17  
Automatic setting parameter  
The value of this parameter is set according to a set value of parameter  
No.PB06 (Ratio of load inertia moment to servo motor inertia moment).  
16 - 83  
16. INDEXER POSITIONING OPERATION  
Setting  
range  
No. Symbol  
PB18 LPF  
Name and function  
Initial value  
3141  
Unit  
Low-pass filter  
rad/s  
100  
to  
Set the low-pass filter.  
Setting parameter No.PB23 (low-pass filter selection) to "  
changes this parameter.  
0
" automatically  
18000  
When parameter No.PB23 is set to "  
manually.  
1
", this parameter can be set  
PB19 VRF1 Vibration suppression control vibration frequency setting  
Set the vibration frequency for vibration suppression control to suppress low-  
frequency machine vibration, such as enclosure vibration.  
100.0  
100.0  
Hz  
Hz  
0.1  
to  
100.0  
Setting parameter No.PB02 (vibration suppression control tuning mode) to  
"
1" automatically changes this parameter. When parameter No.PB02 is  
2", this parameter can be set manually.  
set to "  
PB20 VRF2 Vibration suppression control resonance frequency setting  
Set the resonance frequency for vibration suppression control to suppress low-  
frequency machine vibration, such as enclosure vibration.  
0.1  
to  
100.0  
Setting parameter No.PB02 (vibration suppression control tuning mode) to  
"
1" automatically changes this parameter. When parameter No.PB02 is  
2", this parameter can be set manually.  
set to "  
PB21  
PB22  
For manufacturer setting  
0.00  
0.00  
Do not change this value by any means.  
PB23 VFBF Low-pass filter selection  
Select the low-pass filter.  
0000h  
Refer to  
name and  
function  
0 0  
0
column.  
Low-pass filter selection  
0: Automatic setting  
1: Manual setting (parameter No.PB18 setting)  
When automatic setting has been selected, select the filter that has the band  
VG2 10  
width close to the one calculated with  
[rad/s]  
1 + GD2  
PB24 *MVS Slight vibration suppression control selection  
Select the slight vibration suppression control.  
0000h  
Refer to  
name and  
function  
When parameter No.PA08 (auto tuning mode) is set to "  
is made valid.  
3", this parameter  
column.  
0 0 0  
Slight vibration suppression control selection  
0: Invalid  
1: Valid  
16 - 84  
16. INDEXER POSITIONING OPERATION  
Setting  
range  
No. Symbol  
PB25  
Name and function  
Initial value  
0000h  
Unit  
For manufacturer setting  
Do not change this value by any means.  
PB26 *CDP Gain changing selection  
Select the gain changing condition. (Refer to section 10.6.)  
0000h  
Refer to  
name and  
function  
0 0  
column.  
Gain changing selection  
Under any of the following conditions, the gains  
change on the basis of the parameter No.PB29 to  
PB32 settings.  
0: Invalid  
1: Gain changing (RX(n 2)8) is ON  
2: Command frequency (Parameter No.PB27 setting)  
3: Droop pulse value (Parameter No.PB27 setting)  
4: Servo motor speed (Parameter No.PB27 setting)  
Gain changing condition  
0: Valid at more than condition (Valid when gain  
changing (RX(n 2)8) is ON)  
1: Valid at less than condition (Valid when gain  
changing (RX(n 2)8) is OFF)  
PB27 CDL Gain changing condition  
Used to set the value of gain changing condition (command frequency, droop  
10  
kpps  
pulse  
r/min  
0
to  
pulses, servo motor speed) selected in parameter No.PB26. The set value unit  
changes with the changing condition item. (Refer to section 10.6.)  
9999  
PB28 CDT Gain changing time constant  
1
ms  
0
to  
Used to set the time constant at which the gains will change in response to the  
conditions set in parameters No.PB26 and PB27. (Refer to section 10.6.)  
PB29 GD2B Gain changing ratio of load inertia moment to servo motor inertia moment  
Used to set the ratio of load inertia moment to servo motor inertia moment when  
gain changing is valid.  
100  
0
7.0  
Multiplier  
(
1)  
to  
300.0  
This parameter is made valid when the auto tuning is invalid (parameter No.  
PA08:  
PB30 PG2B Gain changing position loop gain  
Set the position loop gain when the gain changing is valid.  
This parameter is made valid when the auto tuning is invalid (parameter No.  
PA08: 3).  
PB31 VG2B Gain changing speed loop gain  
Set the speed loop gain when the gain changing is valid.  
This parameter is made valid when the auto tuning is invalid (parameter No.  
PA08: 3).  
3).  
37  
rad/s  
rad/s  
1
to  
2000  
823  
20  
to  
20000  
Note. The setting range of 50000 applies to the servo amplifier whose software  
version is A3 or later. The setting range of the servo amplifier whose  
software version is older than A3 is 20 to 20000. When the software  
version of MR Configurator is A3 or earlier, 20001 or more cannot be set.  
Use the display/operation section of the servo amplifier to set 20001 or  
more.  
PB32 VICB Gain changing speed integral compensation  
33.7  
ms  
0.1  
to  
Set the speed integral compensation when the gain changing is valid.  
This parameter is made valid when the auto tuning is invalid (parameter No.  
5000.0  
PA08:  
3).  
16 - 85  
16. INDEXER POSITIONING OPERATION  
Setting  
range  
No. Symbol  
Name and function  
Initial value  
100.0  
Unit  
Hz  
PB33 VRF1B Gain changing vibration suppression control vibration frequency setting  
Set the vibration frequency for vibration suppression control when the gain  
changing is valid. This parameter is made valid when the parameter No.PB02  
0.1  
to  
100.0  
setting is "  
2" and the parameter No.PB26 setting is "  
1".  
When using the vibration suppression control gain changing, always execute  
the changing after the servo motor has stopped.  
PB34 VRF2B Gain changing vibration suppression control resonance frequency setting  
Set the resonance frequency for vibration suppression control when the gain  
changing is valid. This parameter is made valid when the parameter No.PB02  
100.0  
Hz  
0.1  
to  
100.0  
setting is "  
2" and the parameter No.PB26 setting is "  
1".  
When using the vibration suppression control gain changing, always execute  
the changing after the servo motor has stopped.  
For manufacturer setting  
PB35  
PB36  
PB37  
PB38  
PB39  
PB40  
PB41  
PB42  
PB43  
PB44  
PB45  
0.00  
0.00  
100  
Do not change this value by any means.  
0
0
0
1125  
1125  
0004h  
0000h  
0000h  
16 - 86  
16. INDEXER POSITIONING OPERATION  
16.11.3 Extension setting parameters (No.PC  
(1) Parameter list  
)
No. Symbol  
PC01  
Name  
Initial value  
0000h  
0000h  
0001h  
500  
Unit  
For manufacturer setting  
PC02 *ZTY Home position return type  
PC03 *ZDIR Home position return direction  
PC04 ZRF Home position return speed  
PC05 CRF Creep speed  
r/min  
r/min  
m
10  
PC06  
PC07  
PC08  
PC09  
PC10  
ZST Home position shift distance  
0
Not used in indexer positioning operation.  
0
1000  
100  
15.0  
0
PC11 CRP Rough match output range  
PC12 JOG Jog speed  
pulse  
r/min  
100  
PC13  
Not used in indexer positioning operation.  
0
PC14 *BKC Backlash compensation  
0
pulse  
ms  
PC15  
PC16 MBR Electromagnetic brake sequence output  
PC17 Not used in indexer positioning operation.  
For manufacturer setting  
0000h  
100  
50  
PC18 *BPS Alarm history clear  
0000h  
0000h  
0
PC19 *ENRS Encoder output pulse selection  
PC20 *SNO Station number setting  
station  
PC21 *SOP RS-422 communication function selection  
PC22 *COP1 Function selection C-1  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0
PC23  
PC24  
PC25  
For manufacturer setting  
Not used in indexer positioning operation.  
For manufacturer setting  
PC26 *COP5 Function selection C-5  
PC27  
PC28  
PC29  
For manufacturer setting  
Not used in indexer positioning operation.  
For manufacturer setting  
PC30 *DSS Remote register-based position/speed specifying system selection  
PC31  
PC32  
PC33  
PC34  
PC35  
PC36  
PC37  
PC38  
PC39  
PC40  
PC41  
PC42  
PC43  
PC44  
Not used in indexer positioning operation.  
0
TL2  
Internal torque limit 2  
100.0  
0000h  
0
%
For manufacturer setting  
Not used in indexer positioning operation.  
0
For manufacturer setting  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
PC45 *COP9 Function selection C-9  
PC46 *STN Indexer positioning operation number of stations/rotation  
PC47 PSST Indexer positioning operation station home position shift distance  
pulse  
PC48  
For manufacturer setting  
16 - 87  
16. INDEXER POSITIONING OPERATION  
No. Symbol  
PC49  
Name and function  
Initial value  
0000h  
Unit  
For manufacturer setting  
For manufacturer setting  
PC50  
0000h  
(2) Detail list  
No. Symbol  
PC01  
Name and function  
Initial value  
Unit  
Setting range  
0000h  
Do not change this value by any means.  
PC02 *ZTY Home position return type  
Used to set the home position return system. (Refer to section 5.6.)  
0000h  
Refer to  
name and  
function  
Parameter No.PC02  
column.  
0 0 0  
Home position return method  
0:  
1:  
2:  
3:  
4:  
5:  
6:  
7:  
8:  
9:  
A:  
Not used in indexer postioning operation.  
C: Torque limit changing dog type  
D: Torque limit changing data setting type  
PC03 *ZDIR Home position return direction  
Used to set the home position return direction.  
0001h  
Refer to  
name and  
function  
Parameter No.PC03  
column.  
0 0 0  
Home position return direction  
0: Station No. increment direction  
1: Station No. decrement direction  
PC04 ZRF Home position return speed  
500  
10  
0
r/min  
r/min  
m
0 to  
permissible  
speed  
0 to  
Used to set the servo motor speed for home position return.  
(Refer to section 16.9.)  
PC05 CRF Creep speed  
Used to set the creep speed after proximity dog detection.  
(Refer to section 16.9.)  
permissible  
speed  
0
PC06  
ZST Home position shift distance  
Used to set the shift distance starting at the Z-phase pulse detection position  
inside the encoder. (Refer to section 16.9.)  
Not used in indexer positioning operation.  
Do not change the parameter.  
to  
65535  
PC07  
PC08  
PC09  
PC10  
0
1000  
100  
15.0  
0
PC11 CRP Rough match output range  
Used to set the command remaining distance range where the rough match  
(RXn2) is output.  
PC12 JOG Jog speed  
Used to set the jog speed command.  
10STM  
r/min  
m
0
to  
65535  
0
100  
to permissible  
speed  
16 - 88  
16. INDEXER POSITIONING OPERATION  
No. Symbol  
Name and function  
Not used in indexer positioning operation.  
Do not change the parameter.  
PC14 *BKC Backlash compensation  
Used to set the backlash compensation made when the command  
Initial value  
0
Unit  
Setting range  
PC13  
0
pulse  
0
to  
direction is reversed.  
32000  
This function compensates for the number of backlash pulses in the  
opposite direction to the home position return direction.  
For the home position ignorance (servo-on position as home position), this  
function compensates for the number of backlash pulses in the opposite  
direction to the first rotating direction after establishing the home position  
by switching ON the servo-on (RYn0).  
In the absolute position detection system, this function compensates for  
the backlash pulse count in the direction opposite to the operating direction  
at power-on.  
PC15  
For manufacturer setting  
0000h  
100  
Do not change this value by any means.  
PC16 MBR Electromagnetic brake sequence output  
Used to set the delay time (Tb) between when the electromagnetic brake  
ms  
0
to  
interlock (MBR) switches off and when the base circuit is shut off.  
Not used in indexer positioning operation.  
Do not change the parameter.  
1000  
PC17  
50  
PC18 *BPS Alarm history clear  
Used to clear the alarm history.  
0000h  
Refer to  
name and  
function  
0 0 0  
column.  
Alarm history clear  
0: Invalid  
1: Valid  
When alarm history clear is made valid,  
the alarm history is cleared at next power-on.  
After the alarm history is cleared, the setting  
is automatically made invalid (reset to 0).  
PC19 *ENRS Encoder output pulse selection  
Use to select the, encoder output pulse direction and encoder output pulse  
0000h  
Refer to  
name and  
function  
setting.  
column.  
0 0  
Encoder output pulse phase changing  
Changes the phases of A, B-phase encoder pulses  
output .  
Servo motor rotation direction  
Set value  
CCW  
CW  
A-phase  
B-phase  
A-phase  
B-phase  
0
1
A-phase  
B-phase  
A-phase  
B-phase  
Encoder output pulse setting selection (refer to parameter No.PA15).  
0: Output pulse designation  
1: Division ratio setting  
2: Outputs the encoder pulse without processing it.  
16 - 89  
16. INDEXER POSITIONING OPERATION  
No. Symbol  
Name and function  
Initial value  
0
Unit  
Setting range  
PC20 *SNO Station number setting  
station  
0
Used to specify the station number for RS-422 serial communication and  
USB communication.  
to  
31  
Always set one station to one axis of servo amplifier. If one station number  
is set to two or more stations, normal communication cannot be made.  
PC21 *SOP RS-422 communication function selection  
0000h  
Refer to  
name and  
function  
Select the communication I/F and select the RS-422 communication  
conditions.  
column.  
0
0
RS-422 communication baud rate selection  
0: 9600 [bps]  
1: 19200 [bps]  
2: 38400 [bps]  
3: 57600 [bps]  
4: 115200[bps]  
RS-422 communication response delay time  
0: Invalid  
1: Valid, reply sent after delay time of 800 s or more  
PC22 *COP1 Function selection C-1  
Select the encoder cable communication system selection.  
0000h  
Refer to the  
name and  
function field.  
0 0 0  
Encoder cable communication system selection  
0: Two-wire type  
1: Four-wire type  
The following encoder cables are of 4-wire type.  
MR-EKCBL30M-L  
MR-EKCBL30M-H  
MR-EKCBL40M-H  
MR-EKCBL50M-H  
The other encoder cables are all of 2-wire type.  
Incorrect setting will result in an encoder alarm 1  
(A16) or encoder alarm 2 (A20).  
PC23  
PC24  
PC25  
For manufacturer setting  
0000h  
0000h  
0000h  
0000h  
Do not change this value by any means.  
Not used in indexer positioning operation.  
Do not change the parameter.  
For manufacturer setting  
Do not change this value by any means.  
PC26 *COP5 Function selection C-5  
Select the stroke limit warning (A99).  
Refer to  
name and  
function  
0 0 0  
column.  
Stroke limit warning (A99) selection  
0: Valid  
1: Invalid  
When this parameter is set to "1", A99 will not  
occur if the forward rotation stroke end (LSP) or  
reverse rotation stroke end (LSN) turns OFF.  
PC27  
PC28  
For manufacturer setting  
0000h  
0000h  
Do not change this value by any means.  
Not used in indexer positioning operation.  
Do not change the parameter.  
16 - 90  
16. INDEXER POSITIONING OPERATION  
No. Symbol  
PC29  
Name and function  
Initial value  
0000h  
Unit  
Setting range  
For manufacturer setting  
Do not change this value by any means.  
PC30 *DSS Remote register-based position/speed specifying system selection  
This parameter is made valid when Position/speed specification selection  
(RY(n 2)A) is turned ON with 2 stations occupied. Select how to receive the  
position command and speed command.  
