Mitsubishi Electronics Mitsubishi Digital Electronics Car Amplifier MR J2S A User Manual

General-Purpose AC Servo  
J2-Super Series  
General-Purpose Interface  
MODEL  
MR-J2S- A  
SERVO AMPLIFIER  
INSTRUCTION MANUAL  
J
Safety Instructions  
(Always read these instructions before using the equipment.)  
Do not attempt to install, operate, maintain or inspect the servo amplifier and servo motor until you have read  
through this Instruction Manual, Installation guide, Servo motor Instruction Manual and appended documents  
carefully and can use the equipment correctly. Do not use the servo amplifier and servo motor until you have a  
full knowledge of the equipment, safety information and instructions.  
In this Instruction Manual, the safety instruction levels are classified into "WARNING" and "CAUTION".  
Indicates that incorrect handling may cause hazardous conditions,  
WARNING  
resulting in death or severe injury.  
Indicates that incorrect handling may cause hazardous conditions,  
CAUTION  
resulting in medium or slight injury to personnel or may cause physical  
damage.  
Note that the CAUTION level may lead to a serious consequence according to conditions. Please follow the  
instructions of both levels because they are important to personnel safety.  
What must not be done and what must be done are indicated by the following diagrammatic symbols.  
: Indicates what must not be done. For example, "No Fire" is indicated by  
: Indicates what must be done. For example, grounding is indicated by  
.
.
In this Instruction Manual, instructions at a lower level than the above, instructions for other functions, and so  
on are classified into "POINT".  
After reading this installation guide, always keep it accessible to the operator.  
A - 1  
1. To prevent electric shock, note the following:  
WARNING  
Before wiring or inspection, turn off the power and wait for 15 minutes or more until the charge lamp turns  
off. Then, confirm that the voltage between P and N is safe with a voltage tester and others. Otherwise, an  
electric shock may occur. In addition, always confirm from the front of the servo amplifier, whether the  
charge lamp is off or not.  
Connect the servo amplifier and servo motor to ground.  
Any person who is involved in wiring and inspection should be fully competent to do the work.  
Do not attempt to wire the servo amplifier and servo motor until they have been installed. Otherwise, you  
may get an electric shock.  
Operate the switches with dry hand to prevent an electric shock.  
The cables should not be damaged, stressed, loaded, or pinched. Otherwise, you may get an electric shock.  
During power-on or operation, do not open the front cover of the servo amplifier. You may get an electric  
shock.  
Do not operate the servo amplifier with the front cover removed. High-voltage terminals and charging area  
are exposed and you may get an electric shock.  
Except for wiring or periodic inspection, do not remove the front cover even of the servo amplifier if the  
power is off. The servo amplifier is charged and you may get an electric shock.  
2. To prevent fire, note the following:  
CAUTION  
Install the servo amplifier, servo motor and regenerative resistor on incombustible material. Installing them  
directly or close to combustibles will lead to a fire.  
Always connect a magnetic contactor (MC) between the main circuit power supply and L1, L2, and L3 of  
the servo amplifier, and configure the wiring to be able to shut down the power supply on the side of the  
servo amplifier’s power supply. If a magnetic contactor (MC) is not connected, continuous flow of a large  
current may cause a fire when the servo amplifier malfunctions.  
When a regenerative resistor is used, use an alarm signal to switch main power off. Otherwise, a  
regenerative transistor fault or the like may overheat the regenerative resistor, causing a fire.  
3. To prevent injury, note the follow  
CAUTION  
Only the voltage specified in the Instruction Manual should be applied to each terminal, Otherwise, a  
burst, damage, etc. may occur.  
Connect the terminals correctly to prevent a burst, damage, etc.  
Ensure that polarity ( , ) is correct. Otherwise, a burst, damage, etc. may occur.  
Take safety measures, e.g. provide covers, to prevent accidental contact of hands and parts (cables, etc.)  
with the servo amplifier heat sink, regenerative resistor, servo motor, etc.since they may be hot while  
power is on or for some time after power-off. Their temperatures may be high and you may get burnt or a  
parts may damaged.  
During operation, never touch the rotating parts of the servo motor. Doing so can cause injury.  
A - 2  
4. Additional instructions  
The following instructions should also be fully noted. Incorrect handling may cause a fault, injury, electric  
shock, etc.  
(1) Transportation and installation  
CAUTION  
Transport the products correctly according to their masses.  
Stacking in excess of the specified number of products is not allowed.  
Do not carry the servo motor by the cables, shaft or encoder.  
Do not hold the front cover to transport the servo amplifier. The servo amplifier may drop.  
Install the servo amplifier in a load-bearing place in accordance with the Instruction Manual.  
Do not climb or stand on servo equipment. Do not put heavy objects on equipment.  
The controller and servo motor must be installed in the specified direction.  
Leave specified clearances between the servo amplifier and control enclosure walls or other equipment.  
When you keep or use it, please fulfill the following environmental conditions.  
Conditions  
Environment  
Servo amplifier  
0 to 55 (non-freezing)  
32 to 131 (non-freezing)  
20 to 65 (non-freezing)  
4 to 149 (non-freezing)  
Servo motor  
0 to 40 (non-freezing)  
32 to 104 (non-freezing)  
15 to 70 (non-freezing)  
5 to 158 (non-freezing)  
[
[
[
[
]
]
]
]
In  
operation  
Ambient  
temperature  
In storage  
In operation  
In storage  
90%RH or less (non-condensing)  
90%RH or less (non-condensing)  
Indoors (no direct sunlight) Free from corrosive gas, flammable gas, oil mist, dust and dirt  
80%RH or less (non-condensing)  
Ambient  
humidity  
Ambience  
Altitude  
Max. 1000m (3280 ft) above sea level  
HC-KFS Series  
HC-MFS Series  
HC-UFS13 to 73  
HC-SFS81  
X
X
Y : 49  
HC-SFS52 to 152  
HC-SFS53 to 153  
HC-RFS Series  
HC-UFS 72 152  
HC-SFS121 201  
HC-SFS202 352  
HC-SFS203 353  
HC-UFS202 to 502  
HC-SFS301  
Y : 24.5  
[m/s2]  
5.9 or less  
X : 24.5  
Y : 49  
X : 24.5  
Y : 29.4  
X : 11.7  
Y : 29.4  
HC-SFS502 to 702  
HA-LFS11K2 to 22K2  
(Note)  
Vibration  
HC-KFS Series  
HC-MFS Series  
HC-UFS 13 to 73  
HC-SFS81  
X
Y : 161  
HC-SFS52 to 152  
HC-SFS53 to 153  
HC-RFS Series  
HC-UFS 72 152  
HC-SFS121 201  
HC-SFS202 352  
HC-SFS203 353  
HC-UFS202 to 502  
HC-SFS301  
X
Y : 80  
[ft/s2]  
19.4 or less  
X : 80  
Y : 161  
X : 80  
Y : 96  
X : 38  
Y : 96  
HC-SFS502 to 702  
HA-LFS11K2 to 22K2  
Note. Except the servo motor with reduction gear.  
A - 3  
CAUTION  
Do not install or operate the servo amplifier and servo motor which has been damaged or has any parts  
missing.  
Provide adequate protection to prevent screws and other conductive matter, oil and other combustible  
matter from entering the servo amplifier and servo motor.  
Do not drop or strike servo amplifier or servo motor. Isolate from all impact loads.  
Securely attach the servo motor to the machine. If attach insecurely, the servo motor may come off during  
operation.  
The servo motor with reduction gear must be installed in the specified direction to prevent oil leakage.  
Take safety measures, e.g. provide covers, to prevent accidental access to the rotating parts of the servo  
motor during operation.  
Never hit the servo motor or shaft, especially when coupling the servo motor to the machine. The encoder  
may become faulty.  
Do not subject the servo motor shaft to more than the permissible load. Otherwise, the shaft may break.  
When the equipment has been stored for an extended period of time, consult Mitsubishi.  
(2) Wiring  
CAUTION  
Wire the equipment correctly and securely. Otherwise, the servo motor may operate unexpectedly.  
Do not install a power capacitor, surge absorber or radio noise filter (FR-BIF option) between the servo  
motor and servo amplifier.  
Connect the wires to the correct phase terminals (U, V, W) of the servo amplifier and servo motor.  
Otherwise, the servo motor does not operate properly.  
Connect the servo motor power terminal (U, V, W) to the servo motor power input terminal (U, V, W)  
directly. Do not let a magnetic contactor, etc. intervene.  
Servo amplifier  
U
Servo motor  
Servo amplifier  
U
Servo motor  
U
V
U
V
V
V
M
M
W
W
W
W
Do not connect AC power directly to the servo motor. Otherwise, a fault may occur.  
The surge absorbing diode installed on the DC output signal relay of the servo amplifier must be wired in  
the specified direction. Otherwise, the emergency stop (EMG) and other protective circuits may not  
operate.  
Servo amplifier  
Servo amplifier  
COM  
COM  
(24VDC)  
(24VDC)  
Control  
output  
signal  
Control  
output  
signal  
RA  
RA  
When the cable is not tightened enough to the terminal block (connector), the cable or terminal block  
(connector) may generate heat because of the poor contact. Be sure to tighten the cable with specified  
torque.  
A - 4  
(3) Test run adjustment  
CAUTION  
Before operation, check the parameter settings. Improper settings may cause some machines to perform  
unexpected operation.  
The parameter settings must not be changed excessively. Operation will be insatiable.  
(4) Usage  
CAUTION  
Provide an external emergency stop circuit to ensure that operation can be stopped and power switched  
off immediately.  
Any person who is involved in disassembly and repair should be fully competent to do the work.  
Before resetting an alarm, make sure that the run signal of the servo amplifier is off to prevent an  
accident. A sudden restart is made if an alarm is reset with the run signal on.  
Do not modify the equipment.  
Use a noise filter, etc. to minimize the influence of electromagnetic interference, which may be caused by  
electronic equipment used near the servo amplifier.  
Use the servo amplifier with the specified servo motor.  
Burning or breaking a servo amplifier may cause a toxic gas. Do not burn or break a servo amplifier.  
The electromagnetic brake on the servo motor is designed to hold the motor shaft and should not be used  
for ordinary braking.  
For such reasons as service life and mechanical structure (e.g. where a ball screw and the servo motor  
are coupled via a timing belt), the electromagnetic brake may not hold the motor shaft. To ensure safety,  
install a stopper on the machine side.  
(5) Corrective actions  
CAUTION  
When it is assumed that a hazardous condition may take place at the occur due to a power failure or a  
product fault, use a servo motor with electromagnetic brake or an external brake mechanism for the  
purpose of prevention.  
Configure the electromagnetic brake circuit so that it is activated not only by the servo amplifier signals  
but also by an external emergency stop (EMG).  
Contacts must be open when  
servo-off, when an trouble (ALM)  
and when an electromagnetic brake  
interlock (MBR).  
Circuit must be  
opened during  
emergency stop (EMG).  
Servo motor  
RA EMG  
24VDC  
Electromagnetic brake  
When any alarm has occurred, eliminate its cause, ensure safety, and deactivate the alarm before  
restarting operation.  
When power is restored after an instantaneous power failure, keep away from the machine because the  
machine may be restarted suddenly (design the machine so that it is secured against hazard if restarted).  
A - 5  
(6) Maintenance, inspection and parts replacement  
CAUTION  
With age, the electrolytic capacitor of the servo amplifier will deteriorate. To prevent a secondary accident  
due to a fault, it is recommended to replace the electrolytic capacitor every 10 years when used in general  
environment.  
Please consult our sales representative.  
(7) General instruction  
To illustrate details, the equipment in the diagrams of this Specifications and Instruction Manual may have  
been drawn without covers and safety guards. When the equipment is operated, the covers and safety  
guards must be installed as specified. Operation must be performed in accordance with this Specifications  
and Instruction Manual.  
About processing of waste  
When you discard servo amplifier, a battery (primary battery), and other option articles, please follow the law of  
each country (area).  
FOR MAXIMUM SAFETY  
These products have been manufactured as a general-purpose part for general industries, and have not  
been designed or manufactured to be incorporated in a device or system used in purposes related to  
human life.  
Before using the products for special purposes such as nuclear power, electric power, aerospace,  
medicine, passenger movement vehicles or under water relays, contact Mitsubishi.  
These products have been manufactured under strict quality control. However, when installing the product  
where major accidents or losses could occur if the product fails, install appropriate backup or failsafe  
functions in the system.  
EEP-ROM life  
The number of write times to the EEP-ROM, which stores parameter settings, etc., is limited to 100,000. If  
the total number of the following operations exceeds 100,000, the servo amplifier and/or converter unit may  
fail when the EEP-ROM reaches the end of its useful life.  
Write to the EEP-ROM due to parameter setting changes  
Home position setting in the absolute position detection system  
Write to the EEP-ROM due to device changes  
Precautions for Choosing the Products  
Mitsubishi will not be held liable for damage caused by factors found not to be the cause of Mitsubishi;  
machine damage or lost profits caused by faults in the Mitsubishi products; damage, secondary damage,  
accident compensation caused by special factors unpredictable by Mitsubishi; damages to products other  
than Mitsubishi products; and to other duties.  
A - 6  
COMPLIANCE WITH EC DIRECTIVES  
1. WHAT ARE EC DIRECTIVES?  
The EC directives were issued to standardize the regulations of the EU countries and ensure smooth  
distribution of safety-guaranteed products. In the EU countries, the machinery directive (effective in  
January, 1995), EMC directive (effective in January, 1996) and low voltage directive (effective in January,  
1997) of the EC directives require that products to be sold should meet their fundamental safety  
requirements and carry the CE marks (CE marking). CE marking applies to machines and equipment  
into which servo amplifiers have been installed.  
(1) EMC directive  
The EMC directive applies not to the servo units alone but to servo-incorporated machines and  
equipment. This requires the EMC filters to be used with the servo-incorporated machines and  
equipment to comply with the EMC directive. For specific EMC directive conforming methods, refer to  
the EMC Installation Guidelines (IB(NA)67310).  
(2) Low voltage directive  
The low voltage directive applies also to servo units alone. Hence, they are designed to comply with  
the low voltage directive.  
This servo is certified by TUV, third-party assessment organization, to comply with the low voltage  
directive.  
(3) Machine directive  
Not being machines, the servo amplifiers need not comply with this directive.  
2. PRECAUTIONS FOR COMPLIANCE  
(1) Servo amplifiers and servo motors used  
Use the servo amplifiers and servo motors which comply with the standard model.  
Servo amplifier :MR-J2S-10A to MR-J2S-22KA  
MR-J2S-10A1 to MR-J2S-40A1  
Servo motor  
:HC-KFS  
HC-MFS  
HC-SFS  
HC-RFS  
HC-UFS  
HA-LFS  
HC-LFS  
(2) Configuration  
Control box  
Reinforced  
insulating type  
(Note)  
Reinforced  
insulating  
24VDC  
power  
supply  
No-fuse  
breaker  
Magnetic  
contactor  
transformer  
Servo  
motor  
Servo  
amplifier  
MC  
M
NFB  
Note. The insulating transformer is not required for the 11kW or more servo amplifier.  
A - 7  
(3) Environment  
Operate the servo amplifier at or above the contamination level 2 set forth in IEC60664-1. For this  
purpose, install the servo amplifier in a control box which is protected against water, oil, carbon, dust,  
dirt, etc. (IP54).  
(4) Power supply  
(a) Operate the servo amplifier 7kW or less to meet the requirements of the overvoltage category II set  
forth in IEC60664-1. For this purpose, a reinforced insulating transformer conforming to the IEC  
or EN standard should be used in the power input section.  
Since the 11kW or more servo amplifier can be used under the conditions of the overvoltage  
category III set forth in IE60664-1, a reinforced insulating transformer is not required in the power  
input section.  
(b) When supplying interface power from external, use a 24VDC power supply which has been  
insulation-reinforced in I/O.  
(5) Grounding  
(a) To prevent an electric shock, always connect the protective earth (PE) terminals (marked ) of the  
servo amplifier to the protective earth (PE) of the control box.  
(b) Do not connect two ground cables to the same protective earth (PE) terminal. Always connect the  
cables to the terminals one-to-one.  
PE terminals  
PE terminals  
(c) If a leakage current breaker is used to prevent an electric shock, the protective earth (PE) terminals  
of the servo amplifier must be connected to the corresponding earth terminals.  
(6) Wiring  
(a) The cables to be connected to the terminal block of the servo amplifier must have crimping  
terminals provided with insulating tubes to prevent contact with adjacent terminals.  
Crimping terminal  
Insulating tube  
Cable  
(b) Use the servo motor side power connector which complies with the EN Standard. The EN Standard  
compliant power connector sets are available from us as options.  
A - 8  
(7) Auxiliary equipment and options  
(a) The no-fuse breaker and magnetic contactor used should be the EN or IEC standard-compliant  
products of the models described in section 13.2.2.  
(b) The sizes of the cables described in section 13.2.1 meet the following requirements. To meet the  
other requirements, follow Table 5 and Appendix C in EN60204-1.  
Ambient temperature: 40 (104) [  
Sheath: PVC (polyvinyl chloride)  
(
)]  
Installed on wall surface or open table tray  
(c) Use the EMC filter for noise reduction.  
(8) Performing EMC tests  
When EMC tests are run on a machine/device into which the servo amplifier has been installed, it  
must conform to the electromagnetic compatibility (immunity/emission) standards after it has  
satisfied the operating environment/electrical equipment specifications.  
For the other EMC directive guidelines on the servo amplifier, refer to the EMC Installation  
Guidelines(IB(NA)67310).  
A - 9  
CONFORMANCE WITH UL/C-UL STANDARD  
(1) Servo amplifiers and servo motors used  
Use the servo amplifiers and servo motors which comply with the standard model.  
Servo amplifier :MR-J2S-10A to MR-J2S-22KA  
MR-J2S-10A1 to MR-J2S-40A1  
Servo motor  
:HC-KFS  
HC-MFS  
HC-SFS  
HC-RFS  
HC-UFS  
HA-LFS  
HC-LFS  
(2) Installation  
Install a cooling fan of 100CFM (2.8m3/min) air flow 4 in (10.16 cm) above the servo amplifier or  
provide cooling of at least equivalent capability.  
(3) Short circuit rating  
This servo amplifier conforms to the circuit whose peak current is limited to 5000A or less. Having  
been subjected to the short-circuit tests of the UL in the alternating-current circuit, the servo  
amplifier conforms to the above circuit.  
(4) Capacitor discharge time  
The capacitor discharge time is as listed below. To ensure safety, do not touch the charging section for  
15 minutes after power-off.  
Discharge time  
Servo amplifier  
[min]  
MR-J2S-10A(1) 20A(1)  
MR-J2S-40A(1) 60A  
MR-J2S-70A to 350A  
1
2
3
MR-J2S-500A 700A  
MR-J2S-11KA  
5
4
6
8
MR-J2S-15KA  
MR-J2S-22KA  
(5) Options and auxiliary equipment  
Use UL/C-UL standard-compliant products.  
(6) Attachment of a servo motor  
For the flange size of the machine side where the servo motor is installed, refer to “CONFORMANCE  
WITH UL/C-UL STANDARD” in the Servo Motor Instruction Manual.  
A - 10  
(7) About wiring protection  
For installation in United States, branch circuit protection must be provided, in accordance with the  
National Electrical Code and any applicable local codes.  
For installation in Canada, branch circuit protection must be provided, in accordance with the Canada  
Electrical Code and any applicable provincial codes.  
<<About the manuals>>  
This Instruction Manual and the MELSERVO Servo Motor Instruction Manual are required if you use  
the General-Purpose AC servo MR-J2S-A for the first time. Always purchase them and use the MR-  
J2S-A safely.  
Relevant manuals  
Manual name  
MELSERVO-J2-Super Series To Use the AC Servo Safely  
MELSERVO Servo Motor Instruction Manual  
EMC Installation Guidelines  
Manual No.  
IB(NA)0300010  
SH(NA)3181  
IB(NA)67310  
A - 11  
MEMO  
A - 12  
CONTENTS  
1. FUNCTIONS AND CONFIGURATION  
1- 1 to 1-24  
1.1 Introduction.............................................................................................................................................. 1- 1  
1.2 Function block diagram .......................................................................................................................... 1- 2  
1.3 Servo amplifier standard specifications................................................................................................ 1- 5  
1.4 Function list ............................................................................................................................................. 1- 6  
1.5 Model code definition .............................................................................................................................. 1- 7  
1.6 Combination with servo motor............................................................................................................... 1- 9  
1.7 Structure.................................................................................................................................................. 1-10  
1.7.1 Parts identification.......................................................................................................................... 1-10  
1.7.2 Removal and reinstallation of the front cover .............................................................................. 1-15  
1.8 Servo system with auxiliary equipment............................................................................................... 1-19  
2. INSTALLATION  
2- 1 to 2- 4  
2.1 Environmental conditions....................................................................................................................... 2- 1  
2.2 Installation direction and clearances .................................................................................................... 2- 2  
2.3 Keep out foreign materials ..................................................................................................................... 2- 3  
2.4 Cable stress.............................................................................................................................................. 2- 4  
3. SIGNALS AND WIRING  
3- 1 to 3- 70  
3.1 Standard connection example ................................................................................................................ 3- 2  
3.1.1 Position control mode ....................................................................................................................... 3- 2  
3.1.2 Speed control mode........................................................................................................................... 3- 6  
3.1.3 Torque control mode......................................................................................................................... 3- 8  
3.2 Internal connection diagram of servo amplifier .................................................................................. 3-10  
3.3 I/O signals................................................................................................................................................ 3-11  
3.3.1 Connectors and signal arrangements............................................................................................ 3-11  
3.3.2 Signal explanations ......................................................................................................................... 3-15  
3.4 Detailed description of the signals........................................................................................................ 3-24  
3.4.1 Position control mode ...................................................................................................................... 3-24  
3.4.2 Speed control mode.......................................................................................................................... 3-29  
3.4.3 Torque control mode........................................................................................................................ 3-31  
3.4.4 Position/speed control change mode .............................................................................................. 3-34  
3.4.5 Speed/torque control change mode................................................................................................. 3-36  
3.4.6 Torque/position control change mode ............................................................................................ 3-38  
3.5 Alarm occurrence timing chart ............................................................................................................. 3-39  
3.6 Interfaces................................................................................................................................................. 3-40  
3.6.1 Common line .................................................................................................................................... 3-40  
3.6.2 Detailed description of the interfaces............................................................................................ 3-41  
3.7 Input power supply circuit..................................................................................................................... 3-47  
3.7.1 Connection example......................................................................................................................... 3-47  
3.7.2 Terminals.......................................................................................................................................... 3-49  
3.7.3 Power-on sequence........................................................................................................................... 3-50  
3.8 Connection of servo amplifier and servo motor ................................................................................... 3-52  
3.8.1 Connection instructions .................................................................................................................. 3-52  
3.8.2 Connection diagram......................................................................................................................... 3-53  
1
3.8.3 I/O terminals .................................................................................................................................... 3-54  
3.9 Servo motor with electromagnetic brake ............................................................................................. 3-56  
3.10 Grounding ............................................................................................................................................. 3-60  
3.11 Servo amplifier terminal block (TE2) wiring method....................................................................... 3-61  
3.11.1 For the servo amplifier produced later than Jan. 2006............................................................. 3-61  
3.11.2 For the servo amplifier produced earlier than Dec. 2005.......................................................... 3-63  
3.12 Instructions for the 3M connector....................................................................................................... 3-64  
3.13 Power line circuit of the MR-J2S-11KA to MR-J2S-22KA............................................................... 3-64  
3.13.1 Connection example ...................................................................................................................... 3-65  
3.13.2 Servo amplifier terminals............................................................................................................. 3-66  
3.13.3 Servo motor terminals................................................................................................................... 3-67  
4. OPERATION  
4- 1 to 4- 6  
4.1 When switching power on for the first time.......................................................................................... 4- 1  
4.2 Startup...................................................................................................................................................... 4- 2  
4.2.1 Selection of control mode.................................................................................................................. 4- 2  
4.2.2 Position control mode ....................................................................................................................... 4- 2  
4.2.3 Speed control mode........................................................................................................................... 4- 4  
4.2.4 Torque control mode......................................................................................................................... 4- 5  
4.3 Multidrop communication ...................................................................................................................... 4- 6  
5. PARAMETERS  
5- 1 to 5- 34  
5.1 Parameter list .......................................................................................................................................... 5- 1  
5.1.1 Parameter write inhibit ................................................................................................................... 5- 1  
5.1.2 Lists.................................................................................................................................................... 5- 2  
5.2 Detailed description ............................................................................................................................... 5-26  
5.2.1 Electronic gear ................................................................................................................................. 5-26  
5.2.2 Analog monitor................................................................................................................................. 5-30  
5.2.3 Using forward/reverse rotation stroke end to change the stopping pattern.............................. 5-33  
5.2.4 Alarm history clear.......................................................................................................................... 5-33  
5.2.5 Position smoothing .......................................................................................................................... 5-34  
6. DISPLAY AND OPERATION  
6- 1 to 6-16  
6.1 Display flowchart..................................................................................................................................... 6- 1  
6.2 Status display .......................................................................................................................................... 6- 2  
6.2.1 Display examples.............................................................................................................................. 6- 2  
6.2.2 Status display list............................................................................................................................. 6- 3  
6.2.3 Changing the status display screen................................................................................................ 6- 4  
6.3 Diagnostic mode....................................................................................................................................... 6- 5  
6.4 Alarm mode.............................................................................................................................................. 6- 7  
6.5 Parameter mode ...................................................................................................................................... 6- 8  
6.6 External I/O signal display..................................................................................................................... 6- 9  
6.7 Output signal (DO) forced output ......................................................................................................... 6-12  
6.8 Test operation mode............................................................................................................................... 6-13  
6.8.1 Mode change..................................................................................................................................... 6-13  
6.8.2 Jog operation.................................................................................................................................... 6-14  
6.8.3 Positioning operation....................................................................................................................... 6-15  
2
6.8.4 Motor-less operation........................................................................................................................ 6-16  
7. GENERAL GAIN ADJUSTMENT 7- 1 to 7-12  
7.1 Different adjustment methods ............................................................................................................... 7- 1  
7.1.1 Adjustment on a single servo amplifier.......................................................................................... 7- 1  
7.1.2 Adjustment using MR Configurator (servo configuration software)........................................... 7- 2  
7.2 Auto tuning .............................................................................................................................................. 7- 3  
7.2.1 Auto tuning mode ............................................................................................................................. 7- 3  
7.2.2 Auto tuning mode operation............................................................................................................ 7- 4  
7.2.3 Adjustment procedure by auto tuning............................................................................................ 7- 5  
7.2.4 Response level setting in auto tuning mode................................................................................... 7- 6  
7.3 Manual mode 1 (simple manual adjustment)....................................................................................... 7- 7  
7.3.1 Operation of manual mode 1 ........................................................................................................... 7- 7  
7.3.2 Adjustment by manual mode 1 ....................................................................................................... 7- 7  
7.4 Interpolation mode .................................................................................................................................. 7- 9  
7.5 Differences in auto tuning between MELSERVO-J2 and MELSERVO-J2-Super.......................... 7-11  
7.5.1 Response level setting ..................................................................................................................... 7-11  
7.5.2 Auto tuning selection....................................................................................................................... 7-11  
8. SPECIAL ADJUSTMENT FUNCTIONS  
8- 1 to 8-10  
8.1 Function block diagram .......................................................................................................................... 8- 1  
8.2 Machine resonance suppression filter................................................................................................... 8- 1  
8.3 Adaptive vibration suppression control................................................................................................. 8- 3  
8.4 Low-pass filter ......................................................................................................................................... 8- 4  
8.5 Gain changing function........................................................................................................................... 8- 5  
8.5.1 Applications....................................................................................................................................... 8- 5  
8.5.2 Function block diagram.................................................................................................................... 8- 5  
8.5.3 Parameters........................................................................................................................................ 8- 6  
8.5.4 Gain changing operation.................................................................................................................. 8- 8  
9. INSPECTION  
9- 1 to 9- 2  
10. TROUBLESHOOTING  
10- 1 to 10-14  
10.1 Trouble at start-up ..............................................................................................................................10- 1  
10.1.1 Position control mode ...................................................................................................................10- 1  
10.1.2 Speed control mode.......................................................................................................................10- 4  
10.1.3 Torque control mode.....................................................................................................................10- 5  
10.2 When alarm or warning has occurred...............................................................................................10- 6  
10.2.1 Alarms and warning list ..............................................................................................................10- 6  
10.2.2 Remedies for alarms.....................................................................................................................10- 7  
10.2.3 Remedies for warnings................................................................................................................10-13  
11. OUTLINE DIMENSION DRAWINGS  
11- 1 to 11-10  
11.1 Servo amplifiers...................................................................................................................................11- 1  
11.2 Connectors............................................................................................................................................11- 8  
3
12. CHARACTERISTICS  
12- 1 to 12- 8  
12.1 Overload protection characteristics...................................................................................................12- 1  
12.2 Power supply equipment capacity and generated loss ....................................................................12- 2  
12.3 Dynamic brake characteristics...........................................................................................................12- 5  
12.3.1 Dynamic brake operation.............................................................................................................12- 5  
12.3.2 The dynamic brake at the load inertia moment........................................................................12- 7  
12.4 Encoder cable flexing life....................................................................................................................12- 7  
12.5 Inrush currents at power-on of main circuit and control circuit ....................................................12- 8  
13. OPTIONS AND AUXILIARY EQUIPMENT  
13- 1 to 13-64  
13.1 Options..................................................................................................................................................13- 1  
13.1.1 Regenerative options....................................................................................................................13- 1  
13.1.2 FR-BU2 brake unit......................................................................................................................13-10  
13.1.3 Power regeneration converter ....................................................................................................13-17  
13.1.4 External dynamic brake..............................................................................................................13-20  
13.1.5 Cables and connectors.................................................................................................................13-23  
13.1.6 Junction terminal block (MR-TB20)..........................................................................................13-31  
13.1.7 Maintenance junction card (MR-J2CN3TM) ............................................................................13-33  
13.1.8 Battery (MR-BAT, A6BAT).........................................................................................................13-34  
13.1.9 MR Configurator (Servo configurations software) ...................................................................13-35  
13.1.10 Power regeneration common converter...................................................................................13-37  
13.1.11 Heat sink outside mounting attachment (MR-JACN)...........................................................13-41  
13.2 Auxiliary equipment ..........................................................................................................................13-44  
13.2.1 Recommended wires....................................................................................................................13-44  
13.2.2 No-fuse breakers, fuses, magnetic contactors...........................................................................13-47  
13.2.3 Power factor improving reactors................................................................................................13-47  
13.2.4 Power factor improving DC reactors..........................................................................................13-48  
13.2.5 Relays............................................................................................................................................13-49  
13.2.6 Surge absorbers ...........................................................................................................................13-49  
13.2.7 Noise reduction techniques.........................................................................................................13-49  
13.2.8 Leakage current breaker.............................................................................................................13-57  
13.2.9 EMC filter.....................................................................................................................................13-59  
13.2.10 Setting potentiometers for analog inputs................................................................................13-63  
14. COMMUNICATION FUNCTIONS  
14- 1 to 14- 28  
14.1 Configuration.......................................................................................................................................14- 1  
14.1.1 RS-422 configuration....................................................................................................................14- 1  
14.1.2 RS-232C configuration .................................................................................................................14- 2  
14.2 Communication specifications............................................................................................................14- 3  
14.2.1 Communication overview.............................................................................................................14- 3  
14.2.2 Parameter setting.........................................................................................................................14- 4  
14.3 Protocol.................................................................................................................................................14- 5  
14.4 Character codes ...................................................................................................................................14- 7  
14.5 Error codes ...........................................................................................................................................14- 8  
14.6 Checksum.............................................................................................................................................14- 8  
14.7 Time-out operation..............................................................................................................................14- 9  
4
14.8 Retry operation....................................................................................................................................14- 9  
14.9 Initialization........................................................................................................................................14-10  
14.10 Communication procedure example ...............................................................................................14-10  
14.11 Command and data No. list.............................................................................................................14-11  
14.11.1 Read commands.........................................................................................................................14-11  
14.11.2 Write commands........................................................................................................................14-12  
14.12 Detailed explanations of commands...............................................................................................14-14  
14.12.1 Data processing..........................................................................................................................14-14  
14.12.2 Status display ............................................................................................................................14-16  
14.12.3 Parameter...................................................................................................................................14-17  
14.12.4 External I/O pin statuses (DIO diagnosis)..............................................................................14-19  
14.12.5 Disable/enable of external I/O signals (DIO) ..........................................................................14-20  
14.12.6 Input devices ON/OFF (test operation)...................................................................................14-21  
14.12.7 Test operation mode..................................................................................................................14-22  
14.12.8 Output signal pin ON/OFF output signal (DO) forced output..............................................14-24  
14.12.9 Alarm history .............................................................................................................................14-25  
14.12.10 Current alarm..........................................................................................................................14-26  
14.12.11 Other commands......................................................................................................................14-27  
15. ABSOLUTE POSITION DETECTION SYSTEM  
15- 1 to 15- 68  
15.1 Outline..................................................................................................................................................15- 1  
15.1.1 Features.........................................................................................................................................15- 1  
15.1.2 Restrictions....................................................................................................................................15- 1  
15.2 Specifications .......................................................................................................................................15- 2  
15.3 Battery installation procedure...........................................................................................................15- 3  
15.4 Standard connection diagram ............................................................................................................15- 4  
15.5 Signal explanation...............................................................................................................................15- 5  
15.6 Startup procedure................................................................................................................................15- 6  
15.7 Absolute position data transfer protocol ...........................................................................................15- 7  
15.7.1 Data transfer procedure...............................................................................................................15- 7  
15.7.2 Transfer method ...........................................................................................................................15- 8  
15.7.3 Home position setting..................................................................................................................15-19  
15.7.4 Use of servo motor with electromagnetic brake .......................................................................15-21  
15.7.5 How to process the absolute position data at detection of stroke end....................................15-22  
15.8 Examples of use..................................................................................................................................15-23  
15.8.1 MELSEC-A1S (A1SD71).............................................................................................................15-23  
15.8.2 MELSEC FX(2N)-32MT (FX(2N)-1PG) ..........................................................................................15-37  
15.8.3 MELSEC A1SD75........................................................................................................................15-49  
15.9 Confirmation of absolute position detection data............................................................................15-64  
15.10 Absolute position data transfer errors ...........................................................................................15-65  
15.10.1 Corrective actions ......................................................................................................................15-65  
15.10.2 Error resetting conditions.........................................................................................................15-67  
APPENDIX  
App- 1 to App- 4  
App 1. Signal arrangement recording sheets......................................................................................... App- 1  
App 2. Status display block diagram ...................................................................................................... App- 2  
App 3. Combination of servo amplifier and servo motor ...................................................................... App- 3  
App 4. Change of connector sets to the RoHS compatible products .................................................... App- 4  
5
Optional Servo Motor Instruction Manual CONTENTS  
The rough table of contents of the optional MELSERVO Servo Motor Instruction Manual is introduced  
here for your reference. Note that the contents of the Servo Motor Instruction Manual are not included  
in the Servo Amplifier Instruction Manual.  
1. INTRODUCTION  
2. INSTALLATION  
3. CONNECTORS USED FOR SERVO MOTOR WIRING  
4. INSPECTION  
5. SPECIFICATIONS  
6. CHARACTERISTICS  
7. OUTLINE DIMENSION DRAWINGS  
8. CALCULATION METHODS FOR DESIGNING  
6
1. FUNCTIONS AND CONFIGURATION  
1. FUNCTIONS AND CONFIGURATION  
1.1 Introduction  
The Mitsubishi MELSERVO-J2-Super series general-purpose AC servo is based on the MELSERVO-J2  
series and has further higher performance and higher functions.  
It has position control, speed control and torque control modes. Further, it can perform operation with the  
control modes changed, e.g. position/speed control, speed/torque control and torque/position control.  
Hence, it is applicable to a wide range of fields, not only precision positioning and smooth speed control of  
machine tools and general industrial machines but also line control and tension control.  
As this new series has the RS-232C or RS-422 serial communication function, a MR Configurator (servo  
configuration software)-installed personal computer or the like can be used to perform parameter setting,  
test operation, status display monitoring, gain adjustment, etc.  
With real-time auto tuning, you can automatically adjust the servo gains according to the machine.  
The MELSERVO-J2-Super series servo motor is equipped with an absolute position encoder which has  
the resolution of 131072 pulses/rev to ensure more accurate control as compared to the MELSERVO-J2  
series. Simply adding a battery to the servo amplifier makes up an absolute position detection system.  
This makes home position return unnecessary at power-on or alarm occurrence by setting a home position  
once.  
(1) Position control mode  
An up to 500kpps high-speed pulse train is used to control the speed and direction of a motor and  
execute precision positioning of 131072 pulses/rev resolution.  
The position smoothing function provides a choice of two different modes appropriate for a machine, so  
a smoother start/stop can be made in response to a sudden position command.  
A torque limit is imposed on the servo amplifier by the clamp circuit to protect the power transistor in  
the main circuit from overcurrent due to sudden acceleration/deceleration or overload. This torque  
limit value can be changed to any value with an external analog input or the parameter.  
(2) Speed control mode  
An external analog speed command (0 to 10VDC) or parameter-driven internal speed command  
(max. 7 speeds) is used to control the speed and direction of a servo motor smoothly.  
There are also the acceleration/deceleration time constant setting in response to speed command, the  
servo lock function at a stop time, and automatic offset adjustment function in response to external  
analog speed command.  
(3) Torque control mode  
An external analog torque command (0 to 8VDC) is used to control the torque output by the servo  
motor.  
To prevent unexpected operation under no load, the speed limit function (external or internal setting)  
is also available for application to tension control, etc.  
1 - 1  
1. FUNCTIONS AND CONFIGURATION  
1.2 Function block diagram  
The function block diagram of this servo is shown below.  
(1) MR-J2S-350A or less  
Regenerative option  
Servo amplifier  
Diode  
P
C
D
Servo motor  
U
(Note 1)  
stack  
Relay  
NFB MC  
U
V
L1  
L2  
L3  
(Note 2)  
Power  
supply  
V
Current  
detector  
M
W
W
CHARGE  
lamp  
Regene-  
rative  
TR  
Dynamic  
brake  
(Note 3)Cooling fan  
B1  
B2  
L11  
L21  
Electro-  
magnetic  
brake  
Control  
circuit  
power  
supply  
Base  
amplifier  
Voltage Overcurrent Current  
detection protection detection  
Encoder  
Virtual  
encoder  
Pulse  
input  
Model position  
control  
Model speed  
control  
Virtual  
motor  
Model  
position  
Model  
speed  
Model  
torque  
Actual position  
control  
Actual speed  
control  
Current  
control  
RS-232C  
MR-BAT  
A/D  
RS-422 D/A  
I/F  
Optional battery  
(for absolute position  
detection system)  
CN1A CN1B  
CN3  
Analog monitor  
(2 channels)  
D I/O control  
Servo on  
Start  
Analog  
(2 channels)  
Controller  
RS-422/RS-232C  
Failure, etc.  
Note:1. The built-in regenerative resistor is not provided for the MR-J2S-10A(1).  
2. For 1-phase 230VAC, connect the power supply to L1, L2 and leave L3 open.  
L3 is not provided for a 1-phase 100 to120VAC power supply. Refer to section 1.3 for the power supply specification.  
3. Servo amplifiers MR-J2S-200A have a cooling fan.  
1 - 2  
1. FUNCTIONS AND CONFIGURATION  
(2) MR-J2S-500A MR-J2S-700A  
Regenerative option  
Servo amplifier  
Diode  
P
C
N
Servo motor  
U
stack  
Relay  
NFB MC  
U
V
L1  
L2  
L3  
(Note)  
Power  
supply  
V
Current  
detector  
M
W
W
CHARGE  
lamp  
Regene-  
rative  
TR  
Dynamic  
brake  
Cooling fan  
B1  
B2  
L11  
L21  
Electro-  
magnetic  
brake  
Control  
circuit  
power  
supply  
Base  
amplifier  
Voltage Overcurrent Current  
detection protection detection  
Encoder  
Virtual  
encoder  
Pulse  
input  
Model position  
control  
Model speed  
control  
Virtual  
motor  
Model  
position  
Model  
speed  
Model  
torque  
Actual position  
control  
Actual speed  
control  
Current  
control  
RS-232C  
MR-BAT  
A/D  
RS-422 D/A  
I/F  
Optional battery  
(for absolute position  
detection system)  
CN1A CN1B  
CN3  
Analog monitor  
(2 channels)  
D I/O control  
Servo on  
Start  
Analog  
(2 channels)  
Controller  
RS-422/RS-232C  
Failure, etc.  
Note. Refer to section 1.3 for the power supply specification.  
1 - 3  
1. FUNCTIONS AND CONFIGURATION  
(3) MR-J2S-11KA or more  
Regenerative option  
Servo amplifier  
Diode  
P
C
N
Servo motor  
U
P1  
Thyristor  
stack  
NFB MC  
U
V
L1  
L2  
L3  
(Note)  
Power  
supply  
V
Current  
detector  
M
W
W
CHARGE  
lamp  
Regene-  
rative  
TR  
Dynamic  
brake  
Cooling fan  
B1  
B2  
L11  
L21  
Electro-  
magnetic  
brake  
Control  
circuit  
power  
supply  
Base  
amplifier  
Voltage Overcurrent Current  
detection protection detection  
Encoder  
Virtual  
encoder  
Pulse  
input  
Model position  
control  
Model speed  
control  
Virtual  
motor  
Model  
position  
Model  
speed  
Model  
torque  
Actual position  
control  
Actual speed  
control  
Current  
control  
RS-232C  
MR-BAT  
A/D  
RS-422 D/A  
I/F  
Optional battery  
(for absolute position  
detection system)  
CN1A CN1B  
CN3  
Analog monitor  
(2 channels)  
D I/O control  
Servo on  
Start  
Analog  
(2 channels)  
Controller  
RS-422/RS-232C  
Failure, etc.  
Note. Refer to section 1.3 for the power supply specification.  
1 - 4  
1. FUNCTIONS AND CONFIGURATION  
1.3 Servo amplifier standard specifications  
Servo Amplifier  
MR-J2S-  
10A 20A 40A 60A 70A 100A 200A 350A 500A 700A 11KA 15KA 22KA 10A1 20A1 40A1  
Item  
3-phase 200 to 230VAC,  
50/60Hz or 1-phase  
230VAC, 50/60Hz  
3-phase 200 to 230VAC:  
170 to 253VAC  
1-phase 100 to  
120VAC  
Voltage/frequency  
3-phase 200 to 230VAC, 50/60Hz  
3-phase 170 to 253VAC  
50/60Hz  
1-phase  
Permissible voltage fluctuation  
1-phase 230VAC: 207 to  
253VAC  
85 to 127VAC  
Permissible frequency fluctuation  
Power supply capacity  
Inrush current  
Within 5%  
Refer to section12.2  
Refer to section 12.5  
Control system  
Dynamic brake  
Sine-wave PWM control, current control system  
Built-in External option  
Built-in  
Overcurrent shut-off, regenerative overvoltage shut-off, overload shut-off (electronic  
thermal relay), servo motor overheat protection, encoder error protection, regenerative  
error protection, undervoltage, instantaneous power failure protection, overspeed  
protection, excessive error protection  
Protective functions  
Max. input pulse frequency  
Command pulse multiplying factor  
In-position range setting  
Error excessive  
500kpps (for differential receiver), 200kpps (for open collector)  
Electronic gear A:1 to 65535 131072 B:1 to 65535, 1/50 A/B 500  
0 to 10000 pulse (command pulse unit)  
(Note) 2.5 revolutions  
Torque limit  
Set by parameter setting or external analog input (0 to 10VDC/maximum torque)  
Speed control range  
Analog speed command 1: 2000, internal speed command 1: 5000  
0 to 10VDC / Rated speed  
Analog speed command input  
0.01% or less (load fluctuation 0 to 100%)  
0% (power fluctuation 10%)  
Speed fluctuation ratio  
Torque limit  
0.2% or less (ambient temperature 25  
10 (59 to 95 ) ,  
)
when using analog speed command  
Set by parameter setting or external analog input (0 to 10VDC/maximum torque)  
0 to 8VDC / Maximum torque (input impedance 10 to 12k )  
Torque  
Analog torque command input  
control  
Speed limit  
Set by parameter setting or external analog input (0 to 10VDC/Rated speed)  
Self-cooled,  
mode  
Structure  
Self-cooled, open (IP00)  
Force-cooling, open (IP00)  
open(IP00)  
[
[
[
[
]
0 to 55 (non-freezing)  
In operation  
In storage  
]
]
]
32 to 131 (non-freezing)  
20 to 65 (non-freezing)  
4 to 149 (non-freezing)  
Ambient  
temperature  
In operation  
In storage  
Ambient  
humidity  
90%RH or less (non-condensing)  
Indoors (no direct sunlight)  
Ambient  
Altitude  
Vibration  
Free from corrosive gas, flammable gas, oil mist, dust and dirt  
Max. 1000m (3280ft) above sea level  
5.9 [m/s2] or less  
19.4 [ft/s2] or less  
[kg] 0.7 0.7 1.1 1.1 1.7 1.7 2.0 2.0 4.9 15 16 16 20 0.7 0.7 1.1  
[lb] 1.5 1.5 2.4 2.4 3.75 3.75 4.4 4.4 10.8 33.1 35.3 35.3 44.1 1.5 1.5 2.4  
Mass  
Note. The error excessive detection for 2.5 revolutions is available only when the servo amplifier of software version B0 or later is  
used. When the software version is earlier than B0, the error excessive detection level of that servo amplifier is 10 revolutions.  
1 - 5  
1. FUNCTIONS AND CONFIGURATION  
1.4 Function list  
The following table lists the functions of this servo. For details of the functions, refer to the reference field.  
(Note)  
Function  
Description  
Reference  
Section 3.1.1  
Control mode  
Position control mode  
This servo is used as position control servo.  
P
Section 3.4.1  
Section 4.2.2  
Section 3.1.2  
Section 3.4.2  
Section 4.2.3  
Section 3.1.3  
Section 3.4.3  
Section 4.2.4  
Speed control mode  
Torque control mode  
This servo is used as speed control servo.  
This servo is used as torque control servo.  
S
T
Position/speed control change Using external input signal, control can be switched  
mode between position control and speed control.  
Speed/torque control change Using external input signal, control can be switched  
P/S  
S/T  
Section 3.4.4  
Section 3.4.5  
Section 3.4.6  
mode  
between speed control and torque control.  
Using external input signal, control can be switched  
between torque control and position control.  
High-resolution encoder of 131072 pulses/rev is used as a  
servo motor encoder.  
Torque/position control  
change mode  
T/P  
High-resolution encoder  
P, S, T  
P
Absolute position detection  
system  
Merely setting a home position once makes home position  
return unnecessary at every power-on.  
Chapter 15  
Section 8.5  
You can switch between gains during rotation and gains  
during stop or use an external signal to change gains  
during operation.  
Gain changing function  
P, S  
Servo amplifier detects mechanical resonance and sets filter  
characteristics automatically to suppress mechanical  
vibration.  
Adaptive vibration  
suppression control  
P, S, T  
P, S, T  
Section 8.3  
Section 8.4  
Suppresses high-frequency resonance which occurs as servo  
system response is increased.  
Low-pass filter  
Analyzes the frequency characteristic of the mechanical  
system by simply connecting a MR Configurator (servo  
configuration software ) installed personal computer and  
servo amplifier.  
Machine analyzer function  
P
Can simulate machine motions on a personal computer  
screen on the basis of the machine analyzer results.  
Personal computer changes gains automatically and  
searches for overshoot-free gains in a short time.  
Machine simulation  
Gain search function  
P
P
Slight vibration suppression Suppresses vibration of 1 pulse produced at a servo motor  
P
P
Section 7.5  
control  
stop.  
Electronic gear  
Input pulses can be multiplied by 1/50 to 50.  
Automatically adjusts the gain to optimum value if load  
applied to the servo motor shaft varies. Higher in  
performance than MR-J2 series servo amplifier.  
Speed can be increased smoothly in response to input pulse.  
Parameters No. 3, 4  
Auto tuning  
P, S  
Chapter 7  
Position smoothing  
P
Parameter No. 7  
Parameter No. 13  
S-pattern acceleration/  
deceleration time constant  
Speed can be increased and decreased smoothly.  
S, T  
Used when the built-in regenerative resistor of the servo  
amplifier does not have sufficient regenerative capability  
for the regenerative power generated.  
Regenerative option  
Brake unit  
P, S, T  
P, S, T  
Section 13.1.1  
Section 13.1.2  
Used when the regenerative option cannot provide enough  
regenerative power.  
Can be used with the MR-J2S-500A to MR-J2S-22KA.  
1 - 6  
1. FUNCTIONS AND CONFIGURATION  
(Note)  
Function  
Description  
Reference  
Control mode  
Used when the regenerative option cannot provide enough  
regenerative power.  
Can be used with the MR-J2S-500A to MR-J2S-22KA.  
Alarm history is cleared.  
Return converter  
P, S, T  
P, S, T  
S
Section 13.1.3  
Alarm history clear  
Parameter No. 16  
Parameter No. 20  
If the input power supply voltage had reduced to cause an  
alarm but has returned to normal, the servo motor can be  
restarted by merely switching on the start signal.  
Command pulse train form can be selected from among four  
different types.  
Restart after instantaneous  
power failure  
Command pulse selection  
Input signal selection  
Torque limit  
P
Parameter No. 21  
Forward rotation start, reverse rotation start, servo-on  
(SON) and other input signals can be assigned to any pins.  
Parameters  
P, S, T  
P, S  
No. 43 to 48  
Section 3.4.1 (5)  
Parameter No. 28  
Section 3.4.3 (3)  
Parameter No. 8  
to 10,72 to 75  
Servo motor torque can be limited to any value.  
Speed limit  
Servo motor speed can be limited to any value.  
T
Servo status is shown on the 5-digit, 7-segment LED  
display  
Status display  
P, S, T  
P, S, T  
Section 6.2  
Section 6.6  
ON/OFF statuses of external I/O signals are shown on the  
display.  
External I/O signal display  
Output signal can be forced on/off independently of the  
servo status.  
Output signal (DO)  
forced output  
P, S, T  
S, T  
Section 6.7  
Section 6.3  
Use this function for output signal wiring check, etc.  
Voltage is automatically offset to stop the servo motor if it  
does not come to a stop at the analog speed command (VC)  
or analog speed limit (VLA) of 0V.  
Automatic VC offset  
Test operation mode  
JOG operation positioning operation motor-less operation  
DO forced output.  
P, S, T  
P, S, T  
P, S, T  
Section 6.8  
Analog monitor output  
MR Configurator  
Servo status is output in terms of voltage in real time.  
Using a personal computer, parameter setting, test  
Parameter No. 17  
Section 13.1.9  
(Servo configuration software) operation, status display, etc. can be performed.  
If an alarm has occurred, the corresponding alarm number  
Alarm code output  
P, S, T  
Section 10.2.1  
is output in 3-bit code.  
Note. P: Position control mode, S: Speed control mode, T: Torque control mode  
P/S: Position/speed control change mode, S/T: Speed/torque control change mode, T/P: Torque/position control change mode  
1.5 Model code definition  
(1) Rating plate  
AC SERVO  
MITSUBISHI  
Model  
MODEL  
MR-J2S-60A  
Capacity  
POWER : 600W  
INPUT : 3.2A 3PH 1PH200-230V 50Hz  
Applicable power supply  
3PH 1PH200-230V 60Hz  
5.5A 1PH 230V 50/60Hz  
OUTPUT : 170V 0-360Hz 3.6A  
SERIAL : A5  
Rated output current  
Serial number  
TC3 AAAAG52  
PASSED  
MITSUBISHI ELECTRIC CORPORATION  
MADE IN JAPAN  
1 - 7  
1. FUNCTIONS AND CONFIGURATION  
(2) Model  
MR–J2S–100A or less  
MR–J2S–200A 350A  
With no regenerative resistor  
Symbol  
Description  
Series  
Indicates a servo  
amplifier of 11k to 22kW  
that does not use a  
regenerative resistor as  
standard accessory.  
-PX  
Power supply  
Rating plate  
Symbol  
Power supply  
Rating plate  
3-phase 200 to 230VAC  
(Note 1)1-phase 230VAC  
None  
(Note 2)  
1-phase 100 to 120VAC  
1
MR-J2S-500A  
MR-J2S-700A  
Note 1. 1-phase 230V is supported  
by 750W or less.  
2. 1-phase 100V to 120V is  
supported by 400W or less.  
General-purpose interface  
Rated output  
Rated  
Symbol  
output [kW]  
10  
20  
40  
60  
70  
100  
200  
350  
500  
700  
11K  
15K  
22K  
0.1  
0.2  
0.4  
0.6  
0.75  
1
2
3.5  
5
Rating plate  
Rating plate  
MR-J2S-11KA 15KA  
MR-J2S-22KA  
7
11  
15  
22  
Rating plate  
Rating plate  
1 - 8  
1. FUNCTIONS AND CONFIGURATION  
1.6 Combination with servo motor  
The following table lists combinations of servo amplifiers and servo motors. The same combinations apply  
to the models with electromagnetic brakes and the models with reduction gears.  
Servo motors  
HC-SFS  
HC-UFS  
Servo amplifier  
HC-KFS  
HC-MFS  
HC-RFS  
(Note 1)  
(Note 1)  
2000r/min  
2000r/min  
3000r/min  
1000r/min  
3000r/min  
MR-J2S-10A(1)  
MR-J2S-20A(1)  
MR-J2S-40A(1)  
MR-J2S-60A  
053 13  
23  
053 13  
23  
13  
23  
43  
43  
43  
52  
53  
MR-J2S-70A  
(Note 1) 73  
73  
72  
73  
MR-J2S-100A  
MR-J2S-200A  
MR-J2S-350A  
81  
102  
103  
121 201 152 202 153 203  
103 153  
152  
301  
352  
(Note 1)  
502  
353  
(Note 1) 203 (Note 1) 202  
(Note 1)  
(Note 1)  
MR-J2S-500A  
MR-J2S-700A  
353 503  
352 502  
(Note 1)  
702  
Servo motors  
Servo amplifier  
HA-LFS  
(Note 1)  
HC-LFS  
1000r/min  
1500r/min  
2000r/min  
MR-J2S-60A  
MR-J2S-100A  
MR-J2S-200A  
MR-J2S-350A  
MR-J2S-500A  
MR-J2S-700A  
MR-J2S-11KA  
MR-J2S-15KA  
MR-J2S-22KA  
52  
102  
152  
202  
302  
(Note 1)502  
(Note 2)601 (Note 2)701M (Note 1)702  
801 12K1  
15K1  
11K1M  
15K1M  
22K1M  
11K2  
15K2  
22K2  
20K1 25K1  
Note 1. These servo motors may not be connected depending on the production time of the servo amplifier. Please refer to appendix 3.  
2. Consult us since the servo amplifier to be used with any of these servo motors is optional.  
1 - 9  
1. FUNCTIONS AND CONFIGURATION  
1.7 Structure  
1.7.1 Parts identification  
(1) MR-J2S-100A or less  
POINT  
The servo amplifier is shown without the front cover. For removal of the  
front cover, refer to section 1.7.2.  
Reference  
Name/Application  
Battery holder  
Section 15.3  
Contains the battery for absolute position data backup.  
Battery connector (CON1)  
Used to connect the battery for absolute position data  
backup.  
Section 15.3  
Chpater 6  
Display  
The 5-digit, seven-segment LED shows the servo status  
and alarm number.  
SET  
MODE  
UP  
DOWN  
Operation section  
Used to perform status display, diagnostic, alarm and  
parameter setting operations.  
MODE  
UP  
DOWN SET  
Chapter 6  
Used to set data.  
Used to change the  
display or data in each  
mode.  
Used to change the  
mode.  
I/O signal connector (CN1A)  
Section 3.3  
Section 3.3  
Used to connect digital I/O signals.  
I/O signal connector (CN1B)  
Used to connect digital I/O signals.  
Communication connector (CN3)  
Section 3.3  
Section 13.1.5  
Chapter 14  
Used to connect a command device (RS-422/RS-232C)  
and output analog monitor data.  
Rating plate  
Section 1.5  
Charge lamp  
Lit to indicate that the main circuit is charged. While  
this lamp is lit, do not reconnect the cables.  
Encoder connector (CN2)  
Section 3.3  
Used to connect the servo motor encoder.  
Section 13.1.5  
Main circuit terminal block (TE1)  
Used to connect the input power supply and servo  
motor.  
Section 3.7  
Section 11.1  
Control circuit terminal block (TE2)  
Used to connect the control circuit power supply and  
regenerative option.  
Section 3.7  
Section 11.1  
Section 13.1.1  
Protective earth (PE) terminal (  
Ground terminal.  
)
Section 3.10  
Section 11.1  
Fixed part(2places)  
(For MR-J2S-70A 100A 3 places)  
1 - 10  
1. FUNCTIONS AND CONFIGURATION  
(2) MR-J2S-200A MR-J2S-350A  
POINT  
The servo amplifier is shown without the front cover. For removal of the  
front cover, refer to section 1.7.2.  
Reference  
Name/Application  
Battery holder  
Section 15.3  
Contains the battery for absolute position data backup.  
Battery connector (CON1)  
Used to connect the battery for absolute position data  
backup.  
Section 15.3  
Chpater 6  
Display  
The 5-digit, seven-segment LED shows the servo status  
and alarm number.  
Operation section  
Used to perform status display, diagnostic, alarm and  
parameter setting operations.  
SET  
MODE  
UP  
DOWN  
MODE  
UP DOWN  
SET  
Chapter 6  
Used to set data.  
Used to change the  
display or data in each  
mode.  
Used to change the  
mode.  
I/O signal connector (CN1A)  
Section 3.3  
Section 3.3  
Used to connect digital I/O signals.  
I/O signal connector (CN1B)  
Used to connect digital I/O signals.  
Communication connector (CN3)  
Section 3.3  
Section 13.1.5  
Chapter 14  
Used to connect a command device (RS-422/RS-232C)  
and output analog monitor data.  
Rating plate  
Section 1.5  
Charge lamp  
Lit to indicate that the main circuit is charged. While  
this lamp is lit, do not reconnect the cables.  
Encoder connector (CN2)  
Section 3.3  
Used to connect the servo motor encoder.  
Section 13.1.5  
Main circuit terminal block (TE1)  
Used to connect the input power supply and servo  
motor.  
Section 3.7  
Section 11.1  
Control circuit terminal block (TE2)  
Used to connect the control circuit power supply and  
regenerative option.  
Section 3.7  
Section 11.1  
Section 3.1.1  
Protective earth (PE) terminal (  
Ground terminal.  
)
Section 3.10  
Section 11.1  
Cooling fan  
Fixed part  
(4 places)  
1 - 11  
1. FUNCTIONS AND CONFIGURATION  
(3) MR-J2S-500A  
POINT  
The servo amplifier is shown without the front cover. For removal of the  
front cover, refer to section 1.7.2.  
Reference  
Name/Application  
Battery connector (CON1)  
Used to connect the battery for absolute position data  
backup.  
Section 15.3  
Battery holder  
Section 15.3  
Chpater 6  
Contains the battery for absolute position data backup.  
Display  
The 5-digit, seven-segment LED shows the servo status  
and alarm number.  
Operation section  
MODE  
UP  
DOWN  
SET  
Used to perform status display, diagnostic, alarm and  
parameter setting operations.  
MODE  
UP  
DOWN SET  
Chapter 6  
Used to set data.  
Used to change the  
display or data in each  
mode.  
Used to change the  
mode.  
Fixed part  
(4 places)  
I/O signal connector (CN1A)  
Section 3.3  
Section 3.3  
Used to connect digital I/O signals.  
I/O signal connector (CN1B)  
Used to connect digital I/O signals.  
Communication connector (CN3)  
Section 3.3  
Section 13.1.5  
Chapter 14  
Used to connect a command device (RS-422/RS-232C)  
and output analog monitor data.  
Encoder connector (CN2)  
Section 3.3  
Used to connect the servo motor encoder.  
Section 13.1.5  
Charge lamp  
Lit to indicate that the main circuit is charged. While  
this lamp is lit, do not reconnect the cables.  
Control circuit terminal block (TE2)  
Used to connect the control circuit power supply and  
regenerative option.  
Section 3.7  
Section 11.1  
Section 13.1.1  
Main circuit terminal block (TE1)  
Used to connect the input power supply and servo  
motor.  
Section 3.7  
Section 11.1  
Rating plate  
Section 1.5  
Cooling fan  
Protective earth (PE) terminal (  
Ground terminal.  
)
Section 3.10  
Section 11.1  
1 - 12  
1. FUNCTIONS AND CONFIGURATION  
(4) MR-J2S-700A  
POINT  
The servo amplifier is shown without the front cover. For removal of the  
front cover, refer to section 1.7.2.  
Reference  
Name/Application  
Battery connector (CON1)  
Used to connect the battery for absolute position data  
backup.  
Section 15.3  
Battery holder  
Section 15.3  
Chpater 6  
Contains the battery for absolute position data backup.  
Display  
The 5-digit, seven-segment LED shows the servo status  
and alarm number.  
Operation section  
SET  
MODE  
UP  
DOWN  
Used to perform status display, diagnostic, alarm and  
parameter setting operations.  
MODE  
UP  
DOWN SET  
Chapter 6  
Used to set data.  
Used to change the  
display or data in each  
mode.  
Used to change the  
mode.  
I/O signal connector (CN1A)  
Section 3.3  
Section 3.3  
Used to connect digital I/O signals.  
I/O signal connector (CN1B)  
Used to connect digital I/O signals.  
Communication connector (CN3)  
Section 3.3  
Section 13.1.5  
Chapter 14  
Used to connect a command device (RS-422/RS-232C)  
and output analog monitor data.  
Charge lamp  
Lit to indicate that the main circuit is charged. While  
this lamp is lit, do not reconnect the cables.  
Control circuit terminal block (TE2)  
Section 3.7  
Used to connect the control circuit power supply.  
Section 11.1  
Encoder connector (CN2)  
Section 3.3  
Used to connect the servo motor encoder.  
Section 13.1.5  
Rating plate  
Section 1.5  
Main circuit terminal block (TE1)  
Section 3.7  
Section 11.1  
Section 13.1.1  
Used to connect the input power supply, regenerative  
option and servo motor.  
Protective earth (PE) terminal (  
Ground terminal.  
)
Section 3.10  
Section 11.1  
Fixed part  
(4 places)  
Cooling fan  
1 - 13  
1. FUNCTIONS AND CONFIGURATION  
(5) MR-J2S-11KA or more  
POINT  
The servo amplifier is shown without the front cover. For removal of the  
front cover, refer to section 1.7.2.  
Name/Application  
Reference  
Battery holder  
Contains the battery for absolute position data backup.  
Section 15.3  
Display  
The 5-digit, seven-segment LED shows the servo  
status and alarm number.  
Operation section  
Used to perform status display, diagnostic, alarm and  
parameter setting operations.  
Chapter 6  
Chapter 6  
MODE  
UP  
DOWN SET  
MODE  
UP  
DOWN  
SET  
Used to set data.  
Used to change the  
display or data in each  
mode.  
Used to change the  
mode.  
Battery connector (CON1)  
Section 15.3  
Used to connect the battery for absolute position data  
backup.  
Cooling fan  
Monitor output terminal (CN4)  
Used to output monitor values as analog signals  
for two channels.  
Section 3.3  
Section 11.1  
Section 3.3  
Communication connector (CN3)  
Section 13.1.5  
Used to connect a command device (RS232C)  
I/O signal connector (CN1A)  
Used to connect digital I/O signals.  
Section 3.3  
Section 3.3  
I/O signal connector (CN1B)  
Used to connect digital I/O signals.  
Charge lamp  
Lit to indicate that the main circuit is charged.  
While this lamp is lit, do not reconnect the cables.  
Section 3.7  
Section 11.1  
Section 13.1.1  
Control circuit terminal block (TE2)  
Used to connect the control circuit power supply.  
Section 3.3  
Section 13.1.5  
Encoder connector (CN2)  
Used to connect the servo motor encoder.  
Manufacturer adjusting connector (CON2)  
Keep this connector open.  
Rating plate  
Section 1.5  
Main circuit terminal block (TE1)  
Used to connect the input power supply, regenerative  
option and servo motor.  
Section 3.7  
Section 11.1  
Section 13.1.1  
Fixed part  
(4 places)  
Protective earth (PE) terminal (  
Ground terminal.  
)
Section 3.10  
Section 11.1  
1 - 14  
1. FUNCTIONS AND CONFIGURATION  
1.7.2 Removal and reinstallation of the front cover  
Before removing or installing the front cover, turn off the power and wait for 15  
minutes or more until the charge lamp turns off. Then, confirm that the voltage  
between P and N is safe with a voltage tester and others. Otherwise, an electric  
shock may occur. In addition, always confirm from the front of the servo amplifier  
whether the charge lamp is off or not.  
CAUTION  
(1) For MR-J2S-350A or less  
Removal of the front cover  
1)  
Reinstallation of the front cover  
Front cover hook  
(2 places)  
2)  
2)  
Front cover  
1)  
Front cover socket  
(2 places)  
1) Hold down the removing knob.  
2) Pull the front cover toward you.  
1) Insert the front cover hooks into the front cover sockets of  
the servo amplifier.  
2) Press the front cover against the servo amplifier until the  
removing knob clicks.  
(2) For MR-J2S-500A  
Removal of the front cover  
1)  
Reinstallation of the front cover  
Front cover hook  
(2 places)  
2)  
2)  
1)  
Front cover  
Front cover socket  
(2 places)  
1) Hold down the removing knob.  
2) Pull the front cover toward you.  
1) Insert the front cover hooks into the front cover sockets of  
the servo amplifier.  
2) Press the front cover against the servo amplifier until the  
removing knob clicks.  
1 - 15  
1. FUNCTIONS AND CONFIGURATION  
(3) For MR-J2S-700A  
Removal of the front cover  
Reinstallation of the front cover  
Front cover  
hook  
(2 places)  
A)  
B)  
2)  
2)  
1)  
A)  
1)  
Front cover socket  
(2 places)  
1) Push the removing knob A) or B), and put you finger into the  
front hole of the front cover.  
1) Insert the two front cover hooks at the bottom into the  
sockets of the servo amplifier.  
2) Pull the front cover toward you.  
2) Press the front cover against the servo amplifier until the  
removing knob clicks.  
1 - 16  
1. FUNCTIONS AND CONFIGURATION  
(4) For MR-J2S-11KA or more  
Removal of the front cover  
Mounting screws  
(2 places)  
Mounting screws (2 places)  
1) Remove the front cover mounting screws (2 places) and  
remove the front cover.  
2) Remove the front cover mounting screws (2 places).  
3) Remove the front cover by drawing it in the direction of  
arrow.  
1 - 17  
1. FUNCTIONS AND CONFIGURATION  
Reinstallation of the front cover  
Mounting screws  
(2 places)  
1) Insert the front cover in the direction of arrow.  
Reinstallation of the front cover  
2) Fix it with the mounting screws (2 places).  
Mounting screws (2 places)  
3) Fit the front cover and fix it with the mounting screws (2  
places).  
1 - 18  
1. FUNCTIONS AND CONFIGURATION  
1.8 Servo system with auxiliary equipment  
To prevent an electric shock, always connect the protective earth (PE) terminal ( )  
of the servo amplifier to the protective earth (PE) of the control box.  
WARNING  
(1) MR-J2S-100A or less  
(a) For 3-phase 200V to 230VAC or 1-phase 230V  
(Note 2)  
Power supply  
Options and auxiliary equipment  
Reference  
Options and auxiliary equipment  
Reference  
No-fuse breaker  
Section 13.2.2 Regenerative option  
Section 13.2.2 Cables  
Section 13.1.1  
Section 13.2.1  
Magnetic contactor  
MR Configurator  
(Servo configuration software)  
Power factor improving reactor Section 13.2.3  
Section 13.1.9  
No-fuse breaker  
(NFB) or fuse  
Servo amplifier  
Command device  
To CN1A  
Junction terminal block  
Magnetic  
contactor  
(MC)  
To CN1B  
To CN3  
Power  
factor  
improving  
reactor  
MR Configurator  
(Servo configuration  
software  
CHARGE  
Personal  
computer  
(FR-BAL)  
MRZJW3-SETUP151E)  
To CN2  
L1  
L2  
L3  
U
V
W
(Note 1)  
Encoder cable  
(Note 1)  
Power supply lead  
D
Control circuit terminal block  
L21  
L11  
P
Regenerative option  
Servo motor  
C
Note 1. The HC-SFS, HC-RFS series have cannon connectors.  
2. A 1-phase 230VAC power supply may be used with the servo amplifier of MR-J2S-70A or less.  
For 1-phase 230VAC, connect the power supply to L1 L2 and leave L3 open.  
Refer to section 1.3 for the power supply specification.  
1 - 19  
1. FUNCTIONS AND CONFIGURATION  
(b) For 1-phase 100V to 120VAC  
(Note 2)  
Power supply  
Options and auxiliary equipment  
Reference  
Options and auxiliary equipment  
Reference  
No-fuse breaker  
Section 13.2.2 Regenerative option  
Section 13.2.2 Cables  
Section 13.1.1  
Section 13.2.1  
Magnetic contactor  
MR Configurator  
(Servo configuration software)  
Power factor improving reactor Section 13.2.3  
Section 13.1.9  
No-fuse breaker  
(NFB) or fuse  
Servo amplifier  
Command device  
To CN1A  
Junction terminal block  
Magnetic  
contactor  
(MC)  
To CN1B  
To CN3  
MR Configurator  
(Servo configuration  
software  
CHARGE  
Personal  
computer  
Power  
factor  
MRZJW3-SETUP151E)  
To CN2  
improving  
reactor  
(FR-BAL)  
L1  
L2  
U
V
W
(Note 1)  
Encoder cable  
(Note 1)  
Power supply lead  
D
Control circuit terminal block  
L21  
L11  
P
Regenerative option  
Servo motor  
C
Note 1. The HC-SFS, HC-RFS series have cannon connectors.  
2. Refer to section 1.3 for the power supply specification.  
1 - 20  
1. FUNCTIONS AND CONFIGURATION  
(2) MR-J2S-200A MR-J2S-350A or more  
(Note)  
Power supply  
Options and auxiliary equipment  
Reference  
Options and auxiliary equipment  
Reference  
No-fuse breaker  
Section 13.2.2 Regenerative option  
Section 13.2.2 Cables  
Section 13.1.1  
Section 13.2.1  
Magnetic contactor  
MR Configurator  
(Servo configuration software)  
Power factor improving reactor Section 13.2.3  
Section 13.1.9  
No-fuse  
breaker  
(NFB) or  
Servo amplifier  
fuse  
Command device  
To CN1A  
Junction terminal  
block  
Magnetic  
contactor  
(MC)  
To CN1B  
To CN3  
Power  
factor  
improving  
reactor  
(FR-BAL)  
MR Configurator  
(Servo  
configuration  
software  
MRZJW3-  
SETUP151E)  
To CN2  
Personal  
computer  
L11  
L21  
L1  
L2  
L3  
U
V
W
P
C
Regenerative option  
Note. Refer to section 1.3 for the power supply specification.  
1 - 21  
1. FUNCTIONS AND CONFIGURATION  
(3) MR-J2S-500A  
(Note 2)  
Power supply  
Options and auxiliary equipment  
No-fuse breaker  
Reference  
Options and auxiliary equipment  
Reference  
Section 13.2.2 Regenerative option  
Section 13.2.2 Cables  
Section 13.1.1  
Section 13.2.1  
Magnetic contactor  
MR Configurator  
(Servo configuration software)  
Power factor improving reactor Section 13.2.3  
Section 13.1.9  
No-fuse  
breaker  
(NFB) or  
fuse  
Magnetic  
contactor  
(MC)  
Servo amplifier  
Command device  
Power  
factor  
To CN1A  
improving  
reactor  
(FA-BAL)  
Junction terminal  
block  
L1  
L2  
L3  
MR Configurator  
(Servo  
configuration  
To CN1B  
To CN3  
(Note 1)  
C
P
Personal  
computer  
software  
MRZJW3-  
SETUP151E)  
U
V
Regenerative option  
W
To CN2  
L11  
L21  
Note 1. When using the regenerative option, remove the lead wires of the built-in regenerative resistor.  
2. Refer to section 1.3 for the power supply specification.  
1 - 22  
1. FUNCTIONS AND CONFIGURATION  
(4) MR-J2S-700A  
(Note 2)  
Power supply  
Options and auxiliary equipment  
No-fuse breaker  
Reference  
Options and auxiliary equipment  
Reference  
Section 13.2.2 Regenerative option  
Section 13.2.2 Cables  
Section 13.1.1  
Section 13.2.1  
Magnetic contactor  
MR Configurator  
(Servo configuration software)  
Power factor improving reactor Section 13.2.3  
Section 13.1.9  
No-fuse  
breaker  
(NFB) or  
fuse  
Command device  
Servo amplifier  
L11  
To CN1A  
L21  
Junction terminal  
block  
Magnetic  
contactor  
(MC)  
To CN1B  
To CN3  
MR Configurator  
(Servo  
configuration  
software  
MRZJW3-  
SETUP151E)  
Personal  
computer  
Power  
factor  
improving  
reactor  
(FA-BAL)  
To CN2  
L3  
L2  
L1  
U
V
W
C
P
(Note 1) Regenerative option  
Note 1. When using the regenerative option, remove the lead wires of the built-in regenerative resistor.  
2. Refer to section 1.3 for the power supply specification.  
1 - 23  
1. FUNCTIONS AND CONFIGURATION  
(5) MR-J2S-11KA or more  
Options and auxiliary equipment  
Reference  
Options and auxiliary equipment  
Reference  
No-fuse breaker  
Section 13.2.2 Regenerative option  
Section 13.2.2 Cables  
Section 13.1.1  
Section 13.2.1  
Magnetic contactor  
(Note 3)  
Power supply  
MR Configurator  
(Servo configuration software)  
Power factor improving reactor Section 13.2.3  
Section 13.1.9  
Power factor improving  
Section 13.2.4  
DC reactor  
MR Configurator  
(Servo  
configuration  
software  
MRZJW3-  
SETUP151E)  
No-fuse  
breaker  
(NFB) or  
fuse  
Personal  
computer  
L21  
To CN3  
Magnetic  
contactor  
(MC)  
L11  
Analog monitor  
To CN4  
MITSUBISHI  
(Note 2)  
Power  
factor  
improving  
reactor  
Command device  
To CN1A  
(FA-BAL)  
L3  
L2  
Junction terminal  
block  
L1  
To CN1B  
To CN2  
C
P
Regenerative  
option  
(Note 2)  
Power factor  
improving DC reactor  
(FR-BEL)  
(Note 1)  
BW  
BV  
U VW  
BU  
Servo motor  
series  
Note 1. Cooling fan power supply of the HA-LFS11K2 servo motor is 1-phase. Power supply specification of the cooling fan is different  
from that of the servo amplifier. Therefore, separate power supply is required.  
2. Use either the FR-BAL or FR-BEL power factor improving reactor.  
3. Refer to section 1.3 for the power supply specification.  
1 - 24  
2. INSTALLATION  
2. INSTALLATION  
Stacking in excess of the limited number of products is not allowed.  
Install the equipment on incombustible material. Installing them directly or close to  
combustibles will lead to a fire.  
Install the equipment in a load-bearing place in accordance with this Instruction  
Manual.  
Do not get on or put heavy load on the equipment to prevent injury.  
Use the equipment within the specified environmental condition range. (For the  
environmental conditions, refer to section 1.3.)  
Provide an adequate protection to prevent screws, metallic detritus and other  
conductive matter or oil and other combustible matter from entering the servo  
amplifier.  
CAUTION  
Do not block the intake/exhaust ports of the servo amplifier. Otherwise, a fault may  
occur.  
Do not subject the servo amplifier to drop impact or shock loads as they are  
precision equipment.  
Do not install or operate a faulty servo amplifier.  
When the product has been stored for an extended period of time, consult  
Mitsubishi.  
When treating the servo amplifier, be careful about the edged parts such as the  
corners of the servo amplifier.  
2.1 Environmental conditions  
Environment  
Conditions  
[
[
[
[
]
]
]
]
0 to 55 (non-freezing)  
32 to 131 (non-freezing)  
20 to 65 (non-freezing)  
4 to 149 (non-freezing)  
In  
operation  
Ambient  
temperature  
In storage  
In operation  
In storage  
Ambient  
humidity  
90%RH or less (non-condensing)  
Indoors (no direct sunlight)  
Ambience  
Altitude  
Free from corrosive gas, flammable gas, oil mist, dust and dirt  
Max. 1000m (3280 ft) above sea level  
[m/s2] 5.9 [m/s2] or less  
[ft/s2] 19.4 [ft/s2] or less  
Vibration  
2 - 1  
2. INSTALLATION  
2.2 Installation direction and clearances  
The equipment must be installed in the specified direction. Otherwise, a fault may  
occur.  
CAUTION  
Leave specified clearances between the servo amplifier and control box inside  
walls or other equipment.  
(1) Installation of one servo amplifier  
Control box  
Control box  
40mm  
(1.6 in.)  
or more  
Servo amplifier  
Wiring clearance  
70mm  
Top  
(2.8 in.)  
10mm  
10mm  
(0.4 in.)  
or more  
(0.4 in.)  
or more  
Bottom  
40mm  
(1.6 in.)  
or more  
2 - 2  
2. INSTALLATION  
(2) Installation of two or more servo amplifiers  
Leave a large clearance between the top of the servo amplifier and the internal surface of the control  
box, and install a cooling fan to prevent the internal temperature of the control box from exceeding the  
environmental conditions.  
Control box  
100mm  
(4.0 in.)  
or more  
10mm  
(0.4 in.)  
or more  
Servo  
amplifier  
30mm  
30mm  
(1.2 in.)  
or more  
(1.2 in.)  
or more  
40mm  
(1.6 in.)  
or more  
(3) Others  
When using heat generating equipment such as the regenerative option, install them with full  
consideration of heat generation so that the servo amplifier is not affected.  
Install the servo amplifier on a perpendicular wall in the correct vertical direction.  
2.3 Keep out foreign materials  
(1) When installing the unit in a control box, prevent drill chips and wire fragments from entering the  
servo amplifier.  
(2) Prevent oil, water, metallic dust, etc. from entering the servo amplifier through openings in the control  
box or a cooling fan installed on the ceiling.  
(3) When installing the control box in a place where there are much toxic gas, dirt and dust, conduct an  
air purge (force clean air into the control box from outside to make the internal pressure higher than  
the external pressure) to prevent such materials from entering the control box.  
2 - 3  
2. INSTALLATION  
2.4 Cable stress  
(1) The way of clamping the cable must be fully examined so that flexing stress and cable's own mass  
stress are not applied to the cable connection.  
(2) For use in any application where the servo motor moves, fix the cables (encoder, power supply, brake)  
supplied with the servo motor, and flex the optional encoder cable or the power supply and brake  
wiring cables. Use the optional encoder cable within the flexing life range. Use the power supply and  
brake wiring cables within the flexing life of the cables.  
(3) Avoid any probability that the cable sheath might be cut by sharp chips, rubbed by a machine corner  
or stamped by workers or vehicles.  
(4) For installation on a machine where the servo motor will move, the flexing radius should be made as  
large as possible. Refer to section 12.4 for the flexing life.  
2 - 4  
3. SIGNALS AND WIRING  
3. SIGNALS AND WIRING  
Any person who is involved in wiring should be fully competent to do the work.  
Before wiring, turn off the power and wait for 15 minutes or more until the charge  
lamp turns off. Then, confirm that the voltage between P and N is safe with a  
voltage tester and others. Otherwise, an electric shock may occur. In addition,  
always confirm from the front of the servo amplifier whether the charge lamp is off  
or not.  
WARNING  
Ground the servo amplifier and the servo motor securely.  
Do not attempt to wire the servo amplifier and servo motor until they have been  
installed. Otherwise, you may get an electric shock.  
The cables should not be damaged, stressed excessively, loaded heavily, or  
pinched. Otherwise, you may get an electric shock.  
Wire the equipment correctly and securely. Otherwise, the servo motor may  
operate unexpectedly, resulting in injury.  
Connect cables to correct terminals to prevent a burst, fault, etc.  
Ensure that polarity (  
,
) is correct. Otherwise, a burst, damage, etc. may occur.  
The surge absorbing diode installed to the DC relay designed for control output  
should be fitted in the specified direction. Otherwise, the signal is not output due to  
a fault, disabling the emergency stop (EMG) and other protective circuits.  
Servo amplifier  
Servo amplifier  
COM  
COM  
(24VDC)  
(24VDC)  
Control output  
signal  
Control output  
signal  
RA  
RA  
CAUTION  
Use a noise filter, etc. to minimize the influence of electromagnetic interference,  
which may be given to electronic equipment used near the servo amplifier.  
Do not install a power capacitor, surge suppressor or radio noise filter (FR-BIF  
option) with the power line of the servo motor.  
When using the regenerative resistor, switch power off with the alarm signal.  
Otherwise, a transistor fault or the like may overheat the regenerative resistor,  
causing a fire.  
Do not modify the equipment.  
During power-on, do not open or close the motor power line. Otherwise, a  
malfunction or faulty may occur.  
POINT  
CN1A, CN1B, CN2 and CN3 have the same shape. Wrong connection of  
the connectors will lead to a failure. Connect them correctly.  
3 - 1  
3. SIGNALS AND WIRING  
3.1 Standard connection example  
POINT  
Refer to section 3.7.1 for the connection of the power supply system and  
refer to section 3.8 for connection with the servo motor.  
3.1.1 Position control mode  
(1) FX-10GM  
Positioning module  
FX-10GM  
Servo amplifier  
(Note 4, 9) (Note 4)  
CN1A  
CN1B  
SVRDY  
COM2  
1
2
RD  
COM  
INP  
19  
9
18  
3
VDD  
(Note 12)  
12  
11  
14  
13  
COM2  
SVEND  
(Note 7)  
Trouble  
13 COM  
18 ALM  
19 ZSP  
(Note 2, 5)  
RA1  
COM4  
PG0  
P15R  
OP  
4
14  
Zero speed  
RA2  
RA3  
24  
7,17  
8,18  
5
OPC  
COM  
11  
9
Limiting torque  
VC  
6
TLC  
FPO  
FP  
6
PP  
3
9,19  
16  
15  
3
COM5  
RP  
SG 10  
10m (32ft) or less  
NP  
2
RP0  
CLR  
COM3  
CR  
SG  
SD  
8
20  
Plate  
4
(Note 13)  
(Note 4, 9)  
CN1A  
(Note 10) 2m(6.5ft) max.  
START  
ST-  
1
2
3
4
5
6
7
8
6
16  
7
LA  
Encoder A-phase pulse  
(differential line driver)  
LAR  
LB  
ZRN  
FWD  
RVS  
DOG  
LSF  
Encoder B-phase pulse  
(differential line driver)  
17  
LG  
5
LBR  
1
Control common  
Encoder Z-phase pulse  
(differential line driver)  
LZ  
LSR  
15  
LZR  
SD  
COM1 9,19  
Plate  
10m(32ft) max.  
(Note 4, 9)(Note 4, 9,14)  
CN1B  
CN3  
(Note 3, 6) Emergency stop  
4
MO1  
LG  
A
A
EMG 15  
(Note 8)  
Analog monitor  
Max. 1mA  
Reading in both  
directions  
10k  
10k  
Servo-on  
3
14  
SON  
RES  
PC  
5
14  
8
Reset  
MO2  
LG  
13  
Proportion control  
Torque limit selection  
Plate  
SD  
TL  
9
2m (6.5ft) max.  
LSP  
LSN  
SG  
16  
17  
10  
11  
12  
1
(Note 6) Forward rotation stroke end  
Reverse rotation stroke end  
Upper limit setting  
P15R  
TLA  
LG  
Analog torque limit  
10V/max. torque  
Plate  
SD  
(Note 11)  
2m(6.5ft) max.  
(Note 8)  
Personal  
computer  
MR Configurator  
(Servo configuration  
software)  
(Note 4, 9)  
CN3  
(Note 1)  
Communication cable  
3 - 2  
3. SIGNALS AND WIRING  
Note 1. To prevent an electric shock, always connect the protective earth (PE) terminal ( ) of the servo amplifier to the protective earth  
(PE) of the control box.  
2. Connect the diode in the correct direction. If it is connected reversely, the servo amplifier will be faulty and will not output  
signals, disabling the emergency stop (EMG) and other protective circuits.  
3. The emergency stop switch (normally closed contact) must be installed.  
4. CN1A, CN1B, CN2 and CN3 have the same shape. Wrong connection of the connectors will lead to a fault.  
5. The sum of currents that flow in the external relays should be 80mA max. If it exceeds 80mA, externally supply 24VDC 10%,  
200mA power for the interface. 200mA is a value applicable when all I/O signals are used. Reducing the number of I/O points  
decreases the current capacity. Refer to the current necessary for the interface described in section 3.6.2. Connect the external  
24VDC power supply if the output signals are not used.  
6. When starting operation, always turn on emergency stop (EMG) and Forward/Reverse rotation stroke end (LSP/LSN).  
(Normally closed contacts)  
7. Trouble (ALM) turns on in normal alarm-free condition. When this signal is switched off (at occurrence of an alarm), the output  
of the programmable controller should be stopped by the sequence program.  
8. When connecting the personal computer together with analog monitor 1 (MO1) and analog monitor 2 (MO2) on the 7kW or less  
servo amplifier, use the maintenance junction card (MR-J2CN3TM). (Refer to section 13.1.5)  
9. The pins with the same signal name are connected in the servo amplifier.  
10. This length applies to the command pulse train input in the opencollector system. It is 10m (32ft) or less in the differential line  
driver system.  
11. Use MRZJW3-SETUP 151E.  
12. When using the internal power supply (VDD), always connect VDD-COM. Do not connect them when supplying external power.  
Refer to section 3.6.2.  
13. Connect to CN1A-10 when using the junction terminal block (MR-TB20).  
14. For the 11kW or more servo amplifier, analog monitor 1 (MO1) and analog monitor 2 (MO2) are replaced by CN4.  
CN4  
A
A
1
2
4
MO1  
MO2  
LG  
2m (6.5ft) or less  
3 - 3  
3. SIGNALS AND WIRING  
(2) AD75P (A1SD75P  
)
Positioning module  
AD75P  
Servo amplifier  
(A1SD75P  
)
(Note 10) 10m(32ft) max.  
(Note 4,9)  
CN1A  
(Note 4)  
CN1B  
Ready  
COM  
INPS  
RD  
COM  
INP 18  
19  
9
7
26  
8
3
VDD  
(Note 12)  
(Note 7)  
Trouble  
13 COM  
18 ALM  
19 ZSP  
(Note 2,5)  
RA1  
PGO(24V)  
PGO(5V)  
PGO COM  
6
24  
25  
5
LZ  
LZR 15  
CR  
SG  
PG  
PP  
NG 12  
NP  
LG  
5
Zero speed  
RA2  
RA3  
CLEAR  
CLEAR COM  
8
10  
13  
3
Limiting torque  
23  
21  
3
6
TLC  
PULSE F  
PULSE F  
PULSE R  
PULSE R  
10m(32ft) or less  
22  
4
2
1
SD Plate  
(Note 13)  
PULSE F  
1
PULSE COM  
19  
2
PULSE R  
PULSE COM  
20  
11  
12  
13  
14  
15  
16  
35  
36  
DOG  
FLS  
RLS  
STOP  
CHG  
START  
COM  
COM  
10m(32ft) or less  
(Note 4,9)  
CN1A  
6
LA  
LAR  
LB  
Encoder A-phase pulse  
(differential line driver)  
16  
7
(Note 4,9)  
DC24V  
CN1B  
15  
5
Encoder B-phase pulse  
(differential line driver)  
(Note 3, 6) Emergency stop  
Servo-on  
EMG  
SON  
RES  
PC  
17  
LBR  
Control common  
Reset  
14  
8
Control common  
1
14  
LG  
OP  
Proportion control  
Encoder Z-phase pulse  
(open collector)  
Torque limit selection  
TL  
9
4
P15R  
SD  
(Note 6) Forward rotation stroke end  
Reverse rotation stroke end  
LSP  
LSN  
SG  
16  
17  
10  
11  
12  
Plate  
2m(6.5ft) or less  
(Note 4,9,14)  
CN3  
Upper limit setting  
P15R  
TLA  
LG  
Analog torque limit  
10V/max. torque  
4
MO1  
LG  
A
A
(Note 8)  
10k  
1
3
Analog monitor  
Plate  
SD  
Max. 1mA  
14  
MO2  
LG  
2m(6.5ft) max.  
