Intelligent Motion Systems Network Card MForce Series Microstepping PowerDrive User Manual

TM  
Excellence in Motion  
FORCETM  
POWER DRIVE  
MICROSTEPPING  
Operating  
Instructions  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Table Of Contents  
Getting Started: Microstepping MForce PowerDrive .................................................................1-1  
Before You Begin....................................................................................................................... 1-1  
Tools and Equipment Required................................................................................................. 1-1  
Connecting the Power Supply ................................................................................................... 1-1  
Connect Opto Reference and Logic Inputs................................................................................ 1-2  
Connecting the Motor .............................................................................................................. 1-2  
Part 1: Hardware Reference  
Section 1.1: Introduction to the Microstepping MForce PowerDrive ...........................................1-5  
Configuring .............................................................................................................................. 1-5  
Features and Benefits................................................................................................................. 1-6  
Section 1.2: Microstepping MForce PowerDrive Detailed Specifications ..................................1-7  
General Specifications ............................................................................................................... 1-7  
Setup Parameters....................................................................................................................... 1-8  
Mechanical Specifications.......................................................................................................... 1-8  
Pin Assignment and Description ............................................................................................... 1-9  
P1 12-Pin Locking Wire Crimp Connector - Power, I/O and SPI Communications...... 1-9  
P3 Connector - DC Power, 2-Pin Locking Wire Crimp................................................ 1-10  
P4 Connector - Motor .................................................................................................. 1-10  
Part 2: Connecting and Interfacing  
Section 2.1: Mounting and Connection Guidelines .......................................................................3  
Mounting Recommendations........................................................................................................3  
Securing Power Leads and Logic Leads..........................................................................................4  
Layout and Interface Guidelines....................................................................................................4  
Rules of Wiring ..................................................................................................................5  
Rules of Shielding ..............................................................................................................5  
Recommended Wiring........................................................................................................5  
Recommended Mating Connectors and Pins ......................................................................5  
Section 2.2: Interfacing DC Power.................................................................................................7  
Choosing a Power Supply for Your MForce PowerDrive................................................................7  
DC Power Supply Recommendations............................................................................................8  
Recommended IMS Power Supplies....................................................................................8  
Basic DC Power Connection.........................................................................................................9  
Recommended Power and Cable Configurations ..........................................................................9  
Example A: DC Power Cabling Under 50 Feet....................................................................9  
Example B: AC Power to Full Wave Bridge Cabling Over 50 Feet.....................................10  
Example C – Cabling 50 Feet or Greater, AC Power to Power Supply...............................10  
Section 2.3: Motor Selection and Interface ..................................................................................11  
Selecting a Motor........................................................................................................................11  
Types and Construction of Stepping Motors.....................................................................11  
Sizing a Motor for Your System.........................................................................................11  
Recommended IMS Motors .......................................................................................................12  
IMS Inside Out Stepper Motors........................................................................................13  
Connecting the Motor ................................................................................................................14  
8 Lead Motors ..................................................................................................................14  
6 Lead Motors...................................................................................................................15  
4 Lead Motors...................................................................................................................16  
Recommended Motor Cabling ...................................................................................................16  
Example A: Motor Cabling Less Than 50 Feet..................................................................16  
Example B: Motor Cabling Greater Than 50 Feet.............................................................17  
Recommended Motor Cable AWG Sizes...........................................................................17  
Section 2.4: Logic Interface and Connection ................................................................................19  
Optically Isolated Logic Inputs....................................................................................................19  
Isolated Logic Input Pins and Connections .................................................................................19  
Isolated Logic Input Characteristics.............................................................................................19  
i
Download from Www.Somanuals.com. All Manuals Search And Download.  
Enable Input.....................................................................................................................19  
Clock Inputs.....................................................................................................................20  
Optocoupler Reference................................................................................................................22  
Input Connection Examples........................................................................................................23  
Open Collector Interface Example........................................................................................  
Switch Interface Example..................................................................................................24  
Minimum Required Connections................................................................................................25  
Section 2.5: Connecting SPI Communications .............................................................................26  
Connecting the SPI Interface ......................................................................................................26  
SPI Signal Overview....................................................................................................................26  
SPI Pins and Connections...........................................................................................................27  
Logic Level Shifting and Conditioning Circuit............................................................................27  
SPI Master with Multiple Microstepping MForce PowerDrive ....................................................28  
Section 2.6: Using the IMS SPI Motor Interface...........................................................................29  
Installation..................................................................................................................................29  
Configuration Parameters and Ranges.........................................................................................29  
Color Coded Parameter Values....................................................................................................29  
IMS SPI Motor Interface Menu Options.....................................................................................30  
Screen 1: The Motion Settings Configuration Screen ..................................................................31  
MSEL (Microstep Resolution Selection) ...........................................................................32  
HCDT (Hold Current Delay Time) .................................................................................33  
MRC (Motor Run Current)..............................................................................................33  
MHC (Motor Hold Current)............................................................................................33  
DIR (Motor Direction).....................................................................................................33  
User ID.............................................................................................................................33  
IMS SPI Motor Interface Button Functions......................................................................33  
Screen 2: I/O Settings Configuration Screen ...............................................................................34  
Input Clock Type..............................................................................................................34  
Input Clock Filter .............................................................................................................34  
Enable Active High/Low...................................................................................................34  
Warning Temperature .......................................................................................................34  
IMS Part Number/Serial Number Screen ....................................................................................35  
Fault Indication...........................................................................................................................35  
Upgrading the Firmware in the Microstepping MForce PowerDrive............................................36  
The IMS SPI Upgrader Screen..........................................................................................36  
Upgrade Instructions.........................................................................................................36  
Initialization Screen.....................................................................................................................37  
Port Menu.........................................................................................................................37  
Section 2.7: Using User-Defined SPI............................................................................................38  
SPI Timing Notes........................................................................................................................38  
Check Sum Calculation for SPI...................................................................................................38  
SPI Commands and Parameters...................................................................................................39  
SPI Communications Sequence ........................................................................................40  
Appendices  
Appendix A: Optional Prototype Development Cables................................................................ A-3  
MD-CC300-000: USB to SPI Parameter Setup Cable ..............................................................A-3  
Adapter Cables..........................................................................................................................A-3  
Installation Procedure for the MD-CC300-000 ........................................................................A-4  
Installing the Cable/VCP Drivers....................................................................................A-4  
Determining the Virtual COM Port (VCP) ....................................................................A-6  
PD12-1434-FL3 — Power, I/O and SPI.........................................................................A-7  
Prototype Development Cable PD02-2300-FL3 .......................................................................A-8  
Prototype Development Cable PD04-MF34-FL3 .....................................................................A-8  
ii  
Download from Www.Somanuals.com. All Manuals Search And Download.  
List of Figures  
Figure GS.1: Minimum Logic and Power Connections ............................................................. 1-1  
Part 1: Hardware Reference  
Figure 1.1.1: Microstepping MForce PowerDrive...................................................................... 1-5  
Figure 1.2.1: MForce PowerDrive Mechanical Specifications..................................................... 1-8  
Figure 1.2.2: P1 — 12-Pin Locking Wire Crimp Pin Configuration ......................................... 1-9  
Figure 1.2.3: P3 — 2-Pin Locking Wire Crimp Pin Configuration ......................................... 1-10  
Figure 1.2.4: P4 — 4-Pin Locking Wire Crimp Pin Configuration ......................................... 1-10  
Part 2: Connecting and Interfacing  
Figure 2.1.1: Base Mounting the MForce PowerDrive...................................................................3  
Figure 2.1.2: End Mounting the MForce PowerDrive ...................................................................4  
Figure 2.2.1: IMS ISP300 Switch Mode Power Supply..................................................................7  
Figure 2.2.2: MForce PowerDrive DC Power Connection.............................................................9  
Figure 2.2.3: DC Cabling - Under 50 Feet....................................................................................9  
Figure 2.2.4: AC To Full Wave Bridge Rectifier, Cabling over 50 Feet.........................................10  
Figure 2.2.5: AC Cabling - 50 Feet or Greater - AC To Power Supply .........................................10  
Figure 2.3.1 A & B: Per Phase Winding Inductance....................................................................12  
Figure 2.3.2: 8 Lead Motor Series Connections...........................................................................14  
Figure 2.3.3: 8 Lead Motor Parallel Connections........................................................................14  
Figure 2.3.4: 6 Lead Half Coil (Higher Speed) Motor Connections ...........................................15  
Figure 2.3.5: 6 Lead Half Coil (Higher Speed) Motor Connections ...........................................15  
Figure 2.3.6: 4 Lead Motor Connections.....................................................................................16  
Figure 2.3.7: Motor Cabling Less than 50 Feet............................................................................16  
Figure 2.3.8: Motor Cableing Greater than 50 Feet.....................................................................17  
Figure 2.4.1: Isolated Logic Pins and Connections ......................................................................19  
Figure 2.4.2: Input Clock Functions ...........................................................................................20  
Figure 2.4.3: Clock Input Timing Characteristics........................................................................21  
Figure 2.4.4: Optocoupler Input Circuit Diagram.......................................................................22  
Figure 2.4.5: Open Collector Interface Example..........................................................................23  
Figure 2.4.6: Switch Interface Example .......................................................................................24  
Figure 2.4.7: Minimum Required Connections...........................................................................25  
Figure 2.5.1: MD-CC300-000 Parameter Setup Cable................................................................26  
Figure 2.5.2: SPI Pins and Connections, 12-Pin Wire Crimp......................................................27  
Figure 2.5.3: Logic Level Shifting and Conditioning Circuit.......................................................27  
Figure 2.5.4: SPI Master with a Single Microstepping MForce PowerDrive.................................28  
Figure 2.5.5: SPI Master with Multiple Microstepping MForce PowerDrives ..............................28  
Figure 2.6.1: SPI Motor Interface Color Coding.........................................................................30  
Figure 2.6.2: SPI Motor Interface File Menu...............................................................................30  
Figure 2.6.3: SPI Motor Interface View Menu.............................................................................30  
Figure 2.6.4: SPI Motor Interface Recall Menu ...........................................................................31  
Figure 2.6.5: SPI Motor Interface Upgrade Menu .......................................................................31  
Figure 2.6.6: SPI Motor Interface Help Menu and About Screen ................................................31  
Figure 2.6.7: SPI Motor Interface Motion Settings Screen...........................................................32  
Figure 2.6.8: SPI Motor Interface I/O Settings Screen.................................................................34  
Figure 2.6.9: SPI Motor Interface Part and Serial Number Screen...............................................35  
Figure 2.6.10: SPI Motor Interface Upgrade Utility ....................................................................36  
Figure 2.6.11: SPI Motor Interface Initialization.........................................................................37  
Figure 2.6.12: SPI Motor Interface Port Menu............................................................................37  
Figure 2.7.1: SPI Timing.............................................................................................................38  
Figure 2.7.2: Read/Write Byte Order for Parameter Settings (Default Parameters Shown)...........40  
iii  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Appendices  
Figure A.1: MD-CC300-000 ....................................................................................................A-3  
Figure A.2: MD-CC300-000 Mechanical Specifications............................................................A-3  
Figure A.3: Typical Setup, Adapter and Prototype Development Cable ....................................A-4  
Figure A.4: Hardware Update Wizard .......................................................................................A-4  
Figure A.5: Hardware Update Wizard Screen 2 .........................................................................A-5  
Figure A.6: Hardware Update Wizard Screen 3 .........................................................................A-5  
Figure A.7: Windows Logo Compatibility Testing.....................................................................A-5  
Figure A.8: Hardware Update Wizard Finish Installation...........................................................A-6  
Figure A.9: Hardware Properties................................................................................................A-6  
Figure A.10: Windows Device Manager ....................................................................................A-6  
Figure A.11 PD12-1434-FL3....................................................................................................A-7  
Figure A.12: PD02-3400-FL3...................................................................................................A-8  
Figure A.13: PD04-MF34-FL3 .................................................................................................A-8  
List of Tables  
Part 1: Hardware Reference  
Table 1.2.1: Electrical Specifications.......................................................................................... 1-7  
Table 1.2.2: Thermal Specifications........................................................................................... 1-7  
Table 1.2.3: I/O Specifications .................................................................................................. 1-7  
Table 1.2.4: Communications Specifications............................................................................. 1-7  
Table 1.2.5: Motion Specifications ............................................................................................ 1-7  
Table 1.2.6: Setup Parameters.................................................................................................... 1-8  
Table 1.2.7: P1 Connector – Power, I/O and SPI Communications.......................................... 1-9  
Table 1.2.8: P3 Connector ...................................................................................................... 1-10  
Table 1.2.9: P4 Connecter....................................................................................................... 1-10  
Part 1: Interfacing and Configuring  
Table 2.2.1: Recommended Wire Gauges ...................................................................................10  
Table 2.3.1: Recommended Wire Gauges....................................................................................17  
Table 2.4.1: Input Clocks Timing Table ......................................................................................21  
Table 2.4.2: Optocoupler Reference Connection.........................................................................22  
Table 2.6.1: Setup Parameters and Ranges...................................................................................29  
Table 2.6.2: Microstep Resolution Settings..................................................................................32  
Table 2.6.3: Hold and Run Current Percentage Equivalents........................................................33  
Table 2.6.4: Input Clock Filter Settings.......................................................................................34  
Table 2.6.5: Microstepping MForce PowerDrive Fault Codes......................................................35  
Table 2.7.1: SPI Commands and Parameters...............................................................................39  
Appendices  
Table A.1: PD12-1434-FL3 Wire Color Codes .........................................................................A-7  
Table A.2: PD04-MF34-FL3.....................................................................................................A-8  
iv  
Download from Www.Somanuals.com. All Manuals Search And Download.  
WARNING! The MForce  
has components  
which are sensitive to  
Getting Started  
Electrostatic Discharge  
Microstepping MForce PowerDrive  
(ESD). All handling should be done  
at an ESD protected workstation.  
Before You Begin  
WARNING! Hazardous  
voltage levels may be  
present if using an open  
frame power supply to  
The Getting Started Section is designed to help quickly connect and begin using your Microstepping MForce  
PowerDrive. The following examples will help you get a motor turning for the first time and introduce you to  
the basic settings of the drive.  
power your MForce product.  
