Intel 815 User Manual

R
Intel® 815 Chipset Platform  
For Use with Universal Socket 370  
Design Guide  
April 2001  
Document Number: 298349-001  
R
Contents  
1
Introduction........................................................................................................................13  
1.1  
1.2  
1.3  
Terminology ..........................................................................................................14  
Reference Documents..........................................................................................16  
System Overview..................................................................................................16  
1.3.1  
1.3.2  
System Features ...................................................................................17  
Component Features.............................................................................18  
1.3.2.1  
1.3.2.2  
1.3.2.3  
Graphics Memory Controller Hub (GMCH)..........................18  
Intel® 82801AA I/O Controller Hub (ICH) .............................20  
Firmware Hub (FWH)...........................................................20  
1.3.3  
Platform Initiatives.................................................................................21  
1.3.3.1  
1.3.3.2  
1.3.3.3  
1.3.3.4  
1.3.3.5  
1.3.3.6  
1.3.3.7  
1.3.3.8  
Universal Socket 370 Design...............................................21  
PC 133 .................................................................................21  
Accelerated Hub Architecture Interface ...............................21  
Internet Streaming SIMD Extensions...................................21  
AGP 2.0................................................................................21  
Manageability.......................................................................22  
AC’97 ...................................................................................23  
Low-Pin-Count (LPC) Interface............................................23  
2
General Design Considerations.........................................................................................25  
2.1 Nominal Board Stackup ........................................................................................25  
3
4
Component Quadrant Layouts...........................................................................................27  
Universal Socket 370 Design ............................................................................................29  
4.1  
4.2  
Universal Socket 370 Definitions ..........................................................................29  
Processor Design Requirements..........................................................................31  
4.2.1  
4.2.2  
4.2.3  
4.2.4  
4.2.5  
4.2.6  
4.2.7  
4.2.8  
4.2.9  
Use of Universal Socket 370 Design with Incompatible GMCH............31  
Identifying the Processor at the Socket.................................................32  
Setting the Appropriate Processor VTT Level.......................................33  
VTT Processor Pin AG1........................................................................34  
Identifying the Processor at the GMCH.................................................34  
Configuring Non-VTT Processor Pins...................................................36  
VCMOS Reference................................................................................37  
Processor Signal PWRGOOD...............................................................38  
APIC Clock Voltage Switching Requirements.......................................39  
4.2.10 GTLREF Topology and Layout..............................................................40  
4.3  
Power Sequencing on Wake Events ....................................................................41  
4.3.1  
4.3.2  
Gating of Intel® CK-815 to VTTPWRGD ...............................................41  
Gating of PWROK to ICH......................................................................42  
5
System Bus Design Guidelines .........................................................................................43  
5.1 System Bus Routing Guidelines ...........................................................................43  
5.1.1 Initial Timing Analysis............................................................................43  
Intel® 815 Chipset Platform Design Guide  
3
R
5.2  
5.3  
General Topology and Layout Guidelines.............................................................46  
5.2.1  
Motherboard Layout Rules for AGTL/AGTL+ Signals...........................47  
5.2.1.1  
Motherboard Layout Rules for Non-AGTL/AGTL+ (CMOS)  
Signals .................................................................................49  
THRMDP and THRMDN......................................................50  
Additional Routing and Placement Considerations..............50  
5.2.1.2  
5.2.1.3  
Electrical Differences for Universal PGA370 Designs ..........................................51  
5.3.1 THERMTRIP Circuit ..............................................................................51  
5.3.1.1 THERMTRIP Timing............................................................51  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
PGA370 Socket Definition Details ........................................................................52  
BSEL[1:0] Implementation Differences.................................................................56  
CLKREF Circuit Implementation...........................................................................57  
Undershoot/Overshoot Requirements ..................................................................57  
Processor Reset Requirements............................................................................58  
Processor PLL Filter Recommendations ..............................................................59  
5.9.1  
5.9.2  
5.9.3  
5.9.4  
Topology................................................................................................59  
Filter Specification.................................................................................59  
Recommendation for Intel Platforms.....................................................61  
Custom Solutions ..................................................................................63  
5.10  
5.11  
Voltage Regulation Guidelines..............................................................................63  
Decoupling Guidelines for Universal PGA370 Designs ........................................63  
5.11.1 VCCCORE Decoupling Design.................................................................63  
5.11.2 VTT Decoupling Design ........................................................................64  
5.11.3 VREF Decoupling Design......................................................................64  
Thermal Considerations........................................................................................65  
5.12.1 Heatsink Volumetric Keepout Regions..................................................65  
Debug Port Changes ............................................................................................67  
5.12  
5.13  
6
System Memory Design Guidelines...................................................................................69  
6.1  
6.2  
System Memory Routing Guidelines.....................................................................69  
System Memory 2-DIMM Design Guidelines........................................................70  
6.2.1  
6.2.2  
System Memory 2-DIMM Connectivity..................................................70  
System Memory 2-DIMM Layout Guidelines.........................................71  
6.3  
System Memory 3-DIMM Design Guidelines........................................................73  
6.3.1  
6.3.2  
System Memory 3-DIMM Connectivity..................................................73  
System Memory 3-DIMM Layout Guidelines.........................................74  
6.4  
6.5  
System Memory Decoupling Guidelines...............................................................75  
Compensation.......................................................................................................77  
7
AGP/Display Cache Design Guidelines.............................................................................79  
7.1  
AGP Interface .......................................................................................................79  
7.1.1  
7.1.2  
Graphics Performance Accelerator (GPA)............................................80  
AGP Universal Retention Mechanism (RM)..........................................80  
7.2  
7.3  
AGP 2.0 ................................................................................................................82  
7.2.1 AGP Interface Signal Groups................................................................83  
Standard AGP Routing Guidelines .......................................................................84  
7.3.1  
1X Timing Domain Routing Guidelines .................................................84  
7.3.1.1  
7.3.1.2  
Flexible Motherboard Guidelines .........................................84  
AGP-Only Motherboard Guidelines......................................84  
7.3.2  
2X/4X Timing Domain Routing Guidelines............................................84  
7.3.2.1  
Flexible Motherboard Guidelines .........................................85  
4
Intel® 815 Chipset Platform Design Guide  
R
7.3.2.2  
AGP-Only Motherboard Guidelines......................................86  
7.3.3  
7.3.4  
7.3.5  
7.3.6  
AGP Routing Guideline Considerations and Summary.........................87  
AGP Clock Routing ...............................................................................88  
AGP Signal Noise Decoupling Guidelines.............................................88  
AGP Routing Ground Reference...........................................................89  
7.4  
AGP Down Routing Guidelines.............................................................................90  
7.4.1  
7.4.2  
7.4.3  
7.4.4  
7.4.5  
7.4.6  
1X AGP Down Option Timing Domain Routing Guidelines...................90  
2X/4X AGP Down Timing Domain Routing Guidelines.........................90  
AGP Routing Guideline Considerations and Summary.........................91  
AGP Clock Routing ...............................................................................92  
AGP Signal Noise Decoupling Guidelines.............................................92  
AGP Routing Ground Reference...........................................................92  
7.5  
7.6  
AGP 2.0 Power Delivery Guidelines .....................................................................93  
7.5.1  
7.5.2  
VDDQ Generation and TYPEDET#.......................................................93  
VREF Generation for AGP 2.0 (2X and 4X)..........................................95  
Additional AGP Design Guidelines........................................................................97  
7.6.1  
7.6.2  
Compensation .......................................................................................97  
AGP Pull-Ups ........................................................................................97  
7.6.2.1  
AGP Signal Voltage Tolerance List......................................98  
7.7  
7.8  
Motherboard / Add-in Card Interoperability...........................................................98  
AGP / Display Cache Shared Interface.................................................................99  
7.8.1  
GPA Card Considerations.....................................................................99  
7.8.1.1 AGP and GPA Mechanical Considerations..........................99  
Display Cache Clocking.......................................................................100  
7.8.2  
7.9  
Designs That Do Not Use The AGP Port............................................................100  
8
Integrated Graphics Display Output.................................................................................101  
8.1  
Analog RGB/CRT................................................................................................101  
8.1.1  
8.1.2  
8.1.3  
8.1.4  
8.1.5  
RAMDAC/Display Interface .................................................................101  
Reference Resistor (Rset) Calculation................................................103  
RAMDAC Board Design Guidelines....................................................103  
RAMDAC Layout Recommendations..................................................105  
HSYNC/VSYNC Output Guidelines.....................................................105  
8.2  
Digital Video Out .................................................................................................106  
8.2.1  
8.2.2  
8.2.3  
DVO Interface Routing Guidelines ......................................................106  
DVO I2C Interface Considerations.......................................................106  
Leaving the DVO Port Unconnected ...................................................106  
9
Hub Interface...................................................................................................................107  
9.1.1  
9.1.2  
9.1.3  
9.1.4  
Data Signals ........................................................................................108  
Strobe Signals .....................................................................................108  
HREF Generation/Distribution.............................................................108  
Compensation .....................................................................................109  
10  
I/O Subsystem .................................................................................................................111  
10.1  
IDE Interface.......................................................................................................111  
10.1.1 Cabling and Motherboard Requirements ............................................111  
Cable Detection for Ultra ATA/66........................................................................113  
10.2.1 Host Side Cable Detection ..................................................................114  
10.2.2 Device Side Cable Detection...............................................................115  
10.2.3 Primary IDE Connector Requirements................................................116  
10.2.4 Secondary IDE Connector Requirements ...........................................117  
10.2  
Intel® 815 Chipset Platform Design Guide  
5
R
10.2.5 Layout for Both Host-Side and Device-Side Cable Detection .............118  
AC’97 ..................................................................................................................119  
10.3.1 AC’97 Routing .....................................................................................119  
10.3.2 AC’97 Signal Quality Requirements ....................................................121  
10.3.3 Motherboard Implementation ..............................................................121  
Using Native USB Interface ................................................................................122  
I/O APIC (I/O Advanced Programmable Interrupt Controller).............................123  
SMBus ................................................................................................................124  
PCI......................................................................................................................124  
LPC/FWH............................................................................................................125  
10.8.1 In-Circuit FWH Programming..............................................................125  
10.8.2 FWH VPP Design Guidelines ...............................................................125  
RTC.....................................................................................................................125  
10.9.1 RTC Crystal.........................................................................................126  
10.9.2 External Capacitors.............................................................................126  
10.9.3 RTC Layout Considerations ................................................................127  
10.9.4 RTC External Battery Connection .......................................................127  
10.9.5 RTC External RTCRESET Circuit.......................................................128  
10.9.6 RTC-Well Input Strap Requirements...................................................128  
10.9.7 RTC Routing Guidelines......................................................................129  
10.9.8 Guidelines to Minimize ESD Events....................................................129  
10.9.9 VBIAS and DC Voltage and Noise Measurements .............................129  
10.3  
10.4  
10.5  
10.6  
10.7  
10.8  
10.9  
11  
Clocking...........................................................................................................................131  
11.1  
11.2  
11.3  
11.4  
11.5  
11.6  
11.7  
2-DIMM Clocking ................................................................................................131  
3-DIMM Clocking ................................................................................................133  
Clock Routing Guidelines....................................................................................135  
Clock Decoupling................................................................................................137  
Clock Driver Frequency Strapping......................................................................137  
Clock Skew Assumptions ...................................................................................138  
Intel® CK-815 Power Gating On Wake Events ...................................................139  
12  
Power Delivery.................................................................................................................141  
12.1  
Thermal Design Power .......................................................................................144  
12.1.1 Pull-Up and Pull-Down Resistor Values ..............................................144  
ATX Power Supply PWRGOOD Requirements..................................................145  
Power Management Signals...............................................................................146  
12.3.1 Power Button Implementation .............................................................147  
1.85V/3.3V Power Sequencing ...........................................................................148  
12.4.1 VDDQ/VCC1_85 Power Sequencing ..................................................152  
12.4.2 1.85V/3.3V Power Sequencing............................................................152  
12.4.3 3.3V/V5REF Sequencing.....................................................................154  
12.2  
12.3  
12.4  
13  
System Design Checklist.................................................................................................155  
13.1  
13.2  
Design Review Checklist ....................................................................................155  
Processor Checklist............................................................................................155  
13.2.1 GTL Checklist......................................................................................155  
13.2.2 CMOS Checklist..................................................................................156  
13.2.3 TAP Checklist for 370-Pin Socket Processors....................................156  
13.2.4 Miscellaneous Checklist for 370-Pin Socket Processors ....................156  
GMCH Checklist .................................................................................................158  
13.3  
6
Intel® 815 Chipset Platform Design Guide  
R
13.3.1 AGP Interface 1X Mode Checklist.......................................................158  
13.3.2 Designs That Do Not Use the AGP Port .............................................159  
13.3.3 System Memory Interface Checklist....................................................160  
13.3.4 Hub Interface Checklist .......................................................................160  
13.3.5 Digital Video Output Port Checklist .....................................................160  
ICH Checklist ......................................................................................................161  
13.4.1 PCI Checklist.......................................................................................161  
13.4.2 USB Checklist .....................................................................................162  
13.4.3 AC ‘97 Checklist..................................................................................162  
13.4.4 IDE Checklist.......................................................................................163  
13.4.5 Miscellaneous ICH Checklist...............................................................163  
LPC Checklist .....................................................................................................165  
13.4  
13.5  
13.6  
13.7  
13.8  
13.9  
System Checklist ................................................................................................166  
FWH Checklist....................................................................................................166  
Clock Synthesizer Checklist................................................................................167  
LAN Checklist .....................................................................................................168  
13.10 Power Delivery Checklist ....................................................................................168  
13.10.1 Power 169  
14  
Third-Party Vendor Information .......................................................................................171  
Appendix A: Customer Reference Board (CRB).....................................................................................173  
Intel® 815 Chipset Platform Design Guide  
7
R
Figures  
Figure 1. System Block Diagram.......................................................................................17  
Figure 2. GMCH Block Diagram........................................................................................18  
Figure 3. Board Construction Example for 60 Nominal Stackup ...................................25  
Figure 4. GMCH 544-Ball µBGA* CSP Quadrant Layout (Top View)................................27  
Figure 5. ICH 241-Ball µBGA* CSP Quadrant Layout (Top View).....................................28  
Figure 6. Firmware Hub (FWH) Packages........................................................................28  
Figure 7. Future 0.13 Micron Socket 370 Processor Safeguard for Universal Socket 370  
Designs Using A-2 GMCH..........................................................................................31  
Figure 8. Processor Detect Mechanism at Socket/TUAL5 Generation Circuit..................32  
Figure 9. VTT Selection Switch .........................................................................................33  
Figure 10. Switching Pin AG1............................................................................................34  
Figure 11. Processor Identification Strap on GMCH .........................................................35  
Figure 12. VTTPWRGD Configuration Circuit...................................................................36  
Figure 13. GTL_REF/VCMOS_REF Voltage Divider Network ..........................................37  
Figure 14. Resistor Divider Network for Processor PWRGOOD.......................................38  
Figure 15. Voltage Switch For APIC Clock from Clock Synthesizer to Processor.............39  
Figure 16. GTLREF Circuit Topology ................................................................................40  
Figure 17. Gating Power to Intel® CK-815.........................................................................41  
Figure 18. PWROK Gating Circuit For ICH .......................................................................42  
Figure 19. Topology for 370-Pin Socket Designs with Single-Ended Termination (SET)..46  
Figure 20. AGTL/AGTL+ Trace Routing............................................................................47  
Figure 21. Routing for THRMDP and THRMDN................................................................50  
Figure 22. Example Implementation of THERMTRIP Circuit ............................................51  
Figure 23. BSEL[1:0] Circuit Implementation for PGA370 Designs...................................56  
Figure 24. Examples for CLKREF Divider Circuit..............................................................57  
Figure 25. RESET#/RESET2# Routing Guidelines...........................................................58  
Figure 26. Filter Specification ............................................................................................60  
Figure 27. Example PLL Filter Using a Discrete Resistor .................................................62  
Figure 28. Example PLL Filter Using a Buried Resistor ....................................................62  
Figure 29. Core Reference Model .....................................................................................63  
Figure 30. Capacitor Placement on the Motherboard........................................................64  
Figure 31. Heatsink Volumetric Keepout Regions.............................................................66  
Figure 32. Motherboard Component Keepout Regions.....................................................66  
Figure 33. TAP Connector Comparison ............................................................................67  
Figure 34. System Memory Routing Guidelines ................................................................69  
Figure 35. System Memory Connectivity (2 DIMM)...........................................................70  
Figure 36. System Memory 2-DIMM Routing Topologies..................................................71  
Figure 37. System Memory Routing Example...................................................................72  
Figure 38. System Memory Connectivity (3 DIMM)...........................................................73  
Figure 39. System Memory 3-DIMM Routing Topologies..................................................74  
Figure 40. Intel® 815 Chipset Platform Decoupling Example ............................................76  
Figure 41. Intel® 815 Chipset Platform Decoupling Example ............................................77  
Figure 42. AGP Left-Handed Retention Mechanism .........................................................81  
Figure 43. AGP Left-Handed Retention Mechanism Keepout Information........................81  
Figure 44. AGP 2X/4X Routing Example for Interfaces < 6 Inches and GPA/AGP  
Solutions.....................................................................................................................85  
Figure 45. AGP Decoupling Capacitor Placement Example .............................................89  
Figure 46. AGP VDDQ Generation Example Circuit .........................................................94  
Figure 47. AGP 2.0 VREF Generation and Distribution.....................................................96  
Figure 48. Display Cache Input Clocking.........................................................................100  
8
Intel® 815 Chipset Platform Design Guide  
R
Figure 49. Schematic of RAMDAC Video Interface.........................................................102  
Figure 50. Cross-Sectional View of a Four-Layer Board .................................................103  
Figure 51. Recommended RAMDAC Component Placement & Routing........................104  
Figure 52. Recommended RAMDAC Reference Resistor Placement and Connections 105  
Figure 53. Hub Interface Signal Routing Example ..........................................................107  
Figure 54. Single-Hub-Interface Reference Divider Circuit .............................................109  
Figure 55. Locally Generated Hub Interface Reference Dividers....................................109  
Figure 56. IDE Minimum/Maximum Routing and Cable Lengths ....................................112  
Figure 57. Ultra ATA/66 Cable.........................................................................................112  
Figure 58. Host-Side IDE Cable Detection ......................................................................114  
Figure 59. Drive-Side IDE Cable Detection .....................................................................115  
Figure 60. Resistor Schematic for Primary IDE Connectors ...........................................116  
Figure 61. Resistor Schematic for Secondary IDE Connectors.......................................117  
Figure 62. Flexible IDE Cable Detection..........................................................................118  
Figure 63. Recommended USB Schematic.....................................................................123  
Figure 64. PCI Bus Layout Example for Four PCI Connectors .......................................124  
Figure 65. External Circuitry of RTC Oscillator................................................................126  
Figure 66. Diode Circuit to Connect RTC External Battery..............................................127  
Figure 67. RTCRESET External Circuit for the ICH RTC................................................128  
Figure 68. Platform Clock Architecture (2 DIMMs)..........................................................132  
Figure 69. Universal Platform Clock Architecture (3 DIMMs)..........................................134  
Figure 70. Clock Routing Topologies ..............................................................................135  
Figure 71. Power Delivery Map........................................................................................142  
Figure 72. Pull-Up Resistor Example ..............................................................................145  
Figure 73. G3-S0 Transition ............................................................................................148  
Figure 74. S0-S3-S0 Transition.......................................................................................149  
Figure 75. S0-S5-S0 Transition.......................................................................................150  
Figure 76. VDDQ Power Sequencing Circuit...................................................................152  
Figure 77. Example 1.85V/3.3V Power Sequencing Circuit ............................................153  
Figure 78. 3.3V/V5REF Sequencing Circuitry .................................................................154  
Figure 79. V5REF Circuitry..............................................................................................169  
Intel® 815 Chipset Platform Design Guide  
9
R
Tables  
Table 1. Processor Considerations for Universal Socket 370 Design...............................29  
Table 2. GMCH Considerations for Universal Socket 370 Design....................................30  
Table 3. ICH Considerations for Universal Socket 370 Design.........................................30  
Table 4. Clock Synthesizer Considerations for Universal Socket 370 Design ..................31  
Table 5. Determining the Installed Processor via Hardware Mechanisms........................35  
Table 6. Intel® Pentium® III Processor AGTL/AGTL+ Parameters for Example  
Calculations................................................................................................................44  
Table 7. Example TFLT_MAX Calculations for 133 MHz Bus 1 ..............................................45  
Table 8. Example TFLT_MIN Calculations (Frequency Independent) ....................................45  
Table 9. Trace Guidelines for Figure 19 1, 2, 3 ....................................................................46  
Table 10. Trace Width:Space Guidelines..........................................................................46  
Table 11. Routing Guidelines for Non-AGTL/Non-AGTL+ Signals....................................49  
Table 12. Processor Pin Definition Comparison................................................................52  
Table 13. Resistor Values for CLKREF Divider (3.3V Source)..........................................57  
Table 14. RESET#/RESET2# Routing Guidelines (see Figure 25)...................................58  
Table 15. Component Recommendations – Inductor........................................................61  
Table 16. Component Recommendations – Capacitor .....................................................61  
Table 17. Component Recommendation – Resistor .........................................................61  
Table 18. System Memory 2-DIMM Solution Space..........................................................71  
Table 19. System Memory 3-DIMM Solution Space..........................................................74  
Table 20. AGP 2.0 Signal Groups .....................................................................................83  
Table 21. AGP 2.0 Data/Strobe Associations....................................................................83  
Table 22. AGP 2.0 Routing Summary ...............................................................................87  
Table 23. AGP 2.0 Routing Summary ...............................................................................91  
Table 24. TYPDET#/VDDQ Relationship ..........................................................................93  
Table 25. Connector/Add-in Card Interoperability .............................................................98  
Table 26. Voltage/Data Rate Interoperability.....................................................................98  
Table 27. AC’97 Configuration Combinations .................................................................119  
Table 28. Intel® CK-815 (2-DIMM) Clocks.......................................................................131  
Table 29. Intel® CK-815 (3-DIMM) Clocks.......................................................................133  
Table 30. Simulated Clock Routing Solution Space........................................................136  
Table 31. Simulated Clock Skew Assumptions...............................................................138  
Table 32. Power Delivery Terminology............................................................................141  
Table 33. Power Sequencing Timing Definitions.............................................................151  
Table 34. Recommendations For Unused AGP Port ......................................................159  
10  
Intel® 815 Chipset Platform Design Guide  
R
Revision History  
Rev. No.  
Description  
Date  
-001  
Initial Release.  
April 2001  
Intel® 815 Chipset Platform Design Guide  
11  
R
This page is intentionally left blank.  
12  
Intel® 815 Chipset Platform Design Guide  
Introduction  
R
1 Introduction  
This design guide organizes Intel’s design recommendations for the Intel® 815 chipset platform for  
use with the Universal Socket 370. In addition to providing motherboard design recommendations  
(e.g., layout and routing guidelines), this document also addresses system design issues  
(e.g., thermal requirements).  
This document contains design recommendations, board schematics, debug recommendations, and  
a system checklist. These design guidelines have been developed to ensure maximum flexibility  
for board designers, while reducing the risk of board-related issues.  
Board designers can use the schematics in Appendix A: Customer Reference Board (CRB) as a  
reference. While the schematics cover specific designs, the core schematics will remain the same  
for most Intel 815 chipset designs for use with the Universal Socket 370. Consult the debug  
recommendations when debugging your design. However, these debug recommendations should  
be understood before completing board design, to ensure that the debug port, in addition to other  
debug features, are implemented correctly.  
The Intel 815 chipset platform supports the following processors:  
Intel® Pentium® III processor based on 0.18 micron technology (CPUID = 068xh).  
Intel® Celeron™ processor based on 0.18 micron technology (CPUID = 068xh). This applies  
to Celeron 533A MHz and 566 MHz processors  
Future 0.13 micron socket 370 processors  
Note: The system bus speed supported by the design is based on the capabilities of the processor,  
chipset, and clock driver.  
Note: The Intel 815 chipset for use with the universal socket 370 is not compatible with the  
Intel® Pentium® II processor (CPUID = 066xh) 370-pin socket.  
Intel® 815 Chipset Platform Design Guide  
13  
Introduction  
R
1.1  
Terminology  
This section describes some of the terms used in this document. Additional power delivery term  
definitions are provided at the beginning of Chapter 12, Power Delivery.  
Term  
Aggressor  
Description  
A network that transmits a coupled signal to another network is called the  
aggressor network.  
Aggressor  
A network that transmits a coupled signal to another network is called the  
aggressor network.  
AGP  
Accelerated Graphics Port  
AGTL/AGTL+  
Refers to processor bus signals that are implemented using either Assisted  
Gunning Transceiver Logic (AGTL+) or its lower voltage variant (AGTL),  
depending on which processor is being used.  
Bus Agent  
Crosstalk  
A component or group of components that, when combined, represent a single  
load on the AGTL+ bus.  
The reception on a victim network of a signal imposed by aggressor network(s)  
through inductive and capacitive coupling between the networks.  
Backward Crosstalk–coupling that creates a signal in a victim network that  
travels in the opposite direction as the aggressor’s signal.  
Forward Crosstalk–coupling that creates a signal in a victim network that travels  
in the same direction as the aggressor’s signal.  
Even Mode Crosstalk–coupling from single or multiple aggressors when all the  
aggressors switch in the same direction that the victim is switching.  
Odd Mode Crosstalk–coupling from single or multiple aggressors when all the  
aggressors switch in the opposite direction that the victim is switching.  
GMCH  
Graphics and Memory Controller Hub. A component of the Intel® 815 chipset  
platform for use with the Universal Socket 370  
ICH  
ISI  
Intel® 82801AA I/O Controller Hub component.  
Inter-symbol interference is the effect of a previous signal (or transition) on the  
interconnect delay. For example, when a signal is transmitted down a line and the  
reflections due to the transition have not completely dissipated, the following data  
transition launched onto the bus is affected. ISI is dependent upon frequency,  
time delay of the line, and the reflection coefficient at the driver and receiver. ISI  
can impact both timing and signal integrity.  
Network Length  
Pad  
The distance between agent 0 pins and the agent pins at the far end of the bus.  
The electrical contact point of a semiconductor die to the package substrate. A  
pad is only observable in simulation.  
Pin  
The contact point of a component package to the traces on a substrate such as  
the motherboard. Signal quality and timings can be measured at the pin.  
14  
Intel® 815 Chipset Platform Design Guide  
Introduction  
R
Term  
Ringback  
Description  
The voltage that a signal rings back to after achieving its maximum absolute  
value. Ringback may be due to reflections, driver oscillations, or other  
transmission line phenomena.  
Setup Window  
SSO  
The time between the beginning of Setup to Clock (TSU_MIN) and the arrival of a  
valid clock edge. This window may be different for each type of bus agent in the  
system.  
Simultaneous Switching Output (SSO) Effects refers to the difference in electrical  
timing parameters and degradation in signal quality caused by multiple signal  
outputs simultaneously switching voltage levels (e.g., high-to-low) in the opposite  
direction from a single signal (e.g., low-to-high) or in the same direction (e.g.,  
high-to-low). These are respectively called odd-mode switching and even-mode  
switching. This simultaneous switching of multiple outputs creates higher current  
swings that may cause additional propagation delay (or “push-out”), or a decrease  
in propagation delay (or “pull-in”). These SSO effects may impact the setup  
and/or hold times and are not always taken into account by simulations. System  
timing budgets should include margin for SSO effects.  
Stub  
The branch from the bus trunk terminating at the pad of an agent.  
The system bus is the processor bus.  
System Bus  
Trunk  
The main connection, excluding interconnect branches, from one end agent pad  
to the other end agent pad.  
Undershoot  
Minimum voltage observed for a signal to extend below VSS at the device pad.  
Universal Socket 370  
Refers to the Intel 815 chipset using the “universal” PGA370 socket. In general,  
these designs support 66/100/133 MHz system bus operation, VRM 8.5 DC-DC  
converter guidelines, and Intel® Celeron™ processors (CPUID=068xh), Intel®  
Pentium® III processor (CPUID=068xh), and future Pentium III processors in  
single-microprocessor based designs.  
Victim  
A network that receives a coupled crosstalk signal from another network is called  
the victim network.  
Intel® 815 Chipset Platform Design Guide  
15  
Introduction  
R
1.2  
Reference Documents  
Document  
Document Number  
/ Location  
Intel® 815 Chipset Family: 82815 Graphics and Memory Controller Hub (GMCH) for  
298351  
use with the Universal Socket 370 Datasheet  
Intel® 82802AB/82802AC Firmware Hub (FWH) Datasheet  
Intel® 82801AA (ICH) and 82801AB (ICH0) I/O Controller Hub Datasheet  
Pentium® II Processor Developer’s Manual  
290658  
290655  
243341  
Pentium® III Processor Specification Update (latest revision from website)  
.com/design/Pentium  
III/specupdt/)  
AP 907 Pentium® III Processor Power Distribution Guidelines  
AP-585 Pentium® II Processor AGTL+ Guidelines  
245085  
243330  
243332  
AP-587 Pentium® II Processor Power Distribution Guidelines  
Accelerated Graphics Port Specification, Revision 2.0  
om/technology/agp/d  
PCI Local Bus Specification, Revision 2.2  
Universal Serial Bus Specification, Revision 1.0  
1.3  
System Overview  
The Intel 815 chipset for use with the Universal Socket 370 contains a Graphics Memory  
Controller Hub (GMCH) component and I/O Controller Hub (ICH) component for desktop  
platforms.  
The GMCH provides the processor interface (optimized for the PentiumIII processor (CPUID =  
068xh) and future 0.13 micron 370 socket processors), DRAM interface, hub interface, and an  
accelerated Graphics Port (AGP) interface or internal graphics. This product provides flexibility  
and scalability in graphics and memory subsystem performance. Competitive internal graphics  
may be scaled via an AGP card interface, and PC100 SDRAM system memory may be scaled to  
PC133 system memory.  
The Accelerated Hub Architecture interface (i.e., the chipset component interconnect) is designed  
into the chipset to provide an efficient, high-bandwidth communication channel between the  
GMCH and the I/O controller hub. The chipset architecture also enables a security and  
manageability infrastructure through the Firmware Hub component.  
An ACPI-compliant Intel 815 chipset platform for use with the universal socket 370 can support  
the Full-on (S0), Stop Grant (S1), Suspend to RAM (S3), Suspend to Disk (S4), and Soft-off (S5)  
power management states. The chipset also supports Wake-on-LAN* for remote administration and  
troubleshooting. The chipset architecture removes the requirement of the ISA expansion bus that  
was traditionally integrated into the I/O subsystem of PCIsets/AGPsets. This removes many of the  
conflicts experienced when installing hardware and drivers into legacy ISA systems. The  
16  
Intel® 815 Chipset Platform Design Guide  
Introduction  
R
elimination of ISA provides true plug-and-play for the platform. Traditionally, the ISA interface  
was used for audio and modem devices. The addition of AC’97 allows the OEM to use software-  
configurable AC’97 audio and modem coder/decoders (codecs), instead of the traditional ISA  
devices.  
1.3.1  
System Features  
The Intel 815 chipset for use with the Universal Socket 370 platform contains two components:  
the Intel® 82815 Graphics and Memory Controller Hub (GMCH) and the Intel® 82801AA I/O  
Controller Hub (ICH). The GMCH integrates a 66/100/133 MHz, P6 family system bus controller,  
integrated 2D/3D graphics accelerator or AGP (2X/4X) discrete graphics card, 100/133 MHz  
SDRAM controller, and a high-speed accelerated hub architecture interface for communication  
with the ICH. The ICH integrates an Ultra ATA/66 controller, USB host controller, LPC interface  
controller, FWH interface controller, PCI interface controller, AC’97 digital controller, and a hub  
interface for communication with the GMCH.  
Figure 1. System Block Diagram  
Processor  
66/100/133 MHz system bus  
Chipset  
AGP Graphics Card  
or  
Display Cache  
(AGP in-line memory  
module)  
AGP 2X/4X  
GMCH  
(544 BGA)  
100/133 MHz  
SDRAM  
Analog display out  
Digital video out  
Hub interface  
2x USB  
2x IDE  
PCI bus  
PCI slots  
Audio codec  
AC97  
ICH  
Modem codec  
LPC I/F  
KBC/SIO  
FW H Flash  
BIOS  
sys_blk  
Intel® 815 Chipset Platform Design Guide  
17  
Introduction  
R
1.3.2  
Component Features  
Figure 2. GMCH Block Diagram  
System bus (66/100/133 MHz)  
Processor I/F  
SDRAM  
100/133  
MHz, 64 bit  
System  
memory I/F  
Primary display  
Overlay  
AGP I/F  
GPA  
or AGP  
2X/4X  
card  
RAMDAC  
Monitor  
Data  
stream  
control &  
dispatch  
Digital  
video out  
H/W cursor  
3D pipeline  
2D (blit engine)  
FP / TVout  
Local memory I/F  
Internal graphics  
Hub I/F  
Hub  
comp_blk_1  
1.3.2.1  
Graphics Memory Controller Hub (GMCH)  
Processor/System Bus Support  
Optimized for Intel® Pentium® III processors (CPUID = 068xh) at 133 MHz system bus  
frequency  
Support for Intel® Celeron™ processors (CPUID = 068xh); 66 MHz system bus  
Supports 32-bit AGTL or AGTL+ bus addressing  
Supports uniprocessor systems  
Utilizes AGTL and AGTL+ bus driver technology (gated AGTL/AGTL+ receivers for  
reduced power)  
Integrated DRAM controller  
32 MB to 512 MB using 16-Mb/64-Mb/128-Mb technology  
Supports up to three double-sided DIMMS (six rows)  
100 MHz, 133 MHz SDRAM interface  
64-bit data interface  
Standard Synchronous DRAM (SDRAM) support (x-1-1-1 access)  
Supports only 3.3V DIMM DRAM configurations  
No registered DIMM support  
Support for symmetrical and asymmetrical DRAM addressing  
Support for x8, x16 DRAM device width  
Refresh mechanism: CAS-before-RAS only  
Support for DIMM serial PD (presence detect) scheme via SMbus interface  
STR power management support via self-refresh mode using CKE  
18  
Intel® 815 Chipset Platform Design Guide  
Introduction  
R
Accelerated Graphics Port (AGP) Interface  
Supports AGP 2.0, including 4X AGP data transfers, but not the 2X/4X Fast Write  
protocol  
AGP universal connector support via dual-mode buffers to allow AGP 2.0 3.3V or 1.5V  
signaling  
32-deep AGP request queue  
AGP address translation mechanism with integrated fully associative 20-entry TLB  
High-priority access support  
Delayed transaction support for AGP reads that can not be serviced immediately  
AGP semantic traffic to the DRAM is not snooped on the system bus and is therefore not  
coherent with the processor caches  
Integrated Graphics Controller  
Full 2D/3D/DirectX acceleration  
Texture-mapped 3D with point sampled, bilinear, trilinear, and anisotropic filtering  
Hardware setup with support for strips and fans  
Hardware motion compensation assist for software MPEG/DVD decode  
Digital Video Out interface adds support for digital displays and TV-Out  
PC99A/PC2001 compliant  
Integrated 230 MHz DAC  
Integrated Local Graphics Memory Controller (Display Cache)  
0 MB to 4 MB (via Graphics Performance Accelerator) using zero, one, or two parts  
32-bit data interface  
133 MHz memory clock  
Supports ONLY 3.3V SDRAMs  
Packaging/Power  
544 BGA with local memory port  
1.85V (± 3% within margins of 1.795V to 1.9V) core and mixed 3.3V, 1.5V, and  
AGTL/AGTL+ I/O  
Intel® 815 Chipset Platform Design Guide  
19  
Introduction  
R
1.3.2.2  
Intel® 82801AA I/O Controller Hub (ICH)  
The I/O Controller Hub provides the I/O subsystem with access to the rest of the system, as  
follows:  
Upstream accelerated hub architecture interface for access to the GMCH  
PCI 2.2 interface (6 PCI Request/Grant pairs)  
Bus master IDE controller; supports Ultra ATA/66  
USB controller  
I/O APIC  
SMBus controller  
FWH interface  
LPC interface  
AC’97 2.1 interface  
Integrated system management controller  
Alert on LAN*  
IRQ controller  
Packaging/Power  
241 BGA  
3.3V core and 1.8V and 3.3V standby  
1.3.2.3  
Firmware Hub (FWH)  
The hardware features of the firmware hub include:  
An integrated hardware Random Number Generator (RNG)  
Register-based locking  
Hardware-based locking  
5 GPIs  
Packaging/Power  
40-L TSOP and 32-L PLCC  
3.3V core and 3.3V / 12V for fast programming  
20  
Intel® 815 Chipset Platform Design Guide  
Introduction  
R
1.3.3  
Platform Initiatives  
1.3.3.1  
Universal Socket 370 Design  
The Intel 815 chipset platform for use with the Universal Socket 370 allows systems designers to  
build one system that is compatible with the Pentium III processor (CPUID=068xh), Celeron  
processor (CPUID=068xh), and future 0.13 micron socket 370 processors. When implemented,  
the Intel 815 chipset platform for use with the Universal Socket 370 can detect which processor is  
present in the socket and function accordingly.  
1.3.3.2  
1.3.3.3  
PC 133  
The Intel PC133 initiative provides the memory bandwidth necessary to obtain high performance  
from the processor and AGP graphics controllers. The platform’s SDRAM interface supports  
100 MHz and 133 MHz operations. The latter delivers 1.066 GB/s of theoretical memory  
bandwidth compared with the 800-MB/s theoretical memory bandwidth of 100 MHz SDRAM  
systems.  
Accelerated Hub Architecture Interface  
As I/O speeds increase, the demand placed on the PCI bus by the I/O bridge becomes significant.  
With the addition of AC’97 and Ultra ATA/66, coupled with the existing USB, I/O requirements  
could affect PCI bus performance. The chipset platform’s accelerated hub architecture ensures  
that the I/O subsystem, both PCI and integrated I/O features (IDE, AC’97, USB), receives  
adequate bandwidth. By placing the I/O bridge on the accelerated hub architecture interface  
instead of PCI, I/O functions integrated into the ICH and the PCI peripherals are ensured the  
bandwidth necessary for peak performance.  
1.3.3.4  
1.3.3.5  
Internet Streaming SIMD Extensions  
The Pentium III processor (CPUID = 068xh) provides 70 new SIMD (single-instruction, multiple-  
data) instructions. The new extensions are floating-point SIMD extensions. Intel® MMX™  
technology provides integer SIMD instructions. The Internet Streaming SIMD extensions  
complement the MMX technology SIMD instructions and provide a performance boost to floating-  
point-intensive 3D applications.  
AGP 2.0  
The AGP 2.0 interface allows graphics controllers to access main memory at more than 1 GB/s,  
which is twice the bandwidth of previous AGP platforms. AGP 2.0 provides the infrastructure  
necessary for photorealistic 3D. In conjunction with the Internet Streaming SIMD Extensions,  
AGP 2.0 delivers the next level of 3D graphics performance.  
Intel® 815 Chipset Platform Design Guide  
21  
Introduction  
R
1.3.3.6  
Manageability  
The Intel 815 chipset platform integrates several functions designed to manage the system and  
lower the system’s total cost of ownership (TCO) of the system. These system management  
functions are designed to report errors, diagnose the system, and recover from system lock-ups,  
without the aid of an external microcontroller.  
TCO Timer  
The ICH integrates a programmable TCO Timer. This timer is used to detect system locks. The  
first expiration of the timer generates an SMI# that the system can use to recover from a software  
lock. The second expiration of the timer causes a system reset to recover from a hardware lock.  
Processor Present Indicator  
The ICH looks for the processor to fetch the first instruction after reset. If the processor does not  
fetch the first instruction, the ICH will reboot the system.  
Function Disable  
The ICH provides the ability to disable the following functions: AC’97 Modem, AC’97 Audio,  
IDE, USB, and SMBus. Once disabled, these functions no longer decode I/O, memory or PCI  
configuration space. Also, no interrupts or power management events are generated by the  
disabled functions.  
Intruder Detect  
The ICH provides an input signal (INTRUDER#) that can be attached to a switch that is activated  
when the system case is opened. The ICH can be programmed to generate an SMI# or TCO event  
as the result of an active INTRUDER# signal.  
Alert on LAN*  
The ICH supports Alert on LAN. In response to a TCO event (intruder detect, thermal event,  
processor boot failure), the ICH sends a hard-coded message over the SMBus. A LAN controller  
supporting the Alert on LAN protocol can decode this SMBus message and send a message over  
the network to alert the network manager.  
22  
Intel® 815 Chipset Platform Design Guide  
Introduction  
R
1.3.3.7  
AC’97  
The Audio Codec ’97 (AC’97) specification defines a digital interface that can be used to attach an  
audio codec (AC), a modem codec (MC), an audio/modem codec (AMC) or both an AC and an  
MC. The AC’97 specification defines the interface between the system logic and the audio or  
modem codec, known as the AC’97 Digital Link.  
The chipset platform’s AC’97 (with the appropriate codecs) not only replaces ISA audio and  
modem functionality, but also improves overall platform integration by incorporating the AC’97  
digital link. Using the chipset’s integrated AC’97 digital link reduces cost and eases migration  
from ISA.  
The ICH is an AC’97-compliant controller that supports up to two codecs, with independent PCI  
functions for audio and modem. The ICH communicates with the codec(s) via a digital serial link  
called the AC-link. All digital audio/modem streams and command/status information are  
communicated over the AC-link. Microphone input and left and right audio channels are supported  
for a high-quality, two-speaker audio solution. Wake-on-ring-from-suspend also is supported with  
an appropriate modem codec.  
By using an audio codec, the AC’97 digital link allows for cost-effective, high-quality, integrated  
audio. In addition, an AC’97 soft modem can be implemented with the use of a modem codec.  
Several system options exist when implementing AC’97. The chipset platform’s integrated digital  
link allows two external codecs to be connected to the ICH. The system designer can provide  
audio with an audio codec or a modem with a modem codec. For systems requiring both audio and  
a modem, there are two solutions: the audio codec and the modem codec can be integrated into an  
AMC, or separate audio and modem codecs can be connected to the ICH.  
Modem implementation for different countries must be taken into consideration, as telephone  
systems may vary. By implementing a split design, the audio codec can be on board and the  
modem codec can be placed on a riser. Intel is developing an AC’97 digital link connector. With a  
single integrated codec, or AMC, both audio and modem can be routed to a connector near the rear  
panel where the external ports can be located.  
1.3.3.8  
Low-Pin-Count (LPC) Interface  
In the Intel 815 chipset platform, the Super I/O (SIO) component has migrated to the Low-Pin-  
Count (LPC) interface. Migration to the LPC interface allows for lower-cost Super I/O designs.  
The LPC Super I/O component requires the same feature set as traditional Super I/O components.  
It should include a keyboard and mouse controller, floppy disk controller, and serial and parallel  
ports. In addition to the Super I/O features, an integrated game port is recommended, because the  
AC’97 interface does not provide support for a game port. In systems with ISA audio, the game  
port typically existed on the audio card. The fifteen-pin game port connector provides for two  
joysticks and a two-wire MPU-401 MIDI interface. Consult your preferred Super I/O vendor for a  
comprehensive list of the devices offered and the features supported.  
In addition, depending on system requirements, specific system I/O requirements may be  
integrated into the LPC Super I/O. For example, a USB hub may be integrated to connect to the  
ICH USB output and extend it to multiple USB connectors. Other SIO integration targets include a  
device bay controller or an ISA-IRQ-to-serial-IRQ converter to support a PCI-to-ISA bridge.  
Contact your Super I/O vendor to ensure the availability of the desired LPC Super I/O features.  
Intel® 815 Chipset Platform Design Guide  
23  
Introduction  
R
This page is intentionally left blank.  
24  
Intel® 815 Chipset Platform Design Guide  
General Design Considerations  
R
2 General Design Considerations  
This document provides motherboard layout and routing guidelines for systems based on the Intel  
815 chipset platform for use with the Universal Socket 370. The document does not discuss the  
functional aspects of any bus or the layout guidelines for an add-in device.  
If the guidelines listed in this document are not followed, it is very important that thorough signal  
integrity and timing simulations be completed for each design. Even when the guidelines are  
followed, it is recommended that critical signals be simulated to ensure proper signal integrity and  
flight time. Any deviation from these guidelines should be simulated.  
The trace impedance typically noted (i.e., 60 ± 15%) is the “nominal” trace impedance for a  
5-mil-wide trace. That is, it is the impedance of the trace when not subjected to the fields created  
by changing current in neighboring traces. When calculating flight times, it is important to  
consider the minimum and maximum impedance of a trace, based on the switching of neighboring  
traces. Using wider spaces between the traces can minimize this trace-to-trace coupling. In  
addition, these wider spaces reduce the settling time.  
Coupling between two traces is a function of the coupled length, the distance separating the traces,  
the signal edge rate, and the degree of mutual capacitance and inductance. To minimize the effects  
of trace-to-trace coupling, the routing guidelines documented in this section should be followed.  
Additionally, the routing guidelines in this document are created using a PCB stack-up similar to  
that described in the following section.  
2.1  
Nominal Board Stackup  
The Intel 815 chipset platform requires a board stack-up yielding a target impedance of  
60 ± 15%, with a 5-mil nominal trace width. Figure 3 shows an example stack-up that achieves  
this. It is a 4-layer printed circuit board (PCB) construction using 53%-resin, FR4 material.  
Figure 3. Board Construction Example for 60 Nominal Stackup  
Component-side layer 1: ½ oz. Cu  
4.5-mil prepreg  
Power plane layer 2: 1 oz. Cu  
Total thickness:  
62 mils  
~48-mil Core  
Ground layer 3: 1 oz. Cu  
4.5-mil prepreg  
Solder-side layer 4: ½ oz. Cu  
board_4.5mil_stackup  
Intel® 815 Chipset Platform Design Guide  
25  
General Design Considerations  
R
This page is intentionally left blank.  
26  
Intel® 815 Chipset Platform Design Guide  
Component Quadrant Layouts  
R
3 Component Quadrant Layouts  
Figure 4 illustrates the relative signal quadrant locations on the GMCH ballout. It does not  
represent the actual ballout. Refer to the Intel® 815 Chipset Family: 82815 Graphics and Memory  
Controller Hub (GMCH) for use with the Universal Socket 370 Datasheet for the actual ballout.  
Figure 4. GMCH 544-Ball µBGA* CSP Quadrant Layout (Top View)  
Pin 1  
corner  
System Memory  
Hub Interface  
AGP / Display  
Cache  
GMCH  
System Bus  
Video  
quad_GMCH  
Intel® 815 Chipset Platform Design Guide  
27  
Component Quadrant Layouts  
R
Figure 5 illustrates the relative signal quadrant locations on the ICH ballout. It does not represent  
the actual ballout. Refer to the Intel® 82801AA (ICH) and 82801AB (ICH0) I/O Controller Hub  
Datasheet for the actual ballout.  
Figure 5. ICH 241-Ball µBGA* CSP Quadrant Layout (Top View)  
Pin 1 corner  
PCI  
Processor  
ICH  
Hub interface  
AC'97,  
SMBus  
IDE  
LPC  
quad_ICH  
Figure 6. Firmware Hub (FWH) Packages  
4
3
2
1
32  
31  
30  
1
2
3
4
5
6
7
8
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
5
29  
6
28  
27  
26  
25  
24  
23  
22  
21  
7
FWH interface  
8
(32-lead PLCC,  
0.450" x 0.550")  
FWH interface  
(40-lead TSOP)  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
9
Top view  
10  
11  
12  
13  
14 15  
16  
17  
18  
19  
20  
pkg_FWH  
28  
Intel® 815 Chipset Platform Design Guide  
Universal Socket 370 Design  
R
4 Universal Socket 370 Design  
4.1  
Universal Socket 370 Definitions  
The universal socket 370 platform supports Pentium III processor (CPUID=068xh) and Celeron  
processor (CPUID=068xh) as well as future 0.13 micron socket 370 processors. The Pentium III  
processor (CPUID=068xh) and Celeron processor (CPUID=068xh) have different requirements  
for functioning properly in a platform than the future 0.13 micron socket 370 processors. It is  
necessary to understand these differences and how they affect the design of the platform. Refer to  
Table 1 through Table 4 for a high-level description of the differences that require additional  
circuitry on the motherboard. Specific details on implementing this circuitry are discussed further  
in this chapter. For a detailed description of the differences between the Pentium III processor  
(CPUID=068xh) / Celeron processor (CPUID=068xh), and future 0.13 micron socket 370  
processor pins, refer to Section 5.4.  
Table 1. Processor Considerations for Universal Socket 370 Design  
Signal  
Name or  
Pin  
Function In  
Future  
0.13 Micron  
Socket 370  
Processors  
Implementation for  
Universal Socket 370 Design  
Function In  
Intel® Pentium®  
III Processor  
(CPUID=068xh)  
and Intel®  
Number  
Celeron™  
Processor  
(CPUID=068xh)  
AF36  
VSS  
VSS  
No connect  
VTT  
Addition of circuitry that generates a  
processor identification signal used to  
configure board-level operation.  
AG1  
Addition of FET switch to ground or VTT,  
controlled by processor identification signal.  
Note: FET must have no more than 100  
milliohms resistance between source  
and drain.  
AJ3  
VSS  
RESET  
Addition of stuffing option for pull-down to  
ground, which lets designer prevent future  
0.13 micron socket 370 processors from  
being used with incompatible stepping of  
Intel® 82815 GMCH.  
AK22  
GTL_REF  
VCMOS_REF  
Addition of resistor-divider network to provide  
1.0V, which will satisfy voltage tolerance  
requirements of the Intel® Pentium® III  
processor (CPUID=068xh) and Intel®  
Celeron™ processor (CPUID=068xh) as well  
as future 0.13 micron socket 370 processors.  
PICCLK  
Requires 2.5V  
Requires 2.0V  
Addition of FET switch to provide proper  
voltage, controlled by processor identification  
signal.  
Intel® 815 Chipset Platform Design Guide  
29  
Universal Socket 370 Design  
R
Signal  
Name or  
Pin  
Function In  
Future  
0.13 Micron  
Socket 370  
Processors  
Implementation for  
Universal Socket 370 Design  
Function In  
Intel® Pentium®  
III Processor  
(CPUID=068xh)  
and Intel®  
Number  
Celeron™  
Processor  
(CPUID=068xh)  
PWRGOOD  
Requires 2.5V  
Requires 1.8V  
Requires 1.25V  
Addition of resistor-divider network to provide  
2.1V, which will satisfy voltage tolerance  
requirements of the Pentium III processor  
(CPUID=068xh) and Celeron processor  
(CPUID=068xh) as well as future 0.13 micron  
socket 370 processors.  
VTT  
Requires 1.5V  
Not used  
Modification to VTT generation circuit to  
switch between 1.5V or 1.25V, controlled by  
processor identification signal.  
VTTPWRGD  
Input signal to  
future  
Addition of VTTPWRGD generation circuit.  
0.13 micron  
socket 370  
processors to  
indicate that VID  
signals are stable  
Table 2. GMCH Considerations for Universal Socket 370 Design  
Pin  
Issue  
Implementation For  
Universal Socket 370 Design  
Name/Number  
SMAA12  
New strap required for determining  
Addition of FET switch controlled by  
processor identification signal.  
Pentium® III Processor  
(CPUID=068xh) and Intel® Celeron™  
Processor (CPUID=068xh)  
or  
Future 0.13 micron socket 370  
processors  
Table 3. ICH Considerations for Universal Socket 370 Design  
Signal  
Issue  
Implementation For  
Universal Socket 370 Design  
PWROK  
GMCH and Intel® CK-815 must not  
sample BSEL[1:0] until VTTPWRGD  
asserted. ICH must not initialize  
before Intel CK-815 clocks stabilize  
Addition of circuitry to have VTTPWRGD  
gate PWROK from power supply to ICH. The  
ICH will hold the GMCH in reset until  
VTTPWRGD asserted plus 20 ms time delay  
to allow Intel CK-815 clocks to stabilize.  
30  
Intel® 815 Chipset Platform Design Guide  
Universal Socket 370 Design  
R
Table 4. Clock Synthesizer Considerations for Universal Socket 370 Design  
Signal  
Issue  
Implementation For  
Universal Socket 370 Design  
VDD  
Intel® CK-815 does not support  
VTTPWRGD  
Addition of FET switch which supplies power  
to VDD only when VTTPWRGD is asserted.  
Note: FET must have no more than  
100 milliohms resistance between  
source and drain.  
4.2  
Processor Design Requirements  
4.2.1  
Use of Universal Socket 370 Design with Incompatible  
GMCH  
The universal socket 370 design is intended for use with the Intel 815 chipset platform for use with  
the universal socket 370. A universal socket 370 design populated with an earlier stepping of the  
GMCH is not compatible with future 0.13 micron socket 370 processors and, if used, will cause  
eventual failure of these processors. To prevent a future 0.13 micron socket 370 processor from  
being used with an incompatible stepping of the GMCH, the recommendation is to lay out the site  
for a 0 pull-down to ground on processor pin AJ3. This pin is a RESET# signal on future  
0.13 micron socket 370 processors and, by populating the resistor, these future processors will be  
prevented from functioning when placed in a board with an incompatible stepping of the GMCH.  
All Pentium III (CPUID=068xh) and Celeron (CPUID=068xh) processors will continue to boot  
normally. Not populating the resistor will allow future 0.13 micron socket 370 processors to boot.  
Refer to Figure 7 for an example implementation.  
Figure 7. Future 0.13 Micron Socket 370 Processor Safeguard for Universal Socket 370  
Designs Using A-2 GMCH  
Future 0.13 Micron  
Socket 370  
Processors  
AJ3  
0 Ω  
Tual_pin_aj3  
Intel® 815 Chipset Platform Design Guide  
31  
Universal Socket 370 Design  
R
4.2.2  
Identifying the Processor at the Socket  
For the platform to configure for the requirements of the processor in the socket, it must first  
identify whether the processor is a Pentium III processor (CPUID=068xh) / Celeron processor  
(CPUID=068xh), or a future 0.13 micron socket 370 processors. Pin AF36 is a ground pin on a  
Pentium III processor (CPUID=068xh) and Celeron processor (CPUID=068xh); pin AF36 is an  
unconnected pin on future 0.13 micron Socket 370 processors. Referring to Figure 8, the platform  
uses a detect circuit connected to this processor pin. If a future 0.13 micron Socket 370 processor  
is present in the socket, the TUAL5 reference schematic signal will be pulled to the 5V rail and the  
TUAL5# reference schematic signal will be pulled to ground. Otherwise, for a Pentium III  
processor (CPUID=068xh) or Celeron processor (CPUID=068xh), the TUAL5 reference  
schematic signal will be pulled to ground and the TUAL5# will be pulled to the 5V rail.  
Figure 8. Processor Detect Mechanism at Socket/TUAL5 Generation Circuit  
VCC5  
VCC5  
2.2 KΩ  
VTT  
TUAL5  
2.2 KΩ  
1 KΩ  
MOSFET N  
Processor Pin  
AF36  
NPN  
TUAL5#  
Proc_Detect  
32  
Intel® 815 Chipset Platform Design Guide  
Universal Socket 370 Design  
R
4.2.3  
Setting the Appropriate Processor VTT Level  
Because the Pentium III processor (CPUID=068xh) / Celeron processor (CPUID=068xh), and  
future 0.13 micron socket 370 processors require different VTT levels, the platform must be able  
to provide the appropriate voltage level after determining which processor is in the socket.  
Referring to Figure 9, the TUAL5 reference schematic signal serves to control the FET, and by  
doing so determines whether the voltage regulator supplies 1.25V or 1.5V to VTT for AGTL or  
AGTL+, respectively.  
Figure 9. VTT Selection Switch  
VCC3_3  
LT1587-ADJ  
Vout  
VTT  
Vin  
ADJ  
10 µF  
49.9 Ω  
1%  
22 µF  
Tantalum  
0.1 µF  
MOSFET N  
10 Ω  
1%  
TUAL5  
Vtt_Sel_Sw  
Intel® 815 Chipset Platform Design Guide  
33  
Universal Socket 370 Design  
R
4.2.4  
VTT Processor Pin AG1  
Processor pin AG1 requires additional attention since it is a ground pin on a Pentium III processor  
(CPUID=068xh) / Celeron processor (CPUID=068xh) and a VTT pin on a future 0.13 micron  
socket 370 processor. A separate switch controlled by the TUAL5 reference schematic signal  
determines whether pin AG1 is pulled to ground or VTT. Refer to Figure 10 for an example  
implementation.  
