Lucent Technologies Laptop MN102H75K User Manual

MICROCOMPUTER  
MN102H  
MN102H75K/F75K/85K/F85K  
LSI User’s Manual  
Pub.No.22385-011E  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Download from Www.Somanuals.com. All Manuals Search And Download.  
PanaXSeries is a trademark of Matsushita Electric Industrial Co., Ltd.  
The other corporation names, logotype and product names written in this book are trademarks or registered trademarks of their  
corresponding corporations.  
Request for your special attention and precautions in using the technical information  
and semiconductors described in this book  
(1) An export permit needs to be obtained from the competent authorities of the Japanese Government if any of  
the products or technologies described in this book and controlled under the "Foreign Exchange and Foreign  
Trade Law" is to be exported or taken out of Japan.  
(2) The contents of this book are subject to change without notice in matters of improved function. When  
finalizing your design, therefore, ask for the most up-to-date version in advance in order to check for any  
changes.  
(3) We are not liable for any damage arising out of the use of the contents of this book, or for any infringement  
of patents or any other rights owned by a third party.  
(4) No part of this book may be reprinted or reproduced by any means without written permission from our  
company.  
(5) This book deals with standard specification. Ask for the latest individual Product Standards or Specifications  
in advance for more detailed information required for your design, purchasing and applications.  
If you have any inquiries or questions about this book or our semiconductors, please contact one of our sales  
offices listed at the back of this book.  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Contents  
Contents  
About This Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Using This Manual. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Text Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Register Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Questions and Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
1
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
MN102H Series Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
MN102H Series Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
MN102H Series Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.6.1  
1.6.2  
Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
MN102H85K Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
MN102H75K Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
1.7  
1.7.1  
1.7.2  
Bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Bus Interface Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
2
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
2.1  
Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
2.2  
2.2.1  
2.2.2  
Interrupt Setup Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Setting Up an External Pin Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Setting Up a Watchdog Timer Interrupt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
2.3  
Interrupt Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
3
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
3.1  
CPU Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Exiting from SLOW Mode to NORMAL Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Notes on Invoking and Exiting STOP and HALT Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
3.1.1  
3.1.2  
3.1.3  
3.2  
3.3  
Turning Individual Functions On and Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
CPU Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
4
Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
8-Bit Timer Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
8-Bit Timer Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
8-Bit Timer Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
8-Bit Timer Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
8-Bit Timer Setup Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
4.1  
4.2  
4.3  
4.4  
4.5  
MN102H75K/F75K LSI User Manual  
Panasonic Semiconductor Development Company  
3
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Contents  
4.5.1  
4.5.2  
Setting Up an Event Counter Using Timer 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Setting Up an Interval Timer Using Timers 1 and 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
4.6  
4.7  
4.8  
4.9  
4.10  
8-Bit Timer Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
16-Bit Timer Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
16-Bit Timer Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
16-Bit Timer Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
16-Bit Timer Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
4.11  
16-Bit Timer Setup Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Setting Up an Event Counter Using Timer 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Setting Up a Single-Phase PWM Output Signal Using Timer 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Setting Up a Two-Phase PWM Output Signal Using Timer 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Setting Up a Single-Phase Capture Input Using Timer 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Setting Up a Two-Phase Capture Input Using Timer 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Setting Up a 4x Two-Phase Encoder Input Using Timer 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Setting Up a 1x Two-Phase Encoder Input Using Timer 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Setting Up a One-Shot Pulse Output Using Timer 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
Setting Up an External Count Direction Controller Using Timer 5. . . . . . . . . . . . . . . . . . . . . . . . . 120  
Setting Up External Reset Control Using Timer 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
4.11.1  
4.11.2  
4.11.3  
4.11.4  
4.11.5  
4.11.6  
4.11.7  
4.11.8  
4.11.9  
4.11.10  
4.12  
16-Bit Timer Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
5
Serial Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
5.1  
5.2  
5.3  
Connecting the Serial Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
Synchronous Serial Mode Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
UART Mode Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
I2C Mode Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
5.3.1  
5.3.2  
5.3.3  
5.4  
UART Mode Baud Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
5.5  
5.5.1  
5.5.2  
Serial Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
Synchronous Serial Mode Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
UART Mode Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
5.6  
Serial Interface Setup Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
Setting Up UART Transmission Using Serial Interface 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
Setting Up Synchronous Serial Reception Using Serial Interface 0 . . . . . . . . . . . . . . . . . . . . . . . . 134  
Setting Up the Serial Interface Clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
Setting Up I2C Transmission Using Serial Interface 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
Setting Up I2C Reception Using Serial Interface 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
5.6.1  
5.6.2  
5.6.3  
5.6.4  
5.6.5  
5.7  
Serial Interface Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
6
Analog-to-Digital Converter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
6.1  
6.2  
6.3  
6.4  
6.4.1  
A/D Conversion Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
Selecting the ADC Clock Source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
Panasonic Semiconductor Development Company  
MN102H75K/F75K LSI User Manual  
4
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Contents  
6.4.2  
6.4.3  
6.4.4  
6.4.5  
Single Channel/Single Conversion Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
Multiple Channel/Single Conversion Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
Single Channel/Continuous Conversion Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
Multiple Channel/Continuous Conversion Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
6.5  
6.5.1  
6.5.2  
ADC Setup Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
Setting Up Software-Controlled Single-Channel A/D Conversion . . . . . . . . . . . . . . . . . . . . . . . . . 147  
Setting Up Hardware-Controlled Intermittent Three-Channel A/D Conversion . . . . . . . . . . . . . . . 148  
6.6  
6.7  
ADC Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
Caution about Analog-to-Digital Converter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
7
On-Screen Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
Power-Saving Considerations in the OSD Block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
7.1  
7.2  
7.3  
7.4  
7.5  
OSD Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
OSD Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
External Input Sync Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
Multi-Layer Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
Output Pin Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
Microcontroller Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
VRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
Conditions for VRAM Writes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
7.5.1  
7.5.2  
7.5.3  
7.5.4  
7.5.5  
7.5.6  
7.5.7  
7.6  
7.6.1  
7.6.2  
Standard and Extended Display Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
Cursor Layer Display Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
Graphics Layer Display Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
7.7  
7.7.1  
7.7.2  
Display Setup Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
Setting Up the Graphics Layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
Setting Up the Text Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
7.8  
VRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
VRAM Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
VRAM Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
Cautions about the number of display code set to VRAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
7.8.1  
7.8.2  
7.8.3  
7.9  
7.9.1  
7.9.2  
ROM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
ROM Organization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
Graphics ROM Organization in Different Color Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
7.10  
Setting Up the OSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
Setting Up the OSD Display Colors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
Text Layer Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
Display Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187  
Setting Up the OSD Display Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 189  
7.10.1  
7.10.2  
7.10.3  
7.10.4  
7.11  
7.12  
DMA and Interrupt Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
Selecting the OSD Dot Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193  
7.13  
7.13.1  
7.13.2  
Controlling the Shuttering Effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194  
Controlling the Shuttered Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194  
Controlling Shutter Movement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196  
MN102H75K/F75K LSI User Manual  
Panasonic Semiconductor Development Company  
5
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Contents  
7.13.3  
7.13.4  
Controlling Shuttering Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198  
Controlling Line Shuttering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200  
7.14  
Field Detection Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201  
Considerations for Interlaced Displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202  
7.14.1  
7.14.2  
7.14.3  
7.15  
OSD Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203  
8
IR Remote Signal Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216  
Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216  
Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217  
8.1  
8.2  
8.3  
8.3.1  
8.3.2  
8.3.3  
8.3.4  
8.3.5  
8.3.5.1  
8.3.5.2  
8.3.5.3  
8.3.5.4  
8.3.6  
IR Remote Signal Receiver Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218  
Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218  
Noise Filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218  
8-Bit Data Reception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219  
Identifying the Data Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220  
Generating Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221  
Leader Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221  
Trailer Detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221  
8-Bit Data Reception Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221  
Pin Edge Detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221  
Controlling the SLOW Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222  
8.4  
IR Remote Signal Receiver Control Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223  
9
Closed-Caption Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227  
Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227  
Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227  
9.1  
9.2  
9.3  
9.3.1  
9.3.2  
9.3.3  
9.3.3.1  
9.3.3.2  
9.3.3.3  
9.3.4  
9.3.5  
9.3.5.1  
9.3.5.2  
Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228  
Analog-to-Digital Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228  
Clamping Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229  
Sync Separator Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230  
HSYNC Separator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232  
VSYNC Separator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233  
Field Detection Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233  
Data Slicer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233  
Controller and Sampling Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234  
CRI Detection for Sampling Clock Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235  
Data Capture Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235  
9.4  
Closed-Caption Decoder Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236  
10  
Pulse Width Modulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249  
Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249  
Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250  
PWM Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250  
10.1  
10.2  
10.3  
Panasonic Semiconductor Development Company  
MN102H75K/F75K LSI User Manual  
6
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Contents  
11  
I/O Ports. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251  
11.1  
11.2  
11.3  
Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251  
I/O Port Circuit Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252  
I/O Port Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277  
12  
ROM Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288  
Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288  
Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289  
Programming Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289  
ROM Correction Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290  
12.1  
12.2  
12.3  
12.4  
13  
I2C Bus Controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293  
Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293  
Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296  
Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296  
Setting Up the I2C Bus Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298  
SDA and SCL Waveform Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299  
13.1  
13.2  
13.3  
13.4  
13.5  
13.6  
13.6.1  
I2C Interface Setup Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300  
Setting Up a Transition from Master Transmitter to Master Receiver. . . . . . . . . . . . . . . . . . . . . . . 300  
Pre-configuring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300  
Setting Up the First Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300  
Setting Up the Second Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301  
Setting Up the Third Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301  
Setting Up a Transition from Slave Receiver to Slave Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . 302  
Pre-configuring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302  
Setting Up the First Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302  
Setting Up the Second Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303  
Setting Up the Third Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303  
13.6.1.1  
13.6.1.2  
13.6.1.3  
13.6.1.4  
13.6.2  
13.6.2.1  
13.6.2.2  
13.6.2.3  
13.6.2.4  
13.7  
I2C Bus Interface Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304  
14  
H Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307  
Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307  
Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307  
H Counter Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307  
H Counter Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310  
14.1  
14.2  
14.3  
14.4  
Appendix A Register Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312  
Appendix B MN102HF75K Flash EEPROM Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316  
B.1  
B.2  
B.3  
Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316  
Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317  
Using the PROM Writer Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317  
B.4  
B.4.1  
Using the Onboard Serial Programming Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319  
Configuring the System for Onboard Serial Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320  
MN102H75K/F75K LSI User Manual  
Panasonic Semiconductor Development Company  
7
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Contents  
B.4.2  
B.4.3  
Circuit Requirements for the Target Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321  
Microcontroller Hardware Used in Onboard Serial Programming . . . . . . . . . . . . . . . . . . . . . . . . . 322  
Serial Writer Interface Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322  
Serial Writer Interface Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322  
Microcontroller Memory Map Used During Onboard Serial Programming . . . . . . . . . . . . . . . . . . 323  
Flash ROM Address Space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323  
RAM Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324  
Microcontroller Clock on the Target Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324  
Setting Up the Onboard Serial Programming Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325  
Branching to the User Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327  
Branching to the Reset Start Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327  
Branching to the Interrupt Start Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327  
B.4.3.1  
B.4.3.2  
B.4.4  
B.4.4.1  
B.4.4.2  
B.4.5  
B.4.6  
B.4.7  
B.4.7.1  
B.4.7.2  
B.5  
B.6  
Reprogramming Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328  
Programming Times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328  
Panasonic Semiconductor Development Company  
MN102H75K/F75K LSI User Manual  
8
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
List of Tables  
List of Tables  
1-1  
1-2  
1-3  
1-4  
2-1  
2-2  
2-3  
2-4  
3-1  
3-2  
4-1  
4-2  
4-3  
4-4  
4-5  
4-6  
5-1  
5-2  
5-3  
6-1  
6-2  
7-1  
7-2  
7-3  
7-4  
7-5  
7-6  
7-7  
7-8  
7-9  
7-10  
7-11  
7-12  
7-13  
7-14  
7-15  
7-16  
7-17  
7-18  
8-1  
8-2  
8-3  
8-4  
General Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Block Diagram Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Wait Count Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Comparison of MN102H75K and MN102L35G Interrupt Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Handler Preprocessing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Handler Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Interrupt Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Peripheral Function On/Off Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
CPU Mode Bit Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 76  
8-Bit Timer Functions and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
8-Bit Timer Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
16-Bit Timer Functions and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Count Direction for 4x Two-Phase Encoder Timing Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Count Direction for 1x Two-Phase Encoder Timing Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
16-Bit Timer Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Serial Interface Functions and Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Example Baud Rate Settings for the UART Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
Serial Interface Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
ADC Functions and Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
ADC Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
OSD Functions and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
Power-Saving Control Bits for the OSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
OSDPOFF and OSDREGE Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 155  
Associated Tiles for Cursor Tile Code Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
Example Graphics VRAM Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
Example Text VRAM Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
VRAM Bit Allocation in Internal RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
Color Palette Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
RGB, YM, and YS Output Control Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 181  
OSD Dot Clock Source Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193  
OSD Dot Clock Division Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193  
Bit Settings for Controlling the Shuttered Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194  
Bit Settings for Controlling Shutter Movement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196  
Bit Settings for Controlling Shuttering Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198  
EOMON Output Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202  
Cursor Vertical Size Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 205  
Graphics Vertical Size Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 206  
Text Vertical Size Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 206  
Logic Level Conditions for Data Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220  
Long and Short Data Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220  
Leader Detection Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221  
Differences between SLOW and NORMAL Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
9
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
List of Tables  
8-5  
IR Remote Signal Receiver Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223  
HEAMA and 5-/6-Bit Data Pulse Widths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223  
Pins Used for CCD0 and CCD1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227  
Caption decoder register setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229  
Clamping Reference and Compare Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229  
Current Level Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230  
Control Registers for Clamping Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230  
Control Registers for Sync Separator Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232  
Control Registers for Data Slicer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234  
Control Registers for Controller and Sampling Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234  
Closed-Caption Decoder Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236  
Register Settings for Internal PWM Pullup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249  
I/O Port Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251  
ROM Correction Address Match and Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290  
I2C Bus Terminology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293  
Operating Modes for Devices on an I2C Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294  
Control Registers for Clamping Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296  
Registers Settings for SDA0/SCL0 or SDA1/SCL1 Ports. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298  
SDA and SCL Waveform Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299  
STA and STO Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304  
H Counter Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308  
Register Map: x’007E00’ to x’007FFF’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312  
Register Map: x’00FC00’ to x’00FDFF’. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313  
Register Map: x’00FE00’ to x’00FFFF’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314  
Programmable Areas in Each Programming Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316  
PROM Writer Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318  
Pin Descriptions for Target Board–Serial Writer Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321  
Flash ROM Address Space in Serial Programming Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323  
RAM Address Space in Serial Programming Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324  
Microcontroller Clock Frequencies during Serial Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324  
Programming Times for PROM and Serial Writers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328  
8-6  
9-1  
9-2  
9-3  
9-4  
9-5  
9-6  
9-7  
9-8  
9-9  
10-1  
11-1  
12-1  
13-1  
13-2  
13-3  
13-4  
13-5  
13-6  
14-1  
A-1  
A-2  
A-3  
B-1  
B-2  
B-3  
B-4  
B-5  
B-6  
B-7  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
10  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
List of Figures  
List of Figures  
1-1  
Conventional vs. MN102H Series Code Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
1-2  
Three-Stage Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
MN102H Series Interrupt Servicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Internal Registers, Memory, and Special Function Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Interrupt Controller Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Interrupt Servicing Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Functional Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
MN102H85K Pin Configuration in Single-Chip Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
MN102H75K Pin Configuration in Single-Chip Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Power Supply Wiring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
OSC1and OSC2 Connection Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Reset Pin Connection Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
OSDXI and OSDXO Connection Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Memory Space in External Extension Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Interrupt Controller Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Interrupt Vector Group and Class Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Interrupt Servicing Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Block Diagram of External Pin Interrupt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Timing for External Pin Interrupt Setup (Example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Block Diagram of Watchdog Timer Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Timing for Watchdog Timer Interrupt Setup (Example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
CPU State Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
CPU Clock Switch (NORMAL/SLOW Modes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Timer Configuration Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Block Diagram of 8-Bit Timers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Timer 0 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Timer 1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Timer 2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Timer 3 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Event Timer Input Timing (8-Bit Timers) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Clock Output and Interval Timer Timing (8-Bit Timers) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Block Diagram of Event Counter Using Timer 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Event Counter Timing (Timer 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Configuration Example of Interval Timer Using Timers 1 and 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Block Diagram of Interval Timer Using Timers 1 and 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Interval Timer Timing (Timers 1 and 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Block Diagram of 16-Bit Timers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Timer 4 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Timer 5 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Single-Phase PWM Output Timing (16-Bit Timers). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Single-Phase PWM Output Timing with Data Change (16-Bit Timers) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Two-Phase PWM Output Timing (16-Bit Timers) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
1-3  
1-4  
1-5  
1-6  
1-7  
1-8  
1-9  
1-10  
1-11  
1-12  
1-13  
1-14  
1-15  
2-1  
2-2  
2-3  
2-4  
2-5  
2-6  
2-7  
3-1  
3-2  
4-1  
4-2  
4-3  
4-4  
4-5  
4-6  
4-7  
4-8  
4-9  
4-10  
4-11  
4-12  
4-13  
4-14  
4-15  
4-16  
4-17  
4-18  
4-19  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
11  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
List of Figures  
4-20  
4-21  
4-22  
4-23  
4-24  
4-25  
4-26  
4-27  
4-28  
4-29  
4-30  
4-31  
4-32  
4-33  
4-34  
4-35  
4-36  
4-37  
4-38  
4-39  
4-40  
4-41  
4-42  
4-43  
4-44  
4-45  
4-46  
4-47  
4-48  
4-49  
4-50  
4-51  
4-52  
4-53  
5-1  
One-Shot Pulse Output Timing (16-Bit Timers) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
External Count Direction Control Timing (16-Bit Timers). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Event Timer Input Timing (16-Bit Timers) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Single-Phase Capture Input Timing (16-Bit Timers). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Two-Phase Capture Input Timing (16-Bit Timers) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Two-Phase 4x Encoder Timing (16-Bit Timers) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Two-Phase 1x Encoder Timing (16-Bit Timers) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Block Diagram of Event Counter Using Timer 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Event Counter Timing (Timer 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Block Diagram of Single-Phase PWM Output Using Timer 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Single-Phase PWM Output Timing (Timer 4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Single-Phase PWM Output Timing with Dynamic Duty Changes (Timer 4) . . . . . . . . . . . . . . . . . . . . . . . 100  
Block Diagram of Two-Phase PWM Output Using Timer 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Two-Phase PWM Output Timing (Timer 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Two-Phase PWM Output Timing with Dynamic Duty Changes (Timer 4). . . . . . . . . . . . . . . . . . . . . . . . . 105  
Block Diagram of Single-Phase Capture Input Using Timer 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Single-Phase Capture Input Timing (Timer 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Block Diagram of Two-Phase Capture Input Using Timer 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Two-Phase Capture Input Timing (Timer 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Block Diagram of 4x Two-Phase Capture Input Using Timer 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Configuration Example 1 of 4x Two-Phase Capture Input Using Timer 5 . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Configuration Example 2 of 4x Two-Phase Capture Input Using Timer 5 . . . . . . . . . . . . . . . . . . . . . . . . . 111  
4x Two-Phase Encoder Input Timing (Timer 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Block Diagram of 1x Two-Phase Capture Input Using Timer 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Configuration Example 1 of 1x Two-Phase Capture Input Using Timer 5 . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Configuration Example 2 of 1x Two-Phase Capture Input Using Timer 5 . . . . . . . . . . . . . . . . . . . . . . . . . 114  
1x Two-Phase Encoder Input Timing (Timer 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Block Diagram of One-Shot Pulse Output Using Timer 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
One-Shot Pulse Output Timing (Timer 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Block Diagram of External Count Direction Control Using Timer 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Configuration Example of External Count Direction Control Using Timer 5. . . . . . . . . . . . . . . . . . . . . . . 120  
External Count Direction Control Timing (Timer 5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Block Diagram of External Reset Control Using Timer 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
External Reset Control Timing (Timer 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
Serial Interface Configuration Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Synchronous Serial Mode Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
UART Mode Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
I2C Mode Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
Synchronous Serial Transmission Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
Synchronous Serial Reception Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
UART Transmission Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
UART Reception Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
Block Diagram of UART Transmission Using Serial Interface 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
UART Transmission Timing (Serial Interface 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
Block Diagram of Serial Interface Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
5-2  
5-3  
5-4  
5-5  
5-6  
5-7  
5-8  
5-9  
5-10  
5-11  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
12  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
List of Figures  
5-12  
5-13  
5-14  
6-1  
Serial Interface Clock Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
Master Transmitter Timing in I2C Mode (with ACK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Master Receiver Timing in I2C Mode (with ACK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
ADC Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
ADC Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
ADC Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
Single Channel/Single Conversion Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
Multiple Channel/Single Conversion Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
Single Channel/Continuous Conversion Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
Multiple Channel/Continuous Conversion Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
Single-Channel A/D Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
Timing of Software-Controlled Single-Channel A/D Conversion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
Multiple-Channel A/D Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
Timing of Hardware-Controlled Intermittent Three-Channel A/D Conversion . . . . . . . . . . . . . . . . . . . . . 150  
Cautions on Analog-to-Digital Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
OSD Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
Cursor Tiles in Standard and Extended Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
Graphic Tiles in Standard and Extended Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
Graphics Display Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
Text Display Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
VRAM Organization (When GEXTE = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
Graphics VRAM Organization for Two Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
Timing for OSD data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
ROM Organization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
Graphics ROM Setup Example for a Single Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
Graphics ROM in the Four Color Modes (16W x 16H Tiles) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
Graphics ROM in the Four Color Modes (16W x 18H Tiles) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
Graphics ROM Organization in 16-Color Mode (16W x 16H Tiles) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
Graphics ROM Organization in 8-Color Mode (16W x 16H Tiles) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
Graphics ROM Organization in 4-Color Mode (16W x 16H Tiles) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
Graphics ROM Organization in 2-Color Mode (16W x 16H Tiles) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
Graphics ROM Organization in 16-Color Mode (16W x 18H Tiles) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
Graphics ROM Organization in 8-Color Mode (16W x 18H Tiles) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
Graphics ROM Organization in 4-Color Mode (16W x 18H Tiles) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
Graphics ROM Organization in 2-Color Mode (16W x 18H Tiles) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
OSD Signal Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
OSD Signal Output Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
Character Outlining Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
Character Shadowing Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
Box Shadowing Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
Italicizing and Underlining Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
Graphic Tile Size Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187  
Character Size Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188  
HPmax of Horizontal Display Position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189  
DMA and Interrupt Timing for the OSD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
6-2  
6-3  
6-4  
6-5  
6-6  
6-7  
6-8  
6-9  
6-10  
6-11  
6-12  
7-1  
7-2  
7-3  
7-4  
7-5  
7-6  
7-7  
7-8  
7-9  
7-10  
7-11  
7-12  
7-13  
7-14  
7-15  
7-16  
7-17  
7-18  
7-19  
7-20  
7-21  
7-22  
7-23  
7-24  
7-25  
7-26  
7-27  
7-28  
7-29  
7-30  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
13  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
List of Figures  
7-31  
7-32  
7-33  
7-34  
7-35  
7-36  
7-37  
8-1  
Shuttered Area Setup Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195  
Shutter Movement Setup Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197  
Text-Layer Shuttering Setup Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199  
Shutter Blanking Setup Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200  
Line Shuttering Setup Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200  
Field Detection Circuit Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201  
Field Detection Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201  
IR Remote Signal Receiver Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217  
IR Remote Signal Noise Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218  
Reception of 8-Bit Data with No Leader. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219  
Reception of 8-Bit Data with Leader. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219  
Conditions for Detecting Data Formats. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220  
Pin Edge Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221  
Closed-Caption Decoder Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227  
Recommended ADC Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228  
External Connection with Both CCD0 and CCD1 Unused. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228  
External Connection with Only CCD1 Unused. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228  
Clamping Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229  
Sync Separator Circuit Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231  
HSYNC Securement and Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232  
VSYNC Masking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233  
Data Slice Level Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233  
Sampling Clock Timing Determination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235  
Caption Data Capture Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235  
SLSF and SLHD Multiplexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 238  
Backporch Position Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244  
Sync Separator Level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244  
BSP and PSP Multiplexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245  
PWM Output Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249  
PWM Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250  
P00/RMIN/IRQ0 (Port 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252  
P03/ADIN0 to P07/ADIN4 (Port 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253  
P10/ADIN5/IRQ1, P11/ADIN6/IRQ2, and P12/ADIN7/IRQ3 (Port 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 254  
P13/ADIN8/WDOUT and P14/ADIN9/STOP (Port 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255  
P15/ADIN10/PWM0 and P16/ADIN11/PWM1 (Port 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256  
/PWM2 (Port 1), P20/PWM3, P21/PWM4, P22/PWM5, and P23/PWM6 (Port 2) . . . . . . . . . . . . . . . . . . 257  
P24/TM4IC/SBT1 (Port 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258  
P27/TM0IO (Port 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259  
P35/DAROUT/R, P36/DAGOUT/G, P37/DABOUT/B (Port 3), and P40/DAYMOUT/YM (Port 4) . . . . 260  
8-2  
8-3  
8-4  
8-5  
8-6  
9-1  
9-2  
9-3  
9-4  
9-5  
9-6  
9-7  
9-8  
9-9  
9-10  
9-11  
9-12  
9-13  
9-14  
9-15  
10-1  
10-2  
11-1  
11-2  
11-3  
11-4  
11-5  
11-6  
11-7  
11-8  
11-9  
11-10 P25/TM4IOB/SBI1/SBD1 and P26/TM4IOA/SBO1 (Port 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261  
11-11 P55 and P56 (Port 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262  
11-12 P57/SBT0 (Port 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263  
11-13 P02/SCL1 (Port 0) and P61/SCL0 (Port 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264  
11-14 P01/SDA1 (Port 1) and P60/SDA0 (Port 6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265  
11-15 P31/CVBS0 and P32/CVBS1 (Port 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
14  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
List of Figures  
11-16 P30/CLH and P33/CLL (Port 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267  
11-17 P34/VREF (Port 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268  
11-18 P41/TM1IO, P42/TM5IOA, and P43/TM5IOB/HI0 (Port 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269  
11-19 P44/TM5IC/HI1 (Port 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269  
11-20 P45/OSDXO and P46/OSDXI (Port 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270  
11-21 P47/HSYNC (Port 4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271  
11-22 P50/SYSCLK (Port 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272  
11-23 P51/YS (Port 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273  
11-24 P52/IRQ4/VI0 (Port 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274  
11-25 P53/RST (Port 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275  
11-26 P54/IRQ5/VSYNC (Port 5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276  
12-1  
12-2  
12-3  
13-1  
13-2  
13-3  
13-4  
13-5  
13-6  
13-7  
13-8  
14-1  
14-2  
14-3  
B-1  
ROM Area Schematic Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288  
ROM Correction Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288  
ROM Correction Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289  
Example of I2C Bus Application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293  
Connection of Two Microcontrollers to the I2C Bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294  
I2C Bus Interface Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295  
I2C Bus Controller Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296  
Pin Control Circuit for the I2C Bus Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298  
SDA and SCL Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299  
Waveform for Master Transmitter Transitioning to Master Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301  
Waveform for Slave Receiver Transitioning to Slave Transmitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303  
H Counter Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307  
H Counter Operation Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307  
H Counter Input Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308  
Memory Map for Onboard Serial Programming Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316  
PROM Writer Hardware Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317  
Pin Configuration for Socket Adaptor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317  
Serial Writer Programming Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319  
Serial Writer Hardware Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320  
Target Board–Serial Writer Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321  
Serial Writer Interface Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322  
Timing for the Serial Writer Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325  
Load Program Start Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326  
Flow of Branch to Reset Start Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327  
Flow of Branch to Interrupt Start Routine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327  
EEPROM Programming Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328  
B-2  
B-3  
B-4  
B-5  
B-6  
B-7  
B-8  
B-9  
B-10  
B-11  
B-12  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
15  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
About This Manual  
Using This Manual  
About This Manual  
This manual is intended for assembly-language programming engineers. It  
describes the internal configuration and hardware functions of the MN102H75K  
and MN102H85K microcontrollers. Except when discusssiing differing specifi-  
cations,this manual refers to the two microcontrollers as a single device :  
MN102H75K/85K.  
Using This Manual  
The chapters in this manual deal with the internal blocks of the MN102H75K/  
85K. Chapters 1 to 5 provide an overview of the MN102H75K/85K’s general  
specifications, interrupts, power modes, timers, and serial connections. Chapters  
6 to 10 describe the on-screen display and other specialized functions available  
with the MN102H75K/85K. Chapter 11 provides the I/O port specifications,  
chapter 12 describes the ROM correction feature, chapter 13 describes the I2C  
interface, and chapter 14 describes the H scan line counter. Appendix A provides  
a register map, and Appendix B describes the flash EEPROM version.  
Text Conventions  
Where applicable, this manual provides special notes and warnings. Helpful or  
supplementary comments appear in the sidebar. In addition, the following  
symbols indicate key information and warnings:  
Key information  
These notes summarize key points relating to an operation.  
Warning  
Please read and follow these instructions to prevent damage or  
reduced performance.  
Register Conventions  
This manual presents 8- and 16-bit registers in the following format:  
REGISTER: Register Name  
x’000000’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Name Name Name Name Name Name Name Name Name Name Name Name Name  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W  
The hexadecimal value (x’000000’) indicates the register address. The top row of  
the register diagram holds the bit numbers. Bit 15 is the most significant bit  
(MSB). The second row holds the bit or field names. A dash (—) indicates a  
reserved bit. The third row shows the reset values, and the fourth row shows the  
accessibility. (R = read only, W = write only, and R/W = readable/writable.)  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
16  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
About This Manual  
Related Documents  
Related Documents  
MN102H Series LSI User Manual  
(Describes the core hardware.)  
MN102H Series Instruction Manual  
(Describes the instruction set.)  
MN102H Series C Compiler User Manual: Usage Guide  
(Describes the installation, commands, and options for the C compiler.)  
MN102H Series C Compiler User Manual: Language Description  
(Describes the syntax for the C compiler.)  
MN102H Series C Compiler User Manual: Library Reference  
(Describes the standard libraries for the C compiler.)  
MN102H Series Cross-Assembler User Manual  
(Describes the assembler syntax and notation.)  
MN102H Series C Source Code Debugger User Manual  
(Describes the use of the C source code debugger.)  
MN102H Series Installation Manual  
(Describes the installation of the C compiler, cross-assembler, and C source  
code debugger and the procedures for using the in-circuit emulator.)  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
17  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
General Description  
MN102H Series Overview  
1
General Description  
1.1 MN102H Series Overview  
The 16-bit MN102H series is the high-speed linear addressing version of the  
MN10200 series. The new architecture in this series is designed for C-language  
programming and is based on a detailed analysis of the requirements for  
embedded applications. From miniaturization to power savings, it provides for a  
wide range of needs in user systems, surpassing all previous architectures in  
speed and functionality.  
This series uses a load/store architecture for computing within the registers rather  
than the accumulator system for computing within the memory space, which  
Panasonic has used in most of its previous major series. The basic instructions  
are one byte/one machine cycle, drastically shrinking code size and improving  
compiler efficiency. The circuit is designed for submicron technology, providing  
optimized hardware and low system power consumption.  
The devices in this series contain up to 16 megabytes of linear address space and  
enable highly efficient program development. In addition, the optimized  
hardware structure allows for low system-wide power consumption even in large  
systems.  
1.2 MN102H Series Features  
Designed for embedded applications, the MN102H series contains a flexible and  
optimized hardware architecture as well as a simple and efficient instruction set.  
It provides both economy and speed. This section provides the features of the  
MN102H series CPU.  
High-speed signal processing  
An internal multiplier multiplies two 16-bit registers for a 32-bit product in a  
single cycle. In addition, the hardware contains a saturation calculator to  
ensure that no signal processing is missed and to increase signal processing  
speed.  
Linear addressing for large systems  
The MN102H series provides up to 16 megabytes of linear address space.  
With linear addressing, the CPU does not detect any borders between  
memory banks, which provides an effective development environment. The  
hardware architecture is also optimized for large-scale designs. The memory  
is not divided into instruction and data areas, so operations can share  
instructions.  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
18  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
General Description  
MN102H Series Features  
Single-byte basic instruction length  
The MN102H series has replaced general registers with eight internal CPU  
registers divided functionally into four address registers (A0 - A3) and four  
data registers (D0 - D3). The program can address a register pair in four or  
less bits, and basic instructions such as register-to-register operations and  
load/store operations occupy only one byte.  
Conventional code assignment for general register instructions  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
Register specification  
(GRn)  
7
6
5
4
3
2
1
0
Register specification  
(An/Dn)  
New Panasonic code assignments  
Figure 1-1 Conventional vs. MN102H Series Code Assignments  
High-speed pipeline throughput  
The MN102H series executes instructions in a high-speed three-stage  
pipeline: fetch, decode, execute. With this architecture, the MN102H series  
can execute single-byte instructions in only one machine cycle (50 ns at 40  
MHz).  
1 machine cycle  
Time  
Instruction 1  
Fetch  
Decode  
Address  
calculation  
Execute  
Decode  
Instruction 2  
Fetch  
Address  
calculation  
Execute  
Figure 1-2 Three-Stage Pipeline  
Simple instruction set  
The MN102H series uses a streamlined set of 41 instructions, designed spe-  
cifically for the programming model for embedded applications. To shrink  
code size, instructions have a variable length of one to seven bytes, and the  
most frequently used basic instructions are single-byte.  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
19  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
General Description  
MN102H Series Features  
Fast interrupt response  
MN102H series devices can stop executing instructions, even those with  
long execution cycles, to service interrupts immediately. After an interrupt  
occurs, the program branches to the interrupt service routine within six  
cycles or less. The architecture also includes a programmable interrupt  
handler, which allows you to adjust interrupt servicing speed within the  
software when necessary, improving real-time control performance.  
Main Program  
Instruction 1  
Interrupt Service Routine  
Instruction 2  
Interrupt Request  
Instruction 3  
Instruction 4  
Figure 1-3 MN102H Series Interrupt Servicing  
Flexible interrupt control structure  
The interrupt controller supports a maximum of 64 interrupt vectors.  
(Vectors 0 to 3 are nonmaskable interrupts.) Groups of up to four vectors are  
assigned to classes, and each class can be set to one of seven priority levels.  
This gives the software designer great flexibility and fine control. The core is  
also backwards compatible with software from previous Panasonic  
peripheral modules.  
High-speed, high-functionality external interface  
The MN102H series provides DMA, handshaking, bus arbitration, and other  
functions that ensure a fast, efficient interface with other devices.  
Optimal C-Language development environment  
The MN102H series combines hardware optimized for C language pro-  
gramming with a highly efficient C compiler, resulting in assembly codes the  
same size as that produced directly in assembly language. This gives  
designers the advantage of short development time in a C language envi-  
ronment without the trade-off in code size expansion. The PanaXSeries  
development tools support MN102H series devices.  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
20  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
General Description  
MN102H Series Description  
Outstanding power savings  
The MN102H series contains separate buses for instructions, data, and  
peripheral functions, which distributes and reduces load capacitance, dra-  
matically reducing overall power consumption. The series also supports  
three HALT and STOP modes for even greater power savings.  
The MN102H series is the flagship product for Panasonic’s new high-per-  
formance architecture. Panasonic will expand the series as it strives to improve  
the CPU core’s performance and speed, and as it develops devices incorporating  
ASSPs, ASICs, internal EPROM, and other products to meet the needs of a wide  
array of embedded designs.  
1.3 MN102H Series Description  
This section describes the basic architecture and functions of MN102H series  
devices.  
Processor status word (PSW)  
The PSW contains the operation status flags and interrupt mask levels flags. Note  
that the PSW for the MN102H series contains flags for both 16- and 24-bit  
operation results.  
FlagsforAll24Bits  
FlagsforLow-Order16Bits  
Bit: 15  
14  
ST  
13  
S1  
12  
S0  
11  
IE  
10  
9
8
7
6
5
4
3
2
1
0
IM2  
IM1  
IM0  
VX  
CX  
NX  
ZX  
VF  
CF  
NF  
ZF  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
ST: Saturation  
This bit controls whether or not the CPU calculates a saturation limit for an  
operation. When it is set to 1, the CPU executes a saturate operation, and  
when it is 0, the CPU executes a normal operation. The PXST instruction  
can reverse the meaning of this bit for the next (and only the next) instruc-  
tion.  
S[1:0]: Software control  
These bits are the control field for OS software. It is reserved for the OS.  
IE: Interrupt enable  
If set, this flag enables maskable interrupts; if reset, it disables them.  
IM[2:0]: Interrupt mask level  
This field indicates the mask level (from 0 to 7) of interrupts that the CPU  
will accept from its seven interrupt input pins. The CPU will not accept  
any interrupt from a pin at a higher level than that indicated here.  
VX: Extension overflow  
If the operation causes the sign bit to change in a 24-bit signed number,  
this flag is set; otherwise it is reset.  
CX: Extension carry flag  
If the operation resulted in a carry into (from addition) or a borrow out of  
(from subtraction or a comparison) the most significant bit, this flag is set;  
otherwise it is reset.  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
21  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
General Description  
MN102H Series Description  
NX: Extension negative flag  
If the most significant bit of the result of an operation has the value 1, this  
flag is set; if that bit is 0, this flag is reset.  
ZX: Extension zero flag  
If all bits of the result of an operation have the value 0, this flag is set; oth-  
erwise it is reset.  
VF: Overflow flag  
If the operation causes the sign bit to change in a 16-bit signed number,  
this flag is set; otherwise it is reset.  
CF: Carry flag  
If the operation resulted in a carry into (from addition) or a borrow out of  
(from subtraction or a comparison) bit 15, this flag is set; otherwise it is  
reset.  
NF: Negative flag  
If bit 15 of the result of an operation has the value 1, this flag is set; if that  
bit is 0, this flag is reset.  
ZF: Zero flag  
If the least significant 16 bits of the result of an operation have the value 0,  
this flag is set; otherwise it is reset.  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
22  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
General Description  
MN102H Series Description  
Internal registers, memory, and special function registers  
Program Counter  
23  
0
The program counter specifies the 24-bit address of the  
program instruction being executed.  
PC  
Address Registers  
23  
0
The four address registers specify the location of the data in  
the memory. A3 is assigned as the stack pointer.  
A0  
A1  
A2  
A3  
Data Registers  
23  
0
The four data registers handle all arithmetic and logic  
operations. When byte-length (8-bit) or word-length (16-bit)  
data is to be transferred to memory or to another register, an  
instruction adds a zero or sign extension.  
D0  
D1  
D2  
D3  
Multiplication/Division Register  
15  
0
0
The dedicated multiplication/division register stores the high-  
order 16 bits of the 32-bit product of multiplication operations.  
In division operations, before execution it stores the high-order  
16 bits of the 32-bit dividend, and after execution it stores the  
16-bit remainder of the quotient.  
MDR  
Processor Status Word  
15  
PSW  
Memory, SFRs, and I/O Ports  
Memory (ROM and RAM), special function registers for  
controlling peripheral functions, and I/O ports can all be  
assigned to the same address space.  
ROM  
RAM  
Internal control registers1  
Interrupt control registers1  
Serial interface registers1  
A/D converter registers1  
Timer/counter registers1  
Memory control registers1  
I/O port registers1  
CPUM, EFCR, IAGR  
NMICR, xxICR  
SCCTRn, TRXBUFn, SCSTRn  
ANCTR, ANnBUF  
TMn, BCn, BRn, ...  
MEMMD  
PnOUT, PnIN, PnDIR  
Note:  
1. This allocation is a representative example. Actual memory, peripheral, SFR, and I/O port configuration depends  
on the product.  
Figure 1-4 Internal Registers, Memory, and Special Function Registers  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
23  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
General Description  
MN102H Series Description  
Address space  
The memory in the MN102H series is configured as linear address space. The  
instruction and data areas are not separated, so the basic segments are internal  
ROM, internal RAM, and special function registers.  
Figure 1-5 shows the address space for the MN102H75K/85K.The internal ROM  
contains the instructions and the font data for the on-screen display (OSD), in any  
location. The internal RAM contains the MCU data and the VRAM for the OSD,  
in any location.  
x’007E00’  
Special Function  
Registers  
x’007FFF’  
x’008000’  
Internal RAM  
Data  
8 KB  
OSD  
Text VRAM  
Graphics VRAM  
x’009FFF’  
x’00FC00’  
Special Function  
Registers  
x’00FFFF’  
Program start address  
= x’080000’  
x’080000’  
Interrupt handler start  
address = x’080000’  
Internal ROM  
Program  
256 KB  
OSD  
Text fonts  
Graphic tiles  
x’0BFFFF’  
Figure 1-5 Address Space  
Note:  
In writing, do not use MOVB instruction to access Special Function Registers (x’00FC00’ - x’00FFFF’), access by  
word. In reading, access by byte is possible.  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
24  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
General Description  
MN102H Series Description  
Interrupt controller  
An interrupt controller external to the core controls all nonmaskable and  
maskable interrupts except reset. There are a maximum of sixteen interrupt  
classes (class 0 to 15). Each class can have up to four interrupt factors and any of  
seven priority levels.  
CPU Core  
Maskable Interrupt  
Receive  
Nonmaskable Interrupt  
Receive  
Reset  
Receive  
Reset  
Interrupt Controller  
Interrupt Enable  
Interrupt Masking  
Nonmaskable interrupts  
4
External NMI pin input  
Watchdog timer  
Groups 0-3  
Nonmaskable Interrupt Controllers  
Nonmaskable Interrupt  
Control Registers (NMICR)  
Undefined instruction  
Interrupt occurred,  
6
5
4
3
2
1
0
(
)
(WDICR)  
(UNICR)  
(EIICR)  
but no vector exists  
4
Group 4  
Maskable Interrupt Controllers  
Maskable Interrupt  
Control Registers (xx ICR)  
Maskable interrupts  
Max. 240 vectors  
External pin interrupts  
Peripheral interupts  
4
(
)
Group 63  
Maskable Interrupt Controllers  
Maskable Interrupt  
Control Registers (xx ICR)  
Note: Interrupt control hardware configuration varies between products.  
Figure 1-6 Interrupt Controller Configuration  
The CPU checks the processor status word to determine whether or not to accept  
an interrupt request. If it accepts the request, automatic hardware servicing  
begins and the contents of the program counter and other necessary registers are  
pushed to the stack. The program then looks up and branches to the entry address  
of the interrupt service routine for the interrupt that occurred.  
Interrupt preprocessing  
Push registers, branch to entry address, etc.  
Main program  
x'080008'  
Interrupt service routine  
Header resets interrupt vector  
Hardware processing  
Push PC, PSW  
JMP, etc.  
Interrupt  
Max. 6 machine cycles  
7 machine cycles  
Figure 1-7 Interrupt Servicing Sequence  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
25  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
General Description  
General Specifications  
1.4 General Specifications  
Table 1-1 General Specifications  
Parameter  
Specification  
Structure  
Internal multiplier (16-bit × 16-bit = 32-bit) and saturate calculator  
Load/store architecture  
Eight registers:  
Four 24-bit data registers  
Four 24-bit address registers  
Other:  
24-bit program counter  
16-bit processor status word  
16-bit multiply/divide register  
Instruction set  
Performance  
41 instructions  
6 addressing modes  
1-byte basic instruction length  
Code assignment: 1 byte (basic) + 0 to 6 bytes (extension)  
12-MHz internal operating frequency (with a 4-MHz external oscilla-  
tor)  
Instruction execution clock cycles:  
Minimum 1 clock cycle (83.3 ns) for register-to-register operations  
Minimum 1 clock cycle (83.3 ns) for load/store operations  
Minimum 2 clock cycles (167 ns) for branch operations  
Pipeline  
3-stage: fetch, decode, execute  
Address space  
Linear address space  
Shared instruction/data space  
Interrupts  
6 external  
30 internal  
7 priority level settings  
Low-power modes STOP  
HALT  
SLOW  
Oscillation fre-  
quency  
4 MHz (48 MHz with internal PLL)  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
26  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
General Description  
General Specifications  
Table 1-1 General Specifications  
Parameter  
Specification  
Timer/counters  
Four 8-bit timers:  
Cascading function (forming 16- or 32-bit timers)  
Timer output  
Selectable clock source (internal or external)  
Serial interface clock generation  
Start timing generation for analog-to-digital converter  
Two 16-bit timers:  
Compare/capture registers  
Selectable clock source (internal or external)  
PWM and one-shot pulse output  
Two-phase encoder input (4x or 1x formats)  
16-bit watchdog timer  
16 bytes (8-bit × 16)  
ROM correction  
SYSCLK output  
Serial interfaces  
14  
SYSCLK or SYSCLK/2 (732.42 Hz)  
2
Two UART/synchronous serial/I C (master only) interfaces  
2
One I C interface (multimaster; 2-channel with 1 internal circuit)  
Analog-to-digital  
converter  
8-bit with 12 channels  
Automatic scanning  
IR remote signal  
receiver  
Automatic HEAMA / 5-/6-bit detection  
1-bit interrupt  
PWM  
8-bit with 7 channels (3.3-volt tolerance)  
Closed-caption  
decoder  
2 channels  
Internal sync separator  
On-screen display Three-layer format  
Text layer: 16 × 18 pixels (16 × 26 in closed caption mode), blink-  
ing, outlining, shadowing (foreground and background), shutter  
effect, italics (CC mode), underlining (CC mode)  
Graphics layer: 16 × 16 / 16 × 18 pixels  
Cursor layer: 16 × 16 / 32 × 32 pixels (1 cursor, displaying one  
graphic tile)  
Color depth: One 16-color palette out of 4096 colors  
Dot clock  
Internal PLL frequencies: 12, 16, 24, 32 and 48 MHz  
External clock: 16–48 MHz  
LC blocking oscillator: 16–48 MHz  
I/O ports  
Package  
66(MN102H75K/F75K) / 50(MN102H85K/F85K)  
84-pin-QFP(MN102H75K/F75K) / 64-pin-SDIL(MN102H85K/F85K)  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
27  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
General Description  
Block Diagram  
1.5 Block Diagram  
Address registers  
Data registers  
A0  
A1  
A2  
A3  
D0  
D1  
Clock  
Clock  
generator  
source  
T1  
T2  
Multiplication/Division Register  
MDR  
D2  
D3  
Instruction execution  
controller  
A
B
Instruction decoder  
Quick decoder  
Multiplier  
Program  
Counter  
PSW  
Incrementer  
ALU  
Instruction  
queue  
Interrupt  
controller  
Program address  
Operand address  
Interrupt bus  
B u s c o n t r o l l e r  
ROM bus  
RAM bus  
Peripherals extension bus  
External interface  
External extension bus  
Internal peripheral  
functions  
Internal ROM  
Internal RAM  
BR  
BG  
Figure 1-8 Functional Block Diagram  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
28  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
General Description  
Block Diagram  
Table 1-2 Block Diagram Explanation  
Block  
Description  
Clock generator  
An oscillation circuit connected to an external crystal supplies the  
clock to all blocks within the CPU.  
Program counter  
The program counter generates addresses for queued instruc-  
tions. Normally it increments based on the sequencer indications,  
but for branch instructions it is set as the branch head address,  
and for interrupt servicing, it is set as the result of the ALU opera-  
tion.  
Instruction queue  
This block contains up to four bytes of prefetched instructions.  
The instruction decoder decodes the contents of the instruction  
queue, generates, in the proper sequence, the control signals nec-  
essary for executing the instruction, and controls every block in the  
chip to execute the instruction.  
Instruction decoder  
Quick decoder  
This block decodes instructions that are 2 bytes or larger in at a  
much faster rate than previously possible.  
Instruction execution This block controls the operation of every block within the CPU  
controller  
using the results from the instruction decoder and interrupt  
requests.  
ALU  
Arithmetic and logic unit. This block calculates the operand  
addresses for arithmetic operations, logic operations, shift opera-  
tions, relative indirect register addressing, indexed addressing,  
and indirect register addressing.  
Multiplier  
This block multiplies 16 bits × 16 bits = 32 bits.  
These memory blocks contain the program, data, and stack areas.  
Internal ROM and  
RAM  
Address registers  
(An)  
The address registers store the addresses in memory to be  
accessed in data transfers. In relative indirect, indexed, and indi-  
rect addressing modes, they store the base address.  
The data registers store data to be transferred to memory and  
results of operations. In indexed and indirect addressing modes,  
they store the offset address.  
Operation registers  
(Dn, MDR)  
The multiplication/division register stores data for multiplication  
and division operations.  
PSW  
The processor status word contains flags that indicate the status  
of the CPU interrupt controller and provide information about oper-  
ation results.  
Interrupt controller  
Bus controller  
This block detects interrupt requests from peripheral function  
blocks and requests the CPU to service the interrupt.  
This block controls the connection between the CPU’s internal and  
external buses. It also contains a bus arbitration function.  
MN102H series devices contain a wide range of internal periph-  
eral devices, such as timers, serial interfaces, ADCs, and DACs.  
Internal peripheral  
functions  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
29  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
General Description  
Pin Descriptions  
1.6 Pin Descriptions  
1.6.1 MN102H85K Pin Description  
P00, RMIN, IRQ0  
* P01, SDA1  
1
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
VSS  
2
OSC2  
* P02, SCL1  
3
OSC1  
P03, ADIN0  
4
VDD  
P04, ADIN1  
5
P61, SCL0 *  
P60, SDA0 *  
P57, SBT0  
P56, SBI0, SBD0  
P55, SBO0  
P54, IRQ5, VSYNC  
P53, RST  
P05, ADIN2  
6
P06, ADIN3  
7
P07, ADIN4  
8
P10, ADIN5, IRQ1  
P11, ADIN6, IRQ2  
P12, ADIN7, IRQ3  
P13, ADIN8, WDOUT  
P14, ADIN9, STOP  
P15, ADIN10, PWM0  
P16, ADIN11, PWM1  
P17, PWM2  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
64-Pin SDIP  
Top View  
P52, IRQ4, VI0  
TEST  
P51, YS  
P50, SYSCLK  
P47, HSYNC  
P46, OSDXI  
P45, OSDXO  
P44, TM5IC, HI1 *  
P43, TM5IOB, HI0 *  
P42, TM5IOA *  
P41, TM1IO *  
VCOI  
P20, PWM3  
P21, PWM4  
P22, PWM5  
P23, PWM6  
P24, TM4IC, SBT1  
P25, TM4IOB, SBI1, SBD1  
P26, TM4IOA, SBO1  
P27, TM0IO  
PDO  
VDD (VPP)  
P40, DAYMOUT, YM  
P37, DABOUT, B  
P36, DAGOUT, G  
P35, DAROUT, R  
VREF, P34  
IREF  
P30, CLH  
VREFHS  
P31, CVBS0  
VSS  
P32, CVBS1  
VREFLS  
COMP  
P33, CLL  
AVDD  
Notes: 1. Pins marked with an asterisk (*) are N-channel, open-drain pins.  
2. Pin 25 is V in the MN102H85K and V in the MN102HF85K.  
DD  
PP  
Figure 1-9 MN102H85K Pin Configuration in Single-Chip Mode  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
30  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
General Description  
Pin Descriptions  
1.6.2 MN102H75K Pin Description  
P55, SBO0  
P54, IRQ5, VSYNC  
P84  
1
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
NC  
2
P71  
3
P10, ADIN5, IRQ1  
P11, ADIN6, IRQ2  
P12, ADIN7, IRQ3  
P72  
NC  
4
P53, RST  
5
P52, IRQ4, VI0  
TEST  
6
7
P13, ADIN8, WDOUT  
P14, ADIN9, STOP  
P73  
P51, YS  
8
P83  
9
P50, SYSCLK  
P82  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
P15, ADIN10, PWM0  
P16, ADIN11, PWM1  
P17, PWM2  
84-Pin QFP  
Top View  
P47, HSYNC  
P81  
P20, PWM3  
P46, OSDXI  
P45, OSDXO  
* P44, TM5IC, HI1  
* P43, TM5IOB, HI0  
* P42, TM5IOA  
* P41, TM1IO  
VCOI  
P21, PWM4  
P22, PWM5  
P23, PWM6  
P24, TM4IC, SBT1  
P25, TM4IOB, SBI1, SBD1  
P26, TM4IOA, SBO1  
P27, TM0IO  
PDO  
P74  
Notes: 1. Pins marked with an asterisk (*) are N-channel, open-drain pins.  
2. Pin 41 is V in the MN102H75K and V in the MN102HF75K.  
DD  
PP  
Figure 1-10 MN102H75K Pin Configuration in Single-Chip Mode  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
31  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
General Description  
Pin Descriptions  
Table 1-3 Pin Functions  
Block  
Pin Name  
I/O Pin Count  
Description  
V
I
I
I
1
2
1
Voltage supply  
DD  
SS  
V
Ground reference  
Power  
AV  
Analog voltage supply  
Voltage supply: V in mask ROM version and V in  
DD  
DD  
PP  
V
/V  
I
1
DD PP  
EEPROM version  
SYSCLK  
OSC1  
O
I
1
1
1
1
1
1
System clock output  
Oscillator input connection (with internal PLL)  
Oscillator output connection (with internal PLL)  
Clocks  
OSC2  
O
I
OSDXI  
OSDXO  
RST  
OSD oscillator input connection (alt. function: P46)  
OSD oscillator output connection (alt. function: P45)  
Reset (alt. function: P53)  
O
I/O  
Reset  
External interrupt request to microcontroller (alt. functions:  
P00, P10, P11, P12, P52, P54)  
Interrupts (external)  
IRQ0IRQ5  
I
6
HSYNC  
VSYNC  
I
1
1
1
2
2
2
2
2
2
2
2
2
2
1
7
Horizontal sync signal input  
Vertical sync signal input  
Video signal cut  
OSD  
I
YS  
O
TMnIOA (n=4,5)  
TMnIOB (n=4,5)  
TMnIC (n=4,5)  
TMnIO (n=0,1)  
SBI0/SBI1  
I/O  
I/O  
I
Input capture/output compare A  
Input capture/output compare B  
Timer/counter clear signal  
Timer clock input/timer output  
Serial data input  
16-bit (2)  
Timers  
8-bit (4)  
I/O  
I
SBD0/SBD1  
SBO0/SBO1  
SBT0/SBT1  
SDA0/SDA1  
SCL0/SCL1  
RMIN  
I/O  
I/O  
I/O  
I/O  
I/O  
I
Serial data input  
Serial interfaces (2)  
Serial data output  
Serial clock signal  
2
I C data  
2
I C interfaces (2)  
2
I C clock  
IR remote signal receiver  
PWM (8-bit, 7-channel)  
Remote signal input  
PWM0–PWM6  
O
Pulse width modulator output  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
32  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
General Description  
Pin Descriptions  
Table 1-3 Pin Functions (Continued)  
Block  
Pin Name  
I/O Pin Count  
Description  
P00–P07  
P10–P17  
P20–P27  
P30–P37  
P40–P47  
P50–P57  
P60–P61  
P70–P77  
P80–P87  
CVBS0/CBVS1  
CLH  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
8
8
8
8
8
8
2
8
8
2
1
1
1
1
12  
1
1
1
1
1
1
1
1
1
1
1
1
General-purpose port 0 I/O  
General-purpose port 1 I/O  
General-purpose port 2 I/O  
General-purpose port 3 I/O  
General-purpose port 4 I/O  
General-purpose port 5 I/O  
General-purpose port 6 I/O  
General-purpose port 7 I/O  
General-purpose port 8 I/O  
Composite video signal input  
Clamp level high input  
I/O ports  
MN102H75K/HF75K:  
total 66 pins  
MN102H85K/HF85K:  
total 50 pins  
I/O ports only in  
MN102H75K/F75K  
I
Closed-caption decoders (2)  
A/D converter (12-channel)  
CLL  
I
Clamp level low input  
VREFHS  
VREFLS  
I
CCD reference voltage input  
CCD reference voltage input  
Analog signal input  
I
ADIN0–ADIN11  
I
(1)  
DAROUT  
O
O
O
O
I
DAC output (red)  
(1)  
DAGOUT  
DAC output (green)  
(1)  
DABOUT  
DAC output (blue)  
D/A converter  
(1)  
DAYMOUT  
DAC output (YM)  
(4-bit, 4-channel)  
IREF  
VREF  
COMP  
VCOI  
Resistance connection for DAC bias current setting  
DAC reference voltage connection  
DAC phase compensator connection  
Internal VCO input (external LPF input)  
Internal phase compare output (external LPF output)  
STOP mode status signal  
I
I
I
PLL  
PDO  
O
O
O
I
STOP  
WDOUT  
TEST  
Mode  
Test  
Watchdog timer overflow signal  
Test pin (Connect to ground.)  
Notes: 1. When DAROUT, DAGOUT, DABOUT, and DAYMOUT are used for digital output, their names are R, G, B, and  
YM, respectively.  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
33  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
General Description  
Pin Descriptions  
Considerations for power supply, clock, and reset pins  
VDD  
VDD  
AVDD  
Power  
Supply  
MN102H75K  
MN102H85K  
AVSS  
VSS  
VSS  
Note: If the circuit uses the same power supply for digital and analog supplies, connect  
the pins in the location closest to the power supply.  
Figure 1-11 Power Supply Wiring  
OSC1  
0.1 µF  
OSC2  
OSC2  
OSC1  
4 MHz  
4 MHz  
Oscillation  
Circuit  
Note: The capacitance values vary depending on the oscillator.  
Figure 1-12 OSC1 and OSC2 Connection Examples  
Di  
10 k- 50 kΩ  
RST  
+
-
SW  
10 µF - 100 µF  
Figure 1-13 Reset Pin Connection Example 1  
OSDXO  
16MHz - 48MHz  
OSDXI  
OSDXI  
OSDXO  
16MHz - 48MHz  
Oscillation  
Circuit  
Note: The capacitance values vary depending on the oscillator.  
Figure 1-14 OSDXI and OSDXO Connection Examples  
Connection the PLL circuit  
The MN102H75K/85K contains an internal PLL circuit. To use this circuit, you  
must connect it to an external (lag-lead) filter.  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
34  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
General Description  
Bus Interface  
1.7 Bus Interface  
1.7.1 Description  
The bus interface operates in external extension mode. Figure 1-15 provides the  
memory space for the MCU in this mode.  
External Expansion Mode  
x'000000'  
External devices  
x'008000'  
Internal RAM  
(*3)  
(8192 bytes  
)
(*4)  
x'00A000'  
x'00FC00'  
x'010000'  
x'080000'  
Peripheral registers  
External devices  
External memory space 0 (CS0 signal):  
IR remote signal receive  
I2C  
OSD  
CCD0  
CCD1  
H counter  
PWM  
Reset start  
Internal masked ROM  
(*1)  
(256 Kbytes  
)
(*2)  
x'0C0000'  
x'200000'  
x'400000'  
External memory space 1  
(CS1 signal)  
External devices  
x'800000'  
x'C00000'  
External memory space 2  
(CS2 signal)  
Cannot be accessed.  
External memory space 3  
(CS3 signal)  
x'FFFFFF'  
Expandable up to 16 MB  
*1  
*2  
*3  
*4  
MN102H75K 256 Kbytes x'0C0000' 8192 bytes x'00A000'  
Figure 1-15 Memory Space in External Extension Mode  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
35  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
General Description  
Bus Interface  
1.7.2 Bus Interface Control Registers  
The external memory wait register (EXWMD) and memory mode register 1  
(MEMMD1) control the bus interface.  
EXWMD: External Memory Wait Register  
x’00FF80’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
EW 33 EW 32 EW 31 EW 30 EW 23 EW 22 EW 21 EW 20 EW 13 EW 12 EW 11 EW 10 EW 03 EW 02 EW 01 EW 00  
Reset:  
1
1
1
0
1
1
1
0
1
1
1
0
1
1
1
0
R/W: R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
EW[33:30], EW[23:20], EW[13:10], EW[03:00]  
These fields contain the wait settings for external memory spaces 3, 2, 1,  
and 0, respectively. One wait corresponds to one instruction cycle. When  
the external oscillator is 4 MHz, one wait is 83 ns.  
The OSD, VBI0, VBI1, I2C, IR remote signal receiver, and H counter  
blocks apply to external memory space 0.  
Table 1-4 Wait Count Settings  
EW[n3:n0] Setting  
Wait Count  
Cycles  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0.0  
1.0  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
MEMMD1: Memory Mode Register 1  
x’00FF82’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
EB31 EB32 EB21 EB20 EB11 EB10 EB01 EB00 BRS1 BRS0 BRC3 BRC2 BRC1 BRC0 IOW1 IOW0  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
R/W: R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Write 0s to bits 15 to 2.  
IOW[1:0]: Wait setting for internal I/O space  
00: 1 wait  
01: Reserved  
10: 2 waits  
11: 3 waits  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
36  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Interrupts  
Description  
2
Interrupts  
2.1 Description  
The most important factor in real-time control is an MCU’s speed in servicing  
interrupts. The MN102H75K/85K has an extremely fast interrupt response time  
due to its ability to abort instructions, such as multiply or divide, that require  
multiple clock cycles. The MN102H75K/85K re-executes an aborted instruction  
after returning from the interrupt service routine.  
This section describes the interrupt system in the MN102H75K/85K. The  
MN102H75K/85K contains 36 interrupt group controllers. Each controls a single  
interrupt group. Because each group contains only one interrupt vector, the  
MN102H75K/85K can handle interrupts much quicker than previously possible.  
Each interrupt group belongs to one of twelve classes, which defines its interrupt  
priority level.  
With the exception of reset interrupts, all interrupts from timers, other peripheral  
circuits, and external pins must be registered in an interrupt group controller.  
Once they are registered, interrupt requests are sent to the CPU in accordance  
with the interrupt mask level (0 to 6) set in the interrupt group controller. Groups  
1 to 3 are dedicated to system interrupts. Table 2-1 compares the interrupt  
parameters of the MN102H75K/85K to those of the MN102L35G, the com-  
parable MCU in the previous generation of the 16-bit series.  
Table 2-1 Comparison of MN102H75K/85K and MN102L35G Interrupt Features  
Parameter  
MN102L35G  
MN102H75K/85K  
Interrupt groups  
4 vectors per group  
(Separated by interrupt  
service routine)  
1 vector per group  
(IAGR group numbers  
(Group number gener-  
ated for each interrupt)  
Excellent  
Interrupt response time  
Interrupt level settings  
Software compatibility  
Good  
4 vectors per level  
4 vectors per level  
Easily modified  
The MN102H75K/85K has six external interrupt pins. Set the interrupt condition  
(positive edge, negative edge, either edge, or active low) in the EXTMD register.  
.
.
.
.
.
.
Interrupt  
to CPU  
Internal  
interrupts  
EXTMD  
Interrupt  
arbitration  
IRQ0  
Edge/level  
Edge/level  
Edge/level  
Edge/level  
Edge/level  
Edge/level  
IRQ1  
IRQ2  
IRQ3  
IRQ4  
IRQ5  
Figure 2-1 Interrupt Controller Block Diagram  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
37  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Interrupts  
Description  
Priority  
Level  
Register  
Address  
Group  
Interrupt Vector  
Group 0  
NMIs  
Group 1 Watchdog timer  
Group 2 Undefined instruction  
Group 3 Error interrupt  
00FC42 (R/W)  
00FC44 (R/W)  
00FC46 (R/W)  
Class  
0
MN102H  
CPU Core  
Group 4 External interrupt 0  
Group 5 External interrupt 1  
Group 6  
00FC48 (R/W)  
00FC4A (R/W)  
Levels 0  
6
Class  
1
Group 7  
Group 8 External interrupt 2  
Group 9 External interrupt 3  
Group 10  
00FC50 (R/W)  
00FC52 (R/W)  
Class  
2
Group 11  
Group 12 External interrupt 4  
Group 13 External interrupt 5  
Group 14  
00FC58 (R/W)  
00FC5A (R/W)  
Class  
3
Group 15  
Group 16 Timer 4 compare/capture B  
Group 17 Timer 4 compare/capture A  
Group 18 Timer 4 underflow interrupt  
Group 19 VBI interrupt (1)  
00FC60 (R/W)  
00FC62 (R/W)  
00FC64 (R/W)  
00FC66 (R/W)  
Class  
4
Group 20 Timer 5 compare/capture B  
Group 21 Timer 5 compare/capture A  
Group 22 Timer 5 underflow interrupt  
Group 23 VBI interrupt (2)  
00FC68 (R/W)  
00FC6A (R/W)  
00FC6C (R/W)  
00FC6E (R/W)  
Class  
5
Group 24 Timer 2 underflow interrupt  
Group 25 Timer 1 underflow interrupt  
Group 26 Timer 0 underflow interrupt  
Group 27 Remote signal receive int.  
00FC70 (R/W)  
00FC72 (R/W)  
00FC74 (R/W)  
00FC76 (R/W)  
Class  
6
Group 28 Address 3 match interrupt  
Group 29 Address 2 match interrupt  
Group 30 Address 1 match interrupt  
Group 31 Address 0 match interrupt  
00FC78 (R/W)  
00FC7A (R/W)  
00FC7C (R/W)  
00FC7E (R/W)  
Class  
7
Group 32 A/D conversion end int.  
Group 33 Serial 0 transmission end  
Group 34 Serial 0 reception end  
Group 35  
00FC80 (R/W)  
00FC82 (R/W)  
00FC84 (R/W)  
Class  
8
Group 36 VBIVSYNC interrupt (1)  
Group 37 VBIVSYNC interrupt (2)  
Group 38 Timer 3 underflow interrupt  
Group 39  
00FC88 (R/W)  
00FC8A (R/W)  
00FC8C (R/W)  
Class  
9
Group 40 OSD interrupt (graphics)  
Group 41 OSD interrupt (text)  
Group 42  
00FC90 (R/W)  
00FC92 (R/W)  
Class  
10  
Group 43  
Group 44 Serial 1 transmission end  
Group 45 Serial 1 reception end  
Group 46 I C interrupt  
00FC98 (R/W)  
00FC9A (R/W)  
00FC9C (R/W)  
Class  
11  
2
Group 47  
Figure 2-2 Interrupt Vector Group and Class Assignments  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
38  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Interrupts  
Description  
Program  
Address 80008  
Interrupt  
Handler  
(preprocessing)  
Max. 6 cycles  
The interrupt request is  
deleted in the header  
(Included in the cycle  
count shown to the left.)  
Interrupt service  
routine  
Handler  
(postprocessing)  
Registers popped  
Figure 2-3 Interrupt Servicing Time  
Table 2-2 Handler Preprocessing  
Sequence Assembler  
Bytes Cycles  
Push registers  
add  
-8,A3  
2
2
3
1
2
3
mov  
A0,(A3)  
D0,(4,A3)  
movx  
Interrupt ACK  
mov  
(FC0E),D0  
3
1
Generate header address mov  
BASE,A0  
3
2
1
2
for interrupt service routine  
mov  
jsr  
(D0,A0),A0  
Branch  
Total  
(A0)  
2
5
17  
15  
Table 2-3 Handler Postprocessing  
Sequence  
Assembler  
Bytes Cycles  
Pop registers  
mov  
(A3),A0  
(4,A3),D0  
8,A3  
2
3
2
2
3
1
movx  
add  
Total  
7
6
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
39  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Interrupts  
Interrupt Setup Examples  
2.2 Interrupt Setup Examples  
2.2.1 Setting Up an External Pin Interrupt  
In this example, an interrupt occurs on a falling-edge signal from the IRQ0 (P00)  
external interrupt pin, and the interrupt priority level is 5.  
On reset, the external edge setting in the EXTMD register is low (b’00’ = active-  
low interrupt), and the IQ0IR bit of the IQ0ICL register is 0.  
CORE  
ROM, RAM  
Bus Controller  
Serial I/Fs  
ADC  
P5  
P0  
P2  
P1  
P3  
Interrupts  
Timers 0-5  
IRQ0  
Figure 2-4 Block Diagram of External Pin Interrupt  
Enabling external interrupt 0  
1. Set the interrupt conditions for the IRQ0 (P00) pin. For this example, set the  
IQ0TG[1:0] bits of EXTMD to b’10’ (negative-edge-triggered interrupt).  
EXTMD (example)  
x’00FCF8’  
11  
10  
9
8
Bit: 15  
14  
13  
12  
7
6
5
4
3
2
1
0
IQ5TG IQ5TG IQ4TG IQ4TG IQ3TG IQ3TG IQ2TG IQ2TG IQ1TG IQ1TG IQ0TG IQ0TG  
0
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
1
0
0
Setting:  
2. Cancel any existing interrupt requests and enable IRQ0 interrupts. To do  
this, set the IQ0IR bit of IQ0ICL to 0, set the IQ0LV[2:0] bits of IQ0ICH to  
b’101’ (priority level 5), and set the IQ0IE bit to 1.  
IQ0ICL (example)  
x’00FC48’  
Bit:  
7
6
5
4
3
2
1
0
IQ0IR  
IQ0ID  
Setting:  
0
0
0
0
4
0
0
0
0
IQ0ICH (example)  
x’00FC49’  
Bit:  
7
6
5
3
2
1
0
IQ0LV2 IQ0LV1 IQ0LV0  
IQ0IE  
Setting:  
0
1
0
1
0
0
0
1
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
40  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Interrupts  
Interrupt Setup Examples  
3. Enable interrupts by writing a 1 to the interrupt enable flag (IE) in the PSW  
and setting the interrupt masking level (IM[2:0]) to 7 (b’111’).  
Now if a falling edge occurs on IRQ0 (P00), an interrupt will occur. If the  
CPU accepts the interrupt, the program branches to address x’080008’.  
Servicing the interrupt  
The main program normally gen-  
erates and branches to the inter-  
rupt start address.  
4. During interrupt preprocessing, read the accepted interrupt group number  
register (IAGR) to determine the interrupt group (group 4, in this case).  
5. Branch to the interrupt service routine.  
During the interrupt service rou-  
tine, prevent the CPU from  
6. At the beginning of the interrupt service routine, clear the IQ0IR bit in  
IQ0ICL to 0.  
accepting any other maskable  
interrupts by setting the IM[2:0]  
and IE bits of the PSW to 0.  
To accept the same interrupt  
during the interrupt service rou-  
tine, clear IR flag at the begin-  
ning of it.  
7. After the service routine ends, return to the main program with the RTI  
instruction.  
P00 (IRQ0)  
EXTMD  
IQ0IE  
Low level  
Falling edge  
IQ0IR  
Interrupt servicing  
Registers [R/W]  
Sequence  
EXTMD(W) IQ0ICH(B)  
IQ0ICL(B)  
IQ0ICL(B)  
(4)(5)(6)(7)  
IQ0ICL(B)  
(4)(5)(6)(7)  
(1)  
(2)(3)  
Figure 2-5 Timing for External Pin Interrupt Setup (Example)  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
41  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Interrupts  
Interrupt Setup Examples  
2.2.2 Setting Up a Watchdog Timer Interrupt  
In this example, a watchdog timer reset occurs. The watchdog timer starts  
running after a reset, when the NWDEN flag in the CPU mode register (CPUM)  
is enabled (set to 0). When the watchdog timer overflows, a nonmaskable  
interrupt occurs. This means that the watchdog timer must be cleared in the main  
program.  
The watchdog timer interrupt is  
provided for detecting and handling  
racing. Normal operation is not  
guaranteed if the program returns  
after a watchdog interrupt. For  
actions requiring returns, use a  
timer interrupt.  
CORE  
ROM, RAM  
Bus Controller  
Serial I/Fs  
ADC  
P0  
P5  
P2  
P1  
P3  
Interrupts  
Timers 0-5  
Figure 2-6 Block Diagram of Watchdog Timer Interrupt  
Enabling watchdog timer interrupts  
1. Enable interrupts by writing a 1 to the interrupt enable flag (IE) in the PSW  
and setting the interrupt masking level (IM[2:0]) to 7 (b’111’).  
2. Activate the watchdog timer by clearing the NWDEN bit of the CPUM regis-  
ter. Set the time limit for the racing detection function in the WDM[1:0]  
field.  
If WDM[1:0] = 00, a watchdog  
interrupt occurs when the watch-  
16  
dog timer counts 2 cycles  
(5.4613 ms at 4-MHz f  
/12-  
OSC  
MHz f  
). The WDM set-  
SYSCLK  
CPUM (example)  
x’00FC00’  
tings have the following mean-  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
ings:  
NW WDM WDM  
OSC  
ID  
16  
STOP HALT OSC1 OSC0  
00:  
2
(5.46 ms)  
DEN  
0
1
0
0
0
4
01: 2 (1.33 µs)  
Setting:  
0
0
0
0
0
0
0
0
0
0
0
0
0
12  
10:  
11:  
2
2
(0.34 ms)  
(1.37 ms)  
14  
Clearing the watchdog timer  
The main program normally  
clears the watchdog timer prior  
to a watchdog interrupt.  
3. Set the NWDEN bit in CPUM to 1, then immediately reset it to 0. The  
watchdog timer clears to 0 when NWDEN is 1.  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
42  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Interrupts  
Interrupt Setup Examples  
The main program normally gen-  
erates and branches to the inter-  
rupt start address.  
If the CPU accepts an interrupt, the program branches to address x’080008’.  
The oscillator delay timer shares the counter for the watchdog timer. The  
oscillator delay timer is activated when the circuit exits the STOP mode, so the  
program must clear the WDID flag to 0 prior to entering the STOP mode. It must  
also reclear WDID after returning to NORMAL mode. For further details, see  
section 2-6, “Standby Function,” in the MN10200 Series Linear Addressing  
Version LSI User Manual.  
Overflow  
RST  
WD count  
NWDEN (CPUM)  
WDID (WDICR)  
Interrupt servicing  
Clear  
Registers [R/W]  
Sequence  
CPUM (W)  
(2)  
CPUM (W)  
(3)  
CPUM (W)  
(2)  
(1)  
Figure 2-7 Timing for Watchdog Timer Interrupt Setup (Example)  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
43  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Interrupts  
Interrupt Control Registers  
2.3 Interrupt Control Registers  
A control register is assigned to each interrupt vector group. Except for the class  
0 registers (WDICR, PIICR, and EIICR), the control registers allow you to  
enable and set the priority level for interrupt groups.  
Below is the general format of the registers in class 0 and classes 1 to 11.  