Tools and Equipment Required  
WARNING! Ensure that  
the power supply output  
voltage does not exceed  
the maximum input  
Microstepping MForce PowerDrive Unit (MFM)  
A NEMA 23 or 34 Size Stepping Motor  
Control Device for Step/Direction  
+5 to +24 VDC Optocoupler Supply (if using sinking output type)  
An Unregulated +12 to +48VDC Power Supply  
Basic Tools: Wire Cutters / Strippers / Screwdriver  
Wire for Power Supply (18 AWG) and Motor (16 AWG)  
22 AWG Wire for Logic Connections  
voltage of the MForce product that  
you are using!  
Opto Reference*  
Power Ground  
+V (+12 to +48)  
* The Opto Reference Will  
set the Sink/Source  
Note: A characteristic of  
all motors is back EMF.  
Back EMF is a source of  
Configuration of the Inputs  
Sinking: OptoRef = +5 to +24 VDC  
Sourcing: OptoRef = Ground  
current that can push the  
output of a power supply beyond  
the maximum operating voltage  
of the driver. As a result, damage  
to the stepper driver could occur  
over a period of time. Care should  
be taken so that the back EMF  
does not exceed the maximum  
input voltage rating of the MForce  
PowerDrive.  
3
4
P3  
1
2
6
Step  
Direction  
P1  
ØA  
ØA  
1
3
2
ØB  
4
ØB  
P4  
MForce PowerDrive Front  
12-Pin Wire Crimp at P1 Shown.  
See Specifications for Pin  
Numbering for other versions.  
Stepping Motor  
Figure GS.1: Minimum Logic and Power Connections  
Connecting the Power Supply  
Using the recommended wire, connect the DC output of the power supply to the +V input of the connector  
appropriate for your Microstepping MForce PowerDrive model.  
Connect the power supply ground to the Power Ground pin appropriate for your Microstepping MForce  
PowerDrive.  
Part 1: Hardware Specifications  
1-1  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Connect Opto Reference and Logic Inputs  
Using 22 AWG wire, connect the Opto Reference to the desired reference point. The reference will determine  
whether or not the logic input is sinking or sourcing. If Sinking Inputs are desired, connect the Opto reference  
to a +5 to +24 VDC Supply. If Sourcing Outputs are desired, the Opto Reference needs to be connected to the  
Controller Ground.  
Connect the Step and Direction inputs to the appropriate outputs of your PLC or controller.  
Connecting the Motor  
Using the recommended wire, connect the Motor Phases to P3 as shown in Figure GS.1. Ensure that the phases  
are connected correctly.  
Microstepping MForce PowerDrive Manual Revision R040507  
1-2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
FORCETM  
POWER DRIVE  
MICROSTEPPING  
Part 1:  
Hardware  
Reference  
Section 1.1: Introduction to the Microstepping MForce PowerDrive  
Section 1.2: Microstepping MForce PowerDrive Detailed Specifications  
Part 1: Hardware Specifications  
1-3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Page Intentionally Left Blank  
Microstepping MForce PowerDrive Manual Revision R040507  
1-4  
Download from Www.Somanuals.com. All Manuals Search And Download.  
SECTION 1.1  
Introduction to the Microstepping MForce PowerDrive  
The Microstepping MForce Pow-  
erDrive is a high performance, low  
cost microstepping driver that delivers  
unsurpassed smoothness and perfor-  
mance achieved through IMS’s advanced  
2nd generation current control. By  
applying innovative techniques to con-  
trol current flow through the motor,  
resonance is significantly dampened over  
the entire speed range and audible noise is  
reduced.  
Microstepping MForce PowerDrives  
accept a broad input voltage range  
from +12 to +75 VDC, delivering enhanced  
performance and speed. Oversized input  
capacitors are used to minimize power line  
surges, reducing problems that can occur  
with long runs and multiple drive systems.  
Figure 1.1.1: Microstepping MForce PowerDrive  
An extended operating range of –40° to +85°C provides long life, trouble free service in demanding environments.  
The high, per phase output current of up to 5 Amps RMS, 7 Amps Peak, allows the extremely compact MForce  
PowerDrive to control a broad array of motors from size 23 to size 42.  
The microstepping drive accepts up to 20 resolution settings from full to 256 microsteps per full step, including:  
degrees, metric and arc minutes. These settings may be changed on-the-fly or downloaded and stored in nonvolatile  
memory with the use of a simple GUI which is provided. This eliminates the need for external switches or resistors.  
Parameters are changed via an SPI port.  
The versatile Microstepping MForce PowerDrive comes with dual mounting configurations to fit various system needs.  
All interface connections are accomplished using pluggable locking wire crimp connectors. Optional cables are avail-  
able for ease of connecting and configuring the MForce, and are recommended with first order.  
The Microstepping MForce PowerDrive is a compact, powerful and inexpensive solution that will reduce system  
cost, design and assembly time for a large range of applications.  
Configuring  
The IMS SPI Motor Interface software is an easy to install and use GUI for configuring the Microstepping MForce  
PowerDrive from a computer's USB port. GUI access is via the IMS SPI Motor Interface included on the CD  
configuring the MForce.  
The IMS SPI Motor Interface features:  
Easy installation.  
Automatic detection of MForce version and communication configuration.  
Will not set out-of-range values.  
Tool-tips display valid range setting for each option.  
Simple screen interfaces.  
Part 1: Hardware Specifications  
1-5  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Features and Benefits  
High Performance Microstepping Driver  
Advanced 2nd Generation Current Control for Exceptional Performance and Smoothness  
Single Supply: +12 to +75 VDC  
Low Cost  
Extremely Compact  
High Output Current:  
Up to 5 Amps RMS, 7 Amps Peak (Per Phase)  
20 Microstep Resolutions up to 51,200 Steps Per Rev Including:  
Degrees, Metric, Arc Minutes  
Optically Isolated Logic Inputs will Accept +5 to +24 VDC Signals, Sourcing or Sinking  
Automatic Current Reduction  
Configurable:  
Motor Run/Hold Current  
Motor Direction vs. Direction Input  
Microstep Resolution  
Clock Type: Step and Direction, Quadrature, Step Up and Step Down  
Programmable Digital Filtering for Clock and Direction Inputs  
Current and Microstep Resolution May Be Switched On-The-Fly  
Dual Mounting Configurations  
Power, Motor and Signal Interface via locking wire crimp style connectors.  
Graphical User Interface (GUI) for Quick and Easy Parameter Setup  
Microstepping MForce PowerDrive Manual Revision R040507  
1-6  
Download from Www.Somanuals.com. All Manuals Search And Download.  
SECTION 1.2  
Microstepping MForce PowerDrive Detailed Specifications  
General Specifications  
Electrical Specifications  
Input Voltage (+V) Range*  
+12 to +75 VDC  
4 Amps  
Max Power Supply Current (Per MForce PowerDrive)*  
Output Current RMS  
5 Amps  
Output Current Peak (Per Phase)  
7 Amps  
* Actual Power Supply Current will depend on Voltage and Load.  
Table 1.2.1: Electrical Specifications  
Thermal Specifications  
Heat Sink Temperature  
-40°C to +85°C  
Table 1.2.2: Thermal Specifications  
I/O Specifications  
Isolated Inputs — Step Clock, Direction and Enable  
Resolution  
10 Bit  
+5 to +24 VDC  
8.7 mA  
Voltage Range (Sourcing or Sinking)  
Current (+5 VDC Max)  
Current (+24 VDC Max)  
14.6 mA  
Table 1.2.3: I/O Specifications  
Communications Specifications  
Protocol  
SPI  
Table 1.2.4: Communications Specifications  
Motion Specifications  
Microstep Resolution  
Number of Resolutions  
20  
Available Microsteps Per Revolution  
200  
400  
800  
1000  
1600  
2000  
3200  
5000  
6400  
10000  
12800 20000 25000 25600 40000 50000 51200 360001 216002  
254003  
1=0.01 deg/µstep  
2=1 arc minute/µstep  
3=0.001 mm/µstep  
50 nS to 12.9 µS  
(10 MHz to 38.8kHz)  
Digital Filter Range  
Step/Direction,  
Quadrature, Clock Up/  
Clock Down  
Clock Types  
Step Frequency (Max)  
5.0 MHz  
100 nS  
Step Frequency Minimum Pulse Width  
Table 1.2.5: Motion Specifications  
Part 1: Hardware Specifications  
1-7  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Setup Parameters  
The following table illustrates the setup parameters. These are easily configured using the IMS SPI Motor Interface  
configuration utility. An optional Parameter Setup Cable is available and recommended with the first order.  
Microstepping MForce PowerDrive Setup Parameters  
Name  
MHC  
MRC  
Function  
Range  
0 to 100  
1 to 100  
Units  
percent  
percent  
Default  
Motor Hold Current  
Motor Run Current  
5
25  
1, 2, 4, 5, 8, 10, 16, 25, 32, 50,  
64, 100,108, 125, 127,128,  
180, 200, 250, 256  
µsteps per  
full step  
MSEL  
Microstep Resolution  
256  
DIR  
Motor Direction Override  
Hold Current Delay Time  
Clock Type  
0/1  
mSec  
CW  
500  
HCDT  
0 or 2-65535  
CLK TYPE  
Step/Dir. Quadrature, Up/Down  
Step/Dir  
50 nS to 12.9 µS  
(10 MHz to 38.8kHz)  
200nS(2.5  
MHz)  
CLK IOF  
Clock and Direction Filter  
nS (MHz)  
USER ID  
WARN TEMP  
EN ACT  
User ID  
Customizable  
0 to +125  
1-3 characters  
IMS  
80  
Warning Temperature  
Enable Active High/Low  
ºC  
High or Low  
High  
Table 1.2.6: Setup Parameters  
Mechanical Specifications - Dimensions in Inches (mm)  
3.473  
(88.21)  
2.116  
(53.75)  
P1  
P3  
Ø 0.187 ±0.01  
2X 0.580  
(2X 14.73)  
P4  
(Ø 4.75 ±0.25)  
2X #8 Screws  
for End Mount  
0.225  
(5.72)  
3.00 ±0.01  
(76.2 ±0.25)  
0.308 TYP.  
(7.82 TYP.)  
0.160 ±0.01  
(4.06 ±0.25)  
3.897  
(98.98)  
Ø 0.160 ±0.01 Thru  
(Ø 4.06 ±0.25 Thru)  
4X #6 Screws  
2.931 TYP.  
(74.45 TYP.)  
for Flat Mount  
2.950  
(74.93)  
0.417 TYP.  
(10.59 TYP.)  
3.473  
(88.21)  
Figure 1.2.1: MForce PowerDrive Mechanical Specifications  
Microstepping MForce PowerDrive Manual Revision R040507  
1-8  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Pin Assignment and Description  
P1 12-Pin Locking Wire Crimp Connector Option - Power, I/O and SPI  
Communications  
Pin Assignment - P1 Power, I/O and SPI  
Connections  
NEED A CABLE?  
The following cables  
and converters are  
available to interface  
with P1:  
Pin #  
Pin 1  
Pin 2  
Function  
N/C  
Description  
No Connect  
No Connect  
N/C  
The Signal applied to the Optocoupler Reference will  
determine the sinking/ or sourcing configuration of the inputs.  
To set the inputs for sinking operation, a +5 to +24 VDC  
supply is connected. If sourcing, the Reference is connected  
to Ground.  
12-Pin Locking Wire Crimp  
PD12-1434-FL3  
Pin 3  
Pin 4  
Opto Reference  
NEED A CABLE?  
The following cables  
and converters are  
available to interface  
communications with  
Step Clock input. The step clock input will receive the clock  
Step Clock/Channel pulses which will step the motor 1 step for each pulse. It  
A/ Clock Up  
may also receive quadrature and clock up type inputs if so  
configured.  
Enable/Disable Input will enable or disable the driver output  
to the motor. In the disconnected state the driver outputs are  
enabled in either sinking or sourcing configuration.  
Pin 5  
Pin 6  
Enable  
USB to SPI:  
MD-C300-000  
Direction input. The axis direction will be with respect to the  
state of the Direction Override Parameter. It may also receive  
quadrature and clock up type inputs if so configured.  
Direction/Channel B/  
Clock Down  
10-Pin IDC to 12-Pin Locking  
Wire Crimp Adapter  
Pin 7  
Pin 8  
Pin 9  
Pin 10  
+5 VDC Output  
SPI Clock  
GND  
Supply voltage for the MD-CC300-000 Cable ONLY!  
The Clock is driven by the SPI Master. The clock cycles once  
for each data bit.  
All SPI Communications will  
connect to the P1 Connector.  
Communications Ground.  
An adapter is available to interface  
the MD-CC300-000 to the 12-Pin  
Locking Wire Crimp connector.  
Master-In/Slave-Out. Carries output data from the MFM back  
to the SPI Master.  
MISO  
SPI Chip Select. This signal is used to turn communications  
on multiple MFM units on or off.  
Pin 11  
Pin 12  
CS  
MD-ADP-1723C  
Master-Out/Slave-In. Carries output data from the SPI Master  
to the MFM.  
MOSI  
This adapter may be used in  
conjunction with the following  
Prototype Development cables to  
interface power and logic:  
Table 1.2.7: P1 Connector – Power, I/O and SPI Communications  
PD12-1434-FL3 (10')  
ADP-3512-FL (12")  
See Appendix A for details.  
1
2
3
4
5
6
7
9
11  
8 10 12  
P1  
Recommended Connector Shell and Pins  
Shell: AMP P/N 1-794617-2  
Pins: 12 x AMP P/N 794610-1  
Wire: 22 AWG Shielded Twisted Pair  
Figure 1.2.2: P1 — 12-Pin Locking Wire Crimp Pin Configuration  
Part 1: Hardware Specifications  
1-9  
Download from Www.Somanuals.com. All Manuals Search And Download.  
NEED A CABLE?  
The following cables  
and converters are  
available to interface  
with P3:  
P3 Connector - DC Power, 2-Pin Locking Wire Crimp  
Pin Assignment - P3 Power  
2-Pin Locking  
Wire Crimp  
Function  
Description  
Pin 1  
+V  
+12 to +75 VDC, 4 Amps Maximum per MDrive34Plus.  
Power Supply Return.  
2-Pin Locking Wire Crimp  
PD02-3400-FL3  
Pin 2  
GND  
Table 1.2.8: P3 Connector  
WARNING! Do not  
Recommended Connector Shell and Pins  
plug or unplug DC  
Power with power  
applied.  
