| 80C186EA/80C188EA AND 80L186EA/80L188EA   16-BIT HIGH-INTEGRATION EMBEDDED PROCESSORS   Y 80C186 Upgrade for Power Critical Applications   Y Fully Static Operation   Y True CMOS Inputs and Outputs   Y Y Integrated Feature Set   Ð Static 186 CPU Core   Ð Power Save, Idle and Powerdown   Modes   Ð Clock Generator   Ð 2 Independent DMA Channels   Ð 3 Programmable 16-Bit Timers   Ð Dynamic RAM Refresh Control Unit   Ð Programmable Memory and   Peripheral Chip Select Logic   Ð Programmable Wait State Generator   Ð Local Bus Controller   Speed Versions Available (3V):   Ð 13 MHz (80L186EA13/80L188EA13)   Ð 8 MHz (80L186EA8/80L188EA8)   Y Y Y Direct Addressing Capability to   1 Mbyte Memory and 64 Kbyte I/O   Supports 80C187 Numeric Coprocessor   Interface (80C186EA only)   Available in the Following Packages:   Ð 68-Pin Plastic Leaded Chip Carrier   (PLCC)   Ð 80-Pin EIAJ Quad Flat Pack (QFP)   Ð 80-Pin Shrink Quad Flat Pack (SQFP)   Ð System-Level Testing Support   (High Impedance Test Mode)   Y Available in Extended Temperature   Y Speed Versions Available (5V):   b Range ( 40 C to 85 C)   a § § Ð 25 MHz (80C186EA25/80C188EA25)   Ð 20 MHz (80C186EA20/80C188EA20)   Ð 13 MHz (80C186EA13/80C188EA13)   The 80C186EA is a CHMOS high integration embedded microprocessor. The 80C186EA includes all of the   features of an ‘‘Enhanced Mode’’ 80C186 while adding the additional capabilities of Idle and Powerdown   Modes. In Numerics Mode, the 80C186EA interfaces directly with an 80C187 Numerics Coprocessor.   272432–1   *Other brands and names are the property of their respective owners.   Information in this document is provided in connection with Intel products. Intel assumes no liability whatsoever, including infringement of any patent or   copyright, for sale and use of Intel products except as provided in Intel’s Terms and Conditions of Sale for such products. Intel retains the right to make   changes to these specifications at any time, without notice. Microcomputer Products may have minor variations to this specification known as errata.   October 1995   COPYRIGHT INTEL CORPORATION, 1995   Order Number: 272432-003   © 1 80C186EA/80C188EA, 80L186EA/80L188EA   NOTE:   Pin names in parentheses apply to the 80C186EA/80L188EA   Figure 1. 80C186EA/80C188EA Block Diagram   3 3 80C186EA/80C188EA, 80L186EA/80L188EA   INTRODUCTION   80C186EA CORE ARCHITECTURE   Bus Interface Unit   Unless specifically noted, all references to the   80C186EA apply to the 80C188EA, 80L186EA, and   80L188EA. References to pins that differ between   the 80C186EA/80L186EA and the 80C188EA/   80L188EA are given in parentheses. The ‘‘L’’ in the   part number denotes low voltage operation. Physi-   cally and functionally, the ‘‘C’’ and ‘‘L’’ devices are   identical.   The 80C186EA core incorporates a bus controller   that generates local bus control signals. In addition,   it employs a HOLD/HLDA protocol to share the local   bus with other bus masters.   The bus controller is responsible for generating 20   bits of address, read and write strobes, bus cycle   status information and data (for write operations) in-   formation. It is also responsible for reading data off   the local bus during a read operation. SRDY and   ARDY input pins are provided to extend a bus cycle   beyond the minimum four states (clocks).   The 80C186EA is the second product in a new gen-   eration of low-power, high-integration microproces-   sors. It enhances the existing 80C186XL family by   offering new features and operating modes. The   80C186EA is object code compatible with the   80C186XL embedded processor.   The local bus controller also generates two control   signals (DEN and DT/R) when interfacing to exter-   nal transceiver chips. This capability allows the addi-   tion of transceivers for simple buffering of the mulit-   plexed address/data bus.   The 80L186EA is the 3V version of the 80C186EA.   The 80L186EA is functionally identical to the   80C186EA   embedded   processor.   Current   80C186EA customers can easily upgrade their de-   signs to use the 80L186EA and benefit from the re-   duced power consumption inherent in 3V operation.   The feature set of the 80C186EA/80L186EA meets   the needs of low-power, space-critical applications.   Low-power applications benefit from the static de-   sign of the CPU core and the integrated peripherals   as well as low voltage operation. Minimum current   consumption is achieved by providing a Powerdown   Mode that halts operation of the device, and freezes   the clock circuits. Peripheral design enhancements   ensure that non-initialized peripherals consume little   current.   Clock Generator   The processor provides an on-chip clock generator   for both internal and external clock generation. The   clock generator features a crystal oscillator, a divide-   by-two counter, and two low-power operating   modes.   The oscillator circuit is designed to be used with ei-   ther a parallel resonant fundamental or third-over-   tone mode crystal network. Alternatively, the oscilla-   tor circuit may be driven from an external clock   source. Figure 2 shows the various operating modes   of the oscillator circuit.   Space-critical applications benefit from the inte-   gration of commonly used system peripherals. Two   flexible DMA channels perform CPU-independent   data transfers. A flexible chip select unit simplifies   memory and peripheral interfacing. The interrupt unit   provides sources for up to 128 external interrupts   and will prioritize these interrupts with those generat-   ed from the on-chip peripherals. Three general pur-   pose timer/counters round out the feature set of the   80C186EA.   The crystal or clock frequency chosen must be twice   the required processor operating frequency due to   the internal divide-by-two counter. This counter is   used to drive all internal phase clocks and the exter-   nal CLKOUT signal. CLKOUT is a 50% duty cycle   processor clock and can be used to drive other sys-   tem components. All AC timings are referenced to   CLKOUT.   Figure 1 shows a block diagram of the 80C186EA/   80C188EA. The Execution Unit (EU) is an enhanced   8086 CPU core that includes: dedicated hardware to   speed up effective address calculations, enhance   execution speed for multiple-bit shift and rotate in-   structions and for multiply and divide instructions,   string move instructions that operate at full bus   bandwidth, ten new instructions, and static opera-   tion. The Bus Interface Unit (BIU) is the same as that   found on the original 80C186 family products. An   independent internal bus is used to allow communi-   cation between the BIU and internal peripherals.   The following parameters are recommended when   choosing a crystal:   Temperature Range:   ESR (Equivalent Series Resistance):   C0 (Shunt Capacitance of Crystal):   Application Specific   60X max   7.0 pF max   g 20 pF 2 pF   2 mW max   C Drive Level:   (Load Capacitance):   L 4 4 80C186EA/80C188EA, 80L186EA/80L188EA   272432–4   272432–3   (A) Crystal Connection   (B) Clock Connection   NOTE:   The L C network is only required when using a third-overtone crystal.   1 1 Figure 2. Clock Configurations   80C186EA PERIPHERAL   ARCHITECTURE   Interrupt Control Unit   The 80C186EA can receive interrupts from a num-   ber of sources, both internal and external. The Inter-   rupt Control Unit (ICU) serves to merge these re-   quests on a priority basis, for individual service by   the CPU. Each interrupt source can be independent-   ly masked by the Interrupt Control Unit or all inter-   rupts can be globally masked by the CPU.   The 80C186EA has integrated several common sys-   tem peripherals with a CPU core to create a com-   pact, yet powerful system. The integrated peripher-   als are designed to be flexible and provide logical   interconnections between supporting units (e.g., the   interrupt control unit supports interrupt requests   from the timer/counters or DMA channels).   Internal interrupt sources include the Timers and   DMA channels. External interrupt sources come   from the four input pins INT3:0. The NMI interrupt   pin is not controlled by the ICU and is passed direct-   ly to the CPU. Although the timers only have one   request input to the ICU, separate vector types are   generated to service individual interrupts within the   Timer Unit.   The list of integrated peripherals include:   4-Input Interrupt Control Unit   # 3-Channel Timer/Counter Unit   # 2-Channel DMA Unit   # 13-Output Chip-Select Unit   # Refresh Control Unit   # Power Management logic   # Timer/Counter Unit   The registers associated with each integrated peri-   heral are contained within a 128 x 16 register file   called the Peripheral Control Block (PCB). The PCB   can be located in either memory or I/O space on   any 256 byte address boundary.   The 80C186EA Timer/Counter Unit (TCU) provides   three 16-bit programmable timers. Two of these are   highly flexible and are connected to external pins for   control or clocking. A third timer is not connected to   any external pins and can only be clocked internally.   However, it can be used to clock the other two timer   channels. The TCU can be used to count external   events, time external events, generate non-repeti-   tive waveforms, generate timed interrupts, etc.   Figure 3 provides a list of the registers associated   with the PCB when the processor’s Interrupt Control   Unit is in Master Mode. In Slave Mode, the defini-   tions of some registers change. Figure 4 provides   register definitions specific to Slave Mode.   5 5 80C186EA/80C188EA, 80L186EA/80L188EA   PCB   PCB   PCB   PCB   Function   Function   Function   Function   Offset   Offset   Offset   Offset   00H   02H   04H   06H   08H   0AH   0CH   0EH   10H   12H   14H   16H   18H   1AH   1CH   1EH   20H   22H   24H   26H   28H   2AH   2CH   Reserved   Reserved   Reserved   Reserved   Reserved   Reserved   Reserved   Reserved   Reserved   Reserved   Reserved   Reserved   Reserved   Reserved   Reserved   Reserved   Reserved   End of Interrupt   Poll   40H   42H   44H   46H   48H   4AH   4CH   4EH   50H   Reserved   Reserved   Reserved   Reserved   Reserved   Reserved   Reserved   Reserved   Timer 0 Count   80H   82H   84H   86H   88H   8AH   8CH   8EH   90H   92H   94H   96H   98H   9AH   9CH   9EH   A0H   A2H   A4H   A6H   A8H   AAH   ACH   AEH   B0H   B2H   B4H   B6H   B8H   BAH   BCH   BEH   Reserved   Reserved   Reserved   Reserved   Reserved   Reserved   Reserved   Reserved   Reserved   Reserved   Reserved   Reserved   Reserved   Reserved   Reserved   Reserved   UMCS   C0H   C2H   C4H   C6H   C8H   CAH   CCH   CEH   D0H   D2H   D4H   D6H   D8H   DAH   DCH   DEH   E0H   E2H   E4H   E6H   E8H   EAH   ECH   EEH   F0H   F2H   F4H   F6H   F8H   FAH   FCH   FEH   DMA0 Src. Lo   DMA0 Src. Hi   DMA0 Dest. Lo   DMA0 Dest. Hi   DMA0 Count   DMA0 Control   Reserved   Reserved   DMA1 Src. Lo   DMA1 Src. Hi   DMA1 Dest. Lo   DMA1 Dest. Hi   DMA1 Count   DMA1 Control   