MICROCOMPUTER
MN102H
MN102H75K/F75K/85K/F85K
LSI User’s Manual
Pub.No.22385-011E
Download from Www.Somanuals.com. All Manuals Search And Download.
Download from Www.Somanuals.com. All Manuals Search And Download.
PanaXSeries is a trademark of Matsushita Electric Industrial Co., Ltd.
The other corporation names, logotype and product names written in this book are trademarks or registered trademarks of their
corresponding corporations.
Request for your special attention and precautions in using the technical information
and semiconductors described in this book
(1) An export permit needs to be obtained from the competent authorities of the Japanese Government if any of
the products or technologies described in this book and controlled under the "Foreign Exchange and Foreign
Trade Law" is to be exported or taken out of Japan.
(2) The contents of this book are subject to change without notice in matters of improved function. When
finalizing your design, therefore, ask for the most up-to-date version in advance in order to check for any
changes.
(3) We are not liable for any damage arising out of the use of the contents of this book, or for any infringement
of patents or any other rights owned by a third party.
(4) No part of this book may be reprinted or reproduced by any means without written permission from our
company.
(5) This book deals with standard specification. Ask for the latest individual Product Standards or Specifications
in advance for more detailed information required for your design, purchasing and applications.
If you have any inquiries or questions about this book or our semiconductors, please contact one of our sales
offices listed at the back of this book.
Download from Www.Somanuals.com. All Manuals Search And Download.
Contents
Contents
About This Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Using This Manual. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Text Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Register Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Questions and Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
MN102H Series Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
MN102H Series Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
MN102H Series Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.1
1.2
1.3
1.4
1.5
1.6
1.6.1
1.6.2
Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
MN102H85K Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
MN102H75K Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.7
1.7.1
1.7.2
Bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Bus Interface Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.1
Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2
2.2.1
2.2.2
Interrupt Setup Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Setting Up an External Pin Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Setting Up a Watchdog Timer Interrupt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.3
Interrupt Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.1
CPU Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Exiting from SLOW Mode to NORMAL Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Notes on Invoking and Exiting STOP and HALT Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.1.1
3.1.2
3.1.3
3.2
3.3
Turning Individual Functions On and Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
CPU Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4
Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
8-Bit Timer Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
8-Bit Timer Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
8-Bit Timer Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
8-Bit Timer Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
8-Bit Timer Setup Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.1
4.2
4.3
4.4
4.5
MN102H75K/F75K LSI User Manual
Panasonic Semiconductor Development Company
3
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Contents
4.5.1
4.5.2
Setting Up an Event Counter Using Timer 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Setting Up an Interval Timer Using Timers 1 and 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.6
4.7
4.8
4.9
4.10
8-Bit Timer Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
16-Bit Timer Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
16-Bit Timer Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
16-Bit Timer Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
16-Bit Timer Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.11
16-Bit Timer Setup Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Setting Up an Event Counter Using Timer 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Setting Up a Single-Phase PWM Output Signal Using Timer 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Setting Up a Two-Phase PWM Output Signal Using Timer 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Setting Up a Single-Phase Capture Input Using Timer 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Setting Up a Two-Phase Capture Input Using Timer 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Setting Up a 4x Two-Phase Encoder Input Using Timer 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Setting Up a 1x Two-Phase Encoder Input Using Timer 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Setting Up a One-Shot Pulse Output Using Timer 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Setting Up an External Count Direction Controller Using Timer 5. . . . . . . . . . . . . . . . . . . . . . . . . 120
Setting Up External Reset Control Using Timer 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.11.1
4.11.2
4.11.3
4.11.4
4.11.5
4.11.6
4.11.7
4.11.8
4.11.9
4.11.10
4.12
16-Bit Timer Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5
Serial Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.1
5.2
5.3
Connecting the Serial Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Synchronous Serial Mode Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
UART Mode Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
I2C Mode Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.3.1
5.3.2
5.3.3
5.4
UART Mode Baud Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.5
5.5.1
5.5.2
Serial Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Synchronous Serial Mode Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
UART Mode Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.6
Serial Interface Setup Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Setting Up UART Transmission Using Serial Interface 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Setting Up Synchronous Serial Reception Using Serial Interface 0 . . . . . . . . . . . . . . . . . . . . . . . . 134
Setting Up the Serial Interface Clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Setting Up I2C Transmission Using Serial Interface 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Setting Up I2C Reception Using Serial Interface 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.6.1
5.6.2
5.6.3
5.6.4
5.6.5
5.7
Serial Interface Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6
Analog-to-Digital Converter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.1
6.2
6.3
6.4
6.4.1
A/D Conversion Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Selecting the ADC Clock Source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Panasonic Semiconductor Development Company
MN102H75K/F75K LSI User Manual
4
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Contents
6.4.2
6.4.3
6.4.4
6.4.5
Single Channel/Single Conversion Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Multiple Channel/Single Conversion Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Single Channel/Continuous Conversion Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Multiple Channel/Continuous Conversion Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.5
6.5.1
6.5.2
ADC Setup Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Setting Up Software-Controlled Single-Channel A/D Conversion . . . . . . . . . . . . . . . . . . . . . . . . . 147
Setting Up Hardware-Controlled Intermittent Three-Channel A/D Conversion . . . . . . . . . . . . . . . 148
6.6
6.7
ADC Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Caution about Analog-to-Digital Converter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
7
On-Screen Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Power-Saving Considerations in the OSD Block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
7.1
7.2
7.3
7.4
7.5
OSD Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
OSD Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
External Input Sync Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Multi-Layer Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Output Pin Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Microcontroller Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
VRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Conditions for VRAM Writes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
7.5.1
7.5.2
7.5.3
7.5.4
7.5.5
7.5.6
7.5.7
7.6
7.6.1
7.6.2
Standard and Extended Display Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Cursor Layer Display Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Graphics Layer Display Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
7.7
7.7.1
7.7.2
Display Setup Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Setting Up the Graphics Layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Setting Up the Text Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
7.8
VRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
VRAM Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
VRAM Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Cautions about the number of display code set to VRAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
7.8.1
7.8.2
7.8.3
7.9
7.9.1
7.9.2
ROM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
ROM Organization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Graphics ROM Organization in Different Color Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
7.10
Setting Up the OSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Setting Up the OSD Display Colors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Text Layer Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Display Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Setting Up the OSD Display Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 189
7.10.1
7.10.2
7.10.3
7.10.4
7.11
7.12
DMA and Interrupt Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Selecting the OSD Dot Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
7.13
7.13.1
7.13.2
Controlling the Shuttering Effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Controlling the Shuttered Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Controlling Shutter Movement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
MN102H75K/F75K LSI User Manual
Panasonic Semiconductor Development Company
5
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Contents
7.13.3
7.13.4
Controlling Shuttering Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Controlling Line Shuttering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
7.14
Field Detection Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Considerations for Interlaced Displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
7.14.1
7.14.2
7.14.3
7.15
OSD Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
8
IR Remote Signal Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
8.1
8.2
8.3
8.3.1
8.3.2
8.3.3
8.3.4
8.3.5
8.3.5.1
8.3.5.2
8.3.5.3
8.3.5.4
8.3.6
IR Remote Signal Receiver Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Noise Filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
8-Bit Data Reception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Identifying the Data Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Generating Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Leader Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Trailer Detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
8-Bit Data Reception Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Pin Edge Detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Controlling the SLOW Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
8.4
IR Remote Signal Receiver Control Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
9
Closed-Caption Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
9.1
9.2
9.3
9.3.1
9.3.2
9.3.3
9.3.3.1
9.3.3.2
9.3.3.3
9.3.4
9.3.5
9.3.5.1
9.3.5.2
Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
Analog-to-Digital Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
Clamping Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Sync Separator Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
HSYNC Separator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
VSYNC Separator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Field Detection Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Data Slicer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Controller and Sampling Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
CRI Detection for Sampling Clock Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Data Capture Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
9.4
Closed-Caption Decoder Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
10
Pulse Width Modulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
PWM Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
10.1
10.2
10.3
Panasonic Semiconductor Development Company
MN102H75K/F75K LSI User Manual
6
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Contents
11
I/O Ports. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
11.1
11.2
11.3
Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
I/O Port Circuit Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
I/O Port Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
12
ROM Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
Programming Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
ROM Correction Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
12.1
12.2
12.3
12.4
13
I2C Bus Controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
Setting Up the I2C Bus Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
SDA and SCL Waveform Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
13.1
13.2
13.3
13.4
13.5
13.6
13.6.1
I2C Interface Setup Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
Setting Up a Transition from Master Transmitter to Master Receiver. . . . . . . . . . . . . . . . . . . . . . . 300
Pre-configuring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
Setting Up the First Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
Setting Up the Second Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
Setting Up the Third Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
Setting Up a Transition from Slave Receiver to Slave Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . 302
Pre-configuring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
Setting Up the First Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
Setting Up the Second Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
Setting Up the Third Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
13.6.1.1
13.6.1.2
13.6.1.3
13.6.1.4
13.6.2
13.6.2.1
13.6.2.2
13.6.2.3
13.6.2.4
13.7
I2C Bus Interface Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
14
H Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
H Counter Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
H Counter Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
14.1
14.2
14.3
14.4
Appendix A Register Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
Appendix B MN102HF75K Flash EEPROM Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
B.1
B.2
B.3
Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
Using the PROM Writer Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
B.4
B.4.1
Using the Onboard Serial Programming Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
Configuring the System for Onboard Serial Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
MN102H75K/F75K LSI User Manual
Panasonic Semiconductor Development Company
7
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Contents
B.4.2
B.4.3
Circuit Requirements for the Target Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
Microcontroller Hardware Used in Onboard Serial Programming . . . . . . . . . . . . . . . . . . . . . . . . . 322
Serial Writer Interface Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
Serial Writer Interface Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
Microcontroller Memory Map Used During Onboard Serial Programming . . . . . . . . . . . . . . . . . . 323
Flash ROM Address Space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
RAM Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
Microcontroller Clock on the Target Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
Setting Up the Onboard Serial Programming Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
Branching to the User Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
Branching to the Reset Start Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
Branching to the Interrupt Start Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
B.4.3.1
B.4.3.2
B.4.4
B.4.4.1
B.4.4.2
B.4.5
B.4.6
B.4.7
B.4.7.1
B.4.7.2
B.5
B.6
Reprogramming Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
Programming Times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
Panasonic Semiconductor Development Company
MN102H75K/F75K LSI User Manual
8
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
List of Tables
List of Tables
1-1
1-2
1-3
1-4
2-1
2-2
2-3
2-4
3-1
3-2
4-1
4-2
4-3
4-4
4-5
4-6
5-1
5-2
5-3
6-1
6-2
7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8
7-9
7-10
7-11
7-12
7-13
7-14
7-15
7-16
7-17
7-18
8-1
8-2
8-3
8-4
General Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Block Diagram Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Wait Count Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Comparison of MN102H75K and MN102L35G Interrupt Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Handler Preprocessing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Handler Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Interrupt Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Peripheral Function On/Off Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
CPU Mode Bit Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 76
8-Bit Timer Functions and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
8-Bit Timer Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
16-Bit Timer Functions and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Count Direction for 4x Two-Phase Encoder Timing Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Count Direction for 1x Two-Phase Encoder Timing Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
16-Bit Timer Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Serial Interface Functions and Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Example Baud Rate Settings for the UART Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Serial Interface Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
ADC Functions and Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
ADC Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
OSD Functions and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Power-Saving Control Bits for the OSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
OSDPOFF and OSDREGE Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 155
Associated Tiles for Cursor Tile Code Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Example Graphics VRAM Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Example Text VRAM Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
VRAM Bit Allocation in Internal RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Color Palette Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
RGB, YM, and YS Output Control Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 181
OSD Dot Clock Source Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
OSD Dot Clock Division Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Bit Settings for Controlling the Shuttered Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Bit Settings for Controlling Shutter Movement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Bit Settings for Controlling Shuttering Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
EOMON Output Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Cursor Vertical Size Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 205
Graphics Vertical Size Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 206
Text Vertical Size Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 206
Logic Level Conditions for Data Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Long and Short Data Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Leader Detection Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Differences between SLOW and NORMAL Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
9
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
List of Tables
8-5
IR Remote Signal Receiver Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
HEAMA and 5-/6-Bit Data Pulse Widths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Pins Used for CCD0 and CCD1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Caption decoder register setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Clamping Reference and Compare Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Current Level Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
Control Registers for Clamping Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
Control Registers for Sync Separator Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
Control Registers for Data Slicer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Control Registers for Controller and Sampling Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Closed-Caption Decoder Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
Register Settings for Internal PWM Pullup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
I/O Port Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
ROM Correction Address Match and Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
I2C Bus Terminology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
Operating Modes for Devices on an I2C Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
Control Registers for Clamping Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
Registers Settings for SDA0/SCL0 or SDA1/SCL1 Ports. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
SDA and SCL Waveform Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
STA and STO Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
H Counter Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
Register Map: x’007E00’ to x’007FFF’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
Register Map: x’00FC00’ to x’00FDFF’. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
Register Map: x’00FE00’ to x’00FFFF’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
Programmable Areas in Each Programming Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
PROM Writer Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
Pin Descriptions for Target Board–Serial Writer Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
Flash ROM Address Space in Serial Programming Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
RAM Address Space in Serial Programming Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
Microcontroller Clock Frequencies during Serial Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
Programming Times for PROM and Serial Writers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
8-6
9-1
9-2
9-3
9-4
9-5
9-6
9-7
9-8
9-9
10-1
11-1
12-1
13-1
13-2
13-3
13-4
13-5
13-6
14-1
A-1
A-2
A-3
B-1
B-2
B-3
B-4
B-5
B-6
B-7
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
10
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
List of Figures
List of Figures
1-1
Conventional vs. MN102H Series Code Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1-2
Three-Stage Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
MN102H Series Interrupt Servicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Internal Registers, Memory, and Special Function Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Interrupt Controller Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Interrupt Servicing Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Functional Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
MN102H85K Pin Configuration in Single-Chip Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
MN102H75K Pin Configuration in Single-Chip Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Power Supply Wiring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
OSC1and OSC2 Connection Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Reset Pin Connection Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
OSDXI and OSDXO Connection Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Memory Space in External Extension Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Interrupt Controller Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Interrupt Vector Group and Class Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Interrupt Servicing Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Block Diagram of External Pin Interrupt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Timing for External Pin Interrupt Setup (Example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Block Diagram of Watchdog Timer Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Timing for Watchdog Timer Interrupt Setup (Example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
CPU State Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
CPU Clock Switch (NORMAL/SLOW Modes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Timer Configuration Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Block Diagram of 8-Bit Timers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Timer 0 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Timer 1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Timer 2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Timer 3 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Event Timer Input Timing (8-Bit Timers) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Clock Output and Interval Timer Timing (8-Bit Timers) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Block Diagram of Event Counter Using Timer 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Event Counter Timing (Timer 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Configuration Example of Interval Timer Using Timers 1 and 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Block Diagram of Interval Timer Using Timers 1 and 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Interval Timer Timing (Timers 1 and 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Block Diagram of 16-Bit Timers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Timer 4 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Timer 5 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Single-Phase PWM Output Timing (16-Bit Timers). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Single-Phase PWM Output Timing with Data Change (16-Bit Timers) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Two-Phase PWM Output Timing (16-Bit Timers) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
1-3
1-4
1-5
1-6
1-7
1-8
1-9
1-10
1-11
1-12
1-13
1-14
1-15
2-1
2-2
2-3
2-4
2-5
2-6
2-7
3-1
3-2
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
11
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
List of Figures
4-20
4-21
4-22
4-23
4-24
4-25
4-26
4-27
4-28
4-29
4-30
4-31
4-32
4-33
4-34
4-35
4-36
4-37
4-38
4-39
4-40
4-41
4-42
4-43
4-44
4-45
4-46
4-47
4-48
4-49
4-50
4-51
4-52
4-53
5-1
One-Shot Pulse Output Timing (16-Bit Timers) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
External Count Direction Control Timing (16-Bit Timers). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Event Timer Input Timing (16-Bit Timers) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Single-Phase Capture Input Timing (16-Bit Timers). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Two-Phase Capture Input Timing (16-Bit Timers) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Two-Phase 4x Encoder Timing (16-Bit Timers) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Two-Phase 1x Encoder Timing (16-Bit Timers) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Block Diagram of Event Counter Using Timer 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Event Counter Timing (Timer 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Block Diagram of Single-Phase PWM Output Using Timer 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Single-Phase PWM Output Timing (Timer 4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Single-Phase PWM Output Timing with Dynamic Duty Changes (Timer 4) . . . . . . . . . . . . . . . . . . . . . . . 100
Block Diagram of Two-Phase PWM Output Using Timer 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Two-Phase PWM Output Timing (Timer 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Two-Phase PWM Output Timing with Dynamic Duty Changes (Timer 4). . . . . . . . . . . . . . . . . . . . . . . . . 105
Block Diagram of Single-Phase Capture Input Using Timer 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Single-Phase Capture Input Timing (Timer 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Block Diagram of Two-Phase Capture Input Using Timer 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Two-Phase Capture Input Timing (Timer 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Block Diagram of 4x Two-Phase Capture Input Using Timer 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Configuration Example 1 of 4x Two-Phase Capture Input Using Timer 5 . . . . . . . . . . . . . . . . . . . . . . . . . 111
Configuration Example 2 of 4x Two-Phase Capture Input Using Timer 5 . . . . . . . . . . . . . . . . . . . . . . . . . 111
4x Two-Phase Encoder Input Timing (Timer 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Block Diagram of 1x Two-Phase Capture Input Using Timer 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Configuration Example 1 of 1x Two-Phase Capture Input Using Timer 5 . . . . . . . . . . . . . . . . . . . . . . . . . 114
Configuration Example 2 of 1x Two-Phase Capture Input Using Timer 5 . . . . . . . . . . . . . . . . . . . . . . . . . 114
1x Two-Phase Encoder Input Timing (Timer 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Block Diagram of One-Shot Pulse Output Using Timer 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
One-Shot Pulse Output Timing (Timer 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Block Diagram of External Count Direction Control Using Timer 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Configuration Example of External Count Direction Control Using Timer 5. . . . . . . . . . . . . . . . . . . . . . . 120
External Count Direction Control Timing (Timer 5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Block Diagram of External Reset Control Using Timer 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
External Reset Control Timing (Timer 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Serial Interface Configuration Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Synchronous Serial Mode Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
UART Mode Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
I2C Mode Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Synchronous Serial Transmission Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Synchronous Serial Reception Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
UART Transmission Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
UART Reception Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Block Diagram of UART Transmission Using Serial Interface 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
UART Transmission Timing (Serial Interface 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Block Diagram of Serial Interface Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9
5-10
5-11
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
12
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
List of Figures
5-12
5-13
5-14
6-1
Serial Interface Clock Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Master Transmitter Timing in I2C Mode (with ACK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Master Receiver Timing in I2C Mode (with ACK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
ADC Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
ADC Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
ADC Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Single Channel/Single Conversion Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Multiple Channel/Single Conversion Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Single Channel/Continuous Conversion Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Multiple Channel/Continuous Conversion Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Single-Channel A/D Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Timing of Software-Controlled Single-Channel A/D Conversion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Multiple-Channel A/D Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Timing of Hardware-Controlled Intermittent Three-Channel A/D Conversion . . . . . . . . . . . . . . . . . . . . . 150
Cautions on Analog-to-Digital Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
OSD Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Cursor Tiles in Standard and Extended Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Graphic Tiles in Standard and Extended Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Graphics Display Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Text Display Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
VRAM Organization (When GEXTE = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Graphics VRAM Organization for Two Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Timing for OSD data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
ROM Organization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Graphics ROM Setup Example for a Single Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Graphics ROM in the Four Color Modes (16W x 16H Tiles) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Graphics ROM in the Four Color Modes (16W x 18H Tiles) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Graphics ROM Organization in 16-Color Mode (16W x 16H Tiles) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Graphics ROM Organization in 8-Color Mode (16W x 16H Tiles) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Graphics ROM Organization in 4-Color Mode (16W x 16H Tiles) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Graphics ROM Organization in 2-Color Mode (16W x 16H Tiles) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Graphics ROM Organization in 16-Color Mode (16W x 18H Tiles) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Graphics ROM Organization in 8-Color Mode (16W x 18H Tiles) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Graphics ROM Organization in 4-Color Mode (16W x 18H Tiles) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Graphics ROM Organization in 2-Color Mode (16W x 18H Tiles) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
OSD Signal Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
OSD Signal Output Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Character Outlining Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Character Shadowing Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Box Shadowing Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Italicizing and Underlining Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Graphic Tile Size Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Character Size Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
HPmax of Horizontal Display Position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
DMA and Interrupt Timing for the OSD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12
7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8
7-9
7-10
7-11
7-12
7-13
7-14
7-15
7-16
7-17
7-18
7-19
7-20
7-21
7-22
7-23
7-24
7-25
7-26
7-27
7-28
7-29
7-30
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
13
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
List of Figures
7-31
7-32
7-33
7-34
7-35
7-36
7-37
8-1
Shuttered Area Setup Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Shutter Movement Setup Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Text-Layer Shuttering Setup Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Shutter Blanking Setup Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Line Shuttering Setup Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Field Detection Circuit Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Field Detection Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
IR Remote Signal Receiver Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
IR Remote Signal Noise Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Reception of 8-Bit Data with No Leader. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Reception of 8-Bit Data with Leader. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Conditions for Detecting Data Formats. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Pin Edge Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Closed-Caption Decoder Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Recommended ADC Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
External Connection with Both CCD0 and CCD1 Unused. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
External Connection with Only CCD1 Unused. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
Clamping Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Sync Separator Circuit Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
HSYNC Securement and Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
VSYNC Masking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Data Slice Level Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Sampling Clock Timing Determination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Caption Data Capture Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
SLSF and SLHD Multiplexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 238
Backporch Position Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
Sync Separator Level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
BSP and PSP Multiplexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
PWM Output Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
PWM Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
P00/RMIN/IRQ0 (Port 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
P03/ADIN0 to P07/ADIN4 (Port 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
P10/ADIN5/IRQ1, P11/ADIN6/IRQ2, and P12/ADIN7/IRQ3 (Port 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
P13/ADIN8/WDOUT and P14/ADIN9/STOP (Port 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
P15/ADIN10/PWM0 and P16/ADIN11/PWM1 (Port 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
/PWM2 (Port 1), P20/PWM3, P21/PWM4, P22/PWM5, and P23/PWM6 (Port 2) . . . . . . . . . . . . . . . . . . 257
P24/TM4IC/SBT1 (Port 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
P27/TM0IO (Port 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
P35/DAROUT/R, P36/DAGOUT/G, P37/DABOUT/B (Port 3), and P40/DAYMOUT/YM (Port 4) . . . . 260
8-2
8-3
8-4
8-5
8-6
9-1
9-2
9-3
9-4
9-5
9-6
9-7
9-8
9-9
9-10
9-11
9-12
9-13
9-14
9-15
10-1
10-2
11-1
11-2
11-3
11-4
11-5
11-6
11-7
11-8
11-9
11-10 P25/TM4IOB/SBI1/SBD1 and P26/TM4IOA/SBO1 (Port 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
11-11 P55 and P56 (Port 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
11-12 P57/SBT0 (Port 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
11-13 P02/SCL1 (Port 0) and P61/SCL0 (Port 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
11-14 P01/SDA1 (Port 1) and P60/SDA0 (Port 6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
11-15 P31/CVBS0 and P32/CVBS1 (Port 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
14
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
List of Figures
11-16 P30/CLH and P33/CLL (Port 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
11-17 P34/VREF (Port 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
11-18 P41/TM1IO, P42/TM5IOA, and P43/TM5IOB/HI0 (Port 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
11-19 P44/TM5IC/HI1 (Port 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
11-20 P45/OSDXO and P46/OSDXI (Port 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
11-21 P47/HSYNC (Port 4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
11-22 P50/SYSCLK (Port 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
11-23 P51/YS (Port 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
11-24 P52/IRQ4/VI0 (Port 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
11-25 P53/RST (Port 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
11-26 P54/IRQ5/VSYNC (Port 5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
12-1
12-2
12-3
13-1
13-2
13-3
13-4
13-5
13-6
13-7
13-8
14-1
14-2
14-3
B-1
ROM Area Schematic Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
ROM Correction Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
ROM Correction Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
Example of I2C Bus Application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
Connection of Two Microcontrollers to the I2C Bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
I2C Bus Interface Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
I2C Bus Controller Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
Pin Control Circuit for the I2C Bus Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
SDA and SCL Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
Waveform for Master Transmitter Transitioning to Master Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
Waveform for Slave Receiver Transitioning to Slave Transmitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
H Counter Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
H Counter Operation Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
H Counter Input Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
Memory Map for Onboard Serial Programming Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
PROM Writer Hardware Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
Pin Configuration for Socket Adaptor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
Serial Writer Programming Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
Serial Writer Hardware Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
Target Board–Serial Writer Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
Serial Writer Interface Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
Timing for the Serial Writer Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
Load Program Start Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
Flow of Branch to Reset Start Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
Flow of Branch to Interrupt Start Routine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
EEPROM Programming Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
B-2
B-3
B-4
B-5
B-6
B-7
B-8
B-9
B-10
B-11
B-12
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
15
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
About This Manual
Using This Manual
About This Manual
This manual is intended for assembly-language programming engineers. It
describes the internal configuration and hardware functions of the MN102H75K
and MN102H85K microcontrollers. Except when discusssiing differing specifi-
cations,this manual refers to the two microcontrollers as a single device :
MN102H75K/85K.
Using This Manual
The chapters in this manual deal with the internal blocks of the MN102H75K/
85K. Chapters 1 to 5 provide an overview of the MN102H75K/85K’s general
specifications, interrupts, power modes, timers, and serial connections. Chapters
6 to 10 describe the on-screen display and other specialized functions available
with the MN102H75K/85K. Chapter 11 provides the I/O port specifications,
chapter 12 describes the ROM correction feature, chapter 13 describes the I2C
interface, and chapter 14 describes the H scan line counter. Appendix A provides
a register map, and Appendix B describes the flash EEPROM version.
Text Conventions
Where applicable, this manual provides special notes and warnings. Helpful or
supplementary comments appear in the sidebar. In addition, the following
symbols indicate key information and warnings:
Key information
These notes summarize key points relating to an operation.
Warning
Please read and follow these instructions to prevent damage or
reduced performance.
Register Conventions
This manual presents 8- and 16-bit registers in the following format:
REGISTER: Register Name
x’000000’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
—
—
—
Name Name Name Name Name Name Name Name Name Name Name Name Name
Reset:
R/W:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W
The hexadecimal value (x’000000’) indicates the register address. The top row of
the register diagram holds the bit numbers. Bit 15 is the most significant bit
(MSB). The second row holds the bit or field names. A dash (—) indicates a
reserved bit. The third row shows the reset values, and the fourth row shows the
accessibility. (R = read only, W = write only, and R/W = readable/writable.)
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
16
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
About This Manual
Related Documents
Related Documents
■ MN102H Series LSI User Manual
(Describes the core hardware.)
■ MN102H Series Instruction Manual
(Describes the instruction set.)
■ MN102H Series C Compiler User Manual: Usage Guide
(Describes the installation, commands, and options for the C compiler.)
■ MN102H Series C Compiler User Manual: Language Description
(Describes the syntax for the C compiler.)
■ MN102H Series C Compiler User Manual: Library Reference
(Describes the standard libraries for the C compiler.)
■ MN102H Series Cross-Assembler User Manual
(Describes the assembler syntax and notation.)
■ MN102H Series C Source Code Debugger User Manual
(Describes the use of the C source code debugger.)
■ MN102H Series Installation Manual
(Describes the installation of the C compiler, cross-assembler, and C source
code debugger and the procedures for using the in-circuit emulator.)
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
17
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
General Description
MN102H Series Overview
1
General Description
1.1 MN102H Series Overview
The 16-bit MN102H series is the high-speed linear addressing version of the
MN10200 series. The new architecture in this series is designed for C-language
programming and is based on a detailed analysis of the requirements for
embedded applications. From miniaturization to power savings, it provides for a
wide range of needs in user systems, surpassing all previous architectures in
speed and functionality.
This series uses a load/store architecture for computing within the registers rather
than the accumulator system for computing within the memory space, which
Panasonic has used in most of its previous major series. The basic instructions
are one byte/one machine cycle, drastically shrinking code size and improving
compiler efficiency. The circuit is designed for submicron technology, providing
optimized hardware and low system power consumption.
The devices in this series contain up to 16 megabytes of linear address space and
enable highly efficient program development. In addition, the optimized
hardware structure allows for low system-wide power consumption even in large
systems.
1.2 MN102H Series Features
Designed for embedded applications, the MN102H series contains a flexible and
optimized hardware architecture as well as a simple and efficient instruction set.
It provides both economy and speed. This section provides the features of the
MN102H series CPU.
■ High-speed signal processing
An internal multiplier multiplies two 16-bit registers for a 32-bit product in a
single cycle. In addition, the hardware contains a saturation calculator to
ensure that no signal processing is missed and to increase signal processing
speed.
■ Linear addressing for large systems
The MN102H series provides up to 16 megabytes of linear address space.
With linear addressing, the CPU does not detect any borders between
memory banks, which provides an effective development environment. The
hardware architecture is also optimized for large-scale designs. The memory
is not divided into instruction and data areas, so operations can share
instructions.
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
18
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
General Description
MN102H Series Features
■ Single-byte basic instruction length
The MN102H series has replaced general registers with eight internal CPU
registers divided functionally into four address registers (A0 - A3) and four
data registers (D0 - D3). The program can address a register pair in four or
less bits, and basic instructions such as register-to-register operations and
load/store operations occupy only one byte.
Conventional code assignment for general register instructions
15 14 13 12 11 10
9
8
7
6
5
4
3
2
1
0
Register specification
(GRn)
7
6
5
4
3
2
1
0
Register specification
(An/Dn)
New Panasonic code assignments
Figure 1-1 Conventional vs. MN102H Series Code Assignments
■ High-speed pipeline throughput
The MN102H series executes instructions in a high-speed three-stage
pipeline: fetch, decode, execute. With this architecture, the MN102H series
can execute single-byte instructions in only one machine cycle (50 ns at 40
MHz).
1 machine cycle
Time
Instruction 1
Fetch
Decode
Address
calculation
Execute
Decode
Instruction 2
Fetch
Address
calculation
Execute
Figure 1-2 Three-Stage Pipeline
■ Simple instruction set
The MN102H series uses a streamlined set of 41 instructions, designed spe-
cifically for the programming model for embedded applications. To shrink
code size, instructions have a variable length of one to seven bytes, and the
most frequently used basic instructions are single-byte.
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
19
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
General Description
MN102H Series Features
■ Fast interrupt response
MN102H series devices can stop executing instructions, even those with
long execution cycles, to service interrupts immediately. After an interrupt
occurs, the program branches to the interrupt service routine within six
cycles or less. The architecture also includes a programmable interrupt
handler, which allows you to adjust interrupt servicing speed within the
software when necessary, improving real-time control performance.
Main Program
Instruction 1
Interrupt Service Routine
Instruction 2
Interrupt Request
Instruction 3
Instruction 4
Figure 1-3 MN102H Series Interrupt Servicing
■ Flexible interrupt control structure
The interrupt controller supports a maximum of 64 interrupt vectors.
(Vectors 0 to 3 are nonmaskable interrupts.) Groups of up to four vectors are
assigned to classes, and each class can be set to one of seven priority levels.
This gives the software designer great flexibility and fine control. The core is
also backwards compatible with software from previous Panasonic
peripheral modules.
■ High-speed, high-functionality external interface
The MN102H series provides DMA, handshaking, bus arbitration, and other
functions that ensure a fast, efficient interface with other devices.
■ Optimal C-Language development environment
The MN102H series combines hardware optimized for C language pro-
gramming with a highly efficient C compiler, resulting in assembly codes the
same size as that produced directly in assembly language. This gives
designers the advantage of short development time in a C language envi-
ronment without the trade-off in code size expansion. The PanaXSeries
development tools support MN102H series devices.
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
20
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
General Description
MN102H Series Description
■ Outstanding power savings
The MN102H series contains separate buses for instructions, data, and
peripheral functions, which distributes and reduces load capacitance, dra-
matically reducing overall power consumption. The series also supports
three HALT and STOP modes for even greater power savings.
The MN102H series is the flagship product for Panasonic’s new high-per-
formance architecture. Panasonic will expand the series as it strives to improve
the CPU core’s performance and speed, and as it develops devices incorporating
ASSPs, ASICs, internal EPROM, and other products to meet the needs of a wide
array of embedded designs.
1.3 MN102H Series Description
This section describes the basic architecture and functions of MN102H series
devices.
■
Processor status word (PSW)
The PSW contains the operation status flags and interrupt mask levels flags. Note
that the PSW for the MN102H series contains flags for both 16- and 24-bit
operation results.
FlagsforAll24Bits
FlagsforLow-Order16Bits
Bit: 15
14
ST
13
S1
12
S0
11
IE
10
9
8
7
6
5
4
3
2
1
0
—
—
IM2
IM1
IM0
VX
CX
NX
ZX
VF
CF
NF
ZF
Reset:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
ST: Saturation
This bit controls whether or not the CPU calculates a saturation limit for an
operation. When it is set to 1, the CPU executes a saturate operation, and
when it is 0, the CPU executes a normal operation. The PXST instruction
can reverse the meaning of this bit for the next (and only the next) instruc-
tion.
S[1:0]: Software control
These bits are the control field for OS software. It is reserved for the OS.
IE: Interrupt enable
If set, this flag enables maskable interrupts; if reset, it disables them.
IM[2:0]: Interrupt mask level
This field indicates the mask level (from 0 to 7) of interrupts that the CPU
will accept from its seven interrupt input pins. The CPU will not accept
any interrupt from a pin at a higher level than that indicated here.
VX: Extension overflow
If the operation causes the sign bit to change in a 24-bit signed number,
this flag is set; otherwise it is reset.
CX: Extension carry flag
If the operation resulted in a carry into (from addition) or a borrow out of
(from subtraction or a comparison) the most significant bit, this flag is set;
otherwise it is reset.
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
21
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
General Description
MN102H Series Description
NX: Extension negative flag
If the most significant bit of the result of an operation has the value 1, this
flag is set; if that bit is 0, this flag is reset.
ZX: Extension zero flag
If all bits of the result of an operation have the value 0, this flag is set; oth-
erwise it is reset.
VF: Overflow flag
If the operation causes the sign bit to change in a 16-bit signed number,
this flag is set; otherwise it is reset.
CF: Carry flag
If the operation resulted in a carry into (from addition) or a borrow out of
(from subtraction or a comparison) bit 15, this flag is set; otherwise it is
reset.
NF: Negative flag
If bit 15 of the result of an operation has the value 1, this flag is set; if that
bit is 0, this flag is reset.
ZF: Zero flag
If the least significant 16 bits of the result of an operation have the value 0,
this flag is set; otherwise it is reset.
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
22
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
General Description
MN102H Series Description
■
Internal registers, memory, and special function registers
Program Counter
23
0
The program counter specifies the 24-bit address of the
program instruction being executed.
PC
Address Registers
23
0
The four address registers specify the location of the data in
the memory. A3 is assigned as the stack pointer.
A0
A1
A2
A3
Data Registers
23
0
The four data registers handle all arithmetic and logic
operations. When byte-length (8-bit) or word-length (16-bit)
data is to be transferred to memory or to another register, an
instruction adds a zero or sign extension.
D0
D1
D2
D3
Multiplication/Division Register
15
0
0
The dedicated multiplication/division register stores the high-
order 16 bits of the 32-bit product of multiplication operations.
In division operations, before execution it stores the high-order
16 bits of the 32-bit dividend, and after execution it stores the
16-bit remainder of the quotient.
MDR
Processor Status Word
15
PSW
Memory, SFRs, and I/O Ports
Memory (ROM and RAM), special function registers for
controlling peripheral functions, and I/O ports can all be
assigned to the same address space.
ROM
RAM
Internal control registers1
Interrupt control registers1
Serial interface registers1
A/D converter registers1
Timer/counter registers1
Memory control registers1
I/O port registers1
CPUM, EFCR, IAGR
NMICR, xxICR
SCCTRn, TRXBUFn, SCSTRn
ANCTR, ANnBUF
TMn, BCn, BRn, ...
MEMMD
PnOUT, PnIN, PnDIR
Note:
1. This allocation is a representative example. Actual memory, peripheral, SFR, and I/O port configuration depends
on the product.
Figure 1-4 Internal Registers, Memory, and Special Function Registers
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
23
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
General Description
MN102H Series Description
■
Address space
The memory in the MN102H series is configured as linear address space. The
instruction and data areas are not separated, so the basic segments are internal
ROM, internal RAM, and special function registers.
Figure 1-5 shows the address space for the MN102H75K/85K.The internal ROM
contains the instructions and the font data for the on-screen display (OSD), in any
location. The internal RAM contains the MCU data and the VRAM for the OSD,
in any location.
x’007E00’
Special Function
Registers
x’007FFF’
x’008000’
Internal RAM
Data
8 KB
OSD
Text VRAM
Graphics VRAM
x’009FFF’
x’00FC00’
Special Function
Registers
x’00FFFF’
Program start address
= x’080000’
x’080000’
Interrupt handler start
address = x’080000’
Internal ROM
Program
256 KB
OSD
Text fonts
Graphic tiles
x’0BFFFF’
Figure 1-5 Address Space
Note:
In writing, do not use MOVB instruction to access Special Function Registers (x’00FC00’ - x’00FFFF’), access by
word. In reading, access by byte is possible.
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
24
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
General Description
MN102H Series Description
■
Interrupt controller
An interrupt controller external to the core controls all nonmaskable and
maskable interrupts except reset. There are a maximum of sixteen interrupt
classes (class 0 to 15). Each class can have up to four interrupt factors and any of
seven priority levels.
CPU Core
Maskable Interrupt
Receive
Nonmaskable Interrupt
Receive
Reset
Receive
Reset
Interrupt Controller
Interrupt Enable
Interrupt Masking
Nonmaskable interrupts
4
External NMI pin input
Watchdog timer
Groups 0-3
Nonmaskable Interrupt Controllers
Nonmaskable Interrupt
Control Registers (NMICR)
Undefined instruction
Interrupt occurred,
6
5
4
3
2
1
0
(
)
(WDICR)
(UNICR)
(EIICR)
but no vector exists
4
Group 4
Maskable Interrupt Controllers
Maskable Interrupt
Control Registers (xx ICR)
Maskable interrupts
Max. 240 vectors
External pin interrupts
Peripheral interupts
4
(
)
Group 63
Maskable Interrupt Controllers
Maskable Interrupt
Control Registers (xx ICR)
Note: Interrupt control hardware configuration varies between products.
Figure 1-6 Interrupt Controller Configuration
The CPU checks the processor status word to determine whether or not to accept
an interrupt request. If it accepts the request, automatic hardware servicing
begins and the contents of the program counter and other necessary registers are
pushed to the stack. The program then looks up and branches to the entry address
of the interrupt service routine for the interrupt that occurred.
Interrupt preprocessing
Push registers, branch to entry address, etc.
Main program
x'080008'
Interrupt service routine
Header resets interrupt vector
Hardware processing
Push PC, PSW
JMP, etc.
Interrupt
Max. 6 machine cycles
7 machine cycles
Figure 1-7 Interrupt Servicing Sequence
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
25
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
General Description
General Specifications
1.4 General Specifications
Table 1-1 General Specifications
Parameter
Specification
Structure
Internal multiplier (16-bit × 16-bit = 32-bit) and saturate calculator
Load/store architecture
Eight registers:
♦ Four 24-bit data registers
♦ Four 24-bit address registers
Other:
♦ 24-bit program counter
♦ 16-bit processor status word
♦ 16-bit multiply/divide register
Instruction set
Performance
♦ 41 instructions
♦ 6 addressing modes
♦ 1-byte basic instruction length
♦ Code assignment: 1 byte (basic) + 0 to 6 bytes (extension)
12-MHz internal operating frequency (with a 4-MHz external oscilla-
tor)
Instruction execution clock cycles:
♦ Minimum 1 clock cycle (83.3 ns) for register-to-register operations
♦ Minimum 1 clock cycle (83.3 ns) for load/store operations
♦ Minimum 2 clock cycles (167 ns) for branch operations
Pipeline
3-stage: fetch, decode, execute
Address space
♦ Linear address space
♦ Shared instruction/data space
Interrupts
♦ 6 external
♦ 30 internal
♦ 7 priority level settings
Low-power modes ♦ STOP
♦ HALT
♦ SLOW
Oscillation fre-
quency
4 MHz (48 MHz with internal PLL)
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
26
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
General Description
General Specifications
Table 1-1 General Specifications
Parameter
Specification
Timer/counters
Four 8-bit timers:
♦ Cascading function (forming 16- or 32-bit timers)
♦ Timer output
♦ Selectable clock source (internal or external)
♦ Serial interface clock generation
♦ Start timing generation for analog-to-digital converter
Two 16-bit timers:
♦ Compare/capture registers
♦ Selectable clock source (internal or external)
♦ PWM and one-shot pulse output
♦ Two-phase encoder input (4x or 1x formats)
16-bit watchdog timer
16 bytes (8-bit × 16)
ROM correction
SYSCLK output
Serial interfaces
14
SYSCLK or SYSCLK/2 (732.42 Hz)
2
♦ Two UART/synchronous serial/I C (master only) interfaces
2
♦ One I C interface (multimaster; 2-channel with 1 internal circuit)
Analog-to-digital
converter
♦ 8-bit with 12 channels
♦ Automatic scanning
IR remote signal
receiver
♦ Automatic HEAMA / 5-/6-bit detection
♦ 1-bit interrupt
PWM
8-bit with 7 channels (3.3-volt tolerance)
Closed-caption
decoder
♦ 2 channels
♦ Internal sync separator
On-screen display Three-layer format
♦ Text layer: 16 × 18 pixels (16 × 26 in closed caption mode), blink-
ing, outlining, shadowing (foreground and background), shutter
effect, italics (CC mode), underlining (CC mode)
♦ Graphics layer: 16 × 16 / 16 × 18 pixels
♦ Cursor layer: 16 × 16 / 32 × 32 pixels (1 cursor, displaying one
graphic tile)
Color depth: One 16-color palette out of 4096 colors
Dot clock
♦ Internal PLL frequencies: 12, 16, 24, 32 and 48 MHz
♦ External clock: 16–48 MHz
♦ LC blocking oscillator: 16–48 MHz
I/O ports
Package
66(MN102H75K/F75K) / 50(MN102H85K/F85K)
84-pin-QFP(MN102H75K/F75K) / 64-pin-SDIL(MN102H85K/F85K)
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
27
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
General Description
Block Diagram
1.5 Block Diagram
Address registers
Data registers
A0
A1
A2
A3
D0
D1
Clock
Clock
generator
source
T1
T2
Multiplication/Division Register
MDR
D2
D3
Instruction execution
controller
A
B
Instruction decoder
Quick decoder
Multiplier
Program
Counter
PSW
Incrementer
ALU
Instruction
queue
Interrupt
controller
Program address
Operand address
Interrupt bus
B u s c o n t r o l l e r
ROM bus
RAM bus
Peripherals extension bus
External interface
External extension bus
Internal peripheral
functions
Internal ROM
Internal RAM
BR
BG
Figure 1-8 Functional Block Diagram
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
28
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
General Description
Block Diagram
Table 1-2 Block Diagram Explanation
Block
Description
Clock generator
An oscillation circuit connected to an external crystal supplies the
clock to all blocks within the CPU.
Program counter
The program counter generates addresses for queued instruc-
tions. Normally it increments based on the sequencer indications,
but for branch instructions it is set as the branch head address,
and for interrupt servicing, it is set as the result of the ALU opera-
tion.
Instruction queue
This block contains up to four bytes of prefetched instructions.
The instruction decoder decodes the contents of the instruction
queue, generates, in the proper sequence, the control signals nec-
essary for executing the instruction, and controls every block in the
chip to execute the instruction.
Instruction decoder
Quick decoder
This block decodes instructions that are 2 bytes or larger in at a
much faster rate than previously possible.
Instruction execution This block controls the operation of every block within the CPU
controller
using the results from the instruction decoder and interrupt
requests.
ALU
Arithmetic and logic unit. This block calculates the operand
addresses for arithmetic operations, logic operations, shift opera-
tions, relative indirect register addressing, indexed addressing,
and indirect register addressing.
Multiplier
This block multiplies 16 bits × 16 bits = 32 bits.
These memory blocks contain the program, data, and stack areas.
Internal ROM and
RAM
Address registers
(An)
The address registers store the addresses in memory to be
accessed in data transfers. In relative indirect, indexed, and indi-
rect addressing modes, they store the base address.
The data registers store data to be transferred to memory and
results of operations. In indexed and indirect addressing modes,
they store the offset address.
Operation registers
(Dn, MDR)
The multiplication/division register stores data for multiplication
and division operations.
PSW
The processor status word contains flags that indicate the status
of the CPU interrupt controller and provide information about oper-
ation results.
Interrupt controller
Bus controller
This block detects interrupt requests from peripheral function
blocks and requests the CPU to service the interrupt.
This block controls the connection between the CPU’s internal and
external buses. It also contains a bus arbitration function.
MN102H series devices contain a wide range of internal periph-
eral devices, such as timers, serial interfaces, ADCs, and DACs.
Internal peripheral
functions
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
29
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
General Description
Pin Descriptions
1.6 Pin Descriptions
1.6.1 MN102H85K Pin Description
P00, RMIN, IRQ0
* P01, SDA1
1
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
VSS
2
OSC2
* P02, SCL1
3
OSC1
P03, ADIN0
4
VDD
P04, ADIN1
5
P61, SCL0 *
P60, SDA0 *
P57, SBT0
P56, SBI0, SBD0
P55, SBO0
P54, IRQ5, VSYNC
P53, RST
P05, ADIN2
6
P06, ADIN3
7
P07, ADIN4
8
P10, ADIN5, IRQ1
P11, ADIN6, IRQ2
P12, ADIN7, IRQ3
P13, ADIN8, WDOUT
P14, ADIN9, STOP
P15, ADIN10, PWM0
P16, ADIN11, PWM1
P17, PWM2
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
64-Pin SDIP
Top View
P52, IRQ4, VI0
TEST
P51, YS
P50, SYSCLK
P47, HSYNC
P46, OSDXI
P45, OSDXO
P44, TM5IC, HI1 *
P43, TM5IOB, HI0 *
P42, TM5IOA *
P41, TM1IO *
VCOI
P20, PWM3
P21, PWM4
P22, PWM5
P23, PWM6
P24, TM4IC, SBT1
P25, TM4IOB, SBI1, SBD1
P26, TM4IOA, SBO1
P27, TM0IO
PDO
VDD (VPP)
P40, DAYMOUT, YM
P37, DABOUT, B
P36, DAGOUT, G
P35, DAROUT, R
VREF, P34
IREF
P30, CLH
VREFHS
P31, CVBS0
VSS
P32, CVBS1
VREFLS
COMP
P33, CLL
AVDD
Notes: 1. Pins marked with an asterisk (*) are N-channel, open-drain pins.
2. Pin 25 is V in the MN102H85K and V in the MN102HF85K.
DD
PP
Figure 1-9 MN102H85K Pin Configuration in Single-Chip Mode
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
30
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
General Description
Pin Descriptions
1.6.2 MN102H75K Pin Description
P55, SBO0
P54, IRQ5, VSYNC
P84
1
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
NC
2
P71
3
P10, ADIN5, IRQ1
P11, ADIN6, IRQ2
P12, ADIN7, IRQ3
P72
NC
4
P53, RST
5
P52, IRQ4, VI0
TEST
6
7
P13, ADIN8, WDOUT
P14, ADIN9, STOP
P73
P51, YS
8
P83
9
P50, SYSCLK
P82
10
11
12
13
14
15
16
17
18
19
20
21
P15, ADIN10, PWM0
P16, ADIN11, PWM1
P17, PWM2
84-Pin QFP
Top View
P47, HSYNC
P81
P20, PWM3
P46, OSDXI
P45, OSDXO
* P44, TM5IC, HI1
* P43, TM5IOB, HI0
* P42, TM5IOA
* P41, TM1IO
VCOI
P21, PWM4
P22, PWM5
P23, PWM6
P24, TM4IC, SBT1
P25, TM4IOB, SBI1, SBD1
P26, TM4IOA, SBO1
P27, TM0IO
PDO
P74
Notes: 1. Pins marked with an asterisk (*) are N-channel, open-drain pins.
2. Pin 41 is V in the MN102H75K and V in the MN102HF75K.
DD
PP
Figure 1-10 MN102H75K Pin Configuration in Single-Chip Mode
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
31
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
General Description
Pin Descriptions
Table 1-3 Pin Functions
Block
Pin Name
I/O Pin Count
Description
V
I
I
I
1
2
1
Voltage supply
DD
SS
V
Ground reference
Power
AV
Analog voltage supply
Voltage supply: V in mask ROM version and V in
DD
DD
PP
V
/V
I
1
DD PP
EEPROM version
SYSCLK
OSC1
O
I
1
1
1
1
1
1
System clock output
Oscillator input connection (with internal PLL)
Oscillator output connection (with internal PLL)
Clocks
OSC2
O
I
OSDXI
OSDXO
RST
OSD oscillator input connection (alt. function: P46)
OSD oscillator output connection (alt. function: P45)
Reset (alt. function: P53)
O
I/O
Reset
External interrupt request to microcontroller (alt. functions:
P00, P10, P11, P12, P52, P54)
Interrupts (external)
IRQ0–IRQ5
I
6
HSYNC
VSYNC
I
1
1
1
2
2
2
2
2
2
2
2
2
2
1
7
Horizontal sync signal input
Vertical sync signal input
Video signal cut
OSD
I
YS
O
TMnIOA (n=4,5)
TMnIOB (n=4,5)
TMnIC (n=4,5)
TMnIO (n=0,1)
SBI0/SBI1
I/O
I/O
I
Input capture/output compare A
Input capture/output compare B
Timer/counter clear signal
Timer clock input/timer output
Serial data input
16-bit (2)
Timers
8-bit (4)
I/O
I
SBD0/SBD1
SBO0/SBO1
SBT0/SBT1
SDA0/SDA1
SCL0/SCL1
RMIN
I/O
I/O
I/O
I/O
I/O
I
Serial data input
Serial interfaces (2)
Serial data output
Serial clock signal
2
I C data
2
I C interfaces (2)
2
I C clock
IR remote signal receiver
PWM (8-bit, 7-channel)
Remote signal input
PWM0–PWM6
O
Pulse width modulator output
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
32
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
General Description
Pin Descriptions
Table 1-3 Pin Functions (Continued)
Block
Pin Name
I/O Pin Count
Description
P00–P07
P10–P17
P20–P27
P30–P37
P40–P47
P50–P57
P60–P61
P70–P77
P80–P87
CVBS0/CBVS1
CLH
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I
8
8
8
8
8
8
2
8
8
2
1
1
1
1
12
1
1
1
1
1
1
1
1
1
1
1
1
General-purpose port 0 I/O
General-purpose port 1 I/O
General-purpose port 2 I/O
General-purpose port 3 I/O
General-purpose port 4 I/O
General-purpose port 5 I/O
General-purpose port 6 I/O
General-purpose port 7 I/O
General-purpose port 8 I/O
Composite video signal input
Clamp level high input
I/O ports
MN102H75K/HF75K:
total 66 pins
MN102H85K/HF85K:
total 50 pins
I/O ports only in
MN102H75K/F75K
I
Closed-caption decoders (2)
A/D converter (12-channel)
CLL
I
Clamp level low input
VREFHS
VREFLS
I
CCD reference voltage input
CCD reference voltage input
Analog signal input
I
ADIN0–ADIN11
I
(1)
DAROUT
O
O
O
O
I
DAC output (red)
(1)
DAGOUT
DAC output (green)
(1)
DABOUT
DAC output (blue)
D/A converter
(1)
DAYMOUT
DAC output (YM)
(4-bit, 4-channel)
IREF
VREF
COMP
VCOI
Resistance connection for DAC bias current setting
DAC reference voltage connection
DAC phase compensator connection
Internal VCO input (external LPF input)
Internal phase compare output (external LPF output)
STOP mode status signal
I
I
I
PLL
PDO
O
O
O
I
STOP
WDOUT
TEST
Mode
Test
Watchdog timer overflow signal
Test pin (Connect to ground.)
Notes: 1. When DAROUT, DAGOUT, DABOUT, and DAYMOUT are used for digital output, their names are R, G, B, and
YM, respectively.
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
33
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
General Description
Pin Descriptions
■
Considerations for power supply, clock, and reset pins
VDD
VDD
AVDD
Power
Supply
MN102H75K
MN102H85K
AVSS
VSS
VSS
Note: If the circuit uses the same power supply for digital and analog supplies, connect
the pins in the location closest to the power supply.
Figure 1-11 Power Supply Wiring
OSC1
0.1 µF
OSC2
OSC2
OSC1
4 MHz
4 MHz
Oscillation
Circuit
Note: The capacitance values vary depending on the oscillator.
Figure 1-12 OSC1 and OSC2 Connection Examples
Di
10 kΩ - 50 kΩ
RST
+
-
SW
10 µF - 100 µF
Figure 1-13 Reset Pin Connection Example 1
OSDXO
16MHz - 48MHz
OSDXI
OSDXI
OSDXO
16MHz - 48MHz
Oscillation
Circuit
Note: The capacitance values vary depending on the oscillator.
Figure 1-14 OSDXI and OSDXO Connection Examples
■
Connection the PLL circuit
The MN102H75K/85K contains an internal PLL circuit. To use this circuit, you
must connect it to an external (lag-lead) filter.
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
34
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
General Description
Bus Interface
1.7 Bus Interface
1.7.1 Description
The bus interface operates in external extension mode. Figure 1-15 provides the
memory space for the MCU in this mode.
External Expansion Mode
x'000000'
External devices
x'008000'
Internal RAM
(*3)
(8192 bytes
)
(*4)
x'00A000'
x'00FC00'
x'010000'
x'080000'
Peripheral registers
External devices
External memory space 0 (CS0 signal):
IR remote signal receive
I2C
OSD
CCD0
CCD1
H counter
PWM
Reset start
Internal masked ROM
(*1)
(256 Kbytes
)
(*2)
x'0C0000'
x'200000'
x'400000'
External memory space 1
(CS1 signal)
External devices
x'800000'
x'C00000'
External memory space 2
(CS2 signal)
Cannot be accessed.
External memory space 3
(CS3 signal)
x'FFFFFF'
Expandable up to 16 MB
*1
*2
*3
*4
MN102H75K 256 Kbytes x'0C0000' 8192 bytes x'00A000'
Figure 1-15 Memory Space in External Extension Mode
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
35
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
General Description
Bus Interface
1.7.2 Bus Interface Control Registers
The external memory wait register (EXWMD) and memory mode register 1
(MEMMD1) control the bus interface.
EXWMD: External Memory Wait Register
x’00FF80’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
EW 33 EW 32 EW 31 EW 30 EW 23 EW 22 EW 21 EW 20 EW 13 EW 12 EW 11 EW 10 EW 03 EW 02 EW 01 EW 00
Reset:
1
1
1
0
1
1
1
0
1
1
1
0
1
1
1
0
R/W: R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
EW[33:30], EW[23:20], EW[13:10], EW[03:00]
These fields contain the wait settings for external memory spaces 3, 2, 1,
and 0, respectively. One wait corresponds to one instruction cycle. When
the external oscillator is 4 MHz, one wait is 83 ns.
The OSD, VBI0, VBI1, I2C, IR remote signal receiver, and H counter
blocks apply to external memory space 0.
Table 1-4 Wait Count Settings
EW[n3:n0] Setting
Wait Count
Cycles
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
0.0
1.0
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
1.0
2.0
3.0
4.0
5.0
6.0
7.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
MEMMD1: Memory Mode Register 1
x’00FF82’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
EB31 EB32 EB21 EB20 EB11 EB10 EB01 EB00 BRS1 BRS0 BRC3 BRC2 BRC1 BRC0 IOW1 IOW0
Reset:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
R/W: R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Write 0s to bits 15 to 2.
IOW[1:0]: Wait setting for internal I/O space
00: 1 wait
01: Reserved
10: 2 waits
11: 3 waits
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
36
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Interrupts
Description
2
Interrupts
2.1 Description
The most important factor in real-time control is an MCU’s speed in servicing
interrupts. The MN102H75K/85K has an extremely fast interrupt response time
due to its ability to abort instructions, such as multiply or divide, that require
multiple clock cycles. The MN102H75K/85K re-executes an aborted instruction
after returning from the interrupt service routine.
This section describes the interrupt system in the MN102H75K/85K. The
MN102H75K/85K contains 36 interrupt group controllers. Each controls a single
interrupt group. Because each group contains only one interrupt vector, the
MN102H75K/85K can handle interrupts much quicker than previously possible.
Each interrupt group belongs to one of twelve classes, which defines its interrupt
priority level.
With the exception of reset interrupts, all interrupts from timers, other peripheral
circuits, and external pins must be registered in an interrupt group controller.
with the interrupt mask level (0 to 6) set in the interrupt group controller. Groups
1 to 3 are dedicated to system interrupts. Table 2-1 compares the interrupt
parameters of the MN102H75K/85K to those of the MN102L35G, the com-
parable MCU in the previous generation of the 16-bit series.
Table 2-1 Comparison of MN102H75K/85K and MN102L35G Interrupt Features
Parameter
MN102L35G
MN102H75K/85K
Interrupt groups
4 vectors per group
(Separated by interrupt
service routine)
1 vector per group
(IAGR group numbers
(Group number gener-
ated for each interrupt)
Excellent
Interrupt response time
Interrupt level settings
Software compatibility
Good
4 vectors per level
—
4 vectors per level
Easily modified
The MN102H75K/85K has six external interrupt pins. Set the interrupt condition
(positive edge, negative edge, either edge, or active low) in the EXTMD register.
.
.
.
.
.
.
Interrupt
to CPU
Internal
interrupts
EXTMD
Interrupt
arbitration
IRQ0
Edge/level
Edge/level
Edge/level
Edge/level
Edge/level
Edge/level
IRQ1
IRQ2
IRQ3
IRQ4
IRQ5
Figure 2-1 Interrupt Controller Block Diagram
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
37
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Interrupts
Description
Priority
Level
Register
Address
Group
Interrupt Vector
Group 0
NMIs
Group 1 Watchdog timer
Group 2 Undefined instruction
Group 3 Error interrupt
00FC42 (R/W)
00FC44 (R/W)
00FC46 (R/W)
Class
0
MN102H
CPU Core
Group 4 External interrupt 0
Group 5 External interrupt 1
Group 6
00FC48 (R/W)
00FC4A (R/W)
Levels 0
6
Class
1
Group 7
Group 8 External interrupt 2
Group 9 External interrupt 3
Group 10
00FC50 (R/W)
00FC52 (R/W)
Class
2
Group 11
Group 12 External interrupt 4
Group 13 External interrupt 5
Group 14
00FC58 (R/W)
00FC5A (R/W)
Class
3
Group 15
Group 16 Timer 4 compare/capture B
Group 17 Timer 4 compare/capture A
Group 18 Timer 4 underflow interrupt
Group 19 VBI interrupt (1)
00FC60 (R/W)
00FC62 (R/W)
00FC64 (R/W)
00FC66 (R/W)
Class
4
Group 20 Timer 5 compare/capture B
Group 21 Timer 5 compare/capture A
Group 22 Timer 5 underflow interrupt
Group 23 VBI interrupt (2)
00FC68 (R/W)
00FC6A (R/W)
00FC6C (R/W)
00FC6E (R/W)
Class
5
Group 24 Timer 2 underflow interrupt
Group 25 Timer 1 underflow interrupt
Group 26 Timer 0 underflow interrupt
Group 27 Remote signal receive int.
00FC70 (R/W)
00FC72 (R/W)
00FC74 (R/W)
00FC76 (R/W)
Class
6
Group 28 Address 3 match interrupt
Group 29 Address 2 match interrupt
Group 30 Address 1 match interrupt
Group 31 Address 0 match interrupt
00FC78 (R/W)
00FC7A (R/W)
00FC7C (R/W)
00FC7E (R/W)
Class
7
Group 32 A/D conversion end int.
Group 33 Serial 0 transmission end
Group 34 Serial 0 reception end
Group 35
00FC80 (R/W)
00FC82 (R/W)
00FC84 (R/W)
Class
8
Group 36 VBIVSYNC interrupt (1)
Group 37 VBIVSYNC interrupt (2)
Group 38 Timer 3 underflow interrupt
Group 39
00FC88 (R/W)
00FC8A (R/W)
00FC8C (R/W)
Class
9
Group 40 OSD interrupt (graphics)
Group 41 OSD interrupt (text)
Group 42
00FC90 (R/W)
00FC92 (R/W)
Class
10
Group 43
Group 44 Serial 1 transmission end
Group 45 Serial 1 reception end
Group 46 I C interrupt
00FC98 (R/W)
00FC9A (R/W)
00FC9C (R/W)
Class
11
2
Group 47
Figure 2-2 Interrupt Vector Group and Class Assignments
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
38
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Interrupts
Description
Program
Address 80008
Interrupt
Handler
(preprocessing)
Max. 6 cycles
The interrupt request is
deleted in the header
(Included in the cycle
count shown to the left.)
Interrupt service
routine
Handler
(postprocessing)
Registers popped
Figure 2-3 Interrupt Servicing Time
Table 2-2 Handler Preprocessing
Sequence Assembler
Bytes Cycles
Push registers
add
-8,A3
2
2
3
1
2
3
mov
A0,(A3)
D0,(4,A3)
movx
Interrupt ACK
mov
(FC0E),D0
3
1
Generate header address mov
BASE,A0
3
2
1
2
for interrupt service routine
mov
jsr
(D0,A0),A0
Branch
Total
(A0)
2
5
17
15
Table 2-3 Handler Postprocessing
Sequence
Assembler
Bytes Cycles
Pop registers
mov
(A3),A0
(4,A3),D0
8,A3
2
3
2
2
3
1
movx
add
Total
7
6
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
39
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Interrupts
Interrupt Setup Examples
2.2 Interrupt Setup Examples
2.2.1 Setting Up an External Pin Interrupt
In this example, an interrupt occurs on a falling-edge signal from the IRQ0 (P00)
external interrupt pin, and the interrupt priority level is 5.
On reset, the external edge setting in the EXTMD register is low (b’00’ = active-
low interrupt), and the IQ0IR bit of the IQ0ICL register is 0.
CORE
ROM, RAM
Bus Controller
Serial I/Fs
ADC
P5
P0
P2
P1
P3
Interrupts
Timers 0-5
IRQ0
Figure 2-4 Block Diagram of External Pin Interrupt
Enabling external interrupt 0
■
1. Set the interrupt conditions for the IRQ0 (P00) pin. For this example, set the
IQ0TG[1:0] bits of EXTMD to b’10’ (negative-edge-triggered interrupt).
EXTMD (example)
x’00FCF8’
11
10
9
8
Bit: 15
14
13
12
7
6
5
4
3
2
1
0
IQ5TG IQ5TG IQ4TG IQ4TG IQ3TG IQ3TG IQ2TG IQ2TG IQ1TG IQ1TG IQ0TG IQ0TG
0
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
1
0
0
Setting:
—
—
—
—
2. Cancel any existing interrupt requests and enable IRQ0 interrupts. To do
this, set the IQ0IR bit of IQ0ICL to 0, set the IQ0LV[2:0] bits of IQ0ICH to
b’101’ (priority level 5), and set the IQ0IE bit to 1.
IQ0ICL (example)
x’00FC48’
Bit:
7
6
5
4
3
2
1
0
—
—
—
IQ0IR
—
—
—
IQ0ID
Setting:
0
0
0
0
4
0
0
0
0
IQ0ICH (example)
x’00FC49’
Bit:
7
6
5
3
2
1
0
—
IQ0LV2 IQ0LV1 IQ0LV0
—
—
—
IQ0IE
Setting:
0
1
0
1
0
0
0
1
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
40
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Interrupts
Interrupt Setup Examples
3. Enable interrupts by writing a 1 to the interrupt enable flag (IE) in the PSW
and setting the interrupt masking level (IM[2:0]) to 7 (b’111’).
Now if a falling edge occurs on IRQ0 (P00), an interrupt will occur. If the
CPU accepts the interrupt, the program branches to address x’080008’.
■
Servicing the interrupt
The main program normally gen-
erates and branches to the inter-
rupt start address.
4. During interrupt preprocessing, read the accepted interrupt group number
register (IAGR) to determine the interrupt group (group 4, in this case).
5. Branch to the interrupt service routine.
During the interrupt service rou-
tine, prevent the CPU from
6. At the beginning of the interrupt service routine, clear the IQ0IR bit in
IQ0ICL to 0.
accepting any other maskable
interrupts by setting the IM[2:0]
and IE bits of the PSW to 0.
To accept the same interrupt
during the interrupt service rou-
tine, clear IR flag at the begin-
ning of it.
7. After the service routine ends, return to the main program with the RTI
instruction.
P00 (IRQ0)
EXTMD
IQ0IE
Low level
Falling edge
IQ0IR
Interrupt servicing
Registers [R/W]
Sequence
EXTMD(W) IQ0ICH(B)
IQ0ICL(B)
IQ0ICL(B)
(4)(5)(6)(7)
IQ0ICL(B)
(4)(5)(6)(7)
(1)
(2)(3)
Figure 2-5 Timing for External Pin Interrupt Setup (Example)
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
41
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Interrupts
Interrupt Setup Examples
2.2.2 Setting Up a Watchdog Timer Interrupt
In this example, a watchdog timer reset occurs. The watchdog timer starts
running after a reset, when the NWDEN flag in the CPU mode register (CPUM)
is enabled (set to 0). When the watchdog timer overflows, a nonmaskable
interrupt occurs. This means that the watchdog timer must be cleared in the main
program.
The watchdog timer interrupt is
provided for detecting and handling
racing. Normal operation is not
guaranteed if the program returns
after a watchdog interrupt. For
actions requiring returns, use a
timer interrupt.
CORE
ROM, RAM
Bus Controller
Serial I/Fs
ADC
P0
P5
P2
P1
P3
Interrupts
Timers 0-5
Figure 2-6 Block Diagram of Watchdog Timer Interrupt
Enabling watchdog timer interrupts
■
1. Enable interrupts by writing a 1 to the interrupt enable flag (IE) in the PSW
and setting the interrupt masking level (IM[2:0]) to 7 (b’111’).
2. Activate the watchdog timer by clearing the NWDEN bit of the CPUM regis-
ter. Set the time limit for the racing detection function in the WDM[1:0]
field.
If WDM[1:0] = 00, a watchdog
interrupt occurs when the watch-
16
dog timer counts 2 cycles
(5.4613 ms at 4-MHz f
/12-
OSC
MHz f
). The WDM set-
SYSCLK
CPUM (example)
x’00FC00’
tings have the following mean-
Bit: 15
14
13
12
11
—
10
—
9
8
7
6
5
4
3
2
1
0
ings:
NW WDM WDM
OSC
ID
16
—
—
—
—
—
—
STOP HALT OSC1 OSC0
00:
2
(5.46 ms)
DEN
0
1
0
0
0
4
01: 2 (1.33 µs)
Setting:
0
0
0
0
0
0
0
0
0
0
0
0
0
12
10:
11:
2
2
(0.34 ms)
(1.37 ms)
14
■
Clearing the watchdog timer
The main program normally
clears the watchdog timer prior
to a watchdog interrupt.
3. Set the NWDEN bit in CPUM to 1, then immediately reset it to 0. The
watchdog timer clears to 0 when NWDEN is 1.
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
42
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Interrupts
Interrupt Setup Examples
The main program normally gen-
erates and branches to the inter-
rupt start address.
If the CPU accepts an interrupt, the program branches to address x’080008’.
The oscillator delay timer shares the counter for the watchdog timer. The
oscillator delay timer is activated when the circuit exits the STOP mode, so the
program must clear the WDID flag to 0 prior to entering the STOP mode. It must
also reclear WDID after returning to NORMAL mode. For further details, see
section 2-6, “Standby Function,” in the MN10200 Series Linear Addressing
Version LSI User Manual.
Overflow
RST
WD count
NWDEN (CPUM)
WDID (WDICR)
Interrupt servicing
Clear
Registers [R/W]
Sequence
CPUM (W)
(2)
CPUM (W)
(3)
CPUM (W)
(2)
(1)
Figure 2-7 Timing for Watchdog Timer Interrupt Setup (Example)
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
43
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Interrupts
Interrupt Control Registers
2.3 Interrupt Control Registers
A control register is assigned to each interrupt vector group. Except for the class
0 registers (WDICR, PIICR, and EIICR), the control registers allow you to
enable and set the priority level for interrupt groups.
Below is the general format of the registers in class 0 and classes 1 to 11.
Class 0 (X):
WD (watchdog overflow interrupts)
PI (undefined instruction interrupts)
EI (interrupt error interrupts)
XICR (System Interrupt)
Bit:
7
6
5
4
3
2
1
0
—
—
—
—
—
—
—
ID
ID: Interrupt detect flag
0: Interrupt undetected
1: Interrupt detected
Classes 1–11 (X):
IQ (external interrupts)
TM (timer interrupts)
SC (serial interrupts)
I2C (I2C interrupts)
OSD (OSD interrupts)
AN (A/D conversion end interrupts)
RMC (remote signal receive interrupts)
VBI (VBI interrupts)
ADM (address match interrupts)
XnICH (System Interrupt)
Bit:
7
6
5
4
3
2
1
0
—
LV2
LV1
LV0
—
—
—
IE
LV[2:0]: Interrupt priority level
Sets the priority from 0 to 6 (000 = 0, 001 = 1, etc.). When LV = 7, inter-
rupts are not serviced.
Note that some registers do not contain the LV field. In this case, these bits
always read 0.
IE: Interrupt enable flag
0: Disable
1: Enable
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
44
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Interrupts
Interrupt Control Registers
XnICL (System Interrupt)
Bit:
7
6
5
4
3
2
1
0
—
—
—
IR
—
—
—
ID
IR: Interrupt request flag
0: No interrupt requested
1: Interrupt requested
ID: Interrupt detect flag
0: Interrupt undetected
1: Interrupt detected
The following is an example program setting an interrupt group’s priority level
(LV field) and enabling the interrupt group (IE) in the interrupt control register
(XnICH). Note that interrupts must be disabled during this routine.
Example 2-1 Setting the Interrupt Priority Level
...
;
and 0xf7ff,psw
nop
nop
mov d0,(XnICH)
mov (XnICH),d0
or 0x0800,psw
...
;Clear the IE bit of the PSW.
; Inserted to ensure that IE clears
; completely, so XnICH is accessible.
;Write to LV/IE
;Synchronize with the store buffer.
;Set the IE bit of the PSW.
;
The program does not need to clear the IE bit of the PSW to disable interrupts
during interrupt servicing, since the interrupt service routine has already cleared
it.