Figure 10. Switching Pin AG1  
VTT  
TUAL5  
Processor Pin  
AG1  
1 KΩ  
Note: The FET must have no more than  
100 milliohms resistance between the  
source and the drain.  
AG1_Switch  
4.2.5  
Identifying the Processor at the GMCH  
The GMCH determines whether the socket contains a future 0.13 micron socket 370 processor or  
Pentium III processor (CPUID=068xh) / Celeron processor (CPUID=068xh) based on the input to  
pin SMAA12 on the GMCH. In a system using future 0.13 micron socket 370 processors,  
SMAA12 will be pulled down during reset to indicate to the GMCH that a future 0.13 micron  
socket 370 processor is in the socket. Refer to Figure 11. for an example implementation.  
34  
Intel® 815 Chipset Platform Design Guide  
Universal Socket 370 Design  
R
Figure 11. Processor Identification Strap on GMCH  
SMAA[12]  
10 KΩ  
TUAL5  
Proc_ID_Strap  
Table 5 provides the logic decoding to determine which processor is installed in a PGA370 design.  
Table 5. Determining the Installed Processor via Hardware Mechanisms  
Processor  
Pin AF36  
CPUPRES#  
Notes  
Hi-Z  
Low  
0
0
Future 0.13 micron socket 370 processor installed.  
Intel® Pentium® III processor (CPUID=068xh) or Intel® Celeron™  
processor (CPUID=068xh) installed.  
X
1
No processor installed.  
Intel® 815 Chipset Platform Design Guide  
35  
Universal Socket 370 Design  
R
4.2.6  
Configuring Non-VTT Processor Pins  
When asserted, the VTTPWGRD signal must be level-shifted to 12V to properly drive the gating  
circuitry of the Intel® CK-815. Furthermore, while the VTTPWRGD signal is connected to the  
VTTPWRGD pin on a future 0.13 micron socket 370 processor, on a Pentium III processor  
(CPUID=068xh) or Celeron processor (CPUID=068xh) that same pin is a ground. To provide  
proper functionality, a 1.0 kresistor must be placed in series between the circuitry that generates  
the signal VTTPWRGD and the processor pin VTTPWRGD. Refer to Figure 12 for an example  
implementation. Voltage regulators that generate the standard VTTPWRGD signal are available.  
Figure 12. VTTPWRGD Configuration Circuit  
VCC12  
2.2 KΩ  
VCC5  
3
VTTPW RGD12  
VTT  
BAT54C  
VCC5  
2
1
VCC5  
MOSFET N  
VTTPW RGD  
ASSERTED  
LOW  
V1_8SB  
1 KΩ  
V1_8SB  
VCC5  
1 KΩ  
1 KΩ  
20 KΩ  
MOSFET N  
732 Ω  
1%  
5
3
2
8
7
Vcc  
IN+  
IN+  
IN-  
2
6
Out  
2
1
VTT  
1
Out  
1
2
IN-  
1
4
Gnd  
LM393 Ch2  
0.1 µF  
LM393 Ch1  
1 Κ Ω  
1%  
VTTPW RGD5#  
2.0 ms delay nominal  
VTTPWRGD_Config  
NOTE: The diode is included so that repeated pressing of the reset or power button does not cause the  
capacitor to build up enough charge to circumvent the 20 ms delay.  
36  
Intel® 815 Chipset Platform Design Guide  
Universal Socket 370 Design  
R
4.2.7  
VCMOS Reference  
In previous platforms supporting the Pentium III processor (CPUID=068xh) and Celeron processor  
(CPUID=068xh), VCMOS was generated by the processor itself. The future 0.13 micron socket  
370 processors do not generate VCMOS, and the universal platform is required to generate this  
separately on the motherboard. Processor pin AK22, which is a GTL_REF pin on a Pentium III  
processor (CPUID=068xh) and Celeron processor (CPUID=068xh), has been changed to a  
VCMOS_REF pin on future 0.13 micron socket 370 processors. Referring to Figure 13, a network  
of resistors and a capacitor must be added so that this pin operates appropriately for whichever  
processor is in the socket.  
Figure 13. GTL_REF/VCMOS_REF Voltage Divider Network  
VCMOS  
75 Ω  
1%  
Processor Pin  
AK22  
150 Ω  
0.1 µF  
1%  
GTL_CMOS_Ref  
Intel® 815 Chipset Platform Design Guide  
37  
Universal Socket 370 Design  
R
4.2.8  
Processor Signal PWRGOOD  
The processor signal PWRGOOD is specified at different voltage levels depending on whether it  
is a Pentium III processor (CPUID=068xh) / Celeron processor (CPUID=068xh), or whether it is a  
future 0.13 micron socket 370 processor. As there is an overlap between the ranges of accepted  
voltage levels for these two processor groups, a resistor divider network that provides 2.1V will  
satisfy the requirements of all supported processors. See Figure 14 for an example implementation.  
Figure 14. Resistor Divider Network for Processor PWRGOOD  
VCC2_5  
330 Ω  
PW RGOOD from ICH2  
PW RGOOD to Processor  
1.8 Κ Ω  
PW RGOOD_Divider  
38  
Intel® 815 Chipset Platform Design Guide  
Universal Socket 370 Design  
R
4.2.9  
APIC Clock Voltage Switching Requirements  
The processor’s APIC clock is also specified at different voltage levels depending on whether it is  
for the Pentium III processor (CPUID=068xh) / Celeron processor (CPUID=068xh) or whether it  
is for a future 0.13 micron socket 370 processor. There is no overlap in the range of accepted  
voltage levels for the two processor groups, so a voltage switch is required to ensure proper  
operation. Figure 15 shows an example implementation.  
Figure 15. Voltage Switch For APIC Clock from Clock Synthesizer to Processor  
IOAPIC  
30 Ω  
APICCLK_CPU  
130 Ω  
TUAL5  
MOSFET N  
API_CLK_SW  
NOTE: The 30 resistor represents the series resistor typically used in connecting the APIC clock to the  
processor.  
Intel® 815 Chipset Platform Design Guide  
39  
Universal Socket 370 Design  
R
4.2.10  
GTLREF Topology and Layout  
In a platform supporting the future 0.13 micron socket 370 processors, the voltage requirements  
for GTLREF are different for the processor and the chipset. The GTLREF on the processor is  
specified to be 2/3 * VTT, while the GTLREF on the chipset is 0.7 * VTT. This difference  
requires that separate resistor sites be added to the layout to split the GTLREF sources. In a  
universal motherboard design, a Pentium III processor (CPUID=068xh) and Celeron processor  
(CPUID=068xh) will be unaffected by the difference in GTLREF. The recommended GTLREF  
circuit topology is shown in Figure 16.  
Note: If an A-2 stepping of the GMCH is used with the universal motherboard design, the GTLREF for  
the GMCH should be set at 2/3 * VTT. This requires changing the 63.4 , 1% resistor on the  
GMCH side to 75 , 1%.  
Figure 16. GTLREF Circuit Topology  
VTT  
63.4 Ω  
75 Ω  
GMCH  
Processor  
150 Ω  
150 Ω  
gtlref_circuit  
GTLREF Layout and Routing Guidelines  
Place all resistor sites for GTLREF generation close to the GMCH.  
Route GTLREF with as wide a trace as possible.  
Use one 0.1 µF decoupling capacitor for every two GTLREF pins at the processor (four  
capacitors total). Place as close as possible (within 500 mils) to the Socket 370 GTLREF pins.  
Use one 0.1 µF decoupling capacitor for each of the two GTLREF pins at the GMCH  
(two capacitors total). Place as close as possible to the GMCH GTLREF balls.  
Given the higher GTLREF level for the GMCH, a debug test hook should be added for validation  
purposes. The debug test hook should be placed on the processor signal ADS# and consists of  
laying down the site for a 56 pull-up to VTT. The resistor site should be located within 150 mils  
of the GMCH, and placed as close to the ADS# signal trace as possible.  
40  
Intel® 815 Chipset Platform Design Guide  
Universal Socket 370 Design  
R
4.3  
Power Sequencing on Wake Events  
In addition to the mechanism for identifying the processor in the socket, special handling of wake  
events is required for the Intel 815 chipset platform that support functionality of the future  
0.13 micron socket 370 processors. When a wake event is triggered, the GMCH and the Intel  
CK-815 must not sample BSEL[1:0] until the signal VTTPWRGD is asserted. This is handled by  
setting up the following sequence of events:  
1. Power is not connected to the Intel CK-815-compliant clock driver until VTTPWRGD12 is  
asserted.  
2. Clocks to the ICH stabilize before the power supply asserts PWROK to the ICH. There is no  
guarantee this will occur as the implementation for the previous step relies on the 12V supply.  
Thus, it is necessary to gate PWROK to the ICH from the power supply while the Intel  
CK-815 is given sufficient time for the clocks to become stable. The amount of time required  
is a minimum 20 ms.  
3. ICH takes the GMCH out of reset.  
4. GMCH samples BSEL[1:0]. Intel CK-815 will have sampled BSEL[1:0] much earlier.  
4.3.1  
Gating of Intel® CK-815 to VTTPWRGD  
System designers must ensure that the VTTPWRGD signal is asserted before the Intel CK-815-  
compliant clock driver receives power. This is handled by having the 3.3V rail of the clock driver  
gated by the VTTPWRGD12 reference schematic signal. Unlike previous Intel 815 chipset  
designs, the 3.3V standby rail is not used to power the clock as the VTTPWRGD12 reference  
schematic signal will cut power to the clock when going into any sleep state. Refer to Figure 17 for  
an example implementation.  
Figure 17. Gating Power to Intel® CK-815  
VCC3_3  
MOSFET N  
VTTPW RGD12  
VDD on CK-815  
Note: The FET must have no more than  
100 milliohms resistance between the  
source and the drain.  
Gating_Pwr  
Intel® 815 Chipset Platform Design Guide  
41  
Universal Socket 370 Design  
R
4.3.2  
Gating of PWROK to ICH  
With power being gated to the Intel CK-815 by the signal VTTPWRGD12, it is important that the  
clocks to the ICH are stable before the power supply asserts PWROK to the ICH. As the clocking  
power gating circuitry relies on the 12V supply, there is no guarantee that these conditions will be  
met. This is why an estimated minimum time delay of 20 ms must be added after power is  
connected to the Intel CK-815 to give the clock driver sufficient time to stabilize. This time delay  
will gate the power supply’s assertion of PWROK to the ICH. After the time delay, the power  
supply can safely assert PWROK to the ICH, with the ICH subsequently taking the GMCH out of  
reset. Refer to Figure 18 for an example implementation.  
Figure 18. PWROK Gating Circuit For ICH  
VCC3_3  
VDD on CK-815  
Note:  
Delay 20 ms after VDD  
on CK-815 is powered  
43 kΩ  
ICH_PW ROK  
1.0 µF  
PW ROK  
8.2 kΩ  
ICH_PW ROK_GATING  
NOTE: The diode is included so that repeated pressing of the reset or power button does not cause the  
capacitor to build up enough charge to circumvent the 20 ms delay.  
42  
Intel® 815 Chipset Platform Design Guide  
System Bus Design Guidelines  
R
5 System Bus Design Guidelines  
The Pentium III processor delivers higher performance by integrating the Level-2 cache into the  
processor and running it at the processor’s core speed. The Pentium III processor runs at higher  
core and system bus speeds than previous-generation Intel® IA-32 processors while maintaining  
hardware and software compatibility with earlier Pentium III processors. The new Flip Chip-Pin  
Grid Array 2 (FC-PGA2) package technology enables compatibility with previous Flip Chip-Pin  
Grid Array (FC-PGA) packages using the PGA370 socket.  
This section presents the considerations for designs capable of using the Intel 815 chipset platform  
with the full range of Pentium III processors using the PGA370 socket.  
5.1  
System Bus Routing Guidelines  
The following layout guide supports designs using Pentium III processor (CPUID=068xh) /  
Celeron processor (CPUID=068xh), and future 0.13 micron socket 370 processors with the Intel  
815 chipset platform for use with the universal socket 370. The solution covers system bus speeds  
of 66/100/133 MHz for the Pentium III processor (CPUID=068xh) / Celeron processor  
(CPUID=068xh), and future 0.13 micron socket 370 processors. All processors must also be  
configured to 56 on-die termination.  
5.1.1  
Initial Timing Analysis  
Table 6 lists the AGTL/AGTL+ component timings of the processors and GMCH defined at the  
pins.  
Note: These timings are for reference only. Obtain each processor’s specifications from the respective  
processor datasheet and the chipset values from the appropriate Intel 815 chipset datasheet.  
Intel® 815 Chipset Platform Design Guide  
43  
System Bus Design Guidelines  
R
Table 6. Intel® Pentium® III Processor AGTL/AGTL+ Parameters for Example Calculations  
IC Parameters  
Intel® Pentium® III Processor at 133 MHz System  
Bus  
GMCH  
Notes  
1, 2  
Clock to Output maximum  
3.25 ns (for 66/100/133 MHz system bus speeds)  
0.40 ns (for 66/100/133 MHz system bus)  
1.20 ns (for BREQ Lines)  
4.1 ns  
(TCO MAX  
_
)
Clock to Output minimum  
1.05 ns  
2.65 ns  
1, 2  
(TCO MIN  
_
)
Setup time (TSU MIN  
_
)
1, 2,3  
0.95 ns (for all other AGTL/AGTL+ Lines @  
133 MHz)  
1.20 ns (for all other AGTL/AGTL+ Lines @  
66/100 MHz)  
Hold time (THOLD  
)
1.0 ns (for 66/100/133 MHz system bus speeds)  
0.10 ns  
1
NOTES:  
1. All times in nanoseconds.  
2. Numbers in table are for reference only. These timing parameters are subject to change. Check the  
appropriate component datasheet for the valid timing parameter values.  
3. TSU MIN = 2.65 ns assumes that the GMCH sees a minimum edge rate equal to 0.3 V/ns.  
_
Table 7 contains an example AGTL+ initial maximum flight time, and Table 8 contains an  
example minimum flight time calculation for a 133 MHz, uniprocessor system using the Pentium  
III processor and the Intel 815 chipset platform’s system bus. Note that assumed values were used  
for the clock skew and clock jitter.  
Note: The clock skew and clock jitter values depend on the clock components and the distribution  
method chosen for a particular design and must be budgeted into the initial timing equations, as  
appropriate for each design.  
Table 7and Table 8 were derived assuming the following:  
CLKSKEW = 0.20 ns (Note: This assumes that the clock driver pin-to-pin skew is reduced to  
50 ps by tying the two host clock outputs together (i.e., “ganging”) at the clock driver output  
pins, and that the PCB clock routing skew is 150 ps. The system timing budget must assume  
0.175 ns of clock driver skew if outputs are not tied together as well as the use of a clock  
driver that meets the Intel CK-815 Clock Synthesizer/Driver Specification.)  
CLKJITTER = 0.250 ns  
See the respective processor’s datasheet, the appropriate Intel 815 chipset platform documentation,  
and the Intel® CK-815 Clock Synthesizer/Driver Specification for details on clock skew and jitter  
specifications. Exact details regarding the host clock routing topology are provided with the  
platform design guideline.  
44  
Intel® 815 Chipset Platform Design Guide  
System Bus Design Guidelines  
R
Table 7. Example TFLT_MAX Calculations for 133 MHz Bus 1  
Driver  
Receiver Clk Period2  
T
T
Clk  
SKEW  
Clk Recommended  
M
CO_MAX SU_MIN  
JITTER ADJ  
T
FLT_MAX  
Processor  
GMCH  
GMCH  
7.50  
7.50  
3.25  
4.1  
2.65  
1.20  
0.20  
0.20  
0.25  
0.25  
0.40  
0.40  
1.1  
Processor  
1.35  
NOTES:  
1. All times in nanoseconds  
2. BCLK period = 7.50 ns at 133.33 MHz  
Table 8. Example TFLT_MIN Calculations (Frequency Independent)  
Driver  
Receiver  
T
Clk  
SKEW  
T
Recommended  
HOLD  
CO_MIN  
T
FLT_MIN  
Processor  
GMCH  
GMCH  
0.10  
1.00  
0.20  
0.20  
0.40  
1.05  
0.10  
0.15  
Processor  
NOTES: All times in nanoseconds  
The flight times in Table 7 include margin to account for the following phenomena that Intel  
observed when multiple bits are switching simultaneously. These multi-bit effects can adversely  
affect the flight time and signal quality and sometimes are not accounted for during simulation.  
Accordingly, the maximum flight times depend on the baseboard design, and additional adjustment  
factors or margins are recommended.  
SSO push-out or pull-in  
Rising or falling edge rate degradation at the receiver caused by inductance in the current  
return path, requiring extrapolation that causes additional delay  
Cross-talk on the PCB and inside the package which can cause variation in the signals  
Additional effects exist that may not necessarily be covered by the multi-bit adjustment factor  
and should be budgeted as appropriate to the baseboard design. These effects are included as MADJ  
in the example calculations in Table 7. Examples include:  
The effective board propagation constant (S ), which is a function of:  
EFF  
Dielectric constant (ε ) of the PCB material  
r
Type of trace connecting the components (stripline or microstrip)  
Length of the trace and the load of the components on the trace. Note that the board  
propagation constant multiplied by the trace length is a component of the flight time, but  
not necessarily equal to the flight time.  
Intel® 815 Chipset Platform Design Guide  
45  
System Bus Design Guidelines  
R
5.2  
General Topology and Layout Guidelines  
Figure 19. Topology for 370-Pin Socket Designs with Single-Ended Termination (SET)  
PGA370 socket  
GMCH  
L(1):  
Z0 = 60 ± 15%  
sys_bus_topo_PGA370  
Table 9. Trace Guidelines for Figure 19 1, 2, 3  
Description  
GMCH to PGA370 socket trace  
NOTES:  
Min. Length (inches)  
Max. Length (inches)  
1.90  
4.50  
1. All AGTL/AGTL+ bus signals should be referenced to the ground plane for the entire route.  
2. Use an intragroup AGTL/AGTL+ spacing : line width : dielectric thickness ratio of at least 2:1:1 for  
microstrip geometry. If εr = 4.5, this should limit coupling to 3.4%. For example, intragroup AGTL+  
routing could use 10-mil spacing, 5-mil traces, and a 5-mil prepreg between the signal layer and the  
plane it references (assuming a 4-layer motherboard design).  
3. The recommended trace width is 5 mils, but not greater than 6 mils.  
Table 10 contains the trace width space ratios assumed for this topology. Three types of cross-talk  
are considered in this guideline: Intragroup AGTL/AGTL+, Intergroup AGTL/AGTL+, and  
AGTL/AGTL+ to non-AGTL/AGTL+. Intragroup AGTL/AGTL+ cross-talk involves interference  
between AGTL/AGTL+ signals within the same group. Intergroup AGTL/AGTL+ cross-talk  
involves interference from AGTL/AGTL+ signals in a particular group to AGTL/AGTL+ signals  
in a different group. An example of AGTL/AGTL+ to non-AGTL/AGTL+ cross-talk is when  
CMOS and AGTL/AGTL+ signals interfere with each other. The AGTL/AGTL+ signals consist of  
the following groups: data signals, control signals, clock signals, and address signals.  
Table 10. Trace Width:Space Guidelines  
Cross-Talk Type  
Trace Width:Space Ratios1, 2  
Intragroup AGTL/AGTL+ signals (same group AGTL/AGTL+)  
Intergroup AGTL/AGTL+ signals (different group AGTL/AGTL+)  
AGTL/AGTL+ to System Memory Signals  
5:10 or 6:12  
5:15 or 6:18  
5:30 or 6:36  
5:25 or 6:24  
AGTL/AGTL+ to non-AGTL/AGTL+  
NOTES:  
1. Edge-to-edge spacing.  
2. Units are in mils.  
46  
Intel® 815 Chipset Platform Design Guide  
System Bus Design Guidelines  
R
5.2.1  
Motherboard Layout Rules for AGTL/AGTL+ Signals  
Ground Reference  
It is strongly recommended that AGTL/AGTL+ signals be routed on the signal layer next to the  
ground layer (referenced to ground). It is important to provide an effective signal return path with  
low inductance. The best signal routing is directly adjacent to a solid GND plane with no splits or  
cuts. Eliminate parallel traces between layers not separated by a power or ground plane. If a signal  
has to go through routing layers, the recommendations are in the following list.  
Note: Following these layout rules is critical for AGTL/AGTL+ signal integrity, particularly for  
0.18-micron and smaller process technology.  
For signals going from a ground reference to a power reference, add capacitors between  
ground and power near the vias to provide an AC return path. One capacitor should be used  
for every three signal lines that change reference layers. Capacitor requirements are as  
follows: C=100 nF, ESR=80 m, ESL=0.6 nH. Refer to Figure 20 for an example of  
switching reference layers.  
For signals going from one ground reference to another, separate ground reference, add vias  
between the two ground planes to provide a better return path.  
Figure 20. AGTL/AGTL+ Trace Routing  
GMCH  
Processor  
1.2V Power Plane  
Ground Plane  
Layer 2  
Layer 3  
Socket Pin  
0-500 mils  
1.5-3.5 inches  
AGTL_trace_route  
Reference Plane Splits  
Splits in reference planes disrupt signal return paths and increase overshoot/undershoot due to  
significantly increased inductance.  
Processor Connector Breakout  
It is strongly recommended that AGTL/AGTL+ signals do not traverse multiple signal layers. Intel  
recommends breaking out all signals from the connector on the same layer. If routing is tight,  
break out from the connector on the opposite routing layer over a ground reference and cross over  
to main signal layer near the processor connector.  
Intel® 815 Chipset Platform Design Guide  
47  
System Bus Design Guidelines  
R
Minimizing Cross-Talk  
The following general rules minimize the impact of cross-talk in a high-speed AGTL/AGTL+ bus  
design:  
Maximize the space between traces. Where possible, maintain a minimum of 10 mils  
(assuming a 5-mil trace) between trace edges. It may be necessary to use tighter spacing when  
routing between component pins. When traces must be close and parallel to each other,  
minimize the distance that they are close together and maximize the distance between the  
sections when the spacing restrictions are relaxed.  
Avoid parallelism between signals on adjacent layers, if there is no AC reference plane  
between them. As a rule of thumb, route adjacent layers orthogonally.  
Since AGTL/AGTL+ is a low-signal-swing technology, it is important to isolate  
AGTL/AGTL+ signals from other signals by at least 25 mils. This will avoid coupling from  
signals that have larger voltage swings (e.g., 5V PCI).  
AGTL/AGTL+ signals must be well isolated from system memory signals. AGTL/AGTL+  
signal trace edges must be at least 30 mils from system memory trace edges within 100 mils of  
the ball of the GMCH.  
Select a board stack-up that minimizes the coupling between adjacent signals. Minimize the  
nominal characteristic impedance within the AGTL/AGTL+ specification. This can be done  
by minimizing the height of the trace from its reference plane, which minimizes cross-talk.  
Route AGTL/AGTL+ address, data, and control signals in separate groups to minimize cross-  
talk between groups. Keep at least 15 mils between each group of signals.  
Minimize the dielectric used in the system. This makes the traces closer to their reference  
plane and thus reduces the cross-talk magnitude.  
Minimize the dielectric process variation used in the PCB fabrication.  
Minimize the cross-sectional area of the traces. This can be done by means of narrower traces  
and/or by using thinner copper, but the trade-off for this smaller cross-sectional area is higher  
trace resistivity, which can reduce the falling-edge noise margin because of the I*R loss along  
the trace.  
48  
Intel® 815 Chipset Platform Design Guide  
System Bus Design Guidelines  
R
5.2.1.1  
Motherboard Layout Rules for Non-AGTL/AGTL+ (CMOS) Signals  
Table 11. Routing Guidelines for Non-AGTL/Non-AGTL+ Signals  
Signal  
A20M#  
Trace Width  
Spacing to Other Traces  
Trace Length  
5 mils  
5 mils  
5 mils  
5 mils  
5 mils  
5 mils  
5 mils  
5 mils  
5 mils  
5 mils  
5 mils  
5 mils  
5 mils  
5 mils  
5 mils  
10 mils  
10 mils  
10 mils  
10 mils  
10 mils  
10 mils  
10 mils  
10 mils  
10 mils  
10 mils  
10 mils  
10 mils  
10 mils  
10 mils  
10 mils  
1” to 9”  
1” to 9”  
1” to 9”  
1” to 9”  
1” to 9”  
1” to 9”  
1” to 9”  
1” to 9”  
1” to 9”  
1” to 9”  
1” to 9”  
1” to 9”  
1” to 9”  
1” to 9”  
1” to 9”  
FERR#  
FLUSH#  
IERR#  
IGNNE#  
INIT#  
LINT[0] (INTR)  
LINT[1] (NMI)  
PICD[1:0]  
PREQ#  
PWRGOOD  
SLP#  
SMI#  
STPCLK  
THERMTRIP#  
NOTE: Route these signals on any layer or combination of layers.  
Intel® 815 Chipset Platform Design Guide  
49  
System Bus Design Guidelines  
R
5.2.1.2  
THRMDP and THRMDN  
These traces (THRMDP and THRMDN) route the processor’s thermal diode connections. The  
thermal diode operates at very low currents and may be susceptible to cross-talk. The traces should  
be routed close together to reduce loop area and inductance.  
Figure 21. Routing for THRMDP and THRMDN  
Signal Y  
1 — Maximize (min. – 20 mils)  
THRMDP  
THRMDN  
2 — Minimize  
1 — Maximize (min. – 20 mils)  
Signal Z  
bus_routing_thrmdp-thrmdn  
NOTES:  
1. Route these traces parallel and equalize lengths within ±0.5 inch.  
2. Route THRMDP and THRMDN on the same layer.  
5.2.1.3  
Additional Routing and Placement Considerations  
Distribute VTT with a wide trace. A 0.050 inch minimum trace is recommended to minimize  
DC losses. Route the VTT trace to all components on the host bus. Be sure to include  
decoupling capacitors.  
The VTT voltage should be 1.5V ± 3% for static conditions, and 1.5V ± 9% for worst-case  
transient conditions when the Pentium III processor (CPUID=068xh) or Celeron processor  
(CPUID=068xh) is present in the socket. If a future 0.13 micron socket 370 processor is being  
used, the VTT voltage should then be 1.25V ± 3% for static conditions, and 1.25V ± 9% for  
worst-case transient conditions.  
Place resistor divider pairs for VREF generation at the GMCH component. VREF also is  
delivered to the processor.  
50  
Intel® 815 Chipset Platform Design Guide  
System Bus Design Guidelines  
R
5.3  
Electrical Differences for Universal PGA370  
Designs  
There are several electrical changes between previous PGA370 designs and the universal PGA370  
design, as follows:  
Changes to the PGA370 socket pin definitions.  
Addition of VTTPWRGD signal to ensure stable VID selection for future 0.13 micron socket  
370 processors.  
Addition of THERMTRIP circuit to allow processor to detect catastrophic overheat.  
Addition of VID[25 mV] signal to support future 0.13 micron socket 370 processors.  
Processor VTT level is switchable to 1.25V or 1.5V, depending on which processor is present  
in the socket.  
In designs using future 0.13 micron socket 370 processors, the processor does not generate  
VCMOS_REF.  
5.3.1  
THERMTRIP Circuit  
Figure 22. Example Implementation of THERMTRIP Circuit  
VCC3_3SB  
VCC1.8  
VCC1_8SB  
2
R12  
2
Connect to ICH  
22 KΩ  
R10  
1 KΩ  
2
1
1
R11  
1 KΩ  
1
SW _ON#  
Q3  
2
1
R9  
1 KΩ  
Q2N3904  
Q2  
Q2N3904  
1
2
Thermtrip#  
R8  
1.6 KΩ  
Can Use MBT3904  
Dual XSTR Part  
Thermstrip  
5.3.1.1  
THERMTRIP Timing  
When the THERMTRIP signal is asserted, both the VCC and VTT supplies to the processor must  
be turned off to prevent thermal runaway of the processor. The time required from THERMTRIP  
asserted to VCC rail at ½ nominal is 5 sec and THERMTRIP asserted to VTT rail at ½ nominal is  
5 sec. System designers must ensure that the decoupling scheme used on these rails does not  
violate the THERMTRIP timing specifications.  
Intel® 815 Chipset Platform Design Guide  
51  
System Bus Design Guidelines  
R
5.4  
PGA370 Socket Definition Details  
The following table compares the pin names and functions of the Intel processors supported in the  
Intel 815 chipset platform for use with the universal socket 370.  
Table 12. Processor Pin Definition Comparison  
Pin #  
Pin Name  
Intel® Celeron™  
Processor  
Pin Name  
Pin Name  
Future 0.13  
Micron  
Socket 370  
Processors  
Function  
Intel® Pentium®  
III Processor  
(CPUID=068xh)  
(CPUID=068xh)  
AA33  
AA35  
AB36  
Reserved  
Reserved  
VCCCMOS  
VTT  
VTT  
VTT  
VTT  
VTT  
AGTL/AGTL+ termination  
voltage  
AGTL/AGTL+ termination  
voltage  
VCCCMOS  
CMOS voltage level for Intel®  
Pentium® III processor  
(CPUID=068xh) and Intel®  
Celeron™ processor  
(CPUID=068xh).  
AGTL termination voltage for  
future 0.13 micron socket 370  
processors.  
AD36  
AF36  
VCC1.5  
VCC1.5  
VTT  
NC  
VCC1.5 for Pentium III  
processor (CPUID=068xh)  
and Celeron processor  
(CPUID=068xh).  
VTT for future 0.13 micron  
socket 370 processors.  
VSS  
VSS  
Ground for Pentium III  
processor (CPUID=068xh)  
and Celeron processor  
(CPUID=068xh).  
No connect for future 0.13  
micron socket 370 processors.  
1
AG1  
VSS  
VSS  
VTT  
Ground for Pentium III  
processor (CPUID=068xh)  
and Celeron processor  
(CPUID=068xh).  
VTT for future 0.13 micron  
socket 370 processors  
AH4  
Reserved  
Reserved  
RESET#  
VTT  
RESET#  
VTT  
Processor reset for the  
Pentium III processor (068xh)  
and Future 0.13 micron socket  
370 processors  
AH20  
AGTL/AGTL+ termination  
voltage  
52  
Intel® 815 Chipset Platform Design Guide  
System Bus Design Guidelines  
R
Pin #  
Pin Name  
Intel® Celeron™  
Processor  
Pin Name  
Pin Name  
Future 0.13  
Micron  
Socket 370  
Processors  
Function  
Intel® Pentium®  
III Processor  
(CPUID=068xh)  
(CPUID=068xh)  
1
AJ3  
VSS  
VSS  
VSS  
RESET  
Ground for Pentium III  
processor (CPUID=068xh)  
and Celeron processor  
(CPUID=068xh).  
RESET for future 0.13 micron  
socket 370 processors  
AK4  
VSS  
VTTPWRGD  
Ground for Pentium III  
processor (CPUID=068xh)  
and Celeron processor  
(CPUID=068xh).  
VID control signal on future  
0.13 micron socket 370  
processors.  
AK16  
AK22  
Reserved  
GTL_REF  
VTT  
VTT  
AGTL/AGTL+ termination  
voltage  
GTL_REF  
VCMOS_REF  
GTL reference voltage for  
Pentium III processor  
(CPUID=068xh) and Celeron  
processor (CPUID=068xh).  
CMOS reference voltage for  
future 0.13 micron socket 370  
processors  
AK36  
VSS  
VSS  
VID[25mV]  
Ground for Pentium III  
processor (CPUID=068xh)  
and Celeron processor  
(CPUID=068xh).  
25mV step VID select bit for  
future 0.13 micron socket 370  
processors  
AL13  
AL21  
AN3  
Reserved  
Reserved  
GND  
VTT  
VTT  
GND  
VTT  
VTT  
AGTL/AGTL+ termination  
voltage  
AGTL/AGTL+ termination  
voltage  
DYN_OE  
Ground for Pentium III  
processor (CPUID=068xh)  
and Celeron processor  
(CPUID=068xh).  
Dynamic output enable for  
future 0.13 micron socket 370  
processors  
AN11  
AN15  
AN21  
Reserved  
Reserved  
Reserved  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
AGTL/AGTL+ termination  
voltage  
AGTL/AGTL+ termination  
voltage  
AGTL/AGTL+ termination  
voltage  
Intel® 815 Chipset Platform Design Guide  
53  
System Bus Design Guidelines  
R
Pin #  
Pin Name  
Pin Name  
Pin Name  
Future 0.13  
Micron  
Socket 370  
Processors  
Function  
Intel® Celeron™  
Processor  
Intel® Pentium®  
III Processor  
(CPUID=068xh)  
(CPUID=068xh)  
E23  
G35  
G37  
Reserved  
Reserved  
Reserved  
VTT  
VTT  
VTT  
VTT  
VTT  
AGTL/AGTL+ termination  
voltage  
AGTL/AGTL+ termination  
voltage  
Reserved  
Reserved for Pentium III  
processor (CPUID=068xh)  
and Celeron processor  
(CPUID=068xh).  
AGTL termination voltage for  
future 0.13 micron socket 370  
processors  
2
N37  
NC  
NC  
NCHCTRL  
No connect for Pentium III  
processor (CPUID=068xh)  
and Celeron processor  
(CPUID=068xh).  
NCHCTRL for future 0.13  
micron socket 370 processors  
S33  
S37  
U35  
U37  
W3  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
RESET#  
VTT  
VTT  
VTT  
VTT  
AGTL/AGTL+ termination  
voltage  
AGTL/AGTL+ termination  
voltage  
VTT  
VTT  
AGTL/AGTL+ termination  
voltage  
VTT  
VTT  
AGTL/AGTL+ termination  
voltage  
A34#  
RESET2#  
A34#  
VSS  
Additional AGTL/AGTL+  
address  
1
X4  
Processor reset for Pentium III  
processor (CPUID=068xh)  
and Celeron processor  
(CPUID=068xh).  
Ground for future 0.13 micron  
socket 370 processors  
X6  
Reserved  
VCCCORE  
A32#  
A32#  
VTT  
Additional AGTL/AGTL+  
address  
2
X34  
VCCCORE  
Reserved for Pentium III  
processor (CPUID=068xh)  
and Celeron processor  
(CPUID=068xh).  
AGTL termination voltage for  
future 0.13 micron socket 370  
processors  
54  
Intel® 815 Chipset Platform Design Guide  
System Bus Design Guidelines  
R
Pin #  
Pin Name  
Intel® Celeron™  
Processor  
Pin Name  
Pin Name  
Future 0.13  
Micron  
Socket 370  
Processors  
Function  
Intel® Pentium®  
III Processor  
(CPUID=068xh)  
(CPUID=068xh)  
Y1  
Reserved  
Reserved  
NC  
Reserved for Pentium III  
processor (CPUID=068xh)  
and Celeron processor  
(CPUID=068xh).  
No connect for future 0.13  
micron socket 370 processors  
Y33  
Reserved  
VCC2.5  
CLKREF  
VCC2.5  
CLKREF  
NC  
1.25V PLL reference  
2
Z36  
VCC2.5 for Pentium III  
processor (CPUID=068xh)  
and Celeron processor  
(CPUID=068xh).  
No connect for future 0.13  
micron socket 370 processors  
NOTES:  
1. Refer to Chapter 4.  
2. Refer to Section 13.2  
Intel® 815 Chipset Platform Design Guide  
55  
System Bus Design Guidelines  
R
5.5  
BSEL[1:0] Implementation Differences  
A future 0.13 micron socket 370 processor will select the 133 MHz system bus frequency setting  
from the clock synthesizer. A Pentium III processor (CPUID=068xh) utilizes the BSEL1 pin to  
select either the 100 MHz or 133 MHz system bus frequency setting from the clock synthesizer.  
An Celeron processor (CPUID=068xh) will use both BSEL pins to select 66 MHz system bus  
frequency from the clock synthesizer. Processors in an FC-PGA or an  
FC-PGA2 are 3.3V tolerant for these signals, as are the clock and chipset.  
Intel CK-815 has been designed to support selections of 66 MHz, 100 MHz, and 133 MHz. The  
REF input pin has been redefined to be a frequency selection strap (BSEL1) during power-on and  
then becomes a 14 MHz reference clock output. The following figure details the new BSEL[1:0]  
circuit design for universal PGA370 designs. Note that BSEL[1:0] now are pulled up using 1 kΩ  
resistors. Also refer to Figure 24 for more details.  
Note: In a design supporting future 0.13 micron socket 370 processors, the BSEL[1:0] lines are not valid  
until VTTPWRGD is asserted. Refer to Section 4.2.10 for details.  
Figure 23. BSEL[1:0] Circuit Implementation for PGA370 Designs  
3.3V  
3.3V  
Processor  
1 kΩ  
1 kΩ  
BSEL0  
BSEL1  
Clock Driver  
Chipset  
sys_ bus_BSEL_PGA370  
56  
Intel® 815 Chipset Platform Design Guide  
System Bus Design Guidelines  
R
5.6  
CLKREF Circuit Implementation  
The CLKREF input (used by the Pentium III processor (CPUID=068xh), Celeron processor  
(CPUID=068xh), and future 0.13 micron socket 370 processors) requires a 1.25V source. It can be  
generated from a voltage divider on the VCC2.5 or VCC3.3 sources using 1% tolerant resistors. A  
4.7 µF decoupling capacitor should be included on this input. See Figure 24 and Table 13 for  
example CLKREF circuits. Do not use VTT as the source for this reference!  
Figure 24. Examples for CLKREF Divider Circuit  
PGA370  
Vcc2.5  
PGA370  
Vcc3.3  
CLKREF  
Y33  
CLKREF  
Y33  
150  
150  
R1  
4.7 µF  
4.7 µF  
R2  
sys_bus_CLKREF_divider  
Table 13. Resistor Values for CLKREF Divider (3.3V Source)  
R1 (Ω), 1%  
R2 (Ω), 1%  
CLKREF Voltage (V)  
182  
301  
374  
499  
110  
182  
221  
301  
1.243  
1.243  
1.226  
1.242  
5.7  
Undershoot/Overshoot Requirements  
Undershoot and overshoot specifications become more critical as the process technology for  
microprocessors shrinks due to thinner gate oxide. Violating these undershoot and overshoot limits  
will degrade the life expectancy of the processor.  
The Pentium III processor (CPUID=068xh), Celeron processor (CPUID=068xh), and future  
0.13 micron socket 370 processors have more restrictive overshoot and undershoot requirements  
for system bus signals than previous processors. These requirements stipulate that a signal at the  
output of the driver buffer and at the input of the receiver buffer must not exceed the maximum  
absolute overshoot voltage limit or the minimum absolute undershoot voltage limit. Exceeding  
either of these limits will damage the processor. There is also a time-dependent, non-linear  
overshoot and undershoot requirement that depends on the amplitude and duration of the  
overshoot/undershoot. See the appropriate processor datasheet for more details on the processor  
overshoot/undershoot specifications.  
Intel® 815 Chipset Platform Design Guide  
57  
System Bus Design Guidelines  
R
5.8  
Processor Reset Requirements  
Universal PGA370 designs must route the AGTL/AGTL+ reset signal from the chipset to two pins  
on the processor as well as to the debug port connector. This reset signal is connected to the  
following pins at the PGA370 socket:  
AH4 (RESET#). The reset signal is connected to this pin for the Pentium III processor  
(CPUID=068xh), Celeron processor (CPUID=068xh), and future 0.13 micron socket 370  
processors  
X4 (Reset2# or GND, depending on processor). The X4 pin is RESET2# for Pentium III  
processor (CPUID=068xh) and Celeron processor (CPUID=068xh). X4 is GND for future  
0.13 micron socket 370 processors. An additional 1kresistor is connected in series with pin  
X4 to the reset circuitry since pin X4 is a ground pin in future 0.13 micron socket 370  
processors.  
Note: The AGTL/AGTL+ reset signal must always terminate to VTT on the motherboard.  
Designs that do not support the debug port will not utilize the 240 series resistor or the  
connection of RESET# to the debug port connector. RESET2# is not required for platforms that  
do not support the Celeron processor (CPUID=068xh). Pin X4 should then be connected to  
ground.  
The routing rules for the AGTL/AGTL+ reset signal are shown in Figure 25.  
Figure 25. RESET#/RESET2# Routing Guidelines  
lenITP  
ITP  
VTT  
VTT  
86  
91  
240  
Daisy chain  
cs_rtt_stub  
cpu_rtt_stub  
1 k  
Chipset  
Pin X4  
Processor  
Pin AH4  
lenCS  
lenCPU  
22  
10 pF  
sys_bus_reset_routin  
Table 14. RESET#/RESET2# Routing Guidelines (see Figure 25)  
Parameter  
LenCS  
Minimum (in)  
Maximum (in)  
0.5  
1
1.5  
3
LenITP  
LenCPU  
0.5  
0.5  
0.5  
1.5  
1.5  
1.5  
cs_rtt_stub  
cpu_rtt_stub  
58  
Intel® 815 Chipset Platform Design Guide  
System Bus Design Guidelines  
R
5.9  
Processor PLL Filter Recommendations  
Intel PGA370 processors have internal phase lock loop (PLL) clock generators that are analog and  
require quiet power supplies to minimize jitter.  
5.9.1  
Topology  
The general desired topology for these PLLs is shown in Figure 27. Not shown are the parasitic  
routing and local decoupling capacitors. Excluded from the external circuitry are parasitics  
associated with each component.  
5.9.2  
Filter Specification  
The function of the filter is to protect the PLL from external noise through low-pass attenuation.  
The low-pass specification, with input at VCCCORE and output measured across the capacitor, is as  
follows:  
< 0.2 dB gain in pass band  
< 0.5 dB attenuation in pass band (see DC drop in next set of requirements)  
> 34 dB attenuation from 1 MHz to 66 MHz  
> 28 dB attenuation from 66 MHz to core frequency  
The filter specification is graphically shown in Figure 26.  
Intel® 815 Chipset Platform Design Guide  
59  
System Bus Design Guidelines  
R
Figure 26. Filter Specification  
0.2dB  
0dB  
-0.5 dB  
Forbidden  
Zone  
Forbidden  
Zone  
-28dB  
-34dB  
DC  
1Hz  
passband  
fpeak  
1 MHz  
66 MHz  
fcore  
high frequency  
band  
filter_spec  
NOTES:  
1. Diagram not to scale.  
2. No specification for frequencies beyond fcore.  
3. fpeak should be less than 0.05 MHz.  
Other requirements:  
Use shielded-type inductor to minimize magnetic pickup.  
Filter should support DC current > 30 mA.  
DC voltage drop from VCC to PLL1 should be < 60 mV, which in practice implies series  
R < 2 . This also means pass-band (from DC to 1 Hz) attenuation < 0.5 dB for  
VCC = 1.1V, and < 0.35 dB for VCC = 1.5V.  
60  
Intel® 815 Chipset Platform Design Guide  
System Bus Design Guidelines  
R
5.9.3  
Recommendation for Intel Platforms  
The following tables contain examples of components that meet Intel’s recommendations, when  
configured in the topology of Figure 27.  
Table 15. Component Recommendations – Inductor  
Part Number  
Value  
Tol.  
SRF  
Rated  
Current  
DCR (Typical)  
TDK MLF2012A4R7KT  
Murata LQG21N4R7K00T1  
Murata LQG21C4R7N00  
4.7 µH  
4.7 µH  
4.7 µH  
10%  
10%  
30%  
35 MHz  
47 MHz  
35 MHz  
30 mA  
30 mA  
30 mA  
0.56 (1 max.)  
0.7 (± 50%)  
0.3 max.  
Table 16. Component Recommendations – Capacitor  
Part Number  
Value  
Tolerance  
ESL  
ESR  
Kemet T495D336M016AS  
AVX TPSD336M020S0200  
33 µF  
20%  
20%  
2.5 nH  
2.5 nH  
0.225 Ω  
33 µF  
0.2 Ω  
Table 17. Component Recommendation – Resistor  
Value  
Tolerance  
Power  
Note  
1 Ω  
10%  
1/16 W  
Resistor may be implemented with trace resistance,  
in which case a discrete R is not needed. See  
Figure 28.  
To satisfy damping requirements, total series resistance in the filter (from VCCCORE to the top plate  
of the capacitor) must be at least 0.35 . This resistor can be in the form of a discrete component  
or routing or both. For example, if the chosen inductor has a minimum DCR of 0.25 , then a  
routing resistance of at least 0.10 is required. Be careful not to exceed the maximum resistance  
rule (2 ). For example, if using discrete R1 (1 Ω ± 1%), the maximum DCR of the L (trace plus  
inductor) should be less than 2.0 - 1.1 = 0.9 ; this precludes the use of some inductors and sets a  
maximum trace length.  
Other routing requirements:  
The capacitor (C) should be close to the PLL1 and PLL2 pins, < 0.1 per route. These routes  
do not count towards the minimum damping R requirement.  
The PLL2 route should be parallel and next to the PLL1 route (i.e., minimize loop area).  
The inductor (L) should be close to C. Any routing resistance should be inserted between  
VCCCORE and L.  
Any discrete resistor (R) should be inserted between VCCCORE and L.  
Intel® 815 Chipset Platform Design Guide  
61  
System Bus Design Guidelines  
R
Figure 27. Example PLL Filter Using a Discrete Resistor  
VCCCORE  
R
L
<0.1 route  
PLL1  
Discrete resistor  
Processor  
C
PLL2  
<0.1 route  
PLL_filter_1  
Figure 28. Example PLL Filter Using a Buried Resistor  
VCCCORE  
R
L
<0.1 route  
PLL1  
Trace resistance  
Processor  
C
PLL2  
<0.1 route  
PLL_filter_2  
62  
Intel® 815 Chipset Platform Design Guide  
System Bus Design Guidelines  
R
5.9.4  
Custom Solutions  
As long as designers satisfy filter performance and requirements as specified and outlined in  
Section 5.9.2, other solutions are acceptable. Custom solutions should be simulated against a  
standard reference core model (see Figure 29).  
Figure 29. Core Reference Model  
Processor  
0.1  
0.1  
PLL1  
120 pF  
1 kΩ  
PLL2  
sys_bus_core_ref_model  
NOTES:  
1. 0.1 resistors represent package routing.  
2. 120 pF capacitor represents internal decoupling capacitor.  
3. 1 kresistor represents small signal PLL resistance.  
4. Be sure to include all component and routing parasitics.  
5. Sweep across component/parasitic tolerances.  
6. To observe IR drop, use DC current of 30 mA and minimum VCCCORE level.  
7. For other modules (interposer, DMM, etc.), adjust routing resistor if desired, but use minimum numbers.  
5.10  
5.11  
Voltage Regulation Guidelines  
A universal PGA370 design will need the voltage regulation module (VRM) or on-board voltage  
regulator (VR) to be compliant with Intel VRM 8.5 DC-DC Converter Design Guidelines.  
Decoupling Guidelines for Universal PGA370  
Designs  
These preliminary decoupling guidelines for universal PGA370 designs are estimated to meet the  
specifications of VRM 8.5 DC-DC Converter Design Guidelines.  
5.11.1  
VCCCORE Decoupling Design  
Sixteen or more 4.7 µF capacitors in 1206 packages.  
All capacitors should be placed within the PGA370 socket cavity and mounted on the primary side  
of the motherboard. The capacitors are arranged to minimize the overall inductance between the  
VCCCORE/VSS power pins, as shown in Figure 30.  
Intel® 815 Chipset Platform Design Guide  
63  
System Bus Design Guidelines  
R
Figure 30. Capacitor Placement on the Motherboard  
5.11.2  
5.11.3  
VTT Decoupling Design  
For Itt = 2.3 A (maximum)  
Twenty 0.1 µF capacitors in 0603 packages placed as closed as possible to the processor VTT  
pins. The capacitors are shown on the exterior of the previous figure.  
VREF Decoupling Design  
Four 0.1 µF capacitors in 0603 package placed near VREF pins (within 500 mils).  
64  
Intel® 815 Chipset Platform Design Guide  
System Bus Design Guidelines  
R
5.12  
Thermal Considerations  
5.12.1  
Heatsink Volumetric Keepout Regions  
Current heatsink recommendations are only valid for supported Celeron and Pentium III processor  
frequencies.  
Figure 31 shows the system component keepout volume above the socket connector required for  
the reference design thermal solution for high frequency processors. This keepout envelope  
provides adequate room for the heatsink, fan and attach hardware under static conditions as well as  
room for installation of these components on the socket. The heatsink must be compatible with the  
Integrated Heat Spreader (IHS) used by higher frequency Pentium III processors.  
Figure 32 shows component keepouts on the motherboard required to prevent interference with the  
reference design thermal solution. Note portions of the heatsink and attach hardware hang over the  
motherboard.  
Adhering to these keepout areas will ensure compatibility with Intel boxed processor products and  
Intel enabled third party vendor thermal solutions for high frequency processors. While the  
keepout requirements should provide adequate space for the reference design thermal solution,  
systems integrators should check with their vendors to ensure their specific thermal solutions fit  
within their specific system designs. Ensure that the thermal solutions under analysis comprehend  
the specific thermal design requirements for higher frequency Pentium III processors.  
While thermal solutions for lower frequency processors may not require the full keepout area,  
larger thermal solutions will be required for higher frequency processors, and failure to adhere to  
the guidelines will result in mechanical interference.  
Intel® 815 Chipset Platform Design Guide  
65  
System Bus Design Guidelines  
R
Figure 31. Heatsink Volumetric Keepout Regions  
Figure 32. Motherboard Component Keepout Regions  
66  
Intel® 815 Chipset Platform Design Guide  
System Bus Design Guidelines  
R
5.13  
Debug Port Changes  
Due to the lower voltage technology employed with newer processors, changes are required to  
support the debug port. Previously, test access port (TAP) signals used 2.5V logic, as is the case  
with the Intel Celeron processor in the PPGA package. Pentium III processor (CPUID=068xh),  
Celeron processor (CPUID=068xh), and future 0.13 micron socket 370 processors utilize 1.5V  
logic levels on the TAP. As a result, the type of debug port connecter used in universal PGA370  
designs is dependent on the processor that is currently in the socket. The 1.5V connector is a  
mirror image of the older 2.5V connector. Either connector will fit into the same printed circuit  
board layout. Only the pin numbers change (see Figure 33). Also required, along with the new  
connector, is an In-Target Probe* (ITP) that is capable of communicating with the TAP at the  
appropriate logic levels.  
Figure 33. TAP Connector Comparison  
2.5 V connector, AMP 104068-3 vertical plug, top view  
2
1
4
3
6
5
8
7
10  
9
12  
11  
14  
13  
16  
15  
18  
17  
20  
19  
22  
21  
24  
23  
26  
25  
28  
27  
30  
29  
RESET#  
RESET#  
1.5 V connector, AMP 104078-4 vertical receptacle, top view  
1
2
3
4
5
6
7
8
9
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
10  
sys_bus_TAP_conn  
Caution: Pentium III processor (CPUID=068xh) and Celeron processor (CPUID=068xh) require an in-  
target probe (ITP) compatible with 1.5V signal levels on the TAP. Previous ITPs were designed to  
work with higher voltages and may damage the processor if connected to any of these specified  
processors.  
See the processor datasheet for more information regarding the debug port.  
Intel® 815 Chipset Platform Design Guide  
67  
System Bus Design Guidelines  
R
This page is intentionally left blank.  
68  
Intel® 815 Chipset Platform Design Guide  
System Memory Design Guidelines  
R
6 System Memory Design  
Guidelines  
6.1  
System Memory Routing Guidelines  
Ground plane reference all system memory signals. To provide a good current return path and  
limit noise on the system memory signals, the signals should be ground referenced from the  
GMCH to the DIMM connectors and from DIMM connector-to-DIMM connector. If ground  
referencing is not possible, system memory signals should be, at a minimum, referenced to a single  
plane. If single plane referencing is not possible, stitching capacitors should be added no more  
than 200 mils from the signal via field. System memory signals may via to the backside of the PCB  
under the GMCH without a stitching capacitor as long as the trace on the topside of the PCB is  
less than 200 mils.  
Note: Intel recommends that a parallel plate capacitor between VCC3.3SUS and GND be added to  
account for the current return path discontinuity (See decoupling section). Use one 0.01 µF X7R  
capacitor per every five system memory signals that switch plane references. No more than two  
vias are allowed on any system memory signal.  
If a group of system memory signals must to change layers, a via field should be created and a  
decoupling capacitor should be added at the end of the via field. Do not route signals in the middle  
of a via field; this causes noise to be generated on the current return path of these signals and can  
lead to issues on these signals (see Figure 34). The traces shown are on layer 1 only. The figure  
shows signals that are changing layer and two signals that are not changing layer.  
Note: The two signals around the via field create a keepout zone where no signals that do not change  
layer should be routed.  
Figure 34. System Memory Routing Guidelines  
Add (1) 0.01 uf capacitor  
X7R (5) signals that via  
Do not route any signal in  
the middle of the via field  
that do not change layers  
Stagger vias in via field to avoid  
power/ground plane cut off because  
of the antipad on the internal layers  
sys-mem-route  
Intel® 815 Chipset Platform Design Guide  
69  
System Memory Design Guidelines  
R
6.2  
System Memory 2-DIMM Design Guidelines  
6.2.1  
System Memory 2-DIMM Connectivity  
Figure 35. System Memory Connectivity (2 DIMM)  
Double-Sided, Unbuffered Pinout without ECC  
SCSA[3:2]#  
SCSA[1:0]#  
SCKE[1:0]  
Notes:  
Min. (16 Mbit) 8 MB  
Max. (64 Mbit) 256 MB  
Max. (128 Mbit) 512 MB  
SCKE[3:2]  
SCSB[3:2]#  
SCSB[1:0]#  
SRAS#  
SCAS#  
SWE#  
82815  
SBS[1:0]  
SMAA[12:8,3:0]  
SMAA[7:4]  
SMAB[7:4]#  
SDQM[7:0]  
SMD[63:0]  
DIMM_CLK[3:0]  
DIMM_CLK[7:4]  
CK815  
ICH  
SMB_CLK  
SMB_DATA  
DIMM 0 & 1  
sys_mem_conn_2DIMM  
70  
Intel® 815 Chipset Platform Design Guide  
System Memory Design Guidelines  
R
6.2.2  
System Memory 2-DIMM Layout Guidelines  
Figure 36. System Memory 2-DIMM Routing Topologies  
82815  
DIMM 0  
DIMM 1  
Topology 1  
Topology 2  
Topology 3  
Topology 4  
Topology 5  
A
C
D
B
10  
10  
E
E
F
F
sys_mem_2DIMM_routing_topo  
Table 18. System Memory 2-DIMM Solution Space  
Signal  
Top.  
Trace (mils)  
Trace Lengths (inches)  
A
B
C
D
E
F
Width  
Spacing  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
SCS[3:2]#  
3
2
4
5
3
2
1
1
1
5
5
10  
10  
10  
10  
10  
10  
10  
10  
10  
1
4.5  
SCS[1:0]#  
SMAA[7:4]  
SMAB[7:4]#  
SCKE[3:2]  
SCKE[1:0]  
SMD[63:0]  
SDQM[7:0]  
1
4.5  
10  
10  
10  
10  
5
0.4  
0.4  
0.5  
0.5  
2
2
4
4
3
4
3
4
1.75  
1.5  
1
4
0.4  
0.4  
0.4  
0.5  
0.5  
0.5  
10  
5
3.5  
4.0  
SCAS#, SRAS#,  
SWE#  
SBS[1:0],  
1
5
10  
1
4.0  
0.4  
0.5  
SMAA[12:8,3:0]  
In addition to meeting the spacing requirements outlined in Table 18, system memory signal trace  
edges must be at least 30 mils from any other non-system memory signal trace edge.  
Intel® 815 Chipset Platform Design Guide  
71  
System Memory Design Guidelines  
R
Figure 37. System Memory Routing Example  
sys_mem_routing_ex  
NOTE: Routing in this figure is for example purposes only. It does not necessarily represent complete and  
correct routing for this interface.  