(Note 8)  
10k  
Reading in both  
directions  
13  
Plate  
SD  
(Note 11)  
Personal  
computer  
MR Configurator  
(Servo configuration  
software)  
2m(6.5ft) max.  
(Note 4,9)  
CN3  
Communication cable  
(Note 1)  
3 - 4  
3. SIGNALS AND WIRING  
Note 1. To prevent an electric shock, always connect the protective earth (PE) terminal ( ) of the servo amplifier to the protective earth  
(PE) of the control box.  
2. Connect the diode in the correct direction. If it is connected reversely, the servo amplifier will be faulty and will not output  
signals, disabling the emergency stop (EMG) and other protective circuits.  
3. The emergency stop switch (normally closed contact) must be installed.  
4. CN1A, CN1B, CN2 and CN3 have the same shape. Wrong connection of the connectors will lead to a fault.  
5. The sum of currents that flow in the external relays should be 80mA max. If it exceeds 80mA, externally supply 24VDC 10%,  
200mA power for the interface. 200mA is a value applicable when all I/O signals are used. Reducing the number of I/O points  
decreases the current capacity. Refer to the current necessary for the interface described in section 3.6.2. Connect the external  
24VDC power supply if the output signals are not used.  
6. When starting operation, always turn on emergency stop (EMG) and forward/reverse rotation stroke end (LSP/LSN). (Normally  
closed contacts)  
7. Trouble (ALM) turns on in normal alarm-free condition. When this signal is switched off (at occurrence of an alarm), the output  
of the programmable controller should be stopped by the sequence program.  
8. When connecting the personal computer together with analog monitor 1 (MO1) and analog monitor 2 (MO2) on the 7kW or less  
servo amplifier, use the maintenance junction card (MR-J2CN3TM). (Refer to section 13.1.5)  
9. The pins with the same signal name are connected in the servo amplifier.  
10. This length applies to the command pulse train input in the differential line driver system.  
It is 2m (6.5ft) or less in the opencollector system.  
11. Use MRZJW3-SETUP 151E.  
12. When using the internal power supply (VDD), always connect VDD-COM. Do not connect them when supplying external power.  
Refer to section 3.6.2.  
13. This connection is not required for the AD75P. Depending on the used positioning module, however, it is recommended to  
connect the LG and control common terminals of the servo amplifier to enhance noise immunity.  
14. For the 11kW or more servo amplifier, Analog monitor 1 (MO1) and Analog monitor 2 (MO2) are replaced by CN4.  
CN4  
A
A
1
2
4
MO1  
MO2  
LG  
2m (6.5ft) or less  
3 - 5  
3. SIGNALS AND WIRING  
3.1.2 Speed control mode  
Servo amplifier  
(Note 4)  
CN1B  
3
VDD  
(Note 12)  
(Note 4,9)  
CN1A  
(Note 7)  
Trouble  
13 COM  
18 ALM  
19 ZSP  
(Note 2,5)  
RA1  
SP1  
SG  
8
Speed selection 1  
10  
Zero speed  
RA2  
RA3  
Limiting torque  
6
TLC  
10m(32ft) max.  
(Note 4,9) (Note 4,9)  
10m(32ft) or less  
CN1B  
CN1A  
(Note 3, 6) Emergency stop  
Servo-on  
EMG 15  
SON  
RES 14  
9
COM  
5
18 SA  
RA5  
RA4  
Speed reached  
Ready  
Reset  
SP2  
ST1  
ST2  
LSP  
7
8
Speed selection 2  
Forward rotation start  
Reverse rotation start  
19 RD  
LZ  
15 LZR  
LA  
16 LAR  
LB  
17 LBR  
5
Encoder Z-phase pulse  
(differential line driver)  
9
(Note 6) Forward rotation stroke end  
Reverse rotation stroke end  
16  
6
Encoder A-phase pulse  
(differential line driver)  
LSN 17  
SG 10  
P15R 11  
Upper limit setting  
Encoder B-phase pulse  
(differential line driver)  
7
Analog speed command  
VC  
LG  
2
1
10V/rated speed  
(Note 13)  
Control common  
Upper limit setting  
1
LG  
Control common  
Encoder Z-phase pulse  
(open collector)  
TLA  
SD  
12  
14 OP  
(Note 10) Analog torque limit  
10V/max. torque  
4
P15R  
Plate  
Plate  
SD  
2m(6.5ft) or less  
(Note 4,9,14)  
CN3  
2m(6.5ft) max.  
(Note 8)  
(Note 8)  
Analog monitor  
Max. 1mA  
4
3
MO1  
LG  
A
(Note 11)  
10k  
10k  
Personal  
computer  
MR Configurator  
(Servo configuration  
software)  
(Note 4,9)  
CN3  
14 MO2  
13 LG  
A
Reading in  
Communication cable  
both directions  
Plate  
SD  
2m(6.5ft) max.  
(Note 1)  
3 - 6  
3. SIGNALS AND WIRING  
Note 1. To prevent an electric shock, always connect the protective earth (PE) terminal ( ) of the servo amplifier to the protective earth  
(PE) of the control box.  
2. Connect the diode in the correct direction. If it is connected reversely, the servo amplifier will be faulty and will not output  
signals, disabling the emergency stop (EMG) and other protective circuits.  
3. The emergency stop switch (normally closed contact) must be installed.  
4. CN1A, CN1B, CN2 and CN3 have the same shape. Wrong connection of the connectors will lead to a fault.  
5. The sum of currents that flow in the external relays should be 80mA max. If it exceeds 80mA, externally supply 24VDC 10%,  
200mA power for the interface. 200mA is a value applicable when all I/O signals are used. Reducing the number of I/O points  
decreases the current capacity. Refer to the current necessary for the interface described in section 3.6.2. Connect the external  
24VDC power supply if the output signals are not used.  
6. When starting operation, always turn on emergency stop (EMG) and forward/reverse rotation stroke end (LSP/LSN). (Normally  
closed contacts)  
7. Trouble (ALM) turns on in normal alarm-free condition.  
8. When connecting the personal computer together with Analog monitor 1 (MO1) and analog monitor 2 (MO2) on the 7kW or less  
servo amplifier, use the maintenance junction card (MR-J2CN3TM). (Refer to section 13.1.5)  
9. The pins with the same signal name are connected in the servo amplifier.  
10. By setting parameters No.43 to 48 to make TL available, TLA can be used.  
11. Use MRZJW3-SETUP 151E.  
12. When using the internal power supply (VDD), always connect VDD-COM. Do not connect them when supplying external power.  
Refer to section 3.6.2.  
13. Use an external power supply when inputting a negative voltage.  
14. For the 11kW or more servo amplifier, analog monitor 1 (MO1) and analog monitor 2 (MO2) are replaced by CN4.  
CN4  
A
A
1
2
4
MO1  
MO2  
LG  
2m (6.5ft) or less  
3 - 7  
3. SIGNALS AND WIRING  
3.1.3 Torque control mode  
Servo amplifier  
(Note 4)  
CN1B  
(Note 10)  
3
VDD  
(Note 4,8)  
CN1A  
(Note 6)  
Trouble  
13 COM  
18 ALM  
19 ZSP  
(Note 2,5)  
RA1  
SP1  
SG  
8
Speed selection 1  
10  
Zero speed  
RA2  
RA3  
Limiting torque  
6
VLC  
10m(32ft) max.  
10m(32ft) or less  
(Note 4,8) (Note 4,8)  
CN1B  
CN1A  
(Note 3) Emergency stop  
Servo-on  
EMG 15  
SON  
RES 14  
9
COM  
5
19 RD  
RA4  
Ready  
Reset  
SP2  
RS1  
RS2  
SG  
7
9
5
LZ  
Speed selection 2  
Forward rotation start  
Reverse rotation start  
Encoder Z-phase pulse  
(differential line driver)  
15 LZR  
LA  
16 LAR  
LB  
17 LBR  
8
6
Encoder A-phase pulse  
(differential line driver)  
10  
Upper limit setting  
Encoder B-phase pulse  
(differential line driver)  
P15R 11  
7
Analog torque command  
8V/max. torque  
TC  
LG  
12  
1
(Note 11)  
Control common  
Upper limit setting  
1
14  
LG  
Control common  
Encoder Z-phase pulse  
(open collector)  
VLA  
SD  
2
Analog speed limit  
0 to 10V/rated speed  
OP  
4
P15R  
SD  
Plate  
Plate  
2m(6.5ft) or less  
2m(6.5ft) max.  
(Note 4,8,12)  
CN3  
4
3
MO1  
LG  
A
A
(Note 7)  
10k  
Analog monitor  
(Note 9)  
MR Configurator  
(Servo configuration  
software)  
Max. 1mA  
Personal  
computer  
14 MO2  
13 LG  
(Note 4,8)  
CN3  
10k  
Reading in both  
directions  
(Note 7)  
Communication cable  
Plate SD  
2m(6.5ft) max.  
(Note 1)  
3 - 8  
3. SIGNALS AND WIRING  
Note 1. To prevent an electric shock, always connect the protective earth (PE) terminal of the ( ) servo amplifier to the protective earth  
(PE) of the control box.  
2. Connect the diode in the correct direction. If it is connected reversely, the servo amplifier will be faulty and will not output  
signals, disabling the emergency stop (EMG) and other protective circuits.  
3. The emergency stop switch(normally closed contact) must be installed.  
4. CN1A, CN1B, CN2 and CN3 have the same shape. Wrong connection of the connectors will lead to a fault.  
5. The sum of currents that flow in the external relays should be 80mA max. If it exceeds 80mA, externally supply 24VDC 10%,  
200mA power for the interface. 200mA is a value applicable when all I/O signals are used. Reducing the number of I/O points  
decreases the current capacity. Refer to the current necessary for the interface described in section 3.6.2. Connect the external  
24VDC power supply if the output signals are not used.  
6. Trouble (ALM) turns on in normal alarm-free condition.  
7. When connecting the personal computer together with analog monitor 1 (MO1) and analog monitor 2 (MO2) on the 7kW or less  
servo amplifier, use the maintenance junction card (MR-J2CN3TM). (Refer to section 13.1.5)  
8. The pins with the same signal name are connected in the servo amplifier.  
9. Use MRZJW3-SETUP 151E.  
10. When using the internal power supply (VDD), always connect VDD-COM. Do not connect them when supplying external power.  
Refer to section 3.6.2.  
11. Use an external power supply when inputting a negative voltage.  
12. For the 11kW or more servo amplifier, analog monitor 1 (MO1) and analog monitor 2 (MO2) are replaced by CN4.  
CN4  
A
A
1
2
4
MO1  
MO2  
LG  
2m (6.5ft) or less  
3 - 9  
3. SIGNALS AND WIRING  
3.2 Internal connection diagram of servo amplifier  
The following is the internal connection diagram where the signal assignment has been made in the  
initial status in each control mode.  
Servo amplifier  
CN1B  
24VDC  
VDD  
3
COM  
13  
(Note 1)  
P
(Note 1)  
P
S
T
CN1A  
S
T
CN1A  
18  
COM COM COM  
9
8
INP  
SA  
RD  
Approx. 4.7k  
CR  
SP1 SP1  
19  
RD  
(Note 1)  
P
RD  
T
SG  
(Note 1)  
P
SG  
SG 10,20  
S
CN1B  
6
S
T
TLC TLC VLC  
ALM ALM ALM  
ZSP ZSP ZSP  
CN1B  
5
Approx. 4.7k  
Approx. 4.7k  
Approx. 4.7k  
Approx. 4.7k  
Approx. 4.7k  
Approx. 4.7k  
Approx. 4.7k  
Approx. 4.7k  
SON SON SON  
SP2 SP2  
18  
19  
7
8
DO1 DO1  
PC  
TL  
ST1 RS2  
ST2 RS1  
4
DO1  
9
RES RES RES  
EMG EMG EMG  
LSP LSP  
14  
15  
16  
17  
LSN LSN  
SG  
(Note 1)  
P
SG  
SG 10,20  
CN1A  
6
CN1A  
11  
S
T
LA  
LAR  
LB  
OPC  
PG  
PP  
16  
7
13  
Approx. 100k  
Approx. 100k  
Approx. 1.2k  
3
17  
5
LBR  
LZ  
NG  
NP  
12  
Approx. 1.2k  
2
15  
LZR  
Case  
14  
1
OP  
LG  
SD  
SD  
SD  
T
CN3  
(Note 1)  
P
4
14  
2
MO1  
MO2  
RXD  
S
CN1B  
(Note 2)  
VC  
VLA  
TC  
2
TLA TLA  
12  
12  
9
TXD  
SDP  
SDN  
RDP  
RDN  
15VDC  
P15R P15R P15R 11  
LG  
SD  
LG  
SD  
LG  
SD  
1
19  
5
Case  
15  
PE  
CN1A  
4
P15R  
Note 1. P: Position control mode, S: Speed control mode, T: Torque control mode  
2. For the 11kW or more servo amplifier, MO1 is replaced by CN4-1 and MO2 by CN4-2.  
3 - 10  
3. SIGNALS AND WIRING  
3.3 I/O signals  
3.3.1 Connectors and signal arrangements  
POINT  
The pin configurations of the connectors are as viewed from the cable  
connector wiring section.  
Refer to (2) CN1A and CN1B signal assignment for CN1A and CN1B  
signal assignment.  
(1) Signal arrangements  
(a) MR-J2S-700A or less  
CN1A  
CN1B  
1
11  
13  
15  
17  
19  
1
3
5
7
9
11  
13  
15  
17  
19  
2
4
12  
14  
16  
18  
20  
2
4
12  
14  
16  
18  
20  
3
5
7
9
6
6
MITSUBISHI  
MELSERVO-J2  
8
8
10  
10  
CN2  
CN3  
1
LG  
3
11  
LG  
13  
1
LG  
3
11  
LG  
13  
2
12  
LG  
14  
2
RXD  
4
12  
TXD  
14  
LG  
4
LG  
5
LG  
15  
MO1  
6
MO2  
16  
5
15  
6
MD  
8
16  
MDR  
18  
RDP  
7
RDN  
17  
7
MR  
9
17  
MRR  
19  
The connector frames are  
connected with the PE (earth)  
terminal inside the servo amplifier.  
8
18  
P5  
9
19  
10  
20  
10  
20  
BAT  
P5  
SDP  
SDN  
P5  
TRE  
P5  
3 - 11  
3. SIGNALS AND WIRING  
(b) MR-J2S-11KA or more  
CN3  
1
11  
LG  
13  
CN4  
2
12  
TXD  
14  
LG  
3
1 MO1  
2 MO2  
RXD  
4
5
RDP  
7
15  
RDN  
17  
4
LG  
6
8
16  
18  
9
19  
10  
20  
P5  
SDN  
SDP  
MITSUBISHI  
TRE  
CN1A  
Same as the one of the  
MR-J2S-700A or less.  
CN1B  
Same as the one of the  
MR-J2S-700A or less.  
CN2  
CHARGE  
CON2  
1
LG  
3
11  
LG  
13  
For manufacturer adjustment.  
Keep this open.  
2
LG  
4
12  
LG  
14  
5
15  
6
MD  
8
16  
MDR  
18  
The connector frames are  
connected with the PE (earth)  
terminal inside the servo amplifier.  
7
MR  
9
17  
MRR  
19  
P5  
10  
20  
BAT  
P5  
P5  
3 - 12  
3. SIGNALS AND WIRING  
(2) CN1A and CN1B signal assignment  
The signal assignment of connector changes with the control mode as indicated below.  
For the pins which are given parameter No.s in the related parameter column, their signals can be  
changed using those parameters.  
(Note 2) I/O Signals in control modes  
(Note 1)  
I/O  
Related  
Connector  
Pin No.  
parameter  
P
LG  
P/S  
S
S/T  
T
T/P  
1
2
3
4
5
6
7
8
9
LG  
LG  
LG  
LG  
LG  
/NP  
I
I
NP  
NP/  
/PP  
P15R  
LZ  
PP  
PP/  
P15R/P15R  
LZ  
P15R  
LZ  
P15R  
LZ  
P15R  
LZ  
P15R  
LZ  
O
O
O
I
LA  
LA  
LA  
LA  
LA  
LA  
LB  
LB  
LB  
LB  
LB  
LB  
CR  
CR/SP1  
COM  
SG  
SP1  
COM  
SG  
SP1/SP1  
COM  
SG  
SP1  
COM  
SG  
SP1/CR  
COM  
SG  
No.43 to 48  
COM  
SG  
10  
CN1A  
11  
OPC  
NG  
PG  
OPC/  
NG/  
/OPC  
/NG  
12  
I
13  
I
PG/  
/PG  
14  
O
O
O
O
O
O
OP  
OP  
OP  
LZR  
LAR  
LBR  
SA  
OP  
LZR  
OP  
OP  
15  
LZR  
LAR  
LBR  
INP  
RD  
LZR  
LZR  
LAR  
LBR  
LZR  
16  
LAR  
LBR  
INP/SA  
RD  
LAR  
LAR  
LBR  
/INP  
RD  
17  
LBR  
18  
SA/  
No.49  
No.49  
19  
RD  
RD  
RD  
SG  
20  
SG  
SG  
SG  
SG  
SG  
1
LG  
LG  
LG  
LG  
LG  
LG  
2
I
/VC  
VC  
VC/VLA  
VDD  
DO1  
VLA  
VDD  
DO1  
SON  
VLC  
SP2  
RS2  
RS1  
SG  
VLA/  
VDD  
DO1  
SON  
VLC/TLC  
LOP  
RS2/PC  
RS1/TL  
SG  
3
VDD  
DO1  
SON  
TLC  
VDD  
DO1  
SON  
TLC  
VDD  
DO1  
SON  
TLC  
SP2  
ST1  
ST2  
SG  
(Note 4) 4  
O
I
5
6
SON  
TLC/VLC  
LOP  
No.43 to 48  
No.49  
O
I
7
LOP  
PC/ST1  
TL/ST2  
SG  
No.43 to 48  
No.43 to 48  
No.43 to 48  
8
I
PC  
TL  
ST1/RS2  
ST2/RS1  
SG  
9
I
10  
11  
SG  
CN1B  
P15R  
P15R  
(Note 3)  
TLA/TLA  
COM  
RES  
P15R  
(Note 3)  
TLA  
COM  
RES  
EMG  
LSP  
LSN  
ALM  
ZSP  
SG  
P15R  
(Note 3)  
TLA/TC  
COM  
RES  
P15R  
P15R  
12  
I
TLA  
TC  
TC/TLA  
13  
14  
15  
16  
17  
18  
19  
20  
COM  
RES  
EMG  
LSP  
LSN  
ALM  
ZSP  
SG  
COM  
RES  
COM  
RES  
EMG  
/LSP  
/LSN  
ALM  
ZSP  
I
I
No.43 to 48  
EMG  
LSP  
EMG  
LSP/  
LSN/  
ALM  
ZSP  
EMG  
I
I
LSN  
ALM  
ZSP  
O
O
ALM  
ZSP  
SG  
No.49  
No.1, 49  
SG  
SG  
SG  
Note 1. I : Input signal, O: Output signal  
2. P : Position control mode, S: Speed control mode, T: Torque control mode, P/S: Position/speed control change mode, S/T:  
Speed/torque control change mode, T/P: Torque/position control change mode  
3. By setting parameters No. 43 to 48 to make TL available, TLA can be used.  
4. CN1B-4 and CN1A-18 output signals are the same. However, this pin may not be used when assigning alarm codes to CN1A-  
18.  
3 - 13  
3. SIGNALS AND WIRING  
(3) Symbols and signal names  
Symbol  
SON  
Signal name  
Symbol  
VLC  
Signal name  
Servo-on  
Limiting speed  
Ready  
LSP  
LSN  
CR  
Forward rotation stroke end  
Reverse rotation stroke end  
Clear  
RD  
ZSP  
INP  
SA  
Zero speed  
In position  
Speed reached  
Trouble  
SP1  
SP2  
PC  
Speed selection 1  
Speed selection 2  
ALM  
WNG  
BWNG  
OP  
Proportion control  
Forward rotation start  
Reverse rotation start  
Torque limit selection  
Reset  
Warning  
ST1  
ST2  
TL  
Battery warning  
Encoder Z-phase pulse (open collector)  
Electromagnetic brake interlock  
Encoder Z-phase pulse  
MBR  
LZ  
RES  
EMG  
LOP  
VC  
(differential line driver)  
Emergency stop  
LZR  
LA  
Control change  
Encoder A-phase pulse  
(differential line driver)  
Analog speed command  
Analog speed limit  
Analog torque limit  
Analog torque command  
Forward rotation selection  
Reverse rotation selection  
LAR  
LB  
VLA  
TLA  
TC  
Encoder B-phase pulse  
(differential line driver)  
I/F internal power supply  
Digital I/F power supply input  
Open collector power input  
Digital I/F common  
LBR  
VDD  
COM  
OPC  
SG  
RS1  
RS2  
PP  
NP  
P15R  
LG  
15VDC power supply  
Control common  
Forward/reverse rotation pulse train  
Limiting torque  
PG  
NG  
SD  
Shield  
TLC  
3 - 14  
3. SIGNALS AND WIRING  
3.3.2 Signal explanations  
For the I/O interfaces (symbols in I/O division column in the table), refer to section 3.6.2.  
In the control mode field of the table  
P : Position control mode, S: Speed control mode, T: Torque control mode  
: Denotes that the signal may be used in the initial setting status.  
: Denotes that the signal may be used by setting the corresponding parameter among parameters 43 to  
49.  
The pin No.s in the connector pin No. column are those in the initial status.  
(1) Input signals  
Control  
Connector  
pin No.  
I/O  
mode  
Signal  
Symbol  
Functions/Applications  
division  
P
S
T
Servo-on  
SON  
CN1B  
5
Turn SON on to power on the base circuit and make the servo  
amplifier ready to operate (servo-on).  
DI-1  
Turn it off to shut off the base circuit and coast the servo motor  
(servo off).  
Set "  
1" in parameter No. 41 to switch this signal on  
(keep terminals connected) automatically in the servo  
amplifier.  
Reset  
RES  
LSP  
CN1B  
14  
Turn RES on for more than 50ms to reset the alarm.  
Some alarms cannot be deactivated by the reset signal. Refer to  
section 10.2.  
DI-1  
DI-1  
Turning RES on in an alarm-free status shuts off the base circuit.  
The base circuit is not shut off when "  
No. 51.  
1
"is set in parameter  
Forward  
rotation stroke  
end  
CN1B  
16  
To start operation, turn LSP/LSN on. Turn it off to bring the  
motor to a sudden stop and make it servo-locked.  
Set "  
1" in parameter No. 22 to make a slow stop.  
(Refer to section 5.2.3.)  
(Note) Input signals  
Operation  
CCW CW  
direction direction  
LSP  
LSN  
1
0
1
0
1
1
0
0
Reverse rotation  
stroke end  
LSN  
CN1B  
17  
Note. 0: off  
1: on  
Set parameter No. 41 as indicated below to switch on the signals  
(keep terminals connected) automatically in the servo amplifier.  
Parameter No.41  
Automatic ON  
LSP  
1
1
LSN  
3 - 15  
3. SIGNALS AND WIRING  
Control  
mode  
Connector  
I/O  
Signal  
Symbol  
Functions/Applications  
pin No.  
division  
P
S
T
External torque  
limit selection  
TL  
CN1B  
9
Turn TL off to make Internal torque limit 1 (parameter No. 28)  
valid, or turn it on to make Analog torque limit (TLA) valid.  
For details, refer to section 3.4.1 (5).  
DI-1  
DI-1  
DI-1  
Internal  
TL1  
ST1  
When using this signal, make it usable by making the setting of  
parameter No. 43 to 48.  
torque limit  
selection  
For details, refer to section 3.4.1 (5).  
Forward  
CN1B  
8
Used to start the servo motor in any of the following directions.  
rotation start  
(Note) Input signals  
Servo motor starting direction  
ST2  
0
ST1  
0
Stop (servo lock)  
CCW  
Reverse rotation  
start  
ST2  
CN1B  
9
0
1
1
0
CW  
1
1
Stop (servo lock)  
Note. 0: off  
1: on  
If both ST1 and ST2 are switched on or off during operation, the  
servo motor will be decelerated to a stop according to the  
parameter No. 12 setting and servo-locked.  
Forward  
rotation  
selection  
RS1  
RS2  
CN1B  
9
Used to select any of the following servo motor torque generation  
directions.  
DI-1  
(Note) Input signals  
Torque generation direction  
RS2  
RS1  
0
0
Torque is not generated.  
Reverse rotation  
selection  
CN1B  
8
Forward rotation in driving mode /  
reverse rotation in regenerative mode  
0
1
Reverse rotation in driving mode /  
1
1
0
1
forward rotation in regenerative mode  
Torque is not generated.  
Note. 0: off  
1: on  
3 - 16  
3. SIGNALS AND WIRING  
Control  
mode  
S
Connector  
pin No.  
I/O  
division  
Signal  
Symbol  
Functions/Applications  
P
T
Speed selection 1  
SP1  
CN1A  
8
<Speed control mode>  
DI-1  
Used to select the command speed for operation.  
When using SP3, make it usable by making the setting of  
parameter No. 43 to 48.  
Speed selection 2  
Speed selection 3  
SP2  
SP3  
CN1B  
7
DI-1  
DI-1  
(Note) Input  
signals  
Setting of  
parameter  
No. 43 to 48  
Speed command  
SP3 SP2 SP1  
0
0
Analog speed command (VC)  
Internal speed command 1  
(parameter No. 8)  
Internal speed command 2  
(parameter No. 9)  
Internal speed command 3  
(parameter No. 10)  
Analog speed command (VC)  
When speed  
selection  
(SP3) is not  
used  
(initial status)  
0
1
1
0
1
0
0
1
0
1
0
0
Internal speed command 1  
(parameter No. 8)  
Internal speed command 2  
(parameter No. 9)  
Internal speed command 3  
(parameter No.10)  
Internal speed command 4  
(parameter No. 72)  
Internal speed command 5  
(parameter No. 73)  
Internal speed command 6  
(parameter No. 74)  
Internal speed command 7  
(parameter No. 75)  
0
0
1
1
1
1
1
1
0
0
1
1
0
1
0
1
0
1
When speed  
selection  
(SP3) is made  
valid  
Note. 0: off  
1: on  
<Torque control mode>  
Used to select the limit speed for operation.  
When using SP3, make it usable by making the setting of  
parameter No. 43 to 48.  
(Note) Input  
signals  
Setting of  
parameter  
No. 43 to 48  
Speed limit  
SP3 SP2 SP1  
0
0
1
0
1
0
Analog speed limit (VLA)  
When speed  
selection  
(SP3) is not  
used  
(initial status)  
Internal speed command 1  
(parameter No. 8)  
Internal speed command 2  
(parameter No. 9)  
Internal speed command 3  
(parameter No. 10)  
Analog speed limit (VLA)  
1
0
0
1
0
1
0
0
Internal speed command 1  
(parameter No. 8)  
Internal speed command 2  
(parameter No. 9)  
Internal speed command 3  
(parameter No.10)  
Internal speed command 4  
(parameter No. 72)  
Internal speed command 5  
(parameter No. 73)  
Internal speed command 6  
(parameter No. 74)  
Internal speed command 7  
(parameter No. 75)  
0
0
1
1
1
1
1
1
0
0
1
1
0
1
0
1
0
1
When speed  
selection  
(SP3) is made  
valid  
Note. 0: off  
1: on  
3 - 17  
3. SIGNALS AND WIRING  
Control  
mode  
Connector  
I/O  
Signal  
Symbol  
Functions/Applications  
pin No.  
division  
P
S
T
Proportion  
control  
PC  
CN1B  
8
Connect PC-SG to switch the speed amplifier from the  
proportional integral type to the proportional type.  
DI-1  
If the servo motor at a stop is rotated even one pulse due to any  
external factor, it generates torque to compensate for a position  
shift. When the servo motor shaft is to be locked mechanically  
after positioning completion (stop), switching on the proportion  
control (PC) upon positioning completion will suppress the  
unnecessary torque generated to compensate for a position shift.  
When the shaft is to be locked for a long time, switch on the  
proportion control (PC) and torque control (TL) at the same time  
to make the torque less than the rated by the analog torque limit.  
Turn EMG off (open EMG-common) to bring the motor to an  
emergency stop state, in which the base circuit is shut off and the  
dynamic brake is operated.  
Emergency stop  
EMG  
CN1B  
15  
DI-1  
Turn EMG on (short EMG-common) in the emergency stop state  
to reset that state.  
Clear  
CR  
CN1A  
8
Turn CR on to clear the position control counter droop pulses on  
its leading edge. The pulse width should be 10ms or more.  
DI-1  
DI-1  
When the parameter No. 42 setting is "  
always cleared while CR is on.  
1 ", the pulses are  
Electronic gear  
selection 1  
CM1  
When using CM1 and CM2, make them usable by the setting of  
parameters No. 43 to 48.  
The combination of CM1 and CM2 gives you a choice of four  
different electronic gear numerators set in the parameters.  
CM1 and CM2 cannot be used in the absolute position detection  
system.  
Electronic gear  
selection 2  
CM2  
(Note) Input signals  
DI-1  
Electronic gear molecule  
CM2  
CM1  
0
0
1
1
0
1
0
1
Parameter No. 3  
Parameter No. 69  
Parameter No. 70  
Parameter No. 71  
Note. 0: off  
1: on  
Gain changing  
CDP  
When using this signal, make it usable by the setting of  
parameter No. 43 to 48.  
DI-1  
Turn CDP on to change the load inertia moment ratio into the  
parameter No. 61 setting and the gain values into the values  
multiplied by the parameter No. 62 to 64 settings.  
3 - 18  
3. SIGNALS AND WIRING  
Control  
mode  
Connector  
pin No.  
I/O  
division  
Signal  
Symbol  
Functions/Applications  
<Position/speed control change mode>  
Used to select the control mode in the position/speed control  
change mode.  
P
S
T
Control change  
LOP  
CN1B  
7
DI-1  
Refer to  
Functions/  
Appli-  
cations.  
(Note) LOP  
Control mode  
Position  
0
1
Speed  
Note. 0: off  
1: on  
<Speed/torque control change mode>  
Used to select the control mode in the speed/torque control change  
mode.  
(Note) LOP  
Control mode  
Speed  
0
1
Torque  
Note. 0: off  
1: on  
<Torque/position control mode>  
Used to select the control mode in the torque/position control  
change mode.  
(Note) LOP  
Control mode  
Torque  
0
1
Position  
Note. 0: off  
1: on  
Analog torque  
limit  
TLA  
CN1B  
12  
To use this signal in the speed control mode, set any of  
parameters No. 43 to 48 to make TL available.  
When the analog torque limit (TLA) is valid, torque is limited in  
the full servo motor output torque range. Apply 0 to 10VDC  
across TLA-LG. Connect the positive terminal of the power supply  
to TLA. Maximum torque is generated at 10V. (Refer to section  
3.4.1 (5)) Resolution:10bit  
Analog  
input  
Analog torque  
command  
TC  
VC  
Used to control torque in the full servo motor output torque  
range.  
Apply 0 to 8VDC across TC-LG. Maximum torque is generated  
at 8V. (Refer to section 3.4.3 (1))  
The torque at 8V input can be changed using parameter No. 26.  
Apply 0 to 10VDC across VC-LG. Speed set in parameter No. 25  
is provided at 10V. (Refer to section 3.4.2 (1))  
Resolution:14bit or equivalent  
Analog  
input  
Analog speed  
command  
CN1B  
2
Analog  
input  
Analog speed  
limit  
VLA  
PP  
Apply 0 to 10VDC across VLA-LG. Speed set in parameter No.  
25 is provided at 10V. (Refer to section 3.4.3 (3))  
Used to enter a command pulse train.  
In the open collector system (max. input frequency 200kpps).  
Forward rotation pulse train across PP-SG  
Reverse rotation pulse train across NP-SG  
In the differential receiver system (max. input frequency  
500kpps).  
Analog  
input  
DI-2  
Forward  
rotation pulse  
train  
Reverse rotation  
pulse train  
CN1A  
3
CN1A  
2
CN1A  
13  
NP  
PG  
NG  
CN1A  
12  
Forward rotation pulse train across PG-PP  
Reverse rotation pulse train across NG-NP  
The command pulse train form can be changed using parameter  
No. 21.  
3 - 19  
3. SIGNALS AND WIRING  
(2) Output signals  
Control  
mode  
Connector  
I/O  
Signal  
Symbol  
Functions/Applications  
pin No.  
division  
P
S
T
Trouble  
ALM  
CN1B  
18  
ALM turns off when power is switched off or the protective circuit  
is activated to shut off the base circuit.  
DO-1  
DO-1  
Without alarm occurring, ALM turns on within about 1s after  
power-on.  
Dynamic brake  
interlock  
DB  
This signal can be used with the 11kW or more servo amplifier.  
When using this signal, set " 1  
" in parameter No. 1.  
When the dynamic brake is operated, DB turns off. (Refer to  
section 13.1.4.)  
Ready  
RD  
CN1A  
19  
RD turns on when the servo is switched on and the servo  
amplifier is ready to operate.  
DO-1  
DO-1  
In position  
INP  
CN1A  
18  
INP turns on when the number of droop pulses is in the preset in-  
position range. The in-position range can be changed using  
parameter No. 5.  
When the in-position range is increased, INP-SG may be kept  
connected during low-speed rotation.  
Speed reached  
Limiting speed  
SA  
SA turns on when the servo motor speed has nearly reached the  
preset speed. When the preset speed is 20r/min or less, SA  
always turns on. SA does not turn on even when the servo on  
(SON) is turned off or the servo motor speed by the external force  
reaches the preset speed while both the forward rotation start  
(ST1) and the reverse rotation start (ST2) are off.  
VLC turns on when speed reaches the value limited using any of  
the internal speed limits 1 to 7 (parameter No. 8 to 10, 72 to 75)  
or the analog speed limit (VLA) in the torque control mode.  
VLC turns off when servo on (SON) turns off.  
DO-1  
VLC  
TLC  
CN1B  
6
DO-1  
DO-1  
Limiting torque  
Zero speed  
TLC turns on when the torque generated reaches the value set to  
the internal torque limit 1 (parameter No. 28) or analog torque  
limit (TLA).  
ZSP  
CN1B  
19  
ZSP turns on when the servo motor speed is zero speed (50r/min)  
or less. Zero speed can be changed using parameter No. 24.  
DO-1  
DO-1  
Electromagnetic  
brake interlock  
MBR  
CN1B  
19  
Set"  
1 "in parameter No. 1 to use this parameter. Note that  
ZSP will be unusable.  
MBR turns off when the servo is switched off or an alarm occurs.  
To use this signal, assign the connector pin for output using  
parameter No.49. The old signal before assignment will be  
unusable.  
Warning  
WNG  
DO-1  
When warning has occurred, WNG turns on.  
When there is no warning, WNG turns off within about 1s after  
power-on.  
Battery warning BWNG  
To use this signal, assign the connector pin for output using  
parameter No.49. The old signal before assignment will be  
unusable.  
DO-1  
BWNG turns on when battery cable breakage warning (AL. 92) or  
battery warning (AL. 9F) has occurred.  
When there is no battery warning, BWNG turns off within about  
1s after power-on.  
3 - 20  
3. SIGNALS AND WIRING  
Control  
mode  
Connector  
I/O  
Signal  
Symbol  
Functions/Applications  
pin No.  
division  
P
S
T
Alarm code  
ACD 0  
ACD 1  
ACD 2  
CN1A  
19  
To use this signal, set "  
1" in parameter No.49.  
DO-1  
This signal is output when an alarm occurs. When there is no  
alarm, respective ordinary signals (RD, INP, SA, ZSP) are output.  
Alarm codes and alarm names are listed below.  
CN1A  
18  
CN1B  
19  
(Note) Alarm code  
Alarm  
Name  
CN1B CN1A CN1A  
19 Pin 18 Pin 19 Pin  
display  
88888 Watchdog  
AL.12 Memory error 1  
AL.13 Clock error  
AL.15 Memory error 2  
AL.17 Board error  
0
0
0
AL.19 Memory error 3  
AL.37 Parameter error  
Serial communication  
timeout  
AL.8A  
AL.8E Serial communication error  
AL.30 Regenerative error  
AL.33 Overvoltage  
0
0
0
1
1
0
AL.10 Undervoltage  
AL.45 Main circuit device  
AL.46 Servo motor overheat  
AL.50 Overload 1  
0
1
1
1
0
0
1
0
1
AL.51 Overload 2  
AL.24 Main circuit error  
AL.32 Overcurrent  
AL.31 Overspeed  
Command pulse frequency  
AL.35  
alarm  
AL.52 Error excessive  
AL.16 Encoder error 1  
AL.1A Monitor combination error  
AL.20 Encoder error 2  
1
1
0
AL.25 Absolute position erase  
Note. 0: off  
1: on  
3 - 21  
3. SIGNALS AND WIRING  
Control  
mode  
Connector pin No.  
7kW or 11kW or  
I/O  
Signal  
Symbol  
Functions/Applications  
division  
P
S
T
less  
more  
Encoder Z-phase  
pulse  
OP  
CN1A  
14  
CN1A Outputs the zero-point signal of the encoder. One pulse is  
DO-2  
14  
output per servo motor revolution. OP turns on when the  
zero-point position is reached. (Negative logic)  
The minimum pulse width is about 400 s. For home  
position return using this pulse, set the creep speed to  
100r/min. or less.  
(Open collector)  
Encoder A-phase  
Pulse  
LA  
LAR  
LB  
CN1A  
6
CN1A Outputs pulses per servo motor revolution set in  
parameter No. 27 in the differential line driver system.  
CN1A In CCW rotation of the servo motor, the encoder B-phase  
DO-2  
6
(Differential line  
driver)  
CN1A  
16  
16  
CN1A  
7
pulse lags the encoder A-phase pulse by a phase angle of  
/2.  
Encoder B-phase  
pulse  
CN1A  
7
The relationships between rotation direction and phase  
difference of the A B-phase pulses can be changed using  
parameter No. 54.  
(Differential line  
driver)  
LBR  
LZ  
CN1A  
17  
CN1A  
17  
Encoder Z-phase  
pulse  
CN1A  
5
CN1A The same signal as OP is output in the differential line  
DO-2  
5
CN1A  
15  
driver system.  
(Differential line  
driver)  
LZR  
CN1A  
15  
Analog monitor 1 MO1  
CN3  
4
CN4  
1
Used to output the data set in parameter No.17 to across  
MO1-LG in terms of voltage. Resolution 10 bits  
Analog  
output  
Analog  
output  
Analog monitor 2 MO2  
CN3  
14  
CN4  
2
Used to output the data set in parameter No.17 to across  
MO2-LG in terms of voltage. Resolution 10 bits  
(3) Communication  
POINT  
Refer to chapter 14 for the communication function.  
Control  
mode  
Connector  
I/O  
Signal  
Symbol  
Functions/Applications  
pin No.  
division  
P
S
T
RS-422 I/F  
SDP  
SDN  
RDP  
RDN  
TRE  
CN3  
9
RS-422 and RS-232C functions cannot be used together.  
Choose either one in parameter No. 16.  
CN3  
19  
CN3  
5
CN3  
15  
RS-422  
CN3  
10  
Termination resistor connection terminal of RS-422 interface.  
When the servo amplifier is the termination axis, connect this  
terminal to RDN (CN3-15).  
termination  
RS-232C I/F  
RXD  
TXD  
CN3  
2
RS-422 and RS-232C functions cannot be used together.  
Choose either one in parameter No. 16.  
CN3  
12  
3 - 22  
3. SIGNALS AND WIRING  
(4) Power supply  
Control  
mode  
Connector pin No.  
7kW or 11kW or  
Signal  
Symbol  
Functions/Applications  
I/O division  
P
S
T
less  
more  
I/F internal  
VDD  
CN1B  
3
CN1B Used to output 24V 10% to across VDD-SG.  
power supply  
3
When using this power supply for digital interface,  
connect it with COM.  
Permissible current : 80mA  
Digital I/F power COM  
supply input  
CN1A  
9
CN1A Used to input 24VDC for input interface.  
Connect the positive terminal of the 24VDC external  
CN1B power supply.  
13 24VDC 10%  
CN1A When inputting a pulse train in the open collector  
9
CN1B  
13  
Open collector  
power input  
OPC  
SG  
CN1A  
11  
11  
system, supply this terminal with the positive ( ) power  
of 24VDC.  
Digital I/F  
common  
CN1A  
10  
CN1A Common terminal for input signals such as SON and  
10  
20  
EMG. Pins are connected internally.  
Separated from LG.  
20  
CN1B  
10  
CN1B  
10  
20  
20  
15VDC power  
supply  
P15R  
LG  
CN1A  
4
CN1A Outputs 15VDC to across P15R-LG. Available as power  
for TC, TLA, VC, VLA.  
4
CN1B  
11  
CN1B Permissible current: 30mA  
11  
Control common  
CN1A  
1
CN1A Common terminal for TLA, TC, VC, VLA, FPA, FPB, OP  
1
,MO1, MO2 and P15R.  
CN1B  
1
CN1B Pins are connected internally.  
1
CN3  
1, 11  
3, 13  
CN3  
1, 11  
3, 13  
CN4  
4
Shield  
SD  
Plate  
Plate Connect the external conductor of the shield cable.  
3 - 23  
3. SIGNALS AND WIRING  
3.4 Detailed description of the signals  
3.4.1 Position control mode  
(1) Pulse train input  
(a) Input pulse waveform selection  
Command pulses may be input in any of three different forms, for which positive or negative logic  
can be chosen. Set the command pulse train form in parameter No. 21.  
Arrow  
or  
in the table indicates the timing of importing a pulse train.  
A B-phase pulse trains are imported after they have been multiplied by 4.  
Forward rotation  
command  
Reverse rotation  
command  
Parameter No. 21  
Pulse train form  
(Command pulse train)  
Forward rotation  
pulse train  
PP  
0010  
0011  
Reverse rotation  
pulse train  
NP  
PP  
Pulse train sign  
L
H
NP  
PP  
A-phase pulse train  
B-phase pulse train  
0012  
NP  
PP  
Forward rotation  
pulse train  
0000  
0001  
0002  
Reverse rotation  
pulse train  
NP  
PP  
NP  
Pulse train sign  
L
H
PP  
NP  
A-phase pulse train  
B-phase pulse train  
3 - 24  
3. SIGNALS AND WIRING  
(b) Connections and waveforms  
1) Open collector system  
Connect as shown below.  
Servo amplifier  
VDD  
OPC  
PP  
Approx.  
1.2k  
Approx.  
1.2k  
NP  
(Note)  
SG  
SD  
Note. Pulse train input interface is comprised of a photo coupler.  
Therefore, it may be any malfunctions since the current is reduced when connect a  
resistance to a pulse train signal line.  
The explanation assumes that the input waveform has been set to the negative logic and forward  
and reverse rotation pulse trains (parameter No.21 has been set to 0010). The waveforms in the  
table refer to (1) (a) in this section are voltage waveforms of PP and NP based on SG. Their  
relationships with transistor ON/OFF are as follows.  
Forward rotation  
pulse train  
(transistor)  
(OFF) (ON) (OFF) (ON)  
(OFF)  
Reverse rotation  
pulse train  
(transistor)  
(OFF)  
(ON) (OFF) (ON) (OFF) (ON)  
Reverse rotation command  
Forward rotation command  
3 - 25  
3. SIGNALS AND WIRING  
2) Differential line driver system  
Connect as shown below.  
Servo amplifier  
PP  
PG  
NP  
NG  
(Note)  
SD  
Note. Pulse train input interface is comprised of a photo coupler.  
Therefore, it may be any malfunctions since the current is reduced when connect a  
resistance to a pulse train signal line.  
The explanation assumes that the input waveform has been set to the negative logic and forward  
and reverse rotation pulse trains (parameter No.21 has been set to 0010).  
For the differential line driver, the waveforms in the table refer to (1) (a) in this section are as  
follows.  
The waveforms of PP, PG, NP and NG are based on that of the ground of the differential line  
driver.  
Forward rotation  
pulse train  
PP  
PG  
Reverse rotation  
pulse train  
NP  
NG  
Forward rotation command  
Reverse rotation command  
3 - 26  
3. SIGNALS AND WIRING  
(2) In-position (INP)  
PF-SG are connected when the number of droop pulses in the deviation counter falls within the preset  
in-position range (parameter No. 5). INP-SG may remain connected when low-speed operation is  
performed with a large value set as the in-position range.  
ON  
Servo-on (SON)  
OFF  
Yes  
Alarm  
No  
In-position range  
Droop pulses  
ON  
In position (INP)  
OFF  
(3) Ready (RD)  
ON  
Servo-on (SON)  
OFF  
Yes  
Alarm  
No  
80ms or less  
10ms or less  
10ms or less  
ON  
Ready (RD)  
OFF  
(4) Electronic gear switching  
The combination of CM1 and CM2 gives you a choice of four different electronic gear numerators set in  
the parameters.  
As soon as CM1/CM2 is turned ON or OFF, the molecule of the electronic gear changes. Therefore, if  
any shock occurs at this change, use position smoothing (parameter No. 7) to relieve shock.  
(Note) External input signal  
Electronic gear molecule  
CM2  
CM1  
0
0
1
1
0
1
0
1
Parameter No. 3  
Parameter No. 69  
Parameter No. 70  
Parameter No. 71  
Note. 0: off  
1: on  
3 - 27  
3. SIGNALS AND WIRING  
(5) Torque limit  
If the torque limit is canceled during servo lock, the servo motor may suddenly  
rotate according to position deviation in respect to the command position.  
CAUTION  
(a) Torque limit and torque  
By setting parameter No. 28 (internal torque limit 1), torque is always limited to the maximum  
value during operation. A relationship between the limit value and servo motor torque is shown  
below.  
Max. torque  
0
0
100  
Torque limit value [%]  
A relationship between the applied voltage of the analog torque limit (TLA) and the torque limit  
value of the servo motor is shown below. Torque limit values will vary about 5% relative to the  
voltage depending on products.  
At the voltage of less than 0.05V, torque may vary as it may not be limited sufficiently. Therefore,  
use this function at the voltage of 0.05V or more.  
100  
Servo amplifier  
TL  
SG  
5%  
P15R  
TLA  
LG  
2k  
2k  
0
0 0.05  
10  
Japan resistor  
TLA application voltage [V]  
RRS10 or equivalent  
SD  
TLA application voltage vs.  
torque limit value  
(b) Torque limit value selection  
Choose the torque limit made valid by the internal torque limit value 1 (parameter No. 28) using  
the external torque limit selection (TL) or the torque limit made valid by the analog torque limit  
(TLA) as indicated below.  
When internal torque limit selection (TL1) is made usable by parameter No. 43 to 48, internal  
torque limit 2 (parameter No. 76) can be selected. However, if the parameter No. 28 value is less  
than the limit value selected by TL/TL1, the parameter No. 28 value is made valid.  
(Note) External input signals  
Torque limit value made valid  
TL1  
TL  
0
0
Internal torque limit value 1 (parameter No. 28)  
TLA Parameter No. 28: Parameter No. 28  
TLA Parameter No. 28: TLA  
0
1
1
1
0
1
Parameter No. 76 Parameter No. 28: Parameter No. 28  
Parameter No. 76 Parameter No. 28: Parameter No. 76  
TLA Parameter No. 76: Parameter No. 76  
TLA Parameter No. 76: TLA  
Note. 0: off  
1: on  
(c) Limiting torque (TLC)  
TLC turns on when the servo motor torque reaches the torque limited using the internal torque  
limit 1 2 or analog torque limit.  
3 - 28  
3. SIGNALS AND WIRING  
3.4.2 Speed control mode  
(1) Speed setting  
(a) Speed command and speed  
The servo motor is run at the speeds set in the parameters or at the speed set in the applied  
voltage of the analog speed command (VC). A relationship between the analog speed command  
(VC) applied voltage and the servo motor speed is shown below.  
Rated speed is achieved at 10V with initial setting. The speed at 10V can be changed using  
parameter No.25.  
Rated speed [r/min]  
Forward rotation (CCW)  
Speed [r/min]  
10  
CCW direction  
0
10  
VC applied voltage [V]  
CW direction  
Rated speed [r/min]  
Reverse rotation (CW)  
The following table indicates the rotation direction according to forward rotation start (ST1) and  
reverse rotation start (ST2) combination.  
(Note 1) External input signals  
(Note 2) Rotation direction  
Analog speed command (VC)  
Internal speed  
commands  
ST2  
ST1  
Polarity  
0V  
Polarity  
Stop  
(Servo lock)  
CCW  
Stop  
(Servo lock)  
Stop  
Stop  
(Servo lock)  
CW  
Stop  
(Servo lock)  
CCW  
0
0
0
1
1
0
(No servo lock)  
CW  
CCW  
CW  
Stop  
Stop  
Stop  
Stop  
1
1
(Servo lock)  
(Servo lock)  
(Servo lock)  
(Servo lock)  
Note 1. 0: off  
1: on  
2. If the torque limit is canceled during servo lock, the servo motor may suddenly rotate according to position deviation in respect  
to the command position.  
The forward rotation start (ST1) and reverse rotation start (ST2) can be assigned to any pins of the  
connector CN1A, CN1B using parameters No. 43 to 48.  
Generally, make connection as shown below.  
Servo amplifier  
ST1  
ST2  
SG  
P15R  
2k  
VC  
LG  
SD  
2k  
Japan resistor  
RRS10 or equivalent  
3 - 29  
3. SIGNALS AND WIRING  
(b) Speed selection 1 (SP1), speed selection 2 (SP2) and speed command value  
Choose any of the speed settings made by the internal speed commands 1 to 3 using speed selection  
1 (SP1) and speed selection 2 (SP2) or the speed setting made by the analog speed command (VC).  
(Note) External input signals  
Speed command value  
SP2  
SP1  
0
0
1
1
0
1
0
1
Analog speed command (VC)  
Internal speed command 1 (parameter No. 8)  
Internal speed command 2 (parameter No. 9)  
Internal speed command 3 (parameter No. 10)  
Note. 0: off  
1: on  
By making speed selection 3 (SP3) usable by setting of parameter No. 43 to 48, you can choose the  
speed command values of analog speed command (VC) and internal speed commands 1 to 7.  
(Note) External input signals  
Speed command value  
SP3  
0
SP2  
0
SP1  
0
Analog speed command (VC)  
0
0
1
Internal speed command 1 (parameter No. 8)  
Internal speed command 2 (parameter No. 9)  
Internal speed command 3 (parameter No. 10)  
Internal speed command 4 (parameter No. 72)  
Internal speed command 5 (parameter No. 73)  
Internal speed command 6 (parameter No. 74)  
Internal speed command 7 (parameter No. 75)  
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
Note. 0: off  
1: on  
The speed may be changed during rotation. In this case, the values set in parameters No. 11 and  
12 are used for acceleration/deceleration.  
When the speed has been specified under any internal speed command, it does not vary due to the  
ambient temperature.  
(2) Speed reached (SA)  
SA turns on when the servo motor speed has nearly reached the speed set to the internal speed  
command or analog speed command.  
Internal speed  
command 2  
Internal speed  
command 1  
Set speed selection  
ON  
OFF  
Start (ST1,ST2)  
Servo motor speed  
ON  
OFF  
Speed reached (SA)  
(3) Torque limit  
As in section 3.4.1 (5).  
3 - 30  
3. SIGNALS AND WIRING  
3.4.3 Torque control mode  
(1) Torque control  
(a) Torque command and torque  
A relationship between the applied voltage of the analog torque command (TC) and the torque by  
the servo motor is shown below.  
The maximum torque is generated at 8V. Note that the torque at 8V input can be changed with  
parameter No. 26.  
CCW direction  
Forward rotation (CCW)  
Max. torque  
Generated torque  
8
0.05  
0.05  
8
TC applied voltage [V]  
Max. torque  
CW direction  
Reverse rotation (CW)  
Generated torque limit values will vary about 5% relative to the voltage depending on products.  
Also the torque may vary if the voltage is low ( 0.05 to 0.05V) and the actual speed is close to the  
limit value. In such a case, increase the speed limit value.  
The following table indicates the torque generation directions determined by the forward rotation  
selection (RS1) and reverse rotation selection (RS2) when the analog torque command (TC) is used.  
(Note) External input signals  
Rotation direction  
Torque control command (TC)  
0V  
RS2  
RS1  
Polarity  
Polarity  
0
0
Torque is not generated.  
CCW (reverse rotation in  
driving mode/forward  
rotation in regenerative  
mode)  
Torque is not generated.  
CW (forward rotation in  
driving mode/reverse  
rotation in regenerative  
mode)  
0
1
Torque is not  
generated.  
CW (forward rotation in  
driving mode/reverse  
rotation in regenerative  
mode)  
CCW (reverse rotation in  
driving mode/forward  
rotation in regenerative  
mode)  
1
1
0
1
Torque is not generated.  
Torque is not generated.  
Note. 0: off  
1: on  
Generally, make connection as shown below.  
Servo amplifier  
RS1  
RS2  
SG  
TC  
8 to 8V  
LG  
SD  
3 - 31  
3. SIGNALS AND WIRING  
(b) Analog torque command offset  
Using parameter No. 30, the offset voltage of 999 to 999mV can be added to the TC applied  
voltage as shown below.  
Max. torque  
Parameter No.30 offset range  
999 to 999mV  
0
8( 8)  
TC applied voltage [V]  
(2) Torque limit  
By setting parameter No. 28 (internal torque limit 1), torque is always limited to the maximum value  
during operation. A relationship between limit value and servo motor torque is as in section 3.4.1 (5).  
Note that the analog torque limit (TLA) is unavailable.  
(3) Speed limit  
(a) Speed limit value and speed  
The speed is limited to the values set in parameters No. 8 to 10, 72 to 75 (internal speed limits 1 to  
7) or the value set in the applied voltage of the analog speed limit (VLA).  
A relationship between the analog speed limit (VLA) applied voltage and the servo motor speed is  
shown below.  
When the servo motor speed reaches the speed limit value, torque control may become unstable.  
Make the set value more than 100r/min greater than the desired speed limit value.  
Rated speed  
Forward rotation (CCW)  
Speed [r/min]  
CCW direction  
10  
0
10  
CW direction  
VLA applied voltage [V]  
Rated speed  
Reverse rotation (CW)  
The following table indicates the limit direction according to forward rotation selection (RS1) and  
reverse rotation selection (RS2) combination.  
(Note) External input signals  
Speed limit direction  
Analog speed limit (VLA)  
Internal speed  
commands  
RS1  
RS2  
Polarity  
CCW  
CW  
Polarity  
1
0
0
1
CW  
CCW  
CCW  
CW  
Note. 0: off  
1: on  
Generally, make connection as shown below.  
Servo amplifier  
SP1  
SP2  
SG  
P15R  
VC  
2k  
2k  
LG  
Japan resistor  
RRS10 or equivalent  
SD  
3 - 32  
3. SIGNALS AND WIRING  
(b) Speed selection 1(SP1)/speed selection 2(SP2)/speed selection 3(SP3) and speed limit values  
Choose any of the speed settings made by the internal speed limits 1 to 7 using speed selection  
1(SP1), speed selection 2(SP2) and speed selection 3(SP3) or the speed setting made by the speed  
limit command (VLA), as indicated below.  
(Note) Input signals  
Setting of parameter  
No. 43 to 48  
Speed limit value  
Analog speed limit (VLA)  
SP3  
SP2  
0
SP1  
0
1
0
1
0
1
0
1
0
1
0
1
When speed selection  
(SP3) is not used  
(initial status)  
0
Internal speed limit 1 (parameter No. 8)  
Internal speed limit 2 (parameter No. 9)  
Internal speed limit 3 (parameter No. 10)  
Analog speed limit (VLA)  
1
1
0
0
0
0
1
1
1
1
0
0
Internal speed limit 1 (parameter No. 8)  
Internal speed limit 2 (parameter No. 9)  
Internal speed limit 3 (parameter No. 10)  
Internal speed limit 4 (parameter No. 72)  
Internal speed limit 5 (parameter No. 73)  
Internal speed limit 6 (parameter No. 74)  
Internal speed limit 7 (parameter No. 75)  
1
1
When speed selection  
(SP3) is made valid  
0
0
1
1
Note. 0: off  
1: on  
When the internal speed limits 1 to 7 are used to command the speed, the speed does not vary with  
the ambient temperature.  
(c) Limiting speed (VLC)  
VLC turns on when the servo motor speed reaches the speed limited using any of the internal  
speed limits 1 to 7 or the analog speed limit (VLA).  
3 - 33  
3. SIGNALS AND WIRING  
3.4.4 Position/speed control change mode  
Set "0001" in parameter No. 0 to switch to the position/speed control change mode. This function is not  
available in the absolute position detection system.  
(1) Control change (LOP)  
Use control change (LOP) to switch between the position control mode and the speed control mode  
from an external contact. Relationships between LOP and control modes are indicated below.  
(Note) LOP  
Servo control mode  
Position control mode  
Speed control mode  
0
1
Note. 0: off  
1: on  
The control mode may be changed in the zero speed status. To ensure safety, change control after the  
servo motor has stopped. When position control mode is changed to speed control mode, droop pulses  
are reset.  
If the signal has been switched on-off at the speed higher than the zero speed and the speed is then  
reduced to the zero speed or less, the control mode cannot be changed. A change timing chart is shown  
below.  
Position  
Speed  
Position  
control mode  
control mode  
control mode  
Zero speed  
level  
Servo motor speed  
ON  
Zero speed (ZSP)  
OFF  
ON  
Control change (LOP)  
(Note)  
(Note)  
OFF  
Note. When ZSP is not on, control cannot be changed if LOP is switched on-off.  
If ZSP switches on after that, control cannot not be changed.  
(2) Torque limit in position control mode  
As in section 3.4.1 (5).  
3 - 34  
3. SIGNALS AND WIRING  
(3) Speed setting in speed control mode  
(a) Speed command and speed  
The servo motor is run at the speed set in parameter No. 8 (internal speed command 1) or at the  
speed set in the applied voltage of the analog speed command (VC). A relationship between analog  
speed command (VC) applied voltage and servo motor speed and the rotation directions determined  
by the forward rotation start (ST1) and reverse rotation start (ST2) are as in section 3.4.2 (1) (a).  
Generally, make connection as shown below.  
Servo amplifier  
SP1  
SG  
P15R  
2k  
2k  
VC  
LG  
SD  
Japan resistor  
RRS10 or equivalent  
(b) Speed selection 1 (SP1) and speed command value  
Use speed selection 1 (SP1) to select between the speed set by the internal speed command 1 and  
the speed set by the analog speed command (VC) as indicated in the following table.  
(Note) External input signals  
Speed command value  
SP1  
0
1
Analog speed command (VC)  
Internal speed command 1 (parameter No. 8)  
Note. 0: off  
1: on  
By making speed selection 2 (SP2) speed selection 3 (SP3) usable by setting of parameter No. 43 to  
48, you can choose the speed command values of analog speed command (VC) and internal speed  
commands 1 to 7.  
(Note) External input signals  
Speed command value  
SP3  
0
SP2  
0
SP1  
0
Analog speed command (VC)  
0
0
1
Internal speed command 1 (parameter No. 8)  
Internal speed command 2 (parameter No. 9)  
Internal speed command 3 (parameter No. 10)  
Internal speed command 4 (parameter No. 72)  
Internal speed command 5 (parameter No. 73)  
Internal speed command 6 (parameter No. 74)  
Internal speed command 7 (parameter No. 75)  
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
Note. 0: off  
1: on  
The speed may also be changed during rotation. In this case, it is increased or decreased according  
to the value set in parameter No. 11 or 12.  
When the internal speed command 1 is used to command the speed, the speed does not vary with  
the ambient temperature.  
(c) Speed reached (SA)  
As in section 3.4.2 (2).  
3 - 35  
3. SIGNALS AND WIRING  
3.4.5 Speed/torque control change mode  
Set "0003" in parameter No. 0 to switch to the speed/torque control change mode.  
(1) Control change (LOP)  
Use control change (LOP) to switch between the speed control mode and the torque control mode from  
an external contact. Relationships between LOP and control modes are indicated below.  
(Note) LOP  
Servo control mode  
Speed control mode  
Torque control mode  
0
1
Note. 0: off  
1: on  
The control mode may be changed at any time. A change timing chart is shown below.  
Speed  
Torque  
Speed  
control mode control mode control mode  
ON  
Control change (LOP)  
Servo motor speed  
OFF  
(Note)  
Load torque  
10V  
0
Analog torque  
command (TC)  
Forward rotation in driving mode  
Note: When the start (ST1 ST2) is switched off as soon as the mode is changed to speed control,  
the servo motor comes to a stop according to the deceleration time constant.  
(2) Speed setting in speed control mode  
As in section 3.4.2 (1).  
(3) Torque limit in speed control mode  
As in section 3.4.1 (5).  
3 - 36  
3. SIGNALS AND WIRING  
(4) Speed limit in torque control mode  
(a) Speed limit value and speed  
The speed is limited to the limit value set in parameter No. 8 (internal speed limit 1) or the value  
set in the applied voltage of the analog speed limit (VLA). A relationship between the analog speed  
limit (VLA) applied voltage and the servo motor speed is as in section 3.4.3 (3) (a).  
Generally, make connection as shown below.  
Servo amplifier  
SP1  
SG  
P15R  
2k  
2k  
VLA  
LG  
Japan resistor  
SD  
RRS10 or equivalent  
(b) Speed selection 1 (SP1) and speed limit value  
Use speed selection 1 (SP1) to select between the speed set by the internal speed command 1 and  
the speed set by the analog speed limit (VLA) as indicated in the following table.  
(Note) External input signals  
Speed command value  
SP1  
0
1
Analog speed limit (VLA)  
Internal speed limit 1 (parameter No. 8)  
Note. 0: off  
1: on  
When the internal speed limit 1 is used to command the speed, the speed does not vary with the  
ambient temperature.  
(c) Limiting speed (VLC)  
As in section 3.4.3 (3) (c).  
(5) Torque control in torque control mode  
As in section 3.4.3 (1).  
(6) Torque limit in torque control mode  
As in section 3.4.3 (2).  
3 - 37  
3. SIGNALS AND WIRING  
3.4.6 Torque/position control change mode  
Set "0005" in parameter No. 0 to switch to the torque/position control change mode.  
(1) Control change (LOP)  
Use control change (LOP) to switch between the torque control mode and the position control mode  
from an external contact. Relationships between LOP and control modes are indicated below.  
(Note) LOP  
Servo control mode  
Torque control mode  
Position control mode  
0
1
Note. 0: off  
1: on  
The control mode may be changed in the zero speed status.  
To ensure safety, change control after the servo motor has stopped. When position control mode is  
changed to torque control mode, droop pulses are reset.  
If the signal has been switched on-off at the speed higher than the zero speed and the speed is then  
reduced to the zero speed or less, the control mode cannot be changed. A change timing chart is shown  
below.  
Speed  
Torque  
Speed  
control mode control mode control mode  
Zero speed  
level  
Servo motor speed  
10V  
Analog torque  
command (TLA)  
0V  
ON  
Zero speed (ZSP)  
OFF  
ON  
Control change (LOP)  
OFF  
(2) Speed limit in torque control mode  
As in section 3.4.3 (3).  
(3) Torque control in torque control mode  
As in section 3.4.3 (1).  
(4) Torque limit in torque control mode  
As in section 3.4.3 (2).  
(5) Torque limit in position control mode  
As in section 3.4.1 (5).  
3 - 38  
3. SIGNALS AND WIRING  
3.5 Alarm occurrence timing chart  
When an alarm has occurred, remove its cause, make sure that the operation  
signal is not being input, ensure safety, and reset the alarm before restarting  
operation.  
CAUTION  
As soon as an alarm occurs, turn off Servo-on (SON) and power off the main  
circuit.  
When an alarm occurs in the servo amplifier, the base circuit is shut off and the servo motor is coated to a  
stop. Switch off the main circuit power supply in the external sequence. To reset the alarm, switch the  
control circuit power supply from off to on, press the "SET" button on the current alarm screen, or turn  
the reset (RES) from off to on. However, the alarm cannot be reset unless its cause is removed.  
(Note)  
Main circuit  
control circuit  
power supply  
ON  
OFF  
ON  
Power off  
Power on  
Base circuit  
OFF  
Dynamic brake  
Valid  
Invalid  
Brake operation  
Brake operation  
Servo-on  
(SON)  
ON  
OFF  
ON  
Ready  
(RD)  
OFF  
ON  
Trouble  
(ALM)  
OFF  
ON  
about 1s  
Reset  
(RES)  
OFF  
50ms or more  
60ms or more  
Alarm occurs.  
Remove cause of trouble.  
Note. Shut off the main circuit power as soon as an alarm occurs.  
(1) Overcurrent, overload 1 or overload 2  
If operation is repeated by switching control circuit power off, then on to reset the overcurrent (AL.32),  
overload 1 (AL.50) or overload 2 (AL.51) alarm after its occurrence, without removing its cause, the  
servo amplifier and servo motor may become faulty due to temperature rise. Securely remove the  
cause of the alarm and also allow about 30 minutes for cooling before resuming operation.  
(2) Regenerative error  
If operation is repeated by switching control circuit power off, then on to reset the regenerative (AL.30)  
alarm after its occurrence, the external regenerative resistor will generate heat, resulting in an  
accident.  
(3) Instantaneous power failure  
Undervoltage (AL.10) occurs when the input power is in either of the following statuses.  
A power failure of the control circuit power supply continues for 60ms or longer and the control  
circuit is not completely off.  
The bus voltage dropped to 200VDC or less for the MR-J2S- A, or to 158VDC or less for the MR-  
J2S- A1.  
(4) In position control mode (incremental)  
When an alarm occurs, the home position is lost. When resuming operation after deactivating the  
alarm, make a home position return.  
3 - 39  
3. SIGNALS AND WIRING  
3.6 Interfaces  
3.6.1 Common line  
The following diagram shows the power supply and its common line.  
CN1A  
CN1B  
24VDC  
CN1A  
CN1B  
VDD  
RA  
COM  
ALM .etc  
DO-1  
SON, etc.  
SG  
DI-1  
(Note)  
OPC  
PG NG  
PP NP  
SG  
SG  
Isolated  
OP  
LG  
15VDC 10%  
30mA  
P15R  
LA etc.  
Differential line  
driver output  
35mA max.  
LAR  
etc.  
TLA  
VC etc.  
Analog input  
( 10V/max. current)  
LG  
SD  
MO1  
MO2  
CN3  
Analog monitor output  
LG  
SD  
LG  
SDP  
SDN  
RDP  
RDN  
LG  
RS-422  
SD  
TXD  
RS-232C  
Servo motor encoder  
RXD  
CN2  
MR  
MRR  
LG  
Servo motor  
M
SD  
Ground  
Note. For the open collection pulse train input. Make the following connection for the different line driver pulse  
train input.  
OPC  
PG NG  
PP NP  
SG  
3 - 40  
3. SIGNALS AND WIRING  
3.6.2 Detailed description of the interfaces  
This section gives the details of the I/O signal interfaces (refer to I/O Division in the table) indicated in  
sections 3.3.2.  
Refer to this section and connect the interfaces with the external equipment.  
(1) Digital input interface DI-1  
Give a signal with a relay or open collector transistor.  
Source input is also possible. Refer to (7) in this section.  
For use of internal power supply  
For use of external power supply  
Servo amplifier  
Do not connect  
VDD-COM.  
24VDC  
VDD  
Servo amplifier  
R: Approx. 4.7  
COM  
24VDC  
VDD  
24VDC  
R: Approx. 4.7  
200mA or more  
(Note)  
COM  
For a transistor  
SON, etc.  
Approx. 5mA  
SON, etc.  
Switch  
TR  
SG  
Switch  
V CES 1.0V  
I CEO 100  
SG  
A
Note. This also applies to the use of the external power supply.  
3 - 41  
3. SIGNALS AND WIRING  
(2) Digital output interface DO-1  
A lamp, relay or photocoupler can be driven. Provide a diode (D) for an inductive load, or an inrush  
current suppressing resistor (R) for a lamp load. (Permissible current: 40mA or less, inrush current:  
100mA or less) A maximum of 2.6V voltage drop occurs in the servo amplifier.  
(a) Inductive load  
For use of internal power supply  
For use of external power supply  
Servo amplifier  
Servo amplifier  
Do not connect  
VDD-COM.  
24VDC  
24VDC  
VDD  
VDD  
COM  
COM  
(Note)  
24VDC  
10%  
Load  
Load  
ALM, etc  
SG  
ALM, etc  
SG  
If the diode is not  
connected as shown,  
the servo amplifier  
will be damaged.  
If the diode is not  
connected as shown,  
the servo amplifier  
will be damaged.  
Note. If the voltage drop (maximum of 2.6V) interferes with the  
relay operation, apply high voltage (up to 26.4V) from  
external source.  
(b) Lamp load  
For use of internal power supply  
For use of external power supply  
Servo amplifier  
Servo amplifier  
Do not connect  
24VDC  
VDD  
24VDC  
VDD  
VDD-COM.  
R
COM  
COM  
R
(Note)  
24VDC  
10%  
ALM, etc  
SG  
ALM, etc  
SG  
Note. If the voltage drop (maximum of 2.6V) interferes with the  
relay operation, apply high voltage (up to 26.4V) from  
external source.  
3 - 42  
3. SIGNALS AND WIRING  
(3) Pulse train input interface DI-2  
Provide a pulse train signal in the open collector or differential line driver system.  
(a) Open collector system  
1) Interface  
For use of internal power supply  
For use of external power supply  
Servo amplifier  
24VDC  
VDD  
Do not connect  
VDD-OPC.  
Servo amplifier  
24VDC  
Max. input pulse  
OPC  
frequency 200kpps  
VDD  
OPC  
Max. input pulse  
frequency 200kpps  
About 1.2k  
2m (78.74in) or less  
About 1.2k  
PP, NP  
2m (78.74in) or less  
24VDC  
PP, NP  
(Note)  
(Note)  
SG  
SD  
SG  
SD  
Note. Pulse train input interface is comprised of a photo coupler.  
Therefore, it may be any malfunctions since the current is reduced when connect a resistance to a pulse train signal line.  
2) Conditions of the input pulse  
tc  
tHL  
tLH tHL 0.2 s  
tc 2 s  
PP 0.9  
0.1  
tF 3 s  
tc  
tLH  
tF  
NP  
3 - 43  
3. SIGNALS AND WIRING  
(b) Differential line driver system  
1) Interface  
Servo amplifier  
Max. input pulse  
frequency 500kpps  
10m (393.70in) or less  
PP(NP)  
(Note)  
Approx. 100  
PG(NG)  
SD  
Am26LS31 or equivalent  
VOH: 2.5V  
VOL: 0.5V  
Note. Pulse train input interface is comprised of a photo coupler.  
Therefore, it may be any malfunctions since the current is reduced when connect a resistance  
to a pulse train signal line.  
2) Conditions of the input pulse  
tc  
tHL  
tLH tHL 0.1 s  
tc 1 s  
0.9  
0.1  
PP PG  
NP NG  
tF 3 s  
tc  
tLH  
tF  
(4) Encoder pulse output DO-2  
(a) Open collector system  
Interface  
Max. output current : 35mA  
Servo amplifier  
Servo amplifier  
5 to 24VDC  
OP  
LG  
OP  
LG  
Photocoupler  
SD  
SD  
3 - 44  
3. SIGNALS AND WIRING  
(b) Differential line driver system  
1) Interface  
Max. output current: 35mA  
Servo amplifier  
Servo amplifier  
LA  
(LB, LZ)  
LA  
(LB, LZ)  
Am26LS32 or equivalent  
High-speed photocoupler  
100  
150  
LAR  
LAR  
(LBR, LZR)  
(LBR, LZR)  
LG  
SD  
SD  
2) Output pulse  
Servo motor CCW rotation  
LA  
LAR  
LB  
The time cycle (T) is determined by  
the setting of the parameter No. 27 and 54.  
T
LBR  
/2  
LZ  
LZR  
400 s or more  
OP  
(5) Analog input  
Input impedance 10 to 12k  
Servo amplifier  
15VDC  
P15R  
Upper limit setting 2k  
2k  
VC‚ etc  
Approx.  
LG  
10k  
SD  
(6) Analog output  
Output voltage 10V  
Max.1mA  
Max. output current  
Resolution : 10bit  
Servo amplifier  
10k  
MO1  
(MO2)  
Reading in one or  
both directions  
1mA meter  
A
LG  
SD  
3 - 45  
3. SIGNALS AND WIRING  
(7) Source input interface  
When using the input interface of source type, all Dl-1 input signals are of source type. Source output  
cannot be provided.  
For use of internal power supply  
Servo amplifier  
For use of external power supply  
Servo amplifier  
SG  
SG  
R: Approx. 4.7  
COM  
(Note)  
R: Approx. 4.7  
COM  
For a transistor  
Approx. 5mA  
SON,  
etc.  
Switch  
Switch  
SON,etc.  
24VDC  
VDD  
TR  
24VDC  
200mA or more  
VCES 1.0V  
ICEO 100 A  
Note. This also applies to the use of the external power supply.  
When using the input interface of source type, all Dl-1 input signals are of source type. Source output  
cannot be provided.  
For 11kW or more, the source input interface cannot be used with the internal power supply. Always  
use the external power supply.  
MITSUBISHI  
CON2  
CON2  
JP11  
(Note)  
JP11  
(Note)  
CON2  
JP11  
Jumper  
Jumper  
For sink input (factory setting)  
For source input  
Note. The jumper, which is shown black for the convenience of explanation, is actually white.  
3 - 46  
3. SIGNALS AND WIRING  
3.7 Input power supply circuit  
Always connect a magnetic contactor (MC) between the main circuit power supply  
and L1, L2, and L3 of the servo amplifier, and configure the wiring to be able to shut  
down the power supply on the side of the servo amplifier’s power supply. If a  
magnetic contactor (MC) is not connected, continuous flow of a large current may  
cause a fire when the servo amplifier malfunctions.  
CAUTION  
Use the trouble (ALM) to switch power off. Otherwise, a regenerative transistor  
fault or the like may overheat the regenerative resistor, causing a fire.  
POINT  
For the power line circuit of the MR-J2S-11KA to MR-J2S-22KA, refer to  
section 3.13 where the power line circuit is shown together with the servo  
motor connection diagram.  
3.7.1 Connection example  
Wire the power supply and main circuit as shown below so that the servo-on (SON) turns off as soon as  
alarm occurrence is detected and power is shut off.  
A no-fuse breaker (NFB) must be used with the input cables of the power supply.  
(1) For 3-phase 200 to 230VAC power supply  
Emergency  
ON  
stop  
OFF  
RA  
MC  
SK  
MC  
NFB  
MC  
Servo amplifier  
L1  
3-phase  
L2  
200 to 230 VAC  
L3  
L11  
L21  
Emergency  
EMG  
SON  
SG  
stop  
VDD  
COM  
ALM  
Servo-on  
Trouble  
RA  
3 - 47  
3. SIGNALS AND WIRING  
(2) For 1-phase 100 to 120VAC or 1-phase 230VAC power supply  
(Note 1) Emergency  
ON  
MC  
OFF  
stop  
RA  
MC  
SK  
NFB  
MC  
Power supply  
1-phase 100 to  
120VAC or  
Servo amplifier  
L1  
L2  
1-phase 230VAC  
(Note 2)  
L3  
L11  
L21  
EMG  
SON  
SG  
Emergency stop  
Servo-on  
VDD  
COM  
ALM  
Trouble  
RA  
Note 1. Configure the power supply circuit to shut off the magnetic contactor after detecting an alarm occurrence on the  
controller side.  
2. Not provided for 1-phase 100 to 120VAC.  
3 - 48  
3. SIGNALS AND WIRING  
3.7.2 Terminals  
The positions and signal arrangements of the terminal blocks change with the capacity of the servo  
amplifier. Refer to section 11.1.  
Connection Target  
Symbol  
Description  
(Application)  
Supply L1, L2 and L3 with the following power.  
For 1-phase 230VAC, connect the power supply to L1, L2 and leave L3 open.  
Servo amplifier MR-J2S-10A to MR-J2S-100A MR-J2S-10A1  
Power supply  
70A  
to 22kA  
to 40A1  
3-phase 200 to 230VAC,  
50/60Hz  
L1 L2 L3  
L1, L2, L3  
Main circuit power supply  
1-phase 230VAC,  
50/60Hz  
L1 L2  
1-phase 100 to 120VAC,  
50/60Hz  
L1 L2  
Connect to the servo motor power supply terminals (U, V, W).  
During power-on, do not open or close the motor power line. Otherwise, a  
malfunction or faulty may occur.  
U, V, W  
Servo motor output  
Supply L11 and L12 with the following power.  
Servo amplifier  
MR-J2S-10A to 700A MR-J2S-10A1 to 40A1  
Power supply  
1-phase 200 to 230VAC,  
L11 L21  
L11, L21  
Control circuit power supply  
50/60Hz  
1-phase 100 to 120VAC,  
L11 L21  
50/60Hz  
When not using the power factor improving DC reactor, connect P1 and P.  
(Factory-wired.)  
When using the power factor improving DC reactor, disconnect the wiring across  
P1-P2 and connect the power factor improving DC reactor across P1-P.  
The power factor improving DC reactor can be used with MR-J2S-11KA to 22KA.  
(Refer to section 13.2.4.)  
Power factor improving DC  
reactor  
P1  
1) MR-J2S-350A or less  
When using servo amplifier built-in regenerative resistor, connect P and D.  
(Wired by default)  
When using regenerative option, disconnect between P-D terminals and  
connect regenerative option to P terminal and C terminal.  
2) MR-J2S-500A  
MR-J2S-500A  
700A  
700A  
do not have D terminal.  
When using servo amplifier built-in regenerative resistor, connect P terminal  
and C terminal. (Wired by default)  
P, C, D  
Regenerative option  
When using regenerative option, disconnect P terminal and C terminal and  
connect regenerative option to P terminal and C terminal.  
3) MR-J2S-11KA to 22KA  
MR-J2S-11KA to 22KA do not have D terminal.  
When not using the power supply return converter and the brake unit, make  
sure to connect the regenerative option to P terminal and C terminal.  
Refer to section 13.1.1.  
When using the return converter or brake unit, connect it across P-N.  
Do not connect it to the servo amplifier of MR-J2S-200A or less.  
Refer to sections 13.1.2 and 13.1.3 for details.  
Return converter  
Brake unit  
N
Connect this terminal to the protective earth (PE) terminals of the servo motor  
and control box for grounding.  
Protective earth (PE)  
3 - 49  
3. SIGNALS AND WIRING  
3.7.3 Power-on sequence  
(1) Power-on procedure  
1) Always wire the power supply as shown in above section 3.7.1 using the magnetic contactor with  
the main circuit power supply (three-phase 200V: L1, L2, L3, single-phase 230V, single-phase  
100V: L1, L2). Configure up an external sequence to switch off the magnetic contactor as soon as  
an alarm occurs.  
2) Switch on the control circuit power supply L11, L21 simultaneously with the main circuit power  
supply or before switching on the main circuit power supply. If the main circuit power supply is  
not on, the display shows the corresponding warning. However, by switching on the main circuit  
power supply, the warning disappears and the servo amplifier will operate properly.  
3) The servo amplifier can accept the servo-on (SON) about 1 to 2s after the main circuit power  
supply is switched on. Therefore, when SON is switched on simultaneously with the main circuit  
power supply, the base circuit will switch on in about 1 to 2s, and the ready (RD) will switch on  
in further about 20ms, making the servo amplifier ready to operate. (Refer to (2) in this section)  
4) When the reset (RES) is switched on, the base circuit is shut off and the servo motor shaft  
coasts.  
(2) Timing chart  
Servo-on (SON) accepted  
(1 to 2s)  
Main circuit  
ON  
Control circuit  
OFF  
Power supply  
ON  
Base circuit  
OFF  
60ms  
10ms  
10ms  
ON  
Servo-on  
(SON)  
OFF  
60ms  
Reset  
(RES)  
ON  
OFF  
20ms  
10ms 20ms  
10ms 20ms  
10ms  
Ready  
(RD)  
ON  
OFF  
No (ON)  
Trouble (ALM)  
Yes (OFF)  
Power-on timing chart  
3 - 50  
3. SIGNALS AND WIRING  
(3) Emergency stop  
Provide an external forced stop circuit to ensure that operation can be stopped and  
power switched off immediately.  
CAUTION  
Make up a circuit that shuts off main circuit power as soon as EMG is turned off at an emergency stop.  
When EMG is turned off, the dynamic brake is operated to bring the servo motor to a sudden stop. At  
this time, the display shows the servo emergency stop warning (AL.E6).  
During ordinary operation, do not use the external emergency stop (EMG) to alternate stop and run.  
The servo amplifier life may be shortened.  
Also, if the forward rotation start (ST1) and reverse rotation start (ST2) are on or a pulse train is input  
during an emergency stop, the servo motor will rotate as soon as the warning is reset. During an  
emergency stop, always shut off the run command.  
Servo amplifier  
VDD  
COM  
EMG  
Emergency stop  
SG  
3 - 51  
3. SIGNALS AND WIRING  
3.8 Connection of servo amplifier and servo motor  
3.8.1 Connection instructions  
Insulate the connections of the power supply terminals to prevent an electric  
WARNING  
shock.  
Connect the wires to the correct phase terminals (U, V, W) of the servo amplifier  
and servo motor. Otherwise, the servo motor will operate improperly.  
CAUTION  
Do not connect AC power supply directly to the servo motor. Otherwise, a fault  
may occur.  
POINT  
Do not apply the test lead bars or like of a tester directly to the pins of the  
connectors supplied with the servo motor. Doing so will deform the pins,  
causing poor contact.  
The connection method differs according to the series and capacity of the servo motor and whether or not  
the servo motor has the electromagnetic brake. Perform wiring in accordance with this section.  
(1) For grounding, connect the earth cable of the servo motor to the protective earth (PE) terminal of the  
servo amplifier and connect the ground cable of the servo amplifier to the earth via the protective  
earth of the control box. Do not connect them directly to the protective earth of the control panel.  
Control box  
Servo  
amplifier  
Servo motor  
PE terminal  
(2) Do not share the 24VDC interface power supply between the interface and electromagnetic brake.  
Always use the power supply designed exclusively for the electromagnetic brake.  
3 - 52  
3. SIGNALS AND WIRING  
3.8.2 Connection diagram  
During power-on, do not open or close the motor power line. Otherwise, a  
CAUTION  
malfunction or faulty may occur.  
POINT  
For the connection diagram of the MR-J2S-11KA to MR-J2S-22KA, refer  
to section 3.13 where the connection diagram is shown together with the  
power line circuit.  
The following table lists wiring methods according to the servo motor types. Use the connection diagram  
which conforms to the servo motor used. For cables required for wiring, refer to section 13.2.1. For  
encoder cable connection, refer to section 13.1.5. For the signal layouts of the connectors, refer to section  
3.8.3.  
For the servo motor connector, refer to chapter 3 of the Servo Motor Instruction Manual.  
Servo motor  
Connection diagram  
Servo amplifier  
Servo motor  
Motor  
U (Red)  
U
V
V (White)  
W (Black)  
(Green)  
W
24VDC  
(Note 1)  
B1  
B2  
HC-KFS053 (B) to 73 (B)  
HC-MFS053 (B) to 73 (B)  
HC-UFS13 (B) to 73 (B)  
(Note 2)  
Electromagnetic  
brake  
EMG  
To be shut off when servo-off  
or Trouble (ALM)  
CN2  
Encoder  
Encoder cable  
Note 1. To prevent an electric shock, always connect the protective earth (PE) terminal of the  
servo amplifier to the protective earth (PE) of the control box.  
2. This circuit applies to the servo motor with electromagnetic brake.  
Servo amplifier  
Servo motor  
U
V
U
V
Motor  
W
W
24VDC  
(Note 1)  
HC-SFS121 (B) to 301 (B)  
HC-SFS202 (B) 702 (B)  
HC-SFS203 (B) 353 (B)  
HC-UFS202 (B) to 502 (B)  
HC-RFS353 (B) to 503 (B)  
B1  
B2  
(Note 2)  
EMG  
Electromagnetic  
brake  
To be shut off when servo-off  
or Trouble (ALM)  
CN2  
Encoder  
Encoder cable  
Note 1. To prevent an electric shock, always connect the protective earth (PE) terminal of the  
servo amplifier to the protective earth (PE) of the control box.  
2. This circuit applies to the servo motor with electromagnetic brake.  
3 - 53  
3. SIGNALS AND WIRING  
Servo motor  
Connection diagram  
Servo amplifier  
Servo motor  
Motor  
U
V
U
V
W
W
24VDC  
(Note 1)  
HC-SFS81 (B)  
B1  
B2  
(Note 2)  
HC-SFS52 (B) to 152 (B)  
HC-SFS53 (B) to 153 (B)  
HC-RFS103 (B) to 203 (B)  
HC-UFS72 (B) 152 (B)  
EMG  
Electromagnetic  
brake  
To be shut off when servo-off  
or Trouble (ALM)  
CN2  
Encoder  
Encoder cable  
Note 1. To prevent an electric shock, always connect the protective earth (PE) terminal of the  
servo amplifier to the protective earth (PE) of the control box.  
2. This circuit applies to the servo motor with electromagnetic brake.  
3.8.3 I/O terminals  
(1) HC-KFS HC-MFS HC-UFS3000r/min series  
Encoder connector signal arrangement  
Power supply lead  
4-AWG19 0.3m (0.98ft.)  
1
MR  
4
2
MRR  
5
3
BAT  
6
Power supply connector (Molex)  
Without electromagnetic brake  
5557-04R-210 (receptacle)  
5556PBTL (Female terminal)  
With electromagnetic brake  
5557-06R-210 (receptacle)  
5556PBTL (Female terminal)  
a
MD  
7
MDR  
8
Encoder cable 0.3m (0.98ft.)  
With connector 1-172169-9  
(Tyco Electronics)  
b
9
P5  
LG  
SHD  
Power supply  
connector  
View a  
Power supply  
connector  
5557-06R-210  
Signal  
U
Pin  
1
2
3
4
Signal  
Pin  
1
2
3
4
5557-04R-210  
U
V
W
1
2
3
4
1
2
3
4
5
6
V
W
(Earth)  
(Note)  
(Earth)  
View b  
5
6
B1  
B2  
View b  
(Note)  
Note. For the motor with  
electromagnetic brake,  
supply electromagnetic  
brake power (24VDC).  
There is no polarity.  
3 - 54  
3. SIGNALS AND WIRING  
(2) HC-SFS HC-RFS HC-UFS2000 r/min series  
Servo motor side connectors  
Servo motor  
Electromagnetic  
For power supply For encoder  
brake connector  
HC-SFS81(B)  
The connector  
for power is  
shared.  
CE05-2A22-  
23PD-B  
HC-SFS52(B) to 152(B)  
HC-SFS53(B) to 153(B)  
HC-SFS121(B) to 301(B)  
HC-SFS202(B) to 502 (B)  
HC-SFS203(B) 353(B)  
CE05-2A24-  
10PD-B  
MS3102A10SL-  
4P  
CE05-2A32-  
HC-SFS702(B)  
17PD-B  
MS3102A20-  
29P  
CE05-2A22-  
23PD-B  
HC-RFS103(B) to 203 (B)  
HC-RFS353(B) 503(B)  
HC-UFS72(B) 152(B)  
HC-UFS202(B) to 502(B)  
a
The connector  
for power is  
shared.  
