Trane Rt Ds 10 User Manual

RT-DS-10  
April 1999  
Packaged  
Rooftop  
Air Conditioners  
23 to 42 Ton (81-148 kW)  
Voyager Commercial – 50 HZ  
Contents  
Standard Features  
Optional Features  
Features and Benefits  
Model Number Description  
General Data  
2
9
Factory installed and commissioned  
microelectronic controls  
Electric heat  
Natural gas heat  
Trane 3-D Scroll compressors  
LP gas heat (kit only)  
Dedicated downflow or horizontal  
configuration  
Power exhaust  
Barometric relief  
CV or VAV control  
High efficiency 2” (51 mm) throwaway  
filters  
FROSTAT coil frost protection on all  
units  
High efficiency 4” (102 mm) throwaway  
filters  
High efficiency supply fan motors  
Manual fresh air damper  
Economizer with dry bulb control  
Economizer with reference enthalpy  
control  
Economizer with differential  
(comparative) enthalpy control  
Inlet guide vanes on VAV units  
Service valves  
Through-the-base electrical provision  
Factory mounted disconnect with  
external handle (non-fused)  
Integrated Comfort system control  
option  
Supply air overpressurization  
protection on VAV units  
Supply airflow proving  
Emergency stop input  
Compressor lead-lag  
Occupied-unoccupied switching  
Timed override activation  
FC supply fans  
10  
13  
15  
Application Considerations  
Selection Procedure  
Two-inch (51 mm) standard efficiency  
filters  
Finish exceeds salt spray requirements  
of ASTM B117  
Performance Adjustment Factors 17  
Ventilation override  
Hinged service access  
Factory installed condenser  
coil guards  
Performance Data  
Electrical Data  
18  
30  
32  
35  
38  
39  
42  
Controls  
Dimensional Data  
Weights  
Field Installed Sensors  
Mechanical Specifications  
3
Features  
and  
Benefits  
Trane 3-D® Scroll Compressor  
Simple Design with 70% Fewer Parts  
Fewer parts than an equal capacity  
reciprocating compressor means  
significant reliability and efficiency  
benefits. The single orbiting scroll  
eliminates the need for pistons,  
connecting rods, wrist pins and valves.  
Fewer parts lead to increased reliability.  
Fewer moving parts, less rotating mass  
and less internal friction means greater  
efficiency than reciprocating  
compressors.  
Patented 3-D Scroll Compliance  
Trane 3-D Scroll compliance provides  
important reliability and efficiency  
benefits. 3-D compliance allows the  
orbiting scrolls to touch in all three  
dimensions, forming a completely  
enclosed compression chamber which  
leads to increased efficiency. In  
addition, 3-D compliance means the  
orbiting scrolls only touch with enough  
force to create a seal so there is no  
wear between the scroll plates. The  
fixed and orbiting scrolls are made of  
high strength cast iron which results in  
less thermal distortion, less leakage,  
and higher efficiencies. The most  
outstanding feature of the scroll  
compressor 3-D compliance is that the  
slugging will not cause failure. In a  
reciprocating compressor, however, the  
liquid or dirt can cause serious  
damage.  
Low Torque Variation  
The 3-D Scroll compressor has a very  
smooth compression cycle with torque  
variations that are only 30 percent of  
that produced by a reciprocating  
compressor. This means the scroll  
compressor imposes very little stress  
on the motor for greater reliability. Low  
torque variation means reduced noise  
and vibration.  
Suction Gas Cooled Motor  
Compressor motor efficiency and  
reliability is further optimized with this  
design. Cool suction gas keeps the  
motor cooler for longer life and better  
efficiency.  
Proven Design Through Testing and  
Research  
One of two matched scroll plates – the  
distinguishing feature of the scroll  
compressor.  
With over twenty years of development  
and testing, Trane 3-D Scroll  
compressors have undergone more  
than 400,000 hours of laboratory  
testing and field operation. This work  
combined with over 25 patents makes  
Trane the worldwide leader in air  
conditioning scroll compressor  
technology.  
Chart illustrates low torque variation of  
3-D Scroll compressors reciprocating  
compressor.  
4
Features  
and  
Benefits  
Quality and Reliability  
Forced Combustion Blower  
Negative Pressure Gas Valve  
Hot Surface Ignitor  
Drum and Tube Heat Exchanger  
Micro Controls  
Drum and Tube Heat Exchanger  
The drum and tube heat exchanger is  
designed for increased efficiency and  
reliability and has utilized improved  
technology incorporated in the large  
roof top commercial units for almost  
20 years.  
The negative pressure gas valve will  
not allow gas flow unless the  
combustion blower is operating. This is  
one of our unique safety features.  
For over 10 years Trane has been  
working with microprocessor controls  
in the applied equipment markets.  
These designs have provided the  
technology that has been applied to the  
Voyager units.  
The forced combustion blower supplies  
premixed fuel through a single  
stainless steel burner screen into a  
sealed drum where ignition takes place.  
It is more reliable to operate and  
maintain than a multiple burner  
system.  
The Micro provides unit control for  
heating, cooling and ventilating  
utilizing input from sensors that  
measure outdoor and indoor  
temperature.  
The heat exchanger is manufactured  
using aluminized steel with stainless  
steel components for maximum  
durability. The requirement for cycle  
testing of heat exchangers is 10,000  
cycles by ANSI Z21.47. This is the  
standard required by both UL* and  
AGA* for cycle test requirements.  
Trane requires the design to be tested  
to 21/2 times this current standard. The  
drum and tube design has been tested  
and passed over 150,000 cycles which  
is over 15 times the current ANSI  
cycling requirements.  
The hot surface ignitor is a gas ignition  
device which doubles as a safety  
device utilizing a continuous test to  
prove the flame. The design is cycle  
tested at the factory for quality and  
reliability.  
The Micro improves quality and  
reliability through the use of time-  
tested microprocessor controls and  
logic. The Micro:  
– prevents the unit from short cycling,  
considerably improving compressor  
life.  
– ensures that the compressor will run  
for a specific amount of time which  
allows oil to return for better  
lubrication, enhancing the reliability of  
the commercial compressor.  
*Apply to 60 HZ testing standards only.  
The Voyager with the Micro reduces  
the number of components required to  
operate the unit, thereby reducing  
possibilities for component failure.  
5
Features  
and  
Benefits  
Ease of Installation  
Contractors look for lower installation  
(jobsite) costs. Voyager’s  
conversionless units provide many  
time and money saving features.  
Conversionless Units  
The dedicated design units (either  
downflow or horizontal) require no  
panel removal or alteration time to  
convert in the field – a major cost  
savings during installation.  
Improved Airflow  
U-shaped airflow allows for improved  
static capabilities. The need for high  
static motor conversion is minimized  
and time isn’t spent changing to high  
static oversized motors.  
Excellent Part-Load Efficiency  
The Scroll compressor’s unique design  
allows it to be applied in a passive  
parallel manifolded piping scheme,  
something that a “recip” just doesn’t  
do very well.  
Single Point Power  
A single electrical connection powers  
the unit.  
When the unit begins stage back at part  
load it still has the full area and circuitry  
of its evaporator and condenser coils  
available to transfer heat. In simple  
terms this means superior part-load  
efficiencies (IPLV) and lower unit  
operating costs.  
Micro  
FC Fans with Inlet Guide Vanes  
Trane’s forward-curved fans with inlet  
guide vanes pre-rotate the air in the  
direction of the fan wheel, decreasing  
static pressure and horsepower,  
essentially unloading the fan wheel.  
The unloading characteristics of a  
Trane FC fan with inlet guide vanes  
result in superior part load  
The function of the Micro replaces the  
need for field installed anti-short-cycle  
timer and time delay relays. The Micro  
ensures that these controls are integral  
to the unit. The contractor no longer  
has to purchase these controls as  
options and pay to install them.  
The wiring of the low voltage  
connections to the unit and the zone  
sensors is as easy as 1-1, 2-2, and 3-3.  
This simplified system makes it easier  
for the installer to wire.  
performance.  
Rigorous Testing  
All of Voyager’s designs were  
rigorously rain tested at the factory to  
ensure water integrity.  
Actual shipping tests are performed to  
determine packaging requirements.  
Units are test shipped around the  
country. Factory shake and drop tested  
as part of the package design process  
to help assure that the unit will arrive at  
your job site in top condition.  
Rigging tests include lifting a unit into  
the air and letting it drop one foot,  
assuring that the lifting lugs and rails  
hold up under stress.  
We perform a 100% coil leak test at the  
factory. The evaporator and condenser  
coils are leak tested at 200 psig and  
pressure tested to 450 psig.  
All parts are inspected at the point of  
final assembly. Sub-standard parts are  
identified and rejected immediately.  
Every unit receives a 100% unit run test  
before leaving the production line to  
make sure it lives up to rigorous Trane  
requirements.  
6
Features  
and  
Benefits  
Easy Access Low Voltage  
Terminal Board  
Serviceability  
Today’s owners are more conscious of  
the cost of service and maintenance.  
Voyager was designed with input from  
service contractors. Their information  
helped us design a unit that would get  
the serviceman off the job quicker and  
save the owner money. Here is why  
Voyager can save money in service.  
Voyager’s Low Voltage Terminal Board  
is external to the electrical control  
cabinet. It is extremely easy to locate  
and attach the thermostat wire. This is  
another cost and timesaving  
installation feature.  
Value  
Low Ambient Cooling  
All Voyager Commercial units have  
cooling capabilities down to 0°F  
(-17.8°C) as standard.  
Voyager’s Simpler Design  
The Voyager design uses fewer parts  
than previous units. Since it is simpler  
in design, it is easier to diagnose.  
Micro  
Power Exhaust Option  
The Micro requires no special tools to  
run the Voyager unit through its paces.  
Simply place a jumper between Test 1  
and Test 2 terminals on the Low  
Voltage Terminal Board and the unit  
will walk through its operational steps  
automatically.  
Provides exhaust of the return air when  
using an economizer to maintain  
proper building pressurization. Great  
for relieving most building  
overpressurization problems.  
Micro Benefits  
The Micro in the Voyager units has  
built-in anti-short-cycle timer, time  
delay relay and minimum “on” time  
controls. These controls are functions  
of the Micro and are factory tested to  
assure proper operation.  
– The unit automatically returns control  
to the zone sensor after stepping  
through the test mode a single time,  
even if the jumper is left on the unit.  
As long as the unit has power and the  
“system on” LED is lit, the Micro is  
operational. The light indicates that the  
Micro is functioning properly.  
The Micro softens electrical “spikes” by  
staging on fans, compressors and  
heaters.  
The Micro features expanded  
The Intelligent Fallback or Adaptive  
Control is a benefit to the building  
occupant. If a component goes astray,  
the unit will continue to operate at  
predetermined temperature setpoint.  
diagnostic capabilities when utilized  
with Trane’s Integrated Comfort  
Systems.  
Some zone sensor options have central  
control panel lights which indicate the  
mode the unit is in and possible  
diagnostic information (dirty filters for  
example).  
Intelligent Anticipation is a standard  
feature of the Micro. It functions  
constantly as the Micro and zone  
sensor work together in harmony to  
provide tighter comfort control than  
conventional electromechanical  
thermostats.  
7
Features  
and  
Benefits  
CCP  
VariTrac  
Trane’s changeover VAV System for  
light commercial applications is also  
available. Coupled with Voyager  
Commercial, it provides the latest in  
technological advances for comfort  
management systems and can allow  
thermostat control in every zone served  
by VariTrac .  
Downflow and Horizontal Economizers  
The economizers come with three  
options of controls (dry bulb, enthalpy  
and differential enthalpy).  
Trane Communication Interface or TCI  
is available factory or field installed.  
This module when applied with the  
Micro easily interfaces with Trane’s  
Integrated Comfort system.  
Trane factory built roof curbs are  
available for all units.  
One of Our Finest Assets:  
Trane Commercial Sales Engineers are  
a Support group that can assist you  
with:  
– Product  
– Application  
– Service  
Training  
– Special Applications  
– Specifications  
– Computer Programs and more  
8
Model  
Number  
Description  
TC  
1,2  
D
3
400  
4,5,6  
A
7
C
8
0
9
A
1
A
4
F
D
1
A
10 11 12 13 14 15 16 17  
Digit 16 – System Control  
Digit 11 – Exhaust  
0 = None  
1 = Barometric Relief  
Digits 1, 2 – Unit Function  
1 = Constant Volume  
TC = DX Cooling, No Heat  
2 = VAV Supply Air Temperature Control  
TE = DX Cooling, Electric Heat  
YC = DX Cooling, Natural Gas Heat  
w/o Inlet Guide Vanes  
3 = VAV Supply Air Temperature Control  
w/Inlet Guide Vanes  
Note: Zone sensors are not included with  
option and must be ordered as a separate  
accessory.  
(Available w/Economizer only)  
2 = Power Exhaust Fan  
(Available w/Economizer only)  
Digit 3 – Unit Airflow Design  
D = Downflow Configuration  
H = Horizontal Configuration  
Digit 12 – Filter  
A = Standard 2” (51 mm) Throwaway Filters  
B = High Efficiency 2” (51 mm) Throwaway  
Filters  
Digits 4, 5, 6 – Nominal Cooling Capacity  
275 = 22.9 Tons (82 kW)  
305 = 25.4 Tons (89 kW)  
350 = 29.2 Tons (105 kW)  
400 = 33.3 Tons (120 kW)  
500 = 41.7 Tons (148 kW)  
Digit 17+ – Miscellaneous  
A = Service Valves (See Note 2)  
B = Through the Base Electrical Provision  
C = Non-Fused Disconnect Switch with  
External Handle  
C = High Efficiency 4” (102 mm) Throwaway  
Filters  
Digit 13 – Supply Fan Motor, HP  
1 = 7.5 Hp Std. Eff. (5.6 kW)  
2 = 10 Hp Std. Eff. (7.5 kW)  
3 = 15 Hp Std. Eff. (11.2 kW)  
4 = 20 Hp Std. Eff. (14.9 kW)  
D = Factory-Powered 15A GFI  
Convenience Outlet and Non-Fused  
Disconnect Switch with  
External Handle  
E = Field-Powered 15A GFI  
Convenience Outlet  
F = ICS Control Option – Trane  
Communication Interface, Supply Air  
Sensing and Clogged Filter Switch  
G = Ventilation Override  
H = Hinged Service Access  
J = Condenser Coil Guards  
Digit 7 – Major Development Sequence  
A = First  
B = Second, Etc.  
Digit 14 – Supply Air Fan Drive Selections  
Digit 8 – Power Supply (See Note 1)  
C = 380/50/3  
D = 415/50/3  
(See Note 3)  
A = 458  
B = 500  
C = 541  
D = 583  
E = 625  
F = 658  
G = 664  
H = 417  
J = 437  
K = 479  
L = 521  
M = 562  
N = 604  
Digit 9 – Heating Capacity (See Note 4)  
0 = No Heat (TC only)  
L = Low Heat (YC only)  
H = High Heat (YC only)  
Note: When second digit is “E” for Electric  
Heat, the following values apply in the  
ninth digit.  
Digit 15 – Fresh Air Selection  
A = No Fresh Air  
380V / 415V  
B = 0-25% Manual Damper  
C = 0-100% Economizer, Dry Bulb Control  
D = 0-100% Economizer, Reference  
Enthalpy Control  
E = 0-100% Economizer, Differential  
Enthalpy Control  
A = 23  
B = 34  
C = 45  
D = 56  
E = 68  
27 kW  
40 kW  
54 kW  
67 kW  
81 kW  
F = “C” Option and Low Leak Fresh  
Air Damper  
G = “D” Option and Low Leak Fresh  
Air Damper  
Digit 10 – Design Sequence  
A = First  
H = “E” Option and Low Leak Fresh  
Air Damper  
Note:  
1. All voltages are across-the-line starting only.  
2. Option includes Liquid, Discharge, Suction Valves.  
3. Supply air fan drives A thru G are used with 22.9-29.2 ton (82-105 kW) units only and  
drives H thru N are used with 33.3 and 41.7 ton (120-148 kW) units only.  
4. Electric Heat kW ratings are based upon voltage ratings of 380/415 V. Heaters A, B, C, D  
are used with 22.9-29.2 ton (82-105 kW) units only and heaters B, C, D, E are used with  
33.3-41.7 ton (120-148 kW) units only.  
9
General  
Data  
Table 10-1 – General Data – 23-25 Tons  
TC*275 (23 Tons)  
TC*305 (25 Tons)  
Cooling Performance1  
Nominal Gross Capacity(Btuh)  
System Power kW  
Compressor  
279,000 (81.8 kW)  
26.1  
304,000 (89.1 kW)  
30.2 kW  
Number/Type  
2/Scroll  
8.4/12.5  
2875  
2/Scroll  
11.7  
2875  
Nominal Motor HP (ea)  
Motor RPM  
Natural Gas Heat2  
Heating Input(Btuh)  
First Stage  
Low  
High  
Low  
High  
290,000 (85.0 kW)  
250,000 (73.3 kW)  
243,000 (69.0 kW)  
202,500 (59.4 kW)  
500,000 (147 kW)  
425,000 (125 kW)  
405,000 (119 kW)  
344,250 (101 kW)  
290,000 (85.0 kW)  
250,000 (73.3 kW)  
243,000 (69.0 kW)  
202,500 (59.4 kW)  
500,000 (147 kW)  
425,000 (125 kW)  
405,000 (119 kW)  
344,250 (101 kW)  
Heating Output(Btuh)  
First Stage  
Steady State Efficiency(%) 3  
No. Burners/No. Stages  
Gas Connect Pipe Size (in)  
Outdoor Coil - Type  
Tube Size OD (in)  
Face Area (sq ft)  
81  
81  
1/2  
1/2  
0.75 (19 mm)  
LANCED  
0.375 (10 mm)  
51.3 (4.8 sq m)  
2/16  
HI-PERFORM  
0.500 (13 mm)  
31.7 (2.9 sq m)  
2/14  
0.75 (19 mm)  
LANCED  
0.375 (10 mm)  
51.3 (4.8 sq m)  
2/16  
HI-PERFORM  
0.500(13 mm)  
31.7 (2.9 sq m)  
2/14  
Rows/Fins Per Inch (25mm)  
Indoor Coil - Type  
Tube Size OD (in)  
Face Area (sq ft)  
Rows/Fins Per Inch (25mm)  
Refrigerant Control  
PVC Drain Connect No./Size (in)  
Outdoor Fan Type  
No. Used  
TXV  
TXV  
1/1.25 (1/32 mm)  
PROP FAN  
3
1/1.25 (1/32 mm)  
PROP FAN  
3
Diameter (in.)  
Drive Type/No. Speeds  
Cfm  
No. Motors (RPM)  
Motor HP  
Indoor Fan Type/No. Used  
Diameter (in)  
Width (in)  
Drive Type  
28.0 (711 mm)  
DIRECT/1  
20,450 (9650 L/s)  
3 (940)  
0.75 (0.56 kW)  
FC/1  
22.4 (568 mm)  
22.0 (559 mm)  
BELT  
28.0 (711 mm)  
DIRECT/1  
20,450 (9650 L/s)  
3 (940)  
0.75 (0.56 kW)  
FC/1  
22.4 (568 mm)  
22.0 (559 mm)  
BELT  
No. Speeds/No. Motors  
Motor HP  
Motor RPM/Frame Size  
Filters - Type  
Furnished/No.  
1/1  
1/1  
7.5 (5.6 kW)  
1460/213T  
THROWAWAY  
Yes/16  
7.5 (5.6 kW)  
1460/213T  
THROWAWAY  
Yes/16  
Recommended Size (in)  
Refrigerant Type  
Factory Charge (lbs) 4  
16X 20 X2 (406X 508 X51mm)  
R-22  
16x20x2 (406X 508x51mm)  
R-22  
46 (21 kg)  
46 (21 kg)  
Notes:  
1. Cooling Performance is rated at 95°F (35°C) ambient, 80°F (27°C) entering dry bulb, 67°F (19°C) entering wet bulb. Gross capacity does not include the effect of  
fan motor heat.  
2. Heating Performance Limit settings and ratings data were established and approved under laboratory test conditions using American National Standards.  