72  
Intel® 815 Chipset Platform Design Guide  
System Memory Design Guidelines  
R
6.3  
System Memory 3-DIMM Design Guidelines  
6.3.1  
System Memory 3-DIMM Connectivity  
Figure 38. System Memory Connectivity (3 DIMM)  
Double-Sided, Unbuffered Pinout without ECC  
SCSA[5:4]#  
SCSA[3:2]#  
SCSA[1:0]#  
Notes:  
Min. (16 Mbit)  
Max. (64 Mbit) 256 MB  
Max. (128 Mbit) 512 MB  
8 MB  
SCKE[1:0]  
SCKE[3:2]  
SCKE[5:4]  
SCSB[5:4]#  
SCSB[3:2]#  
SCSB[1:0]#  
SRAS#  
SCAS#  
SWE#  
SBS[1:0]  
82815  
SMAA[12:8,3:0]  
SMAA[7:4]  
SMAB[7:4]#  
SMAC[7:4]#  
SDQM[7:0]  
SMD[63:0]  
DIMM_CLK[3:0]  
DIMM_CLK[7:4]  
DIMM_CLK[11:8]  
CK815  
ICH  
SMB_CLK  
SMB_DATA  
DIMM 0 & 1 & 2  
sys_mem_conn_3DIMM  
Intel® 815 Chipset Platform Design Guide  
73  
System Memory Design Guidelines  
R
6.3.2  
System Memory 3-DIMM Layout Guidelines  
Figure 39. System Memory 3-DIMM Routing Topologies  
82815  
Topology 1  
DIMM 0  
DIMM 1  
DIMM 2  
A
C
D
E
F
B
B
B
Topology 2  
Topology 3  
Topology 4  
Topology 5  
Topology 6  
Topology 7  
Topology 8  
B
10  
10  
10  
G
G
G
C
D
E
sys_mem_3DIMM_routing_topo  
In addition to meeting the spacing requirements outlined in Table 19, system memory signal trace  
edges must be at least 30 mils from any other non-system memory signal trace edge.  
Table 19. System Memory 3-DIMM Solution Space  
Signal  
Trace (mils)  
Trace Lengths (inches)  
D
A
B
C
E
F
G
Top.  
Width  
Spacing  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
SCS[5:4]#  
SCS[3:2]#  
SCS[1:0]#  
SMAA[7:4]  
SMAB[7:4]#  
SMAC[7:4}  
SCKE[5:4]  
SCKE[3:2]  
SCKE[1:0]  
SMD[63:0]  
SDQM[7:0]  
4
3
2
6
7
8
4
3
2
1
1
5
5
5
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
1
4.5  
1
4.5  
5
1
2
4.5  
4
10  
10  
10  
10  
10  
10  
5
0.4  
0.4  
0.4  
0.5  
0.5  
0.5  
2
3
4
4
2
3
4
4
3
4
1.75  
1.5  
4
0.4  
0.4  
0.4  
0.5  
0.5  
0.5  
10  
5
3.5  
SCAS#,  
1
1
4
4
SRAS#, SWE#  
SBS[1:0],  
5
5
10  
0.4  
0.5  
SMAA[12:8,3:0]  
74  
Intel® 815 Chipset Platform Design Guide  
System Memory Design Guidelines  
R
6.4  
System Memory Decoupling Guidelines  
A minimum of eight 0.1 µF low-ESL ceramic capacitors (e.g., 0603 body type, X7R dielectric) are  
required and must be as close as possible to the GMCH. They should be placed within at most  
70 mils to the edge of the GMCH package edge for VSUS_3.3 decoupling, and they should be  
evenly distributed around the system memory interface signal field including the side of the  
GMCH where the system memory interface meets the host interface. There are power and GND  
balls throughout the system memory ball field of the GMCH that need good local decoupling.  
Make sure to use at least 14 mil drilled vias and wide traces from the pads of the capacitor to the  
power or ground plane to create a low-inductance path. If possible, multiple vias per capacitor pad  
are recommended to further reduce inductance. To add the decoupling capacitors within 70 mils of  
the GMCH and/or close to the vias, the trace spacing may be reduced as the traces go around each  
capacitor. The narrowing of space between traces should be minimal and for as short a distance as  
possible (500 mils maximum).  
To further decouple the GMCH and provide a solid current return path for the system memory  
interface signals it is recommended that a parallel plate capacitor be added under the GMCH. Add  
a topside or bottom side copper flood under center of the GMCH to create a parallel plate  
capacitor between VCC3.3 and GND, see following figure. The dashed lines indicate power plane  
splits on layer 2 or layer 3 depending on stack-up. The filled region in the middle of the GMCH  
indicates a ground plate (on layer 1 if the power plane is on layer 2 or on layer 4 if the power layer  
is on layer 3).  
Intel® 815 Chipset Platform Design Guide  
75  
System Memory Design Guidelines  
R
Figure 40. Intel® 815 Chipset Platform Decoupling Example  
Yellow lines in Figure 40 show layer-two plane splits. (Printed versions of this document will  
show the layer two plane splits in the left-side, bottom, right-side, and upper-right-side quadrants  
enclosed in gray lines.) Note that the layer 1 shapes do NOT cross the plane splits. The bottom  
shape is a VSS fill over VddSDRAM. The left-side shape is a VSS fill over VddAGP. The larger  
upper-right-side shape is a VSS fill over VddCORE.  
Additional decoupling capacitors shown in Figure 41 should be added between the DIMM  
connectors to provide a current return path for the reference plane discontinuity created by the  
DIMM connectors themselves. One 0.01 µF X7R capacitor should be added per every ten  
SDRAM signals. Capacitors should be placed between the DIMM connectors and evenly spread  
out across the SDRAM interface.  
For debug purposes, four or more 0603 capacitor sites should be placed on the backside of the  
board, evenly distributed under the Intel 815 chipset platform’s system memory interface signal  
field.  
76  
Intel® 815 Chipset Platform Design Guide  
System Memory Design Guidelines  
R
Figure 41. Intel® 815 Chipset Platform Decoupling Example  
6.5  
Compensation  
A system memory compensation resistor (SRCOMP) is used by the GMCH to adjust the buffer  
characteristics to specific board and operating environment characteristics. Refer to the Intel® 815  
Chipset Family: 82815 Graphics and Memory Controller Hub (GMCH) for use with the Universal  
Socket 370 Datasheet for details on compensation. Tie the SRCOMP pin of the GMCH to  
40 1% or 2% pull-up resistor to 3.3 Vsus (3.3Volt standby) via a 10-mil-wide, 0.5 inch trace  
(targeted for a nominal impedance of 40 Ω).  
Intel® 815 Chipset Platform Design Guide  
77  
System Memory Design Guidelines  
R
This page is intentionally left blank.  
78  
Intel® 815 Chipset Platform Design Guide  
AGP/Display Cache Design Guidelines  
R
7 AGP/Display Cache Design  
Guidelines  
For the detailed AGP interface functionality (e.g., protocols, rules, signaling mechanisms) refer to  
the latest AGP Interface Specification, Revision 2.0, which can be obtained from  
http://www.agpforum.org. This design guide focuses only on specific Intel 815 chipset platform  
recommendations and covers both standard add-in card AGP and down AGP solutions.  
7.1  
AGP Interface  
A single AGP connector is supported by the GMCH’s AGP interface. LOCK# and SERR#/PERR#  
are not supported. See the display cache discussion for a display cache/AGP muxing description  
and a description of the Graphics Performance Accelerator (GPA).  
The AGP buffers operate in one of two selectable modes to support the AGP universal connector:  
3.3V drive, not 5V safe. This mode is compliant with the AGP 1.0 66 MHz specification.  
1.5V drive, not 3.3V safe. This mode is compliant with the AGP 2.0 specification.  
The AGP 4X must operate at 1.5V and only use differential clocking mode. The AGP 2X can  
operate at 3.3V or 1.5V. The AGP interface supports up to 4X AGP signaling, though 4X fast  
writes are not supported. AGP semantic cycles to DRAM are not snooped on the host bus.  
The GMCH supports PIPE# or SBA[7:0] AGP address mechanisms, but not both simultaneously.  
Either the PIPE# or the SBA[7:0] mechanism must be selected during system initialization. The  
GMCH contains a 32-deep AGP request queue. High-priority accesses are supported. All AGP  
semantic accesses hitting the graphics aperture pass through an address translation mechanism  
with a fully-associative 20-entry TLB.  
Accesses between AGP and the hub interface are limited to hub interface-originated memory  
writes to AGP. Cacheable accesses from the IOQ queue flow through one path, while aperture  
accesses follow another path. Cacheable AGP (SBA, PIPE#, and FRAME#) reads to DRAM all  
snoop the cacheable global write buffer (GWB) for system data coherency. Aperture AGP (SBA,  
PIPE#) reads to DRAM snoop the aperture queue (GCMCRWQ). Aperture AGP (FRAME#) reads  
and writes to DRAM proceed through a FIFO and there is no RAW capability, so no snoop is  
required.  
The AGP interface is clocked from the 66 MHz clock (3V66). The AGP-to-host/memory interface  
is synchronous with a clock ratio of 1:1 (66 MHz : 66 MHz), 2:3 (66 MHz : 100 MHz) and  
1:2 (66 MHz : 133 MHz).  
Intel® 815 Chipset Platform Design Guide  
79  
AGP/Display Cache Design Guidelines  
R
7.1.1  
Graphics Performance Accelerator (GPA)  
The GMCH multiplexes the AGP signal interface with the integrated graphics’ display cache  
interface. As a result, for a universal motherboard that supports both integrated graphics and add-  
in AGP video cards, display cache (for integrated graphics) must be populated on a card in the  
universal AGP slot. The card is called a Graphics Performance Accelerator (GPA) card. Intel  
provides a specification for this card in a separate document (Graphics Performance Accelerator  
Specification).  
AGP guidelines are presented in this section for motherboards that support the population of a  
GPA card in their AGP slot, as well as for those that do not. Where there are distinct guidelines  
dependent on whether or not a motherboard will support a GPA card, the section detailing routing  
guidelines is divided into subsections, as follows:  
If the motherboard supports a GPA card populated in the AGP slot, then the guidelines in the  
Flexible Motherboard subsections are to be followed.  
If the motherboard will NOT support a GPA card populated in the AGP slot, then the  
guidelines in the AGP-Only Motherboard subsections are to be followed.  
7.1.2  
AGP Universal Retention Mechanism (RM)  
Environmental testing and field reports indicate that AGP cards and Graphics Performance  
Accelerator (GPA) cards may come unseated during system shipping and handling without proper  
retention. To avoid disengaged AGP cards and GPA modules, Intel recommends that AGP-based  
platforms use the AGP retention mechanism (RM).  
The AGP RM is a mounting bracket that is used to properly locate the card with respect to the  
chassis and to assist with card retention. The AGP RM is available in two different handle  
orientations: left-handed (see Figure 42) and right-handed. Most system boards accommodate the  
left-handed AGP RM. The manufacturing capacity of the left-handed RM currently exceeds the  
right-handed capacity, and as a result Intel recommends that customers design their systems to  
insure they can use the left-handed version of the AGP RM (see Figure 42). The right-handed  
AGP RM is identical to the left-handed AGP RM, except for the position of the actuation handle.  
This handle is located on the same end as the primary design, but extends from the opposite side  
(mirrored about the center axis running parallel to the length of the part). Figure 43 contains  
keepout information for the left hand AGP retention mechanism. Use this information to ensure the  
motherboard design leaves adequate space to install the retention mechanism.  
The AGP interconnect design requires that the AGP card must be retained to the extent that the  
card not back out more than 0.99 mm (0.039 in) within the AGP connector. To accomplish this it  
is recommended that new cards implement an additional notch feature in the mechanical keying  
tab to allow an anchor point on the AGP card for interfacing with an AGP RM. The retention  
mechanism’s round peg engages with the AGP or GPA card’s retention tab and prevents the card  
from disengaging during dynamic loading. The additional notch feature in the mechanical keying  
tab is required for 1.5V AGP cards and is recommended for the new 3.3V AGP cards.  
80  
Intel® 815 Chipset Platform Design Guide  
AGP/Display Cache Design Guidelines  
R
Figure 42. AGP Left-Handed Retention Mechanism  
Figure 43. AGP Left-Handed Retention Mechanism Keepout Information  
Engineering Change Request number 48 (ECR #48) of the AGP specification details the AGP RM,  
which is recommended for all AGP cards. These are approved changes to the Accelerated  
Graphics Port (AGP) Interface Specification, Revision 2.0. Intel intends to incorporate the AGP  
RM changes into later revisions of the AGP Interface Specification. In addition, Intel has defined a  
reference design of a mechanical device to utilize the features defined in ECR #48.  
Intel® 815 Chipset Platform Design Guide  
81  
AGP/Display Cache Design Guidelines  
R
ECR #48 can be viewed on the Intel Web site at:  
More information regarding this component (AGP RM) is available from the following vendors.  
Resin Color  
Supplier Part  
Number  
“Left Handed” Orientation  
(Preferred)  
“Right Handed” Orientation  
(Alternate)  
Black  
AMP P/N  
136427-1  
136427-2  
Foxconn P/N  
Foxconn P/N  
006-0002-939  
009-0004-008  
006-0001-939  
009-0003-008  
Green  
7.2  
AGP 2.0  
The AGP Interface Specification, Revision 2.0 enhances the functionality of the original AGP  
Interface Specification, Revision 1.0 by allowing 4X data transfers (4 data samples per clock) and  
1.5V operation. The 4X operation of the AGP interface provides for “quad-pumping” of the AGP  
AD (address/data) and SBA (side-band addressing) buses. That is, data is sampled four times  
during each 66 MHz AGP clock, which means that each data cycle is ¼ of a 15 ns (66 MHz)  
clock, or 3.75 ns. Note that 3.75 ns is the data cycle time, not the clock cycle time. During 2X  
operation, data is sampled twice during a 66 MHz clock cycle, so the data cycle time is 7.5 ns. To  
allow for such high-speed data transfers, the 2X mode of AGP operation uses source-synchronous  
data strobing. During 4X operation, the AGP interface uses differential source-synchronous  
strobing.  
With data cycle times as small as 3.75 ns and setup/hold times of 1 ns, propagation delay  
mismatch is critical. In addition to reducing propagation delay mismatch, it is important to  
minimize noise. Noise on the data lines causes the settling time to be long. If the mismatch  
between a data line and the associated strobe is too great or if there is noise on the interface,  
incorrect data will be sampled. The low-voltage operation on the AGP (1.5V) requires even more  
noise immunity. For example, during 1.5V operation, Vilmax is 570 mV. Without proper isolation,  
cross-talk could create signal integrity issues.  
82  
Intel® 815 Chipset Platform Design Guide  
AGP/Display Cache Design Guidelines  
R
7.2.1  
AGP Interface Signal Groups  
The signals on the AGP interface are broken into three groups: 1X timing domain signals, 2X/4X  
timing domain signals, and miscellaneous signals. Each group has different routing requirements.  
In addition, within the 2X/4X timing domain signals, there are three sets of signals. All signals in  
the 2X/4X timing domain must meet minimum and maximum trace length requirements as well as  
trace width and spacing requirements. However, trace length matching requirements only need to  
be met within each set of 2X/4X timing domain signals. The signal groups are listed in Table 20.  
Table 20. AGP 2.0 Signal Groups  
Group  
Signal  
1X timing domain  
CLK (3.3V), RBF#, WBF#, ST[2:0], PIPE#, REQ#, GNT#, PAR,  
FRAME#, IRDY#, TRDY#, STOP#, DEVSEL#  
2X / 4X timing domain  
Set #1: AD[15:0], C/BE[1:0]#, AD_STB0, AD_STB0#11  
Set #2: AD[31:16], C/BE[3:2]#, AD_STB1, AD_STB1#1  
Set #3: SBA[7:0], SB_STB, SB_STB#1  
Miscellaneous, async  
USB+, USB-, OVRCNT#, PME#, TYPDET#, PERR#, SERR#, INTA#,  
INTB#  
NOTES:  
1. These signals are used in 4X AGP mode ONLY.  
Table 21. AGP 2.0 Data/Strobe Associations  
Data  
Associated Strobe in 1X  
Associated  
Strobe in 2X  
Associated  
Strobes in 4X  
AD[15:0] and C/BE[1:0]#  
Strobes are not used in 1X mode.  
All data is sampled on rising clock  
edges.  
AD_STB0  
AD_STB1  
SB_STB  
AD_STB0,  
AD_STB0#  
AD[31:16] and C/BE[3:2]#  
SBA[7:0]  
Strobes are not used in 1X mode.  
All data is sampled on rising clock  
edges.  
AD_STB1,  
AD_STB1#  
Strobes are not used in 1X mode.  
All data is sampled on rising clock  
edges.  
SB_STB,  
SB_STB#  
Throughout this section, the term data refers to AD[31:0], C/BE[3:0]#, and SBA[7:0]. The term  
strobe refers to AD_STB[1:0], AD_STB[1:0]#, SB_STB, and SB_STB#. When the term data is  
used, it refers to one of the three sets of data signals, as listed in Table 21. When the term strobe is  
used, it refers to one of the strobes as it relates to the data in its associated group.  
The routing guidelines for each group of signals (1X timing domain signals, 2X/4X timing domain  
signals, and miscellaneous signals) will be addressed separately.  
Intel® 815 Chipset Platform Design Guide  
83  
AGP/Display Cache Design Guidelines  
R
7.3  
Standard AGP Routing Guidelines  
These routing guidelines cover a standard AGP solution. This utilizes an AGP compliant device on  
an external add-in card that plugs into a connector on the motherboard.  
7.3.1  
1X Timing Domain Routing Guidelines  
7.3.1.1  
Flexible Motherboard Guidelines  
The AGP 1X timing domain signals (Table 20) have a maximum trace length of 4 inches for  
motherboards that support a Graphics Performance Accelerator (GPA) card. This maximum  
applies to ALL signals listed as 1X timing domain signals in Table 20.  
AGP 1X signals multiplexed with display cached signals (listed in the following table) should  
be routed with a 1:3 trace width-to-spacing ratio. All other AGP 1X timing domain signals can  
be routed with 5-mil minimum trace separation.  
There are no trace length matching requirements for 1X timing domain signals.  
The following are multiplexed AGP1X Signals on Flexible Motherboards  
RBF#  
ST[2:0]  
PIPE#  
REQ#  
GNT#  
PAR  
FRAME#  
IRDY#  
TRDY#  
STOP#  
DEVSEL#  
7.3.1.2  
AGP-Only Motherboard Guidelines  
The AGP 1X timing domain signals (refer to Table 20) have a maximum trace length of  
7.5 inches for motherboards that will not support a Graphics Performance Accelerator (GPA)  
card. This maximum applies to ALL signals listed as 1X timing domain signals in Table 20.  
All AGP 1X timing domain signals can be routed with 5-mil minimum trace separation.  
There are no trace length matching requirements for 1X timing domain signals.  
7.3.2  
2X/4X Timing Domain Routing Guidelines  
These trace length guidelines apply to ALL signals listed in Table 20 as 2X/4X timing domain  
signals. These signals should be routed using 5 mil (60 ) traces.  
The maximum line length and length mismatch requirements depend on the routing rules used on  
the motherboard. These routing rules were created to provide design freedom by making tradeoffs  
between signal coupling (trace spacing) and line lengths. The maximum length of the AGP  
interface defines which set of routing guidelines must be used. Guidelines for short AGP interfaces  
(e.g., < 6 inches) and long AGP interfaces (e.g., > 6 inches and < 7.25 inches) are documented  
84  
Intel® 815 Chipset Platform Design Guide  
AGP/Display Cache Design Guidelines  
R
separately. The maximum length allowed for the AGP interface (on AGP-only motherboards) is  
7.25 inches.  
7.3.2.1  
Flexible Motherboard Guidelines  
For motherboards that support either an AGP card or a GPA card in the AGP slot, the  
maximum length of AGP 2X/4X timing domain signals is 4 inches.  
1:3 trace width-to-spacing is required for AGP 2X/4X signal traces.  
AGP 2X/4X signals must be matched their associated strobe (as outlined in Table 20), within  
±0.5 inch.  
For example, if a set of strobe signals (e.g., AD_STB0 and AD_STB0#) is 3.7 inches long, the  
data signals associated with those strobe signals (e.g., AD[15:0] and C/BE[2:0]#) can be  
3.2 inches to 4 inches long (since there is a 4 inch maximum length). Another strobe set (e.g.,  
SB_STB and SB_STB#) could be 3.1 inches long, so that the associated data signals (e.g.,  
SBA[7:0]) can be 2.6 inches to 3.6 inches long.  
The strobe signals (AD_STB0, AD_STB0#, AD_STB1, AD_STB1#, SB_STB, and SB_STB#)  
act as clocks on the source-synchronous AGP interface. Therefore, special care must be taken  
when routing these signals. Since each strobe pair is truly a differential pair, the pair should be  
routed together (e.g., AD_STB0 and AD_STB0# should be routed next to each other). The two  
strobes in a strobe pair should be routed using 5-mil traces with at least 15 mils of space (1:3)  
between them. This pair should be separated from the rest of the AGP signals (and all other  
signals) by at least 20 mils (1:4). The strobe pair must be length-matched to less than ±0.1 inch  
(i.e., a strobe and its complement must be the same length within 0.1 inch).  
Figure 44. AGP 2X/4X Routing Example for Interfaces < 6 Inches and GPA/AGP Solutions  
2X/4X signal  
5-mil trace  
15 mils  
5-mil trace  
2X/4X signal  
2X/4X signal  
2X/4X signal  
20 mils  
AGP STB#  
AGP STB  
5-mil trace  
15 mils  
5-mil trace  
AGP STB#  
AGP STB  
20 mils  
2X/4X signal  
2X/4X signal  
5-mil trace  
15 mils  
2X/4X signal  
2X/4X signal  
STB/STB# length  
Associated AGP 2X/4X data signal length  
0.5" 0.5"  
Min.  
Max.  
AGP_2x-4x_routing  
Intel® 815 Chipset Platform Design Guide  
85  
AGP/Display Cache Design Guidelines  
R
7.3.2.2  
AGP-Only Motherboard Guidelines  
For motherboards that will not support a GPA card populated in the AGP slot, the maximum AGP  
2X/4X signal trace length is 7.25 inches. However, there are different guidelines for AGP  
interfaces shorter than 6 inches (e.g., all AGP 2X/4X signals are less than 6 inches long) and those  
longer than 6 inches but shorter than the 7.25 inches maximum.  
AGP Interfaces Shorter Than 6 Inches  
These guidelines are for designs that require less than 6 inches between the AGP connector and the  
GMCH:  
1:3 trace width-to-spacing is required for AGP 2X/4X timing domain signal traces.  
AGP 2X/4X signals must be matched with their associated strobe (as outlined in Table 20),  
within ±0.5 inch.  
For example, if a set of strobe signals (e.g., AD_STB0 and AD_STB0#) is 5.3 inches long, the  
data signals associated with those strobe signals (e.g., AD[15:0] and C/BE[2:0]#) can be  
4.8 inches to 5.8 inches long. Another strobe set (e.g., SB_STB and SB_STB#) could be  
4.2 inches long, and the data signals associated with those strobe signals (e.g., SBA[7:0]) could be  
3.7 inches to 4.7 inches long.  
The strobe signals (AD_STB0, AD_STB0#, AD_STB1, AD_STB1#, SB_STB, and SB_STB#)  
act as clocks on the source-synchronous AGP interface. Therefore, special care must be taken  
when routing these signals. Because each strobe pair is truly a differential pair, the pair should be  
routed together (e.g., AD_STB0 and AD_STB0# should be routed next to each other). The two  
strobes in a strobe pair should be routed on 5-mil traces with at least 15 mils of space (1:3)  
between them. This pair should be separated from the rest of the AGP signals (and all other  
signals) by at least 20 mils (1:4). The strobe pair must be length-matched to less than ±0.1 inch  
(i.e., a strobe and its complement must be the same length, within 0.1 inch).  
AGP Interfaces Longer Than 6 Inches  
Since longer lines have more cross-talk, they require wider spacing between traces to reduce the  
skew. The following guidelines are for designs that require more than 6 inches (but less than the  
7.25 inches maximum) between the AGP connector and the GMCH:  
1:4 trace width-to-spacing is required for AGP 2X/4X timing domain signal traces.  
AGP 2X/4X signals must be matched with their associated strobe (as outlined in Table 20),  
within ±0.125 inch.  
For example, if a set of strobe signals (e.g., AD_STB0 and AD_STB0#) is 6.5 inches long, the  
data signals associated with those strobe signals (e.g., AD[15:0] and C/BE[2:0]#) could be  
6.475 inches to 6.625 inches long. Another strobe set (e.g., SB_STB and SB_STB#) could be  
6.2 inches long, and the data signals associated with those strobe signals (e.g., SBA[7:0]) could be  
6.075 inches to 6.325 inches long.  
The strobe signals (AD_STB0, AD_STB0#, AD_STB1, AD_STB1#, SB_STB, and SB_STB#)  
act as clocks on the source-synchronous AGP interface. Therefore, special care must be taken  
when routing these signals. Because each strobe pair is truly a differential pair, the pair should be  
routed together (e.g., AD_STB0 and AD_STB0# should be routed next to each other). The two  
strobes in a strobe pair should be routed on 5-mil traces with at least 20 mils of space (1:4)  
86  
Intel® 815 Chipset Platform Design Guide  
AGP/Display Cache Design Guidelines  
R
between them. This pair should be separated from the rest of the AGP signals (and all other  
signals) by at least 20 mils (1:4). The strobe pair must be length-matched to less than ±0.1 inch  
(i.e., a strobe and its complement must be the same length, within 0.1 inch).  
7.3.3  
AGP Routing Guideline Considerations and Summary  
This section applies to all AGP signals in any motherboard support configuration (e.g., “flexible”  
or “AGP only”), as follows:  
The 2X/4X timing domain signals can be routed with 5-mil spacing, when breaking out of the  
GMCH. The routing must widen to the documented requirements, within 0.3 inch of the  
GMCH package.  
When matching trace length for the AGP 4X interface, all traces should be matched from the  
ball of the GMCH to the pin on the AGP connector. It is not necessary to compensate for the  
lengths of the AGP signals on the GMCH package.  
Reduce line length mismatch to ensure added margin. Trace length mismatch for all signals  
within a signal group should be as close to zero as possible, to provide timing margin.  
To reduce trace-to-trace coupling (cross-talk), separate the traces as much as possible.  
All signals in a signal group should be routed on the same layer.  
The trace length and trace spacing requirements must not be violated by any signal.  
Table 22. AGP 2.0 Routing Summary  
Max.  
Signal  
Trace Spacing  
(5-mil Traces)  
Length  
Relative to  
N/A  
Notes  
Length  
Mismatch  
1X Timing  
Domain  
7.5” 4  
5 mils  
No  
None  
requirement  
2X/4X Timing  
Domain Set 1  
7.25” 4  
20 mils  
±0.125”  
AD_STB0  
and  
AD_STB0#  
AD_STB0,  
AD_STB0# must be  
the same length  
2X/4X Timing  
Domain Set 2  
7.25” 4  
7.25”4  
6” 3  
20 mils  
20 mils  
15 mils1  
15 mils1  
15 mils1  
±0.125”  
±0.125”  
±0.5”  
AD_STB1  
and  
AD_STB1#  
AD_STB1,  
AD_STB1# must be  
the same length  
2X/4X Timing  
Domain Set 3  
SB_STB and  
SB_STB#  
SB_STB, SB_STB#  
must be the same  
length  
2X/4X Timing  
Domain Set 1  
AD_STB0  
and  
AD_STB0#  
AD_STB0,  
AD_STB0# must be  
the same length  
2X/4X Timing  
Domain Set 2  
6”3  
±0.5”  
AD_STB1  
and  
AD_STB1#  
AD_STB1,  
AD_STB1# must be  
the same length  
2X/4X Timing  
Domain Set 3  
6”3  
±0.5”  
SB_STB and  
SB_STB#  
SB_STB, SB_STB#  
must be the same  
length  
NOTES:  
1. Each strobe pair must be separated from other signals by at least 20 mils.  
2. These guidelines apply to board stack-ups with 15% impedance tolerance.  
3. 4 inches is the maximum length for a flexible motherboards.  
4. Solution valid for AGP-only motherboards.  
Intel® 815 Chipset Platform Design Guide  
87  
AGP/Display Cache Design Guidelines  
R
7.3.4  
7.3.5  
AGP Clock Routing  
The maximum total AGP clock skew, between the GMCH and the graphics component, is 1 ns for  
all data transfer modes. This 1 ns includes skew and jitter that originates on the motherboard, add-  
in card, and clock synthesizer. Clock skew must be evaluated not only at a single threshold  
voltage, but at all points on the clock edge that fall within the switching range. The 1 ns skew  
budget is divided such that the motherboard is allotted 0.9 ns of clock skew. (The motherboard  
designer shall determine how the 0.9 ns is allocated between the board and the synthesizer.)  
AGP Signal Noise Decoupling Guidelines  
The following routing guidelines are recommended for an optimal system design. The main focus  
of these guidelines is to minimize signal integrity problems on the AGP interface of the GMCH.  
The following guidelines are not intended to replace thorough system validation for products  
based on the Intel 815 chipset platform.  
A minimum of six 0.01 µF capacitors are required and must be as close as possible to the  
GMCH. These should be placed within 70 mils of the outer row of balls on the GMCH for  
VDDQ decoupling. The closer the placement, the better.  
The designer should evenly distribute placement of decoupling capacitors in the AGP  
interface signal field.  
It is recommended that the designer use a low-ESL ceramic capacitor (e.g., with a 0603 body-  
type X7R dielectric).  
To add the decoupling capacitors within 70 mils of the GMCH and/or close to the vias, the  
trace spacing may be reduced as the traces go around each capacitor. The narrowing of space  
between traces should be minimal and for as short a distance as possible (1 inch maximum).  
In addition to the minimum decoupling capacitors, the designer should place bypass  
capacitors at vias that transition the AGP signal from one reference signal plane to another.  
On a typical four layer PCB design, the signals transition from one side of the board to the  
other. One extra 0.01 µF capacitor is required per 10 vias. The capacitor should be placed as  
close as possible to the center of the via field.  
The designer should ensure that the AGP connector is well decoupled, as described in the AGP  
Design Guide, Revision 1.0, Section 1.5.3.3.  
88  
Intel® 815 Chipset Platform Design Guide  
AGP/Display Cache Design Guidelines  
R
Figure 45. AGP Decoupling Capacitor Placement Example  
AGP_decoupling_cap_placement  
NOTE: This figure is for example purposes only. It does not necessarily represent complete and correct  
routing for this interface.  
7.3.6  
AGP Routing Ground Reference  
It is strongly recommended that, at a minimum, the following critical signals be referenced to  
ground from the GMCH to an AGP connector (or to an AGP video controller if implemented as a  
“down” solution on an AGP-only motherboard), using a minimum number of vias on each net:  
AD_STB0, AD_STB0#, AD_STB1, AD_STB1#, SB_STB, SB_STB#, G_GTRY#, G_IRDY#,  
G_GNT#, and ST[2:0].  
In addition to the minimum signal set listed previously, it is strongly recommended that half of all  
AGP signals be reference to ground, depending on board layout. In an ideal design, the entire AGP  
interface signal field would be referenced to ground. This recommendation is not specific to any  
particular PCB stack-up, but should be applied to all designs using the Intel 815 chipset platform  
for use with the universal socket 370.  
Intel® 815 Chipset Platform Design Guide  
89  
AGP/Display Cache Design Guidelines  
R
7.4  
AGP Down Routing Guidelines  
These routing guidelines cover an AGP down solution. This allows for an AGP compliant device  
to be implemented directly on the motherboard without the need for a connector or add-in card.  
7.4.1  
1X AGP Down Option Timing Domain Routing Guidelines  
Routing guidelines for an AGP device on the motherboard are very similar to those when the  
device is implemented with an AGP connector.  
AGP 1X timing domain signals (Table 20) have a maximum trace length of 7.5 inches. This  
maximum applies to ALL signals listed as 1X timing domain signals in Table 20.  
All AGP 1X timing domain signals can be routed with 5-mil minimum trace separation  
There are no trace length matching requirements for 1X timing domain signals  
7.4.2  
2X/4X AGP Down Timing Domain Routing Guidelines  
These trace length guidelines apply to ALL signals listed in Table 20 as 2X/4X timing domain  
signals. These signals should be routed using 5-mil (60 ) traces.  
The maximum AGP 2X/4X signal trace length is 6 inches.  
1:3 trace width-to-spacing is required for AGP 2X/4X timing domain signal traces.  
AGP 2X/4X signals must be matched with their associated strobe (as outlined in Table 20),  
within ± 0.5 inch.  
For example, if a set of strobe signals (e.g., AD_STB0 and AD_STB0#) is 5.3 inches long, the  
data signals associated with those strobe signals (e.g., AD[15:0] and C/BE[2:0]#) could be  
4.8 inches to 5.8 inches long. Another strobe set (e.g., SB_STB and SB_STB#) could be  
4.2 inches long, and the data signals associated with those strobe signals (e.g., SBA[7:0]) could be  
3.7 inches to 4.7 inches long.  
The strobe signals (AD_STB0, AD_STB0#, AD_STB1, AD_STB1#, SB_STB, and SB_STB#)  
act as clocks on the source-synchronous AGP interface. Therefore, special care must be taken  
when routing these signals. Because each strobe pair is truly a differential pair, the pair should be  
routed together (e.g., AD_STB0 and AD_STB0# should be routed next to each other). The two  
strobes in a strobe pair should be routed on 5-mil traces with at least 15 mils of space (1:3)  
between them. This pair should be separated from the rest of the AGP signals (and all other  
signals) by at least 20 mils (1:4). The strobe pair must be length-matched to less than ±0.2 inch  
(i.e., a strobe and its complement must be the same length, within 0.2 inch).  
90  
Intel® 815 Chipset Platform Design Guide  
AGP/Display Cache Design Guidelines  
R
Figure 1. AGP Down 2X/4X Routing Recommendations  
Length: 0.5" - 6.0" Width to  
spacing: 1:3 Strobe-to-Data  
Mismatch: ±0.5"  
Signals  
AGP Compliant  
Graphics Device  
Intel®  
82815  
Strobes  
Length: Dependent on Data  
Width: 5 mil  
Spacing: 15 mils  
Strobe-to-Strobe Mismatch: ±0.2"  
AGP_Down_1x-2x  
7.4.3  
AGP Routing Guideline Considerations and Summary  
This section applies to all AGP signals, as follows:  
The 2X/4X timing domain signals can be routed with 5-mil spacing, when breaking out of the  
GMCH. The routing must widen to the documented requirements, within 0.3 of the GMCH  
package.  
When matching the trace length for the AGP 4X interface, all traces should be matched from  
the ball of the GMCH to the ball on the AGP compliant device. It is not necessary to  
compensate for the lengths of the AGP signals on the GMCH package.  
Reduce line length mismatch to ensure added margin. Trace length mismatch for all signals  
within a signal group should be as close to zero as possible, to provide timing margin.  
To reduce trace-to-trace coupling (cross-talk), separate the traces as much as possible.  
All signals in a signal group should be routed on the same layer.  
The trace length and trace spacing requirements must not be violated by any signal.  
Table 23. AGP 2.0 Routing Summary  
Max.  
Length  
Trace Spacing  
(5-mil Traces)  
Length  
Mismatch  
Signal  
Relative to  
Notes  
1X Timing  
Domain  
7.5”  
5 mils  
No  
N/A  
None  
requirement  
2X/4X Timing  
Domain Set 1  
6”  
6”  
6”  
15 mils1  
±0.5”  
AD_STB0  
and  
AD_STB0#  
AD_STB0,  
AD_STB0# must be  
the same length  
2X/4X Timing  
Domain Set 2  
15 mils1  
15 mils1  
±0.5”  
±0.5”  
AD_STB1  
and  
AD_STB1#  
AD_STB1,  
AD_STB1# must be  
the same length  
2X/4X Timing  
Domain Set 3  
SB_STB  
and  
SB_STB#  
SB_STB, SB_STB#  
must be the same  
length  
NOTES:  
1. Each strobe pair must be separated from other signals by at least 20 mils.  
Intel® 815 Chipset Platform Design Guide  
91  
AGP/Display Cache Design Guidelines  
R
7.4.4  
7.4.5  
AGP Clock Routing  
The maximum total AGP clock skew, between the GMCH and the graphics component, is 1 ns for  
all data transfer modes. This 1 ns includes skew and jitter that originates on the motherboard and  
clock synthesizer. Clock skew must be evaluated not only at a single threshold voltage, but at all  
points on the clock edge that fall within the switching range.  
For AGP clock routing guidelines for the Intel 815 chipset platform, refer to Section 11.3.  
AGP Signal Noise Decoupling Guidelines  
The following routing guidelines are recommended for the optimal system design. The main focus  
of these guidelines is to minimize signal integrity problems on the AGP interface of the GMCH.  
The following guidelines are not intended to replace thorough system validation for products  
based on the Intel 815 chipset platform.  
A minimum of six 0.01 µF capacitors are required and must be as close as possible to the  
GMCH. These should be placed within 70 mils of the outer row of balls on the GMCH for  
VDDQ decoupling. The closer the placement, the better.  
The designer should evenly distribute placement of decoupling capacitors in the AGP  
interface signal field.  
It is recommended that the designer use a low-ESL ceramic capacitor, such as with a 0603  
body-type X7R dielectric.  
To add the decoupling capacitors within 70 mils of the GMCH and/or close to the vias, the  
trace spacing may be reduced as the traces go around each capacitor. The narrowing of space  
between traces should be minimal and for as short a distance as possible (1 inch maximum).  
In addition to the minimum decoupling capacitors, the designer should place bypass  
capacitors at vias that transition the AGP signal from one reference signal plane to another.  
On a typical four-layer PCB design, the signals transition from one side of the board to the  
other. One extra 0.01 µF capacitor is required per ten vias. The capacitor should be placed as  
close as possible to the center of the via field.  
7.4.6  
AGP Routing Ground Reference  
It is strongly recommended that at least the following critical signals be referenced to ground from  
the GMCH to an AGP video controller on an AGP-only motherboard, using a minimum number of  
vias on each net: AD_STB0, AD_STB0#, AD_STB1, AD_STB1#, SB_STB, SB_STB#,  
G_GTRY#, G_IRDY#, G_GNT#, and ST[2:0].  
In addition to the minimum signal set listed previously, it is strongly recommended that half of all  
AGP signals be referenced to ground, depending on the board layout. In an ideal design, the  
complete AGP interface signal field would be referenced to ground. This recommendation is not  
specific to any particular PCB stack-up, but should be applied to all designs using the Intel 815  
chipset platform.  
92  
Intel® 815 Chipset Platform Design Guide  
AGP/Display Cache Design Guidelines  
R
7.5  
AGP 2.0 Power Delivery Guidelines  
7.5.1  
VDDQ Generation and TYPEDET#  
AGP specifies two separate power planes: VCC and VDDQ. VCC is the core power for the  
graphics controller. This voltage is always 3.3V. VDDQ is the interface voltage. In AGP 1.0  
implementations, VDDQ was also 3.3V. For the designer developing an AGP 1.0 motherboard,  
there is no distinction between VCC and VDDQ, as both are tied to the 3.3V power plane on the  
motherboard.  
AGP 2.0 requires that these power planes be separate. In conjunction with the 4X data rate, the  
AGP 2.0 Interface Specification provides for low-voltage (1.5V) operation. The AGP 2.0  
specification implements a TYPEDET# (type detect) signal on the AGP connector that determines  
the operating voltage of the AGP 2.0 interface (VDDQ). The motherboard must provide either  
1.5V or 3.3V to the add-in card, depending on the state of the TYPEDET# signal. (see Table 24).  
1.5V low-voltage operation applies only to the AGP interface (VDDQ). VCC is always 3.3V.  
Note: The motherboard provides 3.3V to the VCC pins of the AGP connector. If the graphics controller  
needs a lower voltage, then the add-in card must regulate the 3.3VCC voltage to the controller’s  
requirements. The graphics controller may only power AGP I/O buffers with the VDDQ power  
pins.  
The TYPEDET# signal indicates whether the AGP 2.0 interface operates at 1.5V or 3.3V. If  
TYPEDET# is floating (i.e., No Connect) on an AGP add-in card, the interface is 3.3V. If  
TYPEDET# is shorted to ground, the interface is 1.5V.  
Table 24. TYPDET#/VDDQ Relationship  
TYPEDET#  
(on add-in card)  
VDDQ  
(supplied by MB)  
GND  
N/C  
1.5V  
3.3V  
As a result of this requirement, the motherboard must provide a flexible voltage regulator or key  
the slot to preclude add-in cards with voltage requirements incompatible with the motherboard.  
This regulator must supply the appropriate voltage to the VDDQ pins on the AGP connector. For  
specific design recommendations, refer to the schematics in Appendix A. VDDQ generation and  
AGP VREF generation must be considered together. Before developing VDDQ generation  
circuitry, refer to both the above requirements and the AGP 2.0 Interface Specification.  
Intel® 815 Chipset Platform Design Guide  
93  
AGP/Display Cache Design Guidelines  
R
Figure 46. AGP VDDQ Generation Example Circuit  
+3.3V  
VDDQ  
+12V  
C2  
47 µF  
U1  
LT1575  
8
7
1
SHDN  
IPOS  
INEG  
GATE  
COMP  
5
2
C3  
220 µF  
VIN  
R2  
3
4
6
5
GND  
FB  
2.2 k  
R1  
1 µF  
C1  
10 pF  
C4  
.001 µF  
C5  
R5  
7.5 k  
- 1%  
R3  
301 - 1%  
TYPEDET#  
1.21 k  
- 1%  
R4  
AGP_VDDQ_gen_ex_circ  
The previous figure demonstrates one way to design the VDDQ voltage regulator. This regulator  
is a linear regulator with an external, low-Rdson FET. The source of the FET is connected to 3.3V.  
This regulator converts 3.3V to 1.5V or passes 3.3V, depending on the state of TYPEDET#. If a  
linear regulator is used, it must draw power from 3.3V (not 5V) to control thermals  
(i.e., 5V regulated down to 1.5V with a linear regulator will dissipate approximately 7 W at 2 A).  
Because it must draw power from 3.3V and, in some situations, must simply pass that 3.3V to  
VDDQ (when a 3.3V add-in card is placed in the system), the regulator MUST use a low-Rdson  
FET.  
AGP 1.0 ECR #44 modified VDDQ 3.3min to 3.1V. When an ATX power supply is used, the  
3.3 Vmin is 3.168V. Therefore, 68 mV of drop is allowed across the FET at 2 A. This corresponds  
to a FET with an Rdson of 34 m.  
How does the regulator switch? The feedback resistor divider is set to 1.5V. When a 1.5V card  
is placed in the system, the transistor is Off and the regulator regulates to 1.5V. When a 3.3V card  
is placed in the system, the transistor is On, and the feedback will be pulled to ground. When this  
happens, the regulator will drive the gate of the FET to nearly 12V. This will turn the FET on and  
pass 3.3V – (2 A * Rdson) to VDDQ.  
94  
Intel® 815 Chipset Platform Design Guide  
AGP/Display Cache Design Guidelines  
R
7.5.2  
VREF Generation for AGP 2.0 (2X and 4X)  
VREF generation for AGP 2.0 is different, depending on the AGP card type used. The 3.3V AGP  
cards generate VREF locally. That is, they have a resistor divider on the card that divides VDDQ  
down to VREF (see Figure 47). To account for potential differences between VDDQ and GND at  
the GMCH and graphics controller, 1.5V cards use source-generated VREF. That is, the VREF  
signal is generated at the graphics controller and sent to the GMCH, and another VREF is  
generated at the GMCH and sent to the graphics controller (see Figure 47).  
Both the graphics controller and the GMCH must generate VREF and distribute it through the  
connector (1.5V add-in cards only). The following two pins defined on the AGP 2.0 universal  
connector allow this VREF passing:  
VREFGC :  
VREF from the graphics controller to the chipset  
VREF from the chipset to the graphics controller  
VREFCG :  
To preserve the common mode relationship between the VREF and data signals, the routing of the  
two VREF signals must be matched in length to the strobe lines, within 0.5 inch on the  
motherboard and within 0.25 inch on the add-in card.  
The voltage divider networks consist of AC and DC elements, as shown in Figure 47.  
The VREF divider network should be placed as close as practical to the AGP interface, to get the  
benefit of the common-mode power supply effects. However, the trace spacing around the VREF  
signals must be a minimum of 25 mils to reduce cross-talk and maintain signal integrity.  
During 3.3V AGP 2.0 operation, VREF must be 0.4 VDDQ. However, during 1.5V AGP 2.0  
operation, VREF must be 0.5 VDDQ. This requires a flexible voltage divider for VREF. Various  
methods of accomplishing this exist, and one such example is shown in Figure 47.  
Intel® 815 Chipset Platform Design Guide  
95  
AGP/Display Cache Design Guidelines  
R
Figure 47. AGP 2.0 VREF Generation and Distribution  
a) 1.5V AGP Card  
+12V  
R7  
(See note 2)  
R9  
1 KΩ  
VDDQ  
300  
200  
1%  
1.5V AGP  
Card  
TYPEDET#  
C8  
R2  
VrefGC  
500 pF  
1%  
R5  
82  
R6  
1 K  
U6  
VDDQ  
GMCH  
REF  
C9  
0.1 uF  
mosfet  
R4  
82  
GND  
VDDQ  
AGP  
Device  
GND  
R2  
1 K  
REF  
C9  
500 pF  
VrefCG  
Notes:  
1. The resistor dividers should be placed near the GMCH. The AGPREF signal must be 5 mils wide and routed 10 mils from adjacent signals.  
2. R7 is the same resistor seen in AGP VDDQ generation example circuit figure (R1)  
b) 3.3V AGP Card  
+12V  
(See note 2)  
TYPEDET#  
R7  
1 KΩ  
R9  
300  
1%  
VDDQ  
3.3V AGP  
Card  
C8  
R2  
200  
1%  
500 pF  
VrefGC  
R5  
R6  
1 K  
U6  
82  
VDDQ  
VDDQ  
AGP  
REF  
GMCH  
GND  
REF  
Device  
C10  
0.1 uF  
mosfet  
R2  
1 K  
R4  
82  
GND  
C9  
500 pF  
VrefCG  
The resistor dividers should be placed near the GMCH. The AGPREF signal must be 5 mils wide and routed 25 mils from adjacent signals.  
agp_2.0ref_gen_dist  
The flexible VREF divider shown in Figure 47 uses a FET switch to switch between the locally  
generated VREF (for 3.3V add-in cards) and the source-generated VREF (for 1.5V add-in cards).  
Use of the source-generated VREF at the receiver is optional and is a product implementation  
issue beyond the scope of this document.  
96  
Intel® 815 Chipset Platform Design Guide  
AGP/Display Cache Design Guidelines  
R
7.6  
Additional AGP Design Guidelines  
7.6.1  
Compensation  
The GMCH AGP interface supports resistive buffer compensation (RCOMP). Tie the GRCOMP  
pin to a 40 , 2% (or 39 , 1%) pull-down resistor (to ground) via a 10-mil-wide, very short  
(<0.5 inch) trace.  
7.6.2  
AGP Pull-Ups  
AGP control signals require pull-up resistors to VDDQ on the motherboard, to ensure that they  
contain stable values when no agent is actively driving the bus.  
1X Timing Domain Signals Requiring Pull-Up Resistors  
The signals requiring pull-up resistors are:  
FRAME#  
TRDY#  
IRDY#  
RBF#  
PIPE#  
REQ#  
WBF#  
GNT#  
ST[2:0]  
DEVSEL#  
STOP#  
SERR#  
PERR#  
Note: It is critical that these signals be pulled up to VDDQ, not 3.3V.  
The trace stub to the pull-up resistor on 1X timing domain signals should be kept at less than  
0.5 inch, to avoid signal reflections from the stub.  
Note: The strobe signals require pull-ups/pull-downs on the motherboard to ensure that they contain  
stable values when no agent is driving the bus.  
Note: INTA# and INTB# should be pulled to 3.3V, not VDDQ.  
2X/4X Timing Domain Signals  
AD_STB[1:0]  
SB_STB  
AD_STB[1:0]#  
SB_STB#  
(pull-up to VDDQ)  
(pull-up to VDDQ)  
(pull-down to ground)  
(pull-down to ground)  
The trace stub to the pull-up/pull-down resistor on 2X/4X timing domain signals should be kept to  
less than 0.1 inch to avoid signal reflections from the stub.  
Intel® 815 Chipset Platform Design Guide  
97  
AGP/Display Cache Design Guidelines  
R
The pull-up/pull-down resistor value requirements are Rmin = 4 kand Rmax = 16 k. The  
recommended AGP pull-up/pull-down resistor value is 8.2 k.  
7.6.2.1  
AGP Signal Voltage Tolerance List  
The following signals on the AGP interface are 3.3V tolerant during 1.5V operation:  
PME#  
INTA#  
INTB#  
GPERR#  
GSERR#  
CLK  
RST  
The following signals on the AGP interface are 5V tolerant (refer to the USB specification):  
USB+  
USB-  
OVRCNT#  
The following special AGP signal is either GROUNDED or NOT CONNECTED on an AGP card.  
TYPEDET#  
Note: All other signals on the AGP interface are in the VDDQ group. They are not 3.3V tolerant during  
1.5V operation.  
7.7  
Motherboard / Add-in Card Interoperability  
There are three AGP connectors: 3.3V AGP connector, 1.5V AGP connector, and Universal AGP  
connector. To maximize add-in flexibility, it is highly advisable to implement the universal  
connector in a system based on the Intel 815 chipset platform. All add-in cards are either 3.3V or  
1.5V cards. The 4X transfers at 3.3V are not allowed due to timings.  
Table 25. Connector/Add-in Card Interoperability  
Card  
1.5V Connector  
3.3V Connector  
Universal Connector  
1.5V Card  
3.3V Card  
Yes  
No  
No  
Yes  
Yes  
Yes  
Table 26. Voltage/Data Rate Interoperability  
Voltage  
1X  
2X  
4X  
1.5V VDDQ  
3.3V VDDQ  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
98  
Intel® 815 Chipset Platform Design Guide  
AGP/Display Cache Design Guidelines  
R
7.8  
AGP / Display Cache Shared Interface  
As described earlier, the AGP and display cache interfaces of the Intel 815 chipset platform are  
multiplexed or shared. In other words, the same component pins (balls) are used for both  
interfaces, although obviously only one interface can be supported at any given time. As a result,  
almost all display cache interface signals are mapped onto the new AGP interface. The Intel 815  
chipset platform can be configured in either AGP mode or Graphics mode. In the AGP mode, the  
interface supports a full AGP 4X interface. In the Graphics mode, the interface becomes a display  
cache interface similar to the Intel 810E chipset. Note, however, that in the Graphics mode, the  
display cache is optional. There do not have to be any SDRAM devices connected to the interface.  
The only dedicated display cache signals are OCLK and RCLK, which need not connect directly  
to the SDRAM devices. These are not mapped onto existing AGP signals.  
7.8.1  
GPA Card Considerations  
To support the fullest flexibility, the display cache exists on an add-in card (Graphics Performance  
Accelerator, or GPA) that complies with the AGP connector form factor. If the motherboard  
designer follows the flexible routing guidelines for the AGP interface detailed in previous sections,  
the customer can choose to populate the AGP slot in a system based on the Intel 815 chipset  
platform with either an AGP graphics card, with a GPA card to enable the highest-possible internal  
graphics performance, or with nothing to get the lowest-cost internal graphics solution. Some of  
the GPA/ Intel 815 chipset platform for use with the universal socket 370 interfacing implications  
are listed below. For a complete description of the GPA card design, refer to the Graphics  
Performance Accelerator Card Specification available from Intel.  
A strap is required to determine which frequency to select for display cache operation. This is  
the L_FSEL pin of the GMCH. The GPA card will pull this signal up or down, as appropriate  
to communicate to the appropriate operating frequency to the Intel 815 chipset platform. The  
platform will sample this pin on the deasserting edge of reset.  
Since current SDRAM technology is always 3.3V rather than the 1.5V option also supported  
by AGP, the GPA card should set the TYPEDET# signal correctly to indicate that it requires a  
3.3V power supply. Furthermore, the GPA card should have only the 3.3V key and not the  
1.5V key, thereby preventing it from being inserted into a 1.5V-only connector.  
The pad buffers on the chip will be the normal AGP buffers and will work for both interfaces.  
In internal graphics mode, the AGPREF signal, which is required for the AGP mode, should  
remain functional as a reference voltage for sampling 3.3V LMD inputs. The voltage level on  
AGPREF should remain exactly the same as in the AGP mode, as opposed to VCC/2 used for  
previous products.  
7.8.1.1  
AGP and GPA Mechanical Considerations  
The GPA card will be designed with a notch on the PCB to go around the AGP universal retention  
mechanism. To guarantee that the GPA card will meet all shock and vibration requirements of the  
system, the AGP universal retention mechanism will be required on all AGP sockets that are to  
support a GPA card.  
Intel® 815 Chipset Platform Design Guide  
99  
AGP/Display Cache Design Guidelines  
R
7.8.2  
Display Cache Clocking  
The display cache is clocked source-synchronously from a clock generated by the GMCH. The  
display cache clocking scheme uses three clock signals.  
LTCLK clocks the SDRAM devices, is muxed with an AGP signal, and should be routed  
according to the flexible AGP guidelines.  
LOCLK and LRCLK clock the input buffers of the universal platform. LOCLK is an output  
of the GMCH and is a buffered copy of LTCLK. LOCLK should be connected to LRCLK at  
the GMCH, with a length of PCB trace to create the appropriate clock skew relationship  
between the clock input (LRCLK) and the SDRAM capacitor clock input(s).  
The guidelines are illustrated in Figure 48.  
Figure 48. Display Cache Input Clocking  
GMCH  
LOCL  
LRCL  
15 1%  
0.5"  
1.5"  
15 pF 5%  
disp_cache_in_clk  
The capacitor should be placed as close as possible to the GMCH LRCLK pin. To minimize skew  
variation, Intel recommends a 1% series termination resistor and a 5% NP0 (also known as C0G)  
capacitor, to stabilize the value across temperatures. In addition to the 15 , 1% resistor and the  
15 pF, 5% NP0 capacitor. The following combination also can be used: 10 , 1% and 22 pF, 5%  
NP0.  
7.9  
Designs That Do Not Use The AGP Port  
Universal platform designs that do not use the AGP port should terminate the AGP pins of the  
GMCH. Except for the GPAR pin (that requires a 100 kpull-down resistor to ground), the pull-  
up or pull-down resistor value should be 8.2 k. Any external graphics implementation not using  
the AGP port should terminate the GMCH AGP control and strobe signals as recommended in  
Section 13.3.2.  
100  
Intel® 815 Chipset Platform Design Guide  
Integrated Graphics Display Output  
R
8 Integrated Graphics Display  
Output  
8.1  
Analog RGB/CRT  
8.1.1  
RAMDAC/Display Interface  
Figure 49 shows the interface of the RAMDAC analog current outputs with the display. Each DAC  
output is doubly terminated with a 75 resistance. One 75 resistance is from the DAC output to  
the board ground and the other termination resistance exists within the display. The equivalent DC  
resistance at the output of each DAC output is 37.5 . The current output from each DAC flows  
into this equivalent resistive load to produce a video voltage without the need for external  
buffering. There is also an LC pi-filter that is used to reduce high-frequency glitches and noise and  
to reduce EMI. To maximize performance, the filter impedance, cable impedance, and load  
impedance should be the same. The LC pi-filter consists of two 3.3 pF capacitors and a ferrite  
bead with a 75 impedance at 100 MHz. The LC pi-filter is designed to filter glitches produced  
by the RAMDAC while maintaining adequate edge rates to support high-end display resolutions.  