CE05-2A24-  
10PD-B  
Encoder connector  
b
CE05-2A22-  
23PD-B  
c
Brake connector  
Power supply connector  
CE05-2A24-  
10PD-B  
MS3102A10SL-  
4P  
Power supply connector signal arrangement  
CE05-2A22-23PD-B  
Key  
CE05-2A24-10PD-B  
CE05-2A32-17PD-B  
Key  
Key  
Pin  
Signal  
U
V
W
(Earth)  
Pin  
A
B
C
D
E
Signal  
Pin  
A
B
C
D
Signal  
U
V
W
U
V
W
A
B
C
D
E
F
F
E
F
A
C
A
G
H
A
B
D
C
B
E
B
G
C
D
(Earth)  
(Note) B1  
(Note) B2  
(Earth)  
D
View c  
View c  
F
(Note) B1  
(Note) B2  
G
G
H
Note. For the motor with  
Note. For the motor with  
electromagnetic brake,  
supply electromagnetic  
brake power (24VDC).  
There is no polarity.  
electromagnetic brake,  
supply electromagnetic  
brake power (24VDC).  
There is no polarity.  
Encoder connector signal arrangement  
Electromagnetic brake connector signal arrangement  
MS3102A20-29P  
Key  
MS3102A10SL-4P  
Key  
Pin  
A
B
Signal  
(Note)B1  
(Note)B2  
Pin  
Signal  
Pin  
Signal  
M
B
A
L
C
N
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
S
T
MD  
MDR  
MR  
D
K
T
P
A
B
J
E
S
R
Note. For the motor with  
electromagnetic brake,  
supply electromagnetic  
brake power (24VDC).  
There is no polarity.  
F
H
G
MRR  
SD  
View a  
View b  
BAT  
LG  
LG  
P5  
3 - 55  
3. SIGNALS AND WIRING  
3.9 Servo motor with electromagnetic brake  
Configure the electromagnetic brake operation circuit so that it is activated not only  
by the servo amplifier signals but also by an external emergency stop signal.  
Contacts must be open when  
servo-off, when an trouble (ALM)  
and when an electromagnetic brake  
interlock (MBR).  
Circuit must be  
opened during  
emergency stop (EMG).  
Servo motor  
RA EMG  
24VDC  
CAUTION  
Electromagnetic brake  
The electromagnetic brake is provided for holding purpose and must not be used  
for ordinary braking.  
Before performing the operation, be sure to confirm that the electromagnetic brake  
operates properly.  
POINT  
Refer to the Servo Motor Instruction Manual for specifications such as the  
power supply capacity and operation delay time of the electromagnetic  
brake.  
Note the following when the servo motor equipped with electromagnetic brake is used.  
1) Set " "in parameter No.1 to make the electromagnetic brake interlock (MBR) valid. Note  
1
that this will make the zero speed signal (ZSP) unavailable.  
2) Do not share the 24VDC interface power supply between the interface and electromagnetic  
brake. Always use the power supply designed exclusively for the electromagnetic brake.  
3) The brake will operate when the power (24VDC) switches off.  
4) While the reset (RES) is on, the base circuit is shut off. When using the servo motor with a  
vertical shaft, use the electromagnetic brake interlock (MBR).  
5) Switch off the servo-on (SON) after the servo motor has stopped.  
(1) Connection diagram  
Servo amplifier  
Servo motor  
Emergency  
stop  
RA  
B1  
B2  
VDD  
COM  
MBR  
24VDC  
RA  
3 - 56  
3. SIGNALS AND WIRING  
(2) Setting  
1) Set "  
1
"in parameter No.1 to make the electromagnetic brake interlock (MBR) valid.  
2) Using parameter No. 33 (electromagnetic brake sequence output), set a time delay (Tb) at servo-off  
from electromagnetic brake operation to base circuit shut-off as in the timing chart shown in (3) in  
this section.  
(3) Timing charts  
(a) Servo-on (SON) command (from controller) ON/OFF  
Tb [ms] after the servo-on (SON) signal is switched off, the servo lock is released and the servo  
motor coasts. If the electromagnetic brake is made valid in the servo lock status, the brake life may  
be shorter. Therefore, when using the electromagnetic brake in a vertical lift application or the  
like, set Tb to about the same as the electromagnetic brake operation delay time to prevent a drop.  
Coasting  
Servo motor speed  
Base circuit  
0 r/min  
ON  
(60ms)  
(80ms)  
Tb  
OFF  
Electromagnetic  
brake operation  
delay time  
Electromagnetic  
brake interlock  
(MBR)  
(Note 1) ON  
OFF  
ON  
Servo-on (SON)  
OFF  
(Note 3)  
Position command  
(Note 4)  
0 r/min  
Release  
Activate  
Electromagnetic  
brake  
Release delay time and external relay (Note 2)  
Note 1. ON: Electromagnetic brake is not activated.  
OFF: Electromagnetic brake is activated.  
2. Electromagnetic brake is released after delaying for the release delay time of electromagnetic brake and operation time of  
external circuit relay. For the release delay time of electromagnetic brake, refer to the Servo Motor Instruction Manual.  
3. After the electromagnetic brake is released, give the position command from the controller.  
4. For the position control mode.  
3 - 57  
3. SIGNALS AND WIRING  
(b) Emergency stop (EMG) ON/OFF  
Servo motor speed  
Dynamic brake  
Dynamic brake  
Electromagnetic brake  
Electromagnetic brake  
Electromagnetic brake release  
(10ms)  
(180ms)  
ON  
Base circuit  
OFF  
(180ms)  
(Note) ON  
Electromagnetic brake  
operation delay time  
Electromagnetic  
brake interlock (MBR)  
OFF  
Invalid (ON)  
Valid (OFF)  
Emergency stop (EMG)  
Note. ON: Electromagnetic brake is not activated.  
OFF: Electromagnetic brake is activated.  
(c) Alarm occurrence  
Dynamic brake  
Dynamic brake  
Electromagnetic brake  
Servo motor speed  
Electromagnetic brake  
(10ms)  
ON  
Base circuit  
OFF  
(Note) ON  
Electromagnetic brake  
operation delay time  
Electromagnetic  
brake interlock (MBR)  
OFF  
No (ON)  
Trouble (ALM)  
Yes (OFF)  
Note. ON: Electromagnetic brake is not activated.  
OFF: Electromagnetic brake is activated.  
3 - 58  
3. SIGNALS AND WIRING  
(d) Both main and control circuit power supplies off  
Dynamic brake  
Dynamic brake  
Electromagnetic brake  
(10ms)  
Servo motor speed  
Base circuit  
Electromagnetic brake  
(Note 1)  
15 to 60ms  
ON  
OFF  
(10ms or less)  
(Note 2) ON  
Electromagnetic  
brake interlock (MBR)  
OFF  
Electromagnetic brake  
operation delay time  
No (ON)  
Yes (OFF)  
ON  
Trouble (ALM)  
Main circuit  
power  
Control circuit  
OFF  
Note 1. Changes with the operating status.  
2. ON: Electromagnetic brake is not activated.  
OFF: Electromagnetic brake is activated.  
(e) Only main circuit power supply off (control circuit power supply remains on)  
Dynamic brake  
Dynamic brake  
(10ms)  
Electromagnetic brake  
Servo motor speed  
Electromagnetic brake  
(Note 1)  
15ms or more  
ON  
Base circuit  
OFF  
(Note 3) ON  
Electromagnetic  
brake interlock (MBR)  
OFF  
Electromagnetic brake  
operation delay time  
(Note 2)  
No (ON)  
Yes (OFF)  
ON  
Trouble (ALM)  
Main circuit power  
supply  
OFF  
Note 1. Changes with the operating status.  
2. When the main circuit power supply is off in a motor stop status, the main circuit off warning (AL.E9) occurs and the  
trouble (ALM) does not turn off.  
3. ON: Electromagnetic brake is not activated.  
OFF: Electromagnetic brake is activated.  
3 - 59  
3. SIGNALS AND WIRING  
3.10 Grounding  
Ground the servo amplifier and servo motor securely.  
To prevent an electric shock, always connect the protective earth (PE) terminal of  
the servo amplifier with the protective earth (PE) of the control box.  
WARNING  
The servo amplifier switches the power transistor on-off to supply power to the servo motor. Depending on  
the wiring and ground cable routing, the servo amplifier may be affected by the switching noise (due to  
di/dt and dv/dt) of the transistor. To prevent such a fault, refer to the following diagram and always  
ground.  
To conform to the EMC Directive, refer to the EMC Installation Guidelines (IB(NA)67310).  
Control box  
Servo motor  
NFB  
MC  
Servo amplifier  
L1  
CN2  
Encoder  
(Note)  
Power supply  
L2  
L3  
L11  
L21  
U
U
V
V
M
W
W
CN1A CN1B  
Ensure to connect it to PE  
terminal of the servo amplifier.  
Do not connect it directly to  
the protective earth of  
the control panel.  
Outer  
box  
Protective earth(PE)  
Note. For 1-phase 230VAC, connect the power supply to L1 L2 and leave L3 open.  
There is no L3 for 1-phase 100 to 120VAC power supply. Refer to section 1.3 for the power supply specification.  
3 - 60  
3. SIGNALS AND WIRING  
3.11 Servo amplifier terminal block (TE2) wiring method  
POINT  
Refer to Table 13.1 2) and 4) in section 13.2.1 for the wire sizes used for  
wiring.  
3.11.1 For the servo amplifier produced later than Jan. 2006  
(1) Termination of the cables  
(a) Solid wire  
After the sheath has been stripped, the cable can be used as it is.  
Sheath  
Core  
Approx. 10mm  
(b) Twisted wire  
1) When the wire is inserted directly  
Use the cable after stripping the sheath and twisting the core. At this time, take care to avoid a  
short caused by the loose wires of the core and the adjacent pole. Do not solder the core as it may  
cause a contact fault. Alternatively, a bar terminal may be used to put the wires together.  
2) When the wires are put together  
Using a bar terminal.  
Cable Size  
Bar Terminal Type  
For 1 cable For 2 cables  
AI-TWIN 1.5-10BK  
Crimping Tool  
Manufacturer  
[mm2] AWG  
1.25/1.5 16 AI1.5-10BK  
2/2.5 14 AI2.5-10BU  
CRIMPFOX ZA 3  
Phoenix Contact  
Cut the wire running out of bar terminal to less than 0.5mm.  
Less than 0.5mm  
When using a bar terminal for two wires, insert the wires in the direction where the insulation  
sleeve does not interfere with the next pole and pressure them.  
Pressure  
Pressure  
3 - 61  
3. SIGNALS AND WIRING  
(2) Termination of the cables  
(a) When the wire is inserted directly  
Insert the wire to the end pressing the button with a small flat blade screwdriver or the like.  
Button  
Small flat blade  
screwdriver or the like  
When removing the short-circuit bar  
from across P-D, press the buttons  
of P and D alternately pulling the  
short-circuit bar. For the installation,  
insert the bar straight to the end.  
Twisted wire  
(b) When the wires are put together using a bar terminal  
Insert a bar terminal with the odd-shaped side of the pressured terminal on the button side.  
Bar terminal for one  
wire or solid wire  
Bar terminal for two wires  
When the two wires are inserted into one opening, a bar terminal for two wires is required.  
3 - 62  
3. SIGNALS AND WIRING  
3.11.2 For the servo amplifier produced earlier than Dec. 2005  
(1) Termination of the cables  
Solid wire: After the sheath has been stripped, the cable can be used as it is.  
Approx. 10mm  
(0.39inch)  
Twisted wire: Use the cable after stripping the sheath and twisting the core. At this time, take care to  
avoid a short caused by the loose wires of the core and the adjacent pole. Do not solder  
the core as it may cause a contact fault. Alternatively, a bar terminal may be used to  
put the wires together.  
Cable Size  
Bar Terminal Type  
For 1 cable For 2 cables  
AI-TWIN 1.5-10BK  
Crimping Tool  
Manufacturer  
[mm2] AWG  
1.25/1.5 16 AI1.5-10BK  
CRIMPFOX ZA 3  
or  
CRIMPFOX UD 6  
Phoenix Contact  
2/2.5 14 AI2.5-10BU  
(2) Connection  
Insert the core of the cable into the opening and tighten the screw with a flat-blade screwdriver so that  
the cable does not come off. (Tightening torque: 0.3 to 0.4N m(2.7 to 3.5 lb in)) Before inserting the  
cable into the opening, make sure that the screw of the terminal is fully loose.  
When using a cable of 1.5mm2 or less, two cables may be inserted into one opening.  
Flat-blade screwdriver  
Tip thickness 0.4 to 0.6mm  
Overall width 2.5 to 3.5mm  
To loosen. To tighten.  
Cable  
Opening  
Control circuit terminal block  
3 - 63  
3. SIGNALS AND WIRING  
Use of a flat-blade torque screwdriver is recommended to manage the screw tightening torque. The  
following table indicates the recommended products of the torque screwdriver for tightening torque  
management and the flat-blade bit for torque screwdriver. When managing torque with a Phillips bit,  
please consult us.  
Product  
Torque screwdriver  
Bit for torque screwdriver  
Model  
Manufacturer/Representative  
Nakamura Seisakusho  
Shiro Sangyo  
N6L TDK  
B-30, flat-blade, H3.5 X 73L  
3.12 Instructions for the 3M connector  
When fabricating an encoder cable or the like, securely connect the shielded external conductor of the  
cable to the ground plate as shown in this section and fix it to the connector shell.  
External conductor  
Sheath  
Core  
External conductor  
Pull back the external conductor to cover the sheath  
Sheath  
Strip the sheath.  
Screw  
Cable  
Screw  
Ground plate  
3.13 Power line circuit of the MR-J2S-11KA to MR-J2S-22KA  
Always connect a magnetic contactor (MC) between the main circuit power supply  
and L1, L2, and L3 of the servo amplifier, and configure the wiring to be able to shut  
down the power supply on the side of the servo amplifier’s power supply. If a  
magnetic contactor (MC) is not connected, continuous flow of a large current may  
cause a fire when the servo amplifier malfunctions.  
CAUTION  
Use the trouble (ALM) to switch power off. Otherwise, a regenerative transistor  
fault or the like may overheat the regenerative resistor, causing a fire.  
During power-on, do not open or close the motor power line. Otherwise, a  
malfunction or faulty may occur.  
POINT  
The power-on sequence is the same as in section 5.7.3.  
3 - 64  
3. SIGNALS AND WIRING  
3.13.1 Connection example  
Wire the power supply/main circuit as shown below so that power is shut off and the servo-on signal  
turned off as soon as an alarm occurs, a servo emergency stop is made valid, a controller emergency stop,  
or a servo motor thermal relay alarm is made valid. A no-fuse breaker (NFB) must be used with the input  
cables of the power supply.  
Servo motor  
thermal relay  
RA2  
Alarm  
RA1  
emergency stop  
OFF  
ON  
MC  
MC  
SK  
(Note 1)  
Servo amplifier  
Dynamic  
break  
Servo motor  
HA-LFS series  
NFB  
MC  
U
U
V
L1  
M
3-phase  
V
L2  
200 to 230VAC  
W
W
L3  
L11  
CN2  
L21  
MR-JHSCBL  
cable  
M
Encoder  
BU  
BV  
BW  
P
(Note 3)  
VDD  
P1  
(Note 2)  
COM  
Cooling fan  
Trouble  
ALM  
EMG  
RA1  
Emergency stop  
servo-on  
OHS1  
OHS2 Servo motor  
thermal relay  
24VDC  
power supply  
SON  
SG  
RA2  
Note 1. When using the external dynamic break, refer to section 13.1.4.  
2. Cooling fan power supply of the HA-LFS11K2 servo motor is 1-phase. Power supply specification of the cooling fan is  
different from that of the servo amplifier. Therefore, separate power supply is required.  
3. Always connect P1 and P. (Factory-wired). When using the power factor improving DC reactor, refer to section 13.2.4.  
3 - 65  
3. SIGNALS AND WIRING  
3.13.2 Servo amplifier terminals  
The positions and signal arrangements of the terminal blocks change with the capacity of the servo  
amplifier. Refer to section 11.1.  
Connection Target  
Symbol  
Description  
(Application)  
Main circuit power supply Supply L1, L2 and L3 with three-phase 200 to 230VAC, 50/60Hz power.  
Servo motor output Connect to the servo motor power supply terminals (U, V, W).  
Control circuit power supply Supply L11 and L21 with single-phase 200 to 230VAC power.  
The servo amplifier built-in regenerative resistor is not connected at the time of  
L1, L2, L3  
U, V, W  
L11, L21  
shipment.  
P, C  
N
Regenerative option  
When using the regenerative option, wire it across P-C.  
Refer to section 13.1.1 for details.  
Return converter  
Brake unit  
When using the return converter or brake unit, connect it across P-N.  
Refer to sections 13.1.2 and 13.1.3 for details.  
Connect this terminal to the protective earth (PE) terminals of the servo motor  
and control box for grounding.  
Protective earth (PE)  
Power factor improving DC P1-P are connected before shipment. When connecting a power factor improving  
P1, P  
reactors  
DC reactor, remove the short bar across P1-P. Refer to section 13.2.4 for details.  
3 - 66  
3. SIGNALS AND WIRING  
3.13.3 Servo motor terminals  
Pin  
Signal  
Pin  
Signal  
Encoder connector  
signal arrangement  
MS3102A20-29P  
Terminal box  
Encoder connector  
MS3102A20-29P  
A
B
C
D
E
F
G
H
J
MD  
MDR  
MR  
K
L
Key  
M
N
P
M
B
MRR  
SHD  
A
L
J
C
N
K
T
P
D
BAT  
LG  
R
S
LG  
P5  
E
S
R
H
F
G
T
Terminal box inside (HA-LFS601, 701M, 11K2)  
Thermal sensor  
terminal block  
(OHS1 OHS2) M4 screw  
Motor power supply  
terminal block  
(U V W) M6 screw  
Cooling fan  
terminal block  
(BU BV) M4 screw  
Earth terminal  
M6 screw  
Terminal block signal arrangement  
OHS1OHS2  
Encoder connector  
MS3102A20-29P  
BU BV  
U
V
W
3 - 67  
3. SIGNALS AND WIRING  
Terminal box inside (HA-LFS801, 12K1, 11K1M, 15K1M, 15K2, 22K2)  
Cooling fan terminal  
block (BU BV BW)  
M4 screw  
Thermal sensor terminal  
block (OHS1 OHS2)  
M4 screw  
Terminal block signal arrangement  
BU BV BW OHS1OHS2  
Encoder connector  
MS3102A20-29  
Motor power supply  
terminal block  
(U V W) M8 screw  
U
V
W
Earth terminal M6 screw  
Terminal box inside (HA-LFS15K1, 20K1, 22K1M, 25K1)  
Encoder connector  
MS3102A20-29P  
Motor power supply  
terminal block  
(U V W) M8 screw  
Earth terminal  
M6 screw  
Terminal block signal arrangement  
Cooling fan  
Thermal sensor  
terminal block  
Earth terminal  
M6 screw  
terminal block  
BU BV BW OHS1OHS2  
U
V
W
(BU BV BW) M4 screw  
(OHS1 OHS2) M4 screw  
3 - 68  
3. SIGNALS AND WIRING  
Signal Name  
Abbreviation  
Description  
Power supply  
U
V
W
Connect to the motor output terminals (U, V, W) of the servo amplifier.  
Supply power which satisfies the following specifications.  
Power  
Rated  
current  
[A]  
Voltage  
Servo motor  
Voltage/frequency  
consumption  
[W]  
division  
HA-LFS601, 701M,  
11K2  
200V  
class  
1-phase 200 to 220VAC  
42(50Hz)  
54(60Hz)  
0.21(50Hz)  
0.25(60Hz)  
50Hz  
1-phase 200 to 230VAC  
60Hz  
3-phase 200 to 230VAC  
60Hz  
(Note)  
Cooling fan  
BU BV BW  
HA-LFS801 12K1,  
11K1M, 15K1M,  
15K2, 22K2  
62(50Hz)  
76(60Hz)  
0.18(50Hz)  
0.17(60Hz)  
HA-LFS-15K1,  
20K1, 22K1M  
HA-LFS25K1  
65(50Hz)  
85(60Hz)  
120(50Hz)  
175(60Hz)  
0.20(50Hz)  
0.22(60Hz)  
0.65(50Hz)  
0.80(60Hz)  
Motor thermal relay OHS1 OHS2 OHS1-OHS2 are opened when heat is generated to an abnormal temperature.  
For grounding, connect to the earth of the control box via the earth terminal of the servo  
Earth terminal  
amplifier.  
Note. Cooling fan power supply of the HA-LFS11K2 servo motor is 1-phase. Power supply specification of the cooling fan is different  
from that of the servo amplifier. Therefore, separate power supply is required.  
3 - 69  
3. SIGNALS AND WIRING  
MEMO  
3 - 70  
4. OPERATION  
4. OPERATION  
4.1 When switching power on for the first time  
Before starting operation, check the following.  
(1) Wiring  
(a) A correct power supply is connected to the power input terminals (L1, L2, L3, L11, L21) of the servo  
amplifier.  
(b) The servo motor power supply terminals (U, V, W) of the servo amplifier match in phase with the  
power input terminals (U, V, W) of the servo motor.  
(c) The servo motor power supply terminals (U, V, W) of the servo amplifier are not shorted to the  
power input terminals (L1, L2, L3) of the servo motor.  
(d) The earth terminal of the servo motor is connected to the PE terminal of the servo amplifier.  
(e) Note the following when using the regenerative option, brake unit or power regeneration converter.  
1) For the MR-J2S-350A or less, the lead has been removed from across D-P of the control circuit  
terminal block, and twisted cables are used for its wiring.  
2) For the MR-J2S-500A or more, the lead has been removed from across P-C of the servo amplifier  
built-in regenerative resistor, and twisted cables are used for its wiring.  
(f) When stroke end limit switches are used, LSP and LSN are on during operation.  
(g) 24VDC or higher voltages are not applied to the pins of connectors CN1A and CN1B.  
(h) SD and SG of connectors CN1A and CN1B are not shorted.  
(i) The wiring cables are free from excessive force.  
(2) Environment  
Signal cables and power cables are not shorted by wire offcuts, metallic dust or the like.  
(3) Machine  
(a) The screws in the servo motor installation part and shaft-to-machine connection are tight.  
(b) The servo motor and the machine connected with the servo motor can be operated.  
4 - 1  
4. OPERATION  
4.2 Startup  
Do not operate the switches with wet hands. You may get an electric shock.  
WARNING  
Before starting operation, check the parameters. Some machines may perform  
unexpected operation.  
Take safety measures, e.g. provide covers, to prevent accidental contact of hands  
and parts (cables, etc.) with the servo amplifier heat sink, regenerative resistor,  
servo motor, etc.since they may be hot while power is on or for some time after  
power-off. Their temperatures may be high and you may get burnt or a parts may  
damaged.  
CAUTION  
During operation, never touch the rotating parts of the servo motor. Doing so can  
cause injury.  
Connect the servo motor with a machine after confirming that the servo motor operates properly alone.  
4.2.1 Selection of control mode  
Use parameter No. 0 to choose the control mode used. After setting, this parameter is made valid by  
switching power off, then on.  
4.2.2 Position control mode  
(1) Power on  
1) Switch off the servo-on (SON).  
2) When main circuit power/control circuit power is switched on, the display shows "C (Cumulative  
feedback pulses)", and in two second later, shows data.  
In the absolute position detection system, first power-on results in the absolute position lost (AL.25)  
alarm and the servo system cannot be switched on. This is not a failure and takes place due to the  
uncharged capacitor in the encoder.  
The alarm can be deactivated by keeping power on for a few minutes in the alarm status and then  
switching power off once and on again.  
Also in the absolute position detection system, if power is switched on at the servo motor speed of  
500r/min or higher, position mismatch may occur due to external force or the like. Power must  
therefore be switched on when the servo motor is at a stop.  
(2) Test operation 1  
Using jog operation in the test operation mode, operate at the lowest speed to confirm that the servo  
motor operates. (Refer to section 6.8.2.)  
(3) Parameter setting  
Set the parameters according to the structure and specifications of the machine. Refer to chapter 5 for  
the parameter definitions and to sections 6.5 for the setting method.  
Parameter No.  
Name  
Setting  
Description  
3
0
Control mode, regenerative option  
selection  
Position control mode  
0
MR-RB12 regenerative option is used.  
0
02  
Input filter 3.555ms(initial value)  
Electromagnetic brake interlock (MBR) is not used.  
Used in incremental positioning system.  
1
Function selection 1  
1
5
Middle response (initial value) is selected.  
Auto tuning mode 1 is selected.  
Auto tuning  
2
3
4
Electronic gear numerator (CMX)  
Electronic gear denominator (CDV)  
1
1
Electronic gear numerator  
Electronic gear denominator  
After setting the above parameters, switch power off once. Then switch power on again to make the set  
parameter values valid.  
4 - 2  
4. OPERATION  
(4) Servo-on  
Switch the servo-on in the following procedure.  
1) Switch on main circuit/control circuit power supply.  
2) Switch on the servo-on (SON)  
When placed in the servo-on status, the servo amplifier is ready to operate and the servo motor  
is locked.  
(5) Command pulse input  
Entry of a pulse train from the positioning device rotates the servo motor. At first, run it at low speed  
and check the rotation direction, etc. If it does not run in the intended direction, check the input  
signal.  
On the status display, check the speed, command pulse frequency, load factor, etc. of the servo motor.  
When machine operation check is over, check automatic operation with the program of the positioning  
device.  
This servo amplifier has a real-time auto tuning function under model adaptive control. Performing  
operation automatically adjusts gains. The optimum tuning results are provided by setting the  
response level appropriate for the machine in parameter No. 2. (Refer to chapter 7)  
(6) Home position return  
Make home position return as required.  
(7) Stop  
In any of the following statuses, the servo amplifier interrupts and stops the operation of the servo  
motor.  
Refer to section 3.9, (2) for the servo motor equipped with electromagnetic brake. Note that the stop  
pattern of stroke end (LSP/LSN) OFF is as described below.  
(a) Servo-on (SON) OFF  
The base circuit is shut off and the servo motor coasts.  
(b) Alarm occurrence  
When an alarm occurs, the base circuit is shut off and the dynamic brake is operated to bring the  
servo motor to a sudden stop.  
(c) Emergency stop (EMG) OFF  
The base circuit is shut off and the dynamic brake is operated to bring the servo motor to a sudden  
stop. Alarm AL.E6 occurs.  
(d) Forward rotation stroke end (LSP), reverse rotation stroke end (LSN) OFF  
The droop pulse value is erased and the servo motor is stopped and servo-locked. It can be run in  
the opposite direction.  
4 - 3  
4. OPERATION  
4.2.3 Speed control mode  
(1) Power on  
1) Switch off the servo-on (SON).  
2) When main circuit power/control circuit power is switched on, the display shows "r (servo motor  
speed)", and in two second later, shows data.  
(2) Test operation  
Using jog operation in the test operation mode, operate at the lowest speed to confirm that the servo  
motor operates. (Refer to section 6.8.2.)  
(3) Parameter setting  
Set the parameters according to the structure and specifications of the machine. Refer to chapter 5 for  
the parameter definitions and to sections 6.5 for the setting method.  
Parameter No.  
Name  
Setting  
Description  
0
2
12  
5
Control mode, regenerative option  
selection  
Position control mode  
0
MR-RB12 regenerative option is used.  
Input filter 3.555ms(initial value)  
Electromagnetic brake interlock (MBR) is not used.  
1
2
Function selection 1  
Auto tuning  
1
Middle response (initial value) is selected.  
Auto tuning mode 1 is selected.  
8
9
10  
11  
12  
Internal speed command 1  
Internal speed command 2  
Internal speed command 3  
Acceleration time constant  
Deceleration time constant  
S-pattern acceleration/deceleration  
time constant  
1000  
1500  
2000  
1000  
500  
Set 1000r/min.  
Set 1500r/min.  
Set 2000r/min.  
Set 1000ms  
Set 500ms.  
13  
0
Not used  
After setting the above parameters, switch power off once. Then switch power on again to make the set  
parameter values valid.  
(4) Servo-on  
Switch the servo-on in the following procedure.  
1) Switch on main circuit/control circuit power supply.  
2) Switch on the servo-on (SON).  
When placed in the servo-on status, the servo amplifier is ready to operate and the servo motor  
is locked.  
(5) Start  
Using speed selection 1 (SP1) and speed selection 2 (SP2), choose the servo motor speed. Turn on  
forward rotation start (ST1) to run the motor in the forward rotation (CCW) direction or reverse  
rotation start (ST2) to run it in the reverse rotation (CW) direction. At first, set a low speed and check  
the rotation direction, etc. If it does not run in the intended direction, check the input signal.  
On the status display, check the speed, load factor, etc. of the servo motor.  
When machine operation check is over, check automatic operation with the host controller or the like.  
This servo amplifier has a real-time auto tuning function under model adaptive control. Performing  
operation automatically adjusts gains. The optimum tuning results are provided by setting the  
response level appropriate for the machine in parameter No. 2. (Refer to chapter 7)  
4 - 4  
4. OPERATION  
(6) Stop  
In any of the following statuses, the servo amplifier interrupts and stops the operation of the servo  
motor.  
Refer to section 3.9 (2) for the servo motor equipped with electromagnetic brake. Note that  
simultaneous ON or simultaneous OFF of stroke end (LSP, LSN) OFF and forward rotation start  
(ST1) or reverse rotation start (ST2) has the same stop pattern as described below.  
(a) Servo-on (SON) OFF  
The base circuit is shut off and the servo motor coasts.  
(b) Alarm occurrence  
When an alarm occurs, the base circuit is shut off and the dynamic brake is operated to bring the  
servo motor to a sudden stop.  
(c) Emergency stop (EMG) OFF  
The base circuit is shut off and the dynamic brake is operated to bring the servo motor to a sudden  
stop. Alarm AL.E6 occurs.  
(d) Stroke end (LSP/LSN) OFF  
The servo motor is brought to a sudden stop and servo-locked. The motor may be run in the  
opposite direction.  
(e) Simultaneous ON or simultaneous OFF of forward rotation start (ST1) and reverse rotation start  
(ST2)  
The servo motor is decelerated to a stop.  
POINT  
A sudden stop indicates deceleration to a stop at the deceleration time  
constant of zero.  
4.2.4 Torque control mode  
(1) Power on  
1) Switch off the servo-on (SON).  
2) When main circuit power/control circuit power is switched on, the display shows "U (torque  
command voltage)", and in two second later, shows data.  
(2) Test operation  
Using jog operation in the test operation mode, operate at the lowest speed to confirm that the servo  
motor operates. (Refer to section 6.8.2.)  
(3) Parameter setting  
Set the parameters according to the structure and specifications of the machine. Refer to chapter 5 for  
the parameter definitions and to sections 6.5 for the setting method.  
Parameter No.  
Name  
Setting  
Description  
0
2
Control mode, regenerative option  
selection  
Position control mode  
0
MR-RB12 regenerative option is used.  
12  
Input filter 3.555ms(initial value)  
1
Function selection 1  
Electromagnetic brake interlock (MBR) is not used.  
8
9
10  
11  
12  
Internal speed command 1  
Internal speed command 2  
Internal speed command 3  
Acceleration time constant  
Deceleration time constant  
1000  
1500  
2000  
1000  
500  
Set 1000r/min.  
Set 1500r/min.  
Set 2000r/min.  
Set 1000ms.  
Set 500ms.  
S-pattern acceleration/deceleration  
time constant  
13  
0
Not used  
14  
28  
Torque command time constant  
Internal torque limit 1  
2000  
50  
Set 2000ms.  
Controlled to 50 output.  
After setting the above parameters, switch power off once. Then switch power on again to make the set  
parameter values valid.  
4 - 5  
4. OPERATION  
(4) Servo-on  
Switch the servo-on in the following procedure.  
1) Switch on main circuit/control circuit power supply.  
2) Switch on the servo-on (SON).  
When placed in the servo-on status, the servo amplifier is ready to operate.  
(5) Start  
Using speed selection 1 (SP1) and speed selection 2 (SP2), choose the servo motor speed. Turn on  
forward rotation select (DI4) to run the motor in the forward rotation (CCW) direction or reverse  
rotation select (DI3) to run it in the reverse rotation (CW) direction, generating torque. At first, set a  
low speed and check the rotation direction, etc. If it does not run in the intended direction, check the  
input signal.  
On the status display, check the speed, load factor, etc. of the servo motor.  
When machine operation check is over, check automatic operation with the host controller or the like.  
(6) Stop  
In any of the following statuses, the servo amplifier interrupts and stops the operation of the servo  
motor.  
Refer to section 3.9 (2) for the servo motor equipped with electromagnetic brake.  
(a) Servo-on (SON) OFF  
The base circuit is shut off and the servo motor coasts.  
(b) Alarm occurrence  
When an alarm occurs, the base circuit is shut off and the dynamic brake is operated to bring the  
servo motor to a sudden stop.  
(c) Emergency stop (EMG) OFF  
The base circuit is shut off and the dynamic brake is operated to bring the servo motor to a sudden  
stop. Alarm AL.E6 occurs.  
(d) Simultaneous ON or simultaneous OFF of forward rotation selection (RS1) and reverse rotation  
selection (RS2)  
The servo motor coasts.  
POINT  
A sudden stop indicates deceleration to a stop at the deceleration time  
constant of zero.  
4.3 Multidrop communication  
You can use the RS-422 communication function (parameter No.16) to operate two or more servo  
amplifiers on the same bus. In this case, set station numbers to the servo amplifiers to recognize the servo  
amplifier to which the current data is being sent. Use parameter No. 15 to set the station numbers.  
Always set one station number to one servo amplifier. Normal communication cannot be made if the same  
station number is set to two or more servo amplifiers.  
For details, refer to chapter 14.  
4 - 6  
5. PARAMETERS  
5. PARAMETERS  
CAUTION  
Never adjust or change the parameter values extremely as it will make operation  
instable.  
5.1 Parameter list  
5.1.1 Parameter write inhibit  
POINT  
After setting the parameter No. 19 value, switch power off, then on to  
make that setting valid.  
In the MR-J2S-A servo amplifier, its parameters are classified into the basic parameters (No. 0 to 19),  
expansion parameters 1 (No. 20 to 49) and expansion parameters 2 (No.50 to 84) according to their safety  
aspects and frequencies of use. In the factory setting condition, the customer can change the basic  
parameter values but cannot change the expansion parameter values. When fine adjustment, e.g. gain  
adjustment, is required, change the parameter No. 19 setting to make the expansion parameters write-  
enabled.  
The following table indicates the parameters which are enabled for reference and write by the setting of  
parameter No. 19. Operation can be performed for the parameters marked  
.
Basic parameters  
No. 0 to No. 19  
Expansion parameters 1 Expansion parameters 2  
No. 20 to No. 49 No. 50 to No. 84  
Parameter No. 19 setting  
Operation  
Reference  
Write  
0000  
(initial value)  
Reference  
Write  
No. 19 only  
No. 19 only  
000A  
000B  
000C  
000E  
100B  
100C  
100E  
Reference  
Write  
Reference  
Write  
Reference  
Write  
Reference  
Write  
No. 19 only  
No. 19 only  
No. 19 only  
Reference  
Write  
Reference  
Write  
5 - 1  
5. PARAMETERS  
5.1.2 Lists  
POINT  
For any parameter whose symbol is preceded by *, set the parameter  
value and switch power off once, then switch it on again to make that  
parameter setting valid.  
The symbols in the control mode column of the table indicate the following modes.  
P : Position control mode  
S : Speed control mode  
T : Torque control mode  
(1) Item list  
Control  
Initial  
value  
Customer  
setting  
No. Symbol  
Name  
Unit  
mode  
P S T  
P S T  
0
1
*STY Control mode ,regenerative option selection  
*OP1 Function selection 1  
0000  
0002  
7kW or  
less: 0105  
11kW or  
more:0102  
1
2
ATU Auto tuning  
P S  
3
4
5
CMX Electronic gear numerator  
CDV Electronic gear denominator  
P
P
P
1
INP  
In-position range  
100  
pulse  
rad/s  
7kW or  
less: 35  
11kW or  
more:19  
6
PG1 Position control gain 1  
P
Position command acceleration/deceleration time constant  
7
8
PST  
SC1  
SC2  
SC3  
P
3
ms  
(position smoothing)  
Internal speed command 1  
Internal speed limit 1  
Internal speed command 2  
Internal speed limit 2  
Internal speed command 3  
Internal speed limit 3  
S
T
100  
100  
500  
500  
1000  
1000  
0
r/min  
r/min  
r/min  
r/min  
r/min  
r/min  
ms  
S
9
T
S
10  
T
11  
12  
13  
14  
15  
16  
17  
STA Acceleration time constant  
S T  
S T  
S T  
T
STB Deceleration time constant  
0
ms  
STC S-pattern acceleration/deceleration time constant  
TQC Torque command time constant  
*SNO Station number setting  
0
ms  
0
ms  
P S T  
P S T  
P S T  
P S T  
P S T  
0
station  
*BPS Serial communication function selection, alarm history clear  
MOD Analog monitor output  
0000  
0100  
0000  
0000  
18 *DMD Status display selection  
19 *BLK Parameter write inhibit  
5 - 2  
5. PARAMETERS  
Control  
mode  
Initial  
value  
Customer  
setting  
No. Symbol  
Name  
Unit  
20  
21  
22  
23  
24  
*OP2 Function selection 2  
P S  
0000  
0000  
0000  
0
*OP3 Function selection 3 (Command pulse selection)  
*OP4 Function selection 4  
P
P S T  
FFC Feed forward gain  
P
%
ZSP  
Zero speed  
P S T  
50  
r/min  
Analog speed command maximum speed  
Analog speed limit maximum speed  
S
T
T
(Note 1)0 (r/min)  
25  
26  
27  
28  
29  
VCM  
(Note 1)0 (r/min)  
TLC Analog torque command maximum output  
100  
%
pulse  
/rev  
%
*ENR Encoder output pulses  
P S T  
4000  
TL1  
Internal torque limit 1  
P S T  
S
100  
Analog speed command offset  
Analog speed limit offset  
Analog torque command offset  
Analog torque limit offset  
(Note 2)  
mV  
mV  
mV  
mV  
mV  
mV  
ms  
VCO  
T
(Note 2)  
T
0
0
30  
TLO  
S
31  
32  
33  
MO1 Analog monitor 1 offset  
P S T  
P S T  
P S T  
0
MO2 Analog monitor 2 offset  
0
MBR Electromagnetic brake sequence output  
100  
0.1  
34  
GD2 Ratio of load inertia moment to servo motor inertia moment  
PG2 Position control gain 2  
P S  
70  
times  
7kW or  
less: 35  
11kW or  
more:19  
7kW or  
less:177  
11kW or  
more:96  
7kW or  
less:817  
11kW or  
more:45  
7kW or  
less: 48  
11kW or  
more:91  
980  
35  
P
rad/s  
rad/s  
rad/s  
ms  
36  
37  
38  
VG1 Speed control gain 1  
VG2 Speed control gain 2  
P S  
P S  
VIC  
Speed integral compensation  
P S  
P S  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
VDC Speed differential compensation  
For manufacturer setting  
0
*DIA Input signal automatic ON selection  
*DI1 Input signal selection 1  
P S T  
P S T  
P S T  
P S T  
P S T  
P S T  
P S T  
P S T  
P S T  
0000  
0003  
*DI2 Input signal selection 2 (CN1B-5)  
*DI3 Input signal selection 3 (CN1B-14)  
*DI4 Input signal selection 4 (CN1A-8)  
*DI5 Input signal selection 5 (CN1B-7)  
*DI6 Input signal selection 6 (CN1B-8)  
*DI7 Input signal selection 7 (CN1B-9)  
*DO1 Output signal selection 1  
0111  
0222  
0665  
0770  
0883  
0994  
0000  
For notes, refer to next page.  
5 - 3  
5. PARAMETERS  
Control  
mode  
Initial  
value  
Customer  
setting  
No. Symbol  
Name  
Unit  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
For manufacturer setting  
0000  
0000  
0000  
0000  
0000  
0000  
0
*OP6 Function selection 6  
For manufacturer setting  
*OP8 Function selection 8  
*OP9 Function selection 9  
*OPA Function selection A  
P S T  
P S T  
P S T  
P
SIC  
Serial communication time-out selection  
For manufacturer setting  
P S T  
s
10  
NH1 Machine resonance suppression filter 1  
P S T  
P S T  
P S T  
0000  
0000  
0000  
NH2 Machine resonance suppression filter 2  
LPF Low-pass filter, adaptive vibration suppression control  
0.1  
times  
%
61 GD2B Ratio of load inertia moment to servo motor inertia moment 2  
P S  
70  
62  
63  
64  
65  
66  
67  
68  
PG2B Position control gain 2 changing ratio  
VG2B Speed control gain 2 changing ratio  
VICB Speed integral compensation changing ratio  
*CDP Gain changing selection  
P
100  
100  
100  
0000  
10  
1
P S  
P S  
P S  
P S  
P S  
%
%
CDS Gain changing condition  
(Note 3)  
CDT Gain changing time constant  
For manufacturer setting  
ms  
0
69 CMX2 Command pulse multiplying factor numerator 2  
70 CMX3 Command pulse multiplying factor numerator 3  
71 CMX4 Command pulse multiplying factor numerator 4  
Internal speed command 4  
P
1
P
1
P
1
S
72  
73  
74  
75  
SC4  
SC5  
SC6  
200  
300  
500  
800  
r/min  
r/min  
r/min  
Internal speed limit 4  
Internal speed command 5  
Internal speed limit 5  
Internal speed command 6  
Internal speed limit 6  
Internal speed command 7  
Internal speed limit 7  
Internal torque limit 2  
For manufacturer setting  
T
S
T
S
T
S
SC7  
TL2  
r/min  
%
T
76  
77  
78  
79  
80  
81  
82  
83  
84  
P S T  
100  
100  
10000  
10  
10  
100  
100  
100  
0000  
Note 1. The setting of "0" provides the rated servo motor speed.  
2. Depends on the servo amplifier.  
3. Depends on the parameter No. 65 setting.  
5 - 4  
5. PARAMETERS  
(2) Details list  
Initial  
value  
Setting Control  
Class No. Symbol  
Name and function  
Unit  
range  
mode  
0
*STY  
0000  
Refer to  
Name  
and  
P S T  
Control mode, regenerative option selection  
Used to select the control mode and regenerative option.  
function  
column.  
0
0
Select the control mode.  
0:Position  
1:Position and speed  
2:Speed  
3:Speed and torque  
4:Torque  
5:Torque and position  
Selection of regenerative option  
00: Regenerative option or regenerative option is  
not used with 7kW or less servo amplifier (The  
built-in regenerative resistor is used.)  
Supplied regenerative resistors or regenerative  
option is used with 11kW or more servo  
amplifier  
01: FR-RC, FR-BU2, FR-CV  
02: MR-RB032  
03: MR-RB12  
04: MR-RB32  
05: MR-RB30  
06: MR-RB50 (Cooling fan is required)  
08: MR-RB31  
09: MR-RB51 (Cooling fan is required)  
0E: When regenerative resistors supplied to 11k to 22kW  
are cooled by cooling fans to increase capability  
The MR-RB65, 66 and 67 are regenerative options  
that have encased the GRZG400-2  
,
GRZG400-1 and GRZG400-0.8 , respectively.  
When using any of these regenerative options,  
make the same parameter setting as when using  
the GRZG400-2 , GRZG400-1 or  
GRZG400-0.8 (supplied regenerative resistors or  
regenerative option is used with 11kW or more  
servo amplifier).  
POINT  
Wrong setting may cause the regenerative option  
to burn.  
If the regenerative option selected is not for use  
with the servo amplifier, parameter error (AL.37)  
occurs.  
5 - 5  
5. PARAMETERS  
Initial  
Setting Control  
range mode  
Class No. Symbol  
Name and function  
Unit  
value  
1
*OP1  
0002  
Refer to P S T  
Name  
and  
Function selection 1  
Used to select the input signal filter, pin CN1B-19 function and  
absolute position detection system.  
function.  
Input signal filter  
If external input signal causes chattering due to noise,  
etc., input filter is used to suppress it.  
0: None  
1: 1.777[ms]  
2: 3.555[ms]  
3: 5.333[ms]  
CN1B-pin 19's function selection  
0: Zero Speed detection (ZSP)  
1: Electromagnetic brake interlock (MBR)  
CN1B-pin 18's function selection  
0: Alarm (ALM)  
1: Dynamic brake interlock (DB)  
When using the external dynamic brake with 11kW or  
more, make dynamic brake interlock (DB) valid.  
Selection of absolute position detection system (Refer  
to chapter 15)  
0: Used in incremental system  
1: Used in absolute position detection system  
5 - 6  
5. PARAMETERS  
Initial  
value  
Setting Control  
Class No. Symbol  
Name and function  
Unit  
range  
mode  
2
ATU Auto tuning  
7kW or  
Refer to  
Name  
P S  
Used to selection the response level, etc. for execution of auto tuning. less:  
Refer to chapter 7. 0105  
and  
11kW or  
more:  
function  
column.  
0
0
Response level setting  
0102  
Set  
Response Machine resonance  
value  
level  
Low  
response  
frequency guideline  
15Hz  
1
2
20Hz  
3
25Hz  
4
30Hz  
5
35Hz  
6
45Hz  
7
8
9
55Hz  
70Hz  
85Hz  
Middle  
response  
A
B
C
D
E
F
105Hz  
130Hz  
160Hz  
200Hz  
240Hz  
300Hz  
High  
response  
If the machine hunts or generates large gear sound,  
decrease the set value.  
To improve performance, e.g. shorten the settling time,  
increasethe set value.  
Gain adjustment mode selection  
(For more information, refer to section 7.1.1.)  
Set  
value  
Gain adjustment mode  
Description  
Interpolation mode  
Fixes position control gain 1  
(parameter No. 6).  
0
Auto tuning mode 1  
Auto tuning mode 2  
Ordinary auto tuning.  
1
2
Fixes the load inertia moment  
ratio set in parameter No. 34.  
Response level setting can be  
changed.  
3
4
Manual mode 1  
Manual mode 2  
Simple manual adjustment.  
Manual adjustment of all gains.  
3
4
CMX Electronic gear numerator  
Used to set the electronic gear numerator value.  
1
1
0
1
P
P
For the setting, refer to section 5.2.1.  
to  
Setting "0" automatically sets the resolution of the servo motor  
connected.  
65535  
For the HC-MFS series, 131072 pulses are set for example.  
CDV Electronic gear denominator  
1
to  
Used to set the electronic gear denominator value.  
For the setting, refer to section 5.2.1.  
65535  
5 - 7  
5. PARAMETERS  
Initial  
value  
100  
Setting Control  
Class No. Symbol  
Name and function  
Unit  
range  
mode  
5
INP  
In-position range  
pulse  
0
to  
P
Used to set the in-position (INP) output range in the command pulse  
increments prior to electronic gear calculation.  
10000  
For example, when you want to set 100 m when the ball screw is  
directly coupled, the lead is 10mm, the feedback pulse count is 131072  
pulses/rev, and the electronic gear numerator (CMX)/electronic gear  
denominator (CDV) is 16384/125 (setting in units of 10 m per pulse),  
set "10" as indicated by the following expression.  
6
100 10  
10 10  
125  
16384  
10  
131072[pulse/rev]  
3
6
7
PG1 Position control gain 1  
Used to set the gain of position loop.  
7kW or red/s  
less: 35  
11kW or  
4
to  
2000  
P
P
Increase the gain to improve track ability in response to the position  
command.  
When auto turning mode 1,2 is selected, the result of auto turning is  
automatically used.  
more: 19  
Position command acceleration/deceleration time constant  
(position smoothing)  
PST  
3
ms  
0
to  
20000  
Used to set the time constant of a low-pass filter in response to the  
position command.  
You can use parameter No. 55 to choose the primary delay or linear  
acceleration/deceleration control system. When you choose linear  
acceleration/deceleration, the setting range is 0 to 10ms. Setting of  
longer than 10ms is recognized as 10ms.  
POINT  
When you have chosen linear acceleration/  
deceleration, do not select control selection  
(parameter No. 0) and restart after instantaneous  
power failure (parameter No. 20). Doing so will  
cause the servo motor to make a sudden stop at the  
time of position control switching or restart.  
Example: When a command is given from a synchronizing detector,  
synchronous operation can be started smoothly if started  
during line operation.  
Synchronizing  
detector  
Start  
Servo motor  
Servo amplifier  
Without time  
constant setting  
With time  
Servo motor  
speed  
constant setting  
ON  
OFF  
t
Start  
0 to  
Internal speed command 1  
Used to set speed 1 of internal speed commands.  
8
SC1  
100  
r/min  
S
T
instan-  
taneous  
permi-  
ssible  
Internal speed limit 1  
Used to set speed 1 of internal speed limits.  
speed  
5 - 8  
5. PARAMETERS  
Initial  
value  
500  
Setting Control  
Class No. Symbol  
Name and function  
Unit  
range  
mode  
9
SC2 Internal speed command 2  
r/min  
0 to  
instan-  
taneous  
permi-  
ssible  
speed  
0 to  
instan-  
taneous  
permi-  
ssible  
S
Used to set speed 2 of internal speed commands.  
Internal speed limit 2  
T
S
T
Used to set speed 2 of internal speed limits.  
10  
SC3 Internal speed command 3  
1000  
r/min  
ms  
Used to set speed 3 of internal speed commands.  
Internal speed limit 3  
Used to set speed 3 of internal speed limits.  
speed  
Acceleration time constant  
0
0
to  
S T  
11  
STA  
Used to set the acceleration time required to reach the rated speed  
from 0r/min in response to the analog speed command and internal  
speed commands 1 to 7.  
20000  
If the preset speed command is  
lower than the rated speed,  
acceleration/deceleration time  
Speed  
Rated  
speed  
will be shorter.  
Zero  
speed  
Time  
Parameter  
No.11 setting  
Parameter  
No.12 setting  
For example for the servo motor of 3000r/min rated speed, set 3000  
(3s) to increase speed from 0r/min to 1000r/min in 1 second.  
Deceleration time constant  
Used to set the deceleration time required to reach 0r/min from the  
rated speed in response to the analog speed command and internal  
speed commands 1 to 7.  
12  
13  
STB  
0
0
STC S-pattern acceleration/deceleration time constant  
Used to smooth start/stop of the servo motor.  
ms  
0
to  
S T  
Set the time of the arc part for S-pattern acceleration/deceleration.  
1000  
Speed command  
0r/min  
STC  
Time  
STC  
STC STB  
STA STC  
STA: Acceleration time constant (parameter No.11)  
STB: Deceleration time constant (parameter No.12)  
STC: S-pattern acceleration/deceleration time con-  
stant (parameter No.13)  
Long setting of STA (acceleration time constant) or STB (deceleration time  
constant) may produce an error in the time of the arc part for the setting of the  
S-pattern acceleration/deceleration time constant.  
The upper limit value of the actual arc part time is limited by  
2000000  
STA  
2000000  
STB  
for acceleration or by  
for deceleration.  
(Example)  
At the setting of STA 20000, STB 5000 and STC 200,  
the actual arc part times are as follows:  
Limited to 100[ms] since  
2000000  
20000  
During acceleration: 100[ms]  
During deceleration: 200[ms]  
100[ms] 200[ms].  
200[ms] as set since  
2000000  
5000  
400[ms] 200[ms].  
5 - 9  
5. PARAMETERS  
Initial  
value  
Setting Control  
Class No. Symbol  
Name and function  
Unit  
range  
mode  
14  
TQC Torque command time constant  
0
ms  
0
to  
T
Used to set the constant of a low-pass filter in response to the torque  
command.  
20000  
Torque command  
Torque  
After  
filtered  
Time  
TQC  
TQC  
TQC: Torque command time constant  
15 *SNO Station number setting  
Used to specify the station number for serial communication.  
0
sta-  
tion  
0
P S T  
to  
31  
Always set one station to one axis of servo amplifier. If one station  
number is set to two or more stations, normal communication cannot  
be made.  
16  
*BPS Serial communication function selection, alarm history clear  
Used to select the serial communication baud rate, select various  
communication conditions, and clear the alarm history.  
0000  
Refer to P S T  
Name  
and  
function  
column.  
Serial baud rate selection  
0: 9600 [bps]  
1: 19200[bps]  
2: 38400[bps]  
3: 57600[bps]  
Alarm history clear  
0: Invalid  
1: Valid  
When alarm history clear is made valid, the alarm  
history is cleared at next power-on.  
After the alarm history is cleared, the setting is  
automatically made invalid (reset to 0).  
Serial communication standard selection  
0: RS-232C used  
1: RS-422 used  
Serial communication response delay time  
0: Invalid  
1: Valid, reply sent after delay time of 800 s or more  
5 - 10  
5. PARAMETERS  
Initial  
value  
Setting Control  
range mode  
Class No. Symbol  
Name and function  
Unit  
17  
MOD Analog monitor output  
0100  
Refer to P S T  
Name  
Used to selection the signal provided to the analog monitor (MO1)  
(MO2) output. (Refer to section 5.2.2)  
analog monitor  
and  
function  
column.  
0
0
Setting  
Analog monitor (MO2)  
Analog monitor (MO1)  
0
1
2
3
4
5
6
7
8
9
A
B
Servo motor speed ( 8V/max. speed)  
Torque ( 8V/max. torque) (Note)  
Motor speed ( 8V/max. speed)  
Torque ( 8V/max. torque) (Note)  
Current command ( 8V/max. current command)  
Command pulse frequency ( 10V/500kpulse/s)  
Droop pulses  
( 10V/128 pulses)  
Droop pulses ( 10V/2048 pulses)  
Droop pulses ( 10V/8192 pulses)  
Droop pulses ( 10V/32768 pulses)  
Droop pulses ( 10V/131072 pulses)  
Bus voltage ( 8V/400V)  
Note. 8V is outputted at the maximum torque.  
However, when parameter No.28 76 are  
set to limit torque, 8V is outputted at the torque highly  
limited.  
5 - 11  
5. PARAMETERS  
Initial  
value  
Setting Control  
range mode  
Class No. Symbol  
Name and function  
Unit  
18 *DMD Status display selection  
0000  
Refer to P S T  
Name  
Used to select the status display shown at power-on.  
and  
0 0  
function  
column.  
Selection of status display at  
power-on  
0: Cumulative feedback pulses  
1: Servo motor speed  
2: Droop pulses  
3: Cumulative command pulses  
4: Command pulse frequency  
5: Analog speed command voltage  
(Note 1)  
6: Analog torque command voltage  
(Note 2)  
7: Regenerative load ratio  
8: Effective load ratio  
9: Peak load ratio  
A: Instantaneous torque  
B: Within one-revolution position low  
C: Within one-revolution position high  
D: ABS counter  
E: Load inertia moment ratio  
F: Bus voltage  
Note 1. In speed control mode. Analog  
speed limit voltage in torque  
control mode.  
2. In torque control mode. Analog  
torque limit voltage in speed or  
position control mode.  
Status display at power-on in  
corresponding control mode  
0: Depends on the control mode.  
Control Mode  
Position  
Status display at power-on  
Cumulative feedback pulses  
Position/speed  
Speed  
Cumulative feedback pulses/servo motor speed  
Servo motor speed  
Speed/torque  
Torque  
Servo motor speed/analog torque command voltage  
Analog torque command voltage  
Torque/position Analog torque command voltage/cumulative feedback pulses  
1: Depends on the first digit setting of this parameter.  
5 - 12  
5. PARAMETERS  
Initial  
value  
Setting Control  
range mode  
Class No. Symbol  
Name and function  
Unit  
19  
*BLK Parameter write inhibit  
0000  
Refer to P S T  
Name  
Used to select the reference and write ranges of the parameters.  
Operation can be performed for the parameters marked  
.
and  
function  
column.  
Basic Expansion  
parameters parameters 1 parameters 2  
Expansion  
Set  
value  
Operation  
No. 0  
No. 20  
No. 50  
to No. 19  
to No. 49  
to No. 84  
0000  
(Initial  
value)  
Reference  
Write  
Reference  
Write  
Reference  
Write  
Reference  
Write  
Reference  
Write  
Reference  
Write  
Reference  
Write  
Reference  
Write  
No. 19 only  
No. 19 only  
000A  
000B  
000C  
000E  
100B  
100C  
100E  
No. 19 only  
No. 19 only  
No. 19 only  
20  
*OP2 Function selection 2  
Used to select restart after instantaneous power failure,  
0000  
Refer to  
Name  
servo lock at a stop in speed control mode, and slight vibration  
suppression control.  
and  
function  
column.  
0
Restart after instantaneous power failure  
If the power supply voltage has returned to normal  
after an undervoltage status caused by the reduction  
of the input power supply voltage in the speed control  
mode, the servo motor can be restarted by merely  
turning on the start signal without resetting the alarm.  
0: Invalid (Undervoltage alarm (AL.10) occurs.)  
1: Valid  
S
Selection of servo lock at stop  
In the speed control mode, the servo motor shaft can  
be locked to prevent the shaft from being moved by  
the external force.  
0: Valid (Servo-locked)  
The operation to maintain the stop position is  
performed.  
1: Invalid (Not servo-locked)  
The stop position is not maintained.  
The control to make the speed 0r/min is performed.  
Slight vibration suppression control  
Made valid when auto tuning selection is set to  
"0400" in parameter No. 2.  
Used to suppress vibration at a stop.  
0: Invalid  
P S  
1: Valid  
5 - 13  
5. PARAMETERS  
Initial  
value  
Setting Control  
Class No. Symbol  
Name and function  
Unit  
range  
mode  
21  
*OP3 Function selection 3 (Command pulse selection)  
Used to select the input form of the pulse train input signal.  
(Refer to section 3.4.1)  
0000  
Refer to  
Name  
P
and  
function  
column.  
0 0  
Command pulse train input form  
0: Forward/reverse rotation pulse train  
1: Signed pulse train  
2: A B-phase pulse train  
Pulse train logic selection  
0: Positive logic  
1: Negative logic  
22  
*OP4 Function selection 4  
0000  
Refer to  
Name  
Used to select stop processing at forward rotation stroke end (LSP)  
off and choose VC/VLA voltage  
and  
reverse rotation stroke end (LSN)  
averaging.  
function  
column.  
P S  
0
0
How to make a stop when forward  
rotation stroke end (LSP) reverse rotation stroke end  
(LSN) is valid. (Refer to section 5.2.3)  
0: Sudden stop  
1: Slow stop  
P S T  
VC/VLA voltage averaging  
Used to set the filtering time when the analog speed  
command (VC) voltage or analog speed limit (VLA) is  
imported.  
Set 0 to vary the speed to voltage fluctuation in real  
time. Increase the set value to vary the speed slower  
to voltage fluctuation.  
Set  
Filtering time [ms]  
value  
0
1
2
3
4
0
0.444  
0.888  
1.777  
3.555  
5 - 14  
5. PARAMETERS  
Initial  
value  
0
Setting Control  
Class No. Symbol  
Name and function  
Unit  
range  
mode  
23  
FFC  
%
0
to  
P
Feed forward gain  
Set the feed forward gain. When the setting is 100%, the droop pulses  
during operation at constant speed are nearly zero. However, sudden  
acceleration/deceleration will increase the overshoot. As a guideline,  
when the feed forward gain setting is 100%, set 1s or more as the  
acceleration/deceleration time constant up to the rated speed.  
100  
24  
25  
ZSP Zero speed  
Used to set the output range of the zero speed (ZSP).  
50  
0
r/min  
r/min  
0
to  
10000  
0
1
to  
50000  
P S T  
S
VCM Analog speed command maximum speed  
Used to set the speed at the maximum input voltage (10V) of the  
analog speed command (VC).  
Set "0" to select the rated speed of the servo motor connected.  
Analog speed limit maximum speed  
Used to set the speed at the maximum input voltage (10V) of the  
analog speed limit (VLA).  
0
0
1
T
T
r/min  
%
to  
50000  
0
Set "0" to select the rated speed of the servo motor connected.  
TLC Analog torque command maximum output  
26  
100  
Used to set the output torque at the analog torque command voltage  
to  
(TC  
8V) of 8V on the assumption that the maximum torque is  
1000  
100[%]. For example, set 50 to output (maximum torque  
the TC of 8V.  
50/100) at  
27 *ENR Encoder output pulses  
Used to set the encoder pulses (A-phase, B-phase) output by the  
servo amplifier.  
4000 pulse/  
rev  
1
to  
65535  
P S T  
Set the value 4 times greater than the A-phase or B-phase pulses.  
You can use parameter No. 54 to choose the output pulse setting or  
output division ratio setting.  
The number of A B-phase pulses actually output is 1/4 times  
greater than the preset number of pulses.  
The maximum output frequency is 1.3Mpps (after multiplication by  
4). Use this parameter within this range.  
For output pulse designation  
Set "0  
" (initial value) in parameter No. 54.  
Set the number of pulses per servo motor revolution.  
Output pulse set value [pulses/rev]  
At the setting of 5600, for example, the actually output A B-phase  
pulses are as indicated below.  
5600  
4
A B-phase output pulses  
1400[pulse]  
For output division ratio setting  
Set"1 "in parameter No. 54.  
The number of pulses per servo motor revolution is divided by the  
set value.  
Resolution per servo motor revolution  
Output pulse  
[pulses/rev]  
Set value  
At the setting of 8, for example, the actually output A B-phase  
pulses are as indicated below.  
131072  
8
1
4
A B-phase output pulses  
4096[pulse]  
28  
TL1 Internal torque limit 1  
100  
%
0
to  
P S T  
Set this parameter to limit servo motor torque on the assumption  
that the maximum torque is 100[%].  
100  
When 0 is set, torque is not produced.  
(Note)  
Torque limit  
TL  
0
1
Internal torque limit 1 (Parameter No. 28)  
Analog torque limit internal torque limit 1  
: Analog torque limit  
Analog torque limit internal torque limit 1  
: Internal torque limit 1  
Note. 0: off  
1: on  
When torque is output in analog monitor output, this set value is the  
maximum output voltage ( 8V). (Refer to section 3.4.1 (5))  
5 - 15  
5. PARAMETERS  
Initial  
value  
Setting Control  
Class No. Symbol  
Name and function  
Unit  
range  
mode  
29  
VCO Analog speed command offset  
Depends mV  
on servo  
999  
to  
999  
S
Used to set the offset voltage of the analog speed command (VC).  
For example, if CCW rotation is provided by switching on forward  
rotation start (ST1) with 0V applied to VC, set a negative value.  
When automatic VC offset is used, the automatically offset value is  
set to this parameter. (Refer to section 6.3)  
amplifier  
The initial value is the value provided by the automatic VC offset  
function before shipment at the VC-LG voltage of 0V.  
Analog speed limit offset  
T
Used to set the offset voltage of the analog speed limit (VLA).  
For example, if CCW rotation is provided by switching on forward  
rotation selection (RS1) with 0V applied to VLA, set a negative value.  
When automatic VC offset is used, the automatically offset value is  
set to this parameter. (Refer to section 6.3)  
The initial value is the value provided by the automatic VC offset  
function before shipment at the VLA-LG voltage of 0V.  
TLO Analog torque command offset  
Used to set the offset voltage of the analog torque command (TC).  
Analog torque limit offset  
Used to set the offset voltage of the analog torque limit (TLA).  
MO1 Analog monitor 1 offset  
Used to set the offset voltage of the analog monitor (MO1).  
MO2 Analog monitor 2 offset  
Used to set the offset voltage of the analog monitor (MO2).  
MBR Electromagnetic brake sequence output  
30  
0
mV  
mV  
999  
to  
999  
T
S
31  
32  
33  
0
0
999  
to 999  
999  
to 999  
0
P S T  
mV  
ms  
P S T  
P S T  
100  
Used to set the delay time (Tb) between electronic brake interlock  
(MBR) and the base drive circuit is shut-off.  
to  
1000  
0
to  
3000  
34  
GD2 Ratio of load inertia moment to servo motor inertia moment  
Used to set the ratio of the load inertia moment to the servo motor  
shaft inertia moment. When auto tuning mode 1 and interpolation  
mode is selected, the result of auto tuning is automatically used.  
(Refer to section 7.1.1)  
70  
0.1  
times  
P S  
In this case, it varies between 0 and 1000.  
35  
PG2 Position control gain 2  
7kW or rad/s  
less: 35  
1
to  
P
Used to set the gain of the position loop.  
Set this parameter to increase the position response to level load  
11kW or  
1000  
disturbance. Higher setting increases the response level but is liable more: 19  
to generate vibration and/or noise.  
When auto tuning mode 1,2 and interpolation mode is selected, the  
result of auto tuning is automatically used.  
36  
37  
38  
VG1 Speed control gain 1  
Normally this parameter setting need not be changed.  
7kW or rad/s  
less: 177  
11kW or  
more: 96  
20  
to  
8000  
P S  
P S  
P S  
Higher setting increases the response level but is liable to generate  
vibration and/or noise.  
When auto tuning mode 1 2, manual mode and interpolation mode  
is selected, the result of auto tuning is automatically used.  
VG2 Speed control gain 2  
7kW or rad/s  
20  
to  
20000  
Set this parameter when vibration occurs on machines of low rigidity less: 817  
or large backlash. Higher setting increases the response level but is  
liable to generate vibration and/or noise.  
When auto tuning mode 1 2 and interpolation mode is selected, the  
result of auto tuning is automatically used.  
11kW or  
more: 45  
VIC Speed integral compensation  
7kW or  
less: 48  
11kW or  
more: 91  
ms  
1
to  
1000  
Used to set the integral time constant of the speed loop.  
Lower setting increases the response level but is liable to generate  
vibration and/or noise.  
When auto tuning mode 1 2 and interpolation mode is selected, the  
result of auto tuning is automatically used.  
5 - 16  
5. PARAMETERS  
Initial  
value  
Setting Control  
Class No. Symbol  
Name and function  
Unit  
range  
mode  
39  
VDC Speed differential compensation  
980  
0
to  
P S  
Used to set the differential compensation.  
Made valid when the proportion control (PC) is switched on.  
For manufacturer setting  
1000  
40  
41  
0
Do not change this value by any means.  
*DIA Input signal automatic ON selection  
0000  
Refer to P S T  
Name  
Used to set automatic Servo-on (SON)  
forward rotation stroke end  
.
and  
(LSP) reveres rotation stroke end (LSN)  
function  
column.  
0
Servo-on (SON) input selection  
0: Switched on/off by external input.  
1: Switched on automatically in servo amplifier.  
(No need of external wiring)  
Forward rotation stroke end  
(LSP) input selection  
P S  
0: Switched on/off by external input.  
1: Switched on automatically in servo amplifier.  
(No need of external wiring)  
Reverse rotation stroke end (LSN)  
input selection  
0: Switched on/off by external input.  
1: Switched on automatically in servo amplifier.  
(No need of external wiring)  
42  
*DI1 Input signal selection 1  
0003  
Refer to  
Name  
and  
Used to assign the control mode changing signal input pins and to set  
the clear (CR).  
function  
0 0  
column.  
P/S  
Control change (LOP) input pin assignment  
Used to set the control mode change signal input  
connector pins. Note that this parameter is made valid  
when parameter No.  
S/T  
T/P  
0 is set to select the position/speed, speed/torque or  
torque/position change mode.  
Set  
Connector pin No.  
value  
0
1
2
3
4
5
CN1B-5  
CN1B-14  
CN1A-8  
CN1A-7  
CN1B-8  
CN1B-9  
Clear (CR) selection  
P
0: Droop pulses are cleared on the leading edge.  
1: While on, droop pulses are always cleared.  
5 - 17  
5. PARAMETERS  
Initial  
value  
Setting Control  
range mode  
Class No. Symbol  
Name and function  
Unit  
43  
*DI2 Input signal selection 2 (CN1B-5)  
0111  
Refer to P S T  
Name  
This parameter is unavailable when parameter No.42 is set to assign  
the control change (LOP) to CN1B-pin 5.  
and  
Allows any input signal to be assigned to CN1B-pin 5.  
Note that the setting digit and assigned signal differ according to the  
control mode.  
function  
column.  
0
Position  
control mode  
Speed control  
mode  
Input signals of  
CN1B-pin 5  
selected.  
Torque control mode  
Signals that may be assigned in each control mode are indicated  
below by their symbols.  
Setting of any other signal will be invalid.  
(Note) Control mode  
Set value  
P
S
T
0
SON  
RES  
PC  
SON  
RES  
PC  
SON  
RES  
1
2
3
TL  
TL  
4
CR  
CR  
CR  
SP1  
SP2  
RS2  
RS1  
SP3  
5
SP1  
SP2  
ST1  
ST2  
SP3  
6
7
8
9
A
B
C
D
E
CM1  
CM2  
TL1  
TL1  
TL1  
CDP  
CDP  
CDP  
Note. P: Position control mode  
S: Speed control mode  
T: Torque control mode  
44  
*DI3 Input signal selection 3 (CN1B-14)  
0222  
Refer to P S T  
Name  
Allows any input signal to be assigned to CN1B-pin 14.  
The assignable signals and setting method are the same as in input  
signal selection 2 (parameter No. 43).  
and  
function  
column.  
0
Position  
control mode  
Speed control  
mode  
Input signals of  
CN1B-pin 14  
selected.  
Torque control mode  
This parameter is unavailable when parameter No. 42 is set to  
assign the control change (LOP) to CN1B-pin 14.  
5 - 18  
5. PARAMETERS  
Initial  
value  
Setting Control  
range mode  
Class No. Symbol  
Name and function  
Input signal selection 4 (CN1A-8)  
Allows any input signal to be assigned to CN1A-pin 8.  
The assignable signals and setting method are the same as in input  
signal selection 2 (parameter No. 43).  
Unit  
45  
46  
47  
*DI4  
*DI5  
*DI6  
0665  
0770  
0883  
Refer to P S T  
Name  
and  
function  
column.  
0
Position  
control mode  
Speed control  
mode  
Input signals of  
CN1A-pin 8  
selected.  
Torque control mode  
This parameter is unavailable when parameter No. 42 is set to  
assign the control change (LOP) to CN1 A-pin 8.  
Input signal selection 5 (CN1B-7)  
Allows any input signal to be assigned to CN1B-pin 7.  
The assignable signals and setting method are the same as in input  
signal selection 2 (parameter No. 43).  
Refer to P S T  
Name  
and  
function  
column.  
0
Position  
control mode  
Speed control  
mode  
Input signals of  
CN1B-pin 7  
selected.  
Torque control mode  
This parameter is unavailable when parameter No. 42 is set to  
assign the control change (LOP) to CN1 B-pin 7.  
Input signal selection 6 (CN1B-8)  
Allows any input signal to be assigned to CN1B-pin 8.  
The assignable signals and setting method are the same as in input  
signal selection 2 (parameter No. 43).  
Refer to P S T  
Name  
and  
function  
column.  
0
Position  
control mode  
Speed control  
mode  
Input signals of  
CN1B-pin 8  
selected.  
Torque control mode  
This parameter is unavailable when parameter No. 42 is set to  
assign the control change (LOP) to CN1B-pin 8.  
When "Used in absolute position detection system" is selected in  
parameter No. 1, CN1B-pin 8 is in the ABS transfer mode (ABSM).  
(Refer to section 15.5)  
Input signal selection 7 (CN1B-9)  
48  
*DI7  
0994  
Refer to P S T  
Name  
Allows any input signal to be assigned to CN1B-pin 9.  
The assignable signals and setting method are the same as in input  
signal selection 2 (parameter No. 43).  
and  
function  
column.  
0
Position  
control mode  
Speed control  
mode  
Input signals of  
CN1B-pin 9  
selected.  
Torque control mode  
This parameter is unavailable when parameter No. 42 is set to  
assign the control change (LOP) to CN1B-pin 9.  
When "Used in absolute position detection system" is selected in  
parameter No. 1, CN1B-pin 9 is in the ABS request mode (ABSR).  
(Refer to section 15.5)  
5 - 19  
5. PARAMETERS  
Initial  
value  
Setting Control  
range mode  
Class No. Symbol  
Name and function  
Unit  
Output signal selection 1  
Used to select the connector pins to output the alarm code, warning  
(WNG) and battery warning (BWNG).  
49 *DO1  
0000  
Refer to P S T  
Name  
and  
function  
column.  
0
Setting of alarm code output  
The alarm code output and the following functions are  
exclusive, so the simultaneous use is not possible.  
If set, the parameter error alarm (AL.37) occurs.  
Absolute position detection system  
Signal assignment function of the electromagnetic  
interlock (MBR) to pin CN1B-19  
Connector pins  
CN1A-18  
Set  
value  
CN1B-19  
CN1A-19  
0
1
ZSP  
INP or SA  
RD  
Alarm code is output at alarm occurrence.  
(Note) Alarm code  
Alarm  
display  
Name  
CN1B CN1A CN1A  
pin 19 pin 18 pin 19  
88888 Watchdog  
AL.12 Memory error 1  
AL.13 Clock error  
AL.15 Memory error 2  
AL.17 Board error 2  
AL.19 Memory error 3  
AL.37 Parameter error  
0
0
0
AL.8A Serial communication time-out error  
AL.8E Serial communication error  
AL.30 Regenerative error  
AL.33 Overvoltage  
0
0
0
1
1
0
AL.10 Undervoltage  
AL.45 Main circuit device overheat  
AL.46 Servo motor overheat  
AL.50 Overload 1  
0
1
1
AL.51 Overload 2  
AL.24 Main circuit  
AL.32 Overcurrent  
AL.31 Overspeed  
AL.35 Command pulse frequency error  
AL.52 Error excessive  
1
1
0
0
0
1
AL.16 Encoder error 1  
AL.1A Motor combination error  
AL.20 Encoder error 2  
1
1
0
AL.25 Absolute position erase  
Note. 0: off  
1: on  
Setting of warning (WNG) output  
Select the connector pin to output warning. The old  
signal before selection will be unavailable.  
A parameter error (AL. 27) will occur if the connector  
pin setting is the same as that in the third digit.  
Set  
value  
Connector pin No.  
0
1
2
3
4
5
Not output  
CN1A-19  
CN1B-18  
CN1A-18  
CN1B-19  
CN1B-6  
Setting of battery warning (BWNG) output  
Select the connector pin to output battery warning.  
The old signal before selection will be unavailable. Set  
this function as in the second digit of this parameter.  
Parameter No. 1 setting has priority. A parameter  
error (AL. 37) will occur if the connector pin setting is  
the same as that in the second digit.  
5 - 20  
5. PARAMETERS  
Initial  
value  
Setting Control  
range mode  
Class No. Symbol  
Name and function  
Unit  
50  
51  
For manufacturer setting  
Do not change this value by any means.  
*OP6 Function selection 6  
0000  
0000  
Refer to P S T  
Name  
Used to select the operation to be performed when the reset (RES)  
switches on. This parameter is invalid (base circuit is shut off) in the  
absolute position detection system.  
and  
function  
column.  
0
0 0  
Operation to be performed when the  
reset (RES) switches on  
0: Base circuit shut off  
1: Base circuit not shut off  
52  
53  
For manufacturer setting  
0000  
0000  
Do not change this value by any means.  
*OP8 Function selection 8  
Used to select the protocol of serial communication.  
Refer to P S T  
Name  
and  
0
0
function  
column.  
Protocol checksum selection  
0: Yes (checksum added)  
1: No (checksum not added)  
Protocol checksum selection  
0: With station numbers  
1: No station numbers  
54  
*OP9 Function selection 9  
0000  
Refer to P S T  
Name  
Use to select the command pulse rotation direction, encoder output  
pulse direction and encoder pulse output setting.  
and  
function  
column.  
0
Servo motor rotation direction changing  
Changes the servo motor rotation  
direction for the input pulse train.  
Servo motor rotation direction  
Set value  
At forward rotation  
pulse input (Note)  
At reverse rotation  
pulse input (Note)  
0
1
CW  
CCW  
CW  
CCW  
Note. Refer to section 3.4.1 (1) (a).  
Encoder pulse output phase changing  
Changes the phases of A, B-phase encoder pulses output .  
Servo motor rotation direction  
Set value  
CCW  
CW  
A-phase  
B-phase  
A-phase  
B-phase  
0
A-phase  
B-phase  
A-phase  
B-phase  
1
Encoder output pulse setting selection (refer to parameter No. 27)  
0: Output pulse designation  
1: Division ratio setting  
5 - 21  
5. PARAMETERS  
Initial  
value  
Setting Control  
Class No. Symbol  
Name and function  
Unit  
range  
mode  
55  
*OPA Function selection A  
0000  
Refer to  
Name  
P
Used to select the position command acceleration/deceleration time  
constant (parameter No. 7) control system.  
and  
function  
column.  
0 0  
0
Position command acceleration/deceleration  
time constant control  
0: Primary delay  
1: Linear acceleration/deceleration  
56  
SIC  
Serial communication time-out selection  
0
P S T  
0
Used to set the communication protocol time-out period in [s].  
When you set "0", time-out check is not made.  
s
1 to 60  
57  
58  
For manufacturer setting  
10  
Do not change this value by any means.  
NH1 Machine resonance suppression filter 1  
Used to selection the machine resonance suppression filter.  
(Refer to section 8.1)  
0000  
Refer to P S T  
Name  
and  
function  
column.  
0
Notch frequency selection  
Set "00" when you have set adaptive vibration  
suppression control to be "valid" or "held"  
(parameter No. 60:  
1
or  
2
).  
Setting Frequency Setting Frequency Setting Frequency Setting Frequency  
value  
value  
value  
value  
00  
Invalid  
4500  
2250  
1500  
1125  
900  
08  
562.5  
500  
10  
281.3  
264.7  
250  
18  
187.5  
180  
01  
09  
11  
19  
02  
0A  
0B  
0C  
0D  
0E  
0F  
450  
12  
1A  
1B  
1C  
1D  
1E  
1F  
173.1  
166.7  
160.1  
155.2  
150  
03  
409.1  
375  
13  
236.8  
225  
04  
14  
05  
346.2  
321.4  
300  
15  
214.3  
204.5  
195.7  
06  
750  
16  
07  
642.9  
17  
145.2  
Notch depth selection  
Setting  
value  
Depth  
Gain  
0
1
40dB  
14dB  
Deep  
to  
2
3
8dB  
4dB  
Shallow  
59  
NH2 Machine resonance suppression filter 2  
0000  
Refer to P S T  
Name  
Used to set the machine resonance suppression filter.  
and  
0
function  
column.  
Notch frequency  
Same setting as in parameter No. 58  
However, you need not set "00" if you have  
set adaptive vibration suppression control to  
be "valid" or "held".  
Notch depth  
Same setting as in parameter No. 58  
5 - 22  
5. PARAMETERS  
Initial  
value  
Setting Control  
range mode  
Class No. Symbol  
Name and function  
Unit  
60  
LPF Low-pass filter adaptive vibration suppression control  
Used to selection the low-pass filter adaptive vibration suppression  
control. (Refer to chapter 8)  
0000  
Refer to P S T  
Name  
and  
function  
column.  
0
Low-pass filter selection  
0: Valid (Automatic adjustment)  
1: Invalid  
When you choose "valid", the filter of the handwidth  
represented by the following expression is set automatically  
For 1kW or less  
VG2 setting 10  
[H ]  
z
2
(1 GD2 setting 0.1)  
For 2kW or more  
VG2 setting  
(1 GD2 setting 0.1)  
5
[H ]  
z
2
Adaptive vibration suppression control selection  
Choosing "valid" or "held" in adaptive vibration  
suppression control selection makes the machine  
resonance control filter 1 (parameter No. 58) invalid.  
0: Invalid  
1: Valid  
Machine resonance frequency is always detected  
and the filter is generated in response to resonance to  
suppress machine vibration.  
2: Held  
The characteristics of the filter generated so far are held,  
and detection of machine resonance is stopped.  
Adaptive vibration suppression control sensitivity selection  
Used to set the sensitivity of machine resonance detection.  
0: Normal  
1: Large sensitivity  
61 GD2B Ratio of load inertia moment to servo motor inertia moment 2  
Used to set the ratio of load inertia moment to servo motor inertia  
moment when gain changing is valid.  
70  
0.1  
0
to  
P S  
P
times  
3000  
10  
62 PG2B Position control gain 2 changing ratio  
Used to set the ratio of changing the position control gain 2 when  
gain changing is valid.  
100  
%
%
%
to  
200  
Made valid when auto tuning is invalid.  
63 VG2B Speed control gain 2 changing ratio  
Used to set the ratio of changing the speed control gain 2 when gain  
changing is valid.  
100  
100  
10  
to  
P S  
P S  
200  
Made valid when auto tuning is invalid.  
64  
VICB Speed integral compensation changing ratio  
50  
to  
Used to set the ratio of changing the speed integral compensation  
when gain changing is valid. Made valid when auto tuning is invalid.  
1000  
5 - 23  
5. PARAMETERS  
Initial  
value  
Setting Control  
Class No. Symbol  
Name and function  
Unit  
range  
mode  
65  
*CDP Gain changing selection  
0000  
Refer to  
Name  
P S  
Used to select the gain changing condition. (Refer to section 8.3)  
and  
0 0 0  
function  
column.  
Gain changing selection  
Gains are changed in accordance with the settings  
of parameters No. 61 to 64 under any of the following  
conditions:  
0: Invalid  
1: Gain changing (CDP) signal is ON  
2: Command frequency is equal to higher than  
parameter No. 66 setting or more  
3: Droop pulse value is equal to higher than  
parameter No. 66 setting or more  
4: Servo motor speed is equal to higher than  
parameter No. 66 setting or more  
66  
CDS Gain changing condition  
10  
1
kpps  
10  
to  
P S  
Used to set the value of gain changing condition (command  
frequency, droop pulses, servo motor speed) selected in parameter  
No. 65.The set value unit changes with the changing condition item.  
(Refer to section 8.5)  
pulse  
r/min 9999  
67  
68  
CDT Gain changing time constant  
ms  
0
to  
P S  
Used to set the time constant at which the gains will change in  
response to the conditions set in parameters No. 65 and 66.  
(Refer to section 8.5)  
100  
For manufacturer setting  
0
1
Do not change this value by any means.  
69 CMX2 Command pulse multiplying factor numerator 2  
Used to set the multiplier for the command pulse.  
0 1  
to  
P
P
P
Setting "0" automatically sets the connected motor resolution.  
70 CMX3 Command pulse multiplying factor numerator 3  
Used to set the multiplier for the command pulse.  
65535  
0 1  
1
1
to  
Setting "0" automatically sets the connected motor resolution.  
71 CMX4 Command pulse multiplying factor numerator 4  
Used to set the multiplier for the command pulse.  
65535  
0 1  
to  
Setting "0" automatically sets the connected motor resolution.  
65535  
72  
SC4 Internal speed command 4  
Used to set speed 4 of internal speed commands.  
200  
r/min 0 to in-  
stanta-  
neous  
S
T
Internal speed limit 4  
permi-  
Used to set speed 4 of internal speed limits.  
ssible  
speed  
5 - 24  
5. PARAMETERS  
Initial  
value  
Setting Control  
Class No. Symbol  
Name and function  
Unit  
range  
mode  
0 to in-  
stanta-  
neous  
permi-  
ssible  
73  
74  
75  
SC5 Internal speed command 5  
300  
500  
800  
r/min  
S
Used to set speed 5 of internal speed commands.  
Internal speed limit 5  
T
S
T
S
Used to set speed 5 of internal speed limits.  
speed  
0 to in-  
stanta-  
neous  
permi-  
ssible  
SC6 Internal speed command 6  
r/min  
r/min  
Used to set speed 6 of internal speed commands.  
Internal speed limit 6  
Used to set speed 6 of internal speed limits.  
speed  
0 to in-  
stanta-  
neous  
permi-  
ssible  
SC7 Internal speed command 7  
Used to set speed 7 of internal speed commands.  
Internal speed limit 7  
T
Used to set speed 7 of internal speed limits.  
speed  
76  
TL2 Internal torque limit 2  
100  
%
0
P S T  
Set this parameter to limit servo motor torque on the assumption  
that the maximum torque is 100[%].  
to  
100  
When 0 is set, torque is not produced. (Refer to section 3.4.1 (5))  
For manufacturer setting  
77  
78  
79  
80  
81  
82  
83  
84  
00  
10000  
10  
Do not change this value by any means.  
10  
100  
100  
100  
0000  
5 - 25  
5. PARAMETERS  
5.2 Detailed description  
5.2.1 Electronic gear  
Wrong setting can lead to unexpected fast rotation, causing injury.  
POINT  
CAUTION  
1
50  
CMX  
CDV  
The guideline of the electronic gear setting range is  
500.  
If the set value is outside this range, noise may be generated during  
acceleration/ deceleration or operation may not be performed at the preset  
speed and/or acceleration/deceleration time constants.  
Always set the electronic gear with servo off state to prevent unexpected  
operation due to improper setting.  
(1) Concept of electronic gear  
The machine can be moved at any multiplication factor to input pulses.  
Motor  
CMX  
CDV  
Deviation  
counter  
CMX  
CDV  
Parameter No.3  
Parameter No.4  
Feedback pulse  
Electronic gear  
Encoder  
The following setting examples are used to explain how to calculate the electronic gear.  
POINT  
The following specification symbols are required to calculate the electronic  
gear  
Pb : Ball screw lead [mm]  
n
: Reduction ratio  
Pt : Servo motor resolution [pulses/rev]  
Travel per command pulse [mm/pulse]  
Travel per servo motor revolution [mm/rev]  
Angle per pulse [ /pulse]  
0:  
S
:
:
: Angle per revolution [ /rev]  
(a) For motion in increments of 10 m per pulse  
Machine specifications  
n
n
NL/NM  
1/2  
NL  
Pb 10[mm]  
NM  
Ball screw lead Pb 10 [mm]  
Reduction ratio: n 1/2  
Servo motor  
131072 [pulse/rev]  
Servo motor resolution: Pt 131072 [pulses/rev]  
CMX  
CDV  
Pt  
S
Pt  
n Pb  
131072  
1/2 10  
262144 32768  
1000 125  
3
0
0
10 10  
Hence, set 32768 to CMX and 125 to CDV.  
5 - 26  
5. PARAMETERS  
(b) Conveyor setting example  
For rotation in increments of 0.01 per pulse  
Servo motor  
131072 [pulse/rev]  
Machine specifications  
Table  
Table : 360 /rev  
Reduction ratio: n 4/64  
Timing belt : 4/64  
Servo motor resolution: Pt 131072 [pulses/rev]  
CMX  
CDV  
Pt  
131072  
4/64 360  
65536  
1125  
................................................................................. (5.1)  
0.01  
Since CMX is not within the setting range in this status, it must be reduced to the lowest term.  
When CMX has been reduced to a value within the setting range, round off the value to the  
nearest unit.  
CMX 65536  
1125  
26214.4  
450  
26214  
450  
CDV  
Hence, set 26214 to CMX and 450 to CDV.  
POINT  
When “0” is set to parameter No.3 (CMX), CMX is automatically set to the  
servo motor resolution. Therefore, in the case of Expression (5.2), setting  
0 to CMX and 2250 to CDX concludes in the following expression:  
CMX/CDV=131072/2250, and electric gear can be set without the  
necessity to reduce the fraction to the lowest term.  
For unlimited one-way rotation, e.g. an index table, indexing positions will  
be missed due to cumulative error produced by rounding off.  
For example, entering a command of 36000 pulses in the above example  
causes the table to rotate only the following:  
26214  
450  
1
4
36000  
360  
359.995  
131072 64  
Therefore, indexing cannot be done in the same position on the table.  
(2) Instructions for reduction  
The calculated value before reduction must be as near as possible to the calculated value after  
reduction.  
In the case of (1) (b) in this section, an error will be smaller if reduction is made to provide no fraction  
for CDV. The fraction of Expression (5.1) before reduction is calculated as follows.  
CMX 65536  
.................................................................................................................... (5.2)  
58.25422  
1125  
CDV  
The result of reduction to provide no fraction for CMX is as follows.  