Class 0 (X):  
WD (watchdog overflow interrupts)  
PI (undefined instruction interrupts)  
EI (interrupt error interrupts)  
XICR (System Interrupt)  
Bit:  
7
6
5
4
3
2
1
0
ID  
ID: Interrupt detect flag  
0: Interrupt undetected  
1: Interrupt detected  
Classes 1–11 (X):  
IQ (external interrupts)  
TM (timer interrupts)  
SC (serial interrupts)  
I2C (I2C interrupts)  
OSD (OSD interrupts)  
AN (A/D conversion end interrupts)  
RMC (remote signal receive interrupts)  
VBI (VBI interrupts)  
ADM (address match interrupts)  
XnICH (System Interrupt)  
Bit:  
7
6
5
4
3
2
1
0
LV2  
LV1  
LV0  
IE  
LV[2:0]: Interrupt priority level  
Sets the priority from 0 to 6 (000 = 0, 001 = 1, etc.). When LV = 7, inter-  
rupts are not serviced.  
Note that some registers do not contain the LV field. In this case, these bits  
always read 0.  
IE: Interrupt enable flag  
0: Disable  
1: Enable  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
44  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Interrupts  
Interrupt Control Registers  
XnICL (System Interrupt)  
Bit:  
7
6
5
4
3
2
1
0
IR  
ID  
IR: Interrupt request flag  
0: No interrupt requested  
1: Interrupt requested  
ID: Interrupt detect flag  
0: Interrupt undetected  
1: Interrupt detected  
The following is an example program setting an interrupt group’s priority level  
(LV field) and enabling the interrupt group (IE) in the interrupt control register  
(XnICH). Note that interrupts must be disabled during this routine.  
Example 2-1 Setting the Interrupt Priority Level  
...  
;
and 0xf7ff,psw  
nop  
nop  
mov d0,(XnICH)  
mov (XnICH),d0  
or 0x0800,psw  
...  
;Clear the IE bit of the PSW.  
; Inserted to ensure that IE clears  
; completely, so XnICH is accessible.  
;Write to LV/IE  
;Synchronize with the store buffer.  
;Set the IE bit of the PSW.  
;
The program does not need to clear the IE bit of the PSW to disable interrupts  
during interrupt servicing, since the interrupt service routine has already cleared  
it.  
You can replace the NOP instructions in the example above with any instruction  
except for those that modify the PSW IE bit or the LV or IE bits of an XnICH  
register. Inserting any of these instructions would cause interrupt error to occur.  
The example includes two NOP instructions to ensure that the minimum number  
of cycles required for a write to IE have passed. However, you can also insert  
more than two NOPs.  
Table 2-4 provides a list of the interrupt control registers, and a description of the  
fields in each register follows.  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
45  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Interrupts  
Interrupt Control Registers  
Table 2-4 Interrupt Control Registers  
Register  
IAGR  
Address R/W  
Description  
Accepted interrupt group number register  
x’00FC0E’  
x’00FC42’  
x’00FC44’  
x’00FC46’  
x’00FCF8’  
R
WDICR  
PIICR  
R/W Watchdog interrupt control register  
R/W Undefined instruction interrupt control register  
EIICR  
R
Interrupt error interrupt control register  
EXTMD  
R/W External interrupt mode register  
IQ0ICL  
IQ0ICH  
x’00FC48’  
x’00FC49’  
R/W External interrupt 0 interrupt control register (low)  
R/W External interrupt 0 interrupt control register (high)  
IQ1ICL  
IQ1ICH  
x’00FC4A’  
x’00FC4B’  
R/W External interrupt 1 interrupt control register (low)  
R/W External interrupt 1 interrupt control register (high)  
IQ2ICL  
IQ2ICH  
x’00FC50’  
x’00FC51’  
R/W External interrupt 2 interrupt control register (low)  
R/W External interrupt 2 interrupt control register (high)  
IQ3ICL  
IQ3ICH  
x’00FC52’  
x’00FC53’  
R/W External interrupt 3 interrupt control register (low)  
R/W External interrupt 3 interrupt control register (high)  
IQ4ICL  
IQ4ICH  
x’00FC58’  
x’00FC59’  
R/W External interrupt 4 interrupt control register (low)  
R/W External interrupt 4 interrupt control register (high)  
IQ5ICL  
IQ5ICH  
x’00FC5A’  
x’00FC5B’  
R/W External interrupt 5 interrupt control register (low)  
R/W External interrupt 5 interrupt control register (high)  
TM4CBICL  
TM4CBICH  
TM4CAICL  
TM4CAICH  
TM4UDICL  
TM4UDICH  
x’00FC60’  
x’00FC61’  
x’00FC62’  
x’00FC63’  
x’00FC64’  
x’00FC65’  
R/W Timer 4 compare/capture B interrupt control register (low)  
R/W Timer 4 compare/capture B interrupt control register (high)  
R/W Timer 4 compare/capture A interrupt control register (low)  
R/W Timer 4 compare/capture A interrupt control register (high)  
R/W Timer 4 underflow interrupt control register (low)  
R/W Timer 4 underflow interrupt control register (high)  
VBIICL  
VBIICH  
x’00FC66’  
x’00FC67’  
R/W VBI (1) interrupt control register (low)  
R/W VBI (1) interrupt control register (high)  
TM5CBICL  
TM5CBICH  
TM5CAICL  
TM5CAICH  
TM5UDICL  
TM5UDICH  
x’00FC68’  
x’00FC69’  
x’00FC6A’  
x’00FC6B’  
x’00FC6C’  
x’00FC6D’  
R/W Timer 5 compare/capture B interrupt control register (low)  
R/W Timer 5 compare/capture B interrupt control register (high)  
R/W Timer 5 compare/capture A interrupt control register (low)  
R/W Timer 5 compare/capture A interrupt control register (high)  
R/W Timer 5 underflow interrupt control register (low)  
R/W Timer 5 underflow interrupt control register (high)  
VBIWICL  
VBIWICH  
x’00FC6E’  
x’00FC6F’  
R/W VBI (2) interrupt control register (low)  
R/W VBI (2) interrupt control register (high)  
TM2UDICL  
TM2UDICH  
x’00FC70’  
x’00FC71’  
R/W Timer 2 underflow interrupt control register (low)  
R/W Timer 2 underflow interrupt control register (high)  
TM1UDICL  
TM1UDICH  
x’00FC72’  
x’00FC73’  
R/W Timer 1 underflow interrupt control register (low)  
R/W Timer 1 underflow interrupt control register (high)  
TM0UDICL  
TM0UDICH  
x’00FC74’  
x’00FC75’  
R/W Timer 0 underflow interrupt control register (low)  
R/W Timer 0 underflow interrupt control register (high)  
RMCICL  
RMCICH  
x’00FC76’  
x’00FC77’  
R/W Remote signal receive interrupt control register (low)  
R/W Remote signal receive interrupt control register (high)  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
46  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Interrupts  
Interrupt Control Registers  
Table 2-4 Interrupt Control Registers  
Register  
Address R/W  
Description  
ADM3ICL  
ADM3ICH  
ADM2ICL  
ADM2ICH  
ADM1ICL  
ADM1ICH  
ADM0ICL  
ADM0ICH  
x’00FC78’  
x’00FC79’  
x’00FC7A’  
x’00FC7B’  
x’00FC7C’  
x’00FC7D’  
x’00FC7E’  
x’00FC7F’  
R/W Address 3 match interrupt control register (low)  
R/W Address 3 match interrupt control register (high)  
R/W Address 2 match interrupt control register (low)  
R/W Address 2 match interrupt control register (high)  
R/W Address 1 match interrupt control register (low)  
R/W Address 1 match interrupt control register (high)  
R/W Address 0 match interrupt control register (low)  
R/W Address 0 match interrupt control register (high)  
ANICL  
ANICH  
x’00FC80’  
x’00FC81’  
R/W A/D conversion end interrupt control register (low)  
R/W A/D conversion end interrupt control register (high)  
SCT0ICL  
SCT0ICH  
SCR0ICL  
SCR0ICH  
x’00FC82’  
x’00FC83’  
x’00FC84’  
x’00FC85’  
R/W Serial 0 transmission end interrupt control register (low)  
R/W Serial 0 transmission end interrupt control register (high)  
R/W Serial 0 reception end interrupt control register (low)  
R/W Serial 0 reception end interrupt control register (high)  
VBIVICL  
VBIVICH  
x’00FC88’  
x’00FC89’  
R/W VBIVSYNC (1) interrupt control register (low)  
R/W VBIVSYNC (1) interrupt control register (high)  
VBIVWICL  
VBIVWICH  
x’00FC8A’  
x’00FC8B’  
R/W VBIVSYNC (2) interrupt control register (low)  
R/W VBIVSYNC (2) interrupt control register (high)  
TM3UDICL  
TM3UDICH  
x’00FC8C’  
x’00FC8D’  
R/W Timer 3 underflow interrupt control register (low)  
R/W Timer 3 underflow interrupt control register (high)  
OSDGICL  
OSDGICH  
OSDCICL  
OSDCICH  
x’00FC90’  
x’00FC91’  
x’00FC92’  
x’00FC93’  
R/W OSD (graphics) interrupt control register (low)  
R/W OSD (graphics) interrupt control register (high)  
R/W OSD (text) interrupt control register (low)  
R/W OSD (text) interrupt control register (high)  
SCT1ICL  
SCT1ICH  
SCR1ICL  
SCR1ICH  
x’00FC98’  
x’00FC99’  
x’00FC9A’  
x’00FC9B’  
R/W Serial 1 transmission end interrupt control register (low)  
R/W Serial 1 transmission end interrupt control register (high)  
R/W Serial 1 reception end interrupt control register (low)  
R/W Serial 1 reception end interrupt control register (high)  
I2CICL  
I2CICH  
x’00FC9C’  
x’00FC9D’  
R/W I2C interrupt control register (low)  
R/W I2C interrupt control register (high)  
Note: The interrupt error interrupt control register does not exist in the hardware,  
but if no matching interrupt vector is found for an interrupt that occurs, the  
CPU writes a C to IAGR to indicate that it detected an abnormality.  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
47  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Interrupts  
Interrupt Control Registers  
IAGR: Accepted Interrupt Group Number Register  
x’00FC0E’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
GN5 GN4 GN3 GN2 GN1 GN0  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
IAGR returns the group number of an accepted interrupt, indicated in the  
6-bit GN field. When the interrupt handler has to calculates the header  
address for the interrupt service routine, it merely needs to add the contents  
of IAGR to the header address for the table in which are registered the vec-  
tor addresses for servicing all interrupts. IAGR is a 16-bit access register.  
GN[5:0]: Group Number  
Contains the group number multiplied by four.  
EXTMD: External Interrupt Mode Register  
x’00FCF8’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
IQ5TG IQ5TG IQ4TG IQ4TG IQ3TG IQ3TG IQ2TG IQ2TG IQ1TG IQ1TG IQ0TG IQ0TG  
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
Reset:  
R/W:  
0
0
0
0
R
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W  
EXTMD sets the trigger conditions for external interrupts. IQnTG[1:0]  
sets the interrupt mode on the associated IRQ pin. Each IRQ pin can have  
any polarity or edge setting. EXTMD is a 16-bit access register.  
00: Active-low interrupt  
01: Either-edge-triggered interrupt (positive or negative)  
10: Negative-edge-triggered interrupt  
11: Positive-edge-triggered interrupt  
WDICR: Watchdog Interrupt Control Register  
x’00FC42’  
Bit:  
7
6
5
4
3
2
1
0
WDID  
The watchdog timer interrupt is  
provided for detecting and handling  
racing. Normal operation is not  
guaranteed if the program returns  
after a watchdog interrupt. For  
actions requiring returns, use a  
timer interrupt.  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W  
WDICR is an 8-bit access register.  
WDID: Watchdog interrupt detect flag  
0: Interrupt undetected  
1: Interrupt detected  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
48  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Interrupts  
Interrupt Control Registers  
PIICR: Undefined Instruction Interrupt Control Register  
x’00FC44’  
Bit:  
7
6
5
4
3
2
1
0
PIID  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W  
PIICR is an 8-bit access register.  
PIID: Undefined instruction interrupt detect flag  
0: Interrupt undetected  
1: Interrupt detected  
EIICR: Interrupt error Interrupt Control Register  
x’00FC46’  
Bit:  
7
6
5
4
3
2
1
0
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
EIICR does not exist in the hardware, but if the CPU finds no matching  
interrupt vector for an interrupt that occurs, it writes a C to IAGR to indi-  
cate that it detected an abnormality. EIICR is an 8-bit access register.  
IQ0ICL: External Interrupt 0 Interrupt Control Register (Low)  
x’00FC48’  
Bit:  
7
6
5
4
3
2
1
0
IQ0IR  
IQ0ID  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R/W  
R
R
R
R
IQ0ICL requests and verifies interrupt requests for external interrupt 0. It  
is an 8-bit access register. Use the MOVB instruction to access it.  
IQ0IR: External interrupt 0 interrupt request flag  
0: No interrupt requested  
1: Interrupt requested  
IQ0ID: External interrupt 0 interrupt detect flag  
0: Interrupt undetected  
1: Interrupt detected  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
49  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Interrupts  
Interrupt Control Registers  
IQ0ICH: External Interrupt 0 Interrupt Control Register (High)  
x’00FC49’  
Bit:  
7
6
5
4
3
2
1
0
IQ0LV2 IQ0LV1 IQ0LV0  
IQ0IE  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R/W  
R/W  
R/W  
R
R
R
R/W  
IQ0ICH sets the priority level for and enables external interrupt 0. It is an  
8-bit access register. Use the MOVB instruction to access it.  
IQ0LV[2:0]: External interrupt 0 interrupt priority level  
Sets the priority from 0 to 6.  
IQ0IE: External interrupt 0 interrupt enable flag  
0: Disable  
1: Enable  
IQ1ICL: External Interrupt 1 Interrupt Control Register (Low)  
x’00FC4A’  
Bit:  
7
6
5
4
3
2
1
0
IQ1IR  
IQ1ID  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R/W  
R
R
R
R
IQ1ICL requests and verifies interrupt requests for external interrupt 1. It  
is an 8-bit access register. Use the MOVB instruction to access it.  
IQ1IR: External interrupt 1 interrupt request flag  
0: No interrupt requested  
1: Interrupt requested  
IQ1ID: External interrupt 1 interrupt detect flag  
0: Interrupt undetected  
1: Interrupt detected  
IQ1ICH: External Interrupt 1 Interrupt Control Register (High)  
x’00FC4B’  
Bit:  
7
6
5
4
3
2
1
0
IQ1IE  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W  
IQ1ICH enables external interrupt 1. It is an 8-bit access register. Use the  
MOVB instruction to access it.  
The priority level for external interrupt 1 is written to the IQ0LV[2:0] field  
of the IQ0ICH register.  
IQ1IE: External interrupt 1 interrupt enable flag  
0: Disable  
1: Enable  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
50  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Interrupts  
Interrupt Control Registers  
IQ2ICL: External Interrupt 2 Interrupt Control Register (Low)  
x’00FC50’  
Bit:  
7
6
5
4
3
2
1
0
IQ2IR  
IQ2ID  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R/W  
R
R
R
R
IQ2ICL requests and verifies interrupt requests for external interrupt 2. It  
is an 8-bit access register. Use the MOVB instruction to access it.  
IQ2IR: External interrupt 2 interrupt request flag  
0: No interrupt requested  
1: Interrupt requested  
IQ2ID: External interrupt 2 interrupt detect flag  
0: Interrupt undetected  
1: Interrupt detected  
IQ2ICH: External Interrupt 2 Interrupt Control Register (High)  
x’00FC51’  
Bit:  
7
6
5
4
3
2
1
0
IQ2LV2 IQ2LV1 IQ2LV0  
IQ2IE  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R/W  
R/W  
R/W  
R
R
R
R/W  
IQ2ICH sets the priority level for and enables external interrupt 2. It is an  
8-bit access register. Use the MOVB instruction to access it.  
IQ2LV[2:0]: External interrupt 2 interrupt priority level  
Sets the priority from 0 to 6.  
IQ2IE: External interrupt 2 interrupt enable flag  
0: Disable  
1: Enable  
IQ3ICL: External Interrupt 3 Interrupt Control Register (Low)  
x’00FC52’  
Bit:  
7
6
5
4
3
2
1
0
IQ3IR  
IQ3ID  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R/W  
R
R
R
R
IQ3ICL requests and verifies interrupt requests for external interrupt 3. It  
is an 8-bit access register. Use the MOVB instruction to access it.  
IQ3IR: External interrupt 3 interrupt request flag  
0: No interrupt requested  
1: Interrupt requested  
IQ3ID: External interrupt 3 interrupt detect flag  
0: Interrupt undetected  
1: Interrupt detected  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
51  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Interrupts  
Interrupt Control Registers  
IQ3ICH: External Interrupt 3 Interrupt Control Register (High)  
x’00FC53’  
Bit:  
7
6
5
4
3
2
1
0
IQ3IE  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W  
IQ3ICH enables external interrupt 3. It is an 8-bit access register. Use the  
MOVB instruction to access it.  
The priority level for external interrupt 3 is written to the IQ2LV[2:0] field  
of the IQ2ICH register.  
IQ3IE: External interrupt 3 interrupt enable flag  
0: Disable  
1: Enable  
IQ4ICL: External Interrupt 4 Interrupt Control Register (Low)  
x’00FC58’  
Bit:  
7
6
5
4
3
2
1
0
IQ4IR  
IQ4ID  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R/W  
R
R
R
R
IQ4ICL requests and verifies interrupt requests for external interrupt 4. It  
is an 8-bit access register. Use the MOVB instruction to access it.  
IQ4IR: External interrupt 4 interrupt request flag  
0: No interrupt requested  
1: Interrupt requested  
IQ4ID: External interrupt 4 interrupt detect flag  
0: Interrupt undetected  
1: Interrupt detected  
IQ4ICH: External Interrupt 4 Interrupt Control Register (High)  
x’00FC59’  
Bit:  
7
6
5
4
3
2
1
0
IQ4LV2 IQ4LV1 IQ4LV0  
IQ4IE  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R/W  
R/W  
R/W  
R
R
R
R/W  
IQ4ICH sets the priority level for and enables external interrupt 4. It is an  
8-bit access register. Use the MOVB instruction to access it.  
IQ4LV[2:0]: External interrupt 4 interrupt priority level  
Sets the priority from 0 to 6.  
IQ4IE: External interrupt 4 interrupt enable flag  
0: Disable  
1: Enable  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
52  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Interrupts  
Interrupt Control Registers  
IQ5ICL: External Interrupt 5 Interrupt Control Register (Low)  
x’00FC5A’  
Bit:  
7
6
5
4
3
2
1
0
IQ5IR  
IQ5ID  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R/W  
R
R
R
R
IQ5ICL requests and verifies interrupt requests for external interrupt 5. It  
is an 8-bit access register. Use the MOVB instruction to access it.  
IQ5IR: External interrupt 5 interrupt request flag  
0: No interrupt requested  
1: Interrupt requested  
IQ5ID: External interrupt 5 interrupt detect flag  
0: Interrupt undetected  
1: Interrupt detected  
IQ5ICH: External Interrupt 5 Interrupt Control Register (High)  
x’00FC5B’  
Bit:  
7
6
5
4
3
2
1
0
IQ5IE  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W  
IQ5ICH enables external interrupt 5. It is an 8-bit access register. Use the  
MOVB instruction to access it.  
The priority level for external interrupt 5 is written to the IQ4LV[2:0] field  
of the IQ4ICH register.  
IQ5IE: External interrupt 5 interrupt enable flag  
0: Disable  
1: Enable  
TM4CBICL: Timer 4 Compare/Capture B Interrupt Control Register (Low) x’00FC60’  
Bit:  
7
6
5
4
3
2
1
0
TM4CB  
IR  
TM4CB  
ID  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R/W  
R
R
R
R
TM4CBICL detects and requests timer 4 compare/capture B interrupts. It  
is an 8-bit access register. Use the MOVB instruction to access it.  
TM4CBIR: Timer 4 compare/capture B interrupt request flag  
0: No interrupt requested  
1: Interrupt requested  
TM4CBID: Timer 4 compare/capture B interrupt detect flag  
0: Interrupt undetected  
1: Interrupt detected  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
53  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Interrupts  
Interrupt Control Registers  
TM4CBICH: Timer 4 Compare/Capture B Interrupt Control Register (High)x’00FC61’  
Bit:  
7
6
5
4
3
2
1
0
TM4CB TM4CB TM4CB  
TM4CB  
IE  
LV2  
LV1  
LV0  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R/W  
R/W  
R/W  
R
R
R
R/W  
TM4CBICH sets the priority level for and enables timer 4 compare/capture  
B interrupts. It is an 8-bit access register. Use the MOVB instruction to  
access it.  
TM4CBLV[2:0]: Timer 4 compare/capture B interrupt priority level  
Sets the priority from 0 to 6.  
TM4CBIE: Timer 4 compare/capture B interrupt enable flag  
0: Disable  
1: Enable  
TM4CAICL: Timer 4 Compare/Capture A Interrupt Control Register (Low) x’00FC62’  
Bit:  
7
6
5
4
3
2
1
0
TM4CA  
IR  
TM4CA  
ID  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R/W  
R
R
R
R
TM4CAICL detects and requests timer 4 compare/capture interrupts. It is  
an 8-bit access register. Use the MOVB instruction to access it.  
TM4CAIR: Timer 4 compare/capture A interrupt request flag  
0: No interrupt requested  
1: Interrupt requested  
TM4CAID: Timer 4 compare/capture A interrupt detect flag  
0: Interrupt undetected  
1: Interrupt detected  
TM4CAICH: Timer 4 Compare/Capture A Interrupt Control Register (High)x’00FC63’  
Bit:  
7
6
5
4
3
2
1
0
TM4CA  
IE  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W  
TM4CAICH enables timer 4 compare/capture interrupts. It is an 8-bit  
access register. Use the MOVB instruction to access it.  
The priority level for timer 4 compare/capture interrupts is written to the  
TM4CBLV[2:0] field of the TM4CBICH register.  
TM4CAIE: Timer 4 compare/capture A interrupt enable flag  
0: Disable  
1: Enable  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
54  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Interrupts  
Interrupt Control Registers  
TM4UDICL: Timer 4 Underflow Interrupt Control Register (Low)  
x’00FC64’  
Bit:  
7
6
5
4
3
2
1
0
TM4UD  
IR  
TM4UD  
ID  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R/W  
R
R
R
R
TM4UDICL detects and requests timer 4 underflow interrupts. It is an 8-  
bit access register. Use the MOVB instruction to access it.  
TM4UDIR: Timer 4 underflow interrupt request flag  
0: No interrupt requested  
1: Interrupt requested  
TM4UDID: Timer 4 underflow interrupt detect flag  
0: Interrupt undetected  
1: Interrupt detected  
TM4UDICH: Timer 4 Underflow Interrupt Control Register (High)  
x’00FC65’  
Bit:  
7
6
5
4
3
2
1
0
TM4UD  
IE  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W  
TM4UDICH enables timer 4 underflow interrupts. It is an 8-bit access regis-  
ter. Use the MOVB instruction to access it.  
The priority level for timer 4 underflow interrupts is written to the  
TM4CBLV[2:0] field of the TM4CBICH register.  
TM4UDIE: Timer 4 underflow interrupt enable flag  
0: Disable  
1: Enable  
VBIICL: VBI (1) Interrupt Control Register (Low)  
x’00FC66’  
Bit:  
7
6
5
4
3
2
1
0
VBI  
IR  
VBI  
ID  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R/W  
R
R
R
R
VBIICL detects and requests VBI (1) interrupts. It is an 8-bit access register.  
Use the MOVB instruction to access it.  
VBIIR: VBI (1) interrupt request flag  
0: No interrupt requested  
1: Interrupt requested  
VBIID: VBI (1) interrupt detect flag  
0: Interrupt undetected  
1: Interrupt detected  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
55  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Interrupts  
Interrupt Control Registers  
VBIICH: VBI (1) Interrupt Control Register (High)  
x’00FC67’  
Bit:  
7
6
5
4
3
2
1
0
VBI  
IE  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W  
VBIICH enables VBI (1) interrupts. It is an 8-bit access register. Use the  
MOVB instruction to access it.  
The priority level for VBI (1) interrupts is written to the TM4CBLV[2:0]  
field of the TM4CBICH register.  
VBIIE: VBI (1) interrupt enable flag  
0: Disable  
1: Enable  
TM5CBICL: Timer 5 Compare/Capture B Interrupt Control Register (Low) x’00FC68’  
Bit:  
7
6
5
4
3
2
1
0
TM5CB  
IR  
TM5CB  
ID  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R/W  
R
R
R
R
TM5CBICL detects and requests timer 5 compare/capture B interrupts. It  
is an 8-bit access register. Use the MOVB instruction to access it.  
TM5CBIR: Timer 5 compare/capture B interrupt request flag  
0: No interrupt requested  
1: Interrupt requested  
TM5CBID: Timer 5 compare/capture B interrupt detect flag  
0: Interrupt undetected  
1: Interrupt detected  
TM5CBICH: Timer 5 Compare/Capture B Interrupt Control Register (High)x’00FC69’  
Bit:  
7
6
5
4
3
2
1
0
TM5CB TM5CB TM5CB  
TM5CB  
IE  
LV2  
LV1  
LV0  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R/W  
R/W  
R/W  
R
R
R
R/W  
TM5CBICH sets the priority level for and enables timer 5 compare/capture  
B interrupts. It is an 8-bit access register. Use the MOVB instruction to  
access it.  
TM5CBLV[2:0]: Timer 5 compare/capture B interrupt priority level  
Sets the priority from 0 to 6.  
TM5CBIE: Timer 5 compare/capture B interrupt enable flag  
0: Disable  
1: Enable  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
56  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Interrupts  
Interrupt Control Registers  
TM5CAICL: Timer 5 Compare/Capture A Interrupt Control Register (Low) x’00FC6A’  
Bit:  
7
6
5
4
3
2
1
0
TM5CA  
IR  
TM5CA  
ID  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R/W  
R
R
R
R
TM5CAICL detects and requests timer 5 compare/capture interrupts. It is  
an 8-bit access register. Use the MOVB instruction to access it.  
TM5CAIR: Timer 5 compare/capture A interrupt request flag  
0: No interrupt requested  
1: Interrupt requested  
TM5CAID: Timer 5 compare/capture A interrupt detect flag  
0: Interrupt undetected  
1: Interrupt detected  
TM5CAICH: Timer 5 Compare/Capture A Interrupt Control Register (High) x’00FC6B’  
Bit:  
7
6
5
4
3
2
1
0
TM5CA  
IE  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W  
TM5CAICH enables timer 5 compare/capture interrupts. It is an 8-bit  
access register. Use the MOVB instruction to access it.  
The priority level for timer 5 compare/capture interrupts is written to the  
TM5CBLV[2:0] field of the TM5CBICH register.  
TM5CAIE: Timer 5 compare/capture A interrupt enable flag  
0: Disable  
1: Enable  
TM5UDICL: Timer 5 Underflow Interrupt Control Register (Low)  
x’00FC6C’  
Bit:  
7
6
5
4
3
2
1
0
TM5UD  
IR  
TM5UD  
ID  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R/W  
R
R
R
R
TM5UDICL detects and requests timer 5 underflow interrupts. It is an 8-  
bit access register. Use the MOVB instruction to access it.  
TM5UDIR: Timer 5 underflow interrupt request flag  
0: No interrupt requested  
1: Interrupt requested  
TM5UDID: Timer 5 underflow interrupt detect flag  
0: Interrupt undetected  
1: Interrupt detected  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
57  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Interrupts  
Interrupt Control Registers  
TM5UDICH: Timer 5 Underflow Interrupt Control Register (High)  
x’00FC6D’  
Bit:  
7
6
5
4
3
2
1
0
TM5UD  
IE  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W  
TM5UDICH enables timer 5 underflow interrupts. It is an 8-bit access reg-  
ister. Use the MOVB instruction to access it.  
The priority level for timer 5 underflow interrupts is written to the  
TM5CBLV[2:0] field of the TM5CBICH register.  
TM5UDIE: Timer 5 underflow interrupt enable flag  
0: Disable  
1: Enable  
VBIWICL: VBI (2) Interrupt Control Register (Low)  
x’00FC6E’  
Bit:  
7
6
5
4
3
2
1
0
VBIW  
IR  
VBIW  
ID  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R/W  
R
R
R
R
VBIWICL detects and requests VBI (2) interrupts. It is an 8-bit access reg-  
ister. Use the MOVB instruction to access it.  
VBIWIR: VBI (2) interrupt request flag  
0: No interrupt requested  
1: Interrupt requested  
VBIWID: VBI (2) interrupt detect flag  
0: Interrupt undetected  
1: Interrupt detected  
VBIWICH: VBI (2) Interrupt Control Register (High)  
x’00FC6F’  
Bit:  
7
6
5
4
3
2
1
0
VBIW  
IE  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W  
VBIWICH register enables VBI (2) interrupts. It is an 8-bit access register.  
Use the MOVB instruction to access it.  
The priority level for VBI (2) interrupts is written to the TM5CBLV[2:0]  
field of the TM5CBICH register.  
VBIWIE: VBI (2) interrupt enable flag  
0: Disable  
1: Enable  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
58  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Interrupts  
Interrupt Control Registers  
TM2UDICL: Timer 2 Underflow Interrupt Control Register (Low)  
x’00FC70’  
Bit:  
7
6
5
4
3
2
1
0
TM2UD  
IR  
TM2UD  
ID  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R/W  
R
R
R
R
TM2UDICL register detects and requests timer 2 underflow interrupts. It is  
an 8-bit access register. Use the MOVB instruction to access it.  
TM2UDIR: Timer 2 underflow interrupt request flag  
0: No interrupt requested  
1: Interrupt requested  
TM2UDID: Timer 2 underflow interrupt detect flag  
0: Interrupt undetected  
1: Interrupt detected  
TM2UDICH: Timer 2 Underflow Interrupt Control Register (High)  
x’00FC71’  
Bit:  
7
6
5
4
3
2
1
0
TM2UD TM2UD TM2UD  
TM2UD  
IE  
LV2  
LV1  
LV0  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R/W  
R/W  
R/W  
R
R
R
R/W  
TM2UDICH sets the priority level for and enables timer 2 underflow inter-  
rupts. It is an 8-bit access register. Use the MOVB instruction to access it.  
TM2UDLV[2:0]: Timer 2 underflow interrupt priority level  
Sets the priority from 0 to 6.  
TM2UDIE: Timer 2 underflow interrupt enable flag  
0: Disable  
1: Enable  
TM1UDICL: Timer 1 Underflow Interrupt Control Register (Low)  
x’00FC72’  
Bit:  
7
6
5
4
3
2
1
0
TM1UD  
IR  
TM1UD  
ID  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R/W  
R
R
R
R
TM1UDICL detects and requests timer 1 underflow interrupts. It is an 8-  
bit access register. Use the MOVB instruction to access it.  
TM1UDIR: Timer 1 underflow interrupt request flag  
0: No interrupt requested  
1: Interrupt requested  
TM1UDID: Timer 1 underflow interrupt detect flag  
0: Interrupt undetected  
1: Interrupt detected  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
59  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Interrupts  
Interrupt Control Registers  
TM1UDICH: Timer 1 Underflow Interrupt Control Register (High)  
x’00FC73’  
Bit:  
7
6
5
4
3
2
1
0
TM1UD  
IE  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W  
TM1UDICH enables timer 1 underflow interrupts. It is an 8-bit access reg-  
ister. Use the MOVB instruction to access it.  
The priority level for timer 1 underflow interrupts is written to the  
TM2UDLV[2:0] field of the TM2UDICH register.  
TM1UDIE: Timer 1 underflow interrupt enable flag  
0: Disable  
1: Enable  
TM0UDICL: Timer 0 Underflow Interrupt Control Register (Low)  
x’00FC74’  
Bit:  
7
6
5
4
3
2
1
0
TM0UD  
IR  
TM0UD  
ID  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R/W  
R
R
R
R
TM0UDICL register detects and requests timer 0 underflow interrupts. It is  
an 8-bit access register. Use the MOVB instruction to access it.  
TM0UDIR: Timer 0 underflow interrupt request flag  
0: No interrupt requested  
1: Interrupt requested  
TM0UDID: Timer 0 underflow interrupt detect flag  
0: Interrupt undetected  
1: Interrupt detected  
TM0UDICH: Timer 0 Underflow Interrupt Control Register (High)  
x’00FC75’  
Bit:  
7
6
5
4
3
2
1
0
TM0UD  
IE  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W  
TM0UDICH enables timer 0 underflow interrupts. It is an 8-bit access reg-  
ister. Use the MOVB instruction to access it.  
The priority level for timer 0 underflow is written to the TM2UDLV[2:0]  
field of the TM2UDICH register.  
TM0UDIE: Timer 0 underflow interrupt enable flag  
0: Disable  
1: Enable  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
60  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Interrupts  
Interrupt Control Registers  
RMCICL: Remote Signal Receive Interrupt Control Register (Low)  
x’00FC76’  
Bit:  
7
6
5
4
3
2
1
0
RMC  
IR  
RMC  
ID  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R/W  
R
R
R
R
RMCICL detects and requests remote signal receive interrupts. It is an 8-  
bit access register. Use the MOVB instruction to access it.  
RMCIR: Remote signal receive interrupt request flag  
0: No interrupt requested  
1: Interrupt requested  
RMCID: Remote signal receive interrupt detect flag  
0: Interrupt undetected  
1: Interrupt detected  
RMCICH: Remote Signal Receive Interrupt Control Register (High)  
x’00FC77’  
Bit:  
7
6
5
4
3
2
1
0
RMC  
IE  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W  
RMCICH enables remote signal receive interrupts. It is an 8-bit access regis-  
ter. Use the MOVB instruction to access it.  
The priority level for remote signal receive interrupts is written to the  
TM2UDLV[2:0] field of the TM2UDICH register.  
RMCIE: Remote signal receive interrupt enable flag  
0: Disable  
1: Enable  
ADM3ICL: Address 3 Match Interrupt Control Register (Low)  
x’00FC78’  
Bit:  
7
6
5
4
3
2
1
0
ADM3  
IR  
ADM3  
ID  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R/W  
R
R
R
R
ADM3ICL detects and requests address match 3 interrupts. It is an 8-bit  
access register. Use the MOVB instruction to access it.  
ADM3IR: Address match 3 interrupt request flag  
0: No interrupt requested  
1: Interrupt requested  
ADM3ID: Address match 3 interrupt detect flag  
0: Interrupt undetected  
1: Interrupt detected  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
61  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Interrupts  
Interrupt Control Registers  
ADM3ICH: Address 3 Match Interrupt Control Register (High)  
x’00FC79’  
Bit:  
7
6
5
4
3
2
1
0
ADM3 ADM3 ADM3  
ADM3  
IE  
LV2  
LV1  
LV0  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R/W  
R/W  
R/W  
R
R
R
R/W  
ADM3ICH sets the priority level for and enables address match 3 inter-  
rupts. It is an 8-bit access register. Use the MOVB instruction to access it.  
ADM3LV[2:0]: Address match 3 interrupt priority level  
Sets the priority from 0 to 6.  
ADM3IE: Address match 3 interrupt enable flag  
0: Disable  
1: Enable  
ADM2ICL: Address 2 Match Interrupt Control Register (Low)  
x’00FC7A’  
Bit:  
7
6
5
4
3
2
1
0
ADM2  
IR  
ADM2  
ID  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R/W  
R
R
R
R
ADM2ICL detects and requests address match 2 interrupts. It is an 8-bit  
access register. Use the MOVB instruction to access it.  
ADM2IR: Address match 2 interrupt request flag  
0: No interrupt requested  
1: Interrupt requested  
ADM2ID: Address match 2 interrupt detect flag  
0: Interrupt undetected  
1: Interrupt detected  
ADM2ICH: Address 2 Match Interrupt Control Register (High)  
x’00FC7B’  
Bit:  
7
6
5
4
3
2
1
0
ADM2  
IE  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W  
ADM2ICH enables address match 2 interrupts. It is an 8-bit access regis-  
ter. Use the MOVB instruction to access it.  
The priority level for address match 2 interrupts is written to the  
ADM3LV[2:0] field of the ADM3ICH register.  
ADM2IE: Address match 2 interrupt enable flag  
0: Disable  
1: Enable  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
62  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Interrupts  
Interrupt Control Registers  
ADM1ICL: Address 1 Match Interrupt Control Register (Low)  
x’00FC7C’  
Bit:  
7
6
5
4
3
2
1
0
ADM1  
IR  
ADM1  
ID  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R/W  
R
R
R
R
ADM1ICL detects and requests address match 1 interrupts. It is an 8-bit  
access register. Use the MOVB instruction to access it.  
ADM1IR: Address match 1 interrupt request flag  
0: No interrupt requested  
1: Interrupt requested  
ADM1ID: Address match 1 interrupt detect flag  
0: Interrupt undetected  
1: Interrupt detected  
ADM1ICH: Address 1 Match Interrupt Control Register (High)  
x’00FC7D’  
Bit:  
7
6
5
4
3
2
1
0
ADM1  
IE  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W  
ADM1ICH enables address match 1 interrupts. It is an 8-bit access register.  
Use the MOVB instruction to access it.  
The priority level for address match 1 interrupts is written to the  
ADM3LV[2:0] field of the ADM3ICH register.  
ADM1IE: Address match 1 interrupt enable flag  
0: Disable  
1: Enable  
ADM0ICL: Address 0 Match Interrupt Control Register (Low)  
x’00FC7E’  
Bit:  
7
6
5
4
3
2
1
0
ADM0  
IR  
ADM0  
ID  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R/W  
R
R
R
R
ADM0ICL detects and requests address match 0 interrupts. It is an 8-bit  
access register. Use the MOVB instruction to access it.  
ADM0IR: Address match 0 interrupt request flag  
0: No interrupt requested  
1: Interrupt requested  
ADM0ID: Address match 0 interrupt detect flag  
0: Interrupt undetected  
1: Interrupt detected  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
63  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Interrupts  
Interrupt Control Registers  
ADM0ICH: Address 0 Match Interrupt Control Register (High)  
x’00FC7F’  
Bit:  
7
6
5
4
3
2
1
0
ADM0  
IE  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W  
ADM0ICH enables address match 0 interrupts. It is an 8-bit access regis-  
ter. Use the MOVB instruction to access it.  
The priority level for address match 0 interrupts is written to the  
ADM3LV[2:0] field of the ADM3ICH register.  
ADM0IE: Address match 0 interrupt enable flag  
0: Disable  
1: Enable  
ANICL: A/D Conversion End Interrupt Control Register (Low)  
x’00FC80’  
Bit:  
7
6
5
4
3
2
1
0
ANIR  
ANID  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R/W  
R
R
R
R
ANICL detects and requests A/D conversion end interrupts. It is an 8-bit  
access register. Use the MOVB instruction to access it.  
ANIR: A/D conversion end interrupt request flag  
0: No interrupt requested  
1: Interrupt requested  
ANID: A/D conversion end interrupt detect flag  
0: Interrupt undetected  
1: Interrupt detected  
ANICH: A/D Conversion End Interrupt Control Register (High)  
x’00FC81’  
Bit:  
7
6
5
4
3
2
1
0
ANLV2 ANLV1 ANLV0  
ANIE  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R/W  
R/W  
R/W  
R
R
R
R/W  
ANICH sets the priority level for and enables A/D conversion end inter-  
rupts. It is an 8-bit access register. Use the MOVB instruction to access it.  
ANLV[2:0]: A/D conversion end interrupt priority level  
Sets the priority from 0 to 6.  
ANIE: A/D conversion end interrupt enable flag  
0: Disable  
1: Enable  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
64  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Interrupts  
Interrupt Control Registers  
SCT0ICL: Serial 0 Transmission End Interrupt Control Register (Low) x’00FC82’  
Bit:  
7
6
5
4
3
2
1
0
SCT0  
IR  
SCT0  
ID  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R/W  
R
R
R
R
SCT0ICL detects and requests serial 0 transmission end interrupts. It is an  
8-bit access register. Use the MOVB instruction to access it.  
SCT0IR: Serial 0 transmission end interrupt request flag  
0: No interrupt requested  
1: Interrupt requested  
SCT0ID: Serial 0 transmission end interrupt detect flag  
0: Interrupt undetected  
1: Interrupt detected  
SCT0ICH: Serial 0 Transmission End Interrupt Control Register (High) x’00FC83’  
Bit:  
7
6
5
4
3
2
1
0
SCT0  
IE  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W  
SCT0ICH enables serial 0 transmission end interrupts. It is an 8-bit access reg-  
ister. Use the MOVB instruction to access it.  
The priority level for serial 0 transmission end interrupts is written to the  
ANLV[2:0] field of the ANICH register.  
SCT0IE: Serial 0 transmission end interrupt enable flag  
0: Disable  
1: Enable  
SCR0ICL: Serial 0 Reception End Interrupt Control Register (Low)  
x’00FC84’  
Bit:  
7
6
5
4
3
2
1
0
SCR0  
IR  
SCR0  
ID  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R/W  
R
R
R
R
SCR0ICL detects and requests serial 0 reception end interrupts. It is an 8-  
bit access register. Use the MOVB instruction to access it.  
SCT0IR: Serial 0 reception end interrupt request flag  
0: No interrupt requested  
1: Interrupt requested  
SCT0ID: Serial 0 reception end interrupt detect flag  
0: Interrupt undetected  
1: Interrupt detected  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
65  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Interrupts  
Interrupt Control Registers  
SCR0ICH: Serial 0 Reception End Interrupt Control Register (High)  
x’00FC85’  
Bit:  
7
6
5
4
3
2
1
0
SCR0  
IE  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W  
SCR0ICH enables serial 0 reception end interrupts. It is an 8-bit access  
register. Use the MOVB instruction to access it.  
The priority level for serial 0 reception end interrupts is written to the  
ANLV[2:0] field of the ANICH register.  
SCR0IE: Serial 0 reception end interrupt enable flag  
0: Disable  
1: Enable  
VBIVICL: VBIVSYNC (1) Interrupt Control Register (Low)  
x’00FC88’  
Bit:  
7
6
5
4
3
2
1
0
VBIVIR  
VBIVID  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R/W  
R
R
R
R
VBIVICL detects and requests VBIVSYNC (1) interrupts. It is an 8-bit  
access register. Use the MOVB instruction to access it.  
VBIVIR: VBIVSYNC (1) interrupt request flag  
0: No interrupt requested  
1: Interrupt requested  
VBIVID: VBIVSYNC (1) interrupt detect flag  
0: Interrupt undetected  
1: Interrupt detected  
VBIVICH: VBIVSYNC (1) Interrupt Control Register (High)  
x’00FC89’  
Bit:  
7
6
5
4
3
2
1
0
VBIV  
LV2  
VBIV  
LV1  
VBIV  
LV0  
VBIV  
IE  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R/W  
R/W  
R/W  
R
R
R
R/W  
VBIVICH sets the priority level for and enables VBIVSYNC (1) inter-  
rupts. It is an 8-bit access register. Use the MOVB instruction to access it.  
VBIVLV[2:0]: VBIVSYNC (1) interrupt priority level  
Sets the priority from 0 to 6.  
VBIVIE: VBIVSYNC (1) interrupt enable flag  
0: Disable  
1: Enable  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
66  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Interrupts  
Interrupt Control Registers  
VBIVWICL: VBIVSYNC (2) Interrupt Control Register (Low)  
x’00FC8A’  
Bit:  
7
6
5
4
3
2
1
0
VBIVW  
IR  
VBIVW  
ID  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R/W  
R
R
R
R
VBIVWICL detects and requests VBIVSYNC (2) interrupts. It is an 8-bit  
access register. Use the MOVB instruction to access it.  
VBIVWIR: VBIVSYNC (2) interrupt request flag  
0: No interrupt requested  
1: Interrupt requested  
VBIVWID: VBIVSYNC (2) interrupt detect flag  
0: Interrupt undetected  
1: Interrupt detected  
VBIVWICH: VBIVSYNC (2) Interrupt Control Register (High)  
x’00FC8B’  
Bit:  
7
6
5
4
3
2
1
0
VBIVW  
IE  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W  
VBIVWICH enables VBIVSYNC (2) interrupts. It is an 8-bit access register.  
Use the MOVB instruction to access it.  
The priority level for VBIVSYNC (2) interrupts is written to the  
VBIVLV[2:0] field of the VBIVICH register.  
VBIVWIE: VBIVSYNC (2) interrupt enable flag  
0: Disable  
1: Enable  
TM3UDICL: Timer 3 Underflow Interrupt Control Register (Low)  
x’00FC8C’  
Bit:  
7
6
5
4
3
2
1
0
TM3UD  
IR  
TM3UD  
ID  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R/W  
R
R
R
R
TM3UDICL detects and requests timer 3 underflow interrupts. It is an 8-  
bit access register. Use the MOVB instruction to access it.  
TM3UDIR: Timer 3 underflow interrupt request flag  
0: No interrupt requested  
1: Interrupt requested  
TM3UDID: Timer 3 underflow interrupt detect flag  
0: Interrupt undetected  
1: Interrupt detected  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
67  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Interrupts  
Interrupt Control Registers  
TM3UDICH: Timer 3 Underflow Interrupt Control Register (High)  
x’00FC8D’  
Bit:  
7
6
5
4
3
2
1
0
TM3UD  
IE  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W  
TM3UDICH enables timer 3 underflow interrupts. It is an 8-bit access reg-  
ister. Use the MOVB instruction to access it.  
The priority level for timer 3 underflow interrupts is written to the  
VBIVLV[2:0] field of the VBIVICH register.  
TM3UDIE: Timer 3 underflow interrupt enable flag  
0: Disable  
1: Enable  
OSDGICL: OSD (Graphics) Interrupt Control Register (Low)  
x’00FC90’  
Bit:  
7
6
5
4
3
2
1
0
OSDG  
IR  
OSDG  
ID  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R/W  
R
R
R
R
OSDGICL detects and requests OSD (graphics) interrupts. It is an 8-bit  
access register. Use the MOVB instruction to access it.  
OSDGIR: OSD (graphics) interrupt request flag  
0: No interrupt requested  
1: Interrupt requested  
OSDGID: OSD (graphics) interrupt detect flag  
0: Interrupt undetected  
1: Interrupt detected  
OSDGICH: OSD (Graphics) Interrupt Control Register (High)  
x’00FC91’  
Bit:  
7
6
5
4
3
2
1
0
OSDG OSDG OSDG  
OSDG  
IE  
LV2  
LV1  
LV0  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R/W  
R/W  
R/W  
R
R
R
R/W  
OSDGICH sets the priority level for and enables OSD (graphics) inter-  
rupts. It is an 8-bit access register. Use the MOVB instruction to access it.  
OSDGLV[2:0]: OSD (graphics) interrupt priority level  
Sets the priority from 0 to 6.  
OSDGIE: OSD (graphics) interrupt enable flag  
0: Disable  
1: Enable  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
68  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Interrupts  
Interrupt Control Registers  
OSDCICL: OSD (Text) Interrupt Control Register (Low)  
x’00FC92’  
Bit:  
7
6
5
4
3
2
1
0
OSDC  
IR  
OSDC  
ID  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R/W  
R
R
R
R
OSDCICL detects and requests OSD (text) interrupts. It is an 8-bit access  
register. Use the MOVB instruction to access it.  
OSDCIR: OSD (text) interrupt request flag  
0: No interrupt requested  
1: Interrupt requested  
OSDCID: OSD (text) interrupt detect flag  
0: Interrupt undetected  
1: Interrupt detected  
OSDCICH: OSD (Text) Interrupt Control Register (High)  
x’00FC93’  
Bit:  
7
6
5
4
3
2
1
0
OSDC  
IE  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W  
OSDCICH enables timer OSD (text) interrupts. It is an 8-bit access register.  
Use the MOVB instruction to access it.  
The priority level for OSD (text) interrupts is written to the OSDGLV[2:0]  
field of the OSDGICH register.  
OSDCIE: OSD (text) interrupt enable flag  
0: Disable  
1: Enable  
SCT1ICL: Serial 1 Transmission End Interrupt Control Register (Low) x’00FC98’  
Bit:  
7
6
5
4
3
2
1
0
SCT1  
IR  
SCT1  
ID  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R/W  
R
R
R
R
SCT1ICL detects and requests serial 1 transmission end interrupts. It is an  
8-bit access register. Use the MOVB instruction to access it.  
SCT1IR: Serial 1 transmission end interrupt request flag  
0: No interrupt requested  
1: Interrupt requested  
SCT1ID: Serial 1 transmission end interrupt detect flag  
0: Interrupt undetected  
1: Interrupt detected  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
69  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Interrupts  
Interrupt Control Registers  
SCT1ICH: Serial 1 Transmission End Interrupt Control Register (High) x’00FC99’  
Bit:  
7
6
5
4
3
2
1
0
SCT1  
LV2  
SCT1  
LV1  
SCT1  
LV0  
SCT1  
IE  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R/W  
R/W  
R/W  
R
R
R
R/W  
SCT1ICH sets the priority level for and enables serial 1 transmission end  
interrupts. It is an 8-bit access register. Use the MOVB instruction to  
access it.  
SCT1LV[2:0]: Serial 1 transmission end interrupt priority level  
Sets the priority from 0 to 6.  
SCT1IE: Serial 1 transmission end interrupt enable flag  
0: Disable  
1: Enable  
SCR1ICL: Serial 1 Reception End Interrupt Control Register (Low)  
x’00FC9A’  
Bit:  
7
6
5
4
3
2
1
0
SCR1  
IR  
SCR1  
ID  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R/W  
R
R
R
R
SCR1ICL detects and requests serial 1 reception end interrupts. It is an 8-  
bit access register. Use the MOVB instruction to access it.  
SCT1IR: Serial 1 reception end interrupt request flag  
0: No interrupt requested  
1: Interrupt requested  
SCT1ID: Serial 1 reception end interrupt detect flag  
0: Interrupt undetected  
1: Interrupt detected  
SCR1ICH: Serial 1 Reception End Interrupt Control Register (High) x’00FC9B’  
Bit:  
7
6
5
4
3
2
1
0
SCR1  
IE  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W  
SCR1ICH enables serial 1 reception end interrupts. It is an 8-bit access  
register. Use the MOVB instruction to access it.  
The priority level for serial 1 reception end interrupts is written to the  
SCT1LV[2:0] field of the SCT1ICH register.  
SCR1IE: Serial 1 reception end interrupt enable flag  
0: Disable  
1: Enable  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
70  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Interrupts  
Interrupt Control Registers  
2
I2CICL: I C Interrupt Control Register (Low)  
x’00FC9C’  
Bit:  
7
6
5
4
3
2
1
0
I2C  
IR  
I2C  
ID  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R/W  
R
R
R
R
I2CICL detects and requests I2C interrupts. It is an 8-bit access register.  
Use the MOVB instruction to access it.  
2
I2CIR: I C interrupt request flag  
0: No interrupt requested  
1: Interrupt requested  
2
I2CID: I C interrupt detect flag  
0: Interrupt undetected  
1: Interrupt detected  
2
I2CICH: I C Interrupt Control Register (High)  
x’00FC9D’  
Bit:  
7
6
5
4
3
2
1
0
I2C  
IE  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W  
I2CICH enables I2C interrupts. It is an 8-bit access register. Use the  
MOVB instruction to access it.  
The priority level for I2C interrupts is written to the SCT1LV[2:0] field of  
the SCT1ICH register.  
2
I2CIE: I C interrupt enable flag  
0: Disable  
1: Enable  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
71  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Low-Power Modes  
CPU Modes  
3
Low-Power Modes  
The MN102H75K/85K provides two ways to reduce power consumption, con-  
trolling CPU operating and standby modes to cut overall consumption and  
shutting down unused functions by stopping the system clock supplied to them.  
3.1 CPU Modes  
3.1.1 Description  
The MN102H75K/85K has two CPU operating modes, NORMAL and SLOW,  
and two CPU standby modes, HALT and STOP. Effective use of these modes can  
significantly reduce power consumption. Figure 3-1 shows the CPU states in the  
different modes.  
Program  
(Write to CPUM  
register)  
NORMAL Mode  
Clock to CPU: 24 MHz  
System clock: 12 MHz  
CPU stopped, PLL on  
Clock to CPU: 24 MHz  
System clock: 12 MHz  
CPU and PLL on  
Interrupt  
Program  
(Write to CPUM register)  
STOP Mode  
IDLE State  
Clock to CPU: off  
System clock: off  
CPU and PLL off  
Clock to CPU: 24 MHz  
System clock: 12 MHz  
CPU and PLL on  
HALT Mode  
Program  
(Write to CPUM register)  
Program  
(Write to CPUM register)  
Program  
Program  
(Write to CPUM  
register)  
(Write to CPUM  
register)  
SLOW Mode  
Clock to CPU: 4 MHz  
System clock: 2 MHz  
CPU and PLL off  
Clock to CPU: 4 MHz  
System clock: 2 MHz  
CPU on, PLL on  
Interrupt  
Interrupt  
Figure 3-1 CPU State Changes  
The CPU mode control register (CPUM) controls transitions between NORMAL  
and SLOW modes and from NORMAL and SLOW modes to the standby modes.  
A normal reset or an interrupt wakes the MCU from a standby mode.  
You cannot enter STOP mode  
from NORMAL mode.  
Note that you cannot invoke the STOP mode from NORMAL mode. You can  
only enter STOP from the SLOW mode.  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
72  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Low-Power Modes  
CPU Modes  
3.1.2 Exiting from SLOW Mode to NORMAL Mode  
The MN102H75K/85K contains a PLL circuit that, in NORMAL mode, mul-  
tiplies the clock input through the OSC1 and OSC2 pins by 12, divides the signal  
by 2, then sends the resulting clock to the CPU. (See figure 3-2.) The MCU starts  
in SLOW mode on power up and on recovery from a reset. In SLOW mode  
(system clock = 2 MHz), the clock from the OSC pins feeds directly to the CPU,  
without going through the PLL circuit. This means that the program must switch  
the CPU from SLOW to NORMAL mode (system clock = 12 MHz).  
The MN102H75K/85K recovers  
from power up and reset in  
SLOW mode. For normal opera-  
tion, the program must switch  
the MCU from SLOW to NOR-  
MAL mode.  
Clock select  
(CPUM register)  
24 MHz  
12x PLL  
circuit  
Divide-by-2  
circuit  
48 MHz  
NORMAL mode  
SLOW mode  
M
U
X
To all function blocks  
CPU  
4 MHz  
System clock:  
SLOW: 2 MHz  
NORMAL: 12 MHz  
4 MHz  
Oscillator  
Circuit  
Figure 3-2 CPU Clock Switch (NORMAL/SLOW Modes)  
Below is an example routine for exiting SLOW mode. You should run this  
routine immediately after power up.  
Example 3-1 Exiting SLOW Mode  
MOV x’FC00’,A1  
MOV (A1),D0  
AND x’FFFD’,D0  
MOV (D0),A1  
MOV (A1),D0  
AND x’FFF0’,D0  
MOV (D0),A1  
;Read CPUM register  
;Invoke IDLE mode  
;Read CPUM register  
;Invoke NORMAL mode  
Because the system clock in SLOW mode is 2 MHz, the OSD does not function.  
The specifications also differ for the PWM function and functions such as the IR  
remote signal receiver and the H counter that use the PWM waveforms.  
The OSD cannot display in  
SLOW mode.  
For information on invoking SLOW mode from NORMAL mode, see MN102H  
Series LSI User Manual.  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
73  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Low-Power Modes  
CPU Modes  
3.1.3 Notes on Invoking and Exiting STOP and HALT Modes  
When invoking STOP and HALT modes...  
To reduce power consumption before invoking the STOP or HALT mode, stop  
current flow from output pins and stabilize the input level of input pins. For  
output pins, either match the output level to the external level or set the pin to  
power consumption, shut down unnecessary functions through the control reg-  
isters. (See section 3.2, “Turning Individual Functions On and Off,” on page 75.)  
Before entering the STOP mode, set all of the bits shown in table 3-1 to disable  
all of these functions. Disable all functions in the NORMAL mode except the  
PLL circuit, which you can only shut down once you have entered the SLOW  
mode.  
To allow the MCU to exit the STOP or HALT mode on reset or interrupt, you  
must set the interrupt registers before you invoke the standby mode. To specify a  
particular interrupt vector as the signal for waking up, enable that vector in the  
interrupt registers. (For more information on controlling interrupts, see “section  
2, “Interrupts,” on page 37.)  
Using OSDX clock (both an LC  
blocking oscillator and external  
source), OSDXI and OSDXO  
must be set to port (P46, P45)  
and output ’H’ before invoking  
STOP mode.  
When exiting STOP and HALT modes...  
The MCU exits STOP and HALT modes on reset or interrupt. For information on  
exiting on interrupt, see Figure 3-1, “CPU State Changes,” on page 72. When the  
MCU exits on reset, it always exits to SLOW mode.  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
74  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Low-Power Modes  
Turning Individual Functions On and Off  
3.2 Turning Individual Functions On and Off  
The MN102H75K/85K allows you to turn each peripheral function on or off  
through writing to the registers. You can significantly reduce power consumption  
by turning off unused functions. Table 3-1 shows the register bits controlling on  
and off for each function block. The ADC used for the OSD and CCD functions  
is turned off on reset. Write a 1 to the function to enable it, when necessary.  
You cannot set the PLL function  
control bit during NORMAL mode.  
You must set it from the SLOW  
mode.  
You cannot read from or write to the registers associated with a function that is  
disabled. Turning on the function enables register reads and writes.  
See the sections on each of these peripheral functions for more information.  
To turn off the OSD block to save  
power:  
1. Write a 0 to OSD (OSD1, bit10).  
2. Wait for the next VSYNC input.  
3. Write a 0 to OSDPOFF(PCNT0,  
bit 7), turning the clock off.  
If you turn the clock off before the  
VSYNC input, power usage may  
not drop or the microcontroller  
may halt.  
Table 3-1 Peripheral Function On/Off Switches  
Block Name  
Description  
Bit Name  
Address  
Operation  
Reset Value  
0:OSD block off  
PCNT0, x’00FF90’, bit  
7
OSD block control  
OSDPOFF  
0
1:OSD block enabled  
0:OSD function off  
OSD1, x’007F06’, bit  
10  
OSD  
OSD function control  
OSD register R/W control  
ADC control for CCD1  
ADC control for CCD0  
CCD1 function control  
CCD0 function control  
PLL function control  
OSD  
0
0
0
0
0
0
0
0
1:OSD function on  
0:OSD register R/W off  
1:OSD register R/W enabled  
0:ADC for CCD1 off  
1:ADC for CCD1 enabled  
0:ADC for CCD0 off  
1:ADC for CCD0 enabled  
0:CCD1 block off  
OSDREG  
E
PCNT2, x’00FF92’, bit  
0
PCNT0, x’00FF90’, bit  
5
ADC1ON  
ADC0ON  
VBI1OFF  
VBI0OFF  
PLLPOFF  
PCNT0, x’00FF90’, bit  
4
CCD  
PCNT0, x’00FF90’, bit  
1
1:CCD1 block enabled  
0:CCD0 block off  
PCNT0, x’00FF90’, bit  
0
1:CCD0 block enabled  
0:PLL block enabled  
1:PLL block off  
PCNT0, x’00FF90’, bit  
6
PLL  
0:H counter block enabled  
PCNT0, x’00FF90’, bit  
3
H counter  
H counter function control HCNTOFF  
1:H counter block off  
0:IR remote signal receiver  
block off  
IR remote  
IR remote signal  
RMCOFF  
PCNT0, x’00FF90’, bit  
2
0
signal receiver receiver function control  
1:IR remote signal receiver  
block enabled  
2
0:I C block enabled  
PCNT2, x’00FF92’, bit  
2
2
2
I C  
I C function control  
I2COFF  
0
0
2
1:I C block off  
0:PLL block enabled  
1:PLL block off  
PCNT2, x’00FF92’, bit  
1
PWM  
PWM function control  
PWMOFF  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
75  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Low-Power Modes  
CPU Control Register  
3.3 CPU Control Register  
CPUM: CPU Mode Control Register  
x’00FC00’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
NW  
DEN  
OSC  
ID  
STOP HALT OSC1 OSC0  
Reset:  
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R/W: R/W  
R
R
R
R
R
R
R
R
R
R
R
R/W R/W R/W R/W  
This register controls the invoking of all of the CPU modes.  
NWDEN: Watchdog timer reset  
0: Enable watchdog timer  
1: Disable and clear watchdog timer  
Setting the watchdog timer to 1, then setting it to 0 clears and restarts the  
watchdog timer.  
OSCID: Oscillator select  
System clock monitor  
0: Fast  
1: Slow  
STOP: STOP mode request  
CPU operating state control. See table 3-2.  
HALT: HALT mode request  
CPU operating state control. See table 3-2.  
OSC[1:0]: Oscillator control  
See table 3-2.  
Table 3-2 CPU Mode Bit Settings  
Clock System  
STOP HALT OSC1 OSC0  
CPU Mode  
NORMAL  
SLOW  
to CPU Clock PLL CPU  
0
0
0
0
0
1
0
1
24 MHz 12 MHz  
4 MHz 2 MHz  
On  
Off  
On  
On  
HALT0 (Invoked  
from NORMAL)  
0
1
0
0
24 MHz 12 MHz  
On  
Off  
HALT1 (Invoked  
from SLOW)  
0
1
1
0
1
x
1
x
4 MHz  
Off  
2 MHz  
Off  
Off  
Off  
Off  
Off  
STOP  
Note: All unindicated bit settings are reserved.  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
76  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Timers  
8-Bit Timer Description  
4
Timers  
4.1 8-Bit Timer Description  
The MN102H75K/85K contains four 8-bit timers that can serve as interval  
timers, event timer/counters, clock generators (divide-by-2 output of the  
underflow), reference clocks for the serial interfaces, or start timers for A/D con-  
versions. The clock source can be the internal clock (oscillator frequency divided  
by 2) or the external clock (1/4 or less the oscillator frequency input). A timer  
interrupt is generated by a timer underflow.  
All passages below assume a  
clock B of 24 MHz.  
The 8-bit timers are cascadable into true 16-bit timers. For instance, if you  
cascade timers 0 and 1, timer 0 sends cascaded output to timer 1. The result is  
true 16-bit division, rather than two successive 8-bit divisions.  
OSC  
Cascading Connections  
8-bit x 4  
Configuration example  
16-bit  
8-bit  
8-bit  
8-bit  
8-bit  
16-bit  
Clock output  
Interval  
timer  
Sync.  
UART  
Event  
Event  
timer  
transfer transfer timer  
clock clock  
Figure 4-1 Timer Configuration Examples  
(To 16-bit timer, serial I/F)  
TM0UDIR  
TM1UDIR  
(To 16-bit timer, serial I/F)  
A/D conversion start  
TM2UDIR  
B
/4  
OSC  
TMIA  
TMIB  
TMIC  
TMID  
UDF  
B
/256  
OSC  
TM2  
TM3  
TM3UDIR  
TMIO  
B
/512  
OSC  
TMIA  
TMIB  
TMIC  
TMID  
UDF  
B
/64  
OSC  
TM0O  
TM1O  
TM0  
TM1  
TMIA  
TMIB  
TMIC  
TMID  
TMIO  
UDF  
TM0I  
TM1I  
TMIO  
TMIA  
TMIB  
TMIC  
TMID  
UDF  
TMIO  
Note:  
B
= 24 MHz  
OSC  
Figure 4-2 Block Diagram of 8-Bit Timers  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
77  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Timers  
8-Bit Timer Features  
4.2 8-Bit Timer Features  
Table 4-1 8-Bit Timer Functions and Features  
Function/Feature  
Timer 0  
Timer 1  
Timer 2  
Timer 3  
Interrupt request flag(s)  
TM0UDICL register  
(TM0UDIR bit)  
Timer 0 underflow  
TM1UDICL register  
(TM1UDIR bit)  
TM2UDICL register  
(TM2UDIR bit)  
TM3UDICL register  
(TM3UDIR bit)  
Interrupt source(s)  
Timer 1 underflow  
Timer 2 underflow  
Timer 3 underflow  
Interval timer function  
Event counter function  
Clock source for 16-bit timer  
Timer output function  
(TM0O signal)  
(TM1O signal)  
Serial interface transfer clock  
source  
A/D conversion trigger function  
Clock sources  
0
1
2
3
B
B
B
/4  
B
B
/4  
B
B
/4  
B
B
/4  
OSC  
OSC  
OSC  
OSC  
OSC  
OSC  
/64  
/512  
/64  
/256  
/256  
OSC  
OSC  
OSC  
Cascade connection  
TM1I signal  
Cascade connection  
/512  
Cascade connection  
/512  
TM0I signal  
B
B
OSC  
OSC  
Cascade connection  
Note: When B  
= 24 MHz:  
OSC  
B
B
B
B
/4 = 6 MHz  
/64 = 375 kHz  
/256 = 93.75 kHz  
OSC  
OSC  
OSC  
OSC  
/512 = 48.875 kHz.  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
78  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Timers  
8-Bit Timer Block Diagrams  
4.3 8-Bit Timer Block Diagrams  
Data bus  
8
8
8
(FE10)  
Timer 0 base register  
TM0BR  
Load  
Reload  
8
(FE00)  
(FE20)  
Timer 0 binary counter  
TM0BC  
Timer 0  
underflow  
interrupt  
Underflow  
TM0MD  
Count  
1/2  
TM0O pin  
Reset  
0
B
B
/4  
OSC  
P2MD7,P2DIR7 setting  
1
/64  
OSC  
2
B /412  
OSC  
3
TM0I pin  
Multiplexer  
Figure 4-3 Timer 0 Block Diagram  
Data bus  
8
8
8
(FE11)  
Timer 1 base register  
TM1BR  
Load  
Reload  
8
(FE01)  
(FE21)  
Timer 1 binary counter  
TM1BC  
Timer 1  
underflow  
interrupt  
Underflow  
TM1MD  
Count  
1/2  
TM1O pin  
Reset  
0
B /4  
OSC  
P4MD1,P4DIR1 setting  
1
B
/64  
OSC  
2
Cascade from timer 0  
TM1I pin  
3
Multiplexer  
Figure 4-4 Timer 1 Block Diagram  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
79  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Timers  
8-Bit Timer Block Diagrams  
Data bus  
8
8
8
(FE12)  
Timer 2 base register  
TM2BR  
Load  
Reload  
8
(FE22)  
(FE02)  
Timer 2 binary counter  
TM2BC  
Timer 2  
Underflow  
underflow  
TM2MD  
Count  
interrupt  
0
B /4  
OSC  
1
B
/256  
OSC  
2
Cascade from timer 1  
B /512  
3
OSC  
Multiplexer  
Figure 4-5 Timer 2 Block Diagram  
Data bus  
8
8
8
(FE13)  
Timer 3 base register  
TM3BR  
Load  
Reload  
8
(FE23)  
(FE03)  
Timer 2 binary counter  
TM3BC  
Timer 3  
Underflow  
underflow  
interrupt  
TM3MD  
Count  
0
B /4  
OSC  
1
B
/256  
OSC  
2
Cascade from timer 2  
/512  
3
B
OSC  
Multiplexer  
Figure 4-6 Timer 3 Block Diagram  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
80  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Timers  
8-Bit Timer Timing  
4.4 8-Bit Timer Timing  
BC value  
Load  
value  
Time  
TMnIO  
input  
Figure 4-7 Event Timer Input Timing (8-Bit Timers)  
BC value  
Load  
value  
Time  
Interrupt  
TMnIO  
input 1  
TMnIO  
output 2  
Figure 4-8 Clock Output and Interval Timer Timing (8-Bit Timers)  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
81  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Timers  
8-Bit Timer Setup Examples  
4.5 8-Bit Timer Setup Examples  
4.5.1 Setting Up an Event Counter Using Timer 0  
In this example, timer 0 generates an underflow interrupt on the fourth rising  
edge of the TM0IO signal.  
The event counter continues to operate during STOP mode. In all modes but  
STOP, the TMnIO signal input is synchronized to BOSC. In STOP mode, the  
timer counts TMnIO signal directly. When an interrupt occurs, the CPU returns  
to NORMAL mode after the oscillator stabilization wait. The event counter con-  
tinues to count the TMnIO signal during stabilization wait, and at the same time  
that the CPU returns to NORMAL mode, the event counter begins counting the  
signal resulting from the BOSC sampling of the TMnIO signal input.  
CORE  
ROM, RAM  
Bus Controller  
Serial I/Fs  
ADC  
TM0I  
P2  
P6  
P4  
P5  
Interrupts  
Timers 0-3  
Timers 4-5  
Figure 4-9 Block Diagram of Event Counter Using Timer 0  
1. Set the interrupt enable flag (IE) of the processor status word (PSW) to 1.  
2. Disable timer 0 counting in the timer 0 mode register (TM0MD). This step is  
unnecessary immediately after a reset, since TM0MD resets to 0.  
TM0MD (example)  
x’00FE20’  
Bit:  
7
6
5
4
3
2
1
0
TM0  
EN  
TM0  
LD  
TM0  
S1  
TM0  
S0  
Setting:  
0
0
0
0
0
0
0
0
3. Cancel all existing interrupt requests and enable timer 0 underflow inter-  
rupts. To do this, set the TM2UDLV[2:0] bits of TM2UDICH (priority level  
4 in this example), set the TM0UDIE bit to 1, and set the TM0UDIR bit of  
TM0UDICL to 0. (Note that you set the priority level for timer 0 interrupts  
in the timer 2 interrupt control register.) From this point on, an interrupt  
request is generated whenever timer 0 underflows.  
TM2UDICH, TM0UDICL, and  
TM0UDICH are 8-bit access  
registers. Use the MOVB  
instruction to access them.  
TM2UDICH (example)  
x’00FC71’  
Bit:  
7
6
5
4
3
2
1
0
TM2UD TM2UD TM2UD  
TM2UD  
IE  
LV2  
LV1  
LV0  
Setting:  
0
1
0
0
0
0
0
0
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
82  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Timers  
8-Bit Timer Setup Examples  
TM0UDICL (example)  
x’00FC74’  
x’00FC75’  
Bit:  
7
6
5
4
3
2
1
0
TM0UD  
IR  
TM0UD  
ID  
Setting:  
0
0
0
0
0
0
0
0
TM0UDICH (example)  
Bit:  
7
6
5
4
3
2
1
0
TM0UD  
IE  
Setting:  
0
0
0
0
0
0
0
1
4. Set the divide-by ratio for timer 0. Since the timer will count 4 TM0IO  
cycles, write x’03’ to the timer 0 base register (TM0BR). (The valid range  
for TM0BR is 0 to 255.)  
TM0BR (example)  
x’00FE10’  
Bit:  
7
6
5
4
3
2
1
0
TM0  
BR7  
TM0  
BR6  
TM0  
BR5  
TM0  
BR4  
TM0  
BR3  
TM0  
BR2  
TM0  
BR1  
TM0  
BR0  
Setting:  
0
0
0
0
0
0
1
1
5. Set the TM0LD bit of the TM0MD register to 1. This loads the value in the  
base register to the binary counter. At the same time, select the clock source  
as the TM0IO signal input by writing b’11’ to TM0S[1:0].  
Do not change the clock source  
once you select it. Selecting the  
clock source while you set up  
the count operation control will  
corrupt the value in the binary  
counter.  
TM0MD (example)  
x’00FE20’  
Bit:  
7
6
5
4
3
2
1
0
TM0  
EN  
TM0  
LD  
TM0  
S1  
TM0  
S0  
Setting:  
0
1
0
0
0
0
1
1
In the bank and linear address-  
ing versions of the MN102  
series, it was necessary to set  
TM0EN and TM0LD to 0  
6. Set TM0LD to 0 and TM0EN to 1. This starts the timer. Counting begins at  
the start of the next cycle. When the binary counter reaches 0 and loads the  
value x’03’ from the base register, in preparation for the next count, a timer 0  
underflow interrupt request is sent to the CPU.  
between steps 5 and 6, to  
ensure stable operation. This is  
unnecessary in the high-speed  
linear addressing version.  
Interrupt enable  
TM0BR  
00  
03  
03  
TM0BC  
00  
02  
01  
00  
03  
Timer 0 underflow  
interrupt  
TM0IO  
Sequence  
(2)  
(5)  
TM0MD(B)  
(3)  
TM0UDICH(B)  
(6)  
TM0MD(B)  
(4)  
TM0BR(B)  
Figure 4-10 Event Counter Timing (Timer 0)  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
83  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Timers  
8-Bit Timer Setup Examples  
4.5.2 Setting Up an Interval Timer Using Timers 1 and 2  
In this example, timers 1 and 2 are cascaded to divide BOSC/4 by 60,000 and  
generate an underflow interrupt.  
16-bit timer  
B
OSC  
(24 MHz)  
1/4  
Timer 2  
underflow  
interrupt  
Timer 1  
Timer 2  
(Divide by 4)  
(Divide by 60,000)  
(x'EA60')  
Figure 4-11 Configuration Example of Interval Timer Using Timers 1 and 2  
CORE  
ROM, RAM  
Bus Controller  
Serial I/Fs  
ADC  
P2  
P6  
P4  
P5  
Interrupts  
Timers 0-3  
Timers 4-5  
Figure 4-12 Block Diagram of Interval Timer Using Timers 1 and 2  
1. Disable timer 1 and 2 counting in the timer 1 and 2 mode registers  
(TM1MD, TM2MD). This step is unnecessary immediately after a reset,  
since TM1MD and TM2MD reset to 0.  
TM1MD (example)  
x’00FE21’  
Bit:  
7
6
5
4
3
2
1
0
TM1  
EN  
TM1  
LD  
TM1  
S1  
TM1  
S0  
Setting:  
0
0
0
0
0
0
0
0
TM2MD (example)  
x’00FE22’  
Bit:  
7
6
5
4
3
2
1
0
TM2  
EN  
TM2  
LD  
TM2  
S1  
TM2  
S0  
Setting:  
0
0
0
0
0
0
0
0
2. Cancel all existing interrupt requests and enable timer 2 underflow inter-  
rupts. To do this, set the TM2UDLV[2:0] bits of TM2UDICH (priority level  
4 in this example), set the TM2UDIE bit to 1, set the TM2UDIR bit of  
TM2UDICL to 0, set the TM1UDIE bit of TM1UDICH to 0, and set the  
TM1UDIR bit of TM1UDICL to 0. (Note that you set the priority level for  
both timer 1 and 2 interrupts in the timer 2 interrupt control register.) From  
this point on, an interrupt request is generated whenever timer 2 underflows.  