Reserved   52H Timer 0 Compare A   54H Timer 0 Compare B   56H   58H   Timer 0 Control   Timer 1 Count   5AH Timer 1 Compare A   5CH Timer 1 Compare B   5EH   60H   Timer 1 Control   Timer 2 Count   Reserved   Refresh Base   Refresh Time   Refresh Control   Reserved   62H Timer 2 Compare   LMCS   64H   66H   68H   6AH   6CH   6EH   70H   72H   74H   76H   78H   7AH   7CH   7EH   Reserved   Timer 2 Control   Reserved   Reserved   Reserved   Reserved   Reserved   Reserved   Reserved   Reserved   Reserved   Reserved   Reserved   Reserved   PACS   Poll Status   Interrupt Mask   Priority Mask   In-Service   MMCS   MPCS   Reserved   Reserved   Reserved   Reserved   Reserved   Reserved   Reserved   Reserved   Reserved   Reserved   Reserved   Reserved   Reserved   Reserved   2EH Interrupt Request   Reserved   30H   32H   Interrupt Status   Timer Control   Power-Save   Power Control   Reserved   34H DMA0 Int. Control   36H DMA1 Int. Control   Step ID   38H   3AH   3CH   3EH   INT0 Control   INT1 Control   INT2 Control   INT3 Control   Reserved   Reserved   Reserved   Relocation   Figure 3. Peripheral Control Block Registers   6 6 80C186EA/80C188EA, 80L186EA/80L188EA   Chip-Select Unit   PCB   Function   Offset   The 80C186EA Chip-Select Unit integrates logic   which provides up to 13 programmable chip-selects   to access both memories and peripherals. In addi-   tion, each chip-select can be programmed to auto-   matically terminate a bus cycle independent of the   condition of the SRDY and ARDY input pins. The   chip-select lines are available for all memory and   I/O bus cycles, whether they are generated by the   CPU, the DMA unit, or the Refresh Control Unit.   20H   22H   24H   26H   28H   2AH   2C   Interrupt Vector   Specific EOI   Reserved   Reserved   Interrupt Mask   Priority Mask   In-Service   Refresh Control Unit   2E   Interrupt Request   Interrupt Status   TMR0 Interrupt Control   DMA0 Interrupt Control   DMA1 Interrupt Control   TMR1 Interrupt Control   TMR2 Interrupt Control   Reserved   The Refresh Control Unit (RCU) automatically gen-   erates a periodic memory read bus cycle to keep   dynamic or pseudo-static memory refreshed. A 9-bit   counter controls the number of clocks between re-   fresh requests.   30   32   34   36   A 9-bit address generator is maintained by the RCU   with the address presented on the A9:1 address   lines during the refresh bus cycle. Address bits   A19:13 are programmable to allow the refresh ad-   dress block to be located on any 8 Kbyte boundary.   38   3A   3C   3E   Reserved   Figure 4. 80C186EA Slave Mode Peripheral   Control Block Registers   Power Management   The 80C186EA has three operational modes to con-   trol the power consumption of the device. They are   Power Save Mode, Idle Mode, and Powerdown   Mode.   DMA Control Unit   The 80C186EA DMA Contol Unit provides two inde-   pendent high-speed DMA channels. Data transfers   can occur between memory and I/O space in any   combination: memory to memory, memory to I/O,   I/O to I/O or I/O to memory. Data can be trans-   ferred either in bytes or words. Transfers may pro-   ceed to or from either even or odd addresses, but   even-aligned word transfers proceed at a faster rate.   Each data transfer consumes two bus cycles (a mini-   mum of eight clocks), one cycle to fetch data and   the other to store data. The chip-select/ready logic   may be programmed to point to the memory or I/O   space subject to DMA transfers in order to provide   hardware chip select lines. DMA cycles run at higher   priority than general processor execution cycles.   Power Save Mode divides the processor clock by a   programmable value to take advantage of the fact   that current is linearly proportional to frequency. An   unmasked interrupt, NMI, or reset will cause the   80C186EA to exit Power Save Mode.   Idle Mode freezes the clocks of the Execution Unit   and the Bus Interface Unit at a logic zero state while   all peripherals operate normally.   Powerdown Mode freezes all internal clocks at a   logic zero level and disables the crystal oscillator. All   internal registers hold their values provided V   is   CC   maintained. Current consumption is reduced to tran-   sistor leakage only.   7 7 80C186EA/80C188EA, 80L186EA/80L188EA   80C187 Interface (80C186EA Only)   The 80-lead QFP (EIAJ) pinouts are different be-   tween the 80C186XL and the 80C186EA. In addition   to the PDTMR pin, the 80C186EA has more power   and ground pins and the overall arrangement of pins   was shifted. A new circuit board layout for the   80C186EA is required.   The 80C187 Numerics Coprocessor may be used to   extend the 80C186EA instruction set to include   floating point and advanced integer instructions.   Connecting the 80C186EA RESOUT and TEST/   BUSY pins to the 80C187 enables Numerics Mode   operation. In Numerics Mode, three of the four Mid-   Range Chip Select (MCS) pins become handshaking   pins for the interface. The exchange of data and   control information proceeds through four dedicated   I/O ports.   Operating Modes   The 80C186XL has two operating modes, Compati-   ble and Enhanced. Compatible Mode is a pin-to-pin   replacement for the NMOS 80186, except for nu-   merics coprocessing. In Enhanced Mode, the proc-   essor has a Refresh Control Unit, the Power-Save   feature and an interface to the 80C187 Numerics   Coprocessor. The MCS0, MCS1, and MCS3 pins   change their functions to constitute handshaking   pins for the 80C187.   If an 80C187 is not present, the 80C186EA config-   ures itself for regular operation at reset.   NOTE:   The 80C187 is not specified for 3V operation and   therefore does not interface directly to the   80L186EA.   The 80C186EA allows all non-80C187 users to use   all the MCS pins for chip-selects. In regular opera-   tion, all 80C186EA features (including those of the   Enhanced Mode 80C186) are present except for the   interface to the 80C187. Numerics Mode disables   the three chip-select pins and reconfigures them for   connection to the 80C187.   ONCE Test Mode   To facilitate testing and inspection of devices when   fixed into a target system, the 80C186EA has a test   mode available which forces all output and input/   output pins to be placed in the high-impedance   state. ONCE stands for ‘‘ON Circuit Emulation’’. The   ONCE mode is selected by forcing the UCS and LCS   pins LOW (0) during a processor reset (these pins   are weakly held to a HIGH (1) level) while RESIN is   active.   TTL vs CMOS Inputs   The inputs of the 80C186EA are rated for CMOS   switching levels for improved noise immunity, but the   80C186XL inputs are rated for TTL switching levels.   In particular, the 80C186EA requires a minimum V   IH   of 3.5V to recognize a logic one while the 80C186XL   requires a minimum V of only 1.9V (assuming 5.0V   IH   operation). The solution is to drive the 80C186EA   with true CMOS devices, such as those from the HC   and AC logic families, or to use pullup resistors   where the added current draw is not a problem.   DIFFERENCES BETWEEN THE   80C186XL AND THE 80C186EA   The 80C186EA is intended as a direct functional up-   grade for 80C186XL designs. In many cases, it will   be possible to replace an existing 80C186XL with   little or no hardware redesign. The following sections   describe differences in pinout, operating modes, and   AC and DC specifications to keep in mind.   Timing Specifications   80C186EA timing relationships are expressed in a   simplified format over the 80C186XL. The AC per-   formance of an 80C186EA at a specified frequency   will be very close to that of an 80C186XL at the   same frequency. Check the timings applicable to   your design prior to replacing the 80C186XL.   Pinout Compatibility   The 80C186EA requires a PDTMR pin to time the   processor’s exit from Powerdown Mode. The original   pin arrangement for the 80C186XL in the PLCC   package did not have any spare leads to use for   PDTMR, so the DT/R pin was sacrificed. The ar-   rangement of all the other leads in the 68-lead PLCC   is identical between the 80C186XL and the   80C186EA. DT/R may be synthesized by latching   the S1 status output. Therefore, upgrading a PLCC   80C186XL to PLCC 80C186EA is straightforward.   8 8 80C186EA/80C188EA, 80L186EA/80L188EA   input/output (I/O). Some pins have multiplexed   functions (for example, A19/S6). Additional symbols   indicate additional characteristics for each pin. Table   3 lists all the possible symbols for this column.   PACKAGE INFORMATION   This section describes the pins, pinouts, and thermal   characteristics for the 80C186EA in the Plastic   Leaded Chip Carrier (PLCC) package, Shrink Quad   Flat Pack (SQFP), and Quad Flat Pack (QFP) pack-   age. For complete package specifications and infor-   mation, see the Intel Packaging Outlines and Dimen-   sions Guide (Order Number: 231369).   The Input Type column indicates the type of input   (asynchronous or synchronous).   Asynchronous pins require that setup and hold times   be met only in order to guarantee recognition at a   particular clock edge. Synchronous pins require that   setup and hold times be met to guarantee proper   operation. For example, missing the setup or hold   time for the SRDY pin (a synchronous input) will re-   sult in a system failure or lockup. Input pins may also   be edge- or level-sensitive. The possible character-   istics for input pins are S(E), S(L), A(E) and A(L).   With the extended temperature range operational   characteristics are guaranteed over a temperature   b range corresponding to 40 C to 85 C ambient.   Package types are identified by a two-letter prefix to   a § § the part number. The prefixes are listed in Table 1.   Table 1. Prefix Identification   Package   Type   Temperature   Range   The Output States column indicates the output   state as a function of the device operating mode.   Output states are dependent upon the current activi-   ty of the processor. There are four operational   states that are different from regular operation: bus   hold, reset, Idle Mode and Powerdown Mode. Ap-   propriate characteristics for these states are also in-   dicated in this column, with the legend for all possi-   ble characteristics in Table 2.   Prefix Note   TN   TS   PLCC   Extended   QFP (EIAJ) Extended   SB   N 1 1 1 SQFP   PLCC   Extended/Commercial   Commercial   S QFP (EIAJ) Commercial   The Pin Description column contains a text de-   scription of each pin.   NOTE:   1. The 25 MHz version is only available in commercial tem-   a perature range corresponding to 0 C to 70 C ambient.   § § As an example, consider AD15:0. I/O signifies the   pins are bidirectional. S(L) signifies that the input   function is synchronous and level-sensitive. H(Z)   signifies that, as outputs, the pins are high-imped-   ance upon acknowledgement of bus hold. R(Z) sig-   nifies that the pins float during reset. P(X) signifies   that the pins retain their states during Powerdown   Mode.   