3. Steady State Efficiency is rated in accordance with DOE test procedures.  
4. Refrigerant charge is an approximate value. For a more precise value, see unit nameplate and service instructions.  
10  
General  
Data  
Table 11-1 – General Data – 29-33 Tons  
TC*350 (29 Tons)  
TC*400 (33 Tons)  
Cooling Performance1  
Nominal Gross Capacity(Btuh)  
System Power kW  
Compressor  
375,000 (105 kW)  
34.0  
409,000 (120 kW)  
42.5  
Number/Type  
2/Scroll  
12.5  
2875  
3/Scroll  
2875  
Nominal Motor HP (ea)  
Motor RPM  
Natural Gas Heat2  
Heating Input (Btuh)  
First Stage  
Low  
High  
Low  
High  
290,000 (85.0 kW)  
250,000 (73.3 kW)  
243,000 (69.0 kW)  
202,500 (59.4 kW)  
500,000 (147 kW)  
425,000 (125 kW)  
405,000 (119 kW)  
344,250 (101 kW)  
335,000 (98.2 kW)  
300,000 (87.9 kW)  
271,350 (80.0 kW)  
243,500 (71.4 kW)  
670,000 (196 kW)  
600,000 (176 kW)  
542,700 (159 kW)  
486,000 (166 kW)  
Heating Output(Btuh)  
First Stage  
Steady State Efficiency(%)3  
No. Burners/No. Stages  
Gas Connect Pipe Size (in)  
Outdoor Coil - Type  
Tube Size OD (in)  
Face Area (sq ft)  
81  
81  
1/2  
1/2  
0.75 (19 mm)  
LANCED  
0.375 (10 mm)  
51.3 (4.8 sq m)  
2/16  
HI-PERFORM  
0.500 (13 mm)  
31.7 (2.9 sq m)  
2/15  
0.75 (19 mm)  
LANCED  
0.375 (10 mm)  
69.8 (6.5 sq m)  
2/16  
HI-PERFORM  
0.500 (13 mm)  
37.5 (3.5 sq m)  
2/14  
Rows/Fins Per Inch (25mm)  
Indoor Coil - Type  
Tube Size (in) OD  
Face Area (sq ft)  
Rows/Fins Per Inch (25mm)  
Refrigerant Control  
PVC Drain Connect No./Size (in)  
Outdoor Fan Type  
No. Used  
TXV  
TXV  
1/1.25 (1/32 mm)  
PROP FAN  
3
1/1.25 (1/32 mm)  
PROP FAN  
4
Diameter (in.)  
Drive Type/No. Speeds  
Cfm  
No. Motors (RPM)  
Motor HP  
Indoor Fan Type/No. Used  
Diameter (in)  
Width (in)  
Drive Type  
28.0 (711 mm)  
DIRECT/1  
20,400 (9650 L/s)  
3 (940)  
0.75 (0.56 kW)  
FC/1  
22.4 (568 mm)  
22.0 (559 mm)  
BELT  
28.0 (711 mm)  
DIRECT/1  
26,200 (12,400 L/s)  
4 (940)  
0.75 (0.56 kW)  
FC/1  
25.0 (635 mm)  
25.0 (635 mm)  
BELT  
No. Speeds/No. Motors  
Motor HP  
Motor RPM/Frame Size  
Filters - Type  
Furnished/No.  
1/1  
1/1  
7.5 (5.6 kW)  
1460/213T  
THROWAWAY  
Yes/16  
10.0 (7.5 kW)  
1460/215T  
THROWAWAY  
Yes/17  
Recommended Size (in)  
Refrigerant Type  
16x20x2 (406x508x51mm)  
R-22  
16X 20 X2 (406X 508 X51mm)  
R-22  
Factory Charge Ciruit #1 (lbs) 4  
Factory Charge Circuit # 2 (lbs)  
52 (24 kg)  
24.5 (11.1 kg)  
42.5 (19.3 kg)  
Notes:  
1. Cooling Performance is rated at 95°F (35°C) ambient, 80°F (27°C) entering dry bulb, 67°F (19°C) entering wet bulb. Gross capacity does not include the effect of  
fan motor heat.  
2. Heating Performance Limit settings and ratings data were established and approved under laboratory test conditions using American National Standards.  
3. Steady State Efficiency is rated in accordance with DOE test procedures.  
4. Refrigerant charge is an approximate value. For a more precise value, see unit nameplate and service instructions.  
11  
General  
Data  
Table 12-1 – General Data – 43 Tons  
TC*500 (42Tons)  
Cooling Performance 1  
Nominal Gross Capacity(Btuh)  
System Power kW  
Compressor  
505,000 (148 kW)  
52.9  
Number/Type  
3/Scroll  
12.5  
2875  
Nominal Motor HP (ea)  
Motor RPM  
Natural Gas Heat2  
Heating Input(Btuh)  
First Stage  
Low  
High  
335,000 (98.2 kW)  
300,000 (87.9 kW)  
271,350 (79.5 kW)  
243,500 (71.4 kW)  
670,000 (196 kW)  
600,000 (176 kW)  
542,700 (159 kW)  
486,000 (166 kW)  
Heating Output(Btuh)  
First Stage  
Steady State Efficiency(%)3  
No. Burners/No. Stages  
Gas Connect Pipe Size (in)  
Outdoor Coil - Type  
Tube Size OD (in)  
Face Area(sq ft)  
81  
1/2  
0.75 (19 mm)  
LANCED  
0.375 (10 mm)  
69.8 (6.5 sq m)  
2/16  
HI-PERFORM  
0.500 (13 mm)  
37.5 (3.5 sq m)  
3/13  
Rows/Fins Per Inch (25mm)  
Indoor Coil - Type  
Tube Size OD (in)  
Face Area (sq ft)  
Rows/Fins Per Inch (25mm)  
Refrigerant Control  
PVC Drain Connect No./Size (in)  
Outdoor Fan Type  
No. Used  
TXV  
1/1.25 (1/32 mm)  
PROP FAN  
4
Diameter (in.)  
Drive Type/No. Speeds  
Cfm  
No. Motors (RPM)  
Motor HP  
Indoor Fan Type/No. Used  
Diameter (in)  
Width (in)  
Drive Type  
28.0 (711 mm)  
DIRECT/1  
26,200 (12,400 L/s)  
4 (940)  
0.75 (0.56 kW)  
FC/1  
25.0 (635 mm)  
25.0 (635 mm)  
BELT  
No. Speeds/No. Motors  
Motor HP  
Motor RPM/Frame Size  
Filters - Type  
Furnished/No.  
1/1  
10.0 (7.5 kW)  
1460/215T  
THROWAWAY  
Yes/17  
Recommended Size (in)  
Refrigerant Type  
16x20x2 (406x508x51mm)  
R-22  
Factory Charge Circuit #1 (lbs) 4  
Factory Charge Circuit #1  
23.9 (10.8 kg)  
49.4 (22.5 kg )  
Notes:  
1. Cooling Performance is rated at 95°F (35°C) ambient, 80°F (27°C) entering dry bulb, 67°F (19°C) entering  
wet bulb. Gross capacity does not include the effect of fan motor heat.  
2. Heating Performance Limit settings and ratings data were established and approved under laboratory  
test conditions using American National Standards.  
3. Steady State Efficiency is rated in accordance with DOE test procedures.  
4. Refrigerant charge is an approximate value. For a more precise value, see unit nameplate and service  
instructions.  
Table 12-2 – Economizer Outdoor Air Damper Leakage (Of Rated Airflow)  
P Across Dampers (In. WC) (Pa)  
0.5 In. (124.5 Pa)  
1.5%  
1.0 In. (249 Pa)  
2.5%  
Standard  
Optional “Low Leak”  
0.5%  
1.0%  
Note: Above data based on tests completed in accordance with AMCA Standard 575.  
12  
Application  
Considerations  
Exhaust Air Options  
When is it necessary to provide  
building exhaust?  
Barometric Relief Dampers  
5
Barometric relief dampers consist of  
gravity dampers which open with  
increased building pressure. As the  
building pressure increases, the  
pressure in the unit return section also  
increases, opening the dampers and  
relieving air. Barometric relief may be  
used to provide relief for single story  
buildings with no return ductwork and  
exhaust requirements less than  
25 percent.  
Bhp must be multiplied by the air  
density ratio to obtain the actual  
operating bhp.  
Whenever an outdoor air economizer is  
used, a building generally requires an  
exhaust system. The purpose of the  
exhaust system is to exhaust the  
proper amount of air to prevent over or  
under-pressurization of the building.  
In order to better illustrate this  
procedure, the following example is  
used:  
Consider a 29-ton (105 kW) rooftop unit  
that is to deliver 9,160 actual cfm (4323  
l/s) at 1.50 inches total static pressure  
(tsp) (38 mm, 373 Pa), 55°F (12.8°C)  
leaving air temperature, at an elevation  
of 5,000 ft. (1524 m).  
A building may have all or part of its  
exhaust system in the rooftop unit.  
Often, a building provides exhaust  
external to the air conditioning  
equipment. This external exhaust must  
be considered when selecting the  
rooftop exhaust system.  
Altitude Corrections  
The rooftop performance tables and  
curves of this catalog are based on  
standard air (.075 lbs/ft) (.034 kg/cm). If  
the rooftop airflow requirements are at  
other than standard conditions (sea  
level), an air density correction is  
needed to project accurate unit  
performance.  
1
From Figure 17-1, the air density ratio  
is 0.86.  
2
Voyager Commercial rooftop units  
Tsp = 1.50 inches/0.86 = 1.74 inches tsp.  
374/.86 = 434 Pa.  
offer two types of exhaust systems:  
1
3
Power exhaust fan.  
From the performance tables: a 29-ton  
(105 kW) rooftop will deliver 9,160 cfm  
at 1.74 inches tsp 4323 l/s at 434 Pa) at  
651 rpm and 5.51 bhp (4.11 kW).  
4
2
Figure 17-1 shows the air density ratio  
at various temperatures and elevations.  
Trane rooftops are designed to operate  
between 40 and 90°F (4.4 and 32.2°C)  
leaving air temperature.  
Barometric relief dampers.  
Application Recommendations  
Power Exhaust Fan  
The exhaust fan option is a dual, non-  
modulating exhaust fan with  
approximately half the air-moving  
capabilities of the supply fan system.  
The experience of The Trane Company  
that a non-modulating exhaust fan  
selected for 40 to 50 percent of nominal  
supply cfm can be applied successfully.  
The rpm is correct as selected –  
651 rpm.  
The procedure to use when selecting a  
supply or exhaust fan on a rooftop for  
elevations and temperatures other than  
standard is as follows:  
5
Bhp = 5.51 x 0.86 = 4.74 bhp actual.  
kW = 4.11 x 0.86 = 3.5 kW  
1
Compressor MBh, SHR, and kW should  
be calculated at standard and then  
converted to actual using the correction  
factors in Table 17-2. Apply these  
factors to the capacities selected at  
standard cfm so as to correct for the  
reduced mass flow rate across the  
condenser.  
First, determine the air density ratio  
using Figure 17-1.  
2
The power exhaust fan generally  
should not be selected for more than  
40 to 50 percent of design supply  
airflow. Since it is an on/off non-  
modulating fan, it does not vary  
exhaust cfm with the amount of  
outside air entering the building.  
Therefore, if selected for more than  
40 to 50 percent of supply airflow, the  
building may become under-  
Divide the static pressure at the  
nonstandard condition by the air  
density ratio to obtain the corrected  
static pressure.  
3
Heat selections other than gas heat will  
not be affected by altitude. Nominal  
gas capacity (output) should be  
multiplied by the factors given in  
Table 17-3 before calculating the  
heating supply air temperature.  
Use the actual cfm and the corrected  
static pressure to determine the fan  
rpm and bhp from the rooftop  
performance tables or curves.  
4
pressurized when economizer  
operation is allowing lesser amounts of  
outdoor air into the building. If,  
The fan rpm is correct as selected.  
however, building pressure is not of a  
critical nature, the non-modulating  
exhaust fan may be sized for more than  
50 percent of design supply airflow.  
13  
Application  
Considerations  
Acoustical Considerations  
Clearance Requirements  
Duct Design  
Proper placement of rooftops is critical  
to reducing transmitted sound levels to  
the building. The ideal time to make  
provisions to reduce sound  
The recommended clearances  
It is important to note that the rated  
capacities of the rooftop can be met  
only if the rooftop is properly installed  
in the field. A well designed duct  
system is essential in meeting these  
capacities.  
identified with unit dimensions should  
be maintained to assure adequate  
serviceability, maximum capacity and  
peak operating efficiency. A reduction  
in unit clearance could result in  
condenser coil starvation or warm  
condenser air recirculation. If the  
clearances shown are not possible on a  
particular job, consider the following:  
Do the clearances available allow for  
major service work such as changing  
compressors or coils?  
Do the clearances available allow for  
proper outside air intake, exhaust air  
removal and condenser airflow?  
If screening around the unit is being  
used, is there a possibility of air  
recirculation from the exhaust to the  
outside air intake or from condenser  
exhaust to condenser intake?  
transmissions is during the design  
phase. And the most economical  
means of avoiding an acoustical  
problem is to place the rooftop(s) away  
from acoustically critical areas. If  
possible, rooftops should not be  
located directly above areas such as:  
offices, conference rooms, executive  
office areas and classrooms. Instead,  
ideal locations might be over corridors,  
utility rooms, toilets or other areas  
where higher sound levels directly  
below the unit(s) are acceptable.  
The satisfactory distribution of air  
throughout the system requires that  
there be an unrestricted and uniform  
airflow from the rooftop discharge  
duct. This discharge section should be  
straight for at least several duct  
diameters to allow the conversion of  
fan energy from velocity pressure to  
static pressure.  
However, when job conditions dictate  
elbows be installed near the rooftop  
outlet, the loss of capacity and static  
pressure may be reduced through the  
use of guide vanes and proper  
direction of the bend in the elbow. The  
high velocity side of the rooftop outlet  
should be directed at the outside radius  
of the elbow rather than the inside.  
Several basic guidelines for unit  
placement should be followed to  
minimize sound transmission through  
the building structure:  
1
Actual clearances which appear  
inadequate should be reviewed with a  
local Trane sales engineer.  
Never cantilever the compressor end of  
the unit. A structural cross member  
must support this end of the unit.  
2
When two or more units are to be  
placed side by side, the distance  
between the units should be increased  
to 150 percent of the recommended  
single unit clearance. The units should  
also be staggered as shown for two  
reasons:  
Locate the unit’s center of gravity  
close to or over column or main  
support beam.  
3
If the roof structure is very light,  
roof joists must be replaced by a  
structural shape in the critical areas  
described above.  
1
To reduce span deflection if more than  
one unit is placed on a single span.  
Reducing deflection discourages sound  
transmission.  
4
If several units are to be placed on one  
span, they should be staggered to  
reduce deflection over that span.  
2
To assure proper diffusion of exhaust  
air before contact with the outside air  
intake of adjacent unit.  
It is impossible to totally quantify the  
effect of building structure on sound  
transmission, since this depends on the  
response of the roof and building  
members to the sound and vibration of  
the unit components. However, the  
guidelines listed above are experience-  
proven guidelines which will help  
reduce sound transmissions.  
14  
Selection  
Procedure  
Selection of Trane commercial air  
Step 1 – A summation of the peak  
cooling load and the outside air  
ventilation load shows: 22.5 tons + 1.27  
tons = 23.77 (79 kW + 4.45 kW = 83.45)  
required unit capacity. From Table 19-1,  
25 ton (89 kW) unit capacity at 80 DB/67  
WB (27/19°C), 95°F entering the  
Step 4 – Determine total required unit  
cooling capacity:  
Required capacity = total peak load +  
O.A. load + supply air fan motor heat.  
conditioners is divided into five basic  
areas:  
1
Cooling capacity  
From Figure 16-1, the supply air fan  
motor heat for 5.85 bhp = 15 MBh.  
2
Heating capacity  
Capacity = 270 + 15 + 15 =  
300 MBh (89 kW)  
3
condenser and 10,000 total peak supply  
cfm (4720 l/s), is YC/TC/TE*305.  
Air delivery  
4
Step 5 – Determine unit capacity:  
From Table 19-2 unit capacity at 81.5  
DB/67 WB entering the evaporator,  
10,000 supply air cfm, 95°F (35°C)  
entering the condenser about 305.6  
MBh (89.5 kW) with 241 MBh (70.6 kW)  
sensible.  
Step 2 – Having selected the correct  
unit, the supply fan and exhaust fan  
motor bhp must be determined.  
Unit electrical requirements  
5
Unit designation  
Supply Air Fan:  
Determine unit static pressure at  
design supply cfm:  
Factors Used In Unit Cooling Selection:  
1
Summer design conditions – 95 DB/  
External static pressure  
1.25 inches  
(310 Pa)  
76 WB (35/24.4°C), 95°F (35°C) entering  
air to condenser.  
Step 6 – Determine leaving air  
temperature:  
Unit sensible heat capacity, corrected  
for supply air fan motor heat 241 - 15 =  
226 MBh (66.2 kW).  
Heat exchanger  
(Table 28-1)  
2
.12 inches  
(30 Pa)  
Summer room design conditions –  
76 DB/66 WB (24.4/18.9°C).  
High efficiency filter 2” (25 mm)  
(Table 28-1)  
3
.07 inches  
Supply air dry bulb temperature  
difference = 226 MBh ÷ (1.085 x  
10,000 cfm) = 20.8°F (-6.2°C)  
Total peak cooling load – 270 MBh  
(17 Pa)  
(79 kW) (22.5 tons).  
Economizer  
(Table 28-1)  
4
.07 inches  
(17 Pa)  
1.50 inches  
(374 Pa)  
Total peak supply cfm – 10,000 cfm  
Supply air dry bulb: 81.5-20.8 = 60.7  
(15.9°C)  
(4720 l/s).  
Unit total static pressure  
5
Unit enthalpy difference = 305.6 ÷  
(4.5 x 10,000) = 6.79  
Btu/lb leaving enthalpy = h (ent WB)  
= 31.62  
Leaving enthalpy = 31.62 Btu/lb -  
6.79 Btu/lb = 24.83 Btu/lb.  
External static pressure – 1.0 inches wc  
Using total cfm of 10,000 (4720 l/s) and  
total static pressure of 1.50 inches  
(38 mm), enter Table 24-1. Table 24-1  
shows 5.35 bhp (4 kW) with 616 rpm.  
(249 Pa).  
6
Return air temperatures – 80 DB/66°F  
WB (26.7/18.9°C).  
7
Step 3 – Determine evaporator coil  
entering air conditions. Mixed air dry  
bulb temperature determination.  
From Table 17-1, the leaving air wet  
bulb temperature corresponding to an  
enthalpy of 24.8 Btu/lb = 57.5.  
Leaving air temperatures = 61.7 DB/  
57.5 WB (15.9/13.9°C).  
Return air cfm – 3540 cfm (1671 l/s).  
8
Outside air ventilation cfm and load –  
Using the minimum percent of OA  
(1,000 cfm ÷ 10,000 cfm = 10 percent),  
determine the mixture dry bulb to the  
evaporator. RADB + % OA  
(OADB - RADB) = 80 + (0.10) (95 - 80) =  
80 + 1.5 = 81.5°F [26.7 + 1.5 = 28°C).  
1000 cfm and 15.19 MBh (1.27 tons or  
4.45 kW) 472 l/s.  
9
Unit accessories include:  
a
Aluminized heat exchanger – high heat  
module.  
Approximate wet bulb mixture  
temperature:  
b
2” Hi-efficiency throwaway filters.  
RAWB + OA (OAWB - RAWB) =  
66 + (0.10) (76-66) = 68 + 1 = 67°F.  
c
Exhaust fan.  
A psychrometric chart can be used to  
more accurately determine the mixture  
temperature to the evaporator coil.  
d
Economizer cycle.  
15  
Selection  
Procedure  
1
Table 23-1 also shows an air  
temperature rise of 21.2°F for 10,000  
cfm through the 90 kW heat module.  
