Intel® 64 and IA-32 Architectures
Software Developer’s Manual
Volume 2A:
Instruction Set Reference, A-M
NOTE: The Intel 64 and IA-32 Architectures Software Developer's Manual
consists of five volumes: Basic Architecture, Order Number 253665;
Instruction Set Reference A-M, Order Number 253666; Instruction Set
Reference N-Z, Order Number 253667; System Programming Guide,
Part 1, Order Number 253668; System Programming Guide, Part 2,
Order Number 253669. Refer to all five volumes when evaluating your
design needs.
Order Number: 253666-024US
August 2007
CONTENTS
PAGE
CHAPTER 1
ABOUT THIS MANUAL
1.1
1.2
1.3
IA-32 PROCESSORS COVERED IN THIS MANUAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
OVERVIEW OF VOLUME 2A AND 2B: INSTRUCTION SET REFERENCE . . . . . . . . . . . . . . . . . . 1-2
NOTATIONAL CONVENTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3
Bit and Byte Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4
Reserved Bits and Software Compatibility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
Instruction Operands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6
Hexadecimal and Binary Numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6
Segmented Addressing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6
Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7
A New Syntax for CPUID, CR, and MSR Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7
RELATED LITERATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8
1.3.1
1.3.2
1.3.3
1.3.4
1.3.5
1.3.6
1.3.7
1.4
CHAPTER 2
INSTRUCTION FORMAT
2.1
INSTRUCTION FORMAT FOR PROTECTED MODE, REAL-ADDRESS MODE, AND
VIRTUAL-8086 MODE 2-1
2.1.1
2.1.2
2.1.3
2.1.4
2.1.5
2.2
2.2.1
2.2.1.1
2.2.1.2
2.2.1.3
2.2.1.4
2.2.1.5
2.2.1.6
2.2.1.7
2.2.2
Instruction Prefixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
Opcodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
ModR/M and SIB Bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
Displacement and Immediate Bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
Addressing-Mode Encoding of ModR/M and SIB Bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
IA-32E MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9
REX Prefixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9
Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10
More on REX Prefix Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10
Displacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13
Direct Memory-Offset MOVs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13
Immediates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14
RIP-Relative Addressing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14
Default 64-Bit Operand Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15
Additional Encodings for Control and Debug Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15
CHAPTER 3
INSTRUCTION SET REFERENCE, A-M
3.1
3.1.1
3.1.1.1
3.1.1.2
3.1.1.3
3.1.1.4
INTERPRETING THE INSTRUCTION REFERENCE PAGES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
Instruction Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
Opcode Column in the Instruction Summary Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
Instruction Column in the Opcode Summary Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
64-bit Mode Column in the Instruction Summary Table . . . . . . . . . . . . . . . . . . . . . . . . . 3-6
Compatibility/Legacy Mode Column in the Instruction Summary Table. . . . . . . . . . . 3-7
Vol. 2A iii
CONTENTS
PAGE
3.1.1.5
3.1.1.6
3.1.1.7
3.1.1.8
Description Column in the Instruction Summary Table. . . . . . . . . . . . . . . . . . . . . . . . . . 3-7
Description Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7
Operation Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7
Intel® C/C++ Compiler Intrinsics Equivalents Section. . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11
Flags Affected Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14
FPU Flags Affected Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14
Protected Mode Exceptions Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14
Real-Address Mode Exceptions Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16
Virtual-8086 Mode Exceptions Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16
Floating-Point Exceptions Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16
SIMD Floating-Point Exceptions Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-17
Compatibility Mode Exceptions Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-17
64-Bit Mode Exceptions Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-17
3.1.1.9
3.1.1.10
3.1.1.11
3.1.1.12
3.1.1.13
3.1.1.14
3.1.1.15
3.1.1.16
3.1.1.17
3.2
INSTRUCTIONS (A-M). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-18
AAA—ASCII Adjust After Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19
AAD—ASCII Adjust AX Before Division. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-21
AAM—ASCII Adjust AX After Multiply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-23
AAS—ASCII Adjust AL After Subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-25
ADC—Add with Carry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-27
ADD—Add . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-30
ADDPD—Add Packed Double-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . 3-33
ADDPS—Add Packed Single-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . 3-36
ADDSD—Add Scalar Double-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . 3-39
ADDSS—Add Scalar Single-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . 3-42
ADDSUBPD—Packed Double-FP Add/Subtract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-45
ADDSUBPS—Packed Single-FP Add/Subtract. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-49
AND—Logical AND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-53
ANDPD—Bitwise Logical AND of Packed Double-Precision Floating-Point Values . . . 3-56
ANDPS—Bitwise Logical AND of Packed Single-Precision Floating-Point Values . . . . 3-58
ANDNPD—Bitwise Logical AND NOT of Packed Double-Precision
Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-60
ANDNPS—Bitwise Logical AND NOT of Packed Single-Precision
Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-62
ARPL—Adjust RPL Field of Segment Selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-64
BOUND—Check Array Index Against Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-66
BSF—Bit Scan Forward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-69
BSR—Bit Scan Reverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-71
BSWAP—Byte Swap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-73
BT—Bit Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-75
BTC—Bit Test and Complement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-78
BTR—Bit Test and Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-81
BTS—Bit Test and Set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-84
CALL—Call Procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-87
CBW/CWDE/CDQE—Convert Byte to Word/Convert Word to Doubleword/Convert Dou-
bleword to Quadword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-105
CLC—Clear Carry Flag. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-106
CLD—Clear Direction Flag. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-107
iv Vol. 2A
CONTENTS
PAGE
CLFLUSH—Flush Cache Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-108
CLI — Clear Interrupt Flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-110
CLTS—Clear Task-Switched Flag in CR0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-113
CMC—Complement Carry Flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-115
CMOVcc—Conditional Move . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-116
CMP—Compare Two Operands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-123
CMPPD—Compare Packed Double-Precision Floating-Point Values . . . . . . . . . . . . . . . 3-126
CMPPS—Compare Packed Single-Precision Floating-Point Values . . . . . . . . . . . . . . . . 3-131
CMPS/CMPSB/CMPSW/CMPSD/CMPSQ—Compare String Operands. . . . . . . . . . . . . . . 3-136
CMPSD—Compare Scalar Double-Precision Floating-Point Values . . . . . . . . . . . . . . . . 3-142
CMPSS—Compare Scalar Single-Precision Floating-Point Values . . . . . . . . . . . . . . . . . 3-146
CMPXCHG—Compare and Exchange. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-150
CMPXCHG8B/CMPXCHG16B—Compare and Exchange Bytes . . . . . . . . . . . . . . . . . . . . 3-153
COMISD—Compare Scalar Ordered Double-Precision Floating-Point Values and Set
EFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-156
COMISS—Compare Scalar Ordered Single-Precision Floating-Point Values and Set
EFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-159
CPUID—CPU Identification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-162
CVTDQ2PD—Convert Packed Doubleword Integers to Packed Double-Precision
Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-190
CVTDQ2PS—Convert Packed Doubleword Integers to Packed Single-Precision
Floating-Point Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-192
CVTPD2DQ—Convert Packed Double-Precision Floating-Point Values to Packed
Doubleword Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-195
CVTPD2PI—Convert Packed Double-Precision Floating-Point Values to Packed
Doubleword Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-198
CVTPD2PS—Convert Packed Double-Precision Floating-Point Values to Packed
Single-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-201
CVTPI2PD—Convert Packed Doubleword Integers to Packed Double-Precision
Floating-Point Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-204
CVTPI2PS—Convert Packed Doubleword Integers to Packed Single-Precision
Floating-Point Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-207
CVTPS2DQ—Convert Packed Single-Precision Floating-Point Values to Packed
Doubleword Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-210
CVTPS2PD—Convert Packed Single-Precision Floating-Point Values to Packed
Double-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-213
CVTPS2PI—Convert Packed Single-Precision Floating-Point Values to Packed
Doubleword Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-216
CVTSD2SI—Convert Scalar Double-Precision Floating-Point Value to Doubleword
Integer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-219
CVTSD2SS—Convert Scalar Double-Precision Floating-Point Value to Scalar
Single-Precision Floating-Point Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-222
CVTSI2SD—Convert Doubleword Integer to Scalar Double-Precision
Floating-Point Value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-225
CVTSI2SS—Convert Doubleword Integer to Scalar Single-Precision
Floating-Point Value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-228
CVTSS2SD—Convert Scalar Single-Precision Floating-Point Value to Scalar
Vol. 2A v
CONTENTS
PAGE
Double-Precision Floating-Point Value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-231
CVTSS2SI—Convert Scalar Single-Precision Floating-Point Value to
Doubleword Integer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-234
CVTTPD2PI—Convert with Truncation Packed Double-Precision Floating-Point
Values to Packed Doubleword Integers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-237
CVTTPD2DQ—Convert with Truncation Packed Double-Precision Floating-Point
Values to Packed Doubleword Integers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-240
CVTTPS2DQ—Convert with Truncation Packed Single-Precision Floating-Point
Values to Packed Doubleword Integers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-243
CVTTPS2PI—Convert with Truncation Packed Single-Precision Floating-Point
Values to Packed Doubleword Integers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-246
CVTTSD2SI—Convert with Truncation Scalar Double-Precision Floating-Point
Value to Signed Doubleword Integer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-249
CVTTSS2SI—Convert with Truncation Scalar Single-Precision Floating-Point
Value to Doubleword Integer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-252
CWD/CDQ/CQO—Convert Word to Doubleword/Convert Doubleword to Quadword3-255
DAA—Decimal Adjust AL after Addition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-257
DAS—Decimal Adjust AL after Subtraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-259
DEC—Decrement by 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-261
DIV—Unsigned Divide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-264
DIVPD—Divide Packed Double-Precision Floating-Point Values. . . . . . . . . . . . . . . . . . .3-268
DIVPS—Divide Packed Single-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . .3-271
DIVSD—Divide Scalar Double-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . .3-274
DIVSS—Divide Scalar Single-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . .3-277
EMMS—Empty MMX Technology State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-280
ENTER—Make Stack Frame for Procedure Parameters . . . . . . . . . . . . . . . . . . . . . . . . . .3-282
F2XM1—Compute 2x–1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-286
FABS—Absolute Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-288
FADD/FADDP/FIADD—Add. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-290
FBLD—Load Binary Coded Decimal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-294
FBSTP—Store BCD Integer and Pop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-296
FCHS—Change Sign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-299
FCLEX/FNCLEX—Clear Exceptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-301
FCMOVcc—Floating-Point Conditional Move. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-303
FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Floating Point
Values and Set EFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-309
FCOS—Cosine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-312
FDECSTP—Decrement Stack-Top Pointer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-314
FDIV/FDIVP/FIDIV—Divide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-316
FDIVR/FDIVRP/FIDIVR—Reverse Divide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-320
FFREE—Free Floating-Point Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-324
FICOM/FICOMP—Compare Integer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-325
FILD—Load Integer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-328
FINCSTP—Increment Stack-Top Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-330
FINIT/FNINIT—Initialize Floating-Point Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-332
FIST/FISTP—Store Integer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-334
FISTTP—Store Integer with Truncation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-338
vi Vol. 2A
CONTENTS
PAGE
FLD—Load Floating Point Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-341
FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/FLDZ—Load Constant . . . . . . . . . . . 3-344
FLDCW—Load x87 FPU Control Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-346
FLDENV—Load x87 FPU Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-348
FMUL/FMULP/FIMUL—Multiply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-351
FNOP—No Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-355
FPATAN—Partial Arctangent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-356
FPREM—Partial Remainder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-359
FPREM1—Partial Remainder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-362
FPTAN—Partial Tangent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-365
FRNDINT—Round to Integer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-368
FRSTOR—Restore x87 FPU State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-370
FSAVE/FNSAVE—Store x87 FPU State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-373
FSCALE—Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-377
FSIN—Sine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-379
FSINCOS—Sine and Cosine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-381
FSQRT—Square Root . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-384
FST/FSTP—Store Floating Point Value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-386
FSTCW/FNSTCW—Store x87 FPU Control Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-389
FSTENV/FNSTENV—Store x87 FPU Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-392
FSTSW/FNSTSW—Store x87 FPU Status Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-395
FSUB/FSUBP/FISUB—Subtract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-398
FSUBR/FSUBRP/FISUBR—Reverse Subtract. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-402
FTST—TEST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-406
FUCOM/FUCOMP/FUCOMPP—Unordered Compare Floating Point Values . . . . . . . . . 3-408
FXAM—ExamineModR/M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-411
FXCH—Exchange Register Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-413
FXRSTOR—Restore x87 FPU, MMX , XMM, and MXCSR State. . . . . . . . . . . . . . . . . . . . 3-415
FXSAVE—Save x87 FPU, MMX Technology, SSE, and SSE2 State . . . . . . . . . . . . . . . . 3-418
FXTRACT—Extract Exponent and Significand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-429
FYL2X—Compute y * log2x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-431
FYL2XP1—Compute y * log2(x +1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-433
HADDPD—Packed Double-FP Horizontal Add . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-435
HADDPS—Packed Single-FP Horizontal Add . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-439
HLT—Halt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-443
HSUBPD—Packed Double-FP Horizontal Subtract. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-445
HSUBPS—Packed Single-FP Horizontal Subtract. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-449
IDIV—Signed Divide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-453
IMUL—Signed Multiply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-457
IN—Input from Port. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-462
INC—Increment by 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-464
INS/INSB/INSW/INSD—Input from Port to String. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-467
INT n/INTO/INT 3—Call to Interrupt Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-471
INVD—Invalidate Internal Caches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-486
INVLPG—Invalidate TLB Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-488
IRET/IRETD—Interrupt Return. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-490
Jcc—Jump if Condition Is Met . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-501
Vol. 2A vii
CONTENTS
PAGE
JMP—Jump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-508
LAHF—Load Status Flags into AH Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-518
LAR—Load Access Rights Byte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-520
LDDQU—Load Unaligned Integer 128 Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-524
LDMXCSR—Load MXCSR Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-527
LDS/LES/LFS/LGS/LSS—Load Far Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-529
LEA—Load Effective Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-535
LEAVE—High Level Procedure Exit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-538
LFENCE—Load Fence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-540
LGDT/LIDT—Load Global/Interrupt Descriptor Table Register . . . . . . . . . . . . . . . . . . . .3-541
LLDT—Load Local Descriptor Table Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-544
LMSW—Load Machine Status Word. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-547
LOCK—Assert LOCK# Signal Prefix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-549
LODS/LODSB/LODSW/LODSD/LODSQ—Load String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-551
LOOP/LOOPcc—Loop According to ECX Counter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-555
LSL—Load Segment Limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-558
LTR—Load Task Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-562
MASKMOVDQU—Store Selected Bytes of Double Quadword . . . . . . . . . . . . . . . . . . . . .3-565
MASKMOVQ—Store Selected Bytes of Quadword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-568
MAXPD—Return Maximum Packed Double-Precision Floating-Point Values . . . . . . .3-571
MAXPS—Return Maximum Packed Single-Precision Floating-Point Values . . . . . . . .3-574
MAXSD—Return Maximum Scalar Double-Precision Floating-Point Value . . . . . . . . .3-577
MAXSS—Return Maximum Scalar Single-Precision Floating-Point Value . . . . . . . . . .3-580
MFENCE—Memory Fence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-583
MINPD—Return Minimum Packed Double-Precision Floating-Point Values. . . . . . . . .3-584
MINPS—Return Minimum Packed Single-Precision Floating-Point Values. . . . . . . . . .3-587
MINSD—Return Minimum Scalar Double-Precision Floating-Point Value. . . . . . . . . . .3-590
MINSS—Return Minimum Scalar Single-Precision Floating-Point Value. . . . . . . . . . . .3-593
MONITOR—Set Up Monitor Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-596
MOV—Move . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-599
MOV—Move to/from Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-605
MOV—Move to/from Debug Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-608
MOVAPD—Move Aligned Packed Double-Precision Floating-Point Values . . . . . . . . .3-610
MOVAPS—Move Aligned Packed Single-Precision Floating-Point Values . . . . . . . . . .3-613
MOVD/MOVQ—Move Doubleword/Move Quadword . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-616
MOVDDUP—Move One Double-FP and Duplicate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-620
MOVDQA—Move Aligned Double Quadword. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-623
MOVDQU—Move Unaligned Double Quadword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-625
MOVDQ2Q—Move Quadword from XMM to MMX Technology Register . . . . . . . . . . .3-628
MOVHLPS— Move Packed Single-Precision Floating-Point Values High to Low . . . .3-630
MOVHPD—Move High Packed Double-Precision Floating-Point Value . . . . . . . . . . . . .3-632
MOVHPS—Move High Packed Single-Precision Floating-Point Values . . . . . . . . . . . . .3-635
MOVLHPS—Move Packed Single-Precision Floating-Point Values Low to High. . . . .3-638
MOVLPD—Move Low Packed Double-Precision Floating-Point Value. . . . . . . . . . . . . .3-640
MOVLPS—Move Low Packed Single-Precision Floating-Point Values. . . . . . . . . . . . . .3-642
MOVMSKPD—Extract Packed Double-Precision Floating-Point Sign Mask . . . . . . . . .3-645
MOVMSKPS—Extract Packed Single-Precision Floating-Point Sign Mask . . . . . . . . . .3-647
viii Vol. 2A
CONTENTS
PAGE
MOVNTDQ—Store Double Quadword Using Non-Temporal Hint . . . . . . . . . . . . . . . . . 3-649
MOVNTI—Store Doubleword Using Non-Temporal Hint . . . . . . . . . . . . . . . . . . . . . . . . . 3-652
MOVNTPD—Store Packed Double-Precision Floating-Point Values Using
Non-Temporal Hint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-654
MOVNTPS—Store Packed Single-Precision Floating-Point Values Using
Non-Temporal Hint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-657
MOVNTQ—Store of Quadword Using Non-Temporal Hint. . . . . . . . . . . . . . . . . . . . . . . . 3-660
MOVQ—Move Quadword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-663
MOVQ2DQ—Move Quadword from MMX Technology to XMM Register. . . . . . . . . . . 3-666
MOVS/MOVSB/MOVSW/MOVSD/MOVSQ—Move Data from String to String. . . . . . . 3-668
MOVSD—Move Scalar Double-Precision Floating-Point Value . . . . . . . . . . . . . . . . . . . . 3-673
MOVSHDUP—Move Packed Single-FP High and Duplicate . . . . . . . . . . . . . . . . . . . . . . . 3-676
MOVSLDUP—Move Packed Single-FP Low and Duplicate . . . . . . . . . . . . . . . . . . . . . . . . 3-679
MOVSS—Move Scalar Single-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . 3-682
MOVSX/MOVSXD—Move with Sign-Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-685
MOVUPD—Move Unaligned Packed Double-Precision Floating-Point Values . . . . . . 3-687
MOVUPS—Move Unaligned Packed Single-Precision Floating-Point Values . . . . . . . 3-690
MOVZX—Move with Zero-Extend. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-693
MUL—Unsigned Multiply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-695
MULPD—Multiply Packed Double-Precision Floating-Point Values. . . . . . . . . . . . . . . . 3-698
MULPS—Multiply Packed Single-Precision Floating-Point Values . . . . . . . . . . . . . . . . . 3-701
MULSD—Multiply Scalar Double-Precision Floating-Point Values . . . . . . . . . . . . . . . . . 3-704
MULSS—Multiply Scalar Single-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . 3-707
MWAIT—Monitor Wait. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-710
CHAPTER 4
INSTRUCTION SET REFERENCE, N-Z
4.1 INSTRUCTIONS (N-Z). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
NEG—Two's Complement Negation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
NOP—No Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5
NOT—One's Complement Negation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7
OR—Logical Inclusive OR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9
ORPD—Bitwise Logical OR of Double-Precision Floating-Point Values. . . . . . . . . . . . . .4-12
ORPS—Bitwise Logical OR of Single-Precision Floating-Point Values . . . . . . . . . . . . . . .4-14
OUT—Output to Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-16
OUTS/OUTSB/OUTSW/OUTSD—Output String to Port . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-18
PABSB/PABSW/PABSD — Packed Absolute Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-23
PACKSSWB/PACKSSDW—Pack with Signed Saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-27
PACKUSWB—Pack with Unsigned Saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-32
PADDB/PADDW/PADDD—Add Packed Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-36
PADDQ—Add Packed Quadword Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-40
PADDSB/PADDSW—Add Packed Signed Integers with Signed Saturation. . . . . . . . . . .4-43
PADDUSB/PADDUSW—Add Packed Unsigned Integers with Unsigned Saturation. . .4-47
PALIGNR — Packed Align Right . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-51
PAND—Logical AND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-54
PANDN—Logical AND NOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-57
PAUSE—Spin Loop Hint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-60
Vol. 2A ix
CONTENTS
PAGE
PAVGB/PAVGW—Average Packed Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-61
PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for Equal. . . . . . . . . . . . . . . . 4-64
PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers for Greater Than .4-
68
PEXTRW—Extract Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-73
PHADDW/PHADDD — Packed Horizontal Add . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-76
PHADDSW — Packed Horizontal Add and Saturate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-79
PHSUBW/PHSUBD — Packed Horizontal Subtract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-82
PHSUBSW — Packed Horizontal Subtract and Saturate. . . . . . . . . . . . . . . . . . . . . . . . . . . 4-85
PINSRW—Insert Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-88
PMADDUBSW — Multiply and Add Packed Signed and Unsigned Bytes. . . . . . . . . . . . . 4-91
PMADDWD—Multiply and Add Packed Integers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-94
PMAXSW—Maximum of Packed Signed Word Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-98
PMAXUB—Maximum of Packed Unsigned Byte Integers . . . . . . . . . . . . . . . . . . . . . . . . .4-101
PMINSW—Minimum of Packed Signed Word Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-104
PMINUB—Minimum of Packed Unsigned Byte Integers . . . . . . . . . . . . . . . . . . . . . . . . . .4-107
PMOVMSKB—Move Byte Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-110
PMULHRSW — Packed Multiply High with Round and Scale . . . . . . . . . . . . . . . . . . . . . .4-113
