Marvel Group Integrated Controller 88F6281 User Manual

Cover  
88F6281  
Integrated Controller  
Hardware Specifications  
Doc. No. MV-S104859-U0, Rev. E  
December 2, 2008, Preliminary  
Marvell. Moving Forward Faster  
Document Classification: Proprietary Information  
88F6281  
Integrated Controller  
Hardware Specifications  
PRODUCT OVERVIEW  
®
The Marvell 88F6281 is a high-performance, highly integrated controller. The 88F6281 is based on the Marvell  
proprietary, ARMv5TE-compliant, high-speed Sheeva CPU core. The CPU core integrates a 256 KB L2 cache.  
Processor  
High Speed I/0  
Sheeva™ CPU Core  
L2  
Cache  
256 KB  
PCI Express x1  
Dual SATA ports  
USB 2.0 port  
PCI Express  
JTAG Interface  
16 KB-I, 16 KB-D  
Up to 1.5 GHz  
SATA  
Memory  
DDR  
USB 2.0  
External DDR  
800 MHz  
SDRAM  
Controller  
Media Interfaces  
Security Engine  
MPEG TS  
Audio  
MPEG2-TS  
I2S / S/PDIF  
AES/DES/  
3DES  
SHA-1/MD5  
XOR Engine  
4 XOR/DMA channels  
Misc  
Gigabit Ethernet  
IEEE 1588AVB support  
FXS / FXO  
TDM  
UART x2  
GE  
GPIO, TWSI  
Flash, SDIO  
GE  
SPI, NAND, SDIO  
88F6281 Functional Block Diagram  
Copyright © 2008 Marvell  
Doc. No. MV-S104859-U0 Rev. E  
Page 3  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
   
88F6281  
Hardware Specifications  
FEATURES  
The 88F6281 includes:  
DDR SDRAM with a clock ratio of 1:N and 2:N  
between the DDR SDRAM and the CPU core,  
respectively  
High-performance CPU core, running at up to  
1.5 GHz, with integrated, four-way, set-associative  
L1 16-KB I-cache/16-KB D-cache and unified,  
256-KB, four-way, set-associative L2 cache  
High-bandwidth dual-port DDR2 memory interface  
(16-bit DDR2 SDRAM @ up to 800 MHz data rate)  
PCI Express (x1) port with integrated PHY  
Two Gigabit Ethernet (10/100/1000 Mbps) MACs  
USB 2.0 port with integrated PHY  
SSTL 1.8V I/Os  
Auto calibration of I/Os output impedance  
Supports four DRAM chip selects  
Supports all DDR devices densities up to 2 Gb  
Supports up to 32 open pages (page per bank)  
Up to 2 GB total address space  
Supports on-board DDR designs (no DIMM  
support)  
Supports 2T mode, to enable high-frequency  
operation under heavy load configuration  
Supports DRAM bank interleaving  
Supports up to a 128-byte burst per single memory  
access  
Two SATA 2.0 ports with integrated 3 Gbps SATA II  
PHY  
Security Cryptographic engine  
S/PDIF (Sony/Philips Digital Interconnect Format) /  
2
I S (Integrated Interchip Sound) Audio in/out  
interface  
SD/SDIO/MMC interface  
PCI Express interface (x1)  
TDM SLIC/SLAC Codec interface  
Two XOR engines, each containing two XOR/DMA  
channels (a total of four XOR/DMA channels)  
MPEG Transport Stream (TS) interface  
SPI port with SPI flash boot support  
8-bit NAND flash interface with boot support  
Two 16550 compatible UART interfaces  
TWSI port  
PCI Express Base 1.1 compatible  
Integrated low-power SERDES PHY, based on  
®
proven Marvell SERDES technology  
Serves as a Root Complex or an Endpoint port  
x1 link width  
2.5 Gbps data rate  
Lane polarity reversal support  
Maximum payload size of 128 bytes  
Single Virtual Channel (VC-0)  
Replay buffer support  
Extended PCI Express configuration space  
Advanced Error Reporting (AER) support  
Power management: L0s and software L1 support  
Interrupt emulation message support  
Error message support  
50 multi-purpose pins  
Internal Real Time Clock (RTC)  
Interrupt controller  
Timers  
128-bit eFuse (one-time programmable memory)  
Sheeva CPU core  
Up to 1.5 GHz  
32-bit and 16-bit RISC architecture  
Compliant with v5TE architecture, as published in  
the ARM Architect Reference Manual, Second  
Edition  
Includes MMU to support virtual memory features  
256-KB, four-way, set-associative L2 unified cache  
16-KB, four-way, set-associative I-cache  
16-KB, four-way, set-associative D-cache  
64-bit internal data bus  
PCI Express master specific features  
Single outstanding read transaction  
Maximum read request of up to 128 bytes  
Maximum write request of up to 128 bytes  
Up to four outstanding read transactions in  
Endpoint mode  
PCI Express target specific features  
Supports up to eight read request transactions  
Maximum read request size of 4 KB  
Maximum write request of 128 bytes  
Supports PCI Express access to all of the  
controller’s internal registers  
Branch Prediction Unit  
Supports JTAG/ARM ICE  
Supports both Big and Little Endian modes  
DDR2 SDRAM controller  
Two Integrated GbE (10/100/1000) MAC ports  
Supports 10/100/1000 Mbps  
16-bit interface  
Up to 400 MHz clock frequency (800 MHz data  
rate)  
Dedicated DMA for data movement between  
memory and port  
Doc. No. MV-S104859-U0 Rev. E  
Copyright © 2008 Marvell  
Page 4  
Document Classification: Proprietary Information  
December 2, 2008, Preliminary  
 
Features  
Priority queuing on receive based on Destination  
Address (DA), VLAN Tag, and IP TOS  
Layer 2/3/4 frame encapsulation detection  
TCP/IP checksum on receive and transmit  
Supports proprietary 200 Mbps Marvell MII (MMII)  
interface  
- Backwards compatible with SATA I devices  
Supports SATA II Phase 2 advanced features  
- 3 Gbps (Gen2i) SATA II speed  
- Port Multiplier (PM)—Performs FIS-based  
switching, as defined in SATA working group PM  
definition  
Supports four modes:  
- Port Selector (PS)—Issues the protocol-based  
Out-Of-Band (OOB) sequence for selecting the  
active host port  
Supports device 48-bit addressing  
Supports ATA Tag Command Queuing  
- Port 0 RGMII, Port 1 RGMII  
- Port 0 RGMII, Port 1 MII/MMII  
- Port 0 MII/MMII, port 1 RGMII  
- Port 0 GMII, Port 1 N/A  
DA filtering  
SATA II Host Controller  
Enhanced-DMA (EDMA) for the SATA ports  
Automatic command execution, without host  
intervention  
Command queuing support, for up to 32  
outstanding commands  
Separate SATA request/response queues  
64-bit addressing support for descriptors and data  
buffers in system memory  
Precise Timing Protocol (PTP)  
Supports precise time stamping for packets, as  
defined in IEEE 1588 PTP v1 and v2 and IEEE  
802.1AS draft standards  
Supports Flexible Time Application interface to  
distribute PTP clock and time to other devices in  
the system  
Optionally accepts an external clock input for time  
stamping  
Read ahead  
Advanced interrupt coalescing  
Target mode operation—supports attaching two  
88F6281 controllers through their Serial-ATA ports,  
enabling data communication between the  
88F6281 controllers  
Audio Video Bridging networks  
Supports IEEE 802.1Qav draft Audio Video  
Bridging networks  
Supports time- and priority-aware egress pacing  
algorithm to prevent bunching and bursting  
effects—suitable for audio/video applications  
Supports Egress Jitter Pacer for AVB-Class A and  
AVB-Class B traffic and strict priority for legacy  
traffic queues  
Advanced drive diagnostics via the ATA SMART  
command  
Cryptographic engine  
Hardware implementation on encryption and  
authentication engines, to boost packet processing  
speed  
Dedicated DMA to feed the hardware engines with  
data from the internal SRAM memory or from the  
DDR memory  
Implements AES, DES, and 3DES encryption  
algorithms  
Implements SHA1 and MD5 authentication  
algorithms  
USB 2.0 port  
Serves as a peripheral or host  
USB 2.0 compliant  
Integrated USB 2.0 PHY  
Enhanced Host Controller Interface (EHCI)  
compatible as a host  
As a host, supports direct connection to all  
peripheral types (LS, FS, HS)  
As a peripheral, connects to all host types (HS, FS)  
and hubs  
Up to four independent endpoints, supporting  
control, interrupt, bulk, and isochronous data  
transfers  
Dedicated DMA for data movement between  
memory and port  
2
S/PDIF / I S Audio In/Out interface  
2
Either S/PDIF or I S inputs can be active at one  
time  
2
Both S/PDIF and I S outputs can be  
simultaneously active, transferring the same PCM  
data  
Two Integrated Marvell 3 Gbps (Gen2i) SATA PHYs  
Compliant with SATA II Phase 1 specifications  
- Supports SATA II Native Command Queuing  
(NCQ), up to 128 outstanding commands per  
port  
S/PDIF-specific features  
Compliant with 60958-1, 60958-3, and IEC61937  
specifications  
Sample rates of 44.1/48/96 kHz  
16/20/24-bit depths  
- Fully supports first party DMA (FPDMA)  
Copyright © 2008 Marvell  
Doc. No. MV-S104859-U0 Rev. E  
Page 5  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
88F6281  
Hardware Specifications  
2
I S-specific features  
MPEG Transport Stream (TS) interface  
ISO/IEC 13818-1 standard compliant  
Supports any one of the following modes:  
- Parallel (8 bit) input  
Sample rates of 44.1/48/96 kHz  
2
2
I S input and I S output operate at the same  
sample rate  
- Parallel output  
- Two independent serial interfaces  
Data rate up to 80 Mbps  
16/24-bit depths  
2
2
I S in and I S out support independent bit depths  
(16 bit/24 bit)  
2
Two UART Interfaces  
Supports plain I S, right-justified and left-justified  
16550 UART compatible  
formats  
Two pins for transmit and receive operations  
Two pins for modem control functions  
SD/SDIO/MMC host interface  
1-bit/4-bit SDmem, SDIO, and MMC cards  
Up to 50 MHz  
Two-Wire Serial Interface (TWSI)  
General purpose TWSI master/slave port  
Can also be used for serial ROM initialization  
Hardware generate/check CRC, on all command  
and data transactions on the card bus  
TDM SLIC/SLAC Codec interface  
Generic interface to standard SLIC/SLAC codec  
devices  
50 dedicated Multi-Purpose Pins (MPPs) for  
peripheral functions and general purpose I/O  
Each pin can be configured independently.  
GPIO inputs can be used to register interrupts from  
external devices, and to generate maskable  
interrupts.  
Compatible with standard PCM highway formats  
TDM protocol support for two channels, up to  
128 time slots  
Only two of the following multiplexed interfaces  
may be configured simultaneously:  
- Audio  
Dedicated SPI interface for codec management  
Integrated DMA to transfer voice data to/from  
memory buffer  
- TS  
Two XOR engines and DMA  
- TDM  
Two XOR/DMA channels per XOR engine (for a  
total of four XOR/DMA channels)  
- GbE Port 0 in GMII mode or GbE Port 1  
Chaining via linked-lists of descriptors  
Moves data from source interface to destination  
interface  
Interrupt Controller  
Maskable interrupts to CPU core  
(and PCI Express for a PCI Express endpoint)  
Supports increment or hold on both Source and  
Destination Addresses  
Two general purpose 32-bit timers/counters  
Internal architecture  
Supports XOR operation, on up to eight source  
blocks—useful for RAID applications  
Supports iSCSI CRC-32 calculation  
Mbus-L bus for high-performance, low-latency CPU  
core to DDR SDRAM connectivity  
Advanced Mbus architecture  
NAND flash controller  
8-bit NAND flash interface  
Glueless interface to CE Care and CE Don’t Care  
NAND flash devices  
Dual port DDR SDRAM controller connectivity to  
both CPU and Mbus  
Bootable from  
SPI flash  
Boot support  
SATA device  
Serial Peripheral Interface (SPI) controller  
Up to 50 MHz clock  
NAND flash  
PCI Express  
Supports direct boot from external SPI serial flash  
memory  
UART (for debug purpose)  
288-pin HSBGA package, 19 x 19 mm, 1 mm ball  
pitch  
Doc. No. MV-S104859-U0 Rev. E  
Page 6  
Copyright © 2008 Marvell  
Document Classification: Proprietary Information  
December 2, 2008, Preliminary  
Features  
SATA Port  
Multiplier  
HDD  
PCI Express  
On Board DDR2  
SPI Flash (op.)  
Mini Card Wi-Fi  
x16  
x8  
SD Card  
88F6281  
USB Host  
NAND Flash  
TDM  
Audio  
A/D – D/A  
GbE PHY  
FXS  
FXO  
Usage Model Example: VoIP Gateway  
Copyright © 2008 Marvell  
December 2, 2008, Preliminary  
Doc. No. MV-S104859-U0 Rev. E  
Page 7  
Document Classification: Proprietary Information  
88F6281  
Hardware Specifications  
Table of Contents  
TSMP (TS Multiplexing Pins) on MPP.............................................................................................................59  
Sheeva CPU TAP Controller Reset..............................................................................................................66  
Doc. No. MV-S104859-U0 Rev. E  
Page 8  
Copyright © 2008 Marvell  
Document Classification: Proprietary Information  
December 2, 2008, Preliminary  
Table of Contents  
Package......................................................................................................................................130  
Part Order Numbering/Package Marking ................................................................................132  
Revision History ........................................................................................................................134  
Copyright © 2008 Marvell  
Doc. No. MV-S104859-U0 Rev. E  
Page 9  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
88F6281  
Hardware Specifications  
List of Tables  
2
Table 17: Audio (S/PDIF / I S) Interface Signal Assignment............................................................................40  
Table 20: Time Division Multiplexing (TDM) Interface Signal Assignment .......................................................43  
Table 21: Transport Stream (TS) Interface Signal Assignment ........................................................................45  
Table 23: Internal Pull-up and Pull-down Pins..................................................................................................48  
Table 25: MPP Functionality.............................................................................................................................52  
Table 26: MPP Function Summary...................................................................................................................53  
Table 27: Ethernet Ports Pins Multiplexing.......................................................................................................57  
Table 30: Supported Clock Combinations ........................................................................................................61  
Doc. No. MV-S104859-U0 Rev. E  
Page 10  
Copyright © 2008 Marvell  
Document Classification: Proprietary Information  
December 2, 2008, Preliminary  
List of Tables  
Table 47: SDRAM DDR2 Interface Address Timing Table...............................................................................89  
Copyright © 2008 Marvell  
Doc. No. MV-S104859-U0 Rev. E  
Page 11  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
88F6281  
Hardware Specifications  
10 Package ...........................................................................................................................................130  
11 Part Order Numbering/Package Marking......................................................................................132  
Revision History .............................................................................................................................134  
Table 75: Revision History..............................................................................................................................134  
Doc. No. MV-S104859-U0 Rev. E  
Page 12  
Copyright © 2008 Marvell  
Document Classification: Proprietary Information  
December 2, 2008, Preliminary  
List of Figures  
List of Figures  
Figure 1: 88F6281 Pin Logic Diagram ............................................................................................................18  
Copyright © 2008 Marvell  
Doc. No. MV-S104859-U0 Rev. E  
Page 13  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
88F6281  
Hardware Specifications  
10 Package .......................................................................................................................................... 130  
11 Part Order Numbering/Package Marking..................................................................................... 132  
Doc. No. MV-S104859-U0 Rev. E  
Page 14  
Copyright © 2008 Marvell  
Document Classification: Proprietary Information  
December 2, 2008, Preliminary  
Preface  
About this Document  
Preface  
About this Document  
This datasheet provides the hardware specifications for the 88F6281 integrated controller. The  
hardware specifications include detailed pin information, configuration settings, electrical  
characteristics and physical specifications.  
This datasheet is intended to be the basic source of information for designers of new systems.  
In this document, the “88F6281” is often referred to as the “device”.  
Related Documentation  
The following documents contain additional information related to the 88F6281:  
88F6180, 88F6190, 88F6192, and 88F6281 Functional Specifications,  
Doc No. MV-S104860-U0  
Sheeva 88SV131 ARM v5TE Processor Core with MMU and L1/L2 Cache Datasheet,  
Doc No. MV-S104950-U0  
Unified Layer 2 (L2) Cache for Sheeva CPU Cores Addendum, Doc No. MV-S104858-U0  
88F6180, 88F6190, 88F6192, and 88F6281 Functional Errata, Interface Guidelines, and  
Restrictions, Doc No. MV-S501157-U0  
1
88F6180, 88F6190, 88F6192, and 88F6281 Design Guide, Doc No. MV-S301398-00  
AN-63: Thermal Management for Marvell Technology Products Doc No. MV-S300281-00  
®
AN-179: TWSI Software Guidelines for Discovery™, Horizon™, and Feroceon Devices,  
Doc No. MV-S300754-00  
AN-183: 88F5181 and 88F5281 Big Endian and Little Endian Support,  
Doc No. MV-S300767-00  
®
AN-249: Configuring the Marvell SATA PHY to Transmit Predefined Test Patterns,  
Doc No. MV-S301342-00  
AN-260 System Power-Saving Methods for 88F6180, 88F6190, 88F6192, and 88F6281,  
Doc No. MV-S301454-00  
TB-227: Differences Between the 88F6190, 88F6192, and 88F6281 Stepping Z0 and A0,  
Doc No. MV-S105223-00  
White Paper, ThetaJC, ThetaJA, and Temperature Calculations, Doc No. MV-S700019-00  
ARM Architecture Reference Manual, Second Edition  
PCI Express Base Specification, Revision 1.1  
Universal Serial Bus Specification, Revision 2.0, April 2000, Compaq, Hewlett-Packard, Intel,  
Lucent, Microsoft, NEC, Philips  
Enhanced Host Controller Interface Specification for Universal Serial Bus, Revision 0.95,  
November 2000, Intel Corporation  
ARC USB-HS OTG High-Speed Controller Core reference V 4.0.1  
Federal Information Processing Standards (FIPS) 46-2 (Data Encryption Standard)  
FIPS 81 (DES Modes of Operation)  
FIPS 180-1 (Secure Hash Standard)  
FIPS draft - Advanced Encryption Standard (Rijndeal)  
1. This document is a Marvell proprietary, confidential document, requiring an NDA and can be downloaded from the  
Marvell Extranet.  
Copyright © 2008 Marvell  
Doc. No. MV-S104859-U0 Rev. E  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
Page 15  
         
88F6281  
Hardware Specifications  
RFC 1321 (The MD5 Message-Digest Algorithm)  
RFC 1851 – The ESP Triple DES Transform  
RFC 2104 (HMAC: Keyed-Hashing for Message Authentication).  
RFC 2405 – The ESP DES-CBC Cipher Algorithm With Explicit IV  
IEEE standard, 802.3-2000 Clause 14  
ANSI standard X3.263-1995  
See the Marvell Extranet website for the latest product documentation.  
Document Conventions  
The following conventions are used in this document:  
Signal Range  
A signal name followed by a range enclosed in brackets represents a range of logically related  
signals. The first number in the range indicates the most significant bit (MSb) and the last  
number indicates the least significant bit (LSb).  
Example: DB_Addr[12:0]  
Active Low Signals #  
State Names  
An n letter at the end of a signal name indicates that the signal’s active state occurs when  
voltage is low.  
Example: INTn  
State names are indicated in italic font.  
Example: linkfail  
Register Naming  
Conventions  
Register field names are indicated by angle brackets.  
Example: <RegInit>  
Register field bits are enclosed in brackets.  
Example: Field [1:0]  
Register addresses are represented in hexadecimal format.  
Example: 0x0  
Reserved: The contents of the register are reserved for internal use only or for future use.  
A lowercase <n> in angle brackets in a register indicates that there are multiple registers with  
this name.  
Example: Multicast Configuration Register<n>  
Reset Values  
Abbreviations  
Reset values have the following meanings:  
0 = Bit clear  
1 = Bit set  
Kb: kilobit  
KB: kilobyte  
Mb: megabit  
MB: megabyte  
Gb: gigabit  
GB: gigabyte  
Numbering Conventions Unless otherwise indicated, all numbers in this document are decimal (base 10).  
An 0x prefix indicates a hexadecimal number.  
An 0b prefix indicates a binary number.  
Doc. No. MV-S104859-U0 Rev. E  
Page 16  
Copyright © 2008 Marvell  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
 
Pin and Signal Descriptions  
1
Pin and Signal Descriptions  
This section provides the pin logic diagram for the 88F6281 device and a detailed description of the  
pin assignments and their functionality.  
Copyright © 2008 Marvell  
Doc. No. MV-S104859-U0 Rev. E  
Page 17  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
 
88F6281  
Hardware Specifications  
1.1  
Pin Logic  
Figure 1: 88F6281 Pin Logic Diagram  
REF_CLK_XIN  
XOUT  
VDD  
VDD_CPU  
VDDO  
VDD_GE_A  
VDD_GE_B  
SYSRSTn  
TP  
Misc.  
VDD_M  
VSS  
ISET  
RESERVED  
MRn  
CPU_PLL_AVDD  
CPU_PLL_AVSS  
CORE_PLL_AVDD  
CORE_PLL_AVSS  
NC  
PEX_CLK_P  
PEX_CLK_N  
PEX_TX_P  
PEX_TX_N  
PEX_RX_P  
PEX_RX_N  
PEX_ISET  
Power  
XTAL_AVDD  
XTAL_AVSS  
PEX_AVDD  
SATA0_AVDD  
PCI Express  
USB  
SATA1_AVDD  
USB_AVDD  
RTC_AVDD  
RTC_AVSS  
SSCG_AVDD  
SSCG_AVSS  
VHV  
USB_DP  
USB_DM  
GE_TXCLKOUT  
GE_TXD[3:0]  
MPP[49:0]  
MPP  
GE_TXCTL  
GE_RXD[3:0]  
GE_RXCTL  
GE_RXCLK  
GE_MDC  
NF_IO[7:0]  
NF_CLE  
Gigabit Ethernet  
NAND  
Flash  
NF_ALE  
NF_CEn  
NF_REn  
NF_WEn  
GE_MDIO  
JT_CLK  
JT_TDI  
M_CLKOUT  
M_CLKOUTn  
M_CKE  
JT_TDO  
JTAG  
JT_TMS_CPU  
M_RASn  
JT_TMS_CORE  
JT_RSTn  
M_CASn  
M_WEn  
M_A[14:0]  
SATA0_T_P  
SATA0_T_N  
SATA0_R_P  
SATA0_R_N  
M_BA[2:0]  
M_CSn[3:0]  
M_DQ[15:0]  
M_DQS[1:0]  
M_DQSn[1:0]  
M_DM[1:0]  
M_ODT[1:0]  
M_STARTBURST  
M_STARTBURST_IN  
M_PCAL  
SDRAM  
SATA0/1  
SATA1_T_P  
SATA1_T_N  
SATA1_R_P  
SATA1_R_N  
RTC_XIN  
RTC  
RTC_XOUT  
M_NCAL  
NOTE: The GE_TXCLKOUT pin is an input only when used as the MII/MMII Transmit Clock.  
For details about MPP configuration options see Section 4.1, Multi-Purpose Pins Functional  
Doc. No. MV-S104859-U0 Rev. E  
Page 18  
Copyright © 2008 Marvell  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
     
Pin and Signal Descriptions  
Pin Descriptions  
1.2  
Pin Descriptions  
This section details all the pins for the different interfaces providing a functional description of each  
pin and pin attributes.  
Table 1<Default ¬¹ Font> defines the abbreviations and acronyms used in the pin description tables.  
Table 1: Pin Functions and Assignments Table Key  
Term  
[n]  
Definition  
n - Represents the SERDES pair number  
Represents port number when there are more than one ports  
Analog Driver/Receiver or Power Supply  
Calibration pad type  
<n>  
Analog  
Calib  
CML  
CMOS  
DDR  
GND  
HCSL  
I
Common Mode Logic  
Complementary Metal-Oxide-Semiconductor  
Double Data Rate  
Ground Supply  
High-speed Current Steering Logic  
Input  
I/O  
Input/Output  
O
Output  
o/d  
Open Drain pin  
The pin allows multiple drivers simultaneously (wire-OR connection).  
A pull-up is required to sustain the inactive value.  
Power  
SSTL  
t/s  
VDD Power Supply  
Stub Series Terminated Logic for 1.8V  
Tri-State pin  
XXXn  
n - Suffix represents an Active Low Signal  
Table 2: Interface Pin Prefix Codes  
Interface  
Misc  
Prefix  
N/A  
DDR SDRAM  
PCI Express  
SATA  
M_  
PEX_  
SATA0_  
SATA1_  
Gigabit Ethernet  
USB 2.0  
GE_  
USB_  
JT_  
JTAG  
Copyright © 2008 Marvell  
Doc. No. MV-S104859-U0 Rev. E  
Page 19  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
       
88F6281  
Hardware Specifications  
Table 2: Interface Pin Prefix Codes (Continued)  
Interface  
RTC  
Prefix  
RTC_  
NF_  
NAND Flash  
MPP  
N/A  
TWSI  
TW_  
UART  
UA0_  
UA1_  
Audio  
SPI  
AU_  
SPI_  
SD_  
SDIO  
TDM  
PTP  
TDM_  
PTP_  
Doc. No. MV-S104859-U0 Rev. E  
Page 20  
Copyright © 2008 Marvell  
Document Classification: Proprietary Information  
December 2, 2008, Preliminary  
Pin and Signal Descriptions  
Pin Descriptions  
1.2.1  
Power Supply Pins  
Table 3 provides the voltage levels for the various interface pins. These do not include the analog  
power supplies for the PLLs or PHYs which are explicitly mentioned in the other pin description  
tables.  
Table 3: Power Pin Assignments  
Pin Name  
I/O  
Pin  
Description  
Type  
VDD  
I
I
I
I
Power  
Power  
Power  
Power  
1.0V Digital core voltage  
VDD_CPU  
VDDO  
1.1V Digital CPU voltage  
3.3V I/O power for MPP[49:36],MPP[19:0] and JTAG pins  
VDD_GE_A  
1.8V or 3.3V I/O supply voltage for RGMII and SMI interfaces  
3.3V I/O supply voltage for GMII, MII/MMII, and SMI interfaces  
VDD_GE_B  
I
Power  
I/O power for MPP[35:20]  
1.8V or 3.3V I/O supply voltage for RGMII interfaces  
3.3V I/O supply voltage for GMII and MII/MMII interfaces  
VDD_M  
I
I
I
Power  
GND  
1.8V I/O supply voltage for the DDR2 SDRAM interface  
VSS  
VSS  
CPU_PLL_AVDD  
Power  
1.8V analog quiet power to CPU PLL  
NOTE: See the 88F6180, 88F6190, 88F6192, and 88F6281 Design  
Guide for power supply filtering recommendations.  
CPU_PLL_AVSS  
I
I
GND  
CPU PLL ground  
CORE_PLL_AVDD  
Power  
1.8V analog quiet power to Core PLL  
NOTE: See the 88F6180, 88F6190, 88F6192, and 88F6281 Design  
Guide for power supply filtering recommendations.  
CORE_PLL_AVSS  
SSCG_AVDD  
I
I
GND  
Core PLL ground  
Power  
1.8V quiet power supply to the internal Spread Spectrum Clock  
Generator  
SSCG_AVSS  
XTAL_AVDD  
I
I
GND  
Ground for the internal Spread Spectrum Clock Generator  
Power  
1.8V analog quiet power to on-chip clock inverter for supporting external  
crystal, and on-chip current reference for SATA and USB PHYs  
NOTE: See the 88F6180, 88F6190, 88F6192, and 88F6281 Design  
Guide for power supply filtering recommendations.  
XTAL_AVSS  
VHV  
I
I
GND  
Ground for supporting external crystal, and on-chip current reference for  
SATA and USB PHYs  
Power  
I/O supply voltage for eFuse:  
2.5V for eFuse burning only  
1.0V for eFuse reading only  
Copyright © 2008 Marvell  
Doc. No. MV-S104859-U0 Rev. E  
Page 21  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
   