Pin Descriptions   Each pin or logical set of pins is described in Table   3. There are three columns for each entry in the Pin   Description Table.   The Pin Name column contains a mnemonic that   describes the pin function. Negation of the signal   name (for example, RESIN) denotes a signal that is   active low.   The Pin Type column contains two kinds of informa-   tion. The first symbol indicates whether a pin is pow-   er (P), ground (G), input only (I), output only (O) or   9 9 80C186EA/80C188EA, 80L186EA/80L188EA   Table 2. Pin Description Nomenclature   Description   Symbol   a Ground (Connect to V   P Power Pin (Apply   V Voltage)   CC   ) SS   G I Input Only Pin   Output Only Pin   Input/Output Pin   O I/O   S(E)   S(L)   A(E)   A(L)   Synchronous, Edge Sensitive   Synchronous, Level Sensitive   Asynchronous, Edge Sensitive   Asynchronous, Level Sensitive   H(1)   H(0)   H(Z)   H(Q)   H(X)   Output Driven to V during Bus Hold   CC   Output Driven to V during Bus Hold   SS   Output Floats during Bus Hold   Output Remains Active during Bus Hold   Output Retains Current State during Bus Hold   R(WH)   R(1)   R(0)   Output Weakly Held at V during Reset   CC   Output Driven to V during Reset   CC   Output Driven to V during Reset   SS   Output Floats during Reset   R(Z)   R(Q)   R(X)   Output Remains Active during Reset   Output Retains Current State during Reset   I(1)   I(0)   I(Z)   I(Q)   I(X)   Output Driven to V during Idle Mode   CC   Output Driven to V during Idle Mode   SS   Output Floats during Idle Mode   Output Remains Active during Idle Mode   Output Retains Current State during Idle Mode   P(1)   P(0)   P(Z)   P(Q)   P(X)   Output Driven to V during Powerdown Mode   CC   Output Driven to V during Powerdown Mode   SS   Output Floats during Powerdown Mode   Output Remains Active during Powerdown Mode   Output Retains Current State during Powerdown Mode   10   10   80C186EA/80C188EA, 80L186EA/80L188EA   Table 3. Pin Descriptions   Pin   Name   Pin Input Output   Type Type States   Description   V V P POWER connections consist of six pins which must be shorted   externally to a V board plane.   CC   CC   G GROUND connections consist of five pins which must be shorted   externally to a V board plane.   SS   SS   CLKIN   I A(E)   CLocK INput is an input for an external clock. An external   oscillator operating at two times the required processor operating   frequency can be connected to CLKIN. For crystal operation,   CLKIN (along with OSCOUT) are the crystal connections to an   internal Pierce oscillator.   OSCOUT   O H(Q)   R(Q)   P(Q)   OSCillator OUTput is only used when using a crystal to generate   the external clock. OSCOUT (along with CLKIN) are the crystal   connections to an internal Pierce oscillator. This pin is not to be   used as 2X clock output for non-crystal applications (i.e., this pin is   N.C. for non-crystal applications). OSCOUT does not float in   ONCE mode.   CLKOUT   RESIN   O I H(Q)   R(Q)   P(Q)   CLocK OUTput provides a timing reference for inputs and outputs   of the processor, and is one-half the input clock (CLKIN)   frequency. CLKOUT has a 50% duty cycle and transistions every   falling edge of CLKIN.   A(L)   RESet IN causes the processor to immediately terminate any bus   cycle in progress and assume an initialized state. All pins will be   driven to a known state, and RESOUT will also be driven active.   The rising edge (low-to-high) transition synchronizes CLKOUT with   CLKIN before the processor begins fetching opcodes at memory   location 0FFFF0H.   RESOUT   PDTMR   O H(0)   R(1)   P(0)   RESet OUTput that indicates the processor is currently in the   reset state. RESOUT will remain active as long as RESIN remains   active. When tied to the TEST/BUSY pin, RESOUT forces the   80C186EA into Numerics Mode.   I/O   A(L)   H(WH) Power-Down TiMeR pin (normally connected to an external   capacitor) that determines the amount of time the processor waits   after an exit from power down before resuming normal operation.   The duration of time required will depend on the startup   characteristics of the crystal oscillator.   R(Z)   P(1)   NMI   I I A(E)   A(E)   Non-Maskable Interrupt input causes a Type 2 interrupt to be   serviced by the CPU. NMI is latched internally.   TEST/BUSY   (TEST)   TEST/BUSY is sampled upon reset to determine whether the   80C186EA is to enter Numerics Mode. In regular operation, the pin   is TEST. TEST is used during the execution of the WAIT   instruction to suspend CPU operation until the pin is sampled   active (low). In Numerics Mode, the pin is BUSY. BUSY notifies the   80C186EA of 80C187 Numerics Coprocessor activity.   AD15:0   (AD7:0)   I/O   S(L)   H(Z)   R(Z)   P(X)   These pins provide a multiplexed Address and Data bus. During   the address phase of the bus cycle, address bits 0 through 15 (0   through 7 on the 8-bit bus versions) are presented on the bus and   can be latched using ALE. 8- or 16-bit data information is   transferred during the data phase of the bus cycle.   NOTE:   Pin names in parentheses apply to the 80C188EA and 80L188EA.   11   11   80C186EA/80C188EA, 80L186EA/80L188EA   Table 3. Pin Descriptions (Continued)   Input Output   Pin   Pin   Description   Name   Type Type   States   A18:16   A19/S6–A16   (A19–A8)   O H(Z)   R(Z)   P(X)   These pins provide multiplexed Address during the address   phase of the bus cycle. Address bits 16 through 19 are   presented on these pins and can be latched using ALE.   A18:16 are driven to a logic 0 during the data phase of the bus   cycle. On the 8-bit bus versions, A15–A8 provide valid address   information for the entire bus cycle. Also during the data   phase, S6 is driven to a logic 0 to indicate a CPU-initiated bus   cycle or logic 1 to indicate a DMA-initiated bus cycle or a   refresh cycle.   S2:0   O H(Z)   R(Z)   P(1)   Bus cycle Status are encoded on these pins to provide bus   transaction information. S2:0 are encoded as follows:   S2 S1   S0   Bus Cycle Initiated   0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 Interrupt Acknowledge   Read I/O   Write I/O   Processor HALT   Queue Instruction Fetch   Read Memory   Write Memory   Passive (no bus activity)   ALE/QS0   O O H(0)   R(0)   P(0)   Address Latch Enable output is used to strobe address   information into a transparent type latch during the address   phase of the bus cycle. In Queue Status Mode, QS0 provides   queue status information along with QS1.   BHE   (RFSH)   H(Z)   R(Z)   P(X)   Byte High Enable output to indicate that the bus cycle in   progress is transferring data over the upper half of the data   bus. BHE and A0 have the following logical encoding:   A0   BHE Encoding (For 80C186EA/80L186EA Only)   0 0 1 1 0 1 0 1 Word Transfer   Even Byte Transfer   Odd Byte Transfer   Refresh Operation   On the 80C188EA/80L188EA, RFSH is asserted low to   indicate a Refresh bus cycle.   RD/QSMD   O H(Z)   R(WH)   P(1)   ReaD output signals that the accessed memory or I/O device   must drive data information onto the data bus. Upon reset, this   pin has an alternate function. As QSMD, it enables Queue   Status Mode when grounded. In Queue Status Mode, the   ALE/QS0 and WR/QS1 pins provide the following information   about processor/instruction queue interaction:   QS1   QS0   Queue Operation   No Queue Operation   0 0 1 1 0 1 1 0 First Opcode Byte Fetched from the Queue   Subsequent Byte Fetched from the Queue   Empty the Queue   NOTE:   Pin names in parentheses apply to the 80C188EA and 80L188EA.   12   12   80C186EA/80C188EA, 80L186EA/80L188EA   Table 3. Pin Descriptions (Continued)   Pin   Name   Pin Input Output   Type Type States   Description   WR/QS1   O I H(Z)   R(Z)   P(1)   WRite output signals that data available on the data bus are to be   written into the accessed memory or I/O device. In Queue Status   Mode, QS1 provides queue status information along with QS0.   ARDY   A(L)   S(L)   Asychronous ReaDY is an input to signal for the end of a bus cycle.   ARDY is asynchronous on rising CLKOUT and synchronous on falling   CLKOUT. ARDY or SRDY must be active to terminate any processor   bus cycle, unless they are ignored due to correct programming of the   Chip Select Unit.   SRDY   I S(L)   Synchronous ReaDY is an input to signal for the end of a bus cycle.   ARDY or SRDY must be active to terminate any processor bus cycle,   unless they are ignored due to correct programming of the Chip Select   Unit.   DEN   O O O H(Z)   R(Z)   P(1)   Data ENable output to control the enable of bidirectional transceivers   when buffering a system. DEN is active only when data is to be   transferred on the bus.   DT/R   LOCK   H(Z)   R(Z)   P(X)   Data Transmit/Receive output controls the direction of a bi-   directional buffer in a buffered system. DT/R is only available on the   QFP (EIAJ) package and the SQFP package.   H(Z)   R(WH)   P(1)   LOCK output indicates that the bus cycle in progress is not to be   interrupted. The processor will not service other bus requests (such   as HOLD) while LOCK is active. This pin is configured as a weakly   held high input while RESIN is active and must not be driven low.   HOLD   HLDA   UCS   I A(L)   HOLD request input to signal that an external bus master wishes to   gain control of the local bus. The processor will relinquish control of   the local bus between instruction boundaries not conditioned by a   LOCK prefix.   O O H(1)   R(0)   P(0)   HoLD Acknowledge output to indicate that the processor has   relinquished control of the local bus. When HLDA is asserted, the   processor will (or has) floated its data bus and control signals allowing   another bus master to drive the signals directly.   H(1)   R(1)   P(1)   Upper Chip Select will go active whenever the address of a memory   or I/O bus cycle is within the address limitations programmed by the   user. After reset, UCS is configured to be active for memory accesses   between 0FFC00H and 0FFFFFH. During a processor reset, UCS and   LCS are used to enable ONCE Mode.   LCS   O H(1)   R(1)   P(1)   Lower Chip Select will go active whenever the address of a memory   bus cycle is within the address limitations programmed by the user.   LCS is inactive after a reset. During a processor reset, UCS and LCS   are used to enable ONCE Mode.   NOTE:   Pin names in parentheses apply to the 80C188EA and 80L188EA.   13   13   80C186EA/80C188EA, 80L186EA/80L188EA   Table 3. Pin Descriptions (Continued)   Input Output   Pin   Pin   Type Type   Description   Name   States   MCS0/PEREQ   MCS1/ERROR   MCS2   I/O   A(L)   H(1)   R(1)   P(1)   These pins provide a multiplexed function. If enabled,   these pins normally comprise a block of Mid-Range Chip   Select outputs which will go active whenever the address   of a memory bus cycle is within the address limitations   programmed by the user. In Numerics Mode (80C186EA   only), three of the pins become handshaking pins for the   80C187. The CoProcessor REQuest input signals that a   data transfer is pending. ERROR is an input which   indicates that the previous numerics coprocessor   operation resulted in an exception condition. An interrupt   Type 16 is generated when ERROR is sampled active at   the beginning of a numerics operation. Numerics   Coprocessor Select is an output signal generated when   the processor accesses the 80C187.   