PMULHUW—Multiply Packed Unsigned Integers and Store High Result . . . . . . . . . . .4-116
PMULHW—Multiply Packed Signed Integers and Store High Result . . . . . . . . . . . . . . .4-120
PMULLW—Multiply Packed Signed Integers and Store Low Result. . . . . . . . . . . . . . . .4-123
PMULUDQ—Multiply Packed Unsigned Doubleword Integers . . . . . . . . . . . . . . . . . . . . .4-127
POP—Pop a Value from the Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-130
POPA/POPAD—Pop All General-Purpose Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-137
POPF/POPFD/POPFQ—Pop Stack into EFLAGS Register . . . . . . . . . . . . . . . . . . . . . . . . .4-139
POR—Bitwise Logical OR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-143
PREFETCHh—Prefetch Data Into Caches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-146
PSADBW—Compute Sum of Absolute Differences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-148
PSHUFB — Packed Shuffle Bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-152
PSHUFD—Shuffle Packed Doublewords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-156
PSHUFHW—Shuffle Packed High Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-159
PSHUFLW—Shuffle Packed Low Words. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-162
PSHUFW—Shuffle Packed Words. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-165
PSIGNB/PSIGNW/PSIGND — Packed SIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-168
PSLLDQ—Shift Double Quadword Left Logical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-173
PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical. . . . . . . . . . . . . . . . . . . . . . . . . . .4-175
PSRAW/PSRAD—Shift Packed Data Right Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-180
PSRLDQ—Shift Double Quadword Right Logical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-185
PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical. . . . . . . . . . . . . . . . . . . . . . . . .4-187
PSUBB/PSUBW/PSUBD—Subtract Packed Integers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-192
PSUBQ—Subtract Packed Quadword Integers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-196
PSUBSB/PSUBSW—Subtract Packed Signed Integers with Signed Saturation . . . . .4-199
PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers
with Unsigned Saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-203
PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ— Unpack High Data . . . .4-207
PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ—
Unpack Low Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-212
x
Vol. 2A
CONTENTS
PAGE
PUSH—Push Word, Doubleword or Quadword Onto the Stack . . . . . . . . . . . . . . . . . . . 4-217
PUSHA/PUSHAD—Push All General-Purpose Registers. . . . . . . . . . . . . . . . . . . . . . . . . . 4-222
PUSHF/PUSHFD—Push EFLAGS Register onto the Stack . . . . . . . . . . . . . . . . . . . . . . . . 4-225
PXOR—Logical Exclusive OR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-228
RCL/RCR/ROL/ROR-—Rotate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-231
RCPPS—Compute Reciprocals of Packed Single-Precision Floating-Point Values . . 4-238
RCPSS—Compute Reciprocal of Scalar Single-Precision Floating-Point Values . . . . 4-241
RDMSR—Read from Model Specific Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-244
RDPMC—Read Performance-Monitoring Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-246
RDTSC—Read Time-Stamp Counter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-251
REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix . . . . . . . . . . . . . . . 4-253
RET—Return from Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-258
RSM—Resume from System Management Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-270
RSQRTPS—Compute Reciprocals of Square Roots of Packed
Single-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-272
RSQRTSS—Compute Reciprocal of Square Root of Scalar
Single-Precision Floating-Point Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-275
SAHF—Store AH into Flags. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-278
SAL/SAR/SHL/SHR—Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-280
SBB—Integer Subtraction with Borrow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-287
SCAS/SCASB/SCASW/SCASD—Scan String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-291
SETcc—Set Byte on Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-296
SFENCE—Store Fence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-301
SGDT—Store Global Descriptor Table Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-302
SHLD—Double Precision Shift Left. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-305
SHRD—Double Precision Shift Right . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-308
SHUFPD—Shuffle Packed Double-Precision Floating-Point Values . . . . . . . . . . . . . . . 4-311
SHUFPS—Shuffle Packed Single-Precision Floating-Point Values . . . . . . . . . . . . . . . . 4-314
SIDT—Store Interrupt Descriptor Table Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-317
SLDT—Store Local Descriptor Table Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-320
SMSW—Store Machine Status Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-322
SQRTPS—Compute Square Roots of Packed Single-Precision
Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-328
SQRTSD—Compute Square Root of Scalar Double-Precision Floating-Point Value. 4-331
SQRTSS—Compute Square Root of Scalar Single-Precision Floating-Point Value. . 4-334
STC—Set Carry Flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-337
STD—Set Direction Flag. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-338
STI—Set Interrupt Flag. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-339
STMXCSR—Store MXCSR Register State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-342
STOS/STOSB/STOSW/STOSD/STOSQ—Store String. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-344
STR—Store Task Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-348
SUB—Subtract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-350
SUBPD—Subtract Packed Double-Precision Floating-Point Values . . . . . . . . . . . . . . . 4-353
SUBPS—Subtract Packed Single-Precision Floating-Point Values . . . . . . . . . . . . . . . . 4-356
SUBSD—Subtract Scalar Double-Precision Floating-Point Values . . . . . . . . . . . . . . . . 4-359
SUBSS—Subtract Scalar Single-Precision Floating-Point Values. . . . . . . . . . . . . . . . . . 4-362
SWAPGS—Swap GS Base Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-365
Vol. 2A xi
CONTENTS
PAGE
SYSCALL—Fast System Call. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-367
SYSENTER—Fast System Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-369
SYSEXIT—Fast Return from Fast System Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-373
SYSRET—Return From Fast System Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-377
TEST—Logical Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-379
UCOMISD—Unordered Compare Scalar Double-Precision Floating-Point Values and Set
EFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-382
UCOMISS—Unordered Compare Scalar Single-Precision Floating-Point Values and Set
EFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-385
UD2—Undefined Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-388
UNPCKHPD—Unpack and Interleave High Packed Double-Precision
Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-389
UNPCKHPS—Unpack and Interleave High Packed Single-Precision
Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-392
UNPCKLPD—Unpack and Interleave Low Packed Double-Precision
Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-395
UNPCKLPS—Unpack and Interleave Low Packed Single-Precision
Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-398
VERR/VERW—Verify a Segment for Reading or Writing . . . . . . . . . . . . . . . . . . . . . . . . .4-401
WAIT/FWAIT—Wait. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-404
WBINVD—Write Back and Invalidate Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-406
WRMSR—Write to Model Specific Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-408
XADD—Exchange and Add. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-410
XCHG—Exchange Register/Memory with Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-413
XLAT/XLATB—Table Look-up Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-416
XOR—Logical Exclusive OR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-418
XORPD—Bitwise Logical XOR for Double-Precision Floating-Point Values. . . . . . . . .4-421
XORPS—Bitwise Logical XOR for Single-Precision Floating-Point Values. . . . . . . . . .4-423
CHAPTER 5
VMX INSTRUCTION REFERENCE
5.1
5.2
5.3
OVERVIEW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1
CONVENTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2
VMX INSTRUCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3
VMCALL—Call to VM Monitor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4
VMCLEAR—Clear Virtual-Machine Control Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7
VMLAUNCH/VMRESUME—Launch/Resume Virtual Machine . . . . . . . . . . . . . . . . . . . . . . . 5-10
VMPTRLD—Load Pointer to Virtual-Machine Control Structure. . . . . . . . . . . . . . . . . . . . 5-13
VMPTRST—Store Pointer to Virtual-Machine Control Structure . . . . . . . . . . . . . . . . . . . 5-16
VMREAD—Read Field from Virtual-Machine Control Structure . . . . . . . . . . . . . . . . . . . . 5-18
VMRESUME—Resume Virtual Machine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-21
VMWRITE—Write Field to Virtual-Machine Control Structure. . . . . . . . . . . . . . . . . . . . . . 5-22
VMXOFF—Leave VMX Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-25
VMXON—Enter VMX Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-27
xii Vol. 2A
CONTENTS
PAGE
CHAPTER 6
SAFER MODE EXTENSIONS REFERENCE
6.1
6.2
6.2.1
6.2.2
6.2.2.1
6.2.2.2
6.2.2.3
6.2.2.4
6.2.2.5
6.2.2.6
6.2.2.7
6.2.2.8
6.2.3
OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1
SMX FUNCTIONALITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1
Detecting and Enabling SMX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2
SMX Instruction Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3
GETSEC[CAPABILITIES] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3
GETSEC[ENTERACCS] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4
GETSEC[EXITAC]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4
GETSEC[SENTER]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4
GETSEC[SEXIT] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5
GETSEC[PARAMETERS] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5
GETSEC[SMCTRL]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6
GETSEC[WAKEUP] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6
Measured Environment and SMX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6
GETSEC LEAF FUNCTIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7
GETSEC[CAPABILITIES] - Report the SMX Capabilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9
GETSEC[ENTERACCS] - Execute Authenticated Chipset Code. . . . . . . . . . . . . . . . . . . . . .5-12
GETSEC[EXITAC]—Exit Authenticated Code Execution Mode . . . . . . . . . . . . . . . . . . . . . .5-23
GETSEC[SENTER]—Enter a measured environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-27
GETSEC[SEXIT]—Exit measured environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-39
GETSEC[PARAMETERS]—Report the SMX parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-43
GETSEC[SMCTRL]—SMX mode control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-48
GETSEC[WAKEUP]—Wake up sleeping processors in measured environment . . . . . . .5-52
6.3
APPENDIX A
OPCODE MAP
A.1
A.2
A.2.1
A.2.2
A.2.3
A.2.4
USING OPCODE TABLES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1
KEY TO ABBREVIATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-2
Codes for Addressing Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-2
Codes for Operand Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-3
Register Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-4
Opcode Look-up Examples for One, Two,
and Three-Byte OpcodesA-4
A.2.4.1
A.2.4.2
A.2.4.3
A.2.5
A.3
One-Byte Opcode Instructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-4
Two-Byte Opcode Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-5
Three-Byte Opcode Instructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-6
Superscripts Utilized in Opcode Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-7
ONE, TWO, AND THREE-BYTE OPCODE MAPS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-8
OPCODE EXTENSIONS FOR ONE-BYTE AND TWO-BYTE OPCODES . . . . . . . . . . . . . . . . . . . A-19
Opcode Look-up Examples Using Opcode Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-19
Opcode Extension Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-20
ESCAPE OPCODE INSTRUCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-22
Opcode Look-up Examples for Escape Instruction Opcodes. . . . . . . . . . . . . . . . . . . . . . . .A-22
Escape Opcode Instruction Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-22
Escape Opcodes with D8 as First Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-23
Escape Opcodes with D9 as First Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-24
A.4
A.4.1
A.4.2
A.5
A.5.1
A.5.2
A.5.2.1
A.5.2.2
Vol. 2A xiii
CONTENTS
PAGE
A.5.2.3
A.5.2.4
A.5.2.5
A.5.2.6
A.5.2.7
A.5.2.8
Escape Opcodes with DA as First Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-25
Escape Opcodes with DB as First Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-26
Escape Opcodes with DC as First Byte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-27
Escape Opcodes with DD as First Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-28
Escape Opcodes with DE as First Byte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-29
Escape Opcodes with DF As First Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-30
APPENDIX B
INSTRUCTION FORMATS AND ENCODINGS
B.1
B.1.1
B.1.2
B.1.3
MACHINE INSTRUCTION FORMAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-1
Legacy Prefixes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-2
REX Prefixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-2
Opcode Fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-2
Special Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-2
Reg Field (reg) for Non-64-Bit Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-3
Reg Field (reg) for 64-Bit Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-4
Encoding of Operand Size (w) Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-5
Sign-Extend (s) Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-5
Segment Register (sreg) Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-6
Special-Purpose Register (eee) Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-6
Condition Test (tttn) Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-7
Direction (d) Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-8
Other Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-9
GENERAL-PURPOSE INSTRUCTION FORMATS AND ENCODINGS
B.1.4
B.1.4.1
B.1.4.2
B.1.4.3
B.1.4.4
B.1.4.5
B.1.4.6
B.1.4.7
B.1.4.8
B.1.5
B.2
FOR NON-64-BIT MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-9
General Purpose Instruction Formats and Encodings for 64-Bit Mode . . . . . . . . . . . . . B-24
PENTIUM PROCESSOR FAMILY INSTRUCTION FORMATS AND ENCODINGS . . . . . . . . . . B-53
B.2.1
B.3
®
B.4
B.5
B.5.1
B.5.2
B.5.3
B.6
64-BIT MODE INSTRUCTION ENCODINGS FOR SIMD INSTRUCTION EXTENSIONS . . . . . . B-54
MMX INSTRUCTION FORMATS AND ENCODINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-54
Granularity Field (gg) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-54
MMX Technology and General-Purpose Register Fields (mmxreg and reg) . . . . . . . . . B-55
MMX Instruction Formats and Encodings Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-55
P6 FAMILY INSTRUCTION FORMATS AND ENCODINGS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-58
SSE INSTRUCTION FORMATS AND ENCODINGS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-59
SSE2 INSTRUCTION FORMATS AND ENCODINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-68
Granularity Field (gg) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-68
SSE3 FORMATS AND ENCODINGS TABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-85
SSSE3 FORMATS AND ENCODING TABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-87
SPECIAL ENCODINGS FOR 64-BIT MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-91
FLOATING-POINT INSTRUCTION FORMATS AND ENCODINGS . . . . . . . . . . . . . . . . . . . . . . . . B-95
VMX INSTRUCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-101
SMX INSTRUCTIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-103
B.7
B.8
B.8.1
B.9
B.10
B.11
B.12
B.13
B.14
APPENDIX C
INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
C.1
C.2
SIMPLE INTRINSICS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-2
COMPOSITE INTRINSICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-14
xiv Vol. 2A
CONTENTS
PAGE
FIGURES
Figure 1-1.
Figure 1-2.
Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.
Figure 2-7.
Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 3-6.
Figure 3-7.
Figure 3-8.
Figure 3-9.
Bit and Byte Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
Syntax for CPUID, CR, and MSR Data Presentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8
Intel 64 and IA-32 Architectures Instruction Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
Table Interpretation of ModR/M Byte (C8H). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
Prefix Ordering in 64-bit Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9
Memory Addressing Without an SIB Byte; REX.X Not Used . . . . . . . . . . . . . . . . . . . . .2-11
Register-Register Addressing (No Memory Operand); REX.X Not Used . . . . . . . . . .2-11
Memory Addressing With a SIB Byte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-12
Register Operand Coded in Opcode Byte; REX.X & REX.R Not Used . . . . . . . . . . . . .2-12
Bit Offset for BIT[RAX, 21] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-10
Memory Bit Indexing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-11
ADDSUBPD—Packed Double-FP Add/Subtract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-45
ADDSUBPS—Packed Single-FP Add/Subtract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-49
Version Information Returned by CPUID in EAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-170
Feature Information Returned in the ECX Register . . . . . . . . . . . . . . . . . . . . . . . . . . 3-172
Feature Information Returned in the EDX Register . . . . . . . . . . . . . . . . . . . . . . . . . . 3-174
Determination of Support for the Processor Brand String. . . . . . . . . . . . . . . . . . . . 3-182
Algorithm for Extracting Maximum Processor Frequency . . . . . . . . . . . . . . . . . . . . 3-184
Figure 3-10. HADDPD—Packed Double-FP Horizontal Add . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-435
Figure 3-11. HADDPS—Packed Single-FP Horizontal Add . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-439
Figure 3-12. HSUBPD—Packed Double-FP Horizontal Subtract. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-445
Figure 3-13. HSUBPS—Packed Single-FP Horizontal Subtract. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-450
Figure 3-14. MOVDDUP—Move One Double-FP and Duplicate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-620
Figure 3-15. MOVSHDUP—Move Packed Single-FP High and Duplicate . . . . . . . . . . . . . . . . . . . . 3-676
Figure 3-16. MOVSLDUP—Move Packed Single-FP Low and Duplicate . . . . . . . . . . . . . . . . . . . . . 3-679
Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 4-6.
Figure 4-7.
Figure 4-8.
Figure 4-9.
Operation of the PACKSSDW Instruction Using 64-bit Operands. . . . . . . . . . . . . . . .4-27
PMADDWD Execution Model Using 64-bit Operands . . . . . . . . . . . . . . . . . . . . . . . . . . .4-95
PMULHUW and PMULHW Instruction Operation Using 64-bit Operands . . . . . . . 4-116
PMULLU Instruction Operation Using 64-bit Operands . . . . . . . . . . . . . . . . . . . . . . . 4-123
PSADBW Instruction Operation Using 64-bit Operands. . . . . . . . . . . . . . . . . . . . . . . 4-149
PSHUB with 64-Bit Operands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-153
PSHUFD Instruction Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-156
PSLLW, PSLLD, and PSLLQ Instruction Operation Using 64-bit Operand . . . . . . . 4-176
PSRAW and PSRAD Instruction Operation Using a 64-bit Operand . . . . . . . . . . . . 4-181
Figure 4-10. PSRLW, PSRLD, and PSRLQ Instruction Operation Using 64-bit Operand . . . . . . 4-188
Figure 4-11. PUNPCKHBW Instruction Operation Using 64-bit Operands . . . . . . . . . . . . . . . . . . 4-208
Figure 4-12. PUNPCKLBW Instruction Operation Using 64-bit Operands. . . . . . . . . . . . . . . . . . . 4-212
Figure 4-13. SHUFPD Shuffle Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-311
Figure 4-14. SHUFPS Shuffle Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-314
Figure 4-15. UNPCKHPD Instruction High Unpack and Interleave Operation . . . . . . . . . . . . . . . 4-389
Figure 4-16. UNPCKHPS Instruction High Unpack and Interleave Operation . . . . . . . . . . . . . . . 4-392
Figure 4-17. UNPCKLPD Instruction Low Unpack and Interleave Operation . . . . . . . . . . . . . . . . 4-395
Figure 4-18. UNPCKLPS Instruction Low Unpack and Interleave Operation . . . . . . . . . . . . . . . . 4-398
Figure A-1.
Figure B-1.
ModR/M Byte nnn Field (Bits 5, 4, and 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-19
General Machine Instruction Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-1
Vol. 2A xv
CONTENTS
PAGE
TABLES
Table 2-1.
Table 2-2.
Table 2-3.
Table 2-4.
Table 2-5.
Table 2-6.
Table 2-7.
Table 3-1.
Table 3-2.
Table 3-3.
Table 3-5.
Table 3-4.
Table 3-6.
Table 3-7.
Table 3-8.
Table 3-9.
Table 3-10.
Table 3-11.
Table 3-12.
Table 3-13.
Table 3-14.
Table 3-15.
Table 3-16.
Table 3-17.
Table 3-18.
Table 3-19.
16-Bit Addressing Forms with the ModR/M Byte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6
32-Bit Addressing Forms with the ModR/M Byte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
32-Bit Addressing Forms with the SIB Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
REX Prefix Fields [BITS: 0100WRXB]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11
Special Cases of REX Encodings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13
Direct Memory Offset Form of MOV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14
RIP-Relative Addressing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15
Register Codes Associated With +rb, +rw, +rd, +ro. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
Range of Bit Positions Specified by Bit Offset Operands . . . . . . . . . . . . . . . . . . . . . . 3-11
Intel 64 and IA-32 General Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-15
SIMD Floating-Point Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-17
x87 FPU Floating-Point Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-17
Decision Table for CLI Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-110
Comparison Predicate for CMPPD and CMPPS Instructions. . . . . . . . . . . . . . . . . . . .3-126
Pseudo-Op and CMPPD Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-127
Pseudo-Ops and CMPPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-132
Pseudo-Ops and CMPSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-142
Pseudo-Ops and CMPSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-147
Information Returned by CPUID Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-163
Highest CPUID Source Operand for Intel 64 and IA-32 Processors . . . . . . . . . . . .3-169
Processor Type Field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-170
Feature Information Returned in the ECX Register. . . . . . . . . . . . . . . . . . . . . . . . . . .3-173
More on Feature Information Returned in the EDX Register . . . . . . . . . . . . . . . . . .3-175
Encoding of Cache and TLB Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-178
Processor Brand String Returned with Pentium 4 Processor. . . . . . . . . . . . . . . . . .3-183
Mapping of Brand Indices; and
Intel 64 and IA-32 Processor Brand Strings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-185
DIV Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-265
Results Obtained from F2XM1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-286
Results Obtained from FABS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-288
FADD/FADDP/FIADD Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-291
FBSTP Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-296
FCHS Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-299
FCOM/FCOMP/FCOMPP Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-305
FCOMI/FCOMIP/ FUCOMI/FUCOMIP Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-309
FCOS Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-312
FDIV/FDIVP/FIDIV Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-317
FDIVR/FDIVRP/FIDIVR Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-321
FICOM/FICOMP Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-325
FIST/FISTP Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-334
FISTTP Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-338
FMUL/FMULP/FIMUL Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-352
FPATAN Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-357
FPREM Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-359
FPREM1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-362
Table 3-20.
Table 3-21.
Table 3-22.
Table 3-23.
Table 3-24.
Table 3-25.
Table 3-26.
Table 3-27.
Table 3-28.
Table 3-29.
Table 3-30.
Table 3-31.
Table 3-32.
Table 3-33.
Table 3-34.
Table 3-35.
Table 3-36.
Table 3-37.
xvi Vol. 2A
CONTENTS
PAGE
Table 3-38.
Table 3-39.
Table 3-40.
Table 3-41.
Table 3-42.
Table 3-43.
Table 3-44.
Table 3-45.
Table 3-46.
Table 3-47.
Table 3-48.
FPTAN Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-365
FSCALE Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-377
FSIN Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-379
FSINCOS Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-381
FSQRT Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-384
FSUB/FSUBP/FISUB Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-399
FSUBR/FSUBRP/FISUBR Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-403
FTST Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-406
FUCOM/FUCOMP/FUCOMPP Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-408
FXAM Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-411
Non-64-bit-Mode Layout of FXSAVE and FXRSTOR
Memory Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-418
Field Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-420
Recreating FSAVE Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-422
Layout of the 64-bit-mode FXSAVE Map
Table 3-49.
Table 3-50.
Table 3-51.
with Promoted OperandSize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-423
Layout of the 64-bit-mode FXSAVE Map with
Table 3-52.
Default OperandSize. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-424
FYL2X Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-431
FYL2XP1 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-433
IDIV Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-454
Decision Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-472
Segment and Gate Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-521
Non-64-bit Mode LEA Operation with Address and Operand Size Attributes . . 3-535
64-bit Mode LEA Operation with Address and Operand Size Attributes . . . . . . . 3-536
Segment and Gate Descriptor Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-559
MUL Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-695
MWAIT Extension Register (ECX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-711
MWAIT Hints Register (EAX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-712
Recommended Multi-Byte Sequence of NOP Instruction . . . . . . . . . . . . . . . . . . . . . . . . 4-5
Valid General and Special Purpose Performance Counter Index Range
Table 3-53.
Table 3-54.
Table 3-55.
Table 3-56.
Table 3-57.
Table 3-58.
Table 3-59.
Table 3-60.
Table 3-61.
Table 3-62.
Table 3-63.
Table 4-1.