Shell: Molex P/N 510-67-0200  
Pins: 2 x Molex P/N 502-17-9101  
Wire: 18 AWG Shielded Twisted Pair  
2
1
P3  
Figure 1.2.3: P3 — 2-Pin Locking Wire Crimp Pin Configuration  
P4 Connector - Motor  
NEED A CABLE?  
The following cables  
and converters are  
available to interface  
with P4:  
Pin Assignment - P4 Motor  
5-Pin Locking  
Wire Crimp  
Function  
Description  
Pin 1  
Phase A  
Phase A  
Phase B  
Phase B  
Phase A Motor Output  
Phase A Motor Return  
Phase B Motor Output  
Phase B Motor Return  
Pin 2  
Pin 3  
4-Pin Locking Wire Crimp  
PD04-MF34-FL3  
Pin 4  
Recommended  
Cable  
PD04-MF34-FL3  
Table 1.2.9: P4 Connecter  
Recommended Connector Shell and Pins  
Shell: Molex P/N 39-01-2045  
2
4
1
Pins: 4 x Molex P/N 44476-3112  
Wire: 16 AWG Shielded Twisted Pair  
P4  
3
Figure 1.2.4: P4 — 4-Pin Locking Wire Crimp Pin Configuration  
Microstepping MForce PowerDrive Manual Revision R040507  
1-10  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Options and Accessories  
Parameter Setup Cable and Adapters  
The optional 12.0' (3.6m) parameter setup cable part number MD-CC300-000 facilitates communications  
wiring and is recommended with first order. It connects from the 10-Pin IDC Connector located at P2 to a  
PC's USB port. If the12-pin pluggable locking wire crimp connector is used at P1, adapter MD-ADP-1723C  
is required to use the MD-CC300-000.  
USB to SPI..........................................................................................................MD-CC300-000  
Prototype Development Cable  
To speed prototype development, these cables connect to user interface via flying leads with MForce mating  
connector on opposite end.  
Mating connector to 12-pin pluggable locking wire crimp plugs into MForce or adapter MD-ADP-1723C.  
Choose from 2 lengths:  
12.0" (30.5cm)..........................................................................................................ADP-3512-FL  
10.0' (3.0m).......................................................................................................... PD12-1434-FL3  
Mating connector to MForce 4-pin motor interface:  
10.0' (3.0m)........................................................................................................ PD04-MF17-FL3  
Part 1: Hardware Specifications  
1-11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Page Intentionally Left Blank  
Microstepping MForce PowerDrive Manual Revision R040507  
1-12  
Download from Www.Somanuals.com. All Manuals Search And Download.  
FORCETM  
MICRO DRIVE  
MICROSTEPPING  
Part 2:  
Interfacing and  
Configuring  
Section 2.1: Mounting and Connection Recommendations  
Section 2.2: Logic Interface and Connection  
Section 2.3: Connecting SPI Communications  
Section 2.4: Using the IMS SPI Motor Interface  
Section 2.5: Using User-Defined SPI  
Part 2: Interfacing and Configuring  
1
Download from Www.Somanuals.com. All Manuals Search And Download.  
Page Intentionally Left Blank  
Microstepping MForce PowerDrive Manual Revision R040507  
2
Download from Www.Somanuals.com. All Manuals Search And Download.  
SECTION 2.1  
Mounting and Connection Guidelines  
Mounting Recommendations  
The Microstepping MForce PowerDrive may be mounted two ways: end mounted or flat mounted End mount-  
ing will use #8 hardware, flat mounting will use standard #6 hardware. Do not exceed the recommended mount-  
ing torque specification. The diagrams in Figures 2.1.1 and 2.1.2 illustrate the mounting methods.  
NOTE: Mounting  
Hardware is not  
supplied.  
Recommended Tightening Torque:  
7 - 8 lb-in (78.4 - 89.6 N-cm)  
Mounting Hardware  
Mounting Hardware (Metric)  
4 x #6-32 Screw  
4 x #6 Split Lockwasher  
4 x #6 Flat Washer  
4 x M3.5 - 0.60 Screw  
4 x M3.5 Split Lockwasher  
4 x M3.5 Flat Washer  
MForce PowerDrive  
Mounting Surface  
Mounting Hole Pattern  
(Not to Scale)  
2.950  
(74.93  
Use #36 Drill Size (2.9 mm)  
Tap to #6-32 (M3.5 - 0.60) 4 PL  
2.931 TYP  
(74.45 TYP)  
Figure 2.1.1: Base Mounting the MForce PowerDrive  
Part 2: Interfacing and Configuring  
3
Download from Www.Somanuals.com. All Manuals Search And Download.  
NOTE: Ensure that  
proper clearance is  
allowed for wiring  
and cabling.  
Recommended Tightening Torque:  
8 - 9 lb-in (89.6 - 100.8 N-cm)  
Especially when end  
mounting the device.  
Mounting Hardware  
2 x #8-32 Screw  
2 x #8 Split Lockwasher  
2 x #8 Flat Washer  
NOTE: Mounting  
Hardware is not  
supplied.  
Mounting Hardware (Metric  
2 x M4 - 0.70 Screw  
2 x M4 Split Lockwasher  
2 x M4 Flat Washer  
Mounting Hole Pattern  
Use #29 Drill Size (3.3 mm)  
Tap to #8-32 2 PL (M4 - 0.70)  
3.000 TYP  
(76.20 TYP)  
Figure 2.1.2: End Mounting the MForce PowerDrive  
Securing Power Leads and Logic Leads  
Some applications may require that the MForce and/or the connected motor to move with the axis motion. If this  
is a requirement of your application, the motor leads must be properly anchored. This will prevent flexing and  
tugging which can cause damage at critical connection points on the MForce connectors.  
Layout and Interface Guidelines  
Logic level cables must not run parallel to power cables. Power cables will introduce noise into the logic level  
cables and make your system unreliable.  
Logic level cables must be shielded to reduce the chance of EMI induced noise. The shield needs to be grounded at  
the signal source to earth. The other end of the shield must not be tied to anything, but allowed to float. This allows  
the shield to act as a drain.  
Power supply leads to the MForce PowerDrive need to be twisted. If more than one driver is to be connected to  
the same power supply, run separate power and ground leads from the supply to each driver.  
Microstepping MForce PowerDrive Manual Revision R040507  
4
Download from Www.Somanuals.com. All Manuals Search And Download.  
Rules of Wiring  
Power Supply and Motor wiring should be shielded twisted pairs, and run separately from signal-  
carrying wires.  
A minimum of one twist per inch is recommended.  
Motor wiring should be shielded twisted pairs using 20 gauge, or for distances of more than 5 feet, 18  
gauge or better.  
Power ground return should be as short as possible to established ground.  
Power supply wiring should be shielded twisted pairs of 18 gauge for less than 4 amps DC and 16  
gauge for more than 4 amps DC.  
Rules of Shielding  
The shield must be tied to zero-signal reference potential. It is necessary that the signal be earthed  
or grounded, for the shield to become earthed or grounded. Earthing or grounding the shield is not  
effective if the signal is not earthed or grounded.  
Do not assume that Earth ground is a true Earth ground. Depending on the distance from the main  
power cabinet, it may be necessary to sink a ground rod at the critical location.  
The shield must be connected so that shield currents drain to signal-earth connections.  
The number of separate shields required in a system is equal to the number of independent signals  
being processed plus one for each power entrance.  
The shield should be tied to a single point to prevent ground loops.  
A second shield can be used over the primary shield; however, the second shield is tied to ground at  
both ends.  
Recommended Wiring  
The following wiring/cabling is recommended for use with the MForce PowerDrive:  
Logic Wiring......................................................................................................................22 AWG  
Wire Strip Length ...................................................................................................0.25” (6.0 mm)  
Power and Ground ........................................................................18 AWG Shielded Twisted Pair*  
Motor...............................................................................................16 AWG Shielded Twisted Pair  
*See Table 2.2.1 if using a power cable longer than 10 feet. The Gauge used is dependant upon supply current  
and legnth.  
Recommended Mating Connectors and Pins  
Logic and SPI Communications (P1)  
12-pin Locking Wire Crimp Connector Shell ......................................................AMP 1-794617-2  
Crimp Pins..............................................................................................................AMP 794610-1  
Power (P3)  
2-pin Locking Wire Crimp Connector Shell ..................................................... Molex 51067-0200  
Crimp Pins.............................................................................................. Molex 50217-9101 Brass  
Motor (P4)  
4-pin Locking Wire Crimp Connector Shell ....................................................... Molex 3901-2045  
Crimp Pins....................................................................................................... Molex 44476-3112  
Part 2: Interfacing and Configuring  
5
Download from Www.Somanuals.com. All Manuals Search And Download.  
Page Intentionally Left Blank  
Microstepping MForce PowerDrive Manual Revision R040507  
6
Download from Www.Somanuals.com. All Manuals Search And Download.  
SECTION 2.2  
Interfacing DC Power  
Choosing a Power Supply for Your MForce PowerDrive  
When choosing a power supply for your  
MForce PowerDrive there are performance  
and sizing issues that must be addressed. An  
undersized power supply can lead to poor  
performance and even possible damage to  
the device, which can be both time consum-  
ing and expensive. However, The design of  
the MForce PowerDrive is quite efficient  
and may not require as large a supply as you  
might suspect.  
Motors have windings that are electrically  
just inductors, and with inductors comes re-  
sistance and inductance. Winding resistance  
and inductance result in a L/R time constant  
that resists the change in current. It requires  
five time constants to reach nominal current.  
To effectively manipulate the di/dt or the rate  
of charge, the voltage applied is increased.  
When traveling at high speeds there is less  
Figure 2.2.1: IMS ISP300 Switch Mode Power Supply  
time between steps to reach current. The point where the rate of commutation does not allow the driver to reach  
full current is referred to as Voltage Mode. Ideally you want to be in Current Mode, which is when the drive  
is achieving the desired current between steps. Simply stated, a higher voltage will decrease the time it takes to  
charge the coil, and therefore will allow for higher torque at higher speeds.  
Another characteristic of all motors is Back EMF, and though nothing can be done about back EMF, we can give  
a path of low impedance by supplying enough output capacitance. Back EMF is a source of current that can push  
the output of a power supply beyond the maximum operating voltage of the driver and as a result could damage  
the MForce PowerDrive over time.  
The MForce PowerDrive is very current efficient as far as the power supply is concerned. Once the motor has  
charged one or both windings of the motor, all the power supply has to do is replace losses in the system. The  
charged winding acts as an energy storage in that the current will re-circulate within the bridge, and in and out of  
each phase reservoir. While one phase is in the decaying stage of the variable chopping oscillator, the other phase  
is in the charging stage, this results in a less than expected current draw on the supply.  
The MForce PowerDrive is designed with the intention that a user’s power supply output will ramp up to greater  
or equal to the minimum operating voltage. The initial current surge is quite substantial and could damage the  
driver if the supply is undersized. If a power supply is undersized, upon a current surge the supply could fall be-  
low the operating range of the driver. This could cause the power supply to start oscillating in and out of the volt-  
age range of the driver and result in damaging either the supply, driver or both. There are two types of supplies  
commonly used, regulated and unregulated, both of which can be switching or linear. All have their advantages  
and disadvantages.  
An unregulated linear supply is less expensive and more resilient to current surges, however, voltage decreases  
with increasing current draw. This can cause serious problems if the voltage drops below the working range of the  
drive. Also of concern is the fluctuations in line voltage. This can cause the unregulated linear supply to be above  
or below the anticipated voltage.  
A regulated supply maintains a stable output voltage, which is good for high speed performance. They are also  
not bothered by line fluctuations, however, they are more expensive. Depending on the current regulation, a  
regulated supply may crowbar or current clamp and lead to an oscillation that as previously stated can lead to  
damage. Back EMF can cause problems for regulated supplies as well. The current regeneration may be too large  
for the regulated supply to absorb and may lead to an over voltage condition.  
Switching supplies are typically regulated and require little real-estate, which makes them attractive. However,  
their output response time is slow, making them ineffective for inductive loads. IMS has designed a series of low  
cost miniature non-regulated switchers that can handle the extreme varying load conditions which makes them  
ideal for the MForce PowerDrive.  
Part 2: Interfacing and Configuring  
7
Download from Www.Somanuals.com. All Manuals Search And Download.  
DC Power Supply Recommendations  
The power requirements for the Microstepping MForce PowerDrive are:  
Output Voltage ...................................................................+12 to +75 VDC (Includes Back EMF)  
Current (max. per unit)...............................................................................................................4A  
(Actual power supply current requirement will depend upon voltage and load)  
Recommended IMS Power Supplies  
IMS unregulated linear and unregulated switching power supplies are the best fit for IMS drive products.  
IP804 Unregulated Linear Supply  
Input Range  
120 VAC Versions ...........................................................................................102-132 VAC  
240 VAC Versions ...........................................................................................204-264 VAC  
Output (All Measurements were taken at 25˚C, 120 VAC, 60 Hz)  
No Load Output Voltage........................................................................76 VDC @ 0 Amps  
Half Load Output..................................................................................65 VDC @ 2 Amps  
Full Load output....................................................................................58 VDC @ 4 Amps  
IP806 Unregulated Linear Supply  
Input Range  
120 VAC Versions ...........................................................................................102-132 VAC  
240 VAC Versions ...........................................................................................204-264 VAC  
Output (All Measurements were taken at 25˚C, 120 VAC, 60 Hz)  
No Load Output Voltage........................................................................76 VDC @ 0 Amps  
Half Load Output..................................................................................68 VDC @ 3 Amps  
Full Load Output...................................................................................64 VDC @ 6 Amps  
ISP300-7 Unregulated Switching Supply  
Input Range  
120 VAC Versions ...........................................................................................102-132 VAC  
240 VAC Versions ...........................................................................................204-264 VAC  
Output (All Measurements were taken at 25˚C, 120 VAC, 60 Hz)  
No Load Output Voltage........................................................................68 VDC @ 0 Amps  
Continuous Output Rating....................................................................63 VDC @ 2 Amps  
Peak Output Rating ...............................................................................59 VDC @ 4 Amps  
Microstepping MForce PowerDrive Manual Revision R040507  
8
Download from Www.Somanuals.com. All Manuals Search And Download.  