MCS3/NCS   PCS4:0   O O H(1)   R(1)   P(1)   Peripheral Chip Selects go active whenever the address   of a memory or I/O bus cycle is within the address   limitations programmed by the user.   PCS5/A1   PCS6/A2   H(1)/H(X) These pins provide a multiplexed function. As additional   Peripheral Chip Selects, they go active whenever the   address of a memory or I/O bus cycle is within the   address limitations by the user. They may also be   programmed to provide latched Address A2:1 signals.   R(1)   P(1)   T0OUT   T1OUT   O H(Q)   R(1)   P(Q)   Timer OUTput pins can be programmed to provide a   single clock or continuous waveform generation,   depending on the timer mode selected.   T0IN   T1IN   I I I A(L)   A(E)   Timer INput is used either as clock or control signals,   depending on the timer mode selected.   DRQ0   DRQ1   A(L)   DMA ReQuest is asserted by an external request when it   is prepared for a DMA transfer.   INT0   INT1/SELECT   A(E,L)   Maskable INTerrupt input will cause a vector to a specific   Type interrupt routine. To allow interrupt expansion, INT0   and/or INT1 can be used with INTA0 and INTA1 to   interface with an external slave controller. INT1 becomes   SELECT when the ICU is configured for Slave Mode.   INT2/INTA0   INT3/INTA1/IRQ   I/O   A(E,L)   H(1)   R(Z)   P(1)   These pins provide multiplexed functions. As inputs, they   provide a maskable INTerrupt that will cause the CPU to   vector to a specific Type interrupt routine. As outputs,   each is programmatically controlled to provide an   INTerrupt Acknowledge handshake signal to allow   interrupt expansion. INT3/INTA1 becomes IRQ when the   ICU is configured for Slave Mode.   N.C.   No Connect. For compatibility with future products, do not   connect to these pins.   NOTE:   Pin names in parentheses apply to the 80C188EA and 80L188EA.   14   14   80C186EA/80C188EA, 80L186EA/80L188EA   80C186EA/80C188EA (EIAJ QFP package) as   viewed from the top side of the component (i.e., con-   tacts facing down).   80C186EA PINOUT   Tables 4 and 5 list the 80C186EA pin names with   package location for the 68-pin Plastic Leaded Chip   Carrier (PLCC) component. Figure 9 depicts the   complete 80C186EA/80L186EA pinout (PLCC pack-   age) as viewed from the top side of the component   (i.e., contacts facing down).   Tables 8 and 9 list the 80C186EA/80C188EA pin   names with package location for the 80-pin Shrink   Quad Flat Pack (SQFP) component. Figure 7 depicts   the complete 80C186EA/80C188EA (SQFP) as   viewed from the top side of the component (i.e., con-   tacts facing down).   Tables 6 and 7 list the 80C186EA pin names with   package location for the 80-pin Quad Flat Pack   (EIAJ) component. Figure 6 depicts the complete   Table 4. PLCC Pin Names with Package Location   Bus Control Processor Control   Name Location   Address/Data Bus   I/O   Name   AD0   Location   Name   Location   Name   Location   17   15   13   11   8 ALE/QS0   61   64   RESIN   24   57   UCS   LCS   34   33   38   37   36   35   AD1   BHE (RFSH)   RESOUT   AD2   MCS0/PEREQ   MCS1/ERROR   MCS2   S0   S1   S2   52   53   54   CLKIN   59   58   56   AD3   OSCOUT   CLKOUT   AD4   AD5   6 MCS3/NCS   RD/QSMD   WR/QS1   62   63   TEST/BUSY   PDTMR   47   40   AD6   4 PCS0   25   27   28   29   30   31   32   AD7   2 PCS1   ARDY   SRDY   55   49   NMI   46   45   44   42   41   AD8 (A8)   AD9 (A9)   AD10 (A10)   AD11 (A11)   AD12 (A12)   AD13 (A13)   AD14 (A14)   AD15 (A15)   16   14   12   10   7 PCS2   INT0   PCS3   DEN   39   48   INT1/SELECT   INT2/INTA0   INT3/INTA1/   IRQ   PCS4   LOCK   PCS5/A1   PCS6/A2   HOLD   HLDA   50   51   5 T0OUT   T0IN   22   20   23   21   3 1 Power   T1OUT   T1IN   A16   68   67   66   65   Name   Location   A17   DRQ0   DRQ1   18   19   V V 26, 60   9, 43   SS   A18   A19/S6   CC   NOTE:   Pin names in parentheses apply to the 80C188EA/80L188EA.   15   15   80C186EA/80C188EA, 80L186EA/80L188EA   Table 5. PLCC Package Location with Pin Names   Location   Name   Location   Name   Location   Name   Location   Name   1 2 AD15 (A15)   AD7   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   DRQ0   35   36   37   38   39   40   41   MCS3/NCS   MCS2   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   S0   S1   S2   DRQ1   T0IN   3 AD14 (A14)   AD6   MCS1/ERROR   MCS0/PEREQ   DEN   4 T1IN   ARDY   5 AD13 (A13)   AD5   T0OUT   T1OUT   RESIN   PCS0   CLKOUT   RESOUT   OSCOUT   CLKIN   6 PDTMR   7 AD12 (A12)   AD4   INT3/INTA1/   IRQ   8 9 V V SS   42   43   44   45   46   47   48   49   50   51   INT2/INTA0   V SS   CC   10   11   12   13   14   15   16   17   AD11 (A11)   AD3   PCS1   V CC   ALE/QS0   RD/QSMD   WR/QS1   BHE (RFSH)   A19/S6   A18   PCS2   INT1/SELECT   INT0   AD10 (A10)   AD2   PCS3   PCS4   NMI   AD9 (A9)   AD1   PCS5/A1   PCS6/A2   LCS   TEST/BUSY   LOCK   AD8 (A8)   AD0   SRDY   A17   UCS   HOLD   A16   HLDA   NOTE:   Pin names in parentheses apply to the 80C186EA/80L188EA.   NOTES:   1. The nine-character alphanumeric code (XXXXXXXXD) underneath the product number is the Intel FPO number.   2. Pin names in parentheses apply to the 80C186EA/80L188EA.   272432–5   Figure 5. 68-Lead PLCC Pinout Diagram   16   16   80C186EA/80C188EA, 80L186EA/80L188EA   Table 6. QFP (EIAJ) Pin Names with Package Location   Bus Control Processor Control   Name Location   RESIN   Address/Data Bus   I/O   Name   Location   Name   Location   Name   Location   AD0   64   66   68   70   74   76   78   80   65   67   69   71   75   77   79   1 ALE/QS0   BHE (RFSH)   S0   10   7 55   18   16   17   19   29   38   30   31   32   35   36   UCS   LCS   45   46   40   41   42   43   54   52   51   50   49   48   47   57   59   56   58   61   60   AD1   RESOUT   CLKIN   AD2   23   22   21   9 MCS0/PEREQ   MCS1/ERROR   MCS2   AD3   S1   OSCOUT   CLKOUT   TEST/BUSY   PDTMR   NMI   AD4   S2   AD5   RD/QSMD   WR/QS1   ARDY   SRDY   DT/R   MCS3/NCS   PCS0   AD6   8 AD7   20   27   37   39   28   26   25   PCS1   AD8 (A8)   AD9 (A9)   AD10 (A10)   AD11 (A11)   AD12 (A12)   AD13 (A13)   AD14 (A14)   AD15 (A15)   A16   INT0   PCS2   INT1/SELECT   INT2/INTA0   INT3/INTA1/   IRQ   PCS3   DEN   PCS4   LOCK   HOLD   HLDA   PCS5/A1   PCS6/A2   T0OUT   T0IN   N.C.   11, 14,   15, 63   T1OUT   T1IN   3 Power   A17   4 DRQ0   A18   5 DRQ1   Name   Location   A19/S6   6 V V 12, 13, 24,   53,62   SS   2, 33, 34,   44, 72, 73   CC   NOTE:   Pin names in parentheses apply to the 80C186EA/80L188EA.   17   17   80C186EA/80C188EA, 80L186EA/80L188EA   Table 7. QFP (EIAJ) Package Location with Pin Names   Location   Name   Location   Name   Location   Name   Location   Name   DRQ0   1 2 AD15 (A15)   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   S2   S1   S0   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   MCS1/ERROR   MCS2   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   V V SS   CC   3 A16   MCS3/NCS   N.C.   4 A17   V V AD0   SS   CC   5 A18   HLDA   UCS   AD8 (A8)   AD1   6 A19/S6   BHE (RFSH)   WR/QS1   RD/QSMD   ALE/QS0   N.C.   HOLD   LCS   7 SRDY   PCS6/A2   PCS5/A1   PCS4   AD9 (A9)   AD2   8 LOCK   9 TEST/BUSY   NMI   AD10 (A10)   AD3   10   11   12   13   14   15   16   17   18   19   20   PCS3   INT0   PCS2   AD11 (A11)   V V INT1/SELECT   PCS1   V V SS   CC   V V V SS   SS   CC   CC   CC   N.C.   PCS0   RESIN   T1OUT   T0OUT   T1IN   AD4   N.C.   INT2/INTA0   INT3/INTA1/   IRQ   AD12 (A12)   AD5   CLKIN   OSCOUT   RESOUT   CLKOUT   ARDY   AD13 (A13)   AD6   37   38   39   40   DT/R   PDTMR   T0IN   AD14 (A14)   AD7   DEN   DRQ1   MCS0/PEREQ   NOTE:   Pin names in parentheses apply to the 80C186EA/80L188EA.   NOTES:   1. The nine-character alphanumeric code (XXXXXXXXD) underneath the product number is the Intel FPO number.   2. Pin names in parentheses apply to the 80C186EA/80L188EA.   272432–6   Figure 6. Quad Flat Pack (EIAJ) Pinout Diagram   18   18   80C186EA/80C188EA, 80L186EA/80L188EA   Table 8. SQFP Pin Functions with Package Location   Bus Control Processor Control   ALE/QS0   AD Bus   I/O   AD0   AD1   AD2   AD3   AD4   AD5   AD6   AD7   1 3 29   26   40   39   38   28   27   37   44   56   54   45   43   42   RESIN   73   UCS   LCS   62   63   BHE/(RFSH)   S0   RESOUT   CLKIN   34   32   33   36   46   47   48   49   52   53   55   6 8 S1   OSCOUT   CLKOUT   TEST/BUSY   NMI   MCS0/PEREQ   MCS1/ERROR   MCS2   57   58   59   60   12   14   16   18   2 S2   RD/QSMD   WR/QS1   ARDY   SRDY   DEN   MCS3/NPS   INT0   AD8 (A8)   AD9 (A9)   AD10 (A10)   AD11 (A11)   AD12 (A12)   AD13 (A13)   AD14 (A14)   AD15 (A15)   A16/S3   INT1/SELECT   INT2/INTA0   INT3/INTA1   PDTMR   PCS0   PCS1   PCS2   PCS3   71   69   68   67   66   65   64   5 7 DT/R   9 LOCK   HOLD   HLDA   13   15   17   19   21   22   23   24   PCS4   PCS5/A1   PCS6/A2   Power and Ground   V V V V V V V V V V V 10   11   20   50   51   61   30   31   41   70   80   CC   CC   CC   CC   CC   CC   SS   SS   SS   SS   SS   No Connection   TMR IN 0   TMR IN 1   TMR OUT 0   TMR OUT 1   77   76   75   74   N.C.   4 A17/S4   N.C.   N.C.   N.C.   25   35   72   A18/S5   A19/S6   DRQ0   DRQ1   79   78   NOTE:   Pin names in parentheses apply to the 80C186EA/80L188EA.   Table 9. SQFP Pin Locations with Pin Names   1 2 AD0   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   A16/S3   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   V HLDA   HOLD   SRDY   LOCK   TEST/BUSY   NMI   INT0   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   V CC   UCS   LCS   PCS6/A2   PCS5/A1   PCS4   PCS3   PCS2   PCS1   V SS   PCS0   N.C.   RES   TMR OUT 1   TMR OUT 0   TMR IN 1   TMR IN 0   DRQ1   SS   AD8 (A8)   AD1   A17/S4   3 A18/S5   4 N.C.   A19/S6   5 AD9 (A9)   AD2   N.C.   6 BHE/(RFSH)   WR/QS1   RD/QSMD   ALE/QS0   7 AD10 (A10)   AD3   8 9 AD11 (A11)   INT1/SELECT   10   11   12   13   14   15   16   17   18   19   20   V V V V V V CC   CC   SS   CC   CC   SS   AD4   X1   INT2/INTA0   INT3/INTA1   DT/R   PDTMR   DEN   MCS0/PEREQ   MCS1/ERROR   MCS2   AD12 (A12)   AD5   X2   RESET   N.C.   CLKOUT   ARDY   S2   AD13 (A13)   AD6   AD14 (A14)   AD7   AD15 (A15)   S1   DRQ0   V SS   V S0   MCS3/NPS   CC   NOTE:   Pin names in parentheses apply to the 80C186EA/80L188EA.   19   19   80C186EA/80C188EA, 80L186EA/80L188EA   272432–7   Figure 7. Shrink Quad Flat Pack (SQFP) Pinout Diagram   NOTES:   1. XXXXXXXXD indicates the Intel FPO number.   2. Pin names in parentheses apply to the 80C188EA.   T (the ambient temperature) can be calculated   A PACKAGE THERMAL   SPECIFICATIONS   from i (thermal resistance from the case to ambi-   CA   ent) with the following equation:   The 80C186EA/80L186EA is specified for operation   when T (the case temperature) is within the range   C e c T A T C - P   i CA   of 0 C to 85 C (PLCC package) or 0 C to 106 C   § § § § Typical values for i   in Table 10.   