88F6281  
Hardware Specifications  
Table 3: Power Pin Assignments (Continued)  
Pin Name  
I/O  
Pin  
Description  
Type  
PEX_AVDD  
I
Power  
Power  
Power  
PCI Express PHY quiet power supply 1.8V  
NOTE: See the 88F6180, 88F6190, 88F6192, and 88F6281 Design  
Guide for power supply filtering recommendations.  
SATA0_AVDD  
SATA1_AVDD  
I
I
SATA II port0/1 quiet 3.3V power supply  
NOTE: See 88F6180, 88F6190, 88F6192, and 88F6281 Design Guide  
for power supply filtering recommendation.  
USB_AVDD  
USB 2.0 PHY quiet 3.3V power supply  
NOTE: See the 88F6180, 88F6190, 88F6192, and 88F6281 Design  
Guide for power supply filtering recommendation.  
RTC_AVDD  
RTC_AVSS  
I
I
Power  
GND  
1.5V (via battery) or 1.8V (via the board) RTC interface voltage  
RTC ground  
Doc. No. MV-S104859-U0 Rev. E  
Page 22  
Copyright © 2008 Marvell  
Document Classification: Proprietary Information  
December 2, 2008, Preliminary  
Pin and Signal Descriptions  
Pin Descriptions  
1.2.2  
Miscellaneous Pin Assignment  
The Miscellaneous signal list contains clock and reset, test, and related signals.  
Table 4: Miscellaneous Pin Assignments  
Pin Name  
I/O  
Pin  
Type  
Power  
Rail  
Description  
REF_CLK_XIN  
I
Analog  
Analog  
CMOS  
XTAL_AVDD  
XTAL_AVDD  
VDDO  
Reference clock input from external oscillator or input from  
external crystal. Used as input to core, CPU, SATA, and USB  
PLLs.  
XOUT  
O
I
XTAL_OUT  
Feedback signal to external crystal.  
When not used, leave this pin floating.  
SYSRSTn  
System reset  
Main reset signal of the device clock. Used to reset all units  
to their initial state.  
When in the reset state, most output pins are in Tri-State.  
SYSRST_OUTn  
PEX_RST_OUTn  
TP  
O
O
O
CMOS  
CMOS  
Analog  
VDDO  
VDDO  
Reset request from the device to the board reset logic.  
This pin is multiplexed on the MPP pins (see Section 4, Pin  
Optional PCI Express Endpoint card reset output  
This pin is multiplexed on the MPP pins (see Section 4, Pin  
Analog Test Point for SATA, USB, and PCI Express  
interfaces  
For internal use. Leave this pin unconnected.  
ISET  
MRn  
I
I
Analog  
CMOS  
Current reference for both the USB and SATA PHYs.  
Terminate this pin with a 6.04 kΩ resistor, pulled down.  
VDD_GE_A  
Active-Low, Manual Reset Input  
SYSRST_OUTn is asserted low as long as the MRn input  
signal is asserted low, and for additional 20 ms after MRn  
(manual reset) de-assertion  
This pin is internally pulled up.  
¬Æ  
RESERVED  
NC  
Reserved for Marvell  
future usage.  
Leave unconnected externally.  
¬Æ  
Reserved for Marvell  
future usage.  
Leave unconnected externally.  
Copyright © 2008 Marvell  
Doc. No. MV-S104859-U0 Rev. E  
Page 23  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
   
88F6281  
Hardware Specifications  
1.2.3  
DDR SDRAM Interface Pin Assignments  
Table 5: DDR SDRAM Interface Pin Assignments  
Pin Name  
I/O  
Pin  
Type  
Power  
Rail  
Description  
M_CLKOUT  
M_CLKOUTn  
O
SSTL  
SSTL  
SSTL  
VDD_M  
VDD_M  
VDD_M  
SDRAM Differential Clock Pair  
M_CKE  
O
Driven high to enable SDRAM clock.  
Driven low when setting the SDRAM to Self-refresh mode.  
M_RASn  
O
SDRAM Row Address Select  
Asserted to indicate an active ROW address driven on the  
SDRAM address lines.  
M_CASn  
O
SSTL  
VDD_M  
SDRAM Column Address Select  
Asserted to indicate an active column address driven on the  
SDRAM address lines.  
M_WEn  
O
O
SSTL  
SSTL  
VDD_M  
VDD_M  
SDRAM Write Enable  
Asserted to indicate a write command to the SDRAM.  
M_A[14:0]  
SDRAM Address  
Driven with M_BA[2:0] during RASn and CASn cycles to  
generate the SDRAM address.  
M_BA[2:0]  
O
O
SSTL  
VDD_M  
Driven during M_RASn and M_CASn cycles to select one of  
the eight SDRAM virtual banks.  
NOTE: If an SDRAM device does not support the BA[2] pin,  
leave the M_BA[2] unconnected.  
M_CSn[3:0]  
M_DQ[15:0]  
SSTL  
SSTL  
VDD_M  
VDD_M  
SDRAM Chip Selects  
Asserted to select a specific SDRAM Physical bank.  
t/s  
SDRAM Data Bus  
I/O  
Driven during write.  
Driven by SDRAM during reads.  
M_DQS[1:0],  
M_DQSn[1:0]  
t/s  
I/O  
SSTL  
SSTL  
SSTL  
VDD_M  
VDD_M  
VDD_M  
SDRAM Data Strobe  
Driven by the 88F6281 during write.  
Driven by SDRAM during reads.  
M_DM[1:0]  
O
O
SDRAM Data Mask  
Asserted by the 88F6281 to select the specific byte out of the  
16-bit data to be written to the SDRAM.  
M_ODT[1:0]  
SDRAM On Die Termination control  
Driven high to connect the SDRAM on die termination.  
Driven low to disconnect the SDRAM’s termination.  
NOTE: For the recommended setting, refer to the 88F6180,  
88F6190, 88F6192, and 88F6281 Design Guide.  
Doc. No. MV-S104859-U0 Rev. E  
Page 24  
Copyright © 2008 Marvell  
Document Classification: Proprietary Information  
December 2, 2008, Preliminary  
   
Pin and Signal Descriptions  
Pin Descriptions  
Table 5: DDR SDRAM Interface Pin Assignments (Continued)  
Pin Name  
I/O  
Pin  
Type  
Power  
Rail  
Description  
M_STARTBURST  
O
SSTL  
VDD_M  
Start Burst  
88F6281 indication of starting a burst read transaction.  
Asserted with the first M_CASn cycle of SDRAM access.  
NOTE: Must be routed on board to the SDRAM, and back to  
the 88F6281 as M_STARTBURST_IN. For the  
recommended length calculation for this routing and  
termination requirements, see the 88F6180, 88F6190,  
88F6192, and 88F6281 Design Guide.  
M_START  
BURST_IN  
I
I
SSTL  
Calib  
VDD_M  
Start Burst Input  
M_PCAL  
SDRAM interface P channel output driver calibration. Connect  
to VSS through a resistor. The resistor value can vary  
between 30–70 ohm.  
NOTE: See the 88F6180, 88F6190, 88F6192, and 88F6281  
Design Guide for the recommended values of the  
calibration resistors.  
M_NCAL  
I
Calib  
SDRAM interface N channel output driver calibration. Connect  
to M_VDD through a resistor. The resistor value can vary  
between 30–70 ohm.  
NOTE: See the 88F6180, 88F6190, 88F6192, and 88F6281  
Design Guide for the recommended values of the  
calibration resistors.  
Copyright © 2008 Marvell  
Doc. No. MV-S104859-U0 Rev. E  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
Page 25  
88F6281  
Hardware Specifications  
1.2.4  
PCI Express Interface Pin Assignments  
Table 6: PCI Express Interface Pin Assignments  
Pin Name  
I/O  
Pin  
Type  
Power  
Rail  
Description  
PEX_CLK_P/N  
I/O  
HCSL  
PEX_AVDD  
PCI Express Reference Clock  
100 MHz, differential  
This clock can be configured as input or output according to the  
NOTE: For Output mode, 50-ohm, pull-down resistors are  
required.  
PEX_TX_P/N  
PEX_RX_P/N  
PEX_ISET  
O
I
CML  
PEX_AVDD  
PEX_AVDD  
Transmit Lane  
Differential pair of PCI Express transmit data  
CML  
Receive Lane  
Differential pair of PCI Express receive data  
I
Analog  
Current reference. Pull down to VSS through a 5 kΩ resistor.  
See the 88F6180, 88F6190, 88F6192, and 88F6281 Design  
Guide for the recommended resistor value.  
Doc. No. MV-S104859-U0 Rev. E  
Page 26  
Copyright © 2008 Marvell  
Document Classification: Proprietary Information  
December 2, 2008, Preliminary  
   
Pin and Signal Descriptions  
Pin Descriptions  
1.2.5  
SATA Interface Pin Assignments  
Table 7: SATA Port Interface Pin Assignment  
Pin Name  
I/O  
O
I
Pin  
Type  
Power Rail  
Description  
SATA0_T_P/N  
SATA1_T_P/N  
CML  
SATA0/1_AVDD  
SATA0/1_AVDD  
Transmit Data: Differential analog output of SATA II  
port0/1  
SATA0_R_P/N  
SATA1_R_P/N  
CML  
Receive Data: Differential analog input of SATA II port0/1  
SATA0_PRESENTn  
SATA1_PRESENTn  
O
CMOS  
VDDO/  
VDD_GE_B  
When this signal is asserted there is an active link  
between the SATA II port and the external device (disk).  
NOTE: These signals are multiplexed on the MPP pins  
SATA0_ACTn  
SATA1_ACTn  
O
CMOS  
VDDO/  
VDD_GE_B  
When this signal is asserted, there is an active and used  
link between the SATA II port and the external device  
(disk).  
NOTE: These signals are multiplexed on the MPP pins  
Copyright © 2008 Marvell  
Doc. No. MV-S104859-U0 Rev. E  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
Page 27  
   
88F6281  
Hardware Specifications  
1.2.6  
Gigabit Ethernet Port Interface Pin Assignments  
For additional information about the Gigabit Ethernet port pin functions refer to Section 4.2, Gigabit  
Table 8: Gigabit Ethernet Port0/1 Interface Pin Assignments  
Pin Name  
I/O  
Pin  
Type  
Power  
Rail  
Description  
Port0—Dedicated GbE Pins  
GE_TXCLKOUT  
t/s  
O
CMOS  
VDD_GE_A  
RGMII Transmit Clock  
RGMII transmit reference output clock for GE_TXD[3:0] and  
GE_TXCTL.  
Provides 125 MHz, 25 MHz or 2.5 MHz clock.  
Not used in MII/MMII mode.  
I
MII/MMII Transmit Clock  
MII/MMII transmit reference clock from PHY.  
Provides the timing reference for the transmission of the MII  
transmit clock, transmit enable, and GE_TXD[3:0] signals. This  
clock operates at 2.5 MHz or 25 MHz.  
t/s  
O
GMII Transmit Clock  
Provides the timing reference for the transfer of the transmit  
enable, transmit error and transmit data signals. This clock  
operates at 125 MHz.  
GE_TXD[3:0]  
t/s  
O
CMOS  
VDD_GE_A  
RGMII Transmit Data  
Contains the transmit data nibble outputs that run at double data  
rate with bits [3:0] driven on the rising edge of GE_TXCLKOUT  
and bits [7:4] driven on the falling edge.  
MII/MMII Transmit Data  
Contains the transmit data nibble outputs that are synchronous  
to the transmit clock input.  
GMII Transmit Data  
Contains the transmit data nibble outputs.  
GE_TXCTL  
t/s  
O
CMOS  
VDD_GE_A  
RGMII Transmit Control  
Transmit control synchronous to the GE_TXCLKOUT output  
rising/falling edge.  
GE_TXEN is driven on the rising edge of GE_TXCLKOUT.  
A logical derivative of transmit enable and transmit error is driven  
on the falling edge of GE_TXCLKOUT.  
MII/MMII Transmit Enable  
Indicates that the packet is being transmitted to the PHY. It Is  
synchronous to transmit clock.  
GMII Transmit Enable  
Indicates that the packet is being transmitted to the PHY.  
It Is synchronous to GE_TXCLKOUT.  
Doc. No. MV-S104859-U0 Rev. E  
Page 28  
Copyright © 2008 Marvell  
Document Classification: Proprietary Information  
December 2, 2008, Preliminary  
     
Pin and Signal Descriptions  
Pin Descriptions  
Table 8: Gigabit Ethernet Port0/1 Interface Pin Assignments (Continued)  
Pin Name  
I/O  
Pin  
Type  
Power  
Rail  
Description  
GE_RXD[3:0]  
I
CMOS  
VDD_GE_A  
RGMII Receive Data  
Contains the receive data nibble inputs that are synchronous to  
GE_RXCLK input rising/falling edge.  
MII/MMII Receive Data  
Contains the receive data nibble inputs that are synchronous to  
GE_RXCLK input.  
GMII Receive Data  
Contains the receive data nibble inputs.  
GE_RXCTL  
I
CMOS  
VDD_GE_A  
RGMII Receive Control  
GE_RXCTL is presented on the rising edge of GE_RXCLK.  
A logical derivative of receive data valid and receive data error is  
presented on the falling edge of RXCLK.  
MII/MMII Receive Data Valid  
GMII Receive Data Valid.  
GE_RXCLK  
I
CMOS  
VDD_GE_A  
RGMII Receive Clock  
The receive clock provides a 125 MHz, 25 MHz, or 2.5 MHz  
reference clock derived from the received data stream.  
MII/MMII Receive Clock  
Provides the timing reference for the reception of the receive  
data valid, receive error, and GE_RXD[3:0] signals. This clock  
operates at 2.5 MHz or 25 MHz.  
GMII Receive Clock  
Provides the timing reference for the reception of the GE_RXDV,  
receive error and receive data signals. This clock operates at  
125 MHz  
Port1—Multiplexed GbE Pins  
MPP[23:20]/  
GE1[3:0]  
t/s  
O
CMOS  
VDD_GE_B  
RGMII Transmit Data  
Contains the transmit data nibble outputs that run at double data  
rate with bits [3:0] presented on the rising edge of  
GE_TXCLKOUT and bits [7:4] presented on the falling edge.  
MII/MMII Transmit Data  
Contains the transmit data nibble outputs that are synchronous  
to the transmit clock input.  
GMII Transmit Data  
Contains the transmit data nibble outputs.  
Copyright © 2008 Marvell  
Doc. No. MV-S104859-U0 Rev. E  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
Page 29  
88F6281  
Hardware Specifications  
Table 8: Gigabit Ethernet Port0/1 Interface Pin Assignments (Continued)  
Pin Name  
I/O  
Pin  
Type  
Power  
Rail  
Description  
MPP[27:24]/  
GE1[7:4]  
I
CMOS  
VDD_GE_B  
RGMII Receive Data  
Contains the receive data nibble inputs that are synchronous to  
GE_RXCLK input rising/falling edge.  
MII/MMII Receive Data  
Contains the receive data nibble inputs that are synchronous to  
GE_RXCLK input.  
GMII Receive Data  
Contains the receive data nibble inputs.  
MPP[28]/GE1[8]  
MPP[29]/GE1[9]  
I
I
CMOS  
CMOS  
VDD_GE_B  
VDD_GE_B  
MII/MMII Collision Detect  
Indicates a collision has been detected on the wire. This input is  
ignored in full-duplex mode. Collision detect is not synchronous  
to any clock.  
GMII Collision Detect  
MII/MMII Transmit Clock  
MII/MMII transmit reference clock from PHY.  
Provides the timing reference for the transmission of the MII  
transmit clock, transmit enable, and GE_TXD[3:0] signals. This  
clock operates at 2.5 MHz or 25 MHz.  
t/s  
O
GMII Transmit Clock  
Provides the timing reference for the transfer of the transmit  
enable, transmit error and transmit data signals. This clock  
operates at 125 MHz.  
MPP[30]/GE1[10]  
I
CMOS  
VDD_GE_B  
RGMII Receive Control  
GE_RXCTL is presented on the rising edge of GE_RXCLK.  
A logical derivative of receive data valid and receive data error is  
presented on the falling edge of RXCLK.  
MII/MMII Receive Data Valid  
GMII Receive Error  
MPP[31]/GE1[11]  
I
CMOS  
VDD_GE_B  
RGMII Receive Clock  
The receive clock provides a 125 MHz, 25 MHz, or 2.5 MHz  
reference clock derived from the received data stream.  
MII/MMII Receive Clock  
Provides the timing reference for the reception of the receive  
data valid, receive error, and GE_RXD[3:0] signals. This clock  
operates at 2.5 MHz or 25 MHz.  
Doc. No. MV-S104859-U0 Rev. E  
Page 30  
Copyright © 2008 Marvell  
Document Classification: Proprietary Information  
December 2, 2008, Preliminary  
Pin and Signal Descriptions  
Pin Descriptions  
Table 8: Gigabit Ethernet Port0/1 Interface Pin Assignments (Continued)  
Pin Name  
I/O  
Pin  
Type  
Power  
Rail  
Description  
MPP[32]/GE1[12]  
I/O  
CMOS  
VDD_GE_B  
RGMII Transmit Clock  
RGMII transmit reference output clock for GE_TXD[3:0] and  
GE_TXCTL Provides 125 MHz, 25 MHz or 2.5 MHz clock.  
Not used in MII/MMII mode.  
MII/MMII Carrier Sense  
Indicates that the receive medium is non-idle. In half-duplex  
mode, GE_CRS is also asserted during transmission. Carrier  
sense is not synchronous to any clock.  
GMII Carrier Sense  
MPP[33]/GE1[13]  
t/s  
O
CMOS  
VDD_GE_B RGMII Transmit Control  
Transmit control synchronous to the GE_TXCLKOUT output  
rising/falling edge.  
GE_TXEN is presented on the rising edge of GE_TXCLKOUT.  
A logical derivative of transmit enable transmit error is presented  
on the falling edge of GE_TXCLKOUT.  
MII/MMII Transmit Error  
It is synchronous to transmit clock.  
NOTE: Multiplexed on MPP.  
GMII Transmit Error  
It Is synchronous to GE_TXCLKOUT.  
NOTE: Multiplexed on MPP.  
MPP[34]/GE1[14]  
MPP[35]/GE1[15]  
O
I
CMOS  
CMOS  
VDD_GE_B  
VDD_GE_B  
MII/MMII Transmit Enable  
Indicates that the packet is being transmitted to the PHY. It Is  
synchronous to transmit clock.  
MII/MMII Receive Error  
Indicates that an error symbol, a false carrier, or a carrier  
extension symbol is detected on the cable. It is synchronous to  
GE_RXCLK input.  
NOTE: Multiplexed on MPP.  
Copyright © 2008 Marvell  
Doc. No. MV-S104859-U0 Rev. E  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
Page 31  
88F6281  
Hardware Specifications  
1.2.7  
Serial Management Interface (SMI) Interface Pin  
Assignments  
Table 9: Serial Management Interface (SMI) Pin Assignments  
Pin Name  
I/O  
Pin  
Type  
Power  
Rail  
Description  
GE_MDC  
t/s  
O
CMOS/  
VDD_GE_A  
Management Data Clock  
MDC is derived from TCLK divided by 128.  
Provides the timing reference for the transfer of the MDIO signal.  
GE_MDIO  
t/s  
CMOS  
VDD_GE_A  
Management Data In/Out  
I/O  
Used to transfer control and status information between PHY  
devices and the GbE controller.  
NOTE: An external pullup is required.  
Doc. No. MV-S104859-U0 Rev. E  
Page 32  
Copyright © 2008 Marvell  
Document Classification: Proprietary Information  
December 2, 2008, Preliminary  
   
Pin and Signal Descriptions  
Pin Descriptions  
1.2.8  
USB 2.0 Interface Pin Assignments  
Table 10: USB 2.0 Interface Pin Assignments  
Pin Name  
I/O  
Pin  
Type  
Power  
Rail  
Description  
USB_DP  
USB_DM  
I/O  
CML  
USB_AVDD  
USB 2.0 Data Differential Pair  
Copyright © 2008 Marvell  
Doc. No. MV-S104859-U0 Rev. E  
Page 33  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
 
88F6281  
Hardware Specifications  
1.2.9  
JTAG Interface Pin Assignment  
Table 11: JTAG Pin Assignment  
Pin Name  
I/O  
Pin  
Type  
Power  
Rail  
Description  
JT_CLK  
I
CMOS  
CMOS  
CMOS  
VDDO  
VDDO  
VDDO  
JTAG Clock  
Clock input for the JTAG controller.  
NOTE: This pin is internally pulled down to 0.  
JT_RSTn  
I
I
JTAG Reset  
When asserted, resets the JTAG controller.  
NOTE: This pin is internally pulled down to 0.  
1
JT_TMS_CPU  
CPU JTAG Mode Select  
Sampled with the rising edge of JT_CLK.  
NOTE: This pin is internally pulled up to 1.  
JT_TMS_CORE  
I
CMOS  
VDDO  
Core JTAG Mode Select  
Controls the Core JTAG controller state.  
NOTE: This pin is internally pulled up to 1.  
JT_TDO  
JT_TDI  
O
I
CMOS  
CMOS  
VDDO  
VDDO  
JTAG Data Out  
Driven on the falling edge of JT_CLK.  
JTAG Data In  
JTAG serial data input. Sampled with the JT_CLK rising edge.  
NOTE: This pin is internally pulled up to 1.  
1. If this pull-down conflicts with other devices, the JTAG tool must not use this signal. This signal is not mandatory for the  
JTAG interface, since the TAP (Test Access Port) can be reset by driving the JT_TMS signal HIGH for 5 JT_CLK cycles.  
Doc. No. MV-S104859-U0 Rev. E  
Page 34  
Copyright © 2008 Marvell  
Document Classification: Proprietary Information  
December 2, 2008, Preliminary  
 
Pin and Signal Descriptions  
Pin Descriptions  
1.2.10  
Real Time Clock (RTC) Interface Pin Assignments  
Table 12: RTC Interface Pin Assignments  
Pin Name  
I/O  
Pin  
Type  
Power  
Rail  
Description  
RTC_XIN  
I
Analog  
Analog  
RTC_AVDD  
RTC_AVDD  
RTC Crystal Clock Input  
RTC_XOUT  
O
RTC Crystal Clock Feedback  
Copyright © 2008 Marvell  
Doc. No. MV-S104859-U0 Rev. E  
Page 35  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
   
88F6281  
Hardware Specifications  
1.2.11  
NAND Flash Interface Pin Assignment  
Table 13: NAND Flash Interface Pin Assignment  
Pin Name  
I/O  
Pin  
Type  
Power  
Rail  
Description  
NF_IO[7:0]  
I/O  
CMOS  
VDDO  
Data Input/Output  
Used to output command, address and data, and to input data  
during read operations.  
NOTE: All of the NF_IO pins are multiplexed on the MPP pins  
NF_CLE  
NF_ALE  
O
O
CMOS  
CMOS  
VDDO  
VDDO  
Command Latch Enable  
Controls the activating path for commands sent to the command  
register.  
Address Latch Enable  
Controls the activating path for the address to the internal  
address registers.  
NF_CEn  
NF_REn  
NF_WEn  
O
O
O
CMOS  
CMOS  
CMOS  
VDDO  
VDDO  
VDDO  
Chip Enable  
Controls the device selection.  
Read Enable  
Controls the serial data-in.  
Write Enable  
Controls writes to the NF_IO[7:0] ports.  
Doc. No. MV-S104859-U0 Rev. E  
Page 36  
Copyright © 2008 Marvell  
Document Classification: Proprietary Information  
December 2, 2008, Preliminary  
 
Pin and Signal Descriptions  
Pin Descriptions  
1.2.12  
MPP Interface Pin Assignment  
Table 14: MPP Interface Pin Assignment  
Pin Name  
MPP[19:0]  
MPP[35:20]  
MPP[49:36]  
I/O  
Pin  
Type  
Power  
Rail  
Description  
t/s  
I/O  
CMOS  
CMOS  
CMOS  
VDDO  
Multi Purpose Pin  
Various functionalities  
t/s  
I/O  
VDD_GE_B  
VDDO  
Multi Purpose Pin  
Various functionalities  
t/s  
Multi Purpose Pin  
I/O  
Various functionalities  
The various functionalities of the MPP pins are detailed in Section 4, Pin Multiplexing,  
Note  
Copyright © 2008 Marvell  
Doc. No. MV-S104859-U0 Rev. E  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
Page 37  
 
88F6281  
Hardware Specifications  
1.2.13  
Two-Wire Serial Interface (TWSI) Interface  
All of the TWSI signals are multiplexed on the MPP pins (see Section 4, Pin Multiplexing,  
Note  
Table 15: Two-Wire Serial Interface (TWSI) Interface Pin Assignment  
Pin Name  
I/O  
Pin  
Type  
Power  
Rail  
Description  
TW_SDA  
o/d  
I/O  
CMOS  
VDDO  
TWSI Port Serial Data  
Address or write data driven by the TWSI master or read  
response data driven by the TWSI slave.  
NOTE: Requires a pull-up resistor to VDDO.  
TW_SCK  
o/d  
I/O  
CMOS  
VDDO  
TWSI Port Serial Clock  
Serves as output when acting as an TWSI master.  
Serves as input when acting as an TWSI slave.  
NOTE: Requires a pull-up resistor to VDDO.  
Doc. No. MV-S104859-U0 Rev. E  
Page 38  
Copyright © 2008 Marvell  
Document Classification: Proprietary Information  
December 2, 2008, Preliminary  
   
Pin and Signal Descriptions  
Pin Descriptions  
1.2.14  
UART Interface  
All of the UART signals are multiplexed on the MPP pins (see Section 4, Pin Multiplexing,  
Note  
Table 16: UART Port 0/1 Interface Pin Assignment  
Pin Name  
I/O  
Pin  
Type  
Power  
Rail  
Description  
UA0/1_RXD  
UA0/1_TXD  
UA0/1_CTS  
UA0/1_RTS  
I
CMOS  
CMOS  
CMOS  
CMOS  
VDDO  
VDDO  
VDDO  
VDDO  
UART Port 0/1 RX Data  
UART Port 0/1 TX Data  
Clear to Send  
O
I
O
Request to Send  
Copyright © 2008 Marvell  
Doc. No. MV-S104859-U0 Rev. E  
Page 39  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
 
88F6281  
Hardware Specifications  
1.2.15  
Audio (S/PDIF / I2S) Interface  
All of the Audio signals are multiplexed on the MPP pins (see Section 4, Pin  
If the Audio interface is not used, leave all of the signals unconnected.  
Note  
The Audio signals are powered on VDDO or on VDD_GE_B, based on the pin  
multiplexing option.  
2
Table 17: Audio (S/PDIF / I S) Interface Signal Assignment  
Pin Name  
AU_SPDIFI  
AU_SPDIFO  
I/O  
Pin  
Type  
Power  
Rail  
Description  
I
CMOS  
CMOS  
CMOS  
VDDO/  
VDD_GE_B  
S/PDIF In  
O
O
VDDO/  
VDD_GE_B  
S/PDIF Out  
1
AU_  
VDDO/  
S/PDIF Recovered Master Clock (256 x F )  
s
SPDFRMCLK  
VDD_GE_B  
For the frequency of this clock, see the Audio External  
Reference Clock section of Table 45, Reference Clock AC  
2
AU_I2SBCLK  
AU_I2SDO  
O
O
O
O
I
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
VDDO/  
VDD_GE_B  
I S Bit Clock (64 x F )  
s
VDDO/  
VDD_GE_B  
Transmitter Data Out  
2
AU_I2SLRCLK  
AU_I2SMCLK  
AU_I2SDI  
VDDO/  
VDD_GE_B  
I S Left/Right Clock (1 x F )  
s
2
VDDO/  
VDD_GE_B  
I S Master Clock (256 x Fs)  
2
VDDO/  
VDD_GE_B  
I S Receiver Data In  
AU_EXTCLK  
I
VDDO/  
External Audio Clock  
VDD_GE_B  
For the frequency of this clock, see the Audio External  
Reference Clock section of Table 45, Reference Clock AC  
1. F is the audio sample rate.  
s
Doc. No. MV-S104859-U0 Rev. E  
Page 40  
Copyright © 2008 Marvell  
Document Classification: Proprietary Information  
December 2, 2008, Preliminary  
   