Timer 1 underflows are unused.  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
84  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Timers  
8-Bit Timer Setup Examples  
TM2UDICH (example)  
x’00FC71’  
x’00FC70’  
x’00FC73’  
x’00FC72’  
Bit:  
7
6
5
4
3
2
1
0
TM2UD TM2UD TM2UD  
TM2UD  
IE  
LV2  
LV1  
LV0  
Setting:  
0
1
0
0
0
0
0
1
TM2UDICL (example)  
Bit:  
7
6
5
4
3
2
1
0
TM2UD  
IR  
TM2UD  
ID  
Setting:  
0
0
0
0
0
0
0
0
TM1UDICH (example)  
Bit:  
7
6
5
4
3
2
1
0
TM0UD  
IE  
Setting:  
0
0
0
0
0
0
0
0
TM1UDICL (example)  
Bit:  
7
6
5
4
3
2
1
0
TM1UD  
IR  
TM1UD  
ID  
Setting:  
0
0
0
0
0
0
0
0
3. Set the divide-by ratio for timer 0. Since the timer will count 60,000 cycles  
(x’EA60’), write x’5F’ to the timer 1 base register (TM1BR) and x’EAto  
the timer 2 base register (TM2BR). (The valid range for TMnBR is 0 to  
255.)  
TM1BR (example)  
x’00FE11’  
Bit:  
7
6
5
4
3
2
1
0
TM1  
BR7  
TM1  
BR6  
TM1  
BR5  
TM1  
BR4  
TM1  
BR3  
TM1  
BR2  
TM1  
BR1  
TM1  
BR0  
Setting:  
0
1
0
1
1
1
1
1
TM2BR (example)  
x’00FE12’  
Bit:  
7
6
5
4
3
2
1
0
TM2  
BR7  
TM2  
BR6  
TM2  
BR5  
TM2  
BR4  
TM2  
BR3  
TM2  
BR2  
TM2  
BR1  
TM2  
BR0  
Setting:  
1
1
1
0
1
0
1
0
4. Set the TM1LD bit of the TM1MD register and theTM2LD bit of the  
TM2MD register to 1. This loads the value in the base register to the binary  
counter. At the same time, select the clock source as the BOSC/4 for timer 1  
and cascade to timer 1 for timer 2. (Write to TMnS[1:0]).  
Do not change the clock source  
once you select it. Selecting the  
clock source while you set up  
the count operation control will  
corrupt the value in the binary  
counter.  
TM1MD (example)  
x’00FE21’  
Bit:  
7
6
5
4
3
2
1
0
TM1  
EN  
TM1  
LD  
TM1  
S1  
TM1  
S0  
Setting:  
0
1
0
0
0
0
0
0
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
85  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Timers  
8-Bit Timer Setup Examples  
TM2MD (example)  
x’00FE22’  
Bit:  
7
6
5
4
3
2
1
0
TM2  
EN  
TM2  
LD  
TM2  
S1  
TM2  
S0  
Setting:  
0
1
0
0
0
0
1
0
In the bank and linear address-  
ing versions of the MN102  
series, it was necessary to set  
TM0EN and TM0LD to 0  
5. Set TM2LD to 0 and TM2EN to 1, then set TM1LD to 0 and TM1EN to 1.  
This starts the timers. Counting begins at the start of the next cycle. When  
both the timer 1 and 2 binary counters reach 0 and loads the values from the  
base registers, in preparation for the next count, a timer 2 underflow inter-  
rupt request is sent to the CPU. The timer 1 interrupt is unused.  
between steps 4 and 5, to  
ensure stable operation. This is  
unnecessary in the high-speed  
linear addressing version.  
Access TM2MD and TM1MD  
with a 16-bit write, using the  
MOV instruction, or set the two  
registers consecutively, begin-  
ning with TM2MD.  
B
/4  
OSC  
TM2,1BR  
TM2,1BC  
00  
00  
EA5F  
EA5F EA5E EA5D 0002 0001  
0000 EA5F  
Timer 2  
underflow  
interrupt  
Interrupt enable  
Sequence  
(1)  
(2) (3) (4)  
(5)  
Figure 4-13 Interval Timer Timing (Timers 1 and 2)  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
86  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Timers  
8-Bit Timer Control Registers  
4.6 8-Bit Timer Control Registers  
Table 4-2 shows the registers used to control the 8-bit timers. A binary counter  
(TMnBC), a time base counter (TMnBR), and a timer mode register (TMnMD) is  
associated with each 8-bit timer.  
Table 4-2 8-Bit Timer Control Registers  
Register  
Address R/W  
Description  
Timer 0  
Timer 1  
Timer 2  
Timer 3  
TM0BC  
x’00FE00’  
R
Timer 0 binary counter  
TM0BR  
TM0MD  
TM1BC  
TM1BR  
TM1MD  
TM2BC  
TM2BR  
TM2MD  
TM3BC  
TM3BR  
TM3MD  
x’00FE10’ R/W Timer 0 base register  
x’00FE20’ R/W Timer 0 mode register  
x’00FE01’  
R
Timer 1 binary counter  
x’00FE11’ R/W Timer 1 base register  
x’00FE21’ R/W Timer 1 mode register  
x’00FE02’  
R
Timer 2 binary counter  
x’00FE12’ R/W Timer 2 base register  
x’00FE22’ R/W Timer 2 mode register  
x’00FE03’  
R
Timer 3 binary counter  
x’00FE13’ R/W Timer 3 base register  
x’00FE23’ R/W Timer 3 mode register  
TM0BC–TM3BC: Timer n Binary Counter  
x’00FE00’–x’00FE03’  
x’00FE10’–x’00FE13’  
x’00FE20’–x’00FE23’  
Bit:  
7
6
5
4
3
2
1
0
TMn  
BC7  
TMn  
BC6  
TMn  
BC5  
TMn  
BC4  
TMn  
BC3  
TMn  
BC2  
TMn  
BC1  
TMn  
BC0  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
TM0BR–TM3BR: Timer n Base Register  
Bit:  
7
6
5
4
3
2
1
0
TMn  
BR7  
TMn  
BR6  
TMn  
BR5  
TMn  
BR4  
TMn  
BR3  
TMn  
BR2  
TMn  
BR1  
TMn  
BR0  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
TM0MD–TM3MD: Timer n Mode Register  
Bit:  
7
6
5
4
3
2
1
0
TMn  
EN  
TMn  
LD  
TMn  
S1  
TMn  
S0  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R/W  
R/W  
R
R
R
R
R/W  
R/W  
TMnEN: TMnBC count enable  
0: Disable / 1: Enable  
TMnLD: TMnBR value load to TMnBC  
0: Do not load value / 1: Load value  
TMnS[1:0]: Timer n clock source select  
See table 4-1 on page 78 for clock sources. 00 = clock source 0, 01 = clock  
source 1, 10 = clock source 2, and 11 = clock source 3.  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
87  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Timers  
16-Bit Timer Description  
4.7 16-Bit Timer Description  
The MN102H75K/85K contains two 16-bit up/down timers, timers 5 and 6.  
Associated with each timer are two compare/capture registers that can capture  
and compare the up/down counter values, generate PWM signals, and generate  
interrupts. The PWM function has a double buffering mode that causes cycle and  
transition changes to occur at the beginning of the next clock cycle. This prevents  
PWM signal losses and minimizes waveform distortion during timing changes.  
Timers 5 and 6 can serve as interval timers, event counters (in clock oscillation  
mode), one- or two-phase PWMs, dual capture inputs, dual two-phase encoders,  
one-shot pulse generators, and external count direction controllers. The clock  
source can be the internal clock, the external clock, or the TM0UDIR or  
TM1UDIR signals from the 8-bit timers.  
Underflow interrupts can only  
occur during down counting.  
TMnIC  
TM0UDIR  
TM1UDIR  
CLR  
Up/down counter  
B
/4  
OSC  
2-phase encoding  
16-bit compare/capture A  
Match  
T
Q
Q
Q
TMnIB  
TMnIA  
TMnOA  
TMnOB  
Capture  
R
S
T
16-bit compare/capture A  
Match  
Capture  
Note:  
B
= 24 MHz  
OSC  
Figure 4-14 Block Diagram of 16-Bit Timers  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
88  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Timers  
16-Bit Timer Features  
4.8 16-Bit Timer Features  
Table 4-3 16-Bit Timer Functions and Features  
Function/Feature  
Timer 4  
Timer 5  
Interrupt request flag(s)  
TM4UDIR bit of TM4UDICL TM5UDIR bit of TM5UDICL  
TM4CAICL bit of TM4CAIR TM5CAICL bit of TM5CAIR  
TM4CBICL bit of TM4CBIR TM5CBICL bit of TM5CBIR  
Interrupt sources  
Clock sources  
Timer 4 underflow  
Timer 4 compare A match  
Timer 4 capture A  
Timer 4 compare B match  
Timer 4 capture B  
Timer 0 underflow  
Timer 1 underflow  
TM4IB signal  
Timer 5 underflow  
Timer 5 compare A match  
Timer 5 capture A  
Timer 5 compare B match  
Timer 5 capture B  
Timer 0 underflow  
Timer 1 underflow  
TM5IB signal  
4x two-phase encoder  
4x two-phase encoder  
(TM4IA and TM4IB signals) (TM5IA and TM5IB signals)  
1x two-phase encoder 1x two-phase encoder  
(TM4IA and TM4IB signals) (TM5IA and TM5IB signals)  
Count direction  
Up/down counter  
Up/down counter  
Interval timer function  
Event counter function  
PWM function  
One-shot pulse output  
Single-phase capture input  
Two-phase capture input  
Two-phase encoding (4x)  
Two-phase encoding (1x)  
External count direction control  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
89  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Timers  
16-Bit Timer Block Diagrams  
4.9 16-Bit Timer Block Diagrams  
TM4IC pin  
Timer 0 underflow  
Timer 1 underflow  
TM4IB pin  
[S]  
[ASEL]  
CLR  
CLK  
[ECLR]  
[LP]  
Q
Q
TM4BC  
T
[EN]  
R
R
R
BOSC/4  
U/D control  
LOAD  
TM4IOA pin  
[UD]  
Match  
Match  
R
S
P2MD6,P2DIR6 setting  
Capture  
TM4CA  
TM4CAX  
TM4IB pin  
TM4IA pin  
Q
Capture  
T
TM4CB  
TM4CBX  
TM4IOB pin  
P2MD5,P2DIR5 setting  
[MD]  
[LD]  
TM4MD  
[TGE]  
[ONE]  
Figure 4-15 Timer 4 Block Diagram  
TM5IC pin  
Timer 0 underflow  
Timer 1 underflow  
TM5IB pin  
[S]  
[ASEL]  
CLR  
CLK  
[ECLR]  
[LP]  
TM5BC  
[EN]  
T
Q
Q
R
R
BOSC/4  
U/D control  
LOAD  
TM5IOA pin  
[UD]  
Match  
Match  
R
S
TM5CA  
TM5CAX  
P4MD2,P4DIR2 setting  
Capture  
TM5IB pin  
TM5IA pin  
Q
TM5CB  
TM5CBX  
T
Capture  
TM5IOB pin  
R
P4MD3,P4DIR3 setting  
[MD]  
[LD]  
TM5MD  
[TGE]  
[ONE]  
Figure 4-16 Timer 5 Block Diagram  
4.10 16-Bit Timer Timing  
BC value  
CA  
CB  
Time  
TMnIOA  
TMnOA  
Figure 4-17 Single-Phase PWM Output Timing (16-Bit Timers)  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
90  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Timers  
16-Bit Timer Timing  
New value written  
to CCRB  
Change reflected in  
next clock cycle  
BC value  
CA  
CB  
Time  
TMnIOA  
TMnOA  
Figure 4-18 Single-Phase PWM Output Timing with Data Change (16-Bit Timers)  
BC value  
CA  
CB  
Time  
TMnOA  
TMnOB  
Figure 4-19 Two-Phase PWM Output Timing (16-Bit Timers)  
BC value  
CA  
Time  
TMnIB  
TMnOA  
Figure 4-20 One-Shot Pulse Output Timing (16-Bit Timers)  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
91  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Timers  
16-Bit Timer Timing  
BC value  
CA  
Time  
TMnIB  
TMnIA  
Figure 4-21 External Count Direction Control Timing (16-Bit Timers)  
BC value  
Time  
TMnIB  
Figure 4-22 Event Timer Input Timing (16-Bit Timers)  
BC value  
FFFF  
Time  
TMnIB  
TMnIA  
0033 (Example)  
5A87 (Example)  
TMnCA  
TMnCB  
Figure 4-23 Single-Phase Capture Input Timing (16-Bit Timers)  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
92  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Timers  
16-Bit Timer Timing  
BC value  
FFFF  
Time  
TMnIB  
TMnIA  
0033 (Example)  
5A87 (Example)  
TMnCA  
TMnCB  
Figure 4-24 Two-Phase Capture Input Timing (16-Bit Timers)  
BC value  
Time  
TMnIA  
TMnIB  
Figure 4-25 Two-Phase 4x Encoder Timing (16-Bit Timers)  
BC value  
Time  
TMnIA  
TMnIB  
Figure 4-26 Two-Phase 1x Encoder Timing (16-Bit Timers)  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
93  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Timers  
16-Bit Timer Setup Examples  
4.11 16-Bit Timer Setup Examples  
4.11.1 Setting Up an Event Counter Using Timer 4  
In this example, timer 4 counts the TM4IB input signal (BOSC/4 = 6 MHz or less)  
and generates an interrupt on the second and fifth cycles.  
CORE  
ROM, RAM  
Bus Controller  
Serial I/Fs  
ADC  
P2  
P6  
P4  
P5  
TM4IB  
Interrupts  
Timers 0-3  
Timers 4-5  
A. Chip Level  
Timer 4  
up  
(B  
/4)  
OSC  
TM4BC  
TM4CA  
T
Q
Q
Q
TM4CAX  
TM4IB  
R
S
(TM4OA)  
TM4CB  
T
TM4CBX  
B. Block Level  
Figure 4-27 Block Diagram of Event Counter Using Timer 4  
To set up timer 4:  
1. Set the operating mode in the timer 4 mode register (TM4MD). Disable  
timer 4 counting and interrupts. Select up counting. Select TM4IB as the  
clock source.  
Use the MOV instruction for this  
setup and only use 16-bit write  
operations.  
TM4MD (example)  
x’00FE80’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TM4 TM4  
TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4  
EN  
0
NLD  
0
UD1 UD0 TGE ONE MD1 MD0 ECLR  
LP  
1
ASEL  
0
S2  
0
S1  
1
S0  
0
This step stops the TM4BC  
count and clears both TM4BC  
and the S-R flip-flop to 0.  
Setting:  
0
0
0
0
0
0
0
0
0
2. Set the divide-by ratio for timer 4. To divide the TM4IB input signal by 5,  
write x’0004’ to timer 4 compare/capture register A (TM4CA). (The valid  
range for TM4CA is x’0001’ to x’FFFE’.)  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
94  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Timers  
16-Bit Timer Setup Examples  
TM4CA (example)  
x’00FE84’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4  
CA15 CA14 CA13 CA12 CA11 CA10 CA9 CA8 CA7  
CA6  
0
CA5 CA4 CA3  
CA2  
1
CA1 CA0  
Setting:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
3. Set the phase difference for timer 4. For a 2-cycle phase difference, write  
x’0001’ to timer 4 compare/capture register B (TM4CB). (The valid range is  
-1 TM4CB < the TM4CA value.)  
TM4CB (example)  
x’00FE88’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4  
CB15 CB14 CB13 CB12 CB11 CB10 CB9  
CB8  
0
CB7  
0
CB6  
0
CB5  
0
CB4  
0
CB3  
0
CB2  
0
CB1  
0
CB0  
1
Setting:  
0
0
0
0
0
0
0
4. Set the TM4NLD bit of the TM4MD register to 1 and the TM4EN bit to 0.  
This enables TM4BC and the S-R flip-flop. This step ensures stable opera-  
tion. If it is omitted, the binary counter may not count the first cycle. Do not  
change any other operating modes during this step.  
5. Set TM4NLD and TM4EN to 1. This starts the timer. Counting begins at the  
start of the next cycle.  
To enable timer 4 capture interrupts:  
Cancel all existing interrupt requests. Next, set the interrupt priority level in the  
TM4CBLV[2:0] bits of the TM4CBICH register (levels 0 to 6), set the TM4CBIE  
bit to 1, set the TM4CBIR bit of TM4CBICL to 0, set the TM4CAIE bit of  
TM4CAICH to 1, and set the TM4CAIR bit of TM4CAICL to 0. From this point  
on, an interrupt request is generated whenever a timer 4 capture A or capture B  
event occurs.  
Timer 4 can operate as an event counter, but timer 4 does not operate in STOP  
mode, when BOSC is off. If you use an external clock, it must be synchronized to  
BOSC. This means that the frequency of the event counter clock must be 1/4 or  
less that of the oscillator (6 MHz with a 24-MHz oscillator).  
Figure 4-28 shows an example timing chart.  
0004  
TM4CA  
TM4CB  
0001  
0000  
0001 0002 0003 0004 0000 0001 0002 0003 0004  
TM4BC  
TM4IB  
B
A
B
A
Interrupts  
Figure 4-28 Event Counter Timing (Timer 4)  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
95  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Timers  
16-Bit Timer Setup Examples  
4.11.2 Setting Up a Single-Phase PWM Output Signal Using  
Timer 4  
In this example, timer 4 is used to divide BOSC by 5 and generate a five-cycle,  
single-phase PWM signal. The duty of this signal is 2:3. To accomplish this, the  
program must load the divide-by ratio of 5 (actual setting: 4) into compare/  
capture register A and a cycle count of 2 (actual setting: 1) into compare/capture  
register B.  
CORE  
ROM, RAM  
Bus Controller  
Serial I/Fs  
ADC  
P3  
P6  
PC  
P4  
P5  
Interrupts  
Timers 0-3  
Timers 4-5  
TM4OA  
P2  
A. Chip Level  
Timer 4  
up  
B
/4  
OSC  
TM4BC  
TM4CA  
T
Q
Q
Q
TM4CAX  
R
S
TM4OA  
TM4CB  
T
TM4CBX  
B. Block Level  
Figure 4-29 Block Diagram of Single-Phase PWM Output Using Timer 4  
To set up the output port:  
Set the P2MD[13:12] bits of the port 2 output mode register (P2MD) to b’01’  
(selecting the TM4IOA pin) and set the P2DIR6 bit of the port 2 I/O control  
register (P2DIR) to 1 (selecting output direction). This step selects the TM4OA  
pin (P26) as the timer output port.  
P2MD (example)  
x’00FFF4’  
Bit: 15  
14  
13  
12  
P2  
11  
P2  
10  
P2  
9
8
7
6
5
4
3
2
1
0
P2  
P2  
P2  
P2  
P2  
P2  
P2  
P2  
P2  
P2  
P2  
P2  
0
MD14 MD13 MD12 MD11 MD10 MD9 MD8 MD7 MD6 MD5 MD4 MD3 MD2 MD1 MD0  
Setting:  
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
96  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Timers  
16-Bit Timer Setup Examples  
P2DIR (example)  
x’00FFE2’  
Bit:  
7
6
5
4
3
2
1
0
P2  
P2  
P2  
P2  
P2  
P2  
P2  
P2  
DIR7  
DIR6  
DIR5  
DIR4  
DIR3  
DIR2  
DIR1  
DIR0  
Setting:  
0
1
0
0
0
0
0
0
To set up timer 4:  
1. Set the operating mode in the timer 4 mode register (TM4MD). Disable  
timer 4 counting and interrupts. Select up counting. Select BOSC/4 as the  
clock source. Select the double-buffer operating mode.  
Use the MOV instruction for this  
setup and only use 16-bit write  
operations.  
TM4MD (example)  
x’00FE80’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TM4 TM4  
TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4  
EN  
0
NLD  
0
UD1 UD0 TGE ONE MD1 MD0 ECLR  
LP  
1
ASEL  
0
S2  
0
S1  
1
S0  
1
This step stops the TM4BC  
count and clears both TM4BC  
and the S-R flip-flop to 0.  
Setting:  
Setting:  
Setting:  
0
0
0
0
0
0
0
1
0
2. Set the divide-by ratio for timer 4. To divide BOSC/4 by 5, write x’0004’ to  
timer 4 compare/capture register A (TM4CA). (The valid range for TM4CA  
is x’0001’ to x’FFFE’.)  
TM4CA (example)  
x’00FE84’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4  
CA15 CA14 CA13 CA12 CA11 CA10 CA9 CA8 CA7  
CA6  
0
CA5 CA4 CA3  
CA2  
1
CA1 CA0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
3. Set the timer 4 duty cycle. For a 2/5 BOSC/4 duty cycle, write x’0001’ to  
timer 4 compare/capture register B (TM4CB). (The valid range is -1 <  
TM4CB < the TM4CA value.)  
TM4CB (example)  
x’00FE88’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4  
CB15 CB14 CB13 CB12 CB11 CB10 CB9  
CB8  
0
CB7  
0
CB6  
0
CB5  
0
CB4  
0
CB3  
0
CB2  
0
CB1  
0
CB0  
1
0
0
0
0
0
0
0
4. Write a dummy data word (of any value) to TM4CAX. In double-buffer  
mode, TM4CA is compared to TM4CAX. The contents of TM4CA are  
loaded to TM4CAX when TM4BC = TM4CAX. However, since TM4CAX  
is undefined or x’0000’ before this operation starts, this initial dummy write  
prevents timing errors.  
5. Write a dummy data word (of any value) to TM4CBX. In double-buffer  
mode, TM4CB is compared to TM4CBX. The contents of TM4CB are  
loaded to TM4CBX when TM4BC = TM4CBX. However, since TM4CBX  
is undefined or x’0000’ before this operation starts, this initial dummy write  
prevents timing errors.  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
97  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Timers  
16-Bit Timer Setup Examples  
6. Set the TM4NLD bit of the TM4MD register to 1 and the TM4EN bit to 0.  
This enables TM4BC and the S-R flip-flop. This step ensures stable opera-  
tion. If it is omitted, the binary counter may not count the first cycle. Do not  
change any other operating modes during this step.  
7. Set TM4NLD and TM4EN to 1. This starts the timer. Counting begins at the  
start of the next cycle.  
Timer 4 can output a single-phase PWM signal at any duty. You must select up  
counting. Timer 4 does not operate in STOP mode, when BOSC is off. If you use  
an external clock, it must be synchronized to BOSC  
.
In this procedure, you set the cycle (x’0001’ to x’FFFE’) in the TM4CA register  
and the duty in the TM4CB register. When the contents of TM4BC match those  
of the TM4CB register, the S-R flip-flop resets at the beginning of the next cycle.  
Please note the following:  
When -1 TM4CB < TM4CA, TM4OA output is low during the 0 to  
TM4CB + 1 cycles of the TM4CA + 1 cycle period and high during the  
remainder of the cycles.  
When TM4CA TM4CB x’FFFE, TM4OA output is always low.  
When TM4BC = x’FFFF’, TM4OA output is always high.  
The circuitry is configured so that there are no waveform errors, even when the  
output is always high or always low. Counting begins after the TM4EN bit is set  
in the TM4MD register.  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
98  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Timers  
16-Bit Timer Setup Examples  
Figure 4-30 below shows the output waveforms for TM4OA. Both A and B  
interrupts can occur, but B interrupts can only occur if the TM4CB setting is from  
0 to less than TM4CA. This is because when TM4CB TM4CA, TM4BC never  
matches TM4CB.  
Write to TM4MD  
TM4EN  
0
0
1
2
3
4
0
1
2
3
4
0
1
2
3
4
0
1
2
3
TM4BC  
B
/4  
OSC  
CLRBC4  
(1) TMCB = 4 (All 0s)  
S4  
R4  
TM4OA  
Interrupts  
AB  
AB  
AB  
(2) TMCB = 2  
S4  
R4  
TM4OA  
Interrupts  
A
A
A
B
B
B
B
(3) TMCB = FFFF (All 1s)  
S4  
R4  
TM4OA  
Interrupts  
A
A
A
0s on first cycle, since  
S4 has not gone high yet.  
Figure 4-30 Single-Phase PWM Output Timing (Timer 4)  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
99  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Timers  
16-Bit Timer Setup Examples  
Two potential types of errors are inherent with PWM output. First, because of the  
circuit configuration, direction errors can occur. The output circuit is configured  
with T flip-flops, so that even if one transition is missed, the 1s and 0s can  
reverse direction. Timers 4 and 5 contain an S-R flip-flop to prevent this type of  
error. Second, if the duty cycle changes dynamically, which often happens in  
PWM output, the PWM waveform may skip a pulse (see the single buffering  
section of figure 4-31 below). To prevent these misses, timers 4 and 5 provide a  
double-buffer mode. In this mode, no matter what the timing of a TMnCB  
change, the duty change does occur until the beginning of the next cycle, and no  
signals are lost. Performance is assured even when the output switches from all  
1s to all 0s (see the double buffering section of figure 4-31 below).  
For this reason, you must always use double-buffer mode for PWM waveform  
output. Use single-buffer mode only in applications that are unaffected by these  
issues.  
TM4EN  
Write to TM4CB  
3
3
1
TM4CB  
TM4BC  
BOSC/4  
CLRBC4  
(1) Double buffering  
TM4CB  
TM4CBX  
S4  
0
0
1
2
4
0
1
2
3
4
0
1
2
3
4
0
1
2
3
3
1
3
1
R4  
TM4OA  
Interrupts  
(2) Single buffering  
TM4CB  
S4  
B
A
B
A
A
B
B
No PWM or interrupt errors  
3
1
R4  
TM4OA  
Interrupts  
B
A
B
A
A
B
Lost interrupt, causing a PWM output error  
Figure 4-31 Single-Phase PWM Output Timing with Dynamic Duty Changes  
(Timer 4)  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
100  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Timers  
16-Bit Timer Setup Examples  
4.11.3 Setting Up a Two-Phase PWM Output Signal Using  
Timer 4  
In this example, timer 4 is used to divide timer 0 underflow by 5 and generate a  
five-cycle, two-phase PWM signal. The phase difference of this signal is 2  
cycles. To accomplish this, the program must load the divide-by ratio of 5 (actual  
setting: 4) into compare/capture register A and a cycle count of 2 (actual setting:  
1) into compare/capture register B.  
CORE  
ROM, RAM  
Bus Controller  
Serial I/Fs  
ADC  
P3  
P6  
P4  
P5  
Interrupts  
Timers 0-3  
Timers 4-5  
TM4OA  
TM4OB  
P2  
A. Chip Level  
Timer 4  
up  
Timer 0  
underflow  
TM4BC  
TM4CA  
T
Q
Q
Q
TM4OA  
TM4OB  
TM4CAX  
R
S
TM4CB  
T
TM4CBX  
B. Block Level  
Figure 4-32 Block Diagram of Two-Phase PWM Output Using Timer 4  
To set up the output port:  
Set the P2MD[13:12] bits of the port 2 output mode register (P2MD) to b’01’  
(selecting the TM4IOA pin), set the P2MD[11:10] bits to b’01’ (selecting the  
TM4IOB pin), and set the P2DIR[6:5] bits of the port 2 I/O control register  
(P2DIR) to b’11’ (selecting output direction). This step selects the TM4OA (P26)  
and TM4OB (P25) pins as the timer output ports.  
P2MD (example)  
x’00FFF4’  
Bit: 15  
14  
13  
12  
P2  
11  
P2  
10  
P2  
9
8
7
6
5
4
3
2
1
0
P2  
P2  
P2  
P2  
P2  
P2  
P2  
P2  
P2  
P2  
P2  
P2  
0
MD14 MD13 MD12 MD11 MD10 MD9 MD8 MD7 MD6 MD5 MD4 MD3 MD2 MD1 MD0  
Setting:  
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
101  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Timers  
16-Bit Timer Setup Examples  
P2DIR (example)  
x’00FFE2’  
Bit:  
7
6
5
4
3
2
1
0
P2  
P2  
P2  
P2  
P2  
P2  
P2  
P2  
DIR7  
DIR6  
DIR5  
DIR4  
DIR3  
DIR2  
DIR1  
DIR0  
Setting:  
0
1
1
0
0
0
0
0
To set up timer 0:  
1. Disable timer 0 counting in the timer 0 mode register (TM0MD). This step is  
unnecessary immediately after a reset, since TM0MD resets to 0.  
TM0MD (example)  
x’00FE20’  
Bit:  
7
6
5
4
3
2
1
0
TM0  
EN  
TM0  
LD  
TM0  
S1  
TM0  
S0  
Setting:  
0
0
0
0
0
0
2. Set the divide-by ratio for timer 0. To divide BOSC/4 by two, write x’01’ to  
the timer 0 base register (TM0BR). (The valid range for TM0BR is 0 to  
255.)  
TM0BR (example)  
x’00FE10’  
Bit:  
7
6
5
4
3
2
1
0
TM0  
BR7  
TM0  
BR6  
TM0  
BR5  
TM0  
BR4  
TM0  
BR3  
TM0  
BR2  
TM0  
BR1  
TM0  
BR0  
Setting:  
0
0
0
0
0
0
0
1
3. Set the TM0LD bit of the TM0MD register to 1. This loads the value in the  
base register to the binary counter. At the same time, select the clock source  
as BOSC/4 by writing b’00’ to TM0S[1:0].  
Do not change the clock source  
once you select it. Selecting the  
clock source while you set up  
the count operation control will  
corrupt the value in the binary  
counter.  
TM0MD (example)  
x’00FE20’  
Bit:  
7
6
5
4
3
2
1
0
TM0  
EN  
TM0  
LD  
TM0  
S1  
TM0  
S0  
Setting:  
0
1
0
0
0
0
0
0
In the bank and linear address-  
ing versions of the MN102  
series, it was necessary to set  
TM0EN and TM0LD to 0  
4. Set TM0LD to 0 and TM0EN to 1. This starts the timer. Counting begins at  
the start of the next cycle. When the binary counter reaches 0 and loads the  
value x’01’ from the base register, in preparation for the next count, a timer 0  
underflow interrupt request is sent to the CPU.  
between steps 3 and 4, to  
ensure stable operation. This is  
unnecessary in the high-speed  
linear addressing version.  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
102  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Timers  
16-Bit Timer Setup Examples  
To set up timer 4:  
1. Set the operating mode in the timer 4 mode register (TM4MD). Disable  
timer 4 counting and interrupts. Select up counting. Select timer 0 under-  
flows as the clock source.  
Use the MOV instruction for this  
setup and only use 16-bit write  
operations.  
TM4MD (example)  
x’00FE80’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TM4 TM4  
TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4  
EN  
0
NLD  
0
UD1 UD0 TGE ONE MD1 MD0 ECLR  
LP  
1
ASEL  
1
S2  
0
S1  
0
S0  
0
This step stops the TM4BC  
count and clears both TM4BC  
and the S-R flip-flop to 0.  
Setting:  
Setting:  
Setting:  
0
0
0
0
0
0
0
1
0
2. Set the divide-by ratio for timer 4. To divide timer 0 underflow by 5, write  
x’0004’ to timer 4 compare/capture register A (TM4CA). (The valid range  
for TM4CA is x’0001’ to x’FFFE’.)  
TM4CA (example)  
x’00FE84’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4  
CA15 CA14 CA13 CA12 CA11 CA10 CA9 CA8 CA7  
CA6  
0
CA5 CA4 CA3  
CA2  
1
CA1 CA0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
3. Set the phase difference for timer 4. For a phase difference of two timer 0  
underflow cycles, write x’0001’ to timer 4 compare/capture register B  
(TM4CB). (The valid range is -1 < TM4CB < the TM4CA value.)  
TM4CB (example)  
x’00FE88’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4  
CB15 CB14 CB13 CB12 CB11 CB10 CB9  
CB8  
0
CB7  
0
CB6  
0
CB5  
0
CB4  
0
CB3  
0
CB2  
0
CB1  
0
CB0  
1
0
0
0
0
0
0
0
4. Write a dummy data word (of any value) to TM4CAX. In double-buffer  
mode, TM4CA is compared to TM4CAX. The contents of TM4CA are  
loaded to TM4CAX when TM4BC = TM4CAX. However, since TM4CAX  
is undefined or x’0000’ before this operation starts, this initial dummy write  
prevents timing errors.  
5. Write a dummy data word (of any value) to TM4CBX. In double-buffer  
mode, TM4CB is compared to TM4CBX. The contents of TM4CB are  
loaded to TM4CBX when TM4BC = TM4CBX. However, since TM4CBX  
is undefined or x’0000’ before this operation starts, this initial dummy write  
prevents timing errors.  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
103  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Timers  
16-Bit Timer Setup Examples  
6. Set the TM4NLD bit of the TM4MD register to 1 and the TM4EN bit to 0.  
This enables TM4BC and the S-R flip-flop. This step ensures stable opera-  
tion. If it is omitted, the binary counter may not count the first cycle. Do not  
change any other operating modes during this step.  
7. Set TM4NLD and TM4EN to 1. This starts the timer. Counting begins at the  
start of the next cycle.  
Timer 4 can output a two-phase PWM signal with any phase difference. You must  
select up counting. Timer 4 does not operate in STOP mode, when BOSC is off. If  
you use an external clock, it must be synchronized to BOSC  
.
In this procedure, you set the cycle (x’0001’ to x’FFFE’) in the TM4CA register  
and the phase difference in the TM4CB register. When the contents of TM4BC  
match those of the TM4CB register, T flip-flop B reverses at the beginning of the  
next cycle. When the contents of TM4BC match those of the TM4CA register, T  
flip-flop A reverses and TM4BC resets at the beginning of the next cycle.  
The circuitry is configured so that there are no waveform errors, even when the  
output is always high or always low. Counting begins after the TM4EN bit is set  
in the TM4MD register.  
Figure 4-30 below shows the output waveforms for TM4OA and TM40B. Both A  
and B interrupts occur when the contents of the binary counter matches those of  
the associated compare/capture register. However, B interrupts can only occur if  
the TM4CB setting is from 0 to less than TM4CA. This is because when TM4CB  
TM4CA, TM4BC never matches TM4CB.  
Write to TM4MD  
TM4EN  
0
0
1
2
3
4
0
1
2
3
4
0
1
2
3
4
0
1
2
3
TM4BC  
B
/4  
OSC  
CLRBC4  
TMCB = 2  
B4  
A4  
TM4OA  
TM4OB  
Interrupts  
A
A
A
B
B
B
B
Figure 4-33 Two-Phase PWM Output Timing (Timer 4)  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
104  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Timers  
16-Bit Timer Setup Examples  
With PWM output, the duty cycle can change dynamically, which can cause the  
PWM waveform to skip a pulse (see the single buffering section of figure 4-34  
below). To prevent these misses, timers 4 and 5 provide a double-buffer mode. In  
this mode, no matter what the timing of a TMnCB change, the duty change does  
not occur until the beginning of the next cycle, and no signals are lost. Per-  
formance is assured even when the output switches from all 1s to all 0s (see the  
double buffering section of figure 4-34 below).  
For this reason, you must always use double-buffer mode for PWM waveform  
output. Use single-buffer mode only in applications that are unaffected by this  
issues.  
TM4EN  
Write to TM4CB  
3
3
1
TM4CB  
TM4BC  
0
0
1
2
4
0
1
2
3
4
0
1
2
3
4
0
1
2
3
B
/4  
OSC  
CLRBC4  
(1) Double buffering  
TM4CB  
TM4CBX  
B4  
3
1
3
1
A4  
TM4OA  
TM4OB  
Interrupts  
(2) Single buffering  
TM4CB  
B4  
B
A
B
A
A
B
B
No PWM or interrupt errors  
3
1
A4  
TM4OA  
TM4OB  
Interrupts  
B
A
B
A
A
B
Lost interrupt, causing a PWM output error  
Figure 4-34 Two-Phase PWM Output Timing with Dynamic Duty Changes  
(Timer 4)  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
105  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Timers  
16-Bit Timer Setup Examples  
4.11.4 Setting Up a Single-Phase Capture Input Using Timer 4  
In this example, timer 4 is used to divide BOSC/4 by 65,536 and measure how  
long the TM4IA input signal stays high. An interrupt occurs on capture B and the  
software calculates the number of cycles by subtracting the contents of TMnCA  
from the contents of TMnCB.  
CORE  
ROM, RAM  
Bus Controller  
Serial I/Fs  
ADC  
P3  
P6  
P4  
P5  
Interrupts  
Timers 0-3  
Timers 4-5  
TM4IA  
P2  
A. Chip Level  
Timer 4  
up  
B
/4  
TM4BC  
TM4CA  
OSC  
TM4IA  
T
Q
Q
Q
Interrupt B  
R
S
TM4CB  
T
B. Block Level  
Figure 4-35 Block Diagram of Single-Phase Capture Input Using Timer 4  
To set up timer 4:  
1. Set the operating mode in the timer 4 mode register (TM4MD). Disable timer  
4 counting and interrupts. Select up counting. Set the TM4NLP bit to 0 to  
select looped counting from 0 to x’FFFF’. Select BOSC/4 as the clock source.  
Use the MOV instruction for this  
setup and only use 16-bit write  
operations.  
TM4MD (example)  
x’00FE80’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TM4 TM4  
TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4  
EN  
0
NLD  
0
UD1 UD0 TGE ONE MD1 MD0 ECLR  
LP  
0
ASEL  
1 or 0  
S2  
0
S1  
1
S0  
1
This step stops the TM4BC  
count and clears both TM4BC  
and the S-R flip-flop to 0.  
Setting:  
0
0
0
0
0
0
1
0
0
2. Set the TM4NLD bit of the TM4MD register to 1 and the TM4EN bit to 0.  
This enables TM4BC and the S-R flip-flop. This step ensures stable opera-  
tion. If it is omitted, the binary counter may not count the first cycle. Do not  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
106  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Timers  
16-Bit Timer Setup Examples  
change any other operating modes during this step.  
When TM4MD[1:0] = b’10’ (dur-  
ing capture), TM4CA and  
TM4CB become read-only regis-  
ters. To write to TM4CA or  
TM4CB, you must first set  
TM4MD[1:0] = b’00’.  
3. Set TM4NLD and TM4EN to 1. This starts the timer. Counting begins at the  
start of the next cycle.  
To enable timer 4 capture B interrupts:  
Cancel all existing interrupt requests. Next, set the interrupt priority level in the  
TM4CBLV[2:0] bits of the TM4CBICH register (levels 0 to 6), set the TM4BIE  
bit to 1, and set the TM4BIR bit of TM4CBICL to 0. From this point on, an  
interrupt request is generated whenever a timer 4 capture B event occurs.  
To service the interrupts and calculate the signal width:  
1. Run the interrupt service routine. The routine must determine the interrupt  
group, then clear the interrupt request flag.  
Ignore the flags when calculat-  
ing the signal width, even when  
TM3CA is the larger value.  
2. Calculate the number of cycles the TM4IA signal stays high. Save the con-  
tents of TM4CA and TM4CB to the data registers, then subtract the contents  
of TM4CA from the contents of TM4CB. Since TM4LP is set to 0, the dif-  
ference will be the correct value even if TM4CA is greater than TM4CB.  
Timer 4 can input a single-phase capture signal. You must select up counting.  
Timer 4 does not operate in STOP mode, when BOSC is off. If you use an external  
clock, it must be synchronized to BOSC  
.
TM4CA captures the count on the rising edge of TM4IA, and TM4CB captures  
the count on the falling edge of TM4IA. A timer 4 capture B interrupt occurs  
when TM4CB captures the count, and the contents of TM4CA and TM4CB are  
read during the interrupt service routine.  
In the example timing chart shown in figure 4-36, x’000A’ – x’0007’ = x’0003’,  
or 3 cycles. The calculation is correct even when TM4CA is the larger value. The  
flags are ignored, so for instance, x’0003’ – x’FFFE’ = x’0005’.  
TM4EN  
TM4BC  
0
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
10 11 12  
B
/4  
OSC  
TM4CA  
TM4CB  
TM4IA  
0
0
7
A
A-7=3  
B
Interrupt  
Figure 4-36 Single-Phase Capture Input Timing (Timer 4)  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
107  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Timers  
16-Bit Timer Setup Examples  
4.11.5 Setting Up a Two-Phase Capture Input Using Timer 4  
In this example, timer 4 is used to divide the timer 0 underflow by 65,536 and  
measure the number of cycles from the rising edge of the TM4IA input signal to  
the rising edge of the TM4IB input signal. An interrupt occurs on capture B and  
the software calculates the number of cycles by subtracting the contents of  
TMnCA from the contents of TMnCB.  
CORE  
ROM, RAM  
Bus Controller  
Serial I/Fs  
ADC  
P3  
P6  
P4  
P5  
Interrupts  
Timers 0-3  
Timers 4-5  
TM4IA  
TM4IB  
P2  
A. Chip Level  
Timer 4  
up  
Timer 0  
underflow  
TM4BC  
TM4CA  
TM4IA  
T
Q
Q
Q
Interrupt B  
R
S
TM4CB  
TM4IB  
T
B. Block Level  
Figure 4-37 Block Diagram of Two-Phase Capture Input Using Timer 4  
To set up timer 0:  
1. Disable timer 0 counting in the timer 0 mode register (TM0MD). This step is  
unnecessary immediately after a reset, since TM0MD resets to 0.  
TM0MD (example)  
x’00FE20’  
Bit:  
7
6
5
4
3
2
1
0
TM0  
EN  
TM0  
LD  
TM0  
S1  
TM0  
S0  
Setting:  
0
0
0
0
0
0
2. Set the divide-by ratio for timer 0. To divide BOSC/4 by two, write x’01’ to  
the timer 0 base register (TM0BR). (The valid range for TM0BR is 0 to  
255.)  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
108  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Timers  
16-Bit Timer Setup Examples  
TM0BR (example)  
x’00FE10’  
Bit:  
7
6
5
4
3
2
1
0
TM0  
BR7  
TM0  
BR6  
TM0  
BR5  
TM0  
BR4  
TM0  
BR3  
TM0  
BR2  
TM0  
BR1  
TM0  
BR0  
Setting:  
0
0
0
0
0
0
0
1
3. Set the TM0LD bit of the TM0MD register to 1. This loads the value in the  
base register to the binary counter. At the same time, select the clock source  
as BOSC/4 by writing b’00’ to TM0S[1:0].  
Do not change the clock source  
once you select it. Selecting the  
clock source while you set up  
the count operation control will  
corrupt the value in the binary  
counter.  
TM0MD (example)  
x’00FE20’  
Bit:  
7
6
5
4
3
2
1
0
TM0  
EN  
TM0  
LD  
TM0  
S1  
TM0  
S0  
Setting:  
0
1
0
0
0
0
0
0
In the bank and linear address-  
ing versions of the MN102  
series, it was necessary to set  
TM0EN and TM0LD to 0  
4. Set TM0LD to 0 and TM0EN to 1. This starts the timer. Counting begins at  
the start of the next cycle. When the binary counter reaches 0 and loads the  
value x’01’ from the base register, in preparation for the next count, a timer 0  
underflow interrupt request is sent to the CPU.  
between steps 3 and 4, to  
ensure stable operation. This is  
unnecessary in the high-speed  
linear addressing version.  
To set up timer 4:  
1. Set the operating mode in the timer 4 mode register (TM4MD). Disable  
timer 4 counting and interrupts. Select up counting. Set the TM4NLP bit to 0  
to select looped counting from 0 to x’FFFF’. Select timer 0 underflow as the  
clock source.  
Use the MOV instruction for this  
setup and only use 16-bit write  
operations.  
TM4MD (example)  
x’00FE80’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TM4 TM4  
TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4 TM4  
This step stops the TM4BC  
count and clears both TM4BC  
and the S-R flip-flop to 0.  
EN  
0
NLD  
0
UD1 UD0 TGE ONE MD1 MD0 ECLR  
LP  
0
ASEL  
1 or 0  
S2  
0
S1  
0
S0  
0
Setting:  
0
0
0
0
0
0
1
1
0
2. Set the TM4NLD bit of the TM4MD register to 1 and the TM4EN bit to 0.  
This enables TM4BC and the S-R flip-flop. This step ensures stable opera-  
tion. If it is omitted, the binary counter may not count the first cycle. Do not  
change any other operating modes during this step.  
When TM4MD[1:0] = b’11’ (dur-  
ing capture), TM4CA and  
TM4CB become read-only regis-  
ters. To write to TM4CA or  
TM4CB, you must first set  
TM4MD[1:0] = b’00’.  
3. Set TM4NLD and TM4EN to 1. This starts the timer. Counting begins at the  
start of the next cycle.  
To enable timer 4 capture B interrupts:  
Cancel all existing interrupt requests. Next, set the interrupt priority level in the  
TM4CBLV[2:0] bits of the TM4CBICH register (levels 0 to 6), set the TM4BIE  
bit to 1, and set the TM4BIR bit of TM4CBICL to 0. From this point on, an  
interrupt request is generated whenever a timer 4 capture B event occurs.  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
109  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Timers  
16-Bit Timer Setup Examples  
To service the interrupts and calculate the signal width:  
1. Run the interrupt service routine. The routine must determine the interrupt  
group, then clear the interrupt request flag.  
Ignore the flags when calculat-  
ing the signal width, even when  
TM3CA is the larger value.  
2. Calculate the number of cycles the TM4IA signal stays high. Save the con-  
tents of TM4CA and TM4CB to the data registers, then subtract the contents  
of TM4CA from the contents of TM4CB. Since TM4LP is set to 0, the dif-  
ference will be the correct value even if TM4CA is greater than TM4CB.  
Timer 4 can input a two-phase capture signal. You must select up counting. Timer 4  
does not operate in STOP mode, when BOSC is off. If you use an external clock, it  
must be synchronized to BOSC  
.
TM4CA captures the count on the rising edge of TM4IA, and TM4CB captures  
the count on the rising edge of TM4IB. A timer 4 capture B interrupt occurs  
when TM4CB captures the count, and the contents of TM4CA and TM4CB are  
read during the interrupt service routine.  
In the example timing chart shown in figure 4-38, x’000A’ – x’0007’ = x’0003’,  
or 3 cycles. The calculation is correct even when TM4CA is the larger value. The  
flags are ignored, so for instance, x’0003’ – x’FFFE’ = x’0005’.  
TM4EN  
TM4BC  
BOSC/4  
TM4CA  
TM4CB  
TM4IA  
0
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
10 11 12  
0
7
0
A
A-7=3  
TM4IB  
B
Interrupt  
Figure 4-38 Two-Phase Capture Input Timing (Timer 4)  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
110  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Timers  
16-Bit Timer Setup Examples  
4.11.6 Setting Up a 4x Two-Phase Encoder Input Using Timer 5  
In this example, timer 5 inputs a 4x two-phase encoded signal that makes it count  
up and down. An interrupt occurs when the counter reaches a preset value.  
CORE  
ROM, RAM  
Bus Controller  
Serial I/Fs  
ADC  
P2  
P6  
P3  
P5  
Interrupts  
Timers 0-3  
Timers 4-5  
TM5IA  
TM5IB  
P4  
A. Chip Level  
Timer 5  
up/down  
TM5BC  
TM5CA  
Interrupt B  
T
Q
Q
Q
TM5IA  
TM5IB  
R
S
TM5CB  
T
B. Block Level  
Figure 4-39 Block Diagram of 4x Two-Phase Capture Input Using Timer 5  
TM5BC contents  
0
x'1000' x'1FFF'  
Interrupt  
Figure 4-40 Configuration Example 1 of 4x Two-Phase Capture Input Using  
Timer 5  
As figure 4-41 shows, you can set different values for A and B interrupts.  
(TM5LP must be 0.)  
0
x'1000'  
x'FF00'  
x'FFFF'  
A interrupt  
B interrupt  
Figure 4-41 Configuration Example 2 of 4x Two-Phase Capture Input Using  
Timer 5  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
111  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Timers  
16-Bit Timer Setup Examples  
To set up timer 5:  
1. Set the operating mode in the timer 5 mode register (TM5MD). Disable timer  
5 counting and interrupts. The up/down count bit is ignored in this instance.  
Set the TM5NLP bit to 1 to select looped counting from 0 to the value in  
TM5CA. Select the 4x two-phase encoder as the clock source.  
Use the MOV instruction for this  
setup and only use 16-bit write  
operations.  
TM5MD (example)  
x’00FE90’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
This step stops the TM5BC  
count and clears both TM5BC  
and the S-R flip-flop to 0.  
TM5 TM5  
TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5  
EN  
0
NLD  
0
UD1 UD0 TGE ONE MD1 MD0 ECLR  
LP  
1
ASEL  
1 or 0  
S2  
1
S1  
0
S0  
0
Setting:  
0
0
0
0
0
0
0
0
0
2. Write the intended looping value for timer 5 to TM5CA (valid settings:  
x’0001’ to x’FFFF’). For TM5BC to count from x’0000’ to x’1FFF’, for  
instance, write x’1FFF’ to TM5CA.  
TM5CA (example)  
x’00FE94’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5  
CA15 CA14 CA13 CA12 CA11 CA10 CA9 CA8 CA7  
CA6  
1
CA5 CA4 CA3  
CA2  
1
CA1 CA0  
Setting:  
0
0
0
1
1
1
1
1
1
1
1
1
1
1
3. Write the timer 5 interrupt value (valid settings: x’0000’ to the value in  
TM5CA) to TM5CB. Whenever the binary counter reaches the value in  
TM5CB, in either up or down counting, a compare/capture B interrupt  
occurs at the beginning of the next cycle.  
TM5CB (example)  
x’00FE98’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5  
CB15 CB14 CB13 CB12 CB11 CB10 CB9  
CB8  
0
CB7  
0
CB6  
0
CB5  
0
CB4  
0
CB3  
0
CB2  
0
CB1  
0
CB0  
0
Setting:  
0
0
0
1
0
0
0
4. Set the TM5NLD bit of the TM5MD register to 1 and the TM5EN bit to 0.  
This enables TM5BC and the S-R flip-flop. This step ensures stable opera-  
tion. If it is omitted, the binary counter may not count the first cycle. Do not  
change any other operating modes during this step.  
5. Set TM5NLD and TM5EN to 1. This starts the timer. Counting begins at the  
start of the next cycle.  
To enable timer 5 capture B interrupts:  
Cancel all existing interrupt requests. Next, set the interrupt priority level in the  
TM5CBLV[2:0] bits of the TM5CBICH register (levels 0 to 6), set the TM5BIE  
bit to 1, and set the TM5BIR bit of TM5CBICL to 0. From this point on, an  
interrupt request is generated whenever a timer 5 capture B event occurs.  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
112  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Timers  
16-Bit Timer Setup Examples  
To service the interrupts:  
Run the interrupt service routine. The routine must determine the interrupt group,  
then clear the interrupt request flag.  
Timer 5 can input a two-phase encoder signal. Timer 5 does not operate in STOP  
mode, when BOSC is off. If you use an external clock, it must be synchronized to  
Table 4-4 shows the count direction for the timing diagram in figure 4-42. In  
down counting, when the binary counter reaches 0, it loops to the value in  
TM5CA. An interrupt B occurs when the contents of TM5BC match those of  
TM5CB.  
Table 4-4 Count Direction for 4x Two-Phase Encoder Timing Example  
Up Counting  
Down Counting  
TM5IA  
TM5IB  
1
0
0
1
0
1
1
0
1FFF  
1000  
TM5CA  
TM5CB  
TM5BC  
TM5IA  
0000 1FFF 1FFE  
1FFD  
1FFE 1FFF 0000 0001 0FFF 1000 1001  
TM5IB  
B
Interrupt  
Figure 4-42 4x Two-Phase Encoder Input Timing (Timer 5)  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
113  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Timers  
16-Bit Timer Setup Examples  
4.11.7 Setting Up a 1x Two-Phase Encoder Input Using Timer 5  
In this example, timer 5 inputs a 1x two-phase encoded signal that makes it count  
up and down. An interrupt occurs when the counter reaches a preset value.  
CORE  
ROM, RAM  
Bus Controller  
Serial I/Fs  
ADC  
P2  
P6  
P3  
P5  
Interrupts  
Timers 0-3  
Timers 4-5  
TM5IA  
TM5IB  
P4  
A. Chip Level  
Timer 5  
up/down  
TM5BC  
TM5CA  
Interrupt B  
T
Q
Q
Q
TM5IA  
TM5IB  
R
S
TM5CB  
T
B. Block Level  
Figure 4-43 Block Diagram of 1x Two-Phase Capture Input Using Timer 5  
TM5BC contents  
0
x'1000' x'1FFF'  
Interrupt  
Figure 4-44 Configuration Example 1 of 1x Two-Phase Capture Input Using  
Timer 5  
As figure 4-45 shows, you can set different values for A and B interrupts.  
(TM5LP must be 0.)  
0
x'1000'  
x'FF00'  
x'FFFF'  
A interrupt  
B interrupt  
Figure 4-45 Configuration Example 2 of 1x Two-Phase Capture Input Using  
Timer 5  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
114  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Timers  
16-Bit Timer Setup Examples  
To set up timer 5:  
1. Set the operating mode in the timer 5 mode register (TM5MD). Disable timer  
5 counting and interrupts. The up/down count bit is ignored in this instance.  
Set the TM5NLP bit to 1 to select looped counting from 0 to the value in  
TM5CA. Select the 1x two-phase encoder as the clock source.  
Use the MOV instruction for this  
setup and only use 16-bit write  
operations.  
TM5MD (example)  
x’00FE90’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
This step stops the TM5BC  
count and clears both TM5BC  
and the S-R flip-flop to 0.  
TM5 TM5  
TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5  
EN  
0
NLD  
0
UD1 UD0 TGE ONE MD1 MD0 ECLR  
LP  
1
ASEL  
1 or 0  
S2  
1
S1  
0
S0  
1
Setting:  
0
0
0
0
0
0
0
0
0
2. Write the intended looping value for timer 5 to TM5CA (valid settings:  
x’0001’ to x’FFFF’). For TM5BC to count from x’0000’ to x’1FFF’, for  
instance, write x’1FFF’ to TM5CA.  
TM5CA (example)  
x’00FE94’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5  
CA15 CA14 CA13 CA12 CA11 CA10 CA9 CA8 CA7  
CA6  
1
CA5 CA4 CA3  
CA2  
1
CA1 CA0  
Setting:  
0
0
0
1
1
1
1
1
1
1
1
1
1
1
3. Write the timer 5 interrupt value (valid settings: x’0000’ to the value in  
TM5CA) to TM5CB. Whenever the binary counter reaches the value in  
TM5CB, in either up or down counting, a compare/capture B interrupt  
occurs at the beginning of the next cycle.  
TM5CB (example)  
x’00FE98’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5  
CB15 CB14 CB13 CB12 CB11 CB10 CB9  
CB8  
0
CB7  
0
CB6  
0
CB5  
0
CB4  
0
CB3  
0
CB2  
0
CB1  
0
CB0  
0
Setting:  
0
0
0
1
0
0
0
4. Set the TM5NLD bit of the TM5MD register to 1 and the TM5EN bit to 0.  
This enables TM5BC and the S-R flip-flop. This step ensures stable opera-  
tion. If it is omitted, the binary counter may not count the first cycle. Do not  
change any other operating modes during this step.  
5. Set TM5NLD and TM5EN to 1. This starts the timer. Counting begins at the  
start of the next cycle.  
To enable timer 5 capture B interrupts:  
Cancel all existing interrupt requests. Next, set the interrupt priority level in the  
TM5CBLV[2:0] bits of the TM5CBICH register (levels 0 to 6), set the TM5BIE  
bit to 1, and set the TM5BIR bit of TM5CBICL to 0. From this point on, an  
interrupt request is generated whenever a timer 5 capture B event occurs.  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
115  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Timers  
16-Bit Timer Setup Examples  
To service the interrupts:  
Run the interrupt service routine. The routine must determine the interrupt group,  
then clear the interrupt request flag.  
Timer 5 can input a two-phase encoder signal. Timer 5 does not operate in STOP  
mode, when BOSC is off. If you use an external clock, it must be synchronized to  
Table 4-5 shows the count direction for the timing diagram in figure 4-46. In  
down counting, when the binary counter reaches 0, it loops to the value in  
TM5CA. An interrupt B occurs when the contents of TM5BC match those of  
TM5CB.  
Table 4-5 Count Direction for 1x Two-Phase Encoder Timing Example  
Up Counting  
Down Counting  
TM5IA  
TM5IB  
1
1
1FFF  
1000  
TM5CA  
TM5CB  
TM5BC  
TM5IA  
0000 1FFF 1FFE  
1FFD  
1FFE 1FFF 0000 0001 0FFF 1000 1001  
TM5IB  
A
A
B
Interrupts  
Figure 4-46 1x Two-Phase Encoder Input Timing (Timer 5)  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
116  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Timers  
16-Bit Timer Setup Examples  
4.11.8 Setting Up a One-Shot Pulse Output Using Timer 5  
In this example, timer 5 outputs a one-shot pulse. The pulse width is two clock  
cycles.  
CORE  
ROM, RAM  
Bus Controller  
Serial I/Fs  
ADC  
P2  
P6  
P3  
P5  
Interrupts  
Timers 0-3  
Timers 4-5  
TM5OA  
TM5IB  
P4  
A. Chip Level  
Timer 5  
B
/4  
OSC  
TM5BC  
up/down  
TM5CA  
T
Q
Q
Q
TM5CAX  
R
S
TM5OA  
TM5IB  
TM5CB  
T
TM5CBX  
B. Block Level  
Figure 4-47 Block Diagram of One-Shot Pulse Output Using Timer 5  
To set up the output port:  
Set the P4MD2 bit of the port 4 output mode register (P4MD) to 1 (selecting the  
TM5IOA pin) and set the P4DIR2 bit of the port 4 I/O control register (P4DIR)  
to 1 (selecting output direction). This step selects the TM5OA pin (P42) as the  
timer output port.  
P4MD (example)  
x’00FFF8’  
Bit:  
7
6
5
4
3
2
1
0
P4  
P4  
P4  
P4  
P4  
P4  
P4  
P4  
MD7  
MD6  
MD5  
MD4  
MD3  
MD2  
MD1  
MD0  
Setting:  
0
0
0
0
0
1
0
0
P2DIR (example)  
x’00FFE4’  
Bit:  
7
6
5
4
3
2
1
0
P4  
P4  
P4  
P4  
P4  
P4  
P4  
P4  
DIR7  
DIR6  
DIR5  
DIR4  
DIR3  
DIR2  
DIR1  
DIR0  
Setting:  
0
0
0
0
0
1
0
0
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
117  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Timers  
16-Bit Timer Setup Examples  
To set up timer 5:  
1. Set the operating mode in the timer 5 mode register (TM5MD). Disable timer  
5 counting and interrupts. Select up counting. Select BOSC/4 as the clock  
source.  
Use the MOV instruction for this  
setup and only use 16-bit write  
operations.  
TM5MD (example)  
x’00FE90’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TM5 TM5  
TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5  
EN  
0
NLD  
0
UD1 UD0 TGE ONE MD1 MD0 ECLR  
LP  
1
ASEL  
1 or 0  
S2  
0
S1  
1
S0  
1
This step stops the TM5BC  
count and clears both TM5BC  
and the S-R flip-flop to 0.  
Setting:  
0
0
0
0
1
1
0
0
0
2. Set the timer 5 pulse width in TM5CA (valid settings: x’0001’ to x’FFFF’).  
Since the pulse width in this example is two cycles of the BOSC/4 clock,  
write x’0003’ to TM5CA. TM5BC counts from 0 to 3, and TM5OA outputs  
a high signal while the count is 1, 2, and 3. The timer operates essentially the  
same as it does during two-phase PWM output.  
TM5CA (example)  
x’00FE94’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5  
CA15 CA14 CA13 CA12 CA11 CA10 CA9 CA8 CA7  
0 0 0  
CA6  
0
CA5 CA4 CA3  
0 0 0  
CA2  
0
CA1 CA0  
Setting:  
0
0
0
0
0
0
1
1
3. Write x’0001’ to TM5CB.  
TM5CB (example)  
x’00FE98’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5  
CB15 CB14 CB13 CB12 CB11 CB10 CB9  
CB8  
CB7  
CB6  
CB5  
CB4  
CB3  
CB2  
CB1  
CB0  
Setting:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
4. Set the TM5NLD bit of the TM5MD register to 1 and the TM5EN bit to 0.  
This enables TM5BC and the S-R flip-flop. This step ensures stable opera-  
tion. If it is omitted, the binary counter may not count the first cycle. Do not  
change any other operating modes during this step.  
5. On the falling edge of the TM5IB signal, the hardware sets the TM5EN bit  
to 1. This means that counting begins at the start of the next cycle after the  
TM5IB signal falls. The TM5EN bit serves as the busy flag for the one-shot  
pulse.  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
118  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Timers  
16-Bit Timer Setup Examples  
Timer 5 can output a one-shot pulse. Timer 5 does not operate in STOP mode,  
when BOSC is off. If you use an external clock, it must be synchronized to BOSC  
.
Figure 4-48 shows an example timing diagram for one-shot pulse output. On the  
falling edge of TM5IB, the TM5EN flag is set, and counting begins at the start of  
the next cycle. Before the count starts, TM5BC is 0, the initial TM5OA output  
value is 0, and the R5 (reset) and S5 (set) signals are not asserted. After the count  
starts, when it changes from 0 to 1, the S5 signal is asserted. This sets the  
TM5OA signal high, and it outputs the one-shot pulse. When the count reaches 3,  
TM5BC resets, changing from 3 to 0, and the R5 signal is asserted, causing the  
TM5OA signal to go low. Because the TM5ONE bit of the TM5MD register is 1,  
and the TM5EN bit is reset, the count stops. The circuit state is now the same as  
it was before the TM5IB signal went low. When the TM5IB signal falls again, the  
hardware once again sets the TM5EN bit, and the one-shot pulse sequence  
repeats.  
0003  
0001  
TM5CA  
TM5CB  
TM5BC  
0000  
0001 0002 0003  
0000  
0001 0002 0003 0000  
B /4  
OSC  
TM5EN  
TM5IB  
S5  
R5  
TM5OA  
Figure 4-48 One-Shot Pulse Output Timing (Timer 5)  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
119  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Timers  
16-Bit Timer Setup Examples  
4.11.9 Setting Up an External Count Direction Controller  
Using Timer 5  
In this example, timer 5 counts BOSC/4 and the TM5IA pin controls the count  
direction (up or down). An interrupt occurs when the counter reaches a preset  
value.  
CORE  
ROM, RAM  
Bus Controller  
Serial I/Fs  
ADC  
P2  
P6  
P3  
P5  
Interrupts  
Timers 0-3  
Timers 4-5  
TM5IA  
P4  
A. Chip Level  
Timer 5  
up/down  
B
/4  
TM5BC  
TM5CA  
OSC  
T
Q
Q
Q
TM5IA  
R
S
Interrupt B  
T
TM5CB  
B. Block Level  
Figure 4-49 Block Diagram of External Count Direction Control Using Timer 5  
TM5BC contents  
0
x'1000' x'1FFF'  
Interrupt  
Figure 4-50 Configuration Example of External Count Direction Control  
Using Timer 5  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
120  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Timers  
16-Bit Timer Setup Examples  
To set up timer 5:  
1. Set the operating mode in the timer 5 mode register (TM5MD). Disable timer  
5 counting and interrupts. Set the TM5UD[1:0] bits to b’10’, so that the count  
direction is up when the TM5IA signal is high and down when the TM5IA sig-  
nal is low. Select BOSC/4 as the clock source.  
Use the MOV instruction for this  
setup and only use 16-bit write  
operations.  
TM5MD (example)  
x’00FE90’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
This step stops the TM5BC  
count and clears both TM5BC  
and the S-R flip-flop to 0.  
TM5 TM5  
TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5  
EN  
0
NLD  
0
UD1 UD0 TGE ONE MD1 MD0 ECLR  
LP  
1
ASEL  
1 or 0  
S2  
0
S1  
1
S0  
1
Setting:  
0
0
1
0
0
0
0
0
0
2. Write the intended looping value for timer 5 to TM5CA (valid settings:  
x’0001’ to x’FFFF’). For TM5BC to count from x’0000’ to x’1FFF’, for  
instance, write x’1FFF’ to TM5CA.  
TM5CA (example)  
x’00FE94’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5  
CA15 CA14 CA13 CA12 CA11 CA10 CA9 CA8 CA7  
CA6  
1
CA5 CA4 CA3  
CA2  
1
CA1 CA0  
Setting:  
0
0
0
1
1
1
1
1
1
1
1
1
1
1
3. Write the timer 5 interrupt value (valid settings: x’0000’ to the value in  
TM5CA) to TM5CB. Whenever the binary counter reaches the value in  
TM5CB, in either up or down counting, a compare/capture B interrupt  
occurs at the beginning of the next cycle.  
TM5CB (example)  
x’00FE98’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5  
CB15 CB14 CB13 CB12 CB11 CB10 CB9  
CB8  
0
CB7  
0
CB6  
0
CB5  
0
CB4  
0
CB3  
0
CB2  
0
CB1  
0
CB0  
0
Setting:  
0
0
0
1
0
0
0
4. Set the TM5NLD bit of the TM5MD register to 1 and the TM5EN bit to 0.  
This enables TM5BC and the S-R flip-flop. This step ensures stable opera-  
tion. If it is omitted, the binary counter may not count the first cycle. Do not  
change any other operating modes during this step.  
5. Set TM5NLD and TM5EN to 1. This starts the timer. Counting begins at the  
start of the next cycle.  
To enable timer 5 capture B interrupts:  
Cancel all existing interrupt requests. Next, set the interrupt priority level in the  
TM5CBLV[2:0] bits of the TM5CBICH register (levels 0 to 6), set the TM5BIE  
bit to 1, and set the TM5BIR bit of TM5CBICL to 0. From this point on, an  
interrupt request is generated whenever a timer 5 capture B event occurs.  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
121  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Timers  
16-Bit Timer Setup Examples  
To service the interrupts:  
Run the interrupt service routine. The routine must determine the interrupt group,  
then clear the interrupt request flag.  
Either the TM5IA or TM5IB signal can control the timer 5 count direction. The  
count direction is determined at the opposite edge from the count edge (at the  
source clock transition occurring in the middle of the count cycle.).  
Timer 5 does not operate in STOP mode, when BOSC is off. If you use an external  
clock, it must be synchronized to BOSC  
.
Figure 4-51 shows an example timing chart. In this example, an interrupt occurs  
when the timer switches from down to up counting.  
1FFF  
TM5CA  
1000  
TM5CB  
0000 1FFF 1FFE 1FFD 1FFE 1FFF 0000 0001 0002 0FFF 1000 1001  
TM5BC  
B
/4  
OSC  
TM5IA  
B
Interrupt  
Figure 4-51 External Count Direction Control Timing (Timer 5)  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
122  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Timers  
16-Bit Timer Setup Examples  
4.11.10Setting Up External Reset Control Using Timer 5  
In this example, timer 5 is reset by an external signal while counting up.  
CORE  
ROM, RAM  
Bus Controller  
Serial I/Fs  
ADC  
P2  
P6  
P3  
P5  
Interrupts  
Timers 0-3  
Timers 4-5  
TM5IC  
P4  
A. Chip Level  
Timer 5  
B /4  
OSC  
TM5BC  
TM5CA  
reset  
T
Q
Q
Q
R
S
TM5CB  
TM5IC  
T
B. Block Level  
Figure 4-52 Block Diagram of External Reset Control Using Timer 5  
To set up timer 5:  
1. Set the operating mode in the timer 5 mode register (TM5MD). Disable  
timer 5 counting and interrupts. Select up counting. Since the TM5IC signal  
will reset the counter asynchronously, set the TM5ECLR bit to 1. Select  
B
OSC/4 as the clock source.  
Use the MOV instruction to set  
this data and only use 16-bit  
write operations.  
TM5MD (example)  
x’00FE90’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
This step stops the TM5BC  
count and clears both TM5BC  
and the S-R flip-flop to 0.  
TM5 TM5  
TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5  
UD1 UD0 TGE ONE MD1 MD0 ECLR LP ASEL  
EN  
0
NLD  
0
S2  
0
S1  
1
S0  
1
Setting:  
0
0
0
0
0
0
0
0
1
1
0
2. Set the value to which timer 5 will loop (valid settings: x’0001’ to x’FFFF’).  
For TM5BC to count from x’0000’ to x’1FFF’, for instance, write x’1FFF’  
to TM5CA.  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
123  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Timers  
16-Bit Timer Setup Examples  
TM5CA (example)  
x’00FE94’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5 TM5  
CA15 CA14 CA13 CA12 CA11 CA10 CA9 CA8 CA7  
CA6  
1
CA5 CA4 CA3  
CA2  
1
CA1 CA0  
Setting:  
0
0
0
1
1
1
1
1
1
1
1
1
1
1
3. Set the TM5NLD bit of the TM5MD register to 1 and the TM5EN bit to 0.  
This enables TM5BC and the S-R flip-flop. This step ensures stable opera-  
tion. If it is omitted, the binary counter may not count the first cycle.  
4. Set TM5NLD and TM5EN to 1. This starts the timer. Counting begins at the  
start of the next cycle.  
From this point on, whenever the TM5IC signal is high, timer 5 will be reset  
asynchronously. This is an easy way to synchronize the microcontroller operation  
with an external event. You can use it to adjust motor speed or to initialize the  
timers through the hardware.  
Timer 5 does not operate in STOP mode, when BOSC is off. If you use an external  
clock, it must be synchronized to BOSC  
.
Figure 4-53 shows an example timing chart.  
0000 0001 0002 0003 0004  
0000  
0001 0002 0003  
TM5BC  
B
/4  
OSC  
TM5IC  
Figure 4-53 External Reset Control Timing (Timer 5)  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
124  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Timers  
16-Bit Timer Control Registers  
4.12 16-Bit Timer Control Registers  
Table 4-6 shows the registers used to control the 16-bit timers. A binary counter  
(TMnBC), a compare/capture register A (TMnCA), a compare/capture register B  
(TMnCB), and a timer mode register (TMnMD) is associated with each 16-bit  
timer.  
Table 4-6 16-Bit Timer Control Registers  
Register  
Address R/W  
Description  
Timer 4  
TM4MD  
x’00FE80’ R/W Timer 4 mode register  
x’00FE82’ Timer 4 binary counter  
x’00FE84’ R/W Timer 4 compare/capture register A  
x’00FE86’ Timer 4 compare/capture register set AX  
x’00FE88’ R/W Timer 4 compare/capture register B  
x’00FE8ATimer 4 compare/capture register set BX  
x’00FE90’ R/W Timer 5 mode register  
x’00FE92’ Timer 5 binary counter  
x’00FE94’ R/W Timer 5 compare/capture register A  
x’00FE96’ Timer 5 compare/capture register set AX  
x’00FE98’ R/W Timer 5 compare/capture register B  
x’00FE9ATimer 5 compare/capture register set BX  
TM4BC  
TM4CA  
TM4CAX  
TM4CB  
R
TM4CBX  
TM5MD  
TM5BC  
Timer 5  
R
TM5CA  
TM5CAX  
TM5CB  
TM5CBX  
Note: TM4CAX, TM4CBX, TM5CAX, and TM5CBX are virtual registers used only  
in double-buffer mode during PWM output. They do not exist in the hardware  
and are not readable or writable. Depending on the write signal, they load the  
value in the associated CA or CB register.  
TM4BC/TM5BC: Timer n Binary Counter  
x’00FE82’/x’00FE92’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TMn TMn TMn TMn TMn TMn TMn TMn TMn TMn TMn TMn TMn TMn TMn TMn  
BC15 BC14 BC13 BC12 BC11 BC10 BC9  
BC8  
BC7  
BC6  
BC5  
BC4  
BC3  
BC2  
BC1  
BC0  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R/W:  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
TM4CA/TM5CA: Timer n Compare/Capture Register A  
x’00FE84’/x’00FE94’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TMn TMn TMn TMn TMn TMn TMn TMn TMn TMn TMn TMn TMn TMn TMn TMn  
CA15 CA14 CA13 CA12 CA11 CA10 CA9 CA8 CA7  
CA6  
CA5 CA4 CA3  
CA2  
CA1 CA0  
TMnCA and TMnCB are 16-bit  
access registers. Use the MOV  
instruction to write to them.  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R/W: R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W  
TM4CB/TM5CB: Timer n Compare/Capture Register B  
x’00FE88’/x’00FE98’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TMn TMn TMn TMn TMn TMn TMn TMn TMn TMn TMn TMn TMn TMn TMn TMn  
CB15 CB14 CB13 CB12 CB11 CB10 CB9  
CB8  
0
CB7  
0
CB6  
0
CB5  
0
CB4  
0
CB3  
0
CB2  
0
CB1  
0
CB0  
0
Reset:  
0
0
0
0
0
0
0
R/W: R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
125  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Timers  
16-Bit Timer Control Registers  
TM4MD/TM5MD: Timer n Mode Register  
x’00FE80’/x’00FE90’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TMn TMn  
TMn TMn TMn TMn TMn TMn TMn TMn TMn TMn TMn TMn  
EN  
0
NLD  
0
UD1 UD0 TGE ONE MD1 MD0 ECLR  
LP  
0
ASEL  
0
S2  
0
S1  
0
S0  
0
Reset:  
0
0
0
0
0
0
0
0
0
R/W: R/W R/W  
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W  
TMnEN: TMnBC count  
0: Disable  
1: Enable  
TMnNLD: TMnBC, T flip-flop, and S-R flip-flop operation select  
0: Set all to 0 (initialize)  
1: Operate all  
TMnUD[1:0]: Timer n up/down counter mode select  
Ignored when two-phase encoding is selected.  
00: Up counter  
01: Down counter  
10: Up when TMnIOA is high; down when low  
11: Up when TMnIOB is high; down when low  
TMnTGE: External trigger enable for start count  
0: Disable  
1: Start count at falling edge of TMnIOB  
TMnONE: Counter operating mode select  
0: Repeat (except with PWM output)  
1: One-shot pulse (counter stops on the next clock after TMnBC = TMnCA)  
TMnMD[1:0]: TMnCA and TMnCB operating mode select  
00: Compare register (single buffer)  
01: Compare register (double buffer)  
10: Capture register (TMnIOA high: capture A; TMnIOA low: capture B)  
11: Capture register (TMnIOA high: capture A; TMnIOB high: captureB)  
TMnECLR: Timer n BC external clear  
0: Don’t clear  
1: Clear TMnBC asynchronously when the TMnIC signal goes high.  