You can replace the NOP instructions in the example above with any instruction
except for those that modify the PSW IE bit or the LV or IE bits of an XnICH
register. Inserting any of these instructions would cause interrupt error to occur.
The example includes two NOP instructions to ensure that the minimum number
of cycles required for a write to IE have passed. However, you can also insert
more than two NOPs.
Table 2-4 provides a list of the interrupt control registers, and a description of the
fields in each register follows.
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
45
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Interrupts
Interrupt Control Registers
Table 2-4 Interrupt Control Registers
Register
IAGR
Address R/W
Description
Accepted interrupt group number register
x’00FC0E’
x’00FC42’
x’00FC44’
x’00FC46’
x’00FCF8’
R
WDICR
PIICR
R/W Watchdog interrupt control register
R/W Undefined instruction interrupt control register
EIICR
R
Interrupt error interrupt control register
EXTMD
R/W External interrupt mode register
IQ0ICL
IQ0ICH
x’00FC48’
x’00FC49’
R/W External interrupt 0 interrupt control register (low)
R/W External interrupt 0 interrupt control register (high)
IQ1ICL
IQ1ICH
x’00FC4A’
x’00FC4B’
R/W External interrupt 1 interrupt control register (low)
R/W External interrupt 1 interrupt control register (high)
IQ2ICL
IQ2ICH
x’00FC50’
x’00FC51’
R/W External interrupt 2 interrupt control register (low)
R/W External interrupt 2 interrupt control register (high)
IQ3ICL
IQ3ICH
x’00FC52’
x’00FC53’
R/W External interrupt 3 interrupt control register (low)
R/W External interrupt 3 interrupt control register (high)
IQ4ICL
IQ4ICH
x’00FC58’
x’00FC59’
R/W External interrupt 4 interrupt control register (low)
R/W External interrupt 4 interrupt control register (high)
IQ5ICL
IQ5ICH
x’00FC5A’
x’00FC5B’
R/W External interrupt 5 interrupt control register (low)
R/W External interrupt 5 interrupt control register (high)
TM4CBICL
TM4CBICH
TM4CAICL
TM4CAICH
TM4UDICL
TM4UDICH
x’00FC60’
x’00FC61’
x’00FC62’
x’00FC63’
x’00FC64’
x’00FC65’
R/W Timer 4 compare/capture B interrupt control register (low)
R/W Timer 4 compare/capture B interrupt control register (high)
R/W Timer 4 compare/capture A interrupt control register (low)
R/W Timer 4 compare/capture A interrupt control register (high)
R/W Timer 4 underflow interrupt control register (low)
R/W Timer 4 underflow interrupt control register (high)
VBIICL
VBIICH
x’00FC66’
x’00FC67’
R/W VBI (1) interrupt control register (low)
R/W VBI (1) interrupt control register (high)
TM5CBICL
TM5CBICH
TM5CAICL
TM5CAICH
TM5UDICL
TM5UDICH
x’00FC68’
x’00FC69’
x’00FC6A’
x’00FC6B’
x’00FC6C’
x’00FC6D’
R/W Timer 5 compare/capture B interrupt control register (low)
R/W Timer 5 compare/capture B interrupt control register (high)
R/W Timer 5 compare/capture A interrupt control register (low)
R/W Timer 5 compare/capture A interrupt control register (high)
R/W Timer 5 underflow interrupt control register (low)
R/W Timer 5 underflow interrupt control register (high)
VBIWICL
VBIWICH
x’00FC6E’
x’00FC6F’
R/W VBI (2) interrupt control register (low)
R/W VBI (2) interrupt control register (high)
TM2UDICL
TM2UDICH
x’00FC70’
x’00FC71’
R/W Timer 2 underflow interrupt control register (low)
R/W Timer 2 underflow interrupt control register (high)
TM1UDICL
TM1UDICH
x’00FC72’
x’00FC73’
R/W Timer 1 underflow interrupt control register (low)
R/W Timer 1 underflow interrupt control register (high)
TM0UDICL
TM0UDICH
x’00FC74’
x’00FC75’
R/W Timer 0 underflow interrupt control register (low)
R/W Timer 0 underflow interrupt control register (high)
RMCICL
RMCICH
x’00FC76’
x’00FC77’
R/W Remote signal receive interrupt control register (low)
R/W Remote signal receive interrupt control register (high)
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
46
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Interrupts
Interrupt Control Registers
Table 2-4 Interrupt Control Registers
Register
Address R/W
Description
ADM3ICL
ADM3ICH
ADM2ICL
ADM2ICH
ADM1ICL
ADM1ICH
ADM0ICL
ADM0ICH
x’00FC78’
x’00FC79’
x’00FC7A’
x’00FC7B’
x’00FC7C’
x’00FC7D’
x’00FC7E’
x’00FC7F’
R/W Address 3 match interrupt control register (low)
R/W Address 3 match interrupt control register (high)
R/W Address 2 match interrupt control register (low)
R/W Address 2 match interrupt control register (high)
R/W Address 1 match interrupt control register (low)
R/W Address 1 match interrupt control register (high)
R/W Address 0 match interrupt control register (low)
R/W Address 0 match interrupt control register (high)
ANICL
ANICH
x’00FC80’
x’00FC81’
R/W A/D conversion end interrupt control register (low)
R/W A/D conversion end interrupt control register (high)
SCT0ICL
SCT0ICH
SCR0ICL
SCR0ICH
x’00FC82’
x’00FC83’
x’00FC84’
x’00FC85’
R/W Serial 0 transmission end interrupt control register (low)
R/W Serial 0 transmission end interrupt control register (high)
R/W Serial 0 reception end interrupt control register (low)
R/W Serial 0 reception end interrupt control register (high)
VBIVICL
VBIVICH
x’00FC88’
x’00FC89’
R/W VBIVSYNC (1) interrupt control register (low)
R/W VBIVSYNC (1) interrupt control register (high)
VBIVWICL
VBIVWICH
x’00FC8A’
x’00FC8B’
R/W VBIVSYNC (2) interrupt control register (low)
R/W VBIVSYNC (2) interrupt control register (high)
TM3UDICL
TM3UDICH
x’00FC8C’
x’00FC8D’
R/W Timer 3 underflow interrupt control register (low)
R/W Timer 3 underflow interrupt control register (high)
OSDGICL
OSDGICH
OSDCICL
OSDCICH
x’00FC90’
x’00FC91’
x’00FC92’
x’00FC93’
R/W OSD (graphics) interrupt control register (low)
R/W OSD (graphics) interrupt control register (high)
R/W OSD (text) interrupt control register (low)
R/W OSD (text) interrupt control register (high)
SCT1ICL
SCT1ICH
SCR1ICL
SCR1ICH
x’00FC98’
x’00FC99’
x’00FC9A’
x’00FC9B’
R/W Serial 1 transmission end interrupt control register (low)
R/W Serial 1 transmission end interrupt control register (high)
R/W Serial 1 reception end interrupt control register (low)
R/W Serial 1 reception end interrupt control register (high)
I2CICL
I2CICH
x’00FC9C’
x’00FC9D’
R/W I2C interrupt control register (low)
R/W I2C interrupt control register (high)
Note: The interrupt error interrupt control register does not exist in the hardware,
but if no matching interrupt vector is found for an interrupt that occurs, the
CPU writes a C to IAGR to indicate that it detected an abnormality.
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
47
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Interrupts
Interrupt Control Registers
IAGR: Accepted Interrupt Group Number Register
x’00FC0E’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
—
—
—
—
—
—
—
—
GN5 GN4 GN3 GN2 GN1 GN0
—
—
Reset:
R/W:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
IAGR returns the group number of an accepted interrupt, indicated in the
6-bit GN field. When the interrupt handler has to calculates the header
address for the interrupt service routine, it merely needs to add the contents
of IAGR to the header address for the table in which are registered the vec-
tor addresses for servicing all interrupts. IAGR is a 16-bit access register.
GN[5:0]: Group Number
Contains the group number multiplied by four.
EXTMD: External Interrupt Mode Register
x’00FCF8’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
IQ5TG IQ5TG IQ4TG IQ4TG IQ3TG IQ3TG IQ2TG IQ2TG IQ1TG IQ1TG IQ0TG IQ0TG
—
—
—
—
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
Reset:
R/W:
0
0
0
0
R
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W
EXTMD sets the trigger conditions for external interrupts. IQnTG[1:0]
sets the interrupt mode on the associated IRQ pin. Each IRQ pin can have
any polarity or edge setting. EXTMD is a 16-bit access register.
00: Active-low interrupt
01: Either-edge-triggered interrupt (positive or negative)
10: Negative-edge-triggered interrupt
11: Positive-edge-triggered interrupt
WDICR: Watchdog Interrupt Control Register
x’00FC42’
Bit:
7
6
5
4
3
2
1
0
—
—
—
—
—
—
—
WDID
The watchdog timer interrupt is
provided for detecting and handling
racing. Normal operation is not
guaranteed if the program returns
after a watchdog interrupt. For
actions requiring returns, use a
timer interrupt.
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W
WDICR is an 8-bit access register.
WDID: Watchdog interrupt detect flag
0: Interrupt undetected
1: Interrupt detected
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
48
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Interrupts
Interrupt Control Registers
PIICR: Undefined Instruction Interrupt Control Register
x’00FC44’
Bit:
7
6
5
4
3
2
1
0
—
—
—
—
—
—
—
PIID
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W
PIICR is an 8-bit access register.
PIID: Undefined instruction interrupt detect flag
0: Interrupt undetected
1: Interrupt detected
EIICR: Interrupt error Interrupt Control Register
x’00FC46’
Bit:
7
6
5
4
3
2
1
0
—
—
—
—
—
—
—
—
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
EIICR does not exist in the hardware, but if the CPU finds no matching
interrupt vector for an interrupt that occurs, it writes a C to IAGR to indi-
cate that it detected an abnormality. EIICR is an 8-bit access register.
IQ0ICL: External Interrupt 0 Interrupt Control Register (Low)
x’00FC48’
Bit:
7
6
5
4
3
2
1
0
—
—
—
IQ0IR
—
—
—
IQ0ID
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R/W
R
R
R
R
IQ0ICL requests and verifies interrupt requests for external interrupt 0. It
is an 8-bit access register. Use the MOVB instruction to access it.
IQ0IR: External interrupt 0 interrupt request flag
0: No interrupt requested
1: Interrupt requested
IQ0ID: External interrupt 0 interrupt detect flag
0: Interrupt undetected
1: Interrupt detected
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
49
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Interrupts
Interrupt Control Registers
IQ0ICH: External Interrupt 0 Interrupt Control Register (High)
x’00FC49’
Bit:
7
6
5
4
3
2
1
0
—
IQ0LV2 IQ0LV1 IQ0LV0
—
—
—
IQ0IE
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R/W
R/W
R/W
R
R
R
R/W
IQ0ICH sets the priority level for and enables external interrupt 0. It is an
8-bit access register. Use the MOVB instruction to access it.
IQ0LV[2:0]: External interrupt 0 interrupt priority level
Sets the priority from 0 to 6.
IQ0IE: External interrupt 0 interrupt enable flag
0: Disable
1: Enable
IQ1ICL: External Interrupt 1 Interrupt Control Register (Low)
x’00FC4A’
Bit:
7
6
5
4
3
2
1
0
—
—
—
IQ1IR
—
—
—
IQ1ID
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R/W
R
R
R
R
IQ1ICL requests and verifies interrupt requests for external interrupt 1. It
is an 8-bit access register. Use the MOVB instruction to access it.
IQ1IR: External interrupt 1 interrupt request flag
0: No interrupt requested
1: Interrupt requested
IQ1ID: External interrupt 1 interrupt detect flag
0: Interrupt undetected
1: Interrupt detected
IQ1ICH: External Interrupt 1 Interrupt Control Register (High)
x’00FC4B’
Bit:
7
6
5
4
3
2
1
0
—
—
—
—
—
—
—
IQ1IE
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W
IQ1ICH enables external interrupt 1. It is an 8-bit access register. Use the
MOVB instruction to access it.
The priority level for external interrupt 1 is written to the IQ0LV[2:0] field
of the IQ0ICH register.
IQ1IE: External interrupt 1 interrupt enable flag
0: Disable
1: Enable
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
50
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Interrupts
Interrupt Control Registers
IQ2ICL: External Interrupt 2 Interrupt Control Register (Low)
x’00FC50’
Bit:
7
6
5
4
3
2
1
0
—
—
—
IQ2IR
—
—
—
IQ2ID
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R/W
R
R
R
R
IQ2ICL requests and verifies interrupt requests for external interrupt 2. It
is an 8-bit access register. Use the MOVB instruction to access it.
IQ2IR: External interrupt 2 interrupt request flag
0: No interrupt requested
1: Interrupt requested
IQ2ID: External interrupt 2 interrupt detect flag
0: Interrupt undetected
1: Interrupt detected
IQ2ICH: External Interrupt 2 Interrupt Control Register (High)
x’00FC51’
Bit:
7
6
5
4
3
2
1
0
—
IQ2LV2 IQ2LV1 IQ2LV0
—
—
—
IQ2IE
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R/W
R/W
R/W
R
R
R
R/W
IQ2ICH sets the priority level for and enables external interrupt 2. It is an
8-bit access register. Use the MOVB instruction to access it.
IQ2LV[2:0]: External interrupt 2 interrupt priority level
Sets the priority from 0 to 6.
IQ2IE: External interrupt 2 interrupt enable flag
0: Disable
1: Enable
IQ3ICL: External Interrupt 3 Interrupt Control Register (Low)
x’00FC52’
Bit:
7
6
5
4
3
2
1
0
—
—
—
IQ3IR
—
—
—
IQ3ID
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R/W
R
R
R
R
IQ3ICL requests and verifies interrupt requests for external interrupt 3. It
is an 8-bit access register. Use the MOVB instruction to access it.
IQ3IR: External interrupt 3 interrupt request flag
0: No interrupt requested
1: Interrupt requested
IQ3ID: External interrupt 3 interrupt detect flag
0: Interrupt undetected
1: Interrupt detected
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
51
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Interrupts
Interrupt Control Registers
IQ3ICH: External Interrupt 3 Interrupt Control Register (High)
x’00FC53’
Bit:
7
6
5
4
3
2
1
0
—
—
—
—
—
—
—
IQ3IE
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W
IQ3ICH enables external interrupt 3. It is an 8-bit access register. Use the
MOVB instruction to access it.
The priority level for external interrupt 3 is written to the IQ2LV[2:0] field
of the IQ2ICH register.
IQ3IE: External interrupt 3 interrupt enable flag
0: Disable
1: Enable
IQ4ICL: External Interrupt 4 Interrupt Control Register (Low)
x’00FC58’
Bit:
7
6
5
4
3
2
1
0
—
—
—
IQ4IR
—
—
—
IQ4ID
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R/W
R
R
R
R
IQ4ICL requests and verifies interrupt requests for external interrupt 4. It
is an 8-bit access register. Use the MOVB instruction to access it.
IQ4IR: External interrupt 4 interrupt request flag
0: No interrupt requested
1: Interrupt requested
IQ4ID: External interrupt 4 interrupt detect flag
0: Interrupt undetected
1: Interrupt detected
IQ4ICH: External Interrupt 4 Interrupt Control Register (High)
x’00FC59’
Bit:
7
6
5
4
3
2
1
0
—
IQ4LV2 IQ4LV1 IQ4LV0
—
—
—
IQ4IE
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R/W
R/W
R/W
R
R
R
R/W
IQ4ICH sets the priority level for and enables external interrupt 4. It is an
8-bit access register. Use the MOVB instruction to access it.
IQ4LV[2:0]: External interrupt 4 interrupt priority level
Sets the priority from 0 to 6.
IQ4IE: External interrupt 4 interrupt enable flag
0: Disable
1: Enable
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
52
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Interrupts
Interrupt Control Registers
IQ5ICL: External Interrupt 5 Interrupt Control Register (Low)
x’00FC5A’
Bit:
7
6
5
4
3
2
1
0
—
—
—
IQ5IR
—
—
—
IQ5ID
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R/W
R
R
R
R
IQ5ICL requests and verifies interrupt requests for external interrupt 5. It
is an 8-bit access register. Use the MOVB instruction to access it.
IQ5IR: External interrupt 5 interrupt request flag
0: No interrupt requested
1: Interrupt requested
IQ5ID: External interrupt 5 interrupt detect flag
0: Interrupt undetected
1: Interrupt detected
IQ5ICH: External Interrupt 5 Interrupt Control Register (High)
x’00FC5B’
Bit:
7
6
5
4
3
2
1
0
—
—
—
—
—
—
—
IQ5IE
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W
IQ5ICH enables external interrupt 5. It is an 8-bit access register. Use the
MOVB instruction to access it.
The priority level for external interrupt 5 is written to the IQ4LV[2:0] field
of the IQ4ICH register.
IQ5IE: External interrupt 5 interrupt enable flag
0: Disable
1: Enable
TM4CBICL: Timer 4 Compare/Capture B Interrupt Control Register (Low) x’00FC60’
Bit:
7
6
5
4
3
2
1
0
TM4CB
IR
TM4CB
ID
—
—
—
—
—
—
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R/W
R
R
R
R
TM4CBICL detects and requests timer 4 compare/capture B interrupts. It
is an 8-bit access register. Use the MOVB instruction to access it.
TM4CBIR: Timer 4 compare/capture B interrupt request flag
0: No interrupt requested
1: Interrupt requested
TM4CBID: Timer 4 compare/capture B interrupt detect flag
0: Interrupt undetected
1: Interrupt detected
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
53
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Interrupts
Interrupt Control Registers
TM4CBICH: Timer 4 Compare/Capture B Interrupt Control Register (High)x’00FC61’
Bit:
7
6
5
4
3
2
1
0
TM4CB TM4CB TM4CB
TM4CB
IE
—
—
—
—
LV2
LV1
LV0
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R/W
R/W
R/W
R
R
R
R/W
TM4CBICH sets the priority level for and enables timer 4 compare/capture
B interrupts. It is an 8-bit access register. Use the MOVB instruction to
access it.
TM4CBLV[2:0]: Timer 4 compare/capture B interrupt priority level
Sets the priority from 0 to 6.
TM4CBIE: Timer 4 compare/capture B interrupt enable flag
0: Disable
1: Enable
TM4CAICL: Timer 4 Compare/Capture A Interrupt Control Register (Low) x’00FC62’
Bit:
7
6
5
4
3
2
1
0
TM4CA
IR
TM4CA
ID
—
—
—
—
—
—
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R/W
R
R
R
R
TM4CAICL detects and requests timer 4 compare/capture interrupts. It is
an 8-bit access register. Use the MOVB instruction to access it.
TM4CAIR: Timer 4 compare/capture A interrupt request flag
0: No interrupt requested
1: Interrupt requested
TM4CAID: Timer 4 compare/capture A interrupt detect flag
0: Interrupt undetected
1: Interrupt detected
TM4CAICH: Timer 4 Compare/Capture A Interrupt Control Register (High)x’00FC63’
Bit:
7
6
5
4
3
2
1
0
TM4CA
IE
—
—
—
—
—
—
—
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W
TM4CAICH enables timer 4 compare/capture interrupts. It is an 8-bit
access register. Use the MOVB instruction to access it.
The priority level for timer 4 compare/capture interrupts is written to the
TM4CBLV[2:0] field of the TM4CBICH register.
TM4CAIE: Timer 4 compare/capture A interrupt enable flag
0: Disable
1: Enable
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
54
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Interrupts
Interrupt Control Registers
TM4UDICL: Timer 4 Underflow Interrupt Control Register (Low)
x’00FC64’
Bit:
7
6
5
4
3
2
1
0
TM4UD
IR
TM4UD
ID
—
—
—
—
—
—
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R/W
R
R
R
R
TM4UDICL detects and requests timer 4 underflow interrupts. It is an 8-
bit access register. Use the MOVB instruction to access it.
TM4UDIR: Timer 4 underflow interrupt request flag
0: No interrupt requested
1: Interrupt requested
TM4UDID: Timer 4 underflow interrupt detect flag
0: Interrupt undetected
1: Interrupt detected
TM4UDICH: Timer 4 Underflow Interrupt Control Register (High)
x’00FC65’
Bit:
7
6
5
4
3
2
1
0
TM4UD
IE
—
—
—
—
—
—
—
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W
TM4UDICH enables timer 4 underflow interrupts. It is an 8-bit access regis-
ter. Use the MOVB instruction to access it.
The priority level for timer 4 underflow interrupts is written to the
TM4CBLV[2:0] field of the TM4CBICH register.
TM4UDIE: Timer 4 underflow interrupt enable flag
0: Disable
1: Enable
VBIICL: VBI (1) Interrupt Control Register (Low)
x’00FC66’
Bit:
7
6
5
4
3
2
1
0
VBI
IR
VBI
ID
—
—
—
—
—
—
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R/W
R
R
R
R
VBIICL detects and requests VBI (1) interrupts. It is an 8-bit access register.
Use the MOVB instruction to access it.
VBIIR: VBI (1) interrupt request flag
0: No interrupt requested
1: Interrupt requested
VBIID: VBI (1) interrupt detect flag
0: Interrupt undetected
1: Interrupt detected
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
55
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Interrupts
Interrupt Control Registers
VBIICH: VBI (1) Interrupt Control Register (High)
x’00FC67’
Bit:
7
6
5
4
3
2
1
0
VBI
IE
—
—
—
—
—
—
—
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W
VBIICH enables VBI (1) interrupts. It is an 8-bit access register. Use the
MOVB instruction to access it.
The priority level for VBI (1) interrupts is written to the TM4CBLV[2:0]
field of the TM4CBICH register.
VBIIE: VBI (1) interrupt enable flag
0: Disable
1: Enable
TM5CBICL: Timer 5 Compare/Capture B Interrupt Control Register (Low) x’00FC68’
Bit:
7
6
5
4
3
2
1
0
TM5CB
IR
TM5CB
ID
—
—
—
—
—
—
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R/W
R
R
R
R
TM5CBICL detects and requests timer 5 compare/capture B interrupts. It
is an 8-bit access register. Use the MOVB instruction to access it.
TM5CBIR: Timer 5 compare/capture B interrupt request flag
0: No interrupt requested
1: Interrupt requested
TM5CBID: Timer 5 compare/capture B interrupt detect flag
0: Interrupt undetected
1: Interrupt detected
TM5CBICH: Timer 5 Compare/Capture B Interrupt Control Register (High)x’00FC69’
Bit:
7
6
5
4
3
2
1
0
TM5CB TM5CB TM5CB
TM5CB
IE
—
—
—
—
LV2
LV1
LV0
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R/W
R/W
R/W
R
R
R
R/W
TM5CBICH sets the priority level for and enables timer 5 compare/capture
B interrupts. It is an 8-bit access register. Use the MOVB instruction to
access it.
TM5CBLV[2:0]: Timer 5 compare/capture B interrupt priority level
Sets the priority from 0 to 6.
TM5CBIE: Timer 5 compare/capture B interrupt enable flag
0: Disable
1: Enable
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
56
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Interrupts
Interrupt Control Registers
TM5CAICL: Timer 5 Compare/Capture A Interrupt Control Register (Low) x’00FC6A’
Bit:
7
6
5
4
3
2
1
0
TM5CA
IR
TM5CA
ID
—
—
—
—
—
—
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R/W
R
R
R
R
TM5CAICL detects and requests timer 5 compare/capture interrupts. It is
an 8-bit access register. Use the MOVB instruction to access it.
TM5CAIR: Timer 5 compare/capture A interrupt request flag
0: No interrupt requested
1: Interrupt requested
TM5CAID: Timer 5 compare/capture A interrupt detect flag
0: Interrupt undetected
1: Interrupt detected
TM5CAICH: Timer 5 Compare/Capture A Interrupt Control Register (High) x’00FC6B’
Bit:
7
6
5
4
3
2
1
0
TM5CA
IE
—
—
—
—
—
—
—
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W
TM5CAICH enables timer 5 compare/capture interrupts. It is an 8-bit
access register. Use the MOVB instruction to access it.
The priority level for timer 5 compare/capture interrupts is written to the
TM5CBLV[2:0] field of the TM5CBICH register.
TM5CAIE: Timer 5 compare/capture A interrupt enable flag
0: Disable
1: Enable
TM5UDICL: Timer 5 Underflow Interrupt Control Register (Low)
x’00FC6C’
Bit:
7
6
5
4
3
2
1
0
TM5UD
IR
TM5UD
ID
—
—
—
—
—
—
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R/W
R
R
R
R
TM5UDICL detects and requests timer 5 underflow interrupts. It is an 8-
bit access register. Use the MOVB instruction to access it.
TM5UDIR: Timer 5 underflow interrupt request flag
0: No interrupt requested
1: Interrupt requested
TM5UDID: Timer 5 underflow interrupt detect flag
0: Interrupt undetected
1: Interrupt detected
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
57
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Interrupts
Interrupt Control Registers
TM5UDICH: Timer 5 Underflow Interrupt Control Register (High)
x’00FC6D’
Bit:
7
6
5
4
3
2
1
0
TM5UD
IE
—
—
—
—
—
—
—
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W
TM5UDICH enables timer 5 underflow interrupts. It is an 8-bit access reg-
ister. Use the MOVB instruction to access it.
The priority level for timer 5 underflow interrupts is written to the
TM5CBLV[2:0] field of the TM5CBICH register.
TM5UDIE: Timer 5 underflow interrupt enable flag
0: Disable
1: Enable
VBIWICL: VBI (2) Interrupt Control Register (Low)
x’00FC6E’
Bit:
7
6
5
4
3
2
1
0
VBIW
IR
VBIW
ID
—
—
—
—
—
—
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R/W
R
R
R
R
VBIWICL detects and requests VBI (2) interrupts. It is an 8-bit access reg-
ister. Use the MOVB instruction to access it.
VBIWIR: VBI (2) interrupt request flag
0: No interrupt requested
1: Interrupt requested
VBIWID: VBI (2) interrupt detect flag
0: Interrupt undetected
1: Interrupt detected
VBIWICH: VBI (2) Interrupt Control Register (High)
x’00FC6F’
Bit:
7
6
5
4
3
2
1
0
VBIW
IE
—
—
—
—
—
—
—
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W
VBIWICH register enables VBI (2) interrupts. It is an 8-bit access register.
Use the MOVB instruction to access it.
The priority level for VBI (2) interrupts is written to the TM5CBLV[2:0]
field of the TM5CBICH register.
VBIWIE: VBI (2) interrupt enable flag
0: Disable
1: Enable
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
58
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Interrupts
Interrupt Control Registers
TM2UDICL: Timer 2 Underflow Interrupt Control Register (Low)
x’00FC70’
Bit:
7
6
5
4
3
2
1
0
TM2UD
IR
TM2UD
ID
—
—
—
—
—
—
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R/W
R
R
R
R
TM2UDICL register detects and requests timer 2 underflow interrupts. It is
an 8-bit access register. Use the MOVB instruction to access it.
TM2UDIR: Timer 2 underflow interrupt request flag
0: No interrupt requested
1: Interrupt requested
TM2UDID: Timer 2 underflow interrupt detect flag
0: Interrupt undetected
1: Interrupt detected
TM2UDICH: Timer 2 Underflow Interrupt Control Register (High)
x’00FC71’
Bit:
7
6
5
4
3
2
1
0
TM2UD TM2UD TM2UD
TM2UD
IE
—
—
—
—
LV2
LV1
LV0
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R/W
R/W
R/W
R
R
R
R/W
TM2UDICH sets the priority level for and enables timer 2 underflow inter-
rupts. It is an 8-bit access register. Use the MOVB instruction to access it.
TM2UDLV[2:0]: Timer 2 underflow interrupt priority level
Sets the priority from 0 to 6.
TM2UDIE: Timer 2 underflow interrupt enable flag
0: Disable
1: Enable
TM1UDICL: Timer 1 Underflow Interrupt Control Register (Low)
x’00FC72’
Bit:
7
6
5
4
3
2
1
0
TM1UD
IR
TM1UD
ID
—
—
—
—
—
—
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R/W
R
R
R
R
TM1UDICL detects and requests timer 1 underflow interrupts. It is an 8-
bit access register. Use the MOVB instruction to access it.
TM1UDIR: Timer 1 underflow interrupt request flag
0: No interrupt requested
1: Interrupt requested
TM1UDID: Timer 1 underflow interrupt detect flag
0: Interrupt undetected
1: Interrupt detected
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
59
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Interrupts
Interrupt Control Registers
TM1UDICH: Timer 1 Underflow Interrupt Control Register (High)
x’00FC73’
Bit:
7
6
5
4
3
2
1
0
TM1UD
IE
—
—
—
—
—
—
—
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W
TM1UDICH enables timer 1 underflow interrupts. It is an 8-bit access reg-
ister. Use the MOVB instruction to access it.
The priority level for timer 1 underflow interrupts is written to the
TM2UDLV[2:0] field of the TM2UDICH register.
TM1UDIE: Timer 1 underflow interrupt enable flag
0: Disable
1: Enable
TM0UDICL: Timer 0 Underflow Interrupt Control Register (Low)
x’00FC74’
Bit:
7
6
5
4
3
2
1
0
TM0UD
IR
TM0UD
ID
—
—
—
—
—
—
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R/W
R
R
R
R
TM0UDICL register detects and requests timer 0 underflow interrupts. It is
an 8-bit access register. Use the MOVB instruction to access it.
TM0UDIR: Timer 0 underflow interrupt request flag
0: No interrupt requested
1: Interrupt requested
TM0UDID: Timer 0 underflow interrupt detect flag
0: Interrupt undetected
1: Interrupt detected
TM0UDICH: Timer 0 Underflow Interrupt Control Register (High)
x’00FC75’
Bit:
7
6
5
4
3
2
1
0
TM0UD
IE
—
—
—
—
—
—
—
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W
TM0UDICH enables timer 0 underflow interrupts. It is an 8-bit access reg-
ister. Use the MOVB instruction to access it.
The priority level for timer 0 underflow is written to the TM2UDLV[2:0]
field of the TM2UDICH register.
TM0UDIE: Timer 0 underflow interrupt enable flag
0: Disable
1: Enable
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
60
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Interrupts
Interrupt Control Registers
RMCICL: Remote Signal Receive Interrupt Control Register (Low)
x’00FC76’
Bit:
7
6
5
4
3
2
1
0
RMC
IR
RMC
ID
—
—
—
—
—
—
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R/W
R
R
R
R
RMCICL detects and requests remote signal receive interrupts. It is an 8-
bit access register. Use the MOVB instruction to access it.
RMCIR: Remote signal receive interrupt request flag
0: No interrupt requested
1: Interrupt requested
RMCID: Remote signal receive interrupt detect flag
0: Interrupt undetected
1: Interrupt detected
RMCICH: Remote Signal Receive Interrupt Control Register (High)
x’00FC77’
Bit:
7
6
5
4
3
2
1
0
RMC
IE
—
—
—
—
—
—
—
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W
RMCICH enables remote signal receive interrupts. It is an 8-bit access regis-
ter. Use the MOVB instruction to access it.
The priority level for remote signal receive interrupts is written to the
TM2UDLV[2:0] field of the TM2UDICH register.
RMCIE: Remote signal receive interrupt enable flag
0: Disable
1: Enable
ADM3ICL: Address 3 Match Interrupt Control Register (Low)
x’00FC78’
Bit:
7
6
5
4
3
2
1
0
ADM3
IR
ADM3
ID
—
—
—
—
—
—
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R/W
R
R
R
R
ADM3ICL detects and requests address match 3 interrupts. It is an 8-bit
access register. Use the MOVB instruction to access it.
ADM3IR: Address match 3 interrupt request flag
0: No interrupt requested
1: Interrupt requested
ADM3ID: Address match 3 interrupt detect flag
0: Interrupt undetected
1: Interrupt detected
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
61
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Interrupts
Interrupt Control Registers
ADM3ICH: Address 3 Match Interrupt Control Register (High)
x’00FC79’
Bit:
7
6
5
4
3
2
1
0
ADM3 ADM3 ADM3
ADM3
IE
—
—
—
—
LV2
LV1
LV0
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R/W
R/W
R/W
R
R
R
R/W
ADM3ICH sets the priority level for and enables address match 3 inter-
rupts. It is an 8-bit access register. Use the MOVB instruction to access it.
ADM3LV[2:0]: Address match 3 interrupt priority level
Sets the priority from 0 to 6.
ADM3IE: Address match 3 interrupt enable flag
0: Disable
1: Enable
ADM2ICL: Address 2 Match Interrupt Control Register (Low)
x’00FC7A’
Bit:
7
6
5
4
3
2
1
0
ADM2
IR
ADM2
ID
—
—
—
—
—
—
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R/W
R
R
R
R
ADM2ICL detects and requests address match 2 interrupts. It is an 8-bit
access register. Use the MOVB instruction to access it.
ADM2IR: Address match 2 interrupt request flag
0: No interrupt requested
1: Interrupt requested
ADM2ID: Address match 2 interrupt detect flag
0: Interrupt undetected
1: Interrupt detected
ADM2ICH: Address 2 Match Interrupt Control Register (High)
x’00FC7B’
Bit:
7
6
5
4
3
2
1
0
ADM2
IE
—
—
—
—
—
—
—
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W
ADM2ICH enables address match 2 interrupts. It is an 8-bit access regis-
ter. Use the MOVB instruction to access it.
The priority level for address match 2 interrupts is written to the
ADM3LV[2:0] field of the ADM3ICH register.
ADM2IE: Address match 2 interrupt enable flag
0: Disable
1: Enable
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
62
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Interrupts
Interrupt Control Registers
ADM1ICL: Address 1 Match Interrupt Control Register (Low)
x’00FC7C’
Bit:
7
6
5
4
3
2
1
0
ADM1
IR
ADM1
ID
—
—
—
—
—
—
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R/W
R
R
R
R
ADM1ICL detects and requests address match 1 interrupts. It is an 8-bit
access register. Use the MOVB instruction to access it.
ADM1IR: Address match 1 interrupt request flag
0: No interrupt requested
1: Interrupt requested
ADM1ID: Address match 1 interrupt detect flag
0: Interrupt undetected
1: Interrupt detected
ADM1ICH: Address 1 Match Interrupt Control Register (High)
x’00FC7D’
Bit:
7
6
5
4
3
2
1
0
ADM1
IE
—
—
—
—
—
—
—
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W
ADM1ICH enables address match 1 interrupts. It is an 8-bit access register.
Use the MOVB instruction to access it.
The priority level for address match 1 interrupts is written to the
ADM3LV[2:0] field of the ADM3ICH register.
ADM1IE: Address match 1 interrupt enable flag
0: Disable
1: Enable
ADM0ICL: Address 0 Match Interrupt Control Register (Low)
x’00FC7E’
Bit:
7
6
5
4
3
2
1
0
ADM0
IR
ADM0
ID
—
—
—
—
—
—
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R/W
R
R
R
R
ADM0ICL detects and requests address match 0 interrupts. It is an 8-bit
access register. Use the MOVB instruction to access it.
ADM0IR: Address match 0 interrupt request flag
0: No interrupt requested
1: Interrupt requested
ADM0ID: Address match 0 interrupt detect flag
0: Interrupt undetected
1: Interrupt detected
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
63
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Interrupts
Interrupt Control Registers
ADM0ICH: Address 0 Match Interrupt Control Register (High)
x’00FC7F’
Bit:
7
6
5
4
3
2
1
0
ADM0
IE
—
—
—
—
—
—
—
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W
ADM0ICH enables address match 0 interrupts. It is an 8-bit access regis-
ter. Use the MOVB instruction to access it.
The priority level for address match 0 interrupts is written to the
ADM3LV[2:0] field of the ADM3ICH register.
ADM0IE: Address match 0 interrupt enable flag
0: Disable
1: Enable
ANICL: A/D Conversion End Interrupt Control Register (Low)
x’00FC80’
Bit:
7
6
5
4
3
2
1
0
—
—
—
ANIR
—
—
—
ANID
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R/W
R
R
R
R
ANICL detects and requests A/D conversion end interrupts. It is an 8-bit
access register. Use the MOVB instruction to access it.
ANIR: A/D conversion end interrupt request flag
0: No interrupt requested
1: Interrupt requested
ANID: A/D conversion end interrupt detect flag
0: Interrupt undetected
1: Interrupt detected
ANICH: A/D Conversion End Interrupt Control Register (High)
x’00FC81’
Bit:
7
6
5
4
3
2
1
0
—
ANLV2 ANLV1 ANLV0
—
—
—
ANIE
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R/W
R/W
R/W
R
R
R
R/W
ANICH sets the priority level for and enables A/D conversion end inter-
rupts. It is an 8-bit access register. Use the MOVB instruction to access it.
ANLV[2:0]: A/D conversion end interrupt priority level
Sets the priority from 0 to 6.
ANIE: A/D conversion end interrupt enable flag
0: Disable
1: Enable
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
64
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Interrupts
Interrupt Control Registers
SCT0ICL: Serial 0 Transmission End Interrupt Control Register (Low) x’00FC82’
Bit:
7
6
5
4
3
2
1
0
SCT0
IR
SCT0
ID
—
—
—
—
—
—
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R/W
R
R
R
R
SCT0ICL detects and requests serial 0 transmission end interrupts. It is an
8-bit access register. Use the MOVB instruction to access it.
SCT0IR: Serial 0 transmission end interrupt request flag
0: No interrupt requested
1: Interrupt requested
SCT0ID: Serial 0 transmission end interrupt detect flag
0: Interrupt undetected
1: Interrupt detected
SCT0ICH: Serial 0 Transmission End Interrupt Control Register (High) x’00FC83’
Bit:
7
6
5
4
3
2
1
0
SCT0
IE
—
—
—
—
—
—
—
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W
SCT0ICH enables serial 0 transmission end interrupts. It is an 8-bit access reg-
ister. Use the MOVB instruction to access it.
The priority level for serial 0 transmission end interrupts is written to the
ANLV[2:0] field of the ANICH register.
SCT0IE: Serial 0 transmission end interrupt enable flag
0: Disable
1: Enable
SCR0ICL: Serial 0 Reception End Interrupt Control Register (Low)
x’00FC84’
Bit:
7
6
5
4
3
2
1
0
SCR0
IR
SCR0
ID
—
—
—
—
—
—
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R/W
R
R
R
R
SCR0ICL detects and requests serial 0 reception end interrupts. It is an 8-
bit access register. Use the MOVB instruction to access it.
SCT0IR: Serial 0 reception end interrupt request flag
0: No interrupt requested
1: Interrupt requested
SCT0ID: Serial 0 reception end interrupt detect flag
0: Interrupt undetected
1: Interrupt detected
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
65
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Interrupts
Interrupt Control Registers
SCR0ICH: Serial 0 Reception End Interrupt Control Register (High)
x’00FC85’
Bit:
7
6
5
4
3
2
1
0
SCR0
IE
—
—
—
—
—
—
—
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W
SCR0ICH enables serial 0 reception end interrupts. It is an 8-bit access
register. Use the MOVB instruction to access it.
The priority level for serial 0 reception end interrupts is written to the
ANLV[2:0] field of the ANICH register.
SCR0IE: Serial 0 reception end interrupt enable flag
0: Disable
1: Enable
VBIVICL: VBIVSYNC (1) Interrupt Control Register (Low)
x’00FC88’
Bit:
7
6
5
4
3
2
1
0
—
—
—
VBIVIR
—
—
—
VBIVID
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R/W
R
R
R
R
VBIVICL detects and requests VBIVSYNC (1) interrupts. It is an 8-bit
access register. Use the MOVB instruction to access it.
VBIVIR: VBIVSYNC (1) interrupt request flag
0: No interrupt requested
1: Interrupt requested
VBIVID: VBIVSYNC (1) interrupt detect flag
0: Interrupt undetected
1: Interrupt detected
VBIVICH: VBIVSYNC (1) Interrupt Control Register (High)
x’00FC89’
Bit:
7
6
5
4
3
2
1
0
VBIV
LV2
VBIV
LV1
VBIV
LV0
VBIV
IE
—
—
—
—
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R/W
R/W
R/W
R
R
R
R/W
VBIVICH sets the priority level for and enables VBIVSYNC (1) inter-
rupts. It is an 8-bit access register. Use the MOVB instruction to access it.
VBIVLV[2:0]: VBIVSYNC (1) interrupt priority level
Sets the priority from 0 to 6.
VBIVIE: VBIVSYNC (1) interrupt enable flag
0: Disable
1: Enable
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
66
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Interrupts
Interrupt Control Registers
VBIVWICL: VBIVSYNC (2) Interrupt Control Register (Low)
x’00FC8A’
Bit:
7
6
5
4
3
2
1
0
VBIVW
IR
VBIVW
ID
—
—
—
—
—
—
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R/W
R
R
R
R
VBIVWICL detects and requests VBIVSYNC (2) interrupts. It is an 8-bit
access register. Use the MOVB instruction to access it.
VBIVWIR: VBIVSYNC (2) interrupt request flag
0: No interrupt requested
1: Interrupt requested
VBIVWID: VBIVSYNC (2) interrupt detect flag
0: Interrupt undetected
1: Interrupt detected
VBIVWICH: VBIVSYNC (2) Interrupt Control Register (High)
x’00FC8B’
Bit:
7
6
5
4
3
2
1
0
VBIVW
IE
—
—
—
—
—
—
—
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W
VBIVWICH enables VBIVSYNC (2) interrupts. It is an 8-bit access register.
Use the MOVB instruction to access it.
The priority level for VBIVSYNC (2) interrupts is written to the
VBIVLV[2:0] field of the VBIVICH register.
VBIVWIE: VBIVSYNC (2) interrupt enable flag
0: Disable
1: Enable
TM3UDICL: Timer 3 Underflow Interrupt Control Register (Low)
x’00FC8C’
Bit:
7
6
5
4
3
2
1
0
TM3UD
IR
TM3UD
ID
—
—
—
—
—
—
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R/W
R
R
R
R
TM3UDICL detects and requests timer 3 underflow interrupts. It is an 8-
bit access register. Use the MOVB instruction to access it.
TM3UDIR: Timer 3 underflow interrupt request flag
0: No interrupt requested
1: Interrupt requested
TM3UDID: Timer 3 underflow interrupt detect flag
0: Interrupt undetected
1: Interrupt detected
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
67
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Interrupts
Interrupt Control Registers
TM3UDICH: Timer 3 Underflow Interrupt Control Register (High)
x’00FC8D’
Bit:
7
6
5
4
3
2
1
0
TM3UD
IE
—
—
—
—
—
—
—
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W
TM3UDICH enables timer 3 underflow interrupts. It is an 8-bit access reg-
ister. Use the MOVB instruction to access it.
The priority level for timer 3 underflow interrupts is written to the
VBIVLV[2:0] field of the VBIVICH register.
TM3UDIE: Timer 3 underflow interrupt enable flag
0: Disable
1: Enable
OSDGICL: OSD (Graphics) Interrupt Control Register (Low)
x’00FC90’
Bit:
7
6
5
4
3
2
1
0
OSDG
IR
OSDG
ID
—
—
—
—
—
—
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R/W
R
R
R
R
OSDGICL detects and requests OSD (graphics) interrupts. It is an 8-bit
access register. Use the MOVB instruction to access it.
OSDGIR: OSD (graphics) interrupt request flag
0: No interrupt requested
1: Interrupt requested
OSDGID: OSD (graphics) interrupt detect flag
0: Interrupt undetected
1: Interrupt detected
OSDGICH: OSD (Graphics) Interrupt Control Register (High)
x’00FC91’
Bit:
7
6
5
4
3
2
1
0
OSDG OSDG OSDG
OSDG
IE
—
—
—
—
LV2
LV1
LV0
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R/W
R/W
R/W
R
R
R
R/W
OSDGICH sets the priority level for and enables OSD (graphics) inter-
rupts. It is an 8-bit access register. Use the MOVB instruction to access it.
OSDGLV[2:0]: OSD (graphics) interrupt priority level
Sets the priority from 0 to 6.
OSDGIE: OSD (graphics) interrupt enable flag
0: Disable
1: Enable
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
68
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Interrupts
Interrupt Control Registers
OSDCICL: OSD (Text) Interrupt Control Register (Low)
x’00FC92’
Bit:
7
6
5
4
3
2
1
0
OSDC
IR
OSDC
ID
—
—
—
—
—
—
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R/W
R
R
R
R
OSDCICL detects and requests OSD (text) interrupts. It is an 8-bit access
register. Use the MOVB instruction to access it.
OSDCIR: OSD (text) interrupt request flag
0: No interrupt requested
1: Interrupt requested
OSDCID: OSD (text) interrupt detect flag
0: Interrupt undetected
1: Interrupt detected
OSDCICH: OSD (Text) Interrupt Control Register (High)
x’00FC93’
Bit:
7
6
5
4
3
2
1
0
OSDC
IE
—
—
—
—
—
—
—
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W
OSDCICH enables timer OSD (text) interrupts. It is an 8-bit access register.
Use the MOVB instruction to access it.
The priority level for OSD (text) interrupts is written to the OSDGLV[2:0]
field of the OSDGICH register.
OSDCIE: OSD (text) interrupt enable flag
0: Disable
1: Enable
SCT1ICL: Serial 1 Transmission End Interrupt Control Register (Low) x’00FC98’
Bit:
7
6
5
4
3
2
1
0
SCT1
IR
SCT1
ID
—
—
—
—
—
—
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R/W
R
R
R
R
SCT1ICL detects and requests serial 1 transmission end interrupts. It is an
8-bit access register. Use the MOVB instruction to access it.
SCT1IR: Serial 1 transmission end interrupt request flag
0: No interrupt requested
1: Interrupt requested
SCT1ID: Serial 1 transmission end interrupt detect flag
0: Interrupt undetected
1: Interrupt detected
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
69
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Interrupts
Interrupt Control Registers
SCT1ICH: Serial 1 Transmission End Interrupt Control Register (High) x’00FC99’
Bit:
7
6
5
4
3
2
1
0
SCT1
LV2
SCT1
LV1
SCT1
LV0
SCT1
IE
—
—
—
—
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R/W
R/W
R/W
R
R
R
R/W
SCT1ICH sets the priority level for and enables serial 1 transmission end
interrupts. It is an 8-bit access register. Use the MOVB instruction to
access it.
SCT1LV[2:0]: Serial 1 transmission end interrupt priority level
Sets the priority from 0 to 6.
SCT1IE: Serial 1 transmission end interrupt enable flag
0: Disable
1: Enable
SCR1ICL: Serial 1 Reception End Interrupt Control Register (Low)
x’00FC9A’
Bit:
7
6
5
4
3
2
1
0
SCR1
IR
SCR1
ID
—
—
—
—
—
—
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R/W
R
R
R
R
SCR1ICL detects and requests serial 1 reception end interrupts. It is an 8-
bit access register. Use the MOVB instruction to access it.
SCT1IR: Serial 1 reception end interrupt request flag
0: No interrupt requested
1: Interrupt requested
SCT1ID: Serial 1 reception end interrupt detect flag
0: Interrupt undetected
1: Interrupt detected
SCR1ICH: Serial 1 Reception End Interrupt Control Register (High) x’00FC9B’
Bit:
7
6
5
4
3
2
1
0
SCR1
IE
—
—
—
—
—
—
—
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W
SCR1ICH enables serial 1 reception end interrupts. It is an 8-bit access
register. Use the MOVB instruction to access it.
The priority level for serial 1 reception end interrupts is written to the
SCT1LV[2:0] field of the SCT1ICH register.
SCR1IE: Serial 1 reception end interrupt enable flag
0: Disable
1: Enable
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
70
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Interrupts
Interrupt Control Registers
2
I2CICL: I C Interrupt Control Register (Low)
x’00FC9C’
Bit:
7
6
5
4
3
2
1
0
I2C
IR
I2C
ID
—
—
—
—
—
—
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R/W
R
R
R
R
I2CICL detects and requests I2C interrupts. It is an 8-bit access register.
Use the MOVB instruction to access it.
2
I2CIR: I C interrupt request flag
0: No interrupt requested
1: Interrupt requested
2
I2CID: I C interrupt detect flag
0: Interrupt undetected
1: Interrupt detected
2
I2CICH: I C Interrupt Control Register (High)
x’00FC9D’
Bit:
7
6
5
4
3
2
1
0
I2C
IE
—
—
—
—
—
—
—
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W
I2CICH enables I2C interrupts. It is an 8-bit access register. Use the
MOVB instruction to access it.
The priority level for I2C interrupts is written to the SCT1LV[2:0] field of
the SCT1ICH register.
2
I2CIE: I C interrupt enable flag
0: Disable
1: Enable
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
71
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Low-Power Modes
CPU Modes
3
Low-Power Modes
The MN102H75K/85K provides two ways to reduce power consumption, con-
trolling CPU operating and standby modes to cut overall consumption and
shutting down unused functions by stopping the system clock supplied to them.
3.1 CPU Modes
3.1.1 Description
and two CPU standby modes, HALT and STOP. Effective use of these modes can
significantly reduce power consumption. Figure 3-1 shows the CPU states in the
different modes.
Program
(Write to CPUM
register)
NORMAL Mode
Clock to CPU: 24 MHz
System clock: 12 MHz
CPU stopped, PLL on
Clock to CPU: 24 MHz
System clock: 12 MHz
CPU and PLL on
Interrupt
Program
(Write to CPUM register)
STOP Mode
IDLE State
Clock to CPU: off
System clock: off
CPU and PLL off
Clock to CPU: 24 MHz
System clock: 12 MHz
CPU and PLL on
HALT Mode
Program
(Write to CPUM register)
Program
(Write to CPUM register)
Program
Program
(Write to CPUM
register)
(Write to CPUM
register)
SLOW Mode
Clock to CPU: 4 MHz
System clock: 2 MHz
CPU and PLL off
Clock to CPU: 4 MHz
System clock: 2 MHz
CPU on, PLL on
Interrupt
Interrupt
Figure 3-1 CPU State Changes
The CPU mode control register (CPUM) controls transitions between NORMAL
and SLOW modes and from NORMAL and SLOW modes to the standby modes.
A normal reset or an interrupt wakes the MCU from a standby mode.
You cannot enter STOP mode
from NORMAL mode.
Note that you cannot invoke the STOP mode from NORMAL mode. You can
only enter STOP from the SLOW mode.
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
72
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Low-Power Modes
CPU Modes
3.1.2 Exiting from SLOW Mode to NORMAL Mode
tiplies the clock input through the OSC1 and OSC2 pins by 12, divides the signal
by 2, then sends the resulting clock to the CPU. (See figure 3-2.) The MCU starts
in SLOW mode on power up and on recovery from a reset. In SLOW mode
(system clock = 2 MHz), the clock from the OSC pins feeds directly to the CPU,
without going through the PLL circuit. This means that the program must switch
the CPU from SLOW to NORMAL mode (system clock = 12 MHz).
The MN102H75K/85K recovers
from power up and reset in
SLOW mode. For normal opera-
tion, the program must switch
the MCU from SLOW to NOR-
MAL mode.
Clock select
(CPUM register)
24 MHz
12x PLL
circuit
Divide-by-2
circuit
48 MHz
NORMAL mode
SLOW mode
M
U
X
To all function blocks
CPU
4 MHz
System clock:
SLOW: 2 MHz
NORMAL: 12 MHz
4 MHz
Oscillator
Circuit
Figure 3-2 CPU Clock Switch (NORMAL/SLOW Modes)
Below is an example routine for exiting SLOW mode. You should run this
routine immediately after power up.
Example 3-1 Exiting SLOW Mode
MOV x’FC00’,A1
MOV (A1),D0
AND x’FFFD’,D0
MOV (D0),A1
MOV (A1),D0
AND x’FFF0’,D0
MOV (D0),A1
;Read CPUM register
;Invoke IDLE mode
;Read CPUM register
;Invoke NORMAL mode
Because the system clock in SLOW mode is 2 MHz, the OSD does not function.
The specifications also differ for the PWM function and functions such as the IR
remote signal receiver and the H counter that use the PWM waveforms.
The OSD cannot display in
SLOW mode.
For information on invoking SLOW mode from NORMAL mode, see MN102H
Series LSI User Manual.
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
73
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Low-Power Modes
CPU Modes
3.1.3 Notes on Invoking and Exiting STOP and HALT Modes
■
When invoking STOP and HALT modes...
To reduce power consumption before invoking the STOP or HALT mode, stop
current flow from output pins and stabilize the input level of input pins. For
output pins, either match the output level to the external level or set the pin to
isters. (See section 3.2, “Turning Individual Functions On and Off,” on page 75.)
Before entering the STOP mode, set all of the bits shown in table 3-1 to disable
all of these functions. Disable all functions in the NORMAL mode except the
PLL circuit, which you can only shut down once you have entered the SLOW
mode.
To allow the MCU to exit the STOP or HALT mode on reset or interrupt, you
must set the interrupt registers before you invoke the standby mode. To specify a
particular interrupt vector as the signal for waking up, enable that vector in the
interrupt registers. (For more information on controlling interrupts, see “section
2, “Interrupts,” on page 37.)
Using OSDX clock (both an LC
blocking oscillator and external
source), OSDXI and OSDXO
must be set to port (P46, P45)
and output ’H’ before invoking
STOP mode.
■
The MCU exits STOP and HALT modes on reset or interrupt. For information on
exiting on interrupt, see Figure 3-1, “CPU State Changes,” on page 72. When the
MCU exits on reset, it always exits to SLOW mode.
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
74
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Low-Power Modes
Turning Individual Functions On and Off
3.2 Turning Individual Functions On and Off
through writing to the registers. You can significantly reduce power consumption
by turning off unused functions. Table 3-1 shows the register bits controlling on
and off for each function block. The ADC used for the OSD and CCD functions
is turned off on reset. Write a 1 to the function to enable it, when necessary.
You cannot set the PLL function
control bit during NORMAL mode.
You must set it from the SLOW
mode.
You cannot read from or write to the registers associated with a function that is
disabled. Turning on the function enables register reads and writes.
See the sections on each of these peripheral functions for more information.
To turn off the OSD block to save
power:
1. Write a 0 to OSD (OSD1, bit10).
2. Wait for the next VSYNC input.
3. Write a 0 to OSDPOFF(PCNT0,
bit 7), turning the clock off.
If you turn the clock off before the
VSYNC input, power usage may
not drop or the microcontroller
may halt.
Table 3-1 Peripheral Function On/Off Switches
Block Name
Description
Bit Name
Address
Operation
Reset Value
0:OSD block off
PCNT0, x’00FF90’, bit
7
OSD block control
OSDPOFF
0
1:OSD block enabled
0:OSD function off
OSD1, x’007F06’, bit
10
OSD
OSD function control
OSD register R/W control
ADC control for CCD1
ADC control for CCD0
CCD1 function control
CCD0 function control
PLL function control
OSD
0
0
0
0
0
0
0
0
1:OSD function on
0:OSD register R/W off
1:OSD register R/W enabled
0:ADC for CCD1 off
1:ADC for CCD1 enabled
0:ADC for CCD0 off
1:ADC for CCD0 enabled
0:CCD1 block off
OSDREG
E
PCNT2, x’00FF92’, bit
0
PCNT0, x’00FF90’, bit
5
ADC1ON
ADC0ON
VBI1OFF
VBI0OFF
PLLPOFF
PCNT0, x’00FF90’, bit
4
CCD
PCNT0, x’00FF90’, bit
1
1:CCD1 block enabled
0:CCD0 block off
PCNT0, x’00FF90’, bit
0
1:CCD0 block enabled
0:PLL block enabled
1:PLL block off
PCNT0, x’00FF90’, bit
6
PLL
0:H counter block enabled
PCNT0, x’00FF90’, bit
3
H counter
H counter function control HCNTOFF
1:H counter block off
0:IR remote signal receiver
block off
IR remote
IR remote signal
RMCOFF
PCNT0, x’00FF90’, bit
2
0
signal receiver receiver function control
1:IR remote signal receiver
block enabled
2
0:I C block enabled
PCNT2, x’00FF92’, bit
2
2
2
I C
I C function control
I2COFF
0
0
2
1:I C block off
0:PLL block enabled
1:PLL block off
PCNT2, x’00FF92’, bit
1
PWM
PWM function control
PWMOFF
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
75
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Low-Power Modes
CPU Control Register
3.3 CPU Control Register
CPUM: CPU Mode Control Register
x’00FC00’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
NW
DEN
OSC
ID
—
—
—
—
—
—
—
—
—
—
STOP HALT OSC1 OSC0
Reset:
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R/W: R/W
R
R
R
R
R
R
R
R
R
R
R
R/W R/W R/W R/W
This register controls the invoking of all of the CPU modes.
NWDEN: Watchdog timer reset
0: Enable watchdog timer
1: Disable and clear watchdog timer
Setting the watchdog timer to 1, then setting it to 0 clears and restarts the
watchdog timer.
OSCID: Oscillator select
System clock monitor
0: Fast
1: Slow
STOP: STOP mode request
CPU operating state control. See table 3-2.
HALT: HALT mode request
CPU operating state control. See table 3-2.
OSC[1:0]: Oscillator control
See table 3-2.
Table 3-2 CPU Mode Bit Settings
Clock System
STOP HALT OSC1 OSC0
CPU Mode
NORMAL
SLOW
to CPU Clock PLL CPU
0
0
0
0
0
1
0
1
24 MHz 12 MHz
4 MHz 2 MHz
On
Off
On
On
HALT0 (Invoked
from NORMAL)
0
1
0
0
24 MHz 12 MHz
On
Off
HALT1 (Invoked
from SLOW)
0
1
1
0
1
x
1
x
4 MHz
Off
2 MHz
Off
Off
Off
Off
Off
STOP
Note: All unindicated bit settings are reserved.
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
76
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Timers
8-Bit Timer Description
4
Timers
4.1 8-Bit Timer Description
The MN102H75K/85K contains four 8-bit timers that can serve as interval
timers, event timer/counters, clock generators (divide-by-2 output of the
underflow), reference clocks for the serial interfaces, or start timers for A/D con-
versions. The clock source can be the internal clock (oscillator frequency divided
by 2) or the external clock (1/4 or less the oscillator frequency input). A timer
interrupt is generated by a timer underflow.
All passages below assume a
clock B of 24 MHz.
The 8-bit timers are cascadable into true 16-bit timers. For instance, if you
cascade timers 0 and 1, timer 0 sends cascaded output to timer 1. The result is
true 16-bit division, rather than two successive 8-bit divisions.
OSC
Cascading Connections
8-bit x 4
Configuration example
16-bit
8-bit
8-bit
8-bit
8-bit
16-bit
Clock output
Interval
timer
Sync.
UART
Event
Event
timer
transfer transfer timer
clock clock
Figure 4-1 Timer Configuration Examples
(To 16-bit timer, serial I/F)
TM0UDIR
TM1UDIR
(To 16-bit timer, serial I/F)
A/D conversion start
TM2UDIR
B
/4
OSC
TMIA
TMIB
TMIC
TMID
UDF
B
/256
OSC
TM2
TM3
TM3UDIR
TMIO
B
/512
OSC
TMIA
TMIB
TMIC
TMID
UDF
B
/64
OSC
TM0O
TM1O
TM0
TM1
TMIA
TMIB
TMIC
TMID
TMIO
UDF
TM0I
TM1I
TMIO
TMIA
TMIB
TMIC
TMID
UDF
TMIO
Note:
B
= 24 MHz
OSC
Figure 4-2 Block Diagram of 8-Bit Timers
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
77
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Timers
8-Bit Timer Features
4.2 8-Bit Timer Features
Table 4-1 8-Bit Timer Functions and Features
Function/Feature
Timer 0
Timer 1
Timer 2
Timer 3
Interrupt request flag(s)
TM0UDICL register
(TM0UDIR bit)
Timer 0 underflow
—
TM1UDICL register
(TM1UDIR bit)
TM2UDICL register
(TM2UDIR bit)
TM3UDICL register
(TM3UDIR bit)
Interrupt source(s)
Timer 1 underflow
Timer 2 underflow
Timer 3 underflow
Interval timer function
✔
✔
✔
✔
Event counter function
Clock source for 16-bit timer
Timer output function
—
—
✔
—
—
—
—
✔
✔
✔
(TM0O signal)
✔
✔
(TM1O signal)
✔
Serial interface transfer clock
source
—
—
—
—
A/D conversion trigger function
Clock sources
—
✔
0
1
2
3
B
B
B
/4
B
B
/4
B
B
/4
B
B
/4
OSC
OSC
OSC
OSC
OSC
OSC
/64
/512
/64
/256
/256
OSC
OSC
OSC
Cascade connection
TM1I signal
Cascade connection
/512
Cascade connection
/512
TM0I signal
B
B
OSC
OSC
Cascade connection
✔
✔
✔
Note: When B
= 24 MHz:
OSC
B
B
B
B
/4 = 6 MHz
/64 = 375 kHz
/256 = 93.75 kHz
OSC
OSC
OSC
OSC
/512 = 48.875 kHz.
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
78
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Timers
8-Bit Timer Block Diagrams
4.3 8-Bit Timer Block Diagrams
Data bus
8
8
8
(FE10)
Timer 0 base register
TM0BR
Load
Reload
8
(FE00)
(FE20)
Timer 0 binary counter
TM0BC
Timer 0
underflow
interrupt
Underflow
TM0MD
Count
1/2
TM0O pin
Reset
0
B
B
/4
OSC
P2MD7,P2DIR7 setting
1
/64
OSC
2
B /412
OSC
3
TM0I pin
Multiplexer
Figure 4-3 Timer 0 Block Diagram
Data bus
8
8
8
(FE11)
Timer 1 base register
TM1BR
Load
Reload
8
(FE01)
(FE21)
Timer 1 binary counter
TM1BC
Timer 1
underflow
interrupt
Underflow
TM1MD
Count
1/2
TM1O pin
Reset
0
B /4
OSC
P4MD1,P4DIR1 setting
1
B
/64
OSC
2
Cascade from timer 0
TM1I pin
3
Multiplexer
Figure 4-4 Timer 1 Block Diagram
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
79
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Timers
8-Bit Timer Block Diagrams
Data bus
8
8
8
(FE12)
Timer 2 base register
TM2BR
Load
Reload
8
(FE22)
(FE02)
Timer 2 binary counter
TM2BC
Timer 2
Underflow
underflow
TM2MD
Count
interrupt
0
B /4
OSC
1
B
/256
OSC
2
Cascade from timer 1
B /512
3
OSC
Multiplexer
Figure 4-5 Timer 2 Block Diagram
Data bus
8
8
8
(FE13)
Timer 3 base register
TM3BR
Load
Reload
8
(FE23)
(FE03)
Timer 2 binary counter
TM3BC
Timer 3
Underflow
underflow
interrupt
TM3MD
Count
0
B /4
OSC
1
B
/256
OSC
2
Cascade from timer 2
/512
3
B
OSC
Multiplexer
Figure 4-6 Timer 3 Block Diagram
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
80
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Timers
8-Bit Timer Timing
4.4 8-Bit Timer Timing
BC value
Load
value
Time
TMnIO
input
Figure 4-7 Event Timer Input Timing (8-Bit Timers)
BC value
Load
value
Time
Interrupt
TMnIO
input 1
TMnIO
output 2
Figure 4-8 Clock Output and Interval Timer Timing (8-Bit Timers)
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
81
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Timers
8-Bit Timer Setup Examples
4.5 8-Bit Timer Setup Examples
4.5.1 Setting Up an Event Counter Using Timer 0
In this example, timer 0 generates an underflow interrupt on the fourth rising
edge of the TM0IO signal.
The event counter continues to operate during STOP mode. In all modes but
STOP, the TMnIO signal input is synchronized to BOSC. In STOP mode, the
timer counts TMnIO signal directly. When an interrupt occurs, the CPU returns
to NORMAL mode after the oscillator stabilization wait. The event counter con-
tinues to count the TMnIO signal during stabilization wait, and at the same time
that the CPU returns to NORMAL mode, the event counter begins counting the
signal resulting from the BOSC sampling of the TMnIO signal input.
CORE
ROM, RAM
Bus Controller
Serial I/Fs
ADC
TM0I
P2
P6
P4
P5
Interrupts
Timers 0-3
Timers 4-5
Figure 4-9 Block Diagram of Event Counter Using Timer 0
1. Set the interrupt enable flag (IE) of the processor status word (PSW) to 1.
2. Disable timer 0 counting in the timer 0 mode register (TM0MD). This step is
unnecessary immediately after a reset, since TM0MD resets to 0.
TM0MD (example)
x’00FE20’
Bit:
7
6
5
4
3
2
1
0
TM0
EN
TM0
LD
TM0
S1
TM0
S0
—
—
—
—
Setting:
0
0
0
0
0
0
0
0
3. Cancel all existing interrupt requests and enable timer 0 underflow inter-
rupts. To do this, set the TM2UDLV[2:0] bits of TM2UDICH (priority level
4 in this example), set the TM0UDIE bit to 1, and set the TM0UDIR bit of
TM0UDICL to 0. (Note that you set the priority level for timer 0 interrupts
in the timer 2 interrupt control register.) From this point on, an interrupt
request is generated whenever timer 0 underflows.
TM2UDICH, TM0UDICL, and
TM0UDICH are 8-bit access
registers. Use the MOVB
instruction to access them.
TM2UDICH (example)
x’00FC71’
Bit:
7
6
5
4
3
2
1
0
TM2UD TM2UD TM2UD
TM2UD
IE
—
—
—
—
LV2
LV1
LV0
Setting:
0
1
0
0
0
0
0
0
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
82
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Timers
8-Bit Timer Setup Examples
TM0UDICL (example)
x’00FC74’
x’00FC75’
Bit:
7
6
5
4
3
2
1
0
TM0UD
IR
TM0UD
ID
—
—
—
—
—
—
Setting:
0
0
0
0
0
0
0
0
TM0UDICH (example)
Bit:
7
6
5
4
3
2
1
0
TM0UD
IE
—
—
—
—
—
—
—
Setting:
0
0
0
0
0
0
0
1
4. Set the divide-by ratio for timer 0. Since the timer will count 4 TM0IO
cycles, write x’03’ to the timer 0 base register (TM0BR). (The valid range
for TM0BR is 0 to 255.)
TM0BR (example)
x’00FE10’
Bit:
7
6
5
4
3
2
1
0
TM0
BR7
TM0
BR6
TM0
BR5
TM0
BR4
TM0
BR3
TM0
BR2
TM0
BR1
TM0
BR0
Setting:
0
0
0
0
0
0
1
1
5. Set the TM0LD bit of the TM0MD register to 1. This loads the value in the
base register to the binary counter. At the same time, select the clock source
as the TM0IO signal input by writing b’11’ to TM0S[1:0].
Do not change the clock source
once you select it. Selecting the
clock source while you set up
the count operation control will
corrupt the value in the binary
counter.
TM0MD (example)
x’00FE20’
Bit:
7
6
5
4
3
2
1
0
TM0
EN
TM0
LD
TM0
S1
TM0
S0
—
—
—
—
Setting:
0
1
0
0
0
0
1
1
In the bank and linear address-
ing versions of the MN102
series, it was necessary to set
TM0EN and TM0LD to 0
6. Set TM0LD to 0 and TM0EN to 1. This starts the timer. Counting begins at
the start of the next cycle. When the binary counter reaches 0 and loads the
value x’03’ from the base register, in preparation for the next count, a timer 0
underflow interrupt request is sent to the CPU.
between steps 5 and 6, to
ensure stable operation. This is
unnecessary in the high-speed
linear addressing version.
Interrupt enable
TM0BR
00
03
03
TM0BC
00
02
01
00
03
Timer 0 underflow
interrupt
TM0IO
Sequence
(2)
(5)
TM0MD(B)
(3)
TM0UDICH(B)
(6)
TM0MD(B)
(4)
TM0BR(B)
Figure 4-10 Event Counter Timing (Timer 0)
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
83
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Timers
8-Bit Timer Setup Examples
4.5.2 Setting Up an Interval Timer Using Timers 1 and 2
In this example, timers 1 and 2 are cascaded to divide BOSC/4 by 60,000 and
generate an underflow interrupt.
16-bit timer
B
OSC
(24 MHz)
1/4
Timer 2
underflow
interrupt
Timer 1
Timer 2
(Divide by 4)
(Divide by 60,000)
(x'EA60')
Figure 4-11 Configuration Example of Interval Timer Using Timers 1 and 2
CORE
ROM, RAM
Bus Controller
Serial I/Fs
ADC
P2
P6
P4
P5
Interrupts
Timers 0-3
Timers 4-5
Figure 4-12 Block Diagram of Interval Timer Using Timers 1 and 2
1. Disable timer 1 and 2 counting in the timer 1 and 2 mode registers
(TM1MD, TM2MD). This step is unnecessary immediately after a reset,
since TM1MD and TM2MD reset to 0.
TM1MD (example)
x’00FE21’
Bit:
7
6
5
4
3
2
1
0
TM1
EN
TM1
LD
TM1
S1
TM1
S0
—
—
—
—
Setting:
0
0
0
0
0
0
0
0
TM2MD (example)
x’00FE22’
Bit:
7
6
5
4
3
2
1
0
TM2
EN
TM2
LD
TM2
S1
TM2
S0
—
—
—
—
Setting:
0
0
0
0
0
0
0
0
2. Cancel all existing interrupt requests and enable timer 2 underflow inter-
rupts. To do this, set the TM2UDLV[2:0] bits of TM2UDICH (priority level
4 in this example), set the TM2UDIE bit to 1, set the TM2UDIR bit of
TM2UDICL to 0, set the TM1UDIE bit of TM1UDICH to 0, and set the
TM1UDIR bit of TM1UDICL to 0. (Note that you set the priority level for
both timer 1 and 2 interrupts in the timer 2 interrupt control register.) From
this point on, an interrupt request is generated whenever timer 2 underflows.
Timer 1 underflows are unused.