To select the drive, enter Table 29-1 for  
a 305 unit. Select the appropriate drive  
for the applicable rpm range. Drive  
selection letter E with a range of 625  
rpm, is required for 616 rpm. Where  
altitude is significantly above sea level,  
use Table 17-2 and 17-3, and Figure  
17-1 for applicable correction factors.  
Winter outdoor design conditions –  
0°F (17.7°C).  
2
Unit supply temperature at design  
heating conditions = mixed air  
temperature + air temperature rise =  
65.38 + 21.2 = 86.58°F.  
Total return air temperature – 72°F  
(22.2°C).  
3
Winter outside air minimum ventilation  
load and cfm – 1,000 cfm and  
87.2 MBh.  
Natural Gas Heating System  
Assume natural gas supply – 1000  
Btu/ft3. From Table 23-4, select the low  
heat module (243 MBh output) to  
satisfy 222 at unit cfm.  
Unit Electrical Requirements  
Selection procedures for electrical  
requirements for wire sizing amps,  
maximum fuse sizing and dual element  
fuses are given in the electrical service  
selection of this catalog.  
4
Peak heating load 150 MBh.  
Utilizing unit selection in the cooling  
capacity procedure.  
Mixed air temperature = RADB +  
% O.A. (OADB - RADB) = 72  
+ (0.10) (0-72) = 64.8°F.  
Supply air fan motor heat temperature  
rise = 20,600 Btu ÷ (1.085 x 10,000) cfm  
= 1.38°F.  
Mixed air temperature entering heat  
module = 64.8 + 1.58 = 65.38°F.  
Total winter heating load = peak  
heating + ventilation load - total fan  
motor heat = 150 + 87.2 - 15 =  
222.2 MBh.  
Table 23-4 also shows air temperature  
rise of 37.3°F for 10,000 cfm through  
heating module.  
Unit Designation  
After determining specific unit  
characteristics utilizing the selection  
procedure and additional job  
information, the complete unit model  
number can be developed. Use the  
model number nomenclature on  
page 9.  
Unit supply temperature design  
heating conditions = mixed air  
temperature + air temperature rise =  
65.38 + 33.5 = 98.89°F.  
Air Delivery Procedure  
Supply air fan bhp and rpm selection.  
Unit supply air fan performance shown  
in Table 23-1 includes pressure drops  
for dampers and casing losses. Static  
pressure drops of accessory  
Electric Heating System  
components such as heating systems,  
and filters if used, must be added to  
external unit static pressure for total  
static pressure determination.  
Unit operating on 415 power supply.  
From Table 23-1, kW may be selected  
for TC*305 unit to satisfy the winter  
heating load. The 67 kW module will do  
the job.  
The supply air fan motor selected in the  
previous cooling capacity  
determination example was 5.35 bhp  
with 656 rpm. Thus, the supply fan  
motor selected is .5 hp.  
Chart 16-1 – Fan Motor Heat  
16  
Performance  
Adjustment  
Factors  
Table 17-1 – Enthalpy of Saturated Air  
Figure 17-1 – Air Density Ratios  
Wet Bulb Temperature  
°F  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
°C  
4.4  
5.0  
5.5  
6.1  
6.7  
7.2  
7.8  
8.3  
Btu Per Lb.  
15.23  
15.70  
16.17  
16.66  
17.15  
17.65  
18.16  
18.68  
19.21  
19.75  
20.30  
20.86  
21.44  
22.02  
22.62  
23.22  
23.84  
24.48  
25.12  
25.78  
26.46  
27.15  
27.85  
28.57  
29.31  
30.06  
30.83  
31.62  
32.42  
33.25  
34.09  
34.95  
35.83  
36.74  
37.66  
38.61  
8.9  
9.4  
10.0  
10.6  
11.1  
11.7  
12.2  
12.8  
13.3  
13.9  
14.4  
15.0  
15.6  
16.1  
16.7  
17.2  
17.8  
18.3  
18.9  
19.4  
20.0  
20.6  
21.1  
21.7  
22.2  
22.8  
23.3  
23.9  
Table 17-2 – Cooling Capacity Altitude Correction Factors  
Altitude ft. (m)  
4000 (1219.2)  
Sea Level  
1.00  
1000 (304.8)  
0.99  
2000 (609.6)  
0.99  
3000 (914.4)  
0.98  
5000 (1524.0)  
0.96  
6000 (1828.8)  
0.95  
7000 (2133.6)  
0.94  
Cooling Capacity  
Multiplier  
0.97  
KW Correction  
Multiplier  
(Compressors)  
SHR Correction  
Multiplier  
1.00  
1.00  
1.01  
.98  
1.02  
.95  
1.03  
.93  
1.04  
.91  
1.05  
.89  
1.06  
.87  
1.07  
.85  
Maximum  
Condenser  
Ambient  
115°F (46.1°C) 114°F (45.6°C)  
113°F (45.0°C)  
112°F (44.4°C)  
111°F (43.9°C)  
110°F (43.3°C)  
109°F (42.8°C)  
108°F (42.2°C)  
Note:  
SHR = Sensible Heat Ratio  
Table 17-3 – Gas Heating Capacity Altitude Correction Factors  
Altitude ft. (m)  
3501 To 4500  
Sea Level To 2000  
200 To 2500  
2501 To 3500  
4501 To 5500  
5501 To 6500  
6501 To 7500  
(Sea Level To 609.6) (609.9 To 762.0) (762.3 To 1066.8) (1067.1 To 1674.4) (1371.9 To 1675.4) (1676.7 To 1981.2) (1981.5 To 2286.0)  
1.00 .92 .88 .84 .80 .76 .72  
Capacity Multiplier  
Note:  
Correction factors are per AGA Std 221.30 – 1964, Part VI, 6.12. Local codes may supersede.  
17  
Performance  
Data  
Table 18-1 – 23 Ton Gross Cooling Capacities (MBh)  
English  
Ambient Temperature – Deg F  
85  
95  
Entering Wet Bulb Temperature – Deg F  
67 73 61 67  
105  
115  
67  
Ent  
DB  
61  
67  
73  
61  
73  
61  
73  
CFM (F) TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC  
75  
6900 80  
249 197 277 160 307 111 238 191 264 154 294 105 226 184 251 148 280 99 213 177 238 141 265  
93  
251 232 278 190 308 147 240 226 265 183 295 141 229 219 252 177 280 135 216 212 239 170 266 128  
258 258 279 224 309 182 249 249 267 217 295 176 238 238 254 211 281 169 228 228 240 204 267 162  
273 273 281 259 310 215 263 263 269 252 297 209 252 252 257 246 283 202 241 241 244 239 268 196  
85  
90  
75  
7500 80  
253 205 281 166 312 113 242 199 268 160 298 107 229 192 255 154 283 101 216 185 241 147 268  
94  
256 243 282 197 313 151 245 237 270 191 299 145 233 230 256 184 284 139 220 220 242 177 269 132  
266 266 283 234 313 188 256 256 271 227 300 182 245 245 258 220 285 175 234 234 244 214 270 169  
281 281 287 271 315 225 270 270 275 265 301 218 259 259 262 258 287 211 248 248 248 248 272 205  
85  
90  
75  
8000 80  
256 212 284 170 315 114 244 205 271 164 301 108 232 198 257 157 286 102 219 191 243 150 271  
96  
260 252 285 203 316 155 248 245 273 196 302 149 236 236 259 190 287 142 224 224 245 182 272 136  
271 271 287 242 317 194 261 261 274 235 303 187 250 250 261 228 288 181 239 239 247 221 273 174  
287 287 291 282 318 232 276 276 279 275 304 225 265 265 265 265 290 219 253 253 253 253 275 212  
85  
90  
75  
9000 80  
262 224 290 172 321 117 250 217 276 166 306 111 237 210 262 158 291 105 224 203 248 151 275  
98  
266 266 291 214 322 162 255 255 278 208 307 155 244 244 264 201 292 149 232 232 249 194 277 142  
282 282 293 257 323 204 271 271 280 251 309 197 259 259 267 244 294 193 247 247 252 237 278 184  
298 298 297 297 324 246 286 286 286 286 310 240 275 275 275 275 295 233 262 262 262 262 280 226  
266 236 294 180 326 120 254 229 281 173 311 113 241 222 266 167 295 107 228 215 251 158 279 100  
274 274 296 225 327 168 263 263 282 218 312 162 251 251 268 211 296 155 239 239 253 204 280 148  
290 290 299 272 328 214 279 279 285 266 313 207 267 267 272 259 298 200 255 255 257 252 282 193  
307 307 307 307 330 260 295 295 295 295 315 253 283 283 283 283 300 247 270 270 270 270 284 240  
85  
90  
75  
10000 80  
85  
90  
Notes:  
1. All capacities shown are gross and have not considered indoor fan heat. To obtain net cooling, subtract indoor fan heat.  
2. TGC= Total gross capacity.  
3. SHC= Sensible heat capacity.  
Table 18-2 – 82 kW (23 Tons) Gross Cooling Capacity (kW)  
Metric  
Ambient Temperature – Deg C  
29.4  
35.0  
Entering Wet Bulb Temperature – Deg C  
19.4 22.8 16.1 19.4  
40.6  
46.1  
19.4  
Ent  
DB  
16.1  
19.4  
22.8  
16.1  
22.8  
16.1  
22.8  
L/s  
(C) TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC  
23.9 73.0 57.7 81.2 46.9 90.0 32.5 69.8 56.0 77.4 45.1 86.2 30.8 66.2 53.9 73.6 43.4 82.1 29.0 62.4 51.9 69.8 41.3 77.7 27.2  
3260 26.7 73.6 68.0 81.5 55.7 90.3 43.1 70.3 66.2 77.7 53.6 86.5 41.3 67.1 64.2 73.9 51.9 82.1 39.6 63.3 62.1 70.1 49.8 78.0 37.5  
29.4 75.6 75.6 81.8 65.7 90.6 53.3 73.0 73.0 78.3 63.6 86.5 51.6 69.8 69.8 74.4 61.8 82.4 49.5 66.8 66.8 70.3 59.8 78.3 47.5  
32.2 80.0 80.0 82.4 75.9 90.9 63.0 77.1 77.1 78.8 73.9 87.1 61.3 73.9 73.9 75.3 72.1 82.9 59.2 70.6 70.6 71.5 70.1 78.6 57.4  
23.9 74.2 60.1 82.4 48.7 91.4 33.1 70.9 58.3 78.6 46.9 87.3 31.4 67.1 56.3 74.7 45.1 82.9 29.6 63.3 54.2 70.6 43.1 78.6 27.7  
3540 26.7 75.0 71.2 82.7 57.7 91.7 44.3 71.8 69.5 79.1 56.0 87.6 42.5 68.3 67.4 75.0 53.9 83.2 40.7 64.5 64.5 70.9 51.9 78.8 38.7  
29.4 78.0 78.0 82.9 68.6 91.7 55.1 75.0 75.0 79.4 66.5 87.9 53.3 71.8 71.8 75.6 64.5 83.5 51.3 68.6 68.6 71.5 62.7 79.1 49.5  
32.2 82.4 82.4 84.1 79.4 92.3 65.9 79.1 79.1 80.6 77.7 88.2 63.9 75.9 75.9 76.8 75.6 84.1 61.8 72.7 72.7 72.7 72.7 79.7 60.1  
23.9 75.0 62.1 83.2 49.8 92.3 33.4 71.5 60.1 79.4 48.1 88.2 31.7 68.0 58.0 75.3 46.0 83.8 29.9 64.2 56.0 71.2 44.0 79.4 28.1  
3780 26.7 76.2 73.9 83.5 59.5 92.6 45.4 72.7 71.8 80.0 57.4 88.5 43.7 69.2 69.2 75.9 55.7 84.1 41.6 65.7 65.7 71.8 53.3 79.7 39.9  
29.4 79.4 79.4 84.1 70.9 92.9 56.9 76.5 76.5 80.3 68.9 88.8 54.8 73.3 73.3 76.5 66.8 84.4 53.1 70.1 70.1 72.4 64.8 80.0 51.0  
32.2 84.1 84.1 85.3 82.7 93.2 68.0 80.9 80.9 81.8 80.6 89.1 65.9 77.7 77.7 77.7 77.7 85.0 64.2 74.2 74.2 74.2 74.2 80.6 62.1  
23.9 76.8 65.7 85.0 50.4 94.1 34.3 73.3 63.6 80.9 48.7 89.7 32.5 69.5 61.6 76.8 46.3 85.3 30.8 65.7 59.5 72.7 44.3 80.6 28.8  
4250 26.7 78.0 78.0 85.3 62.7 94.4 47.5 74.7 74.7 81.5 61.0 90.0 45.4 71.5 71.5 77.4 58.9 85.6 43.7 68.0 68.0 73.0 56.9 81.2 41.6  
29.4 82.7 82.7 85.9 75.3 94.7 59.8 79.4 79.4 82.1 73.6 90.6 57.7 75.9 75.9 78.3 71.5 86.2 56.6 72.4 72.4 73.9 69.5 81.5 53.9  
32.2 87.3 87.3 87.1 87.1 95.0 72.1 83.8 83.8 83.8 83.8 90.9 70.3 80.6 80.6 80.6 80.6 86.5 68.3 76.8 76.8 76.8 76.8 82.1 66.2  
23.9 78.0 69.2 86.2 52.8 95.6 35.2 74.4 67.1 82.4 50.7 91.2 33.1 70.6 65.1 78.0 48.9 86.5 31.4 66.8 63.0 73.6 46.3 81.8 29.3  
4720 26.7 80.3 80.3 86.8 65.9 95.8 49.2 77.1 77.1 82.7 63.9 91.4 47.5 73.6 73.6 78.6 61.8 86.8 45.4 70.1 70.1 74.2 59.8 82.1 43.4  
29.4 85.0 85.0 87.6 79.7 96.1 62.7 81.8 81.8 83.5 78.0 91.7 60.7 78.3 78.3 79.7 75.9 87.3 58.6 74.7 74.7 75.3 73.9 82.7 56.6  
32.2 90.0 90.0 90.0 90.0 96.7 76.2 86.5 86.5 86.5 86.5 92.3 74.2 82.9 82.9 82.9 82.9 87.9 72.4 79.1 79.1 79.1 79.1 83.2 70.3  
Notes:  
1. All capacities shown are gross and have not considered indoor fan heat. To obtain net cooling, subtract indoor fan heat.  
2. TGC= Total gross capacity.  
3. SHC= Sensible heat capacity.  
18  
Performance  
Data  
Table 19-1 – 25 Ton Gross Cooling Capacities (MBh)  
English  
Ambient Temperature – Deg F  
85  
95  
Entering Wet Bulb Temperature – Deg F  
67 73 61 67  
105  
115  
67  
Ent  
DB  
61  
67  
73  
61  
73  
61  
73  
CFM (F) TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC  
75  
80  
85  
90  
75  
80  
85  
90  
75  
80  
85  
90  
75  
273 215 303 175 336 122 260 208 289 168 321 115 247 200 275 161 305 108 233 193 260 155 289 102  
275 252 304 207 337 160 263 245 290 200 322 154 250 238 276 192 306 147 237 231 261 185 290 140  
282 282 305 243 338 198 271 271 291 236 323 191 260 260 277 229 307 184 248 248 263 221 291 177  
297 297 308 281 339 234 286 286 294 273 324 227 275 275 280 266 308 220 263 263 266 259 293 212  
276 221 307 174 340 123 263 214 293 167 325 117 250 207 278 160 309 110 236 199 263 153 292 103  
279 261 308 213 341 164 266 254 294 205 325 157 254 247 279 198 310 150 241 239 264 191 293 143  
288 288 309 251 341 203 277 277 295 244 326 196 266 266 281 237 310 189 254 254 266 229 294 182  
304 304 312 291 343 242 293 293 298 284 328 234 281 281 285 277 312 227 269 269 271 269 296 220  
282 234 313 182 347 126 269 227 298 175 331 119 256 219 283 167 314 113 242 211 268 160 297 106  
286 278 314 224 348 171 274 271 300 217 332 164 260 260 285 209 315 157 248 248 269 202 299 150  
299 299 316 267 349 214 288 288 301 260 333 208 276 276 287 252 317 201 263 263 272 245 300 194  
316 316 320 311 350 256 304 304 306 304 334 249 292 292 291 291 318 241 279 279 279 279 301 234  
288 246 318 189 352 129 274 239 303 182 336 122 260 231 288 175 319 115 246 223 272 166 301 108  
292 292 320 235 353 177 280 280 305 228 337 170 268 268 289 220 320 163 255 255 274 212 303 156  
309 309 322 282 354 224 297 297 307 275 338 216 284 284 292 267 321 211 271 271 277 260 304 202  
326 326 326 326 356 270 314 314 314 314 340 263 301 301 301 301 323 255 288 288 287 287 306 248  
292 258 323 196 357 131 279 250 307 189 340 124 264 242 292 182 323 117 250 235 276 175 305 110  
300 300 324 246 358 184 287 287 309 238 341 177 275 275 293 230 324 169 262 262 277 223 307 162  
317 317 327 297 359 233 305 305 312 289 343 226 292 292 297 282 326 219 278 278 282 274 308 211  
336 336 336 336 361 283 323 323 323 323 344 276 309 309 309 309 328 268 295 295 295 295 310 261  
7500  
8000  
9000  
10000 80  
85  
90  
75  
11000 80  
85  
90  
Notes:  
1. All capacities shown are gross and have not considered indoor fan heat. To obtain net cooling, subtract indoor fan heat.  