Table 4-2.
for RDPMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-247
Repeat Prefixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-256
Decision Table for STI Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-339
SWAPGS Operation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-365
MSRs Used By the SYSENTER and SYSEXIT Instructions . . . . . . . . . . . . . . . . . . . . . 4-369
Layout of IA32_FEATURE_CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2
GETSEC Leaf Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3
GETSEC Capability Result Encoding (EBX = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9
Register State Initialization after GETSEC[ENTERACCS]. . . . . . . . . . . . . . . . . . . . . . . .5-15
IA32_MISC_ENALBES MSR Initialization by ENTERACCS and SENTER . . . . . . . . . . .5-17
Register State Initialization after GETSEC[SENTER] and GETSEC[WAKEUP] . . . . .5-31
SMX Reporting Parameters Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-43
External Memory Types Using Parameter 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-45
Default Parameter Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-46
Supported Actions for GETSEC[SMCTRL(0)] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-49
RLP MVMM JOIN Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-52
Table 4-3.
Table 4-4.
Table 4-5.
Table 4-6.
Table 6-1.
Table 6-2.
Table 6-3.
Table 6-4.
Table 6-5.
Table 6-6.
Table 6-7.
Table 6-8.
Table 6-9.
Table 6-10.
Table 6-11.
Vol. 2A xvii
CONTENTS
PAGE
Table A-1.
Table A-2.
Table A-3.
Table A-4.
Table A-5.
Table A-6.
Table A-7.
Table A-8.
Table A-9.
Table A-10.
Table A-11.
Table A-12.
Table A-13.
Table A-14.
Table A-15.
Table A-16.
Table A-17.
Table A-18.
Table A-19.
Table A-20.
Table A-21.
Table A-22.
Table B-1.
Table B-2.
Table B-4.
Table B-3.
Table B-5.
Table B-6.
Table B-7.
Table B-8.
Table B-9.
Table B-11.
Table B-10.
Table B-12.
Table B-13.
Superscripts Utilized in Opcode Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-7
One-byte Opcode Map: (00H — F7H) *. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-9
Two-byte Opcode Map: 00H — 77H (First Byte is 0FH) * . . . . . . . . . . . . . . . . . . . . . . A-11
Three-byte Opcode Map: 00H — F7H (First Two Bytes are 0F 38H) * . . . . . . . . . . A-15
Three-byte Opcode Map: 00H — F7H (First two bytes are 0F 3AH) *. . . . . . . . . . . A-17
Opcode Extensions for One- and Two-byte Opcodes by Group Number * . . . . . . . A-20
D8 Opcode Map When ModR/M Byte is Within 00H to BFH * . . . . . . . . . . . . . . . . . . . A-23
D8 Opcode Map When ModR/M Byte is Outside 00H to BFH *. . . . . . . . . . . . . . . . . . A-23
D9 Opcode Map When ModR/M Byte is Within 00H to BFH * . . . . . . . . . . . . . . . . . . . A-24
D9 Opcode Map When ModR/M Byte is Outside 00H to BFH *. . . . . . . . . . . . . . . . . . A-24
DA Opcode Map When ModR/M Byte is Within 00H to BFH *. . . . . . . . . . . . . . . . . . . A-25
DA Opcode Map When ModR/M Byte is Outside 00H to BFH *. . . . . . . . . . . . . . . . . . A-25
DB Opcode Map When ModR/M Byte is Within 00H to BFH * . . . . . . . . . . . . . . . . . . . A-26
DB Opcode Map When ModR/M Byte is Outside 00H to BFH *. . . . . . . . . . . . . . . . . . A-26
DC Opcode Map When ModR/M Byte is Within 00H to BFH * . . . . . . . . . . . . . . . . . . . A-27
DC Opcode Map When ModR/M Byte is Outside 00H to BFH *. . . . . . . . . . . . . . . . . . A-27
DD Opcode Map When ModR/M Byte is Within 00H to BFH *. . . . . . . . . . . . . . . . . . . A-28
DD Opcode Map When ModR/M Byte is Outside 00H to BFH *. . . . . . . . . . . . . . . . . . A-28
DE Opcode Map When ModR/M Byte is Within 00H to BFH * . . . . . . . . . . . . . . . . . . . A-29
DE Opcode Map When ModR/M Byte is Outside 00H to BFH *. . . . . . . . . . . . . . . . . . A-29
DF Opcode Map When ModR/M Byte is Within 00H to BFH * . . . . . . . . . . . . . . . . . . . A-30
DF Opcode Map When ModR/M Byte is Outside 00H to BFH *. . . . . . . . . . . . . . . . . . A-30
Special Fields Within Instruction Encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-3
Encoding of reg Field When w Field is Not Present in Instruction. . . . . . . . . . . . . . . . B-3
Encoding of reg Field When w Field is Not Present in Instruction. . . . . . . . . . . . . . . . B-4
Encoding of reg Field When w Field is Present in Instruction. . . . . . . . . . . . . . . . . . . . B-4
Encoding of reg Field When w Field is Present in Instruction. . . . . . . . . . . . . . . . . . . . B-5
Encoding of Operand Size (w) Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-5
Encoding of Sign-Extend (s) Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-6
Encoding of the Segment Register (sreg) Field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-6
Encoding of Special-Purpose Register (eee) Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-7
Encoding of Operation Direction (d) Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-8
Encoding of Conditional Test (tttn) Field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-8
Notes on Instruction Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-9
General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-9
Special Symbols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-24
General Purpose Instruction Formats and Encodings
Table B-14.
Table B-15.
for 64-Bit Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-24
Pentium Processor Family Instruction Formats and Encodings,
Table B-16.
Non-64-Bit Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-53
Pentium Processor Family Instruction Formats and Encodings, 64-Bit Mode . . . . B-53
Encoding of Granularity of Data Field (gg) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-54
MMX Instruction Formats and Encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-55
Formats and Encodings of P6 Family Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-58
Formats and Encodings of SSE Floating-Point Instructions. . . . . . . . . . . . . . . . . . . . . B-60
Formats and Encodings of SSE Integer Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . B-66
Table B-17.
Table B-18.
Table B-19.
Table B-20.
Table B-21.
Table B-22.
xviii Vol. 2A
CONTENTS
PAGE
Table B-23.
Table B-24.
Table B-25.
Table B-26.
Table B-27.
Table B-28.
Table B-29.
Table B-30.
Table B-31.
Table B-32.
Table B-33.
Table B-34.
Table B-35.
Table B-36.
Table C-1.
Format and Encoding of SSE Cacheability & Memory Ordering Instructions. . . . . .B-67
Encoding of Granularity of Data Field (gg). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .B-68
Formats and Encodings of SSE2 Floating-Point Instructions. . . . . . . . . . . . . . . . . . . .B-69
Formats and Encodings of SSE2 Integer Instructions . . . . . . . . . . . . . . . . . . . . . . . . . .B-77
Format and Encoding of SSE2 Cacheability Instructions. . . . . . . . . . . . . . . . . . . . . . . .B-84
Formats and Encodings of SSE3 Floating-Point Instructions. . . . . . . . . . . . . . . . . . . .B-85
Formats and Encodings for SSE3 Event Management Instructions. . . . . . . . . . . . . .B-86
Formats and Encodings for SSE3 Integer and Move Instructions. . . . . . . . . . . . . . . .B-86
Formats and Encodings for SSSE3 Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .B-87
Special Case Instructions Promoted Using REX.W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .B-91
General Floating-Point Instruction Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .B-95
Floating-Point Instruction Formats and Encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . . .B-96
Encodings for VMX Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-101
Encodings for SMX Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-103
Simple Intrinsics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-3
Composite Intrinsics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .C-14
Table C-2.
Vol. 2A xix
CONTENTS
PAGE
xx Vol. 2A
CHAPTER 1
ABOUT THIS MANUAL
®
The Intel 64 and IA-32 Architectures Software Developer’s Manual, Volumes
2A & 2B: Instruction Set Reference (order numbers 253666 and 253667) are part of
a set that describes the architecture and programming environment of all Intel 64
and IA-32 architecture processors. Other volumes in this set are:
®
• The Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume 1:
Basic Architecture (Order Number 253665).
®
• The Intel 64 and IA-32 Architectures Software Developer’s Manual, Volumes
3A & 3B: System Programming Guide (order numbers 253668 and 253669).
®
The Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume 1,
describes the basic architecture and programming environment of Intel 64 and IA-32
®
processors. The Intel 64 and IA-32 Architectures Software Developer’s Manual,
Volumes 2A & 2B, describe the instruction set of the processor and the opcode struc-
ture. These volumes apply to application programmers and to programmers who
®
write operating systems or executives. The Intel 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volumes 3A & 3B, describe the operating-system support
environment of Intel 64 and IA-32 processors. These volumes target operating-
®
system and BIOS designers. In addition, the Intel 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B, addresses the programming environment for
classes of software that host operating systems.
1.1
IA-32 PROCESSORS COVERED IN THIS MANUAL
This manual set includes information pertaining primarily to the most recent Intel 64
and IA-32 processors, which include:
®
• Pentium processors
• P6 family processors
®
• Pentium 4 processors
®
• Pentium M processors
®
®
• Intel Xeon processors
®
• Pentium D processors
• Pentium processor Extreme Editions
®
®
®
• 64-bit Intel Xeon processors
®
• Intel Core™ Duo processor
®
• Intel Core™ Solo processor
®
®
• Dual-Core Intel Xeon processor LV
Vol. 2A 1-1
ABOUT THIS MANUAL
®
• Intel Core™2 Duo processor
®
• Intel Core™2 Quad processor
®
®
• Intel Xeon processor 3000, 3200 series
®
®
• Intel Xeon processor 5000 series
®
®
• Intel Xeon processor 5100, 5300 series
®
• Intel Core™2 Extreme processor
®
• Intel Core™2 Extreme Quad-core processor
®
®
• Intel Xeon processor 7100, 7300 series
®
®
• Intel Pentium Dual-Core processor
P6 family processors are IA-32 processors based on the P6 family microarchitecture.
®
®
®
®
®
This includes the Pentium Pro, Pentium II, Pentium III, and Pentium III Xeon
processors.
®
®
®
The Pentium 4, Pentium D, and Pentium processor Extreme Editions are based
®
®
®
on the Intel NetBurst microarchitecture. Most early Intel Xeon processors are
based on the Intel NetBurst microarchitecture. Intel Xeon processor 5000, 7100
series are based on the Intel NetBurst microarchitecture.
®
®
®
®
®
®
The Intel Core™ Duo, Intel Core™ Solo and dual-core Intel Xeon processor LV
®
are based on an improved Pentium M processor microarchitecture.
®
®
®
The Intel Xeon processor 3000, 3200, 5100, 5300, and 7300 series, Intel
®
®
®
®
Pentium dual-core, Intel Core™2 Duo, Intel Core™2 Quad, and Intel Core™2
®
Extreme processors are based on Intel Core™ microarchitecture.
®
®
®
P6 family, Pentium M, Intel Core™ Solo, Intel Core™ Duo processors, dual-core
®
®
Intel Xeon processor LV, and early generations of Pentium 4 and Intel Xeon
processors support IA-32 architecture.
®
®
The Intel Xeon processor 3000, 3200, 5000, 5100, 5300, 7100, 7300 series,
®
®
®
Intel Core™2 Duo, Intel Core™2 Extreme, Intel Core™2 Quad processors,
®
®
Pentium D processors, Pentium Dual-Core processor, newer generations of
®
Pentium 4 and Intel Xeon processor family support Intel 64 architecture.
IA-32 architecture is the instruction set architecture and programming environment
for Intel's 32-bit microprocessors.
®
Intel 64 architecture is the instruction set architecture and programming environ-
ment which is the superset of Intel’s 32-bit and 64-bit architectures. It is compatible
with the IA-32 architecture.
1.2
OVERVIEW OF VOLUME 2A AND 2B: INSTRUCTION
SET REFERENCE
®
A description of Intel 64 and IA-32 Architectures Software Developer’s Manual,
Volumes 2A & 2B, content follows:
1-2 Vol. 2A
ABOUT THIS MANUAL
Chapter 1 — About This Manual. Gives an overview of all five volumes of the
®
Intel 64 and IA-32 Architectures Software Developer’s Manual. It also describes the
®
notational conventions in these manuals and lists related Intel manuals and docu-
mentation of interest to programmers and hardware designers.
Chapter 2 — Instruction Format. Describes the machine-level instruction format
used for all IA-32 instructions and gives the allowable encodings of prefixes, the
operand-identifier byte (ModR/M byte), the addressing-mode specifier byte (SIB
byte), and the displacement and immediate bytes.
Chapter 3 — Instruction Set Reference, A-M. Describes Intel 64 and IA-32
instructions in detail, including an algorithmic description of operations, the effect on
flags, the effect of operand- and address-size attributes, and the exceptions that
may be generated. The instructions are arranged in alphabetical order. General-
purpose, x87 FPU, Intel MMX™ technology, SSE/SSE2/SSE3 extensions, and system
instructions are included.
Chapter 4 — Instruction Set Reference, N-Z. Continues the description of Intel
64 and IA-32 instructions started in Chapter 3. It provides the balance of the alpha-
®
betized list of instructions and starts Intel 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2B.
Chapter 5 — VMX Instruction Reference. Describes the virtual-machine exten-
sions (VMX). VMX is intended for a system executive to support virtualization of
processor hardware and a system software layer acting as a host to multiple guest
software environments.
Chapter 6— Safer Mode Extensions Reference. Describes the safer mode exten-
sions (SMX). SMX is intended for a system executive to support launching a
measured environment in a platform where the identity of the software controlling
the platform hardware can be measured for the purpose of making trust decisions.
Appendix A — Opcode Map. Gives an opcode map for the IA-32 instruction set.
Appendix B — Instruction Formats and Encodings. Gives the binary encoding of
each form of each IA-32 instruction.
®
Appendix C — Intel C/C++Compiler Intrinsics and Functional Equivalents.
®
Lists the Intel C/C++compiler intrinsics and their assembly code equivalents for each
of the IA-32 MMX and SSE/SSE2/SSE3 instructions.
1.3
NOTATIONAL CONVENTIONS
This manual uses specific notation for data-structure formats, for symbolic represen-
tation of instructions, and for hexadecimal and binary numbers. A review of this
notation makes the manual easier to read.
Vol. 2A 1-3
ABOUT THIS MANUAL
1.3.1
Bit and Byte Order
In illustrations of data structures in memory, smaller addresses appear toward the
bottom of the figure; addresses increase toward the top. Bit positions are numbered
from right to left. The numerical value of a set bit is equal to two raised to the power
of the bit position. IA-32 processors are “little endian” machines; this means the
bytes of a word are numbered starting from the least significant byte. Figure 1-1
illustrates these conventions.
1-4 Vol. 2A
ABOUT THIS MANUAL
Data Structure
Highest
Address
23
8
Bit offset
24
16 15
7
0
31
28
24
20
16
12
8
4
0
Lowest
Address
Byte 3
Byte 2
Byte 1
Byte 0
Byte Offset
Figure 1-1. Bit and Byte Order
1.3.2
Reserved Bits and Software Compatibility
In many register and memory layout descriptions, certain bits are marked as
reserved. When bits are marked as reserved, it is essential for compatibility with
future processors that software treat these bits as having a future, though unknown,
effect. The behavior of reserved bits should be regarded as not only undefined, but
unpredictable. Software should follow these guidelines in dealing with reserved bits:
• Do not depend on the states of any reserved bits when testing the values of
registers which contain such bits. Mask out the reserved bits before testing.
• Do not depend on the states of any reserved bits when storing to memory or to a
register.
• Do not depend on the ability to retain information written into any reserved bits.
• When loading a register, always load the reserved bits with the values indicated
in the documentation, if any, or reload them with values previously read from the
same register.
NOTE
Avoid any software dependence upon the state of reserved bits in
IA-32 registers. Depending upon the values of reserved register bits
will make software dependent upon the unspecified manner in which
the processor handles these bits. Programs that depend upon
reserved values risk incompatibility with future processors.
Vol. 2A 1-5
ABOUT THIS MANUAL
1.3.3
Instruction Operands
When instructions are represented symbolically, a subset of the IA-32 assembly
language is used. In this subset, an instruction has the following format:
label: mnemonic argument1, argument2, argument3
where:
• A label is an identifier which is followed by a colon.
• A mnemonic is a reserved name for a class of instruction opcodes which have
the same function.
• The operands argument1, argument2, and argument3 are optional. There may
be from zero to three operands, depending on the opcode. When present, they
take the form of either literals or identifiers for data items. Operand identifiers
are either reserved names of registers or are assumed to be assigned to data
items declared in another part of the program (which may not be shown in the
example).
When two operands are present in an arithmetic or logical instruction, the right
operand is the source and the left operand is the destination.
For example:
LOADREG: MOV EAX, SUBTOTAL
In this example, LOADREG is a label, MOV is the mnemonic identifier of an opcode,
EAX is the destination operand, and SUBTOTAL is the source operand. Some
assembly languages put the source and destination in reverse order.
1.3.4
Hexadecimal and Binary Numbers
Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits
followed by the character H (for example, F82EH). A hexadecimal digit is a character
from the following set: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F.
Base 2 (binary) numbers are represented by a string of 1s and 0s, sometimes
followed by the character B (for example, 1010B). The “B” designation is only used in
situations where confusion as to the type of number might arise.
1.3.5
Segmented Addressing
The processor uses byte addressing. This means memory is organized and accessed
as a sequence of bytes. Whether one or more bytes are being accessed, a byte
address is used to locate the byte or bytes in memory. The range of memory that can
be addressed is called an address space.
The processor also supports segmented addressing. This is a form of addressing
where a program may have many independent address spaces, called segments.
1-6 Vol. 2A
ABOUT THIS MANUAL
For example, a program can keep its code (instructions) and stack in separate
segments. Code addresses would always refer to the code space, and stack
addresses would always refer to the stack space. The following notation is used to
specify a byte address within a segment:
Segment-register:Byte-address
For example, the following segment address identifies the byte at address FF79H in
the segment pointed by the DS register:
DS:FF79H
The following segment address identifies an instruction address in the code segment.
The CS register points to the code segment and the EIP register contains the address
of the instruction.
CS:EIP
1.3.6
Exceptions
An exception is an event that typically occurs when an instruction causes an error.
For example, an attempt to divide by zero generates an exception. However, some
exceptions, such as breakpoints, occur under other conditions. Some types of excep-
tions may provide error codes. An error code reports additional information about the
error. An example of the notation used to show an exception and error code is shown
below:
#PF(fault code)
This example refers to a page-fault exception under conditions where an error code
naming a type of fault is reported. Under some conditions, exceptions which produce
error codes may not be able to report an accurate code. In this case, the error code
is zero, as shown below for a general-protection exception:
#GP(0)
1.3.7
A New Syntax for CPUID, CR, and MSR Values
Obtain feature flags, status, and system information by using the CPUID instruction,
by checking control register bits, and by reading model-specific registers. We are
moving toward a new syntax to represent this information. See Figure 1-2.
Vol. 2A 1-7
ABOUT THIS MANUAL
&38,'ꢀ,QSXWꢀDQGꢀ2XWSXW
&38,'ꢀꢁꢂ+ꢃ(&;ꢀ66(ꢄ>ELWꢄꢅꢆ@ꢄ ꢄꢂ
6RPHꢄLQSXWVꢄUHTXLUHꢄYDOXHVꢄLQꢄ($;ꢄDQGꢄ(&;ꢀ
7KLVꢄLVꢄUHSUHVHQWHGꢄDVꢄ&38,'ꢀꢇ($; Qꢍꢄ(&; Qꢈꢀ
,IꢄRQO\ꢄRQHꢄYDOXHꢄLVꢄSUHVHQWꢍꢄ($;ꢄLVꢄLPSOLHGꢀ
2XWSXWꢄUHJLVWHUꢄDQGꢄIHDWXUHꢄIODJꢄRUꢄILHOGꢄ
QDPHꢄZLWKꢄELWꢄSRVLWLRQꢇVꢈ
9DOXHꢄꢇRUꢄUDQJHꢈꢄRIꢄRXWSXW
&RQWUROꢀ5HJLVWHUꢀ9DOXHV
&5ꢉꢀ26);65>ELWꢄꢊ@ꢄ ꢄꢂ
([DPSOHꢄ&5ꢄQDPH
)HDWXUHꢄIODJꢄRUꢄILHOGꢄQDPHꢄ
ZLWKꢄELWꢄSRVLWLRQꢇVꢈ
9DOXHꢄꢇRUꢄUDQJHꢈꢄRIꢄRXWSXW
0RGHOꢁ6SHFLILFꢀ5HJLVWHUꢀ9DOXHV
,$ꢋꢅB0,6&B(1$%/(6ꢀ(1$%/()23&2'(>ELWꢄꢅ@ꢄ ꢄꢂ
([DPSOHꢄ065ꢄQDPH
)HDWXUHꢄIODJꢄRUꢄILHOGꢄQDPHꢄZLWKꢄELWꢄSRVLWLRQꢇVꢈ
9DOXHꢄꢇRUꢄUDQJHꢈꢄRIꢄRXWSXW
20ꢂꢌꢌꢋꢅ
Figure 1-2. Syntax for CPUID, CR, and MSR Data Presentation
1.4
RELATED LITERATURE
Literature related to Intel 64 and IA-32 processors is listed on-line at:
Some of the documents listed at this web site can be viewed on-line; others can be
ordered. The literature available is listed by Intel processor and then by the following
1-8 Vol. 2A
ABOUT THIS MANUAL
literature types: applications notes, data sheets, manuals, papers, and specification
updates.
See also:
• The data sheet for a particular Intel 64 or IA-32 processor
• The specification update for a particular Intel 64 or IA-32 processor
®
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
®
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
®
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
®
®
http://developer.intel.com/products/processor/manuals/index.htm
®
http://www.intel.com/support/processors/sb/cs-009861.htm
• TLBs, Paging-Structure Caches, and Their Invalidation,
http://developer.intel.com/products/processor/manuals/index.htm
• Intel® Trusted Execution Technology Measured Launched Environment
Programming Guide, http://www.intel.com/technology/security/index.htm
• Intel® SSE4 Programming Reference,
http://developer.intel.com/products/processor/manuals/index.htm
• Developing Multi-threaded Applications: A Platform Consistent Approach
http://cache-
www.intel.com/cd/00/00/05/15/51534_developing_multithreaded_applications.pdf
http://www3.intel.com/cd/ids/developer/asmo-
na/eng/dc/threading/knowledgebase/19083.htm
More relevant links are:
• Software network link:
http://softwarecommunity.intel.com/isn/home/
• Developer centers:
• Processor support general link:
• Software products and packages:
Vol. 2A 1-9
ABOUT THIS MANUAL
• Intel 64 and IA-32 processor manuals (printed or PDF downloads):
®
• Intel Multi-Core Technology:
http://developer.intel.com/multi-core/index.htm
• Hyper-Threading Technology (HT Technology):
http://developer.intel.com/technology/hyperthread/
1-10 Vol. 2A
CHAPTER 2
INSTRUCTION FORMAT
This chapter describes the instruction format for all Intel 64 and IA-32 processors.