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
84
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Timers
8-Bit Timer Setup Examples
TM2UDICH (example)
x’00FC71’
x’00FC70’
x’00FC73’
x’00FC72’
Bit:
7
6
5
4
3
2
1
0
TM2UD TM2UD TM2UD
TM2UD
IE
—
—
—
—
LV2
LV1
LV0
Setting:
0
1
0
0
0
0
0
1
TM2UDICL (example)
Bit:
7
6
5
4
3
2
1
0
TM2UD
IR
TM2UD
ID
—
—
—
—
—
—
Setting:
0
0
0
0
0
0
0
0
TM1UDICH (example)
Bit:
7
6
5
4
3
2
1
0
TM0UD
IE
—
—
—
—
—
—
—
Setting:
0
0
0
0
0
0
0
0
TM1UDICL (example)
Bit:
7
6
5
4
3
2
1
0
TM1UD
IR
TM1UD
ID
—
—
—
—
—
—
Setting:
0
0
0
0
0
0
0
0
3. Set the divide-by ratio for timer 0. Since the timer will count 60,000 cycles
(x’EA60’), write x’5F’ to the timer 1 base register (TM1BR) and x’EA’ to
the timer 2 base register (TM2BR). (The valid range for TMnBR is 0 to
255.)
TM1BR (example)
x’00FE11’
Bit:
7
6
5
4
3
2
1
0
TM1
BR7
TM1
BR6
TM1
BR5
TM1
BR4
TM1
BR3
TM1
BR2
TM1
BR1
TM1
BR0
Setting:
0
1
0
1
1
1
1
1
TM2BR (example)
x’00FE12’
Bit:
7
6
5
4
3
2
1
0
TM2
BR7
TM2
BR6
TM2
BR5
TM2
BR4
TM2
BR3
TM2
BR2
TM2
BR1
TM2
BR0
Setting:
1
1
1
0
1
0
1
0
4. Set the TM1LD bit of the TM1MD register and theTM2LD bit of the
TM2MD register to 1. This loads the value in the base register to the binary
counter. At the same time, select the clock source as the BOSC/4 for timer 1
and cascade to timer 1 for timer 2. (Write to TMnS[1:0]).
Do not change the clock source
once you select it. Selecting the
clock source while you set up
the count operation control will
corrupt the value in the binary
counter.
TM1MD (example)
x’00FE21’
Bit:
7
6
5
4
3
2
1
0
TM1
EN
TM1
LD
TM1
S1
TM1
S0
—
—
—
—
Setting:
0
1
0
0
0
0
0
0
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
85
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Timers
8-Bit Timer Setup Examples
TM2MD (example)
x’00FE22’
Bit:
7
6
5
4
3
2
1
0
TM2
EN
TM2
LD
TM2
S1
TM2
S0
—
—
—
—
Setting:
0
1
0
0
0
0
1
0
In the bank and linear address-
ing versions of the MN102
series, it was necessary to set
TM0EN and TM0LD to 0
5. Set TM2LD to 0 and TM2EN to 1, then set TM1LD to 0 and TM1EN to 1.
This starts the timers. Counting begins at the start of the next cycle. When
both the timer 1 and 2 binary counters reach 0 and loads the values from the
base registers, in preparation for the next count, a timer 2 underflow inter-
rupt request is sent to the CPU. The timer 1 interrupt is unused.
between steps 4 and 5, to
ensure stable operation. This is
unnecessary in the high-speed
linear addressing version.
Access TM2MD and TM1MD
with a 16-bit write, using the
MOV instruction, or set the two
registers consecutively, begin-
ning with TM2MD.
B
/4
OSC
TM2,1BR
TM2,1BC
00
00
EA5F
EA5F EA5E EA5D 0002 0001
0000 EA5F
Timer 2
underflow
interrupt
Interrupt enable
Sequence
(1)
(2) (3) (4)
(5)
Figure 4-13 Interval Timer Timing (Timers 1 and 2)
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
86
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Timers
8-Bit Timer Control Registers
4.6 8-Bit Timer Control Registers
Table 4-2 shows the registers used to control the 8-bit timers. A binary counter
(TMnBC), a time base counter (TMnBR), and a timer mode register (TMnMD) is
associated with each 8-bit timer.
Table 4-2 8-Bit Timer Control Registers
Register
Address R/W
Description
Timer 0
Timer 1
Timer 2
Timer 3
TM0BC
x’00FE00’
R
Timer 0 binary counter
TM0BR
TM0MD
TM1BC
TM1BR
TM1MD
TM2BC
TM2BR
TM2MD
TM3BC
TM3BR
TM3MD
x’00FE10’ R/W Timer 0 base register
x’00FE20’ R/W Timer 0 mode register
x’00FE01’
R
Timer 1 binary counter
x’00FE11’ R/W Timer 1 base register
x’00FE21’ R/W Timer 1 mode register
x’00FE02’
R
Timer 2 binary counter
x’00FE12’ R/W Timer 2 base register
x’00FE22’ R/W Timer 2 mode register
x’00FE03’
R
Timer 3 binary counter
x’00FE13’ R/W Timer 3 base register
x’00FE23’ R/W Timer 3 mode register
TM0BC–TM3BC: Timer n Binary Counter
x’00FE00’–x’00FE03’
x’00FE10’–x’00FE13’
x’00FE20’–x’00FE23’
Bit:
7
6
5
4
3
2
1
0
TMn
BC7
TMn
BC6
TMn
BC5
TMn
BC4
TMn
BC3
TMn
BC2
TMn
BC1
TMn
BC0
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
TM0BR–TM3BR: Timer n Base Register
Bit:
7
6
5
4
3
2
1
0
TMn
BR7
TMn
BR6
TMn
BR5
TMn
BR4
TMn
BR3
TMn
BR2
TMn
BR1
TMn
BR0
Reset:
R/W:
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
TM0MD–TM3MD: Timer n Mode Register
Bit:
7
6
5
4
3
2
1
0
TMn
EN
TMn
LD
TMn
S1
TMn
S0
—
—
—
—
Reset:
R/W:
0
0
0
0
0
0
0
0
R/W
R/W
R
R
R
R
R/W
R/W
TMnEN: TMnBC count enable
0: Disable / 1: Enable
TMnLD: TMnBR value load to TMnBC
TMnS[1:0]: Timer n clock source select
See table 4-1 on page 78 for clock sources. 00 = clock source 0, 01 = clock
source 1, 10 = clock source 2, and 11 = clock source 3.
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
87
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Timers
16-Bit Timer Description
4.7 16-Bit Timer Description
The MN102H75K/85K contains two 16-bit up/down timers, timers 5 and 6.
Associated with each timer are two compare/capture registers that can capture
and compare the up/down counter values, generate PWM signals, and generate
interrupts. The PWM function has a double buffering mode that causes cycle and
transition changes to occur at the beginning of the next clock cycle. This prevents
PWM signal losses and minimizes waveform distortion during timing changes.
Timers 5 and 6 can serve as interval timers, event counters (in clock oscillation
mode), one- or two-phase PWMs, dual capture inputs, dual two-phase encoders,
one-shot pulse generators, and external count direction controllers. The clock
source can be the internal clock, the external clock, or the TM0UDIR or
TM1UDIR signals from the 8-bit timers.
Underflow interrupts can only
occur during down counting.
TMnIC
TM0UDIR
TM1UDIR
CLR
Up/down counter
B
/4
OSC
2-phase encoding
16-bit compare/capture A
Match
T
Q
Q
Q
TMnIB
TMnIA
TMnOA
TMnOB
Capture
R
S
T
16-bit compare/capture A
Match
Capture
Note:
B
= 24 MHz
OSC
Figure 4-14 Block Diagram of 16-Bit Timers
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
88
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Timers
16-Bit Timer Features
4.8 16-Bit Timer Features
Table 4-3 16-Bit Timer Functions and Features
Function/Feature
Timer 4
Timer 5
Interrupt request flag(s)
TM4UDIR bit of TM4UDICL TM5UDIR bit of TM5UDICL
TM4CAICL bit of TM4CAIR TM5CAICL bit of TM5CAIR
TM4CBICL bit of TM4CBIR TM5CBICL bit of TM5CBIR
Interrupt sources
Clock sources
Timer 4 underflow
Timer 4 compare A match
Timer 4 capture A
Timer 4 compare B match
Timer 4 capture B
Timer 0 underflow
Timer 1 underflow
TM4IB signal
Timer 5 underflow
Timer 5 compare A match
Timer 5 capture A
Timer 5 compare B match
Timer 5 capture B
Timer 0 underflow
Timer 1 underflow
TM5IB signal
4x two-phase encoder
4x two-phase encoder
(TM4IA and TM4IB signals) (TM5IA and TM5IB signals)
1x two-phase encoder 1x two-phase encoder
(TM4IA and TM4IB signals) (TM5IA and TM5IB signals)
Count direction
Up/down counter
Up/down counter
Interval timer function
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
Event counter function
PWM function
One-shot pulse output
Single-phase capture input
Two-phase capture input
Two-phase encoding (4x)
Two-phase encoding (1x)
External count direction control
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
89
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Timers
16-Bit Timer Block Diagrams
4.9 16-Bit Timer Block Diagrams
TM4IC pin
Timer 0 underflow
Timer 1 underflow
TM4IB pin
[S]
[ASEL]
CLR
CLK
[ECLR]
[LP]
Q
Q
TM4BC
T
[EN]
R
R
R
BOSC/4
U/D control
LOAD
TM4IOA pin
[UD]
Match
Match
R
S
P2MD6,P2DIR6 setting
Capture
TM4CA
TM4CAX
TM4IB pin
TM4IA pin
Q
Capture
T
TM4CB
TM4CBX
TM4IOB pin
P2MD5,P2DIR5 setting
[MD]
[LD]
TM4MD
[TGE]
[ONE]
Figure 4-15 Timer 4 Block Diagram
TM5IC pin
Timer 0 underflow
Timer 1 underflow
TM5IB pin
[S]
[ASEL]
CLR
CLK
[ECLR]
[LP]
TM5BC
[EN]
T
Q
Q
R
R
BOSC/4
U/D control
LOAD
TM5IOA pin
[UD]
Match
Match
R
S
TM5CA
TM5CAX
P4MD2,P4DIR2 setting
Capture
TM5IB pin
TM5IA pin
Q
TM5CB
TM5CBX
T
Capture
TM5IOB pin
R
P4MD3,P4DIR3 setting
[MD]
[LD]
TM5MD
[TGE]
[ONE]
Figure 4-16 Timer 5 Block Diagram
4.10 16-Bit Timer Timing
BC value
CA
CB
Time
TMnIOA
TMnOA
Figure 4-17 Single-Phase PWM Output Timing (16-Bit Timers)
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
90
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Timers
16-Bit Timer Timing
New value written
to CCRB
Change reflected in
next clock cycle
BC value
CA
CB
Time
TMnIOA
TMnOA
Figure 4-18 Single-Phase PWM Output Timing with Data Change (16-Bit Timers)
BC value
CA
CB
Time
TMnOA
TMnOB
Figure 4-19 Two-Phase PWM Output Timing (16-Bit Timers)
BC value
CA
Time
TMnIB
TMnOA
Figure 4-20 One-Shot Pulse Output Timing (16-Bit Timers)
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
91
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Timers
16-Bit Timer Timing
BC value
CA
Time
TMnIB
TMnIA
Figure 4-21 External Count Direction Control Timing (16-Bit Timers)
BC value
Time
TMnIB
Figure 4-22 Event Timer Input Timing (16-Bit Timers)
BC value
FFFF
Time
TMnIB
TMnIA
0033 (Example)
5A87 (Example)
TMnCA
TMnCB
Figure 4-23 Single-Phase Capture Input Timing (16-Bit Timers)
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
92
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Timers
16-Bit Timer Timing
BC value
FFFF
Time
TMnIB
TMnIA
0033 (Example)
5A87 (Example)
TMnCA
TMnCB
Figure 4-24 Two-Phase Capture Input Timing (16-Bit Timers)
BC value
Time
TMnIA
TMnIB
Figure 4-25 Two-Phase 4x Encoder Timing (16-Bit Timers)
BC value
Time
TMnIA
TMnIB
Figure 4-26 Two-Phase 1x Encoder Timing (16-Bit Timers)
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
93
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Timers
16-Bit Timer Setup Examples
4.11 16-Bit Timer Setup Examples
4.11.1 Setting Up an Event Counter Using Timer 4
In this example, timer 4 counts the TM4IB input signal (BOSC/4 = 6 MHz or less)
and generates an interrupt on the second and fifth cycles.
CORE
ROM, RAM
Bus Controller
Serial I/Fs
ADC
P2
P6
P4
P5
TM4IB
Interrupts
Timers 0-3
Timers 4-5
A. Chip Level
Timer 4
up
(B
/4)
OSC
TM4BC
TM4CA
T
Q
Q
Q
TM4CAX
TM4IB
R
S
(TM4OA)
TM4CB
T
TM4CBX
B. Block Level
Figure 4-27 Block Diagram of Event Counter Using Timer 4
■
To set up timer 4:
1. Set the operating mode in the timer 4 mode register (TM4MD). Disable
timer 4 counting and interrupts. Select up counting. Select TM4IB as the
clock source.
Use the MOV instruction for this
setup and only use 16-bit write
operations.
TM4MD (example)
x’00FE80’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
TM4 TM4
TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4
—
—
EN
0
NLD
0
UD1 UD0 TGE ONE MD1 MD0 ECLR
LP
1
ASEL
0
S2
0
S1
1
S0
0
This step stops the TM4BC
count and clears both TM4BC
and the S-R flip-flop to 0.
Setting:
0
0
0
0
0
0
0
0
0
2. Set the divide-by ratio for timer 4. To divide the TM4IB input signal by 5,
write x’0004’ to timer 4 compare/capture register A (TM4CA). (The valid
range for TM4CA is x’0001’ to x’FFFE’.)
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
94
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Timers
16-Bit Timer Setup Examples
TM4CA (example)
x’00FE84’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4
CA15 CA14 CA13 CA12 CA11 CA10 CA9 CA8 CA7
CA6
0
CA5 CA4 CA3
CA2
1
CA1 CA0
Setting:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
3. Set the phase difference for timer 4. For a 2-cycle phase difference, write
x’0001’ to timer 4 compare/capture register B (TM4CB). (The valid range is
-1 ≤ TM4CB < the TM4CA value.)
TM4CB (example)
x’00FE88’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4
CB15 CB14 CB13 CB12 CB11 CB10 CB9
CB8
0
CB7
0
CB6
0
CB5
0
CB4
0
CB3
0
CB2
0
CB1
0
CB0
1
Setting:
0
0
0
0
0
0
0
4. Set the TM4NLD bit of the TM4MD register to 1 and the TM4EN bit to 0.
This enables TM4BC and the S-R flip-flop. This step ensures stable opera-
tion. If it is omitted, the binary counter may not count the first cycle. Do not
change any other operating modes during this step.
5. Set TM4NLD and TM4EN to 1. This starts the timer. Counting begins at the
start of the next cycle.
■
To enable timer 4 capture interrupts:
Cancel all existing interrupt requests. Next, set the interrupt priority level in the
TM4CBLV[2:0] bits of the TM4CBICH register (levels 0 to 6), set the TM4CBIE
bit to 1, set the TM4CBIR bit of TM4CBICL to 0, set the TM4CAIE bit of
TM4CAICH to 1, and set the TM4CAIR bit of TM4CAICL to 0. From this point
on, an interrupt request is generated whenever a timer 4 capture A or capture B
event occurs.
Timer 4 can operate as an event counter, but timer 4 does not operate in STOP
mode, when BOSC is off. If you use an external clock, it must be synchronized to
BOSC. This means that the frequency of the event counter clock must be 1/4 or
less that of the oscillator (6 MHz with a 24-MHz oscillator).
Figure 4-28 shows an example timing chart.
0004
TM4CA
TM4CB
0001
0000
0001 0002 0003 0004 0000 0001 0002 0003 0004
TM4BC
TM4IB
B
A
B
A
Interrupts
Figure 4-28 Event Counter Timing (Timer 4)
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
95
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Timers
16-Bit Timer Setup Examples
4.11.2 Setting Up a Single-Phase PWM Output Signal Using
Timer 4
In this example, timer 4 is used to divide BOSC by 5 and generate a five-cycle,
single-phase PWM signal. The duty of this signal is 2:3. To accomplish this, the
program must load the divide-by ratio of 5 (actual setting: 4) into compare/
capture register A and a cycle count of 2 (actual setting: 1) into compare/capture
register B.
CORE
ROM, RAM
Bus Controller
Serial I/Fs
ADC
P3
P6
PC
P4
P5
Interrupts
Timers 0-3
Timers 4-5
TM4OA
P2
A. Chip Level
Timer 4
up
B
/4
OSC
TM4BC
TM4CA
T
Q
Q
Q
TM4CAX
R
S
TM4OA
TM4CB
T
TM4CBX
B. Block Level
Figure 4-29 Block Diagram of Single-Phase PWM Output Using Timer 4
■
To set up the output port:
Set the P2MD[13:12] bits of the port 2 output mode register (P2MD) to b’01’
(selecting the TM4IOA pin) and set the P2DIR6 bit of the port 2 I/O control
register (P2DIR) to 1 (selecting output direction). This step selects the TM4OA
pin (P26) as the timer output port.
P2MD (example)
x’00FFF4’
Bit: 15
14
13
12
P2
11
P2
10
P2
9
8
7
6
5
4
3
2
1
0
P2
P2
P2
P2
P2
P2
P2
P2
P2
P2
P2
P2
—
0
MD14 MD13 MD12 MD11 MD10 MD9 MD8 MD7 MD6 MD5 MD4 MD3 MD2 MD1 MD0
Setting:
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
96
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Timers
16-Bit Timer Setup Examples
P2DIR (example)
x’00FFE2’
Bit:
7
6
5
4
3
2
1
0
P2
P2
P2
P2
P2
P2
P2
P2
DIR7
DIR6
DIR5
DIR4
DIR3
DIR2
DIR1
DIR0
Setting:
0
1
0
0
0
0
0
0
■
To set up timer 4:
1. Set the operating mode in the timer 4 mode register (TM4MD). Disable
timer 4 counting and interrupts. Select up counting. Select BOSC/4 as the
clock source. Select the double-buffer operating mode.
Use the MOV instruction for this
setup and only use 16-bit write
operations.
TM4MD (example)
x’00FE80’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
TM4 TM4
TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4
—
—
EN
0
NLD
0
UD1 UD0 TGE ONE MD1 MD0 ECLR
LP
1
ASEL
0
S2
0
S1
1
S0
1
This step stops the TM4BC
count and clears both TM4BC
and the S-R flip-flop to 0.
Setting:
Setting:
Setting:
0
0
0
0
0
0
0
1
0
2. Set the divide-by ratio for timer 4. To divide BOSC/4 by 5, write x’0004’ to
timer 4 compare/capture register A (TM4CA). (The valid range for TM4CA
is x’0001’ to x’FFFE’.)
TM4CA (example)
x’00FE84’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4
CA15 CA14 CA13 CA12 CA11 CA10 CA9 CA8 CA7
CA6
0
CA5 CA4 CA3
CA2
1
CA1 CA0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
3. Set the timer 4 duty cycle. For a 2/5 BOSC/4 duty cycle, write x’0001’ to
timer 4 compare/capture register B (TM4CB). (The valid range is -1 <
TM4CB < the TM4CA value.)
TM4CB (example)
x’00FE88’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4
CB15 CB14 CB13 CB12 CB11 CB10 CB9
CB8
0
CB7
0
CB6
0
CB5
0
CB4
0
CB3
0
CB2
0
CB1
0
CB0
1
0
0
0
0
0
0
0
4. Write a dummy data word (of any value) to TM4CAX. In double-buffer
mode, TM4CA is compared to TM4CAX. The contents of TM4CA are
loaded to TM4CAX when TM4BC = TM4CAX. However, since TM4CAX
is undefined or x’0000’ before this operation starts, this initial dummy write
prevents timing errors.
5. Write a dummy data word (of any value) to TM4CBX. In double-buffer
mode, TM4CB is compared to TM4CBX. The contents of TM4CB are
loaded to TM4CBX when TM4BC = TM4CBX. However, since TM4CBX
is undefined or x’0000’ before this operation starts, this initial dummy write
prevents timing errors.
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
97
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Timers
16-Bit Timer Setup Examples
6. Set the TM4NLD bit of the TM4MD register to 1 and the TM4EN bit to 0.
This enables TM4BC and the S-R flip-flop. This step ensures stable opera-
tion. If it is omitted, the binary counter may not count the first cycle. Do not
change any other operating modes during this step.
7. Set TM4NLD and TM4EN to 1. This starts the timer. Counting begins at the
start of the next cycle.
Timer 4 can output a single-phase PWM signal at any duty. You must select up
counting. Timer 4 does not operate in STOP mode, when BOSC is off. If you use
an external clock, it must be synchronized to BOSC
.
In this procedure, you set the cycle (x’0001’ to x’FFFE’) in the TM4CA register
and the duty in the TM4CB register. When the contents of TM4BC match those
of the TM4CB register, the S-R flip-flop resets at the beginning of the next cycle.
Please note the following:
■ When -1 ≤ TM4CB < TM4CA, TM4OA output is low during the 0 to
TM4CB + 1 cycles of the TM4CA + 1 cycle period and high during the
remainder of the cycles.
■ When TM4CA ≤ TM4CB ≤ x’FFFE, TM4OA output is always low.
■ When TM4BC = x’FFFF’, TM4OA output is always high.
The circuitry is configured so that there are no waveform errors, even when the
output is always high or always low. Counting begins after the TM4EN bit is set
in the TM4MD register.
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
98
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Timers
16-Bit Timer Setup Examples
Figure 4-30 below shows the output waveforms for TM4OA. Both A and B
interrupts can occur, but B interrupts can only occur if the TM4CB setting is from
0 to less than TM4CA. This is because when TM4CB ≤ TM4CA, TM4BC never
matches TM4CB.
Write to TM4MD
TM4EN
0
0
1
2
3
4
0
1
2
3
4
0
1
2
3
4
0
1
2
3
TM4BC
B
/4
OSC
CLRBC4
(1) TMCB = 4 (All 0s)
S4
R4
TM4OA
Interrupts
AB
AB
AB
(2) TMCB = 2
S4
R4
TM4OA
Interrupts
A
A
A
B
B
B
B
(3) TMCB = FFFF (All 1s)
S4
R4
TM4OA
Interrupts
A
A
A
0s on first cycle, since
S4 has not gone high yet.
Figure 4-30 Single-Phase PWM Output Timing (Timer 4)
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
99
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Timers
16-Bit Timer Setup Examples
Two potential types of errors are inherent with PWM output. First, because of the
circuit configuration, direction errors can occur. The output circuit is configured
with T flip-flops, so that even if one transition is missed, the 1s and 0s can
reverse direction. Timers 4 and 5 contain an S-R flip-flop to prevent this type of
PWM output, the PWM waveform may skip a pulse (see the single buffering
section of figure 4-31 below). To prevent these misses, timers 4 and 5 provide a
double-buffer mode. In this mode, no matter what the timing of a TMnCB
signals are lost. Performance is assured even when the output switches from all
1s to all 0s (see the double buffering section of figure 4-31 below).
For this reason, you must always use double-buffer mode for PWM waveform
output. Use single-buffer mode only in applications that are unaffected by these
issues.
TM4EN
Write to TM4CB
3
3
1
TM4CB
TM4BC
BOSC/4
CLRBC4
(1) Double buffering
TM4CB
TM4CBX
S4
0
0
1
2
4
0
1
2
3
4
0
1
2
3
4
0
1
2
3
3
1
3
1
R4
TM4OA
Interrupts
(2) Single buffering
TM4CB
S4
B
A
B
A
A
B
B
No PWM or interrupt errors
3
1
R4
TM4OA
Interrupts
B
A
B
A
A
B
Lost interrupt, causing a PWM output error
Figure 4-31 Single-Phase PWM Output Timing with Dynamic Duty Changes
(Timer 4)
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
100
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Timers
16-Bit Timer Setup Examples
4.11.3 Setting Up a Two-Phase PWM Output Signal Using
Timer 4
In this example, timer 4 is used to divide timer 0 underflow by 5 and generate a
five-cycle, two-phase PWM signal. The phase difference of this signal is 2
cycles. To accomplish this, the program must load the divide-by ratio of 5 (actual
setting: 4) into compare/capture register A and a cycle count of 2 (actual setting:
1) into compare/capture register B.
CORE
ROM, RAM
Bus Controller
Serial I/Fs
ADC
P3
P6
P4
P5
Interrupts
Timers 0-3
Timers 4-5
TM4OA
TM4OB
P2
A. Chip Level
Timer 4
up
Timer 0
underflow
TM4BC
TM4CA
T
Q
Q
Q
TM4OA
TM4OB
TM4CAX
R
S
TM4CB
T
TM4CBX
B. Block Level
Figure 4-32 Block Diagram of Two-Phase PWM Output Using Timer 4
■
To set up the output port:
Set the P2MD[13:12] bits of the port 2 output mode register (P2MD) to b’01’
(selecting the TM4IOA pin), set the P2MD[11:10] bits to b’01’ (selecting the
TM4IOB pin), and set the P2DIR[6:5] bits of the port 2 I/O control register
(P2DIR) to b’11’ (selecting output direction). This step selects the TM4OA (P26)
and TM4OB (P25) pins as the timer output ports.
P2MD (example)
x’00FFF4’
Bit: 15
14
13
12
P2
11
P2
10
P2
9
8
7
6
5
4
3
2
1
0
P2
P2
P2
P2
P2
P2
P2
P2
P2
P2
P2
P2
—
0
MD14 MD13 MD12 MD11 MD10 MD9 MD8 MD7 MD6 MD5 MD4 MD3 MD2 MD1 MD0
Setting:
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
101
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Timers
16-Bit Timer Setup Examples
P2DIR (example)
x’00FFE2’
Bit:
7
6
5
4
3
2
1
0
P2
P2
P2
P2
P2
P2
P2
P2
DIR7
DIR6
DIR5
DIR4
DIR3
DIR2
DIR1
DIR0
Setting:
0
1
1
0
0
0
0
0
■
To set up timer 0:
1. Disable timer 0 counting in the timer 0 mode register (TM0MD). This step is
unnecessary immediately after a reset, since TM0MD resets to 0.
TM0MD (example)
x’00FE20’
Bit:
7
6
5
4
3
2
1
0
TM0
EN
TM0
LD
TM0
S1
TM0
S0
—
—
—
—
Setting:
0
0
0
0
0
0
—
—
2. Set the divide-by ratio for timer 0. To divide BOSC/4 by two, write x’01’ to
the timer 0 base register (TM0BR). (The valid range for TM0BR is 0 to
255.)
TM0BR (example)
x’00FE10’
Bit:
7
6
5
4
3
2
1
0
TM0
BR7
TM0
BR6
TM0
BR5
TM0
BR4
TM0
BR3
TM0
BR2
TM0
BR1
TM0
BR0
Setting:
0
0
0
0
0
0
0
1
3. Set the TM0LD bit of the TM0MD register to 1. This loads the value in the
base register to the binary counter. At the same time, select the clock source
as BOSC/4 by writing b’00’ to TM0S[1:0].
Do not change the clock source
once you select it. Selecting the
clock source while you set up
the count operation control will
corrupt the value in the binary
counter.
TM0MD (example)
x’00FE20’
Bit:
7
6
5
4
3
2
1
0
TM0
EN
TM0
LD
TM0
S1
TM0
S0
—
—
—
—
Setting:
0
1
0
0
0
0
0
0
In the bank and linear address-
ing versions of the MN102
series, it was necessary to set
TM0EN and TM0LD to 0
4. Set TM0LD to 0 and TM0EN to 1. This starts the timer. Counting begins at
the start of the next cycle. When the binary counter reaches 0 and loads the
value x’01’ from the base register, in preparation for the next count, a timer 0
underflow interrupt request is sent to the CPU.
between steps 3 and 4, to
ensure stable operation. This is
unnecessary in the high-speed
linear addressing version.
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
102
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Timers
16-Bit Timer Setup Examples
■
To set up timer 4:
1. Set the operating mode in the timer 4 mode register (TM4MD). Disable
timer 4 counting and interrupts. Select up counting. Select timer 0 under-
flows as the clock source.
Use the MOV instruction for this
setup and only use 16-bit write
operations.
TM4MD (example)
x’00FE80’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
TM4 TM4
TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4
—
—
EN
0
NLD
0
UD1 UD0 TGE ONE MD1 MD0 ECLR
LP
1
ASEL
1
S2
0
S1
0
S0
0
This step stops the TM4BC
count and clears both TM4BC
and the S-R flip-flop to 0.
Setting:
Setting:
Setting:
0
0
0
0
0
0
0
1
0
2. Set the divide-by ratio for timer 4. To divide timer 0 underflow by 5, write
x’0004’ to timer 4 compare/capture register A (TM4CA). (The valid range
for TM4CA is x’0001’ to x’FFFE’.)
TM4CA (example)
x’00FE84’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4
CA15 CA14 CA13 CA12 CA11 CA10 CA9 CA8 CA7
CA6
0
CA5 CA4 CA3
CA2
1
CA1 CA0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
3. Set the phase difference for timer 4. For a phase difference of two timer 0
underflow cycles, write x’0001’ to timer 4 compare/capture register B
(TM4CB). (The valid range is -1 < TM4CB < the TM4CA value.)
TM4CB (example)
x’00FE88’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4
CB15 CB14 CB13 CB12 CB11 CB10 CB9
CB8
0
CB7
0
CB6
0
CB5
0
CB4
0
CB3
0
CB2
0
CB1
0
CB0
1
0
0
0
0
0
0
0
4. Write a dummy data word (of any value) to TM4CAX. In double-buffer
mode, TM4CA is compared to TM4CAX. The contents of TM4CA are
loaded to TM4CAX when TM4BC = TM4CAX. However, since TM4CAX
is undefined or x’0000’ before this operation starts, this initial dummy write
prevents timing errors.
5. Write a dummy data word (of any value) to TM4CBX. In double-buffer
mode, TM4CB is compared to TM4CBX. The contents of TM4CB are
loaded to TM4CBX when TM4BC = TM4CBX. However, since TM4CBX
is undefined or x’0000’ before this operation starts, this initial dummy write
prevents timing errors.
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
103
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Timers
16-Bit Timer Setup Examples
6. Set the TM4NLD bit of the TM4MD register to 1 and the TM4EN bit to 0.
This enables TM4BC and the S-R flip-flop. This step ensures stable opera-
tion. If it is omitted, the binary counter may not count the first cycle. Do not
change any other operating modes during this step.
7. Set TM4NLD and TM4EN to 1. This starts the timer. Counting begins at the
start of the next cycle.
Timer 4 can output a two-phase PWM signal with any phase difference. You must
select up counting. Timer 4 does not operate in STOP mode, when BOSC is off. If
you use an external clock, it must be synchronized to BOSC
.
In this procedure, you set the cycle (x’0001’ to x’FFFE’) in the TM4CA register
and the phase difference in the TM4CB register. When the contents of TM4BC
match those of the TM4CB register, T flip-flop B reverses at the beginning of the
next cycle. When the contents of TM4BC match those of the TM4CA register, T
flip-flop A reverses and TM4BC resets at the beginning of the next cycle.
The circuitry is configured so that there are no waveform errors, even when the
output is always high or always low. Counting begins after the TM4EN bit is set
in the TM4MD register.
Figure 4-30 below shows the output waveforms for TM4OA and TM40B. Both A
and B interrupts occur when the contents of the binary counter matches those of
the associated compare/capture register. However, B interrupts can only occur if
the TM4CB setting is from 0 to less than TM4CA. This is because when TM4CB
≤ TM4CA, TM4BC never matches TM4CB.
Write to TM4MD
TM4EN
0
0
1
2
3
4
0
1
2
3
4
0
1
2
3
4
0
1
2
3
TM4BC
B
/4
OSC
CLRBC4
TMCB = 2
B4
A4
TM4OA
TM4OB
Interrupts
A
A
A
B
B
B
B
Figure 4-33 Two-Phase PWM Output Timing (Timer 4)
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
104
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Timers
16-Bit Timer Setup Examples
With PWM output, the duty cycle can change dynamically, which can cause the
PWM waveform to skip a pulse (see the single buffering section of figure 4-34
below). To prevent these misses, timers 4 and 5 provide a double-buffer mode. In
this mode, no matter what the timing of a TMnCB change, the duty change does
formance is assured even when the output switches from all 1s to all 0s (see the
double buffering section of figure 4-34 below).
For this reason, you must always use double-buffer mode for PWM waveform
output. Use single-buffer mode only in applications that are unaffected by this
issues.
TM4EN
Write to TM4CB
3
3
1
TM4CB
TM4BC
0
0
1
2
4
0
1
2
3
4
0
1
2
3
4
0
1
2
3
B
/4
OSC
CLRBC4
(1) Double buffering
TM4CB
TM4CBX
B4
3
1
3
1
A4
TM4OA
TM4OB
Interrupts
(2) Single buffering
TM4CB
B4
B
A
B
A
A
B
B
No PWM or interrupt errors
3
1
A4
TM4OA
TM4OB
Interrupts
B
A
B
A
A
B
Lost interrupt, causing a PWM output error
Figure 4-34 Two-Phase PWM Output Timing with Dynamic Duty Changes
(Timer 4)
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
105
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Timers
16-Bit Timer Setup Examples
4.11.4 Setting Up a Single-Phase Capture Input Using Timer 4
In this example, timer 4 is used to divide BOSC/4 by 65,536 and measure how
long the TM4IA input signal stays high. An interrupt occurs on capture B and the
software calculates the number of cycles by subtracting the contents of TMnCA
from the contents of TMnCB.
CORE
ROM, RAM
Bus Controller
Serial I/Fs
ADC
P3
P6
P4
P5
Interrupts
Timers 0-3
Timers 4-5
TM4IA
P2
A. Chip Level
Timer 4
up
B
/4
TM4BC
TM4CA
OSC
TM4IA
T
Q
Q
Q
Interrupt B
R
S
TM4CB
T
B. Block Level
Figure 4-35 Block Diagram of Single-Phase Capture Input Using Timer 4
■
To set up timer 4:
1. Set the operating mode in the timer 4 mode register (TM4MD). Disable timer
4 counting and interrupts. Select up counting. Set the TM4NLP bit to 0 to
select looped counting from 0 to x’FFFF’. Select BOSC/4 as the clock source.
Use the MOV instruction for this
setup and only use 16-bit write
operations.
TM4MD (example)
x’00FE80’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
TM4 TM4
TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4
—
—
EN
0
NLD
0
UD1 UD0 TGE ONE MD1 MD0 ECLR
LP
0
ASEL
1 or 0
S2
0
S1
1
S0
1
This step stops the TM4BC
count and clears both TM4BC
and the S-R flip-flop to 0.
Setting:
0
0
0
0
0
0
1
0
0
2. Set the TM4NLD bit of the TM4MD register to 1 and the TM4EN bit to 0.
This enables TM4BC and the S-R flip-flop. This step ensures stable opera-
tion. If it is omitted, the binary counter may not count the first cycle. Do not
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
106
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Timers
16-Bit Timer Setup Examples
change any other operating modes during this step.
When TM4MD[1:0] = b’10’ (dur-
ing capture), TM4CA and
TM4CB become read-only regis-
ters. To write to TM4CA or
TM4CB, you must first set
TM4MD[1:0] = b’00’.
3. Set TM4NLD and TM4EN to 1. This starts the timer. Counting begins at the
start of the next cycle.
To enable timer 4 capture B interrupts:
■
■
Cancel all existing interrupt requests. Next, set the interrupt priority level in the
TM4CBLV[2:0] bits of the TM4CBICH register (levels 0 to 6), set the TM4BIE
bit to 1, and set the TM4BIR bit of TM4CBICL to 0. From this point on, an
interrupt request is generated whenever a timer 4 capture B event occurs.
To service the interrupts and calculate the signal width:
1. Run the interrupt service routine. The routine must determine the interrupt
group, then clear the interrupt request flag.
Ignore the flags when calculat-
ing the signal width, even when
TM3CA is the larger value.
2. Calculate the number of cycles the TM4IA signal stays high. Save the con-
tents of TM4CA and TM4CB to the data registers, then subtract the contents
of TM4CA from the contents of TM4CB. Since TM4LP is set to 0, the dif-
ference will be the correct value even if TM4CA is greater than TM4CB.
Timer 4 can input a single-phase capture signal. You must select up counting.
Timer 4 does not operate in STOP mode, when BOSC is off. If you use an external
clock, it must be synchronized to BOSC
.
TM4CA captures the count on the rising edge of TM4IA, and TM4CB captures
the count on the falling edge of TM4IA. A timer 4 capture B interrupt occurs
when TM4CB captures the count, and the contents of TM4CA and TM4CB are
read during the interrupt service routine.
In the example timing chart shown in figure 4-36, x’000A’ – x’0007’ = x’0003’,
or 3 cycles. The calculation is correct even when TM4CA is the larger value. The
flags are ignored, so for instance, x’0003’ – x’FFFE’ = x’0005’.
TM4EN
TM4BC
0
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
10 11 12
B
/4
OSC
TM4CA
TM4CB
TM4IA
0
0
7
A
A-7=3
B
Interrupt
Figure 4-36 Single-Phase Capture Input Timing (Timer 4)
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
107
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Timers
16-Bit Timer Setup Examples
4.11.5 Setting Up a Two-Phase Capture Input Using Timer 4
In this example, timer 4 is used to divide the timer 0 underflow by 65,536 and
measure the number of cycles from the rising edge of the TM4IA input signal to
the rising edge of the TM4IB input signal. An interrupt occurs on capture B and
the software calculates the number of cycles by subtracting the contents of
TMnCA from the contents of TMnCB.
CORE
ROM, RAM
Bus Controller
Serial I/Fs
ADC
P3
P6
P4
P5
Interrupts
Timers 0-3
Timers 4-5
TM4IA
TM4IB
P2
A. Chip Level
Timer 4
up
Timer 0
underflow
TM4BC
TM4CA
TM4IA
T
Q
Q
Q
Interrupt B
R
S
TM4CB
TM4IB
T
B. Block Level
Figure 4-37 Block Diagram of Two-Phase Capture Input Using Timer 4
■
To set up timer 0:
1. Disable timer 0 counting in the timer 0 mode register (TM0MD). This step is
unnecessary immediately after a reset, since TM0MD resets to 0.
TM0MD (example)
x’00FE20’
Bit:
7
6
5
4
3
2
1
0
TM0
EN
TM0
LD
TM0
S1
TM0
S0
—
—
—
—
Setting:
0
0
0
0
0
0
—
—
2. Set the divide-by ratio for timer 0. To divide BOSC/4 by two, write x’01’ to
the timer 0 base register (TM0BR). (The valid range for TM0BR is 0 to
255.)
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
108
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Timers
16-Bit Timer Setup Examples
TM0BR (example)
x’00FE10’
Bit:
7
6
5
4
3
2
1
0
TM0
BR7
TM0
BR6
TM0
BR5
TM0
BR4
TM0
BR3
TM0
BR2
TM0
BR1
TM0
BR0
Setting:
0
0
0
0
0
0
0
1
3. Set the TM0LD bit of the TM0MD register to 1. This loads the value in the
base register to the binary counter. At the same time, select the clock source
as BOSC/4 by writing b’00’ to TM0S[1:0].
Do not change the clock source
once you select it. Selecting the
clock source while you set up
the count operation control will
corrupt the value in the binary
counter.
TM0MD (example)
x’00FE20’
Bit:
7
6
5
4
3
2
1
0
TM0
EN
TM0
LD
TM0
S1
TM0
S0
—
—
—
—
Setting:
0
1
0
0
0
0
0
0
In the bank and linear address-
ing versions of the MN102
series, it was necessary to set
TM0EN and TM0LD to 0
4. Set TM0LD to 0 and TM0EN to 1. This starts the timer. Counting begins at
the start of the next cycle. When the binary counter reaches 0 and loads the
value x’01’ from the base register, in preparation for the next count, a timer 0
underflow interrupt request is sent to the CPU.
between steps 3 and 4, to
ensure stable operation. This is
unnecessary in the high-speed
linear addressing version.
To set up timer 4:
■
1. Set the operating mode in the timer 4 mode register (TM4MD). Disable
timer 4 counting and interrupts. Select up counting. Set the TM4NLP bit to 0
to select looped counting from 0 to x’FFFF’. Select timer 0 underflow as the
clock source.
Use the MOV instruction for this
setup and only use 16-bit write
operations.
TM4MD (example)
x’00FE80’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
TM4 TM4
TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4
—
—
This step stops the TM4BC
count and clears both TM4BC
and the S-R flip-flop to 0.
EN
0
NLD
0
UD1 UD0 TGE ONE MD1 MD0 ECLR
LP
0
ASEL
1 or 0
S2
0
S1
0
S0
0
Setting:
0
0
0
0
0
0
1
1
0
2. Set the TM4NLD bit of the TM4MD register to 1 and the TM4EN bit to 0.
This enables TM4BC and the S-R flip-flop. This step ensures stable opera-
tion. If it is omitted, the binary counter may not count the first cycle. Do not
change any other operating modes during this step.
When TM4MD[1:0] = b’11’ (dur-
ing capture), TM4CA and
TM4CB become read-only regis-
ters. To write to TM4CA or
TM4CB, you must first set
TM4MD[1:0] = b’00’.
3. Set TM4NLD and TM4EN to 1. This starts the timer. Counting begins at the
start of the next cycle.
To enable timer 4 capture B interrupts:
■
Cancel all existing interrupt requests. Next, set the interrupt priority level in the
TM4CBLV[2:0] bits of the TM4CBICH register (levels 0 to 6), set the TM4BIE
bit to 1, and set the TM4BIR bit of TM4CBICL to 0. From this point on, an
interrupt request is generated whenever a timer 4 capture B event occurs.
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
109
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Timers
16-Bit Timer Setup Examples
■
To service the interrupts and calculate the signal width:
1. Run the interrupt service routine. The routine must determine the interrupt
group, then clear the interrupt request flag.
Ignore the flags when calculat-
ing the signal width, even when
TM3CA is the larger value.
2. Calculate the number of cycles the TM4IA signal stays high. Save the con-
tents of TM4CA and TM4CB to the data registers, then subtract the contents
of TM4CA from the contents of TM4CB. Since TM4LP is set to 0, the dif-
ference will be the correct value even if TM4CA is greater than TM4CB.
Timer 4 can input a two-phase capture signal. You must select up counting. Timer 4
does not operate in STOP mode, when BOSC is off. If you use an external clock, it
must be synchronized to BOSC
.
TM4CA captures the count on the rising edge of TM4IA, and TM4CB captures
the count on the rising edge of TM4IB. A timer 4 capture B interrupt occurs
when TM4CB captures the count, and the contents of TM4CA and TM4CB are
read during the interrupt service routine.
In the example timing chart shown in figure 4-38, x’000A’ – x’0007’ = x’0003’,
or 3 cycles. The calculation is correct even when TM4CA is the larger value. The
flags are ignored, so for instance, x’0003’ – x’FFFE’ = x’0005’.
TM4EN
TM4BC
BOSC/4
TM4CA
TM4CB
TM4IA
0
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
10 11 12
0
7
0
A
A-7=3
TM4IB
B
Interrupt
Figure 4-38 Two-Phase Capture Input Timing (Timer 4)
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
110
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Timers
16-Bit Timer Setup Examples
4.11.6 Setting Up a 4x Two-Phase Encoder Input Using Timer 5
In this example, timer 5 inputs a 4x two-phase encoded signal that makes it count
up and down. An interrupt occurs when the counter reaches a preset value.
CORE
ROM, RAM
Bus Controller
Serial I/Fs
ADC
P2
P6
P3
P5
Interrupts
Timers 0-3
Timers 4-5
TM5IA
TM5IB
P4
A. Chip Level
Timer 5
up/down
TM5BC
TM5CA
Interrupt B
T
Q
Q
Q
TM5IA
TM5IB
R
S
TM5CB
T
B. Block Level
Figure 4-39 Block Diagram of 4x Two-Phase Capture Input Using Timer 5
TM5BC contents
0
x'1000' x'1FFF'
Interrupt
Figure 4-40 Configuration Example 1 of 4x Two-Phase Capture Input Using
Timer 5
As figure 4-41 shows, you can set different values for A and B interrupts.
(TM5LP must be 0.)
0
x'1000'
x'FF00'
x'FFFF'
A interrupt
B interrupt
Figure 4-41 Configuration Example 2 of 4x Two-Phase Capture Input Using
Timer 5
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
111
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Timers
16-Bit Timer Setup Examples
■
To set up timer 5:
1. Set the operating mode in the timer 5 mode register (TM5MD). Disable timer
5 counting and interrupts. The up/down count bit is ignored in this instance.
Set the TM5NLP bit to 1 to select looped counting from 0 to the value in
TM5CA. Select the 4x two-phase encoder as the clock source.
Use the MOV instruction for this
setup and only use 16-bit write
operations.
TM5MD (example)
x’00FE90’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
This step stops the TM5BC
count and clears both TM5BC
and the S-R flip-flop to 0.
TM5 TM5
TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5
—
—
EN
0
NLD
0
UD1 UD0 TGE ONE MD1 MD0 ECLR
LP
1
ASEL
1 or 0
S2
1
S1
0
S0
0
Setting:
0
0
0
0
0
0
0
0
0
2. Write the intended looping value for timer 5 to TM5CA (valid settings:
x’0001’ to x’FFFF’). For TM5BC to count from x’0000’ to x’1FFF’, for
instance, write x’1FFF’ to TM5CA.
TM5CA (example)
x’00FE94’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5
CA15 CA14 CA13 CA12 CA11 CA10 CA9 CA8 CA7
CA6
1
CA5 CA4 CA3
CA2
1
CA1 CA0
Setting:
0
0
0
1
1
1
1
1
1
1
1
1
1
1
3. Write the timer 5 interrupt value (valid settings: x’0000’ to the value in
TM5CA) to TM5CB. Whenever the binary counter reaches the value in
TM5CB, in either up or down counting, a compare/capture B interrupt
occurs at the beginning of the next cycle.
TM5CB (example)
x’00FE98’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5
CB15 CB14 CB13 CB12 CB11 CB10 CB9
CB8
0
CB7
0
CB6
0
CB5
0
CB4
0
CB3
0
CB2
0
CB1
0
CB0
0
Setting:
0
0
0
1
0
0
0
4. Set the TM5NLD bit of the TM5MD register to 1 and the TM5EN bit to 0.
This enables TM5BC and the S-R flip-flop. This step ensures stable opera-
tion. If it is omitted, the binary counter may not count the first cycle. Do not
change any other operating modes during this step.
5. Set TM5NLD and TM5EN to 1. This starts the timer. Counting begins at the
start of the next cycle.
To enable timer 5 capture B interrupts:
■
Cancel all existing interrupt requests. Next, set the interrupt priority level in the
TM5CBLV[2:0] bits of the TM5CBICH register (levels 0 to 6), set the TM5BIE
bit to 1, and set the TM5BIR bit of TM5CBICL to 0. From this point on, an
interrupt request is generated whenever a timer 5 capture B event occurs.
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
112
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Timers
16-Bit Timer Setup Examples
■
To service the interrupts:
Run the interrupt service routine. The routine must determine the interrupt group,
then clear the interrupt request flag.
Timer 5 can input a two-phase encoder signal. Timer 5 does not operate in STOP
mode, when BOSC is off. If you use an external clock, it must be synchronized to
Table 4-4 shows the count direction for the timing diagram in figure 4-42. In
down counting, when the binary counter reaches 0, it loops to the value in
TM5CA. An interrupt B occurs when the contents of TM5BC match those of
TM5CB.
Table 4-4 Count Direction for 4x Two-Phase Encoder Timing Example
Up Counting
Down Counting
TM5IA
TM5IB
↑
1
↓
0
↑
0
↓
1
0
↑
1
↓
1
↑
0
↓
1FFF
1000
TM5CA
TM5CB
TM5BC
TM5IA
0000 1FFF 1FFE
1FFD
1FFE 1FFF 0000 0001 0FFF 1000 1001
TM5IB
B
Interrupt
Figure 4-42 4x Two-Phase Encoder Input Timing (Timer 5)
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
113
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Timers
16-Bit Timer Setup Examples
4.11.7 Setting Up a 1x Two-Phase Encoder Input Using Timer 5
In this example, timer 5 inputs a 1x two-phase encoded signal that makes it count
up and down. An interrupt occurs when the counter reaches a preset value.
CORE
ROM, RAM
Bus Controller
Serial I/Fs
ADC
P2
P6
P3
P5
Interrupts
Timers 0-3
Timers 4-5
TM5IA
TM5IB
P4
A. Chip Level
Timer 5
up/down
TM5BC
TM5CA
Interrupt B
T
Q
Q
Q
TM5IA
TM5IB
R
S
TM5CB
T
B. Block Level
Figure 4-43 Block Diagram of 1x Two-Phase Capture Input Using Timer 5
TM5BC contents
0
x'1000' x'1FFF'
Interrupt
Figure 4-44 Configuration Example 1 of 1x Two-Phase Capture Input Using
Timer 5
As figure 4-45 shows, you can set different values for A and B interrupts.
(TM5LP must be 0.)
0
x'1000'
x'FF00'
x'FFFF'
A interrupt
B interrupt
Figure 4-45 Configuration Example 2 of 1x Two-Phase Capture Input Using
Timer 5
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
114
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Timers
16-Bit Timer Setup Examples
■
To set up timer 5:
1. Set the operating mode in the timer 5 mode register (TM5MD). Disable timer
5 counting and interrupts. The up/down count bit is ignored in this instance.
Set the TM5NLP bit to 1 to select looped counting from 0 to the value in
TM5CA. Select the 1x two-phase encoder as the clock source.
Use the MOV instruction for this
setup and only use 16-bit write
operations.
TM5MD (example)
x’00FE90’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
This step stops the TM5BC
count and clears both TM5BC
and the S-R flip-flop to 0.
TM5 TM5
TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5
—
—
EN
0
NLD
0
UD1 UD0 TGE ONE MD1 MD0 ECLR
LP
1
ASEL
1 or 0
S2
1
S1
0
S0
1
Setting:
0
0
0
0
0
0
0
0
0
2. Write the intended looping value for timer 5 to TM5CA (valid settings:
x’0001’ to x’FFFF’). For TM5BC to count from x’0000’ to x’1FFF’, for
instance, write x’1FFF’ to TM5CA.
TM5CA (example)
x’00FE94’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5
CA15 CA14 CA13 CA12 CA11 CA10 CA9 CA8 CA7
CA6
1
CA5 CA4 CA3
CA2
1
CA1 CA0
Setting:
0
0
0
1
1
1
1
1
1
1
1
1
1
1
3. Write the timer 5 interrupt value (valid settings: x’0000’ to the value in
TM5CA) to TM5CB. Whenever the binary counter reaches the value in
TM5CB, in either up or down counting, a compare/capture B interrupt
occurs at the beginning of the next cycle.
TM5CB (example)
x’00FE98’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5
CB15 CB14 CB13 CB12 CB11 CB10 CB9
CB8
0
CB7
0
CB6
0
CB5
0
CB4
0
CB3
0
CB2
0
CB1
0
CB0
0
Setting:
0
0
0
1
0
0
0
4. Set the TM5NLD bit of the TM5MD register to 1 and the TM5EN bit to 0.
This enables TM5BC and the S-R flip-flop. This step ensures stable opera-
tion. If it is omitted, the binary counter may not count the first cycle. Do not
change any other operating modes during this step.
5. Set TM5NLD and TM5EN to 1. This starts the timer. Counting begins at the
start of the next cycle.
■
To enable timer 5 capture B interrupts:
Cancel all existing interrupt requests. Next, set the interrupt priority level in the
TM5CBLV[2:0] bits of the TM5CBICH register (levels 0 to 6), set the TM5BIE
bit to 1, and set the TM5BIR bit of TM5CBICL to 0. From this point on, an
interrupt request is generated whenever a timer 5 capture B event occurs.
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
115
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Timers
16-Bit Timer Setup Examples
■
To service the interrupts:
Run the interrupt service routine. The routine must determine the interrupt group,
then clear the interrupt request flag.
Timer 5 can input a two-phase encoder signal. Timer 5 does not operate in STOP
mode, when BOSC is off. If you use an external clock, it must be synchronized to
Table 4-5 shows the count direction for the timing diagram in figure 4-46. In
down counting, when the binary counter reaches 0, it loops to the value in
TM5CA. An interrupt B occurs when the contents of TM5BC match those of
TM5CB.
Table 4-5 Count Direction for 1x Two-Phase Encoder Timing Example
Up Counting
Down Counting
TM5IA
TM5IB
↓
↑
1
1
1FFF
1000
TM5CA
TM5CB
TM5BC
TM5IA
0000 1FFF 1FFE
1FFD
1FFE 1FFF 0000 0001 0FFF 1000 1001
TM5IB
A
A
B
Interrupts
Figure 4-46 1x Two-Phase Encoder Input Timing (Timer 5)
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
116
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Timers
16-Bit Timer Setup Examples
4.11.8 Setting Up a One-Shot Pulse Output Using Timer 5
In this example, timer 5 outputs a one-shot pulse. The pulse width is two clock
cycles.
CORE
ROM, RAM
Bus Controller
Serial I/Fs
ADC
P2
P6
P3
P5
Interrupts
Timers 0-3
Timers 4-5
TM5OA
TM5IB
P4
A. Chip Level
Timer 5
B
/4
OSC
TM5BC
up/down
TM5CA
T
Q
Q
Q
TM5CAX
R
S
TM5OA
TM5IB
TM5CB
T
TM5CBX
B. Block Level
Figure 4-47 Block Diagram of One-Shot Pulse Output Using Timer 5
■
To set up the output port:
Set the P4MD2 bit of the port 4 output mode register (P4MD) to 1 (selecting the
TM5IOA pin) and set the P4DIR2 bit of the port 4 I/O control register (P4DIR)
to 1 (selecting output direction). This step selects the TM5OA pin (P42) as the
timer output port.
P4MD (example)
x’00FFF8’
Bit:
7
6
5
4
3
2
1
0
P4
P4
P4
P4
P4
P4
P4
P4
MD7
MD6
MD5
MD4
MD3
MD2
MD1
MD0
Setting:
0
0
0
0
0
1
0
0
P2DIR (example)
x’00FFE4’
Bit:
7
6
5
4
3
2
1
0
P4
P4
P4
P4
P4
P4
P4
P4
DIR7
DIR6
DIR5
DIR4
DIR3
DIR2
DIR1
DIR0
Setting:
0
0
0
0
0
1
0
0
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
117
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Timers
16-Bit Timer Setup Examples
■
To set up timer 5:
1. Set the operating mode in the timer 5 mode register (TM5MD). Disable timer
5 counting and interrupts. Select up counting. Select BOSC/4 as the clock
source.
Use the MOV instruction for this
setup and only use 16-bit write
operations.
TM5MD (example)
x’00FE90’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
TM5 TM5
TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5
—
—
EN
0
NLD
0
UD1 UD0 TGE ONE MD1 MD0 ECLR
LP
1
ASEL
1 or 0
S2
0
S1
1
S0
1
This step stops the TM5BC
count and clears both TM5BC
and the S-R flip-flop to 0.
Setting:
0
0
0
0
1
1
0
0
0
2. Set the timer 5 pulse width in TM5CA (valid settings: x’0001’ to x’FFFF’).
Since the pulse width in this example is two cycles of the BOSC/4 clock,
write x’0003’ to TM5CA. TM5BC counts from 0 to 3, and TM5OA outputs
a high signal while the count is 1, 2, and 3. The timer operates essentially the
same as it does during two-phase PWM output.
TM5CA (example)
x’00FE94’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5
CA15 CA14 CA13 CA12 CA11 CA10 CA9 CA8 CA7
0 0 0
CA6
0
CA5 CA4 CA3
0 0 0
CA2
0
CA1 CA0
Setting:
0
0
0
0
0
0
1
1
3. Write x’0001’ to TM5CB.
TM5CB (example)
x’00FE98’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5
CB15 CB14 CB13 CB12 CB11 CB10 CB9
CB8
CB7
CB6
CB5
CB4
CB3
CB2
CB1
CB0
Setting:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
4. Set the TM5NLD bit of the TM5MD register to 1 and the TM5EN bit to 0.
This enables TM5BC and the S-R flip-flop. This step ensures stable opera-
tion. If it is omitted, the binary counter may not count the first cycle. Do not
change any other operating modes during this step.
5. On the falling edge of the TM5IB signal, the hardware sets the TM5EN bit
to 1. This means that counting begins at the start of the next cycle after the
TM5IB signal falls. The TM5EN bit serves as the busy flag for the one-shot
pulse.
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
118
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Timers
16-Bit Timer Setup Examples
Timer 5 can output a one-shot pulse. Timer 5 does not operate in STOP mode,
.
Figure 4-48 shows an example timing diagram for one-shot pulse output. On the
falling edge of TM5IB, the TM5EN flag is set, and counting begins at the start of
the next cycle. Before the count starts, TM5BC is 0, the initial TM5OA output
value is 0, and the R5 (reset) and S5 (set) signals are not asserted. After the count
starts, when it changes from 0 to 1, the S5 signal is asserted. This sets the
TM5OA signal high, and it outputs the one-shot pulse. When the count reaches 3,
TM5BC resets, changing from 3 to 0, and the R5 signal is asserted, causing the
TM5OA signal to go low. Because the TM5ONE bit of the TM5MD register is 1,
and the TM5EN bit is reset, the count stops. The circuit state is now the same as
it was before the TM5IB signal went low. When the TM5IB signal falls again, the
hardware once again sets the TM5EN bit, and the one-shot pulse sequence
repeats.
0003
0001
TM5CA
TM5CB
TM5BC
0000
0001 0002 0003
0000
0001 0002 0003 0000
B /4
OSC
TM5EN
TM5IB
S5
R5
TM5OA
Figure 4-48 One-Shot Pulse Output Timing (Timer 5)
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
119
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Timers
16-Bit Timer Setup Examples
4.11.9 Setting Up an External Count Direction Controller
Using Timer 5
In this example, timer 5 counts BOSC/4 and the TM5IA pin controls the count
direction (up or down). An interrupt occurs when the counter reaches a preset
value.
CORE
ROM, RAM
Bus Controller
Serial I/Fs
ADC
P2
P6
P3
P5
Interrupts
Timers 0-3
Timers 4-5
TM5IA
P4
A. Chip Level
Timer 5
up/down
B
/4
TM5BC
TM5CA
OSC
T
Q
Q
Q
TM5IA
R
S
Interrupt B
T
TM5CB
B. Block Level
Figure 4-49 Block Diagram of External Count Direction Control Using Timer 5
TM5BC contents
0
x'1000' x'1FFF'
Interrupt
Figure 4-50 Configuration Example of External Count Direction Control
Using Timer 5
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
120
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Timers
16-Bit Timer Setup Examples
■
To set up timer 5:
1. Set the operating mode in the timer 5 mode register (TM5MD). Disable timer
5 counting and interrupts. Set the TM5UD[1:0] bits to b’10’, so that the count
direction is up when the TM5IA signal is high and down when the TM5IA sig-
nal is low. Select BOSC/4 as the clock source.
Use the MOV instruction for this
setup and only use 16-bit write
operations.
TM5MD (example)
x’00FE90’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
This step stops the TM5BC
count and clears both TM5BC
and the S-R flip-flop to 0.
TM5 TM5
TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5
—
—
EN
0
NLD
0
UD1 UD0 TGE ONE MD1 MD0 ECLR
LP
1
ASEL
1 or 0
S2
0
S1
1
S0
1
Setting:
0
0
1
0
0
0
0
0
0
2. Write the intended looping value for timer 5 to TM5CA (valid settings:
x’0001’ to x’FFFF’). For TM5BC to count from x’0000’ to x’1FFF’, for
instance, write x’1FFF’ to TM5CA.
TM5CA (example)
x’00FE94’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5
CA15 CA14 CA13 CA12 CA11 CA10 CA9 CA8 CA7
CA6
1
CA5 CA4 CA3
CA2
1
CA1 CA0
Setting:
0
0
0
1
1
1
1
1
1
1
1
1
1
1
3. Write the timer 5 interrupt value (valid settings: x’0000’ to the value in
TM5CA) to TM5CB. Whenever the binary counter reaches the value in
TM5CB, in either up or down counting, a compare/capture B interrupt
occurs at the beginning of the next cycle.
TM5CB (example)
x’00FE98’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5
CB15 CB14 CB13 CB12 CB11 CB10 CB9
CB8
0
CB7
0
CB6
0
CB5
0
CB4
0
CB3
0
CB2
0
CB1
0
CB0
0
Setting:
0
0
0
1
0
0
0
4. Set the TM5NLD bit of the TM5MD register to 1 and the TM5EN bit to 0.
This enables TM5BC and the S-R flip-flop. This step ensures stable opera-
tion. If it is omitted, the binary counter may not count the first cycle. Do not
change any other operating modes during this step.
5. Set TM5NLD and TM5EN to 1. This starts the timer. Counting begins at the
start of the next cycle.
■
To enable timer 5 capture B interrupts:
Cancel all existing interrupt requests. Next, set the interrupt priority level in the
TM5CBLV[2:0] bits of the TM5CBICH register (levels 0 to 6), set the TM5BIE
bit to 1, and set the TM5BIR bit of TM5CBICL to 0. From this point on, an
interrupt request is generated whenever a timer 5 capture B event occurs.
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
121
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Timers
16-Bit Timer Setup Examples
■
To service the interrupts:
Run the interrupt service routine. The routine must determine the interrupt group,
then clear the interrupt request flag.
Either the TM5IA or TM5IB signal can control the timer 5 count direction. The
count direction is determined at the opposite edge from the count edge (at the
source clock transition occurring in the middle of the count cycle.).
Timer 5 does not operate in STOP mode, when BOSC is off. If you use an external
.
Figure 4-51 shows an example timing chart. In this example, an interrupt occurs
when the timer switches from down to up counting.
1FFF
TM5CA
1000
TM5CB
0000 1FFF 1FFE 1FFD 1FFE 1FFF 0000 0001 0002 0FFF 1000 1001
TM5BC
B
/4
OSC
TM5IA
B
Interrupt
Figure 4-51 External Count Direction Control Timing (Timer 5)
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
122
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Timers
16-Bit Timer Setup Examples
4.11.10Setting Up External Reset Control Using Timer 5
In this example, timer 5 is reset by an external signal while counting up.
CORE
ROM, RAM
Bus Controller
Serial I/Fs
ADC
P2
P6
P3
P5
Interrupts
Timers 0-3
Timers 4-5
TM5IC
P4
A. Chip Level
Timer 5
B /4
OSC
TM5BC
TM5CA
reset
T
Q
Q
Q
R
S
TM5CB
TM5IC
T
B. Block Level
Figure 4-52 Block Diagram of External Reset Control Using Timer 5
■
To set up timer 5:
1. Set the operating mode in the timer 5 mode register (TM5MD). Disable
timer 5 counting and interrupts. Select up counting. Since the TM5IC signal
will reset the counter asynchronously, set the TM5ECLR bit to 1. Select
B
OSC/4 as the clock source.
Use the MOV instruction to set
this data and only use 16-bit
write operations.
TM5MD (example)
x’00FE90’
Bit: 15
14
13
—
12
—
11
10
9
8
7
6
5
4
3
2
1
0
This step stops the TM5BC
count and clears both TM5BC
and the S-R flip-flop to 0.
TM5 TM5
TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5
UD1 UD0 TGE ONE MD1 MD0 ECLR LP ASEL
EN
0
NLD
0
S2
0
S1
1
S0
1
Setting:
0
0
0
0
0
0
0
0
1
1
0
2. Set the value to which timer 5 will loop (valid settings: x’0001’ to x’FFFF’).
For TM5BC to count from x’0000’ to x’1FFF’, for instance, write x’1FFF’
to TM5CA.
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
123
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Timers
16-Bit Timer Setup Examples
TM5CA (example)
x’00FE94’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5
CA15 CA14 CA13 CA12 CA11 CA10 CA9 CA8 CA7
CA6
1
CA5 CA4 CA3
CA2
1
CA1 CA0
Setting:
0
0
0
1
1
1
1
1
1
1
1
1
1
1
3. Set the TM5NLD bit of the TM5MD register to 1 and the TM5EN bit to 0.
This enables TM5BC and the S-R flip-flop. This step ensures stable opera-
tion. If it is omitted, the binary counter may not count the first cycle.
4. Set TM5NLD and TM5EN to 1. This starts the timer. Counting begins at the
start of the next cycle.
From this point on, whenever the TM5IC signal is high, timer 5 will be reset
asynchronously. This is an easy way to synchronize the microcontroller operation
with an external event. You can use it to adjust motor speed or to initialize the
timers through the hardware.
Timer 5 does not operate in STOP mode, when BOSC is off. If you use an external
.
Figure 4-53 shows an example timing chart.
0000 0001 0002 0003 0004
0000
0001 0002 0003
TM5BC
B
/4
OSC
TM5IC
Figure 4-53 External Reset Control Timing (Timer 5)
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
124
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Timers
16-Bit Timer Control Registers
4.12 16-Bit Timer Control Registers
Table 4-6 shows the registers used to control the 16-bit timers. A binary counter
(TMnBC), a compare/capture register A (TMnCA), a compare/capture register B
(TMnCB), and a timer mode register (TMnMD) is associated with each 16-bit
timer.
Table 4-6 16-Bit Timer Control Registers
Register
Address R/W
Description
Timer 4
TM4MD
x’00FE80’ R/W Timer 4 mode register
x’00FE82’ Timer 4 binary counter
x’00FE84’ R/W Timer 4 compare/capture register A
x’00FE86’ Timer 4 compare/capture register set AX
x’00FE88’ R/W Timer 4 compare/capture register B
x’00FE8A’ Timer 4 compare/capture register set BX
x’00FE90’ R/W Timer 5 mode register
x’00FE92’ Timer 5 binary counter
x’00FE94’ R/W Timer 5 compare/capture register A
x’00FE96’ Timer 5 compare/capture register set AX
x’00FE98’ R/W Timer 5 compare/capture register B
x’00FE9A’ Timer 5 compare/capture register set BX
TM4BC
TM4CA
TM4CAX
TM4CB
R
—
TM4CBX
TM5MD
TM5BC
—
Timer 5
R
TM5CA
TM5CAX
TM5CB
—
TM5CBX
—
Note: TM4CAX, TM4CBX, TM5CAX, and TM5CBX are virtual registers used only
in double-buffer mode during PWM output. They do not exist in the hardware
and are not readable or writable. Depending on the write signal, they load the
value in the associated CA or CB register.
TM4BC/TM5BC: Timer n Binary Counter
x’00FE82’/x’00FE92’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
TMn TMn TMn TMn TMn TMn TMn TMn TMn TMn TMn TMn TMn TMn TMn TMn
BC15 BC14 BC13 BC12 BC11 BC10 BC9
BC8
BC7
BC6
BC5
BC4
BC3
BC2
BC1
BC0
Reset:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R/W:
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
TM4CA/TM5CA: Timer n Compare/Capture Register A
x’00FE84’/x’00FE94’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
TMn TMn TMn TMn TMn TMn TMn TMn TMn TMn TMn TMn TMn TMn TMn TMn
CA15 CA14 CA13 CA12 CA11 CA10 CA9 CA8 CA7
CA6
CA5 CA4 CA3
CA2
CA1 CA0
TMnCA and TMnCB are 16-bit
access registers. Use the MOV
instruction to write to them.
Reset:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R/W: R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W
TM4CB/TM5CB: Timer n Compare/Capture Register B
x’00FE88’/x’00FE98’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
TMn TMn TMn TMn TMn TMn TMn TMn TMn TMn TMn TMn TMn TMn TMn TMn
CB15 CB14 CB13 CB12 CB11 CB10 CB9
CB8
0
CB7
0
CB6
0
CB5
0
CB4
0
CB3
0
CB2
0
CB1
0
CB0
0
Reset:
0
0
0
0
0
0
0
R/W: R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
125
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Timers
16-Bit Timer Control Registers
TM4MD/TM5MD: Timer n Mode Register
x’00FE80’/x’00FE90’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
TMn TMn
TMn TMn TMn TMn TMn TMn TMn TMn TMn TMn TMn TMn
—
—
EN
0
NLD
0
UD1 UD0 TGE ONE MD1 MD0 ECLR
LP
0
ASEL
0
S2
0
S1
0
S0
0
Reset:
0
0
0
0
0
0
0
0
0
R/W: R/W R/W
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W
TMnEN: TMnBC count
0: Disable
1: Enable
TMnNLD: TMnBC, T flip-flop, and S-R flip-flop operation select
0: Set all to 0 (initialize)
1: Operate all
TMnUD[1:0]: Timer n up/down counter mode select
Ignored when two-phase encoding is selected.
00: Up counter
01: Down counter
10: Up when TMnIOA is high; down when low
11: Up when TMnIOB is high; down when low
TMnTGE: External trigger enable for start count
0: Disable
1: Start count at falling edge of TMnIOB
TMnONE: Counter operating mode select
0: Repeat (except with PWM output)
1: One-shot pulse (counter stops on the next clock after TMnBC = TMnCA)
TMnMD[1:0]: TMnCA and TMnCB operating mode select
00: Compare register (single buffer)
01: Compare register (double buffer)
10: Capture register (TMnIOA high: capture A; TMnIOA low: capture B)
11: Capture register (TMnIOA high: capture A; TMnIOB high: captureB)
TMnECLR: Timer n BC external clear
0: Don’t clear
1: Clear TMnBC asynchronously when the TMnIC signal goes high.
TMnLP: Timer n BC loop select
0: 0000–FFFF
1: 0000–value in TMnCA
TMnASEL: TMnIOA output select
0: S-R flip-flop output (single-phase PWM)
1: T flip-flop output (two-phase PWM)
TMnS[2:0]: Timer n clock source select
000: Timer 0 underflow
001: Timer 1 underflow
010: TMnIB signal
011: BOSC/4
100: 4x two-phase encoder
101: 1x two-phase encoder
110, 111: Reserved
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
126
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Serial Interfaces
Description
5
Serial Interfaces
5.1 Description
The MN102H75K/85K contains two general-purpose serial interfaces with syn-
chronous serial, UART, and I2C modes. The maximum baud rate in synchronous
serial mode is 12 Mbps. In UART mode, the maximum baud rate is 375,000 bps,
when BOSC = 24 MHz.
Signal from 8-bit timers
TM0IR TM1IR
Tx end interrupt
SBO0
SBT0
TXD
TXC
Transmitter
Receiver
RXC
RXD
Rx end interrupt
SBI0
SBO1
SBT1
SBI1
TXD
TXC
Tx end interrupt
Rx end interrupt
Transmitter
Receiver
RXC
RXD
Figure 5-1 Serial Interface Configuration Example
5.2 Features
Table 5-1 Serial Interface Functions and Features
Function/Feature Synchronous Serial Mode
2
UART Mode
I C Mode
Parity
None, 0, 1, even, or odd
7-bit or 8-bit
Can be master trans-
mitter or receiver. (No
collision detection for
start sequence.)