Pin and Signal Descriptions  
Pin Descriptions  
1.2.16  
Serial Peripheral Interface (SPI) Interface  
All of the SPI signals are multiplexed on the MPP pins (see Section 4, Pin Multiplexing,  
Note  
Table 18: Serial Peripheral Interface (SPI) Interface Signal Assignment  
I/O  
Description  
Pin Name  
Pin Type  
Power Rail  
1
O
CMOS  
VDDO  
SPI Data Output  
SPI_MOSI  
Data is output from the master and input to the slave.  
2
I
CMOS  
VDDO  
SPI Data Input  
SPI_MISO  
Data is input to the master and output from the slave.  
O
O
CMOS  
CMOS  
VDDO  
VDDO  
SPI Clock  
SPI_SCK  
SPI_CSn  
SPI Chip Select  
NOTE: This pin requires an external pull up.  
1. MOSI = Master Out Slave In.  
2. MISO = Master In Slave Out.  
Copyright © 2008 Marvell  
Doc. No. MV-S104859-U0 Rev. E  
Page 41  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
 
88F6281  
Hardware Specifications  
1.2.17  
Secure Digital Input/Output (SDIO) Interface  
All of the SDIO signals are multiplexed on the MPP pins (see Section 4, Pin Multiplexing,  
Note  
Table 19: Secure Digital Input/Output (SDIO) Interface Signal Assignment  
I/O  
Description  
Pin Name  
SD_CLK  
SD_CMD  
Pin Type  
CMOS  
CMOS  
Power Rail  
VDDO  
O
SDIO Clock  
I/O  
VDDO  
SDIO Command  
Used to transfer a command serially from the SDIO host to the  
SDIO device. Used to transfer a command response serially  
from the SDIO device to the SDIO host.  
NOTE: This pin requires a pull up on board.  
SD_D[3:0]  
I/O  
CMOS  
VDDO  
SDIO Data Input/Output  
Used to transfer data from the SDIO host to the SDIO device or  
vice versa.  
NOTE: These pins require a pull up on board.  
Doc. No. MV-S104859-U0 Rev. E  
Page 42  
Copyright © 2008 Marvell  
Document Classification: Proprietary Information  
December 2, 2008, Preliminary  
   
Pin and Signal Descriptions  
Pin Descriptions  
1.2.18  
Time Division Multiplexing (TDM) Interface  
All of the TDM signals are multiplexed on the MPP pins (see Section 4, Pin  
The TDM signals are powered on VDDO or on VDD_GE_B, based on the pin  
multiplexing option (see Section 4, Pin Multiplexing, on page 51).  
Note  
Table 20: Time Division Multiplexing (TDM) Interface Signal Assignment  
I/O  
Description  
Pin Name  
Pin Type  
Power Rail  
TDM_CH0_TX_  
QL  
O
CMOS  
VDDO/  
VDD_GE_B  
TDM Channel0 Transmit Qualifier  
TDM_CH2_TX_  
QL  
O
O
O
I
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
VDDO/  
VDD_GE_B  
TDM Channel2 Transmit Qualifier  
TDM Channel0 Receive Qualifier  
TDM Channel2 Receive Qualifier  
Interrupt Signal FROM the SLIC/codec  
SLIC/codec Reset Signal  
TDM_CH0_RX_  
QL  
VDDO/  
VDD_GE_B  
TDM_CH2_RX_  
QL  
VDDO/  
VDD_GE_B  
TDM_CODEC_  
INTn  
VDDO/  
VDD_GE_B  
TDM_CODEC_  
RSTn  
O
I/O  
I/O  
I
VDDO/  
VDD_GE_B  
TDM_PCLK  
VDDO/  
VDD_GE_B  
PCM Audio Bit Clock  
TDM_FS  
VDDO/  
VDD_GE_B  
TDM Frame Sync Signal  
TDM_DRX  
VDDO/  
VDD_GE_B  
PCM Audio Input Data (for recording)  
PCM Audio Output Data (for playback)  
TDM_DTX  
O
O
VDDO/  
VDD_GE_B  
TDM_SPI_CS[1:0]  
VDDO/  
VDD_GE_B  
Active low SPI chip selects driven by the host to the codec for  
register access. Always asserted for eight SCLK cycles at a time.  
Only Byte-by-Byte mode codec register read/write is supported.  
TDM_SPI_SCK  
O
CMOS  
VDDO/  
VDD_GE_B  
Serial SPI clock from the host to the codec for register access.  
This is an RTO (return to one) clock. It toggles for eight cycles at  
a time (for 1 byte transfer) during codec register access, then it  
returns to high.  
The host drives write data on TDM_SPI_MOSI on the negative  
edge of TDM_SPI_SCK, and captures read data from the codec  
on the positive edge of TDM_SPI_SCK.  
Copyright © 2008 Marvell  
Doc. No. MV-S104859-U0 Rev. E  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
Page 43  
 
88F6281  
Hardware Specifications  
Table 20: Time Division Multiplexing (TDM) Interface Signal Assignment (Continued)  
I/O  
Description  
Pin Name  
Pin Type  
Power Rail  
TDM_SPI_MOSI  
O
CMOS  
VDDO/  
VDD_GE_B  
Serial SPI data from the host to the codec for register access.  
When TDM_SPI_CS is asserted low, the data is driven from the  
host on the negative edge of TDM_SPI_SCK. It is always driven  
for eight TDM_SPI_SCK cycles at a time.  
In a byte, the data can be driven MSB or LSB first.  
TDM_SPI_MISO  
I
CMOS  
VDDO/  
VDD_GE_B  
Serial SPI read data from the CODEC to the host for register  
access.  
When TDM_SPI_CS is asserted low, this data is driven from  
CODEC on negative edge of TDM_SPI_SCK. It is always driven  
for eight TDM_SPI_SCK cycles at a time. The CODEC drives  
data on this line only for a read operation, when it gets command  
and address in previous bytes from the host on TDM_SPI_MOSI  
In a byte, the data can be driven MSB or LSB first.  
Doc. No. MV-S104859-U0 Rev. E  
Page 44  
Copyright © 2008 Marvell  
Document Classification: Proprietary Information  
December 2, 2008, Preliminary  
Pin and Signal Descriptions  
Pin Descriptions  
1.2.19  
Transport Stream (TS) Interface  
All of the TS signals are multiplexed on the MPP pins (see Section 4, Pin  
The TS signals are powered on VDDO or on VDD_GE_B based on the pin  
multiplexing option (see Section 4, Pin Multiplexing ).  
Note  
Table 21: Transport Stream (TS) Interface Signal Assignment  
I/O  
Description  
Pin Name  
Pin Type  
Power Rail  
TSMP[0]  
I
CMOS  
VDDO/  
EXT_CLK  
VDD_GE_B  
External clock that can be used to drive the TS0_CLK and  
TS1_CLK  
TSMP[1]  
TSMP[2]  
I/O  
I/O  
CMOS  
CMOS  
VDDO/  
VDD_GE_B  
TS0_CLK  
Port0 TS clock.  
If TS0_VAL is used, the clock may be continuous.  
If TS0_VAL is not used, the clock may toggle only when valid  
data is available on TS0_DATA.  
VDDO/  
TS0_SYNC  
VDD_GE_B  
Port0 Sync/Frame Start Indicator or Packet Clock.  
The TS0_SYNC in parallel mode is a pulse that is active during  
the first (Sync) byte of the TS packet. In serial mode, the  
TS0_SYNC pulse may be active for the entire byte or only for the  
first bit. The polarity is programmable to be either active high or  
active low.  
TSMP[3]  
TSMP[4]  
I/O  
I/O  
CMOS  
CMOS  
VDDO/  
VDD_GE_B  
TS0_VAL  
Port0 Valid Data Indicator  
When this signal is used and is valid, it indicates that valid data is  
present on TS0_DATA. TS0_VAL is active during the TS frame  
packet data and inactive when there is no TS synchronization.  
In output mode, the polarity of TS0_VAL is programmable to be  
either active high or active low.  
VDDO/  
TS0_ERR  
VDD_GE_B  
Port0 Uncorrectable Packet Error  
When this signal is used, an error indicates that the packet  
contains an uncorrectable error, and therefore should not be  
used.  
In output mode, the TS0_ERR is active during the entire TS  
frame.  
TSMP[5]  
TSMP[6]  
I/O  
I/O  
CMOS  
CMOS  
VDDO/  
VDD_GE_B  
TS0_DATA[0]  
Port0 TS Data bit 0 in both parallel and serial modes.  
In Serial mode TS0_DATA[0] is used as data input or output.  
Parallel Mode:  
VDDO/  
TS0_DATA[1]: Port0 TS Data bit 1  
Serial Mode:  
VDD_GE_B  
TS1_CLK: Port1 TS clock.  
- If TS1_VAL is used, the clock may be continuous.  
- If TS1_VAL is not used, the clock may toggle only when  
valid data is available on TS1_DATA  
Copyright © 2008 Marvell  
Doc. No. MV-S104859-U0 Rev. E  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
Page 45  
   
88F6281  
Hardware Specifications  
Table 21: Transport Stream (TS) Interface Signal Assignment (Continued)  
I/O  
Description  
Pin Name  
Pin Type  
Power Rail  
Parallel Mode:  
TS0_DATA[2]: Port0 TS Data bit 2  
Serial Mode:  
TSMP[7]  
I/O  
CMOS  
VDDO/  
VDD_GE_B  
TS1_SYNC: Port1 Sync/Frame Start Indicator or Packet  
Clock.  
The TS1_SYNC pulse may be active for the entire byte or  
only for the first bit. The polarity is programmable to be either  
active high or active low  
Parallel Mode:  
TS0_DATA[3]: Port0 TS Data bit 3  
Serial Mode:  
TSMP[8]  
I/O  
CMOS  
VDDO/  
VDD_GE_B  
TS1_VAL: Port1Valid Data Indicator  
When this signal is used and is valid, it indicates that valid  
data is present on TS1_DATA[0].  
TS1_VAL is active during the TS frame packet data and  
inactive when there is no TS synchronization.  
In output mode, the polarity of TS1_VAL is programmable to  
be either active high or active low.  
Parallel Mode:  
TS0_DATA[4]: Port0 TS Data bit 4  
Serial Mode:  
TSMP[9]  
I/O  
CMOS  
VDDO/  
VDD_GE_B  
TS1_ERR: Port1 Uncorrectable Packet Error  
When this signal is used, an error indicates that the packet  
contains an uncorrectable error, and, therefore, should not  
be used.  
In output mode the TS1_ERR is active during the entire TS  
frame.  
Parallel Mode:  
TS0_DATA[5]: Port0 TS Data bit 5  
Serial Mode:  
TSMP[10]  
I/O  
CMOS  
VDDO/  
VDD_GE_B  
TS1_DATA[0]: Port1 TS Data bit 0, used as data input or  
output.  
TSMP[11]  
TSMP[12]  
I/O  
I/O  
CMOS  
CMOS  
VDDO/  
VDD_GE_B  
TS0_DATA[6]  
Port0 TS Data bit 6  
This pin is only valid in Parallel mode.  
VDDO/  
TS0_DATA[7]  
VDD_GE_B  
Port0 TS Data bit 7  
This pin is only valid in Parallel mode.  
Doc. No. MV-S104859-U0 Rev. E  
Page 46  
Copyright © 2008 Marvell  
Document Classification: Proprietary Information  
December 2, 2008, Preliminary  
Pin and Signal Descriptions  
Pin Descriptions  
1.2.20  
Precise Timing Protocol (PTP) Interface  
All of the PTP signals are multiplexed on the MPP pins (see Section 4, Pin Multiplexing,  
Note  
Table 22: Precise Timing Protocol (PTP) Interface Signal Assignment  
I/O  
Description  
Pin Name  
Pin Type  
CMOS  
CMOS  
CMOS  
Power Rail  
VDDO  
PTP_CLK  
I
PTP Clock  
PTP_EVENT_REQ  
PTP_TRIG_GEN  
I
VDDO  
Trigger generation to the PTP core.  
Trigger generated by the PTP core.  
O
VDDO  
Copyright © 2008 Marvell  
Doc. No. MV-S104859-U0 Rev. E  
Page 47  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
   
88F6281  
Hardware Specifications  
1.3  
Internal Pull-up and Pull-down Pins  
Some pins of the device package are connected to internal pull-up and pull-down resistors. When  
these pins are Not Connected (NC) on the system board, these resistors set the default value for  
input and sample at reset configuration pins.  
The internal pull-up and pull-down resistor value is 50 kΩ. An external resistor with a lower value can  
override this internal resistor.  
Table 23: Internal Pull-up and Pull-down Pins  
Pin Name  
GE_TXD[0]  
GE_TXD[1]  
GE_TXD[2]  
GE_TXD[3]  
GE_TXCTL  
GE_MDC  
JT_TMS_CORE  
JT_RSTn  
JT_TDI  
Pin Number  
H02  
H01  
H03  
H04  
J04  
Pull up/Pull down  
Pull down  
Pull down  
Pull up  
Pull up  
Pull down  
Pull up  
L03  
T14  
Pull up  
T15  
Pull down  
Pull up  
R14  
V15  
R10  
U11  
R11  
V11  
JT_TMS_CPU  
NF_ALE  
NF_REn  
NF_CLE  
NF_CEn  
NF_WEn  
MRn  
Pull up  
Pull up  
Pull down  
Pull down  
Pull up  
V12  
F04  
Pull up  
Pull up  
MPP[1]  
V08  
V07  
V09  
T09  
Pull down  
Pull down  
Pull down  
Pull up  
MPP[2]  
MPP[3]  
MPP[4]  
MPP[5]  
T10  
Pull up  
MPP[7]  
R06  
R07  
T07  
Pull up  
MPP[10]  
MPP[11]  
Pull down  
Pull up  
MPP[12]  
MPP[14]  
MPP[18]  
MPP[19]  
MPP[33]  
U12  
V13  
V10  
U10  
N03  
Pull down  
Pull up  
Pull up  
Pull up  
Pull down  
Doc. No. MV-S104859-U0 Rev. E  
Page 48  
Copyright © 2008 Marvell  
Document Classification: Proprietary Information  
December 2, 2008, Preliminary  
       
Unused Interface Strapping  
2
Unused Interface Strapping  
Table 24 lists the signal strapping to be used for systems in which some of the device interfaces are unused (not  
connected).  
Table 24: Unused Interface Strapping  
Unused Interface  
Ethernet SMI  
MPP  
Strapping  
Pull up GE_MDIO.  
Configure any unused MPP pin to GPIO output.  
Leave the power supply connected.  
If the related power supply is VDDO, leave it connected to 3.3V.  
If the related power supply is VDD_GE_B, leave it connected to either 3.3V or 1.8V.  
USB  
Discard the power filter.  
Leave USB_AVDD connected to 3.3V.  
All other signals can be left unconnected.  
PCI Express  
Discard the analog power filters.  
Leave PEX_AVDD connected to 1.8V.  
Pull down the PEX_CLK_N signal through a 50 kΩ resistor to GND.  
Pull up the PEX_CLK_P signal through a 16 kΩ resistor to 1.8V.  
All other signals can be left unconnected.  
Configure the PEX_CLK_P and PEX_CLK_N signals as inputs, as indicated in Table 32,  
SATA  
Discard the analog power filters.  
SATA0_AVDD/SATA1_AVDD can be left unconnected.  
RTC  
Connect RTC_AVDD, RTC_AVSS, RTC_XIN, and RTC_XOUT to GND.  
SSCG  
Discard the power filter.  
Leave SSCG_AVDD connected to 1.8V.  
eFuse  
Connect VHV to VDD  
Copyright © 2008 Marvell  
Doc. No. MV-S104859-U0 Rev. E  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
Page 49  
       
88F6281  
Hardware Specifications  
3
88F6281 Pin Map and Pin List  
The 88F6281 pin list is provided as an Excel file attachment.  
To open the attached Excel pin list file, double-click the pin icons below:  
88F6281 Pin Map and Pin List.xls  
File attachments are only supported by Adobe Reader 6.0 and above.  
To download the latest version of free Adobe Reader go to http://www.adobe.com.  
Note  
Doc. No. MV-S104859-U0 Rev. E  
Page 50  
Copyright © 2008 Marvell  
Document Classification: Proprietary Information  
December 2, 2008, Preliminary  
 
Pin Multiplexing  
Multi-Purpose Pins Functional Summary  
4
Pin Multiplexing  
4.1  
Multi-Purpose Pins Functional Summary  
The 88F6281 device contains 50 Multi-Purpose Pins (MPP). Each one can be assigned to a different  
functionality through the MPP Control register.  
General Purpose pins: MPP[5:0] and MPP[49:7]:  
GPIO (input/output): MPP[0], MPP[4], MPP[9:8], MPP[11], MPP[17:13], MPP[32:20], and  
MPP[49:34]  
GPO (output): MPP[3:1], MPP[5], MPP[7], MPP[10], MPP[12], MPP[19:18], and MPP[33]  
SYSRST_OUTn: Reset request from the device to the board reset logic. This pin is an output.  
SYSRST_OUTn is the default setting for MPP[6].  
PEX_RST_OUTn: Optional PCI Express Endpoint card reset output.  
MII/MMII/GMII/RGMII interface signals  
SATA0/1_ACTn/SATA0/1_PRESENTn (port 0 and port 1): SATA active and SATA present  
indications—see the SATA section in the 88F6180, 88F6190, 88F6192, and 88F6281  
Functional Specifications.  
NF_IO[7:0] (NAND Flash data [7:0])  
SPI interface: SPI_MOSI, SPI_MISO, SPI_SCK, SPI_CSn  
UART interface (port 0 and port 1): Transmit and receive functions: UA0_TXD, UA0_RXD,  
UA1_TXD, UA1_RXD, and Modem control functions: UA0_RTSn, UA0_CTSn, UA1_RTSn,  
UA1_CTSn  
SDIO interface: SD_CLK, SD_CMD, SD_D[3:0]  
Audio interface signals: AU_SPDIFI, AU_SPDIFO, AU_SPDIFRMCLK, AU_I2SBCLK,  
AU_I2SDO, AU_I2SLRCLK, AU_I2SMCLK, AU_I2SDI, AU_EXTCLK  
TS (Transport Stream) interface signals: TSMP[12:0]  
TDM/SPI interface signals: TDM_CH0/2_TX_QL, TDM_CH0/2_RX_QL, TDM_SPI_CS0/1,  
TDM_SPI_SCK, TDM_SPI_MOSI, TDM_SPI_MISO, TDM_CODEC_INTn,  
TDM_CODEC_RSTn, TDM_PCLK, TDM_FS, TDM_DRX, TDM_DTX  
PTP signals: PTP_EVENT_REQ, PTP_TRIG_GEN, PTP_CLK  
TWSI signals: TW_SDA, TW_SCK  
Copyright © 2008 Marvell  
December 2, 2008, Preliminary  
Doc. No. MV-S104859-U0 Rev. E  
Document Classification: Proprietary Information  
Page 51  
       
88F6281  
Hardware Specifications  
MPP pins can be assigned to different functionalities through the MPP Control register, as shown in  
Table 25: MPP Functionality  
MPP[19:0]:  
GPIO  
MPP[35:20]:  
GPIO  
MPP[49:36]:  
GPIO  
SATA LEDs  
NAND flash  
TWSI  
SATA LEDs  
GbE  
Audio  
TDM  
Audio  
TS  
UART  
TDM  
SPI  
TS  
PTP  
PTP  
SDIO  
Table 26 lists the functionality of the MPP pins, as determined by the MPP Multiplex register, see the  
Pins Multiplexing Interface Registers section in the 88F6180, 88F6190, 88F6192, and 88F6281  
Functional Specifications.  
Doc. No. MV-S104859-U0 Rev. E  
Page 52  
Copyright © 2008 Marvell  
Document Classification: Proprietary Information  
December 2, 2008, Preliminary  
 
Pin Multiplexing  
Multi-Purpose Pins Functional Summary  
Table 26: MPP Function Summary  
Pin name  
MPP[0]  
0x0  
0x1  
0x2  
0x3  
-
0x4  
-
0x5  
-
0xC  
-
0xD  
-
GPIO[0]  
(in/out)  
NF_IO[2]  
(in/out)  
SPI_SCn  
(out)  
GPO[1] (out NF_IO[3] SPI_MOSI  
MPP[1]  
MPP[2]  
MPP[3]  
MPP[4]  
MPP[5]  
MPP[6]  
MPP[7]  
MPP[8]  
MPP[9]  
MPP[10]  
MPP[11]  
MPP[12]  
MPP[13]  
MPP[14]  
MPP[15]  
MPP[16]  
MPP[17]  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
only)  
(in/out)  
(out)  
GPO[2] (out NF_IO[4]  
only) (in/out)  
SPI_SCK  
(out)  
GPO[3] (out NF_IO[5] SPI_MISO  
only)  
(in/out)  
(in)  
GPIO[4]  
(in/out)  
NF_IO[6]  
(in/out)  
UA0_RXD  
(in)  
SATA1_AC  
Tn (out)  
PTP_CLK  
(in)  
GPO[5] (out NF_IO[7]  
UA0_TXD  
(out)  
PTP_TRIG_ SATA0_AC  
GEN (out)  
-
-
-
only)  
(in/out)  
Tn (out)  
SYSRST_O SPI_MOSI PTP_TRIG_  
UTn (out) (out) GEN (out)  
-
-
-
GPO[7] (out PEX_RST_ SPI_SCn PTP_TRIG_  
-
-
only)  
OUTn (out)  
(out)  
GEN (out)  
SATA1_PR  
ESE NTn  
(out)  
GPIO[8]  
(in/out)  
TW_SDA UA0_RTS UA1_RTS MII0_RXER  
PTP_CLK MII0_COL  
(in) (in)  
(in/out)  
(out)  
(out)  
R (in)  
SATA0_PR  
ESE NTn  
(out)  
GPIO[9]  
(in/out)  
TW_SCK UA0_CTS UA1_CTS  
PTP_EVEN MII0_CRS  
T_REQ (in)  
-
(in/out)  
-
(in)  
(in)  
(in)  
GPO [10]  
(out only)  
SPI_SCK  
(out)  
UA0_TXD  
(out)  
SATA1_AC PTP_TRIG_  
Tn (out) GEN (out)  
-
-
GPIO[11]  
(in/out)  
SPI_MISO UA0_RXD PTP_EVEN SATA0_AC PTP_TRIG_ PTP_clk  
-
(in)  
(in)  
T_REQ (in)  
Tn (out)  
GEN (out)  
(in)  
GPO[12]  
(out only)  
SD_CLK  
(out)  
-
-
-
-
-
-
GPIO[13]  
(in/out)  
SD_CMD  
(in/out)  
UA1_TXD  
(out)  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SATA1_PR  
ESE NTn  
(out)  
GPIO[14]  
(in/out)  
SD_D[0]  
(in/out)  
UA1_RXD  
(in)  
MII0_COL  
(in)  
GPIO[15]  
(in/out)  
SD_D[1]  
(in/out)  
UA0_RTS UA1_TXD SATA0_AC  
(out) (out) Tn (out)  
-
GPIO[16]  
(in/out)  
SD_D[2]  
(in/out)  
UA0_CTS UA1_RXD SATA1_AC  
MII0_CRS  
(in)  
(in)  
(in)  
Tn (out)  
SATA0_PR  
ESE NTn  
(out)  
GPIO[17]  
(in/out)  
SD_D[3]  
(in/out)  
-
-
-
Copyright © 2008 Marvell  
Doc. No. MV-S104859-U0 Rev. E  
Page 53  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
 