The instruction format for protected mode, real-address mode and virtual-8086
mode is described in Section 2.1. Increments provided for IA-32e mode and its sub-
modes are described in Section 2.2.
2.1
INSTRUCTION FORMAT FOR PROTECTED MODE,
REAL-ADDRESS MODE, AND VIRTUAL-8086 MODE
The Intel 64 and IA-32 architectures instruction encodings are subsets of the format
shown in Figure 2-1. Instructions consist of optional instruction prefixes (in any
order), primary opcode bytes (up to three bytes), an addressing-form specifier (if
required) consisting of the ModR/M byte and sometimes the SIB (Scale-Index-Base)
byte, a displacement (if required), and an immediate data field (if required).
Instruction
Prefixes
Opcode
ModR/M
Immediate
SIB
Displacement
Up to four
prefixes of
1 byte each
(optional)
1-, 2-, or 3-byte 1 byte
1 byte
Address
Immediate
data of
opcode (if required) (if required)
displacement
of 1, 2, or 4
bytes or none
1, 2, or 4
bytes or none
2
3
0
7
6 5
3 2
7
6 5
0
Reg/
Opcode
Mod
R/M
Scale
Index
Base
Figure 2-1. Intel 64 and IA-32 Architectures Instruction Format
2.1.1
Instruction Prefixes
Instruction prefixes are divided into four groups, each with a set of allowable prefix
codes. For each instruction, one prefix may be used from each of four groups (Groups
1, 2, 3, 4) and be placed in any order.
• Group 1
— Lock and repeat prefixes:
•
F0H—LOCK
Vol. 2A 2-1
INSTRUCTION FORMAT
•
•
F2H—REPNE/REPNZ (used only with string instructions; when used with
the escape opcode 0FH, this prefix is treated as a mandatory prefix for
some SIMD instructions)
F3H—REP or REPE/REPZ (used only with string instructions; when used
with the escape opcode 0FH, this prefix is treated as an mandatory prefix
for some SIMD instructions)
• Group 2
— Segment override prefixes:
•
•
2EH—CS segment override (use with any branch instruction is reserved)
36H—SS segment override prefix (use with any branch instruction is
reserved)
•
•
•
•
3EH—DS segment override prefix (use with any branch instruction is
reserved)
26H—ES segment override prefix (use with any branch instruction is
reserved)
64H—FS segment override prefix (use with any branch instruction is
reserved)
65H—GS segment override prefix (use with any branch instruction is
reserved)
— Branch hints:
•
2EH—Branch not taken (used only with Jcc instructions)
•
• Group 3
•
3EH—Branch taken (used only with Jcc instructions)
66H—Operand-size override prefix (when used with the escape opcode
0FH, this is treated as a mandatory prefix for some SIMD instructions)
• Group 4
•
67H—Address-size override prefix
The LOCK prefix (F0H) forces an operation that ensures exclusive use of shared
memory in a multiprocessor environment. See “LOCK—Assert LOCK# Signal Prefix”
in Chapter 3, “Instruction Set Reference, A-M,” for a description of this prefix.
Repeat prefixes (F2H, F3H) cause an instruction to be repeated for each element of a
string. Use these prefixes only with string instructions (MOVS, CMPS, SCAS, LODS,
STOS, INS, and OUTS). Their use, followed by 0FH, is treated as a mandatory prefix
by a number of SSE/SSE2/SSE3 instructions. Use of repeat prefixes and/or unde-
fined opcodes with other Intel 64 or IA-32 instructions is reserved; such use may
cause unpredictable behavior.
Branch hint prefixes (2EH, 3EH) allow a program to give a hint to the processor about
the most likely code path for a branch. Use these prefixes only with conditional
branch instructions (Jcc). Other use of branch hint prefixes and/or other undefined
2-2 Vol. 2A
INSTRUCTION FORMAT
opcodes with Intel 64 or IA-32 instructions is reserved; such use may cause unpre-
dictable behavior.
The operand-size override prefix allows a program to switch between 16- and 32-bit
operand sizes. Either size can be the default; use of the prefix selects the non-default
size. Use of 66H followed by 0FH is treated as a mandatory prefix by some
SSE/SSE2/SSE3 instructions. Other use of the 66H prefix with MMX/SSE/SSE2/SSE3
instructions is reserved; such use may cause unpredictable behavior.
The address-size override prefix (67H) allows programs to switch between 16- and
32-bit addressing. Either size can be the default; the prefix selects the non-default
size. Using this prefix and/or other undefined opcodes when operands for the instruc-
tion do not reside in memory is reserved; such use may cause unpredictable
behavior.
2.1.2
Opcodes
A primary opcode can be 1, 2, or 3 bytes in length. An additional 3-bit opcode field is
sometimes encoded in the ModR/M byte. Smaller fields can be defined within the
primary opcode. Such fields define the direction of operation, size of displacements,
register encoding, condition codes, or sign extension. Encoding fields used by an
opcode vary depending on the class of operation.
Two-byte opcode formats for general-purpose and SIMD instructions consist of:
• An escape opcode byte 0FH as the primary opcode and a second opcode byte, or
• A mandatory prefix (66H, F2H, or F3H), an escape opcode byte, and a second
opcode byte (same as previous bullet)
For example, CVTDQ2PD consists of the following sequence: F3 0F E6. The first byte
is a mandatory prefix for SSE/SSE2/SSE3 instructions (it is not considered as a
repeat prefix).
Three-byte opcode formats for general-purpose and SIMD instructions consist of:
• An escape opcode byte 0FH as the primary opcode, plus two additional opcode
bytes, or
• A mandatory prefix (66H), an escape opcode byte, plus two additional opcode
bytes (same as previous bullet)
For example, PHADDW for XMM registers consists of the following sequence: 66 0F
38 01. The first byte is the mandatory prefix.
Valid opcode expressions are defined in Appendix A and Appendix B.
Vol. 2A 2-3
INSTRUCTION FORMAT
2.1.3
ModR/M and SIB Bytes
Many instructions that refer to an operand in memory have an addressing-form spec-
ifier byte (called the ModR/M byte) following the primary opcode. The ModR/M byte
contains three fields of information:
• The mod field combines with the r/m field to form 32 possible values: eight
registers and 24 addressing modes.
• The reg/opcode field specifies either a register number or three more bits of
opcode information. The purpose of the reg/opcode field is specified in the
primary opcode.
• The r/m field can specify a register as an operand or it can be combined with the
mod field to encode an addressing mode. Sometimes, certain combinations of
the mod field and the r/m field is used to express opcode information for some
instructions.
Certain encodings of the ModR/M byte require a second addressing byte (the SIB
the SIB byte. The SIB byte includes the following fields:
• The scale field specifies the scale factor.
• The index field specifies the register number of the index register.
• The base field specifies the register number of the base register.
See Section 2.1.5 for the encodings of the ModR/M and SIB bytes.
2.1.4
Displacement and Immediate Bytes
Some addressing forms include a displacement immediately following the ModR/M
byte (or the SIB byte if one is present). If a displacement is required; it be 1, 2, or 4
bytes.
displacement bytes. An immediate operand can be 1, 2 or 4 bytes.
2.1.5
Addressing-Mode Encoding of ModR/M and SIB Bytes
shown in Table 2-1 through Table 2-3: 16-bit addressing forms specified by the
ModR/M byte are in Table 2-1 and 32-bit addressing forms are in Table 2-2. Table 2-3
shows 32-bit addressing forms specified by the SIB byte. In cases where the
reg/opcode field in the ModR/M byte represents an extended opcode, valid encodings
are shown in Appendix B.
In Table 2-1 and Table 2-2, the Effective Address column lists 32 effective addresses
that can be assigned to the first operand of an instruction by using the Mod and R/M
fields of the ModR/M byte. The first 24 options provide ways of specifying a memory
2-4 Vol. 2A
INSTRUCTION FORMAT
location; the last eight (Mod = 11B) provide ways of specifying general-purpose,
MMX technology and XMM registers.
The Mod and R/M columns in Table 2-1 and Table 2-2 give the binary encodings of the
Mod and R/M fields required to obtain the effective address listed in the first column.
For example: see the row indicated by Mod = 11B, R/M = 000B. The row identifies
the general-purpose registers EAX, AX or AL; MMX technology register MM0; or XMM
register XMM0. The register used is determined by the opcode byte and the operand-
size attribute.
Now look at the seventh row in either table (labeled “REG =”). This row specifies the
use of the 3-bit Reg/Opcode field when the field is used to give the location of a
second operand. The second operand must be a general-purpose, MMX technology,
or XMM register. Rows one through five list the registers that may correspond to the
with the operand-size attribute.
If the instruction does not require a second operand, then the Reg/Opcode field may
be used as an opcode extension. This use is represented by the sixth row in the
tables (labeled “/digit (Opcode)”). Note that values in row six are represented in
decimal form.
The body of Table 2-1 and Table 2-2 (under the label “Value of ModR/M Byte (in Hexa-
decimal)”) contains a 32 by 8 array that presents all of 256 values of the ModR/M
byte (in hexadecimal). Bits 3, 4 and 5 are specified by the column of the table in
which a byte resides. The row specifies bits 0, 1 and 2; and bits 6 and 7. The figure
below demonstrates interpretation of one table value.
Mod 11
RM
000
001
/digit (Opcode);
REG =
C8H 11001000
Figure 2-2. Table Interpretation of ModR/M Byte (C8H)
Vol. 2A 2-5
INSTRUCTION FORMAT
Table 2-1. 16-Bit Addressing Forms with the ModR/M Byte
r8(/r)
AL
CL
DL
BL
AH
CH
DH
SI
BH
r16(/r)
AX
CX
DX
BX
SP
BP1
EBP
MM5
DI
r32(/r)
EAX
MM0
XMM0
0
ECX
MM1
EDX
MM2
EBX
MM3
ESP
MM4
ESI
MM6
EDI
MM7
mm(/r)
xmm(/r)
XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7
(In decimal) /digit (Opcode)
(In binary) REG =
1
2
3
4
5
6
7
000
001
010
011
100
101
110
111
Effective Address
Mod R/M
Value of ModR/M Byte (in Hexadecimal)
[BX+SI]
[BX+DI]
[BP+SI]
[BP+DI]
[SI]
00
01
10
000 00
001 01
08
09
0A
0B
0C
0D
0E
0F
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F
20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F
010 02
011 03
100 04
101 05
110 06
111 07
[DI]
disp162
[BX]
[BX+SI]+disp83
[BX+DI]+disp8
[BP+SI]+disp8
[BP+DI]+disp8
[SI]+disp8
000 40
001 41
010 42
011 43
100 44
101 45
110 46
111 47
48
49
4A
4B
4C
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F
60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
7A
7B
7C
7D
7E
7F
[DI]+disp8
[BP]+disp8
[BX]+disp8
[BX+SI]+disp16
[BX+DI]+disp16
[BP+SI]+disp16
[BP+DI]+disp16
[SI]+disp16
000 80
001 81
010 82
011 83
100 84
101 85
110 86
111 87
88
89
8A
8B
8C
8D
8E
8F
90
91
92
93
94
95
96
97
98
99
9A
9B
9C
9D
9E
9F
A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
AA
AB
AC
AD
AE
AF
B0
B1
B2
B3
B4
B5
B6
B7
B8
B9
BA
BB
BC
BD
BE
BF
[DI]+disp16
[BP]+disp16
[BX]+disp16
EAX/AX/AL/MM0/XMM0 11
ECX/CX/CL/MM1/XMM1
EDX/DX/DL/MM2/XMM2
EBX/BX/BL/MM3/XMM3
ESP/SP/AHMM4/XMM4
EBP/BP/CH/MM5/XMM5
ESI/SI/DH/MM6/XMM6
EDI/DI/BH/MM7/XMM7
000 C0
001 C1
010 C2
011 C3
100 C4
101 C5
110 C6
111 C7
C8
C9
CA
CB
CC
CD
CE
CF
D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
DA
DB
DC
DD
DE
DF
E0
EQ
E2
E3
E4
E5
E6
E7
E8
E9
EA
EB
EC
ED
EE
EF
F0
F1
F2
F3
F4
F5
F6
F7
F8
F9
FA
FB
FC
FD
FE
FF
NOTES:
1. The default segment register is SS for the effective addresses containing a BP index, DS for other
effective addresses.
2. The disp16 nomenclature denotes a 16-bit displacement that follows the ModR/M byte and that is
added to the index.
3. The disp8 nomenclature denotes an 8-bit displacement that follows the ModR/M byte and that is
sign-extended and added to the index.
2-6 Vol. 2A
INSTRUCTION FORMAT
Table 2-2. 32-Bit Addressing Forms with the ModR/M Byte
r8(/r)
AL
CL
DL
BL
AH
CH
DH
SI
BH
r16(/r)
AX
CX
DX
BX
SP
BP
DI
r32(/r)
EAX
MM0
ECX
MM1
EDX
MM2
EBX
MM3
ESP
MM4
EBP
MM5
ESI
MM6
EDI
MM7
mm(/r)
xmm(/r)
XMM0 XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7
(In decimal) /digit (Opcode)
(In binary) REG =
0
1
2
3
4
5
6
7
000
001
010
011
100
101
110
111
Effective Address
Mod R/M
Value of ModR/M Byte (in Hexadecimal)
[EAX]
[ECX]
[EDX]
[EBX]
00
01
10
000
001
010
011
100
101
110
111
00
01
02
03
04
05
06
07
08
09
0A
0B
0C
0D
0E
0F
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F
20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F
1
2
[--][--]
disp32
[ESI]
[EDI]
3
50
51
52
53
54
55
56
57
[EAX]+disp8
000
001
010
011
100
101
110
111
40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
58
59
5A
5B
5C
5D
5E
5F
60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
7A
7B
7C
7D
7E
7F
[ECX]+disp8
[EDX]+disp8
[EBX]+disp8
[--][--]+disp8
[EBP]+disp8
[ESI]+disp8
[EDI]+disp8
[EAX]+disp32
[ECX]+disp32
[EDX]+disp32
[EBX]+disp32
[--][--]+disp32
[EBP]+disp32
[ESI]+disp32
[EDI]+disp32
000
001
010
011
100
101
110
111
80
81
82
83
84
85
86
87
88
89
8A
8B
8C
8D
8E
8F
90
91
92
93
94
95
96
97
98
99
9A
9B
9C
9D
9E
9F
A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
AA
AB
AC
AD
AE
AF
B0
B1
B2
B3
B4
B5
B6
B7
B8
B9
BA
BB
BC
BD
BE
BF
EAX/AX/AL/MM0/XMM0 11
ECX/CX/CL/MM/XMM1
EDX/DX/DL/MM2/XMM2
EBX/BX/BL/MM3/XMM3
ESP/SP/AH/MM4/XMM4
EBP/BP/CH/MM5/XMM5
ESI/SI/DH/MM6/XMM6
EDI/DI/BH/MM7/XMM7
000
001
010
011
100
101
110
111
C0
C1
C2
C3
C4
C5
C6
C7
C8
C9
CA
CB
CC
CD
CE
CF
D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
DA
DB
DC
DD
DE
DF
E0
E1
E2
E3
E4
E5
E6
E7
E8
E9
EA
EB
EC
ED
EE
EF
F0
F1
F2
F3
F4
F5
F6
F7
F8
F9
FA
FB
FC
FD
FE
FF
NOTES:
1. The [--][--] nomenclature means a SIB follows the ModR/M byte.
2. The disp32 nomenclature denotes a 32-bit displacement that follows the ModR/M byte (or the SIB
byte if one is present) and that is added to the index.
3. The disp8 nomenclature denotes an 8-bit displacement that follows the ModR/M byte (or the SIB
byte if one is present) and that is sign-extended and added to the index.
Table 2-3 is organized to give 256 possible values of the SIB byte (in hexadecimal).
General purpose registers used as a base are indicated across the top of the table,
along with corresponding values for the SIB byte’s base field. Table rows in the body
Vol. 2A 2-7
INSTRUCTION FORMAT
of the table indicate the register used as the index (SIB byte bits 3, 4 and 5) and the
scaling factor (determined by SIB byte bits 6 and 7).
Table 2-3. 32-Bit Addressing Forms with the SIB Byte
r32
EAX
ECX
EDX
EBX
ESP
[*]
ESI
6
EDI
7
(In decimal) Base =
(In binary) Base =
0
1
2
3
4
5
000
001
010
011
100
101
110
111
Scaled Index
SS
00
Index
Value of SIB Byte (in Hexadecimal)
[EAX]
[ECX]
[EDX]
[EBX]
none
[EBP]
[ESI]
000
001
010
011
100
101
110
111
00
08
10
18
20
28
30
38
01
09
11
19
21
29
31
39
02
0A
12
1A
22
2A
32
3A
03
0B
13
1B
23
2B
33
3B
04
0C
14
1C
24
2C
34
3C
05
0D
15
1D
25
2D
35
3D
06
0E
16
1E
26
2E
36
3E
07
0F
17
1F
27
2F
37
3F
[EDI]
[EAX*2]
[ECX*2]
[EDX*2]
[EBX*2]
none
01
10
11
000
001
010
011
100
101
110
111
40
48
50
58
60
68
70
78
41
49
51
59
61
69
71
79
42
4A
52
5A
62
6A
72
7A
43
4B
53
5B
63
6B
73
7B
44
4C
54
5C
64
6C
74
7C
45
4D
55
5D
65
6D
75
7D
46
4E
56
5E
66
6E
76
7E
47
4F
57
5F
67
6F
77
7F
[EBP*2]
[ESI*2]
[EDI*2]
[EAX*4]
[ECX*4]
[EDX*4]
[EBX*4]
none
000
001
010
011
100
101
110
111
80
88
90
98
A0
A8
B0
B8
81
89
91
89
A1
A9
B1
B9
82
8A
92
9A
A2
AA
B2
BA
83
8B
93
9B
A3
AB
B3
BB
84
8C
94
9C
A4
AC
B4
BC
85
8D
95
9D
A5
AD
B5
BD
86
8E
96
9E
A6
AE
B6
BE
87
8F
97
9F
A7
AF
B7
BF
[EBP*4]
[ESI*4]
[EDI*4]
[EAX*8]
[ECX*8]
[EDX*8]
[EBX*8]
none
000
001
010
011
100
101
110
111
C0
C8
D0
D8
E0
E8
F0
F8
C1
C9
D1
D9
E1
E9
F1
F9
C2
CA
D2
DA
E2
EA
F2
FA
C3
CB
D3
DB
E3
EB
F3
FB
C4
CC
D4
DC
E4
EC
F4
FC
C5
CD
D5
DD
E5
ED
F5
FD
C6
CE
D6
DE
E6
EE
F6
FE
C7
CF
D7
DF
E7
EF
F7
FF
[EBP*8]
[ESI*8]
[EDI*8]
NOTES:
1. The [*] nomenclature means a disp32 with no base if the MOD is 00B. Otherwise, [*] means disp8
or disp32 + [EBP]. This provides the following address modes:
MOD bits Effective Address
00
01
10
[scaled index] + disp32
[scaled index] + disp8 + [EBP]
[scaled index] + disp32 + [EBP]
2-8 Vol. 2A
INSTRUCTION FORMAT
2.2
IA-32E MODE
IA-32e mode has two sub-modes. These are:
• Compatibility Mode. Enables a 64-bit operating system to run most legacy
protected mode software unmodified.
• 64-Bit Mode. Enables a 64-bit operating system to run applications written to
access 64-bit address space.
2.2.1
REX Prefixes
REX prefixes are instruction-prefix bytes used in 64-bit mode. They do the following:
• Specify GPRs and SSE registers.
• Specify 64-bit operand size.
• Specify extended control registers.
an instruction references one of the extended registers or uses a 64-bit operand. If a
REX prefix is used when it has no meaning, it is ignored.
Only one REX prefix is allowed per instruction. If used, the prefix must immediately
precede the opcode byte or the two-byte opcode escape prefix (if present). Other
placements are ignored. The instruction-size limit of 15 bytes still applies to instruc-
tions with a REX prefix. See Figure 2-3.
Legacy
Prefixes
REX
SIB
Displacement
Immediate
Opcode
ModR/M
Prefix
1-, 2-, or
3-byte
opcode
Immediate data
of 1, 2, or 4
bytes or none
(optional)
1 byte
(if required)
Address
displacement of
1, 2, or 4 bytes
Grp 1, Grp
2, Grp 3,
Grp 4
1 byte
(if required)
(optional)
Figure 2-3. Prefix Ordering in 64-bit Mode
Vol. 2A 2-9
INSTRUCTION FORMAT
2.2.1.1
Encoding
Intel 64 and IA-32 instruction formats specify up to three registers by using 3-bit
fields in the encoding, depending on the format:
• ModR/M: the reg and r/m fields of the ModR/M byte
• ModR/M with SIB: the reg field of the ModR/M byte, the base and index fields of
the SIB (scale, index, base) byte
• Instructions without ModR/M: the reg field of the opcode
In 64-bit mode, these formats do not change. Bits needed to define fields in the
64-bit context are provided by the addition of REX prefixes.
2.2.1.2
More on REX Prefix Fields
REX prefixes are a set of 16 opcodes that span one row of the opcode map and
occupy entries 40H to 4FH. These opcodes represent valid instructions (INC or DEC)
opcodes represent the instruction prefix REX and are not treated as individual
instructions.
The single-byte-opcode form of INC/DEC instruction not available in 64-bit mode.
INC/DEC functionality is still available using ModR/M forms of the same instructions
(opcodes FF/0 and FF/1).
See Table 2-4 for a summary of the REX prefix format. Figure 2-4 though Figure 2-7
show examples of REX prefix fields in use. Some combinations of REX prefix fields are
invalid. In such cases, the prefix is ignored. Some additional information follows:
• Setting REX.W can be used to determine the operand size but does not solely
determine operand width. Like the 66H size prefix, 64-bit operand size override
has no effect on byte-specific operations.
• For non-byte operations: if a 66H prefix is used with prefix (REX.W = 1), 66H is
ignored.
• If a 66H override is used with REX and REX.W = 0, the operand size is 16 bits.
• REX.R modifies the ModR/M reg field when that field encodes a GPR, SSE, control
or debug register. REX.R is ignored when ModR/M specifies other registers or
defines an extended opcode.
• REX.X bit modifies the SIB index field.
• REX.B either modifies the base in the ModR/M r/m field or SIB base field; or it
modifies the opcode reg field used for accessing GPRs.