Character length
Transfer bit order
LSB or MSB first (programmable; 8-
LSB first
bit only)
Clock source
• 1/2 of timer 0 underflow
• 1/8 of timer 0 or 1 underflow
• External clock
• 1/8 of timer 0 or 1 underflow
Maximum baud rate
Error detection
12 Mbps
375,000 bps
(when B
= 24 MHz)
(when B
= 24 MHz)
OSC
OSC
• Parity error
• Overrun error
• Parity error
• Overrun error
• Framing error
Buffers
Independent transmit/receive buffers (single transmit buffer, double receive
buffers)
Interrupts
Transmission or reception complete interrupts
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
127
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Serial Interfaces
Connecting the Serial Interfaces
5.3 Connecting the Serial Interfaces
Figures 5-2, 5-3, and 5-4 illustrate six different methods of connecting the serial
interface.
5.3.1 Synchronous Serial Mode Connections
Figure 5-2 shows serial port connections for either simplex or full-duplex syn-
chronous serial transfers.
See section 11, “I/O Ports,” for
details on setting up the SBT
port.
SBO
SBO
SBO
SBO
SBI
SBI
SBI
SBI
SBT
SBT
SBT
SBT
A. Simplex Connection
B. Full-Duplex Connection
Figure 5-2 Synchronous Serial Mode Connections
5.3.2 UART Mode Connections
Figure 5-3 shows serial port connections for either simplex or full-duplex UART
transfers.
SBO
SBI
SBO
SBI
SBO
SBI
SBO
SBI
A. Simplex Connection
B. Full-Duplex Connection
Figure 5-3 UART Mode Connections
2
5.3.3 I C Mode Connection
The serial interfaces can connect to I2C slave transmitters or receivers. For this
mode, always pull up the SBO and SBT pins to VDD. Either connect a pullup
resistor externally or turn on the internal one by setting the PPLU register.
SBO
SBT
Master
transmitter/
receiver
MN102H75K
Slave
transmitter/
receiver
Slave
transmitter/
receiver
2
Figure 5-4 I C Mode Connection
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
128
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Serial Interfaces
UART Mode Baud Rates
5.4 UART Mode Baud Rates
clock. The expression below is the formula for calculating the baud rate for the
UART mode. Table 5-2 shows the baud rate settings when BOSC = 24 MHz.
BOSC
baud rate (bps) = ----------------------------------------------
32 × (timer divisor)
Table 5-2 Example Baud Rate Settings for the UART Mode
Baud Rate
Timer 0/1 Divide-by Ratio
19200
9600
39
78
4800
2400
1200
600
156
313
625
1250
2500
300
5.5 Serial Interface Timing
5.5.1 Synchronous Serial Mode Timing
In these timing charts, the character length is 8 bits and there is parity.
Tx
SBO
SBT
b0 b1 b2 b3 b4 b5 b6 b7 PTY
Data write
TXBUSY
Tx interrupt
Figure 5-5 Synchronous Serial Transmission Timing
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
129
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Serial Interfaces
Serial Interface Timing
Rx
SBI
b0 b1 b2 b3 b4 b5 b6 b7 PTY
SBT
RXBUSY
Rx interrupt
RXA
(1 when Rx data in)
Data read
Figure 5-6 Synchronous Serial Reception Timing
5.5.2 UART Mode Timing
In these timing charts, the character length is 8 bits, the parity is none, and the
stop bit is 2-bit.
Tx
SBO
Data write
TXBUSY
ST b0 b1 b2 b3 b4 b5 b6 b7 SP SP
Tx interrupt
Figure 5-7 UART Transmission Timing
Rx
SBI
ST b0 b1 b2 b3 b4 b5 b6 b7 SP SP
RXBUSY
Rx interrupt
RXA
(1 when Rx data in)
Data read
Figure 5-8 UART Reception Timing
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
130
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Serial Interfaces
Serial Interface Setup Examples
5.6 Serial Interface Setup Examples
5.6.1 Setting Up UART Transmission Using Serial Interface 0
This example illustrates serial transmission in the UART mode with the fol-
lowing settings:
♦
♦
♦
♦
♦
BOSC = 24 MHz
tion 5.6.3, “Setting Up the Serial
Interface Clock,” on page 135,
for an example setup.
Baud rate = 9600 bps (transfer clock set up with timer 0)
8-bit character length
Two stop bits
Odd parity
When a transmission end interrupt occurs, the next data byte is loaded.
CORE
ROM, RAM
Bus Controller
Serial I/Fs
ADC
P0
P2
P4
P6
P1
P3
P5
Interrupts
Timers 0-1
Timers 2-3
SBO0
Figure 5-9 Block Diagram of UART Transmission Using Serial Interface 0
Data transmission starts when the CPU writes data to the SC0TRB register. The
transmission start is synchronized to timer 0 underflow. An interrupt occurs when
transmission ends, and the next data byte is written to SC0TRB. If the application
does not use interrupts, it must poll the SC0TBY flag of the SC0STR register. It
can write the transmission data when SC0TBY is 0.
■
To set up the output port:
Set the P5MD5 bit of the port 5 output mode register (P5MD) to 1. This selects
the SBO0 pin as the serial interface output port.
P5MD (example)
x’00FFFA’
Bit:
7
6
5
4
3
2
1
0
P5
P5
P5
P5
P5
P5
P5
P5
MD7
MD6
MD5
MD4
MD3
MD2
MD1
MD0
Setting:
0
1
0
0
0
0
0
0
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
131
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Serial Interfaces
Serial Interface Setup Examples
■
To set up serial interface 0:
1. Configure the transmission settings in the serial port 0 control register
(SC0CTR). Since the transfer clock is timer 0 divided by 8, select timer 0
underflow x 1/8 as the serial port 0 clock source. Select UART mode, odd
parity, 2-bit stop bit, 8-bit data length, and LSB-first output. Also set the
SC0REN and SC0TEN flags to 0, disabling transmission and reception.
SC0CTR (example)
x’00FD80’
Bit: 15
14
13
12
11
10
—
9
8
7
6
5
4
3
2
1
0
SC0
SC0
SC0
SC0
SC0
SC0
OD I2CM
SC0
SC0
LN
SC0
SC0
SC0
SC0
SB
SC0
S1
SC0
S0
—
TEN REN BRE I2CS PTL
PTY2 PTY1 PTY0
Setting:
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
1
2. Set the SC0TEN bit to 1 to enable transmission.
■
To enable serial 0 transmission end interrupts:
Cancel all existing interrupt requests. Next, set the interrupt priority level of 5 in
the ANLV[2:0] bits of the ANICH register, set the SCT0IE bit of SCT0ICH to 1,
and set the SCT0IR bit of SCT0ICL to 0. From this point on, an interrupt request
is generated whenever a serial data transmission ends.
ANICH: (example)
x’00FC81’
x’00FC82’
x’00FC83’
Bit:
7
6
5
4
3
2
1
0
—
ANLV2 ANLV1 ANLV0
—
—
—
ANIE
Setting:
0
1
0
1
0
0
0
0
SCT0ICL (example)
Bit:
7
6
5
4
3
2
1
0
SCT0
IR
SCT0
ID
—
—
—
—
—
—
Setting:
0
0
0
0
0
0
0
0
SCT0ICH (example)
Bit:
7
6
5
4
3
2
1
0
SCT0
IE
—
—
—
—
—
—
—
Setting:
0
0
0
0
0
0
0
1
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
132
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Serial Interfaces
Serial Interface Setup Examples
■
Transmission sequence:
1. Write the first data byte to SC0TRB. Once this data is in the register, trans-
mission begins, synchronized to timer 0.
2. When an interrupt occurs, the program branches to the interrupt service rou-
tine. The routine must determine the interrupt group, then clear the interrupt
request flag.
3. Write the next data byte to SC0TRB. Once the write is complete, transmis-
sion begins in 1 or 2 cycles of the transfer clock (timer 0 underflow).
Figure 5-10 shows an example timing chart.
TC0 underflow (1/8)
SC0TRB write
SBO0
ST b0 b1 b2 b3 b4 b5 b6 b7 PT SP SP
ST b0 b1 b2 b3 b4
Interrupt request
Interrupt service
routine
SC0TBSY
Figure 5-10 UART Transmission Timing (Serial Interface 0)
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
133
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Serial Interfaces
Serial Interface Setup Examples
5.6.2 Setting Up Synchronous Serial Reception Using Serial
Interface 0
This example illustrates serial reception in the synchronous serial mode with the
following settings:
♦
♦
♦
LSB first
8-bit character length
Odd parity
When a reception end interrupt occurs, the CPU reads the data byte.
■
■
To set up the input port:
Set the P5DIR7 bit of the port 5 I/O control register (P5DIR) to 0. This sets the
SBT0 pin to input.
To set up serial interface 0:
Configure the reception settings in the serial port 0 control register (SC0CTR).
Select timer 0 underflow x 1/8 as the serial port 0 clock source. Select timer 0
underflow x 1/8 as the serial port 0 clock source. Select synchronous serial mode,
odd parity, 8-bit data length, and LSB-first output.
SC0CTR (example)
x’00FD80’
Bit: 15
14
13
12
11
10
—
9
8
7
6
5
4
3
2
1
0
SC0
SC0
SC0
SC0
SC0
SC0
OD I2CM
SC0
SC0
LN
SC0
SC0
SC0
SC0
SB
SC0
S1
SC0
S0
—
TEN REN BRE I2CS PTL
PTY2 PTY1 PTY0
Setting:
1
1
0
0
1
0
0
0
1
1
1
1
0
0
0
1
■
To enable serial 0 transmission end interrupts:
Cancel all existing interrupt requests. Next, set the interrupt priority level of 5 in
the ANLV[2:0] bits of the ANICH register, set the SCR0IE bit of SCR0ICH to 1,
and set the SCR0IR bit of SCR0ICL to 0. From this point on, an interrupt request
is generated whenever a serial data reception ends.
ANICH: (example)
x’00FC81’
x’00FC84’
x’00FC85’
Bit:
7
6
5
4
3
2
1
0
—
ANLV2 ANLV1 ANLV0
—
—
—
ANIE
Setting:
0
1
0
1
0
0
0
0
SCR0ICL (example)
Bit:
7
6
5
4
3
2
1
0
SCR0
IR
SCR0
ID
—
—
—
—
—
—
Setting:
0
0
0
0
0
0
0
0
SCR0ICH (example)
Bit:
7
6
5
4
3
2
1
0
SCR0
IE
—
—
—
—
—
—
—
Setting:
0
0
0
0
0
0
0
1
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
134
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Serial Interfaces
Serial Interface Setup Examples
5.6.3 Setting Up the Serial Interface Clock
This example demonstrates how to set up a 19,200 bps transfer clock for the
UART interface by using timer 1 to divide BOSC/4 by 39. The example uses the
following settings:
♦
♦
♦
BOSC = 24 MHz
Clock source = timer 1 underflow x 1/8
Transfer clock = baud rate x 8
The serial interface determines the baud rate from the 8-bit underflow. Set up the
transfer clock by making the timer 1 underflow either two or eight times the
desired baud rate. The serial interface divides the timer underflow by two or
eight. (Always select divide-by-eight for UART transactions.) For a baud rate of
19,200, since BOSC/4 = 6 MHz,
6 MHz/39/8 = 19230.77 bps
This means that the timer 1 underflow must be divided by 39.
CORE
ROM, RAM
Bus Controller
Serial I/Fs
ADC
P0
P2
P4
P6
P1
P3
P5
Interrupts
Timers 0-1
Timers 2-3
Timers 4-5
Figure 5-11 Block Diagram of Serial Interface Clock
To set timer 1:
■
1. Disable timer 1 counting in the timer 1 mode register (TM1MD). This step is
unnecessary immediately after a reset, since TM1MD resets to 0.
TM1MD (example)
x’00FE21’
Bit:
7
6
5
4
3
2
1
0
TM1
EN
TM1
LD
TM1
S1
TM1
S0
—
—
—
—
Setting:
0
0
0
0
0
0
0
0
2. Set the divide-by ratio for timer 1. To divide BOSC/4 by 39, write x’26’ to the
timer 1 base register (TM1BR). (The valid range for TM1BR is 0 to 255.)
TM1BR (example)
x’00FE11’
Bit:
7
6
5
4
3
2
1
0
TM1
BR7
TM1
BR6
TM1
BR5
TM1
BR4
TM1
BR3
TM1
BR2
TM1
BR1
TM1
BR0
Setting:
0
0
1
0
0
1
1
0
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
135
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Serial Interfaces
Serial Interface Setup Examples
3. Set the TM1LD bit of the TM1MD register to 1. This loads the value in the
base register to the binary counter. At the same time, select the clock source
as BOSC/4 by writing b’00’ to TM1S[1:0].
Do not change the clock source
once you select it. Selecting the
clock source while you set up
the count operation control will
corrupt the value in the binary
counter.
TM1MD (example)
x’00FE21’
Bit:
7
6
5
4
3
2
1
0
TM1
EN
TM1
LD
TM1
S1
TM1
S0
—
—
—
—
Setting:
0
1
0
0
0
0
0
0
In the bank and linear address-
ing versions of the MN102
series, it was necessary to set
TM1EN and TM1LD to 0
4. Set TM1LD to 0 and TM1EN to 1. This starts the timer. Counting begins at
the start of the next cycle. When the binary counter reaches 0 and loads the
value x’26’ from the base register, in preparation for the next count, a timer 1
underflow occurs. The serial interface operates in sync with this underflow
between steps 3 and 4, to
ensure stable operation. This is
unnecessary in the high-speed
linear addressing version.
Figure 5-12 shows an example timing chart.
B
OSC
/4
TM1BR
TM1BC
00
00
26
26 00 26 00 26 00 26 00 26 00 26 00 26 00 26 00 26 00 26 00 26
TM1 output
(To serial I/F)
indicates 25, 24-02, and 01.
Figure 5-12 Serial Interface Clock Timing
The interrupt process is repeated each time the buffer receives another byte of
serial data.
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
136
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Serial Interfaces
Serial Interface Setup Examples
2
5.6.4 Setting Up I C Transmission Using Serial Interface 0
This example illustrates the microcontroller as a master transmitter in the I2C
mode, using the SBO0 and SBT0 pins.
■
To set up the output ports:
2
I C mode requires open-drain
Set the P5MD7 and P5MD5 bits of the port 5 output mode register (P5MD) to 1.
This selects the SBO0 and SBT0 pins as the output port for the I2C interface.
pins. To set this up, set the
ODASCI0 bit of PCNT0
(x’00FF90’) to 1. In addition, set
the P5PUP7 and P5PUP5 bits of
P5MD (example)
x’00FFFA’
Bit:
7
6
5
4
3
2
1
0
P5PUP (x’00FFB5’) to enable
pullup control of the SBO0 and
STB0.
P5
MD7
P5
MD6
P5
MD5
P5
MD4
P5
MD3
P5
MD2
P5
MD1
P5
MD0
Setting:
1
0
1
0
0
0
0
0
2
■
To set up the I C interface:
The parity bits serve as the ACK
signal. To output an ACK = 1 sig-
nal, select a fixed parity of 1. To
output an ACK = 0 signal, select
a fixed parity of 0. Select a parity
of none if there is no ACK signal.
Set the operating conditions in the serial control register (SC0CTR). Select ACK
= 1 output for the transfer clock (SC0PTY[2:0] = b’101’), 8-bit character length
(SCLN = 1), I2C protocol (SC0PTL = 1), I2C mode (SC0ICM = 1), and MSB-
first bit order (SC0OD = 1). Enable both transmission and reception (SC0TEN
and SC0REN = 1) and disable transmission breaks (SC0BRE = 0). Select the
timer 0 underflow rate divided by 8 as the clock source.
SC0CTR (example)
x’00FD80’
Bit: 15
14
13
12
11
10
—
9
8
7
6
5
4
3
2
1
0
SC0
SC0
SC0
SC0
SC0
SC0
OD I2CM
SC0
SC0
LN
SC0
SC0
SC0
SC0
SB
SC0
S1
SC0
S0
—
TEN REN BRE I2CS PTL
PTY2 PTY1 PTY0
Setting:
1
1
0
0
1
0
1
1
1
1
0
1
0
0
0
1
■
To set up the start sequence:
Reception must be enabled for
the circuit to detect a start
sequence.
Write a 1 to the SC0IIC bit of the SC0CTR register to signal the start sequence.
The SBO0 pin output immediately goes low. Read SC0STR to verify that the
start sequence occurred correctly (SC0IST = 1). At this point, even if another
start exists on the bus, an arbitration lost will not be detected.
■
To transmit the first data byte:
1. Load the data to the serial port 0 transmit/receive buffer, which initiates data
output. The SBO0 pin begins data output to the I2C bus when the SBT0
clock signal goes low, with a 1/8 clock cycle delay.
2. After transmission, both the SBO0 and SBT0 signals stay low.
■
■
To transmit a second data byte:
Load the data to the serial port 0 transmit/receive buffer. The sequence for the
first data byte repeats.
To set up the stop sequence:
1. When all the data has been transmitted, set the SC0IIC bit of SC0CTR to 0.
Never perform this step during transmission.
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
137
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Serial Interfaces
Serial Interface Setup Examples
Reception must be enabled for
the circuit to detect a stop
sequence.
2. When you perform step 1, the SBT0 output signal goes high. One cycle later,
the SBO0 output signal also goes high, signalling the stop sequence. The
SC0ISP flag of SC0STR becomes 1. The SC0IST and SC0ISP flags are both
Figure 5-13 shows an example timing chart.
I2C sequence
output bit
Write to
SC0TRB
b7 b6 b5 b4 b3 b2 b1 b0 ACK
Tx interrupt request
b7 b6 b5 b4 b3 b2 b1 b0 ACK
Tx interrupt request
SBO0 output
SBT0 output
Start detection bit = 1
Stop detection bit = 1
Start sequence
Data tx 1
Data tx 2
Stop sequence
2
Figure 5-13 Master Transmitter Timing in I C Mode (with ACK)
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
138
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Serial Interfaces
Serial Interface Setup Examples
2
5.6.5 Setting Up I C Reception Using Serial Interface 0
This example illustrates the microcontroller as a master receiver in the I2C mode,
using the SBO0 and SBT0 pins.
When initiating master receiver mode, your program must always first transmit a
runs after the data is transmitted. For an example setup of master transmission,
see section 5.6.4, “Setting Up I2C Transmission Using Serial Interface 0,” on
page 137.
2
■
You do not need to enable
To set up the I C interface:
1. During the interrupt service routine for the serial transmission end, enable
reception by setting the SC0REN bit of SC0CTR to 1.
reception if it is already enabled
by the initial settings. You can
also omit any settings already in
place from the transmission
2. Select ACK output of 1.
sequence.
To set up data reception:
■
The parity bits serve as the ACK
signal. To output an ACK = 1 sig-
nal, select a fixed parity of 1. To
output an ACK = 0 signal, select
a fixed parity of 0. Select a parity
of none if there is no ACK signal
1. Write a dummy data bit, x’FF’, to the serial port 0 transmit/receive buffer.
This sets the SBO0 signal high and initiates the master receiver mode.
2. During the service routine for the serial reception interrupt, the CPU reads
the transmit/receive buffer to retrieve the reception data. (A transmission
interrupt can serve as a reception interrupt.)
■
To set up the stop sequence:
1. Set the SC0IIC bit of SC0CTR to 0 to signal the stop sequence.
2. When you signal the stop sequence, the data reception is still in progress.
After the stop sequence is output, you must disable reception and reinitialize
reception for succeeding bytes.
Figure 5-14 shows an example timing chart.
I2C sequence
output bit
Write to
SC0TRB
Dummy data transmission for reception
SBO0 output
SBT0 output
b7 b6 b5 b4 b3 b2 b1 b0 ACK
Tx interrupt request
b7 b6 b5 b4 b3 b2 b1 b0 ACK
Tx interrupt request
Start detection bit = 1
Stop detection bit = 1
Rx settings
Data rx
Stop sequence
2
Figure 5-14 Master Receiver Timing in I C Mode (with ACK)
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
139
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Serial Interfaces
Serial Interface Control Registers
5.7 Serial Interface Control Registers
Three registers control each of the serial interfaces: the serial port control register
(SCnCTR), the serial transmit/receive buffer (SCnTRB), and the serial port status
register (SCnSTR).
Table 5-3 Serial Interface Control Registers
Register
Address R/W
Description
Serial I/F
SC0CTR
SC0TRB
SC0STR
SC1CTR
SC1TRB
SC1STR
x’00FD80’ R/W Serial port 0 control register
0
x’00FD82’ R/W Serial port 0 transmit/receive buffer
x’00FD83’
R
Serial port 0 status register
Serial I/F
1
x’00FD88’ R/W Serial port 1 control register
x’00FD8A’ R/W Serial port 1 transmit/receive buffer
x’00FD8B’
R
Serial port 1 status register
SC0CTR/SC1CTR: Serial Port n Control Register
x’00FD80’/x’00FD88’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
SCn
SCn
SCn
SCn
IIC
SCn
PTL
SCn
OD
SCn
ICM
SCn
LN
SCn
SCn
SCn
SCn
SB
SCn
S1
SCn
S0
—
—
TEN REN BRE
PTY2 PTY1 PTY0
Reset:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R/W: R/W R/W R/W R/W R/W
R
R/W R/W R/W R/W R/W R/W R/W
R
R/W R/W
SC0CTR controls the operating conditions for the serial interface, includ-
ing the clock source, the parity bit, the protocol, and transmit/receive
enabling.
SCnTEN: Serial port n transmit enable
0: Disable
1: Enable
SCnREN: Serial port n receive enable
0: Disable
1: Enable
SCnBRE: Serial port n break transmission
0: Don’t break
1: Break (Force SBOn to 0)
2
SCnIIC: Serial port n I C start/stop sequence output
Do not change this bit during transmission or reception.
0: Output stop sequence upon 1-to-0 transition
1: Output start sequence upon 0-to-1 transition
SCnPTL: Serial port n protocol select
0: UART
1: Synchronous serial or I2C
SCnOD: Serial port n bit order
This bit must be set to 0 during 7-bit transmission.
0: LSB first
1: MSB first
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
140
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Serial Interfaces
Serial Interface Control Registers
2
SCnICM: Serial port n I C mode select
0: I2C mode off
1: I2C mode on
SCnLN: Serial port n character length
0: 7-bit
1: 8-bit
SCnPTY[2:0]: Serial port n parity bit select
000:None
001:Reserved
010:Reserved
011:Reserved
100:0 (output low)
101:1 (output high)
110:Even (1s are even)
111:Odd (1s are odd)
SCnSB: Serial port n stop bit select (UART mode only)
0: 1-bit
1: 2-bit
SCnS[1:0]: Serial port n clock source select
The 00 and 10 settings are reserved in UART and I2C modes.
00: SBTn pin
01: Timer 0 underflow × 1/8
10: Timer 1 underflow × 1/2
11: Timer 1 underflow × 1/8
SC0TRB/SC1TRB: Serial Port n Transmit/Receive Buffer x’00FD82’/x’00FD88’
Bit:
7
6
5
4
3
2
1
0
SCn
SCn
SCn
SCn
SCn
SCn
SCn
SCn
TRB7
TRB6
TRB5
TRB4
TRB3
TRB2
TRB1
TRB0
Reset:
R/W:
—
—
—
—
—
—
—
—
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Data transmission begins when the CPU writes data to SCnTRB.
The CPU retrieves the data by reading SCnTRB. SCnTRB has two respec-
tive buffers, for transmission and for reception. The buffers for reception is
consist of two buffers and the received data is set to SCnTRB after the
reception ends, and held until that of the next data ends
Over-run-error occurs if SCnTRB is not read, before the reception of the
next data ends (See 5-5)
When the received data is set to SCnTRB, reception end interrupt occurs
and SCnRXA flag of SCnTRB register is set to 1.
During 7-bit transfers, the most significant bit (bit 7) of SCnTRB is always
0.
The reset value of SC0TRB is undefined.
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
141
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Serial Interfaces
Serial Interface Control Registers
SC0STR/SC1STR: Serial Port n Status Register
x’00FD83’/x’00FD8B’
Bit:
7
6
5
4
3
2
1
0
SCn
TBY
SCn
RBY
SCn
ISP
SCn
RXA
SCn
IST
SCn
FE
SCn
PE
SCn
OE
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
SCnSTR contains the error detection and status flags for the serial inter-
faces.
SCnTBY: Serial port n transmission busy flag
0: OK to transmit
1: Transmission in progress
SCnRBY: Serial port n reception busy flag
0: OK to receive
1: Reception in progress
2
SCnISP: Serial port n I C stop sequence detect
A read or write to SCnTRB clears this bit.
0: No stop sequence
1: Stop sequence detected
SCnRXA: Serial port n received data flag
0: Not received
1: Received
2
SCnIST: Serial port n I C start sequence detect
A read or write to SCnTRB clears this bit.
0: No start sequence
1: Start sequence detected
SCnFE: Serial port n framing error
A framing error occurs when a 0 is received during stop bit transfer. Fram-
ing error data is updated each time the stop bit is received.
0: No error
1: Framing error occurred
SCnPE: Serial port n parity error
A parity error occurs when the received parity bit is 1 and the parity setting
is 0; when the received parity bit is 0 and the parity setting is 1; when the
received parity bit is odd and the parity setting is even; or when the
received parity bit is even and the parity setting is odd. Parity error data is
updated each time the parity bit is received.
0: No error
1: Parity error occurred
SCnOE: Serial port n overrun error
An overrun error occurs during reception when a data byte reception ends
before the CPU has read the previous byte from SCnTRB. Overrun error
data is updated each time the last data bit (seventh or eighth bit) is received.
0: No error
1: Overrun error occurred
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
142
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Analog-to-Digital Converter
Description
6
Analog-to-Digital Converter
6.1 Description
The MN102H75K/85K contains an 8-bit charge redistribution A/D converter
(ADC) that can process up to 12 channels. The reference clock is selectable to
B
B
OSC x 1/8 or 1/16. When BOSC is 24 MHz, you must set the reference clock to
OSC/8 (conversion rate = 4 µs) or higher.
V
DD
ADIN0
ADIN1
ADIN2
ADIN3
ADIN4
ADIN5
ADIN6
ADIN7
ADIN8
ADIN9
ADIN10
ADIN11
AN0BUF
AN1BUF
AN2BUF
AN3BUF
AN4BUF
AN5BUF
AN6BUF
AN7BUF
AN8BUF
AN9BUF
AN10BUF
AN11BUF
M
U
X
8-bit
successive-
approximation
ADC
Sample
and
hold
V
SS
Figure 6-1 ADC Architecture
6.2 Features
Table 6-1 ADC Functions and Features
Function/Feature
Description
Sample and hold
Conversion time
Clock sources
Embedded
4 µs per channel (when B
= 24 MHz)
OSC
Programmable to B
divided by 8 or 16
OSC
(1)
Operating modes
46 operating modes (four types)
• Single conversion of one input (channel 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or 11)
• Single conversion of multiple inputs (channels 0–n, where n = 1–11)
• Continuous conversion of one input (channel 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or 11)
• Continuous conversion of multiple inputs (channels 0–n, where n = 1–11)
Conversion start
Interrupts
Timer 1 underflow or register setting
An interrupt is generated each time a single or continuous conversion sequence ends
Note:
1. Channels correspond to the ADIN pin having the same number. For instance, channel 3 (or ch3) corresponds to
ADIN3.
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
143
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Analog-to-Digital Converter
Block Diagram
6.3 Block Diagram
ADIN0
ADIN1
ADIN2
ADIN3
128 64 32 16
8
4
2
1
1
ADIN4
ADIN5
ADIN6
ADIN7
ADIN8
M
U
X
V
V
DD
SS
ADIN9
ADIN10
ADIN11
Storage of converted data
Shift register for state information
ANCTR
ANNCH
AN1CH
INC
AN11BUF-AN0BUF
Interrupt
generated
B
Divider
Data registers
8-bit x 12
OSC
Compare
A/D interrupt request
Figure 6-2 ADC Block Diagram
6.4 A/D Conversion Timing
6.4.1 Selecting the ADC Clock Source
Calculate the A/D conversion time as follows:
conversion time (s) = [12 (cycles) × (BOSC cycle) (s) × divide-by ratio] / ch
For example, if you set the clock source to BOSC/8, the conversion time is BOSC
× 96 cycles.
- Interrupt
- Write to
register
Transfer
State
S/H
bit 7
6
5
4
3
2
1
0
In continuous mode
S/H bit 7
Reference
Clock
12 cycles
Figure 6-3 ADC Timing
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
144
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Analog-to-Digital Converter
A/D Conversion Timing
6.4.2 Single Channel/Single Conversion Timing
When ANMD[1:0] = b’00’, the ADC converts one ADIN input signal a single
time. An interrupt occurs when the conversion ends. Load the number of the
channel to be converted to the AN1CH[3:0] field of the ADC control register
(ANCTR). (The ANNCH[3:0] field is ignored in this mode.)
When the software starts the conversion, write a 0 to the ANTC bit (disabling
conversion start at timer 1 underflow), then write a 1 to ANEN. (If ANTC = 1,
ANEN goes high upon a timer 1 underflow.) ANEN remains high during the con-
version, then clears to 0 when the conversion ends.
Start
Stop
Interrupt
request
Channel 0 Channel 1 Channel 2
conversionconversionconversion
State
ANEN
Figure 6-4 Single Channel/Single Conversion Timing
6.4.3 Multiple Channel/Single Conversion Timing
When ANMD[1:0] = b’01’, the ADC converts multiple, consecutive ADIN input
signals a single time. An interrupt occurs when the conversion sequence ends.
Load 0s to the AN1CH[3:0] field of the ADC control register (ANCTR), then
load the number of the final channel in the sequence to the ANNCH[3:0] field.
The sequence always begins with channel 0.
When the software starts the conversion, write a 0 to the ANTC bit (disabling
conversion start at timer 1 underflow), then write a 1 to ANEN. (If ANTC = 1,
ANEN goes high upon a timer 1 underflow.) ANEN remains high during the con-
version, then clears to 0 when the conversion sequence ends. Note that the
AN1CH[3:0] field holds the number of the channel being converted. It clears to 0
when the sequence ends.
Start
Stop
Interrupt
request
Channel 0 Channel 1 Channel 2
conversionconversionconversion
State
ANEN
Figure 6-5 Multiple Channel/Single Conversion Timing
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
145
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Analog-to-Digital Converter
A/D Conversion Timing
6.4.4 Single Channel/Continuous Conversion Timing
When ANMD[1:0] = b’10’, the ADC converts one ADIN input signal contin-
uously. An interrupt occurs each time the conversion ends. Load the number of
the channel to be converted in the AN1CH[3:0] field of the ADC control register
(ANCTR). (The ANNCH[3:0] field is ignored in this mode.)
When the software starts the conversion, write a 0 to the ANTC bit (disabling
conversion start at timer 1 underflow), then write a 1 to ANEN. (If ANTC = 1,
ANEN goes high upon a timer 1 underflow.) ANEN remains high during the con-
version. To end the A/D conversion, write a 0 to ANEN.
Start
Stop
Interrupt
requests
Channel n Channel n Channel n Channel n Channel n
conversionconversionconversionconversionconversion
State
ANEN
Figure 6-6 Single Channel/Continuous Conversion Timing
6.4.5 Multiple Channel/Continuous Conversion Timing
When ANMD[1:0] = b’11’, the ADC converts multiple, consecutive ADIN input
signals continuously. An interrupt occurs each time the conversion sequence
ends. Load 0s to the AN1CH[3:0] field of the ADC control register (ANCTR),
then load the number of the final channel in the sequence to the ANNCH[3:0]
field. The sequence always begins with channel 0.
When the software starts the conversion, write a 0 to the ANTC bit (disabling
conversion start at timer 1 underflow), then write a 1 to ANEN. (If ANTC = 1,
ANEN goes high upon a timer 1 underflow.) ANEN remains high during the con-
version. To end the A/D conversion, write a 0 to ANEN. Note that the
AN1CH[3:0] field holds the number of the channel being converted. It clears to 0
when the sequence ends.
Start
Stop
Interrupt
requests
Channel 0 Channel 1 Channel 2 Channel 0 Channel 1 Channel 2 Channel 0
conversionconversionconversionconversionconversionconversionconversion
State
ANEN
Figure 6-7 Multiple Channel/Continuous Conversion Timing
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
146
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Analog-to-Digital Converter
ADC Setup Examples
6.5 ADC Setup Examples
6.5.1 Setting Up Software-Controlled Single-Channel A/D Conversion
This example illustrates single-channel conversion controlled by the software.
The ADIN6 pin inputs an analog voltage signal (0.0 V–3.3 V) and the ADC
converts it to 8-bit digital values.
MN102H75K
3.3 V
P11, ADIN6
0 V
Figure 6-8 Single-Channel A/D Conversion
■
■
To set up the input port:
Set the P1MD2 bit of the port 1 output mode register (P1MD) to 1. This sets the
ADIN6 pin (P11) to analog input.
To set up the ADC:
1. Set the operating conditions in the ADC control register (ANCTR). Select
single-channel, single-conversion mode (ANMD[1:0] = b’00’), BOSC/8 as
the clock source (ANCK[1:0] = b’10’), and channel 6 as the conversion
channel (AN1CH[3:0] = b’011’). Set the conversion start/busy bit, ANEN,
to 0.
ANCTR (example)
x’00FF00’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
AN
AN
AN
AN
AN
AN
AN
AN
AN
EN
AN
TC
AN
CK1
AN
AN
AN
—
—
NCH3 NCH2 NCH1 NCH0 1CH3 1CH2 1CH1 1CH0
CK0 MD1 MD0
Setting:
0
0
0
0
0
1
1
0
0
0
0
0
1
0
0
0
When the software controls the
conversion start, it must set the
ANEN flag to 1.
2. Set ANEN to 1 to start conversion. Conversion starts on the first rising edge
of the ADC clock after ANEN is set. The conversion time is 12 cycles of the
ADC clock. When BOSC = 24 MHz, this is 4.0 µs, or 4.0µs–4.3 µs after
ANEN is set.
The ADC can also generate an
interrupt when the conversion
ends, once the data is stored in
AN6BUF. In this case, the
software does not need to wait
for the ANEN flag before reading
AN6BUF.
3. Wait for the conversion to end. Since ANEN remains high during conver-
sion, then clears to 0, the program must wait until ANEN is 0.
4. Read the ADIN6 conversion data buffer (AN6BUF). The converter divides 0
to 3.3 volts into 256 segments, so the digital result is a value from 0 to 255.
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
147
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Analog-to-Digital Converter
ADC Setup Examples
AN6BUF (example)
x’00FF14’
Bit: 15
14
13
12
11
—
10
—
9
8
7
6
5
4
3
2
1
0
ANn ANn ANn ANn ANn ANn ANn ANn
BUF7 BUF6 BUF5 BUF4 BUF3 BUF2 BUF1 BUF0
—
—
—
—
—
—
ANCTR
set
ANEN
State
ADIN6 converting
Reference
clock
1
2
3
4
10 11 12
AN6BUF
VALID
AN6BUF
read
Interrupt
Figure 6-9 Timing of Software-Controlled Single-Channel A/D Conversion
6.5.2 Setting Up Hardware-Controlled Intermittent Three-Channel
A/D Conversion
This example illustrates multiple-channel conversion controlled by the hardware.
The ADIN2, ADIN1, and ADIN0 pins input analog voltage signals ( 0.0 V– 3.3
V) and the ADC converts the voltages to 8-bit digital values. It writes the results
to the registers periodically, each time timer 1 underflows.
Slider 1
Slider 2
Slider 3
10
10
10
5
0
5
0
5
0
MN102H75K
ch0
ch1
ch2
A/D converter data registers
Underflow
MN102
CPU core
Timer 1
Figure 6-10 Multiple-Channel A/D Conversion
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
148
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Analog-to-Digital Converter
ADC Setup Examples
■
■
To set up the input port:
Set the P0DIR[5:3] bits of the port 0 I/O control register (P0DIR) to 0. This sets
the ADIN2 (P05), ADIN1 (P04), and ADIN0 (P03) pins (P11) to general-purpose
input.
To set up the ADC:
Set the operating conditions in the ADC control register (ANCTR). Select
multiple-channel, single-conversion mode (ANMD[1:0] = b’01’) and BOSC/8 as
the clock source (ANCK[1:0] = b’10’). Set the conversion start/busy bit, ANEN,
to 0. Set ANTC to 1, enabling conversion start at timer 1 underflow. Set the
AN1CH[3:0] field to the first channel (channel 0) and set the ANNCH[3:0] to the
last channel (channel 2).
ANCTR (example)
x’00FDA0’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
AN
AN
AN
AN
AN
AN
AN
AN
AN
EN
AN
TC
AN
CK1
AN
AN
AN
—
—
NCH3 NCH2 NCH1 NCH0 1CH3 1CH2 1CH1 1CH0
CK0 MD1 MD0
Setting:
0
0
1
0
0
0
0
0
0
1
0
0
1
0
0
1
■
To set up the conversion cycle
1. Set the divide-by ratio for timer 1. To divide BOSC/4 by 256, write 255
(x’FF’) to the timer 1 base register (TM1BR). (The valid range for TM1BR
is 1 to 255.)
TM1BR (example)
x’00FE11’
Bit:
7
6
5
4
3
2
1
0
TM1
BR7
TM1
BR6
TM1
BR5
TM1
BR4
TM1
BR3
TM1
BR2
TM1
BR1
TM1
BR0
Setting:
1
1
1
1
1
1
1
1
2. Set the TM1LD bit of the TM1MD register to 1 and the TM1EN bit to 0.
(This loads the value in the base register to the binary counter.)
TM1MD (example)
x’00FE21’
Do not change the clock source
once you have selected it.
Selecting the clock source while
you set up the count operation
control will corrupt the value in
the binary counter.
Bit:
7
6
5
4
3
2
1
0
TM1
EN
TM1
LD
TM1
S1
TM1
S0
—
—
—
—
Setting:
0
1
0
0
0
0
1
0
3. Set TM1LD to 0 and TM1EN to 1. This starts the timer. Counting begins at
the start of the next cycle.
When the binary counter (TM1BC) reaches 0, the microcontroller reloads the
value in the base register (TM1BR) to TM1BC and simultaneously generates a
timer 1 underflow interrupt. After each timer 1 underflow, the ADC converts
each of the ADIN[2:0] inputs a single time.
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
149
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Analog-to-Digital Converter
ADC Control Registers
Timer 1
underflow
Conversion
Interrupts
Channel 0 Channel 1 Channel 2
Channel 0 Channel 1 Channel 2
Figure 6-11 Timing of Hardware-Controlled Intermittent Three-Channel A/D
Conversion
6.6 ADC Control Registers
The ADC contains thirteen registers—one control register (ANCTR) and twelve
data buffers (each associated with one of the ADIN pins). ANCTR controls the
operating conditions, and the read-only data buffers hold the results of the A/D
conversions.
Table 6-2 ADC Control Registers
Register Address R/W
Description
ANCTR
x’00FF00’ R/W ADC control register
AN0BUF
AN1BUF
AN2BUF
AN3BUF
AN4BUF
AN5BUF
AN6BUF
AN7BUF
AN8BUF
AN9BUF
AN10BUF
AN11BUF
x’00FF08’
x’00FF0A’
x’00FF0C’
x’00FF0E’
x’00FF10’
x’00FF12’
x’00FF14’
x’00FF16’
x’00FF18’
x’00FF1A’
x’00FF1C’
x’00FF1C’
R
R
R
R
R
R
R
R
R
R
R
R
ADIN0 conversion data buffer
ADIN1 conversion data buffer
ADIN2 conversion data buffer
ADIN3 conversion data buffer
ADIN4 conversion data buffer
ADIN5 conversion data buffer
ADIN6 conversion data buffer
ADIN7 conversion data buffer
ADIN8 conversion data buffer
ADIN9 conversion data buffer
ADIN10 conversion data buffer
ADIN11 conversion data buffer
AN0BUF–AN11BUF: ADIN0–ADIN11 Conversion Data Buffers x’00FF00’–x’00FF1C’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
ANn ANn ANn ANn ANn ANn ANn ANn
BUF7 BUF6 BUF5 BUF4 BUF3 BUF2 BUF1 BUF0
—
—
—
—
—
—
—
—
Reset:
R/W:
0
0
0
0
0
0
0
0
—
R
—
R
—
R
—
R
—
R
—
R
—
R
—
R
R
R
R
R
R
R
R
R
These buffers hold the 8-bit A/D conversion data. Their value is unknown
after reset.
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
150
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Analog-to-Digital Converter
ADC Control Registers
ANCTR: ADC Control Register
x’00FF00’
Bit: 15
14
13
12
11
10
9
8
7
6
5
0
4
0
3
2
1
0
AN
AN
AN
AN
AN
AN
AN
AN
AN
EN
AN
TC
AN
CK1
AN
AN
AN
NCH3 NCH2 NCH1 NCH0 1CH3 1CH2 1CH1 1CH0
CK0 MD1 MD0
Reset:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R/W: R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W
R
R
R/W R/W R/W R/W
ANNCH[3:0]: Channel select for multiple-channel conversion
0000: Convert ADIN0
0111: Convert ADIN0–ADIN7
1000: Convert ADIN0–ADIN8
1001: Convert ADIN0–ADIN9
1010: Convert ADIN0–ADIN10
1011: Convert ADIN0–ADIN11
1100–1111: Reserved
0001: Convert ADIN0–ADIN1
0010: Convert ADIN0–ADIN2
0011: Convert ADIN0–ADIN3
0100: Convert ADIN0–ADIN4
0101: Convert ADIN0–ADIN5
0110: Convert ADIN0–ADIN6
AN1CH[3:0]: Channel select for single-channel conversion
0000: Convert ADIN0
0001: Convert ADIN1
0010: Convert ADIN2
0011: Convert ADIN3
0100: Convert ADIN4
0101: Convert ADIN5
0110: Convert ADIN6
0111: Convert ADIN7
1000: Convert ADIN8
1001: Convert ADIN9
1010: Convert ADIN10
1011: Convert ADIN11
1100–1111: Reserved
ANEN: Conversion start/busy flag
0: No conversion in progress
1: Conversion in progress
ANTC: Conversion start at timer 1 underflow
0: Disable
1: Enable
ANCTR5
Always set this bit to 0.
ANCK[1:0]: Clock source select
00: Reserved
01: Reserved
10: BOSC /8
11: BOSC /16
ANMD[1:0]: Operating mode select
00: Single channel, single conversion
01: Multiple channels, single conversion
10: Single channel, continuous conversion
11: Multiple channels, continuous conversion
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
151
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Analog-to-Digital Converter
Cautions about Analog-to-Digital Converter
6.7 Cautions about Analog-to-Digital Converter
The type of this Analog-to-Digital Converter is a sample-hold one, and so the
current temporarily flows in conversion to charge the condenser of the sample-
hold circuit. For this reasons, the following settings are needed to get the
accurancy of convension:
1. Impedance of analog input terminal must be below 8kΩ.
2. When impedance of analog input terminal is over 8kΩ, condenser which
capacity is above 2000 pF must be connected to suppress the voltage
changes of the analog input terminal.
3. During conversion do not change the output level of the terminal (from H to
L or from L to H), and not turn on and off the peripheral circuit, cause these
actions may influence the power supply voltage.
analog signal output
micro computer
equivalent circuit
R
Analog-to-Digital
C
ni put terminal
Vss
R<< 8kΩ
or
C≥ 2000pF
Figure 6-12 Cautions on Analog-to-Digital Converter
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
152
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
Description
7
On-Screen Display
7.1 Description
The MN102H75K/85K contains an on-screen display (OSD) function composed
of three layers: a text layer, a graphics layer, and a cursor layer. You can control
each layer individually, which gives you great freedom in positioning displays.
You can also modify the ROM space that contains the text characters and the
graphic tiles and the VRAM space that contains the text and graphics programs.
This allows you to adjust the memory space to fit your application.
If you use the OSD function, the
DMA function executes for both
the text and graphics layers,
even if your program does not
use one of these layers. To pre-
vent error, program data for the
unused layer to meet the restric-
tions outlined here.
7.2 Features
Table 7-1 OSD Functions and Features
Function/Feature
Characters or tiles per line
RAM usage
Text Layer
38 characters per line
Graphics Layer
18 or 28 tiles per line
(1)
(2)
(3)
80 bytes per line
Line-by-line basis
Maximum 64 lines
40 or 64 bytes per line
Line-by-line basis
Maximum 64 lines
(4)
ROM usage
36 bytes per character
16 colors: 128 bytes per tile
8 colors:
4 colors:
2 colors:
96 bytes per tile
64 bytes per tile
32 bytes per tile
Max. characters or tiles
Resolution
1024 characters
512 tiles (in all color modes)
16 (W) x 16 (H) pixels, or
16 (W) x 18 (H) pixels
16 (wide) x 18 (high) pixels
In closed-caption mode:
16 (W) x 26 (H) (underlining is in the hardware)
One 16-color palette out of 4096 colors
Color depth
Two 16-color palettes out of 4096 colors
(Total 32 colors in one display)
H: 1 dot resolution, 1024 steps
V: 1 H scan line resolution, 1024 steps
16 character sizes, line-by-line basis
H: 1x, 2x, 3x, 4x
(5)
Display start position
H: 1 dot resolution, 1024 steps
V: 1 H scan line resolution, 1024 steps
16 character sizes, line-by-line basis
H: 1x, 2x, 3x, 4x
(5)
Character or tile size
V: 1x, 2x, 4x, 6x
V: 1x, 2x, 4x, 6x
(6)
Display functions
• Shutter effect
• Repeated tile or blank
• Outlining
• Shadowing (foreground and background)
• Blinking
In closed-caption mode:
• Italics
• Underlining
Cursor layer
Selects one tile from the graphic tile area (16 x 16)
Display position: H: 1 dot resolution, 1024 steps
V: 1 H scan line resolution, 1024 steps
Notes:
1. Maximum 60 characters + tiles in one line (when using a 64-byte graphics line). For example,
(1) If a graphics line contains 28 tiles, then the corresponding line in the text layer can only contain 32 characters.
(2) If a text line contains 38 characters, then the corresponding line in the graphics layer can only contain 22 tiles.
2. Maximum 38 characters per line (60 characters + tiles) with the default text colors. Each color assignment, including outlining
and blinking, decreases this total by one.
3. The maximum number of tiles per line is programmable in the GEXTE bit of the OSD2 register. 18 tiles requires 40 bytes per
line, and 28 tiles requires 64 bytes per line. The setting applies to all lines.
4. Multiple modes cannot be used simultaneously—the color mode applies to the entire display.
5. The OSD dot clock frequency controls the horizontal position and size. For details, see section 7.9.4, “Setting Up the OSD Dis-
play Position,” on page 180, and section 7.11, “Selecting the OSD Dot Clock,” on page 186.
6. This function can be used for a wallpapering effect or to insert spaces. One tile code can be repeated up to 16 times. Repeating
tiles allows you to use more than 18 (or 28) tiles per line.
7. For the OSD block to operate correctly, always set bit 7of the PCNT2 register (x’00FF92’) to 0.
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
153
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
Block Diagram
7.3 Block Diagram
C l o c k s e l e c t
P o l a r i t y s w i t c h
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
154
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
Power-Saving Considerations in the OSD Block
7.4 Power-Saving Considerations in the OSD
Block
Table 7-2 shows bits that can decrease the power consumption of the OSD block.
This section explains how to use these bits.
Table 7-2 Power-Saving Control Bits for the OSD
Bit Name Register Address Bit
Description
Reset
OSDPOFF
PCNT0
x’00FF90’
7
0: System clock off to OSD
1: System clock on to OSD
0
OSDPOFF resets to 0. To
operate the OSD, you must first
set this bit to 1.
OSDREG
E
PCNT2
x’00FF92’
0
0: R/W disabled for OSD registers
1: R/W enabled for OSD registers
0
Using OSDPOFF to control the system clock supply to the OSD
■
■
The OSDPOFF bit enables or disables the system clock supply to the OSD block.
When the OSD is unused, setting this bit to 0 stops the clock supply to the OSD,
reducing power dissipation. Setting OSDPOFF to 0 not only disables the OSD
display, it disables reads from and writes to the OSD registers. To operate the
OSD, set this bit to 1, then set up the OSD registers.
To turn off the OSD block to save
power:
1. Write a 0 to OSD (OSD1, bit 10).
2. Wait for the next VSYNC input.
3. Write a 0 to OSDPOFF (PCNT0,
bit 7), turning the clock off.
If you turn the clock off before the
VSYNC input, power usage may
not drop or the microcontroller may
halt.
Using OSDREGE to control read/write access to the OSD registers
The OSDREGE bit enables or disables read/write operations to the OSD reg-
isters. Once you have set the OSD registers, you can write a 0 to this bit to
disable furthers reads and writes to them, reducing power dissipation. This bit
resets to 0.
Note that when OSDPOFF is 0, you cannot read or write to the OSD registers
even if OSDREGE is 1. Table 7-3 shows the combinations of OSDPOFF and
OSDREGE. Note also that when OSDREGE is 0, the OSD display runs, but the
shuttering motion does not work. If your application requires shutter movement,
you must enable OSDREGE.
Table 7-3 OSDPOFF and OSDREGE Settings
OSDPOFF
OSDREGE OSD Register R/W Power Dissipation
0
1
1
Don’t care
Off
On
On
Disabled
Disabled
Enabled
Less
0
1
Greater
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
155
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
OSD Operation
7.5 OSD Operation
This section describes the basic operation of the OSD block. The remainder of
section 7 provides more detailed specifications.
7.5.1 OSD Clock
The OSD clock source is programmable to either the microcontroller system
clock (OSC1, OSC2 pins) or a dedicated OSD clock (OSDXI, OSDXO pins).
■
■
OSC clock source
See section 7.11, “Selecting the
OSD Dot Clock,” on page 186,
for information on setting the
OSD clock frequency.
An internal phase-locked loop (PLL) multiplies the external 4-MHz frequency to
generate an OSD clock that is synchronized to the trailing edge of the horizontal
sync signal (HSYNC). This dramatically reduces EMI and character distortion.
The output frequency is programmable to 12, 16, 24, 32 or 48 MHz.
OSDX clock source
An LC blocking oscillator allows HSYNC to serve as the clock source. You can
also input an external clock through the OSDXI pin and synchronize it internally.
(Frequency range: 12–48 MHz)
7.5.2 External Input Sync Signals
Input the horizontal sync signal through the HSYNC pin and the vertical sync
signal through the VSYNC pin. The pullup resistors and polarity are pro-
grammable. An interrupt must occur so that the microcontroller can detect each
VSYNC start field. Set the interrupt edge in the IQ1TG[1:0] bits of the EXTMD
registers and the OSD input polarity in the VPOL bit of the OSD1 register. Note
that you must these parameters separately.
7.5.3 Multi-Layer Format
Multi-layer technology enables the microcontroller to display text, graphics, and
hardware cursor as different display layers with different color depths. You can
stack the layers in any order. When the layers contain overlapping images, the
cursor always takes highest priority. The priority of the text and graphics layers is
programmable in the registers.
■
Text layer
Each character in the text layer contains a foreground (character) color and a
background color. Outlining and shadowing are separate options. In closed-
caption mode, the OSD can only display the text in the encoded captions. The
graphics and cursor layers can be displayed in this mode, but note that if any tiles
from either layer overlaps italicized text, the pixels in the graphic will be dis-
placed, distorting the image.
Do not layer any graphic or cur-
sor tiles over italicized charac-
ters in closed-caption mode.
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
156
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
OSD Operation
■
Graphics layer
The graphics layer contains tiled images. In the 16-color mode, each 4-bit dot on
a tile can display one of 16 colors. Each tile can use either of two available color
palettes, allowing a total of 32 colors in one display. The graphics layer also
supports 2-, 4-, and 8-color modes. All the tiles in a single display screen must be
in the same color mode. (For instance, an 8-color-mode tile cannot be displayed
at the same time as a 16-color-mode tile.) The size of one tile is 16W x 16H
pixels in standard mode and 16W x 18H pixels in extended mode.
■
Cursor layer
The cursor layer displays an icon indicating the position of the next entry. One
display screen displays only one cursor (tile). The ROM data and color palettes
for the tile are the same as those of the graphics layer. The size of one tile is 16W
x 16H pixels in standard mode and 32W x 32H pixels in extended mode.
7.5.4 Output Pin Setup
To set up the output pins, enable the OSD output pins in the I/O registers. Select
DAC or digital output for RGB and YM. Set the YS polarity.
When you are not using the
DAC, set the COMP and IREF
pins for the DAC to H.
7.5.5 Microcontroller Interface
The microcontroller writes display data to be sent to the OSD control registers
and the VRAM, which is assigned to internal RAM space. The control registers
(CRAMEND and GRAMEND) hold the end address of the data in the VRAM.
7.5.6 VRAM
Display data stored in the VRAM transfers automatically (through) a DMA
transfer) from the internal RAM to the OSD as the display approaches its
specified position. The microcontroller is suspended while the data is transferred
on the bus. See section 7.10, “DMA and Interrupt Timing,” on page 185, for
more information on this timing.
After a reset clears, the system
clock supply to the OSD stops.
To operate the OSD, you must
first set the OSDPOFF bit of
PCNT0 (x’00FF90’)to 1.
The two MSBs of the transferred data contain one or more of the following ID
codes:
■
Text layer
1. Character code
CC
2. Color control code (normal mode)
3. Color control code (closed-caption mode)
4. Repeat character/blank code
5. Character horizontal position code
6. Character vertical position code
COL
COL
CCB
CHP
CVP
■
Graphics layer
1. Graphic tile code
GTC
GHP
GVP
2. Graphics horizontal position code
3. Graphics vertical position code
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
157
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
OSD Operation
7.5.7 Conditions for VRAM Writes
■
Text layer
1. The lead data for each line must be the color control code (COL) or the char-
acter code (CC). Never place the horizontal position (CHP), vertical position
(CVP), or repeat (CCB) codes at the beginning of a line. (If the lead data is
CC, with no COL specification, the character will be text palette color 1, and
the background will be color 2.)
Set CHP, CVP, GHP, and GVP
for every line in the VRAM. If
you do not, a software
processing error may occur.
2. Place each line’s horizontal and vertical position data (CHP and CVP), in
that order, at the end of the preceding line.
3. Insert the color control code (COL) before the character code (CC). You do
not need to meet condition 3 in the closed-caption mode, since COL can
carry over in that mode.
4. A character code (CC) must immediately precede a repeat character/blank
code (CCB), and a color control code (COL) or character code (CC) must
follow it.
5. To indicate the last line of a display, make the CHP and CVP values for the
last line smaller than those in the currently displayed line. In addition, write
a 1 to the last line flag of the text layer (CLAST).
6. Two text lines (but no more) can overlap on the screen. The lower line takes
priority, appearing to lie on top of the higher line.
details, see section 7.10.4, “Setting Up the OSD Display Position,” on page
189.)
■
Graphics layer
1. Place each line’s horizontal and vertical position data (GHP and GVP), in
that order, at the end of the preceding line. Do not place GHP and GVP at the
start of a line.
2. To indicate the last line of a display, make the GHP and GVP values for the
last line smaller than those in the currently displayed line. In addition, write
a 1 to the last line flag of the graphics layer (GLAST).
3. Two graphic lines (but no more) can overlap on the screen. The lower line
takes priority, appearing to lie on top of the higher line.
details, see section 7.10.4, “Setting Up the OSD Display Position,” on page
189.)
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
158
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
Standard and Extended Display Modes
7.6 Standard and Extended Display Modes
Two modes are available for the graphics and cursor layers, standard and
extended. In extended mode, the cursor layer can display four grouped graphic
tiles rather than one. The graphics layer can display tiles that are two pixels taller
than those used in standard mode, giving the graphic tiles the same dimensions as
the characters in the text layer.
7.6.1 Cursor Layer Display Modes
The size of the cursor in the cursor layer is programmable to 16W x 16H pixels in
standard mode and 32W x 32H pixels in extended mode. Select the mode for this
layer in the SPEXT bit of the OSD2 register (x’007F08’).
To create a graphic for the cursor layer in extended mode, combine four 16 x 16
tiles. They are ordered as follows: (1) upper left, (2) upper right, (3) lower left,
and (4) lower right. Set the pointers to these tiles in cursor tile code registers 0 to
3 (STC0–3), where STC0 corresponds to tile (1). Table 7-4 shows the associated
tiles and registers.
Display start position
set in SHP and SVP
Display start position
set in SHP and SVP
16 pixels
16 pixels
(1)
16 pixels
(2)
16
pixels
16
pixels
16
pixels
(3)
(4)
A. Standard Mode (16W x 16H)
B. Extended Mode (32W x 32H)
Figure 7-2 Cursor Tiles in Standard and Extended Modes
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
159
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
Standard and Extended Display Modes
Table 7-4 Associated Tiles for Cursor Tile Code Registers
Graphic Tile
(1) Upper left
(2) Upper right
(3) Lower left
(4) Lower right
Register
STC0
Register Address
x’007F10’
STC1
x’007F2A’
STC2
x’007F2C’
STC3
x’007F2E’
In standard mode, STC0 is the only cursor tile code register that is enabled. Use
the cursor horizontal position register (SHP, x’00F12’) and the cursor vertical
position register (SVP, x’007F14’) in both modes to program the display start
position. In extended mode, this position refers to the upper left corner of tile (1).
Set the color palette for each tile individually.
7.6.2 Graphics Layer Display Modes
The size of the tiles in the graphics layer is programmable to 16W x 16H pixels
in standard mode and 16W x 18H pixels in extended mode. Select the mode for
this layer in the GTHT bit of the OSD2 register (x’007F08’).
In extended mode, the tiles are the same size as the characters in the text layer.
This allows for a cleaner display when text and graphics appear side by side.
You cannot use the tiles created
for graphics layer extended
mode as cursor tiles.
Display start position
set in GHP and GVP
Display start position
set in GHP and GVP
16 pixels
16 pixels
16
pixels
18
pixels
A. Standard Mode (16W x 16H)
B. Extended Mode (16W x 18H)
Figure 7-3 Graphic Tiles in Standard and Extended Modes
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
160
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
Display Setup Examples
7.7 Display Setup Examples
7.7.1 Setting Up the Graphics Layer
This section shows how to set up the graphics display data in the VRAM.
■
Register settings
RAMEND (x’007F04’) = x’80FF’ (Graphics RAM end address: x’980F’)
GIHP (x’007F16’) = x’0822’
GIVP (x’007F18’) = x’1803’
OSD2 (x’007F08’) = x’0047’
(GIHP = x’22’, GIHSZ = x’1’)
(GIVP = x’03’, GIVSZ = x’3’)
(1 line maximum = 18 tiles, 16-color mode,
graphics take priority)
Table 7-5 Example Graphics VRAM Settings
Line No. RAM Addr. RAM Data Data Type
Description
1
980E
980C
980A
9808
9806
9804
...
4000
4255
02AA
4100
C004
C040
...
GTC
GTC
GTC
GTC
GHP
GVP
Graphic tile, GCB = x’0’, GPRT = 0, GTC = x’000’
Graphic tile, GCB = x’0’, GPRT = 1, GTC = x’055’
Blank tile, GCB = x’0’, GPRT = 1, GTC = x’0AA’
Graphic tile, GCB = x’0’, GPRT = 0, GTC = x’100’
GHSZ = x’0’, GSHT = 0, GHP = x’04’
GLAST = 0, GVSZ = x’0’, GINT = 0, GVP = x’40’
2
97E6
97E4
97E2
97E0
97DE
97DC
97DA
97D8
97D6
...
4010
4011
4012
4C13
4214
0815
4216
D810
C858
...
GTC
GTC
GTC
GTC
GTC
GTC
GTC
GHP
GVP
Graphic tile, GCB = x’0’, GPRT = 0, GTC = x’010’
Graphic tile, GCB = x’0’, GPRT = 0, GTC = x’011’
Graphic tile, GCB = x’0’, GPRT = 0, GTC = x’012’
Graphic tile, GCB = x’3’, GPRT = 0, GTC = x’013’
Graphic tile, GCB = x’0’, GPRT = 1, GTC = x’014’
Blank tile, GCB = x’2’, GPRT = 0, GTC = x’015’
Graphic tile, GCB = x’0’, GPRT = 1, GTC = x’016’
GHSZ = x’3’, GSHT = 0, GHP = x’10’
GLAST = 0, GVSZ = x’1’, GINT = 0, GVP = x’58’
3
97BE
97BC
97BA
97B8
...
4181
4382
C044
E020
...
GTC
GTC
GHP
GVP
Graphic tile, GCB = x’0’, GPRT = 0, GTC = x’181’
Graphic tile, GCB = x’0’, GPRT = 1, GTC = x’182’
GHSZ = x’0’, GSHT = 0, GHP = x’44’
GLAST = 1, GVSZ = x’0’, GINT = 0, GVP = x’20’
Notes: 1. Always specify GHP and GVP, in that order, at the end of each line.
2. Set GINT to 1 in the GVP setting to generate an OSD graphics interrupt.
3. Set GLAST to 1 in the GVP setting for the last line in the graphics display. Also, set the GVP value to a smaller
value than the position of the current line. (In the example in table 7-5, GVP = x’20’ is smaller than GVP = v’58’.)
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
161
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
Display Setup Examples
VP = x'3'
HSZ= 1 (2x)
Line 1
HP = x'22'
GTC = x'000' GTC = x'055'
GTC = x'100'
Palette 1
VSZ = 3
(6x)
Blank
Palette 1
Palette 2
VP = x'40'
Line 2
HSZ = 0 (1x)
010 011 012
HP = x'4'
013
013
013
013
014
016
Palette 2
Blank Blank Blank
Palette 1 Palette 1 Palette 1 Palette 1 Palette 1 Palette 1 Palette 1 Palette 2
VSZ = 0
(1x)
Repeated tile
VP = x'58'
Line 3
HSZ = 3 (4x)
HP = x'10'
GTC = x'181'
Palette 1
GTC = x'182'
Palette 2
VSZ = 1
(2x)
Display end
Figure 7-4 Graphics Display Example
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
162
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
Display Setup Examples
7.7.2 Setting Up the Text Layer
This section shows how to set up the text display data in the VRAM.
■
Register settings
RAMEND (x’007F04’) = x’80FF’ (Text RAM end address: x’9FFF’)
CIHP (x’007F1A’) = x’1020’
CIVP (x’007F1C’) = x’1803’
OSD3 (x’007F0A’) = x’0000’
(CIHP = x’20’, CIHSZ = x’2’)
(CIVP = x’03’, CIVSZ = x’3’)
(CAPM = x’0’)
Table 7-6 Example Text VRAM Settings
Line No. RAM Addr. RAM Data Data Type
Description
1
9FFE
9FFC
9FFA
9FF8
9FF6
9FF4
...
0000
825A
0001
0002
C004
C840
...
CC
COL
CC
Character code = x’000’
BSHAD = 0, CSHAD = 0, FRAME = 1, BCOL = x’5’, CCOL = x’A’
Character code = x’001’
CC
Character code = x’002’
CHP
CVP
CHSZ = x’0’, CSHT = 0, CHP = x’04’
CLAST = 0, CVSZ = x’1’, CINT = 0, CVP = x’40’
2
9FAE
9FAC
9FAA
9FA8
9FA6
9FA4
9FA2
9FA0
9F9E
9F9C
...
9469
0006
0007
4012
9A78
0008
4002
0010
D810
C870
...
COL
CC
BSHAD = 2, CSHAD = 1, FRAME = 0, BCOL = x’6’, CCOL = x’9’
Character code = x’006’
CC
Character code = x’007’
CCB
COL
CC
Repeat character code, CCB = x’2’
BSHAD = 3, CSHAD = 0, FRAME = 1, BCOL = x’7’, CCOL = x’8’
Character code = x’008’
CCB
CC
Blank, CCB = x’2’
Character code = x’010’
CHP
CVP
CHSZ = x’3’, CSHT = 0, CHP = x’10’
CLAST = 0, CVSZ = x’1’, CINT = 0, CVP = x’70’
3
9F5E
9F5C
9F5A
9F58
...
0300
0310
C044
E030
...
CC
CC
Character code = x’300’
Character code = x’310’
CHP
CVP
CHSZ = x’0’, CSHT = 0, CHP = x’44’
CLAST = 1, CVSZ = x’0’, CINT = 0, CVP = x’30’
Notes: 1. Always specify the color code (COL) or character code (CC) at the beginning of each line. If CC is the first code
(no COL), the foreground (text) color will be color 1 on the palette and the background will be color 2.
2. Always specify CHP and CVP, in that order, at the end of each line.
3. A CC code must immediately follow a COL code.
4. If you repeat a character with the CCB code, precede the CCB code with a CC code and follow it with a COL or
CC code.
5. Set CINT to 1 in the CVP setting to generate an OSD text interrupt.
6. Set CLAST to 1 in the CVP setting for the last line in the text display. Also, set the CVP value to a smaller value
than the position of the current line. (In the example in table 7-6, CVP = x’30’ is smaller than CVP = v’70’.)
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
163
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
Display Setup Examples
The text display starts one dot to
the right of the HP setting.
VP = x'3'
HSZ = 2 (3x)
HP = x'20'
Line 1
CC = x'000'
CC = x'001'
CC = x'002'
No shadow
No outline
Background col. = 2
Text color = 1
No shadow
Outline
Background col. = 5
Text color = A
No shadow
Outline
Background col. = 5
Text color = A
VSZ = 3
(6x)
VP = x'40'
Line 2
HSZ=0 (1x)
CC=006 CC=007 CC=007 CC=007 CC=007 CC=007 CC=008
CC=010
Box shad.1 Box shad.1 Box shad.1 Same as
Char. shad Char. shad Char. shad left.
Back col. 6 Back col. 6 Back col. 6
Same as
left.
Same as
left.
Box shad.2
Outline
Back col. 7
Text col. 8
Box shad.2
Outline
Back col. 7
Text col. 8
HP = x'4'
Blank Blank Blank
Blank
Text col. 9 Text col. 9 Text col. 9
VSZ = 1
(2x)
VP = x'70'
Line 3
HSZ = 3 (4x)
CC = x'300'
CC = x'310'
HP = x'10'
No shadow, no outline
Background col. = 2
Text color = 1
No shadow, no outline
Background col. = 2
Text color = 1
VSZ = 1
(2x)
Display end
Figure 7-5 Text Display Example
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
164
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
VRAM
7.8 VRAM
7.8.1 VRAM Operation
Table 7-7 VRAM Bit Allocation in Internal RAM
15
14
13
12
11
*
10
*
9
8
7
6
5
4
3
2
1
0
Text layer
CC
0
0
*
*
CCH9 CCH8 CCH7 CCH6 CCH5 CCH4 CCH3 CCH2 CCH1 CCH0
Character address (1024 characters)
Character code
ID code
1
0
*
BSHAD1 BSHAD0 CSHAD FRAME BLINK BCOL3 BCOL2 BCOL1 BCOL0 CCOL3 CCOL2 CCOL1 CCOL0
Char.
COL (normal mode)
Color control code
ID code
Box shadow
Outline Blink
Background color (16 colors)
Character color (16 colors)
shadow
CUNDL ITALIC FRAME BLINK BCOL3 BCOL2 BCOL1 BCOL0 CCOL3 CCOL2 CCOL1 CCOL0
Underline Italics Outline Blink Background color (16 colors) Character color (16 colors)
1
0
0
1
*
*
*
*
COL (closed-caption mode)
Color control code
ID code
ID code
ID code
ID code
*
*
*
*
*
*
*
CCBF CCB3 CCB2 CCB1 CCB0
CCB
Blank/
Repeat character/blank code
Number of blank/char. repetitions
char.
1
1
1
1
*
CHSZ1 CHSZ0 CSHT CHP9 CHP8 CHP7 CHP6 CHP5 CHP4 CHP3 CHP2 CHP1 CHP0
CHP
Character H position control
H size
Shutter
H display start position (1 dot resolution, 1024 steps)
CLAST CVSZ1 CVSZ0 CINT
Last line
CVP9 CVP8 CVP7 CVP6 CVP5 CVP4 CVP3 CVP2 CVP1 CVP0
CVP
Character V position control
V size
Interrupt
V display start position (1 H scan line resolution, 1024 steps)
flag
15
0
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Graphics layer
GTC
GCBF GCB3 GCB2 GCB1 GCB0 GPRT GTC8 GTC7 GTC6 GTC5 GTC4 GTC3 GTC2 GTC1 GTC0
Blank/
tile
Palette
select
Graphic tile code
ID code
1
Number of blank/tile repetitions
Graphic tile address (512 tiles)
1
*
GHSZ1 GHSZ0 GSHT GHP9 GHP8 GHP7 GHP6 GHP5 GHP4 GHP3 GHP2 GHP1 GHP0
H size Shutter H display start position (1 dot resolution, 1024 steps)
GHP
ID code
Graphics H position control
1
1
GLAST GVSZ1 GVSZ0 GINT GVP9 GVP8 GVP7 GVP6 GVP5 GVP4 GVP3 GVP2 GVP1 GVP0
Last line
flag
GVP
Graphics V position control
ID code
V size
Interrupt
V display start position (1 H scan line resolution, 1024 steps)
*
Don’t-care bits
■
Text Layer
CC: Character Code
ID Code: 00
CCH[9:0]
Specifies the address of one of 1024 characters stored in the ROM.
COL: Color Control Code (Normal Mode)
ID Code: 10
BSHAD[1:0]
Specifies shadowing of the character box for a 3D button effect.
00: Disable
01: Disable
10: Upper left white and lower right black shadows
11: Upper left black and lower right white shadows
CSHAD
Specifies character shadowing for a 3D effect.
0: Disable
1: Enable
FRAME
Specifies character outlining (black).
0: Disable
1: Enable
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
165
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
VRAM
BLINK
Specifies character blinking.
0: Disable
1: Enable
BCOL[3:0]
Specifies the background color (1 of 16 colors).
CCOL[3:0]
Specifies the foreground (character) color (1 of 16 colors).