at various airflows are given   CA   (QFP-EIAJ) package. T may be measured in any   C environment to determine whether the processor is   within the specified operating range. The case tem-   perature must be measured at the center of the top   surface.   P (the maximum power consumption, specified in   watts) is calculated by using the maximum ICC as   tabulated in the DC specifications and V   of 5.5V.   CC   Table 10. Thermal Resistance (i ) at Various Airflows (in C/Watt)   § CA   Airflow Linear ft/min (m/sec)   0 200   400   600   800 1000   (0) (1.01) (2.03) (3.04) (4.06) (5.07)   i i i (PLCC)   (QFP)   29 25   66 63   70   21   19   59   17   58   16.5   57   CA   CA   CA   60.5   (SQFP)   20   20   80C186EA/80C188EA, 80L186EA/80L188EA   ELECTRICAL SPECIFICATIONS   NOTICE: This data sheet contains preliminary infor-   mation on new products in production. It is valid for   the devices indicated in the revision history. The   specifications are subject to change without notice.   Absolute Maximum Ratings*   b Storage Temperature ÀÀÀÀÀÀÀÀÀÀ 65 C to 150 C   a *WARNING: Stressing the device beyond the ‘‘Absolute   Maximum Ratings’’ may cause permanent damage.   These are stress ratings only. Operation beyond the   ‘‘Operating Conditions’’ is not recommended and ex-   tended exposure beyond the ‘‘Operating Conditions’’   may affect device reliability.   § § b a Case Temperature under Bias ÀÀÀ 65 C to 150 C   § § Supply Voltage with Respect   b a to V ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 0.5V to 6.5V   SS   Voltage on Other Pins with Respect   to V   b ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 0.5V to V   a 0.5V   SS   CC   itors is application and board layout dependent. The   processor can cause transient power surges when   its output buffers transition, particularly when con-   nected to large capacitive loads.   Recommended Connections   Power and ground connections must be made to   multiple V and V pins. Every 80C186EA based   CC SS   circuit board should contain separate power (V   ) CC   and ground (V ) planes. All V and V pins must   Always connect any unused input pins to an appro-   priate signal level. In particular, unused interrupt pins   (NMI, INT3:0) should be connected to V to avoid   SS   CC   SS   be connected to the appropriate plane. Pins identi-   fied as ‘‘N.C.’’ must not be connected in the system.   Decoupling capacitors should be placed near the   processor. The value and type of decoupling capac-   SS   unwanted interrupts. Leave any unused output pin   or any ‘‘N.C.’’ pin unconnected.   21   21   80C186EA/80C188EA, 80L186EA/80L188EA   DC SPECIFICATIONS (80C186EA/80C188EA)   Symbol   Parameter   Supply Voltage   Min   Max   Units   V Conditions   V V V V V V 4.5   5.5   CC   IL   b Input Low Voltage for All Pins   Input High Voltage for All Pins   Output Low Voltage   0.5   0.3 V   V CC   a 0.7 V   V CC   0.5   V IH   CC   e 0.45   V I I 3 mA (min)   OL   OH   HYR   OL   b e b   2 mA (min)   Output High Voltage   V 0.5   V CC   OH   Input Hysterisis on RESIN   0.30   V s s g g I Input Leakage Current (except   RD/QSMD, UCS, LCS, MCS0/PEREQ,   MCS1/ERROR, LOCK and TEST/BUSY)   10   mA   0V   V V CC   IL1   IN   b e (Note 1)   I Input Leakage Current   (RD/QSMD, UCS, LCS, MCS0/PEREQ,   MCS1, ERROR, LOCK and TEST/BUSY   275   mA   V 0.7 V   CC   IL2   IN   s s I I Output Leakage Current   0.45   (Note 2)   V V CC   OL   CC   OUT   10   mA   Supply Current Cold (RESET)   80C186EA25/80C188EA25   80C186EA20/80C188EA20   80C186EA13/80C188EA13   105   90   mA (Notes 3, 5)   mA   mA   65   I I Supply Current In Idle Mode   80C186EA25/80C188EA25   80C186EA20/80C188EA20   80C186EA13/80C188EA13   ID   90   70   46   mA (Note 5)   mA   mA   Supply Current In Powerdown Mode   80C186EA25/80C188EA25   80C186EA20/80C188EA20   80C186EA13/80C188EA13   PD   100   100   100   mA   mA   mA   (Note 5)   e e C C Output Pin Capacitance   Input Pin Capacitance   0 0 15   15   pF   pF   T T 1 MHz (Note 4)   1 MHz   OUT   F F IN   NOTES:   1. RD/QSMD, UCS, LCS, MCS0/PEREQ, MCS1/ERROR, LOCK and TEST/BUSY have internal pullups that are only acti-   e b vated during RESET. Loading these pins above I   operation.   275 mA will cause the processor to enter alternate modes of   OL   2. Output pins are floated using HOLD or ONCE Mode.   3. Measured at worst case temperature and V with all outputs loaded as specified in the AC Test Conditions, and with the   CC   device in RESET (RESIN held low). RESET is worst case for I   . CC   4. Output capacitance is the capacitive load of a floating output pin.   a 5. Operating conditions for 25 MHz are 0 C to 70 C, V   e g 5.0V 10%.   § § CC   22   22   80C186EA/80C188EA, 80L186EA/80L188EA   DC SPECIFICATIONS (80L186EA/80L188EA)   Symbol   Parameter   Supply Voltage   Min   Max   Units   V Conditions   V V V V V V 2.7   5.5   CC   b Input Low Voltage for All Pins   Input High Voltage for All Pins   Output Low Voltage   0.5   0.3 V   V IL   CC   a 0.7 V   V CC   0.5   V IH   CC   e 0.45   V I I 1.6 mA (min)   OL   OH   HYR   OL   b e b   1 mA (min)   Output High Voltage   V 0.5   V CC   OH   Input Hysterisis on RESIN   0.30   V s s g g I Input Leakage Current (except   RD/QSMD, UCS, LCS, MCS0/PEREQ,   MCS1, LOCK and TEST)   10   mA   0V   V V CC   IL1   IN   b e (Note 1)   I Input Leakage Current   (RD/QSMD, UCS, LCS, MCS0,   MCS1, LOCK and TEST)   275   mA   V 0.7 V   CC   IL2   IN   s s I I Output Leakage Current   0.45   (Note 2)   V V CC   OL   OUT   10   mA   Supply Current (RESET, 5.5V)   80L186EA-13   80L186EA-8   CC5   65   40   mA   mA   (Note 3)   (Note 3)   I I I I I Supply Current (RESET, 2.7V)   80L186EA-13   80L186EA-8   CC3   ID5   34   20   mA   mA   (Note 3)   (Note 3)   Supply Current Idle (5.5V)   80L186EA-13   80L186EA-8   46   28   mA   mA   Supply Current Idle (2.7V)   80L186EA-13   80L186EA-8   ID5   24   14   mA   mA   Supply Current Powerdown (5.5V)   80L186EA-13   80L186EA-8   PD5   PD3   100   100   mA   mA   Supply Current Powerdown (2.7V)   80L186EA-13   80L186EA-8   50   50   mA   mA   e e C C Output Pin Capacitance   Input Pin Capacitance   0 0 15   15   pF   pF   T T 1 MHz (Note 4)   1 MHz   OUT   F F IN   NOTES:   1. RD/QSMD, UCS, LCS, MCS0, MCS1, LOCK and TEST have internal pullups that are only activated during RESET.   e b   Loading these pins above I   275 mA will cause the processor to enter alternate modes of operation.   OL   2. Output pins are floated using HOLD or ONCE Mode.   3. Measured at worst case temperature and V with all outputs loaded as specified in the AC Test Conditions, and with the   CC   device in RESET (RESIN held low).   4. Output capacitance is the capacitive load of a floating output pin.   23   23   80C186EA/80C188EA, 80L186EA/80L188EA   I CC   VERSUS FREQUENCY AND VOLTAGE   PDTMR PIN DELAY CALCULATION   The current (I ) consumption of the processor is   and   The PDTMR pin provides a delay between the as-   sertion of NMI and the enabling of the internal   clocks when exiting Powerdown. A delay is required   only when using the on-chip oscillator to allow the   crystal or resonator circuit time to stabilize.   CC   essentially composed of two components; I   PD   I . CCS   I is the quiescent current that represents internal   PD   device leakage, and is measured with all inputs or   floating outputs at GND or V (no clock applied to   the device). I   NOTE:   CC   is equal to the Powerdown current   The PDTMR pin function does not apply when   RESIN is asserted (i.e., a device reset during Pow-   erdown is similar to a cold reset and RESIN must   remain active until after the oscillator has stabi-   lized).   PD   and is typically less than 50 mA.   I is the switching current used to charge and   CCS   discharge parasitic device capacitance when chang-   ing logic levels. Since I is typically much greater   than I , I can often be ignored when calculating   CCS   To calculate the value of capacitor required to pro-   vide a desired delay, use the equation:   PD PD   I . CC   c e 440   t C (5V, 25 C)   § desired delay in seconds   PD   I is related to the voltage and frequency at which   CCS   the device is operating. It is given by the formula:   e Where: t   e C PD   capacitive load on PDTMR in mi-   crofarads   2 e c e c c Power   . V I V C f DEV   C e e e c c . . I   I I V f CC   CCS   DEV   e Where: V   Device operating voltage (V   ) CC   EXAMPLE: To get a delay of 30b0 ms, a capacitor   value of C 440 (300 10 0.132 mF is   PD   required. Round up to standard (available) capaci-   tive values.   6 e c c e ) e C f Device capacitance   Device operating frequency   DEV   e e e I I Device current   CCS   CC   NOTE:   Measuring C   on a device like the 80C186EA   The above equation applies to delay times greater   than 10 ms and will compute the TYPICAL capaci-   tance needed to achieve the desired delay. A delay   DEV   would be difficult. Instead, C   is calculated using   the above formula by measuring I at a known V   DEV   CC   and frequency (see Table 11). Using this C   CC   val-   a b variance of   temperature, voltage, and device process ex-   tremes. In general, higher V and/or lower tem-   50% or   25% can occur due to   DEV   ue, I can be calculated at any voltage and fre-   CC   quency within the specified operating range.   CC   perature will decrease delay time, while lower V   CC   and/or higher temperature will increase delay time.   EXAMPLE: Calculate the typical I when operating   CC   at 20 MHz, 4.8V.   e e c c 4.8 0.515 20   & I I 49 mA   Table 11. C   CC   CCS   Values   DEV   Parameter   Typ   Max   Units   Notes   C (Device in Reset)   (Device in Idle)   0.515   0.391   0.905   0.635   mA/V*MHz   mA/V*MHz   1, 2   DEV   C DEV   1, 2   b 1. Max C   is calculated at 40 C, all floating outputs driven to V   or GND, and all   § DEV   outputs loaded to 50 pF (including CLKOUT and OSCOUT).   2. Typical C is calculated at 25 C with all outputs loaded to 50 pF except CLKOUT and   CC   § DEV   OSCOUT, which are not loaded.   