CMX 65536  
1125  
32768  
562.5  
32768  
563  
.................................................................................... (5.3)  
58.20249  
CDV  
The result of reduction to provide no fraction for CDV is as follows.  
CMX  
CDV  
65536  
1125  
26214.4 26214  
450 450  
.................................................................................. (5.4)  
58.25333  
As a result, it is understood that the value nearer to the calculation result of Expression (5.2) is the  
result of Expression (5.4). Accordingly, the set values of (1) (b) in this section are CMX 26214,  
CDV 450.  
5 - 27  
5. PARAMETERS  
(3) Setting for use of A1SD75P  
The A1SD75P also has the following electronic gear parameters. Normally, the servo amplifier side  
electronic gear must also be set due to the restriction on the command pulse frequency (differential  
400kpulse/s, open collector 200kpulse/s).  
AP : Number of pulses per motor revolution  
AL : Moving distance per motor revolution  
AM: Unit scale factor  
A1SD75P  
Servo amplifier  
Command  
value  
AP  
AL AM  
CMX  
CDV  
Deviation  
counter  
Control  
unit  
Command  
pulse  
Electronic gear  
Electronic gear  
Feedback pulse  
Servo motor  
The resolution of the servo motor is 131072 pulses/rev. For example, the pulse command needed to  
rotate the servo motor is as follows.  
Servo motor speed [r/min]  
Required pulse command  
2000  
3000  
131072 2000/60 4369066 pulse/s  
131072 3000/60 6553600 pulse/s  
For the A1SD75P, the maximum value of the pulse command that may be output is 200kpulse/s in the  
open collector system or 400kpulse/s in the differential line driver system. Hence, either of the servo  
motor speeds exceeds the maximum output pulse command of the A1SD75P.  
Use the electronic gear of the servo amplifier to run the servo motor under the maximum output pulse  
command of the A1SD75P.  
5 - 28  
5. PARAMETERS  
To rotate the servo motor at 3000r/min in the open collector system (200kpulse/s), set the electronic  
gear as follows  
CMX N0  
CDV 60  
f
pt  
f
: Input pulses [pulse/s]  
N : Servo motor speed [r/min]  
0
Pt : Servo motor resolution [pulse/rev]  
CMX 3000  
200 10 3  
131072  
60  
CMX 3000 131072  
60 200  
CDV  
3000 131072 4096  
60 200000 125  
CDV  
The following table indicates the electronic gear setting example (ball screw lead 10mm) when the  
A1SD75P is used in this way.  
Rated servo motor speed  
Input system  
3000r/min  
Differential Open  
2000r/min  
Differential  
Open  
collector  
200  
line driver  
500  
collector  
200  
line driver  
500  
Max. input pulse frequency [kpulse/s]  
Feedback pulse/revolution [pulse/rev]  
Electronic gear (CMX/CDV)  
Servo amplifier  
131072  
4096/125  
131072  
8192/375  
2048/125  
400  
4096/375  
400  
Command pulse frequency [kpulse/s] (Note)  
Number of pulses per servo motor revolution as  
viewed from A1SD75P[pulse/rev]  
200  
200  
4000  
8000  
6000  
12000  
AP  
AL  
AM  
AP  
AL  
AM  
1
1
1
1
Minimum command unit  
1
1
1
1
1
1
1
1
A1SD75P  
1pulse  
Electronic gear  
4000  
100.0[ m]  
10  
8000  
100.0[ m]  
10  
6000  
100.0[ m]  
10  
12000  
100.0[ m]  
10  
Minimum command unit  
0.1 m  
Note. Command pulse frequency at rated speed.  
5 - 29  
5. PARAMETERS  
5.2.2 Analog monitor  
The servo status can be output to two channels in terms of voltage. The servo status can be monitored  
using an ammeter.  
(1) Setting  
Change the following digits of parameter No.17.  
Parameter No. 17  
0
0
Analog monitor (MO1) output selection  
(Signal output to across MO1-LG)  
Analog monitor (MO2) output selection  
(Signal output to across MO2-LG)  
Parameters No.31 and 32 can be used to set the offset voltages to the analog output voltages. The  
setting range is between 999 and 999mV.  
Parameter No.  
Description  
Setting range [mV]  
31  
Used to set the offset voltage for the analog monitor 1 (MO1).  
Used to set the offset voltage for the analog monitor 2 (MO2)  
output.  
999 to 999  
32  
5 - 30  
5. PARAMETERS  
(2) Set content  
The servo amplifier is factory-set to output the servo motor speed to analog monitor 1 (MO1) and the  
torque to analog monitor (MO2). The setting can be changed as listed below by changing the  
parameter No.17 value.  
Refer to Appendix 2 for the measurement point.  
Setting  
Output item  
Description  
Setting  
Output item  
Droop pulses  
(Note 1)  
Description  
CCW direction  
CCW direction  
0
Servo motor speed  
6
10[V]  
8[V]  
( 10V/128pulse)  
128[pulse]  
Max. speed  
0
0
Max. speed  
8[V]  
128[pulse]  
10[V]  
CCW direction  
CW direction  
10[V]  
CW direction  
8[V]  
Driving in CCW direction  
1
Torque (Note 2)  
7
Droop pulses  
(Note 1)  
( 10V/2048pulse)  
2048[pulse]  
Max. torque  
0
0
2048[pulse]  
Max. torque  
10[V]  
CCW direction  
8[V]  
Driving in CW direction  
CW direction  
10[V]  
2
Servo motor speed  
8
Droop pulses  
(Note 1)  
CW  
CCW  
direction  
8[V]  
direction  
( 10V/8192pulse)  
8192[pulse]  
0
8192[pulse]  
Max. speed  
0
Max. speed  
10[V]  
CCW direction  
CW direction  
10[V]  
3
Torque(Note2)  
9
Droop pulses  
(Note 1)  
Driving in  
CW direction 8[V]  
Driving in  
CCW direction  
( 10V/32768pulse)  
32768[pulse]  
0
32768[pulse]  
Max. torque  
8[V]  
Max. command  
current  
0
Max. torque  
10[V]  
CCW direction  
CW direction  
10[V]  
CCW direction  
4
Current command  
A
Droop pulses  
(Note 1)  
( 10V/131072pulse)  
(Max. torque  
command)  
131072[pulse]  
0
0
Max. command  
current  
(Max. torque  
131072[pulse]  
10[V]  
command)  
8[V]  
CW direction  
8[V]  
CW direction  
10[V]  
CCW direction  
5
Command pulse  
frequency  
B
Bus voltage  
500kpps  
0
500kpps  
0
400[V]  
10[V]  
CW direction  
Note 1. Encoder pulse unit.  
2. 8V is outputted at the maximum torque.However, when parameter No.28 76 are set to limit torgue, 8V is outputted at the  
torque highly limited.  
5 - 31  
5. PARAMETERS  
(3) Analog monitor block diagram  
5 - 32  
5. PARAMETERS  
5.2.3 Using forward/reverse rotation stroke end to change the stopping pattern  
The stopping pattern is factory-set to make a sudden stop when the forward/reverse rotation stroke end is  
made valid. A slow stop can be made by changing the parameter No. 22 value.  
Parameter No.22 Setting  
Stopping method  
Sudden stop  
0
Position control mode : Motor stops with droop pulses cleared.  
Speed control mode : Motor stops at deceleration time constant of zero.  
Slow stop  
(initial value)  
Position control mode : The motor is decelerated to a stop in accordance with the  
parameter No. 7 value.  
1
Speed control mode : The motor is decelerated to a stop in accordance with the  
parameter No. 12 value.  
5.2.4 Alarm history clear  
The servo amplifier stores one current alarm and five past alarms from when its power is switched on  
first. To control alarms which will occur during operation, clear the alarm history using parameter No.16  
before starting operation.  
Clearing the alarm history automatically returns to "  
0 ".  
After setting, this parameter is made valid by switch power from OFF to ON.  
Parameter No.16  
Alarm history clear  
0: Invalid (not cleared)  
1: Valid (cleared)  
5 - 33  
5. PARAMETERS  
5.2.5 Position smoothing  
By setting the position command acceleration/deceleration time constant (parameter No.7), you can run  
the servo motor smoothly in response to a sudden position command.  
The following diagrams show the operation patterns of the servo motor in response to a position command  
when you have set the position command acceleration/deceleration time constant.  
Choose the primary delay or linear acceleration/deceleration in parameter No. 55 according to the  
machine used.  
(1) For step input  
: Input position command  
: Position command after  
filtering for primary delay  
: Position command after filtering  
for linear acceleration/deceleration  
: Position command acceleration/  
t
deceleration time constant (parameter No. 7)  
t
t
Time  
(3t)  
(2) For trapezoidal input  
(3t)  
t
: Input position command  
: Position command after filtering  
for linear acceleration/deceleration  
: Position command after  
filtering for primary delay  
t
: Position command acceleration/  
deceleration time constant  
(parameter No. 7)  
t
Time  
(3t)  
5 - 34  
6. DISPLAY AND OPERATION  
6. DISPLAY AND OPERATION  
6.1 Display flowchart  
Use the display (5-digit, 7-segment LED) on the front panel of the servo amplifier for status display,  
parameter setting, etc. Set the parameters before operation, diagnose an alarm, confirm external  
sequences, and/or confirm the operation status. Press the "MODE" "UP" or "DOWN" button once to move to  
the next screen.  
To refer to or set the expansion parameters, make them valid with parameter No. 19 (parameter write  
disable).  
button  
MODE  
Expansion  
parameters 1  
Expansion  
parameters 2  
Basic  
Status display  
Diagnosis  
Alarm  
parameters  
(Note)  
Cumulative feedback  
pulses [pulse]  
Sequence  
Current alarm  
Last alarm  
Parameter No. 0  
Parameter No. 1  
Parameter No. 20  
Parameter No. 21  
Parameter No. 50  
Parameter No. 51  
External I/O  
signal display  
Motor speed  
[r/min]  
Droop pulses  
[pulse]  
Output signal  
forced output  
Second alarm in past  
UP  
Cumulative command  
pulses [pulse]  
Test operation  
Jog feed  
Third alarm in past  
Fourth alarm in past  
DOWN  
Command pulse  
frequency [kpps]  
Test operation  
Positioning operation  
Parameter No. 18  
Parameter No. 19  
Parameter No. 48  
Parameter No. 49  
Parameter No. 83  
Parameter No. 84  
Speed command voltage  
Speed limit voltage[mV]  
Test operation  
Motor-less operation  
Fifth alarm in past  
Sixth alarm in past  
Parameter error No.  
Test operation  
Torque limit voltage  
Torque command voltage  
[mV]  
Machine analyzer operation  
Regenerative load  
ratio [%]  
Software version L  
Software version H  
Automatic VC offset  
Effective load ratio  
[%]  
Peak load ratio  
[%]  
Instantaneous torque  
[%]  
Motor series ID  
Motor type ID  
Encoder ID  
Within one-revolution  
position low [pulse]  
Within one-revolution  
position, high [100 pulses]  
ABS counter  
[rev]  
Load inertia moment  
ratio [times]  
Bus voltage [V]  
Note. The initial status display at power-on depends on the control mode.  
Position control mode: Cumulative feedback pulses(C), Speed control mode: Motor speed(r),  
Torque control mode: Torque command voltage(U)  
Also, parameter No. 18 can be used to change the initial indication of the status display at power-on.  
6 - 1  
6. DISPLAY AND OPERATION  
6.2 Status display  
The servo status during operation is shown on the 5-digit, 7-segment LED display. Press the "UP" or  
"DOWN" button to change display data as desired. When the required data is selected, the corresponding  
symbol appears. Press the "SET" button to display its data. At only power-on, however, data appears after  
the symbol of the status display selected in parameter No. 18 has been shown for 2[s].  
The servo amplifier display shows the lower five digits of 16 data items such as the servo motor speed.  
6.2.1 Display examples  
The following table lists display examples.  
Displayed data  
Item  
Status  
Servo amplifier display  
Forward rotation at 3000r/min  
Servo motor  
speed  
Reverse rotation at 3000r/min  
Reverse rotation is indicated by " ".  
Load inertia  
moment  
15.5 times  
11252pulse  
Multi-  
revolution  
counter  
12566pulse  
Lit  
Negative value is indicated by the lit decimal points in the upper four  
digits.  
6 - 2  
6. DISPLAY AND OPERATION  
6.2.2 Status display list  
The following table lists the servo statuses that may be shown.  
Refer to Appendix 2 for the measurement point.  
Display  
range  
Name  
Symbol  
Unit  
Description  
Cumulative feedback  
pulses  
C
pulse  
Feedback pulses from the servo motor encoder are counted and  
displayed. The value in excess of 99999 is counted, bus since the  
servo amplifier display is five digits, it shows the lower five digits of  
the actual value. Press the "SET" button to reset the display value to  
zero.  
99999  
to  
99999  
Reverse rotation is indicated by the lit decimal points in the upper  
four digits.  
Servo motor speed  
Droop pulses  
r
r/min  
pulse  
The servo motor speed is displayed.  
The value rounded off is displayed in 0.1r/min.  
5400  
to  
5400  
99999  
to  
E
The number of droop pulses in the deviation counter is displayed.  
When the servo motor is rotating in the reverse direction, the  
decimal points in the upper four digits are lit.  
Since the servo amplifier display is five digits, it shows the lower five  
digits of the actual value.  
99999  
The number of pulses displayed is not yet multiplied by the electronic  
gear.  
Cumulative command  
pulses  
P
pulse  
The position command input pulses are counted and displayed.  
As the value displayed is not yet multiplied by the electronic gear  
(CMX/CDV), it may not match the indication of the cumulative  
feedback pulses.  
99999  
to  
99999  
The value in excess of 99999 is counted, but since the servo  
amplifier display is five digits, it shows the lower five digits of the  
actual value. Press the "SET" button to reset the display value to  
zero. When the servo motor is rotating in the reverse direction, the  
decimal points in the upper four digits are lit.  
The frequency of the position command input pulses is displayed.  
The value displayed is not multiplied by the electronic gear  
(CMX/CDV).  
(1) Torque control mode  
Analog speed limit (VLA) voltage is displayed.  
(2) Speed control mode  
Analog speed command (VC) voltage is displayed.  
(1) Position control mode, speed control mode  
Analog torque limit (TLA) voltage is displayed.  
Command pulse  
frequency  
n
F
kpps  
V
800  
to  
800  
10.00  
to  
10.00  
Analog speed  
command voltage  
Analog speed limit  
voltage  
Analog torque  
command voltage  
Analog torque limit  
voltage  
U
V
0
to  
10.00  
10.00  
to  
(2) Torque control mode  
Analog torque command (TLA) voltage is displayed.  
10.00  
Regenerative load  
ratio  
L
J
%
%
The ratio of regenerative power to permissible regenerative power is  
displayed in %.  
0
to  
100  
0
to  
300  
0
Effective load ratio  
Peak load ratio  
The continuous effective load torque is displayed.  
The effective value in the past 15 seconds is displayed relative to the  
rated torque of 100%.  
The maximum torque generated during acceleration/deceleration, etc.  
The highest value in the past 15 seconds is displayed relative to the  
rated torque of 100%.  
Torque that occurred instantaneously is displayed.  
The value of the torque that occurred is displayed in real time  
relative to the rate torque of 100%.  
b
%
to  
400  
400  
to  
Instantaneous torque  
T
%
400  
Within one-revolution  
position low  
Cy1  
pulse  
Position within one revolution is displayed in encoder pulses.  
The value returns to 0 when it exceeds the maximum number of  
pulses.  
0
to  
99999  
The value is incremented in the CCW direction of rotation.  
6 - 3  
6. DISPLAY AND OPERATION  
Display  
range  
Name  
Symbol  
Unit  
Description  
Within one-revolution  
position high  
Cy2  
100  
The within one-revolution position is displayed in 100 pulse  
increments of the encoder.  
0
to  
pulse  
The value returns to 0 when it exceeds the maximum number of  
pulses.  
1310  
The value is incremented in the CCW direction of rotation.  
Travel value from the home position in the absolute position  
detection systems is displayed in terms of the absolute position  
detectors counter value.  
ABS counter  
LS  
dC  
Pn  
rev  
32768  
to  
32767  
0.0  
Load inertia moment  
ratio  
Times The estimated ratio of the load inertia moment to the servo motor  
shaft inertia moment is displayed.  
to  
300.0  
0
Bus voltage  
V
The voltage (across P-N) of the main circuit converter is displayed.  
to  
450  
6.2.3 Changing the status display screen  
The status display item of the servo amplifier display shown at power-on can be changed by changing the  
parameter No. 18 settings.  
The item displayed in the initial status changes with the control mode as follows.  
Control mode  
Position  
Status display at power-on  
Cumulative feedback pulses  
Position/speed  
Speed  
Cumulative feedback pulses/servo motor speed  
Servo motor speed  
Speed/torque  
Torque  
Servo motor speed/analog torque command voltage  
Analog torque command voltage  
Torque/position Analog torque command voltage/cumulative feedback pulses  
6 - 4  
6. DISPLAY AND OPERATION  
6.3 Diagnostic mode  
Name  
Display  
Description  
Not ready.  
Indicates that the servo amplifier is being initialized or an alarm  
has occurred.  
Sequence  
Ready.  
Indicates that the servo was switched on after completion of  
initialization and the servo amplifier is ready to operate.  
Indicates the ON-OFF states of the external I/O signals.  
The upper segments correspond to the input signals and the  
lower segments to the output signals.  
Lit : ON  
Refer to section 6.6.  
External I/O signal  
display  
Extinguished : OFF  
The I/O signals can be changed using parameters No. 43 to 49.  
Output signal (DO)  
forced output  
The digital output signal can be forced on/off. For more  
information, refer to section 6.7.  
Jog operation can be performed when there is no command from  
the external command device.  
Jog feed  
For details, refer to section 6.8.2.  
The MR Configurator (servo configuration software MRZJW3-  
SETUP151E) is required for positioning operation. This operation  
cannot be performed from the operation section of the servo  
amplifier.  
Positioning  
operation  
Positioning operation can be performed once when there is no  
command from the external command device.  
Without connection of the servo motor, the servo amplifier  
provides output signals and displays the status as if the servo  
motor is running actually in response to the external input  
signal.  
Test  
operation  
mode  
Motorless  
operation  
For details, refer to section 6.8.4.  
Merely connecting the servo amplifier allows the resonance point  
of the mechanical system to be measured.  
The MR Configurator (servo configuration software MRZJW3-  
SETUP151E) is required for machine analyzer operation.  
Machine  
analyzer  
operation  
Software version low  
Software version high  
Indicates the version of the software.  
Indicates the system number of the software.  
If offset voltages in the analog circuits inside and outside the  
servo amplifier cause the servo motor to rotate slowly at the  
analog speed command (VC) or analog speed limit (VLA) of 0V,  
this function automatically makes zero-adjustment of offset  
voltages.  
When using this function, make it valid in the following  
procedure. Making it valid causes the parameter No. 29 value to  
be the automatically adjusted offset voltage.  
1) Press "SET" once.  
Automatic VC offset  
2) Set the number in the first digit to 1 with "UP"/"DOWN".  
3) Press "SET".  
You cannot use this function if the input voltage of VC or VLA  
is 0.4V or more.  
6 - 5  
6. DISPLAY AND OPERATION  
Name  
Display  
Description  
Press the "SET" button to show the motor series ID of the servo  
motor currently connected.  
Motor series  
For indication details, refer to the optional MELSERVO Servo  
Motor Instruction Manual.  
Press the "SET" button to show the motor type ID of the servo  
motor currently connected.  
Motor type  
Encoder  
For indication details, refer to the optional MELSERVO Servo  
Motor Instruction Manual.  
Press the "SET" button to show the encoder ID of the servo motor  
currently connected.  
For indication details, refer to the optional MELSERVO Servo  
Motor Instruction Manual.  
6 - 6  
6. DISPLAY AND OPERATION  
6.4 Alarm mode  
The current alarm, past alarm history and parameter error are displayed. The lower 2 digits on the  
display indicate the alarm number that has occurred or the parameter number in error. Display examples  
are shown below.  
Name  
Display  
Description  
Indicates no occurrence of an alarm.  
Current alarm  
Indicates the occurrence of overvoltage (AL.33).  
Flickers at occurrence of the alarm.  
Indicates that the last alarm is overload 1 (AL.50).  
Indicates that the second alarm in the past is overvoltage (AL.33).  
Indicates that the third alarm in the past is undervoltage (AL.10).  
Indicates that the fourth alarm in the past is overspeed (AL.31).  
Indicates that there is no fifth alarm in the past.  
Alarm history  
Indicates that there is no sixth alarm in the past.  
Indicates no occurrence of parameter error (AL.37).  
Indicates that the data of parameter No. 1 is faulty.  
Parameter error No.  
Functions at occurrence of an alarm  
(1) Any mode screen displays the current alarm.  
(2) Even during alarm occurrence, the other screen can be viewed by pressing the button in the operation  
area. At this time, the decimal point in the fourth digit remains flickering.  
(3) For any alarm, remove its cause and clear it in any of the following methods (for clearable alarms,  
refer to section 10.2.1).  
(a) Switch power OFF, then ON.  
(b) Press the "SET" button on the current alarm screen.  
(c) Turn on the alarm reset (RES).  
6 - 7  
6. DISPLAY AND OPERATION  
(4) Use parameter No. 16 to clear the alarm history.  
(5) Pressing "SET" on the alarm history display screen for 2s or longer shows the following detailed  
information display screen. Note that this is provided for maintenance by the manufacturer.  
(6) Press "UP" or "DOWN" to move to the next history.  
6.5 Parameter mode  
The parameters whose abbreviations are marked* are made valid by changing the setting and then  
switching power off once and switching it on again. Refer to section 5.1.2.  
(1) Operation example  
The following example shows the operation procedure performed after power-on to change the control  
mode (parameter No. 0) to the speed control mode.  
Using the "MODE" button, show the basic parameter screen.  
The parameter number is displayed.  
Press  
or  
UP DOWN  
to change the number.  
Press SET twice.  
The set value of the specified parameter number flickers.  
Press UP once.  
During flickering, the set value can be changed.  
Use  
(
or  
UP DOWN  
2: Speed control mode)  
.
Press SET to enter.  
/
UP DOWN  
To shift to the next parameter, press the  
button.  
When changing the parameter No. 0 setting, change its set value, then switch power off once and  
switch it on again to make the new value valid.  
(2) Expansion parameters  
To use the expansion parameters, change the setting of parameter No. 19 (parameter write disable).  
Refer to section 5.1.1.  
6 - 8  
6. DISPLAY AND OPERATION  
6.6 External I/O signal display  
The ON/OFF states of the digital I/O signals connected to the servo amplifier can be confirmed.  
(1) Operation  
Call the display screen shown after power-on.  
Using the "MODE" button, show the diagnostic screen.  
Press UP once.  
External I/O signal display screen  
(2) Display definition  
CN1B CN1B  
CN1B CN1B  
CN1A CN1B  
CN1B CN1B  
CN1B  
16  
15  
9
8
7
8
14  
5
17  
Input signals  
Always lit  
Output signals  
CN1A  
14  
CN1B  
18  
CN1B  
4
CN1A  
18  
CN1B  
6
CN1B  
19  
CN1A  
19  
Lit: ON  
Extinguished: OFF  
The 7-segment LED shown above indicates ON/OFF.  
Each segment at top indicates the input signal and each segment at bottom indicates the output  
signal. The signals corresponding to the pins in the respective control modes are indicated below.  
6 - 9  
6. DISPLAY AND OPERATION  
(a) Control modes and I/O signals  
Signal  
(Note 2) Symbols of I/O signals in control modes  
Related  
Connector  
Pin No.  
input/output  
(Note 1) I/O  
parameter  
P
P/S  
S
S/T  
T
T/P  
8
14  
18  
19  
I
O
O
O
O
I
CR  
OP  
CR/SP1  
OP  
SP1  
OP  
SP1  
OP  
SP1  
OP  
SP1/CR  
OP  
No.43 to 48  
CN1A  
INP  
RD  
INP/SA  
RD  
SA  
SA/  
/INP  
No.49  
No.49  
RD  
RD  
DO1  
RD  
DO1  
SON  
VLC  
SP2  
RD  
(Note 3) 4  
DO1  
SON  
TLC  
DO1  
DO1  
SON  
TLC  
SP2  
ST1  
ST2  
RES  
EMG  
LSP  
LSN  
ALM  
ZSP  
DO1  
5
6
SON  
TLC  
SON  
SON  
No.43 to 48  
No.49  
O
I
TLC/VLC  
LOP  
VLC/TLC  
LOP  
7
LOP  
No.43 to 48  
No.43 to 48  
No.43 to 48  
No.43 to 48  
8
I
PC  
TL  
PC/ST1  
TL/ST2  
RES  
ST1/RS2  
ST2/RS1  
RES  
RS2  
RS1  
RES  
EMG  
RS2/PC  
RS1/TL  
RES  
9
I
CN1B  
14  
15  
16  
17  
18  
19  
I
RES  
EMG  
LSP  
LSN  
ALM  
ZSP  
I
EMG  
LSP  
EMG  
EMG  
/LSP  
I
LSP/  
I
LSN  
LSN/  
/LSN  
ALM  
ZSP  
O
O
ALM  
ZSP  
ALM  
ALM  
ZSP  
No.49  
ZSP  
No.1 49  
Note 1. I: Input signal, O: Output signal  
2. P: Position control mode, S: Speed control mode, T: Torque control mode, P/S: Position/speed control change mode, S/T:  
Speed/torque control change mode, T/P: Torque/position control change mode  
3. CN1B-4 and CN1A-18 output signals are the same.  
(b) Symbol and signal names  
Symbol  
SON  
LSP  
LSN  
CR  
Signal name  
Symbol  
EMG  
LOP  
TLC  
VLC  
RD  
Signal name  
Servo-on  
Emergency stop  
Control change  
Limiting torque  
Limiting speed  
Ready  
Forward rotation stroke end  
Reverse rotation stroke end  
Clear  
SP1  
SP2  
PC  
Speed selection 1  
Speed selection 2  
ZSP  
Zero speed  
Proportion control  
Forward rotation start  
Reverse rotation start  
Forward rotation selection  
Reverse rotation selection  
Torque limit  
INP  
In position  
ST1  
ST2  
RS1  
RS2  
TL  
SA  
Speed reached  
Trouble  
ALM  
WNG  
OP  
Warning  
Encoder Z-phase pulse (open collector)  
Battery warning  
BWNG  
RES  
Reset  
6 - 10  
6. DISPLAY AND OPERATION  
(3) Default signal indications  
(a) Position control mode  
EMG(CN 1 B-15) Emergency stop  
TL (CN 1 B-9) Torque limit  
PC (CN 1 B-8) Proportional control  
CR (CN 1 A-8) Clear  
RES (CN 1 B-14) Reset  
SON(CN 1 B-5) Servo-on  
LSN (CN 1 B-17) Reverse rotation stroke end  
LSP (CN 1 B-16) Forward rotation stroke end  
Input signals  
Lit: ON  
Extinguished:OFF  
Output signals  
RD (CN 1 A-19) Ready  
INP (CN 1 A-18) In position  
ZSP (CN 1 B-19) Zero speed  
TLC (CN 1 B-6) Limiting torque  
DO1 (CN 1 B-4) In position  
ALM (CN 1 B-18) Trouble  
OP (CN 1 A-14) Encoder Z-phase pulse  
(b) Speed control mode  
EMG(CN 1 B-15) Emergency stop  
ST2 (CN 1 B-9) Reverse rotation start  
ST1 (CN 1 B-8) For ward rotation start  
SP2 (CN 1 B-7) Speed selection 2  
SP1 (CN 1 A-8) Speed selection 1  
RES (CN 1 B-14) Reset  
SON (CN 1 B-5) Servo-on  
LSN (CN 1 B-17) External emergency stop  
LSP (CN 1 B-16) Forward rotation stroke end  
Input signals  
Lit: ON  
Extinguished: OFF  
Output signals  
RD (CN 1 A-19) Ready  
SA (CN 1 A-18) Limiting speed  
ZSP (CN 1 B-19) Zero speed  
TLC (CN 1 B-6) Limiting torque  
DO1 (CN 1 B-4) Limiting speed  
ALM (CN 1 B-18) Trouble  
OP (CN 1 A-14) Encoder Z-phase pulse  
(c) Torque control mode  
EMG(CN 1 B-15) Emergency stop  
RS1 (CN 1 B-9) Forward rotation selection  
RS2 (CN 1 B-8) Reverse rotation selection  
SP2 (CN 1 B-7) Speed selection 2  
SP1 (CN 1 A-8) Speed selection 1  
RES (CN 1 B-14) Reset  
SON (CN 1 B-5) Servo-on  
Input signals  
Lit: ON  
Extinguished: OFF  
RD (CN 1 A-19) Ready  
Output signals  
ZSP (CN 1 B-19) Zero speed  
VLC (CN 1 B-6) Speed reached  
ALM (CN 1 B-18) Trouble  
OP (CN 1 A-14) Encoder Z-phase pulse  
6 - 11  
6. DISPLAY AND OPERATION  
6.7 Output signal (DO) forced output  
POINT  
When the servo system is used in a vertical lift application, turning on the  
electromagnetic brake interlock (MBR) after assigning it to pin CN1B-19  
will release the electromagnetic brake, causing a drop. Take drop  
preventive measures on the machine side.  
The output signal can be forced on/off independently of the servo status. This function is used for output  
signal wiring check, etc. This operation must be performed in the servo off state servo-on (SON).  
Operation  
Call the display screen shown after power-on.  
Using the "MODE" button, show the diagnostic screen.  
Press UP twice.  
Press SET for more than 2 seconds.  
Switch on/off the signal below the lit segment.  
Always lit  
Indicates the ON/OFF of the output signal. The correspondences  
between segments and signals are as in the output signals of the  
external I/O signal display.  
CN1A  
14  
CN1B CN1B CN1B CN1B CN1A CN1A  
18 19 18 19  
4
6
(Lit: ON, extinguished: OFF)  
Press MODE once.  
The segment above CN1A-pin 18 is lit.  
Press UP once.  
CN1A-pin 18 is switched on.  
(CN1A-pin 18-SG conduct.)  
Press DOWN once.  
CN1A-pin 18 is switched off.  
Press SET for more than 2 seconds.  
6 - 12  
6. DISPLAY AND OPERATION  
6.8 Test operation mode  
The test operation mode is designed to confirm servo operation and not to confirm  
machine operation. In this mode, do not use the servo motor with the machine.  
Always use the servo motor alone.  
CAUTION  
If any operational fault has occurred, stop operation using the emergency stop  
(EMG) signal.  
POINT  
The test operation mode cannot be used in the absolute position detection  
system. Use it after choosing "Incremental system" in parameter No. 1.  
The MR Configurator (servo configuration software) is required to perform  
positioning operation.  
Test operation cannot be performed if the servo-on (SON) is not turned  
OFF.  
6.8.1 Mode change  
Call the display screen shown after power-on. Choose jog operation/motor-less operation in the following  
procedure. Using the "MODE" button, show the diagnostic screen.  
Press UP three times.  
Press UP five times.  
Press SET for more  
than 2s.  
Press SET for more than 2s.  
When this screen  
appears, jog feed can  
be performed.  
When this screen is displayed,  
motor-less operation can be  
performed.  
Flickers in the test operation mode.  
6 - 13  
6. DISPLAY AND OPERATION  
6.8.2 Jog operation  
Jog operation can be performed when there is no command from the external command device.  
(1) Operation  
Connect EMG-SG to start jog operation and connect VDD-COM to use the internal power supply.  
Hold down the "UP" or "DOWN" button to run the servo motor. Release it to stop. When using the MR  
Configurator (servo configuration software), you can change the operation conditions. The initial  
conditions and setting ranges for operation are listed below.  
Item  
Initial setting  
200  
Setting range  
0 to instantaneous permissible speed  
0 to 50000  
Speed [r/min]  
Acceleration/deceleration time constant [ms]  
1000  
How to use the buttons is explained below.  
Button  
"UP"  
Description  
Press to start CCW rotation.  
Release to stop.  
Press to start CW rotation.  
Release to stop.  
"DOWN"  
If the communication cable is disconnected during jog operation performed by using the MR  
Configurator (servo configuration software), the servo motor will be decelerated to a stop.  
(2) Status display  
You can confirm the servo status during jog operation.  
Pressing the "MODE" button in the jog operation-ready status calls the status display screen. With this  
screen being shown, perform jog operation with the "UP" or "DOWN" button. Every time you press the  
"MODE" button, the next status display screen appears, and on completion of a screen cycle, pressing  
that button returns to the jog operation-ready status screen. For full information of the status display,  
refer to section 6.2. In the test operation mode, you cannot use the "UP" and "DOWN" buttons to  
change the status display screen from one to another.  
(3) Termination of jog operation  
To end the jog operation, switch power off once or press the "MODE" button to switch to the next  
screen and then hold down the "SET" button for 2 or more seconds.  
6 - 14  
6. DISPLAY AND OPERATION  
6.8.3 Positioning operation  
POINT  
The MR Configurator (servo configuration software) is required to perform  
positioning operation.  
Positioning operation can be performed once when there is no command from the external command  
device.  
(1) Operation  
Connect EMG-SG to start positioning operation and connect VDD-COM to use the internal power  
supply.  
Pressing the "Forward" or "Reverse" click on the MR Configurator (servo configuration software) starts  
the servo motor, which will then stop after moving the preset travel distance. You can change the  
operation conditions on the MR Configurator (servo configuration software). The initial conditions and  
setting ranges for operation are listed below.  
Item  
Travel distance [pulse]  
Initial setting  
10000  
Setting range  
0 to 9999999  
Speed [r/min]  
200  
0 to instantaneous permissible speed  
0 to 50000  
Acceleration/deceleration time constant [ms]  
1000  
How to use the buttons is explained below.  
Button  
Description  
"Forward"  
"Reverse"  
Click to start positioning operation CCW.  
Click to start positioning operation CW.  
Click during operation to make a temporary stop. Click the  
"Pause" button again erases the remaining distance.  
To resume operation, press the click that was pressed to start  
the operation.  
"Pause"  
If the communication cable is disconnected during positioning operation, the servo motor will come to  
a sudden stop.  
(2) Status display  
You can monitor the status display even during positioning operation.  
6 - 15  
6. DISPLAY AND OPERATION  
6.8.4 Motor-less operation  
Without connecting the servo motor, you can provide output signals or monitor the status display as if the  
servo motor is running in response to external input signals. This operation can be used to check the  
sequence of a host programmable controller or the like.  
(1) Operation  
After turning off the signal across SON-SG, choose motor-less operation. After that, perform external  
operation as in ordinary operation.  
(2) Status display  
You can confirm the servo status during motor-less operation.  
Pressing the "MODE" button in the motor-less operation-ready status calls the status display screen.  
With this screen being shown, perform motor-less operation. Every time you press the "MODE" button,  
the next status display screen appears, and on completion of a screen cycle, pressing that button  
returns to the motor-less operation-ready status screen. For full information of the status display,  
refer to section 6.2. In the test operation mode, you cannot use the "UP" and "DOWN" buttons to  
change the status display screen from one to another.  
(3) Termination of motor-less operation  
To terminate the motor-less operation, switch power off.  
6 - 16  
7. GENERAL GAIN ADJUSTMENT  
7. GENERAL GAIN ADJUSTMENT  
POINT  
For use in the torque control mode, you need not make gain adjustment.  
7.1 Different adjustment methods  
7.1.1 Adjustment on a single servo amplifier  
The gain adjustment in this section can be made on a single servo amplifier. For gain adjustment, first  
execute auto tuning mode 1. If you are not satisfied with the results, execute auto tuning mode 2, manual  
mode 1 and manual mode 2 in this order.  
(1) Gain adjustment mode explanation  
Parameter No. 2  
setting  
Estimation of load inertia  
moment ratio  
Automatically set  
parameters  
Gain adjustment mode  
Manually set parameters  
Auto tuning mode 1  
(initial value)  
010  
Always estimated  
PG1 (parameter No. 6)  
Response level setting of  
GD2 (parameter No. 34) parameter No. 2  
PG2 (parameter No. 35)  
VG1 (parameter No. 36)  
VG2 (parameter No. 37)  
VIC (parameter No. 38)  
Auto tuning mode 2  
020  
Fixed to parameter No. PG1 (parameter No. 6)  
GD2 (parameter No. 34)  
34 value  
PG2 (parameter No. 35) Response level setting of  
VG1 (parameter No. 36) parameter No. 2  
VG2 (parameter No. 37)  
VIC (parameter No. 38)  
Manual mode 1  
Manual mode 2  
030  
040  
PG2 (parameter No. 35) PG1 (parameter No. 6)  
VG1 (parameter No. 36) GD2 (parameter No. 34)  
VG2 (parameter No. 37)  
VIC (parameter No. 38)  
PG1 (parameter No. 6)  
GD2 (parameter No. 34)  
PG2 (parameter No. 35)  
VG1 (parameter No. 36)  
VG2 (parameter No. 37)  
VIC (parameter No. 38)  
Interpolation mode  
000  
Always estimated  
GD2 (parameter No. 34) PG1 (parameter No. 6)  
PG2 (parameter No. 35) VG1 (parameter No. 36)  
VG2 (parameter No. 37)  
VIC (parameter No. 38)  
7 - 1  
7. GENERAL GAIN ADJUSTMENT  
(2) Adjustment sequence and mode usage  
START  
Usage  
Yes  
Interpolation  
made for 2 or more  
axes?  
Used when you want to  
match the position gain  
(PG1) between 2 or more  
axes. Normally not used for  
other purposes.  
Interpolation mode  
Operation  
No  
Allows adjustment by  
merely changing the  
response level setting.  
First use this mode to make  
adjustment.  
Auto tuning mode 1  
Operation  
Yes  
No  
Used when the conditions of  
auto tuning mode 1 are not  
met and the load inertia  
moment ratio could not be  
estimated properly, for  
example.  
OK?  
OK?  
Yes  
No  
Auto tuning mode 2  
Operation  
Yes  
OK?  
No  
This mode permits  
adjustment easily with three  
gains if you were not  
satisfied with auto tuning  
results.  
Manual mode 1  
Operation  
Yes  
OK?  
You can adjust all gains  
manually when you want to  
do fast settling or the like.  
No  
Manual mode 2  
END  
7.1.2 Adjustment using MR Configurator (servo configuration software)  
This section gives the functions and adjustment that may be performed by using the servo amplifier with  
the MR Configurator (servo configuration software) which operates on a personal computer.  
Function  
Description  
Adjustment  
Machine analyzer  
With the machine and servo motor  
coupled, the characteristic of the  
mechanical system can be measured by  
giving a random vibration command from  
the personal computer to the servo and  
measuring the machine response.  
You can grasp the machine resonance frequency and  
determine the notch frequency of the machine  
resonance suppression filter.  
You can automatically set the optimum gains in  
response to the machine characteristic. This simple  
adjustment is suitable for a machine which has large  
machine resonance and does not require much settling  
time.  
Gain search  
Executing gain search under to-and-fro  
positioning command measures settling  
characteristic while simultaneously  
changing gains, and automatically  
searches for gains which make settling  
time shortest.  
You can automatically set gains which make positioning  
settling time shortest.  
Machine simulation  
Response at positioning settling of a  
machine can be simulated from machine  
analyzer results on personal computer.  
You can optimize gain adjustment and command  
pattern on personal computer.  
7 - 2  
7. GENERAL GAIN ADJUSTMENT  
7.2 Auto tuning  
7.2.1 Auto tuning mode  
The servo amplifier has a real-time auto tuning function which estimates the machine characteristic (load  
inertia moment ratio) in real time and automatically sets the optimum gains according to that value. This  
function permits ease of gain adjustment of the servo amplifier.  
(1) Auto tuning mode 1  
The servo amplifier is factory-set to the auto tuning mode 1.  
In this mode, the load inertia moment ratio of a machine is always estimated to set the optimum gains  
automatically.  
The following parameters are automatically adjusted in the auto tuning mode 1.  
Parameter No.  
Abbreviation  
PG1  
Name  
6
Position control gain 1  
34  
35  
36  
37  
38  
GD2  
Ratio of load inertia moment to servo motor inertia moment  
Position control gain 2  
PG2  
VG1  
Speed control gain 1  
VG2  
Speed control gain 2  
VIC  
Speed integral compensation  
POINT  
The auto tuning mode 1 may not be performed properly if the following  
conditions are not satisfied.  
Time to reach 2000r/min is the acceleration/deceleration time constant of 5s or  
less.  
Speed is 150r/min or higher.  
The ratio of load inertia moment to servo motor inertia moment is 100  
times or less.  
The acceleration/deceleration torque is 10% or more of the rated torque.  
Under operating conditions which will impose sudden disturbance torque  
during acceleration/deceleration or on a machine which is extremely loose,  
auto tuning may not function properly, either. In such cases, use the auto  
tuning mode 2 or manual mode 1,2 to make gain adjustment.  
(2) Auto tuning mode 2  
Use the auto tuning mode 2 when proper gain adjustment cannot be made by auto tuning mode 1.  
Since the load inertia moment ratio is not estimated in this mode, set the value of a correct load  
inertia moment ratio (parameter No. 34).  
The following parameters are automatically adjusted in the auto tuning mode 2.  
Parameter No.  
Abbreviation  
PG1  
Name  
6
Position control gain 1  
Position control gain 2  
Speed control gain 1  
35  
36  
37  
38  
PG2  
VG1  
VG2  
Speed control gain 2  
VIC  
Speed integral compensation  
7 - 3  
7. GENERAL GAIN ADJUSTMENT  
7.2.2 Auto tuning mode operation  
The block diagram of real-time auto tuning is shown below.  
Load inertia  
moment  
Automatic setting  
Encoder  
Control gains  
Command  
Current  
control  
Servo  
motor  
PG1,VG1  
PG2,VG2,VIC  
Current feedback  
Real-time auto  
tuning section  
Position/speed  
feedback  
Set 0 or 1 to turn on.  
Load inertia  
moment ratio  
estimation section  
Gain  
table  
Switch  
Speed feedback  
Parameter No. 34  
Parameter No. 2  
Load inertia moment  
ratio estimation value  
First digit  
Gain adjustment Response level  
mode selection setting  
When a servo motor is accelerated/decelerated, the load inertia moment ratio estimation section always  
estimates the load inertia moment ratio from the current and speed of the servo motor. The results of  
estimation are written to parameter No. 34 (the ratio of load inertia moment to servo motor). These  
results can be confirmed on the status display screen of the MR Configurator (servo configuration  
software) section.  
If the value of the load inertia moment ratio is already known or if estimation cannot be made properly,  
chose the "auto tuning mode 2" (parameter No.2:  
2
) to stop the estimation of the load inertia  
moment ratio (Switch in above diagram turned off), and set the load inertia moment ratio (parameter No.  
34) manually.  
From the preset load inertia moment ratio (parameter No. 34) value and response level (The first digit of  
parameter No. 2), the optimum control gains are automatically set on the basis of the internal gain tale.  
The auto tuning results are saved in the EEP-ROM of the servo amplifier every 60 minutes since power-  
on. At power-on, auto tuning is performed with the value of each control gain saved in the EEP-ROM  
being used as an initial value.  
POINT  
If sudden disturbance torque is imposed during operation, the estimation  
of the inertia moment ratio may malfunction temporarily. In such a case,  
choose the "auto tuning mode 2" (parameter No. 2: 020 ) and set the  
correct load inertia moment ratio in parameter No. 34.  
When any of the auto tuning mode 1, auto tuning mode 2 and manual  
mode 1 settings is changed to the manual mode 2 setting, the current  
control gains and load inertia moment ratio estimation value are saved in  
the EEP-ROM.  
7 - 4  
7. GENERAL GAIN ADJUSTMENT  
7.2.3 Adjustment procedure by auto tuning  
Since auto tuning is made valid before shipment from the factory, simply running the servo motor  
automatically sets the optimum gains that match the machine. Merely changing the response level  
setting value as required completes the adjustment. The adjustment procedure is as follows.  
Auto tuning adjustment  
Acceleration/deceleration repeated  
Yes  
Load inertia moment ratio  
estimation value stable?  
No  
Auto tuning  
conditions not satisfied.  
(Estimation of load inertia  
moment ratio is difficult)  
No  
Yes  
Choose the auto tuning mode 2  
(parameter No.2 : 020 ) and set  
the load inertia moment ratio  
(parameter No.34) manually.  
Adjust response level setting  
so that desired response is  
achieved on vibration-free level.  
Acceleration/deceleration repeated  
Requested  
No  
performance satisfied?  
Yes  
END  
To manual mode  
7 - 5  
7. GENERAL GAIN ADJUSTMENT  
7.2.4 Response level setting in auto tuning mode  
Set the response (The first digit of parameter No.2) of the whole servo system. As the response level  
setting is increased, the track ability and settling time for a command decreases, but a too high response  
level will generate vibration. Hence, make setting until desired response is obtained within the vibration-  
free range.  
If the response level setting cannot be increased up to the desired response because of machine resonance  
beyond 100Hz, adaptive vibration suppression control (parameter No. 60) or machine resonance  
suppression filter (parameter No. 58 59) may be used to suppress machine resonance. Suppressing  
machine resonance may allow the response level setting to increase. Refer to section 8.1 for adaptive  
vibration suppression control and machine resonance suppression filter.  
Parameter No. 2  
Response level setting  
Gain adjustment mode selection  
Machine characteristic  
Response level setting  
Machine resonance  
frequency guideline  
Machine rigidity  
Guideline of corresponding machine  
1
2
Low  
15Hz  
20Hz  
25Hz  
30Hz  
35Hz  
45Hz  
55Hz  
70Hz  
3
Large conveyor  
4
5
6
Arm robot  
7
General machine  
tool conveyor  
8
Middle  
9
85Hz  
105Hz  
130Hz  
160Hz  
200Hz  
240Hz  
300Hz  
Precision  
working  
machine  
A
B
C
D
E
F
Inserter  
Mounter  
Bonder  
High  
7 - 6  
7. GENERAL GAIN ADJUSTMENT  
7.3 Manual mode 1 (simple manual adjustment)  
If you are not satisfied with the adjustment of auto tuning, you can make simple manual adjustment with  
three parameters.  
7.3.1 Operation of manual mode 1  
In this mode, setting the three gains of position control gain 1 (PG1), speed control gain 2 (VG2) and  
speed integral compensation (VIC) automatically sets the other gains to the optimum values according to  
these gains.  
GD2  
User setting  
PG1  
PG2  
VG2  
VG1  
Automatic setting  
VIC  
Therefore, you can adjust the model adaptive control system in the same image as the general PI control  
system (position gain, speed gain, speed integral time constant). Here, the position gain corresponds to  
PG1, the speed gain to VG2 and the speed integral time constant to VIC. When making gain adjustment  
in this mode, set the load inertia moment ratio (parameter No. 34) correctly.  
7.3.2 Adjustment by manual mode 1  
POINT  
If machine resonance occurs, adaptive vibration suppression control  
(parameter No. 60) or machine resonance suppression filter (parameter No.  
58 59) may be used to suppress machine resonance. (Refer to section 8.1)  
(1) For speed control  
(a) Parameters  
The following parameters are used for gain adjustment.  
Parameter No.  
Abbreviation  
GD2  
Name  
Ratio of load inertia moment to servo motor inertia moment  
Speed control gain 2  
34  
37  
38  
VG2  
VIC  
Speed integral compensation  
(b) Adjustment procedure  
Step  
Operation  
Description  
Set an estimated value to the ratio of load inertia moment to servo  
motor inertia moment (parameter No. 34).  
Increase the speed control gain 2 (parameter No. 37) within the  
vibration- and unusual noise-free range, and return slightly if vibration  
takes place.  
1
2
3
Increase the speed control gain.  
Decrease the speed integral compensation (parameter No. 38) within  
the vibration-free range, and return slightly if vibration takes place.  
Decrease the time constant of the speed  
integral compensation.  
If the gains cannot be increased due to mechanical system resonance or Suppression of machine resonance.  
the like and the desired response cannot be achieved, response may be Refer to section 8.2, 8.3.  
increased by suppressing resonance with adaptive vibration  
suppression control or machine resonance suppression filter and then  
executing steps 2 and 3.  
4
5
While checking the settling characteristic and rotational status, fine-  
adjust each gain.  
Fine adjustment  
7 - 7  
7. GENERAL GAIN ADJUSTMENT  
(c)Adjustment description  
1) Speed control gain 2 (parameter No. 37)  
This parameter determines the response level of the speed control loop. Increasing this value  
enhances response but a too high value will make the mechanical system liable to vibrate. The  
actual response frequency of the speed loop is as indicated in the following expression.  
Speed control gain 2 setting  
(1 ratio of load inertia moment to servo motor inertia moment)  
Speed loop response  
frequency(Hz)  
2
2) Speed integral compensation (VIC: parameter No. 38)  
To eliminate stationary deviation against a command, the speed control loop is under  
proportional integral control. For the speed integral compensation, set the time constant of this  
integral control. Increasing the setting lowers the response level. However, if the load inertia  
moment ratio is large or the mechanical system has any vibratory element, the mechanical  
system is liable to vibrate unless the setting is increased to some degree. The guideline is as  
indicated in the following expression.  
2000 to 3000  
Speed integral compensation  
setting(ms)  
Speed control gain 2 setting/  
(1 ratio of load inertia moment to  
servo motor inertia moment setting 0.1)  
(2) For position control  
(a) Parameters  
The following parameters are used for gain adjustment.  
Parameter No.  
Abbreviation  
PG1  
Name  
6
Position control gain 1  
34  
37  
38  
GD2  
Ratio of load inertia moment to servo motor inertia moment  
Speed control gain 2  
VG2  
VIC  
Speed integral compensation  
(b) Adjustment procedure  
Step  
Operation  
Description  
Set an estimated value to the ratio of load inertia moment to servo  
motor inertia moment (parameter No. 34).  
1
2
Set a slightly smaller value to the position control gain 1 (parameter  
No. 6).  
Increase the speed control gain 2 (parameter No. 37) within the  
vibration- and unusual noise-free range, and return slightly if vibration  
takes place.  
Increase the speed control gain.  
3
Decrease the speed integral compensation (parameter No. 38) within  
the vibration-free range, and return slightly if vibration takes place.  
Increase the position control gain 1 (parameter No. 6).  
Decrease the time constant of the speed  
integral compensation.  
4
5
Increase the position control gain.  
If the gains cannot be increased due to mechanical system resonance or Suppression of machine resonance.  
the like and the desired response cannot be achieved, response may be Refer to section 8.1.  
increased by suppressing resonance with adaptive vibration  
6
7
suppression control or machine resonance suppression filter and then  
executing steps 3 to 5.  
While checking the settling characteristic and rotational status, fine-  
adjust each gain.  
Fine adjustment  
7 - 8  
7. GENERAL GAIN ADJUSTMENT  
(c) Adjustment description  
1) Position control gain 1 (parameter No. 6)  
This parameter determines the response level of the position control loop. Increasing position  
control gain 1 improves track ability to a position command but a too high value will make  
overshooting liable to occur at the time of settling.  
1
3
1
5
Speed control gain 2 setting  
(1 ratio of load inertia moment to servo motor inertia moment)  
Position control  
gain 1 guideline  
to  
)
(
2) Speed control gain 2 (VG2: parameter No. 37)  
This parameter determines the response level of the speed control loop. Increasing this value  
enhances response but a too high value will make the mechanical system liable to vibrate. The  
actual response frequency of the speed loop is as indicated in the following expression.  
Speed control gain 2 setting  
(1 ratio of load inertia moment to servo motor inertia moment)  
Speed loop response  
frequency(Hz)  
2
3) Speed integral compensation (parameter No. 38)  
To eliminate stationary deviation against a command, the speed control loop is under  
proportional integral control. For the speed integral compensation, set the time constant of this  
integral control. Increasing the setting lowers the response level. However, if the load inertia  
moment ratio is large or the mechanical system has any vibratory element, the mechanical  
system is liable to vibrate unless the setting is increased to some degree. The guideline is as  
indicated in the following expression.  
2000 to 3000  
Speed integral  
compensation setting(ms)  
Speed control gain 2 setting/  
(1 ratio of load inertia moment to  
servo motor inertia moment 2 setting 0.1)  
7.4 Interpolation mode  
The interpolation mode is used to match the position control gains of the axes when performing the  
interpolation operation of servo motors of two or more axes for an X-Y table or the like. In this mode, the  
position control gain 2 and speed control gain 2 which determine command track ability are set manually  
and the other parameter for gain adjustment are set automatically.  
(1) Parameter  
(a) Automatically adjusted parameters  
The following parameters are automatically adjusted by auto tuning.  
Parameter No.  
Abbreviation  
GD2  
Name  
Ratio of load inertia moment to servo motor inertia moment  
Position control gain 2  
34  
35  
37  
38  
PG2  
VG2  
Speed control gain 2  
VIC  
Speed integral compensation  
7 - 9  
7. GENERAL GAIN ADJUSTMENT  
(b) Manually adjusted parameters  
The following parameters are adjustable manually.  
Parameter No.  
Abbreviation  
PG1  
Name  
6
Position control gain 1  
Speed control gain 1  
36  
VG1  
(2) Adjustment procedure  
Step  
Operation  
Description  
Set 15Hz (parameter No. 2: 010 ) as the machine resonance frequency of response  
in the auto tuning mode 1.  
1
2
Select the auto tuning mode 1.  
During operation, increase the response level setting (parameter No. 2), and  
return the setting if vibration occurs.  
Adjustment in auto tuning mode  
1.  
Check the values of position control gain 1 (parameter No. 6) and speed control  
gain 1 (parameter No. 36).  
3
4
Check the upper setting limits.  
Select the interpolation mode.  
Set the interpolation mode (parameter No. 2: 000 ).  
Set the position control gain 1 of all the axes to be interpolated to the same value.  
At that time, adjust to the setting value of the axis, which has the smallest  
position control gain 1.  
5
Set position control gain 1.  
Using the speed control gain 1 value checked in step 3 as the guideline of the  
6
7
upper limit, look at the rotation status and set in speed control gain 1 the value Set speed control gain 1.  
three or more times greater than the position control gain 1 setting.  
Looking at the interpolation characteristic and rotation status, fine-adjust the  
Fine adjustment.  
gains and response level setting.  
(3) Adjustment description  
(a) Position control gain 1 (parameter No.6)  
This parameter determines the response level of the position control loop. Increasing position  
control gain 1 improves track ability to a position command but a too high value will make  
overshooting liable to occur at the time of settling. The droop pulse value is determined by the  
following expression.  
Rotation speed (r/min)  
131,072(pulse)  
60  
Droop pulse value (pulse)  
Position control gain 1 setting  
(b) Speed control gain 1 (parameter No. 36)  
Set the response level of the speed loop of the model. Make setting using the following expression  
as a guideline.  
Speed control gain 1 setting Position control gain 1 setting 3  
7 - 10  
7. GENERAL GAIN ADJUSTMENT  
7.5 Differences in auto tuning between MELSERVO-J2 and MELSERVO-J2-Super  
7.5.1 Response level setting  
To meet higher response demands, the MELSERVO-J2-Super series has been changed in response level  
setting range from the MELSERVO-J2 series. The following table lists comparison of the response level  
setting.  
Parameter No. 2  
Response level setting  
MELSERVO-J2 series  
Machine resonance frequency  
MELSERVO-J2-Super series  
Machine resonance frequency guideline  
Set value  
Set value  
1
2
15Hz  
20Hz  
25Hz  
30Hz  
35Hz  
45Hz  
55Hz  
70Hz  
85Hz  
105Hz  
130Hz  
160Hz  
200Hz  
240Hz  
300Hz  
1
20Hz  
3
4
5
2
40Hz  
6
7
3
4
5
60Hz  
80Hz  
8
9
100Hz  
A
B
C
D
E
F
Note that because of a slight difference in gain adjustment pattern, response may not be the same if the  
resonance frequency is set to the same value.  
7.5.2 Auto tuning selection  
The MELSERVO-J2-Super series has an addition of the load inertia moment ratio fixing mode. It also has  
the addition of the manual mode 1 which permits manual adjustment with three parameters.  
Parameter No. 2  
1
Gain adjustment mode selection  
Auto tuning selection  
Gain adjustment mode  
Remarks  
MELSERVO-J2 series  
MELSERVO-J2-Super series  
Interpolation mode  
Auto tuning mode 1  
0
1
0
1
Position control gain 1 is fixed.  
Ordinary auto tuning  
Estimation of load inertia moment  
ratio stopped.  
Auto tuning  
Auto tuning mode 2  
2
Response level setting valid.  
Simple manual adjustment  
Manual adjustment of all gains  
Manual mode 1  
Manual mode 2  
3
4
Auto tuning  
invalid  
2
7 - 11  
7. GENERAL GAIN ADJUSTMENT  
MEMO  
7 - 12  
8. SPECIAL ADJUSTMENT FUNCTIONS  
8. SPECIAL ADJUSTMENT FUNCTIONS  
POINT  
The functions given in this chapter need not be used generally. Use them if  
you are not satisfied with the machine status after making adjustment in  
the methods in chapter 7.  
If a mechanical system has a natural resonance point, increasing the servo system response level may  
cause the mechanical system to produce resonance (vibration or unusual noise) at that resonance  
frequency.  
Using the machine resonance suppression filter and adaptive vibration suppression control functions can  
suppress the resonance of the mechanical system.  
8.1 Function block diagram  
Speed  
control  
Parameter  
No.60  
Parameter  
No.59  
00  
Current  
command  
Parameter  
No.60  
Parameter  
No.58  
00  
0
0
Low-pass  
filter  
Servo  
motor  
Encoder  
Machine resonance  
suppression filter 1  
Machine resonance  
suppression filter 2  
1
00  
00  
except  
except  
Adaptive vibration  
suppression control  
1
or  
2
8.2 Machine resonance suppression filter  
(1) Function  
The machine resonance suppression filter is a filter function (notch filter) which decreases the gain of  
the specific frequency to suppress the resonance of the mechanical system. You can set the gain  
decreasing frequency (notch frequency) and gain decreasing depth.  
Machine resonance point  
Mechanical  
system  
response  
level  
Frequency  
Notch  
depth  
Frequency  
Notch frequency  
8 - 1  
8. SPECIAL ADJUSTMENT FUNCTIONS  
You can use the machine resonance suppression filter 1 (parameter No. 58) and machine resonance  
suppression filter 2 (parameter No. 59) to suppress the vibration of two resonance frequencies. Note  
that if adaptive vibration suppression control is made valid, the machine resonance suppression filter  
1 (parameter No. 58) is made invalid.  
Machine resonance point  
Mechanical  
system  
response  
level  
Frequency  
Notch  
depth  
Frequency  
Parameter No. 58 Parameter No. 59  
POINT  
The machine resonance suppression filter is a delay factor for the servo  
system. Hence, vibration may increase if you set a wrong resonance  
frequency or a too deep notch.  
(2) Parameters  
(a) Machine resonance suppression filter 1 (parameter No. 58)  
Set the notch frequency and notch depth of the machine resonance suppression filter 1 (parameter  
No. 58)  
When you have made adaptive vibration suppression control selection (parameter No. 60) "valid" or  
"held", make the machine resonance suppression filter 1 invalid (parameter No. 58: 0000).  
Parameter No. 58  
Notch frequency  
Setting  
value  
Setting  
value  
Setting  
value  
Setting  
value  
Frequency  
Frequency  
Frequency  
Frequency  
00  
01  
02  
03  
04  
05  
06  
07  
Invalid  
4500  
2250  
1500  
1125  
900  
08  
09  
562.5  
500  
10  
11  
12  
13  
14  
15  
16  
17  
281.3  
264.7  
250  
18  
19  
187.5  
180  
450  
173.1  
166.7  
160.1  
155.2  
150  
0A  
0B  
0C  
0D  
0E  
0F  
1A  
1B  
1C  
1D  
1E  
1F  
409.1  
375  
236.8  
225  
346.2  
321.4  
300  
214.3  
204.5  
195.7  
750  
642.9  
145.2  
Notch depth  
Setting  
value  
Depth (Gain)  
Deep ( 40dB)  
( 14dB)  
0
1
2
3
( 8dB)  
Shallow( 4dB)  
8 - 2  
8. SPECIAL ADJUSTMENT FUNCTIONS  
POINT  
If the frequency of machine resonance is unknown, decrease the notch  
frequency from higher to lower ones in order. The optimum notch frequency  
is set at the point where vibration is minimal.  
A deeper notch has a higher effect on machine resonance suppression but  
increases a phase delay and may increase vibration.  
The machine characteristic can be grasped beforehand by the machine  
analyzer on the MR Configurator (servo configuration software). This allows  
the required notch frequency and depth to be determined.  
Resonance may occur if parameter No. 58 59 is used to select a close notch  
frequency and set a deep notch.  
(b) Machine resonance suppression filter 2 (parameter No. 59)  
The setting method of machine resonance suppression filter 2 (parameter No. 59) is the same as  
that of machine resonance suppression filter 1 (parameter No. 58). However, the machine  
resonance suppression filter 2 can be set independently of whether adaptive vibration suppression  
control is valid or invalid.  
8.3 Adaptive vibration suppression control  
(1) Function  
Adaptive vibration suppression control is a function in which the servo amplifier detects machine  
resonance and sets the filter characteristics automatically to suppress mechanical system vibration.  
Since the filter characteristics (frequency, depth) are set automatically, you need not be conscious of  
the resonance frequency of a mechanical system. Also, while adaptive vibration suppression control is  
valid, the servo amplifier always detects machine resonance, and if the resonance frequency changes,  
it changes the filter characteristics in response to that frequency.  
Machine resonance point  
Machine resonance point  
Mechanical  
system  
Mechanical  
system  
response  
level  
response  
level  
Frequency  
Frequency  
Notch  
depth  
Notch  
depth  
Frequency  
Frequency  
Notch frequency  
Notch frequency  
When machine resonance is large and frequency is low When machine resonance is small and frequency is high  
POINT  
The machine resonance frequency which adaptive vibration suppression  
control can respond to is about 150 to 500Hz. Adaptive vibration  
suppression control has no effect on the resonance frequency outside this  
range. Use the machine resonance suppression filter for the machine  
resonance of such frequency.  
Adaptive vibration suppression control may provide no effect on a  
mechanical system which has complex resonance characteristics or which  
has too large resonance.  
Under operating conditions in which sudden disturbance torque is imposed  
during operation, the detection of the resonance frequency may malfunction  
temporarily, causing machine vibration. In such a case, set adaptive  
vibration suppression control to be "held" (parameter No. 60:  
2
) to fix  
the characteristics of the adaptive vibration suppression control filter.  
8 - 3  
8. SPECIAL ADJUSTMENT FUNCTIONS  
(2) Parameters  
The operation of adaptive vibration suppression control selection (parameter No.60).  
Parameter No. 60  
Adaptive vibration suppression control selection  
Choosing "valid" or "held" in adaptive vibration suppression  
control selection makes the machine resonance suppression  
filter 1 (parameter No. 58) invalid.  
0: Invalid  
1: Valid  
Machine resonance frequency is always detected to  
generate the filter in response to resonance, suppressing  
machine vibration.  
2: Held  
Filter characteristics generated so far is held, and detection of  
machine resonance is stopped.  
Adaptive vibration suppression control sensitivity selection  
Set the sensitivity of detecting machine resonance.  
0: Normal  
1: Large sensitivity  
POINT  
Adaptive vibration suppression control is factory-set to be invalid  
(parameter No. 60: 0000).  
Setting the adaptive vibration suppression control sensitivity can change  
the sensitivity of detecting machine resonance. Setting of "large sensitivity"  
detects smaller machine resonance and generates a filter to suppress  
machine vibration. However, since a phase delay will also increase, the  
response of the servo system may not increase.  
8.4 Low-pass filter  
(1) Function  
When a ball screw or the like is used, resonance of high frequency may occur as the response level of  
the servo system is increased. To prevent this, the low-pass filter is factory-set to be valid for a torque  
command. The filter frequency of this low-pass filter is automatically adjusted to the value in the  
following expression.  
Speed control gain 2 setting 10  
Filter frequency(Hz)  
(1 Ratio of load inertia moment to servo motor inertia moment setting 0.1)  
2
(2) Parameter  
Set the operation of the low-pass filter (parameter No. 60.)  
Parameter No. 60  
Low-pass filter selection  
0: Valid (automatic adjustment) initial value  
1: Invalid  
POINT  
In a mechanical system where rigidity is extremely high and resonance is  
difficult to occur, setting the low-pass filter to be "invalid" may increase the  
servo system response level to shorten the settling time.  
8 - 4  
8. SPECIAL ADJUSTMENT FUNCTIONS  
8.5 Gain changing function  
This function can change the gains. You can change between gains during rotation and gains during stop  
or can use an external signal to change gains during operation.  
8.5.1 Applications  
This function is used when.  
(1) You want to increase the gains during servo lock but decrease the gains to reduce noise during rotation.  
(2) You want to increase the gains during settling to shorten the stop settling time.  
(3) You want to change the gains using an external signal to ensure stability of the servo system since the  
load inertia moment ratio varies greatly during a stop (e.g. a large load is mounted on a carrier).  
8.5.2 Function block diagram  
The valid control gains PG2, VG2, VIC and GD2 of the actual loop are changed according to the conditions  
selected by gain changing selection CDP (parameter No. 65) and gain changing condition CDS (parameter  
No. 66).  
CDP  
Parameter No.65  
External signal  
CDP  
Command pulse  
frequency  
Droop pulses  
Changing  
Model speed  
Comparator  
CDS  
Parameter No.66  
GD2  
Parameter No.34  
Valid  
GD2  
GD2 value  
Parameter No.61  
PG2  
Parameter No.35  
Valid  
PG2 PG2B  
100  
PG2 value  
VG2  
Parameter No.37  
Valid  
VG2 VG2B  
100  
VG2 value  
VIC  
Parameter No.38  
Valid  
VIC VICB  
100  
VIC value  
8 - 5  
8. SPECIAL ADJUSTMENT FUNCTIONS  
8.5.3 Parameters  
When using the gain changing function, always set "  
4
" in parameter No.2 (auto tuning) to choose  
the manual mode of the gain adjustment modes. The gain changing function cannot be used in the auto  
tuning mode.  
Parameter Abbrevi  
Name  
Unit  
Description  
No.  
6
ation  
PG1  
VG1  
Position control gain 1  
Speed control gain 1  
rad/s Position and speed gains of a model used to set the response  
level to a command. Always valid.  
Control parameters before changing  
36  
rad/s  
0.1  
Ratio of load inertia moment to  
servo motor inertia moment  
Position control gain 2  
Speed control gain 2  
34  
GD2  
times  
rad/s  
rad/s  
ms  
35  
37  
38  
PG2  
VG2  
VIC  
Speed integral compensation  
Ratio of load inertia moment to  
servo motor inertia moment 2  
Position control gain 2 changing  
ratio  
0.1  
Used to set the ratio of load inertia moment to servo motor  
61  
62  
63  
GD2B  
PG2B  
VG2B  
VICB  
times inertia moment after changing.  
Used to set the ratio (%) of the after-changing position  
%
control gain 2 to position control gain 2.  
Speed control gain 2 changing  
ratio  
Used to set the ratio (%) of the after-changing speed control  
%
gain 2 to speed control gain 2.  
Speed integral compensation  
changing ratio  
Used to set the ratio (%) of the after-changing speed integral  
64  
65  
%
compensation to speed integral compensation.  
CDP Gain changing selection  
Used to select the changing condition.  
kpps  
pulse  
r/min  
Used to set the changing condition values.  
66  
67  
CDS Gain changing condition  
You can set the filter time constant for a gain change at  
changing.  
CDT Gain changing time constant  
ms  
(1) Parameters No. 6, 34 to 38  
These parameters are the same as in ordinary manual adjustment. Gain changing allows the values of  
ratio of load inertia moment to servo motor inertia moment, position control gain 2, speed control gain  
2 and speed integral compensation to be changed.  
(2) Ratio of load inertia moment to servo motor inertia moment 2 (GD2B: parameter No. 61)  
Set the ratio of load inertia moment to servo motor inertia moment after changing. If the load inertia  
moment ratio does not change, set it to the same value as ratio of load inertia moment to servo motor  
inertia moment (parameter No. 34).  
(3) Position control gain 2 changing ratio (parameter No. 62), speed control gain 2 changing ratio (parameter  
No. 63), speed integral compensation changing ratio (parameter No. 64)  
Set the values of after-changing position control gain 2, speed control gain 2 and speed integral  
compensation in ratio (%). 100% setting means no gain change.  
For example, at the setting of position control gain 2 100, speed control gain 2 2000, speed integral  
compensation 20 and position control gain 2 changing ratio 180%, speed control gain 2 changing  
ratio 150% and speed integral compensation changing ratio 80%, the after-changing values are as  
follows.  
Position control gain 2 Position control gain 2 Position control gain 2 changing ratio /100 180rad/s  
Speed control gain 2 Speed control gain 2 Speed control gain 2 changing ratio /100 3000rad/s  
Speed integral compensation Speed integral compensation Speed integral compensation changing  
ratio /100 16ms  
8 - 6  
8. SPECIAL ADJUSTMENT FUNCTIONS  
(4) Gain changing selection (parameter No. 65)  
Used to set the gain changing condition. Choose the changing condition in the first digit. If you set "1"  
here, you can use the gain changing (CDP) external input signal for gain changing. The gain changing  
(CDP) can be assigned to the pins using parameters No. 43 to 48.  
Parameter No. 65  
Gain changing selection  
Gains are changed in accordance with the settings of  
parameters No. 61 to 64 under any of the following conditions:  
0: Invalid  
1: Gain changing (CDP) input is ON  
2: Command frequency is equal to higher than parameter No. 66 setting  
3: Droop pulse value is equal to higher than parameter No. 66 setting  
4: Servo motor speed is equal to higher than parameter No. 66 setting  
(5) Gain changing condition (parameter No. 66)  
When you selected "command frequency", "droop pulses" or "servo motor speed" in gain changing  
selection (parameter No.65), set the gain changing level.  
The setting unit is as follows.  
Gain changing condition  
Command frequency  
Droop pulses  
Unit  
kpps  
pulse  
r/min  
Servo motor speed  
(6) Gain changing time constant (parameter No. 67)  
You can set the primary delay filter to each gain at gain changing. This parameter is used to suppress  
shock given to the machine if the gain difference is large at gain changing, for example.  
8 - 7  
8. SPECIAL ADJUSTMENT FUNCTIONS  
8.5.4 Gain changing operation  
This operation will be described by way of setting examples.  
(1) When you choose changing by external input  
(a) Setting  
Parameter No.  
Abbreviation  
PG1  
Name  
Setting  
100  
Unit  
rad/s  
rad/s  
6
Position control gain 1  
Speed control gain 1  
36  
VG1  
1000  
Ratio of load inertia moment to  
servo motor inertia moment  
Position control gain 2  
Speed control gain 2  
34  
GD2  
4
0.1 times  
35  
37  
38  
PG2  
VG2  
VIC  
120  
3000  
20  
rad/s  
rad/s  
ms  
Speed integral compensation  
Ratio of load inertia moment to  
servo motor inertia moment 2  
Position control gain 2  
changing ratio  
61  
62  
63  
64  
GD2B  
PG2B  
VG2B  
VICB  
100  
70  
0.1 times  
%
%
%
Speed control gain 2 changing  
ratio  
133  
250  
Speed integral compensation  
changing ratio  
0001  
(Changed by ON/OFF of  
pin CN1A-8)  
100  
65  
67  
CDP  
CDT  
Gain changing selection  
Gain changing time constant  
ms  
(b) Changing operation  
OFF  
OFF  
ON  
Gain changing  
(CDP)  
After-changing gain  
Before-changing gain  
Change of  
each gain  
CDT 100ms  
Position control gain 1  
100  
Speed control gain 1  
1000  
Ratio of load inertia moment  
to servo motor inertia moment  
Position control gain 2  
4.0  
10.0  
4.0  
120  
3000  
20  
84  
4000  
50  
120  
3000  
20  
Speed control gain 2  
Speed integral compensation  
8 - 8  
8. SPECIAL ADJUSTMENT FUNCTIONS  
(2) When you choose changing by droop pulses  
(a) Setting  
Parameter No.  
Abbreviation  
PG1  
Name  
Setting  
100  
Unit  
rad/s  
rad/s  
6
Position control gain 1  
Speed control gain 1  
36  
VG1  
1000  
Ratio of load inertia moment to  
servo motor inertia moment  
Position control gain 2  
Speed control gain 2  
34  
GD2  
40  
0.1 times  
35  
37  
38  
PG2  
VG2  
VIC  
120  
3000  
20  
rad/s  
rad/s  
ms  
Speed integral compensation  
Ratio of load inertia moment to  
servo motor inertia moment 2  
Position control gain 2  
changing ratio  
61  
62  
63  
64  
65  
GD2B  
PG2B  
VG2B  
VICB  
CDP  
100  
70  
0.1 times  
%
%
%
Speed control gain 2 changing  
ratio  
133  
250  
Speed integral compensation  
changing ratio  
0003  
Gain changing selection  
(Changed by droop pulses)  
66  
67  
CDS  
CDT  
Gain changing condition  
50  
pulse  
ms  
Gain changing time constant  
100  
(b) Changing operation  
Command pulse  
Droop pulses  
CDS  
CDS  
Droop pulses [pulses]  
0
After-changing gain  
Before-changing gain  
Change of each gain  
CDT 100ms  
Position control gain 1  
100  
Speed control gain 1  
1000  
Ratio of load inertia moment  
4.0  
10.0  
4.0  
10.0  
to servo motor inertia moment  
Position control gain 2  
120  
3000  
20  
84  
4000  
50  
120  
3000  
20  
84  
4000  
50  
Speed control gain 2  
Speed integral compensation  
8 - 9  
8. SPECIAL ADJUSTMENT FUNCTIONS  
MEMO  
8 - 10  
9. INSPECTION  
9. INSPECTION  
Before starting maintenance and/or inspection, turn off the power and wait for 15  
minutes or more until the charge lamp turns off. Then, confirm that the voltage  
between P and N is safe with a voltage tester and others. Otherwise, an electric  
shock may occur. In addition, always confirm from the front of the servo amplifier  
whether the charge lamp is off or not.  
WARNING  
Any person who is involved in inspection should be fully competent to do the work.  
Otherwise, you may get an electric shock. For repair and parts replacement,  
contact your safes representative.  
POINT  
Do not test the servo amplifier with a megger (measure insulation  
resistance), or it may become faulty.  
Do not disassemble and/or repair the equipment on customer side.  
(1) Inspection  
It is recommended to make the following checks periodically.  
(a) Check for loose terminal block screws. Retighten any loose screws.  
(b) Check the cables and the like for scratches and cracks. Perform periodic inspection according to  
operating conditions.  
(2) Life  
The following parts must be changed periodically as listed below. If any part is found faulty, it must be  
changed immediately even when it has not yet reached the end of its life, which depends on the  
operating method and environmental conditions. For parts replacement, please contact your sales  
representative.  
Part name  
Life guideline  
Smoothing capacitor  
10 years  
Number of power-on and number of  
emergency stop times : 100,000 times  
10,000 to 30,000hours (2 to 3 years)  
Refer to section 15.2  
Relay  
Servo amplifier  
Cooling fan  
Absolute position battery  
(a) Smoothing capacitor  
Affected by ripple currents, etc. and deteriorates in characteristic. The life of the capacitor greatly  
depends on ambient temperature and operating conditions. The capacitor will reach the end of its  
life in 10 years of continuous operation in normal air-conditioned environment.  
(b) Relays  
Their contacts will wear due to switching currents and contact faults occur. Relays reach the end of  
their life when the cumulative number of power-on and emergency stop times is 100,000, which  
depends on the power supply capacity.  
(c) Servo amplifier cooling fan  
The cooling fan bearings reach the end of their life in 10,000 to 30,000 hours. Normally, therefore,  
the cooling fan must be changed in a few years of continuous operation as a guideline.  
It must also be changed if unusual noise or vibration is found during inspection.  
9 - 1  
9. INSPECTION  
MEMO  
9 - 2  
10. TROUBLESHOOTING  
10. TROUBLESHOOTING  
10.1 Trouble at start-up  
Excessive adjustment or change of parameter setting must not be made as it will  
CAUTION  
make operation instable.  
POINT  
Using the MR Configurator (servo configuration software), you can refer  
to unrotated servo motor reasons, etc.  
The following faults may occur at start-up. If any of such faults occurs, take the corresponding action.  
10.1.1 Position control mode  
(1) Troubleshooting  
No.  
Start-up sequence  
Fault  
Investigation  
Possible cause  
Reference  
1
Power on  
LED is not lit.  
LED flickers.  
Not improved if connectors  
1. Power supply voltage fault  
CN1A, CN1B, CN2 and CN3 2. Servo amplifier is faulty.  
are disconnected.  
Improved when connectors  
CN1A and CN1B are  
disconnected.  
Power supply of CNP1 cabling  
is shorted.  
Improved when connector  
CN2 is disconnected.  
1. Power supply of encoder  
cabling is shorted.  
2. Encoder is faulty.  
Power supply of CN3 cabling is  
shorted.  
Improved when connector  
CN3 is disconnected.  
Alarm occurs.  
Alarm occurs.  
Refer to section 10.2 and remove cause.  
Refer to section 10.2 and remove cause.  
Section 10.2  
Section 10.2  
2
3
Switch on servo-on  
(SON).  
Servo motor shaft is 1. Check the display to see if 1. Servo-on (SON) is not input. Section 6.6  
not servo-locked  
(is free).  
the servo amplifier is  
ready to operate.  
(Wiring mistake)  
2. 24VDC power is not  
supplied to COM.  
2. Check the external I/O  
signal indication to see if  
the servo-on (SON) is ON.  
Enter input  
command.  
Servo motor does  
not rotate.  
Check cumulative command 1. Wiring mistake  
pulses. (a) For open collector pulse  
Section 6.2  
(Test operation)  
train input, 24VDC  
power is not supplied to  
OPC.  
(b) LSP and LSN are not on.  
2. No pulses is input.  
1. Mistake in wiring to  
controller.  
Servo motor run in  
reverse direction.  
Chapter 5  
2. Mistake in setting of  
parameter No. 54.  
10 - 1  
10. TROUBLESHOOTING  
No.  
Start-up sequence  
Fault  
Investigation  
Possible cause  
Reference  
4
Gain adjustment  
Rotation ripples  
Make gain adjustment in the Gain adjustment fault  
Chapter 7  
(speed fluctuations) following procedure.  
are large at low  
speed.  
1. Increase the auto tuning  
response level.  
2. Repeat acceleration and  
deceleration several times  
to complete auto tuning.  
If the servo motor may be  
Large load inertia  
Gain adjustment fault  
Chapter 7  
moment causes the run with safety, repeat  
servo motor shaft to acceleration and  
oscillate side to side. deceleration several times to  
complete auto tuning.  
5
Cyclic operation  
Position shift occurs Confirm the cumulative  
Pulse counting error, etc.  
(2) in this  
section  
command pulses, cumulative due to noise.  
feedback pulses and actual  
servo motor position.  
10 - 2  
10. TROUBLESHOOTING  
(2) How to find the cause of position shift  
Positioning unit  
(a) Output pulse  
Servo amplifier  
Electronic gear (parameters No. 3, 4)  
Machine  
L
counter  
Servo motor  
M
CMX  
Q
P
(d) Machine stop  
position M  
CDV  
(B)  
(A)  
(b) Cumulative command  
pulses  
(C) Servo-on (SON),  
stroke end  
Encoder  
C
(LSP/LSN) input  
(c) Cumulative  
feedback pulses  
When a position shift occurs, check (a) output pulse counter, (b) cumulative command pulse display,  
(c) cumulative feedback pulse display, and (d) machine stop position in the above diagram.  
(A), (B) and (C) indicate position shift causes. For example, (A) indicates that noise entered the wiring  
between positioning unit and servo amplifier, causing pulses to be mis-counted.  
In a normal status without position shift, there are the following relationships.  
1) Q P (positioning unit's output counter servo amplifier's cumulative command pulses)  
CMX(parameter No.3)  
P
2)  
CMX(parameter No.4)  
C (cumulative command pulses electronic gear cumulative feedback pulses)  
3) C  
M (cumulative feedback pulses travel per pulse machine position)  
Check for a position shift in the following sequence.  
1) When Q  
P
Noise entered the pulse train signal wiring between positioning unit and servo amplifier,  
causing pulses to be miss-counted. (Cause A)  
Make the following check or take the following measures.  
Check how the shielding is done.  
Change the open collector system to the differential line driver system.  
Run wiring away from the power circuit.  
Install a data line filter. (Refer to section 13.2.6 (2) (a))  
CMX  
CDV  
2) When  
P
C
During operation, the servo-on (SON) or forward/reverse rotation stroke end was switched off or  
the clear (CR) and the reset (RES) switched on. (Cause C)  
If a malfunction may occur due to much noise, increase the input filter setting (parameter No. 1).  
3) When C  
M
Mechanical slip occurred between the servo motor and machine. (Cause B)  
10 - 3  
10. TROUBLESHOOTING  
10.1.2 Speed control mode  
No.  
Start-up sequence  
Fault  
Investigation  
Possible cause  
Reference  
1
Power on  
LED is not lit.  
LED flickers.  
Not improved if connectors  
1. Power supply voltage fault  
CN1A, CN1B, CN2 and CN3 2. Servo amplifier is faulty.  
are disconnected.  
Improved when connectors  
CN1A and CN1B are  
disconnected.  
Power supply of CN1 cabling is  
shorted.  
Improved when connector  
CN2 is disconnected.  
1. Power supply of encoder  
cabling is shorted.  
2. Encoder is faulty.  
Power supply of CN3 cabling is  
shorted.  
Improved when connector  
CN3 is disconnected.  
Alarm occurs.  
Alarm occurs.  
Refer to section 10.2 and remove cause.  
Refer to section 10.2 and remove cause.  
Section 10.2  
Section 10.2  
2
3
Switch on servo-on  
(SON).  
Servo motor shaft is 1. Check the display to see if 1. Servo-on (SON) is not input. Section 6.6  
not servo-locked  
(is free).  
the servo amplifier is  
ready to operate.  
(Wiring mistake)  
2. 24VDC power is not  
supplied to COM.  
2. Check the external I/O  
signal indication to see if  
the servo-on (SON) is ON.  
Call the status display and  
check the input voltage of  
the analog speed command  
(VC).  
Switch on forward  
Servo motor does  
Analog speed command is 0V.  
LSP, LSN, ST1 or ST2 is off.  
Set value is 0.  
Section 6.2  
Section 6.6  
rotation start (ST1) not rotate.  
or reverse rotation  
start (ST2).  
Call the external I/O signal  
display and check the  
ON/OFF status of the input  
signal.  
Check the internal speed  
commands 1 to 7  
Section  
5.1.2 (1)  
(parameters No. 8 to 10 72  
to 75).  
Check the internal torque  
limit 1 (parameter No. 28).  
When the analog torque  
Torque limit level is too low as  
compared to the load torque.  
Torque limit level is too low as  
limit (TLA) is usable, check compared to the load torque.  
the input voltage on the  
status display.  
4
Gain adjustment  
Rotation ripples  
Make gain adjustment in the Gain adjustment fault  
Chapter 7  
(speed fluctuations) following procedure.  
are large at low  
speed.  
1. Increase the auto tuning  
response level.  
2. Repeat acceleration and  
deceleration several  
times to complete auto  
tuning.  
Large load inertia  
If the servo motor may be  
Gain adjustment fault  
Chapter 7  
moment causes the run with safety, repeat  
servo motor shaft to acceleration and  
oscillate side to side. deceleration several times to  
complete auto tuning.  
10 - 4  
10. TROUBLESHOOTING  
10.1.3 Torque control mode  
No.  
Start-up sequence  
Fault  
Investigation  
Possible cause  
Reference  
1
Power on  
LED is not lit.  
LED flickers.  
Not improved if connectors  
1. Power supply voltage fault  
CN1A, CN1B, CN2 and CN3 2. Servo amplifier is faulty.  
are disconnected.  
Improved when connectors  
CN1A and CN1B are  
disconnected.  
Power supply of CN1 cabling is  
shorted.  
Improved when connector  
CN2 is disconnected.  
1. Power supply of encoder  
cabling is shorted.  
2. Encoder is faulty.  
Power supply of CN3 cabling is  
shorted.  
Improved when connector  
CN3 is disconnected.  
Alarm occurs.  
Alarm occurs.  
Refer to section 10.2 and remove cause.  
Refer to section 10.2 and remove cause.  
Section 10.2  
Section 10.2  
2
3
Switch on servo-on  
(SON).  
Servo motor shaft is Call the external I/O signal  
1. Servo-on (SON) is not input. Section 6.6  
(Wiring mistake)  
free.  
display and check the  
ON/OFF status of the input 2. 24VDC power is not  
signal.  
supplied to COM.  
Switch on forward  
Servo motor does  
Call the status display and  
check the analog torque  
command (TC).  
Analog torque command is 0V. Section 6.2  
rotation start (RS1) not rotate.  
or reverse rotation  
start (RS2).  
Call the external I/O signal  
display and check the  
ON/OFF status of the input  
signal.  
RS1 or RS2 is off.  
Section 6.6  
Check the internal speed  
limits 1 to 7  
Set value is 0.  
Section  
5.1.2 (1)  
(parameters No. 8 to 10 72  
to 75).  
Check the analog torque  
Torque command level is too  
command maximum output low as compared to the load  
(parameter No. 26) value.  
Check the internal torque  
limit 1 (parameter No. 28).  
torque.  
Set value is 0.  
10 - 5  
10. TROUBLESHOOTING  
10.2 When alarm or warning has occurred  
POINT  
Configure up a circuit which will detect the trouble (ALM) and turn off the  
servo-on (SON) at occurrence of an alarm.  
10.2.1 Alarms and warning list  
When a fault occurs during operation, the corresponding alarm or warning is displayed. If any alarm or  
warning has occurred, refer to section 10.2.2 or 10.2.3 and take the appropriate action. When an alarm  
occurs, ALM turns off.  
Set "  
1" in parameter No. 49 to output the alarm code in ON/OFF status across the corresponding  
pin and SG. Warnings (AL.92 to AL.EA) have no alarm codes. Any alarm code is output at occurrence of  
the corresponding alarm. In the normal status, the signals available before alarm code setting (CN1B-19:  
ZSP, CN1A-18: INP or SA, CN1A-19: RD) are output.  
After its cause has been removed, the alarm can be deactivated in any of the methods marked  
alarm deactivation column.  
in the  
(Note 2) Alarm code  
Alarm deactivation  
Press  
"SET" on  
current  
Alarm  
reset  
(RES)  
Display  
Name  
CN1B-19  
CN1A-18  
pin  
CN1A-19  
Power  
OFF ON  
pin  
pin  
alarm  
screen.  
AL.10  
AL.12  
AL.13  
AL.15  
AL.16  
AL.17  
AL.19  
AL.1A  
AL.20  
AL.24  
AL.25  
AL.30  
AL.31  
AL.32  
AL.33  
AL.35  
AL.37  
AL.45  
AL.46  
AL.50  
AL.51  
AL.52  
AL.8A  
AL.8E  
88888  
AL.92  
AL.96  
AL.9F  
AL.E0  
AL.E1  
AL.E3  
AL.E5  
AL.E6  
AL.E9  
AL.EA  
0
0
0
0
1
0
0
1
1
1
1
0
1
1
0
1
0
0
0
0
0
1
0
0
0
1
0
0
0
1
0
0
1
1
0
1
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
1
0
1
1
1
1
1
0
0
0
Undervoltage  
Memory error 1  
Clock error  
Memory error 2  
Encoder error 1  
Board error  
Memory error 3  
Motor combination error  
Encoder error 2  
Main circuit error  
Absolute position erase  
Regenerative error  
Overspeed  
Overcurrent  
Overvoltage  
Command pulse frequency error  
Parameter error  
Main circuit device overheat  
Servo motor overheat  
Overload 1  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
Overload 2  
Error excessive  
Serial communication time-out error  
Serial communication error  
Watchdog  
Open battery cable warning  
Home position setting warning  
Battery warning  
Excessive regenerative warning  
Overload warning  
Removing the cause of occurrence  
deactivates the alarm  
automatically.  