Intel® 815 Chipset Platform Design Guide  
101  
Integrated Graphics Display Output  
R
Figure 49. Schematic of RAMDAC Video Interface  
Graphics  
Board  
Termination resistor, R 75  
(metal film)  
1%  
Display PLL power  
Analog  
connects to this  
power plane  
1.8 V  
segmented power  
Lf  
Diodes D1, D2: Schottky diodes  
LC filter capacitors, C1, C2: 3.3 pF  
plane  
1.8 V board  
power plane  
1.8 V board  
power plane  
LC  
Filter  
Cf  
Ferrite bead, FB: 7  
(Recommended part: Murata  
BLM11B750S)  
@ 100 MHz  
1.8 V board  
power plane  
Graphics  
Chip  
D1  
FB  
VCCDACA1/  
VCCDACA2  
Red  
VCCDA  
C1  
C2  
Rt  
D2  
Coax Cable  
RAMDAC  
Pi filter  
FB  
Zo = 75  
1.8 V board  
power plane  
Display  
Pixel  
clock  
(from  
DPLL)  
Red  
D1  
75  
Green  
Blue  
Video  
connector  
Green  
75  
75  
C1  
C2  
Rt  
D2  
Pi filter  
FB  
1.8 V board  
power plane  
D1  
Blue  
C1  
C2  
Rt  
D2  
IWASTE  
IREF VSSDACA  
Pi filter  
Rset 1% reference  
current resistor  
(metal film)  
Ground plane  
display_RAMDAC_video_IF  
NOTE: Diodes D1, D2 are clamping diodes with low leakage and low capacitive loading. An example is:  
California Micro Devices PAC DN006 (6 channel ESD protection array).  
In addition to the termination resistance and LC pi-filter, there are protection diodes connected to  
the RAMDAC outputs to help prevent latch-up. The protection diodes must be connected to the  
same power supply rails as the RAMDAC. An LC filter is recommended to connect the segmented  
analog 1.85V power plane of the RAMDAC to the 1.85V board power plane. The LC filter should  
be designed for a cut-off frequency of 100 kHz.  
102  
Intel® 815 Chipset Platform Design Guide  
Integrated Graphics Display Output  
R
8.1.2  
Reference Resistor (Rset) Calculation  
The full-swing video output is designed to be 0.7V according to the VESA video standard. With  
an equivalent DC resistance of 37.5 (two 75 in parallel; one 75 termination on the board  
and one 75 termination within the display), the full-scale output current of a RAMDAC channel  
is 0.7/37.5 = 18.67 mA. Since the RAMDAC is an 8-bit current-steering DAC, this full-scale  
current is equivalent to 255 I, where I is a unit current. Therefore, the unit current or LSB current  
of the DAC signals equals 73.2 µA. The reference circuitry generates a voltage across this Rset  
resistor equal to the bandgap voltage divided by three (407.6 mV). The RAMDAC reference  
current generation circuitry is designed to generate a 32-I reference current using the reference  
voltage and the Rset value. To generate a 32-I reference current for the RAMDAC, the reference  
current setting resistor, Rset, is calculated using the following equation:  
R
set = VREF / 32*I = 0.4076 V / 32*73.2 µA = 174 Ω  
8.1.3  
RAMDAC Board Design Guidelines  
Figure 50 shows a general cross-section of a typical four-layer board. The recommended  
RAMDAC routing for a four-layer board is such that the red, green, and blue video outputs are  
routed on the top (bottom) layer over (under) a solid ground plane to maximize the noise rejection  
characteristics of the video outputs. It is essential to prevent toggling signals from being routed  
next to the video output signals to the VGA connector. A 20-mil spacing between any video route  
and any other routes is recommended.  
Figure 50. Cross-Sectional View of a Four-Layer Board  
Board Cross Section  
Avoid clock routes or  
high-frequency routes in  
the area of the RAMDAC  
output signals and  
Top of board  
Video  
connector  
Graphics chip  
reference resistor.  
One solid, continuous  
ground plane  
Board  
components  
RAMDAC / PLL circuitry  
Analog traces  
Ground plane  
Low-frequency  
signal traces  
Segmented analog power  
plane for RAMDAC / PLL  
Digital power plane  
Bottom of board  
RAMDAC_board_xsec  
Matching the video routes (i.e., red, green, blue) from the RAMDAC to the VGA connector also is  
essential. The routing for these signals should be as similar as possible (i.e., same routing layer(s),  
same number of vias, same routing length, same bends, and jogs).  
Intel® 815 Chipset Platform Design Guide  
103  
Integrated Graphics Display Output  
R
Figure 51 shows the recommended RAMDAC component placement and routing. The termination  
resistance can be placed anywhere along the video route from the RAMDAC output to the VGA  
connector, as long as the trace impedances are designed as indicated in the following figure. It is  
advisable to place the pi-filters in close proximity with the VGA connector, to maximize the EMI  
filtering effectiveness. The LC filter components for the RAMDAC/PLL power plane, the  
decoupling capacitors, the latch-up protection diodes, and the reference resistor should be placed  
in close proximity with the respective pins. Figure 52 shows the recommended reference resistor  
placement and the ground connections.  
Figure 51. Recommended RAMDAC Component Placement & Routing  
Place LC filter components and  
high-frequency decoupling  
capacitors as close as possible  
to power pins  
Analog  
power plane  
1.8 V  
Lf  
1.8 V board  
power plane  
1.8 V board  
power plane  
LC  
filter  
Cf  
Place pi filter near VGA connector  
1.8 V board  
power plane  
Graphics  
Chip  
75  
routes  
FB  
D1  
37.5  
route  
VCCDACA1/  
VCCDACA2  
Red  
Green  
Blue  
VCCDA  
Red route  
C1  
C2  
Rt  
D2  
RAMDAC  
Pi filter  
1.8 V board  
power plane  
Pixel  
clock  
(from  
DPLL)  
75  
routes  
FB  
D1  
37.5  
route  
VGA  
Green route  
C1  
C2  
Rt  
D2  
Pi filter  
1.8 V board  
power plane  
75  
routes  
FB  
D1  
37.5  
route  
Blue route  
C1  
C2  
Rt  
D2  
IWASTE  
IREF VSSDACA  
Rset  
Pi filter  
Place diodes close to  
RGB pins  
Avoid routing  
toggling signals in  
this shaded area  
Place reference  
resistor near IREF pin  
- Match the RGB routes  
- Space between the RGB routes a min. of 20 mils  
Via straight down to the ground plane  
RAMDAC comp placement routing  
NOTE: Diodes D1, D2 are clamping diodes with low leakage and low capacitive loading. An example is:  
California Micro Devices PAC DN006 (6 channel ESD protection array).  
104  
Intel® 815 Chipset Platform Design Guide  
Integrated Graphics Display Output  
R
Figure 52. Recommended RAMDAC Reference Resistor Placement and Connections  
Graphics Chip  
IREF  
ball/pin  
Position resistor  
near IREF pin.  
Short, wide route connecting resistor to IREF pin  
No toggling signals  
should be routed  
near Rset resistor.  
Resistor for setting RAMDAC reference current  
178 , 1%, 1/16 W, SMT, metal film  
Rset  
Large via or multiple vias straight down to ground plane  
RAMDAC_ref_resistor_place_conn  
8.1.4  
RAMDAC Layout Recommendations  
The primary concern with regard to the RGB signal length is that the RGB routes are matched  
and routed with the correct impedance. The impedance should be 37.5 , single-ended trace  
to the 75 , termination resistor. Routing from the 75 resistor to the video pi-filter and to  
the VGA connector should be 75 impedance.  
The trace width for the RGB signal should be selected for a 37.5 impedance (single-ended  
route) to the 75 termination resistor. The 75 termination resistor should be placed near  
the VGA connector.  
The spacing for each DAC channel routing (i.e., between red and green, green and blue  
outputs) should be a minimum of 20 mils.  
The space between the RGB signal route and other routes should be a minimum of 20 mils for  
each DAC route.  
All RGB signals should be referenced to ground.  
The trace width for the HSYNC and VSYNC signal routes should be selected for an  
approximately 40 impedance.  
The spacing between the HSYNC /VSYNC signal routes should be at least 10 mils, preferably  
20 mils.  
The space between HSYNC/VSYNC signal routes and other routes should be at least 10 mils,  
preferably 20 mils.  
Route the HSYNC and VSYNC over the ground plane, if possible. The HSYNC and VSYNC  
signals should not route over or near any clock signals or any other high switching routing.  
8.1.5  
HSYNC/VSYNC Output Guidelines  
The HSYNC and VSYNC output of the GMCH may exhibit up to 1.26V P-P noise when driven  
high under high traffic system memory conditions. To minimize this, the following is required:  
Add external buffers to HSYNC and VSYNC.  
Examples include: Series 10 resistor with a 74LVC08  
Intel® 815 Chipset Platform Design Guide  
105  
Integrated Graphics Display Output  
R
8.2  
Digital Video Out  
The Digital Video Out (DVO) port is a scaleable, low-interface port that ranges from 1.1V to  
1.8V. This DVO port interfaces with a discrete TV encoder to enable platform support for TV-  
Out, with a discrete TMDS transmitter to enable platform support for DVI-compliant digital  
displays, or with an integrated TV encoder and TMDS transmitter.  
The GMCH DVO port controls the video front-end devices via an I2C interface, by means of the  
LTVDA and LTVCK pins. I2C is a two-wire communications bus/protocol. The protocol and bus  
are used to collect EDID (extended display identification) from a digital display panel and to  
detect and configure registers in the TV encoder or TMDS transmitter chips.  
8.2.1  
DVO Interface Routing Guidelines  
Route data signals (LTVDATA[11:0]) with a trace width of 5 mils and a trace spacing of 20 mils.  
These signals can be routed with a trace width of 5 mils and a trace spacing of 15 mils for  
navigation around components or mounting holes. To break out of the GMCH, the DVO data  
signals can be routed with a trace width of 5 mils and a trace spacing of 5 mils. The signals should  
be separated to a trace width of 5 mils and a trace spacing of 20 mils, within 0.3 inch of the  
GMCH component. The maximum trace length for the DVO data signals is 7 inches. These signals  
should each be matched within ±0.1 inch of the LTVCLKOUT[1] and LTVCLKOUT[0] signals.  
Route the LTVCLKOUT[1:0] signals 5 mils wide and 20 mils apart. This signal pair should be a  
minimum of 20 mils from any adjacent signals. The maximum length for LTVCLKOUT[1:0] is  
7 inches and the two signals should be the same length.  
8.2.2  
8.2.3  
DVO I2C Interface Considerations  
LTVDA and LTVCK should be connected to the TMDS transmitter, TV encoder or integrated  
TMDS transmitter/TV encoder device, as required by the specifications for those devices. LTVDA  
and LTVCK should also be connected to the DVI connector as specified by the DVI specification.  
Pull-ups of 4.7 k(or pull-ups with the appropriate value derived from simulation) are required  
on each of LTVDA and LTVCK.  
Leaving the DVO Port Unconnected  
If the motherboard does not implement any of the possible video devices with the universal  
platform’s DVO port, the following are recommended on the motherboard:  
Pull-up LTVDA and LTVCK with 4.7 kresistors at the GMCH. This will prevent the  
universal platform’s DVO controller from confusing noise on these lines for false I2C cycles.  
Route LTVDATA[11:0] and LTVCLKOUT[1:0] out of the BGA to test points for use by  
automated test equipment (if required). These signals are part of one of the GMCH XOR  
chains.  
106  
Intel® 815 Chipset Platform Design Guide  
Hub Interface  
R
9 Hub Interface  
The GMCH ball assignment and the ICH ball assignment have been optimized to simplify hub  
interface routing. It is recommended that the hub interface signals be routed directly from the  
GMCH to ICH with all signals referenced to VSS (see Figure 53). Layer transition should be kept  
to a minimum. If a layer change is required, use only two vias per net and keep all data signals and  
associated strobe signal on the same layer.  
The hub interface signals are divided into two groups: data signals (HL) and strobe signals  
(HL_STB). For the 8-bit hub interface, HL[0:7] are associated with HL_STB and HL_STB#.  
Data Signals:  
HL[10:0]  
Strobe Signals:  
HL_STB  
HL_STB#  
Note: HL_STB/HL_STB# is a differential strobe pair.  
No pull-ups or pull-downs are required on the hub interface. HL11 on the ICH should be brought  
out to a test point for NAND Tree testing. Each signal should be routed such that it meets the  
guidelines documented for its signal group.  
Figure 53. Hub Interface Signal Routing Example  
NAND tree  
test point  
HL_STB  
HL11  
HL_STB#  
ICH  
GMCH  
HL[10:0]  
GCLK  
CLK66  
Clocks  
hub link sig routin  
Intel® 815 Chipset Platform Design Guide  
107  
Hub Interface  
R
9.1.1  
Data Signals  
Hub interface data signals should be routed with a trace width of 5 mils and a trace spacing of  
20 mils. These signals can be routed with a trace width of 5 mils and a trace spacing of 15 mils for  
navigation around components or mounting holes. To break out of the GMCH and the ICH, the  
hub interface data signals can be routed with a trace width of 5 mils and a trace spacing of 5 mils.  
The signals should be separated to a trace width of 5 mils and a trace spacing of 20 mils, within  
0.3 inch of the GMCH/ICH components.  
The maximum trace length for the hub Interface data signals is 7 inches. These signals should each  
be matched within ±0.1 inch of the HL_STB and HL_STB# signals.  
9.1.2  
9.1.3  
Strobe Signals  
Due to their differential nature, the hub interface strobe signals should be 5 mils wide and routed  
20 mils apart. This strobe pair should be a minimum of 20 mils from any adjacent signal. The  
maximum length for the strobe signals is 7 inches, and the two strobes should be the same length.  
Additionally, the trace length for each data signal should be matched to the trace length of the  
strobes, within ±0.1 inch.  
HREF Generation/Distribution  
HREF is the hub interface reference voltage. It is 0.5 * 1.85V = 0.92V ± 2%. It can be generated  
using a single HREF divider or locally generated dividers (see Figure 54 and Figure 55). The  
resistors should be equal in value and rated at 1% tolerance (to maintain 2% tolerance on 0.9V).  
The value of these resistors must be chosen to ensure that the reference voltage tolerance is  
maintained over the entire input leakage specification. The recommended range for the resistor  
value is from a minimum of 100 to a maximum of 1 k(300 shown in example).  
The single HREF divider should not be located more than 4 inches away from either the GMCH or  
ICH. If the single HREF divider is located more than 4 inches away, then the locally generated hub  
interface reference dividers should be used instead.  
The reference voltage generated by a single HREF divider should be bypassed to ground at each  
component with a 0.01 µF capacitor located close to the component HREF pin. If the reference  
voltage is generated locally, the bypass capacitor must be close to the component HREF pin.  
108  
Intel® 815 Chipset Platform Design Guide  
Hub Interface  
R
Figure 54. Single-Hub-Interface Reference Divider Circuit  
1.85 V  
300  
GMCH  
ICH  
HUBREF  
HUBREF  
0.01 µF  
300  
0.01 µF  
0.1 µF  
hub_IF_ref_div_1  
Figure 55. Locally Generated Hub Interface Reference Dividers  
1.85 V  
1.85 V  
300  
300  
300  
GMCH  
ICH  
HUBREF  
HUBREF  
300  
0.01 µF 0.01 µF  
hub_IF_ref_div_2  
9.1.4  
Compensation  
Independent hub interface compensation resistors are used by the GMCH and ICH to adjust buffer  
characteristics to specific board characteristics. Refer to the Intel® 815 Chipset Family: 82815  
Graphics and Memory Controller Hub (GMCH) for use with the Universal Socket 370 Datasheet  
and the Intel® 82801AA (ICH) and 82801AB (ICH0) I/O Controller Hub Datasheet for details on  
compensation. The resistive compensation (RCOMP) guidelines are as follows:  
RCOMP: Tie the HLCOMP pin of each component to a 40 1% or 2% pull-up resistor (to  
1.85V) via a 10-mil-wide, 0.5 inch trace (targeted at a nominal trace impedance of 40 ). The  
GMCH and ICH each requires their own RCOMP resistor.  
Intel® 815 Chipset Platform Design Guide  
109  
Hub Interface  
R
This page is intentionally left blank.  
110  
Intel® 815 Chipset Platform Design Guide  
I/O Subsystem  
R
10 I/O Subsystem  
This chapter provides guidelines for connecting and routing the IDE, AC’97, USB, I/O APIC,  
SMBus, PCI, LPC/FWH, and RTC subsystems.  
10.1  
IDE Interface  
This section contains guidelines for connecting and routing the ICH IDE interface. The ICH has  
two independent IDE channels. This section provides guidelines for IDE connector cabling and  
motherboard design, including component and resistor placement and signal termination for both  
IDE channels. The ICH has integrated the series resistors that typically have been required on the  
IDE data signals (PDD[15:0] and SDD[15:0]) running to the two ATA connectors. Intel does not  
anticipate requiring additional series termination, but OEMs should verify the motherboard signal  
integrity via simulation. Additional external 0 resistors can be incorporated into the design to  
address possible noise issues on the motherboard. The additional resistor layout increases  
flexibility by providing future stuffing options.  
The IDE interface can be routed with 5-mil traces on 5-mil spaces, and it should be less than  
8 inches long (from ICH to IDE connector). Additionally, the shortest IDE signal (on a given IDE  
channel) must be less than 1 inch shorter than the longest IDE signal (on the channel).  
10.1.1  
Cabling and Motherboard Requirements  
Length of Cable: Each IDE cable must be equal to or less than 18 .  
Cable Capacitance: Less than 30 pF.  
Placement: A maximum of 6 inches between drive connectors on the cable. If a single drive  
is placed on the cable, it should be placed at the end of the cable. If a second drive is placed  
on the same cable, it should be placed on the connector next closest to the end of the cable  
(6 inches away from the end of the cable).  
Grounding: Provide a direct low-impedance chassis path between the motherboard ground  
and hard disk drives.  
Ultra ATA/66: Ultra ATA/66 requires the use of an 80-conductor cable.  
ICH Placement: The ICH must be placed at most 8 inches from the ATA connector(s).  
Termination Resistors: There is no need for series termination resistors on the data and  
control signals, since series termination is integrated into these signal lines on the ICH.  
Capacitance: The capacitance of each pin of the IDE connector on the host should be less  
than 25 pF when the cables are disconnected from the host.  
IDE Absent: If no IDE is implemented with the ICH, the input signals (xDREQ and  
xIORDY) can be grounded and the output signals can be left as no connects.  
Intel® 815 Chipset Platform Design Guide  
111  
I/O Subsystem  
R
Figure 56. IDE Minimum/Maximum Routing and Cable Lengths  
8 in. max.  
10-18 in.  
Traces  
ICH  
IDE  
connector  
5-12 in.  
4-6 in.  
IDE_routing_cable_len  
Figure 57. Ultra ATA/66 Cable  
IDE connector  
Black wires: ground  
Grey wires: signals  
ATA66_cable  
112  
Intel® 815 Chipset Platform Design Guide  
I/O Subsystem  
R
10.2  
Cable Detection for Ultra ATA/66  
An 80-conductor IDE cable is required for Ultra ATA/66. This cable uses the same 40-pin  
connector as the old 40-pin IDE cable. The wires in the cable alternate: ground, signal, ground,  
signal,. . . . All ground wires are tied together on the cable (and they are tied to the ground on the  
motherboard through the ground pins in the 40-pin connector). This cable conforms to the Small  
Form Factor Specification SFF-8049, which is obtainable from the Small Form Factor  
Committee.  
To determine whether the ATA/66 mode can be enabled, the chipset using the ICH requires the  
system BIOS to attempt to determine the type of cable used in the system. The BIOS does this in  
one of two ways:  
Host-side detection  
Device-side detection  
To determine whether the ATA/66 mode can be enabled, the ICH requires that the system software  
attempt to determine the type of cable used in the system. If the system software detects an 80-  
conductor cable, it may use any Ultra DMA mode up to the highest transfer mode supported by  
both the chipset and the IDE device. If a 40-conductor cable is detected, the system software must  
not enable modes faster than Ultra DMA Mode 2 (Ultra ATA/33).  
Intel® 815 Chipset Platform Design Guide  
113  
I/O Subsystem  
R
10.2.1  
Host Side Cable Detection  
BIOS Detects Cable Type Using GPIOs  
Host-side detection requires the use of two GPI pins (one per IDE controller). The proper way to  
connect the PDIAG#/CBLID# signal of the IDE connector to the host is shown in Figure 58. All  
Ultra ATA/66 devices have a 10 kpull-up resistor to 5V. Most GPIO pins on the ICH and all  
GPIs on the FWH are not 5V tolerant. This requires a resistor divider so that 5V will not be driven  
to the ICH or FWH pins. The proper value of the series resistor is 15 k(as shown in the  
following figure). This creates a 10 k/15 kresistor divider and will produce approximately 3V  
for a logic high. This mechanism allows the host to sample PDIAG#/CBLID#, after diagnostics. If  
PDIAG#/CBLIB# is high, then there is 40-conductor cable in the system and ATA modes 3 and 4  
should not be enabled. If PDIAG#/CBLID# is low, then there is an 80-conductor cable in the  
system.  
Figure 58. Host-Side IDE Cable Detection  
IDE Drive  
5 V  
To secondary  
IDE connector  
10 k  
40-conductor  
cable  
GPIO  
ICH  
PDIAG  
GPIO  
15 k  
IDE Drive  
5 V  
To secondary  
IDE connector  
10 k  
80-conductor  
IDE cable  
GPIO  
ICH  
PDIAG  
GPIO  
15 k  
Open  
IDE_cable_det_host  
114  
Intel® 815 Chipset Platform Design Guide  
I/O Subsystem  
R
10.2.2  
Device Side Cable Detection  
BIOS Queries IDE Device for Cable Type  
Device-side detection requires only a 0.047 µF capacitor on the motherboard, as shown in  
Figure 59. This mechanism creates a resistor-capacitor (RC) time constant. The ATA mode 3 or 4  
device will drive PDIAG#/CBLID# low and then release it (pulled up through a 10 kresistor).  
The device will sample the PDIAG# signal after releasing it. In an 80-conductor cable,  
PDIAG#/CBLID# is not connected through; therefore, the capacitor has no effect. In a  
40-conductor cable, PDIAG#/CBLID# is connected through to the device; therefore, the signal  
will rise more slowly. The device can detect the difference in rise times and it will report the cable  
type to the BIOS when it sends the IDENTIFY_DEVICE packet during system boot, as described  
in the ATA/66 specification.  
Figure 59. Drive-Side IDE Cable Detection  
IDE Drive  
5 V  
10 k  
40-conductor  
cable  
ICH  
PDIAG  
0.047 µF  
IDE Drive  
5 V  
10 k  
80-conductor  
IDE cable  
ICH  
PDIAG  
0.047 µF  
Open  
iDE_cable_det_drive  
Intel® 815 Chipset Platform Design Guide  
115  
I/O Subsystem  
R
10.2.3  
Primary IDE Connector Requirements  
Figure 60. Resistor Schematic for Primary IDE Connectors  
22 - 47  
Reset#  
PCIRST_BUF#*  
PDD[15:8]  
PDD[7]  
PDD[6:0]  
PDA[2:0]  
PDCS1#  
PDCS3#  
PDIOR#  
PDIOW#  
PDDREQ  
5V  
5V  
5.6 k  
10 kΩ  
1 k  
8.2 k  
PIORDY  
IRQ14  
PDDACK#  
470  
CSEL  
Pin 32  
N.C.  
ICH  
*Due to ringing, PCIRST# must be buffered.  
IDE_resistor_schem_primary  
Due to the elimination of the ISA bus from the ICH, PCI_RST# should be connected to pin 1  
of the IDE connectors as the IDE reset signal. Because of high loading, the PCI_RST# signal  
should be buffered.  
22 to 47 series resistors are required on RESET#. The correct value should be  
determined for each unique motherboard design, based on signal quality.  
IRQ14 and IRQ15 each require an 8.2 kpull-up resistor to VCC.  
A 1 kpull-up to 5V is required on PIORDY and SIORDY.  
A 470 pull-down is required on pin 28 of each connector.  
A 5.6 kpull-down is required on PDREQ and SDREQ.  
The primary IDE connector uses IRQ14, and the secondary IDE connector uses IRQ15.  
There is no internal pull-up or pull-down on PDD7 or SDD7 of the ICH. Devices must not  
have a pull-up resistor on DD7. It is recommended that a host have a 10 kpull-down resistor  
on PDD7 and SDD7 to allow the host to recognize the absence of a device at power-up (as  
required by the ATA-4 specification).  
116  
Intel® 815 Chipset Platform Design Guide  
I/O Subsystem  
R
10.2.4  
Secondary IDE Connector Requirements  
Figure 61. Resistor Schematic for Secondary IDE Connectors  
22 - 47  
Reset#  
PCIRST_BUF#*  
SDD[15:8]  
SDD[7]  
SDD[6:0]  
SDA[2:0]  
SDCS1#  
SDCS3#  
SDIOR#  
SDIOW#  
SDDREQ  
5V  
5V  
5.6  
10 k  
k
1 k  
8.2 kΩ  
SIORDY  
IRQ15  
SDDACK#  
470  
CSEL  
Pin 32  
N.C.  
ICH  
* Due to high loading, PCIRST# must be buffered.  
IDE_resistor_schem_secondary  
Due to the elimination of the ISA bus from the ICH, PCI_RST# should be connected to pin 1  
of the IDE connectors as the IDE reset signal. Because of high loading, the PCI_RST# signal  
should be buffered.  
22 to 47 series resistors are required on RESET#. The correct value should be  
determined for each unique motherboard design, based on signal quality.  
IRQ14 and IRQ15 each require an 8.2 kpull-up resistor to VCC.  
A 1 kpull-up to 5V is required on PIORDY and SIORDY.  
A 470 pull-down is required on pin 28 of each connector.  
A 5.6 kpull-down is required on PDREQ and SDREQ.  
The primary IDE connector uses IRQ14, and the secondary IDE connector uses IRQ15.  
There is no internal pull-up or pull-down on PDD7 or SDD7 of the ICH. Devices must not  
have a pull-up resistor on DD7. It is recommended that a host have a 10 kpull-down resistor  
on PDD7 and SDD7 to allow the host to recognize the absence of a device at power-up (as  
required by the ATA-4 specification).  
Intel® 815 Chipset Platform Design Guide  
117  
I/O Subsystem  
R
10.2.5  
Layout for Both Host-Side and Device-Side Cable  
Detection  
The Intel 815 chipset platform (using the ICH) can use two methods to detect the cable type. Each  
mode requires a different motherboard layout.  
It is possible to lay out for both host-side and device-side cable detection and decide the method to  
be used during assembly. Figure 62 shows the layout that allows for both host-side and drive-side  
detection.  
For Host-Side Detection:  
R1 is a 0 resistor.  
R2 is a 15 kresistor.  
C1 is not stuffed.  
For Device-Side Detection:  
R1 is not stuffed.  
R2 is not stuffed.  
C1 is a 0.047 µF capacitor.  
Figure 62. Flexible IDE Cable Detection  
ICH  
R1  
R2  
C1  
IDE_cable_det_flex  
118  
Intel® 815 Chipset Platform Design Guide  
I/O Subsystem  
R
10.3  
AC’97  
The ICH implements an AC’97 2.1-compliant digital controller. Any codec attached to the ICH  
AC-link must be AC’97 2.1 compliant as well. Contact your codec IHV for information on 2.1-  
compliant products. The AC’97 2.1 specification is available on the Intel website:  
The ICH supports the codec combinations listed in Table 27.  
Table 27. AC’97 Configuration Combinations  
Primary  
Secondary  
Audio (AC)  
Modem (MC)  
None  
None  
Audio (AC)  
Modem (MC)  
None  
Audio/Modem (AMC)  
As shown in Table 27, the ICH does not support two codecs of the same type on the link. For  
example, if an AMC is on the link, it must be the only codec. If an AC is on the link, another AC  
may not be present.  
10.3.1  
AC’97 Routing  
To ensure the maximum performance of the codec, proper component placement and routing  
techniques are required. These techniques include properly isolating the codec, associated audio  
circuitry, analog power supplies, and analog ground planes, from the rest of the motherboard. This  
includes plane splits and proper routing of signals not associated with the audio section. Contact  
your vendor for device-specific recommendations.  
Intel® 815 Chipset Platform Design Guide  
119  
I/O Subsystem  
R
The basic recommendations are as follows:  
Special consideration must be given for the ground return paths for the analog signals.  
Digital signals routed in the vicinity of the analog audio signals must not cross the power  
plane split lines. Analog and digital signals should be located as far as possible from each  
other.  
Partition the board with all analog components grouped together in one area and all digital  
components in another.  
Separate analog and digital ground planes should be provided, with the digital components  
over the digital ground plane, and the analog components, including the analog power  
regulators, over the analog ground plane. The split between planes must be a minimum of 0.05  
inch wide.  
Keep digital signal traces, especially the clock, as far as possible from the analog input and  
voltage reference pins.  
Do not completely isolate the analog/audio ground plane from the rest of the board ground  
plane. There should be a single point (0.25 inch to 0.5 inch wide) where the analog/isolated  
ground plane connects to the main ground plane. The split between planes must be a minimum  
of 0.05 inch wide.  
Any signals entering or leaving the analog area must cross the ground split in the area where  
the analog ground is attached to the main motherboard ground. That is, no signal should cross  
the split/gap between the ground planes, which would cause a ground loop, thereby greatly  
increasing EMI emissions and degrading the analog and digital signal quality.  
Analog power and signal traces should be routed over the analog ground plane.  
Digital power and signal traces should be routed over the digital ground plane.  
Bypassing and decoupling capacitors should be close to the IC pins, or positioned for the  
shortest connections to pins, with wide traces to reduce impedance.  
All resistors in the signal path or on the voltage reference should be metal film. Carbon  
resistors can be used for DC voltages and the power supply path, where the voltage  
coefficient, temperature coefficient, and noise are not factors.  
Regions between analog signal traces should be filled with copper, which should be  
electrically attached to the analog ground plane. Regions between digital signal traces should  
be filled with copper, which should be electrically attached to the digital ground plane.  
Locate the crystal or oscillator close to the codec.  
Clocking is provided from the primary codec on the link via BITCLK, and it is derived from a  
24.576 MHz crystal or oscillator. Refer to the primary codec vendor for the crystal or oscillator  
requirements. BITCLK is a 12.288 MHz clock driven by the primary codec to the digital  
controller (ICH) and by any other codec present. The clock is used as the time base for latching  
and driving data.  
The ICH supports wake-on-ring from S1–S4 via the AC’97 link. The codec asserts SDATAIN to  
wake the system. To provide wake capability and/or caller ID, standby power must be provided to  
the modem codec.  
If no codec is attached to the link, internal pull-downs will prevent the inputs from floating.  
Therefore, external resistors are not required.  
120  
Intel® 815 Chipset Platform Design Guide  
I/O Subsystem  
R
10.3.2  
10.3.3  
AC’97 Signal Quality Requirements  
In a lightly loaded system (e.g., single codec down), AC’97 signal integrity should be evaluated to  
confirm that the signal quality on the link is acceptable to the codec used in the design. A series  
resistor at the driver and a capacitor at the codec can be implemented to compensate for any signal  
integrity issues. The values used will be design dependent and should be verified for correct  
timings. The ICH AC-link output buffers are designed to meet the AC’97 2.1 specification, with  
the specified load of 50 pF.  
Motherboard Implementation  
The following design considerations are provided for the implementation of an ICH platform using  
AC’97. These design guidelines have been developed to ensure maximum flexibility for board  
designers, while reducing the risk of board-related issues. These recommendations are not the only  
implementation or a complete checklist, but they are based on the ICH platform.  
Codec Implementation  
Any valid combination of codecs may be implemented on the motherboard and on the  
riser. For ease of homologation, it is recommended that a modem codec be implemented  
on a CNR module. However, nothing precludes a modem codec on the motherboard.  
Only one primary codec may be present on the link. A maximum of two codecs can be  
supported in an ICH platform.  
Components (e.g., FET switches, buffers or logic states) should not be implemented on  
the AC-link signals, except for AC_RST#. Doing so would potentially interfere with  
timing margins and signal integrity.  
The ICH supports wake-on-ring from S1–S4 states via the AC’97 link. The codec asserts  
SDATAIN to wake the system. To provide wake capability and/or caller ID, standby  
power must be provided to the modem codec. If no codec is attached to the link, internal  
pull-downs will prevent the inputs from floating, so external resistors are not required.  
The ICH does not wake from the S5 state via the AC’97 link.  
The SDATAIN[0:1] pins should not be left in a floating state if the pins are not connected  
and the AC-link is active. Rather, they should be pulled to ground through a weak  
(approximately 10 k) pull-down resistor. If the AC-link is disabled (by setting the shut-  
off bit to 1), then the ICH’s internal pull-down resistors are enabled, so there is no need  
for external pull-down resistors. However, if the AC-link is to be active, then there should  
be pull-down resistors on any SDATAIN signal that might not be connected to a codec.  
For example, if a dedicated audio codec is on the motherboard and cannot be disabled via  
a hardware jumper or stuffing option, then its SDATAIN signal does not need a pull-  
down resistor. However, if the SDATAIN signal has no codec connected or is connected  
to an on-board codec that can be hardware-disabled, then the signal should have an  
external pull-down resistor to ground.  
The ICH provides internal weak pull-downs. Therefore, the motherboard does not need to  
provide discrete pull-down resistors.  
PC_BEEP should be routed through the audio codec. Care should be taken to avoid the  
introduction of a pop when powering the mixer up or down.  
Intel® 815 Chipset Platform Design Guide  
121  
I/O Subsystem  
R
10.4  
Using Native USB Interface  
The following are general guidelines for the native USB interface:  
Unused USB ports should be terminated with 15 kpull-down resistors on both P+/P- data  
lines.  
15 series resistors should be placed as close as possible to the ICH (<1 inch). These series  
resistors provide source termination of the reflected signal.  
47 pF capacitors must be placed as close as possible to the ICH as well as on the ICH side of  
the series resistors on the USB data lines (P0±, P1±). These capacitors are for signal quality  
(rise/fall time) and to help minimize EMI radiation.  
15 k±5% pull-down resistors should be placed on the USB side of the series resistors on the  
USB data lines (P0±, P1±). They provide the signal termination required by the USB  
specification. The stub should be as short as possible.  
The trace impedance for the P0± and P1± signals should be 45 (to ground) for each USB  
signal P+ or P-. This may be achieved with 9-mil-wide traces on the motherboard based on the  
stack-up recommended in Figure 3. The impedance is 90 between the differential signal  
pairs P+ and P-, to match the 90 USB twisted-pair cable impedance. Note that the twisted-  
pair characteristic impedance of 90 is the series impedance of both wires, which results in  
an individual wire presenting a 45 impedance. The trace impedance can be controlled by  
carefully selecting the trace width, trace distance from power or ground planes, and physical  
proximity of nearby traces.  
USB data lines should be routed as ‘critical signals’ (i.e., hand-routing preferred). The P+/P-  
signal pair should be routed together and not parallel to other signal traces, to minimize cross-  
talk. Doubling the space from the P+/P- signal pair to adjacent signal traces will help to  
prevent cross-talk. The P+/P- signal traces should also be the same length, which will  
minimize the effect of common mode current on EMI.  
122  
Intel® 815 Chipset Platform Design Guide  
I/O Subsystem  
R
Figure 63. Recommended USB Schematic  
Motherboard trace  
45  
Driver  
15  
< 1"  
P+  
47 pF  
15 k  
90  
Motherboard trace  
45  
Driver  
15  
< 1"  
P-  
47 pF  
15 k  
ICH  
Transmission line  
USB twisted-pair cable  
USB_schem  
The recommended USB trace characteristics are as follows:  
Impedance ‘Z0’ = 45.4 Ω  
Line delay = 160.2 ps  
Capacitance = 3.5 pF  
Inductance = 7.3 nH  
Res at 20 °C = 53.9 mΩ  
10.5  
I/O APIC (I/O Advanced Programmable Interrupt  
Controller)  
Systems not using the I/O APIC should comply with the following recommendations:  
On the ICH  
Connect PICCLK directly to ground.  
Connect PICD0, PICD1 to ground through a 10 kresistor.  
On the processor  
PICCLK requires special implementation for universal motherboard designs. See Section  
4.2.9  
Connect PICD0 to 2.5V through 10 kresistors.  
Connect PICD1 to 2.5V through 10 kresistors.  
Intel® 815 Chipset Platform Design Guide  
123  
I/O Subsystem  
R
10.6  
SMBus  
The Alert on LAN signals can be used as:  
Alert on LAN signals: 4.7 kpull-up resistors to 3.3VSB are required.  
GPIOs: Pull-up resistors to 3.3VSB and the signals must be allowed to change states on  
power-up. (For example, on power-up the ICH drives heartbeat messages until the BIOS  
programs these signals as GPIOs.) The values of the pull-up resistors depend on the loading  
on the GPIO signal.  
Not Used: 4.7 kpull-up resistors to 3.3VSB are required.  
If the SMBus is used only for the three SPD EEPROMs (one on each RIMM), both signals should  
be pulled up with a 4.7 kresistor to 3.3V.  
10.7  
PCI  
The ICH provides a PCI bus interface that is compliant with the PCI Local Bus Specification,  
Revision 2.2. The implementation is optimized for high-performance data streaming when the ICH  
is acting as either the target or the initiator on the PCI bus. For more information on the PCI bus  
interface, refer to the PCI Local Bus Specification, Revision 2.2.  
The ICH supports 6 PCI Bus masters by providing 6 REQ#/GNT# pairs. In addition, the ICH  
supports 2 PC/PCI REQ#/GNT# pairs, one of which is multiplexed with a PCI REQ#/GNT# pair.  
Based on simulations performed by Intel, a maximum of 4 PCI slots should be connected to the  
ICH. This limit is due to timing and loading considerations established during simulations. If a  
system designer wants 5 PCI slots connected to the ICH, then the designer’s company should  
perform its own simulations to verify a proper design.  
Figure 64. PCI Bus Layout Example for Four PCI Connectors  
ICH  
IO_subsys_PCI_layout  
124  
Intel® 815 Chipset Platform Design Guide  
I/O Subsystem  
R
10.8  
LPC/FWH  
10.8.1  
In-Circuit FWH Programming  
All cycles destined for the FWH will appear on the PCI. The ICH hub interface to the PCI bridge  
puts all processor boot cycles out on the PCI (before sending them out on the FWH interface). If  
the ICH is set for subtractive decode, these boot cycles can be accepted by a positive decode agent  
on PCI. This enables booting from a PCI card that positively decodes these memory cycles. To  
boot from a PCI card, it is necessary to keep the ICH in subtractive decode mode. If a PCI boot  
card is inserted and the ICH is programmed for positive decode, there will be two devices  
positively decoding the same cycle. In systems with the Intel® 82380AB (ISA bridge), it also is  
necessary to keep the NOGO signal asserted when booting from a PCI ROM. Note that it is not  
possible to boot from a ROM behind the Intel 82380AB. After booting from the PCI card, one  
potentially could program the FWH in circuit and program the ICH CMOS.  
10.8.2  
FWH VPP Design Guidelines  
The VPP pin on the FWH is used for programming the flash cells. The FWH supports a VPP of  
3.3V or 12V. If VPP is 12V, the flash cells will program about 50% faster than at 3.3V. However,  
the FWH only supports 12 V VPP for 80 hours. The 12 V VPP would be useful in a programmer  
environment, if it typically is an event that occurs very infrequently (much fewer than 80 hours).  
The VPP pin must be tied to 3.3V on the motherboard.  
10.9  
RTC  
The ICH contains a real-time clock (RTC) with 256 bytes of battery-backed SRAM. This internal  
RTC module provides two key functions: keeping the date and time and storing system data in its  
RAM when the system is powered down. This section explains the recommended hookup for the  
RTC circuit for the ICH.  
Note: This circuit is not the same as the circuit used for the PIIX4.  
Intel® 815 Chipset Platform Design Guide  
125  
I/O Subsystem  
R
10.9.1  
RTC Crystal  
The ICH RTC module requires an external oscillating source of 32.768 kHz connected on the  
RTCX1 and RTCX2 pins.  
Figure 65. External Circuitry of RTC Oscillator  
3.3 V  
VCCSUS  
VCCRTC2  
RTCX23  
RTCX14  
VBIAS5  
1 k  
1
µF  
32768 Hz  
Xtal  
R1  
10 M  
1 k  
Vbatt  
C1  
0.047 µF  
C3  
18 pF  
1
R2  
10 M  
1
C2  
18 pF  
VSSRTC6  
RTC_osc_circ  
NOTES:  
1. The exact capacitor value should be based on the crystal vendor’s recommendations.  
2. VCCRTC: Power for RTC well  
3. RTCX2: Crystal input 2 – Connected to the 32.768 kHz crystal  
4. RTCX1: Crystal input 1 – Connected to the 32.768 kHz crystal  
5. VBIAS: RTC bias voltage – This pin is used to provide a reference voltage. This DC voltage sets a  
current, which is mirrored through the oscillator and buffer circuitry.  
6. VSS: Ground  
10.9.2  
External Capacitors  
To maintain RTC accuracy the external capacitor C1 must be 0.047 µF. The external capacitor  
values for C2 and C3 should be chosen to provide the manufacturer-specified load capacitance  
(Cload) for the crystal when combined with the parasitic capacitance of the trace, socket (if used),  
and package. When the external capacitor values are combined with the capacitance of the trace,  
socket, and package, the closer the capacitor value can be matched to the actual load capacitance  
of the crystal used, the more accurate will be the RTC.  
The following equation can be used to choose the external capacitance values (C2 and C3):  
Cload = (C2 * C3) / (C2 + C3) + Cparasitic  
C3 can be chosen such that C3 > C2. Then C2 can be trimmed to obtain 32.768 kHz.  
126  
Intel® 815 Chipset Platform Design Guide  
I/O Subsystem  
R
10.9.3  
10.9.4  
RTC Layout Considerations  
Keep the RTC lead lengths as short as possible. Approximately 0.25 inch is sufficient.  
Minimize the capacitance between Xin and Xout in the routing.  
Put a ground plane under the XTAL components.  
Do not route any switching signals under the external components (unless on the other side of  
the board).  
The oscillator VCC should be clean. Use a filter, such as an RC low-pass or a ferrite inductor.  
RTC External Battery Connection  
The RTC requires an external battery connection to maintain its functionality and its RAM while  
the ICH is not powered by the system.  
Example batteries are the Duracell* 2032, 2025 or 2016 (or equivalent), which give many years of  
operation. Batteries are rated by storage capacity. The battery life can be calculated by dividing  
the capacity by the average current required. For example, if the battery storage capacity is  
170 mAh (assumed usable) and the average current required is 3 µA, the battery life will be at  
least:  
170,000 µAh / 3 µA = 56,666 h = 6.4 years  
The voltage of the battery can affect the RTC accuracy. In general, when the battery voltage  
decays, the RTC accuracy also decreases. High accuracy can be obtained when the RTC voltage is  
within the range of 3.0V to 3.3V.  
The battery must be connected to the ICH via an isolation diode circuit. The diode circuit allows  
the ICH RTC well to be powered by the battery when the system power is not available, but by the  
system power when it is available. To do this, the diodes are set to be reverse-biased when the  
system power is not available. Figure 66 is an example of a diode circuitry that can be used.  
Figure 66. Diode Circuit to Connect RTC External Battery  
VCC3_3SBY  
1 kΩ  
VccRTC  
1.0 µF  
+
-
RTC_ext_batt_diode_circ  
A standby power supply should be used to provide continuous power to the RTC when available,  
which will significantly increase the RTC battery life and thereby the RTC accuracy.  
Intel® 815 Chipset Platform Design Guide  
127  
I/O Subsystem  
R
10.9.5  
RTC External RTCRESET Circuit  
The ICH RTC requires some additional external circuitry. The RTCRESET (RTC Well Test)  
signal is used to reset the RTC well. The external capacitor (2.2 µF) and the external resistor  
(8.2 k) between RTCRESET and the RTC battery (Vbat) were selected to create a RC time  
delay, such that RTCRESET will go high some time after the battery voltage is valid. The RC time  
delay should be within the range 10–20 ms. When RTCRESET is asserted, bit 2  
(RTC_PWR_STS) in the GEN_PMCON_3 (General PM Configuration 3) register is set to 1, and  
it remains set until cleared by software. As a result, when the system boots, the BIOS knows that  
the RTC battery has been removed.  
Figure 67. RTCRESET External Circuit for the ICH RTC  
VCC3_3SBY  
Diode /  
battery circuit  
1 k  
Vcc RTC  
1.0 µF  
8.2 k  
RTCRESET  
2.2 µF  
RTC_RTCRESET_ext_circ  
This RTCRESET circuit is combined with the diode circuit (Figure 67), which allows the RTC  
well to be powered by the battery when the system power is not available. Figure 67 shows an  
example of this circuitry, which is used in conjunction with the external diode circuit.  
10.9.6  
RTC-Well Input Strap Requirements  
All RTC-well inputs (RSMRST#, RTCRST#, INTRUDER#) must be either pulled up to VCCRTC  
or pulled down to ground while in G3 state. RTCRST# when configured as shown in Figure 67  
meets this requirement. RSMRST# should have a weak external pull-down to ground and  
INTRUDER# should have a weak external pull-up to VCCRTC. This prevents these nodes from  
floating in G3, and correspondingly prevents ICCRTC leakage that can cause excessive coin-cell  
drain. The PWROK input signal should also be configured with an external weak pull-down.  
128  
Intel® 815 Chipset Platform Design Guide  
I/O Subsystem  
R
10.9.7  
RTC Routing Guidelines  
All RTC OSC signals (RTCX1, RTCX2, VBIAS) should be routed with trace lengths shorter  
than 1 inch. The shorter, the better.  
Minimize the capacitance between RTCX1 and RTCX2 in the routing (optimally, there would  
be a ground line between them).  
Put a ground plane under all of the external RTC circuitry.  
Do not route any switching signals under the external components (unless on the other side of  
the ground plane).  
10.9.8  
Guidelines to Minimize ESD Events  
Guidelines to minimize ESD events that may cause loss of CMOS contents:  
Provide a 1 µF 805 X5R dielectric, monolithic, ceramic capacitor on the VCCRTC pin. This  
capacitor connection should not be stubbed off the trace run and should be as close as possible  
to the ICH. If a stub is required, its maximum length should be a few mm. The ground  
connection should be made through a via to the plane, with no trace between the capacitor pad  
and the via.  
Place the battery, the 1 kseries current limit resistor, and the common-cathode isolation  
diode very close to the ICH. If this is not possible, place the common-cathode diode and the  
1 kresistor as close as possible to the 1 µF capacitor. Do not place these components  
between the capacitor and the ICH. The battery can be placed remotely from the ICH.  
On boards that have chassis intrusion utilizing inverters powered by the VCCRTC pin, place  
the inverters as close as possible to the common-cathode diode. If this is not possible, keep  
the trace run near the center of the board.  
Keep the ICH VCCRTC trace away from the board edge. If this trace must run from opposite  
ends of the board, keep the trace run towards the board center, away from the board edge  
where contact could be made by those handling the board.  
10.9.9  
VBIAS and DC Voltage and Noise Measurements  
Steady-state VBIAS will be a DC voltage of about 0.38V ± 0.06V.  
VBIAS will be “kicked” when the battery is inserted, to about 0.7–1.0 V, but it will return to  
its DC value within a few msec.  
Noise on VBIAS must be kept to a minimum (200 mV or less).  
VBIAS is very sensitive and cannot be probed directly. It can be probed through a 0.01 µF  
capacitor.  
Excessive noise on VBIAS can cause the ICH internal oscillator to misbehave or even stop  
completely.  
To minimize the VBIAS noise, it is necessary to implement the routing guidelines described  
previously as well as the required external RTC circuitry.  
Intel® 815 Chipset Platform Design Guide  
129  
I/O Subsystem  
R
This page is intentionally left blank.  
130  
Intel® 815 Chipset Platform Design Guide  
Clocking  
R
11 Clocking  
For an Intel 815 chipset platform, there are two clock specifications. One is for a 2-DIMM  
solution, and the other is for a 3-DIMM solution. In both specifications only single-ended clocking  
is supported. Intel 815 chipset platforms using a future 0.13 micron socket 370 processors cannot  
implement differential clocking.  
11.1  
2-DIMM Clocking  
Table 28 shows the characteristics of the clock generator for a 2-DIMM solution.  
Table 28. Intel® CK-815 (2-DIMM) Clocks  
Number  
Clock  
processor clocks  
Frequency  
3
66/100/133 MHz  
100 MHz  
9
7
2
2
3
1
SDRAM clocks  
PCI clocks  
33 MHz  
APIC clocks  
16.67/33 MHz  
48 MHz  
48 MHz clocks  
3V, 66 MHz clocks  
REF clock  
66 MHz  
14.31818 MHz  
The following bullets list the features of the Intel CK-815 clock generator in a 2-DIMM solution:  
Nine copies of 100 MHz SDRAM clocks (3.3V) [SDRAM0…7, DClk]  
Seven copies of PCI clock (33 MHz ) (3.3V)  
Two copies of APIC clock at 33 MHz, synchronous to processor clock (2.5V)  
One copy of 48 MHz USB clock (3.3V) (non-SSC) (type 3 buffer)  
One copy of 48 MHz DOT clock (3.3V) (non-SSC) (see DOT details)  
Three copies of 3V, 66 MHz clock (3.3V)  
One copy of REF clock at 14.31818 MHz (3.3V)  
Ref. 14.31818 MHz xtal oscillator input  
Power-down pin  
Spread-spectrum support  
I2C support for turning off unused clocks  
56-pin SSOP package  
Figure 68 shows the Intel 815 chipset platform clock architecture for a 2-DIMM solution.  
Intel® 815 Chipset Platform Design Guide  
131  
Clocking  
R
Figure 68. Platform Clock Architecture (2 DIMMs)  
ITP  
Processor  
52  
55  
50  
49  
CPU 2_ITP  
APIC 0  
2.5 V  
CPU 1  
CPU 0  
AGP  
Clock Synthesizer  
Host unit  
32  
29  
28  
PWRDWN#  
SEL1  
SEL0  
30  
31  
SData  
SClk  
Data  
Main  
Memory  
2 DIMMs  
46  
45  
43  
SDRAM(0)  
SDRAM(1)  
SDRAM(2)  
SDRAM(3)  
Address  
Control  
Memory  
unit  
Graphics  
GMCH  
42  
40  
39  
37  
SDRAM(4)  
SDRAM(5)  
SDRAM(6)  
SDRAM(7)  
36  
34  
DCLK  
Hub I/F  
3.3 V  
7
3V66 0  
DOT  
Dot clock  
26  
14.318 MHz  
8
1
3V66 1  
REF  
11  
25  
PCI 0 / ICH  
USB  
I/O Controller Hub  
32.768 kHz  
54  
APIC 1  
2.5 V  
12  
13  
PCI 1  
SIO  
3.3 V  
PCI 2  
PCI 3  
PCI 4  
PCI 5  
PCI 6  
PCI 7  
15  
16  
18  
PCI total of 6  
devices (µATX)  
5 slots + 1 down  
19  
20  
clk_arch_2DIMM  
132  
Intel® 815 Chipset Platform Design Guide  
Clocking  
R
11.2  
3-DIMM Clocking  
Table 29 shows the characteristics of the clock generator for a 3-DIMM solution.  
Table 29. Intel® CK-815 (3-DIMM) Clocks  
Number  
Clock  
Frequency  
2
13  
2
processor clocks  
SDRAM clocks  
PCI clocks  
66/100/133 MHz  
100 MHz  
33 MHz  
1
APIC clocks  
33 MHz  
2
48 MHz clocks  
3V, 66 MHz clocks  
REF clock  
48 MHz  
3
66 MHz  
1
14.31818 MHz  
The following bullets list the features of the Intel CK-815 clock generator:  
Thirteen copies of SDRAM clocks  
Two copies of PCI clock  
One copy of APIC clock  
One copy of 48 MHz USB clock (3.3V) (non-SSC) (type 3 buffer)  
One copy of 48 MHz DOT clock (3.3V) (non-SSC) (see DOT details)  
Three copies of 3V, 66 MHz clock (3.3V)  
One copy of ref. clock @ 14.31818 MHz (3.3V)  
Ref. 14.31818 MHz xtal oscillator input  
Spread-spectrum support  
I2C support for turning off unused clocks  
56-pin SSOP package  
Figure 69 shows the Intel® 815E chipset platform clock architecture for a 3-DIMM solution.  
Intel® 815 Chipset Platform Design Guide  
133  
Clocking  
R
Figure 69. Universal Platform Clock Architecture (3 DIMMs)  
Processor  
1
53  
54  
APIC  
CPU 1  
CPU 0  
2.5 V  
CK 815 3D  
Host I/F  
AGP /  
local memory  
12  
3V66 AGP  
AGIP /  
local  
memory  
51  
50  
47  
SDRAM(0)  
SDRAM(1)  
SDRAM(2)  
SDRAM(3)  
GFX  
Dot  
46  
GMCH  
CLK  
45  
SDRAM(4)  
SDRAM(5)  
SDRAM(6)  
SDRAM(7)  
42  
41  
Main Memory  
3 DIMMs  
38  
System  
memory  
37  
36  
33  
32  
SDRAM(8)  
SDRAM(9)  
SDRAM(10)  
SDRAM(11)  
Hub I/F  
66/266  
29  
SDRAM(12)  
10  
11  
3V66 0  
3V66 1  
DOT  
27  
26  
USB  
4
I/O Controller Hub  
REF 0 14.3 MHz  
15  
16  
PCI 0 / ICH  
PCI 1  
SIO  
PCI 1 to  
PCI slots  
/ down  
zero delay  
clk_arch_3DIMM  
134  
Intel® 815 Chipset Platform Design Guide  
Clocking  
R
11.3  
Clock Routing Guidelines  
This section presents the generic clock routing guidelines for both 2-DIMM and 3-DIMM boards.  
For 3-DIMM boards, additional analysis must be performed by the motherboard designer to ensure  
that the clocks generated by the external PCI clock buffer meet the PCI specifications for clock  
skew at the receiver, when compared with the PCI clock at the ICH.  
Figure 70. Clock Routing Topologies  
Layout 1  
33 Ω  
Section 1  
Section 2  
CK815  
Connector  
Layout 2  
Layout 3  
33 Ω  
Section 1  
Section 1  
Section 2  
Section 2  
Section 3  
22 pF  
CK815  
CK815  
10 pF  
33 Ω  
Processor  
Section 0  
Section 1  
33 Ω  
Section 3  
Section 2  
CK815  
CK815  
GMCH  
Layout 4  
33 Ω  
Section 1  
Layout 5  
33 Ω  
Section 1  
Section 2  
CK815  
Connector  
22 pF  
clk_routing_topo  
Intel® 815 Chipset Platform Design Guide  
135  
Clocking  
R
Table 30. Simulated Clock Routing Solution Space  
Destination  
Topology from  
Previous Figure  
Section 0  
Length  
Section 1  
Length  
Section 2  
Length  
Section 3  
Length  
SDRAM MCLK  
GMCH SCLK3  
Processor BCLK  
GMCH HCLK  
GMCH HUBCLK  
ICH HUBCLK  
ICH PCICLK  
Layout 5  
Layout 2  
Layout 3  
N/A  
N/A  
< 0.5”  
< 0.5”=L1  
< 0.5”  
<0.5”  
A1  
N/A  
0.5”  
A + 3.5” – L1  
A + 5.2”  
< 0.1”  
A + 8”  
Layout 4  
Layout 4  
Layout 4  
Layout 4  
N/A  
N/A  
N/A  
N/A  
<0.5”  
A + 8”  
A + 8”  
A + 8”  
N/A  
N/A  
N/A  
N/A  
<0.5”  
<0.5”  
AGP CLK  
<0.5”  
A + 3”  
to  
A + 4”  
PCI down2  
PCI slot2  
Layout 4  
Layout 1  
N/A  
N/A  
<0.5”  
<0.5”  
A + 8.5”  
to  
A + 14”  
N/A  
A + 5”  
to  
A + 11”  
NOTES:  
1. Length “A” has been simulated up to 6 inches. The length must be matched between SDRAM MCLK  
lines by ±100 mils.  
2. All PCI clocks must be within 6 inches of the ICH PCICLK route length. Routing on PCI add-in cards  
must be included in this length. In the presented solution space, the ICH PCICLK was considered to be  
the shortest in the 6 inches trace routing range, and other clocks were adjusted from there. The system  
designer may choose to alter the relationship of PCI device and slot clocks, as long as all PCI clock  
lengths are within 6 inches. Note that the ICH PCICLK length is fixed to meet the skew requirements of  
the ICH PCICLK to ICH HUBCLK.  
3. 22 pF Load capacitor should be placed 0.5 inch from GMCH Pin.  