2-10 Vol. 2A
INSTRUCTION FORMAT
Table 2-4. REX Prefix Fields [BITS: 0100WRXB]
Field Name
Bit Position
Definition
-
7:4
3
0100
W
0 = Operand size determined by CS.D
1 = 64 Bit Operand Size
R
X
B
2
1
0
Extension of the ModR/M reg field
Extension of the SIB index field
Extension of the ModR/M r/m field, SIB base field, or
Opcode reg field
0RG50ꢄ%\WH
5(;ꢄ35(),;ꢄꢄ
ꢁꢂꢁꢁ:5ꢁ%
PRG
ꢂꢂ
UHJ
UUU
UꢎP
EEE
2SFRGH
5UUU
%EEE
20ꢂꢌ;ILJꢂꢏꢋ
Figure 2-4. Memory Addressing Without an SIB Byte; REX.X Not Used
0RG50ꢄ%\WH
5(;ꢄ35(),;ꢄꢄ
ꢁꢂꢁꢁ:5ꢁ%
PRG
ꢂꢂ
UHJ
UUU
UꢎP
EEE
2SFRGH
5UUU
%EEE
20ꢂꢌ;ILJꢂꢏꢉ
Figure 2-5. Register-Register Addressing (No Memory Operand); REX.X Not Used
Vol. 2A 2-11
INSTRUCTION FORMAT
0RG50ꢄ%\WH
UHJ
6,%ꢄ%\WH
LQGH[
[[[
EDVH
EEE
2SFRGH
5(;ꢄ35(),;ꢄꢄ
ꢁꢂꢁꢁ:5;%
PRG
ꢀꢂꢂ
UꢎP
ꢂꢁꢁ
VFDOH
VV
UUU
5UUU
;[[[
%EEE
20ꢂꢌ;ILJꢂꢏꢆ
Figure 2-6. Memory Addressing With a SIB Byte
5(;ꢄ35(),;ꢄꢄ
ꢁꢂꢁꢁ:ꢁꢁ%
UHJ
EEE
2SFRGH
%EEE
20ꢂꢌ;ILJꢂꢏꢐ
Figure 2-7. Register Operand Coded in Opcode Byte; REX.X & REX.R Not Used
encoded in the ModR/M byte’s reg field, the r/m field or the opcode reg field as regis-
ters 0 through 7. REX prefixes provide an additional addressing capability for byte-
registers that makes the least-significant byte of GPRs available for byte operations.
Certain combinations of the fields of the ModR/M byte and the SIB byte have special
meaning for register encodings. For some combinations, fields expanded by the REX
prefix are not decoded. Table 2-5 describes how each case behaves.
2-12 Vol. 2A
INSTRUCTION FORMAT
Table 2-5. Special Cases of REX Encodings
Compatibility Compatibility
Mode Operation Mode Implications Additional Implications
ModR/M or
SIB
Sub-field
Encodings
ModR/M Byte mod != 11
SIB byte present. SIB byte required
for ESP-based
REX prefix adds a fourth
bit (b) which is not
decoded (don't care).
r/m ==
b*100(ESP)
addressing.
SIB byte also required for
R12-based addressing.
ModR/M Byte mod == 0
Base register not EBP without a
REX prefix adds a fourth
used.
displacement must bit (b) which is not
be done using
r/m ==
b*101(EBP)
decoded (don't care).
mod = 01 with
Using RBP or R13 without
displacement of 0. displacement must be
done using mod = 01 with
a displacement of 0.
SIB Byte
index ==
0100(ESP)
Index register not ESP cannot be used REX prefix adds a fourth
used.
as an index
register.
bit (b) which is decoded.
There are no additional
implications. The
expanded index field
allows distinguishing RSP
from R12, therefore R12
can be used as an index.
SIB Byte
base ==
0101(EBP)
Base register is
unused if
mod = 0.
Base register
depends on mod
encoding.
REX prefix adds a fourth
bit (b) which is not
decoded.
This requires explicit
displacement to be used
with EBP/RBP or R13.
NOTES:
* Don’t care about value of REX.B
2.2.1.3
Displacement
Addressing in 64-bit mode uses existing 32-bit ModR/M and SIB encodings. The
ModR/M and SIB displacement sizes do not change. They remain 8 bits or 32 bits and
are sign-extended to 64 bits.
2.2.1.4
Direct Memory-Offset MOVs
In 64-bit mode, direct memory-offset forms of the MOV instruction are extended to
specify a 64-bit immediate absolute address. This address is called a moffset. No
prefix is needed to specify this 64-bit memory offset. For these MOV instructions, the
Vol. 2A 2-13
INSTRUCTION FORMAT
size of the memory offset follows the address-size default (64 bits in 64-bit mode).
See Table 2-6.
Table 2-6. Direct Memory Offset Form of MOV
Opcode
A0
Instruction
MOV AL, moffset
MOV EAX, moffset
MOV moffset, AL
MOV moffset, EAX
A1
A2
A3
2.2.1.5
Immediates
In 64-bit mode, the typical size of immediate operands remains 32 bits. When the
operand size is 64 bits, the processor sign-extends all immediates to 64 bits prior to
their use.
Support for 64-bit immediate operands is accomplished by expanding the semantics
of the existing move (MOV reg, imm16/32) instructions. These instructions (opcodes
B8H – BFH) move 16-bits or 32-bits of immediate data (depending on the effective
operand size) into a GPR. When the effective operand size is 64 bits, these instruc-
tions can be used to load an immediate into a GPR. A REX prefix is needed to override
the 32-bit default operand size to a 64-bit operand size.
For example:
48 B8 8877665544332211 MOV RAX,1122334455667788H
2.2.1.6
RIP-Relative Addressing
A new addressing form, RIP-relative (relative instruction-pointer) addressing, is
implemented in 64-bit mode. An effective address is formed by adding displacement
to the 64-bit RIP of the next instruction.
pointer is available only with control-transfer instructions. In 64-bit mode, instruc-
tions that use ModR/M addressing can use RIP-relative addressing. Without RIP-rela-
tive addressing, all ModR/M instruction modes address memory relative to zero.
RIP-relative addressing allows specific ModR/M modes to address memory relative to
±2GB from the RIP. Table 2-7 shows the ModR/M and SIB encodings for RIP-relative
addressing. Redundant forms of 32-bit displacement-addressing exist in the current
ModR/M and SIB encodings. There is one ModR/M encoding and there are several SIB
encodings. RIP-relative addressing is encoded using a redundant form.
In 64-bit mode, the ModR/M Disp32 (32-bit displacement) encoding is re-defined to
be RIP+Disp32 rather than displacement-only. See Table 2-7.
2-14 Vol. 2A
INSTRUCTION FORMAT
Table 2-7. RIP-Relative Addressing
Compatibility 64-bit Mode Additional Implications
Mode Operation Operation in 64-bit mode
ModR/M and SIB Sub-field
Encodings
ModR/M
Byte
mod == 00
Disp32
RIP + Disp32 Must use SIB form with
normal (zero-based)
r/m == 101 (none)
displacement addressing
SIB Byte
base == 101 (none) if mod = 00,
Same as
legacy
None
Disp32
index == 100
(none)
scale = 0, 1, 2, 4
The ModR/M encoding for RIP-relative addressing does not depend on using prefix.
Specifically, the r/m bit field encoding of 101B (used to select RIP-relative
addressing) is not affected by the REX prefix. For example, selecting R13 (REX.B = 1,
r/m = 101B) with mod = 00B still results in RIP-relative addressing. The 4-bit r/m
field of REX.B combined with ModR/M is not fully decoded. In order to address R13
with no displacement, software must encode R13 + 0 using a 1-byte displacement of
zero.
RIP-relative addressing is enabled by 64-bit mode, not by a 64-bit address-size. The
use of the address-size prefix does not disable RIP-relative addressing. The effect of
the address-size prefix is to truncate and zero-extend the computed effective
address to 32 bits.
2.2.1.7
Default 64-Bit Operand Size
In 64-bit mode, two groups of instructions have a default operand size of 64 bits (do
not need a REX prefix for this operand size). These are:
• Near branches
2.2.2
Additional Encodings for Control and Debug Registers
In 64-bit mode, more encodings for control and debug registers are available. The
REX.R bit is used to modify the ModR/M reg field when that field encodes a control or
debug register (see Table 2-4). These encodings enable the processor to address
CR8-CR15 and DR8- DR15. An additional control register (CR8) is defined in 64-bit
mode. CR8 becomes the Task Priority Register (TPR).
In the first implementation of IA-32e mode, CR9-CR15 and DR8-DR15 are not imple-
mented. Any attempt to access unimplemented registers results in an invalid-opcode
exception (#UD).
Vol. 2A 2-15
INSTRUCTION FORMAT
2-16 Vol. 2A
CHAPTER 3
INSTRUCTION SET REFERENCE, A-M
This chapter describes the instruction set for the Intel 64 and IA-32 architectures
(A-M) in IA-32e, protected, Virtual-8086, and real modes of operation. The set
includes general-purpose, x87 FPU, MMX, SSE/SSE2/SSE3/SSSE3, and system
instructions. See also Chapter 4, “Instruction Set Reference, N-Z,” in the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 2B.
For each instruction, each operand combination is described. A description of the
instruction and its operand, an operational description, a description of the effect of
the instructions on flags in the EFLAGS register, and a summary of exceptions that
can be generated are also provided.
3.1
INTERPRETING THE INSTRUCTION REFERENCE
PAGES
This section describes the format of information contained in the instruction refer-
ence pages in this chapter. It explains notational conventions and abbreviations used
in these sections.
3.1.1
Instruction Format
The following is an example of the format used for each instruction description in this
chapter. The heading below introduces the example. The table below provides an
example summary table.
CMC—Complement Carry Flag [this is an example]
Opcode
Instruction
64-bit Mode Compat/
Leg Mode
Description
F5
CMC
Valid
Valid
Complement carry flag.
Vol. 2A 3-1
INSTRUCTION SET REFERENCE, A-M
3.1.1.1
Opcode Column in the Instruction Summary Table
The “Opcode” column in the table above shows the object code produced for each
form of the instruction. When possible, codes are given as hexadecimal bytes in the
same order in which they appear in memory. Definitions of entries other than hexa-
decimal bytes are as follows:
• REX.W — Indicates the use of a REX prefix that affects operand size or
instruction semantics. The ordering of the REX prefix and other
optional/mandatory instruction prefixes are discussed Chapter 2. Note that REX
prefixes that promote legacy instructions to 64-bit behavior are not listed
explicitly in the opcode column.
• /digit — A digit between 0 and 7 indicates that the ModR/M byte of the
instruction uses only the r/m (register or memory) operand. The reg field
contains the digit that provides an extension to the instruction's opcode.
• /r — Indicates that the ModR/M byte of the instruction contains a register
operand and an r/m operand.
• cb, cw, cd, cp, co, ct — A 1-byte (cb), 2-byte (cw), 4-byte (cd), 6-byte (cp),
8-byte (co) or 10-byte (ct) value following the opcode. This value is used to
specify a code offset and possibly a new value for the code segment register.
operand to the instruction that follows the opcode, ModR/M bytes or scale-
indexing bytes. The opcode determines if the operand is a signed value. All
words, doublewords and quadwords are given with the low-order byte first.
• +rb, +rw, +rd, +ro — A register code, from 0 through 7, added to the
hexadecimal byte given at the left of the plus sign to form a single opcode byte.
See Table 3-1 for the codes. The +ro columns in the table are applicable only in
64-bit mode.
•
+i — A number used in floating-point instructions when one of the operands is
ST(i) from the FPU register stack. The number i (which can range from 0 to 7) is
added to the hexadecimal byte given at the left of the plus sign to form a single
opcode byte.
Table 3-1. Register Codes Associated With +rb, +rw, +rd, +ro
byte register
word register
dword register
quadword register
(64-Bit Mode only)
AL
CL
DL
None
None
None
0
AX
CX
DX
None
None
None
0
1
2
EAX
ECX
EDX
None
None
None
0
1
2
RAX
RCX
RDX
None
None
None
0
1
2
1
2
3-2 Vol. 2A
INSTRUCTION SET REFERENCE, A-M
Table 3-1. Register Codes Associated With +rb, +rw, +rd, +ro (Contd.)
byte register
word register
dword register
quadword register
(64-Bit Mode only)
BL
None
3
BX
SP
None
None
3
4
EBX
ESP
None
None
3
4
RBX
N/A
None
N/A
3
AH
Not
4
N/A
encod
able
(N.E.)
CH
N.E.
N.E.
N.E.
Yes
Yes
Yes
Yes
5
6
7
4
5
6
7
BP
SI
None
None
None
None
None
None
None
5
6
7
4
5
6
7
EBP
ESI
None
None
None
None
None
None
None
5
6
7
4
5
6
7
N/A
N/A
N/A
RSP
RBP
RSI
N/A
N/A
N/A
N/A
4
DH
BH
SPL
BPL
SIL
DIL
N/A
DI
EDI
ESP
EBP
ESI
N/A
SP
BP
SI
None
None
None
None
5
6
DI
EDI
RDI
7
Registers R8 - R15 (see below): Available in 64-Bit Mode Only
R8L
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
0
1
2
3
4
5
6
7
R8W
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
0
1
2
3
4
5
6
7
R8D
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
0
1
2
3
4
5
6
7
R8
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
0
1
2
3
4
5
6
7
R9L
R9W
R9D
R9
R10L
R11L
R12L
R13L
R14L
R15L
R10W
R11W
R12W
R13W
R14W
R15W
R10D
R11D
R12D
R13D
R14D
R15D
R10
R11
R12
R13
R14
R15
3.1.1.2
Instruction Column in the Opcode Summary Table
The “Instruction” column gives the syntax of the instruction statement as it would
appear in an ASM386 program. The following is a list of the symbols used to repre-
sent operands in the instruction statements:
• rel8 — A relative address in the range from 128 bytes before the end of the
instruction to 127 bytes after the end of the instruction.
• rel16, rel32, rel64 — A relative address within the same code segment as the
instruction assembled. The rel16 symbol applies to instructions with an operand-
size attribute of 16 bits; the rel32 symbol applies to instructions with an
operand-size attribute of 32 bits; the rel64 symbol applies to instructions with an
operand-size attribute of 64 bits.
Vol. 2A 3-3
INSTRUCTION SET REFERENCE, A-M
• ptr16:16, ptr16:32 and ptr16:64 — A far pointer, typically to a code segment
different from that of the instruction. The notation 16:16 indicates that the value
of the pointer has two parts. The value to the left of the colon is a 16-bit selector
or value destined for the code segment register. The value to the right
corresponds to the offset within the destination segment. The ptr16:16 symbol is
used when the instruction's operand-size attribute is 16 bits; the ptr16:32
symbol is used when the operand-size attribute is 32 bits; the ptr16:64 symbol is
used when the operand-size attribute is 64 bits.
• r8 — One of the byte general-purpose registers: AL, CL, DL, BL, AH, CH, DH, BH,
BPL, SPL, DIL and SIL; or one of the byte registers (R8L - R15L) available when
using REX.R and 64-bit mode.
• r16 — One of the word general-purpose registers: AX, CX, DX, BX, SP, BP, SI, DI;
or one of the word registers (R8-R15) available when using REX.R and 64-bit
mode.
• r32 — One of the doubleword general-purpose registers: EAX, ECX, EDX, EBX,
ESP, EBP, ESI, EDI; or one of the doubleword registers (R8D - R15D) available
when using REX.R in 64-bit mode.
• r64 — One of the quadword general-purpose registers: RAX, RBX, RCX, RDX,
RDI, RSI, RBP, RSP, R8–R15. These are available when using REX.R and 64-bit
mode.
• imm8 — An immediate byte value. The imm8 symbol is a signed number
between –128 and +127 inclusive. For instructions in which imm8 is combined
with a word or doubleword operand, the immediate value is sign-extended to
form a word or doubleword. The upper byte of the word is filled with the topmost
bit of the immediate value.
• imm16 — An immediate word value used for instructions whose operand-size
attribute is 16 bits. This is a number between –32,768 and +32,767 inclusive.
• imm32 — An immediate doubleword value used for instructions whose
operand-size attribute is 32 bits. It allows the use of a number between
+2,147,483,647 and –2,147,483,648 inclusive.
• imm64 — An immediate quadword value used for instructions whose
operand-size attribute is 64 bits. The value allows the use of a number
between +9,223,372,036,854,775,807 and –9,223,372,036,854,775,808
inclusive.
• r/m8 — A byte operand that is either the contents of a byte general-purpose
register (AL, CL, DL, BL, AH, CH, DH, BH, BPL, SPL, DIL and SIL) or a byte from
memory. Byte registers R8L - R15L are available using REX.R in 64-bit mode.
• r/m16 — A word general-purpose register or memory operand used for instruc-
tions whose operand-size attribute is 16 bits. The word general-purpose registers
are: AX, CX, DX, BX, SP, BP, SI, DI. The contents of memory are found at the
address provided by the effective address computation. Word registers R8W -
R15W are available using REX.R in 64-bit mode.
3-4 Vol. 2A
INSTRUCTION SET REFERENCE, A-M
• r/m32 — A doubleword general-purpose register or memory operand used for
instructions whose operand-size attribute is 32 bits. The doubleword general-
purpose registers are: EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI. The contents of
memory are found at the address provided by the effective address computation.
Doubleword registers R8D - R15D are available when using REX.R in 64-bit
mode.
• r/m64 — A quadword general-purpose register or memory operand used for
instructions whose operand-size attribute is 64 bits when using REX.W.
Quadword general-purpose registers are: RAX, RBX, RCX, RDX, RDI, RSI, RBP,
RSP, R8–R15; these are available only in 64-bit mode. The contents of memory
are found at the address provided by the effective address computation.
• m — A 16-, 32- or 64-bit operand in memory.
• m8 — A byte operand in memory, usually expressed as a variable or array name,
but pointed to by the DS:(E)SI or ES:(E)DI registers. In 64-bit mode, it is pointed
to by the RSI or RDI registers.
• m16 — A word operand in memory, usually expressed as a variable or array
name, but pointed to by the DS:(E)SI or ES:(E)DI registers. This nomenclature is
used only with the string instructions.
• m32 — A doubleword operand in memory, usually expressed as a variable or
array name, but pointed to by the DS:(E)SI or ES:(E)DI registers. This nomen-
clature is used only with the string instructions.
• m64 — A memory quadword operand in memory.
• m128 — A memory double quadword operand in memory. This nomenclature is
used only with SSE and SSE2 instructions.
• m16:16, m16:32 & m16:64 — A memory operand containing a far pointer
composed of two numbers. The number to the left of the colon corresponds to the
pointer's segment selector. The number to the right corresponds to its offset.
• m16&32, m16&16, m32&32, m16&64 — A memory operand consisting of
data item pairs whose sizes are indicated on the left and the right side of the
ampersand. All memory addressing modes are allowed. The m16&16 and
m32&32 operands are used by the BOUND instruction to provide an operand
containing an upper and lower bounds for array indices. The m16&32 operand is
used by LIDT and LGDT to provide a word with which to load the limit field, and a
doubleword with which to load the base field of the corresponding GDTR and
IDTR registers. The m16&64 operand is used by LIDT and LGDT in 64-bit mode to
provide a word with which to load the limit field, and a quadword with which to
load the base field of the corresponding GDTR and IDTR registers.
• moffs8, moffs16, moffs32, moffs64 — A simple memory variable (memory
offset) of type byte, word, or doubleword used by some variants of the MOV
instruction. The actual address is given by a simple offset relative to the segment
base. No ModR/M byte is used in the instruction. The number shown with moffs
indicates its size, which is determined by the address-size attribute of the
instruction.
Vol. 2A 3-5
INSTRUCTION SET REFERENCE, A-M
• Sreg — A segment register. The segment register bit assignments are ES = 0,
CS = 1, SS = 2, DS = 3, FS = 4, and GS = 5.
• m32fp, m64fp, m80fp — A single-precision, double-precision, and double
extended-precision (respectively) floating-point operand in memory. These
symbols designate floating-point values that are used as operands for x87 FPU
floating-point instructions.
• m16int, m32int, m64int — A word, doubleword, and quadword integer
(respectively) operand in memory. These symbols designate integers that are
used as operands for x87 FPU integer instructions.
• ST or ST(0) — The top element of the FPU register stack.
th
• ST(i) — The i element from the top of the FPU register stack (i ←0 through 7).
• mm — An MMX register. The 64-bit MMX registers are: MM0 through MM7.
• mm/m32 — The low order 32 bits of an MMX register or a 32-bit memory
operand. The 64-bit MMX registers are: MM0 through MM7. The contents of
memory are found at the address provided by the effective address computation.
• mm/m64 — An MMX register or a 64-bit memory operand. The 64-bit MMX
registers are: MM0 through MM7. The contents of memory are found at the
address provided by the effective address computation.
• xmm — An XMM register. The 128-bit XMM registers are: XMM0 through XMM7;
XMM8 through XMM15 are available using REX.R in 64-bit mode.
• xmm/m32— An XMM register or a 32-bit memory operand. The 128-bit XMM
registers are XMM0 through XMM7; XMM8 through XMM15 are available using
REX.R in 64-bit mode. The contents of memory are found at the address provided
by the effective address computation.
• xmm/m64 — An XMM register or a 64-bit memory operand. The 128-bit SIMD
floating-point registers are XMM0 through XMM7; XMM8 through XMM15 are
available using REX.R in 64-bit mode. The contents of memory are found at the
address provided by the effective address computation.
• xmm/m128 — An XMM register or a 128-bit memory operand. The 128-bit XMM
registers are XMM0 through XMM7; XMM8 through XMM15 are available using
REX.R in 64-bit mode. The contents of memory are found at the address provided
by the effective address computation.
3.1.1.3
64-bit Mode Column in the Instruction Summary Table
The “64-bit Mode” column indicates whether the opcode sequence is supported in
64-bit mode. The column uses the following notation:
• Valid — Supported.
• Invalid — Not supported.
• N.E. — Indicates an instruction syntax is not encodable in 64-bit mode (it may
represent part of a sequence of valid instructions in other modes).
3-6 Vol. 2A
INSTRUCTION SET REFERENCE, A-M
• N.P. — Indicates the REX prefix does not affect the legacy instruction in 64-bit
mode.
• N.I. — Indicates the opcode is treated as a new instruction in 64-bit mode.
• N.S. — Indicates an instruction syntax that requires an address override prefix in
64-bit mode and is not supported. Using an address override prefix in 64-bit
mode may result in model-specific execution behavior.