0000h  
Refer to  
name and  
function  
column.  
When 1 station is occupied, selection of "0001" or "0002" will result in a  
parameter error.  
0 0 0  
Set value  
0
Speed command  
Position command  
Set the station No.  
Specify the servo point  
table No.  
Specify the servo motor  
speed. (Note)  
1
Note. In the case, always set the acceleration/deceleration time constant in  
the point table No.1.  
PC31  
PC32  
PC33  
PC34  
PC35  
Not used in indexer positioning operation.  
Do not change the parameter.  
0
0
TL2  
Internal torque limit 2  
100.0  
%
0
to  
Set this parameter to limit servo motor torque on the assumption that the  
maximum torque is 100[%].  
100.0  
When 0 is set, torque is not produced.  
For manufacturer setting  
PC36  
0000h  
Do not change this value by any means.  
Not used in indexer positioning operation.  
Do not change the parameter.  
PC37  
PC38  
PC39  
PC40  
PC41  
PC42  
PC43  
PC44  
0
0
For manufacturer setting  
0000h  
0000h  
0000h  
0000h  
0000h  
Do not change this value by any means.  
PC45 *COP9 Function selection C-9  
Select the manual operation mode.  
0000h  
to  
0001h  
0 0 0  
Manual operation for indexer positioning operation  
selection (Refer to section 16.7.3)  
0: Indexer JOG operation  
1: JOG operation  
16 - 91  
16. INDEXER POSITIONING OPERATION  
No. Symbol  
Name and function  
Initial value  
0000h  
Unit  
Setting range  
PC46 *STN Indexer positioning operation number of stations/rotation  
Set the number of stations (dividing number) per machine rotation. When  
the setting value is 2 or lower, the number of stations is set to 2.  
Number of  
stations  
0000h  
to  
00FFh  
Number of  
Setting value  
stations  
0000  
0001  
0002  
0003  
0004  
2
2
2
3
4
00FF  
255  
PC47 PSST Indexer positioning operation station home position shift distance  
This parameter is available only in the absolute position detection system.  
Set the distance for shifting the home position toward the set home  
position in number of pulses.  
0000h  
pulse  
Refer to  
name and  
function  
column  
This shift distance does not become valid immediately after the home  
position setting. It becomes valid after turning off and then on the power.  
When the sift distance is larger than the in-position range, the in position  
(RXn1) does not turn on at power-on.  
Set the number of pulses to be shifted after converting it into hexadecimal.  
The setting range is from 2000 to 2000 pulse.  
PC48  
PC49  
PC50  
For manufacturer setting  
0000h  
0000h  
0000h  
Do not change this value by any means.  
(3) Alarm history clear  
The alarm history can be confirmed by using the MR Configurator. The servo amplifier stores one current  
alarm and five past alarms from when its power is switched on first. To control alarms which will occur  
during operation, clear the alarm history using parameter No.PC18 (alarm history clear) before starting  
operation. Clearing the alarm history automatically returns to "  
0".  
This parameter is made valid by switching power off, then on after setting.  
Parameter No.16  
0 0 0  
Alarm history clear  
0: Invalid (not cleared)  
1: Valid (cleared)  
16 - 92  
16. INDEXER POSITIONING OPERATION  
(4) Rough match output  
Rough match (RXn2) is output when the command remaining distance reaches the value set in parameter  
No.PC11 (rough match output range). The setting range is 0 to 65535 [pulse].  
Command remaining distance [pulse]  
set in parameter No.PC11  
Actual servo motor speed  
Servo motor  
Command pulse  
speed  
Rough match  
(RXn2)  
ON  
OFF  
ON  
OFF  
In position (RXnC)  
16.11.4 I/O setting parameters (No.PD  
(1) Parameter list  
)
No. Symbol  
Name  
Initial value  
0000h  
0000h  
0000h  
0000h  
0000h  
002Bh  
000Ah  
000Bh  
0002h  
0003h  
0024h  
0C00h  
0000h  
0800h  
0000h  
0000h  
0000h  
0000h  
0002h  
0010h  
0000h  
0000h  
0000h  
0000h  
0000h  
0064h  
0000h  
0000h  
0000h  
0000h  
Unit  
PD01 *DIA1 Input signal automatic ON selection 1  
PD02  
PD03  
PD04  
PD05  
PD06  
PD07  
PD08  
PD09  
PD10  
PD11  
PD12  
PD13  
PD14  
PD15  
For manufacturer setting  
Not used in indexer positioning operation.  
For manufacturer setting  
Not used in indexer positioning operation.  
For manufacturer setting  
Not used in indexer positioning operation.  
For manufacturer setting  
PD16 *DIAB Input polarity selection  
PD17  
PD18  
For manufacturer setting  
PD19 *DIF Response level setting  
PD20 *DOP1 Function selection D-1  
PD21  
PD22  
PD23  
For manufacturer setting  
Not used in indexer positioning operation.  
For manufacturer setting  
PD24 *DOP5 Function selection D-5  
PD25  
PD26  
PD27  
PD28  
PD29  
PD30  
For manufacturer setting  
TLT  
Indexer positioning operation torque limit delay time  
For manufacturer setting  
16 - 93  
16. INDEXER POSITIONING OPERATION  
(2) Detail list  
Initial  
value  
No. Symbol  
Name and function  
Unit Setting range  
PD01 *DIA1 Input signal automatic ON selection 1  
Select the input devices to be automatically turned ON.  
0000h  
Refer to  
name and  
function  
part is for manufacturer setting. Do not set the value by any means.  
column.  
0 0  
Initial value  
Device name  
BIN  
0
HEX  
0
Forward rotation  
stroke end (LSP)  
0
0
0
Reverse rotation  
stroke end (LSN)  
Initial value  
Device name  
BIN  
0
HEX  
Forced stop (EMG)  
0
0
0
0
BIN 0: Used as external input signal.  
BIN 1: Automatic ON  
For example, to turn ON SON, the setting is "  
4".  
PD02  
For manufacturer setting  
0000h  
Do not change this value by any means.  
Not used in indexer positioning operation.  
Do not change the parameter.  
PD03  
PD04  
PD05  
0000h  
0000h  
0000h  
For manufacturer setting  
Do not change this value by any means.  
Not used in indexer positioning operation.  
Do not change the parameter.  
PD06  
PD07  
PD08  
PD09  
PD10  
PD11  
PD12  
PD13  
002Bh  
000Ah  
000Bh  
0002h  
0003h  
0024h  
0C00h  
0000h  
For manufacturer setting  
Do not change this value by any means.  
Not used in indexer positioning operation.  
Do not change the parameter.  
PD14  
PD15  
0800h  
0000h  
0000h  
For manufacturer setting  
Do not change this value by any means.  
PD16 *DIAB Input polarity selection  
Refer to  
name and  
function  
Used to set the proximity dog input polarity. (Refer to section 5.6.)  
0 0 0  
column.  
Proximity dog input polarity  
0: OFF indicates detection of the dog  
1: ON indicates detection of the dog  
16 - 94  
16. INDEXER POSITIONING OPERATION  
Initial  
value  
No. Symbol  
Name and function  
Unit Setting range  
PD17  
PD18  
For manufacturer setting  
Do not change this value by any means.  
0000h  
0000h  
0002h  
PD19 *DIF Response level setting  
Used to select the input.  
Refer to  
name and  
function  
0 0 0  
column.  
Input filter  
If external input signal causes chattering due  
to noise, etc., input filter is used to suppress it.  
0: None  
1: 0.88[ms]  
2: 1.77[ms]  
3: 2.66[ms]  
4: 3.55[ms]  
5: 4.44[ms]  
PD20 *DOP1 Function selection D-1  
0010h  
Refer to  
name and  
function  
Select the stop processing at forward rotation stroke end (LSN)/reverse rotation  
stroke end (LSN) OFF and the base circuit status at reset (RY(N 1)A or  
RY(n 3)A) ON.  
column.  
0 0  
Stopping method used when forward rotation stroke end  
(LSP), reverse rotation stroke end (LSN) device or software  
limit is valid  
0: Sudden stop (home position erased)  
1: Slow stop (home position erased)  
2: Slow stop (Setting contents is the same as for “1”.)  
3: Sudden stop (Setting contents is the same as for “0”.)  
Even in this case, when LSP or LSN is detected, home  
position return is required again before executing automatic  
operation. However, in the absolute position detection  
system (parameter No.PA03:  
1), the home position  
return completion (ZP) can be turned on by turning on the  
servo-on. In the case, executing another home position.  
Selection of base circuit status at reset (RY(n 1)A or  
RY(n 3)A)ON  
0: Base circuit not switched off  
1: Base circuit switched off  
PD21  
PD22  
PD23  
For manufacturer setting  
0000h  
0000h  
0000h  
Do not change this value by any means.  
Not used in indexer positioning operation.  
Do not change the parameter.  
For manufacturer setting  
Do not change this value by any means.  
16 - 95  
16. INDEXER POSITIONING OPERATION  
Initial  
value  
No. Symbol  
Name and function  
Unit Setting range  
PD24 *DOP5 Function selection D-5  
0000h  
Select the output status of the warning (RXnA).  
0 0  
0
Selection of output device at warning occurrence  
Select the warning (RXnA) and trouble (RX(n 1)A or  
RX(n 3)A) output status at warning occurrence.  
Setting  
(Note) Device status  
1
0
1
RXnA  
Remote  
output  
RX(n+1)A or  
RX(n+3)A  
0
0
1
ON  
OFF  
Output  
device  
ALM  
Warning  
occurred.  
1
0
1
0
ON  
OFF  
RXnA  
Remote  
output  
RX(n+1)A or  
RX(n+3)A  
Output  
device  
ALM  
Warning  
occurred.  
Note. 0: OFF  
1: ON  
PD25  
PD26  
For manufacturer setting  
0000h  
0064h  
Do not change this value by any means.  
Indexer positioning operation torque limit delay time  
TLT  
ms  
Refer to  
name and  
function  
Set the delay time from when the in position (RXn1) turns on until the internal  
torque limit 2 (parameter No.PC35) becomes effective.  
Set the delay time after converting it into hexadecimal. The setting range is from 0  
to 1000 ms.  
column.  
PD27  
PD28  
PD29  
PD30  
For manufacturer setting  
0000h  
0000h  
0000h  
0000h  
Do not change this value by any means.  
16 - 96  
16. INDEXER POSITIONING OPERATION  
(3) Stopping method when the forward stroke end (LSP) or reverse stroke end (LSN) is valid  
The setting of the first digit of parameter No.PD20 enables to select a stopping method of the servo motor  
when the forward rotation stroke end (LSP) or reverse rotation stroke end (LSN) turns off.  
Parameter No.PD20  
Stopping method when the forward rotation stroke end (LSP) or  
reverse rotation stroke end (LSN) is valid  
0: Sudden stop (home position erased)  
1: Slow stop (home position erased)  
2: Slow stop (Setting contents is the same as for “1”.)  
3: Sudden stop (Setting contents is the same as for “0”.)  
Setting  
value of  
Operation status  
Remarks  
parameter  
No.PD20  
When rotating at constant speed  
When decelerating to stop  
Clears droop pulses  
and stops.  
0
Without S-pattern  
Without S-pattern  
acceleration/deceleration  
acceleration/deceleration  
With S-pattern  
(Initial  
value)  
With S-pattern  
acceleration/deceleration  
acceleration/deceleration  
Erases the home  
position.  
A difference occurs  
between the command  
position and the current  
position.  
3
Servo motor  
speed  
Servo motor  
speed  
0r/min  
0r/min  
LSP  
or  
LSN  
LSP  
or  
LSN  
ON  
ON  
Execute a home  
position return again.  
Moves for the amount  
of droop pulse and  
stops.  
OFF  
OFF  
1
2
Without S-pattern  
Without S-pattern  
acceleration/deceleration  
With S-pattern  
acceleration/deceleration  
With S-pattern  
acceleration/deceleration  
acceleration/deceleration  
Amount of  
droop pulse  
Erases the home  
position.  
Amount of  
droop pulse  
A difference occurs  
between the command  
position and the current  
position.  
Execute a home  
position return again.  
Servo motor  
speed  
Servo motor  
speed  
0r/min  
0r/min  
LSP  
or  
LSN  
LSP  
or  
LSN  
ON  
ON  
OFF  
OFF  
16 - 97  
16. INDEXER POSITIONING OPERATION  
16.12 TROUBLESHOOTING  
16.12.1 Trouble at start-up  
Excessive adjustment or change of parameter setting must not be made as it will  
CAUTION  
make operation instable.  
POINT  
Using the MR Configurator, you can refer to unrotated servo motor reasons,  
etc.  
The following faults may occur at start-up. If any of such faults occurs, take the corresponding action.  
No.  
1
Start-up sequence  
Power on  
Fault  
Investigation  
Possible cause  
Reference  
LED is not lit.  
LED flickers.  
Not improved if connectors  
CN2, CN3 and CN6 are  
disconnected.  
1. Power supply voltage fault  
2. Servo amplifier is faulty.  
Improved when connectors  
CN6 is disconnected.  
Improved when connector  
CN2 is disconnected.  
Power supply of CN6 cabling is  
shorted.  
1. Power supply of encoder  
cabling is shorted.  
2. Encoder is faulty.  
Power supply of CN3 cabling is  
shorted.  
Improved when connector  
CN3 is disconnected.  
Alarm occurs.  
Alarm occurs.  
Refer to section 16.12.4 and remove cause.  
Section  
16.12.4  
Section  
16.12.4  
2
Switch on servo-on  
(RYn0) signal.  
Refer to section 16.12.4 and remove cause.  
Servo motor shaft is 1. Check the display to see if 1. Servo-on (RYn0) is not input. Section 8.5.4  
not servo-locked  
(is free).  
the servo amplifier is ready  
to operate.  
(Wiring mistake)  
2. 24VDC power is not supplied  
to DICOM.  
2. Check the external I/O  
signal indication to see if  
the servo-on (RYn0) signal  
is ON.  
3
Gain adjustment  
Rotation ripples  
(speed fluctuations)  
are large at low  
speed.  
Make gain adjustment in the  
following procedure.  
Gain adjustment fault  
Chapter 9  
1. Increase the auto tuning  
response level.  
2. Repeat acceleration and  
deceleration several times  
to complete auto tuning.  
Large load inertia  
moment causes the  
servo motor shaft to  
If the servo motor may be run Gain adjustment fault  
with safety, repeat  
Chapter 9  
acceleration and deceleration  
oscillate side to side. several times to complete  
auto tuning.  
4
Cyclic operation  
Position shift occurs Confirm the cumulative  
Pulse counting error, etc.  
command pulses, cumulative due to noise.  
feedback pulses and actual  
servo motor position.  
16 - 98  
16. INDEXER POSITIONING OPERATION  
16.12.2 Operation at error occurrence  
An error occurring during operation will result in any of the statuses indicated in the following table.  
Operation mode  
Error location  
Description  
Test operation  
Stop  
CC-Link operation  
Stop  
Servo side alarm  
occurrence  
Servo operation  
CC-Link data communication  
Servo operation  
Continued  
Stop  
Continued  
Stop  
Option unit  
communication error  
CC-Link data communication  
Servo operation  
Stop  
Stop  
CC-Link  
Stop  
Stop  
communication error  
CC-Link data communication  
Servo operation  
Stop  
Stop  
Programmable  
Continued  
Stop  
Stop  
controller error/STOP  
CC-Link data communication  
Servo operation  
Stop  
Servo side warning  
occurrence  
Stop  
Continued  
Continued  
CC-Link data communication  
Continued  
16.12.3 CC-Link communication error  
This section gives the definitions of the indications given in the communication alarm display section.  