24   24   80C186EA/80C188EA, 80L186EA/80L188EA   AC SPECIFICATIONS   AC CharacteristicsÐ80C186EA25/80C186EA20/80C186EA13   Symbol   Parameter   Min   Max   Min   Max   Min   Max Units Notes   (12)   INPUT CLOCK   25 MHz   20 MHz   13 MHz   T T T T T T CLKIN Frequency   CLKIN Period   CLKIN High Time   CLKIN Low Time   CLKIN Rise Time   CLKIN Fall Time   0 20   10   10   1 50   % % % 8 8 0 25   10   10   1 40   % % % 8 8 0 38.5   12   12   1 26 MHz   % 1 1 1, 2   1, 2   1, 3   1, 3   F ns   ns   C % CH   CL   CR   CF   % ns   8 8 ns   ns   1 1 1 OUTPUT CLOCK   T T T T T T CLKIN to CLKOUT Delay   CLKOUT Period   CLKOUT High Time   CLKOUT Low Time   CLKOUT Rise Time   CLKOUT Fall Time   0 15   2T   0 17   2*T   0 23   2*T   C ns   ns   ns   ns   ns   ns   1, 4   1 1 1 1, 5   1, 5   CD   C C b b b b b b (T/2)   (T/2)   5 5 (T/2)   (T/2)   5 5 (T/2)   (T/2)   5 5 PH   PL   PR   PF   1 1 6 6 1 1 6 6 1 1 6 6 OUTPUT DELAYS   T T T ALE, S2:0, DEN, DT/R,   BHE, (RFSH), LOCK, A19:16   3 3 3 20   25   20   3 3 3 22   27   22   3 3 3 25   30   25   ns 1, 4, 6, 7   ns 1, 4, 6, 8   CHOV1   CHOV2   CLOV1   MCS3:0, LCS, UCS, PCS6:0,   NCS, RD, WR   BHE (RFSH), DEN, LOCK,   RESOUT, HLDA,   T0OUT, T1OUT, A19:16   ns   ns   1, 4, 6   1, 4, 6   T RD, WR, MCS3:0, LCS,   UCS, PCS6:0, AD15:0   (A15:8, AD7:0),   3 25   3 27   3 30   CLOV2   NCS, INTA1:0, S2:0   T T RD, WR, BHE (RFSH), DT/R,   LOCK, S2:0, A19:16   0 0 25   25   0 0 25   25   0 0 25   25   ns   ns   1 1 CHOF   CLOF   DEN, AD15:0 (A15:8, AD7:0)   25   25   80C186EA/80C188EA, 80L186EA/80L188EA   AC SPECIFICATIONS (Continued)   AC CharacteristicsÐ80C186EA25/80C186EA20/80C186EA13   Symbol   Parameter   Min   Max   (12)   Min   Max   Min   Max   Units   Notes   SYNCHRONOUS INPUTS   25 MHz   20 MHz   13 MHz   T T T T T T TEST, NMI, INT3:0,   T1:0IN, ARDY   8 10   10   3 ns   ns   ns   ns   ns   ns   1, 9   1, 9   CHIS   CHIH   CLIS   CLIH   CLIS   CLIH   TEST, NMI, INT3:0,   T1:0IN, ARDY   3 10   3 3 AD15:0 (AD7:0), ARDY,   SRDY, DRQ1:0   10   3 10   3 1, 10   1, 10   1, 9   AD15:0 (AD7:0), ARDY,   SRDY, DRQ1:0   HOLD, PEREQ, ERROR   (80C186EA Only)   10   3 10   3 10   3 HOLD, PEREQ, ERROR   (80C186EA Only)   1, 9   T T RESIN (to CLKIN)   10   3 10   3 10   3 ns   ns   1, 9   1, 9   CLIS   CLIH   RESIN (from CLKIN)   NOTES:   1. See AC Timing Waveforms, for waveforms and definition.   2. Measured at V for high time, V for low time.   IH IL   3. Only required to guarantee I . Maximum limits are bounded by T , T   CC   and T   . CL   C CH   4. Specified for a 50 pF load, see Figure 13 for capacitive derating information.   5. Specified for a 50 pF load, see Figure 14 for rise and fall times outside 50 pF.   6. See Figure 14 for rise and fall times.   7. T   8. T   applies to BHE (RFSH), LOCK and A19:16 only after a HOLD release.   applies to RD and WR only after a HOLD release.   CHOV1   CHOV2   9. Setup and Hold are required to guarantee recognition.   10. Setup and Hold are required for proper operation.   11. T   applies to BHE (RFSH) and A19:16 only after a HOLD release.   a CHOVS   12. Operating conditions for 25 MHz are 0 C to 70 C, V   e g 5.0V 10%.   § § CC   Pin names in parentheses apply to the 80C188EA/80L188EA.   26   26   80C186EA/80C188EA, 80L186EA/80L188EA   AC SPECIFICATIONS   AC CharacteristicsÐ80L186EA13/80L186EA8   Symbol   Parameter   Min   13 MHz   Max   Min   8 MHz   Max   Units   Notes   INPUT CLOCK   T T T T T T CLKIN Frequency   CLKIN Period   CLKIN High Time   CLKIN Low Time   CLKIN Rise Time   CLKIN Fall Time   0 38.5   12   12   1 26   % % % 8 8 0 62.5   12   12   1 16   % % % 8 8 MHz   ns   ns   ns   ns   ns   1 1 1, 2   1, 2   1, 3   1, 3   F C CH   CL   CR   CF   1 1 OUTPUT CLOCK   T T T T T T CLKIN to CLKOUT Delay   CLKOUT Period   CLKOUT High Time   CLKOUT Low Time   CLKOUT Rise Time   CLKOUT Fall Time   0 45   2*T   0 95   2*T   ns   ns   ns   ns   ns   ns   1, 4   1 1 1 1, 5   1, 5   CD   C C b b b b (T/2)   (T/2)   5 5 (T/2)   (T/2)   5 5 PH   PL   PR   PF   1 1 12   12   1 1 12   12   OUTPUT DELAYS   T T ALE, LOCK   3 3 27   32   3 3 27   32   ns   ns   1, 4, 6, 7   CHOV1   CHOV2   MCS3:0, LCS, UCS,   PCS6:0, RD, WR   1, 4,   6, 8   T T T S2:0 (DEN), DT/R,   BHE (RFSH), A19:16   3 3 3 30   27   32   3 3 3 30   27   35   ns   ns   ns   1 CHOV3   CLOV1   CLOV2   LOCK, RESOUT, HLDA,   T0OUT, T1OUT   1, 4, 6   1, 4, 6   RD, WR, MCS3:0, LCS,   UCS, PCS6:0, INTA1:0   T T T T BHE (RFSH), DEN, A19:16   AD15:0 (A15:8, AD7:0)   S2:0   3 3 3 0 30   34   38   27   3 3 3 0 30   35   40   27   ns   ns   ns   ns   1, 4, 6   1, 4, 6   1, 4, 6   1 CLOV3   CLOV4   CLOV5   CHOF   RD, WR, BHE (RFSH),   DT/R, LOCK,   S2:0, A19:16   T DEN, AD15:0   (A15:8, AD7:0)   CLOF   0 27   0 27   ns   1 NOTES:   1. See AC Timing Waveforms, for waveforms and definition.   2. Measured at V for high time, V for low time.   IH IL   3. Only required to guarantee I . Maximum limits are bounded by T , T   CC   and T   . CL   C CH   4. Specified for a 50 pF load, see Figure 13 for capacitive derating information.   5. Specified for a 50 pF load, see Figure 14 for rise and fall times outside 50 pF.   6. See Figure 14 for rise and fall times.   7. T   8. T   applies to BHE (RFSH), LOCK and A19:16 only after a HOLD release.   applies to RD and WR only after a HOLD release.   CHOV1   CHOV2   9. Setup and Hold are required to guarantee recognition.   10. Setup and Hold are required for proper operation.   11. T   applies to BHE (RFSH) and A19:16 only after a HOLD release.   CHOVS   12. Pin names in parentheses apply to the 80C188EA/80L188EA.   27   27   80C186EA/80C188EA, 80L186EA/80L188EA   AC SPECIFICATIONS   AC CharacteristicsÐ80L186EA13/80L186EA8   Symbol   Parameter   Min   Max   Min   Max   Units   Notes   SYNCHRONOUS INPUTS   13 MHz   8 MHz   T T T T T T T T TEST, NMI, INT3:0, T1:0IN, ARDY   TEST, NMI, INT3:0, T1:0IN, ARDY   AD15:0 (AD7:0), ARDY, SRDY, DRQ1:0   AD15:0 (AD7:0), ARDY, SRDY, DRQ1:0   HOLD   22   3 22   3 ns   ns   ns   ns   ns   ns   ns   ns   1, 9   1, 9   CHIS   CHIH   CLIS   CLIH   CLIS   CLIH   CLIS   CLIH   22   3 22   3 1, 10   1, 10   1, 9   22   3 22   3 HOLD   1, 9   RESIN (to CLKIN)   22   3 22   3 1, 9   RESIN (from CLKIN)   1, 9   NOTES:   1. See AC Timing Waveforms, for waveforms and definition.   2. Measured at V for high time, V for low time.   IH IL   3. Only required to guarantee I . Maximum limits are bounded by T , T   CC   and T   . CL   C CH   4. Specified for a 50 pF load, see Figure 13 for capacitive derating information.   5. Specified for a 50 pF load, see Figure 14 for rise and fall times outside 50 pF.   6. See Figure 14 for rise and fall times.   7. T   8. T   applies to BHE (RFSH), LOCK and A19:16 only after a HOLD release.   applies to RD and WR only after a HOLD release.   CHOV1   CHOV2   9. Setup and Hold are required to guarantee recognition.   10. Setup and Hold are required for proper operation.   11. T   applies to BHE (RFSH) and A19:16 only after a HOLD release.   CHOVS   12. Pin names in parentheses apply to the 80C188EA/80L188EA.   28   28   80C186EA/80C188EA, 80L186EA/80L188EA   AC SPECIFICATIONS (Continued)   Relative Timings (80C186EA25/20/13, 80L186EA13/8)   Symbol   Parameter   Min   Max   Unit   Notes   RELATIVE TIMINGS   b T T T T T T T T T T T T T T T T T T T T ALE Rising to ALE Falling   T 15   ns   ns   ns   ns   ns   ns   ns   ns   ns   ns   ns   ns   ns   ns   ns   ns   ns   ns   ns   ns   LHLL   b Address Valid to ALE Falling   Chip Selects Valid to ALE Falling   Address Hold from ALE Falling   ALE Falling to WR Falling   (/2T   (/2T   (/2T   (/2T   (/2T   (/2T   (/2T   10   10   10   15   15   10   10   AVLL   b b b b b b 0 1 PLLL   LLAX   1 1 1 1 LLWL   LLRL   ALE Falling to RD Falling   RD Rising to ALE Rising   RHLH   WHLH   AFRL   RLRH   WLWH   RHAV   WHDX   WHDEX   WHPH   RHPH   PHPL   DXDL   OVRH   RHOX   WR Rising to ALE Rising   Address Float to RD Falling   RD Falling to RD Rising   b (2*T)   5 5 2 2 b WR Falling to WR Rising   (2*T)   b b RD Rising to Address Active   Output Data Hold after WR Rising   WR Rising to DEN Rising   T T 15   15   b b b b 0 (/2T   (/2T   (/2T   (/2T   10   10   10   10   1 1, 4   1, 4   1 WR Rising to Chip Select Rising   RD Rising to Chip Select Rising   CS Inactive to CS Active   DEN Inactive to DT/R Low   ONCE (UCS, LCS) Active to RESIN Rising   ONCE (UCS, LCS) to RESIN Rising   5 T 3 T 3 NOTES:   1. Assumes equal loading on both pins.   2. Can be extended using wait states.   3. Not tested.   4. Not applicable to latched A2:1. These signals change only on falling T .   1 5. For write cycle followed by read cycle.   6. Operating conditions for 25 MHz are 0 C to 70 C, V   a e g 5.0V 10%.   § § CC   29   29   80C186EA/80C188EA, 80L186EA/80L188EA   AC TEST CONDITIONS   The AC specifications are tested with the 50 pF load   shown in Figure 8. See the Derating Curves section   to see how timings vary with load capacitance.   272432–8   e C L 50 pF for all signals.   Figure 8. AC Test Load   Specifications are measured at the V /2 crossing   CC   point, unless otherwise specified. See AC Timing   Waveforms, for AC specification definitions, test   pins, and illustrations.   AC TIMING WAVEFORMS   272432–9   Figure 9. Input and Output Clock Waveform   30   30   80C186EA/80C188EA, 80L186EA/80L188EA   272432–10   NOTE:   20% V   k k Float   80% V   CC   CC   Figure 10. Output Delay and Float Waveform   272432–11   NOTE:   RESIN measured to CLKIN, not CLKOUT   Figure 11. Input Setup and Hold   31   31   80C186EA/80C188EA, 80L186EA/80L188EA   272432–12   NOTES:   1. T   for write cycle followed by read cycle.   DXDL   2. Pin names in parentheses apply to tthe 80C188EA.   Figure 12. Relative Signal Waveform   32   32   80C186EA/80C188EA, 80L186EA/80L188EA   DERATING CURVES   272432–14   272432–13   Figure 14. Typical Rise and Fall Variations   Versus Load Capacitance   Figure 13. Typical Output Delay Variations   Versus Load Capacitance   must ensure that the ramp time for V is not so   long that RESIN is never really sampled at a logic   CC   RESET   low level when V   conditions.   reaches minimum operating   The processor performs a reset operation any time   the RESIN pin is active. The RESIN pin is actually   synchronized before it is presented internally, which   means that the clock must be operating before a   reset can take effect. From a power-on state, RESIN   must be held active (low) in order to guarantee cor-   rect initialization of the processor. Failure to pro-   vide RESIN while the device is powering up will   result in unspecified operation of the device.   CC   Figure 16 shows the timing sequence when RESIN   is applied after V is stable and the device has   CC   been operating. Note that a reset will terminate all   activity and return the processor to a known operat-   ing state. Any bus operation that is in progress at the   time RESIN is asserted will terminate immediately   (note that most control signals will be driven to their   inactive state first before floating).   Figure 15 shows the correct reset sequence when   first applying power to the processor. An external   clock connected to CLKIN must not exceed the V   While RESIN is active, signals RD/QSMD, UCS,   LCS, MCS0/PEREQ, MCS1/ERROR, LOCK, and   TEST/BUSY are configured as inputs and weakly   held high by internal pullup transistors. Forcing UCS   and LCS low selects ONCE Mode. Forcing QSMD   low selects Queue Status Mode. Forcing TEST/   BUSY high at reset and low four clocks later enables   Numerics Mode. Forcing LOCK low is prohibited and   results in unspecified operation.   CC   threshold being applied to the processor. This is nor-   mally not a problem if the clock driver is supplied   with the same V   that supplies the processor.   