Basic DC Power Connection  
WARNING! DO  
NOT connect  
or disconnect  
Unregulated  
Linear or  
Switching  
WARNING! Do not connect  
or disconnect cabling while  
power is applied!  
power leads  
Power Supply  
!
when power is applied!  
Disconnect the AC power  
side to power down the  
DC power supply.  
Power  
Ground  
+VDC  
Optional Prototype  
Development Cable:  
PD02-3400-FL3  
Shield to  
Earth Ground  
+
P3  
Pin 2 Pin 1  
Figure 2.2.2: MForce PowerDrive DC Power Connection  
Recommended Power and Cable Configurations  
Cable length, wire gauge and power conditioning devices play a major role in the performance of your MForce  
PoweDrive.  
Example A demonstrates the recommended cable configuration for DC power supply cabling under 50 feet long.  
If cabling of 50 feet or longer is required, the additional length may be gained by adding an AC power supply  
cable (see Examples B & C).  
Correct AWG wire size is determined by the current requirement plus cable length. Please see Table 2.2.1 for  
recommended wire gauges.  
Example A: DC Power Cabling Under 50 Feet  
Cable Length  
less than 50 Feet  
P Type RFI Filter  
DC Voltage from  
Power Supply  
r Required Current  
-
P3:2  
P3:1  
+
-
500 µf  
Per Amp  
+
Ferrite  
Beads  
Shielded Twisted Pair  
Shield to Earth Ground  
on Supply End Only  
Figure 2.2.3: DC Cabling - Under 50 Feet  
Part 2: Interfacing and Configuring  
9
Download from Www.Somanuals.com. All Manuals Search And Download.  
WARNING! DO  
NOT connect  
Example B: AC Power to Full Wave Bridge Cabling Over 50 Feet  
or disconnect  
power leads  
when power is applied!  
Disconnect the AC power  
side to power down the  
DC power supply.  
NOTE:  
Transformer - 10 to 28 VAC RMS for 48 VDC Systems  
20 to 48 VAC RMS for 75 VDC Systems  
Connect the cable illustrated  
in Figure 2.2.2 to the output of  
the Full Wave Bridge  
P Type RFI Filter  
r Required Current  
Shielded Twisted Pair  
+
-
Cable Length  
as required  
Full Wave Bridge  
Shield to Earth Ground  
on Supply End Only  
Figure 2.2.4: AC To Full Wave Bridge Rectifier, Cabling over 50 Feet  
Example C – Cabling 50 Feet or Greater, AC Power to Power Supply  
NOTE:  
Connect the cable illustrated  
in Example A to the output of  
the Power Supply  
Shielded Twisted Pair  
P Type RFI Filter  
r Required Current  
120 or 240 VAC  
Dependent on  
Power Supply  
+
-
DC Volts Out  
Cable Length  
as required  
Shield to Earth Ground  
on Supply End Only  
Power Supply  
Figure 2.2.5: AC Cabling - 50 Feet or Greater - AC To Power Supply  
MForce PowerDrive Recommended Power Supply Cable AWG  
1 Amperes (Peak)  
3 Amperes (Peak)  
Length (Feet)  
10  
20  
25  
20  
50*  
18  
75* 100*  
18 16  
Length (Feet)  
10  
18  
25  
16  
50*  
14  
75*  
12  
100*  
12  
Minimum AWG  
Minimum AWG  
2 Amperes (Peak)  
4 Amperes (Peak)  
Length (Feet)  
10  
20  
25  
18  
50*  
16  
75* 100*  
14 14  
Length (Feet)  
10  
18  
25  
16  
50*  
14  
75*  
12  
100*  
12  
Minimum AWG  
Minimum AWG  
*Use the alternative methods illustrated in examples B and C when cable length is ≥ 50 feet. Also, use the same  
current rating when the alternate AC power is used.  
Table 2.2.1: Recommended Wire Gauges  
Microstepping MForce PowerDrive Manual Revision R040507  
10  
Download from Www.Somanuals.com. All Manuals Search And Download.  
SECTION 2.3  
Motor Selection and Interface  
Selecting a Motor  
When selecting a stepper motor for your application, there are several factors that need to be taken into consider-  
ation:  
How will the motor be coupled to the load?  
How much torque is required to move the load?  
How fast does the load need to move or accelerate?  
What degree of accuracy is required when positioning the load?  
While determining the answers to these and other questions is beyond the scope of this document, they are  
details that you must know in order to select a motor that is appropriate for your application. These details will  
affect everything from the power supply voltage to the type and wiring configuration of your stepper motor. The  
current and microstepping settings of your Microstepping MForce PowerDrive will also be affected.  
Types and Construction of Stepping Motors  
The stepping motor, while classed as a DC motor, is actually an AC motor that is operated by trains of pulses.  
Although it is called a “stepping motor”, it is in reality a polyphase synchronous motor. This means it has multiple  
phases wound in the stator and the rotor is dragged along in synchronism with the rotating magnetic field. The  
MForce PowerDrive is designed to work with the following types of stepping motors:  
1) Permanent Magnet (PM)  
2) Hybrid Stepping Motors  
Hybrid stepping motors combine the features of the PM stepping motors with the features of another type of  
stepping motor called a variable reluctance motor (VR). VR motors are low torque and load capacity motors  
which are typically used in instrumentation. The MForce PowerDrive cannot be used with VR motors as they  
have no permanent magnet.  
On hybrid motors, the phases are wound on toothed segments of the stator assembly. The rotor consists of a  
permanent magnet with a toothed outer surface which allows precision motion accurate to within 3 percent.  
Hybrid stepping motors are available with step angles varying from 0.45° to 15° with 1.8° being the most com-  
monly used. Torque capacity in hybrid steppers ranges from 5 - 8000 ounce-inches. Because of their smaller  
step angles, hybrid motors have a higher degree of suitability in applications where precise load positioning and  
smooth motion is required.  
Sizing a Motor for Your System  
The MForce PowerDrive is a bipolar driver which works equally well with both bipolar and unipolar motors (i.e.  
8 and 4 lead motors, and 6 lead center tapped motors).  
To maintain a given set motor current, the MForce PowerDrive chops the voltage using a variable chopping fre-  
quency and a varying duty cycle. Duty cycles that exceed 50% can cause unstable chopping. This characteristic  
is directly related to the motor’s winding inductance. In order to avoid this situation, it is necessary to choose a  
motor with a low winding inductance. The lower the winding inductance, the higher the step rate possible.  
Winding Inductance  
Since the MForce PowerDrive is a constant current source, it is not necessary to use a motor that is rated at the  
same voltage as the supply voltage. What is important is that the MForce PowerDrive is set to the motor’s rated  
current.  
The higher the voltage used the faster the current can flow through the motor windings. This in turn means a  
higher step rate, or motor speed. Care should be taken not to exceed the maximum voltage of the driver. There-  
fore, in choosing a motor for a system design, the best performance for a specified torque is a motor with the  
lowest possible winding inductance used in conjunction with highest possible driver voltage.  
The winding inductance will determine the motor type and wiring configuration best suited for your system. While  
the equation used to size a motor for your system is quite simple, several factors fall into play at this point.  
The winding inductance of a motor is rated in milliHenrys (mH) per Phase. The amount of inductance will  
depend on the wiring configuration of the motor.  
Part 2: Interfacing and Configuring  
11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
NOTE: In  
calculating the  
maximum phase  
Actual Inductance  
Seen By the Driver  
Actual Inductance  
Seen By the Driver  
inductance, the  
minimum supply output  
voltage should be used when  
using an unregulated supply.  
Specified Per Phase  
Inductance  
Specified Per Phase  
Inductance  
PHASE A  
PHASE A  
PHASE A  
PHASE A  
PHASE B  
PHASE B  
PHASE B  
PHASE B  
8 Lead Stepping Motor  
Series Configuration  
8 Lead Stepping Motor  
Parallel Configuration  
(Note: This example also  
applies to the 6 lead motor  
full copper conꢀguration and  
to 4 lead stepping motors)  
(Note: This example also  
applies to the 6 lead motor  
half copper conꢀguration)  
A
B
Figure 2.3.1 A & B: Per Phase Winding Inductance  
The per phase winding inductance specified may be different than the per phase inductance seen by your MForce  
PowerDrive driver depending on the wiring configuration used. Your calculations must allow for the actual induc-  
tance that the driver will see based upon the wiring configuration.  
Figure 2.3.1A shows a stepper motor in a series configuration. In this configuration, the per phase inductance  
will be 4 times that specified. For example: a stepping motor has a specified per phase inductance of 1.47mH. In  
this configuration the driver will see 5.88 mH per phase.  
Maximum Motor Inductance (mH per Phase) =  
.2 X Minimum Supply Voltage  
Figure 2.3.1B shows an 8 lead motor wired in parallel. Using this configuration the per phase inductance seen by  
the driver will be as specified.  
Using the following equation we will show an example of sizing a motor for a MForce PowerDrive used with an  
unregulated power supply with a minimum voltage (+V) of 18 VDC:  
.2 X 18 = 3.6 mH  
The recommended per phase winding inductance we can use is 3.6 mH.  
Recommended IMS Motors  
IMS also carries a series of 23 and 34 frame enhanced stepping motors that are recommended for use with the MForce  
PowerDrive. These motors use a unique relationship between the rotor and stator to generate more torque per frame  
size while ensuring more precise positioning and increased accuracy.  
The special design allows the motors to provide higher torque than standard stepping motors while maintaining a  
steadier torque and reducing torque drop-off.  
Each frame size is available in 3 stack sizes, single or double shaft, with or without encoders. They handle currents up  
to 2.4 Amps in series or 6 Amps parallel, and holding torque ranges from 90 oz.-in. (M-2218-2.4) to 1303 oz.-in (M-  
3447-6.3) (64 N-cm to 920 N-cm).  
These CE rated motors are ideal for applications where higher torque is required.  
For more detailed information on these motors, please see the IMS Full Line catalog or the IMS web site at  
Microstepping MForce PowerDrive Manual Revision R040507  
12  
Download from Www.Somanuals.com. All Manuals Search And Download.  
23 Frame Enhanced (2.4A - Not Available with Double Shaft)  
Single Shaft  
Double Shaft  
M-2218-2.4S ............................................................................................................................N/A  
M-2222-2.4S ............................................................................................................................N/A  
M-2231-2.4S ............................................................................................................................N/A  
23 Frame Enhanced (3.0A)  
Single Shaft  
Double Shaft  
M-2218-3.0S ............................................................................................................ M-2218-3.0D  
M-2222-3.0S ............................................................................................................ M-2222-3.0D  
M-2231-3.0S ............................................................................................................ M-2231-3.0D  
23 Frame Enhanced (6.0A)  
Single Shaft  
Double Shaft  
M-2218-6.0S ............................................................................................................ M-2218-6.0D  
M-2222-6.0S ............................................................................................................ M-2222-6.0D  
M-2231-6.0S ............................................................................................................ M-2231-6.0D  
34 Frame Enhanced (6.3A)  
Single Shaft  
Double Shaft  
M-3424-6.3S ...........................................................................................................M-3424-6.3-D  
M-3431-6.3S ............................................................................................................ M-3431-6.3D  
M-3447-6.3S ............................................................................................................ M-3447-6.3D  
IMS also offers 23 and 34 Frame hybrid linear actuators for use with the MForce PowerDrive.  
Please see the IMS Full Line catalog or the IMS web site at http://www.imshome.com.  
IMS Inside Out Stepper Motors  
The new inside out stepper (IOS) motor was designed by IMS to bring versatility to stepper motors using a  
unique multi-functional, hollow core design.  
This versatile new motor can be converted to a ball screw linear actuator by mounting a miniature ball screw to  
the front shaft face. Ball screw linear actuators offer long life, high efficiency, and can be field retrofitted. There is  
no need to throw the motor away due to wear of the nut or screw.  
The IOS motors offer the following features:  
The shaft face diameter offers a wide choice of threaded hole patterns for coupling.  
The IOS motor can be direct coupled in applications within the torque range of the motor,  
eliminating couplings and increasing system efficiency.  
The IOS motor can replace gearboxes in applications where gearboxes are used for inertia  
damping between the motor and the load. The induced backlash from the gearbox is  
eliminated providing improved bidirectional position accuracy.  
Electrical or pneumatic lines can be directed through the center of the motor enabling  
the motors to be stacked end-to-end or applied in robotic end effector applications. The  
through hole is stationary, preventing cables from being chaffed by a moving hollow  
shaft.  
Light beams can be directed through the motor for refraction by a mirror or filter wheel  
mounted on the shaft mounting face.  
The IOS motor is adaptable to valves enabling the valve stem to protrude above the motor  
frame. The stem can be retrofitted with a dial indicator showing valve position.  
The motor is compatible with IMS bipolar drivers, keeping the system cost low.  
The IOS motor can operate up to 3000 rpm’s.  
Part 2: Interfacing and Configuring  
13  
Download from Www.Somanuals.com. All Manuals Search And Download.  
The IOS motor is available in the following frames:  
Frame Size  
IMS PN  
23 Frame...................................................................................................................M3-2220-IOS  
34 Frame...................................................................................................................M3-3424-IOS  
Connecting the Motor  
The motor leads are connected to the following connector pins:  
Phase  
Connector: Pin  
Phase A ................................................................................................................................... P4: 1  
Phase A ................................................................................................................................... P4: 2  
Phase B ................................................................................................................................... P4: 3  
Phase B ................................................................................................................................... P4: 4  
8 Lead Motors  
8 lead motors offer a high degree of flexibility to the system designer in that they may be connected in  
series or parallel, thus satisfying a wide range of applications.  
Series Connection  
A series motor configuration would typically be used in applications where a higher torque at  
lower speeds is required. Because this configuration has the most inductance, the performance  
will start to degrade at higher speeds. Use the per phase (or unipolar) current rating as the peak  
output current, or multiply the bipolar current rating by 1.4 to determine the peak output current.  
Splice  
PHASE A  
PHASE A  
1 2  
3 4  
PHASE B  
P4  
PHASE B  
Splice  
Figure 2.3.2: 8 Lead Motor Series Connections  
Parallel Connection  
An 8 lead motor in a parallel configuration offers a more stable, but lower torque at lower speeds.  