2. TGC = Total gross capacity.  
3. SHC = Sensible heat capacity.  
Table 19-2 – 89 kW (25 Tons) Gross Cooling Capacity (kW)  
Metric  
Ambient Temperature – Deg C  
29.4  
35.0  
Entering Wet Bulb Temperature – Deg C  
19.4 22.8 16.1 19.4  
40.6  
46.1  
19.4  
Ent  
DB  
16.1  
19.4  
22.8  
16.1  
22.8  
16.1  
22.8  
L/s  
(C) TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC  
23.9 80.0 63.0 88.8 51.3 98.5 35.8 76.2 61.0 84.7 49.2 94.1 33.7 72.4 58.6 80.6 47.2 89.4 31.7 68.3 56.6 76.2 45.4 84.7 29.9  
3540 26.7 80.6 73.9 89.1 60.7 98.8 46.9 77.1 71.8 85.0 58.6 94.4 45.1 73.3 69.8 80.9 56.3 89.7 43.1 69.5 67.7 76.5 54.2 85.0 41.0  
29.4 82.7 82.7 89.4 71.2 99.1 58.0 79.4 79.4 85.3 69.2 94.7 56.0 76.2 76.2 81.2 67.1 90.0 53.9 72.7 72.7 77.1 64.8 85.3 51.9  
32.2 87.1 87.1 90.3 82.4 99.4 68.6 83.8 83.8 86.2 80.0 95.0 66.5 80.6 80.6 82.1 78.0 90.3 64.5 77.1 77.1 78.0 75.9 85.9 62.1  
23.9 80.9 64.8 90.0 51.0 99.7 36.1 77.1 62.7 85.9 48.9 95.3 34.3 73.3 60.7 81.5 46.9 90.6 32.2 69.2 58.3 77.1 44.8 85.6 30.2  
3780 26.7 81.8 76.5 90.3 62.4 99.9 48.1 78.0 74.4 86.2 60.1 95.3 46.0 74.4 72.4 81.8 58.0 90.9 44.0 70.6 70.1 77.4 56.0 85.9 41.9  
29.4 84.4 84.4 90.6 73.6 99.9 59.5 81.2 81.2 86.5 71.5 95.6 57.4 78.0 78.0 82.4 69.5 90.9 55.4 74.4 74.4 78.0 67.1 86.2 53.3  
32.2 89.1 89.1 91.4 85.3 100.5 70.9 85.9 85.9 87.3 83.2 96.1 68.6 82.4 82.4 83.5 81.2 91.4 66.5 78.8 78.8 79.4 78.8 86.8 64.5  
23.9 82.7 68.6 91.7 53.3 101.7 36.9 78.8 66.5 87.3 51.3 97.0 34.9 75.0 64.2 82.9 48.9 92.0 33.1 70.9 61.8 78.6 46.9 87.1 31.1  
4250 26.7 83.8 81.5 92.0 65.7 102.0 50.1 80.3 79.4 87.9 63.6 97.3 48.1 76.2 76.2 83.5 61.3 92.3 46.0 72.7 72.7 78.8 59.2 87.6 44.0  
29.4 87.6 87.6 92.6 78.3 102.3 62.7 84.4 84.4 88.2 76.2 97.6 61.0 80.9 80.9 84.1 73.9 92.9 58.9 77.1 77.1 79.7 71.8 87.9 56.9  
32.2 92.6 92.6 93.8 91.2 102.6 75.0 89.1 89.1 89.7 89.1 97.9 73.0 85.6 85.6 85.3 85.3 93.2 70.6 81.8 81.8 81.8 81.8 88.2 68.6  
23.9 84.4 72.1 93.2 55.4 103.2 37.8 80.3 70.1 88.8 53.3 98.5 35.8 76.2 67.7 84.4 51.3 93.5 33.7 72.1 65.4 79.7 48.7 88.2 31.7  
4720 26.7 85.6 85.6 93.8 68.9 103.5 51.9 82.1 82.1 89.4 66.8 98.8 49.8 78.6 78.6 84.7 64.5 93.8 47.8 74.7 74.7 80.3 62.1 88.8 45.7  
29.4 90.6 90.6 94.4 82.7 103.8 65.7 87.1 87.1 90.0 80.6 99.1 63.3 83.2 83.2 85.6 78.3 94.1 61.8 79.4 79.4 81.2 76.2 89.1 59.2  
32.2 95.6 95.6 95.6 95.6 104.3 79.1 92.0 92.0 92.0 92.0 99.7 77.1 88.2 88.2 88.2 88.2 94.7 74.7 84.4 84.4 84.1 84.1 89.7 72.7  
23.9 85.6 75.6 94.7 57.4 104.6 38.4 81.8 73.3 90.0 55.4 99.7 36.3 77.4 70.9 85.6 53.3 94.7 34.3 73.3 68.9 80.9 51.3 89.4 32.2  
5190 26.7 87.9 87.9 95.0 72.1 104.9 53.9 84.1 84.1 90.6 69.8 99.9 51.9 80.6 80.6 85.9 67.4 95.0 49.5 76.8 76.8 81.2 65.4 90.0 47.5  
29.4 92.9 92.9 95.8 87.1 105.2 68.3 89.4 89.4 91.4 84.7 100.5 66.2 85.6 85.6 87.1 82.7 95.6 64.2 81.5 81.5 82.7 80.3 90.3 61.8  
32.2 98.5 98.5 98.5 98.5 105.8 82.9 94.7 94.7 94.7 94.7 100.8 80.9 90.6 90.6 90.6 90.6 96.1 78.6 86.5 86.5 86.5 86.5 90.9 76.5  
Notes:  
1. All capacities shown are gross and have not considered indoor fan heat. To obtain net cooling, subtract indoor fan heat.  
2. TGC = Total gross capacity.  
3. SHC = Sensible heat capacity.  
19  
Performance  
Data  
Table 20-1 – 29 Ton Gross Cooling Capacities (MBh)  
English  
Ambient Temperature – Deg F  
85  
95  
Entering Wet Bulb Temperature – Deg F  
67 73 61 67  
105  
115  
67  
Ent  
DB  
61  
67  
73  
61  
73  
61  
73  
CFM (F) TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC  
75  
81  
87  
93  
75  
81  
87  
93  
75  
322 264 356 207 394 143 307 256 340 200 376 135 292 248 324 192 358 128 276 239 306 184 339 120  
327 324 357 262 395 202 313 313 341 255 378 195 299 299 325 246 359 187 285 285 308 238 341 179  
347 347 360 320 396 260 334 334 345 312 379 252 321 321 329 304 360 244 306 306 312 296 342 236  
369 369 369 369 398 317 356 356 356 356 381 309 342 342 342 342 363 301 327 327 327 327 345 292  
323 268 358 207 396 143 309 260 342 200 378 136 294 252 325 192 360 128 277 243 307 187 341 121  
330 330 359 266 397 204 315 315 343 258 379 197 302 302 326 250 361 189 288 288 309 242 342 181  
350 350 362 325 398 263 337 337 347 318 380 255 324 324 331 310 362 247 309 309 314 301 343 239  
373 373 373 373 400 322 359 359 359 359 383 314 345 345 345 345 365 306 330 330 330 330 346 297  
330 283 364 216 402 146 315 275 347 208 384 139 299 266 330 201 365 131 283 258 312 192 345 123  
339 339 365 280 403 213 326 326 349 272 385 205 312 312 332 264 366 198 297 297 314 256 347 190  
362 362 370 346 405 277 348 348 354 338 387 269 334 334 338 330 368 261 319 319 319 319 349 253  
386 386 386 386 408 342 372 372 372 372 390 334 357 357 357 357 371 325 341 341 341 341 352 317  
335 297 369 225 407 149 320 289 352 217 388 141 304 281 335 209 369 134 287 272 316 201 349 126  
348 348 371 294 409 222 335 335 354 286 390 214 320 320 337 278 371 206 305 305 319 269 351 198  
372 372 377 366 410 291 358 358 361 358 392 283 344 344 343 343 373 275 328 328 328 328 353 266  
398 398 397 397 414 361 383 383 383 383 396 353 367 367 367 367 377 345 351 351 351 351 358 336  
340 311 373 233 411 151 325 303 356 225 392 144 309 295 338 217 373 136 292 286 320 209 353 129  
357 357 376 308 413 230 343 343 359 300 395 222 328 328 341 291 375 214 312 312 323 283 355 206  
382 382 382 382 415 304 367 367 367 367 397 296 352 352 352 352 377 288 336 336 336 336 357 279  
408 408 408 408 420 380 393 393 393 393 402 372 376 376 376 376 383 364 360 360 360 360 363 356  
8750  
9000  
10000 81  
87  
93  
75  
11000 81  
87  
93  
75  
12000 81  
87  
93  
Notes:  
1. All capacities shown are gross and have not considered indoor fan heat. To obtain net cooling, subtract indoor fan heat.  
2. TGC = Total gross capacity.  
3. SHC = Sensible heat capacity.  
Table 20-2 – 105 kW (29 Ton) Gross Cooling Capacity (kW)  
Metric  
Ambient Temperature – Deg C  
29.4  
35.0  
Entering Wet Bulb Temperature – Deg C  
19.4 22.8 16.1 19.4  
40.6  
46.1  
19.4  
Ent  
DB  
16.1  
19.4  
22.8  
16.1  
22.8  
16.1  
22.8  
L/s  
(C) TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC  
23.9 94.4 77.4 104.3 60.7 115.5 41.9 90.0 75.0 99.7 58.6 110.2 39.6 85.6 72.7 95.0 56.3 104.9 37.5 80.9 70.1 89.7 53.9 99.4 35.2  
4130 27.2 95.8 95.0 104.6 76.8 115.8 59.2 91.7 91.7 99.9 74.7 110.8 57.2 87.6 87.6 95.3 72.1 105.2 54.8 83.5 83.5 90.3 69.8 99.9 52.5  
30.6 101.7 101.7 105.5 93.8 116.1 76.2 97.9 97.9 101.1 91.4 111.1 73.9 94.1 94.1 96.4 89.1 105.5 71.5 89.7 89.7 91.4 86.8 100.2 69.2  
33.9 108.2 108.2 108.2 108.2 116.7 92.9 104.3 104.3 104.3 104.3 111.7 90.6 100.2 100.2 100.2 100.2 106.4 88.2 95.8 95.8 95.8 95.8 101.1 85.6  
23.9 94.7 78.6 104.9 60.7 116.1 41.9 90.6 76.2 100.2 58.6 110.8 39.9 86.2 73.9 95.3 56.3 105.5 37.5 81.2 71.2 90.0 54.8 99.9 35.5  
4250 27.2 96.7 96.7 105.2 78.0 116.4 59.8 92.3 92.3 100.5 75.6 111.1 57.7 88.5 88.5 95.6 73.3 105.8 55.4 84.4 84.4 90.6 70.9 100.2 53.1  
30.6 102.6 102.6 106.1 95.3 116.7 77.1 98.8 98.8 101.7 93.2 111.4 74.7 95.0 95.0 97.0 90.9 106.1 72.4 90.6 90.6 92.0 88.2 100.5 70.1  
33.9 109.3 109.3 109.3 109.3 117.2 94.4 105.2 105.2 105.2 105.2 112.3 92.0 101.1 101.1 101.1 101.1 107.0 89.7 96.7 96.7 96.7 96.7 101.4 87.1  
23.9 96.7 82.9 106.7 63.3 117.8 42.8 92.3 80.6 101.7 61.0 112.6 40.7 87.6 78.0 96.7 58.9 107.0 38.4 82.9 75.6 91.4 56.3 101.1 36.1  
4720 27.2 99.4 99.4 107.0 82.1 118.1 62.4 95.6 95.6 102.3 79.7 112.8 60.1 91.4 91.4 97.3 77.4 107.3 58.0 87.1 87.1 92.0 75.0 101.7 55.7  
30.6 106.1 106.1 108.4 101.4 118.7 81.2 102.0 102.0 103.8 99.1 113.4 78.8 97.9 97.9 99.1 96.7 107.9 76.5 93.5 93.5 93.5 93.5 102.3 74.2  
33.9 113.1 113.1 113.1 113.1 119.6 100.2 109.0 109.0 109.0 109.0 114.3 97.9 104.6 104.6 104.6 104.6 108.7 95.3 99.9 99.9 99.9 99.9 103.2 92.9  
23.9 98.2 87.1 108.2 65.9 119.3 43.7 93.8 84.7 103.2 63.6 113.7 41.3 89.1 82.4 98.2 61.3 108.2 39.3 84.1 79.7 92.6 58.9 102.3 36.9  
5190 27.2 102.0 102.0 108.7 86.2 119.9 65.1 98.2 98.2 103.8 83.8 114.3 62.7 93.8 93.8 98.8 81.5 108.7 60.4 89.4 89.4 93.5 78.8 102.9 58.0  
30.6 109.0 109.0 110.5 107.3 120.2 85.3 104.9 104.9 105.8 104.9 114.9 82.9 100.8 100.8 100.5 100.5 109.3 80.6 96.1 96.1 96.1 96.1 103.5 78.0  
33.9 116.7 116.7 116.4 116.4 121.3 105.8 112.3 112.3 112.3 112.3 116.1 103.5 107.6 107.6 107.6 107.6 110.5 101.1 102.9 102.9 102.9 102.9 104.9 98.5  
23.9 99.7 91.2 109.3 68.3 120.5 44.3 95.3 88.8 104.3 65.9 114.9 42.2 90.6 86.5 99.1 63.6 109.3 39.9 85.6 83.8 93.8 61.3 103.5 37.8  
5660 27.2 104.6 104.6 110.2 90.3 121.1 67.4 100.5 100.5 105.2 87.9 115.8 65.1 96.1 96.1 99.9 85.3 109.9 62.7 91.4 91.4 94.7 82.9 104.1 60.4  
30.6 112.0 112.0 112.0 112.0 121.6 89.1 107.6 107.6 107.6 107.6 116.4 86.8 103.2 103.2 103.2 103.2 110.5 84.4 98.5 98.5 98.5 98.5 104.6 81.8  
33.9 119.6 119.6 119.6 119.6 123.1 111.4 115.2 115.2 115.2 115.2 117.8 109.0 110.2 110.2 110.2 110.2 112.3 106.7 105.5 105.5 105.5 105.5 106.4 104.3  
Notes:  
1. All capacities shown are gross and have not considered indoor fan heat. To obtain net cooling, subtract indoor fan heat.  
2. TGC = Total gross capacity.  
3. SHC = Sensible heat capacity.  
20  
Performance  
Data  
Table 21-1 – 33 Ton Gross Cooling Capacities (MBh)  
English  
Ambient Temperature – Deg F  
85  
95  
Entering Wet Bulb Temperature – Deg F  
67 73 61 67  
105  
115  
67  
Ent  
DB  
61  
67  
73  
61  
73  
61  
73  
CFM (F) TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC  
75  
365 283 407 231 453 161 347 273 387 221 431 151 328 261 367 211 409 141 309 250 346 200 386 131  
368 333 408 274 454 213 350 322 389 263 432 203 332 311 368 252 410 192 313 300 348 241 388 181  
377 377 410 322 455 263 360 360 390 311 433 252 344 344 370 300 411 241 328 328 350 289 389 230  
397 397 413 371 457 311 381 381 394 361 435 300 365 365 375 350 414 289 347 347 355 338 391 278  
372 296 414 233 461 164 354 285 394 222 439 154 334 274 373 211 416 144 315 263 351 200 392 134  
376 351 416 286 462 220 358 340 396 275 440 210 334 334 375 263 417 199 318 318 354 252 394 188  
388 388 418 338 463 274 372 372 398 327 441 263 356 356 377 316 418 252 338 338 356 304 395 240  
411 411 422 392 465 326 394 394 403 381 443 315 377 377 377 377 421 303 359 359 359 359 398 292  
378 309 421 241 467 167 359 298 399 230 445 157 340 286 378 218 421 147 320 275 356 207 397 136  
384 367 423 297 468 227 361 361 402 286 446 216 344 344 381 274 423 205 328 326 359 263 399 194  
400 400 425 354 470 284 383 383 405 342 448 273 366 366 384 331 425 262 348 348 362 320 401 250  
423 423 431 412 472 340 406 406 405 405 450 329 388 388 388 388 427 317 370 370 371 368 403 306  
384 321 426 248 473 170 365 310 405 237 450 160 345 298 383 225 426 149 325 286 361 214 402 138  
386 386 429 308 474 233 370 370 408 297 452 223 354 352 386 285 428 212 335 335 364 273 404 201  
410 410 431 368 476 294 393 393 411 357 453 283 375 375 389 346 430 271 357 357 368 334 406 260  
434 434 433 433 478 354 416 416 416 416 456 342 398 398 399 398 432 331 379 379 379 379 408 319  
392 339 434 275 481 175 372 328 412 264 457 164 352 316 390 253 433 153 331 304 367 241 408 144  
402 400 437 325 482 243 382 382 415 313 459 232 364 364 393 302 435 221 346 346 370 290 409 210  
424 424 440 392 484 309 406 406 419 380 461 298 388 388 398 369 437 286 369 369 375 357 412 275  
449 449 451 450 487 375 431 431 431 431 463 363 412 412 411 411 440 352 392 392 392 392 415 340  
10000 80  
85  
90  
75  
11000 80  
85  
90  
75  
12000 80  
85  
90  
75  
13000 80  
85  
90  
75  
14600 80  
85  
90  
Notes:  
1. All capacities shown are gross and have not considered indoor fan heat. To obtain net cooling, subtract indoor fan heat.  
2. TGC = Total gross capacity.  
3. SHC = Sensible heat capacity.  
Table 21-2 – 120 kW (33 Ton) Gross Cooling Capacity (kW)  
Metric  
Ambient Temperature – Deg C  
29.4  
35.0  
Entering Wet Bulb Temperature – Deg C  
19.4 22.8 16.1 19.4  
40.6  
46.1  
19.4  
Ent  
DB  
16.1  
19.4  
22.8  
16.1  
22.8  
16.1  
22.8  
L/s  
(C) TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC  
23.9 107.0 82.9 119.3 67.7 132.8 47.2 101.7 80.0 113.4 64.8 126.3 44.3 96.1 76.5 107.6 61.8 119.9 41.3 90.6 73.3 101.4 58.6 113.1 38.4  
4720 26.7 107.9 97.6 119.6 80.3 133.1 62.4 102.6 94.4 114.0 77.1 126.6 59.5 97.3 91.2 107.9 73.9 120.2 56.3 91.7 87.9 102.0 70.6 113.7 53.1  
29.4 110.5 110.5 120.2 94.4 133.4 77.1 105.5 105.5 114.3 91.2 126.9 73.9 100.8 100.8 108.4 87.9 120.5 70.6 96.1 96.1 102.6 84.7 114.0 67.4  
32.2 116.4 116.4 121.1 108.7 133.9 91.2 111.7 111.7 115.5 105.8 127.5 87.9 107.0 107.0 109.9 102.6 121.3 84.7 101.7 101.7 104.1 99.1 114.6 81.5  
23.9 109.0 86.8 121.3 68.3 135.1 48.1 103.8 83.5 115.5 65.1 128.7 45.1 97.9 80.3 109.3 61.8 121.9 42.2 92.3 77.1 102.9 58.6 114.9 39.3  
5190 26.7 110.2 102.9 121.9 83.8 135.4 64.5 104.9 99.7 116.1 80.6 129.0 61.6 97.9 97.9 109.9 77.1 122.2 58.3 93.2 93.2 103.8 73.9 115.5 55.1  
29.4 113.7 113.7 122.5 99.1 135.7 80.3 109.0 109.0 116.7 95.8 129.3 77.1 104.3 104.3 110.5 92.6 122.5 73.9 99.1 99.1 104.3 89.1 115.8 70.3  
32.2 120.5 120.5 123.7 114.9 136.3 95.6 115.5 115.5 118.1 111.7 129.8 92.3 110.5 110.5 110.5 110.5 123.4 88.8 105.2 105.2 105.2 105.2 116.7 85.6  
23.9 110.8 90.6 123.4 70.6 136.9 48.9 105.2 87.3 116.9 67.4 130.4 46.0 99.7 83.8 110.8 63.9 123.4 43.1 93.8 80.6 104.3 60.7 116.4 39.9  
5660 26.7 112.6 107.6 124.0 87.1 137.2 66.5 105.8 105.8 117.8 83.8 130.7 63.3 100.8 100.8 111.7 80.3 124.0 60.1 96.1 95.6 105.2 77.1 116.9 56.9  
29.4 117.2 117.2 124.6 103.8 137.8 83.2 112.3 112.3 118.7 100.2 131.3 80.0 107.3 107.3 112.6 97.0 124.6 76.8 102.0 102.0 106.1 93.8 117.5 73.3  
32.2 124.0 124.0 126.3 120.8 138.3 99.7 119.0 119.0 118.7 118.7 131.9 96.4 113.7 113.7 113.7 113.7 125.2 92.9 108.4 108.4 108.7 107.9 118.1 89.7  
23.9 112.6 94.1 124.9 72.7 138.6 49.8 107.0 90.9 118.7 69.5 131.9 46.9 101.1 87.3 112.3 65.9 124.9 43.7 95.3 83.8 105.8 62.7 117.8 40.4  
6140 26.7 113.1 113.1 125.7 90.3 138.9 68.3 108.4 108.4 119.6 87.1 132.5 65.4 103.8 103.2 113.1 83.5 125.4 62.1 98.2 98.2 106.7 80.0 118.4 58.9  
29.4 120.2 120.2 126.3 107.9 139.5 86.2 115.2 115.2 120.5 104.6 132.8 82.9 109.9 109.9 114.0 101.4 126.0 79.4 104.6 104.6 107.9 97.9 119.0 76.2  
32.2 127.2 127.2 126.9 126.9 140.1 103.8 121.9 121.9 121.9 121.9 133.7 100.2 116.7 116.7 116.9 116.7 126.6 97.0 111.1 111.1 111.1 111.1 119.6 93.5  
23.9 114.9 99.4 127.2 80.6 141.0 51.3 109.0 96.1 120.8 77.4 133.9 48.1 103.2 92.6 114.3 74.2 126.9 44.8 97.0 89.1 107.6 70.6 119.6 42.2  
6890 26.7 117.8 117.2 128.1 95.3 141.3 71.2 112.0 112.0 121.6 91.7 134.5 68.0 106.7 106.7 115.2 88.5 127.5 64.8 101.4 101.4 108.4 85.0 119.9 61.6  
29.4 124.3 124.3 129.0 114.9 141.9 90.6 119.0 119.0 122.8 111.4 135.1 87.3 113.7 113.7 116.7 108.2 128.1 83.8 108.2 108.2 109.9 104.6 120.8 80.6  
32.2 131.6 131.6 132.2 131.9 142.7 109.9 126.3 126.3 126.3 126.3 135.7 106.4 120.8 120.8 120.5 120.5 129.0 103.2 114.9 114.9 114.9 114.9 121.6 99.7  
Notes:  
1. All capacities shown are gross and have not considered indoor fan heat. To obtain net cooling, subtract indoor fan heat.  