General Clock Layout Guidelines  
All clocks should be routed 5 mils wide with 15-mil spacing to any other signals.  
It is recommended to place capacitor sites within 0.5 inch of the receiver of all clocks. They  
are useful in system debug and AC tuning.  
Series resistor for clock guidelines: 22 for GMCH SCLK and SDRAM clocks. All other  
clocks use 33 .  
Each DIMM clock should be matched within ±10 mils.  
136  
Intel® 815 Chipset Platform Design Guide  
Clocking  
R
11.4  
Clock Decoupling  
Several general layout guidelines should be followed when laying out the power planes for the  
Intel CK-815 clock generator.  
Isolate the power plane to each clock group.  
Place local decoupling as close as possible to power pins and connect with short, wide traces  
and copper.  
Connect pins to the appropriate power plane with power vias (larger than signal vias).  
Bulk decoupling should be connected to plane with 2 or more power vias.  
Minimize clock signal routing over plane splits.  
Do not route any signals underneath the clock generator on the component side of the board.  
An example signal via is a 14-mil finished hole with a 24-mil to 26-mil path. An example  
power via is an 18-mil finished hole with a 33-mil to 38-mil path. For large decoupling or  
power planes with large current transients, a larger power via is recommended  
11.5  
Clock Driver Frequency Strapping  
An Intel CK-815-compliant clock driver device uses two of its pins to determine whether  
processor clock outputs should run at 133 MHz, 100 MHz, or 66 MHz. The pin names are SEL0  
and REF0. In addition, a third strapping pin is defined (SEL1) that must be pulled high for normal  
clock driver operation. Refer to the appropriate Intel CK-815 clock driver specification for  
detailed strap timings and the logic encoding of straps.  
SEL0 and REF0 are driven by either the processor, which depends on the processor populated in  
the 370-pin socket, or pull-up resistors on the motherboard. While SEL0 is a pure input to a  
Intel CK-815-compliant clock driver, REF0 is also the 14 MHz output that drives the ICH and  
other devices on the platform. In addition to sampling BSEL[1:0] at reset, Intel CK-815-compliant  
clock drivers are configured by the BIOS via a two-wire interface to drive SDRAM clock outputs  
at either 100 MHz (default) or 133 MHz (if all system requirements are met).  
Intel® 815 Chipset Platform Design Guide  
137  
Clocking  
R
11.6  
Clock Skew Assumptions  
The clock skew assumptions in the following table are used in the system clock simulations.  
Table 31. Simulated Clock Skew Assumptions  
Skew Relationships  
Target  
Tolerance (±)  
Notes  
HCLK @ GMCH to HCLK  
@ processor  
0 ns  
200 ps  
Assumes ganged clock outputs will allow  
maximum of 50 ps skew  
HCLK @ GMCH to SCLK  
@ GMCH  
0 ns  
0 ns  
0 ns  
0 ns  
0 ns  
0 ns  
0 ns  
600 ps  
630 ps  
500 ps pin-to-pin skew  
100 ps board/package skew  
SCLK @ GMCH to SCLK  
@ SDRAM  
250 ps pin-to-pin skew  
380 ps board + DIMM variation  
HLCLK @ GMCH to SCLK  
@ GMCH  
900 ps  
500 ps pin-to-pin skew  
400 ps board/package skew  
HLCLK @ GMCH to HCLK  
@ GMCH  
700 ps  
500 ps pin-to-pin skew  
200 ps board/package skew  
HLCLK @ GMCH to HLCLK  
@ ICH  
375 ps  
175 ps pin-to-pin skew  
200 ps board/package skew  
HLCLK @ ICH to PCICLK  
@ ICH  
900 ps  
500 ps pin-to-pin skew  
400 ps board/package skew  
PCICLK @ ICH to PCICLK  
@ other PCI devices  
2.0 ns window  
500 ps pin-to-pin skew  
1.5 ns board/add-in skew  
HLCLK @ GMCH to  
AGPCLK @ connector  
Total electrical length of AGP connector +  
add-in card is 750 ps (according to  
AGP2.0 specification and AGP design  
guide 1.0).  
Motherboard clock routing must account  
for this additional electrical length.  
Therefore, AGPCLK routed to the  
connector must be shorter than HLCLK to  
the GMCH, to account for this additional  
750 ps.  
138  
Intel® 815 Chipset Platform Design Guide  
Clocking  
R
11.7  
Intel® CK-815 Power Gating On Wake Events  
For systems providing functionality with future 0.13 micron socket 370 processors, special  
handling of wake events is required. When a wake event is triggered, the GMCH and the Intel CK-  
815 must not sample BSEL[1:0] until the signal VTTPWRGD is asserted. This is handled by  
setting up the following sequence of events:  
1. Power is not connected to the Intel CK-815-compliant clock driver until VTTPWRGD12 is  
asserted.  
2. Clocks to the ICH stabilize before the power supply asserts PWROK to the ICH. There is no  
guarantee this will occur as the implementation for the previous step relies on the 12V supply.  
Thus, it is necessary to gate PWROK to the ICH from the power supply while the  
Intel CK-815 is given sufficient time for the clocks to become stable. The amount of time  
required is a minimum 20 ms.  
3. ICH takes the GMCH out of reset.  
4. GMCH samples BSEL[1:0]. Intel CK-815 will have sampled BSEL[1:0] much earlier.  
Refer to Chapter 4 for full implementation details.  
Intel® 815 Chipset Platform Design Guide  
139  
Clocking  
R
This page is intentionally left blank.  
140  
Intel® 815 Chipset Platform Design Guide  
Power Delivery  
R
12 Power Delivery  
This chapter contains power delivery guidelines. Table 32 provides definitions fro power delivery  
terms used in this chapter.  
Table 32. Power Delivery Terminology  
Term  
Description  
Suspend-To-RAM (STR)  
In the STR state, the system state is stored in main memory and all  
unnecessary system logic is turned off. Only main memory and logic required  
to wake the system remain powered. This state is used in the Customer  
Reference Board (CRB) to satisfy the S3 ACPI power management state.  
Full-power operation  
Suspend operation  
Power rails  
During full-power operation, all components on the motherboard remain  
powered. Note that full-power operation includes both the full-on operating  
state and the S1 (CPU stop-grant state) state.  
During suspend operation, power is removed from some components on the  
motherboard. The CRB supports two suspend states: Suspend-to-RAM (S3)  
and Soft-off (S5).  
An ATX power supply has 6 power rails: +5V, -5V, +12V, -12V, +3.3V, 5VSB.  
In addition to these power rails, several other power rails are created with  
voltage regulators on the CRB.  
Core power rail  
A power rail that is only on during full-power operation. These power rails are  
on when the PSON signal is asserted to the ATX power supply. The core  
power rails that are distributed directly from the ATX power supply are: ±5V,  
±12V and +3.3V.  
Standby power rail  
A power rail that in on during suspend operation (these rails are also on during  
full-power operation). These rails are on at all times (when the power supply is  
plugged into AC power). The only standby power rail that is distributed directly  
from the ATX power supply is: 5VSB (5V Standby). There are other standby  
rails that are created with voltage regulators on the motherboard.  
Derived power rail  
Dual power rail  
A derived power rail is any power rail that is generated from another power rail.  
For example, 3.3VSB is usually derived (on the motherboard) from 5VSB  
using a voltage regulator (on the CRB, 3.3VSB is derived from 5V_DUAL).  
A dual power rail is derived from different rails at different times (depending on  
the power state of the system). Usually, a dual power rail is derived from a  
standby supply during suspend operation and derived from a core supply  
during full-power operation. Note that the voltage on a dual power rail may be  
misleading.  
Figure 71 shows a power delivery architecture example for a system based on the Intel 815 chipset  
platform. This power delivery architecture supports the “Instantly Available PC Design  
Guidelines” via the suspend-to-RAM (STR) state. During STR, only the necessary devices are  
powered. These devices include: main memory, the ICH resume well, PCI wake devices (via 3.3  
Vaux), AC’97, and optionally USB (USB can be powered only if sufficient standby power is  
available.). To ensure that enough power is available during STR, a thorough power budget should  
be completed. The power requirements should include each device’s power requirements, both in  
suspend and in full-power. The power requirements should be compared with the power budget  
Intel® 815 Chipset Platform Design Guide  
141  
Power Delivery  
R
supplied by the power supply. Due to the requirements of main memory and the PCI 3.3 Vaux  
(and possibly other devices in the system), it is necessary to create a dual power rail.  
The solutions in this Design Guide are only examples. Many power distribution methods achieve  
the similar results. When deviating from these examples, it is critical to consider the effect of a  
change.  
Figure 71. Power Delivery Map  
Fan  
Intel® 815 Chipset  
Platform Power Map  
Processor  
Core: VCC_VID: 1.5 V  
Serial ports  
28.5 A S0, S1  
ATX P/S  
with 720 mA  
VRM 8.5  
Core: VCC_VID: 1.75 V  
Serial xceivers-12: 12 V ± 1.2 V  
22.6 A S0, S1  
22 mA S0, S1  
5 VSB 5 V  
± 5% ± 5% ± 5% ± 5% ± 10%  
3.3 V 12 V  
-12 V  
VTT: 1.25 V  
2.7 A S0, S1  
Serial xceivers-N12: -12 V ± 1.2 V  
28 mA S0, S1  
VTT regulator  
Serial xceivers-5: 5 V ± 0.25 V  
30 mA S0, S1  
-12 V  
VTT: 1.5 V ± 0.135 V  
2.7 A S0, S1  
VCC3_3: 3.3 V ± 0.165 V  
15 mA S0, S1  
5 V dual  
switch  
CLK  
Super I/O  
CK815-2.5: 2.5 V ± 0.125 V  
100 mA S0, S1  
2.5 V regulator  
LPC super I/O: 3.3V ±0.3V  
50 mA S0, S1  
CK815-3.3: 3.3 V ± 0.165 V  
280 mA S0, S1  
PS/2 keyboard/mouse 5 V ± 0.5 V  
1 A S0, S1  
GMCH VDDQ  
2.0 A S0, S1  
Intel® 815 chipset  
VDDQ regulator  
1.8 V regulator  
GMCH core: 1.8 V ± 3%  
1.40 A S0, S1  
GMCH: 3.3 V ± 0.165 V  
1.40 A S0, S1  
3.3 VSB regulator  
GMCH: 3.3 VSB ± 0.165 V  
110 mA S3, S5  
ICH hub I/O: 1.8 V ± 0.09 V  
55 mA S0, S1  
AC'97  
ICH core: 3.3 V ± 0.3 V  
300 mA S0, S1  
AC'97 12V: 12 V ± 0.6 V  
500 mA S0, S1  
AC'97 -12 V: -12 V ± 1.2 V  
100 mA S0, S1  
ICH resume: 3.3 VSB ± 0.3 V  
1.5 mA S0, S1; 300 µA S3, S5  
2 DIMM slots: 3.3 VSB ± 0.3 V  
4.8 A S0, S1; 64 mA S3  
AC'97 5 V: 5 V ± 0.25 V  
1.00 A S0,S1  
ICH RTC: 3.3 VSB ± 0.3 V  
5 µA S0, S1, S3, S5  
AC'97 5 VSB: 5 VSB ± 0.25 V  
500 mA S0, S1  
PCI  
AC'97 3.3 V: 3.3 V ± 0.165 V  
1.00 A S0,S1  
FWH core: 3.3 V ± 0.3 V  
67 mA S0, S1  
82559 LAN down 3.3 VSB ± 0.3 V  
195 mA S0,S1; 120 mA S3, S5  
AC'97 3.3 VSB: 3.3 VSB ± 0.165 V  
150 mA S3, S5  
(3) PCI 3.3 Vaux: 3.3 VSB ± 0.3 V  
1.125 A S0, S1; 60 mA S3, S5  
USB cable power: 5 V ± 0.25 V  
1 A S0, S1; 1 mA S3, S5  
Notes:  
Shaded regulators / components are ON in S3 and S5.  
KB / mouse will not support STR.  
Total max. power dissipation for GMCH = 4 W.  
Total max. power dissipation for AC'97 = 15 W.  
pwr_del_map  
In addition to the power planes provided by the ATX power supply, an instantly available Intel  
815 chipset platform (using Suspend-to-RAM) requires six power planes to be generated on the  
board. The requirements for each power plane are documented in this section. In addition to on-  
board voltage regulators, the CRB will have a 5V Dual Switch.  
142  
Intel® 815 Chipset Platform Design Guide  
Power Delivery  
R
5V Dual Switch  
This switch will power the 5V Dual plane from the 5V core ATX supply during full-power  
operation. During Suspend-to-RAM, the 5V Dual plane will be powered from the 5V Standby  
power supply.  
Note: The voltage on the 5V Dual plane is not 5V! There is a resistive drop through the 5V Dual Switch  
that must be considered. Therefore, NO COMPONENTS should be connected directly to the 5V  
Dual plane. On the CRB, the only devices connected to the 5V Dual plane are voltage regulators  
(to regulate to lower voltages).  
Note: This switch is not required in an Intel 815 chipset platform that does not support Suspend-to-RAM  
(STR).  
VTT  
This power plane is used to power the AGTL/AGTL+ termination resistors. Refer to the latest  
revisions of:  
Pentium III processor (CPUID=068xh) and Celeron processor (CPUID=068xh) Datasheets  
Note: This regulator is required in ALL designs.  
1.85V  
The 1.85V plane powers the GMCH core and the ICH hub interface I/O buffers. This power plane  
has a total power requirement of approximately 1.7A. The 1.85V plane should be decoupled with a  
0.1 µF and a 0.01 µF chip capacitor at each corner of the GMCH and with a single 1 µF and  
0.1 µF capacitor at the ICH.  
Note: This regulator is required in ALL designs.  
VDDQ  
The VDDQ plane is used to power the GMCH AGP interface and the graphics component AGP  
interface. Refer to the AGP Interface Specification, Revision 2.0 (http://www.agpforum.org) and  
ECR#43 and ECR#44 for specific VDDQ delivery requirements.  
For the consideration of component long term reliability, the following power sequence is strongly  
recommended while the GMCH’s AGP interface is running at 3.3V. If the AGP interface is  
running at 1.5V, the following power sequence recommendation is no longer applicable. The  
power sequence recommendations are:  
During the power-up sequence, the 1.85V must ramp up to 1.0V before 3.3V ramps up to  
2.2V.  
During the power-down sequence, the 1.85V CAN NOT ramp below 1.0V before 3.3V ramps  
below 2.2V.  
The same power sequence recommendation also applies to the entrance and exit of S3 state, since  
the GMCH power is compete off during the S3 state.  
Intel® 815 Chipset Platform Design Guide  
143  
Power Delivery  
R
Refer to Section 12.4.1 for more information on the power ramp sequence requirement between  
3.3V and 1.85V. System designers need to be aware of this requirement while designing the  
voltage regulators and selecting the power supply. For further details on the voltage sequencing  
requirements, refer to the Intel® 815 Chipset Family: 82815 Graphics and Memory Controller  
Hub (GMCH) For Use With Universal Socket 370 Datasheet.  
Note: This regulator is required in ALL designs (unless the design does not support 1.5V AGP, and  
therefore does not support 4X AGP).  
3.3VSB  
The 3.3VSB plane powers the I/O buffers in the resume well of the ICH and the PCI 3.3Vaux  
suspend power pins. The 3.3Vaux requirement state that during suspend, the system must deliver  
375 mA to each wake-enabled card and 20 mA to each non wake-enabled card. During full-power  
operation, the system must be able to supply 375 mA to each card. Therefore, the total current  
requirement is:  
Full-power Operation: 375 mA * number of PCI slots  
Suspend Operation: 375+20 mA * (number of PCI slots – 1)  
In addition to the PCI 3.3Vaux, the ICH suspend well power requirements must be considered as  
shown in Figure 71.  
Note: This regulator is required in all designs.  
1.85VSB  
The 1.85VSB plane powers the logic to the resume well of the ICH. This should not be used for  
VCMOS.  
12.1  
Thermal Design Power  
Thermal Design Power (TDP) is defined as the estimated maximum possible expected power  
generated in a component by a realistic application. It is based on extrapolations in both hardware  
and software technology over the life of the product. It does not represent the expected power  
generated by a power virus.  
The TDP for the GMCH component is 5.1 W.  
12.1.1  
Pull-Up and Pull-Down Resistor Values  
The pull-up and pull-down values are system dependent. The appropriate value for a system can be  
determined from an AC/DC analysis of the pull-up voltage used, the current drive capability of the  
output driver, the input leakage currents of all devices on the signal net, the pull-up voltage  
tolerance, the pull-up/pull-down resistor tolerance, the input high-voltage/low-voltage  
specifications, the input timing specifications (RC rise time), etc. Analysis should be performed to  
determine the minimum/maximum values usable on an individual signal. Engineering judgment  
should be used to determine the optimal value. This determination can include cost concerns,  
commonality considerations, manufacturing issues, specifications, and other considerations.  
144  
Intel® 815 Chipset Platform Design Guide  
Power Delivery  
R
A simplistic DC calculation for a pull-up value is:  
RMAX = (VCCPU MIN - VIH MIN) / ILEAKAGE MAX  
RMIN = (VCCPU MAX - VIL MAX) / IOL MAX  
Since ILEAKAGE MAX is normally very small, RMAX may not be meaningful. RMAX also is  
determined by the maximum allowable rise time. The following calculation allows for t, the  
maximum allowable rise time, and C, the total load capacitance in the circuit, including the input  
capacitance of the devices to be driven, the output capacitance of the driver, and the line  
capacitance. This calculation yields the largest pull-up resistor allowable to meet the rise time t.  
RMAX = -t / (C * In(1-(VIH MIN / VCCPU MIN) ) )  
Figure 72. Pull-Up Resistor Example  
Vccpu min.  
Vccpu max.  
Rmax  
Rmin  
ILeakage max.  
VIH min.  
IOL max.  
VIL max.  
pwr_pullup_res  
12.2  
ATX Power Supply PWRGOOD Requirements  
The PWROK signal must be glitch free for proper power management operation. The ICH sets the  
PWROK_FLR bit (ICH GEN_PMCON_2, General PM Configuration 2 Register, PM-dev31:  
function 0, bit 0, at offset A2h). If this bit is set upon resume from S3 power-down, the system will  
reboot and control of the system will not be given to the program running when entering the S3  
state. System designers should insure that PWROK signal designs are glitch free.  
Intel® 815 Chipset Platform Design Guide  
145  
Power Delivery  
R
12.3  
Power Management Signals  
A power button is required by the ACPI specification.  
PWRBTN# is connected to the front panel on/off power button. The ICH integrates 16 ms  
debouncing logic on this pin.  
AC power loss circuitry has been integrated into the ICH to detect power failure.  
It is recommended that the ATXPWROK signal from the power supply connector be routed  
through a Schmitt trigger to square-off and maintain its signal integrity. It should not be  
connected directly to logic on the board.  
PWROK logic from the power supply connector can be powered from the core voltage  
supply.  
RSMRST# logic should be powered by a standby supply, while making sure that the input to  
the ICH is at the 3V level. The RSMST# signal requires a minimum time delay of 1 ms from  
the rising edge of the standby power supply voltage. A Schmitt trigger circuit is recommended  
to drive the RSMRST# signal. To provide the required rise time, the 1-ms delay should be  
placed before the Schmitt trigger circuit. The reference design implements a 20 ms delay at  
the input of the Schmitt trigger to ensure that the Schmitt trigger inverters have sufficiently  
powered up before switching the input. Also ensure that voltage on RSMRST# does not  
exceed VCC(RTC).  
It is recommended that 3.3V logic be used to drive RSMRST# to alleviate rise time problems  
when using a resistor divider from VCC5.  
The PWROK signal to the chipset is a 3V signal.  
The core well power valid to PWROK asserted at the chipset is a minimum of 1 ms.  
PWROK to the chipset must be deasserted after RSMRST#.  
PWRGOOD signal to processor is driven with an open-collector buffer pulled up to 2.5V,  
using a 330 resistor.  
RI# can be connected to the serial port if this feature is used. To implement ring indicate as a  
wake event, the RS232 transceiver driving the RI# signal must be powered when the ICH  
suspend well is powered. This can be achieved with a serial port transceiver powered from the  
standby well that implements a shutdown feature.  
SLP_S3# from the ICH must be inverted and then connected to PSON of the power supply  
connector to control the state of the core well during sleep states.  
For an ATX power supply, when PSON is low, the core wells are turned on. When PSON is  
high, the core wells from the power supply are turned off.  
146  
Intel® 815 Chipset Platform Design Guide  
Power Delivery  
R
12.3.1  
Power Button Implementation  
The following items should be considered when implementing a power management model for a  
desktop system. The power states are as follows:  
S1 – Stop Grant – (processor context not lost)  
S3 - STR (Suspend to RAM)  
S4 - STD (Suspend to Disk)  
S5 - Soft-off  
1. Wake: Pressing the power button wakes the computer from S1–S5.  
2. Sleep: Pressing the power button signals software/firmware in the following manner:  
a. If SCI is enabled, the power button will generate an SCI to the operating system (OS).  
1.  
2.  
The OS will implement the power button policy to allow orderly shutdowns.  
Do not override this with additional hardware.  
b. If SCI is not enabled:  
1.  
2.  
3.  
Enable the power button to generate an SMI and go directly to soft-off or a  
supported sleep state.  
Poll the power button status bit during POST while SMIs are not loaded and go  
directly to soft-off if it gets set.  
Always install an SMI handler for the power button that operates until ACPI is  
enabled.  
3. Emergency Override: Pressing the power button for 4 seconds goes directly to S5.  
a. This is only to be used in EMERGENCIES when system is not responding.  
b. This will cause the user data to be lost in most cases.  
4. Do not promote pressing the power button for 4 seconds as the normal mechanism to power  
the machine off. This violates ACPI.  
5. To be compliant with the latest PC9x specification, machines must appear to the user to be off  
when in the S1–S4 sleeping states. This includes:  
a. All lights, except a power state light, must be off.  
b. The system must be inaudible: silent or stopped fan, drives off.  
Note: Contact Microsoft for the latest information concerning PC9x or PC200x and Microsoft Logo  
programs.  
Intel® 815 Chipset Platform Design Guide  
147  
Power Delivery  
R
12.4  
1.85V/3.3V Power Sequencing  
This section shows the timings among various signals during different power state transitions.  
Figure 73. G3-S0 Transition  
Vcc3.3sus  
RSMRST#  
SLP_S3#  
t1  
t2  
t3  
t4  
t5  
SLP_S5#  
SUS_STAT#  
Vcc3.3core  
t6  
t7  
CPUSLP#  
PWROK  
Clocks  
t8  
t9  
Clocks invalid  
Clocks valid  
t10  
t11  
PCIRST#  
t12  
Cycle 1 from GMCH  
Cycle 1 from ICH  
t13  
Cycle 2 from GMCH  
Cycle 2 from ICH  
t14  
t15  
STPCLK#  
Freq straps  
CPURST#  
t16  
t17  
pwr_G3-S0_trans  
148  
Intel® 815 Chipset Platform Design Guide  
Power Delivery  
R
Figure 74. S0-S3-S0 Transition  
Vcc3.3sus  
RSMRST#  
t24  
STPCLK#  
Stop grant cycle  
t18  
t7  
CPUSLP#  
Go_C3 from ICH  
Ack_C3 from GMCH  
DRAM  
SUS_STAT#  
PCIRST#  
DRAM active  
DRAM in STR (CKE low)  
DRAM active  
t19  
t20  
t11  
t12  
Cycle 1 from GMCH  
Cycle 1 from ICH  
t13  
Cycle 2 from GMCH  
Cycle 2 from ICH  
t17  
CPURST#  
t21 t23  
SLP_S3#  
SLP_S5#  
t8  
PWROK  
Vcc3.3core  
Clocks  
t22  
t9  
Clocks valid  
Clocks invalid  
Clocks valid  
t16  
t15  
Freq straps  
Wake event  
pwr_S0-S3-S0_trans  
Intel® 815 Chipset Platform Design Guide  
149  
Power Delivery  
R
Figure 75. S0-S5-S0 Transition  
Vcc3.3sus  
RSMRST#  
t24  
STPCLK#  
Stop grant cycle  
t18  
t7  
CPUSLP#  
Go_C3 from ICH  
Ack_C3 from GMCH  
DRAM  
SUS_STAT#  
PCIRST#  
DRAM active  
DRAM in STR (CKE low)  
DRAM active  
t19  
t20  
t11  
t12  
Cycle 1 from GMCH  
Cycle 1 from ICH  
t13  
Cycle 2 from GMCH  
Cycle 2 from ICH  
t17  
CPURST#  
SLP_S3#  
t21 t23  
t25  
t26  
SLP_S5#  
PWROK  
t8  
t22  
Vcc3.3core  
Clocks  
t9  
Clocks valid  
Clocks invalid  
Clocks valid  
t16  
t15  
Freq straps  
Wake event  
pwr_S0-S5-S0_trans  
150  
Intel® 815 Chipset Platform Design Guide  
Power Delivery  
R
Table 33. Power Sequencing Timing Definitions  
Symbol  
Parameter  
Min.  
Max.  
Units  
t1  
t2  
VccSUS Good to RSMRST# inactive  
VccSUS Good to SLP_S3#, SLP_S5#, and PCIRST# active  
RSMRST# inactive to SLP_S3# inactive  
RSMRST# inactive to SLP_S5# inactive  
RSMRST# inactive to SUS_STAT# inactive  
SLP_S3#, SLP_S5#, SUS_STAT# inactive to Vcc3.3core good  
Vcc3.3core good to CPUSLP# inactive  
Vcc3.3core good to PWROK active  
1
25  
50  
4
ms  
Ns  
t3  
1
1
1
*
RTC clocks  
RTC clocks  
RTC clocks  
t4  
4
t5  
4
t6  
*
t7  
50  
*
ns  
t8  
*
*
t9  
Vcc3.3core good to clocks valid  
*
t10  
t11  
t12  
t13  
t14  
t15  
t16  
t17  
t18  
t19  
t20  
t21  
t22  
t23  
t24  
t25  
t26  
Clocks valid to PCIRST# inactive  
500  
0.9  
µs  
PWROK active to PCIRST# inactive  
1.1  
1
ms  
PCIRST# inactive to Cycle 1 from GMCH  
Cycle 1 from ICH to Cycle 2 from GMCH  
PCIRST# inactive to STPCLK deassertion  
PCIRST# to frequency straps valid  
ms  
60  
4
ns  
1
PCI clocks  
PCI clocks  
ns  
-4  
4
Cycle 2 from ICH to frequency straps invalid  
Cycle 2 from ICH to CPURST# inactive  
Stop Grant Cycle to CPUSLP# active  
CPUSLP# active to SUS_STAT# active  
SUS_STAT# active to PCIRST# active  
PCIRST# active to SLP_S3# active  
180  
110  
8
ns  
PCI clocks  
RTC clock  
RTC clocks  
RTC clocks  
ns  
1
2
1
3
2
PWROK inactive to Vcc3.3core not good  
Wake event to SLP_S3# inactive  
20  
2
3
4
2
3
RTC clocks  
PCI clocks  
RTC clocks  
RTC clocks  
PCIRST# inactive to STPCLK# inactive  
SLP_S3# active to SLP_S5# active  
1
1
SLP_S5# inactive to SLP_S3# inactive  
2
Intel® 815 Chipset Platform Design Guide  
151  
Power Delivery  
R
12.4.1  
VDDQ/VCC1_85 Power Sequencing  
For the consideration of long term component reliability, the following power sequence is strongly  
recommended while the AGP interface of the GMCH is running at 3.3V. If the AGP interface is  
running at 1.5V, the following power sequence recommendation is no longer applicable. The  
power sequence recommendation is:  
During the power-up sequence, the 1.85V must ramp up to 1.0V before 3.3V ramps above  
2.2V  
During the power-down sequence, the 1.85V cannot ramp below 1.0V before 3.3V ramps  
below 2.2V  
The same power sequence recommendation also applies to the entrance and exit of S3 state  
System designers need to be aware of this requirement while designing the voltage regulators and  
selecting the power supply. An example VDDQ power sequencing circuit is shown in Figure 76.  
Figure 76. VDDQ Power Sequencing Circuit  
3.3V  
1 KΩ  
1.85V  
SHDN  
VIN  
IPOS  
INEG  
1 KΩ  
1 KΩ  
GND  
FB  
GATE  
COMP  
vddq_pwr_seq  
12.4.2  
1.85V/3.3V Power Sequencing  
The ICH has two pairs of associated 1.85V and 3.3V supplies. These are {Vcc1_8, Vcc3_3} and  
{VccSus1_8, VccSus3_3}. These pairs are assumed to power up and power down together. The  
difference between the two associated supplies must never be greater than 2.0V. The 1.85V  
supply may come up before the 3.3V supply without violating this rule (though this is generally  
not practical in a desktop environment, since the 1.85V supply is typically derived from the 3.3V  
supply by means of a linear regulator).  
One serious consequence of violation of the 2V Rule, is electrical overstress of oxide layers,  
resulting in component damage.  
The majority of the ICH I/O buffers are driven by the 3.3V supplies, but are controlled by logic  
that is powered by the 1.85V supplies. Thus, another consequence of faulty power sequencing  
arises if the 3.3V supply comes up first. In this case the I/O buffers will be in an undefined state  
until the 1.85V logic is powered up. Some signals that are defined as “Input-only” actually have  
152  
Intel® 815 Chipset Platform Design Guide  
Power Delivery  
R
output buffers that are normally disabled, and the ICH may unexpectedly drive these signals if the  
3.3V supply is active while the 1.85V supply is not.  
Figure 77 shows an example power-on sequencing circuit that ensures the 2V Rule is obeyed. This  
circuit uses a NPN (Q2) and PNP (Q1) transistor to ensure the 1.85V supply tracks the 3.3V  
supply. The NPN transistor controls the current through PNP from the 3.3V supply into the 1.85V  
power plane by varying the voltage at the base of the PNP transistor. By connecting the emitter of  
the NPN transistor to the 1.85V plane, current will not flow from the 3.3V supply into 1.85V plane  
when the 1.85V plane reaches 1.85V.  
Figure 77. Example 1.85V/3.3V Power Sequencing Circuit  
+1.8V  
+3.3V  
220  
Q2  
NPN  
Q1  
PNP  
220  
470  
When analyzing systems that may be “marginally compliant” to the 2V Rule, pay close attention to  
the behavior of the ICH’s RSMRST# and PWROK signals, since these signals control internal  
isolation logic between the various power planes:  
RSMRST# controls isolation between the RTC well and the Resume wells.  
PWROK controls isolation between the Resume wells and Main wells  
If one of these signals goes high while one of its associated power planes is active and the other is  
not, a leakage path will exist between the active and inactive power wells. This could result in  
high, possibly damaging, internal currents.  
Intel® 815 Chipset Platform Design Guide  
153  
Power Delivery  
R
12.4.3  
3.3V/V5REF Sequencing  
V5REF is the reference voltage for 5V tolerance on inputs to the ICH. V5REF must be powered  
up before or simultaneously to VCC3_3. It must also power down after or simultaneous to  
VCC3_3. The rule must be followed to ensure the safety of the ICH. If the rule is violated, internal  
diodes will attempt to draw power sufficient to damage the diodes from the VCC3_3 rail.  
Figure 78 shows a sample implementation of how to satisfy the V5REF/3.3V sequencing rule.  
This rule also applies to the stand-by rails, but in most platforms, the VCCSus3_3 rail is derived  
from the VCCSus5 and therefore, the VCCSus3_3 rail will always come up after the VCCSus5  
rail. As a result, V5REF_Sus will always be powered up before VCCSus3_3. In platforms that do  
not derive the VCCSus3_3 rail from the VCCSus5 rail, this rule must be comprehended in the  
platform design. As an additional consideration, during suspend the only signals that are 5V  
tolerant are USBOC. If these signals are not needed during suspend, V5REF_Sus can be hooked to  
the VCCSus3_3 rail.  
Figure 78. 3.3V/V5REF Sequencing Circuitry  
Vcc Supply  
(3.3V)  
5V Supply  
1 KΩ  
1.0 uF  
To System  
VREF  
To System  
vref_circuit  
154  
Intel® 815 Chipset Platform Design Guide  
System Design Checklist  
R
13 System Design Checklist  
13.1  
Design Review Checklist  
Introduction  
This checklist highlights design considerations that should be reviewed prior to manufacturing a  
motherboard that implements an Intel 815 chipset platform for use with the universal socket 370.  
This is not a complete list and does not guarantee that a design will function properly. For items  
other than those in the following text, refer to the latest revision of the design guide for more-  
detailed instructions regarding motherboard design.  
Design Checklist Summary  
The following set of tables provides design considerations for the various portions of a design.  
Each table describes one of those portions and is titled accordingly. Contact your Intel Field  
Representative in the event of questions or issues regarding the interpretation of the information in  
these tables.  
13.2  
Processor Checklist  
13.2.1  
GTL Checklist  
Checklist Items  
Recommendations  
A[35:3]#  
Connect A[31:3]# to GMCH. Leave A[35:32]# as No Connect (not  
supported by chipset).  
BNR#, BPRI#, DBSY#,  
DEFER#, DRDY#, D[63:0]#,  
HIT#, HITM#, LOCK#,  
REQ[4:0]#, RS[2:0]#,  
TRDY#  
Connect to GMCH.  
ADS#  
Resistor site for 56 pull-up to VTT placed within 150 mils of GMCH for  
debug purpose. Connect to GMCH.  
BREQ[0]# (BR0#)  
RESET# (AH4)  
33 pull-down resistor to ground  
Terminate to VTT through 86 resistor, decoupled through 22 resistor  
in series with 10 pF capacitor to ground. Connect to GMCH. For ITP,  
also connect to ITP pin 2 (RESET#) with 240 series resistor.  
RESET2# (X4)  
1 kseries resistor to RESET#.  
Intel® 815 Chipset Platform Design Guide  
155  
System Design Checklist  
R
13.2.2  
CMOS Checklist  
Checklist Items  
Recommendations  
IERR#  
150 pull-up resistor to VCCCMOS if tied to custom logic, or leave as No  
Connect (not used by chipset)  
PREQ#  
200–300 pull-up resistor to VCCCMOS / Connect to ITP or else leave as  
No Connect.  
THERMTRIP#  
See Section 5.3.1.  
A20M#, IGNNE#, INIT#,  
INTR, NMI, SLP#, SMI#,  
STPCLK#  
150 pull-up to VCMOS / Connect to ICH  
FERR#  
Requires 150 pull-up to VCCCMOS/Connect to ICH.  
FLUSH#  
Requires 150 pull-up to VCCCMOS. (Not used by chipset.)  
PWRGOOD  
330 pull-up to VCC2_5 /1.8 kpull-down resistor to ground /Connect  
to POWERGOOD logic.  
13.2.3  
TAP Checklist for 370-Pin Socket Processors  
Checklist Items  
Recommendations  
TCK  
TMS  
TDI  
39 pull-down resistor to ground / Connect to ITP.  
39pull-up resistor to VCMOS / Connect to ITP  
200–330 pull-up resistor to VCMOS / Connect to ITP.  
150 pull-up resistor to VCMOS / Connect to ITP.  
500-680 pull-down resistor to ground / Connect to ITP.  
TDO  
TRST#  
PRDY#  
Pull-up resistor that matches GTL characteristic impedance to VTT /  
240 series resistor to ITP.  
NOTE: Resistors need to be placed within 1 inch of the TAP connector.  
13.2.4  
Miscellaneous Checklist for 370-Pin Socket Processors  
Checklist Items  
Recommendations  
BCLK  
Connect to clock generator. / 22–33 series resistor (though OEM  
needs to simulate based on driver characteristics). To reduce pin-to-pin  
skew, tie host clock outputs together at the clock driver then route to the  
GMCH and processor.  
BSEL0  
BSEL1  
Case 1 (66/100/133 MHz support): 1 kpull-up resistor to 3.3V.  
Connect to Intel® CK-815 SEL0 input. Connect to GMCH LMD29 pin via  
10 kseries resistor.  
Case 2 (100/133 MHz support): 1 kpull-up resistor to 3.3V. Connect  
to PWRGOOD logic such that a logic Low on BSEL0 negates  
PWRGOOD.  
1 kpull-up resistor to 3.3V. Connect to Intel CK-815 REF pin via 10 kΩ  
series resistor. Connect to GMCH LMD13 pin via 10 kseries resistor.  
156  
Intel® 815 Chipset Platform Design Guide  
System Design Checklist  
R
Checklist Items  
CLKREF  
Recommendations  
Connect to divider on VCC2.5 or VCC3.3 to create 1.25V reference with  
a 4.7 µF decoupling capacitor. Resistor divider must be created from 1%  
tolerance resistors. Do not use VTT as source voltage for this reference!  
CPUPRES#  
Tie to ground. Leave as No Connect or connect to PWRGOOD logic to  
gate system from powering on if no processor is present. If used, 1 kΩ  
to 10 kpull-up resistor to VCCCMOS.  
DYN_OE  
PICCLK  
1 kpull-up resistor to VTT.  
See Section 10.5.  
PICD[1:0]  
PLL1, PLL2  
150 pull-up resistor to VCCCMOS/Connect to ICH.  
Low-pass filter on VCCCORE provided on motherboard. Typically a 4.7 µH  
inductor in series with VCCCORE is connected to PLL1, and then through  
a series 33 µF capacitor to PLL2.  
RTTCTRL5 (S35)  
56 Ω ± 1% pull-down resistor to ground.  
110 Ω ± 1% pull-down resistor to ground.  
Connect to ICH.  
SLEWCTRL (E27)  
STPCLK# (AG35)  
THERMDN, THERMDP  
No Connect if not used. Otherwise, connect to thermal sensor using  
vendor guidelines.  
VCC2.5  
No connect for Intel® Pentium® III processors  
GTL_REF/VCMOS_REF  
(AK22)  
Connect to a 1.0V voltage divider derived from VCCCMOS. See Section  
4.2.7.  
VCCCORE  
16 ea. (minimum) 4.7 µF in 1206 package all placed within the PGA370  
socket cavity.  
8 ea. (minimum) 1 µF in 0612 package placed in the PGA370 socket  
cavity.  
VID[25mV, 3:0]  
Connect to on-board VR or VRM. 25mV should connect to VID25mV.  
For on-board VR, 10 kpull-up resistor to power solution-compatible  
voltage is required (usually pulled up to input voltage of the VR). Some  
of these solutions have internal pull-ups. Optional override (jumpers,  
ASIC, etc.) could be used. May also connect to system monitoring  
device.  
VTTPWRGD  
VREF [6:0]  
Pull-up to VTT through 1 kresistor and connect to VTTPWRGD  
circuitry. See Section 4.2.6.  
Connect to VREF voltage divider made up of 75 and 150 1%  
resistors connected to VTT. Processor VREF must be able to be  
separate from chipset VREF.  
Decoupling Guidelines:  
4 ea. (minimum) 0.1 µF in 0603 package placed within 500 mils of  
VREF pins  
VTT  
Connect AH20, AK16, AL13, AL21, AN11, AN15, G35, G37, AD36,  
AB36, X34, AA33, AA35, AN21, E23, S33, S37, U35, and U37 to VRM  
8.5-compliant regulator. Provide high- and low-frequency decoupling.  
Decoupling Guidelines:  
20 ea (minimum) 0.1 µF in 0603 package placed as near the VTT  
processor pins as possible.  
4 ea (minimum) 0.47 µF in 0612 package  
Intel® 815 Chipset Platform Design Guide  
157  
System Design Checklist  
R
Checklist Items  
NO CONNECTS  
Recommendations  
The following pins must be left as no-connects: A29, A31, A33, AC37,  
AJ3, AK24, AK30, AL1, AL11, AM2, AN13, AN23, B36, C29, C31, C33,  
C35, E21, E29, E31, E35, E37, F10, G33, L33, N33, N35, Q33, Q35,  
Q37, R2, V4, W35, X2, Y1, Z36.  
NCHCTRL (N37)  
14 pull-up resistor to VTT.  
13.3  
GMCH Checklist  
13.3.1  
AGP Interface 1X Mode Checklist  
Checklist Items  
Recommendations  
RBF#, WBF#, PIPE#,  
GREQ#, GGNT#, GPAR,  
GFRAME#, GIRDY#,  
GTRDY#, GSTOP#,  
GDEVSEL#, GPERR#,  
GSERR# , ADSTB0,  
ADSTB1, SBSTB  
Pull-up to VDDQ through 8.2 kΩ  
ADSTB0#, ADSTB1#,  
SBSTB#  
Pull-down to ground through 8.2 kΩ  
PME#  
Connect to PCI connector 0 device Ah. / Connect to PCI connector  
1 device Bh. / Connect to Intel® 82559 LAN (if implemented).  
TYPEDET#  
Connect to AGP voltage regulator circuitry / AGP reference circuitry.  
PIRQ#A, PIRQ#B  
Pull-up to 5 V through 2.7 k. / Follow ref. schematics (other device  
connections).  
158  
Intel® 815 Chipset Platform Design Guide  
System Design Checklist  
R
13.3.2  
Designs That Do Not Use the AGP Port  
Any external graphics implementation not using the AGP port should terminate the GMCH AGP  
control and strobe signals in the following way:  
Table 34. Recommendations For Unused AGP Port  
Signal  
Pull-up / Pull-Down  
FRAME#  
TRDY#  
IRDY#  
DEVSEL#  
STOP#  
SERR#  
PERR#  
RBF#  
Pull-up to +VDDQ  
Pull-up to +VDDQ  
Pull-up to +VDDQ  
Pull-up to +VDDQ  
Pull-up to +VDDQ  
Pull-up to +VDDQ  
Pull-up to +VDDQ  
Pull-up to +VDDQ  
Pull-up to +VDDQ  
Pull-up to +VDDQ  
Pull-up to +VDDQ  
Pull-up to +VDDQ  
Pull-up to +VDDQ  
Pull-up to +VDDQ  
WBF#  
INTA#  
INTB#  
PIPE#  
REQ#  
GNT#  
GPAR  
Pull-down to Ground using a 100 kΩ  
resistor  
AD_STB[1:0]  
SB_STB  
Pull-up to +VDDQ  
Pull-up to +VDDQ  
Pull-down to Ground  
Pull-down to Ground  
Pull-up to +VDDQ  
AD_STB[1:0]#  
SB_STB#  
ST[2:0]  
Intel® 815 Chipset Platform Design Guide  
159  
System Design Checklist  
R
13.3.3  
System Memory Interface Checklist  
Checklist Items  
Recommendations  
SM_CSA#[0:3,  
Connect from GMCH to DIMM0, DIMM1  
SM_CSB#[3:0,  
SMAA[11:8,3:0],  
SM_MD[0:63],  
SM_CKE[0:3],  
S_DQM[0:7]  
SM_MAA[7:4],  
SM_MAB[7:4]#  
Connect from GMCH to DIMM0, DIMM1 through 10 ohm resistors  
SMAA[12]  
Connect GMCH through 10 kresistor to transistor junction as per  
Chapter 4 for systems supporting the universal PGA370 design.  
SM_CAS#  
SM_RAS#  
SM_WE#  
Connected to R_REFCLK through 10 kresistor.  
Jumpered to GND through 10 kresistor  
Connected to R_BSEL0# through 10 kresistor.  
CKE[5..0] (For 3 DIMM  
implementation)  
When implementing a 3 DIMM configuration, all six CKE signals on the  
GMCH are used. (0,1 for DIMM0; 2, 3 for DIMM1; 4,5 for DIMM2)  
REGE  
Connect to GND (since the Intel® 815 chipset platform does not support  
registered DIMMS).  
WP(Pin 81 on the DIMMS)  
SRCOMP  
Add a 4.7 kpull-up resistor to 3.3V. This recommendation write-protects  
the DIMM’s EEPROM.  
Needs a 40 resistor pulled up to 3.3V standby.  
13.3.4  
13.3.5  
Hub Interface Checklist  
Checklist Items  
Recommendations  
HUBREF  
Connect to HUBREF generation circuitry.  
HL_COMP  
Pull-up to VCC1.85 through 40 (both GMCH and ICH side).  
Digital Video Output Port Checklist  
Checklist Items  
Recommendations  
DVI Input Reference Circuit  
See reference schematics in the documentation of the third party vendor  
of the device of choice in your design. The Third-Party Vendor  
information is a part of this Design Guide and its associated Design  
Guide Updates.  
160  
Intel® 815 Chipset Platform Design Guide  
System Design Checklist  
R
13.4  
ICH Checklist  
13.4.1  
PCI Checklist  
Checklist Items  
Recommendations  
AD16,17 pass through 100 resistor.  
AD[31:0]  
ACK 64#  
REQ 64#  
(5V PCI environment) 2.7 k(approximate) pull-up resistors to VCC5.  
(3V PCI environment) 8.2 k(approximate) pull-up resistors to VCC3_3.  
Each REQ 64# and ACK 64# requires it’s own pull-up.  
Pull-down through 5.6 kto GND  
PTCK  
Connect to PCI Connectors only.  
PTDI, PTRST#, PTMS  
Pull-up through 5.6 kresistor to VCC5  
Connect to PCI Connectors only.  
PRSNT#21, PRSNT#22,  
PRSNT#31, PRSNT#32  
Decoupled with 0.1 µF capacitor to GND  
PIRQ#C, PIRQ#D,  
U2_ACK64#,  
Pull-up through 2.7 kresistor to VCC5  
U2_REQ64#,  
U3_ACK64#,  
U3_REQ64#, PREQ#1,  
PLOCK#1, STOP#,  
TRDY#, SERR#, PREQ#3,  
PIRQ#A, PERR#,  
PREQ#0, PREQ#2  
DEVSEL#, FRAME#,  
IRDY#  
PCIRST#  
Pull signal down through 0.1 µF capacitor when input for USB. Input to  
buffer for PCIRST_BUF#.  
PCPCI_REQ#A,  
REQ#B/GPIO1,  
Pull-up through 8.2 kresistor to VCC3_3  
GNT#B/GPIO17, PGNT#0,  
PGNT#1, PGNT#2,  
PGNT#3  
PCLK_3  
Signal coming from Intel® CK-815 device pass through a 33 resistor to  
PCI connector.  
PCIRST_BUF#  
Signal comes from buffered PCIRST#  
Pull-up through 8.2 kresistor to VCC3_3  
Passes through 33 resistor  
SDONEP2, SDONEP3,  
SBOP2, SBOP3  
Pull-up through 5.6 kresistor to VCC5  
R_RSTP#, R_RSTS#  
Signal is from PCIRST_BUF# and passes through a 33 resistor  
IDSEL lines to PCI  
connectors  
100 series resistor.  
3V_AUX  
Optional to 3VSB, but required if PCI devices supporting wake up events.  
Intel® 815 Chipset Platform Design Guide  
161  
System Design Checklist  
R
13.4.2  
USB Checklist  
Checklist Items  
Recommendations  
USBP0P, USBP0N,  
USB_D1_N, USB_D1_P  
Decouple through a 47 pF capacitor to GND  
Signal goes through 15 resistor  
Pull-down through a 15 kresistor to GND  
Connected to AGP/AC97 Circuitry (See Intel CRB Schematic pg. 20)  
Pull-down through a 15 kresistor to GND  
OC#0  
USB_D2_N, USB_D2_P,  
USB_D3_N, USB_D3_P,  
USB_D4_N, USB_D4_P,  
USBP1P, USBP1N,  
USBP0P, USBP0N  
D-/D+ data lines  
VCC USB  
Use 15 series resistors.  
Power off 5V standby if wake on USB is to be implemented IF there is  
adequate standby power. It should be powered off of 5 V core instead of  
5 V standby if adequate standby power is not available.  
Voltage Drop  
Considerations  
The resistive component of the fuses, ferrite beads and traces must be  
considered when choosing components and Power/GND trace width.  
This must be done such that the resistance between the VCC5 power  
supply and the host USB port is minimized. Minimizing this resistance  
will minimize voltage drop seen along that path during operating  
conditions.  
Fuse  
A minimum of 1A fuse should be used. A larger fuse may be necessary  
to minimize the voltage drop.  
Voltage Droop  
Considerations  
Sufficient bypass capacitance should be located near the host USB  
receptacles to minimize the voltage droop that occurs on the hot attach  
of new device. See most recent version of the USB specification for  
more information.  
13.4.3  
AC ‘97 Checklist  
Checklist Items  
Recommendations  
AC_SDOUT  
Pulled up to VCC3_3 through a 10 Kresistor and a jumper to AC97  
Connector and AC97 codec from ICH.  
AC_SDIN0  
AC_SDIN1  
Pull-down through a 10 kresistor to GND. The SDATAIN[0:1] pins  
should not be left in a floating state if the pins are not connected and the  
AC-link is active – they should be pulled to ground through a weak  
(approximately 10 k) pull-down resistor (see Section 5.9.3 for more  
information).  
AC97_OC#  
Connects to OC# circuitry. (see CRB schematics page 20).  
Signal comes from Oscillator Y4  
AC_XTAL_OUT,  
AC_XTAL_IN  
Decouple through a 22 pF capacitor to GND  
PRI_DWN#  
Connected through jumper to PRI_DWN_U or GND. (see CRB schematic  
page 27) If the motherboard implements an active primary codec on the  
motherboard and provides and AMR connector, it must tie PRI_DN# to  
GND.  
PRI_DWN_U  
LINE_IN_R  
Pull-up through a 4.7 kresistor to VCC3SBY  
From FB9 decouple through a 100 pF NPO capacitor to AGND. Run  
signal through 1 µF TANT capacitor  
162  
Intel® 815 Chipset Platform Design Guide  
System Design Checklist  
R
13.4.4  
IDE Checklist  
Checklist Items  
Recommendations  
PDCS3#, SDCS3#,  
PDA[2:0], SDA[2:0],  
PDD[15:0], SDD[15:0],  
PDDACK#, SDDACK#,  
PRIOR#, SDIOR#,  
PDIOW#, SDIOW#  
Connect from ICH to IDE Connectors. No external series termination  
resistors required on those signals with integrated series resistors.  
PDD7, SDD7  
Pull-down through a 10 kresistor to GND.  
Pull-down through a 5.6 kresistor to GND.  
Pull-up through a 1 kresistor to VCC5  
Connect from ICH to IDE Connectors  
PDREQ, SDREQ  
PIORDY, SIORDY  
PDCS1#, SDCS1#  
PRI_PD1, PRI_SD1  
IDE_ACTIVE  
Pull-down through a 470 resistor to GND.  
From IDEACTP# and IDEACTS# connect to HD LED circuitry (see CRB  
Schematic page 35)  
CBLID#/PDIAG#  
IDE Reset  
Refer to Section 10.2 for the correct circuit.  
NOTE: All ATA66 drives will have the capability to detect cables.  
This signal requires a 22 –47 series termination resistor and should  
be connected to buffered PCIRST#.  
IRQ14, IRQ15  
CSEL  
Need 8.2 kresistor to 10 kpull-up resistor to 5V.  
Pull-down to GND through 4.7 kresistor (approximate).  
IDEACTP#, IDEACTS#  
For HD LED implementation use a 10 k(approximate) pull-up resistor to  
5V.  
13.4.5  
Miscellaneous ICH Checklist  
Checklist Items  
Recommendations  
RTC circuitry  
Refer to Section 10.9 for exact circuitry.  
PME#, PWRBTN#,  
LAD[3..0]#/FWH[3..0]#  
No external pull-up resistor on those signals with integrated pull-ups.  
SPKR  
Optional strapping: Internal pull-up resistor is enabled at reset for  
strapping after - reset the internal pull-up resistor is disabled. Otherwise  
connect to motherboard speaker logic. (When strapped, use strong pull-  
up, e.g., 2 k)  
AC_SDOUT, AC_BITCLK  
AC_SDIN[1:0]  
Optional strapping: Internal pull-up resistor is enabled at reset for  
strapping after - reset the internal pull-up resistor is disabled. Otherwise  
connect to AC’97 logic.  
Internal pull-down resistor is enabled only when the AC link hut-off bit in  
the ICH is set.  
Use 10 k(approximate) pull-down resistors on both signals if using  
AMR.  
For onboard AC’97 devices, use a 10 k(approximate) pull-down  
resistor on the signal that is not used.  
Otherwise, connect to AC’97 logic.  
Intel® 815 Chipset Platform Design Guide  
163  
System Design Checklist  
R
Checklist Items  
Recommendations  
PDD[15:0], PDIOW#,  
PDIOR#, PDREQ,  
PDDACK#, PIORDY,  
PDA[2:0], PDCS1#,  
PDCS3#, SDD[15:0],  
SDIOW#, SDIOR#,  
SDREQ, SDDACK#,  
SIORDY, SDA[2:0],  
SDCS1#, SDCS3#, IRQ14,  
IRQ15  
No external series termination resistors on those signals with integrated  
series resistors.  
PCIRST#  
The PCIRST# signal should be buffered to the IDE connectors.  
No floating inputs (including  
bi-directional signals):  
Unused core well inputs should be tied to a valid logic level (either pulled  
up to 3.3V or pulled down to ground). Unused resume well inputs must  
be either pulled up to 3.3VSB or pulled down to ground. Ensure all  
unconnected signals are OUTPUTS ONLY!  
PDD[15:0], SDD[15:0]  
PDD7 and SDD7 need a 10 k(approximate) pull-down resistor. No  
other pull-ups/pull-downs are required. Refer to ATA ATAPI-4  
specification.  
PIORDY, SDIORDY  
PDDREQ, SDDREQ  
IRQ14, IRQ15  
HL11  
Use approximately 1 kpull-up resistor to 5V.  
Use approximately 5.6 kpull-down resistor to ground.  
Need 8.2 k(approximate) pull-up resistor to 5V.  
No pull-up resistor required. A test point or no stuff resistor is needed to  
be able to drive the ICH into a NAND tree mode for testing purposes.  
VCCRTC  
No clear CMOS jumper on VCCRTC. Use a jumper on RTCRST# or a  
GPI, or use a safe-mode strapping for clear CMOS.  
SMBus:  
The value of the SMBus pull-ups should reflect the number of loads on  
the bus. For most implementations with 4–5 loads, 4.7 kresistors are  
recommended. OEMs should conduct simulation to determine exact  
resistor value.  
SMBCLK  
SMBDATA  
APICD[0:1], APICCLK  
If the APIC is used: 150 (approximate) pull-ups on APICD[0:1] and  
connect APICCLK to the clock generator.  
If the APIC is not used: The APICCLK can either be tied to GND or  
connected to the clock generator, but not left floating.  
GPI[8:13]  
Ensure all wake events are routed through these inputs. These are the  
only GPIs that can be used as ACPI-compliant wake events because  
they are the only GPI signals in the resume well that have associated  
status bits in the GPE1_STS register.  
HL_COMP  
5V_REF  
RCOMP Method: Tie the COMP pin to a 40 1% or 2% (or 39 1%)  
pull-up resistor to 1.85V via a 10-mil wide, very short(-0.5 inch) trace  
(targeted for a nominal trace impedance of 40 )  
Refer to Section 12.4.3 for implementation of the voltage sequencing  
circuit.  
SERIRQ  
Pull-up through 8.2 kresistor (approximate) to 3.3V  
No pull-ups required. These signals are always driven by the ICH.  
Use 18 pF tuning capacitor as close as possible to ICH.  
SLP_S3#, SLP_S5#  
CLK66  
GPIO27/ALERTCLK  
GPIO28/ALERTDATA  
Add a 10 kpull-up resistor to 3VSB (3 V standby) on both of these  
signals.  
PCI_GNT#  
No external pull-ups are required on PCI_GNT# signals. However, if  
external pull-ups are implemented, they must be pulled up to 3.3V.  
164  
Intel® 815 Chipset Platform Design Guide  
System Design Checklist  
R
13.5  
LPC Checklist  
Checklist Items  
Recommendations  
RCIN#  
Pull-up through 8.2 kresistor to VCC3_3  
LPC_PME#  
Pull-up through 8.2 kresistor to VCC3_3. Do not connect LPC PME# to  
PCI PME#. If the design requires the Super I/O to support wake from any  
suspend state, connect Super I/O LPC_PME# to a resume well GPI on  
the ICH.  
LPC_SMI#  
Pull-up through 8.2 kresistor to VCC3_3. This signal can be connected  
to any ICH GPI. The GPI_ROUTE register provides the ability to generate  
an SMI# from a GPI assertion.  