3.1.1.4
Compatibility/Legacy Mode Column in the Instruction Summary
Table
The “Compatibility/Legacy Mode” column provides information on the opcode
sequence in either the compatibility mode or other IA-32 modes. The column uses
the following notation:
• Valid — Supported.
• Invalid — Not supported.
• N.E. — Indicates an Intel 64 instruction mnemonics/syntax that is not
encodable; the opcode sequence is not applicable as an individual instruction in
compatibility mode or IA-32 mode. The opcode may represent a valid sequence
of legacy IA-32 instructions.
3.1.1.5
Description Column in the Instruction Summary Table
The “Description” column briefly explains forms of the instruction.
3.1.1.6
Description Section
Each instruction is then described by number of information sections. The “Descrip-
tion” section describes the purpose of the instructions and required operands in more
detail.
3.1.1.7
Operation Section
The “Operation” section contains an algorithm description (frequently written in
pseudo-code) for the instruction. Algorithms are composed of the following
elements:
• Comments are enclosed within the symbol pairs “(*” and “*)”.
• Compound statements are enclosed in keywords, such as: IF, THEN, ELSE and FI
for an if statement; DO and OD for a do statement; or CASE... OF for a case
statement.
• A register name implies the contents of the register. A register name enclosed in
brackets implies the contents of the location whose address is contained in that
register. For example, ES:[DI] indicates the contents of the location whose ES
segment relative address is in register DI. [SI] indicates the contents of the
Vol. 2A 3-7
INSTRUCTION SET REFERENCE, A-M
address contained in register SI relative to the SI register’s default segment (DS)
or the overridden segment.
• Parentheses around the “E” in a general-purpose register name, such as (E)SI,
indicates that the offset is read from the SI register if the address-size attribute
is 16, from the ESI register if the address-size attribute is 32. Parentheses
around the “R” in a general-purpose register name, (R)SI, in the presence of a
64-bit register definition such as (R)SI, indicates that the offset is read from the
64-bit RSI register if the address-size attribute is 64.
• Brackets are used for memory operands where they mean that the contents of
the memory location is a segment-relative offset. For example, [SRC] indicates
that the content of the source operand is a segment-relative offset.
• A ←B indicates that the value of B is assigned to A.
• The symbols =, ≠, >, <, ≥, and ≤are relational operators used to compare two
values: meaning equal, not equal, greater or equal, less or equal, respectively. A
relational expression such as A ←B is TRUE if the value of A is equal to B;
otherwise it is FALSE.
• The expression “<< COUNT” and “>> COUNT” indicates that the destination
operand should be shifted left or right by the number of bits indicated by the
count operand.
The following identifiers are used in the algorithmic descriptions:
• OperandSize and AddressSize — The OperandSize identifier represents the
operand-size attribute of the instruction, which is 16, 32 or 64-bits. The
AddressSize identifier represents the address-size attribute, which is 16, 32 or
64-bits. For example, the following pseudo-code indicates that the operand-size
attribute depends on the form of the MOV instruction used.
IF Instruction ←MOVW
THEN OperandSize ←16;
ELSE
IF Instruction ←MOVD
THEN OperandSize ←32;
ELSE
IF Instruction ←MOVQ
THEN OperandSize ←64;
FI;
FI;
FI;
See “Operand-Size and Address-Size Attributes” in Chapter 3 of the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 1, for guidelines
on how these attributes are determined.
• StackAddrSize — Represents the stack address-size attribute associated with
the instruction, which has a value of 16, 32 or 64-bits. See “Address-Size
3-8 Vol. 2A
INSTRUCTION SET REFERENCE, A-M
Attribute for Stack” in Chapter 6, “Procedure Calls, Interrupts, and Exceptions,” of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.
• SRC — Represents the source operand.
• DEST — Represents the destination operand.
The following functions are used in the algorithmic descriptions:
• ZeroExtend(value) — Returns a value zero-extended to the operand-size
attribute of the instruction. For example, if the operand-size attribute is 32, zero
extending a byte value of –10 converts the byte from F6H to a doubleword value
of 000000F6H. If the value passed to the ZeroExtend function and the operand-
size attribute are the same size, ZeroExtend returns the value unaltered.
• SignExtend(value) — Returns a value sign-extended to the operand-size
attribute of the instruction. For example, if the operand-size attribute is 32, sign
extending a byte containing the value –10 converts the byte from F6H to a
doubleword value of FFFFFFF6H. If the value passed to the SignExtend function
and the operand-size attribute are the same size, SignExtend returns the value
unaltered.
• SaturateSignedWordToSignedByte — Converts a signed 16-bit value to a
signed 8-bit value. If the signed 16-bit value is less than –128, it is represented
by the saturated value -128 (80H); if it is greater than 127, it is represented by
the saturated value 127 (7FH).
• SaturateSignedDwordToSignedWord — Converts a signed 32-bit value to a
signed 16-bit value. If the signed 32-bit value is less than –32768, it is
represented by the saturated value –32768 (8000H); if it is greater than 32767,
it is represented by the saturated value 32767 (7FFFH).
• SaturateSignedWordToUnsignedByte — Converts a signed 16-bit value to an
unsigned 8-bit value. If the signed 16-bit value is less than zero, it is represented
by the saturated value zero (00H); if it is greater than 255, it is represented by
the saturated value 255 (FFH).
• SaturateToSignedByte — Represents the result of an operation as a signed
8-bit value. If the result is less than –128, it is represented by the saturated value
–128 (80H); if it is greater than 127, it is represented by the saturated value 127
(7FH).
• SaturateToSignedWord — Represents the result of an operation as a signed
16-bit value. If the result is less than –32768, it is represented by the saturated
value –32768 (8000H); if it is greater than 32767, it is represented by the
saturated value 32767 (7FFFH).
• SaturateToUnsignedByte — Represents the result of an operation as a signed
8-bit value. If the result is less than zero it is represented by the saturated value
zero (00H); if it is greater than 255, it is represented by the saturated value 255
(FFH).
• SaturateToUnsignedWord — Represents the result of an operation as a signed
16-bit value. If the result is less than zero it is represented by the saturated value
Vol. 2A 3-9
INSTRUCTION SET REFERENCE, A-M
zero (00H); if it is greater than 65535, it is represented by the saturated value
65535 (FFFFH).
• LowOrderWord(DEST * SRC) — Multiplies a word operand by a word operand
and stores the least significant word of the doubleword result in the destination
operand.
• HighOrderWord(DEST * SRC) — Multiplies a word operand by a word operand
and stores the most significant word of the doubleword result in the destination
operand.
• Push(value) — Pushes a value onto the stack. The number of bytes pushed is
determined by the operand-size attribute of the instruction. See the “Operation”
subsection of the “PUSH—Push Word, Doubleword or Quadword Onto the Stack”
section in Chapter 4 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2B.
• Pop() removes the value from the top of the stack and returns it. The statement
EAX ←Pop(); assigns to EAX the 32-bit value from the top of the stack. Pop will
return either a word, a doubleword or a quadword depending on the operand-size
attribute. See the “Operation” subsection in the “POP—Pop a Value from the
Stack” section of Chapter 4 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2B.
• PopRegisterStack — Marks the FPU ST(0) register as empty and increments
the FPU register stack pointer (TOP) by 1.
• Switch-Tasks — Performs a task switch.
• Bit(BitBase, BitOffset) — Returns the value of a bit within a bit string. The bit
string is a sequence of bits in memory or a register. Bits are numbered from low-
order to high-order within registers and within memory bytes. If the BitBase is a
register, the BitOffset can be in the range 0 to [15, 31, 63] depending on the
mode and register size. See Figure 3-1: the function Bit[RAX, 21] is illustrated.
63
31
21
0
Bit Offset ←21
Figure 3-1. Bit Offset for BIT[RAX, 21]
If BitBase is a memory address, the BitOffset can range has different ranges
depending on the operand size (see Table 3-2).
3-10 Vol. 2A
INSTRUCTION SET REFERENCE, A-M
Table 3-2. Range of Bit Positions Specified by Bit Offset Operands
Operand Size
Immediate BitOffset Register BitOffset
16
32
64
0 to 15
0 to 31
0 to 63
−215 to 215 −1
−231 to 231 −1
−263 to 263 −1
The addressed bit is numbered (Offset MOD 8) within the byte at address
(BitBase + (BitOffset DIV 8)) where DIV is signed division with rounding towards
negative infinity and MOD returns a positive number (see Figure 3-2).
7
5
0
7
0 7
0
BitBase +1
BitBase
BitBase −1
BitOffset ←+13
7
0 7
0 7
5
0
BitBase
BitBase −1
BitOffset ←−11
Figure 3-2. Memory Bit Indexing
BitBase −2
3.1.1.8
Intel® C/C++Compiler Intrinsics Equivalents Section
The Intel C/C++compiler intrinsics equivalents are special C/C++coding extensions that
allow using the syntax of C function calls and C variables instead of hardware regis-
ters. Using these intrinsics frees programmers from having to manage registers and
assembly programming. Further, the compiler optimizes the instruction scheduling
so that executable run faster.
The following sections discuss the intrinsics API and the MMX technology and SIMD
floating-point intrinsics. Each intrinsic equivalent is listed with the instruction
description. There may be additional intrinsics that do not have an instruction equiv-
alent. It is strongly recommended that the reader reference the compiler documen-
tation for the complete list of supported intrinsics.
Vol. 2A 3-11
INSTRUCTION SET REFERENCE, A-M
See Appendix C, “InteL® C/C++ Compiler Intrinsics and Functional Equivalents,” in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B, for
more information on using intrinsics.
Intrinsics API
The benefit of coding with MMX technology intrinsics and the SSE/SSE2/SSE3 intrin-
sics is that you can use the syntax of C function calls and C variables instead of hard-
ware registers. This frees you from managing registers and programming assembly.
Further, the compiler optimizes the instruction scheduling so that your executable
runs faster. For each computational and data manipulation instruction in the new
instruction set, there is a corresponding C intrinsic that implements it directly. The
intrinsics allow you to specify the underlying implementation (instruction selection)
of an algorithm yet leave instruction scheduling and register allocation to the
compiler.
MMX™ Technology Intrinsics
The MMX technology intrinsics are based on a __m64 data type that represents the
specific contents of an MMX technology register. You can specify values in bytes,
short integers, 32-bit values, or a 64-bit object. The __m64 data type, however, is
not a basic ANSI C data type, and therefore you must observe the following usage
restrictions:
• Use __m64 data only on the left-hand side of an assignment, as a return value,
or as a parameter. You cannot use it with other arithmetic expressions (“+”, “>>”,
and so on).
• Use __m64 objects in aggregates, such as unions to access the byte elements
and structures; the address of an __m64 object may be taken.
• Use __m64 data only with the MMX technology intrinsics described in this manual
®
and Intel C/C++ compiler documentation.
• See:
— http://www.intel.com/support/performancetools/
— Appendix C, “InteL® C/C++ Compiler Intrinsics and Functional Equivalents,”
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2B, for more information on using intrinsics.
— SSE/SSE2/SSE3 Intrinsics
— SSE/SSE2/SSE3 intrinsics all make use of the XMM registers of the Pentium
III, Pentium 4, and Intel Xeon processors. There are three data types
supported by these intrinsics: __m128, __m128d, and __m128i.
• The __m128 data type is used to represent the contents of an XMM register used
by an SSE intrinsic. This is either four packed single-precision floating-point
values or a scalar single-precision floating-point value.
• The __m128d data type holds two packed double-precision floating-point values
or a scalar double-precision floating-point value.
3-12 Vol. 2A
INSTRUCTION SET REFERENCE, A-M
• The __m128i data type can hold sixteen byte, eight word, or four doubleword, or
two quadword integer values.
The compiler aligns __m128, __m128d, and __m128i local and global data to
16-byte boundaries on the stack. To align integer, float, or double arrays, use the
declspec statement as described in Intel C/C++ compiler documentation. See
http://www.intel.com/support/performancetools/.
The __m128, __m128d, and __m128i data types are not basic ANSI C data types
and therefore some restrictions are placed on its usage:
• Use __m128, __m128d, and __m128i only on the left-hand side of an
assignment, as a return value, or as a parameter. Do not use it in other arithmetic
expressions such as “+” and “>>.”
• Do not initialize __m128, __m128d, and __m128i with literals; there is no way to
express 128-bit constants.
• Use __m128, __m128d, and __m128i objects in aggregates, such as unions (for
example, to access the float elements) and structures. The address of these
objects may be taken.
• Use __m128, __m128d, and __m128i data only with the intrinsics described in
this user’s guide. See Appendix C, “InteL® C/C++ Compiler Intrinsics and
Functional Equivalents,” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2B, for more information on using intrinsics.
The compiler aligns __m128, __m128d, and __m128i local data to 16-byte bound-
aries on the stack. Global __m128 data is also aligned on 16-byte boundaries. (To
align float arrays, you can use the alignment declspec described in the following
section.) Because the new instruction set treats the SIMD floating-point registers in
the same way whether you are using packed or scalar data, there is no __m32 data
type to represent scalar data as you might expect. For scalar operations, you should
use the __m128 objects and the “scalar” forms of the intrinsics; the compiler and the
processor implement these operations with 32-bit memory references.
The suffixes ps and ss are used to denote “packed single” and “scalar single” preci-
sion operations. The packed floats are represented in right-to-left order, with the
lowest word (right-most) being used for scalar operations: [z, y, x, w]. To explain
how memory storage reflects this, consider the following example.
The operation:
float a[4] ←{ 1.0, 2.0, 3.0, 4.0 };
__m128 t ←_mm_load_ps(a);
Produces the same result as follows:
__m128 t ←_mm_set_ps(4.0, 3.0, 2.0, 1.0);
In other words:
t ←[ 4.0, 3.0, 2.0, 1.0 ]
Where the “scalar” element is 1.0.
Vol. 2A 3-13
INSTRUCTION SET REFERENCE, A-M
Some intrinsics are “composites” because they require more than one instruction to
implement them. You should be familiar with the hardware features provided by the
SSE, SSE2, SSE3, and MMX technology when writing programs with the intrinsics.
Keep the following important issues in mind:
• Certain intrinsics, such as _mm_loadr_ps and _mm_cmpgt_ss, are not directly
supported by the instruction set. While these intrinsics are convenient
programming aids, be mindful of their implementation cost.
• Data loaded or stored as __m128 objects must generally be 16-byte-aligned.
• Some intrinsics require that their argument be immediates, that is, constant
integers (literals), due to the nature of the instruction.
• The result of arithmetic operations acting on two NaN (Not a Number) arguments
is undefined. Therefore, floating-point operations using NaN arguments may not
match the expected behavior of the corresponding assembly instructions.
For a more detailed description of each intrinsic and additional information related to
its usage, refer to Intel C/C++ compiler documentation. See:
— http://www.intel.com/support/performancetools/
— Appendix C, “Intel® C/C++ Compiler Intrinsics and Functional Equivalents,”
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2B, for more information on using intrinsics.
3.1.1.9
Flags Affected Section
The “Flags Affected” section lists the flags in the EFLAGS register that are affected by
the instruction. When a flag is cleared, it is equal to 0; when it is set, it is equal to 1.
The arithmetic and logical instructions usually assign values to the status flags in a
uniform manner (see Appendix A, “Eflags Cross-Reference,” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 1). Non-conventional
assignments are described in the “Operation” section. The values of flags listed as
undefined may be changed by the instruction in an indeterminate manner. Flags
that are not listed are unchanged by the instruction.
3.1.1.10 FPU Flags Affected Section
The floating-point instructions have an “FPU Flags Affected” section that describes
how each instruction can affect the four condition code flags of the FPU status word.
3.1.1.11 Protected Mode Exceptions Section
The “Protected Mode Exceptions” section lists the exceptions that can occur when the
instruction is executed in protected mode and the reasons for the exceptions. Each
exception is given a mnemonic that consists of a pound sign (#) followed by two
letters and an optional error code in parentheses. For example, #GP(0) denotes a
general protection exception with an error code of 0. Table 3-3 associates each two-
3-14 Vol. 2A
INSTRUCTION SET REFERENCE, A-M
letter mnemonic with the corresponding interrupt vector number and exception
name. See Chapter 5, “Interrupt and Exception Handling,” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A, for a detailed description of
the exceptions.
Application programmers should consult the documentation provided with their oper-
ating systems to determine the actions taken when exceptions occur.
Table 3-3. Intel 64 and IA-32 General Exceptions
Vector Name
No.
Source
Protected Real
Virtual
8086
Mode
1
Mode
Address
Mode
0
1
3
4
5
#DE—Divide Error
DIV and IDIV instructions.
Any code or data reference.
INT 3 instruction.
Yes
Yes
Yes
Yes
Yes
Yes
Yes
#DB—Debug
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
#BP—Breakpoint
#OF—Overflow
INTO instruction.
#BR—BOUNDRange BOUND instruction.
Exceeded
6
7
8
#UD—Invalid
Opcode (Undefined
Opcode)
UD2 instruction or reserved
opcode.
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
#NM—Device Not
Available (No Math
Coprocessor)
Floating-point or WAIT/FWAIT
instruction.
#DF—Double Fault
Any instruction that can
generate an exception, an
NMI, or an INTR.
10
11
#TS—Invalid TSS
Task switch or TSS access.
Yes
Yes
Reserved
Reserved
Yes
Yes
#NP—Segment Not Loading segment registers or
Present
accessing system segments.
12
13
#SS—Stack
Segment Fault
Stack operations and SS
register loads.
Yes
Yes
Yes
Yes
Yes
Yes
#GP—General
Any memory reference and
other protection checks.
2
Protection
14
16
#PF—Page Fault
Any memory reference.
Yes
Yes
Reserved
Yes
Yes
Yes
#MF—Floating-Point Floating-point or WAIT/FWAIT
Error (Math Fault)
instruction.
17
#AC—Alignment
Check
Any data reference in
memory.
Yes
Reserved
Yes
Vol. 2A 3-15
INSTRUCTION SET REFERENCE, A-M
Table 3-3. Intel 64 and IA-32 General Exceptions (Contd.)
Vector Name
No.
Source
Protected Real
Virtual
8086
Mode
1
Mode
Yes
Yes
Address
Mode
18
19
#MC—Machine
Check
Model dependent machine
check errors.
Yes
Yes
#XM—SIMD
Floating-Point
Numeric Error
SSE/SSE2/SSE3floating-point
instructions.
Yes
Yes
NOTES:
1. Apply to protected mode, compatibility mode, and 64-bit mode.
2. In the real-address mode, vector 13 is the segment overrun exception.
3.1.1.12 Real-Address Mode Exceptions Section
The “Real-Address Mode Exceptions” section lists the exceptions that can occur when
the instruction is executed in real-address mode (see Table 3-3).
3.1.1.13 Virtual-8086 Mode Exceptions Section
The “Virtual-8086 Mode Exceptions” section lists the exceptions that can occur when
the instruction is executed in virtual-8086 mode (see Table 3-3).
3.1.1.14 Floating-Point Exceptions Section
The “Floating-Point Exceptions” section lists exceptions that can occur when an x87
FPU floating-point instruction is executed. All of these exception conditions result in
a floating-point error exception (#MF, vector number 16) being generated. Table 3-4
associates a one- or two-letter mnemonic with the corresponding exception name.
See “Floating-Point Exception Conditions” in Chapter 8 of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1, for a detailed description of
these exceptions.
3-16 Vol. 2A
INSTRUCTION SET REFERENCE, A-M
Table 3-4. x87 FPU Floating-Point Exceptions
Mnemonic
Name
Source
Floating-point invalid operation:
- Stack overflow or underflow
- Invalid arithmetic operation
#IS
#IA
- x87 FPU stack overflow or underflow
- Invalid FPU arithmetic operation
#Z
#D
#O
#U
#P
Floating-point divide-by-zero
Divide-by-zero
Floating-point denormal operand
Floating-point numeric overflow
Floating-point numeric underflow
Source operand that is a denormal number
Overflow in result
Underflow in result
Floating-point inexact result
(precision)
Inexact result (precision)
3.1.1.15 SIMD Floating-Point Exceptions Section
The “SIMD Floating-Point Exceptions” section lists exceptions that can occur when an
SSE/SSE2/SSE3 floating-point instruction is executed. All of these exception condi-
tions result in a SIMD floating-point error exception (#XM, vector number 19) being
generated. Table 3-5 associates a one-letter mnemonic with the corresponding
exception name. For a detailed description of these exceptions, refer to ”SSE and
SSE2 Exceptions”, in Chapter 11 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1.
Table 3-5. SIMD Floating-Point Exceptions
Mnemonic
Name
Source
Invalid arithmetic operation or source operand
Divide-by-zero
#I
Floating-point invalid operation
Floating-point divide-by-zero
#Z
#D
#O
#U
#P
Floating-point denormal operand Source operand that is a denormal number
Floating-point numeric overflow Overflow in result
Floating-point numeric underflow Underflow in result
Floating-point inexact result Inexact result (precision)
3.1.1.16 Compatibility Mode Exceptions Section
This section lists exception that occur within compatibility mode.
3.1.1.17 64-Bit Mode Exceptions Section
This section lists exception that occur within 64-bit mode.
Vol. 2A 3-17
INSTRUCTION SET REFERENCE, A-M
3.2
INSTRUCTIONS (A-M)
The remainder of this chapter provides descriptions of Intel 64 and IA-32 instructions
(A-M). See also: Chapter 4, “Instruction Set Reference, N-Z,” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 2B.
3-18 Vol. 2A
INSTRUCTION SET REFERENCE, A-M
AAA—ASCII Adjust After Addition
Opcode
Instruction 64-Bit Mode Compat/
Leg Mode
Description
37
AAA
Invalid
Valid
ASCII adjust AL after addition.
Description
Adjusts the sum of two unpacked BCD values to create an unpacked BCD result. The
AL register is the implied source and destination operand for this instruction. The AAA
instruction is only useful when it follows an ADD instruction that adds (binary addi-
tion) two unpacked BCD values and stores a byte result in the AL register. The AAA
instruction then adjusts the contents of the AL register to contain the correct 1-digit
unpacked BCD result.
If the addition produces a decimal carry, the AH register increments by 1, and the CF
and AF flags are set. If there was no decimal carry, the CF and AF flags are cleared
and the AH register is unchanged. In either case, bits 4 through 7 of the AL register
are set to 0.
This instruction executes as described in compatibility mode and legacy mode. It is
not valid in 64-bit mode.