The servo amplifier has four LED indications.  
L.RUN : Lit at normal receive of refresh data. Extinguished when data is not received for a given period of  
time.  
SD  
RD  
: Lit when send data is "0".  
: Lit when the carrier of receive data is detected.  
L.ERR : Lit when the data addressed to the host is in CRC or abort error.  
(Note) Communication alarm display LED  
Operation  
L.RUN  
SD  
RD  
L.ERR  
Normal communication is made, but a CRC error sometimes occurs due to noise.  
Normal communication  
Hardware fault  
Hardware fault  
Receive data results in CRC error, disabling a response.  
Data does not reach the host.  
Hardware fault  
Hardware fault  
Polling response is made, but refresh receive is in CRC error.  
Hardware fault  
Hardware fault  
Hardware fault  
Data addressed to the host resulted in CRC error.  
Data does not reach the host, or the data addressed to the host cannot be received due to  
noise.  
Hardware fault  
Baud rate setting illegal  
Station number setting illegal  
Baud rate or station number setting changed midway (ERROR flickers for about 4s)  
Data cannot be received due to power-off, power supply failure, open cable, etc.  
WDT error occurrence (hardware fault)  
Note.  
: Lit  
: Extinguished  
: Flicker  
16 - 99  
16. INDEXER POSITIONING OPERATION  
16.12.4 When alarm or warning has occurred  
POINT  
Configure up a circuit which will detect the trouble (ALM) signal and turn off  
the servo-on (RYn0) at occurrence of an alarm.  
(1) Alarms and warning list  
When a fault occurs during operation, the corresponding alarm or warning is displayed. If any alarm or  
warning has occurred, refer to (2), (3) in this section and take the appropriate action. When an alarm  
occurs, ALM turns off.  
After its cause has been removed, the alarm can be deactivated in any of the methods marked  
alarm deactivation column.  
in the  
Alarm deactivation  
(Note 3)  
Display  
A90  
Name  
Home positioning incomplete  
warning  
(Note 2)  
Alarm  
reset  
MR  
Configurator  
parameter  
unit  
Display  
Name  
Power  
OFF ON  
A92 Open battery cable warning  
A96 Home position setting error  
A97 Next station warning  
(RES)  
A10 Undervoltage  
A99 Stroke limit warning  
A12 Memory error 1 (RAM)  
A13 Clock error  
A9D CC-Link warning 1  
A9E CC-Link warning 2  
Memory error 2  
A15  
A9F Battery warning  
(EEP-ROM)  
AE0 Excessive regeneration warning  
AE1 Overload warning 1  
Encoder error 1  
A16  
(At power on)  
AE3 Absolute position counter warning  
AE6 Servo forced stop warning  
A17 Board error  
Memory error 3  
A19  
Cooling fan speed reduction  
AE8  
(Flash-ROM)  
warning  
A1A Motor combination error  
A20 Encoder error 2  
AE9 Main circuit off warning  
AEC Overload warning 2  
A24 Main circuit error  
AED Output watt excess warning  
A25 Absolute position erase  
(Note 1)  
(Note 1) (Note 1)  
A30 Regenerative error  
A31 Overspeed  
A32 Overcurrent  
A33 Overvoltage  
A37 Parameter error  
(Note 1)  
(Note 1)  
(Note 1) (Note 1)  
(Note 1) (Note 1)  
A45 Main circuit device overheat  
A46 Servo motor overheat  
A47 Cooling fan alarm  
A50 Overload 1  
(Note 1)  
(Note 1)  
(Note 1) (Note 1)  
(Note 1) (Note 1)  
A51 Overload 2  
A52 Error excessive  
A61 Operation alarm  
Serial communication time-out  
error  
A8A  
A8D CC-Link alarm  
A8E Serial communication error  
888  
Watchdog  
Note 1. Deactivate the alarm about 30 minutes of cooling time after removing the cause of occurrence.  
2. Turns on RY(n 1)A or RY(n 3)A.  
3. Clicking the "Alarm reset" button on the "Alarm display" screen of MR Configurator allows an alarm to be deactivated.  
Pressing the "STOP RESET" key of the parameter unit allows an alarm to be deactivated.  
16 - 100  
16. INDEXER POSITIONING OPERATION  
(2) Remedies for alarms  
When any alarm has occurred, eliminate its cause, ensure safety, then reset the  
alarm, and restart operation. Otherwise, injury may occur.  
If an absolute position erase (A25) occurred, always make home position setting  
again. Not doing so may cause unexpected operation.  
CAUTION  
As soon as an alarm occurs, turn off Servo-on (RYn0) and power off.  
POINT  
When any of the following alarms has occurred, do not deactivate the alarm  
and resume operation repeatedly. To do so will cause the servo  
amplifier/servo motor to fail. Remove the cause of occurrence, and leave a  
cooling time of more than 30 minutes before resuming operation.  
Regenerative error (A30)  
Overload 1 (A50)  
Overload 2 (A51)  
For the alarm deactivation method, refer to (1) in this section.  
When an alarm occurs, the trouble (ALM) switches off and the dynamic brake is operated to stop the servo  
motor. At this time, the display indicates the alarm No.  
The servo motor comes to a stop. Remove the cause of the alarm in accordance with this section. Use the  
MR Configurator to refer to a factor of alarm occurrence.  
Display  
Name  
Definition  
Cause  
Action  
A10 Undervoltage  
Power supply  
voltage dropped.  
MR-J3- T:  
1. Power supply voltage is low.  
2. There was an instantaneous control  
power failure of 60ms or longer.  
3. Shortage of power supply capacity  
caused the power supply voltage to  
drop at start, etc.  
Check the power supply.  
160VAC or less  
MR-J3- T1:  
83VAC or less  
MR-J3- T4:  
4. The bus voltage dropped to the  
following value or less.  
280VAC or less  
MR-J3- T: 200VDC  
MR-J3- T1: 158VDC  
MR-J3- T4: 380VDC  
Change the servo amplifier.  
5. Faulty parts in the servo amplifier.  
Checking method  
Alarm (A10) occurs if power is  
switched on after disconnection  
of all cables but the control  
circuit power supply cables.  
A12 Memory error 1 RAM, memory fault Faulty parts in the servo amplifier.  
Change the servo amplifier.  
(RAM)  
Checking method  
Alarm (any of A12 and A13)  
occurs if power is switched on  
after disconnection of all cables  
but the control circuit power  
supply cables.  
A13 Clock error  
Printed board fault  
16 - 101  
16. INDEXER POSITIONING OPERATION  
Cause  
Display  
A15  
Name  
Definition  
Action  
Memory error 2 EEP-ROM fault  
(EEP-ROM)  
1. Faulty parts in the servo amplifier  
Change the servo amplifier.  
Checking method  
Alarm (A15) occurs if power is  
switched on after disconnection  
of all cables but the control circuit  
power supply cables.  
2. The number of write times to EEP-  
ROM exceeded 100,000.  
3. The multi-revolution data, which is  
saved as a home position, read from  
EEP-ROM is abnormal.  
Execute a home position setting.  
Connect correctly.  
A16  
Encoder error 1 Communication  
1. Encoder connector (CN2)  
disconnected.  
(At power on)  
error occurred  
between encoder  
and servo amplifier.  
2. Encoder fault  
Change the servo motor.  
3. Encoder cable faulty  
Repair or change the cable.  
(Wire breakage or shorted)  
4. Encoder cable type (2-wire, 4-wire)  
selection was wrong in parameter  
setting.  
Correct the setting in the fourth digit of  
parameter No.PC22.  
A17  
A19  
Board error  
CPU/parts fault  
Faulty parts in the servo amplifier  
Change the servo amplifier.  
Checking method  
Alarm (A17 or A19) occurs if  
power is switched on after  
Memory error 3 ROM memory fault  
(Flash ROM)  
disconnection of all cables but the  
control circuit power supply cable.  
A1A  
A20  
Motor  
Wrong combination Wrong combination of servo amplifier  
Use correct combination.  
combination  
error  
of servo amplifier  
and servo motor.  
and servo motor connected.  
Encoder error 2 Communication  
error occurred  
1. Encoder connector (CN2)  
disconnected.  
Connect correctly.  
between encoder  
2. Encoder cable faulty  
(Wire breakage or shorted)  
3. Encoder fault  
Repair or change the cable.  
and servo amplifier.  
Change the servo motor.  
Connect correctly.  
A24  
Main circuit  
error  
Ground fault  
1. Power input wires and servo motor  
power wires are in contact.  
2. Sheathes of servo motor power  
cables deteriorated, resulting in  
ground fault.  
occurred at the  
servo motor power  
(U,V and W phases)  
of the servo  
Change the cable.  
amplifier.  
3. Main circuit of servo amplifier failed. Change the servo amplifier.  
Checking method  
Alarm (A24) occurs if the servo is  
switched on after disconnecting  
the U, V, W power cables from  
the servo amplifier.  
A25  
Absolute  
Absolute position  
data in error  
1. Voltage drop in encoder  
(Battery disconnected.)  
After leaving the alarm occurring for a few  
position erase  
minutes, switch power off, then on again.  
Always make home position setting again.  
2. Battery voltage low  
Change the battery.  
Always make home position setting again.  
3. Battery cable or battery is faulty.  
Power was switched 4. Home position not set.  
on for the first time  
After leaving the alarm occurring for a few  
minutes, switch power off, then on again.  
Always make home position setting again.  
in the absolute  
position detection  
system.  
16 - 102  
16. INDEXER POSITIONING OPERATION  
Cause  
Display  
A30  
Name  
Definition  
Permissible  
Action  
Regenerative  
error  
1. Wrong setting of parameter No.  
PA02  
Set correctly.  
regenerative power  
of the built-in  
2. Built-in regenerative resistor or  
regenerative option is not connected.  
3. High-duty operation or continuous  
regenerative operation caused the  
permissible regenerative power of  
the regenerative option to be  
exceeded.  
Connect correctly  
regenerative resistor  
or regenerative  
1. Reduce the frequency of positioning.  
2. Use the regenerative option of larger  
capacity.  
option is exceeded.  
3. Reduce the load.  
Checking method  
Call the status display and check  
the regenerative load ratio.  
4. Power supply voltage is abnormal.  
MR-J3- T:260VAC or more  
Check the power supply  
MR-J3- T1:More than 135VAC  
5. Built-in regenerative resistor or  
regenerative option faulty.  
Change the servo amplifier or  
regenerative option.  
Regenerative  
transistor fault  
6. Regenerative transistor faulty.  
Change the servo amplifier.  
Checking method  
1) The regenerative option has  
overheated abnormally.  
2) The alarm occurs even after  
removal of the built-in  
regenerative resistor or  
regenerative option.  
A31  
Overspeed  
Speed has  
1. Input command pulse frequency  
exceeded the permissible  
Set command pulses correctly.  
exceeded the  
instantaneous  
permissible speed.  
instantaneous speed frequency.  
2. Small acceleration/deceleration time Increase acceleration/deceleration time  
constant caused overshoot to be  
large.  
constant.  
3. Servo system is instable to cause  
overshoot.  
1. Re-set servo gain to proper value.  
2. If servo gain cannot be set to proper  
value.  
1) Reduce load inertia moment ratio; or  
2) Reexamine acceleration/  
deceleration time constant.  
Set correctly.  
4. Electronic gear ratio is large  
(parameters No.PA06, PA07)  
5. Encoder faulty.  
Change the servo motor.  
16 - 103  
16. INDEXER POSITIONING OPERATION  
Definition  
Cause  
Display  
A32  
Name  
Action  
Overcurrent  
Current that flew is  
higher than the  
1. Short occurred in servo motor power Correct the wiring.  
(U, V, W).  
permissible current  
of the servo  
2. Transistor (IPM, IGBT) of the servo  
amplifier faulty.  
Change the servo amplifier.  
amplifier. (If the  
alarm (A32) occurs  
again when turning  
ON the servo after  
resetting the alarm  
by turning OFF/ON  
the power when the  
alarm (A32) first  
occurred, the  
Checking method  
Alarm (A32) occurs if power is  
switched on after U,V and W are  
disconnected.  
3. Ground fault occurred in servo motor Correct the wiring.  
power (U, V, W).  
4. External noise caused the  
overcurrent detection circuit to  
misoperate.  
Take noise suppression measures.  
transistor (IPM,  
IGBT) of the servo  
amplifier may be at  
fault. In the case, do  
not repeat to turn  
OFF/ON the power.  
Check the transistor  
with the checking  
method of “Cause  
2”.)  
A33  
Overvoltage  
The following shows 1. Regenerative option is not used.  
Use the regenerative option.  
Set correctly.  
the input value of  
converter bus  
voltage.  
2. Though the regenerative option is  
used, the parameter No.PA02 setting  
is "  
00 (not used)".  
MR-J3- T(1):  
400VDC or more  
MR-J3- T4:  
3. Lead of built-in regenerative resistor 1. Change the lead.  
or regenerative option is open or  
disconnected.  
2. Connect correctly.  
800VDC or more  
4. Regenerative transistor faulty.  
5. Wire breakage of built-in  
regenerative resistor or regenerative  
option.  
Change the servo amplifier  
1. For wire breakage of built-in  
regenerative resistor, change the servo  
amplifier.  
2. For wire breakage of regenerative  
option, change the regenerative option.  
Add regenerative option or increase  
capacity.  
6. Capacity of built-in regenerative  
resistor or regenerative option is  
insufficient.  
7. Power supply voltage high.  
Check the power supply.  
8. Ground fault occurred in servo motor Correct the wiring.  
power (U, V, W).  
9. The jumper across BUE-SD of the  
FR-BU2 brake unit is removed.  
Fit the jumper across BUE-SD.  
16 - 104  
16. INDEXER POSITIONING OPERATION  
Display  
A37  
Name  
Definition  
Cause  
Action  
Parameter  
error  
Parameter setting is 1. Servo amplifier fault caused the  
Change the servo amplifier.  
wrong.  
parameter setting to be rewritten.  
2. Regenerative option not used with  
servo amplifier was selected in  
parameter No.PA02.  
Set parameter No.PA02 correctly.  
3. Value outside setting range has  
been set in electronic gear.  
Set parameters No.PA06, PA07 correctly.  
Change the servo amplifier.  
4. The number of write times to EEP-  
ROM exceeded 100,000 due to  
parameter write, etc.  
5. The MR-J3-D01 is connected to the  
servo amplifier for the indexer  
positioning operation.  
The MR-J3-D01 cannot be used for the  
indexer positioning operation.  
Point table setting is 6. Setting value is out of the setting  
Set it correctly.  
wrong.  
range.  
A45  
Main circuit  
device  
Main circuit device  
overheat.  
1. Servo amplifier faulty.  
Change the servo amplifier.  
overheat  
2. The power supply was turned on and The drive method is reviewed.  
off continuously by overloaded  
status.  
3. Ambient temperature of servo motor Check environment so that ambient  
is over 55 (131 ).  
4. Used beyond the specifications of  
close mounting.  
temperature is 0 to 55 (32 to 131 ).  
Use within the range of specifications.  
A46  
Servo motor  
overheat  
Servo motor  
1. Ambient temperature of servo motor Check environment so that ambient  
temperature rise  
actuated the thermal  
sensor.  
is over 40 (104 ).  
temperature is 0 to 40 (32 to 104 ).  