When attaching a crystal to the device, RESIN must   CC   remain active until both V and CLKOUT are stable   CC   (the length of time is application specific and de-   pends on the startup characteristics of the crystal   circuit). The RESIN pin is designed to operate cor-   rectly using an RC reset circuit, but the designer   33   33   80C186EA/80C188EA, 80L186EA/80L188EA   Figure 15. Powerup Reset Waveforms   34   34   80C186EA/80C188EA, 80L186EA/80L188EA   Figure 16. Warm Reset Waveforms   35   35   80C186EA/80C188EA, 80L186EA/80L188EA   BUS CYCLE WAVEFORMS   Figures 17 through 23 present the various bus cycles that are generated by the processor. What is shown in   the figure is the relationship of the various bus signals to CLKOUT. These figures along with the information   present in AC Specifications allow the user to determine all the critical timing analysis needed for a given   application.   272432-17   NOTES:   1. During the data phase of the bus cycle, A19/S6 is driven high for a DMA or refresh cycle.   2. Pin names in parentheses apply to the 80C188EA.   Figure 17. Read, Fetch and Refresh Cycle Waveform   36   36   80C186EA/80C188EA, 80L186EA/80L188EA   272432-18   NOTES:   1. During the data phase of the bus cycle, A19/S6 is driven high for a DMA cycle.   2. Pin names in parentheses apply to the 80C188EA.   Figure 18. Write Cycle Waveform   37   37   80C186EA/80C188EA, 80L186EA/80L188EA   272432–19   NOTES:   1. The processor drives these pins to 0 during Idle and Powerdown Modes.   2. Pin names in parentheses apply to the 80C188EA.   Figure 19. Halt Cycle Waveform   38   38   80C186EA/80C188EA, 80L186EA/80L188EA   NOTES:   1. INTA occurs one clock later in Slave Mode.   2. Pin names in parentheses apply to the 80C188EA.   272432–20   Figure 20. INTA Cycle Waveform   39   39   80C186EA/80C188EA, 80L186EA/80L188EA   272432–21   NOTE:   1. Pin names in parentheses apply to the 80C188EA.   Figure 21. HOLD/HLDA Waveform   40   40   80C186EA/80C188EA, 80L186EA/80L188EA   272432–22   NOTE:   1. Pin names in parentheses apply to the 80C188EA.   Figure 22. DRAM Refresh Cycle During Hold Acknowledge   41   41   80C186EA/80C188EA, 80L186EA/80L188EA   272432–23   NOTES:   1. Generalized diagram for READ or WRITE.   2. ARDY low by either edge causes a wait state. Only rising ARDY is fully synchronized.   3. SRDY low causes a wait state. SRDY must meet setup and hold times to ensure correct device operation.   4. Either ARDY or SRDY active high will terminate a bus cycle.   5. Pin names in parentheses apply to the 80C188EA.   Figure 23. Ready Waveform   42   42   80C186EA/80C188EA, 80L186EA/80L188EA   All instructions which involve memory accesses can   require one or two additional clocks above the mini-   mum timings shown due to the asynchronous hand-   shake between the bus interface unit (BIU) and exe-   cution unit.   80C186EA/80C188EA EXECUTION   TIMINGS   A determination of program exeuction timing must   consider the bus cycles necessary to prefetch in-   structions as well as the number of execution unit   cycles necessary to execute instructions. The fol-   lowing instruction timings represent the minimum   execution time in clock cycle for each instruction.   The timings given are based on the following as-   sumptions:   With a 16-bit BIU, the 80C186EA has sufficient bus   performance to endure that an adequate number of   prefetched bytes will reside in the queue (6 bytes)   most of the time. Therefore, actual program exeuc-   tion time will not be substanially greater than that   derived from adding the instruction timings shown.   The opcode, along with any data or displacement   # required for execution of a particular instruction,   has been prefetched and resides in the queue at   the time it is needed.   The 80C188EA 8-bit BIU is limited in its performance   relative to the execution unit. A sufficient number of   prefetched bytes may not reside in the prefetch   queue (4 bytes) much of the time. Therefore, actual   program execution time will be substantially greater   than that derived from adding the instruction timings   shown.   No wait states or bus HOLDs occur.   # All word-data is located on even-address bound-   aries. (80C186EA only)   # All jumps and calls include the time required to fetch   the opcode of the next instruction at the destination   address.   43   43   80C186EA/80C188EA, 80L186EA/80L188EA   INSTRUCTION SET SUMMARY   80C186EA 80C188EA   Function   Format   Comments   Clock   Clock   Cycles   Cycles   DATA TRANSFER   e MOV   Move:   Register to Register/Memory   Register/memory to register   Immediate to register/memory   Immediate to register   1 0 0 0 1 0 0 w   1 0 0 0 1 0 1 w   1 1 0 0 0 1 1 w   1 0 1 1 w reg   1 0 1 0 0 0 0 w   1 0 1 0 0 0 1 w   1 0 0 0 1 1 1 0   1 0 0 0 1 1 0 0   mod reg r/m   mod reg r/m   mod 000 r/m   data   2/12   2/9   12–13   3–4   8 2/12*   2/9   e data   data if w   1 12–13   3–4   8*   8/16-bit   8/16-bit   e data if w   1 Memory to accumulator   addr-low   addr-high   addr-high   Accumulator to memory   addr-low   9 9*   Register/memory to segment register   Segment register to register/memory   mod 0 reg r/m   mod 0 reg r/m   2/9   2/11   2/13   2/15   e PUSH   Push:   Memory   Register   1 1 1 1 1 1 1 1   0 1 0 1 0 reg   0 0 0 reg 1 1 0   0 1 1 0 1 0 s 0   mod 1 1 0 r/m   16   10   9 20   14   13   14   Segment register   Immediate   e data   data if s   0 10   e PUSHA   Push All   Pop:   Memory   0 1 1 0 0 0 0 0   36   68   e POP   1 0 0 0 1 1 1 1   0 1 0 1 1 reg   0 0 0 reg 1 1 1   mod 0 0 0 r/m   (regi01)   20   10   8 24   14   12   Register   Segment register   e e POPA   Pop All   0 1 1 0 0 0 0 1   51   83   XCHG   Exchange:   Register/memory with register   Register with accumulator   1 0 0 0 0 1 1 w   1 0 0 1 0 reg   mod reg r/m   4/17   3 4/17*   3 e IN   Input from:   Fixed port   1 1 1 0 0 1 0 w   1 1 1 0 1 1 0 w   port   port   10   8 10*   Variable port   7*   e OUT   Output to:   Fixed port   1 1 1 0 0 1 1 w   1 1 1 0 1 1 1 w   1 1 0 1 0 1 1 1   1 0 0 0 1 1 0 1   1 1 0 0 0 1 0 1   1 1 0 0 0 1 0 0   1 0 0 1 1 1 1 1   1 0 0 1 1 1 1 0   1 0 0 1 1 1 0 0   1 0 0 1 1 1 0 1   9 7 9*   7*   15   6 Variable port   e XLAT   Translate byte to AL   11   6 e LEA   LDS   LES   Load EA to register   Load pointer to DS   Load pointer to ES   mod reg r/m   mod reg r/m   mod reg r/m   (modi11)   (modi11)   18   18   2 26   26   2 e e e LAHF   SAHF   Load AH with flags   Store AH into flags   e 3 3 e PUSHF   Push flags   Pop flags   9 13   12   e POPF   8 Shaded areas indicate instructions not available in 8086/8088 microsystems.   NOTE:   *Clock cycles shown for byte transfers. For word operations, add 4 clock cycles for all memory transfers.   44   44   80C186EA/80C188EA, 80L186EA/80L188EA   INSTRUCTION SET SUMMARY (Continued)   80C186EA 80C188EA   Function   Format   Comments   Clock   Clock   Cycles   Cycles   DATA TRANSFER (Continued)   e SEGMENT   Segment Override:   CS   0 0 1 0 1 1 1 0   0 0 1 1 0 1 1 0   0 0 1 1 1 1 1 0   0 0 1 0 0 1 1 0   2 2 2 2 2 2 2 2 SS   DS   ES   ARITHMETIC   e ADD   Add:   * * Reg/memory with register to either   Immediate to register/memory   Immediate to accumulator   0 0 0 0 0 0 d w   1 0 0 0 0 0 s w   0 0 0 0 0 1 0 w   mod reg r/m   mod 0 0 0 r/m   data   3/10   4/16   3/4   3/10   4/16   3/4   e data if s w 01   data   e e data if w   1 1 8/16-bit   8/16-bit   e ADC   Add with carry:   * * Reg/memory with register to either   Immediate to register/memory   Immediate to accumulator   0 0 0 1 0 0 d w   1 0 0 0 0 0 s w   0 0 0 1 0 1 0 w   mod reg r/m   mod 0 1 0 r/m   data   3/10   4/16   3/4   3/10   4/16   3/4   e data if s w 01   data   data if w   e INC   Increment:   * Register/memory   Register   1 1 1 1 1 1 1 w   0 1 0 0 0 reg   mod 0 0 0 r/m   3/15   3 3/15   3 e SUB   Subtract:   * * Reg/memory and register to either   Immediate from register/memory   Immediate from accumulator   0 0 1 0 1 0 d w   1 0 0 0 0 0 s w   0 0 1 0 1 1 0 w   mod reg r/m   mod 1 0 1 r/m   data   3/10   4/16   3/4   3/10   4/16   3/4   e data if s w 01   data   e e data if w   1 1 8/16-bit   8/16-bit   e SBB   Subtract with borrow:   * * Reg/memory and register to either   Immediate from register/memory   Immediate from accumulator   0 0 0 1 1 0 d w   1 0 0 0 0 0 s w   0 0 0 1 1 1 0 w   mod reg r/m   mod 0 1 1 r/m   data   3/10   4/16   3/4   3/10   4/16   e data if s w 01   data   * data if w   3/4   e DEC   Decrement   * Register/memory   Register   1 1 1 1 1 1 1 w   0 1 0 0 1 reg   mod 0 0 1 r/m   3/15   3 3/15   3 e CMP   Compare:   * * * Register/memory with register   Register with register/memory   Immediate with register/memory   Immediate with accumulator   0 0 1 1 1 0 1 w   0 0 1 1 1 0 0 w   1 0 0 0 0 0 s w   0 0 1 1 1 1 0 w   1 1 1 1 0 1 1 w   0 0 1 1 0 1 1 1   0 0 1 0 0 1 1 1   0 0 1 1 1 1 1 1   0 0 1 0 1 1 1 1   mod reg r/m   mod reg r/m   mod 1 1 1 r/m   data   3/10   3/10   3/10   3/4   3/10   3/10   3/10   3/4   3/10   8 e data if s w 01   data   e data if w   1 8/16-bit   * * e e e e e NEG   AAA   DAA   AAS   DAS   Change sign register/memory   ASCII adjust for add   mod 0 1 1 r/m   3/10   8 4 7 4 Decimal adjust for add   4 ASCII adjust for subtract   Decimal adjust for subtract   7 4 e MUL   Multiply (unsigned):   1 1 1 1 0 1 1 w   mod 100 r/m   Register-Byte   Register-Word   Memory-Byte   Memory-Word   26–28   35–37   32–34   41–43   26–28   35–37   32–34   * 41–48   Shaded areas indicate instructions not available in 8086/8088 microsystems.   NOTE:   *Clock cycles shown for byte transfers. For word operations, add 4 clock cycles for all memory transfers.   45   45   80C186EA/80C188EA, 80L186EA/80L188EA   INSTRUCTION SET SUMMARY (Continued)   80C186EA 80C188EA   Function   Format   Comments   Clock   Clock   Cycles   Cycles   ARITHMETIC (Continued)   e IMUL   Integer multiply (signed):   1 1 1 1 0 1 1 w   mod 1 0 1 r/m   Register-Byte   Register-Word   Memory-Byte   Memory-Word   25–28   34–37   31–34   40–43   25–28   34–37   32–34   40–43*   e (signed)   e 0 IMUL   Integer Immediate multiply   0 1 1 0 1 0 s 1   1 1 1 1 0 1 1 w   mod reg r/m   data   data if s   22–25   29–32   22-25   29–32   e DIV   Divide (unsigned):   mod 1 1 0 r/m   Register-Byte   Register-Word   Memory-Byte   Memory-Word   29   38   35   44   29   38   35   * 44   e IDIV   Integer divide (signed):   1 1 1 1 0 1 1 w   mod 1 1 1 r/m   Register-Byte   Register-Word   Memory-Byte   Memory-Word   44–52   53–61   50–58   59–67   44–52   53–61   50–58   59–67*   e e e e AAM   AAD   CBW   CWD   ASCII adjust for multiply   ASCII adjust for divide   Convert byte to word   1 1 0 1 0 1 0 0   1 1 0 1 0 1 0 1   1 0 0 1 1 0 0 0   1 0 0 1 1 0 0 1   0 0 0 0 1 0 1 0   0 0 0 0 1 0 1 0   19   15   2 19   15   2 Convert word to double word   4 4 LOGIC   Shift/Rotate Instructions:   Register/Memory by 1   1 1 0 1 0 0 0 w   1 1 0 1 0 0 1 w   1 1 0 0 0 0 0 w   mod TTT r/m   mod TTT r/m   2/15   2/15   a a a a Register/Memory by CL   5 5 n/17   n/17   n n 5 5 n/17   n/17   n n a a a a Register/Memory by Count   mod TTT r/m   count   TTT Instruction   0 0 0   0 0 1   0 1 0   0 1 1   ROL   ROR   RCL   RCR   1 0 0 SHL/SAL   1 0 1   1 1 1   SHR   SAR   e AND   And:   Reg/memory and register to either   Immediate to register/memory   Immediate to accumulator   0 0 1 0 0 0 d w   1 0 0 0 0 0 0 w   0 0 1 0 0 1 0 w   mod reg r/m   mod 1 0 0 r/m   data   3/10   4/16   3/4   3/10*   4/16*   3/4*   e e e data   data if w   data if w   data if w   1 1 1 e data if w   1 1 1 8/16-bit   8/16-bit   8/16-bit   e TEST And function to flags, no result:   * 3/10   Register/memory and register   1 0 0 0 0 1 0 w   1 1 1 1 0 1 1 w   1 0 1 0 1 0 0 w   mod reg r/m   mod 0 0 0 r/m   data   3/10   4/10   3/4   Immediate data and register/memory   Immediate data and accumulator   data   4/10*   e e data if w   3/4   e OR Or:   Reg/memory and register to either   Immediate to register/memory   Immediate to accumulator   0 0 0 0 1 0 d w   1 0 0 0 0 0 0 w   0 0 0 0 1 1 0 w   mod reg r/m   mod 0 0 1 r/m   data   3/10   4/16   3/4   3/10*   * data   4/16   data if w   3/4*   Shaded areas indicate instructions not available in 8086/8088 microsystems.   