But because of the lower inductance, there will be higher torque at higher speeds. Multiply the  
per phase (or unipolar) current rating by 1.96, or the bipolar current rating by 1.4, to determine  
the peak output current.  
PHASE A  
PHASE A  
1 2  
3 4  
PHASE B  
P4  
PHASE B  
Figure 2.3.3: 8 Lead Motor Parallel Connections  
Microstepping MForce PowerDrive Manual Revision R040507  
14  
Download from Www.Somanuals.com. All Manuals Search And Download.  
6 Lead Motors  
Like 8 lead stepping motors, 6 lead motors have two configurations available for high speed or  
high torque operation. The higher speed configuration, or half coil, is so described because it  
uses one half of the motor’s inductor windings. The higher torque configuration, or full coil,  
uses the full windings of the phases.  
Half Coil Configuration  
As previously stated, the half coil configuration uses 50% of the motor phase windings. This  
gives lower inductance, hence, lower torque output. Like the parallel connection of 8 lead mo-  
tor, the torque output will be more stable at higher speeds. This configuration is also referred to  
as half copper. In setting the driver output current multiply the specified per phase (or unipo-  
lar) current rating by 1.4 to determine the peak output current.  
PHASE A  
PHASE A  
No Connect  
1 2  
3 4  
PHASE B  
P4  
PHASE B  
No Connect  
Figure 2.3.4: 6 Lead Half Coil (Higher Speed) Motor Connections  
Full Coil Configuration  
The full coil configuration on a six lead motor should be used in applications where higher  
torque at lower speeds is desired. This configuration is also referred to as full copper. Use the  
per phase (or unipolar) current rating as the peak output current.  
PHASE A  
No Connect  
PHASE A  
1 2  
3 4  
PHASE B  
P4  
No Connect  
PHASE B  
Figure 2.3.5: 6 Lead Half Coil (Higher Speed) Motor Connections  
Part 2: Interfacing and Configuring  
15  
Download from Www.Somanuals.com. All Manuals Search And Download.  
4 Lead Motors  
4 lead motors are the least flexible but easiest to wire. Speed and torque will depend on winding  
inductance. In setting the driver output current, multiply the specified phase current by 1.4 to deter-  
mine the peak output current.  
PHASE A  
PHASE A  
1 2  
3 4  
PHASE B  
P4  
PHASE B  
Figure 2.3.6: 4 Lead Motor Connections  
Recommended Motor Cabling  
As with the power supply wiring, motor wiring should be run separately from logic wiring to minimize noise  
coupled onto the logic signals. Motor cabling exceeding 1’ in length should be shielded twisted pairs to reduce  
the transmission of EMI (Electromagnetic Interference) which can lead to rough motor operation and poor  
system performance.  
Cable length, wire gauge and power conditioning devices play a major role in the performance of your MForce  
PowerDrive and Stepper Motor.  
NOTE: The length of the DC power supply cable between the MForce PowerDrive and the Motor should not  
exceed 50 feet.  
Example A demonstrates the recommended cable configuration for the MForce PowerDrive to Motor cabling  
under 50 Feet long. If cabling of 50 feet or longer is required, the additional length can be gained with the cable  
configuration in Example B.  
Correct AWG wire size is determined by the current requirement plus cable length. Please see Table 2.3.1 on the  
following page.  
Example A: Motor Cabling Less Than 50 Feet  
Cable Length  
less than 50 Feet  
MForce  
Motor  
Connections  
Shielded/Twisted Pair  
PowerDrive  
Phase Outputs  
A
A
A
B
B
A
B
B
Shield to Earth Ground  
on Supply End Only  
Ferrite Beads  
Figure 2.3.7: Motor Cabling Less than 50 Feet  
Microstepping MForce PowerDrive Manual Revision R040507  
16  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Example B: Motor Cabling Greater Than 50 Feet  
Cable Length  
as required  
Common Mode  
Line Filters (2x)  
*L z 0.5 MH  
Motor  
Connections  
Shielded/Twisted Pair  
A
A
B
B
A
A
B
B
MForce  
PowerDrive  
Phase Outputs  
Ferrite Beads  
Shield to Earth Ground  
on Supply End Only  
* 0.5 MH is a typical starting point for the Common Mode Line Filters. By increasing or decreasing  
the value of L you can set the drain current to a minimum to meet your application’s requirements.  
Figure 2.3.8: Motor Cableing Greater than 50 Feet  
Recommended Motor Cable AWG Sizes  
MForce PowerDrive Recommended Motor Cable AWG  
1 Amperes (Peak)  
5 Amperes (Peak)  
Length (Feet)  
10  
20  
25  
20  
50*  
18  
75* 100*  
18 16  
Length (Feet)  
10  
16  
25  
16  
50*  
14  
75*  
12  
100*  
12  
Minimum AWG  
Minimum AWG  
2 Amperes (Peak)  
6 Amperes (Peak)  
Length (Feet)  
10  
20  
25  
18  
50*  
16  
75* 100*  
14 14  
Length (Feet)  
10  
14  
25  
14  
50*  
14  
75*  
12  
100*  
12  
Minimum AWG  
Minimum AWG  
3 Amperes (Peak)  
7 Amperes (Peak)  
Length (Feet)  
10  
18  
25  
16  
50*  
14  
75* 100*  
12 12  
Length (Feet)  
10  
12  
25  
12  
50*  
12  
75*  
12  
100*  
12  
Minimum AWG  
Minimum AWG  
4 Amperes (Peak)  
*Use the alternative methods illustrated in example  
B when cable length is ≥ 50 feet. Also, use the same  
current rating when the alternate AC power is used.  
Length (Feet)  
10  
18  
25  
16  
50*  
14  
75* 100*  
12 12  
Minimum AWG  
Table 2.3.1: Recommended Wire Gauges  
Part 2: Interfacing and Configuring  
17  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Microstepping MForce PowerDrive Manual Revision R040507  
18  
Download from Www.Somanuals.com. All Manuals Search And Download.  
SECTION 2.4  
Logic Interface and Connection  
Optically Isolated Logic Inputs  
The Microstepping MForce PowerDrive has three optically isolated logic inputs which are located on connector  
P1. These inputs are isolated to minimize or eliminate electrical noise coupled onto the drive control signals. Each  
input is internally pulled-up to the level of the optocoupler supply and may be connected to sinking or +5 to +24  
VDC sourcing outputs on a controller or PLC. These inputs are:  
1] Step Clock (SCLK)/Quadrature (CH A)/Clock UP  
2] Direction (DIR)/Quadrature (CH B)/ Clock DOWN  
3] Enable (EN)  
Of these inputs only step clock and direction are required to operate the Microstepping MForce PowerDrive.  
Isolated Logic Input Pins and Connections  
The following diagram illustrates the pins and connections for the Microstepping MForce PowerDrive family of  
products. Careful attention should be paid to verify the connections on the model Microstepping MForce Power-  
Drive you are using.  
Isolated Logic Input Characteristics  
Enable Input  
This input can be used to enable or disable the driver output circuitry. Leaving the enable switch open (Logic  
HIGH, Disconnected) for sinking or sourcing configuration, the driver outputs will be enabled and the step  
clock pulses will cause the motor to advance. When this input switch is closed (Logic LOW) in both sinking  
Inputs Configured as Sinking  
Pin 5: Enable  
+5 to +24VDC  
Pin 3: Opto Supply  
Pin 3  
Inputs Configured as Sourcing  
Pin 3  
Pin 4: Step/Clock  
Pin 6: Direction  
Controller I/O  
Ground  
Figure 2.4.1: Isolated Logic Pins and Connections  
Part 2: Interfacing and Configuring  
19  
Download from Www.Somanuals.com. All Manuals Search And Download.  
and sourcing configurations, the driver output circuitry will be disabled. Please note that the internal sine/cosine  
position generator will continue to increment or decrement as long as step clock pluses are being received by the  
Microstepping MForce PowerDrive.  
Clock Inputs  
The Microstepping MForce PowerDrive features the ability to configure the clock inputs based upon how the user  
will desire to control the drive. By default the unit is configured for the Step/Direction function.  
Step Clock  
The step clock input is where the motion clock from your control circuitry will be connected. The motor will  
advance one microstep in the plus or minus direction (based upon the state of the direction input) on the ris-  
ing edge of each clock pulse. The size of this increment or decrement will depend on the microstep resolution  
setting.  
Direction  
Step/Direction Function  
The direction input controls the CW/CCW direction  
of the motor. The input may be configured as sinking or  
sourcing based upon the state of the Optocoupler Refer-  
ence. The CW/CCW rotation, based upon the state of the  
input may be set using the IMS Motor Interface software  
included with the Microstepping MForce PowerDrive.  
Step Clock  
Direction  
Quadrature  
The Quadrature clock function would typically be used for  
following applications where the Microstepping MForce  
PowerDrive would be slaved to an MForce PowerDrive  
Microstepping (or other controller) in an electronic gearing  
application.  
Quadrature Function  
Up/Down  
Channel A  
Channel B  
The Up/Down clock would typically be used in a dual-  
clock direction control application.  
Input Timing  
The direction input and the microstep resolution inputs  
are internally synchronized to the positive going edge of  
the step clock input. When a step clock pulse goes HIGH,  
the state of the direction input and microstep resolution  
settings are latched. Any changes made to the direction  
and/or microstep resolution will occur on the rising edge of  
the step clock pulse following this change. Run and Hold  
Current changes are updated immediately. The following  
figure and table list the timing specifications.  
Up/Down Function  
CW  
CCW  
Input Filtering  
The clock inputs may also be filtered using the Clock IOF  
pull down of the IMS SPI Motor Interface. The filter range  
is from 50 nS (10 MHz) to 12.9 µSec. (38.8 kHz).  
Figure 2.4.2: Input Clock Functions  
The configuration parameters for the input filtering is  
covered in detail in Section 2.4: Configuring the Microstepping MForce PowerDrive.  
Microstepping MForce PowerDrive Manual Revision R040507  
20  
Download from Www.Somanuals.com. All Manuals Search And Download.  
STEP/DIRECTION TIMING  
TDH  
Direction  
Step  
TDSU  
TSH  
TSL  
QUADRATURE TIMING  
Direction Change  
TCHL  
Channel A  
Channel B  
TDC  
TCHL  
UP/DOWN TIMING  
Step Up  
TSH  
TSL  
TDC  
TDC  
Step Down  
TSH  
TSL  
Figure 2.4.3: Clock Input Timing Characteristics  
Clock Input Timing  
Type and Value  
Step/Direction Step Up/Down Quadrature  
Symbol  
Parameter  
Units  
T
T Direction Set Up  
T Direction Hold  
T Step High  
50  
100  
100  
100  
nS min  
DSU  
T
nS min  
nS min  
DH  
T
100  
100  
200  
SH  
T
T Step Low  
nS min  
SL  
T
T Direction Change  
T Channel High/Low  
F Step Maximum  
F Channel Maximum  
F Edge Rate  
200  
400  
nS min  
DL  
T
nS min  
CHL  
F
5
5
MHz Max  
MHz Max  
MHz Max  
SMAX  
F
1.25  
5
CHMAX  
F
ER  
Table 2.4.1: Input Clocks Timing Table  
Part 2: Interfacing and Configuring  
21  
Download from Www.Somanuals.com. All Manuals Search And Download.  
NOTE: When  
connecting the  
Optocoupler Reference  
Optocoupler Supply,  
it is recommended  
that you do not use MForce  
Power Ground as Ground  
as this will defeat the optical  
isolation.  
The Microstepping MForce PowerDrive Logic Inputs are optically isolated to prevent electrical noise being coupled  
into the inputs and causing erratic operation.  
There are two ways that the Optocoupler Reference will be connected depending whether the Inputs are to be  
configured as sinking or sourcing.  
Optocoupler Reference  
Input Type  
Sinking  
Optocoupler Reference Connection  
+5 to +24 VDC  
Sourcing  
Controller Ground  
Table 2.4.2: Optocoupler Reference Connection  
+5 VDC  
Optocoupler  
Reference  
Optocoupler  
Constant  
Current  
Source  
To Drive Logic  
Input  
(Step Clock,  
Direction, Enable)  
Microstepping MForce  
PowerDrive  
Figure 2.4.4: Optocoupler Input Circuit Diagram  
Microstepping MForce PowerDrive Manual Revision R040507  
22  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Input Connection Examples  
The following diagrams illustrate possible connection/application of the Microstepping MForce PowerDrive Logic  
Inputs.  
NPN Open Collector Interface  
(Sinking)  
+5 to +24VDC  
Optocoupler Reference  
+
Microstepping  
MForce PowerDrive  
Controller Output  
Input  
Controller Ground  
PNP Open Collector Interface  
(Sourcing)  
+5 to +24VDC  
Optocoupler Reference  
+
Microstepping  
Controller Output  
MForce PowerDrive  
Input  
Controller Ground  
Figure 2.4.5: Open Collector Interface Example  
Part 2: Interfacing and Configuring  
23  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Switch Interface Example  
Switch Interface  
(Sinking)  
+5 to +24VDC  
Optocoupler Reference  
GND  
+
Microstepping  
MForce PowerDrive  
Enable Input  
SPST  
Switch  
Switch Interface  
(Sourcing)  
+5 to +24VDC  
Optocoupler Reference  
GND  
+
Microstepping  
MForce PowerDrive  
EnableInput
SPST  
Switch  
Figure 2.4.6: Switch Interface Example  
Microstepping MForce PowerDrive Manual Revision R040507  
24  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Minimum Required Connections  
The connections shown are the minimum required to operate the Microstepping MForce PowerDrive. These are  
illustrated in both Sinking and Sourcing Configurations. Please reference the Pin Configuration diagram and  
Specification Tables for the Microstepping MForce PowerDrive connector option you are using.  
Opto Reference*  
Power Ground  
* The Opto Reference Will  
set the Sink/Source  
+V (+12 to +48)  
Configuration of the Inputs  
Sinking: OptoRef = +5 to +24 VDC  
Sourcing: OptoRef = Ground  
3
4
P3  
1
2
6
Step  
Direction  
P1  
ØA  
ØA  
1
3
2
ØB  
4
ØB  
P4  
MForce PowerDrive Front  
12-Pin Wire Crimp at P1 Shown.  
See Specifications for Pin  
Numbering for other versions.  