1. Reduce load.  
2. Servo motor is overloaded.  
2. Check operation pattern.  
3. Use servo motor that provides larger  
output.  
3. Thermal sensor in encoder is faulty. Change the servo motor.  
A47  
Cooling fan  
alarm  
The cooling fan of  
the servo amplifier  
stopped, or its  
Cooling fan life expiration (Refer to  
section 2.5.)  
Change the cooling fan of the servo  
amplifier.  
Foreign matter caught in the cooling  
fan stopped rotation.  
Remove the foreign matter.  
speed decreased to  
or below the alarm  
level.  
The power supply of the cooling fan  
failed.  
Change the servo amplifier.  
16 - 105  
16. INDEXER POSITIONING OPERATION  
Display  
A50  
Name  
Definition  
Cause  
Action  
Overload 1  
Load exceeded  
overload protection  
characteristic of  
servo amplifier.  
1. Servo amplifier is used in excess of  
its continuous output current.  
1. Reduce load.  
2. Check operation pattern.  
3. Use servo motor that provides larger  
output.  
2. Servo system is instable and  
hunting.  
1. Repeat acceleration/deceleration to  
execute auto tuning.  
2. Change auto tuning response setting.  
3. Set auto tuning to OFF and make gain  
adjustment manually.  
3. Machine struck something.  
1. Check operation pattern.  
2. Install limit switches.  
4. Wrong connection of servo motor.  
Servo amplifier's output terminals U,  
V, W do not match servo motor's  
input terminals U, V, W.  
Connect correctly.  
5. Encoder faulty.  
Change the servo motor.  
Checking method  
When the servo motor shaft is  
rotated with the servo off, the  
cumulative feedback pulses do not  
vary in proportion to the rotary angle  
of the shaft but the indication skips  
or returns midway.  
6. After Overload 2 (A51) occurred, turn 1. Reduce load.  
OFF/ON the power supply to clear  
the alarm. Then the overload  
operation is repeated.  
2. Check operation pattern.  
3. Use servo motor that provides larger  
output.  
A51  
Overload 2  
Machine collision or 1. Machine struck something.  
the like caused max.  
1. Check operation pattern.  
2. Install limit switches.  
Connect correctly.  
For the time of the  
alarm occurrence,  
refer to the section  
13.1.  
2. Wrong connection of servo motor.  
Servo amplifier's output terminals U,  
V, W do not match servo motor's  
input terminals U, V, W.  
3. Servo system is instable and  
hunting.  
1. Repeat acceleration/deceleration to  
execute auto tuning.  
2. Change auto tuning response setting.  
3. Set auto tuning to OFF and make gain  
adjustment manually.  
4. Encoder faulty.  
Checking method  
Change the servo motor.  
When the servo motor shaft is  
rotated with the servo off, the  
cumulative feedback pulses do not  
vary in proportion to the rotary angle  
of the shaft but the indication skips  
or returns midway.  
16 - 106  
16. INDEXER POSITIONING OPERATION  
Display  
A52  
Name  
Definition  
Cause  
Action  
Error excessive The difference  
between the model  
position and the  
actual servo motor  
position exceeds  
three rotations.  
1. Acceleration/deceleration time  
constant is too small.  
Increase the acceleration/deceleration  
time constant.  
2. Forward rotation torque limit  
(parameter No.PA11) or reverse  
rotation torque limit (parameter  
No.PA12) are too small.  
Increase the torque limit value.  
(Refer to the  
3. Motor cannot be started due to  
torque shortage caused by power  
supply voltage drop.  
1. Check the power supply capacity.  
2. Use servo motor which provides larger  
output.  
function block  
diagram in section  
1.1.2.)  
4. Position loop gain (parameter  
No.PB08) value is small.  
Increase set value and adjust to ensure  
proper operation.  
5. Servo motor shaft was rotated by  
external force.  
1. When torque is limited, increase the  
limit value.  
2. Reduce load.  
3. Use servo motor that provides larger  
output.  
6. Machine struck something.  
1. Check operation pattern.  
2. Install limit switches.  
Change the servo motor.  
Connect correctly.  
7. Encoder faulty.  
8. Wrong connection of servo motor.  
Servo amplifier’s output terminals U,  
V, W do not match servo motor’s  
input terminals U, V, W.  
A61  
A8A  
Operation  
alarm  
Setting mistake of  
auxiliary function.  
Communication  
"1" or "3" is set for the auxiliary function Set "0" or "2" for the value of auxiliary  
of point table No.255.  
function.  
Serial  
1. Communication cable breakage.  
Repair or change the communication  
cable.  
communication stopped for longer  
time-out error  
than the specified  
time.  
2. Communication cycle longer than  
regulated time.  
Shorten the communication cycle.  
3. Wrong protocol.  
Correct protocol.  
A8D  
CC-Link alarm Normal  
communication with  
1. The station number switch  
(STATION NO.) setting is 0 or not  
less than 65.  
Set the station number to within the range  
1 to 64, and switch power on.  
the master station  
cannot be made.  
2. The baud rate switch (MODE) setting Set the baud rate switch (MODE) to  
is outside the range 0 to 4. within the range 0 to 4.  
3. The transmission status is abnormal. Reexamine the wiring.  
4. CC-Link twisted cable wiring  
incorrect.  
1. Repair or change the CC-Link twisted  
cable.  
2. Connect the cable or connector  
correctly.  
5. CC-Link twisted cable faulty.  
6. The CC-Link connector has come  
off.  
7. The terminating resistor is not  
connected.  
Connect the terminating resistor correctly.  
8. Noise entered the CC-Link twisted  
cable.  
9. The programmable controller CC-  
Link unit was reset.  
A8E  
Serial  
Serial  
1. Communication cable fault  
(Open cable or short circuit).  
Repair or change the cable.  
communication communication error  
error  
occurred between  
servo amplifier and  
communication  
2. Communication device (e.g. personal Change the communication device (e.g.  
computer) faulty. personal computer).  
device (e.g. personal  
computer).  
16 - 107  
16. INDEXER POSITIONING OPERATION  
Display  
Name  
Definition  
Cause  
Action  
(Note) Watchdog  
888  
CPU, parts faulty.  
Fault of parts in servo amplifier.  
Change the servo amplifier.  
Checking method  
Alarm (888) occurs if power is  
switched on after disconnection of  
all cables but the control circuit  
power supply cable.  
Note. At power-on, "888" appears instantaneously, but it is not an error.  
(3) Remedies for warnings  
If an absolute position counter warning (AE3) occurred, always make home  
position setting again. Not doing so may cause unexpected operation.  
CAUTION  
POINT  
When any of the following alarms has occurred, do not resume operation by  
switching power of the servo amplifier OFF/ON repeatedly. The servo  
amplifier and servo motor may become faulty. If the power of the servo  
amplifier is switched OFF/ON during the alarms, allow more than 30 minutes  
for cooling before resuming operation.  
Excessive regenerative warning (AE0)  
Overload warning 1 (AE1)  
Always execute a home position return when the forward rotation stroke end  
(LSP) or the reverse rotation stroke end (LSN) turns off.  
16 - 108  
16. INDEXER POSITIONING OPERATION  
If AE6 occur, the servo off status is established. If any other warning occurs, operation can be continued  
but an alarm may take place or proper operation may not be performed.  
Remove the cause of warning according to this section. Use the MR Configurator to refer to a factor of  
warning occurrence.  
Name  
Definition  
Display  
A90  
Cause  
Action  
Home position  
return incomplete  
Positioning  
1. Positioning operation was performed  
without home position return.  
Perform home position return.  
operation was  
performed without  
home position  
return.  
Home position  
return ended  
abnormally.  
2. Home position return speed could not be Check home position return  
decreased to creep speed.  
speed/creep speed/moving  
distance after proximity dog.  
3. Limit switch was actuated during home  
position return starting at other than  
position beyond dog.  
Home position  
return is  
4. Indexer JOG operation (in automatic/  
Perform home position return.  
manual operation) was executed without This warning is automatically  
incomplete.  
home position return.  
cleared after executing a home  
position return.  
5. The operation method (parameter  
No.PA01), electronic gear (parameter  
No.PA06 and PA07), station No.  
direction selection (parameter No.PA14),  
or number of stations/rotation  
(parameter No.PC46) is changed.  
1. Positioning operation was performed  
without home position setting.  
Positioning  
Perform home position setting.  
operation was  
performed without  
home position  
setting.  
Home position  
setting ended  
abnormally.  
2. Home position setting speed could not  
be decreased to creep speed.  
3. Limit switch was actuated during home  
position setting starting at other than  
position beyond dog.  
Check home position setting  
speed/creep speed/moving  
distance after proximity dog.  
Operation was  
performed without  
making home  
position setting  
while an absolute  
position erase  
(A25) is being  
occurred.  
4. Voltage drop in encoder  
After leaving the alarm occurring  
for a few minutes, switch power  
off, then on again. Always make  
home position setting again.  
(Battery disconnected.)  
5. Battery voltage low  
Change the battery.  
Always make home position  
setting again.  
6. Battery cable or battery is faulty.  
7. Indexer JOG operation (in automatic/  
Perform home position setting.  
Home position  
setting is  
manual operation) was executed without This warning is automatically  
incomplete.  
home position setting.  
cleared after executing a home  
position setting.  
8. The operation method (parameter  
No.PA01), electronic gear (parameter  
No.PA06 and PA07), station No.  
direction selection (parameter No.PA14),  
or number of stations/rotation  
(parameter No.PC46) is changed.  
16 - 109  
16. INDEXER POSITIONING OPERATION  
Display  
Name  
Definition  
Cause  
Action  
A92 Open battery  
cable warning  
Absolute position  
detection system battery  
voltage is low.  
1. Battery cable is open.  
Repair cable or changed.  
Change the battery.  
2. Battery voltage supplied from the servo  
amplifier to the encoder fell to about 3V  
or less.  
(Detected with the encoder)  
A96 Home position  
setting error  
Home position setting  
could not be made.  
1. Droop pulses remaining are greater than Remove the cause of droop  
the in-position range setting. pulse occurrence  
2. Command pulse entered after clearing of Do not enter command pulse  
droop pulses.  
after clearing of droop pulses.  
3. Creep speed high.  
Reduce creep speed.  
A97 Next station  
warning  
Automatic operation is  
executed with invalid  
next station setting.  
1. Automatic operation has been started  
when station number that exceeded the  
setting value of parameter No.PC46  
Specify the station number up to  
the maximum number of  
stations set in the parameter  
(number of stations/rotation) is specified. No.PC46 (indexer positioning  
operation number of  
stations/rotation).  
2. Automatic operation has been started  
when the next station selection 1 to 8  
(RYnA to RYnE, and RY(n 2)3 to  
RY(n 2)5) are all set to on.  
A99 Stroke limit  
warning  
The limit switch become The stroke end (LSP or LSN) of the  
Reexamine the operation  
valid.  
direction which gave instructions was  
turned off.  
pattern to turn LSP/LSN ON.  
A9D CC-Link warning The station number  
1. The station number switch position was  
changed from the setting at power-on.  
2. The baud rate switch position was  
changed from the setting at power-on.  
3. The occupied station count switch  
position was changed from the setting at  
power-on.  
Return to the setting at power-  
on.  
1
switch or baud rate  
switch position was  
changed from the setting  
at power-on.  
A9E CC-Link warning Communication error of  
1. The transmission status is abnormal.  
2. CC-Link twisted cable wiring incorrect.  
3. CC-Link twisted cable faulty.  
4. The CC-Link connector has come off.  
Take measures against noise.  
1. Change the CC-Link twisted  
cable.  
2
cable.  
2. Connect the cable or  
connector correctly.  
Connect the terminating resistor  
correctly.  
5. The terminating resistor is not  
connected.  
6. Noise entered the CC-Link twisted cable.  
Battery voltage fell to 3.2V or less.  
(Detected with the servo amplifier)  
A9F Battery warning  
Voltage of battery for  
absolute position  
detection system  
reduced.  
Change the battery.  
AE0 Excessive  
regenerative  
warning  
There is a possibility that Regenerative power increased to 85% or  
regenerative power may more of permissible regenerative power of  
1. Reduce frequency of  
positioning.  
exceed permissible  
regenerative power of  
built-in regenerative  
resistor or regenerative  
option.  
built-in regenerative resistor or regenerative 2. Change the regenerative  
option.  
option for the one with larger  
capacity.  
Checking method  
Call the status display and check  
regenerative load ratio.  
3. Reduce load.  
AE1 Overload warning There is a possibility that Load increased to 85% or more of overload Refer to A50, A51.  
1
overload alarm 1 or 2  
may occur.  
alarm 1 or 2 occurrence level.  
Cause, checking method  
Refer to A50, A51.  
16 - 110  
16. INDEXER POSITIONING OPERATION  
Display  
Name  
Definition  
Cause  
Action  
AE3 Absolute position Absolute position  
1. Noise entered the encoder.  
Take noise suppression  
measures.  
counter warning  
encoder pulses faulty.  
2. Encoder faulty.  
Change the servo motor.  
Make home position setting  
again.  
The multi-revolution  
counter value of the  
absolute position  
encoder exceeded the  
maximum revolution  
range.  
3. The movement amount from the home  
position exceeded a 32767 rotation or  
37268 rotation in succession.  
The update cycle for  
writing the multi-  
Refer to POINT in section 16.7.  
Refer to POINT in section 16.7.  
revolution counter value  
of the absolute position  
encoder to EEPROM is  
short.  
AE6 Servo forced stop EMG is off.  
warning  
External forced stop was made valid. (EMG Ensure safety and deactivate  
was turned off.) forced stop.  
Cooling fan life expiration (Refer to section Change the cooling fan of the  
AE8 Cooling fan  
speed reduction  
The speed of the servo  
amplifier decreased to or 2.5.)  
servo amplifier.  
warning  
below the warning level.  
This warning is not  
displayed with MR-J3-  
70T/100T among servo  
amplifiers equipped with  
a cooling fan.  
The power supply of the cooling fan is  
broken.  
Change the servo amplifier.  
AE9 Main circuit off  
warning  
Servo-on (SON) was  
switched on with main  
circuit power off.  
Switch on main circuit power.  
AEC Overload warning Operation, in which a  
During a stop, the status in which a current 1. Reduce the positioning  
2
current exceeding the  
flew intensively in any of the U, V and W  
frequency at the specific  
positioning address.  
2. Reduce the load.  
3. Replace the servo amplifier/  
servo motor with the one of  
larger capacity.  
rating flew intensively in phases of the servo motor occurred  
any of the U, V and W  
phases of the servo  
motor, was repeated.  
repeatedly, exceeding the warning level.  
AED Output watt  
The status, in which the  
output wattage (speed  
torque) of the servo  
motor exceeded the  
rated output, continued  
steadily.  
Continuous operation was performed with  
1. Reduce the servo motor  
speed.  
excess warning  
the output wattage (speed  
torque) of the  
servo motor exceeding 150% of the rated  
output.  
2. Reduce the load.  
16 - 111  
16. INDEXER POSITIONING OPERATION  
16.12.5 Point table error  
When a point table error occurs, the parameter error (A37) occurs. After the parameter No. of parameter error  
(A37), the point table error details are displayed.  