Absolute position counter warning  
ABS time-out warning  
Servo emergency stop warning  
Main circuit off warning  
ABS servo-on warning  
Note 1. Deactivate the alarm about 30 minutes of cooling time after removing the cause of occurrence.  
2. 0: off  
1: on  
10 - 6  
10. TROUBLESHOOTING  
10.2.2 Remedies for alarms  
When any alarm has occurred, eliminate its cause, ensure safety, then reset the  
alarm, and restart operation. Otherwise, injury may occur.  
If an absolute position erase (AL.25) occurred, always make home position setting  
again. Not doing so may cause unexpected operation.  
CAUTION  
As soon as an alarm occurs, turn off Servo-on (SON) and power off the main  
circuit.  
POINT  
When any of the following alarms has occurred, always remove its cause  
and allow about 30 minutes for cooling before resuming operation. If  
operation is resumed by switching control circuit power off, then on to  
reset the alarm, the servo amplifier and servo motor may become faulty.  
Regenerative error (AL.30)  
Overload 1 (AL.50)  
Overload 2 (AL.51)  
The alarm can be deactivated by switching power off, then on press the  
"SET" button on the current alarm screen or by turning on the reset  
(RES). For details, refer to section 10.2.1.  
When an alarm occurs, the trouble (ALM) switches off and the dynamic brake is operated to stop the  
servo motor. At this time, the display indicates the alarm No.  
The servo motor comes to a stop. Remove the cause of the alarm in accordance with this section. The  
optional MR Configurator (servo configuration software) may be used to refer to the cause.  
Display  
Name  
Definition  
Cause  
Action  
AL.10  
Undervoltage Power supply  
voltage dropped.  
MR-J2S- A:  
1. Power supply voltage is low.  
2. There was an instantaneous  
control power failure of 60ms or  
longer.  
Check the power supply.  
160VAC or less  
MR-J2S- A1:  
83VAC or less  
3. Shortage of power supply capacity  
caused the power supply voltage to  
drop at start, etc.  
4. The bus voltage dropped to  
200VDC.  
5. Faulty parts in the servo amplifier Change the servo amplifier.  
Checking method  
Alarm (AL.10) occurs if power is  
switched on after disconnection  
of all cables but the control  
circuit power supply cables.  
AL.12  
AL.13  
Memory error 1 RAM, memory fault Faulty parts in the servo amplifier  
Change the servo amplifier.  
Clock error  
Printed board fault  
Checking method  
Alarm (any of AL.12 and AL.13)  
occurs if power is switched on  
after disconnection of all cables  
but the control circuit power  
supply cables.  
10 - 7  
10. TROUBLESHOOTING  
Display  
Name  
Definition  
Cause  
Action  
AL.15  
Memory error 2 EEP-ROM fault  
1. Faulty parts in the servo amplifier Change the servo amplifier.  
Checking method  
Alarm (AL.15) occurs if power is  
switched on after disconnection  
of all cables but the control  
circuit power supply cables.  
2. The number of write times to EEP-  
ROM exceeded 100,000.  
AL.16  
AL.17  
Encoder error 1 Communication  
error occurred  
1. Encoder connector (CN2)  
disconnected.  
2. Encoder fault  
3. Encoder cable faulty  
(Wire breakage or shorted)  
1. Faulty parts in the servo amplifier. Change the servo amplifier.  
Connect correctly.  
between encoder  
and servo amplifier.  
Change the servo motor.  
Repair or change the cable.  
Board error  
CPU/parts fault  
Checking method  
Alarm (AL.17) occurs if power is  
switched on after disconnection  
of all cable but the control circuit  
power supply cable.  
The output  
2. The wiring of U, V, W is  
Correctly connect the output terminals U,  
terminals U, V, W of  
the servo amplifier  
and the input  
disconnected or not connected.  
V, W of the servo amplifier and the input  
terminals U, V, W of the servo motor.  
terminals U, V, W of  
the servo motor are  
not connected.  
AL.19  
Memory error 3 ROM memory fault Faulty parts in the servo amplifier. Change the servo amplifier.  
Checking method  
Alarm (AL.19) occurs if power is  
switched on after disconnection  
of all cable but the control circuit  
power supply cable.  
AL.1A  
AL.20  
Motor  
combination  
error  
Encoder error 2 Communication  
error occurred  
Wrong combination Wrong combination of servo amplifier Use correct combination.  
of servo amplifier  
and servo motor.  
and servo motor connected.  
1. Encoder connector (CN2)  
disconnected.  
Connect correctly.  
between encoder  
and servo amplifier.  
2. Encoder cable faulty  
(Wire breakage or shorted)  
3. Encoder fault  
4. Excessive acceleration is occurred  
due to oscillation and others.  
Repair or change the cable.  
Change the servo motor.  
1. Decrease the speed control gain 2.  
2. Decrease the auto tuning response  
level.  
Encoder detected  
acceleration error.  
AL.24  
Main circuit  
error  
Ground fault  
1. Power input wires and servo motor Connect correctly.  
output wires are in contact at  
main circuit terminal block (TE1).  
occurred at the  
servo motor outputs  
(U,V and W phases)  
of the servo  
2. Sheathes of servo motor power  
cables deteriorated, resulting in  
ground fault.  
Change the cable.  
amplifier.  
3. Main circuit of servo amplifier  
failed.  
Change the servo amplifier.  
Checking method  
AL.24 occurs if the servo is  
switched on after disconnecting  
the U, V, W power cables from  
the servo amplifier.  
10 - 8  
10. TROUBLESHOOTING  
Display  
Name  
Absolute  
position erase  
Definition  
Cause  
Action  
AL.25  
Absolute position  
data in error  
1. Reduced voltage of super capacitor After leaving the alarm occurring for a few  
in encoder  
minutes, switch power off, then on again.  
Always make home position setting again.  
Change the battery.  
2. Battery voltage low  
Always make home position setting again.  
3. Battery cable or battery is faulty.  
Power was switched 4. Super capacitor of the absolute  
After leaving the alarm occurring for a few  
minutes, switch power off, then on again.  
Always make home position setting again.  
on for the first time  
in the absolute  
position detection  
system.  
position encoder is not charged  
AL.30  
Regenerative  
error  
Permissible  
1. Wrong setting of parameter No. 0 Set correctly.  
regenerative power  
of the built-in  
regenerative  
2. Built-in regenerative resistor or  
regenerative option is not  
connected.  
Connect correctly  
resistor or  
regenerative option  
is exceeded.  
3. High-duty operation or continuous 1. Reduce the frequency of positioning.  
regenerative operation caused the 2. Use the regenerative option of larger  
permissible regenerative power of  
the regenerative option to be  
exceeded.  
capacity.  
3. Reduce the load.  
Checking method  
Call the status display and check  
the regenerative load ratio.  
4. Power supply voltage is abnormal. Check the power supply  
MR-J2S- A:260VAC or more  
MR-J2S- A1:135VAC or more  
5. Built-in regenerative resistor or  
regenerative option faulty.  
Change the servo amplifier or  
regenerative option.  
Regenerative  
6. Regenerative transistor faulty.  
Change the servo amplifier.  
transistor fault  
Checking method  
1) The regenerative option has  
overheated abnormally.  
2) The alarm occurs even after  
removal of the built-in  
regenerative resistor or  
regenerative option.  
AL.31  
Overspeed  
Speed has exceeded 1. Input command pulse frequency  
Set command pulses correctly.  
the instantaneous  
permissible speed.  
exceeded the permissible  
instantaneous speed frequency.  
2. Small acceleration/deceleration  
Increase acceleration/deceleration time  
time constant caused overshoot to constant.  
be large.  
3. Servo system is instable to cause 1. Re-set servo gain to proper value.  
overshoot.  
2. If servo gain cannot be set to proper  
value.  
1) Reduce load inertia moment ratio; or  
2) Reexamine acceleration/  
deceleration time constant.  
4. Electronic gear ratio is large  
(parameters No. 3, 4)  
Set correctly.  
5. Encoder faulty.  
Change the servo motor.  
10 - 9  
10. TROUBLESHOOTING  
Display  
Name  
Definition  
Cause  
Action  
Current that flew is  
higher than the  
permissible current  
of the servo  
AL.32  
Overcurrent  
1. Short occurred in servo amplifier Correct the wiring.  
output phases U, V and W.  
2. Transistor (IPM) of the servo  
amplifier faulty.  
Change the servo amplifier.  
amplifier. (When  
the alarm (AL.32)  
occurs, switch the  
power OFF and  
then ON to reset the  
alarm. Then, turn  
on the servo-on.  
When the alarm  
(AL.32) still occurs  
at the time, the  
transistor (IPM  
IGBT) of the servo  
amplifier may be at  
fault. Do not switch  
the power OFF/ON  
repeatedly; check  
the transistor  
Checking method  
Alarm (AL.32) occurs if power is  
switched on after U,V and W  
are disconnected.  
3. Ground fault occurred in servo  
amplifier output phases U, V and  
W.  
4. External noise caused the  
overcurrent detection circuit to  
misoperate.  
Correct the wiring.  
Take noise suppression measures.  
according to the  
cause 2 checking  
method.)  
Current higher than 5. Improper wiring of the  
Wire the regenerative option correctly.  
Use the regenerative option.  
the permissible  
current flew in the  
regenerative  
regenerative option.  
transistor.  
(MR-J2S-500A only)  
Converter bus  
voltage exceeded  
400VDC.  
AL.33  
Overvoltage  
1. Regenerative option is not used.  
2. Though the regenerative option is Make correct setting.  
used, the parameter No. 0 setting  
is “ 00  
(not used)”.  
3. Lead of built-in regenerative  
resistor or regenerative option is  
open or disconnected.  
1. Change the lead.  
2. Connect correctly.  
4. Regenerative transistor faulty.  
5. Wire breakage of built-in  
regenerative resistor or  
Change the servo amplifier  
1. For wire breakage of built-in  
regenerative resistor, change the servo  
regenerative option  
amplifier.  
2. For wire breakage of regenerative  
option, change the regenerative option.  
Add regenerative option or increase  
6. Capacity of built-in regenerative  
resistor or regenerative option is capacity.  
insufficient.  
7. Power supply voltage high.  
8. Ground fault occurred in servo  
amplifier output phases U, V and  
W.  
Check the power supply.  
Correct the wiring.  
9. The jumper across BUE-SD of the Fit the jumper across BUE-SD.  
FR-BU2 brake unit is removed.  
AL.35  
Command  
pulse frequency frequency of the  
Input pulse  
1. Pulse frequency of the command  
pulse is too high.  
Change the command pulse frequency to a  
proper value.  
error  
command pulse is  
too high.  
2. Noise entered command pulses.  
3. Command device failure  
Take action against noise.  
Change the command device.  
10 - 10  
10. TROUBLESHOOTING  
Display  
Name  
Definition  
Parameter setting is 1. Servo amplifier fault caused the  
wrong. parameter setting to be rewritten.  
Cause  
Action  
AL.37  
Parameter  
error  
Change the servo amplifier.  
2. Regenerative option not used with Set parameter No.0 correctly.  
servo amplifier was selected in  
parameter No.0.  
3. The number of write times to EEP- Change the servo amplifier.  
ROM exceeded 100,000 due to  
parameter write, etc.  
4.The alarm code output (parameter The absolute position detection system  
No. 49) was set by the absolute  
position detection system.  
and the alarm code output function are  
exclusive. Set as either one of the two is  
used.  
5.The alarm code output (parameter The signal assignment function of the  
No.49) was set with the  
electromagnetic brake interlock  
(MBR) assigned to pin CN1B-19.  
electromagnetic interlock (MBR) to pin  
CN1B-19 and the alarm code output  
function are exclusive. Set as either one of  
the two is used.  
AL.45  
AL.46  
Main circuit  
device overheat overheat  
Main circuit device 1. Servo amplifier faulty.  
Change the servo amplifier.  
The drive method is reviewed.  
2. The power supply was turned on  
and off continuously by overloaded  
status.  
3. Air cooling fan of servo amplifier  
stops.  
1. Exchange the cooling fan or the servo  
amplifier.  
2. Reduce ambient temperature.  
Review environment so that ambient  
Servo motor  
overheat  
Servo motor  
temperature rise  
actuated the  
1. Ambient temperature of servo  
motor is over 40 (104 ).  
2. Servo motor is overloaded.  
temperature is 0 to 40 (32  
1. Reduce load.  
104 ).  
to  
thermal sensor.  
2. Review operation pattern.  
3. Use servo motor that provides larger  
output.  
3. Thermal sensor in encoder is  
faulty.  
Change the servo motor.  
AL.50  
Overload 1  
Load exceeded  
1. Servo amplifier is used in excess  
of its continuous output current.  
1. Reduce load.  
overload protection  
characteristic of  
servo amplifier.  
2. Review operation pattern.  
3. Use servo motor that provides larger  
output.  
2. Servo system is instable and  
hunting.  
1. Repeat acceleration/  
deceleration to execute auto tuning.  
2. Change the auto tuning response  
setting.  
3. Set auto tuning to OFF and make gain  
adjustment manually.  
3. Machine struck something.  
1. Review operation pattern.  
2. Install limit switches.  
4. Wrong connection of servo motor. Connect correctly.  
Servo amplifier’s output terminals  
U, V, W do not match servo  
motor’s input terminals U, V, W.  
5. Encoder faulty.  
Change the servo motor.  
Checking method  
When the servo motor shaft is  
rotated with the servo off, the  
cumulative feedback pulses do  
not vary in proportion to the  
rotary angle of the shaft but the  
indication skips or returns midway.  
10 - 11  
10. TROUBLESHOOTING  
Display  
Name  
Definition  
Cause  
Action  
AL.51  
Overload 2  
Machine collision or 1. Machine struck something.  
the like caused max.  
1. Review operation pattern.  
2. Install limit switches.  
For the time of the  
alarm occurrence,  
refer to the section  
12.1.  
2. Wrong connection of servo motor. Connect correctly.  
Servo amplifier's output terminals  
U, V, W do not match servo  
motor's input terminals U, V, W.  
3. Servo system is instable and  
hunting.  
1. Repeat acceleration/deceleration to  
execute auto tuning.  
2. Change auto tuning response setting.  
3. Set auto tuning to OFF and make gain  
adjustment manually.  
4. Encoder faulty.  
Checking method  
Change the servo motor.  
When the servo motor shaft is  
rotated with the servo off, the  
cumulative feedback pulses do  
not vary in proportion to the  
rotary angle of the shaft but the  
indication skips or returns midway.  
AL.52  
Error excessive The difference  
1. Acceleration/deceleration time  
constant is too small.  
2. Torque limit value (parameter  
No.28) is too small.  
Increase the acceleration/deceleration  
time constant.  
Increase the torque limit value.  
(Note)  
between the model  
position and the  
actual servo motor  
position exceeds 2.5  
rotations.  
3. Motor cannot be started due to  
1. Review the power supply capacity.  
torque shortage caused by power 2. Use servo motor which provides larger  
supply voltage drop. output.  
4. Position control gain 1 (parameter Increase set value and adjust to ensure  
No.6) value is small. proper operation.  
5. Servo motor shaft was rotated by 1. When torque is limited, increase the  
(Refer to the  
function block  
diagram in section  
1.2)  
external force.  
limit value.  
2. Reduce load.  
3. Use servo motor that provides larger  
output.  
6. Machine struck something.  
7. Encoder faulty  
1. Review operation pattern.  
2. Install limit switches.  
Change the servo motor.  
8. Wrong connection of servo motor. Connect correctly.  
Servo amplifier's output terminals  
U, V, W do not match servo  
motor's input terminals U, V, W.  
AL.8A  
AL.8E  
Serial  
RS-232C or RS-422 1. Communication cable breakage.  
Repair or change the communication cable  
communication communication  
time-out error stopped for longer  
than the time set in  
2. Communication cycle longer than Set correct value in parameter.  
parameter No. 56 setting.  
3. Wrong protocol.  
Correct protocol.  
parameter No.56.  
Serial  
Serial  
1. Communication cable fault  
(Open cable or short circuit)  
Repair or change the cable.  
communication communication  
error  
error occurred  
between servo  
amplifier and  
2. Communication device (e.g.  
personal computer) faulty  
Change the communication device (e.g.  
personal computer).  
communication  
device (e.g. personal  
computer).  
88888 Watchdog  
CPU, parts faulty  
Fault of parts in servo amplifier  
Change the servo amplifier.  
Checking method  
Alarm (88888) occurs if power  
is switched on after disconnection  
of all cables but the control circuit  
power supply cable.  
Note. The error excessive detection for 2.5 revolutions is available only when the servo amplifier of software version B0 or later is used.  
For the servo amplifier of software version older than B0, an error excessive alarm occurs when the deviation (deviation counter  
value) between the instructed position and the actual servo motor position exceeds 10 revolutions.  
10 - 12  
10. TROUBLESHOOTING  
10.2.3 Remedies for warnings  
If an absolute position counter warning (AL.E3) occurred, always make home  
CAUTION  
position setting again. Not doing so may cause unexpected operation.  
POINT  
When any of the following alarms has occurred, do not resume operation  
by switching power of the servo amplifier OFF/ON repeatedly. The servo  
amplifier and servo motor may become faulty. If the power of the servo  
amplifier is switched OFF/ON during the alarms, allow more than 30  
minutes for cooling before resuming operation.  
Excessive regenerative warning (AL.E0)  
Overload warning 1 (AL.E1)  
If Servo emergency stop warning (AL.E6) or ABS servo-on warning (AL.EA) occurs, the servo off status is  
established. If any other warning occurs, operation can be continued but an alarm may take place or  
proper operation may not be performed. Use the optional MR Configurator (servo configuration software)  
to refer to the cause of warning.  
Display  
Name  
Definition  
Cause  
Action  
AL.92 Open battery  
cable warning  
Absolute position  
detection system battery  
voltage is low.  
1. Battery cable is open.  
Repair cable or changed.  
2. Battery voltage supplied from the servo Change the battery.  
amplifier to the encoder fell to about 3.2V  
or less. (Detected with the encoder)  
AL.96 Home position  
Home position setting  
1. Droop pulses remaining are greater  
than the in-position range setting.  
Remove the cause of droop pulse  
occurrence  
setting warning could not be made.  
2. Command pulse entered after clearing Do not enter command pulse  
of droop pulses.  
after clearing of droop pulses.  
Reduce creep speed.  
3. Creep speed high.  
AL.9F Battery warning Voltage of battery for  
absolute position  
Battery voltage fell to 3.2V or less.  
(Detected with the servo amplifier)  
Change the battery.  
detection system reduced.  
AL.E0 Excessive  
regenerative  
warning  
There is a possibility that Regenerative power increased to 85% or  
regenerative power may more of permissible regenerative power of  
1. Reduce frequency of  
positioning.  
exceed permissible  
regenerative power of  
built-in regenerative  
resistor or regenerative  
option.  
built-in regenerative resistor or  
regenerative option.  
2. Change regenerative option  
for the one with larger  
capacity.  
Checking method  
Call the status display and check  
regenerative load ratio.  
3. Reduce load.  
AL.E1 Overload  
warning  
There is a possibility that Load increased to 85% or more of overload Refer to AL.50, AL.51.  
overload alarm 1 or 2  
may occur.  
alarm 1 or 2 occurrence level.  
Cause, checking method  
Refer to AL.50,51.  
AL.E3 Absolute position Absolute position encoder 1. Noise entered the encoder.  
counter warning pulses faulty.  
Take noise suppression  
measures.  
2. Encoder faulty.  
Change the servo motor.  
The multi-revolution  
counter value of the  
absolute position encoder  
exceeded the maximum  
revolution range.  
3. The movement amount from the home Make home position setting  
position exceeded a 32767 rotation or  
37268 rotation in succession.  
again.  
10 - 13  
10. TROUBLESHOOTING  
Display  
Name  
Definition  
Cause  
Action  
AL.E5 ABS time-out  
warning  
1. PLC ladder program wrong.  
Contact the program.  
2. Reverse rotation start (ST2) Limiting Connect properly.  
torque (TLC) improper wiring  
AL.E6 Servo emergency EMG is off.  
stop warning  
External emergency stop was made valid. Ensure safety and deactivate  
(EMG was turned off.)  
emergency stop.  
AL.E9 Main circuit off Servo-on (SON) was  
Switch on main circuit power.  
warning  
switched on with main  
circuit power off.  
AL.EA ABS  
Servo-on (SON) turned on 1. PLC ladder program wrong.  
1. Correct the program.  
2. Connect properly.  
servo-on warning more than 1s after servo  
amplifier had entered  
2. Servo-on (SON) improper wiring.  
absolute position data  
transfer mode.  
10 - 14  
11. OUTLINE DIMENSION DRAWINGS  
11. OUTLINE DIMENSION DRAWINGS  
11.1 Servo amplifiers  
(1) MR-J2S-10A to MR-J2S-60A  
MR-J2S-10A1 to MR-J2S-40A1  
[Unit: mm]  
([Unit: in])  
A
Approx.70 (2.76)  
135 (5.32)  
6 ( 0.24) mounting hole  
Terminal layout  
(Terminal cover open)  
MITSUBISHI  
B
MITSUBISHI  
OPEN  
OPEN  
C
N
1
C
N
1
C
N
1
C
N
1
A
B
A
B
Rating plate  
C
N
2
E
N
C
C
N
3
C
N
2
E
N
C
C
N
3
TE1  
L1 L2 L3  
(Note)  
U
V
W
TE2  
PE terminal  
6
(0.24)  
4(0.16)  
Variable dimensions  
Mass  
Servo amplifier  
[kg]([lb])  
A
B
MR-J2S-10A(1)  
MR-J2S-20A(1)  
MR-J2S-40A(1)  
MR-J2S-60A  
50 (1.97)  
70 (2.76)  
6 (0.24)  
0.7 (1.54)  
1.1 (2.43)  
22 (0.87)  
Note. This data applies to the 3-phase 200 to 230VAC and 1-phase 230VAC power supply models.  
Terminal signal layout  
TE1  
Mounting Screw  
Screw Size:M5  
Tightening torque:  
3.24[N m]  
For 3-phase 200 to 230VAC and 1-phase 230VAC  
For 1-phase 100 to 120VAC  
L1  
U
L2  
V
L3  
W
L1  
U
L2  
W
V
(28.676 [lb in])  
Terminal screw: M4  
Terminal screw: M4  
Tightening torque: 1.2 [N m] (10.6 [lb in])  
Tightening torque: 1.2 [N m] (10.6 [lb in])  
TE2  
PE terminals  
Front  
D
C
P
L21 L11  
Terminal screw: M4  
Tightening torque: 1.2 [N m] (10.6 [lb in])  
11 - 1  
11. OUTLINE DIMENSION DRAWINGS  
(2) MR-J2S-70A MR-J2S-100A  
[Unit: mm]  
([Unit: in])  
6 ( 0.24)  
70(2.76)  
mounting hole  
Approx.70(2.76)  
190(7.48)  
22  
Terminal layout  
(Terminal cover open)  
MITSUBISHI  
(0.87)  
MITSUBISHI  
OPEN  
OPEN  
C
N
1
C
N
1
C
N
1
C
N
1
A
B
A
B
Rating plate  
C
N
2
C
N
3
C
N
2
C
N
3
E
N
C
E
N
C
L1 L2 L3  
U
V
W
PE terminal  
TE2  
TE1  
6(0.24)  
42  
6(0.24)  
22  
(0.87) (1.65)  
6(0.24)  
Mass  
Servo amplifier  
[kg]([lb])  
MR-J2S-70A  
MR-J2S-100A  
1.7  
(3.75)  
Terminal signal layout  
TE1  
L1  
Mounting Screw  
Screw Size:M5  
Tightening torque:3.24[N m](28.676 [lb in])  
L2  
V
L3  
W
U
Terminal screw: M4  
Tightening torque: 1.2 [N m] (10.6 [lb in])  
TE2  
Front  
D
C
P
L21 L11  
N
PE terminals  
Terminal screw: M4  
Tightening torque: 1.2 [N m] (10.6 [lb in])  
11 - 2  
11. OUTLINE DIMENSION DRAWINGS  
(3) MR-J2S-200A MR-J2S-350A  
[Unit: mm]  
([Unit: in])  
Approx.70  
(2.76)  
195(7.68)  
6 ( 0.24)  
mounting hole  
90(3.54)  
78(3.07)  
6
(0.24)  
Terminal layout  
MITSUBISHI  
MITSUBISHI  
TE2  
TE1  
PE terminal  
Cooling fan wind direction  
Mass  
Servo amplifier  
[kg]([lb])  
MR-J2S-200A  
MR-J2S-350A  
2.0  
(4.41)  
Terminal signal layout  
PE terminals  
TE1  
L1  
Mounting Screw  
Screw Size:M5  
Tightening torque:  
3.24[N m]  
L2  
L3  
U
V
W
Terminal screw: M4  
Tightening torque: 1.2 [N m] (10.6 [lb in])  
(28.676 [lb in])  
Terminal screw: M4  
Tightening torque: 1.2 [N m] (10.6 [lb in])  
TE2  
L11 L21  
D
P
C
N
Terminal screw: M4  
Tightening torque: 1.2 [N m] (10.6 [lb in])  
11 - 3  
11. OUTLINE DIMENSION DRAWINGS  
(4) MR-J2S-500A  
2- 6 ( 0.24)  
mounting hole  
[Unit: mm]  
([Unit: in])  
Approx.  
70  
(2.76)  
(0.24)  
6
(0.24)  
6
130(5.12)  
118(4.65)  
200(7.87)  
(0.19) 5  
Terminal layout  
MITSUBISHI  
OPEN  
MITSUBISHI  
OPEN  
OPEN  
TE1  
C
N
1
C
N
1
C
N
1
C
N
1
A
B
A
B
C
N
2
C
N
3
C
N
2
C
N
3
TE2  
N.P.  
N.P.  
6(0.24)  
Cooling fan  
Cooling fan  
Cooling fan wind direction  
Mass  
Servo amplifier  
MR-J2S-500A  
[kg]([lb])  
4.9(10.8)  
Terminal signal layout  
PE terminals  
Mounting Screw  
TE1  
Screw Size:M5  
Tightening torque:  
3.24[N m]  
Built-in regenerative resistor  
lead terminal fixing screw  
Terminal screw : M4  
L1  
L2  
L3  
C
Tightening torque : 1.2 [N m](10.6[lb in])  
(28.676 [lb in])  
P
N
U
V
W
Terminal screw : M4  
Tightening torque : 1.2 [N m](10.6[lb in])  
TE2  
Terminal screw : M3.5  
Tightening torque : 0.8 [N m](7[lb in])  
L11  
L21  
11 - 4  
11. OUTLINE DIMENSION DRAWINGS  
(5) MR-J2S-700A  
2- 6 ( 0.24)  
mounting hole  
[Unit: mm]  
([Unit: in])  
200(7.87)  
138(5.43)  
Approx.70  
10  
180(7.09)  
160(6.23)  
(0.39)  
10  
62  
(2.76)  
6(0.24)  
(2.44)  
(0.39)  
Terminal layout  
MITSUBISHI  
MITSUBISHI  
OPEN  
OPEN  
C
N
1
C
N
1
C
N
1
C
N
1
A
B
A
B
C
N
3
C
N
3
C
N
2
C
N
2
TE2  
OPEN  
Cooling fan  
TE1  
6 (0.24)  
Cooling fan  
Cooling fan wind direction  
Mass  
Servo amplifier  
MR-J2S-700A  
[kg]([lb])  
7.2(15.9)  
Terminal signal layout  
Mounting Screw  
Screw Size:M5  
Tightening torque:  
3.24[N m]  
TE1  
PE terminals  
L1  
Terminal screw : M4  
Tightening torque : 1.2 [N m](10.6[lb in])  
L2 L3  
C
P
N
U
V
W
Built-in regenerative  
resistor lead terminal  
fixing screw  
(28.676 [lb in])  
Terminal screw : M4  
Tightening torque : 1.2 [N m](10.6[lb in])  
TE2  
Terminal screw : M3.5  
Tightening torque : 0.8 [N m](7[lb in])  
L11  
L21  
11 - 5  
11. OUTLINE DIMENSION DRAWINGS  
(6) MR-J2S-11KA 15KA  
[Unit: mm]  
([Unit: in])  
Cooling fan wind direction  
Approx.  
75  
2- 12 ( 0.47)  
mounting hole  
(2.95)  
MITSUBISHI  
CN4  
Cooling fan  
Cooling fan  
C
N
3
C
N
1
A
C
N
1
B
TE2  
CHARGE  
CON2  
CN2  
TE1  
12(0.47)  
(0.47)12  
236(9.29)  
260(10.24)  
12(0.47)  
Mass  
Servo amplifier  
[kg]([lb])  
15(33.1)  
16(35.3)  
MR-J2S-11KA  
MR-J2S-15KA  
Terminal signal layout  
Mounting Screw  
TE1  
PE terminal  
Screw Size:M10  
Tightening torque:  
26.5[N m]  
L1  
Terminal screw : M6  
Tightening torque : 3.0[N m] (26.6[lb in])  
L2  
L3  
U
V
W
P1  
P
C
N
(234.545[lb in])  
Terminal screw : M6  
Tightening torque : 6.0[N m] (53.1[lb in])  
TE2  
L11  
L21  
Terminal screw : M4  
Tightening torque : 1.2[N m] (10.6[lb in])  
11 - 6  
11. OUTLINE DIMENSION DRAWINGS  
(7) MR-J2S-22KA  
[Unit: mm]  
([Unit: in])  
Cooling fan wind direction  
Approx.  
75  
(2.95)  
2- 12 ( 0.47)  
mounting hole  
MITSUBISHI  
CN4  
Cooling fan  
C
N
3
Cooling fan  
C
N
1
A
C
N
1
B
TE2  
CN2 CHARGE  
CON2  
TE1  
12(0.47)  
(0.47)12  
326(12.84)  
350(13.78)  
12(0.47)  
Mass  
[kg]([lb])  
20(44.1)  
Servo amplifier  
MR-J2S-22KA  
Terminal signal layout  
Mounting Screw  
TE1  
PE terminal  
Screw Size:M10  
Tighting torque:  
26.5[N m]  
L1  
L2  
L3  
U
V
W
P1  
P
C
N
Terminal screw : M8  
Tightening torque : 6.0[N m] (53.1[lb in])  
(234.545[lb in])  
Terminal screw : M8  
Tightening torque : 6.0[N m] (53.1[lb in])  
TE2  
L11  
L21  
Terminal screw : M4  
Tightening torque : 1.2[N m] (10.6[lb in])  
11 - 7  
11. OUTLINE DIMENSION DRAWINGS  
11.2 Connectors  
(1) Servo amplifier side  
<3M>  
(a) Soldered type  
Model  
Connector  
Shell kit  
[Unit: mm]  
([Unit: in])  
: 10120-3000PE  
: 10320-52F0-008  
12.0(0.47)  
14.0  
22.0 (0.87)  
(0.55)  
Logo, etc. are indicated here.  
33.3 (1.31)  
12.7(0.50)  
(b) Threaded type  
Model  
Connector  
Shell kit  
Note. This is not available as option  
and should be user-prepared.  
: 10120-3000PE  
: 10320-52A0-008  
[Unit: mm]  
([Unit: in])  
12.0(0.47)  
22.0(0.87)  
14.0  
27.4  
(0.55)  
(1.08)  
Logo, etc. are indicated here.  
33.3  
(1.31)  
12.7  
(0.50)  
11 - 8  
11. OUTLINE DIMENSION DRAWINGS  
(c) Insulation displacement type  
Model  
Connector  
Shell kit  
: 10120-6000EL  
: 10320-3210-000  
[Unit: mm]  
0.26)  
([Unit: in])  
(
6.7  
2- 0.5 20.9(0.82)  
(0.02)  
Logo, etc. are indicated here.  
29.7  
(1.17)  
(2) Communication cable connector  
<Japan Aviation Electronics Industry >  
[Unit: mm]  
([Unit: in])  
B
A
Fitting fixing screwG  
F
E(max. diameter of cable used)  
C
D
A
B
C
D
F
Type  
E
G
1
1
0.25  
1
Reference  
DE-C1-J6-S6  
34.5(1.36)  
19(0.75)  
24.99(0.98)  
33(1.30)  
6(0.24)  
18(0.71)  
#4-40  
11 - 9  
11. OUTLINE DIMENSION DRAWINGS  
MEMO  
11 - 10  
12. CHARACTERISTICS  
12. CHARACTERISTICS  
12.1 Overload protection characteristics  
An electronic thermal relay is built in the servo amplifier to protect the servo motor and servo amplifier  
from overloads. Overload 1 alarm (AL.50) occurs if overload operation performed is above the electronic  
thermal relay protection curve shown in any of Figs 12.1. Overload 2 alarm (AL.51) occurs if the  
maximum current flew continuously for several seconds due to machine collision, etc. Use the equipment  
on the left-hand side area of the continuous or broken line in the graph.  
In a machine like the one for vertical lift application where unbalanced torque will be produced, it is  
recommended to use the machine so that the unbalanced torque is 70% or less of the rated torque.  
1000  
100  
10  
1000  
100  
During rotation  
During rotation  
During stop  
10  
1
During stop  
1
0.1  
0
0.1  
0
50  
100  
150  
200  
250  
300  
50  
150  
200  
250  
300  
100  
(Note) Load ratio [%]  
(Note) Load ratio [%]  
b. MR-J2S-200A to MR-J2S-350A  
a. MR-J2S-10A to MR-J2S-100A  
10000  
1000  
10000  
1000  
During rotation  
During rotation  
During servo lock  
100  
100  
During servo lock  
10  
1
10  
1
0
50  
100  
150  
200  
250  
300  
0
100  
200  
300  
(Note) Load ratio [%]  
(Note) Load ratio [%]  
c. MR-J2S-500A MR-J2S-700A  
d. MR-J2S-11KA to MR-J2S-22KA  
Note. If operation that generates torque more than 100% of the rating is performed with an abnormally high frequency in a servo motor  
stop status (servo lock status) or in a 30r/min or less low-speed operation status, the servo amplifier may fail even when the  
electronic thermal relay protection is not activated.  
Fig 12.1 Electronic thermal relay protection characteristics  
12 - 1  
12. CHARACTERISTICS  
12.2 Power supply equipment capacity and generated loss  
(1) Amount of heat generated by the servo amplifier  
Table 12.1 indicates servo amplifiers' power supply capacities and losses generated under rated load.  
For thermal design of an enclosure, use the values in Table 12.1 in consideration for the worst  
operating conditions. The actual amount of generated heat will be intermediate between values at  
rated torque and servo off according to the duty used during operation. When the servo motor is run at  
less than the maximum speed, the power supply capacity will be smaller than the value in the table,  
but the servo amplifier's generated heat will not change.  
Table 12.1 Power supply capacity and generated heat per servo amplifier at rated output  
(Note 2)  
(Note 1)  
Area required for heat dissipation  
Servo amplifier-generated heat[W]  
Servo amplifier  
MR-J2S-10A(1)  
MR-J2S-20A(1)  
MR-J2S-40A(1)  
MR-J2S-60A  
Servo motor  
Power supply  
capacity[kVA]  
At rated torque  
With servo off  
[m2]  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.7  
0.7  
0.7  
0.8  
0.8  
0.8  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.8  
1.8  
1.8  
1.8  
1.0  
1.8  
1.8  
1.8  
2.7  
2.7  
1.8  
1.8  
1.8  
[ft2]  
5.4  
HC-KFS053 13  
HC-MFS053 13  
HC-UFS13  
0.3  
0.3  
0.3  
0.5  
0.5  
0.5  
0.9  
0.9  
0.9  
1.0  
1.0  
1.0  
1.3  
1.3  
1.3  
1.5  
1.7  
1.7  
2.1  
3.5  
2.5  
3.5  
1.8  
2.5  
2.5  
2.5  
4.8  
5.5  
3.5  
3.5  
3.5  
25  
25  
25  
25  
25  
25  
35  
35  
35  
40  
40  
40  
50  
50  
50  
50  
50  
50  
90  
90  
90  
90  
50  
90  
90  
90  
120  
130  
90  
90  
90  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
20  
20  
20  
20  
15  
20  
20  
20  
20  
20  
20  
20  
20  
5.4  
5.4  
HC-KFS23  
5.4  
HC-MFS23  
5.4  
HC-UFS23  
5.4  
HC-KFS43  
7.5  
HC-MFS43  
7.5  
HC-UFS43  
7.5  
HC-SFS52  
8.6  
HC-SFS53  
8.6  
HC-LFS52  
8.6  
HC-KFS73  
10.8  
10.8  
10.8  
10.8  
10.8  
10.8  
19.4  
19.4  
19.4  
19.4  
10.8  
19.4  
19.4  
19.4  
29.1  
29.1  
19.4  
19.4  
19.4  
MR-J2S-70A  
HC-MFS73  
HC-UFS72 73  
HC-SFS81  
MR-J2S-100A  
HC-SFS102 103  
HC-LFS102  
HC-SFS121  
HC-SFS201  
HC-SFS152 153  
HC-SFS202 203  
HC-RFS103  
HC-RFS153  
HC-UFS152  
HC-LFS152  
HC-SFS301  
HC-SFS352 353  
HC-RFS203  
HC-UFS202  
HC-LFS202  
MR-J2S-200A  
MR-J2S-350A  
12 - 2  
12. CHARACTERISTICS  
(Note 2)  
(Note 1)  
Area required for heat dissipation  
Servo amplifier-generated heat[W]  
Servo amplifier  
Servo motor  
Power supply  
capacity[kVA]  
At rated torque  
195  
With servo off  
[m2]  
3.9  
2.7  
3.9  
3.9  
3.9  
2.4  
3.9  
6.0  
6.0  
11  
[ft2]  
HC-SFS502  
7.5  
5.5  
25  
25  
25  
25  
25  
25  
25  
25  
25  
45  
45  
45  
45  
45  
45  
45  
55  
55  
55  
55  
42.0  
HC-RFS353  
HC-RFS503  
HC-UFS352  
HC-UFS502  
HC-LFS302  
135  
29.1  
7.5  
195  
42.0  
MR-J2S-500A  
5.5  
195  
42.0  
7.5  
195  
42.0  
4.5  
120  
25.8  
HA-LFS502  
7.5  
195  
42.0  
HC-SFS702  
10.0  
10.6  
16.0  
12.0  
18.0  
16.0  
22.0  
22.0  
22.0  
33.0  
30.1  
37.6  
33.0  
300  
64.6  
MR-J2S-700A  
MR-J2S-11KA  
HA-LFS702  
300  
64.6  
HA-LFS11K2  
HA-LFS801  
530  
118.4  
83.9  
390  
7.8  
11.6  
11.0  
13  
HA-LFS12K1  
HA-LFS11K1M  
HA-LFS15K2  
HA-LFS15K1  
HA-LFS15K1M  
HA-LFS22K2  
HA-LFS20K1  
HA-LFS25K1  
HA-LFS22K1M  
580  
124.8  
118.4  
139.0  
139.0  
139.0  
183.0  
166.8  
208.8  
193.0  
530  
640  
MR-J2S-15KA  
MR-J2S-22KA  
640  
13  
640  
13  
850  
17  
775  
15.5  
19.4  
17.0  
970  
850  
Note 1. Note that the power supply capacity will vary according to the power supply impedance. This value assumes that the power  
factor improving reactor is not used.  
2. Heat generated during regeneration is not included in the servo amplifier-generated heat. To calculate heat generated by the  
regenerative option, refer to section 13.1.1.  
12 - 3  
12. CHARACTERISTICS  
(2) Heat dissipation area for enclosed servo amplifier  
The enclosed control box (hereafter called the control box) which will contain the servo amplifier  
should be designed to ensure that its temperature rise is within 10 at the ambient temperature of  
40 . (With a 5 (41 ) safety margin, the system should operate within a maximum 55 (131  
limit.) The necessary enclosure heat dissipation area can be calculated by Equation 12.1:  
)
P
............................................................................................................................................. (12.1)  
A
K
T
where, A  
P
: Heat dissipation area [m2]  
: Loss generated in the control box [W]  
T : Difference between internal and ambient temperatures [  
: Heat dissipation coefficient [5 to 6]  
]
K
When calculating the heat dissipation area with Equation 12.1, assume that P is the sum of all losses  
generated in the enclosure. Refer to Table 12.1 for heat generated by the servo amplifier. "A" indicates  
the effective area for heat dissipation, but if the enclosure is directly installed on an insulated wall,  
that extra amount must be added to the enclosure's surface area.  
The required heat dissipation area will vary wit the conditions in the enclosure. If convection in the  
enclosure is poor and heat builds up, effective heat dissipation will not be possible. Therefore,  
arrangement of the equipment in the enclosure and the use of a cooling fan should be considered.  
Table 12.1 lists the enclosure dissipation area for each servo amplifier when the servo amplifier is  
operated at the ambient temperature of 40 (104 ) under rated load.  
(Outside)  
(Inside)  
Air flow  
Fig. 12.2 Temperature distribution in enclosure  
When air flows along the outer wall of the enclosure, effective heat exchange will be possible, because  
the temperature slope inside and outside the enclosure will be steeper.  
12 - 4  
12. CHARACTERISTICS  
12.3 Dynamic brake characteristics  
12.3.1 Dynamic brake operation  
(1) Calculation of coasting distance  
Fig. 12.6 shows the pattern in which the servo motor comes to a stop when the dynamic brake is  
operated. Use Equation 12.2 to calculate an approximate coasting distance to a stop. The dynamic  
brake time constant varies with the servo motor and machine operation speeds. (Refer to (2) in this  
section.)  
ON  
Emergency stop(EMG)  
OFF  
Time constant  
V0  
Machine speed  
Time  
te  
Fig. 12.3 Dynamic brake operation diagram  
JL  
JM  
V0  
60  
Lmax  
te  
....................................................................................................................... (12.2)  
1
Lmax  
Vo  
: Maximum coasting distance .................................................................................................[mm][in]  
: Machine rapid feed rate........................................................................................ [mm/min][in/min]  
: Servo motor inertial moment.................................................................................[kg cm2][oz in2]  
: Load inertia moment converted into equivalent value on servo motor shaft.....[kg cm2][oz in2]  
: Brake time constant........................................................................................................................ [s]  
M
J
L
J
te  
: Delay time of control section........................................................................................................... [s]  
For 7kW or less servo, there is internal relay delay time of about 30ms. For 11k to 22kW servo,  
there is delay time of about 100ms caused by a delay of the external relay and a delay of the  
magnetic contactor built in the external dynamic brake.  
(2) Dynamic brake time constant  
The following shows necessary dynamic brake time constant for the equations (12.2).  
20  
18  
16  
16  
14  
12  
23  
14  
12  
23  
10  
8
73  
10  
8
73  
053  
6
6
4
2
0
053  
43  
4
2
0
43  
13  
13  
0
500 1000 1500 2000 2500 3000  
Speed[r/min]  
0
500 1000 1500 2000 2500 3000  
Speed [r/min]  
HC-KFS series  
HC-MFS series  
12 - 5  
12. CHARACTERISTICS  
40  
35  
30  
45  
40  
35  
121  
201  
702  
30  
25  
20  
15  
352  
202  
25  
20  
301  
52  
502  
15  
10  
10  
5
152  
81  
102  
5
0
0
0
50  
500  
1000  
0
500  
1000 1500 2000  
Speed [r/min]  
Speed [r/min]  
HC-SFS1000r/min series  
HC-SFS2000r/min series  
120  
18  
16  
100  
80  
203  
53  
14  
12  
10  
60  
40  
103  
503  
8
6
153  
353  
153  
103  
4
2
0
20  
0
353  
203  
0
50 500 1000 1500 2000 2500 3000  
Speed [r/min]  
0
500 1000 1500 2000 2500 3000  
Speed [r/min]  
HC-SFS3000r/min series  
HC-RFS series  
70  
60  
50  
40  
30  
20  
73  
100  
90  
80  
72  
502  
70  
60  
352  
43  
50  
23  
13  
40  
30  
10  
0
20  
202  
152  
10  
0
0
50 500 10001500200025003000  
Speed [r/min]  
0
500  
1000 1500 2000  
Speed [r/min]  
HC-UFS 2000r/min series  
HC-UFS3000r/min series  
40  
35  
40  
35  
30  
30  
25  
25  
15K2  
302  
20  
15  
20  
15  
11K2  
10  
10  
5
5
22K2  
0
0
0
500  
1000 1500 2000  
Speed [r/min]  
0
500  
1000 1500 2000  
Speed [r/min]  
HA-LFS series  
HC-LFS series  
12 - 6  
12. CHARACTERISTICS  
12.3.2 The dynamic brake at the load inertia moment  
Use the dynamic brake at the load inertia moment indicated in the following table. If the load inertia  
moment is higher than this value, the built-in dynamic brake may burn. If there is a possibility that the  
load inertia moment may exceed the value, contact Mitsubishi.  
Servo amplifier  
Load inertia moment ratio [times]  
MR-J2S-10A to MR-J2S-200A  
MR-J2S-10A1 to MR-J2S-40A1  
MR-J2S-350A  
30  
16  
15  
MR-J2S-500A MR-J2S-700A  
MR-J2S-11KA to MR-J2S-22KA  
(Note) 30  
Note. The value assumes that the external dynamic brake is used.  
12.4 Encoder cable flexing life  
The flexing life of the cables is shown below. This graph calculated values. Since they are not guaranteed  
values, provide a little allowance for these values.  
1
5
108  
107  
a
1
5
107  
106  
a : Long flexing-life encoder cable  
MR-JCCBL M-H  
MR-JHSCBL M-H  
MR-ENCBL M-H  
1
5
106  
105  
b : Standard encoder cable  
MR-JCCBL M-L  
MR-JHSCBL M-L  
1
5
105  
104  
1
5
104  
103  
b
1
103  
4
7
10  
20  
40  
70 100  
200  
Flexing radius [mm]  
12 - 7  
12. CHARACTERISTICS  
12.5 Inrush currents at power-on of main circuit and control circuit  
The following table indicates the inrush currents (reference value) that will flow when the maximum  
permissible voltage (253VAC) is applied at the power supply capacity of 2500kVA and the wiring length of  
1m.  
Inrush Currents (A0-p  
)
Servo Amplifier  
Main circuit power supply (L1, L2, L3)  
30A (Attenuated to approx. 5A in 10ms)  
30A (Attenuated to approx. 5A in 10ms)  
54A (Attenuated to approx. 12A in 10ms)  
Control circuit power supply (L11, L21)  
MR-J2S-10A 20A  
MR-J2S-40A 60A  
MR-J2S-70A 100A  
70 to 100A  
(Attenuated to approx. 0A in 0.5 to 1ms)  
100 to 130A  
MR-J2S-200A 350A  
120A (Attenuated to approx. 12A in 20ms)  
(Attenuated to approx. 0A in 0.5 to 1ms)  
MR-J2S-500A  
MR-J2S-700A  
44A (Attenuated to approx. 20A in 20ms)  
88A (Attenuated to approx. 20A in 20ms)  
30A  
MR-J2S-11KA  
MR-J2S-15KA  
MR-J2S-22KA  
MR-J2S-10A1 20A1  
MR-J2S-40A1  
(Attenuated to approx. 0A in several ms)  
235A (Attenuated to approx. 20A in 20ms)  
59A (Attenuated to approx. 5A in 4ms)  
72A (Attenuated to approx. 5A in 4ms)  
100 to 130A  
(Attenuated to approx. 0A in 0.5 to 1ms)  
Since large inrush currents flow in the power supplies, always use no-fuse breakers and magnetic  
contactors. (Refer to section 13.2.2)  
When circuit protectors are used, it is recommended to use the inertia delay type that will not be tripped  
by an inrush current.  
12 - 8  
13. OPTIONS AND AUXILIARY EQUIPMENT  
13. OPTIONS AND AUXILIARY EQUIPMENT  
Before connecting any option or peripheral equipment, turn off the power and wait  
for 15 minutes or more until the charge lamp turns off. Then, confirm that the  
voltage between P and N is safe with a voltage tester and others. Otherwise, an  
electric shock may occur. In addition, always confirm from the front of the servo  
amplifier whether the charge lamp is off or not.  
WARNING  
Use the specified auxiliary equipment and options. Unspecified ones may lead to a  
fault or fire.  
CAUTION  
13.1 Options  
13.1.1 Regenerative options  
The specified combinations of regenerative options and servo amplifiers may only  
be used. Otherwise, a fire may occur.  
CAUTION  
(1) Combination and regenerative power  
The power values in the table are resistor-generated powers and not rated powers.  
Regenerative power[W]  
(Note)  
(Note)  
MR-RB51  
[6.7 ]  
Servo amplifier  
Built-in regenerative MR-RB032 MR-RB12  
MR-RB32  
[40 ]  
MR-RB30  
[13 ]  
MR-RB31  
[6.7 ]  
MR-RB50  
[13 ]  
resistor  
[40 ]  
[40 ]  
MR-J2S-10A(1)  
MR-J2S-20A(1)  
MR-J2S-40A(1)  
MR-J2S-60A  
30  
30  
30  
30  
30  
30  
10  
10  
10  
20  
20  
100  
100  
130  
170  
100  
100  
100  
100  
100  
MR-J2S-70A  
300  
300  
MR-J2S-100A  
MR-J2S-200A  
MR-J2S-350A  
MR-J2S-500A  
MR-J2S-700A  
300  
300  
300  
500  
500  
500  
300  
500  
Note. Always install a cooling fan.  
(Note) Regenerative power[W]  
Servo amplifier  
External regenerative  
resistor (Accessory)  
MR-RB65  
MR-RB66  
[5 ]  
MR-RB67  
[8 ]  
[4 ]  
MR-J2S-11KA  
MR-J2S-15KA  
MR-J2S-22KA  
500 (800)  
850 (1300)  
850 (1300)  
500 (800)  
850 (1300)  
850 (1300)  
Note. Values in parentheses assume the installation of a cooling fan.  
13 - 1  
13. OPTIONS AND AUXILIARY EQUIPMENT  
(2) Selection of the regenerative option  
(a) Simple selection method  
In horizontal motion applications, select the regenerative option as described below.  
When the servo motor is run without load in the regenerative mode from the running speed to a  
stop, the permissible duty is as indicated in section 5.1 of the separately available Servo Motor  
Instruction Manual.  
For the servo motor with a load, the permissible duty changes according to the inertia moment of  
the load and can be calculated by the following formula.  
Permissible duty for servo motor with no load (value indication Section 5.1 in Servo Motor Instruction Manual)  
Permissible  
duty  
(m 1)  
2
ratedspeed  
running speed  
[times/min]  
where m  
load inertia moment/servo motor inertia moment  
From the permissible duty, find whether the regenerative option is required or not.  
Permissible duty number of positioning times [times/min]  
Select the regenerative option out of the combinations in (1) in this section.  
(b) To make selection according to regenerative energy  
Use the following method when regeneration occurs continuously in vertical motion applications or  
when it is desired to make an in-depth selection of the regenerative option.  
a. Regenerative energy calculation  
Use the following table to calculate the regenerative energy.  
tf(1 cycle)  
No  
Up  
Time  
Down  
M
t1  
Tpsa1  
t2  
t3  
t4  
Tpsd1  
Tpsa2  
Tpsd2  
Friction  
torque  
1)  
( )  
(Driving)  
2)  
TF  
4)  
8)  
5)  
TU  
6)  
3)  
7)  
(Regenerative)  
( )  
Formulas for calculating torque and energy in operation  
Torque applied to servo motor [N m]  
Regenerative power  
Energy [J]  
(JL JM)  
1
0.1047  
2
N0  
104  
E1  
T1  
TU  
TF  
N0 T1 Tpsa1  
1)  
2)  
Tpsa1  
9.55  
T2 TU TF  
E2 0.1047 N0 T2 t1  
(JL JM)  
1
0.1047  
N0  
9.55 104  
E3  
T3  
TU TF  
TU TF  
TU TF  
N0 T3 Tpsd1  
3)  
2
Tpsd1  
4), 8)  
5)  
T4 TU  
E4 0 (No regeneration)  
0.1047  
(JL JM)  
1
N0  
E5  
N0  
T5  
T5 Tpsa2  
104  
2
Tpsa2  
9.55  
6)  
T6  
T7  
TU TF  
(JL JM)  
N0  
9.55 104  
E6 0.1047 N0 T6 t3  
0.1047  
1
E7  
N0  
T7 Tpsd2  
7)  
2
Tpsd2  
From the calculation results in 1) to 8), find the absolute value (Es) of the sum total of negative  
energies.  
13 - 2  
13. OPTIONS AND AUXILIARY EQUIPMENT  
b. Losses of servo motor and servo amplifier in regenerative mode  
The following table lists the efficiencies and other data of the servo motor and servo amplifier in  
the regenerative mode.  
Servo amplifier  
MR-J2S-10A  
MR-J2S-10A1  
MR-J2S-20A  
MR-J2S-20A1  
MR-J2S-40A  
MR-J2S-40A1  
MR-J2S-60A  
MR-J2S-70A  
MR-J2S-100A  
MR-J2S-200A  
MR-J2S-350A  
MR-J2S-500A  
MR-J2S-700A  
MR-J2S-11KA  
MR-J2S-15KA  
MR-J2S-22KA  
Inverse efficiency[%]  
Capacitor charging[J]  
55  
55  
70  
70  
85  
85  
85  
80  
80  
85  
85  
90  
90  
90  
90  
90  
9
4
9
4
11  
12  
11  
18  
18  
40  
40  
45  
70  
120  
170  
250  
Inverse efficiency ( )  
:Efficiency including some efficiencies of the servo motor and servo  
amplifier when rated (regenerative) torque is generated at rated speed.  
Since the efficiency varies with the speed and generated torque, allow for  
about 10%.  
Capacitor charging (Ec) :Energy charged into the electrolytic capacitor in the servo amplifier.  
Subtract the capacitor charging from the result of multiplying the sum total of regenerative energies  
by the inverse efficiency to calculate the energy consumed by the regenerative option.  
ER [J]  
Es Ec  
Calculate the power consumption of the regenerative option on the basis of single-cycle operation  
period tf [s] to select the necessary regenerative option.  
PR [W] ER/tf  
(3) Connection of the regenerative option  
Set parameter No.2 according to the option to be used.  
The MR-RB65, 66 and 67 are regenerative options that have encased the GRZG400-2 , GRZG400-1  
and GRZG400-0.8 , respectively. When using any of these regenerative options, make the same  
parameter setting as when using the GRZG400-2 , GRZG400-1 or GRZG400-0.8 (supplied  
regenerative resistors or regenerative option is used with 11kW or more servo amplifier).  
Parameter No.0  
Selection of regenerative  
00: Regenerative option or regenerative option is not used with 7kW or  
less servo amplifier  
Supplied regenerative resistors or regenerative option is used with  
11kW or more servo amplifier  
01: FR-RC, FR-BU2, FR-CV  
02: MR-RB032  
03: MR-RB12  
04: MR-RB32  
05: MR-RB30  
06: MR-RB50 (Cooling fan is required)  
08: MR-RB31  
09: MR-RB51 (Cooling fan is required)  
0E: When regenerative resistors supplied to 11kW or more are cooled by  
cooling fans to increase capability  
13 - 3  
13. OPTIONS AND AUXILIARY EQUIPMENT  
(4) Connection of the regenerative option  
POINT  
When the MR-RB50 MR-RB51 is used, a cooling fan is required to cool it.  
The cooling fan should be prepared by the customer.  
The regenerative option will cause a temperature rise of 100 relative to the ambient temperature.  
Fully examine heat dissipation, installation position, used cables, etc. before installing the option. For  
wiring, use flame-resistant cables and keep them clear of the regenerative option body. Always use  
twisted cables of max. 5m (16.4ft) length for connection with the servo amplifier.  
(a) MR-J2S-350A or less  
Always remove the wiring from across P-D and fit the regenerative option across P-C.  
The G3 and G4 terminals act as a thermal sensor. G3-G4 is opened when the regenerative option  
overheats abnormally.  
Always remove the lead from across P-D.  
Servo amplifier  
Regenerative option  
D
P
P
C
C
G3  
(Note 2)  
G4  
5m (16.4 ft) or less  
Cooling fan(Note 1)  
Note 1. When using the MR-RB50, forcibly cool it with a cooling fan (92 92, minimum air flow: 1.0m3).  
2. Make up a sequence which will switch off the magnetic contactor (MC) when abnormal heating occurs.  
G3-G4 contact specifications  
Maximum voltage: 120V AC/DC  
Maximum current: 0.5A/4.8VDC  
Maximum capacity: 2.4VA  
For the MR-RB50 install the cooling fan as shown.  
[Unit : mm(in)]  
Cooling fan installation screw hole dimensions  
2-M3 screw hole  
Top  
(for cooling fan installation)  
Depth 10 or less  
Cooling fan  
Terminal block  
(Screw hole already  
machined)  
Thermal relay  
Bottom  
82.5  
40 (1.58)  
(3.25)  
Installation surface  
Horizontal installation  
Vertical  
installation  
13 - 4  
13. OPTIONS AND AUXILIARY EQUIPMENT  
(b) MR-J2S-500A MR-J2S-700A  
Always remove the wiring (across P-C) of the servo amplifier built-in regenerative resistor and fit  
the regenerative option across P-C.  
The G3 and G4 terminals act as a thermal sensor. G3-G4 are opened when the regenerative option  
overheats abnormally.  
Always remove wiring (across P-C) of servo  
amplifier built-in regenerative resistor.  
Servo amplifier  
Regenerative option  
P
C
P
C
G3  
(Note 2)  
G4  
5m(16.4ft) or less  
Cooling fan(Note 1)  
Note 1. When using the MR-RB50 MR-RB51, forcibly cool it with a cooling fan (92 92, minimum air flow: 1.0m3).  
2. Make up a sequence which will switch off the magnetic contactor (MC) when abnormal heating occurs.  
G3-G4 contact specifications  
Maximum voltage: 120V AC/DC  
Maximum current: 0.5A/4.8VDC  
Maximum capacity: 2.4VA  
When using the regenerative resistor option, remove the servo amplifier's built-in regenerative  
resistor terminals (across P-C), fit them back to back, and secure them to the frame with the  
accessory screw as shown below.  
Mounting method  
Accessory screw  
For MR-J2S-700A  
For MR-J2S-500A  
Accessory screw  
Accessory screw  
13 - 5  
13. OPTIONS AND AUXILIARY EQUIPMENT  
For the MR-RB50 MR-RB51 install the cooling fan as shown.  
[Unit : mm(in)]  
Cooling fan installation screw hole dimensions  
2-M3 screw hole  
Top  
(for cooling fan installation)  
Depth 10 or less  
Cooling fan  
Terminal block  
(Screw hole already  
machined)  
Thermal relay  
Bottom  
82.5  
40 (1.58)  
(3.25)  
Installation surface  
Horizontal installation  
Vertical  
installation  
(c) MR-J2S-11KA to MR-J2S-22KA (when using the supplied regenerative resistor)  
When using the regenerative resistors supplied to the servo amplifier, the specified number of  
resistors (4 or 5 resistors) must be connected in series. If they are connected in parallel or in less  
than the specified number, the servo amplifier may become faulty and/or the regenerative resistors  
burn. Install the resistors at intervals of about 70mm. Cooling the resistors with two cooling fans  
(92 92, minimum air flow : 1.0m3) improves the regeneration capability. In this case, set "0E  
in parameter No. 0.  
"
5m or less  
Do not remove  
the short bar.  
Servo amplifier  
P1  
P
C
(Note) Series connection  
Cooling fan  
Note. The number of resistors connected in series depends on the resistor type. Install a thermal sensor or like to configure a  
circuit that will shut off the main circuit power at abnormal overheat. The supplied regenerative resistor does not have a  
built-in thermal sensor. If the regenerative brake circuit fails, abnormal overheat of the resistor is expected to occur. On  
the customer side, please also install a thermal sensor for the resistor and provide a protective circuit that will shut off the  
main circuit power supply at abnormal overheat. The detection level of the thermal sensor changes depending on the  
resistor installation method. Please install the thermal sensor in the optimum position according to the customer's design  
standards, or use our regenerative option having built-in thermal sensor (MR-RB65, 66, 67).  
Regenerative Power [W]  
Number of  
Resistors  
Regenerative  
Resistor  
Resistance  
[ ]  
Servo Amplifier  
Normal  
500  
Cooling  
800  
MR-J2S-11KA  
MR-J2S-15KA  
GRZG400-2  
GRZG400-1  
8
5
4
4
5
5
850  
1300  
1300  
MR-J2S-22KA GRZG400-0.8  
850  
13 - 6  
13. OPTIONS AND AUXILIARY EQUIPMENT  
(d) MR-J2S-11KA-PX to MR-J2S-22KA-PX (when using the regenerative option)  
The MR-J2S-11KA-PX to MR-J2S-22KA-PX servo amplifiers are not supplied with regenerative  
resistors. When using any of these servo amplifiers, always use the MR-RB65, 66 or 67  
regenerative option.  
The MR-RB65, 66 and 67 are regenerative options that have encased the GRZG400-2 , GRZG400-  
1
and GRZG400-0.8 , respectively. When using any of these regenerative options, make the  
same parameter setting as when using the GRZG400-2 , GRZG400-1 or GRZG400-0.8  
(supplied regenerative resistors or regenerative option is used with 11kW or more servo amplifier).  
Cooling the regenerative option with cooling fans improves regenerative capability.  
The G3 and G4 terminals are for the thermal sensor. G3-G4 are opened when the regenerative  
option overheats abnormally.  
Servo amplifier  
Do not remove  
Regenerative option  
the short bar.  
P1  
P
C
P
C
RA  
G3  
G4  
COM  
ALM  
(Note)  
Configure up a circuit which  
shuts off main circuit power  
when thermal sensor operates.  
Note. Specifications of contact across G3-G4  
Maximum voltage : 120V AC/DC  
Maximum current : 0.5A/4.8VDC  
Maximum capacity : 2.4VA  
Regenerative Power [W]  
Without With  
cooling fans cooling fans  
Regenerative  
Option Model  
Resistance  
Servo Amplifier  
[ ]  
MR-J2S-11KA-PX  
MR-J2S-15KA-PX  
MR-J2S-22KA-PX  
MR-RB65  
MR-RB66  
MR-RB67  
8
5
4
500  
850  
850  
800  
1300  
1300  
When using cooling fans, install them using the mounting holes provided in the bottom of the  
regenerative option. In this case, set "0E  
" in parameter No. 0.  
Top  
MR-RB65 66 67  
Bottom  
TE1  
2 cooling fans  
(92 92, minimum air flow: 1.0m3)  
TE  
G4 G3 C  
P
Mounting screw  
4-M3(0.118)  
13 - 7  
13. OPTIONS AND AUXILIARY EQUIPMENT  
(5) Outline drawing  
(a) MR-RB032 MR-RB12  
[Unit: mm (in)]  
LA  
6 (0.24) mounting hole  
LB  
MR-RB  
TE1  
Terminal block  
5 (0.20)  
G3  
G4  
P
G3  
G4  
TE1  
P
C
C
Terminal screw: M3  
Tightening torque:  
0.5 to 0.6 [N m](4 to 5 [lb in])  
Mounting screw  
1.6 (0.06)  
6 (0.24)  
Screw size: M5  
20  
(0.79)  
LD  
LC  
Tightening torque:  
3.24 [N m](28.676 [lb in])  
Variable dimensions  
Mass  
Regenerative  
option  
LA  
LB  
LC  
LD [kg] [lb]  
30  
15  
119  
99  
MR-RB032  
MR-RB12  
0.5 1.1  
(1.18) (0.59) (4.69) (3.9)  
40 15 169 149  
(1.58) (0.59) (6.65) (5.87)  
1.1 2.4  
(b) MR-RB30 MR-RB31 MR-RB32  
[Unit: mm (in)]  
Terminal block  
P
C
Terminal screw: M4  
G3 Tightening torque: 1.2 [N m] (10.6 [Ib in])  
G4  
Mounting screw  
Screw: M6  
318 (12.5)  
7 (0.28)  
Tightening torque: 5.4 [N m] (47.79 [Ib in])  
17  
335 (13.2)  
(0.67)  
90 (3.54)  
10  
(0.39)  
Regenerative  
Mass [kg] (Ib)  
option  
100 (3.94)  
MR-RB30  
MR-RB31  
MR-RB32  
2.9 (6.4)  
13 - 8  
13. OPTIONS AND AUXILIARY EQUIPMENT  
(c) MR-RB50 MR-RB51  
[Unit: mm (in)]  
Cooling fan mounting  
screw (2-M3 screw)  
On opposite side  
Terminal block  
P
C
Terminal screw: M4  
Tightening torque: 1.2 [N m]  
(10.6 [Ib in])  
49  
(1.93)  
82.5  
(3.25)  
G3  
G4  
Mounting screw  
Screw: M6  
Tightening torque: 5.4 [N m]  
(47.79 [Ib in])  
7 14  
slot  
Regenerative  
Mass [kg] (Ib)  
option  
Wind blows in the  
arrow direction  
MR-RB50  
5.6 (12.3)  
MR-RB51  
7 (0.28)  
108 (4.25)  
120 (4.73)  
2.3  
(0.09)  
Approx.30 (1.18)  
8 (0.32)  
200 (7.87)  
217 (8.54)  
17  
(0.67)  
12  
(0.47)  
(d) MR-RB65 MR-RB66 MR-RB67  
[Unit: mm (in)]  
Terminal block  
G4 G3 C  
2- 10 ( 0.39)  
monuting hole  
P
Terminal screw: M5  
Tightening torque: 2.0 [N m] (17 [Ib in])  
Mounting screw  
Screw: M8  
Tightening torque: 13.2 [N m] (116.83 [Ib in])  
Mass  
[kg]  
Regenerative  
option  
(Ib)  
22.0  
24.3  
24.3  
MR-RB65  
MR-RB66  
MR-RB67  
10  
11  
11  
TE1  
G4G3 CP  
2.3 (0.09)  
215 (8.47)  
10 (0.39)  
15 (0.59)  
230 (9.06)  
260 (10.2)  
230 (9.06)  
4-M3 screw  
Cooling fan mounting  
82.5 82.5  
(3.25)  
(3.25)  
(e) GRZG400-2  
GRZG400-1  
GRZG400-0.8 (standard accessories)  
Approx.  
10(0.39)  
5.5(0.22)  
Approx.  
24(0.95)  
10  
(0.39)  
Approx.  
[Unit: mm (in)]  
9.5  
(0.37)  
Mounting screw  
Screw size: M8  
Approx.330(13.0)  
385(15.2)  
40(1.58)  
Approx. 47(1.85)  
Tightening torque: 13.2 [N m](116.83 [lb in])  
411(16.2)  
13 - 9  
13. OPTIONS AND AUXILIARY EQUIPMENT  
13.1.2 FR-BU2 brake unit  
POINT  
The brake unit and resistor unit of other than 200V class are not  
applicable to the servo amplifier. Combination of different voltage class  
units and servo amplifier cannot be used.  
Install a brake unit and a resistor unit on a flat surface vertically. When  
the unit is installed horizontally or diagonally, the heat dissipation effect  
diminishes.  
Temperature of the resistor unit case rises to higher than 100 . Keep  
cables and flammable materials away from the case.  
Ambient temperature condition of the brake unit is between 10 (14  
and 50 (122 ). Note that the condition is different from the ambient  
temperature condition of the servo amplifier (between 0 (32 ) and  
55 (131 )).  
)
Configure the circuit to shut down the power-supply with the alarm  
output of the brake unit and resistor unit under abnormal condition.  
Use the brake unit with a combination indicated in (1) of this section.  
For executing a continuous regenerative operation, use FR-RC power  
regeneration converter or FR-CV power regeneration common converter.  
Brake unit and regenerative options (Regenerative resistor) cannot be  
used simultaneously.  
Connect the brake unit to the bus of the servo amplifier. As compared to the MR-RB regenerative option,  
the brake unit can return larger power. Use the brake unit when the regenerative option cannot provide  
sufficient regenerative capability.  
When using the brake unit, set the parameter No.0 of the servo amplifier to " 01  
".  
When using the brake unit, always refer to the FR-BU2-(H) Brake Unit Instruction Manual.  
(1) Selection  
Use a combination of servo amplifier, brake unit and resistor unit listed below.  
Number of  
connected  
units  
Permissible  
continuous  
power [kW]  
Total  
Applicable servo  
amplifier  
Brake unit  
FR-BU2-15K  
FR-BU2-30K  
Resistor unit  
resistance  
[
]
FR-BR-15K  
1
0.99  
8
4
MR-J2S-350A  
MR-J2S-500A  
MR-J2S-500A  
MR-J2S-700A  
MR-J2S-11KA  
MR-J2S-15KA  
MR-J2S-11KA  
MR-J2S-15KA  
MR-J2S-22KA  
MR-J2S-22KA  
FR-BR-30K  
1
1.99  
FR-BU2-55K  
FR-BR-55K  
1
1
3.91  
5.5  
2
2
MT-BR5-55K  
13 - 10  
13. OPTIONS AND AUXILIARY EQUIPMENT  
(2) Brake unit parameter setting  
Normally, when using the FR-BU2, changing parameters is not necessary. Whether a parameter can  
be changed or not is listed below.  
Parameter  
Name  
Change  
possible/  
impossible  
Remarks  
No.  
0
1
Brake mode switchover  
Impossible Do not change the parameter.  
Monitor display data selection  
Possible  
Refer to the FR-BU2-(H) Brake Unit  
Instruction Manual.  
2
3
Input terminal function selection 1  
Input terminal function selection 2  
Parameter write selection  
Impossible Do not change the parameter.  
77  
78  
Cumulative energization time  
carrying-over times  
CLr Parameter clear  
ECL Alarm history clear  
C1  
For manufacturer setting  
(3) Connection example  
POINT  
Connecting PR terminal of the brake unit to P terminal of the servo  
amplifier results in brake unit malfunction. Always connect the PR  
terminal of the brake unit to the PR terminal of the resistor unit.  
(a) Combination with FR-BR resistor unit  
(Note 7) Servo motor  
thermal relay ALM  
ON  
MC  
EMG  
OFF  
RA2  
RA1  
MC  
SK  
Servo amplifier  
CN1B  
15 EMG  
NFB  
MC  
L1  
(Note 1)  
Power  
supply  
10  
3
SG  
L2  
FR-BR  
VDD  
L3  
(Note 5) TH1  
TH2  
13 COM  
18 ALM  
P1  
P
L11  
L21  
RA1  
PR  
(Note 3)  
FR-BU2  
P
D
P
PR  
P/  
MSG  
SD  
(Note 8)  
(Note 4)  
A
B
(Note 9)  
N/  
N
C
C
BUE  
SD  
(Note 10)  
(Note 6)  
(Note 2)  
13 - 11  
13. OPTIONS AND AUXILIARY EQUIPMENT  
Note 1. For power supply specifications, refer to section 1.3.  
2. For the servo amplifier of 5k and 7kW, always disconnect the lead of built-in regenerative resistor, which is connected to the P  
and C terminals. For the servo amplifier of 11k to 22kW, do not connect a supplied regenerative resistor to the P and C  
terminals.  
3. For the servo amplifier of 11k to 22kW, always connect P1 and P (Factory-wired). When using the power factor improving DC  
reactor, refer to section 13.2.4.  
4. Connect the P/ and N/ terminals of the brake unit to a correct destination. Wrong connection results in servo amplifier and  
brake unit malfunction.  
5. Contact rating 1b contact, 110VAC_5A/220VAC_3A  
Normal condition TH1-TH2 is conducting. Abnormal condition TH1-TH2 is not conducting.  
6. Contact rating 230VAC_0.3A/30VDC_0.3A  
Normal condition B-C is conducting/A-C is not conducting. Abnormal condition B-C is not conducting/A-C is conducting.  
7. For the servo amplifier of 11kW or more, connect the thermal relay censor of the servo amplifier.  
8. For the servo amplifier of 3.5kW, always disconnect the wiring between P and D terminals.  
9. Do not connect more than one cable to each P and N terminals of the servo amplifier.  
10. Make sure to connect BUE and SD (Factory-wired).  
(b) Combination with MT-BR5 resistor unit  
Servo motor  
thermal relay ALM  
ON  
MC  
EMG  
OFF  
RA2  
RA1  
RA3  
MC  
SK  
Servo amplifier  
CN1B  
15 EMG  
NFB  
MC  
L1  
(Note 1)  
Power  
supply  
10  
3
SG  
SK  
L2  
MT-BR5  
(Note 4)  
VDD  
L3  
TH1  
TH2  
13 COM  
18 ALM  
P
RA3  
L11  
L21  
RA1  
PR  
FR-BU2  
C
(Note 8)  
(Note 2)  
PR  
P/  
MSG  
P1  
P
SD  
A
(Note 3)  
(Note 6)  
N/  
B
C
N
BUE  
SD  
(Note 7)  
(Note 5)  
Note 1. For power supply specifications, refer to section 1.3.  
2. Make sure to connect P1 and P (Factory-wired). When using the power factor improving DC reactor, refer to section 13.2.4.  
3. Connect the P/ and N/ terminals of the brake unit to a correct destination. Wrong connection results in servo amplifier and  
brake unit malfunction.  
4. Contact rating 1a contact, 110VAC_5A/220VAC_3A  
Normal condition TH1-TH2 is not conducting. Abnormal condition TH1-TH2 is conducting.  
5. Contact rating 230VAC_0.3A/30VDC_0.3A  
Normal condition B-C is conducting/A-C is not conducting. Abnormal condition B-C is not conducting/A-C is conducting.  
6. Do not connect more than one cable to each P and N terminals of the servo amplifier.  
7. Make sure to connect BUE and SD (Factory-wired).  
8. For the servo amplifier of 22kW, do not connect a supplied regenerative resistor to the P and C terminals.  
13 - 12  
13. OPTIONS AND AUXILIARY EQUIPMENT  
(c) Precautions for wiring  
The cables between the servo amplifier and the brake unit, and between the resistor unit and the  
brake unit should be as short as possible. Always twist the cable longer than 5m (twist five times  
or more per one meter). Even when the cable is twisted, the cable should be less than 10m. Using  
cables longer than 5m without twisting or twisted cables longer than 10m, may result in the brake  
unit malfunction.  
Servo amplifier  
Servo amplifier  
Brake unit  
Resistor unit  
Brake unit  
Resistor unit  
Twist  
Twist  
P
N
P
N
P
PR  
P
PR  
P
N
P
N
P
PR  
P
PR  
5m or less  
5m or less  
10m or less  
10m or less  
(d) Cables  
For the brake unit, HIV cable (600V grade heat-resistant PVC insulated wire) is recommended.  
a) Main circuit terminal  
Main  
circuit  
terminal  
screw  
size  
Cable size  
Crimping  
terminal  
Tightening  
torque  
N/ , P/ , PR,  
Brake unit  
[N m]  
N/ , P/  
PR,  
,
HIV cables,  
etc. [mm2]  
AWG  
([lb in])  
N/  
P/  
PR  
FR-BU2-15K  
FR-BU2-30K  
FR-BU2-55K  
M4  
M5  
M6  
5.5-4  
5.5-5  
14-6  
1.5 (13.3)  
2.5 (22.1)  
4.4 (38.9)  
3.5  
5.5  
14  
12  
10  
6
Terminal block  
b) Control circuit terminal  
POINT  
Undertightening can cause a cable disconnection or malfunction.  
Overtightening can cause a short circuit or malfunction due to damage to  
the screw or the brake unit.  
Sheath  
RES  
MSG MSG  
SD  
SD SD  
Core  
BUE  
PC  
SD  
Jumper  
A
B
C
6mm  
Terminal block  
Wire the stripped cable after twisting to prevent the cable  
from becoming loose. In addition, do not solder it.  
Screw size: M3  
Tightening torque: 0.5N m to 0.6N  
m
Cable size: 0.3mm2 to 0.75 mm2  
Screw driver: Small flat-blade screwdriver  
(Tip thickness: 0.4mm/Tip width 2.5mm)  
13 - 13  
13. OPTIONS AND AUXILIARY EQUIPMENT  
(e) Crimping terminals for P and N terminals of servo amplifier  
POINT  
Always use recommended crimping terminals or equivalent since some  
crimping terminals cannot be installed depending on the size.  
Number of  
(Note)  
Applicable  
tool  
Servo amplifier  
Brake unit  
connected  
units  
Crimping terminal (Manufacturer)  
MR-J2S-350A  
FR-BU2-15K  
FR-BU2-15K  
FR-BU2-30K  
FR-BU2-30K  
FR-BU2-30K  
FR-BU2-55K  
FR-BU2-30K  
FR-BU2-55K  
FR-BU2-55K  
1
1
1
1
1
1
1
1
1
FVD5.5-S4  
b
MR-J2S-500A  
(Japan Solderless Terminal)  
MR-J2S-700A  
MR-J2S-11KA  
FVD5.5-6(Japan Solderless Terminal)  
FVD14-6(Japan Solderless Terminal)  
FVD5.5-6(Japan Solderless Terminal)  
FVD14-6(Japan Solderless Terminal)  
FVD14-8(Japan Solderless Terminal)  
b
a
b
a
a
MR-J2S-15KA  
MR-J2S-22KA  
Note. Symbols in the applicable tool field indicate the following applicable tools.  
Symbol  
Applicable tool  
Manufacturer  
Body  
Head  
Dice  
YF-1 E-4  
a
b
YNE-38  
Japan Solderless  
Terminal  
DH-112 DH-122  
YNT-1210S  
(4) Outline dimension drawings  
(a) FR-BU2 brake unit  
[Unit: mm]  
FR-BU2-15K  
5 hole  
(Screw size: M4)  
Rating  
plate  
4
5
18.5  
6
56  
68  
6
52  
62  
132.5  
13 - 14  
13. OPTIONS AND AUXILIARY EQUIPMENT  
FR-BU2-30K  
[Unit: mm]  
2- 5 hole  
(Screw size: M4)  
Rating  
plate  
5
5
96  
6
6
18.5  
52  
59  
108  
129.5  
FR-BU2-55K  
2- 5 hole  
(Screw size: M4)  
Rating  
plate  
5
5
18.5  
6
158  
170  
6
52  
72  
142.5  
13 - 15  
13. OPTIONS AND AUXILIARY EQUIPMENT  
(b) FR-BR resistor unit  
[Unit: mm]  
2
C
(Note)  
Control circuit  
terminal  
(Note)  
Main circuit  
terminal  
C
C
Approx. 35  
Approx. 35  
W1  
1
For FR-BR-55K, a hanging bolt is placed  
on two locations (Indicated below).  
Hanging bolt  
204  
W
5
Note. Ventilation ports are provided on both sides and the top. The bottom is open.  
Approximate  
Resistor unit  
W
W1  
H
H1  
H2  
H3  
D
D1  
C
mass  
[kg] ([lb])  
FR-BR-15K  
FR-BR-30K  
FR-BR-55K  
170 100 450 410 20 432 220 3.2  
340 270 600 560 20 582 220  
480 410 700 620 40 670 450 3.2  
6
15 (33.1)  
30 (66.1)  
70 (154)  
4
10  
12  
(c) MT-BR5- (H) resistor unit  
[Unit: mm]  
Approximate  
mass  
Resistance  
value  
Resistor unit  
[kg] ([lb])  
NP  
MT-BR5-55K  
2.0  
50 (110)  
M4  
M6  
193  
189  
37  
60 10 21  
480  
510  
75  
300  
450  
75  
4
15 mounting hole  
7.5  
7.5  
13 - 16  
13. OPTIONS AND AUXILIARY EQUIPMENT  
13.1.3 Power regeneration converter  
When using the power regeneration converter, set "01  
" in parameter No.0.  
(1) Selection  
The converters can continuously return 75% of the nominal regenerative power. They are applied to  
the servo amplifiers of the MR-J2S-500A to MR-J2S-22KA.  
Power  
Nominal  
regeneration  
converter  
Regenerative  
Power (kW)  
Servo Amplifier  
500  
300  
200  
MR-J2S-500A  
MR-J2S-700A  
MR-J2S-11KA  
MR-J2S-15KA  
FR-RC-15  
15  
100  
FR-RC-30  
30  
55  
50  
FR-RC-55K  
MR-J2S-22KA  
30  
20  
0
50  
75 100  
150  
Nominal regenerative power (%)  
13 - 17  
13. OPTIONS AND AUXILIARY EQUIPMENT  
(2) Connection example  
Servo amplifier  
L11  
L21  
(Note 3) Power factor improving reactor  
NFB  
MC  
FR-BAL  
L1  
L2  
(Note 5)  
Power supply  
L3  
VDD  
SG  
COM  
EMG  
SON  
RA2  
ALM  
(Note 2)  
N
C
P
P1  
5m(16.4ft) or less  
(Note 4)  
N/  
P/  
RDY  
SE  
A
B
Ready  
RDY  
B
output  
C
C
R/L1  
S/L2  
T/L3  
Alarm  
output  
RX  
R
(Note 1)  
SX  
S
Phase detection  
terminals  
TX  
T
Power regeneration  
converter FR-RC  
FR-RC  
Operation ready  
ON  
EMG  
RA2  
OFF  
B
C
MC  
SK  
MC  
Note 1. When not using the phase detection terminals, fit the jumpers across RX-R, SX-S and TX-T. If the jumpers remain removed, the  
FR-RC will not operate.  
2. For the servo amplifiers of 5k and 7kW, always remove the wiring (across P-C) of the built-in regenerative resistor.  
3. Refer to the power return converter FR-RC instruction manual (IB(NA)-66330) for the power factor improving reactor to be  
used.  
When using FR-RC with the servo amplifier of 11k to 22kW, do not use the power factor improving reactor (FR-BEL) together.  
4. When using the servo amplifier of 11k to 22kW, make sure to connect P1 and P. (Factory-wired.)  
5. Refer to section 1.3 for the power supply specification.  
13 - 18  
13. OPTIONS AND AUXILIARY EQUIPMENT  
(3) Outside dimensions of the power regeneration converters  
[Unit : mm(in)]  
Mounting foot (removable)  
Mounting foot  
movable  
2- D hole  
Rating plate  
Front cover  
Display  
panel  
window  
Cooling fan  
K
D
F
AA  
A
C
Heat generation area outside mounting dimension  
Power  
Approx.  
regeneration  
converter  
A
AA  
B
BA  
C
D
E
EE  
K
F
mass [kg(Ib)]  
270  
(10.6)  
340  
200  
(7.87)  
270  
450  
432  
195  
(7.68)  
195  
10  
(0.39)  
10  
10  
(0.39)  
10  
8
3.2  
(0.13)  
3.2  
87  
19  
(41.9)  
31  
FR-RC-15K  
FR-RC-30K  
FR-RC-55K  
(17.7)  
600  
(17.0)  
582  
(0.32)  
8
(3.43)  
90  
(13.4)  
480  
(10.6)  
410  
(23.6)  
700  
(22.9)  
670  
(7.68)  
250  
(0.39)  
12  
(0.39)  
15  
(0.32)  
15  
(0.13)  
3.2  
(3.54)  
135  
(68.3)  
55  
(18.9)  
(16.1)  
(27.6)  
(26.4)  
(9.84)  
(0.47)  
(0.59)  
(0.59)  
(0.13)  
(5.32)  
(121)  
(4) Mounting hole machining dimensions  
When the power regeneration converter is fitted to a totally enclosed type box, mount the heat  
generating area of the converter outside the box to provide heat generation measures. At this time, the  
mounting hole having the following dimensions is machined in the box.  
[Unit : mm(in)]  
(2- D hole)  
(AA)  
Model  
a
b
D
AA  
BA  
260  
412  
10  
200  
432  
FR-RC-15K  
(10.2) (16.2) (0.39) (7.87) (17.0)  
330 562 10 270 582  
(13.0) (22.1) (0.39) (10.6) (22.9)  
470 642 12 410 670  
(18.5) (25.3) (0.47) (16.1) (26.4)  
FR-RC-30K  
FR-RC-55K  
(Mounting hole)  
a
13 - 19  
13. OPTIONS AND AUXILIARY EQUIPMENT  
13.1.4 External dynamic brake  
POINT  
Configure up a sequence which switches off the contact of the brake unit  
after (or as soon as) it has turned off the servo on signal at a power failure  
or failure.  
For the braking time taken when the dynamic brake is operated, refer to  
section 12.3.  
The brake unit is rated for a short duration. Do not use it for high duty.  
(1) Selection of dynamic brake  
The dynamic brake is designed to bring the servo motor to a sudden stop when a power failure occurs  
or the protective circuit is activated, and is built in the 7kW or less servo amplifier. Since it is not built  
in the 11kW or more servo amplifier, purchase it separately if required. Set " 1  
No. 1.  
" in the parameter  
Servo amplifier  
MR-J2S-11KA  
MR-J2S-15KA  
MR-J2S-22KA  
Dynamic brake  
DBU-11K  
DBU-15K  
DBU-22K  
13 - 20  
13. OPTIONS AND AUXILIARY EQUIPMENT  
(2) Connection example  
Servo amplifier  
Operation-ready  
ON  
CN1B  
3
(Note 1)  
EMG  
OFF  
VDD  
COM  
DB  
MC  
SK  
MC  
13  
18  
RA1  
NFB  
MC  
Servo motor  
M
L1  
(Note 3)  
Power  
supply  
U
V
U
V
L2  
L3  
W
E
W
L11  
L21  
P
CN1B  
5
RA1  
EMG  
(Note 2)  
SON  
EMG  
SG  
P1  
15  
10  
Plate SD  
14  
13  
U
V
W
a
RA1  
b
Dynamic brake  
Note 1. Configure up the circuit so that power is switched off in the external sequence at servo alarm occurrence.  
2. When using the servo amplifier of 11k to 22kW, make sure to connect P1 and P. (Factory-wired.) When using the power factor  
improving DC reactor, refer to section 13.2.4.  
3. Refer to section 1.3 for the power supply specification.  
Coasting  
Dynamic brake  
Coasting  
Dynamic brake  
Servo motor rotation  
Present  
Alarm  
Absent  
ON  
Base  
OFF  
ON  
OFF  
RA1  
Invalid  
Valid  
Dynamic brake  
Short  
Open  
Emergency stop  
(EMG)  
a. Timing chart at alarm occurrence  
b. Timing chart at emergency stop (EMG) validity  
13 - 21  
13. OPTIONS AND AUXILIARY EQUIPMENT  
(3) Outline dimension drawing  
[Unit: mm]  
([Unit: in])  
5
(0.2)  
(0.2)5  
100(3.94)  
G
F
D
D
2.3(0.09)  
C
Terminal block  
E
U
V
W
a
b
13 14  
(GND)  
Screw : M4  
Tightening torque : 1.2 [N m](10.6 [lb in])]  
Screw : M3.5  
Tightening torque : 0.8 [N m](7 [lb in])]  
Mass  
Connection  
Dynamic brake  
DBU-11K  
A
B
C
D
E
F
G
2
[kg]([Ib])  
wire [mm ]  
200  
(7.87)  
250  
190  
(7.48)  
238  
140  
(5.51)  
150  
20  
5
(0.2)  
6
170  
(6.69)  
235  
163.5  
(6.44)  
228  
2 (4.41)  
5.5  
5.5  
(0.79)  
25  
DBU -15K, 22K  
6 (13.23)  
(9.84)  
(9.37)  
(5.91)  
(0.98)  
(0.24)  
(9.25)  
(8.98)  
13 - 22  
13. OPTIONS AND AUXILIARY EQUIPMENT  
13.1.5 Cables and connectors  
(1) Cable make-up  
The following cables are used for connection with the servo motor and other models. Those indicated  
by broken lines in the figure are not options.  