Operation
IF 64-Bit Mode
THEN
#UD;
ELSE
IF ((AL AND 0FH) >9) or (AF = 1)
THEN
AL ←AL +6;
AH ←AH +1;
AF ←1;
CF ←1;
AL ←AL AND 0FH;
ELSE
AF ←0;
CF ←0;
AL ←AL AND 0FH;
FI;
FI;
Flags Affected
The AF and CF flags are set to 1 if the adjustment results in a decimal carry; other-
wise they are set to 0. The OF, SF, ZF, and PF flags are undefined.
AAA—ASCII Adjust After Addition
Vol. 2A 3-19
INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#UD
If the LOCK prefix is used.
Real-Address Mode Exceptions
Same exceptions as protected mode.
Virtual-8086 Mode Exceptions
Same exceptions as protected mode.
Compatibility Mode Exceptions
Same exceptions as protected mode.
64-Bit Mode Exceptions
#UD
If in 64-bit mode.
3-20 Vol. 2A
AAA—ASCII Adjust After Addition
INSTRUCTION SET REFERENCE, A-M
AAD—ASCII Adjust AX Before Division
Opcode
Instruction
64-Bit Mode Compat/
Leg Mode
Description
D5 0A
AAD
Invalid
Valid
Valid
ASCII adjust AX before division.
D5 ib
(No mnemonic) Invalid
Adjust AX before division to
number base imm8.
Description
Adjusts two unpacked BCD digits (the least-significant digit in the AL register and the
most-significant digit in the AH register) so that a division operation performed on
the result will yield a correct unpacked BCD value. The AAD instruction is only useful
when it precedes a DIV instruction that divides (binary division) the adjusted value in
the AX register by an unpacked BCD value.
The AAD instruction sets the value in the AL register to (AL +(10 * AH)), and then
clears the AH register to 00H. The value in the AX register is then equal to the binary
equivalent of the original unpacked two-digit (base 10) number in registers AH
and AL.
The generalized version of this instruction allows adjustment of two unpacked digits
of any number base (see the “Operation” section below), by setting the imm8 byte to
the selected number base (for example, 08H for octal, 0AH for decimal, or 0CH for
base 12 numbers). The AAD mnemonic is interpreted by all assemblers to mean
adjust ASCII (base 10) values. To adjust values in another number base, the instruc-
tion must be hand coded in machine code (D5 imm8).
This instruction executes as described in compatibility mode and legacy mode. It is
not valid in 64-bit mode.
Operation
IF 64-Bit Mode
THEN
#UD;
ELSE
tempAL ←AL;
tempAH ←AH;
AL ←(tempAL +(tempAH ∗ imm8)) AND FFH;
(* imm8 is set to 0AH for the AAD mnemonic.*)
AH ←0;
FI;
The immediate value (imm8) is taken from the second byte of the instruction.
AAD—ASCII Adjust AX Before Division
Vol. 2A 3-21
INSTRUCTION SET REFERENCE, A-M
Flags Affected
The SF, ZF, and PF flags are set according to the resulting binary value in the AL
register; the OF, AF, and CF flags are undefined.
Protected Mode Exceptions
#UD
If the LOCK prefix is used.
Real-Address Mode Exceptions
Same exceptions as protected mode.
Virtual-8086 Mode Exceptions
Same exceptions as protected mode.
Compatibility Mode Exceptions
Same exceptions as protected mode.
64-Bit Mode Exceptions
#UD
If in 64-bit mode.
3-22 Vol. 2A
AAD—ASCII Adjust AX Before Division
INSTRUCTION SET REFERENCE, A-M
AAM—ASCII Adjust AX After Multiply
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
D4 0A
AAM
Invalid
Invalid
Valid
Valid
ASCII adjust AX after multiply.
D4 ib
(No mnemonic)
Adjust AX after multiply to number
base imm8.
Description
Adjusts the result of the multiplication of two unpacked BCD values to create a pair
of unpacked (base 10) BCD values. The AX register is the implied source and desti-
nation operand for this instruction. The AAM instruction is only useful when it follows
an MUL instruction that multiplies (binary multiplication) two unpacked BCD values
and stores a word result in the AX register. The AAM instruction then adjusts the
contents of the AX register to contain the correct 2-digit unpacked (base 10) BCD
result.
The generalized version of this instruction allows adjustment of the contents of the
AX to create two unpacked digits of any number base (see the “Operation” section
below). Here, the imm8 byte is set to the selected number base (for example, 08H
for octal, 0AH for decimal, or 0CH for base 12 numbers). The AAM mnemonic is inter-
preted by all assemblers to mean adjust to ASCII (base 10) values. To adjust to
values in another number base, the instruction must be hand coded in machine code
(D4 imm8).
This instruction executes as described in compatibility mode and legacy mode. It is
not valid in 64-bit mode.
Operation
IF 64-Bit Mode
THEN
#UD;
ELSE
tempAL ←AL;
AH ←tempAL / imm8; (* imm8 is set to 0AH for the AAM mnemonic *)
AL ←tempAL MOD imm8;
FI;
The immediate value (imm8) is taken from the second byte of the instruction.
Flags Affected
The SF, ZF, and PF flags are set according to the resulting binary value in the AL
register. The OF, AF, and CF flags are undefined.
AAM—ASCII Adjust AX After Multiply
Vol. 2A 3-23
INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#DE
#UD
If an immediate value of 0 is used.
If the LOCK prefix is used.
Real-Address Mode Exceptions
Same exceptions as protected mode.
Virtual-8086 Mode Exceptions
Same exceptions as protected mode.
Compatibility Mode Exceptions
Same exceptions as protected mode.
64-Bit Mode Exceptions
#UD
If in 64-bit mode.
3-24 Vol. 2A
AAM—ASCII Adjust AX After Multiply
INSTRUCTION SET REFERENCE, A-M
AAS—ASCII Adjust AL After Subtraction
Opcode
Instruction
64-Bit
Mode
Compat/
Description
ASCII adjust AL after subtraction.
Leg Mode
3F
AAS
Invalid
Valid
Description
Adjusts the result of the subtraction of two unpacked BCD values to create a
unpacked BCD result. The AL register is the implied source and destination operand
for this instruction. The AAS instruction is only useful when it follows a SUB instruc-
tion that subtracts (binary subtraction) one unpacked BCD value from another and
stores a byte result in the AL register. The AAA instruction then adjusts the contents
of the AL register to contain the correct 1-digit unpacked BCD result.
If the subtraction produced a decimal carry, the AH register decrements by 1, and the
CF and AF flags are set. If no decimal carry occurred, the CF and AF flags are cleared,
and the AH register is unchanged. In either case, the AL register is left with its top
nibble set to 0.
This instruction executes as described in compatibility mode and legacy mode. It is
not valid in 64-bit mode.
Operation
IF 64-bit mode
THEN
#UD;
ELSE
IF ((AL AND 0FH) >9) or (AF = 1)
THEN
AL ←AL – 6;
AH ←AH – 1;
AF ←1;
CF ←1;
AL ←AL AND 0FH;
ELSE
CF ←0;
AF ←0;
AL ←AL AND 0FH;
FI;
FI;
Flags Affected
The AF and CF flags are set to 1 if there is a decimal borrow; otherwise, they are
cleared to 0. The OF, SF, ZF, and PF flags are undefined.
AAS—ASCII Adjust AL After Subtraction
Vol. 2A 3-25
INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#UD
If the LOCK prefix is used.
Real-Address Mode Exceptions
Same exceptions as protected mode.
Virtual-8086 Mode Exceptions
Same exceptions as protected mode.
Compatibility Mode Exceptions
Same exceptions as protected mode.
64-Bit Mode Exceptions
#UD
If in 64-bit mode.
3-26 Vol. 2A
AAS—ASCII Adjust AL After Subtraction
INSTRUCTION SET REFERENCE, A-M
ADC—Add with Carry
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
14 ib
15 iw
15 id
ADC AL, imm8 Valid
ADC AX, imm16 Valid
Valid
Valid
Valid
Add with carry imm8 to AL.
Add with carry imm16 to AX.
Add with carry imm32 to EAX.
ADC EAX,
imm32
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
REX.W + 15 id
80 /2 ib
ADC RAX,
imm32
N.E.
Add with carry imm32 sign
extended to 64-bits to RAX.
ADC r/m8,
imm8
Valid
N.E.
Add with carry imm8 to r/m8.
Add with carry imm8 to r/m8.
Add with carry imm16 to r/m16.
Add with CF imm32 to r/m32.
*
REX + 80 /2 ib
81 /2 iw
ADC r/m8 ,
imm8
ADC r/m16,
imm16
Valid
Valid
N.E.
81 /2 id
ADC r/m32,
imm32
REX.W + 81 /2 id ADC r/m64,
Add with CF imm32 sign
extended to 64-bits to r/m64.
imm32
83 /2 ib
ADC r/m16,
imm8
Valid
Valid
N.E.
Add with CF sign-extended
imm8 to r/m16.
83 /2 ib
ADC r/m32,
imm8
Add with CF sign-extended
imm8 into r/m32.
REX.W + 83 /2 ib ADC r/m64,
Add with CF sign-extended
imm8 into r/m64.
imm8
10 /r
ADC r/m8, r8
Valid
N.E.
Add with carry byte register to
r/m8.
*
*
REX + 10 /r
ADC r/m8 , r8 Valid
Add with carry byte register to
r/m64.
11 /r
ADC r/m16, r16 Valid
ADC r/m32, r32 Valid
ADC r/m64, r64 Valid
Valid
Valid
N.E.
Add with carry r16 to r/m16.
Add with CF r32 to r/m32.
Add with CF r64 to r/m64.
11 /r
REX.W + 11 /r
12 /r
ADC r8, r/m8
Valid
Valid
Add with carry r/m8 to byte
register.
*
*
REX + 12 /r
ADC r8 , r/m8 Valid
N.E.
Add with carry r/m64 to byte
register.
13 /r
ADC r16, r/m16 Valid
Valid
Add with carry r/m16 to r16.
ADC—Add with Carry
Vol. 2A 3-27
INSTRUCTION SET REFERENCE, A-M
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
13 /r
ADC r32, r/m32 Valid
Valid
N.E.
Add with CF r/m32 to r32.
REX.W + 13 /r
NOTES:
ADC r64, r/m64 Valid
Add with CF r/m64 to r64.
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.
Description
Adds the destination operand (first operand), the source operand (second operand),
and the carry (CF) flag and stores the result in the destination operand. The destina-
tion operand can be a register or a memory location; the source operand can be an
immediate, a register, or a memory location. (However, two memory operands
cannot be used in one instruction.) The state of the CF flag represents a carry from a
previous addition. When an immediate value is used as an operand, it is sign-
extended to the length of the destination operand format.
The ADC instruction does not distinguish between signed or unsigned operands.
Instead, the processor evaluates the result for both data types and sets the OF and
CF flags to indicate a carry in the signed or unsigned result, respectively. The SF flag
indicates the sign of the signed result.
The ADC instruction is usually executed as part of a multibyte or multiword addition
in which an ADD instruction is followed by an ADC instruction.
This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.
In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.
Operation
DEST ←DEST +SRC +CF;
Flags Affected
The OF, SF, ZF, AF, CF, and PF flags are set according to the result.
Protected Mode Exceptions
#GP(0)
If the destination is located in a non-writable segment.
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
3-28 Vol. 2A
ADC—Add with Carry
INSTRUCTION SET REFERENCE, A-M
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used but the destination is not a memory
operand.
Real-Address Mode Exceptions
#GP
#SS
#UD
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If a memory operand effective address is outside the SS
segment limit.
If the LOCK prefix is used but the destination is not a memory
operand.
Virtual-8086 Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made.
#UD
If the LOCK prefix is used but the destination is not a memory
operand.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used but the destination is not a memory
operand.
ADC—Add with Carry
Vol. 2A 3-29
INSTRUCTION SET REFERENCE, A-M
ADD—Add
Opcode
Instruction
64-Bit Mode Compat/
Leg Mode
Description
04 ib
ADD AL, imm8
Valid
Valid
Valid
Valid
Valid
Valid
Valid
N.E.
Add imm8 to AL.
Add imm16 to AX.
Add imm32 to EAX.
05 iw
ADD AX, imm16
ADD EAX, imm32
ADD RAX, imm32
05 id
REX.W + 05 id
Add imm32 sign-
extended to 64-bits
to RAX.
80 /0 ib
ADD r/m8, imm8
Valid
Valid
Valid
N.E.
Add imm8 to r/m8.
*
REX + 80 /0 ib
ADD r/m8 , imm8
Add sign-extended
imm8 to r/m64.
81 /0 iw
ADD r/m16, imm16 Valid
ADD r/m32, imm32 Valid
ADD r/m64, imm32 Valid
Valid
Valid
N.E.
Add imm16 to r/m16.
81 /0 id
Add imm32 to r/m32.
REX.W + 81 /0 id
Add imm32 sign-
extended to 64-bits
to r/m64.
83 /0 ib
ADD r/m16, imm8
ADD r/m32, imm8
ADD r/m64, imm8
ADD r/m8, r8
Valid
Valid
Valid
Valid
Valid
N.E.
Add sign-extended
imm8 to r/m16.
83 /0 ib
Add sign-extended
imm8 to r/m32.
REX.W + 83 /0 ib
Add sign-extended
imm8 to r/m64.
00 /r
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
N.E.
Add r8 to r/m8.
*
*
REX + 00 /r
01 /r
ADD r/m8 , r8
Add r8 to r/m8.
ADD r/m16, r16
ADD r/m32, r32
ADD r/m64, r64
ADD r8, r/m8
Valid
Valid
N.E.
Add r16 to r/m16.
Add r32 to r/m32.
Add r64 to r/m64.
Add r/m8 to r8.
01 /r
REX.W + 01 /r
02 /r
Valid
N.E.
*
*
REX + 02 /r
03 /r
ADD r8 , r/m8
Add r/m8 to r8.
ADD r16, r/m16
ADD r32, r/m32
ADD r64, r/m64
Valid
Valid
N.E.
Add r/m16 to r16.
Add r/m32 to r32.
Add r/m64 to r64.
03 /r
REX.W + 03 /r
NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.
3-30 Vol. 2A
ADD—Add
INSTRUCTION SET REFERENCE, A-M
Description
Adds the destination operand (first operand) and the source operand (second
operand) and then stores the result in the destination operand. The destination
operand can be a register or a memory location; the source operand can be an imme-
diate, a register, or a memory location. (However, two memory operands cannot be
used in one instruction.) When an immediate value is used as an operand, it is sign-
extended to the length of the destination operand format.
The ADD instruction performs integer addition. It evaluates the result for both signed
and unsigned integer operands and sets the OF and CF flags to indicate a carry (over-
flow) in the signed or unsigned result, respectively. The SF flag indicates the sign of
the signed result.
This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.
In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX a
REX prefix in the form of REX.W promotes operation to 64 bits. See the summary
chart at the beginning of this section for encoding data and limits.
Operation
DEST ←DEST +SRC;
Flags Affected
The OF, SF, ZF, AF, CF, and PF flags are set according to the result.
Protected Mode Exceptions
#GP(0)
If the destination is located in a non-writable segment.
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used but the destination is not a memory
operand.
Real-Address Mode Exceptions
#GP
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
ADD—Add
Vol. 2A 3-31
INSTRUCTION SET REFERENCE, A-M
#SS
#UD
If a memory operand effective address is outside the SS
segment limit.
If the LOCK prefix is used but the destination is not a memory
operand.
Virtual-8086 Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made.
#UD
If the LOCK prefix is used but the destination is not a memory
operand.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used but the destination is not a memory
operand.
3-32 Vol. 2A
ADD—Add
INSTRUCTION SET REFERENCE, A-M
ADDPD—Add Packed Double-Precision Floating-Point Values
Opcode
Instruction
64-Bit Compat/
Description
Mode
Leg Mode
66 0F 58 /r ADDPD xmm1,
Valid
Valid
Add packed double-precision floating-
point values from xmm2/m128 to
xmm1.
xmm2/m128
Description
Performs a SIMD add of the two packed double-precision floating-point values from
the source operand (second operand) and the destination operand (first operand),
and stores the packed double-precision floating-point results in the destination
operand.
The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. See Chapter 11 in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1, for an overview of SIMD double-
precision floating-point operation.
In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
Operation
DEST[63:0] ←DEST[63:0] +SRC[63:0];
DEST[127:64] ←DEST[127:64] +SRC[127:64];
Intel C/C++Compiler Intrinsic Equivalent
ADDPD
__m128d _mm_add_pd (m128d a, m128d b)
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#SS(0)
For an illegal address in the SS segment.
For a page fault.
#PF(fault-code)
#NM
If CRO.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
ADDPD—Add Packed Double-Precision Floating-Point Values
Vol. 2A 3-33
INSTRUCTION SET REFERENCE, A-M
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CRO.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP(0)
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#XM
If CR0.TS[bit 3] = 1.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
For a page fault.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#PF(fault-code)
#NM
For a page fault.
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
3-34 Vol. 2A
ADDPD—Add Packed Double-Precision Floating-Point Values
INSTRUCTION SET REFERENCE, A-M
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
ADDPD—Add Packed Double-Precision Floating-Point Values
Vol. 2A 3-35
INSTRUCTION SET REFERENCE, A-M
ADDPS—Add Packed Single-Precision Floating-Point Values
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
0F 58 /r
ADDPS xmm1, xmm2/m128 Valid
Valid
Add packed single-precision
floating-point values from
xmm2/m128 to xmm1.
Description
Performs a SIMD add of the four packed single-precision floating-point values from
the source operand (second operand) and the destination operand (first operand),
and stores the packed single-precision floating-point results in the destination
operand.
The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. See Chapter 10 in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1, for an overview of SIMD single-
precision floating-point operation.
In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
Operation
DEST[31:0] ←DEST[31:0] +SRC[31:0];
DEST[63:32] ←DEST[63:32] +SRC[63:32];
DEST[95:64] ←DEST[95:64] +SRC[95:64];
DEST[127:96] ←DEST[127:96] +SRC[127:96];
Intel C/C++Compiler Intrinsic Equivalent
ADDPS
__m128 _mm_add_ps(__m128 a, __m128 b)
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#SS(0)
For an illegal address in the SS segment.
For a page fault.
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
3-36 Vol. 2A
ADDPS—Add Packed Single-Precision Floating-Point Values
INSTRUCTION SET REFERENCE, A-M
#XM
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP(0)
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#XM
If CR0.TS[bit 3] = 1.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
For a page fault.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#PF(fault-code)
#NM
For a page fault.
If CR0.TS[bit 3] = 1.
ADDPS—Add Packed Single-Precision Floating-Point Values
Vol. 2A 3-37
INSTRUCTION SET REFERENCE, A-M
#XM
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
3-38 Vol. 2A
ADDPS—Add Packed Single-Precision Floating-Point Values
INSTRUCTION SET REFERENCE, A-M
ADDSD—Add Scalar Double-Precision Floating-Point Values
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
F2 0F 58 /r ADDSD xmm1, xmm2/m64 Valid
Valid
Add the low double-
precision floating-point
value from xmm2/m64 to
xmm1.
Description
Adds the low double-precision floating-point values from the source operand (second
operand) and the destination operand (first operand), and stores the double-preci-
sion floating-point result in the destination operand.
The source operand can be an XMM register or a 64-bit memory location. The desti-
nation operand is an XMM register. The high quadword of the destination operand
remains unchanged. See Chapter 11 in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1, for an overview of a scalar double-precision
floating-point operation.
In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
Operation
DEST[63:0] ←DEST[63:0] +SRC[63:0];
(* DEST[127:64] unchanged *)
Intel C/C++Compiler Intrinsic Equivalent
ADDSD
__m128d _mm_add_sd (m128d a, m128d b)
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
For an illegal address in the SS segment.
For a page fault.
#SS(0)
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
ADDSD—Add Scalar Double-Precision Floating-Point Values
Vol. 2A 3-39
INSTRUCTION SET REFERENCE, A-M
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
Real-Address Mode Exceptions
GP(0)
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#XM
If CR0.TS[bit 3] = 1.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
#AC(0)
For a page fault.
If alignment checking is enabled and an unaligned memory
reference is made.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#PF(fault-code)
#NM
If the memory address is in a non-canonical form.
For a page fault.
If CRO.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
3-40 Vol. 2A
ADDSD—Add Scalar Double-Precision Floating-Point Values
INSTRUCTION SET REFERENCE, A-M
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
ADDSD—Add Scalar Double-Precision Floating-Point Values
Vol. 2A 3-41
INSTRUCTION SET REFERENCE, A-M
ADDSS—Add Scalar Single-Precision Floating-Point Values
Opcode
Instruction
64-Bit Compat/
Description
Mode
Leg Mode
F3 0F 58 /r
ADDSS xmm1, xmm2/m32 Valid
Valid
Add the low single-
precision floating-point
value from xmm2/m32 to
xmm1.
Description
Adds the low single-precision floating-point values from the source operand (second
operand) and the destination operand (first operand), and stores the single-precision
floating-point result in the destination operand.
The source operand can be an XMM register or a 32-bit memory location. The desti-
nation operand is an XMM register. The three high-order doublewords of the destina-
tion operand remain unchanged. See Chapter 10 in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1, for an overview of a scalar
single-precision floating-point operation.
In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
Operation
DEST[31:0] ←DEST[31:0] +SRC[31:0];
(* DEST[127:32] unchanged *)
Intel C/C++Compiler Intrinsic Equivalent
ADDSS
__m128 _mm_add_ss(__m128 a, __m128 b)
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
For an illegal address in the SS segment.
For a page fault.
#SS(0)
#PF(fault-code)
#NM
If CRO.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
3-42 Vol. 2A
ADDSS—Add Scalar Single-Precision Floating-Point Values
INSTRUCTION SET REFERENCE, A-M
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
Real-Address Mode Exceptions
GP(0)
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#XM
If CRO.TS[bit 3] = 1.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
#AC(0)
For a page fault.
If alignment checking is enabled and an unaligned memory
reference is made.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#PF(fault-code)
#NM
If the memory address is in a non-canonical form.
For a page fault.
If CRO.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
ADDSS—Add Scalar Single-Precision Floating-Point Values
Vol. 2A 3-43
INSTRUCTION SET REFERENCE, A-M
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
3-44 Vol. 2A
ADDSS—Add Scalar Single-Precision Floating-Point Values
INSTRUCTION SET REFERENCE, A-M
ADDSUBPD—Packed Double-FP Add/Subtract
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
66 0F D0 /r
ADDSUBPD xmm1, xmm2/m128 Valid
Valid
Add/subtract
double-precision
floating-point values
from xmm2/m128
to xmm1.