TMnLP: Timer n BC loop select  
0: 0000–FFFF  
1: 0000–value in TMnCA  
TMnASEL: TMnIOA output select  
0: S-R flip-flop output (single-phase PWM)  
1: T flip-flop output (two-phase PWM)  
TMnS[2:0]: Timer n clock source select  
000: Timer 0 underflow  
001: Timer 1 underflow  
010: TMnIB signal  
011: BOSC/4  
100: 4x two-phase encoder  
101: 1x two-phase encoder  
110, 111: Reserved  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
126  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Serial Interfaces  
Description  
5
Serial Interfaces  
5.1 Description  
The MN102H75K/85K contains two general-purpose serial interfaces with syn-  
chronous serial, UART, and I2C modes. The maximum baud rate in synchronous  
serial mode is 12 Mbps. In UART mode, the maximum baud rate is 375,000 bps,  
when BOSC = 24 MHz.  
Signal from 8-bit timers  
TM0IR TM1IR  
Tx end interrupt  
SBO0  
SBT0  
TXD  
TXC  
Transmitter  
Receiver  
RXC  
RXD  
Rx end interrupt  
SBI0  
SBO1  
SBT1  
SBI1  
TXD  
TXC  
Tx end interrupt  
Rx end interrupt  
Transmitter  
Receiver  
RXC  
RXD  
Figure 5-1 Serial Interface Configuration Example  
5.2 Features  
Table 5-1 Serial Interface Functions and Features  
Function/Feature Synchronous Serial Mode  
2
UART Mode  
I C Mode  
Parity  
None, 0, 1, even, or odd  
7-bit or 8-bit  
Can be master trans-  
mitter or receiver. (No  
collision detection for  
start sequence.)  
Character length  
Transfer bit order  
LSB or MSB first (programmable; 8-  
LSB first  
bit only)  
Clock source  
• 1/2 of timer 0 underflow  
• 1/8 of timer 0 or 1 underflow  
• External clock  
• 1/8 of timer 0 or 1 underflow  
Maximum baud rate  
Error detection  
12 Mbps  
375,000 bps  
(when B  
= 24 MHz)  
(when B  
= 24 MHz)  
OSC  
OSC  
• Parity error  
• Overrun error  
• Parity error  
• Overrun error  
• Framing error  
Buffers  
Independent transmit/receive buffers (single transmit buffer, double receive  
buffers)  
Interrupts  
Transmission or reception complete interrupts  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
127  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Serial Interfaces  
Connecting the Serial Interfaces  
5.3 Connecting the Serial Interfaces  
Figures 5-2, 5-3, and 5-4 illustrate six different methods of connecting the serial  
interface.  
5.3.1 Synchronous Serial Mode Connections  
Figure 5-2 shows serial port connections for either simplex or full-duplex syn-  
chronous serial transfers.  
See section 11, “I/O Ports,” for  
details on setting up the SBT  
port.  
SBO  
SBO  
SBO  
SBO  
SBI  
SBI  
SBI  
SBI  
SBT  
SBT  
SBT  
SBT  
A. Simplex Connection  
B. Full-Duplex Connection  
Figure 5-2 Synchronous Serial Mode Connections  
5.3.2 UART Mode Connections  
Figure 5-3 shows serial port connections for either simplex or full-duplex UART  
transfers.  
SBO  
SBI  
SBO  
SBI  
SBO  
SBI  
SBO  
SBI  
A. Simplex Connection  
B. Full-Duplex Connection  
Figure 5-3 UART Mode Connections  
2
5.3.3 I C Mode Connection  
The serial interfaces can connect to I2C slave transmitters or receivers. For this  
mode, always pull up the SBO and SBT pins to VDD. Either connect a pullup  
resistor externally or turn on the internal one by setting the PPLU register.  
SBO  
SBT  
Master  
transmitter/  
receiver  
MN102H75K  
Slave  
transmitter/  
receiver  
Slave  
transmitter/  
receiver  
2
Figure 5-4 I C Mode Connection  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
128  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Serial Interfaces  
UART Mode Baud Rates  
5.4 UART Mode Baud Rates  
In UART mode, the serial interface transfer clock is set to 16 times the baud rate  
clock. The expression below is the formula for calculating the baud rate for the  
UART mode. Table 5-2 shows the baud rate settings when BOSC = 24 MHz.  
BOSC  
baud rate (bps) = ----------------------------------------------  
32 × (timer divisor)  
Table 5-2 Example Baud Rate Settings for the UART Mode  
Baud Rate  
Timer 0/1 Divide-by Ratio  
19200  
9600  
39  
78  
4800  
2400  
1200  
600  
156  
313  
625  
1250  
2500  
300  
5.5 Serial Interface Timing  
5.5.1 Synchronous Serial Mode Timing  
In these timing charts, the character length is 8 bits and there is parity.  
Tx  
SBO  
SBT  
b0 b1 b2 b3 b4 b5 b6 b7 PTY  
Data write  
TXBUSY  
Tx interrupt  
Figure 5-5 Synchronous Serial Transmission Timing  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
129  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Serial Interfaces  
Serial Interface Timing  
Rx  
SBI  
b0 b1 b2 b3 b4 b5 b6 b7 PTY  
SBT  
RXBUSY  
Rx interrupt  
RXA  
(1 when Rx data in)  
Data read  
Figure 5-6 Synchronous Serial Reception Timing  
5.5.2 UART Mode Timing  
In these timing charts, the character length is 8 bits, the parity is none, and the  
stop bit is 2-bit.  
Tx  
SBO  
Data write  
TXBUSY  
ST b0 b1 b2 b3 b4 b5 b6 b7 SP SP  
Tx interrupt  
Figure 5-7 UART Transmission Timing  
Rx  
SBI  
ST b0 b1 b2 b3 b4 b5 b6 b7 SP SP  
RXBUSY  
Rx interrupt  
RXA  
(1 when Rx data in)  
Data read  
Figure 5-8 UART Reception Timing  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
130  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Serial Interfaces  
Serial Interface Setup Examples  
5.6 Serial Interface Setup Examples  
5.6.1 Setting Up UART Transmission Using Serial Interface 0  
This example illustrates serial transmission in the UART mode with the fol-  
lowing settings:  
BOSC = 24 MHz  
tion 5.6.3, “Setting Up the Serial  
Interface Clock,” on page 135,  
for an example setup.  
Baud rate = 9600 bps (transfer clock set up with timer 0)  
8-bit character length  
Two stop bits  
Odd parity  
When a transmission end interrupt occurs, the next data byte is loaded.  
CORE  
ROM, RAM  
Bus Controller  
Serial I/Fs  
ADC  
P0  
P2  
P4  
P6  
P1  
P3  
P5  
Interrupts  
Timers 0-1  
Timers 2-3  
SBO0  
Figure 5-9 Block Diagram of UART Transmission Using Serial Interface 0  
Data transmission starts when the CPU writes data to the SC0TRB register. The  
transmission start is synchronized to timer 0 underflow. An interrupt occurs when  
transmission ends, and the next data byte is written to SC0TRB. If the application  
does not use interrupts, it must poll the SC0TBY flag of the SC0STR register. It  
can write the transmission data when SC0TBY is 0.  
To set up the output port:  
Set the P5MD5 bit of the port 5 output mode register (P5MD) to 1. This selects  
the SBO0 pin as the serial interface output port.  
P5MD (example)  
x’00FFFA’  
Bit:  
7
6
5
4
3
2
1
0
P5  
P5  
P5  
P5  
P5  
P5  
P5  
P5  
MD7  
MD6  
MD5  
MD4  
MD3  
MD2  
MD1  
MD0  
Setting:  
0
1
0
0
0
0
0
0
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
131  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Serial Interfaces  
Serial Interface Setup Examples  
To set up serial interface 0:  
1. Configure the transmission settings in the serial port 0 control register  
(SC0CTR). Since the transfer clock is timer 0 divided by 8, select timer 0  
underflow x 1/8 as the serial port 0 clock source. Select UART mode, odd  
parity, 2-bit stop bit, 8-bit data length, and LSB-first output. Also set the  
SC0REN and SC0TEN flags to 0, disabling transmission and reception.  
SC0CTR (example)  
x’00FD80’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
SC0  
SC0  
SC0  
SC0  
SC0  
SC0  
OD I2CM  
SC0  
SC0  
LN  
SC0  
SC0  
SC0  
SC0  
SB  
SC0  
S1  
SC0  
S0  
TEN REN BRE I2CS PTL  
PTY2 PTY1 PTY0  
Setting:  
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
1
2. Set the SC0TEN bit to 1 to enable transmission.  
To enable serial 0 transmission end interrupts:  
Cancel all existing interrupt requests. Next, set the interrupt priority level of 5 in  
the ANLV[2:0] bits of the ANICH register, set the SCT0IE bit of SCT0ICH to 1,  
and set the SCT0IR bit of SCT0ICL to 0. From this point on, an interrupt request  
is generated whenever a serial data transmission ends.  
ANICH: (example)  
x’00FC81’  
x’00FC82’  
x’00FC83’  
Bit:  
7
6
5
4
3
2
1
0
ANLV2 ANLV1 ANLV0  
ANIE  
Setting:  
0
1
0
1
0
0
0
0
SCT0ICL (example)  
Bit:  
7
6
5
4
3
2
1
0
SCT0  
IR  
SCT0  
ID  
Setting:  
0
0
0
0
0
0
0
0
SCT0ICH (example)  
Bit:  
7
6
5
4
3
2
1
0
SCT0  
IE  
Setting:  
0
0
0
0
0
0
0
1
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
132  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Serial Interfaces  
Serial Interface Setup Examples  
Transmission sequence:  
1. Write the first data byte to SC0TRB. Once this data is in the register, trans-  
mission begins, synchronized to timer 0.  
2. When an interrupt occurs, the program branches to the interrupt service rou-  
tine. The routine must determine the interrupt group, then clear the interrupt  
request flag.  
3. Write the next data byte to SC0TRB. Once the write is complete, transmis-  
sion begins in 1 or 2 cycles of the transfer clock (timer 0 underflow).  
Figure 5-10 shows an example timing chart.  
TC0 underflow (1/8)  
SC0TRB write  
SBO0  
ST b0 b1 b2 b3 b4 b5 b6 b7 PT SP SP  
ST b0 b1 b2 b3 b4  
Interrupt request  
Interrupt service  
routine  
SC0TBSY  
Figure 5-10 UART Transmission Timing (Serial Interface 0)  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
133  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Serial Interfaces  
Serial Interface Setup Examples  
5.6.2 Setting Up Synchronous Serial Reception Using Serial  
Interface 0  
This example illustrates serial reception in the synchronous serial mode with the  
following settings:  
LSB first  
8-bit character length  
Odd parity  
When a reception end interrupt occurs, the CPU reads the data byte.  
To set up the input port:  
Set the P5DIR7 bit of the port 5 I/O control register (P5DIR) to 0. This sets the  
SBT0 pin to input.  
To set up serial interface 0:  
Configure the reception settings in the serial port 0 control register (SC0CTR).  
Select timer 0 underflow x 1/8 as the serial port 0 clock source. Select timer 0  
underflow x 1/8 as the serial port 0 clock source. Select synchronous serial mode,  
odd parity, 8-bit data length, and LSB-first output.  
SC0CTR (example)  
x’00FD80’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
SC0  
SC0  
SC0  
SC0  
SC0  
SC0  
OD I2CM  
SC0  
SC0  
LN  
SC0  
SC0  
SC0  
SC0  
SB  
SC0  
S1  
SC0  
S0  
TEN REN BRE I2CS PTL  
PTY2 PTY1 PTY0  
Setting:  
1
1
0
0
1
0
0
0
1
1
1
1
0
0
0
1
To enable serial 0 transmission end interrupts:  
Cancel all existing interrupt requests. Next, set the interrupt priority level of 5 in  
the ANLV[2:0] bits of the ANICH register, set the SCR0IE bit of SCR0ICH to 1,  
and set the SCR0IR bit of SCR0ICL to 0. From this point on, an interrupt request  
is generated whenever a serial data reception ends.  
ANICH: (example)  
x’00FC81’  
x’00FC84’  
x’00FC85’  
Bit:  
7
6
5
4
3
2
1
0
ANLV2 ANLV1 ANLV0  
ANIE  
Setting:  
0
1
0
1
0
0
0
0
SCR0ICL (example)  
Bit:  
7
6
5
4
3
2
1
0
SCR0  
IR  
SCR0  
ID  
Setting:  
0
0
0
0
0
0
0
0
SCR0ICH (example)  
Bit:  
7
6
5
4
3
2
1
0
SCR0  
IE  
Setting:  
0
0
0
0
0
0
0
1
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
134  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Serial Interfaces  
Serial Interface Setup Examples  
5.6.3 Setting Up the Serial Interface Clock  
This example demonstrates how to set up a 19,200 bps transfer clock for the  
UART interface by using timer 1 to divide BOSC/4 by 39. The example uses the  
following settings:  
BOSC = 24 MHz  
Clock source = timer 1 underflow x 1/8  
Transfer clock = baud rate x 8  
The serial interface determines the baud rate from the 8-bit underflow. Set up the  
transfer clock by making the timer 1 underflow either two or eight times the  
desired baud rate. The serial interface divides the timer underflow by two or  
eight. (Always select divide-by-eight for UART transactions.) For a baud rate of  
19,200, since BOSC/4 = 6 MHz,  
6 MHz/39/8 = 19230.77 bps  
This means that the timer 1 underflow must be divided by 39.  
CORE  
ROM, RAM  
Bus Controller  
Serial I/Fs  
ADC  
P0  
P2  
P4  
P6  
P1  
P3  
P5  
Interrupts  
Timers 0-1  
Timers 2-3  
Timers 4-5  
Figure 5-11 Block Diagram of Serial Interface Clock  
To set timer 1:  
1. Disable timer 1 counting in the timer 1 mode register (TM1MD). This step is  
unnecessary immediately after a reset, since TM1MD resets to 0.  
TM1MD (example)  
x’00FE21’  
Bit:  
7
6
5
4
3
2
1
0
TM1  
EN  
TM1  
LD  
TM1  
S1  
TM1  
S0  
Setting:  
0
0
0
0
0
0
0
0
2. Set the divide-by ratio for timer 1. To divide BOSC/4 by 39, write x’26’ to the  
timer 1 base register (TM1BR). (The valid range for TM1BR is 0 to 255.)  
TM1BR (example)  
x’00FE11’  
Bit:  
7
6
5
4
3
2
1
0
TM1  
BR7  
TM1  
BR6  
TM1  
BR5  
TM1  
BR4  
TM1  
BR3  
TM1  
BR2  
TM1  
BR1  
TM1  
BR0  
Setting:  
0
0
1
0
0
1
1
0
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
135  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Serial Interfaces  
Serial Interface Setup Examples  
3. Set the TM1LD bit of the TM1MD register to 1. This loads the value in the  
base register to the binary counter. At the same time, select the clock source  
as BOSC/4 by writing b’00’ to TM1S[1:0].  
Do not change the clock source  
once you select it. Selecting the  
clock source while you set up  
the count operation control will  
corrupt the value in the binary  
counter.  
TM1MD (example)  
x’00FE21’  
Bit:  
7
6
5
4
3
2
1
0
TM1  
EN  
TM1  
LD  
TM1  
S1  
TM1  
S0  
Setting:  
0
1
0
0
0
0
0
0
In the bank and linear address-  
ing versions of the MN102  
series, it was necessary to set  
TM1EN and TM1LD to 0  
4. Set TM1LD to 0 and TM1EN to 1. This starts the timer. Counting begins at  
the start of the next cycle. When the binary counter reaches 0 and loads the  
value x’26’ from the base register, in preparation for the next count, a timer 1  
underflow occurs. The serial interface operates in sync with this underflow  
between steps 3 and 4, to  
ensure stable operation. This is  
unnecessary in the high-speed  
linear addressing version.  
Figure 5-12 shows an example timing chart.  
B
OSC  
/4  
TM1BR  
TM1BC  
00  
00  
26  
26 00 26 00 26 00 26 00 26 00 26 00 26 00 26 00 26 00 26 00 26  
TM1 output  
(To serial I/F)  
indicates 25, 24-02, and 01.  
Figure 5-12 Serial Interface Clock Timing  
The interrupt process is repeated each time the buffer receives another byte of  
serial data.  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
136  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Serial Interfaces  
Serial Interface Setup Examples  
2
5.6.4 Setting Up I C Transmission Using Serial Interface 0  
This example illustrates the microcontroller as a master transmitter in the I2C  
mode, using the SBO0 and SBT0 pins.  
To set up the output ports:  
2
I C mode requires open-drain  
Set the P5MD7 and P5MD5 bits of the port 5 output mode register (P5MD) to 1.  
This selects the SBO0 and SBT0 pins as the output port for the I2C interface.  
pins. To set this up, set the  
ODASCI0 bit of PCNT0  
(x’00FF90’) to 1. In addition, set  
the P5PUP7 and P5PUP5 bits of  
P5MD (example)  
x’00FFFA’  
Bit:  
7
6
5
4
3
2
1
0
P5PUP (x’00FFB5’) to enable  
pullup control of the SBO0 and  
STB0.  
P5  
MD7  
P5  
MD6  
P5  
MD5  
P5  
MD4  
P5  
MD3  
P5  
MD2  
P5  
MD1  
P5  
MD0  
Setting:  
1
0
1
0
0
0
0
0
2
To set up the I C interface:  
The parity bits serve as the ACK  
signal. To output an ACK = 1 sig-  
nal, select a fixed parity of 1. To  
output an ACK = 0 signal, select  
a fixed parity of 0. Select a parity  
of none if there is no ACK signal.  
Set the operating conditions in the serial control register (SC0CTR). Select ACK  
= 1 output for the transfer clock (SC0PTY[2:0] = b’101’), 8-bit character length  
(SCLN = 1), I2C protocol (SC0PTL = 1), I2C mode (SC0ICM = 1), and MSB-  
first bit order (SC0OD = 1). Enable both transmission and reception (SC0TEN  
and SC0REN = 1) and disable transmission breaks (SC0BRE = 0). Select the  
timer 0 underflow rate divided by 8 as the clock source.  
SC0CTR (example)  
x’00FD80’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
SC0  
SC0  
SC0  
SC0  
SC0  
SC0  
OD I2CM  
SC0  
SC0  
LN  
SC0  
SC0  
SC0  
SC0  
SB  
SC0  
S1  
SC0  
S0  
TEN REN BRE I2CS PTL  
PTY2 PTY1 PTY0  
Setting:  
1
1
0
0
1
0
1
1
1
1
0
1
0
0
0
1
To set up the start sequence:  
Reception must be enabled for  
the circuit to detect a start  
sequence.  
Write a 1 to the SC0IIC bit of the SC0CTR register to signal the start sequence.  
The SBO0 pin output immediately goes low. Read SC0STR to verify that the  
start sequence occurred correctly (SC0IST = 1). At this point, even if another  
start exists on the bus, an arbitration lost will not be detected.  
To transmit the first data byte:  
1. Load the data to the serial port 0 transmit/receive buffer, which initiates data  
output. The SBO0 pin begins data output to the I2C bus when the SBT0  
clock signal goes low, with a 1/8 clock cycle delay.  
2. After transmission, both the SBO0 and SBT0 signals stay low.  
To transmit a second data byte:  
Load the data to the serial port 0 transmit/receive buffer. The sequence for the  
first data byte repeats.  
To set up the stop sequence:  
1. When all the data has been transmitted, set the SC0IIC bit of SC0CTR to 0.  
Never perform this step during transmission.  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
137  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Serial Interfaces  
Serial Interface Setup Examples  
Reception must be enabled for  
the circuit to detect a stop  
sequence.  
2. When you perform step 1, the SBT0 output signal goes high. One cycle later,  
the SBO0 output signal also goes high, signalling the stop sequence. The  
SC0ISP flag of SC0STR becomes 1. The SC0IST and SC0ISP flags are both  
cleared by a write to or read from the serial port 0 transmit/receive buffer.  
Figure 5-13 shows an example timing chart.  
I2C sequence  
output bit  
Write to  
SC0TRB  
b7 b6 b5 b4 b3 b2 b1 b0 ACK  
Tx interrupt request  
b7 b6 b5 b4 b3 b2 b1 b0 ACK  
Tx interrupt request  
SBO0 output  
SBT0 output  
Start detection bit = 1  
Stop detection bit = 1  
Start sequence  
Data tx 1  
Data tx 2  
Stop sequence  
2
Figure 5-13 Master Transmitter Timing in I C Mode (with ACK)  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
138  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Serial Interfaces  
Serial Interface Setup Examples  
2
5.6.5 Setting Up I C Reception Using Serial Interface 0  
This example illustrates the microcontroller as a master receiver in the I2C mode,  
using the SBO0 and SBT0 pins.  
When initiating master receiver mode, your program must always first transmit a  
runs after the data is transmitted. For an example setup of master transmission,  
see section 5.6.4, “Setting Up I2C Transmission Using Serial Interface 0,” on  
page 137.  
2
You do not need to enable  
To set up the I C interface:  
1. During the interrupt service routine for the serial transmission end, enable  
reception by setting the SC0REN bit of SC0CTR to 1.  
reception if it is already enabled  
by the initial settings. You can  
also omit any settings already in  
place from the transmission  
2. Select ACK output of 1.  
sequence.  
To set up data reception:  
The parity bits serve as the ACK  
signal. To output an ACK = 1 sig-  
nal, select a fixed parity of 1. To  
output an ACK = 0 signal, select  
a fixed parity of 0. Select a parity  
of none if there is no ACK signal  
1. Write a dummy data bit, x’FF’, to the serial port 0 transmit/receive buffer.  
This sets the SBO0 signal high and initiates the master receiver mode.  
2. During the service routine for the serial reception interrupt, the CPU reads  
the transmit/receive buffer to retrieve the reception data. (A transmission  
interrupt can serve as a reception interrupt.)  
To set up the stop sequence:  
1. Set the SC0IIC bit of SC0CTR to 0 to signal the stop sequence.  
2. When you signal the stop sequence, the data reception is still in progress.  
After the stop sequence is output, you must disable reception and reinitialize  
reception for succeeding bytes.  
Figure 5-14 shows an example timing chart.  
I2C sequence  
output bit  
Write to  
SC0TRB  
Dummy data transmission for reception  
SBO0 output  
SBT0 output  
b7 b6 b5 b4 b3 b2 b1 b0 ACK  
Tx interrupt request  
b7 b6 b5 b4 b3 b2 b1 b0 ACK  
Tx interrupt request  
Start detection bit = 1  
Stop detection bit = 1  
Rx settings  
Data rx  
Stop sequence  
2
Figure 5-14 Master Receiver Timing in I C Mode (with ACK)  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
139  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Serial Interfaces  
Serial Interface Control Registers  
5.7 Serial Interface Control Registers  
Three registers control each of the serial interfaces: the serial port control register  
(SCnCTR), the serial transmit/receive buffer (SCnTRB), and the serial port status  
register (SCnSTR).  
Table 5-3 Serial Interface Control Registers  
Register  
Address R/W  
Description  
Serial I/F  
SC0CTR  
SC0TRB  
SC0STR  
SC1CTR  
SC1TRB  
SC1STR  
x’00FD80’ R/W Serial port 0 control register  
0
x’00FD82’ R/W Serial port 0 transmit/receive buffer  
x’00FD83’  
R
Serial port 0 status register  
Serial I/F  
1
x’00FD88’ R/W Serial port 1 control register  
x’00FD8A’ R/W Serial port 1 transmit/receive buffer  
x’00FD8B’  
R
Serial port 1 status register  
SC0CTR/SC1CTR: Serial Port n Control Register  
x’00FD80’/x’00FD88’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
SCn  
SCn  
SCn  
SCn  
IIC  
SCn  
PTL  
SCn  
OD  
SCn  
ICM  
SCn  
LN  
SCn  
SCn  
SCn  
SCn  
SB  
SCn  
S1  
SCn  
S0  
TEN REN BRE  
PTY2 PTY1 PTY0  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R/W: R/W R/W R/W R/W R/W  
R
R/W R/W R/W R/W R/W R/W R/W  
R
R/W R/W  
SC0CTR controls the operating conditions for the serial interface, includ-  
ing the clock source, the parity bit, the protocol, and transmit/receive  
enabling.  
SCnTEN: Serial port n transmit enable  
0: Disable  
1: Enable  
SCnREN: Serial port n receive enable  
0: Disable  
1: Enable  
SCnBRE: Serial port n break transmission  
0: Don’t break  
1: Break (Force SBOn to 0)  
2
SCnIIC: Serial port n I C start/stop sequence output  
Do not change this bit during transmission or reception.  
0: Output stop sequence upon 1-to-0 transition  
1: Output start sequence upon 0-to-1 transition  
SCnPTL: Serial port n protocol select  
0: UART  
1: Synchronous serial or I2C  
SCnOD: Serial port n bit order  
This bit must be set to 0 during 7-bit transmission.  
0: LSB first  
1: MSB first  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
140  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Serial Interfaces  
Serial Interface Control Registers  
2
SCnICM: Serial port n I C mode select  
0: I2C mode off  
1: I2C mode on  
SCnLN: Serial port n character length  
0: 7-bit  
1: 8-bit  
SCnPTY[2:0]: Serial port n parity bit select  
000:None  
001:Reserved  
010:Reserved  
011:Reserved  
100:0 (output low)  
101:1 (output high)  
110:Even (1s are even)  
111:Odd (1s are odd)  
SCnSB: Serial port n stop bit select (UART mode only)  
0: 1-bit  
1: 2-bit  
SCnS[1:0]: Serial port n clock source select  
The 00 and 10 settings are reserved in UART and I2C modes.  
00: SBTn pin  
01: Timer 0 underflow × 1/8  
10: Timer 1 underflow × 1/2  
11: Timer 1 underflow × 1/8  
SC0TRB/SC1TRB: Serial Port n Transmit/Receive Buffer x’00FD82’/x’00FD88’  
Bit:  
7
6
5
4
3
2
1
0
SCn  
SCn  
SCn  
SCn  
SCn  
SCn  
SCn  
SCn  
TRB7  
TRB6  
TRB5  
TRB4  
TRB3  
TRB2  
TRB1  
TRB0  
Reset:  
R/W:  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Data transmission begins when the CPU writes data to SCnTRB.  
The CPU retrieves the data by reading SCnTRB. SCnTRB has two respec-  
tive buffers, for transmission and for reception. The buffers for reception is  
consist of two buffers and the received data is set to SCnTRB after the  
reception ends, and held until that of the next data ends  
Over-run-error occurs if SCnTRB is not read, before the reception of the  
next data ends (See 5-5)  
When the received data is set to SCnTRB, reception end interrupt occurs  
and SCnRXA flag of SCnTRB register is set to 1.  
During 7-bit transfers, the most significant bit (bit 7) of SCnTRB is always  
0.  
The reset value of SC0TRB is undefined.  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
141  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Serial Interfaces  
Serial Interface Control Registers  
SC0STR/SC1STR: Serial Port n Status Register  
x’00FD83’/x’00FD8B’  
Bit:  
7
6
5
4
3
2
1
0
SCn  
TBY  
SCn  
RBY  
SCn  
ISP  
SCn  
RXA  
SCn  
IST  
SCn  
FE  
SCn  
PE  
SCn  
OE  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
SCnSTR contains the error detection and status flags for the serial inter-  
faces.  
SCnTBY: Serial port n transmission busy flag  
0: OK to transmit  
1: Transmission in progress  
SCnRBY: Serial port n reception busy flag  
0: OK to receive  
1: Reception in progress  
2
SCnISP: Serial port n I C stop sequence detect  
A read or write to SCnTRB clears this bit.  
0: No stop sequence  
1: Stop sequence detected  
SCnRXA: Serial port n received data flag  
0: Not received  
1: Received  
2
SCnIST: Serial port n I C start sequence detect  
A read or write to SCnTRB clears this bit.  
0: No start sequence  
1: Start sequence detected  
SCnFE: Serial port n framing error  
A framing error occurs when a 0 is received during stop bit transfer. Fram-  
ing error data is updated each time the stop bit is received.  
0: No error  
1: Framing error occurred  
SCnPE: Serial port n parity error  
A parity error occurs when the received parity bit is 1 and the parity setting  
is 0; when the received parity bit is 0 and the parity setting is 1; when the  
received parity bit is odd and the parity setting is even; or when the  
received parity bit is even and the parity setting is odd. Parity error data is  
updated each time the parity bit is received.  
0: No error  
1: Parity error occurred  
SCnOE: Serial port n overrun error  
An overrun error occurs during reception when a data byte reception ends  
before the CPU has read the previous byte from SCnTRB. Overrun error  
data is updated each time the last data bit (seventh or eighth bit) is received.  
0: No error  
1: Overrun error occurred  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
142  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Analog-to-Digital Converter  
Description  
6
Analog-to-Digital Converter  
6.1 Description  
The MN102H75K/85K contains an 8-bit charge redistribution A/D converter  
(ADC) that can process up to 12 channels. The reference clock is selectable to  
B
B
OSC x 1/8 or 1/16. When BOSC is 24 MHz, you must set the reference clock to  
OSC/8 (conversion rate = 4 µs) or higher.  
V
DD  
ADIN0  
ADIN1  
ADIN2  
ADIN3  
ADIN4  
ADIN5  
ADIN6  
ADIN7  
ADIN8  
ADIN9  
ADIN10  
ADIN11  
AN0BUF  
AN1BUF  
AN2BUF  
AN3BUF  
AN4BUF  
AN5BUF  
AN6BUF  
AN7BUF  
AN8BUF  
AN9BUF  
AN10BUF  
AN11BUF  
M
U
X
8-bit  
successive-  
approximation  
ADC  
Sample  
and  
hold  
V
SS  
Figure 6-1 ADC Architecture  
6.2 Features  
Table 6-1 ADC Functions and Features  
Function/Feature  
Description  
Sample and hold  
Conversion time  
Clock sources  
Embedded  
4 µs per channel (when B  
= 24 MHz)  
OSC  
Programmable to B  
divided by 8 or 16  
OSC  
(1)  
Operating modes  
46 operating modes (four types)  
• Single conversion of one input (channel 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or 11)  
• Single conversion of multiple inputs (channels 0–n, where n = 1–11)  
• Continuous conversion of one input (channel 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or 11)  
• Continuous conversion of multiple inputs (channels 0–n, where n = 1–11)  
Conversion start  
Interrupts  
Timer 1 underflow or register setting  
An interrupt is generated each time a single or continuous conversion sequence ends  
Note:  
1. Channels correspond to the ADIN pin having the same number. For instance, channel 3 (or ch3) corresponds to  
ADIN3.  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
143  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Analog-to-Digital Converter  
Block Diagram  
6.3 Block Diagram  
ADIN0  
ADIN1  
ADIN2  
ADIN3  
128 64 32 16  
8
4
2
1
1
ADIN4  
ADIN5  
ADIN6  
ADIN7  
ADIN8  
M
U
X
V
V
DD  
SS  
ADIN9  
ADIN10  
ADIN11  
Storage of converted data  
Shift register for state information  
ANCTR  
ANNCH  
AN1CH  
INC  
AN11BUF-AN0BUF  
Interrupt  
generated  
B
Divider  
Data registers  
8-bit x 12  
OSC  
Compare  
A/D interrupt request  
Figure 6-2 ADC Block Diagram  
6.4 A/D Conversion Timing  
6.4.1 Selecting the ADC Clock Source  
Calculate the A/D conversion time as follows:  
conversion time (s) = [12 (cycles) × (BOSC cycle) (s) × divide-by ratio] / ch  
For example, if you set the clock source to BOSC/8, the conversion time is BOSC  
× 96 cycles.  
- Interrupt  
- Write to  
register  
Transfer  
State  
S/H  
bit 7  
6
5
4
3
2
1
0
In continuous mode  
S/H bit 7  
Reference  
Clock  
12 cycles  
Figure 6-3 ADC Timing  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
144  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Analog-to-Digital Converter  
A/D Conversion Timing  
6.4.2 Single Channel/Single Conversion Timing  
When ANMD[1:0] = b’00’, the ADC converts one ADIN input signal a single  
time. An interrupt occurs when the conversion ends. Load the number of the  
channel to be converted to the AN1CH[3:0] field of the ADC control register  
(ANCTR). (The ANNCH[3:0] field is ignored in this mode.)  
When the software starts the conversion, write a 0 to the ANTC bit (disabling  
conversion start at timer 1 underflow), then write a 1 to ANEN. (If ANTC = 1,  
ANEN goes high upon a timer 1 underflow.) ANEN remains high during the con-  
version, then clears to 0 when the conversion ends.  
Start  
Stop  
Interrupt  
request  
Channel 0 Channel 1 Channel 2  
conversionconversionconversion  
State  
ANEN  
Figure 6-4 Single Channel/Single Conversion Timing  
6.4.3 Multiple Channel/Single Conversion Timing  
When ANMD[1:0] = b’01’, the ADC converts multiple, consecutive ADIN input  
signals a single time. An interrupt occurs when the conversion sequence ends.  
Load 0s to the AN1CH[3:0] field of the ADC control register (ANCTR), then  
load the number of the final channel in the sequence to the ANNCH[3:0] field.  
The sequence always begins with channel 0.  
When the software starts the conversion, write a 0 to the ANTC bit (disabling  
conversion start at timer 1 underflow), then write a 1 to ANEN. (If ANTC = 1,  
ANEN goes high upon a timer 1 underflow.) ANEN remains high during the con-  
version, then clears to 0 when the conversion sequence ends. Note that the  
AN1CH[3:0] field holds the number of the channel being converted. It clears to 0  
when the sequence ends.  
Start  
Stop  
Interrupt  
request  
Channel 0 Channel 1 Channel 2  
conversionconversionconversion  
State  
ANEN  
Figure 6-5 Multiple Channel/Single Conversion Timing  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
145  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Analog-to-Digital Converter  
A/D Conversion Timing  
6.4.4 Single Channel/Continuous Conversion Timing  
When ANMD[1:0] = b’10’, the ADC converts one ADIN input signal contin-  
uously. An interrupt occurs each time the conversion ends. Load the number of  
the channel to be converted in the AN1CH[3:0] field of the ADC control register  
(ANCTR). (The ANNCH[3:0] field is ignored in this mode.)  
When the software starts the conversion, write a 0 to the ANTC bit (disabling  
conversion start at timer 1 underflow), then write a 1 to ANEN. (If ANTC = 1,  
ANEN goes high upon a timer 1 underflow.) ANEN remains high during the con-  
version. To end the A/D conversion, write a 0 to ANEN.  
Start  
Stop  
Interrupt  
requests  
Channel n Channel n Channel n Channel n Channel n  
conversionconversionconversionconversionconversion  
State  
ANEN  
Figure 6-6 Single Channel/Continuous Conversion Timing  
6.4.5 Multiple Channel/Continuous Conversion Timing  
When ANMD[1:0] = b’11’, the ADC converts multiple, consecutive ADIN input  
signals continuously. An interrupt occurs each time the conversion sequence  
ends. Load 0s to the AN1CH[3:0] field of the ADC control register (ANCTR),  
then load the number of the final channel in the sequence to the ANNCH[3:0]  
field. The sequence always begins with channel 0.  
When the software starts the conversion, write a 0 to the ANTC bit (disabling  
conversion start at timer 1 underflow), then write a 1 to ANEN. (If ANTC = 1,  
ANEN goes high upon a timer 1 underflow.) ANEN remains high during the con-  
version. To end the A/D conversion, write a 0 to ANEN. Note that the  
AN1CH[3:0] field holds the number of the channel being converted. It clears to 0  
when the sequence ends.  
Start  
Stop  
Interrupt  
requests  
Channel 0 Channel 1 Channel 2 Channel 0 Channel 1 Channel 2 Channel 0  
conversionconversionconversionconversionconversionconversionconversion  
State  
ANEN  
Figure 6-7 Multiple Channel/Continuous Conversion Timing  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
146  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Analog-to-Digital Converter  
ADC Setup Examples  
6.5 ADC Setup Examples  
6.5.1 Setting Up Software-Controlled Single-Channel A/D Conversion  
This example illustrates single-channel conversion controlled by the software.  
The ADIN6 pin inputs an analog voltage signal (0.0 V–3.3 V) and the ADC  
converts it to 8-bit digital values.  
MN102H75K  
3.3 V  
P11, ADIN6  
0 V  
Figure 6-8 Single-Channel A/D Conversion  
To set up the input port:  
Set the P1MD2 bit of the port 1 output mode register (P1MD) to 1. This sets the  
ADIN6 pin (P11) to analog input.  
To set up the ADC:  
1. Set the operating conditions in the ADC control register (ANCTR). Select  
single-channel, single-conversion mode (ANMD[1:0] = b’00’), BOSC/8 as  
the clock source (ANCK[1:0] = b’10’), and channel 6 as the conversion  
channel (AN1CH[3:0] = b’011’). Set the conversion start/busy bit, ANEN,  
to 0.  
ANCTR (example)  
x’00FF00’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
AN  
AN  
AN  
AN  
AN  
AN  
AN  
AN  
AN  
EN  
AN  
TC  
AN  
CK1  
AN  
AN  
AN  
NCH3 NCH2 NCH1 NCH0 1CH3 1CH2 1CH1 1CH0  
CK0 MD1 MD0  
Setting:  
0
0
0
0
0
1
1
0
0
0
0
0
1
0
0
0
When the software controls the  
conversion start, it must set the  
ANEN flag to 1.  
2. Set ANEN to 1 to start conversion. Conversion starts on the first rising edge  
of the ADC clock after ANEN is set. The conversion time is 12 cycles of the  
ADC clock. When BOSC = 24 MHz, this is 4.0 µs, or 4.0µs4.3 µs after  
ANEN is set.  
The ADC can also generate an  
interrupt when the conversion  
ends, once the data is stored in  
AN6BUF. In this case, the  
software does not need to wait  
for the ANEN flag before reading  
AN6BUF.  
3. Wait for the conversion to end. Since ANEN remains high during conver-  
sion, then clears to 0, the program must wait until ANEN is 0.  
4. Read the ADIN6 conversion data buffer (AN6BUF). The converter divides 0  
to 3.3 volts into 256 segments, so the digital result is a value from 0 to 255.  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
147  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Analog-to-Digital Converter  
ADC Setup Examples  
AN6BUF (example)  
x’00FF14’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
ANn ANn ANn ANn ANn ANn ANn ANn  
BUF7 BUF6 BUF5 BUF4 BUF3 BUF2 BUF1 BUF0  
ANCTR  
set  
ANEN  
State  
ADIN6 converting  
Reference  
clock  
1
2
3
4
10 11 12  
AN6BUF  
VALID  
AN6BUF  
read  
Interrupt  
Figure 6-9 Timing of Software-Controlled Single-Channel A/D Conversion  
6.5.2 Setting Up Hardware-Controlled Intermittent Three-Channel  
A/D Conversion  
This example illustrates multiple-channel conversion controlled by the hardware.  
The ADIN2, ADIN1, and ADIN0 pins input analog voltage signals ( 0.0 V– 3.3  
V) and the ADC converts the voltages to 8-bit digital values. It writes the results  
to the registers periodically, each time timer 1 underflows.  
Slider 1  
Slider 2  
Slider 3  
10  
10  
10  
5
0
5
0
5
0
MN102H75K  
ch0  
ch1  
ch2  
A/D converter data registers  
Underflow  
MN102  
CPU core  
Timer 1  
Figure 6-10 Multiple-Channel A/D Conversion  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
148  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Analog-to-Digital Converter  
ADC Setup Examples  
To set up the input port:  
Set the P0DIR[5:3] bits of the port 0 I/O control register (P0DIR) to 0. This sets  
the ADIN2 (P05), ADIN1 (P04), and ADIN0 (P03) pins (P11) to general-purpose  
input.  
To set up the ADC:  
Set the operating conditions in the ADC control register (ANCTR). Select  
multiple-channel, single-conversion mode (ANMD[1:0] = b’01’) and BOSC/8 as  
the clock source (ANCK[1:0] = b’10’). Set the conversion start/busy bit, ANEN,  
to 0. Set ANTC to 1, enabling conversion start at timer 1 underflow. Set the  
AN1CH[3:0] field to the first channel (channel 0) and set the ANNCH[3:0] to the  
last channel (channel 2).  
ANCTR (example)  
x’00FDA0’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
AN  
AN  
AN  
AN  
AN  
AN  
AN  
AN  
AN  
EN  
AN  
TC  
AN  
CK1  
AN  
AN  
AN  
NCH3 NCH2 NCH1 NCH0 1CH3 1CH2 1CH1 1CH0  
CK0 MD1 MD0  
Setting:  
0
0
1
0
0
0
0
0
0
1
0
0
1
0
0
1
To set up the conversion cycle  
1. Set the divide-by ratio for timer 1. To divide BOSC/4 by 256, write 255  
(x’FF’) to the timer 1 base register (TM1BR). (The valid range for TM1BR  
is 1 to 255.)  
TM1BR (example)  
x’00FE11’  
Bit:  
7
6
5
4
3
2
1
0
TM1  
BR7  
TM1  
BR6  
TM1  
BR5  
TM1  
BR4  
TM1  
BR3  
TM1  
BR2  
TM1  
BR1  
TM1  
BR0  
Setting:  
1
1
1
1
1
1
1
1
2. Set the TM1LD bit of the TM1MD register to 1 and the TM1EN bit to 0.  
(This loads the value in the base register to the binary counter.)  
TM1MD (example)  
x’00FE21’  
Do not change the clock source  
once you have selected it.  
Selecting the clock source while  
you set up the count operation  
control will corrupt the value in  
the binary counter.  
Bit:  
7
6
5
4
3
2
1
0
TM1  
EN  
TM1  
LD  
TM1  
S1  
TM1  
S0  
Setting:  
0
1
0
0
0
0
1
0
3. Set TM1LD to 0 and TM1EN to 1. This starts the timer. Counting begins at  
the start of the next cycle.  
When the binary counter (TM1BC) reaches 0, the microcontroller reloads the  
value in the base register (TM1BR) to TM1BC and simultaneously generates a  
timer 1 underflow interrupt. After each timer 1 underflow, the ADC converts  
each of the ADIN[2:0] inputs a single time.  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
149  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Analog-to-Digital Converter  
ADC Control Registers  
Timer 1  
underflow  
Conversion  
Interrupts  
Channel 0 Channel 1 Channel 2  
Channel 0 Channel 1 Channel 2  
Figure 6-11 Timing of Hardware-Controlled Intermittent Three-Channel A/D  
Conversion  
6.6 ADC Control Registers  
The ADC contains thirteen registers—one control register (ANCTR) and twelve  
data buffers (each associated with one of the ADIN pins). ANCTR controls the  
operating conditions, and the read-only data buffers hold the results of the A/D  
conversions.  
Table 6-2 ADC Control Registers  
Register Address R/W  
Description  
ANCTR  
x’00FF00’ R/W ADC control register  
AN0BUF  
AN1BUF  
AN2BUF  
AN3BUF  
AN4BUF  
AN5BUF  
AN6BUF  
AN7BUF  
AN8BUF  
AN9BUF  
AN10BUF  
AN11BUF  
x’00FF08’  
x’00FF0A’  
x’00FF0C’  
x’00FF0E’  
x’00FF10’  
x’00FF12’  
x’00FF14’  
x’00FF16’  
x’00FF18’  
x’00FF1A’  
x’00FF1C’  
x’00FF1C’  
R
R
R
R
R
R
R
R
R
R
R
R
ADIN0 conversion data buffer  
ADIN1 conversion data buffer  
ADIN2 conversion data buffer  
ADIN3 conversion data buffer  
ADIN4 conversion data buffer  
ADIN5 conversion data buffer  
ADIN6 conversion data buffer  
ADIN7 conversion data buffer  
ADIN8 conversion data buffer  
ADIN9 conversion data buffer  
ADIN10 conversion data buffer  
ADIN11 conversion data buffer  
AN0BUF–AN11BUF: ADIN0–ADIN11 Conversion Data Buffers x’00FF00’–x’00FF1C’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
ANn ANn ANn ANn ANn ANn ANn ANn  
BUF7 BUF6 BUF5 BUF4 BUF3 BUF2 BUF1 BUF0  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
These buffers hold the 8-bit A/D conversion data. Their value is unknown  
after reset.  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
150  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Analog-to-Digital Converter  
ADC Control Registers  
ANCTR: ADC Control Register  
x’00FF00’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
0
4
0
3
2
1
0
AN  
AN  
AN  
AN  
AN  
AN  
AN  
AN  
AN  
EN  
AN  
TC  
AN  
CK1  
AN  
AN  
AN  
NCH3 NCH2 NCH1 NCH0 1CH3 1CH2 1CH1 1CH0  
CK0 MD1 MD0  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R/W: R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W  
R
R
R/W R/W R/W R/W  
ANNCH[3:0]: Channel select for multiple-channel conversion  
0000: Convert ADIN0  
0111: Convert ADIN0–ADIN7  
1000: Convert ADIN0–ADIN8  
1001: Convert ADIN0–ADIN9  
1010: Convert ADIN0–ADIN10  
1011: Convert ADIN0–ADIN11  
1100–1111: Reserved  
0001: Convert ADIN0–ADIN1  
0010: Convert ADIN0–ADIN2  
0011: Convert ADIN0–ADIN3  
0100: Convert ADIN0–ADIN4  
0101: Convert ADIN0–ADIN5  
0110: Convert ADIN0–ADIN6  
AN1CH[3:0]: Channel select for single-channel conversion  
0000: Convert ADIN0  
0001: Convert ADIN1  
0010: Convert ADIN2  
0011: Convert ADIN3  
0100: Convert ADIN4  
0101: Convert ADIN5  
0110: Convert ADIN6  
0111: Convert ADIN7  
1000: Convert ADIN8  
1001: Convert ADIN9  
1010: Convert ADIN10  
1011: Convert ADIN11  
1100–1111: Reserved  
ANEN: Conversion start/busy flag  
0: No conversion in progress  
1: Conversion in progress  
ANTC: Conversion start at timer 1 underflow  
0: Disable  
1: Enable  
ANCTR5  
Always set this bit to 0.  
ANCK[1:0]: Clock source select  
00: Reserved  
01: Reserved  
10: BOSC /8  
11: BOSC /16  
ANMD[1:0]: Operating mode select  
00: Single channel, single conversion  
01: Multiple channels, single conversion  
10: Single channel, continuous conversion  
11: Multiple channels, continuous conversion  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
151  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Analog-to-Digital Converter  
Cautions about Analog-to-Digital Converter  
6.7 Cautions about Analog-to-Digital Converter  
The type of this Analog-to-Digital Converter is a sample-hold one, and so the  
current temporarily flows in conversion to charge the condenser of the sample-  
hold circuit. For this reasons, the following settings are needed to get the  
accurancy of convension:  
1. Impedance of analog input terminal must be below 8k.  
2. When impedance of analog input terminal is over 8k, condenser which  
capacity is above 2000 pF must be connected to suppress the voltage  
changes of the analog input terminal.  
3. During conversion do not change the output level of the terminal (from H to  
L or from L to H), and not turn on and off the peripheral circuit, cause these  
actions may influence the power supply voltage.  
analog signal output  
micro computer  
equivalent circuit  
R
Analog-to-Digital  
C
ni put terminal  
Vss  
R<< 8kΩ  
or  
C2000pF  
Figure 6-12 Cautions on Analog-to-Digital Converter  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
152  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
Description  
7
On-Screen Display  
7.1 Description  
The MN102H75K/85K contains an on-screen display (OSD) function composed  
of three layers: a text layer, a graphics layer, and a cursor layer. You can control  
each layer individually, which gives you great freedom in positioning displays.  
You can also modify the ROM space that contains the text characters and the  
graphic tiles and the VRAM space that contains the text and graphics programs.  
This allows you to adjust the memory space to fit your application.  
If you use the OSD function, the  
DMA function executes for both  
the text and graphics layers,  
even if your program does not  
use one of these layers. To pre-  
vent error, program data for the  
unused layer to meet the restric-  
tions outlined here.  
7.2 Features  
Table 7-1 OSD Functions and Features  
Function/Feature  
Characters or tiles per line  
RAM usage  
Text Layer  
38 characters per line  
Graphics Layer  
18 or 28 tiles per line  
(1)  
(2)  
(3)  
80 bytes per line  
Line-by-line basis  
Maximum 64 lines  
40 or 64 bytes per line  
Line-by-line basis  
Maximum 64 lines  
(4)  
ROM usage  
36 bytes per character  
16 colors: 128 bytes per tile  
8 colors:  
4 colors:  
2 colors:  
96 bytes per tile  
64 bytes per tile  
32 bytes per tile  
Max. characters or tiles  
Resolution  
1024 characters  
512 tiles (in all color modes)  
16 (W) x 16 (H) pixels, or  
16 (W) x 18 (H) pixels  
16 (wide) x 18 (high) pixels  
In closed-caption mode:  
16 (W) x 26 (H) (underlining is in the hardware)  
One 16-color palette out of 4096 colors  
Color depth  
Two 16-color palettes out of 4096 colors  
(Total 32 colors in one display)  
H: 1 dot resolution, 1024 steps  
V: 1 H scan line resolution, 1024 steps  
16 character sizes, line-by-line basis  
H: 1x, 2x, 3x, 4x  
(5)  
Display start position  
H: 1 dot resolution, 1024 steps  
V: 1 H scan line resolution, 1024 steps  
16 character sizes, line-by-line basis  
H: 1x, 2x, 3x, 4x  
(5)  
Character or tile size  
V: 1x, 2x, 4x, 6x  
V: 1x, 2x, 4x, 6x  
(6)  
Display functions  
• Shutter effect  
• Repeated tile or blank  
• Outlining  
• Shadowing (foreground and background)  
• Blinking  
In closed-caption mode:  
• Italics  
• Underlining  
Cursor layer  
Selects one tile from the graphic tile area (16 x 16)  
Display position: H: 1 dot resolution, 1024 steps  
V: 1 H scan line resolution, 1024 steps  
Notes:  
1. Maximum 60 characters + tiles in one line (when using a 64-byte graphics line). For example,  
(1) If a graphics line contains 28 tiles, then the corresponding line in the text layer can only contain 32 characters.  
(2) If a text line contains 38 characters, then the corresponding line in the graphics layer can only contain 22 tiles.  
2. Maximum 38 characters per line (60 characters + tiles) with the default text colors. Each color assignment, including outlining  
and blinking, decreases this total by one.  
3. The maximum number of tiles per line is programmable in the GEXTE bit of the OSD2 register. 18 tiles requires 40 bytes per  
line, and 28 tiles requires 64 bytes per line. The setting applies to all lines.  
4. Multiple modes cannot be used simultaneously—the color mode applies to the entire display.  
5. The OSD dot clock frequency controls the horizontal position and size. For details, see section 7.9.4, “Setting Up the OSD Dis-  
play Position,” on page 180, and section 7.11, “Selecting the OSD Dot Clock,” on page 186.  
6. This function can be used for a wallpapering effect or to insert spaces. One tile code can be repeated up to 16 times. Repeating  
tiles allows you to use more than 18 (or 28) tiles per line.  
7. For the OSD block to operate correctly, always set bit 7of the PCNT2 register (x’00FF92’) to 0.  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
153  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
Block Diagram  
7.3 Block Diagram  
C l o c k s e l e c t  
P o l a r i t y s w i t c h  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
154  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
Power-Saving Considerations in the OSD Block  
7.4 Power-Saving Considerations in the OSD  
Block  
Table 7-2 shows bits that can decrease the power consumption of the OSD block.  
This section explains how to use these bits.  
Table 7-2 Power-Saving Control Bits for the OSD  
Bit Name Register Address Bit  
Description  
Reset  
OSDPOFF  
PCNT0  
x’00FF90’  
7
0: System clock off to OSD  
1: System clock on to OSD  
0
OSDPOFF resets to 0. To  
operate the OSD, you must first  
set this bit to 1.  
OSDREG  
E
PCNT2  
x’00FF92’  
0
0: R/W disabled for OSD registers  
1: R/W enabled for OSD registers  
0
Using OSDPOFF to control the system clock supply to the OSD  
The OSDPOFF bit enables or disables the system clock supply to the OSD block.  
When the OSD is unused, setting this bit to 0 stops the clock supply to the OSD,  
reducing power dissipation. Setting OSDPOFF to 0 not only disables the OSD  
display, it disables reads from and writes to the OSD registers. To operate the  
OSD, set this bit to 1, then set up the OSD registers.  
To turn off the OSD block to save  
power:  
1. Write a 0 to OSD (OSD1, bit 10).  
2. Wait for the next VSYNC input.  
3. Write a 0 to OSDPOFF (PCNT0,  
bit 7), turning the clock off.  
If you turn the clock off before the  
VSYNC input, power usage may  
not drop or the microcontroller may  
halt.  
Using OSDREGE to control read/write access to the OSD registers  
The OSDREGE bit enables or disables read/write operations to the OSD reg-  
isters. Once you have set the OSD registers, you can write a 0 to this bit to  
disable furthers reads and writes to them, reducing power dissipation. This bit  
resets to 0.  
Note that when OSDPOFF is 0, you cannot read or write to the OSD registers  
even if OSDREGE is 1. Table 7-3 shows the combinations of OSDPOFF and  
OSDREGE. Note also that when OSDREGE is 0, the OSD display runs, but the  
shuttering motion does not work. If your application requires shutter movement,  
you must enable OSDREGE.  
Table 7-3 OSDPOFF and OSDREGE Settings  
OSDPOFF  
OSDREGE OSD Register R/W Power Dissipation  
0
1
1
Don’t care  
Off  
On  
On  
Disabled  
Disabled  
Enabled  
Less  
0
1
Greater  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
155  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
OSD Operation  
7.5 OSD Operation  
This section describes the basic operation of the OSD block. The remainder of  
section 7 provides more detailed specifications.  
7.5.1 OSD Clock  
The OSD clock source is programmable to either the microcontroller system  
clock (OSC1, OSC2 pins) or a dedicated OSD clock (OSDXI, OSDXO pins).  
OSC clock source  
See section 7.11, “Selecting the  
OSD Dot Clock,” on page 186,  
for information on setting the  
OSD clock frequency.  
An internal phase-locked loop (PLL) multiplies the external 4-MHz frequency to  
generate an OSD clock that is synchronized to the trailing edge of the horizontal  
sync signal (HSYNC). This dramatically reduces EMI and character distortion.  
The output frequency is programmable to 12, 16, 24, 32 or 48 MHz.  
OSDX clock source  
An LC blocking oscillator allows HSYNC to serve as the clock source. You can  
also input an external clock through the OSDXI pin and synchronize it internally.  
(Frequency range: 12–48 MHz)  
7.5.2 External Input Sync Signals  
Input the horizontal sync signal through the HSYNC pin and the vertical sync  
signal through the VSYNC pin. The pullup resistors and polarity are pro-  
grammable. An interrupt must occur so that the microcontroller can detect each  
VSYNC start field. Set the interrupt edge in the IQ1TG[1:0] bits of the EXTMD  
registers and the OSD input polarity in the VPOL bit of the OSD1 register. Note  
that you must these parameters separately.  
7.5.3 Multi-Layer Format  
Multi-layer technology enables the microcontroller to display text, graphics, and  
hardware cursor as different display layers with different color depths. You can  
stack the layers in any order. When the layers contain overlapping images, the  
cursor always takes highest priority. The priority of the text and graphics layers is  
programmable in the registers.  
Text layer  
Each character in the text layer contains a foreground (character) color and a  
background color. Outlining and shadowing are separate options. In closed-  
caption mode, the OSD can only display the text in the encoded captions. The  
graphics and cursor layers can be displayed in this mode, but note that if any tiles  
from either layer overlaps italicized text, the pixels in the graphic will be dis-  
placed, distorting the image.  
Do not layer any graphic or cur-  
sor tiles over italicized charac-  
ters in closed-caption mode.  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
156  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
OSD Operation  
Graphics layer  
The graphics layer contains tiled images. In the 16-color mode, each 4-bit dot on  
a tile can display one of 16 colors. Each tile can use either of two available color  
palettes, allowing a total of 32 colors in one display. The graphics layer also  
supports 2-, 4-, and 8-color modes. All the tiles in a single display screen must be  
in the same color mode. (For instance, an 8-color-mode tile cannot be displayed  
at the same time as a 16-color-mode tile.) The size of one tile is 16W x 16H  
pixels in standard mode and 16W x 18H pixels in extended mode.  
Cursor layer  
The cursor layer displays an icon indicating the position of the next entry. One  
display screen displays only one cursor (tile). The ROM data and color palettes  
for the tile are the same as those of the graphics layer. The size of one tile is 16W  
x 16H pixels in standard mode and 32W x 32H pixels in extended mode.  
7.5.4 Output Pin Setup  
To set up the output pins, enable the OSD output pins in the I/O registers. Select  
DAC or digital output for RGB and YM. Set the YS polarity.  
When you are not using the  
DAC, set the COMP and IREF  
pins for the DAC to H.  
7.5.5 Microcontroller Interface  
The microcontroller writes display data to be sent to the OSD control registers  
and the VRAM, which is assigned to internal RAM space. The control registers  
(CRAMEND and GRAMEND) hold the end address of the data in the VRAM.  
7.5.6 VRAM  
Display data stored in the VRAM transfers automatically (through) a DMA  
transfer) from the internal RAM to the OSD as the display approaches its  
specified position. The microcontroller is suspended while the data is transferred  
on the bus. See section 7.10, “DMA and Interrupt Timing,” on page 185, for  
more information on this timing.  
After a reset clears, the system  
clock supply to the OSD stops.  
To operate the OSD, you must  
first set the OSDPOFF bit of  
PCNT0 (x’00FF90’)to 1.  
The two MSBs of the transferred data contain one or more of the following ID  
codes:  
Text layer  
1. Character code  
CC  
2. Color control code (normal mode)  
3. Color control code (closed-caption mode)  
4. Repeat character/blank code  
5. Character horizontal position code  
6. Character vertical position code  
COL  
COL  
CCB  
CHP  
CVP  
Graphics layer  
1. Graphic tile code  
GTC  
GHP  
GVP  
2. Graphics horizontal position code  
3. Graphics vertical position code  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
157  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
OSD Operation  
7.5.7 Conditions for VRAM Writes  
Text layer  
1. The lead data for each line must be the color control code (COL) or the char-  
acter code (CC). Never place the horizontal position (CHP), vertical position  
(CVP), or repeat (CCB) codes at the beginning of a line. (If the lead data is  
CC, with no COL specification, the character will be text palette color 1, and  
the background will be color 2.)  
Set CHP, CVP, GHP, and GVP  
for every line in the VRAM. If  
you do not, a software  
processing error may occur.  
2. Place each line’s horizontal and vertical position data (CHP and CVP), in  
that order, at the end of the preceding line.  
3. Insert the color control code (COL) before the character code (CC). You do  
not need to meet condition 3 in the closed-caption mode, since COL can  
carry over in that mode.  
4. A character code (CC) must immediately precede a repeat character/blank  
code (CCB), and a color control code (COL) or character code (CC) must  
follow it.  
5. To indicate the last line of a display, make the CHP and CVP values for the  
last line smaller than those in the currently displayed line. In addition, write  
a 1 to the last line flag of the text layer (CLAST).  
6. Two text lines (but no more) can overlap on the screen. The lower line takes  
priority, appearing to lie on top of the higher line.  
ing CHP and CVP, that line and the next line may not display properly. (For  
details, see section 7.10.4, “Setting Up the OSD Display Position,” on page  
189.)  
Graphics layer  
1. Place each line’s horizontal and vertical position data (GHP and GVP), in  
that order, at the end of the preceding line. Do not place GHP and GVP at the  
start of a line.  
2. To indicate the last line of a display, make the GHP and GVP values for the  
last line smaller than those in the currently displayed line. In addition, write  
a 1 to the last line flag of the graphics layer (GLAST).  
3. Two graphic lines (but no more) can overlap on the screen. The lower line  
takes priority, appearing to lie on top of the higher line.  
ing GHP and GVP, that line and the next line may not display properly. (For  
details, see section 7.10.4, “Setting Up the OSD Display Position,” on page  
189.)  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
158  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
Standard and Extended Display Modes  
7.6 Standard and Extended Display Modes  
Two modes are available for the graphics and cursor layers, standard and  
extended. In extended mode, the cursor layer can display four grouped graphic  
tiles rather than one. The graphics layer can display tiles that are two pixels taller  
than those used in standard mode, giving the graphic tiles the same dimensions as  
the characters in the text layer.  
7.6.1 Cursor Layer Display Modes  
The size of the cursor in the cursor layer is programmable to 16W x 16H pixels in  
standard mode and 32W x 32H pixels in extended mode. Select the mode for this  
layer in the SPEXT bit of the OSD2 register (x’007F08’).  
To create a graphic for the cursor layer in extended mode, combine four 16 x 16  
tiles. They are ordered as follows: (1) upper left, (2) upper right, (3) lower left,  
and (4) lower right. Set the pointers to these tiles in cursor tile code registers 0 to  
3 (STC0–3), where STC0 corresponds to tile (1). Table 7-4 shows the associated  
tiles and registers.  
Display start position  
set in SHP and SVP  
Display start position  
set in SHP and SVP  
16 pixels  
16 pixels  
(1)  
16 pixels  
(2)  
16  
pixels  
16  
pixels  
16  
pixels  
(3)  
(4)  
A. Standard Mode (16W x 16H)  
B. Extended Mode (32W x 32H)  
Figure 7-2 Cursor Tiles in Standard and Extended Modes  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
159  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
Standard and Extended Display Modes  
Table 7-4 Associated Tiles for Cursor Tile Code Registers  
Graphic Tile  
(1) Upper left  
(2) Upper right  
(3) Lower left  
(4) Lower right  
Register  
STC0  
Register Address  
x’007F10’  
STC1  
x’007F2A’  
STC2  
x’007F2C’  
STC3  
x’007F2E’  
In standard mode, STC0 is the only cursor tile code register that is enabled. Use  
the cursor horizontal position register (SHP, x’00F12’) and the cursor vertical  
position register (SVP, x’007F14’) in both modes to program the display start  
position. In extended mode, this position refers to the upper left corner of tile (1).  
Set the color palette for each tile individually.  
7.6.2 Graphics Layer Display Modes  
The size of the tiles in the graphics layer is programmable to 16W x 16H pixels  
in standard mode and 16W x 18H pixels in extended mode. Select the mode for  
this layer in the GTHT bit of the OSD2 register (x’007F08’).  
In extended mode, the tiles are the same size as the characters in the text layer.  
This allows for a cleaner display when text and graphics appear side by side.  
You cannot use the tiles created  
for graphics layer extended  
mode as cursor tiles.  
Display start position  
set in GHP and GVP  
Display start position  
set in GHP and GVP  
16 pixels  
16 pixels  
16  
pixels  
18  
pixels  
A. Standard Mode (16W x 16H)  
B. Extended Mode (16W x 18H)  
Figure 7-3 Graphic Tiles in Standard and Extended Modes  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
160  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
Display Setup Examples  
7.7 Display Setup Examples  
7.7.1 Setting Up the Graphics Layer  
This section shows how to set up the graphics display data in the VRAM.  
Register settings  
RAMEND (x’007F04’) = x’80FF’ (Graphics RAM end address: x’980F’)  
GIHP (x’007F16’) = x’0822’  
GIVP (x’007F18’) = x’1803’  
OSD2 (x’007F08’) = x’0047’  
(GIHP = x’22’, GIHSZ = x’1’)  
(GIVP = x’03’, GIVSZ = x’3’)  
(1 line maximum = 18 tiles, 16-color mode,  
graphics take priority)  
Table 7-5 Example Graphics VRAM Settings  
Line No. RAM Addr. RAM Data Data Type  
Description  
1
980E  
980C  
980A  
9808  
9806  
9804  
...  
4000  
4255  
02AA  
4100  
C004  
C040  
...  
GTC  
GTC  
GTC  
GTC  
GHP  
GVP  
Graphic tile, GCB = x’0’, GPRT = 0, GTC = x’000’  
Graphic tile, GCB = x’0’, GPRT = 1, GTC = x’055’  
Blank tile, GCB = x’0’, GPRT = 1, GTC = x’0AA’  
Graphic tile, GCB = x’0’, GPRT = 0, GTC = x’100’  
GHSZ = x’0’, GSHT = 0, GHP = x’04’  
GLAST = 0, GVSZ = x’0’, GINT = 0, GVP = x’40’  
2
97E6  
97E4  
97E2  
97E0  
97DE  
97DC  
97DA  
97D8  
97D6  
...  
4010  
4011  
4012  
4C13  
4214  
0815  
4216  
D810  
C858  
...  
GTC  
GTC  
GTC  
GTC  
GTC  
GTC  
GTC  
GHP  
GVP  
Graphic tile, GCB = x’0’, GPRT = 0, GTC = x’010’  
Graphic tile, GCB = x’0’, GPRT = 0, GTC = x’011’  
Graphic tile, GCB = x’0’, GPRT = 0, GTC = x’012’  
Graphic tile, GCB = x’3’, GPRT = 0, GTC = x’013’  
Graphic tile, GCB = x’0’, GPRT = 1, GTC = x’014’  
Blank tile, GCB = x’2’, GPRT = 0, GTC = x’015’  
Graphic tile, GCB = x’0’, GPRT = 1, GTC = x’016’  
GHSZ = x’3’, GSHT = 0, GHP = x’10’  
GLAST = 0, GVSZ = x’1’, GINT = 0, GVP = x’58’  
3
97BE  
97BC  
97BA  
97B8  
...  
4181  
4382  
C044  
E020  
...  
GTC  
GTC  
GHP  
GVP  
Graphic tile, GCB = x’0’, GPRT = 0, GTC = x’181’  
Graphic tile, GCB = x’0’, GPRT = 1, GTC = x’182’  
GHSZ = x’0’, GSHT = 0, GHP = x’44’  
GLAST = 1, GVSZ = x’0’, GINT = 0, GVP = x’20’  
Notes: 1. Always specify GHP and GVP, in that order, at the end of each line.  
2. Set GINT to 1 in the GVP setting to generate an OSD graphics interrupt.  
3. Set GLAST to 1 in the GVP setting for the last line in the graphics display. Also, set the GVP value to a smaller  
value than the position of the current line. (In the example in table 7-5, GVP = x’20’ is smaller than GVP = v’58’.)  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
161  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
Display Setup Examples  
VP = x'3'  
HSZ= 1 (2x)  
Line 1  
HP = x'22'  
GTC = x'000' GTC = x'055'  
GTC = x'100'  
Palette 1  
VSZ = 3  
(6x)  
Blank  
Palette 1  
Palette 2  
VP = x'40'  
Line 2  
HSZ = 0 (1x)  
010 011 012  
HP = x'4'  
013  
013  
013  
013  
014  
016  
Palette 2  
Blank Blank Blank  
Palette 1 Palette 1 Palette 1 Palette 1 Palette 1 Palette 1 Palette 1 Palette 2  
VSZ = 0  
(1x)  
Repeated tile  
VP = x'58'  
Line 3  
HSZ = 3 (4x)  
HP = x'10'  
GTC = x'181'  
Palette 1  
GTC = x'182'  
Palette 2  
VSZ = 1  
(2x)  
Display end  
Figure 7-4 Graphics Display Example  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
162  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
Display Setup Examples  
7.7.2 Setting Up the Text Layer  
This section shows how to set up the text display data in the VRAM.  
Register settings  
RAMEND (x’007F04’) = x’80FF’ (Text RAM end address: x’9FFF’)  
CIHP (x’007F1A) = x’1020’  
CIVP (x’007F1C’) = x’1803’  
OSD3 (x’007F0A) = x’0000’  
(CIHP = x’20’, CIHSZ = x’2’)  
(CIVP = x’03’, CIVSZ = x’3’)  
(CAPM = x’0’)  
Table 7-6 Example Text VRAM Settings  
Line No. RAM Addr. RAM Data Data Type  
Description  
1
9FFE  
9FFC  
9FFA  
9FF8  
9FF6  
9FF4  
...  
0000  
825A  
0001  
0002  
C004  
C840  
...  
CC  
COL  
CC  
Character code = x’000’  
BSHAD = 0, CSHAD = 0, FRAME = 1, BCOL = x’5’, CCOL = x’A’  
Character code = x’001’  
CC  
Character code = x’002’  
CHP  
CVP  
CHSZ = x’0’, CSHT = 0, CHP = x’04’  
CLAST = 0, CVSZ = x’1’, CINT = 0, CVP = x’40’  
2
9FAE  
9FAC  
9FAA  
9FA8  
9FA6  
9FA4  
9FA2  
9FA0  
9F9E  
9F9C  
...  
9469  
0006  
0007  
4012  
9A78  
0008  
4002  
0010  
D810  
C870  
...  
COL  
CC  
BSHAD = 2, CSHAD = 1, FRAME = 0, BCOL = x’6’, CCOL = x’9’  
Character code = x’006’  
CC  
Character code = x’007’  
CCB  
COL  
CC  
Repeat character code, CCB = x’2’  
BSHAD = 3, CSHAD = 0, FRAME = 1, BCOL = x’7’, CCOL = x’8’  
Character code = x’008’  
CCB  
CC  
Blank, CCB = x’2’  
Character code = x’010’  
CHP  
CVP  
CHSZ = x’3’, CSHT = 0, CHP = x’10’  
CLAST = 0, CVSZ = x’1’, CINT = 0, CVP = x’70’  
3
9F5E  
9F5C  
9F5A  
9F58  
...  
0300  
0310  
C044  
E030  
...  
CC  
CC  
Character code = x’300’  
Character code = x’310’  
CHP  
CVP  
CHSZ = x’0’, CSHT = 0, CHP = x’44’  
CLAST = 1, CVSZ = x’0’, CINT = 0, CVP = x’30’  
Notes: 1. Always specify the color code (COL) or character code (CC) at the beginning of each line. If CC is the first code  
(no COL), the foreground (text) color will be color 1 on the palette and the background will be color 2.  
2. Always specify CHP and CVP, in that order, at the end of each line.  
3. A CC code must immediately follow a COL code.  
4. If you repeat a character with the CCB code, precede the CCB code with a CC code and follow it with a COL or  
CC code.  
5. Set CINT to 1 in the CVP setting to generate an OSD text interrupt.  
6. Set CLAST to 1 in the CVP setting for the last line in the text display. Also, set the CVP value to a smaller value  
than the position of the current line. (In the example in table 7-6, CVP = x’30’ is smaller than CVP = v’70’.)  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
163  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
Display Setup Examples  
The text display starts one dot to  
the right of the HP setting.  
VP = x'3'  
HSZ = 2 (3x)  
HP = x'20'  
Line 1  
CC = x'000'  
CC = x'001'  
CC = x'002'  
No shadow  
No outline  
Background col. = 2  
Text color = 1  
No shadow  
Outline  
Background col. = 5  
Text color = A  
No shadow  
Outline  
Background col. = 5  
Text color = A  
VSZ = 3  
(6x)  
VP = x'40'  
Line 2  
HSZ=0 (1x)  
CC=006 CC=007 CC=007 CC=007 CC=007 CC=007 CC=008  
CC=010  
Box shad.1 Box shad.1 Box shad.1 Same as  
Char. shad Char. shad Char. shad left.  
Back col. 6 Back col. 6 Back col. 6  
Same as  
left.  
Same as  
left.  
Box shad.2  
Outline  
Back col. 7  
Text col. 8  
Box shad.2  
Outline  
Back col. 7  
Text col. 8  
HP = x'4'  
Blank Blank Blank  
Blank  
Text col. 9 Text col. 9 Text col. 9  
VSZ = 1  
(2x)  
VP = x'70'  
Line 3  
HSZ = 3 (4x)  
CC = x'300'  
CC = x'310'  
HP = x'10'  
No shadow, no outline  
Background col. = 2  
Text color = 1  
No shadow, no outline  
Background col. = 2  
Text color = 1  
VSZ = 1  
(2x)  
Display end  
Figure 7-5 Text Display Example  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
164  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
VRAM  
7.8 VRAM  
7.8.1 VRAM Operation  
Table 7-7 VRAM Bit Allocation in Internal RAM  
15  
14  
13  
12  
11  
*
10  
*
9
8
7
6
5
4
3
2
1
0
Text layer  
CC  
0
0
*
*
CCH9 CCH8 CCH7 CCH6 CCH5 CCH4 CCH3 CCH2 CCH1 CCH0  
Character address (1024 characters)  
Character code  
ID code  
1
0
*
BSHAD1 BSHAD0 CSHAD FRAME BLINK BCOL3 BCOL2 BCOL1 BCOL0 CCOL3 CCOL2 CCOL1 CCOL0  
Char.  
COL (normal mode)  
Color control code  
ID code  
Box shadow  
Outline Blink  
Background color (16 colors)  
Character color (16 colors)  
shadow  
CUNDL ITALIC FRAME BLINK BCOL3 BCOL2 BCOL1 BCOL0 CCOL3 CCOL2 CCOL1 CCOL0  
Underline Italics Outline Blink Background color (16 colors) Character color (16 colors)  
1
0
0
1
*
*
*
*
COL (closed-caption mode)  
Color control code  
ID code  
ID code  
ID code  
ID code  
*
*
*
*
*
*
*
CCBF CCB3 CCB2 CCB1 CCB0  
CCB  
Blank/  
Repeat character/blank code  
Number of blank/char. repetitions  
char.  
1
1
1
1
*
CHSZ1 CHSZ0 CSHT CHP9 CHP8 CHP7 CHP6 CHP5 CHP4 CHP3 CHP2 CHP1 CHP0  
CHP  
Character H position control  
H size  
Shutter  
H display start position (1 dot resolution, 1024 steps)  
CLAST CVSZ1 CVSZ0 CINT  
Last line  
CVP9 CVP8 CVP7 CVP6 CVP5 CVP4 CVP3 CVP2 CVP1 CVP0  
CVP  
Character V position control  
V size  
Interrupt  
V display start position (1 H scan line resolution, 1024 steps)  
flag  
15  
0
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Graphics layer  
GTC  
GCBF GCB3 GCB2 GCB1 GCB0 GPRT GTC8 GTC7 GTC6 GTC5 GTC4 GTC3 GTC2 GTC1 GTC0  
Blank/  
tile  
Palette  
select  
Graphic tile code  
ID code  
1
Number of blank/tile repetitions  
Graphic tile address (512 tiles)  
1
*
GHSZ1 GHSZ0 GSHT GHP9 GHP8 GHP7 GHP6 GHP5 GHP4 GHP3 GHP2 GHP1 GHP0  
H size Shutter H display start position (1 dot resolution, 1024 steps)  
GHP  
ID code  
Graphics H position control  
1
1
GLAST GVSZ1 GVSZ0 GINT GVP9 GVP8 GVP7 GVP6 GVP5 GVP4 GVP3 GVP2 GVP1 GVP0  
Last line  
flag  
GVP  
Graphics V position control  
ID code  
V size  
Interrupt  
V display start position (1 H scan line resolution, 1024 steps)  
*
Don’t-care bits  
Text Layer  
CC: Character Code  
ID Code: 00  
CCH[9:0]  
Specifies the address of one of 1024 characters stored in the ROM.  