88F6281  
Hardware Specifications  
Pin name  
MPP[18]  
0x0  
0x1  
0x2  
-
0x3  
-
0x4  
-
0x5  
-
0xC  
-
0xD  
-
GPO[18]  
(out only)  
NF_IO[0]  
(in/out)  
GPO[19]  
(out only)  
NF_IO[1]  
(in/out)  
MPP[19]  
MPP[20]  
MPP[21]  
MPP[22]  
MPP[23]  
MPP[24]  
MPP[25]  
MPP[26]  
MPP[27]  
MPP[28]  
MPP[29]  
MPP[30]  
MPP[31]  
MPP[32]  
MPP[33]  
MPP[34]  
MPP[35]  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
GPIO[20]  
(in/out)  
TSMP[0] TDM_CH0_  
(in/out) TX_QL (out)  
AU_SPDIFI SATA1_AC  
(in) Tn (out)  
GE1[0]  
GE1[1]  
GE1[2]  
GE1[3]  
GE1[4]  
GE1[5]  
GE1[6]  
GE1[7]  
GE1[8]  
GE1[9]  
GE1[10]  
GE1[11]  
GE1[12]  
GE1[13]  
GE1[14]  
GE1[15]  
GPIO[21]  
(in/out)  
TSMP[1] TDM_CH0_  
(in/out) RX_QL (out)  
AU_SPDIF SATA0_AC  
O (out) Tn (out)  
AU_SPDIF SATA1_PR  
RMCLK(out ESENTn  
GPIO[22]  
(in/out)  
TSMP[2] TDM_CH2_  
(in/out) TX_QL (out)  
)
(out)  
SATA0_PR  
ESENTn  
(out)  
GPIO[23]  
(in/out)  
TSMP[3] TDM_CH2_  
(in/out) RX_QL (out)  
AU_I2SBCL  
K (out)  
GPIO[24]  
(in/out)  
TSMP[4] TDM_SPI_  
(in/out) CS0 (out)  
AU_I2SDO  
(out)  
-
-
-
-
-
-
-
-
-
-
GPIO[25]  
(in/out)  
TSMP[5] TDM_SPI_  
(in/out) SCK (out)  
AU_I2SLRC  
LK (out)  
GPIO[26]  
(in/out)  
TSMP[6] TDM_SPI_  
(in/out) MISO (in)  
AU_I2SMC  
LK (out)  
GPIO[27]  
(in/out)  
TSMP[7] TDM_SPI_  
(in/out)  
AU_I2SDI  
(in)  
MOSI (out)  
TDM_COD  
EC_INTn  
(in)  
GPIO[28]  
(in/out)  
TSMP[8]  
(in/out)  
AU_EXTCL  
K (in)  
TDM_COD  
EC_RSTn  
(out)  
GPIO[29]  
(in/out)  
TSMP[9]  
(in/out)  
-
-
-
-
-
-
-
GPIO[30] TSMP[10] TDM_PCLK  
(in/out)  
(in/out)  
(in/out)  
GPIO[31] TSMP[11]  
(in/out) (in/out)  
TDM_FS  
(in/out)  
GPIO[32] TSMP[12] TDM_DRX  
(in/out)  
(in/out)  
(in)  
GPO[33]  
(out only)  
TDM_DTX  
(out)  
-
GPIO[34]  
(in/out)  
TDM_SPI_  
CS1 (out)  
SATA1_AC  
Tn (out)  
-
-
GPIO[35]  
(in/out)  
TDM_CH0_  
TX_QL (out)  
SATA0_AC MII0_RXER  
Tn (out) R (in)  
Doc. No. MV-S104859-U0 Rev. E  
Page 54  
Copyright © 2008 Marvell  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
Pin Multiplexing  
Multi-Purpose Pins Functional Summary  
Pin name  
MPP[36]  
0x0  
0x1  
0x2  
0x3  
-
0x4  
0x5  
-
0xC  
-
0xD  
-
GPIO[36]  
(in/out)  
TSMP[0] TDM_SPI_  
(in/out) CS1 (out)  
AU_SPDIFI  
(in)  
GPIO[37]  
(in/out)  
TSMP[1] TDM_CH2_  
(in/out) TX_QL (out)  
AU_SPDIF  
O (out)  
MPP[37]  
MPP[38]  
MPP[39]  
MPP[40]  
MPP[41]  
MPP[42]  
MPP[43]  
MPP[44]  
MPP[45]  
MPP[46]  
MPP[47]  
MPP[48]  
MPP[49]  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
AU_SPDIF  
RMCLK  
(out)  
GPIO[38]  
(in/out)  
TSMP[2] TDM_CH2_  
(in/out) RX_QL (out)  
GPIO[39]  
(in/out)  
TSMP[3] TDM_SPI_  
(in/out) CS0 (out)  
AU_I2SBCL  
K (out)  
GPIO[40]  
(in/out)  
TSMP[4] TDM_SPI_  
(in/out) SCK (out)  
AU_I2SDO  
(out)  
GPIO[41]  
(in/out)  
TSMP[5] TDM_SPI_  
(in/out) MISO (in)  
AU_I2SLRC  
LK (out)  
GPIO[42]  
(in/out)  
TSMP[6] TDM_SPI_  
AU_I2SMC  
LK (out)  
(in/out)  
MOSI (out)  
TDM_COD  
EC_INTn  
(in)  
GPIO[43]  
(in/out)  
TSMP[7]  
(in/out)  
AU_I2SDI  
(in)  
TDM_COD  
EC_RSTn  
(out)  
GPIO[44]  
(in/out)  
TSMP[8]  
(in/out)  
AU_EXTCL  
K (in)  
TDM_PCLK  
(in/out)  
GPIO[45]  
(in/out)  
TSMP[9]  
(in/out)  
-
-
-
-
-
GPIO[46] TSMP[10]  
(in/out) (in/out)  
TDM_FS  
(in/out)  
GPIO[47] TSMP[11] TDM_DRX  
(in/out) (in/out) (in)  
GPIO[48] TSMP[12] TDM_DTX  
(in/out)  
(in/out)  
(out)  
GPIO[49]  
(in/out)  
TDM_CH0_  
RX_QL (out)  
PTP_CLK  
(in)  
-
Copyright © 2008 Marvell  
Doc. No. MV-S104859-U0 Rev. E  
Page 55  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
88F6281  
Hardware Specifications  
For MPPs assigned as NAND flash and SPI flash, wake-up mode after reset  
depends on Boot mode (see the Boot Device field in Table 32, Reset  
Note  
When Boot mode is NAND Flash, MPP[5:0] and MPP[19:18] wake up after reset  
in NAND Flash mode.  
When Boot mode is SPI Flash, either MPP[3:0] or {MPP[3:1] and MPP[7]} wake  
up after reset in SPI mode, (according to boot mode configured by reset strap  
pins).  
Pin MPP[6] wakes up after reset in 0x1 mode (SYSRST_OUTn)  
Pin MPP[7] wakes up after reset:  
As SPI_CSn, if the boot device—selected according to boot device reset  
strapping—is 0x2 (boot from SPI flash, SPI_CSn on MPP[7]).  
As PEX_RST_OUTn, if the boot device—selected according to boot device  
reset strapping—is any option other than 0x2.  
When TWSI serial ROM initialization is enabled (see TWSI Serial ROM  
wake up as TWSI data and clock pins, respectively.  
All other MPP interface pins wake up after reset in 0x0 mode (GPIO/GPO) and are  
default set to Data Output disabled (Tri-State). Therefore, those MPPs that are  
GPIO are in fact inputs, and those that are GPO are Tri-State.  
The SPI interface can be configured using one of the following sets of MPP pins:  
MPP[3:0]  
MPP[11], MPP[10], MPP[7], and MPP[6]  
MPP[3:1] and MPP[7]  
Do not configure both MPP[3] and MPP[11] as SPI_MISO.  
UART0 and UART1 signals are duplicated on a few MPPs. The UART0 or UART1  
signals must not be configured to more than one MPP.  
When selecting the MII/MMII interface (MPP[35:20]) and the TDM interface  
(MPP[49:35]), the TDM signal TDM_CH0_TX_QL and the MII/MMII signal  
MII1_RXERR are both multiplexed on MPP[35]. However, MPP[35] can only be  
configured to one of these functions at a time.  
Some of the MPP pins are sampled during SYSRSTn de-assertion to set the  
device configuration. These pins must be set to the correct value during reset (see  
Pins that are left as GPIO and are not connected should be set to output after  
SYSRSTn de-assertion.  
Doc. No. MV-S104859-U0 Rev. E  
Page 56  
Copyright © 2008 Marvell  
Document Classification: Proprietary Information  
December 2, 2008, Preliminary  
Pin Multiplexing  
Gigabit Ethernet (GbE) Pins Multiplexing on MPP  
4.2  
Gigabit Ethernet (GbE) Pins Multiplexing on MPP  
The 88F6281 has 14 dedicated pins for its GbE port. (12 RGMII pins, an MDC pin, and an MDIO  
pin).  
For the 88F6281, additional GbE interface pins are multiplexed on the MPPs, to serve as the  
following interfaces to an external PHY or switch.  
Two RGMII ports  
One RGMII port and one MMII/MII port  
(either port 0 as RGMII and port 1 as MMII/MII or port 0 as MMII/MII and port 1 as RGMII)  
One GMII port (port 0)  
Table 27 summarizes the GbE port pins multiplexing.  
Table 27: Ethernet Ports Pins Multiplexing  
Pin Name  
1xGMII  
RGMII0+MII1/  
MMII1  
2xRGMII  
MII0/MMII0+  
RGMII1  
GE_TXCLKOUT GMII0_TXCLKOUT  
(out)  
RGMII0_TXCLKOUT  
(out)  
RGMII0_TXCLKOUT  
(out)  
MII0_TXCLK (in)  
GE_TXD[3:0]  
GMII0_TXD[3:0] (out)  
RGMII0_TXD[3:0]  
(out)  
RGMII0_TXD[3:0]  
(out)  
MII0_TXD[3:0] (out)  
GE_TXCTL  
GE_RXD[3:0]  
GE_RXCTL  
GE_RXCLK  
GMII0_TXEN (out)  
GMII0_RXD[3:0] (in)  
GMII0_RXDV (in)  
GMII0_RXCLK (in)  
NA  
RGMII0_TXCTL (out)  
RGMII0_RXD[3:0] (in)  
RGMII0_RXCTL (in)  
RGMII0_RXCLK (in)  
NA  
RGMII0_TXCTL (out)  
RGMII0_RXD[3:0] (in)  
RGMII0_RXCTL (in)  
RGMII0_RXCLK (in)  
NA  
MII0_TXEN (out)  
MII0_RXD[3:0] (in)  
MII0_RXDV (in)  
MII0_RXCLK (in)  
MII0_RXERR (in)  
MPP[8] or  
MPP[35]  
MPP[8] or  
MPP[14]  
NA  
NA  
NA  
NA  
MII0_COL (in)  
MII0_CRS (in)  
MPP[9] or  
MPP[16]  
NA  
NA  
MPP [23:20] /  
GE1[3:0]  
GMII0_TXD[7:4] (out)  
GMII0_RXD[7:4] (in)  
GMII0_COL (in)  
GMII0_TXCLK (in)  
GMII0_RXERR (in)  
NA  
MII1_TXD[3:0] (out)  
MII1_RXD[3:0] (in)  
MII1_COL (in)  
MII1_TXCLK (in)  
MII1_RXDV (in)  
MII1_RXCLK (in)  
MII1_CRS (in)  
MII1_TXERR (out)  
RGMII1_TXD[3:0]  
(out)  
RGMII1_TXD[3:0]  
(out)  
MPP_[27:24] /  
GE1[7:4]  
RGMII1_RXD[3:0] (in)  
RGMII1_RXD[3:0] (in)  
MPP_28 /  
GE1[8]  
NA  
NA  
MPP_29 /  
GE1[9]  
NA  
NA  
MPP_30 /  
GE1[10]  
RGMII1_RXCTL (in)  
RGMII1_RXCLK (in)  
RGMII1_RXCTL (in)  
RGMII1_RXCLK (in)  
MPP_31 /  
GE1[11]  
MPP_32 /  
GE1[12]  
GMII0_CRS (in)  
GMII0_TXERR (out)  
RGMII1_TXCLKOUT  
(out)  
RGMII1_TXCLKOUT  
(out)  
MPP_33 /  
GE1[13]  
RGMII1_TXCTL (out)  
RGMII1_TXCTL (out)  
Copyright © 2008 Marvell  
Doc. No. MV-S104859-U0 Rev. E  
Page 57  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
       
88F6281  
Hardware Specifications  
Table 27: Ethernet Ports Pins Multiplexing (Continued)  
Pin Name  
1xGMII  
NA  
RGMII0+MII1/  
MMII1  
2xRGMII  
NA  
MII0/MMII0+  
RGMII1  
MPP_34 /  
GE1[14]  
MII1_TXEN (out)  
NA  
MPP_35 /  
GE1[15]  
NA  
MII1_RXERR (in)  
NA  
NA  
When using Gigabit Ethernet signals on MPPs, all relevant Gigabit Ethernet signals  
(except those marked as NA) must be implemented. For example, if using MII, and the  
chosen PHY does not have an MII_RXERR out signal, the MII_RX_ERR (in) (MPP[35])  
must still be configured accordingly and must have a pull-down resistor.  
Note  
Doc. No. MV-S104859-U0 Rev. E  
Page 58  
Copyright © 2008 Marvell  
Document Classification: Proprietary Information  
December 2, 2008, Preliminary  
Pin Multiplexing  
TSMP (TS Multiplexing Pins) on MPP  
4.3  
TSMP (TS Multiplexing Pins) on MPP  
The TS interface can be configured to one of five modes:  
One or two serial in interfaces  
One or two serial out interfaces  
Serial in and serial out interface  
Parallel in interface  
Parallel out interface  
In parallel in or serial in mode, all TS signals are inputs.  
In parallel out or serial out mode, all TS signals are outputs.  
Table 28 summarizes the TS port pins multiplexing.  
Table 28: TS Port Pin Multiplexing  
Pin  
Name  
Functionality in TS serial modes  
2x in/2x out/in+out  
Functionality in TS parallel  
in/out mode  
TSMP[0]  
TSMP[1]  
TSMP[2]  
TSMP[3]  
TSMP[4]  
TSMP[5]  
TSMP[6]  
TSMP[7]  
TSMP[8]  
TSMP[9]  
TSMP[10]  
TSMP[11]  
TSMP[12]  
EXT_CLK (in)  
EXT_CLK (in)  
TS0_CLK (in/out))  
TS0_SYNC(in/out))  
TS0_VAL (in/out))  
TS0_ERR (in/out))  
TS0_DATA[0] (in/out)  
TS1_CLK (in/out))  
TS1_SYNC(in/out))  
TS1_VAL (in/out))  
TS1_ERR (in/out))  
TS1_DATA[0] (in/out)  
NA  
TS0_CLK (in/out))  
TS0_SYNC(in/out))  
TS0_VAL (in/out))  
TS0_ERR (in/out))  
TS0_DATA[0] (in/out)  
TS0_DATA[1] (in/out))  
TS0_DATA[2] (in/out))  
TS0_DATA[3] (in/out))  
TS0_DATA[4] (in/out))  
TS0_DATA[5] (in/out))  
TS0_DATA[6] (in/out))  
TS0_DATA[7] (in/out))  
NA  
Copyright © 2008 Marvell  
Doc. No. MV-S104859-U0 Rev. E  
Page 59  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
     
88F6281  
Hardware Specifications  
5
Clocking  
Table 29 lists the clocks in the 88F6281.  
Table 29: 88F6281Clocks  
Clock Type  
Description  
Reference clock:  
REF_CLK_XIN (25 MHz)  
Derivative clocks:  
CPU PLL  
- CPU clock  
- L2 cache clock  
- DDR Clock (the Mbus-L uses the DDR clock.)  
NOTE: See Table 32, Reset Configuration, on page 67 for CPU, L2 cache and  
DDR frequency configuration.  
L2 cache clock frequency must be equal or higher then DDR clock  
frequency.  
If the SSCG enable bit in the Sampled at Reset register is set, then the  
SSCG circuit is applied for the CPU PLL reference clock (refer to the  
Sampled at Reset register in the 88F6180, 88F6190, 88F6192, and  
88F6281 Functional Specifications).  
Reference clock:  
REF_CLK_XIN (25 MHz)  
Derivative clocks:  
Core PLL  
- TCLK (core clock, 200 MHz)  
- SDIO Clock (100 MHz)  
- Gigabit Ethernet Clock (125 MHz)  
- TS unit Clock(100/91/83/77MHz)  
- SPI clock (TCLK/30–TCLK/4 MHz)  
- SMI clock (TCLK/128 MHz)  
- TWSI clock (up to TCLK/1600)  
NOTE: See Table 32, Reset Configuration, on page 67 for TCLK frequency  
configuration.  
NOTE: See the TS Interface Configuration register in the 88F6180, 88F6190,  
88F6192, and 88F6281 Functional Specifications for TS clock frequency  
configuration.  
PEX PHY  
There are two options for the reference clock configuration, depending on the PCI  
Express clock 100 MHz differential clock:  
The device uses an external source for PCI Express clock. The PEX_CLK_P  
pin is an input.  
The device uses an internal generated clock for PCI Express clock. The  
PEX_CLK_P pin is an output, driving out the PCI Express differential clock.  
Reference clock:  
USB PHY PLL  
REF_CLK_XIN (25 MHz)  
Doc. No. MV-S104859-U0 Rev. E  
Page 60  
Copyright © 2008 Marvell  
Document Classification: Proprietary Information  
December 2, 2008, Preliminary  
     
Clocking  
Table 29: 88F6281Clocks (Continued)  
Clock Type  
Description  
Reference clock:  
REF_CLK_XIN (25 MHz)  
Derivative clock:  
SATA PHY PLL  
SATA Clock (150 MHz)  
Reference clock:  
RTC_XIN (32.768 kHz)  
RTC  
PTP  
Used for real time clock functionality, see the Real Time Clock section in the  
88F6180, 88F6190, 88F6192, and 88F6281 Functional Specifications.  
Reference clock:  
PTP_CLK (125 MHz)  
The PTP_CLK can be used for the following functions:  
PTP time stamp clock  
Two options for reference clock:  
- PTP_CLK  
- Gigabit Ethernet Clock (125 MHz)  
TS unit clock  
Two options for reference clock:  
- PTP_CLK/2  
- Core PLL  
Audio unit clock  
Two options for reference clock:  
- PTP_CLK  
- REF_CLK_XIN (25 MHz)  
For clocking configuration registers, see the 88F6180, 88F6190, 88F6192, and  
88F6281 Functional Specifications.  
The following table lists the supported combinations of the CPU_CLK Frequency select, CPU_CLK  
to DDR CLK ratio, and to CPU_CLK to CPU L2 clock ratio (see Section 6.5, Pins Sample  
Table 30: Supported Clock Combinations  
DDR Clock  
(MHz)  
CPU to DDR  
Clock Ratio  
CPU Clock  
(MHz)  
CPU to L2  
Clock Ratio  
L2 Clock  
(MHz)  
333  
250  
200  
3:1  
4:1  
5:1  
1000  
3:1  
333  
400  
300  
267  
200  
3:1  
4:1  
4.5:1  
6:1  
1200  
1500  
3:1  
3:1  
400  
500  
375  
4:1  
Copyright © 2008 Marvell  
December 2, 2008, Preliminary  
Doc. No. MV-S104859-U0 Rev. E  
Page 61  
Document Classification: Proprietary Information  
   
88F6281  
Hardware Specifications  
5.1  
Spread Spectrum Clock Generator (SSCG)  
The SSCG (Spread Spectrum Clock Generator) may be used to generate the spread spectrum clock  
for the PLL input. See SSCG Disable in Table 32, Reset Configuration, on page 67, for SSCG  
enable/bypass configuration settings.  
The SSCG block can be configured to perform up spread, down spread and center spread.  
The modulation frequency is configurable. Typical frequency is 30 kHz.  
The spread percentage can also be configured up to 1%.  
For additional details, see the SSCG Configuration Register description in the 88F6180, 88F6190,  
88F6192, and 88F6281 Functional Specifications.  
Doc. No. MV-S104859-U0 Rev. E  
Page 62  
Copyright © 2008 Marvell  
Document Classification: Proprietary Information  
December 2, 2008, Preliminary  
   
System Power Up/Down and Reset Settings  
Power-Up/Down Sequence Requirements  
6
System Power Up/Down and Reset  
Settings  
This section provides information about the device power-up/down sequence and configuration at  
reset.  
6.1  
Power-Up/Down Sequence Requirements  
6.1.1  
Power-Up Sequence Requirements  
These guidelines must be applied to meet the 88F6281 device power-up requirements:  
The non-core voltages (I/O and Analog) as listed in Table 31 must reach 70% of their voltage  
The order of the power-up sequence between the non-core voltages is unimportant so long as  
the non-core voltages power up before the core voltages reach 70% of their voltage level  
(shown in Figure 2).  
The order of the power-up sequence between the core voltages (VDD and VDD_CPU) is  
unimportant.  
The reset signal(s) must be asserted before the core voltages reach 70% of their voltage level  
(shown in Figure 2).  
The reference clock(s) inputs must toggle with their respective voltage levels before the core  
voltages reach 70% of their voltage level (shown in Figure 2).  
If VHV is set to burning mode (2.5V), which is a higher voltage than the VDD voltage, VDD must  
be powered before VHV, to prevent the fuse from being accidentally burned.  
Table 31: I/O and Core Voltages  
Non-Core Voltages  
Core Voltages  
I/O Voltages  
Analog Power Supplies  
VDD_GE_A  
VDD_GE_B  
VDD_M  
CPU_PLL_AVDD  
CORE_PLL_AVDD  
PEX_AVDD  
VDD  
VDD_CPU  
VDDO  
RTC_AVDD  
SATA0_AVDD  
SATA1_AVDD  
SSCG_AVDD  
XTAL_AVDD  
USB_AVDD  
Copyright © 2008 Marvell  
Doc. No. MV-S104859-U0 Rev. E  
Page 63  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
           
88F6281  
Hardware Specifications  
Figure 2: Power-Up Sequence Example  
Voltage  
Non-Core Voltage  
Core Voltage  
70% of  
Non-Core  
Voltage  
70% of Core  
Voltage  
Reset(s)  
Clock(s)  
It is the designer's responsibility to verify that the power sequencing requirements  
of other components are also met.  
Although the non-core voltages can be powered up any time before the core  
voltages, allow a reasonable time limitation (for example, 100 ms) between the  
first non-core voltage power-up and the last core voltage power-up.  
Note  
6.1.2  
Power-Down Sequence Requirements  
There are no special requirements for the core supply to go down before non-core power, or for  
reset assertion when powering down (except for VHV, as described below). However, allow a  
reasonable time limitation (no more than 100 ms) between the first and last voltage power-down.  
When using the eFuse in Burning mode, VHV must be powered down before VDD.  
6.2  
Hardware Reset  
The device has one reset input pin—SYSRSTn. When asserted, the entire chip is placed in its initial  
state. Most outputs are placed in high-z, except for the following output pins, that are still active  
during SYSRSTn assertion:  
M_CLKOUT, M_CLKOUTn  
M_CKE  
M_ODT[1:0]  
M_STARTBURST  
SYSRST_OUTn  
Doc. No. MV-S104859-U0 Rev. E  
Page 64  
Copyright © 2008 Marvell  
Document Classification: Proprietary Information  
December 2, 2008, Preliminary  
       
System Power Up/Down and Reset Settings  
Hardware Reset  
Reset (SYSRSTn signal) must be active for a minimum length of 5 ms. core power, I/O  
power, and analog power must be stable (VDD +/- 5%) during that time and onward.  
Note  
6.2.1  
Reset Out Signal  
The device has an optional SYSRST_OUTn output signal, multiplexed on an MPP pin, that is used  
as a reset request from the device to the board reset logic. SYSRST_OUTn is the default option for  
that MPP pin.  
This signal is asserted low for 20 ms, when one of the following maskable events occurs:  
Received hot reset indication from the PCI Express link (only relevant when used as a PCI  
Express endpoint), and bit <PexRstOutEn> is set to 1 in the RSTOUTn Mask Register (see the  
Reset register section of the 88F6180, 88F6190, 88F6192, and 88F6281 Functional  
Specifications).  
PCI Express link failure (only relevant when used as a PCI Express endpoint), and bit  
<PexRstOutEn> is set to 1 in the RSTOUTn Mask Register.  
Watchdog timer expiration and bit <WDRstOutEn> is set to 1 in the RSTOUTn Mask Register.  
Bit <SystemSoftRst> is set to 1 in System Soft Reset Register and bit <SoftRstOutEn> is set  
to 1 in RSTOUTn Mask Register.  
This signal is asserted low for 20 ms, when one of the following non-maskable events occurs:  
Power on reset (The device includes a power-on-reset (POR) circuit for VDD power.)  
SYSRST_OUTn is asserted low as long as the MRn input signal is asserted low and for an  
additional 20 ms after MRn de-assertion. (This is useful for implementations that include a  
manual reset button.)  
6.2.2  
6.2.3  
Power On Reset (POR)  
The SYSRST_OUTn output signal is asserted low for 20 ms, when the power-on-reset (POR) circuit  
is triggered.  
POR is triggered when VDD power up (digital core voltage) reaches a VDD threshold (threshold  
maximum value 0.8V).  
Hysteresis: Another trigger will only occur after the power first drops to 50 mV, and then a power up  
occurs.  
SYSRSTn Duration Counter  
When SYSRSTn is asserted low, a SYSRSTn duration counter is running.  
The counter clock is the 25 MHz reference clock.  
It is a 29-bit counter, yielding a maximum counting duration of 2^29/25 MHz (21.4 seconds).  
The host software can read the counter value and reset the counter.  
When the counter reach its maximum value, it remains at this value until counter reset is  
triggered by software.  
The SYSRSTn duration counter is useful for implementing manufacturer/factory reset.  
Upon a long reset assertion, greater than a pre-configured threshold, the host software  
may reset all settings to the factory default values.  
Note  
Copyright © 2008 Marvell  
December 2, 2008, Preliminary  
Doc. No. MV-S104859-U0 Rev. E  
Page 65  
Document Classification: Proprietary Information  
     
88F6281  
Hardware Specifications  
6.3  
PCI Express Reset  
6.3.1  
PCI Express Root Complex Reset  
As a Root Complex, the device may generate a Hot Reset to the PCI Express port. Upon CPU  
setting the PCI Express Control register’s <conf_mstr_hot_reset> bit, the PCI Express unit sends a  
Hot Reset indication to the Endpoint, see the PCI Express Interface section in the 88F6180,  
88F6190, 88F6192, and 88F6281 Functional Specifications.  
6.3.2  
PCI Express Endpoint Reset  
When a Hot Reset packet is received:  
A maskable interrupt is asserted.  
If the <conf_dis_hot_rst_reg_rst> field in the PCI Express Debug Control register is cleared, the  
device also resets the PCI Express register file to its default values.  
The device triggers an internal reset, if not masked by the <conf_msk_hot_reset> field in the  
PCI Express Debug Control register.  
Link failure is detected if the PCI Express link was up (LTTSSM L0 state) and dropped back to an  
inactive state (LTSSM Detect state). When Link failure is detected:  
A maskable interrupt is asserted.  
If the <conf_dis_link_fail_reg_rst> field in the PCI Express Debug Control register is cleared,  
the device also resets the PCI Express register file to its default values.  
The device triggers an internal reset, if the <conf_msk_link_fail> field is not masked by PCI  
Express Debug Control register.  
Both link fail and hot reset conditions trigger a chip internal reset (if not masked in the PCI Express  
interface). All the chip logic is reset to the default values, except for sticky registers and the sample  
on reset logic. In addition, these events can trigger reset to the board, using one of the following:  
PEX_RST_OUTn signal (multiplexed on MPP).  
SYSRST_OUTn output (multiplexed on MPP)—if not masked by the <PexRstOutEn> bit.  
The external reset logic (on the board) may assert the SYSRSTn input pin and reset the entire chip.  
6.4  
6.5  
Sheeva CPU TAP Controller Reset  
The Sheeva CPU Test Access Port (TAP) controller is reset when JT_RSTn is set and  
JT_TMS_CPU is active.  
Pins Sample Configuration  
The following pins are sampled during SYSRSTn de-assertion:  
Internal pull up/down resistors set the default mode (see Section 1.3, Internal Pull-up and  
Higher value, external pull up/down resistors are required to change the default mode of  
operation.  
These signals must remain pulled up or down until SYSRSTn de-assertion (zero hold time in respect  
to SYSRSTn de-assertion).  
Doc. No. MV-S104859-U0 Rev. E  
Page 66  
Copyright © 2008 Marvell  
Document Classification: Proprietary Information  
December 2, 2008, Preliminary  
           
System Power Up/Down and Reset Settings  
Pins Sample Configuration  
If external logic is used instead of pull-up and pull-down resistors, the logic must  
drive all of these signals to the desired values during SYSRSTn assertion. To  
prevent bus contention on these pins, the external logic must float the bus no later  
than the third TCLK cycle after SYSRSTn de-assertion.  
Note  
All reset sampled values are registered in the Sample at Reset register (see the  
MPP Registers in the 88F6180, 88F6190, 88F6192, and 88F6281 Functional  
Specifications). This is useful for board debug purposes and identification of board  
and system settings for the host software.  
If a signal is pulled up on the board, it must be pulled to the proper voltage level.  
Certain reset configuration pins are powered by VDD_GE_A and VDD_GE_B.  
Those pins have multiple voltage options (see Table 36, Recommended Operating  
In each row of Table 32, the order of the pins is from MSb to LSb (e.g., for in the row CPU_CLK  
Frequency Select, MPP[2] is the MSB and MPP[10] is the LSB).  
Table 32: Reset Configuration  
Pin  
Configuration Function  
MPP[1]  
TWSI Serial ROM Initialization  
0 = Disabled  
1 = Enabled  
NOTE: Internally pulled down to 0x0.  
When this pin is set to 0x1, MPP[8] and MPP[9] wake up as TWSI data and clock pins,  
MPP[2],MPP[5],  
MPP[19],  
CPU_CLK Frequency Select  
MPP[10]  
0x0–0x6 = Reserved  
0x7 = 1000 MHz  
0x8 = Reserved  
0x9 = 1200 MHz  
0xA–0xB = Reserved  
0xC = 1500 MHz  
0xD–0xF = Reserved  
NOTE: Internally pulled to 0x6.  
The supported combination for CPU_CLK Frequency select, CPU_CLK to DDR CLK ratio,  
and CPU_CLK to CPU L2 clock ratio are listed in Table 30, Supported Clock Combinations,  
Copyright © 2008 Marvell  
Doc. No. MV-S104859-U0 Rev. E  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
Page 67  
     
88F6281  
Hardware Specifications  
Table 32: Reset Configuration (Continued)  
Pin  
Configuration Function  
MPP[33],  
NF_ALE,  
NF_REn,  
NF_CLE  
CPU_CLK to DDR CLK Ratio  
0x0–0x3 = Reserved  
0x4 = 3:1  
0x5 = Reserved  
0x6 = 4:1  
0x7 = 4.5:1  
0x8 = 5:1  
0x9 = 6:1  
0xA–0xF = Reserved  
NOTE: Internally pulled to 0x4.  
The supported combination for CPU_CLK Frequency select, CPU_CLK to DDR CLK ratio,  
and CPU_CLK to CPU L2 clock ratio are listed in Table 30, Supported Clock Combinations,  
MPP[3], MPP[12],  
NF_WEn  
CPU_CLK to CPU L2 Clock Ratio  
0x0 = Reserved  
0x1 = 2:1  
0x2 = Reserved  
0x3 = 3:1  
0x4–0x7 = Reserved  
NOTE: Internally pulled to 0x1.  
The supported combination for CPU_CLK Frequency select, CPU_CLK to DDR CLK ratio,  
and CPU_CLK to CPU L2 clock ratio are listed in Table 30, Supported Clock Combinations,  
Doc. No. MV-S104859-U0 Rev. E  
Page 68  
Copyright © 2008 Marvell  
Document Classification: Proprietary Information  
December 2, 2008, Preliminary  
   