COL: Color Control Code (Closed-Caption Mode)
ID Code: 10
CUNDL
Specifies underlining.
0: Disable
1: Enable
ITALIC
Specifies italicization.
0: Disable
1: Enable
FRAME
Specifies character outlining (black).
0: Disable
1: Enable
BLINK
Specifies character blinking.
0: Disable
1: Enable
BCOL[3:0]
Specifies the background color (1 of 16 colors).
CCOL[3:0]
Specifies the foreground (character) color (1 of 16 colors).
CCB: Repeat Blank/Character Code
ID Code: 01
CCBF
Repeat blank/repeat character select.
0: Repeat blank
1: Repeat character
CCB[3:0]
Specifies the number of times (up to 16) a blank space or character is
repeated. This function saves RAM space by preventing the VRAM
address from incrementing. The program redisplays the preceding charac-
ter code the specified number of times. This increases the limit beyond 38
characters per line.
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
166
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
VRAM
CHP: Character Horizontal Position Control Code
ID Code: 11
CHSZ[1:0]
Specifies the H size of the characters on the next line.
00: 1 dot = 1 VCLK period
01: 1 dot = 2 VCLK periods
10: 1 dot = 3 VCLK periods
11: 1 dot = 4 VCLK periods
CSHT
Specifies shutter operation for the next line. Setting this bit to 1 disables
the shuttering function. You can disable and enable shuttering on a line-by-
line basis.
0: Enable
1: Disable
CHP[9:0]
Specifies a VCLK indicating the horizontal start position for the next line.
1024 steps are available.
CVP: Character Vertical Position Control Code
ID Code: 11
CLAST
Specifies the last line in the internal RAM text layer. This resets the line
pointer for character reads from the internal RAM to the first line.
0: Disable
1: Enable
CVSZ[1:0]
Specifies the V size of the characters on the next line.
00: 1 dot = 1 H scan line
01: 1 dot = 2 H scan lines
10: 1 dot = 4 H scan lines
In closed-caption mode, only the
b’00’, b’01’, and b’11’ settings
are available for CVSZ[1:0]. The
b’10’ setting is reserved.
11: 1 dot = 6 H scan lines
CINT
Specifies an OSD interrupt.
0: Disable
1: Enable
CVP[9:0]
Specifies an H scan line indicating the vertical start position for the next
line. 1024 steps are available.
■
Graphics Layer
GTC: Graphic Tile Code
ID Code: 00
GCBF
Repeat blank/repeat tile select.
0: Repeat blank
1: Repeat tile
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
167
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
VRAM
GCB[3:0]
Specifies the number of times (up to 16) a blank or graphic tile is repeated.
GPRT
Specifies graphics color palette 1 or 2.
0: Palette 1
1: Palette 2
GTC[8:0]
Specifies the address of one of 512 graphic tiles stored in the ROM.
GHP: Graphics Horizontal Position Control Code
ID Code: 11
GHSZ[1:0]
Specifies the H size of the characters on the next line.
00: 1 dot = 1 VCLK period
01: 1 dot = 2 VCLK periods
10: 1 dot = 3 VCLK periods
11: 1 dot = 4 VCLK periods
GSHT
Specifies shutter operation for the next line. Setting this bit to 1 disables
the shuttering function. You can disable and enable shuttering on a line-by-
line basis.
0: Enable
1: Disable
GHP[9:0]
Specifies a VCLK indicating the horizontal start position for the next line.
1024 steps are available.
GVP: Graphics Vertical Position Control Code
ID Code: 11
GLAST
Specifies the last line in the internal RAM graphics layer. This resets the
line pointer for graphic tile reads from the internal RAM to the first line.
0: Disable
1: Enable
GVSZ[1:0]
Specifies the V size of the tiles on the next line.
00: 1 dot = 1 H scan line
01: 1 dot = 2 H scan lines
10: 1 dot = 4 H scan lines
11: 1 dot = 6 H scan lines
GINT
Specifies an OSD interrupt.
0: Disable
1: Enable
GVP[9:0]
Specifies an H scan line indicating the vertical start position for the next
line. 1024 steps are available.
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
168
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
VRAM
7.8.2 VRAM Organization
Graphics RAM Addresses
(When GEXTE = 1)
GRAMEND−40×N+5
Line N data
GRAMEND−40×(N−1)
GRAMEND−3F
Unused area
Unused area
Code 30
x'008000'
.
.
.
GRAMEND−3E
GRAMEND−3D
GRAMEND−3C
GRAMEND−3B
GRAMEND−3A
GRAMEND−2F
GRAMEND−2E
Program
Data
and
GRAMEND−40×n+5
Line n data
Code 29
GRAMEND−40×(n−1)
Stack
Area
.
.
.
.
.
.
GRAMEND−7B
Line 2 data
Line 1 data
GRAMEND−40×N+5
GRAMEND−40
GRAMEND−3B
GRAMEND−3
GRAMEND−2
GRAMEND−1
GRAMEND
Low-order 8 bits
of graphics code
High-order 8 bits
of graphics code
Code 2
Code 1
64 bytes
2 bytes
Graphics
VRAM
GRAMEND
GRAMEND
CRAMEND−50×M+1
Text RAM Addresses
CRAMEND−50×M+1
Line M data
Text
CRAMEND−50×(M−1)
VRAM
.
.
.
CRAMEND−50×m+1
CRAMEND−4F
Code 40
Code 39
Code 38
CRAMEND
x'009FFF'
CRAMEND−4E
CRAMEND−4D
CRAMEND−4C
CRAMEND−4B
CRAMEND−4A
Line m data
CRAMEND−50×(m−1)
.
.
.
.
.
.
CRAMEND−9F
Line 2 data
Line 1 data
CRAMEND−50
CRAMEND−4F
CRAMEND−3
CRAMEND−2
CRAMEND−1
CRAMEND
Low-order 8 bits
of text code
Code 2
Code 1
80 bytes
High-order 8 bits
of text code
2 bytes
CRAMEND
Notes: 1. All addresses are expressed in hex notation. Other values are decimal.
2. GRAMEND: Graphics RAM end address (programmable to any address)
3. CRAMEND: Text RAM end address (programmable to any address)
4. M: Number of lines in the text layer
5. m: 1 and up
6. N: Number of lines in the graphics layer
7. n: 1 and up
Figure 7-6 VRAM Organization (When GEXTE = 0)
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
169
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
VRAM
GRAMEND−40×N+5
Line N data
GRAMEND−40×(N−1)
GRAMEND−3F
GRAMEND−3E
GRAMEND−3D
GRAMEND−3C
GRAMEND−3B
GRAMEND−3A
GRAMEND−2F
GRAMEND−2E
Unused area
Unused area
Code 30
.
.
.
GRAMEND−40×n+5
Line n data
Code 29
GRAMEND−40×(n−1)
.
.
.
.
.
.
GRAMEND−7B
Line 2 data
Line 1 data
GRAMEND−40
GRAMEND−3B
GRAMEND−3
GRAMEND−2
GRAMEND−1
GRAMEND
Low-order 8 bits
Code 2
Code 1
of graphics code
High-order 8 bits
of graphics code
64 bytes
2 bytes
GRAMEND
A. GEXTE = 1
GRAMEND−28×N+1
Line N data
GRAMEND−28×(N−1)
GRAMEND−27
GRAMEND−26
GRAMEND−25
GRAMEND−24
GRAMEND−23
GRAMEND−22
Code 20
Code 19
Code 18
.
.
.
GRAMEND−28×n+1
Line n data
GRAMEND−28×(n−1)
.
.
.
.
.
.
GRAMEND−4F
GRAMEND−5
GRAMEND−4
GRAMEND−3
GRAMEND−2
GRAMEND−1
GRAMEND
Code 3
Code 2
Code 1
Line 2 data
Line 1 data
GRAMEND−28
GRAMEND−27
Low-order 8 bits
of graphics code
High-order 8 bits
of graphics code
40 bytes
2 bytes
GRAMEND
B. GEXTE = 0
Figure 7-7 Graphics VRAM Organization for Two Modes
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
170
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
VRAM
7.8.3 Cautions about the number of display code set to VRAM
When the display lines are adjoined or overlapped, and the number of the above
display code is extremely fewer than that of the below one, first line of the
display line may not be output correctly.
In OSD circuit, font data to display are read from ROM and stored to the buffer.
The data in the buffer are overwritten, after the present display code is output, to
the display data of the next line.
Show the example when the display lines are adjoined. The number of the
display code in the above line (line M) is reffered to n, and that of the below one
(line M+1) is refferred N.
The buffer holds n display data of the last line of line M at the time of A (see
figure below), and the data in the buffer are overwritten to the display data of the
first line of line M+1 as time goes by. At the time of B the buffer holds n display
data of the first line of line M+1.
In case n is smaller than N, N-n display data are needed to display the first line of
line M+1, and to be written to the buffer before it is shown on the display.
Especially when n is extremely smaller than N, a large amount of the display data
is needed to be written to the buffer before display. And in case writing is not
done in time, it shows wrong data on the screen.
HSYNC
display
A
B
C
Buffer
Figure 7-8 Timing for OSD data
To prevent the wrong display written above, the first line of the below line is to
be shown later enough after the last line of the above line is displayed.
The time (Td) needed for the correct display is caluculated as below.
Td = 0.8 + ( N - n ) × 0.5 [µs]
n : the number of display code in the above line. (include HP, VP)
N: the number of display code in the below line. (include HP, VP)
n<N
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
171
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
ROM
7.9 ROM
7.9.1 ROM Organization
Text ROM Addresses
Text character
16 bits
Each character requires 36 bytes.
Line 1
Line 2
Line 3
18 bits
x’080000’
Line 18
CROMEND−24×(M+1)+1
Code M
text data
Bit 15
Bit 0
CROMEND−24×M
.
.
.
CROMEND−23 Line 1 bits 7 to 0
CROMEND−22 Line 1 bits 15 to 8
CROMEND−21 Line 2 bits 7 to 0
CROMEND−20 Line 2 bits 15 to 8
CROMEND−1F Line 3 bits 7 to 0
CROMEND−24×(m+1)+1
Program
Data
Area
Code m
text data
CROMEND−24×m
.
.
.
36 bytes
.
.
.
CROMEND−47
Code 01
text data
CROMEND−24
CROMEND−23
CROMEND−1
Code 00
text data
Line 18 bits 7 to 0
36 bytes
CROMEND−24×(M+1)+1
CROMEND
1 byte
Line 18 bits 15 to 8
CROMEND
Text
ROM
Graphics ROM Addresses Graphics tile (16-color mode)
CROMEND
16 bits
Line 1
Line 2
Line 3
In 16-color mode, each tile
requires 128 bytes.
Sheet 4
Sheet 3
Sheet 2
Sheet 1
GROMEND−80×(N+1)+1
(16-color mode)
Line 16
Graphics
ROM
GROMEND−80×(N+1)+1
1 dot = 4 bits
= 16 colors
Code N
graphics data
GROMEND−80×N
.
.
.
GROMEND
Bit 15
Bit 0
(16-color mode)
Line 1 data
GROMEND−7F
GROMEND−80×(n+1)+1
Code n
graphics data
GROMEND−78
GROMEND−77
Line 2 data
GROMEND−80×n
GROMEND−70
GROMEND−6F
(16-color mode)
.
.
.
Line 3 data
GROMEND−68
Sheet 1 bits 7 to 0
Sheet 1 bits 15 to 8
Sheet 2 bits 7 to 0
Sheet 2 bits 15 to 8
Sheet 3 bits 7 to 0
Sheet 3 bits 15 to 8
Sheet 4 bits 7 to 0
Sheet 4 bits 15 to 8
GROMEND−7
GROMEND−6
GROMEND−5
GROMEND−4
GROMEND−3
GROMEND−2
GROMEND−1
GROMEND
GROMEND−67
.
.
.
GROMEND−FF
Code 01
graphics data
GROMEND−80
GROMEND−7F
GROMEND−10
GROMEND−0F
Line 15 data
Line 16 data
GROMEND−08
Code 00
graphics data
128 bytes
GROMEND−07
8 bytes
1 byte
GROMEND
GROMEND
Notes: 1. All addresses are expressed in hex notation. Other values are decimal.
2. GROMEND: Graphics ROM end address (programmable to any address)
3. CROMEND: Text ROM end address (programmable to any address)
4. M: Number of characters - 1
5. m: 0 and up
6. N: Number of graphic tiles - 1 (16-color mode)
7. n: 0 and up
Figure 7-9 ROM Organization
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
172
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
ROM
7.9.2 Graphics ROM Organization in Different Color Modes
The graphics layer supports up to sixteen colors, in the 16-color mode, but also
supports 2-, 4-, and 8-color modes. The smaller the number of colors, the less
ROM area required per tile. The figures in this section illustrate the ROM organi-
zation for each color mode.
The example in figure 7-10 demonstrates the graphics ROM setup for line 16 of
the code 00 data when the graphics layer is in 16-color mode. The four bits of
data for each pixel, in sheets 1, 2, 3, and 4, determine the color palette used for
that pixel.
Graphics tile
16 bits
Line 1
Line 2
Line 3
Sheet 4
Sheet 3
Sheet 2
Sheet 1
Line 16
1 dot = 4 bits
= 16 colors
In this example, line 16 of the code 00
graphics tile is set in 16-color mode.
Bit 15
Bit 0
(16-color mode)
Line 1 data
Line 2 data
(Setup example)
(16-color mode)
Line 3 data
Sheet 1 bits 7 to 0
Sheet 1 bits 15 to 8
Sheet 2 bits 7 to 0
Sheet 2 bits 15 to 8
Sheet 3 bits 7 to 0
Sheet 3 bits 15 to 8
Sheet 4 bits 7 to 0
Sheet 4 bits 15 to 8
GROMEND−7
GROMEND−6
GROMEND−5
GROMEND−4
GROMEND−3
GROMEND−2
GROMEND−1
GROMEND
1010 1010
0000 0000
.
.
.
1100 1100
0000 0000
1111 0000
0000 0000
Line 15 data
Line 16 data
0000 0000
8 bytes
1 byte
0000 0000
Use graphics palette 7
Use graphics palette 6
Use graphics palette 5
Use graphics palette 4
Use graphics palette 3
Use graphics palette 2
Use graphics palette 1
Use graphics palette 0
Graphics tile
Line 1
Line 2
Line 3
Line 16
Bit 0
Bit 15
Figure 7-10 Graphics ROM Setup Example for a Single Line
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
173
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
ROM
Graphic Tile Codes
2 colors
4 colors
8 colors
16 colors
ROMEND−80×N+1
N × 4 − 1
N × 4/3 − 1
N − 1
N is a
multiple of 3.
N × 2 − 1
.
.
.
.
.
.
.
.
.
.
.
.
03
02
01
04
06
05
04
03
02
01
00
0C
0B
0A
09
08
07
06
05
04
03
02
01
00
ROMEND−180
ROMEND−160
ROMEND−140
ROMEND−120
ROMEND−100
ROMEND−E0
ROMEND−C0
ROMEND−A0
ROMEND−80
ROMEND−60
ROMEND−40
ROMEND−20
ROMEND
03
02
01
128 bytes
00
00
Required bytes
per tile
32 bytes
64 bytes
96 bytes
128 bytes
See fig.7-15 See fig.7-14 See fig.7-13 See fig.7-12
Figure 7-11 Graphics ROM in the Four Color Modes (16W x 16H Tiles)
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
174
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
ROM
Graphic Tile Codes
4 colors
2 colors
8 colors
16 colors
ROMEND−90×N+1
N × 4 − 1
N × 4/3 − 1
N − 1
N is a
multiple of 3.
N × 2 − 1
.
.
.
.
.
.
.
.
.
.
.
.
03
02
01
00
04
03
02
01
00
06
05
04
03
02
01
00
0C
0B
0A
09
08
07
06
05
04
03
02
01
00
ROMEND−1B0
ROMEND−18C
ROMEND−168
ROMEND−144
ROMEND−120
ROMEND−FC
ROMEND−D8
ROMEND−B4
ROMEND−90
ROMEND−6C
ROMEND−48
ROMEND−24
ROMEND
144 bytes
Required bytes
per tile
72 bytes
36 bytes
108 bytes 144 bytes
See fig.7-17 See fig.7-16
See fig.7-18
See fig.7-19
Figure 7-12 Graphics ROM in the Four Color Modes (16W x 18H Tiles)
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
175
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
ROM
ROMEND−7F
16 bits
Line 1
Line 1 data
Line 2 data
Line 3 data
ROMEND−78
Line 2
Line 3
Graphics tile
Sheet 4
Sheet 3
Sheet 2
Sheet 1
ROMEND−77
(16-color mode)
ROMEND−70
ROMEND−6F
ROMEND−68
Sheet 1 bits 7 to 0
Sheet 1 bits 15 to 8
Sheet 2 bits 7 to 0
Sheet 2 bits 15 to 8
Sheet 3 bits 7 to 0
Sheet 3 bits 15 to 8
Sheet 4 bits 7 to 0
Sheet 4 bits 15 to 8
ROMEND−7
ROMEND−6
ROMEND−5
ROMEND−4
ROMEND−3
ROMEND−2
ROMEND−1
ROMEND
ROMEND−67
Line 16
.
.
.
1 dot = 4 bits
= 16 colors
ROMEND−10
ROMEND−0F
Line 15 data
Line 16 data
ROMEND−08
Bit 15
Bit 0
ROMEND−07
8 bytes
1 byte
ROMEND
Figure 7-13 Graphics ROM Organization in 16-Color Mode (16W x 16H Tiles)
ROMEND−5F
Line 1 data
ROMEND−5A
16 bits
Graphics tile
(8-color mode)
ROMEND−59
Line 1
Line 2
Line 3
Line 2 data
Line 3 data
ROMEND−54
Sheet 3
Sheet 2
Sheet 1
ROMEND−53
ROMEND−4E
ROMEND−4D
.
.
.
Sheet 1 bits 7 to 0
Sheet 1 bits 15 to 8
Sheet 2 bits 7 to 0
Sheet 2 bits 15 to 8
Sheet 3 bits 7 to 0
Sheet 3 bits 15 to 8
ROMEND−5
ROMEND−4
ROMEND−3
ROMEND−2
ROMEND−1
ROMEND
1 dot = 3 bits
Line 16
= 8 colors
ROMEND−1C
ROMEND−1B
Line 15 data
Line 16 data
ROMEND−06
Bit 15
Bit 0
ROMEND−05
6 bytes
1 byte
ROMEND
Figure 7-14 Graphics ROM Organization in 8-Color Mode (16W x 16H Tiles)
ROMEND−3F
Line 1 data
ROMEND−3C
Graphics tile
(4-color mode)
ROMEND−3B
Line 2 data
16 bits
Sheet 2
Sheet 1
ROMEND−38
Line 1
Line 2
Line 3
ROMEND−37
Line 3 data
ROMEND−34
ROMEND−33
.
.
.
1 dot = 2 bits
= 4 colors
Line 16
Sheet 1 bits 7 to 0
Sheet 1 bits 15 to 8
Sheet 2 bits 7 to 0
Sheet 2 bits 15 to 8
ROMEND−3
ROMEND−2
ROMEND−1
ROMEND
ROMEND−08
ROMEND−07
Line 15 data
Line 16 data
ROMEND−04
Bit 15
Bit 0
ROMEND−03
4 bytes
1 byte
ROMEND
Figure 7-15 Graphics ROM Organization in 4-Color Mode (16W x 16H Tiles)
ROMEND−1F
Line 1 data
ROMEND−1E
Graphics tile
(2-color mode)
ROMEND−1D
Line 2 data
Line 3 data
ROMEND−1C
ROMEND−1B
16 bits
Sheet 1
Line 1
Line 2
Line 3
ROMEND−1A
ROMEND−19
.
.
.
1 dot = 1 bit
= 2 colors
ROMEND−04
Line 16
ROMEND−03
Line 15 data
Line 16 data
ROMEND−02
Bit 15
Bit 0
Sheet 1 bits 7 to 0
Sheet 1 bits 15 to 8 1 byte
ROMEND−1
ROMEND−01
2 bytes
ROMEND
ROMEND
Figure 7-16 Graphics ROM Organization in 2-Color Mode (16W x 16H Tiles)
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
176
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
ROM
ROMEND−8F
Line 1 data
Line 2 data
Line 3 data
16 bits
Sheet 4
Sheet 3
Sheet 2
Sheet 1
ROMEND−88
Line 1
Line 2
Line 3
Graphics tile
(16-color mode)
ROMEND−87
ROMEND−80
ROMEND−7F
ROMEND−78
Sheet 1 bits 7 to 0
Sheet 1 bits 15 to 8
Sheet 2 bits 7 to 0
Sheet 2 bits 15 to 8
Sheet 3 bits 7 to 0
Sheet 3 bits 15 to 8
Sheet 4 bits 7 to 0
Sheet 4 bits 15 to 8
ROMEND−7
ROMEND−6
ROMEND−5
ROMEND−4
ROMEND−3
ROMEND−2
ROMEND−1
ROMEND
ROMEND−77
.
.
.
Line 18
1 dot = 4 bits
= 16 colors
ROMEND−10
ROMEND−0F
Line 17 data
Line 18 data
ROMEND−08
ROMEND−07
8 bytes
1 byte
ROMEND
Bit 15
Bit 0
Figure 7-17 Graphics ROM Organization in 16-Color Mode (16W x 18H Tiles)
ROMEND−6B
Line 1 data
ROMEND−66
16 bits
Graphics tile
(8-color mode)
ROMEND−65
Line 1
Line 2
Line 3
Line 2 data
Line 3 data
ROMEND−60
Sheet 3
Sheet 2
Sheet 1
ROMEND−5F
ROMEND−5A
ROMEND−59
.
.
.
Sheet 1 bits 7 to 0
Sheet 1 bits 15 to 8
Sheet 2 bits 7 to 0
Sheet 2 bits 15 to 8
Sheet 3 bits 7 to 0
Sheet 3 bits 15 to 8
ROMEND−5
ROMEND−4
ROMEND−3
ROMEND−2
ROMEND−1
ROMEND
1 dot = 3 bits
Line 18
= 8 colors
ROMEND−1C
ROMEND−1B
Line 17 data
Line 18 data
ROMEND−06
ROMEND−05
Bit 15
Bit 0
6 bytes
1 byte
ROMEND
Figure 7-18 Graphics ROM Organization in 8-Color Mode (16W x 18H Tiles)
ROMEND−47
Line 1 data
ROMEND−44
Graphics tile
(4-color mode)
ROMEND−43
Line 2 data
16 bits
Sheet 2
Sheet 1
ROMEND−40
Line 1
Line 2
Line 3
ROMEND−3F
Line 3 data
ROMEND−3C
ROMEND−3B
.
.
.
1 dot = 2 bits
= 4 colors
Sheet 1 bits 7 to 0
Sheet 1 bits 15 to 8
Sheet 2 bits 7 to 0
Sheet 2 bits 15 to 8
ROMEND−3
ROMEND−2
ROMEND−1
ROMEND
Line 18
ROMEND−08
ROMEND−07
Line 17 data
Line 18 data
ROMEND−04
ROMEND−03
Bit 15
Bit 0
4 bytes
1 byte
ROMEND
Figure 7-19 Graphics ROM Organization in 4-Color Mode (16W x 18H Tiles)
ROMEND−23
Line 1 data
ROMEND−22
Graphics tile
(2-color mode)
ROMEND−21
Line 2 data
Line 3 data
ROMEND−20
ROMEND−1F
16 bits
Sheet 1
Line 1
Line 2
Line 3
ROMEND−1E
ROMEND−1D
.
.
.
1 dot = 1 bit
= 2 colors
ROMEND−04
ROMEND−03
Line 18
Line 17 data
Line 18 data
ROMEND−02
Sheet 1 bits 7 to 0
Sheet 1 bits 15 to 8 1 byte
ROMEND−1
ROMEND−01
Bit 15
Bit 0
2 bytes
ROMEND
ROMEND
Figure 7-20 Graphics ROM Organization in 2-Color Mode (16W x 18H Tiles)
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
177
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
Setting Up the OSD
7.10 Setting Up the OSD
7.10.1 Setting Up the OSD Display Colors
This section describes how to set up the display colors for the OSD.
■
To set up the color palettes:
Write your settings to the color palette registers shown in table 7-8.
Table 7-8 Color Palette Registers
Layer
Palette
Address
Applications
Text
CPT0–CPTF
x’007F80’–
x’007F9E’
Text foreground and background colors
All layers
Text
COLB
FRAME
BBSHD
WBSHD
x’007FA0’
x’007FA2’
x’007FA4’
x’007FA6’
Color background
Outlining and character shadowing colors
Box shadowing color (black)
Box shadowing color (white)
Tile color palette 1
Graphics,
cursor
GPT10–
GPT1F
x’007FC0’–
x’007FDE’
GPT20–
GPT2F
x’007FE0’–
x’007FFE’
Tile color palette 2
■
To set up the cursor display colors:
Write to the fields described below.
♦
♦
♦
♦
GCOL[1:0] (x’007F08’, bits 9 and 8) sets the number of colors (2, 4, 8, or 16).
STC[8:0] (x’007F10’, bits 8 to 0) specifies the code of the tile to be displayed.
SPRT (x’007F10’, bit 9) selects tile color palette 1 or 2.
GPT1n (x’007FC0’–x’007FDE) or GPT2n (x’007FE0’–x’007FFE) speci-
fies the colors on the palettes corresponding to the tile data stored in the ROM.
■
To set up the graphics display colors:
Write to the fields described below.
♦
♦
GCOL[1:0] (x’007F08’, bits 9 and 8) sets the number of colors (2, 4, 8, or 16).
GTC[8:0] (GTC bits 8 to 0 in the RAM data) specifies the code of the
tile to be displayed.
♦
♦
GPRT (GTC bit 9 in the RAM data) selects tile color palette 1 or 2.
GPT1n (x’007FC0’–x’007FDE) or GPT2n (x’007FE0’–x’007FFE) speci-
fies the colors on the palettes corresponding to the tile data stored in the ROM.
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
178
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
Setting Up the OSD
■
To set up the text display colors:
Write to the fields described below.
♦
CCOL[3:0] (COL bits 3 to 0 in the RAM data) sets the color of the charac-
ter. This value is in reference to the selected color palette (CPT0–CPTF).
♦
BCOL[3:0] (COL bits 7 to 4 in the RAM data) sets the background color.
As with CCOL, this value is in reference to the selected color palette
(CPT0–CPTF).
♦
♦
FRAME (COL bit 9 in the RAM data) enables character outlining when
set to 1. Set the outline color in the FRAME color palette (x’007FA2’).
CSHAD (COL bit 10 in the RAM data) enables character shadowing when
set to 1. Set the shadowing color in the FRAME color palette (x’007FA2’).
This function is unavailable in the closed-caption mode.
♦
BSHAD[1:0] (COL bits 12 to 11 in the RAM data) enables character box
shadowing. This function is unavailable in the closed-caption mode.
00 and 01: No box shadowing
10: Upper left white and lower right black shadows
11: Upper left black and lower right white shadows
♦
CPT0–CPTF (x’007F80’–x’007F9E’) specifies the colors available for
text foreground and background colors.
♦
♦
♦
FRAME (x’007FA2’) specifies the color for outlining or character shadowing.
BBSHD (x’007FA4’) specifies the “black” color for box shadowing.
WBSHD (x’007FA6’) specifies the “white” color for box shadowing.
■
To set up functions applying to all layers:
Write to the fields described below.
Color background function
The color background function allows you to fill the television screen areas that
are uncovered by the OSD display (text, graphics, or cursor layers) with any
color. Specify the color in the COLB register (x’007FA0’).
♦
♦
COLB (x’007F08’, bit 7) enables the color background function when set to 1.
COLB (x’007FA0’) specifies the color of the background.
Transparency
The TRPT bit allows you to make the color 0 transparent in all the palettes (CPT0,
GPT10, and GPT20). RGB, YM, and YS are all output at 0 levels for that color. See
figure 7-21.
♦
TRPT (x’007F08’, bit 10)
0: Make color 0 on all palettes transparent
1: Output color 0 as specified
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
179
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
Setting Up the OSD
Translucency
The TRPTF bit allows you to make the color 15 translucent in all the palettes (CPTF,
output at the level specified for the palette. This dims the color on the display. See
figure 7-21.
Selecting YS palette output, by
setting the YSPLT bit of OSD1
(x’007F06’) to 1, disables the
PRYM bit. With this setting, you
must also set the TRPT and
TRPTF bits to 1. You can specify
transparency for individual color
palettes if needed.
♦
TRPTF (x’007F08’, bit 10)
0: Make color 15 on all palettes translucent
1: Output color 15 as specified
The PRYM bit allows you to make specific regions of the OSD display trans-
lucent. This bit is disabled when the YSPLT bit is 1.
♦
PRYM (x’007F08’, bit 12)
0: Output YS high on all OSD display areas
1: Output YS low on OSD display areas that do not have low YM output
YS palette output
The YSPLT bit allows you to control the YS output. See figure 7-22.
♦
YSPLT (x’007F06’, bit 3)
0: Output YS to entire display area (except transparent and
translucent areas)
1: Output the MSB (bit 15) of all the color palettes from YS
Analog/digital output
The YCNT and RGBC bits allow you to select 16-bit gradient, analog or digital
output through the four OSD output pins, R, G, B, and YM.
♦
YCNT (x’007F06’, bit 1)
0: Analog YM output
1: Digital YM output (outputs bit 12 of color palette)
♦
RGBC (x’007F06’, bit 0)
0: Analog R, G, B output
1: Digital R, G, B output (outputs bits 0 (R), 4 (G), and 8 (B) of color palette)
Table 7-9 summarizes the controls for RGM, YM, and YS output.
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
180
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
Setting Up the OSD
Table 7-9 RGB, YM, and YS Output Control Settings
Waveform in
figure 7-21
YSPLT PRYM
TPRT TRPTF
RGB
YM
YS
0
0
0
0
Color palettes 0 and F
output low
Color palettes 0 and F
output low
Color palettes 0 and F
output low
➀
0
0
0
0
0
0
0
1
0
1
1
0
1
0
1
0
Color palette 0 output low
Color palette F output low
—
Color palette 0 output low
Color palette F output low
—
Color palette 0 output low
Color palette F output low
—
➁
➂
➃
➄
Color palettes 0 and F
output low
Color palettes 0 and F
output low
Color palettes 0 and F
output low when YM ≠ low
0
0
1
1
0
1
1
0
Color palette 0 output low
Color palette 0 output low
Color palettes 0 output low
➅
➆
➇
when YM ≠ low
Color palette F output low
Color palette F output low
Color palettes F output low
when YM ≠ low
0
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
—
—
—
—
—
—
—
—
—
—
Output low when YM ≠ low
Reserved
Reserved
Reserved
—
—
—
YM3 output
➈
➈
Reserved
Reserved
Reserved
—
—
—
—
YM3 output
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
181
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
Setting Up the OSD
Graphics layer
Color palette 2 (YM3 = 0, YM2 = 0, YM1 = 0, YM0 = 0)
Color palette 0 (YM3 = 0, YM2 = 0, YM1 = 0, YM0 = 1)
Color palette 1 (YM3 = 1, YM2 = 0, YM1 = 0, YM0 = 1)
RGB, YM, and YS signals are displayed at this line.
TV
Color palette F (YM3 = 1, YM2 = 0, YM1 = 0, YM0 = 1)
Signal specified in
color palette 0 is output.
0 1
0 1
2
2
F
F
1 0
1 0
➀
➅
RGB
YM
0 1
0 1
2
2
F
F
1 0
1 0
RGB
YM
YS
YS
➁
➂
➆
➇
RGB
YM
RGB
YM
YS
YS
RGB
YM
RGB
YM
YS
YS
➃
➄
➈
RGB
YM
RGB
YM
YS
YS
RGB
YM
YS
Figure 7-21 OSD Signal Waveform
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
182
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
Setting Up the OSD
Color palette
Bit 15 14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
***
***
***
***
***
***
***
***
***
***
***
***
***
***
***
***
YM3 YM2 YM1 YM0 B3
B2
B1
B0
G3
G2
G1
G0
R3
R2
R1
R0
4
4
4
4
Digital input
G
B
R
R
YM
InternalDAC
G
YM
B
Analog output
RGBCNT
(x'007F06',bit 1)
Output YSto entire
OSD display area
(except transparent
and semitransparent
areas).
RGB
CNT
RGB
CNT
YSPLT
(x'007F06',bit 3)
YCNT
(x'007F06' bit 0)
To pins
G
R
YM
B
YS
Figure 7-22 OSD Signal Output Switches
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
183
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
Setting Up the OSD
7.10.2 Text Layer Functions
This section describes the character enhancement functions available in the text
layer.
■
Outlining
In both normal and closed-caption modes, writing a 1 to bit 9 (FRAME) of the
lowing that COL. You can specify the color of the outline in the FRAME register
(x’007FA2’). Figure 7-23 shows an example of character outlining. As shown in
the figure, if a character contains dots in the left or right borders of its field, the
outlining for those dots appear in the adjacent character field.
16 dots
16 dots
16 dots
Figure 7-23 Character Outlining Example
■
Character shadowing
In normal mode, writing a 1 to bit 10 (CSHAD) of the COL setting in the VRAM
can specify the color of the shadow in the FRAME register (x’007FA2’). Figure
7-24 shows an example of character shadowing. As shown in the figure, if a
character contains dots in right border of its field, the shadowing for those dots
appear in the character field to the right.
16 dots
16 dots
16 dots
Figure 7-24 Character Shadowing Example
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
184
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
Setting Up the OSD
■
Box shadowing
In normal mode, writing a 1 to bit 12 (BSHAD1) of the COL setting in the
VRAM causes a box shadow to appear around all characters following that COL.
If COL bit 11 (BSHAD0) is 0, the color specified in the WBSHD register
the BBSHD register (x’007FA4’) appears on the bottom and right sides of the
box. These positions are reversed if BSHAD0 is 1. Figure 7-25 shows an example
of box shadowing. As shown in the figure, the right-hand border of the shadow
box appears in the character field to the right of the shadowed text.
To output a box shadow to the
right, output a space to the right
of the text.
16 dots
16 dots
BSHAD0 = 0
BSHAD0 = 1
Box shadowing (black)
(Specify the color in BBSHD: x’7FA4’)
Box shadowing (white)
(Specify the color in WBSHD: x’7FA6’)
Figure 7-25 Box Shadowing Example
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
185
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
Setting Up the OSD
■
■
Italicizing
In closed-caption mode, writing a 1 to bit 10 (ITALIC) of the COL setting in the
VRAM italicizes all characters following that COL. Figure 7-26 shows an
example of an italicized character.
Underlining
In closed-caption mode, writing a 1 to bit 11 (CUNDL) of the COL setting in the
VRAM underlines all characters following that COL. Figure 7-26 shows an
example of an underlined character.
Italics
Underlining
Caption mode
Figure 7-26 Italicizing and Underlining Example
■
Blinking
In both normal and closed-caption modes, writing a 1 to bit 8 (BLINK) of the
COL setting in the VRAM causes all characters following that COL to blink. To
use this function, you must enable blinking by writing a 1 to bit 5 (BLINK) of the
OSD3 register (x’007F0A’).
In closed-caption mode, you can specify whether or not the underlines blink on
underlined, blinking characters. Set bit 0 (UNDF) of the OSD3 register to 0 to
disable underline blinking, and set it to 1 to enable underline blinking.
The blink cycle lasts for 128 VSYNC pulses (about 2 seconds). The characters
display for 96 VSYNCs (about 1.5 seconds) and turn off for 32 VSYNCs (about
0.5 seconds).
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
186
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
Setting Up the OSD
7.10.3 Display Sizes
■
Graphic tile sizes
× 1
b'00'
× 2
× 3
× 4
b'01'
b'10'
b'11'
GHSZ[1:0]
16
32
48
64
b'00'
16
× 1
b'01'
32
× 2
b'10'
64
× 4
b'11'
96
× 6
GVSZ[1:0]
The settings shown are for interlaced displays. In progressive displays, the vertical size settings (GVSZ[1:0]) are as follows:
01 = 1x, 10 = 2x, and 11 = 3x. The 00 setting is reserved.
Figure 7-27 Graphic Tile Size Combinations
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
187
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
Setting Up the OSD
■
Character sizes
× 1
b'00'
× 2
× 3
× 4
b'01'
b'10'
b'11'
CHSZ[1:0]
16
32
48
64
b'00'
× 1
b'01'
18
36
× 2
b'10'
72
× 4
b'11'
108
× 6
CVSZ[1:0]
The settings shown are for interlaced displays. In progressive displays, the vertical size settings (CVSZ[1:0]) are as follows:
01 = 1x, 10 = 2x, and 11 = 3x. The 00 setting is reserved. In addition, in closed-caption mode, only the b’00’, b’01’, and b’11’
settings are available for CVSZ[1:0]. The b’10’ setting is reserved.
Figure 7-28 Character Size Combinations
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
188
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
Setting Up the OSD
7.10.4 Setting Up the OSD Display Position
This section describes how to control the positioning of the OSD.
■
To set up the horizontal position:
Cursor
♦
Write the horizontal position of the cursor to the SHP[9:0] field
(x’007F12’).
♦
Valid range: SHP ≥ x’0C’
Graphics
♦
Write the horizontal position of the first line in the display to the
GIHP[9:0] field (x’007F16’).
♦
♦
Write the position of the second and all following lines in the GHP[9:0]
field of the graphics display RAM data for the preceding line.
Valid ranges: x’0C’ ≤ GHP ≤ HPmax and x’0C’ ≤ GIHP ≤ HPmax
Text
♦
Write the horizontal position of the first line in the display to the
CIHP[9:0] field (x’007F1A’).
♦
♦
Write the position of the second and all following lines in the CHP[9:0]
field of the text display RAM data for the preceding line.
Valid ranges: x’0C’ ≤ CHP ≤ HPmax and x’0C’ ≤ CIHP ≤ HPmax
■
To set up HP
equations, write:
max
♦
HPmax = (Thsync − Thw − 0.8 µs)/Tdot − (Nchar. × 16 × Hsz); or
♦
HPmax = 1024 − (Nchar. × 16 × Hsz)
Thsync is the HSYNC cycle, Thw is the HSYNC pulse width, Nchar. is the number
of characters in the line including repeated characters and blank spaces, Tdot is
the dot clock cycle, and Hsz is the horizontal size. The HPmax limit ensures that
there is at least 0.8 µs between the end of a line and the leading edge of HSYNC.
When setting up the horizontal
position, you must allow at least
0.8 µs between the end of a line
and the leading edge of HSYNC,
or the display will flicker.
T
hsync
0.8 µs
T
hw
HSYNC
RGB, YM, YS
Figure 7-29 HP
of Horizontal Display Position
max
■
About the horizontal start position on the screen
The horizontal position, or HP settings (SHP, GHP, and CHP) determine where
the left side of cursor, graphics, and text lines start on the screen. You can set this
value for all of the layers in 1-pixel units.
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
189
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
Setting Up the OSD
■
To set up the vertical position:
Cursor
♦
Write the vertical position of the cursor to the SVP[9:0] field
(x’007F14’).
♦
Valid range: x’3F0’ − (no. of H scan lines) ≥ SHP ≥ x’03’
Graphics
♦
Write the vertical position of the first line in the display to the
GIVP[9:0] field (x’007F18’).
When you write new values to
the GIVP and CIVP fields, the
settings take effect on the next
VSYNC pulse. This means that
changes are reflected in the next
display screen rather than the
current one.
♦
♦
Write the position of the second and all following lines in the GVP[9:0]
field of the graphics display RAM data for the preceding line.
Valid range: x’3F0’ − (no. of H scan lines) ≥ GIVP/GVP ≥ x’03’
Text
♦
Write the vertical position of the first line in the display to the
CIVP[9:0] field (x’007F1C’).
♦
♦
Write the position of the second and all following lines in the CVP[9:0]
field of the text display RAM data for the preceding line.
Valid ranges: x’3F0’ − (no. of H scan lines) ≥ CIVP/CVP ≥ x’03’
VP range calculation example
The base graphics line height is 16 dots, or H scan lines. If the graphics line you
are positioning displays at 2x the base height, the number of H scan lines is:
16 × 2 = 32 = x’20’ H scan lines
The valid range of settings for GVP is:
x’3F0’ − x’20’ = x’3D0’ ≥ GVP ≥ x’03’
■
About the vertical start position on the screen
The vertical position, or VP settings (SVP, GVP, and CVP) determine where the
upper edge of cursor, graphics, and text lines start on the screen. You can set this
value for all of the layers in H scan line units. Using the same VP settings for all
the layers makes them all start at the same vertical position.
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
190
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
DMA and Interrupt Timing
7.11 DMA and Interrupt Timing
This section describes how the MN102H75K/85K handles the timing of direct
memory access (DMA) transfers of OSD data and OSD interrupts.
■
DMA
On both the text and graphics layers, the microcontroller reads the line 1 data
from the RAM as it scans line 1 onto the display. For line 2 and following lines, it
reads the data as it scans the display start for the preceding line. The RAM read
starts 12 system clock cycles (12TS) after the leading edge of the HSYNC pulse.
The DMA transfer takes 4TS for each display data word.
If you use the OSD function, the
DMA function executes for both
the text and graphics layers,
even if your program does not
use one of these layers. To
In line 1, or when a graphics and text line begin simultaneously, the data transfer
requests for both layers occur simultaneously. The text data transfer always takes
priority. The graphics data transfer begins 5TS after the text data transfer ends.
prevent error, program data for
restrictions outlined in section
7.1, “Description,” on page 153.
If a DMA transfer occurs at the same time as the leading edge of a VSYNC pulse,
the screen flickers. To avoid this, do not set a display position in the last line.
Interrupts
■
For both graphics and text displays, the microcontroller processes the GINT and
CINT interrupt request bits of the display data’s GVP and CVP fields during
DMA transfer. If GINT or CINT is set to 1, when the associated transfer ends
(GVP or CVP transfer) the OSD generates an interrupt request.
Note that if the interrupt bit is set to 1 in the line 1 display data, the interrupt
occurs at the first scan line. If the interrupt bit is set to 1 in the line 2 display data,
the interrupt occurs at the first display line.
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
191
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
DMA and Interrupt Timing
12Ts
4nTs
5Ts
4nTs
Television Screen
Scan line 1
Text DMA
Graphics DMA
Text interrupt Graphics interrupt
Graphics interrupt
Line G1
Line C1
Graphics DMA
Graphic Graphic
display
display
Text DMA
Text
display
Text
display
Text
display
Text interrupt
Line C2
Line G2
Text
display
Graphic
display
Horizontal sync pulse
Figure 7-30 DMA and Interrupt Timing for the OSD
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
192
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
Selecting the OSD Dot Clock
7.12 Selecting the OSD Dot Clock
This section describes how to set up the OSD dot clock.
■
Selecting the clock source
The source for the OSD dot clock is programmable to either the 4-MHz clock
supplied through the OSC1 and OSC2 pins, then multiplied by the PLL circuit to
48 MHz, or a dedicated clock supplied through the OSDXI and OSDXO pins.
The dedicated OSDX clock can be a crystal, LC oscillator, or other form of exci-
tation that is input through the OSDXI pin and synchronized internally to the
HSYNC pulse, or it can be an LC blocking oscillator synchronized to the
HSYNC pulse.
Table 7-10 OSD Dot Clock Source Settings
OSCSEL1
(x’007F06’, bit 9) (x’007F06’, bit 8)
OSCSEL0
Oscillator pins Oscillator type Frequency
0
0
1
0
1
0
OSC1, OSC2
Crystal + PLL
48-MHz
(with 4-MHz osc.)
OSDXI,
OSDXO
LC blocking
oscillator
f
f
X
X
OSDXI,
OSDXO
Crystal, LC
oscillator, or
other excitation
1
1
Reserved
—
—
If your design uses the OSDX clock, set the XIO bit (x’007F06’, bit 7) for the
appropriate frequency.
♦
XIO
0: Less than 20 MHz
1: Greater than 20 MHz
■
Selecting the divide-by ratio
There are five divide-by settings available for any of the clocks described above.
Table 7-11 shows the register settings for each ratio.
Table 7-11 OSD Dot Clock Division Settings
VCLK2
(x’007F08’, bit 6)
VCLK1
(x’007F08’, bit 5)
VCLK0
(x’007F08’, bit 4)
Divide by Ratio
(1)
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1/4 (12 MHz)
(1)
1/3 (16 MHz)
(1)
1/2 (24 MHz)
(1)
2/3 (32 MHz)
1/1 (48 MHz)
Reserved
Reserved
Reserved
Notes: 1. This is the frequency with a 48-MHz clock source.
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
193
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
Controlling the Shuttering Effect
7.13 Controlling the Shuttering Effect
The MN102H75K/85K OSD achieves a shuttering effect using four pro-
grammable shutters—two vertical and two horizontal. With this feature, you can
shutter any portion of the OSD display, or you can combine shuttering with a
wipe-out effect to create a smooth appearing and disappearing effect.
To prevent flickering and shadows on the display, only write to the registers
during the VSYNC cycle.
7.13.1 Controlling the Shuttered Area
two horizontal shutters, HSHT0 and HSHT1, control which area of the screen is
shuttered. Table 7-12 shows the register settings required for this function, and
figure 7-31 shows four setup examples.
Table 7-12 Bit Settings for Controlling the Shuttered Area
Function
VSHT0 Bit VSHT1 Bit HSHT0 Bit HSHT1 Bit
Description
Shutter enable/disable
VSON0
VSON1
HSON0
HSON1
0:Disable shutter (Acts as though there are no
shutter lines.)
1:Enable shutter
Shutter position
VST00–
VST09
VST10–
VST19
HST00–
HST09
HST10–
HST19
For vertical shutters, this is the number of H scan
lines from the top of the screen. For horizontal
shutters, it is the number of pixels from the left of
the screen.
Shuttering direction
Shuttering mode control
VSP0
VSP1
HSP0
HSP1
0:Shutter below (vertical shutters) or to the right
(horizontal shutters)
1:Shutter above (vertical shutters) or to the left
(horizontal shutters)
SHTRAD
(shared bit)
0:AND the shuttered areas of all the shutters
1:OR the shuttered areas of all the shutters
■
Determining the vertical shutter positions (VST0 and VST1)
The top edge of the television screen is x’000’. Each integer higher brings the
shutter position down one H scan line.
■
Determining the horizontal shutter positions (HST0 and HST1)
The left edge of the television screen is x’000’. Each integer higher brings the
shutter position right one pixel. (One pixel, or one dot, is the smallest display unit
in the OSD.)
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
194
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
Controlling the Shuttering Effect
HSHT0
HSHT1
VSON0 = VSON1 = 1: V shutters 0 and 1 on
HSON0 = HSON1 = 1: H shutters 0 and 1 on
VSP0 = 0: V shutter 0 shutters below
VSP1 = 1: V shutter 1 shutters above
HSP0 = 0: H shutter 0 shutters to the right
HSP1 = 1: H shutter 1 shutters to the left
SHTRAD = 0: All shutters ANDed
VSHT0
VSHT1
Television screen
Shuttered region
HSHT0
HSHT1
VSON0 = VSON1 = 1: V shutters 0 and 1 on
HSON0 = HSON1 = 1: H shutters 0 and 1 on
VSP0 = 0: V shutter 0 shutters below
VSP1 = 1: V shutter 1 shutters above
HSP0 = 0: H shutter 0 shutters to the right
HSP1 = 1: H shutter 1 shutters to the left
SHTRAD = 1: All shutters ORed
VSHT0
VSHT1
Television screen
HSHT0
HSHT1
VSON0 = VSON1 = 1: V shutters 0 and 1 on
HSON0 = HSON1 = 1: H shutters 0 and 1 on
VSP0 = 1: V shutter 0 shutters above
VSP1 = 0: V shutter 1 shutters below
HSP0 = 1: H shutter 0 shutters to the left
HSP1 = 0: H shutter 1 shutters to the right
SHTRAD = 1: All shutters ORed
VSHT0
VSHT1
Television screen
HSHT0
HSHT1
VSON0 = 0: V shutter 0 off
VSON1 = 1: V shutter 1 on
HSON0 = HSON1 = 1: H shutters 0 and 1 on
VSP0 = 1: V shutter 0 shutters above
VSP1 = 0: V shutter 1 shutters below
HSP0 = 1: H shutter 0 shutters to the left
HSP1 = 0: H shutter 1 shutters to the right
SHTRAD = 1: All shutters ORed
VSHT1
Television screen
Figure 7-31 Shuttered Area Setup Examples
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
195
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
Controlling the Shuttering Effect
7.13.2 Controlling Shutter Movement
Enabling the shutter movement function in the registers allows the shuttered area
allows the OSD display to appear or disappear without an abrupt transition. Table
7-13 shows the register settings required for this function, and figure 7-32 shows
four setup examples. There is no repeat operation for shutter movement, so you
must reset the bits each time.
Table 7-13 Bit Settings for Controlling Shutter Movement
V Shutter 0 V Shutter 1 HShutter0 HShutter1
Function
Bit Name
Bit Name
Bit Name
Bit Name
Description
Shutter movement
enable/disable
VSM0
VSM1
HSM0
HSM1
0: Move shutter
1: Don’t move shutter
Shuttering movement
direction
VSMP0
VSMP1
HSMP0
HSMP1
0: Move from top to bottom (vertical shutters) or
from left to right (horizontal shutters)
1: Move from bottom to top (vertical shutters) or
from right to left (horizontal shutters)
Shuttering movement
speed control
SHSP0, SHTSP1
(shared bits)
00:Move every VSYNC
01:Move every 2 VSYNCs
10:Move every 3 VSYNCs
11:Move every 4 VSYNCs
■
Considerations for horizontal shutter movement
Do not set the horizontal shutter position (HST0, HST1) within the following
ranges if you are only moving the horizontal shutter. The shutter cannot move if
you do.
x’000’ to x’003’ and x’3FC’ to x’3FF’
You can set these values if you wish to prevent horizontal shutter movement.
Note that the horizontal shutter position does not affect vertical movement.
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
196
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
Controlling the Shuttering Effect
HSHT0
HSHT1
VSON0 = VSON1 = 1: V shutters 0 and 1 on
HSON0 = HSON1 = 1: H shutters 0 and 1 on
VSP0 = 1: V shutter 0 shutters above
VSP1 = 0: V shutter 1 shutters below
HSP0 = 1: H shutter 0 shutters to the left
HSP1 = 0: H shutter 1 shutters to the right
SHTRAD = 1: All shutters ORed
VSHT0
VSHT1
Television screen
Shuttered region
This example shows V shutter 0 moving downward.
It shutters both the text and the background color in the text layer.
HSHT0
HSHT1
VSM0 = 1: V shutter 0 movement enabled
VSM1 = 0: V shutter 1 movement disabled
HSM0 = HSM1 = 1: Movement enabled for H shutters 0 and 1
VSMP0 = 0: V shutter 0 moves downward
SHTSP0 = SHTSP1 = 0: Shutter moves 1 HSYNC each VSYNC
VSHT0
VSHT1
ABCDE
You must set OSDREGE = x’1’, or the shutters will not
move (PCNT2 register, bit 0).
VSHT0
VSHT1
ABCDE
ABCDE
VSHT0
VSHT1
Vertical shutter 0 stops x’3FF’ HSYNC lines from the top
of the screen.
VSHT1
VSHT0
Figure 7-32 Shutter Movement Setup Examples
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
197
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
Controlling the Shuttering Effect
7.13.3 Controlling Shuttering Effects
Through register settings, you can independently control shuttering for text, text
background, graphics, and color background. You can also output blanks to the
shuttered area.
Table 7-13 shows the register settings required for these effects. There are three
types of shuttering—shuttering of text, text background, and graphics, shuttering
of the color background, and shutter blanking. The sections below describe how
to control each of these.
Table 7-14 Bit Settings for Controlling Shuttering Effects
Function
Bit Name
Description
Text shuttering
CCSHT
0: Shutter text-layer characters
1: Don’t shutter text-layer characters
Text background
shuttering
BCSHT
GSHT
0: Shutter text-layer background
1: Don’t shutter text-layer background
Graphics shuttering
0: Shutter graphics layer
1: Don’t shutter graphics layer
Color background
shuttering
COLBSHT 0: Shutter color background
1: Don’t shutter color background
Shutter blanking
SHTBLK
0: Don’t output blanks to the shuttered area
1: Output blanks to the shuttered area
■
To shutter text-layer characters, text-layer background, and graphics layer:
Text
Set the text shutter control bit, CCSHT, of the shutter control register, SHTC
(x’007F28’) to 1.
Do not allow the horizontal shut-
tering boundaries to overlap any
italicized portion of a closed-
caption display. This distorts the
italicized characters.
Text background
Set the text background shutter control bit, BCSHT, of SHTC to 1.
Graphics
Set the text background shutter control bit, GSHT, of SHTC to 1.
Figure 7-33 shows three setup examples of text-layer shuttering.
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
198
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
Controlling the Shuttering Effect
HSHT0
HSHT1
CCSHT = 0: Shuttering of text foreground disabled
BCSHT = 0: Shuttering of text background disabled
VSHT0
VSHT1
ABCDE
Television screen
Shuttered region
HSHT0
HSHT1
CCSHT = 1: Shuttering of text foreground enabled
BCSHT = 0: Shuttering of text background disabled
VSHT0
VSHT1
CDE
Television screen
HSHT0
HSHT1
CCSHT = 0: Shuttering of text foreground disabled
BCSHT = 1: Shuttering of text background enabled
VSHT0
VSHT1
ABCDE
The text background disappears, leaving only
the characters visible.
Television screen
Figure 7-33 Text-Layer Shuttering Setup Examples
To shutter the color background:
■
■
Set the color background shutter control bit, COLBSHT, of the shutter control
register, SHTC (x’007F28’) to 1.
This function exists only when the program enables a color background. It allows
you to limit the area covered by the color background.
To blank out the shuttered area:
Set the shutter blanking control bit, SHTBLK, of SHTC to 1.
Shutter blanking outputs black to the entire shuttered area. To output blanking to
(COLBSHT = 1) so that the color background will also be blanked in the
shuttered area. Figure 7-34 shows two setup examples.
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
199
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
Controlling the Shuttering Effect
HSHT0
HSHT1
CCSHT = 0: Shuttering of text disabled
BCSHT = 0: Shuttering of text background disabled
SHTBLK = 1: Shuttered area is blank
VSHT0
VSHT1
ABCDE
Television screen
Shuttered area
Shuttered area is blank (black).
Color background
CCSHT = 0: Shuttering of text disabled
HSHT0
HSHT1
BCSHT = 0: Shuttering of text background disabled
SHTBLK = 1: Shuttered area is blank
VSHT0
COLBSHT = 1: Color background is shuttered
ABCDE
VSHT1
Television screen
Figure 7-34 Shutter Blanking Setup Examples
7.13.4 Controlling Line Shuttering
It is possible to cancel shuttering of individual lines on the text and graphics
layers so that they will be displayed on both shuttered and non-shuttered regions.
■
■
To disable shuttering on the next line:
Set the GSHT bit (bit 10 of GHP in the RAM data) and/or the CSHT bit (bit 10 of
CHP in the RAM data) to 1.
To disable shuttering on the first line:
Set the GISHT bit of the GIHP register (x’007F16’) and/or the CISHT bit of the
CIHP register (x’007F14’) to 1.
Figure 7-35 shows a setup example for the text layer.
Shuttering
effect
Line 1: CISHT = 1
Line 2: CSHT = 0
Line 3: CSHT = 0
ABCDEFG
EFG
Line 4: CSHT = 1
ABCDEFG
Television screen
Figure 7-35 Line Shuttering Setup Example
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
200
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
Field Detection Circuit
7.14 Field Detection Circuit
7.14.1 Block Diagram
HSYNC
Database
R
Upper 4 bits
4
System
clock
Divide
by 3
7-bit counter
x’007F0E’ EVOD (FREG[13:10])
VSYNC
leading
edge detection
T-FF
LOADN1
4
D-FF x 4 (N1)
x’007F0E’ EVOD (FREG[23:20])
4
LOADN2
D-FF x 4 (N2)
4
4
N2CNT
N1CNT
Vertical display
controller
EOMON
Comparator
EOSEL
FRMON
Figure 7-36 Field Detection Circuit Block Diagram
7.14.2 Description
The 7-bit field counter in this block resets every HSYNC interval to count the
system clock. At each VSYNC interval, the 4 MSBs of the 7-bit counter are alter-
nately loaded (made readable) to bits 7 to 4 (N2) and 3 to 0 (N1) of the EVOD
outputs the results to the EOMON bit of EVOD. The OSD identifies the field that
sets EOMON to 1 as the display start field. Table 7-15 shows the criteria that the
comparator uses.
By reading the FRMON bit of EVOD, the OSD can determine which register the
4 MSBs will load to on the next VSYNC input.
To ensure that the display starts at the right field, you must also set the EOSEL
bit of EVOD so that EOMON becomes 1 at the display start field.
VSYNC
HSYNC
Field counter value
0
Load value to FREG2
Load value to FREG1
FRMON
Figure 7-37 Field Detection Timing
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
201
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
Field Detection Circuit
Table 7-15 EOMON Output Criteria
EOMON Output
FRMON
N1, N2 Relationship
EOSEL = 0
EOSEL = 1
0
N1 > N2
N1 < N2
N1 = N2
N1 > N2
N1 < N2
N1 = N2
0
1
1
0
Load to N2 next
Complement previous Complement previous
1
1
0
0
1
Load to N1 next
Complement previous Complement previous
7.14.3 Considerations for Interlaced Displays
■
Switching the display start field
The OSD is constructed so the display start position is the field (field 1) where
the EOMON bit is 1. However, interlaced displays may require that the start
position be a field (field 2) where the EOMON bit is 0. In this case, merely com-
plementing the EOSEL bit will not result in a correct display. You must set the
following two bits to have the display start at field 2.
♦
CANH (x’007F0A’, bit 4): Set to 1.
0: Normal display
1: Slide the field 1 display position down 1 line
♦
EOSEL (x’007F0E’, bit 10): Complement the value EOSEL has for
field 1 in a normal display.
■
Scrolling in the closed-caption mode
To implement text-layer scrolling in the closed-caption mode, the program must
constantly switch the text display fields. This can cause the text lines to display
incorrectly. To prevent this, set the following bits to fix the text lines to the even
or odd field characters while scrolling.
♦
BFLD (x’007F0A’, bit 2): Set to 1 to enable scrolling.
0: Normal display
1: Display the same characters in fields 1 and 2
♦
EONL (x’007F0A’, bit 3): Set to 0 or 1.
0: Fix to characters in field 1
1: Fix to characters in field 2
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
202
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
OSD Registers
7.15 OSD Registers
All registers in OSD block cannot be written by byte (by word only). Read by
byte is possible.
CROMEND: Text ROM End Address Register
x’007F00’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
—
—
—
—
—
—
A17
A16
A15
A14
A13
A12
A11
A10
A9
A8
Reset:
R/W:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W
A[17:8] holds the programmable portion of the text ROM end address. The
low-order 8 bits of the address are always x’FF’ and the high-order 6 bits
are always b’000010’. The available address range is x’0800FF’ to
x’0BFFFF’, with a programmable range from x’000’ to x’3FF’.
A17
A8
0000 10XX XXXX XXXX 1111 1111
Fixed
Programmable
Fixed
0800FF 0000 1000 0000 0000 1111 1111
0BFFFF 0000 1011 1111 1111 1111 1111
GROMEND: Graphics ROM End Address Register
x’007F02’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
—
—
—
—
—
—
A17
A16
A15
A14
A13
A12
A11
A10
A9
A8
Reset:
R/W:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W
A[17:8] holds the programmable portion of the graphics ROM end
address. The low-order 8 bits of the address are always x’FF’ and the high-
order 6 bits are always b’000010’. The available address range is
x’0800FF’ to x’0BFFFF’, with a programmable range from x’000’ to
x’3FF’.
RAMEND: Text and Graphics RAM End Address Register
x’007F04’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
GRAM GRAM GRAM GRAM GRAM GRAM GRAM GRAM CRAM CRAM CRAM CRAM CRAM CRAM CRAM CRAM
END END END END END END END END END END END END END END END END
A11
A10
A9
A8
A7
A6
A5
A4
A11
A10
A9
A8
A7
A6
A5
A4
Reset:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R/W: R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W
GRAMENDA[11:4] holds the programmable portion of the graphics RAM
end address and CRAMENDA[11:4] holds the programmable portion of
the text RAM end address. The low-order 4 bits of the address are always
x’F’ and the high-order 4 bits are always x’9’. The available address range
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
203
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
OSD Registers
is x’900F’ to x’9FFF’, with a programmable range from x’00’ to x’FF’.
A11
A4
1001 XXXX XXXX 1111
Fixed Programmable Fixed
x'900F' 1001 0000 0000 1111
x'9FFF' 1001 1111 1111 1111
STC0: Cursor Tile Code Register 0
x’007F10’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
—
—
—
—
—
—
SPRT0 STC08 STC07 STC06 STC05 STC04 STC03 STC02 STC01 STC00
Reset:
R/W:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W
SPRT0: Cursor 0 color palette select
0: Graphics color palette 1
1: Graphics color palette 2
STC0[8:0]: Cursor 0 Tile Code
Use the same ROM data as that used for the graphics.
STC1: Cursor Tile Code Register 1
x’007F2A’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
—
—
—
—
—
—
SPRT1 STC18 STC17 STC16 STC15 STC14 STC13 STC12 STC11 STC10
Reset:
R/W:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W
SPRT1: Cursor 1 color palette select
0: Graphics color palette 1
1: Graphics color palette 2
STC1[8:0]: Cursor 1 Tile Code
Use the same ROM data as that used for the graphics.
STC2: Cursor Tile Code Register 2
x’007F2C’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
—
—
—
—
—
—
SPRT2 STC28 STC27 STC26 STC25 STC24 STC23 STC22 STC20 STC20
Reset:
R/W:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W
SPRT2: Cursor 2 color palette select
0: Graphics color palette 1
1: Graphics color palette 2
STC2[8:0]: Cursor 2 Tile Code
Use the same ROM data as that used for the graphics.
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
204
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
OSD Registers
STC3: Cursor Tile Code Register 3
x’007E2E’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
—
—
—
—
—
—
SPRT3 STC38 STC37 STC36 STC35 STC34 STC33 STC32 STC30 STC30
Reset:
R/W:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W
SPRT3: Cursor 3 color palette select
0: Graphics color palette 1
1: Graphics color palette 2
STC3[8:0]: Cursor 3 Tile Code
Use the same ROM data as that used for the graphics.
SHP: Cursor Horizontal Position Register
x’007F12’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
—
—
—
SHSZ1 SHSZ0
—
SHP9 SHP8 SHP7 SHP6 SHP5 SHP4 SHP3 SHP2 SHP1 SHP0
Reset:
R/W:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R/W R/W
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W
SHSZ[1:0]: Cursor horizontal size
00: 1 dot = 1 VCLK period
01: 1 dot = 2 VCLK periods
10: 1 dot = 3 VCLK periods
11: 1 dot = 4 VCLK periods
SHP[9:0]: Cursor horizontal position
SVP: Cursor Vertical Position Register
x’007F14’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
—
—
—
SVSZ1 SVSZ0
—
SVP9 SVP8 SVP7 SVP6 SVP5 SVP4 SVP3 SVP2 SVP1 SVP0
Reset:
R/W:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R/W R/W
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W
SVSZ[1:0]: Cursor vertical size
Table 7-16 Cursor Vertical Size Settings
1 Dot Size
SVSZ[1:0]
Setting
Interlaced Displays
1 H scan line
Progressive Displays
Reserved
00
01
10
11
2 H scan lines
1 H scan line
4 H scan lines
2 H scan lines
3 H scan lines
6 H scan lines
SVP[9:0]: Cursor vertical position
GIHP: Graphics Initial Horizontal Position Register
x’007F16’
Bit: 15
14
—
13
—
12
GI
11
GI
10
GI
9
8
7
6
5
4
3
2
1
0
—
GIHP9 GIHP8 GIHP7 GIHP6 GIHP5 GIHP4 GIHP3 GIHP2 GIHP1 GIHP0
HSZ1 HSZ0 SHT
Reset:
R/W:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W
GIHSZ[1:0]: Graphics initial horizontal size
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
205
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
OSD Registers
00: 1 dot = 1 VCLK period
01: 1 dot = 2 VCLK periods
10: 1 dot = 3 VCLK periods
11: 1 dot = 4 VCLK periods
GISHT: Graphics initial shutter control
0: Shutter control on
1: Shutter control off
GIHP[9:0]: Graphics initial horizontal position
GIVP: Graphics Initial Vertical Position Register
x’007F18’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
GI
GI
—
—
—
—
GIVP9 GIVP8 GIVP7 GIVP6 GIVP5 GIVP4 GIVP3 GIVP2 GIVP1 GIVP0
VSZ1 VSZ0
Reset:
R/W:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R/W R/W
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W
GIVSZ[1:0]: Graphics initial vertical size
Table 7-17 Graphics Vertical Size Settings
1 Dot Size
GIVSZ[1:0]
Setting
Interlaced Displays
Progressive Displays
Reserved
00
01
10
11
1 H scan line
2 H scan lines
4 H scan lines
6 H scan lines
1 H scan line
2 H scan lines
3 H scan lines
GIVP[9:0]: Graphics initial vertical position
CIHP: Text Initial Horizontal Position Register
x’007F1A’
Bit: 15
14
—
13
—
12
CI
11
CI
10
CI
9
8
7
6
5
4
3
2
1
0
—
CIHP9 CIHP8 CIHP7 CIHP6 CIHP5 CIHP4 CIHP3 CIHP2 CIHP1 CIHP0
HSZ1 HSZ0 SHT
Reset:
R/W:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W
CIHSZ[1:0]: Text initial horizontal size
00: 1 dot = 1 VCLK period
01: 1 dot = 2 VCLK periods
10: 1 dot = 3 VCLK periods
11: 1 dot = 4 VCLK periods
CISHT: Graphics initial shutter control
0: Shutter control on
1: Shutter control off
CIHP[9:0]: Graphics initial horizontal position
CIVP: Text Initial Vertical Position Register
x’007F1C’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
CI
CI
—
—
—
—
CIVP9 CIVP8 CIVP7 CIVP6 CIVP5 CIVP4 CIVP3 CIVP2 CIVP1 CIVP0
VSZ1 VSZ0
Reset:
R/W:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R/W R/W
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
206
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
OSD Registers
CIVSZ[1:0]: Text initial vertical size
Table 7-18 Text Vertical Size Settings
1 Dot Size
CIVSZ[1:0]
Setting
Interlaced Displays
1 H scan line
Progressive Displays
Reserved
00
01
10
11
2 H scan lines
1 H scan line
4 H scan lines
2 H scan lines
3 H scan lines
6 H scan lines
CIVP[9:0]: Text initial vertical position
EVOD: Display Start Field Control Register
x’007F0E’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
EO
FR
EO FREG FREG FREG FREG FREG FREG FREG FREG
—
—
—
—
—
SEL MON MON
23
22
21
20
13
12
11
10
Reset:
R/W:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R/W
R
R
R
R
R
R
R
R
R
R
EOSEL: Even/odd field select
0: Select the smaller counter value as the display start field
1: Select the larger counter value as the display start field
FRMON: Field register monitor
Monitors which field register (FREG) loaded the counter value on the
leading edge of VSYNC.
0: Loaded to FREG[23:20]
1: Loaded to FREG[13:10]
EOMON: Even/odd field monitor
Set between display fields.
0: No display start field detected
1: Display start field detected
FREG[23:20]: Field register
4-bit register 2 storing field counter value.
FREG[13:10]: Field register
4-bit register 1 storing field counter value.
HCOUNT: HSYNC count
x’007F0C’
Bit: 15
14
13
12
11
10
—
9
8
7
6
5
4
3
2
1
0
HCNT HCNT HCNT HCNT HCNT HCNT HCNT HCNT HCNT HCNT
9
—
—
—
—
—
8
7
6
5
4
3
2
1
0
Reset:
R/W:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
This register holds the HSYNC count, which indicates the vertical display
position. It is cleared to 0 on the leading edge of VSYNC.
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
207
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
OSD Registers
OSD1: OSD Register 1
x’007F06’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
OSC OSC
SEL1 SEL0
YS
POL
YS
PLT
—
—
—
—
—
OSD
XIO HPOL VPOL
—
YCNT RGBC
Reset:
R/W:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W
R
R/W R/W
0: Off
1: On
OSCSEL[1:0]: Oscillator select
00: OSC clock + PLL + internal synchronization
01: OSDX clock (with LC blocking oscillator)
A write to the OSD bit of OSD1
takes effect on the next leading
edge of VSYNC. If you are
turning the OSD on, the OSD
starts operating on the next
VSYNC after the program writes
a 1 to the OSD bit. If you are
turning the OSD off, the OSD
stops operating on the next
VSYNC after the program writes
a 0 to the OSD bit.
10: OSDX clock (external source) + internal synchronization
11: Reserved
XIO: OSDX frequency select
Frequency range: 12 to 48 MHz
0: Less than 20 MHz
1: Greater than 20 MHz
HPOL: HSYNC input polarity select
0: Active low
1: Active high
VPOL: VSYNC input polarity select
0: Active high
To turn off the OSD block to save
power:
1: Active low
1. Write a 0 to OSD (OSD1, bit 10).
2. Wait for the next VSYNC input.
3. Write a 0 to OSDPOFF (PCNT0,
bit 7), turning the clock off.
YSPOL: YS output polarity select
0: Active high
1: Active low
If you turn the clock off before the
VSYNC input, power usage may not
drop or the microcontroller may halt.
YSPLT: YS color palette select
0: Output YS to entire display area (except transparent and translucent
areas)
1: Output the MSB (bit 15) of all the color palettes from YS
YCNT: YM DAC/digital output select
0: DAC output
In using LC blocking oscillation, the
power comsumption becomes large.
To reduce it, select another oscillation.
1: Digital output
Digital output is the LSB of YM (bit 12 of the color palette).
RGBC: RGB DAC/digital output select
0: DAC output
1: Digital output
Digital output is the LSB of each color:
R: bit 0 of the color palette
In case of of useing OSDX clock (both
LC blocking oscilation and external
clock), to prevent the current flow set
OSDXI, OSDXO terminal to port
function (P45, P46) and output H level
before invoking STOP mode.