COL: Color Control Code (Normal Mode)  
ID Code: 10  
BSHAD[1:0]  
Specifies shadowing of the character box for a 3D button effect.  
00: Disable  
01: Disable  
10: Upper left white and lower right black shadows  
11: Upper left black and lower right white shadows  
CSHAD  
Specifies character shadowing for a 3D effect.  
0: Disable  
1: Enable  
FRAME  
Specifies character outlining (black).  
0: Disable  
1: Enable  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
165  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
VRAM  
BLINK  
Specifies character blinking.  
0: Disable  
1: Enable  
BCOL[3:0]  
Specifies the background color (1 of 16 colors).  
CCOL[3:0]  
Specifies the foreground (character) color (1 of 16 colors).  
COL: Color Control Code (Closed-Caption Mode)  
ID Code: 10  
CUNDL  
Specifies underlining.  
0: Disable  
1: Enable  
ITALIC  
Specifies italicization.  
0: Disable  
1: Enable  
FRAME  
Specifies character outlining (black).  
0: Disable  
1: Enable  
BLINK  
Specifies character blinking.  
0: Disable  
1: Enable  
BCOL[3:0]  
Specifies the background color (1 of 16 colors).  
CCOL[3:0]  
Specifies the foreground (character) color (1 of 16 colors).  
CCB: Repeat Blank/Character Code  
ID Code: 01  
CCBF  
Repeat blank/repeat character select.  
0: Repeat blank  
1: Repeat character  
CCB[3:0]  
Specifies the number of times (up to 16) a blank space or character is  
repeated. This function saves RAM space by preventing the VRAM  
address from incrementing. The program redisplays the preceding charac-  
ter code the specified number of times. This increases the limit beyond 38  
characters per line.  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
166  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
VRAM  
CHP: Character Horizontal Position Control Code  
ID Code: 11  
CHSZ[1:0]  
Specifies the H size of the characters on the next line.  
00: 1 dot = 1 VCLK period  
01: 1 dot = 2 VCLK periods  
10: 1 dot = 3 VCLK periods  
11: 1 dot = 4 VCLK periods  
CSHT  
Specifies shutter operation for the next line. Setting this bit to 1 disables  
the shuttering function. You can disable and enable shuttering on a line-by-  
line basis.  
0: Enable  
1: Disable  
CHP[9:0]  
Specifies a VCLK indicating the horizontal start position for the next line.  
1024 steps are available.  
CVP: Character Vertical Position Control Code  
ID Code: 11  
CLAST  
Specifies the last line in the internal RAM text layer. This resets the line  
pointer for character reads from the internal RAM to the first line.  
0: Disable  
1: Enable  
CVSZ[1:0]  
Specifies the V size of the characters on the next line.  
00: 1 dot = 1 H scan line  
01: 1 dot = 2 H scan lines  
10: 1 dot = 4 H scan lines  
In closed-caption mode, only the  
b’00’, b’01’, and b’11’ settings  
are available for CVSZ[1:0]. The  
b’10’ setting is reserved.  
11: 1 dot = 6 H scan lines  
CINT  
Specifies an OSD interrupt.  
0: Disable  
1: Enable  
CVP[9:0]  
Specifies an H scan line indicating the vertical start position for the next  
line. 1024 steps are available.  
Graphics Layer  
GTC: Graphic Tile Code  
ID Code: 00  
GCBF  
Repeat blank/repeat tile select.  
0: Repeat blank  
1: Repeat tile  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
167  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
VRAM  
GCB[3:0]  
Specifies the number of times (up to 16) a blank or graphic tile is repeated.  
GPRT  
Specifies graphics color palette 1 or 2.  
0: Palette 1  
1: Palette 2  
GTC[8:0]  
Specifies the address of one of 512 graphic tiles stored in the ROM.  
GHP: Graphics Horizontal Position Control Code  
ID Code: 11  
GHSZ[1:0]  
Specifies the H size of the characters on the next line.  
00: 1 dot = 1 VCLK period  
01: 1 dot = 2 VCLK periods  
10: 1 dot = 3 VCLK periods  
11: 1 dot = 4 VCLK periods  
GSHT  
Specifies shutter operation for the next line. Setting this bit to 1 disables  
the shuttering function. You can disable and enable shuttering on a line-by-  
line basis.  
0: Enable  
1: Disable  
GHP[9:0]  
Specifies a VCLK indicating the horizontal start position for the next line.  
1024 steps are available.  
GVP: Graphics Vertical Position Control Code  
ID Code: 11  
GLAST  
Specifies the last line in the internal RAM graphics layer. This resets the  
line pointer for graphic tile reads from the internal RAM to the first line.  
0: Disable  
1: Enable  
GVSZ[1:0]  
Specifies the V size of the tiles on the next line.  
00: 1 dot = 1 H scan line  
01: 1 dot = 2 H scan lines  
10: 1 dot = 4 H scan lines  
11: 1 dot = 6 H scan lines  
GINT  
Specifies an OSD interrupt.  
0: Disable  
1: Enable  
GVP[9:0]  
Specifies an H scan line indicating the vertical start position for the next  
line. 1024 steps are available.  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
168  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
VRAM  
7.8.2 VRAM Organization  
Graphics RAM Addresses  
(When GEXTE = 1)  
GRAMEND40×N+5  
Line N data  
GRAMEND40×(N1)  
GRAMEND3F  
Unused area  
Unused area  
Code 30  
x'008000'  
.
.
.
GRAMEND3E  
GRAMEND3D  
GRAMEND3C  
GRAMEND3B  
GRAMEND3A  
GRAMEND2F  
GRAMEND2E  
Program  
Data  
and  
GRAMEND40×n+5  
Line n data  
Code 29  
GRAMEND40×(n1)  
Stack  
Area  
.
.
.
.
.
.
GRAMEND7B  
Line 2 data  
Line 1 data  
GRAMEND40×N+5  
GRAMEND40  
GRAMEND3B  
GRAMEND3  
GRAMEND2  
GRAMEND1  
GRAMEND  
Low-order 8 bits  
of graphics code  
High-order 8 bits  
of graphics code  
Code 2  
Code 1  
64 bytes  
2 bytes  
Graphics  
VRAM  
GRAMEND  
GRAMEND  
CRAMEND50×M+1  
Text RAM Addresses  
CRAMEND50×M+1  
Line M data  
Text  
CRAMEND50×(M1)  
VRAM  
.
.
.
CRAMEND50×m+1  
CRAMEND4F  
Code 40  
Code 39  
Code 38  
CRAMEND  
x'009FFF'  
CRAMEND4E  
CRAMEND4D  
CRAMEND4C  
CRAMEND4B  
CRAMEND4A  
Line m data  
CRAMEND50×(m1)  
.
.
.
.
.
.
CRAMEND9F  
Line 2 data  
Line 1 data  
CRAMEND50  
CRAMEND4F  
CRAMEND3  
CRAMEND2  
CRAMEND1  
CRAMEND  
Low-order 8 bits  
of text code  
Code 2  
Code 1  
80 bytes  
High-order 8 bits  
of text code  
2 bytes  
CRAMEND  
Notes: 1. All addresses are expressed in hex notation. Other values are decimal.  
2. GRAMEND: Graphics RAM end address (programmable to any address)  
3. CRAMEND: Text RAM end address (programmable to any address)  
4. M: Number of lines in the text layer  
5. m: 1 and up  
6. N: Number of lines in the graphics layer  
7. n: 1 and up  
Figure 7-6 VRAM Organization (When GEXTE = 0)  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
169  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
VRAM  
GRAMEND40×N+5  
Line N data  
GRAMEND40×(N1)  
GRAMEND3F  
GRAMEND3E  
GRAMEND3D  
GRAMEND3C  
GRAMEND3B  
GRAMEND3A  
GRAMEND2F  
GRAMEND2E  
Unused area  
Unused area  
Code 30  
.
.
.
GRAMEND40×n+5  
Line n data  
Code 29  
GRAMEND40×(n1)  
.
.
.
.
.
.
GRAMEND7B  
Line 2 data  
Line 1 data  
GRAMEND40  
GRAMEND3B  
GRAMEND3  
GRAMEND2  
GRAMEND1  
GRAMEND  
Low-order 8 bits  
Code 2  
Code 1  
of graphics code  
High-order 8 bits  
of graphics code  
64 bytes  
2 bytes  
GRAMEND  
A. GEXTE = 1  
GRAMEND28×N+1  
Line N data  
GRAMEND28×(N1)  
GRAMEND27  
GRAMEND26  
GRAMEND25  
GRAMEND24  
GRAMEND23  
GRAMEND22  
Code 20  
Code 19  
Code 18  
.
.
.
GRAMEND28×n+1  
Line n data  
GRAMEND28×(n1)  
.
.
.
.
.
.
GRAMEND4F  
GRAMEND5  
GRAMEND4  
GRAMEND3  
GRAMEND2  
GRAMEND1  
GRAMEND  
Code 3  
Code 2  
Code 1  
Line 2 data  
Line 1 data  
GRAMEND28  
GRAMEND27  
Low-order 8 bits  
of graphics code  
High-order 8 bits  
of graphics code  
40 bytes  
2 bytes  
GRAMEND  
B. GEXTE = 0  
Figure 7-7 Graphics VRAM Organization for Two Modes  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
170  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
VRAM  
7.8.3 Cautions about the number of display code set to VRAM  
When the display lines are adjoined or overlapped, and the number of the above  
display code is extremely fewer than that of the below one, first line of the  
display line may not be output correctly.  
In OSD circuit, font data to display are read from ROM and stored to the buffer.  
The data in the buffer are overwritten, after the present display code is output, to  
the display data of the next line.  
Show the example when the display lines are adjoined. The number of the  
display code in the above line (line M) is reffered to n, and that of the below one  
(line M+1) is refferred N.  
The buffer holds n display data of the last line of line M at the time of A (see  
figure below), and the data in the buffer are overwritten to the display data of the  
first line of line M+1 as time goes by. At the time of B the buffer holds n display  
data of the first line of line M+1.  
In case n is smaller than N, N-n display data are needed to display the first line of  
line M+1, and to be written to the buffer before it is shown on the display.  
Especially when n is extremely smaller than N, a large amount of the display data  
is needed to be written to the buffer before display. And in case writing is not  
done in time, it shows wrong data on the screen.  
HSYNC  
display  
A
B
C
Buffer  
Figure 7-8 Timing for OSD data  
To prevent the wrong display written above, the first line of the below line is to  
be shown later enough after the last line of the above line is displayed.  
The time (Td) needed for the correct display is caluculated as below.  
Td = 0.8 + ( N - n ) × 0.5 [µs]  
n : the number of display code in the above line. (include HP, VP)  
N: the number of display code in the below line. (include HP, VP)  
n<N  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
171  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
ROM  
7.9 ROM  
7.9.1 ROM Organization  
Text ROM Addresses  
Text character  
16 bits  
Each character requires 36 bytes.  
Line 1  
Line 2  
Line 3  
18 bits  
x’080000’  
Line 18  
CROMEND24×(M+1)+1  
Code M  
text data  
Bit 15  
Bit 0  
CROMEND24×M  
.
.
.
CROMEND23 Line 1 bits 7 to 0  
CROMEND22 Line 1 bits 15 to 8  
CROMEND21 Line 2 bits 7 to 0  
CROMEND20 Line 2 bits 15 to 8  
CROMEND1F Line 3 bits 7 to 0  
CROMEND24×(m+1)+1  
Program  
Data  
Area  
Code m  
text data  
CROMEND24×m  
.
.
.
36 bytes  
.
.
.
CROMEND47  
Code 01  
text data  
CROMEND24  
CROMEND23  
CROMEND1  
Code 00  
text data  
Line 18 bits 7 to 0  
36 bytes  
CROMEND24×(M+1)+1  
CROMEND  
1 byte  
Line 18 bits 15 to 8  
CROMEND  
Text  
ROM  
Graphics ROM Addresses Graphics tile (16-color mode)  
CROMEND  
16 bits  
Line 1  
Line 2  
Line 3  
In 16-color mode, each tile  
requires 128 bytes.  
Sheet 4  
Sheet 3  
Sheet 2  
Sheet 1  
GROMEND80×(N+1)+1  
(16-color mode)  
Line 16  
Graphics  
ROM  
GROMEND80×(N+1)+1  
1 dot = 4 bits  
= 16 colors  
Code N  
graphics data  
GROMEND80×N  
.
.
.
GROMEND  
Bit 15  
Bit 0  
(16-color mode)  
Line 1 data  
GROMEND7F  
GROMEND80×(n+1)+1  
Code n  
graphics data  
GROMEND78  
GROMEND77  
Line 2 data  
GROMEND80×n  
GROMEND70  
GROMEND6F  
(16-color mode)  
.
.
.
Line 3 data  
GROMEND68  
Sheet 1 bits 7 to 0  
Sheet 1 bits 15 to 8  
Sheet 2 bits 7 to 0  
Sheet 2 bits 15 to 8  
Sheet 3 bits 7 to 0  
Sheet 3 bits 15 to 8  
Sheet 4 bits 7 to 0  
Sheet 4 bits 15 to 8  
GROMEND7  
GROMEND6  
GROMEND5  
GROMEND4  
GROMEND3  
GROMEND2  
GROMEND1  
GROMEND  
GROMEND67  
.
.
.
GROMENDFF  
Code 01  
graphics data  
GROMEND80  
GROMEND7F  
GROMEND10  
GROMEND0F  
Line 15 data  
Line 16 data  
GROMEND08  
Code 00  
graphics data  
128 bytes  
GROMEND07  
8 bytes  
1 byte  
GROMEND  
GROMEND  
Notes: 1. All addresses are expressed in hex notation. Other values are decimal.  
2. GROMEND: Graphics ROM end address (programmable to any address)  
3. CROMEND: Text ROM end address (programmable to any address)  
4. M: Number of characters - 1  
5. m: 0 and up  
6. N: Number of graphic tiles - 1 (16-color mode)  
7. n: 0 and up  
Figure 7-9 ROM Organization  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
172  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
ROM  
7.9.2 Graphics ROM Organization in Different Color Modes  
The graphics layer supports up to sixteen colors, in the 16-color mode, but also  
supports 2-, 4-, and 8-color modes. The smaller the number of colors, the less  
ROM area required per tile. The figures in this section illustrate the ROM organi-  
The example in figure 7-10 demonstrates the graphics ROM setup for line 16 of  
the code 00 data when the graphics layer is in 16-color mode. The four bits of  
data for each pixel, in sheets 1, 2, 3, and 4, determine the color palette used for  
that pixel.  
Graphics tile  
16 bits  
Line 1  
Line 2  
Line 3  
Sheet 4  
Sheet 3  
Sheet 2  
Sheet 1  
Line 16  
1 dot = 4 bits  
= 16 colors  
In this example, line 16 of the code 00  
graphics tile is set in 16-color mode.  
Bit 15  
Bit 0  
(16-color mode)  
Line 1 data  
Line 2 data  
(Setup example)  
(16-color mode)  
Line 3 data  
Sheet 1 bits 7 to 0  
Sheet 1 bits 15 to 8  
Sheet 2 bits 7 to 0  
Sheet 2 bits 15 to 8  
Sheet 3 bits 7 to 0  
Sheet 3 bits 15 to 8  
Sheet 4 bits 7 to 0  
Sheet 4 bits 15 to 8  
GROMEND7  
GROMEND6  
GROMEND5  
GROMEND4  
GROMEND3  
GROMEND2  
GROMEND1  
GROMEND  
1010 1010  
0000 0000  
.
.
.
1100 1100  
0000 0000  
1111 0000  
0000 0000  
Line 15 data  
Line 16 data  
0000 0000  
8 bytes  
1 byte  
0000 0000  
Use graphics palette 7  
Use graphics palette 6  
Use graphics palette 5  
Use graphics palette 4  
Use graphics palette 3  
Use graphics palette 2  
Use graphics palette 1  
Use graphics palette 0  
Graphics tile  
Line 1  
Line 2  
Line 3  
Line 16  
Bit 0  
Bit 15  
Figure 7-10 Graphics ROM Setup Example for a Single Line  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
173  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
ROM  
Graphic Tile Codes  
2 colors  
4 colors  
8 colors  
16 colors  
ROMEND80×N+1  
N × 4 1  
N × 4/3 1  
N 1  
N is a  
multiple of 3.  
N × 2 1  
.
.
.
.
.
.
.
.
.
.
.
.
03  
02  
01  
04  
06  
05  
04  
03  
02  
01  
00  
0C  
0B  
0A  
09  
08  
07  
06  
05  
04  
03  
02  
01  
00  
ROMEND180  
ROMEND160  
ROMEND140  
ROMEND120  
ROMEND100  
ROMENDE0  
ROMENDC0  
ROMENDA0  
ROMEND80  
ROMEND60  
ROMEND40  
ROMEND20  
ROMEND  
03  
02  
01  
128 bytes  
00  
00  
Required bytes  
per tile  
32 bytes  
64 bytes  
96 bytes  
128 bytes  
See fig.7-15 See fig.7-14 See fig.7-13 See fig.7-12  
Figure 7-11 Graphics ROM in the Four Color Modes (16W x 16H Tiles)  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
174  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
ROM  
Graphic Tile Codes  
4 colors  
2 colors  
8 colors  
16 colors  
ROMEND90×N+1  
N × 4 1  
N × 4/3 1  
N 1  
N is a  
multiple of 3.  
N × 2 1  
.
.
.
.
.
.
.
.
.
.
.
.
03  
02  
01  
00  
04  
03  
02  
01  
00  
06  
05  
04  
03  
02  
01  
00  
0C  
0B  
0A  
09  
08  
07  
06  
05  
04  
03  
02  
01  
00  
ROMEND1B0  
ROMEND18C  
ROMEND168  
ROMEND144  
ROMEND120  
ROMENDFC  
ROMENDD8  
ROMENDB4  
ROMEND90  
ROMEND6C  
ROMEND48  
ROMEND24  
ROMEND  
144 bytes  
Required bytes  
per tile  
72 bytes  
36 bytes  
108 bytes 144 bytes  
See fig.7-17 See fig.7-16  
See fig.7-18  
See fig.7-19  
Figure 7-12 Graphics ROM in the Four Color Modes (16W x 18H Tiles)  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
175  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
ROM  
ROMEND7F  
16 bits  
Line 1  
Line 1 data  
Line 2 data  
Line 3 data  
ROMEND78  
Line 2  
Line 3  
Graphics tile  
Sheet 4  
Sheet 3  
Sheet 2  
Sheet 1  
ROMEND77  
(16-color mode)  
ROMEND70  
ROMEND6F  
ROMEND68  
Sheet 1 bits 7 to 0  
Sheet 1 bits 15 to 8  
Sheet 2 bits 7 to 0  
Sheet 2 bits 15 to 8  
Sheet 3 bits 7 to 0  
Sheet 3 bits 15 to 8  
Sheet 4 bits 7 to 0  
Sheet 4 bits 15 to 8  
ROMEND7  
ROMEND6  
ROMEND5  
ROMEND4  
ROMEND3  
ROMEND2  
ROMEND1  
ROMEND  
ROMEND67  
Line 16  
.
.
.
1 dot = 4 bits  
= 16 colors  
ROMEND10  
ROMEND0F  
Line 15 data  
Line 16 data  
ROMEND08  
Bit 15  
Bit 0  
ROMEND07  
8 bytes  
1 byte  
ROMEND  
Figure 7-13 Graphics ROM Organization in 16-Color Mode (16W x 16H Tiles)  
ROMEND5F  
Line 1 data  
ROMEND5A  
16 bits  
Graphics tile  
(8-color mode)  
ROMEND59  
Line 1  
Line 2  
Line 3  
Line 2 data  
Line 3 data  
ROMEND54  
Sheet 3  
Sheet 2  
Sheet 1  
ROMEND53  
ROMEND4E  
ROMEND4D  
.
.
.
Sheet 1 bits 7 to 0  
Sheet 1 bits 15 to 8  
Sheet 2 bits 7 to 0  
Sheet 2 bits 15 to 8  
Sheet 3 bits 7 to 0  
Sheet 3 bits 15 to 8  
ROMEND5  
ROMEND4  
ROMEND3  
ROMEND2  
ROMEND1  
ROMEND  
1 dot = 3 bits  
Line 16  
= 8 colors  
ROMEND1C  
ROMEND1B  
Line 15 data  
Line 16 data  
ROMEND06  
Bit 15  
Bit 0  
ROMEND05  
6 bytes  
1 byte  
ROMEND  
Figure 7-14 Graphics ROM Organization in 8-Color Mode (16W x 16H Tiles)  
ROMEND3F  
Line 1 data  
ROMEND3C  
Graphics tile  
(4-color mode)  
ROMEND3B  
Line 2 data  
16 bits  
Sheet 2  
Sheet 1  
ROMEND38  
Line 1  
Line 2  
Line 3  
ROMEND37  
Line 3 data  
ROMEND34  
ROMEND33  
.
.
.
1 dot = 2 bits  
= 4 colors  
Line 16  
Sheet 1 bits 7 to 0  
Sheet 1 bits 15 to 8  
Sheet 2 bits 7 to 0  
Sheet 2 bits 15 to 8  
ROMEND3  
ROMEND2  
ROMEND1  
ROMEND  
ROMEND08  
ROMEND07  
Line 15 data  
Line 16 data  
ROMEND04  
Bit 15  
Bit 0  
ROMEND03  
4 bytes  
1 byte  
ROMEND  
Figure 7-15 Graphics ROM Organization in 4-Color Mode (16W x 16H Tiles)  
ROMEND1F  
Line 1 data  
ROMEND1E  
Graphics tile  
(2-color mode)  
ROMEND1D  
Line 2 data  
Line 3 data  
ROMEND1C  
ROMEND1B  
16 bits  
Sheet 1  
Line 1  
Line 2  
Line 3  
ROMEND1A  
ROMEND19  
.
.
.
1 dot = 1 bit  
= 2 colors  
ROMEND04  
Line 16  
ROMEND03  
Line 15 data  
Line 16 data  
ROMEND02  
Bit 15  
Bit 0  
Sheet 1 bits 7 to 0  
Sheet 1 bits 15 to 8 1 byte  
ROMEND1  
ROMEND01  
2 bytes  
ROMEND  
ROMEND  
Figure 7-16 Graphics ROM Organization in 2-Color Mode (16W x 16H Tiles)  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
176  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
ROM  
ROMEND8F  
Line 1 data  
Line 2 data  
Line 3 data  
16 bits  
Sheet 4  
Sheet 3  
Sheet 2  
Sheet 1  
ROMEND88  
Line 1  
Line 2  
Line 3  
Graphics tile  
(16-color mode)  
ROMEND87  
ROMEND80  
ROMEND7F  
ROMEND78  
Sheet 1 bits 7 to 0  
Sheet 1 bits 15 to 8  
Sheet 2 bits 7 to 0  
Sheet 2 bits 15 to 8  
Sheet 3 bits 7 to 0  
Sheet 3 bits 15 to 8  
Sheet 4 bits 7 to 0  
Sheet 4 bits 15 to 8  
ROMEND7  
ROMEND6  
ROMEND5  
ROMEND4  
ROMEND3  
ROMEND2  
ROMEND1  
ROMEND  
ROMEND77  
.
.
.
Line 18  
1 dot = 4 bits  
= 16 colors  
ROMEND10  
ROMEND0F  
Line 17 data  
Line 18 data  
ROMEND08  
ROMEND07  
8 bytes  
1 byte  
ROMEND  
Bit 15  
Bit 0  
Figure 7-17 Graphics ROM Organization in 16-Color Mode (16W x 18H Tiles)  
ROMEND6B  
Line 1 data  
ROMEND66  
16 bits  
Graphics tile  
(8-color mode)  
ROMEND65  
Line 1  
Line 2  
Line 3  
Line 2 data  
Line 3 data  
ROMEND60  
Sheet 3  
Sheet 2  
Sheet 1  
ROMEND5F  
ROMEND5A  
ROMEND59  
.
.
.
Sheet 1 bits 7 to 0  
Sheet 1 bits 15 to 8  
Sheet 2 bits 7 to 0  
Sheet 2 bits 15 to 8  
Sheet 3 bits 7 to 0  
Sheet 3 bits 15 to 8  
ROMEND5  
ROMEND4  
ROMEND3  
ROMEND2  
ROMEND1  
ROMEND  
1 dot = 3 bits  
Line 18  
= 8 colors  
ROMEND1C  
ROMEND1B  
Line 17 data  
Line 18 data  
ROMEND06  
ROMEND05  
Bit 15  
Bit 0  
6 bytes  
1 byte  
ROMEND  
Figure 7-18 Graphics ROM Organization in 8-Color Mode (16W x 18H Tiles)  
ROMEND47  
Line 1 data  
ROMEND44  
Graphics tile  
(4-color mode)  
ROMEND43  
Line 2 data  
16 bits  
Sheet 2  
Sheet 1  
ROMEND40  
Line 1  
Line 2  
Line 3  
ROMEND3F  
Line 3 data  
ROMEND3C  
ROMEND3B  
.
.
.
1 dot = 2 bits  
= 4 colors  
Sheet 1 bits 7 to 0  
Sheet 1 bits 15 to 8  
Sheet 2 bits 7 to 0  
Sheet 2 bits 15 to 8  
ROMEND3  
ROMEND2  
ROMEND1  
ROMEND  
Line 18  
ROMEND08  
ROMEND07  
Line 17 data  
Line 18 data  
ROMEND04  
ROMEND03  
Bit 15  
Bit 0  
4 bytes  
1 byte  
ROMEND  
Figure 7-19 Graphics ROM Organization in 4-Color Mode (16W x 18H Tiles)  
ROMEND23  
Line 1 data  
ROMEND22  
Graphics tile  
(2-color mode)  
ROMEND21  
Line 2 data  
Line 3 data  
ROMEND20  
ROMEND1F  
16 bits  
Sheet 1  
Line 1  
Line 2  
Line 3  
ROMEND1E  
ROMEND1D  
.
.
.
1 dot = 1 bit  
= 2 colors  
ROMEND04  
ROMEND03  
Line 18  
Line 17 data  
Line 18 data  
ROMEND02  
Sheet 1 bits 7 to 0  
Sheet 1 bits 15 to 8 1 byte  
ROMEND1  
ROMEND01  
Bit 15  
Bit 0  
2 bytes  
ROMEND  
ROMEND  
Figure 7-20 Graphics ROM Organization in 2-Color Mode (16W x 18H Tiles)  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
177  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
Setting Up the OSD  
7.10 Setting Up the OSD  
7.10.1 Setting Up the OSD Display Colors  
This section describes how to set up the display colors for the OSD.  
To set up the color palettes:  
Write your settings to the color palette registers shown in table 7-8.  
Table 7-8 Color Palette Registers  
Layer  
Palette  
Address  
Applications  
Text  
CPT0–CPTF  
x’007F80’–  
x’007F9E’  
Text foreground and background colors  
All layers  
Text  
COLB  
FRAME  
BBSHD  
WBSHD  
x’007FA0’  
x’007FA2’  
x’007FA4’  
x’007FA6’  
Color background  
Outlining and character shadowing colors  
Box shadowing color (black)  
Box shadowing color (white)  
Tile color palette 1  
Graphics,  
cursor  
GPT10–  
GPT1F  
x’007FC0’–  
x’007FDE’  
GPT20–  
GPT2F  
x’007FE0’–  
x’007FFE’  
Tile color palette 2  
To set up the cursor display colors:  
Write to the fields described below.  
GCOL[1:0] (x’007F08’, bits 9 and 8) sets the number of colors (2, 4, 8, or 16).  
STC[8:0] (x’007F10’, bits 8 to 0) specifies the code of the tile to be displayed.  
SPRT (x’007F10’, bit 9) selects tile color palette 1 or 2.  
GPT1n (x’007FC0’–x’007FDE) or GPT2n (x’007FE0’–x’007FFE) speci-  
fies the colors on the palettes corresponding to the tile data stored in the ROM.  
To set up the graphics display colors:  
Write to the fields described below.  
GCOL[1:0] (x’007F08’, bits 9 and 8) sets the number of colors (2, 4, 8, or 16).  
GTC[8:0] (GTC bits 8 to 0 in the RAM data) specifies the code of the  
tile to be displayed.  
GPRT (GTC bit 9 in the RAM data) selects tile color palette 1 or 2.  
GPT1n (x’007FC0’–x’007FDE) or GPT2n (x’007FE0’–x’007FFE) speci-  
fies the colors on the palettes corresponding to the tile data stored in the ROM.  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
178  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
Setting Up the OSD  
To set up the text display colors:  
Write to the fields described below.  
CCOL[3:0] (COL bits 3 to 0 in the RAM data) sets the color of the charac-  
ter. This value is in reference to the selected color palette (CPT0–CPTF).  
BCOL[3:0] (COL bits 7 to 4 in the RAM data) sets the background color.  
As with CCOL, this value is in reference to the selected color palette  
(CPT0–CPTF).  
FRAME (COL bit 9 in the RAM data) enables character outlining when  
set to 1. Set the outline color in the FRAME color palette (x’007FA2’).  
CSHAD (COL bit 10 in the RAM data) enables character shadowing when  
set to 1. Set the shadowing color in the FRAME color palette (x’007FA2’).  
This function is unavailable in the closed-caption mode.  
BSHAD[1:0] (COL bits 12 to 11 in the RAM data) enables character box  
shadowing. This function is unavailable in the closed-caption mode.  
00 and 01: No box shadowing  
10: Upper left white and lower right black shadows  
11: Upper left black and lower right white shadows  
CPT0–CPTF (x’007F80’–x’007F9E’) specifies the colors available for  
text foreground and background colors.  
FRAME (x’007FA2’) specifies the color for outlining or character shadowing.  
BBSHD (x’007FA4’) specifies the “black” color for box shadowing.  
WBSHD (x’007FA6’) specifies the “white” color for box shadowing.  
To set up functions applying to all layers:  
Write to the fields described below.  
Color background function  
The color background function allows you to fill the television screen areas that  
are uncovered by the OSD display (text, graphics, or cursor layers) with any  
color. Specify the color in the COLB register (x’007FA0’).  
COLB (x’007F08’, bit 7) enables the color background function when set to 1.  
COLB (x’007FA0’) specifies the color of the background.  
Transparency  
The TRPT bit allows you to make the color 0 transparent in all the palettes (CPT0,  
GPT10, and GPT20). RGB, YM, and YS are all output at 0 levels for that color. See  
figure 7-21.  
TRPT (x’007F08’, bit 10)  
0: Make color 0 on all palettes transparent  
1: Output color 0 as specified  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
179  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
Setting Up the OSD  
Translucency  
The TRPTF bit allows you to make the color 15 translucent in all the palettes (CPTF,  
GPT1F, and GPT2F). RGB and YS are output at low levels for that color, and YM is  
output at the level specified for the palette. This dims the color on the display. See  
figure 7-21.  
Selecting YS palette output, by  
setting the YSPLT bit of OSD1  
(x’007F06’) to 1, disables the  
PRYM bit. With this setting, you  
must also set the TRPT and  
TRPTF bits to 1. You can specify  
transparency for individual color  
palettes if needed.  
TRPTF (x’007F08’, bit 10)  
0: Make color 15 on all palettes translucent  
1: Output color 15 as specified  
The PRYM bit allows you to make specific regions of the OSD display trans-  
lucent. This bit is disabled when the YSPLT bit is 1.  
PRYM (x’007F08’, bit 12)  
0: Output YS high on all OSD display areas  
1: Output YS low on OSD display areas that do not have low YM output  
YS palette output  
The YSPLT bit allows you to control the YS output. See figure 7-22.  
YSPLT (x’007F06’, bit 3)  
0: Output YS to entire display area (except transparent and  
translucent areas)  
1: Output the MSB (bit 15) of all the color palettes from YS  
Analog/digital output  
The YCNT and RGBC bits allow you to select 16-bit gradient, analog or digital  
output through the four OSD output pins, R, G, B, and YM.  
YCNT (x’007F06’, bit 1)  
0: Analog YM output  
1: Digital YM output (outputs bit 12 of color palette)  
RGBC (x’007F06’, bit 0)  
0: Analog R, G, B output  
1: Digital R, G, B output (outputs bits 0 (R), 4 (G), and 8 (B) of color palette)  
Table 7-9 summarizes the controls for RGM, YM, and YS output.  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
180  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
Setting Up the OSD  
Table 7-9 RGB, YM, and YS Output Control Settings  
Waveform in  
figure 7-21  
YSPLT PRYM  
TPRT TRPTF  
RGB  
YM  
YS  
0
0
0
0
Color palettes 0 and F  
output low  
Color palettes 0 and F  
output low  
Color palettes 0 and F  
output low  
0
0
0
0
0
0
0
1
0
1
1
0
1
0
1
0
Color palette 0 output low  
Color palette F output low  
Color palette 0 output low  
Color palette F output low  
Color palette 0 output low  
Color palette F output low  
Color palettes 0 and F  
output low  
Color palettes 0 and F  
output low  
Color palettes 0 and F  
output low when YM low  
0
0
1
1
0
1
1
0
Color palette 0 output low  
Color palette 0 output low  
Color palettes 0 output low  
when YM low  
Color palette F output low  
Color palette F output low  
Color palettes F output low  
when YM low  
0
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
Output low when YM low  
Reserved  
Reserved  
Reserved  
YM3 output  
Reserved  
Reserved  
Reserved  
YM3 output  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
181  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
Setting Up the OSD  
Graphics layer  
Color palette 2 (YM3 = 0, YM2 = 0, YM1 = 0, YM0 = 0)  
Color palette 0 (YM3 = 0, YM2 = 0, YM1 = 0, YM0 = 1)  
Color palette 1 (YM3 = 1, YM2 = 0, YM1 = 0, YM0 = 1)  
RGB, YM, and YS signals are displayed at this line.  
TV  
Color palette F (YM3 = 1, YM2 = 0, YM1 = 0, YM0 = 1)  
Signal specified in  
color palette 0 is output.  
0 1  
0 1  
2
2
F
F
1 0  
1 0  
RGB  
YM  
0 1  
0 1  
2
2
F
F
1 0  
1 0  
RGB  
YM  
YS  
YS  
RGB  
YM  
RGB  
YM  
YS  
YS  
RGB  
YM  
RGB  
YM  
YS  
YS  
RGB  
YM  
RGB  
YM  
YS  
YS  
RGB  
YM  
YS  
Figure 7-21 OSD Signal Waveform  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
182  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
Setting Up the OSD  
Color palette  
Bit 15 14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
***  
***  
***  
***  
***  
***  
***  
***  
***  
***  
***  
***  
***  
***  
***  
***  
YM3 YM2 YM1 YM0 B3  
B2  
B1  
B0  
G3  
G2  
G1  
G0  
R3  
R2  
R1  
R0  
4
4
4
4
Digital input  
G
B
R
R
YM  
InternalDAC  
G
YM  
B
Analog output  
RGBCNT  
(x'007F06',bit 1)  
Output YSto entire  
OSD display area  
(except transparent  
and semitransparent  
areas).  
RGB  
CNT  
RGB  
CNT  
YSPLT  
(x'007F06',bit 3)  
YCNT  
(x'007F06' bit 0)  
To pins  
G
R
YM  
B
YS  
Figure 7-22 OSD Signal Output Switches  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
183  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
Setting Up the OSD  
7.10.2 Text Layer Functions  
This section describes the character enhancement functions available in the text  
layer.  
Outlining  
In both normal and closed-caption modes, writing a 1 to bit 9 (FRAME) of the  
COL setting in the VRAM causes an outline to appear around all characters fol-  
lowing that COL. You can specify the color of the outline in the FRAME register  
(x’007FA2’). Figure 7-23 shows an example of character outlining. As shown in  
the figure, if a character contains dots in the left or right borders of its field, the  
outlining for those dots appear in the adjacent character field.  
16 dots  
16 dots  
16 dots  
Figure 7-23 Character Outlining Example  
Character shadowing  
In normal mode, writing a 1 to bit 10 (CSHAD) of the COL setting in the VRAM  
causes a drop shadow to appear behind all characters following that COL. You  
can specify the color of the shadow in the FRAME register (x’007FA2’). Figure  
7-24 shows an example of character shadowing. As shown in the figure, if a  
character contains dots in right border of its field, the shadowing for those dots  
appear in the character field to the right.  
16 dots  
16 dots  
16 dots  
Figure 7-24 Character Shadowing Example  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
184  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
Setting Up the OSD  
Box shadowing  
In normal mode, writing a 1 to bit 12 (BSHAD1) of the COL setting in the  
VRAM causes a box shadow to appear around all characters following that COL.  
If COL bit 11 (BSHAD0) is 0, the color specified in the WBSHD register  
(x’007FA6’) appears on the top and left sides of the box and the color specified in  
the BBSHD register (x’007FA4’) appears on the bottom and right sides of the  
box. These positions are reversed if BSHAD0 is 1. Figure 7-25 shows an example  
of box shadowing. As shown in the figure, the right-hand border of the shadow  
box appears in the character field to the right of the shadowed text.  
To output a box shadow to the  
right, output a space to the right  
of the text.  
16 dots  
16 dots  
BSHAD0 = 0  
BSHAD0 = 1  
Box shadowing (black)  
(Specify the color in BBSHD: x’7FA4’)  
Box shadowing (white)  
(Specify the color in WBSHD: x’7FA6’)  
Figure 7-25 Box Shadowing Example  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
185  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
Setting Up the OSD  
Italicizing  
In closed-caption mode, writing a 1 to bit 10 (ITALIC) of the COL setting in the  
VRAM italicizes all characters following that COL. Figure 7-26 shows an  
example of an italicized character.  
Underlining  
In closed-caption mode, writing a 1 to bit 11 (CUNDL) of the COL setting in the  
VRAM underlines all characters following that COL. Figure 7-26 shows an  
example of an underlined character.  
Italics  
Underlining  
Caption mode  
Figure 7-26 Italicizing and Underlining Example  
Blinking  
In both normal and closed-caption modes, writing a 1 to bit 8 (BLINK) of the  
COL setting in the VRAM causes all characters following that COL to blink. To  
use this function, you must enable blinking by writing a 1 to bit 5 (BLINK) of the  
OSD3 register (x’007F0A).  
In closed-caption mode, you can specify whether or not the underlines blink on  
underlined, blinking characters. Set bit 0 (UNDF) of the OSD3 register to 0 to  
disable underline blinking, and set it to 1 to enable underline blinking.  
The blink cycle lasts for 128 VSYNC pulses (about 2 seconds). The characters  
display for 96 VSYNCs (about 1.5 seconds) and turn off for 32 VSYNCs (about  
0.5 seconds).  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
186  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
Setting Up the OSD  
7.10.3 Display Sizes  
Graphic tile sizes  
× 1  
b'00'  
× 2  
× 3  
× 4  
b'01'  
b'10'  
b'11'  
GHSZ[1:0]  
16  
32  
48  
64  
b'00'  
16  
× 1  
b'01'  
32  
× 2  
b'10'  
64  
× 4  
b'11'  
96  
× 6  
GVSZ[1:0]  
The settings shown are for interlaced displays. In progressive displays, the vertical size settings (GVSZ[1:0]) are as follows:  
01 = 1x, 10 = 2x, and 11 = 3x. The 00 setting is reserved.  
Figure 7-27 Graphic Tile Size Combinations  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
187  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
Setting Up the OSD  
Character sizes  
× 1  
b'00'  
× 2  
× 3  
× 4  
b'01'  
b'10'  
b'11'  
CHSZ[1:0]  
16  
32  
48  
64  
b'00'  
× 1  
b'01'  
18  
36  
× 2  
b'10'  
72  
× 4  
b'11'  
108  
× 6  
CVSZ[1:0]  
The settings shown are for interlaced displays. In progressive displays, the vertical size settings (CVSZ[1:0]) are as follows:  
01 = 1x, 10 = 2x, and 11 = 3x. The 00 setting is reserved. In addition, in closed-caption mode, only the b’00’, b’01’, and b’11’  
settings are available for CVSZ[1:0]. The b’10’ setting is reserved.  
Figure 7-28 Character Size Combinations  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
188  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
Setting Up the OSD  
7.10.4 Setting Up the OSD Display Position  
This section describes how to control the positioning of the OSD.  
To set up the horizontal position:  
Cursor  
Write the horizontal position of the cursor to the SHP[9:0] field  
(x’007F12’).  
Valid range: SHP x’0C’  
Graphics  
Write the horizontal position of the first line in the display to the  
GIHP[9:0] field (x’007F16’).  
Write the position of the second and all following lines in the GHP[9:0]  
field of the graphics display RAM data for the preceding line.  
Valid ranges: x’0C’ GHP HPmax and x’0C’ GIHP HPmax  
Text  
Write the horizontal position of the first line in the display to the  
CIHP[9:0] field (x’007F1A).  
Write the position of the second and all following lines in the CHP[9:0]  
field of the text display RAM data for the preceding line.  
Valid ranges: x’0C’ CHP HPmax and x’0C’ CIHP HPmax  
To set up HP  
equations, write:  
max  
HPmax = (Thsync Thw 0.8 µs)/Tdot (Nchar. × 16 × Hsz); or  
HPmax = 1024 (Nchar. × 16 × Hsz)  
Thsync is the HSYNC cycle, Thw is the HSYNC pulse width, Nchar. is the number  
of characters in the line including repeated characters and blank spaces, Tdot is  
the dot clock cycle, and Hsz is the horizontal size. The HPmax limit ensures that  
there is at least 0.8 µs between the end of a line and the leading edge of HSYNC.  
When setting up the horizontal  
position, you must allow at least  
0.8 µs between the end of a line  
and the leading edge of HSYNC,  
or the display will flicker.  
T
hsync  
0.8 µs  
T
hw  
HSYNC  
RGB, YM, YS  
Figure 7-29 HP  
of Horizontal Display Position  
max  
About the horizontal start position on the screen  
The horizontal position, or HP settings (SHP, GHP, and CHP) determine where  
the left side of cursor, graphics, and text lines start on the screen. You can set this  
value for all of the layers in 1-pixel units.  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
189  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
Setting Up the OSD  
To set up the vertical position:  
Cursor  
Write the vertical position of the cursor to the SVP[9:0] field  
(x’007F14’).  
Valid range: x’3F0’ (no. of H scan lines) SHP x’03’  
Graphics  
Write the vertical position of the first line in the display to the  
GIVP[9:0] field (x’007F18’).  
When you write new values to  
the GIVP and CIVP fields, the  
settings take effect on the next  
VSYNC pulse. This means that  
changes are reflected in the next  
display screen rather than the  
current one.  
Write the position of the second and all following lines in the GVP[9:0]  
field of the graphics display RAM data for the preceding line.  
Valid range: x’3F0’ (no. of H scan lines) GIVP/GVP x’03’  
Text  
Write the vertical position of the first line in the display to the  
CIVP[9:0] field (x’007F1C’).  
Write the position of the second and all following lines in the CVP[9:0]  
field of the text display RAM data for the preceding line.  
Valid ranges: x’3F0’ (no. of H scan lines) CIVP/CVP x’03’  
VP range calculation example  
The base graphics line height is 16 dots, or H scan lines. If the graphics line you  
are positioning displays at 2x the base height, the number of H scan lines is:  
16 × 2 = 32 = x’20’ H scan lines  
The valid range of settings for GVP is:  
x’3F0’ x’20’ = x’3D0’ GVP x’03’  
About the vertical start position on the screen  
The vertical position, or VP settings (SVP, GVP, and CVP) determine where the  
upper edge of cursor, graphics, and text lines start on the screen. You can set this  
value for all of the layers in H scan line units. Using the same VP settings for all  
the layers makes them all start at the same vertical position.  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
190  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
DMA and Interrupt Timing  
7.11 DMA and Interrupt Timing  
This section describes how the MN102H75K/85K handles the timing of direct  
memory access (DMA) transfers of OSD data and OSD interrupts.  
DMA  
On both the text and graphics layers, the microcontroller reads the line 1 data  
from the RAM as it scans line 1 onto the display. For line 2 and following lines, it  
reads the data as it scans the display start for the preceding line. The RAM read  
starts 12 system clock cycles (12TS) after the leading edge of the HSYNC pulse.  
The DMA transfer takes 4TS for each display data word.  
If you use the OSD function, the  
DMA function executes for both  
the text and graphics layers,  
even if your program does not  
use one of these layers. To  
In line 1, or when a graphics and text line begin simultaneously, the data transfer  
requests for both layers occur simultaneously. The text data transfer always takes  
priority. The graphics data transfer begins 5TS after the text data transfer ends.  
prevent error, program data for  
restrictions outlined in section  
7.1, “Description,” on page 153.  
If a DMA transfer occurs at the same time as the leading edge of a VSYNC pulse,  
the screen flickers. To avoid this, do not set a display position in the last line.  
Interrupts  
For both graphics and text displays, the microcontroller processes the GINT and  
CINT interrupt request bits of the display data’s GVP and CVP fields during  
DMA transfer. If GINT or CINT is set to 1, when the associated transfer ends  
(GVP or CVP transfer) the OSD generates an interrupt request.  
Note that if the interrupt bit is set to 1 in the line 1 display data, the interrupt  
occurs at the first scan line. If the interrupt bit is set to 1 in the line 2 display data,  
the interrupt occurs at the first display line.  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
191  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
DMA and Interrupt Timing  
12Ts  
4nTs  
5Ts  
4nTs  
Television Screen  
Scan line 1  
Text DMA  
Graphics DMA  
Text interrupt Graphics interrupt  
Graphics interrupt  
Line G1  
Line C1  
Graphics DMA  
Graphic Graphic  
display  
display  
Text DMA  
Text  
display  
Text  
display  
Text  
display  
Text interrupt  
Line C2  
Line G2  
Text  
display  
Graphic  
display  
Horizontal sync pulse  
Figure 7-30 DMA and Interrupt Timing for the OSD  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
192  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
Selecting the OSD Dot Clock  
7.12 Selecting the OSD Dot Clock  
This section describes how to set up the OSD dot clock.  
Selecting the clock source  
The source for the OSD dot clock is programmable to either the 4-MHz clock  
supplied through the OSC1 and OSC2 pins, then multiplied by the PLL circuit to  
48 MHz, or a dedicated clock supplied through the OSDXI and OSDXO pins.  
The dedicated OSDX clock can be a crystal, LC oscillator, or other form of exci-  
tation that is input through the OSDXI pin and synchronized internally to the  
HSYNC pulse, or it can be an LC blocking oscillator synchronized to the  
HSYNC pulse.  
Table 7-10 OSD Dot Clock Source Settings  
OSCSEL1  
(x’007F06’, bit 9) (x’007F06’, bit 8)  
OSCSEL0  
Oscillator pins Oscillator type Frequency  
0
0
1
0
1
0
OSC1, OSC2  
Crystal + PLL  
48-MHz  
(with 4-MHz osc.)  
OSDXI,  
OSDXO  
LC blocking  
oscillator  
f
f
X
X
OSDXI,  
OSDXO  
Crystal, LC  
oscillator, or  
other excitation  
1
1
Reserved  
If your design uses the OSDX clock, set the XIO bit (x’007F06’, bit 7) for the  
appropriate frequency.  
XIO  
0: Less than 20 MHz  
1: Greater than 20 MHz  
Selecting the divide-by ratio  
There are five divide-by settings available for any of the clocks described above.  
Table 7-11 shows the register settings for each ratio.  
Table 7-11 OSD Dot Clock Division Settings  
VCLK2  
(x’007F08’, bit 6)  
VCLK1  
(x’007F08’, bit 5)  
VCLK0  
(x’007F08’, bit 4)  
Divide by Ratio  
(1)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1/4 (12 MHz)  
(1)  
1/3 (16 MHz)  
(1)  
1/2 (24 MHz)  
(1)  
2/3 (32 MHz)  
1/1 (48 MHz)  
Reserved  
Reserved  
Reserved  
Notes: 1. This is the frequency with a 48-MHz clock source.  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
193  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
Controlling the Shuttering Effect  
7.13 Controlling the Shuttering Effect  
The MN102H75K/85K OSD achieves a shuttering effect using four pro-  
grammable shutters—two vertical and two horizontal. With this feature, you can  
shutter any portion of the OSD display, or you can combine shuttering with a  
wipe-out effect to create a smooth appearing and disappearing effect.  
To prevent flickering and shadows on the display, only write to the registers  
during the VSYNC cycle.  
7.13.1 Controlling the Shuttered Area  
The register settings for the two vertical shutters, VSHT0 and VSHT1, and the  
two horizontal shutters, HSHT0 and HSHT1, control which area of the screen is  
shuttered. Table 7-12 shows the register settings required for this function, and  
figure 7-31 shows four setup examples.  
Table 7-12 Bit Settings for Controlling the Shuttered Area  
Function  
VSHT0 Bit VSHT1 Bit HSHT0 Bit HSHT1 Bit  
Description  
Shutter enable/disable  
VSON0  
VSON1  
HSON0  
HSON1  
0:Disable shutter (Acts as though there are no  
shutter lines.)  
1:Enable shutter  
Shutter position  
VST00–  
VST09  
VST10–  
VST19  
HST00–  
HST09  
HST10–  
HST19  
For vertical shutters, this is the number of H scan  
lines from the top of the screen. For horizontal  
shutters, it is the number of pixels from the left of  
the screen.  
Shuttering direction  
Shuttering mode control  
VSP0  
VSP1  
HSP0  
HSP1  
0:Shutter below (vertical shutters) or to the right  
(horizontal shutters)  
1:Shutter above (vertical shutters) or to the left  
(horizontal shutters)  
SHTRAD  
(shared bit)  
0:AND the shuttered areas of all the shutters  
1:OR the shuttered areas of all the shutters  
Determining the vertical shutter positions (VST0 and VST1)  
The top edge of the television screen is x’000’. Each integer higher brings the  
shutter position down one H scan line.  
Determining the horizontal shutter positions (HST0 and HST1)  
The left edge of the television screen is x’000’. Each integer higher brings the  
shutter position right one pixel. (One pixel, or one dot, is the smallest display unit  
in the OSD.)  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
194  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
Controlling the Shuttering Effect  
HSHT0  
HSHT1  
VSON0 = VSON1 = 1: V shutters 0 and 1 on  
HSON0 = HSON1 = 1: H shutters 0 and 1 on  
VSP0 = 0: V shutter 0 shutters below  
VSP1 = 1: V shutter 1 shutters above  
HSP0 = 0: H shutter 0 shutters to the right  
HSP1 = 1: H shutter 1 shutters to the left  
SHTRAD = 0: All shutters ANDed  
VSHT0  
VSHT1  
Television screen  
Shuttered region  
HSHT0  
HSHT1  
VSON0 = VSON1 = 1: V shutters 0 and 1 on  
HSON0 = HSON1 = 1: H shutters 0 and 1 on  
VSP0 = 0: V shutter 0 shutters below  
VSP1 = 1: V shutter 1 shutters above  
HSP0 = 0: H shutter 0 shutters to the right  
HSP1 = 1: H shutter 1 shutters to the left  
SHTRAD = 1: All shutters ORed  
VSHT0  
VSHT1  
Television screen  
HSHT0  
HSHT1  
VSON0 = VSON1 = 1: V shutters 0 and 1 on  
HSON0 = HSON1 = 1: H shutters 0 and 1 on  
VSP0 = 1: V shutter 0 shutters above  
VSP1 = 0: V shutter 1 shutters below  
HSP0 = 1: H shutter 0 shutters to the left  
HSP1 = 0: H shutter 1 shutters to the right  
SHTRAD = 1: All shutters ORed  
VSHT0  
VSHT1  
Television screen  
HSHT0  
HSHT1  
VSON0 = 0: V shutter 0 off  
VSON1 = 1: V shutter 1 on  
HSON0 = HSON1 = 1: H shutters 0 and 1 on  
VSP0 = 1: V shutter 0 shutters above  
VSP1 = 0: V shutter 1 shutters below  
HSP0 = 1: H shutter 0 shutters to the left  
HSP1 = 0: H shutter 1 shutters to the right  
SHTRAD = 1: All shutters ORed  
VSHT1  
Television screen  
Figure 7-31 Shuttered Area Setup Examples  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
195  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
Controlling the Shuttering Effect  
7.13.2 Controlling Shutter Movement  
Enabling the shutter movement function in the registers allows the shuttered area  
to expand or contract over time, producing a wipe-in or wipe-out effect. This  
allows the OSD display to appear or disappear without an abrupt transition. Table  
7-13 shows the register settings required for this function, and figure 7-32 shows  
four setup examples. There is no repeat operation for shutter movement, so you  
must reset the bits each time.  
Table 7-13 Bit Settings for Controlling Shutter Movement  
V Shutter 0 V Shutter 1 HShutter0 HShutter1  
Function  
Bit Name  
Bit Name  
Bit Name  
Bit Name  
Description  
Shutter movement  
enable/disable  
VSM0  
VSM1  
HSM0  
HSM1  
0: Move shutter  
1: Don’t move shutter  
Shuttering movement  
direction  
VSMP0  
VSMP1  
HSMP0  
HSMP1  
0: Move from top to bottom (vertical shutters) or  
from left to right (horizontal shutters)  
1: Move from bottom to top (vertical shutters) or  
from right to left (horizontal shutters)  
Shuttering movement  
speed control  
SHSP0, SHTSP1  
(shared bits)  
00:Move every VSYNC  
01:Move every 2 VSYNCs  
10:Move every 3 VSYNCs  
11:Move every 4 VSYNCs  
Considerations for horizontal shutter movement  
Do not set the horizontal shutter position (HST0, HST1) within the following  
ranges if you are only moving the horizontal shutter. The shutter cannot move if  
you do.  
x’000’ to x’003’ and x’3FC’ to x’3FF’  
You can set these values if you wish to prevent horizontal shutter movement.  
Note that the horizontal shutter position does not affect vertical movement.  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
196  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
Controlling the Shuttering Effect  
HSHT0  
HSHT1  
VSON0 = VSON1 = 1: V shutters 0 and 1 on  
HSON0 = HSON1 = 1: H shutters 0 and 1 on  
VSP0 = 1: V shutter 0 shutters above  
VSP1 = 0: V shutter 1 shutters below  
HSP0 = 1: H shutter 0 shutters to the left  
HSP1 = 0: H shutter 1 shutters to the right  
SHTRAD = 1: All shutters ORed  
VSHT0  
VSHT1  
Television screen  
Shuttered region  
This example shows V shutter 0 moving downward.  
It shutters both the text and the background color in the text layer.  
HSHT0  
HSHT1  
VSM0 = 1: V shutter 0 movement enabled  
VSM1 = 0: V shutter 1 movement disabled  
HSM0 = HSM1 = 1: Movement enabled for H shutters 0 and 1  
VSMP0 = 0: V shutter 0 moves downward  
SHTSP0 = SHTSP1 = 0: Shutter moves 1 HSYNC each VSYNC  
VSHT0  
VSHT1  
ABCDE  
You must set OSDREGE = x’1’, or the shutters will not  
move (PCNT2 register, bit 0).  
VSHT0  
VSHT1  
ABCDE  
ABCDE  
VSHT0  
VSHT1  
Vertical shutter 0 stops x’3FF’ HSYNC lines from the top  
of the screen.  
VSHT1  
VSHT0  
Figure 7-32 Shutter Movement Setup Examples  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
197  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
Controlling the Shuttering Effect  
7.13.3 Controlling Shuttering Effects  
Through register settings, you can independently control shuttering for text, text  
background, graphics, and color background. You can also output blanks to the  
shuttered area.  
You cannot shutter the cursor layer.  
Table 7-13 shows the register settings required for these effects. There are three  
types of shuttering—shuttering of text, text background, and graphics, shuttering  
of the color background, and shutter blanking. The sections below describe how  
to control each of these.  
Table 7-14 Bit Settings for Controlling Shuttering Effects  
Function  
Bit Name  
Description  
Text shuttering  
CCSHT  
0: Shutter text-layer characters  
1: Don’t shutter text-layer characters  
Text background  
shuttering  
BCSHT  
GSHT  
0: Shutter text-layer background  
1: Don’t shutter text-layer background  
Graphics shuttering  
0: Shutter graphics layer  
1: Don’t shutter graphics layer  
Color background  
shuttering  
COLBSHT 0: Shutter color background  
1: Don’t shutter color background  
Shutter blanking  
SHTBLK  
0: Don’t output blanks to the shuttered area  
1: Output blanks to the shuttered area  
To shutter text-layer characters, text-layer background, and graphics layer:  
Text  
Set the text shutter control bit, CCSHT, of the shutter control register, SHTC  
(x’007F28’) to 1.  
Do not allow the horizontal shut-  
tering boundaries to overlap any  
italicized portion of a closed-  
caption display. This distorts the  
italicized characters.  
Text background  
Set the text background shutter control bit, BCSHT, of SHTC to 1.  
Graphics  
Set the text background shutter control bit, GSHT, of SHTC to 1.  
Figure 7-33 shows three setup examples of text-layer shuttering.  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
198  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
Controlling the Shuttering Effect  
HSHT0  
HSHT1  
CCSHT = 0: Shuttering of text foreground disabled  
BCSHT = 0: Shuttering of text background disabled  
VSHT0  
VSHT1  
ABCDE  
Television screen  
Shuttered region  
HSHT0  
HSHT1  
CCSHT = 1: Shuttering of text foreground enabled  
BCSHT = 0: Shuttering of text background disabled  
VSHT0  
VSHT1  
CDE  
Television screen  
HSHT0  
HSHT1  
CCSHT = 0: Shuttering of text foreground disabled  
BCSHT = 1: Shuttering of text background enabled  
VSHT0  
VSHT1  
ABCDE  
The text background disappears, leaving only  
the characters visible.  
Television screen  
Figure 7-33 Text-Layer Shuttering Setup Examples  
To shutter the color background:  
Set the color background shutter control bit, COLBSHT, of the shutter control  
register, SHTC (x’007F28’) to 1.  
This function exists only when the program enables a color background. It allows  
you to limit the area covered by the color background.  
To blank out the shuttered area:  
Set the shutter blanking control bit, SHTBLK, of SHTC to 1.  
Shutter blanking outputs black to the entire shuttered area. To output blanking to  
a display that uses a color background, enable the color background shutter  
(COLBSHT = 1) so that the color background will also be blanked in the  
shuttered area. Figure 7-34 shows two setup examples.  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
199  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
Controlling the Shuttering Effect  
HSHT0  
HSHT1  
CCSHT = 0: Shuttering of text disabled  
BCSHT = 0: Shuttering of text background disabled  
SHTBLK = 1: Shuttered area is blank  
VSHT0  
VSHT1  
ABCDE  
Television screen  
Shuttered area  
Shuttered area is blank (black).  
Color background  
CCSHT = 0: Shuttering of text disabled  
HSHT0  
HSHT1  
BCSHT = 0: Shuttering of text background disabled  
SHTBLK = 1: Shuttered area is blank  
VSHT0  
COLBSHT = 1: Color background is shuttered  
ABCDE  
VSHT1  
Television screen  
Figure 7-34 Shutter Blanking Setup Examples  
7.13.4 Controlling Line Shuttering  
It is possible to cancel shuttering of individual lines on the text and graphics  
layers so that they will be displayed on both shuttered and non-shuttered regions.  
To disable shuttering on the next line:  
Set the GSHT bit (bit 10 of GHP in the RAM data) and/or the CSHT bit (bit 10 of  
CHP in the RAM data) to 1.  
To disable shuttering on the first line:  
Set the GISHT bit of the GIHP register (x’007F16’) and/or the CISHT bit of the  
CIHP register (x’007F14’) to 1.  
Figure 7-35 shows a setup example for the text layer.  
Shuttering  
effect  
Line 1: CISHT = 1  
Line 2: CSHT = 0  
Line 3: CSHT = 0  
ABCDEFG  
EFG  
Line 4: CSHT = 1  
ABCDEFG  
Television screen  
Figure 7-35 Line Shuttering Setup Example  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
200  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
Field Detection Circuit  
7.14 Field Detection Circuit  
7.14.1 Block Diagram  
HSYNC  
Database  
R
Upper 4 bits  
4
System  
clock  
Divide  
by 3  
7-bit counter  
x’007F0E’ EVOD (FREG[13:10])  
VSYNC  
leading  
edge detection  
T-FF  
LOADN1  
4
D-FF x 4 (N1)  
x’007F0E’ EVOD (FREG[23:20])  
4
LOADN2  
D-FF x 4 (N2)  
4
4
N2CNT  
N1CNT  
Vertical display  
controller  
EOMON  
Comparator  
EOSEL  
FRMON  
Figure 7-36 Field Detection Circuit Block Diagram  
7.14.2 Description  
The 7-bit field counter in this block resets every HSYNC interval to count the  
system clock. At each VSYNC interval, the 4 MSBs of the 7-bit counter are alter-  
nately loaded (made readable) to bits 7 to 4 (N2) and 3 to 0 (N1) of the EVOD  
register (x’007F0E’). The comparator compares the N1 and N2 values and  
outputs the results to the EOMON bit of EVOD. The OSD identifies the field that  
sets EOMON to 1 as the display start field. Table 7-15 shows the criteria that the  
comparator uses.  
By reading the FRMON bit of EVOD, the OSD can determine which register the  
4 MSBs will load to on the next VSYNC input.  
To ensure that the display starts at the right field, you must also set the EOSEL  
bit of EVOD so that EOMON becomes 1 at the display start field.  
VSYNC  
HSYNC  
Field counter value  
0
Load value to FREG2  
Load value to FREG1  
FRMON  
Figure 7-37 Field Detection Timing  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
201  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
Field Detection Circuit  
Table 7-15 EOMON Output Criteria  
EOMON Output  
FRMON  
N1, N2 Relationship  
EOSEL = 0  
EOSEL = 1  
0
N1 > N2  
N1 < N2  
N1 = N2  
N1 > N2  
N1 < N2  
N1 = N2  
0
1
1
0
Load to N2 next  
Complement previous Complement previous  
1
1
0
0
1
Load to N1 next  
Complement previous Complement previous  
7.14.3 Considerations for Interlaced Displays  
Switching the display start field  
The OSD is constructed so the display start position is the field (field 1) where  
the EOMON bit is 1. However, interlaced displays may require that the start  
position be a field (field 2) where the EOMON bit is 0. In this case, merely com-  
plementing the EOSEL bit will not result in a correct display. You must set the  
following two bits to have the display start at field 2.  
CANH (x’007F0A, bit 4): Set to 1.  
0: Normal display  
1: Slide the field 1 display position down 1 line  
EOSEL (x’007F0E’, bit 10): Complement the value EOSEL has for  
field 1 in a normal display.  
Scrolling in the closed-caption mode  
To implement text-layer scrolling in the closed-caption mode, the program must  
constantly switch the text display fields. This can cause the text lines to display  
incorrectly. To prevent this, set the following bits to fix the text lines to the even  
or odd field characters while scrolling.  
BFLD (x’007F0A, bit 2): Set to 1 to enable scrolling.  
0: Normal display  
1: Display the same characters in fields 1 and 2  
EONL (x’007F0A, bit 3): Set to 0 or 1.  
0: Fix to characters in field 1  
1: Fix to characters in field 2  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
202  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
OSD Registers  
7.15 OSD Registers  
All registers in OSD block cannot be written by byte (by word only). Read by  
byte is possible.  
CROMEND: Text ROM End Address Register  
x’007F00’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
A17  
A16  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
A8  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W  
A[17:8] holds the programmable portion of the text ROM end address. The  
low-order 8 bits of the address are always x’FF’ and the high-order 6 bits  
are always b’000010’. The available address range is x’0800FF’ to  
x’0BFFFF’, with a programmable range from x’000’ to x’3FF’.  
A17  
A8  
0000 10XX XXXX XXXX 1111 1111  
Fixed  
Programmable  
Fixed  
0800FF 0000 1000 0000 0000 1111 1111  
0BFFFF 0000 1011 1111 1111 1111 1111  
GROMEND: Graphics ROM End Address Register  
x’007F02’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
A17  
A16  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
A8  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W  
A[17:8] holds the programmable portion of the graphics ROM end  
address. The low-order 8 bits of the address are always x’FF’ and the high-  
order 6 bits are always b’000010’. The available address range is  
x’0800FF’ to x’0BFFFF’, with a programmable range from x’000’ to  
x’3FF’.  
RAMEND: Text and Graphics RAM End Address Register  
x’007F04’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
GRAM GRAM GRAM GRAM GRAM GRAM GRAM GRAM CRAM CRAM CRAM CRAM CRAM CRAM CRAM CRAM  
END END END END END END END END END END END END END END END END  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R/W: R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W  
GRAMENDA[11:4] holds the programmable portion of the graphics RAM  
end address and CRAMENDA[11:4] holds the programmable portion of  
the text RAM end address. The low-order 4 bits of the address are always  
x’F’ and the high-order 4 bits are always x’9’. The available address range  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
203  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
OSD Registers  
is x’900F’ to x’9FFF’, with a programmable range from x’00’ to x’FF’.  
A11  
A4  
1001 XXXX XXXX 1111  
Fixed Programmable Fixed  
x'900F' 1001 0000 0000 1111  
x'9FFF' 1001 1111 1111 1111  
STC0: Cursor Tile Code Register 0  
x’007F10’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
SPRT0 STC08 STC07 STC06 STC05 STC04 STC03 STC02 STC01 STC00  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W  
SPRT0: Cursor 0 color palette select  
0: Graphics color palette 1  
1: Graphics color palette 2  
STC0[8:0]: Cursor 0 Tile Code  
Use the same ROM data as that used for the graphics.  
STC1: Cursor Tile Code Register 1  
x’007F2A’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
SPRT1 STC18 STC17 STC16 STC15 STC14 STC13 STC12 STC11 STC10  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W  
SPRT1: Cursor 1 color palette select  
0: Graphics color palette 1  
1: Graphics color palette 2  
STC1[8:0]: Cursor 1 Tile Code  
Use the same ROM data as that used for the graphics.  
STC2: Cursor Tile Code Register 2  
x’007F2C’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
SPRT2 STC28 STC27 STC26 STC25 STC24 STC23 STC22 STC20 STC20  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W  
SPRT2: Cursor 2 color palette select  
0: Graphics color palette 1  
1: Graphics color palette 2  
STC2[8:0]: Cursor 2 Tile Code  
Use the same ROM data as that used for the graphics.  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
204  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
OSD Registers  
STC3: Cursor Tile Code Register 3  
x’007E2E’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
SPRT3 STC38 STC37 STC36 STC35 STC34 STC33 STC32 STC30 STC30  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W  
SPRT3: Cursor 3 color palette select  
0: Graphics color palette 1  
1: Graphics color palette 2  
STC3[8:0]: Cursor 3 Tile Code  
Use the same ROM data as that used for the graphics.  
SHP: Cursor Horizontal Position Register  
x’007F12’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
SHSZ1 SHSZ0  
SHP9 SHP8 SHP7 SHP6 SHP5 SHP4 SHP3 SHP2 SHP1 SHP0  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R/W R/W  
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W  
SHSZ[1:0]: Cursor horizontal size  
00: 1 dot = 1 VCLK period  
01: 1 dot = 2 VCLK periods  
10: 1 dot = 3 VCLK periods  
11: 1 dot = 4 VCLK periods  
SHP[9:0]: Cursor horizontal position  
SVP: Cursor Vertical Position Register  
x’007F14’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
SVSZ1 SVSZ0  
SVP9 SVP8 SVP7 SVP6 SVP5 SVP4 SVP3 SVP2 SVP1 SVP0  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R/W R/W  
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W  
SVSZ[1:0]: Cursor vertical size  
Table 7-16 Cursor Vertical Size Settings  
1 Dot Size  
SVSZ[1:0]  
Setting  
Interlaced Displays  
1 H scan line  
Progressive Displays  
Reserved  
00  
01  
10  
11  
2 H scan lines  
1 H scan line  
4 H scan lines  
2 H scan lines  
3 H scan lines  
6 H scan lines  
SVP[9:0]: Cursor vertical position  
GIHP: Graphics Initial Horizontal Position Register  
x’007F16’  
Bit: 15  
14  
13  
12  
GI  
11  
GI  
10  
GI  
9
8
7
6
5
4
3
2
1
0
GIHP9 GIHP8 GIHP7 GIHP6 GIHP5 GIHP4 GIHP3 GIHP2 GIHP1 GIHP0  
HSZ1 HSZ0 SHT  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W  
GIHSZ[1:0]: Graphics initial horizontal size  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
205  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
OSD Registers  
00: 1 dot = 1 VCLK period  
01: 1 dot = 2 VCLK periods  
10: 1 dot = 3 VCLK periods  
11: 1 dot = 4 VCLK periods  
GISHT: Graphics initial shutter control  
0: Shutter control on  
1: Shutter control off  
GIHP[9:0]: Graphics initial horizontal position  
GIVP: Graphics Initial Vertical Position Register  
x’007F18’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
GI  
GI  
GIVP9 GIVP8 GIVP7 GIVP6 GIVP5 GIVP4 GIVP3 GIVP2 GIVP1 GIVP0  
VSZ1 VSZ0  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R/W R/W  
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W  
GIVSZ[1:0]: Graphics initial vertical size  
Table 7-17 Graphics Vertical Size Settings  
1 Dot Size  
GIVSZ[1:0]  
Setting  
Interlaced Displays  
Progressive Displays  
Reserved  
00  
01  
10  
11  
1 H scan line  
2 H scan lines  
4 H scan lines  
6 H scan lines  
1 H scan line  
2 H scan lines  
3 H scan lines  
GIVP[9:0]: Graphics initial vertical position  
CIHP: Text Initial Horizontal Position Register  
x’007F1A’  
Bit: 15  
14  
13  
12  
CI  
11  
CI  
10  
CI  
9
8
7
6
5
4
3
2
1
0
CIHP9 CIHP8 CIHP7 CIHP6 CIHP5 CIHP4 CIHP3 CIHP2 CIHP1 CIHP0  
HSZ1 HSZ0 SHT  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W  
CIHSZ[1:0]: Text initial horizontal size  
00: 1 dot = 1 VCLK period  
01: 1 dot = 2 VCLK periods  
10: 1 dot = 3 VCLK periods  
11: 1 dot = 4 VCLK periods  
CISHT: Graphics initial shutter control  
0: Shutter control on  
1: Shutter control off  
CIHP[9:0]: Graphics initial horizontal position  
CIVP: Text Initial Vertical Position Register  
x’007F1C’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
CI  
CI  
CIVP9 CIVP8 CIVP7 CIVP6 CIVP5 CIVP4 CIVP3 CIVP2 CIVP1 CIVP0  
VSZ1 VSZ0  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R/W R/W  
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
206  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
OSD Registers  
CIVSZ[1:0]: Text initial vertical size  
Table 7-18 Text Vertical Size Settings  
1 Dot Size  
CIVSZ[1:0]  
Setting  
Interlaced Displays  
1 H scan line  
Progressive Displays  
Reserved  
00  
01  
10  
11  
2 H scan lines  
1 H scan line  
4 H scan lines  
2 H scan lines  
3 H scan lines  
6 H scan lines  
CIVP[9:0]: Text initial vertical position  
EVOD: Display Start Field Control Register  
x’007F0E’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
EO  
FR  
EO FREG FREG FREG FREG FREG FREG FREG FREG  
SEL MON MON  
23  
22  
21  
20  
13  
12  
11  
10  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R/W  
R
R
R
R
R
R
R
R
R
R
EOSEL: Even/odd field select  
0: Select the smaller counter value as the display start field  
1: Select the larger counter value as the display start field  
FRMON: Field register monitor  
Monitors which field register (FREG) loaded the counter value on the  
leading edge of VSYNC.  
0: Loaded to FREG[23:20]  
1: Loaded to FREG[13:10]  
EOMON: Even/odd field monitor  
Set between display fields.  
0: No display start field detected  
1: Display start field detected  
FREG[23:20]: Field register  
4-bit register 2 storing field counter value.  
FREG[13:10]: Field register  
4-bit register 1 storing field counter value.  
HCOUNT: HSYNC count  
x’007F0C’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
HCNT HCNT HCNT HCNT HCNT HCNT HCNT HCNT HCNT HCNT  
9
8
7
6
5
4
3
2
1
0
Reset:  
R/W:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
This register holds the HSYNC count, which indicates the vertical display  
position. It is cleared to 0 on the leading edge of VSYNC.  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
207  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
OSD Registers  
OSD1: OSD Register 1  
x’007F06’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
OSC OSC  
SEL1 SEL0  
YS  
POL  
YS  
PLT  
OSD  
XIO HPOL VPOL  
YCNT RGBC  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W  
R
R/W R/W  
0: Off  
1: On  
OSCSEL[1:0]: Oscillator select  
00: OSC clock + PLL + internal synchronization  
01: OSDX clock (with LC blocking oscillator)  
A write to the OSD bit of OSD1  
takes effect on the next leading  
edge of VSYNC. If you are  
turning the OSD on, the OSD  
starts operating on the next  
VSYNC after the program writes  
a 1 to the OSD bit. If you are  
turning the OSD off, the OSD  
stops operating on the next  
VSYNC after the program writes  
a 0 to the OSD bit.  
10: OSDX clock (external source) + internal synchronization  
11: Reserved  
XIO: OSDX frequency select  
Frequency range: 12 to 48 MHz  
0: Less than 20 MHz  
1: Greater than 20 MHz  
HPOL: HSYNC input polarity select  
0: Active low  
1: Active high  
VPOL: VSYNC input polarity select  
0: Active high  
To turn off the OSD block to save  
power:  
1: Active low  
1. Write a 0 to OSD (OSD1, bit 10).  
2. Wait for the next VSYNC input.  
3. Write a 0 to OSDPOFF (PCNT0,  
bit 7), turning the clock off.  