9)  
Operation  
panel  
Servo amplifier  
Controller  
CN1A  
CN1B  
10)  
10)  
Personal  
computer  
11)  
11)  
CN2 CN3  
CON2 CN4  
14)  
13)  
(Note 1)  
12)  
21) (Note 2)  
To U, V, W,  
19) 20)  
HA-LFS  
HC-KFS  
HC-MFS  
HC-UFS 3000r/min  
1) 2)  
3) 4) 5)  
6)  
7) 8)  
HC-SFS  
HC-RFS  
HC-UFS 2000r/min  
15) 16) 17) 18)  
3) 4) 5)  
7) 8)  
Note 1. Use 12) and 13) with 7kW or less.  
2. Use 21) with 11kW or more.  
13 - 23  
13. OPTIONS AND AUXILIARY EQUIPMENT  
No.  
1) Standard encoder MR-JCCBL M-L  
cable Refer to (2) in this Shell kit: 10320-52F0-008  
section. (3M or equivalent)  
Product  
Model  
Description  
Housing  
Connector pin : 170359-1  
Application  
Connector: 10120-3000PE  
: 1-172161-9  
Standard  
flexing life  
(Tyco Electronics or equivalent) IP20  
Cable clamp : MTI-0002  
(Toa Electric Industry)  
2) Long flexing life MR-JCCBL M-H  
Long flexing  
encoder cable  
Refer to (2) in this  
section.  
life  
IP20  
3) Standard encoder MR-JHSCBL M-L Connector: 10120-3000PE  
cable Refer to (2) in this Shell kit: 10320-52F0-008  
section. (3M or equivalent)  
4) Long flexing life MR-JHSCBL M-H  
Connector: D/MS3106B20-29S  
Cable clamp: D/MS3057-12A  
(DDK)  
Standard  
flexing life  
IP20  
Long flexing  
life  
encoder cable  
Refer to (2) in this  
section.  
5) IP65-compliant  
encoder cable  
MR-ENCBL M-H Connector: 10120-3000PE  
Refer to (2) in this Shell kit: 10320-52F0-008  
Connector  
Long flexing  
: D/MS3106A20-29S (D190) life  
section.  
(3M or equivalent)  
Cable clamp: CE3057-12A-3-D  
Back shell: CE02-20BS-S-D  
(DDK)  
IP65  
IP67  
Not oil-  
resistant.  
6) Encoder  
connector set  
MR-J2CNM  
Connector: 10120-3000PE  
Shell kit: 10320-52F0-008  
(3M or equivalent)  
Housing  
: 1-172161-9  
IP20  
Connector pin: 170359-1  
(Tyco Electronics or equivalent)  
Cable clamp : MTI-0002  
(Toa Electric Industry)  
7) Encoder  
connector set  
MR-J2CNS  
MR-ENCNS  
Connector: 10120-3000PE  
Shell kit: 10320-52F0-008  
(3M or equivalent)  
Connector: D/MS3106B20-29S  
Cable clamp: D/MS3057-12A  
(DDK)  
IP20  
IP65  
8) Encoder  
connector set  
Connector: 10120-3000PE  
Shell kit: 10320-52F0-008  
(3M or equivalent)  
Connector  
: D/MS3106A20-29S (D190) IP67  
Cable clamp: CE3057-12A-3-D  
Back shell: CE02-20BS-S-D  
(DDK)  
13 - 24  
13. OPTIONS AND AUXILIARY EQUIPMENT  
No.  
Product  
Model  
MR-J2CN1  
Description  
Application  
Control signal  
connector set  
Connector: 10120-3000PE  
Shell kit: 10320-52F0-008  
(3M or equivalent)  
9)  
Qty: 2 each  
Connector: 10120-6000EL  
Junction  
terminal block  
cable  
MR-J2TBL M  
Refer to section  
13.1.6.  
Connector: HIF3BA-20D-2.54R  
(Hirose Electric)  
For junction  
terminal  
block  
Shell kit: 10320-3210-000  
(3M or equivalent)  
10)  
11)  
12)  
13)  
connection  
Junction  
MR-TB20  
Refer to section 13.1.6.  
terminal block  
Bus cable  
MR-J2HBUS M  
Refer to section  
13.1.7.  
Connector: 10120-6000EL  
Shell kit: 10320-3210-000  
(3M or equivalent)  
Connector: 10120-6000EL  
Shell kit: 10320-3210-000  
(3M or equivalent)  
For  
maintenance  
junction  
card  
connection  
Maintenance  
junction card  
MR-J2CN3TM  
Refer to section 13.1.7.  
Communication MR-CPCATCBL3M Connector: 10120-6000EL  
Connector: DE-9SF-N  
Case: DE-C1-J6-S6  
For  
cable  
Refer to (3) in this Shell kit: 10320-3210-000  
connection  
with PC-AT-  
compatible  
personal  
computer  
section.  
(3M or equivalent)  
(Japan Aviation Electronics)  
14)  
Power supply  
connector set  
MR-PWCNS1  
Refer to the Servo  
Motor Instruction  
Manual.  
Connector: CE05-6A22-23SD-D-BSS  
Cable clamp:CE3057-12A-2-D  
(DDK)  
15)  
16)  
17)  
18)  
19)  
Power supply  
connector set  
MR-PWCNS2  
Refer to the Servo  
Motor Instruction  
Manual.  
Connector: CE05-6A24-10SD-D-BSS  
Cable clamp: CE3057-16A-2-D  
(DDK)  
EN  
Standard-  
compliant  
IP65 IP67  
Power supply  
connector set  
MR-PWCNS3  
Refer to the Servo  
Motor Instruction  
Manual.  
Plug: CE05-6A32-17SD-D-BSS  
Cable clamp: CE3057-20A-1-D  
(DDK)  
Brake connector MR-BKCN  
Plug: D/MS3106A10SL-4S (D190) (DDK)  
Cable connector: YS010-5-8 (Daiwa Dengyo)  
set  
Refer to the Servo  
Motor Instruction  
Manual.  
Power supply  
connector set  
MR-PWCNK1  
Refer to the Servo  
Motor Instruction  
Manual.  
Plug: 5559-04P-210  
IP20  
Terminal: 5558PBT3L (For AWG16)(6 pcs.)  
(Molex)  
Power supply  
MR-PWCNK2  
Plug: 5559-06P-210  
For motor  
with brake  
IP20  
20) connector set  
Terminal: 5558PBT3L (For AWG16)(8 pcs.)  
(Molex)  
Monitor cable  
21)  
MR-H3CBL1M  
Servo amplifier side connector  
(Tyco Electronics)  
Housing: 171822-4  
13 - 25  
13. OPTIONS AND AUXILIARY EQUIPMENT  
(2) Encoder cable  
If you have fabricated the encoder cable, connect it correctly.  
CAUTION  
Otherwise, not doing so may cause unexpected operation.  
POINT  
The encoder cable is not oil resistant.  
Refer to section 12.4 for the flexing life of the encoder cable.  
When the encoder cable is used, the sum of the resistance values of the  
cable used for P5 and the cable used for LG should be within 2.4 .  
When soldering the wire to the connector pin, insulate and protect the  
connection portion using heat-shrinkable tubing.  
Generally use the encoder cable available as our options. If the required length is not found in the  
options, fabricate the cable on the customer side.  
(a) MR-JCCBL M-L MR-JCCBL M-H  
These encoder cables are used with the HC-KFS HC-MFS HC-UFS3000r/min series servo  
motors.  
1) Model explanation  
Model: MR-JCCBL M-  
Symbol  
Specifications  
Standard flexing life  
Long flexing life  
L
H
Symbol (Note) Cable length [m(ft)]  
2
5
2 (6.56)  
5 (16.4)  
10  
20  
30  
40  
50  
10 (32.8)  
20 (65.6)  
30 (98.4)  
40 (131.2)  
50 (164.0)  
Note. MR-JCCBL M-H has no 40m(131.2ft)  
and 50m(164.0ft) sizes.  
2) Connection diagram  
For the pin assignment on the servo amplifier side, refer to section 3.3.1.  
Encoder cable  
Servo amplifier  
supplied to servo motor  
Encoder connector  
Encoder connector  
172161-9  
(Tyco Electronics)  
Servo motor  
Encoder  
Encoder cable  
(option or fabricated)  
1
2
3
MR MRR BAT  
CN2  
4
5
6
MD MDR  
50m(164.0ft) max.  
30cm  
(0.98ft)  
7
8
9
P5  
LG SHD  
13 - 26  
13. OPTIONS AND AUXILIARY EQUIPMENT  
MR-JCCBL10M-L  
MR-JCCBL10M-H  
to  
MR-JCCBL2M-L  
MR-JCCBL5M-L  
MR-JCCBL2M-H  
MR-JCCBL5M-H  
to  
MR-JCCBL30M-L  
MR-JCCBL50M-H  
Drive unit side  
Encoder side  
7
Drive unit side  
Encoder side  
7
Drive unit side  
Encoder side  
7
P5  
LG  
P5  
LG  
P5  
LG  
19  
11  
20  
12  
18  
2
P5  
LG  
P5  
LG  
P5  
LG  
19  
11  
20  
12  
18  
2
P5  
LG  
P5  
LG  
P5  
LG  
19  
11  
20  
12  
18  
2
8
1
2
4
5
3
8
1
2
4
5
3
8
1
2
4
5
3
MR  
7
MR  
7
MR  
7
MRR 17  
MD  
MDR 16  
MRR 17  
MD  
MDR 16  
MRR 17  
MD  
MDR 16  
6
6
6
BAT  
LG  
9
1
BAT  
LG  
9
1
BAT  
LG  
9
1
(Note)  
(Note)  
(Note)  
Plate  
Plate  
Plate  
SD  
9
SD  
9
SD  
9
Note. Always make connection for use in an absolute position detection system.  
This wiring is not needed for use in an incremental system.  
When fabricating an encoder cable, use the recommended wires given in section 13.2.1 and the  
MR-J2CNM connector set for encoder cable fabrication, and fabricate an encoder cable as shown  
in the following wiring diagram. Referring to this wiring diagram, you can fabricate an encoder  
cable of up to 50m(164.0ft) length including the length of the encoder cable supplied to the servo  
motor.  
When the encoder cable is to be fabricated by the customer, the wiring of MD and MDR is not  
required.  
Refer to chapter 3 of the servo motor instruction manual and choose the encode side connector  
according to the servo motor installation environment.  
For use of AWG22  
Drive unit side  
(3M)  
Encoder side  
19  
11  
20  
12  
18  
2
7
P5  
LG  
P5  
LG  
P5  
LG  
8
1
2
7
MR  
17  
MRR  
9
1
3
BAT  
LG  
(Note)  
9
Plate  
SD  
Note. Always make connection for use in an absolute position detection system.  
This wiring is not needed for use in an incremental system.  
13 - 27  
13. OPTIONS AND AUXILIARY EQUIPMENT  
(b) MR-JHSCBL M-L MR-JHSCBL M-H MR-ENCBL M-H  
These encoder cables are used with the HC-SFS HC-RFS HC-UFS2000r/min series servo motors.  
1) Model explanation  
Model: MR-JHSCBL M-  
Symbol  
Specifications  
Standard flexing life  
Long flexing life  
L
H
Symbol (Note) Cable length [m(ft)]  
2
5
2 (6.56)  
5 (16.4)  
10  
20  
30  
40  
50  
10 (32.8)  
20 (65.6)  
30 (98.4)  
40 (131.2)  
50 (164.0)  
Note. MR-JHSCBL M-L has no 40m(131.2ft)  
and 50m(164.0ft) sizes.  
Model: MR-ENCBL M-H  
Long flexing life  
Symbol  
Cable length [m(ft)]  
2 (6.56)  
2
5
5 (16.4)  
10  
20  
30  
40  
50  
10 (32.8)  
20 (65.6)  
30 (98.4)  
40 (131.2)  
50 (164.0)  
2) Connection diagram  
For the pin assignment on the servo amplifier side, refer to section 3.3.1.  
Servo amplifier  
Pin Signal  
Pin Signal  
Encoder connector  
Encoder connector  
A
B
C
D
E
F
G
H
J
MD  
MDR  
MR  
K
L
M
Servo motor  
Encoder cable  
A
M
T
B
P
(Optional or fabricated)  
C
L
N
K
J
D
E
F
MRR  
N
P
R
S
SHD  
CN2  
Encoder  
S
R
H
G
BAT  
LG  
LG  
P5  
T
50m(164.0ft) max.  
13 - 28  
13. OPTIONS AND AUXILIARY EQUIPMENT  
MR-JHSCBL2M-L  
MR-JHSCBL5M-L  
MR-JHSCBL2M-H  
MR-JHSCBL5M-H  
MR-ENCBL2M-H  
MR-ENCBL5M-H  
MR-JHSCBL10M-L  
MR-JHSCBL10M-H  
to  
to  
MR-JHSCBL30M-L  
MR-JHSCBL50M-H  
MR-ENCBL10M-H  
to  
MR-ENCBL50M-H  
Servo amplifier side  
Encoder side Servo amplifier side  
Encoder side Servo amplifier side  
Encoder side  
S
19  
11  
20  
12  
18  
2
P5  
LG  
P5  
LG  
P5  
LG  
19  
11  
20  
12  
7
19  
11  
20  
12  
18  
2
P5  
LG  
P5  
LG  
P5  
LG  
P5  
S
S
LG  
P5  
LG  
R
C
D
MR  
MRR  
P5  
17  
18  
2
R
C
D
LG  
R
C
D
7
MR  
9
7
MR  
MRR  
BAT  
LG  
F
17  
MRR  
17  
1
G
(Note 1)  
SD  
N
Plate  
9
1
BAT  
LG  
9
1
BAT  
LG  
F
F
(Note 2) Use of AWG24  
(Less than 10m(32.8ft))  
G
G
(Note 1)  
(Note 1)  
SD  
SD  
N
N
Plate  
Plate  
Use of AWG22  
Use of AWG24  
(10m(32.8ft) to 50m(164.0ft))  
(10m(32.8ft) to 50m(164.0ft))  
Note 1. This wiring is required for use in the absolute position detection system. This wiring is not needed for use in the incremental  
system.  
2. AWG28 can be used for 5m(16.4ft) or less.  
When fabricating an encoder cable, use the recommended wires given in section 13.2.1 and the  
MR-J2CNS connector set for encoder cable fabrication, and fabricate an encoder cable in  
accordance with the optional encoder cable wiring diagram given of this section. You can  
fabricate an encoder cable of up to 50m(164.0ft) length.  
Refer to chapter 3 of the servo motor instruction guide and choose the encode side connector  
according to the servo motor installation environment.  
13 - 29  
13. OPTIONS AND AUXILIARY EQUIPMENT  
(3) Communication cable  
POINT  
This cable may not be used with some personal computers. After fully  
examining the signals of the RS-232C connector, refer to this section and  
fabricate the cable.  
(a) Model definition  
Model: MR-CPCATCBL3M  
Cable length 3[m](10[ft])  
Servo amplifier side  
(b) Connection diagram  
MR-CPCATCBL3M  
Personal computer side  
Plate  
2
FG  
RXD  
LG  
TXD  
3
1
RXD  
GND  
RTS  
CTS  
DSR  
DTR  
2
5
7
8
6
4
12  
11  
TXD  
LG  
D-SUB9 pins  
Half-pitch 20 pins  
When fabricating the cable, refer to the connection diagram in this section.  
The following must be observed in fabrication.  
1) Always use a shielded, multi-core cable and connect the shield with FG securely.  
2) The optional communication cable is 3m(10ft) long. When the cable is fabricated, its maximum  
length is 15m(49ft) in offices of good environment with minimal noise.  
13 - 30  
13. OPTIONS AND AUXILIARY EQUIPMENT  
13.1.6 Junction terminal block (MR-TB20)  
POINT  
When using the junction terminal block, you cannot use SG of CN1A-20  
and CN1B-20. Use SG of CN1A-10 and CN1B-10.  
(1) How to use the junction terminal block  
Always use the junction terminal block (MR-TB20) with the junction terminal block cable (MR-  
J2TBL M) as a set. A connection example is shown below.  
Servo amplifier  
Junction terminal block  
Cable clamp  
MR-TB20  
(AERSBAN- ESET)  
CN1A  
or  
Junction terminal  
block cable  
CN1B  
(MR-J2TBL05M)  
Ground the junction terminal block cable on the junction terminal block side with the standard  
accessory cable clamp fitting (AERSBAN- ESET). For the use of the cable clamp fitting, refer to  
section 13.2.7 (2) (c).  
(2) Terminal labels  
Among the terminal block labels for the junction terminal block, use the two for the MR-J2S-A(MR-J2-  
A). When changing the input signals in parameters No. 43 to 48, refer to (4) in this section and section  
3.3 and apply the accessory signal seals to the labels.  
1) For CN1A  
2) For CN1B  
LG PP LZ  
LB COM OPC PG LZR LBR RD  
LG VDD SON  
TL P15R COM EMG LSN ZSP  
NP P15R LA CR SG NG OP LAR INP SD  
VC DO1 TLC PC SG TLA RES LSP ALM SD  
(3) Outline drawing  
[Unit: mm]  
([Unit: in.])  
126(4.96)  
117(4.61)  
B1  
B10  
A10  
A1  
MITSUBISHI  
MR-TB20  
16 17 18 19  
10 11 12 13 14 15  
Terminal  
block No.  
0
1
2
3
5
6
7
8
9
2- 4.5(0.18)  
4
Terminal screw: M3.5  
Applicable cable: Max. 2mm2  
(Crimping terminal width: 7.2mm (0.283 in) max.)  
13 - 31  
13. OPTIONS AND AUXILIARY EQUIPMENT  
(4) Junction terminal block cable (MR-J2TBL M)  
Model: MR-J2TBL  
M
Symbol  
Cable length [m(ft)]  
0.5 (1.64)  
05  
1
1 (3.28)  
Junction terminal block side connector (Hirose Electric)  
HIF3BA-20D-2.54R (connector)  
Servo amplifier side (CN1A CN1B) connector (3M)  
10120-6000EL (connector)  
10320-3210-000 (shell kit)  
(Note) Symbol  
Pin  
No.  
Junction terminal Pin  
block terminal No. No.  
Position control mode Speed control mode Torque control mode  
For CN1A For CN1B For CN1A For CN1B For CN1A For CN1B  
10  
0
11  
1
12  
2
13  
3
14  
4
15  
5
16  
6
17  
7
B1  
A1  
B2  
A2  
B3  
A3  
B4  
A4  
B5  
A5  
B6  
A6  
B7  
A7  
B8  
A8  
B9  
A9  
B10  
A10  
1
2
3
4
5
6
7
8
9
LG  
LG  
NP  
LG  
VC  
VDD  
DO1  
SON  
TLC  
LG  
LG  
VC  
LG  
VLA  
VDD  
DO1  
SON  
VLC  
SP2  
RS2  
RS1  
SG  
P15R  
TC  
COM  
RES  
EMG  
PP  
VDD  
DO1  
SON  
TLC  
SP2  
ST1  
ST2  
SG  
P15R  
TLA  
COM  
RES  
EMG  
LSP  
LSN  
ALM  
ZSP  
SD  
P15R  
LZ  
LA  
LB  
SP1  
COM  
SG  
P15R  
LZ  
LA  
LB  
CR  
COM  
SG  
P15R  
LZ  
LA  
LB  
SP1  
COM  
SG  
PC  
TLC  
SG  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
Plate  
P15R  
TLA  
COM  
RES  
EMG  
LSP  
LSN  
ALM  
ZSP  
SD  
OPC  
NG  
PG  
OP  
OP  
OP  
LZR  
LAR  
LBR  
SA  
LZR  
LAR  
LBR  
LZR  
LAR  
LBR  
INP  
RD  
18  
8
19  
9
ALM  
ZSP  
SD  
RD  
SD  
RD  
SD  
SD  
Note. The labels supplied to the junction terminal block are designed for the position control mode. When using the junction terminal  
block in the speed or torque control mode, change the signal abbreviations using the accessory signal seals.  
13 - 32  
13. OPTIONS AND AUXILIARY EQUIPMENT  
13.1.7 Maintenance junction card (MR-J2CN3TM)  
POINT  
Cannot be used with the MR-J2S-11KA to MR-J2S-22KA.  
(1) Usage  
The maintenance junction card (MR-J2CN3TM) is designed for use when a personal computer and  
analog monitor outputs are used at the same time.  
Communication cable  
Servo amplifier  
Maintenance junction card (MR-J2CN3TM)  
Bus cable  
MR-J2HBUS  
M
CN3B  
CN3  
CN3A  
CN3C  
B1 B5 B6 A5 A6  
B2  
A1 A2 A3 A4 B4 B3  
LG LG MO1 MO2  
VDD COM EM1 DI MBR EMGO SG PE  
Not used.  
Analog monitor 2  
Analog monitor 1  
(2) Connection diagram  
TE1  
B5  
LG  
B6  
LG  
CN3A  
CN3B  
1
2
3
4
5
6
7
8
CN3C  
1
2
3
4
5
6
7
8
A5  
1
1
LG  
MO1  
2
RXD  
A6  
3
4
5
3
MO2  
LG  
4
MO1  
5
RDP  
6
MO73  
8
SD9P  
9
9
A1  
A2  
A3  
A4  
B4  
B3  
B2  
B1  
10  
VDD  
COM  
EM1  
DI  
TRE  
10  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
LG  
11  
TXD  
12  
13  
14  
15  
LG  
13  
MO2  
14  
15  
16  
17  
18  
Not used.  
MBR  
EMGO  
SG  
19  
20  
SDN  
19  
P5  
20  
Shell  
Shell  
Shell  
PE  
(3) Outline drawing  
[Unit: mm]  
([Unit: in])  
CN3A  
CN3B  
CN3C  
2- 5.3(0.21)(mounting hole)  
A1  
B1  
A6  
B6  
TE1  
3(0.12)  
41.5(1.63)  
88(3.47)  
100(3.94)  
Mass: 110g(0.24Ib)  
13 - 33  
13. OPTIONS AND AUXILIARY EQUIPMENT  
(4) Bus cable (MR-J2HBUS M)  
Model: MR-J2HBUS  
M
Symbol  
Cable length [m(ft)]  
0.5 (1.64)  
05  
1
1 (3.28)  
5
5 (16.4)  
MR-J2HBUS05M  
MR-J2HBUS1M  
MR-J2HBUS5M  
10120-6000EL (connector)  
10320-3210-000 (shell kit)  
10120-6000EL (connector)  
10320-3210-000 (shell kit)  
1
11  
2
1
11  
2
12  
3
12  
3
13  
4
13  
4
14  
5
14  
5
15  
6
15  
6
16  
7
16  
7
17  
8
17  
8
18  
9
18  
9
19  
10  
20  
19  
10  
20  
Plate  
Plate  
13.1.8 Battery (MR-BAT, A6BAT)  
POINT  
The revision (Edition 44) of the Dangerous Goods Rule of the  
International Air Transport Association (IATA) went into effect on  
January 1, 2003 and was enforced immediately. In this rule, "provisions of  
the lithium and lithium ion batteries" were revised to tighten the  
restrictions on the air transportation of batteries. However, since this  
battery is non-dangerous goods (non-Class 9), air transportation of 24 or  
less batteries is outside the range of the restrictions. Air transportation of  
more than 24 batteries requires packing compliant with the Packing  
Standard 903. When a self-certificate is necessary for battery safety tests,  
contact our branch or representative. For more information, consult our  
branch or representative. (As of Dec., 2007).  
Use the battery to build an absolute position detection system.  
13 - 34  
13. OPTIONS AND AUXILIARY EQUIPMENT  
13.1.9 MR Configurator (Servo configurations software)  
The MR Configurator (servo configuration software MRZJW3-SETUP151E) uses the communication  
function of the servo amplifier to perform parameter setting changes, graph display, test operation, etc.  
on a personal computer.  
(1) Specifications  
Item  
Description  
Communication signal Conforms to RS-232C.  
Baud rate [bps]  
57600, 38400, 19200, 9600  
Display, high speed monitor, trend graph  
Monitor  
Minimum resolution changes with the processing speed of the personal computer.  
Display, history, amplifier data  
Alarm  
Digital I/O, no motor rotation, total power-on time, amplifier version info, motor information,  
tuning data, absolute encoder data, automatic voltage control, Axis name setting.  
Parameter list, turning, change list, detailed information  
Jog operation, positioning operation, motor-less operation, Do forced output, program operation.  
Machine analyzer, gain search, machine simulation.  
Diagnostic  
Parameters  
Test operation  
Advanced function  
File operation  
Others  
Data read, save, print  
Automatic demo, help display  
(2) System configuration  
(a) Components  
To use this software, the following components are required in addition to the servo amplifier and  
servo motor.  
Model  
(Note 1) Description  
IBM PC-AT compatible where the English version of Windows® 95, Windows® 98, Windows® Me,  
Windows NT® Workstation 4.0, Windows® 2000 Professional, Windows® XP Professional and Windows®  
XP Home Edition operates  
Processor: Pentium® 133MHz or more (Windows® 95, Windows® 98, Windows NT® Workstation 4.0,  
Windows® 2000 Professional)  
Pentium® 150MHz or more (Windows® Me)  
(Note 2)  
Personal  
computer  
Pentium® 300MHz or more (Windows® XP Professional, Windows® XP Home Edition)  
Memory:16MB or more (Windows® 95)  
24MB or more (Windows® 98)  
32MB or more (Windows® Me, Windows NT® Workstation 4.0, Windows® 2000 Professional)  
128MB or more (Windows® XP Professional, Windows® XP Home Edition)  
Free hard disk space: 60MB or more  
Serial port used  
Windows® 95, Windows® 98, Windows® Me, Windows NT® Workstation 4.0, Windows® 2000 Professional  
(English version)  
OS  
One whose resolution is 800 600 or more and that can provide a high color (16 bit) display.  
Connectable with the above personal computer.  
Display  
Keyboard  
Mouse  
Connectable with the above personal computer.  
Connectable with the above personal computer. Note that a serial mouse is not used.  
Printer  
Connectable with the above personal computer.  
Communication MR-CPCATCBL3M  
cable  
When this cannot be used, refer to section 13.1.5 (3) and fabricate.  
RS-232C/RS-422  
Required for use of the RS-422 multidrop communication function of the servo amplifier.  
converter  
Note 1. Windows and Windows NT are the registered trademarks of Microsoft Corporation in the United State and other countries.  
Pentium is the registered trademarks of Intel Corporation.  
2. On some personal computers, this software may not run properly.  
13 - 35  
13. OPTIONS AND AUXILIARY EQUIPMENT  
(b) Configuration diagram  
1) When using RS-232C  
Servo amplifier  
Personal computer  
Communication cable  
CN3  
CN2  
Servo motor  
To RS-232C  
connector  
2) When using RS-422  
You can make multidrop connection of up to 32 axes.  
Servo amplifier  
Personal computer  
RS-232C/RS-422  
(Note)  
converter  
Communication cable  
CN3  
CN2  
Servo motor  
(Axis 1)  
To RS-232C  
connector  
Servo amplifier  
CN3  
CN2  
Servo motor  
(Axis 2)  
Servo amplifier  
CN3  
CN2  
Servo motor  
(Axis 32)  
Note. For cable connection, refer to section 14.1.1.  
13 - 36  
13. OPTIONS AND AUXILIARY EQUIPMENT  
13.1.10 Power regeneration common converter  
POINT  
For details of the power regeneration common converter FR-CV, refer to  
the FR-CV Installation Guide (IB(NA)0600075).  
Do not supply power to the main circuit power supply terminals (L1, L2, L3)  
of the servo amplifier. Doing so will fail the servo amplifier and FR-CV.  
Connect the DC power supply between the FR-CV and servo amplifier  
with correct polarity. Connection with incorrect polarity will fail the FR-  
CV and servo amplifier.  
Two or more FR-CV's cannot be installed to improve regeneration  
capability. Two or more FR-CV's cannot be connected to the same DC  
power supply line.  
When using the power regeneration common converter, set parameter No. 0 to "01  
(1) Selection  
".  
The power regeneration common converter FR-CV can be used with 750 to 22kW servo amplifiers.  
There are the following restrictions on use of the FR-CV.  
(a) Up to six servo amplifiers can be connected to one FR-CV.  
(b) FR-CV capacity [W] Total of rated capacities [W] of servo amplifiers connected to FR-CV  
2
(c) The total of used servo motor rated currents should be equal to or less than the applicable current  
[A] of the FR-CV.  
(d) Among the servo amplifiers connected to the FR-CV, the servo amplifier of the maximum capacity  
should be equal to or less than the maximum connectable capacity [W].  
The following table lists the restrictions.  
FR-CV-  
Item  
7.5K  
11K  
15K  
22K  
6
30K  
37K  
55K  
Maximum number of connected servo amplifiers  
Total of connectable servo amplifier capacities [kW]  
Total of connectable servo motor rated currents [A]  
Maximum servo amplifier capacity [kW]  
3.75  
33  
5.5  
46  
5
7.5  
61  
7
11  
90  
11  
15  
115  
15  
18.5  
145  
15  
27.5  
215  
22  
3.5  
When using the FR-CV, always install the dedicated stand-alone reactor (FR-CVL).  
Power regeneration common converter  
FR-CV-7.5K(-AT)  
FR-CV-11 K(-AT)  
FR-CV-15K(-AT)  
FR-CV-22K(-AT)  
FR-CV-30K(-AT)  
FR-CV-37K  
Dedicated stand-alone reactor  
FR-CVL-7.5K  
FR-CVL-11K  
FR-CVL-15K  
FR-CVL-22K  
FR-CVL-30K  
FR-CVL-37K  
FR-CVL-55K  
FR-CV-55K  
13 - 37  
13. OPTIONS AND AUXILIARY EQUIPMENT  
(2) Connection diagram  
Servo amplifier  
Servo motor  
U
FR-CVL  
FR-CV  
R2/L1  
NFB  
MC  
U
V
L11  
L21  
R/L11  
R2/L12  
S2/L22  
T2/L32  
(Note 6)  
Power  
supply  
V
S/L21  
T/L31  
S2/L2  
T2/L3  
(Note 5)  
P
1
Thermel  
relay  
W
W
OHS2  
OHS1  
P
P/L  
P/L  
(Note 4)  
N
(Note 2)  
CN2  
R/L11  
S/L21  
P24  
T/MC1  
SD  
SG  
SON  
RA1  
RESET  
(Note 3)  
(Note1)  
SON  
RES  
(Note 3)  
RDYB  
RDYA  
RSO  
RA1  
EMG  
RA2  
SD  
EMG  
SG  
RES  
SG  
(Note 1)  
EMG  
(Note 1)  
(Note 1) (Note 2)  
RA2 RA3 RA4  
SE  
A
RA3  
ALM  
ON  
OFF  
(Note  
1)  
RA2  
VIN  
MC  
B
C
MC  
SK  
24VDC  
power  
supply  
RA4  
Note 1. Configure a sequence that will shut off main circuit power in the following cases.  
Alarm occurred in the FR-CV or the servo amplifier.  
Emergency stop is activated.  
2. For the servo motor with thermal relay, configure a sequence that will shut off main circuit power when the thermal relay  
operates.  
3. For the servo amplifier, configure a sequence that will switch the servo on after the FR-CV is ready.  
4. For 7kW or less servo amplifier, always remove the wiring (3.5kW or less: across P-D, 5k 7kW: across P-C) of built-in  
regenerative resistor.  
5. When using the servo amplifier of 11k to 22kW, make sure to connect P1 and P. (Factory-wired.)  
6. Refer to section 1.3 for the power supply specification.  
(3) Wires used for wiring  
(a) Wire sizes  
1) Across P-P, N-N  
The following table indicates the connection wire sizes of the DC power supply (P, N terminals)  
between the FR-CV and servo amplifier. The used wires are based on the 600V vinyl wires.  
Total of servo amplifier capacities [kW]  
Wires[mm2]  
1 or less  
2
2
5
3.5  
5.5  
8
7
11  
15  
22  
14  
22  
50  
13 - 38  
13. OPTIONS AND AUXILIARY EQUIPMENT  
2) Grounding  
For grounding, use the wire of the size equal to or greater than that indicated in the following  
table, and make it as short as possible.  
Power regeneration common converter  
Grounding wire size [mm2]  
FR-CV-7.5K TO FR-CV-15K  
FR-CV-22K • FR-CV-30K  
FR-CV-37K • FR-CV-55K  
14  
22  
38  
(b) Example of selecting the wire sizes  
When connecting multiple servo amplifiers, always use junction terminals for wiring the servo  
amplifier terminals P, N. Also, connect the servo amplifiers in the order of larger to smaller  
capacities.  
Wire as short as possible.  
50mm2  
22mm2  
FR-CV-55K  
Servo amplifier (15kW)  
First unit:  
P/L  
N/L  
P
N
R2/L1  
S2/L2  
T2/L3  
50mm2 assuming that the total of servo amplifier  
capacities is 27.5kW since 15kW + 7kW + 3.5kW  
+ 2.0kW = 27.5kW.  
22mm2  
8mm2  
Servo amplifier (7kW)  
Second unit:  
P
N
R/L11  
22mm2 assuming that the total of servo amplifier  
capacities is 15kW since 7kW + 3.5kW + 2.0kW =  
12.5kW.  
(Note)  
S/L21  
T/MC1  
8mm2  
5.5mm2  
Servo amplifier (3.5kW)  
Third unit:  
P
N
8mm2 assuming that the total of servo amplifier  
capacities is 7kW since 3.5kW + 2.0kW = 5.5kW.  
(Note)  
3.5mm2  
3.5mm2  
Servo amplifier (2kW)  
Fourth unit:  
P
N
3.5mm2 assuming that the total of servo amplifier  
capacities is 2kW since 2.0kW = 2.0kW.  
(Note)  
Junction terminals  
Overall wiring length 5m or less  
Note. For 7kW or less servo amplifier, always remove the wiring (3.5kW or less: across P-D, 5k 7kW: across P-C) of built-in  
regenerative resistor.  
(4) Other precautions  
(a) Always use the FR-CVL as the power factor improving reactor. Do not use the FR-BAL or FR-BEL.  
(b) The inputs/outputs (main circuits) of the FR-CV and servo amplifiers include high-frequency  
components and may provide electromagnetic wave interference to communication equipment  
(such as AM radios) used near them. In this case, interference can be reduced by installing the  
radio noise filter (FR-BIF) or line noise filter (FR-BSF01, FR-BLF).  
(c) The overall wiring length for connection of the DC power supply between the FR-CV and servo  
amplifiers should be 5m or less, and the wiring must be twisted.  
13 - 39  
13. OPTIONS AND AUXILIARY EQUIPMENT  
(5) Specifications  
Power regeneration common converter  
7.5K  
11K  
15K  
22K  
30K  
37K  
55K  
FR-CV-  
Item  
Total of connectable servo amplifier capacities [kW]  
Maximum servo amplifier capacity [kW]  
Total of connectable servo motor rated  
3.75  
3.5  
5.5  
5
7.5  
7
11  
11  
15  
15  
18.5  
15  
27.5  
22  
33  
46  
61  
90  
115  
145  
215  
currents  
[A]  
Short-time  
rating  
Output  
Total capacity of applicable servo motors, 300% torque, 60s (Note1)  
Regenerative  
braking torque  
Continuous  
rating  
100% torque  
Rated input AC voltage/frequency  
Permissible AC voltage fluctuation  
Permissible frequency fluctuation  
Power supply capacity(Note2) [kVA]  
Three-phase 200 to 220V 50Hz, 200 to 230V 60Hz  
Three-phase 170 to 242V 50Hz, 170 to 253V 60Hz  
5%  
Power supply  
17  
20  
28  
41  
52  
66  
100  
Protective structure (JEM 1030), cooling system  
Ambient temperature  
Open type (IP00), forced cooling  
-10 (14 ) to +50 (122 ) (non-freezing)  
90%RH or less (non-condensing)  
Environment Ambient humidity  
Ambience  
Indoors (without corrosive gas, flammable gas, oil mist, dust and dirt)  
1000m or less above sea level, 5.9m/s2 or less  
Altitude, vibration  
30AF  
30A  
50AF  
50A  
100AF  
75A  
100AF  
100A  
225AF  
125A  
225AF  
125A  
225AF  
175A  
No-fuse breaker or leakage current breaker  
Magnetic contactor  
S-N20  
S-N35  
S-N50  
S-N65  
S-N95  
S-N95  
S-N125  
Note 1. This is the time when the protective function of the FR-CV is activated. The protective function of the servo amplifier is activated  
in the time indicated in section 12.1.  
2. When connecting the capacity of connectable servo amplifier, specify the value of servo amplifier.  
13 - 40  
13. OPTIONS AND AUXILIARY EQUIPMENT  
13.1.11 Heat sink outside mounting attachment (MR-JACN)  
Use the heat sink outside mounting attachment to mount the heat generation area of the servo amplifier  
in the outside of the control box to dissipate servo amplifier-generated heat to the outside of the box and  
reduce the amount of heat generated in the box, thereby allowing a compact control box to be designed.  
In the control box, machine a hole having the panel cut dimensions, fit the heat sink outside mounting  
attachment to the servo amplifier with the fitting screws (4 screws supplied), and install the servo  
amplifier to the control box.  
The environment outside the control box when using the heat sink outside mounting attachment should  
be within the range of the servo amplifier operating environment conditions.  
(1) Panel cut dimensions  
D
4-M10 Screw  
[Unit: mm(in)]  
Changeable  
dimension  
A
B
C
D
Servo amplifier  
Model  
236  
(9.291)  
255  
(10.039)  
270  
(10.63)  
203  
(7.992)  
MR-J2S-11KA  
MR-J2S-15KA  
MR-JACN15K  
326  
(12.835)  
345  
(13.583)  
360  
(14.173)  
290  
(11.417)  
MR-JACN22K  
MR-J2S-22KA  
Punched  
hole  
A
B
C
(2) How to assemble the attachment for a heat sink outside mounting attachment  
Screw  
(2 places)  
Screw  
(4 places)  
Attachment  
Attachment  
MR-JACN15K  
MR-JACN22K  
13 - 41  
13. OPTIONS AND AUXILIARY EQUIPMENT  
(3) Fitting method  
Attachment  
Fit using the  
Servo  
amplifier  
Punched  
hole  
assembling  
screws.  
Servo  
amplifier  
Attachment  
Control box  
a. Assembling the heat sink outside mounting attachment  
b. Installation to the control box  
(4) Outline dimension drawing  
(a) MR-JACN15K (MR-J2S-11KA, MR-J2S-15KA)  
[Unit: mm(in)]  
20 (0.787)  
Panel  
Attachment  
Servo amplifier  
Servo amplifier  
Attachment  
Panel  
105  
236 (9.291)  
280 (11.024)  
260 (10.236)  
4- 12  
Mounting hole  
3.2 (0.126)  
155 (6.102)  
260  
11.5  
(0.453)  
(4.134)  
(10.236)  
13 - 42  
13. OPTIONS AND AUXILIARY EQUIPMENT  
(b) MR-JACN22K (MR-J2S-22KA)  
[Unit: mm(in)]  
68(2.677)  
Panel  
Attachment  
Servo amplifier  
Servo amplifier  
Attachment  
Panel  
105  
326(12.835)  
370(14.567)  
350(13.78)  
4- 12  
Mounting hole  
3.2(0.126)  
155(6.102)  
11.5  
(4.134) (0.453)  
260  
(10.236)  
13 - 43  
13. OPTIONS AND AUXILIARY EQUIPMENT  
13.2 Auxiliary equipment  
Always use the devices indicated in this section or equivalent. To comply with the EN Standard or UL/C-  
UL (CSA) Standard, use the products which conform to the corresponding standard.  
13.2.1 Recommended wires  
(1) Wires for power supply wiring  
The following diagram shows the wires used for wiring. Use the wires given in this section or  
equivalent.  
1) Main circuit power supply lead  
3) Motor power supply lead  
Servo motor  
Servo amplifier  
Power supply  
L1  
U
V
U
V
L2  
L3  
Motor  
W
W
L11  
L21  
6) Power regeneration  
converter lead  
5) Electromagnetic  
brake lead  
2) Control power supply lead  
Electro-  
magnetic  
brake  
Power regeneration  
converter  
B1  
B2  
N
Regenerative option  
C
P
Encoder  
Encoder cable  
(refer to section 13.1.5)  
Power supply  
4) Regenerative option lead  
Cooling fan  
BU  
BV  
BW  
Cooling fan lead  
The following table lists wire sizes. The wires used assume that they are 600V vinyl wires and the  
wiring distance is 30m(98.4ft) max. If the wiring distance is over 30m(98.4ft), choose the wire size in  
consideration of voltage drop.  
The alphabets (a, b, c) in the table correspond to the crimping terminals (Table 13.2) used to wire the  
servo amplifier. For connection with the terminal block TE2 of the MR-J2S-100A or less, refer to  
section 3.11.  
The servo motor side connection method depends on the type and capacity of the servo motor. Refer to  
section 3.8.  
To comply with the UL/C-UL (CSA) Standard, use UL-recognized copper wires rated at 60 (140 ) or  
more for wiring.  
13 - 44  
13. OPTIONS AND AUXILIARY EQUIPMENT  
Table 13.1 Recommended wires  
2
(Note 1) Wires [mm ]  
4)  
Servo amplifier  
1) L1 L2 L3  
2) L11 L21 3) U  
V
W
P1  
P
P
C
N
5) B1 B2  
6) BU BV BW  
MR-J2S-10A(1)  
MR-J2S-20A(1)  
MR-J2S-40A(1)  
MR-J2S-60A  
1.25 (AWG16) : a  
2 (AWG14) : a  
MR-J2S-70A  
2 (AWG14) : a  
MR-J2S-100A  
MR-J2S-200A  
2 (AWG14) : a  
3.5 (AWG12) : b  
(Note 2)  
3.5 (AWG12) : b  
5.5 (AWG10) : b  
1.25  
1.25 (AWG16)  
(AWG16)  
MR-J2S-350A  
5.5 (AWG10) : b  
5.5 (AWG10) : b  
8 (AWG8) : c  
22 (AWG4) :e  
MR-J2S-500A  
MR-J2S-700A  
MR-J2S-11KA  
MR-J2S-15KA  
MR-J2S-22KA  
8 (AWG8) : c  
14 (AWG6) :d  
22 (AWG4) :e  
50 (AWG1/0) :g  
3.5(AWG12) : b  
5.5(AWG10) : b  
30 (AWG2) :f  
2(AWG14)  
60 (AWG2/0) :g  
Note 1. For the crimping terminals and applicable tools, refer to table 13.2.  
2. 3.5mm2 for use of the HC-RFS203 servo motor.  
Use wires 6) of the following sizes with the power regeneration converter (FR-RC).  
Model  
Wires[mm2]  
14(AWG6)  
14(AWG6)  
22(AWG4)  
FR-RC-15K  
FR-RC-30K  
FR-RC-55K  
Table 13.2 Recommended crimping terminals  
Servo amplifier side crimping terminals  
Symbol  
Crimping terminal  
Applicable tool  
Manufacturer name  
a
b
32959  
FDV5.5-4  
47387  
YNT-1210S  
Tyco Electronics  
Body YF-1 E-4  
c
d
e
FVD8-5  
FVD14-6  
FVD22-6  
Head YNE-38  
Dice DH-111 DH-121  
Body YF-1 E-4  
Head YNE-38  
Dice DH-112 DH-122  
Body YF-1 E-4  
Head YNE-38  
Japan Solderless  
Terminal  
Dice DH-113 DH-123  
Body YPT-60-21  
Dice TD-124 TD-112  
Body YF-1 E-4  
Head YET-60-1  
Dice TD-124 TD-112  
NOP60  
NOM60  
38-S6  
R38-6S  
(Note 1 2)  
f
NICHIFU  
Body YDT-60-21  
Dice TD-125 TD-113  
Body YF-1 E-4  
Head YET-60-1  
Japan Solderless  
Terminal  
g
(Note)R60-8  
Dice TD-125 TD-113  
Note 1. Cover the crimped portion with an insulating tape.  
2. Always use recommended crimping terminals or equivalent since some crimping terminals cannot be installed depending on the  
size.  
13 - 45  
13. OPTIONS AND AUXILIARY EQUIPMENT  
(2) Wires for cables  
When fabricating a cable, use the wire models given in the following table or equivalent.  
Table 13.3 Wires for option cables  
Characteristics of one core  
Conductor Insulation coating  
[Wires/mm] resistance[ /mm]  
(Note 3)  
Finishing  
OD [mm]  
Length  
[m(ft)]  
Core size Number  
[mm2] of Cores  
Type  
Model  
Wire model  
Structure  
ODd[mm] (Note 1)  
2 to 10  
(6.56 to 32.8)  
20 30  
(65.6 98.4)  
2 5  
(6.56 16.4)  
10 to 50  
(32.8 to 164)  
2 5  
(6.56 16.4)  
10 to 30  
(32.8 to 98.4)  
2 5  
(6.56 16.4)  
10 to 50  
(32.8 to 164)  
2 5  
12  
0.08  
UL20276 AWG#28  
6pair (BLAC)  
UL20276 AWG#22  
6pair (BLAC)  
(Note 2)  
7/0.127  
12/0.18  
40/0.08  
40/0.08  
7/0.127  
12/0.18  
40/0.08  
40/0.08  
40/0.08  
40/0.08  
7/0.127  
222  
62  
0.38  
5.6  
8.2  
7.2  
8.0  
4.7  
8.2  
6.5  
7.2  
6.5  
7.2  
4.6  
(6 pairs)  
MR-JCCBL M-L  
12  
0.3  
1.2  
(6 pairs)  
12  
0.2  
105  
105  
222  
62  
0.88  
0.88  
0.38  
1.2  
(6 pairs)  
A14B2343 6P  
(Note 2)  
MR-JCCBL M-H  
MR-JHSCBL M-L  
MR-JHSCBL M-H  
14  
0.2  
(7 pairs)  
A14B0238 7P  
UL20276 AWG#28  
4pair (BLAC)  
UL20276 AWG#22  
6pair (BLAC)  
(Note 2)  
8
0.08  
(4 pairs)  
Encoder cable  
12  
0.3  
(6 pairs)  
8
0.2  
105  
105  
105  
105  
222  
0.88  
0.88  
0.88  
0.88  
0.38  
(4 pairs)  
A14B2339 4P  
(Note 2)  
12  
0.2  
(6 pairs)  
A14B2343 6P  
(Note 2)  
8
0.2  
(6.56 16.4)  
10 to 50  
(32.8 to 164)  
(4 pairs)  
A14B2339 4P  
(Note 2)  
MR-ENCBL M-H  
MR-CPCATCBL3M  
12  
0.2  
(6 pairs)  
A14B2343 6P  
UL20276 AWG#28  
3pair (BLAC)  
Communication  
cable  
6
0.08  
3 (9.84)  
(3 pairs)  
0.5 to 5  
(1.64 to 16.4)  
20  
0.08  
UL20276 AWG#28  
10pair (CREAM)  
Bus cable  
MR-J2HBUS  
M
7/0.127  
222  
0.38  
6.1  
(10 pairs)  
Note 1. d is as shown below.  
d
Conductor Insulation sheath  
2. Purchased from Toa Electric Industry.  
3. Standard OD. Max. OD is about 10% greater.  
13 - 46  
13. OPTIONS AND AUXILIARY EQUIPMENT  
13.2.2 No-fuse breakers, fuses, magnetic contactors  
Always use one no-fuse breaker and one magnetic contactor with one servo amplifier. When using a fuse  
instead of the no-fuse breaker, use the one having the specifications given in this section.  
Fuse  
Servo amplifier  
No-fuse breaker  
Magnetic contactor  
Class Current[A] Voltage AC [V]  
MR-J2S-10A(1)  
MR-J2S-20A  
MR-J2S-40A 20A1 30A frame 10A  
MR-J2S-60A 40A1 30A frame 15A  
MR-J2S-70A  
MR-J2S-100A  
MR-J2S-200A  
MR-J2S-350A  
MR-J2S-500A  
MR-J2S-700A  
MR-J2S-11KA  
MR-J2S-15KA  
MR-J2S-22KA  
30A frame 5A  
30A frame 5A  
K5  
K5  
K5  
K5  
K5  
K5  
K5  
K5  
K5  
K5  
10  
10  
15  
20  
20  
25  
40  
70  
125  
150  
200  
250  
350  
S-N10  
30A frame 15A  
30A frame 15A  
30A frame 20A  
30A frame 30A  
50A frame 50A  
100A frame 75A  
100A frame 100A K5  
225A frame 125A K5  
225A frame 175A K5  
250  
S-N18  
S-N20  
S-N35  
S-N50  
S-N65  
S-N95  
S-N25  
13.2.3 Power factor improving reactors  
The input power factor is improved to be about 90%. For use with a 1-phase power supply, it may be  
slightly lower than 90%.  
Servo amplifier  
[Unit : mm]  
FR-BAL  
FR-BAL  
FR-BAL  
MR-J2S-  
L1  
A
MC  
MC  
MC  
NFB  
R
S
T
X
Y
Z
3-phase  
200 to 230VAC  
L2  
L3  
Servo amplifier  
MR-J2S-  
A
NFB  
W
D1  
R
S
T
X
Y
Z
L1  
Installation screw  
(Note)  
1-phase  
230VAC  
L2  
L3  
RXSY T Z  
W1  
Servo amplifier  
MR-J2S- A1  
C
NFB  
R
S
T
X
Y
Z
1-phase  
100 to120VAC  
L1  
L2  
Note. For the 1-phase 230V power supply, Connect the power supply to L1, L2 and leave L3 open.  
Dimensions [mm (in) ]  
Mounting Terminal  
screw size screw size  
Mass  
[kg (lb)]  
Servo amplifier  
Model  
W
W1  
H
D
D1  
C
45-02.5 (1.77-00.098  
57-02.5 (2.24-00.098  
55-02.5 (2.17-00.098  
75-02.5 (2.95-00.098  
70-02.5 (2.76-00.098  
)
)
)
)
)
MR-J2S-10A(1)/20A  
MR-J2S-40A/20A1  
FR-BAL-0.4K 135 (5.31) 120 (4.72) 115 (4.53) 59 (2.32)  
FR-BAL-0.75K 135 (5.31) 120 (4.72) 115 (4.53) 69 (2.72)  
7.5 (0.29)  
7.5 (0.29)  
7.5 (0.29)  
7.5 (0.29)  
10 (0.39)  
10 (0.39)  
12.5 (0.49)  
12.5 (0.49)  
M4  
M4  
M4  
M4  
M5  
M5  
M6  
M3.5  
M3.5  
M3.5  
M3.5  
M4  
2.0 (4.4)  
2.8 (6.17)  
3.7 (8.16)  
5.6 (12.35)  
8.5 (18.74)  
14.5 (32.0)  
19 (41.9)  
MR-J2S-60A/70A/40A1 FR-BAL-1.5K 160 (6.30) 145 (5.71) 140 (5.51) 71 (2.79)  
MR-J2S-100A  
MR-J2S-200A  
MR-J2S-350A  
MR-J2S-500A  
FR-BAL-2.2K 160 (6.30) 145 (5.71) 140 (5.51) 91 (3.58)  
FR-BAL-3.7K 220 (8.66) 200 (7.87) 192 (7.56) 90 (3.54)  
FR-BAL-7.5K 220 (8.66) 200 (7.87) 194 (7.64) 120 (4.72)  
FR-BAL-11K 280 (11.02) 255 (10.04) 220 (8.66) 135 (5.31)  
FR-BAL-15K 295 (11.61) 270 (10.62) 275 (10.83) 133 (5.24)  
100-02.5 (3.94-00.098  
100-02.5 (3.94-00.098  
110-02.5 (4.33-00.098  
)
)
)
M5  
M6  
MR-J2S-700A/11KA  
MR-J2S-15KA  
MR-J2S-22KA  
M6  
M8  
M8  
M6  
M8  
M8  
27 (59.5)  
35 (77.16)  
43 (94.79)  
FR-BAL-22K 290 (11.41) 240 (9.75) 301 (11.85) 199 (7.84) 170 5 (6.69 0.2) 25 (0.98)  
FR-BAL-30K 290 (11.41) 240 (9.75) 301 (11.85) 219 (8.62) 190 5 (7.48 0.2) 25 (0.98)  
13 - 47  
13. OPTIONS AND AUXILIARY EQUIPMENT  
13.2.4 Power factor improving DC reactors  
The input power factor is improved to be about 95%.  
(Note 1) Terminal cover  
Screw size G  
Rating plate  
2-F  
L
H
Notch  
E
B or less  
A or less  
F
Mounting foot part  
5m or less  
FR-BEL  
Servo amplifier  
P
(Note 2)  
P1  
Note 1. Fit the supplied terminal cover after wiring.  
2. When using the DC reactor, remove the short-circuit bar across P1-P.  
Power factor  
improving DC  
reactors  
Dimensions [mm (in) ]  
Terminal  
Mass  
Used wire  
2
Servo amplifier  
screw size [kg (lb)]  
[mm ]  
A
B
C
D
E
F
L
G
H
MR-J2S-11KA  
MR-J2S-15KA  
MR-J2S-22KA  
FR-BEL-15K 170(6.69) 93(3.66) 170(6.69)2.3(0.09)155(6.10) 6(0.24) 14(0.55)  
FR-BEL-22K 185(7.28)119(4.69)182(7.17)2.6(0.10)165(6.49) 7(0.28) 15(0.59)  
FR-BEL-30K 185(7.28)119(4.69)201(7.91)2.6(0.10)165(6.49) 7(0.28) 15(0.59)  
M8  
M8  
M8  
56(2.21)  
70(2.77)  
70(2.77)  
M5  
M6  
M6  
3.8(8.38) 22(AWG4)  
5.4(11.91) 30(AWG2)  
6.7(14.77) 60(AWG1/0)  
13 - 48  
13. OPTIONS AND AUXILIARY EQUIPMENT  
13.2.5 Relays  
The following relays should be used with the interfaces.  
Interface  
Selection example  
Relay used for digital input command signals To prevent defective contacts , use a relay for small signal  
(interface DI-1)  
(twin contacts).  
(Ex.) Omron : type G2A , MY  
Small relay with 12VDC or 24VDC of 40mA or less  
(Ex.) Omron : type MY  
Relay used for digital output signals (interface DO-1)  
13.2.6 Surge absorbers  
A surge absorber is required for the electromagnetic brake. Use the following surge absorber or equivalent.  
Insulate the wiring as shown in the diagram.  
Maximum rating  
Static  
capacity  
(reference  
value)  
Maximum  
Varistor voltage  
Permissible circuit  
voltage  
Surge  
Energy  
Rated  
power  
limit voltage  
rating (range) V1mA  
immunity  
immunity  
AC[Vma]  
DC[V]  
180  
[A]  
[J]  
5
[W]  
0.4  
[A]  
25  
[V]  
[pF]  
[V]  
220  
(Note)  
140  
360  
300  
500/time  
(198 to 242)  
Note. 1 time  
8
20 s  
(Example) ERZV10D221 (Matsushita Electric Industry)  
TNR-10V221K (Nippon chemi-con)  
Outline drawing [mm] ( [in] ) (ERZ-C10DK221)  
13.5 (0.53)  
4.7 1.0 (0.19 0.04)  
Vinyl tube  
Crimping terminal  
for M4 screw  
0.8 (0.03)  
13.2.7 Noise reduction techniques  
Noises are classified into external noises which enter the servo amplifier to cause it to malfunction and  
those radiated by the servo amplifier to cause peripheral devices to malfunction. Since the servo amplifier  
is an electronic device which handles small signals, the following general noise reduction techniques are  
required.  
Also, the servo amplifier can be a source of noise as its outputs are chopped by high carrier frequencies. If  
peripheral devices malfunction due to noises produced by the servo amplifier, noise suppression measures  
must be taken. The measures will vary slightly with the routes of noise transmission.  
(1) Noise reduction techniques  
(a) General reduction techniques  
Avoid laying power lines (input and output cables) and signal cables side by side or do not bundle  
them together. Separate power lines from signal cables.  
Use shielded, twisted pair cables for connection with the encoder and for control signal  
transmission, and connect the shield to the SD terminal.  
Ground the servo amplifier, servo motor, etc. together at one point (refer to section 3.10).  
13 - 49  
13. OPTIONS AND AUXILIARY EQUIPMENT  
(b) Reduction techniques for external noises that cause the servo amplifier to malfunction  
If there are noise sources (such as a magnetic contactor, an electromagnetic brake, and many  
relays which make a large amount of noise) near the servo amplifier and the servo amplifier may  
malfunction, the following countermeasures are required.  
Provide surge absorbers on the noise sources to suppress noises.  
Attach data line filters to the signal cables.  
Ground the shields of the encoder connecting cable and the control signal cables with cable clamp  
fittings.  
Although a surge absorber is built into the servo amplifier, to protect the servo amplifier and  
other equipment against large exogenous noise and lightning surge, attaching a varistor to the  
power input section of the equipment is recommended.  
(c) Techniques for noises radiated by the servo amplifier that cause peripheral devices to malfunction  
Noises produced by the servo amplifier are classified into those radiated from the cables connected  
to the servo amplifier and its main circuits (input and output circuits), those induced  
electromagnetically or statically by the signal cables of the peripheral devices located near the  
main circuit cables, and those transmitted through the power supply cables.  
13 - 50  
13. OPTIONS AND AUXILIARY EQUIPMENT  
Noise radiated directly  
from servo amplifier  
Noises produced  
by servo amplifier  
Noises transmitted  
in the air  
Route 1)  
Route 2)  
Route 3)  
Noise radiated from the  
power supply cable  
Noise radiated from  
servo motor cable  
Magnetic induction  
noise  
Routes 4) and 5)  
Static induction  
noise  
Route 6)  
Noises transmitted  
through electric  
channels  
Noise transmitted through  
power supply cable  
Route 7)  
Route 8)  
Noise sneaking from  
grounding cable due to  
leakage current  
5)  
7)  
7)  
2)  
1)  
7)  
Sensor  
power  
supply  
Servo  
amplifier  
2)  
Instrument  
Receiver  
3)  
8)  
6)  
Sensor  
4)  
3)  
Servo motor  
M
13 - 51  
13. OPTIONS AND AUXILIARY EQUIPMENT  
Noise transmission route  
Suppression techniques  
When measuring instruments, receivers, sensors, etc. which handle weak signals and may  
malfunction due to noise and/or their signal cables are contained in a control box together with the  
servo amplifier or run near the servo amplifier, such devices may malfunction due to noises  
transmitted through the air. The following techniques are required.  
1. Provide maximum clearance between easily affected devices and the servo amplifier.  
2. Provide maximum clearance between easily affected signal cables and the I/O cables of the servo  
amplifier.  
1) 2) 3)  
3. Avoid laying the power lines (Input cables of the servo amplifier) and signal cables side by side or  
bundling them together.  
4. Insert a line noise filter to the I/O cables or a radio noise filter on the input line.  
5. Use shielded wires for signal and power cables or put cables in separate metal conduits.  
When the power lines and the signal cables are laid side by side or bundled together, magnetic  
induction noise and static induction noise will be transmitted through the signal cables and  
malfunction may occur. The following techniques are required.  
1. Provide maximum clearance between easily affected devices and the servo amplifier.  
2. Provide maximum clearance between easily affected signal cables and the I/O cables of the servo  
amplifier.  
4) 5) 6)  
3. Avoid laying the power lines (I/O cables of the servo amplifier) and signal cables side by side or  
bundling them together.  
4. Use shielded wires for signal and power cables or put the cables in separate metal conduits.  
When the power supply of peripheral devices is connected to the power supply of the servo  
amplifier system, noises produced by the servo amplifier may be transmitted back through the  
power supply cable and the devices may malfunction. The following techniques are required.  
1. Insert the radio noise filter (FR-BIF) on the power cables (Input cables) of the servo amplifier.  
2. Insert the line noise filter (FR-BSF01 FR-BLF) on the power cables of the servo amplifier.  
When the cables of peripheral devices are connected to the servo amplifier to make a closed loop  
circuit, leakage current may flow to malfunction the peripheral devices. If so, malfunction may be  
prevented by disconnecting the grounding cable of the peripheral device.  
7)  
8)  
(2) Noise reduction products  
(a) Data line filter  
Noise can be prevented by installing a data line filter onto the encoder cable, etc.  
For example, the ZCAT3035-1330 of TDK and the ESD-SR-25 of NEC Tokin make are available as  
data line filters.  
As a reference example, the impedance specifications of the ZCAT3035-1330 (TDK) are indicated  
below.  
This impedances are reference values and not guaranteed values.  
[Unit: mm]([Unit: in.])  
Impedance[ ]  
10 to 100MHz  
80  
100 to 500MHz  
150  
39 1(1.54 0.04)  
Loop for fixing the  
cable band  
34 1  
(1.34 0.04)  
TDK  
Product name Lot number  
Outline drawing (ZCAT3035-1330)  
13 - 52  
13. OPTIONS AND AUXILIARY EQUIPMENT  
(b) Surge suppressor  
The recommended surge suppressor for installation to an AC relay, AC valve, AC electromagnetic  
brake or the like near the servo amplifier is shown below. Use this product or equivalent.  
MC  
Relay  
Surge suppressor  
Surge suppressor  
Surge suppressor  
This distance should be short  
(within 20cm(0.79 in.)).  
(Ex.) 972A.2003 50411  
(Matsuo Electric Co.,Ltd. 200VAC rating)  
Outline drawing [Unit: mm] ([Unit: in.])  
Vinyl sheath  
Rated  
voltage  
AC[V]  
C [ F]  
R [ ]  
Test voltage AC[V]  
18 1.5  
(0.71 0.06)  
Blue vinyl cord  
Red vinyl cord  
50  
Across  
6(0.24)  
200  
0.5  
(1W)  
T-C 1000(1 to 5s)  
10(0.39)or less 10(0.39)or less  
15 1(0.59 0.04)  
4(0.16)  
10 3  
(0.39  
0.12)  
10 3  
(0.39  
0.12)  
31(1.22)  
200(7.87)  
48 1.5  
200(7.87)  
or more (1.89 0.06) or more  
Note that a diode should be installed to a DC relay, DC valve or  
the like.  
RA  
Maximum voltage: Not less than 4 times the drive voltage of  
the relay or the like  
Diode  
Maximum current: Not less than twice the drive current of  
the relay or the like  
(c) Cable clamp fitting (AERSBAN -SET)  
Generally, the earth of the shielded cable may only be connected to the connector's SD terminal.  
However, the effect can be increased by directly connecting the cable to an earth plate as shown  
below.  
Install the earth plate near the servo amplifier for the encoder cable. Peel part of the cable sheath  
to expose the external conductor, and press that part against the earth plate with the cable clamp.  
If the cable is thin, clamp several cables in a bunch.  
The clamp comes as a set with the earth plate.  
Cable  
Cable clamp  
Earth plate  
(A,B)  
Strip the cable sheath of  
the clamped area.  
cutter  
cable  
External conductor  
Clamp section diagram  
13 - 53  
13. OPTIONS AND AUXILIARY EQUIPMENT  
Outline drawing  
[Unit: mm]  
([Unit: in.])  
Earth plate  
Clamp section diagram  
2- 5(0.20) hole  
installation hole  
17.5(0.69)  
L or less  
10(0.39)  
22(0.87)  
6
(Note)M4 screw  
35(1.38)  
(0.24)  
Note. Screw hole for grounding. Connect it to the earth plate of the control box.  
Type  
A
B
C
Accessory fittings  
Clamp fitting  
L
100  
86  
30  
70  
AERSBAN-DSET  
clamp A: 2pcs.  
A
(3.94) (3.39) (1.18)  
70 56  
(2.76) (2.20)  
(2.76)  
45  
AERSBAN-ESET  
clamp B: 1pc.  
B
(1.77)  
13 - 54  
13. OPTIONS AND AUXILIARY EQUIPMENT  
(d) Line noise filter (FR-BLF, FR-BSF01)  
This filter is effective in suppressing noises radiated from the power supply side and output side of  
the servo amplifier and also in suppressing high-frequency leakage current (zero-phase current)  
especially within 0.5MHz to 5MHz band.  
Connection diagram  
Outline drawing [Unit: mm] ([Unit: in.])  
FR-BSF01 (for MR-J2S-200A or less)  
Use the line noise filters for wires of the main power supply  
Approx.110(4.33)  
(L1 L2 L3) and of the motor power supply (U  
V
W). Pass  
95 0.5(3.74 0.02)  
2- 5(0.20)  
each of the 3-phase wires through the line noise filter an equal  
number of times in the same direction. For the main power  
supply, the effect of the filter rises as the number of passes  
increases, but generally four passes would be appropriate. For  
the motor power supply, passes must be four times or less. Do  
not pass the grounding (earth) wire through the filter, or the  
effect of the filter will drop. Wind the wires by passing through  
the filter to satisfy the required number of passes as shown in  
Example 1. If the wires are too thick to wind, use two or more  
filters to have the required number of passes as shown in  
Example 2. Place the line noise filters as close to the servo  
amplifier as possible for their best performance.  
Approx.65 (2.56)  
33(1.30)  
Example 1  
NFB MC  
Servo amplifier  
FR-BLF (MR-J2S-350A or more)  
Power  
supply  
L1  
L2  
L3  
7(0.28)  
Line noise  
filter  
130(5.12)  
85(3.35)  
(Number of turns: 4)  
Example 2  
MC  
NFB  
Servo amplifier  
Power  
supply  
160(6.30)  
180(7.09)  
L1  
L2  
L3  
Line noise  
filter  
Two filters are used  
(Total number of turns: 4)  
(e) Radio noise filter (FR-BIF)...for the input side only  
This filter is effective in suppressing noises radiated from the power supply side of the servo  
amplifier especially in 10MHz and lower radio frequency bands. The FR-BIF is designed for the  
input only.  
Connection diagram  
Outline drawing (Unit: mm) ([Unit: in.])  
Make the connection cables as short as possible.  
Grounding is always required.  
Leakage current: 4mA  
Red White Blue  
Green  
When using the FR-BIF with a single-phase wire,  
always insulate the wires that are not used for wiring.  
Servo amplifier  
NFB  
MC  
L1  
Power  
supply  
L2  
29 (1.14)  
5 (0.20)  
hole  
L3  
Radio noise  
filter FR-BIF  
29 (1.14)  
44 (1.73)  
58 (2.28)  
7 (0.28)  
13 - 55  
13. OPTIONS AND AUXILIARY EQUIPMENT  
(f) Varistors for input power supply (Recommended)  
Varistors are effective to prevent exogenous noise and lightning surge from entering the servo  
amplifier. When using a varistor, connect it between each phase of the input power supply of the  
equipment. For varistors, the TND20V-431K and TND20V-471K, manufactured by NIPPON  
CHEMI-CON, are recommended. For detailed specification and usage of the varistors, refer to the  
manufacturer catalog.  
Maximum rating  
Static  
Varistor voltage  
rating (range)  
V1mA  
Maximum limit capacity  
Rated  
pulse  
power  
[W]  
Permissible circuit Surge current  
Energy  
voltage  
(reference  
value)  
Varistor  
voltage  
immunity  
immunity  
AC[Vrms]  
DC[V]  
350  
8/20 s[A]  
10000/1 time  
7000/2 time  
2ms[J]  
195  
[A]  
[V]  
[pF]  
[V]  
TND20V-431K  
TND20V-471K  
275  
300  
710  
775  
1300  
1200  
430(387 to 473)  
470(423 to 517)  
1.0  
100  
385  
215  
[Unit: mm]  
D
H
T
E
(Note)L  
min.  
d
W
D
T
Model  
Max.  
Max.  
Max.  
1.0  
0.05  
1.0  
TND20V-431K  
TND20V-471K  
6.4  
6.6  
3.3  
3.5  
21.5  
24.5  
20  
0.8  
10.0  
Note. For special purpose items for lead length (L), contact the manufacturer.  
W
E
d
13 - 56  
13. OPTIONS AND AUXILIARY EQUIPMENT  
13.2.8 Leakage current breaker  
(1) Selection method  
High-frequency chopper currents controlled by pulse width modulation flow in the AC servo circuits.  
Leakage currents containing harmonic contents are larger than those of the motor which is run with a  
commercial power supply.  
Select a leakage current breaker according to the following formula, and ground the servo amplifier,  
servo motor, etc. securely.  
Make the input and output cables as short as possible, and also make the grounding cable as long as  
possible (about 30cm (11.8 in)) to minimize leakage currents.  
Rated sensitivity current 10 {Ig1 Ign Iga K (Ig2 Igm)} [mA] ..........(13.1)  
K: Constant considering the harmonic contents  
Cable  
Leakage current breaker  
K
Mitsubishi  
products  
Type  
Noise  
filter  
NV  
Servo  
amplifier  
Cable  
Ig2  
NV-SP  
NV-SW  
NV-CP  
NV-CW  
NV-HW  
BV-C1  
NFB  
M
Models provided with  
harmonic and surge  
reduction techniques  
1
3
Ig1 Ign  
Iga  
Igm  
General models  
NV-L  
Ig1:  
Ig2:  
Leakage current on the electric channel from the leakage current breaker to the input terminals  
of the servo amplifier (Found from Fig. 13.1.)  
Leakage current on the electric channel from the output terminals of the servo amplifier to the  
servo motor (Found from Fig. 13.1.)  
Ign:  
Iga:  
Igm:  
Leakage current when a filter is connected to the input side (4.4mA per one FR-BIF)  
Leakage current of the servo amplifier (Found from Table 13.6.)  
Leakage current of the servo motor (Found from Table 13.5.)  
Table 13.4 Servo motor's  
leakage current  
Table 13.5 Servo amplifier's  
leakage current  
120  
100  
80  
60  
40  
20  
0
example (Igm)  
example (Iga)  
Servo motor  
output [kW]  
Leakage  
current [mA]  
Servo amplifier  
Leakage  
capacity [kW]  
0.1 to 0.6  
0.7 to 3.5  
current [mA]  
0.05 to 0.5  
0.6 to 1.0  
0.1  
0.1  
0.2  
0.3  
0.5  
0.7  
1.0  
1.3  
2.3  
0.1  
0.15  
2
1.2 to 2.2  
5
7
[mA]  
3 to 3.5  
11 15  
22  
5.5  
7
5
7
Table 13.6 Leakage circuit breaker selection example  
2
3.5 8 1422 38 80 150  
5.5 30 60 100  
11  
15  
22  
Rated sensitivity  
Cable size[mm2]  
Servo amplifier  
current of leakage  
circuit breaker [mA]  
Fig. 13.1 Leakage current example  
(Ig1, Ig2) for CV cable run  
in metal conduit  
MR-J2S-10A to MR-J2S-350A  
MR-J2S-10A1 to MR-J2S-40A1  
MR-J2S-500A  
15  
30  
50  
MR-J2S-700A  
MR-J2S-11KA to MR-J2S-22KA  
100  
13 - 57  
13. OPTIONS AND AUXILIARY EQUIPMENT  
(2) Selection example  
Indicated below is an example of selecting a leakage current breaker under the following conditions.  
2mm2 5m  
2mm2 5m  
NV  
Servo  
Servo motor  
HC-MFS73  
amplifier  
MR-J2S-60A  
M
Ig1  
Iga  
Ig2  
Igm  
Use a leakage current breaker generally available.  
Find the terms of Equation (13.1) from the diagram.  
5
1000  
Ig1  
Ig2  
20  
20  
0.1 [mA]  
0.1 [mA]  
5
1000  
Ign 0 (not used)  
Iga 0.1 [mA]  
Igm 0.1 [mA]  
Insert these values in Equation (13.1).  
Ig 10 {0.1 0 0.1 1 (0.1 0.1)}  
4.0 [mA]  
According to the result of calculation, use a leakage current breaker having the rated sensitivity  
current (Ig) of 4.0[mA] or more. A leakage current breaker having Ig of 15[mA] is used with the NV-  
SP/SW/CP/CW/HW series.  
13 - 58  
13. OPTIONS AND AUXILIARY EQUIPMENT  
13.2.9 EMC filter  
For compliance with the EMC directive of the EN Standard, it is recommended to use the following filter.  
Some EMC filters are large in leakage current.  
(1) Combination with the servo amplifier  
Recommended filter  
Servo amplifier  
Mass [kg]([lb])  
Model  
Leakage current [mA]  
MR-J2S-10A to MR-J2S-100A  
MR-J2S-10A1 to MR-J2S-40A1  
MR-J2S-200A MR-J2S-350A  
MR-J2S-500A  
SF1252  
38  
0.75(1.65)  
SF1253  
57  
1.5  
1.5  
3.0  
3.0  
3.0  
1.37(3.02)  
5.5(12.1)  
6.7(14.8)  
10.0(22.1)  
13.0(28.7)  
14.5(32)  
(Note) HF3040A-TM  
(Note) HF3050A-TM  
(Note) HF3060A-TMA  
(Note) HF3080A-TMA  
(Note) HF3100A-TMA  
MR-J2S-700A  
MR-J2S-11KA  
MR-J2S-15KA  
MR-J2S-22KA  
Note: Soshin Electric A surge protector is separately required to use any of these EMC filters. (Refer to the EMC Installation  
Guidelines.)  
(2) Connection example  
EMC filter  
EMC filter  
(SOSHIN Electric Co., Ltd)  
(SF1252, SF1253)  
Servo amplifier  
Servo amplifier  
NF  
NF  
MC  
MC  
LINE  
LOAD  
L1  
L2  
L3  
L1  
L2  
L3  
L1  
L2  
L3  
1
2
3
4
5
6
E
L1  
L2  
L3  
(Note 1)  
Power  
supply  
(Note 1)  
Power  
supply  
(Note 2)  
L11  
L11  
L21  
L21  
1
2
3
Surge protector 1  
(RAV-781BYZ-2)  
(OKAYA Electric Industries  
Co., Ltd.)  
Surge protector 2  
(RAV-781BXZ-4)  
1 2 3  
(OKAYA Electric Industries Co., Ltd.)  
Note 1. For 1-phase 230VAC power supply, connect the power supply to L1,L2 and leave L3 open.  
There is no L3 for 1-phase 100 to 120VAC power supply. Refer to section 1.3 for the power supply specification.  
2. Connect when the power supply has earth.  
13 - 59  
13. OPTIONS AND AUXILIARY EQUIPMENT  
(3) Outline drawing  
(a) EMC filter  
[Unit: mm(in)]  
6.0(0.236)  
SF1252  
SF1253  
6.0(0.236)  
LINE  
149.5(5.886)  
209.5(8.248)  
L1  
L2  
L3  
L1  
L2  
L3  
LINE  
(input side)  
(input side)  
L1'  
L2'  
L3'  
L1'  
L2'  
L3'  
LOAD  
(output side)  
LOAD  
(output side)  
8.5  
(0.335)  
16.0(0.63)  
23.0(0.906)  
8.5  
(0.335)  
42.0  
49.0  
(1.654)  
(1.929)  
HF3040A-TM HF3050A-TM HF3060A-TMA  
6-K  
3-L  
3-L  
M
J
2
C
1
C
1
H
2
B
A
2
5
Dimensions [mm(in)]  
Model  
A
B
C
D
E
F
G
H
J
K
L
M
260  
210  
85  
155  
140  
125  
44  
140  
70  
HF3040A-TM  
HF3050A-TM  
HF3060A-TMA  
M5  
M6  
M6  
M4  
M4  
M4  
(10.24) (8.27) (3.35) (6.10) (5.51) (4.92) (1.73) (5.51) (2.76)  
290 240 100 190 175 160 44 170 100  
R3.25  
(0.13),  
(11.42) (9.45) (3.94) (7.48) (6.89) (6.29) (1.73) (6.69) (3.94) length  
8 (0.32)  
290  
240  
100  
190  
175  
160  
44  
230  
160  
(11.42) (9.45) (3.94) (7.48) (6.89) (6.29) (1.73) (9.06) (6.29)  
13 - 60  
13. OPTIONS AND AUXILIARY EQUIPMENT  
HF3080A-TMA HF3100A-TMA  
8-K  
3-L  
3-L  
M
J
2
C
1
C
B
A
1
2
5
C
1
H
2
Dimensions [mm(in)]  
Model  
A
B
C
D
E
F
G
H
J
K
L
M
R4.25  
(0.17),  
HF3080A-TMA  
HF3100A-TMA  
405  
350  
100  
220  
200  
180  
56  
210  
135  
M8  
M6  
(15.95) (13.78) (3.94) (8.66) (7.87) (7.09) (2.21) (8.27) (5.32) length 12  
(0.47)  
13 - 61  
13. OPTIONS AND AUXILIARY EQUIPMENT  
(b) Surge protector  
[Unit: mm]  
RAV-781BYZ-2  
1)  
2)  
3)  
Black Black Black  
4.2 0.2  
UL-1015AWG16  
1
2
3
41 1.0  
[Unit: mm]  
RAV-781BXZ-4  
1)  
2)  
3)  
4)  
4.2 0.2  
UL-1015AWG16  
1
2
3
41 1.0  
13 - 62  
13. OPTIONS AND AUXILIARY EQUIPMENT  
13.2.10 Setting potentiometers for analog inputs  
The following variable resistors are available for use with analog inputs.  
(1) Single-revolution type  
WA2WYA2SEBK2K (Japan Resistor make)  
Resistance  
tolerance  
Dielectric strength  
(for 1 minute)  
Insulation  
resistance  
Mechanical  
rotary angle  
Rated power Resistance  
2W 2k  
Rotary torque  
10%  
700V A.C  
100M or more  
300  
5
10 to 100g-cm or less  
Connection diagram  
Outline dimension drawing  
Panel hole machining diagram  
[Unit: mm (in)]  
[Unit: mm (in)]  
20 (0.79)  
2.5 (0.10)  
25 (0.98)  
10 (0.39)  
30 (1.18)  
2.8 (0.11)  
3.6 (0.14) hole  
10 (0.37) hole  
1.6 (0.06)  
1
2
3
M9 0.75 (0.03)  
3
(0.08)  
3- 1.54 (0.56) hole  
1
3
2
(2) Multi-revolution type  
Position meter: RRS10M202 (Japan Resistor make)  
Analog dial: 23M (Japan Resistor make)  
Resistance  
tolerance  
Dielectric strength  
(for 1 minute)  
Insulation  
resistance  
Mechanical  
Rotary torque  
rotary angle  
Rated power Resistance  
10  
0
1W 2k  
10%  
700V A.C  
1000M or more  
3600  
100g-cm or less  
Connection diagram  
Panel hole machining diagram  
1
3
[Unit: mm (in)]  
Panel thickness: 2 to 6 (0.08 to 0.24)  
CW  
2
9 (0.35) hole  
2.1 (0.08) hole  
Outline dimension drawing  
RRS10 M202  
23M  
[Unit: mm (in)]  
12.5 (0.49)  
[Unit: mm (in)]  
1)  
15 (0.59)  
2)  
3)  
30  
3)  
1)  
2)  
M9 0.75 (0.03)  
12 (0.47)  
6 (0.24)  
1.2  
(0.05)  
20.5  
(0.81)  
7.5  
(0.3)  
23 (0.91)  
L
13 - 63  
13. OPTIONS AND AUXILIARY EQUIPMENT  
MEMO  
13 - 64  
14. COMMUNICATION FUNCTIONS  
14. COMMUNICATION FUNCTIONS  
This servo amplifier has the RS-422 and RS-232C serial communication functions. These functions can be  
used to perform servo operation, parameter changing, monitor function, etc.  
However, the RS-422 and RS-232C communication functions cannot be used together. Select between RS-  
422 and RS-232C with parameter No.16. (Refer to section 14.2.2)  
14.1 Configuration  
14.1.1 RS-422 configuration  
(1) Outline  
Up to 32 axes of servo amplifiers from stations 0 to 31 can be operated on the same bus.  
Servo amplifier  
Servo amplifier  
Servo amplifier  
MITSUBISHI  
MITSUBISHI  
MITSUBISHI  
Controller such as  
personal computer  
CHARGE  
CHARGE  
CHARGE  
To CN3  
To CN3  
To CN3  
RS-232C/  
RS-422  
converter  
Axis 1 (Station 0)  
Axis 2 (Station 1)  
RS-422  
Axis 32 (Station 31)  
Unavailable as option.  
To be prepared by customer.  
(2) Cable connection diagram  
Wire as shown below.  
(Note 3) 30m (98.4ft) or less  
(Note 1)  
Axis 32 (last axis)  
(Note 1)  
(Note 1)  
servo amplifier  
CN3 connector  
Axis 1 servo amplifier  
CN3 connector  
Axis 2 servo amplifier  
CN3 connector  
Plate  
9
SD  
Plate  
9
Plate SD  
SD  
SDP  
SDN  
RDP  
RDN  
TRE  
LG  
9
19  
5
SDP  
SDN  
RDP  
RDN  
TRE  
LG  
SDP  
SDN  
RDP  
RDN  
TRE  
LG  
19  
5
19  
5
15  
10  
11  
1
15  
10  
11  
1
15  
10  
11  
1
(Note 2)  
LG  
LG  
LG  
RS-422  
output unit  
RDP  
RDN  
SDP  
SDN  
GND  
GND  
Note 1. Connector set MR-J2CN1 (3M)  
Connector: 10120-3000PE  
Shell kit: 10320-52F0-008  
2. In the last axis, connect TRE and RDN.  
3. 30m (98.4ft) or less in environment of little noise.  
14 - 1  
14. COMMUNICATION FUNCTIONS  
14.1.2 RS-232C configuration  
(1) Outline  
A single axis of servo amplifier is operated.  
Servo amplifier  
MITSUBISHI  
CHARGE  
To CN3  
RS-232C  
Controller such as  
personal computer  
(2) Cable connection diagram  
Wire as shown below. The communication cable for connection with the personal computer (MR-  
CPCATCBL3M) is available. (Refer to section 13.1.4)  
(Note 1)  
Servo amplifier  
CN3 connector  
(Note 2) 15m (49.2ft) or less  
Personal computer  
connector D-SUB9 (socket)  
Plate  
2
FG  
RXD  
GND  
TXD  
GND  
3
TXD  
1
12  
11  
2
5
7
8
6
4
RXD  
GND  
RTS  
CTS  
DSR  
DTR  
Note 1. Connector set MR-J2CN1 (3M)  
Connector: 10120-6000EL  
Shell kit: 10320-3210-000  
2. 15m (49.2ft) or less in environment of little noise. However, this distance should be 3m (9.84ft) or less for use at 38400bps  
or more baud rate.  
14 - 2  
14. COMMUNICATION FUNCTIONS  
14.2 Communication specifications  
14.2.1 Communication overview  
This servo amplifier is designed to send a reply on receipt of an instruction. The device which gives this  
instruction (e.g. personal computer) is called a master station and the device which sends a reply in  
response to the instruction (servo amplifier) is called a slave station. When fetching data successively, the  
master station repeatedly commands the slave station to send data.  
Item  
Baud rate  
Description  
9600/19200/38400/57600 asynchronous system  
Start bit : 1 bit  
Data bit : 8 bits  
Transfer code  
Parity bit: 1 bit (even)  
Stop bit : 1 bit  
Transfer protocol  
Character system, half-duplex communication system  
(LSB)  
(MSB)  
7
Next  
start  
Start  
Parity  
Stop  
0
1
2
3
4
5
6
Data  
1 frame (11bits)  
14 - 3  
14. COMMUNICATION FUNCTIONS  
14.2.2 Parameter setting  
When the RS-422/RS-232C communication function is used to operate the servo, set the communication  
specifications of the servo amplifier in the corresponding parameters.  
After setting the values of these parameters, they are made valid by switching power off once, then on  
again.  
(1) Serial communication baud rate  
Choose the communication speed. Match this value to the communication speed of the sending end  
(master station).  
Parameter No. 16  
Communication baud rate  
0: 9600[bps]  
1: 19200[bps]  
2: 38400[bps]  
3: 57600[bps]  
(2) Serial communication selection  
Select the RS-422 or RS-232C communication standard. RS-422 and RS-232C cannot be used together.  
Parameter No. 16  
Serial communication standard selection  
0: RS-232C used  
1: RS-422 used  
(3) Serial communication response delay time  
Set the time from when the servo amplifier (slave station) receives communication data to when it  
sends back data. Set "0" to send back data in less than 800 s or "1" to send back data in 800 s or more.  
Parameter No. 16  
Serial communication response delay time  
0: Invalid  
1: Valid, reply sent in 800 s or more  
(4) Station number setting  
Set the station number of the servo amplifier in parameter No. 15. The setting range is stations 0 to 31.  
(5) Protocol station number selection  
When communication is made without setting station numbers to servo amplifiers as in the MR-J2-A  
servo amplifiers, choose "no station numbers" in parameter No. 53. The communication protocol will  
be free of station numbers.  
Parameter No. 53  
Protocol station number selection  
0: With station numbers  
1: No station numbers  
14 - 4  
14. COMMUNICATION FUNCTIONS  
14.3 Protocol  
POINT  
Whether station number setting will be made or not must be selected if  
the RS-232C communication function is used. Note that choosing "no  
station numbers" in parameter No. 53 will make the communication  
protocol free of station numbers as in the MR-J2-A servo amplifiers.  
Since up to 32 axes may be connected to the bus, add a station number to the command, data No., etc. to  
determine the destination servo amplifier of data communication. Set the station number to each servo  
amplifier using the parameter. Transmission data is valid for the servo amplifier of the specified station  
number or group.  
When " " is set as the station number added to the transmission data, the transmission data is made  
*
valid for all servo amplifiers connected. However, when return data is required from the servo amplifier  
in response to the transmission data, set "0" to the station number of the servo amplifier which must  
provide the return data.  
(1) Transmission of data from the controller to the servo  
10 frames (data)  
S
O
H
S
T
X
E
T
X
Controller side  
(Master station)  
Data  
No.  
Check  
sum  
Station number  
Data*  
S
T
X
E
T
X
Servo side  
(Slave station)  
Station number  
Check  
sum  
6 frames  
Positive response: Error code  
A
Negative response: Error code other than A  
14 - 5  
14. COMMUNICATION FUNCTIONS  
(2) Transmission of data request from the controller to the servo  
10 frames  
S
O
H
S
T
X
E
T
X
Data  
No.  
Check  
sum  
Station number  
Controller side  
(Master station)  
S
T
X
E
T
X
Station number  
Check  
sum  
Servo side  
(Slave station)  
Data*  
6 frames (data)  
(3) Recovery of communication status by time-out  
EOT causes the servo to return to  
the receive neutral status.  
E
O
T
Controller side  
(Master station)  
Servo side  
(Slave station)  
(4) Data frames  
The data length depends on the command.  
or  
Data  
Data  
or 12 frames or 16 frames  
4 frames  
8 frames  
14 - 6  
14. COMMUNICATION FUNCTIONS  
14.4 Character codes  
(1) Control codes  
Hexadecimal  
Personal computer terminal key operation  
(General)  
Code name  
Description  
(ASCII code)  
SOH  
STX  
ETX  
EOT  
01H  
02H  
03H  
04H  
start of head  
start of text  
ctrl  
ctrl  
ctrl  
ctrl  
A
B
C
D
end of text  
end of transmission  
(2) Codes for data  
ASCII unit codes are used.  
b
b
b
0
0
0
0
0
0
0
1
0
0
1
0
0
0
1
1
0
1
0
0
0
1
0
1
0
1
1
0
0
1
1
1
8
7
6
b5  
b to  
C
8
b4 b3 b2 b1  
0
1
2
3
4
5
6
7
b5  
R
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
NUL DLE Space  
0
1
2
3
4
5
6
7
8
9
:
@
A
B
C
D
E
F
G
H
I
P
Q
R
S
`
a
b
c
p
SOH DC  
STX DC  
ETX DC  
!
q
1
2
3
2
r
3
#
$
%
&
s
4
T
U
V
W
X
Y
Z
d
e
f
t
5
u
6
v
7
g
h
i
w
8
(
x
9
)
y
10  
11  
12  
13  
14  
15  
J
j
z
;
K
L
M
N
O
[
k
l
{
,
|
]
m
n
o
}
¯
.
/
^
_
?
DEL  
(3) Station numbers  
You may set 32 station numbers from station 0 to station 31 and the ASCII unit codes are used to  
specify the stations.  
Station number  
ASCII code  
0
0
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10  
A
11  
B
12  
C
13  
D
14  
E
15  
F
Station number  
ASCII code  
16  
G
17  
H
18  
I
19  
J
20  
K
21  
L
22  
M
23  
N
24  
O
25  
P
26  
Q
27  
R
28  
S
29  
T
30  
U
31  
V
For example, "30H" is transmitted in hexadecimal for the station number of "0" (axis 1).  