G: bit 4 of the color palette
B: bit 8 of the color palette
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
208
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
OSD Registers
OSD2: OSD Register 2
x’007F08’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
SPEX
GCOL GCOL
VCLK VCLK VCLK
GTHT GEXTE PRYM TRPTF TRPT
COLB
CGPR SOUT GOUT COUT
T
0
1
0
2
1
0
Reset:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R/W: R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W
SPEXT: Cursor extended mode select
0: Standard mode (16 x 16 pixels)
1: Extended mode (32 x 32 pixels)
GTHT: Graphic tile height select
0: 16 pixels high
1: 18 pixels high
GEXTE: Graphics maximum tiles per line select
0: Maximum 18 tiles
1: Maximum 28 tiles
PRYM: Translucent color control (YM, YS)
0: Normal YS output
1: Don’t output YS during YM output (when the YM color code is not 0)
TRPTF: Translucency control (all layers)
Specifies translucency for color 15 in all palettes.
0: Make color 15 on all palettes translucent
1: Output color 15 as specified
Setting the YSPLT bit of OSD1
to 1 disables the PRYM bit. With
this setting, you must also set
the TRPT and TRPTF bits to 1.
You can specify transparency for
individual color palettes if
needed.
TRPT: Transparency control (all layers)
Specifies transparency for color 0 in all palettes.
0: Make color 0 on all palettes transparent
1: Output color 0 as specified
GCOL[1:0]: Graphics color mode
00: 16-color mode
01: 8-color mode
10: 4-color mode
11: 2-color mode
COLB: Color background control
0: Don’t output color background
1: Output color background
VCLK[2:0]: VCLK clock select
Divide-by ratio select. The values in parentheses ( ) are applicable when the
oscillator in the OSD1 register is set to the OSC clock (OSCSEL[1:0] = 00).
000: Divide by 4 (12 MHz)
001: Divide by 3 (16 MHz)
010: Divide by 2 (24 MHz)
011: 2/3 division (32 MHz)
100: Don’t divide (48 MHz)
101: Reserved
110: Reserved
You cannot set VCLK[2:0] to 100
(don’t divide) when the OSC
clock is selected. Only select it
when the clock source is 32
MHz or less.
111: Reserved
CGPR: Graphics/text layer priority
0: Graphics layer takes priority
1: Text layer takes priority
SOUT/GOUT/COUT: Layer output on/off
SOUT: cursor layer; GOUT: graphics layer; COUT: text layer
0: Don’t output layer
1: Output layer
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
209
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
OSD Registers
OSD3: OSD Register 3
x’007F0A’
Bit: 15
14
13
12
11
10
—
9
8
7
6
5
4
3
2
1
0
BLIN
K
—
—
—
—
—
—
—
—
—
CANH EONL BFLD UNDF CAPM
Reset:
R/W:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R/W R/W R/W R/W R/W R/W
BLINK: Character blinking control
Controls blinking for text-layer characters with BLINK set in the COL code.
0: Don’t blink
1: Blink
CANH: Vertical position control for closed captions
Active when interlacing is selected.
0: Normal position
1: Add 1 to V position of even fields
EONL and BFLD: Closed-caption scrolling control
Use when required for smoother scrolling.
00: Normal display
01: Fix to characters in odd fields during scrolling
10: Fix to characters in even fields during scrolling
11: Normal display
UNDF: Underline blinking control
0: Don’t blink
1: Blink
CAPM: Closed-caption mode setting
0: Normal display mode
1: Closed-caption mode
VSHT0: Vertical Shutter 0 Register
x’007F20’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
VSON
0
VSMP
0
VST0 VST0 VST0 VST0 VST0 VST0 VST0 VST0 VST0 VST0
—
—
VSP0
VSM0
9
8
7
6
5
4
3
2
1
0
Reset:
R/W:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W
VSON0: Vertical shutter 0 on/off
0: Off
1: On
VSP0: Vertical shutter 0 shuttering direction
0: Shutter below
1: Shutter above
VSMP0: Vertical shutter 0 movement direction
0: Top to bottom
1: Bottom to top
VSM0: Vertical shutter 0 movement control
0: Don’t move
1: Move
VST0[9:0]: Vertical shutter 0 position
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
210
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
OSD Registers
VSHT1: Vertical Shutter 1 Register
x’007F22’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
VSON
1
VSMP
1
VST1 VST1 VST1 VST1 VST1 VST1 VST1 VST1 VST1 VST1
—
—
VSP1
VSM1
9
8
7
6
5
4
3
2
1
0
Reset:
R/W:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W
VSON1: Vertical shutter 1 on/off
0: Off
1: On
VSP1: Vertical shutter 1 shuttering direction
0: Shutter below
1: Shutter above
VSMP1: Vertical shutter 1 movement direction
0: Top to bottom
1: Bottom to top
VSM1: Vertical shutter 1 movement control
0: Don’t move
1: Move
VST1[9:0]: Vertical shutter 1 position
HSHT0: Horizontal Shutter 0 Register
x’007F24’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
HSON
0
HSMP
0
HST0 HST0 HST0 HST0 HST0 HST0 HST0 HST0 HST0 HST0
—
—
HSP0
HSM0
9
8
7
6
5
4
3
2
1
0
Reset:
R/W:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W
HSON0: Horizontal shutter 0 on/off
0: Off
1: On
HSP0: Horizontal shutter 0 shuttering direction
0: Shutter to the right
1: Shutter to the left
HSMP0: Horizontal shutter 0 movement direction
0: Left to right
1: Right to left
HSM0: Horizontal shutter 0 movement control
0: Don’t move
1: Move
HST0[9:0]: Horizontal shutter 0 position
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
211
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
OSD Registers
HSHT1: Horizontal Shutter 1 Register
x’007F26’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
HSON
1
HSMP
1
HST1 HST1 HST1 HST1 HST1 HST1 HST1 HST1 HST1 HST1
—
—
HSP1
HSM1
9
8
7
6
5
4
3
2
1
0
Reset:
R/W:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W
HSON: Horizontal shutter 1 on/off
0: Off
1: On
HSP1: Horizontal shutter 1 shuttering direction
0: Shutter to the right
1: Shutter to the left
HSMP1: Horizontal shutter 1 movement direction
0: Left to right
1: Right to left
HSM1: Horizontal shutter 1 movement control
0: Don’t move
1: Move
HST1[9:0]: Horizontal shutter 1 position
SHTC: Shutter Control Register
x’007F28’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
SHT COLB SHT SHT SHT
BC
SHT SHT
CC
—
—
—
—
—
—
—
—
GSHT
BLK SHT
SP1
SP0
RAD
The shuttering function does not
work in the cursor layer.
Reset:
R/W:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W
SHTBLK: Shutter blanking on/off
0: Off
1: On
COLBSHT: Color background shutter control
0: Disable
1: Enable
SHTSP[1:0]: Shutter speed control
00: Move every VSYNC
10: Move every 3 VSYNCs
01: Move every 2 VSYNCs
11: Move every 4 VSYNCs
SHTRAD: Shutter mode control
0: AND mode
1: OR mode
GSHT: Graphics shutter control
0: Disable
1: Enable
BCSHT: Text background shutter control
0: Disable
1: Enable
CCSHT: Text shutter control
0: Disable
1: Enable
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
212
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
OSD Registers
CPT0–CPTF: Text Palette Colors 0–15 Registers
x’007F80’–x’007F9E’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
CPTn CPTn CPTn CPTn CPTn CPTn CPTn CPTn CPTn CPTn CPTn CPTn CPTn CPTn CPTn CPTn
YM3 YM2 YM1 YM0
B3
B2
B1
B0
G3
G2
G1
G0
R3
R2
R1
R0
Reset:
R/W:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
These registers contain the colors used in the text layer. When digital out-
put is selected, CPTnYM0 is output as YM, CPTnB0 as B, CPTnG0 as G,
and CPTnR0 as R. When the YS color palette is selected, CPTnYM3 is
output as YS.
CPTnYM[3:0]: YM color code
CPTnB[3:0]: Blue color code
CPTnG[3:0]: Green color code
CPTnR[3:0]: Red color code
COLB: Color Background Register
x’007FA0’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
COLB COLB COLB COLB COLB COLB COLB COLB COLB COLB COLB COLB COLB COLB COLB COLB
YM3 YM2 YM1 YM0
B3
B2
B1
B0
G3
G2
G1
G0
R3
R2
R1
R0
Reset:
R/W:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
This register contains the color used for the color background. When digi-
tal output is selected, COLBYM0 is output as YM, COLBB0 as B,
COLBG0 as G, and COLBR0 as R. When the YS color palette is selected,
COLBYM3 is output as YS.
COLBYM[3:0]: YM color code
COLBB[3:0]: Blue color code
COLBG[3:0]: Green color code
COLBR[3:0]: Red color code
FRAME: Outlining and Character Shadowing Color Register
x’007FA2’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
FRAM FRAM FRAM FRAM FRAM FRAM FRAM FRAM FRAM FRAM FRAM FRAM FRAM FRAM FRAM FRAM
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
YM3 YM2 YM1 YM0
B3
B2
B1
B0
G3
G2
G1
G0
R3
R2
R1
R0
Reset:
R/W:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
This register contains the color used for text outlining and shadowing.
When digital output is selected, FRAMEYM0 is output as YM,
FRAMEB0 as B, FRAMEG0 as G, and FRAMER0 as R. When the YS
color palette is selected, FRAMEYM3 is output as YS.
FRAMEYM[3:0]: YM color code
FRAMEB[3:0]: Blue color code
FRAMEG[3:0]: Green color code
FRAMER[3:0]: Red color code
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
213
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
OSD Registers
BBSHD: Black Box Shadowing Register
x’007FA4’
Bit: 15
BB
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
SHD SHD SHD SHD SHD SHD SHD SHD SHD SHD SHD SHD SHD SHD SHD SHD
YM3 YM2 YM1 YM0
B3
B2
B1
B0
G3
G2
G1
G0
R3
R2
R1
R0
Reset:
R/W:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
This register contains the color used as black in box shadowing. When dig-
ital output is selected, BBSHDYM0 is output as YM, BBSHDB0 as B,
BBSHDG0 as G, and BBSHDR0 as R. When the YS color palette is
selected, BBSHDYM3 is output as YS.
BBSHDYM[3:0]: YM color code
BBSHDB[3:0]: Blue color code
BBSHDG[3:0]: Green color code
BBSHDR[3:0]: Red color code
WBSHD: White Box Shadowing Register
x’007FA6’
Bit: 15
WB
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
WB
WB
WB
WB
WB
WB
WB
WB
WB
WB
WB
WB
WB
WB
WB
SHD SHD SHD SHD SHD SHD SHD SHD SHD SHD SHD SHD SHD SHD SHD SHD
YM3 YM2 YM1 YM0
B3
B2
B1
B0
G3
G2
G1
G0
R3
R2
R1
R0
Reset:
R/W:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
This register contains the color used as white in box shadowing. When dig-
ital output is selected, WBSHDYM0 is output as YM, WBSHDB0 as B,
WBSHDG0 as G, and WBSHDR0 as R. When the YS color palette is
selected, WBSHDYM3 is output as YS.
WBSHDYM[3:0]: YM color code
WBSHDB[3:0]: Blue color code
WBSHDG[3:0]: Green color code
WBSHDR[3:0]: Red color code
GPT10–GPT1F: Graphics Palette 1 Colors 0–15 Registers x’007FC0’–x’007FDE’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
GPT1n GPT1n GPT1n GPT1n GPT1n GPT1n GPT1n GPT1n GPT1n GPT1n GPT1n GPT1n GPT1n GPT1n GPT1n GPT1n
YM3 YM2 YM1 YM0
B3
B2
B1
B0
G3
G2
G1
G0
R3
R2
R1
R0
Reset:
R/W:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
These registers contain one of two sets of colors used in the graphics layer.
When digital output is selected, GPT1nYM0 is output as YM, GPT1nB0 as
B, GPT1nG0 as G, and GPT1nR0 as R. When the YS color palette is
selected, GPT1nYM3 is output as YS.
GPT1nYM[3:0]: YM color code
GPT1nB[3:0]: Blue color code
GPT1nG[3:0]: Green color code
GPT1nR[3:0]: Red color code
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
214
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
On-Screen Display
OSD Registers
GPT20–GPT2F: Graphics Palette 2 Colors 0–15 Registers x’007FE0’–x’007FFE’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
GPT2n GPT2n GPT2n GPT2n GPT2n GPT2n GPT2n GPT2n GPT2n GPT2n GPT2n GPT2n GPT2n GPT2n GPT2n GPT2n
YM3 YM2 YM1 YM0
B3
B2
B1
B0
G3
G2
G1
G0
R3
R2
R1
R0
Reset:
R/W:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
These registers contain one of two sets of colors used in the graphics layer.
When digital output is selected, GPT2nYM0 is output as YM, GPT2nB0 as
B, GPT2nG0 as G, and GPT2nR0 as R. When the YS color palette is
selected, GPT2nYM3 is output as YS.
GPT2nYM[3:0]: YM color code
GPT2nB[3:0]: Blue color code
GPT2nG[3:0]: Green color code
GPT2nR[3:0]: Red color code
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
215
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
IR Remote Signal Receiver
Description
8
IR Remote Signal Receiver
8.1 Description
The MN102H75K/85K contains a remote signal receiver that processes signals in
two formats: Household Electrical Appliance Manufacturers Association
(HEAMA) format and 5-/6-bit format. This chapter provides an overview of each
block in the circuit and describes the operation of the receiver.
fSYSCLK = 12 MHz in all of the
examples and descriptions in
this section. In addition,
fPWM1 = fSYSCLK/23,
The remote signal is input through the RMIN pin. Each time the edge detection
circuit detects the active edge of the signal, the 6-bit counter resets and the
sampling clock, TS, starts counting. TS is formed by dividing PWM3 by the value
in the frequency division control register, RMTC. The clock status register,
RMCS, which can be read at any time, holds the current value of the 6-bit
counter.
fPWM3 = fSYSCLK/25,
fPWM5 = fSYSCLK/27,
fPWM6 = fSYSCLK/28, and
fPWM8 = fSYSCLK/210.
The remote signal contains a leader, data, and a trailer, in that order. The micro-
controller shifts received data into the LSB of the reception data shift register,
RMSR. After it receives 8 bits, it loads the contents of RMSR to the reception
data transfer register, RMTR.
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
216
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
IR Remote Signal Receiver
Block Diagram
8.2 Block Diagram
R M C S : x ’ 0 0 7 E A 6 ’
0 1
3 2
4
7 6 5
MUX
M U X
M U X
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
217
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
IR Remote Signal Receiver
IR Remote Signal Receiver Operation
8.3 IR Remote Signal Receiver Operation
8.3.1 Operating Modes
The IR remote signal receiver has three operating modes: HEAMA, 5-/6-bit, and
HEAMA–5-/6-bit automatic detect. Set the mode in the MODAUTO and
MODSEL bits of the interrupt control register, RMIR. The FMTMON bit of the
interrupt status register, RMIS, monitors the operating mode.
In automatic detect mode, the microcontroller checks the interval between
remote signal edges. If the interval is (n - 4TS) to (n + 3TS), where n is the leader
value set in the LD[3:0] field of the RMLD register, it processes the data in
HEAMA format. If the interval is 28 to 35 TS cycles, it processes the data in
5-/6-bit format.
8.3.2 Noise Filter
The IR remote signal receiver contains a noise filter to eliminate noise from the
remote signal. To enable the noise filter, set the FILTRE bit of the interrupt
control register, RMIR, to 1. The noise filter samples the remote input signal
every PWM6 cycle (21.3 µs) or PWM8 cycle (85.5 µs), then outputs the value
that it sampled at least three times during the last four sampling cycles. This
eliminates any noise occurring during one or two sampling cycles. Select the
sampling clock (PWM6 or PWM8) with the SP bit of the RMLD register.
(PWM6 is selected at reset.)
Sampling
Remote signal
Noise filter
output
Noise eliminated
Figure 8-2 IR Remote Signal Noise Filtering
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
218
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
IR Remote Signal Receiver
IR Remote Signal Receiver Operation
8.3.3 8-Bit Data Reception
Resetting the 8-bit data reception counter allows the microcontroller to receive 8-
bit data, either with or without a leader. The software can reset the counter using the
BCRSTE and BCEDGS bits of the interrupt status register, RMIS. The counter can
also be reset by an external reset or a hardware reset at leader detection.
BCEDGS bit is 0, the counter resets at the first remote signal edge after each trailer
detection. This mode is for data containing no leader. (See figure 8-3.)
8-bit data
Trailer
8-bit data
Remote
signal input
Edge
detection
Trailer detection
0
8-bit data reception detection
8-bit data
reception
counter
5
6
7
0
1
2
Counter reset
Figure 8-3 Reception of 8-Bit Data with No Leader
each trailer detection. By ignoring the leader, this mode allows the microcon-
troller to receive 8-bit data that contains a leader. (See figure 8-4.)
8-bit data
Trailer
8-bit data
Ignored
Remote
signal input
Edge
detection
8-bit data reception detection
Trailer detection
Leader detection
8-bit data
reception
counter
5
6
7
0
1
0
1
Counter reset
Figure 8-4 Reception of 8-Bit Data with Leader
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
219
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
IR Remote Signal Receiver
IR Remote Signal Receiver Operation
between remote signal edges. Table 8-1 shows the intervals that the microcon-
troller interprets as 0 and 1 for both HEAMA and 5-/6-bit formats. Table 8-2
shows the conditions for identifying long and short data.
Table 8-1 Logic Level Conditions for Data Formats
Logic Level Conditions
Operating Mode
Data = 0
Data = 1
HEAMA format
5-/6-bit format
< 6 T cycles
≥ 6 T cycles
S
S
< 12 T cycles
≥ 12 T cycles
S
S
Table 8-2 Long and Short Data Identification
Operating Mode Long Data
Short Data
HEAMA format
5-/6-bit format
≥ 10 T cycles
< 2 T cycles
S
S
≥ 20 T cycles
< 4 T cycles
S
S
a data leader, it sets the LONGDF bit of the clock status register, RMCS, to indicate
long data. Figure 8-5 is a graphic representation of all the conditions for identifying
the data format.
When the microcontroller detects a data trailer, the hardware automatically
shuts off the supply to sampling clock T , which the 6-bit counter counts.
S
The counter resets and the clock supply restarts at the next edge detection.
0
2
4
6
8
10 12
16
20
24
28
32
36
40
64
T
S
Leader
Leader (= 24 T
)
S
(When RMLD[3:0] = x’6’)
Data
format
detection
Data = 0 (= 4 T
)
S
Data = 1 (= 8 T
)
S
Short
Short/long
detection
Long
Leader
Leader (= 32 T
)
S
Data
format
detection
Data = 0 (= 8 T
Short
)
S
Data = 1 (= 16 T
)
S
Short/long
detection
Long
T
64
S
40
0
4
8
12
16
20
24
28
32
36
Figure 8-5 Conditions for Detecting Data Formats
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
220
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
IR Remote Signal Receiver
IR Remote Signal Receiver Operation
8.3.5 Generating Interrupts
The IR remote signal receiver has four interrupt vectors: leader detection, trailer
detection, 8-bit data reception detection, and pin edge detection. This section
describes the operation for each of them.
8.3.5.1 Leader Detection
An interrupt occurs when the circuit detects a data leader. It detects leaders by
testing the interval between remote signal edges. Table 8-3 shows the conditions.
Table 8-3 Leader Detection Conditions
Format
Edge Interval
(1)
HEAMA data leader
5-/6-bit data leader
(n - 4)T ≤ interval < (n + 4)T
S
S
28T ≤ interval < 36T
S
S
Note: 1. n = the leader value set in LD[3:0] of the RMLD register.
8.3.5.2 Trailer Detection
An interrupt occurs when the 6-bit counter overflows.
8.3.5.3 8-Bit Data Reception Detection
An interrupt occurs when the microcontroller loads 8-bit received data to the
reception data transfer register, RMTR.
8.3.5.4 Pin Edge Detection
An interrupt occurs when the remote signal input pin, RMIN, is asserted. The
POLSEL bit of RMIR sets the polarity of RMIN.
RMIN input
positive-edge-triggered
(POLSEL=0)
RMIN input
negative edge-triggered
(POLSEL=1)
Edge detection output
1/f
1/f
SYSCLK
SYSCLK
Note: 1/fSYSCLK = 1/12 MHz = 0.083 µs
Figure 8-6 Pin Edge Detection
The detection output for all four interrupt vectors is an active high pulse asserted
at intervals of 1/fSYSCLK. Bits 3 to 0 of the RMIR register control the interrupt
vectors individually. A 0 disables the interrupt vector and a 1 enables it.
A remote signal interrupt sets the RMCIR flag of the RMCICL interrupt register
(x’00FC76’).
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
221
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
IR Remote Signal Receiver
IR Remote Signal Receiver Operation
Use bit 7 (SP) in the RMLD reg-
ister to toggle the noise filter
sampling frequency between
PWM6/PWM8 and PWM3/
PWM5.
The MN102H series microcontrollers have two operating modes: NORMAL and
SLOW. (See section 3.1, “CPU Modes,” on page 72.) In SLOW mode, fSYSCLK
= 2 MHz, which affects the frequencies of the PWM3 clock and noise filter
sampling (PWM6/PWM8). Use the SPSLW bit (bit 6) of the RMLD register to
change which clocks and noise filter sampling that you use.
Table 8-4 Differences between SLOW and NORMAL Modes
Normal Mode
= 12 MHz)
SLOW Mode
(f = 2 MHz)
SYSCLK
SPSLW
(RMLD,
bit 6)
(f
SYSCLK
Noise filter sampling
Clock
Noise filter sampling
Clock
0
PWM6
PWM8
PWM3
PWM6
PWM8
PWM3
(16 µs)
(21.3 µs)
(85.5 µs)
(2.7 µs)
(128 µs)
(512 µs)
1
PWM3
PWM5
PWM1
PWM3
PWM5
(64 µs)
PWM1
(2.7 µs)
(10.7 µs)
(0.67 µs) (16 µs)
(4.0 µs)
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
222
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
IR Remote Signal Receiver
IR Remote Signal Receiver Control Registers
8.4 IR Remote Signal Receiver Control Regis-
ters
All registers in RMC block cannot be written by byte (by word only). Read by
byte is possible.
Table 8-5 IR Remote Signal Receiver Registers
Register
RMTC
RMIR
Address
x’007EA4’
x’007EA2’
x’007EA0’
x’007EAC’
x’007EA6’
x’007EA8’
x’007EAA’
R/W
Function
R/W Remote signal frequency division control register
R/W Remote signal interrupt control register
R/W Remote signal interrupt status register
R/W Remote signal leader value set register
RMIS
RMLD
RMCS
RMSR
RMTR
R
R
R
Remote signal clock status register
Remote signal reception data shift register
Remote signal reception data transfer register
RMTC: Remote Signal Frequency Division Control Register
x’007EA4’
Bit:
7
6
5
4
3
2
1
0
RMTC7 RMTC6 RMTC5 RMTC4 RMTC3 RMTC2 RMTC1 RMTC0
Reset:
R/W:
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
To identify the remote signal, the IR signal receiver generates a sampling
clock, TS, by dividing the PWM3 pulse by the value set in RMTC[7:0].
f
PWM3 is fSYSCLK divided by 25 (= 375 kHz, 2.7 µs with a 4-MHz oscilla-
tor). The TS cycle is the contents of RMTC + 1, so load a value from 1 to
255 for a division ratio from 2 to 256.
The edge detection circuit samples
the remote signal with fSYSCLK.
Set the frequency divide-by ratio to
meet this condition. If you do not,
the microcontroller may interpret
the data 1s and 0s incorrectly.
The microcontroller reads the value in the frequency division counter as a
ones’ complement number (each digit is complemented).
Set the RMTC value so that TS = T/2, where T is the pulse width of the remote
input signal. Table 8-6 shows how to define T for the different formats.
Table 8-6 HEAMA and 5-/6-Bit Data Pulse Widths
H
T
L
T
After the program sets the divide-
by ratio for the frequency in
RMTC, the read values may be
incorrect until the circuit detects
the next active edge of the remote
signal.
Data 0:
Data 1:
Data 0:
Data 1:
HEAMA format
5-/6-bit format
T
3T
2T
2T
2T
6T
RMTC is an 8- or 16-bit access register.
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
223
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
IR Remote Signal Receiver
IR Remote Signal Receiver Control Registers
All registers in RMC block cannot be written by byte (by word only). Read by
byte is possible.
RMIR: Remote Signal Interrupt Control Register
x’007EA2’
Bit:
7
6
5
4
3
2
1
0
MOD
AUTO
MOD
SEL
FILTR
E
POL LEADER TRAILR DAT8
EDME
E
SEL
E
E
E
Reset:
R/W:
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
RMIR controls the operating modes and interrupt operations for the
receiver circuit. It is a 16-bit access register.
MODAUTO: Automatic operating mode detection on/off
0: Automatic detect
1: Fixed
MODSEL: Operating mode select
0: HEAMA format
1: 5-/6-bit format
FILTRE: Noise filter input multiplexer on/off
0: Pin level
1: Noise filter
POLSEL: Input polarity
0: Positive-edge-triggered
1: Negative-edge-triggered
LEADERE: Interrupt enable for leader detection
0: Disable
1: Enable
TRAILRE: Interrupt enable for trailer detection
0: Disable
1: Enable
DAT8E: Interrupt enable for 8-bit data reception detection
0: Disable
1: Enable
EDMEE: Interrupt enable for RMIN pin edge detection
0: Disable
1: Enable
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
224
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
IR Remote Signal Receiver
IR Remote Signal Receiver Control Registers
RMIS: Remote Signal Interrupt Status Register
x’007EA0’
Bit:
7
6
5
4
3
2
1
0
BC
RSTE
BC
EDGS
FMT DOMES M56BIT TRAILR DAT8
EDGE
D
MON
D
D
D
D
Reset:
R/W:
0
0
0
0
0
0
0
0
R/W
R/W
R
R/W
R/W
R/W
R/W
R/W
RMIR indicates the detection and operation status of remote signal inter-
rupts. It is a 16-bit access register.
BCRSTE: 8-bit data reception binary counter reset enable
0: Disable
1: Enable
BCEDGS: 8-bit data reception binary counter reset edge select
0: Reset at 1st edge
1: Reset at 2nd edge
FMTMON: Format monitor
0: HEAMA format
1: 5-/6-bit format
DOMESD: Interrupt request on HEAMA leader detection
0: No request
1: Request
M56BITD: Interrupt request on 5-/6-bit leader detection
0: No request
1: Request
TRAILRD: Interrupt request on trailer detection
0: No request
1: Request
DAT8D: Interrupt request on 8-bit reception detection
0: No request
1: Request
EDGED: Interrupt request on RMIN pin edge detection
0: No request
1: Request
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
225
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
IR Remote Signal Receiver
IR Remote Signal Receiver Control Registers
RMLD: Remote Signal Leader Value Set Register
x’007EAC’
Bit:
7
6
5
4
3
2
1
0
SP
SPSLW
—
—
LD3
LD2
LD1
LD0
Reset:
R/W:
0
0
0
0
0
1
1
0
R/W
R/W
R
R
R/W
R/W
R/W
R/W
RMLD is a 16-bit access register.
SP and SPSLW: Switch clock frequencies
00: Filter sampling cycle = fPWM6, clock = PWM3
01: Filter sampling cycle = fPWM3, clock = PWM1
10: Filter sampling cycle = fPWM8, clock = PWM3
11: Filter sampling cycle = fPWM5, clock = PWM1
fPWM1 = fSYSCLK/23,
fPWM3 = fSYSCLK/25,
fPWM5 = fSYSCLK/27,
fPWM6 = fSYSCLK/28, and
fPWM8 = fSYSCLK/210.
LD[3:0]: HEAMA data leader value
Set the four MSBs of the 6-bit leader value for HEAMA data in LD[3:0].
This 4-bit setting must be between 0 and 60 TS cycles. The default value is
x’6’. The two LSBs of the leader are always 0.
RMCS: Remote Signal Clock Status Register
x’007EA6’
Bit:
7
6
5
4
3
2
1
0
Do not set the leader value too
small. Leader detection and data
detection may occur
LONG SHORT
DF
TSCNT5 TSCNT4 TSCNT3 TSCNT2 TSCNT1 TSCNT0
DF
Reset:
R/W:
0
0
0
0
0
0
0
0
simultaneously.
R/W
R/W
R
R
R
R
R
R
RMCS indicates the result of the short/long data detection. It is a 16-bit
access register.
LONGDF: Long data format detection
Set to 1 when long data is detected.
SHORTDF: Short data format detection
Set to 1 when short data is detected.
TSCNT[5:0]: 6-bit counter value
RMSR: Remote Signal Reception Data Shift Register
x’007EA8’
x’007EAA’
Bit:
7
6
5
4
3
2
1
0
RMSR7 RMSR6 RMSR5 RMSR4 RMSR3 RMSR2 RMSR1 RMSR0
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
RMTR: Remote Signal Reception Data Transfer Register
Bit:
7
6
5
4
3
2
1
0
RMTR7 RMTR6 RMTR5 RMTR4 RMTR3 RMTR2 RMTR1 RMTR0
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
The microcontroller shifts received data into RMSR, converting it to paral-
lel data. After it shifts in 8 bits, it loads the data byte to RMTR. The CPU
reads the data from RMTR. The data shifts from LSB to MSB. RMSR and
RMTR are 8- or 16-bit access registers.
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
226
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Closed-Caption Decoder
Description
9
Closed-Caption Decoder
9.1 Description
CCD0 and CCD1. The decoders extract encoded captions from composite video
signals. Figure 9-1 provides a block diagram of the decoders, and section 9.3,
“Functional Description,” on page 228, describes the circuit’s main blocks: the
controller, and sampling circuit. Note that this section describes CCD0, but all
descriptions apply to CCD1. Table 9-1 provides the pin names for each decoder.
Table 9-1 Pins Used for CCD0 and CCD1
Closed-Caption Decoder
Pin Name
CCD0
CCD1
CVBS0
CVBS1
VREFHS
CLH0
CLH0
CLL0
CLL0
VREFLS
9.2 Block Diagram
Controller
CRI
frequency
detector
Data extraction
controller
Data slicer
CVBS
Slicing
circuit
Data extractor
(sampling circuit)
Clamp
ADC
S/P
Slice level
detector
Max/min
detector
HSYNC separator
Low-pass filter
VSYNC separator
RAM
Clamping
controller
CPU
Sync separator
Figure 9-1 Closed-Caption Decoder Block Diagram
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
227
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Closed-Caption Decoder
Functional Description
9.3 Functional Description
9.3.1 Analog-to-Digital Converter
The analog-to-digital converter (ADC) converts the clamped video signal to 8-bit
caption decoders are used. Figure 9-3 shows the recommended connection when
neither decoder is used, and figure 9-4 shows that when only CCD0 is used.
The constants shown in figures 9-2
to 9-4 are recommended values
only. Operation at these values is
not guaranteed.
ADC0ON
(PCNT0: x’00FF90’, bit 4)
3.3 V
Power Down
8.2 kΩ
ADDATA[7: 0]
VREFHS
+
1 µF
VREFH
OUT
3.3 V
+
18 kΩ
A/D
VBI0OFF
(PCNT0: x’00FF90’, bit 0)
+
VREFL
VIDEO IN 0
240 Ω
1 µF
IN
CLK
1 µF
1 kΩ
560 pF
1kΩ
Low pass filter
CVBS0
3.3 V
6.8 kΩ
CLL
CLH
Clamping
circuit
33 kΩ
3.3 V
CVBS1
8.2 kΩ
ADC1ON
(PCNT0: x’00FF90’, bit 5)
3.3 V
18 kΩ
+
IN
Power Down
OUT
VIDEO IN 1
ADDATA[7: 0]
+
VREFLS
+
1 µF
240 Ω
VREFH
1µF
1 µF
1 kΩ
560 pF
A/D
fSYSCLK
(12 MHz)
VREFL
Low pass filter
CLK
VBI1OFF
(PCNT0: x’00FF90’, bit 1)
Figure 9-2 Recommended ADC Configuration
CLH
(Used as P30)
CLH
33 kΩ
VREFHS
+
VREFHS
1 µF
CVBS0
(Used as P31)
External
circuit
CVBS0
VIDEO IN
CVBS1
(Used as P32)
CVBS1
(Used as P32)
VREFLS
CLL
VREFLS
6.8 kΩ
CLL
(Used as P33)
Figure 9-3 External Connection with Figure 9-4 External Connection with
Both CCD0 and CCD1 Unused
Only CCD1 Unused
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
228
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Closed-Caption Decoder
Functional Description
Table 9-2 Caption decoder register setting
VBI control
ADC control
ON(PCNT0.bp4=1)
ON(PCNT0.bp5=1)
ON(PCNT0.bp4=1)
OFF(PCNT0.bp5=0)
OFF(PCNT0.bp4=0)
OFF(PCNT0.bp5=0)
Clamp control
Use two cap-
tion decoders
caption 0
caption 1
caption 0
no caption 1
ON(PCNT0.bp0=0)
ON(PCNT0.bp1=0)
ON(PCNT0.bp0=0)
OFF(PCNT0.bp1=1)
OFF(PCNT0.bp0=1)
OFF(PCNT0.bp1=1)
(P3MD.bp3,2,1)=(0,1,1)
Use one cap-
tion decoder
(P3MD.bp3,2,1)=(1,0,1)
(P3MD.bp3,2,1)=(0,0,0)
No use caption no caption 0
decoder
no caption 1
9.3.2 Clamping Circuit
This block clamps the input video signal (CVBS0, CVBS1).
3.3 V
1
Control circuit
6.8 kΩ
CLL
3
5
Clamping
Circuit
CVBS0,
1
Data slice
circuit
External
circuit
Vidio in
A/D
2
CLH
4
6
33 kΩ
Sync separator
Figure 9-5 Clamping Circuit
The clamping circuit internal to the MN102H75K/85K provides three current
sources—high, medium, and low. You can modify these current sources using
external resistors R1 and R2. Within the clamping circuit, you can turn each of the
for sync tip and pedestal clamping, but the reference and compare levels are dif-
ferent. Table 9-3 provides these values for the two types of clamping, and table 9-4
shows how to control the three current levels so that the video signal matches the
reference level.
Table 9-3 Clamping Reference and Compare Levels
Reference Level
Compare Level
Clamping
Type
CCD0
CCD1
CCD0
CCD1
Sync tip
16 (dec)
16 (dec)
Output from minimum
Output from minimum
clamping
detection circuit (value detection circuit (value
in SYNCMIN,
in SYNCMINW,
x’007EC8’, bits 6-0)
x’007EE8’, bits 6-0)
Pedestal
clamping
Value in
PCLV,
Value in
PCLVW,
Value in SYNCMIN,
x’007EC8’, bits 14-8
Value in SYNCMINW,
x’007EE8’, bits 14-8
x’007ECC’ x’007EEC’
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
229
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Closed-Caption Decoder
Functional Description
Table 9-4 Current Level Control
Current Source
Medium Current
Low Current
Control
High Current
Conditions
(1)
Off
Off
Off
Off
On
On
On
(2)
On
On
On
Off
Off
Off
Off
(3)
Off
Off
Off
Off
Off
On
On
(4)
On
On
Off
Off
Off
Off
Off
(5)
Off
Off
Off
Off
Off
Off
On
(6)
On
Off
Off
Off
Off
Off
Off
10 ≤ A
4 ≤ A ≤ 9
1 ≤ A ≤ 3
A= 0
-3 ≤ A ≤ -1
-9 ≤ A ≤ -4
A ≤ -10
Notes: 1. A = compare level - reference level
2. The numbers (1) to (6) correspond to the same number in figure 9-5.
Table 9-5 provides the registers used to control and monitor the clamping circuit.
See the page number indicated for register and bit descriptions.
Table 9-5 Control Registers for Clamping Circuit
CCDO
CCD1
Register Page Address Address
Description
Register for selecting the low-pass filter
NFSEL
242
x’007EC0’ x’007EE0’ Noise filter select register
Registers for controlling clamping
SCMING
x’007EC4’ x’007EE4’ Minimum sync level detection interval set
register
SYNCMIN
BPPST
244
243
x’007EC8’ x’007EE8’ Sync and pedestal level register
x’007EC6’ x’007EE6’ Backporch position register
CLAMP
x’007ECC’ x’007EEC Clamping control register
’
CLPCND
1
248
x’007EDC’ x’007EEC Clamping control signal status register 1
’
9.3.3 Sync Separator Circuit
extracts HSYNC and VSYNC from the composite video signal. Figure 9-6 shows
a block diagram of the circuit, and table 9-6 provides the registers used to control
and monitor it. See the page number indicated for register and bit descriptions.
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
230
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Closed-Caption Decoder
Functional Description
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
231
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Closed-Caption Decoder
Functional Description
Table 9-6 Control Registers for Sync Separator Circuit
CCDO CCD1
Register Page Address Address
Description
Register for setting the sync separator level
SPLV
Register for controlling the sync separator clock
FQSEL 243 x’007EC2’ x’007EE2’ Frequency select register
Registers for controlling the HSYNC separator
244
x’007ECA’ x’007EEA’ Sync separator level set register
HSEP1
246
246
246
247
x’007ECE’ x’007EEE’ HSYNC separator control register 1
x’007ED0’ x’007EF0’ HSYNC separator control register 2
x’007ED4’ x’007EF4’ Sync separator detection control register 1
x’007ED6’ x’007EF6’ Sync separator detection control register 2
HSEP2
HLOCKLV
HDISTW
Register for controlling the VSYNC separator
VCNT 247 x’007ED8’ x’007EF8’ VSYNC separator control register
Register for controlling the field detection
FIELD 246 x’007ED2’ x’007EF2’ Field detection control register
Register for monitoring the sync separator status
HVCOND 247 x’007EDA’ x’007EFA’ Sync separator status register
9.3.3.1 HSYNC Separator
The HSYNC separator extracts the HSYNC signal from the composite sync
signal using the sampling clock generated by the sync separator clock pulse gen-
erator. This circuit also secures and interpolates the HSYNC signal.
Error HSYNC
resulting from
noise
Missed
HSYNC
Detected HSYNC
Window for securing
and interpolating HSYNC
Window open
HSEP2 setting
Interpolated
HSYNC
Secured and
interpolated HSYNC
HSEP1 setting
Figure 9-7 HSYNC Securement and Interpolation
As shown in figure 9-7, noise can cause the HSYNC detection circuit to both
miss HSYNC pulses and add erroneous ones. The HSYNC separator contains a
window circuit to correct these errors. The open and close timing for this window
is set in the HSEP1 and HSEP2 registers, and the unit is the sampling clock for
the HSYNC separator.
The circuit counts a corrected and interpolated HSYNC signal. If the count is
greater than that set in the HLOCKLV register, within the interval set in the
HDISTW register, the HLOCK bit of HVCOND sets to 0, indicating an asyn-
chronous state. This allows the device to determine the quality of the signal.
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
232
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Closed-Caption Decoder
Functional Description
9.3.3.2 VSYNC Separator
The VSYNC separator extracts the VSYNC signal from the composite signal.
Like the HSYNC separator, it contains programmable methods for eliminating
(by setting the VSEPSEL bit of VCNT to 0) prevents VSYNC errors due to
noise. See figure 9-8.
VSYNC
127H
Masked
signal
Figure 9-8 VSYNC Masking
9.3.3.3 Field Detection Circuit
The field detection circuit detects the phase difference between VSYNC and
HSYNC, based on the setting in the VPHASE[9:0] field of the FIELD register.
This setting is in units of the sampling clock for the HSYNC separator. The
results of the field detection are stored in the ODDEVEN bit of FIELD.
9.3.4 Data Slicer
The data slicer contains the maximum and minimum detection circuits, the slice
level calculator, and the slicer. The circuit compares the 8-bit digital values
output from the ADC to the slice level, which can be calculated by the hardware
or set in the software. It then outputs the results in serial 0s and 1s.
The data slicer calculates the slice level (the level above which a signal is 1 and
below which is 0) from the maximum and minimum clock run-in (CRI) pulses
occurring in the interval between the settings in the CRI1S and CRI1E registers.
CRI
Data
HSYNC
CRI1S
CRI1E
(max + min)/2 of this interval = slice level (computed in the hardware)
Figure 9-9 Data Slice Level Calculation
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
233
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Closed-Caption Decoder
Functional Description
Table 9-7 provides the registers used to control and monitor the data slicer. See
the page number indicated for register and bit descriptions.
Table 9-7 Control Registers for Data Slicer
CCDO
CCD1
Register Page Address Address
Description
CRI1S
CRI1E
MAXMIN
SLICE
240
241
238
238
237
x’007E10’ x’007E30’ CRI capture start timing control register 1
x’007E12’ x’007E32’ CRI capture stop timing control register 1
x’007E02’ x’007E22’ CRI interval maximum and minimum register
x’007E04’ x’007E24’ VBI data slice level register
FCCNT
x’007E00’ x’007E20’ VBI decoding format select register
9.3.5 Controller and Sampling Circuit
The control circuit contains the CRI window generator and the caption data
window generator. The sampling circuit extracts the 16-bit caption data (503
kHz) from the serial data output from the data slicer at the 12-MHz ADC
Table 9-8 provides the registers used to control and monitor these two blocks. See
the page number indicated for register and bit descriptions.
Table 9-8 Control Registers for Controller and Sampling Circuit
CCDO
CCD1
Register Page Address Address
Description
Registers for detecting CRI and generating sampling clock
CRI2S
CRI2E
CRIFA
CRIFB
241
241
240
240
x’007E14’ x’007E34’ CRI capture start timing control register 2
x’007E16’ x’007E36’ CRI capture stop timing control register 2
x’007E0C’ x’007E2C’ CRI frequency width register A
x’007E0E’ x’007E2E’ CRI frequency width register B
Registers for controlling data capture
DATAS
241
242
239
239
x’007E18’ x’007E38’ Data capture start timing control register
x’007E1A’ x’007E3A’ Data capture stop timing control register
x’007E0A’ x’007E2A’ Caption data capture register
x’007E06’ x’007E26’ HSYNC count register
DATAE
CAPDATA
HNUM
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
234
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Closed-Caption Decoder
Functional Description
9.3.5.1 CRI Detection for Sampling Clock Generation
The decoder captures the caption data on the rising edge of the CRI pulse. To
achieve this, it contains a circuit to accurately detect the CRI pulse rises and to
generate a data sampling clock.
CRI
Data
21 HSYNC
CRI2S
CRI2E
CRI detection
This interval determines the sampling clock timing.
Figure 9-10 Sampling Clock Timing Determination
9.3.5.2 Data Capture Control
The DATAS and DATAE registers control the data capture timing, and the
CAPDATA register stores the caption data captured on the sampling clock gen-
erated through CRI detection. The HNUM register controls interrupt timing.
CRI
Data
21 HSYNC
DATAS
(CRI2S)
(Sampling clock)
DATAE
Figure 9-11 Caption Data Capture Timing
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
235
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Closed-Caption Decoder
Closed-Caption Decoder Registers
9.4 Closed-Caption Decoder Registers
All registers in Closed-caption Decoder block cannot be written by byte (by word
only). Read by byte is possible.
Table 9-9 Closed-Caption Decoder Register
CCD0
CCD1
Register Address Address R/W
Description
FCCNT
MAXMIN
SLICE
x’007E00’ x’007E20’ R/W VBI decoding format select register
x’007E02’ x’007E22’ CRI interval maximum and minimum register
x’007E04’ x’007E24’ R/W VBI data slice level register
x’007E06’ x’007E26’ HSYNC count register
x’007E08’ x’007E28’ R/W ACQ capture timing control register 1
R
HNUM
ACQ1
R
CAPDATA
CRIFA
x’007E0A’ x’007E2A’
x’007E0C’ x’007E2C’
x’007E0E’ x’007E2E’
R
R
R
Caption data capture register
CRI frequency width register A
CRI frequency width register B
CRIFB
CRI1S
CRI1E
CRI2S
CRI2E
DATAS
DATAE
STAP
x’007E10’ x’007E30’ R/W CRI capture start timing control register 1
x’007E12’ x’007E32’ R/W CRI capture stop timing control register 1
x’007E14’ x’007E34’ R/W CRI capture start timing control register 2
x’007E16’ x’007E36’ R/W CRI capture stop timing control register 2
x’007E18’ x’007E38’ R/W Data capture start timing control register
x’007E1A’ x’007E3A’ R/W Data capture stop timing control register
Sampling start position register (software setting)
Sampling start position register (hardware calculation)
x’007E1C’ x’007E3C’ R/W
x’007E1E’ x’007E3E’
FCPNUM
NFSEL
FQSEL
SCMING
BPPST
R
x’007EC0’ x’007EE0’ R/W Noise filter select register
x’007EC2’ x’007EE2’ R/W Frequency select register
Minimum sync level detection interval set register
x’007EC4’ x’007EE4’ R/W
x’007EC6’ x’007EE6’ R/W Backporch position register
SYNCMIN x’007EC8’ x’007EE8’
R
Sync and pedestal level register
SPLV
x’007ECA’ x’007EEA’ R/W Sync separator level set register
x’007ECC’ x’007EEC’ R/W Clamping control register
CLAMP
HSEP1
HSEP2
FIELD
x’007ECE’ x’007EEE’ R/W HSYNC separator control register 1
x’007ED0’ x’007EF0’ R/W HSYNC separator control register 2
x’007ED2’ x’007EF2’ R/W Field detection control register
HLOCKLV x’007ED4’ x’007EF4’ R/W Sync separator detection control register 1
HDISTW
VCNT
x’007ED6’ x’007EF6’ R/W Sync separator detection control register 2
x’007ED8’ x’007EF8’ R/W VSYNC separator control register
HVCOND
x’007EDA’ x’007EFA’
R
R
R
R
Sync separator status register
Clamping control signal status register 1
Sampling start position register
Test register
CLPCND1 x’007EDC’ x’007EFC’
SBFNUM
TESTA
x’007F4C’ x’007F6C’
x’007F4E’ x’007F6E’
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
236
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Closed-Caption Decoder
Closed-Caption Decoder Registers
FCCNT: VBI Decoding Format Select Register
(FCCNTW
x’007E00’
x’007E20’)
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
SLPU
L
SEL
NCRI
G
SEL
FCP SYNC HCNT HCNT SLICE SLICE SLICE SLICE
CRIC
SEL
CNT CNT CNT CNT CNT
STAP4 STAP3 STAP2 STAP1 STAP0
For designs using the closed-cap-
SEL
0
SEL SEL1 SEL0 SEL
LD2
0
LD1
0
LD0
0
tion decoder, always tie the FCCNT
Reset:
0
0
0
0
0
0
0
0
1
0
0
0
register to x’0008’.
R/W: R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W
This register contains the settings for selecting either a hardware or soft-
ware slice level and for setting the data capture format. When you do not
use a bit or field in this register, tie it to the setting indicated below.
FCPSEL: Hard/soft sampling start position select
0: Select hardware calculation
1: Select software setting (set in SFTSTAP[10:0] field of STAP)
SYNCSEL: Sync signal select (HSYNC/VSYNC)
Tie this bit to 0.
HCNTSEL[1:0]: HSYNC count value select
When this field is unused, tie it to b’00’.
00: When odd, add 1 to the HSYNC count value
01: When even, add 1 to the HSYNC count value
10: No change to the HSYNC count value
11: Reserved
SLICESEL: Hard/soft slice level select
0: Select hardware calculation
1: Select software setting
SLICELD[2:0]: Slice level load timing select
When this field is unused, tie it to b’000’.
000: 1H
001: 2H
010: 4H
011: 8H
100: 1 field
101: 2 fields
110: 4 fields
111: 8 fields
SLPULSEL: Polarity select for the CRI cycle transition detection
0: Detect 0 to 1 transitions
1: Detect 1 to 0 transitions
CRICSEL: Detection interval select for the CRI frequency width
0: CRI capture interval only
1: CRI capture interval and transition detection interval
NCRIGSEL: Sampling pulse generation interval
0: Disable the CRI capture interval
1: Enable the CRI capture interval
CNTSTAP[4:0]: Caption data sampling start position
The higher the setting in this field, the later the start position. The valid
range is x’00’ to x’1F’.
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
237
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Closed-Caption Decoder
Closed-Caption Decoder Registers
MAXMIN: CRI Interval Maximum and Minimum Register
(MAXMINW
x’007E02’
x’007E22’)
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
MAX7 MAX6 MAX5 MAX4 MAX3 MAX2 MAX1 MAX0 MIN7 MIN6 MIN5 MIN4 MIN3 MIN2 MIN1 MIN0
Reset:
R/W:
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
MAX[7:0]: Maximum value during the CRI interval
Valid range: x’00’ to x’FF’
MIN[7:0]: Minimum value during the CRI interval
Valid range: x’00’ to x’FF’
SLICE: VBI Data Slice Level Register
(SLICEW
x’007E04’
x’007E24’)
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
SLSF SLSF SLSF SLSF SLSF SLSF SLSF SLSF SLHD SLHD SLHD SLHD SLHD SLHD SLHD SLHD
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
Reset:
R/W: R/W R/W R/W R/W R/W R/W R/W R/W
R
R
R
R
R
R
R
R
SLSF[7:0]: VBI data slice level—software setting
Valid range: x’00’ to x’FF’
SLHD[7:0]: VBI data slice level—hardware calculation
Valid range: x’00’ to x’FF’
Composite signal
from ADC
0/1 data
Compare
SLHD
MUX
SLSF
SLICESEL
Figure 9-12 SLSF and SLHD Multiplexing
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
238
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Closed-Caption Decoder
Closed-Caption Decoder Registers
HNUM: HSYNC Count Register
(HNUMW
x’007E06’
x’007E26’)
Bit: 15
14
13
—
12
11
10
9
8
7
6
5
4
3
2
1
0
VBI- VBI- VBI- VBI- VBI-
IRQ
4
SB
FLAG
HNU HNU HNU HNU HNU
M4
—
—
IRQ
3
IRQ
2
IRQ
1
IRQ
0
—
—
M3
M2
M1
M0
Reset:
R/W:
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
R
R
R
R/W R/W R/W R/W R/W
R
R
R
R
R
R
R
R
This register allows you to time the interrupt occurring after the line 21
data capture to a line other than line 21.
VBIIRQ[4:0]: VBI interrupt timing control
In this field, set the H line number, from 0 to 25, for the VBI interrupt. You
must set this field to x’13’ or higher.
SBFLAG: Start bit detection flag
0: No start bit detected
1: Start bit detected
HNUM[4:0]: HSYNC count during the VBI interval
This field indicates the H line number, from 0 to 25.
ACQ1: ACQ Capture Timing Control Register 1
(ACQ1W
x’007E08’
x’007E28’)
Bit: 15
14
13
—
12
11
10
9
8
7
6
5
4
3
2
1
0
ACQ1 ACQ1 ACQ1 ACQ1 ACQ1
ACQ1 ACQ1 ACQ1 ACQ1 ACQ1
S4
—
—
—
—
—
For designs using the closed-cap-
tion decoder, always tie the ACQ1
register to x’1312’.
E4
1
E3
1
E2
1
E1
1
E0
1
S3
S2
S1
S0
Reset:
R/W:
0
0
0
0
0
0
1
1
1
1
1
R
R
R
R/W R/W R/W R/W R/W
R
R
R
R/W R/W R/W R/W R/W
ACQ1E[4:0]: Stop position for ACQ capture 1
Valid range: x’00’ to x’25’
ACQ1S[4:0]: Start position for ACQ capture 1
Valid range: x’00’ to x’25’
CAPDATA: Caption Data Capture Register
(CAPDATAW
x’007E0A’
x’007E2A’)
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
CAP CAP CAP CAP CAP CAP CAP CAP CAP CAP CAP CAP CAP CAP CAP CAP
DA15 DA14 DA13 DA12 DA11 DA10 DA9 DA8 DA7 DA6 DA5 DA4 DA3 DA2 DA1 DA0
Reset:
R/W:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
CAPDA[15:0]: Caption data
This register stores the 16-bit captured caption data.
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
239
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Closed-Caption Decoder
Closed-Caption Decoder Registers
CRIFA: CRI Frequency Width Register A
(CRIFAW
x’007E0C’
x’007E2C’)
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
CRI2 CRI2 CRI2 CRI2 CRI2 CRI2 CRI2 CRI2 CRI1 CRI1 CRI1 CRI1 CRI1 CRI1 CRI1 CRI1
FQW7 FQW6 FQW5 FQW4 FQW3 FQW2 FQW1 FQW0 FQW7 FQW6 FQW5 FQW4 FQW3 FQW2 FQW1 FQW0
Reset:
R/W:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
The CRIFA and CRIFB registers store the CRI cycles from rising edge to
rising edge, for monitoring whether the CRIs were detected correctly dur-
ing this period.
CRI2FQW[7:0]: CRI frequency width 2
This field indicates the width, in clock units, from the second to the third
rising edge after the CRI.
CRI1FQW[7:0]: CRI frequency width 1
This field indicates the width, in clock units, from the first to the second
rising edge after the CRI.
CRIFB: CRI Frequency Width Register B
(CRIFBW
x’007E0E’
x’007E2E’)
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
CRI4 CRI4 CRI4 CRI4 CRI4 CRI4 CRI4 CRI4 CRI3 CRI3 CRI3 CRI3 CRI3 CRI3 CRI3 CRI3
FQW7 FQW6 FQW5 FQW4 FQW3 FQW2 FQW1 FQW0 FQW7 FQW6 FQW5 FQW4 FQW3 FQW2 FQW1 FQW0
Reset:
R/W:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
CRI4FQW[7:0]: CRI frequency width 4
This field indicates the width, in clock units, from the fourth to the fifth ris-
ing edge after the CRI.
CRI3FQW[7:0]: CRI frequency width 3
This field indicates the width, in clock units, from the third to the fourth
rising edge after the CRI.
CRI1S: CRI Capture Start Timing Control Register 1
(CRI1SW
x’007E10’
x’007E30’)
Bit: 15
14
13
—
12
—
11
—
10
9
8
7
6
5
4
3
2
1
0
CRI1S CRI1S CRI1S CRI1S CRI1S CRI1S CRI1S CRI1S CRI1S CRI1S CRI1S
—
—
10
1
9
1
8
1
7
1
6
1
5
1
4
1
3
1
2
1
1
1
0
1
Reset:
R/W:
0
0
0
0
0
R
R
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W
CRI1S[10:0]: Start position for CRI capture 1
Valid range: x’000’ to x’7FF’
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
240
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Closed-Caption Decoder
Closed-Caption Decoder Registers
CRI1E: CRI Capture Stop Timing Control Register 1
(CRI1EW
x’007E12’
x’007E32’)
Bit: 15
14
13
—
12
—
11
—
10
9
8
7
6
5
4
3
2
1
0
CRI1E CRI1E CRI1E CRI1E CRI1E CRI1E CRI1E CRI1E CRI1E CRI1E CRI1E
—
—
10
1
9
1
8
1
7
1
6
1
5
1
4
1
3
1
2
1
1
1
0
1
Reset:
R/W:
0
0
0
0
0
R
R
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W
CRI1E[10:0]: Stop position for CRI capture 1
Valid range: x’000’ to x’7FF’
CRI2S: CRI Capture Start Timing Control Register 2
x’007E14
(CRI2SW
x’007E34’)
Bit: 15
14
13
—
12
—
11
—
10
9
8
7
6
5
4
3
2
1
0
CRI2S CRI2S CRI2S CRI2S CRI2S CRI2S CRI2S CRI2S CRI2S CRI2S CRI2S
—
—
10
1
9
1
8
1
7
1
6
1
5
1
4
1
3
1
2
1
1
1
0
1
Reset:
R/W:
0
0
0
0
0
R
R
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W
CRI2S[10:0]: Start position for CRI capture 2
Valid range: x’000’ to x’7FF’
CRI2E: CRI Capture Stop Timing Control Register 2
(CRI2EW
x’007E16’
x’007E36’)
Bit: 15
14
13
—
12
—
11
—
10
9
8
7
6
5
4
3
2
1
0
CRI2E CRI2E CRI2E CRI2E CRI2E CRI2E CRI2E CRI2E CRI2E CRI2E CRI2E
—
—
10
1
9
1
8
1
7
1
6
1
5
1
4
1
3
1
2
1
1
1
0
1
Reset:
R/W:
0
0
0
0
0
R
R
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W
CRI2E[10:0]: Stop position for CRI capture 2
Set this field so that the last CRI rising edge is included. The valid range is
x’000’ to x’7FF’.
DATAS: Data Capture Start Timing Control Register
x’007E18’
(DATASW
x’007E38’)
Bit: 15
14
13
—
12
—
11
—
10
9
8
7
6
5
4
3
2
1
0
DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA
S
10
—
—
S
9
S
8
S
7
S
6
S
5
S
4
S
3
S
2
S
1
S
0
Reset:
R/W:
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
R
R
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W
DATAS[10:0]: Start position for data capture
Set this field to the same start position as that for CRI detection (set in
CRI2S). The valid range is x’000’ to x’7FF’.
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
241
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Closed-Caption Decoder
Closed-Caption Decoder Registers
DATAE: Data Capture Stop Timing Control Register
(DATAEW
x’007E1A’
x’007E3A’)
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA
—
—
—
—
—
E
10
E
9
E
8
E
7
E
6
E
5
E
4
E
3
E
2
E
1
E
0
Reset:
R/W:
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
R
R
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W
DATAE[10:0]: Stop position for data capture
Set this value high enough to allow the last data to be captured. The valid
range is x’000’ to x’7FF’.
STAP: Sampling Start Position Register (Software Setting)
(STAPW
x’007E1C’
x’007E3C’)
Bit: 15
14
13
—
12
—
11
—
10
9
8
7
6
5
4
3
2
1
0
SFT
SFT
SFT
SFT
SFT
SFT
SFT
SFT
SFT
SFT
SFT
—
—
STAP STAP STAP STAP STAP STAP STAP STAP STAP STAP STAP
10
9
8
7
6
5
4
3
2
1
0
Reset:
R/W:
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
R
R
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W
SFTSTAP[10:0]: Software setting for sampling start position (in clock units)
FCPNUM: Sampling Start Position Register (Hardware Calculation)
(FCPNUMW
x’007E1E’
x’007E3E’)
Bit: 15
14
13
12
—
11
—
10
9
8
7
6
5
4
3
2
1
0
FCP
FCP
FCP
FCP
FCP
FCP
FCP
FCP
FCP
FCP
FCP
—
—
—
NUM NUM NUM NUM NUM NUM NUM NUM NUM NUM NUM
10
9
8
7
6
5
4
3
2
1
0
Reset:
R/W:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
FCPNUM[10:0]: Sampling start position calculated by the hardware
NFSEL: Noise Filter Select Register
(NFSELW
x’007EC0’
x’007EE0’)
Bit: 15
14
13
—
12
—
11
—
10
—
9
8
7
6
5
4
3
2
1
0
NFSW NFSW
1
—
—
—
MING
—
—
—
—
—
—
0
Reset:
R/W:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W
R
R
R
R
R
R
R/W R/W
This register selects the low-pass filter, which eliminates noise and high-
frequency signals that are unnecessary to the sync separator and the clamp-
ing controller. The recommended setting for NFSEL is x’0000’.
MING: Output select for noise filter detecting minimum sync tip
0: Low-pass filter 1
1: Low-pass filter 2, 3, or 4 (set in NFSW[1:0])
NFSW[1:0]: Noise filter switch (for composite sync separator)
00: Low-pass filter 3
01: Low-pass filter 4
10: Low-pass filter 2
11: Low-pass filter 1
The cutoff frequencies for low-pass filters 1 to 4 are lower in ascending
order, so that low-pass filter 4 eliminates the highest amount of noise.
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
242
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Closed-Caption Decoder
Closed-Caption Decoder Registers
FQSEL: Frequency Select Register
(FQSELW
x’007EC2’
x’007EE2’)
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
VFQ VFQ VFQ VFQ VFQ VFQ
DIV5 DIV4 DIV3 DIV2 DIV1 DIV0
FQ
FQ
FQ
FQ
—
—
—
—
—
—
DIV3 DIV2 DIV1 DIV0
Reset:
R/W:
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
1
R
R
R/W R/W R/W R/W R/W R/W
R
R
R
R
R/W R/W R/W R/W
In this register, set the sampling cycle for separating the HSYNC and
VSYNC signals from the composite sync signal. The recommended setting
is x’1F01’.
VFQDIV[5:0]: Sampling frequency setting for VSYNC separator
In this field, set the ratio by which to divide the sampling frequency for the
HSYNC separator.
FQDIV[3:0]: Sampling frequency setting for HSYNC separator
In this field, set the ratio by which to divide the A/D sampling frequency.
SCMING: Minimum Sync Level Detection Interval Set Register
(SCMINGW
x’007EC4’
x’007EE4’)
Bit: 15
14
13
—
12
—
11
—
10
—
9
8
7
6
5
4
3
2
1
0
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
—
—
MING MING MING MING MING MING MING MING MING MING
9
8
7
6
5
4
3
2
1
0
Reset:
R/W:
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W
SCMING[9:0]: Interval setting for the minimum sync level detection
Set the HSYNC cycle in this field in ADC clock units. This is the interval
used for detecting the sync tip level for sync tip clamping. The valid range
is x’000’ to x’3FF’. Note that the HSYNC cycle set in this register is only
used for detecting the minimum sync level. You must also set the correc-
tion HSYNC cycle in HSEP1.
For the NTSC format, the setting for this register is x’02FA’, calculated as
follows:
(A/D sampling frequency) × (HSYNC cycle) = 12 MHz × 63 µs = x’02FA’
BPPST: Backporch Position Register
(BPPSTW
x’007EC6’
x’007EE6’)
Bit: 15
14
13
—
12
—
11
—
10
—
9
8
7
6
5
4
3
2
1
0
BP
BP
BP
BP
BP
BP
BP
BP
BP
—
—
—
PST8 PST7 PST6 PST5 PST4 PST3 PST2 PST1 PST0
Reset:
R/W:
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
R
R
R
R
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W
BPPST[8:0]: Backporch start position for the leading edge of HSYNC
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
243
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Closed-Caption Decoder
Closed-Caption Decoder Registers
Use this register to specify the position for capturing the pedestal level
value used during pedestal clamping. Specify a number of ADC clocks
after the leading edge of HSYNC. The valid range is x’000’ to x’1FF’, and
the recommended setting is x’003C’.
Video signal
HSYNC
Set this interval in BPPST
Pedestal level for BPLV register
Figure 9-13 Backporch Position Setting
SYNCMIN: Sync and Pedestal Level Register
(SYNCMINW
x’007EC8’
x’007EE8’)
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
SYNC SYNC SYNC SYNC SYNC SYNC SYNC
MIN6 MIN5 MIN4 MIN3 MIN2 MIN1 MIN0
—
BPLV6 BPLV5 BPLV4 BPLV3 BPLV2 BPLV1 BPLV0
—
Reset:
R/W:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
BPLV[6:0]: Pedestal level
This register stores the pedestal level captured from the position specified
in BPPST.
SYNCMIN[6:0]: Minimum sync level
This field stores the minimum level (the sync tip level) detected during the
interval set in the SCMING register. For sync tip clamping, you should
control clamping so as to make this value 16 (dec).
SPLV: Sync Separator Level Set Register
(SPLVW
x’007ECA’
x’007EEA’)
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
—
—
BSP5 BSP4 BSP3 BSP2 BSP1 BSP0
—
—
PSP5 PSP4 PSP3 PSP2 PSP1 PSP0
Reset:
R/W:
0
0
0
1
1
0
0
0
0
0
0
1
1
0
0
0
R
R
R/W R/W R/W R/W R/W R/W
R
R
R/W R/W R/W R/W R/W R/W
The sync separator uses the value set in this register to separate the com-
posite sync signal from the composite video signal.
Video signal
HSYNC
Setting for sync
separator level
Composite sync processing
Figure 9-14 Sync Separator Level
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
244
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Closed-Caption Decoder
Closed-Caption Decoder Registers
Composite signal
from ADC
Composite sync
Compare
PSP
BSP
MUX
CLMODE
Figure 9-15 BSP and PSP Multiplexing
BSP[5:0]: Sync separator level for pedestal clamping
Sync separator level = (sync tip level/2) + BSP[5:0]. The valid range is
x’00’ to x’3F’.
PSP[5:0]: Sync separator level for sync tip clamping
Valid range: x’00’ to x’3F’
CLAMP: Clamping Control Register
(CLAMPW
x’007ECC’
x’007EEC’)
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
CL
CL
VBI
ON
—
PCLV6 PCLV5 PCLV4 PCLV3 PCLV2 PCLV1 PCLV0 SAFE
—
—
—
—
MODE MODE
1
0
Reset:
R/W:
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R/W R/W R/W R/W R/W R/W R/W R/W
R
R
R/W
R
R
R/W R/W
Use this register to set the clamping mode (sync tip or pedestal clamping).
PCLV[6:0]: Pedestal clamping level setting
Set the reference level for pedestal clamping in this field. The valid range
is x’00’ to x’7F’.
VBION: VBI setting
0: VBI off
1: VBI on
SAFE: Clamping current source select
This bit is the capacity switch for (5) and (6) in figure 9-5 on page 229.
0: High current source ((5) and (6) capacity high)
1: Medium current source ((5) and (6) capacity low)
CLMODE[1:0]: Clamping mode setting
00: Automatic switching (depends on the cycle state)
01: Sync tip clamping only
10: Pedestal clamping only
11: Clamping off
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
245
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Closed-Caption Decoder
Closed-Caption Decoder Registers
HSEP1: HSYNC Separator Control Register 1
(HSEP1W
x’007ECE’
x’007EEE’)
Bit: 15
14
13
—
12
—
11
—
10
9
8
7
6
5
4
3
2
1
0
HS
HS
HS
HS
HS
HS
HS
HS
HS
HS
HS
—
—
FREQ FREQ FREQ FREQ FREQ FREQ FREQ FREQ FREQ FREQ FREQ
10
9
8
7
6
5
4
3
2
1
0
Reset:
R/W:
0
0
0
0
0
0
0
1
0
0
0
0
1
1
0
0
R
R
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W
HSFREQ[10:0]: Correction HSYNC frequency
Set the correction HSYNC cycle in this field in HSYNC separator sam-
pling clock units. The valid range is x’000’ to x’7FF’, and the recom-
mended setting is x’010C’.
HSEP2: HSYNC Separator Control Register 2
(HSEP2E
x’007ED0’
x’007EF0’)
Bit: 15
14
13
—
12
—
11
—
10
—
9
8
7
6
5
4
3
2
1
0
H
H
H
H
H
H
H
H
H
H
—
—
CLOSE CLOSE CLOSE CLOSE CLOSE CLOSE CLOSE CLOSE CLOSE CLOSE
E9
E8
E7
E6
E5
E4
E3
E2
E1
E0
Reset:
R/W:
0
0
0
0
0
0
0
0
1
1
1
0
0
1
0
0
R
R
R
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W
HCLOSEE[9:0]: Start position for HSYNC detection
Set the position in HSYNC separator sampling clock units. The valid range
is x’000’ to x’3FF’, and the recommended setting is x’00E4’.
FIELD: Field Detection Control Register
(FIELDW
x’007ED2’
x’007EF2’)
Bit: 15
14
13
—
12
—
11
—
10
—
9
8
7
6
5
4
3
2
1
0
V
V
V
V
V
V
V
V
V
V
ODD
EVEN
—
PHASE PHASE PHASE PHASE PHASE PHASE PHASE PHASE PHASE PHASE
9
8
7
6
5
4
3
2
1
0
Reset:
R/W:
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
R
R
R
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W
ODDEVEN: Field detection signal
0: Odd field
1: Even field
VPHASE[9:0]: Phase difference setting for VSYNC and HSYNC
Set the phase difference in HSYNC separator sampling clock units. The
valid range is x’000’ to x’3FF’.
HLOCKLV: Sync Separator Detection Control Register 1
(HLOCKLVW
x’007ED4’
x’007EF4’)
Bit: 15
14
13
12
—
11
—
10
—
9
8
7
6
5
4
3
2
1
0
H
H
H
H
H
H
H
H
H
—
—
—
—
LOCK LOCK LOCK LOCK LOCK LOCK LOCK LOCK LOCK
LV8
LV7
LV6
LV5
LV4
LV3
LV2
LV1
LV0
Reset:
R/W:
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
R
R
R
R
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W
HLOCKLV[8:0]: Sync separator detection threshold
This value is compared to the count of the corrected HSYNC. The valid
range is x’000’ to x’1FF’, and the recommended setting is x’0008’.
HLOCKLV ≤ HSYNC count → asynchronous
HLOCKLV > HSYNC count → synchronous
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
246
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Closed-Caption Decoder
Closed-Caption Decoder Registers
HDISTW: Sync Separator Detection Control Register 2
HDISTWW
x’007ED6’
x’007EF6’)
Bit: 15
14
13
—
12
—
11
—
10
—
9
8
7
6
5
4
3
2
1
0
HDIST HDIST HDIST HDIST HDIST HDIST HDIST HDIST HDIST
W8
—
—
—
W7
W6
W5
W4
W3
W2
W1
W0
Reset:
R/W:
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W
HDISTW[8:0]: HSYNC count setting the interval for sync separation detection
In this register, set the interval during which sync separation occurs. The
valid range is x’000’ to x’1FF’ and the recommended setting is x’0100’.
For NTSC format, set the register to 525 (dec), indicating an HSYNC
count of 525 VSYNC cycles. The recommended setting is x’0100’.
VCNT: VSYNC Separator Control Register
(VCNTW
x’007ED8’
x’007EF8’)
Bit: 15
14
13
—
12
—
11
—
10
—
9
8
7
6
5
4
3
2
1
0
VSEP
SEL
VSEP VSEP VSEP
LMT2 LMT1 LMT0
—
—
—
—
—
—
—
—
Reset:
R/W:
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
R
R
R
R
R
R
R
R/W
R
R
R
R
R
R/W R/W R/W
VSEPSEL: VSYNC signal select
0: 0H to 127H VSYNC separation mask
1: No mask
VSEPLMT[2:0]: VSYNC separation detection threshold
HVCOND: Sync Separator Status Register
(HVCONDW
x’007EDA’
x’007EFA’)
Bit:
7
6
5
4
3
2
1
0
COMP
SY
—
—
—
STPN
VSEP
HSEP HLOCK
Reset:
R/W:
0
0
0
1
1
0
0
0
R
R
R
R
R
R
R
R
Use this register to monitor the status of the sync separator.