A L 3 7  
P B 1 0  
P B 1 2  
# 0 0  
P B 1 1  
P B 1 6  
S p d 0 0 1  
Point table error details  
For the point table No.1 speed data error  
Point table No. with error  
Error item  
Spd: speed  
Acc: acceleration time constant  
Dec: deceleration time constant  
16 - 112  
APPENDIX  
App. 1 Parameter list  
POINT  
For any parameter whose symbol is preceded by *, set the parameter value  
and switch power off once, then switch it on again to make that parameter  
setting valid.  
Basic setting parameters (PA  
)
Gain/filter parameters (PB  
Name  
Adaptive tuning mode (Adaptive filter  
)
No.  
Symbol  
*STY  
Name  
No.  
Symbol  
FILT  
PA01  
PA02  
PA03  
Control mode  
PB01  
)
*REG Regenerative option  
*ABS Absolute position detection system  
Vibration suppression control tuning mode  
(Advanced vibration suppression control)  
PB02  
VRFT  
PA04 *AOP1 Function selection A-1  
PB03  
PB04  
PB05  
For manufacturer setting  
Feed forward gain  
For manufacturer setting  
Ratio of load inertia moment to servo motor  
inertia moment  
PA05  
PA06  
PA07  
PA08  
PA09  
PA10  
PA11  
PA12  
PA13  
PA14  
PA15  
PA16  
to  
*FTY  
Feeding function selection  
FFC  
*CMX Electronic gear numerator  
*CDV Electronic gear denominator  
ATU  
RSP  
INP  
PB06  
GD2  
Auto tuning  
Auto tuning response  
In-position range  
Forward rotation torque limit  
Reverse rotation torque limit  
For manufacturer setting  
Rotation direction selection  
PB07  
PB08  
PB09  
PB10  
PB11  
PB12  
PB13  
PB14  
PB15  
PB16  
PB17  
PB18  
PG1  
PG2  
VG2  
VIC  
Model loop gain  
Position loop gain  
Speed loop gain  
Speed integral compensation  
Speed differential compensation  
For manufacturer setting  
Machine resonance suppression filter 1  
TLP  
TLN  
VDC  
*POL  
*ENR Encoder output pulses  
NH1  
NHQ1 Notch form selection 1  
For manufacturer setting  
NH2  
Machine resonance suppression filter 2  
NHQ2 Notch form selection 2  
Automatic setting parameter  
PA18  
PA19  
*BLK  
Parameter write inhibit  
LPF  
Low-pass filter  
Vibration suppression control vibration  
frequency setting  
Vibration suppression control resonance  
frequency setting  
PB19  
PB20  
VRF1  
VRF2  
PB21  
PB22  
PB23  
PB24  
PB25  
PB26  
PB27  
PB28  
For manufacturer setting  
VFBF Low-pass filter selection  
*MVS Slight vibration suppression control selection  
For manufacturer setting  
*CDP Gain changing selection  
CDL  
CDT  
Gain changing condition  
Gain changing time constant  
Gain changing ratio of load inertia moment to  
servo motor inertia moment  
PB29  
GD2B  
PB30  
PB31  
PB32  
PG2B Gain changing position loop gain  
VG2B Gain changing speed loop gain  
VICB  
Gain changing speed integral compensation  
Gain changing vibration suppression control  
vibration frequency setting  
PB33 VRF1B  
PB34 VRF2B  
Gain changing vibration suppression control  
resonance frequency setting  
PB35  
to  
For manufacturer setting  
PB45  
App. - 1  
APPENDIX  
Extension setting parameters (PC  
)
I/O setting parameters (PD  
Name  
)
No.  
Symbol  
Name  
For manufacturer setting  
Home position return type  
No.  
Symbol  
*DIA1  
PC01  
PC02  
PC03  
PC04  
PC05  
PC06  
PC07  
PC08  
PD01  
PD02  
PD03  
PD04  
PD05  
PD06  
PD07  
PD08  
PD09  
PD10  
PD11  
PD12  
PD13  
PD14  
PD15  
PD16  
PD17  
PD18  
PD19  
PD20  
PD21  
PD22  
PD23  
PD24  
PD25  
to  
Input signal automatic ON selection 1  
For manufacturer setting  
Input signal automatic ON selection 3  
Input signal automatic ON selection 4  
For manufacturer setting  
Input signal device selection 2 (CN6-2)  
Input signal device selection 3 (CN6-3)  
Input signal device selection 4 (CN6-4)  
Input signal device selection 1 (CN6-14)  
Input signal device selection 2 (CN6-15)  
Input signal device selection 3 (CN6-16)  
External DI function selection 1  
For manufacturer setting  
*ZTY  
*ZDIR Home position return direction  
*DIA3  
*DIA4  
ZRF  
CRF  
ZST  
*ZPS  
DCT  
Home position return speed  
Creep speed  
Home position shift distance  
Home position return position data  
Moving distance after proximity dog  
Stopper type home position return  
stopper time  
*DI2  
*DI3  
*DI4  
*DO1  
*DO2  
*DO3  
DIN1  
PC09  
PC10  
ZTM  
ZTT  
Stopper type home position return  
torque limit value  
PC11  
PC12  
CRP  
JOG  
Rough match output range  
Jog speed  
DIN3  
External DI function selection 3  
For manufacturer setting  
S-pattern acceleration/deceleration  
time constant  
PC13  
*STC  
*BKC  
*DIAB Input polarity selection  
PC14  
PC15  
Backlash compensation  
For manufacturer setting  
Electromagnetic brake sequence  
output  
For manufacturer setting  
*DIF  
Response level setting  
*DOP1 Function selection D-1  
For manufacturer setting  
*DOP3 Function selection D-2  
For manufacturer setting  
*DOP5 Function selection D-5  
PC16  
MBR  
PC17  
PC18  
PC19  
PC20  
ZSP  
Zero speed  
*BPS  
Alarm history clear  
*ENRS Encoder output pulse selection  
*SNO  
Station number setting  
RS-422 communication function  
selection  
PC21  
*SOP  
For manufacturer setting  
PC22  
PC23  
PC24  
PC25  
PC26  
PC27  
PC28  
PC29  
*COP1 Function selection C-1  
For manufacturer setting  
*COP3 Function selection C-3  
For manufacturer setting  
*COP5 Function selection C-5  
For manufacturer setting  
*COP7 Function selection C-7  
For manufacturer setting  
PD30  
Remote register-based position/speed  
specifying system selection  
PC30  
*DSS  
PC31  
PC32  
PC33  
PC34  
PC35  
PC36  
PC37  
PC38  
PC39  
PC40  
PC41  
to  
LMPL  
LMPH  
LMNL  
LMNH  
TL2  
Software limit  
Software limit  
Internal torque limit 2  
For manufacturer setting  
*LPPL  
*LPPH  
*LNPL  
*LNPH  
Position range output address  
Position range output address  
For manufacturer setting  
PC50  
App. - 2  
APPENDIX  
App. 2 Signal layout recording paper  
CN6  
1
3
14  
16  
2
4
15  
17  
DOCOM  
5
18  
OPC  
20  
6
PP  
8
19  
NP  
21  
DICOM  
7
9
22  
10  
23  
LG  
11  
LA  
13  
LZ  
24  
LAR  
26  
12  
LB  
25  
LBR  
LZR  
App. - 3  
APPENDIX  
App. 3 Twin type connector: outline drawing for 721-2105/026-000(WAGO)  
[Unit: mm]  
Latch Coding finger  
Detecting hole  
4
5( 20)  
25  
5
26.45  
15.1  
5
5.25  
2.9  
4.75  
2.75  
2.7  
Driver slot  
Wire inserting hole  
App. - 4  
APPENDIX  
App. 4 Change of connector sets to the RoHS compatible products  
Connector sets (options) in the following table are changed to the RoHS compatible products after September,  
2006 shipment.  
Please accept that the current products might be mixed with RoHS compatible products based on availability.  
Model  
MR-J3SCNS Amplifier connector (3M or equivalent of 3M)  
MR-ECNM 36210-0100JL (Receptacle) (Note)  
MR-PWCNS4 Power supply connector (DDK)  
Current product  
RoHS compatible product  
Amplifier connector (3M or equivalent of 3M)  
36210-0100PL (Receptacle)  
Power supply connector (DDK)  
CE05-6A18-10SD-B-BSS (Connector and Back shell) CE05-6A18-10SD-D-BSS (Connector and Back shell)  
CE3057-10A-1 (D265) (Cable clump)  
CE3057-10A-1-D (Cable clump)  
Power supply connector (DDK)  
MR-PWCNS5 Power supply connector (DDK)  
CE05-6A22-22SD-B-BSS (Connector and Back shell) CE05-6A22-22SD-D-BSS (Connector and Back shell)  
CE3057-12A-1 (D265) (Cable clump)  
CE3057-12A-1-D (Cable clump)  
Power supply connector (DDK)  
MR-PWCNS3 Power supply connector (DDK)  
CE05-6A32-17SD-B-BSS (Connector and Back shell) CE05-6A32-17SD-D-BSS (Connector and Back shell)  
CE3057-20A-1 (D265) (Cable clump)  
CE3057-20A-1-D (Cable clump)  
Power supply connector (DDK)  
MR-PWCNS1 Power supply connector (DDK)  
CE05-6A22-23SD-B-BSS (Connector and Back shell) CE05-6A22-23SD-D-BSS (Connector and Back shell)  
CE3057-12A-2 (D265) (Cable clump)  
CE3057-12A-2-D (Cable clump)  
Power supply connector (DDK)  
MR-PWCNS2 Power supply connector (DDK)  
CE05-6A24-10SD-B-BSS (Connector and Back shell) CE05-6A24-10SD-D-BSS (Connector and Back shell)  
CE3057-16A-2 (D265) (Cable clump)  
Electromagnetic brake connector  
MS3106A10SL-4S(D190) (Plug, DDK)  
CE3057-16A-2-D (Cable clump)  
MR-BKCN  
Electromagnetic brake connector  
D/MS3106A10SL-4S(D190) (Plug, DDK)  
Amplifier connector (3M or equivalent of 3M)  
10126-3000PE (connector)  
MR-J2CMP2 Amplifier connector (3M or equivalent of 3M)  
10126-3000VE (connector)  
Note. RoHS compatible 36210-0100FD may be packed with current connector sets.  
App. - 5  
APPENDIX  
App. 5 MR-J3-200T-RT servo amplifier  
Connectors (CNP1, CNP2, and CNP3) and appearance of MR-J3-200T servo amplifier have been changed  
from January 2008 production. Model name of the existing servo amplifier is changed to MR-J3-200T-RT. The  
difference between new MR-J3-200T servo amplifier and existing MR-J3-200T-RT servo amplifier is described  
in this appendix. Sections within parentheses in the following sections indicate corresponding sections of the  
instruction manual.  
App. 5.1 Parts identification (1.6.1 Parts identification)  
Detailed  
Name/Application  
explanation  
Display  
Section 5.3  
The 3-digit, seven-segment LED shows the servo  
Chapter 11  
status and alarm number.  
5
Baud rate switch (MODE)  
MODE  
5
0
Section 3.2.4  
Select the CC-Link communication baud rate.  
0
5
5
Station number switches (STATION NO.)  
0
0
Set the station number of the servo amplifier.  
X10 STATION NO. X1  
5
5
Section 3.2.3  
Section 3.2.5  
0
0
Set the one place.  
Set the ten place.  
Occupied station count switch (SW1)  
SW1  
Set the number of occupied stations.  
Main circuit power supply connector (CNP1)  
Used to connect the input power supply.  
Section 4.1  
Section 4.3  
Section 12.1  
Communication alarm display section  
Indicates alarms in CC-Link communication.  
L.RUN  
Section 11.3  
SD  
RD  
L.ERR  
USB communication connector (CN5)  
Used to connect the personal computer.  
Chapter 7  
Chapter 7  
Chapter 8  
Chapter 15  
RS-422 communication connector (CN3)  
Used to connect the MR-PRU03 parameter unit or  
personal computer.  
CC-Link connector (CN1)  
Wire the CC-Link cable.  
Section 3.2.2  
Section 4.1  
Section 4.3  
Section 12.1  
Servo motor power connector (CNP3)  
Used to connect the servo motor.  
Section 4.2  
Section 4.4  
I/O signal connector (CN6)  
Used to connect digital I/O signals.  
Section 4.10  
Section 14.1  
Encoder connector (CN2)  
Used to connect the servo motor encoder.  
Battery connector (CN4)  
Used to connect the battery for absolute position data  
backup.  
Section 5.8  
Section 14.7  
Section 4.1  
Section 4.3  
Section 12.1  
Section 14.2  
Control circuit connector (CNP2)  
Used to connect the control circuit power supply/  
regenerative option.  
Battery holder  
Contains the battery for absolute position data backup.  
Section 5.8  
Cooling fan  
Charge lamp  
Lit to indicate that the main circuit is charged. While  
this lamp is lit, do not reconnect the cables.  
Section 4.1  
Section 4.3  
Section 12.1  
Protective earth (PE) terminal (  
Ground terminal.  
)
Fixed part  
(3 places)  
Rating plate  
Section 1.4  
App. - 6  
APPENDIX  
App. 5.2 Configuration including auxiliary equipment (1.7 Configuration including auxiliary equipment)  
(Note 3)  
Power supply  
R S T  
No-fuse breaker  
(NFB) or fuse  
Magnetic  
contactor  
(MC)  
MR Configurator  
Personal  
computer  
(Note2)  
Servo amplifier  
Line noise filter  
(FR-BSF01)  
(Note 2)  
Power factor  
improving DC  
reactor(FR-BEL)  
L1  
L2  
L3  
P1  
P2  
CN5  
CC-Link  
CN3  
CN1  
CN6  
Regenerative option  
P
C
I/O signal  
L11  
L21  
CN2  
CN4  
(Note 1)  
Battery  
MR-J3BAT  
U
U
V
W
Servo motor  
Note 1. The battery (option) is used for the absolute position detection system in the position control mode.  
2. The AC reactor can also be used. In this case, the DC reactor cannot be used. When not using DC reactor, short P1 and P2.  
3. Refer to section 1.2 for the power supply specification.  
App. - 7  
APPENDIX  
App. 5.3 CNP1, CNP2, CNP3 wiring method (4.3.3 CNP1, CNP2, CNP3 wiring method)  
(a) Servo amplifier power supply connectors  
Servo amplifier power supply connectors  
Connector for CNP1  
PC4/6-STF-7.62-CRWH  
(Phoenix Contact)  
Servo amplifier  
<Applicable cable example>  
Cable finish OD: to 5mm  
CNP1  
Connector for CNP3  
PC4/3-STF-7.62-CRWH  
(Phoenix Contact)  
CNP3  
CNP2  
Connector for CNP2  
54928-0520 (Molex)  
<Applicable cable example>  
Cable finish OD: to 3.8mm  
(b) Termination of the cables  
1) CNP1 CNP3  
Solid wire: After the sheath has been stripped, the cable can be used as it is.  
Sheath  
Core  
7mm  
Twisted wire: Use the cable after stripping the sheath and twisting the core. At this time, take care to avoid  
a short caused by the loose wires of the core and the adjacent pole. Do not solder the core as  
it may cause a contact fault. Alternatively, a bar terminal may be used to put the wires  
together.  