Stepping Motor  
Figure 2.4.7: Minimum Required Connections  
Part 2: Interfacing and Configuring  
25  
Download from Www.Somanuals.com. All Manuals Search And Download.  
SECTION 2.5  
Connecting SPI Communications  
Connecting the SPI Interface  
The SPI (Serial Peripheral Interface) is the com-  
munications and configuration interface.  
For prototyping we recommend the purchase  
of the parameter setup cable MD-CC300-000.  
If using the Microstepping MForce PowerDrive  
with the 10-Pin IDC on P2, this cable will plug  
directly into the P2 Connector.  
If using the model with a 12-Pin Locking Wire  
Crimp connector, adapters are available to  
interface the parameter setup cable to P1.  
Figure 2.5.1: MD-CC300-000 Parameter Setup Cable  
For more information on prototype development cables, please see Appendix: Prototype Development Cables.  
SPI Signal Overview  
+5 VDC (Output)  
This output is a voltage supply for the setup cable only. It is not designed to power any external devices.  
SPI Clock  
The Clock is driven by the Master and regulates the flow of the data bits. The Master may transmit data at a  
variety of baud rates. The Clock cycles once for each bit that is transferred.  
Logic Ground  
This is the ground for all Communications.  
MISO (Master In/Slave Out)  
Carries output data from the Microstepping MForce PowerDrive units back to the SPI Master. Only one  
MForce PowerDrive can transmit data during any particular transfer.  
CS (SPI Chip Select)  
This signal is used to turn multiple Microstepping MForce PowerDrive units on or off.  
MOSI (Master Out/Slave In)  
Carries output data from the SPI Master to the Microstepping MForce PowerDrive.  
Microstepping MForce PowerDrive Manual Revision R040507  
26  
Download from Www.Somanuals.com. All Manuals Search And Download.  
SPI Pins and Connections  
PC Parallel/SPI Port  
2 3 4  
For Use ONLY  
with IMS Parameter  
Setup Cable  
19  
15  
+5 VDC OUT  
COMM GND  
SPI CLOCK  
7
9
P1  
11  
12  
8
MASTER IN/SLAVE OUT  
MASTER OUT/SLAVE IN  
10  
CHIP SELECT  
12-Pin Locking Wire Crimp  
Figure 2.5.2: SPI Pins and Connections, 12-Pin Wire Crimp  
NOTE: If making your  
own parameter setup  
cable, be advised  
Logic Level Shifting and Conditioning Circuit  
The following circuit diagram is of a Logic Level shifting and conditioning circuit. This circuit should be  
used if you are making your own parameter cable and are using a laptop computer with 3.3 V output parallel  
ports.  
the 3.3V output  
parallel ports on some laptop  
PC’s may not be sufficient to  
communicate with the device  
without use of a logic level  
shifting and conditioning  
Interface.  
1
R1  
R2  
2
3
8
4
2
5
CLK  
U1:A  
100  
HCT125  
+5V  
49.9  
P2: 8  
DB25: 2  
DB25: 3  
14  
C3  
330pF  
100K  
+5V  
3
R9  
C4  
4
100K  
R10  
R4  
R3  
4
6
U1:B  
7
CS  
100  
HCT125  
DB25: 4  
49.9  
P2: 4  
P2: 7  
P2: 10  
330pF  
19  
DB25: 19  
13  
U1:D  
R6  
R5  
7
12  
11  
MOSI  
100  
49.9  
HCT125  
C5  
330pF  
100K  
R8  
R11  
+5V  
4.9K  
+5V  
100K  
10  
R12  
R7  
15  
10  
8
9
MISO  
U1:C  
49.9  
DB25: 15  
HCT125  
+5V  
6
5
+5 VDC  
GND  
+
1µF  
25V  
P2: 6  
P2: 5  
.1µF  
C1  
C2  
Figure 2.5.3: Logic Level Shifting and Conditioning Circuit  
Part 2: Interfacing and Configuring  
27  
Download from Www.Somanuals.com. All Manuals Search And Download.  
SPI Master with Multiple Microstepping MForce PowerDrive  
It is possible to link multiple MicrosteppingMForce PowerDrive unitsinanarray froma single SPI Masterby wiring thesystem  
and programmingthe userinterface to write to multiple chip selects.  
Each MForce onthe bus will have a dedicated chip select. Only one systemMForce canbe communicated with/Parameters  
changed at a time.  
SPI Clock  
Microstepping  
MOSI  
SPI Master  
MForce  
MISO  
PowerDrive  
CS  
Figure 2.5.4: SPI Master with a Single Microstepping MForce PowerDrive  
SPI Clock  
Microstepping  
MOSI  
MForce  
PowerDrive  
MISO  
SPI Master  
#1  
CS1  
CS2  
Microstepping  
MForce  
PowerDrive  
#2  
Figure 2.5.5: SPI Master with Multiple Microstepping MForce PowerDrives  
Microstepping MForce PowerDrive Manual Revision R040507  
28  
Download from Www.Somanuals.com. All Manuals Search And Download.  
SECTION 2.6  
Using the IMS SPI Motor Interface  
Installation  
The IMS SPI Motor Interface is a utility that easily allows you to set up the parameters of your Microstepping  
MForce PowerDrive. It is available both on the CD that came with your product and on the IMS web site at  
1. Insert the CD into the CD Drive of your PC.  
2. The CD will auto-start.  
3. Click the Software Button in the top-right navigation Area.  
4. Click the IMS SPI Interface link appropriate to your operating system.  
5. Click SETUP in the Setup dialog box and follow the on-screen instructions.  
6. Once IMS SPI Motor Interface is installed, the Microstepping MForce PowerDrive settings can  
be checked and/or set.  
Configuration Parameters and Ranges  
Microstepping MForce PowerDrive Setup Parameters  
Name  
MHC  
MRC  
Function  
Range  
0 to 100  
1 to 100  
Units  
percent  
percent  
Default  
Motor Hold Current  
Motor Run Current  
5
25  
1, 2, 4, 5, 8, 10, 16, 25, 32, 50,  
64, 100,108, 125, 127,128,  
180, 200, 250, 256  
µsteps per  
full step  
Microstep  
Resolution  
MSEL  
DIR  
256  
CW  
Motor Direction  
Override  
0/1  
Hold Current Delay  
Time  
HCDT  
CLK TYPE  
CLK IOF  
USER ID  
EN ACT  
0 or 2-65535  
mSec  
500  
Clock Type  
Step/Dir. Quadrature, Up/Down  
nS (MHz)  
1-3 characters  
Step/Dir  
Clock and Direction  
Filter  
50 nS to 12.9 µS  
(10 MHz to 38.8kHz)  
50nS (10  
MHz)  
User ID  
Customizable  
IMS  
Enable Active  
High/Low  
High/Low  
High  
Warning  
Temperature  
WARN TEMP  
0 to + 125  
°C  
80  
Table 2.6.1: Setup Parameters and Ranges  
Color Coded Parameter Values  
The SPI Motor Interface displays the parameter values using a predefined system of color codes to identify the  
status of the parameter.  
1. Black: the parameter settings currently stored in the device NVM will display as black.  
2. Blue: Blue text indicates a changed parameter setting that has not yet been written to the  
device.  
3. Red: Red text indicates an out-of-range value which cannot be written to the device. When  
an out-of-range parameter is entered into a field, the "set" button will disable, preventing the  
value to be written to NVM. To view the valid parameter range, hover the mouse pointer over  
the field. The valid range will display in a tool tip.  
The color coding is illustrated in Figure 2.5.1.  
Part 2: Interfacing and Configuring  
29  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Blue: New Value which has not yet  
been set to NVM.  
Red: Out of Range Value.  
The Set Button will disable  
as the the Motor Interface will  
not allow an out of range value  
to be stored.  
Black: This is the value  
Currently Stored in NVM  
Figure 2.6.1: SPI Motor Interface Color Coding  
IMS SPI Motor Interface Menu Options  
File  
>
>
>
>
Open: Opens a saved *.mot (Motor Settings) file.  
Save: Saves the current motor settings as a *.mot file for later re-use  
Save As  
Exit - Disconnects from the device and opens the Initialization Dialog.  
Perform File  
Operation  
Open Motor Settings  
File (*.mot)  
Save Motor Settings  
Save Motor Settings As  
Exit the Motor Interface  
Figure 2.6.2: SPI Motor Interface File Menu  
View  
>
>
>
Motion Settings: Displays the Motion Settings screen  
IO Settings: Displays the IO Settings Screen  
Part and Serial Number: Displays the part and serial number  
View Settings  
Screen  
Motion Settings Screen  
I/O Settings Screen  
Read-Only Part  
and Serial Number Screen  
Figure 2.6.3: SPI Motor Interface View Menu  
Microstepping MForce PowerDrive Manual Revision R040507  
30  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Recall!  
Retrieves the settings from the Microstepping MForce PowerDrive.  
Recall Last Stored  
Parameter Settings  
Figure 2.6.4: SPI Motor Interface Recall Menu  
Upgrade!  
Upgrades the Microstepping MForce PowerDrive firmware by placing the device in Upgrade Mode and  
launching the firmware upgrader utility.  
Toggle MForce into  
Upgrade Mode for  
Firmware Upgrade  
Figure 2.6.5: SPI Motor Interface Upgrade Menu  
Help  
>
>
IMS Internet Tutorials: Link to an IMS Web Site page containing Interactive flash tutorials.  
About: Opens the About IMS and IMS SPI Motor Interface Screen.  
Links to the Software  
Tutorial page of the  
IMS Website  
Figure 2.6.6: SPI Motor Interface Help Menu and About Screen  
Part 2: Interfacing and Configuring  
31  
Download from Www.Somanuals.com. All Manuals Search And Download.  
1. MSEL: Microstep Resolution Select.  
Motor Run  
Current  
Microstep Resolution  
Selection  
Holding Current  
Delay Time  
Direction  
Override  
Motor Holding  
Current  
Load Factory  
Default Settings  
Exit Program  
Fault/Checksum  
Error  
Three Character  
User ID  
Store Settings  
to NVM  
Figure 2.6.7: SPI Motor Interface Motion Settings Screen  
2. HCDT: Holding Current Delay Time.  
3. MRC: Motor Run Current  
4. Motor Holding Current  
5. User ID: 3-character ID  
6. Direction Override: Allows the user to set the CW/CCW direction of the motor in relation to the  
Direction Input from the SPI Motor Interface.  
MSEL (Microstep Resolution Selection)  
The Microstepping MForce PowerDrive features 20 microstep resolutions. This setting specifies the number of  
microsteps per step the motor will move.  
The MForce PowerDrive uses a 200 step (1.8°) stepping motor which at the highest (default) resolution of 256  
will yield 51,200 steps per revolution of the motor shaft.  
See Table 2.3.2 for available Microstep Resolutions.  
Microstep Resolution Settings  
Binary µStep Resolution Settings  
Decimal µStep Resolution Settings  
MS=<µSteps/Step>  
Steps/Revolution  
MS=<µSteps/  
Step>  
Steps/Revolution  
1
2
200  
400  
5
1000  
2000  
10  
4
8
800  
25  
50  
5000  
10000  
20000  
25000  
1600  
3200  
6400  
16  
32  
100  
125  
64  
12800  
25600  
51200  
200  
250  
40000  
50000  
128  
256  
Additional Resolution Settings  
180  
108  
36000 (0.01°/µStep)  
21600 (1 Arc Minute/µStep)  
127  
25400 (0.001 mm/µStep)  
Table 2.6.2: Microstep Resolution Settings  
Microstepping MForce PowerDrive Manual Revision R040507  
32  
Download from Www.Somanuals.com. All Manuals Search And Download.  
HCDT (Hold Current Delay Time)  
The HCDT Motor Hold Current Delay sets time in milliseconds for the Run Current to switch to Hold Current when  
motion is complete. When motion is complete, the Microstepping MForce PowerDrive will reduce the current in the  
windings of the motor to the percentage specified by MHC when the specified time elapses.  
MRC (Motor Run Current)  
The MRC Motor Run Current parameter sets the motor run current to a percentage of the full output current of the  
MForce PowerDrive driver section.  
MHC (Motor Hold Current)  
The MHC parameter sets the motor holding current as a percentage of the full output current of the driver. If the hold  
current is set to 0, the output circuitry of the driver section will disable when the hold current setting becomes active. The  
hold current setting becomes active HCDT setting mS following the last clock pulse.  
Run and Hold Current Settings  
HC=(%)  
RC=(%)  
MForce PowerDrive  
(Amps RMS)  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
Table 2.6.3: Hold and Run Current Percentage Equivalents  
DIR (Motor Direction)  
The DIR Motor Direction parameter changes the motor direction relative to the direction input signal, adapting the direc-  
tion of the MForce PowerDrive to operate as your system expects.  
User ID  
The User ID is a three character (viewable ASCII) identifier which can be assigned by the user. Default is IMS.  
IMS SPI Motor Interface Button Functions  
The following appear on all of the IMS SPI Motor Interface screens, but will only be documented here.  
Factory  
Clicking the Factory button will load the Microstepping MForce PowerDrive unit's factory default settings into the  
IMS SPI Motor Interface.  
Connected/Disconnected Indicator  
Displays the connected/disconnected state of the software , and if connected, the port connected on.  
Set  
Set writes the new settings to the MForce PowerDrive . Un-set settings will display as blue text in the setting fields.  
Once set they will be in black text. Setting the Parameters will also clear most Fault Conditions.  
Exit  
Disconnects and opens the Initialization dialog.  
Part 2: Interfacing and Configuring  
33  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Screen 2: I/O Settings Configuration Screen  
The I/O Settings screen may be accessed by clicking View > IO Settings on the menu bar. This screen is used to  
configure the Input Clock type, the filtering and the Active High/Low State of the Enable Input.  
Input Clock Type  
The Input Clock Type translates the specified pulse source that the motor will use as a reference for establishing  
stepping resolution based on the frequency.  
Active High/Low  
State of the  
Enable Input  
Input Clock Type  
(Step/Dir, Quadrature or  
Up/Down)  
Input Clock Filter  
Warning  
Temperature  
Figure 2.6.8: SPI Motor Interface I/O Settings Screen  
The three clock types supported are:  
1. Step/Direction  
2. Quadrature  
3. Up/Down  
The Clock types are covered in detail in Section 2.2: Logic Interface and Connection.  