System Power Up/Down and Reset Settings  
Pins Sample Configuration  
Table 32: Reset Configuration (Continued)  
Pin  
Configuration Function  
GE_TXD[2:0]  
Boot Device  
0x0 = Reserved  
0x1 = Reserved  
0x2 = Boot from SPI flash (SPI_CSn on MPP[7])  
0x3 = Reserved  
0x4 = Boot from SPI flash (SPI_CSn on MPP[0])  
0x5 = Boot from NAND flash  
0x6 = Boot from SATA  
0x7 = Boot from the PCI Express port  
NOTE:  
Internally pulled to 0x4.  
Only SPI signals configured on pins MPP[3:0] or on pins MPP[7] and MPP[3:1] can be used for  
booting from SPI.  
SPI signals that are multiplexed on other MPPs can only be used after booting (see Section 4.1,  
When GE_TXD[2:0] is set to 0x4, MPP[3:0] wake up as SPI signals.  
When GE_TXD[2:0] is set to 0x2, MPP[7] and MPP[3:1] wake up as SPI signals.  
When GE_TXD[2:0] is set to 0x5, MPP[5:0] and MPP[19:18] wake up as NAND Flash signals.  
For a more detailed description of the bootROM, see the BootROM section in the 88F6180,  
88F6190, 88F6192, and 88F6281 Functional Specifications.  
For a more detailed description of the boot from SPI flash or NAND flash, see the SPI Interface  
and NAND Flash Interface sections in the 88F6180, 88F6190, 88F6192, and 88F6281 Functional  
Specifications.  
There is an option to boot from UART when GE_TXD[2:0] = 0x2–0x7. For a more detailed  
description of the boot from UART, see the BootROM section in the 88F6180, 88F6190,  
88F6192, and 88F6281 Functional Specifications.  
GE_TXD[3]  
GE_MDC  
SSCG Disable  
0 = Enable  
1 = Disable  
NOTE: Internally pulled to 0x1.  
PCI Express Clock (100 MHz Differential Clock) Configuration  
0x0 = The device use external source for PCI Express clock. Pins PEX_CLK_P/PEX_CLK_N are  
inputs.  
0x1 = The device uses internal generated clock for PCI Express clock. Pins  
PEX_CLK_P/PEX_CLK_N pins are outputs, driving out the PCI Express differential clock.  
NOTE: Internally pulled to 0x1.  
GE_TXCTL  
MPP[7]  
Used for internal testing  
Must be 0x0 during reset. Either leave the signal floating (internally pulled down to 0x0) or pull the signal to  
0x0 during reset.  
Reserved  
Must be 0x1 during reset. Either leave the signal floating (internally pulled up to 0x1) or pull the signal  
to 0x1 during reset.  
Copyright © 2008 Marvell  
Doc. No. MV-S104859-U0 Rev. E  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
Page 69  
 
88F6281  
Hardware Specifications  
Table 32: Reset Configuration (Continued)  
Pin  
Configuration Function  
MPP[18]  
Reserved  
NOTE: MUST be externally pulled down to 0x0 during reset.  
6.6  
Serial ROM Initialization  
The device supports initialization of ALL of its internal and configuration registers through the TWSI  
master interface. If serial ROM initialization is enabled, the device TWSI master starts reading  
initialization data from serial ROM and writes it to the appropriate registers, upon de-assertion of  
SYSRSTn.  
When using Serial ROM Initialization, the MPP[9:8] pins must be configured to as TW_SCK  
(MPP[9]) and TW_SDA (MPP[8]).  
6.6.1  
Serial ROM Data Structure  
Serial ROM data structure consists of a sequence of 32-bit address and 32-bit data pairs, as shown  
in Figure 3.  
Figure 3: Serial ROM Data Structure  
MSB  
LSB  
address0[31:24]  
Start  
address0[23:16]  
address0[15:8]  
address0[7:0]  
data0[31:24]  
data0[23:16]  
data0[15:8]  
data0[7:0]  
address1[31:24]  
address1[23:16]  
address1[15:8]  
address1[7:0]  
data1[31:24]  
data1[23:16]  
data1[15:8]  
data1[7:0]  
Doc. No. MV-S104859-U0 Rev. E  
Page 70  
Copyright © 2008 Marvell  
Document Classification: Proprietary Information  
December 2, 2008, Preliminary  
     
System Power Up/Down and Reset Settings  
Boot Sequence  
The serial ROM initialization logic reads eight bytes at a time. It performs address decoding on the  
32-bit address being read, and based on address decoding result, writes the next four bytes to the  
required target.  
The Serial Initialization Last Data Register contains the expected value of last serial data item  
(default value is 0xFFFFFFFF). When the device reaches last data, it stops the initialization  
sequence.  
6.6.2  
Serial ROM Initialization Operation  
On SYSRSTn de-assertion, the device starts the initialization process. It first performs a dummy  
write access to the serial ROM, with data byte(s) of 0x0, to set the ROM byte offset to 0x0. Then, it  
performs the sequence of reads, until it reaches last data item, as shown in Figure 4.  
Figure 4: Serial ROM Read Example  
s
t
a
r
s
t
a
r
w
r
i
t
e
Data from  
ROM  
r
Lower Byte Offset  
0 0 0 0 0 0 0 0  
Upper Byte Offset  
0 0 0 0 0 0 0 0  
e
a
d
t
t
s 1 0 1 0 0 0 0 0  
s 1 0 1 0 0 0 0 1  
A A A A A A A A  
A A A A  
a
c
k
a
c
k
a
c
k
a
c
k
a
c
k
ROM  
ROM  
Address  
Address  
Last Data  
from ROM  
s
t
o
p
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
x x x x x x x x  
p
n
a
c
k
a
c
k
a
c
k
a
c
k
a
c
k
For a detailed description of TWSI implementation, see the Two-Wire Serial Interface section in the  
88F6180, 88F6190, 88F6192, and 88F6281 Functional Specifications.  
Initialization data must be programmed in the serial ROM starting at offset 0x0.  
The device assumes 7-bit serial ROM address of ‘b1010000.  
After receiving the last data identifier (default value is 0xFFFFFFFF), the device receives an  
additional byte of dummy data. It responds with no-ack and then asserts the stop bit.  
The serial EEPROM must contain two address offset bytes (It must not be less than a 256 byte  
ROM.).  
6.7  
Boot Sequence  
The device requires that SYSRSTn stay asserted for at least 300 μs after power and clocks are  
stable. The following procedure describes the boot sequence starting with the reset assertion:  
1. While SYSRSTn is asserted, the CPU PLL and the core PLL are locked.  
2. Upon SYSRSTn de-assertion, the pad drive auto-calibration process starts. It takes 512 TCLK  
cycles.  
3. If Serial ROM initialization is enabled, an initialization sequence is started.  
4. If configured to boot from NAND flash (and BootROM is disabled), the device also performs a  
NAND Flash boot sequence to prepare page 0 in the NAND flash device for read.  
Copyright © 2008 Marvell  
Doc. No. MV-S104859-U0 Rev. E  
Page 71  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
     
88F6281  
Hardware Specifications  
Upon completing the above sequence, the internal CPU reset is de-asserted, and the CPU starts  
executing boot code from the boot device (SPI flash, NAND flash, or internal Boot ROM), according  
to sample at reset setting, see Table 32, Reset Configuration, on page 67.  
For bootROM details, see the BootROM section in the 88F6180, 88F6190, 88F6192, and 88F6281  
Functional Specifications.  
As part of the CPU boot code, the CPU typically performs the following:  
Configures the PCI Express address map.  
Configures the proper SDRAM controller parameters, and then triggers SDRAM initialization  
(sets <InitEn> bit [0] to 1 in the SDRAM Initialization Control register).  
Sets the <PEXEn> bits in the CPU Control and Status register to wake up the PCI Express link.  
Doc. No. MV-S104859-U0 Rev. E  
Page 72  
Copyright © 2008 Marvell  
Document Classification: Proprietary Information  
December 2, 2008, Preliminary  
JTAG Interface  
TAP Controller  
7
JTAG Interface  
To enable board testing, the device supports a test mode operation through its JTAG boundary scan  
interface.  
The JTAG interface is IEEE 1149.1 standard compliant. It supports mandatory and optional  
boundary scan instructions.  
7.1  
TAP Controller  
The Test Access Port (TAP) is constructed with a 5-pin interface and a 16-state Finite State Machine  
(FSM), as defined by IEEE JTAG standard 1149.1.  
To place the device in a functional mode, reset the JTAG state machine to disable the JTAG  
interface.  
According to the IEEE 1149.1 standard, the JTAG state machine is not reset when the 88F6281  
SYSRSTn is asserted. The JTAG state machine can only be reset by one of the following methods:  
Asserting JT_RSTn.  
Setting JT_TMS_CORE for at least five JT_CLK cycles.  
To place the device in one of the boundary scan test mode, the JTAG state machine must be moved  
to its control states. JT_TMS_CORE and JT_TDI inputs control the state transitions of the JTAG  
state machine, as specified in the IEEE 1149.1 standard. The JTAG state machine will shift  
instructions into the Instruction register while in SHIFT-IR state and shift data into and from the  
various data registers when in SHIFT-DR state.  
7.2  
Instruction Register  
The Instruction register (IR) is a 4-bit, two-stage register. It contains the command that is shifted in  
when the TAP FSM is in the Shift-IR state. When the TAP FSM is in the Capture-IR state, the IR  
outputs all four bits in parallel.  
Table 33 lists the instructions supported by the device.  
Table 33: Supported JTAG Instructions  
Instruction  
Code  
Description  
HIGHZ  
0011  
Select the single bit Bypass register between TDI and TDO.  
Sets the device output pins to high-impedance state.  
IDCODE  
EXTEST  
0010  
0000  
Selects the Identification register between TDI and TDO. This 32-bit  
register is used to identify the device.  
Selects the Boundary Scan register between TDI and TDO. Outputs the  
boundary scan register cells to drive the output pins of the device. Inputs  
the boundary scan register cell to sample the input pin of the device.  
SAMPLE/PRE  
LOAD  
0001  
1111  
Selects the Boundary Scan register between TDI and TDO. Samples  
input pins of the device to input boundary scan register cells.  
Preloads the output boundary scan register cells with the Boundary Scan  
register value.  
BYPASS  
Selects the single bit Bypass register between TDI and TDO. This allows  
for rapid data movement through an untested device.  
Copyright © 2008 Marvell  
Doc. No. MV-S104859-U0 Rev. E  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
Page 73  
       
88F6281  
Hardware Specifications  
7.3  
7.4  
7.5  
Bypass Register  
The Bypass register (BR) is a single bit serial shift register that connects TDI to TDO, when the IR  
holds the Bypass command, and the TAP FSM is in Shift-DR state. Data that is driven on the TDI  
input pin is shifted out one cycle later on the TDO output pin. The Bypass register is loaded with 0  
when the TAP FSM is in the Capture-DR state.  
JTAG Scan Chain  
The JTAG Scan Chain is a serial shift register used to sample and drive all of the device pins during  
the JTAG tests. It is a 2-bit per pin shift register in the device, thereby allowing the shift register to  
sequentially access all of the data pins both for driving and strobing data. For further details, refer to  
the BSDL Description file for the device.  
ID Register  
The ID register is a 32-bit deep serial shift register. The ID register is loaded with vendor and device  
information when the TAP FSM is in the Capture-DR state. The Identification code format of the ID  
register is shown in Table 34, which describes the various ID Code fields.  
Table 34: IDCODE Register Map  
Bits  
Value  
0x0  
Description  
31:28  
27:12  
Version (4'b0010 for version A0, 4'b0011 for A1, etc.)  
Part number  
0x6281  
11:1  
0
0x1AB  
1
Manufacturer ID  
Mandatory  
Doc. No. MV-S104859-U0 Rev. E  
Page 74  
Copyright © 2008 Marvell  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
         
Electrical Specifications (Preliminary)  
Absolute Maximum Ratings  
8
Electrical Specifications (Preliminary)  
The numbers specified in this section are PRELIMINARY and SUBJECT TO CHANGE.  
Note  
8.1  
Absolute Maximum Ratings  
Table 35: Absolute Maximum Ratings  
Parameter  
VDD  
Min  
-0.5  
-0.5  
-0.5  
Max  
1.2  
Units  
Comments  
V
V
V
Core voltage  
VDD_CPU  
1.32  
2.2  
CPU interface  
CPU_PLL_AVDD  
Analog supply for the internal PLL  
CORE_PLL_AVDD  
SSCG_AVDD  
-0.5  
-0.5  
-0.5  
-0.5  
2.2  
4.0  
2.2  
4.0  
V
V
V
V
Analog supply for:  
Internal Spread Spectrum Clock Generator  
VDD_GE_A  
VDD_GE_B  
I/O voltage for:  
RGMII/GMII/MII/MMII/SMI interface  
VDD_M  
I/O voltage for:  
SDRAM interface  
VDDO  
I/O voltage for:  
MPP, TWSI, JTAG, SDIO, I S, SPI, TS, and  
2
TDM interfaces  
VHV  
-0.5  
-0.5  
3.0  
2.2  
V
V
I/O voltage for eFuse burning  
PEX_AVDD  
Analog supply for:  
PCI Express interface  
USB_AVDD  
-0.5  
-0.5  
-0.5  
4.0  
4.0  
2.2  
V
V
V
Analog supply for:  
USB interface  
SATA0_AVDD  
SATA1_AVDD  
Analog supply for:  
SATA interface  
XTAL_AVDD  
Analog supply for internal clock inverter for  
crystal support and current source for SATA and  
USB PHYs  
Copyright © 2008 Marvell  
Doc. No. MV-S104859-U0 Rev. E  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
Page 75  
       
88F6281  
Hardware Specifications  
Table 35: Absolute Maximum Ratings (Continued)  
Parameter  
Min  
Max  
Units  
Comments  
RTC_AVDD  
-0.5  
2.2  
V
Analog supply for:  
RTC interface  
T
T
-40  
-40  
125  
125  
° C  
° C  
Case temperature  
C
Storage temperature  
STG  
Exposure to conditions at or beyond the maximum rating may damage the device.  
Operation beyond the recommended operating conditions (Table 36) is neither  
recommended nor guaranteed.  
Caution  
Doc. No. MV-S104859-U0 Rev. E  
Page 76  
Copyright © 2008 Marvell  
Document Classification: Proprietary Information  
December 2, 2008, Preliminary  
Electrical Specifications (Preliminary)  
Recommended Operating Conditions  
8.2  
Recommended Operating Conditions  
Table 36: Recommended Operating Conditions  
Parameter  
VDD  
Min  
0.95  
1.05  
1.7  
Typ  
1.0  
1.1  
1.8  
Max  
1.05  
1.15  
1.9  
Units  
Comments  
V
V
V
Core voltage  
VDD_CPU  
CPU interface  
CPU_PLL_AVDD  
Analog supply for the internal PLL  
CORE_PLL_AVDD  
SSCG_AVDD  
1.7  
1.8  
3.3  
1.9  
V
V
Analog supply for:  
Internal Spread Spectrum Clock  
Generator  
VDD_GE_A  
VDD_GE_B  
3.15  
3.45  
I/O voltage for:  
RGMII(10/100 RGMII only)/  
GMII/MII/MMII/SMI interfaces  
1.7  
1.8  
1.8  
3.3  
1.9  
V
V
V
I/O voltage for:  
RGMII/SMI interfaces  
VDD_M  
VDDO  
1.7  
1.9  
I/O voltage for:  
SDRAM interface  
3.15  
3.45  
I/O voltage for:  
2
MPP, TWSI, JTAG, SDIO, I S, SPI,  
TS, and TDM interfaces  
VHV (during eFuse  
Burning mode)  
2.375  
2.5  
1.0  
2.625  
V
V
I/O voltage for eFuse burning  
NOTE: If the VHV voltage is higher  
than VDD voltage (burning  
mode), VDD must be  
powered before VHV, to  
prevent the fuse from being  
accidentally burned.  
VHV (during eFuse  
Reading mode)  
0.95  
1.05  
I/O voltage for eFuse reading  
NOTE: It is recommended that if  
only a read operation is  
required, VHV would be  
connected to the device  
VDD power.  
PEX_AVDD  
USB_AVDD  
1.7  
1.8  
3.3  
3.3  
1.9  
V
V
V
Analog supply for:  
PCI Express interface  
3.15  
3.15  
3.45  
3.45  
Analog supply for:  
USB interface  
SATA0_AVDD  
SATA1_AVDD  
Analog supply for:  
SATA interface  
Copyright © 2008 Marvell  
Doc. No. MV-S104859-U0 Rev. E  
Page 77  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
     
88F6281  
Hardware Specifications  
Table 36: Recommended Operating Conditions (Continued)  
Parameter  
Min  
Typ  
Max  
Units  
Comments  
XTAL_AVDD  
1.7  
1.8  
1.9  
V
Analog supply for:  
Internal clock inverter for crystal  
support and current source for  
SATA and USB PHYs  
RTC_AVDD  
1.7  
1.3  
0
1.8  
1.5  
1.9  
1.7  
105  
V
Analog supply for RTC in Regular  
mode  
V
Analog supply for RTC in Battery  
Back-up mode  
TJ  
° C  
Junction Temperature  
Operation beyond the recommended operating conditions is neither recommended nor  
guaranteed.  
Caution  
Doc. No. MV-S104859-U0 Rev. E  
Page 78  
Copyright © 2008 Marvell  
Document Classification: Proprietary Information  
December 2, 2008, Preliminary  
Electrical Specifications (Preliminary)  
Thermal Power Dissipation  
8.3  
Thermal Power Dissipation  
Before designing a system, Marvell recommends reading application note AN-63:  
Thermal Management for Marvell Technology Products. This application note presents  
basic concepts of thermal management for integrated circuits (ICs) and includes  
guidelines to ensure optimal operating conditions for Marvell Technology's products.  
Note  
The purpose of the Thermal Power Dissipation table is to support system engineering in thermal  
design.  
.
Table 37: Thermal Power Dissipation  
Interface  
Symbol  
Test Conditions  
Typ  
280  
790  
Units  
mW  
Core (VDD 1.0V)  
P
TCLK @ 200 MHz  
VDD  
CPU @ 1000 MHz,  
L2 @ 333 MHz  
Embedded CPU (VDD_CPU 1.1V)  
P
mW  
VDD_CPU  
CPU @ 1200 MHz,  
L2 @ 400 MHz  
870  
mW  
mW  
CPU @ 1500 MHz,  
L2 @ 500 MHz  
1050  
RGMII 1.8V interface  
P
P
P
P
P
30  
50  
50  
10  
50  
mW  
mW  
mW  
mW  
mW  
RGMII  
RGMII  
GMII  
MII  
RGMII (10/100 RGMII only) 3.3V interface  
GMII 3.3V interface  
MII/MMII 3.3V interface  
Miscellaneous interfaces  
MISC  
(JTAG, TWSI, UART, NAND flash, Audio,  
SDIO, TDM, TS, and SPI)  
DDR2 SDRAM interface (On-board,  
16-bit, 400 MHz)  
P
P
Four on board devices, 75 ohm  
ODT termination  
250  
50  
mW  
mW  
DDR2  
FUSE  
eFuse during Burning mode  
NOTE: Since the eFuse burn is performed  
only once, there is no thermal  
effect after the burn has finished.  
eFuse during Reading mode  
PCI Express interface  
USB interface  
P
P
P
P
25  
mW  
mW  
mW  
mW  
FUSE  
PEX  
100  
120  
410  
USB  
SATA interface  
Notes:  
Both SATA ports  
SATA  
1. The values are for nominal voltage.  
2. Power in mW is calculated using the typical recommended VDDIO specification for each power  
rail.  
Copyright © 2008 Marvell  
December 2, 2008, Preliminary  
Doc. No. MV-S104859-U0 Rev. E  
Page 79  
Document Classification: Proprietary Information  
     
88F6281  
Hardware Specifications  
8.4  
Current Consumption  
The purpose of the Current Consumption table is to support board power design and power module  
selection.  
.
Table 38: Current Consumption  
Interface  
Symbol  
Test Conditions  
Max  
600  
Units  
mA  
Core (VDD 1.0V)  
I
I
TCLK @ 200 MHz  
VDD  
CPU @ 1000 MHz,  
L2 @ 333 MHz  
Embedded CPU (VDD_CPU 1.1V)  
1920  
mA  
VDD_CPU  
CPU @ 1200 MHz,  
L2 @ 400 MHz  
2010  
2100  
mA  
mA  
CPU @ 1500 MHz,  
L2 @ 500 MHz  
RGMII 1.8V or 3.3V interface  
GMII 3.3V interface  
I
I
I
I
25  
25  
25  
25  
mA  
mA  
mA  
mA  
RGMII  
GMII  
MII/MMII 3.3V interface  
MII_MMII  
MISC  
Miscellaneous interfaces  
(JTAG, TWSI, UART, NAND flash, Audio,  
SDIO, TDM, TS, and SPI)  
DDR2 SDRAM interface (16-bit 400 MHz)  
I
Four on board devices, 75 ohm  
ODT termination  
550  
mA  
DDR2  
eFuse during Burning mode  
eFuse during Reading mode  
PCI Express interface  
USB interface  
I
I
I
I
I
20  
mA  
mA  
mA  
mA  
mA  
FUSE  
FUSE  
PEX  
25  
50  
40  
USB  
SATA interface  
Both SATA ports  
130  
SATA  
Notes:  
1. Current in mA is calculated using maximum recommended VDDIO specification for each power  
rail.  
2. All output clocks toggling at their specified rate.  
3. Maximum drawn current from the power supply.  
Doc. No. MV-S104859-U0 Rev. E  
Page 80  
Copyright © 2008 Marvell  
Document Classification: Proprietary Information  
December 2, 2008, Preliminary  
     
Electrical Specifications  
DC Electrical Specifications  
8.5  
DC Electrical Specifications  
pullup/pulldown information.  
Note  
8.5.1  
General 3.3V (CMOS) DC Electrical Specifications  
The DC electrical specifications in Table 39 are applicable for the following interfaces and signals:  
JTAG  
RGMII (10/100 Mbps)/GMII/MII/MMII  
Secure Digital Input/Output (SDIO)  
2
S/PDIF / I S (Audio)  
Transport Stream (TS)  
NAND flash  
UART  
MPP  
PTP  
SYSRSTn  
2
In the following table, for the JTAG, SDIO, S/PDIF / I S, TS, NAND flash, UART, PTP, and MPP  
interfaces, VDDIO means the VDDO power rail. For the RGMII/GMII/MII/MMII interface, VDDIO  
means the VDD_GE_A and VDD_GE_B power rails.  
Table 39: General 3.3V Interface (CMOS) DC Electrical Specifications  
Parameter  
Input low level  
Symbol  
VIL  
Test Condition  
Min  
-0.3  
2.0  
-
Typ  
Max  
Units Notes  
0.8  
V
V
-
Input high level  
VIH  
VDDIO+0.3  
-
Output low level  
Output high level  
Input leakage current  
Pin capacitance  
VOL  
IOL = 2 mA  
0.4  
-
V
-
VOH IOH = -2 mA  
2.4  
-10  
V
-
1, 2  
-
IIL  
0 < VIN < VDDIO  
10  
uA  
pF  
Cpin  
5
Notes:  
General comment: See the Pin Description section for internal pullup/pulldow n.  
1. While I/O is in High-Z.  
2. This current does not include the current flow ing through the pullup/pulldow n resistor.  
Copyright © 2008 Marvell  
December 2, 2008, Preliminary  
Doc. No. MV-S104859-U0 Rev. E  
Page 81  
Document Classification: Proprietary Information  
     
88F6281  
Hardware Specifications  
8.5.2  
RGMII, SMI and REF_CLK_XIN 1.8V (CMOS) DC Electrical  
Specifications  
In the following table, for the RGMII interface, VDDIO means the VDD_GE_A power rail.  
In the following table, for the REF_CLK_XIN pin, VDDIO means the XTAL_AVDD power rail.  
Table 40: RGMII 1.8V Interface (CMOS) DC Electrical Specifications  
Parameter  
Input low level  
Symbol  
VIL  
Test Condition  
Min  
-0.3  
Typ  
Max  
Units Notes  
0.35*VDDIO  
V
V
-
Input high level  
VIH  
0.65*VDDIO  
-
VDDIO+0.3  
-
Output low level  
Output high level  
Input leakage current  
Pin capacitance  
VOL  
VOH  
IIL  
IOL = 2 mA  
0.45  
-
V
-
IOH = -2 mA  
VDDIO-0.45  
-10  
V
-
1, 2  
-
0 < VIN < VDDIO  
10  
uA  
pF  
Cpin  
5
Notes:  
General comment: See the Pin Description section for internal pullup/pulldow n.  
1. While I/O is in High-Z.  
2. This current does not include the current flow ing through the pullup/pulldow n resistor.  
Doc. No. MV-S104859-U0 Rev. E  
Page 82  
Copyright © 2008 Marvell  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
   
Electrical Specifications  
DC Electrical Specifications  
8.5.3  
SDRAM DDR2 Interface DC Electrical Specifications  
In the following table, VREF is VDD_M/2 and VDDIO means the VDD_M power rail.  
Table 41: SDRAM DDR2 Interface DC Electrical Specifications  
Parameter  
Input low level  
Symbol Test Condition  
Min  
-0.3  
Typ  
Max  
VREF - 0.125  
VDDIO + 0.3  
0.28  
Units Notes  
VIL  
-
-
V
V
V
V
-
-
-
-
Input high level  
Output low level  
Output high level  
VIH  
VREF + 0.125  
VOL IOL = 13.4 mA  
VOH IOH = -13.4 mA  
1.42  
120  
60  
150  
75  
180  
90  
60  
6
ohm 1 , 2  
ohm 1 , 2  
ohm 1 , 2  
Rtt effective impedance value  
RTT See note 2  
40  
50  
Deviation of VM w ith respect to VDDQ/2 dVm See note 3  
-6  
%
uA  
pF  
3
4, 5  
-
Input leakage current  
Pin capacitance  
IIL  
0 < VIN < VDDIO  
-
-10  
10  
Cpin  
5
Notes:  
General comment: See the Pin Description section for internal pullup/pulldow n.  
1. See SDRAMfunctional description section for ODT configuration.  
2. Measurement definition for RTT: Apply VREF +/- 0.25 to input pin separately,  
then measure current I(VREF + 0.25) and I(VREF - 0.25) respectively.  
0.5  
RTT =  
I (VREF + 0.25 ) I (VREF 0.25 )  
3. Measurement definition for VM: Measured voltage (VM) at input pin (midpoint) w ith no load.  
2 × Vm  
VDDIO  
dVM =  
1 ×100%  
4. While I/O is in High-Z.  
5. This current does not include the current flow ing through the pullup/pulldow n resistor.  
Copyright © 2008 Marvell  
December 2, 2008, Preliminary  
Doc. No. MV-S104859-U0 Rev. E  
Page 83  
Document Classification: Proprietary Information  
 
88F6281  
Hardware Specifications  
8.5.4  
Two-Wire Serial Interface (TWSI) 3.3V DC Electrical  
Specifications  
In the following table, VDDIO means the VDDO power rail.  
Table 42: TWSI Interface 3.3V DC Electrical Specifications  
Parameter  
Input low level  
Symbol  
VIL  
Test Condition  
Min  
Typ  
Max  
0.3*VDDIO  
VDDIO+0.5  
0.4  
Units Notes  
-0.5  
V
V
-
Input high level  
VIH  
0.7*VDDIO  
-
Output low level  
Input leakage current  
Pin capacitance  
VOL  
IIL  
IOL = 3 mA  
-
V
-
1, 2  
-
0 < VIN < VDDIO  
-10  
10  
uA  
pF  
Cpin  
5
Notes:  
General comment: See the Pin Description section for internal pullup/pulldow n.  
1. While I/O is in High-Z.  
2. This current does not include the current flow ing through the pullup/pulldow n resistor.  
8.5.5  
Serial Peripheral Interface (SPI) 3.3V DC Electrical  
Specifications  
In the following table VDDIO means the VDDO power rail.  
Table 43: SPI Interface 3.3V DC Electrical Specifications  
Parameter  
Input low level  
Symbol  
VIL  
Test Condition  
Min  
-0.5  
Typ  
Max  
Units Notes  
0.3*VDDIO  
V
V
-
Input high level  
VIH  
0.7*VDDIO  
-
VDDIO+0.5  
-
Output low level  
Output high level  
Input leakage current  
Pin capacitance  
VOL  
VOH  
IIL  
IOL = 4 mA  
0.4  
-
V
-
IOH = -4 mA  
VDDIO-0.6  
-10  
V
-
1, 2  
-
0 < VIN < VDDIO  
10  
uA  
pF  
Cpin  
5
Notes:  
General comment: See the Pin Description section for internal pullup/pulldow n.  
1. While I/O is in High-Z.  
2. This current does not include the current flow ing through the pullup/pulldow n resistor.  
Doc. No. MV-S104859-U0 Rev. E  
Page 84  
Copyright © 2008 Marvell  
Document Classification: Proprietary Information  
December 2, 2008, Preliminary  
   