Cable size  
Bar terminal type  
For 1 cable For 2 cables  
AI1.5-8BK  
Crimping tool  
Manufacturer  
2
[mm ]  
AWG  
16  
1.25/1.5  
2.0/2.5  
3.5  
AI-TWIN2 1.5-8BK  
AI-TWIN2 2.5-10BU  
14  
AI2.5-8BU  
AI4-10Y  
CRIMPFOX-ZA3  
Phoenix Contact  
12  
2) CNP2  
CNP2 is the same as MR-J3-100T or smaller capacities. Refer to section 4.3.3 (1) (b).  
App. - 8  
APPENDIX  
App. 5.4 OUTLINE DRAWINGS (Chapter 12 OUTLINE DRAWINGS)  
[Unit: mm]  
90  
6 mounting hole  
85  
6
45  
Approx. 80  
195  
Rating plate  
21.4  
CNP1  
CN1  
CNP3  
CNP2  
Approx.  
25.5  
Cooling fan  
wind direction  
Approx. 68  
6
6
78  
6
With MR-J3BAT  
Mass: 2.3 [kg] (5.07 [lb])  
Terminal signal layout  
Approx. 90  
L1  
PE terminal  
L2  
L3  
N
CNP1  
P1  
P2  
Screw size: M4  
Tightening torque:  
3-M5 screw  
Approx. 6  
1.2 [N m] (10.6 [lb in])  
U
V
CNP3  
CNP2  
W
Approx. 6  
78 0.3  
P
C
Mounting hole process drawing  
Mounting screw  
D
Screw size: M5  
Tightening torque: 3.24[N m] (28.7[lb in])  
L11  
L21  
App. - 9  
APPENDIX  
App. 6 Selection example of servo motor power cable  
POINT  
Selection condition of wire size is as follows.  
Wire length: 30m or less  
Depending on the cable selected, there may be cases that the cable does not  
fit into the Mitsubishi optional or recommended cable clamp. Select a cable  
clamp according to the cable diameter.  
Selection example when using the 600V grade EP rubber insulated chloroprene sheath cab-tire cable (2PNCT)  
for servo motor power (U, V, and W) is indicated below.  
Servo motor  
HF-SP52  
Wire size [mm2]  
Servo motor  
HC-RP153  
Wire size [mm2]  
Servo motor  
HA-LP11K1M  
HA-LP15K1M  
HA-LP22K1M  
HA-LP502  
Wire size [mm2]  
1.25  
1.25  
2
2
3.5  
5.5  
5.5  
1.25  
1.25  
2
14  
22  
38  
5.5  
8
HF-SP102  
HF-SP152  
HF-SP202  
HF-SP352  
HF-SP502  
HF-SP702  
HF-SP51  
HC-RP203 (Note)  
HC-RP353 (Note)  
HC-RP503 (Note)  
HC-LP52  
2
3.5  
5.5  
8
HA-LP702  
HC-LP102  
HA-LP11K2  
HA-LP15K2  
HA-LP22K2  
HA-LP6014  
14  
22  
22  
5.5  
5.5  
8
HC-LP152  
1.25  
1.25  
2
HC-LP202  
3.5  
5.5  
1.25  
2
HF-SP81  
HC-LP302  
HF-SP121  
HF-SP201  
HF-SP301  
HF-SP421  
HF-SP524  
HF-SP1024  
HF-SP1524  
HF-SP2024  
HF-SP3524  
HF-SP5024  
HF-SP7024  
HC-RP103  
HC-UP72  
HA-LP8014  
2
HC-UP152  
HC-UP202  
HC-UP352  
HC-UP502  
HA-LP601  
HA-LP12K14  
HA-LP15K14  
HA-LP20K14  
HA-LP701M4  
HA-LP11K1M4  
HA-LP15K1M4  
HA-LP22K1M4  
HA-LP11K24  
HA-LP15K24  
HA-LP22K24  
3.5  
5.5  
1.25  
1.25  
2
3.5  
5.5  
5.5  
8
14  
14  
5.5  
8
HA-LP801  
14  
14  
14  
8
2
HA-LP12K1  
HA-LP15K1  
HA-LP20K1  
HA-LP25K1  
HA-LP701M  
14  
2
22  
3.5  
5.5  
2
38  
14  
14  
38  
8
Note. Use a composite cable and others when combining with wiring of the electromagnetic brake power in the same cable.  
App. - 10  
APPENDIX  
App. 7 Parameter list  
POINT  
For any parameter whose symbol is preceded by *, set the parameter value  
and switch power off once, then switch it on again to make that parameter  
setting valid.  
Basic setting parameters (PA  
)
Gain/filter parameters (PB  
Name  
Adaptive tuning mode (Adaptive filter  
)
No.  
Symbol  
*STY  
Name  
No.  
Symbol  
FILT  
PA01  
PA02  
PA03  
PA04  
PA05  
PA06  
PA07  
PA08  
PA09  
PA10  
PA11  
PA12  
PA13  
PA14  
PA15  
PA16  
to  
Control mode  
PB01  
)
*REG Regenerative option  
Vibration suppression control tuning mode  
(Advanced vibration suppression control)  
PB02  
VRFT  
*ABS  
Absolute position detection system  
Not used in indexer positioning operation.  
PB03  
PB04  
PB05  
For manufacturer setting  
Feed forward gain  
FFC  
*CMX Number of gears on machine-side  
*CDV Number of gears on servo motor-side  
For manufacturer setting  
Ratio of load inertia moment to servo motor  
inertia moment  
PB06  
GD2  
ATU  
RSP  
INP  
Auto tuning  
Auto tuning response  
In-position range  
PB07  
PB08  
PB09  
PB10  
PB11  
PB12  
PB13  
PB14  
PB15  
PB16  
PB17  
PB18  
PG1  
PG2  
VG2  
VIC  
Model loop gain  
Position loop gain  
Speed loop gain  
TLP  
TLN  
Forward rotation torque limit  
Reverse rotation torque limit  
For manufacturer setting  
Rotation direction selection  
Speed integral compensation  
Speed differential compensation  
For manufacturer setting  
Machine resonance suppression filter 1  
VDC  
*POL  
*ENR Encoder output pulses  
For manufacturer setting  
NH1  
NHQ1 Notch form selection 1  
NH2  
NHQ2 Notch form selection 2  
Automatic setting parameter  
Machine resonance suppression filter 2  
PA18  
PA19  
*BLK  
Parameter write inhibit  
LPF  
Low-pass filter  
Vibration suppression control vibration  
frequency setting  
Vibration suppression control resonance  
frequency setting  
PB19  
PB20  
VRF1  
VRF2  
PB21  
PB22  
PB23  
PB24  
PB25  
PB26  
PB27  
PB28  
For manufacturer setting  
VFBF Low-pass filter selection  
*MVS Slight vibration suppression control selection  
For manufacturer setting  
*CDP Gain changing selection  
CDL  
CDT  
Gain changing condition  
Gain changing time constant  
Gain changing ratio of load inertia moment to  
servo motor inertia moment  
PB29  
GD2B  
PB30  
PB31  
PB32  
PG2B Gain changing position loop gain  
VG2B Gain changing speed loop gain  
VICB  
Gain changing speed integral compensation  
Gain changing vibration suppression control  
vibration frequency setting  
PB33 VRF1B  
PB34 VRF2B  
Gain changing vibration suppression control  
resonance frequency setting  
PB35  
to  
For manufacturer setting  
PB45  
App. - 11  
APPENDIX  
Extension setting parameters (PC  
)
I/O setting parameters (PD  
Name  
)
No.  
Symbol  
Name  
For manufacturer setting  
Home position return type  
No.  
Symbol  
*DIA1  
PC01  
PC02  
PC03  
PC04  
PC05  
PC06  
PC07  
PC08  
PC09  
PC10  
PC11  
PC12  
PD01  
PD02  
PD03  
PD04  
PD05  
PD06  
PD07  
PD08  
PD09  
PD10  
PD11  
PD12  
PD13  
PD14  
PD15  
PD16  
PD17  
PD18  
PD19  
PD20  
PD21  
PD22  
PD23  
PD24  
PD25  
Input signal automatic ON selection 1  
For manufacturer setting  
Not used in indexer positioning operation.  
*ZTY  
*ZDIR Home position return direction  
ZRF  
CRF  
ZST  
Home position return speed  
Creep speed  
Home position shift distance  
Not used in indexer positioning  
operation.  
For manufacturer setting  
Not used in indexer positioning operation.  
CRP  
JOG  
Rough match output range  
Jog speed  
Not used in indexer positioning  
operation.  
For manufacturer setting  
Not used in indexer positioning operation.  
For manufacturer setting  
PC13  
PC14  
PC15  
*BKC  
MBR  
Backlash compensation  
For manufacturer setting  
Electromagnetic brake sequence  
output  
*DIAB Input polarity selection  
PC16  
PC17  
For manufacturer setting  
Not used in indexer positioning  
operation.  
*DIF  
Response level setting  
*DOP1 Function selection D-1  
For manufacturer setting  
PC18  
PC19  
PC20  
*BPS  
Alarm history clear  
*ENRS Encoder output pulse selection  
Not used in indexer positioning operation.  
*SNO  
Station number setting  
RS-422 communication function  
selection  
For manufacturer setting  
*DOP5 Function selection D-5  
For manufacturer setting  
PC21  
*SOP  
PC22  
PC23  
*COP1 Function selection C-1  
For manufacturer setting  
Not used in indexer positioning  
operation.  
Indexer positioning operation torque limit delay  
time  
For manufacturer setting  
PD26  
TLT  
PD27  
to  
PC24  
PC25  
PC26  
PC27  
PC28  
PC29  
For manufacturer setting  
*COP5 Function selection C-5  
For manufacturer setting  
*COP7 Function selection C-7  
For manufacturer setting  
PD30  
Remote register-based position/speed  
specifying system selection  
PC30  
*DSS  
PC31  
PC32  
PC33  
PC34  
PC35  
PC36  
PC37  
PC38  
PC39  
PC40  
PC41  
to  
Not used in indexer positioning  
operation.  
TL2  
Internal torque limit 2  
For manufacturer setting  
Not used in indexer positioning  
operation.  
For manufacturer setting  
PC44  
PC45  
*COP9 Function selection C-9  
Indexer positioning operation number  
of stations/rotation  
Indexer positioning operation station  
home position shift distance  
For manufacturer setting  
PC46  
PC47  
*STN  
PSST  
PC48  
to  
PC50  
App. - 12  
APPENDIX  
App. 8 Program example with MELSEC-A series programmable controllers  
(point table positioning operation)  
App. 8.1 Function-by-function programming examples  
This section explains specific programming examples for servo operation, monitor, parameter read and write,  
and others on the basis of the equipment makeup shown in appendix 8.1.1.  
App.8.1.1 System configuration example  
As shown below, the CC-Link system master local unit is loaded to run two servo amplifiers (1 station  
occupied / 2 stations occupied).  
Programmable controller  
Master station Input module  
Power supply  
A1S62PN  
CPU  
A1SHCPU  
A1SJ61BT11  
A1SX40  
(X/Y00 to 1F) (X20 to X2F)  
X20 to  
Terminating  
resistor  
Station No.1  
Station No.2  
Servo amplifier  
Servo amplifier  
(1 station occupied)  
(2 stations occupied)  
Terminating  
resistor  
App. - 13  
APPENDIX  
App. 8.1.2 Reading the servo amplifier status  
Read the servo amplifier status from the master station buffer memory. The servo amplifier status is always  
stored in the remote input RX (addresses E0H to 15FH) Read the servo amplifier status of station 1 to M0 to  
M31.  
Reads remote input (RX00 to RX1F) of  
buffer memory to M0 to M31.  
Remote input  
Address  
E0H  
E1H  
E2H  
E3H  
E4H  
E5H  
RX0F to RX00  
RX1F to RX10  
RX2F to RX20  
RX3F to RX30  
RX4F to RX40  
RX5F to RX50  
Station  
No.1  
1 Station  
2 Station  
3 Station  
FROM command  
RXF to RX0  
M15  
*
M10  
0
M5  
0
M0  
1
0
0
0
0
0
0
0
0
0
0
0
1
Station  
No.2  
In position  
Ready  
M31  
*
M26  
0
M21  
*
M16  
*
RX1F to RX10  
*
*
*
1
*
*
*
*
*
*
*
*
15EH  
15FH  
RX7EF to RX7E0  
RX7FF to RX7F0  
64 Station  
Note.  
area is for one servo amplifier.  
*: Set 0 or 1 as the bit is not used.  
Remote station communication ready  
Servo amplifier status (1 station occupied)  
M0: Ready (RD)  
M8: Monitoring (MOF)  
M16:  
M24:  
M25:  
M1: In position (INP)  
M9: Instruction code execution completion M17:  
M2: Rough match (CPO)  
(COF)  
M18:  
M19:  
M20:  
M21:  
M22:  
M23:  
M26: Trouble (ALM)  
M27: Remote station  
communication  
ready (CRD)  
M28:  
M3: Home position return completion (ZP) M10: Warning (WNG)  
M4: Limiting torque (TLC)  
M5:  
M11: Battery warning (BWNG)  
M12: Movement completion (MEND)  
M13: Dynamic brake interlock (DB)  
M14: Position range (POT)  
M15:  
M6: Electromagnetic brake interlock  
(MBR)  
M29:  
M7: Temporary stop (PUS)  
M30:  
M31:  
App. - 14  
APPENDIX  
App. 8.1.3 Writing the operation commands  
To operate the servo amplifier, write the operation commands to the remote output RY (addresses 160H to  
1DFH). Perform positioning operation of point table No.2 for the servo amplifier of station 2.  
Start the operation by turning on X20.  
Servo-on command (RY00)  
Point table No. selection 2 command (RY0B)  
Automatic/manual selection command (RY06)  
Point table establishment time 10ms *1  
Forward rotation start command (RY01)  
Operation command  
Command demand time 10ms *1  
Forward rotation start command reset  
Writes M100 to M131 to remote output (RY00 to  
RY1F) of buffer memory.  
*1: Setting time for the timer should be larger than the command processing  
time or twice the link scan time whichever larger. When the setting time is  
short, the command cannot be received properly.  
Address  
160H  
161H  
162H  
163H  
164H  
165H  
RY0F to RY00  
RY1F to RY10  
RY2F to RY20  
RY3F to RY30  
RY4F to RY40  
RY5F to RY50  
M115  
*
M110  
0
M105  
1
M100  
1
Station  
No.1  
1 Station  
2 Station  
3 Station  
RY0F to RY00  
0
0
0
1
0
0
0
1
1
0
0
1
TO instruction  
Station  
No.2  
Point table selection 2  
M131  
Automatic/manual selection Forward rotation start  
Servo-on  
M126  
0
M121  
*
M116  
*
RY1F to RY10  
*
*
*
*
*
*
*
*
*
*
*
*
*
1DEH  
1DFH  
RY7EF to RY7E0  
RY7FF to RY7F0  
64 Station  
Note.  
area is for one servo amplifier.  
*: Set 0 as the bit is not used.  
Operation commands (1 station occupied)  
M100: Servo-on (SON)  
M108: Monitor output execution demand  
(MOR)  
M116:  
M117:  
M124:  
M101: Forward rotation start (ST1)  
M102: Reverse rotation start (ST2)  
M103: Proximity dog (DOG)  
M125:  
M109: Instruction code execution demand M118:  
M126: Reset (RES)  
M127:  
(COR)  
M119:  
M120:  
M121:  
M122:  
M123:  
M104: Forward rotation stroke end (LSP) M110: Point table No. selection 1 (DI0)  
M105: Reverse rotation stroke end (LSN) M111: Point table No. selection 2 (DI1)  
M106: Automatic/manual selection (MDO) M112: Point table No. selection 3 (DI2)  
M128:  
M129:  
M130:  
M107: Temporary stop/Restart (TSTP)  
M113: Point table No. selection 4 (DI3)  
M114: Point table No. selection 5 (DI4)  
M115: Clear (CR)  
M131:  
App. - 15  
APPENDIX  
App. 8.1.4 Reading the data  
Read various data of the servo amplifier.  