Input Clock Filter  
The clock inputs may also be filtered using the Clock IOF pull down of the IMS SPI Motor Interface. The filter  
range is from 50 nS (10 MHz) to 12.9 µSec. (38.8 kHz). Table 2.4.3 shows the filter settings.  
Input Clock Filter Settings  
Min. Pulse  
50 nS  
Cutoff Frequency  
10 MHz  
150 nS  
200 nS  
300 nS  
500 nS  
900 nS  
1.7 µS  
3.3 MHz  
2.5 MHz  
1.67 MHz  
1.0 MHz  
555 kHz  
294.1 kHz  
151 kHz  
3.3 µS  
6.5 µS  
76.9 kHz  
38.8 kHz  
12.9 µS  
Table 2.6.4: Input Clock Filter Settings  
Enable Active High/Low  
The parameter sets the Enable Input to be Active when High (Default, Disconnected) or Active when Low.  
Warning Temperature  
The parameter sets the temperature at which a TW, or temperature warning fault code will be generated. In the  
warning condition the MForce PowerDrive will continue to operate as normal. The thermal shutdown is +85°C.  
Microstepping MForce PowerDrive Manual Revision R040507  
34  
Download from Www.Somanuals.com. All Manuals Search And Download.  
IMS Part Number/Serial Number Screen  
The IMS Part Number and Serial Number screen is accessed by clicking "View > Part and Serial Numbers".  
This screen is read-only and will display the part and serial number, as well as the fault code if existing. IMS may  
require this information if calling the factory for support.  
IMS Part #  
IMS Serial Number  
Figure 2.6.9: SPI Motor Interface Part and Serial Number Screen  
Fault Indication  
All of the IMS SPI Motor Interface Screens have the Fault field visible. This read-only field will display a 2 charac-  
ter error code to indicate the type of fault. The table below shows the error codes.  
MForce34Plus Microstepping Fault Codes  
Binary  
Case*  
Error  
Code  
Description  
Action  
To Clear  
None  
No Fault  
Error  
Displayed  
Write to MDM  
(Set Button)  
4
CS  
SPI Checksum Error  
SPI Checksum Error/  
Sector Changing  
Error  
Displayed  
Write to MDM  
(Set Button)  
8
SC/CS  
DFLT  
DATA  
TW  
Defaults Checksum  
Error  
Error  
Displayed  
Write to MDM  
(Set Button)  
16  
32  
64  
Settings Checksum  
Error  
Error  
Displayed  
Write to MDM  
(Set Button)  
Error  
Displayed  
Write to MDM  
(Set Button)  
Temperature Warning  
*All Fault Codes are OR'ed together  
Table 2.6.5: Microstepping MForce PowerDrive Fault Codes  
Part 2: Interfacing and Configuring  
35  
Download from Www.Somanuals.com. All Manuals Search And Download.  
NOTE: Once entered  
into Upgrade Mode,  
you MUST complete  
the upgrade. If  
Upgrading the Firmware in the Microstepping MForce PowerDrive  
The IMS SPI Upgrader Screen  
the upgrade process is  
incomplete the IMS SPI Motor  
Interface will continue to open  
to the Upgrade dialog until the  
process is completed!  
The IMS SPI Motor Interface is required to upgrade your Microstepping MForce PowerDrive product. To launch  
the Upgrader, click "Upgrade!" on the IMS SPI Motor Interface menu.  
The Upgrader screen has 4 read-only text fields that will display the necessary info about your Microstepping  
MForce PowerDrive.  
Figure 2.6.10: SPI Motor Interface Upgrade Utility  
1. Previous Version: this is the version of the firmware currently on your Microstepping MForce  
PowerDrive.  
2. Serial Number: the serial number of your unit.  
3. Upgrade Version: will display the version number of the firmware being installed.  
4. Messages: the messages text area will display step by step instructions through the upgrade process.  
Upgrade Instructions  
Below are listed the upgrade instructions as they will appear in the message box of the IMS SPI Upgrader.  
Note that some steps are not shown as they are accomplished internally, or are not relevant to the model IMS  
product you are updating. The only steps shown are those requiring user action.  
Welcome Message: Welcome to the Motor Interface UPGRADER! Click NEXT to  
continue.  
Step 2: Select Upgrade File  
When this loads, an explorer dialog will open asking you to browse for the firmware upgrade file. This  
file will have the extension *.ims.  
Step 3: Connect SPI Cable  
Step 4: Power up or Cycle Power to the MForce  
Step 6: Press Upgrade Button  
Progress bar will show upgrade progress in blue, Message box will read "Resetting Motor Interface"  
Step 8: Press DONE, then select Port/Reconnect.  
Microstepping MForce PowerDrive Manual Revision R040507  
36  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Initialization Screen  
This screen will be active under five conditions:  
1. When the program initially starts up and seeks for a compatible device.  
2. The User selects File > Exit when connected to the device.  
3. The User clicks the Exit button while connected to the device.  
4. The Upgrade Process completes.  
5. The SPI Motor Interface is unable to connect to a compatible device.  
Figure 2.6.11: SPI Motor Interface Initialization  
Port Menu  
The Port Menu allows the user to select the COM Port that the device is connected to, either a parallel (LPT) Port,  
or a Hardware Serial or Virtual Serial Port via USB.  
The Reconnect option allows the user to reconnect to a unit using the previously used settings.  
On open or reconnect, the SPI Motor Interface will also try to auto seek for a connected device.  
Communications  
Port Operations  
Select Parallel  
(LPT) Port  
Select Serial or  
USB (VCP)  
Auto-seek Port  
and Reconnect  
to device  
Figure 2.6.12: SPI Motor Interface Port Menu  
Part 2: Interfacing and Configuring  
37  
Download from Www.Somanuals.com. All Manuals Search And Download.  
SECTION 2.7  
Using User-Defined SPI  
The MForce can be configured and operated through the end-user's SPI interface without using the IMS SPI Mo-  
tor Interface software and optional parameter setup cable.  
An example of when this might be used is in cases where the machine design requires parameter settings to be  
changed on-the-fly by a software program or multiple system Microstepping MForce PowerDrive units parameter  
states being written/read.  
SPI Timing Notes  
1. MSb (Most Significant bit) first and MSB (Most Significant Byte) first.  
2. 8 bit bytes.  
3. 25 kHz SPI Clock (SCK).  
4. Data In (MOSI) on rising clock.  
5. Data Out (MISO) on falling clock.  
Figure 2.7.1: SPI Timing  
Check Sum Calculation for SPI  
The values in the example below are 8-bit binary hexadecimal conversions for the following SPI parameters:  
MRC=25%, MHC=5%, MSEL=256, HCDT=500 mSec, WARNTEMP=80.  
The Check Sum is calculated as follows:  
(Hex) 80+19+05+00+00+01+F4+50  
Sum = E3  
1110 0011  
1’s complement = 1C  
2’s complement = 1D  
Send the check sum value of 1D  
0001 1100 (Invert)  
0001 1101 (Add 1)  
Note: 80 is always the first command on a write.  
Note: Once a write is performed, a read needs to be performed to see if there is a fault. The fault is the last byte of  
the read.  
Microstepping MForce PowerDrive Manual Revision R040507  
38  
Download from Www.Somanuals.com. All Manuals Search And Download.  
SPI Commands and Parameters  
Use the following table and figure found on the following page together as the Byte order read and written from  
the MDrivePlus Microstepping, as well as the checksum at the end of a WRITE is critical.  
SPI Commands and Parameters  
Command/  
Parameter  
HEX  
(Default)  
Range  
Notes  
READ ALL  
0x40  
Reads the hex value of all parameters  
MSB  
Device (M)  
0x4D  
0x10  
M Character precedes every READ  
Firmware Version.Sub-version, eg 1.0  
Version_MSB  
<1-8>.<0-9>  
Firmware Version Appends to Version_  
MSB, eg.00  
Version_LSB  
0x00  
<0-99>  
USR_ID1  
USR_ID2  
USR_ID3  
MRC  
0x49  
0x4D  
0x53  
0x19  
0x05  
Uppercase Letter <I>  
Uppercase Letter <M>  
Uppercase Letter <S>  
Motor Run Current  
1-67%  
0-67%  
MHC  
Motor Hold Current  
0*, 1-259  
*0=256  
Microstep Resolution (See Table in Section  
2.4 for settings)  
MSEL  
0x00  
0x00  
0=no override  
1=override dir  
DIR_OVRID  
Direction Override  
HCDT_HI  
HCDT_LO  
0x01  
0xF4  
Hold Current Delay Time High Byte  
Hold Current Delay Time Low Byte  
0 or 2-65535  
0=s/d,  
1=quad,  
2=u/d  
CLKTYP  
0x00  
Input Clock Type  
CLKIOF  
0x00  
0x50  
<0-9>  
Clock Input Filtering  
OVER_TEMP - 5° C  
WARNTEMP  
0=Low  
1=High,  
EN_ACT  
FAULT  
0x01  
0x00  
0x80  
Enable Active High/Low  
LSB  
See Fault Table, Section 2.4  
Writes the hex value to the following  
parameters.  
WRITE ALL  
MSB  
USR_ID1  
USR_ID2  
USR_ID3  
MRC  
0x49  
0x4D  
0x53  
0x19  
0x05  
Uppercase Letter <I>  
Uppercase Letter <M>  
Uppercase Letter <S>  
Motor Run Current  
1-100%  
0-100%  
MHC  
Motor Hold Current  
0*, 1-259  
*0=256  
Microstep Resolution (See Table in Section  
2.4 for settings)  
MSEL  
0x00  
0x00  
0=no override  
1=override dir  
DIR_OVRID  
Direction Override  
HCDT_HI  
HCDT_LO  
0x01  
0xF4  
Hold Current Delay Time High Byte  
Hold Current Delay Time Low Byte  
0 or 2-65535  
0=s/d,  
1=quad,  
2=u/d  
CLKTYP  
0x00  
Input Clock Type  
CLKIOF  
0x00  
0x50  
<0-9>  
Clock Input Filtering  
OVER_TEMP - 5° C  
WARNTEMP  
0=Low  
1=High  
EN_ACT  
CKSUM  
0x01  
Enable Active High/Low  
34  
LSB  
Table 2.7.1: SPI Commands and Parameters  
Part 2: Interfacing and Configuring  
39  
Download from Www.Somanuals.com. All Manuals Search And Download.  
READ ALL CMD  
WRITE (MOSI):  
40 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF  
RESPONSE (MISO):  
XX 4D 10 00 49 4D 53 19 05 00 00 01 F4 00 00  
50 01  
00  
00  
01  
FAULT  
EN_ACT  
WARNTEMP  
CLKIOF  
80  
0
CLKTYP  
HCDT_LO  
HCDT_HI  
DIR_OVRID  
MSEL  
0
500  
0
256  
MHC  
5
MRC  
25  
USR_ID3  
USR_ID2  
USR_ID1  
VERSION  
DEVICE  
S
M
I
1.0.00  
M
USR_ID1  
USR_ID2  
USR_ID3  
I
M
S
25  
5
MRC  
MHC  
256  
0
MSEL  
DIR_OVRID  
HCDT_HI  
HCDT_LO  
CLKTYP  
CLKIOF  
WARNTEMP  
EN_ACT  
CKSUM  
500  
0
0
80  
01  
51  
WRITE ALL CMD  
WRITE (MOSI): 80 49 4D 53 19 05 00 00 01 F4 00 00 50 01 33  
FF FF FF FF FF FF FF FF FF FF FF FF FF FF  
RESPONSE (MISO): XX  
CHECKSUM CALCULATION  
80+49+4D+53+19+05+00+00+01+F4+00+00+50+01=CD  
BINARY = 1100 1101  
1'S COMPLEMENT = 0011 0010  
2'S COMPLEMENT = 0011 0011  
DEC = 51  
HEX = 33  
Figure 2.7.2: Read/Write Byte Order for Parameter Settings (Default Parameters Shown)  
SPI Communications Sequence  
See Timing Diagram and Byte Order figures.  
READ  
1. Send READ ALL Command 0x40 down MOSI to Microstepping MForce PowerDrive followed by  
FF (15 Bytes).  
2. Receive Parameter settings from MISO MSB First (M-Device) and ending with LSB (Fault).  
Write  
1. Send WRITE ALL Command (0x80) down MOSI followed by Parameter Bytes beginning with MSB  
(MRC) and ending with the LSB (Checksum of all parameter Bytes).  
2. Response from MISO will be FF (10) Bytes.  
Microstepping MForce PowerDrive Manual Revision R040507  
40  
Download from Www.Somanuals.com. All Manuals Search And Download.  
FORCETM  
MICRO DRIVE  
MICROSTEPPING  
Appendices  
Appendix A: Optional Prototype Development Cables  
Appendices  
A-1  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Page Intentionally Left Blank  
A-2  
Microstepping MForce PowerDrive Manual Revision R040507  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Appendix C  
Optional Prototype Development Cables  
MD-CC300-000: USB to SPI Parameter Setup Cable  
WARNING! DO NOT  
connect or disconnect  
the MD-CC300-000  
The MD-CC300-000 USB to SPI Parameter Setup  
Cable provides a communication connection between  
the 10-pin connector on some Microstepping MForce  
PowerDrives and the USB port on a PC.  
Communications Converter  
Cable from MForce while power is  
applied!  
IMS SPI Interface Software communicates to the  
Parameter Setup Cable through the PC's USB port.  
The Parameter Setup Cable interprets SPI commands  
and sends these commands to the MForce  
PowerDrive through the SPI interface.  
Figure A.1: MD-CC300-000  
Supplied Components: MD-CC300-000 Parameter  
Setup Cable, USB Cable, USB Drivers, IMS SPI Interface Software.  
3.75 in  
(95.0 mm)  
1.0 in  
(25.0 mm)  
USB  
0.875 in  
(22.0 mm)  
MD-CC300-000  
USB to SPI Parameter Setup Cable www.imshome.com  
USB Cable  
Length 6.0 ft (1.8 m)  
To PC USB  
10 Pin Connector  
To MForce  
Cable Length 6.0 ft (1.8 m)  
Figure A.2: MD-CC300-000 Mechanical Specifications  
Adapter Cables  
Parameter Setup Cable and Adapters  
The optional 12.0' (3.6m) parameter setup cable part number MD-CC300-000 facilitates communica-  
tions wiring and is recommended with first order. It connects from the P2 connector to a PC's USB port.  