Electrical Specifications  
DC Electrical Specifications  
8.5.6  
Time Division Multiplexing (TDM) 3.3V DC Electrical  
Specifications  
In the following table VDDIO means the either the VDDO or the VDD_GE_B power rail, depending  
on which MPP pins are configured for the TDM interface.  
Table 44: TDM Interface 3.3V DC Electrical Specifications  
Parameter  
Input low level  
Symbol  
VIL  
Test Condition  
Min  
-0.5  
Typ  
Max  
Units Notes  
0.3*VDDIO  
V
V
-
Input high level  
VIH  
0.7*VDDIO  
-
VDDIO+0.5  
-
Output low level  
Output high level  
Input leakage current  
Pin capacitance  
VOL  
VOH  
IIL  
IOL = 4 mA  
0.4  
-
V
-
IOH = -4 mA  
VDDIO-0.6  
-10  
V
-
1, 2  
-
0 < VIN < VDDIO  
10  
uA  
pF  
Cpin  
5
Notes:  
General comment: See the Pin Description section for internal pullup/pulldow n.  
1. While I/O is in High-Z.  
2. This current does not include the current flow ing through the pullup/pulldow n resistor.  
Copyright © 2008 Marvell  
December 2, 2008, Preliminary  
Doc. No. MV-S104859-U0 Rev. E  
Page 85  
Document Classification: Proprietary Information  
 
88F6281  
Hardware Specifications  
8.6  
AC Electrical Specifications  
specifications.  
8.6.1  
Reference Clock AC Timing Specifications  
Table 45: Reference Clock AC Timing Specifications  
Description  
Symbol  
Min  
Max  
Units  
Notes  
CPU and Core Reference Clock  
Frequency  
F
25 -  
25 +  
MHz  
REF_CLK_XIN  
50 ppm  
50 ppm  
Clock duty cycle  
DC  
SR  
40  
60  
%
REF_CLK_XIN  
REF_CLK_XIN  
REF_CLK_XIN  
Slew rate  
0.7  
V/ns  
ps  
1
Pk-Pk jitter  
JR  
200  
Ethernet Reference Clock  
Frequency in MII/MMII-MAC mode  
F
F
GE_TXCLK_OUT  
2.5 -  
100 ppm  
50 +  
100 ppm  
MHz  
%
7
GE_RXCLK  
MII/MMII-MAC mode clock duty cycle  
Slew rate  
DC  
DC  
SR  
SR  
GE_TXCLK_OUT  
35  
65  
7
GE_RXCLK  
GE_TXCLK_OUT  
GE_RXCLK  
0.7  
V/ns  
1, 7  
Audio External Reference Clock  
Audio external reference clock  
F
256 X F  
kHz  
kHz  
kHz  
MHz  
kHz  
3
3
3
2
4
AU_EXTCLK  
s
s
S/PDIF Recovered Master Clock  
S/PDIF recovered master clock  
F
256 X F  
AU_SPDFRMCLK  
2
I S Reference Clock  
2
I S clock  
F
64 X F  
s
I2S_BCLK  
SPI_SCK  
RTC_XIN  
SPI Output Clock  
SPI output clock  
F
F
TCLK/30  
TCLK/4  
RTC Reference Clock  
RTC_XIN crystal frequency  
32.768  
Transport Stream (TS) Output Mode Reference Clock  
TS output clock in parallel mode  
TS output clock in serial mode  
F
F
F
9.61  
9.61  
12.5  
83  
MHz  
MHz  
5
5
TS0_CLK, TS1_CLK  
F
TS0_CLK, TS1_CLK  
Transport Stream Input Mode Reference Clock  
TS input clock in parallel mode  
TS input clock in serial mode  
F
F
F
13.5  
83  
MHz  
MHz  
TS0_CLK, TS1_CLK  
F
TS0_CLK, TS1_CLK  
Transport Stream External Reference Clock  
TS external clock in parallel mode  
TS external clock in serial mode  
F
F
9.61  
9.61  
12.5  
83  
MHz  
MHz  
5
5
EXT_CLK  
EXT_CLK  
Doc. No. MV-S104859-U0 Rev. E  
Page 86  
Copyright © 2008 Marvell  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
     
Electrical Specifications  
AC Electrical Specifications  
Table 45: Reference Clock AC Timing Specifications (Continued)  
Description  
Symbol  
Min  
Max  
Units  
MHz  
MHz  
kHz  
Notes  
TDM_SPI Output Clock  
TDM_SPI output clock  
F
F
F
8.192  
TDM_SPI_SCK  
SMI Master Mode Reference Clock  
SMI output MDC clock  
TCLK/128  
GE_MDC  
TWSI Master Mode Reference Clock  
SCK output clock  
TCLK/  
1600  
6
1
TW_SCK  
PTP Reference Clock  
Frequency  
F
125 -  
100 ppm  
125 +  
100 ppm  
MHz  
PTP_CLK  
Clock duty cycle  
Slew rate  
DC  
SR  
40  
60  
%
PTP_CLK  
PTP_CLK  
PTP_CLK  
0.7  
V/ns  
ps  
Pk-Pk jitter  
JR  
100  
Notes:  
1. Slew rate is defined from 20% to 80% of the reference clock signal.  
2. For additional information regarding configuring this clock, see the Serial Memory Interface  
Control Register in the 88F6180, 88F6190, 88F6192, and 88F6281 Functional Specifications.  
3. F is the audio sample rate, which can be configured to 44.1 kHz, 48 kHz, or 96 kHz (see the  
s
2
Audio (I S / S/PDIF) Interface section in the 88F6180, 88F6190, 88F6192, and 88F6281  
Functional Specifications).  
4. The RTC design was optimized for a standard CL = 12.5 pF crystal. No passive components  
are provided internally. Connect the crystal and the passive network as recommended by the  
crystal manufacturer.  
5. The frequency can be set using the TS Interface Configuration register (see the 88F6180,  
88F6190, 88F6192, and 88F6281 Functional Specifications).  
6. For the minimum value refer to the Baud Rate Register section of the 88F6180, 88F6190,  
88F6192, and 88F6281 Functional Specifications.  
7. The Ethernet Reference Clock parameters refer both to the reference clock for an Ethernet port  
configured using the dedicated port pins and for an Ethernet port configured using the  
multiplexed port pins.  
Copyright © 2008 Marvell  
December 2, 2008, Preliminary  
Doc. No. MV-S104859-U0 Rev. E  
Page 87  
Document Classification: Proprietary Information  
88F6281  
Hardware Specifications  
8.6.2  
SDRAM DDR2 Interface AC Timing  
8.6.2.1  
SDRAM DDR2 Interface AC Timing Table  
Table 46: SDRAM DDR2 Interface AC Timing Table  
400 MHz @ 1.8V  
De scription  
Clock frequency  
Sym bol  
fCK  
Min  
Max  
Units  
MHz  
Notes  
400.0  
-
-
DQ and DM valid output time before DQS transition  
DQ and DM valid output time after DQS transition  
DQ and DM output pulse w idth  
tDOVB  
tDOVA  
tDIPW  
tDQSH  
tDQSL  
tDSS  
0.40  
0.40  
0.35  
0.35  
0.35  
0.34  
0.34  
-0.11  
0.35  
0.40  
0.48  
0.48  
-0.42  
0.70  
0.60  
-
ns  
-
ns  
-
-
tCK(avg)  
tCK(avg)  
tCK(avg)  
tCK(avg)  
tCK(avg)  
tCK(avg)  
tCK(avg)  
tCK(avg)  
-
DQS output high pulse w idth  
-
-
DQS output low pulse w idth  
-
-
DQS falling edge to CLK-CLKn rising edge  
DQS falling edge from CLK-CLKn rising edge  
DQS latching rising transitions to associated clock edges  
DQS w rite preamble  
-
1
1
-
tDSH  
-
tDQSS  
tWPRE  
tWPST  
tCH(avg)  
tCL(avg)  
tDSI  
0.11  
-
-
DQS w rite postamble  
-
-
Average CLK-CLKn high-level w idth  
Average CLK-CLKn low -level w idth  
DQ input setup time relative to DQS in transition  
DQ input hold time relative to DQS in transition  
Address and control output pulse w idth  
0.52  
tCK(avg) 1, 2, 3  
tCK(avg) 1, 2, 4  
0.52  
-
-
-
ns  
ns  
-
-
-
tDHI  
tIPW  
tCK(avg)  
Notes :  
General comment: All timing values are defined from Vref to Vref, unless otherw ise specified.  
General comment: All input timing values assume minimum slew rate of 1 V/ns (slew rate defined from Vref +/-125 mV).  
General comment: tCK(avg) is calculated as the average clock period across any consecutive 200 cycle w indow .  
General comment: All timing parameters w ith DQS signal are defined on DQS-DQSn crossing point.  
General comment: For Address and Control output timing parameters, refer to the Address Timing table.  
General comment: For all signals, the load is CL = 14 pF.  
1. This timing value is defined on CLK / CLKn crossing point.  
2. Refer to SDRAM DDR2 clock specifications table for more information.  
3. tCH(avg) is defined as the average HIGH pulse w idth, as calculated across any consecutive 200 HIGH pulses.  
4. tCL(avg) is defined as the average LOW pulse w idth, as calculated across any consecutive 200 LOW pulses.  
Doc. No. MV-S104859-U0 Rev. E  
Page 88  
Copyright © 2008 Marvell  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
   
Electrical Specifications  
AC Electrical Specifications  
Table 47: SDRAM DDR2 Interface Address Timing Table  
400 MHz @ 1.8V  
Des cription  
Sym bol  
Min  
0.65  
0.65  
2.95  
0.65  
Max  
Units  
ns  
Note s  
1, 2  
Address and Control valid output time before CLK-CLkn rising edge  
Address and Control valid output time after CLK-CLKn rising edge  
Address and Control valid output time before CLK-CLkn rising edge  
Address and Control valid output time after CLK-CLKn rising edge  
tAOVB  
tAOVA  
tAOVB  
tAOVA  
-
-
-
-
ns  
1, 2  
ns  
1, 3  
ns  
1, 3  
Notes:  
General comment: All timing values w ere measured from vref to vref, unless otherw ise specified.  
General comment: For all signals, the load is CL = 14 pF.  
1. This timing value is defined on CLK / CLKn crossing point.  
2. This timing value is defined w hen Address and Control signals are output on CLK-CLKn falling edge.  
For more information, see register settings.  
3. This timing value is defined w hen Address and Control signals are output on CLK-CLKn falling edge.  
and 2T mode is enabled. For more information, see register settings.  
Except for ODT, CKEand CS signals.  
Copyright © 2008 Marvell  
Doc. No. MV-S104859-U0 Rev. E  
Page 89  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
 
88F6281  
Hardware Specifications  
8.6.2.2  
SDRAM DDR2 Clock Specifications  
Table 48: SDRAM DDR2 Clock Specifications  
Description  
Clock period jitter  
Symbol  
tJIT(per)  
Min  
-100  
-80  
Max  
100  
80  
Units  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
Notes  
1
2
3
4
5
5
5
5
5
5
6
7
8
9
Clock perior jitter during DLL locking period  
Cycle to cycle clock period jitter  
tJIT(per,lck)  
tJIT(cc)  
-200  
-160  
-150  
-175  
-200  
-200  
-300  
-450  
-100  
200  
160  
150  
175  
200  
200  
300  
450  
100  
Cycle to cycle clock period jitter during DLL locking period  
Cumulative error across 2 cycles  
Cumulative error across 3 cycles  
Cumulative error across 4 cycles  
Cumulative error across 5 cycles  
Cumulative error across n cycles, n=6...10, inclusive  
Cumulative error across n cycles, n=11…50, inclusive  
Duty cycle jitter  
tJIT(cc,lck)  
tERR(2per)  
tERR(3per)  
tERR(4per)  
tERR(5per)  
tERR(6-10per)  
tERR(11-50per)  
tJIT(duty)  
Absolute clock period  
tCK(abs)  
See note 7  
Absolute clock high pulse w idth  
tCH(abs)  
See note 8  
See note 9  
Absolute clock low pulse w idth  
tCL(abs)  
Notes:  
General comment: All timing values are defined on CLK / CLKn crossing point, unless otherw ise specified.  
1. tJIT(per) is defined as the largest deviation of any single tCK from tCK(avg).  
tJIT(per) = Min/max of {tCKi- tCK(avg) w here i=1 to 200}.  
tJIT(per) defines the single period jitter w hen the DLL is already locked.  
2. tJIT(per,lck) uses the same definition for single period jitter, during the DLL locking period only.  
3. tJIT(cc) is defined as the difference in clock period betw een tw o consecutive clock cycles: tJIT(cc) = Max of |tCKi+1 – tCKi|.  
tJIT(cc) defines the cycle to cycle jitter w hen the DLL is already locked.  
4. tJIT(cc,lck) uses the same definition for cycle to cycle jitter, during the DLL locking period only.  
5. tERR is defined as the cumulative error across multiple consecutive cycles from tCK(avg).  
Please refer to JEDEC Standard No. 79-2C (DDR2 SDRAM Specification), Chapter 5 (page 100) for more information.  
6. tJIT(duty) is defined as the cumulative set of tCH jitter and tCL jitter. tCH jitter is the largest deviation of  
any single tCH from tCH(avg). tCL jitter is the largest deviation of any single tCL from tCL(avg).  
tJIT(duty) = Min/max of {tJIT(CH), tJIT(CL)} w here,  
tJIT(CH) = {tCHi- tCH(avg) w here i=1 to 200}; tJIT(CL) = {tCLi- tCL(avg) w here i=1 to 200}.  
7. tCK(abs),min = tCK(avg),min + tJIT(per),min; tCK(abs),max = tCK(avg),max + tJIT(per),max.  
8. tCH(abs),min = tCH(avg),min x tCK(avg),min + tJIT(duty),min; tCH(abs),max = tCH(avg),max x tCK(avg),max + tJIT(duty),max.  
9. tCL(abs),min = tCL(avg),min x tCK(avg),min + tJIT(duty),min; tCL(abs),max = tCL(avg),max x tCK(avg),max + tJIT(duty),max.  
Doc. No. MV-S104859-U0 Rev. E  
Page 90  
Copyright © 2008 Marvell  
Document Classification: Proprietary Information  
December 2, 2008, Preliminary  
 
Electrical Specifications  
AC Electrical Specifications  
8.6.2.3  
SDRAM DDR2 Interface Test Circuit  
Figure 5: SDRAM DDR2 Interface Test Circuit  
VTT  
Test Point  
50 ohm  
CL  
8.6.2.4  
SDRAM DDR2 Interface AC Timing Diagrams  
Figure 6: SDRAM DDR2 Interface Write AC Timing Diagram  
tDSH  
tDSS  
tCH  
tCL  
CLK  
CLKn  
DQS  
tDQSH  
tDQSL  
tWPST  
tWPRE  
DQSn  
tDIPW  
DQ  
tDOVB tDOVA  
Copyright © 2008 Marvell  
December 2, 2008, Preliminary  
Doc. No. MV-S104859-U0 Rev. E  
Page 91  
Document Classification: Proprietary Information  
   
88F6281  
Hardware Specifications  
Figure 7: SDRAM DDR2 Interface Address and Control AC Timing Diagram  
tCH  
tCL  
CLK  
CLKn  
tIPW  
ADDRESS/  
CONTROL  
tAOVB tAOVA  
Figure 8: SDRAM DDR2 Interface Read AC Timing Diagram  
DQS  
DQSn  
DQ  
tDSI  
tDHI  
Doc. No. MV-S104859-U0 Rev. E  
Copyright © 2008 Marvell  
Page 92  
Document Classification: Proprietary Information  
December 2, 2008, Preliminary  
   
Electrical Specifications  
AC Electrical Specifications  
8.6.3  
Reduced Gigabit Media Independent Interface (RGMII)  
AC Timing  
8.6.3.1  
RGMII AC Timing Table  
Table 49: RGMII 10/100/1000 AC Timing Table at 1.8V  
Description  
Symbol  
Min  
Max Units Notes  
Clock frequency  
fCK  
Tskew T  
Tskew R  
Tcyc  
125.0  
MHz  
ns  
-
2
Data to Clock output skew  
Data to Clock input skew  
Clock cycle duration  
-0.50  
1.00  
7.20  
0.45  
0.40  
0.50  
2.60  
8.80  
0.55  
0.60  
ns  
-
ns  
1 , 2  
2
Duty cycle for Gigabit  
Duty_G  
Duty_T  
tCK  
tCK  
Duty cycle for 10/100 Megabit  
2
Notes:  
General comment: All values w ere measured from vddio/2 to vddio/2, unless otherw ise specified.  
General comment: tCK = 1/fCK.  
General comment: If the PHY does not support internal-delay mode, the PC board design requires  
routing clocks so that an additional trace delay of greater than 1.5 ns and less  
than 2.0 ns is added to the associated clock signal.  
For 10/100 Mbps RGMII, the Max value is unspecified.  
1. For RGMII at 10 Mbps and 100 Mbps, Tcyc w ill scale to 400 ns +/-40 ns and 40 ns +/-4 ns, respectively.  
2. For all signals, the load is CL = 5 pF.  
Table 50: RGMII 10/100 AC Timing Table at 3.3V  
Description  
Symbol  
fCK  
Min  
Max Units Notes  
Clock frequency  
25.0  
MHz  
ns  
-
2
Data to Clock output skew  
Data to Clock input skew  
Clock cycle duration  
Tskew T  
Tskew R  
Tcyc  
-0.50  
1.00  
7.20  
0.45  
0.40  
0.50  
2.60  
8.80  
0.55  
0.60  
ns  
-
ns  
1 , 2  
2
Duty cycle for Gigabit  
Duty_G  
Duty_T  
tCK  
tCK  
Duty cycle for 10/100 Megabit  
2
Notes:  
General comment: All values w ere measured from vddio/2 to vddio/2, unless otherw ise specified.  
General comment: tCK = 1/fCK.  
General comment: If the PHY does not support internal-delay mode, the PC board design requires  
routing clocks so that an additional trace delay of greater than 1.5 ns  
is added to the associated clock signal.  
For 10/100 Mbps RGMII, the Max value is unspecified.  
1. For RGMII at 10 Mbps and 100 Mbps, Tcyc w ill scale to 400 ns +/-40 ns and 40 ns +/-4 ns, respectively.  
2. For all signals, the load is CL = 5 pF.  
Copyright © 2008 Marvell  
Doc. No. MV-S104859-U0 Rev. E  
Page 93  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
   
88F6281  
Hardware Specifications  
8.6.3.2  
RGMII Test Circuit  
Figure 9: RGMII Test Circuit  
Test Point  
CL  
8.6.3.3  
RGMII AC Timing Diagram  
Figure 10: RGMII AC Timing Diagram  
TX  
CLOCK  
(At Transmitter)  
TX  
DATA  
TskewT  
RX  
CLOCK  
(At Receiver)  
RX  
DATA  
TskewR  
Doc. No. MV-S104859-U0 Rev. E  
Page 94  
Copyright © 2008 Marvell  
Document Classification: Proprietary Information  
December 2, 2008, Preliminary  
   
Electrical Specifications  
AC Electrical Specifications  
8.6.4  
Gigabit Media Independent Interface (GMII) AC Timing  
8.6.4.1  
GMII AC Timing Table  
Table 51: GMII AC Timing Table  
125 MHz  
Description  
GTX_CLK cycle time  
Symbol  
tCK  
Min  
Max  
Units  
ns  
Notes  
7.5  
7.5  
2.5  
2.5  
-
8.5  
-
-
RX_CLK cycle time  
tCKrx  
tHIGH  
tLOW  
tR  
-
ns  
GTX_CLK and RX_CLK high level w idth  
GTX_CLK and RX_CLK low level w idth  
GTX_CLK and RX_CLK rise time  
-
ns  
1
-
ns  
1
1.0  
ns  
1, 2  
1, 2  
-
GTX_CLK and RX_CLK fall time  
tF  
-
1.0  
ns  
Data input setup time relative to RX_CLK rising edge  
Data input hold time relative to RX_CLK rising edge  
Data output valid before GTX_CLK rising edge  
Data output valid after GTX_CLK rising edge  
tSETUP  
tHOLD  
tOVB  
tOVA  
2.0  
0.0  
2.5  
0.5  
-
-
-
-
ns  
ns  
-
ns  
1
ns  
1
Notes:  
General comment: All values w ere measured from VIL(max) to VIH(min), unless otherw ise specified.  
1. For all signals, the load is CL = 5 pF.  
2. Rise time measured from VIL(max) to VIH(min), fall time measured from VIH(min) to VIL(max).  
8.6.4.2  
GMII Test Circuit  
Figure 11: GMII Test Circuit  
Test Point  
CL  
Copyright © 2008 Marvell  
Doc. No. MV-S104859-U0 Rev. E  
Page 95  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
   
88F6281  
Hardware Specifications  
8.6.4.3  
GMII AC Timing Diagrams  
Figure 12: GMII Output AC Timing Diagram  
tLOW  
tHIGH  
VIH(min)  
VIL(max)  
GTX_CLK  
VIH(min)  
VIL(max)  
TXD, TX_EN, TX_ER  
tOVB  
tOVA  
Figure 13: GMII Input AC Timing Diagram  
tLOW  
tHIGH  
VIH(min)  
VIL(max)  
RX_CLK  
VIH(min)  
VIL(max)  
RXD, RX_EN, RX_ER  
tSETUP  
tHOLD  
Doc. No. MV-S104859-U0 Rev. E  
Page 96  
Copyright © 2008 Marvell  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
   
Electrical Specifications  
AC Electrical Specifications  
8.6.5  
Media Independent Interface/Marvell Media Independent  
Interface (MII/MMII) AC Timing  
8.6.5.1  
MII/MMII MAC Mode AC Timing Table  
Table 52: MII/MMII MAC Mode AC Timing Table  
Description  
Symbol  
tSU  
Min  
3.5  
2.0  
0.0  
Max  
Units  
ns  
Notes  
Data input setup relative to RX_CLK rising edge  
Data input hold relative to RX_CLK rising edge  
Data output delay relative to MII_TX_CLK rising edge  
-
-
-
-
tHD  
ns  
tOV  
10.0  
ns  
1
Notes:  
General comment: All values w ere measured from VIL(max) to VIH(min), unless otherw ise specified.  
1. For all signals, the load is CL = 5 pF.  
8.6.5.2  
MII/MMII MAC Mode Test Circuit  
Figure 14: MII/MMII MAC Mode Test Circuit  
Test Point  
CL  
8.6.5.3  
MII/MMII MAC Mode AC Timing Diagrams  
Figure 15: MII/MMII MAC Mode Output Delay AC Timing Diagram  
Vih(min)  
MII_TX_CLK  
Vil(max)  
Vih(min)  
TXD, TX_EN, TX_ER  
Vil(max)  
TOV  
Copyright © 2008 Marvell  
Doc. No. MV-S104859-U0 Rev. E  
Page 97  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
     
88F6281  
Hardware Specifications  
Figure 16: MII/MMII MAC Mode Input AC Timing Diagram  
Vih(min)  
RX_CLK  
Vih(min)  
Vil(max)  
RXD, RX_EN, RX_ER  
tSU  
tHD  
Doc. No. MV-S104859-U0 Rev. E  
Page 98  
Copyright © 2008 Marvell  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
 
Electrical Specifications  
AC Electrical Specifications  
8.6.6  
Serial Management Interface (SMI) AC Timing  
8.6.6.1  
SMI Master Mode AC Timing Table  
Table 53: SMI Master Mode AC Timing Table  
Description  
MDC clock frequency  
Symbol  
fCK  
Min  
Max  
Units  
MHz  
tCK  
ns  
Notes  
See note 2  
2
-
MDC clock duty cycle  
tDC  
0.4  
40.0  
0.0  
0.6  
MDIO input setup time relative to MDC rise time  
MDIO input hold time relative to MDC rise time  
MDIO output valid before MDC rise time  
MDIO output valid after MDC rise time  
tSU  
-
-
-
-
-
tHO  
ns  
-
tOVB  
tOVA  
15.0  
15.0  
ns  
1
1
ns  
Notes:  
General comment: All timing values w ere measured from VIL(max) and VIH(min) levels, unless otherw ise specified.  
General comment: tCK = 1/fCK.  
1. For MDC signal, the load is CL = 390 pF, and for MDIO signal, the load is CL = 470 pF.  
2. See "Reference Clocks" table for more details.  
8.6.6.2  
SMI Master Mode Test Circuit  
Figure 17: MDIO Master Mode Test Circuit  
VDDIO  
Test Point  
2 kilohm  
MDIO  
CL  
Copyright © 2008 Marvell  
Doc. No. MV-S104859-U0 Rev. E  
Page 99  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
   
88F6281  
Hardware Specifications  
Figure 18: MDC Master Mode Test Circuit  
Test Point  
MDC  
CL  
8.6.6.3  
SMI Master Mode AC Timing Diagrams  
Figure 19: SMI Master Mode Output AC Timing Diagram  
VIH(min)  
MDC  
VIH(min)  
VIL(max)  
MDIO  
tOVB tOVA  
Figure 20: SMI Master Mode Input AC Timing Diagram  
VIH(min)  
MDC  
VIH(min)  
VIL(max)  
MDIO  
tSU  
tHO  
Doc. No. MV-S104859-U0 Rev. E  
Page 100  
Copyright © 2008 Marvell  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
     
Electrical Specifications  
AC Electrical Specifications  
8.6.7  
JTAG Interface AC Timing  
8.6.7.1  
JTAG Interface AC Timing Table  
Table 54: JTAG Interface AC Timing Table  
30 MHz  
Min Max  
Description  
JTClk frequency  
Symbol  
fCK  
Units  
MHz  
tCK  
V/ns  
ms  
Notes  
30.0  
-
-
JTClk minimum pulse w idth  
Tpw  
0.45  
0.50  
1.0  
0.55  
JTClk rise/fall slew rate  
Sr/Sf  
Trst  
-
2
-
JTRSTn active time  
-
TMS, TDI input setup relative to JTClk rising edge  
TMS, TDI input hold relative to JTClk rising edge  
JTClk falling edge to TDO output delay  
Tsetup  
Thold  
Tprop  
6.67  
13.0  
1.0  
-
-
ns  
-
ns  
-
8.33  
ns  
1
Notes:  
General comment: All values w ere measured from vddio/2 to vddio/2, unless otherw ise specified.  
General comment: tCK = 1/fCK.  
1. For TDO signal, the load is CL = 10 pF.  
2. Defined from VIL to VIH for rise time, and from VIH to VIL for fall time.  
8.6.7.2  
JTAG Interface Test Circuit  
Figure 21: JTAG Interface Test Circuit  
Test Point  
CL  
Copyright © 2008 Marvell  
Doc. No. MV-S104859-U0 Rev. E  
Page 101  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
   
88F6281  
Hardware Specifications  
8.6.7.3  
JTAG Interface AC Timing Diagrams  
Figure 22: JTAG Interface Output Delay AC Timing Diagram  
Tprop  
(max)  
VIH  
JTCK  
VIL  
TDO  
Tprop  
(min)  
Figure 23: JTAG Interface Input AC Timing Diagram  
JTCK  
TMS,TDI  
Tsetup  
Thold  
Doc. No. MV-S104859-U0 Rev. E  
Page 102  
Copyright © 2008 Marvell  
Document Classification: Proprietary Information  
December 2, 2008, Preliminary  
   