STPN: Status of clamping control pulse signal during STOP
COMPSY: Composite sync signal status
VSEP: VSYNC signal status
HSEP: HSYNC signal status
HLOCK: Sync detection
0: Asynchronous
1: Synchronous
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
247
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Closed-Caption Decoder
Closed-Caption Decoder Registers
CLPCND1: Clamping Control Signal Status Register 1
(CLPCNDW
x’007EDC’
x’007EFC’)
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
SAFE
N
XPED XPE PED
UP DOWN UP DOWN
PE
—
—
—
—
—
—
—
—
SAFEP
CLPP CLPN
Reset:
R/W:
0
0
0
0
0
0
0
0
1
0
1
0
1
0
1
0
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
This register is for monitoring the status of the clamping current source
switch shown in figure 9-5 on page 229. An N-channel transistor is on
when the associated bit (PEDOWN, XPEDOWN, CLPN, or SAFEN) is 1.
A P-channel transistor is on when the associated bit (PEDUP, XPEDUP,
CLPP, or SAFEP) is 0.
SAFEP: Low clamping control pulse for high current source (P-channel)
SAFEN: Low clamping control pulse for high current source (N-channel)
CLPP: High clamping control pulse for high current source (P-channel)
CLPN: High clamping control pulse for high current source (N-channel)
XPEDUP: Clamping control pulse for medium current source (P-channel)
XPEDOWN: Clamping control pulse for medium current source (N-channel)
PEDUP: Clamping control pulse for low current source (P-channel)
PEDOWN: Clamping control pulse for low current source (N-channel)
SBFNUM: Sampling Start Position Register
(SBFNUMW
x’007E4C’
x’007E6C’)
Bit: 15
14
13
12
—
11
—
10
9
8
7
6
5
4
3
2
1
0
SBF
SBF
SBF
SBF
SBF
SBF
SBF
SBF
SBF
SBF
SBF
—
—
—
NUM NUM NUM NUM NUM NUM NUM NUM NUM NUM NUM
10
9
8
7
6
5
4
3
2
1
0
Reset:
R/W:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
SBFNUM[10:0]: Detected position of start bit flag (detected by the hardware)
TESTA: Test Register
(TESTA
x’007E4E’
x’007E6E’)
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
SLICE SLICE SLICE SLICE SLICE SLICE SLICE SLICE DATA
SLD
SAMP
CRI2G CRI1G ACQG
FCPIN FCP
SLD
7
6
5
4
3
2
1
0
G
Reset:
R/W:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
SLICE[7:0]: Slicing value (either from hardware calculation or software setting)
DATAG: Data window (for capturing the caption data)
CRI2G: CRI window 2 (for detecting the sampling cycle position)
CRI1G: CRI window 1 (for calculating the maximum and minimum values)
ACQG: ACQ window (for setting the H interval for data detection)
SLDSAMP: Caption data sampling pulse
FCPIN: Start position for start bit detection (software setting)
FCP: Start position for start bit detection (hardware calculation)
SLD: Sliced data from the CVBS input signal
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
248
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Pulse Width Modulator
Description
10 Pulse Width Modulator
10.1 Description
The MN102H75K/85K contains seven 8-bit pulse width modulators (PWMs)
with a minimum pulse width of 16/fSYSCLK and an output waveform cycle of
212/fSYSCLK. (With a 4-MHz oscillator, 16/fSYSCLK = 1.33 µs (8 µs for SLOW
mode) and 212/fSYSCLK = 341.3 µs (2 ms for SLOW mode).)
For information on the SLOW
mode, see section 3.1, “CPU
Modes.”
The PWM ports are 3.3-volt, open-drain outputs. To enable the PWM ports,
either turn the pullup registers on using the pullup control registers for the asso-
ciated ports (P15-P17 and P20-P23; see table 10-1) or connect external pullup
resistors to these ports.
Table 10-1 Register Settings for Internal PWM Pullup
PWM Block
PWM0
Register
Bit No. Setting
5
P1PUP
PWM1
6
7
0
1
2
3
1
1
(x’00FFB1’)
PWM2
PWM3
PWM4
P2PUP
(x’00FFB2’)
PWM5
PWM6
The microcontroller writes the pulsewidth modulated data for a PWM block to its
associated 8-bit data register (PWMn). The data register settings determine how
long the waveform stays low. With a 4-MHz oscillator, the PWM output pulse
width has a resolution of 1.33 µs (1/fPWM) and a cycle of 341.3 µs (28/fPWM).
Note that when (and only when) the data changes between x’00’ and x’01’, the
resolution is 1.34 µs (2/fPWM).
PWM Data
00
Output Wave
High level
01
.
.
.
.
.
341.3 µs (2 ms for SLOW mode)
tLOW
.
.
.
1.33 µs (8 µs for SLOW mode)
FE
FF
Low level
Figure 10-1 PWM Output Waveform
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
249
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Pulse Width Modulator
Block Diagram
10.2 Block Diagram
Data bus
8
MSB
7
PWM0 - PWM6
x'007E70' - x'007E7C'
6
5
4
3
2
1
0
PnPUP
PnCNT
PWMn
(P15 - P17,
P20 - P23)
DAC output
I/O control
f
PWM (8-bit)
PWM
MUX
PnDIR
Port
Note: With a 4-MHz oscillator:
= f /16
f
PWM
SYSCLK
8
Output pulse cycle = 2 /f
= 341.3 µs
PWM
Not using internal pullup func-
tion,Figuer10-2 connect the
external pullup registance
Minimum pulse width = 1/f
= 1.33 µs
PWM
t
= (PWMn + 1) × 0.67 µs
LOW
Figure 10-2 PWM Block Diagram
10.3 PWM Data Registers
All registers in PWM function cannot be written by byte (be word only). Read by
byte is possible.
Bits 7 to 0 of each of the seven PWM data registers (PWM0 to PWM6) hold the
8-bit pulsewidth modulated data to be written to the PWMs. The registers reset to
0, and they set to 1 when PWM output is high.
PWM0–PWM6: PWMn Data Registers
x’007E70’–x’007E7C’
Bit:
7
6
5
4
3
2
1
0
PWMn7 PWMn6 PWMn5 PWMn4 PWMn3 PWMn2 PWMn1 PWMn0
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
250
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
I/O Ports
Description
11 I/O Ports
11.1 Description
The MN102H75K/85K contains 50 pins that form general-purpose I/O ports.
Ports 0, 1, 2, 3, 4, and 5 are 8-bit ports, and port 6 is a 2-bit port. All of these pins
have alternate functions. (Ports 7 and 8 are only available with the quad flat
package.)
Table 11-1 I/O Port Pins
Port
Port 0
Port 1
Port 2
Port 3
Port 4
Port 5
Port 6
Port 7
Port 8
Associated Pins
P07–P00
P17–P10
P27–P20
P37–P30
P47–P40
P57–P50
P61–P60
P77–P70
P87–P80
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
251
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
I/O Ports
I/O Port Circuit Diagrams
11.2 I/O Port Circuit Diagrams
0: Pullup off
1: Pullup on
P0PUP0
0: P00/IRQ0
1: RMIN/IRQ0
P0MD0
0: Port input
1: Port output
P0DIR0
0: Port low output
1: Port high output
Pin
P0OUT0
P0IN0
RMIN
IRQ0
Schmidt trigger
Figure 11-1 P00/RMIN/IRQ0 (Port 0)
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
252
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
I/O Ports
I/O Port Circuit Diagrams
0: Pullup off
1: Pullup on
P0PUPn
P0MDn
P0DIRn
P0OUTn
0: P03, P04, P05, P06, P07,
1: ADIN0, ADIN1, ADIN2, ADIN3, ADIN4
0: Port input
1: Port output
0: Port low output
1: Port high output
Pin
P0INn
ADIN0, ADIN1,
ADIN2, ADIN3, ADIN4
Figure 11-2 P03/ADIN0 to P07/ADIN4 (Port 0)
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
253
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
I/O Ports
I/O Port Circuit Diagrams
0: Pullup off
1: Pullup on
P1PUPn
P1MD(2n)
P1DIRn
0: P10/IRQ1, P11/IRQ2, P12/IRQ3
1: ADIN5, ADIN6, ADIN7
0: Port input
1: Port output
0: Port low output
1: Port high output
Pin
P1OUTn
P1INn
IRQ1, IRQ2, IRQ3
ADIN5, ADIN6, ADIN7
Schmidt trigger
Figure 11-3 P10/ADIN5/IRQ1, P11/ADIN6/IRQ2, and P12/ADIN7/IRQ3 (Port 1)
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
254
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
I/O Ports
I/O Port Circuit Diagrams
0: Pullup off
1: Pullup on
P1PUPn
P1MD(2n)
P1MD(2n+1)
00: P13, P14
01: WDOUT, STOP
10: ADIN8, ADIN9
0: Port input
1: Port output
P1DIRn
0: Port low output
1: Port high output
P1OUTn
Pin
WDOUT, STOP
P1INn
ADIN8, ADIN9
Figure 11-4 P13/ADIN8/WDOUT and P14/ADIN9/STOP (Port 1)
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
255
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
I/O Ports
I/O Port Circuit Diagrams
0: Pullup off
1: Pullup on
P1PUPn
00: P15,P16
01: PWM0,PWM1
10: ADIN10,ADIN11
P1MD(2n)
P1MD(2n+1)
0: Port input
1: Port output
P1DIRn
PWM0,PWM1
0: Port low output
1: Port high output
Pin
P1OUTn
P1INn
ADIN10,ADIN11
Figure 11-5 P15/ADIN10/PWM0 and P16/ADIN11/PWM1 (Port 1)
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
256
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
I/O Ports
I/O Port Circuit Diagrams
0: Pullup off
1: Pullup on
P1PUPn
P2PUPn
0: P17, P20, P21, P22, P23
1: PWM2, PWM3, PWM4, PWM5, PWM6
P1MD(2n)
P2MD(2n)
0: Port input
1: Port output
0
1
P1DIRn
P2DIRn
M
U
X
PWM2, PWM3, PWM4,
PWM5, PWM6
0: Port low output
1: Port high output
0
1
P1OUTn
P2OUTn
Pin
M
U
X
Low output
P1INn, P2INn
Figure 11-6 /PWM2 (Port 1), P20/PWM3, P21/PWM4, P22/PWM5, and P23/PWM6 (Port 2)
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
257
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
I/O Ports
I/O Port Circuit Diagrams
0: Pullup off
1: Pullup on
P2PUP4
00: P24
01: SBT1
10: TM4IC
P2MD8
P2MD9
0: Port input
1: Port output
P2DIR4
0: Port low output
1: Port high output
Pin
P2OUT4
SBT1 output
0: Push/pull
1: Open-drain (I2C mode)
ODASCI1
P2IN4
Schmidt trigger
TM4IC input
SBT1 input
Figure 11-7 P24/TM4IC/SBT1 (Port 2)
To use as SBT1,set P2MD8 and P2MD9 to 0.
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
258
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
I/O Ports
I/O Port Circuit Diagrams
0: Pullup off
1: Pullup on
P2PUP7
P2MD14
P2DIR7
P2OUT7
0: P27
1: TM0IO
0: Port input
1: Port output
0: Port low output
1: Port high output
0
1
Pin
M
U
X
TM0IO output
P2IN7
TM0IO input
Figure 11-8 P27/TM0IO (Port 2)
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
259
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
I/O Ports
I/O Port Circuit Diagrams
0: Pullup off
1: Pullup on
P3PUPn
P4PUPn
0: DAC output
1: Digital output
(OSD1)bp0
0: P35, P36, P37, P40
1: DAROUT/R, DAGOUT/G
DABOUT/B, DAYMOUT/YM
P3MDn
P4MDn
0: Port input
1: Port output
P3DIRn
P4DIRn
0: Port low output
1: Port high output
0
1
P3OUTn
P4OUTn
Pin
M
U
X
ROUT, GOUT, BOUT, YMOUT
(Digital output)
P3INn
P4INn
DAROUT, DAGOUT, DABOUT,
DAYMOUT
(DAC output)
Figure 11-9 P35/DAROUT/R, P36/DAGOUT/G, P37/DABOUT/B (Port 3), and P40/DAYMOUT/YM (Port 4)
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
260
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
I/O Ports
I/O Port Circuit Diagrams
0: Pullup off
1: Pullup on
P2PUP5
00: P25
01: SBI1,SBD1
10: TM4IOB
11: Reserved
P2MD10
P2MD11
0: Port input
1: Port output
00
10
P2DIR5
M
U
X
0: 3-line (SBI1,SBD1,SBT1)
1: 2-line (SBD1,SBT1)
(PCNT0) bit 11
SIFSEL1
01
Pin
0: Port low output
1: Port high output
00
P2OUT5
M
U
X
P25/
SBI1/
SBD1/
TM4IOB
01
10
SBO1
TM4IOB output
P2IN5
0: Push-pull
Schmidt trigger
(PCNT0) bit 13
ODASCI1
1: Open-drain
(For I2C mode)
SBI1
0: Pullup off
1: Pullup on
P2PUP6
00: P25
01: SBI1,SBD1
10: TM4IOB
11: Reserved
P2MD12
P2MD13
00
10
0: Port input
1: Port output
P2DIR6
M
U
X
SBO1
(PCNT0) bit 13
ODASCI1
01
01
10
Pin
M
TM4IOA output
U
X
0: Port low output
1: Port high output
00
P26/
SBO1/
TM4IOA
P2OUT6
P2IN6
Schmidt trigger
Figure 11-10 P25/TM4IOB/SBI1/SBD1 and P26/TM4IOA/SBO1 (Port 2)
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
261
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
I/O Ports
I/O Port Circuit Diagrams
0: Pullup off
1: Pullup on
P5PUP5
P5MD5
P5DIR5
0: P55
1: SBO0
0: Port input
1: Port output
0: Push-pull
1: Open-drain
(For I2C mode)
(PCNT0) bit 12
ODASCI0
SBO0
1
Pin
M
U
X
0: Port low output
1: Port high output
0
P55/
P5OUT5
SBO0
P5IN5
SBI0
Schmidt trigger
0: Pullup off
1: Pullup on
P5PUP6
P5MD6
0: P56
1: SBI0/SBD0
0: Port input
1: Port output
0
1
P5DIR6
M
U
X
0: 3-line (SBI0,SBO0,SBT0)
1: 2-line (SBD0,SBT0)
(PCNT0) bit 10
SIFSEL0
1
0
Pin
SBO0
M
U
X
0: Port low output
1: Port high output
P56/
P5OUT6
SBI0/
SBD0
P5IN6
Schmidt trigger
Figure 11-11 P55 and P56 (Port 5)
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
262
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
I/O Ports
I/O Port Circuit Diagrams
0: Pullup off
1: Pullup on
P5PUP7
P5MD7
P5DIR7
0: P57
1: SBT0
0: Port input
1: Port output
0: Push-pull
1: Open-drain
(For I2C mode)
(PCNT0) bit 12
ODASCI0
SBT0 output
0: Port low outut
1: Port high output
Pin
P5OUT7
P5IN7
Schmidt trigger
SBT0 input
Figure 11-12 P57/SBT0 (Port 5)
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
263
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
I/O Ports
I/O Port Circuit Diagrams
0: Pullup off
1: Pullup on
P0PUP2
P0MD2
P0DIR2
P0OUT2
0: P02
1: SCL1
0: Port input
1: Port output
0: Port low output
1: Port high output
Pin
0
1
M
U
X
P02/
SCL1
SCL output
P0IN2
Schmidt trigger
SCL input
I2CSEL1
I2CSEL0
0: Pullup off
1: Pullup on
P6PUP1
P6MD1
P6DIR1
P6OUT1
0: P61
1: SCL0
0: Port input
1: Port output
0: Port low output
1: Port high output
Pin
0
1
M
U
X
P61/
SCL0
P6IN1
Schmidt trigger
Figure 11-13 P02/SCL1 (Port 0) and P61/SCL0 (Port 6)
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
264
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
I/O Ports
I/O Port Circuit Diagrams
0: Pullup off
1: Pullup on
P0PUP1
P0MD1
P0DIR1
P0OUT1
0: P01
1: SDA1
0: Port input
1: Port output
Pin
0: Port low output
1: Port high output
0
1
P01/
SDA1
M
U
X
SDA output
P0IN1
Schmidt trigger
SDA input
I2CSEL1
I2CSEL0
0: Pullup off
1: Pullup on
P6PUP0
P6MD0
P6DIR0
P6OUT0
0 : P60
1 : SDA0
0: Port input
1: Port output
Pin
0: Port low output
1: Port high output
0
1
M
U
X
P60/
SDA0
P6IN0
Schmidt trigger
Figure 11-14 P01/SDA1 (Port 1) and P60/SDA0 (Port 6)
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
265
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
I/O Ports
I/O Port Circuit Diagrams
0: Pullup off
1: Pullup on
P3PUPn
P3MDn
P3DIRn
P3OUTn
0: P31,P32
1: CVBS0,CVBS1
0: Port input
1: Port output
0: Port low output
1: Port high output
Pin
P3INn
CVBS0,CVBS1
Figure 11-15 P31/CVBS0 and P32/CVBS1 (Port 3)
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
266
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
I/O Ports
I/O Port Circuit Diagrams
0: Pullup off
1: Pullup on
P3PUPn
0: P30, P33
1: CLH, CLL
P3MD2
P3MD3
0: Port input
1: Port output
P3DIRn
0: Port low output
1: Port high output
Pin
P3OUTn
P3INn
CLH, CLL
Figure 11-16 P30/CLH and P33/CLL (Port 3)
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
267
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
I/O Ports
I/O Port Circuit Diagrams
0: Pullup off
1: Pullup on
P3PUP4
P3MD4
0: P34
1: VREF
0: Port input
1: Port output
P3DIR4
0: Port low output
1: Port high output
Pin
P3OUT4
P34/VREF
P3IN4
VREF
Figure 11-17 P34/VREF (Port 3)
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
268
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
I/O Ports
I/O Port Circuit Diagrams
0: Pullup off
1: Pullup on
P4PUPn
P4DIRn
P4MDn
P4OUTn
0: Port input
1: Port output
0: P41,P42,P43
1: TM1IO,TM5IOA,TM5IOB
Pin
0: Port low output
1: Port high output
0
1
M
U
X
TM1IO output, TM5IOA output,
TM5IOB output
P4INn
TM1IO input, TM5IOA input,
TM5IOB output, HI0
Figure 11-18 P41/TM1IO, P42/TM5IOA, and P43/TM5IOB/HI0 (Port 4)
0: Port input
1: Port output
P4DIR4
0: P44
1: TM5IC/HI1
P4MD4
Pin
0: Port low output
1: Port high output
P4OUT4
P44/
TM5IC/
HI1
TM5IC/
HI1 input
Figure 11-19 P44/TM5IC/HI1 (Port 4)
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
269
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
I/O Ports
I/O Port Circuit Diagrams
0: Pullup off
1: Pullup on
P4PUP5
P4OUT5
0: P45
1: OSDXI
0: Port input
1: Port output
P4DIR5
To internal circuit
P4IN5
Pin
P45/OSDXO
(0: Cut,1: Connect)
LCCNT is the OSDXI/O
oscillation control
signal from the OSD.
0: Disable
1: Enable
LCCNT
0: Pullup off
1: Pullup on
P4PUP6
0: P45/P46
1: OSDXI/OSDXO
P4MD5
0: Port input
1: Port output
P4DIR6
0: Port low output
1: Port high output
Pin
P4OUT6
P46/OSDXI
P4IN6
Figure 11-20 P45/OSDXO and P46/OSDXI (Port 4)
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
270
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
I/O Ports
I/O Port Circuit Diagrams
0: Pullup off
1: Pullup on
P4PUP7
P4MD7
P4DIR7
P4OUT7
0: P47
1: HSYNC
0: Port input
1: Port output
0: Port low output
1: Port high output
Pin
P47/HSYNC
P4IN7
Schmidt trigger
HSYNC
Figure 11-21 P47/HSYNC (Port 4)
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
271
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
I/O Ports
I/O Port Circuit Diagrams
0: Pullup off
1: Pullup on
P5PUP0
P5MD0
0: P50
1: SYSCLK
0: Port input
1: Port output
P5DIR0
0: Port low output
1: Port high output
0
1
P5OUT0
Pin
M
U
X
SYSCLK or
divided SYSCLK output
P50/SYSCLK
P5IN0
Figure 11-22 P50/SYSCLK (Port 5)
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
272
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
I/O Ports
I/O Port Circuit Diagrams
0: Pullup off
1: Pullup on
P5PUP1
0: P51
1: YS
P5MD1
P5DIR1
P5OUT1
0: Port input
1: Port output
0: Port low output
1: Port high output
0
1
Pin
M
U
X
P51/YS
YSOUT
P5IN1
Figure 11-23 P51/YS (Port 5)
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
273
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
I/O Ports
I/O Port Circuit Diagrams
0: Pullup off
1: Pullup on
P5PUP2
P5MD2
P5DIR2
0: P52
1: IRQ4/VI0
0: Port input
1: Port output
0: Port low output
1: Port high output
Pin
P5OUT2
P52/IRQ4/VI0
P5IN2
Schmidt trigger
IRQ4/VI0
Figure 11-24 P52/IRQ4/VI0 (Port 5)
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
274
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
I/O Ports
I/O Port Circuit Diagrams
0: Pullup off
1: Pullup on
P5PUP3
P5OUT3
P5DIR3
0: Port low output
1: Port high output
0: Port input
1: Port output
Pin
P53/
RST
P5IN3/
NTGTRST
Schmidt trigger
Figure 11-25 P53/RST (Port 5)
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
275
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
I/O Ports
I/O Port Circuit Diagrams
0: Pullup off
1: Pullup on
P5PUP4
P5MD4
P5DIR4
0: P54/IRQ5
1: IRQ5/VSYNC
0: Port input
1: Port output
0: Port low output
1: Port high output
Pin
P5OUT4
P54/IRQ5/VSYNC
P5IN4
IRQ5
Schmidt trigger
VSYNC
Figure 11-26 P54/IRQ5/VSYNC (Port 5)
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
276
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
I/O Ports
I/O Port Control Registers
11.3 I/O Port Control Registers
P0PUP–P5PUP: Ports 0–5 Pullup Resistor Control Registers x’00FFB0’–x’00FFB5’
P7PUP–P8PUP: Ports 7–8 Pullup Resistor Control Registers x’00FFB8’–x’00FFBA’
Bit:
7
6
5
4
3
2
1
0
PnPUP7 PnPUP6 PnPUP5 PnPUP4 PnPUP3 PnPUP2 PnPUP1 PnPUP0
Do not activate the pullup resis-
tors when the pins are in output
mode. This will cause incorrect
output voltage levels and
increase power and current con-
sumption.
Reset:
R/W:
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
P6PUP: Port 6 Pullup Resistor Control Register
x’00FFB6’
Bit:
7
6
5
4
3
2
1
0
0
0
0
0
0
0
P6PUP1 P6PUP0
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R/W
R/W
The PnPUP registers control the port pullup resistors. The bit number cor-
responds to the associated pin number. For instance, P0PUP7 applies to the
P07 pin. These are 8-bit access registers.
0: Pullup resistor off
1: Pullup resistor on
Note that by default the P7P8CNT bit of the PCNT2 register forces the
pullup resistors on for ports 7 and 8. P7PUP and P8PUP are only valid
when P7P8CNT is 1.
P0OUT–P5OUT: Ports 0–5 Output Control Registers
x’00FFC0’–x’00FFC5’
x’00FFC8’–x’00FFCA’
P7OUT–P8OUT: Ports 7–8 Output Control Registers
Bit:
7
6
5
4
3
2
1
0
PnOUT7 PnOUT6 PnOUT5 PnOUT4 PnOUT3 PnOUT2 PnOUT1 PnOUT0
Writing a 0 to P5OUT3 causes a
reset to occur.
Reset:
R/W:
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
P6OUT: Port 6 Output Control Register
x’00FFC6’
Bit:
7
6
5
4
3
2
1
0
0
0
0
0
0
0
P6OUT1 P6OUT0
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R/W
R/W
The PnOUT registers contain the port output data. The bit number corre-
sponds to the associated pin number. For instance, P0OUT7 applies to the
P07 pin. These are 8-bit access registers.
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
277
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
I/O Ports
I/O Port Control Registers
P0IN–P5IN: Ports 0–5 Input Registers
P7IN–P8IN: Ports 7–8 Input Registers
x’00FFD0’–x’00FFD5’
x’00FFD8’–x’00FFDA’
Bit:
7
6
5
4
3
2
1
0
PnIN7
PnIN6
PnIN5
PnIN4
PnIN3
PnIN2
PnIN1
PnIN0
Reset:
R/W:
Pin
R
Pin
R
Pin
R
Pin
R
Pin
R
Pin
R
Pin
R
Pin
R
P6IN: Port 6 Input Register
x’00FFD6’
Bit:
7
6
5
4
3
0
2
0
1
0
0
0
0
0
P6IN1
P6IN0
Reset:
R/W:
0
0
0
0
0
0
Pin
R
Pin
R
R
R
R
R
R
R
The PnIN registers contain the port input data. The bit number corresponds
to the associated pin number. For instance, P0IN7 applies to the P07 pin.
These are 8-bit access registers.
P0DIR–P5DIR: Ports 0–5 I/O Control Registers
P7DIR–P8DIR: Ports 7–8 I/O Control Registers
x’00FFE0’–x’00FFE5’
x’00FFE8’–x’00FFEA’
Bit:
7
6
5
4
3
2
1
0
PnDIR7 PnDIR6 PnDIR5 PnDIR4 PnDIR3 PnDIR2 PnDIR1 PnDIR0
When using P57 as a port, set
SIFSEL0 (PCNT0 x’FF90’ bp12)
to ’0’.
Reset:
R/W:
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
P6DIR: Port 6 I/O Control Register
x’00FFE6’
Bit:
7
6
5
4
3
2
1
0
0
0
0
0
0
0
P6DIR1 P6DIR0
Reset:
R/W:
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R/W
R/W
The PnDIR registers control the I/O direction of the ports. The bit number
corresponds to the associated pin number. For instance, P0DIR7 applies to
the P07 pin. These are 8-bit access registers.
0: Input
1: Output
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
278
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
I/O Ports
I/O Port Control Registers
P0MD: Port 0 Output Mode Register
x’00FFF0’
Bit:
7
6
5
4
3
2
1
0
P0MD7 P0MD6 P0MD5 P0MD4 P0MD3 P0MD2 P0MD1 P0MD0
Reset:
R/W:
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
P0MD is an 8-bit access register.
P0MD7: P07 function switch
0: P07
1: ADIN4
P0MD6: P06 function switch
0: P06
1: ADIN3
P0MD5: P05 function switch
0: P05
1: ADIN2
P0MD4: P04 function switch
0: P04
1: ADIN1
P0MD3: P03 function switch
0: P03
1: ADIN0
P0MD2: P02 function switch
0: P02
1: SCL1
P0MD1: P01 function switch
0: P01
1: SDA1
P0MD0: P00 output switch
Control the IRQ0 interrupt enable settings in the interrupt control registers.
0: P00/RMIN/IRQ0
1: RMIN/IRQ0
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
279
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
I/O Ports
I/O Port Control Registers
P1MD: Port 1 Output Mode Register
x’00FFF2’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
P1MD P1MD P1MD P1MD P1MD P1MD P1MD P1MD P1MD
P1MD
4
P1MD
2
P1MD
0
—
—
—
—
14
0
13
0
12
0
11
0
10
0
9
0
8
0
7
0
6
0
Reset:
R/W:
0
0
0
0
0
0
0
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W
R
R/W
R
R/W
R
R/W
P1MD is a 16-bit access register.
P1MD14: P17 output switch
0: P17
1: PWM2
P1MD[13:12]: P16 output and function switch
00: P16
01: ADIN11
10: PWM1
11: Reserved
P1MD[11:10]: P15 output and function switch
00: P15
01: ADIN10
10: PWM0
11: Reserved
P1MD[9:8]: P14 output and function switch
00: P14
01: ADIN9
10: STOP
11: Reserved
P1MD[7:6]: P13 output switch
00: P13
01: ADIN8
10: WDOUT
11: Reserved
P1MD4: P12 function switch
0: P12/IRQ3
1: ADIN7
P1MD2: P11 function switch
0: P11/IRQ2
1: ADIN6
P1MD0: P10 function switch
Control the IRQ3, IRQ2, and IRQ1 interrupt enable settings in the inter-
rupt control registers.
0: P10/IRQ1
1: ADIN5
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
280
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
I/O Ports
I/O Port Control Registers
P2MD: Port 2 Output Mode Register
x’00FFF4’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
P2MD P2MD P2MD P2MD P2MD P2MD P2MD
P2MD
6
P2MD
4
P2MD
2
P2MD
0
—
—
—
—
—
14
0
13
0
12
0
11
0
10
0
9
0
8
0
Reset:
R/W:
0
0
0
0
0
0
0
0
0
R
R/W R/W R/W R/W R/W R/W R/W
R
R/W
R
R/W
R
R/W
R
R/W
P2MD is a 16-bit access register.
P2MD14: P27 function switch
To use TM0IO as an output pin, set this bit to 1 and set the P2DIR7 bit to 1.
0: P27
1: TM0IO
P2MD[13:12]: P26 output and function switch
To use TM4IOA as an output pin, set this field to b’01’ and set the P2DIR6
bit to 1.
00: P26
01: TM4IOA
10: SBO1
11: Reserved
P2MD[11:10]: P25 output and function switch
If you set this field to b’10’, select SBI1 or SBD1 in bit 11 of PCNT0. To
use TM4IOB as an output pin, set this field to b’01’ and set the P2DIR5 bit
to 1.
00: P25
01: TM4IOB
10: SBI1 or SBD1
11: Reserved
P2MD[9:8]: P24 output and function switch
To use SBT1 as an input, set this field to b’00’ and set the P2DIR4 bit to 0.
00: P24
01: TM4IC
10: SBT1
11: Reserved
P2MD6: P23 output switch
0: P23
1: PWM6
P2MD4: P22 output switch
0: P22
1: PWM5
P2MD2: P21 output switch
0: P21
1: PWM4
P2MD0: P20 output switch
0: P20
1: PWM3
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
281
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
I/O Ports
I/O Port Control Registers
P3MD: Port 3 Output Mode Register
x’00FFF6’
Bit:
7
6
5
4
3
2
1
0
P3MD7 P3MD6 P3MD5 P3MD4 P3MD3 P3MD2 P3MD1 P3MD0
Reset:
R/W:
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
P3MD is an 8-bit access register.
P3MD7: P37 output switch
If you set this field to 1, select DABOUT or B in the RGBC bit of ODS1.
0: P37
1: DABOUT or B
P3MD6: P36 output switch
If you set this field to 1, select DAGOUT or G in the RGBC bit of ODS1.
0: P36
1: DAGOUT or G
P3MD5: P35 output switch
If you set this field to 1, select DAROUT or R in the RGBC bit of ODS1.
0: P35
1: DAROUT or R
P3MD4: P34 function switch
0: P34
1: VREF
P3MD[3:1]: P33-P30 function switch
Set P3MD3 to 1 only when P3MD[2:1] is 01; otherwise, set it to 0.
000: P30/P31/P32/P33
101: CLH/CVBS0/P32/CLL
010: CLH/P31/CVBS1/CLL
011: CLH/CVBS0/CVBS1/CLL
P3MD0
This bit exists, but contains no function.
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
282
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
I/O Ports
I/O Port Control Registers
P4MD: Port 4 Output Mode Register
x’00FFF8’
Bit:
7
6
5
4
3
2
1
0
P4MD7 P4MD6 P4MD5 P4MD4 P4MD3 P4MD2 P4MD1 P4MD0
Reset:
R/W:
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
P4MD is an 8-bit access register.
P4MD7: P47 function switch
0: P47/NHSYNC
1: NHSYNC
P4MD6
This bit exists, but contains no function.
P4MD5: P45 function switch
To use P45 or P46, set the OSCSEL[1:0] field of OSD1 to b’00’.
0: P45/OSDXO
1: P46/OSDXI
P4MD4: P44 output switch
0: P44/TM5IC/HI0
1: TM5IC/HI0
P4MD3: P43 output switch
To use TM5IOB as an output pin, set this bit to 1 and set the P4DIR3 bit to 1.
0: P43/HI1
1: TM5IOB/HI1
P4MD2: P42 output switch
To use TM5IOA as an output pin, set this bit to 1 and set the P4DIR2 bit to
1.
0: P42
1: TM5IOA
P4MD1: P41 output switch
To use TM1IO as an output pin, set this bit to 1 and set the P4DIR1 bit to 1.
0: P41
1: TM1IO
P4MD0: P40 output switch
If you set this bit to 1, select DAYMOUT or YM in the YCNT bit of
ODS1.
0: P40
1: YM/DAYMOUT
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
283
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
I/O Ports
I/O Port Control Registers
P5MD: Port 5 Output Mode Register
x’00FFFA’
Bit:
7
6
5
4
3
2
1
0
P5MD7 P5MD6 P5MD5 P5MD4 P5MD3 P5MD2 P5MD1 P5MD0
Reset:
R/W:
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
P5MD is an 8-bit access register.
P5MD7: P57 output switch
To use SBT0 as an input pin, set this field to 0 and set the P5DIR7 bit to 0.
0: P57
1: SBT0
P5MD6: P56 output switch
If you set this bit to 1, select SBI0 or SBD0 in the bit 10 of PCNT0.
0: P56
1: SBI0/SBD0
P5MD5: P55 output switch
0: P55
1: SBO0
P5MD4: P54 function switch
0: P54/IRQ5/VSYNC
1: IRQ5/VSYNC
P5MD3
This bit exists, but contains no function.
P5MD2: P52 output switch
0: P52/IRQ4/VI0
1: IRQ4/VI0
P5MD1: P51 output switch
0: P51
1: YS
P5MD0: P50 output switch
If you set this bit to 1, set the SYSCLK frequency in bits [15:14] of PCNT0.
0: P50
1: SYSCLK/divided SYSCLK output
P6MD: Port 6 Output Mode Register
x’00FFFC’
Bit:
7
6
5
4
3
2
1
0
0
0
0
0
0
0
P6MD1 P6MD0
Reset:
R/W:
0
R
0
R
0
R
0
R
0
R
0
R
0
R/W
0
R/W
P6MD is an 8-bit access register.
P6MD1: P61 function switch
0: P61
1: SCL0
P6MD0: P60 function switch
0: P60
1: SDA0
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
284
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
I/O Ports
I/O Port Control Registers
PCNT0: Port Control Register 0
x’00FF90’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
SCLK SCLK OD
OD
SIF
SIF
I2C
I2C
OSD PLL ADC1 ADC0 HCNT RMC VBI1 VBI0
F1
0
F0 ASCI1 ASCI0 SEL1 SEL0 SEL1 SEL0 POFF POFF ON
ON
OFF
OFF
OFF
OFF
Reset:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R/W: R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W
PCNT0 is a 16-bit access register.
SCLKF[1:0]: SYSCLK frequency select
00: SYSCLK x 214 (732.42 Hz)
01: VCOCLK x 3
10: SYSCLK x 2
Enable PWM (set PCNT1 bit 1
to 1) if you are outputting f
11: SYSCLK
SY-
14
/2
.
SCLK
ODASCI1: Serial port 1 output switch
1: Push-pull
0: Open-drain
ODASCI0: Serial port 0 output switch
To use P57 as a port, set this bit to 0.
1: Push-pull
0: Open-drain
SIFSEL1: Serial port 1 interface select
0: Three-line (enable SBI1, SBO1, SBT1)
1: Two-line (enable SBD1, SBT1)
SIFSEL0: Serial port 0 interface select
0: Three-wire (enable SBI0, SBO0, SBT0)
1: Two-wire (enable SBD0, SBT0)
I2CSEL1: SDA1, SCL1 enable
0: Disable
1: Enable
To use P01/SDA1 and P02/SCL1 as general-purpose port pins, you must
both select the ports in the port mode register and disable this bit.
I2CSEL0: SDA0, SCL0 enable
0: Disable
1: Enable
To use P60/SDA0 and P61/SCL0 as general-purpose port pins, you must
both select the ports in the port mode register and disable this bit.
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
285
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
I/O Ports
I/O Port Control Registers
OSDPOFF: OSD circuit enable
Setting this bit to 0 shuts off the system clock supply to the OSD block,
reducing power dissipation. The program must write a 1 to this bit before
writing any values to the OSD registers.
To turn off the OSD block to save
power:
0: Disable
1: Enable
1. Write a 0 to OSD (OSD1, bit
10).
PLLPOFF: PLL circuit enable
0: Enable
2. Wait for the next VSYNC input.
3. Write a 0 to OSDPOFF (PCNT0,
bit 7), turning the clock off.
If you turn the clock off before the
VSYNC input, power usage may
not drop or the microcontroller
1: Stop
ADC1ON: ADC circuit enable for closed-caption decoder 1
0: Disable
1: Enable
may halt
.
ADC0ON: ADC circuit enable for closed-caption decoder 0
0: Disable
1: Enable
HCNTOFF: H counter circuit enable
0: Enable
1: Disable
RMCOFF: IR remote signal receiver circuit enable
0: Enable
1: Disable
VBI1OFF: Closed-caption decoder 1 circuit enable
0: Enable
1: Disable
VBI0OFF: Closed-caption decoder 0 circuit enable
0: Enable
1: Disable
Setting the HCNTOFF, RMCOFF, VBI1OFF, or VBI0OFF bits to 1 shuts
off the system clock supply to the associated block, which reduces power
dissipation.
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
286
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
I/O Ports
I/O Port Control Registers
PCNT2: Port Control Register 2
x’00FF92’
Bit: 15
14
13
12
11
10
9
8
7
0
6
0
5
4
0
3
0
2
1
0
P7P8
CNT
I2C PWM OSD
OFF
—
—
—
—
—
—
—
(Test Bits)
OFF REGE
Reset:
R/W:
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W
P7P8CNT: Ports 7 and 8 forced pullup
Ports 7 and 8 are only available in the quad flat package.
0: Pull up
1: Don’t pull up
Always set bits 7 to 3 of PCNT2
to 0.
2
I2COFF: I C function enable
0: Enable
1: Disable
PWMOFF: PWM function enable
0: Enable
You cannot read from or write to
the registers associated with a
function that is disabled.
1: Disable
Setting the I2COFF or PWMOFF bits to 1 shuts off the system clock sup-
ply to the associated block, which reduces power dissipation.
OSDREGE: OSD registers read/write enable
To read or write to the OSD registers, you must first set this bit to 1.
0: Disable
1: Enable
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
287
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
ROM Correction
Description
12 ROM Correction
12.1 Description
The ROM correction function can correct the program data in any address within
the 256-kilobyte ROM. (It cannot correct OSD ROM data.) A maximum of
sixteen addresses can be corrected. Addresses are set as address match interrupts.
This function shortens time-to-market for large-scale designs, since changes can
be implemented in the software after the mask ROM is complete.
The ROM correction function has numerous other applications. For instance, you
can insert keywords into the functional routines, then use the function to send
internal status information to an external location. This enables system-level
examination of the internal status even with the mask ROM version.
To use the ROM correction function, embed a routine such as that shown in
figure 12-2 in the ROM.
Start
ROM
Is ROM
No
correction
required?
Yes
Necessary
software settings
ROM
address
ROM
correction
Set up the
correction data
Enable the
correction function
Instruction
counter
Instruction
fetch
CPU
Main
Figure 12-1 ROM Area Schematic Diagram
Figure 12-2 ROM Correction Flow
As figure 12-1 shows, the function lies between the microcontroller and ROM
blocks. First set the correction data for any sixteen non-OSD addresses in the
ROM correction address match and data registers. (Follow the flow shown in
figure 12-2.) Once this is done, the circuit will correct the ROM output for the
designated addresses.
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
288
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
ROM Correction
Block Diagram
12.2 Block Diagram
Figure 12-3 is a block diagram of the ROM correction circuit. A match detection
circuit constantly monitors the ROM address specified by the CPU instruction
pointer (IP). When the value matches a correction address, the circuit replaces the
data output from the ROM with the data in the appropriate correction data
register. It then sends the corrected data to the CPU.
Data bus
ROM
address
Correction
Correction
address
data
ROM
match
registers
registers
Correction
address
Correction
data
Match
detection
circuit
ROM correction
enable
MUX (selector)
registers
IP
CPU
Figure 12-3 ROM Correction Block Diagram
12.3 Programming Considerations
At reset, the ROM correction address match and data registers contain all 0s.
Since a reset also disables ROM correction (in ROMCEN), the ROM will still
operate normally.
Only read from or write to the address match registers while ROM correction is
disabled in ROMCEN. Otherwise, an error may occur in the match detection circuit.
Note that the address match and data registers only allow full-register access (8-
bit or 16-bit depending on the register). You cannot write to individual bits.
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
289
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
ROM Correction
ROM Correction Control Registers
12.4 ROM Correction Control Registers
Table 12-1 shows the organization of the address match and data registers for
ROM correction. Write a ROM address to be corrected to an AMCHIHn and
AMCHILn register pair and write the corrected data to the associated CHDATn
register. Enable ROM correction for the associated address in the ROMCEN
register.
Table 12-1 ROM Correction Address Match and Data Registers
Address Match Register
ROM Address
Data Register
High Order
Low Order
Address 0
Address 1
AMCHIH0 x’00FD02’
AMCHIH1 x’00FD06’
AMCHIH2 x’00FD0A’
AMCHIH3 x’00FD0E’
AMCHIH4 x’00FD12’
AMCHIH5 x’00FD16’
AMCHIH6 x’00FD1A’
AMCHIH7 x’00FD1E’
AMCHIH8 x’00FD22’
AMCHIH9 x’00FD26’
AMCHIHA x’00FD2A’
AMCHIHB x’00FD2E’
AMCHIHC x’00FD32’
AMCHIHD x’00FD36’
AMCHIHE x’00FD3A’
AMCHIHF x’00FD3E’
AMCHIL0 x’00FD00’
AMCHIL1 x’00FD04’
AMCHIL2 x’00FD08’
AMCHIL3 x’00FD0C’
AMCHIL4 x’00FD10’
AMCHIL5 x’00FD14’
AMCHIL6 x’00FD18’
AMCHIL7 x’00FD1C’
AMCHIL8 x’00FD20’
AMCHIL9 x’00FD24’
AMCHILA x’00FD28’
AMCHILB x’00FD2C’
AMCHILC x’00FD30’
AMCHILD x’00FD34’
AMCHILE x’00FD38’
AMCHILF x’00FD3C’
CHDAT0 x’00FD40’
CHDAT1 x’00FD44’
CHDAT2 x’00FD48’
CHDAT3 x’00FD4C’
CHDAT4 x’00FD50’
CHDAT5 x’00FD54’
CHDAT6 x’00FD58’
CHDAT7 x’00FD5C’
CHDAT8 x’00FD60’
CHDAT9 x’00FD64’
CHDAT10 x’00FD68’
CHDAT11 x’00FD6C’
CHDAT12 x’00FD70’
CHDAT13 x’00FD74’
CHDAT14 x’00FD78’
CHDAT15 x’00FD7C’
Address 2
Address 3
Address 4
Address 5
Address 6
Address 7
Address 8
Address 9
Address 10
Address 11
Address 12
Address 13
Address 14
Address 15
Note: All registers reset to 0.
ROMCEN: ROM Correction Enable Register
x’00FCF0’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
ROMC ROMC ROMC ROMC ROMC ROMC ROMC ROMC ROMC ROMC ROMC ROMC ROMC ROMC ROMC ROMC
EN15 EN14 EN13 EN12 EN11 EN10 EN9
EN8
0
EN7
0
EN6
0
EN5
0
EN4
0
EN3
0
EN2
0
EN1
0
EN0
0
Reset:
0
0
0
0
0
0
0
R/W: R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W
ROMCEN15: Address 15 ROM correction enable
0: Disable
1: Enable
ROMCEN14: Address 14 ROM correction enable
0: Disable
1: Enable
ROMCEN13: Address 13 ROM correction enable
0: Disable
1: Enable
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
290
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
ROM Correction
ROM Correction Control Registers
ROMCEN12: Address 12 ROM correction enable
0: Disable
1: Enable
ROMCEN11: Address 11 ROM correction enable
0: Disable
1: Enable
ROMCEN10: Address 10 ROM correction enable
0: Disable
1: Enable
ROMCEN9: Address 9 ROM correction enable
0: Disable
1: Enable
ROMCEN8: Address 8 ROM correction enable
0: Disable
1: Enable
ROMCEN7: Address 7 ROM correction enable
0: Disable
1: Enable
ROMCEN6: Address 6 ROM correction enable
0: Disable
1: Enable
ROMCEN5: Address 5 ROM correction enable
0: Disable
1: Enable
ROMCEN4: Address 4 ROM correction enable
0: Disable
1: Enable
ROMCEN3: Address 3ROM correction enable
0: Disable
1: Enable
ROMCEN2: Address 2 ROM correction enable
0: Disable
1: Enable
ROMCEN1: Address 1 ROM correction enable
0: Disable
1: Enable
ROMCEN0: Address 0 ROM correction enable
0: Disable
1: Enable
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
291
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
ROM Correction
ROM Correction Control Registers
AMCHIH0–AMCHIHF: ROM Correction Address Match Register n (High)
Bit:
7
6
5
4
3
2
1
0
CHAD CHAD CHAD CHAD CHAD CHAD CHAD CHAD
23
22
21
20
19
18
17
16
Reset:
R/W:
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
AMCHIHn is an 8-bit access register.
CHAD[23:16]: Correction address bits A23 to A16 (A23 = MSB)
AMCHIL0–AMCHILF: ROM Correction Address Match Register n (Low)
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
CHAD CHAD CHAD CHAD CHAD CHAD CHAD CHAD CHAD CHAD CHAD CHAD CHAD CHAD CHAD CHAD
15
0
14
0
13
0
12
0
11
0
10
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Reset:
R/W: R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W
AMCHILn is a 16-bit access register.
CHAD[15:0]: Correction address bits A15 to A0
CHDAT0–CHDAT15: ROM Correction Data Register n
Bit:
7
6
5
4
3
2
1
0
CHD
7
CHD
6
CHD
5
CHD
4
CHD
3
CHD
2
CHD
1
CHD
0
Reset:
R/W:
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
CHDATn is an 8-bit access register.
CHD7: Correction data bit D15 or D7 for address n
CHD6: Correction data bit D14 or D6 for address n
CHD5: Correction data bit D13 or D5 for address n
CHD4: Correction data bit D112 or D4 for address n
CHD3: Correction data bit D11 or D3 for address n
CHD2: Correction data bit D10 or D2 for address n
CHD1: Correction data bit D9 or D1 for address n
CHD0: Correction data bit D8 or D0 for address n
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
292
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
I2C Bus Controller
Description
2
13 I C Bus Controller
13.1 Description
The MN102H75K/85K contains one I2C bus controller, fully compliant with the
I2C specification, that can control one of two I2C bus connections.
An I2C bus is a simple, two-wire bus for transferring data between ICs. Since it
minimizes interconnections so ICs have fewer pins and there are less PCB tracks.
The result is smaller and less expensive PCBs. Figure 13-1 shows a typical I2C
bus application.
MCU 1
MCU 2
Data line (SDA)
Clock line (SCL)
Display
Serial memory
2
Figure 13-1 Example of I C Bus Application
In an I2C bus system, devices are considered as masters or slaves when performing
generates the clock signals to permit that transfer. At that time, any device
addressed is considered a slave. Table 13-1 defines some I2C bus terminology.
2
Table 13-1 I C Bus Terminology
Term
Transmitter
Receiver
Master
Description
The device that sends the data to the bus
The device that receives the data from the bus
The device that initiates a transfer, generates clock signals, and termi-
nates a transfer
Slave
The device addressed by a master
Multimaster
More than one device capable of controlling the bus can be connected
to it. More than one master can attempt to control the bus at the same
time without corrupting the message. The system is not dependent on
any single master.
Arbitration
Procedure to ensure that, if more than one master simultaneously tries
to control the bus, only one is allowed to do so and the message is not
corrupted. The device that loses arbitration becomes the slave of the
device that wins.
Synchronization Procedure to synchronize the clock signals of two or more devices
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
293
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
I2C Bus Controller
Description
Figure 13-2 shows an example of an I2C bus configuration using two microcon-
trollers. Both I2C bus lines, SDA and SCL are bidirectional lines, connected to a
positive supply voltage via a pullup resistor. The open-drain output pins of the
microcontrollers perform the wired-AND function on the bus. The software
controls when each microcontroller operates as a transmitter or receiver, or
whether is in master or slave mode.
V
DD
Pullup
resistors
R
R
Data line (SDA)
Clock line (SCL)
Clock output
Clock input
Clock output
Clock input
Data
output
Data
output
Data input
Data input
Device 1
Device 2
2
Table 13-2 describes the four possible operating modes for devices on the I2C
bus.
2
Table 13-2 Operating Modes for Devices on an I C Bus
Operating Mode
Description
Master transmitter
Device that generates the serial transfer clock (SCL) signal and
transmits serial data to a slave device in sync with SCL
Master receiver
Slave transmitter
Slave receiver
Device that generates the SCL signal and receives serial data from
a slave device in sync with SCL
Device that transmits data in sync with the SCL signal from the mas-
ter
Device that receives data in sync with the SCL signal from the master
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
294
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
I2C Bus Controller
Description
Figure 13-3 shows the MN102H75K/85K operation sequence in each of these
modes. In all modes, the I2C bus controller generates an interrupt after each data
byte transfer, then the software loads the next data byte.
Interrupt
Interrupt
Interrupt
MN102H51K
R/W = 0
Address
(7 bits)
S
R/W
Data (8 bits)
Data (8 bits)
P
Master
ACK
ACK
ACK
Slave
Normally ACK = 0
A. Master Transmitter
ACK = 1 signals transfer
end to slave transmitter.
Interrupt
Interrupt
Interrupt
MN102H51K
R/W = 1
Address
S
R/W
ACK
ACK
P
Master
Slave
(7 bits)
ACK Data (8 bits)
Data (8 bits)
B. Master Receiver
R/W = 1
R/W
Ack = 1
ACK
Ack = 0
ACK
Address
(7 bits)
S
P
Master
Slave
ACK Data (8 bits)
Data (8 bits)
MN102H51K
Interrupt
Interrupt
Interrupt
When the microcontroller is addressed,
it outputs ACK = 0 and sets the AAS bit
of the I2CDREC register to 1.
ACK = 1 signals transfer
end to slave transmitter.
C. Slave Transmitter
R/W = 0
R/W
Address
(7 bits)
S
Data (8 bits)
Data (8 bits)
P
Master
Slave
ACK
ACK
ACK
MN102H51K
Interrupt
Interrupt
Interrupt
When the microcontroller is addressed,
it outputs ACK = 0 and sets the AAS bit
of the I2CDREC register to 1.
Interrupt
STS sets to 1.
D. Slave Receiver
2
Figure 13-3 I C Bus Interface Operation
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
295
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
I2C Bus Controller
Block Diagram
13.2 Block Diagram
SDA
Digital
filter
D[14 :0]
Bus buffer
Parallel-to-serial
converter
MSB Transmission data register LSB
MSB Reception data register LSB
Address comparator
Data bus
controller
Serial-to-parallel
converter
SCL
Digital
filter
Address register
Clock register
Clock
controller
Control register
Status register
STA STO ACK
MODE STS LRB AAS LAB BB
Bus busy logic
Arbitration logic
Clock prescaler
Register control
I2C sequence controller
2
Figure 13-4 I C Bus Controller Block Diagram
13.3 Functional Description
The I2C bus controller contains the registers shown in table 13-3. See the page
number indicated for register and bit descriptions.
Table 13-3 Control Registers for Clamping Circuit
Register Page Address
Description
2
I2CDTRM
I2CDREC
I2CMYAD
I2CCLK
304
305
305
306
306
306
x’007E40’ I C transmission data register
2
x’007E42’ I C reception data register
2
x’007E44’ I C self address register
2
x’007E46’ I C clock control register
2
I2CBRST
I2CBSTS
x’007E48’ I C bus reset register
2
x’007E4A’ I C bus status register
■
Arbitration and bus busy control
The I2C bus controller allows software control, but implements communication
timing and bus arbitration completely in the hardware.
♦
Arbitration: Controlled by the software, but implemented completely
in the hardware.
♦
Bus busy: Checked by the hardware. This eliminates the need for the
software to check whether the bus is busy. The program can request a
transfer to the I2C bus at any time.
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
296
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
I2C Bus Controller
Functional Description
2
■
■
Register settings conversions to I C protocol
The I2C bus controller converts the data in the I2CDTRM register to the I2C
protocol.
Transfer modes changes
A write to the I2CDTRM register indicates the transfer mode (master transmitter/
receiver or slave transmitter/receiver) for a new transfer. To minimize software
control, the hardware generates an interrupt each time a transfer ends. During
interrupt servicing, the SCL line stays low, then clears to high on a write to
I2CDTRM. (When the microcontroller is a slave transmitter and the transfer
ends, SCL goes high on a read to the I2CDREC register after an ACK = 1
(negative acknowledge) interrupt.)
■
■
■
Multimaster support
The hardware performs bus arbitration for a multimaster system. When it loses
an arbitration, the hardware immediately stops the data transfer and generates an
interrupt.
Address decoding
The I2C bus controller decodes the microcontroller’s address, set in the
I2CMYAD register, when the microcontroller is a slave device. It also decodes
the general code address (0).
Forced bus reset
Through software control, by a write to the I2CBRST register, the I2C bus con-
troller can force the SCL line to reset to low when a bus error occurs. This resets
the entire I2C bus controller circuit, leaving the microcontroller in slave receiver
mode. It does not change the contents of the I2CMYAD and I2CCLK registers.
■
■
Clock frequency adjustment
The I2CCLK register sets the serial clock frequency, allowing synchronization
with low-speed devices. With a 12-MHz oscillator, the maximum setting is 100
kHz and the minimum setting is 10 kHz.
Bus state monitoring
With the I2CBSTS register, the I2C bus controller determines the logic levels of
the SCL and SDA lines.
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
297
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
I2C Bus Controller
2
Setting Up the I C Bus Connection
2
13.4 Setting Up the I C Bus Connection
Set the I2C connection in the I2CSEL0 and I2CSEL1 bits of the PCNT0 register
(x’00FF90’). Since the SCL0, SDA0, SCL1, and SDA1 pins also serve as
general-purpose port pins, and reset to the general-purpose function, you must set
these bits every time the program uses the I2C function. You must also select the
I2C function in the port mode registers. For I2C bus connection 0, set bits 0 and 1
of the P6MD register (x’00FFFC’). For I2C bus connection 1, set bits 1 and 2 of
the P0MD register (x’00FFF0’).
Table 13-4 shows the register settings required to use either SDA0/SCL0 or
SDA1/SCL1 alone, and figure 13-5 shows the control circuit for this pin setup.
Table 13-4 Registers Settings for SDA0/SCL0 or SDA1/SCL1 Ports
Register
Bit
1
SDA0, SCL0 Only
0 (selects P01)
SDA1, SCL1 Only
1 (selects SDA1)
P0MD (x’00FFF0)
2
0 (selects P02)
1 (selects SCL1)
P6MD (x’00FFFC’)
PCNT0 (x’00FF90’)
0
1 (selects SDA0)
0 (selects P60)
1
1 (selects SCL0)
0 (selects P61)
8
1 (enables SDA0, SCL0)
0 (disables SDA1, SCL1)
0 (disables SDA0, SCL0)
1 (enables SDA1, SCL1)
9
Port control register 0
x'00FF90' bit 8
I2CSEL0
1: on
0: off
SDA 0
SDA1
I2CSEL0
x'00FF90' bit 9
SDA IN
SDA OUT
Port control register 0
x'00FF90' bit 8
I2CSEL0
2
I C
Circuit
SCL0
SCL1
I2CSEL0
x'00FF90' bit 9
SCL IN
SCL OUT
2
Figure 13-5 Pin Control Circuit for the I C Bus Controller
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
298
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
I2C Bus Controller
SDA and SCL Waveform Characteristics
13.5 SDA and SCL Waveform Characteristics
Figure 13-6 and table 13-5 provide the timing definitions and specifications for
the for the MN102H75K/85K I2C bus interface.
P
Sr
S
P
SDA
SCL
tBUF
tSU; STA
tHD; STA
tSU; STO
tSU; DAT
tHD; DAT
tHD;STA
tLOW
tR
tHIGH
tF
Figure 13-6 SDA and SCL Waveforms
Table 13-5 SDA and SCL Waveform Characteristics
Parameter
SCL clock frequency
Symbol Min
Max
100
—
Unit
kHz
µs
f
0
SCL
BUF
Bus free time between a stop and start condition
Hold time (repeated) start condition
Low period of the SCL clock
High period of the SCL clock
Setup time for a repeated start condition
Data hold time
t
20
t
4.0
4.7
4.0
4.7
300
250
—
—
HD;STA
t
—
LOW
t
—
HIGH
t
—
SU;STA
t
—
ns
µs
HD;DAT
Data setup time
t
—
SU;DAT
SDA and SCL rise time
t
1000
300
R
SDA and SCL fall time
t
—
F
Stop condition setup time
t
4.0
SU;STO
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
299
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
I2C Bus Controller
I C Interface Setup Examples
2
2
13.6 I C Interface Setup Examples
13.6.1 Setting Up a Transition from Master Transmitter to Mas-
ter Receiver
This example demonstrates how to set up a data transfer when changing from
master transmitter to master receiver. Figure 13-7 shows an example waveform.
13.6.1.1Pre-configuring
■
To set up the I/O port:
Set port control register 0 (PCNT0; x’00FF90’) to x’0100’ (enabling the SDA0
and SCL0 pins) and set the port 6 output mode register (P6MD; x’00FFFC’) to
x’0003’ (selecting the SDA0 and SCL0 functions).
2
■
■
To enable I C interrupts:
Set the I2C interrupt control register pair (I2C0ICH and I2C0ICL; x’00FC9C’) to
x’0100’.
2
To set up the I C registers:
1. Set the I2CCLK register (x’007E46’) to x’0041’, selecting a clock frequency
of 80 kHz.
2. Set the I2CDTRM register (x'007E40') to x'05FD'. This sets STA to 1, STP
to 0, and ACK to 0. Bits 7 to 1 of the transmission data setting (x'FD') indi-
cate the address (b'1111110') of the slave device from which the microcon-
troller will request the data, and bit 0 indicates the read/write setting (bit 0 =
1 = read).
13.6.1.2Setting Up the First Interrupt
When an ACK = 0 signal returns from the slave device, the I2C bus controller
generates an interrupt. At this point, implement the following settings:
■
■
To set up the interrupt:
Set the I2C0ICH and I2C0ICL register pair (x’00FC9C’) to x’0100’. This
enables I2C interrupts and clears the previous interrupt request.
2
To set up the I C registers:
1. Read the I2CDREC register (x’007E42’) to determine the I2C bus controller
status.
2. Since the microcontroller will become a receiver on the next operation, set
the I2CDTRM register (x’007E40’) to x’0000’. This sets STA, STP, ACK,
and the transmission data to 0s. With this setting, the microcontroller returns
an ACK = 0 signal on the ninth clock.
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
300
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
I2C Bus Controller
2
I C Interface Setup Examples
13.6.1.3Setting Up the Second Interrupt
When the microcontroller receives the data x’85’ from the slave device, it returns
an ACK = 0 signal and the I2C bus controller generates an interrupt. At this point,
implement the following settings:
■
■
To set up the interrupt:
Set the I2C0ICH and I2C0ICL register pair (x’00FC9C’) to x’0100’. This
enables I2C interrupts and clears the previous interrupt request.
2
To set up the I C registers:
1. Read the I2CDREC register (x’007E42’) to determine the I2C bus controller
status.
2. Since the communication will end when the microcontroller receives the
next data byte, set the I2CDTRM register (x’007E40’) to x’0100’. This sets
STA to 0, STP to 0, ACK to 1, and the transmission data to x’00’. With this
setting, the microcontroller returns an ACK = 1 signal on the ninth clock.
13.6.1.4Setting Up the Third Interrupt
When the microcontroller receives the data x’33’ from the slave device, it returns
an ACK = 1 signal and the I2C bus controller generates an interrupt. At this point,
implement the following settings:
■
■
To set up the interrupt:
Set the I2C0ICH and I2C0ICL register pair (x’00FC9C’) to x’0100’. This
enables I2C interrupts and clears the previous interrupt request.
2
To set up the I C registers:
1. Read the I2CDREC register (x’007E42’) to determine the I2C bus controller
status.
2. Since the transfer has ended, set the I2CDTRM register (x’007E40’) to
x’0300’. This sets STA to 0, STP to 1, ACK to 1, and the transmission data
to x’00’. With this setting, the microcontroller issues a stop condition and
frees the bus.
Data
(slave address)
ACK
R/W
ACK
S
ACK
P
1
0
0
1
0
0
1
0
1
1
0
1
0
0
1
1
1
0
0
1
1
1
1
0
1
1
0
SDA
SCL
Note: The circled areas are signals output from the MN102H75K/85K.
Figure 13-7 Waveform for Master Transmitter Transitioning to Master Receiver
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
301
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
I2C Bus Controller
I C Interface Setup Examples
2
13.6.2 Setting Up a Transition from Slave Receiver to Slave
Transmitter
This example demonstrates how to set up a data transfer when changing from
slave receiver to slave transmitter. Figure 13-8 shows an example waveform.
13.6.2.1Pre-configuring
■
To set up the I/O port:
Set port control register 0 (PCNT0; x’00FF90’) to x’0300’ (enabling the SDA1
and SCL1 pins) and set the port 0 output mode register (P0MD; x’00FFF0’) to
x’0006’ (selecting the SDA1 and SCL1 functions).
2
■
■
To enable I C interrupts:
Set the I2C interrupt control register pair (I2C0ICH and I2C0ICL; x’00FC9C’) to
x’0100’.
2
To set up the I C registers:
1. Set the I2CMYAD register (x’007E44’) to x’0024’. This sets the slave
address of the microcontroller.
2. Set the I2CDTRM register (x’007E40’) to x’0000’. This sets STA, STP,
ACK, and the transmission data to 0s. With this setting, the microcontroller
returns an ACK = 0 signal when an address match occurs. The master sends
data (the slave address) to the slave microcontroller in sync with the master
clock. When the R/W bit = 1, the microcontroller changes from a slave
receiver to a slave transmitter.
13.6.2.2Setting Up the First Interrupt
Once the microcontroller becomes a slave transmitter, set up the transmission
data.
■
■
To set up the interrupt:
Set the I2C0ICH and I2C0ICL register pair (x’00FC9C’) to x’0100’. This
enables I2C interrupts and clears the previous interrupt request.
2
To set up the I C registers:
1. Read the I2CDREC register (x’007E42’) to determine the I2C bus controller
status. AAS should be 1.
2. Set the I2CDTRM register (x’007E40’) to x’0155’. This sets STA to 0, STP
to 0, ACK to 1, and the transmission data to x’55’. The microcontroller does
not need to issue an ACK signal in this transfer, so the ACK bit should be 1.
3. Begin transmitting data in sync with the clock from the master.
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
302
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
I2C Bus Controller
2
I C Interface Setup Examples
13.6.2.3Setting Up the Second Interrupt
The master sends an ACK = 0 signal, so the microcontroller must send the next
data byte. Set up the transmission data as follows:
■
■
To set up the interrupt:
Set the I2C0ICH and I2C0ICL register pair (x’00FC9C’) to x’0100’. This
enables I2C interrupts and clears the previous interrupt request.
2
To set up the I C registers:
1. Read the I2CDREC register (x’007E42’) to determine the I2C bus controller
status. The previous read from I2CDREC cleared the AAS, so AAS should
be 0.
2. Set the I2CDTRM register (x’007E40’) to x’01AA0’. This sets STA to 0,
STP to 0, ACK to 1, and the transmission data to x’AA’. The microcontroller
does not need to issue an ACK signal in this transfer, so the ACK bit should
be 1.
3. Begin transmitting data in sync with the clock from the master.
13.6.2.4Setting Up the Third Interrupt
The master send an ACK = 1 signal, then issues a stop condition, ending the
communication.
Data
(slave address)
S
ACK
P
R/W
ACK
0
ACK
1
1
1
0
1
1
1
0
0
1
0
1
0
0
0
0
1
0
0
1
0
0
0
0
1
1
SDA
SCL
Note: The circled areas are signals output from the MN102H75K/85K.
Figure 13-8 Waveform for Slave Receiver Transitioning to Slave Transmitter
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
303
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
I2C Bus Controller
I C Bus Interface Registers
2
2
13.7 I C Bus Interface Registers
All registers in I2C blook cannot be written by byte (by word only). Read by byte
is possible.
2
I2CDTRM: I C Transmission Data Register
x’007E40’
Bit: 15
14
13
—
12
11
10
9
8
7
6
5
4
3
2
1
0
—
—
—
—
STA
STO ACK DT7
DT6
DT5
DT4
DT3
DT2
DT1
DT0
Reset:
R/W:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W
2
STA: I C start control
2
STO: I C stop control
Writing to the STA and STO bits allows you to change the state of the
transmission or reception operation. Table 13-6 shows the settings for dif-
ferent start and stop conditions.
SCL is held low during interrupt
servicing, and is cleared high by
a write to I2CDTRM.
Table 13-6 STA and STO Settings
STA STO
Mode
Function
Description
0
1
1
0
1
0
All
All
NOP
No state change
NOP
Start
No state change
Slave receiver
Change to mode indicated by R/W bit.
R/W = 0: Change to master transmitter
R/W = 1: Change to master receiver
Change to slave receiver after stop
condition.
Master transmitter Repeat start
0
1
Slave receiver
Stop read
Master transmitter Stop write
ACK: Acknowledge signal output control
The acknowledge signal is output after every byte transfer, on the ninth
clock pulse. ACK is normally 1 and transitions to 0 to output an acknowl-
edge (for instance if the master or slave receiver has received a data byte).
DT[7:0]: Data to be transmitted
The parallel data in this field is converted to serial data for transmission to
the I2C bus. It is shifted out MSB first to the interface.
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
304
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
I2C Bus Controller
2
I C Bus Interface Registers
2
I2CDREC: I C Reception Data Register
x’007E42’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
MODE MODE
—
STS
LRB AAS LAB
BB
D7
D6
D5
D4
D3
D2
D1
D0
1
0
Reset:
R/W:
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
The I2CDREC register contains the status bits for monitoring the device
and the reception data. I2CDREC is a read-only register.
2
MODE[1:0]: I C device mode
This field indicates which I2C mode the microcontroller is in. MODE1
indicates slave or master, and MODE0 indicates receiver or transmitter. If
the microcontroller loses an arbitration or if a stop condition occurs, the
hardware clears MODE[1:0] to b’00’.
00: Slave receiver
10: Master receiver
01: Slave transmitter
11: Master transmitter
STS: Stop condition at slave receiver
Set to 1 when a stop condition is detected while the microcontroller is in
slave receiver mode.
LRB: Last received bit.
Stores the last serial data bit received. LRB normally indicates the ACK
cycle data.
AAS: Addressed as slave
Set to 1 when the slave address on the bus matches the contents of the
address register or matches the general address (x’00’). AAS resets after a
read from the I2CDREC register.
LAB: Lost arbitration bit
Set to 1 when the microcontroller loses a bus arbitration. LAB resets when
I2CDTRM indicates a start condition (STA = 1).
BB: Bus busy bit
A start condition on the bus sets this flag to 0, and a stop condition resets it
to 1. The microcontroller considers the bus to be busy as long as BB = 0.
D[7:0]: Received data
The serial data received from the I2C bus is shifted into this field MSB
first.
2
I2CMYAD: I C Self Address Register
x’007E44’
Bit: 15
14
13
—
12
11
10
9
8
7
6
5
4
3
2
1
0
—
—
—
—
—
—
—
—
A6
A5
A4
A3
A2
A1
A0
Reset:
R/W:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R/W R/W R/W R/W R/W R/W R/W
A[6:0]: Microcontroller address
This register is formed from a 7-bit field address latch. It holds the micro-
controller’s own address, used for a compare when the microcontroller is
addressed as a slave. When a match occurs, AAS is set to 1.
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
305
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
I2C Bus Controller
I C Bus Interface Registers
2
2
I2CCLK: I C Clock Control Register
x’007E46’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
—
—
—
—
—
—
C9
C8
C7
C6
C5
C4
C3
C2
C1
C0
Reset:
R/W:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W
C[9:0]: Output clock frequency select
This 10-bit field determines the SCL output. With a 12-MHz system clock,
calculate the frequency as follows:
To conform to the specification,
the clock signal must be
12 MHz
2 × (Register setting + 10)
f
= --------------------------------------------------------------------
SCL
between 0 and 100 kHz. To sat-
isfy this requirement, always set
I2CCLK to x’032’ or higher.
In this case, the following settings apply:
x’032’: 100 kHz
x’039’: 89.6 kHz
x’041’: 80 kHz
x’04C’: 69.8 kHz
x’05A’: 60 kHz
x’06E’: 50 kHz
x’08C’: 40 kHz
x’0BE’:30 kHz
x’122’: 20 kHz
x’24E’: 10 kHz
2
I2CBRST: I C Bus Reset Register
x’007E48’
Bit: 15
14
13
—
12
11
10
9
8
7
6
5
4
3
2
1
0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
BRST
Reset:
R/W:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R/W
BRST: Bus reset
When a serious bus error occurs, this bit can be set to 0, forcing the clock
line low and resetting the I2C bus. This function works in all I2C modes.
After a forced reset, the microcontroller is in slave receiver mode. This reset
does not change the contents of the I2CMYAD and I2CCLK registers.
0: Force bus to reset
1: Steady state
2
I2CBSTS: I C Bus Status Register
x’007E4A’
Bit: 15
14
13
—
12
11
10
9
8
7
6
5
4
3
2
1
0
—
—
—
—
—
—
—
—
—
—
—
—
—
SDAS SCLS
Reset:
R/W:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
I2CBSTS is a two-bit, read-only register that monitors the status of the I2C
bus.
SDAS: SDA data line status
This bit monitors the state of the I2C data line, SDA.