TACH1, TACH2  
Pull-up through 4.7 kresistor to VCC3_3  
Jumper for decoupling option (decouple with 0.1 µF capacitor).  
J1BUTTON1,  
JPBUTTON2,  
J2BUTTON1,  
J2BUTTON2  
Pull-up through 1 kresistor to VCC5. Decouple through 47 pF capacitor  
to GND  
LDRQ#1  
Pull-up through 4.7 kresistor to VCC3SBY  
Pull-up through 8.2 kresistor to VCC3_3  
Pull-up through 4.7 kresistor to PS2V5.  
Decoupled using 470 pF to ground  
A20GATE  
MCLK, MDAT  
L_MCLK, L_MDAT  
RI#1_C, CTS0_C,  
Decoupled using 100 pF to GND  
RXD#1_C, RXD0_C,  
RI0_C, DCD#1_C,  
DSR#1_C, DSR0_C,  
DTR#1_C, DTR0_C,  
DCD0_C, RTS#1_C,  
RTS0_C, CTS#1_C,  
TXD#1_C, TXD0_C  
L_SMBD  
SERIRQ  
Pass through 150 resistor to Intel® 82559  
Pull-up through 8.2 kto VCC3_3  
SLCT#, PE, BUSY, ACK#,  
ERROR#  
Pull-up through 2.2 kresistor to VCC5_DB25_DR  
Decouple through 180 pF to GND  
LDRQ#0  
Connect to ICH from SIO. This signal is actively driven by the Super I/O  
and does not require a pull-up resistor.  
STROBE#, ALF#,  
SLCTIN#, PAR_INIT#  
Signal passes through a 33 resistor and is pulled up through 2.2 kΩ  
resistor to VCC5_DB25_CR. Decoupled using a180 pF capacitor to GND.  
PWM1, PWM2  
Pull-up to 4.7 kto VCC3_3 and connected to jumper for decouple with  
0.1 µF capacitor to GND.  
INDEX#, TRK#0,  
RDATA#, DSKCHG#,  
WRTPRT#  
Pull-up through 1 kresistor to VCC5  
PDR0, PDR1, PDR2,  
PDR3, PDR4, PDR5,  
PDR6, PDR7  
Passes through 33 resistor  
Pull-up through 2.2 kto VCC5_DB5_CRDecouple through 180 pF  
capacitor to GND  
SYSOPT  
Pull-down with 4.7 kresistor to GND or IO address of 02Eh  
Intel® 815 Chipset Platform Design Guide  
165  
System Design Checklist  
R
13.6  
System Checklist  
Checklist Items  
Recommendations  
KEYLOCK#  
Pull-up through 10 kresistor to VCC3_3  
Connects to PBSwitch and PBin.  
PBTN_IN  
PWRLED  
R_IRTX  
Pull-up through a 220 resistor to VCC5  
Signal IRTX after it is pulled down through4.7 kresistor to GND and  
passes through 82 resistor  
IRRX  
IRTX  
Pull-up to 100 kresistor to VCC3_3  
When signal is input for SI/O Decouple through 470 pF capacitor to GND  
Pull-down through 4.7 kto GND  
Signal passes through 82 resistor  
When signal is input to SI/O Decouple through 470 pF capacitor to GND  
Decouple through a 470 pF capacitor to GND  
Pull-up 470 to VCC5  
FP_PD  
PWM1, PWM2  
INTRUDER#  
Pull-up through a 4.7 kresistor to VCC3_3  
Pull signal to VCCRTC (VBAT), if not needed.  
13.7  
FWH Checklist  
Checklist Items  
Recommendations  
No floating inputs  
WPROT, TBLK_LCK  
R_VPP  
Unused FGPI pins need to be tied to a valid logic level.  
Pull-up through a 4.7 kto VCC3_3  
Pulled up to VCC3_3, decoupled with two 0.1 µF capacitors to GND.  
Pull-down through a 8.2 kresistor to GND  
FGPI0_PD, FGPI1_PD,  
FGPI2_PD, FPGI3_PD,  
FPGI4_PD, IC_PD  
FWH_ID1, FWH_ID2,  
FWH_ID3  
Pull-down to GND  
INIT#  
RST#  
ID[3:0]  
FWH INIT# must be connected to processor INIT#.  
FWH RST# must be connected to PCIRST#.  
For a system with only one FWH device, tie ID[3:0] to ground.  
166  
Intel® 815 Chipset Platform Design Guide  
System Design Checklist  
R
13.8  
Clock Synthesizer Checklist  
Checklist Items  
Recommendations  
REFCLK  
Connects to R-RefCLK, USB_CLK, SIO_CLK14, and ICHCLK14.  
Passes through 33 resistor  
GMCH_3V66/3V66_1  
ICH_3V66/3V66_0,  
DOTCLK  
Passes through 33 resistor  
When signal is input for ICH it is pulled down through a 18 pF capacitor to  
GND  
DCLK/DCLK_WR  
CPUHCLK/CPU_0_1  
R_REFCLK  
Passes through 33 resistor  
When signal is input for GMCH it is pulled down through a 22 pF capacitor  
to GND  
Passes through 33 resistor  
When signal is input for 370PGA, Decouple through a 18 pF capacitor to  
GND  
REFCLK passed through 10 kresistor  
When signal is input for 370PGA, pull-up through 1 kresistor to VCC3_3  
and pass through 10 kresistor  
USB_CLK, ICH_CLK14  
XTAL_IN, XTAL_OUT  
REFCLK passed through 10 resistor  
Passes through 14.318 MHz Osc  
Pulled down through 18 pF capacitor to GND  
Pulled up via MEMV3 circuitry through 8.2 kresistor.  
SEL1_PU  
FREQSEL  
Connected to clock frequency selection circuitry through 10 kresistor.  
(see CRB schematic, page 4)  
L_VCC2_5  
Connects to VDD2_5[0..1] through ferrite bead to VCC2_5.  
GMCHHCLK/CPU_1,  
ITPCLK/CPU_2,  
Passes through 33 resistor  
PCI_0/PCLK_OICH,  
PCI_1/PCLK_1,  
PCI_2/PCLK_2,  
PCI_3/PCLK_3,  
PCI_4/PCLK_4,  
PCI_5/PCLK_5,  
PCI_6/PCLK_6,  
APICCLK_CPU/APIC_0,  
APICCLK)ICH/APIC_1,  
USBCLK/USB_0,  
GMCH_3V66/3V66_1,  
AGPCLK_CONN  
MEMCLK0/DRAM_0,  
MEMCLK1/DRAM_1,  
MEMCLK2/DRAM_2,  
MEMCLK3/DRAM_3,  
MEMCLK4/DRAM_4,  
MEMCLK5/DRAM_5,  
MEMCLK6/DRAM_6,  
MEMCLK7/DRAM_7,  
Pass through 10 resistor  
SCLK  
Pass through 22 resistor.  
VCC3.3  
Connected to VTTPWRGD gating circuit as per Section 4.3.1 for systems  
supporting the universal PGA370 design.  
Intel® 815 Chipset Platform Design Guide  
167  
System Design Checklist  
R
13.9  
LAN Checklist  
Checklist Items  
Recommendations  
Pull-down through 50 resistor to GND  
TDP, TDN, RDP, RDN  
LANAPWR  
Passes through 3 kresistor  
LANCLKRUN  
Pull-down through 62 kresistor  
LAN_ISOLATE#  
LAN_TEST  
Connect to SUS_STAT# and PWROK  
Pull-down through a 4.7 kresistor to GND  
Signal from 25 MHz oscillator  
LAN_XTAL1, LAN_XTAL2  
Decouple through a 22 pF capacitor to GND  
Pull-down through a 619 resistor to GND  
FLD5_PD, FLD6_PD,  
RBIAS10, RBIAS100  
ACTLED/LI_CR  
LILED  
Passes through 330 resistor  
Connect to jumper, pull-up through 330 resistor to VCC3SBY  
Pull-up through 330 resistor to VCC3SBY  
ACT_CR  
RD_PD  
Pull-down RDP through 50 resistor and to RDN through 50 resistor to  
GND  
TD_PD  
Pull-down TDP through 50 resistor and to TDN through 50 resistor to  
GND  
SPEEDLED  
CHASSIS_GND  
Connect LED anode to VCC3SBY through 330 resistor and cathode to  
Intel® 82559. Jumper to VCC3SBY through 330 resistor  
Use plane for this signal.  
JP7_PU, JP18_PU,  
JP23_PU  
Pull-up through 330 resistor to VCC3SBY  
R_LANIDS  
Pass through 100 resistor to AD20 from Intel 82559 pin IDSEL.  
13.10  
Power Delivery Checklist  
Checklist Items  
Recommendations  
All voltage regulator components meet maximum  
current requirements  
Consider all loads on a regulator, including  
other regulators.  
All regulator components meet thermal requirements  
Ensure the voltage regulator components and  
dissipate the required amount of heat.  
VCC1_8  
VCC1_8 power sources must supply 1.85V  
If devices are powered directly from a dual rail  
(i.e., not behind a power regulator), then the RDSon  
of the FETs used to create the dual rail must be  
analyzed to ensure there is not too much voltage drop  
across the FET.  
“Dual” voltage rails may not be at the expected  
voltage.  
Dropout Voltage  
The minimum dropout for all voltage regulators  
must be considered. Take into account that the  
voltage on a dual rail may not be the expected  
voltage.  
Voltage tolerance requirements are met  
See individual component specifications for  
each voltage tolerance.  
168  
Intel® 815 Chipset Platform Design Guide  
System Design Checklist  
R
13.10.1 Power  
Checklist  
Items  
Recommendations  
V_CPU_IO[1:0]  
The power pins should be connected to the proper power plane for the processor ‘s  
CMOS compatibility signals. Use one 0.1 µF decoupling capacitor.  
VCCRTC  
No clear CMOS jumper on VCCRTC. Use a jumper on RTCRST# or a GPI, or use a  
safemode strapping for Clear CMOS  
VCC3.3  
Requires six 0.1 µF decoupling capacitors  
Requires one 0.1 µF decoupling capacitor.  
Requires two 0.1 µF decoupling capacitors.  
Requires one 0.1 µF decoupling capacitor.  
Requires one 0.1 µF decoupling capacitor.  
VCCSus3.3  
VCC1.85  
VCCSus1.85  
5V_REF SUS  
V5REF_SUS only affects 5V-tolerance for USB OC[3:0] ins and can be connected to  
VCCSUS3_3 if 5V tolerance on these signal is not required.  
5V_REF  
5VREF is the reference voltage for 5V tolerant inputs in the ICH. Tie to pins  
VREF[2:1]. 5VREF must power up before or simultaneous to VCC3_3. It must power  
down after or simultaneous to VCC3_3. Refer to the figure below for an example  
circuit schematic that may be used to ensure the proper 5VREF sequencing.  
VCMOS  
VCMOS power source must supply 1.5V and be generated by circuitry on the  
motherboard. See Appendix A: Customer Reference Board (CRB).  
Figure 79. V5REF Circuitry  
Vcc Supply  
(3.3V)  
5V Supply  
1 KΩ  
1.0 uF  
To System  
VREF  
To System  
vref_circuit  
Intel® 815 Chipset Platform Design Guide  
169  
System Design Checklist  
R
This page is intentionally left blank.  
170  
Intel® 815 Chipset Platform Design Guide  
Third-Party Vendor Information  
R
14 Third-Party Vendor Information  
This design guide has been compiled to give an overview of important design considerations while  
providing sources for additional information. This chapter includes information regarding various  
third-party vendors who provide products to support the Intel 815 chipset platform for use with the  
universal socket 370. The list of vendors can be used as a starting point for the designer. Intel does  
not endorse any one vendor, nor guarantee the availability or functionality of outside components.  
Contact the manufacturer for specific information regarding performance, availability, pricing and  
compatibility.  
Super I/O (Vendors Contact Phone)  
SMSC  
Dave Jenoff (909) 244-4937  
National Semiconductor  
ITE  
Winbond  
Robert Reneau (408) 721-2981  
Don Gardenhire (512)388-7880  
James Chen (02) 27190505 - Taipei office  
Clock Generation (Vendors Contact Phone)  
Cypress Semiconductor  
ICS  
John Wunner 206-821-9202 x325  
Raju Shah 408-925-9493  
IMI  
PERICOM  
Elie Ayache 408-263-6300, x235  
Ken Buntaran 408-435-1000  
Memory Vendors  
Voltage Regulator Vendors (Vendors Contact Phone)  
TBD  
GPA (a.k.a. AIMM) Card (Vendors Contact Phone)  
Kingston  
Smart Modular  
Micron Semiconductor  
TBD  
Intel® 815 Chipset Platform Design Guide  
171  
Third-Party Vendor Information  
R
TMDS Transmitters  
Silicon Images  
Texas Instrument  
Chrontel  
John Nelson (408) 873-3111  
Greg Davis [[email protected]] (214) 480-3662  
Chi Tai Hong [[email protected]] (408) 544-2150  
TV Encoders  
Chrontel  
Chi Tai Hong [[email protected]] (408)544-2150  
Eileen Carlson [[email protected]] (858) 713-3203  
Bill Schillhammer [[email protected]] (978) 661-0146  
Marcus Rosin [[email protected]]  
Conexant  
Focus  
Philips  
Texas Instrument  
Greg Davis[[email protected]] (214) 480-3662  
Combo TMDS Transmitters/TV Encoders  
Chrontel  
Chi Tai Hong [[email protected]] (408) 544-2150  
Texas Instrument  
Creg Davis[[email protected]] (214) 480-3662  
LVDS Transmitter  
National Semiconductor  
387R Jason Lu [[email protected]] (408) 721-7540  
172  
Intel® 815 Chipset Platform Design Guide  
Appendix A: Customer Reference Board (CRB)  
R
Appendix A: Customer Reference  
Board (CRB)  
This section provides a set of Customer Reference Board (CRB) schematics for the Intel 815  
chipset platform for use with the universal socket 370.  
Intel® 815 Chipset Platform Design Guide  
173  
5
4
3
2
1
Intel(R) Pentium(R) III Processor (CPUID = 068xh), Intel(R) Celeron(TM) Processor (CPUID  
= 068xh), and Future 0.13 Micron Socket 370 Processors With Intel(R) 815 Chipset For  
Use With Universal Socket 370  
D
C
B
A
D
C
B
A
UNIPROCESSOR CUSTOMER REFERENCE SCHEMATICS  
REVISION 1.0  
** PLEASE NOTE THESE SCHEMATICS ARE SUBJECT TO CHANGE  
Title  
Page  
Cover Sheet  
1
THESE SCHEMATICS ARE PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER INCLUDING  
ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY  
WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLES  
Block Diagram  
370-pin Socket  
Clock Synthesizer  
GMCH  
2
3, 4  
5
Information in this document is provided in connection with Intel products. No license, express or  
implied, by estoppel or otherwise, to any intellectual property rights is granted by this document.  
Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability  
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel  
products including liability or warranties relating to fitness for a particular purpose, merchantability, or  
infringement of any patent, copyright, or other intellectual property right. Intel products are not  
intended for use in medical, life saving, or life sustaining applications.  
6, 7, 8  
9
AGP Socket  
DIMM Sockets  
ICH  
10, 11  
12, 13  
14  
FWH  
Intel may make changes to specifications and product descriptions at any time, without notice.  
Super I/O  
15  
Designers must not rely on the absence or characteristics of any features or instructions marked  
"reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility  
whatsoever for conflicts or incompatibilites arising from future changes to them.  
PCI Connectors  
IDE Connectors  
USB Hub  
16, 17  
18  
19  
The Intel 815 B-step universal platform may contain design defects or errors known as errata which  
may cause the product to deviate from published specifications. Current characterized errata are  
available on request.  
Parallel Port  
20  
Serial Ports  
21  
Kybrd/Mse/F. Disk Connectors  
Game Port  
22  
Contact your local Intel sales office or your distributor to obtain the latest specifications before placing  
your product order.  
23  
I2C is a two-wire communications bus/protocol developed by Philips. SMBus is a subset of the I2C  
bus/protocol and was developed by Intel. Implementations of the I2C bus/protocol may require  
licenses frrom various entities, including Philips electronics N.V. and North American Philips  
Corporation.  
Digital Video Out  
Video Connectors  
AC'97 Riser Connector  
AC'97 Audio Codec  
AC'97 Audio Connections  
LAN  
24  
25  
26  
27  
Copies of documents which have an ordering number and are referenced in this document, or other  
Intel literature, may be obtained by calling 1-800-548-4725 or by visiting Intel's website at  
http://www.intel.com.  
28  
29  
System Voltage Regulators  
30, 31  
32  
Intel(R), Pentium(R), Pentium(R) III, Celeron(TM), are trademarks or registered trademarks of Intel  
Corporation or its subsidiaries in the United States and other countries.  
AGP, VCMOS Voltage Regulators  
Processor Voltage Regulators  
33  
*Other names and brands may be claimed as the property of others.  
Copyright (C) 2001, Intel Corporation.  
System  
34  
Pullup Resistors and Unused Gates  
Decoupling  
35, 36  
37, 38  
39  
Hub Interface Connector  
Thermtrip  
40  
Title:  
INTEL(R) 82815 CHIPSET CUSTOMER REFERENCE BOARD  
COVER SHEET  
REV.  
1.0  
Platform Apps Engineering  
Last Revision Date:  
3-26-01  
of  
1900 Prairie City Road  
Folsom, CA 95630  
R
int l  
e
Sheet:  
1
40  
5
4
3
2
1
5
4
3
2
1
BLOCK DIAGRAM  
VRM  
370-PIN SOCKET PROCESSOR  
CLOCK  
D
C
B
A
D
C
B
A
AGTL BUS  
AGP  
Connector  
2 DIMM  
Modules  
GMCH  
Digital Video  
Out Device  
IDE Primary  
PCI CNTRL  
UDMA/66  
USB  
IDE Secondary  
PCI ADDR/DATA  
ICH  
USB PORTS  
AMR  
AC'97 LINK  
Connector  
SIO  
Audio  
Codec  
FirmWare Hub  
Keyboard  
Mouse  
Floppy  
Game Port  
Serial 1  
Parallel  
Serial 2  
Title:  
INTEL(R) 82815 CHIPSET CUSTOMER REFERENCE BOARD  
BLOCK DIAGRAM  
REV.  
1.0  
Platform Apps Engineering  
Last Revision Date:  
3-26-01  
of  
1900 Prairie City Road  
Folsom, CA 95630  
R
int l  
Sheet:  
2
e
40  
5
4
3
2
1
5
4
3
2
1
VCCVID  
370PGA SOCKET, PART 1  
HD#[63:0]  
6
HD#[63:0]  
X1-1  
HA#[31:3]  
HA#[31:3]  
6
HD#0  
HD#1  
HD#2  
HD#3  
HD#4  
HD#5  
HD#6  
HD#7  
HA#3  
HA#4  
HA#5  
HA#6  
HA#7  
HA#8  
HA#9  
W1  
T4  
N1  
M6  
U1  
S3  
T6  
J1  
S1  
P6  
Q3  
M4  
Q1  
L1  
N3  
U3  
H4  
R4  
P4  
H6  
L3  
G1  
F8  
G3  
K6  
E3  
E1  
F12  
A5  
A3  
J3  
C5  
F6  
C1  
C7  
B2  
C9  
A9  
D8  
D10  
C15  
D14  
D12  
A7  
A11  
C11  
A21  
A15  
A17  
C13  
C25  
A13  
D16  
A23  
C21  
C19  
C27  
A19  
C23  
C17  
A25  
A27  
E25  
F16  
AK8  
AH12  
AH8  
AN9  
AL15  
AH10  
AL9  
AH6  
AK10  
AN5  
AL7  
AK14  
AL5  
AN7  
AE1  
Z6  
AG3  
AC3  
AJ1  
AE3  
AB6  
AB4  
AF6  
Y3  
HD#0  
HD#1  
HD#2  
HD#3  
HD#4  
HD#5  
HD#6  
HD#7  
HA#3  
HA#4  
HA#5  
HA#6  
HA#7  
HA#8  
HA#9  
D
C
B
A
D
C
B
A
HA#10  
HA#11  
HA#12  
HA#13  
HA#14  
HA#15  
HA#16  
HA#17  
HA#18  
HA#19  
HA#20  
HA#21  
HA#22  
HA#23  
HA#24  
HA#25  
HA#26  
HA#27  
HA#28  
HA#29  
HA#30  
HA#31  
HA#10  
HA#11  
HA#12  
HA#13  
HA#14  
HA#15  
HA#16  
HA#17  
HA#18  
HA#19  
HA#20  
HA#21  
HA#22  
HA#23  
HA#24  
HA#25  
HA#26  
HA#27  
HA#28  
HA#29  
HA#30  
HA#31  
HA#32  
HA#33  
HA#34  
HA#35  
HD#8  
HD#9  
HD#8  
HD#9  
HD#10  
HD#11  
HD#12  
HD#13  
HD#14  
HD#15  
HD#16  
HD#17  
HD#18  
HD#19  
HD#20  
HD#21  
HD#22  
HD#23  
HD#24  
HD#25  
HD#26  
HD#27  
HD#28  
HD#29  
HD#30  
HD#31  
HD#32  
HD#33  
HD#34  
HD#35  
HD#36  
HD#37  
HD#38  
HD#39  
HD#40  
HD#41  
HD#42  
HD#43  
HD#44  
HD#45  
HD#46  
HD#47  
HD#48  
HD#49  
HD#50  
HD#51  
HD#52  
HD#53  
HD#54  
HD#55  
HD#56  
HD#57  
HD#58  
HD#59  
HD#60  
HD#61  
HD#62  
HD#63  
HD#10  
HD#11  
HD#12  
HD#13  
HD#14  
HD#15  
HD#16  
HD#17  
HD#18  
HD#19  
HD#20  
HD#21  
HD#22  
HD#23  
HD#24  
HD#25  
HD#26  
HD#27  
HD#28  
HD#29  
HD#30  
HD#31  
HD#32  
HD#33  
HD#34  
HD#35  
HD#36  
HD#37  
HD#38  
HD#39  
HD#40  
HD#41  
HD#42  
HD#43  
HD#44  
HD#45  
HD#46  
HD#47  
HD#48  
HD#49  
HD#50  
HD#51  
HD#52  
HD#53  
HD#54  
HD#55  
HD#56  
HD#57  
HD#58  
HD#59  
HD#60  
HD#61  
HD#62  
HD#63  
AA1  
AK6  
Z4  
AA3  
AD4  
X6  
AC1  
W3  
AF4  
370-Pin Socket Part 1  
VID[4:0]  
VID[4:0] 33  
HREQ#[4:0]  
VID0  
VID1  
VID2  
VID3  
VID4  
AL35  
AM36  
AL37  
AJ37  
AK36  
VID0  
VID1  
VID2  
VID3  
GND/VID4  
6
HREQ#0  
HREQ#1  
HREQ#2  
HREQ#3  
HREQ#4  
AK18  
AH16  
AH18  
AL19  
AL17  
REQ#0  
REQ#1  
REQ#2  
REQ#3  
REQ#4  
C33  
C31  
A33  
A31  
E31  
C29  
E29  
A29  
DEP#0  
DEP#1  
DEP#2  
DEP#3  
DEP#4  
DEP#5  
DEP#6  
DEP#7  
VTT  
AH20  
AK16  
AL21  
AN11  
AN15  
G35  
AL13  
U37  
U35  
S37  
S33  
E23  
AN21  
AA35  
AA33  
X34  
VTT1_5  
VTT1_5  
VTT1_5  
VTT1_5  
VTT1_5  
VTT1_5  
VTT1_5  
VTT1_5  
VTT1_5  
VTT1_5  
VTT1_5  
VTT1_5  
VTT1_5  
VTT1_5  
VTT1_5  
VTT1_5  
RS#[2:0]  
6
RS#[2:0]  
RS#2  
RS#1  
RS#0  
AK28  
AH22  
AH26  
RS#2  
RS#1  
RS#0  
AL1  
370 PIN SOCKET  
NC  
Title:  
INTEL(R) 82815 CHIPSET CUSTOMER REFERENCE BOARD  
370-PIN SOCKET, PART 1  
REV.  
1.0  
Platform Apps Engineering  
Last Revision Date:  
3-26-01  
of  
1900 Prairie City Road  
Folsom, CA 95630  
R
int l  
e
Sheet:  
3
40  
5
4
3
2
1
5
4
3
2
1
370PGA SOCKET, PART 2  
VCMOS  
R303  
75 1%  
VCMOS  
VTT  
VCMOS  
VCC3SBY VCC3SBY  
CMOSREF  
D
C
B
A
D
C
B
A
C436  
0.1uF  
R304  
R7  
1K  
150 1%  
VTT  
R20  
1K  
R19  
1K  
GTLREF0  
J3A  
RP2A  
R8  
39  
R9  
39  
R10  
150  
CMOSREF  
6
CPURST#  
R1 243  
R1_J3A  
1
1
2
2
1
2
35 DBRESET#  
R2  
0
R_DBRST#  
330  
3
4
VCMOS  
R_TCK R_TCK  
R_TMS R_TMS  
5
7
6
X4-2  
TDI  
TDO  
TRST#  
TCK  
TMS  
PREQ#  
PRDY#  
TDI  
TDO  
TRST#  
R_TCK  
8
AN35  
AH14  
AN17  
AN25  
AN19  
AK20  
AN27  
AL23  
AL25  
AL27  
AN31  
AE37  
BNR#  
BPRI#  
HTRDY#  
DEFER#  
HLOCK#  
DRDY#  
HITM#  
HIT#  
DBSY#  
HADS#  
6
6
BNR#  
BPRI#  
HTRDY#  
DEFER#  
LOCK#  
DRDY#  
HITM#  
HIT#  
DBSY#  
ADS#  
AN37  
AN33  
AL33  
AK32  
J37  
ITP_PON  
9
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
6
6
6
0
R_TCK  
R5  
R6  
TCK  
TMS  
2
2
1
1
11  
13  
15  
17  
19  
21  
23  
25  
27  
29  
0
6
R17  
150  
R_TMS  
R_TMS  
A35  
6
6
ITPREQ#  
ITPRDY#  
G33  
E37  
C35  
E35  
6
6
VTT  
BP2#  
BP3#  
BPM0#  
BPM1#  
370-Pin Socket  
Part 2  
R_ITPRDY#  
R4 243  
FLUSH#  
2
1
FLUSH#  
R305  
14  
ITPRDY#  
VCC2_5  
VTT  
AJ33  
AJ31  
AK30  
R_BSEL0#  
R_REFCLK 5,7  
7
BSEL0#  
BSEL1#  
R3  
680  
N33  
N35  
N37  
Q33  
Q35  
Q37  
RSRVD6  
RSRVD7  
RSRVD8  
RSRVD9  
RSRVD10  
RSRVD11  
RSRVD12/JBSEL1#  
R15  
R56  
90.9  
AN29  
AL31  
AL29  
AH28  
BR0#  
BR0#  
THRMDP  
THRMDN  
150 1%  
THERMDP 12  
THERMDN 12  
THERMTRIP# 40  
THERMTRIP#  
AM2  
F10  
W35  
Y1  
RSRVD13  
RSRVD15  
RSRVD16  
RSRVD17  
RSRVD18  
RSRVD19  
RSRVD20  
CLKREF  
AE33  
AG35  
AH30  
AJ35  
M36  
A20M# 12,36  
STPCLK# 12,36  
CPUSLP# 12,36  
SMI# 12,36  
INTR 12,36  
NMI 12,36  
INIT# 12,14,36  
FERR# 12,36  
IGNNE# 12,36  
A20M#  
STPCLK#  
CPUSLP#  
SMI#  
LINT0/INTR  
LINT1/NMI  
INIT#  
FERR#  
IGNNE#  
IERR#  
5
ITPCLK  
R16  
C12  
4.7uF  
C13  
0.1uF  
ITP30RA  
150 1%  
R306  
1k  
R2  
G37  
L33  
X2  
L37  
AG33  
AC35  
AG37  
AE35  
RSRVD21(BR1#)  
VCC5  
ITP Test Port Option  
VCCVID  
AN3  
AK4  
J35  
L35  
J33  
W37  
Y33  
AK26  
AH4  
DYN_OE  
VTTPWRGD  
PICD0  
PICD1  
PICCLK  
R_VTTPWRGD  
R307  
1k  
12,36 APICD0  
12,36 APICD1  
5
1
2
31 VTTPWRGD  
VTT  
PLL1  
PLL2  
W33  
U33  
R308  
2.2k  
PLL1  
PLL2  
2
1
1
2
APICCLK_CPU  
CPUHCLK  
L8 4.7uH  
5
BCLK  
VCC5  
C8  
33uF 20%  
TUAL5 5,7,31  
AC37  
AL11  
AN13  
AN23  
CLKREF  
PWRGOOD  
RESET#  
RESET2#  
RSP#  
AP0#  
AP1#  
RP#  
R327  
1K  
35 PWRGOOD  
CPURST#  
VTT  
Q19  
Q18  
6
MOSFET N  
MOSFET N  
1
2
X4  
R310  
2.2k  
R309  
1k  
AJ3  
AG1  
B36  
AK24  
V4  
AF36  
E27  
S35  
E21  
5,7,31 TUAL5  
RSVD - NC  
BINIT#  
AERR#  
BERR#  
R311  
1k  
EDGCTRL  
Debug Only  
TUAL5#  
EDGCTRL/VRSEL  
Stuff resistor  
only on non-UMB  
platforms.  
R3120  
Q20  
NPN  
C37  
1
2
CPUPRES#  
TUALDET  
SLEWCNTR  
RTTCTRL  
VCOREDET  
R58  
22  
R313  
1k  
Do Not Stuff C10  
Place within 0.5"  
of clock pin (W37)  
VTT  
Debug Only! Do NOT place  
jumper before removing 0  
ohm resistor  
C10  
18pF  
370 PIN SOCKET_9  
JP29  
JUMPER  
1
2
2
R63 10K  
1
ITPRDY#  
BR0#  
2
SM_BS0 7,10,11  
Debug sites only.  
R27 56  
GTLREF Generation Circuit  
Use 0603 Packages and distribute  
GTLREF Inputs ( 1 cap for every 2 inputs)  
within 500 mils of processor  
R322  
56, %1  
R323  
110, %1  
1
FB12 BEAD VTT  
1
2
C130  
10pF  
R21 33  
R18  
1
1K  
R72 10K  
1
C478  
0.1uF  
7
R_BSEL0#  
FREQSEL  
5
2
2
R346  
75,1%  
R348  
GTLREF0  
Clock Frequency Selection  
GTLREF0  
Title:  
INTEL(R) 82815 CHIPSET CUSTOMER REFERENCE BOARD  
370-PIN SOCKET, PART 2  
REV.  
1.0  
JP1A  
GTLREF  
Do not stuff R347  
6
R347  
C482  
0.1UF  
X0  
C479  
0.1UF  
C480  
C481  
0.1UF  
GTLREF0 to CPU.  
GTLREF to GMCH.  
Platform Apps Engineering  
Last Revision Date:  
150,1%  
0.1UF  
3-26-01  
of  
1900 Prairie City Road  
Folsom, CA 95630  
R
int l  
e
Sheet:  
4
40  
5
4
3
2
1
5
4
3
2
1
Clock Synthesizer  
VCC_CLK  
L14A  
VCC_CLK  
USBV3  
C154  
L16A  
C155  
22uF  
1
2
D
D
C
B
A
1
2
0.1uF  
VCC3_3  
VCC3SBY  
PCIV3  
R293  
1K  
C144  
22uF  
C146  
0.1uF  
C147  
C156  
0.1uF  
C157  
C158  
0.1uF  
C159  
0.001uF  
VCC_CLK  
C106  
L11A  
0.001uF  
0.001uF  
U10D_R293  
1
2
U10D  
13 ICH_CLK14  
12  
13  
C143  
R67  
R67_U10D  
11  
MEMV3  
1
2
33  
XTAL_IN  
C107  
C108  
0.1uF  
C109  
C149  
0.1uF  
C150  
C151  
0.1uF  
1
2
U10D_R292  
SN74LVC08A  
0.001uF  
0.001uF  
0.001uF  
22uF  
APICCLK_CPU  
4
18pF  
R292  
10  
Y1A  
R44 8.2K  
14.318MHz  
XTAL  
SEL1_PU  
1
2
U4  
C145  
2
R338  
130  
XTAL_OUT  
1
C
B
A
R339  
APIC_0  
3
55  
54  
1
2
33  
1
2
XTAL_IN  
APIC_0  
APIC_1  
4,7 R_REFCLK  
APIC_1  
CPU_0_1  
CPU_2  
R38  
1
2
R65 10K  
1
2
33  
0
APICCLK_ICH 12  
18pf  
R39  
R40  
Q27  
MOSFET N  
4
1
52  
50  
49  
1
1
2
33  
2
33  
CPUHCLK  
GMCHHCLK  
4
XTAL_OUT  
REF0  
CPU_0  
CPU_1  
CPU_2/ITP  
R41  
R42  
1
2
33  
4,7,31 TUAL5  
6
15 SIO_CLK14 R64  
REFCLK  
1
2
10  
ITPCLK  
MEMCLK[7:0] 10,11  
MEMCLK0  
4
CK-815  
2-DIMM  
3V66_0  
3V66_1  
DRAM_0  
DRAM_1  
DRAM_2  
DRAM_3  
DRAM_4  
DRAM_5  
DRAM_6  
DRAM_7  
1
2
R68 22  
7
8
46  
45  
43  
42  
40  
39  
37  
36  
1
1
1
1
2
13 ICH_3V66  
GMCH_3V66  
3V66_0  
3V66_1  
SDRAM_0  
SDRAM_1  
SDRAM_2  
SDRAM_3  
SDRAM_4  
SDRAM_5  
SDRAM_6  
SDRAM_7  
R43  
R46  
22 MEMCLK1  
MEMCLK2  
1
2
2
22  
1
1
1
1
2
22  
2
22  
2
22  
2
22  
8
R74  
R69  
R45  
R47  
R49  
R51  
1
2
39 HUBPRB_3V66  
12 PCLK_0/ICH  
15 PCLK_1  
33  
PCI_0  
PCI_1  
22 MEMCLK3  
MEMCLK4  
1
2
12  
13  
15  
16  
18  
19  
20  
PCI_0/ICH  
PCI_1  
PCI_2  
PCI_3  
PCI_4  
R71 33  
1
1
1
2
33  
2
33  
2
33  
2
R73  
R75  
R77  
R48 22 MEMCLK5  
MEMCLK6  
PCI_3  
PCI_4  
PCI_5  
PCI_6  
2
16 PCLK_3  
17 PCLK_4  
29 PCLK_5  
14 PCLK_6  
R50  
22 MEMCLK7  
1
1
2
R76 33  
PCI_5  
PCI_6  
DCLK  
2
34  
1
2
22  
DCLK_WR  
7
DCLK  
R78 33  
R52  
AGP  
1
2
10  
2
33  
9
32  
31  
30  
29  
28  
CK_PWRDN# 35  
CK_SMBCLK 25  
CK_SMBDATA 25  
9
AGPCLK_CONN  
AGP  
PWRDWN#  
SCLK  
SDATA  
R70  
R80  
1
19 USB_CLK  
13 USBCLK  
R66  
USB_0  
USB_1  
1
2
25  
26  
USB_0  
USB_1  
VCC_CLK  
R79 10  
1
2
33  
8
DOTCLK  
SEL1  
SEL0  
FREQSEL  
4
L15A  
VCC2_5  
22  
23  
VDD_A  
VSS_A  
L_CKVDDA  
L12A  
2
1
51  
53  
VDD2_5[0]  
VDD2_5[1]  
C152  
0.1uF  
C153  
0.001uF  
L_VCC2_5  
C100  
1
2
C102  
C101  
0.1uF  
56  
48  
VSS2_5[1]  
VSS2_5[0]  
0.001uF  
4.7uF  
CK_815_2DIMM  
VCC3_3  
Notes:  
Place all decoupling caps as close to VCC/GND pins as possible  
PCI_0/ICH pin must go to ICH.  
This clock cannot be turned off through SMBus  
CPU_ITP pin must go to ITP  
Q28  
MOSFET N  
VCC_CLK  
31 VTTPWRGD12  
Only CPU_ITP can be turned off through SMBus  
Title:  
INTEL(R) 82815 CHIPSET CUSTOMER REFERENCE BOARD  
CLOCK SYNTHESIZER  
REV.  
1.0  
Platform Apps Engineering  
Last Revision Date:  
3-26-01  
of  
1900 Prairie City Road  
Folsom, CA 95630  
R
int l  
e
Sheet:  
5
40  
5
4
3
2
1
5
4
3
2
1
82815B GMCH, PART 1, 4, AND 5  
VDDQ  
VCC3SBY  
VCC1_8  
VCC1_8A  
HOST INTERFACE, POWER & GND  
VTT  
U71-5  
R135  
U71-4  
D
C
B
A
D
C
B
A
AA21  
AB4  
E7  
AA12  
AA14  
AA16  
P11  
P12  
P13  
P14  
P15  
P16  
R2  
L25  
N2  
N6  
VCC1_8A  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
75 1%  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
W6  
Y9  
AC2  
AC5  
AC7  
AC9  
AC11  
AC13  
AC15  
AC17  
AC19  
AC21  
AC25  
AE2  
AE4  
AE6  
AE8  
AE10  
AE12  
AE14  
AE16  
AE18  
AE20  
B26  
C3  
VCC1_8  
VCC1_8  
VCC1_8  
VCC1_8  
VCC1_8  
VCC1_8  
VCC1_8  
VCC1_8  
VCC1_8  
VCC1_8  
VCC1_8  
VCC1_8  
VCC1_8  
VCC1_8  
VCC1_8  
VCC1_8  
VCC1_8  
VCC1_8  
VCC1_8  
VCC1_8  
VCC1_8  
VCC1_8  
VCC1_8  
VCC1_8  
VCC1_8  
VCC1_8  
VCC1_8  
VCC1_8  
VCC1_8  
N11  
N12  
N13  
N14  
N15  
N16  
N23  
AA23  
F16  
F25  
G9  
G17  
G21  
G23  
P24  
H6  
H22  
J2  
J5  
J23  
J25  
K4  
K7  
K21  
L2  
L6  
4
GTLREF  
Y18  
AA6  
AA8  
AA11  
AA13  
AA15  
AA17  
AA19  
AB16  
AB20  
AC22  
AD19  
C25  
E24  
F23  
G22  
J7  
K6  
M6  
P6  
T6  
V7  
G26  
Y7  
E23  
AF26  
AF25  
R134  
150 1%  
C124  
C123  
VTT  
3
HD#[63:0]  
0.1UF  
0.1UF  
82815 GMCH  
PART 5:  
GND  
R6  
R55  
90.9  
R11  
R12  
R13  
R14  
R15  
R16  
R23  
R25  
T4  
T11  
T12  
T13  
T14  
T15  
T16  
L15  
L16  
L22  
M4  
DO NOT STUFF C122  
PLACE SITE W/IN 0.5"  
OF CLOCK BALL (V6)  
U6-1  
HD#0  
HD#1  
HD#2  
HD#3  
HD#4  
HD#5  
HD#6  
HD#7  
AA1  
AB2  
AF2  
AD4  
AB1  
AB3  
AA3  
AC4  
AC1  
AF3  
AD1  
AE3  
VTT  
HD0#  
HD1#  
HD2#  
HD3#  
HD4#  
HD5#  
HD6#  
HD7#  
HD8#  
HD9#  
HD10#  
HD11#  
HD12#  
HD13#  
HD14#  
HD15#  
HD16#  
Place  
near  
GMCH  
C122  
18pF  
U6  
AA10  
GTLREFA  
GTLREFB  
82815 GMCH  
PART 4:  
POWER AND  
GND  
R345  
56  
AA7  
H3  
AA5  
L4  
M3  
G1  
N4  
M5  
J3  
5
GMCHHCLK  
9,12,14,15,16,17,18,19,24,29 PCIRST#  
HCLK  
RESET#  
CPURST#  
HLOCK#  
DEFER#  
ADS#  
BNR#  
BPRI#  
DBSY#  
DRDY#  
HIT#  
HD#8  
HD#9  
4
4
4
CPURST#  
HLOCK#  
DEFER#  
HD#10  
HD#11  
HD#12  
HD#13  
HD#14  
HD#15  
HD#16  
HD#17  
HD#18  
HD#19  
HD#20  
HD#21  
HD#22  
HD#23  
HD#24  
HD#25  
HD#26  
HD#27  
HD#28  
HD#29  
HD#30  
HD#31  
HD#32  
HD#33  
HD#34  
HD#35  
HD#36  
HD#37  
HD#38  
HD#39  
HD#40  
HD#41  
HD#42  
HD#43  
HD#44  
HD#45  
HD#46  
HD#47  
HD#48  
HD#49  
HD#50  
HD#51  
HD#52  
HD#53  
HD#54  
HD#55  
HD#56  
HD#57  
HD#58  
HD#59  
HD#60  
HD#61  
HD#62  
HD#63  
C6  
C9  
4
HADS#  
AD2  
AD3  
AF1  
C12  
C15  
C18  
C21  
C24  
D1  
4
4
4
4
4
4
4
BNR#  
BPRI#  
DBSY#  
DRDY#  
HIT#  
HITM#  
HTRDY#  
L11  
L12  
L13  
L14  
AA25  
P4  
J1  
AA4  
M11  
M12  
M13  
M14  
M15  
M16  
K1  
L3  
K3  
AD6  
AC3  
AE1  
AB6  
AF4  
AE5  
AC8  
AB5  
AF5  
AC6  
AF6  
AD11  
AF8  
AD8  
AD5  
AB7  
AF7  
AD7  
AB8  
AE7  
AE9  
AB9  
AF9  
AD10  
AF12  
AB11  
AB10  
AD9  
AC10  
AF10  
AD14  
AD12  
AB12  
AE11  
AE15  
AF11  
AF13  
AB14  
AF14  
AB13  
AB15  
AE13  
AC14  
AD13  
AD15  
AF16  
AF15  
AC12  
B2  
B5  
B8  
HITM#  
HTRDY# 82815 GMCH PART 1: HD187#  
VCC3SBY  
VCC3SBY  
VCC3SBY  
VCC3SBY  
VCC3SBY  
VCC3SBY  
VCC3SBY  
VCC3SBY  
VCC3SBY  
VCC3SBY  
VCC3SBY  
VCC3SBY  
VCC3SBY  
VCC3SBY  
VCC3SBY  
VCC3SBY  
VCC3SBY  
VCC3SBY  
E5  
E10  
E12  
E15  
E17  
E20  
E22  
F1  
HD19#  
HOST INTERFACE  
HD20#  
3
HA#[31:3]  
B11  
B14  
B19  
B22  
B25  
E2  
F10  
F14  
F17  
G6  
G8  
G19  
H2  
H5  
H7  
HA#3  
HA#4  
HA#5  
HA#6  
HA#7  
HA#8  
HA#9  
R4  
P1  
T2  
R3  
N5  
P5  
R1  
U1  
P2  
T1  
T3  
P3  
T5  
R5  
V5  
Y2  
V3  
W1  
U4  
V2  
W3  
W4  
U5  
Y5  
Y3  
U3  
Y1  
W5  
V1  
HA3#  
HA4#  
HA5#  
HA6#  
HA7#  
HA8#  
HA9#  
HD21#  
HD22#  
HD23#  
HD24#  
HD25#  
HD26#  
HD27#  
HD28#  
HD29#  
HD30#  
HD31#  
HD32#  
HD33#  
HD34#  
HD35#  
HD36#  
HD37#  
HD38#  
HD39#  
HD40#  
HD41#  
HD42#  
HD43#  
HD44#  
HD45#  
HD46#  
HD47#  
HD48#  
HD49#  
HD50#  
HD51#  
HD52#  
HD53#  
HD54#  
HD55#  
HD56#  
HD57#  
HD58#  
HD59#  
HD60#  
HD61#  
HD62#  
HD63#  
82815 GMCH  
F3  
F11  
F13  
T21  
U2  
U7  
K24  
V4  
HA#10  
HA#11  
HA#12  
HA#13  
HA#14  
HA#15  
HA#16  
HA#17  
HA#18  
HA#19  
HA#20  
HA#21  
HA#22  
HA#23  
HA#24  
HA#25  
HA#26  
HA#27  
HA#28  
HA#29  
HA#30  
HA#31  
HA10#  
HA11#  
HA12#  
HA13#  
HA14#  
HA15#  
HA16#  
HA17#  
HA18#  
HA19#  
HA20#  
HA21#  
HA22#  
HA23#  
HA24#  
HA25#  
HA26#  
HA27#  
HA28#  
HA29#  
HA30#  
HA31#  
VCC1_8  
VCC1_8A  
V6  
V20  
V22  
W2  
K20  
Y24  
L21  
M23  
U25  
N25  
R21  
U20  
U23  
W20  
L23  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
1
2
W7  
22nH 0.3A  
W23  
W25  
Y4  
Y6  
Y8  
Y10  
Y17  
Y19  
AA2  
AA9  
C41  
C33  
C40  
+
0.1UF  
0.01UF  
33UF 20%  
NOTE: VCC1_8 IS A NOMINAL 1.85V  
AF24  
AE25  
GND  
GND  
82815 GMCH  
3
HREQ#[4:0]  
HREQ#0  
HREQ#1  
HREQ#2  
HREQ#3  
HREQ#4  
M1  
N1  
M2  
L5  
HREQ0#  
HREQ1#  
HREQ2#  
HREQ3#  
HREQ4#  
N3  
Title:  
INTEL(R) 82815 CHIPSET CUSTOMER REFERENCE BOARD  
82815 GMCH: HOST INTERFACE  
REV.  
1.0  
3
RS#[2:0]  
RS#0  
RS#1  
RS#2  
K2  
L1  
H1  
RS0#  
RS1#  
RS2#  
Platform Apps Engineering  
Last Revision Date:  
3-26-01  
of  
1900 Prairie City Road  
Folsom, CA 95630  
R
int l  
e
Sheet:  
6
82815 GMCH  
40  
5
4
3
2
1
5
4
3
2
1
82815B GMCH, PART 2  
MEMORY INTERFACE  
D
C
B
A
D
C
B
A
10,11 SM_MAA[12:0]  
SM_MAA0  
SM_MAA1  
SM_MAA2  
SM_MAA3  
U6-2  
SM_MD[63:0] 10,11  
SM_MD0  
SM_MD1  
SM_MD2  
SM_MD3  
SM_MD4  
SM_MD5  
SM_MD6  
SM_MD7  
D13  
B16  
F12  
A16  
B12  
A12  
C11  
A11  
D12  
C13  
E11  
A13  
B7  
D23  
C23  
D22  
F21  
E21  
G20  
F20  
D20  
F19  
E19  
D19  
E18  
B18  
F18  
G18  
D17  
A3  
A1  
C1  
F2  
G3  
D6  
C5  
B4  
D4  
C2  
D3  
E4  
F5  
G4  
J6  
K5  
A26  
A25  
B24  
A24  
B23  
A23  
C22  
A22  
D21  
B21  
A21  
C20  
B20  
A20  
C19  
A19  
A4  
SMAA0  
SMAA1  
SMAA2  
SMAA3  
SMAA4  
SMAA5  
SMAA6  
SMAA7  
SMAA8  
SMAA9  
SMAA10  
SMAA11  
SMAA12  
SMD0  
SMD1  
SMD2  
SMD3  
SMD4  
SMD5  
SMD6  
SMD7  
SMD8  
82815 GMCH  
PART 2:  
SYSTEM  
RP43  
10  
4,5 R_REFCLK  
R_BSEL0#  
4
SM_MAA4  
SM_MAA5  
SM_MAA6  
SM_MAA7  
SM_MAA8  
SM_MAA9  
SM_MAA10  
SM_MAA11  
SM_MAA12  
SMAA4#  
SMAA5#  
SMAA6#  
SMAA7#  
5
6
7
8
4
3
2
1
MEMORY  
SM_MD8  
SM_MD9  
RP37  
10K  
SMD9  
SM_MD10  
SM_MD11  
SM_MD12  
SM_MD13  
SM_MD14  
SM_MD15  
SM_MD16  
SM_MD17  
SM_MD18  
SM_MD19  
SM_MD20  
SM_MD21  
SM_MD22  
SM_MD23  
SM_MD24  
SM_MD25  
SM_MD26  
SM_MD27  
SM_MD28  
SM_MD29  
SM_MD30  
SM_MD31  
SM_MD32  
SM_MD33  
SM_MD34  
SM_MD35  
SM_MD36  
SM_MD37  
SM_MD38  
SM_MD39  
SM_MD40  
SM_MD41  
SM_MD42  
SM_MD43  
SM_MD44  
SM_MD45  
SM_MD46  
SM_MD47  
SM_MD48  
SM_MD49  
SM_MD50  
SM_MD51  
SM_MD52  
SM_MD53  
SM_MD54  
SM_MD55  
SM_MD56  
SM_MD57  
SM_MD58  
SM_MD59  
SM_MD60  
SM_MD61  
SM_MD62  
SM_MD63  
SMD10  
SMD11  
SMD12  
SMD13  
SMD14  
SMD15  
SMD16  
SMD17  
SMD18  
SMD19  
SMD20  
SMD21  
SMD22  
SMD23  
SMD24  
SMD25  
SMD26  
SMD27  
SMD28  
SMD29  
SMD30  
SMD31  
SMD32  
SMD33  
SMD34  
SMD35  
SMD36  
SMD37  
SMD38  
SMD39  
SMD40  
SMD41  
SMD42  
SMD43  
SMD44  
SMD45  
SMD46  
SMD47  
SMD48  
SMD49  
SMD50  
SMD51  
SMD52  
SMD53  
SMD54  
SMD55  
SMD56  
SMD57  
SMD58  
SMD59  
SMD60  
SMD61  
SMD62  
SMD63  
11 SM_MAB[7:4]#  
SM_MAB4  
SM_MAB5  
SM_MAB6  
SM_MAB7  
SMAB4#  
5
4
B15  
A15  
C14  
A14  
SMAB4#  
SMAB5#  
SMAB6#  
SMAB7#  
SMAB5#  
SMAB6#  
SMAB7#  
6
7
8
3
2
1
SM_WE# 10,11  
Host freq; high = 100, low= 66  
RP44  
10  
B10  
A10  
C10  
A9  
SM_MAA9 10,11  
FSB PMOS kicker  
SMAC4#  
SMAC5#  
SMAC6#  
SMAC7#  
Place HUBREF  
generation circuit in  
the middle of GMCH  
4,10,11 SM_BS[1:0]  
10,11 SM_CSA#[3:0]  
SM_CAS# 10,11  
SM_BS0  
SM_BS1  
B13  
D11  
SBS0  
SBS1  
Host freq; high = 133, low =100 or  
66  
and ICH.  
VCC1_8  
RP35_JP7  
JP7  
JP8  
1
2
SM_BS0 4,10,11  
SM_BS1 10,11  
SM_CSA#0  
SM_CSA#1  
SM_CSA#2  
SM_CSA#3  
D15  
A17  
D14  
E14  
E13  
B17  
F9  
F8  
D10  
D9  
SCSA0#  
SCSA1#  
SCSA2#  
SCSA3#  
SCSA4#  
SCSA5#  
SCSB0#  
SCSB1#  
SCSB2#  
SCSB3#  
SCSB4#  
SCSB5$  
Reserved Strap  
2
RP35_JP8  
1
R166  
301 1%  
SM/LM muxing strap, active low  
JP9  
10,11 SM_CSB#[3:0]  
RP35_JP9  
1
2
SM_MAA11 10,11  
IOQ depth; high = 4, low = 1  
RP36_JP10 JP10  
SM_CSB#0  
SM_CSB#1  
SM_CSB#2  
SM_CSB#3  
1
2
HUBREF 8,12,39  
SM_MAA12 10,11  
SM_MAA10 10,11  
SM_RAS# 10,11  
Reserved Strap  
2
B9  
A8  
R167  
RP36_JP11JP11  
1
301 1%  
C244  
ALL-Z low  
2
C16  
D18  
E16  
10,11 SM_RAS#  
10,11 SM_CAS#  
10,11 SM_WE#  
SRAS#  
SCAS#  
SWE#  
JP12  
1
2
1
RP36_JP12  
XOR low  
0.01UF  
10,11 SM_CKE[3:0]  
SM_CKE0  
SM_CKE1  
SM_CKE2  
SM_CKE3  
D8  
E8  
E9  
D7  
C8  
C7  
SCKE0  
SCKE1  
SCKE2  
SCKE3  
SCKE4  
SCKE5  
RP35  
10K  
SM_MAA12  
RP36  
10K  
A2  
B1  
E1  
G2  
E6  
D5  
C4  
B3  
D2  
E3  
F4  
F6  
G5  
H4  
J4  
F7  
G10  
R340  
10k  
5
DCLK_WR  
SCLK  
NC  
10,11 SM_DQM[7:0]  
C140  
22PF  
SM_DQM0  
SM_DQM1  
SM_DQM2  
SM_DQM3  
SM_DQM4  
SM_DQM5  
SM_DQM6  
SM_DQM7  
D16  
F15  
A7  
SDQM0  
SDQM1  
SDQM2  
SDQM3  
SDQM4  
SDQM5  
SDQM6  
SDQM7  
Q29  
MOSFET N  
VCC3SBY  
A6  
4,5,31 TUAL5  
A18  
C17  
B6  
R60  
40 1%  
A5  
SRCOMP  
G7  
SRCOMP  
82815 GMCH  
Title:  
INTEL(R) 82815 CHIPSET CUSTOMER REFERENCE BOARD  
82815 GMCH: SYSTEM MEMORY  
REV.  