(1) Reading the monitor value  
Read the (feedback pulse value) of the servo amplifier of station 2 to D1.  
Data No.  
H000A  
Description  
Cumulative feedback pulse data (hexadecimal)  
Read the cumulative feedback pulse monitor by turning on X20.  
Reads remote input (RX20 to RX5F) of buffer  
memory to M200 to M263.  
Sets monitor code (H000A) of feedback pulse  
in RWw4.  
Read  
command  
Turns on Monitor output execution demand  
(RY28).  
Reads RWr4 and RWr5 of buffer memory to  
D10 and D11 when monitoring (RX28) turns on.  
Writes M100 to M163 to remote output (RY20 to  
RY5F) of buffer memory.  
Monitor stop  
App. - 16  
APPENDIX  
(2) Reading the parameter  
Read parameter No.PA04 "Function selection A-1" of the servo amplifier of station 2 to D1.  
Data No.  
H8200  
Description  
Parameter group selection  
Parameter No.PA04 setting (hexadecimal)  
H2024  
Read the parameter No.PA04 by turning on X20.  
The respond code at instruction code execution is set to D9.  
Reads remote input (RX20 to RX5F) of buffer  
memory to M200 to M263.  
Read command  
Writes parameter group No. write (H8200) to  
RWw6 and parameter group PA (H0000) to  
RWw7.  
Turns on instruction code execution demand  
(RY29).  
Turns off instruction code execution demand  
(RY29) when instruction code execution  
completion (RX29) turns on.  
Writes parameter No.PA04 read (H0204) to  
RWw6.  
Turns on instruction code execution demand  
(RY29).  
Reads RWr7 and RWr6 of buffer memory to  
D1 and D9 when instruction code execution  
completion (RX29) turns on.  
Turns off instruction code execution demand  
(RY29).  
Writes M100 to M163 to remote output (RY20 to  
RY5F) of buffer memory.  
App. - 17  
APPENDIX  
(3) Reading the alarm definition  
Read the alarm definition of the servo amplifier of station 2 to D1.  
Data No.  
H0010  
Description  
Occurring alarm/warning No. (hexadecimal)  
Read current alarms by turning on X20.  
The respond code at instruction code execution is set to D9.  
Reads remote input (RX20 to RX5F) of buffer  
memory to M200 to M263.  
Read command  
Writes current alarm read (H0010) to RWw6.  
Turns on instruction code execution demand  
(RY29).  
Reads RWr7 and RWr6 of buffer memory to  
D1 and D9 when instruction code execution  
completion (RX29) turns on.  
Turns off instruction code execution demand  
(RY29).  
Writes M100 to M163 to remote output (RY20 to  
RY5F) of buffer memory.  
App. - 18  
APPENDIX  
App. 8.1.5 Writing the data  
This section explains the programs for writing various data to the servo amplifier.  
(1) Writing the servo motor speed data of point table  
Change the servo motor speed data in the point table No.1 of the servo amplifier of station 2 to "100".  
The following shows a program example for writing data to the servo amplifier when two stations are  
occupied. Writing is disabled for the servo amplifier when one station is occupied.  
Code No.  
H8D01  
Description  
Write of servo motor speed data of point table No.1  
(hexadecimal)  
Set data  
K100  
Description  
Servo motor speed data of point table No.1  
(decimal)  
Write the data to the servo motor speed data of point table No.1 by turning on X20.  
The respond code at instruction code execution is set to D2.  
Reads remote input (RX20 to RX5F) of buffer  
memory to M200 to M263.  
Write  
command  
In position  
Writes speed data (H8D01) of point table No.1  
to RWw6, and speed data (K100) to RWw7.  
Turns on instruction code execution demand  
(RY29).  
Reads respond code (RWr6) to D2 when  
instruction code execution completion (RX29)  
turns on.  
Turns off instruction code execution demand  
(RY29).  
Writes M100 to M163 to remote output (RY20 to  
RY5F) of buffer memory.  
App. - 19  
APPENDIX  
(2) Writing the parameter  
The following shows a program example when two stations are occupied.  
Change parameter No.PC12 (JOG speed) of the servo amplifier of station 2 to "100".  
The parameter group PC is specified as follows.  
Code No.  
8200h  
Description  
Parameter group selection  
Set data  
H0002  
Description  
Set data (hexadecimal)  
The parameter No.12 is changed to "100" as follows.  
Code No.  
H820C  
Description  
Parameter No.PC12 write (hexadecimal)  
Set data  
K100  
Description  
Set data (decimal)  
Write the data to the parameter No.PC12 by turning on X20.  
The respond code at instruction code execution is set to D2.  
Reads remote input (RX20 to RX5F) of buffer  
memory to M200 to M263.  
Write command  
Writes parameter group No. write (H8200) to  
RWw6 and parameter group PC (H0002) to  
RWw7.  
Turns on instruction code execution demand  
(RY29).  
Turns off instruction code execution demand  
(RY29) when instruction code execution  
completion (RX29) turns on.  
Writes parameter No.PC12 write (H820C) to  
RWw6 and data (K100) to RWw7.  
Turns on instruction code execution demand  
(RY29).  
Reads RWw6 to D2 when instruction code  
execution completion (RX29) turns on.  
Turns on instruction code execution demand  
(RY29).  
Writes M100 to M163 to remote output (RY20 to  
RY5F) of buffer memory.  
App. - 20  
APPENDIX  
(3) Servo amplifier alarm resetting program examples  
(a) Deactivate the alarm of the servo amplifier of station 2 by issuing a command from the programmable  
controller.  
Reset the servo amplifier on the occurrence of a servo alarm by turning on X20.  
Reads remote input (RX20 to RX5F) of buffer  
memory to M200 to M263.  
Turns on reset command (RY5A).  
Reset  
command  
Turns off reset command (RY5A) when trouble  
flag (RX5A) turns off.  
Writes M100 to M163 to remote output (RY20 to  
RY5F) of buffer memory.  
(b) Deactivate the alarm of the servo amplifier of station 2 using the instruction code.  
Code No.  
H8010  
Description  
Alarm reset command (hexadecimal)  
Set data  
H1EA5  
Description  
Execution data (hexadecimal)  
Reset the servo amplifier by turning on X20.  
The respond code at instruction code execution is set to D2.  
Reads remote input (RX20 to RX5F) of buffer  
memory to M200 to M263.  
Reset command  
Writes alarm reset command (H8010) to  
RWw6 and execution data (H1EA5) to RWw7.  
Turns on instruction code execution demand  
(RY29).  
Reads respond code (RWr6) to D2 when  
instruction code execution completion (RX29)  
turns on.  
Turns off instruction code execution demand  
(RY29).  
Writes M100 to M163 to remote output (RY20 to  
RY5F) of buffer memory.  
App. - 21  
APPENDIX  
App. 8.1.6 Operation  
This section explains the operation programs of the servo amplifier.  
(1) JOG operation  
Perform JOG operation of the servo amplifier of station 1 and read the "current position" data.  
Code No.  
H0001  
Description  
Lower 16-bit data of current position (hexadecimal)  
Upper 16-bit data of current position (hexadecimal)  
H0002  
Start the forward rotation JOG operation by turning on X22.  
Start the reverse rotation JOG operation by turning on X23.  
Reads remote input (RX00 to RX1F) of buffer  
memory to M200 to M231.  
Servo-on command (RY00).  
Forward rotation start (RY01).  
Trouble Remote station communication ready  
Forward rotation JOG command  
Reverse rotation start (RY02).  
Reverse rotation JOG command  
Sets monitor code (H0001) of current position  
(lower 16 bits) to RWw0.  
Sets monitor code (H0002) of current  
position (upper 16 bits) to RWw1.  
Turns on monitor command (RY08).  
Reads RWr0 and RWr1 of buffer memory to D120  
and D121 when monitoring (RX08) turns on.  
Writes M100 to M131 to remote output (RY00 to  
RY1F) of buffer memory.  
App. - 22  
APPENDIX  
(2) Remote register-based position data/speed data setting  
The following program example is only applicable when two stations are occupied.  
Operate the servo amplifier of station 2 after specifying the position data as "100000" and the speed data  
as "1000" in the direct specification mode.  
Preset "  
2" in parameter No.PC30.  
Set data  
Description  
Position command data (decimal)  
Speed command data (decimal)  
K100000  
K1000  
Execute positioning operation with position and speed settings specified in the remote register by turning on  
X20.  
Reads remote input (RX20 to RX5F) of buffer  
memory to M200 to M263.  
Servo-on command (RY20)  
Automatic operation mode selection (RY26)  
Position/speed specifying system selection  
(RY4A)  
Operation In position  
command  
Writes position command data (K100000) to  
RWw8, RWw9, and speed data (K1000) to  
RWwA.  
Turns on position instruction demand (RY40).  
Turns on speed instruction demand (RY41).  
Reads respond code (RWr6) to D2 when position  
instruction execution completion (RX40) and speed  
instruction execution completion (RX41) turn on.  
Position and speed data establishment time  
10ms *1  
Turns on forward rotation start command  
(RY21).  
Command request time 10ms *1  
Turns off forward rotation start command  
(RY21).  
Turns off position instruction demand (RY40).  
Turns off speed instruction demand (RY41).  
Writes M100 to M163 to remote output (RY20 to  
RY5F) of buffer memory.  
*1: Setting time for the timer should be larger than the command processing  
time or twice the link scan time whichever larger. When the setting time is  
short, the command cannot be received properly.  
App. - 23  
APPENDIX  
(3) Remote register-based point table No. setting (incremental value command system)  
The following program example is only applicable when two stations are occupied.  
Operate the servo amplifier of station 2 with incremental values after specifying the point table No.5 in the  
direct specification mode.  
Preset "  
0" in parameter No.PA01 and "  
0" in parameter No.PC30.  
Set data  
K5  
Description  
Point table No. (decimal)  
Execute positioning operation to the point table No.5 by turning on X20.  
Reads remote input (RX20 to RX5F) of buffer  
memory to M200 to M263.  
Servo-on command (RY20)  
Automatic operation mode selection (RY26)  
Position/speed specifying system selection  
(RY4A)  
Incremental value selection (RY4B)  
Operation In position  
command  
Writes point table No.5 (K5) to RWw8.  
Turns on position instruction demand (RY40).  
Reads respond code (RWr6) to D2 when position  
instruction execution completion (RX40) turns on.  
Point table establishment time 10ms *1  
Turns on forward rotation start command  
(RY21).  
Command request time 10ms *1  
Turns off forward rotation start command  
(RY21).  
Turns off position instruction demand (RY40).  
Writes M100 to M163 to remote output (RY20 to  
RY5F) of buffer memory.  
*1: Setting time for the timer should be larger than the command processing  
time or twice the link scan time whichever larger. When the setting time is  
short, the command cannot be received properly.  
App. - 24  
APPENDIX  
App. 8.2 Continuous operation program example  
This section shows a program example which includes a series of communication operations from a servo  
start. The program will be described on the basis of the equipment makeup shown in appendix 8.2.1, appendix  
8.2.3.  
App. 8.2.1 System configuration example when 1 station is occupied  
As shown below, the CC-Link system master local unit is loaded to run one servo amplifier (1 station  
occupied).  
Programmable controller  
Master station Input module  
Power supply  
A1S62PN  
CPU  
A1SHCPU  
A1SJ61BT11  
A1SX40  
(X/Y00 to 1F) (X20 to X2F)  
X20 to X2C  
Station No.1  
Terminating  
resistor  
Servo amplifier  
(1 station occupied)  
Terminating  
resistor  
Input signal assignment  
Input signal  
X20  
Signal name  
Reset command  
General operation when the input is on  
Resets the servo amplifier on an occurrence of a servo alarm.  
Turns on the servo motor. (Servo-on status)  
X21  
Servo-on command  
Forward rotation JOG  
command  
X22  
X23  
X24  
X25  
X26  
Executes a forward JOG operation in the manual operation mode.  
Executes a reverse JOG operation in the manual operation mode.  
Reverse rotation JOG  
command  
OFF: Manual operation mode  
Automatic/manual selection  
ON: Automatic operation mode  
Home position return  
command  
Executes a dog type home position return when home position return  
is incomplete in the automatic operation mode.  
OFF: Proximity dog is on. (Note)  
Proximity dog command  
ON: Proximity dog is off.  
Executes a positioning operation to the point table number specified  
by X28 to X2C when home position return is incomplete in the  
automatic operation mode.  
X27  
Positioning start command  
X28  
X29  
X2A  
X2B  
X2C  
No. selection 1  
No. selection 2  
No. selection 3  
No. selection 4  
No. selection 5  
Specifies the position for the point table No. selection 1  
Specifies the position for the point table No. selection 2  
Specifies the position for the point table No. selection 3  
Specifies the position for the point table No. selection 4  
Specifies the position for the point table No. selection 5  
Note. This is when the parameter No.PD16 is set to "  
0 (initial value)" (detects the dog at off).  
App. - 25  
APPENDIX  
App. 8.2.2 Program example when 1 station is occupied  
POINT  
To execute a dog type home position return with the CC-Link communication  
functions, set " 0 " in parameter No.PD14 and use Proximity dog (DOG)  
with the remote input (RY03) in this example.  
Operate the servo amplifier of station 1 in the positioning mode and read the "current position" data.  
Operation: Alarm reset, dog type home position return, JOG operation, automatic operation under point table  
command  
Code No.  
H0001  
Description  
Lower 16-bit data of current position (hexadecimal)  
Upper 16-bit data of current position (hexadecimal)  
H0002  
Check the status of CC-Link.  
Reads remote input (RX00 to RX1F) of buffer  
memory to M200 to M231.  
Writes current alarm read (H0010) to RWw2 at  
trouble (RX1A) occurrence.  
Turns on instruction code execution demand  
(RY09).  
Reads RWr3 and RWr2 of buffer memory to  
D11 and D12 when instruction code execution  
completion (RX09) turns on.  
Turns off instruction code execution demand  
(RY09).  
Alarm reset command (RY1A)  
Reset command  
Servo-on command  
Servo-on command (RY00)  
Automatic operation mode selection (RY06)  
Automatic/manual selection  
Automatic/manual selection  
Manual operation mode selection (RY06)  
Home position return request  
Home position return  
command  
Home position return completion  
Point table establishment time 10ms *1  
Forward rotation start request  
Command request time 10ms *1  
Forward rotation start request reset  
Proximity dog command (RY03)  
Proximity dog command  
App. - 26  
APPENDIX  
Forward rotation start request  
Reverse rotation start request  
Positioning start command  
Forward rotation JOG command  
Positioning start command Reverse rotation JOG command  
In  
Rough Home position  
return completion  
position match  
Point table establishment time 10ms *1  
Forward rotation start request  
Command request time 10ms *1  
Forward rotation start request reset  
Point table No. selection 1 (RY0A)  
Point table No. selection 2 (RY0B)  
No. selection 1  
No. selection 2  
No. selection 3  
No. selection 4  
No. selection 5  
Point table No. selection 3 (RY0C)  
Point table No. selection 4 (RY0D)  
Point table No. selection 5 (RY0E)  
Forward rotation start (RY01)  
Reverse rotation start (RY02)  
Sets monitor code (H0001) of current position  
(lower 16 bits) in RWw0.  