Electrical Specifications  
AC Electrical Specifications  
8.6.8  
Two-Wire Serial Interface (TWSI) AC Timing  
8.6.8.1  
TWSI AC Timing Table  
Table 55: TWSI Master AC Timing Table  
Description  
SCK clock frequency  
Symbol  
fCK  
Min  
Max  
Units  
kHz  
tCK  
tCK  
ns  
Notes  
See note 1  
1
2
SCK minimum low level w idth  
tLOW  
tHIGH  
tSU  
0.47  
0.40  
250.0  
0.0  
-
-
SCK minimum high level w idth  
-
2
SDA input setup time relative to SCK rising edge  
SDA input hold time relative to SCK falling edge  
SDA and SCK rise time  
-
-
-
tHD  
ns  
-
tr  
1000.0  
300.0  
0.4  
ns  
2, 3  
2, 3  
2
SDA and SCK fall time  
tf  
-
ns  
SDA output delay relative to SCK falling edge  
tOV  
0.0  
tCK  
Notes:  
General comment: All values referred to VIH(min) and VIL(max) levels, unless otherw ise specified.  
General comment: tCK = 1/fCK.  
1. See "Reference Clocks" table for more details.  
2. For all signals, the load is CL = 100 pF, and RL value can be 500 ohm to 8 kilohm.  
3. Rise time measured from VIL(max) to VIH(min), fall time measured from VIH(min) to VIL(max).  
Table 56: TWSI Slave AC Timing Table  
100 kHz  
Description  
SCK minimum low level w idth  
Symbol  
tLOW  
tHIGH  
tSU  
Min  
4.7  
4.0  
250.0  
0.0  
-
Max  
Units  
us  
Notes  
-
1
1
SCK minimum high level w idth  
-
us  
SDA input setup time relative to SCK rising edge  
SDA input hold time relative to SCK falling edge  
SDA and SCK rise time  
-
-
ns  
-
tHD  
ns  
-
tr  
1000.0  
300.0  
4.0  
ns  
1, 2  
1, 2  
1
SDA and SCK fall time  
tf  
-
ns  
SDA output delay relative to SCK falling edge  
tOV  
0.0  
us  
Notes:  
General comment: All values referred to VIH(min) and VIL(max) levels, unless otherw ise specified.  
1. For all signals, the load is CL = 100 pF, and RL value can be 500 ohm to 8 kilohm.  
2. Rise time measured from VIL(max) to VIH(min), fall time measured from VIH(min) to VIL(max).  
Copyright © 2008 Marvell  
Doc. No. MV-S104859-U0 Rev. E  
Page 103  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
   
88F6281  
Hardware Specifications  
8.6.8.2  
TWSI Test Circuit  
Figure 24: TWSI Test Circuit  
VDDIO  
Test Point  
RL  
CL  
8.6.8.3  
TWSI AC Timing Diagrams  
Figure 25: TWSI Output Delay AC Timing Diagram  
tHIGH  
tLOW  
Vih(min)  
Vil(max)  
SCK  
SDA  
Vih(min)  
Vil(max)  
tOV(min)  
tOV(max)  
Figure 26: TWSI Input AC Timing Diagram  
tLOW  
tHIGH  
Vih(min)  
SCK  
SDA  
Vil(max)  
Vih(min)  
Vil(max)  
tSU  
tHD  
Doc. No. MV-S104859-U0 Rev. E  
Page 104  
Copyright © 2008 Marvell  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
       
Electrical Specifications  
AC Electrical Specifications  
8.6.9  
Sony/Philips Digital Interconnect Format (S/PDIF) AC  
Timing  
8.6.9.1  
S/PDIF AC Timing Table  
Table 57: S/PDIF AC Timing Table  
Description  
Output frequency accuracy  
Input frequency accuracy  
Output jitter - total peak-to-peak  
Jitter transfer gain  
Symbol  
Ftxtol  
Min  
Max  
50.0  
100.0  
0.05  
3.0  
Units  
ppm  
ppm  
UI  
Notes  
-50.0  
1
-
Frxtol  
-100.0  
Txjit  
-
-
-
-
-
1, 2  
3
Txjitgain  
dB  
10.0  
0.25  
0.2  
UI  
4
Input jitter - total peak-to-peak  
Rxjit  
UI  
5
UI  
6
Notes:  
General comment: All values w ere measured from VIL(max) to VIH(min), unless otherw ise specified.  
General comment: For more information, refer to the Digital Audio Interface - Part 3: Consumer Applications,  
IEC 60958-3:2003(E), Chapter 7.3, January 2003.  
1. For all signals, the load is CL = 10 pF.  
2. Using inristic jitter filter.  
3. Refer to Figure-8 in IEC 60958-3:2003(E), Chapter 7.3, January 2003.  
4. Defined for up to 5 Hz.  
5. Defined from 200 Hz to 400 kHz.  
6. Defined for above 400 kHz.  
For additional information about working with a coax connection, see the 88F6180,  
88F6190, 88F6192, and 88F6281 Design Guide.  
Note  
Copyright © 2008 Marvell  
December 2, 2008, Preliminary  
Doc. No. MV-S104859-U0 Rev. E  
Document Classification: Proprietary Information  
Page 105  
 
88F6281  
Hardware Specifications  
8.6.9.2  
S/PDIF Test Circuit  
Figure 27: S/PDIF Test Circuit  
Test Point  
CL  
Doc. No. MV-S104859-U0 Rev. E  
Page 106  
Copyright © 2008 Marvell  
Document Classification: Proprietary Information  
December 2, 2008, Preliminary  
 
Electrical Specifications  
AC Electrical Specifications  
8.6.10  
Inter-IC Sound Interface (I2S) AC Timing  
2
8.6.10.1  
Inter-IC Sound (I S) AC Timing Table  
2
Table 58: Inter-IC Sound (I S) AC Timing Table  
Description  
Symbol  
fCK  
Min  
Max  
Units  
MHz  
tCK  
tCK  
ns  
Notes  
I2SBCLK clock frequency  
See note 2  
2
1
-
I2SBCLK clock high/low level pulse w idth  
I2SDI input setup time relative to I2SBCLK rise time  
I2SDI input hold time relative to I2SBCLK rise time  
I2SDO, I2SLRCLK output delay relative to I2SBCLK rise time  
tCH/tCL  
tSU  
0.37  
0.10  
0.00  
0.10  
-
-
-
tHO  
-
tOD  
0.70  
tCK  
1
Notes:  
General comment: All timing values w ere measured from VIL(max) and VIH(min) levels, unless otherw ise specified.  
General comment: tCK = 1/fCK.  
1. For all signals, the load is CL = 15 pF.  
2. See "Reference Clocks" table for more details.  
2
8.6.10.2  
Inter-IC Sound (I S) Test Circuit  
2
Figure 28: Inter-IC Sound (I S) Test Circuit  
Test Point  
CL  
Copyright © 2008 Marvell  
Doc. No. MV-S104859-U0 Rev. E  
Page 107  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
   
88F6281  
Hardware Specifications  
2
8.6.10.3  
Inter-IC Sound (I S) AC Timing Diagrams  
2
Figure 29: Inter-IC Sound (I S) Output Delay AC Timing Diagram  
tCL  
tCH  
VIH(min)  
VIL(max)  
I2SBCLK  
VIH(min)  
VIL(max)  
I2SDO,  
I2SLRCLK  
tODmin  
tODmax  
2
Figure 30: Inter-IC Sound (I S) Input AC Timing Diagram  
tCL  
tCH  
VIH(min)  
VIL(max)  
I2SBCLK  
I2SDI  
VIH(min)  
VIL(max)  
tSU  
tHO  
Doc. No. MV-S104859-U0 Rev. E  
Page 108  
Copyright © 2008 Marvell  
Document Classification: Proprietary Information  
December 2, 2008, Preliminary  
   
Electrical Specifications  
AC Electrical Specifications  
8.6.11  
Time Division Multiplexing (TDM) Interface AC Timing  
8.6.11.1  
TDM Interface AC Timing Table  
Table 59: TDM Interface AC Timing Table  
8.192 MHz  
Description  
PCLK cycle time  
Symbol  
1/tC  
Min  
Max  
8.192  
0.6  
3.0  
20.0  
-
Units  
MHz  
tC  
Notes  
1, 3  
0.256  
0.4  
PCLK duty cycle  
tDTY  
tR/tF  
tD  
1
PCLK rise/fall time  
-
ns  
1, 2, 8  
1, 4, 6  
5, 7  
DTX and FSYNC valid after PCLK rising edge  
DRX and FSYNC setup time relative to PCLK falling edge  
DRX and FSYNC hold time relative to PCLK falling edge  
0.0  
ns  
tSU  
10.0  
10.0  
ns  
tHD  
-
ns  
5, 7  
Notes:  
General comment: All values w ere measured from vddio/2 to vddio/2, unless otherw ise specified.  
1. For all signals, the load is CL = 20 pF.  
2. Rise and Fall times are referenced to the 20% and 80% levels of the w aveform.  
3. PCLK can be configured to 0.256, 0.512, 0.768, 1.024, 1.536, 2.048, 4.096, 8.192 MHz frequencies only.  
4. This parameter is relevant to FSYNC signal in master-mode only.  
5. This parameter is relevant to FSYNC signal in slave-mode only.  
6. In negative-mode, the DTX signal is relative to PCLK falling edge.  
7. In negative-mode, the DRX signal is relative to PCLK rising edge.  
8. This parameter is relevant w hen the PCLK pin is output.  
8.6.11.2  
TDM Interface Test Circuit  
Figure 31: TDM Interface Test Circuit  
Test Point  
CL  
Copyright © 2008 Marvell  
Doc. No. MV-S104859-U0 Rev. E  
Page 109  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
   
88F6281  
Hardware Specifications  
8.6.11.3  
TDM Interface Timing Diagrams  
Figure 32: TDM Interface Output Delay AC Timing Diagram  
tC  
PCLK  
DTX  
tD  
tD  
Figure 33: TDM Interface Input Delay AC Timing Diagram  
tC  
PCLK  
DRX  
tSU  
tHD  
Doc. No. MV-S104859-U0 Rev. E  
Page 110  
Copyright © 2008 Marvell  
Document Classification: Proprietary Information  
December 2, 2008, Preliminary  
   
Electrical Specifications  
AC Electrical Specifications  
8.6.12  
Serial Peripheral Interface (SPI) AC Timing  
8.6.12.1  
SPI (Master Mode) AC Timing Table  
Table 60: SPI (Master Mode) AC Timing Table  
SPI  
Description  
SCLK clock frequency  
Symbol  
fCK  
Min  
Max  
Units  
MHz  
tCK  
tCK  
V/ns  
ns  
Notes  
See Note 3  
3
1
1
1
1
1
1
2
2
SCLK high time  
tCH  
0.46  
-
SCLK low time  
tCL  
0.46  
0.5  
-2.5  
8.0  
8.0  
0.2  
5.0  
-
SCLK slew rate  
tSR  
-
Data out valid relative to SCLK falling edge  
CS active before SCLK rising edge  
CS not active after SCLK rising edge  
Data in setup time relative to SCLK rising edge  
Data in hold time relative to SCLK rising edge  
tDOV  
tCSB  
tCSA  
tSU  
2.5  
-
-
-
-
ns  
ns  
tCK  
ns  
tHD  
Notes:  
General comment: All values w ere measured from 0.3*vddio to 0.7*vddio, unless otherw ise specified.  
General comment: tCK = 1/fCK.  
1. For all signals, the load is CL = 10 pF.  
2. Defined from vddio/2 to vddio/2.  
3. See "Reference Clocks" table for more details.  
8.6.12.2  
SPI (Master Mode) Test Circuit  
Figure 34: SPI (Master Mode) Test Circuit  
Test Point  
CL  
Copyright © 2008 Marvell  
Doc. No. MV-S104859-U0 Rev. E  
Page 111  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
   
88F6281  
Hardware Specifications  
8.6.12.3  
SPI (Master Mode) Timing Diagrams  
Figure 35: SPI (Master Mode) Output AC Timing Diagram  
tCH  
tCL  
SCLK  
Data  
Out  
tDOVmin  
tDOVmax  
CS  
tCSB  
tCSA  
Figure 36: SPI (Master Mode) Input AC Timing Diagram  
SCLK  
Data in  
tSU  
tHD  
Doc. No. MV-S104859-U0 Rev. E  
Page 112  
Copyright © 2008 Marvell  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
   
Electrical Specifications  
AC Electrical Specifications  
8.6.13  
Secure Digital Input/Output (SDIO) Interface AC Timing  
8.6.13.1  
Secure Digital Input/Output (SDIO) AC Timing Table  
Table 61: SDIO Host in High Speed Mode AC Timing Table  
Description  
Clock frequency in Data Transfer Mode  
Clock high/low level pulse w idth  
Symbol  
fCK  
Min  
0
Max  
Units Notes  
50  
MHz  
tCK  
ns  
-
tWL/tWH  
tTLH/tTHL  
tDOVB  
tDOVA  
tISU  
0.35  
-
-
1, 3  
1, 3  
2, 3  
2, 3  
2
Clock rise/fall time  
3.0  
CMD, DAT output valid before CLK rising edge  
CMD, DAT output valid after CLK rising edge  
CMD, DAT input setup relative to CLK rising edge  
CMD, DAT input hold relative to CLK rising edge  
6.5  
2.5  
7.0  
0.0  
-
-
-
-
ns  
ns  
ns  
tIHD  
ns  
2
Notes:  
General comment: tCK = 1/fCK.  
1. Defined on VIL(max) and VIH(min) levels.  
2. Defined on VDDIO/2 for Clock signal, and VIL(max) / VIH(min) for CMD & DAT signals.  
3. For all signals, the load is CL = 10 pF.  
8.6.13.2  
Secure Digital Input/Output (SDIO) Test Circuit  
Figure 37: Secure Digital Input/Output (SDIO) Test Circuit  
VDDIO  
Test Point  
50 KOhm  
CL  
Copyright © 2008 Marvell  
Doc. No. MV-S104859-U0 Rev. E  
Page 113  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
   
88F6281  
Hardware Specifications  
8.6.13.3  
Secure Digital Input/Output (SDIO) AC Timing Diagrams  
Figure 38: SDIO Host in High Speed Mode Output AC Timing Diagram  
tWL  
tWH  
VIH(min)  
VDDIO/2  
VIL(max)  
CLK  
VIH(min)  
VIL(max)  
DAT,  
CMD  
tDOVB tDOVA  
Figure 39: SDIO Host in High Speed Mode Input AC Timing Diagram  
tWL  
tWH  
VIH(min)  
VDDIO/2  
VIL(max)  
CLK  
VIH(min)  
VIL(max)  
DAT,  
CMD  
tISU  
tIHD  
Doc. No. MV-S104859-U0 Rev. E  
Page 114  
Copyright © 2008 Marvell  
Document Classification: Proprietary Information  
December 2, 2008, Preliminary  
   
Electrical Specifications  
AC Electrical Specifications  
8.6.14  
Transport Stream (TS) Interface AC Timing  
8.6.14.1  
Transport Stream Interface AC Timing Table  
Table 62: Transport Stream Output Interface AC Timing Table  
Description  
Symbol  
fCK  
Min  
Max  
Units  
MHz  
Notes  
Clock frequency  
See note 1  
1
2
Clock minimum low level w idth  
Clock minimum high level w idth  
Data output valid after Clock rising edge  
tLOW  
tHIGH  
tOV  
0.4  
0.4  
0.4  
0.6  
0.6  
0.6  
tCK  
tCK  
tCK  
2
2, 3  
Notes:  
General comment: All values w ere measured from VIL(max) to VIH(min), unless otherw ise specified.  
General comment: tCK = 1/fCK.  
1. See "Reference Clocks" table for more details.  
2. For all signals, the load is CL = 5 pF.  
3. When configured to falling edge, the tOV parameter is relative to Clock falling edge.  
Table 63: Transport Stream Input Interface AC Timing Table  
Description  
Symbol  
fCK  
Min  
Max  
Units  
MHz  
Notes  
Clock frequency  
See note 1  
1
-
Clock minimum low level w idth  
Clock minimum high level w idth  
Data input setup time relative to Clock rising edge  
Data input setup time relative to Clock rising edge  
tLOW  
tHIGH  
tSU  
0.35  
0.35  
0.30  
0.30  
0.65  
tCK  
tCK  
tCK  
tCK  
0.65  
-
-
-
2
2
tHD  
Notes:  
General comment: All values w ere measured from VIL(max) to VIH(min), unless otherw ise specified.  
General comment: tCK = 1/fCK.  
1. See "Reference Clocks" table for more details.  
2. When configured to falling edge, the tSU/tHD parameters are relative to Clock falling edge.  
Copyright © 2008 Marvell  
Doc. No. MV-S104859-U0 Rev. E  
Page 115  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
   
88F6281  
Hardware Specifications  
8.6.14.2  
Transport Stream Interface Test Circuit  
Figure 40: Transport Stream Interface Test Circuit  
Test Point  
CL  
8.6.14.3  
Transport Stream Interface Timing Diagrams  
Figure 41: Transport Stream Output Interface AC Timing Diagram  
tHIGH  
tLOW  
Vih(min)  
Vil(max)  
Clock  
Vih(min)  
Vil(max)  
Data Out  
tOV(min)  
tOV(max)  
Doc. No. MV-S104859-U0 Rev. E  
Page 116  
Copyright © 2008 Marvell  
Document Classification: Proprietary Information  
December 2, 2008, Preliminary  
   
Electrical Specifications  
AC Electrical Specifications  
Figure 42: Transport Stream Input Interface AC Timing Diagram  
tLOW  
tHIGH  
Vih(min)  
Clock  
Vil(max)  
Vih(min)  
Vil(max)  
Data In  
tSU  
tHD  
Copyright © 2008 Marvell  
December 2, 2008, Preliminary  
Doc. No. MV-S104859-U0 Rev. E  
Page 117  
Document Classification: Proprietary Information  
 
88F6281  
Hardware Specifications  
8.7  
Differential Interface Electrical Characteristics  
This section provides the reference clock, AC, and DC characteristics for the following differential  
interfaces:  
8.7.1  
Differential Interface Reference Clock Characteristics  
8.7.1.1  
PCI Express Interface Differential Reference Clock Characteristics  
Table 64: PCI Express Interface Differential Reference Clock Characteristics  
Description  
Symbol  
fCK  
Min  
Max  
Units  
MHz  
tCK  
V/nS  
mV  
Notes  
Clock frequency  
Clock duty cycle  
100.0  
-
-
DCrefclk  
SRrefclk  
VIHrefclk  
VILrefclk  
Vcross  
Vcrs_dlta  
Tperavg  
Tperabs  
Tccjit  
0.4  
0.6  
0.6  
4.0  
Differential rising/falling slew rate  
Differential high voltage  
3
-
150.0  
-
-
Differential low voltage  
-150.0  
550.0  
140.0  
2800.0  
10.2  
mV  
-
Absolute crossing point voltage  
Variation of Vcross over all rising clock edges  
Average differential clock period accuracy  
Absolute differential clock period  
Differential clock cycle-to-cycle jitter  
Notes :  
250.0  
-
mV  
1
1
-
mV  
-300.0  
9.8  
ppm  
nS  
2
-
-
150.0  
pS  
General Comment: The reference clock timings are based on 100 ohm test circuit.  
General Comment: Refer to the PCI Express Card Electromechanical Specification, Revision 1.1,  
March 2005, section 2.1.3 for more information.  
1. Defined on a single-ended signal.  
2. Including jitter and spread spectrum.  
3. Defined from -150 mV to +150 mV on the differential w aveform.  
Doc. No. MV-S104859-U0 Rev. E  
Copyright © 2008 Marvell  
Page 118  
Document Classification: Proprietary Information  
December 2, 2008, Preliminary  
       
Electrical Specifications  
Differential Interface Electrical Characteristics  
PCI Express Interface Spread Spectrum Requirements  
Table 65: PCI Express Interface Spread Spectrum Requirements  
Symbol  
Min  
0.0  
Max  
33.0  
0.0  
Units Notes  
Fmod  
kHz  
%
1
1
Fspread  
-0.5  
Notes :  
1. Defined on linear sw eep or “Hershey’s Kiss” (US Patent 5,631,920) modulations.  
Copyright © 2008 Marvell  
Doc. No. MV-S104859-U0 Rev. E  
Page 119  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
   
88F6281  
Hardware Specifications  
8.7.2  
PCI Express Interface Electrical Characteristics  
8.7.2.1  
PCI Express Interface Driver and Receiver Characteristics  
Table 66: PCI Express Interface Driver and Receiver Characteristics  
Description  
Symbol  
BR  
Min  
Max  
Units  
Gbps  
ps  
Notes  
Baud rate  
2.5  
-
-
Unit interval  
UI  
400.0  
Baud rate tolerance  
Bppm  
-300.0  
300.0  
ppm  
2
Driver parameters  
Differential peak to peak output voltage  
Minimum TX eye w idth  
VTXpp  
TTXeye  
0.8  
0.75  
10.0  
6.0  
1.2  
V
UI  
-
-
-
Differential return loss  
TRLdiff  
-
-
dB  
1
1
-
Common mode return loss  
DC differential TX impedance  
TRLcm  
dB  
ZTXdiff  
80.0  
120.0  
Ohm  
Receiver parameters  
VRXpp  
Differential input peak to peak voltage  
Minimum receiver eye w idth  
Differential return loss  
0.175  
0.4  
1.2  
V
-
-
TRXeye  
-
UI  
RRLdiff  
10.0  
6.0  
-
dB  
1
1
-
Common mode return loss  
RRLcm  
-
dB  
DC differential RX impedance  
DC common input impedance  
ZRXdiff  
80.0  
40.0  
120.0  
60.0  
Ohm  
Ohm  
ZRXcm  
-
Notes:  
General Comment: For more information, refer to the PCI Express Base Specification, Revision 1.1, March, 2005.  
1. Defined from 50 MHz to 1.25 GHz.  
2. Does not account for SSC dictated variations.  
Doc. No. MV-S104859-U0 Rev. E  
Page 120  
Copyright © 2008 Marvell  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
   
Electrical Specifications  
Differential Interface Electrical Characteristics  
8.7.2.2  
PCI Express Interface Test Circuit  
Figure 43: PCI Express Interface Test Circuit  
Test Points  
-
+
C_TX  
D+  
D-  
50 ohm  
50 ohm  
C_TX  
When measuring Transmitter output parameters, C_TX is an optional portion of the  
Test/Measurement load. When used, the value of C_TX must be in the range of 75 nF to 200 nF.  
C_TX must not be used when the Test/Measurement load is placed in the Receiver package  
reference plane.  
Copyright © 2008 Marvell  
Doc. No. MV-S104859-U0 Rev. E  
Page 121  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
 
88F6281  
Hardware Specifications  
8.7.3  
SATA Interface Electrical Characteristics  
The driver and receiver characteristics for the SATA-I Interface Gen1i Mode and the SATA-II  
Interface Gen2i Mode are provided in the following sections.  
Doc. No. MV-S104859-U0 Rev. E  
Page 122  
Copyright © 2008 Marvell  
Document Classification: Proprietary Information  
December 2, 2008, Preliminary  
 
Electrical Specifications  
Differential Interface Electrical Characteristics  
8.7.3.1  
SATA-I Interface Gen1i Mode Driver and Receiver Characteristics  
Table 67: SATA-I Interface Gen1i Mode Driver and Receiver Characteristics  
Description  
Symbol  
BR  
Min  
Max  
Units  
Gbps  
ppm  
kHz  
Notes  
Baud Rate  
1.5  
-
-
-
-
-
Baud rate tolerance  
Bppm  
Fssc  
SSCtol  
UI  
-350.0  
30.0  
350.0  
33.0  
0.0  
Spread spectrum modulation frequency  
Spread spectrum modulation Deviation  
Unit Interval  
-5000.0  
ppm  
ps  
666.67  
Driver Parameters  
Differential impedance  
Zdifftx  
Zsetx  
RLOD  
RLOD  
RLOD  
RLOD  
RLOD  
Vdifftx  
TJ5  
85.0  
40.0  
14.0  
8.0  
6.0  
3.0  
1.0  
400.0  
-
115.0  
Ohm  
Ohm  
dB  
dB  
dB  
dB  
dB  
mV  
UI  
-
-
Single ended impedance  
-
Differential return loss (75 MHz-150 MHz)  
Differential return loss (150 MHz-300 MHz)  
Differential return loss (300 MHz-1.2 GHz)  
Differential return loss (1.2 GHz-2.4 GHz)  
Differential return loss (2.4 GHz-3.0 GHz)  
Output differential voltage  
-
-
-
-
-
-
-
-
-
-
600.0  
0.355  
0.175  
0.470  
0.220  
2
1
-
Total jitter at connector data-data, 5UI  
Deterministic jitter at connector data-data, 5UI  
Total jitter at connector data-data, 250UI  
Deterministic jitter at connector data-data, 250UI  
DJ5  
-
UI  
TJ250  
DJ250  
-
UI  
1
-
-
UI  
Receiver Parameters  
Differential impedance  
Zdiffrx  
Zsetx  
RLID  
RLID  
RLID  
RLID  
RLID  
RLID  
Vdiffrx  
TJ5  
85.0  
40.0  
18.0  
14.0  
10.0  
8.0  
3.0  
1.0  
325.0  
-
115.0  
Ohm  
Ohm  
dB  
dB  
dB  
dB  
dB  
dB  
mV  
UI  
-
-
Single ended impedance  
-
Differential return loss (75 MHz-150 MHz)  
Differential return loss (150 MHz-300 MHz)  
Differential return loss (300 MHz-600 MHz)  
Differential return loss (600 MHz-1.2 GHz)  
Differential return loss (1.2 GHz-2.4 GHz)  
Differential return loss (2.4 GHz-3.0 GHz)  
Input differential voltage  
-
-
-
-
-
-
-
-
-
-
-
-
600.0  
0.430  
0.250  
0.600  
0.350  
-
Total jitter at connector data-data, 5UI  
Deterministic jitter at connector data-data, 5UI  
Total jitter at connector data-data, 250UI  
Deterministic jitter at connector data-data, 250UI  
1
-
DJ5  
-
UI  
TJ250  
DJ250  
-
UI  
1
-
-
UI  
Notes:  
General Comment: For more information, refer to SATA II Revision 2.6 Specification, February, 2007.  
General Comment: The load is 100 ohm differential for these parameters, unless otherw ise specified.  
General Comment: To comply w ith the values presented in this table, refer to your local  
Marvell representative for register settings.  
1. Total jitter is defined as TJ = (14 * RJσ) + DJ w here Rjσ is random jitter.  
2. Output Differential Amplitude and Pre-Emphasis are configurabile. See functional register description  
for more details.  
Copyright © 2008 Marvell  
Doc. No. MV-S104859-U0 Rev. E  
Page 123  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
   