1.0  
Platform Apps Engineering  
Last Revision Date:  
3-26-01  
of  
1900 Prairie City Road  
Folsom, CA 95630  
R
int l  
e
Sheet:  
7
40  
5
4
3
2
1
5
4
3
2
1
82815B GMCH, PART 3  
AGP/DISPLAY CACHE & VIDEO INTERFACE  
9
GAD[31:0]  
U6-3  
GAD0/LDQM0  
FTD[11:0] 24  
GAD0  
GAD1  
GAD2  
GAD3  
GAD4  
GAD5  
GAD6  
GAD7  
FTD0  
FTD1  
FTD2  
FTD3  
FTD4  
FTD5  
FTD6  
FTD7  
FTD8  
FTD9  
FTD10  
FTD11  
K26  
J22  
K25  
J21  
L24  
J20  
AD16  
AF17  
AE17  
AD17  
AF18  
AD18  
AF20  
AD20  
AC20  
AF21  
AE21  
AD21  
AB19  
AC18  
AE19  
AF19  
AC16  
AB17  
AA20  
AB21  
LTVDATA0  
LTVDATA1  
LTVDATA2  
LTVDATA3  
LTVDATA4  
LTVDATA5  
LTVDATA6  
LTVDATA7  
LTVDATA8  
LTVDATA9  
LTVDATA10  
LTVDATA11  
LTVBLANK#  
LTVCLKIN  
LTVCLKOUT0  
LTVCLKOUT1  
LTVVSYNC  
LTVHSYNC  
LTVDA  
GAD1/LMD4  
GAD2/LMD7  
GAD3/LMD3  
GAD4/LMD6  
GAD5/LMD2  
GAD6/LMD5  
GAD7/LMD1  
GAD8/LMD0  
GAD9/LMA4  
GAD10/LDQM1  
GAD11/LMA2  
GAD12/LMD8  
GAD13/LMA5  
GAD14/LMD9  
GAD15/LMA1  
GAD16/LMA8  
GAD17/LMD14  
GAD18/LMA11  
GAD19/LMD15  
GAD20/LMA9  
D
C
B
A
D
C
B
A
VDDQ  
1
L26  
K23  
K22  
M25  
M24  
M26  
M21  
N24  
N22  
N26  
T26  
T22  
U24  
T23  
U26  
T24  
V24  
U21  
V25  
V21  
V26  
W21  
W24  
W22  
W26  
Y21  
GAD8  
GAD9  
C280 500PF  
GMCH_AGPREF_CV  
2
GAD10  
GAD11  
GAD12  
GAD13  
GAD14  
GAD15  
GAD16  
GAD17  
GAD18  
GAD19  
GAD20  
GAD21  
GAD22  
GAD23  
GAD24  
GAD25  
GAD26  
GAD27  
GAD28  
GAD29  
GAD30  
GAD31  
R170  
1K 1%  
R171  
82 1%  
FTBLNK# 24  
SL_STALL 24  
FTCLK0 24  
FTCLK1 24  
9
GMCH_AGPREF  
FTVSYNC 24  
FTHSYNC 24  
3VFTSDA 24,25  
3VFTSCL 24,25  
82815 GMCH  
R169  
1K 1%  
R168  
82 1%  
LTVCL  
PART 3: DISPLAY  
AB18  
AA18  
3VDDCCL 25  
3VDDCDA 25  
GAD21/LMD16 CACHE, VIDEO, AND  
DDCCK  
DDCDA  
GAD22/LMA0  
GAD23/LMD17  
HUB INTERFACE  
AE24  
Y20  
AD23  
DOTCLK  
5
GAD24  
DCLKREF  
IWASTE  
IREF  
GMCH_AGPREF_CQ  
2
1
GAD25/LMD18  
GAD26/LCAS#  
GAD27/LMD19  
GAD28/LTCLK1  
GAD29/LMD20  
GAD30/LTCLK0  
GAD31/LMD21  
IREFPD  
C279 500PF  
AF22  
AF23  
AD22  
AE22  
AE23  
CRT_VSYNC 25  
CRT_HSYNC 25  
VID_RED 25  
VID_GREEN 25  
VID_BLUE 25  
VSYNC  
HSYNC  
RED  
GREEN  
BLUE  
9
9
9
9
GCBE#0  
GCBE#1  
GCBE#2  
GCBE#3  
GCBE#0  
GCBE#1  
GCBE#2  
GCBE#3  
H23  
N21  
T25  
Y26  
GCBE0#/LMA3  
GCBE1#/LMD10  
GCBE2#/LMD13  
GCBE3#/LRAS#  
F22  
H24  
H26  
H25  
G24  
F24  
E26  
E25  
D26  
D25  
D24  
C26  
H21  
G25  
F26  
H20  
GMCH_3V66  
5
HL[10:0] 12,39  
HLCLK  
HL0  
HL1  
HL0  
HL1  
HL2  
HL3  
HL4  
HL5  
HL6  
HL7  
HL8  
HL9  
HL10  
HL2  
HL3  
HL4  
HL5  
HL6  
HL7  
HL8  
HL9  
R26  
P26  
P23  
P21  
P25  
9
9
9
9
9
9
9
9
9
GFRAME#  
GDEVSEL#  
GIRDY#  
GTRDY#  
GSTOP#  
GPAR  
GREQ#  
GGNT#  
PIPE#  
GFRAME#/LMA10  
GDEVSEL#/LMD11  
GIRDY#/LMD12  
GTRDY#/LMA7  
GSTOP#/LCS#  
GPAR/LMA6  
GREQ#/LMD27  
GGNT#  
PIPE#/LMD24  
Place resistor as close as  
possible to GMCH.  
VCC1_8  
R24  
AE26  
AD25  
AC26  
HL10  
HUBREF  
HLSTB  
HLSTB#  
HCOMP  
R120  
HUBREF 7,12,39  
HLSTB 12,39  
HLSTB# 12,39  
40  
M22  
L23  
U22  
V23  
Y23  
AA24  
9
9
9
9
9
9
ADSTB0  
ADSTB0#  
ADSTB1  
ADSTB1#  
SBSTB  
ADSTB0  
ADSTB0#  
ADSTB1  
ADSTB1#  
SBSTB  
GHCOMP  
SBA[7:0]  
9
SBA0  
SBA1  
SBA2  
SBA3  
SBA4  
SBA5  
SBA6  
SBA7  
AB22  
AB25  
AB23  
AB26  
AA22  
AA26  
Y22  
SBA0/LMD31  
SBA1/LMD25  
SBA2/LDQM2  
SBA3/LMD26  
SBA4/LMD23  
SBA5/LWE#  
SBA6/LMD22  
SBA7/L_FSEL  
SBSTB#  
SBSTB#  
9
ST[2:0]  
ST0  
ST1  
ST2  
AD24  
AC24  
AC23  
ST0/LMD28  
ST1/LDQM3  
ST2/LMD29  
AD26  
AB24  
J24  
J26  
R22  
P22  
Y25  
9
9
RBF#  
WBF#  
RBF#/LMD30  
WBF#  
AGPREF  
GRCOMP  
OCLOCK  
RCLOCK  
Place resistor  
as close as  
possible to  
GMCH and  
via straight to  
plane.  
9
CONN_AGPREF  
GRCOMP_PD  
R86  
174  
C239  
0.1uF  
C196  
18pF  
Do not stuff C196  
Place Site within 0.5"  
of clock ball (AA21).  
OCLK  
RCLK  
1
2
R116  
40 1%  
C190  
0.1uF  
R115 15  
C233  
22pF  
NPO  
82815 GMCH  
Title:  
INTEL(R) 82815 CHIPSET CUSTOMER REFERENCE BOARD  
82815 GMCH: GRAPHICS  
REV.  
1.0  
Platform Apps Engineering  
Last Revision Date:  
3-26-01  
of  
1900 Prairie City Road  
Folsom, CA 95630  
R
int l  
e
Sheet:  
8
40  
5
4
3
2
1
5
4
3
2
1
AGP CONNECTOR  
D
C
B
A
D
C
B
A
VCC5  
J14  
VCC12 VCC3_3  
19 AGP_OC#  
VDDQ  
TYPEDET# 32  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
OVRCNT#  
5V_A  
5V_B  
USB+  
GND_K  
INTB#  
CLK  
REQ#  
VCC3_3_F  
ST0  
ST2  
RBF#  
GND_L  
RESV_H  
SBA0  
VCC3_3_G  
SBA2  
SB_STB  
GND_M  
SBA4  
SBA6  
RESV  
12V  
TYPEDET#  
RESV_A  
USB-  
GND_A  
INTA#  
RST#  
GNT#  
VCC3_3_A  
ST1  
RESV_B  
PIPE#  
GND_B  
WBF#  
SBA1  
VCC3_3_B  
SBA3  
SB_STB#  
GND_C  
SBA5  
RP50  
8.2k  
8
7
6
5
1
2
3
4
GIRDY#  
8
19 AGPUSBP  
AGPUSBN 19  
GDEVSEL#  
GPERR#  
GSERR#  
8
VDDQ  
12,16,17,36 PIRQ#B  
PIRQ#A 12,16,17,29,36  
PCIRST# 6,12,14,15,16,17,18,19,24,29  
VCC3_35 AGPCLK_CONN  
8
GREQ#  
GGNT#  
8
RP69  
RP49  
8.2k  
A9  
ST0  
ST2  
ST1  
8
7
6
5
1
2
3
4
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
B24  
B25  
B26  
B27  
B28  
B29  
B30  
B31  
B32  
B33  
B34  
B35  
B36  
B37  
B38  
B39  
B40  
B41  
B42  
B43  
B44  
B45  
B46  
B47  
B48  
B49  
B50  
B51  
B52  
B53  
B54  
B55  
B56  
B57  
B58  
B59  
B60  
B61  
B62  
B63  
B64  
B65  
B66  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
A27  
A28  
A29  
A30  
A31  
A32  
A33  
A34  
A35  
A36  
A37  
A38  
A39  
A40  
A41  
A42  
A43  
A44  
A45  
A46  
A47  
A48  
A49  
A50  
A51  
A52  
A53  
A54  
A55  
A56  
A57  
A58  
A59  
A60  
A61  
A62  
A63  
A64  
A65  
A66  
8
7
6
5
1
2
3
4
GFRAME#  
GTRDY#  
GSTOP#  
8
8
8
8
RBF#  
SBA[7:0]  
SBSTB  
PIPE#  
8
8
GPAR  
8
WBF#  
8.2K  
8
SBA0  
SBA2  
SBA1  
SBA3  
SBA[7:0]  
8
RP48  
8.2k  
8
ST[2:0]  
8
7
6
5
1
2
3
4
GREQ#  
GGNT#  
PIPE#  
8
8
SBSTB#  
8
8
8
8
SBA4  
SBA6  
SBA5  
SBA7  
WBF#  
SBA7  
VCC3SBY  
RESV_C  
GND_D  
RESV_D  
VCC3_3_C  
AD30  
AD28  
VCC3_3_D  
AD26  
R163 8.2k  
1
2
ADSTB0  
ADSTB1  
RBF#  
8
8
GND_N  
3_3VAUX1  
VCC3_3_H  
AD31  
AD29  
VCC3_3_I  
AD27  
R119 8.2k  
1
2
R154 8.2k  
1
2
8
8
8
8
GAD[31:0]  
ADSTB1  
GAD31  
GAD29  
GAD30  
GAD28  
R160 8.2k  
1 2  
GAD[31:0]  
8
SBSTB  
GAD27  
GAD25  
GAD26  
GAD24  
AD25  
AD24  
R122 8.2k  
1
2
ADSTB0#  
ADSTB1#  
SBSTB#  
8
8
GND_O  
AD_STB1  
AD23  
VDDQ_F  
AD21  
AD19  
GND_P  
AD17  
C/BE2#  
VDDQ_G  
IRDY#  
3_3VAUX2  
GND_Q  
RESV_K  
VCC3_3_J  
DEVSEL#  
VDDQ_H  
PERR#  
GND_R  
SERR#  
C/BE1#  
VDDQ_I  
AD14  
GND_E  
AD_STB1#  
C/BE3#  
VDDQ_A  
AD22  
AD20  
GND_F  
AD18  
VDDQ  
VDDQ  
R117 8.2k  
1 2  
ADSTB1#  
GCBE#3  
8
8
GAD23  
R159 8.2k  
1
2
8
GAD21  
GAD19  
GAD22  
GAD20  
GAD17  
GAD18  
GAD16  
8
8
GCBE#2  
GIRDY#  
VDDQ  
AD16  
VDDQ_B  
FRAME#  
RESV_E  
GND_G  
RESV_F  
VCC3_3_E  
TRDY#  
STOP#  
PME#  
GND_H  
PAR  
AD15  
VDDQ_C  
AD13  
AD11  
GND_I  
AD9  
C/BE0#  
VDDQ_D  
AD_STB0#  
AD6  
GND_J  
AD4  
AD2  
VDDQ_E  
AD0  
VREF_GC  
GFRAME#  
8
R114  
301 1%  
8
GDEVSEL#  
GPERR#  
GTRDY#  
GSTOP#  
8
8
PCI_PME# 12,16,17,29  
CON_AGPREF  
GSERR#  
GCBE#1  
GPAR  
8
8
GAD15  
R57  
200 1%  
GAD14  
GAD12  
GAD13  
GAD11  
Q10  
2N7002LT1  
32 TYPEDET#  
1
AD12  
GND_S  
AD10  
1
GAD10  
GAD8  
GAD9  
GCBE#0  
ADSTB0#  
8
AD8  
VDDQ_J  
AD_STB0  
AD7  
GND_T  
AD5  
AD3  
VDDQ_K  
8
ADSTB0  
8
GAD7  
GAD6  
GAD5  
GAD3  
GAD4  
GAD2  
CONN_AGPREF  
8
GAD1  
GAD0  
AD1  
VREF_CG  
8
GMCH_AGPREF  
Title:  
INTEL(R) 82815 CHIPSET CUSTOMER REFERENCE BOARD  
AGP CONNECTOR  
REV.  
1.0  
Platform Apps Engineering  
Last Revision Date:  
3-26-01  
of  
1900 Prairie City Road  
Folsom, CA 95630  
R
int l  
e
Sheet:  
9
40  
5
4
3
2
1
5
4
3
2
1
SYSTEM MEMORY  
D
C
B
A
D
C
B
A
7,11 SM_MD[63:0]  
SM_MD[63:0]  
VCC3SBY  
168  
157  
143  
133  
84  
73  
59  
49  
124  
110  
102  
90  
41  
40  
26  
18  
6
162  
152  
148  
138  
127  
116  
107  
96  
85  
78  
68  
64  
54  
43  
32  
23  
12  
1
VCC17  
VSS18  
VSS17  
VSS16  
VSS15  
VSS14  
VSS13  
VSS12  
VSS11  
VSS10  
VSS9  
VSS8  
VSS7  
VSS6  
VSS5  
VCC16  
VCC15  
VCC14  
VCC13  
VCC12  
VCC11  
VCC10  
VCC9  
VCC8  
VCC7  
VCC6  
VCC5  
VCC4  
VCC3  
VCC2  
VCC1  
DIMM0  
SLAVE ADDRESS = 1010000B  
VSS4  
VSS3  
VSS2  
VSS1  
DIMM SOCKET 168 PIN  
5,11 MEMCLK[7:0]  
MEMCLK[7:0]  
SM_MAA[12:0]  
SM_BS[1:0]  
7,11 SM_MAA[12:0]  
4,7,11 SM_BS[1:0]  
7,11 SM_DQM[7:0]  
SAO_PU  
SAO_PU 11  
SM_DQM[7:0]  
System Memory DIMM0  
7,11 SM_CSA#[3:0]  
7,11 SM_CSB#[3:0]  
7,11 SM_WE#  
7,11 SM_CAS#  
7,11 SM_RAS#  
SM_CSA#[3:0]  
SM_CSB#[3:0]  
SM_WE#  
SM_CAS#  
SM_RAS#  
SM_CKE[3:0]  
SMBDATA  
SMBCLK  
7,11 SM_CKE[3:0]  
11,12,13,25,30,36 SMBDATA  
11,12,13,25,30,36 SMBCLK  
Title:  
INTEL(R) 82815 CHIPSET CUSTOMER REFERENCE BOARD  
SYSTEM MEMORY: DIMM0  
REV.  
1.0  
Platform Apps Engineering  
Last Revision Date:  
3-26-01  
of  
1900 Prairie City Road  
Folsom, CA 95630  
R
int l  
e
Sheet:  
10  
40  
5
4
3
2
1
5
4
3
2
1
SYSTEM MEMORY  
D
C
B
A
D
C
B
A
7,10 SM_MD[63:0]  
SM_MD[63:0]  
VCC3SBY  
168  
157  
143  
133  
84  
73  
59  
162  
152  
148  
138  
127  
116  
107  
96  
85  
78  
68  
64  
54  
43  
32  
23  
12  
1
VCC17  
VCC16  
VCC15  
VCC14  
VSS18  
VSS17  
VSS16  
VSS15  
VSS14  
VSS13  
VSS12  
VSS11  
VSS10  
VSS9  
VSS8  
VSS7  
VSS6  
VSS5  
DIMM1  
VCC13 SLAVE ADDRESS = 1010001B  
VCC12  
VCC11  
VCC10  
VCC9  
VCC8  
VCC7  
VCC6  
VCC5  
VCC4  
VCC3  
VCC2  
VCC1  
49  
124  
110  
102  
90  
41  
40  
26  
18  
6
VSS4  
VSS3  
VSS2  
VSS1  
DIMM SOCKET 168 PIN  
VCC3SBY  
R30  
5,10 MEMCLK[7:0]  
7,10 SM_MAA[12:0]  
1
2
SAO_PU  
2.2k  
SAO_PU 10  
7
SM_MAB[7:4]#  
4,7,10 SM_BS[1:0]  
7,10 SM_DQM[7:0]  
System Memory: DIMM1  
SM_CSA#[3:0]  
SM_CSB#[3:0]  
7,10 SM_CSA#[3:0]  
7,10 SM_CSB#[3:0]  
7,10 SM_WE#  
7,10 SM_CAS#  
7,10 SM_RAS#  
SM_WE#  
SM_CAS#  
SM_RAS#  
SM_CKE[3:0]  
SMBDATA  
SMBCLK  
7,10 SM_CKE[3:0]  
10,12,13,25,30,36 SMBDATA  
10,12,13,25,30,36 SMBCLK  
Title:  
INTEL(R) 82815 CHIPSET CUSTOMER REFERENCE BOARD  
SYSTEM MEMORY: DIMM1  
REV.  
1.0  
Platform Apps Engineering  
Last Revision Date:  
3-26-01  
of  
1900 Prairie City Road  
Folsom, CA 95630  
R
int l  
e
Sheet:  
11  
40  
5
4
3
2
1
5
4
3
2
1
ICH, PART 1  
VCC3_3  
VCC1_8  
D
C
B
A
D
C
B
A
U21-1  
16,17,29 AD[31:0]  
AD[31:0]  
AD0  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
A20M#  
CPUSLP#  
FERR#  
IGNNE#  
INIT#  
INTR  
NMI  
A20M# 4,36  
CPUSLP# 4,36  
FERR# 4,36  
IGNNE# 4,36  
INIT# 4,14,36  
INTR 4,36  
NMI 4,36  
SMI# 4,36  
STPCLK# 4,36  
RCIN# 15,36  
A20GATE 15,36  
HL[10:0] 8,39  
G2  
G4  
F2  
F3  
F4  
F5  
E1  
E2  
D1  
D3  
E4  
C2  
C1  
B1  
D4  
C3  
A4  
B4  
C5  
C6  
B5  
E7  
A6  
B6  
D7  
B8  
A7  
A8  
B7  
C9  
D8  
C7  
F13  
E12  
F15  
B17  
E15  
E14  
B16  
F14  
A17  
A15  
B15  
AD0  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
A20M#  
CPUSLP#  
FERR#  
IGNNE#  
INIT#  
INTR  
NMI  
SMI#  
STPCLK#  
RCIN#  
CPU  
SMI#  
AD8  
AD9  
STPCLK#  
RCIN#  
A20GATE  
AD8  
AD9  
VCC3_3  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
AD17  
AD18  
AD19  
AD20  
AD21  
AD22  
AD23  
AD24  
AD25  
AD26  
AD27  
AD28  
AD29  
AD30  
AD31  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
AD17  
AD18  
AD19  
AD20  
AD21  
AD22  
AD23  
AD24  
AD25  
AD26  
AD27  
AD28  
AD29  
AD30  
AD31  
A20GATE  
HL[10:0]  
HL0  
HL1  
HL2  
HL3  
HL4  
HL5  
HL6  
HL7  
HL8  
HL9  
HL10  
D17  
E17  
F17  
G16  
J15  
K16  
K17  
L17  
H15  
J17  
J14  
G17  
H17  
M17  
J13  
HL0  
HL1  
HL2  
HL3  
HL4  
HL5  
HL6  
HL7  
HL8  
INTEL 82801AA  
PART 1  
VCC1_8  
R178  
40 1%  
HUB I/F  
ADM1023  
HL9  
Place R178  
as close as  
possible to  
ICH  
HL10  
HLSTB  
HLSTB#  
HCOMP  
HUBREF  
HLSTB  
HLSTB#  
IHCOMP_PU  
HUBREF  
HLSTB 8,39  
HLSTB# 8,39  
PCI  
U1  
HUBREF 7,8,39  
PIRQ#A  
PIRQ#A 9,16C,1279,129,36  
PIRQ#B 9,160,1.17U,3F6  
PIRQ#C 16,17,36  
D10  
A10  
B10  
C10  
PIRQ#A  
PIRQ#B  
PIRQ#C  
PIRQ#D  
PIRQ#B  
PIRQ#C  
PIRQ#D  
Place C291  
PIRQ#D 16,17,36  
as close as  
possible to  
16,17,29 C_BE#[3:0]  
C_BE#[3:0]  
ICH  
C_BE#0  
C_BE#1  
C_BE#2  
C_BE#3  
IRQ14  
IRQ15  
APICCLK_ICH  
APICD1  
APICD0  
SERIRQ  
IRQ14 18,36  
IRQ15 18,36  
APICCLK_ICH  
APICD1 4,36  
APICD0 4,36  
D2  
B2  
A3  
D6  
P11  
N14  
C16  
C17  
E16  
R4  
C_BE#0  
C_BE#1  
C_BE#2  
C_BE#3  
IRQ14  
IRQ15  
APICCLK  
APICD1  
APICD0  
SERIRQ  
IRQ  
5
5
PCLK_0/ICH  
PCLK_0/ICH  
SERIRQ 15,17,36  
C14  
B3  
D9  
A2  
C4  
D5  
J5  
B9  
A9  
A1  
K1  
PCICLK  
FRAME#  
DEVSEL#  
IRDY#  
TRDY#  
STOP#  
PCIRST#  
PLOCK#  
PAR  
16,17,29,36 FRAME#  
16,17,29,36 DEVSEL#  
16,17,29,36 IRDY#  
16,17,29,36 TRDY#  
16,17,29,36 STOP#  
FRAME#  
DEVSEL#  
IRDY#  
TRDY#  
STOP#  
PCIRST#  
PLOCK#  
PAR  
SERR#  
PCI_PME#  
PREQ#0  
PREQ#1  
PREQ#2  
PREQ#3  
PREQ#0 36  
A14  
B13  
B12  
D12  
REQ#0  
REQ#1  
REQ#2  
REQ#3  
PREQ#1 16,36  
PREQ#2 17,36  
PREQ#3 29,36  
6,9,14,15,16,17,18,19,24,29 PCIRST#  
16,17,36 PLOCK#  
PGNT#0  
PGNT#1  
PGNT#2  
PGNT#3  
PGNT#0 36  
A13  
C13  
A12  
C12  
GNT#0  
GNT#1  
GNT#2  
GNT#3  
16,17,29 PAR  
16,17,29,36 SERR#  
9,16,17,29 PCI_PME#  
PGNT#1 16,3V6CC3_3  
PGNT#2 17,36  
PGNT#3 29,36  
PCI  
SERR#  
PME#  
17,36 PCPCI_REQ#A  
17 PCPCI_GNT#A  
36 REQ#B/GPIO1  
36 GNT#B/GPIO17  
PCPCI_REQ#A  
PCPCI_GNT#A  
REQ#B/GPIO1  
GNT#B/GPIO17  
RESV0PU  
RESV1PU  
RESV2RD  
R173  
Don't Stuff R173  
For Test/Debug  
R213  
1
2
8.2K  
2
N6  
P5  
P4  
R5  
A11  
B11  
F16  
REQ#A/GPIO0  
GNT#A/GPIO16  
REQ#B/GPIO1/REQ5#  
GNT#B/GPIO17/GNT5#  
GNT4#  
REQ4#  
HL11  
1
2
0K  
R212  
8.2K  
1
PC/PCI  
C312  
10PF  
82815 ICH  
No Pop  
Title:  
INTEL(R) 82815 CHIPSET CUSTOMER REFERENCE BOARD  
ICH, PART 1  
REV.  
1.0  
Platform Apps Engineering  
Last Revision Date:  
3-26-01  
of  
1900 Prairie City Road  
Folsom, CA 95630  
R
int l  
e
Sheet:  
12  
40  
5
4
3
2
1
5
4
3
2
1
ICH, PART 2  
VCCRTC  
VCC3SBY  
CR10  
VCC3SBY  
VCC3SBY  
1
2
VCC3_3  
VCC5  
BAT17  
VRTC  
U21  
ICH5VREF  
R258  
1K  
C285  
1.0UF  
C284  
.1UF  
CR6  
1
2
D
C
B
A
D
C
B
A
C422  
1.0UF  
R85 and R203 for  
R250 1K  
Test/Debug  
R260  
10K  
R255  
10K  
JP20  
2
R252  
8.2K  
VBATC_DLY  
C385  
12,36 THERM#  
31,35 SLP_S3#  
THERM#  
SLP_S3#  
1
2
1
3
D14  
K3  
K2  
J3  
M2  
L3  
F1  
L4  
THRM#  
SLP_S3/GPIO24  
SLP_S5  
PWROK  
PWRBTN#  
RI#  
RSMRST#  
+
SLP_S5#  
CR9  
ICH_PWROK  
34,40 PWRBTN#  
21 ICH_RI#  
PDCS#1  
SDCS#1  
PDCS#3  
SDCS#3  
N12  
L14  
U13  
L16  
JP24_PD  
PDCS#1 18  
SDCS#1 18  
PDCS#3 18  
SDCS#3 18  
PDA[2:0] 18  
PDCS#1  
SDCS#1  
PDCS#3  
SDCS#3  
2.2UF  
PWRBTN#  
ICH_RI#  
RSMRST#  
SUS_STAT#  
R253  
1K  
BAT17  
R257  
1K  
30,35 RSMRST#  
30 SUS_STAT#  
PDA[2:0]  
SDA[2:0]  
SUSSTAT#/GPIO25  
R_VBIAS  
PDA0  
1
2
R12  
T12  
P12  
M16  
M15  
L13  
PDA0  
PDA1  
PDA2  
SDA0  
SDA1  
SDA2  
C384 10,11,12,25,30,36 SMBDATA  
10,11,12,25,30,36 SMBCLK  
SMBDATA  
SMBCLK  
SMBALERT#  
PDA1  
PDA2  
SDA0  
SDA1  
SDA2  
J1  
J2  
M1  
SMBDATA  
SMBCLK  
SMBALERT#/GPIO11  
SYSTEM  
SDA[2:0] 18  
.047UF  
36 SMBALERT#  
VBAT  
36 INTRUDER#  
INTRUDER#  
ICH_CLK14  
USBCLK  
J4  
U6  
U2  
INTRUDER#/GPIO10  
CLK14  
CLK48  
5
5
5
ICH_CLK14  
USBCLK  
ICH_3V66  
PDREQ  
SDREQ  
PDDACK#  
SDDACK#  
PDIOR#  
U11  
P17  
U12  
M13  
R11  
N16  
T11  
N15  
N11  
N17  
PDREQ 18  
SDREQ 18  
PDDREQ  
SDDREQ  
PDDACK#  
SDDACK#  
PDIOR#  
R251  
10M  
ICH_3V66  
A16  
CLK66  
PDDACK# 18  
SDDACK# 18  
PDIOR# 18  
SDIOR# 18  
PDIOW# 18  
SDIOW# 18  
PIORDY 18  
SIORDY 18  
PDD[15:0] 18  
VBIAS  
RTCX1  
RTCX2  
RTCRST#  
H2  
H3  
H4  
H1  
X2  
VBIAS  
INTEL 82801AA  
PART 2  
RTCX1  
RTCX2  
RTCRST#  
SDIOR#  
Socketed  
CR2032  
SDIOR#  
PDIOW#  
SDIOW#  
PIORDY  
SIORDY  
R259  
PDIOW#  
SDIOW#  
PIORDY  
SIORDY  
1
2
26 AC_RST#  
AC_RST#  
T1  
T3  
R3  
T2  
U1  
P3  
U3  
10M  
AC_RST#  
26,27 AC_SYNC  
AC_SYNC  
AC_BITCLK  
AC_SDOUT  
AC_SDIN0  
AC_SDIN1  
ICH_SPKR  
Y4A  
AC_SYNC  
AC_BITCLK  
AC_SDOUT  
AC_SDIN0  
AC_SDIN1/GPIO9  
SPKR  
26,27 AC_BITCLK  
26,27 AC_SDOUT  
26,27,36 AC_SDIN0  
26,36 AC_SDIN1  
PDD[15:0]  
PDD0  
R10  
N9  
R9  
U9  
R8  
U8  
R7  
U7  
P7  
N7  
T8  
P8  
T9  
P9  
1
2
AC97  
PDD0  
PDD1  
PDD2  
PDD3  
PDD4  
PDD5  
PDD6  
PDD7  
PDD8  
PDD9  
PDD10  
PDD11  
PDD12  
PDD13  
PDD14  
PDD15  
PDD1  
PDD2  
PDD3  
PDD4  
PDD5  
PDD6  
PDD7  
PDD8  
PDD9  
PDD10  
PDD11  
PDD12  
PDD13  
PDD14  
PDD15  
C386  
34 ICH_SPKR  
C380  
18PF  
32.768KHZ  
IDE  
18PF 15,36 LPC_SMI#  
15,36 LPC_PME#  
17,36 GPIO7  
LPC_SMI#  
LPC_PME#  
GPIO7  
GPIO12  
GPIO13  
GPIO21  
GPIO22  
GPIO23_FPLED  
GPIO26_FPLED  
GPIO27  
D11  
E11  
F9  
N4  
L2  
B14  
D13  
D15  
K4  
M5  
L5  
GPIO5  
GPIO6  
GPIO7/PERR#  
GPIO12  
GPIO13  
GPIO21  
GPIO22  
GPIO23  
GPIO26/SUSCLK  
GPIO27  
36 GPIO12  
36 GPIO13  
17,36 GPIO21  
36 GPIO22  
34 GPIO23_FPLED  
34 GPIO26_FPLED  
GPIO  
VCC3_3  
D2  
VCC3_3  
VCC3_3  
30 GPIO27  
30 GPIO28  
T10  
P10  
GPIO28  
GPIO28  
SDD[15:0]  
BAT54C  
SDD[15:0] 18  
14,15 LAD0/FWH0  
R271 14,15 LAD1/FWH1  
1K 14,15 LAD2/FWH2  
14,15 LAD3/FWH3  
14,15 LFRAME#/FWH4  
15 LDRQ#0  
LAD0/FWH0  
LAD1/FWH1  
LAD2/FWH2  
LAD3/FWH3  
LFRAME#/FWH4  
LDRQ#0  
SDD0  
SDD1  
SDD2  
SDD3  
SDD4  
SDD5  
SDD6  
SDD7  
SDD8  
SDD9  
SDD10  
SDD11  
SDD12  
SDD13  
SDD14  
SDD15  
R6  
U5  
T5  
T4  
U4  
T6  
N3  
P15  
R16  
T17  
U16  
U15  
R14  
P13  
T13  
U14  
T14  
P14  
T15  
U17  
R15  
R17  
P16  
LAD0/FWH0  
LAD1/FWH1  
LAD2/FWH2  
LAD3/FWH3  
LFRAME#/FWH4  
LDRQ#0  
SDD0  
SDD1  
SDD2  
SDD3  
SDD4  
SDD5  
SDD6  
SDD7  
SDD8  
SDD9  
SDD10  
SDD11  
SDD12  
SDD13  
SDD14  
SDD15  
U74  
VCC_CLK  
R341  
34 ICH_SPKR  
1
2
1
2
A
B
LPC  
4
43k  
ICH_PWROK  
Y
C457  
1.0uF  
JP21  
36 LDRQ#1  
LDRQ#1  
LDRQ#1/GPIO8  
19 USBP1P  
19 USBP1N  
19 USBP0P  
USBP1P  
USBP1N  
USBP0P  
USBP0N  
741G08 AND  
R1  
P2  
P1  
N2  
M4  
M3  
USBP1P  
USBP1N  
USBP0P  
USBP0N  
OC#1  
JP24  
19 USBP0N  
USB  
R342  
1
2
19 OC#0  
OC#0  
30,31,35 PWROK  
OC#0  
0
Minimize Stub  
Length to  
Jumpers  
R264  
1K  
Empty  
Debug Only  
C289  
18PF 82815 ICH  
AC_SDOUT 26,27  
Note: Depending on the version  
of ICH being used, an external  
crystal may be required.  
Title:  
INTEL(R) 82815 CHIPSET CUSTOMER REFERENCE BOARD  
ICH, PART 2  
REV.  
1.0  
Contact Intel for implementation.  
Platform Apps Engineering  
Last Revision Date:  
3-26-01  
1900 Prairie City Road  
Folsom, CA 95630  
R
int l  
Sheet:  
13  
e
40  
of  
5
4
3
2
1
5
4
3
2
1
FIRMWARE HUB (FWH) SOCKET  
NOTE: This is a TSOP Implementation  
D
C
B
A
D
C
B
A
VCC3_3  
VCC3_3  
VCC3_3  
C425  
C401  
C424  
0.1UF  
C423  
C387  
C395  
0.1UF  
0.1UF  
0.1UF  
0.1UF  
0.1UF  
40 PIN_TSOP_SKT  
Distribute close to each power pin  
X3  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
NC1  
IC  
NC3  
NC4  
GNDA  
VCCA  
FHW4  
INIT#  
LFRAME#/FWH4  
INIT#  
LFRAME#/FWH4 13,15  
INIT# 4,12,36  
NC5  
NC6  
FGPI4  
NC8  
CLK  
VCC10  
VPP  
RST#  
NC13  
NC14  
FGPI3  
FGPI2  
FGPI1  
FGPI0  
WP#  
TBL#  
RFU36  
RFU35  
RFU34  
RFU33  
RFU32  
VCC31  
GND30  
GND29  
FWH3  
FWH2  
FWH1  
FWH0  
ID0  
VCC3_3  
VCC3_3  
5
PCLK_6  
PCLK_6  
R273  
R_VPP  
1
2
0K  
PCIRST#  
R288  
6,9,12,15,16,17,18,19,24,29 PCIRST#  
LAD3/FWH3  
LAD2/FWH2  
LAD1/FWH1  
LAD0/FWH0  
FWH_ID0  
FWH_ID1  
FWH_ID2  
LAD3/FWH3 13,15  
LAD2/FWH2 13,15  
LAD1/FWH1 13,15  
LAD0/FWH0 13,15  
4.7K  
ID1  
ID2  
ID3  
R274  
WPROT  
TBLK_LCK  
1
2
4.7K  
FWH_ID3  
FWH Socket  
JP26  
PR65  
8.2K  
RP64  
8.2K  
RP68  
0K  
RP68 for Test/Debug  
Title:  
INTEL(R) 82815 CHIPSET CUSTOMER REFERENCE BOARD  
FIRMWARE HUB (FWH)  
REV.  
1.0  
Platform Apps Engineering  
Last Revision Date:  
3-26-01  
of  
1900 Prairie City Road  
Folsom, CA 95630  
R
int l  
Sheet:  
14  
e
40  
5
4
3
2
1
5
4
3
2
1
VCC5  
VCC3_3  
SUPER I/O  
D
C
B
A
D
C
B
A
U22  
PAR_INIT#  
SLCTIN#  
PAR_INIT# 20  
SLCTIN# 20  
13,14 LFRAME#/FWH4  
13,14 LAD3/FWH3  
13,14 LAD2/FWH2  
13,14 LAD1/FWH1  
13,14 LAD0/FWH0  
LFRAME#/FWH4  
LAD3/FWH3  
LAD2/FWH2  
LAD1/FWH1  
LAD0/FWH0  
LDRQ#0  
24  
23  
22  
21  
20  
25  
26  
27  
17  
30  
29  
66  
67  
75  
74  
73  
72  
71  
70  
69  
68  
77  
78  
79  
80  
81  
82  
83  
LFRAME#  
LAD3  
LAD2  
LAD1  
LAD0  
LDRQ#  
LRESET#  
LPCPD#  
PME#  
SERIRQ  
PCI_CLK  
INIT#  
SLCTIN#  
PD7  
PD6  
PD5  
PD4  
PD3  
PD2  
PD1  
PD0  
SLCT#  
PE  
BUSY  
ACK#  
ERROR#  
ALF#  
PDR[7:0] 20  
VCC3_3  
R93  
PDR7  
PDR6  
PDR5  
PDR4  
PDR3  
PDR2  
PDR1  
PDR0  
SLCT#  
PE  
13 LDRQ#0  
6,9,12,14,16,17,18,19,24,29 PCIRST#  
LPC I/F  
8.2k  
PCIRST#  
LRESET#  
LPC_PME#  
SERIRQ  
13,36 LPC_PME#  
12,17,36 SERIRQ  
PARALLEL  
PORT I/F  
5
PCLK_1  
PCLK_1  
SLCT# 20  
PE 20  
BUSY 20  
ACK# 20  
ERROR# 20  
ALF# 20  
22 KDAT  
22 KCLK  
22 MDAT  
22 MCLK  
KDAT  
KCLK  
MDAT  
MCLK  
RCIN#  
A20GATE  
BUSY  
ACK#  
56  
57  
58  
59  
63  
64  
KDAT  
KCLK  
MDAT  
MCLK  
KBDRST  
A20GATE  
ERROR#  
ALF#  
STROBE#  
KYBD/MSE I/F  
INFRARED I/F  
12,36 RCIN#  
12,36 A20GATE  
STROBE# 20  
STROBE#  
PWM2  
PWM1  
54  
55  
PWM2 34  
PWM1 34  
FAN2/GP32  
FAN1/GP33  
34 IRRX  
34 IRTX  
IRRX  
IRTX  
61  
62  
IRRX2/GP34  
IRTX2/GP35  
SIO_GP43  
28  
FDC_PP/DDRC/GP43  
21 RXD#0  
21 TXD0  
RXD#0  
TXD0  
DSR#0  
RTS#0  
CTS#0  
DTR#0  
RI#0  
84  
85  
86  
87  
88  
89  
90  
91  
RXD1  
TXD1  
DSR1#  
RTS1#  
CTS1#  
DTR1#  
RI1#  
21 DSR#0  
21 RTS#0  
21 CTS#0  
21 DTR#0  
Test/Debug Header  
Unused GPIOs  
C389  
C397  
SERIAL PORT 1  
J25  
470PF 470PF 21 RI#0  
21 DCD#0  
1
3
5
2
4
6
DCD#0  
DCD1#  
SIO  
LPC47B27X  
21 RXD#1  
21 TXD1  
21 DSR#1  
21 RTS#1  
21 CTS#1  
21 DTR#1  
21 RI#1  
RXD#1  
TXD1  
DSR#1  
RTS#1  
CTS#1  
DTR#1  
RI#1  
95  
96  
97  
98  
99  
100  
92  
94  
RXD2_IRRX  
TXD2_IRTX  
DSR2#  
RTS2#  
CTS2#  
DTR2#  
RI2#  
DCD2#  
SERIAL PORT 2  
SIO_GP60  
SIO_GP61  
LPC_SMI#  
TACH2  
TACH1  
MIDI_IN  
48  
49  
50  
51  
52  
46  
47  
GP60/LED1  
GP61/LED2  
GP27/IO_SMI#  
GP30/FAN_TACH2  
GP31/FAN_TACH1  
GP25/MIDI_IN  
Place near  
VREF pin  
VCC3_3  
C341  
21 DCD#1  
DCD#1  
LPC_SMI# 13,36  
TACH2 34  
TACH1 34  
MIDI_IN 23  
MIDI_OUT 23  
Decoupling  
C390  
VCC5  
22 DRVDEN#1  
22 DRVDEN#0  
22 MTR#0  
22 DS#0  
22 DIR#  
DRVDEN#1  
DRVDEN#0  
MTR#0  
DS#0  
DIR#  
2
1
3
5
8
DRVDEN1  
DRVDEN0  
MTR0#  
DS0#  
DIR#  
MIDI_OUT  
GP26/MIDI_OUT  
+
C340  
0.1UF  
C388  
C345  
0.1UF  
C336  
J1BUTTON1  
J1BUTTON2  
J2BUTTON1  
J2BUTTON2  
JOY1X  
J1BUTTON1 23  
J1BUTTON2 23  
J2BUTTON1 23  
J2BUTTON2 23  
JOY1X 23  
JOY1Y 23  
JOY2X 23  
32  
33  
34  
35  
36  
37  
38  
39  
41  
42  
43  
GP10/J1B1  
GP11/J1B2  
GP12/J2B1  
GP13/J2B2  
GP14/J1X  
GP15/J1Y  
GP16/J2X  
GP17/J2Y  
GP20/P17  
GP21/P16  
GP22/P12  
2.2UF  
0.1UF  
0.1UF  
0.1UF  
22 STEP#  
STEP#  
9
STEP#  
22 WDATA#  
22 WGATE#  
22 HDSEL#  
22 INDEX#  
22 TRK#0  
22 WRTPRT#  
22 RDATA#  
22 DSKCHG#  
WDATA#  
WGATE#  
HDSEL#  
INDEX#  
TRK#0  
WRTPRT#  
RDATA#  
DSKCHG#  
10  
11  
12  
13  
14  
15  
16  
4
WDATA#  
WGATE#  
HDSEL#  
INDEX#  
TRK0#  
WRTPRT#  
RDATA#  
DSKCHG#  
FDC I/F  
Place 1  
JOY1Y  
JOY2X  
JOY2Y  
0.1UF cap  
near each  
power pin  
JOY2Y 23  
KEYLOCK# 34  
KEYLOCK#  
SIO_GP21  
SIO_GP22  
6
19  
CLKI32  
CLOCKI  
5
SIO_CLK14  
SIO_CLK14  
SYSOPT  
45  
CLOCKS  
GP24/SYSOPT  
Pulldown on SYSOPT for IO address of 0x02E  
R224  
4.7K  
SIO LPC47B27X  
Title:  
INTEL(R) 82815 CHIPSET CUSTOMER REFERENCE BOARD  
SUPER I/O  
REV.  
1.0  
Platform Apps Engineering  
Last Revision Date:  
3-26-01  
of  
1900 Prairie City Road  
Folsom, CA 95630  
R
int l  
e
Sheet:  
15  
40  
5
4
3
2
1
5
4
3
2
1
PCI CONNECTOR 0  
(DEV Ah)  
VCC3SBY  
VCC3_3  
VCC5  
VCC12M  
VCC5  
VCC3_3  
D
C
B
A
D
C
B
A
VCC12  
J19  
PTRST#  
PTRST# 17  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
17 PTCK  
PTCK  
PTMS  
PTDI  
PTMS 17,36  
PTDI 17,36  
PIRQ#B  
PIRQ#D  
PIRQ#B 9,12,17,36  
PIRQ#D 12,17,36  
12,17,36 PIRQ#C  
9,12,17,29,36 PIRQ#A  
17 PRSNT#21  
PIRQ#C  
PIRQ#A  
PRSNT#21  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
B24  
B25  
B26  
B27  
B28  
B29  
B30  
B31  
B32  
B33  
B34  
B35  
B36  
B37  
B38  
B39  
B40  
B41  
B42  
B43  
B44  
B45  
B46  
B47  
B48  
B49  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
A27  
A28  
A29  
A30  
A31  
A32  
A33  
A34  
A35  
A36  
A37  
A38  
A39  
A40  
A41  
A42  
A43  
A44  
A45  
A46  
A47  
A48  
A49  
17 PRSNT#22  
PRSNT#22  
PCIRST#  
PCIRST# 6,9,12,14,15,17,18,19,24,29  
5
PCLK_3  
PCLK_3  
PREQ#1  
PGNT#1  
PCI_PME#  
PGNT#1 12,36  
PCI_PME# 9,12,17,29  
AD[31:0] 12,17,29  
12,36 PREQ#1  
12,17,29 AD[31:0]  
AD[31:0]  
AD[31:0]  
AD31  
AD29  
AD30  
AD28  
AD26  
AD27  
AD25  
12,17,29 C_BE#[3:0] C_BE#[3:0]  
AD24  
R_AD16  
C_BE#3  
AD23  
R207  
100  
AD16 12,17,29  
1
2
AD22  
AD20  
AD21  
AD19  
AD18  
AD16  
AD17  
C_BE#2  
FRAME#  
TRDY#  
STOP#  
FRAME# 12,17,29,36  
TRDY# 12,17,29,36  
STOP# 12,17,29,36  
12,17,29,36 IRDY#  
IRDY#  
12,17,29,36 DEVSEL#  
DEVSEL#  
12,17,36 PLOCK#  
17,29 PERR#  
12,17,29,36 SERR#  
PLOCK#  
PERR#  
SERR#  
SDONEP2  
SBOP2  
SDONEP2 36  
SBOP2 36  
PAR 12,17,29  
PAR  
AD15  
C_BE#1  
AD14  
AD13  
AD11  
AD12  
AD10  
AD9  
key  
AD8  
AD7  
C_BE#0  
C_BE#0 12,17,29  
B52  
B53  
B54  
B55  
B56  
B57  
B58  
B59  
B60  
B61  
B62  
A52  
A53  
A54  
A55  
A56  
A57  
A58  
A59  
A60  
A61  
A62  
AD6  
AD4  
AD5  
AD3  
AD2  
AD0  
AD1  
36 PU2_ACK64#  
PU2_ACK64#  
PU2_REQ64#  
PU2_REQ64# 36  
PCI3_CON  
Title:  
INTEL(R) 82815 CHIPSET CUSTOMER REFERENCE BOARD  
PCI CONNECTOR 0  
REV.  
1.0  
Platform Apps Engineering  
Last Revision Date:  
3-26-01  
of  
1900 Prairie City Road  
Folsom, CA 95630  
R
int l  
e
Sheet:  
16  
40  
5
4
3
2
1
5
4
3
2
1
PCI CONNECTOR 1  
(DEV Bh)  
VCC12M  
VCC5  
VCC3_3  
VCC3_3  
VCC5  
D
C
B
A
D
C
B
A
VCC12  
J24  
PTRST#  
PTRST# 16  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
16 PTCK  
PTCK  
PTMS  
PTDI  
PTMS 16,36  
PTDI 16,36  
PIRQ#C  
PIRQ#A  
PIRQ#C 12,16,36  
PIRQ#A 9,12,16,29,36  
12,16,36 PIRQ#D  
9,12,16,36 PIRQ#B  
PIRQ#D  
PIRQ#B  
PRSNT#31  
VCC3SBY  
PRSNT#31  
For Debug Only  
13,36 GPIO21  
R_GPO21  
R261  
16 PTRST#  
16 PTCK  
R247  
5.6K  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
B24  
B25  
B26  
B27  
B28  
B29  
B30  
B31  
B32  
B33  
B34  
B35  
B36  
B37  
B38  
B39  
B40  
B41  
B42  
B43  
B44  
B45  
B46  
B47  
B48  
B49  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
A27  
A28  
A29  
A30  
A31  
A32  
A33  
A34  
A35  
A36  
A37  
A38  
A39  
A40  
A41  
A42  
A43  
A44  
A45  
A46  
A47  
A48  
A49  
1
1
2
2
GPIO21  
PRSNT#32  
R285 0K  
R_GNT#A  
PCPCI_GNT#A  
1
2
1
2
PCPCI_GNT#A 12  
R248  
For Debug Only  
For Debug Only  
12,15,36 SERIRQ  
0K  
VAUX3  
PCIRST#  
R284  
5.6K  
SERIRQ  
R286 0K  
R_SERIRQ  
1
2
1
2
PCIRST# 6,9,12,14,15,16,108K,19,24,29  
5
PCLK_4  
PCLK_4  
PREQ#2  
PGNT#2  
PCI_PME#  
AD[31:0]  
PGNT#2 12,36  
PCI_PME# 9,12,16,29  
AD[31:0] 12,16,29  
R249  
0K  
12,36 PREQ#2  
12,16,29 AD[31:0]  
1
2
PCPCI_REQ#A 12,36  
AD[31:0]  
For Debug Only  
Do Not Stuff R192  
AD31  
AD29  
AD30  
AD28  
AD26  
AD27  
AD25  
12,16,29 C_BE#[3:0] C_BE#[3:0]  
AD24  
R287  
100  
PRSNT#32  
PRSNT#31  
16 PRSNT#22  
16 PRSNT#21  
C_BE#3  
AD23  
R_AD17  
AD17 12,16,29  
1
2
AD22  
AD20  
AD21  
AD19  
C363  
C368  
C414  
C415  
0.1UF  
AD18  
AD16  
AD17  
C_BE#2  
0.1UF  
0.1UF  
0.1UF  
FRAME#  
TRDY#  
STOP#  
FRAME# 12,16,29,36  
TRDY# 12,16,29,36  
STOP# 12,16,29,36  
12,16,29,36 IRDY#  
IRDY#  
12,16,29,36 DEVSEL#  
DEVSEL#  
12,16,36 PLOCK#  
16,29 PERR#  
12,16,29,36 SERR#  
PLOCK#  
PERR#  
SDONEP3  
SBOP3  
SDONEP3 36  
SBOP3 36  
PAR 12,16,29  
SERR#  
PAR  
C_BE#1  
AD14  
AD15  
AD13  
AD11  
AD12  
AD10  
AD9  
key  
AD8  
AD7  
C_BE#0  
C_BE#0 12,16,29  
B52  
B53  
B54  
B55  
B56  
B57  
B58  
B59  
B60  
B61  
B62  
A52  
A53  
A54  
A55  
A56  
A57  
A58  
A59  
A60  
A61  
A62  
JP25  
1
AD6  
AD4  
PERR#_PU 36  
GPIO7 13,36  
AD5  
AD3  
16,29 PERR#  
2
3
AD2  
AD0  
AD1  
36 PU3_ACK64#  
PU3_ACK64#  
PU3_REQ64#  
PU3_REQ64# 36  
PCI3_CON  
Title:  
INTEL(R) 82815 CHIPSET CUSTOMER REFERENCE BOARD  
PCI CONNECTOR 1  
REV.  
1.0  
Platform Apps Engineering  
Last Revision Date:  
3-26-01  
of  
1900 Prairie City Road  
Folsom, CA 95630  
R
int l  
e
Sheet:  
17  
40  
5
4
3
2
1
5
4
3
2
1
IDE CONNECTORS  
D
C
B
A
D
C
B
A
VCC5  
VCC5  
PRIMARY IDE CONNECTOR  
SECONDARY IDE CONNECTOR  
SDD[15:0]  
13 PDD[15:0]  
PDD[15:0]  
13 SDD[15:0]  
PCIRST_BUF#  
R102  
1K  
R100  
1K  
PCIRST_BUF#  
R190  
33  
J16  
2
R182  
33  
J15  
2
1
2
1
2
R_RSTP#  
PDD7  
PDD6  
PDD5  
PDD4  
PDD3  
PDD2  
PDD1  
PDD0  
R_RSTS#  
SDD7  
SDD6  
SDD5  
SDD4  
SDD3  
SDD2  
SDD1  
SDD0  
1
3
5
7
9
1
3
5
7
9
PDD8  
PDD9  
SDD8  
SDD9  
4
6
4
6
PDD10  
PDD11  
PDD12  
PDD13  
PDD14  
PDD15  
SDD10  
SDD11  
SDD12  
SDD13  
SDD14  
SDD15  
8
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
34  
36  
38  
40  
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
34  
36  
38  
40  
11  
13  
15  
17  
19  
21  
23  
25  
27  
29  
31  
33  
35  
37  
39  
11  
13  
15  
17  
19  
21  
23  
25  
27  
29  
31  
33  
35  
37  
39  
13 PDREQ  
13 PDIOW#  
13 PDIOR#  
13 PIORDY  
13 PDDACK#  
12,36 IRQ14  
PDREQ  
PDIOW#  
PDIOR#  
PIORDY  
PDDACK#  
IRQ14  
13 SDREQ  
13 SDIOW#  
13 SDIOR#  
13 SIORDY  
13 SDDACK#  
12,36 IRQ15  
SDREQ  
SDIOW#  
SDIOR#  
SIORDY  
SDDACK#  
IRQ15  
PRI_PD1  
PRI_SD1  
PDA1  
PDA0  
J16_C206  
PDCS#3  
SDA1  
SDA0  
J15_C205  
SDCS#3  
PDCS#3 13  
SDCS#3 13  
13 PDCS#1  
34 IDEACTP#  
13 SDCS#1  
34 IDEACTS#  
PDA2  
SDA2  
13 PDA[2:0]  
PDA[2:0]  
13 SDA[2:0]  
SDA[2:0]  
R101  
C206  
0.047UF  
R98  
C205  
0.047UF  
R129 R133  
R130 R132  
470  
470  
5.6K  
10K  
5.6K  
10K  
VCC3_3  
VCC3_3  
R191  
8.2K  
U11C  
6
6,9,12,14,15,16,17,19,24,29 PCIRST#  
PCIRST#  
PCIRST_BUF#  
PCIRST_BUF#  
5
SN74LVC07A  
Title:  
INTEL(R) 82815 CHIPSET CUSTOMER REFERENCE BOARD  
ULTRA DMA/66 CONNECTOR  
REV.  
1.0  
Platform Apps Engineering  
Last Revision Date:  
3-26-01  
of  
1900 Prairie City Road  
Folsom, CA 95630  
R
int l  
e
Sheet:  
18  
40  
5
4
3
2
1
5
4
3
2
1
VCC3SBY  
VCC3_3 VCC3_3  
VCC3SBY  
VCC5DUAL  
Do Not Stuff  
USB HUB  
R214 R181 R228 R188  
26 AC97_USB-  
26 AC97_USB+  
R153  
0K  
AC_USB_N  
AC_USB_P  
1
1
2
2
330K  
330K  
F3  
2.5A  
POLYSWITCH_RUSB250  
330K  
330K  
NPO  
R151  
0K  
D
D
C
B
A
NPO  
L21  
9
AGP_OC#  
USB_V5  
R179  
USB_PO_A  
1
2
26 AC97_OC#  
R180  
0K  
R187  
0K  
C294  
68UF  
C295  
Do Not Stuff  
470K  
0.1UF  
9
9
AGPUSBN  
AGPUSBP  
R157  
0K  
1
1
2
2
13 OC#0  
R150  
0K  
R186  
560K  
C297  
VCC3_3  
VCC3_3  
0.001UF  
U18  
R233  
0K  
R232  
0K  
8
6
2
4
A
B
C
D
NO POP  
SN75240  
R189  
1.5K  
C
13 USBP0N  
13 USBP0P  
R215  
2
1
2
U16  
15  
R216  
15  
Ja2  
1
13 USBP1P  
13 USBP1N  
USBP1P  
USBP1N  
1
2
1
2
3
4
5
6
7
8
DP0  
DM0  
VCC1  
USB_D2_N  
USB_D2_P  
R24  
USB_D1_N  
USB_D1_P  
11  
DM1  
1
2
2
2
DATA1-  
DATA1+  
GND1  
R25  
0K  
0K  
12  
1
DP1  
3
25  
FB1  
VCC1  
VCC2  
USB_PO_B  
1
VCC2  
USB_D3_N  
USB_D3_P  
15  
DM2  
USB HUB  
DATA2-  
DATA2+  
GND2  
5
USB_CLK  
USB_CLK  
PCIRST#  
27  
4
16  
CLKIN  
RESET#  
DP2  
29 PCIRST#  
USB_GND_B  
1
2
TUSB2043  
U17  
6
8
FB2  
R296  
1K  
RJMAG_USB  
J17  
USB_PO_C  
19  
DM3  
4
2
B
A
D
C
MODESLCT  
EXTMEM#  
31  
26  
20  
MODESLCT  
EXTMEM#  
DP3  
SN75240  
USB_D4_N  
USB_D4_P  
DM4 R184  
1
23  
24  
2
2
FB9  
DM4  
DP4  
15K  
1
2
1
5
32  
2
3
4
EECLK  
SUSPND  
C296  
0.1UF  
DP4 R183  
1
U15  
15K  
PW1  
PW2  
PW3  
PW4  
TP2044  
USB_GND_C  
FB10  
1
2
OUT1  
OUT2  
OUT3  
9
3
4
7
8
15  
14  
11  
10  
PWRON1#  
PWRON2#  
PWRON3#  
PWRON4#  
EN1#  
EN2#  
EN3#  
EN4#  
OUT1  
OUT2  
OUT3  
OUT4  
FB8  
13  
17  
21  
J21  
USB_PO_D  
29  
30  
1
2
1
B
TESTOUT  
TESTIN  
2
3
4
USB_GND_D  
2
6
1
2
IN1  
IN2  
OC1  
10  
14  
18  
22  
16  
13  
12  
9
OVRCUR1#  
OVRCUR2#  
OVRCUR3#  
OVRCUR4#  
OC1#  
OC2#  
OC3#  
OC4#  
FB11  
OC2  
OC3  
1
5
GND1  
GND2  
OC4  
7
28  
GND1  
GND2  
C7  
USB_GND_A  
L10  
8
6
BUSPWR  
EEDATA/GANGED  
VCC3SBY  
100UF  
C331  
47PF  
C330  
47PF  
C342  
100UF  
C26  
47PF  
TUSB2043  
C343  
100UF  
R301 R300 R299 R298  
1K 1K 1K 1K  
15K  
15K  
15K  
15K  
A
Title:  
INTEL(R) 82815 CHIPSET CUSTOMER REFERENCE BOARD  
USB HUB  
REV.  