Models with the 12-pin pluggable locking wire crimp require adapter MD-ADP-1723C.  
Prototype Development Cable  
For testing and development using the 12-pin pluggable locking wire crimp, the 12.0" (30.5cm) prototype  
development cable plugs into the MD-ADP-1723C adapter and has flying leads for connection to the user  
interface. Part number ADP-3512-FL.  
See Figure A.3 on the following page for dimensional and connection information.  
Appendices  
A-3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Approx Length  
12" (304.8mm)  
To MForce  
MD-ADP-1723C  
Adapter Cable  
MD-ADP-1723C  
To Customer PC  
USB Port  
Approx Length  
12" (304.8mm)  
1
12  
TM  
12  
2
1
ADAPTER P/N  
MD-ADP-14C  
11  
P1  
P2  
ADP-3512-FL  
MD-CC300-000  
Parameter Setup Cable  
To Customer  
Interface  
USB Cable  
Length 6.0 ft (1.8 m)  
ADP-3512-FL  
Prototype Development Cable  
Figure A.3: Typical Setup, Adapter and Prototype Development Cable  
Installation Procedure for the MD-CC300-000  
These Installation procedures are written for Microsoft Windows XP Service Pack 2. Users with earlier versions of  
Windows please see the alternate installation instructions at the IMS web site (http://www.imshome.com).  
The installation of the MD-CC300-000 requires the installation of two sets of drivers:  
Drivers for the IMS USB to SPI Converter Hardware.  
Drivers for the Virtual Communications Port (VCP) used to communicate to your IMS Product.  
Therefore the Hardware Update wizard will run twice during the installation process.  
The full installation procedure will be a two-part process: Installing the Cable/VCP drivers and Determining the  
Virtual COM Port used.  
Installing the Cable/VCP Drivers  
1) Plug the USB Converter Cable into the USB port of the MD-CC300-000.  
2) Plug the other end of the USB cable into an open USB port on your PC.  
3) Your PC will recognize the new hardware and open the Hardware Update dialog.  
4) Select “No, not this time” on the radio buttons  
in answer to the query “Can Windows Connect  
to Windows Update to search for software?”  
Click “Next” (Figure A.4).  
5) Select “Install from a list or specific location  
(Advanced)” on the radio buttons in answer  
to the query “What do you want the wizard to  
do?” Click “Next” (Figure A.5).  
Figure A.4: Hardware Update Wizard  
A-4  
Microstepping MForce PowerDrive Manual Revision R040507  
Download from Www.Somanuals.com. All Manuals Search And Download.  
6) Select “Search for the best driver in these locations”.  
(a) Check “Include this location in the search”.  
Figure A.5: Hardware Update Wizard Screen 2  
(b) Browse to the CD [Drive Letter]:\ Cable_Drivers\MD-CC303-000_DRIVERS.  
(c) Click Next (Figure A.6).  
7) The drivers will begin to copy.  
Figure A.6: Hardware Update Wizard Screen 3  
8) On the Dialog for Windows Logo Compatibility Testing, click “Continue Anyway” (Figure A.7).  
Figure A.7: Windows Logo Compatibility Testing  
9) The Driver Installation will proceed. When the Completing the Found New Hardware Wizard dialog  
appears, Click “Finish” (Figure A.8).  
10) Upon finish, the Welcome to the Hardware Update Wizard will reappear to guide you through the  
second part of the install process. Repeat steps 1 through 9 above to complete the cable installation.  
11) Your IMS MD-CC300-000 is now ready to use.  
Appendices  
A-5  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Figure A.8: Hardware Update Wizard Finish Installation  
Determining the Virtual COM Port (VCP)  
The MD-CC300-000 uses a Virtual COM Port to communicate through the USB port to the MForce. A VCP  
is a software driven serial port which emulates a hardware port in Windows.  
The drivers for the MD-CC300-000 will automatically assign a VCP to the device during installation. The  
VCP port number will be needed when IMS Terminal is set up in order that IMS Terminal will know where to  
find and communicate with your IMS Product.  
To locate the Virtual COM Port.  
1) Right-Click the “My Computer” Icon and select “Properties”.  
2) Browse to the Hardware Tab (Figure A.9), Click the Button labeled “Device Manager”.  
3) Look in the heading “Ports (COM & LPT)” IMS USB to SPI Converter Cable (COMx) will be  
listed (Figure A.10). The COM # will be the Virtual COM Port connected. You will enter this  
number into your IMS SPI Motor Interface Configuration.  
Figure A.9: Hardware Properties  
Figure A.10: Windows Device Manager  
A-6  
Microstepping MForce PowerDrive Manual Revision R040507  
Download from Www.Somanuals.com. All Manuals Search And Download.  
PD12-1434-FL3 — Power, I/O and SPI  
The PD12-1434-FL3 is a 10’ (3.0 m) Prototype Development Cable used to connect to the 12-Pin Locking  
Wire Crimp Connector. The Connector end plugs into the P1 Connector of the MForce PowerDrive. The Fly-  
ing Lead end connects to a Control Interface such as a PLC, an SPI Interface such as a PC Parallel port and the  
users motor power supply.  
Wire Color Code  
Pair Number  
(Cable/Pair)  
Color Combination  
Interface Signal  
MForce Wire Crimp  
Connection Pin Number  
White/Blue  
Blue/White  
White/Orange  
Orange/White  
White/Green  
Green/White  
White/Brown  
Brown/White  
White/Gray  
Gray//White  
Black  
Opto Reference  
Step Clock  
3
4
1/1  
1/2  
1/3  
1/4  
1/5  
2/1  
Enable  
5
Direction  
6
SPI Clock  
8
COMM GND  
+5VDC  
9
7
Master In - Slave Out  
Master Out - Slave In  
SPI Chip Select  
Not Used  
12  
10  
11  
1
Red  
Not Used  
2
Table A.1: PD12-1434-FL3 Wire Color Codes  
Gray/White: SPI CS  
White/Gray: SPI MOSI  
White/Brown: +5VDC  
Cable 1  
Brown/White SPI MISO  
White/Green: SPI Clock  
Green/White: SPI Ground  
A M P  
White/Orange: Enable  
Orange/White: Direction  
Cable 2  
White/Blue: Opto Reference  
Blue/White: Step Clock  
Black: Not Used  
Red:Not Used  
Figure A.11 PD12-1434-FL3  
Appendices  
A-7  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Prototype Development Cable PD02-2300-FL3  
IMS recommends the Prototype Development Cable PD02-3400-FL3 for interfacing power to the MForce  
PowerDrive.  
10 ft (3.0 m)  
Pin 1 (Red Wire)  
Power Supply Return (Ground)  
Drain Wire (Connect to Earth at Power Supply)  
Motor Power (+12 to +75 VDC)  
Figure A.12: PD02-3400-FL3  
Prototype Development Cable PD04-MF34-FL3  
The PD04-MF34FL3 is a 10’ (3.0 M) Prototype Development Cable used to connect the MForce PowerDrive  
to a stepping motor:  
Pair Number  
(Cable/Pair)  
Color Combination  
Interface Signal  
MForce Wire Crimp  
Connection Pin Number  
Black  
White  
Black  
White  
Phase A  
Phase A  
Phase B  
Phase B  
1
2
3
4
1/1  
1/2  
Table A.2: PD04-MF34-FL3  
Drain Wire  
Pin 4  
Pin 3  
Pin 2  
Pin 1  
Drain Wire  
General Specifications  
Length: 10 Feet (3.0 Meters)  
Conductor: 16 AWG  
Twisted Pairs  
Shield: 100% Flexfoil  
Jacket: PVC  
Figure A.13: PD04-MF34-FL3  
A-8  
Microstepping MForce PowerDrive Manual Revision R040507  
Download from Www.Somanuals.com. All Manuals Search And Download.  
WARRANTY  
TWENTY-FOUR (24) MONTH LIMITED WARRANTY  
Intelligent Motion Systems, Inc. (“IMS”), warrants only to the purchaser of the Product from IMS (the “Customer”) that the  
product purchased from IMS (the “Product”) will be free from defects in materials and workmanship under the normal use  
and service for which the Product was designed for a period of 24 months from the date of purchase of the Product by the  
Customer. Customer’s exclusive remedy under this Limited Warranty shall be the repair or replacement, at Company’s  
sole option, of the Product, or any part of the Product, determined by IMS to be defective. In order to exercise its warranty  
rights, Customer must notify Company in accordance with the instructions described under the heading “Obtaining Warranty  
Service.”  
This Limited Warranty does not extend to any Product damaged by reason of alteration, accident, abuse, neglect or  
misuse or improper or inadequate handling; improper or inadequate wiring utilized or installed in connection with the  
Product; installation, operation or use of the Product not made in strict accordance with the specifications and written  
instructions provided by IMS; use of the Product for any purpose other than those for which it was designed; ordinary  
wear and tear; disasters or Acts of God; unauthorized attachments, alterations or modifications to the Product; the misuse  
or failure of any item or equipment connected to the Product not supplied by IMS; improper maintenance or repair of the  
Product; or any other reason or event not caused by IMS.  
IMS HEREBY DISCLAIMS ALL OTHER WARRANTIES, WHETHER WRITTEN OR ORAL, EXPRESS OR IMPLIED BY  
LAW OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY OR FITNESS  
FOR ANY PARTICULAR PURPOSE. CUSTOMER’S SOLE REMEDY FOR ANY DEFECTIVE PRODUCT WILL BE AS  
STATED ABOVE, AND IN NO EVENT WILL THE IMS BE LIABLE FOR INCIDENTAL, CONSEQUENTIAL, SPECIAL OR  
INDIRECT DAMAGES IN CONNECTION WITH THE PRODUCT.  
This Limited Warranty shall be void if the Customer fails to comply with all of the terms set forth in this Limited Warranty. This  
Limited Warranty is the sole warranty offered by IMS with respect to the Product. IMS does not assume any other liability in  
connection with the sale of the Product. No representative of IMS is authorized to extend this Limited Warranty or to change  
it in any manner whatsoever. No warranty applies to any party other than the original Customer.  
IMS and its directors, officers, employees, subsidiaries and affiliates shall not be liable for any damages arising from any  
loss of equipment, loss or distortion of data, loss of time, loss or destruction of software or other property, loss of production  
or profits, overhead costs, claims of third parties, labor or materials, penalties or liquidated damages or punitive damages,  
whatsoever, whether based upon breach of warranty, breach of contract, negligence, strict liability or any other legal theory,  
or other losses or expenses incurred by the Customer or any third party.  
OBTAINING WARRANTY SERVICE  
Warranty service may obtained by a distributor, if the Product was purchased from IMS by a distributor, or by the Customer  
directly from IMS, if the Product was purchased directly from IMS. Prior to returning the Product for service, a Returned  
which an RMA Authorization Form with RMA number will then be faxed to you. Any questions, contact IMS Customer  
Service (860) 295-6102.  
Include a copy of the RMA Authorization Form, contact name and address, and any additional notes regarding the Product  
failure with shipment. Return Product in its original packaging, or packaged so it is protected against electrostatic discharge  
or physical damage in transit. The RMA number MUST appear on the box or packing slip. Send Product to: Intelligent Motion  
Systems, Inc., 370 N. Main Street, Marlborough, CT 06447.  
Customer shall prepay shipping changes for Products returned to IMS for warranty service and IMS shall pay for return of  
Products to Customer by ground transportation. However, Customer shall pay all shipping charges, duties and taxes for  
Products returned to IMS from outside the United States.  
Download from Www.Somanuals.com. All Manuals Search And Download.  
intelligent motion systems, INC.  
Excellence in Motion  
U.S.A. SALES OFFICES  
Eastern Region  
Phone: 862/208-9742  
Fax: 973/661-1275  
Central Region  
Phone: 260/402-6016  
Fax: 419/858-0375  
Western Region  
Phone: 602/578-7201  
370 N. Main St., P.O. Box 457  
Marlborough, CT 06447 U.S.A.  
Phone: 860/295-6102  
Fax: 860/295-6107  
IMS UK Ltd.  
25 Barnes Wallis Road  
Segensworth East  
Fareham, Hampshire PO15 5TT  
Phone: +44/0 1489-889825  
Fax: +44/0 1489-889857  
IMS EUROPE GmbH  
Niedereschacherstrasse.54  
78083 Dauchingen Germany  
Phone: +49/7720/94138-0  
Fax: +49/7720/94138-2  
TECHNICAL SUPPORT  
Phone: 860/295-6102 (U.S.A.)  
Fax: 860/295-6107  
Germany/UK  
Phone: +49/7720/94138-0  
Fax: +49/7720/94138-2  
E-mail: [email protected] European Sales Management  
4 Quai Des Etroits  
69005 Lyon, France  
Phone: +33/4 7256 5113  
Fax: +33/4 7838 1537  
Germany Sales  
Phone: +49/35205/4587-8  
Fax: +49/35205/4587-9  
Germany/UK Technical Support  
Phone: +49/7720/94138-0  
Fax: +49/7720/94138-2  
IMS ASIA PACIFIC OFFICE  
30 Raffles Pl., 23-00 Caltex House  
Singapore 048622  
Phone: +65/6233/6846  
Fax: +65/6233/5044  
IMS MOTORS DIVISION  
105 Copperwood Way, Suite H  
Oceanside, CA 92054  
Phone: 760/966-3162  
Fax: 760/966-3165  
DISTRIBUTED BY:  
© 2006 Intelligent Motion Systems, Inc. All Rights Reserved.  
REV R040507  
IMS Product Disclaimer and most recent product information at www.imshome.com.  
Download from Www.Somanuals.com. All Manuals Search And Download.  

Indesit Washer IWC 71451 User Manual
Ingersoll Rand Personal Lift LC2A015SIP3LU E User Manual
JAKKS Pacific Treadmill TR1000 TV User Manual
JVC CD Player KD ADV7490 User Manual
JVC DVD Player XV S300BK User Manual
Kawai Musical Instrument CA1000 User Manual
Kenmore Gas Grill 12216118 User Manual
Kenwood DVD Player KDV 412 User Manual
Kobe Range Hoods Ventilation Hood IN 026 SERIES User Manual
Kodak Scanner A 61555 User Manual