14 - 7  
14. COMMUNICATION FUNCTIONS  
14.5 Error codes  
Error codes are used in the following cases and an error code of single-code length is transmitted.  
On receipt of data from the master station, the slave station sends the error code corresponding to that  
data to the master station.  
The error code sent in upper case indicates that the servo is normal and the one in lower case indicates  
that an alarm occurred.  
Error code  
Error name  
Description  
Remarks  
Servo normal  
Servo alarm  
[A]  
[B]  
[C]  
[a]  
[b]  
[c]  
Normal operation  
Parity error  
Data transmitted was processed properly.  
Parity error occurred in the transmitted data.  
Checksum error occurred in the transmitted data.  
Character not existing in the specifications was  
transmitted.  
Positive response  
Checksum error  
[D]  
[E]  
[F]  
[d]  
[e]  
[f]  
Character error  
Command error  
Data No. error  
Negative response  
Command not existing in the specifications was  
transmitted.  
Data No. not existing in the specifications was  
transmitted.  
14.6 Checksum  
The checksum is a ASCII-coded hexadecimal representing the lower two digits of the sum of ASCII-coded  
hexadecimal numbers up to ETX, with the exception of the first control code (STX or SOH).  
(Example)  
Station number  
S
T
X
E
T
X
[0] [A] [1] [2] [5] [F]  
[5] [2]  
02H 30H 41H 31H 32H 35H 46H 03H  
STX or  
SOH  
ETX Check  
30H 41H 31H 32H 35H 46H 03H  
152H  
Checksum range  
Lower 2 digits 52 is sent after conversion into ASCII code [5][2].  
14 - 8  
14. COMMUNICATION FUNCTIONS  
14.7 Time-out operation  
The master station transmits EOT when the slave station does not start reply operation (STX is not  
received) 300[ms] after the master station has ended communication operation. 100[ms] after that, the  
master station retransmits the message. Time-out occurs if the slave station does not answer after the  
master station has performed the above operation three times. (Communication error)  
100ms  
100ms  
100ms  
*Time-out  
300ms  
300ms  
300ms  
300ms  
E
O
T
E
O
T
E
O
T
Controller  
(Master station)  
Servo  
(Slave station)  
14.8 Retry operation  
When a fault occurs in communication between the master and slave stations, the error code in the  
response data from the slave station is a negative response code ([B] to [F], [b] to [f]). In this case, the  
master station retransmits the message which was sent at the occurrence of the fault (Retry operation). A  
communication error occurs if the above operation is repeated and results in the error three or more  
consecutive times.  
*Communication error  
Controller  
(Master station)  
Servo  
(Slave station)  
S
T
X
S
T
X
S
T
X
Station number  
Station number  
Station number  
Similarly, when the master station detects a fault (e.g. checksum, parity) in the response data from the  
slave station, the master station retransmits the message which was sent at the occurrence of the fault. A  
communication error occurs if the retry operation is performed three times.  
14 - 9  
14. COMMUNICATION FUNCTIONS  
14.9 Initialization  
After the slave station is switched on, it cannot reply to communication until the internal initialization  
processing terminates. Hence, at power-on, ordinary communication should be started after.  
(1) 1s or more time has elapsed after the slave station is switched on; and  
(2) Making sure that normal communication can be made by reading the parameter or other data which  
does not pose any safety problems.  
14.10 Communication procedure example  
The following example reads the set value of parameter No.2 "function selection 1" from the servo  
amplifier of station 0.  
Data item  
Station number  
Command  
Value  
0
Description  
Servo amplifier station 0  
Read command  
05  
Data No.  
02  
Parameter No.2  
Axis No. Command  
Data No.  
Start  
Data [0] 0 5 STX 0 2 ETX  
[0][0][5] [0][2]  
Data make-up  
STX  
ETX  
Checksum 30H 30H 35H 02H 30H 32H 03H FCH  
Checksum calculation and  
addition  
Transmission data SOH  
0
0 5 STX 0 2 ETX F C 46H 43H  
Master station slave station  
Addition of SOH to make  
up transmission data  
Data transmission  
Data receive  
Master station slave station  
No  
Is there receive data?  
Yes  
No  
300ms elapsed?  
Yes  
No  
3 consecutive times?  
Yes  
Master station slave station  
Yes  
Other than error code  
[A] [a]?  
100ms after EOT transmission  
No  
3 consecutive times?  
No  
Error processing  
Yes  
Receive data analysis  
Error processing  
End  
14 - 10  
14. COMMUNICATION FUNCTIONS  
14.11 Command and data No. list  
POINT  
If the command/data No. is the same, its data may be different from the  
interface and drive units and other servo amplifiers.  
14.11.1 Read commands  
(1) Status display (Command [0][1])  
Command  
[0][1]  
[0][1]  
Data No.  
[8][0]  
[8][1]  
[8][2]  
[8][3]  
[8][4]  
[8][5]  
Description  
Display item  
Frame length  
Status display data value and processing cumulative feedback pulses  
12  
12  
12  
12  
12  
12  
information  
servo motor speed  
[0][1]  
droop pulses  
[0][1]  
cumulative command pulses  
command pulse frequency  
analog speed command voltage  
analog speed limit voltage  
analog torque command voltage  
analog torque limit voltage  
regenerative load ratio  
effective load ratio  
[0][1]  
[0][1]  
[0][1]  
[8][6]  
12  
[0][1]  
[0][1]  
[0][1]  
[0][1]  
[0][1]  
[0][1]  
[0][1]  
[0][1]  
[8][7]  
[8][8]  
[8][9]  
[8][A]  
[8][B]  
[8][C]  
[8][D]  
[8][E]  
12  
12  
12  
12  
12  
12  
12  
12  
peak load ratio  
Instantaneous torque  
within one-revolution position  
ABS counter  
load inertia moment ratio  
Bus voltage  
(2) Parameter (Command [0][5])  
Command  
Data No.  
Description  
Frame length  
[0][5]  
[0][0] to  
[5][4]  
Current value of each parameter  
The decimal equivalent of the data No. value (hexadecimal) corresponds to the  
parameter number.  
8
(3) External I/O signals (Command [1][2])  
Command  
[1][2]  
[1][2]  
Data No.  
[4][0]  
[C][0]  
Description  
Frame length  
External input pin statuses  
External output pin statuses  
8
8
(4) Alarm history (Command [3][3])  
Command  
[3][3]  
[3][3]  
[3][3]  
[3][3]  
[3][3]  
[3][3]  
[3][3]  
[3][3]  
[3][3]  
[3][3]  
[3][3]  
[3][3]  
Data No.  
[1][0]  
[1][1]  
[1][2]  
[1][3]  
[1][4]  
[1][5]  
[2][0]  
[2][1]  
[2][2]  
[2][3]  
[2][4]  
[2][5]  
Description  
Alarm occurrence sequence  
most recent alarm  
Frame length  
Alarm number in alarm history  
4
4
4
4
4
4
8
8
8
8
8
8
first alarm in past  
second alarm in past  
third alarm in past  
fourth alarm in past  
fifth alarm in past  
Alarm occurrence time in alarm history most recent alarm  
first alarm in past  
second alarm in past  
third alarm in past  
fourth alarm in past  
fifth alarm in past  
14 - 11  
14. COMMUNICATION FUNCTIONS  
(5) Current alarm (Command [0][2] [3][5])  
Command  
Data No.  
Description  
Frame length  
[0][2]  
[0][0]  
Current alarm number  
4
Command  
[3][5]  
Data No.  
[8][0]  
Description  
Display item  
Frame length  
Status display data value and processing cumulative feedback pulses  
12  
12  
12  
12  
12  
12  
information at alarm occurrence  
[3][5]  
[8][1]  
servo motor speed  
[3][5]  
[8][2]  
droop pulses  
[3][5]  
[8][3]  
cumulative command pulses  
command pulse frequency  
[3][5]  
[8][4]  
analog speed command voltage  
analog speed limit voltage  
[3][5]  
[3][5]  
[8][5]  
[8][6]  
analog torque command voltage  
analog torque limit voltage  
12  
[3][5]  
[3][5]  
[3][5]  
[3][5]  
[3][5]  
[3][5]  
[3][5]  
[3][5]  
[8][7]  
[8][8]  
[8][9]  
[8][A]  
[8][B]  
[8][C]  
[8][D]  
[8][E]  
regenerative load ratio  
effective load ratio  
peak load ratio  
12  
12  
12  
12  
12  
12  
12  
12  
Instantaneous torque  
within one-revolution position  
ABS counter  
load inertia moment ratio  
Bus voltage  
(6) Others  
Command  
[0][2]  
Data No.  
[9][0]  
Description  
Frame length  
Servo motor end pulse unit absolute position  
Command unit absolute position  
Software version  
8
8
[0][2]  
[9][1]  
[0][2]  
[7][0]  
16  
14.11.2 Write commands  
(1) Status display (Command [8][1])  
Command  
Data No.  
Description  
Description  
Setting range  
Setting range  
Frame length  
[8][1]  
[0][0]  
Status display data clear  
1EA5  
4
(2) Parameter (Command [8][4])  
Command  
Data No.  
Frame length  
[8][4]  
[0][0] to  
[5][4]  
Each parameter write  
Depends on the  
parameter.  
8
The decimal equivalent of the data No. value  
(hexadecimal) corresponds to the parameter number.  
(3) Alarm history (Command [8][2])  
Command  
Data No.  
Description  
Description  
Setting range  
Frame length  
[8][2]  
[2][0]  
Alarm history clear  
1EA5  
1EA5  
4
(4) Current alarm (Command [8][2])  
Command  
Data No.  
Setting range  
Frame length  
[8][2]  
[0][0]  
Alarm reset  
4
14 - 12  
14. COMMUNICATION FUNCTIONS  
(5) Operation mode selection (Command [8][B])  
Command  
Data No.  
Description  
Setting range  
Frame length  
[8][B]  
[0][0]  
Operation mode changing  
0000 to 0004  
4
0000: Exit from test operation mode  
0001: Jog operation  
0002: Positioning operation  
0003: Motor-less operation  
0004: Output signal (DO) forced output  
(6) External input signal disable (Command [9][0])  
Command  
Data No.  
Description  
Setting range  
Frame length  
[9][0]  
[0][0]  
Turns off the external input signals (DI), external analog input 1EA5  
signals and pulse train inputs with the exception of EMG, LSP  
and LSN, independently of the external ON/OFF statuses.  
4
[9][0]  
[9][0]  
[0][3]  
[1][0]  
Disables all output devices (DO).  
1EA5  
4
4
Enables the disabled external input signals (DI), external analog 1EA5  
input signals and pulse train inputs with the exception of EMG,  
LSP and LSN.  
[9][0]  
[1][3]  
Enables the disabled external output signals (DO).  
1EA5  
4
(7) Data for test operation mode (Command [9][2] [A][0])  
Command  
Data No.  
Description  
Input signal for test operation  
Setting range  
Frame length  
[9][2]  
[0][0]  
Refer to section  
14.12.6  
8
[9][2]  
[A][0]  
Forced output from signal pin  
Refer to section  
14.12.8  
8
Command  
Data No.  
Description  
Setting range  
Frame length  
[A][0]  
[1][0]  
Writes the speed of the test operation mode (jog operation, 0000 to 7FFF  
positioning operation).  
4
[A][0]  
[A][0]  
[A][0]  
[A][0]  
[1][1]  
[1][2]  
[1][3]  
[1][5]  
Writes the acceleration/deceleration time constant of the test 00000000 to  
8
4
8
4
operation mode (jog operation, positioning operation).  
7FFFFFFF  
Clears the acceleration/deceleration time constant of the test 1EA5  
operation mode (jog operation, positioning operation).  
Writes the moving distance (in pulses) of the test operation mode 80000000 to  
(jog operation, positioning operation).  
7FFFFFFF  
Temporary stop command of the test operation mode (jog 1EA5  
operation, positioning operation)  
14 - 13  
14. COMMUNICATION FUNCTIONS  
14.12 Detailed explanations of commands  
14.12.1 Data processing  
When the master station transmits a command data No. or a command data No. data to a slave  
station, the servo amplifier returns a reply or data according to the purpose.  
When numerical values are represented in these send data and receive data, they are represented in  
decimal, hexadecimal, etc.  
Therefore, data must be processed according to the application.  
Since whether data must be processed or not and how to process data depend on the monitoring,  
parameters, etc., follow the detailed explanation of the corresponding command.  
The following methods are how to process send and receive data when reading and writing data.  
(1) Processing the read data  
When the display type is 0, the eight-character data is converted from hexadecimal to decimal and a  
decimal point is placed according to the decimal point position information.  
When the display type is 1, the eight-character data is used unchanged.  
The following example indicates how to process the receive data "003000000929" given to show.  
The receive data is as follows.  
0 0 3 0 0 0 0 0 0 9 2 9  
Data 32-bit length (hexadecimal representation)  
(Data conversion is required as indicated in the display type)  
Display type  
0: Data must be converted into decimal.  
1: Data is used unchanged in hexadecimal.  
Decimal point position  
0: No decimal point  
1: First least significant digit (normally not used)  
2: Second least significant digit  
3: Third least significant digit  
4: Forth least significant digit  
5: Fifth least significant digit  
6: Sixth least significant digit  
Since the display type is "0" in this case, the hexadecimal data is converted into decimal.  
00000929H 2345  
As the decimal point position is "3", a decimal point is placed in the third least significant digit.  
Hence, "23.45" is displayed.  
14 - 14  
14. COMMUNICATION FUNCTIONS  
(2) Writing the processed data  
When the data to be written is handled as decimal, the decimal point position must be specified. If it is  
not specified, the data cannot be written. When the data is handled as hexadecimal, specify "0" as the  
decimal point position.  
The data to be sent is the following value.  
0
Data is transferred in hexadecimal.  
Decimal point position  
0: No decimal point  
1: First least significant digit  
2: Second least significant digit  
3: Third least significant digit  
4: Forth least significant digit  
5: Fifth least significant digit  
By way of example, here is described how to process the set data when a value of "15.5" is sent.  
Since the decimal point position is the second digit, the decimal point position data is "2".  
As the data to be sent is hexadecimal, the decimal data is converted into hexadecimal.  
155 9B  
Hence, "0200009B" is transmitted.  
14 - 15  
14. COMMUNICATION FUNCTIONS  
14.12.2 Status display  
(1) Status display data read  
When the master station transmits the data No. (refer to the following table for assignment) to the  
slave station, the slave station sends back the data value and data processing information.  
1) Transmission  
Transmit command [0][1] and the data No. corresponding to the status display item to be read.  
Refer to section 14.11.1.  
2) Reply  
The slave station sends back the status display data requested.  
0 0  
Data 32 bits long (represented in hexadecimal)  
(Data conversion into display type is required)  
Display type  
0: Used unchanged in hexadecimal  
1: Conversion into decimal required  
Decimal point position  
0: No decimal point  
1: Lower first digit (usually not used)  
2: Lower second digit  
3: Lower third digit  
4: Lower fourth digit  
5: Lower fifth digit  
6: Lower sixth digit  
(2) Status display data clear  
The cumulative feedback pulse data of the status display is cleared. Send this command immediately  
after reading the status display item. The data of the status display item transmitted is cleared to zero.  
Command  
Data No.  
Data  
[8][1]  
[0][0]  
1EA5  
For example, after sending command [0][1] and data No. [8][0] and receiving the status display data,  
send command [8][1], data No. [0][0] and data [1EA5] to clear the cumulative feedback pulse value to  
zero.  
14 - 16  
14. COMMUNICATION FUNCTIONS  
14.12.3 Parameter  
(1) Parameter read  
Read the parameter setting.  
1) Transmission  
Transmit command [0][5] and the data No. corresponding to the parameter No.  
The data No. is expressed in hexadecimal equivalent of the data No. value corresponds to the  
parameter number.  
Command  
Data No.  
[0][5]  
[0][0] to  
[5][4]  
2) Reply  
The slave station sends back the data and processing information of the requested parameter  
No.  
Data is transferred in hexadecimal.  
Decimal point position  
0: No decimal point  
1: Lower first digit  
2: Lower second digit  
3: Lower third digit  
4: Lower fourth digit  
5: Lower fifth digit  
0
Display type  
0: Used unchanged in hexadecimal  
1: Conversion into decimal required  
Parameter write type  
0: Valid after write  
1: Valid when power is switched on again after write  
Read enable/disable  
0: Read enable  
1: Read disable  
Enable/disable information changes according to the setting of parameter No.19 "parameter  
write inhibit". When the enable/disable setting is read disable, ignore the parameter data part  
and process it as unreadable.  
14 - 17  
14. COMMUNICATION FUNCTIONS  
(2) Parameter write  
POINT  
If setting values need to be changed with a high frequency (i.e. one time or  
more per one hour), write the setting values to the RAM, not the EEP-  
ROM. The EEP-ROM has a limitation in the number of write times and  
exceeding this limitation causes the servo amplifier to malfunction. Note  
that the number of write times to the EEP-ROM is limited to  
approximately 100, 000.  
Write the parameter setting.  
Write the value within the setting range. Refer to section 5.1 for the setting range.  
Transmit command [8][4], the data No., and the set data.  
The data No. is expressed in hexadecimal. The decimal equivalent of the data No. value corresponds to  
the parameter number.  
When the data to be written is handled as decimal, the decimal point position must be specified. If it  
is not specified, data cannot be written. When the data is handled as hexadecimal, specify 0 as the  
decimal point position.  
Write the data after making sure that it is within the upper/lower limit value range given in section  
5.1.2. Read the parameter data to be written, confirm the decimal point position, and create  
transmission data to prevent error occurrence. On completion of write, read the same parameter  
data to verify that data has been written correctly.  
Command  
Data No.  
Set data  
See below.  
[8][4]  
[0][0] to  
[5][4]  
Data is transferred in hexadecimal.  
Decimal point position  
0: No decimal point  
1: Lower first digit  
2: Lower second digit  
3: Lower third digit  
4: Lower forth digit  
5: Lower fifth digit  
Write mode  
0: Write to EEP-ROM  
3: Write to RAM  
When the parameter data is changed frequently through communication,  
set "3" to the write mode to change only the RAM data in the servo amplifier.  
When changing data frequently (once or more within one hour),  
do not write it to the EEP-ROM.  
14 - 18  
14. COMMUNICATION FUNCTIONS  
14.12.4 External I/O pin statuses (DIO diagnosis)  
(1) External input pin status read  
Read the ON/OFF statuses of the external input pins.  
(a) Transmission  
Transmit command [1][2] and data No. [4][0].  
Command  
Data No.  
[1][2]  
[4][0]  
(b) Reply  
The ON/OFF statuses of the input pins are sent back.  
b31  
b1 b0  
1: ON  
0: OFF  
Command of each bit is transmitted to the master  
station as hexadecimal data.  
bit  
0
1
2
3
4
5
6
7
External input pin  
CN1B-16  
CN1B-17  
CN1B-15  
CN1B-5  
bit  
8
External input pin  
bit  
16  
17  
18  
19  
20  
21  
22  
23  
External input pin  
bit  
24  
25  
26  
27  
28  
29  
30  
31  
External input pin  
CN1B-9  
9
10  
11  
12  
13  
14  
15  
CN1B-14  
CN1A-8  
CN1B-7  
CN1B-8  
(2) External output pin status read  
Read the ON/OFF statuses of the external output pins.  
(a) Transmission  
Transmit command [1][2] and data No. [C][0].  
Command  
Data No.  
[1][2]  
[C][0]  
(b) Reply  
The slave station sends back the ON/OFF statuses of the output pins.  
b31  
b1 b0  
1: ON  
0: OFF  
Command of each bit is transmitted to the master  
station as hexadecimal data.  
bit  
0
1
2
3
4
5
6
7
External output pin  
CN1A-19  
CN1A-18  
CN1B-19  
CN1B-6  
bit  
8
External output pin  
bit  
16  
17  
18  
19  
20  
21  
22  
23  
External output pin  
bit  
24  
25  
26  
27  
28  
29  
30  
31  
External output pin  
9
10  
11  
12  
13  
14  
15  
CN1B-4  
CN1B-18  
CN1A-14  
14 - 19  
14. COMMUNICATION FUNCTIONS  
14.12.5 Disable/enable of external I/O signals (DIO)  
Inputs can be disabled independently of the external I/O signal ON/OFF. When inputs are disabled, the  
input signals are recognized as follows. Among the external input signals, EMG, LSP and LSN cannot be  
disabled.  
Signal  
External input signals (DI)  
External analog input signals  
Pulse train inputs  
Status  
OFF  
0V  
None  
(1) Disabling/enabling the external input signals (DI), external analog input signals and pulse train  
inputs with the exception of EMG, LSP and LSN.  
Transmit the following communication commands.  
(a) Disable  
Command  
Data No.  
Data  
[9][0]  
[0][0]  
1EA5  
(b) Enable  
Command  
Data No.  
Data  
[9][0]  
[1][0]  
1EA5  
(2) Disabling/enabling the external output signals (DO)  
Transmit the following communication commands.  
(a) Disable  
Command  
Data No.  
Data  
[9][0]  
[0][3]  
1EA5  
(b) Enable  
Command  
Data No.  
Data  
[9][0]  
[1][3]  
1EA5  
14 - 20  
14. COMMUNICATION FUNCTIONS  
14.12.6 Input devices ON/OFF (test operation)  
Each input signal can be turned on/off for test operation. Turn off the external input signals.  
Send command [9] [2], data No. [0] [0] and data.  
Command  
Data No.  
Set data  
[9][2]  
[0][0]  
See below.  
b31  
b1 b0  
1: ON  
0: OFF  
Command of each bit is transmitted to the slave  
station as hexadecimal data.  
bit  
0
1
2
3
4
5
6
7
Signal abbreviation  
bit  
8
Signal abbreviation  
bit  
16  
17  
18  
19  
20  
21  
22  
23  
Signal abbreviation  
bit  
24  
25  
26  
27  
28  
29  
30  
31  
Signal abbreviation  
SON  
LSP  
LSN  
TL  
9
10  
11  
12  
13  
14  
15  
ST1  
ST2  
PC  
RES  
CR  
14 - 21  
14. COMMUNICATION FUNCTIONS  
14.12.7 Test operation mode  
(1) Instructions for test operation mode  
The test operation mode must be executed in the following procedure. If communication is interrupted  
for longer than 0.5s during test operation, the servo amplifier causes the motor to be decelerated to a  
stop and servo-locked. To prevent this, continue communication without a break, e.g. monitor the  
status display.  
(a) Execution of test operation  
1) Turn off all external input signals.  
2) Disable the external input signals.  
Command  
Data No.  
Data  
[9][0]  
[0][0]  
1EA5  
3) Choose the test operation mode.  
Command  
[8][B]  
Data No.  
[0][0]  
Transmission data  
Selection of test operation mode  
Test operation mode cancel  
Jog operation  
0000  
0001  
0002  
0003  
0004  
[8][B]  
[0][0]  
[8][B]  
[0][0]  
Positioning operation  
Motor-less operation  
DO forced output  
[8][B]  
[0][0]  
[8][B]  
[0][0]  
4) Set the data needed for test operation.  
5) Start.  
6) Continue communication using the status display or other command.  
(b) Termination of test operation  
To terminate the test operation mode, complete the corresponding operation and.  
1) Clear the test operation acceleration/deceleration time constant.  
Command  
Data No.  
Data  
[A][0]  
[1][2]  
1EA5  
2) Cancel the test operation mode.  
Command  
Data No.  
Data  
[8][B]  
[0][0]  
0000  
3) Enable the disabled external input signals.  
Command  
Data No.  
Data  
[9][0]  
[1][0]  
1EA5  
14 - 22  
14. COMMUNICATION FUNCTIONS  
(2) Jog operation  
Transmit the following communication commands.  
(a) Setting of jog operation data  
Item  
Command  
[A][0]  
Data No.  
[1][0]  
Data  
Speed  
Write the speed [r/min] in hexadecimal.  
Write the acceleration/deceleration time constant [ms] in  
hexadecimal.  
Acceleration/deceleration  
time constant  
[A][0]  
[1][1]  
(b) Start  
Turn on the input devices SON  
by using command [9][2] data No. [0][0].  
LSP LSN  
Item  
Forward rotation start  
Reverse rotation start  
Stop  
Command  
Data No.  
Data  
[9][2]  
[9][2]  
[9][2]  
[0][0]  
[0][0]  
[0][0]  
00000807: Turns on SON  
00001007: Turns on SON  
00000007: Turns on SON  
.
LSP LSN ST1  
.
LSP LSN ST2  
and  
.
LSN  
LSP  
(3) Positioning operation  
Transmit the following communication commands.  
(a) Setting of positioning operation data  
Item  
Command  
[A][0]  
Data No.  
[1][0]  
Data  
Write the speed [r/min] in hexadecimal.  
Speed  
Acceleration/deceleration  
time constant  
[A][0]  
[1][1]  
Write the acceleration/deceleration time constant [ms] in  
hexadecimal.  
Moving distance  
[A][0]  
[1][3]  
Write the moving distance [pulse] in hexadecimal.  
(b)  
Input of servo-on stroke end  
Turn on the input devices SON  
by using command [9][2] data No. [0][0].  
LSN  
LSP  
and  
Item  
Command  
Data No.  
[0][0]  
Data  
[9][2]  
[9][2]  
00000001: Turns on SON.  
Servo-on  
[0][0]  
Servo OFF  
00000006: Turns off SON and turns on LSP  
00000007: Turns on SON LSP LSN.  
LSN.  
Stroke end ON  
Servo-on  
[9][2]  
[0][0]  
Stroke end ON  
(c) Start of positioning operation  
Transmit the speed and acceleration/deceleration time constant, turn on the servo-on (SON) and  
forward/reverse rotation stroke end (LSP LSN , and then send the moving distance to start  
)
positioning operation. After that, positioning operation will start every time the moving distance is  
transmitted. To start opposite rotation, send the moving distance of a negative value.  
When the servo-on (SON) and forward/reverse rotation stroke end (LSP LSN) are off, the  
transmission of the moving distance is invalid. Therefore, positioning operation will not start if the  
servo-on (SON) and forward/reverse rotation stroke end (LSP LSN) are turned on after the setting  
of the moving distance.  
(d) Temporary stop  
A temporary stop can be made during positioning operation.  
Command  
Data No.  
Data  
[A][0]  
[1][5]  
1EA5  
Retransmit the same communication commands as at the start time to resume operation.  
To stop positioning operation after a temporary stop, retransmit the temporary stop communication  
command. The remaining moving distance is then cleared.  
14 - 23  
14. COMMUNICATION FUNCTIONS  
14.12.8 Output signal pin ON/OFF output signal (DO) forced output  
In the test operation mode, the output signal pins can be turned on/off independently of the servo status.  
Using command [9][0], disable the output signals in advance.  
(1) Choosing DO forced output in test operation mode  
Transmit command [8][B] data No. [0][0] data "0004" to choose DO forced output.  
0 0 0 4  
Selection of test operation mode  
4: DO forced output (output signal forced output)  
(2) External output signal ON/OFF  
Transmit the following communication commands.  
Command  
Data No.  
Setting data  
See below.  
[9][2]  
[A][0]  
b31  
b1 b0  
1: ON  
0: OFF  
Command of each bit is sent to the slave station in hexadecimal.  
bit  
External output pin  
CN1A-19  
CN1A-18  
CN1B-19  
CN1B-6  
bit  
8
External output pin  
bit  
16  
17  
18  
19  
20  
21  
22  
23  
External output pin  
bit  
24  
25  
26  
27  
28  
29  
30  
31  
External output pin  
0
1
2
3
4
5
6
7
9
10  
11  
12  
13  
14  
15  
CN1B-4  
CN1B-18  
CN1A-14  
14 - 24  
14. COMMUNICATION FUNCTIONS  
14.12.9 Alarm history  
(1) Alarm No. read  
Read the alarm No. which occurred in the past. The alarm numbers and occurrence times of No. 0 (last  
alarm) to No. 5 (sixth alarm in the past) are read.  
(a) Transmission  
Send command [3][3] and data No. [1][0] to [1][5]. Refer to section 14.11.1.  
(b) Reply  
The alarm No. corresponding to the data No. is provided.  
0 0  
Alarm No. is transferred in decimal.  
For example, “0032” means AL.32 and “00FF” means AL._ (no alarm).  
(2) Alarm occurrence time read  
Read the occurrence time of alarm which occurred in the past.  
The alarm occurrence time corresponding to the data No. is provided in terms of the total time  
beginning with operation start, with the minute unit omitted.  
(a) Transmission  
Send command [3][3] and data No. [2][0] to [2][5].  
Refer to section 14.11.1.  
(b) Reply  
The alarm occurrence time is transferred in decimal.  
Hexadecimal must be converted into decimal.  
For example, data “01F5” means that the alarm occurred in 501 hours after start of operation.  
(3) Alarm history clear  
Erase the alarm history.  
Send command [8][2] and data No. [2][0].  
Command  
Data No.  
Data  
[8][2]  
[2][0]  
1EA5  
14 - 25  
14. COMMUNICATION FUNCTIONS  
14.12.10 Current alarm  
(1) Current alarm read  
Read the alarm No. which is occurring currently.  
(a) Transmission  
Send command [0][2] and data No. [0][0].  
Command  
Data No.  
[0][2]  
[0][0]  
(b) Reply  
The slave station sends back the alarm currently occurring.  
0 0  
Alarm No. is transferred in decimal.  
For example, “0032” means AL.32 and “00FF” means AL._ (no alarm).  
(2) Read of the status display at alarm occurrence  
Read the status display data at alarm occurrence. When the data No. corresponding to the status  
display item is transmitted, the data value and data processing information are sent back.  
(a) Transmission  
Send command [3][5] and any of data No. [8][0] to [8][E] corresponding to the status display item to  
be read. Refer to section 14.11.1.  
(b) Reply  
The slave station sends back the requested status display data at alarm occurrence.  
0 0  
Data 32 bits long (represented in hexadecimal)  
(Data conversion into display type is required)  
Display type  
0: Conversion into decimal required  
1: Used unchanged in hexadecimal  
Decimal point position  
0: No decimal point  
1: Lower first digit (usually not used)  
2: Lower second digit  
3: Lower third digit  
4: Lower fourth digit  
5: Lower fifth digit  
6: Lower sixth digit  
(3) Current alarm clear  
As by the entry of the reset (RES), reset the servo amplifier alarm to make the servo amplifier ready to  
operate. After removing the cause of the alarm, reset the alarm with no command entered.  
Command  
Data No.  
Data  
[8][2]  
[0][0]  
1EA5  
14 - 26  
14. COMMUNICATION FUNCTIONS  
14.12.11 Other commands  
(1) Servo motor end pulse unit absolute position  
Read the absolute position in the servo motor end pulse unit.  
Note that overflow will occur in the position of 16384 or more revolutions from the home position.  
(a) Transmission  
Send command [0][2] and data No. [9][0].  
Command  
Data No.  
[0][2]  
[9][0]  
(b) Reply  
The slave station sends back the requested servo motor end pulses.  
Absolute value is sent back in hexadecimal in  
the servo motor end pulse unit.  
(Must be converted into decimal)  
For example, data "000186A0" is 100000 [pulse] in the motor end pulse unit.  
(2) Command unit absolute position  
Read the absolute position in the command unit.  
(a) Transmission  
Send command [0][2] and data No. [9][1].  
Command  
Data No.  
[0][2]  
[9][1]  
(b) Reply  
The slave station sends back the requested command pulses.  
Absolute value is sent back in hexadecimal in the  
command unit.  
(Must be converted into decimal)  
For example, data "000186A0" is 100000 [pulse] in the command unit.  
(3) Software version  
Reads the software version of the servo amplifier.  
(a) Transmission  
Send command [0][2] and data No.[7][0].  
Command  
Data No.  
[0][2]  
[7][0]  
(b) Reply  
The slave station returns the software version requested.  
Software version (15 digits)  
Space  
14 - 27  
14. COMMUNICATION FUNCTIONS  
MEMO  
14 - 28  
15. ABSOLUTE POSITION DETECTION SYSTEM  
15. ABSOLUTE POSITION DETECTION SYSTEM  
If an absolute position erase alarm (AL.25) or an absolute position counter warning  
(AL.E3) has occurred, always perform home position setting again. Not doing so  
may cause unexpected operation.  
CAUTION  
POINT  
When configuring an absolute position detection system using the QD75P/D  
PLC, refer to the Type QD75P/QD75D Positioning Module User's Manual  
(SH (NA) 080058).  
15.1 Outline  
15.1.1 Features  
For normal operation, as shown below, the encoder consists of a detector designed to detect a position  
within one revolution and a cumulative revolution counter designed to detect the number of revolutions.  
The absolute position detection system always detects the absolute position of the machine and keeps it  
battery-backed, independently of whether the general-purpose programmable controller power is on or  
off. Therefore, once the home position is defined at the time of machine installation, home position return  
is not needed when power is switched on thereafter.  
If a power failure or a fault occurs, restoration is easy.  
Also, the absolute position data, which is battery-backed by the super capacitor in the encoder, can be  
retained within the specified period (cumulative revolution counter value retaining time) if the cable is  
unplugged or broken.  
General purpose programmable  
Servo amplifier  
controller  
Pulse train  
(command)  
CPU  
Positioning module  
Home position data  
Current  
position  
data  
EEPROM memory  
Current  
position  
data  
LSO  
1XO  
Backed up in the  
I/O module  
case of power failure  
LS  
1X  
Input  
Detecting the Detecting the  
number of  
revolutions  
position within  
one revolution  
Output  
Battery MR-BAT  
Servo motor  
1 pulse/rev Accumulative  
revolution counter  
High speed serial  
communication  
Super capacitor  
Within-one-revolution counter  
(Position detector)  
15.1.2 Restrictions  
The absolute position detection system cannot be configured under the following conditions. Test  
operation cannot be performed in the absolute position detection system, either. To perform test  
operation, choose incremental in parameter No.1.  
(1) Speed control mode, torque control mode.  
(2) Control switch-over mode (position/speed, speed/torque, torque/position).  
(3) Stroke-less coordinate system, e.g. rotary shaft, infinitely long positioning.  
(4) Changing of electronic gear after home position setting.  
(5) Use of alarm code output.  
15 - 1  
15. ABSOLUTE POSITION DETECTION SYSTEM  
15.2 Specifications  
(1) Specification list  
Item  
Description  
System  
Battery  
Electronic battery backup system  
1 piece of lithium battery ( primary battery, nominal 3.6V)  
Type: MR-BAT or A6BAT  
Maximum revolution range  
(Note 1) Maximum speed at power failure  
(Note 2) Battery backup time  
(Note 3) Data holding time during battery  
replacement  
Home position 32767 rev.  
500r/min  
Approx. 10,000 hours (battery life with power off)  
2 hours at delivery, 1 hour in 5 years after delivery  
5 years from date of manufacture  
Battery storage period  
Note 1. Maximum speed available when the shaft is rotated by external force at the time of power failure or the like.  
2. Time to hold data by a battery with power off. It is recommended to replace the battery in three years independently of whether  
power is kept on or off.  
3. Period during which data can be held by the super capacitor in the encoder after power-off, with the battery voltage low or the  
battery removed, or during which data can be held with the encoder cable disconnected.  
Battery replacement should be finished within this period.  
(2) Configuration  
Positioning module  
A1SD71S2 A1SD71S7  
I/O module  
AX40 41 42  
AY40 41 42  
A1SD75  
FX2N-1GP FX2N-10PG FX2N-10GM  
FX2N-20GM  
FX2N(C) series, FX3U(C) series  
Programmable controller  
A1SD75 etc.  
Servo amplifier  
CN1A  
CN2  
I/O  
CN1B  
CON1  
Servo motor  
Battery (MR-BAT)  
(3) Parameter setting  
Set " 1  
" in parameter No.1 to make the absolute position detection system valid.  
Parameter No. 1  
1
Selection of absolute position detection system  
0: Incremental system  
1: Absolute position detection system  
15 - 2  
15. ABSOLUTE POSITION DETECTION SYSTEM  
15.3 Battery installation procedure  
Before installing a battery, turn off the main circuit power while keeping the control  
circuit power on. Wait for 15 minutes or more until the charge lamp turns off. Then,  
confirm that the voltage between P and N is safe with a voltage tester and others.  
Otherwise, an electric shock may occur. In addition, always confirm from the front  
of the servo amplifier whether the charge lamp is off or not.  
WARNING  
POINT  
The internal circuits of the servo amplifier may be damaged by static electricity.  
Always take the following precautions.  
Ground human body and work bench.  
Do not touch the conductive areas, such as connector pins and electrical  
parts, directly by hand.  
(1) Open the operation window. (When the model used is the MR-J2S-200A MR-J2S-350A or more, also  
remove the front cover.)  
(2) Install the battery in the battery holder.  
(3) Install the battery connector into CON1 until it clicks.  
Battery connector  
Battery connector  
Operation window  
CON1  
CON1  
Battery  
Battery holder  
Battery  
Battery holder  
For MR-J2S-100A or less  
For MR-J2S-200A MR-J2S-350A  
CON1  
Battery connector  
CON1  
Battery holder  
Battery connector  
Battery holder  
Battery  
Battery  
For MR-J2S-11KA or more  
For MR-J2S-500A MR-J2S-700A  
15 - 3  
15. ABSOLUTE POSITION DETECTION SYSTEM  
15.4 Standard connection diagram  
Servo amplifier  
VDD CN1B-3  
COM CN1B-13  
LSP CN1B-16  
LSN CN1B-17  
TL CN1B-7  
(Note 2) Stroke end in forward rotation  
Stroke end in reverse rotation  
External torque control  
(Note 3)  
Reset  
RES CN1B-14  
SG CN1B-10  
EMG (Note 1)  
Emergency stop  
Servo-on  
Output  
Input  
EMG CN1B-15  
SON CN1B-5  
Electromagnetic  
brake output  
ABS transmission  
mode  
RA2  
ABSM CN1B-8  
ABSR CN1B-9  
DO1 CN1B-4  
ZSP CN1B-19  
TLC CN1B-6  
ABS request  
ABS bit 0  
Reset  
ABS bit 1  
Send data ready  
I/O module  
Dog  
Near-zero point signal  
Stop signal  
Stop  
SG CN1A-10  
Power supply (24V)  
Ready  
VDD CN1B-3  
RD CN1A-19  
P15R CN1A-4  
OP CN1A-14  
CR CN1A-8  
SG CN1A-20  
Zero-point  
signal  
Clear  
PP CN1A-3  
PG CN1A-13  
NP CN1A-2  
NG CN1A-12  
Command  
pulses  
(for differential  
line driver type)  
Upper limit setting  
Torque limit  
10V/max.torque  
P15R CN1B-11  
TLA CN1B-12  
LG CN1B-1  
SD  
Plate  
Note 1. Always install the emergency stop switch.  
2. For operation, always turn on forward rotation stroke end (LSP)/reverse rotation stroke end (LSN).  
3. When using the torque limit signal (TL), set " 4"in parameter No.46 to assign TL to pin CN1B-7.  
15 - 4  
15. ABSOLUTE POSITION DETECTION SYSTEM  
15.5 Signal explanation  
When the absolute position data is transferred, the signals of connector CN1 change as described in this  
section. They return to the previous status on completion of data transfer. The other signals are as  
described in section 3.3.2.  
For the I/O interfaces (symbols in the I/O Category column in the table), refer to section 3.6.  
I/O  
Control  
mode  
Signal name  
Code  
Pin No.  
Function/Application  
category  
While ABSM is on, the servo amplifier is in the ABS transfer  
mode, and the functions of ZSP, TLC, and D01 are as  
indicated in this table.  
ABS transfer  
mode  
(Note)  
ABSM  
DI-1  
DI-1  
CN1B-8  
(Note)  
Turn on ABSR to request the ABS data in the ABS transfer  
ABS request  
ABS bit 0  
ABSR  
D01  
CN1B-9 mode.  
Indicates the lower bit of the ABS data (2 bits) which is sent  
from the servo to the programmable controller in the ABS  
transfer mode.  
CN1B-4  
DO-1  
DO-1  
P
If there is a signal, D01 turns on.  
(Position  
control)  
Indicates the upper bit of the ABS data (2 bits) which is sent  
from the servo to the programmable controller in the ABS  
transfer mode.  
ABS bit 1  
ZSP  
CN1B-19  
If there is a signal, ZSP turns on.  
Indicates that the data to be sent is being prepared in the  
Send data ready  
TLC  
CR  
CN1B-6 ABS transfer mode. At the completion of the ready state, TLC  
turns on.  
DO-1  
DI-1  
When CR is turned on, the position control counter is cleared  
CN1A-8 and the home position data is stored into the non-volatile  
memory (backup memory).  
Home position  
setting  
Note. When "Used in absolute position detection system" is selected in parameter No. 1, pin CN1B-8 acts as the ABS transfer mode  
(ABSM) and pin CN1B-9 as the ABS request (ABSR). They do not return to the original signals if data transfer ends.  
15 - 5  
15. ABSOLUTE POSITION DETECTION SYSTEM  
15.6 Startup procedure  
(1) Battery installation.  
Refer to section 15.3 installation of absolute position backup battery.  
(2) Parameter setting  
Set "1  
"in parameter No. 1 of the servo amplifier and switch power off, then on.  
(3) Resetting of absolute position erase (AL.25)  
After connecting the encoder cable, the absolute position erase (AL.25) occurs at first power-on. Leave  
the alarm as it is for a few minutes, then switch power off, then on to reset the alarm.  
(4) Confirmation of absolute position data transfer  
When the servo-on (SON) is turned on, the absolute position data is transferred to the programmable  
controller. When the ABS data is transferred properly.  
(a) The ready output (RD) turns on.  
(b) The programmable controller/ABS data ready contact (M3 for A1SD71, M99 for 1PG) turns on.  
(c) The MR Configurator (servo configuration software) ABS data display window (refer to section  
15.9) and programmable controller side ABS data registers (D3, D4 for A1SD71, D106, D107 for  
1PG) show the same value (at the home position address of 0).  
If any warning such as ABS time-out warning (AL.E5) or programmable controller side transfer  
error occurs, refer to section 15.10 or chapter 10 and take corrective action.  
(5) Home position setting  
The home position must be set if.  
(a) System setup is performed.  
(b) The servo amplifier has been changed.  
(c) The servo motor has been changed; or  
(d) The absolute position erase (AL.25) occurred.  
In the absolute position system, the absolute position coordinates are made up by making home  
position setting at the time of system setup.  
The servo motor may operate unexpectedly if positioning operation is performed without home  
position setting. Always make home position setting before starting operation.  
For the home position setting method and types, refer to section 15.7.3.  
15 - 6  
15. ABSOLUTE POSITION DETECTION SYSTEM  
15.7 Absolute position data transfer protocol  
POINT  
After switching on the ABS transfer mode (ABSM), turn on the servo-on  
signal (SON). When the ABS transfer mode is off, turning on the servo-on  
signal (SON) does not switch on the base circuit.  
15.7.1 Data transfer procedure  
Each time the servo-on (SON) is turned ON (when the power is switched ON for example), the  
programmable controller reads the position data (present position) of the servo amplifier.  
Time-out monitoring is performed by the programmable controller.  
Servo amplifier  
Programmable controller  
Servo-on (SON) ON  
Every time the SON is  
turned ON, the ABS transfer  
mode signal is turned ON  
to set the data to be  
transmitted.  
ABS transfer mode ON  
DI0 allocation change  
Transmission data set  
Send data ready ON  
ABS request ON  
Watch dog timer  
<Current position data>  
Send data ready OFF  
The data is read in units of  
2 bits; the read data is written  
to the lowest bits, and the  
register is shifted right until  
32-bit data is configured.  
16 times  
Reading 2 bits  
Shift and addition  
ABS request OFF  
Send data ready ON  
ABS request ON  
<Sum check data>  
The data is read in units of  
2 bits; the read data is written  
to the lowest bits, and the  
register is shifted right until  
6-bit data is configured.  
Transmission data set  
Watch dog timer  
Send data ready OFF  
3 times  
Reading 2 bits  
Shift and addition  
ABS request OFF  
Send data ready ON  
Setting the current  
position  
A sum check is executed  
for the received 32-bit data.  
After making sure that  
there are no errors in the data,  
the current position is set.  
Sum check  
ABS transfer mode OFF  
DI0 allocation change  
TLC (send data ready) OFF  
15 - 7  
15. ABSOLUTE POSITION DETECTION SYSTEM  
15.7.2 Transfer method  
The sequence in which the base circuit is turned ON (servo-on) when it is in the OFF state due to the  
servo-on (SON) going OFF, an emergency stop (EMG), or alarm (ALM), is explained below. In the  
absolute position detection system, every time the servo-on (SON) is turned on, the ABS transfer mode  
(ABSM) should always be turned on to read the current position in the servo amplifier to the controller.  
The servo amplifier transmits to the controller the current position latched when the ABS transfer mode  
(ABSM) switches from OFF to ON. At the same time, this data is set as a position command value inside  
the servo amplifier. Unless the ABS transfer mode (ABSM) is turned ON, the base circuit cannot be  
turned ON.  
(1) At power-on  
(a) Timing chart  
ON  
Power  
supply  
OFF  
If SON is turned ON before ABSM is input  
ON  
Servo-on  
(SON)  
OFF  
2), 3)  
ON  
4)  
During transfer of ABS  
During transfer of ABS  
(Note)  
ABS transfer mode  
(ABSM)  
OFF  
(Note)  
ON  
ABS request  
(ABSR)  
OFF  
(Note)  
(Note)  
ON  
Send data ready  
(TLC)  
OFF  
(Note)  
(Note)  
Transmission  
(ABS) data  
ABS data  
ABS data  
D01:bit1  
ZSP:bit2  
80[ms]  
80[ms]  
ON  
Base circuit  
OFF  
1)  
Operation  
ON  
Ready  
(RD)  
Operation  
enabled  
enabled  
OFF  
Note. For details, refer to (1) (b) in this section.  
15 - 8  
15. ABSOLUTE POSITION DETECTION SYSTEM  
1) The ready (RD) is turned ON when the ABS transfer mode (ABSM) is turned OFF after  
transmission of the ABS data.  
While the ready (RD) is ON, the ABS transfer mode (ABSM) input is not accepted.  
2) Even if the servo-on (SON) is turned ON before the ABS transfer mode (ABSM) is turned ON,  
the base circuit is not turned ON until the ABS transfer mode (ABSM) is turned ON.  
If a servo alarm has occurred, the ABS transfer mode (ABSM) is not received.  
The ABS transfer mode (ABSM) allows data transmission even while a servo warning is  
occurring.  
3) If the ABS transfer mode (ABSM) is turned OFF during the ABS transfer mode, the ABS  
transfer mode is interrupted and the ABS time-out warning (AL.E5) occurs.  
If the servo-on (SON) is turned OFF, the reset (RES) is turned ON, and the emergency stop  
(EMG) is turned OFF during the ABS transfer mode, the ABS time-out warning (AL.E5) occurs.  
4) The functions of output signals such as ZSP, TLC, D01, and INP change depending on the  
ON/OFF state of the ABS transfer mode (ABSM).  
Note that if the ABS transfer mode (ABSM) is turned ON for a purpose other than ABS data  
transmission, the output signals will be assigned the functions of ABS data transmission.  
Output signal  
Symbol  
Pin No.  
ABS transfer mode (ABSM): OFF ABS transfer mode (ABSM): ON  
(Note)  
D01  
CN1B-4  
Positioning completion  
ABS data bit 0  
ZSP  
CN1B-19  
CN1B-6  
Zero speed  
ABS data bit 1  
TLC  
(Note)  
INP  
During torque limit control  
Send data ready  
CN1A-18  
Positioning completion  
ABS data bit 0  
Note. CN1B-4 and CN1A-18 output the same signals. (To enter the positioning completion signal into INPS of the A1SD75,  
connect CN1A-18.)  
5) The ABS transfer mode (ABSM) is not accepted while the base circuit is ON  
For re-transferring, turn OFF the servo-on (SON) signal and keep the base circuit in the off state  
for 20ms or more.  
15 - 9  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(b) Detailed description of absolute position data transfer  
ON  
Servo-on  
(programmable  
controller)  
OFF  
ON  
Servo-on  
(SON)  
OFF  
(Note)  
7)  
1)  
ON  
ABS transfer mode  
(ABSM)  
During transfer of ABS  
OFF  
3)  
5)  
ON  
ABS request  
(ABSR)  
OFF  
2)  
4)  
6)  
ON  
Send data ready  
(TLC)  
OFF  
1
2
18  
19  
Lower  
2 bits  
Checksum  
Upper 2 bits  
Transmission (ABS) data  
Note. If the servo-on (SON) is not turned ON within 1 second after the ABS transfer mode (ABSM) is turned ON, an SON  
time-out warning (AL.EA) occurs. This warning, however, does not interrupt data transmission.  
It is automatically cleared when the servo-on (SON) is turned ON.  
1) The programmable controller turns ON the ABS transfer mode (ABSM) and servo-on (SON) at  
the leading edge of the internal servo-on (SON).  
2) In response to the ABS transfer mode (ABSM), the servo detects and calculates the absolute  
position and turns ON the send data ready (TLC) to notify the programmable controller that the  
servo is ready for data transmission.  
3) After acknowledging that the ready to send (TLC) has been turned ON, the programmable  
controller turns ABS request (ABSR) ON.  
4) In response to ABS request (ABSR), the servo outputs the lower 2 bits of the ABS data and the  
ready to send (TLC) in the OFF state.  
5) After acknowledging that the ready to send (TLC) has been turned OFF, which implies that 2  
bits of the ABS data have been transmitted, the programmable controller reads the lower 2 bits  
of the ABS data and then turns OFF the ABS request (ABSR).  
6) The servo turns ON the ready to send (TLC) so that it can respond to the next request.  
Steps 3) to 6) are repeated until 32-bit data and the 6-bit checksum have been transmitted.  
7) After receiving of the sum check, the programmable controller confirms that the 19th ABS  
transmission data ready (ABST) is turned ON, and then turns OFF the ABS transfer mode  
(ABSM). If the ABS transfer mode (ABSM) is turned OFF during data transmission, the ABS  
transfer mode (ABSM) is interrupted and the ABS time-out warning (AL.E5) occurs.  
15 - 10  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(c) Checksum  
The checksum is the code which is used by the programmable controller to check for errors in the  
received ABS data. The 6-bit checksum is transmitted following the 32-bit ABS data.  
At the programmable controller, calculate the sum of the received ABS data using the ladder  
program and compare it with the checksum code sent from the servo.  
The method of calculating the checksum is shown. Every time the programmable controller  
receives 2 bits of ABS data, it adds the data to obtain the sum of the received data. The checksum  
is 6-bit data.  
Negative data is available for the FX-1PG and unavailable for the A1SD71.  
Example: ABS data: 10 (FFFFFFF6H)  
10b  
01b  
<Appendix>  
11b  
11b  
10  
Decimal  
11b  
FFFF FFF6  
Hexadecimal  
Binary  
11b  
11b  
1111 1111 1111  
0110  
11b  
When the binary data of each 2bits of the  
ABS data is added up, "10 1101b " is obtained.  
11b  
11b  
11b  
11b  
11b  
11b  
11b  
11b  
101101b  
Therefore, the checksum of " 10" (ABS data) is "2Db"  
15 - 11  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(2) Transmission error  
(a) Time-out warning(AL.E5)  
In the ABS transfer mode, the time-out processing shown below is executed at the servo. If a time-  
out error occurs, an ABS time-out warning (AL.E5) is output.  
The ABS time-out warning (AL.E5) is cleared when the ABS transfer mode (ABSM) changes from  
OFF to ON.  
1) ABS request OFF-time time-out check (applied to 32-bit ABS data in 2-bit units checksum)  
If the ABS request signal is not turned ON by the programmable controller within 5s after the  
send data ready (TLC) is turned ON, this is regarded as a transmission error and the ABS time-  
out warning (AL.E5) is output.  
ON  
ABS transfer mode  
OFF  
5s  
ON  
ABS request  
OFF  
Signal is not turned ON  
ON  
Send data ready  
OFF  
Yes  
AL.E5 warning  
No  
2) ABS request ON-time time-out check (applied to 32-bit ABS data in 2-bit units checksum)  
If the ABS request signal is not turned OFF by the programmable controller within 5s after the  
send data ready (TLC) is turned OFF, this is regarded as the transmission error and the ABS  
time-out warning (AL.E5) is output.  
ON  
ABS transfer mode  
OFF  
5s  
ON  
ABS request  
OFF  
Signal is not turned OFF  
ON  
Send data ready  
OFF  
Yes  
AL.E5 warning  
No  
15 - 12  
15. ABSOLUTE POSITION DETECTION SYSTEM  
3) ABS transfer mode finish-time time-out check  
If the ABS transfer mode (ABSM) is not turned OFF within 5s after the last ready to send signal  
(19th signal for ABS data transmission) is turned ON, it is regarded as the transmission error  
and the ABS time-out warning (AL.E5) is output.  
5s  
ON  
ABS transfer mode  
OFF  
Signal is not turned OFF  
1
2
3
4
18  
19  
ON  
ABS request  
OFF  
ON  
Send data ready  
AL.E5 warning  
1
2
3
4
18  
19  
OFF  
Yes  
No  
4) ABS transfer mode (ABSM) OFF check during the ABS transfer  
When the ABS transfer mode is turned ON to start transferring and then the ABS transfer  
mode is turned OFF before the 19th send data ready signal is turned ON, the ABS time-out  
warning (AL.E5) occurs, regarding it as a transfer error.  
ON  
ABS transfer mode  
OFF  
1
2
3
4
18  
19  
ON  
ABS request  
OFF  
1
2
3
4
18  
19  
ON  
Send data ready  
AL.E5 warning  
OFF  
Yes  
No  
15 - 13  
15. ABSOLUTE POSITION DETECTION SYSTEM  
5) Servo-on (SON) OFF, Reset (RES) ON, Emergency stop (EMG) OFF check during the ABS  
transfer  
When the ABS transfer mode is turned ON to start transferring and then the servo-on (SON) is  
turned OFF, the reset (RES) is turned ON, or the emergency stop (EMG) is turned ON before  
the 19th send data ready signal is turned ON, the ABS time-out warning (AL.E5) occurs,  
regarding it as a transfer error.  
ON  
Servo-on (SON)  
OFF  
ON  
ABS transfer mode  
OFF  
1
2
3
4
18  
19  
ON  
ABS request  
OFF  
1
2
3
4
18  
19  
ON  
Send data ready  
AL.E5 warning  
OFF  
Yes  
No  
15 - 14  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(b) Checksum error  
If the checksum error occurs, the programmable controller should retry transmission of the ABS data.  
Using the ladder check program of the programmable controller, turn OFF the ABS transfer mode  
(ABSM). After a lapse of 10ms or more, turn OFF the servo-on (SON) (OFF time should be longer than  
20ms) and then turn it ON again.  
If the ABS data transmission fails to end normally even after retry, regard this situation as an ABS  
checksum error and execute error processing.  
The start command should be interlocked with the ABS data ready signal to disable positioning  
operation when an checksum error occurs.  
20ms  
or more  
20ms  
or more  
20ms  
or more  
ON  
Servo-on  
Retry 1  
Retry 2  
Retry 3  
OFF  
10ms  
or more  
10ms  
or more  
10ms  
or more  
10ms  
or more  
ON  
ABS transfer mode  
ABS request  
OFF  
ON  
OFF  
ON  
ABS send data ready  
OFF  
Yes  
No  
ABS checksum error  
15 - 15  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(3) At the time of alarm reset  
If an alarm occurs, turn OFF the servo-on (SON) by detecting the alarm output (ALM).  
If an alarm has occurred, the ABS transfer mode (ABSM) cannot be accepted.  
In the reset state, the ABS transfer mode (ABSM) can be input.  
ON  
Servo-on  
(SON)  
OFF  
ON  
Reset  
(RES)  
OFF  
ON  
ABS transfer mode  
During transfer of ABS  
(ABSM)  
OFF  
ON  
ABS request  
(ABSR)  
OFF  
ON  
Send data ready  
(TLC)  
OFF  
Transmission  
(ABS) data  
ABS data  
80[ms]  
ON  
Base circuit  
OFF  
ON  
Alarm output  
(ALM)  
OFF  
ON  
Ready  
(RD)  
Operation  
enabled  
OFF  
Occurrence of alarm  
15 - 16  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(4) At the time of emergency stop reset  
(a) If the power is switched ON in the emergency stop state  
The emergency stop state can be reset while the ABS data is being transferred.  
If the emergency stop state is reset while the ABS data is transmitted, the base circuit is turned  
ON 80[ms] after resetting. If the ABS transfer mode (ABSM) is OFF when the base circuit is  
turned ON, the ready (RD) is turned ON 20[ms] after the turning ON of the base circuit. If the ABS  
transfer mode (ABSM) is ON when the base circuit is turned ON, it is turned OFF and then the  
ready (RD) is turned ON. The ABS data can be transmitted after the emergency stop state is reset.  
The current position in the servo amplifier is updated even during an emergency stop. When servo-  
on (SON) and ABS transfer mode (ABSM) are turned ON during an emergency stop as shown  
below, the servo amplifier transmits to the controller the current position latched when the ABS  
transfer mode (ABSM) switches from OFF to ON, and at the same time, the servo amplifier sets  
this data as a position command value. However, since the base circuit is OFF during an  
emergency stop, the servo-lock status is not encountered. Therefore, if the servo motor is rotated by  
external force or the like after the ABS transfer mode (ABSM) is turned ON, this travel is  
accumulated in the servo amplifier as droop pulses. If the emergency stop is cleared in this status,  
the base circuit turns ON and the motor returns to the original position rapidly to compensate for  
the droop pulses. To avoid this status, reread the ABS data before clearing the emergency stop.  
ON  
Power  
supply  
OFF  
ON  
Servo-on  
(SON)  
OFF  
Reset  
ON  
Emergency stop  
(EMG)  
OFF  
ON  
ABS transfer mode  
During transfer of ABS  
(ABSM)  
OFF  
ON  
ABS request  
(ABSR)  
OFF  
ON  
Send data ready  
(TLC)  
OFF  
Send (ABS) data  
Base circuit  
ABS data  
80[ms]  
20[ms]  
ON  
OFF  
ON  
Ready  
(RD)  
Operation  
enabled  
OFF  
15 - 17  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(b) If emergency stop is activated during servo-on  
The ABS transfer mode (ABSM) is permissible while in the emergency stop state. In this case, the  
base circuit and the ready (RD) are turned ON after the emergency stop state is reset.  
ON  
Servo-on  
(SON)  
OFF  
ON  
Emergency stop  
(EMG)  
OFF  
ON  
ABS transfer mode  
During transfer of ABS  
(ABSM)  
OFF  
ON  
ABS request  
(ABSR)  
OFF  
ON  
Send data ready  
(TLC)  
OFF  
Send (ABS) data  
Base circuit  
ABS data  
80[ms]  
ON  
OFF  
ON  
Ready  
(RD)  
Operation  
enabled  
OFF  
15 - 18  
15. ABSOLUTE POSITION DETECTION SYSTEM  
15.7.3 Home position setting  
(1) Dog type home position return  
Preset a home position return creep speed at which the machine will not be given impact. On detection  
of a zero pulse, the home position setting (CR) is turned from off to on. At the same time, the servo  
amplifier clears the droop pulses, comes to a sudden stop, and stores the stop position into the non-  
volatile memory as the home position ABS data.  
The home position setting (CR) should be turned on after it has been confirmed that the in-position  
(D01 or INP) is on. If this condition is not satisfied, the home position setting warning (AL.96) will  
occur, but that warning will be reset automatically by making home position return correctly.  
The number of home position setting times is limited to 1,000,000 times.  
Servo Motor  
Near-zero point dog  
ON  
Dog signal  
(DOG)  
OFF  
Completion of  
positioning  
ON  
OFF  
(D01 or INP)  
ON  
Home position  
setting (CR)  
OFF  
20 [ms] or more  
20 [ms] or more  
Home position  
ABS data  
Update  
15 - 19  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(2) Data set type home position return  
POINT  
Never make home position setting during command operation or servo motor  
rotation. It may cause home position sift.  
It is possible to execute data set type home position return when the servo  
off.  
Move the machine to the position where the home position is to be set by performing manual operation  
such as jog operation to turn the motor shaft more than one revolution. When the home position  
setting (CR) is on for longer than 20ms, the stop position is stored into the non-volatile memory as the  
home position ABS data.  
The home position setting (CR) should be turned on after it has been confirmed that the in-position  
(D01 or INP) is on. If this condition is not satisfied, the home position setting warning (AL.96) will  
occur, but that warning will be reset automatically by making home position return correctly.  
The number of home position setting times is limited to 1,000,000 times.  
Manual feed (JOG, etc.)  
(more than 1 revolution  
of the motor shaft)  
Servo Motor  
Completion of  
positioning  
ON  
OFF  
(D01 or INP)  
ON  
Home position  
setting (CR)  
OFF  
20 [ms] or more  
Home position  
ABS data  
Update  
15 - 20  
15. ABSOLUTE POSITION DETECTION SYSTEM  
15.7.4 Use of servo motor with electromagnetic brake  
The timing charts at power on/off and servo-on (SON) on/off are given below.  
Preset "  
1 " in parameter No. 1 to make the electromagnetic brake interlock (MBR) usable. When the  
ABS transfer mode is ON, the electromagnetic brake interlock (MBR) is used as the ABS data bit 1.  
Hence, make up an external sequence which will cause the electromagnetic brake torque to be generated  
by the ABS mode (ABSM) and electromagnetic brake interlock (MBR).  
ON  
Power  
supply  
OFF  
ON  
Servo-on  
(SON)  
OFF  
ON  
ABS transfer mode  
(ABSM)  
During transmission  
of ABS  
During transmission  
of ABS  
OFF  
ON  
ABS request  
(ABSR)  
OFF  
ABS transmission  
data ready  
ON  
OFF  
(ABST)  
Send (ABS) data  
Base circuit  
ABS data  
80 [ms]  
ABS data  
80 [ms]  
ON  
OFF  
20 [ms]  
20 [ms]  
ON  
Ready  
(RD)  
OFF  
Tb  
Tb  
Electromagnetic  
brake interlock  
(MBR)  
ON  
OFF  
ON  
Electromagnetic  
brake torque  
OFF  
15 - 21  
15. ABSOLUTE POSITION DETECTION SYSTEM  
15.7.5 How to process the absolute position data at detection of stroke end  
The servo amplifier stops the acceptance of the command pulse when stroke end (LSP LSN) is detected,  
clears the droop pulses to 0 at the same time, and stops the servo motor rapidly.  
At this time, the programmable controller keeps outputting the command pulse. Since this causes a  
discrepancy between the absolute position data of the servo amplifier and the programmable controller, a  
difference will occur between the position data of the servo amplifier and that of the programmable  
controller.  
To prevent this difference in position data from occurring, do as described below. When the servo  
amplifier has detected the stroke end, perform jog operation or the like to clear the stroke end. After that,  
switch the servo-on (SON) off once, then on again, or switch the power off once, then on again. This causes  
the absolute position data of the servo amplifier to be transferred to the programmable controller,  
restoring the normal data.  
15 - 22  
15. ABSOLUTE POSITION DETECTION SYSTEM  
15.8 Examples of use  
15.8.1 MELSEC-A1S (A1SD71)  
(1) Instructions  
The absolute coordinate system (programmable controller coordinate system) of the A1SD71 (AD71)  
only covers the range in which the address increases (positive coordinate values) on moving away from  
the machine home position (the position reached in the home position return operation). Therefore, if  
the motor enters the range where the coordinate value is negative due to the load torque or a fall on a  
vertical axis when the power is turned ON/OFF at a point near the machine home position, the system  
fails to detect the absolute position. To prevent this problem, it is necessary to set the home position  
(operation home position) for positioning in addition to the machine home position.  
(a) The home position should be set in the direction in which the position address of the programmable  
controller coordinate system increases on moving away from machine home position, as illustrated  
below. Note that the home position for positioning must be more than one revolution of the servo  
motor shaft from the machine home position.  
If the address of the machine home position is changed to any value other than "0", the home  
position should be set in the direction in which the position address increases on moving away from  
the machine home position (machine home position after changing the home position address) and  
at a point removed from the machine home position by more than one revolution of the motor shaft.  
Home position  
Machine home position (operation home position)  
Machine home  
Home position position  
Programmable  
controller coordinate  
system  
Programmable  
controller coordinate  
system  
0 10000  
0
50000  
50000  
10000 0  
0
20000  
50000  
Direction in which  
address increases  
20000  
50000  
ABS  
coordinate  
system  
ABS  
coordinate  
system  
Direction in which  
address increases  
More than 1 revolution  
of motor shaft  
More than 1 revolution  
of motor shaft  
a) If revolution direction parameter (Pr. 14)  
0
b) If revolution direction parameter (Pr. 14) 1  
(b) In the range where the address decreases on moving away from the machine home position, do not  
turn the power supply to the programmable controller or the servo amplifier, the servo-on  
pushbutton switch, or the PC-RESET switch, ON/OFF. If any of these operations are attempted,  
the ABS coordinate error (Y4B) is output since the absolute position cannot be detected.  
Machine  
Machine home position Home position  
Programmable  
Home position home position  
Programmable  
controller coordinate  
system  
controller coordinate  
system  
0 10000  
50000  
50000  
10000 0  
ABS  
coordinate  
system  
20000  
0
50000  
Direction in which  
address increases  
50000  
Direction in which  
address increases  
0
20000  
ABS  
coordinate  
system  
ABS coordinate  
ABS coordinate  
value error occurs  
if power is turned  
on within this range  
value error occurs  
if power is turned  
on within this range  
Absolute position data can be  
detected  
Absolute position data can be  
detected  
a) If revolution direction parameter (Pr. 14)  
0
b) If revolution direction parameter (Pr. 14)  
1
15 - 23  
15. ABSOLUTE POSITION DETECTION SYSTEM  
If the address of the machine home position is changed to any coordinate value other than "0", the  
programmable controller coordinate system will be as illustrated below.  
The power should be turned ON/OFF in the range in which the address increases on moving away  
from the home position.  
Machine home position Home position  
Programmable  
controller coordinate  
Machine home position Home position  
Programmable  
controller coordinate  
system  
0
20000 30000  
70000  
70000  
30000 20000  
0
0
system  
ABS  
coordinate  
system  
ABS  
coordinate  
system  
20000  
0
50000  
50000  
20000  
Direction in which  
address increases  
Direction in which  
address increases  
Absolute position data can be detected  
Absolute position data can be detected  
ABS coordinate value error occurs if  
power is turned on within this range  
ABS coordinate value error occurs if  
power is turned on within this range  
* Home position address changed to "2000"  
* Home position address changed to "2000"  
a) If revolution direction parameter (Pr. 14)  
0
b) If revolution direction parameter (Pr. 14)  
1
(c) In a positioning program, the address of the positioning point should be determined by adding the  
home position address to the target position address.  
Example) After home position return, execute positioning at 1) to 3).  
1) Positioning at position address 80000  
(PC coordinate 140000)  
2) Positioning at position address 130000  
(PC coordinate 190000)  
3) Positioning at position address 0  
(PC coordinate 60000)  
1)  
ABS coordinate  
error region  
(80000 60000)  
Machine home position  
Home position (operation home  
position)  
Programmable  
controller  
coordinate  
system  
2)  
(130000 60000)  
0 10000  
50000 60000  
100000  
150000  
ABS coordinate  
system  
50000  
Stroke limit  
0
50000  
Direction in which  
address increases  
(0 60000)  
3)  
* Home position address changed to "50000"  
Mechanical limit  
If revolution direction parameter (Pr. 14)  
0
15 - 24  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(d) Slot arrangement  
The sequence programs presented in this section show I/O numbers (X, Y) assuming the  
arrangement of modules on the main base unit is as illustrated below. A1SD71 is mounted at I/O  
slots 0 and 1, a 16-point input module at slot 2, and 16-point output module at slot 3. If the actual  
arrangement of the modules differs from this arrangement, change the X and Y numbers  
accordingly.  
The numbers of the devices (M, D, T, etc.) used in the program can be changed as required.  
7
6
5
4
3
2
1
0
I/O slot No.  
A1SD71  
A1S  
Power  
CPU  
supply  
16-point output module  
16-point input module  
[Numbers used] X, X0-X, Y2F  
Example arrangement of modules  
(e) Points  
1) The A1SD71 has 48 I/O points and occupies 2 slots. For I/O allocation using the GPP function,  
follow the instructions given below.  
First slot: Vacant slot 16 points  
Second slot: Special function module 32 points  
2) To execute the FROM/TO instruction for the A1SD71, use the head I/O number of the second  
slot.  
X30 to X3F  
Note: The program example given  
Y40 to Y4F  
in (3) in this section is for 1-axis  
control. Slot allocations are as  
A1S  
CPU  
illustrated to the left. To use the  
system for 2-axis control,  
increase the number of I/O  
points.  
A1SD71  
X,Y000 X,Y010  
to to  
X,Y00F X,Y02F  
I/O numbers to be set  
with FROM/TO instruction  
Therefore, the I/O number to be set with the FROM/TO instruction is head I/O number allocated  
to the A1SD71 010H.  
3) By setting "0 point of vacant slot" for the first slot of the A1SD71 in the "I/O allocation" of the  
GPP function, the 16 points in the first slot can be saved.  
In this case, the I/O number to be set with the FROM/TO instruction is the same number as the  
head I/O number allocated to the A1SD71.  
A1S  
A1SD71  
CPU  
X,Y000  
I/O numbers to be set with FROM/TO instruction  
to  
X,Y00F  
15 - 25  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(2) Connection diagram  
Servo amplifier  
General purpose  
programmable controller  
CN1B  
VDD  
COM  
SG  
3
A1S62P  
24  
13  
10  
20  
24G  
LG  
FG  
SG  
Power  
supply  
INPUT  
AC100/200  
A1SCPU  
A1SX40  
ABS bit 0/Completion of positioning  
ABS bit 1/Zero speed  
0
1
2
3
4
5
6
7
DO1  
ZSP  
TLC  
ALM  
EMG  
4
19  
6
18  
15  
Send data ready/Torque limit control  
Trouble  
Alarm reset  
Emergency stop  
Servo-on  
Home position return  
COM  
Operation mode I  
Operation mode II  
Position start  
8
9
A
B
C
D
Position stop  
(Note 3)  
JOG  
JOG  
E
F
COM  
NC  
NC  
A1SY40  
Servo-on  
0
1
2
3
4
5
6
7
SON  
5
8
9
ABS transfer mode  
ABS request  
Alarm reset  
ABSM  
ABSR  
RES  
14  
RA2  
Electromagnetic  
brake output  
(Note 4)  
COM1  
8
9
(Note 2)  
A
B
COM2  
(Note 1)  
A1SD71-S2  
DOG  
6B  
6A  
5A  
STOP  
Power supply  
CN1A  
RD  
P15R  
OP  
CR  
SG  
OPC  
PP  
SG  
NP  
SD  
RDY  
PGO  
5B  
9A  
9B  
12A  
12B  
17A  
15A  
15B  
19  
4
14  
8
10  
11  
3
20  
2
CLEAR  
Power supply  
PULSE-  
F
PULSE- 16A  
16B  
R
Plate  
Note 1. To be connected for dog type home position setting. The connection in Note 2 is not required.  
2. To be connected for data set type home position setting. The connection in Note 1 is not required.  
3. This circuit is for reference only.  
4. The electromagnetic brake interlock (MBR) output should be controlled by connecting the programmable controller output to a relay.  
15 - 26  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(3) Sequence program example  
(a) Conditions  
This sample program is an ABS sequence program example for a single axis (X axis).  
To transmit the ABS data using the OFF-to-ON change of the servo-on (SON) as the trigger.  
1) When the servo-on (SON) and the GND of the power supply are shorted, the ABS data is  
transmitted when the power to the servo amplifier power is turned ON, or at the leading edge of  
the RUN signal after a PC reset operation (PC-RESET). The ABS data is also transmitted when  
an alarm is reset, or when the emergency stop state is reset.  
2) If a checksum discrepancy is detected in the transmitted data, ABS data transmission is retried  
up to three times. If the checksum discrepancy is still detected after retrying, the ABS checksum  
error is generated (Y4A ON).  
3) The following time periods are measured and if the ON/OFF state does not change within the  
specified time, the ABS communication error is generated (Y4A ON).  
ON period of ABS transfer mode (Y41)  
ON period of ABS request (Y42)  
OFF period of ready to send ABS data (X32).  
4) If the relationship between the polarity ( ) of the received ABS data and the setting value for  
parameter No. 14 (rotating direction) of A1SD71 involves negative coordinate values, which  
cannot be handled by the A1SD71, the ABS coordinate error is generated (Y4B ON).  
(b) Device list  
X input contact  
Y output contact  
Servo-on  
ABS transfer mode  
ABS request  
Alarm reset  
Electromagnetic brake output  
Clear  
Servo alarm  
ABS communication error  
ABS checksum error  
ABS coordinate error  
M contact  
X30  
X31  
X32  
X33  
X34  
X35  
X36  
X37  
X38  
X39  
ABS bit 0 / completion of positioning  
ABS bit 1 / zero speed  
Send ABS data ready / torque limit control Y42  
Servo alarm  
Error reset  
Servo emergency stop  
Servo-on  
Home position return start  
Operation mode I  
Operation mode II  
Y40  
Y41  
Y43  
X44  
Y45  
Y48  
Y49  
Y4A  
Y4B  
(Note 2)  
(Note 1)  
D register  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
ABS data transmission counter  
Checksum transmission counter  
Checksum addition counter  
ABS data: Lower 16 bits  
ABS data: Upper 16 bits  
ABS data 2-bit receiving buffer  
Check data in case of checksum error  
Retry frequency  
M0  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
ABS data transmission start  
Sum check completion  
Sum check discrepancy  
ABS data ready  
Transmission data read enabled  
Checksum 2 bits read completion  
ABS 2 bits read completion  
ABS 2 bits request  
D8  
D9  
D10  
D100  
D101  
Forward rotation direction  
Home position address: Lower 16 bits  
Home position address: Upper 16 bits  
Received shift data: Lower 16 bits  
Received shift data: Upper 16 bits  
T timer  
M8  
M9  
Servo-on request  
Servo alarm  
ABS data transmission retry start pulse  
Retry flag setting  
Retry flag reset  
PLS processing command  
Clear (CR) ON timer request  
Data set type home position return request  
C counter  
M10  
M11  
M12  
M13  
M20  
M21  
(Note 1)  
(Note 2)  
T0  
T1  
T2  
T3  
T10  
T200  
ABS transfer mode timer  
ABS request response timer  
Retry wait timer  
Ready to send response timer  
Clear (CR) ON timer  
C0  
C1  
C2  
ABS data receive frequency counter  
Checksum receive frequency counter  
Retry counter  
(Note 1)  
Transmitted data read 10ms delay timer  
Note 1. Necessary when data set type home position return is executed.  
2. Necessary in the event of electromagnetic brake output.  
15 - 27  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(c) ABS data transfer program for X axis  
This sequence program example assumes the following conditions.  
Parameters of the A1SD71-S2 positioning module  
1) Unit setting  
: 3 pulse (PLS)  
2) Travel per pulse : 1 1 pulse  
To select the unit other than the pulse, conversion into the unit of the feed command value per  
pulse is required. Hence, add the following program to the area marked Note in the sequence  
program.  
<Additional program>  
Item  
mm  
inch  
degree  
pulse  
D * P K  
D3 D3  
Unit setting  
0
1
2
3
0.00001 0.0001 0.001 0.00001 0.0001 0.001  
Travel per pulse  
0.1 to 1.0 to 10.0  
m/PLS  
to  
to  
to  
to  
to  
to  
Unit of travel  
inch/PLS  
degree/PLS  
PLS  
Constant K for  
conversion into  
unit of travel  
1 to  
10 to  
100  
1 to  
10 to  
100  
1 to  
10 to  
100 None  
Reference  
For 1 m/PLS, set constant K to 10  
For 5 m/PLS, set constant K to 50  
When the unit setting is pulse, the additional program is not required.  
M9038  
TOP H0001 K201 K1  
K1  
A1SD71 error reset  
Initial  
pulse  
ON  
MOV K3  
DMOV D100  
SET  
D7  
A0  
Setting retry count (3 times)  
Loading received shift data  
Servo-on request  
Initial setting  
M9039  
PC RUN  
X36  
M8  
M3  
M8  
C0  
C1  
Y40  
M0  
Servo-on PB  
X36  
RST  
Resetting ready to send  
Resetting servo-on request  
Servo-on  
PB  
RST  
Resetting ABS transfer  
counter at servo OFF  
RST  
Servo-on control  
Resetting checksum transfer  
counter at servo OFF  
RST  
M8  
M9  
M11  
Servo-on output  
ABS I/F start  
Servo-on Error Retry flag  
request flag setting  
PLS  
(To be continued)  
1
1
15 - 28  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(Continued from preceding page)  
1
1
M8  
PLS  
RST  
M12  
C2  
Setting retry flag  
ABS data  
transmission  
retry control  
Servo-on request  
M12  
Resetting retry counter  
Alarm reset output  
Retry flag reset request  
X34  
M9  
Y43  
Error reset Error flag  
PB  
Y43  
Alarm reset  
X35  
M9  
M3  
M8  
Y48  
D0  
Error flag output  
Servo alarm  
detection, alarm  
reset control  
Emergency  
stop PB  
X33  
RST  
RST  
Resetting ready to send  
Resetting servo-on request  
Servo alarm  
Servo alarm  
M0  
Initializing ABS data transfer  
counter  
MOV K16  
MOV K3  
MOV K0  
MOV K0  
DMOV K0  
DMOV K0  
RST  
ABS data  
transfer  
start  
Initializing checksum transfer  
counter  
D1  
D2  
Initializing checksum register  
Initializing ABS data register  
Initializing ABS data register  
Initializing ABS data register  
D5  
ABS transfer  
mode  
Initial setting  
D9  
A0  
Resetting error for ABS  
coordinate  
Y4B  
C0  
Resetting ABS transfer  
counter  
RST  
Resetting checksum transfer  
counter  
RST  
C1  
M0  
Y41  
ABS transfer mode  
ABS data transfer  
start  
ABS transfer  
mode control  
Y41  
C1  
ABS Checksum  
transfer counter  
mode  
(To be continued)  
2
2
15 - 29  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(Continued from preceding page)  
2
2
C0  
C1  
Y41  
DMOVP A0  
D3  
A0  
K1  
D8  
A1  
M13  
D4  
D4  
D3  
D4  
D5  
D5  
A0  
K2  
Saving ABS 32-bit data  
Clearing register  
Counter Checksum ABS  
counter transfer  
mode  
MOVP K0  
*1 Reading X-axis rotating  
direction parameter  
FROMP H0001 K7872 D8  
Detecting absolute  
position polarity  
and A1SD71  
Rotation direction parameter  
mask  
WAND H0004  
WAND H8000  
PLS  
rotating direction  
ABS data sign mask  
PLS processing command  
Rotation direction  
judgement  
M13  
Reversing polarity of upper  
16 bits  
D8 K4  
NEG  
PLS processing  
command  
K1  
Subtraction for upper 16 bits  
Reversing polarity of  
absolute position  
Reversing polarity of lower  
16 bits  
NEG  
Lower 16 bits  
D4 D4  
0
K0 D3  
K1  
MOV K1X30  
WAND H0003  
WOR D5  
ROR  
1
M4  
C0  
Reading 4 bits  
Masking 2 bits  
Adding 2 bits  
Read  
ABS data  
enabled counter  
Reading checksum  
6 bits  
(2 bit 3 times)  
Right rotation of A0 2 bits  
D1  
C1  
Counting checksum data  
reception frequency  
Completion of reading, 2 bits  
of checksum  
PLS  
M5  
(To be continued)  
3
3
15 - 30  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(Continued from preceding page)  
3
3
M4  
Read  
C0  
MOV K1X30  
WAND H0003  
WOR D5  
DROR  
D5  
D5  
A0  
K2  
D2  
Reading 4 bits  
ABS data  
enabled counter  
Masking 2 bits  
Adding 2 bits  
Reading ABS data  
32 bits  
(2 bits 16 times)  
Right rotation of A0 2 bits  
Adding checksum  
D5  
D2  
D0  
C0  
Counting frequency of ABS  
data reception  
Completion of reading: 2 bits  
of ABS data  
PLS  
M6  
K10  
A0  
C1  
RORP  
Right rotation of A0 10 bits  
Masking checksum  
Sum check OK  
Check  
sum  
counter  
WAND H003F  
D2 A0  
D2 A0  
M1  
M2  
D6  
Detecting ABS data  
checksum error  
Sum check NG  
MOV A0  
Sum check memory  
ABS checksum error  
Resetting ABS request  
C2  
Y4A  
Y42  
Retry counter  
M6  
RST  
ABS 2 bits read  
completion  
M5  
Checksum 2 bits read completion  
Y41 X32  
PLS  
SET  
M7  
ABS 2 bits request  
Setting ABS request  
10ms delay timer  
ABS transfer Send data  
ABS request  
control  
mode  
M7  
ready  
Y42  
ABS 2 bits request  
Y42  
X32  
K1  
T200  
ABS  
Send data ready  
request  
Y42  
X32  
T200  
Transmission data read  
enabled  
M4  
10ms delay timer  
(To be continued)  
4
4
15 - 31  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(Continued from preceding page)  
4
4
M1  
*1 A1SD71: reading home  
position address  
DFROP H0001 K7912 D9  
K1  
Checksum OK  
Restoring absolute  
position data  
Inserting constant K for conversion  
into the unit of feed per pulse  
D*P  
D3  
D3  
K
(Note)  
Adding home position address  
to absolute position  
D P D3  
D9  
D3  
Detecting ABS  
coordinate error  
D
K0 D3  
SET  
D3  
Y4B  
K1  
Setting ABS coordinate error  
M1  
Y4B  
*1 X-axis: Present position  
change ABS data "ready"  
DTOP H0001 K41  
Checksum ABS coordinate error  
OK  
Writing ABS data  
to A1SD71  
SET  
RST  
M3  
Y41  
ABS data "ready"  
Y49  
X36  
Resetting ABS transfer mode  
ABS transfer mode timer (5s)  
ABS commu- Servo-on PB  
nication error  
Y41  
K50  
T0  
ABS transfer mode  
Y41  
Y42  
K10  
T1  
ABS request response timer  
(1s)  
ABS transfer ABS request  
mode  
Y41  
X32  
K10  
T3  
Ready to send response  
timer (1s)  
ABS communication  
error detecting  
ABS transfer Send data ready  
mode  
T0  
Y49  
ABS communication error  
ABS transfer NG  
T1  
ABS request NG  
T3  
Send data ready NG  
(To be continued)  
5
5
Note. When the unit setting parameter value of the A1SD71 positioning module is changed from "3" (pulse) to "0" (mm), the unit is  
0.1 m for the input value. To change the unit to  
1 m, and this program to multiple the feed value by 10.  
15 - 32  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(Continued from preceding page)  
5
5
M2  
PLS  
SET  
M10  
M11  
ABS transfer retry start pulse  
Setting retry flag  
Checksum NG  
M10  
C2  
Retry start Retry  
pulse  
counter  
D7  
C2  
Retry counter  
ABS transfer  
retry control  
M11  
K1  
T2  
Retry wait timer (100ms)  
Resetting retry flag  
Retry flag set  
T2  
RST  
M11  
Retry wait timer  
M9039  
DMOV A0  
D100  
END  
Saving received shift data  
PC RUN  
POINT  
When absolute position data is received at power ON, for example, if a  
negative coordinate position which cannot be handled by the A1SD71 is  
detected, the ABS coordinate error (Y4B ON) is generated. If this error is  
generated, move the axis into the positive coordinate zone in JOG operation.  
Then, turn OFF the servo-on pushbutton switch and turn it ON again.  
15 - 33  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(d) X-axis control program  
This precludes execution of the X-axis start program while M3 (ready to send the ABS data) is  
OFF.  
Positioning X-axis start  
When M3 (ready to send the ABS data)  
is turned ON, the X-axis start command  
executes the X-axis start program.  
mode  
command M3  
X-axis start program  
Ready to  
send the  
ABS date  
(e) Dog type home position return  
For an example of a program for the dog type home position return operation, refer to the home  
position return program presented in the User's Manual for A1SD71.  
(f) Data set type home position return  
After jogging the machine to the position where the home position (e.g.500) is to be set, choose the  
home position return mode set the home position with the home position return start (PB ON).  
After switching power on, rotate the servo motor more than 1 revolution before starting home  
position return.  
Do not turn ON the clear (CR) (Y45) for an operation other than home position return. Turning it  
ON in other circumstances will cause position shift.  
M9039  
Home position return mode  
Y2D  
M20  
Programmable controller ready  
(Note 1)  
PC RUN  
Home position  
return mode  
M20  
Y41  
X30  
X37  
PLS  
Clear (CR) ON timer request  
Clear (CR) 100ms ON timer  
ABS  
transfer  
mode  
Positioning Home position  
return start PB  
completion  
K1  
T10  
Clear (CR) ON  
timer request  
M21  
SET  
RST  
M21  
M21  
Y45  
D9  
Setting data set type home position return request  
Resetting data set type home position return request  
Data set type home  
position return request  
T10  
Clear signal 100ms ON timer  
M21  
Clear (CR) ON  
Data set type home  
position return request  
Setting X-axis home position address "500"  
in the data register  
DMOVP K500  
DTOP H0001 K7912 D9  
DFROP H0001 K7912 D9  
(Note 1)  
K1  
*1:Changing X-axis home position address  
(Note 2)  
K1  
DTOP H0001 K41  
D9  
K1  
*1:Changing X-axis present position data  
Note 1. If data of the home position address parameter is not written by using an A6GPP programming tool, etc. before starting a  
program for data set type home position return, the circuits indicated by Note 1 are necessary and the circuit indicated by Note  
2 is not necessary.  
2. Contrary to Note 1 above, if the home position address is written in the home position address parameter the circuit indicated  
by Note 3 is necessary and the circuits indicated by Note 1 are not necessary.  
15 - 34  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(g) Electromagnetic brake output  
During ABS data transfer (for several seconds after the servo-on (SON) is turned on), the servo  
motor must be at a stop.  
Set "1 1 "in parameter No. 1 of the servo amplifier to choose the electromagnetic brake interlock  
(MBR).  
Y41  
X31  
Y44  
Electromagnetic brake output  
ABS  
Brake (MBR)  
transfer  
mode  
(h) Positioning completion  
To create the status information for servo positioning completion.  
During ABS data transfer (for several seconds after the servo-on (SON) is turned on), the servo  
motor must be at a stop.  
Y41  
X30  
M
Completion of servo positioning  
ABS transfer Positioning  
mode completion  
Y41  
ABS transfer  
mode  
(i) Zero speed  
To create the status information for servo zero speed  
During ABS data transfer (for several seconds after the servo-on (SON) is turned on), the servo  
motor must be at a stop.  
Y41  
X31  
M
Servo zero speed  
ABS transfer Zero  
mode speed  
Y41  
ABS transfer  
mode  
(j) Torque limiting  
To create the status information for the servo torque limiting mode  
During ABS data transfer (for several seconds after the servo-on (SON) is turned on), the torque  
limiting must be off.  
Y41  
X32  
M
Servo torque limiting mode  
ABS transfer Torque limiting  
mode mode  
15 - 35  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(4) Sequence program - 2-axis control  
The following program is a reference example for creation of an ABS sequence program for the second  
axis (Y axis) using a single A1SD71 module. Create a program for the third axis in a similar manner.  
(a) Y-axis program  
Refer to the X-axis ABS sequence program and create the Y-axis program.  
Assign the X inputs, Y outputs, D registers, M contacts, T timers and C counters of the Y axis so  
that they do not overlap those of the X axis.  
The buffer memory addresses of the A1SD71 differ between the X and Y axes. The instructions  
marked *1 in the program of section 15.8.1 (3) (c) should be changed as indicated below for use with  
the Y axis.  