YSPOL: YS output polarity select  
0: Active high  
1: Active low  
If you turn the clock off before the  
VSYNC input, power usage may not  
drop or the microcontroller may halt.  
YSPLT: YS color palette select  
0: Output YS to entire display area (except transparent and translucent  
areas)  
1: Output the MSB (bit 15) of all the color palettes from YS  
YCNT: YM DAC/digital output select  
0: DAC output  
In using LC blocking oscillation, the  
power comsumption becomes large.  
To reduce it, select another oscillation.  
1: Digital output  
Digital output is the LSB of YM (bit 12 of the color palette).  
RGBC: RGB DAC/digital output select  
0: DAC output  
1: Digital output  
Digital output is the LSB of each color:  
R: bit 0 of the color palette  
In case of of useing OSDX clock (both  
LC blocking oscilation and external  
clock), to prevent the current flow set  
OSDXI, OSDXO terminal to port  
function (P45, P46) and output H level  
before invoking STOP mode.  
G: bit 4 of the color palette  
B: bit 8 of the color palette  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
208  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
OSD Registers  
OSD2: OSD Register 2  
x’007F08’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
SPEX  
GCOL GCOL  
VCLK VCLK VCLK  
GTHT GEXTE PRYM TRPTF TRPT  
COLB  
CGPR SOUT GOUT COUT  
T
0
1
0
2
1
0
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R/W: R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W  
SPEXT: Cursor extended mode select  
0: Standard mode (16 x 16 pixels)  
1: Extended mode (32 x 32 pixels)  
GTHT: Graphic tile height select  
0: 16 pixels high  
1: 18 pixels high  
GEXTE: Graphics maximum tiles per line select  
0: Maximum 18 tiles  
1: Maximum 28 tiles  
PRYM: Translucent color control (YM, YS)  
0: Normal YS output  
1: Don’t output YS during YM output (when the YM color code is not 0)  
TRPTF: Translucency control (all layers)  
Specifies translucency for color 15 in all palettes.  
0: Make color 15 on all palettes translucent  
1: Output color 15 as specified  
Setting the YSPLT bit of OSD1  
to 1 disables the PRYM bit. With  
this setting, you must also set  
the TRPT and TRPTF bits to 1.  
You can specify transparency for  
individual color palettes if  
needed.  
TRPT: Transparency control (all layers)  
Specifies transparency for color 0 in all palettes.  
0: Make color 0 on all palettes transparent  
1: Output color 0 as specified  
GCOL[1:0]: Graphics color mode  
00: 16-color mode  
01: 8-color mode  
10: 4-color mode  
11: 2-color mode  
COLB: Color background control  
0: Don’t output color background  
1: Output color background  
VCLK[2:0]: VCLK clock select  
Divide-by ratio select. The values in parentheses ( ) are applicable when the  
oscillator in the OSD1 register is set to the OSC clock (OSCSEL[1:0] = 00).  
000: Divide by 4 (12 MHz)  
001: Divide by 3 (16 MHz)  
010: Divide by 2 (24 MHz)  
011: 2/3 division (32 MHz)  
100: Don’t divide (48 MHz)  
101: Reserved  
110: Reserved  
You cannot set VCLK[2:0] to 100  
(don’t divide) when the OSC  
clock is selected. Only select it  
when the clock source is 32  
MHz or less.  
111: Reserved  
CGPR: Graphics/text layer priority  
0: Graphics layer takes priority  
1: Text layer takes priority  
SOUT/GOUT/COUT: Layer output on/off  
SOUT: cursor layer; GOUT: graphics layer; COUT: text layer  
0: Don’t output layer  
1: Output layer  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
209  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
OSD Registers  
OSD3: OSD Register 3  
x’007F0A’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
BLIN  
K
CANH EONL BFLD UNDF CAPM  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R/W R/W R/W R/W R/W R/W  
BLINK: Character blinking control  
Controls blinking for text-layer characters with BLINK set in the COL code.  
0: Don’t blink  
1: Blink  
CANH: Vertical position control for closed captions  
Active when interlacing is selected.  
0: Normal position  
1: Add 1 to V position of even fields  
EONL and BFLD: Closed-caption scrolling control  
Use when required for smoother scrolling.  
00: Normal display  
01: Fix to characters in odd fields during scrolling  
10: Fix to characters in even fields during scrolling  
11: Normal display  
UNDF: Underline blinking control  
0: Don’t blink  
1: Blink  
CAPM: Closed-caption mode setting  
0: Normal display mode  
1: Closed-caption mode  
VSHT0: Vertical Shutter 0 Register  
x’007F20’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
VSON  
0
VSMP  
0
VST0 VST0 VST0 VST0 VST0 VST0 VST0 VST0 VST0 VST0  
VSP0  
VSM0  
9
8
7
6
5
4
3
2
1
0
Reset:  
R/W:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W  
VSON0: Vertical shutter 0 on/off  
0: Off  
1: On  
VSP0: Vertical shutter 0 shuttering direction  
0: Shutter below  
1: Shutter above  
VSMP0: Vertical shutter 0 movement direction  
0: Top to bottom  
1: Bottom to top  
VSM0: Vertical shutter 0 movement control  
0: Don’t move  
1: Move  
VST0[9:0]: Vertical shutter 0 position  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
210  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
OSD Registers  
VSHT1: Vertical Shutter 1 Register  
x’007F22’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
VSON  
1
VSMP  
1
VST1 VST1 VST1 VST1 VST1 VST1 VST1 VST1 VST1 VST1  
VSP1  
VSM1  
9
8
7
6
5
4
3
2
1
0
Reset:  
R/W:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W  
VSON1: Vertical shutter 1 on/off  
0: Off  
1: On  
VSP1: Vertical shutter 1 shuttering direction  
0: Shutter below  
1: Shutter above  
VSMP1: Vertical shutter 1 movement direction  
0: Top to bottom  
1: Bottom to top  
VSM1: Vertical shutter 1 movement control  
0: Don’t move  
1: Move  
VST1[9:0]: Vertical shutter 1 position  
HSHT0: Horizontal Shutter 0 Register  
x’007F24’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
HSON  
0
HSMP  
0
HST0 HST0 HST0 HST0 HST0 HST0 HST0 HST0 HST0 HST0  
HSP0  
HSM0  
9
8
7
6
5
4
3
2
1
0
Reset:  
R/W:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W  
HSON0: Horizontal shutter 0 on/off  
0: Off  
1: On  
HSP0: Horizontal shutter 0 shuttering direction  
0: Shutter to the right  
1: Shutter to the left  
HSMP0: Horizontal shutter 0 movement direction  
0: Left to right  
1: Right to left  
HSM0: Horizontal shutter 0 movement control  
0: Don’t move  
1: Move  
HST0[9:0]: Horizontal shutter 0 position  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
211  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
OSD Registers  
HSHT1: Horizontal Shutter 1 Register  
x’007F26’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
HSON  
1
HSMP  
1
HST1 HST1 HST1 HST1 HST1 HST1 HST1 HST1 HST1 HST1  
HSP1  
HSM1  
9
8
7
6
5
4
3
2
1
0
Reset:  
R/W:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W  
HSON: Horizontal shutter 1 on/off  
0: Off  
1: On  
HSP1: Horizontal shutter 1 shuttering direction  
0: Shutter to the right  
1: Shutter to the left  
HSMP1: Horizontal shutter 1 movement direction  
0: Left to right  
1: Right to left  
HSM1: Horizontal shutter 1 movement control  
0: Don’t move  
1: Move  
HST1[9:0]: Horizontal shutter 1 position  
SHTC: Shutter Control Register  
x’007F28’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
SHT COLB SHT SHT SHT  
BC  
SHT SHT  
CC  
GSHT  
BLK SHT  
SP1  
SP0  
RAD  
The shuttering function does not  
work in the cursor layer.  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W  
SHTBLK: Shutter blanking on/off  
0: Off  
1: On  
COLBSHT: Color background shutter control  
0: Disable  
1: Enable  
SHTSP[1:0]: Shutter speed control  
00: Move every VSYNC  
10: Move every 3 VSYNCs  
01: Move every 2 VSYNCs  
11: Move every 4 VSYNCs  
SHTRAD: Shutter mode control  
0: AND mode  
1: OR mode  
GSHT: Graphics shutter control  
0: Disable  
1: Enable  
BCSHT: Text background shutter control  
0: Disable  
1: Enable  
CCSHT: Text shutter control  
0: Disable  
1: Enable  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
212  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
OSD Registers  
CPT0–CPTF: Text Palette Colors 015 Registers  
x’007F80’–x’007F9E’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
CPTn CPTn CPTn CPTn CPTn CPTn CPTn CPTn CPTn CPTn CPTn CPTn CPTn CPTn CPTn CPTn  
YM3 YM2 YM1 YM0  
B3  
B2  
B1  
B0  
G3  
G2  
G1  
G0  
R3  
R2  
R1  
R0  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
These registers contain the colors used in the text layer. When digital out-  
put is selected, CPTnYM0 is output as YM, CPTnB0 as B, CPTnG0 as G,  
and CPTnR0 as R. When the YS color palette is selected, CPTnYM3 is  
output as YS.  
CPTnYM[3:0]: YM color code  
CPTnB[3:0]: Blue color code  
CPTnG[3:0]: Green color code  
CPTnR[3:0]: Red color code  
COLB: Color Background Register  
x’007FA0’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
COLB COLB COLB COLB COLB COLB COLB COLB COLB COLB COLB COLB COLB COLB COLB COLB  
YM3 YM2 YM1 YM0  
B3  
B2  
B1  
B0  
G3  
G2  
G1  
G0  
R3  
R2  
R1  
R0  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
This register contains the color used for the color background. When digi-  
tal output is selected, COLBYM0 is output as YM, COLBB0 as B,  
COLBG0 as G, and COLBR0 as R. When the YS color palette is selected,  
COLBYM3 is output as YS.  
COLBYM[3:0]: YM color code  
COLBB[3:0]: Blue color code  
COLBG[3:0]: Green color code  
COLBR[3:0]: Red color code  
FRAME: Outlining and Character Shadowing Color Register  
x’007FA2’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
FRAM FRAM FRAM FRAM FRAM FRAM FRAM FRAM FRAM FRAM FRAM FRAM FRAM FRAM FRAM FRAM  
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
YM3 YM2 YM1 YM0  
B3  
B2  
B1  
B0  
G3  
G2  
G1  
G0  
R3  
R2  
R1  
R0  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
This register contains the color used for text outlining and shadowing.  
When digital output is selected, FRAMEYM0 is output as YM,  
FRAMEB0 as B, FRAMEG0 as G, and FRAMER0 as R. When the YS  
color palette is selected, FRAMEYM3 is output as YS.  
FRAMEYM[3:0]: YM color code  
FRAMEB[3:0]: Blue color code  
FRAMEG[3:0]: Green color code  
FRAMER[3:0]: Red color code  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
213  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
OSD Registers  
BBSHD: Black Box Shadowing Register  
x’007FA4’  
Bit: 15  
BB  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
BB  
BB  
BB  
BB  
BB  
BB  
BB  
BB  
BB  
BB  
BB  
BB  
BB  
BB  
BB  
SHD SHD SHD SHD SHD SHD SHD SHD SHD SHD SHD SHD SHD SHD SHD SHD  
YM3 YM2 YM1 YM0  
B3  
B2  
B1  
B0  
G3  
G2  
G1  
G0  
R3  
R2  
R1  
R0  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
This register contains the color used as black in box shadowing. When dig-  
ital output is selected, BBSHDYM0 is output as YM, BBSHDB0 as B,  
BBSHDG0 as G, and BBSHDR0 as R. When the YS color palette is  
selected, BBSHDYM3 is output as YS.  
BBSHDYM[3:0]: YM color code  
BBSHDB[3:0]: Blue color code  
BBSHDG[3:0]: Green color code  
BBSHDR[3:0]: Red color code  
WBSHD: White Box Shadowing Register  
x’007FA6’  
Bit: 15  
WB  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
WB  
WB  
WB  
WB  
WB  
WB  
WB  
WB  
WB  
WB  
WB  
WB  
WB  
WB  
WB  
SHD SHD SHD SHD SHD SHD SHD SHD SHD SHD SHD SHD SHD SHD SHD SHD  
YM3 YM2 YM1 YM0  
B3  
B2  
B1  
B0  
G3  
G2  
G1  
G0  
R3  
R2  
R1  
R0  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
This register contains the color used as white in box shadowing. When dig-  
ital output is selected, WBSHDYM0 is output as YM, WBSHDB0 as B,  
WBSHDG0 as G, and WBSHDR0 as R. When the YS color palette is  
selected, WBSHDYM3 is output as YS.  
WBSHDYM[3:0]: YM color code  
WBSHDB[3:0]: Blue color code  
WBSHDG[3:0]: Green color code  
WBSHDR[3:0]: Red color code  
GPT10–GPT1F: Graphics Palette 1 Colors 0–15 Registers x’007FC0’–x’007FDE’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
GPT1n GPT1n GPT1n GPT1n GPT1n GPT1n GPT1n GPT1n GPT1n GPT1n GPT1n GPT1n GPT1n GPT1n GPT1n GPT1n  
YM3 YM2 YM1 YM0  
B3  
B2  
B1  
B0  
G3  
G2  
G1  
G0  
R3  
R2  
R1  
R0  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
These registers contain one of two sets of colors used in the graphics layer.  
When digital output is selected, GPT1nYM0 is output as YM, GPT1nB0 as  
B, GPT1nG0 as G, and GPT1nR0 as R. When the YS color palette is  
selected, GPT1nYM3 is output as YS.  
GPT1nYM[3:0]: YM color code  
GPT1nB[3:0]: Blue color code  
GPT1nG[3:0]: Green color code  
GPT1nR[3:0]: Red color code  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
214  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
On-Screen Display  
OSD Registers  
GPT20–GPT2F: Graphics Palette 2 Colors 0–15 Registers x’007FE0’–x’007FFE’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
GPT2n GPT2n GPT2n GPT2n GPT2n GPT2n GPT2n GPT2n GPT2n GPT2n GPT2n GPT2n GPT2n GPT2n GPT2n GPT2n  
YM3 YM2 YM1 YM0  
B3  
B2  
B1  
B0  
G3  
G2  
G1  
G0  
R3  
R2  
R1  
R0  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
These registers contain one of two sets of colors used in the graphics layer.  
When digital output is selected, GPT2nYM0 is output as YM, GPT2nB0 as  
B, GPT2nG0 as G, and GPT2nR0 as R. When the YS color palette is  
selected, GPT2nYM3 is output as YS.  
GPT2nYM[3:0]: YM color code  
GPT2nB[3:0]: Blue color code  
GPT2nG[3:0]: Green color code  
GPT2nR[3:0]: Red color code  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
215  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
IR Remote Signal Receiver  
Description  
8
IR Remote Signal Receiver  
8.1 Description  
The MN102H75K/85K contains a remote signal receiver that processes signals in  
two formats: Household Electrical Appliance Manufacturers Association  
(HEAMA) format and 5-/6-bit format. This chapter provides an overview of each  
block in the circuit and describes the operation of the receiver.  
fSYSCLK = 12 MHz in all of the  
examples and descriptions in  
this section. In addition,  
fPWM1 = fSYSCLK/23,  
The remote signal is input through the RMIN pin. Each time the edge detection  
circuit detects the active edge of the signal, the 6-bit counter resets and the  
sampling clock, TS, starts counting. TS is formed by dividing PWM3 by the value  
in the frequency division control register, RMTC. The clock status register,  
RMCS, which can be read at any time, holds the current value of the 6-bit  
counter.  
fPWM3 = fSYSCLK/25,  
fPWM5 = fSYSCLK/27,  
fPWM6 = fSYSCLK/28, and  
fPWM8 = fSYSCLK/210.  
The remote signal contains a leader, data, and a trailer, in that order. The micro-  
controller shifts received data into the LSB of the reception data shift register,  
RMSR. After it receives 8 bits, it loads the contents of RMSR to the reception  
data transfer register, RMTR.  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
216  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
IR Remote Signal Receiver  
Block Diagram  
8.2 Block Diagram  
R M C S : x ’ 0 0 7 E A 6 ’  
0 1  
3 2  
4
7 6 5  
MUX  
M U X  
M U X  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
217  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
IR Remote Signal Receiver  
IR Remote Signal Receiver Operation  
8.3 IR Remote Signal Receiver Operation  
8.3.1 Operating Modes  
The IR remote signal receiver has three operating modes: HEAMA, 5-/6-bit, and  
HEAMA–5-/6-bit automatic detect. Set the mode in the MODAUTO and  
MODSEL bits of the interrupt control register, RMIR. The FMTMON bit of the  
interrupt status register, RMIS, monitors the operating mode.  
In automatic detect mode, the microcontroller checks the interval between  
remote signal edges. If the interval is (n - 4TS) to (n + 3TS), where n is the leader  
value set in the LD[3:0] field of the RMLD register, it processes the data in  
HEAMA format. If the interval is 28 to 35 TS cycles, it processes the data in  
5-/6-bit format.  
8.3.2 Noise Filter  
The IR remote signal receiver contains a noise filter to eliminate noise from the  
remote signal. To enable the noise filter, set the FILTRE bit of the interrupt  
control register, RMIR, to 1. The noise filter samples the remote input signal  
every PWM6 cycle (21.3 µs) or PWM8 cycle (85.5 µs), then outputs the value  
that it sampled at least three times during the last four sampling cycles. This  
eliminates any noise occurring during one or two sampling cycles. Select the  
sampling clock (PWM6 or PWM8) with the SP bit of the RMLD register.  
(PWM6 is selected at reset.)  
Sampling  
Remote signal  
Noise filter  
output  
Noise eliminated  
Figure 8-2 IR Remote Signal Noise Filtering  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
218  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
IR Remote Signal Receiver  
IR Remote Signal Receiver Operation  
8.3.3 8-Bit Data Reception  
Resetting the 8-bit data reception counter allows the microcontroller to receive 8-  
bit data, either with or without a leader. The software can reset the counter using the  
BCRSTE and BCEDGS bits of the interrupt status register, RMIS. The counter can  
also be reset by an external reset or a hardware reset at leader detection.  
Set BCRSTE to enable resets to the 8-bit data reception counter. When the  
BCEDGS bit is 0, the counter resets at the first remote signal edge after each trailer  
detection. This mode is for data containing no leader. (See figure 8-3.)  
8-bit data  
Trailer  
8-bit data  
Remote  
signal input  
Edge  
detection  
Trailer detection  
0
8-bit data reception detection  
8-bit data  
reception  
counter  
5
6
7
0
1
2
Counter reset  
Figure 8-3 Reception of 8-Bit Data with No Leader  
When BCEDGS is 1, the counter resets at the second remote signal edge after  
each trailer detection. By ignoring the leader, this mode allows the microcon-  
troller to receive 8-bit data that contains a leader. (See figure 8-4.)  
8-bit data  
Trailer  
8-bit data  
Ignored  
Remote  
signal input  
Edge  
detection  
8-bit data reception detection  
Trailer detection  
Leader detection  
8-bit data  
reception  
counter  
5
6
7
0
1
0
1
Counter reset  
Figure 8-4 Reception of 8-Bit Data with Leader  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
219  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
IR Remote Signal Receiver  
IR Remote Signal Receiver Operation  
8.3.4 Identifying the Data Format  
The microcontroller determines the logic levels of the data by testing the interval  
between remote signal edges. Table 8-1 shows the intervals that the microcon-  
troller interprets as 0 and 1 for both HEAMA and 5-/6-bit formats. Table 8-2  
shows the conditions for identifying long and short data.  
Table 8-1 Logic Level Conditions for Data Formats  
Logic Level Conditions  
Operating Mode  
Data = 0  
Data = 1  
HEAMA format  
5-/6-bit format  
< 6 T cycles  
6 T cycles  
S
S
< 12 T cycles  
12 T cycles  
S
S
Table 8-2 Long and Short Data Identification  
Operating Mode Long Data  
Short Data  
HEAMA format  
5-/6-bit format  
10 T cycles  
< 2 T cycles  
S
S
20 T cycles  
< 4 T cycles  
S
S
The 6-bit counter regulates data format detection. When the microcontroller detects  
a data leader, it sets the LONGDF bit of the clock status register, RMCS, to indicate  
long data. Figure 8-5 is a graphic representation of all the conditions for identifying  
the data format.  
When the microcontroller detects a data trailer, the hardware automatically  
shuts off the supply to sampling clock T , which the 6-bit counter counts.  
S
The counter resets and the clock supply restarts at the next edge detection.  
0
2
4
6
8
10 12  
16  
20  
24  
28  
32  
36  
40  
64  
T
S
Leader  
Leader (= 24 T  
)
S
(When RMLD[3:0] = x’6’)  
Data  
format  
detection  
Data = 0 (= 4 T  
)
S
Data = 1 (= 8 T  
)
S
Short  
Short/long  
detection  
Long  
Leader  
Leader (= 32 T  
)
S
Data  
format  
detection  
Data = 0 (= 8 T  
Short  
)
S
Data = 1 (= 16 T  
)
S
Short/long  
detection  
Long  
T
64  
S
40  
0
4
8
12  
16  
20  
24  
28  
32  
36  
Figure 8-5 Conditions for Detecting Data Formats  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
220  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
IR Remote Signal Receiver  
IR Remote Signal Receiver Operation  
8.3.5 Generating Interrupts  
The IR remote signal receiver has four interrupt vectors: leader detection, trailer  
detection, 8-bit data reception detection, and pin edge detection. This section  
describes the operation for each of them.  
8.3.5.1 Leader Detection  
An interrupt occurs when the circuit detects a data leader. It detects leaders by  
testing the interval between remote signal edges. Table 8-3 shows the conditions.  
Table 8-3 Leader Detection Conditions  
Format  
Edge Interval  
(1)  
HEAMA data leader  
5-/6-bit data leader  
(n - 4)T interval < (n + 4)T  
S
S
28T interval < 36T  
S
S
Note: 1. n = the leader value set in LD[3:0] of the RMLD register.  
8.3.5.2 Trailer Detection  
An interrupt occurs when the 6-bit counter overflows.  
8.3.5.3 8-Bit Data Reception Detection  
An interrupt occurs when the microcontroller loads 8-bit received data to the  
reception data transfer register, RMTR.  
8.3.5.4 Pin Edge Detection  
An interrupt occurs when the remote signal input pin, RMIN, is asserted. The  
POLSEL bit of RMIR sets the polarity of RMIN.  
RMIN input  
positive-edge-triggered  
(POLSEL=0)  
RMIN input  
negative edge-triggered  
(POLSEL=1)  
Edge detection output  
1/f  
1/f  
SYSCLK  
SYSCLK  
Note: 1/fSYSCLK = 1/12 MHz = 0.083 µs  
Figure 8-6 Pin Edge Detection  
The detection output for all four interrupt vectors is an active high pulse asserted  
at intervals of 1/fSYSCLK. Bits 3 to 0 of the RMIR register control the interrupt  
vectors individually. A 0 disables the interrupt vector and a 1 enables it.  
A remote signal interrupt sets the RMCIR flag of the RMCICL interrupt register  
(x’00FC76’).  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
221  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
IR Remote Signal Receiver  
IR Remote Signal Receiver Operation  
Use bit 7 (SP) in the RMLD reg-  
ister to toggle the noise filter  
sampling frequency between  
PWM6/PWM8 and PWM3/  
PWM5.  
The MN102H series microcontrollers have two operating modes: NORMAL and  
SLOW. (See section 3.1, “CPU Modes,” on page 72.) In SLOW mode, fSYSCLK  
= 2 MHz, which affects the frequencies of the PWM3 clock and noise filter  
sampling (PWM6/PWM8). Use the SPSLW bit (bit 6) of the RMLD register to  
change which clocks and noise filter sampling that you use.  
Table 8-4 Differences between SLOW and NORMAL Modes  
Normal Mode  
= 12 MHz)  
SLOW Mode  
(f = 2 MHz)  
SYSCLK  
SPSLW  
(RMLD,  
bit 6)  
(f  
SYSCLK  
Noise filter sampling  
Clock  
Noise filter sampling  
Clock  
0
PWM6  
PWM8  
PWM3  
PWM6  
PWM8  
PWM3  
(16 µs)  
(21.3 µs)  
(85.5 µs)  
(2.7 µs)  
(128 µs)  
(512 µs)  
1
PWM3  
PWM5  
PWM1  
PWM3  
PWM5  
(64 µs)  
PWM1  
(2.7 µs)  
(10.7 µs)  
(0.67 µs) (16 µs)  
(4.0 µs)  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
222  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
IR Remote Signal Receiver  
IR Remote Signal Receiver Control Registers  
8.4 IR Remote Signal Receiver Control Regis-  
ters  
All registers in RMC block cannot be written by byte (by word only). Read by  
byte is possible.  
Table 8-5 IR Remote Signal Receiver Registers  
Register  
RMTC  
RMIR  
Address  
x’007EA4’  
x’007EA2’  
x’007EA0’  
x’007EAC’  
x’007EA6’  
x’007EA8’  
x’007EAA’  
R/W  
Function  
R/W Remote signal frequency division control register  
R/W Remote signal interrupt control register  
R/W Remote signal interrupt status register  
R/W Remote signal leader value set register  
RMIS  
RMLD  
RMCS  
RMSR  
RMTR  
R
R
R
Remote signal clock status register  
Remote signal reception data shift register  
Remote signal reception data transfer register  
RMTC: Remote Signal Frequency Division Control Register  
x’007EA4’  
Bit:  
7
6
5
4
3
2
1
0
RMTC7 RMTC6 RMTC5 RMTC4 RMTC3 RMTC2 RMTC1 RMTC0  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
To identify the remote signal, the IR signal receiver generates a sampling  
clock, TS, by dividing the PWM3 pulse by the value set in RMTC[7:0].  
f
PWM3 is fSYSCLK divided by 25 (= 375 kHz, 2.7 µs with a 4-MHz oscilla-  
tor). The TS cycle is the contents of RMTC + 1, so load a value from 1 to  
255 for a division ratio from 2 to 256.  
The edge detection circuit samples  
the remote signal with fSYSCLK.  
Set the frequency divide-by ratio to  
meet this condition. If you do not,  
the microcontroller may interpret  
the data 1s and 0s incorrectly.  
The microcontroller reads the value in the frequency division counter as a  
ones’ complement number (each digit is complemented).  
Set the RMTC value so that TS = T/2, where T is the pulse width of the remote  
input signal. Table 8-6 shows how to define T for the different formats.  
Table 8-6 HEAMA and 5-/6-Bit Data Pulse Widths  
H
T
L
T
After the program sets the divide-  
by ratio for the frequency in  
RMTC, the read values may be  
incorrect until the circuit detects  
the next active edge of the remote  
signal.  
Data 0:  
Data 1:  
Data 0:  
Data 1:  
HEAMA format  
5-/6-bit format  
T
3T  
2T  
2T  
2T  
6T  
RMTC is an 8- or 16-bit access register.  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
223  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
IR Remote Signal Receiver  
IR Remote Signal Receiver Control Registers  
All registers in RMC block cannot be written by byte (by word only). Read by  
byte is possible.  
RMIR: Remote Signal Interrupt Control Register  
x’007EA2’  
Bit:  
7
6
5
4
3
2
1
0
MOD  
AUTO  
MOD  
SEL  
FILTR  
E
POL LEADER TRAILR DAT8  
EDME  
E
SEL  
E
E
E
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RMIR controls the operating modes and interrupt operations for the  
receiver circuit. It is a 16-bit access register.  
MODAUTO: Automatic operating mode detection on/off  
0: Automatic detect  
1: Fixed  
MODSEL: Operating mode select  
0: HEAMA format  
1: 5-/6-bit format  
FILTRE: Noise filter input multiplexer on/off  
0: Pin level  
1: Noise filter  
POLSEL: Input polarity  
0: Positive-edge-triggered  
1: Negative-edge-triggered  
LEADERE: Interrupt enable for leader detection  
0: Disable  
1: Enable  
TRAILRE: Interrupt enable for trailer detection  
0: Disable  
1: Enable  
DAT8E: Interrupt enable for 8-bit data reception detection  
0: Disable  
1: Enable  
EDMEE: Interrupt enable for RMIN pin edge detection  
0: Disable  
1: Enable  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
224  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
IR Remote Signal Receiver  
IR Remote Signal Receiver Control Registers  
RMIS: Remote Signal Interrupt Status Register  
x’007EA0’  
Bit:  
7
6
5
4
3
2
1
0
BC  
RSTE  
BC  
EDGS  
FMT DOMES M56BIT TRAILR DAT8  
EDGE  
D
MON  
D
D
D
D
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R/W  
R/W  
R
R/W  
R/W  
R/W  
R/W  
R/W  
RMIR indicates the detection and operation status of remote signal inter-  
rupts. It is a 16-bit access register.  
BCRSTE: 8-bit data reception binary counter reset enable  
0: Disable  
1: Enable  
BCEDGS: 8-bit data reception binary counter reset edge select  
0: Reset at 1st edge  
1: Reset at 2nd edge  
FMTMON: Format monitor  
0: HEAMA format  
1: 5-/6-bit format  
DOMESD: Interrupt request on HEAMA leader detection  
0: No request  
1: Request  
M56BITD: Interrupt request on 5-/6-bit leader detection  
0: No request  
1: Request  
TRAILRD: Interrupt request on trailer detection  
0: No request  
1: Request  
DAT8D: Interrupt request on 8-bit reception detection  
0: No request  
1: Request  
EDGED: Interrupt request on RMIN pin edge detection  
0: No request  
1: Request  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
225  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
IR Remote Signal Receiver  
IR Remote Signal Receiver Control Registers  
RMLD: Remote Signal Leader Value Set Register  
x’007EAC’  
Bit:  
7
6
5
4
3
2
1
0
SP  
SPSLW  
LD3  
LD2  
LD1  
LD0  
Reset:  
R/W:  
0
0
0
0
0
1
1
0
R/W  
R/W  
R
R
R/W  
R/W  
R/W  
R/W  
RMLD is a 16-bit access register.  
SP and SPSLW: Switch clock frequencies  
00: Filter sampling cycle = fPWM6, clock = PWM3  
01: Filter sampling cycle = fPWM3, clock = PWM1  
10: Filter sampling cycle = fPWM8, clock = PWM3  
11: Filter sampling cycle = fPWM5, clock = PWM1  
fPWM1 = fSYSCLK/23,  
fPWM3 = fSYSCLK/25,  
fPWM5 = fSYSCLK/27,  
fPWM6 = fSYSCLK/28, and  
fPWM8 = fSYSCLK/210.  
LD[3:0]: HEAMA data leader value  
Set the four MSBs of the 6-bit leader value for HEAMA data in LD[3:0].  
This 4-bit setting must be between 0 and 60 TS cycles. The default value is  
x’6’. The two LSBs of the leader are always 0.  
RMCS: Remote Signal Clock Status Register  
x’007EA6’  
Bit:  
7
6
5
4
3
2
1
0
Do not set the leader value too  
small. Leader detection and data  
detection may occur  
LONG SHORT  
DF  
TSCNT5 TSCNT4 TSCNT3 TSCNT2 TSCNT1 TSCNT0  
DF  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
simultaneously.  
R/W  
R/W  
R
R
R
R
R
R
RMCS indicates the result of the short/long data detection. It is a 16-bit  
access register.  
LONGDF: Long data format detection  
Set to 1 when long data is detected.  
SHORTDF: Short data format detection  
Set to 1 when short data is detected.  
TSCNT[5:0]: 6-bit counter value  
RMSR: Remote Signal Reception Data Shift Register  
x’007EA8’  
x’007EAA’  
Bit:  
7
6
5
4
3
2
1
0
RMSR7 RMSR6 RMSR5 RMSR4 RMSR3 RMSR2 RMSR1 RMSR0  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
RMTR: Remote Signal Reception Data Transfer Register  
Bit:  
7
6
5
4
3
2
1
0
RMTR7 RMTR6 RMTR5 RMTR4 RMTR3 RMTR2 RMTR1 RMTR0  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
The microcontroller shifts received data into RMSR, converting it to paral-  
lel data. After it shifts in 8 bits, it loads the data byte to RMTR. The CPU  
reads the data from RMTR. The data shifts from LSB to MSB. RMSR and  
RMTR are 8- or 16-bit access registers.  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
226  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Closed-Caption Decoder  
Description  
9
Closed-Caption Decoder  
9.1 Description  
The MN102H75K/85K contains two identical closed-caption decoder circuits,  
CCD0 and CCD1. The decoders extract encoded captions from composite video  
signals. Figure 9-1 provides a block diagram of the decoders, and section 9.3,  
“Functional Description,” on page 228, describes the circuit’s main blocks: the  
analog-to-digital converter, clamping circuit, sync separator circuit, data slicer,  
controller, and sampling circuit. Note that this section describes CCD0, but all  
descriptions apply to CCD1. Table 9-1 provides the pin names for each decoder.  
Table 9-1 Pins Used for CCD0 and CCD1  
Closed-Caption Decoder  
Pin Name  
CCD0  
CCD1  
CVBS0  
CVBS1  
VREFHS  
CLH0  
CLH0  
CLL0  
CLL0  
VREFLS  
9.2 Block Diagram  
Controller  
CRI  
frequency  
detector  
Data extraction  
controller  
Data slicer  
CVBS  
Slicing  
circuit  
Data extractor  
(sampling circuit)  
Clamp  
ADC  
S/P  
Slice level  
detector  
Max/min  
detector  
HSYNC separator  
Low-pass filter  
VSYNC separator  
RAM  
Clamping  
controller  
CPU  
Sync separator  
Figure 9-1 Closed-Caption Decoder Block Diagram  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
227  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Closed-Caption Decoder  
Functional Description  
9.3 Functional Description  
9.3.1 Analog-to-Digital Converter  
The analog-to-digital converter (ADC) converts the clamped video signal to 8-bit  
digital data using a 12-MHz sampling clock. Figure 9-2 shows an example con-  
figuration using the recommended external pin connections. In this example, both  
caption decoders are used. Figure 9-3 shows the recommended connection when  
neither decoder is used, and figure 9-4 shows that when only CCD0 is used.  
The constants shown in figures 9-2  
to 9-4 are recommended values  
only. Operation at these values is  
not guaranteed.  
ADC0ON  
(PCNT0: x’00FF90’, bit 4)  
3.3 V  
Power Down  
8.2 kΩ  
ADDATA[7: 0]  
VREFHS  
+
1 µF  
VREFH  
OUT  
3.3 V  
+
18 kΩ  
A/D  
VBI0OFF  
(PCNT0: x’00FF90’, bit 0)  
+
VREFL  
VIDEO IN 0  
240 Ω  
1 µF  
IN  
CLK  
1 µF  
1 kΩ  
560 pF  
1kΩ  
Low pass filter  
CVBS0  
3.3 V  
6.8 kΩ  
CLL  
CLH  
Clamping  
circuit  
33 kΩ  
3.3 V  
CVBS1  
8.2 kΩ  
ADC1ON  
(PCNT0: x’00FF90’, bit 5)  
3.3 V  
18 kΩ  
+
IN  
Power Down  
OUT  
VIDEO IN 1  
ADDATA[7: 0]  
+
VREFLS  
+
1 µF  
240 Ω  
VREFH  
1µF  
1 µF  
1 kΩ  
560 pF  
A/D  
fSYSCLK  
(12 MHz)  
VREFL  
Low pass filter  
CLK  
VBI1OFF  
(PCNT0: x’00FF90’, bit 1)  
Figure 9-2 Recommended ADC Configuration  
CLH  
(Used as P30)  
CLH  
33 kΩ  
VREFHS  
+
VREFHS  
1 µF  
CVBS0  
(Used as P31)  
External  
circuit  
CVBS0  
VIDEO IN  
CVBS1  
(Used as P32)  
CVBS1  
(Used as P32)  
VREFLS  
CLL  
VREFLS  
6.8 kΩ  
CLL  
(Used as P33)  
Figure 9-3 External Connection with Figure 9-4 External Connection with  
Both CCD0 and CCD1 Unused  
Only CCD1 Unused  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
228  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Closed-Caption Decoder  
Functional Description  
Table 9-2 Caption decoder register setting  
VBI control  
ADC control  
ON(PCNT0.bp4=1)  
ON(PCNT0.bp5=1)  
ON(PCNT0.bp4=1)  
OFF(PCNT0.bp5=0)  
OFF(PCNT0.bp4=0)  
OFF(PCNT0.bp5=0)  
Clamp control  
Use two cap-  
tion decoders  
caption 0  
caption 1  
caption 0  
no caption 1  
ON(PCNT0.bp0=0)  
ON(PCNT0.bp1=0)  
ON(PCNT0.bp0=0)  
OFF(PCNT0.bp1=1)  
OFF(PCNT0.bp0=1)  
OFF(PCNT0.bp1=1)  
(P3MD.bp3,2,1)=(0,1,1)  
Use one cap-  
tion decoder  
(P3MD.bp3,2,1)=(1,0,1)  
(P3MD.bp3,2,1)=(0,0,0)  
No use caption no caption 0  
decoder  
no caption 1  
9.3.2 Clamping Circuit  
This block clamps the input video signal (CVBS0, CVBS1).  
3.3 V  
1
Control circuit  
6.8 kΩ  
CLL  
3
5
Clamping  
Circuit  
CVBS0,  
1
Data slice  
circuit  
External  
circuit  
Vidio in  
A/D  
2
CLH  
4
6
33 kΩ  
Sync separator  
Figure 9-5 Clamping Circuit  
The clamping circuit internal to the MN102H75K/85K provides three current  
sources—high, medium, and low. You can modify these current sources using  
external resistors R1 and R2. Within the clamping circuit, you can turn each of the  
current sources on and off in steps. The control bits for these currents are the same  
for sync tip and pedestal clamping, but the reference and compare levels are dif-  
ferent. Table 9-3 provides these values for the two types of clamping, and table 9-4  
shows how to control the three current levels so that the video signal matches the  
reference level.  
Table 9-3 Clamping Reference and Compare Levels  
Reference Level  
Compare Level  
Clamping  
Type  
CCD0  
CCD1  
CCD0  
CCD1  
Sync tip  
16 (dec)  
16 (dec)  
Output from minimum  
Output from minimum  
clamping  
detection circuit (value detection circuit (value  
in SYNCMIN,  
in SYNCMINW,  
x’007EC8’, bits 6-0)  
x’007EE8’, bits 6-0)  
Pedestal  
clamping  
Value in  
PCLV,  
Value in  
PCLVW,  
Value in SYNCMIN,  
x’007EC8’, bits 14-8  
Value in SYNCMINW,  
x’007EE8’, bits 14-8  
x’007ECC’ x’007EEC’  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
229  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Closed-Caption Decoder  
Functional Description  
Table 9-4 Current Level Control  
Current Source  
Medium Current  
Low Current  
Control  
High Current  
Conditions  
(1)  
Off  
Off  
Off  
Off  
On  
On  
On  
(2)  
On  
On  
On  
Off  
Off  
Off  
Off  
(3)  
Off  
Off  
Off  
Off  
Off  
On  
On  
(4)  
On  
On  
Off  
Off  
Off  
Off  
Off  
(5)  
Off  
Off  
Off  
Off  
Off  
Off  
On  
(6)  
On  
Off  
Off  
Off  
Off  
Off  
Off  
10 A  
4 A 9  
1 A 3  
A= 0  
-3 A -1  
-9 A -4  
A -10  
Notes: 1. A = compare level - reference level  
2. The numbers (1) to (6) correspond to the same number in figure 9-5.  
Table 9-5 provides the registers used to control and monitor the clamping circuit.  
See the page number indicated for register and bit descriptions.  
Table 9-5 Control Registers for Clamping Circuit  
CCDO  
CCD1  
Register Page Address Address  
Description  
Register for selecting the low-pass filter  
NFSEL  
242  
x’007EC0’ x’007EE0’ Noise filter select register  
Registers for controlling clamping  
SCMING  
x’007EC4’ x’007EE4’ Minimum sync level detection interval set  
register  
SYNCMIN  
BPPST  
244  
243  
x’007EC8’ x’007EE8’ Sync and pedestal level register  
x’007EC6’ x’007EE6’ Backporch position register  
CLAMP  
x’007ECC’ x’007EEC Clamping control register  
CLPCND  
1
248  
x’007EDC’ x’007EEC Clamping control signal status register 1  
9.3.3 Sync Separator Circuit  
A low-pass filter and a sync separator comprise this block. The sync separator  
extracts HSYNC and VSYNC from the composite video signal. Figure 9-6 shows  
a block diagram of the circuit, and table 9-6 provides the registers used to control  
and monitor it. See the page number indicated for register and bit descriptions.  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
230  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Closed-Caption Decoder  
Functional Description  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
231  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Closed-Caption Decoder  
Functional Description  
Table 9-6 Control Registers for Sync Separator Circuit  
CCDO CCD1  
Register Page Address Address  
Description  
Register for setting the sync separator level  
SPLV  
Register for controlling the sync separator clock  
FQSEL 243 x’007EC2’ x’007EE2’ Frequency select register  
Registers for controlling the HSYNC separator  
244  
x’007ECA’ x’007EEA’ Sync separator level set register  
HSEP1  
246  
246  
246  
247  
x’007ECE’ x’007EEE’ HSYNC separator control register 1  
x’007ED0’ x’007EF0’ HSYNC separator control register 2  
x’007ED4’ x’007EF4’ Sync separator detection control register 1  
x’007ED6’ x’007EF6’ Sync separator detection control register 2  
HSEP2  
HLOCKLV  
HDISTW  
Register for controlling the VSYNC separator  
VCNT 247 x’007ED8’ x’007EF8’ VSYNC separator control register  
Register for controlling the field detection  
FIELD 246 x’007ED2’ x’007EF2’ Field detection control register  
Register for monitoring the sync separator status  
HVCOND 247 x’007EDA’ x’007EFA’ Sync separator status register  
9.3.3.1 HSYNC Separator  
The HSYNC separator extracts the HSYNC signal from the composite sync  
signal using the sampling clock generated by the sync separator clock pulse gen-  
erator. This circuit also secures and interpolates the HSYNC signal.  
Error HSYNC  
resulting from  
noise  
Missed  
HSYNC  
Detected HSYNC  
Window for securing  
and interpolating HSYNC  
Window open  
HSEP2 setting  
Interpolated  
HSYNC  
Secured and  
interpolated HSYNC  
HSEP1 setting  
Figure 9-7 HSYNC Securement and Interpolation  
As shown in figure 9-7, noise can cause the HSYNC detection circuit to both  
miss HSYNC pulses and add erroneous ones. The HSYNC separator contains a  
window circuit to correct these errors. The open and close timing for this window  
is set in the HSEP1 and HSEP2 registers, and the unit is the sampling clock for  
the HSYNC separator.  
The circuit counts a corrected and interpolated HSYNC signal. If the count is  
greater than that set in the HLOCKLV register, within the interval set in the  
HDISTW register, the HLOCK bit of HVCOND sets to 0, indicating an asyn-  
chronous state. This allows the device to determine the quality of the signal.  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
232  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Closed-Caption Decoder  
Functional Description  
9.3.3.2 VSYNC Separator  
The VSYNC separator extracts the VSYNC signal from the composite signal.  
Like the HSYNC separator, it contains programmable methods for eliminating  
noise. The VCNT register contains these settings. Masking the 0H to 127H range  
(by setting the VSEPSEL bit of VCNT to 0) prevents VSYNC errors due to  
noise. See figure 9-8.  
VSYNC  
127H  
Masked  
signal  
Figure 9-8 VSYNC Masking  
9.3.3.3 Field Detection Circuit  
The field detection circuit detects the phase difference between VSYNC and  
HSYNC, based on the setting in the VPHASE[9:0] field of the FIELD register.  
This setting is in units of the sampling clock for the HSYNC separator. The  
results of the field detection are stored in the ODDEVEN bit of FIELD.  
9.3.4 Data Slicer  
The data slicer contains the maximum and minimum detection circuits, the slice  
level calculator, and the slicer. The circuit compares the 8-bit digital values  
output from the ADC to the slice level, which can be calculated by the hardware  
or set in the software. It then outputs the results in serial 0s and 1s.  
The data slicer calculates the slice level (the level above which a signal is 1 and  
below which is 0) from the maximum and minimum clock run-in (CRI) pulses  
occurring in the interval between the settings in the CRI1S and CRI1E registers.  
CRI  
Data  
HSYNC  
CRI1S  
CRI1E  
(max + min)/2 of this interval = slice level (computed in the hardware)  
Figure 9-9 Data Slice Level Calculation  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
233  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Closed-Caption Decoder  
Functional Description  
Table 9-7 provides the registers used to control and monitor the data slicer. See  
the page number indicated for register and bit descriptions.  
Table 9-7 Control Registers for Data Slicer  
CCDO  
CCD1  
Register Page Address Address  
Description  
CRI1S  
CRI1E  
MAXMIN  
SLICE  
240  
241  
238  
238  
237  
x’007E10’ x’007E30’ CRI capture start timing control register 1  
x’007E12’ x’007E32’ CRI capture stop timing control register 1  
x’007E02’ x’007E22’ CRI interval maximum and minimum register  
x’007E04’ x’007E24’ VBI data slice level register  
FCCNT  
x’007E00’ x’007E20’ VBI decoding format select register  
9.3.5 Controller and Sampling Circuit  
The control circuit contains the CRI window generator and the caption data  
window generator. The sampling circuit extracts the 16-bit caption data (503  
kHz) from the serial data output from the data slicer at the 12-MHz ADC  
Table 9-8 provides the registers used to control and monitor these two blocks. See  
the page number indicated for register and bit descriptions.  
Table 9-8 Control Registers for Controller and Sampling Circuit  
CCDO  
CCD1  
Register Page Address Address  
Description  
Registers for detecting CRI and generating sampling clock  
CRI2S  
CRI2E  
CRIFA  
CRIFB  
241  
241  
240  
240  
x’007E14’ x’007E34’ CRI capture start timing control register 2  
x’007E16’ x’007E36’ CRI capture stop timing control register 2  
x’007E0C’ x’007E2C’ CRI frequency width register A  
x’007E0E’ x’007E2E’ CRI frequency width register B  
Registers for controlling data capture  
DATAS  
241  
242  
239  
239  
x’007E18’ x’007E38’ Data capture start timing control register  
x’007E1A’ x’007E3A’ Data capture stop timing control register  
x’007E0A’ x’007E2A’ Caption data capture register  
x’007E06’ x’007E26’ HSYNC count register  
DATAE  
CAPDATA  
HNUM  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
234  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Closed-Caption Decoder  
Functional Description  
9.3.5.1 CRI Detection for Sampling Clock Generation  
The decoder captures the caption data on the rising edge of the CRI pulse. To  
achieve this, it contains a circuit to accurately detect the CRI pulse rises and to  
generate a data sampling clock.  
CRI  
Data  
21 HSYNC  
CRI2S  
CRI2E  
CRI detection  
This interval determines the sampling clock timing.  
Figure 9-10 Sampling Clock Timing Determination  
9.3.5.2 Data Capture Control  
The DATAS and DATAE registers control the data capture timing, and the  
CAPDATA register stores the caption data captured on the sampling clock gen-  
erated through CRI detection. The HNUM register controls interrupt timing.  
CRI  
Data  
21 HSYNC  
DATAS  
(CRI2S)  
(Sampling clock)  
DATAE  
Figure 9-11 Caption Data Capture Timing  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
235  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Closed-Caption Decoder  
Closed-Caption Decoder Registers  
9.4 Closed-Caption Decoder Registers  
All registers in Closed-caption Decoder block cannot be written by byte (by word  
only). Read by byte is possible.  
Table 9-9 Closed-Caption Decoder Register  
CCD0  
CCD1  
Register Address Address R/W  
Description  
FCCNT  
MAXMIN  
SLICE  
x’007E00’ x’007E20’ R/W VBI decoding format select register  
x’007E02’ x’007E22’ CRI interval maximum and minimum register  
x’007E04’ x’007E24’ R/W VBI data slice level register  
x’007E06’ x’007E26’ HSYNC count register  
x’007E08’ x’007E28’ R/W ACQ capture timing control register 1  
R
HNUM  
ACQ1  
R
CAPDATA  
CRIFA  
x’007E0A’ x’007E2A’  
x’007E0C’ x’007E2C’  
x’007E0E’ x’007E2E’  
R
R
R
Caption data capture register  
CRI frequency width register A  
CRI frequency width register B  
CRIFB  
CRI1S  
CRI1E  
CRI2S  
CRI2E  
DATAS  
DATAE  
STAP  
x’007E10’ x’007E30’ R/W CRI capture start timing control register 1  
x’007E12’ x’007E32’ R/W CRI capture stop timing control register 1  
x’007E14’ x’007E34’ R/W CRI capture start timing control register 2  
x’007E16’ x’007E36’ R/W CRI capture stop timing control register 2  
x’007E18’ x’007E38’ R/W Data capture start timing control register  
x’007E1A’ x’007E3A’ R/W Data capture stop timing control register  
Sampling start position register (software setting)  
Sampling start position register (hardware calculation)  
x’007E1C’ x’007E3C’ R/W  
x’007E1E’ x’007E3E’  
FCPNUM  
NFSEL  
FQSEL  
SCMING  
BPPST  
R
x’007EC0’ x’007EE0’ R/W Noise filter select register  
x’007EC2’ x’007EE2’ R/W Frequency select register  
Minimum sync level detection interval set register  
x’007EC4’ x’007EE4’ R/W  
x’007EC6’ x’007EE6’ R/W Backporch position register  
SYNCMIN x’007EC8’ x’007EE8’  
R
Sync and pedestal level register  
SPLV  
x’007ECA’ x’007EEA’ R/W Sync separator level set register  
x’007ECC’ x’007EEC’ R/W Clamping control register  
CLAMP  
HSEP1  
HSEP2  
FIELD  
x’007ECE’ x’007EEE’ R/W HSYNC separator control register 1  
x’007ED0’ x’007EF0’ R/W HSYNC separator control register 2  
x’007ED2’ x’007EF2’ R/W Field detection control register  
HLOCKLV x’007ED4’ x’007EF4’ R/W Sync separator detection control register 1  
HDISTW  
VCNT  
x’007ED6’ x’007EF6’ R/W Sync separator detection control register 2  
x’007ED8’ x’007EF8’ R/W VSYNC separator control register  
HVCOND  
x’007EDA’ x’007EFA’  
R
R
R
R
Sync separator status register  
Clamping control signal status register 1  
Sampling start position register  
Test register  
CLPCND1 x’007EDC’ x’007EFC’  
SBFNUM  
TESTA  
x’007F4C’ x’007F6C’  
x’007F4E’ x’007F6E’  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
236  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Closed-Caption Decoder  
Closed-Caption Decoder Registers  
FCCNT: VBI Decoding Format Select Register  
(FCCNTW  
x’007E00’  
x’007E20’)  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
SLPU  
L
SEL  
NCRI  
G
SEL  
FCP SYNC HCNT HCNT SLICE SLICE SLICE SLICE  
CRIC  
SEL  
CNT CNT CNT CNT CNT  
STAP4 STAP3 STAP2 STAP1 STAP0  
For designs using the closed-cap-  
SEL  
0
SEL SEL1 SEL0 SEL  
LD2  
0
LD1  
0
LD0  
0
tion decoder, always tie the FCCNT  
Reset:  
0
0
0
0
0
0
0
0
1
0
0
0
register to x’0008’.  
R/W: R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W  
This register contains the settings for selecting either a hardware or soft-  
ware slice level and for setting the data capture format. When you do not  
use a bit or field in this register, tie it to the setting indicated below.  
FCPSEL: Hard/soft sampling start position select  
0: Select hardware calculation  
1: Select software setting (set in SFTSTAP[10:0] field of STAP)  
SYNCSEL: Sync signal select (HSYNC/VSYNC)  
Tie this bit to 0.  
HCNTSEL[1:0]: HSYNC count value select  
When this field is unused, tie it to b’00’.  
00: When odd, add 1 to the HSYNC count value  
01: When even, add 1 to the HSYNC count value  
10: No change to the HSYNC count value  
11: Reserved  
SLICESEL: Hard/soft slice level select  
0: Select hardware calculation  
1: Select software setting  
SLICELD[2:0]: Slice level load timing select  
When this field is unused, tie it to b’000’.  
000: 1H  
001: 2H  
010: 4H  
011: 8H  
100: 1 field  
101: 2 fields  
110: 4 fields  
111: 8 fields  
SLPULSEL: Polarity select for the CRI cycle transition detection  
0: Detect 0 to 1 transitions  
1: Detect 1 to 0 transitions  
CRICSEL: Detection interval select for the CRI frequency width  
0: CRI capture interval only  
1: CRI capture interval and transition detection interval  
NCRIGSEL: Sampling pulse generation interval  
0: Disable the CRI capture interval  
1: Enable the CRI capture interval  
CNTSTAP[4:0]: Caption data sampling start position  
The higher the setting in this field, the later the start position. The valid  
range is x’00’ to x’1F’.  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
237  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Closed-Caption Decoder  
Closed-Caption Decoder Registers  
MAXMIN: CRI Interval Maximum and Minimum Register  
(MAXMINW  
x’007E02’  
x’007E22’)  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
MAX7 MAX6 MAX5 MAX4 MAX3 MAX2 MAX1 MAX0 MIN7 MIN6 MIN5 MIN4 MIN3 MIN2 MIN1 MIN0  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
MAX[7:0]: Maximum value during the CRI interval  
Valid range: x’00’ to x’FF’  
MIN[7:0]: Minimum value during the CRI interval  
Valid range: x’00’ to x’FF’  
SLICE: VBI Data Slice Level Register  
(SLICEW  
x’007E04’  
x’007E24’)  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
SLSF SLSF SLSF SLSF SLSF SLSF SLSF SLSF SLHD SLHD SLHD SLHD SLHD SLHD SLHD SLHD  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
Reset:  
R/W: R/W R/W R/W R/W R/W R/W R/W R/W  
R
R
R
R
R
R
R
R
SLSF[7:0]: VBI data slice level—software setting  
Valid range: x’00’ to x’FF’  
SLHD[7:0]: VBI data slice level—hardware calculation  
Valid range: x’00’ to x’FF’  
Composite signal  
from ADC  
0/1 data  
Compare  
SLHD  
MUX  
SLSF  
SLICESEL  
Figure 9-12 SLSF and SLHD Multiplexing  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
238  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Closed-Caption Decoder  
Closed-Caption Decoder Registers  
HNUM: HSYNC Count Register  
(HNUMW  
x’007E06’  
x’007E26’)  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
VBI- VBI- VBI- VBI- VBI-  
IRQ  
4
SB  
FLAG  
HNU HNU HNU HNU HNU  
M4  
IRQ  
3
IRQ  
2
IRQ  
1
IRQ  
0
M3  
M2  
M1  
M0  
Reset:  
R/W:  
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
R
R
R
R/W R/W R/W R/W R/W  
R
R
R
R
R
R
R
R
This register allows you to time the interrupt occurring after the line 21  
data capture to a line other than line 21.  
VBIIRQ[4:0]: VBI interrupt timing control  
In this field, set the H line number, from 0 to 25, for the VBI interrupt. You  
must set this field to x’13’ or higher.  
SBFLAG: Start bit detection flag  
0: No start bit detected  
1: Start bit detected  
HNUM[4:0]: HSYNC count during the VBI interval  
This field indicates the H line number, from 0 to 25.  
ACQ1: ACQ Capture Timing Control Register 1  
(ACQ1W  
x’007E08’  
x’007E28’)  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
ACQ1 ACQ1 ACQ1 ACQ1 ACQ1  
ACQ1 ACQ1 ACQ1 ACQ1 ACQ1  
S4  
For designs using the closed-cap-  
tion decoder, always tie the ACQ1  
register to x’1312’.  
E4  
1
E3  
1
E2  
1
E1  
1
E0  
1
S3  
S2  
S1  
S0  
Reset:  
R/W:  
0
0
0
0
0
0
1
1
1
1
1
R
R
R
R/W R/W R/W R/W R/W  
R
R
R
R/W R/W R/W R/W R/W  
ACQ1E[4:0]: Stop position for ACQ capture 1  
Valid range: x’00’ to x’25’  
ACQ1S[4:0]: Start position for ACQ capture 1  
Valid range: x’00’ to x’25’  
CAPDATA: Caption Data Capture Register  
(CAPDATAW  
x’007E0A’  
x’007E2A’)  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
CAP CAP CAP CAP CAP CAP CAP CAP CAP CAP CAP CAP CAP CAP CAP CAP  
DA15 DA14 DA13 DA12 DA11 DA10 DA9 DA8 DA7 DA6 DA5 DA4 DA3 DA2 DA1 DA0  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
CAPDA[15:0]: Caption data  
This register stores the 16-bit captured caption data.  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
239  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Closed-Caption Decoder  
Closed-Caption Decoder Registers  
CRIFA: CRI Frequency Width Register A  
(CRIFAW  
x’007E0C’  
x’007E2C’)  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
CRI2 CRI2 CRI2 CRI2 CRI2 CRI2 CRI2 CRI2 CRI1 CRI1 CRI1 CRI1 CRI1 CRI1 CRI1 CRI1  
FQW7 FQW6 FQW5 FQW4 FQW3 FQW2 FQW1 FQW0 FQW7 FQW6 FQW5 FQW4 FQW3 FQW2 FQW1 FQW0  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
The CRIFA and CRIFB registers store the CRI cycles from rising edge to  
rising edge, for monitoring whether the CRIs were detected correctly dur-  
ing this period.  
CRI2FQW[7:0]: CRI frequency width 2  
This field indicates the width, in clock units, from the second to the third  
rising edge after the CRI.  
CRI1FQW[7:0]: CRI frequency width 1  
This field indicates the width, in clock units, from the first to the second  
rising edge after the CRI.  
CRIFB: CRI Frequency Width Register B  
(CRIFBW  
x’007E0E’  
x’007E2E’)  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
CRI4 CRI4 CRI4 CRI4 CRI4 CRI4 CRI4 CRI4 CRI3 CRI3 CRI3 CRI3 CRI3 CRI3 CRI3 CRI3  
FQW7 FQW6 FQW5 FQW4 FQW3 FQW2 FQW1 FQW0 FQW7 FQW6 FQW5 FQW4 FQW3 FQW2 FQW1 FQW0  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
CRI4FQW[7:0]: CRI frequency width 4  
This field indicates the width, in clock units, from the fourth to the fifth ris-  
ing edge after the CRI.  
CRI3FQW[7:0]: CRI frequency width 3  
This field indicates the width, in clock units, from the third to the fourth  
rising edge after the CRI.  
CRI1S: CRI Capture Start Timing Control Register 1  
(CRI1SW  
x’007E10’  
x’007E30’)  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
CRI1S CRI1S CRI1S CRI1S CRI1S CRI1S CRI1S CRI1S CRI1S CRI1S CRI1S  
10  
1
9
1
8
1
7
1
6
1
5
1
4
1
3
1
2
1
1
1
0
1
Reset:  
R/W:  
0
0
0
0
0
R
R
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W  
CRI1S[10:0]: Start position for CRI capture 1  
Valid range: x’000’ to x’7FF’  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
240  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Closed-Caption Decoder  
Closed-Caption Decoder Registers  
CRI1E: CRI Capture Stop Timing Control Register 1  
(CRI1EW  
x’007E12’  
x’007E32’)  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
CRI1E CRI1E CRI1E CRI1E CRI1E CRI1E CRI1E CRI1E CRI1E CRI1E CRI1E  
10  
1
9
1
8
1
7
1
6
1
5
1
4
1
3
1
2
1
1
1
0
1
Reset:  
R/W:  
0
0
0
0
0
R
R
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W  
CRI1E[10:0]: Stop position for CRI capture 1  
Valid range: x’000’ to x’7FF’  
CRI2S: CRI Capture Start Timing Control Register 2  
x’007E14  
(CRI2SW  
x’007E34’)  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
CRI2S CRI2S CRI2S CRI2S CRI2S CRI2S CRI2S CRI2S CRI2S CRI2S CRI2S  
10  
1
9
1
8
1
7
1
6
1
5
1
4
1
3
1
2
1
1
1
0
1
Reset:  
R/W:  
0
0
0
0
0
R
R
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W  
CRI2S[10:0]: Start position for CRI capture 2  
Valid range: x’000’ to x’7FF’  
CRI2E: CRI Capture Stop Timing Control Register 2  
(CRI2EW  
x’007E16’  
x’007E36’)  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
CRI2E CRI2E CRI2E CRI2E CRI2E CRI2E CRI2E CRI2E CRI2E CRI2E CRI2E  
10  
1
9
1
8
1
7
1
6
1
5
1
4
1
3
1
2
1
1
1
0
1
Reset:  
R/W:  
0
0
0
0
0
R
R
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W  
CRI2E[10:0]: Stop position for CRI capture 2  
Set this field so that the last CRI rising edge is included. The valid range is  
x’000’ to x’7FF’.  
DATAS: Data Capture Start Timing Control Register  
x’007E18’  
(DATASW  
x’007E38’)  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA  
S
10  
S
9
S
8
S
7
S
6
S
5
S
4
S
3
S
2
S
1
S
0
Reset:  
R/W:  
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
R
R
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W  
DATAS[10:0]: Start position for data capture  
Set this field to the same start position as that for CRI detection (set in  
CRI2S). The valid range is x’000’ to x’7FF’.  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
241  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Closed-Caption Decoder  
Closed-Caption Decoder Registers  
DATAE: Data Capture Stop Timing Control Register  
(DATAEW  
x’007E1A’  
x’007E3A’)  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA  
E
10  
E
9
E
8
E
7
E
6
E
5
E
4
E
3
E
2
E
1
E
0
Reset:  
R/W:  
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
R
R
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W  
DATAE[10:0]: Stop position for data capture  
Set this value high enough to allow the last data to be captured. The valid  
range is x’000’ to x’7FF’.  
STAP: Sampling Start Position Register (Software Setting)  
(STAPW  
x’007E1C’  
x’007E3C’)  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
SFT  
SFT  
SFT  
SFT  
SFT  
SFT  
SFT  
SFT  
SFT  
SFT  
SFT  
STAP STAP STAP STAP STAP STAP STAP STAP STAP STAP STAP  
10  
9
8
7
6
5
4
3
2
1
0
Reset:  
R/W:  
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
R
R
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W  
SFTSTAP[10:0]: Software setting for sampling start position (in clock units)  
FCPNUM: Sampling Start Position Register (Hardware Calculation)  
(FCPNUMW  
x’007E1E’  
x’007E3E’)  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
FCP  
FCP  
FCP  
FCP  
FCP  
FCP  
FCP  
FCP  
FCP  
FCP  
FCP  
NUM NUM NUM NUM NUM NUM NUM NUM NUM NUM NUM  
10  
9
8
7
6
5
4
3
2
1
0
Reset:  
R/W:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
FCPNUM[10:0]: Sampling start position calculated by the hardware  
NFSEL: Noise Filter Select Register  
(NFSELW  
x’007EC0’  
x’007EE0’)  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
NFSW NFSW  
1
MING  
0
Reset:  
R/W:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W  
R
R
R
R
R
R
R/W R/W  
This register selects the low-pass filter, which eliminates noise and high-  
frequency signals that are unnecessary to the sync separator and the clamp-  
ing controller. The recommended setting for NFSEL is x’0000’.  
MING: Output select for noise filter detecting minimum sync tip  
0: Low-pass filter 1  
1: Low-pass filter 2, 3, or 4 (set in NFSW[1:0])  
NFSW[1:0]: Noise filter switch (for composite sync separator)  
00: Low-pass filter 3  
01: Low-pass filter 4  
10: Low-pass filter 2  
11: Low-pass filter 1  
The cutoff frequencies for low-pass filters 1 to 4 are lower in ascending  
order, so that low-pass filter 4 eliminates the highest amount of noise.  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
242  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Closed-Caption Decoder  
Closed-Caption Decoder Registers  
FQSEL: Frequency Select Register  
(FQSELW  
x’007EC2’  
x’007EE2’)  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
VFQ VFQ VFQ VFQ VFQ VFQ  
DIV5 DIV4 DIV3 DIV2 DIV1 DIV0  
FQ  
FQ  
FQ  
FQ  
DIV3 DIV2 DIV1 DIV0  
Reset:  
R/W:  
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
1
R
R
R/W R/W R/W R/W R/W R/W  
R
R
R
R
R/W R/W R/W R/W  
In this register, set the sampling cycle for separating the HSYNC and  
VSYNC signals from the composite sync signal. The recommended setting  
is x’1F01’.  
VFQDIV[5:0]: Sampling frequency setting for VSYNC separator  
In this field, set the ratio by which to divide the sampling frequency for the  
HSYNC separator.  
FQDIV[3:0]: Sampling frequency setting for HSYNC separator  
In this field, set the ratio by which to divide the A/D sampling frequency.  
SCMING: Minimum Sync Level Detection Interval Set Register  
(SCMINGW  
x’007EC4’  
x’007EE4’)  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
SC  
SC  
SC  
SC  
SC  
SC  
SC  
SC  
SC  
SC  
MING MING MING MING MING MING MING MING MING MING  
9
8
7
6
5
4
3
2
1
0
Reset:  
R/W:  
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W  
SCMING[9:0]: Interval setting for the minimum sync level detection  
Set the HSYNC cycle in this field in ADC clock units. This is the interval  
used for detecting the sync tip level for sync tip clamping. The valid range  
is x’000’ to x’3FF’. Note that the HSYNC cycle set in this register is only  
used for detecting the minimum sync level. You must also set the correc-  
tion HSYNC cycle in HSEP1.  
For the NTSC format, the setting for this register is x’02FA, calculated as  
follows:  
(A/D sampling frequency) × (HSYNC cycle) = 12 MHz × 63 µs = x’02FA’  
BPPST: Backporch Position Register  
(BPPSTW  
x’007EC6’  
x’007EE6’)  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
BP  
BP  
BP  
BP  
BP  
BP  
BP  
BP  
BP  
PST8 PST7 PST6 PST5 PST4 PST3 PST2 PST1 PST0  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
R
R
R
R
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W  
BPPST[8:0]: Backporch start position for the leading edge of HSYNC  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
243  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Closed-Caption Decoder  
Closed-Caption Decoder Registers  
Use this register to specify the position for capturing the pedestal level  
value used during pedestal clamping. Specify a number of ADC clocks  
after the leading edge of HSYNC. The valid range is x’000’ to x’1FF’, and  
the recommended setting is x’003C’.  
Video signal  
HSYNC  
Set this interval in BPPST  
Pedestal level for BPLV register  
Figure 9-13 Backporch Position Setting  
SYNCMIN: Sync and Pedestal Level Register  
(SYNCMINW  
x’007EC8’  
x’007EE8’)  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
SYNC SYNC SYNC SYNC SYNC SYNC SYNC  
MIN6 MIN5 MIN4 MIN3 MIN2 MIN1 MIN0  
BPLV6 BPLV5 BPLV4 BPLV3 BPLV2 BPLV1 BPLV0  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
BPLV[6:0]: Pedestal level  
This register stores the pedestal level captured from the position specified  
in BPPST.  
SYNCMIN[6:0]: Minimum sync level  
This field stores the minimum level (the sync tip level) detected during the  
interval set in the SCMING register. For sync tip clamping, you should  
control clamping so as to make this value 16 (dec).  
SPLV: Sync Separator Level Set Register  
(SPLVW  
x’007ECA’  
x’007EEA’)  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
BSP5 BSP4 BSP3 BSP2 BSP1 BSP0  
PSP5 PSP4 PSP3 PSP2 PSP1 PSP0  
Reset:  
R/W:  
0
0
0
1
1
0
0
0
0
0
0
1
1
0
0
0
R
R
R/W R/W R/W R/W R/W R/W  
R
R
R/W R/W R/W R/W R/W R/W  
The sync separator uses the value set in this register to separate the com-  
posite sync signal from the composite video signal.  
Video signal  
HSYNC  
Setting for sync  
separator level  
Composite sync processing  
Figure 9-14 Sync Separator Level  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
244  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Closed-Caption Decoder  
Closed-Caption Decoder Registers  
Composite signal  
from ADC  
Composite sync  
Compare  
PSP  
BSP  
MUX  
CLMODE  
Figure 9-15 BSP and PSP Multiplexing  
BSP[5:0]: Sync separator level for pedestal clamping  
Sync separator level = (sync tip level/2) + BSP[5:0]. The valid range is  
x’00’ to x’3F’.  
PSP[5:0]: Sync separator level for sync tip clamping  
Valid range: x’00’ to x’3F’  
CLAMP: Clamping Control Register  
(CLAMPW  
x’007ECC’  
x’007EEC’)  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
CL  
CL  
VBI  
ON  
PCLV6 PCLV5 PCLV4 PCLV3 PCLV2 PCLV1 PCLV0 SAFE  
MODE MODE  
1
0
Reset:  
R/W:  
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R/W R/W R/W R/W R/W R/W R/W R/W  
R
R
R/W  
R
R
R/W R/W  
Use this register to set the clamping mode (sync tip or pedestal clamping).  
PCLV[6:0]: Pedestal clamping level setting  
Set the reference level for pedestal clamping in this field. The valid range  
is x’00’ to x’7F’.  
VBION: VBI setting  
0: VBI off  
1: VBI on  
SAFE: Clamping current source select  
This bit is the capacity switch for (5) and (6) in figure 9-5 on page 229.  
0: High current source ((5) and (6) capacity high)  
1: Medium current source ((5) and (6) capacity low)  
CLMODE[1:0]: Clamping mode setting  
00: Automatic switching (depends on the cycle state)  
01: Sync tip clamping only  
10: Pedestal clamping only  
11: Clamping off  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
245  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Closed-Caption Decoder  
Closed-Caption Decoder Registers  
HSEP1: HSYNC Separator Control Register 1  
(HSEP1W  
x’007ECE’  
x’007EEE’)  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
HS  
HS  
HS  
HS  
HS  
HS  
HS  
HS  
HS  
HS  
HS  
FREQ FREQ FREQ FREQ FREQ FREQ FREQ FREQ FREQ FREQ FREQ  
10  
9
8
7
6
5
4
3
2
1
0
Reset:  
R/W:  
0
0
0
0
0
0
0
1
0
0
0
0
1
1
0
0
R
R
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W  
HSFREQ[10:0]: Correction HSYNC frequency  
Set the correction HSYNC cycle in this field in HSYNC separator sam-  
pling clock units. The valid range is x’000’ to x’7FF’, and the recom-  
mended setting is x’010C’.  
HSEP2: HSYNC Separator Control Register 2  
(HSEP2E  
x’007ED0’  
x’007EF0’)  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
H
H
H
H
H
H
H
H
H
H
CLOSE CLOSE CLOSE CLOSE CLOSE CLOSE CLOSE CLOSE CLOSE CLOSE  
E9  
E8  
E7  
E6  
E5  
E4  
E3  
E2  
E1  
E0  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
1
1
1
0
0
1
0
0
R
R
R
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W  
HCLOSEE[9:0]: Start position for HSYNC detection  
Set the position in HSYNC separator sampling clock units. The valid range  
is x’000’ to x’3FF’, and the recommended setting is x’00E4’.  
FIELD: Field Detection Control Register  
(FIELDW  
x’007ED2’  
x’007EF2’)  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
V
V
V
V
V
V
V
V
V
V
ODD  
EVEN  
PHASE PHASE PHASE PHASE PHASE PHASE PHASE PHASE PHASE PHASE  
9
8
7
6
5
4
3
2
1
0
Reset:  
R/W:  
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
R
R
R
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W  
ODDEVEN: Field detection signal  
0: Odd field  
1: Even field  
VPHASE[9:0]: Phase difference setting for VSYNC and HSYNC  
Set the phase difference in HSYNC separator sampling clock units. The  
valid range is x’000’ to x’3FF’.  
HLOCKLV: Sync Separator Detection Control Register 1  
(HLOCKLVW  
x’007ED4’  
x’007EF4’)  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
H
H
H
H
H
H
H
H
H
LOCK LOCK LOCK LOCK LOCK LOCK LOCK LOCK LOCK  
LV8  
LV7  
LV6  
LV5  
LV4  
LV3  
LV2  
LV1  
LV0  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
R
R
R
R
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W  
HLOCKLV[8:0]: Sync separator detection threshold  
This value is compared to the count of the corrected HSYNC. The valid  
range is x’000’ to x’1FF’, and the recommended setting is x’0008’.  
HLOCKLV HSYNC count asynchronous  
HLOCKLV > HSYNC count synchronous  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
246  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Closed-Caption Decoder  
Closed-Caption Decoder Registers  
HDISTW: Sync Separator Detection Control Register 2  
HDISTWW  
x’007ED6’  
x’007EF6’)  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
HDIST HDIST HDIST HDIST HDIST HDIST HDIST HDIST HDIST  
W8  
W7  
W6  
W5  
W4  
W3  
W2  
W1  
W0  
Reset:  
R/W:  
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W  
HDISTW[8:0]: HSYNC count setting the interval for sync separation detection  
In this register, set the interval during which sync separation occurs. The  
valid range is x’000’ to x’1FF’ and the recommended setting is x’0100’.  
For NTSC format, set the register to 525 (dec), indicating an HSYNC  
count of 525 VSYNC cycles. The recommended setting is x’0100’.  
VCNT: VSYNC Separator Control Register  
(VCNTW  
x’007ED8’  
x’007EF8’)  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
VSEP  
SEL  
VSEP VSEP VSEP  
LMT2 LMT1 LMT0  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
R
R
R
R
R
R
R
R/W  
R
R
R
R
R
R/W R/W R/W  
VSEPSEL: VSYNC signal select  
0: 0H to 127H VSYNC separation mask  
1: No mask  
VSEPLMT[2:0]: VSYNC separation detection threshold  
HVCOND: Sync Separator Status Register  
(HVCONDW  
x’007EDA’  
x’007EFA’)  
Bit:  
7
6
5
4
3
2
1
0
COMP  
SY  
STPN  
VSEP  
HSEP HLOCK  
Reset:  
R/W:  
0
0
0
1
1
0
0
0
R
R
R
R
R
R
R
R
Use this register to monitor the status of the sync separator.  