SCLS: SCL clock line status
This bit monitors the state of the I2C clock line, SCL.
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
306
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
H Counter
Description
14 H Counter
14.1 Description
The MN102H75K/85K contains two H counter circuits that can be used to count
the HSYNC signal. Each H counter consists of a 10-bit counter and 10-bit
register.
14.2 Block Diagram
Selected in SELR[20:00]/SELR[21:01] fields
of HCCNT0/HCCNT1 registers.
VI0
VSYNC
Selected in REDG0/REDG1 bits
of HCCNT0/HCCNT1 registers.
1024 µs
M
Polarity
switch
U
X
2048 µs
4096 µs
8192 µs
PWM10
waveform
Divider
341-µs signal
from PWM block
Reset
Count source
Polarity
switch
10-bit counter
Latch
HI0/HI1
HI0 for H counter 0, and
HI1 for H counter 1
Selected in SEDG0/SEDG1 bits
of HCCNT0/HCCNT1 registers.
10-bit register
Data bus
Figure 14-1 H Counter Block Diagram
14.3 H Counter Operation
Figure 14-2 provides a schematic diagram of an example counter operation.
HI0rising-edge count
HI0
Count
N-2
N-1
N
0
1
2
3
Latch
VSYNC
Latched on the falling edge of VSYNC
Register
setting
N
Note: In this example, HI0 is active high and VSYNC is active low.
Figure 14-2 H Counter Operation Example
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
307
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
H Counter
H Counter Operation
Figure 14-3 shows the input timing for the count source and reset signals. Never
input a count source signal in less than 245 ns (t1) after the reset signal input.
Otherwise, the signal may be counted as part of the previous count cycle.
HI0counted on the rising edge
HI0
t
t
2
1
t
≥ 245 ns
t
≥ 200 ns
1
2
VI0
VSYNCcounted on thefalling edge
Note: In this example, HI0 is active high and VSYNC is active low.
Figure 14-3 H Counter Input Signal Timing
The 10-bit counter counts the HSYNC signal from 0 to x’3FF’, and the 10-bit
register stores the count. The H counter uses the four pins shown in table 14-1.
Table 14-1 H Counter Pins
Pin No.
Pin Name
Description
Count source pin
Count source pin
Count reset pin
Count reset pin
Alternative Functions
P43/TM5IOB
P44/TM5IC
H75K
H85K
HI0
17
45
HI1
16
6
46
53
55
VI0
P52/IRQ4
VSYNC
2
P54/IRQ5
To use the H counter, set the port 4 and 5 output control registers (P4OUT and
P5OUT) to 0 and set the H counter pins to input.
■ To use HI0, set the P4DIR3 bit (x’00FFE4’) to 0.
■ To use HI1, set the P4DIR4 bit (x’00FFE4’) to 0.
■ To use VI0, set the P5DIR2 bit (x’00FFE5’) to 0.
■ To use VSYNC, set the P5DIR4 bit (x’00FFE5’) to 0.
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
308
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
H Counter
H Counter Operation
The H counter counts the HSYNC signal for the interval set in the HCCNT0
(x’007EB0’) or HCCNT1 (x’007EB2’) register, latches the count value in the 10-
bit register, then clears the counter. HCCNT0 and HCCNT1 provide six interval
settings:
■ 1024-µs fixed interval obtained by dividing the system clock (12 MHz)
■ 2048-µs fixed interval obtained by dividing the system clock (12 MHz)
■ 4098-µs fixed interval obtained by dividing the system clock (12 MHz)
■ 8096-µs fixed interval obtained by dividing the system clock (12 MHz)
■ Interval from active-edge to active-edge input of VI0 pin
■ Interval from active-edge to active-edge input of VSYNC pin
If your application uses one of the fixed clocks based on divided PWM output
(1024, 2048, 4098, or 8096 µs), you must also set up the PWM circuit. (See
section 10, “Pulse Width Modulator,” on page 249.)
When the count overflows (is greater than x’3FF’), the counter stops counting
and stores the value x’3FF’ in the 10-bit register. At any time, the CPU can
obtain the count value stored in the latch by reading the HCD0 (x’007EB4’) or
HCD1 (x’007EB6’) register.
To use the H counter, you must
always set the HCNTOFF bit of
the PCNT0 register to 0. To use
the PWM function, always set
the PWMOFF bit of the PCNT2
register (x’00FF92’) to 0.
To enable or disable the H counter function, set the HCNTOFF bit of the PCNT0
register (x’00FF90’; see page 286). Disabling this circuit when it is unused can
reduce power consumption.
Because the H counter uses the system clock, it does not operate in STOP mode.
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
309
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
H Counter
H Counter Control Registers
14.4 H Counter Control Registers
All registers in H Counter block cannot be written by byte (by word only). Read
by byte is possible.
HCCNT0: H Counter Control Register 0
x’007EB0’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
SED RED SELR SELR SELR
—
—
—
—
—
—
—
—
—
—
—
G0
G0
20
10
00
Reset:
R/W:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R
R/W R/W R/W R/W R/W
SEDG0: Polarity select for count source signal (HI0)
0: Active low
1: Active high
SEDG0: Polarity select for reset signal
0: Active low
1: Active high
SELR20:00]: Reset signal select
000: 1024 µs
001: 2048 µs
010: 4096 µs
011: 8192 µs
100: VI0
101: VSYNC
All other settings default to 1024 µs.
HCCNT1: H Counter Control Register 1
x’007EB2’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
SED RED SELR SELR SELR
—
—
—
—
—
—
—
—
—
—
—
G1
G1
21
11
01
Reset:
R/W:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R
R/W R/W R/W R/W R/W
SEDG1: Polarity select for count source signal (HI1)
0: Active low
1: Active high
SEDG1: Polarity select for reset signal
0: Active low
1: Active high
SELR[21:01]: Reset signal select
000: 1024 µs
001: 2048 µs
010: 4096 µs
011: 8192 µs
100: VI0
101: VSYNC
All other settings default to 1024 µs.
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
310
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
H Counter
H Counter Control Registers
HCD0: H Counter Data Register 0
x’007EB4’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
HCD HCD HCD HCD HCD HCD HCD HCD HCD HCD
—
—
—
—
—
—
90
80
70
60
50
40
30
20
10
00
Reset:
R/W:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
HCD[90:00]: Count from HI0 source signal
This field stores the HI0 clock source count. It becomes x’3FF’ on over-
flow.
HCD1: H Counter Data Register 1
x’007EB6’
Bit: 15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
HCD HCD HCD HCD HCD HCD HCD HCD HCD HCD
—
—
—
—
—
—
91
81
71
61
51
41
31
21
11
01
Reset:
R/W:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
HCD[91:01]: Count from HI1 source signal
This field stores the HI1 clock source count. It becomes x’3FF’ on over-
flow.
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
311
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Register Map
Appendix ARegister Map
Table A-1 Register Map: x’007E00’ to x’007FFF’ (Registers in this area cannot be written by byte only by word.)
20
MSBs
4 LSBs
Description
F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0
CRI4 CRI3 CRI2 CRI1
FQW FQW FQW FQW
VBI
IRQ
SL
CNT
HNUM SLSF SLHD MAX MIN
FC
007E00
CAPDA
DATAE
ACQ1
DATAS
VBI 1 registers
007E10 FCPNUM
STAP
CRI2E
CRI2S
CRI1E
CRI1S
SL
CRI4 CRI3 CRI2 CRI1
FQW FQW FQW FQW
VBI HNUM SLSF SLHD MAX
MINW CNT FCW
W
007E20
CAPDAW ACQ1W
IRQW
W
W
W
W
W
W
W
W
VBI 2 registers
007E30 FCPNUMW STAPW DATAEW DATASW CRI2EW CRI2SW CRI1EW CRI1SW
2
007E40
007E50
007E60
007E70
007E80
007E90
I2CBSTS I2CBRST I2CCLK I2CMYAD I2CDREC I2CDTRM I C interface registers
PWM6
PWM5
PWM4
PWM3
PWM2
PWM1
RMIR
PWM0
PWM registers
RML
D
RMT
R
RMS
R
RMC
S
RMT
C
RMIS
007EA0
Remote signal receiver registers
H counter registers
HCO
UNT1
HCO
UNT0
HCD1
HCD0
007EB0
SYNC
MIN
BPLV
007EC0 HSEP1
CLAMP
SPLV
BPPST SCMING FQSEL
NFSEL
HSEP2
Sync separator 1 registers
Sync separator 2 registers
CLPCND
1
007ED0
HVCOND VCNT
HDISTW HLOCKLV FIELD
SCMING
BPLV SYNC
007EE0 HSEP1W CLAMPW SPLVW
BPPSTW
MINW
FQSELW NFSELW
W
W
HDIS-
TWW
HLOCK-
LVW
CLPCND1W HVCONDW
007EF0
007F00
VCNTW
OSD2
FIELDW HSEP2W
GROMEN CROMEN
EVOD HCOVNT OSD3
OSD1 RAMEND
D
D
OSD control registers
007F10
007F20
007F30
007F40
007F50
007F60
007F70
007F80
007F90
007FA0
007FB0
007FC0
007FD0
007FE0
007FF0
CIVP
STC2
CIHP
STC1
GIVP
GIHP
SVP
SHP
STC0
STC3
SHTC
HSHT1
HSHT0
VSHT1
VSHT0
TESTA
SBFNUM
(test register) (test register)
VBI 1 test registers
VBI 2 test registers
TESTAW
SBFNUMW
(test register) (test register)
CPT7
CPTF
CPT6
CPTE
CPT5
CPTD
CPT4
CPTC
CPT3
CPTB
CPT2
CPTA
CPT1
CPT9
CPT0
CPT8
OSD text color palette
WBSHD BBSHD FRAME
COLB OSD text effects registers
GPT17
GPT1F
GPT27
GPT2F
GPT16
GPT1E
GPT26
GPT2E
GPT15
GPT1D
GPT25
GPT2D
GPT14
GPT1C
GPT24
GPT2C
GPT13
GPT1B
GPT23
GPT2B
GPT12
GPT1A
GPT22
GPT2A
GPT11
GPT19
GPT21
GPT29
GPT10
OSD graphics color palette 1
GPT18
GPT20
OSD graphics color palette 2
GPT28
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
312
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Register Map
Table A-2 Register Map: x’00FC00’ to x’00FDFF’
20
MSBs
4 LSBs
Description
F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0
00FC00
00FC10
00FC20
00FC30
00FC40
00FC50
00FC60
00FC70
IAGR
CPUM Special function registers
IQ1
ICH
IQ1
ICL
IQ0
ICH
IQ0
ICL
EI
ICR
PI
ICR
WD
ICR
IQ5
ICH
IQ5
ICL
IQ4
ICH
IQ4
ICL
IQ3
ICH
IQ3
ICL
IQ2
ICH
IQ2
ICL
VBIW VBIW
VBI
ICH
VBI
ICL
TM5UD TM5UD TM5CA TM5CA TM5CB TM5CB
ICH ICL ICH ICL ICH ICL
TM4UD TM4UD TM4CA TM4CA TM4CB TM4CB
ICH ICL ICH ICL ICH ICL
ICH
ICL
ADM0 ADM0 ADM1 ADM1 ADM2 ADM2 ADM3 ADM3 RMC RMC
TM0UD TM0UD TM1UD TM1UD TM2UD TM2UD Interrupt controller registers
ICH
ICL
ICH
ICL
ICH
ICL
ICH
ICL
ICH
ICL
ICH
ICL
ICH
ICL
ICH
ICL
VBIV VBIV
VBIV VBIV
ICH ICL
SCR0 SCR0 SCT0 SCT0 AN
ICH ICL ICH ICL ICH
AN
ICL
TM3UD TM3UD
W
W
00FC80
00FC90
ICH
ICL
ICH
ICL
OSD OSD
I2C
ICH
I2C SCR1 SCR1 SCT1 SCT1
OSDC OSDC
G
G
ICL
ICH
ICL
ICH
ICL
ICH
ICL
ICH
ICL
00FCA0
00FCB0
00FCC0
00FCD0
00FCE0
00FCF0
00FD00
00FD10
00FD20
00FD30
00FD40
00FD50
00FD60
00FD70
00FD80
00FD90
00FDA0
00FDB0
00FDC0
00FDD0
00FDE0
00FDF0
ROM correction registers and
external interrupt mode register
ROMCTSTH ROMCTSTL
(test register) (test register)
EXTMD
AMCHIL2
AMCHIL6
AMCHILA
AMCHILE
ROMCEN
AMCHIL0
AMCHIL4
AMCHIL8
AMCHILC
AMC
AMC
HIH2
AMC
HIH1
AMC
HIH0
AMCHIL3
HIH3
AMCHIL1
AMCHIL5
AMCHIL9
AMCHILD
AMC
AMC
HIH6
AMC
HIH5
AMC
HIH4
AMCHIL7
HIH7
ROM correction address match
registers
AMC
AMC
HIHA
AMC
HIH9
AMC
HIH8
AMCHILB
HIHB
AMC
AMC
HIHE
AMC
HIHD
AMC
HIHC
AMCHILF
HIHF
CH
DAT3
CH
DAT2
CH
DAT1
CH
DAT0
CH
DAT7
CH
DAT6
CH
DAT5
CH
DAT4
ROM correction data registers
CH
DATB
CH
DATA
CH
DAT9
CH
DAT8
CH
DATF
CH
DATE
CH
DATD
CH
DATC
SC1 SC1
STR TRB
SC0 SC0
STR TRB
SCTST
(test register)
SC1CTR
SC0CTR Serial interface registers
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
313
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Register Map
Table A-3 Register Map: x’00FE00’ to x’00FFFF’
20
MSBs
4 LSBs
Description
F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0
TM3 TM2 TM1 TM0
BC BC BC BC
TM3 TM2 TM1 TM0
BR BR BR BR
00FE00
00FE10
00FE20
00FE30
00FE40
00FE50
00FE60
00FE70
8-bit timer registers
TM3 TM2 TM1 TM0
MD MD MD MD
TM8TST
(test register)
(TM4CBX
(TM4CAX
TM4TST
(test register)
00FE80
00FE90
TM4CB
TM5CB
TM4CA
TM5CA
TM4BC TM4MD 16-bit timer 4 registers
TM5BC TM5MD 16-bit timer 5 registers
)
)
(TM5CBX
)
(TM5CAX
)
TM5TST
(test register)
00FEA0
00FEB0
00FEC0
00FED0
00FEE0
00FEF0
ANTST
(test register)
00FF00 AN3BUF AN2BUF AN1BUF AN0BUF
ANCTR
ADC registers
00FF10 AN11BUF AN10BUF AN9BUF AN8BUF AN7BUF AN6BUF AN5BUF AN4BUF
00FF20
00FF30
00FF40
00FF50
00FF60
FAR-
EGEX
Flash memory write control
registers
00FF70
FBEWER
FAREG FDREG FCREG
External memory wait control
registers
MEMMD1
PCNT2
00FF80
00FF90
00FFA0
00FFB0
00FFC0
00FFD0
00FFE0
00FFF0
EXWMD
PCNT0
PCNT1
(test register)
P8
PUP
P7
PUP
P6
PUP PUP PUP PUP PUP PUP PUP
P6 P5 P4 P3 P2 P1 P0
OUT OUT OUT OUT OUT OUT OUT
P5
P4
P3
P2
P1
P0
P8
OUT
P7
OUT
I/O port control registers
P8
IN
P7
IN
P6
IN
P5
IN
P4
IN
P3
IN
P2
IN
P1
IN
P0
IN
P8
DIR
P7
DIR
P6
P5
P4
P3
P2
P1
P0
DIR DIR DIR DIR DIR DIR DIR
P6
MD
P5
MD
P4
MD
P3
MD
P0
MD
P2MD
P1MD
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
314
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
Register Map
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
315
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
MN102HF75K Flash EEPROM Version
Description
Appendix BMN102HF75K Flash EEPROM Version
B.1 Description
The MN102HF75K and MN102HF85K are electrically programmable, 256-
kilobyte flash ROM versions of the MN102H75K and MN102H85K. They are
programmed in one of two modes:
■ PROM writer mode, which uses a dedicated adaptor socket and writer. In
this mode, the user program can occupy the entire 256-kilobyte ROM space.
■ Onboard serial programming mode, which the CPU controls. This mode
requires an 8-kilobyte ROM area to hold a serial writer program.
In onboard serial programming mode, the 256-kilobyte flash memory is divided
into three main areas:
A cycle of erasing to programing is
counted as one time no matter how
many blocks are rewritten.Even
when the multi-block is rewritten
separately or the same block is
rewritten, each block rewrite is
counted.For example,rewriting
Block1,Block2 and Block3 respec-
tively is counted as 3 times. There-
fore, to program efficiently, rewrite
all blocks in the lump.
■ Load program area (1 kilobyte: x’0x80000 to x’0x803FF) This area stores the
load program for the serial writer. It is overwritten in PROM writer mode.
■ Fixed user program area (7 kilobytes: x’0x80400 to x’0x81FFD) This area
stores a user program that is write-protected in serial programming mode. It
is overwritten in PROM writer mode.
■ User program area (248 kilobytes: x’0x82000 to x’0xBFFFD) This area
stores the user program. It is overwritten in both programming modes.
The two words x’0x81FFE’ and x’0xBFFFE’ are test areas. Do not use these two
words in your programs.
Table B-1 summarizes the programmable areas for the modes. Normal operation
is guaranteed with up to ten programmings.
Table B-1 Programmable Areas in Each Programming Mode
Programming Mode
PROM writer programming mode
Onboard serial programming mode
Programmable Area
Entire memory space (256 KB)
User program area (248 KB)
x'0x80000'
1 KB
Load program area
x'0x80400'
7 KB
x'0x81FFE'
x'0x82000'
Fixed user program area
Test area (1 word)
248 KB
User program area
Test area (1 word)
x'0xBFFFC'
x'0xBFFFF'
Note: The shaded regions are write-protected in this mode. Cross-hatched regions are
test areas (not for use in user programs).
Figure B-1 Memory Map for Onboard Serial Programming Mode
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
316
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
MN102HF75K Flash EEPROM Version
Benefits
B.2 Benefits
Because you can maintain and upgrade the program in the MN102HF75K/85K
up to and immediately following product release, this version of the device
shortens time-to-market by as much as one month. This device is ideal for appli-
cations in quickly changing markets, since it allows you to revise the microcon-
troller program in an existing product.
B.3 Using the PROM Writer Mode
In this mode, the MN102HF75K allows a PROM writer to program the internal
flash memory as if it was a standalone memory chip. The microcontroller is
inserted into a dedicated adaptor socket, which connects to DATA-I/O’s LabSite
PROM writer. When the microcontroller connects to the adaptor socket, it auto-
matically enters PROM writer mode. The adaptor socket ties the microcontroller
pin states to PROM writer mode, and programming occurs without any reference
to the microcontroller pin states.
MN102HF85K
Adaptor socket for MN102HF85K
Third-party
PROM writer
MN102HF75K
Adaptor socket for MN102HF75K
Figure B-2 PROM Writer Hardware Setup
VPP
NCE
1
2
3
4
5
6
7
8
9
42 A17
41 NWE
40 MODE
39 A15
38 A14
37 A13
36 A12
35 A11
34 A10
33 A9
I/O15
I/O14
I/O13
I/O12
I/O11
I/O10
I/O9
I/O8 10
ERASE 11
I/O7 12
I/O6 13
I/O5 14
I/O4 15
I/O3 16
I/O2 17
I/O1 18
I/O0 19
NOE 20
A16 21
32 VSS
31 A8
30 A7
29 A6
28 A5
27 A4
26 A3
25 A2
24 A1
23 A0
22 VDD
Figure B-3 Pin Configuration for Socket Adaptor
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
317
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
MN102HF75K Flash EEPROM Version
Using the PROM Writer Mode
Table B-2 PROM Writer Hardware
Device
Hardware Part
MN102HF75KBF
MN102HF85KDP
Package
(external view)
Installed in
84-pin QFP
64-pin SDIP
Adaptor
Installed in
Panasonic
M
Panasonic
M
Set this switch to the right.
Ordering information:
Part no.: FLS84F18--102HF57
Ordering information:
Part no.: FLS64SD-102HF51
OEM: Matsushita Electric Indus- OEM: Matsushita Electric Indus-
trial Co., Ltd. trial Co., Ltd.
Third-party PROM
writer
Gang writer Single-unit writer
Model: 1930
Model: LabSite DIP 48-1
OEM: DATA-I/O
OEM: Minato Electronics
4105 Minami Yamada-cho
Tsuzuki-ku
Osaki CN Building, 2F
5-10-10 Osaki, Shinagawa-ku
Tokyo, Japan
Yokohama, Japan
Tel: 045-591-5605
Tel: 03-3779-2040
Check the following web page of our microcomputer division for the writer
matching information.
http://www.mec panasonic.co.jp/sc/division/micom
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
318
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
MN102HF75K Flash EEPROM Version
Using the Onboard Serial Programming Mode
B.4 Using the Onboard Serial Programming
Mode
The serial programming mode is primarily used to program the flash ROM in
devices that are already installed on a PCB board. Panasonic provides the ded-
icated hardware and software for this mode. This section describes the microcon-
troller hardware, system configuration, software register map, and protocol for
this type of programming operation.
Onboard serial writer
Television set
Serial communication
Program
for TV
16-bit microcontroller
with flash EEPROM
Figure B-4 Serial Writer Programming Configuration
■
■
Hardware requirements:
♦
♦
♦
Onboard serial writer (YDC model AF200 (provisional))
Add-on circuit for target board
Flash programming connectors or pins for target board
Software requirements:
♦
Serial writer load program, installed in first kilobyte of MN102HF75K/
85K EEPROM
♦
Programming algorithm for operating the onboard serial writer
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
319
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
MN102HF75K Flash EEPROM Version
Using the Onboard Serial Programming Mode
B.4.1 Configuring the System for Onboard Serial Programming
Target board
AC adaptor
power source
VDD
Target board
IC
card
IC
card
Serial writer
(AF200 flash microcontroller
programmer (provisional))
Figure B-5 Serial Writer Hardware Setup
The workstation containing the program data sends the program to the serial
writer through an IC card. Through serial communication, the serial writer
programs the flash memory inside the microcontroller on the target board. You
must supply an external VDD source to the target board. The serial writer supplies
the VPP source.
You must provide the personal computer that holds the IC card. To order the
serial writer, contact:
(Provisional)
Yokogawa Digital Computer Co., Ltd.
Microcontroller System Joint Headquarters, Equipment Business Center
Keio Fuchu 1-chome Building, 7F
1-9 Fuchu-cho, Fuchu-shi
Tokyo, Japan
Model: AF200 flash microcontroller programmer
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
320
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
MN102HF75K Flash EEPROM Version
Using the Onboard Serial Programming Mode
B.4.2 Circuit Requirements for the Target Board
Target board
V
V
= +5 V
PP
DD
V
DD
(for level detection)
10 k
Ω
RST
SBT
SBD
GND
RST
V
PP
Serial
writer
MCU
SBT1
SBD1
External
power source
3.0 V - 3.3 V
GND
Figure B-6 Target Board–Serial Writer Connection
Table B-3 Pin Descriptions for Target Board–Serial Writer Connection
Pin Name
Description
V
V
V
5-V power supply
3.0–3.3 external power supply
V level detection pin for target board
DD
PP
DD
DD
(for level detection)
RST
SBT
SBD
GND
Reset
Serial interface clock supply
Serial interface data supply
Ground
Note:
1. During normal microcontroller operation, V should always be equal to
PP
V
(3.3 ±0.3 V). Apply 5 V to the V supply only when programming
DD
PP
the flash memory.
■ During programming, the serial writer supplies VPP to the microcontroller.
Install a switch on the target board to toggle between VPP supplied by the
serial writer and VPP for normal operation.
■ In serial programing a large-scale of current flows through Vpp. See to it that
5V is supplied to Vpp by checking the connection and reducing the
impedance of switches.
■ You must supply a VDD source of 3.0 V – 3.3 V externally.
■ VDD (for level detection) informs the serial writer of the actual VDD level of
the target board. If the VDD level is too low, the serial writer generates an
error message.
■ Connect pullup resistors on the target board to the RST, SBT, and SBD pins.
Use a pullup resistor value of 10 kΩ ±10%. Install a switch on the target
board to toggle between RST for serial programming and RST for normal
operation. Alternatively, install a wired-OR connection. For a wired-OR
connection, disable RST for normal operation during serial programming.
■ RST, SBT, and SBD are output from the serial writer through an open con-
nection.
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
321
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
MN102HF75K Flash EEPROM Version
Using the Onboard Serial Programming Mode
B.4.3 Microcontroller Hardware Used in Onboard Serial Pro-
gramming
B.4.3.1 Serial Writer Interface Description
The microcontroller contains the following interface hardware for serial pro-
gramming of the flash ROM:
■ One 8-bit serial interface (use serial interface 1):
♦
♦
♦
♦
Data transmission and reception synchronize with external clock
Transmission bit LSB first
Maximum clock speed ≥ 10 MHz
Positive I/O logic
■ Two I/O pins:
♦
SBT1 and SBD1 pins (with alternate I/O port functions)
B.4.3.2 Serial Writer Interface Block Diagram
RXD
TXD
RXC,TXC
RST
P25, TM4IOB, SBD1
P24, TM4IC, SBT1
RST
8-bit serial interface
(use serial interface 1)
Figure B-7 Serial Writer Interface Block Diagram
When programming the memory, you need not be aware of these microcontroller
hardware connections. However, it is vital that you take these connections into
account when designing your target board, so that the serial writer can program
the device correctly, and so that SBD1 and SBT1 are dedicated pins for the serial
writer, preventing other user circuits from communicating with the device.
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
322
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
MN102HF75K Flash EEPROM Version
Using the Onboard Serial Programming Mode
B.4.4 Microcontroller Memory Map Used During Onboard
Serial Programming
B.4.4.1 Flash ROM Address Space
Table B-4 Flash ROM Address Space in Serial Programming Mode
Address
Size
Description
x’0x80000’
1 KB
Serial writer load program area
|
x’0x803FF’
x’0x80400’
7 KB
Fixed user program area
|
|
x’0x81FFF’
x’0x82000’
8 bytes
8 bytes
8 bytes
8 bytes
248 KB
Security code
Reserved area
|
x’0x82007’
x’0x82008’
|
x’0x8200F’
x’0x82010’
Branch instruction to reset service routine
(Ex., JMP 82100)
|
x’0x82017’
x’0x82018’
Branch instruction to interrupt service routine
(Ex., JMP 82200)
|
x’0x8201F’
x’0x82020’
User program area
|
|
x’0xBFFFF’
■
■
■
Serial writer load program area
This kilobyte of ROM, starting at address x’0x80000’, holds the load program
for the serial writer. This area is write-protected in the hardware. Panasonic
provides the load program.
Fixed user program area
These 7 kilobytes of ROM starting at address x’0x80400’, hold the fixed user
program. This area is write-protected in the hardware. (You can program this area
with a parallel writer.)
Security code
This byte holds the password for the serial writer. Enter an 8-character ASCII
code in this space.
■
■
Reserved area
Do not write to this area.
Branch instruction to reset service routine
Normally, reset servicing starts at address x’0x80000’, but the soft branch
instruction in the serial writer load program branches to x’0x82010’. This
address must hold a JMP instruction pointing to the real start address for the reset
service routine.
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
323
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
MN102HF75K Flash EEPROM Version
Using the Onboard Serial Programming Mode
■
■
Branch instruction to interrupt service routine
Normally, interrupt servicing starts at address x’0x80008’, but the soft branch
instruction in the serial writer load program branches to x’0x82018’. This
address must hold a JMP instruction pointing to the real start address for the
interrupt service routine.
User program area
This area stores the user program.
B.4.4.2 RAM Address Space
Table B-5 RAM Address Space in Serial Programming Mode
Address
Size
Description
x’0x8000’
|
x’0x8BFF’
3 KB
Serial writer work area
x’0x8C00’
|
x’0x8FFF’
1 KB
Reserved area
■
■
Serial writer work area
The 3 kilobytes of RAM area starting at address x’0x08000’ are used for the
serial writer work area. The load program downloads programs to this area that it
needs to operate the serial writer and program the EEPROM. No other memory
area can be used for this purpose. You do not need to know about RAM allo-
cation to program the EEPROM.
Reserved area
Do not write to this area.
B.4.5 Microcontroller Clock on the Target Board
For the clock supply to the microcontroller on the target board, use the existing
Using the internal PLL circuit, the microcontroller switches to NORMAL mode
and operates with a 12-MHz system clock. Table B-6 shows the clock fre-
quencies for the microcontroller during serial programming.
Table B-6 Microcontroller Clock Frequencies during Serial Programming
Oscillator Clock Frequency
Internal System Clock Frequency
4 MHz
12 MHz
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
324
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
MN102HF75K Flash EEPROM Version
Using the Onboard Serial Programming Mode
B.4.6 Setting Up the Onboard Serial Programming Mode
To enter serial programming mode, the microcontroller must be in write mode.
This section describes the pin setup for the serial writer interface.
Normal timing waveform
A
B
C
D
V
DD
V
PP
RST
SBT
SBD
Timing waveform during
serial programming
V
DD
V
PP
RST
SBT
SBD
t
t
t
3
1
2
Figure B-8 Timing for the Serial Writer Interface
■
To set up the serial writer interface:
3. Through the serial writer, drive the RST pin from time B in figure B-8, when
SBT goes high on microcontroller power-up, for t2 cycles. The microcontrol-
ler initializes.
4. Through the serial writer, drive the SBD pin low from time C in figure B-8,
when RST goes high on microcontroller power-up, for t3 cycles. This tells
the microcontroller that it is connected to the serial writer.
5. Make t3 long enough to allow the microcontroller oscillator to stabilize.
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
325
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
MN102HF75K Flash EEPROM Version
Using the Onboard Serial Programming Mode
■
Start routine for the load program
Reset start
SBT pin == high
&&
SDB pin == low?
No
Yes
Wait t
WAIT1
SBT pin == high
&&
SDB pin == low?
No
Yes
Has t
passed?
No
WAIT2
Yes
SBT pin == high
&&
SDB pin == high?
No
Yes
Start serial writer
load program
Execute user
program
Figure B-9 Load Program Start Flow
Conditions:
1. After the load program initiates a reset start, SBD must be low and SBT
high.
2. After the program waits tWAIT1 = 10 milliseconds, SBD must still be low and
SBT high.
3. Within tWAIT2 = 100 milliseconds, both SBD and SBT must be high.
If any of these conditions is not met, control returns to the user program.
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
326
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
MN102HF75K Flash EEPROM Version
Using the Onboard Serial Programming Mode
B.4.7 Branching to the User Program
B.4.7.1 Branching to the Reset Start Routine
Reset start
Serial writer?
No
Yes
Start serial writer
load program
Branch to address
x’82010’
Execute user program
(Generate 10-cycle delay)
Figure B-10 Flow of Branch to Reset Start Routine
When the reset starts, the serial writer load program initializes only if SBD is
low. Otherwise, the program branches to the user program at address x’0x82010’.
B.4.7.2 Branching to the Interrupt Start Routine
Interrupt start
address x’0x80008’
JMP x’82018’ instruction
(3 bytes/2 cycles)
Branch to address
x’0x82018’
Write a branch instruction
to address x’82018’
Execute user interrupt service routine
(Generate 2-cycle delay)
Figure B-11 Flow of Branch to Interrupt Start Routine
In the interrupt start address, place a simple branch instruction pointing to
address x’0x82018’.
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
327
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
MN102HF75K Flash EEPROM Version
Reprogramming Flow
B.5 Reprogramming Flow
Figure B-12 shows the flow for reprogramming (erasing and programming) the
flash memory.
Write 0s to entire memory
Erase
Reverse
Erase routine
Write user program
Figure B-12 EEPROM Programming Flow
Always program after erasing is
completed.Erasing is sometimes not
done finely,even though PROM-
writer or onboard serial writer
shows “PASS“in blank check. And
in that situation the data programed
successfully may be incorrect.
Rewriting the data to the address
where data has already set is forbid-
den.
As the figure shows, the write occurs after the memory is completely erased. The
erase routine consists of three steps, first writing all zeros to the entire memory
space, next erasing the memory, and finally reversing.
B.6 Programming Times
Table B-7 shows the time required for PROM and serial programming and repro-
gramming (erasing and programming).
Table B-7 Programming Times for PROM and Serial Writers
Programming Time
(User Program Only)
Reprogramming
Time
Writer
DATA-I/O LabSite DIP48-1
TBA
TBA
YDC AF200 (provisional)
—
3.5–4 minutes
Note: Times indicated are minimum time requirements.
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
328
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
MN102H75K/F75K/85K/F85K LSI User's Manual Description Record of Changes (Ver.1.0 to 1.1)
page
Line
defini-
tion
Description of Changes
22385-011E
Former version
New version
Cover Pub number
Colophon
Sales office
C 22385-010E
C September, 2001 1st Edition
C
October, 2001 1st Edition 1st Printing
Latest version
<Definition>
A: add
D: delete
C: modify, change
Download from Www.Somanuals.com. All Manuals Search And Download.
MN102H75K/F75K/85K/F85K LSI User’s Manual
Modified Points From MN102H75K/F75K To MN102H75K/F75K/85K/F85K
page
P16
Before Modify
page
P16
After Modify
This manual is intended for assembly-language programming
engineers. It describes the internal configuration and hardware
functions of the MN102H75K microcontrollers.
This manual is intended for assembly-language programming
engineers. It describes the internal configuration and hardware
functions of the MN102H75K and MN102H85K microcontrollers.
Except when discusssiing differing specifications,this manual refers to
the two microcontrollers as a single device : MN102H75K/85K.
Using This Manual
The chapters in this manual deal with the internal blocks of the
MN102H75K. Chapters 1 to 5 provide an overview of the
Using This Manual
MN102H75K’s general specifications, interrupts, power modes, timers,
and serial connections. Chapters 6 to 10 describe the on-screen display
and other specialized functions available with the MN102H75K.
Chapter 11 provides the I/O port specifications, chapter 12 describes the
ROM correction feature, chapter 13 describes the I2C interface, and
chapter 14 describes the H scan line counter. Appendix A provides a
register map, and Appendix B describes the flash EEPROM version.
The chapters in this manual deal with the internal blocks of the
MN102H75K/85K. Chapters 1 to 5 provide an overview of the
MN102H75K/85K’s general specifications, interrupts, power modes,
timers, and serial connections. Chapters 6 to 10 describe the on-screen
display and other specialized functions available with the
MN102H75K/85K. Chapter 11 provides the I/O port specifications,
chapter 12 describes the ROM correction feature, chapter 13 describes
the I2C interface, and chapter 14 describes the H scan line counter.
Appendix A provides a register map, and Appendix B describes the
flash EEPROM version.
■
MN10200 Series Linear Addressing High-Speed Version LSI User Manual
(Describes the core hardware.)
■
MN102H Series LSI User Manual
(Describes the core hardware.)
P17
P17
■
■
MN10200 Series Linear Addressing High-Speed Version Instruction Manual
(Describes the instruction set.)
■
■
■
■
■
■
■
MN102H Series Instruction Manual
(Describes the instruction set.)
MN10200 Series Linear Addressing High-Speed Version C Compiler User
Manual: Usage Guide
(Describes the installation, commands, and options for the C compiler.)
MN102H Series C Compiler User Manual: Usage Guide
(Describes the installation, commands, and options for the C compiler.)
MN102H Series C Compiler User Manual: Language Description
(Describes the syntax for the C compiler.)
■
■
■
■
■
MN10200 Series Linear Addressing High-Speed Version C Compiler User
Manual: Language Description
(Describes the syntax for the C compiler.)
MN102H Series C Compiler User Manual: Library Reference
(Describes the standard libraries for the C compiler.)
MN10200 Series Linear Addressing High-Speed Version C Compiler User
Manual: Library Reference
(Describes the standard libraries for the C compiler.)
MN102H Series Cross-Assembler User Manual
(Describes the assembler syntax and notation.)
MN10200 Series Linear Addressing High-Speed Version Cross-Assembler User
Manual
(Describes the assembler syntax and notation.)
MN102H Series C Source Code Debugger User Manual
(Describes the use of the C source code debugger.)
MN102H Series Installation Manual
(Describes the installation of the C compiler, cross-assembler, and C source
code debugger and the procedures for using the in-circuit emulator.)
MN10200 Series Linear Addressing Version C Source Code Debugger User
Manual
(Describes the use of the C source code debugger.)
MN10200 Series Linear Addressing Version PanaX Series Installation Manual
(Describes the installation of the C compiler, cross-assembler, and C source
code debugger and the procedures for using the in-circuit emulator.)
Questions and Comments
We welcome your questions, comments, and suggestions. Please contact the semicon-
ductor design center closest to you. See the last page of this manual for a list of
addresses and telephone numbers. You can also find contact and product information
on the World Wide Web at: http://www.psdc.com/
Figure 1-5 shows the address space for the MN102H75K.The internal
ROM contains the instructions and the font data for the on-screen dis-
play (OSD), in any location. The internal RAM contains the MCU data
and the VRAM for the OSD, in any location.
Figure 1-5 shows the address space for the MN102H75K/85K.The
internal ROM contains the instructions and the font data for the on-
screen display (OSD), in any location. The internal RAM contains the
MCU data and the VRAM for the OSD, in any location
P24
P27
P24
P27
I/O ports
Package
66(MN102H75K/F75K) / 50(MN102H85K/F85K)
I/O ports
Package
66
84-pin QFP(MN102H75K/F75K) / 64-pin SDIL(MN102H85K/F85K)
84-pin QFP
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
1
Download from Www.Somanuals.com. All Manuals Search And Download.
Panasonic
1.6 Pin Descriptions
P30
1.6.1
MN102H85K Pin Description
P00, RMIN, IRQ0
1
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
VSS
*
*
P01, SDA1
P02, SCL1
2
OSC2
3
OSC1
P03, ADIN0
P04, ADIN1
4
VDD
5
P61, SCL0
P60, SDA0
P57, SBT0
*
*
P05, ADIN2
6
P06, ADIN3
7
P07, ADIN4
8
P56, SBI0, SBD0
P55, SBO0
P10, ADIN5, IRQ1
P11, ADIN6, IRQ2
P12, ADIN7, IRQ3
P13, ADIN8, WDOUT
P14, ADIN9, STOP
P15, ADIN10, PWM0
P16, ADIN11, PWM1
P17, PWM2
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
P54, IRQ5, VSYNC
P53, RST
64-Pin SDIP
Top View
P52, IRQ4, VI0
TEST
P51, YS
P50, SYSCLK
P47, HSYNC
P46, OSDXI
P45, OSDXO
P20, PWM3
P21, PWM4
P22, PWM5
P44, TM5IC, HI1
P43, TM5IOB, HI0
P42, TM5IOA
*
P23, PWM6
*
P24, TM4IC, SBT1
P25, TM4IOB, SBI1, SBD1
P26, TM4IOA, SBO1
P27, TM0IO
*
P41, TM1IO
VCOI
*
PDO
VDD (VPP)
P40, DAYMOUT, YM
P30, CLH
P37, DABOUT,
P36, DAGOUT,
P35, DAROUT,
VREF, P34
IREF
B
G
R
VREFHS
P31, CVBS0
VSS
P32, CVBS1
VREFLS
COMP
P33, CLL
AVDD
Notes: 1. Pins marked with an asterisk (*) are N-channel, open-drain pins.
2. Pin 25 is V in the MN102H85K and V in the MN102HF85K.
DD
PP
Figure 1-9 MN102H85K Pin Configuration in Single-Chip Mode
1.6 Pin Descriptions
P30
P31
1.6.2
MN102H75K Pin Description
1.6.1
MN102H75K Pin Description
P55, SBO0
P54, IRQ5, VSYNC
P84
1
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
NC
P55, SBO0
P54, IRQ5, VSYNC
P84
1
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
NC
2
P71
2
P71
3
P10, ADIN5, IRQ1
P11, ADIN6, IRQ2
P12, ADIN7, IRQ3
P72
3
P10, ADIN5, IRQ1
P11, ADIN6, IRQ2
P12, ADIN7, IRQ3
P72
NC
4
NC
4
P53, RST
P52, IRQ4, VI0
TEST
5
P53, RST
P52, IRQ4, VI0
TEST
5
6
6
7
P13, ADIN8, WDOUT
P14, ADIN9, STOP
P73
7
P13, ADIN8, WDOUT
P14, ADIN9, STOP
P73
P51, YS
8
P51, YS
8
P83
9
P83
9
P50, SYSCLK
P82
10
11
12
13
14
15
16
17
18
19
20
21
P15, ADIN10, PWM0
P16, ADIN11, PWM1
P17, PWM2
P50, SYSCLK
P82
10
11
12
13
14
15
16
17
18
19
20
21
P15, ADIN10, PWM0
P16, ADIN11, PWM1
P17, PWM2
84-Pin QFP
Top View
84-Pin QFP
Top View
P47, HSYNC
P81
P47, HSYNC
P81
P20, PWM3
P20, PWM3
P46, OSDXI
P45, OSDXO
P21, PWM4
P46, OSDXI
P45, OSDXO
P21, PWM4
P22, PWM5
P22, PWM5
*
P44, TM5IC, HI1
P43, TM5IOB, HI0
P42, TM5IOA
P23, PWM6
*
P44, TM5IC, HI1
P43, TM5IOB, HI0
P42, TM5IOA
P23, PWM6
*
P24, TM4IC, SBT1
P25, TM4IOB, SBI1, SBD1
P26, TM4IOA, SBO1
P27, TM0IO
*
P24, TM4IC, SBT1
P25, TM4IOB, SBI1, SBD1
P26, TM4IOA, SBO1
P27, TM0IO
*
*
*
P41, TM1IO
VCOI
*
P41, TM1IO
VCOI
PDO
P74
PDO
P74
Notes: 1. Pins marked with an asterisk (*) are N-channel, open-drain pins.
2. Pin 41 is V in the MN102H75K and V in the MN102HF75K.
Notes: 1. Pins marked with an asterisk (*) are N-channel, open-drain pins.
2. Pin 41 is V in the MN102H75K and V in the MN102HF75K.
DD
PP
DD
PP
Figure 1-10 MN102H75K Pin Configuration in Single-Chip Mode
Figure 1-9 MN102H75K Pin Configuration in Single-Chip Mode
P32
Table 1-3 Pin Function(Continued)
Block
P33
Table 1-3 Pin Function(Continued)
Pin Name
P00-P07
Block
Pin Name
P00-P07
I/O ports
MN102H75K/HF75K:
total 66 pins
MN102H85K/HF85K:
total 50 pins
P10-P17
P20-P27
P30-P37
P40-P47
P10-P17
P20-P27
P30-P37
P40-P47
I/O ports
P50-P57
P60-P61
P70-P77
P50-P57
P60-P61
P70-P77
I/O ports only in
MN102H75K/HF75K
P80-P87
P80-P87
P33
P34
VDD
VDD
VDD
AVDD
VDD
AVDD
Power
Supply
Power
Supply
MN102H75K
MN102H85K
MN102H75K
AVSS
AVSS
VSS
VSS
VSS
VSS
Note: If the circuit uses the same power supply for digital and analog supplies, connect
the pins in the location closest to the power supply
Note: If the circuit uses the same power supply for digital and analog supplies, connect
the pins in the location closest to the power supply
Figure 1-11 Power Supply Wring
Figure 1-12 Power Supply Wring
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
2
Download from Www.Somanuals.com. All Manuals Search And Download.
Panasonic
The MN102H75K contains an internal PLL circuit. To use this circuit,
you must connect it to an external (lag-lead) filter.
The MN102H75K/85K contains an internal PLL circuit. To use this
circuit, you must connect it to an external (lag-lead) filter.
P33
P37
P34
P37
The most important factor in real-time control is an MCU’s speed in
servicing interrupts. The MN102H75K has an extremely fast interrupt
response time due to its ability to abort instructions, such as multiply or
divide, that require multiple clock cycles. The MN102H75K re-
executes an aborted instruction after returning from the interrupt service
routine.
The most important factor in real-time control is an MCU’s speed in
servicing interrupts. The MN102H75K/85K has an extremely fast
interrupt response time due to its ability to abort instructions, such as
multiply or divide, that require multiple clock cycles. The
MN102H75K/85K re-executes an aborted instruction after returning
from the interrupt service routine.
This section describes the interrupt system in the MN102H75K. The
MN102H75K contains 36 interrupt group controllers. Each controls a
single interrupt group. Because each group contains only one interrupt
vector, the MN102H75K can handle interrupts much quicker than pre-
viously possible. Each interrupt group belongs to one of twelve classes,
which defines its interrupt priority level.
This section describes the interrupt system in the MN102H75K/85K.
The MN102H75K/85K contains 36 interrupt group controllers. Each
controls a single interrupt group. Because each group contains only one
interrupt vector, the MN102H75K/85K can handle interrupts much
quicker than previously possible. Each interrupt group belongs to one
of twelve classes, which defines its interrupt priority level.
With the exception of reset interrupts, all interrupts from timers, other
peripheral circuits, and external pins must be registered in an interrupt
group controller. Once they are registered, interrupt requests are sent to
the CPU in accordance with the interrupt mask level (0 to 6) set in the
interrupt group controller. Groups 1 to 3 are dedicated to system inter-
rupts. Table 2-1 compares the interrupt parameters of the MN102H75K
to those of the MN102L35G, the comparable MCU in the previous gen-
eration of the 16-bit series
With the exception of reset interrupts, all interrupts from timers, other
peripheral circuits, and external pins must be registered in an interrupt
group controller. Once they are registered, interrupt requests are sent to
the CPU in accordance with the interrupt mask level (0 to 6) set in the
interrupt group controller. Groups 1 to 3 are dedicated to system inter-
rupts. Table 2-1 compares the interrupt parameters of the MN102H75K/
85K to those of the MN102L35G, the comparable MCU in the previous
generation of the 16-bit series
Table2-1Comparison of MN102H75K and MN102L35G Interrupt Features
Table2-1Comparison of MN102H75K/85K and MN102L35G Interrupt Features
MN102L35G
MN102L35G
Parameter
Parameter
MN102H75K
MN102H75K/85K
4 vectors per group
(Separated by interrupt
service routine)
4 vectors per group
(Separated by interrupt
service routine)
1 vector per group
(Group number gener-
ated for each interrupt)
1 vector per group
(Group number gener-
ated for each interrupt)
interrupt groups
(IAGR group numbers)
interrupt groups
(IAGR group numbers)
Good
Good
interrupt response time
interrupt level settings
Software compatibility
Excellent
interrupt response time
interrupt level settings
Software compatibility
Excellent
4 vectors per level
4 vectors per level
4 vectors per level
Easily modified
4 vectors per level
Easily modified
The MN102H75K has six external interrupt pins. Set the interrupt con-
dition (positive edge, negative edge, either edge, or active low) in the
EXTMD register
The MN102H75K/85K has six external interrupt pins. Set the interrupt
condition (positive edge, negative edge, either edge, or active low) in
the EXTMD register
The MN102H75K provides two ways to reduce power consumption, controlling
CPU operating and standby modes to cut overall consumption and shutting down
unused functions by stopping the system clock supplied to them.
The MN102H75K/85K provides two ways to reduce power consumption, con-
trolling CPU operating and standby modes to cut overall consumption and shutting
down unused functions by stopping the system clock supplied to them.
P72
P72
3.1 CPU Modes
3.1.1 Description
3.1 CPU Modes
3.1.1 Description
The MN102H75K has two CPU operating modes, NORMAL and SLOW, and two
CPU standby modes, HALT and STOP. Effective use of these modes can signifi-
cantly reduce power consumption. Figure 3-1 shows the CPU states in the different
modes
The MN102H75K/85K has two CPU operating modes, NORMAL and SLOW, and
two CPU standby modes, HALT and STOP. Effective use of these modes can sig-
nificantly reduce power consumption. Figure 3-1 shows the CPU states in the dif-
ferent modes
P73
P73
P73
P73
The MN102H75K/85K recovers from power up and reset in SLOW
mode. For normal operation, the program must switch the MCU from
SLOW to NORMAL mode
The MN102H75K/85K recovers from power up and reset in SLOW
mode. For normal operation, the program must switch the MCU from
SLOW to NORMAL mode
The MN102H75K contains a PLL circuit that, in NORMAL mode, multiplies the
clock input through the OSC1 and OSC2 pins by 12, divides the signal by 2, then
sends the resulting clock to the CPU. (See figure 3-2.) The MCU starts in SLOW
mode on power up and on recovery from a reset. In SLOW mode (system clock = 2
MHz), the clock from the OSC pins feeds directly to the CPU, without going
through the PLL circuit. This means that the program must switch the CPU from
SLOW to NORMAL mode (system clock = 12 MHz)
The MN102H75K/85K contains a PLL circuit that, in NORMAL mode, multiplies
the clock input through the OSC1 and OSC2 pins by 12, divides the signal by 2,
then sends the resulting clock to the CPU. (See figure 3-2.) The MCU starts in
SLOW mode on power up and on recovery from a reset. In SLOW mode (system
clock = 2 MHz), the clock from the OSC pins feeds directly to the CPU, without
going through the PLL circuit. This means that the program must switch the CPU
from SLOW to NORMAL mode (system clock = 12 MHz)
For information on invoking SLOW mode from NORMAL mode, see MN10200
Series Linear Addressing High-Speed Version LSI User Manual.
For information on invoking SLOW mode from NORMAL mode, see MN102H
Series LSI User Manual.
P73
P75
P73
P75
The MN102H75K allows you to turn each peripheral function on or off
through writing to the registers. You can significantly reduce power
consumption by turning off unused functions. Table 3-1 shows the
register bits controlling on and off for each function block. The ADC
used for the OSD and CCD functions is turned off on reset. Write a 1 to
the function to enable it, when necessary
The MN102H75K/85K allows you to turn each peripheral function on
or off through writing to the registers. You can significantly reduce
power consumption by turning off unused functions. Table 3-1 shows
the register bits controlling on and off for each function block. The
ADC used for the OSD and CCD functions is turned off on reset. Write
a 1 to the function to enable it, when necessary
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
3
Download from Www.Somanuals.com. All Manuals Search And Download.
Panasonic
The MN102H75K contains four 8-bit timers that can serve as interval
timers, event timer/counters, clock generators (divide-by-2 output of
the underflow), reference clocks for the serial interfaces, or start timers
for A/D conversions. The clock source can be the internal clock (oscil-
lator frequency divided by 2) or the external clock (1/4 or less the oscil-
lator frequency input). A timer interrupt is generated by a timer
underflow
The MN102H75K/85K contains four 8-bit timers that can serve as
interval timers, event timer/counters, clock generators (divide-by-2 out-
put of the underflow), reference clocks for the serial interfaces, or start
timers for A/D conversions. The clock source can be the internal clock
(oscillator frequency divided by 2) or the external clock (1/4 or less the
oscillator frequency input). A timer interrupt is generated by a timer
underflow
P77
P88
P77
P88
The MN102H75K contains two 16-bit up/down timers, timers 5 and 6.
Associated with each timer are two compare/capture registers that can
capture and compare the up/down counter values, generate PWM sig-
nals, and generate interrupts. The PWM function has a double buffering
mode that causes cycle and transition changes to occur at the beginning
of the next clock cycle. This prevents PWM signal losses and mini-
mizes waveform distortion during timing changes
The MN102H75K/85K contains two 16-bit up/down timers, timers 5
and 6. Associated with each timer are two compare/capture registers
that can capture and compare the up/down counter values, generate
PWM signals, and generate interrupts. The PWM function has a double
buffering mode that causes cycle and transition changes to occur at the
beginning of the next clock cycle. This prevents PWM signal losses and
minimizes waveform distortion during timing changes
The MN102H75K contains two general-purpose serial interfaces with
synchronous serial, UART, and I2C modes. The maximum baud rate in
synchronous serial mode is 12 Mbps. In UART mode, the maximum
baud rate is 375,000 bps, when BOSC = 24 MHz
The MN102H75K/85K contains two general-purpose serial interfaces
with synchronous serial, UART, and I2C modes. The maximum baud
rate in synchronous serial mode is 12 Mbps. In UART mode, the maxi-
mum baud rate is 375,000 bps, when BOSC = 24 MHz
P127
P127
The MN102H75K contains an 8-bit charge redistribution A/D converter
(ADC) that can process up to 12 channels. The reference clock is select-
able to BOSC x 1/8 or 1/16. When BOSC is 24 MHz, you must set the
reference clock to BOSC/8 (conversion rate = 4 µs) or higher
The MN102H75K/85K contains an 8-bit charge redistribution A/D con-
verter (ADC) that can process up to 12 channels. The reference clock is
selectable to BOSC x 1/8 or 1/16. When BOSC is 24 MHz, you must set
the reference clock to BOSC/8 (conversion rate = 4 µs) or higher
P143
P153
P143
P153
The MN102H75K contains an on-screen display (OSD) function com-
posed of three layers: a text layer, a graphics layer, and a cursor layer.
You can control each layer individually, which gives you great freedom
in positioning displays. You can also modify the ROM space that con-
tains the text characters and the graphic tiles and the VRAM space that
contains the text and graphics programs. This allows you to adjust the
memory space to fit your application
The MN102H75K/85K contains an on-screen display (OSD) function
composed of three layers: a text layer, a graphics layer, and a cursor
layer. You can control each layer individually, which gives you great
freedom in positioning displays. You can also modify the ROM space
that contains the text characters and the graphic tiles and the VRAM
space that contains the text and graphics programs. This allows you to
adjust the memory space to fit your application
This section describes how the MN102H75K handles the timing of
direct memory access (DMA) transfers of OSD data and OSD inter-
rupts
This section describes how the MN102H75K/85K handles the timing of
direct memory access (DMA) transfers of OSD data and OSD inter-
rupts
P191
P194
P191
P194
The MN102H75K OSD achieves a shuttering effect using four pro-
grammable shutters—two vertical and two horizontal. With this fea-
ture, you can shutter any portion of the OSD display, or you can
combine shuttering with a wipe-out effect to create a smooth appearing
and disappearing effect
The MN102H75K/85K OSD achieves a shuttering effect using four
programmable shutters—two vertical and two horizontal. With this fea-
ture, you can shutter any portion of the OSD display, or you can com-
bine shuttering with a wipe-out effect to create a smooth appearing and
disappearing effect
The MN102H75K contains a remote signal receiver that processes sig-
nals in two formats: Household Electrical Appliance Manufacturers
Association (HEAMA) format and 5-/6-bit format. This chapter pro-
vides an overview of each block in the circuit and describes the opera-
tion of the receiver
The MN102H75K/85K contains a remote signal receiver that processes
signals in two formats: Household Electrical Appliance Manufacturers
Association (HEAMA) format and 5-/6-bit format. This chapter pro-
vides an overview of each block in the circuit and describes the opera-
tion of the receiver
P216
P216
The MN102H75K contains two identical closed-caption decoder cir-
cuits, CCD0 and CCD1
The MN102H75K/85K contains two identical closed-caption decoder
circuits, CCD0 and CCD1
P227
P229
P249
P227
P229
The clamping circuit internal to the MN102H75K provides three current
sources—high, medium, and low.
The clamping circuit internal to the MN102H75K/85K provides three
current sources—high, medium, and low.
The MN102H75K contains seven 8-bit pulse width modulators
(PWMs) with a minimum pulse width of 16/fSYSCLK and an output
waveform cycle of 212/fSYSCLK. (With a 4-MHz oscillator, 16/fSYSCLK
= 1.33 µs (8 µs for SLOW mode) and 212/fSYSCLK = 341.3 µs (2 ms for
SLOW mode).)
P249 The MN102H75K/85K contains seven 8-bit pulse width modulators
(PWMs) with a minimum pulse width of 16/fSYSCLK and an output
waveform cycle of 212/fSYSCLK. (With a 4-MHz oscillator, 16/fSYSCLK
= 1.33 µs (8 µs for SLOW mode) and 212/fSYSCLK = 341.3 µs (2 ms for
SLOW mode).)
The MN102H75K contains 50 pins that form general-purpose I/O ports. P250 The MN102H75K/85K contains 50 pins that form general-purpose I/O
P250
Ports 0, 1, 2, 3, 4, and 5 are 8-bit ports, and port 6 is a 2-bit port. All of
these pins have alternate functions. (Ports 7 and 8 are only available
with the quad flat package.)
ports. Ports 0, 1, 2, 3, 4, and 5 are 8-bit ports, and port 6 is a 2-bit port.
All of these pins have alternate functions. (Ports 7 and 8 are only avail-
able with the quad flat package.)
The MN102H75K contains one I2C bus controller, fully compliant with
The MN102H75K/85K contains one I2C bus controller, fully compliant
with the I2C specification, that can control one of two I2C bus connec-
tions
P293
P295
P293
the I2C specification, that can control one of two I2C bus connections
Figure 13-3 shows the MN102H75K operation sequence in each of
these modes. In all modes, the I2C bus controller generates an interrupt
after each data byte transfer, then the software loads the next data byte
P295 Figure 13-3 shows the MN102H75K/85K operation sequence in each
of these modes. In all modes, the I2C bus controller generates an inter-
rupt after each data byte transfer, then the software loads the next data
byte
Figure 13-6 and table 13-5 provide the timing definitions and specifica- P299 Figure 13-6 and table 13-5 provide the timing definitions and specifica-
P299
tions for the for the MN102H75K I2C bus interface
tions for the for the MN102H75K/85K I2C bus interface
P301
P303
Note: The circled areas are signals output from the MN102H75K
Note: The circled areas are signals output from the MN102H75K/85K
P301
P303
Note: The circled areas are signals output from the MN102H75K
Note: The circled areas are signals output from the MN102H75K/85K
Panasonic Semiconductor Development Company
MN102H75K/F75K/85K/F85K LSI User Manual
4
Download from Www.Somanuals.com. All Manuals Search And Download.
Panasonic
The MN102H75K contains two H counter circuits that can be used to
count the HSYNC signal. Each H counter consists of a 10-bit counter
and 10-bit register
The MN102H75K/85K contains two H counter circuits that can be used
to count the HSYNC signal. Each H counter consists of a 10-bit counter
and 10-bit register
P307
P308
P307
P308
Table 14-1 H Counter Pins
Pin No.
Pin Name
Table 14-1 H Counter Pins
Pin No.
Alternative Functions
Description
Alternative Functions
Description
Pin Name
H85
H75
H75
HI0
HI1
VI0
Count source pin
Count source pin
Count reset pin
Count reset pin
P43/TM5IOB
P44/TM5IC
P52/IRQ4
45
46
53
55
17
16
6
HI0
HI1
VI0
Count source pin
Count source pin
Count reset pin
Count reset pin
P43/TM5IOB
P44/TM5IC
P52/IRQ4
17
16
6
2
P54/IRQ5
VSINC
2
P54/IRQ5
VSINC
The MN102HF75K is electrically programmable, 256-kilobyte flash
ROM versions of the MN102H75K . It is programmed in one of two
modes:
P316 The MN102HF75K and MN102HF85K are electrically programmable,
256-kilobyte flash ROM versions of the MN102H75K and
P316
P317
MN102H85K. They are programmed in one of two modes:
B.2 Benefits
B.2 Benefits
P317
Because you can maintain and upgrade the program in the
MN102HF75K up to and immediately following product release, this
version of the device shortens time-to-market by as much as one month.
This device is ideal for applications in quickly changing markets, since
it allows you to revise the microcontroller program in an existing prod-
uct.
Because you can maintain and upgrade the program in the
MN102HF75K/85K up to and immediately following product release,
this version of the device shortens time-to-market by as much as one
month. This device is ideal for applications in quickly changing mar-
kets, since it allows you to revise the microcontroller program in an
existing product.
B.3 Using the PROM Writer Mode
B.3 Using the PROM Writer Mode
In this mode, the MN102HF75K allows a PROM writer to program the
internal flash memory as if it was a standalone memory chip. The
microcontroller is inserted into a dedicated adaptor socket, which con-
nects to DATA-I/O’s LabSite PROM writer. When the microcontroller
connects to the adaptor socket, it automatically enters PROM writer
mode. The adaptor socket ties the microcontroller pin states to PROM
writer mode, and programming occurs without any reference to the
microcontroller pin states.
In this mode, the MN102HF75K allows a PROM writer to program the
internal flash memory as if it was a standalone memory chip. The
microcontroller is inserted into a dedicated adaptor socket, which con-
nects to DATA-I/O’s LabSite PROM writer. When the microcontroller
connects to the adaptor socket, it automatically enters PROM writer
mode. The adaptor socket ties the microcontroller pin states to PROM
writer mode, and programming occurs without any reference to the
microcontroller pin states.
Third-party
PROM writer
MN102HF85K
Adaptor socket for MN102HF85K
Third-party
PROM writer
MN102HF75K
Adaptor socket for MN102HF75K
MN102HF75K
Adaptor socket for MN102HF75K
P318
P318
Device
Device
Hardware Part
Hardware Part
MN102HF75KBF
MN102HF75KBF
MN102HF85KDP
Package
Package
(external view)
(external view)
Installed in
Installed in
84-pin QFP
84-pin QFP
64-pin SDIP
Adaptor
Adaptor
M
Panasonic
Installed in
Installed in
Set this switch to the right
Ordering information:
Ordering information:
Ordering information:
Part no.:FLS84F18-102HF57
OEM:Matsushita Electric Indus-
trial Co.,Ltd.
Part no.:FLS84F18-102HF57
OEM:Matsushita Electric Indus-
trial Co.,Ltd.
Part no.:FLS64SD-102HF51
OEM:Matsushita Electric Indus-
trial Co.,Ltd.
Third-party PROM
Gang writer
writer
Third-party PROM
writer
Gang writer
Single-unit writer
Model: 1930
Model: 1930
Model: LabSite DIP 48-1
OEM: DATA-I/O
Osaki CN Building,2F
5-10-10 Osaki,Shinagawa-ku
Tokyo,Japan
OEM: Minato Electronics
4105 Minami Yamada-cho
Tsuzuki-ku
Yokohama,Japan
Tel: 045-591-5605
OEM: Minato Electronics
4105 Minami Yamada-cho
Tsuzuki-ku
Yokohama,Japan
Tel: 045-591-5605
Tel: 03-3779-2040
MN102H75K/F75K/85K/F85K LSI User Manual
Panasonic Semiconductor Development Company
5
Download from Www.Somanuals.com. All Manuals Search And Download.
Panasonic
Download from Www.Somanuals.com. All Manuals Search And Download.
MN102H75K/F75K/85K/F85K
LSI User’s Manual
October,2001 1st Edition 1st Printing
Issued by Matsushita Electric Industrial Co., Ltd.
Matsushita Electric Industrial Co., Ltd.
Download from Www.Somanuals.com. All Manuals Search And Download.
Semiconductor Company, Matsushita Electric Industrial Co., Ltd.
Nagaokakyo, Kyoto, 617-8520 Japan
Tel: (075) 951-8151
http://www.panasonic.co.jp/semicon/
SALES OFFICES
• Penang Office:
■ NORTH AMERICA
Suite 20-07,20th Floor, MWE Plaza, No.8, Lebuh
Farquhar,10200 Penang, Malaysia
■U.S.A. Sales Office:
Panasonic Industrial Company
• New Jersey Office:
Two Panasonic Way Secaucus, New Jersey 07094 U.S.A.
Tel: 1-201-348-5257
• Chicago Office:
1707 N. Randall Road Elgin, Illinois 60123-7847 U.S.A.
[PIC]
Tel: 60-4-201-5113
• Johore Sales Office:
Menara Pelangi, Suite8.3A, Level8, No.2, Jalan Kuning
Taman Pelangi, 80400 Johor Bahru, Johor, MALAYSIA
Fax:60-4-261-9989
Fax:1-201-392-4652
Tel: 60-7-331-3822
Fax:60-7-355-3996
■Thailand Sales Office:
Tel: 1-847-468-5720
Fax:1-847-468-5725
Panasonic Industrial (THAILAND) Ltd.
[PICT]
• Milpitas Office:
252-133 Muang Thai-Phatra Complex Building, 31st Fl.
Rachadaphisek Rd., Huaykwang, Bangkok 10320,
THAILAND
1600 McCandless Drive Milpitas, California 95035 U.S.A.
Tel: 1-408-942-2912
• Atlanta Office:
1225 Northbrook Parkway Suite 1-151 Suwanee, GA
30024 U.S.A.
Fax:1-408-946-9063
Tel: 66-2-693-3428
Fax:66-2-693-3422
■Philippines Sales Office:
[PISP]
Panasonic Indsutrial Sales Philippines Division of
Matsushita Electric Philippines Corporation
102 Laguna Boulevard,Bo.Don Jose Laguna Technopark,
Santa. Rosa, Laguna 4026 PHILIPPINES
Tel: 1-770-338-6953
• San Diego Office:
9444 Balboa Avenue, Suite 185, San Diego, California
92123 U.S.A.
Fax:1-770-338-6849
Tel: 63-2-520-8615
■India Sales Office:
National Panasonic India Ltd.
Fax:63-2-520-8629
Tel: 1-619-503-2903
■Canada Sales Office:
Panasonic Canada Inc.
Fax:1-858-715-5545
[NPI]
[PCI]
E Block, 510, International Trade Tower Nehru Place, New
Delhi_110019 INDIA
5770 Ambler Drive 27 Mississauga, Ontario, L4W 2T3
CANADA
Tel: 91-11-629-2870
■Indonesia Sales Office:
P.T.MET & Gobel
Fax:91-11-629-2877
Tel: 1-905-238-2101
■ LATIN AMERICA
■Mexico Sales Office:
Panasonic de Mexico, S.A. de C.V.
Fax:1-905-238-2414
[M&G]
JL. Dewi Sartika (Cawang 2) Jakarta 13630, INDONESIA
[PANAMEX]
Tel: 62-21-801-5666
■Taiwan Sales Office:
Fax:62-21-801-5675
Amores 1120 Col. Del Valle Delegacion Benito Juarez
C.P. 03100 Mexico, D.F. MEXICO
Panasonic Industrial Sales (Taiwan) Co.,Ltd.
• Head Office:
[PIST]
Tel: 52-5-488-1000
• Guadalajara Office:
Fax:52-5-488-1073
6F, 550, Sec. 4, Chung Hsiao E. RD. Taipei, 110, TAIWAN
Tel: 886-2-2757-1900 Fax:886-2-2757-1906
• Kaohsiung Office:
SUCURSAL GUADALAJARA
Av. Lazaro Cardenas 2305 Local G-102 Plaza Comercial
Abastos; Col. Las Torres Guadalajara, Jal. 44920
MEXICO
6th Floor, Hsin Kong Bldg. No.251, Chi Hsien 1st Road
Kaohsiung 800, TAIWAN
Tel: 52-3-671-1205
■Brazil Sales Office:
Panasonic do Brasil Ltda.
Caixa Postal 1641, Sao Jose dos Campos, Estado de Sao
Paulo
Tel: 55-12-335-9000
■ EUROPE
■U.K. Sales Office:
Fax:52-3-671-1256
Tel: 886-7-346-3815
■China Sales Office:
Panasonic Industrial (Shanghai) Co., Ltd.
Fax:886-7-236-8362
[PANABRAS]
[PI(SH)]
Floor 6, Zhong Bao Mansion, 166 East Road Lujian Zui,
PU Dong New District, Shanghai, 200120 CHINA
Tel: 86-21-5866-6114 Fax:86-21-5866-8000
Fax:55-12-331-3789
Panasonic Industrial (Tianjin) Co., Ltd.
[PI(TJ)]
Room No.1001, Tianjin International Building 75, Nanjin
Road, Tianjin 300050, CHINA
Tel: 86-22-2313-9771 Fax:86-22-2313-9770
Panasonic SH Industrial Sales (Shenzhen) Co., Ltd.
Panasonic Industrial Europe Ltd.
Willoughby Road, Bracknell, Berks., RG12 8FP,
THE UNITED KINGDOM
[PIEL]
[PIEG]
[PSSA]
Tel: 44-1344-85-3671 Fax:44-1344-85-3853
■Germany Sales Office:
[PSI(SZ)]
7A-107, International Bussiness & Exhibition Centre,
Futian Free Trade Zone, Shenzhen 518048, CHINA
Tel: 86-755-359-8500 Fax:86-755-359-8516
Panasonic Shun Hing Industrial Sales (Hong Kong)
Panasonic Industrial Europe GmbH
Hans-Pinsel-Strasse 2 85540 Haar, GERMANY
Tel: 49-89-46159-119 Fax:49-89-46159-195
■ ASIA
■Singapore Sales Office:
Co., Ltd.
[PSI(HK)]
11th Floor, Great Eagle Center 23 Harbour Road,
Wanchai, HONG KONG
Panasonic Semiconductor of South Asia
300 Beach Road, #16-01, The Concourse, Singapore
199555 THE REPUBLIC OF SINGAPORE
Tel: 852-2529-7322
■Korea Sales Office:
Fax:852-2865-3697
Tel: 65-390-3688
Fax:65-390-3689
Panasonic Industrial Korea Co., Ltd.
Kukje Center Bldg. 11th Fl., 191 Hangangro 2ga,
Youngsan-ku, Seoul 140-702, KOREA
[PIKL]
■Malaysia Sales Office:
Panasonic Industrial Company (M) Sdn. Bhd. [PICM]
• Head Office:
Tingkat 16B, Menara PKNS Petaling Jaya, No.17, Jalan
Yong Shook Lin 46050 Petaling Jaya, Selangor Darul
Ehsan, MALAYSIA
Tel: 82-2-795-9600
Fax:82-2-795-1542
Tel: 60-3-7951-6601
Fax:60-3-7954-5968
280901
Printed in JAPAN
Matsushita Electric Industrial Co., Ltd. 2001
Download from Www.Somanuals.com. All Manuals Search And Download.
|
LevelOne Computer Hardware 11g USB Adapter w LCD WiFi Detector User Manual
LG Electronics Flat Panel Television 1199LLSS44DD User Manual
LifeSource Blood Pressure Monitor UA 787EJ User Manual
Lux Products Thermostat P722Ub User Manual
Mackie Speaker SA1530Z User Manual
Makita Drill 6227D User Manual
Mamp;S Systems Intercom System MC111DM User Manual
Market Forge Industries Fryer 30 stel User Manual
Maxxsonics Stereo Amplifier GPV11002 User Manual
Midland Radio Camcorder KTC 200 User Manual