Sets monitor code (H0002) of current position  
(upper 16 bits) in RWw1.  
Turns on monitor output execution demand  
(RY08).  
Reads RWr0 and RWr1 of buffer memory to D120  
and D121 when monitoring (RX08) turns on.  
Writes M100 to M131 to remote output (RY00 to  
RY2F) of buffer memory.  
*1: Setting time for the timer should be larger than the command processing  
time or twice the link scan time whichever larger. When the setting time is  
short, the command cannot be received properly.  
App. - 27  
APPENDIX  
App. 8.2.3 System configuration example when 2 stations are occupied  
As shown below, the CC-Link system master local unit is loaded to run one servo amplifiers (2 station  
occupied).  
Programmable controller  
Master station Input module  
Power supply  
A1S62PN  
CPU  
A1SHCPU  
A1SJ61BT11  
A1SX40  
(X/Y00 to 1F) (X20 to X2F)  
X20 to X28  
Station No.1  
Terminating  
resistor  
Servo amplifier  
(2 stations occupied)  
Terminating  
resistor  
Input signal assignment  
Input signal  
X20  
Signal name  
Reset command  
General operation when the input is on  
Resets the servo amplifier on an occurrence of a servo alarm.  
Turns on the servo motor. (Servo-on status)  
X21  
Servo-on command  
Forward rotation JOG  
command  
X22  
X23  
X24  
X25  
X26  
Executes a forward JOG operation in the manual operation mode.  
Executes a reverse JOG operation in the manual operation mode.  
Reverse rotation JOG  
command  
OFF: Manual operation mode  
Automatic/manual selection  
ON: Automatic operation mode  
Home position return  
command  
Executes a dog type home position return when home position return  
is incomplete in the automatic operation mode.  
OFF: Proximity dog is on. (Note)  
Proximity dog command  
ON: Proximity dog is off.  
Executes a positioning operation with position and speed settings  
specified in the remote register when home position return is  
completed in the automatic operation mode.  
X27  
X28  
Positioning start command  
Position/speed setting system  
changing command  
Changes to position/speed specification by the remote register.  
Note. This is when the parameter No.PD16 is set to "  
0 (initial value)" (detects the dog at off).  
App. - 28  
APPENDIX  
App. 8.2.4 Program example when 2 stations are occupied  
POINT  
To execute a dog type home position return with the CC-Link communication  
functions, set " 0 " in parameter No.PD14 and use Proximity dog (DOG)  
with the remote input (RY03) in this example.  
Operate the servo amplifier of station 1 in the positioning mode and read the "motor speed" data.  
Preset the parameter No.PC30 to "  
2".  
Operation: Alarm reset, dog type home position return, JOG operation, automatic operation under point table  
command  
Code No.  
H0016  
Description  
32-bit data of motor speed (hexadecimal)  
Code No.  
K50000  
K100  
Description  
Position command data (decimal)  
Speed command data (decimal)  
Check the status of CC-Link.  
Reads remote input (RX00 to RX3F) of buffer  
memory to M200 to M263.  
Writes current alarm read (H0010) to RWw2 at  
trouble (RX3A) occurrence.  
Turns on instruction code execution demand  
(RY09).  
Reads RWr3 and RWr2 of buffer memory to  
D11 and D12 when instruction code execution  
completion (RX09) turns on.  
Turns off instruction code execution demand  
(RY09).  
Alarm reset command (RY3A)  
Reset command  
Servo-on command  
Servo-on command (RY00)  
Automatic operation mode selection (RY06)  
Manual operation mode selection (RY06)  
Automatic/manual selection  
Automatic/manual selection  
Home position return  
Home position return request  
Home position return completion  
command  
Point table establishment time 10ms *1  
Forward rotation start request  
Command request time 10ms *1  
Forward rotation start request reset  
Proximity dog command (RY03)  
Proximity dog command  
App. - 29  
APPENDIX  
Positioning start command  
Forward rotation JOG command  
Reverse rotation JOG command  
Position/speed setting system changing command  
Forward rotation start request  
Reverse rotation start request  
Position/speed specifying system selection  
(RY4A)  
In  
Rough Home position  
position match return completion  
Writes position command data (K50000) to  
RWw4, RWw5, and speed data (K100) to  
RWw6.  
Turns on position instruction demand (RY20).  
Turns on speed instruction demand (RY21).  
Reads respond code (RWr2) to D2 when  
position instruction execution completion (RX20)  
and speed instruction execution completion  
(RX21) turn on.  
Position and speed data establishment time  
10ms *1  
Positioning start command  
Command request time 10ms *1  
Positioning start command reset  
Turns off position instruction demand (RY20).  
Turns off speed instruction demand (RY21).  
Forward rotation start (RY01)  
Reverse rotation start (RY02)  
Sets monitor code (H0016) of motor speed to  
RWw0.  
Turns on monitor output execution demand  
(RY08).  
Reads RWr0 and RWr1 of buffer memory to  
D120 and D121 when monitoring (RX08) turns  
on.  
Writes M100 to M163 to remote output (RY00 to  
RY3F) of buffer memory.  
*1: Setting time for the timer should be larger than the command processing  
time or twice the link scan time whichever larger. When the setting time is  
short, the command cannot be received properly.  
App. - 30  
REVISIONS  
*The manual number is given on the bottom left of the back cover.  
Revision  
Print Data  
Apr., 2006  
Jul., 2006  
*Manual Number  
SH(NA)030058-A First edition  
SH(NA)030058-B Chapter 2  
CAUTION added  
Section 3.5.2(2)  
Description of DB changed  
Section 3.5.3  
Note deleted  
Section 3.6.3(1)  
Section 3.6.3(2)  
Section 3.6.3(3)  
Section 3.7.1  
On duration: 5ms of RYn1 and RYn2 in diagram modified  
On duration: 5ms of RYn1 and RYn2 in diagram modified  
On duration: 5ms of RYn1 and RYn2 in diagram modified  
Diagram partly modified  
Section 4.8.2(3)(b) Parameter No.19 in diagram changed  
Section 4.10.2(2)  
Section 5.6.5(2)  
Section 5.6.8  
POINT added  
NOTE added  
POINT changed  
Section 5.8(1)  
Section 5.8(5)(a)  
Section 6.2.1  
Restrictions changed  
POINT added  
Name of parameter No.PB17: For manufacturer setting  
changed  
Section 6.2.2  
Name of parameter No.PB17: For manufacturer setting  
changed  
Section 6.3.5  
Section 6.4.2  
Parameter No.12 in diagram changed  
Initial value: 0000h of parameter No. PD20 modified  
Sentence of parameter No. PD24 changed  
Parameter No. PB07 added  
Section 9.3(1)(a)  
Section 9.5  
Section title modified  
Section 13.1  
Section 14.1.1  
Section 15.4.1(5)  
Section 15.4.2  
App 1  
Diagrams added  
Model: MR-CCN1 of No.33 modified  
Commands: [3] and [5] added  
(15) Group setting (Command [9][F]) added  
Name of parameter No.PB17: For manufacturer setting  
changed  
Oct., 2007  
SH(NA)030058-C Servo amplifier  
Servo motor  
MR-J3-60T4 to MR-J3-22KT4 added  
HF-SP524/1024/1524/2024/3524/5024/7024  
HA-LP6014/701M4 added  
Section 1.1.2  
Section 1.6.1  
Note regarding cooling fan added  
Description for "motor power supply connector" changed to  
"servo motor power connector"  
Note added with change of notation for power supply  
Section 1.7  
Section 2.1 (1)(b) POINT description changed  
Section 4.1  
Note regarding stepdown transformer added  
Wiring method for MR-J3-200T4 added as (3)  
Cable insertion method added for Wago Japan  
Cable insertion method for Phoenix Contact Connector  
changed  
Section 4.3.3 (3)  
Section 4.3.3 (4)  
Section 4.3.3 (5)  
Section 4.11.3  
Section 6.1.4  
Section 7.1  
Note regarding circuit breaking method deleted  
For parameter No.PA02, setting values 80 to 87 added  
Compatible versions added on table  
Section 11.4.2  
Section 12.2  
Section 13.1  
For descriptions of A10, A30 and A33, MR-J3- T4 added  
Connector type changed for RoHS compatibility  
Diagram layout changed  
Print Data  
Oct., 2007  
*Manual Number  
Revision  
SH(NA)030058-C Section 13.2  
Section 13.3  
400V compatible added  
Dynamic brake time constant and load inertia moment ratio  
compatible with 400V added. The calculation methods and  
graph in section 13.3.1, the permissible load inertia moment in  
13.3.2, each divided by paragraph.  
Section 13.5  
Inrush current at 400V added  
Section 14.1.1  
Section 14.1.1 2)  
Section 14.1.2  
Connector model changed for RoHS compatibility  
Connector for MR-J3-200T4/350T4 added  
Connector type and configuration changed for RoHS  
compatibility  
Section 14.2 (1)  
400V compatible regenerative option added  
Section 14.2 (2)(b) Descriptions of table modified  
Section 14.2 (3)  
Section 14.2 (4)  
Section 14.2  
For parameter No.PA02, setting values 80 to 87 added  
400V compatible regenerative option added  
Due to the addition of MR-RB34-4 and MR-RB54-4, changed  
dimension added  
(5)(b),(c)  
Section 14.2 (5)  
Description added  
Section 14.3 (3)(b) Outline drawing and dimension table changed  
Section 14.4 (2)  
Section 14.4 (3)  
Section 14.4 (4)  
Note regarding stepdown transformer added  
FR-RC-H15K, FR-RC-H30K, FR-RC-H55K added  
FR-RC-H15K, FR-RC-H30K, FR-RC-H55K added  
Section 14.5 (3)(b) Note regarding stepdown transformer added  
Section 14.5 (4)(b) Wire diameter instructions changed  
2)  
Section 14.5 (6)  
Section 14.6 (2)  
Description "compliant with JIS" deleted  
Circuit in connection example changed, note regarding  
stepdown transformer added  
Section 14.7 (3)  
Section 14.9 (1)  
Outline drawing added  
Recommended wires compliant with MR-J3-60T4 to MR-J3-  
22KT4 added  
Section 14.9 (3)  
Appendix 4  
Recommended twist cables for CC-Link changed  
Table for changing connector set to RoHS compliant products  
added  
Feb., 2008  
SH(NA)030058-D Safety Instructions  
1. Additional  
Partial change of sentence  
instructions  
CONFORMANCE WITH UL/C-UL STANDARD  
(3)  
Original item title: Short circuit rating, Original current value:  
5000A  
(5)  
Fuse deleted  
<<About the wires used for wiring>> Addition  
Section 1.2 (1)  
Section 1.4  
Original mass of MR-J3-200T: 2.3kg  
Overview of MR-J3-200T changed  
Overview of MR-J3-200T changed  
Addition in diagram  
Section 1.6.1 (2)  
Section 1.7 (3)  
Overview of MR-J3-200T changed  
Addition in diagram  
Section 2.1 (1)(b) POINT Change of sentence  
Section 3.7.5 (2)  
Section 4.3.1  
Section 4.3.3  
Ladder partial change  
Description in table partially changed  
Components of terminal block for MR-J3-200T changed  
Print Data  
Feb., 2008  
*Manual Number  
Revision  
SH(NA)030058-D Section 4.10.2  
(3)(b)  
Figure partially changed  
Section 4.11.2 (1) Change of diagram  
Section 4.11.2 (5) No-fuse breaker for cooling fan added  
to (8)  
Section 5.3 (1)  
Section 5.3 (2)  
Section 7.2 (1)  
Change of diagram  
Indication description and Note 2 added  
Component description changed  
Section 7.2 (2) 1) RS-422/232C converter FA-T-RS40VS deleted  
Section 8.5.7 (1)(a) Addition of sentence  
Section 11.4.2  
Definition of Parameter error (A37) changed  
Section 12.1 (5)  
Outline drawing of MR-J3-200T changed, POINT added  
Section 14.1.1 2) Components of MR-J3-200T terminal block changed,  
Applicable wire size for WAGO terminal block changed  
Section 14.1.3 (2) Addition of Note  
Section 14.1.4 (2) Addition of Note  
Section 14.5 (3)(a), Addition of Note  
(b)  
Section 14.5 (4)  
Section 14.9  
POINT addition  
600V Grade heat-resistant polyvinyl chloride insulated wire  
(HIV wire) added  
Section 14.10  
Section 14.11  
Appendix 5  
Fuse class changed (original: K5 class)  
Note added to the table  
Addition  
Appendix 6  
Addition  
Jun., 2008  
SH(NA)030058-E All pages  
“PLC” changed to “programmable controller”  
CONFORMANCE WITH UL/C-UL STANDARD  
(2) Installation  
(3) Short circuit  
rating  
Change of sentence  
Change of sentence  
Section 1.1.6  
Section 3.5.1 (2)  
Error of communication alarm display position corrected  
Note 4. Addition of sentence  
Section 3.5.2 (3) (a) RWwn 6 Addition of sentence  
Section 3.7  
Changed  
Section 3.8  
Changed  
Section 4.10.1  
Section 5.4.2 (3)  
Section 5.4.3  
CAUTION changed  
Timing chart partially changed, Note 1 changed  
Description added to the remote register-based position/  
speed specifying system selection  
Timing chart partially changed, Note 1 changed  
Note. Deleted  
Section 5.6.1 (1)  
Section 5.6.2 (3)  
Section 5.6.3 (2)  
Section 5.6.4 (2)  
Section 5.6.5 (2)  
Section 5.6.6  
Note. Change of sentence  
Note. Change of sentence  
Note. Change of sentence  
Note. Change of sentence  
POINT addition  
Section 5.6.6 (1)  
Section 5.6.7 (2)  
Section 5.6.8 (2)  
Section 5.6.9 (2)  
Change of table  
Note. Change of sentence  
Note. Change of sentence  
Note. Change of sentence  
Section 5.6.10 (2) Note. Change of sentence  
Print Data  
Jun., 2008  
*Manual Number  
Revision  
SH(NA)030058-E Section 5.6.11 (2) Note. Change of sentence  
Section 5.6.12 (2) Note. Change of sentence  
Section 6.3  
Section 6.4.3  
Section 6.4.4  
Section 7.7.1  
Section 11.4.2  
Section 14.1  
Chapter 16  
Parameter No.PC28 added  
Addition  
Addition  
Starting method added  
“Cause” added to CC-Link alarm (A8D)  
POINT addition  
Addition  
Appendix 7  
Addition  
Appendix 8  
Addition  
SH(NA)030058-E  
MODEL  
MODEL  
CODE  
HEAD OFFICE : TOKYO BLDG MARUNOUCHI TOKYO 100-8310  
This Instruction Manual uses recycled paper.  
Specifications subject to change without notice.  
SH (NA) 030058-E (0806) MEE  
Printed in Japan  

Pioneer Premier DEH P740MP User Manual
Pioneer Car Speaker TS A4674R User Manual
Philips Blender 6886XL User Manual
Perreaux ET User Manual
Panasonic NV GS27GN User Manual
Orion Car Audio 2150SX User Manual
KitchenAid KFP720BU0 User Manual
Kenwood KVT 735DVD User Manual
Kalorik USK MCL 36711 User Manual
JVC KD LH810 User Manual