STPN: Status of clamping control pulse signal during STOP  
COMPSY: Composite sync signal status  
VSEP: VSYNC signal status  
HSEP: HSYNC signal status  
HLOCK: Sync detection  
0: Asynchronous  
1: Synchronous  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
247  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Closed-Caption Decoder  
Closed-Caption Decoder Registers  
CLPCND1: Clamping Control Signal Status Register 1  
(CLPCNDW  
x’007EDC’  
x’007EFC’)  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
SAFE  
N
XPED XPE PED  
UP DOWN UP DOWN  
PE  
SAFEP  
CLPP CLPN  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
1
0
1
0
1
0
1
0
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
This register is for monitoring the status of the clamping current source  
switch shown in figure 9-5 on page 229. An N-channel transistor is on  
when the associated bit (PEDOWN, XPEDOWN, CLPN, or SAFEN) is 1.  
A P-channel transistor is on when the associated bit (PEDUP, XPEDUP,  
CLPP, or SAFEP) is 0.  
SAFEP: Low clamping control pulse for high current source (P-channel)  
SAFEN: Low clamping control pulse for high current source (N-channel)  
CLPP: High clamping control pulse for high current source (P-channel)  
CLPN: High clamping control pulse for high current source (N-channel)  
XPEDUP: Clamping control pulse for medium current source (P-channel)  
XPEDOWN: Clamping control pulse for medium current source (N-channel)  
PEDUP: Clamping control pulse for low current source (P-channel)  
PEDOWN: Clamping control pulse for low current source (N-channel)  
SBFNUM: Sampling Start Position Register  
(SBFNUMW  
x’007E4C’  
x’007E6C’)  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
SBF  
SBF  
SBF  
SBF  
SBF  
SBF  
SBF  
SBF  
SBF  
SBF  
SBF  
NUM NUM NUM NUM NUM NUM NUM NUM NUM NUM NUM  
10  
9
8
7
6
5
4
3
2
1
0
Reset:  
R/W:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
SBFNUM[10:0]: Detected position of start bit flag (detected by the hardware)  
TESTA: Test Register  
(TESTA  
x’007E4E’  
x’007E6E’)  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
SLICE SLICE SLICE SLICE SLICE SLICE SLICE SLICE DATA  
SLD  
SAMP  
CRI2G CRI1G ACQG  
FCPIN FCP  
SLD  
7
6
5
4
3
2
1
0
G
Reset:  
R/W:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
SLICE[7:0]: Slicing value (either from hardware calculation or software setting)  
DATAG: Data window (for capturing the caption data)  
CRI2G: CRI window 2 (for detecting the sampling cycle position)  
CRI1G: CRI window 1 (for calculating the maximum and minimum values)  
ACQG: ACQ window (for setting the H interval for data detection)  
SLDSAMP: Caption data sampling pulse  
FCPIN: Start position for start bit detection (software setting)  
FCP: Start position for start bit detection (hardware calculation)  
SLD: Sliced data from the CVBS input signal  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
248  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Pulse Width Modulator  
Description  
10 Pulse Width Modulator  
10.1 Description  
The MN102H75K/85K contains seven 8-bit pulse width modulators (PWMs)  
with a minimum pulse width of 16/fSYSCLK and an output waveform cycle of  
212/fSYSCLK. (With a 4-MHz oscillator, 16/fSYSCLK = 1.33 µs (8 µs for SLOW  
mode) and 212/fSYSCLK = 341.3 µs (2 ms for SLOW mode).)  
For information on the SLOW  
mode, see section 3.1, “CPU  
Modes.”  
The PWM ports are 3.3-volt, open-drain outputs. To enable the PWM ports,  
either turn the pullup registers on using the pullup control registers for the asso-  
ciated ports (P15-P17 and P20-P23; see table 10-1) or connect external pullup  
resistors to these ports.  
Table 10-1 Register Settings for Internal PWM Pullup  
PWM Block  
PWM0  
Register  
Bit No. Setting  
5
P1PUP  
PWM1  
6
7
0
1
2
3
1
1
(x’00FFB1’)  
PWM2  
PWM3  
PWM4  
P2PUP  
(x’00FFB2’)  
PWM5  
PWM6  
The microcontroller writes the pulsewidth modulated data for a PWM block to its  
associated 8-bit data register (PWMn). The data register settings determine how  
long the waveform stays low. With a 4-MHz oscillator, the PWM output pulse  
width has a resolution of 1.33 µs (1/fPWM) and a cycle of 341.3 µs (28/fPWM).  
Note that when (and only when) the data changes between x’00’ and x’01’, the  
resolution is 1.34 µs (2/fPWM).  
PWM Data  
00  
Output Wave  
High level  
01  
.
.
.
.
.
341.3 µs (2 ms for SLOW mode)  
tLOW  
.
.
.
1.33 µs (8 µs for SLOW mode)  
FE  
FF  
Low level  
Figure 10-1 PWM Output Waveform  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
249  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Pulse Width Modulator  
Block Diagram  
10.2 Block Diagram  
Data bus  
8
MSB  
7
PWM0 - PWM6  
x'007E70' - x'007E7C'  
6
5
4
3
2
1
0
PnPUP  
PnCNT  
PWMn  
(P15 - P17,  
P20 - P23)  
DAC output  
I/O control  
f
PWM (8-bit)  
PWM  
MUX  
PnDIR  
Port  
Note: With a 4-MHz oscillator:  
= f /16  
f
PWM  
SYSCLK  
8
Output pulse cycle = 2 /f  
= 341.3 µs  
PWM  
Not using internal pullup func-  
tion,Figuer10-2 connect the  
external pullup registance  
Minimum pulse width = 1/f  
= 1.33 µs  
PWM  
t
= (PWMn + 1) × 0.67 µs  
LOW  
Figure 10-2 PWM Block Diagram  
10.3 PWM Data Registers  
All registers in PWM function cannot be written by byte (be word only). Read by  
byte is possible.  
Bits 7 to 0 of each of the seven PWM data registers (PWM0 to PWM6) hold the  
8-bit pulsewidth modulated data to be written to the PWMs. The registers reset to  
0, and they set to 1 when PWM output is high.  
PWM0–PWM6: PWMn Data Registers  
x’007E70’–x’007E7C’  
Bit:  
7
6
5
4
3
2
1
0
PWMn7 PWMn6 PWMn5 PWMn4 PWMn3 PWMn2 PWMn1 PWMn0  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
250  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
I/O Ports  
Description  
11 I/O Ports  
11.1 Description  
The MN102H75K/85K contains 50 pins that form general-purpose I/O ports.  
Ports 0, 1, 2, 3, 4, and 5 are 8-bit ports, and port 6 is a 2-bit port. All of these pins  
have alternate functions. (Ports 7 and 8 are only available with the quad flat  
package.)  
Table 11-1 I/O Port Pins  
Port  
Port 0  
Port 1  
Port 2  
Port 3  
Port 4  
Port 5  
Port 6  
Port 7  
Port 8  
Associated Pins  
P07–P00  
P17–P10  
P27–P20  
P37–P30  
P47–P40  
P57–P50  
P61–P60  
P77–P70  
P87–P80  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
251  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
I/O Ports  
I/O Port Circuit Diagrams  
11.2 I/O Port Circuit Diagrams  
0: Pullup off  
1: Pullup on  
P0PUP0  
0: P00/IRQ0  
1: RMIN/IRQ0  
P0MD0  
0: Port input  
1: Port output  
P0DIR0  
0: Port low output  
1: Port high output  
Pin  
P0OUT0  
P0IN0  
RMIN  
IRQ0  
Schmidt trigger  
Figure 11-1 P00/RMIN/IRQ0 (Port 0)  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
252  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
I/O Ports  
I/O Port Circuit Diagrams  
0: Pullup off  
1: Pullup on  
P0PUPn  
P0MDn  
P0DIRn  
P0OUTn  
0: P03, P04, P05, P06, P07,  
1: ADIN0, ADIN1, ADIN2, ADIN3, ADIN4  
0: Port input  
1: Port output  
0: Port low output  
1: Port high output  
Pin  
P0INn  
ADIN0, ADIN1,  
ADIN2, ADIN3, ADIN4  
Figure 11-2 P03/ADIN0 to P07/ADIN4 (Port 0)  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
253  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
I/O Ports  
I/O Port Circuit Diagrams  
0: Pullup off  
1: Pullup on  
P1PUPn  
P1MD(2n)  
P1DIRn  
0: P10/IRQ1, P11/IRQ2, P12/IRQ3  
1: ADIN5, ADIN6, ADIN7  
0: Port input  
1: Port output  
0: Port low output  
1: Port high output  
Pin  
P1OUTn  
P1INn  
IRQ1, IRQ2, IRQ3  
ADIN5, ADIN6, ADIN7  
Schmidt trigger  
Figure 11-3 P10/ADIN5/IRQ1, P11/ADIN6/IRQ2, and P12/ADIN7/IRQ3 (Port 1)  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
254  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
I/O Ports  
I/O Port Circuit Diagrams  
0: Pullup off  
1: Pullup on  
P1PUPn  
P1MD(2n)  
P1MD(2n+1)  
00: P13, P14  
01: WDOUT, STOP  
10: ADIN8, ADIN9  
0: Port input  
1: Port output  
P1DIRn  
0: Port low output  
1: Port high output  
P1OUTn  
Pin  
WDOUT, STOP  
P1INn  
ADIN8, ADIN9  
Figure 11-4 P13/ADIN8/WDOUT and P14/ADIN9/STOP (Port 1)  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
255  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
I/O Ports  
I/O Port Circuit Diagrams  
0: Pullup off  
1: Pullup on  
P1PUPn  
00: P15,P16  
01: PWM0,PWM1  
10: ADIN10,ADIN11  
P1MD(2n)  
P1MD(2n+1)  
0: Port input  
1: Port output  
P1DIRn  
PWM0,PWM1  
0: Port low output  
1: Port high output  
Pin  
P1OUTn  
P1INn  
ADIN10,ADIN11  
Figure 11-5 P15/ADIN10/PWM0 and P16/ADIN11/PWM1 (Port 1)  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
256  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
I/O Ports  
I/O Port Circuit Diagrams  
0: Pullup off  
1: Pullup on  
P1PUPn  
P2PUPn  
0: P17, P20, P21, P22, P23  
1: PWM2, PWM3, PWM4, PWM5, PWM6  
P1MD(2n)  
P2MD(2n)  
0: Port input  
1: Port output  
0
1
P1DIRn  
P2DIRn  
M
U
X
PWM2, PWM3, PWM4,  
PWM5, PWM6  
0: Port low output  
1: Port high output  
0
1
P1OUTn  
P2OUTn  
Pin  
M
U
X
Low output  
P1INn, P2INn  
Figure 11-6 /PWM2 (Port 1), P20/PWM3, P21/PWM4, P22/PWM5, and P23/PWM6 (Port 2)  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
257  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
I/O Ports  
I/O Port Circuit Diagrams  
0: Pullup off  
1: Pullup on  
P2PUP4  
00: P24  
01: SBT1  
10: TM4IC  
P2MD8  
P2MD9  
0: Port input  
1: Port output  
P2DIR4  
0: Port low output  
1: Port high output  
Pin  
P2OUT4  
SBT1 output  
0: Push/pull  
1: Open-drain (I2C mode)  
ODASCI1  
P2IN4  
Schmidt trigger  
TM4IC input  
SBT1 input  
Figure 11-7 P24/TM4IC/SBT1 (Port 2)  
To use as SBT1,set P2MD8 and P2MD9 to 0.  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
258  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
I/O Ports  
I/O Port Circuit Diagrams  
0: Pullup off  
1: Pullup on  
P2PUP7  
P2MD14  
P2DIR7  
P2OUT7  
0: P27  
1: TM0IO  
0: Port input  
1: Port output  
0: Port low output  
1: Port high output  
0
1
Pin  
M
U
X
TM0IO output  
P2IN7  
TM0IO input  
Figure 11-8 P27/TM0IO (Port 2)  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
259  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
I/O Ports  
I/O Port Circuit Diagrams  
0: Pullup off  
1: Pullup on  
P3PUPn  
P4PUPn  
0: DAC output  
1: Digital output  
(OSD1)bp0  
0: P35, P36, P37, P40  
1: DAROUT/R, DAGOUT/G  
DABOUT/B, DAYMOUT/YM  
P3MDn  
P4MDn  
0: Port input  
1: Port output  
P3DIRn  
P4DIRn  
0: Port low output  
1: Port high output  
0
1
P3OUTn  
P4OUTn  
Pin  
M
U
X
ROUT, GOUT, BOUT, YMOUT  
(Digital output)  
P3INn  
P4INn  
DAROUT, DAGOUT, DABOUT,  
DAYMOUT  
(DAC output)  
Figure 11-9 P35/DAROUT/R, P36/DAGOUT/G, P37/DABOUT/B (Port 3), and P40/DAYMOUT/YM (Port 4)  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
260  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
I/O Ports  
I/O Port Circuit Diagrams  
0: Pullup off  
1: Pullup on  
P2PUP5  
00: P25  
01: SBI1,SBD1  
10: TM4IOB  
11: Reserved  
P2MD10  
P2MD11  
0: Port input  
1: Port output  
00  
10  
P2DIR5  
M
U
X
0: 3-line (SBI1,SBD1,SBT1)  
1: 2-line (SBD1,SBT1)  
(PCNT0) bit 11  
SIFSEL1  
01  
Pin  
0: Port low output  
1: Port high output  
00  
P2OUT5  
M
U
X
P25/  
SBI1/  
SBD1/  
TM4IOB  
01  
10  
SBO1  
TM4IOB output  
P2IN5  
0: Push-pull  
Schmidt trigger  
(PCNT0) bit 13  
ODASCI1  
1: Open-drain  
(For I2C mode)  
SBI1  
0: Pullup off  
1: Pullup on  
P2PUP6  
00: P25  
01: SBI1,SBD1  
10: TM4IOB  
11: Reserved  
P2MD12  
P2MD13  
00  
10  
0: Port input  
1: Port output  
P2DIR6  
M
U
X
SBO1  
(PCNT0) bit 13  
ODASCI1  
01  
01  
10  
Pin  
M
TM4IOA output  
U
X
0: Port low output  
1: Port high output  
00  
P26/  
SBO1/  
TM4IOA  
P2OUT6  
P2IN6  
Schmidt trigger  
Figure 11-10 P25/TM4IOB/SBI1/SBD1 and P26/TM4IOA/SBO1 (Port 2)  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
261  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
I/O Ports  
I/O Port Circuit Diagrams  
0: Pullup off  
1: Pullup on  
P5PUP5  
P5MD5  
P5DIR5  
0: P55  
1: SBO0  
0: Port input  
1: Port output  
0: Push-pull  
1: Open-drain  
(For I2C mode)  
(PCNT0) bit 12  
ODASCI0  
SBO0  
1
Pin  
M
U
X
0: Port low output  
1: Port high output  
0
P55/  
P5OUT5  
SBO0  
P5IN5  
SBI0  
Schmidt trigger  
0: Pullup off  
1: Pullup on  
P5PUP6  
P5MD6  
0: P56  
1: SBI0/SBD0  
0: Port input  
1: Port output  
0
1
P5DIR6  
M
U
X
0: 3-line (SBI0,SBO0,SBT0)  
1: 2-line (SBD0,SBT0)  
(PCNT0) bit 10  
SIFSEL0  
1
0
Pin  
SBO0  
M
U
X
0: Port low output  
1: Port high output  
P56/  
P5OUT6  
SBI0/  
SBD0  
P5IN6  
Schmidt trigger  
Figure 11-11 P55 and P56 (Port 5)  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
262  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
I/O Ports  
I/O Port Circuit Diagrams  
0: Pullup off  
1: Pullup on  
P5PUP7  
P5MD7  
P5DIR7  
0: P57  
1: SBT0  
0: Port input  
1: Port output  
0: Push-pull  
1: Open-drain  
(For I2C mode)  
(PCNT0) bit 12  
ODASCI0  
SBT0 output  
0: Port low outut  
1: Port high output  
Pin  
P5OUT7  
P5IN7  
Schmidt trigger  
SBT0 input  
Figure 11-12 P57/SBT0 (Port 5)  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
263  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
I/O Ports  
I/O Port Circuit Diagrams  
0: Pullup off  
1: Pullup on  
P0PUP2  
P0MD2  
P0DIR2  
P0OUT2  
0: P02  
1: SCL1  
0: Port input  
1: Port output  
0: Port low output  
1: Port high output  
Pin  
0
1
M
U
X
P02/  
SCL1  
SCL output  
P0IN2  
Schmidt trigger  
SCL input  
I2CSEL1  
I2CSEL0  
0: Pullup off  
1: Pullup on  
P6PUP1  
P6MD1  
P6DIR1  
P6OUT1  
0: P61  
1: SCL0  
0: Port input  
1: Port output  
0: Port low output  
1: Port high output  
Pin  
0
1
M
U
X
P61/  
SCL0  
P6IN1  
Schmidt trigger  
Figure 11-13 P02/SCL1 (Port 0) and P61/SCL0 (Port 6)  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
264  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
I/O Ports  
I/O Port Circuit Diagrams  
0: Pullup off  
1: Pullup on  
P0PUP1  
P0MD1  
P0DIR1  
P0OUT1  
0: P01  
1: SDA1  
0: Port input  
1: Port output  
Pin  
0: Port low output  
1: Port high output  
0
1
P01/  
SDA1  
M
U
X
SDA output  
P0IN1  
Schmidt trigger  
SDA input  
I2CSEL1  
I2CSEL0  
0: Pullup off  
1: Pullup on  
P6PUP0  
P6MD0  
P6DIR0  
P6OUT0  
0 : P60  
1 : SDA0  
0: Port input  
1: Port output  
Pin  
0: Port low output  
1: Port high output  
0
1
M
U
X
P60/  
SDA0  
P6IN0  
Schmidt trigger  
Figure 11-14 P01/SDA1 (Port 1) and P60/SDA0 (Port 6)  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
265  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
I/O Ports  
I/O Port Circuit Diagrams  
0: Pullup off  
1: Pullup on  
P3PUPn  
P3MDn  
P3DIRn  
P3OUTn  
0: P31,P32  
1: CVBS0,CVBS1  
0: Port input  
1: Port output  
0: Port low output  
1: Port high output  
Pin  
P3INn  
CVBS0,CVBS1  
Figure 11-15 P31/CVBS0 and P32/CVBS1 (Port 3)  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
266  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
I/O Ports  
I/O Port Circuit Diagrams  
0: Pullup off  
1: Pullup on  
P3PUPn  
0: P30, P33  
1: CLH, CLL  
P3MD2  
P3MD3  
0: Port input  
1: Port output  
P3DIRn  
0: Port low output  
1: Port high output  
Pin  
P3OUTn  
P3INn  
CLH, CLL  
Figure 11-16 P30/CLH and P33/CLL (Port 3)  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
267  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
I/O Ports  
I/O Port Circuit Diagrams  
0: Pullup off  
1: Pullup on  
P3PUP4  
P3MD4  
0: P34  
1: VREF  
0: Port input  
1: Port output  
P3DIR4  
0: Port low output  
1: Port high output  
Pin  
P3OUT4  
P34/VREF  
P3IN4  
VREF  
Figure 11-17 P34/VREF (Port 3)  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
268  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
I/O Ports  
I/O Port Circuit Diagrams  
0: Pullup off  
1: Pullup on  
P4PUPn  
P4DIRn  
P4MDn  
P4OUTn  
0: Port input  
1: Port output  
0: P41,P42,P43  
1: TM1IO,TM5IOA,TM5IOB  
Pin  
0: Port low output  
1: Port high output  
0
1
M
U
X
TM1IO output, TM5IOA output,  
TM5IOB output  
P4INn  
TM1IO input, TM5IOA input,  
TM5IOB output, HI0  
Figure 11-18 P41/TM1IO, P42/TM5IOA, and P43/TM5IOB/HI0 (Port 4)  
0: Port input  
1: Port output  
P4DIR4  
0: P44  
1: TM5IC/HI1  
P4MD4  
Pin  
0: Port low output  
1: Port high output  
P4OUT4  
P44/  
TM5IC/  
HI1  
TM5IC/  
HI1 input  
Figure 11-19 P44/TM5IC/HI1 (Port 4)  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
269  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
I/O Ports  
I/O Port Circuit Diagrams  
0: Pullup off  
1: Pullup on  
P4PUP5  
P4OUT5  
0: P45  
1: OSDXI  
0: Port input  
1: Port output  
P4DIR5  
To internal circuit  
P4IN5  
Pin  
P45/OSDXO  
(0: Cut,1: Connect)  
LCCNT is the OSDXI/O  
oscillation control  
signal from the OSD.  
0: Disable  
1: Enable  
LCCNT  
0: Pullup off  
1: Pullup on  
P4PUP6  
0: P45/P46  
1: OSDXI/OSDXO  
P4MD5  
0: Port input  
1: Port output  
P4DIR6  
0: Port low output  
1: Port high output  
Pin  
P4OUT6  
P46/OSDXI  
P4IN6  
Figure 11-20 P45/OSDXO and P46/OSDXI (Port 4)  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
270  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
I/O Ports  
I/O Port Circuit Diagrams  
0: Pullup off  
1: Pullup on  
P4PUP7  
P4MD7  
P4DIR7  
P4OUT7  
0: P47  
1: HSYNC  
0: Port input  
1: Port output  
0: Port low output  
1: Port high output  
Pin  
P47/HSYNC  
P4IN7  
Schmidt trigger  
HSYNC  
Figure 11-21 P47/HSYNC (Port 4)  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
271  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
I/O Ports  
I/O Port Circuit Diagrams  
0: Pullup off  
1: Pullup on  
P5PUP0  
P5MD0  
0: P50  
1: SYSCLK  
0: Port input  
1: Port output  
P5DIR0  
0: Port low output  
1: Port high output  
0
1
P5OUT0  
Pin  
M
U
X
SYSCLK or  
divided SYSCLK output  
P50/SYSCLK  
P5IN0  
Figure 11-22 P50/SYSCLK (Port 5)  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
272  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
I/O Ports  
I/O Port Circuit Diagrams  
0: Pullup off  
1: Pullup on  
P5PUP1  
0: P51  
1: YS  
P5MD1  
P5DIR1  
P5OUT1  
0: Port input  
1: Port output  
0: Port low output  
1: Port high output  
0
1
Pin  
M
U
X
P51/YS  
YSOUT  
P5IN1  
Figure 11-23 P51/YS (Port 5)  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
273  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
I/O Ports  
I/O Port Circuit Diagrams  
0: Pullup off  
1: Pullup on  
P5PUP2  
P5MD2  
P5DIR2  
0: P52  
1: IRQ4/VI0  
0: Port input  
1: Port output  
0: Port low output  
1: Port high output  
Pin  
P5OUT2  
P52/IRQ4/VI0  
P5IN2  
Schmidt trigger  
IRQ4/VI0  
Figure 11-24 P52/IRQ4/VI0 (Port 5)  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
274  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
I/O Ports  
I/O Port Circuit Diagrams  
0: Pullup off  
1: Pullup on  
P5PUP3  
P5OUT3  
P5DIR3  
0: Port low output  
1: Port high output  
0: Port input  
1: Port output  
Pin  
P53/  
RST  
P5IN3/  
NTGTRST  
Schmidt trigger  
Figure 11-25 P53/RST (Port 5)  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
275  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
I/O Ports  
I/O Port Circuit Diagrams  
0: Pullup off  
1: Pullup on  
P5PUP4  
P5MD4  
P5DIR4  
0: P54/IRQ5  
1: IRQ5/VSYNC  
0: Port input  
1: Port output  
0: Port low output  
1: Port high output  
Pin  
P5OUT4  
P54/IRQ5/VSYNC  
P5IN4  
IRQ5  
Schmidt trigger  
VSYNC  
Figure 11-26 P54/IRQ5/VSYNC (Port 5)  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
276  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
I/O Ports  
I/O Port Control Registers  
11.3 I/O Port Control Registers  
P0PUP–P5PUP: Ports 0–5 Pullup Resistor Control Registers x’00FFB0’–x’00FFB5’  
P7PUP–P8PUP: Ports 7–8 Pullup Resistor Control Registers x’00FFB8’–x’00FFBA’  
Bit:  
7
6
5
4
3
2
1
0
PnPUP7 PnPUP6 PnPUP5 PnPUP4 PnPUP3 PnPUP2 PnPUP1 PnPUP0  
Do not activate the pullup resis-  
tors when the pins are in output  
mode. This will cause incorrect  
output voltage levels and  
increase power and current con-  
sumption.  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
P6PUP: Port 6 Pullup Resistor Control Register  
x’00FFB6’  
Bit:  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
P6PUP1 P6PUP0  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R/W  
R/W  
The PnPUP registers control the port pullup resistors. The bit number cor-  
responds to the associated pin number. For instance, P0PUP7 applies to the  
P07 pin. These are 8-bit access registers.  
0: Pullup resistor off  
1: Pullup resistor on  
Note that by default the P7P8CNT bit of the PCNT2 register forces the  
pullup resistors on for ports 7 and 8. P7PUP and P8PUP are only valid  
when P7P8CNT is 1.  
P0OUT–P5OUT: Ports 0–5 Output Control Registers  
x’00FFC0’–x’00FFC5’  
x’00FFC8’–x’00FFCA’  
P7OUT–P8OUT: Ports 7–8 Output Control Registers  
Bit:  
7
6
5
4
3
2
1
0
PnOUT7 PnOUT6 PnOUT5 PnOUT4 PnOUT3 PnOUT2 PnOUT1 PnOUT0  
Writing a 0 to P5OUT3 causes a  
reset to occur.  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
P6OUT: Port 6 Output Control Register  
x’00FFC6’  
Bit:  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
P6OUT1 P6OUT0  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R/W  
R/W  
The PnOUT registers contain the port output data. The bit number corre-  
sponds to the associated pin number. For instance, P0OUT7 applies to the  
P07 pin. These are 8-bit access registers.  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
277  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
I/O Ports  
I/O Port Control Registers  
P0IN–P5IN: Ports 0–5 Input Registers  
P7IN–P8IN: Ports 7–8 Input Registers  
x’00FFD0’–x’00FFD5’  
x’00FFD8’–x’00FFDA’  
Bit:  
7
6
5
4
3
2
1
0
PnIN7  
PnIN6  
PnIN5  
PnIN4  
PnIN3  
PnIN2  
PnIN1  
PnIN0  
Reset:  
R/W:  
Pin  
R
Pin  
R
Pin  
R
Pin  
R
Pin  
R
Pin  
R
Pin  
R
Pin  
R
P6IN: Port 6 Input Register  
x’00FFD6’  
Bit:  
7
6
5
4
3
0
2
0
1
0
0
0
0
0
P6IN1  
P6IN0  
Reset:  
R/W:  
0
0
0
0
0
0
Pin  
R
Pin  
R
R
R
R
R
R
R
The PnIN registers contain the port input data. The bit number corresponds  
to the associated pin number. For instance, P0IN7 applies to the P07 pin.  
These are 8-bit access registers.  
P0DIR–P5DIR: Ports 0–5 I/O Control Registers  
P7DIR–P8DIR: Ports 7–8 I/O Control Registers  
x’00FFE0’–x’00FFE5’  
x’00FFE8’–x’00FFEA’  
Bit:  
7
6
5
4
3
2
1
0
PnDIR7 PnDIR6 PnDIR5 PnDIR4 PnDIR3 PnDIR2 PnDIR1 PnDIR0  
When using P57 as a port, set  
SIFSEL0 (PCNT0 x’FF90’ bp12)  
to ’0’.  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
P6DIR: Port 6 I/O Control Register  
x’00FFE6’  
Bit:  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
P6DIR1 P6DIR0  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R/W  
R/W  
The PnDIR registers control the I/O direction of the ports. The bit number  
corresponds to the associated pin number. For instance, P0DIR7 applies to  
the P07 pin. These are 8-bit access registers.  
0: Input  
1: Output  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
278  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
I/O Ports  
I/O Port Control Registers  
P0MD: Port 0 Output Mode Register  
x’00FFF0’  
Bit:  
7
6
5
4
3
2
1
0
P0MD7 P0MD6 P0MD5 P0MD4 P0MD3 P0MD2 P0MD1 P0MD0  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
P0MD is an 8-bit access register.  
P0MD7: P07 function switch  
0: P07  
1: ADIN4  
P0MD6: P06 function switch  
0: P06  
1: ADIN3  
P0MD5: P05 function switch  
0: P05  
1: ADIN2  
P0MD4: P04 function switch  
0: P04  
1: ADIN1  
P0MD3: P03 function switch  
0: P03  
1: ADIN0  
P0MD2: P02 function switch  
0: P02  
1: SCL1  
P0MD1: P01 function switch  
0: P01  
1: SDA1  
P0MD0: P00 output switch  
Control the IRQ0 interrupt enable settings in the interrupt control registers.  
0: P00/RMIN/IRQ0  
1: RMIN/IRQ0  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
279  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
I/O Ports  
I/O Port Control Registers  
P1MD: Port 1 Output Mode Register  
x’00FFF2’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
P1MD P1MD P1MD P1MD P1MD P1MD P1MD P1MD P1MD  
P1MD  
4
P1MD  
2
P1MD  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
Reset:  
R/W:  
0
0
0
0
0
0
0
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W  
R
R/W  
R
R/W  
R
R/W  
P1MD is a 16-bit access register.  
P1MD14: P17 output switch  
0: P17  
1: PWM2  
P1MD[13:12]: P16 output and function switch  
00: P16  
01: ADIN11  
10: PWM1  
11: Reserved  
P1MD[11:10]: P15 output and function switch  
00: P15  
01: ADIN10  
10: PWM0  
11: Reserved  
P1MD[9:8]: P14 output and function switch  
00: P14  
01: ADIN9  
10: STOP  
11: Reserved  
P1MD[7:6]: P13 output switch  
00: P13  
01: ADIN8  
10: WDOUT  
11: Reserved  
P1MD4: P12 function switch  
0: P12/IRQ3  
1: ADIN7  
P1MD2: P11 function switch  
0: P11/IRQ2  
1: ADIN6  
P1MD0: P10 function switch  
Control the IRQ3, IRQ2, and IRQ1 interrupt enable settings in the inter-  
rupt control registers.  
0: P10/IRQ1  
1: ADIN5  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
280  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
I/O Ports  
I/O Port Control Registers  
P2MD: Port 2 Output Mode Register  
x’00FFF4’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
P2MD P2MD P2MD P2MD P2MD P2MD P2MD  
P2MD  
6
P2MD  
4
P2MD  
2
P2MD  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
Reset:  
R/W:  
0
0
0
0
0
0
0
0
0
R
R/W R/W R/W R/W R/W R/W R/W  
R
R/W  
R
R/W  
R
R/W  
R
R/W  
P2MD is a 16-bit access register.  
P2MD14: P27 function switch  
To use TM0IO as an output pin, set this bit to 1 and set the P2DIR7 bit to 1.  
0: P27  
1: TM0IO  
P2MD[13:12]: P26 output and function switch  
To use TM4IOA as an output pin, set this field to b’01’ and set the P2DIR6  
bit to 1.  
00: P26  
01: TM4IOA  
10: SBO1  
11: Reserved  
P2MD[11:10]: P25 output and function switch  
If you set this field to b’10’, select SBI1 or SBD1 in bit 11 of PCNT0. To  
use TM4IOB as an output pin, set this field to b’01’ and set the P2DIR5 bit  
to 1.  
00: P25  
01: TM4IOB  
10: SBI1 or SBD1  
11: Reserved  
P2MD[9:8]: P24 output and function switch  
To use SBT1 as an input, set this field to b’00’ and set the P2DIR4 bit to 0.  
00: P24  
01: TM4IC  
10: SBT1  
11: Reserved  
P2MD6: P23 output switch  
0: P23  
1: PWM6  
P2MD4: P22 output switch  
0: P22  
1: PWM5  
P2MD2: P21 output switch  
0: P21  
1: PWM4  
P2MD0: P20 output switch  
0: P20  
1: PWM3  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
281  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
I/O Ports  
I/O Port Control Registers  
P3MD: Port 3 Output Mode Register  
x’00FFF6’  
Bit:  
7
6
5
4
3
2
1
0
P3MD7 P3MD6 P3MD5 P3MD4 P3MD3 P3MD2 P3MD1 P3MD0  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
P3MD is an 8-bit access register.  
P3MD7: P37 output switch  
If you set this field to 1, select DABOUT or B in the RGBC bit of ODS1.  
0: P37  
1: DABOUT or B  
P3MD6: P36 output switch  
If you set this field to 1, select DAGOUT or G in the RGBC bit of ODS1.  
0: P36  
1: DAGOUT or G  
P3MD5: P35 output switch  
If you set this field to 1, select DAROUT or R in the RGBC bit of ODS1.  
0: P35  
1: DAROUT or R  
P3MD4: P34 function switch  
0: P34  
1: VREF  
P3MD[3:1]: P33-P30 function switch  
Set P3MD3 to 1 only when P3MD[2:1] is 01; otherwise, set it to 0.  
000: P30/P31/P32/P33  
101: CLH/CVBS0/P32/CLL  
010: CLH/P31/CVBS1/CLL  
011: CLH/CVBS0/CVBS1/CLL  
P3MD0  
This bit exists, but contains no function.  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
282  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
I/O Ports  
I/O Port Control Registers  
P4MD: Port 4 Output Mode Register  
x’00FFF8’  
Bit:  
7
6
5
4
3
2
1
0
P4MD7 P4MD6 P4MD5 P4MD4 P4MD3 P4MD2 P4MD1 P4MD0  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
P4MD is an 8-bit access register.  
P4MD7: P47 function switch  
0: P47/NHSYNC  
1: NHSYNC  
P4MD6  
This bit exists, but contains no function.  
P4MD5: P45 function switch  
To use P45 or P46, set the OSCSEL[1:0] field of OSD1 to b’00’.  
0: P45/OSDXO  
1: P46/OSDXI  
P4MD4: P44 output switch  
0: P44/TM5IC/HI0  
1: TM5IC/HI0  
P4MD3: P43 output switch  
To use TM5IOB as an output pin, set this bit to 1 and set the P4DIR3 bit to 1.  
0: P43/HI1  
1: TM5IOB/HI1  
P4MD2: P42 output switch  
To use TM5IOA as an output pin, set this bit to 1 and set the P4DIR2 bit to  
1.  
0: P42  
1: TM5IOA  
P4MD1: P41 output switch  
To use TM1IO as an output pin, set this bit to 1 and set the P4DIR1 bit to 1.  
0: P41  
1: TM1IO  
P4MD0: P40 output switch  
If you set this bit to 1, select DAYMOUT or YM in the YCNT bit of  
ODS1.  
0: P40  
1: YM/DAYMOUT  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
283  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
I/O Ports  
I/O Port Control Registers  
P5MD: Port 5 Output Mode Register  
x’00FFFA’  
Bit:  
7
6
5
4
3
2
1
0
P5MD7 P5MD6 P5MD5 P5MD4 P5MD3 P5MD2 P5MD1 P5MD0  
Reset:  
R/W:  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
P5MD is an 8-bit access register.  
P5MD7: P57 output switch  
To use SBT0 as an input pin, set this field to 0 and set the P5DIR7 bit to 0.  
0: P57  
1: SBT0  
P5MD6: P56 output switch  
If you set this bit to 1, select SBI0 or SBD0 in the bit 10 of PCNT0.  
0: P56  
1: SBI0/SBD0  
P5MD5: P55 output switch  
0: P55  
1: SBO0  
P5MD4: P54 function switch  
0: P54/IRQ5/VSYNC  
1: IRQ5/VSYNC  
P5MD3  
This bit exists, but contains no function.  
P5MD2: P52 output switch  
0: P52/IRQ4/VI0  
1: IRQ4/VI0  
P5MD1: P51 output switch  
0: P51  
1: YS  
P5MD0: P50 output switch  
If you set this bit to 1, set the SYSCLK frequency in bits [15:14] of PCNT0.  
0: P50  
1: SYSCLK/divided SYSCLK output  
P6MD: Port 6 Output Mode Register  
x’00FFFC’  
Bit:  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
P6MD1 P6MD0  
Reset:  
R/W:  
0
R
0
R
0
R
0
R
0
R
0
R
0
R/W  
0
R/W  
P6MD is an 8-bit access register.  
P6MD1: P61 function switch  
0: P61  
1: SCL0  
P6MD0: P60 function switch  
0: P60  
1: SDA0  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
284  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
I/O Ports  
I/O Port Control Registers  
PCNT0: Port Control Register 0  
x’00FF90’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
SCLK SCLK OD  
OD  
SIF  
SIF  
I2C  
I2C  
OSD PLL ADC1 ADC0 HCNT RMC VBI1 VBI0  
F1  
0
F0 ASCI1 ASCI0 SEL1 SEL0 SEL1 SEL0 POFF POFF ON  
ON  
OFF  
OFF  
OFF  
OFF  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R/W: R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W  
PCNT0 is a 16-bit access register.  
SCLKF[1:0]: SYSCLK frequency select  
00: SYSCLK x 214 (732.42 Hz)  
01: VCOCLK x 3  
10: SYSCLK x 2  
Enable PWM (set PCNT1 bit 1  
to 1) if you are outputting f  
11: SYSCLK  
SY-  
14  
/2  
.
SCLK  
ODASCI1: Serial port 1 output switch  
1: Push-pull  
0: Open-drain  
ODASCI0: Serial port 0 output switch  
To use P57 as a port, set this bit to 0.  
1: Push-pull  
0: Open-drain  
SIFSEL1: Serial port 1 interface select  
0: Three-line (enable SBI1, SBO1, SBT1)  
1: Two-line (enable SBD1, SBT1)  
SIFSEL0: Serial port 0 interface select  
0: Three-wire (enable SBI0, SBO0, SBT0)  
1: Two-wire (enable SBD0, SBT0)  
I2CSEL1: SDA1, SCL1 enable  
0: Disable  
1: Enable  
To use P01/SDA1 and P02/SCL1 as general-purpose port pins, you must  
both select the ports in the port mode register and disable this bit.  
I2CSEL0: SDA0, SCL0 enable  
0: Disable  
1: Enable  
To use P60/SDA0 and P61/SCL0 as general-purpose port pins, you must  
both select the ports in the port mode register and disable this bit.  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
285  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
I/O Ports  
I/O Port Control Registers  
OSDPOFF: OSD circuit enable  
Setting this bit to 0 shuts off the system clock supply to the OSD block,  
reducing power dissipation. The program must write a 1 to this bit before  
writing any values to the OSD registers.  
To turn off the OSD block to save  
power:  
0: Disable  
1: Enable  
1. Write a 0 to OSD (OSD1, bit  
10).  
PLLPOFF: PLL circuit enable  
0: Enable  
2. Wait for the next VSYNC input.  
3. Write a 0 to OSDPOFF (PCNT0,  
bit 7), turning the clock off.  
If you turn the clock off before the  
VSYNC input, power usage may  
not drop or the microcontroller  
1: Stop  
ADC1ON: ADC circuit enable for closed-caption decoder 1  
0: Disable  
1: Enable  
may halt  
.
ADC0ON: ADC circuit enable for closed-caption decoder 0  
0: Disable  
1: Enable  
HCNTOFF: H counter circuit enable  
0: Enable  
1: Disable  
RMCOFF: IR remote signal receiver circuit enable  
0: Enable  
1: Disable  
VBI1OFF: Closed-caption decoder 1 circuit enable  
0: Enable  
1: Disable  
VBI0OFF: Closed-caption decoder 0 circuit enable  
0: Enable  
1: Disable  
Setting the HCNTOFF, RMCOFF, VBI1OFF, or VBI0OFF bits to 1 shuts  
off the system clock supply to the associated block, which reduces power  
dissipation.  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
286  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
I/O Ports  
I/O Port Control Registers  
PCNT2: Port Control Register 2  
x’00FF92’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
0
6
0
5
4
0
3
0
2
1
0
P7P8  
CNT  
I2C PWM OSD  
OFF  
(Test Bits)  
OFF REGE  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W  
P7P8CNT: Ports 7 and 8 forced pullup  
Ports 7 and 8 are only available in the quad flat package.  
0: Pull up  
1: Don’t pull up  
Always set bits 7 to 3 of PCNT2  
to 0.  
2
I2COFF: I C function enable  
0: Enable  
1: Disable  
PWMOFF: PWM function enable  
0: Enable  
You cannot read from or write to  
the registers associated with a  
function that is disabled.  
1: Disable  
Setting the I2COFF or PWMOFF bits to 1 shuts off the system clock sup-  
ply to the associated block, which reduces power dissipation.  
OSDREGE: OSD registers read/write enable  
To read or write to the OSD registers, you must first set this bit to 1.  
0: Disable  
1: Enable  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
287  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
ROM Correction  
Description  
12 ROM Correction  
12.1 Description  
The ROM correction function can correct the program data in any address within  
the 256-kilobyte ROM. (It cannot correct OSD ROM data.) A maximum of  
sixteen addresses can be corrected. Addresses are set as address match interrupts.  
This function shortens time-to-market for large-scale designs, since changes can  
be implemented in the software after the mask ROM is complete.  
The ROM correction function has numerous other applications. For instance, you  
can insert keywords into the functional routines, then use the function to send  
internal status information to an external location. This enables system-level  
examination of the internal status even with the mask ROM version.  
To use the ROM correction function, embed a routine such as that shown in  
figure 12-2 in the ROM.  
Start  
ROM  
Is ROM  
No  
correction  
required?  
Yes  
Necessary  
software settings  
ROM  
address  
ROM  
correction  
Set up the  
correction data  
Enable the  
correction function  
Instruction  
counter  
Instruction  
fetch  
CPU  
Main  
Figure 12-1 ROM Area Schematic Diagram  
Figure 12-2 ROM Correction Flow  
As figure 12-1 shows, the function lies between the microcontroller and ROM  
blocks. First set the correction data for any sixteen non-OSD addresses in the  
ROM correction address match and data registers. (Follow the flow shown in  
figure 12-2.) Once this is done, the circuit will correct the ROM output for the  
designated addresses.  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
288  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
ROM Correction  
Block Diagram  
12.2 Block Diagram  
Figure 12-3 is a block diagram of the ROM correction circuit. A match detection  
circuit constantly monitors the ROM address specified by the CPU instruction  
pointer (IP). When the value matches a correction address, the circuit replaces the  
data output from the ROM with the data in the appropriate correction data  
register. It then sends the corrected data to the CPU.  
Data bus  
ROM  
address  
Correction  
Correction  
address  
data  
ROM  
match  
registers  
registers  
Correction  
address  
Correction  
data  
Match  
detection  
circuit  
ROM correction  
enable  
MUX (selector)  
registers  
IP  
CPU  
Figure 12-3 ROM Correction Block Diagram  
12.3 Programming Considerations  
At reset, the ROM correction address match and data registers contain all 0s.  
Since a reset also disables ROM correction (in ROMCEN), the ROM will still  
operate normally.  
Only read from or write to the address match registers while ROM correction is  
disabled in ROMCEN. Otherwise, an error may occur in the match detection circuit.  
Note that the address match and data registers only allow full-register access (8-  
bit or 16-bit depending on the register). You cannot write to individual bits.  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
289  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
ROM Correction  
ROM Correction Control Registers  
12.4 ROM Correction Control Registers  
Table 12-1 shows the organization of the address match and data registers for  
ROM correction. Write a ROM address to be corrected to an AMCHIHn and  
AMCHILn register pair and write the corrected data to the associated CHDATn  
register. Enable ROM correction for the associated address in the ROMCEN  
register.  
Table 12-1 ROM Correction Address Match and Data Registers  
Address Match Register  
ROM Address  
Data Register  
High Order  
Low Order  
Address 0  
Address 1  
AMCHIH0 x’00FD02’  
AMCHIH1 x’00FD06’  
AMCHIH2 x’00FD0A’  
AMCHIH3 x’00FD0E’  
AMCHIH4 x’00FD12’  
AMCHIH5 x’00FD16’  
AMCHIH6 x’00FD1A’  
AMCHIH7 x’00FD1E’  
AMCHIH8 x’00FD22’  
AMCHIH9 x’00FD26’  
AMCHIHA x’00FD2A’  
AMCHIHB x’00FD2E’  
AMCHIHC x’00FD32’  
AMCHIHD x’00FD36’  
AMCHIHE x’00FD3A’  
AMCHIHF x’00FD3E’  
AMCHIL0 x’00FD00’  
AMCHIL1 x’00FD04’  
AMCHIL2 x’00FD08’  
AMCHIL3 x’00FD0C’  
AMCHIL4 x’00FD10’  
AMCHIL5 x’00FD14’  
AMCHIL6 x’00FD18’  
AMCHIL7 x’00FD1C’  
AMCHIL8 x’00FD20’  
AMCHIL9 x’00FD24’  
AMCHILA x’00FD28’  
AMCHILB x’00FD2C’  
AMCHILC x’00FD30’  
AMCHILD x’00FD34’  
AMCHILE x’00FD38’  
AMCHILF x’00FD3C’  
CHDAT0 x’00FD40’  
CHDAT1 x’00FD44’  
CHDAT2 x’00FD48’  
CHDAT3 x’00FD4C’  
CHDAT4 x’00FD50’  
CHDAT5 x’00FD54’  
CHDAT6 x’00FD58’  
CHDAT7 x’00FD5C’  
CHDAT8 x’00FD60’  
CHDAT9 x’00FD64’  
CHDAT10 x’00FD68’  
CHDAT11 x’00FD6C’  
CHDAT12 x’00FD70’  
CHDAT13 x’00FD74’  
CHDAT14 x’00FD78’  
CHDAT15 x’00FD7C’  
Address 2  
Address 3  
Address 4  
Address 5  
Address 6  
Address 7  
Address 8  
Address 9  
Address 10  
Address 11  
Address 12  
Address 13  
Address 14  
Address 15  
Note: All registers reset to 0.  
ROMCEN: ROM Correction Enable Register  
x’00FCF0’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
ROMC ROMC ROMC ROMC ROMC ROMC ROMC ROMC ROMC ROMC ROMC ROMC ROMC ROMC ROMC ROMC  
EN15 EN14 EN13 EN12 EN11 EN10 EN9  
EN8  
0
EN7  
0
EN6  
0
EN5  
0
EN4  
0
EN3  
0
EN2  
0
EN1  
0
EN0  
0
Reset:  
0
0
0
0
0
0
0
R/W: R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W  
ROMCEN15: Address 15 ROM correction enable  
0: Disable  
1: Enable  
ROMCEN14: Address 14 ROM correction enable  
0: Disable  
1: Enable  
ROMCEN13: Address 13 ROM correction enable  
0: Disable  
1: Enable  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
290  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
ROM Correction  
ROM Correction Control Registers  
ROMCEN12: Address 12 ROM correction enable  
0: Disable  
1: Enable  
ROMCEN11: Address 11 ROM correction enable  
0: Disable  
1: Enable  
ROMCEN10: Address 10 ROM correction enable  
0: Disable  
1: Enable  
ROMCEN9: Address 9 ROM correction enable  
0: Disable  
1: Enable  
ROMCEN8: Address 8 ROM correction enable  
0: Disable  
1: Enable  
ROMCEN7: Address 7 ROM correction enable  
0: Disable  
1: Enable  
ROMCEN6: Address 6 ROM correction enable  
0: Disable  
1: Enable  
ROMCEN5: Address 5 ROM correction enable  
0: Disable  
1: Enable  
ROMCEN4: Address 4 ROM correction enable  
0: Disable  
1: Enable  
ROMCEN3: Address 3ROM correction enable  
0: Disable  
1: Enable  
ROMCEN2: Address 2 ROM correction enable  
0: Disable  
1: Enable  
ROMCEN1: Address 1 ROM correction enable  
0: Disable  
1: Enable  
ROMCEN0: Address 0 ROM correction enable  
0: Disable  
1: Enable  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
291  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
ROM Correction  
ROM Correction Control Registers  
AMCHIH0–AMCHIHF: ROM Correction Address Match Register n (High)  
Bit:  
7
6
5
4
3
2
1
0
CHAD CHAD CHAD CHAD CHAD CHAD CHAD CHAD  
23  
22  
21  
20  
19  
18  
17  
16  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
AMCHIHn is an 8-bit access register.  
CHAD[23:16]: Correction address bits A23 to A16 (A23 = MSB)  
AMCHIL0–AMCHILF: ROM Correction Address Match Register n (Low)  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
CHAD CHAD CHAD CHAD CHAD CHAD CHAD CHAD CHAD CHAD CHAD CHAD CHAD CHAD CHAD CHAD  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Reset:  
R/W: R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W  
AMCHILn is a 16-bit access register.  
CHAD[15:0]: Correction address bits A15 to A0  
CHDAT0–CHDAT15: ROM Correction Data Register n  
Bit:  
7
6
5
4
3
2
1
0
CHD  
7
CHD  
6
CHD  
5
CHD  
4
CHD  
3
CHD  
2
CHD  
1
CHD  
0
Reset:  
R/W:  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
CHDATn is an 8-bit access register.  
CHD7: Correction data bit D15 or D7 for address n  
CHD6: Correction data bit D14 or D6 for address n  
CHD5: Correction data bit D13 or D5 for address n  
CHD4: Correction data bit D112 or D4 for address n  
CHD3: Correction data bit D11 or D3 for address n  
CHD2: Correction data bit D10 or D2 for address n  
CHD1: Correction data bit D9 or D1 for address n  
CHD0: Correction data bit D8 or D0 for address n  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
292  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
I2C Bus Controller  
Description  
2
13 I C Bus Controller  
13.1 Description  
The MN102H75K/85K contains one I2C bus controller, fully compliant with the  
I2C specification, that can control one of two I2C bus connections.  
An I2C bus is a simple, two-wire bus for transferring data between ICs. Since it  
requires only two lines, a serial data line (SDA) and a serial clock line (SCL), it  
minimizes interconnections so ICs have fewer pins and there are less PCB tracks.  
The result is smaller and less expensive PCBs. Figure 13-1 shows a typical I2C  
bus application.  
MCU 1  
MCU 2  
Data line (SDA)  
Clock line (SCL)  
Display  
Serial memory  
2
Figure 13-1 Example of I C Bus Application  
In an I2C bus system, devices are considered as masters or slaves when performing  
data transfers. A master is the device that initiates a data transfer on the bus and  
generates the clock signals to permit that transfer. At that time, any device  
addressed is considered a slave. Table 13-1 defines some I2C bus terminology.  
2
Table 13-1 I C Bus Terminology  
Term  
Transmitter  
Receiver  
Master  
Description  
The device that sends the data to the bus  
The device that receives the data from the bus  
The device that initiates a transfer, generates clock signals, and termi-  
nates a transfer  
Slave  
The device addressed by a master  
Multimaster  
More than one device capable of controlling the bus can be connected  
to it. More than one master can attempt to control the bus at the same  
time without corrupting the message. The system is not dependent on  
any single master.  
Arbitration  
Procedure to ensure that, if more than one master simultaneously tries  
to control the bus, only one is allowed to do so and the message is not  
corrupted. The device that loses arbitration becomes the slave of the  
device that wins.  
Synchronization Procedure to synchronize the clock signals of two or more devices  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
293  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
I2C Bus Controller  
Description  
Figure 13-2 shows an example of an I2C bus configuration using two microcon-  
trollers. Both I2C bus lines, SDA and SCL are bidirectional lines, connected to a  
positive supply voltage via a pullup resistor. The open-drain output pins of the  
microcontrollers perform the wired-AND function on the bus. The software  
controls when each microcontroller operates as a transmitter or receiver, or  
whether is in master or slave mode.  
V
DD  
Pullup  
resistors  
R
R
Data line (SDA)  
Clock line (SCL)  
Clock output  
Clock input  
Clock output  
Clock input  
Data  
output  
Data  
output  
Data input  
Data input  
Device 1  
Device 2  
2
Figure 13-2 Connection of Two Microcontrollers to the I C Bus  
Table 13-2 describes the four possible operating modes for devices on the I2C  
bus.  
2
Table 13-2 Operating Modes for Devices on an I C Bus  
Operating Mode  
Description  
Master transmitter  
Device that generates the serial transfer clock (SCL) signal and  
transmits serial data to a slave device in sync with SCL  
Master receiver  
Slave transmitter  
Slave receiver  
Device that generates the SCL signal and receives serial data from  
a slave device in sync with SCL  
Device that transmits data in sync with the SCL signal from the mas-  
ter  
Device that receives data in sync with the SCL signal from the master  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
294  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
I2C Bus Controller  
Description  
Figure 13-3 shows the MN102H75K/85K operation sequence in each of these  
modes. In all modes, the I2C bus controller generates an interrupt after each data  
byte transfer, then the software loads the next data byte.  
Interrupt  
Interrupt  
Interrupt  
MN102H51K  
R/W = 0  
Address  
(7 bits)  
S
R/W  
Data (8 bits)  
Data (8 bits)  
P
Master  
ACK  
ACK  
ACK  
Slave  
Normally ACK = 0  
A. Master Transmitter  
ACK = 1 signals transfer  
end to slave transmitter.  
Interrupt  
Interrupt  
Interrupt  
MN102H51K  
R/W = 1  
Address  
S
R/W  
ACK  
ACK  
P
Master  
Slave  
(7 bits)  
ACK Data (8 bits)  
Data (8 bits)  
B. Master Receiver  
R/W = 1  
R/W  
Ack = 1  
ACK  
Ack = 0  
ACK  
Address  
(7 bits)  
S
P
Master  
Slave  
ACK Data (8 bits)  
Data (8 bits)  
MN102H51K  
Interrupt  
Interrupt  
Interrupt  
When the microcontroller is addressed,  
it outputs ACK = 0 and sets the AAS bit  
of the I2CDREC register to 1.  
ACK = 1 signals transfer  
end to slave transmitter.  
C. Slave Transmitter  
R/W = 0  
R/W  
Address  
(7 bits)  
S
Data (8 bits)  
Data (8 bits)  
P
Master  
Slave  
ACK  
ACK  
ACK  
MN102H51K  
Interrupt  
Interrupt  
Interrupt  
When the microcontroller is addressed,  
it outputs ACK = 0 and sets the AAS bit  
of the I2CDREC register to 1.  
Interrupt  
STS sets to 1.  
D. Slave Receiver  
2
Figure 13-3 I C Bus Interface Operation  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
295  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
I2C Bus Controller  
Block Diagram  
13.2 Block Diagram  
SDA  
Digital  
filter  
D[14 :0]  
Bus buffer  
Parallel-to-serial  
converter  
MSB Transmission data register LSB  
MSB Reception data register LSB  
Address comparator  
Data bus  
controller  
Serial-to-parallel  
converter  
SCL  
Digital  
filter  
Address register  
Clock register  
Clock  
controller  
Control register  
Status register  
STA STO ACK  
MODE STS LRB AAS LAB BB  
Bus busy logic  
Arbitration logic  
Clock prescaler  
Register control  
I2C sequence controller  
2
Figure 13-4 I C Bus Controller Block Diagram  
13.3 Functional Description  
The I2C bus controller contains the registers shown in table 13-3. See the page  
number indicated for register and bit descriptions.  
Table 13-3 Control Registers for Clamping Circuit  
Register Page Address  
Description  
2
I2CDTRM  
I2CDREC  
I2CMYAD  
I2CCLK  
304  
305  
305  
306  
306  
306  
x’007E40’ I C transmission data register  
2
x’007E42’ I C reception data register  
2
x’007E44’ I C self address register  
2
x’007E46’ I C clock control register  
2
I2CBRST  
I2CBSTS  
x’007E48’ I C bus reset register  
2
x’007E4A’ I C bus status register  
Arbitration and bus busy control  
The I2C bus controller allows software control, but implements communication  
timing and bus arbitration completely in the hardware.  
Arbitration: Controlled by the software, but implemented completely  
in the hardware.  
Bus busy: Checked by the hardware. This eliminates the need for the  
software to check whether the bus is busy. The program can request a  
transfer to the I2C bus at any time.  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
296  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
I2C Bus Controller  
Functional Description  
2
Register settings conversions to I C protocol  
The I2C bus controller converts the data in the I2CDTRM register to the I2C  
protocol.  
Transfer modes changes  
A write to the I2CDTRM register indicates the transfer mode (master transmitter/  
receiver or slave transmitter/receiver) for a new transfer. To minimize software  
control, the hardware generates an interrupt each time a transfer ends. During  
interrupt servicing, the SCL line stays low, then clears to high on a write to  
I2CDTRM. (When the microcontroller is a slave transmitter and the transfer  
ends, SCL goes high on a read to the I2CDREC register after an ACK = 1  
(negative acknowledge) interrupt.)  
Multimaster support  
The hardware performs bus arbitration for a multimaster system. When it loses  
an arbitration, the hardware immediately stops the data transfer and generates an  
interrupt.  
Address decoding  
The I2C bus controller decodes the microcontroller’s address, set in the  
I2CMYAD register, when the microcontroller is a slave device. It also decodes  
the general code address (0).  
Forced bus reset  
Through software control, by a write to the I2CBRST register, the I2C bus con-  
troller can force the SCL line to reset to low when a bus error occurs. This resets  
the entire I2C bus controller circuit, leaving the microcontroller in slave receiver  
mode. It does not change the contents of the I2CMYAD and I2CCLK registers.  
Clock frequency adjustment  
The I2CCLK register sets the serial clock frequency, allowing synchronization  
with low-speed devices. With a 12-MHz oscillator, the maximum setting is 100  
kHz and the minimum setting is 10 kHz.  
Bus state monitoring  
With the I2CBSTS register, the I2C bus controller determines the logic levels of  
the SCL and SDA lines.  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
297  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
I2C Bus Controller  
2
Setting Up the I C Bus Connection  
2
13.4 Setting Up the I C Bus Connection  
Set the I2C connection in the I2CSEL0 and I2CSEL1 bits of the PCNT0 register  
(x’00FF90’). Since the SCL0, SDA0, SCL1, and SDA1 pins also serve as  
general-purpose port pins, and reset to the general-purpose function, you must set  
these bits every time the program uses the I2C function. You must also select the  
I2C function in the port mode registers. For I2C bus connection 0, set bits 0 and 1  
of the P6MD register (x’00FFFC’). For I2C bus connection 1, set bits 1 and 2 of  
the P0MD register (x’00FFF0’).  
Table 13-4 shows the register settings required to use either SDA0/SCL0 or  
SDA1/SCL1 alone, and figure 13-5 shows the control circuit for this pin setup.  
Table 13-4 Registers Settings for SDA0/SCL0 or SDA1/SCL1 Ports  
Register  
Bit  
1
SDA0, SCL0 Only  
0 (selects P01)  
SDA1, SCL1 Only  
1 (selects SDA1)  
P0MD (x’00FFF0)  
2
0 (selects P02)  
1 (selects SCL1)  
P6MD (x’00FFFC’)  
PCNT0 (x’00FF90’)  
0
1 (selects SDA0)  
0 (selects P60)  
1
1 (selects SCL0)  
0 (selects P61)  
8
1 (enables SDA0, SCL0)  
0 (disables SDA1, SCL1)  
0 (disables SDA0, SCL0)  
1 (enables SDA1, SCL1)  
9
Port control register 0  
x'00FF90' bit 8  
I2CSEL0  
1: on  
0: off  
SDA 0  
SDA1  
I2CSEL0  
x'00FF90' bit 9  
SDA IN  
SDA OUT  
Port control register 0  
x'00FF90' bit 8  
I2CSEL0  
2
I C  
Circuit  
SCL0  
SCL1  
I2CSEL0  
x'00FF90' bit 9  
SCL IN  
SCL OUT  
2
Figure 13-5 Pin Control Circuit for the I C Bus Controller  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
298  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
I2C Bus Controller  
SDA and SCL Waveform Characteristics  
13.5 SDA and SCL Waveform Characteristics  
Figure 13-6 and table 13-5 provide the timing definitions and specifications for  
the for the MN102H75K/85K I2C bus interface.  
P
Sr  
S
P
SDA  
SCL  
tBUF  
tSU; STA  
tHD; STA  
tSU; STO  
tSU; DAT  
tHD; DAT  
tHD;STA  
tLOW  
tR  
tHIGH  
tF  
Figure 13-6 SDA and SCL Waveforms  
Table 13-5 SDA and SCL Waveform Characteristics  
Parameter  
SCL clock frequency  
Symbol Min  
Max  
100  
Unit  
kHz  
µs  
f
0
SCL  
BUF  
Bus free time between a stop and start condition  
Hold time (repeated) start condition  
Low period of the SCL clock  
High period of the SCL clock  
Setup time for a repeated start condition  
Data hold time  
t
20  
t
4.0  
4.7  
4.0  
4.7  
300  
250  
HD;STA  
t
LOW  
t
HIGH  
t
SU;STA  
t
ns  
µs  
HD;DAT  
Data setup time  
t
SU;DAT  
SDA and SCL rise time  
t
1000  
300  
R
SDA and SCL fall time  
t
F
Stop condition setup time  
t
4.0  
SU;STO  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
299  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
I2C Bus Controller  
I C Interface Setup Examples  
2
2
13.6 I C Interface Setup Examples  
13.6.1 Setting Up a Transition from Master Transmitter to Mas-  
ter Receiver  
This example demonstrates how to set up a data transfer when changing from  
master transmitter to master receiver. Figure 13-7 shows an example waveform.  
13.6.1.1Pre-configuring  
To set up the I/O port:  
Set port control register 0 (PCNT0; x’00FF90’) to x’0100’ (enabling the SDA0  
and SCL0 pins) and set the port 6 output mode register (P6MD; x’00FFFC’) to  
x’0003’ (selecting the SDA0 and SCL0 functions).  
2
To enable I C interrupts:  
Set the I2C interrupt control register pair (I2C0ICH and I2C0ICL; x’00FC9C’) to  
x’0100’.  
2
To set up the I C registers:  
1. Set the I2CCLK register (x’007E46’) to x’0041’, selecting a clock frequency  
of 80 kHz.  
2. Set the I2CDTRM register (x'007E40') to x'05FD'. This sets STA to 1, STP  
to 0, and ACK to 0. Bits 7 to 1 of the transmission data setting (x'FD') indi-  
cate the address (b'1111110') of the slave device from which the microcon-  
troller will request the data, and bit 0 indicates the read/write setting (bit 0 =  
1 = read).  
13.6.1.2Setting Up the First Interrupt  
When an ACK = 0 signal returns from the slave device, the I2C bus controller  
generates an interrupt. At this point, implement the following settings:  
To set up the interrupt:  
Set the I2C0ICH and I2C0ICL register pair (x’00FC9C’) to x’0100’. This  
enables I2C interrupts and clears the previous interrupt request.  
2
To set up the I C registers:  
1. Read the I2CDREC register (x’007E42’) to determine the I2C bus controller  
status.  
2. Since the microcontroller will become a receiver on the next operation, set  
the I2CDTRM register (x’007E40’) to x’0000’. This sets STA, STP, ACK,  
and the transmission data to 0s. With this setting, the microcontroller returns  
an ACK = 0 signal on the ninth clock.  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
300  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
I2C Bus Controller  
2
I C Interface Setup Examples  
13.6.1.3Setting Up the Second Interrupt  
When the microcontroller receives the data x’85’ from the slave device, it returns  
an ACK = 0 signal and the I2C bus controller generates an interrupt. At this point,  
implement the following settings:  
To set up the interrupt:  
Set the I2C0ICH and I2C0ICL register pair (x’00FC9C’) to x’0100’. This  
enables I2C interrupts and clears the previous interrupt request.  
2
To set up the I C registers:  
1. Read the I2CDREC register (x’007E42’) to determine the I2C bus controller  
status.  
2. Since the communication will end when the microcontroller receives the  
next data byte, set the I2CDTRM register (x’007E40’) to x’0100’. This sets  
STA to 0, STP to 0, ACK to 1, and the transmission data to x’00’. With this  
setting, the microcontroller returns an ACK = 1 signal on the ninth clock.  
13.6.1.4Setting Up the Third Interrupt  
When the microcontroller receives the data x’33’ from the slave device, it returns  
an ACK = 1 signal and the I2C bus controller generates an interrupt. At this point,  
implement the following settings:  
To set up the interrupt:  
Set the I2C0ICH and I2C0ICL register pair (x’00FC9C’) to x’0100’. This  
enables I2C interrupts and clears the previous interrupt request.  
2
To set up the I C registers:  
1. Read the I2CDREC register (x’007E42’) to determine the I2C bus controller  
status.  
2. Since the transfer has ended, set the I2CDTRM register (x’007E40’) to  
x’0300’. This sets STA to 0, STP to 1, ACK to 1, and the transmission data  
to x’00’. With this setting, the microcontroller issues a stop condition and  
frees the bus.  
Data  
(slave address)  
ACK  
R/W  
ACK  
S
ACK  
P
1
0
0
1
0
0
1
0
1
1
0
1
0
0
1
1
1
0
0
1
1
1
1
0
1
1
0
SDA  
SCL  
Note: The circled areas are signals output from the MN102H75K/85K.  
Figure 13-7 Waveform for Master Transmitter Transitioning to Master Receiver  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
301  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
I2C Bus Controller  
I C Interface Setup Examples  
2
13.6.2 Setting Up a Transition from Slave Receiver to Slave  
Transmitter  
This example demonstrates how to set up a data transfer when changing from  
slave receiver to slave transmitter. Figure 13-8 shows an example waveform.  
13.6.2.1Pre-configuring  
To set up the I/O port:  
Set port control register 0 (PCNT0; x’00FF90’) to x’0300’ (enabling the SDA1  
and SCL1 pins) and set the port 0 output mode register (P0MD; x’00FFF0’) to  
x’0006’ (selecting the SDA1 and SCL1 functions).  
2
To enable I C interrupts:  
Set the I2C interrupt control register pair (I2C0ICH and I2C0ICL; x’00FC9C’) to  
x’0100’.  
2
To set up the I C registers:  
1. Set the I2CMYAD register (x’007E44’) to x’0024’. This sets the slave  
address of the microcontroller.  
2. Set the I2CDTRM register (x’007E40’) to x’0000’. This sets STA, STP,  
ACK, and the transmission data to 0s. With this setting, the microcontroller  
returns an ACK = 0 signal when an address match occurs. The master sends  
data (the slave address) to the slave microcontroller in sync with the master  
clock. When the R/W bit = 1, the microcontroller changes from a slave  
receiver to a slave transmitter.  
13.6.2.2Setting Up the First Interrupt  
Once the microcontroller becomes a slave transmitter, set up the transmission  
data.  
To set up the interrupt:  
Set the I2C0ICH and I2C0ICL register pair (x’00FC9C’) to x’0100’. This  
enables I2C interrupts and clears the previous interrupt request.  
2
To set up the I C registers:  
1. Read the I2CDREC register (x’007E42’) to determine the I2C bus controller  
status. AAS should be 1.  
2. Set the I2CDTRM register (x’007E40’) to x’0155’. This sets STA to 0, STP  
to 0, ACK to 1, and the transmission data to x’55’. The microcontroller does  
not need to issue an ACK signal in this transfer, so the ACK bit should be 1.  
3. Begin transmitting data in sync with the clock from the master.  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
302  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
I2C Bus Controller  
2
I C Interface Setup Examples  
13.6.2.3Setting Up the Second Interrupt  
The master sends an ACK = 0 signal, so the microcontroller must send the next  
data byte. Set up the transmission data as follows:  
To set up the interrupt:  
Set the I2C0ICH and I2C0ICL register pair (x’00FC9C’) to x’0100’. This  
enables I2C interrupts and clears the previous interrupt request.  
2
To set up the I C registers:  
1. Read the I2CDREC register (x’007E42’) to determine the I2C bus controller  
status. The previous read from I2CDREC cleared the AAS, so AAS should  
be 0.  
2. Set the I2CDTRM register (x’007E40’) to x’01AA0’. This sets STA to 0,  
STP to 0, ACK to 1, and the transmission data to x’AA. The microcontroller  
does not need to issue an ACK signal in this transfer, so the ACK bit should  
be 1.  
3. Begin transmitting data in sync with the clock from the master.  
13.6.2.4Setting Up the Third Interrupt  
The master send an ACK = 1 signal, then issues a stop condition, ending the  
communication.  
Data  
(slave address)  
S
ACK  
P
R/W  
ACK  
0
ACK  
1
1
1
0
1
1
1
0
0
1
0
1
0
0
0
0
1
0
0
1
0
0
0
0
1
1
SDA  
SCL  
Note: The circled areas are signals output from the MN102H75K/85K.  
Figure 13-8 Waveform for Slave Receiver Transitioning to Slave Transmitter  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
303  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
I2C Bus Controller  
I C Bus Interface Registers  
2
2
13.7 I C Bus Interface Registers  
All registers in I2C blook cannot be written by byte (by word only). Read by byte  
is possible.  
2
I2CDTRM: I C Transmission Data Register  
x’007E40’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
STA  
STO ACK DT7  
DT6  
DT5  
DT4  
DT3  
DT2  
DT1  
DT0  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W  
2
STA: I C start control  
2
STO: I C stop control  
Writing to the STA and STO bits allows you to change the state of the  
transmission or reception operation. Table 13-6 shows the settings for dif-  
ferent start and stop conditions.  
SCL is held low during interrupt  
servicing, and is cleared high by  
a write to I2CDTRM.  
Table 13-6 STA and STO Settings  
STA STO  
Mode  
Function  
Description  
0
1
1
0
1
0
All  
All  
NOP  
No state change  
NOP  
Start  
No state change  
Slave receiver  
Change to mode indicated by R/W bit.  
R/W = 0: Change to master transmitter  
R/W = 1: Change to master receiver  
Change to slave receiver after stop  
condition.  
Master transmitter Repeat start  
0
1
Slave receiver  
Stop read  
Master transmitter Stop write  
ACK: Acknowledge signal output control  
The acknowledge signal is output after every byte transfer, on the ninth  
clock pulse. ACK is normally 1 and transitions to 0 to output an acknowl-  
edge (for instance if the master or slave receiver has received a data byte).  
DT[7:0]: Data to be transmitted  
The parallel data in this field is converted to serial data for transmission to  
the I2C bus. It is shifted out MSB first to the interface.  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
304  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
I2C Bus Controller  
2
I C Bus Interface Registers  
2
I2CDREC: I C Reception Data Register  
x’007E42’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
MODE MODE  
STS  
LRB AAS LAB  
BB  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
1
0
Reset:  
R/W:  
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
The I2CDREC register contains the status bits for monitoring the device  
and the reception data. I2CDREC is a read-only register.  
2
MODE[1:0]: I C device mode  
This field indicates which I2C mode the microcontroller is in. MODE1  
indicates slave or master, and MODE0 indicates receiver or transmitter. If  
the microcontroller loses an arbitration or if a stop condition occurs, the  
hardware clears MODE[1:0] to b’00’.  
00: Slave receiver  
10: Master receiver  
01: Slave transmitter  
11: Master transmitter  
STS: Stop condition at slave receiver  
Set to 1 when a stop condition is detected while the microcontroller is in  
slave receiver mode.  
LRB: Last received bit.  
Stores the last serial data bit received. LRB normally indicates the ACK  
cycle data.  
AAS: Addressed as slave  
Set to 1 when the slave address on the bus matches the contents of the  
address register or matches the general address (x’00’). AAS resets after a  
read from the I2CDREC register.  
LAB: Lost arbitration bit  
Set to 1 when the microcontroller loses a bus arbitration. LAB resets when  
I2CDTRM indicates a start condition (STA = 1).  
BB: Bus busy bit  
A start condition on the bus sets this flag to 0, and a stop condition resets it  
to 1. The microcontroller considers the bus to be busy as long as BB = 0.  
D[7:0]: Received data  
The serial data received from the I2C bus is shifted into this field MSB  
first.  
2
I2CMYAD: I C Self Address Register  
x’007E44’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
A6  
A5  
A4  
A3  
A2  
A1  
A0  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R/W R/W R/W R/W R/W R/W R/W  
A[6:0]: Microcontroller address  
This register is formed from a 7-bit field address latch. It holds the micro-  
controller’s own address, used for a compare when the microcontroller is  
addressed as a slave. When a match occurs, AAS is set to 1.  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
305  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
I2C Bus Controller  
I C Bus Interface Registers  
2
2
I2CCLK: I C Clock Control Register  
x’007E46’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
C9  
C8  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W  
C[9:0]: Output clock frequency select  
This 10-bit field determines the SCL output. With a 12-MHz system clock,  
calculate the frequency as follows:  
To conform to the specification,  
the clock signal must be  
12 MHz  
2 × (Register setting + 10)  
f
= --------------------------------------------------------------------  
SCL  
between 0 and 100 kHz. To sat-  
isfy this requirement, always set  
I2CCLK to x’032’ or higher.  
In this case, the following settings apply:  
x’032’: 100 kHz  
x’039’: 89.6 kHz  
x’041’: 80 kHz  
x’04C’: 69.8 kHz  
x’05A: 60 kHz  
x’06E’: 50 kHz  
x’08C’: 40 kHz  
x’0BE’:30 kHz  
x’122’: 20 kHz  
x’24E’: 10 kHz  
2
I2CBRST: I C Bus Reset Register  
x’007E48’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
BRST  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R/W  
BRST: Bus reset  
When a serious bus error occurs, this bit can be set to 0, forcing the clock  
line low and resetting the I2C bus. This function works in all I2C modes.  
After a forced reset, the microcontroller is in slave receiver mode. This reset  
does not change the contents of the I2CMYAD and I2CCLK registers.  
0: Force bus to reset  
1: Steady state  
2
I2CBSTS: I C Bus Status Register  
x’007E4A’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
SDAS SCLS  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
I2CBSTS is a two-bit, read-only register that monitors the status of the I2C  
bus.  
SDAS: SDA data line status  
This bit monitors the state of the I2C data line, SDA.  
SCLS: SCL clock line status  
This bit monitors the state of the I2C clock line, SCL.  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
306  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
H Counter  
Description  
14 H Counter  
14.1 Description  
The MN102H75K/85K contains two H counter circuits that can be used to count  
the HSYNC signal. Each H counter consists of a 10-bit counter and 10-bit  
register.  
14.2 Block Diagram  
Selected in SELR[20:00]/SELR[21:01] fields  
of HCCNT0/HCCNT1 registers.  
VI0  
VSYNC  
Selected in REDG0/REDG1 bits  
of HCCNT0/HCCNT1 registers.  