[FROMP H0001 K7872 D8 K1]  
[DFROP H0001 K7912 D9 K1]  
[DTOP H0001 K41 D3 K1]  
[FROMP H0001 K7892 D8 K1]  
[DFROP H0001 K7922 D9 K1]  
[DTOP H0001 K341 D3 K1]  
[Program configuration]  
X-axis ABS sequence program  
(Program in section 15.8.1 (3) (f))  
Y-axis ABS sequence program  
(Refer to the X-axis program and write the Y-axis  
program)  
(b) Data set type home position return  
Arrange the data set type home position return programs given in section 15.8.1 (3) (f) in series to  
control two axes.  
Refer to the X-axis data set type home position return program and create the Y-axis program.  
Assign the X inputs, Y outputs, D registers, M contacts and T timers of the Y axis so that they do  
not overlap those of the X axis.  
The buffer memory addresses of the A1SD75 differ between the X and Y axes. The instructions  
marked *1 in the program of section 15.8.1 (3) (f) should be changed as indicated below for use with  
the Y axis.  
[DTOP H0001 K7912 D9 K1]  
[DTOP H0001 K41 D9 K1]  
[DTOP H0001 K7922 D9 K1]  
[DTOP H0001 K341 D9 K1]  
[Program configuration]  
X-axis data set type home position return program  
(Program in section 15.8.1 (3) (f))  
Y-axis data set type home position return program  
(Refer to the X-axis program and write the Y-axis  
program)  
15 - 36  
15. ABSOLUTE POSITION DETECTION SYSTEM  
15.8.2 MELSEC FX(2N)-32MT (FX(2N)-1PG)  
(1) Connection diagram  
(a) FX-32MT (FX-1PG)  
Servo amplifier  
FX-32MT  
L
Power supply  
CN1B  
SG 10  
N
24V  
COM  
PC-RUN  
RUN  
ABS bit 0/Completion of positioning  
3.3k  
X0  
X1  
DO1  
ZSP 19  
TLC  
4
ABS bit 1/Zero speed  
Send data ready/Torque limit control  
Alarm  
X2  
6
X3  
ALM 18  
CN1A  
Alarm reset  
Emergency stop  
Servo-on  
Servo ready  
X4  
RD  
19  
X5  
X6  
X7  
JOG( )  
JOG( )  
X10  
X11  
X12  
X13  
X14  
X15  
Position start  
Position stop  
Home position return start  
1PG error reset  
COM1  
Y0  
EMG 15  
Servo-on  
SON  
ABSM  
ABSR  
5
8
9
ABS transfer mode  
ABS request  
Alarm reset  
Y1  
Y2  
Y3  
RES 14  
COM2  
Y4  
RA2  
Electromagnetic  
brake output  
(Note 3)  
Y5  
Y6  
Y7  
COM3  
Y10  
Y11  
Y12  
Y13  
24  
Servo alarm  
(Note 2)  
ABS communication  
error  
ABS checksum error  
COM 13  
SG  
FX-1PG  
3.3k  
SG  
S/S  
DOG  
STOP  
VH  
DOG  
24V  
VDD  
3
SD  
VL  
(Note 1)  
CN1A  
11  
3
FPO  
FP  
OPC  
PP  
3.3k  
3.3k  
Pulse train for forward rotation  
COM0  
SG 20  
NP  
Pulse train for reverse rotation  
RP  
2
RPO  
COM1  
CLR  
PGO  
PGO  
SG 10  
Clear  
CR  
8
4
P15R  
15V  
Z-phase pulse  
OP 14  
SD Plate  
SD  
Note 1. To be connected for the dog type home position setting. At this time, do not connect the portions marked (Note 2).  
2. To be connected for the data set type home position setting. At this time, do not connect the portions marked (Note 1).  
3. The electromagnetic brake interlock (MBR) should be controlled by connecting the programmable controller output to a relay.  
15 - 37  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(b) FX2N-32MT (FX2N-1PG)  
Servo amplifier  
FX2N-32MT  
L
Power supply  
N
CN1B  
SG 10  
24V  
COM  
ABS bit 0/Completion of positioning  
X0  
X1  
DO1  
ZSP 19  
TLC  
4
ABS bit 1/Zero speed  
Send data ready/Torque limit control  
Alarm  
3.3k  
X2  
6
X3  
ALM 18  
Alarm reset  
Emergency stop  
Servo-on  
Servo ready  
CN1A  
X4  
RD  
19  
X5  
X6  
X7  
JOG( )  
X10  
X11  
X12  
X13  
X14  
X15  
JOG( )  
Position start  
Position stop  
Home position return start  
1PG error reset  
COM1  
Y0  
EMG  
SON  
ABSM  
ABSR  
15  
5
Servo-on  
ABS transfer mode  
ABS request  
Alarm reset  
Y1  
8
Y2  
9
Y3  
RES 14  
COM2  
Y4  
RA2  
Electromagnetic  
brake output  
(Note 3)  
Y5  
Y6  
Y7  
COM3  
Y10  
Y11  
Y12  
Y13  
24  
Servo alarm  
(Note 2)  
ABS communication  
error  
ABS checksum error  
COM 13  
FX2N-1PG  
3.3k  
S/S  
DOG  
STOP  
VIN  
SD  
DOG  
24V  
VDD  
3
CN1A  
(Note 1)  
OPC 11  
PP  
SG 20  
NP 12  
3.3k  
3.3k  
Pulse train for forward rotation  
FP  
COM0  
RP  
3
Pulse train for reverse rotation  
COM1  
CLR  
PGO  
SG 10  
Clear  
CR  
8
4
P15R  
15V  
Z-phase pulse  
PGO  
OP 14  
SD  
Plate  
SD  
Note 1. To be connected for the dog type home position setting. At this time, do not connect the portions marked (Note 2).  
2. To be connected for the data set type home position setting. At this time, do not connect the portions marked (Note 1).  
3. The electromagnetic brake interlock (MBR) should be controlled by connecting the programmable controller output to a relay.  
15 - 38  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(2) Sequence program example  
(a) Conditions  
1) Operation pattern  
ABS data transfer is made as soon as the servo-on switch is turned on. After that, positioning  
operation is performed as shown below.  
Home position  
3)  
1)  
300000  
0
300000  
address  
2)  
After the completion of ABS data transmission, JOG operation is possible using the JOG or  
JOG switch, and dog type home position return is possible using the home position return  
switch.  
2) Buffer memory assignment  
For BFM#26 and later, refer to the FX2(N)-1PG User's Manual.  
BMF No.  
Name and symbol  
Set value  
Remark  
Upper 16 Lower 16  
bits  
bits  
#0  
#1  
#3  
#4  
#6  
Pulse rate  
Feed rate  
Parameter  
Max. speed  
Bias speed  
JOG operation  
Home position return speed (high speed)  
Home position return speed (creep)  
Home position return zero-point signal count  
Home position address  
Acceleration/deceleration time  
Not usable  
Target address (I)  
Operation speed (I)  
Target address (II)  
Operation speed (II)  
Operation command  
A
B
2000  
1000  
H0000  
100000PPS  
0PPS  
10000PPS  
50000PPS  
1000PPS  
2 pulses  
0
-
#2  
-
#5  
-
#8  
#10  
-
Command unit: Pulses  
Vmax  
Vbia  
Vjog  
VRT  
#7  
#9  
#11  
#12  
#13  
#15  
#16  
#17  
#19  
#21  
#23  
#25  
VCL  
-
N
HP  
Ta  
Initial value: 10  
Initial value: 100  
#14  
-
-
#18  
#20  
#22  
#24  
-
200ms  
P(I)  
V(I)  
P(II)  
V(II)  
0
100000  
0
10  
H0000  
Initial value: 10  
3) Instructions  
When the servo-on switch and the COM of the power supply are shorted, the ABS data is  
transmitted when the servo amplifier power is turned ON, or at the leading edge of the RUN  
signal after a PC reset operation (PC-RESET). The ABS data is also transmitted when an alarm  
is reset, or when the emergency stop state is reset.  
If checksum discrepancy is detected in the transmitted data, the ABS data transmission is  
retried up to three times. If the checksum discrepancy is still detected after retrying, the ABS  
checksum error is generated (Y12 ON).  
The following time periods are measured and if the ON/OFF state does not change within the  
specified time, the ABS communication error is generated (Y11 ON).  
ON period of ABS transfer mode (Y1)  
ON period of ABS request (Y2)  
OFF period of ready to send the ABS data (X2).  
15 - 39  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(b) Device list  
X input contact  
Y output contact  
X0  
ABS bit 0 / completion of positioning  
ABS bit 1 / zero speed  
Send ABS data ready/ torque limit control  
Servo alarm  
Y0  
Servo-on  
X1  
Y1  
ABS transfer mode  
ABS request  
X2  
Y2  
X3  
Y3  
Alarm reset  
X4  
Alarm reset switch  
Y4 (Note 2)  
Y5 (Note 1)  
Y10  
Electromagnetic brake output  
Clear  
X5  
Servo emergency stop  
Servo-on switch  
X6  
Servo alarm  
X7  
Servo ready  
Y11  
ABS communication error  
ABS checksum error  
X10  
X11  
X12  
X13  
X14  
X15  
JOG ( ) switch  
Y12  
JOG ( ) switch  
Position start switch  
Position stop switch  
Home position return start switch  
1PG error reset  
D register  
M contact  
D0  
D1  
D2  
D3  
D4  
ABS data: Lower 16 bits  
M0  
M1  
M2  
M3  
M4  
Error flag  
ABS data: Upper 16 bits  
ABS data transmission start  
Retry command  
Checksum addition counter  
Check data in case of checksum error  
Transmission retry count in checksum  
discrepancy  
ABS data read  
Servo-on request reset permission  
D24  
Home position address: Lower 16 bits  
Home position address: Upper 16 bits  
1PG present position address: Lower 16 bits  
1PG present position address: Upper 16 bits  
M5  
Servo-on request  
Retry flag  
D25  
M6  
D106  
D107  
M10  
M11  
M12  
M13  
M20  
ABS data 2 bit receiving buffer  
ABS data 32 bit buffer  
Checksum 6 bit buffer  
M51  
M52  
M57  
M58  
M59  
For checksum comparison  
T timer  
M62  
Sum check discrepancy (greater)  
T200  
T201  
T202  
T203  
T204  
Retry wait timer  
M63  
M64  
Sum check discrepancy  
ABS transfer mode timer  
ABS request response timer  
Ready to send response timer  
ABS data waiting timer  
Sum check discrepancy (less)  
M70 (Note 1) Clear (CR) ON timer request  
M71 (Note 1) Data set type home position return request  
M99  
ABS data ready  
T210 (Note 1) Clear (CR) ON timer  
T211 Retry ABS transfer mode OFF wait timer  
C counter  
C0  
C1  
C2  
All data reception frequency counter (19 times)  
Checksum reception frequency counter  
ABS data reception frequency counter (16 times)  
Note 1. Necessary when data set type home position return is executed.  
2. Necessary in the event of electromagnetic brake output.  
15 - 40  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(c) ABS data transfer program for X-axis  
M8002  
Setting home position address  
to 0  
DMOV K0  
D24  
Initial  
pulse  
Setting 1PG pulse command  
unit  
TO  
K0  
K3  
K0  
K1  
DTO K0  
DTO K0  
DTO K0  
K4  
K100000 K1  
K10000 K1  
K50000 K1  
1PG max. speed: 100 kpps  
1PG Jog speed: 10 kpps  
K7  
1PG home position return  
speed: 50 kpps  
K9  
TO  
TO  
K0  
K0  
K11  
K12  
K13  
K15  
K19  
K1000  
K2  
K1  
K1  
K1  
K1  
1PG creep speed: 1 kpps  
1PG home position return  
zero-point count: twice  
1PG home position address  
setting  
DTO K0  
D24  
Initial setting  
1PG acceleration/deceleration  
time: 200ms  
TO  
K0  
K200  
1PG operation speed:  
100kpps  
DTO K0  
K100000 K1  
Position move account 1:  
300000 pulses  
DMOV K300000 D100  
DMOV K 250000 D102  
Position move account 2:  
250000 pulses  
Position move account 3:  
0 pulses  
DMOV K0  
DMOV K0  
DMOV K4  
D104  
Z
Clearing index registers V, Z  
Setting "4 times" for checksum  
error transmission frequency  
D4  
(To be continued)  
1
1
15 - 41  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(Continued from preceding page)  
1
1
X6  
M6  
SET  
M5  
Y0  
Servo-on request  
Servo-on  
switch  
M5  
Retry  
Y12  
M0  
Y11  
ABS  
communication  
error  
Servo-on output  
Servo-on ABS check Error  
error  
request flag  
PLS  
RST  
M1  
C1  
ABS data transmission start  
Clearing retry counter  
M1  
M6  
ABS  
Retry  
transmission  
start  
X6  
Servo-on switch  
Resetting ready to send ABS  
data  
RST  
M99  
M5  
Y1  
Servo-on and  
retry control  
RST  
Resetting servo-on request  
Resetting ABS transfer mode  
Resetting ABS request  
Resetting retry flag  
Y12  
RST  
RST  
Y2  
RST  
M6  
M64  
C2  
Resetting checksum  
judgement flag  
ZRST M62  
ZRST C0  
Resetting communication  
counter  
2
(To be continued) 2  
15 - 42  
15. ABSOLUTE POSITION DETECTION SYSTEM  
2
(Continued from preceding page)  
Y3  
2
X4  
M0  
Alarm reset output  
Alarm reset Error flag  
switch  
Y3  
RST  
C1  
Clearing retry counter  
Alarm reset  
Clearing ABS data receiving  
area  
ZRST M0  
M64  
D3  
Clearing ABS receive data  
buffer  
ZRST D0  
Resetting ABS data reception  
counter  
RST  
C2  
Resetting all data reception  
counter  
RST  
C0  
Servo alarm  
X5  
M0  
Y10  
Y1  
Error flag output  
detection, alarm  
reset control  
Emergency stop  
switch  
X3  
Servo alarm output  
Servo alarm  
RST  
RST  
Resetting ABS transfer mode  
Resetting ABS request  
Resetting ready to send  
Resetting servo-on request  
Resetting retry flag  
Y2  
RST  
M99  
M5  
M6  
Y1  
RST  
RST  
M1  
SET  
ABS transfer mode ON  
ABS data  
transmission start  
Clearing ABS data reception  
area  
ZRST M10  
ZRST D0  
RST  
M64  
D2  
ABS transfer  
mode  
Initial setting  
Clearing ABS receiver data  
buffer  
Resetting ABS data reception  
counter  
C2  
Resetting all data reception  
counter  
RST  
C0  
(To be continued)  
3
3
15 - 43  
15. ABSOLUTE POSITION DETECTION SYSTEM  
3
(Continued from preceding page)  
3
C0  
Y1  
ABS  
transfer  
mode  
X2  
PLS  
SET  
M3  
Y2  
Resetting ABS data  
ABS request ON  
All data  
receptin  
counter  
Send data ready  
M3  
ABS data 32 bits  
(2 bits 16 times)  
ABS data read  
Y2  
X2  
K1  
T204  
Checksum 6 bits  
(2 bits 3 times)  
ABS data waiting timer 10ms  
Masking ABS data 2 bits  
Right shift (2 bits) of ABS data  
Checksum addition  
ABS  
request ready  
Send data  
T204  
WANDP K1X0 H0003 K1M10  
ABS data waiting timer  
SFTR M10  
M20  
K38  
K2  
D2  
C2  
ADDP K1M10 D2  
K16  
C2  
Updating ABS data reception  
counter  
K19  
C0  
Updating all data reception  
counter  
RST  
RST  
Y2  
Resetting ABS request  
C0  
X2  
Y1  
Resetting ABS transfer mode  
ABS data Send data  
reception  
counter  
ready  
WANDP H003F D2  
CMPP K2M52 D2  
D2  
Masking checksum 6 bits  
Comparison of checksum  
ABS data checksum error  
Retry command  
M62  
Detection of ABS  
checksum error,  
retry control  
C1  
Y12  
M2  
Retry counter  
M62  
C1  
PLS  
Retry  
counter  
M64  
K2  
T211  
Setting retry ABS transfer  
mode OFF wait timer: 20ms  
Storing checksum value in the  
case of checksum error  
MOV K2M52  
D3  
M6  
M4  
M5  
SET  
PLS  
RST  
Retry flag ON  
T211  
Servo-on request reset  
permission  
Setting retry ABS transfer mode  
OFF wait timer: 20ms  
M4  
Servo-on request  
Servo-on request reset permission  
M5  
M6  
K10  
T211  
Setting retry wait timer: 100ms  
Servo-on Retry flag  
request  
4
(To be continued)  
4
15 - 44  
15. ABSOLUTE POSITION DETECTION SYSTEM  
4
(Continued from preceding page)  
4
M63  
DMOVP K8M20  
D0  
ABS data  
D0, D1  
Check  
sum  
match  
Adding 1PG home position  
address  
DADDPD0  
D24  
D0  
D0  
DTOP K0  
K26  
K1  
ABS data  
1PG  
Writing absolute  
position data to  
1PG  
SET  
M99  
M64  
M6  
Y1  
Setting ABS data ready  
Clearing checksum judging  
area  
ZRST M62  
RST  
Resetting retry flag  
Y11  
X6  
Detecting ABS  
communication error  
RST  
Servo-on  
switch  
ABS  
communi-  
cation error  
RST  
Y2  
Resetting ABS request  
Y1  
K500  
T201  
ABS transfer mode 5s timer  
ABS transfer mode  
Y1 Y2  
K100  
T202  
ABS request response  
1s timer  
Detecting ABS  
communication  
error  
ABS transfer ABS request  
mode  
Y1  
X2  
K100  
T203  
Ready to send response  
1s timer  
ABS transfer Send data ready  
mode  
T201  
Y11  
ABS communication error  
ABS transmission NG  
T202  
ABS request NG  
T203  
Send data ready NG  
M2  
D4  
C1  
Counting retry frequency  
Setting servo-on request  
Retry command  
ABS transfer  
retry control  
T200  
M6  
SET  
M5  
Retry  
wait  
Retry  
timer  
5
(To be continued) 5  
15 - 45  
15. ABSOLUTE POSITION DETECTION SYSTEM  
5
(Continued from preceding page)  
M109  
5
M8000  
Normally  
OFF  
M110  
M111  
M112  
M102  
M103  
1PG control  
command  
(not used)  
X7  
X12  
M99  
PLS  
M120  
M104  
M105  
M106  
K1  
Start command pulse  
1PG JOG command  
1PG JOG command  
Servo  
ready  
Position  
ABS data  
start switch ready  
X10  
Operation  
command  
control  
JOG  
X11  
JOG  
(Note)  
X7  
X14  
1PG home position return  
start  
Servo ready Home position return start switch  
M120  
DTO K0  
K17  
D100Z  
SET  
Setting motion distance  
1PG start  
Position  
start  
command  
pulse  
108  
Z
DINC  
DINC  
K6  
Z
Index processing  
Position  
command  
control  
DCMP  
Z
M121  
Z
M122  
DMOV K0  
INDX 6  
X13  
M101  
1PG stop command  
1PG error reset  
Position stop  
switch  
M0  
Error flag  
X16  
M100  
1PG error reset  
6
(To be continued)  
6
Note. Program example for the dog type home position return. For the data set type home position return, refer to the program example  
in (2) (d) in this section.  
15 - 46  
15. ABSOLUTE POSITION DETECTION SYSTEM  
6
(Continued from preceding page)  
6
M8000  
TO  
K0  
K25  
K28  
K26  
K4M100 K1  
K3M200 K1  
FX2 1PG  
Transmission of control signals  
Normally  
ON  
FROM K0  
DFROMK0  
1PG FX2  
Transmission of status  
D106  
RST  
K1  
1PG FX2  
Transmission of present  
position D106, D107  
1PG  
M200  
M108  
END  
Resetting start command  
(d) Data set type home position return  
After jogging the machine to the position where the home position (e.g.500) is to be set, choose the  
home position return mode set the home position with the home position return start switch (X14)  
ON. After switching power on, rotate the servo motor more than 1 revolution before starting home  
position return.  
Do not turn ON the clear (CR) (Y5) for an operation other than home position return. Turning it  
ON in other circumstances will cause position shift.  
Y1  
X0  
X14  
PLS  
M70  
Clear (CR) ON timer request  
ABS transfer Positioning Home position return  
mode completion start swiitch  
M70  
K10  
T210  
Clear (CR) 100ms ON timer  
Clear signal ON  
timer request  
M71  
SET  
RST  
M71  
M71  
Y5  
Setting data set type home position return request  
Resetting data set type home position return request  
Clear (CR) ON  
Date set type home position return request  
T210  
Clear signal 100ms ON timer  
M71  
Data set type  
home position  
return request  
Setting X-axis home position address "500"  
in the data register  
DMOVP K500  
D24  
K1  
DTOP K0  
DTOP K0  
K13  
K26  
D24  
D24  
Changing X-axis home position address  
Changing X-axis present position data  
K1  
15 - 47  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(e) Electromagnetic brake output  
During ABS data transfer (for several seconds after the servo-on (SON) is turned on), the servo  
motor must be at a stop.  
Set "1 1 " in parameter No. 1 of the servo amplifier to choose the electromagnetic brake interlock  
(MBR).  
Y1  
X1  
Y4  
Electromagnetic brake output  
ABS transfer Brake (MBR)  
mode  
(f) Positioning completion  
To create the status information for positioning completion.  
During ABS data transfer (for several seconds after the servo-on (SON) is turned on), the servo  
motor must be at a stop.  
Y1  
X0  
M
Completion of positioning  
ABS transfer Positioning  
mode completion  
Y1  
ABS transfer  
mode  
(g) Zero speed  
To create the status information for zero speed.  
During ABS data transfer (for several seconds after the servo-on (SON) is turned on), the servo  
motor must be at a stop.  
Y1  
X1  
M
Zero speed  
ABS transfer Zero speed  
mode  
Y1  
ABS transfer  
mode  
(h) Torque limiting  
To create the status information for the torque limiting mode.  
During ABS data transfer (for several seconds after the servo-on (SON) is turned on), the torque  
limiting must be off.  
Y1  
X2  
M
Torque limiting mode  
ABS transfer Torque limiting mode  
mode  
15 - 48  
15. ABSOLUTE POSITION DETECTION SYSTEM  
15.8.3 MELSEC A1SD75  
(1) Connection diagram  
Servo amplifier  
CN1B  
3
13  
VDD  
COM  
SG  
A1S62P  
600mA  
24  
24G  
10  
LG  
FG  
SG  
20  
Power  
supply  
INPUT  
AC100/200  
A1SCPU  
A1SX40  
ABS data bit 0/Positioning completion  
ABS data bit 1/zero speed  
Readying to send data/Torque limiting  
Trouble  
0
1
2
3
4
5
6
7
COM  
DO1  
ZSP  
TLC  
ALM  
4
19  
6
18  
Alarm reset  
Emergency stop  
Servo-on  
EMG  
15  
Upper limit  
Home position return  
LSP  
LSN  
16  
17  
Operation mode I  
Operation mode II  
Position start  
Lower limit  
Operation  
8
9
A
B
C
D
Operating  
mode  
Position stop  
(Note 3)  
status  
I
II  
JOG  
JOG  
OFF OFF  
OFF ON  
JOG  
E
F
COM  
NC  
NC  
ON OFF  
Home  
position  
return  
ON  
ON Positioning  
A1SY40  
Servo-on  
0
1
2
3
4
5
6
7
SON  
5
8
9
ABS transfer mode  
ABS request  
ABSM  
ABSR  
RES  
Alarm reset  
14  
RA2  
Electromagnetic  
brake output  
(Note 4)  
COM1  
Servo alarm  
8
9
A
B
ABS communication error  
ABS checksum error  
COM2  
(Note 1)  
Proximity signal  
(Note 2)  
A1SD75-P  
DOG  
PLS  
RLS  
STOP  
CHG  
11  
12  
13  
14  
15  
START 16  
COMMON 35  
COMMON  
36  
CN1A  
9
19  
COM  
RD  
INP  
Servo ready  
RDY  
INPS  
7
8
Positioning completion  
18  
COMMON 26  
CLEAR  
COMMON  
5
23  
CR  
SG  
SG  
LZ  
LZR  
PG  
PP  
NG  
NP  
LG  
SD  
8
10  
20  
5
15  
13  
3
12  
2
1
(Note 2)  
24  
25  
PGO  
PULSE- 21  
F
PULSE-  
R
PLS COM 19  
PLS COM 20  
3
22  
4
Plate  
(Note 6)  
(Note 5)  
(Note 6)  
15 - 49  
15. ABSOLUTE POSITION DETECTION SYSTEM  
Note 1. For the dog type home position return. Need not be connected for the data set type home position return.  
2. If the servo motor provided with the zero point signal is started, the A1SD75 will output the deviation counter clear (CR). Therefore,  
do not connect the clear (CR) of the MR-J2-A to the A1SD75 but connect it to the output module of the programmable controller.  
3. This circuit is provided for your reference.  
4. The electromagnetic brake output should be controlled via a relay connected to the programmable controller output.  
5. Use the differential line driver system for pulse input. Do not use the open collector system.  
6. To reinforce noise suppression, connect LG and pulse output COM.  
(2) Sequence program example  
(a) Conditions  
The ABS data is transmitted using the leading edge of the servo-on switch as a trigger.  
1) When the servo-on switch and power supply GND are shorted, the ABS data is transmitted at  
power-on of the servo amplifier or on the leading edge of the RUN signal after a PC reset  
operation (PC-RESET). The ABS data is also transmitted when an alarm is reset or when an  
emergency stop is reset.  
Before starting the ABS data transfer, confirm that it is the servo-on (SON) ON state (refer to  
section 3.3.2).  
2) If a checksum mismatch is detected in the transmitted data, data transmission is retried up to  
three times. If the checksum mismatch still persists after the retries, the ABS checksum error  
occurs (Y3A ON).  
3) The following time periods are measured. If the ON/OFF state does not change within the  
specified time, the ABS communication error occurs change within the specified time, the ABS  
communication error occurs (Y39 ON).  
ON period of ABS transfer mode (Y31)  
ON period of ABS request (Y32)  
OFF period of reading to send ABS data (X22)  
15 - 50  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(b) Device list  
X input contact  
Y output contact  
X20  
X21  
X22  
X23  
X24  
X25  
X26  
X27  
X28  
X29  
ABS bit 0 / positioning completion  
ABS bit 1 / zero speed  
Reading to send ABS data / limiting torque  
Servo alarm  
Alarm reset switch  
Servo emergency stop  
Servo-on switch  
Home position return start switch  
Operation mode  
Operation mode  
Y30  
Y31  
Y32  
Y33  
Servo-on  
ABS transfer mode  
ABS request  
1)  
2)  
Alarm reset  
Y34 (Note 2) Electromagnetic brake output  
Y35 (Note 1) Clear  
Y38  
Y39  
Y3A  
Servo alarm  
ABS communication error  
ABS checksum error  
D register  
M contact  
D0  
D1  
D2  
D3  
ABS data transmission counter  
Checksum transmission counter  
Checksum addition register  
ABS data: Lower 16 bits  
M5  
M6  
M7  
M8  
ABS data transmission start  
Sum check completion  
Sum check mismatch  
ABS data ready  
4)  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
D11  
D12  
D110  
D111  
ABS data: Upper 16 bits  
M9  
Transmission data read enabled  
Checksum 2 bits read completion  
ABS 2 bits read completion  
ABS 2 bits request  
Servo-on request  
Servo alarm  
ABS data transmission retry start pulse  
Retry flag set  
Retry flag reset  
ABS data 2-bit receiving buffer  
Check data in case of checksum error  
Number of retries  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
M17  
M18  
Forward rotation direction  
Home position address: Lower 16 bits  
Home position address: Upper 16 bits  
Drive unit ready data  
Home position return completion data  
Received shift data: Lower 16 bits  
Received shift data: Upper 16 bits  
3)  
PLS processing command  
M20 (Note 1) Clear (CR) ON timer request  
M21 (Note 1) Data set type home position return request  
T timer  
M22  
M23  
M24  
Home position return processing instruction  
Current position change processing instruction  
Current position change flag  
T0  
T1  
T2  
T3  
ABS transmission mode timer  
ABS request response timer  
Retry wait timer  
M26  
ABS transfer mode OFF permission  
ABS data send reading response timer  
C counter  
T10 (Note 1) Clear (CR) ON timer  
T200  
T201  
Transmitted data read 10ms delay timer  
Retry ABS transfer mode OFF wait timer  
C0  
C1  
C2  
ABS data receive times counter  
Checksum receive times counter  
Retry counter  
Note 1. Required for data set type home position return.  
2. Required for electromagnetic brake output.  
15 - 51  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(c) ABS data transfer program for X axis  
This sequence program example assumes the following conditions.  
Parameters of the A1SD75-P1 positioning module  
1) Unit setting  
:3 pulse (PLS)  
2) Travel per pulse :1 1 pulse  
To select the unit other than the pulse, conversion into the unit of the feed value per pulse is  
required. Hence, add the following program to the area marked (Note) in the sequence program.  
<Additional program>  
Item  
mm  
inch  
degree  
pulse  
D * P K  
D3 D3  
Unit setting  
0
1
2
3
0.00001 0.0001 0.001 0.01 0.00001 0.0001 0.001 0.01  
Travel per pulse  
Unit of travel  
0.1 to 1 to 10 to 100  
m/PLS  
to  
to  
to  
to  
to  
to  
to  
to  
inch/PLS  
degree/PLS  
PLS  
Constant K for  
conversion into unit of 1 to 10 to  
travel  
100  
to  
100  
to  
1000 1 to 10 to 100 to 1000 1 to 10 to  
1000 None  
Reference  
For 1 m/PLS, set constant K to 10  
For 5 m/PLS, set constant K to 50  
The additional program is not required for the unit setting is PLS.  
5)  
M101  
MOV K0  
K3  
Y30  
K1  
Output signal reset  
A1SD75 error reset  
Error reset  
completion  
TO  
H0000 K1151 K1  
MOV K3  
Initial  
setting  
6)  
Setting the number of retries  
(to 3 times)  
D7  
SET  
M101  
A0  
Error reset completion flag  
Loading received shift data  
M9039  
DMOV D110  
PC RUN  
1
(To be continued)  
1
15 - 52  
15. ABSOLUTE POSITION DETECTION SYSTEM  
1
(Continued from preceding page) 1  
X26  
SET  
FROM H0000 K816 D11  
WAND H0001  
M13  
K1  
Servo-on request  
7)  
Servo-on  
switch  
Reading A1SD75 1-axis RDY  
signal  
D11  
M23  
M24  
M8  
Masking RDY signal  
Current position change  
processing instruction  
M23  
D11 K1  
PLS  
RST  
RST  
RST  
RST  
Current position change flag  
Resetting ready  
Processing instruction RDY signal ON judgement  
X26  
Servo-on  
control  
Servo-on  
switch  
M13  
C0  
Resetting servo-on request  
Resetting ABS transmission  
counter at servo OFF  
Resetting checksum  
transmission counter at servo  
OFF  
C1  
M13  
M14  
M16  
Y30  
M5  
Servo-on output  
Servo-on  
request  
Error  
flag  
Retry flag  
set  
PLS  
PLS  
RST  
ABS interface start  
Setting retry flag  
M13  
M17  
C2  
Servo-on  
request  
M17  
ABS transfer  
retry control  
Resetting retry counter  
Alarm reset output  
Retry flag  
reset request  
X24  
M14  
Y33  
Error reset  
switch  
Error flag  
Y33  
Alarm reset  
X25  
M14  
M8  
Servo alarm  
detection,  
alarm reset  
control  
Error flag output  
Emergency stop  
switch  
X23  
RST  
RST  
Resetting ready  
Servo alarm  
M13  
Y38  
Resetting servo-on request  
Servo alarm  
2
(To be continued) 2  
15 - 53  
15. ABSOLUTE POSITION DETECTION SYSTEM  
2
(Continued from preceding page)  
2
M5  
Initializing ABS data  
transmission counter  
MOV K16  
MOV K3  
MOV K0  
MOV K0  
DMOV K0  
DMOV K0  
RST  
D0  
D1  
D2  
D5  
D9  
A0  
ABS data  
transfer  
start  
Initializing checksum  
transmission counter  
Initializing checksum register  
Initializing ABS data register  
Initializing ABS data register  
Initializing ABS data register  
ABS transfer mode  
initial setting  
Resetting ABS transmission  
counter  
C0  
C1  
M26  
Y31  
Resetting checksum  
transmission counter  
RST  
ABS transfer mode OFF  
permission  
RST  
M5  
ABS transfer mode  
ABS data  
transfer start  
Y31  
ABS transfer mode  
control  
M26  
ABS transfer mode  
OFF permission  
ABS transfer  
mode  
C0  
C1  
Y31  
DMOVPA0  
MOVP K0  
D3  
A0  
K1  
D8  
A1  
M18  
D4  
D4  
D3  
D4  
Saving ABS 32-bit data  
Clearing register  
Counter Sum  
ABS transfer  
counter mode  
8)  
*1 Reading x-axis rotation  
direction parameter  
FROMPH0000 K5  
D8  
WAND H0001  
WAND H8000  
PLS  
Absolute position  
polarity,A1SD75  
rotation direction  
setting detection  
Masking rotation direction  
parameter  
9)  
Masking ABS data sign  
PLS processing command  
10)  
Rotation direction  
judgement  
M18  
Reversing polarity of upper  
16 bits  
D8 K1  
NEG  
PLS  
processing  
command  
Decrementing upper 16 bits  
by 1  
K1  
Reversing absolute  
position polarity  
Reversing polarity of lower  
16 bits  
NEG  
Lower 16 bits  
D4 D4  
0
K0 D3  
K1  
1
3
(To be continued) 3  
15 - 54  
15. ABSOLUTE POSITION DETECTION SYSTEM  
11)  
3
(Continued from preceding page) 3  
M9  
Read  
C0  
MOV K1X20  
WAND H0003  
WOR D5  
ROR  
D5  
D5  
A0  
K2  
Reading 4 bits  
ABS data  
enabled counter  
Masking 2 bits  
Adding 2 bits  
Reading checksum  
6bits  
(2 bits 3 times)  
Right rotation of A0 2 bits  
D1  
C1  
Counting the number of  
checksum data  
Completion of reading  
checksum 2 bits  
PLS  
MOV K1X20  
WAND H0003  
WOR D5  
DROR  
M10  
D5  
D5  
A0  
M9  
Read  
C0  
Reading 4 bits  
ABS data  
enabled counter  
11)  
Masking 2 bits  
Adding 2 bits  
Reading ABS data  
32 bits  
(2 bits 16 times)  
K2  
Right rotation of A0 2 bits  
Adding checksum  
D5  
D2  
D2  
D0  
C0  
Counting the number of ABS  
data  
Completion of reading ABS  
2 bits data  
PLS  
M11  
K10  
A0  
C1  
X22  
RORP  
Right rotation of A0 10 bits  
Masking sum check  
Sum check OK  
Checksum  
counter  
Ready to  
send ABS  
data  
WAND H003F  
D2 A0  
D2 A0  
M6  
Detecting ABS  
checksum error  
M7  
Sum check NG  
MOV A0  
D6  
Sum check memory  
ABS transfer mode OFF  
permission  
SET  
M26  
Y3A  
C2  
ABS checksum error  
Retry counter  
4
(To be continued) 4  
15 - 55  
15. ABSOLUTE POSITION DETECTION SYSTEM  
4
(Continued from preceding page)  
4
M11  
RST  
Y32  
ABS request reset  
ABS 2 bits  
completion  
M10  
Checksum 2 bits completion  
Y31  
X22  
C1  
PLS  
SET  
M12  
Y32  
ABS 2 bits request  
ABS request set  
10ms delay timer  
ABS transfer Ready to Checksum  
ABS request  
control  
send ABS  
data  
counter  
mode  
M12  
ABS 2 bits request  
Y32 X22  
ABS request Ready to send ABS data  
K1  
T200  
Y32  
X22  
T200  
M9  
K1  
D3  
D3  
Transmitted data read enabled  
12)  
ABS  
request  
M6  
Ready to send 10ms delay timer  
ABS data  
*1: Reading A1SD75 home  
position address (Note 2)  
DFROPH0000 K0072 D9  
Checksum  
OK  
Restoring absolute  
position data.  
Inserting constant K for conversion  
into the unit of feed per pulse  
(Note 1)  
D*P  
K
D3  
D9  
Adding home position address  
to absolute position  
D
P
D3  
7)  
13)  
M6  
M24  
SET  
M8  
K1  
ABS data ready  
14)  
Checksum  
OK  
Change  
flag  
*1: Changing X-axis current  
position  
DTOP H0000 K1154 D3  
Writing absolute  
position data to  
A1SD75  
*1: Writing No. 9003 data for  
changing current value  
TO  
H0000 K1150 K9003  
K1  
SET  
RST  
Y10  
Y10  
Positioning start  
Y10  
X1  
X4  
Switching start signal off on  
completion of positioning  
Positioning Start com- BUSY  
start  
pletion  
XA  
Error detection  
15)  
5
(To be continued)  
5
Note 1. When the unit setting parameter value of the A1SD75 positioning module is changed from "3" (pulse) to "0" (mm), the unit is  
0.1 m for the input value. To set the unit to 1 m, add this program to multiple the feed value by 10.  
2. The home position address loaded from flash ROM of normal positioning module can be obtained.  
For updating the home position address by the home position setting, refer to (2)(f) Data set type home position return in this  
section.  
15 - 56  
15. ABSOLUTE POSITION DETECTION SYSTEM  
5
(Continued from preceding page)  
5
Y39  
X26  
Servo-on switch  
RST  
Y31  
Resetting ABS transfer mode  
ABS transfer mode 5s timer  
ABS communi-  
cation error  
Y31  
K50  
T0  
ABS transfer mode  
Y31 Y32  
K10  
T1  
ABS request response  
1s timer  
ABS transfer ABS request  
mode  
Detecting ABS  
communication  
error  
Y31  
X22  
K10  
T3  
ABS data send ready  
response 1s timer  
ABS transfer Ready to send  
mode ABS data  
T0  
Y39  
ABS communication error  
ABS transfer NG  
T1  
ABS request NG  
T3  
Readying to send ABS data NG  
M7  
Setting ABS transfer retry  
start flag  
PLS  
SET  
RST  
RST  
M15  
Sum check NG  
Y31  
M15  
K2  
T201  
Retry ABS transfer mode  
OFF wait timer 20ms  
ABS transfer ABS transfer  
mode  
T201  
retry start  
C2  
M16  
Setting retry flag  
Retry counter  
Retry ABS  
transfer  
mode OFF  
wait timer  
Retry  
counter  
D7  
C2  
ABS transfer  
retry control  
Setting ABS transfer retry  
start flag  
M15  
M16  
K1  
T2  
Retry waiting timer (100ms)  
Resetting retry flag  
Retry flag set  
T2  
M16  
Retry waiting timer  
M9039  
DMOV A0  
D110  
END  
Saving received shift data  
PC RUN  
15 - 57  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(d) X-axis program  
Do not execute the X-axis program while the ABS ready (M8) is off.  
(Note)  
Positioning X-axis start  
When "M8" (ready to send ABS data) switches on,  
the X-axis start program is executed by the X-axis  
start command.  
mode  
command  
M8  
X-axis start program  
Ready to  
send ABS  
data  
(e) Dog type home position return  
Refer to the home position return program in the A1SD75 User’s Manual.  
Note that this program requires a program which outputs the clear (CR) (Y35) after completion of  
home position return.  
Add the following program.  
16)  
Home position return  
start command  
Reading 1-axis home position return  
completion signal  
FROM H0000 K817 D12  
WAND K0016  
K1  
D12  
M22  
Y35  
Masking home position return completion  
Home position return processing instruction  
Switching clear (CR) on  
M22  
D12 K16  
Processing  
instruction  
Home position return  
completion judgement  
15 - 58  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(f) Data set type home position return  
After jogging the machine to the position where the home position (e.g. 500) is to be set, choose the  
home position return mode and set the home position with the home position return start switch  
(X27) ON.  
After switching power on, rotate the servo motor more than 1 revolution before starting home  
position return.  
Do not turn ON the clear (CR) (Y35) for an operation other than home position return. Turning it  
on in other circumstances will cause position shift.  
M9039  
Y1D  
Programmable controller ready  
PC RUN  
Home position  
Y31  
X20  
X27  
return mode  
PLS  
M20  
Clear (CR) ON timer request  
ABS transfer Positioning Home position  
mode completion return start switch  
M20  
K1  
T10  
Clear (CR) 100ms ON timer  
Clear signal ON  
timer request  
M21  
SET  
RST  
M21  
M21  
Y35  
D9  
Setting data set type home position return request  
Data set type home position return request  
T10  
Resetting data set type home position return  
request  
Clear signal 100ms ON timer  
M21  
Switch clear (CR) on  
Data set type home position  
return request  
Setting X-axis home position address 500  
DMOVP K500  
in data register  
17)  
18)  
(Note 1)  
*1: Changing X-axis home position address  
(Note 2)  
DTOP H0000 K72  
D9  
K1  
DTOP H0000 K1154 D9  
K1  
*1: Changing X-axis current value  
*1: Writing positioning data No. 9003  
Starting positioning  
TO  
H0000 K1150 K9003  
K1  
SET  
RST  
Y10  
Y10  
Y10  
X1  
X4  
Switching BUSY signal off to switch start  
signal off.  
Positioning Start  
start completion  
BUSY  
XA  
Error detection  
19)  
Note 1. When the data of the home position address parameter is not written from GX Developer or the like before starting the data set  
type home position return program, this sequence circuit is required.  
When the home position address is written in the home position address parameter, change to the following circuit.  
17)  
DFROP H0000 K72  
D9  
K1  
2. Changes are stored temporarily to buffer memory at this time. An additional processing is required when changes should be  
reflected to memory for OS or flash ROM. For details, refer to the positioning module user's manual.  
15 - 59  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(g) Electromagnetic brake output  
During ABS data transfer (for several seconds after the servo-on (SON) is turned on), the servo  
motor must be at a stop.  
Set "1 1 " in parameter No. 1 of the servo amplifier to choose the electromagnetic brake interlock  
(MBR).  
Y31  
X21  
Y34  
Electromagnetic brake output  
ABS transfer Brake (MBR)  
mode  
(h) Positioning completion  
To create the status information for positioning completion.  
During ABS data transfer (for several seconds after the servo-on (SON) is turned on), the servo  
motor must be at a stop.  
Y31  
X20  
M
Positioning completion  
ABS transfer Positioning  
mode completion  
Y31  
ABS transfer  
mode  
(i) Zero speed  
To create the status information for zero speed.  
During ABS data transfer (for several seconds after the servo-on (SON) is turned on), the servo  
motor must be at a stop.  
Y31  
X21  
M
Zero speed  
ABS transfer Zero  
mode speed  
Y31  
ABS transfer  
mode  
(j) Torque limiting  
To create the status information for the torque limiting mode.  
During ABS data transfer (for several seconds after the servo-on (SON) is turned on), the torque  
limiting must be off.  
Y31  
X22  
M
Torque limiting mode  
ABS transfer Torque limiting  
mode mode  
15 - 60  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(3) Sequence program - 2-axis control  
The following program is a reference example for creation of an ABS sequence program for the second  
axis (Y axis) using a single A1SD75 module. Create a program for the third axis in a similar manner.  
(a) Y-axis program  
Refer to the X-axis ABS sequence program and create the Y-axis program.  
Assign the X inputs, Y outputs, D registers, M contacts, T timers and C counters of the Y axis so  
that they do not overlap those of the X axis.  
The buffer memory addresses of the A1SD75 differ between the X and Y axes. The instructions  
marked *1 in the program of section 15.8.3 (2) (c) should be changed as indicated below for use with  
the Y axis.  
[FROMP H0000 K5 D8 K1]  
[DFROP H0000 K0072 D9 K1]  
[DTOP H0000 K1154 D3 K1]  
[TO H0000 K1150 K9003 K1]  
[FROMP H0000 K155 D8  
[DFROP H0000 K222 D9  
[DTOP H0000 K1204 D3  
K1]  
K1]  
K1]  
[TO  
H0000 K1200 K9003 K1]  
[Program configuration]  
20)  
X-axis ABS sequence program  
(Program in section 15.8.3 (2) (c))  
Y-axis ABS sequence program  
(Refer to the X-axis program and write the Y-axis  
program)  
(b) Data set type home position return  
Arrange the data set type home position return programs given in section 15.8.3 (2) (f) in series to  
control two axes.  
Refer to the X-axis data set type home position return program and create the Y-axis program.  
Assign the X inputs, Y outputs, D registers, M contacts and T timers of the Y axis so that they do  
not overlap those of the X axis.  
The buffer memory addresses of the A1SD75 differ between the X and Y axes. The instructions  
marked *1 in the program of section 15.8.3 (2) (f) should be changed as indicated below for use with  
the Y axis.  
[DTOP H0000 K72 D9 K1]  
[DTOP H0000 K1154 D9 K1]  
[TO H0000 K1150 K9003 K1]  
[DTOP H0000 K222 D9 K1]  
[DTOP H0000 K1204 D3 K1]  
[TO H0000 K1200 K9003 K1]  
[Program configuration]  
20)  
X-axis data set type home position return program  
(Program in section 15.8.3 (2) (f))  
Y-axis data set type home position return program  
(Refer to the X-axis program and write the Y-axis  
program)  
15 - 61  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(4) Differences between A1SD71  
The sequence programs shown in (2) in this section differ from those for the A1SD71 in the following  
portions. 1) to 20) in the following sentences indicate the numbers in the programs given in (2) in this  
section.  
(a) Devices used  
Since the A1SD75 is a one-slot module which occupies 32 I/O points, the I/O devices are different,  
as indicated by 1) and 2), from those of the two-slot A1SD71 which occupies 48 point. The A1SD75  
uses the devices indicated in the following table, and its D registers and M contacts are different as  
indicated by 3) and 4).  
Devices  
Axis 1 Axis 2 Axis 3  
X0  
Bit device  
:Data at ON  
:Stored data  
Device name  
Application  
A1SD75 ready  
Data register  
Not ready/ WDT error  
BUSY(running)  
Input  
X4  
X5  
X6  
BUSY  
XA  
XB  
XC  
Error detection  
Error detection  
Y10  
Y13  
Y16  
Y17  
Y11  
Y14  
Y18  
Y19  
Y12 Positioning start  
Start being requested  
Stop being requested  
Forward rotation being started  
Reverse rotation being started  
Programmable controller CPU  
normal  
Y1C Axis stop  
Y1A Forward rotation jog start  
Y1B Reverse rotation jog start  
Output  
Y1D  
M0  
Programmable controller ready  
Parameter setting completion flag  
Flash ROM registration processing  
flag  
Setting complete  
M1  
Processing  
M2  
M3  
M4  
Axis error reset requesting flag  
A1SD75 normal flag  
Requesting  
internal relay  
Data register  
M100  
M101  
M102  
M103  
D100  
D102  
D105  
D108  
A1SD75 normal  
Error reset complete  
All BUSY signal OFF  
Operable  
Initial error reset completion flag  
All BUSY signal OFF flag  
A1SD75 operable flag  
Flash ROM registration results  
Registration results  
Error code  
D101  
D104  
D107  
D103 Axis error code  
D106 Axis warning code  
D109 Axis error reset results  
Warning code  
Axis error reset results  
(b) ABS sequence program example  
1) Initial setting  
To reset the error of the A1SD75, the program 5) is added to reset all output signals at start-up.  
The axis error reset buffer memory address is changed from 201 to 1154 (axis 1) and the slot  
number from H0001 (slot number 1) to H0000 (slot number 2) 6).  
2) Absolute position polarity, A1SD75 rotation direction setting detection  
The slot number and buffer memory of the X-axis rotation direction parameter reading area are  
changed from [FROMP H0001 K7872 D8 K1] to [FROMP H0000 K5 D8 K1] 8).  
The rotation direction parameter masking area is changed from [WAND H0004 D8] to [WAND  
H0001 D8] 9).  
3) Reversing absolute position polarity  
The rotation direction judging area is changed from [ D8 K4] to [ D8 K1] 10).  
4) Reading checksum 6 bits, reading ABS data 32 bits  
The 4 bits reading area is changed from [MOV K1 X30D5] to [MOV K1X20 D5] 11).  
15 - 62  
15. ABSOLUTE POSITION DETECTION SYSTEM  
5) Restoring absolute position data  
The slot number and buffer address of the A1SD75 home position address reading area are  
changed from [DFROP H0001 K7912 D9 K1] to [DFROP H0000 K72 D9 K1] 12).  
6) Writing absolute position data to A1SD75  
The slot number and buffer address of the X-axis current value changing area are changed from  
[DTOP H0001 K41 D3 K1] to [DTOP H0000 K1154 D3 K1] 14). When the current value is changed  
in the A1SD75, the current feed value is changed at the start of positioning data No.9003.  
Therefore, the starting program for positioning data No.9003 15) is added.  
7) X-axis data set type home position return program  
The slot numbers and buffer addresses of the X-axis home position address changing area are  
changed from [DTOP H0001 K7912 D9 K1] to [DTOP H0000 K72 D9 K1] and from [DFROP  
H0001 K7912 D9 K1] to [DFROP H0000 K72 D9 K1] 17).  
The slot number and buffer address of the X-axis current value changing area are changed from  
[DTOP H0001 K41 D3 K1] to [DTOP H0000 K1154 D3 K1] 18). When the current value is changed  
in the A1SD75, the current feed value is changed at the start of positioning data No.9003.  
Therefore, the starting program for positioning data No.9003 19) is added.  
8) Y-axis sequence program, Y-axis data set type home position return program.  
The slot numbers and buffer addresses are changed as indicated by 20).  
9) Writing absolute position data to A1SD75  
The A1SD75 allows the current position to be changed only when the ready (RD) of the Servo  
amplifier is on. Therefore, if the CPU scan is fast, the program for A1SD71 may change the  
current position before the ready (RD) switches on. 7) is added because the current position must  
be changed after it has been confirmed that the drive unit ready (RD) of the A1SD75 (D75) has  
switched on/off.  
10) ABS coordinate error detection  
As the A1SD75 can handle the negative-polarity coordinate position that the A1SD71 could  
not handle, the program for ABS coordinate error detection is deleted 13).  
11) Dog type home position return program  
Due to the changes in wiring described in (4) (a) 4) in this section, the program for outputting  
the clear (CR) (Y35) after completion of a home position return is required 16).  
15 - 63  
15. ABSOLUTE POSITION DETECTION SYSTEM  
15.9 Confirmation of absolute position detection data  
You can confirm the absolute position data with MR Configurator (servo configuration software).  
Crick "Diagnostics" and "Absolute Encoder Data" to open the absolute position data display screen.  
(1) Cricking "Diagnostics" in the menu opens the sub-menu as shown below.  
(2) By cricking "Absolute Encoder Data" in the sub-menu, the absolute encoder data display window  
appears.  
(3) Crick the "Close" button to close the absolute encoder data display window.  
15 - 64  
15. ABSOLUTE POSITION DETECTION SYSTEM  
15.10 Absolute position data transfer errors  
15.10.1 Corrective actions  
(1) Error list  
The number within parentheses in the table indicates the output coil or input contact number of the  
A1SD71.  
Output coil  
Name  
(Note)  
Description  
Cause  
Action  
AD71 1PG  
Y49 Y11 1. The ABS data transfer mode 1. Wiring for ABS transfer mode Correct the wiring.  
ABS  
communication  
error  
signal (Y41) is not completed  
within 5s.  
signal, ABS data request  
signal, or ready to send signal  
is disconnected or connected to  
the SG terminal.  
2. PLC ladder program wrong. Correct the ladder.  
3. Faulty PLC output or input Change the input or output  
module.  
2. The ready to send signal  
(X32) is not turned OFF  
within 1s after the ABS data  
request signal (Y42) is turned  
ON.  
module.  
3. The ready to send signal  
(X32) remains OFF for longer  
than 1s.  
4. Faulty printed board in the  
servo amplifier.  
Change the amplifier  
5. Power supply to the servo  
amplifier is OFF.  
Turn on the power to the servo  
amplifier.  
ABS data  
checksum  
error  
Y4A Y12  
ABS data sumcheck resulted 1. Wiring for the ABS data  
Correct the wiring.  
in mismatch four times  
consecutively.  
signal (ABS bit 0 (PF), bit 1  
(ZSP)) is disconnected or  
connected to the SG terminal.  
2. PLC ladder program wrong. Correct the ladder.  
3. Faulty PLC input module.  
4. Faulty printed board in the  
servo amplifier.  
Change the input module.  
Change the amplifier.  
ABS  
coordinate  
error  
Y4B  
The motor position is in the  
negative coordinate value  
range when the servo is  
turned ON or when power  
supply is turned ON.  
1. The servo is turned ON or the 1. Reconsider the position  
power supply is turned ON  
near the machine home  
position or in the zone in  
which addresses decrease.  
where the servo is turned  
ON.  
2. Set the home position for  
positioning apart from the  
machine home position.  
Change the electromagnetic  
2. The machine falls on a  
vertical axis when the servo- brake operation sequence.  
on (SON) is turned ON/OFF.  
Servo alarm  
Y48 Y10  
Alarm occurred in the servo  
amplifier.  
1. Emergency stop (EMG) of the After ensuring safety, turn  
servo amplifier was turned  
off.  
EMG on.  
2. Trouble (ALM) of the servo  
amplifier was turned on.  
Refer to section 10.2.2 and take  
action.  
Note. Refer to (2) in this section for details of error occurrence definitions.  
15 - 65  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(2) ABS communication error  
(a) The OFF period of the send data ready signal output from the servo amplifier is checked.  
If the OFF period is 1s or longer, this is regarded as a transfer fault and the ABS communication  
error is generated.  
The ABS communication error occurs if the ABS time-out warning (AL.E5) is generated at the  
servo amplifier due to an ABS request ON time time-out.  
ON  
ABS transfer mode  
OFF  
1s  
ON  
ABS request  
OFF  
ON  
Send data ready  
OFF  
The signal does not come ON  
YES  
ABS communication  
error  
NO  
(b) The time required for the ABS transfer mode signal to go OFF after it has been turned ON (ABS  
transfer time) is checked.  
If the ABS transfer time is longer than 5s, this is communication error occurs if the ABS time-out  
warning (AL.E5) is generated at the servo amplifier due to an ABS transfer mode completion time  
time-out.  
5s  
ON  
ABS transfer mode  
The signal does not go OFF  
18 19  
OFF  
1
2
3
4
ON  
ABS request  
OFF  
ON  
Send data ready  
1
2
3
4
18  
19  
OFF  
YES  
NO  
ABS communication  
error  
15 - 66  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(c) To detect the ABS time-out warning (AL.E5) at the servo amplifier, the time required for the ABS  
request signal to go OFF after it has been turned ON (ABS request time) is checked. If the ABS  
request remains ON for longer than 1s, it is regarded that an fault relating to the ABS request  
signal or the send data ready (TLC) has occurred, and the ABS communication error is generated.  
The ABS communication error occurs if the ABS time-out warning (AL.E5) is generated at the  
servo amplifier due to an ABS request OFF time time-out.  
ON  
ABS transfer mode  
OFF  
1s  
ON  
ABS request  
OFF  
The signal does  
not go OFF  
ON  
Send data ready  
OFF  
YES  
ABS communication  
error  
NO  
15.10.2 Error resetting conditions  
Always remove the cause of the error before resetting the error.  
Output coil  
Name  
Servo status  
Ready (RD) off  
Resetting condition  
AD71  
1PG  
ABS communication error  
Y49  
Y11  
Reset when servo-on (SON) switch  
(X36) signal turns off.  
ABS checksum error  
Y4A  
Y12  
Ready (RD) on  
For AD71  
Reset when servo-on (SON) switch  
(X36) signal turns from off to on.  
For FX-1PG  
Reset when servo-on (SON) switch  
(X36) signal turns off.  
ABS coordinate error  
Servo alarm  
Y4B  
Y48  
Ready (RD) on  
Ready (RD) on  
Reset when servo-on (SON) switch  
(X36) signal turns from off to on  
after a motion to ( ) coordinate is  
made by jog operation.  
Y10  
Reset when alarm reset switch  
turns on or power switches from off  
to on.  
15 - 67  
15. ABSOLUTE POSITION DETECTION SYSTEM  
MEMO  
15 - 68  
APPENDIX  
App 1. Signal arrangement recording sheets  
(1) Position control mode  
CN1A  
CN1B  
1
11  
OPC  
13  
1
11  
P15R  
13  
2
NP  
4
12  
2
12  
TLA  
14  
LG  
LG  
3
NG  
14  
3
PP  
5
4
DO1  
6
PG  
15  
VDD  
5
COM  
15  
P15R  
6
OP  
16  
16  
LSP  
18  
LZ  
7
LZR  
17  
EMG  
17  
LAR  
LA  
8
7
9
18  
8
LB  
9
LBR  
19  
LSN  
19  
10  
20  
10  
20  
COM  
SG  
SG  
SG  
SG  
(2) Speed control mode  
CN1A  
CN1B  
1
LG  
3
11  
13  
1
11  
P15R  
13  
2
12  
2
VC  
4
12  
LG  
3
4
P15R  
6
14  
OP  
16  
14  
VDD  
COM  
15  
DO1  
6
5
LZ  
7
15  
LZR  
17  
5
16  
EMG  
17  
LAR  
LA  
8
LSP  
7
18  
8
18  
LB  
9
LBR  
19  
LSN  
19  
9
10  
20  
10  
20  
COM  
SG  
SG  
SG  
SG  
(3) Torque control mode  
CN1A  
CN1B  
1
LG  
3
11  
13  
1
11  
P15R  
13  
2
12  
2
VLA  
4
12  
LG  
TC  
3
4
P15R  
6
14  
OP  
16  
14  
VDD  
COM  
15  
DO1  
6
5
LZ  
7
15  
LZR  
17  
5
16  
EMG  
17  
LAR  
LA  
8
7
18  
8
18  
LB  
9
LBR  
19  
9
19  
10  
20  
10  
20  
COM  
SG  
SG  
SG  
SG  
App - 1  
APPENDIX  
App 2. Status display block diagram  
App - 2  
APPENDIX  
App 3. Combination of servo amplifier and servo motor  
The servo amplifier software versions compatible with the servo motors are indicated in the parentheses.  
The servo amplifiers whose software versions are not indicated can be used regardless of the versions.  
Servo amplifier  
Servo amplifier  
Servo motor  
HC-KFS053  
HC-KFS13  
HC-KFS23  
Servo motor  
(Software version)  
(Software version)  
MR-J2S-10A  
HC-RFS103  
HC-RFS153  
HC-RFS203  
HC-RFS353  
HC-RFS503  
HC-UFS72  
HC-UFS152  
HC-UFS202  
HC-UFS352  
HC-UFS502  
MR-J2S-200A  
MR-J2S-10A1  
MR-J2S-200A  
MR-J2S-10A  
MR-J2S-10A1  
MR-J2S-350A (Version B0 or later)  
MR-J2S-500A (Version B0 or later)  
MR-J2S-500A (Version B0 or later)  
MR-J2S-70A  
MR-J2S-20A  
MR-J2S-20A1  
MR-J2S-40A  
MR-J2S-40A1  
MR-J2S-200A  
HC-KFS43  
HC-KFS73  
HC-MFS053  
MR-J2S-350A (Version B0 or later)  
MR-J2S-500A (Version B0 or later)  
MR-J2S-500A (Version B0 or later)  
MR-J2S-10A  
MR-J2S-70A (Version A4 or later)  
MR-J2S-10A  
MR-J2S-10A1  
HC-UFS13  
HC-UFS23  
HC-UFS43  
MR-J2S-10A1  
MR-J2S-10A  
MR-J2S-10A1  
HC-MFS13  
HC-MFS23  
HC-MFS43  
MR-J2S-20A  
MR-J2S-20A1  
MR-J2S-20A  
MR-J2S-20A1  
MR-J2S-40A  
MR-J2S-40A1  
MR-J2S-40A  
MR-J2S-40A1  
HC-UFS73  
MR-J2S-70A  
HC-MFS73  
HC-SFS81  
HC-SFS121  
HC-SFS201  
HC-SFS301  
HC-SFS52  
HC-SFS102  
HC-SFS152  
HC-SFS202  
HC-SFS352  
HC-SFS502  
HC-SFS702  
HC-SFS53  
HC-SFS103  
HC-SFS153  
HC-SFS203  
HC-SFS353  
MR-J2S-70A  
HC-LFS52  
MR-J2S-60A (Version B3 or later)  
MR-J2S-100A (Version B3 or later)  
MR-J2S-200A (Version B3 or later)  
MR-J2S-350A (Version B3 or later)  
MR-J2S-500A (Version B3 or later)  
MR-J2S-11KA  
MR-J2S-100A (Version A1 or later)  
MR-J2S-200A (Version A1 or later)  
MR-J2S-200A (Version A1 or later)  
MR-J2S-350A (Version A1 or later)  
MR-J2S-60A  
HC-LFS102  
HC-LFS152  
HC-LFS202  
HC-LFS302  
HA-LFS801  
HA-LFS12K1  
HA-LFS15K1  
HA-LFS20K1  
HA-LFS25K1  
HA-LFS11K1M  
HA-LFS15K1M  
HA-LFS502  
HA-LFS702  
HA-LFS11K2  
HA-LFS15K2  
HA-LFS22K2  
MR-J2S-100  
MR-J2S-11KA  
MR-J2S-200A  
MR-J2S-15KA  
MR-J2S-200A  
MR-J2S-22KA  
MR-J2S-350A  
MR-J2S-22KA  
MR-J2S-500A (Version B0 or later)  
MR-J2S-700A (Version B0 or later)  
MR-J2S-60A (Version A1 or later)  
MR-J2S-100A (Version A1 or later)  
MR-J2S-200A (Version A1 or later)  
MR-J2S-200A (Version A1 or later)  
MR-J2S-350A (Version A1 or later)  
MR-J2S-11KA  
MR-J2S-15KA  
MR-J2S-500A (Version B0 or later)  
MR-J2S-700A (Version B0 or later)  
MR-J2S-11KA  
MR-J2S-15KA  
MR-J2S-22KA  
App - 3  
APPENDIX  
App 4. Change of connector sets to the RoHS compatible products  
Connector sets (options) in the following table are changed to the RoHS compatible products after September,  
2006 shipment.  
Please accept that the current products might be mixed with RoHS compatible products based on availability.  
Model  
Current Product  
RoHS Compatible Product  
MR-J2CNM  
MR-J2CN1  
MR-J2CNS  
Amplifier connector (3M or equivalent)  
10120-3000VE (connector)  
Amplifier connector (3M or equivalent)  
10120-3000PE (connector)  
Amplifier connector (3M or equivalent)  
10120-3000VE (connector)  
Amplifier connector (3M or equivalent)  
10120-3000PE (connector)  
Encoder connector (DDK)  
Encoder connector (DDK)  
MS3057-12A (Cable clump)  
D/MS3057-12A (Cable clump)  
D/MS3106B20-29S (Straight plug)  
Amplifier connector (3M or equivalent)  
10120-3000PE (connector)  
MS3106B20-29S (Straight plug)  
Amplifier connector (3M or equivalent)  
10120-3000VE (connector)  
MR-ENCNS  
MS3106A20-29S (D190) (Plug, DDK)  
CE3057-12A-3 (D265) (Cable clump, DDK)  
CE02-20BS-S (Back shell, DDK)  
Power supply connector (DDK)  
CE05-6A22-23SD-B-BSS (Connector and back  
shell)  
D/MS3106A20-29S (D190) (Plug, DDK)  
CE3057-12A-3-D (Cable clump, DDK)  
CE02-20BS-S-D (Back shell, DDK)  
Power supply connector (DDK)  
CE05-6A22-23SD-D-BSS (Connector and back  
shell)  
MR-PWCNS1  
MR-PWCNS2  
MR-PWCNS3  
MR-BKCN  
CE3057-12A-2 (D265) (Cable clump)  
Power supply connector (DDK)  
CE05-6A24-24SD-B-BSS (Connector and back  
shell)  
CE3057-12A-2-D (Cable clump)  
Power supply connector (DDK)  
CE05-6A24-10SD-B-BSS (Connector and back  
shell)  
CE3057-16A-2 (D265) (Cable clump)  
Power supply connector (DDK)  
CE05-6A32-17SD-B-BSS (Connector and back  
shell)  
CE3057-16A-2-D (Cable clump)  
Power supply connector (DDK)  
CE05-6A32-17SD-D-BSS (Connector and back  
shell)  
CE3057-20A-1 (D265) (Cable clump)  
Electromagnetic brake connector  
MS3106A10SL-4S (D190) (Plug, DDK)  
CE3057-20A-1-D (Cable clump)  
Electromagnetic brake connector  
D/MS3106A10SL-4S (D190) (Plug, DDK)  
App - 4  
REVISIONS  
*The manual number is given on the bottom left of the back cover.  
Print data  
Nov.,1999  
Sep.,2000  
*Manual number  
SH(NA)030006-A First edition  
Revision  
SH(NA)030006-B Addition of single-phase 100VAC specifications  
Compatible Servo Configuration software model name change  
Compliance with EC Directives 1: Review of sentence  
Section 1.2: Review of function block diagram  
Section 1.3: Moving of servo amplifier standard specifications  
Review of torque limit description in position control mode  
Review of torque limit description in speed control mode  
Deletion of torque linearity in torque limit mode  
Addition of speed limit in torque control mode  
Section 3.1.1 (1): Addition of encoder Z-phase pulse connection  
Addition of Note for use of junction terminal block  
Section 3.1.1 (2): Addition of Note for increased noise immunity  
Section 3.1.2: Addition of Note for input of negative voltage  
Section 3.1.3: Addition of Note for input of negative voltage  
Section 3.3.1 (2): Review of Note  
Section 3.4.1 (4): Addition of description about electronic gear switching  
Section 3.4.3 (1)(a): Review of description for low voltage  
Section 3.5: Change in timing chart  
Section 3.5 3): Review of description  
Section 3.6.2 (7): Review of connection  
Section 3.9: Review of POINT  
Section 3.9 (3)(b),(c): Change in timing chart  
Section 3.9 (3)(d),(e): Addition  
Section 5.1.2 (2): Deletion of description as to parameter No. 22 TC, TLA  
Addition of parameter No. 27 setting example  
Correction of parameter No. 35 setting range  
Review of parameter No. 47, 48 sentences  
Section 5.2.5: Correction of operation pattern diagram  
Section 6.2.2: Review of within one-revolution position sentence  
Section 6.3: Review of automatic VC offset description  
Section 6.6 (2)(a): Review of Note  
Section 6.8: Review of PL sentence  
Chapter 7: Addition of POINT  
Section 7.3.2 (1), (2): Review of sentence makeup  
Section 7.4: Addition  
Section 8.1.1: Addition  
Section 8.3.2: Addition  
Section 10.1.1 (1): Addition of Investigation item at power-on  
Section 10.1.2: Addition of Investigation item at power-on  
Addition of Investigation item at on of ST1 or ST2  
Section 10.1.3: Addition of Investigation item at power-on  
Addition of Investigation item at on of ST1 or ST2  
Section 10.2: Addition of POINT  
Section 10.2.2: Review of Cause of AL.10  
Deletion of Cause 4 of AL.16  
Review of Cause and Action of AL.24  
Addition of description to AL.25  
Print data  
*Manual number  
Revision  
Sep.,2000  
SH(NA)030006-B Section 10.2.2: Addition of description to AL.30  
Addition of Cause to AL.33  
Chapter 11: Changed to only outline dimensional drawing  
Section 11.2 (2): Addition  
Section 12.2 (1): Review of Note for Table 12.1  
Section 12.3: Correction of dynamic brake time constant graph  
Chapter 13: Deletion of MR-CPC98CBL3M communication cable  
Section 13.1.1 (4)(c): Review of outline drawing  
Section 13.1.2 (1): Deletion of MR-PWCNF power supply connector set  
Section 13.1.2 (1)1), 6): Change of encoder side connector models  
Section 13.1.2 (1)19), 20): Change of terminal models  
Section 13.1.2 (2)(a)2): Addition of description for fabrication  
Section 13.1.3: Addition of POINT  
Section 13.1.3 (4): Addition of cable length  
Change in connection diagram  
Section 13.2.1 (1): Addition of Note for recommended wires  
Section 13.2.8 (1): Addition of leakage current to recommended filter  
Section 14.1.2 (2): Deletion of MR-CPC98CBL3M communication cable  
Section 14.11.1 (6): Addition  
Section 14.11.2 (8): Addition  
Section 15.7: Addition of POINT  
Section 15.8.1 (1)(b): Change in b) Coordinates when zero address is changed  
to other than 0  
Section 15.8.2 (1)(b): Review of connection diagram  
Section 15.9: Change of display screen  
Section 15.10.1 (1): Deletion of Cause 5 of ABS checksum error  
SH(NA)030006-C Addition of MR-J2S-500A, 700A servo amplifiers  
Addition of HC-KFS73, HC-SFS502, HC-SFS702, HC-RFS353, HC-RFS503,  
HC-UFS502, HC-UFS353 servo motors  
Feb.,2001  
Section 1.2: Function block diagram modification  
Section 1.7: Overall reexamination  
Section 3.7.1(2): Addition of single-phase 100 to 120VAC  
Section 3.7.2: Addition of regenerative brake converter and brake unit  
Section 5.1.2(2): No. 0, Item addition to regenerative option selection  
No. 5, Example addition  
No. 27, Setting range change  
No. 49, AL.26 addition  
Section 5.2.2: Overall reexamination  
Section 7.4(1): Reexamination  
Chapter 8: Hierarchy reexamination  
Section 10.2.2: AL.30, Reexamination  
AL.8E, Reexamination of Cause and Action  
Section 11.1(4)(5): Addition  
Section 11.2(3): Addition  
Section 12.1(3): Addition  
Chapter 13: Hierarchy reexamination  
Section 13.1.4(1): Connection diagram change  
Cable addition  
Section 13.1.4(3): Reexamination  
Section 13.2.1(1): Connection diagram change  
Wire table addition  
Chapter 15: Addition of Note on AL.25  
Print data  
*Manual number  
Revision  
Oct.,2002  
SH(NA)030006-D Servo amplifier: Addition of MR-J2S-11KA, MR-J2S-15KA and MR-J2S-22KA  
Servo motor: Addition of HA-LFS11K2, HA-LFS15K2, HA-LFS22K2 and  
HC-LFS  
SAFETY INSTRUCTIONS: Addition of About processing of waste  
Addition of FOR MAXIMUM SAFETY  
Addition of EEP-ROM life  
Compliance with EC Directives 2: Addition of Note to (3)  
Reexamination of sentences in (4)(a)  
Conformance with UL/C-UL Standard: Addition of (6) Attachment of servo motor  
Addition of (7) About wiring protection  
Section 1.4: Change made to the contents of the test operation mode  
Section 1.7.2 (4): Addition  
Section 1.8 (5): Addition  
Section 2.3 (3): Sentence change  
Section 3.1.1 (1), (2): Addition of Note 14  
Section 3.1.2: Addition of Note 14  
Section 3.1.3: Addition of Note 12  
Section 3.2: Addition of Note  
Section 3.5: Addition of Note  
Section 3.7: Addition of POINT  
Section 3.8.2: Addition of POINT  
Overall reexamination  
Section 3.8.3: Addition of Note  
Section 3.11: Overall reexamination  
Section 3.13: Addition  
Section 4.2.3: POINT sentence change  
Section 4.2.4: POINT sentence change  
Section 5.2 (2): Addition of regenerative option to parameter No. 0  
Addition of CN1B-pin 19's function selection to parameter No. 1  
Modification made to the contents of parameter No. 5  
Reexamination of the contents of parameter No. 23  
Addition of AL. 37-related sentences to parameter No. 49  
Section 5.2.1 (3): Reexamination of some servo motor speeds  
Section 5.2.2: Changed to analog monitor  
Section 7.2.2: POINT sentences addition  
Section 10.2.1: Sentence addition  
Section 10.2.2: Addition of 4. to alarm 16  
Addition of 3. to alarm 20  
Addition of 6. to alarm 33  
Changing of occurrence factor and checking method of alarm 50  
Changing of occurrence factor and checking method of alarm 51  
Section 11.2 (1): Overall change  
Section 12.1 (4): Addition  
Note sentence addition  
Section 12.3: Note sentence addition  
Section 13.1.1 (1): Regenerative option addition  
Section 13.1.1 (3): Parameter setting addition  
Section 13.1.1 (4): Reexamination  
Section 13.1.1 (5): Outline drawing addition  
Section 13.1.2: Addition of FR-BU-55K brake unit  
Section 13.1.3: Addition of FR-BU-55K brake unit  
Section 13.1.4: Addition  
Print data  
*Manual number  
Revision  
Oct.,2002  
SH(NA)030006-D Section 13.1.5 (1): Configuration diagram reexamination  
Note sentence addition  
Addition of connector sets and monitor cables  
Section 13.1.5 (2): POINT sentence addition  
Section 13.1.9 (2)(a): Reexamination  
Section 13.2.1 (1): Reexamination  
Section 13.2.3: Reexamination  
Section 13.2.4: Addition  
Section 13.2.8 (1): Leakage current breaker addition  
Section 13.2.9 (1): EMC filter addition  
Section 14.1.2 (2): Personal computer connector corrected to D-SUB9  
Section 14.11: Addition of POINT  
Section 14.12.7 (2)(d): Addition  
Jun., 2003 SH(NA)030006-E Safety Instructions 1. To prevent electric shock: Sentence addition  
3. To prevent injury: Sentence addition  
4. Additional instructions: Partial sentence change  
COMPLIANCE WITH EC DIRECTIVES 2. (6) (a): Addition  
Section 1.3: Inrush current addition  
Section 3.6.2 (3) (a) 1): Partial figure change  
Section 3.6.2 (3) (b) 1): Partial figure change  
Section 3.8.3: Partial figure change  
Section 3.13.3: Partial terminal box inside figure change  
Section 4.2: CAUTION sentence addition  
Section 5.1.2 (2): Parameter No. 0 Addition of (The built-in regenerative  
resistor is used.) to "Regenerative option is  
not used"  
Addition of FR-CV to the setting of 01 in  
Selection of regenerative option  
Partial sentence deletion  
Parameter No. 20 Addition of sentence to Slight vibration  
suppression control  
Section 5.2.1 (3): Servo amplifier, Electronic gear, 3000r/min changed to  
2048/125  
Servo amplifier, Electronic gear, 2000r/min changed to  
4096/375  
Section 6.4 (2): Sentence change  
Section 6.6 (3) (a): In position LNP changed to INP  
Section 10.2.1: Partial sentence change  
Section 10.2.2: AL. 12 to 15 Contents reexamination  
AL. 37 Addition of Cause 3  
AL. 50 Partial contents change  
AL. 51 Addition of "During rotation: 2.5s or more"  
Section 12.3: Change of sentence that explains "te"  
Section 12.5: Addition  
Section 13.1.1 (4) (d): Partial connection diagram change  
Section 13.1.2: Addition of "When using the brake unit, set "01  
parameter No. 0"  
" in  
Section 13.1.3: Addition of "When using the power regeneration converter, set  
"01 " in parameter No. 0"  
Section 13.1.3 (2): Partial connection diagram change  
Section 13.1.4 (2): Partial connection diagram change  
Section 13.1.10: Addition  
Print data  
*Manual number  
Revision  
Jun., 2003 SH(NA)030006-E Section 13.2.1 (1): Correction of the AWG of the recommended wire 60mm2 to  
2/0  
Section 13.2.10 (2) (3): Correction of the position meter model name to  
RRS10M202  
Section 14.12.7 (2) (b): Addition of ST1 to the Forward rotation start data  
Addition of ST1 to the Reverse rotation start data  
Section 14.12.7 (3) (b): Servo-on Stroke end changed to ON  
Section 15.4: Correction of the Command pulses of the positioning module to  
differential line driver type  
Oct., 2003  
SH(NA)030006-F Reexamination of Servo Configuration software representation  
Safety Instructions 3. To prevent injury: Reexamination of some sentences  
COMPLIANCE WITH EC DIRECTIVES (3) (4): Change to IEC60664-1  
Section 3.6.2 (7): Addition of explanation on JP11 in the case of 11kW or more  
Section 5.1.2 (2): Reexamination of part of parameter No.20  
Classification of automatic setting in Low-pass filter selection  
of parameter No. 60 Reexamination of part of parameter No.  
76 sentences  
Section 5.2.1 (3): Addition of 103 to expression  
Section 10.2.2: Addition of Definition, Cause and Action to AL.32  
Section 12.5: Change of wiring length to 1m  
Section 13.1.1 (4): Sentence reexamination  
Section 13.1.1 (5) (b) (c): Regenerative option outline dimension drawing  
reexamination  
Section 13.1.9 (2) (a): Reexamination of Windows trademarks  
Section 13.2.9 (3): Reexamination of outline dimension drawings of HF3040A-  
TM/HF3050A-TM/HF3060A-TMA and HF3080-TMA/  
HF3100A-TMA  
Section 15.8.1 (3) (c): Correction to error in writing  
Section 15.8.3 (2) (a) 3): Correction to error in writing  
Oct., 2004 SH(NA)030006-G Section 1.2: Partial diagram reexamination  
Section 1.3: Addition of Note  
Section 1.5 (2): Partial addition/change  
Section 3.1.1 (1): Partial diagram change  
Section 3.1.1 (2): Partial diagram and Note change  
Section 3.1.2: Partial diagram change  
Section 3.1.3: Partial diagram change  
Section 3.3.2 (2): Functions/Applications of Speed reached is changed  
Section 3.4.1 (5): Addition of CAUTION  
Section 3.4.2 (1) (a): Addition of Note2  
Section 3.4.4 (3) (b): Partial addition of table  
Section 3.5: Addition of CAUTION  
Section 3.5 (3): Change of text  
Section 3.6.1: Partial diagram reexamination  
Section 3.9 (3) (d): Partial diagram reexamination  
Section 3.9 (3) (e): Partial diagram reexamination  
Section 3.11: Addition of POINT  
Section 4.2.4 (4) 2): Partial text deletion  
Section 5.1.2 (2): Partial parameterNo.20 change  
Section 5.2.1 (1) (b): POINT sentence addition  
Section 10.2.2: CAUTION sectence addition,AL.12 partial Cause change,AL.52  
addition of Note/change of Definition, AL.17 partial addition  
Section 12.1: Change of Note  
Print data  
*Manual number  
Revision  
Oct., 2004 SH(NA)030006-G Section 12.3: HC-LFS series of graph is addition  
Section 13.1.1 (b)b.: Partial table value of reexamination  
Section 13.1.1 (4): Addition of POINT  
Section 13.1.1 (4) (b): Note sentence addition  
Section 13.1.1 (4) (c): Partial diagram change  
Section 13.1.1 (4) (d): Partial text change  
Section 13.1.1 (5) (c): Change of diagram  
Section 13.1.2 (2): Partial change of Note2  
Section 13.1.3 (2): Addition of Note2  
Section 13.1.4 (1): Partial sentence delection  
Section 13.1.9 (2): Partial reexamination  
Section 13.1.9 (2) (a): Partial addition of Note  
Section 13.1.10 (2): Addition of Note4  
Section 13.1.10 (3) (d): Addition of Note  
Section 13.1.11: Addition  
Section 13.2.3: Partial diagram/dimensions reexamination  
Section 13.2.7 (2) (d): Partial diagram change  
Section 13.2.7 (2) (e): Partial diagram change  
Section 13.2.9 (2): Partial Note deletion  
Section 13.2.9 (3): Partial diagram change  
Section 15.7.4: Partial diagram reexamination  
Dec.,2005  
SH(NA)030006-H Safety Instructions:Sentence addition  
FOR MAXIMUM SAFETY: Addition of sentence  
Section 1.5:Change of Note for power supply  
Section 1.8: Change of Note2  
Chapter 2:Addition of CAUTION  
Section 3.1.1 (1): Partial change of connection diagram, Change of Note5  
Section 3.1.1 (2):Partial change of connection diagram, Change of Note5 and  
13  
Section 3.1.2:Partial change of connection diagram, Change of Note5  
Section 3.1.3:Partial change of connection diagram, Change of Note5  
Section 3.3.1 (3):Change of Note4  
Section 3.3.2 (2):SA explanation change  
Section 3.6.2 (4) (b) 2): Diagram reexamination  
Section 3.7.1:Diagram reexamination  
Section 3.7.2:L1, L2, L3 partial reexamination in the table  
Section 3.9:Addition of CAUTION  
Section 3.9 (3) (d):Change of time from power OFF to base circuit OFF  
Section 3.11.1:Addition  
Section 3.13.3:Change of drawing of servo motor terminal box outside  
Section 4.2.2 (3):Change of parameter No. 3 setting value in the table  
Section 5.1.2 (2):Addition of Note for parameter No.17  
Partial reexamination of sentence for parameter No.19  
Section 5.2.2:Change of sentence  
Section 5.2.2 (2):Addition of Note  
Section 6.6 (2) (a):Change of Note3  
Section 10.2.1:AL. 45, 46 addition of Note  
Section 10.2.2:AL. 37 addition of Cause  
Section 10.2.3:Addition of POINT, AL.92 addition of Cause  
Section 12.1:Reexamination of Note  
Section 13.1.1 (5):(b), (e) change of outline drawing  
Section 13.1.2 (2):Diagram addition of P1 terminal, Reexamination of Note  
Print data  
*Manual number  
Revision  
Dec., 2005 SH(NA)030006-H Section 13.1.3 (2):Diagram addition of P1 terminal, Reexamination of Note  
Section 13.1.4 (2):Diagram addition of P1 terminal, Reexamination of Note  
Section 13.1.10 (2):Diagram addition of P1 terminal, Reexamination of Note  
Section 13.1.10 (5): Partial table change  
Section 13.2.7 (2) (d):FR-BSF01 change of dimensions  
Section 14.12.3 (2):Reexamination of POINT  
Section 15.1.1:Reexamination of diagram  
Section 15.7.3 (2):Addition of POINT  
Section 15.7.4:Partial reexamination of diagram  
Section 15.8.3 (2) (c), (d):Addition of Note2  
Dec., 2007  
SH(NA)030006-J Safety Instructions 1.To prevent electric shock: Change of sentence  
2.To prevent fire: Change of sentence  
4.Additional instructions (2) Wiring: Change of diagram  
Section 1.2: Partial change of function block diagram  
Section 1.3: Correction to error in writing in specifications  
Section 1.7.2: Change of WARNING sentence  
Section 1.8 (1) (a) (b): Addition of Note  
Section 1.8 (2) (3) (4) (5): Addition of Note  
Chapter 2: Addition of CAUTION sentence and correction to error in writing  
Chapter 3: Change of WARNING sentence  
Addition of CAUTION sentence  
Section 3.4.1 (1) (b) 1): Addition of Note  
Section 3.4.1 (1) (b) 2): Addition of Note  
Section 3.4.2 (1)(a): Partial change of sentence  
Section 3.5 (2): Correction to error in writing  
Section 3.6.2 (2) (a): Addition of sentence and Note  
Section 3.6.2 (2) (b): Addition of Note  
Section 3.6.2 (3) (a) 1): Addition of Note  
Section 3.6.2 (3) (b) 1): Addition of Note  
Section 3.7: Change of CAUTION sentence  
Section 3.7.1 (2): Addition of Note  
Section 3.7.2: Addition of sentence  
Correction to error in writing of servo amplifier model  
Section 3.7.3 (3): Addition of CAUTION sentence  
Section 3.8.2: Addition of CAUTION sentence  
Section 3.9 (3) (a): Change of timing chart  
Section 3.9 (3) (b)(c) (d) (e): Addition of Note  
Section 3.10: Addition of Note sentence  
Section 3.13: Addition of CAUTION sentence  
Section 3.13.1: Partial change of Note  
Section 3.13.3: Addition of diagram  
Change of power supply specification table of cooling fan  
Partial change of Note  
Section 5.1.2 (1): Partial change of name for parameters No.6, No.35, No.36,  
and No.37  
Section 5.1.2 (2): Partial change of parameter No.0 notation  
Partial change of parameter No.20 sentence  
Partial change of name for parameters No.6, No.35, No.36,  
and No.37  
Section 6.2.2: Partial change of item in Display range  
Section 7.4 (2): Change of sentence for Step 5  
Chapter 9: Change of WARNING sentence  
Print data  
*Manual number  
SH(NA)030006-J Section 10.2.2: Addition of sentence for AL.20  
Correction to error in writing of name for AL.30  
Revision  
Dec., 2007  
Addition of sentence for AL.32  
Addition of Cause for AL.33  
Addition of reference for alarm occurrence time in Definition for  
AL.51  
Section 11.2 (1) (a): Change of figure  
Section 11.2 (2): Deletion of figure and moving up (3)  
Section 12.3: Reexamination of whole paragraph  
Chapter 13: Change of WARNING sentence  
Section 13.1.1 (2) (b): Partial change of energy formula  
Section 13.1.1 (3): Partial addition of parameter setting  
Section 13.1.1 (4): Change of POINT and sentence  
Section 13.1.1 (5) (b): Change of outline drawing  
Section 13.1.1 (5) (c): Change of outline drawing  
Section 13.1.2: Change to FR-BU2  
Section 13.1.3 (2): Addition of Note  
Section 13.1.4: Addition of POINT  
Section 13.1.4 (2): Addition of Note  
Section 13.1.4 (3): Deletion of POINT  
Section 13.1.5 (1): Change of list to RoHS compatible products  
Section 13.1.6 (3): Change of outline drawing  
Section 13.1.9 (2): Change of specification for personal computer and OS  
Section 13.1.10 (2): Addition of Note  
Section 13.2.1 (1): Partial change of Table 13.2 Recommended crimping  
terminals  
Section 13.2.7 (1) (b): Addition of sentence  
Section 13.2.7 (2) (d): Change of sentence for connection diagram  
Section 13.2.7 (3) (f): Addition of item of input power supply varistor  
(recommended)  
Section 13.2.9 (2): Addition of diagram  
Addition of Note  
Section 13.2.9 (3) (b): Addition of surge protector  
Section 14.1.1: Change of connector in Note to RoHS compatible product  
Section 14.12.3 (2): Change of POINT  
Section 14.12.6: Change of title to “Input devices”  
Section 15.2 (2): Change of configuration module  
Section 15.3: Change of WARNING sentence  
Section 15.7.2 (1) (a): Addition of sentence for 3) and 5)  
Section 15.7.2 (1) (b): Change of sentence for 7)  
Section 15.7.2 (2) (b): Addition of diagram and sentence  
Partial change of sentence and diagram  
Section 15.8.2 (2) (b): Correction to error in writing in Device list and addition  
of T211  
Section 15.8.2 (2) (c): Partial change and addition of ladder diagram  
Section 15.8.3 (2) (a) (b): Addition of sentence and addition of M26 and T201 in  
Device list  
Section 15.8.3 (2) (c): Partial change and addition of ladder diagram  
Section 15.8.3 (2) (f): Partial change and addition of ladder diagram and Note  
Appendix: Addition of list of RoHS compatible products  
SH(NA)030006-J  
MR-J2S-A GIJUTU SIRYOU  
MODEL  
MODEL  
CODE  
1CW501  
HEAD OFFICE : TOKYO BLDG MARUNOUCHI TOKYO 100-8310  
This Instruction Manual uses recycled paper.  
Specifications subject to change without notice.  
SH (NA) 030006-J (0712) MEE  
Printed in Japan  

PYLE Audio PYLE Plus Series PLCDCS100 User Manual
Pioneer Car Video System AVH P4400BH User Manual
Philips Car Video System 240BW9 EDFU User Manual
Panasonic EZANC User Manual
Olympus MCON 40 User Manual
Nikon EN EL8 User Manual
Magnat Audio Xcess 213 User Manual
Lochinvar SOLUTION 260000 User Manual
Kenwood LZ 702IR User Manual
JVC WR MG270 User Manual