2. TGC = Total gross capacity.  
3. SHC = Sensible heat capacity.  
21  
Performance  
Data  
Table 22-1 – 42 Ton Gross Cooling Capacities (MBh)  
English  
Ambient Temperature – Deg F  
85  
95  
Entering Wet Bulb Temperature – Deg F  
67 73 61 67  
105  
115  
67  
Ent  
DB  
61  
67  
73  
61  
73  
61  
73  
CFM (F) TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC  
75  
455 365 505 292 559 200 433 353 481 277 533 188 411 340 456 260 505 176 387 326 430 247 477 164  
461 433 506 351 560 268 440 420 482 338 534 256 418 407 458 325 507 243 394 394 432 312 479 231  
476 476 509 416 561 334 457 457 486 403 536 322 437 437 461 390 508 309 416 416 435 377 480 296  
502 502 515 482 563 398 483 483 492 470 537 386 462 462 468 457 510 373 440 440 440 440 482 360  
462 379 512 293 566 203 440 367 487 281 539 191 417 353 462 268 511 179 392 340 435 255 482 167  
469 451 513 363 567 275 448 439 489 350 540 263 422 422 464 337 513 250 401 401 437 324 484 238  
488 488 516 433 569 346 469 469 493 420 542 333 448 448 468 407 514 321 426 426 442 394 486 308  
515 515 524 504 570 414 495 495 501 492 544 402 474 474 473 473 516 389 451 451 451 451 488 375  
468 393 517 301 572 205 446 380 493 289 545 194 422 367 467 276 516 182 398 353 440 263 487 169  
477 470 519 375 573 282 452 452 494 362 546 270 431 431 469 349 518 257 410 410 442 336 489 244  
499 499 523 450 575 357 479 479 499 437 548 345 458 458 474 424 519 331 435 435 447 410 490 318  
527 527 532 526 577 430 506 506 506 506 550 417 484 484 484 484 522 404 461 461 461 461 493 390  
474 406 523 309 577 208 451 393 498 297 550 196 427 380 471 284 521 184 402 366 444 271 491 171  
481 481 524 387 579 289 461 461 499 374 551 276 440 440 473 361 522 264 417 417 446 347 493 251  
509 509 529 466 580 368 488 488 505 453 552 355 467 467 479 440 524 342 444 444 453 426 494 328  
537 537 537 537 583 445 516 516 516 516 556 432 494 494 493 493 527 419 470 470 470 470 498 405  
479 419 527 317 582 211 456 406 502 304 554 199 432 393 475 292 525 186 407 379 447 277 494 174  
489 489 529 399 583 295 469 469 504 386 556 283 447 447 478 373 527 270 425 425 450 359 496 258  
518 518 535 482 585 378 497 497 510 469 557 365 475 475 485 456 528 352 451 451 458 442 498 339  
547 547 547 547 588 460 525 525 525 525 561 447 502 502 502 502 532 434 478 478 478 478 503 420  
12500 80  
85  
90  
75  
13500 80  
85  
90  
75  
14500 80  
85  
90  
75  
15500 80  
85  
90  
75  
16500 80  
85  
90  
Notes:  
1. All capacities shown are gross and have not considered indoor fan heat. To obtain net cooling, subtract indoor fan heat.  
2. TGC = Total gross capacity.  
3. SHC = Sensible heat capacity.  
Table 22-2 – 148 kW (42 Ton) Gross Cooling Capacity (kW)  
Metric  
Ambient Temperature – Deg C  
29.4  
35.0  
Entering Wet Bulb Temperature – Deg C  
19.4 22.8 16.1 19.4  
40.6  
46.1  
19.4  
Ent  
DB  
16.1  
19.4  
22.8  
16.1  
22.8  
16.1  
22.8  
L/s  
(C) TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC TGC SHC  
23.9 133.4 107.0 148.0 85.6 163.8 58.6 126.9 103.5 141.0 81.2 156.2 55.1 120.5 99.7 133.7 76.2 148.0 51.6 113.4 95.6 126.0 72.4 139.8 48.1  
5900 26.7 135.1 126.9 148.3 102.9 164.1 78.6 129.0 123.1 141.3 99.1 156.5 75.0 122.5 119.3 134.2 95.3 148.6 71.2 115.5 115.5 126.6 91.4 140.4 67.7  
29.4 139.5 139.5 149.2 121.9 164.4 97.9 133.9 133.9 142.4 118.1 157.1 94.4 128.1 128.1 135.1 114.3 148.9 90.6 121.9 121.9 127.5 110.5 140.7 86.8  
32.2 147.1 147.1 150.9 141.3 165.0 116.7 141.6 141.6 144.2 137.8 157.4 113.1 135.4 135.4 137.2 133.9 149.5 109.3 129.0 129.0 129.0 129.0 141.3 105.5  
23.9 135.4 111.1 150.1 85.9 165.9 59.5 129.0 107.6 142.7 82.4 158.0 56.0 122.2 103.5 135.4 78.6 149.8 52.5 114.9 99.7 127.5 74.7 141.3 48.9  
6370 26.7 137.5 132.2 150.4 106.4 166.2 80.6 131.3 128.7 143.3 102.6 158.3 77.1 123.7 123.7 136.0 98.8 150.4 73.3 117.5 117.5 128.1 95.0 141.9 69.8  
29.4 143.0 143.0 151.2 126.9 166.8 101.4 137.5 137.5 144.5 123.1 158.9 97.6 131.3 131.3 137.2 119.3 150.7 94.1 124.9 124.9 129.6 115.5 142.4 90.3  
32.2 150.9 150.9 153.6 147.7 167.1 121.3 145.1 145.1 146.8 144.2 159.4 117.8 138.9 138.9 138.6 138.6 151.2 114.0 132.2 132.2 132.2 132.2 143.0 109.9  
23.9 137.2 115.2 151.5 88.2 167.7 60.1 130.7 111.4 144.5 84.7 159.7 56.9 123.7 107.6 136.9 80.9 151.2 53.3 116.7 103.5 129.0 77.1 142.7 49.5  
6840 26.7 139.8 137.8 152.1 109.9 167.9 82.7 132.5 132.5 144.8 106.1 160.0 79.1 126.3 126.3 137.5 102.3 151.8 75.3 120.2 120.2 129.6 98.5 143.3 71.5  
29.4 146.3 146.3 153.3 131.9 168.5 104.6 140.4 140.4 146.3 128.1 160.6 101.1 134.2 134.2 138.9 124.3 152.1 97.0 127.5 127.5 131.0 120.2 143.6 93.2  
32.2 154.5 154.5 155.9 154.2 169.1 126.0 148.3 148.3 148.3 148.3 161.2 122.2 141.9 141.9 141.9 141.9 153.0 118.4 135.1 135.1 135.1 135.1 144.5 114.3  
23.9 138.9 119.0 153.3 90.6 169.1 61.0 132.2 115.2 146.0 87.1 161.2 57.4 125.2 111.4 138.1 83.2 152.7 53.9 117.8 107.3 130.1 79.4 143.9 50.1  
7320 26.7 141.0 141.0 153.6 113.4 169.7 84.7 135.1 135.1 146.3 109.6 161.5 80.9 129.0 129.0 138.6 105.8 153.0 77.4 122.2 122.2 130.7 101.7 144.5 73.6  
29.4 149.2 149.2 155.0 136.6 170.0 107.9 143.0 143.0 148.0 132.8 161.8 104.1 136.9 136.9 140.4 129.0 153.6 100.2 130.1 130.1 132.8 124.9 144.8 96.1  
32.2 157.4 157.4 157.4 157.4 170.9 130.4 151.2 151.2 151.2 151.2 163.0 126.6 144.8 144.8 144.5 144.5 154.5 122.8 137.8 137.8 137.8 137.8 146.0 118.7  
23.9 140.4 122.8 154.5 92.9 170.6 61.8 133.7 119.0 147.1 89.1 162.4 58.3 126.6 115.2 139.2 85.6 153.9 54.5 119.3 111.1 131.0 81.2 144.8 51.0  
7790 26.7 143.3 143.3 155.0 116.9 170.9 86.5 137.5 137.5 147.7 113.1 163.0 82.9 131.0 131.0 140.1 109.3 154.5 79.1 124.6 124.6 131.9 105.2 145.4 75.6  
29.4 151.8 151.8 156.8 141.3 171.5 110.8 145.7 145.7 149.5 137.5 163.3 107.0 139.2 139.2 142.2 133.7 154.8 103.2 132.2 132.2 134.2 129.6 146.0 99.4  
32.2 160.3 160.3 160.3 160.3 172.3 134.8 153.9 153.9 153.9 153.9 164.4 131.0 147.1 147.1 147.1 147.1 155.9 127.2 140.1 140.1 140.1 140.1 147.4 123.1  
Notes:  
1. All capacities shown are gross and have not considered indoor fan heat. To obtain net cooling, subtract indoor fan heat.  
2. TGC = Total gross capacity.  
3. SHC = Sensible heat capacity.  
22  
Performance  
Data  
Table 23-1 – Electric Heat Air Temperature Rise (Degrees F)  
English  
Heater  
Total  
CFM  
Input (kW) MBh 7000 8000 9000 10000 11000 12000 13000 14000 15000 16000 17000  
26.9  
40.4  
53.8  
67.3  
80.7  
92  
138  
184  
230  
276  
12.1 10.6  
9.4  
8.5  
12.7  
16.9  
21.2  
25.4  
7.7  
11.6  
15.4  
19.2  
23.1  
7.1  
10.6  
14.1  
17.6  
21.2  
9.8  
13.0  
16.3  
19.5  
9.1  
12.1  
15.1  
18.1  
8.5  
11.3  
14.1  
16.9  
7.9  
10.6 10.0  
13.2 12.5  
15.9 14.9  
7.5  
18.2 15.9 14.1  
24.2 21.2 18.8  
30.2 26.5 23.5  
Notes:  
1. Air temperature rise = (kW x 3413)/(scfm x 1.085).  
2. All heaters on constant volume units provide 2 increments of capacity.  
3. Air temperature rise in this table are based on heater operating at 415 volts.  
Table 23-2 – Electric Heat Air Temperature Rise (Degrees Celsius)  
Metric  
Heater  
L/s  
Input (kW) 3300  
3780  
5.9  
8.9  
11.9  
14.8  
4250  
5.3  
7.9  
10.5  
13.2  
4720  
4.7  
7.1  
9.5  
11.9  
14.2  
5190 5660  
6140 6610  
7080  
4.8  
6.3  
7.9  
9.5  
7550  
4.5  
5.9  
7.4  
8.9  
8020  
4.2  
5.6  
7.0  
8.4  
26.9  
40.4  
53.8  
67.3  
80.7  
6.8  
10.2  
13.6  
17.0  
4.3  
6.5  
4.0  
5.9  
5.5  
5.1  
8.6  
7.9  
7.3  
6.8  
10.8  
13.0  
9.9  
11.9  
9.1  
11.0  
8.5  
10.2  
Notes:  
1. Air temperature rise in this table are based on heater operating at 415 volts.  
2. All heaters on constant volume units provide 2 increments of capacity.  
Table 23-3 – Available Electric Heat KW  
Ranges  
Nominal  
Unit Size  
Tons  
Nominal Voltage (v)  
380  
415  
22.9  
25.0  
29.2  
33.3  
23-56  
23-56  
23-56  
34-68  
34-68  
27-67  
27-67  
27-67  
40-81  
40-81  
42.7  
Notes:  
1. KW ranges in this table are based on heater  
operating at nominal voltages 380 or 415.  
Table 23-4 – Natural Gas Heating Capacities  
Heat Input MBh (KW)  
(See Note 1)  
Heating Output MBh (KW) Air Temp. Rise,  
Tons  
Unit Model No.  
YCD/YCH275**L  
YCD/YCH300**L  
YCD/YCH350**L  
YCD/YCH275**H  
YCD/YCH300**H  
YCD/YCH350**H  
YCD/YCH400**L  
YCD/YCH500**L  
YCD/YCH400**H  
YCD/YCH500**H  
(See Note 1)  
F (C)  
22.9-29.2  
290,000 (85)  
500,000 (147)  
243,000 (69)  
10-40 (-12.2 , 4.4)  
22.9-29.2  
33.3-42.7  
405,000 (119)  
25-55 (-3.9 , 12.8)  
335,000 (98)  
670,000 (196)  
271,350 (80)  
542,700 (159)  
5-35 (-15 , 1.6)  
20-50 (-6.7 , 10)  
33.3-42.7  
Note:  
1. Total heating capacity.  
23  
Performance  
Data  
Table 24-1 – Supply Fan Performance – 23-29 Ton  
English  
Static Pressure (in. wg)  
0.25  
RPM  
0.50  
RPM BHP  
0.75  
RPM BHP  
1.00  
RPM BHP  
1.25  
RPM  
1.50  
BHP RPM  
1.75  
2.00  
2.25  
SCFM  
6670.  
7085.  
7500.  
7915.  
8330.  
8745.  
9160.  
9575.  
9990.  
10405.  
10820.  
11235.  
11650.  
12065.  
BHP  
0.92  
1.05  
1.20  
1.36  
1.53  
1.72  
1.92  
2.14  
2.38  
2.65  
2.94  
3.25  
3.59  
3.94  
BHP  
3.46  
3.65  
3.85  
4.06  
4.29  
4.53  
4.78  
5.05  
5.35  
5.68  
6.04  
6.43  
6.87  
7.35  
RPM BHP RPM  
BHP  
4.71  
4.96  
5.21  
5.46  
5.72  
5.99  
6.27  
6.57  
6.89  
7.22  
7.57  
7.95  
8.36  
8.80  
RPM  
720.  
722.  
724.  
726.  
727.  
729.  
731.  
733.  
735.  
738.  
741.  
744.  
748.  
753.  
BHP  
5.36  
5.63  
5.91  
6.18  
6.47  
6.76  
7.06  
7.37  
7.70  
8.05  
8.42  
8.80  
9.21  
9.64  
307.  
317.  
328.  
339.  
350.  
361.  
372.  
384.  
395.  
407.  
419.  
432.  
444.  
457.  
371.  
380.  
390.  
399.  
408.  
417.  
427.  
437.  
448.  
459.  
470.  
481.  
492.  
503.  
1.30  
1.46  
1.63  
1.81  
2.00  
2.21  
2.44  
2.68  
2.95  
3.24  
3.54  
3.87  
4.21  
4.57  
431.  
436.  
442.  
449.  
458.  
467.  
477.  
486.  
495.  
504.  
514.  
524.  
534.  
544.  
1.75  
1.90  
2.07  
2.26  
2.48  
2.72  
2.98  
3.24  
3.52  
3.82  
4.14  
4.49  
4.86  
5.26  
490.  
493.  
496.  
500.  
505.  
511.  
519.  
528.  
537.  
547.  
556.  
565.  
574.  
583.  
2.29  
2.44  
2.61  
2.80  
3.00  
3.23  
3.49  
3.79  
4.11  
4.45  
4.79  
5.15  
5.53  
5.93  
544.  
546.  
548.  
551.  
554.  
558.  
563.  
569.  
575.  
583.  
593.  
602.  
612.  
621.  
2.86  
3.03  
3.21  
3.41  
3.62  
3.85  
4.10  
4.37  
4.68  
5.02  
5.40  
5.81  
6.23  
6.67  
593.  
639.  
640.  
642.  
644.  
646.  
648.  
651.  
654.  
657.  
661.  
666.  
671.  
678.  
685.  
4.08  
4.30  
4.52  
4.75  
4.99  
5.24  
5.51  
5.80  
6.10  
6.42  
6.77  
7.15  
7.57  
8.02  
681.  
683.  
684.  
686.  
687.  
689.  
691.  
694.  
697.  
700.  
704.  
708.  
713.  
719.  
595.  
597.  
599.  
601.  
604.  
608.  
611.  
616.  
622.  
628.  
636.  
645.  
654.  
Notes:  
1. Fan performance table includes internal resistances of cabinet, wet coil and 2” (50 mm) standard filters. For other components refer to component pressure  
drop table.  
2. The pressure drops from the supply fan to the space should not exceed 2.25” positive.  
3. Maximum air flow for 23 ton unit is 10080 CFM, 25 ton is 11000 CFM, 29 ton is 12000 CFM.  
4. Maximum motor HP 23 ton unit is 10 HP, 25 ton is 10 HP, 29 ton unit is 15 HP.  
Table 24-2 – Supply Fan Performance – 82-105 KW  
Metric  
Static Pressure (Pascals)  
310.4  
62.9  
RPM  
124.1  
RPM (kW)  
186.2  
RPM (kW)  
248.3  
RPM (kW)  
372.5  
434.6  
RPM (kW) RPM  
496.7  
558.8  
RPM  
(L/s)  
(kW)  
0.68  
0.78  
0.89  
1.01  
1.14  
1.28  
1.43  
1.59  
1.77  
1.97  
2.19  
2.42  
2.67  
2.94  
RPM  
544.  
546.  
548.  
551.  
554.  
558.  
563.  
569.  
575.  
583.  
593.  
602.  
612.  
621.  
(kW) RPM  
(kW)  
2.58  
2.72  
2.87  
3.03  
3.20  
3.38  
3.57  
3.77  
3.99  
4.23  
4.50  
4.79  
5.13  
5.48  
(kW)  
3.51  
3.70  
3.88  
4.07  
4.26  
4.46  
4.68  
4.90  
5.13  
5.39  
5.65  
5.93  
6.23  
6.56  
(kW)  
4.00  
4.20  
4.40  
4.61  
4.82  
5.04  
5.26  
5.50  
5.74  
6.00  
6.28  
6.56  
6.87  
7.19  
3148.  
3344.  
3539.  
3735.  
3931.  
4127.  
4323.  
4519.  
4715.  
4910.  
5106.  
5302.  
5498.  
5694.  
307.  
317.  
328.  
339.  
350.  
361.  
372.  
384.  
395.  
407.  
419.  
432.  
444.  
457.  
371.  
380.  
390.  
399.  
408.  
417.  
427.  
437.  
448.  
459.  
470.  
481.  
492.  
503.  
0.97  
1.09  
1.22  
1.35  
1.49  
1.64  
1.82  
2.00  
2.20  
2.41  
2.64  
2.88  
3.14  
3.41  
431.  
436.  
442.  
449.  
458.  
467.  
477.  
486.  
495.  
504.  
514.  
524.  
534.  
544.  
1.31  
1.42  
1.54  
1.68  
1.85  
2.03  
2.22  
2.42  
2.63  
2.85  
3.09  
3.35  
3.62  
3.92  
490.  
493.  
496.  
500.  
505.  
511.  
519.  
528.  
537.  
547.  
556.  
565.  
574.  
583.  
1.70  
1.82  
1.95  
2.09  
2.24  
2.41  
2.60  
2.82  
3.06  
3.32  
3.58  
3.84  
4.12  
4.42  
2.13  
2.26  
2.40  
2.54  
2.70  
2.87  
3.06  
3.26  
3.49  
3.74  
4.03  
4.33  
4.65  
4.97  
593.  
639.  
640.  
642.  
644.  
646.  
648.  
651.  
654.  
657.  
661.  
666.  
671.  
678.  
685.  
3.04  
3.20  
3.37  
3.54  
3.72  
3.91  
4.11  
4.32  
4.55  
4.79  
5.05  
5.33  
5.64  
5.98  
681.  
683.  
684.  
686.  
687.  
689.  
691.  
694.  
697.  
700.  
704.  
708.  
713.  
719.  
720.  
722.  
724.  
726.  
727.  
729.  
731.  
733.  
735.  
738.  
741.  
744.  
748.  
753.  
595.  
597.  
599.  
601.  
604.  
608.  
611.  
616.  
622.  
628.  
636.  
645.  
654.  
Notes:  
1. Fan performance table includes internal resistances of cabinet, wet coil and 2” (50 mm) standard filters. For other components refer to component pressure  
drop table.  