NOTE:   *Clock cycles shown for byte transfers. For word operations, add 4 clock cycles for all memory transfers.   46   46   80C186EA/80C188EA, 80L186EA/80L188EA   INSTRUCTION SET SUMMARY (Continued)   80C186EA 80C188EA   Function   Format   Comments   Clock   Clock   Cycles   Cycles   LOGIC (Continued)   e XOR   Exclusive or:   Reg/memory and register to either   Immediate to register/memory   Immediate to accumulator   0 0 1 1 0 0 d w   1 0 0 0 0 0 0 w   0 0 1 1 0 1 0 w   1 1 1 1 0 1 1 w   mod reg r/m   mod 1 1 0 r/m   data   3/10   4/16   3/4   3/10*   4/16*   3/4   e 1 data   data if w   e data if w   1 8/16-bit   e NOT   Invert register/memory   mod 0 1 0 r/m   3/10   3/10*   STRING MANIPULATION   e e e e e MOVS   CMPS   SCAS   LODS   STOS   Move byte/word   1 0 1 0 0 1 0 w   1 0 1 0 0 1 1 w   1 0 1 0 1 1 1 w   1 0 1 0 1 1 0 w   1 0 1 0 1 0 1 w   0 1 1 0 1 1 0 w   0 1 1 0 1 1 1 w   14   22   15   12   10   14   14   14*   22*   15*   12*   10*   14   Compare byte/word   Scan byte/word   Load byte/wd to AL/AX   Store byte/wd from AL/AX   e INS   Input byte/wd from DX port   e OUTS   Output byte/wd to DX port   14   Repeated by count in CX (REP/REPE/REPZ/REPNE/REPNZ)   * e e e e e a a a MOVS   CMPS   SCAS   LODS   STOS   Move string   Compare string   Scan string   Load string   1 1 1 1 0 0 1 0   1 1 1 1 0 0 1 z   1 1 1 1 0 0 1 z   1 1 1 1 0 0 1 0   1 1 1 1 0 0 1 0   1 1 1 1 0 0 1 0   1 0 1 0 0 1 0 w   1 0 1 0 0 1 1 w   1 0 1 0 1 1 1 w   1 0 1 0 1 1 0 w   1 0 1 0 1 0 1 w   0 1 1 0 1 1 0 w   8 8n   8 8n   a 5 5 6 22n   15n   11n   5 22n   a a a 15n*   5 6 a 11n*   a a 9n*   Store string   6 9n   8n   6 e a a a a INS   Input string   8 8 8 8 8n*   e OUTS   Output string   1 1 1 1 0 0 1 0   0 1 1 0 1 1 1 w   8n   8n*   CONTROL TRANSFER   e CALL   Call:   Direct within segment   1 1 1 0 1 0 0 0   1 1 1 1 1 1 1 1   disp-low   disp-high   15   19   Register/memory   mod 0 1 0 r/m   13/19   17/27   indirect within segment   Direct intersegment   1 0 0 1 1 0 1 0   1 1 1 1 1 1 1 1   segment offset   segment selector   23   31   i (mod 11)   Indirect intersegment   mod 0 1 1 r/m   38   54   e JMP   Unconditional jump:   Short/long   1 1 1 0 1 0 1 1   1 1 1 0 1 0 0 1   1 1 1 1 1 1 1 1   disp-low   disp-low   14   14   14   14   Direct within segment   disp-high   Register/memory   mod 1 0 0 r/m   11/17   11/21   indirect within segment   Direct intersegment   Indirect intersegment   1 1 1 0 1 0 1 0   segment offset   segment selector   14   26   14   34   i (mod 11)   1 1 1 1 1 1 1 1   mod 1 0 1 r/m   Shaded areas indicate instructions not available in 8086/8088 microsystems.   NOTE:   *Clock cycles shown for byte transfers. For word operations, add 4 clock cycles for all memory transfers.   47   47   80C186EA/80C188EA, 80L186EA/80L188EA   INSTRUCTION SET SUMMARY (Continued)   80C186EA   Clock   80C188EA   Clock   Function   Format   Comments   Cycles   Cycles   CONTROL TRANSFER (Continued)   e RET   Return from CALL:   Within segment   1 1 0 0 0 0 1 1   1 1 0 0 0 0 1 0   1 1 0 0 1 0 1 1   1 1 0 0 1 0 1 0   0 1 1 1 0 1 0 0   0 1 1 1 1 1 0 0   0 1 1 1 1 1 1 0   0 1 1 1 0 0 1 0   0 1 1 1 0 1 1 0   0 1 1 1 1 0 1 0   0 1 1 1 0 0 0 0   0 1 1 1 1 0 0 0   0 1 1 1 0 1 0 1   0 1 1 1 1 1 0 1   0 1 1 1 1 1 1 1   0 1 1 1 0 0 1 1   0 1 1 1 0 1 1 1   0 1 1 1 1 0 1 1   0 1 1 1 0 0 0 1   0 1 1 1 1 0 0 1   1 1 1 0 0 0 1 1   1 1 1 0 0 0 1 0   1 1 1 0 0 0 0 1   1 1 1 0 0 0 0 0   16   20   Within seg adding immed to SP   Intersegment   data-low   data-high   data-high   18   22   22   30   Intersegment adding immediate to SP   data-low   disp   disp   disp   disp   disp   disp   disp   disp   disp   disp   disp   disp   disp   disp   disp   disp   disp   disp   disp   disp   25   33   e JE/JZ   Jump on equal/zero   4/13   4/13   4/13   4/13   4/13   4/13   4/13   4/13   4/13   4/13   4/13   4/13   4/13   4/13   4/13   4/13   5/15   6/16   6/16   6/16   4/13   4/13   4/13   4/13   4/13   4/13   4/13   4/13   4/13   4/13   4/13   4/13   4/13   4/13   4/13   4/13   5/15   6/16   6/16   6/16   JMP not   taken/JMP   taken   e e e e JL/JNGE   JLE/JNG   JB/JNAE   JBE/JNA   Jump on less/not greater or equal   Jump on less or equal/not greater   Jump on below/not above or equal   Jump on below or equal/not above   e JP/JPE   Jump on parity/parity even   Jump on overflow   Jump on sign   e e JO   JS   e e e e e e JNE/JNZ   JNL/JGE   JNLE/JG   JNB/JAE   JNBE/JA   JNP/JPO   Jump on not equal/not zero   Jump on not less/greater or equal   Jump on not less or equal/greater   Jump on not below/above or equal   Jump on not below or equal/above   Jump on not par/par odd   e e JNO   JNS   Jump on not overflow   Jump on not sign   e JCXZ   LOOP   Jump on CX zero   Loop CX times   e LOOP not   taken/LOOP   taken   e LOOPZ/LOOPE   LOOPNZ/LOOPNE   Loop while zero/equal   e Loop while not zero/equal   e ENTER   Enter Procedure   1 1 0 0 1 0 0 0   data-low   data-high   L e e l L L L 0 1 1 15   25   19   29   a b a b 22 16(n 1) 26 20(n 1)   e LEAVE   Leave Procedure   1 1 0 0 1 0 0 1   8 8 e INT   Interrupt:   Type specified   Type 3   1 1 0 0 1 1 0 1   1 1 0 0 1 1 0 0   1 1 0 0 1 1 1 0   type   47   45   47   45   if INT. taken/   if INT. not   taken   e INTO   Interrupt on overflow   48/4   48/4   e IRET   Interrupt return   1 1 0 0 1 1 1 1   0 1 1 0 0 0 1 0   28   28   e BOUND   Detect value out of range   mod reg r/m   33–35   33–35   Shaded areas indicate instructions not available in 8086/8088 microsystems.   NOTE:   *Clock cycles shown for byte transfers. For word operations, add 4 clock cycles for all memory transfers.   48   48   80C186EA/80C188EA, 80L186EA/80L188EA   INSTRUCTION SET SUMMARY (Continued)   80C186EA 80C188EA   Function   Format   Comments   Clock   Clock   Cycles   Cycles   PROCESSOR CONTROL   e e e e e CLC   CMC   STC   CLD   STD   Clear carry   1 1 1 1 1 0 0 0   1 1 1 1 0 1 0 1   1 1 1 1 1 0 0 1   1 1 1 1 1 1 0 0   1 1 1 1 1 1 0 1   1 1 1 1 1 0 1 0   1 1 1 1 1 0 1 1   1 1 1 1 0 1 0 0   1 0 0 1 1 0 1 1   1 1 1 1 0 0 0 0   2 2 2 2 2 2 2 2 6 2 3 2 2 2 2 2 2 2 2 6 2 3 Complement carry   Set carry   Clear direction   Set direction   e CLI   STI   Clear interrupt   Set interrupt   e e HLT   Halt   e e WAIT   LOCK   Wait   if TEST   0 e Bus lock prefix   e NOP   No Operation   1 0 0 1 0 0 0 0   (TTT LLL are opcode to processor extension)   Shaded areas indicate instructions not available in 8086/8088 microsystems.   NOTE:   *Clock cycles shown for byte transfers. For word operations, add 4 clock cycles for all memory transfers.   The Effective Address (EA) of the memory operand   is computed according to the mod and r/m fields:   reg is assigned according to the following:   Segment   e e if mod   if mod   11 then r/m is treated as a REG field   e reg   00   01   10   11   Register   ES   CS   00 then DISP   high are absent   0*, disp-low and disp-   e e tended to 16-bits, disp-high is absent   if mod   01 then DISP   disp-low sign-ex-   SS   DS   e e e e e e e e e e if mod   if r/m   if r/m   if r/m   if r/m   if r/m   if r/m   if r/m   if r/m   10 then DISP   disp-high: disp-low   e a a a a a a a a 000 then EA   001 then EA   010 then EA   011 then EA   100 then EA   101 then EA   110 then EA   111 then EA   (BX)   (SI)   (DI)   (SI)   (DI)   DISP   DISP   DISP   DISP   e e e e e e e REG is assigned according to the following table:   e (BX)   (BP)   (BP)   e 16-Bit (w   1)   8-Bit (w   000 AL   0)   000 AX   001 CX   010 DX   011 BX   100 SP   101 BP   110 SI   a (SI)   DISP   001 CL   010 DL   011 BL   100 AH   101 CH   110 DH   111 BH   a (DI)   (BP)   (BX)   DISP   DISP*   DISP   a a DISP follows 2nd byte of instruction (before data if   required)   111 DI   e e e *except if mod   disp-high: disp-low.   00 and r/m   110 then EA   The physical addresses of all operands addressed   by the BP register are computed using the SS seg-   ment register. The physical addresses of the desti-   nation operands of the string primitive operations   (those addressed by the DI register) are computed   using the ES segment, which may not be overridden.   EA calculation time is 4 clock cycles for all modes,   and is included in the execution times given whenev-   er appropriate.   Segment Override Prefix   0 0 1 reg   1 1 0 49   49   80C186EA/80C188EA, 80L186EA/80L188EA   REVISION HISTORY   ERRATA   Intel 80C186EA/80L186EA devices are marked with   a 9-character alphanumeric Intel FPO number un-   derneath the product number. This data sheet up-   date is valid for devices with an ‘‘A’’, ‘‘B’’, ‘‘C’’, ‘‘D’’,   or ‘‘E’’ as the ninth character in the FPO number, as   illustrated in Figure 5 for the 68-lead PLCC package,   Figure 6 for the 84-lead QFP (EIAJ) package, and   Figure 7 for the 80-lead SQFP device. Such devices   may also be identified by reading a value of 01H,   02H, 03H from the STEPID register.   An 80C186EA/80L186EA with a STEPID value of   01H or 02H has the following known errata. A device   with a STEPID of 01H or 02H can be visually identi-   fied by noting the presence of an ‘‘A’’, ‘‘B’’, or ‘‘C’’   alpha character, next to the FPO number. The FPO   number location is shown in Figures 5, 6, and 7.   1. An internal condition with the interrupt controller   can cause no acknowledge cycle on the INTA1   line in response to INT1. This errata only occurs   when Interrupt 1 is configured in cascade mode   and a higher priority interrupt exists. This errata   will not occur consistantly, it is dependent on in-   terrupt timing.   This data sheet replaces the following data sheets:   272019-002Ð80C186EA   272020-002Ð80C188EA   272021-002Ð80L186EA   272022-002Ð80L188EA   272307-001ÐSB80C186EA/SB80L186EA   272308-001ÐSB80C188EA/SB80L188EA   An 80C186EA/80L186EA with a STEPID value of   03H has no known errata. A device with a STEPID of   03H can be visually identified by noting the presence   of a ‘‘D’’ or ‘‘E’’ alpha character next to the FPO   number. The FPO number location is shown in Fig-   ures 5, 6, and 7.   50   50   |