1.0  
15K  
15K  
15K 15K  
Platform Apps Engineering  
Last Revision Date:  
3-26-01  
of  
1900 Prairie City Road  
Folsom, CA 95630  
R
int l  
Sheet:  
19  
e
40  
5
4
3
2
1
5
4
3
2
1
PARALLEL PORT  
VCC5  
D
C
B
A
D
C
B
A
CR3  
VCC5_DB25_CR  
1
2
1N4148  
RP40  
2.2K  
RP39  
2.2K  
RP42  
2.2K  
RP46  
2.2K  
R84  
2.2K  
J8A  
DB25  
15 SLCT#  
SLCT#  
PE  
13  
25  
12  
24  
11  
23  
10  
22  
9
21  
8
20  
7
19  
6
18  
5
17  
4
15 PE  
15 BUSY  
15 ACK#  
BUSY  
ACK#  
J8_9  
J8_8  
J8_7  
J8_6  
J8_5  
J8_17  
J8_4  
J8_16  
J8_3  
15 PDR[7:0]  
RP63 33  
PDR7  
PDR6  
PDR5  
PDR4  
1
8
2
3
4
7
6
5
PDR3  
PDR2  
SLCTIN#  
1
2
3
4
8
7
6
5
15 SLCTIN#  
15 PAR_INIT#  
PAR_INIT#  
16  
3
15  
2
14  
1
15 ERROR#  
ERROR#  
RP41  
33  
J8_2  
J8_14  
J8_1  
RP38  
PDR1  
PDR0  
ALF#  
1
2
3
4
8
7
6
5
15 ALF#  
15 STROBE#  
STROBE#  
33  
Title:  
INTEL(R) 82815 CHIPSET CUSTOMER REFERENCE BOARD  
PARALLEL PORT  
REV.  
1.0  
Platform Apps Engineering  
Last Revision Date:  
3-26-01  
of  
1900 Prairie City Road  
Folsom, CA 95630  
R
int l  
Sheet:  
20  
e
40  
5
4
3
2
1
5
4
3
2
1
Serial Port and Header  
VCC12  
VCC12-  
VCC5  
D
C
B
A
D
C
B
A
J7A  
DB9  
U5  
20  
1
2
3
4
5
6
7
8
VCC  
RY0  
RY1  
RY2  
DA0  
DA1  
RY3  
DA2  
RY4  
GND  
VCC12  
RA0  
RA1  
RA2  
DY0  
DY1  
RA3  
DY2  
RA4  
15 DCD#0  
15 RXD#0  
15 DSR#0  
15 DTR#0  
15 TXD0  
15 CTS#0  
15 RTS#0  
15 RI#0  
DCD0_C  
19  
18  
17  
16  
15  
14  
13  
12  
11  
1
6
2
7
3
8
4
9
5
DSR0_C  
RXD0_C  
RTS0_C  
TXD0_C  
CTS0_C  
DTR0_C  
RI0_C  
9
10  
VCC-12  
VCC3SBY  
GD75232  
C174  
C189  
C184  
C179  
BAT54C  
CRa8  
1
PLACE CLOSE TO HEADER  
100PF  
100PF  
100PF  
100PF  
R276  
10K  
RI#_CR_C  
2
C118  
C173  
C186  
C181  
100PF  
R277  
47K  
100PF  
100PF  
100PF  
2
1
13 ICH_RI#  
Q16  
ICHRI#_C  
1
1
VCC12  
VCC12-  
2ND COM Header Option  
If not populated at all, remove CR14  
and short RI#0_C to RI#CR  
R278  
C398  
47K  
VCC5  
1.0UF  
U23  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
1
2
3
4
5
6
7
8
VCC  
RY0  
RY1  
RY2  
DA0  
DA1  
RY3  
DA2  
RY4  
GND  
VCC12  
RA0  
RA1  
RA2  
DY0  
DY1  
RA3  
DY2  
RA4  
15 DCD#1  
15 RXD#1  
15 DSR#1  
15 DTR#1  
15 TXD1  
15 CTS#1  
15 RTS#1  
15 RI#1  
DCD#1_C  
RXD#1_C  
DSR#1_C  
DTR#1_C  
TXD#1_C  
CTS#1_C  
RTS#1_C  
RI#1_C  
J22  
1
3
5
7
9
2
4
6
8
NOTE: If Wake from S3 on  
Serial Modem is not supported  
do not stuff CR15 and Q10.  
10  
9
10  
VCC-12  
GD75232  
C353  
C352  
C348  
C346  
100PF  
100PF  
100PF  
100PF  
PLACE CLOSE TO HEADER  
C351  
C347  
C350  
C344  
100PF  
100PF  
100PF  
100PF  
Title:  
INTEL(R) 82815 CHIPSET CUSTOMER REFERENCE BOARD  
SERIAL PORTS  
REV.  
1.0  
Platform Apps Engineering  
Last Revision Date:  
3-26-01  
of  
1900 Prairie City Road  
Folsom, CA 95630  
R
int l  
e
Sheet:  
21  
40  
5
4
3
2
1
5
4
3
2
1
D
C
B
A
Keyboard/Mouse Port  
D
C
B
A
Floppy Disk Header  
VCC5DUAL  
VCC5  
VCC5  
R177  
0K  
R185  
0K  
L4  
RP45  
F1  
R177_F1  
PS2V5_F  
PS2V5  
2
1
2
1
1
2
3
4
8
7
6
5
1.25A  
1K  
RP1  
4.7K  
R131  
1K  
STACKED PS2 CONNECTOR  
J1  
J13  
L3  
15 KDAT  
L_KDAT  
15 DRVDEN#0  
1
2
1
2
4
6
1
3
5
7
2
3
4
5
6
PS2_PD  
15 DRVDEN#1  
15 INDEX#  
15 MTR#0  
L5  
L7  
8
15 KCLK  
15 MDAT  
L_KCLK  
L_MDAT  
1
1
2
2
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
34  
9
11  
13  
15  
17  
19  
21  
23  
25  
27  
29  
31  
33  
15 DS#0  
7
8
9
10  
11  
12  
PS2GND  
15 DIR#  
15 STEP#  
17  
16  
15  
14  
13  
L6  
15 WDATA#  
15 WGATE#  
15 TRK#0  
15 WRTPRT#  
15 RDATA#  
15 HDSEL#  
15 DSKCHG#  
15 MCLK  
L_MCLK  
1
2
C2  
0.1UF  
C1  
C3  
470PF  
470PF  
C4  
470PF  
C5  
470PF  
L1  
L2  
Title:  
INTEL(R) 82815 CHIPSET CUSTOMER REFERENCE BOARD  
KEYBOARD/MOUSE/FLOPPY  
REV.  
1.0  
Platform Apps Engineering  
Last Revision Date:  
3-26-01  
of  
1900 Prairie City Road  
Folsom, CA 95630  
R
int l  
e
Sheet:  
22  
40  
5
4
3
2
1
5
4
3
2
1
Game Port  
D
C
B
A
D
C
B
A
VCC5  
R223  
1K  
R225  
1K  
R230  
1K  
R218  
1K  
R229  
1K  
R217  
1K  
VCC5  
J6-1  
DB15  
31  
1
9
2
10  
3
11  
4
12  
5
13  
6
15 J1BUTTON1  
15 J2BUTTON1  
15 JOY1X  
R219 2.2K 5%  
JOY1X_R  
JOY2X_R  
1
2
2
15 JOY2X  
R221 2.2K 5%  
1
2
15 MIDI_OUT  
R227  
47  
R222 2.2K 5%  
MIDI_OUT_R  
1
15 JOY2Y  
15 JOY1Y  
15 J2BUTTON2  
15 J1BUTTON2  
15 MIDI_IN  
JOY2Y_R  
JOY1Y_R  
1
2
R220 2.2K 5%  
1
2
14  
7
15  
8
R226  
MIDI_IN_R  
1
2
47  
32  
C30  
C112  
25V  
10%  
C333  
25V  
10%  
C337  
470PF  
470PF  
0.01UF  
0.01UF  
C29  
C67  
C80  
C68  
25V  
10%  
C335  
0.01UF  
25V  
10%  
C334  
50V 47PF 50V 47PF  
50V 47PF 50V 47PF  
0.01UF  
The game port capacitors together and to SIO AVSS.  
Tie to system ground at only a single point.  
Title:  
INTEL(R) 82815 CHIPSET CUSTOMER REFERENCE BOARD  
GAME PORT  
REV.  
1.0  
Platform Apps Engineering  
Last Revision Date:  
3-26-01  
of  
1900 Prairie City Road  
Folsom, CA 95630  
R
int l  
e
Sheet:  
23  
40  
5
4
3
2
1
5
4
3
2
1
Digital Video Out Connector  
(FOR DEBUG PURPOSES ONLY)  
D
C
B
A
D
C
B
A
J10  
8
FTD[11:0]  
Y
D11  
D10  
FTD11  
FTD10  
FTD9  
FTD8  
FTD7  
FTD6  
1
3
G1  
5
7
G2  
9
11  
G3  
13  
15  
G4  
17  
19  
2
4
C
VCC5  
VCC3_3  
G1  
G2  
6
8
CVBS  
SP0  
VCC1_8  
D9  
10  
C260  
1.0UF  
SP1 12  
C261  
C263  
C262  
G3  
G4  
SP2  
14  
SP3 16  
D8  
2.2UF  
1.0UF  
1.0UF  
R145  
1K  
5V1  
18  
5V2 20  
D7  
VCC1_8  
3V1  
22  
3V2  
24  
D6  
21  
23  
G5  
25  
27  
G6  
29  
31  
G7  
33  
35  
G8  
37  
39  
G5  
G6  
G7  
G8  
ST#  
STB  
3V3  
26  
3V4  
28  
R144  
1K  
C257  
C258  
C259  
C266  
C265  
VDD1  
30  
32  
VDD2  
2.2UF  
1.0UF  
1.0UF  
0.01UF  
100PF  
VDD3  
VDD4  
FTD5  
FTD4  
FTD3  
FTD2  
FTD1  
FTD0  
Place this capacitor near pin 40.  
D5  
D4  
34  
36  
38  
40  
VREF  
FTVREF  
PD#  
D3  
D2  
41  
43  
G9  
45  
47  
G10  
49 D1  
51  
G11  
53  
42  
44  
RST#  
PCIRST# 6,9,12,14,15,16,17,18,19,29  
5VFTSDA 25  
G9  
G10  
G11  
G12  
SDA5  
SCL5  
46  
48  
5VFTSCL 25  
SDA  
SCL  
50  
52  
3VFTSDA 8,25  
3VFTSCL 8,25  
D0  
54  
56  
8
8
8
FTCLK0  
FTCLK1  
FTBLNK#  
I/C  
HS  
55  
G12  
57  
SL_STALL  
8
D/B  
58  
FTHSYNC  
FTVSYNC  
8
8
59  
VS 60  
DVO CONNECTOR  
Title:  
INTEL(R) 82815 CHIPSET CUSTOMER REFERENCE BOARD  
DIGITAL VIDEO OUT CONNECTOR  
REV.  
1.0  
Platform Apps Engineering  
Last Revision Date:  
3-26-01  
of  
1900 Prairie City Road  
Folsom, CA 95630  
R
int l  
e
Sheet:  
24  
40  
5
4
3
2
1
5
4
3
2
1
VCC5  
VGA CONNECTOR  
F2 2.5A  
D
C
B
A
D
C
B
A
R103  
1K  
R104  
1K  
BLM11B750S is rated an 75 Ohms an 100MHz  
L18  
8
VID_RED  
VCC5  
1
2
L20  
R107  
75 1%  
C195  
C210  
3.3PF  
3.3PF  
J9  
CR5  
QS4_3V  
2
1
6
L_RED  
MONOPU  
1
11  
7
Place R66, R67, & R69 close to VGA Connector  
L17  
RP47  
2.2K  
8
VID_GREEN  
L_GREEN  
1
2
2
12  
8
R139  
5V to 3.3V TRANSLATION/ISOLATION  
C256  
4.7K  
R106  
75 1%  
C216  
C209  
0.1UF  
L_BLUE  
L_HSYNC  
FUSE_5  
3
13  
9
3.3PF  
3.3PF  
U13  
3
MON2PU  
24  
2
5
6
9
10  
15  
16  
19  
20  
23  
12  
4
14  
10  
8
8
3VDDCDA  
3VDDCCL  
1A1  
1A2  
1A3  
1A4  
1A5  
2A1  
2A2  
2A3  
2A4  
2A5  
BEA#  
BEB#  
VCC  
1B1  
1B2  
1B3  
1B4  
1B5  
2B1  
2B2  
2B3  
2B4  
2B5  
GND  
L_VSYNC  
4
7
8
11  
14  
17  
18  
21  
22  
1
5VDDCDA  
5VDDCCL  
5VHSYNC  
5VVSYNC  
8
8
CRT_HSYNC  
CRT_VSYNC  
5VDDCDA  
5VHSYNC  
5
15  
8,24 3VFTSDA  
8,24 3VFTSCL  
CK_SMBDATA  
CK_SMBCLK  
5VFTSDA 24  
5VFTSCL 24  
R105  
0K  
1
2
5
5
QSSDA  
R142  
0K  
1
2
15 pin VGA CONNECTOR  
SMBDATA 10,11,12,13,30,36  
SMBCLK 10,11,12,13,30,36  
QSSCLR141  
C212  
3.3PF  
C250  
1
2
0K  
3.3PF  
13  
VGA QST3384  
DO NOT STUFF C119 and C122  
5VDDCCL  
5VVSYNC  
R85  
1
2
0K  
R143  
C213  
C188  
1
1
2
2
2.2K  
R140  
3.3PF  
3.3PF  
2.2K  
C185  
C180  
10PF  
Do Not Populate  
10PF  
DO NOT STUFF C100 and C102  
L19  
C249  
10PF  
C208  
10PF  
8
VID_BLUE  
1
2
R109  
75 1%  
C219  
C211  
3.3PF  
3.3PF  
Title:  
INTEL(R) 82815 CHIPSET CUSTOMER REFERENCE BOARD  
VIDEO CONNECTOR  
REV.  
1.0  
Platform Apps Engineering  
Last Revision Date:  
3-26-01  
of  
1900 Prairie City Road  
Folsom, CA 95630  
R
int l  
e
Sheet:  
25  
40  
5
4
3
2
1
5
4
3
2
1
Audio/Modem Riser  
D
C
B
A
D
C
B
A
VCC3SBY  
R206  
4.7K  
VCC12  
VCC5  
VCC3SBY  
VCC12-  
VCC3SBY  
VCC5  
VCC3_3  
J20  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A11  
AUDIO_MUTE#  
GND[0] (ISOLATED)  
MONO_OUT/PC_BEEP  
RESV[1]  
RESV[2]  
PRIMARY_DN#  
-12V  
GND[1]  
+12V  
GND[2]  
+5VD  
KEY  
KEY  
GND[3]  
RESV[3]  
RESV[4]  
+3.3VD  
GND[4]  
AC97_SDATA_OUT  
AC97_RESET#  
AC97_SDATA_IN3  
GND[5]  
AUDIO_PWRDWIN  
MONO_PHONE  
RESV[5]  
RESV[6]  
RESV[7]  
GND[7]  
+5VDUAL/5VSBY  
USB_OC  
27,34 AC97SPKR  
MONO_PHONE 27  
AC97_OC# 19  
U10A  
3
PWR_DWN_U  
PWR_DWN#  
1
2
27 PRI_DWN_RST#  
GND[8]  
SN74LVC08A  
B10  
B11  
AC97_USB+ 19  
AC97_USB- 19  
USB+  
USB-  
KEY  
KEY  
GND[9]  
AC'97 RISER  
AMR_CONNECTOR  
JP17  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
S/P_DIF_IN  
GND[10]  
+3VDUAL/3VSBY  
GND[11]  
AC97_SYNC  
GND[12]  
AC97_SDATA_IN1  
GND[13]  
13,27 AC_SDOUT  
13 AC_RST#  
AC_SYNC 13,27  
AC_SDIN1 13,36  
AC97_SDATA_IN2  
GND[6]  
AC97_MSTRCLK  
AC97_SDATA_IN0  
GND[14]  
AC97_BITCLK  
AC_SDIN0 13,27,36  
AC_BITCLK 13,27  
AC'97 RISER  
Title:  
INTEL(R) 82815 CHIPSET CUSTOMER REFERENCE BOARD  
AUDIO/MODEM RISER  
REV.  
1.0  
Platform Apps Engineering  
Last Revision Date:  
3-26-01  
of  
1900 Prairie City Road  
Folsom, CA 95630  
R
int l  
e
Sheet:  
26  
40  
5
4
3
2
1
5
4
3
2
1
VCC3_3  
VCC5_AUDIO  
AC'97 Audio Codec  
C358  
C354  
C308  
0.1UF  
0.1UF  
0.1UF  
D
C
B
A
D
C
B
A
VCC3_3  
VCC12  
VCC5_AUDIO  
VR7  
MC78M05CDT  
C359  
3
+5V  
1
VIN  
0.1UF  
2
GND  
C406  
10UF  
C405  
0.1UF  
VCC3_3  
R244  
C403  
10UF  
C360  
0.1UF  
L22  
1
2
U24  
100K  
12  
24  
23  
21  
22  
20  
18  
19  
17  
16  
14  
15  
PC_BEEP  
LINE_IN_R  
LINE_IN_L  
MIC1  
28 LINE_IN_R  
28 LINE_IN_L  
28 MIC_IN  
ORU_DWN_RST#_RR241  
AC_SDATAOUT_R 0K  
PRI_DWN_RST# 26  
11  
5
8
10  
6
1
2
RESET#  
R240  
0K  
AC_SDOUT 13,26  
AC_SDIN0 13,26,36  
AC_SYNC 13,26  
AC_BITCLK 13,26  
1
2
2
MIC2  
CD_R  
CD_L  
SDATA_OUT  
SDATA_IN  
SYNC  
28 CD_R  
28 CD_L  
28 CD_REF  
AC_SDATAIN_R R239  
1
2
AC_SYNC_R  
0K R242  
1
AC_BITCLK_R  
R243  
0K  
0K  
1
2
CD_GND  
VIDEO_R  
VIDEO_L  
AUX_L  
BIT_CLK  
C402  
1
1UF-TANT  
26 MONO_PHONE  
26,34 AC97SPKR  
2
1
AC'97 CODEC  
46  
45  
48  
47  
CS1  
CS0  
2
AUX_R  
PHONE  
C412  
MONO_PHONE_C  
13  
CHAIN_CLK  
CHAIN_IN  
1UF-TANT  
MONO_OUT_C  
37  
36  
35  
41  
39  
EAPD 28  
MONO_OUT  
LINE_OUT_R  
LINE_OUT_L  
LNLVL_OUT_R  
LNLVL_OUT_L  
28 LNLVL_OUT_R  
28 LNLVL_OUT_L  
R237  
AD1819  
JP18  
CX3D  
RX3D  
100K  
AUD_VREFOUT 28  
C411  
0.1UF  
AC_XTAL_IN  
Y3  
1
2
C408  
C409  
C307  
C361  
XTAL  
C355  
C356  
22PF  
VREF  
22PF  
C410  
C367 C404  
0.1UF  
0.1UF  
C407  
1
2
Title:  
INTEL(R) 82815 CHIPSET CUSTOMER REFERENCE BOARD  
AC'97 AUDIO CODEC  
REV.  
1.0  
0.1UF  
Platform Apps Engineering  
Last Revision Date:  
3-26-01  
of  
1900 Prairie City Road  
Folsom, CA 95630  
R
int l  
e
Sheet:  
27  
40  
5
4
3
2
1
5
4
3
2
1
STEREO HP/SPEAKER OUT  
Audio Connectors  
C226  
1
R112  
FB6  
HP_OUTA_FB  
J6-4  
HP_OUTA_C1  
2
1
2
1
2
2
100UF  
20  
20  
HP_OUTA_C2  
HP30  
HP29  
HP_OUTB_C2  
HP28  
R118  
FB7  
HP_OUTB_C1  
HP_OUTB_FB  
1
2
1
2
1
100UF  
HP27  
HP26  
D
C
B
A
D
C
B
A
C237  
DB15 AUD_STK  
MICROPHONE INPUT  
C235  
C236  
27 AUD_VREFOUT  
R108  
2.2K  
1
1
2
HP_OUTA  
J6-2  
MIC_IN_FB  
R297  
M20  
M19  
M18  
M17  
M16  
C217  
MIC_IN_C  
FB4  
C36  
27 MIC_IN  
R110  
1K  
MIC_IN_R  
C218  
1
2
2
1
2
20K  
100PF  
1UF-TANT  
C222  
0.01UF  
DB15 AUD_STK  
VCC5_AUDIO  
U20  
C224  
1
2
3
4
8
7
6
5
OUTA  
INA  
BYPASS  
GND  
VDD  
OUTB  
INB  
27 LNLVL_OUT_R  
27 LNLVL_OUT_L  
LNLVL_R_CR111  
LNLVL_R_R  
BYPASS  
HP_OUTB  
LNLVL_L_R  
1
1
2
1
2
2
1UF-TANT  
20K  
SHUTDN  
C225  
LNLVL_L_CR113  
R172  
C282  
100PF  
2
1
LM4880  
27 EAPD  
LINE_IN ANALOG INPUT  
1UF-TANT  
20K  
C321  
1UF  
20K  
J6-3  
C221  
FB5  
27 LINE_IN_R  
27 LINE_IN_L  
LINE_IN_R_C  
LINE_IN_L_C  
LINE_IN_R_FB  
1
2
1
2
LI25  
LI24  
LI23  
LI22  
LI21  
1UF-TANT  
C183  
FB3  
LINE_IN_L_FB  
1
2
1
2
1UF-TANT  
C283  
0.1UF  
DB15 AUD_STK  
C220  
C182  
CD ANALOG INPUT  
C304  
1
R234  
4.7K  
CD_L_C  
CD_L 27  
1
1
1
2
2
2
2
2
2
1UF  
JP27  
C309  
1
CD_L_J  
CD_REF_J  
1
2
3
4
R235  
4.7K  
CD_REF_C  
CD_R_C  
CD_REF 27  
CD_R 27  
CD_R_J  
1UF  
C357  
1
R246  
4.7K  
1UF  
R245  
4.7K  
R236  
4.7K  
R238  
4.7K  
Title:  
INTEL(R) 82815 CHIPSET CUSTOMER REFERENCE BOARD  
AUDIO CONNECTORS  
REV.  
1.0  
Platform Apps Engineering  
Last Revision Date:  
3-26-01  
of  
1900 Prairie City Road  
Folsom, CA 95630  
R
int l  
e
Sheet:  
28  
40  
5
4
3
2
1
5
4
3
2
1
VCC5  
VCC3SBY VCC3SBY  
VCC3SBY  
VCC3SBY  
VCC3SBY  
LAN  
R149  
4.7K 5%  
LAN Decoupling  
Distribute around Power  
Pins Close to 82559.  
U19  
D
C
B
A
D
C
B
A
12,16,17 AD[31:0]  
AD[31:0]  
AD0  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
AD8  
AD9  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
AD17  
AD18  
AD19  
AD20  
AD21  
AD22  
AD23  
AD24  
AD25  
AD26  
AD27  
AD28  
AD29  
AD30  
AD31  
N7  
M7  
P6  
P5  
N5  
M5  
P4  
N4  
P3  
N3  
N2  
M1  
M2  
M3  
L1  
AD0  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
VCC3SBY  
LILED 30  
ACTLED 30  
SPEEDLED 30  
TDP 30  
TDN 30  
RDP 30  
A12  
C11  
B11  
C13  
C14  
E13  
E14  
B10  
C5  
LILED  
ACTLED  
SPEEDLED  
TDP  
C300  
C303  
C301  
TDN  
RDP  
RDN  
0.1UF  
0.1UF  
0.1UF  
RDN 30  
AD8  
AD9  
SMBALRT#  
CSTSCHG  
PME#  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
AD17  
AD18  
AD19  
AD20  
AD21  
AD22  
AD23  
AD24  
AD25  
AD26  
AD27  
AD28  
AD29  
AD30  
AD31  
A6  
PCI_PME# 9,12,16,17  
VCC3SBY  
J13  
J12  
K14  
L14  
L13  
L12  
M14  
M13  
N14  
P13  
N13  
M12  
M11  
P10  
N10  
M10  
P9  
F14  
F13  
F12  
G12  
H14  
H13  
H12  
J14  
P7  
N9  
M8  
M9  
C8  
A13  
D13  
D14  
D12  
B12  
B14  
B13  
C12  
D10  
G4  
FLA0/PCIMODE#  
FLA1/AUXPWR  
FLA2  
LANAPWR  
R198  
3K  
1
2
L2  
FLA3  
FLA4  
FLA5  
FLA6  
C299  
C302  
C298  
K1  
E3  
D1  
D2  
D3  
C1  
B1  
B2  
B4  
A5  
B5  
B6  
C6  
C7  
A8  
B8  
0.1UF  
0.1UF  
0.1UF  
VCC3SBY  
FLA7  
FLA8/IOCHRDY  
FLA9/MRST  
FLA10/MRING#  
FLA11/MINT  
FLA12/MCNTSM#  
FLA13/EEDI  
FLA15/EEDO  
FLA15/EESK  
FLA16  
VCC3SBY  
U14  
EEDI  
EEDO  
EESK  
3
4
2
1
EEDI  
C306  
C305  
7
6
EEDO  
EESK  
EECS  
NC2  
NC1  
4.7UF  
4.7UF  
82559  
FLD0  
FLD1  
FLD2  
FLD3  
FLD4  
FLD5  
FLD6  
FLD7  
EECS  
FLCS#  
FLOE#  
FLWE#  
CLKRUN#  
TEST  
TEXEC  
TCK  
TI  
TO  
LAN 93C46  
DO NOT STUFF  
619  
R199  
1
R200 619  
12,16,17 C_BE#[3:0]  
Place C305/C306  
Close to Ball A10  
C_BE#[3:0]  
C_BE#0  
C_BE#1  
C_BE#2  
C_BE#3  
M4  
L3  
F3  
C4  
C/BE0#  
C/BE1#  
C/BE2#  
C/BE3#  
FLD5_PD  
FLD6_PD  
1
2
2
EECS  
12,16,17,36 FRAME#  
F2  
F1  
G3  
H3  
H1  
J1  
H2  
J2  
A2  
A4  
C3  
J3  
FRAME#  
IRDY#  
TRDY#  
DEVSEL#  
STOP#  
PAR  
INTA#  
PERR#  
SERR#  
IDSEL  
REQ#  
12,16,17,36 IRDY#  
12,16,17,36 TRDY#  
12,16,17,36 DEVSEL#  
12,16,17,36 STOP#  
12,16,17 PAR  
62K  
2
LANCLKRUN R203  
1
LAN_TEST  
1
2
R205  
9,12,16,17,36 PIRQ#A  
4.7K  
16,17 PERR#  
12,16,17,36 SERR#  
12,16,17 AD20  
549  
2
R204  
R_LANIDS  
RBIAS10  
RBIAS100  
R201  
1
1
2
1
RBIAS10  
RBIAS100  
VREF  
NC11  
NC10  
12,36 PREQ#3  
12,36 PGNT#3  
100  
2
R202  
GNT#  
RST#  
CLK  
6,9,12,14,15,16,17,18,19,24 PCIRST#  
619  
C2  
G1  
5
PCLK_5  
A14  
J4  
L7  
P1  
D9  
L8  
P14  
H4  
A1  
NC9  
NC8  
NC7  
NC6  
NC5  
NC4  
NC3  
NC2  
30 LAN_ISOLATE#  
30 LAN_RST#  
B9  
A9  
ISOLATE#  
ALTRST#  
30 L_SMBCLK  
30 L_SMBD  
A10  
C9  
SMBCLK  
SMBD  
LAN 82559  
VIO  
G2  
N11  
P11  
VIO  
X1  
NC1  
LAN_XTAL1  
LAN_XTAL2  
X2  
Y2  
25MHZ  
C254  
22PF  
C251  
22PF  
C255  
Title:  
INTEL(R) 82815 CHIPSET CUSTOMER REFERENCE BOARD  
LAN  
REV.  
1.0  
0.1UF  
Platform Apps Engineering  
Last Revision Date:  
3-26-01  
of  
1900 Prairie City Road  
Folsom, CA 95630  
R
int l  
e
Sheet:  
29  
40  
5
4
3
2
1
5
4
3
2
1
LAN  
VCC3SBY  
VCC3SBY  
D
C
B
A
D
C
B
A
R138  
330  
R146  
330  
R148  
330  
R147  
330  
29 TDP  
R294  
J2  
100  
LAN RJMAG/USB  
LI_CR  
R23  
ACTLED 29  
LILED 29  
13  
14  
16  
17  
10  
9
1
2
TD+  
1
2
29 TDN  
29 RDP  
330  
TD-  
RD+  
RD-  
R295  
121  
18  
15  
20  
19  
12  
11  
NC  
3
4
RDC  
P20  
P19  
SPEEDLED 29  
JP14  
JP16  
JP15  
29 RDN  
NO POP R295  
Place R294 and R295 near 82559  
29 LILED  
29 ACTLED  
29 SPEEDLED  
NOTE: Chassis Ground, use  
plane for this signal  
VCC3SBY  
R267  
4.7K  
JP22  
10,11,12,13,25,36 SMBCLK  
13 GPIO27  
1
2
3
JP8_SMBC  
R266  
1
2
L_SMBCLK 29  
0K  
13  
SUS_STAT#  
R256  
0K  
1
1
2
2
LAN_ISOLATE# 29  
VCC3SBY  
13,31,35 PWROK  
R254  
0K  
DO NOT STUFF R198  
R268  
4.7K  
JP19  
13,35 RSMRST#  
JP23  
1
3
LAN_RST# 29  
10,11,12,13,25,36 SMBDATA  
13 GPIO28  
2
1
2
3
JP9_SMBD  
R265  
1
2
L_SMBD 29  
0K  
NOTE: This circuit is for debug purpose only.  
Title:  
INTEL(R) 82815 CHIPSET CUSTOMER REFERENCE BOARD  
LAN  
REV.  
1.0  
Platform Apps Engineering  
Last Revision Date:  
3-26-01  
of  
1900 Prairie City Road  
Folsom, CA 95630  
R
int l  
Sheet:  
30  
e
40  
5
4
3
2
1
5
4
3
2
1
VCC3_3  
V3SB  
VCC3SBY  
VCC5  
VCC5DUAL  
Voltage Regulators  
CR1  
1
2
VCC 3.3V Standby VOLTAGE SWITCH  
R176  
0K  
1
2
This generates 3.3V Standby Power which is on in  
S0, S1, S3, S4 & S5. It passes 3.3V from the ATX  
supply in S0/S1, and 3.3VSB (generated by VR2  
below) in S3/S4/S5.  
C56  
C57  
NPOP  
47UF  
47UF  
NDS356AP  
S
S
D
S
D
VCC 3.3VSB REGULATOR  
D
C
B
A
D
C
B
A
VCC12  
R31  
Q1  
C63  
DO NOT POPULATE 1200UF  
C65  
VCC5SBY  
1200UF  
VCC5SBY  
V3SB  
NDS356AP  
D
S
D
SN74LVC07A HAS 5VINPUT AND OUTPUT TOLERANCE  
VCC5SBY  
4.7K  
VR2  
IN  
LT1117-3_3  
R92  
10K  
Q2  
VCC3SBY  
3
2
OUT  
C62  
C61  
100UF-TANT  
Q7  
22UF-TANT  
PLANE_CTL1  
4
3
2
1
5
6
7
8
U9A  
13,35 SLP_S3#  
U8A  
1
2
PCTL_IN  
1
R89  
V_GQ6  
3
2
1
2
0K  
13,30,35 PWROK  
SI4410DY  
Q5  
VCC5DUAL  
SN74LVC07A  
Q3  
VCC1_8  
VCC 1.8 VOLTAGE REGULATOR  
74LS132  
4
3
2
1
5
6
7
8
R175  
0K  
VCC3_3  
SI4410DY  
CR2  
R32  
470 1%  
VR3  
VCC5  
VCC5SBY  
2
1
VOUT  
ADJ  
3
VIN  
R175_D  
VR1_ADJ  
1
2
VCC5  
D1  
C110  
47UF  
C104  
47UF  
1N5822  
LT1587ADJ  
R33  
220 1%  
C98  
C103  
C99  
100UF-TANT  
VTT 1.5V VOLTAGE REGULATOR  
NDS356AP  
1.0UF  
VCC5  
BAT54C  
S
S
D
S
D
PLACE C99 AT  
THE REGULATOR  
VCC5  
Q4  
R314  
20k  
VTT  
C64  
DO NOT POPULATE 1200UF  
C105  
VCC3_3  
VR1  
U72A  
1200UF  
2
1
VOUT  
ADJ  
3
2
+
-
3
VIN  
VCC 2.5 VOLTAGE REGULATOR  
1
NDS356AP  
VCC2_5  
R315  
49.9 1%  
V1_8SB  
D
VCC5  
S
D
C14  
LM393A  
VCC5  
Q6  
LT1587-ADJ  
VCC5  
C16  
22uF-Tant  
10uF  
C437  
0.1UF  
U72B  
LM393A  
R83  
243 1%  
R316  
1k  
VR5  
U2  
2
1
VOUT  
ADJ  
4
3
2
1
5
6
7
8
5
6
V1_8SB  
R317  
10 1%  
+
-
3
VIN  
7
Q21  
MOSFET N  
VR5_ADJ  
C162  
22UF-TANT  
R318  
C111  
4,5,7 TUAL5  
C438  
0.1UF  
732 1%  
LT1587ADJ  
R82  
243 1%  
SI4410DY  
0.1UF  
2.0 ms  
delay  
VCC12  
nominal  
R319  
2.2k  
VTTPWRGD12  
VTT  
5
R320  
1k 1%  
U3  
4
3
2
1
5
6
7
8
MOSFET N  
Q22  
R321  
1k  
Title:  
SI4410DY  
INTEL(R) 82815 CHIPSET CUSTOMER REFERENCE BOARD  
VOLTAGE REGULATORS  
REV.  
1.0  
VTTPWRGD5# 33  
Platform Apps Engineering  
Last Revision Date:  
Q23  
MOSFET N  
3-26-01  
of  
VTTPWRGD  
3
4
1900 Prairie City Road  
Folsom, CA 95630  
R
int l  
Sheet:  
31  
e
40  
5
4
2
1
5
4
3
2
1
VCC3_3  
AGP, VCMOS Voltage Regulator  
VCC12  
C322  
47UF  
D
C
B
A
D
C
B
A
C315  
10UF  
VDDQ  
NO STUFF R210  
C317  
2
1
R210  
220UF  
VR6  
VCC3_3  
0K  
1
2
3
4
8
7
6
5
SHDN  
VIN  
GND  
FB  
IPOS  
INEG  
GATE  
COMP  
Q13  
C316  
1UF  
VDDQ_G R155  
1
VDDQ_G2  
IRL2203NS  
2
1
1
5.1-5%  
VCC1_8  
LT1575  
R209  
1K  
R121  
C267  
10PF  
VDDQ_COMP  
2
1
R162  
C268  
C271  
C269  
C270  
C242  
C278  
R211  
1K  
2.2K  
C268_R156 R156  
2
1
1
2
7.5K-1%  
1UF-X7R 1UF-X7R 1UF-X7R 1UF-X7R 1UF-X7R  
VR_SHUTDOWN  
0.001UF  
301-1%  
VDDQ_FB  
9
TYPEDET#  
VR_SDB  
Q14  
MMBT3904LT1  
R208  
10K  
R208_Q15  
Q15  
MMBT3904LT1  
R161  
1
2
1.21K-1%  
R174  
1K  
Route VR6 GND to VDDQ output caps and then via to ground.  
VCC3_3  
VCMOS  
Q32  
VIN  
3
2
VOUT  
LT1117ADJ  
C483  
C484  
+
+
R354  
10UF  
10UF  
49.9 1%  
Q32_Feedback  
R355  
10 1%  
Title:  
INTEL(R) 82815 CHIPSET CUSTOMER REFERENCE BOARD  
AGP, VCMOS VOLTAGE REGULATOR  
REV.  
1.0  
Platform Apps Engineering  
Last Revision Date:  
3-26-01  
of  
1900 Prairie City Road  
Folsom, CA 95630  
R
int l  
e
Sheet:  
32  
40  
5
4
3
2
1
5
4
3
2
1
Processor Voltage Regulator  
VCC5  
L9  
1
2
1.7uH  
C78  
C115 C439 C440 C76  
C441  
C117  
10uF  
D
C
B
A
C66  
D
C
B
A
VCC12  
0.1UF 0.1UF  
3300uF  
0.1UF  
3300uF  
4.7uF 4.7uF  
10  
R37  
VCC3_3  
C27  
1.0UF  
C456  
R343  
1k  
1.0UF  
VRM_PWRGD 35  
C442  
2
1
0.001uF  
R324  
VCCVID  
R325  
220  
U73  
220  
3
VID[4:0]  
16  
1
2
3
4
5
8
7
11  
10  
19  
VCC  
VID3  
VID2  
VID1  
VID0  
VID25  
SD  
REF  
COMP  
CT  
CS+  
CS-  
VID3  
VID2  
VID1  
VID0  
VID4  
Q24  
PGND  
18  
R3264.7  
MOSFET N  
1
2
DRVH  
17  
L13  
DRVL  
R32?8?  
R32?9?  
9
6
1
2
2
2
1
1
FB  
PWRGD  
1.2uH  
C443  
820uF  
C444  
820uF  
C445  
1000uF  
31 VTTPWRGD5#  
13  
12  
20  
14  
LRDRV  
15  
R330  
2.2  
VCC5  
1
Q25  
MOSFET N  
R3312.2  
LRFB  
1
2
Stuff only one  
GND  
R332  
R333  
2
2
1
C446  
100pF  
38k 1%  
ADP3170  
0
C447  
4700pF  
R334  
80K 1%  
C448  
0.001uF  
C449  
820uF  
C450  
820uF  
C451  
1000uF  
VCC3SBY  
0.004  
1
2
R335  
C453  
0.1uF  
R336  
22 1%  
V1_8SB  
R337  
28 1%  
Title:  
INTEL(R) 82815 CHIPSET CUSTOMER REFERENCE BOARD  
VRM 8.5  
REV.  
1.0  
Refer to VR Supplier for Layout Guidelines  
Platform Apps Engineering  
Last Revision Date:  
3-26-01  
of  
1900 Prairie City Road  
Folsom, CA 95630  
R
int l  
Sheet:  
33  
e
40  
5
4
3
2
1
5
4
3
2
1
VCC3_3  
R272  
VCC5  
VCC3SBY  
System  
NO STUFF.  
FOR TEST  
ONLY  
R280  
1M  
100K  
C264 C399  
0.1UF  
+
D
C
B
A
D
C
B
A
13 PWRBTN#  
R279  
0K  
1
2
VCC5  
VCC5  
R99  
VCC3_3  
C396  
NO STUFF.  
FOR TEST  
ONLY  
SW2  
J18  
R124  
10K  
R283  
10K  
1.0UF  
15 IRRX  
15 IRTX  
1
2
3
4
5
6
7
8
10K  
R269  
2
R_IRTX  
1
2
82  
INFRARED  
VCC3_3  
VCC3_3  
R270  
4.7K  
1
PBSWITCH  
PBTN_IN  
POWER SW.  
9
R281  
470  
1
2
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
U11B  
18 IDEACTP#  
18 IDEACTS#  
IDE_ACTIVE  
H.D. LED  
3
4
FP_PD  
SN74LVC07A  
1
U11A  
VCC5  
2
POWER LED  
SN74LVC07A  
R282  
PWRLED  
1
2
220  
15 KEYLOCK#  
KEY LOCK  
SPEAKER  
26,27 AC97SPKR  
13 ICH_SPKR  
SPKR_IN  
R289  
68  
R_SPKRIN  
1
1
2
2
JP28  
FNT_PNL_CONN  
VCC5  
VCC3_3  
R290  
68  
1
Q17  
2
2N3904  
SPKR  
R291  
SPKR_Q1G  
C426  
C400  
C247  
470PF  
3
1
2
2.2K  
SP1  
0.1UF  
470PF  
SPKR_NEG  
SPEAKER CIRCUIT  
RP62  
4.7K  
SPEAKER  
FAN HEADERS  
VCC3SBY  
VCC3SBY  
VCC3SBY  
VCC3SBY  
R96  
330  
R97  
330  
VCC3SBY  
VCC12  
VCC12  
CRa4  
R275  
330  
C392  
C394  
U8C  
5
J27  
0.1UF  
J4  
0.1UF  
U8B  
LED  
13 GPIO23_FPLED  
GP23LED  
GP26LED  
1
2
3
1
2
3
3
4
6
GPIO26_FPLED 13  
CRb4  
R90  
SN74LVC07A  
SN74LVC07A  
On-Board LED indicates th Standby  
15 TACH1  
15 TACH2  
VCC12  
4.7K  
Well is on to prevent Hot-Swapping  
Memory  
LED  
VCC12  
CR7  
LED  
C393  
C391  
J28  
0.1UF  
J26  
0.1UF  
1
2
3
1
2
3
Title:  
INTEL(R) 82815 CHIPSET CUSTOMER REFERENCE BOARD  
SYSTEM, PART 1  
REV.  
1.0  
15 PWM1  
15 PWM2  
Platform Apps Engineering  
Last Revision Date:  
3-26-01  
of  
1900 Prairie City Road  
Folsom, CA 95630  
R
int l  
e
Sheet:  
34  
40  
5
4
3
2
1
5
4
3
2
1
ITP RESET CIRCUIT - FOR DEBUG ONLY  
VCC3SBY  
VCC3SBY  
System  
Power Connector and Reset Control  
VCC5SBY  
R123  
243  
VCC12  
VCC3_3  
VCC5SBY  
VCC5  
VCC2_5  
U10B  
D
D
C
B
A
4
DBRESET#  
4
5
DBRST  
R94  
VCC3SBY  
6
VCC_5-  
R62  
330  
SN74LVC08A  
U12A  
U12B  
0K  
SN74LVC06A has 5V  
input tolerance  
VCC12-  
R302  
R
ST23  
VCC5SBY  
1
2
3
4
VCC3SBY  
74LVC14A  
74LVC14A  
U7A  
1
2
PWRGOOD  
4
R344  
1.8k  
SN74LVC06A  
J5  
VCC3SBY  
DBRPOK  
U9B  
R95  
R91  
DBRPOK_DLY  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
1
2
3
4
5
6
7
8
1
2
0K  
1
2
0K  
4
5
3_3V11  
-12V  
GND13  
3_3V1  
3_3V2  
GND3  
5V4  
PWROK#  
6
31 SLP_S3#  
U7C  
C148  
VCC3SBY  
5VPSON  
DO NOT POPULATE R95  
R88  
5
6
PS_ON  
1.0UF  
74LS132  
GND15 ATX GND5  
SN74LVC06A  
GND16  
GND17  
-5V  
5V6  
GND7  
PW_OK  
5VB  
4.7K  
C
SN74LVC06A has 5V input  
tolerance  
ATX_PWOK  
U7B  
9
10  
5V19  
5V20  
3
4
PWROK 13,30,31  
12V  
SN74LVC06A  
R87  
20k  
33 VRM_PWRGD  
1k Ohm Pull-up to 3.3V is on VRM Sheet  
SW1  
RESUME RESET CIRCUITRY  
Schmitt Trigger Logic using a  
22msec delay  
RST_PD  
R81  
1
2
22  
PBSWITCH  
C160  
C161  
+
0.01UF  
1
2
10UF  
JP13  
Place JP13 Near Front Panel Header (J20)  
VCC3SBY  
VCC3SBY  
B
VCC3SBY  
U12C  
U12D  
31 SLP_S3#  
R125  
R127  
V3RSMRST  
C248  
ST69  
1
2
8.2K  
1
2
5
6
9
8
RSMRST# 13,30  
22K  
74LVC14A  
74LVC14A  
R128  
VCC3SBY  
1.0UF  
8.2k  
U10C  
9
DBRPOK  
CK_PWRD  
R126  
8
1
2
0K  
CK_PWRDN#  
5
10  
Do Not Stuff R126 - For Test Only:  
If R125 is Populated, R126  
Must Be DE-Populated.  
SN74LVC08A  
A
Title:  
INTEL(R) 82815 CHIPSET CUSTOMER REFERENCE BOARD  
SYSTEM, PART 2  
REV.  
1.0  
Platform Apps Engineering  
Last Revision Date:  
3-26-01  
of  
1900 Prairie City Road  
Folsom, CA 95630  
R
int l  
Sheet:  
35  
e
40  
5
4
3
2
1
5
4
3
2
1
VCC5  
RP67  
17 PERR#_PU  
12,16,17,29 SERR#  
12,16,17 PLOCK#  
12,16,17,29 STOP#  
12,16,17,29 DEVSEL#  
12,16,17,29 TRDY#  
12,16,17,29 IRDY#  
12,16,17,29 FRAME#  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
ICH  
PCI Bus  
VCC3SBY  
CPU  
VCMOS  
VCC5  
VCC5  
RP61  
RP57  
13 SMBALERT#  
13 LDRQ#1  
13 GPIO12  
1
2
3
4
8
7
6
5
1
8
7
6
5
D
C
B
A
D
C
B
A
16 SDONEP2  
2
3
4
R13  
150  
VCC5  
13 GPIO13  
4,12 APICD0  
4,12 APICD1  
4,12 FERR#  
2.7K  
1
2
16 SBOP2  
4.7K  
RP60  
RP66  
12,16,17 PIRQ#D  
12,16,17 PIRQ#C  
9,12,16,17 PIRQ#B  
9,12,16,17,29 PIRQ#A  
12,29 PREQ#3  
5.6K  
RP58  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
R11  
1
2
150  
17 SDONEP3  
17 SBOP3  
16,17 PTDI  
16,17 PTMS  
10,11,12,13,25,30 SMBDATA  
10,11,12,13,25,30 SMBCLK  
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
12,17 PREQ#2  
12,16 PREQ#1  
12 PREQ#0  
R14  
1
2
150  
5.6K  
RP59  
4.7K  
VCC5  
2.7K  
VCC3_3  
VCC3_3  
RP53  
17 PU3_ACK64#  
16 PU2_ACK64#  
17 PU3_REQ64#  
16 PU2_REQ64#  
1
2
3
4
8
7
6
5
RP56  
12 PGNT#0  
12,16 PGNT#1  
12,17 PGNT#2  
12,29 PGNT#3  
1
2
3
4
8
7
6
5
12 REQ#B/GPIO1  
1
2
3
4
8
7
6
5
12 GNT#B/GPIO17  
12,15,17 SERIRQ  
2.7K  
8.2K  
8.2K  
RP51  
VCC3SBY  
12,17 PCPCI_REQ#A  
12,13 THERM#  
12,15 RCIN#  
1
2
3
4
8
7
6
5
Unused Gates  
12,15 A20GATE  
U12E  
8.2K  
RP54  
11  
10  
74LVC14A  
VCC3_3  
VCC3SBY  
13,15 LPC_SMI#  
13,17 GPIO7  
1
2
3
4
8
7
6
5
For Future Compatability Upgrade  
R12  
56  
4
4
RTTCTRL  
1
2
8.2K  
RP55  
R28  
110  
U11D  
U8D  
8
U12F  
SLEWCTRL  
1
2
9
11  
13  
8
9
11  
13  
13  
12  
1
2
3
4
8
7
6
5
SN74LVC07A  
SN74LVC07A  
74LVC14A  
13 GPIO22  
13,15 LPC_PME#  
13,17 GPIO21  
VCC5SBY  
VCC3SBY  
8.2K  
RP52  
VCCRTC VCC5  
13 INTRUDER#  
1
2
3
4
8
7
6
5
U11E  
10  
U8E  
10  
12,18 IRQ14  
12,18 IRQ15  
U9C  
9
SN74LVC07A  
SN74LVC07A  
U7E  
8
8.2K  
11  
10  
10  
SN74LVC06A  
74LS132  
13,26,27 AC_SDIN0  
13,26 AC_SDIN1  
R263  
1
2
10K  
R262  
1
2
10K  
U11F  
U8F  
12  
12  
SN74LVC07A  
SN74LVC07A  
U9D  
U7F  
12  
12  
13  
13  
11  
SN74LVC06A  
Title:  
INTEL(R) 82815 CHIPSET CUSTOMER REFERENCE BOARD  
PULLUP/PULLDOWN RESISTORS  
REV.  
1.0  
74LS132  
Platform Apps Engineering  
Last Revision Date:  
3-26-01  
of  
1900 Prairie City Road  
Folsom, CA 95630  
R
int l  
e
Sheet:  
36  
40  
5
4
3
2
1
5
4
3
2
1
370-pin Socket Decoupling  
D
C
B
A
D
C
B
A
VCCVID DECOUPLING  
Place in 370 PGA Socket Cavity  
VCCVID  
C82  
C88  
C44  
C39  
C35  
C37  
C89  
C55  
C86  
C48  
C91  
C49  
C53  
C50  
C51  
C52  
4.7UF  
4.7UF  
4.7UF  
4.7UF  
4.7UF  
4.7UF  
4.7UF  
4.7UF  
4.7UF  
4.7UF  
4.7UF  
4.7UF  
4.7UF  
4.7UF  
4.7UF  
4.7UF  
VTT DECOUPLING  
0603 Package placed within 200mils of VTT Termination R-packs.  
One Capacitor for every 2 R-packs  
VTT  
C6  
+
C458  
+
C93  
C459 C460 C461 C462 C463 C464 C465 C466 C467 C468 C469 C470 C471 C472  
4.7 uF  
4.7 uF  
0.1UF 0.1UF 0.1UF 0.1UF 0.1UF 0.1UF 0.1UF 0.1UF 0.1UF 0.1UF 0.1UF 0.1UF 0.1UF 0.1UF 0.1UF  
Title:  
INTEL(R) 82815 CHIPSET CUSTOMER REFERENCE BOARD  
DRAM, ICH, & GMCH DECOUPLING  
REV.  
1.0  
Platform Apps Engineering  
Last Revision Date:  
3-26-01  
of  
1900 Prairie City Road  
Folsom, CA 95630  
R
int l  
e
Sheet:  
37  
40  
5
4
3
2
1
5
4
3
2
1
GMCH DECOUPLING  
DISPLAY CACHE DECOUPLING  
ICH DECOUPLING  
Distribute near the 1.8V  
power pins of the ICH  
Distribute near the VCCSUS  
power pins of the ICH  
ICH 3.3V Plane Decoupling:  
Place 1 .uF/.01uF pair in each  
corner, and 2 on opposite sides  
close to component if they fit.  
VCC1_8  
VDDQ  
Display Cache: Near the power pins.  
VCC3_3  
VCC1_8  
VCC3SBY  
D
C
B
A
D
C
B
A
C192  
+
C42 C34  
C238 C288  
C382 C473 C474 C475 C476  
+
C193 C131 C197 C127 C428 C135  
+
+
C275 C276 C243 C277 C273 C272 C274 C281  
C383 C332 C290 C293 C339 C329 C327 C328 C326 C324 C325 C338  
0.1UF 0.1UF 0.1UF 0.1UF 0.1UF 0.1UF 0.01UF0.01UF0.01UF0.01UF0.01UF0.01UF  
C287 C292 C286 C477  
0.1UF 0.1UF 0.1UF 0.1UF  
C381  
10UF 0.1UF 0.1UF 0.1UF 0.1UF 0.1UF 0.1UF  
4.7UF 4.7UF 4.7UF 4.7UF 0.1UF 0.1UF 0.1UF 0.1UF 0.1UF 0.1UF 0.1UF 0.1UF  
2.2UF 2.2UF 0.1UF 0.1UF 0.1UF 0.1UF  
GMCH Core Plane Decoupling:  
Place 1 .1uF/.01uF pair in each  
corner and 2 on opposite sides  
close to component if they fit.  
SYSTEM MEMORY DECOUPLING  
VCC1_8  
VCC3SBY  
DIMM Decoupling:  
Distribute near DIMM0  
Power pins.  
C70  
C69 C54 C97  
C223 C194 C429 C227 C240 C430 C191 C132  
0.01UF0.01UF0.01UF0.01UF0.01UF0.01UF0.01UF0.01UF  
C141 C202 C204 C96 C246 C58  
0.1UF 0.1UF 0.1UF 0.1UF 0.1UF 0.1UF  
+
4.7UF 4.7UF 4.7UF 4.7UF  
BULK POWER DECOUPLING  
VCC12-  
VDDQ  
GMCH 3.3V IO Decoupling:  
Place near GMCH Display  
Cache Quadrant.  
VCC3_3  
VCC5  
VCC_5-  
VCC12  
C24  
+
C421  
+
C241  
+
C231 C234 C229 C228 C232 C230 C432 C431 C433  
0.01UF0.01UF0.01UF0.01UF0.01UF0.01UF0.01UF0.01UF0.01UF  
C59  
C23  
C379  
C378  
C60 C22  
C21  
C365 C311 C349 C19  
C366 C362 C413 C310 C364  
+
+
22UF 0.1UF 0.1UF  
22UF 0.1UF  
0.1UF  
0.1UF 0.1UF  
22UF 0.1UF 0.1UF 0.1UF 0.1UF  
0.1UF 0.1UF 0.1UF 0.1UF  
22UF  
22UF  
.1F on back side. Do not populate.  
DIMM1 Decoupling:  
VCC3SBY  
Distribute as close as possible to  
GMCH System Memory  
Quadrant.  
VCC3SBY  
VCC3_3  
3 VOLT DECOUPLING  
Distribute near DIMM1  
Power Pins.  
C20  
C169 C245 C252 C32  
C28 C31 C95  
C142 C203  
C137 C139 C199 C136 C198 C133 C138 C200 C201 C435 C434 C427  
0.01UF0.01UF0.01UF0.01UF0.01UF0.01UF0.01UF0.01UF0.01UF0.01UF0.01UF0.01UF  
+
C375 C373 C376 C416 C417 C374 C371 C370 C420 C313 C418 C314 C318 C319 C419 C377 C323 C372 C369 C320  
0.1UF 0.1UF 0.1UF 0.1UF 0.1UF 0.1UF 0.1UF 0.1UF 0.1UF 0.1UF 0.1UF 0.1UF 0.1UF 0.1UF 0.1UF 0.1UF 0.1UF 0.1UF 0.1UF 0.1UF  
4.7UF 4.7UF 4.7UF 4.7UF 0.1UF 0.1UF 01.UF 0.1UF 0.1UF 0.1UF  
.01F on back side. Do not  
populate.  
Title:  
INTEL(R) 82815 CHIPSET CUSTOMER REFERENCE BOARD  
VRM DECOUPLING  
REV.  
1.0  
Platform Apps Engineering  
Last Revision Date:  
3-26-01  
of  
1900 Prairie City Road  
Folsom, CA 95630  
R
int l  
e
Sheet:  
38  
40  
5
4
3
2
1
5
4
3
2
1
Hub Interface Connector  
D
C
B
A
D
C
B
A
J29  
PROBE_CONNECTOR  
5
HUBPRB_3V66  
8,12 HL[10:0]  
HUBREF 7,8,12  
2
4
6
1
3
5
7
HL0  
HL1  
HL2  
HL3  
HL9  
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
34  
36  
38  
40  
42  
44  
46  
48  
50  
9
11  
13  
15  
17  
19  
21  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
47  
49  
VCC1_8  
8,12 HLSTB  
8,12 HLSTB#  
HL10  
HL8  
HL4  
HL5  
HL6  
HL7  
P08-050-SL-A-G  
Title:  
INTEL(R) 82815 CHIPSET CUSTOMER REFERENCE BOARD  
HUB INTERFACE CONNECTOR  
REV.  
1.0  
Platform Apps Engineering  
Last Revision Date:  
3-26-01  
of  
1900 Prairie City Road  
Folsom, CA 95630  
R
int l  
e
Sheet:  
39  
40  
5
4
3
2
1
5
4
3
2
1
D
C
B
A
D
C
B
A
V1_8SB  
VCC1_8  
V3SB  
R349  
1K  
R350  
1K  
R351  
22K  
PWRBTN# 13,34  
R352  
1K  
Q30  
NPN  
R353  
1.6K  
Q31  
NPN  
4
THERMTRIP#  
Title:  
INTEL(R) 82815 CHIPSET CUSTOMER REFERENCE BOARD  
REV.  
THERMTRIP  
1.0  
Platform Apps Engineering  
Last Revision Date:  
3-26-01  
1900 Prairie City Road  
Folsom, CA 95630  
R
int l  
e
Sheet:  
40  
40  
of  
5
4
3
2
1

JVC GD V501PCE User Manual
KitchenAid Convection Oven KEBS277 User Manual
LG Electronics LG Life Good Computer Monitor W2040T User Manual
Parallels AFICIO LD435C User Manual
Philips 15 AA3330 User Manual
Philips 19PS 45S User Manual
Philips 21PT164B User Manual
Philips 170s6 User Manual
Philips DVP762 User Manual
Philips DVP3256 User Manual