2. The pressure drops from the supply fan to the space should not exceed 2.25” (558.8 Pa) positive.  
3. Maximum air flow 23 ton (80 kW) is 4756 L/s, 25 ton is 5190 l/s, 29 ton is 5663 L/s  
4. Maximum motor kW for 23 ton unit is 7.5 (10 hp), 25 ton is 7.5 kW (10 HP), 29 ton is 11.2 kW (15 hp).  
24  
Performance  
Data  
Figure 25-1  
25  
Performance  
Data  
Table 26-1 – Supply Fan Performance – 33 and 42 Ton  
English  
Static Pressure (in. wg)  
1.25 1.50  
0.25  
0.50  
0.75  
1.00  
1.75  
2.00  
2.25  
2.50  
SCFM RPM BHP RPM BHP RPM BHP RPM BHP RPM BHP RPM BHP RPM BHP RPM BHP RPM BHP RPM BHP  
9996.  
309.  
1.80  
2.19  
2.64  
3.15  
3.72  
4.37  
5.09  
5.89  
6.79  
360.  
374.  
388.  
403.  
420.  
437.  
454.  
472.  
490.  
2.34  
2.76  
3.24  
3.79  
4.41  
5.11  
5.87  
6.72  
7.65  
404.  
416.  
430.  
445.  
459.  
473.  
488.  
504.  
521.  
2.88  
3.35  
3.88  
4.48  
5.12  
5.84  
6.64  
7.53  
8.51  
447.  
458.  
468.  
480.  
494.  
509.  
524.  
537.  
551.  
3.48  
3.97  
4.53  
5.15  
5.85  
6.63  
7.47  
8.37  
9.36  
487.  
496.  
506.  
517.  
527.  
539.  
554.  
569.  
4.10  
4.62  
5.21  
5.86  
6.58  
7.39  
8.28  
9.26  
525.  
532.  
541.  
551.  
562.  
572.  
583.  
4.75 562.  
5.30 567.  
5.92 574.  
6.60 583.  
7.35 593.  
8.18 604.  
9.10 614.  
5.41 597.  
6.01 602.  
6.65 607.  
7.37 614.  
8.15 623.  
9.01 633.  
6.07  
6.72  
7.41  
8.16  
8.97  
9.86  
630.  
634.  
639.  
645.  
652.  
6.75 662. 7.47  
7.44 666. 8.16  
8.18 670. 8.95  
8.97 675. 9.78  
9.81 681. 10.68  
10829. 326.  
11662. 344.  
12495. 362.  
13328. 381.  
14161. 399.  
14994. 418.  
15827. 437.  
16660. 457.  
661. 10.73 688. 11.62  
671. 11.73 698. 12.65  
681. 12.81 708. 13.77  
692. 13.99 718. 14.97  
9.95 643. 10.83  
596. 10.11 625. 10.98  
611. 11.21 637. 12.11  
654. 11.88  
664. 13.04  
584. 10.31  
Notes:  
1. Fan performance table includes internal resistances of cabinet, wet coil and 2” (50 mm) standard filters. For other components refer to component static  
pressure drop table to arrive at available external static pressure.  
2. The pressure drops from the supply fan to the space should not exceed 2.5” Wg (620.9 Pa) positive.  
3. Max CFM for 33 ton unit - 14660, 42 ton - 16660.  
4. Max motor HP for 33 ton unit-(15 HP), 42 ton (20 HP).  
Table 26-2 – Supply Fan Performance – 105-148 KW  
Metric  
Static Pressure (Pascals)  
310.4 372.5  
RPM (kW) RPM (kW) RPM (kW) RPM (kW) RPM (kW) RPM (kW) RPM (kW) RPM (kW) RPM (kW) RPM (kW)  
62.1  
124,2  
186.3  
248.1  
434.6  
496.7  
558.8  
620.9  
(L/s)  
4717.  
5111.  
5504.  
5897.  
6290.  
6683.  
7076.  
7469.  
7862.  
309.  
326.  
344.  
362.  
381.  
399.  
418.  
437.  
457.  
1.34  
1.63  
1.97  
2.35  
2.77  
3.26  
3.80  
4.40  
5.06  
360.  
374.  
388.  
403.  
420.  
437.  
454.  
472.  
490.  
1.74  
2.06  
2.41  
2.82  
3.29  
3.81  
4.38  
5.01  
5.71  
404.  
416.  
430.  
445.  
459.  
473.  
488.  
504.  
521.  
2.15  
2.50  
2.90  
3.34  
3.82  
4.35  
4.95  
5.62  
6.35  
447.  
458.  
468.  
480.  
494.  
509.  
524.  
537.  
551.  
2.59  
2.96  
3.37  
3.84  
4.37  
4.95  
5.57  
6.24  
6.98  
487.  
496.  
506.  
517.  
527.  
539.  
554.  
569.  
584.  
3.06  
3.45  
3.88  
4.37  
4.91  
5.51  
6.18  
6.91  
7.68  
525.  
532.  
541.  
551.  
562.  
572.  
583.  
596.  
611.  
3.54  
3.96  
4.41  
4.92  
5.48  
6.10  
6.79  
7.54  
8.36  
562.  
567.  
574.  
583.  
593.  
604.  
614.  
625.  
637.  
4.03  
4.48  
4.96  
5.49  
6.08  
6.72  
7.42  
8.19  
9.03  
597.  
602.  
607.  
614.  
623.  
633.  
643.  
654.  
664.  
4.53  
5.01  
5.53  
6.08  
6.69  
7.35  
8.07  
8.86  
9.72  
630. 5.03 662. 5.57  
634. 5.54 666. 6.09  
639. 6.10 670. 6.67  
645. 6.69 675. 7.30  
652. 7.32 681. 7.96  
661. 8.00 688. 8.67  
671. 8.75 698. 9.44  
681. 9.55 708. 10.27  
692. 10.43 718. 11.17  
Notes:  
1. Fan performance table includes internal resistances of cabinet, wet coil and 2” (50 mm) standard filters. For other components refer to component static  
pressure drop table to arrive at available external static pressure.  
2. The pressure drops from the supply fan to the space should not exceed 2.5” Wg (620.9 Pa) positive.  
3. Max CFM for 33 ton unit 6825 L/s, 42 ton -7860 L/s  
4. Max motor HP for 33 ton unit-11.2 kW (15 HP), 42 ton 14.9 kW (20 HP)  
26  
Performance  
Data  
Figure 27-1  
27  
Performance  
Data  
Table 28-1 – Component Static Pressure Drops (in wg) 50 Hz English  
Heating System  
Filters  
Nominal  
Std.Tons (kW)  
CFM  
Std Air  
6670  
7500  
8330  
9170  
10000  
7500  
8330  
9170  
Gas Heat  
Electric Heat  
1 Element  
ID Coil  
Adder  
0
0
0
0
0
0
0
0
0
0.09  
0.10  
0.13  
0.15  
0
0
0
0
0
High Eff. Filters  
Inlet Guide  
Vanes  
0.04  
0.06  
0.07  
0.08  
0.10  
0.06  
0.07  
0.08  
0.12  
0.08  
0.11  
0.13  
0.15  
0.03  
0.04  
0.04  
0.05  
0.06  
0.07  
0.05  
0.06  
0.07  
0.08  
0.09  
Low  
0.07  
0.08  
0.10  
0.13  
0.15  
0.08  
0.10  
0.13  
0.15  
0.11  
0.14  
0.19  
0.22  
0.01  
0.01  
0.01  
0.01  
0.02  
0.02  
0.01  
0.02  
0.02  
0.02  
0.03  
High  
2 Element  
0.05  
0.06  
0.08  
0.09  
0.11  
0.06  
0.08  
0.09  
0.11  
0.08  
0.10  
0.14  
0.16  
0.11  
0.13  
0.15  
0.17  
0.19  
0.22  
0.17  
0.19  
0.24  
0.27  
0.30  
2”  
4”  
Economizer  
0.331  
0.040  
0.049  
0.059  
0.070  
0.040  
0.049  
0.059  
0.070  
0.054  
0.065  
0.077  
0.091  
0070  
0.05  
0.07  
0.08  
0.10  
0.12  
0.07  
0.08  
0.10  
0.12  
0.09  
0.11  
0.15  
0.17  
0.03  
0.03  
0.04  
0.04  
0.05  
0.06  
0.04  
0.05  
0.06  
0.07  
0.08  
0.04  
0.06  
0.07  
0.08  
0.10  
0.06  
0.07  
0.08  
0.10  
0.08  
0.09  
0.13  
0.15  
0.07  
0.08  
0.10  
0.11  
0.12  
0.14  
0.11  
0.12  
0.16  
0.18  
0.20  
0.03  
0.04  
0.05  
0.06  
0.07  
0.04  
0.05  
0.06  
0.07  
0.06  
0.07  
0.09  
0.11  
0.07  
0.09  
0.10  
0.12  
0.13  
0.15  
0.12  
0.13  
0.17  
0.19  
0.21  
0.02  
0.03  
0.04  
0.05  
0.05  
0.03  
0.04  
0.05  
0.06  
0.04  
0.06  
0.07  
0.08  
0.05  
0.06  
0.07  
0.09  
0.10  
0.11  
0.09  
0.10  
0.12  
0.14  
0.15  
23 (80)  
25 (88)  
10000  
8750  
9580  
29 (103)  
11200  
12100  
10000  
10800  
11700  
12500  
13300  
14200  
12500  
13300  
14200  
15800  
16700  
0.076  
0.085  
0.096  
0.107  
0.120  
0.095  
0.108  
0.120  
0.136  
0.155  
33 (118)  
42 (146)  
0
0.08  
0.08  
0.10  
0.11  
0.12  
Please note: Standard fan performance table includes pressure drops of wet coil and std. filters.  
Table 28-2 – Component Static Pressure Drops (Pa) 50 Hz Metric  
Heating System  
Filters  
High Eff. Filters  
50 mm 100 mm  
Nominal  
L/s  
Std Air  
3150  
3540  
3930  
4320  
4720  
3540  
3930  
4320  
5120  
4130  
4520  
4920  
5310  
4720  
5120  
5510  
5900  
6290  
6680  
5900  
6290  
6680  
7070  
7470  
Gas Heat  
Electric Heat  
ID Coil  
Adder  
0
Inlet Guide  
Vanes  
11  
Std.kW (Tons)  
Low  
17  
21  
26  
31  
37  
21  
26  
31  
44  
29  
34  
41  
47  
2
3
3
4
4
5
4
4
5
High  
13  
16  
20  
24  
29  
16  
20  
24  
34  
22  
27  
32  
37  
7
1 Element  
2 Element  
12  
Economizer  
0.05  
0.07  
0.08  
0.10  
0.12  
0.07  
0.08  
0.12  
0.14  
0.09  
0.11  
0.13  
0.15  
0.12  
0.14  
0.16  
0.18  
0.21  
0.24  
0.18  
0.21  
0.24  
0.27  
0.30  
11  
14  
17  
21  
25  
14  
17  
21  
29  
19  
23  
27  
32  
18  
21  
24  
27  
31  
35  
27  
31  
35  
39  
44  
8
11  
13  
16  
19  
11  
13  
16  
22  
14  
17  
20  
24  
19  
22  
25  
29  
33  
38  
29  
33  
38  
42  
47  
6
8
9
11  
14  
8
15  
19  
23  
27  
15  
19  
23  
32  
21  
25  
29  
34  
27  
32  
37  
42  
48  
54  
42  
48  
54  
60  
67  
0
0
0
0
0
0
0
0
22  
26  
29  
33  
0
0
0
0
0
0
14  
17  
21  
25  
14  
17  
25  
29  
19  
23  
27  
32  
8
10  
11  
13  
15  
16  
13  
15  
16  
18  
21  
80 (23)  
9
88 (25)  
11  
16  
10  
12  
15  
17  
14  
16  
18  
21  
24  
27  
21  
24  
27  
31  
34  
103 (29)  
8
10  
11  
12  
14  
11  
12  
14  
16  
18  
118 (33)  
146 (42)  
19  
21  
23  
25  
27  
5
6
Please note: Standard fan performance table includes pressure drops of wet coil and std. filters.  
28  
Performance  
Data  
Table 29-1 – Supply Air Fan Drive Selections  
5 HP  
7.5 HP  
10 HP  
15 HP  
Nominal  
Tons (kW)  
Drive  
No  
A
B
C
Drive  
No  
Drive  
No  
Drive  
No  
RPM  
458  
500  
541  
583  
625  
458  
500  
541  
583  
625  
500  
541  
583  
658  
664  
417  
437  
479  
521  
562  
604  
437  
479  
521  
562  
604  
RPM  
RPM  
RPM  
23 (80)  
25 (88)  
29 (103)  
583  
625*  
D
E
A
B
C
583  
625  
D
E
B
541  
583  
C
D
658**  
664*  
F
G
417  
437  
479  
H
J
K
33 (118)  
42 (146)  
521  
562  
604  
L
M
N
437  
479  
J
K
521  
562  
L
M
604  
N
Note:  
*For YC gas/electrics only.  
**For TC and TE Cooling only and with electric Heat units only.  
Table 29-2 – Power Exhaust Fan  
Table 29-3 – Power Exhaust Fan  
Performance - 50 Hz  
External Static Pressure  
– Pa  
Performance - 50 Hz English  
Metric  
External Static Pressure  
– Inches of Water  
Exhaust  
Airflow  
(Cfm)  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
4500  
5000  
5500  
6000  
6500  
7000  
7500  
8000  
8500  
9000  
9500  
10000  
High  
Speed  
ESP  
Med  
Speed  
ESP  
Low  
Speed  
ESP  
Exhaust  
Airflow  
(L/s)  
470  
710  
High  
Speed  
ESP  
Med  
Speed  
ESP  
Low  
Speed  
ESP  
0.800  
0.780  
0.750  
0.720  
0.680  
0.650  
0.610  
0.560  
0.520  
0.460  
0.420  
0.360  
0.310  
0.250  
0.200  
0.150  
0.100  
0.040  
0.000  
199.3  
194.3  
186.8  
179.4  
169.4  
161.9  
152.0  
139.5  
129.5  
114.6  
104.6  
89.7  
77.2  
62.3  
49.8  
37.4  
24.9  
10.0  
0.0  
0.400  
0.380  
0.370  
0.360  
0.340  
0.320  
0.300  
0.280  
0.250  
0.230  
0.190  
0.150  
0.120  
0.070  
0.000  
940  
99.6  
94.7  
92.2  
89.7  
84.7  
79.7  
74.7  
69.7  
62.3  
57.3  
47.3  
37.4  
29.9  
17.4  
0.0  
1180  
1420  
1650  
1890  
2120  
2360  
2600  
2830  
3070  
3300  
3540  
3780  
4010  
4250  
4480  
4720  
0.420  
0.380  
0.360  
0.330  
0.310  
0.290  
0.270  
0.240  
0.200  
0.160  
0.120  
0.060  
0.000  
104.6  
94.7  
89.7  
82.2  
77.2  
72.2  
67.3  
59.8  
49.8  
39.9  
29.9  
14.9  
0.0  
Notes:  
1. Performance in table is with both motors operating.  
2. High speed = both motors on high speed. Medium speed is one motor on high speed and one on low  
speed. Low speed is both motors on low speed.  
3. Power Exhaust option is not to be applied on systems that have more return air static pressure drop  
than the maximum shown in the table for each motor speed tap.  
29  
Electrical  
Data  
Electrical Service Sizing  
To correctly size electrical service  
wiring for your unit, find the  
RDE = (1.5 x LOAD1) + LOAD2 +  
LOAD4  
Select a fuse rating equal to the MOP  
value. If the MOP value does not equal  
a standard fuse size as listed in NEC  
240-6, select the next lower standard  
fuse rating. NOTE: If selected MOP is  
less than the MCA, then reselect the  
lowest standard maximum fuse size  
which is equal to or larger than the  
MCA, provided the reselected fuse size  
does not exceed 800 amps.  
Select a fuse rating equal to the RDE  
value. If the RDE value does not equal a  
standard fuse size as listed in NEC 240-  
6, select the next higher standard fuse  
rating. NOTE: If the selected RDE is  
greater than the selected MOP value,  
then reselect the RDE value to equal  
the MOP value.  
appropriate calculations listed below.  
Each type of unit has its own set of  
calculations for MCA (Minimum Circuit  
Ampacity), MOP (Maximum  
Overcurrent Protection), and RDE  
(Recommended Dual Element fuse  
size). Read the load definitions that  
follow and then find the appropriate set  
of calculations based on your unit type.  
RDE = (1.5 x LOAD1) + LOAD2 +  
LOAD3 + LOAD4  
DSS = 1.15 x (LOAD1 + LOAD2 +  
LOAD4)  
Set 1 is for cooling only and cooling  
with gas heat units, and set 2 is for  
cooling with electric heat units.  
The selection RDE value will be the  
larger of the cooling mode RDE value  
or the heating mode RDE value  
calculated above.  
Select a disconnect switch size equal to  
or larger than the DSS value calculated.  
Set 2. Rooftop units with Electric Heat  
Load Definitions  
To arrive at the correct MCA, MOP, and  
RDE values for these units, you must  
perform two sets of calculations. First  
calculate the MCA, MOP, and RDE  
values as if the unit was in cooling  
mode (use the equations given in Set  
1). Then calculate the MCA, MOP, and  
RDE values as if the unit were in the  
heating mode as follows.  
LOAD1 = CURRENT OF THE LARGEST  
MOTOR (COMPRESSOR OR FAN  
MOTOR)  
Select a fuse rating equal to the RDE  
value. If the RDE value does not equal a  
standard fuse size as listed in NEC 240-  
6, select the next higher standard fuse  
rating. NOTE: If the selected RDE is  
greater than the selected MOP value,  
then reselect the RDE value to equal  
the MOP value.  
LOAD2 = SUM OF THE CURRENTS OF  
ALL REMAINING MOTORS  
LOAD3 = CURRENT OF ELECTRIC  
HEATERS  
LOAD4 = ANY OTHER LOAD RATED AT  
1 AMP OR MORE  
DSS = 1.15 x (LOAD1 + LOAD2 +  
LOAD3 + LOAD4)  
(Keep in mind when determining  
LOADS that the compressors and  
condenser fans don’t run while the unit  
is in the heating mode).  
Set 1. Cooling Only Rooftop Units and  
Cooling with Gas Heat Rooftop Units  
NOTE: Keep in mind when determining  
LOADS that the compressors and  
condenser fans don’t run while the unit  
is in the heating mode.  
MCA = (1.25 x LOAD1) + LOAD2 +  
LOAD4  
For units using heaters less than 50 kW.  
MCA = 1.25 x (LOAD1 + LOAD2 +  
LOAD4) + (1.25 x LOAD3)  
The selection DSS value will be the  
larger of the cooling mode DSS or the  
heating mode DSS calculated above.  
MOP = (2.25 x LOAD1) + LOAD2 +  
LOAD4  
For units using heaters equal to or  
greater than 50 kW.  
Select a fuse rating equal to the MOP  
value. If the MOP value does not equal  
a standard fuse size as listed in NEC  
240-6, select the next lower standard  
fuse rating. NOTE: If selected MOP is  
less than the MCA, then reselect the  
lowest standard maximum fuse size  
which is equal to or larger than the  
MCA, provided the reselected fuse size  
does not exceed 800 amps.  
Select a disconnect switch size equal to  
or larger than the DSS value calculated.  
MCA = 1.25 x (LOAD1 + LOAD2 +  
LOAD4) + LOAD3  
The nameplate MCA value will be the  
larger of the cooling mode MCA value  
or the heating mode MCA value  
calculated above.  
MOP = (2.25 x LOAD1) + LOAD2 +  
LOAD3 + LOAD4  
The selection MOP value will be the  
larger of the cooling mode MOP value  
or the heating mode MOP value  
calculated above.  
30  
Electrical  
Data  
Table 31-1 – Electrical Service Sizing Data  
Fan Motors  
Compressor  
Supply  
HP  
5
5
5
7.5  
Condenser  
Electrical2  
Characteristics  
380-415/50/3  
380-415/50/3  
380-415/50/3  
380-415/50/3  
Qty./  
RLA  
(Ea.)  