1024 µs  
M
Polarity  
switch  
U
X
2048 µs  
4096 µs  
8192 µs  
PWM10  
waveform  
Divider  
341-µs signal  
from PWM block  
Reset  
Count source  
Polarity  
switch  
10-bit counter  
Latch  
HI0/HI1  
HI0 for H counter 0, and  
HI1 for H counter 1  
Selected in SEDG0/SEDG1 bits  
of HCCNT0/HCCNT1 registers.  
10-bit register  
Data bus  
Figure 14-1 H Counter Block Diagram  
14.3 H Counter Operation  
Figure 14-2 provides a schematic diagram of an example counter operation.  
HI0rising-edge count  
HI0  
Count  
N-2  
N-1  
N
0
1
2
3
Latch  
VSYNC  
Latched on the falling edge of VSYNC  
Register  
setting  
N
Note: In this example, HI0 is active high and VSYNC is active low.  
Figure 14-2 H Counter Operation Example  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
307  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
H Counter  
H Counter Operation  
Figure 14-3 shows the input timing for the count source and reset signals. Never  
input a count source signal in less than 245 ns (t1) after the reset signal input.  
Otherwise, the signal may be counted as part of the previous count cycle.  
HI0counted on the rising edge  
HI0  
t
t
2
1
t
245 ns  
t
200 ns  
1
2
VI0  
VSYNCcounted on thefalling edge  
Note: In this example, HI0 is active high and VSYNC is active low.  
Figure 14-3 H Counter Input Signal Timing  
The 10-bit counter counts the HSYNC signal from 0 to x’3FF’, and the 10-bit  
register stores the count. The H counter uses the four pins shown in table 14-1.  
Table 14-1 H Counter Pins  
Pin No.  
Pin Name  
Description  
Count source pin  
Count source pin  
Count reset pin  
Count reset pin  
Alternative Functions  
P43/TM5IOB  
P44/TM5IC  
H75K  
H85K  
HI0  
17  
45  
HI1  
16  
6
46  
53  
55  
VI0  
P52/IRQ4  
VSYNC  
2
P54/IRQ5  
To use the H counter, set the port 4 and 5 output control registers (P4OUT and  
P5OUT) to 0 and set the H counter pins to input.  
To use HI0, set the P4DIR3 bit (x’00FFE4’) to 0.  
To use HI1, set the P4DIR4 bit (x’00FFE4’) to 0.  
To use VI0, set the P5DIR2 bit (x’00FFE5’) to 0.  
To use VSYNC, set the P5DIR4 bit (x’00FFE5’) to 0.  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
308  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
H Counter  
H Counter Operation  
The H counter counts the HSYNC signal for the interval set in the HCCNT0  
(x’007EB0’) or HCCNT1 (x’007EB2’) register, latches the count value in the 10-  
bit register, then clears the counter. HCCNT0 and HCCNT1 provide six interval  
settings:  
1024-µs fixed interval obtained by dividing the system clock (12 MHz)  
2048-µs fixed interval obtained by dividing the system clock (12 MHz)  
4098-µs fixed interval obtained by dividing the system clock (12 MHz)  
8096-µs fixed interval obtained by dividing the system clock (12 MHz)  
Interval from active-edge to active-edge input of VI0 pin  
Interval from active-edge to active-edge input of VSYNC pin  
(1024, 2048, 4098, or 8096 µs), you must also set up the PWM circuit. (See  
section 10, “Pulse Width Modulator,” on page 249.)  
When the count overflows (is greater than x’3FF’), the counter stops counting  
and stores the value x’3FF’ in the 10-bit register. At any time, the CPU can  
obtain the count value stored in the latch by reading the HCD0 (x’007EB4’) or  
HCD1 (x’007EB6’) register.  
To use the H counter, you must  
always set the HCNTOFF bit of  
the PCNT0 register to 0. To use  
the PWM function, always set  
the PWMOFF bit of the PCNT2  
register (x’00FF92’) to 0.  
To enable or disable the H counter function, set the HCNTOFF bit of the PCNT0  
register (x’00FF90’; see page 286). Disabling this circuit when it is unused can  
reduce power consumption.  
Because the H counter uses the system clock, it does not operate in STOP mode.  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
309  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
H Counter  
H Counter Control Registers  
14.4 H Counter Control Registers  
All registers in H Counter block cannot be written by byte (by word only). Read  
by byte is possible.  
HCCNT0: H Counter Control Register 0  
x’007EB0’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
SED RED SELR SELR SELR  
G0  
G0  
20  
10  
00  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R
R/W R/W R/W R/W R/W  
SEDG0: Polarity select for count source signal (HI0)  
0: Active low  
1: Active high  
SEDG0: Polarity select for reset signal  
0: Active low  
1: Active high  
SELR20:00]: Reset signal select  
000: 1024 µs  
001: 2048 µs  
010: 4096 µs  
011: 8192 µs  
100: VI0  
101: VSYNC  
All other settings default to 1024 µs.  
HCCNT1: H Counter Control Register 1  
x’007EB2’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
SED RED SELR SELR SELR  
G1  
G1  
21  
11  
01  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R
R/W R/W R/W R/W R/W  
SEDG1: Polarity select for count source signal (HI1)  
0: Active low  
1: Active high  
SEDG1: Polarity select for reset signal  
0: Active low  
1: Active high  
SELR[21:01]: Reset signal select  
000: 1024 µs  
001: 2048 µs  
010: 4096 µs  
011: 8192 µs  
100: VI0  
101: VSYNC  
All other settings default to 1024 µs.  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
310  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
H Counter  
H Counter Control Registers  
HCD0: H Counter Data Register 0  
x’007EB4’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
HCD HCD HCD HCD HCD HCD HCD HCD HCD HCD  
90  
80  
70  
60  
50  
40  
30  
20  
10  
00  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
HCD[90:00]: Count from HI0 source signal  
This field stores the HI0 clock source count. It becomes x’3FF’ on over-  
flow.  
HCD1: H Counter Data Register 1  
x’007EB6’  
Bit: 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
HCD HCD HCD HCD HCD HCD HCD HCD HCD HCD  
91  
81  
71  
61  
51  
41  
31  
21  
11  
01  
Reset:  
R/W:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
HCD[91:01]: Count from HI1 source signal  
This field stores the HI1 clock source count. It becomes x’3FF’ on over-  
flow.  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
311  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Register Map  
Appendix ARegister Map  
Table A-1 Register Map: x’007E00’ to x’007FFF’ (Registers in this area cannot be written by byte only by word.)  
20  
MSBs  
4 LSBs  
Description  
F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0
CRI4 CRI3 CRI2 CRI1  
FQW FQW FQW FQW  
VBI  
IRQ  
SL  
CNT  
HNUM SLSF SLHD MAX MIN  
FC  
007E00  
CAPDA  
DATAE  
ACQ1  
DATAS  
VBI 1 registers  
007E10 FCPNUM  
STAP  
CRI2E  
CRI2S  
CRI1E  
CRI1S  
SL  
CRI4 CRI3 CRI2 CRI1  
FQW FQW FQW FQW  
VBI HNUM SLSF SLHD MAX  
MINW CNT FCW  
W
007E20  
CAPDAW ACQ1W  
IRQW  
W
W
W
W
W
W
W
W
VBI 2 registers  
007E30 FCPNUMW STAPW DATAEW DATASW CRI2EW CRI2SW CRI1EW CRI1SW  
2
007E40  
007E50  
007E60  
007E70  
007E80  
007E90  
I2CBSTS I2CBRST I2CCLK I2CMYAD I2CDREC I2CDTRM I C interface registers  
PWM6  
PWM5  
PWM4  
PWM3  
PWM2  
PWM1  
RMIR  
PWM0  
PWM registers  
RML  
D
RMT  
R
RMS  
R
RMC  
S
RMT  
C
RMIS  
007EA0  
Remote signal receiver registers  
H counter registers  
HCO  
UNT1  
HCO  
UNT0  
HCD1  
HCD0  
007EB0  
SYNC  
MIN  
BPLV  
007EC0 HSEP1  
CLAMP  
SPLV  
BPPST SCMING FQSEL  
NFSEL  
HSEP2  
Sync separator 1 registers  
Sync separator 2 registers  
CLPCND  
1
007ED0  
HVCOND VCNT  
HDISTW HLOCKLV FIELD  
SCMING  
BPLV SYNC  
007EE0 HSEP1W CLAMPW SPLVW  
BPPSTW  
MINW  
FQSELW NFSELW  
W
W
HDIS-  
TWW  
HLOCK-  
LVW  
CLPCND1W HVCONDW  
007EF0  
007F00  
VCNTW  
OSD2  
FIELDW HSEP2W  
GROMEN CROMEN  
EVOD HCOVNT OSD3  
OSD1 RAMEND  
D
D
OSD control registers  
007F10  
007F20  
007F30  
007F40  
007F50  
007F60  
007F70  
007F80  
007F90  
007FA0  
007FB0  
007FC0  
007FD0  
007FE0  
007FF0  
CIVP  
STC2  
CIHP  
STC1  
GIVP  
GIHP  
SVP  
SHP  
STC0  
STC3  
SHTC  
HSHT1  
HSHT0  
VSHT1  
VSHT0  
TESTA  
SBFNUM  
(test register) (test register)  
VBI 1 test registers  
VBI 2 test registers  
TESTAW  
SBFNUMW  
(test register) (test register)  
CPT7  
CPTF  
CPT6  
CPTE  
CPT5  
CPTD  
CPT4  
CPTC  
CPT3  
CPTB  
CPT2  
CPTA  
CPT1  
CPT9  
CPT0  
CPT8  
OSD text color palette  
WBSHD BBSHD FRAME  
COLB OSD text effects registers  
GPT17  
GPT1F  
GPT27  
GPT2F  
GPT16  
GPT1E  
GPT26  
GPT2E  
GPT15  
GPT1D  
GPT25  
GPT2D  
GPT14  
GPT1C  
GPT24  
GPT2C  
GPT13  
GPT1B  
GPT23  
GPT2B  
GPT12  
GPT1A  
GPT22  
GPT2A  
GPT11  
GPT19  
GPT21  
GPT29  
GPT10  
OSD graphics color palette 1  
GPT18  
GPT20  
OSD graphics color palette 2  
GPT28  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
312  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Register Map  
Table A-2 Register Map: x’00FC00’ to x’00FDFF’  
20  
MSBs  
4 LSBs  
Description  
F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0
00FC00  
00FC10  
00FC20  
00FC30  
00FC40  
00FC50  
00FC60  
00FC70  
IAGR  
CPUM Special function registers  
IQ1  
ICH  
IQ1  
ICL  
IQ0  
ICH  
IQ0  
ICL  
EI  
ICR  
PI  
ICR  
WD  
ICR  
IQ5  
ICH  
IQ5  
ICL  
IQ4  
ICH  
IQ4  
ICL  
IQ3  
ICH  
IQ3  
ICL  
IQ2  
ICH  
IQ2  
ICL  
VBIW VBIW  
VBI  
ICH  
VBI  
ICL  
TM5UD TM5UD TM5CA TM5CA TM5CB TM5CB  
ICH ICL ICH ICL ICH ICL  
TM4UD TM4UD TM4CA TM4CA TM4CB TM4CB  
ICH ICL ICH ICL ICH ICL  
ICH  
ICL  
ADM0 ADM0 ADM1 ADM1 ADM2 ADM2 ADM3 ADM3 RMC RMC  
TM0UD TM0UD TM1UD TM1UD TM2UD TM2UD Interrupt controller registers  
ICH  
ICL  
ICH  
ICL  
ICH  
ICL  
ICH  
ICL  
ICH  
ICL  
ICH  
ICL  
ICH  
ICL  
ICH  
ICL  
VBIV VBIV  
VBIV VBIV  
ICH ICL  
SCR0 SCR0 SCT0 SCT0 AN  
ICH ICL ICH ICL ICH  
AN  
ICL  
TM3UD TM3UD  
W
W
00FC80  
00FC90  
ICH  
ICL  
ICH  
ICL  
OSD OSD  
I2C  
ICH  
I2C SCR1 SCR1 SCT1 SCT1  
OSDC OSDC  
G
G
ICL  
ICH  
ICL  
ICH  
ICL  
ICH  
ICL  
ICH  
ICL  
00FCA0  
00FCB0  
00FCC0  
00FCD0  
00FCE0  
00FCF0  
00FD00  
00FD10  
00FD20  
00FD30  
00FD40  
00FD50  
00FD60  
00FD70  
00FD80  
00FD90  
00FDA0  
00FDB0  
00FDC0  
00FDD0  
00FDE0  
00FDF0  
ROM correction registers and  
external interrupt mode register  
ROMCTSTH ROMCTSTL  
(test register) (test register)  
EXTMD  
AMCHIL2  
AMCHIL6  
AMCHILA  
AMCHILE  
ROMCEN  
AMCHIL0  
AMCHIL4  
AMCHIL8  
AMCHILC  
AMC  
AMC  
HIH2  
AMC  
HIH1  
AMC  
HIH0  
AMCHIL3  
HIH3  
AMCHIL1  
AMCHIL5  
AMCHIL9  
AMCHILD  
AMC  
AMC  
HIH6  
AMC  
HIH5  
AMC  
HIH4  
AMCHIL7  
HIH7  
ROM correction address match  
registers  
AMC  
AMC  
HIHA  
AMC  
HIH9  
AMC  
HIH8  
AMCHILB  
HIHB  
AMC  
AMC  
HIHE  
AMC  
HIHD  
AMC  
HIHC  
AMCHILF  
HIHF  
CH  
DAT3  
CH  
DAT2  
CH  
DAT1  
CH  
DAT0  
CH  
DAT7  
CH  
DAT6  
CH  
DAT5  
CH  
DAT4  
ROM correction data registers  
CH  
DATB  
CH  
DATA  
CH  
DAT9  
CH  
DAT8  
CH  
DATF  
CH  
DATE  
CH  
DATD  
CH  
DATC  
SC1 SC1  
STR TRB  
SC0 SC0  
STR TRB  
SCTST  
(test register)  
SC1CTR  
SC0CTR Serial interface registers  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
313  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Register Map  
Table A-3 Register Map: x’00FE00’ to x’00FFFF’  
20  
MSBs  
4 LSBs  
Description  
F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0
TM3 TM2 TM1 TM0  
BC BC BC BC  
TM3 TM2 TM1 TM0  
BR BR BR BR  
00FE00  
00FE10  
00FE20  
00FE30  
00FE40  
00FE50  
00FE60  
00FE70  
8-bit timer registers  
TM3 TM2 TM1 TM0  
MD MD MD MD  
TM8TST  
(test register)  
(TM4CBX  
(TM4CAX  
TM4TST  
(test register)  
00FE80  
00FE90  
TM4CB  
TM5CB  
TM4CA  
TM5CA  
TM4BC TM4MD 16-bit timer 4 registers  
TM5BC TM5MD 16-bit timer 5 registers  
)
)
(TM5CBX  
)
(TM5CAX  
)
TM5TST  
(test register)  
00FEA0  
00FEB0  
00FEC0  
00FED0  
00FEE0  
00FEF0  
ANTST  
(test register)  
00FF00 AN3BUF AN2BUF AN1BUF AN0BUF  
ANCTR  
ADC registers  
00FF10 AN11BUF AN10BUF AN9BUF AN8BUF AN7BUF AN6BUF AN5BUF AN4BUF  
00FF20  
00FF30  
00FF40  
00FF50  
00FF60  
FAR-  
EGEX  
Flash memory write control  
registers  
00FF70  
FBEWER  
FAREG FDREG FCREG  
External memory wait control  
registers  
MEMMD1  
PCNT2  
00FF80  
00FF90  
00FFA0  
00FFB0  
00FFC0  
00FFD0  
00FFE0  
00FFF0  
EXWMD  
PCNT0  
PCNT1  
(test register)  
P8  
PUP  
P7  
PUP  
P6  
PUP PUP PUP PUP PUP PUP PUP  
P6 P5 P4 P3 P2 P1 P0  
OUT OUT OUT OUT OUT OUT OUT  
P5  
P4  
P3  
P2  
P1  
P0  
P8  
OUT  
P7  
OUT  
I/O port control registers  
P8  
IN  
P7  
IN  
P6  
IN  
P5  
IN  
P4  
IN  
P3  
IN  
P2  
IN  
P1  
IN  
P0  
IN  
P8  
DIR  
P7  
DIR  
P6  
P5  
P4  
P3  
P2  
P1  
P0  
DIR DIR DIR DIR DIR DIR DIR  
P6  
MD  
P5  
MD  
P4  
MD  
P3  
MD  
P0  
MD  
P2MD  
P1MD  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
314  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Register Map  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
315  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MN102HF75K Flash EEPROM Version  
Description  
Appendix BMN102HF75K Flash EEPROM Version  
B.1 Description  
The MN102HF75K and MN102HF85K are electrically programmable, 256-  
kilobyte flash ROM versions of the MN102H75K and MN102H85K. They are  
programmed in one of two modes:  
PROM writer mode, which uses a dedicated adaptor socket and writer. In  
this mode, the user program can occupy the entire 256-kilobyte ROM space.  
Onboard serial programming mode, which the CPU controls. This mode  
requires an 8-kilobyte ROM area to hold a serial writer program.  
In onboard serial programming mode, the 256-kilobyte flash memory is divided  
into three main areas:  
A cycle of erasing to programing is  
counted as one time no matter how  
many blocks are rewritten.Even  
when the multi-block is rewritten  
separately or the same block is  
rewritten, each block rewrite is  
counted.For example,rewriting  
Block1,Block2 and Block3 respec-  
tively is counted as 3 times. There-  
fore, to program efficiently, rewrite  
all blocks in the lump.  
Load program area (1 kilobyte: x’0x80000 to x’0x803FF) This area stores the  
load program for the serial writer. It is overwritten in PROM writer mode.  
Fixed user program area (7 kilobytes: x’0x80400 to x’0x81FFD) This area  
stores a user program that is write-protected in serial programming mode. It  
is overwritten in PROM writer mode.  
User program area (248 kilobytes: x’0x82000 to x’0xBFFFD) This area  
stores the user program. It is overwritten in both programming modes.  
The two words x’0x81FFE’ and x’0xBFFFE’ are test areas. Do not use these two  
words in your programs.  
Table B-1 summarizes the programmable areas for the modes. Normal operation  
is guaranteed with up to ten programmings.  
Table B-1 Programmable Areas in Each Programming Mode  
Programming Mode  
PROM writer programming mode  
Onboard serial programming mode  
Programmable Area  
Entire memory space (256 KB)  
User program area (248 KB)  
x'0x80000'  
1 KB  
Load program area  
x'0x80400'  
7 KB  
x'0x81FFE'  
x'0x82000'  
Fixed user program area  
Test area (1 word)  
248 KB  
User program area  
Test area (1 word)  
x'0xBFFFC'  
x'0xBFFFF'  
Note: The shaded regions are write-protected in this mode. Cross-hatched regions are  
test areas (not for use in user programs).  
Figure B-1 Memory Map for Onboard Serial Programming Mode  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
316  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MN102HF75K Flash EEPROM Version  
Benefits  
B.2 Benefits  
Because you can maintain and upgrade the program in the MN102HF75K/85K  
up to and immediately following product release, this version of the device  
shortens time-to-market by as much as one month. This device is ideal for appli-  
cations in quickly changing markets, since it allows you to revise the microcon-  
troller program in an existing product.  
B.3 Using the PROM Writer Mode  
In this mode, the MN102HF75K allows a PROM writer to program the internal  
flash memory as if it was a standalone memory chip. The microcontroller is  
inserted into a dedicated adaptor socket, which connects to DATA-I/O’s LabSite  
PROM writer. When the microcontroller connects to the adaptor socket, it auto-  
matically enters PROM writer mode. The adaptor socket ties the microcontroller  
pin states to PROM writer mode, and programming occurs without any reference  
to the microcontroller pin states.  
MN102HF85K  
Adaptor socket for MN102HF85K  
Third-party  
PROM writer  
MN102HF75K  
Adaptor socket for MN102HF75K  
Figure B-2 PROM Writer Hardware Setup  
VPP  
NCE  
1
2
3
4
5
6
7
8
9
42 A17  
41 NWE  
40 MODE  
39 A15  
38 A14  
37 A13  
36 A12  
35 A11  
34 A10  
33 A9  
I/O15  
I/O14  
I/O13  
I/O12  
I/O11  
I/O10  
I/O9  
I/O8 10  
ERASE 11  
I/O7 12  
I/O6 13  
I/O5 14  
I/O4 15  
I/O3 16  
I/O2 17  
I/O1 18  
I/O0 19  
NOE 20  
A16 21  
32 VSS  
31 A8  
30 A7  
29 A6  
28 A5  
27 A4  
26 A3  
25 A2  
24 A1  
23 A0  
22 VDD  
Figure B-3 Pin Configuration for Socket Adaptor  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
317  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MN102HF75K Flash EEPROM Version  
Using the PROM Writer Mode  
Table B-2 PROM Writer Hardware  
Device  
Hardware Part  
MN102HF75KBF  
MN102HF85KDP  
Package  
(external view)  
Installed in  
84-pin QFP  
64-pin SDIP  
Adaptor  
Installed in  
Panasonic  
M
Panasonic  
M
Set this switch to the right.  
Ordering information:  
Part no.: FLS84F18--102HF57  
Ordering information:  
Part no.: FLS64SD-102HF51  
OEM: Matsushita Electric Indus- OEM: Matsushita Electric Indus-  
trial Co., Ltd. trial Co., Ltd.  
Third-party PROM  
writer  
Gang writer Single-unit writer  
Model: 1930  
Model: LabSite DIP 48-1  
OEM: DATA-I/O  
OEM: Minato Electronics  
4105 Minami Yamada-cho  
Tsuzuki-ku  
Osaki CN Building, 2F  
5-10-10 Osaki, Shinagawa-ku  
Tokyo, Japan  
Yokohama, Japan  
Tel: 045-591-5605  
Tel: 03-3779-2040  
Check the following web page of our microcomputer division for the writer  
matching information.  
http://www.mec panasonic.co.jp/sc/division/micom  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
318  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MN102HF75K Flash EEPROM Version  
Using the Onboard Serial Programming Mode  
B.4 Using the Onboard Serial Programming  
Mode  
The serial programming mode is primarily used to program the flash ROM in  
devices that are already installed on a PCB board. Panasonic provides the ded-  
icated hardware and software for this mode. This section describes the microcon-  
troller hardware, system configuration, software register map, and protocol for  
this type of programming operation.  
Onboard serial writer  
Television set  
Serial communication  
Program  
for TV  
16-bit microcontroller  
with flash EEPROM  
Figure B-4 Serial Writer Programming Configuration  
Hardware requirements:  
Onboard serial writer (YDC model AF200 (provisional))  
Add-on circuit for target board  
Flash programming connectors or pins for target board  
Software requirements:  
Serial writer load program, installed in first kilobyte of MN102HF75K/  
85K EEPROM  
Programming algorithm for operating the onboard serial writer  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
319  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MN102HF75K Flash EEPROM Version  
Using the Onboard Serial Programming Mode  
B.4.1 Configuring the System for Onboard Serial Programming  
Target board  
AC adaptor  
power source  
VDD  
Target board  
IC  
card  
IC  
card  
Serial writer  
(AF200 flash microcontroller  
programmer (provisional))  
Figure B-5 Serial Writer Hardware Setup  
The workstation containing the program data sends the program to the serial  
writer through an IC card. Through serial communication, the serial writer  
programs the flash memory inside the microcontroller on the target board. You  
must supply an external VDD source to the target board. The serial writer supplies  
the VPP source.  
You must provide the personal computer that holds the IC card. To order the  
serial writer, contact:  
(Provisional)  
Yokogawa Digital Computer Co., Ltd.  
Microcontroller System Joint Headquarters, Equipment Business Center  
Keio Fuchu 1-chome Building, 7F  
1-9 Fuchu-cho, Fuchu-shi  
Tokyo, Japan  
Model: AF200 flash microcontroller programmer  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
320  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MN102HF75K Flash EEPROM Version  
Using the Onboard Serial Programming Mode  
B.4.2 Circuit Requirements for the Target Board  
Target board  
V
V
= +5 V  
PP  
DD  
V
DD  
(for level detection)  
10 k  
RST  
SBT  
SBD  
GND  
RST  
V
PP  
Serial  
writer  
MCU  
SBT1  
SBD1  
External  
power source  
3.0 V - 3.3 V  
GND  
Figure B-6 Target Board–Serial Writer Connection  
Table B-3 Pin Descriptions for Target Board–Serial Writer Connection  
Pin Name  
Description  
V
V
V
5-V power supply  
3.0–3.3 external power supply  
V level detection pin for target board  
DD  
PP  
DD  
DD  
(for level detection)  
RST  
SBT  
SBD  
GND  
Reset  
Serial interface clock supply  
Serial interface data supply  
Ground  
Note:  
1. During normal microcontroller operation, V should always be equal to  
PP  
V
(3.3 ±0.3 V). Apply 5 V to the V supply only when programming  
DD  
PP  
the flash memory.  
During programming, the serial writer supplies VPP to the microcontroller.  
Install a switch on the target board to toggle between VPP supplied by the  
serial writer and VPP for normal operation.  
In serial programing a large-scale of current flows through Vpp. See to it that  
5V is supplied to Vpp by checking the connection and reducing the  
impedance of switches.  
You must supply a VDD source of 3.0 V – 3.3 V externally.  
VDD (for level detection) informs the serial writer of the actual VDD level of  
the target board. If the VDD level is too low, the serial writer generates an  
error message.  
Connect pullup resistors on the target board to the RST, SBT, and SBD pins.  
Use a pullup resistor value of 10 k±10%. Install a switch on the target  
board to toggle between RST for serial programming and RST for normal  
operation. Alternatively, install a wired-OR connection. For a wired-OR  
connection, disable RST for normal operation during serial programming.  
RST, SBT, and SBD are output from the serial writer through an open con-  
nection.  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
321  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MN102HF75K Flash EEPROM Version  
Using the Onboard Serial Programming Mode  
B.4.3 Microcontroller Hardware Used in Onboard Serial Pro-  
gramming  
B.4.3.1 Serial Writer Interface Description  
The microcontroller contains the following interface hardware for serial pro-  
gramming of the flash ROM:  
One 8-bit serial interface (use serial interface 1):  
Data transmission and reception synchronize with external clock  
Transmission bit LSB first  
Maximum clock speed 10 MHz  
Positive I/O logic  
Two I/O pins:  
SBT1 and SBD1 pins (with alternate I/O port functions)  
B.4.3.2 Serial Writer Interface Block Diagram  
RXD  
TXD  
RXC,TXC  
RST  
P25, TM4IOB, SBD1  
P24, TM4IC, SBT1  
RST  
8-bit serial interface  
(use serial interface 1)  
Figure B-7 Serial Writer Interface Block Diagram  
When programming the memory, you need not be aware of these microcontroller  
hardware connections. However, it is vital that you take these connections into  
account when designing your target board, so that the serial writer can program  
the device correctly, and so that SBD1 and SBT1 are dedicated pins for the serial  
writer, preventing other user circuits from communicating with the device.  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
322  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MN102HF75K Flash EEPROM Version  
Using the Onboard Serial Programming Mode  
B.4.4 Microcontroller Memory Map Used During Onboard  
Serial Programming  
B.4.4.1 Flash ROM Address Space  
Table B-4 Flash ROM Address Space in Serial Programming Mode  
Address  
Size  
Description  
x’0x80000’  
1 KB  
Serial writer load program area  
|
x’0x803FF’  
x’0x80400’  
7 KB  
Fixed user program area  
|
|
x’0x81FFF’  
x’0x82000’  
8 bytes  
8 bytes  
8 bytes  
8 bytes  
248 KB  
Security code  
Reserved area  
|
x’0x82007’  
x’0x82008’  
|
x’0x8200F’  
x’0x82010’  
Branch instruction to reset service routine  
(Ex., JMP 82100)  
|
x’0x82017’  
x’0x82018’  
Branch instruction to interrupt service routine  
(Ex., JMP 82200)  
|
x’0x8201F’  
x’0x82020’  
User program area  
|
|
x’0xBFFFF’  
Serial writer load program area  
This kilobyte of ROM, starting at address x’0x80000’, holds the load program  
for the serial writer. This area is write-protected in the hardware. Panasonic  
provides the load program.  
Fixed user program area  
These 7 kilobytes of ROM starting at address x’0x80400’, hold the fixed user  
program. This area is write-protected in the hardware. (You can program this area  
with a parallel writer.)  
Security code  
This byte holds the password for the serial writer. Enter an 8-character ASCII  
code in this space.  
Reserved area  
Do not write to this area.  
Branch instruction to reset service routine  
Normally, reset servicing starts at address x’0x80000’, but the soft branch  
instruction in the serial writer load program branches to x’0x82010’. This  
address must hold a JMP instruction pointing to the real start address for the reset  
service routine.  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
323  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MN102HF75K Flash EEPROM Version  
Using the Onboard Serial Programming Mode  
Branch instruction to interrupt service routine  
Normally, interrupt servicing starts at address x’0x80008’, but the soft branch  
instruction in the serial writer load program branches to x’0x82018’. This  
address must hold a JMP instruction pointing to the real start address for the  
interrupt service routine.  
User program area  
This area stores the user program.  
B.4.4.2 RAM Address Space  
Table B-5 RAM Address Space in Serial Programming Mode  
Address  
Size  
Description  
x’0x8000’  
|
x’0x8BFF’  
3 KB  
Serial writer work area  
x’0x8C00’  
|
x’0x8FFF’  
1 KB  
Reserved area  
Serial writer work area  
The 3 kilobytes of RAM area starting at address x’0x08000’ are used for the  
serial writer work area. The load program downloads programs to this area that it  
needs to operate the serial writer and program the EEPROM. No other memory  
area can be used for this purpose. You do not need to know about RAM allo-  
cation to program the EEPROM.  
Reserved area  
Do not write to this area.  
B.4.5 Microcontroller Clock on the Target Board  
For the clock supply to the microcontroller on the target board, use the existing  
target board clock. The OSC oscillator clock for the microcontroller is 4 MHz.  
Using the internal PLL circuit, the microcontroller switches to NORMAL mode  
and operates with a 12-MHz system clock. Table B-6 shows the clock fre-  
quencies for the microcontroller during serial programming.  
Table B-6 Microcontroller Clock Frequencies during Serial Programming  
Oscillator Clock Frequency  
Internal System Clock Frequency  
4 MHz  
12 MHz  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
324  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MN102HF75K Flash EEPROM Version  
Using the Onboard Serial Programming Mode  
B.4.6 Setting Up the Onboard Serial Programming Mode  
To enter serial programming mode, the microcontroller must be in write mode.  
This section describes the pin setup for the serial writer interface.  
Normal timing waveform  
A
B
C
D
V
DD  
V
PP  
RST  
SBT  
SBD  
Timing waveform during  
serial programming  
V
DD  
V
PP  
RST  
SBT  
SBD  
t
t
t
3
1
2
Figure B-8 Timing for the Serial Writer Interface  
To set up the serial writer interface:  
1. Turn on the external VDD supply.  
2. At time A in figure B-8, turn VPP on. At this point, output RST = SBD = low.  
3. Through the serial writer, drive the RST pin from time B in figure B-8, when  
SBT goes high on microcontroller power-up, for t2 cycles. The microcontrol-  
ler initializes.  
4. Through the serial writer, drive the SBD pin low from time C in figure B-8,  
when RST goes high on microcontroller power-up, for t3 cycles. This tells  
the microcontroller that it is connected to the serial writer.  
5. Make t3 long enough to allow the microcontroller oscillator to stabilize.  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
325  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MN102HF75K Flash EEPROM Version  
Using the Onboard Serial Programming Mode  
Start routine for the load program  
Reset start  
SBT pin == high  
&&  
SDB pin == low?  
No  
Yes  
Wait t  
WAIT1  
SBT pin == high  
&&  
SDB pin == low?  
No  
Yes  
Has t  
passed?  
No  
WAIT2  
Yes  
SBT pin == high  
&&  
SDB pin == high?  
No  
Yes  
Start serial writer  
load program  
Execute user  
program  
Figure B-9 Load Program Start Flow  
Conditions:  
1. After the load program initiates a reset start, SBD must be low and SBT  
high.  
2. After the program waits tWAIT1 = 10 milliseconds, SBD must still be low and  
SBT high.  
3. Within tWAIT2 = 100 milliseconds, both SBD and SBT must be high.  
If any of these conditions is not met, control returns to the user program.  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
326  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MN102HF75K Flash EEPROM Version  
Using the Onboard Serial Programming Mode  
B.4.7 Branching to the User Program  
B.4.7.1 Branching to the Reset Start Routine  
Reset start  
Serial writer?  
No  
Yes  
Start serial writer  
load program  
Branch to address  
x’82010’  
Execute user program  
(Generate 10-cycle delay)  
Figure B-10 Flow of Branch to Reset Start Routine  
When the reset starts, the serial writer load program initializes only if SBD is  
low. Otherwise, the program branches to the user program at address x’0x82010’.  
B.4.7.2 Branching to the Interrupt Start Routine  
Interrupt start  
address x’0x80008’  
JMP x’82018’ instruction  
(3 bytes/2 cycles)  
Branch to address  
x’0x82018’  
Write a branch instruction  
to address x’82018’  
Execute user interrupt service routine  
(Generate 2-cycle delay)  
Figure B-11 Flow of Branch to Interrupt Start Routine  
In the interrupt start address, place a simple branch instruction pointing to  
address x’0x82018’.  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
327  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MN102HF75K Flash EEPROM Version  
Reprogramming Flow  
B.5 Reprogramming Flow  
Figure B-12 shows the flow for reprogramming (erasing and programming) the  
flash memory.  
Write 0s to entire memory  
Erase  
Reverse  
Erase routine  
Write user program  
Figure B-12 EEPROM Programming Flow  
Always program after erasing is  
completed.Erasing is sometimes not  
done finely,even though PROM-  
writer or onboard serial writer  
shows “PASS“in blank check. And  
in that situation the data programed  
successfully may be incorrect.  
Rewriting the data to the address  
where data has already set is forbid-  
den.  
As the figure shows, the write occurs after the memory is completely erased. The  
erase routine consists of three steps, first writing all zeros to the entire memory  
space, next erasing the memory, and finally reversing.  
B.6 Programming Times  
Table B-7 shows the time required for PROM and serial programming and repro-  
gramming (erasing and programming).  
Table B-7 Programming Times for PROM and Serial Writers  
Programming Time  
(User Program Only)  
Reprogramming  
Time  
Writer  
DATA-I/O LabSite DIP48-1  
TBA  
TBA  
YDC AF200 (provisional)  
3.5–4 minutes  
Note: Times indicated are minimum time requirements.  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
328  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MN102H75K/F75K/85K/F85K LSI User's Manual Description Record of Changes (Ver.1.0 to 1.1)  
page  
Line  
defini-  
tion  
Description of Changes  
22385-011E  
Former version  
New version  
Cover Pub number  
Colophon  
Sales office  
C 22385-010E  
C September, 2001 1st Edition  
C
October, 2001 1st Edition 1st Printing  
Latest version  
<Definition>  
A: add  
D: delete  
C: modify, change  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MN102H75K/F75K/85K/F85K LSI User’s Manual  
Modified Points From MN102H75K/F75K To MN102H75K/F75K/85K/F85K  
page  
P16  
Before Modify  
page  
P16  
After Modify  
This manual is intended for assembly-language programming  
engineers. It describes the internal configuration and hardware  
functions of the MN102H75K microcontrollers.  
This manual is intended for assembly-language programming  
engineers. It describes the internal configuration and hardware  
functions of the MN102H75K and MN102H85K microcontrollers.  
Except when discusssiing differing specifications,this manual refers to  
the two microcontrollers as a single device : MN102H75K/85K.  
Using This Manual  
The chapters in this manual deal with the internal blocks of the  
MN102H75K. Chapters 1 to 5 provide an overview of the  
Using This Manual  
MN102H75K’s general specifications, interrupts, power modes, timers,  
and serial connections. Chapters 6 to 10 describe the on-screen display  
and other specialized functions available with the MN102H75K.  
Chapter 11 provides the I/O port specifications, chapter 12 describes the  
ROM correction feature, chapter 13 describes the I2C interface, and  
chapter 14 describes the H scan line counter. Appendix A provides a  
register map, and Appendix B describes the flash EEPROM version.  
The chapters in this manual deal with the internal blocks of the  
MN102H75K/85K. Chapters 1 to 5 provide an overview of the  
MN102H75K/85K’s general specifications, interrupts, power modes,  
timers, and serial connections. Chapters 6 to 10 describe the on-screen  
display and other specialized functions available with the  
MN102H75K/85K. Chapter 11 provides the I/O port specifications,  
chapter 12 describes the ROM correction feature, chapter 13 describes  
the I2C interface, and chapter 14 describes the H scan line counter.  
Appendix A provides a register map, and Appendix B describes the  
flash EEPROM version.  
MN10200 Series Linear Addressing High-Speed Version LSI User Manual  
(Describes the core hardware.)  
MN102H Series LSI User Manual  
(Describes the core hardware.)  
P17  
P17  
MN10200 Series Linear Addressing High-Speed Version Instruction Manual  
(Describes the instruction set.)  
MN102H Series Instruction Manual  
(Describes the instruction set.)  
MN10200 Series Linear Addressing High-Speed Version C Compiler User  
Manual: Usage Guide  
(Describes the installation, commands, and options for the C compiler.)  
MN102H Series C Compiler User Manual: Usage Guide  
(Describes the installation, commands, and options for the C compiler.)  
MN102H Series C Compiler User Manual: Language Description  
(Describes the syntax for the C compiler.)  
MN10200 Series Linear Addressing High-Speed Version C Compiler User  
Manual: Language Description  
(Describes the syntax for the C compiler.)  
MN102H Series C Compiler User Manual: Library Reference  
(Describes the standard libraries for the C compiler.)  
MN10200 Series Linear Addressing High-Speed Version C Compiler User  
Manual: Library Reference  
(Describes the standard libraries for the C compiler.)  
MN102H Series Cross-Assembler User Manual  
(Describes the assembler syntax and notation.)  
MN10200 Series Linear Addressing High-Speed Version Cross-Assembler User  
Manual  
(Describes the assembler syntax and notation.)  
MN102H Series C Source Code Debugger User Manual  
(Describes the use of the C source code debugger.)  
MN102H Series Installation Manual  
(Describes the installation of the C compiler, cross-assembler, and C source  
code debugger and the procedures for using the in-circuit emulator.)  
MN10200 Series Linear Addressing Version C Source Code Debugger User  
Manual  
(Describes the use of the C source code debugger.)  
MN10200 Series Linear Addressing Version PanaX Series Installation Manual  
(Describes the installation of the C compiler, cross-assembler, and C source  
code debugger and the procedures for using the in-circuit emulator.)  
Questions and Comments  
We welcome your questions, comments, and suggestions. Please contact the semicon-  
ductor design center closest to you. See the last page of this manual for a list of  
addresses and telephone numbers. You can also find contact and product information  
on the World Wide Web at: http://www.psdc.com/  
Figure 1-5 shows the address space for the MN102H75K.The internal  
ROM contains the instructions and the font data for the on-screen dis-  
play (OSD), in any location. The internal RAM contains the MCU data  
and the VRAM for the OSD, in any location.  
Figure 1-5 shows the address space for the MN102H75K/85K.The  
internal ROM contains the instructions and the font data for the on-  
screen display (OSD), in any location. The internal RAM contains the  
MCU data and the VRAM for the OSD, in any location  
P24  
P27  
P24  
P27  
I/O ports  
Package  
66(MN102H75K/F75K) / 50(MN102H85K/F85K)  
I/O ports  
Package  
66  
84-pin QFP(MN102H75K/F75K) / 64-pin SDIL(MN102H85K/F85K)  
84-pin QFP  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
1
Download from Www.Somanuals.com. All Manuals Search And Download.  
Panasonic  
1.6 Pin Descriptions  
P30  
1.6.1  
MN102H85K Pin Description  
P00, RMIN, IRQ0  
1
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
VSS  
*
*
P01, SDA1  
P02, SCL1  
2
OSC2  
3
OSC1  
P03, ADIN0  
P04, ADIN1  
4
VDD  
5
P61, SCL0  
P60, SDA0  
P57, SBT0  
*
*
P05, ADIN2  
6
P06, ADIN3  
7
P07, ADIN4  
8
P56, SBI0, SBD0  
P55, SBO0  
P10, ADIN5, IRQ1  
P11, ADIN6, IRQ2  
P12, ADIN7, IRQ3  
P13, ADIN8, WDOUT  
P14, ADIN9, STOP  
P15, ADIN10, PWM0  
P16, ADIN11, PWM1  
P17, PWM2  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
P54, IRQ5, VSYNC  
P53, RST  
64-Pin SDIP  
Top View  
P52, IRQ4, VI0  
TEST  
P51, YS  
P50, SYSCLK  
P47, HSYNC  
P46, OSDXI  
P45, OSDXO  
P20, PWM3  
P21, PWM4  
P22, PWM5  
P44, TM5IC, HI1  
P43, TM5IOB, HI0  
P42, TM5IOA  
*
P23, PWM6  
*
P24, TM4IC, SBT1  
P25, TM4IOB, SBI1, SBD1  
P26, TM4IOA, SBO1  
P27, TM0IO  
*
P41, TM1IO  
VCOI  
*
PDO  
VDD (VPP)  
P40, DAYMOUT, YM  
P30, CLH  
P37, DABOUT,  
P36, DAGOUT,  
P35, DAROUT,  
VREF, P34  
IREF  
B
G
R
VREFHS  
P31, CVBS0  
VSS  
P32, CVBS1  
VREFLS  
COMP  
P33, CLL  
AVDD  
Notes: 1. Pins marked with an asterisk (*) are N-channel, open-drain pins.  
2. Pin 25 is V in the MN102H85K and V in the MN102HF85K.  
DD  
PP  
Figure 1-9 MN102H85K Pin Configuration in Single-Chip Mode  
1.6 Pin Descriptions  
P30  
P31  
1.6.2  
MN102H75K Pin Description  
1.6.1  
MN102H75K Pin Description  
P55, SBO0  
P54, IRQ5, VSYNC  
P84  
1
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
NC  
P55, SBO0  
P54, IRQ5, VSYNC  
P84  
1
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
NC  
2
P71  
2
P71  
3
P10, ADIN5, IRQ1  
P11, ADIN6, IRQ2  
P12, ADIN7, IRQ3  
P72  
3
P10, ADIN5, IRQ1  
P11, ADIN6, IRQ2  
P12, ADIN7, IRQ3  
P72  
NC  
4
NC  
4
P53, RST  
P52, IRQ4, VI0  
TEST  
5
P53, RST  
P52, IRQ4, VI0  
TEST  
5
6
6
7
P13, ADIN8, WDOUT  
P14, ADIN9, STOP  
P73  
7
P13, ADIN8, WDOUT  
P14, ADIN9, STOP  
P73  
P51, YS  
8
P51, YS  
8
P83  
9
P83  
9
P50, SYSCLK  
P82  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
P15, ADIN10, PWM0  
P16, ADIN11, PWM1  
P17, PWM2  
P50, SYSCLK  
P82  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
P15, ADIN10, PWM0  
P16, ADIN11, PWM1  
P17, PWM2  
84-Pin QFP  
Top View  
84-Pin QFP  
Top View  
P47, HSYNC  
P81  
P47, HSYNC  
P81  
P20, PWM3  
P20, PWM3  
P46, OSDXI  
P45, OSDXO  
P21, PWM4  
P46, OSDXI  
P45, OSDXO  
P21, PWM4  
P22, PWM5  
P22, PWM5  
*
P44, TM5IC, HI1  
P43, TM5IOB, HI0  
P42, TM5IOA  
P23, PWM6  
*
P44, TM5IC, HI1  
P43, TM5IOB, HI0  
P42, TM5IOA  
P23, PWM6  
*
P24, TM4IC, SBT1  
P25, TM4IOB, SBI1, SBD1  
P26, TM4IOA, SBO1  
P27, TM0IO  
*
P24, TM4IC, SBT1  
P25, TM4IOB, SBI1, SBD1  
P26, TM4IOA, SBO1  
P27, TM0IO  
*
*
*
P41, TM1IO  
VCOI  
*
P41, TM1IO  
VCOI  
PDO  
P74  
PDO  
P74  
Notes: 1. Pins marked with an asterisk (*) are N-channel, open-drain pins.  
2. Pin 41 is V in the MN102H75K and V in the MN102HF75K.  
Notes: 1. Pins marked with an asterisk (*) are N-channel, open-drain pins.  
2. Pin 41 is V in the MN102H75K and V in the MN102HF75K.  
DD  
PP  
DD  
PP  
Figure 1-10 MN102H75K Pin Configuration in Single-Chip Mode  
Figure 1-9 MN102H75K Pin Configuration in Single-Chip Mode  
P32  
Table 1-3 Pin Function(Continued)  
Block  
P33  
Table 1-3 Pin Function(Continued)  
Pin Name  
P00-P07  
Block  
Pin Name  
P00-P07  
I/O ports  
MN102H75K/HF75K:  
total 66 pins  
MN102H85K/HF85K:  
total 50 pins  
P10-P17  
P20-P27  
P30-P37  
P40-P47  
P10-P17  
P20-P27  
P30-P37  
P40-P47  
I/O ports  
P50-P57  
P60-P61  
P70-P77  
P50-P57  
P60-P61  
P70-P77  
I/O ports only in  
MN102H75K/HF75K  
P80-P87  
P80-P87  
P33  
P34  
VDD  
VDD  
VDD  
AVDD  
VDD  
AVDD  
Power  
Supply  
Power  
Supply  
MN102H75K  
MN102H85K  
MN102H75K  
AVSS  
AVSS  
VSS  
VSS  
VSS  
VSS  
Note: If the circuit uses the same power supply for digital and analog supplies, connect  
the pins in the location closest to the power supply  
Note: If the circuit uses the same power supply for digital and analog supplies, connect  
the pins in the location closest to the power supply  
Figure 1-11 Power Supply Wring  
Figure 1-12 Power Supply Wring  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
2
Download from Www.Somanuals.com. All Manuals Search And Download.  
Panasonic  
The MN102H75K contains an internal PLL circuit. To use this circuit,  
you must connect it to an external (lag-lead) filter.  
The MN102H75K/85K contains an internal PLL circuit. To use this  
circuit, you must connect it to an external (lag-lead) filter.  
P33  
P37  
P34  
P37  
The most important factor in real-time control is an MCU’s speed in  
servicing interrupts. The MN102H75K has an extremely fast interrupt  
response time due to its ability to abort instructions, such as multiply or  
divide, that require multiple clock cycles. The MN102H75K re-  
executes an aborted instruction after returning from the interrupt service  
routine.  
The most important factor in real-time control is an MCU’s speed in  
servicing interrupts. The MN102H75K/85K has an extremely fast  
interrupt response time due to its ability to abort instructions, such as  
multiply or divide, that require multiple clock cycles. The  
MN102H75K/85K re-executes an aborted instruction after returning  
from the interrupt service routine.  
This section describes the interrupt system in the MN102H75K. The  
MN102H75K contains 36 interrupt group controllers. Each controls a  
single interrupt group. Because each group contains only one interrupt  
vector, the MN102H75K can handle interrupts much quicker than pre-  
viously possible. Each interrupt group belongs to one of twelve classes,  
which defines its interrupt priority level.  
This section describes the interrupt system in the MN102H75K/85K.  
The MN102H75K/85K contains 36 interrupt group controllers. Each  
controls a single interrupt group. Because each group contains only one  
interrupt vector, the MN102H75K/85K can handle interrupts much  
quicker than previously possible. Each interrupt group belongs to one  
of twelve classes, which defines its interrupt priority level.  
With the exception of reset interrupts, all interrupts from timers, other  
peripheral circuits, and external pins must be registered in an interrupt  
group controller. Once they are registered, interrupt requests are sent to  
the CPU in accordance with the interrupt mask level (0 to 6) set in the  
interrupt group controller. Groups 1 to 3 are dedicated to system inter-  
rupts. Table 2-1 compares the interrupt parameters of the MN102H75K  
to those of the MN102L35G, the comparable MCU in the previous gen-  
eration of the 16-bit series  
With the exception of reset interrupts, all interrupts from timers, other  
peripheral circuits, and external pins must be registered in an interrupt  
group controller. Once they are registered, interrupt requests are sent to  
the CPU in accordance with the interrupt mask level (0 to 6) set in the  
interrupt group controller. Groups 1 to 3 are dedicated to system inter-  
rupts. Table 2-1 compares the interrupt parameters of the MN102H75K/  
85K to those of the MN102L35G, the comparable MCU in the previous  
generation of the 16-bit series  
Table2-1Comparison of MN102H75K and MN102L35G Interrupt Features  
Table2-1Comparison of MN102H75K/85K and MN102L35G Interrupt Features  
MN102L35G  
MN102L35G  
Parameter  
Parameter  
MN102H75K  
MN102H75K/85K  
4 vectors per group  
(Separated by interrupt  
service routine)  
4 vectors per group  
(Separated by interrupt  
service routine)  
1 vector per group  
(Group number gener-  
ated for each interrupt)  
1 vector per group  
(Group number gener-  
ated for each interrupt)  
interrupt groups  
(IAGR group numbers)  
interrupt groups  
(IAGR group numbers)  
Good  
Good  
interrupt response time  
interrupt level settings  
Software compatibility  
Excellent  
interrupt response time  
interrupt level settings  
Software compatibility  
Excellent  
4 vectors per level  
4 vectors per level  
4 vectors per level  
Easily modified  
4 vectors per level  
Easily modified  
The MN102H75K has six external interrupt pins. Set the interrupt con-  
dition (positive edge, negative edge, either edge, or active low) in the  
EXTMD register  
The MN102H75K/85K has six external interrupt pins. Set the interrupt  
condition (positive edge, negative edge, either edge, or active low) in  
the EXTMD register  
The MN102H75K provides two ways to reduce power consumption, controlling  
CPU operating and standby modes to cut overall consumption and shutting down  
unused functions by stopping the system clock supplied to them.  
The MN102H75K/85K provides two ways to reduce power consumption, con-  
trolling CPU operating and standby modes to cut overall consumption and shutting  
down unused functions by stopping the system clock supplied to them.  
P72  
P72  
3.1 CPU Modes  
3.1.1 Description  
3.1 CPU Modes  
3.1.1 Description  
The MN102H75K has two CPU operating modes, NORMAL and SLOW, and two  
CPU standby modes, HALT and STOP. Effective use of these modes can signifi-  
cantly reduce power consumption. Figure 3-1 shows the CPU states in the different  
modes  
The MN102H75K/85K has two CPU operating modes, NORMAL and SLOW, and  
two CPU standby modes, HALT and STOP. Effective use of these modes can sig-  
nificantly reduce power consumption. Figure 3-1 shows the CPU states in the dif-  
ferent modes  
P73  
P73  
P73  
P73  
The MN102H75K/85K recovers from power up and reset in SLOW  
mode. For normal operation, the program must switch the MCU from  
SLOW to NORMAL mode  
The MN102H75K/85K recovers from power up and reset in SLOW  
mode. For normal operation, the program must switch the MCU from  
SLOW to NORMAL mode  
The MN102H75K contains a PLL circuit that, in NORMAL mode, multiplies the  
clock input through the OSC1 and OSC2 pins by 12, divides the signal by 2, then  
sends the resulting clock to the CPU. (See figure 3-2.) The MCU starts in SLOW  
mode on power up and on recovery from a reset. In SLOW mode (system clock = 2  
MHz), the clock from the OSC pins feeds directly to the CPU, without going  
through the PLL circuit. This means that the program must switch the CPU from  
SLOW to NORMAL mode (system clock = 12 MHz)  
The MN102H75K/85K contains a PLL circuit that, in NORMAL mode, multiplies  
the clock input through the OSC1 and OSC2 pins by 12, divides the signal by 2,  
then sends the resulting clock to the CPU. (See figure 3-2.) The MCU starts in  
SLOW mode on power up and on recovery from a reset. In SLOW mode (system  
clock = 2 MHz), the clock from the OSC pins feeds directly to the CPU, without  
going through the PLL circuit. This means that the program must switch the CPU  
from SLOW to NORMAL mode (system clock = 12 MHz)  
For information on invoking SLOW mode from NORMAL mode, see MN10200  
Series Linear Addressing High-Speed Version LSI User Manual.  
For information on invoking SLOW mode from NORMAL mode, see MN102H  
Series LSI User Manual.  
P73  
P75  
P73  
P75  
The MN102H75K allows you to turn each peripheral function on or off  
through writing to the registers. You can significantly reduce power  
consumption by turning off unused functions. Table 3-1 shows the  
register bits controlling on and off for each function block. The ADC  
used for the OSD and CCD functions is turned off on reset. Write a 1 to  
the function to enable it, when necessary  
The MN102H75K/85K allows you to turn each peripheral function on  
or off through writing to the registers. You can significantly reduce  
power consumption by turning off unused functions. Table 3-1 shows  
the register bits controlling on and off for each function block. The  
ADC used for the OSD and CCD functions is turned off on reset. Write  
a 1 to the function to enable it, when necessary  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
3
Download from Www.Somanuals.com. All Manuals Search And Download.  
Panasonic  
The MN102H75K contains four 8-bit timers that can serve as interval  
timers, event timer/counters, clock generators (divide-by-2 output of  
the underflow), reference clocks for the serial interfaces, or start timers  
for A/D conversions. The clock source can be the internal clock (oscil-  
lator frequency divided by 2) or the external clock (1/4 or less the oscil-  
lator frequency input). A timer interrupt is generated by a timer  
underflow  
The MN102H75K/85K contains four 8-bit timers that can serve as  
interval timers, event timer/counters, clock generators (divide-by-2 out-  
put of the underflow), reference clocks for the serial interfaces, or start  
timers for A/D conversions. The clock source can be the internal clock  
(oscillator frequency divided by 2) or the external clock (1/4 or less the  
oscillator frequency input). A timer interrupt is generated by a timer  
underflow  
P77  
P88  
P77  
P88  
The MN102H75K contains two 16-bit up/down timers, timers 5 and 6.  
Associated with each timer are two compare/capture registers that can  
capture and compare the up/down counter values, generate PWM sig-  
nals, and generate interrupts. The PWM function has a double buffering  
mode that causes cycle and transition changes to occur at the beginning  
of the next clock cycle. This prevents PWM signal losses and mini-  
mizes waveform distortion during timing changes  
The MN102H75K/85K contains two 16-bit up/down timers, timers 5  
and 6. Associated with each timer are two compare/capture registers  
that can capture and compare the up/down counter values, generate  
PWM signals, and generate interrupts. The PWM function has a double  
buffering mode that causes cycle and transition changes to occur at the  
beginning of the next clock cycle. This prevents PWM signal losses and  
minimizes waveform distortion during timing changes  
The MN102H75K contains two general-purpose serial interfaces with  
synchronous serial, UART, and I2C modes. The maximum baud rate in  
synchronous serial mode is 12 Mbps. In UART mode, the maximum  
baud rate is 375,000 bps, when BOSC = 24 MHz  
The MN102H75K/85K contains two general-purpose serial interfaces  
with synchronous serial, UART, and I2C modes. The maximum baud  
rate in synchronous serial mode is 12 Mbps. In UART mode, the maxi-  
mum baud rate is 375,000 bps, when BOSC = 24 MHz  
P127  
P127  
The MN102H75K contains an 8-bit charge redistribution A/D converter  
(ADC) that can process up to 12 channels. The reference clock is select-  
able to BOSC x 1/8 or 1/16. When BOSC is 24 MHz, you must set the  
reference clock to BOSC/8 (conversion rate = 4 µs) or higher  
The MN102H75K/85K contains an 8-bit charge redistribution A/D con-  
verter (ADC) that can process up to 12 channels. The reference clock is  
selectable to BOSC x 1/8 or 1/16. When BOSC is 24 MHz, you must set  
the reference clock to BOSC/8 (conversion rate = 4 µs) or higher  
P143  
P153  
P143  
P153  
The MN102H75K contains an on-screen display (OSD) function com-  
posed of three layers: a text layer, a graphics layer, and a cursor layer.  
You can control each layer individually, which gives you great freedom  
in positioning displays. You can also modify the ROM space that con-  
tains the text characters and the graphic tiles and the VRAM space that  
contains the text and graphics programs. This allows you to adjust the  
memory space to fit your application  
The MN102H75K/85K contains an on-screen display (OSD) function  
composed of three layers: a text layer, a graphics layer, and a cursor  
layer. You can control each layer individually, which gives you great  
freedom in positioning displays. You can also modify the ROM space  
that contains the text characters and the graphic tiles and the VRAM  
space that contains the text and graphics programs. This allows you to  
adjust the memory space to fit your application  
This section describes how the MN102H75K handles the timing of  
direct memory access (DMA) transfers of OSD data and OSD inter-  
rupts  
This section describes how the MN102H75K/85K handles the timing of  
direct memory access (DMA) transfers of OSD data and OSD inter-  
rupts  
P191  
P194  
P191  
P194  
The MN102H75K OSD achieves a shuttering effect using four pro-  
grammable shutterstwo vertical and two horizontal. With this fea-  
ture, you can shutter any portion of the OSD display, or you can  
combine shuttering with a wipe-out effect to create a smooth appearing  
and disappearing effect  
The MN102H75K/85K OSD achieves a shuttering effect using four  
programmable shutters—two vertical and two horizontal. With this fea-  
ture, you can shutter any portion of the OSD display, or you can com-  
bine shuttering with a wipe-out effect to create a smooth appearing and  
disappearing effect  
The MN102H75K contains a remote signal receiver that processes sig-  
nals in two formats: Household Electrical Appliance Manufacturers  
Association (HEAMA) format and 5-/6-bit format. This chapter pro-  
vides an overview of each block in the circuit and describes the opera-  
tion of the receiver  
The MN102H75K/85K contains a remote signal receiver that processes  
signals in two formats: Household Electrical Appliance Manufacturers  
Association (HEAMA) format and 5-/6-bit format. This chapter pro-  
vides an overview of each block in the circuit and describes the opera-  
tion of the receiver  
P216  
P216  
The MN102H75K contains two identical closed-caption decoder cir-  
cuits, CCD0 and CCD1  
The MN102H75K/85K contains two identical closed-caption decoder  
circuits, CCD0 and CCD1  
P227  
P229  
P249  
P227  
P229  
The clamping circuit internal to the MN102H75K provides three current  
sources—high, medium, and low.  
The clamping circuit internal to the MN102H75K/85K provides three  
current sources—high, medium, and low.  
The MN102H75K contains seven 8-bit pulse width modulators  
(PWMs) with a minimum pulse width of 16/fSYSCLK and an output  
waveform cycle of 212/fSYSCLK. (With a 4-MHz oscillator, 16/fSYSCLK  
= 1.33 µs (8 µs for SLOW mode) and 212/fSYSCLK = 341.3 µs (2 ms for  
SLOW mode).)  
P249 The MN102H75K/85K contains seven 8-bit pulse width modulators  
(PWMs) with a minimum pulse width of 16/fSYSCLK and an output  
waveform cycle of 212/fSYSCLK. (With a 4-MHz oscillator, 16/fSYSCLK  
= 1.33 µs (8 µs for SLOW mode) and 212/fSYSCLK = 341.3 µs (2 ms for  
SLOW mode).)  
The MN102H75K contains 50 pins that form general-purpose I/O ports. P250 The MN102H75K/85K contains 50 pins that form general-purpose I/O  
P250  
Ports 0, 1, 2, 3, 4, and 5 are 8-bit ports, and port 6 is a 2-bit port. All of  
these pins have alternate functions. (Ports 7 and 8 are only available  
with the quad flat package.)  
ports. Ports 0, 1, 2, 3, 4, and 5 are 8-bit ports, and port 6 is a 2-bit port.  
All of these pins have alternate functions. (Ports 7 and 8 are only avail-  
able with the quad flat package.)  
The MN102H75K contains one I2C bus controller, fully compliant with  
The MN102H75K/85K contains one I2C bus controller, fully compliant  
with the I2C specification, that can control one of two I2C bus connec-  
tions  
P293  
P295  
P293  
the I2C specification, that can control one of two I2C bus connections  
Figure 13-3 shows the MN102H75K operation sequence in each of  
these modes. In all modes, the I2C bus controller generates an interrupt  
after each data byte transfer, then the software loads the next data byte  
P295 Figure 13-3 shows the MN102H75K/85K operation sequence in each  
of these modes. In all modes, the I2C bus controller generates an inter-  
rupt after each data byte transfer, then the software loads the next data  
byte  
Figure 13-6 and table 13-5 provide the timing definitions and specifica- P299 Figure 13-6 and table 13-5 provide the timing definitions and specifica-  
P299  
tions for the for the MN102H75K I2C bus interface  
tions for the for the MN102H75K/85K I2C bus interface  
P301  
P303  
Note: The circled areas are signals output from the MN102H75K  
Note: The circled areas are signals output from the MN102H75K/85K  
P301  
P303  
Note: The circled areas are signals output from the MN102H75K  
Note: The circled areas are signals output from the MN102H75K/85K  
Panasonic Semiconductor Development Company  
MN102H75K/F75K/85K/F85K LSI User Manual  
4
Download from Www.Somanuals.com. All Manuals Search And Download.  
Panasonic  
The MN102H75K contains two H counter circuits that can be used to  
count the HSYNC signal. Each H counter consists of a 10-bit counter  
and 10-bit register  
The MN102H75K/85K contains two H counter circuits that can be used  
to count the HSYNC signal. Each H counter consists of a 10-bit counter  
and 10-bit register  
P307  
P308  
P307  
P308  
Table 14-1 H Counter Pins  
Pin No.  
Pin Name  
Table 14-1 H Counter Pins  
Pin No.  
Alternative Functions  
Description  
Alternative Functions  
Description  
Pin Name  
H85  
H75  
H75  
HI0  
HI1  
VI0  
Count source pin  
Count source pin  
Count reset pin  
Count reset pin  
P43/TM5IOB  
P44/TM5IC  
P52/IRQ4  
45  
46  
53  
55  
17  
16  
6
HI0  
HI1  
VI0  
Count source pin  
Count source pin  
Count reset pin  
Count reset pin  
P43/TM5IOB  
P44/TM5IC  
P52/IRQ4  
17  
16  
6
2
P54/IRQ5  
VSINC  
2
P54/IRQ5  
VSINC  
The MN102HF75K is electrically programmable, 256-kilobyte flash  
ROM versions of the MN102H75K . It is programmed in one of two  
modes:  
P316 The MN102HF75K and MN102HF85K are electrically programmable,  
256-kilobyte flash ROM versions of the MN102H75K and  
P316  
P317  
MN102H85K. They are programmed in one of two modes:  
B.2 Benefits  
B.2 Benefits  
P317  
Because you can maintain and upgrade the program in the  
MN102HF75K up to and immediately following product release, this  
version of the device shortens time-to-market by as much as one month.  
This device is ideal for applications in quickly changing markets, since  
it allows you to revise the microcontroller program in an existing prod-  
uct.  
Because you can maintain and upgrade the program in the  
MN102HF75K/85K up to and immediately following product release,  
this version of the device shortens time-to-market by as much as one  
month. This device is ideal for applications in quickly changing mar-  
kets, since it allows you to revise the microcontroller program in an  
existing product.  
B.3 Using the PROM Writer Mode  
B.3 Using the PROM Writer Mode  
In this mode, the MN102HF75K allows a PROM writer to program the  
internal flash memory as if it was a standalone memory chip. The  
microcontroller is inserted into a dedicated adaptor socket, which con-  
nects to DATA-I/O’s LabSite PROM writer. When the microcontroller  
connects to the adaptor socket, it automatically enters PROM writer  
mode. The adaptor socket ties the microcontroller pin states to PROM  
writer mode, and programming occurs without any reference to the  
microcontroller pin states.  
In this mode, the MN102HF75K allows a PROM writer to program the  
internal flash memory as if it was a standalone memory chip. The  
microcontroller is inserted into a dedicated adaptor socket, which con-  
nects to DATA-I/O’s LabSite PROM writer. When the microcontroller  
connects to the adaptor socket, it automatically enters PROM writer  
mode. The adaptor socket ties the microcontroller pin states to PROM  
writer mode, and programming occurs without any reference to the  
microcontroller pin states.  
Third-party  
PROM writer  
MN102HF85K  
Adaptor socket for MN102HF85K  
Third-party  
PROM writer  
MN102HF75K  
Adaptor socket for MN102HF75K  
MN102HF75K  
Adaptor socket for MN102HF75K  
P318  
P318  
Device  
Device  
Hardware Part  
Hardware Part  
MN102HF75KBF  
MN102HF75KBF  
MN102HF85KDP  
Package  
Package  
(external view)  
(external view)  
Installed in  
Installed in  
84-pin QFP  
84-pin QFP  
64-pin SDIP  
Adaptor  
Adaptor  
M
Panasonic  
Installed in  
Installed in  
Set this switch to the right  
Ordering information:  
Ordering information:  
Ordering information:  
Part no.:FLS84F18-102HF57  
OEM:Matsushita Electric Indus-  
trial Co.,Ltd.  
Part no.:FLS84F18-102HF57  
OEM:Matsushita Electric Indus-  
trial Co.,Ltd.  
Part no.:FLS64SD-102HF51  
OEM:Matsushita Electric Indus-  
trial Co.,Ltd.  
Third-party PROM  
Gang writer  
writer  
Third-party PROM  
writer  
Gang writer  
Single-unit writer  
Model: 1930  
Model: 1930  
Model: LabSite DIP 48-1  
OEM: DATA-I/O  
Osaki CN Building,2F  
5-10-10 Osaki,Shinagawa-ku  
Tokyo,Japan  
OEM: Minato Electronics  
4105 Minami Yamada-cho  
Tsuzuki-ku  
Yokohama,Japan  
Tel: 045-591-5605  
OEM: Minato Electronics  
4105 Minami Yamada-cho  
Tsuzuki-ku  
Yokohama,Japan  
Tel: 045-591-5605  
Tel: 03-3779-2040  
MN102H75K/F75K/85K/F85K LSI User Manual  
Panasonic Semiconductor Development Company  
5
Download from Www.Somanuals.com. All Manuals Search And Download.  
Panasonic  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MN102H75K/F75K/85K/F85K  
LSI User’s Manual  
October,2001 1st Edition 1st Printing  
Issued by Matsushita Electric Industrial Co., Ltd.  
Matsushita Electric Industrial Co., Ltd.  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Semiconductor Company, Matsushita Electric Industrial Co., Ltd.  
Nagaokakyo, Kyoto, 617-8520 Japan  
Tel: (075) 951-8151  
http://www.panasonic.co.jp/semicon/  
SALES OFFICES  
Penang Office:  
NORTH AMERICA  
Suite 20-07,20th Floor, MWE Plaza, No.8, Lebuh  
Farquhar,10200 Penang, Malaysia  
U.S.A. Sales Office:  
Panasonic Industrial Company  
New Jersey Office:  
Two Panasonic Way Secaucus, New Jersey 07094 U.S.A.  
Tel: 1-201-348-5257  
Chicago Office:  
1707 N. Randall Road Elgin, Illinois 60123-7847 U.S.A.  
[PIC]  
Tel: 60-4-201-5113  
Johore Sales Office:  
Menara Pelangi, Suite8.3A, Level8, No.2, Jalan Kuning  
Taman Pelangi, 80400 Johor Bahru, Johor, MALAYSIA  
Fax:60-4-261-9989  
Fax:1-201-392-4652  
Tel: 60-7-331-3822  
Fax:60-7-355-3996  
Thailand Sales Office:  
Tel: 1-847-468-5720  
Fax:1-847-468-5725  
Panasonic Industrial (THAILAND) Ltd.  
[PICT]  
Milpitas Office:  
252-133 Muang Thai-Phatra Complex Building, 31st Fl.  
Rachadaphisek Rd., Huaykwang, Bangkok 10320,  
THAILAND  
1600 McCandless Drive Milpitas, California 95035 U.S.A.  
Tel: 1-408-942-2912  
Atlanta Office:  
1225 Northbrook Parkway Suite 1-151 Suwanee, GA  
30024 U.S.A.  
Fax:1-408-946-9063  
Tel: 66-2-693-3428  
Fax:66-2-693-3422  
Philippines Sales Office:  
[PISP]  
Panasonic Indsutrial Sales Philippines Division of  
Matsushita Electric Philippines Corporation  
102 Laguna Boulevard,Bo.Don Jose Laguna Technopark,  
Santa. Rosa, Laguna 4026 PHILIPPINES  
Tel: 1-770-338-6953  
San Diego Office:  
9444 Balboa Avenue, Suite 185, San Diego, California  
92123 U.S.A.  
Fax:1-770-338-6849  
Tel: 63-2-520-8615  
India Sales Office:  
National Panasonic India Ltd.  
Fax:63-2-520-8629  
Tel: 1-619-503-2903  
Canada Sales Office:  
Panasonic Canada Inc.  
Fax:1-858-715-5545  
[NPI]  
[PCI]  
E Block, 510, International Trade Tower Nehru Place, New  
Delhi_110019 INDIA  
5770 Ambler Drive 27 Mississauga, Ontario, L4W 2T3  
CANADA  
Tel: 91-11-629-2870  
Indonesia Sales Office:  
P.T.MET & Gobel  
Fax:91-11-629-2877  
Tel: 1-905-238-2101  
LATIN AMERICA  
Mexico Sales Office:  
Panasonic de Mexico, S.A. de C.V.  
Fax:1-905-238-2414  
[M&G]  
JL. Dewi Sartika (Cawang 2) Jakarta 13630, INDONESIA  
[PANAMEX]  
Tel: 62-21-801-5666  
Taiwan Sales Office:  
Fax:62-21-801-5675  
Amores 1120 Col. Del Valle Delegacion Benito Juarez  
C.P. 03100 Mexico, D.F. MEXICO  
Panasonic Industrial Sales (Taiwan) Co.,Ltd.  
Head Office:  
[PIST]  
Tel: 52-5-488-1000  
Guadalajara Office:  
Fax:52-5-488-1073  
6F, 550, Sec. 4, Chung Hsiao E. RD. Taipei, 110, TAIWAN  
Tel: 886-2-2757-1900 Fax:886-2-2757-1906  
Kaohsiung Office:  
SUCURSAL GUADALAJARA  
Av. Lazaro Cardenas 2305 Local G-102 Plaza Comercial  
Abastos; Col. Las Torres Guadalajara, Jal. 44920  
MEXICO  
6th Floor, Hsin Kong Bldg. No.251, Chi Hsien 1st Road  
Kaohsiung 800, TAIWAN  
Tel: 52-3-671-1205  
Brazil Sales Office:  
Panasonic do Brasil Ltda.  
Caixa Postal 1641, Sao Jose dos Campos, Estado de Sao  
Paulo  
Tel: 55-12-335-9000  
EUROPE  
U.K. Sales Office:  
Fax:52-3-671-1256  
Tel: 886-7-346-3815  
China Sales Office:  
Panasonic Industrial (Shanghai) Co., Ltd.  
Fax:886-7-236-8362  
[PANABRAS]  
[PI(SH)]  
Floor 6, Zhong Bao Mansion, 166 East Road Lujian Zui,  
PU Dong New District, Shanghai, 200120 CHINA  
Tel: 86-21-5866-6114 Fax:86-21-5866-8000  
Fax:55-12-331-3789  
Panasonic Industrial (Tianjin) Co., Ltd.  
[PI(TJ)]  
Room No.1001, Tianjin International Building 75, Nanjin  
Road, Tianjin 300050, CHINA  
Tel: 86-22-2313-9771 Fax:86-22-2313-9770  
Panasonic SH Industrial Sales (Shenzhen) Co., Ltd.  
Panasonic Industrial Europe Ltd.  
Willoughby Road, Bracknell, Berks., RG12 8FP,  
THE UNITED KINGDOM  
[PIEL]  
[PIEG]  
[PSSA]  
Tel: 44-1344-85-3671 Fax:44-1344-85-3853  
Germany Sales Office:  
[PSI(SZ)]  
7A-107, International Bussiness & Exhibition Centre,  
Futian Free Trade Zone, Shenzhen 518048, CHINA  
Tel: 86-755-359-8500 Fax:86-755-359-8516  
Panasonic Shun Hing Industrial Sales (Hong Kong)  
Panasonic Industrial Europe GmbH  
Hans-Pinsel-Strasse 2 85540 Haar, GERMANY  
Tel: 49-89-46159-119 Fax:49-89-46159-195  
ASIA  
Singapore Sales Office:  
Co., Ltd.  
[PSI(HK)]  
11th Floor, Great Eagle Center 23 Harbour Road,  
Wanchai, HONG KONG  
Panasonic Semiconductor of South Asia  
300 Beach Road, #16-01, The Concourse, Singapore  
199555 THE REPUBLIC OF SINGAPORE  
Tel: 852-2529-7322  
Korea Sales Office:  
Fax:852-2865-3697  
Tel: 65-390-3688  
Fax:65-390-3689  
Panasonic Industrial Korea Co., Ltd.  
Kukje Center Bldg. 11th Fl., 191 Hangangro 2ga,  
Youngsan-ku, Seoul 140-702, KOREA  
[PIKL]  
Malaysia Sales Office:  
Panasonic Industrial Company (M) Sdn. Bhd. [PICM]  
Head Office:  
Tingkat 16B, Menara PKNS Petaling Jaya, No.17, Jalan  
Yong Shook Lin 46050 Petaling Jaya, Selangor Darul  
Ehsan, MALAYSIA  
Tel: 82-2-795-9600  
Fax:82-2-795-1542  
Tel: 60-3-7951-6601  
Fax:60-3-7954-5968  
280901  
Printed in JAPAN  
Matsushita Electric Industrial Co., Ltd. 2001  
Download from Www.Somanuals.com. All Manuals Search And Download.  

LevelOne Computer Hardware 11g USB Adapter w LCD WiFi Detector User Manual
LG Electronics Flat Panel Television 1199LLSS44DD User Manual
LifeSource Blood Pressure Monitor UA 787EJ User Manual
Lux Products Thermostat P722Ub User Manual
Mackie Speaker SA1530Z User Manual
Makita Drill 6227D User Manual
Mamp;S Systems Intercom System MC111DM User Manual
Market Forge Industries Fryer 30 stel User Manual
Maxxsonics Stereo Amplifier GPV11002 User Manual
Midland Radio Camcorder KTC 200 User Manual