88F6281  
Hardware Specifications  
8.7.3.2  
SATA-II Interface Gen2i Mode Driver and Receiver Characteristics  
Table 68: SATA-II Interface Gen2i Mode Driver and Receiver Characteristics  
Description  
Symbol  
BR  
Min  
Max  
Units  
Gbps  
ppm  
kHz  
Notes  
Baud Rate  
3.0  
-
-
-
-
-
Baud rate tolerance  
Bppm  
Fssc  
SSCtol  
UI  
-350.0  
30.0  
350.0  
33.0  
0.0  
Spread spectrum modulation frequency  
Spread spectrum modulation Deviation  
Unit Interval  
-5000.0  
ppm  
ps  
333.33  
Driver Parameters  
Output differential voltage  
Vdifftx  
RLOD  
RLOD  
RLOD  
RLOD  
RLOD  
TJ10  
400.0  
700.0  
mV  
dB  
dB  
dB  
dB  
dB  
UI  
1 , 2  
Differential return loss (150 MHz-300 MHz)  
Differential return loss (300 MHz-600 MHz)  
Differential return loss (600 MHz-2.4 GHz)  
Differential return loss (2.4 GHz-3.0 GHz)  
Differential return loss (3.0 GHz-5.0 GHz)  
Total jitter at connector clock-data  
14.0  
8.0  
6.0  
3.0  
1.0  
-
-
-
-
-
-
-
-
-
-
-
0.30  
0.17  
0.37  
0.19  
3
3
4
4
Deterministic jitter at connector clock-data  
Total jitter at connector clock-data  
DJ10  
-
UI  
TJ500  
DJ500  
-
UI  
Deterministic jitter at connector clock-data  
-
UI  
Receiver Parameters  
Input differential voltage  
Vdiffrx  
RLID  
275.0  
18.0  
14.0  
10.0  
8.0  
3.0  
1.0  
-
750.0  
mV  
dB  
dB  
dB  
dB  
dB  
dB  
UI  
5
-
Differential return loss (150 MHz-300 MHz)  
Differential return loss (300 MHz-600 MHz)  
Differential return loss (600 MHz-1.2 GHz)  
Differential return loss (1.2 GHz-2.4 GHz)  
Differential return loss (2.4 GHz-3.0 GHz)  
Differential return loss (3.0 GHz-5.0 GHz)  
Total jitter at connector clock-data  
-
RLID  
-
-
RLID  
-
-
RLID  
-
-
RLID  
-
-
RLID  
-
-
TJ10  
DJ10  
TJ500  
DJ500  
0.46  
0.35  
0.60  
0.42  
3
3
4
4
Deterministic jitter at connector clock-data  
Total jitter at connector clock-data  
-
UI  
-
UI  
Deterministic jitter at connector clock-data  
-
UI  
Notes:  
General Comment: For more information, refer to SATA II Revision 2.6 Specification, February, 2007.  
General Comment: The load is 100 ohm differential for these parameters, unless otherw ise specified.  
General Comment: To comply w ith the values presented in this table, refer to your local  
Marvell representative for register settings.  
1. 0.45-0.55 UI is the range w here the signal meets the minimum level.  
2. Output Differential Amplitude and Pre-Emphasis are configurabile. See functional register description  
for more details.  
3. Defined for BR/10.  
4. Defined for BR/500.  
5. 0.5 UI is the point w here the signal meets the minimum level.  
Doc. No. MV-S104859-U0 Rev. E  
Copyright © 2008 Marvell  
Page 124  
Document Classification: Proprietary Information  
December 2, 2008, Preliminary  
 
Electrical Specifications  
Differential Interface Electrical Characteristics  
8.7.4  
USB Electrical Characteristics  
8.7.4.1  
USB Driver and Receiver Characteristics  
Table 69: USB Low Speed Driver and Receiver Characteristics  
Low Speed  
Min Max  
Description  
Symbol  
BR  
Units  
Mbps  
ppm  
Notes  
Baud Rate  
1.5  
-
-
Baud rate tolerance  
Bppm  
-15000.0 15000.0  
Driver Parameters  
Ouput single ended high  
Ouput single ended low  
VOH  
VOL  
2.8  
0.0  
3.6  
0.3  
V
V
1
2
Output signal crossover voltage  
Data fall time  
VCRS  
TLR  
1.3  
2.0  
V
3
75.0  
75.0  
80.0  
-95.0  
-150.0  
300.0  
300.0  
125.0  
95.0  
150.0  
ns  
ns  
%
ns  
ns  
3, 4  
3, 4  
-
Data rise time  
TLF  
Rise and fall time matching  
Source jitter total: to next transition  
Source jitter total: for paired transitions  
TLRFM  
TUDJ1  
5
TUDJ2  
5
Receiver Parameters  
Input single ended high  
Input single ended low  
Differential input sensitivity  
VIH  
VIL  
VDI  
2.0  
-
-
0.8  
-
V
V
V
-
-
-
0.2  
Notes:  
General Comment: For more information, refer to Universal Serial Bus Specification, Revision 2.0, April 2000.  
General Comment: The load is 100 ohm differential for these parameters, unless otherw ise specified.  
General Comment: To comply w ith the values presented in this table, refer to your local  
Marvell representative for register settings.  
1. Defined w ith 1.425 kilohm pull-up resistor to 3.6V.  
2. Defined w ith 14.25 kilohm pull-dow n resistor to ground.  
3. See "Data Signal Rise and Fall Time" w aveform.  
4. Defined from 10% to 90% for rise time and 90% to 10% for fall time.  
5. Including frequency tolerance. Timing difference betw een the differential data signals.  
Defined at crossover point of differential data signals.  
Copyright © 2008 Marvell  
Doc. No. MV-S104859-U0 Rev. E  
Page 125  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
   
88F6281  
Hardware Specifications  
Table 70: USB Full Speed Driver and Receiver Characteristics  
Full Speed  
Min Max  
Description  
Symbol  
BR  
Units  
Mbps  
ppm  
Notes  
Baud Rate  
12.0  
-2500.0  
-
-
Baud rate tolerance  
Bppm  
2500.0  
Driver Parameters  
Ouput single ended high  
Ouput single ended low  
VOH  
VOL  
2.8  
0.0  
3.6  
0.3  
V
V
1
2
Output signal crossover voltage  
Output rise time  
VCRS  
TFR  
1.3  
2.0  
V
4
4.0  
20.0  
20.0  
3.5  
ns  
ns  
ns  
ns  
ns  
3, 4  
3, 4  
5, 6  
5, 6  
6
Output fall time  
TFL  
4.0  
Source jitter total: to next transition  
Source jitter total: for paired transitions  
Source jitter for differential transition to SE0 transition  
TDJ1  
TDJ2  
TFDEOP  
-3.5  
-4.0  
-2.0  
4.0  
5.0  
Receiver Parameters  
Input single ended high  
VIH  
VIL  
2.0  
-
-
V
V
-
-
Input single ended low  
0.8  
-
Differential input sensitivity  
Receiver jitter : to next transition  
Receiver jitter: for paired transitions  
VDI  
tJR1  
tJR2  
0.2  
-18.5  
-9.0  
V
-
18.5  
9.0  
ns  
ns  
6
6
Notes:  
General Comment: For more information, refer to Universal Serial Bus Specification, Revision 2.0, April 2000.  
General Comment: The load is 100 ohm differential for these parameters, unless otherw ise specified.  
General Comment: To comply w ith the values presented in this table, refer to your local  
Marvell representative for register settings.  
1.. Defined w ith 1.425 kilohm pull-up resistor to 3.6V.  
2.. Defined w ith 14.25 kilohm pull-dow n resistor to ground.  
3. Defined from 10% to 90% for rise time and 90% to 10% for fall time.  
4. See "Data Signal Rise and Fall Time" w aveform.  
5. Including frequency tolerance. Timing difference betw een the differential data signals.  
6. Defined at crossover point of differential data signals.  
Doc. No. MV-S104859-U0 Rev. E  
Copyright © 2008 Marvell  
Page 126  
Document Classification: Proprietary Information  
December 2, 2008, Preliminary  
 
Electrical Specifications  
Differential Interface Electrical Characteristics  
Table 71: USB High Speed Driver and Receiver Characteristics  
High Speed  
Min Max  
Description  
Symbol  
BR  
Units  
Mbps  
ppm  
Notes  
Baud Rate  
480.0  
-500.0  
-
-
Baud rate tolerance  
Bppm  
500.0  
Driver Parameters  
Data signaling high  
Data signaling low  
Data rise time  
VHSOH  
VHSOL  
THSR  
360.0  
-10.0  
500.0  
500.0  
440.0  
mV  
mV  
ps  
-
10.0  
-
-
-
1
1
2
Data fall time  
THSF  
ps  
Data source jitter  
See note 2  
Receiver Parameters  
Differential input signaling levels  
Data signaling common mode voltage range  
Receiver jitter tolerance  
See note 3  
-50.0 500.0  
See note 3  
3
-
VHSCM  
mV  
3
Notes:  
General Comment: For more information, refer to Universal Serial Bus Specification, Revision 2.0, April 2000.  
General Comment: The load is 100 ohm differential for these parameters, unless otherw ise specified.  
General Comment: To comply w ith the values presented in this table, refer to your local  
Marvell representative for register settings.  
1. Defined from 10% to 90% for rise time and 90% to 10% for fall time.  
2. Source jitter specified by the "TX eye diagram pattern template" figure.  
3. Receiver jitter specified by the "RX eye diagram pattern template" figure.  
8.7.4.2  
USB Interface Driver Waveforms  
Figure 44: Low/Full Speed Data Signal Rise and Fall Time  
Rise Time  
Fall Time  
90%  
90%  
VCRS  
10%  
10%  
Differential  
Data Lines  
TR  
TF  
Copyright © 2008 Marvell  
Doc. No. MV-S104859-U0 Rev. E  
Page 127  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
   
88F6281  
Hardware Specifications  
Figure 45: High Speed TX Eye Diagram Pattern Template  
+525mV  
+475mV  
+400mV  
Differential  
+300mV  
0 Volts  
Differential  
-300mV  
- 400mV  
Differential  
-475mV  
-525mV  
7.5%  
37.5%  
62.5%  
92.5%  
0%  
100%  
Figure 46: High Speed RX Eye Diagram Pattern Template  
+525mV  
+475mV  
+400mV  
Differential  
+175mV  
0 Volts  
Differential  
-175mV  
- 400mV  
Differential  
-475mV  
-525mV  
12.5%  
87.5%  
35  
65  
100%  
0%  
Doc. No. MV-S104859-U0 Rev. E  
Page 128  
Copyright © 2008 Marvell  
Document Classification: Proprietary Information  
December 2, 2008, Preliminary  
   
Thermal Data (Preliminary)  
9
Thermal Data (Preliminary)  
Table 72 provides the package thermal data for the device. This data is derived from simulations that  
were run according to the JEDEC standard.  
The thermal parameters are preliminary and subject to change.  
Note  
TET  
The documents listed below provide a basic understanding of thermal management of integrated  
circuits (ICs) and guidelines to ensure optimal operating conditions for Marvell products. Before  
designing a system it is recommended to refer to these documents:  
Application Note, AN-63 Thermal Management for Selected Marvell® Products, Document  
Number MV-S300281-00  
White Paper, ThetaJC, ThetaJA, and Temperature Calculations, Document Number  
MV-S700019-00.  
Table 72: Thermal Data for the 88F6281 in the BGA 19 x 19 mm Package (Preliminary)  
Symbol  
Definition  
Airflow Value (C/W)  
0[m/s]  
20.2  
1[m/s]  
18.7  
2[m/s]  
18.1  
θ
Thermal resistance: junction to ambient.  
JA  
Ψ
Thermal characterization parameter:  
junction to case center.  
7.0  
7.0  
7.1  
JT  
θ
Thermal resistance: junction to case (not air-flow dependent)  
8.4  
JC  
Ψ
Thermal characterization parameter:  
junction to the bottom of the package.  
10.7  
10.6  
10.6  
JB  
θJB  
Thermal resistance:  
junction to the bottom of the package (not air-flow dependent)  
10.9  
Copyright © 2008 Marvell  
Doc. No. MV-S104859-U0 Rev. E  
Page 129  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
   
88F6281  
Hardware Specifications  
10  
Package  
This section provides the 88F6281 package drawing and dimensions.  
Figure 47: HSBGA 288-pin Package and Dimensions  
Doc. No. MV-S104859-U0 Rev. E  
Copyright © 2008 Marvell  
Page 130  
Document Classification: Proprietary Information  
December 2, 2008, Preliminary  
   
Package  
Table 73: HSBGA 288-pin Package Dimensions  
Symbol  
Common Dimension  
(in millimeters)  
HSBGA  
19.000  
Package  
X
Y
X
Y
D
Body size  
E
19.000  
eD  
eE  
A
1.000  
Ball pitch  
1.000  
Total thickness  
Mold thickness  
Substrate thickness  
Ball diameter  
Standoff  
1.910 ± 0.190  
0.850 ref  
0.560 ref  
0.600  
A3  
A2  
A1  
b
0.400 ~ 0.600  
0.500 ~ 0.700  
17.000  
Ball width  
X
Y
M
Mold area  
N
17.000  
H/S exposed size  
H/S flatness  
P
12.000 ~ 13.200  
0.100  
Q
H/S shift with substrate edge  
H/S shift with mold area  
Chamfer  
R
0.300  
S
0.500  
CA  
aaa  
bbb  
ccc  
ddd  
eee  
fff  
1.215 ref  
0.200  
Package edge tolerance  
Substrate flatness  
Mold flatness  
0.250  
0.350  
Copolarity  
0.200  
Ball offset (package)  
Ball offset (ball)  
Ball count  
0.250  
0.100  
n
288  
X
Y
D1  
E1  
17.000  
Edge ball center-to-center  
17.000  
Copyright © 2008 Marvell  
Doc. No. MV-S104859-U0 Rev. E  
Page 131  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
   
88F6281  
Hardware Specifications  
11  
Part Order Numbering/Package Marking  
11.1  
Part Order Numbering  
Figure 48 shows the part order numbering scheme for the 88F6281. Refer to Marvell Field  
Application Engineers (FAEs) or representatives for further information when ordering parts.  
Figure 48: Sample Part Number  
88F6281 –xx–BIA2Cxxx–xxxx  
Part number  
Custom code (optional)  
88F6281  
Die revision  
Speed code  
100 = 1.0 GHz  
120 = 1.2 GHz  
150 = 1.5 GHz  
Temperature code  
C = Commercial  
I = Industrial  
Custom code  
Environmental code  
2 = Green (RoHS 6/6 and  
Halogen-free)  
Package code  
BIA = 288-pin HSBGA  
r
Table 74: 88F6281 Part Order Options  
Package Type  
288-pin BGA  
288-pin BGA  
288-pin BGA  
Part Order Number  
88F6281-xx-BIA2C100 (Green, RoHS 6/6 and Halogen-free package), 1.0 GHz  
88F6281-xx-BIA2C120 (Green, RoHS 6/6 and Halogen-free package), 1.2 GHz  
88F6281-xx-BIA2C150 (Green, RoHS 6/6 and Halogen-free package), 1.5 GHz  
Doc. No. MV-S104859-U0 Rev. E  
Page 132  
Copyright © 2008 Marvell  
Document Classification: Proprietary Information  
December 2, 2008, Preliminary  
             
Part Order Numbering/Package Marking  
Package Marking  
11.2  
Package Marking  
Figure 49 shows a sample Commercial package marking and pin 1 location for the 88F6281.  
Figure 49: Commercial Package Marking and Pin 1 Location  
Marvell logo  
88F6-BIAe  
Part number prefix, package code, environmental code  
88F6 = Part number prefix  
BIA = Package code  
Country of origin code  
(Contained in the mold ID or  
marked as the last line on  
the package.)  
Lot Number  
YYWW xx@  
Country of Origin  
e = Environmental code: 2 = Green  
Part number and die revision  
code  
88F6281-xx  
XXXX  
Date code, custom code, assembly plant code  
88F6281 = Part number  
xx = Die revision code  
YYWW = Date code (YY = year, WW = Work Week)  
xx = Custom code  
@ = Assembly plant code  
Pin 1 location  
Temperature and speed code  
C100 = Commercial, 1.0 GHz  
C120 = Commercial, 1.2 GHz  
C150 = Commercial, 1.5 GHz  
Note: The above drawing is not drawn to scale. Location of markings is approximate.  
Copyright © 2008 Marvell  
Doc. No. MV-S104859-U0 Rev. E  
Page 133  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
     
88F6281  
Hardware Specifications  
Table 75: Revision History  
Revision  
Date  
Comments  
E
December 2, 2008  
Revision  
1. In Figure 1, 88F6281 Pin Logic Diagram, on page 18, changed the GE_TXCLKOUT pin to input/output and added a  
note under the figure, stating that the pin is an input when used the MII/MMII Transmit Clock.  
2. In Table 6, PCI Express Interface Pin Assignments, on page 26, revised the description of the PEX_CLK_P/N pins to  
state that they can be configured as input or output according to the reset strap.  
When the GE_TXCLKOUT pin is used as an MII/MMII Transmit Clock, it is an input pin.  
When the MPP[29]/GE1[9] pin is used as a GMII Transmit Clock, it is a Tri-State output pin.  
4. In Table 12, RTC Interface Pin Assignments, on page 35, changed the type for RTC_XOUT to analog.  
5. In the description of signal AU_SPDFRMCLK in Table 17, Audio (S/PDIF / I S) Interface Signal Assignment, on  
page 40, added a reference to the new AU_SPDFRMCLK information in the Reference Clock AC Timing  
Specifications table.  
6. In Table 24, Unused Interface Strapping, on page 49, revise the description for configuring the PCI Express clock  
signals.  
7. At the end of Section 4.2, Gigabit Ethernet (GbE) Pins Multiplexing on MPP, on page 57, added a note stating that all  
relevant Gigabit Ethernet signals must be implemented.  
8. In the Table 32, Reset Configuration, on page 67, revised the configuration function for parameter CPU_CLK to DDR  
Battery Back-up mode, revised the values for the minimum to 1.3V from 1.4V and for the maximum to 1.7V from 1.6V.  
For the Embedded CPU (VDD_CPU 1.1V) parameter changed the L2 cache frequency to 333 MHz.  
for the eFuse during Burning mode parameter added a note:  
The eFuse burn is done once, and there should be no thermal effect, after it has been burned.  
11. In Table 38, Current Consumption, on page 80, for the Embedded CPU (VDD_CPU 1.1V) parameter changed the L2  
cache frequency to 333 MHz.  
Revised the names of the Ethernet transmit symbols to F  
Added the S/PDIF Recovered Master Clock.  
Added the Transport Stream External Reference Clock.  
, DC  
, and SR  
.
GE_TXCLK_OUT  
GE_TXCLK_OUT  
GE_TXCLK_OUT  
For the PTP Reference Clock, revised the values for the Frequency, Duty Cycle, and Pk-Pk jitter parameters.  
13. In Table 46, SDRAM DDR2 Interface AC Timing Table, on page 88, revised the minimum value for symbol tDHI to 0.70  
ns from 0.72 ns.  
D
October 5, 2008  
Revision  
14. In Table 6, PCI Express Interface Pin Assignments, on page 26, revised the note in the description of the  
PEX_CLK_P/N pins.  
15. In Table 24, Unused Interface Strapping, on page 49, added the eFuse strapping.  
Requirements, on page 64, added a power up/down requirements for when VHV is in eFuse Burning mode.  
Doc. No. MV-S104859-U0 Rev. E  
Page 134  
Copyright © 2008 Marvell  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
 
Revision History  
Table 75: Revision History (Continued)  
Revision  
Date  
Comments  
For VHV, revised the two parameters to VHV (during eFuse Burning mode) and VHV (during eFuse Reading mode)  
and added notes in the comments column for both VHV voltages.  
For VDD_M, PEX_AVDD, and USB_AVDD, revised the comments column.  
for RTC_AVDD, revised the values for minimum to 1.4V from 1.3V and for maximum to 1.6V from 1.7V.  
18. In Table 37, Thermal Power Dissipation, on page 79, revised the row for the SDRAM and added a row for the eFuse.  
19. In Table 38, Current Consumption, on page 80, revised the row for the SDRAM and added a row for the eFuse.  
For the CPU and Core Reference Clock frequency, revised the values.  
For the PTP Reference Clock, added the Slew rate and Pk-Pk jitter parameters.  
C
August 18, 2008  
Revision  
1. Added the XOR engine to the block diagram in the Product Overview on page 3.  
2. Added AN-249: Configuring the Marvell® SATA PHY to Transmit Predefined Test Patterns to the list of Related  
3. In Figure 1, 88F6281 Pin Logic Diagram, on page 18, added VHV, and MRn and changed PEX_CLK_P/N for input to  
input/output (I/O).  
4. In the pin map and pin list, revised pins F04 to MRn and G04 to VHV.  
Added VHV.  
Changed the voltage for XTAL_AVDD from 2.5V to 1.8V.  
Changed the voltage for SATA0_AVDD/SATA1_AVDD from 2.5V to 3.3V.  
Revised the description of VDD_GE_A and VDD_GE_B to add additional information about RGMII.  
7. In Table 5, DDR SDRAM Interface Pin Assignments, on page 24, revised the description of M_NCASL and M_PCAL to  
indicate the range of the resistor.  
8. In Table 6, PCI Express Interface Pin Assignments, on page 26, changed PEX_CLK_P/N for input to input/output (I/O).  
9. Added present and active pins to Table 7, SATA Port Interface Pin Assignment, on page 27.  
Added a note: For the TXCLK, use the GE_RXCLK pin. Also indicated which pins are for port0 and which for port1.  
GE_TXD[3:0], GE_TXCTL, GE_RXCTL, GE_RXCLK, GE_RXD[3:0] rows. Also for pin MPP[30]/GE1[10] added a  
description for MII/MMII Receive Data Valid.  
VDDO/VDD_GE_B.  
requiring pull up.  
15. In Table 23, Internal Pull-up and Pull-down Pins, on page 48, revised the pin numbers and changed pins GE_MDC,  
MPP[7] and MPP[18] from pull down to pull up and removed MPP[13], MPP[15], and MPP[17] from the table, since  
they do not require a pull up/down.  
16. In Table 2, Unused Interface Strapping, on page 49, revised the description of the strapping for the  
SATA0_AVDD/SATA1_AVDD pins.  
Copyright © 2008 Marvell  
Doc. No. MV-S104859-U0 Rev. E  
Page 135  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
88F6281  
Hardware Specifications  
Table 75: Revision History (Continued)  
Revision  
Date  
Comments  
Changed all references to MPP[0] and MPP[11] from GPI to GPIO.  
Changed the MPP[6] row in the table to remove the 0x0 option.  
Added the following bullet at the end of the section, after the tables: When TWSI serial ROM initialization is enabled,  
MPP[8] and MPP[9] wake up as TWSI data and clock pins, respectively.  
Revised the description of SYSRST_OUTn.  
Added a bullet: Pin MPP[6] wakes up after reset in 0x1 mode (SYSRST_OUTn).  
18. In Table 27, Ethernet Ports Pins Multiplexing, on page 57, added a new configuration option for the Gigabit Ethernet  
ports: Port 0 MII/MMII, port 1 RGMII.  
19. In Section 4.3, TSMP (TS Multiplexing Pins) on MPP, on page 59, added to the description of the TSMP pins.  
22. In Section 6.2, Hardware Reset, on page 64, added SYSRST_OUTn to the list of pins that are still active during  
SYSRSTn assertion.  
24. In Section 6.3.2, PCI Express Endpoint Reset, on page 66 revised the bulleted items.  
26. Made major revisions to Table 32, Reset Configuration, on page 67.  
27. Revised the first two paragraphs in Section 6.6, Serial ROM Initialization, on page 70.  
28. In Section 6.7, Boot Sequence, on page 71 revised the paragraph following step 4.  
30. In Table 34, IDCODE Register Map, on page 74, revised the description of bits [31:28].  
Added VHV.  
Revised the voltage for the SATA and XTAL AVDD parameters.  
Added values for VDD_CPU.  
Added VHV and revised the voltage for the SATA and XTAL AVDD parameters.  
For the 3.3V interfaces, revised the minimum value to 3.15V and the maximum value to 3.45V (+/-5%).  
Revised the description of the VDD_GE_A/VDD_GE_B row, to show that RGMII can also operate with a voltage of  
3.3V.  
Revised the values for PEX_AVDD to minimum 1.7V, typical 1.8V, and maximum 1.9V.  
Revised values for Core, Embedded CPU, PCI Express, USB and SATA parameters.  
Changed all occurrences of VDD_CPU to VDD.  
Added the row RGMII 3.3V interface.  
Revised the notes following the table, to remove reference to the trace length or resistance.  
Revised values for Core, Embedded CPU, SATA, PCI Express and USB parameters.  
Changed all occurrences of VDD_CPU to VDD.  
Revised the interface RGMII 1.8V interface to RGMII 1.8V or 3.3V interface.  
Revised the notes following the table to remove reference to the trace length or resistance.  
35. Deleted Section 8.5.2 REF_CLK_XIN 2.5V (CMOS) DC Electrical Specifications and added pin REF_CLK_XIN to  
power rail for the REF_CLK_XIN pin was changed from 2.5V to 1.8V.  
Doc. No. MV-S104859-U0 Rev. E  
Page 136  
Copyright © 2008 Marvell  
Document Classification: Proprietary Information  
December 2, 2008, Preliminary  
Revision History  
Table 75: Revision History (Continued)  
Revision Date Comments  
38. Revised Figure 25, TWSI Output Delay AC Timing Diagram, on page 104 so that it shows SDA t relative to the SCK  
OV  
falling edge, as shown in the two tables that proceed the figure.  
39. In Table 73, HSBGA 288-pin Package Dimensions, on page 131, changed the maximum value for the parameter H/S  
exposed size to 13.200 mm.  
B
April 8, 2008  
Revision  
1. In the features list:  
Added the bullets Precise Timing Protocol (PTP) and Audio Video Bridging networks.  
Added the functional block diagram and the usage model diagram.  
2. Throughout this specification, LVCMOS and LVTTL were changed to CMOS.  
3. In Figure 1, 88F6281 Pin Logic Diagram, on page 18 revised the power pins and removed the interfaces that are  
multiplexed on the MPP pins.  
4. Revised Table 1, Pin Functions and Assignments Table Key, on page 19 to show only terms relevant for this device.  
5. In Table 3, Power Pin Assignments, on page 21, added pins SSCG_AVDD and SSCG_AVSS and added the SMI  
interface at 1.8V and the MII/MMII interface at 3.3V to the description of the interfaces supported by pin VDD_GE_A.  
the GE_MDC and GE_MDIO pins.  
8. In Table 12, RTC Interface Pin Assignments, on page 35, changed the pin type for RTC_XIN to analog from CMOS.  
Requires a pull-up resistor to VDDO.  
11. In Table 29, 88F6281Clocks, on page 60, revised the description of CPU PLL to mention SSCG.  
13. Added Section 6.1, Power-Up/Down Sequence Requirements, on page 63 and revised the title of Section 6 to reflect  
this change.  
14. In Section 6.4, Sheeva CPU TAP Controller Reset, on page 66, revised the note referring to sample at reset and  
added the note: If a signal is pulled up on the board, it must be pulled to the proper voltage level. Certain reset  
configuration pins are powered by VDD_GE_A and VDD_GE_B. Those pins have multiple voltage options (see  
added the parameter SSCG_VDD.  
The purpose of the Thermal Power Dissipation table is to support system engineering in thermal design.  
17. In Table 38, Current Consumption, on page 80 added the following:  
The purpose of the Current Consumption table is to support board power design and power module selection.  
Revised the symbols for the Transport Stream (TS) output and input mode reference clocks.  
Revised the symbols for the SMI master mode reference clock.  
Revised the symbols for the TWSI master mode reference clock.  
Revised the description for symbol F  
RTC_XIN.  
Removed the RGMII, GMII, MII 100 Mbps, and MII 10 Mbps rows, since they are not relevant to this device.  
receiver return loss parameters, according to updated standard.  
A
January 28, 2008  
Initial release  
Copyright © 2008 Marvell  
Doc. No. MV-S104859-U0 Rev. E  
Page 137  
December 2, 2008, Preliminary  
Document Classification: Proprietary Information  
THIS PAGE IS INTENTIONALLY LEFT BLANK.  
Contact INFORMATION  
Marvell Semiconductor, Inc.  
5488 Marvell Lane  
Santa Clara, CA 95054, USA  
Tel: 1.408.222.2500  
Fax: 1.408.752.9028  
Marvell. Moving Forward Faster  

Insignia NS F20C User Manual
JVC SR MV50U User Manual
Lenovo ThinkVision 9205 HG2 User Manual
LG Electronics LG Life Good Computer Monitor W1954S User Manual
Philips 32PFL3X06H User Manual
Philips 109F7 User Manual
Philips Brilliance 190B9CB User Manual
Philips H7170PQI User Manual
Philips M61000 User Manual
Philips SmartCard PPC932C1 User Manual