18.1/27.3  
27.3  
27.3  
LRA  
Ea.)  
110/174  
174  
174  
174  
FLA  
(Ea.)  
4.4  
4.4  
4.4  
Max.  
MCA* Fuse Size  
Model  
Nominal HP  
2/10,15  
2/15,15  
2/15,15  
2/15,15  
1/10  
FLA  
13.1  
13.1  
13.1  
16.6  
No.  
3
3
3
4
HP  
.75  
.75  
.75  
.75  
TC/TE/YC*275  
TC/TE/YC*305  
TC/TE/YC*350  
TC/TE/YC*400  
79  
93  
93  
100  
110  
110  
125  
27.3  
18.1  
4.4  
119  
110  
TC/TE/YC*500  
Notes:  
380-415/50/3  
3/15  
27.3  
174  
7.5  
16.6  
4
.75  
4.4  
128  
150  
1. All customer wiring and devices must be installed in accordance with local and national electrical codes.  
2. Allowable voltage range for the 380V unit is 342-418V, allowable voltage range for the 415V unit is 373-456.  
* Minimum Circuit Ampacity.  
Table 31-2 – Electrical Service Sizing Data – Electric Heat Module  
(Electric Heat Units Only)  
Models: TED/TEH 275 thru 500  
Electric Heat FLA  
Nominal  
Unit Size  
(Tons)  
Nominal  
Unit  
Voltage  
380  
415  
380  
KW Heater (380/415V)  
23/27  
34.5  
37.6  
34/40  
51.1  
55.6  
51.1  
55.6  
45/54  
68.9  
68.9  
75.1  
56/67  
85.5  
85.5  
93.2  
68/81  
103.4  
112.7  
23-29  
33, 43  
415  
Notes:  
1. All FLA in this table are based on heater operating at 380 or 415 volts as shown above.  
31  
Controls  
VAV Units Only  
Sequence of Operation  
On units with economizer, a call for  
cooling will modulate the fresh air  
dampers open. The rate of economizer  
modulation is based on deviation of the  
discharge temperature from setpoint,  
i.e., the further away from setpoint, the  
faster the fresh air damper will open.  
Note that the economizer is only  
allowed to function freely if ambient  
conditions are below the enthalpy  
control setting or below the return air  
enthalpy if unit has comparative  
enthalpy installed. If outside air is not  
suitable for “economizing,” the fresh  
air dampers drive to the minimum  
open position. A field adjustable  
potentiometer on the Unitary  
reset amount input. The maximum  
value is 20°F (-6.7°C). If the outdoor air  
temperature is more than 20°F (-6.7°C)  
below the reset temperature setpoint  
the amount of rest is equal to the reset  
amount setpoint.  
1
Supply Air Pressure Control  
Inlet Guide Vane Control  
Inlet guide vanes are driven by a  
modulating 2-10 vdc signal from the  
VAV Module. A pressure transducer  
measures duct static pressure, and the  
inlet guide vanes are modulated to  
maintain the supply air static pressure  
within an adjustable user-defined  
range. The range is determined by the  
supply air pressure setpoint and supply  
air pressure deadband, which are set  
through a unit mounted potentiometer.  
b
reset based on zone or return  
temperature  
Zone or return reset is applied to the  
zone(s) in a building that tend to  
overcool or overheat. The supply air  
temperature setpoint is adjusted based  
on the temperature of the critical  
zone(s) or the return air temperature.  
This can have the effect of improving  
comfort and/or lowering energy usage.  
The user-defined parameters are the  
same as for outdoor air reset.  
Inlet guide vane assemblies installed  
on the supply fan inlets regulate fan  
capacity and limit horsepower at lower  
system air requirements. When in any  
position other than full open, the vanes  
pre-spin intake air in the same direction  
as supply fan rotation. As the vanes  
approach the full-closed position, the  
amount of “spin” induced by the vanes  
increases at the same time that intake  
airflow and fan horsepower diminish.  
The inlet guide vanes will close when  
the supply fan is shut down.  
Economizer Module, Tracer®, or a  
remote potentiometer can provide the  
input to establish the minimum  
damper position.  
Logic for zone or return reset control is  
the same except that the origins of the  
temperature inputs are the zone sensor  
or return sensor respectively. The  
amount of reset applied is dependent  
upon how far the zone or return air  
temperature is below the supply air  
reset setpoint. The amount is zero  
where they are equal and increases  
linearly toward the value set at the  
reset amount potentiometer on the  
VAV Setpoint panel. The maximum  
value is 3°F (-16.1°C). If the return or  
zone temperature is more than  
3°F (-16.1°C) below the reset  
At outdoor air conditions above the  
enthalpy control setting, primary  
cooling only is used and the fresh air  
dampers remain at minimum position.  
If the unit does not include an  
economizer, primary cooling only is  
used to satisfy cooling requirements.  
Supply Air Static Pressure Limit  
The opening of the inlet guide vanes  
and VAV boxes are coordinated during  
unit start up and transition to/from  
Occupied/Unoccupied modes to  
prevent overpressurization of the  
supply air ductwork. However, if for any  
reason the supply air pressure exceeds  
the fixed supply air static pressure limit  
of 3.5” (89 mm) W.C., the supply fan is  
shut down and the inlet guide vanes  
are closed. The unit is then allowed to  
restart four times. If the  
overpressurization condition occurs on  
the fifth time, the unit is shut down and  
a manual reset diagnostic is set and  
displayed at any of the remote panels  
with LED status lights or  
communicated to the Integrated  
Comfort system.  
Supply Air Setpoint Reset  
Supply air reset can be used to adjust  
the supply air temperature setpoint on  
the basis of a zone temperature, return  
air temperature, or on outdoor air  
temperature. Supply air reset  
adjustment is available on the unit  
mounted VAV Setpoint Panel for supply  
air cooling control.  
temperature setpoint the amount of  
reset is equal to the reset amount  
setpoint.  
3
a
Zone Temperature Control  
reset based on outdoor air  
temperature  
Unoccupied Zone Heating and Cooling  
During Unoccupied mode, the unit is  
operated as a CV unit. Inlet guide vanes  
and VAV boxes are driven full open.  
The unit controls zone temperature to  
the Unoccupied zone cooling and  
Outdoor air cooling reset is sometimes  
used in applications where the outdoor  
temperature has a large effect on  
building load. When the outside air  
temperature is low and the building  
cooling load is low, the supply air  
setpoint can be raised, thereby  
preventing subcooling of critical zones.  
This reset can lower usage of primary  
cooling and result in a reduction in  
primary cooling energy usage.  
heating (heating units only) setpoints.  
Daytime Warm-Up  
During occupied mode, if the zone  
temperature falls to a temperature  
three degrees below the Morning  
Warm-up setpoint, Daytime Warm-up  
is initiated. The system changes to CV  
heating (full unit airflow), the VAV  
boxes are fully opened and the CV  
heating algorithm is in control until the  
Morning Warm-up setpoint is reached.  
The unit is then returned to VAV  
cooling mode. The Morning Warm-up  
setpoint is set at the unit mounted VAV  
Setpoint panel or at a remote panel.  
2
Supply Air Temperature Controls  
Cooling/Economizer  
During occupied cooling mode of  
operation, the economizer (if available)  
and primary cooling are used to control  
the supply air temperature. The supply  
air temperature setpoint is user-defined  
at the unit mounted VAV Setpoint Panel  
or at the remote panel. If the enthalpy  
of the outside air is appropriate to use  
“free cooling,” the economizer will be  
used first to attempt to satisfy the  
supply setpoint.  
There are two user-defined parameters  
that are adjustable through the VAV  
Setpoint Panel: reset temperature  
setpoint and reset amount. The  
amount of reset applied is dependent  
upon how far the outdoor air  
temperature is below the supply air  
reset setpoint. The amount is zero  
where they are equal and increases  
linearly toward the value set at the  
32  
Controls  
CV Units Only  
Economizer Module (UEM), Tracer or a  
remote potentiometer can provide the  
input to establish the minimum  
damper position.  
The supply fan is energized  
VAV Units Only  
Morning Warm-up (MWU)  
approximately 1 second before the  
electric heat contactors. When the  
space temperature rises above the  
heating setpoint, the UCP de-energizes  
the supply fan and all electric heat  
contactors.  
Morning warm-up control (MWU) is  
activated whenever the unit switches  
from unoccupied to occupied and the  
zone temperature is at least 1.5°F  
below the MWU setpoint. When MWU  
is activated the VAV box output will be  
energized for at least 6 minutes to drive  
all boxes open, the inlet guide vanes  
are driven full open, and all stages of  
heat (gas or electric) are energized.  
When MWU is activated the  
economizer damper is driven fully  
closed. When the zone temperature  
meets or exceeds the MWU setpoint  
minus 1.5°F, the heat will be staged  
down. When the zone temperature  
meets or exceeds the MWU setpoint  
then MWU will be terminated and the  
unit will switch over to VAV cooling.  
At outdoor air temperatures above the  
enthalpy control setting, primary  
cooling only is used and the outdoor  
air dampers remain at minimum  
position.  
Supply Air Tempering  
This feature is available only with  
TRACER or with systems using  
programmable zone sensors (CV only  
with economizer). For gas and electric  
heat units in the Heat mode but not  
actively heating, if the supply air  
temperature drops to 10°F (-12.2°C)  
below the occupied zone heating  
temperature setpoint, one stage of heat  
will be brought on to maintain a  
minimum supply air temperature. The  
heat stage is dropped if the supply air  
temperature rises to 10°F (-12.2°C)  
above the occupied zone heating  
temperature setpoint.  
If the unit does not include an  
economizer, primary cooling only is  
used to satisfy cooling requirements.  
Heating  
Gas Heating  
When heating is required the UCP  
initiates the heating cycle by energizing  
the K5 relay, heating relay(s), and the  
ignition control module(s). The K5 relay  
brings on the combustion fan motor.  
The ignition control module(s) begin  
the ignition process by preheating the  
hot surface ignitor(s). After the hot  
surface ignitor is preheated the gas  
valve is opened to ignite first stage. If  
ignition does not take place the ignition  
control module(s) will attempt to ignite  
2 more times before locking out. When  
ignition does occur the hot surface  
ignitor is de-energized and then  
CV Units Only  
Sequence of Operation  
Auto Changeover  
When the System Mode is “Auto,” the  
mode will change to cooling or heating  
as necessary to satisfy the zone cooling  
and heating setpoints. The zone  
cooling and heating setpoints can be as  
close as 2°F (-16.7°C) apart.  
1
Occupied Zone Temperature Control  
Cooling/Economizer  
During occupied cooling mode, the  
economizer (if provided) and primary  
cooling are used to control zone  
temperature. If the enthalpy of outside  
air is appropriate to use “free cooling,”  
the economizer will be used first to  
attempt to satisfy the cooling zone  
temperature setpoint; then primary  
cooling will be staged up as necessary.  
functions as a flame sensor. The UCP  
will energize the supply fan contactor  
45 seconds after the initiation of the  
heat cycle. If more capacity is needed  
to satisfy the heating setpoint, the UCP  
will call for the second stage of heat by  
driving the combustion blower motor  
to high speed.  
Unoccupied Zone Temperature Control  
Cooling and Heating  
Both cooling or heating modes can be  
selected to maintain Unoccupied zone  
temperature setpoints. For Unoccupied  
periods, heating or primary cooling  
operation can be selectively locked out  
at the remote panels or TRACER.  
On units with economizer, a call for  
cooling will modulate the fresh air  
dampers open. The rate of economizer  
modulation is based on deviation of the  
zone temperature from setpoint, i.e.,  
the further away from setpoint, the  
faster the fresh air damper will open.  
First stage of cooling will be allowed to  
start after the economizer reaches full  
open.  
When the space temperature rises  
above the heating setpoint, the UCP de-  
energizes the K5 relay, the heating  
relays, and the ignition control module,  
terminating the heat cycle.  
Electric Heating  
When heat is required, the UCP  
initiates first stage heating by  
energizing the first stage electric heat  
contactor. The first stage electric heater  
bank(s) will be energized if the  
appropriate limits are closed. The UCP  
will cycle first stage heat on and off as  
required to maintain zone temperature.  
If first stage cannot satisfy the  
requirement, the UCP will energize the  
second stage electric heat contactor(s)  
if the appropriate limits are closed. The  
UCP will cycle second stage on and off  
as required while keeping stage one  
energized.  
Note that the economizer is allowed to  
function freely only if ambient  
conditions are below the enthalpy  
control setting or below the return air  
enthalpy if unit has comparative  
enthalpy. If outside air is not suitable  
for “economizing,” the fresh air  
dampers drive to the minimum open  
position. A field adjustable  
potentiometer on the Unitary  
33  
Controls  
Both VAV and  
CV Units  
Control Sequences of Operation That are Common to Both VAV and CV Units  
Ventilation Override (VOM)  
Night Setback Sensors  
Timed Override Activation – ICS  
Ventilation override allows an external  
system to assume control of the unit  
for the purpose of exhaust or  
Trane’s night setback sensors are  
programmable with a time clock  
function that provides communication  
to the rooftop unit through a two-wire  
communications link. The desired  
transition times are programmed at the  
night setback sensor and  
When this function is initiated by  
pushing the override button on the ICS  
sensor, TRACER will switch the unit to  
the occupied mode. Unit operation  
(occupied mode) during timed override  
is terminated by a signal from TRACER.  
pressurization. There are two inputs  
associated with ventilation override,  
the initiate input and the select input.  
When the UCP senses a continuous  
closed condition on the initiate input at  
the low voltage terminal board the unit  
will begin ventilation override  
depending on the condition of the  
select input. The default condition of  
the select input is exhaust (input open).  
A closed select input will yield  
Timed Override Activation – Non-lCS  
When this function is initiated by the  
push of an override button on the  
programmable zone sensor, the unit  
will switch to the occupied mode.  
Automatic Cancellation of the Timed  
override Mode occurs after three hours  
of operation.  
communicated to the unit.  
Night setback (unoccupied mode) is  
operated through the time clock  
provided in the sensors with night  
setback. When the time clock switches  
to night setback operation, the outdoor  
air dampers close and heating/cooling  
can be enabled or disabled. As the  
building load changes, the night  
setback sensor communicates the need  
for the rooftop heating/cooling (if  
enabled) function and the evaporator  
fan. The rooftop unit will cycle through  
the evening as heating/cooling (if  
enabled) is required in the space. When  
the time clock switches from night  
setback to occupied mode, all heating/  
cooling functions begin normal  
operation.  
pressurization. The component state  
matrix for ventilation override is as  
follows:  
Comparative Enthalpy Control  
of Economizer  
The Unitary Economizer Module (UEM)  
receives inputs from optional return air  
humidity and temperature sensors and  
determines whether or not it is feasible  
to economize. If the outdoor air  
enthalpy is greater than the return air  
enthalpy then it is not feasible to  
economize and the economizer  
damper will not open past its minimum  
position.  
System  
Component  
Heat/Cool  
Exhaust  
off  
Pressurization  
off  
IGV  
closed  
off  
on  
closed  
open  
n/a  
open  
on  
off  
open  
closed  
open  
Supply Fan  
Exhaust Fan  
Outside Air Damper  
Return Air Damper  
VAV Boxes  
Coil Freeze Protection FROSTAT  
The FROSTAT system eliminates the  
need for hot gas bypass and adds a  
suction line surface temperature sensor  
to determine if the coil is in a condition  
of impending frost. If impending frost is  
detected primary cooling capacity is  
shed as necessary to prevent icing. All  
compressors are turned off after they  
have met their minimum three minute  
on times. The supply fan is forced on  
until the FROSTAT device no longer  
senses a frosting condition or for 60  
seconds after the last compressor is  
shut off, which ever is longer.  
When using the night setback options  
with a VAV heating/cooling rooftop,  
airflow must be maintained through  
the rooftop unit. This can be  
accomplished by electrically tying the  
VAV boxes to the VAV heat relay  
contacts on the Low voltage terminal  
board or by using changeover  
thermostats. Either of these methods  
will assure adequate airflow through  
the unit and satisfactory temperature  
control of the building.  
Emergency Stop Input  
A binary input is provided on the UCP  
for installation of field provided switch  
or contacts for immediate shutdown of  
all unit functions. The binary input is  
brought out to Low Voltage Terminal  
Board One (LTB1).  
Conventional Thermostat Interface  
(CV ONLY)  
An interface is required to use a  
conventional thermostat instead of a  
zone sensor module with the UCP. The  
Conventional Thermostat Interface  
(CTI) is connected between  
conventional thermostat and the UCP  
and will allow only two steps of heating  
or cooling. The CTI provides zone  
temperature control only and is  
mutually exclusive of the Trane  
Communications Interface.  
Occupied/Unoccupied Switching  
There are three ways to switch  
Occupied/Unoccupied:  
1
NSB Panel  
2
Field-supplied contact closure  
3
TRACER  
34  
Dimensional  
Data  
Figure 35-1 – 23-29 Tons (TC, TE, YC Low Heat)  
Note:  
Dimensions in ( ) are mm  
1” = 25.4 mm  
35  
Dimensional  
Data  
Figure 36-1 – 23-29 Tons (YC High Heat)  
Note:  
Dimensions in ( ) are mm  
1” = 25.4 mm  
36  
Dimensional  
Data  
Figure 37-1 – 33-42 Tons (TC, TE, YC Low & High Heat)  
Note:  
Dimensions in ( ) are mm  
1” = 25.4 mm  
37  
Weights  
Table 38-1 — Approximate Operating Weights — Lbs.  
Basic Unit Weights1  
Weight of Optional Components  
Non-  
Fact.  
Hi-Stat/  
0-25%  
Man  
Inlet  
Guide  
Vanes  
55  
55  
55  
55  
55  
55  
70  
Thru-the  
base  
Elec.  
6
6
Fused GFI with  
Discon. Discon.  
Switch Switch  
Unit  
YC  
YC  
TC  
TE  
Baro.  
Power  
Hi Eff. Sup  
Serv  
Valves  
11  
11  
11  
11  
11  
11  
18  
Model Low Heat High Heat  
Relief Exhaust Fan Motor2 Damper  
Econ.  
260  
285  
260  
285  
260  
285  
290  
300  
290  
300  
**D275  
**H275  
**D305  
**H305  
**D350  
**H350  
**D400  
**H400  
**D500  
**H500  
3650  
3650  
3730  
3730  
3815  
3815  
4665  
4690  
4835  
4860  
4012  
4077  
4092  
4142  
4177  
4227  
4785  
4815  
4955  
4985  
3520 3553  
3565 3598  
3600 3633  
3600 3633  
3685 3718  
3685 3718  
4440 4475  
4440 4475  
4610 4645  
4610 4645  
110  
145  
110  
145  
110  
145  
110  
145  
110  
145  
165  
200  
165  
200  
165  
200  
165  
200  
165  
200  
120  
120  
120  
120  
120  
120  
125  
125  
125  
125  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
85  
85  
85  
85  
85  
85  
85  
85  
85  
85  
6
6
6
6
6
6
6
6
70  
70  
70  
18  
18  
18  
Notes:  
1. Basic unit weight includes minimum HP Supply Fan Motor.  
2. Optional high static and high efficiency motor weights are in addition to the standard motor weight included in the basic unit weight.  
Table 38-2 — Approximate Operating Weights — Kgs.  
Basic Unit Weights1  
Weight of Optional Components  
Non-  
Fact.  
Hi-Stat/  
0-25%  
Man  
Inlet  
Guide  
Vanes  
25  
25  
25  
25  
25  
25  
32  
Thru-the  
base  
Elec.  
3
3
Fused GFI with  
Discon. Discon.  
Switch Switch  
Unit  
YC  
YC  
TC  
TE  
Baro.  
Power  
Hi Eff. Sup  
Serv  
Valves  
Model Low Heat High Heat  
Relief Exhaust Fan Motor2 Damper  
Econ.  
117  
128  
117  
128  
117  
128  
131  
135  
131  
135  
**D275  
**H275  
**D305  
**H305  
**D350  
**H350  
**D400  
**H400  
**D500  
**H500  
1643  
1643  
1679  
1679  
1717  
1717  
2099  
2111  
2176  
2187  
1805  
1835  
1841  
1864  
1880  
1902  
2153  
2167  
2230  
2243  
1584 1599  
1604 1619  
1620 1635  
1620 1635  
1658 1673  
1658 1673  
1998 2014  
1998 2014  
2075 2090  
2075 2090  
50  
65  
50  
65  
50  
65  
50  
65  
50  
65  
74  
90  
74  
90  
74  
90  
74  
90  
74  
90  
54  
54  
54  
54  
54  
54  
56  
56  
56  
56  
23  
23  
23  
23  
23  
23  
23  
23  
23  
23  
5
5
5
5
5
5
8
8
8
8
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
38  
38  
38  
38  
38  
38  
38  
38  
38  
38  
3
3
3
3
3
3
3
3
32  
32  
32  
Notes:  
1. Basic unit weight includes minimum HP Supply Fan Motor.  
2. Optional high static and high efficiency motor weights are in addition to the standard motor weight included in the basic unit weight.  
Table 38-3 — Point Loading Percentage of Total Unit Weight1  
D
C
E
F
POINT LOADING - % OF TOTAL UNIT WEIGHT  
TOP VIEW  
OF UNIT  
A
21  
B
23  
C
12  
D
16  
E
17  
F
12  
1. Point Loading is identified with corner A being the corner with the compressors. As you  
move clockwise around the unit as viewed from the top, mid-point B, corner C, corner D,  
mid-point E and corner F.  
COMPRS  
B
A
Table 38-4 — Minimum Operating Clearances for Unit Installation  
Condenser Coil2  
Service Side  
Access  
4 Feet (1.21 M)  
Econo / Exhaust End  
6 Feet (1.82 M)  
End / Side  
8 Feet / 4 Feet (2.43/1.21 M)  
16 Feet / 8 Feet (4.87/2.43 M)  
Single Unit1  
Multiple Unit1,3  
12 Feet (3.65 M)  
8 Feet (2.43 M)  
Notes:  
1. Horizontal and Downflow Units, all sizes.  
2. Condenser coil is located at the end and side of the unit.  
3. Clearances on multiple unit installations are distances between units.  
38  
Field  
Installed  
Sensors  
Variable Air  
Volume  
SINGLE SETPOINT SENSOR WITH  
SYSTEM FUNCTION LIGHTS (BAYSENS021*)  
PROGRAMMABLE NIGHT-SETBACK  
SENSOR (BAYSENS020*)  
NOTE:  
Remote sensors are available for use with all zone sensors to provide  
remote sensing capabilities.  
Note:  
Dimensions in ( ) are mm  
1” = 25.4 mm  
39  
Field  
Installed  
Sensors  
Constant  
Volume  
DUAL SETPOINT, MANUAL/AUTOMATIC CHANGEOVER SENSOR WITH SYSTEM  
FUNCTION LIGHTS (BAYSENS010*)  
WITHOUT LED STATUS INDICATORS (BAYSENS008*)  
SINGLE SETPOINT WITHOUT LED STATUS INDICATORS  
(BAYSENS006*)  
PROGRAMMABLE NIGHT-SETBACK  
SENSOR (BAYSENS019*)  
Note:  
Dimensions in ( ) are mm  
1” = 25.4 mm  
40  
Field  
Installed  
Sensors  
Constant and  
Variable  
Air Volume  
Integrated Comfort System Sensors  
ZONE TEMPERATURE SENSOR  
W/TIMED OVERRIDE BUTTON (BAYSENS013*)  
ZONE TEMPERATURE SENSOR W/TIMED OVERRIDE BUTTON  
AND LOCAL SETPOINT ADJUSTMENT (BAYSENS014*)  
ALSO AVAILABLE SENSOR ONLY (BAYSENS017*)  
Color: Cool Pantone Gray  
TEMPERATURE SENSOR (BAYSENS016*)  
REMOTE MINIMUM POSITION  
POTENTIOMETER CONTROL (BAYSTAT023)  
NOTE: Remote sensors are available for use with all zone sensors to provide remote sensing capabilities.  
Note:  
Dimensions in ( ) are mm  
1” = 25.4 mm  
41  
Mechanical  
Specifications  
General  
Refrigerant Circuits  
surface ignition system. In order to  
provide reliable operation, a negative  
pressure gas valve shall be used that  
requires blower operation to initiate  
gas flow. On an initial call for heat, the  
combustion blower shall purge the  
heat exchanger(s) 45 seconds before  
ignition. After three unsuccessful  
ignition attempts, the entire heating  
system shall be locked out until  
manually reset at the thermostat. Units  
shall be suitable for use with natural  
gas or propane (field installed kit). All  
units shall have two stage heating.  
The units shall be dedicated downflow  
or horizontal airflow. The operating  
range shall be between 115°F and 0°F  
(46.1°C and -17.8°C) in cooling as  
standard from the factory for all units.  
60 HZ cooling performance shall be  
rated in accordance with ARI testing  
procedures. All units shall be factory  
assembled, internally wired, fully  
charged with HCFC-22 and  
Each refrigerant circuit shall have  
independent thermostatic expansion  
devices, service pressure ports and  
refrigerant line filter driers factory-  
installed as standard. An area shall be  
provided for replacement suction line  
driers.  
Evaporator and Condenser Coils  
Condenser coils shall have 3/8” (10 mm)  
copper tubes mechanically bonded to  
lanced aluminum plate fins. Evaporator  
coils shall be 1/2” (13 mm) internally  
finned copper tubes mechanically  
bonded to high performance  
aluminum plate fins. All coils shall be  
leak tested at the factory to ensure  
pressure integrity. All coils shall be leak  
tested to 200 psig and pressure tested  
to 450 psig. All evaporator coils shall  
be of intermingled configuration.  
100 percent run tested to check cooling  
operation, fan and blower rotation and  
control sequence before leaving the  
factory. Wiring internal to the unit  
shall be numbered for simplified  
identification.  
Controls  
Unit shall be completely factory wired  
with necessary controls and terminal  
block for power wiring. Units shall  
provide an external location for  
mounting fused disconnect device.  
Microprocessor controls shall be  
provided for all 24 volt control  
functions. The resident control  
algorithms shall make all heating,  
cooling and/or ventilating decisions in  
response to electronic signals from  
sensors measuring indoor and outdoor  
temperatures. The control algorithm  
maintains accurate temperature  
control, minimizes drift from set point  
and provides better building comfort.  
A centralized microprocessor shall  
provide anti-short cycle timing and  
time delay between compressors to  
provide a higher level of machine  
protection.  
Casing  
Unit casing shall be constructed of zinc  
coated, heavy-gauge, galvanized steel.  
All components shall be mounted in a  
weather resistant steel cabinet with a  
painted exterior. Where top cover  
seams exist, they shall be double  
hemmed and gasket sealed to prevent  
water leakage. Cabinet construction  
shall allow for all maintenance on one  
side of the unit. Service panels shall  
have handles and shall be removable  
while providing a water and air tight  
seal. Control box access shall be  
hinged. The indoor air section shall be  
completely insulated with fire resistant,  
permanent, odorless glass fiber  
material. The base of the unit shall  
have provisions for crane lifting.  
Outdoor Fans  
The outdoor fan shall be direct-drive,  
statically and dynamically balanced,  
draw through in the vertical discharge  
position. The fan motor(s) shall be  
permanently lubricated and have built-  
in thermal overload protection.  
Indoor Fan  
Units shall have belt driven, FC,  
centrifugal fans with fixed motor  
sheaves. All motors shall be circuit  
breaker protected.  
Electric Heaters  
Electric heat shall be available for  
factory installation within basic unit.  
Electric heater elements shall be  
constructed of heavy-duty nickel  
chromium elements wye connected for  
380 and 415 volt. Staging shall be  
achieved through the unitary control  
processor (UCP). Each heater package  
shall have automatically reset high limit  
control operating through heating  
element contactors. All heaters shall be  
individually fused from factory, where  
required, and meet all NEC and CEC  
requirements. Power assemblies shall  
provide single-point connection.  
Filters  
Control Options  
Two-inch (51 mm), throwaway filters  
shall be standard on all size units.  
Two-inch (51 mm) “high efficiency,”  
and four-inch (102 mm) “high  
efficiency” filters shall be optional.  
Inlet Guide Vanes shall be installed on  
each fan inlet to regulate capacity and  
limit horsepower at lower system  
requirements. When in any position  
other than full open they shall pre-spin  
intake air in the same direction as fan  
rotation. The inlet guide vanes shall  
close when supply fan is off, except in  
night setback.  
Compressors  
All units shall have direct-drive,  
hermetic, scroll type compressors with  
centrifugal type oil pump providing  
positive lubrication to moving parts.  
Motor shall be suction gas-cooled and  
shall have a voltage utilization range of  
plus or minus 10 percent of unit  
nameplate voltage. Internal  
The inlet guide vane actuator motor  
shall be driven by a modulating dc  
signal from the unit microprocessor. A  
pressure transducer shall measure duct  
static pressure and modulate the inlet  
guide vanes to maintain the required  
supply air static pressure within a  
predetermined range.  
Gas Heating Section  
The heating section shall have a drum  
and tube heat exchanger(s) design  
using corrosion resistant steel  
temperature and current sensitive  
motor overloads shall be included for  
maximum protection. Shall have  
internal sound muffling to minimize  
vibration transmission and noise.  
External discharge temperature limit,  
winding temperature limit and  
compressor overload shall be  
provided.  
components. A forced combustion  
blower shall supply premixed fuel to a  
single burner ignited by a pilotless hot  
42  
Mechanical  
Specifications  
Variable Frequency Drives (VFDs) shall  
be factory installed and tested to  
provide supply fan motor speed  
modulation. The VFD shall receive a  
2-10 VDC signal from the unit  
microprocessor based upon supply  
static pressure and shall cause the  
drive to accelerate or decelerate as  
required to maintain the supply static  
pressure setpoint. When subjected to  
high ambient return conditions  
(>100°F) (>37.3°C) the VFD shall be  
limited to a maximum output of 48  
hertz until the temperature drops below  
100°F (37.3°C). Bypass control to  
provide full nominal air flow in the  
event of drive failure shall be optional.  
Curb shall ship knocked down for field  
assembly and include wood nailer  
strips.  
Unit Options  
Service Valves  
Service valves shall be provided factory  
installed and include suction, liquid,  
and discharge three-way shutoff  
valves.  
Trane Communication Interface (TCI)  
Shall be provided to interface with the  
Trane Integrated Comfort system and  
shall be available factory installed. The  
TCI shall allow control and monitoring  
of the rooftop unit via a two-wire  
communication link.  
Through-The-Base Electrical Provision  
An electrical service entrance shall be  
provided which allows access to route  
all high and low voltage electrical  
wiring inside the curb, through the  
bottom of the outdoor section of the  
unit and into the control box area.  
The following alarm and diagnostic  
information shall be available:  
UCP Originated Data  
Unit operating mode  
Unit failure status  
Cooling failure  
Heating failure  
Non-Fused Disconnect Switch  
A factory installed non-fused  
disconnect switch with external handle  
shall be provided and shall satisfy NEC  
requirements for a service disconnect.  
The non-fused disconnect shall be  
mounted inside the unit control box.  
Ventilation Override shall allow a  
binary input from the fire/life safety  
panel to cause the unit to override  
standard operation and assume one of  
two factory preset ventilation  
sequences, exhaust or pressurization.  
The two sequences shall be selectable  
based open a binary select input.  
Emergency service stop indication  
Supply fan proving  
Timed override activation  
High temperature thermostat status  
Zone temperature  
Supply air temperature  
Cooling status (all stages)  
Stage activated or not  
Stage locked out by UCP  
HCP status for that stage  
Compressor disable inputs  
Heating status  
Number of stages activated  
High temperature limit status  
Economizer status  
GFI Convenience Outlet  
(Factory Powered)  
A 15A, 115V Ground Fault Interrupter  
convenience outlet shall be factory  
installed. It shall be wired and powered  
from a factory mounted transformer or  
field powered through a separate 115V  
circuit. Unit mounted non-fused  
disconnect with external handle shall  
be furnished with factory powered  
outlet.  
Outside Air  
Manual Outside Air  
A manually controllable outside air  
damper shall be adjustable for up to  
25 percent outside air. Manual damper  
is set at desired position at unit  
start up.  
Enthalpy favorability status  
Requested minimum position  
Damper position  
GFI Convenience Outlet  
(Field Powered)  
A 15A, 115V Ground Fault Interrupter  
convenience outlet shall be factory  
installed and shall be powered by  
customer provided 115V circuit.  
Economizer shall be factory installed.  
The assembly includes: fully  
modulating 0-100 percent motor and  
dampers, minimum position setting,  
preset linkage, wiring harness, and  
fixed dry bulb control. Solid-state  
enthalpy and differential enthalpy  
control shall be as a factory or field  
installed option.  
Dry bulb/enthalpy input status  
Outside air temperature  
Outside relative humidity  
Sensor Failure  
Hinged Service Access  
Humidity sensor  
Filter access panel and supply fan  
access panel shall be hinged for ease of  
unit service.  
OAT sensor  
SAT sensor  
Exhaust Air  
RAT sensor  
Condenser Coil Guards  
Zone temperature sensor  
Mode input  
Barometric Relief  
Factory installed condenser vinyl  
coated wire mesh coil guards shall be  
available to provide full area protection  
against debris and vandalism.  
The barometric relief damper shall be  
optional with the economizer. Option  
shall provide a pressure operated  
damper for the purpose of space  
pressure equalization and be gravity  
closing to prohibit entrance of outside  
air during the equipment “off” cycle.  
Cooling/heating setpoints from sensors  
Static pressure transducer  
Unit mounted potentiometer  
SAT from potentiometer  
Air reset setpoint from potentiometer  
Unit configuration data  
Gas or electric heat  
Economizer present  
High temp input status  
Local setpoint  
Accessories  
Roof Curb  
The roof curb shall be designed to  
mate with the unit and provide support  
and a water tight installation when  
installed properly. The roof curb design  
shall allow field-fabricated rectangular  
supply/return ductwork to be  
Power Exhaust Fan  
Power exhaust shall be available on all  
units and shall be factory installed. It  
shall assist the barometric relief  
damper in maintaining building  
pressurization.  
Local mode setting  
Inlet guide vane position  
connected directly to the curb when  
used with downflow units. Curb design  
shall comply with NRCA requirements.  
43  
Tracer® Originated Data  
Command operating mode  
Host controllable functions:  
Supply fan  
Remote Potentiometer  
BAYSENS014* – Zone temperature  
sensor with local temperature  
adjustment control and timed override  
buttons used with Tracer Integrated  
Comfort system. May also be used for  
Morning Warm-up setpoint and sensor.  
A remote potentiometer shall be  
available to remotely adjust the unit  
economizer minimum position.  
Economizer  
High Temperature Thermostats  
Cooling stages enabled  
Heating stages enabled  
Emergency shutdown  
Minimum damper position  
Heating setpoint  
Field installed, manually resettable high  
temperature thermostats shall provide  
input to the unit controls to shut down  
the system if the temperature sensed at  
the return is 135°F (57°C) or at the  
discharge 240°F (115°C).  
BAYSENS016* Temperature sensor is  
a bullet or pencil type sensor that could  
be used for temperature input such as  
return air duct temperature.  
Cooling setpoint  
Supply air tempering enable/disable  
Slave mode (CV only)  
Tracer/local operation  
SAT setpoint  
BAYSENS017* – Remote sensor can be  
used for remote zone temperature  
sensing capabilities when zone sensors  
are used as remote panels or as a  
morning warm-up sensor for use with  
VAV units or as a zone sensor with  
Tracer Integrated Comfort system.  
Reference Enthalpy Kit  
Field installed enthalpy kit shall provide  
inputs for economizer control based  
upon comparison of the outside air  
stream to a definable enthalpy  
reference point. May also be factory  
installed.  
Reset setpoint  
Reset amount  
MWU setpoint  
MWU enable/disable  
SAT reset type select  
Static pressure setpoint  
Static pressure deadband  
Daytime warm-up enable/disable  
Power exhaust setpoint  
BAYSENS019* and BAYSENS020* –  
Electronic programmable sensors with  
auto or manual changeover with seven  
day programming. Keyboard selection  
of heat, cool, auto fan or on. All  
programmable sensors have System  
on, Heat, Cool, Service LED/LCD  
indicators as standard. Night setback  
sensors have two occupied, and two  
unoccupied programs per day. Sensors  
are available for CV zone temperature  
control and VAV zone temperature  
control.  
Comparative Enthalpy Kit  
Field installed enthalpy kit shall provide  
inputs for economizer control based  
upon comparison of the enthalpies of  
the return and outdoor air streams.  
Also available factory installed.  
Zone Sensors  
Shall be provided to interface with the  
Micro unit controls and shall be  
available in either manual, automatic  
programmable with night setback, with  
system malfunction lights or remote  
sensor options.  
LP Conversion Kit  
Field installed conversion kit shall  
provide orifice(s) for simplified  
conversion to liquefied propane gas.  
No change of gas valve shall be  
required.  
Conventional Thermostat Interface  
(CTI)  
This field installed circuit board shall  
provide interface with  
electromechanical thermostats or  
automation systems. Not available with  
VAV system control.  
BAYSENS021* – Zone sensor with  
supply air single temperature setpoint  
and AUTO/OFF system switch. Status  
indication LED lights, System ON, Heat,  
Cool, and Service are provided.  
Sensors are available to be used with  
VAV units.  
BAYSENS006* – Zone sensor has one  
temperature setpoint lever, heat, off or  
cool system switch, fan auto or fan on  
switch. Manual changeover. These  
sensors are for CV units only.  
BAYSENS008* – Zone sensor has two  
temperature setpoint levers, heat, auto,  
off, or cool system switch, fan auto or  
fan on switch. Auto changeover. These  
sensors are used with CV units.  
Differential Pressure Switches  
BAYSENS022* – Sensor is an  
electronic digital zone sensor that can  
be used as a Heat Auto/Cool  
thermostat. The sensor has a large,  
easily read continuous digital display of  
the space temperature with setpoint  
temperature displayed at the touch of a  
button.  
This field installed option allows  
individual fan failure and dirty filter  
indication. The fan failure switch will  
disable all unit functions and “flash”  
the Service LED on the zone sensor.  
The dirty filter switch will light the  
Service LED on the zone sensor and  
will allow continued unit operation.  
BAYSENS010* – Zone sensor has two  
temperature set point levers, heat,  
auto, off, or cool system switch, fan  
auto or fan on switch. Status indication  
LED lights, System on, Heat, Cool, and  
Service are provided. These sensors  
are used with CV units.  
BAYSTAT023* – Remote Minimum  
Position Potentiometer is used to  
remotely specify the minimum  
economizer position.  
Electronic Time Clock  
This field installed accessory kit will  
allow the unit to operate in the  
unoccupied mode or perform night set  
up/set back functions utilizing a  
standard individual scheduling.  
BAYSENS013* – Zone temperature  
sensor with timed override buttons  
used with Tracer® Integrated Comfort  
system.  
Library  
Product Literature  
Unitary  
The Trane Company  
International Unitary Systems Group  
3600 Pammel Creek Road  
La Crosse, WI 54601-7599  
Product Section  
Product  
Rooftop  
Model  
000  
Literature Type  
Sequence  
Date  
Data Sales Catalog  
10  
An American Standard Company  
April 1999  
File No.  
PL-UN-RT-000-DS-10-499  
RT-DS-10 12/94  
RT-DS-10  
Supersedes  
Ordering No.  
Since The Trane Company has a policy of continuous  
product improvement, it reserves the right to change  
design and specification without notice.  

Lexmark 5400 Series User Manual
Mitsubishi Electronics Peh 20mya User Manual
Ricoh Aficio 3228c User Manual
Ricoh Network Guide User Manual
Schumacher 94080037 User Manual
Subaru Robin Power Products Automobile Parts Ex30d User Manual
Whirlpool Ca5wmk0 User Manual
York Air Conditioner Ahe18 Thru 60 User Manual
York Dm072 User Manual
York Predator Dr150 User Manual