Description
Adds the double-precision floating-point values in the high quadword of the source
and destination operands and stores the result in the high quadword of the destina-
tion operand.
Subtracts the double-precision floating-point value in the low quadword of the source
operand from the low quadword of the destination operand and stores the result in
the low quadword of the destination operand. See Figure 3-3.
The source operand can be a 128-bit memory location or an XMM register. The desti-
nation operand is an XMM register.
$''68%3'ꢄ[PPꢂꢍꢄ[PPꢅꢎPꢂꢅꢒ
>ꢂꢅꢌꢃꢐꢉ@
>ꢐꢋꢃꢁ@
[PPꢅꢎPꢂꢅꢒ
5(68/7ꢃ
[PPꢂ
[PPꢂ>ꢂꢅꢌꢃꢐꢉ@ꢄꢑꢄ[PPꢅꢎPꢂꢅꢒ>ꢂꢅꢌꢃꢐꢉ@
>ꢂꢅꢌꢃꢐꢉ@
[PPꢂ>ꢐꢋꢃꢁ@ꢄꢏꢄ[PPꢅꢎPꢂꢅꢒ>ꢐꢋꢃꢁ@
>ꢐꢋꢃꢁ@
20ꢂꢆꢊꢊꢂ
Figure 3-3. ADDSUBPD—Packed Double-FP Add/Subtract
In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
ADDSUBPD—Packed Double-FP Add/Subtract
Vol. 2A 3-45
INSTRUCTION SET REFERENCE, A-M
Operation
xmm1[63:0] = xmm1[63:0] −xmm2/m128[63:0];
xmm1[127:64] = xmm1[127:64] +xmm2/m128[127:64];
Intel C/C++Compiler Intrinsic Equivalent
ADDSUBPD
__m128d _mm_addsub_pd(__m128d a, __m128d b)
Exceptions
When the source operand is a memory operand, it must be aligned on a 16-byte
boundary or a general-protection exception (#GP) will be generated.
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#SS(0)
For an illegal address in the SS segment.
For a page fault.
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
#XM
For an unmasked Streaming SIMD Extensions numeric excep-
tion, CR4.OSXMMEXCPT[bit 10] = 1.
#UD
If CR0.EM is 1.
For an unmasked Streaming SIMD Extensions numeric excep-
tion (CR4.OSXMMEXCPT[bit 10] = 0).
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.
Real Address Mode Exceptions
GP(0)
If any part of the operand would lie outside of the effective
address space from 0 to 0FFFFH.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#NM
#XM
If TS bit in CR0 is 1.
For an unmasked Streaming SIMD Extensions numeric excep-
tion, CR4.OSXMMEXCPT[bit 10] = 1.
3-46 Vol. 2A
ADDSUBPD—Packed Double-FP Add/Subtract
INSTRUCTION SET REFERENCE, A-M
#UD
If CR0.EM[bit 2] = 1.
For an unmasked Streaming SIMD Extensions numeric excep-
tion (CR4.OSXMMEXCPT[bit 10] = 0).
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.
Virtual 8086 Mode Exceptions
GP(0)
If any part of the operand would lie outside of the effective
address space from 0 to 0FFFFH.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#NM
#XM
If CR0.TS[bit 3] = 1.
For an unmasked Streaming SIMD Extensions numeric excep-
tion, CR4.OSXMMEXCPT[bit 10] = 1.
#UD
If CR0.EM[bit 2] = 1.
For an unmasked Streaming SIMD Extensions numeric excep-
tion (CR4.OSXMMEXCPT[bit 10] = 0).
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.
For a page fault.
#PF(fault-code)
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#PF(fault-code)
#NM
For a page fault.
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
ADDSUBPD—Packed Double-FP Add/Subtract
Vol. 2A 3-47
INSTRUCTION SET REFERENCE, A-M
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.
3-48 Vol. 2A
ADDSUBPD—Packed Double-FP Add/Subtract
INSTRUCTION SET REFERENCE, A-M
ADDSUBPS—Packed Single-FP Add/Subtract
Opcode
Instruction
64-Bit Compat/
Description
Mode
Leg Mode
F2 0F D0 /r
ADDSUBPS xmm1, xmm2/m128 Valid
Valid
Add/subtract single-
precision floating-
point values from
xmm2/m128 to
xmm1.
Description
Adds odd-numbered single-precision floating-point values of the source operand
(second operand) with the corresponding single-precision floating-point values from
the destination operand (first operand); stores the result in the odd-numbered
values of the destination operand.
Subtracts the even-numbered single-precision floating-point values in the source
operand from the corresponding single-precision floating values in the destination
operand; stores the result into the even-numbered values of the destination
operand.
The source operand can be a 128-bit memory location or an XMM register. The desti-
nation operand is an XMM register. See Figure 3-4.
$''68%36ꢄ[PPꢂꢍꢄ[PPꢅꢎPꢂꢅꢒ
[PPꢅꢎ
>ꢂꢅꢌꢃꢊꢐ@
>ꢊꢆꢃꢐꢉ@
>ꢐꢋꢃꢋꢅ@
>ꢋꢂꢃꢁ@
Pꢂꢅꢒ
[PPꢂ>ꢂꢅꢌꢃꢊꢐ@ꢄꢑꢄ
[PPꢅꢎPꢂꢅꢒ>ꢂꢅꢌꢃꢊꢐ@
[PPꢂ>ꢊꢆꢃꢐꢉ@ꢄꢏꢄ[PPꢅꢎ
Pꢂꢅꢒ>ꢊꢆꢃꢐꢉ@
[PPꢂ>ꢐꢋꢃꢋꢅ@ꢄꢑꢄ
[PPꢅꢎPꢂꢅꢒ>ꢐꢋꢃꢋꢅ@
[PPꢂ>ꢋꢂꢃꢁ@ꢄꢏꢄ
[PPꢅꢎPꢂꢅꢒ>ꢋꢂꢃꢁ@
5(68/7ꢃ
[PPꢂ
>ꢂꢅꢌꢃꢊꢐ@
>ꢊꢆꢃꢐꢉ@
>ꢐꢋꢃꢋꢅ@
>ꢋꢂꢃꢁ@
20ꢂꢆꢊꢊꢅ
Figure 3-4. ADDSUBPS—Packed Single-FP Add/Subtract
In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
ADDSUBPS—Packed Single-FP Add/Subtract
Vol. 2A 3-49
INSTRUCTION SET REFERENCE, A-M
Operation
xmm1[31:0] = xmm1[31:0] −xmm2/m128[31:0];
xmm1[63:32] = xmm1[63:32] +xmm2/m128[63:32];
xmm1[95:64] = xmm1[95:64] −xmm2/m128[95:64];
xmm1[127:96] = xmm1[127:96] +xmm2/m128[127:96];
Intel C/C++Compiler Intrinsic Equivalent
ADDSUBPS
__m128 _mm_addsub_ps(__m128 a, __m128 b)
Exceptions
When the source operand is a memory operand, the operand must be aligned on a
16-byte boundary or a general-protection exception (#GP) will be generated.
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#SS(0)
For an illegal address in the SS segment.
For a page fault.
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
#XM
For an unmasked Streaming SIMD Extensions numeric excep-
tion, CR4.OSXMMEXCPT[bit 10] = 1.
#UD
If CR0.EM[bit 2] = 1.
For an unmasked Streaming SIMD Extensions numeric excep-
tion (CR4.OSXMMEXCPT[bit 10] = 0).
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.
Real Address Mode Exceptions
GP(0)
If any part of the operand would lie outside of the effective
address space from 0 to 0FFFFH.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#NM
If CR0.TS[bit 3] = 1.
3-50 Vol. 2A
ADDSUBPS—Packed Single-FP Add/Subtract
INSTRUCTION SET REFERENCE, A-M
#XM
#UD
For an unmasked Streaming SIMD Extensions numeric excep-
tion, CR4.OSXMMEXCPT[bit 10] = 1.
If CR0.EM[bit 2] = 1.
For an unmasked Streaming SIMD Extensions numeric excep-
tion (CR4.OSXMMEXCPT[bit 10] = 0).
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.
Virtual 8086 Mode Exceptions
GP(0)
If any part of the operand would lie outside of the effective
address space from 0 to 0FFFFH.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#NM
#XM
If CR0.TS[bit 3] = 1.
For an unmasked Streaming SIMD Extensions numeric excep-
tion, CR4.OSXMMEXCPT[bit 10] = 1.
#UD
If CR0.EM[bit 2] = 1.
For an unmasked Streaming SIMD Extensions numeric excep-
tion (CR4.OSXMMEXCPT[bit 10] = 0).
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#PF(fault-code)
#NM
For a page fault.
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
ADDSUBPS—Packed Single-FP Add/Subtract
Vol. 2A 3-51
INSTRUCTION SET REFERENCE, A-M
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.
3-52 Vol. 2A
ADDSUBPS—Packed Single-FP Add/Subtract
INSTRUCTION SET REFERENCE, A-M
AND—Logical AND
Opcode
Instruction
64-Bit
Mode
Comp/Leg Description
Mode
Valid
Valid
Valid
N.E.
24 ib
25 iw
25 id
AND AL, imm8
Valid
Valid
Valid
Valid
AL AND imm8.
AND AX, imm16
AND EAX, imm32
AX AND imm16.
EAX AND imm32.
REX.W + 25 id AND RAX, imm32
RAX AND imm32 sign-
extended to 64-bits.
80 /4 ib
AND r/m8, imm8
Valid
Valid
Valid
N.E.
r/m8 AND imm8.
*
REX + 80 /4 ib AND r/m8 , imm8
r/m64 AND imm8 (sign-
extended).
81 /4 iw
AND r/m16, imm16 Valid
AND r/m32, imm32 Valid
Valid
Valid
N.E.
r/m16 AND imm16.
81 /4 id
r/m32 AND imm32.
REX.W + 81 /4 AND r/m64, imm32 Valid
r/m64 AND imm32 sign
id
extended to 64-bits.
83 /4 ib
AND r/m16, imm8
Valid
Valid
Valid
Valid
Valid
N.E.
r/m16 AND imm8 (sign-
extended).
83 /4 ib
AND r/m32, imm8
r/m32 AND imm8 (sign-
extended).
REX.W + 83 /4 AND r/m64, imm8
r/m64 AND imm8 (sign-
ib
extended).
20 /r
AND r/m8, r8
Valid
Valid
Valid
N.E.
r/m8 AND r8.
*
*
REX + 20 /r
AND r/m8 , r8
r/m64 AND r8 (sign-
extended).
21 /r
AND r/m16, r16
Valid
Valid
Valid
Valid
Valid
Valid
Valid
N.E.
r/m16 AND r16.
r/m32 AND r32.
r/m64 AND r32.
r8 AND r/m8.
21 /r
AND r/m32, r32
REX.W + 21 /r AND r/m64, r64
22 /r
AND r8, r/m8
Valid
N.E.
*
*
REX + 22 /r
AND r8 , r/m8
r/m64 AND r8 (sign-
extended).
23 /r
AND r16, r/m16
Valid
Valid
Valid
Valid
Valid
N.E.
r16 AND r/m16.
r32 AND r/m32.
r64 AND r/m64.
23 /r
AND r32, r/m32
REX.W + 23 /r AND r64, r/m64
NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.
AND—Logical AND
Vol. 2A 3-53
INSTRUCTION SET REFERENCE, A-M
Description
Performs a bitwise AND operation on the destination (first) and source (second)
operands and stores the result in the destination operand location. The source
operand can be an immediate, a register, or a memory location; the destination
operand can be a register or a memory location. (However, two memory operands
cannot be used in one instruction.) Each bit of the result is set to 1 if both corre-
sponding bits of the first and second operands are 1; otherwise, it is set to 0.
This instruction can be used with a LOCK prefix to allow the it to be executed atomi-
cally.
In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.
Operation
DEST ←DEST AND SRC;
Flags Affected
The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the
result. The state of the AF flag is undefined.
Protected Mode Exceptions
#GP(0)
#SS(0)
If the destination operand points to a non-writable segment.
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used but the destination is not a memory
operand.
Real-Address Mode Exceptions
#GP
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS
If a memory operand effective address is outside the SS
segment limit.
3-54 Vol. 2A
AND—Logical AND
INSTRUCTION SET REFERENCE, A-M
#UD
If the LOCK prefix is used but the destination is not a memory
operand.
Virtual-8086 Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made.
#UD
If the LOCK prefix is used but the destination is not a memory
operand.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used but the destination is not a memory
operand.
AND—Logical AND
Vol. 2A 3-55
INSTRUCTION SET REFERENCE, A-M
ANDPD—Bitwise Logical AND of Packed Double-Precision Floating-
Point Values
Opcode
Instruction
64-Bit Compat/
Description
Mode
Leg Mode
66 0F 54 /r ANDPD xmm1,
Valid
Valid
Bitwise logical AND of xmm2/m128 and
xmm1.
xmm2/m128
Description
Performs a bitwise logical AND of the two packed double-precision floating-point
values from the source operand (second operand) and the destination operand (first
operand), and stores the result in the destination operand.
The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register.
In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
Operation
DEST[127:0] ←DEST[127:0] BitwiseAND SRC[127:0];
Intel C/C++Compiler Intrinsic Equivalent
ANDPD
__m128d _mm_and_pd(__m128d a, __m128d b)
SIMD Floating-Point Exceptions
None.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#SS(0)
For an illegal address in the SS segment.
For a page fault.
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
#UD
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
3-56 Vol. 2A
ANDPD—Bitwise Logical AND of Packed Double-Precision Floating-Point Values
INSTRUCTION SET REFERENCE, A-M
Real-Address Mode Exceptions
#GP(0)
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#UD
If CR0.TS[bit 3] = 1.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
For a page fault.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#PF(fault-code)
#NM
For a page fault.
If CR0.TS[bit 3] = 1.
#UD
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
ANDPD—Bitwise Logical AND of Packed Double-Precision Floating-Point Values
Vol. 2A 3-57
INSTRUCTION SET REFERENCE, A-M
ANDPS—Bitwise Logical AND of Packed Single-Precision Floating-Point
Values
Opcode
Instruction
64-Bit Compat/
Description
Mode
Leg Mode
0F 54 /r ANDPS xmm1, xmm2/m128 Valid
Valid
Bitwise logical AND of
xmm2/m128 and xmm1.
Description
Performs a bitwise logical AND of the four packed single-precision floating-point
values from the source operand (second operand) and the destination operand (first
operand), and stores the result in the destination operand.
The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register.
In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
Operation
DEST[127:0] ←DEST[127:0] BitwiseAND SRC[127:0];
Intel C/C++Compiler Intrinsic Equivalent
ANDPS
__m128 _mm_and_ps(__m128 a, __m128 b)
SIMD Floating-Point Exceptions
None.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#SS(0)
For an illegal address in the SS segment.
For a page fault.
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
#UD
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
3-58 Vol. 2A
ANDPS—Bitwise Logical AND of Packed Single-Precision Floating-Point Values
INSTRUCTION SET REFERENCE, A-M
Real-Address Mode Exceptions
#GP(0)
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#UD
If CR0.TS[bit 3] = 1.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
For a page fault.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#PF(fault-code)
#NM
For a page fault.
If CR0.TS[bit 3] = 1.
#UD
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
ANDPS—Bitwise Logical AND of Packed Single-Precision Floating-Point Values
Vol. 2A 3-59
INSTRUCTION SET REFERENCE, A-M
ANDNPD—Bitwise Logical AND NOT of Packed Double-Precision
Floating-Point Values
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
66 0F 55 /r
ANDNPD xmm1, xmm2/m128
Valid
Valid
Bitwise logical AND
NOT of xmm2/m128
and xmm1.
Description
Inverts the bits of the two packed double-precision floating-point values in the desti-
nation operand (first operand), performs a bitwise logical AND of the two packed
double-precision floating-point values in the source operand (second operand) and
the temporary inverted result, and stores the result in the destination operand.
The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register.
In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
Operation
DEST[127:0] ←(NOT(DEST[127:0])) BitwiseAND (SRC[127:0]);
Intel C/C++Compiler Intrinsic Equivalent
ANDNPD __m128d _mm_andnot_pd(__m128d a, __m128d b)
SIMD Floating-Point Exceptions
None.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#SS(0)
For an illegal address in the SS segment.
For a page fault.
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
3-60 Vol. 2A
ANDNPD—Bitwise Logical AND NOT of Packed Double-Precision Floating-Point Values
INSTRUCTION SET REFERENCE, A-M
#UD
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP(0)
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#UD
If CR0.TS[bit 3] = 1.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
For a page fault.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#PF(fault-code)
#NM
For a page fault.
If CR0.TS[bit 3] = 1.
#UD
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
ANDNPD—Bitwise Logical AND NOT of Packed Double-Precision Floating-Point Values
Vol. 2A 3-61
INSTRUCTION SET REFERENCE, A-M
ANDNPS—Bitwise Logical AND NOT of Packed Single-Precision
Floating-Point Values
Opcode
Instruction
64-Bit Compat/
Description
Mode
Leg Mode
0F 55 /r
ANDNPS xmm1, xmm2/m128 Valid
Valid
Bitwise logical AND NOT of
xmm2/m128 and xmm1.
Description
Inverts the bits of the four packed single-precision floating-point values in the desti-
nation operand (first operand), performs a bitwise logical AND of the four packed
single-precision floating-point values in the source operand (second operand) and
the temporary inverted result, and stores the result in the destination operand.
The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register.
In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
Operation
DEST[127:0] ←(NOT(DEST[127:0])) BitwiseAND (SRC[127:0]);
Intel C/C++Compiler Intrinsic Equivalent
ANDNPS __m128 _mm_andnot_ps(__m128 a, __m128 b)
SIMD Floating-Point Exceptions
None.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#SS(0)
For an illegal address in the SS segment.
For a page fault.
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
#UD
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
3-62 Vol. 2A
ANDNPS—Bitwise Logical AND NOT of Packed Single-Precision Floating-Point Values
INSTRUCTION SET REFERENCE, A-M
Real-Address Mode Exceptions
#GP(0)
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#UD
If CR0.TS[bit 3] = 1.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
For a page fault.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#PF(fault-code)
#NM
For a page fault.
If CR0.TS[bit 3] = 1.
#UD
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
ANDNPS—Bitwise Logical AND NOT of Packed Single-Precision Floating-Point Values
Vol. 2A 3-63
INSTRUCTION SET REFERENCE, A-M
ARPL—Adjust RPL Field of Segment Selector
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
63 /r
ARPL r/m16, r16
N. E.
Valid
Adjust RPL of r/m16 to not less
than RPL of r16.
Description
Compares the RPL fields of two segment selectors. The first operand (the destination
operand) contains one segment selector and the second operand (source operand)
contains the other. (The RPL field is located in bits 0 and 1 of each operand.) If the
RPL field of the destination operand is less than the RPL field of the source operand,
the ZF flag is set and the RPL field of the destination operand is increased to match
that of the source operand. Otherwise, the ZF flag is cleared and no change is made
to the destination operand. (The destination operand can be a word register or a
memory location; the source operand must be a word register.)
The ARPL instruction is provided for use by operating-system procedures (however, it
can also be used by applications). It is generally used to adjust the RPL of a segment
selector that has been passed to the operating system by an application program to
match the privilege level of the application program. Here the segment selector
passed to the operating system is placed in the destination operand and segment
selector for the application program’s code segment is placed in the source operand.
(The RPL field in the source operand represents the privilege level of the application
program.) Execution of the ARPL instruction then insures that the RPL of the segment
selector received by the operating system is no lower (does not have a higher privi-
lege) than the privilege level of the application program (the segment selector for the
application program’s code segment can be read from the stack following a proce-
dure call).
This instruction executes as described in compatibility mode and legacy mode. It is
not encodable in 64-bit mode.
See “Checking Caller Access Privileges” in Chapter 3, “Protected-Mode Memory
Management,” of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A, for more information about the use of this instruction.
Operation
IF 64-BIT MODE
THEN
See MOVSXD;
ELSE
IF DEST[RPL) < SRC[RPL)
THEN
ZF ←1;
DEST[RPL) ←SRC[RPL);
3-64 Vol. 2A
ARPL—Adjust RPL Field of Segment Selector
INSTRUCTION SET REFERENCE, A-M
ELSE
ZF ←0;
FI;
FI;
Flags Affected
The ZF flag is set to 1 if the RPL field of the destination operand is less than that of
the source operand; otherwise, it is set to 0.
Protected Mode Exceptions
#GP(0)
If the destination is located in a non-writable segment.
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
Real-Address Mode Exceptions
#UD The ARPL instruction is not recognized in real-address mode.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
#UD The ARPL instruction is not recognized in virtual-8086 mode.
If the LOCK prefix is used.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
Not applicable.
ARPL—Adjust RPL Field of Segment Selector
Vol. 2A 3-65
INSTRUCTION SET REFERENCE, A-M
BOUND—Check Array Index Against Bounds
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
62 /r
BOUND r16, m16&16
Invalid
Invalid
Valid
Valid
Check if r16 (array index) is
within bounds specified by
m16&16.
62 /r
BOUND r32, m32&32
Check if r32 (array index) is
within bounds specified by
m16&16.
Description
BOUND determines if the first operand (array index) is within the bounds of an array
specified the second operand (bounds operand). The array index is a signed integer
located in a register. The bounds operand is a memory location that contains a pair of
signed doubleword-integers (when the operand-size attribute is 32) or a pair of
signed word-integers (when the operand-size attribute is 16). The first doubleword
(or word) is the lower bound of the array and the second doubleword (or word) is the
upper bound of the array. The array index must be greater than or equal to the lower
bound and less than or equal to the upper bound plus the operand size in bytes. If the
index is not within bounds, a BOUND range exceeded exception (#BR) is signaled.
When this exception is generated, the saved return instruction pointer points to the
BOUND instruction.
The bounds limit data structure (two words or doublewords containing the lower and
upper limits of the array) is usually placed just before the array itself, making the
limits addressable via a constant offset from the beginning of the array. Because the
address of the array already will be present in a register, this practice avoids extra
bus cycles to obtain the effective address of the array bounds.
This instruction executes as described in compatibility mode and legacy mode. It is
not valid in 64-bit mode.
Operation
IF 64bit Mode
THEN
#UD;
ELSE
IF (ArrayIndex < LowerBound OR ArrayIndex >UpperBound)
(* Below lower bound or above upper bound *)
THEN #BR; FI;
FI;
3-66 Vol. 2A
BOUND—Check Array Index Against Bounds
INSTRUCTION SET REFERENCE, A-M
Flags Affected
None.
Protected Mode Exceptions
#BR
#UD
If the bounds test fails.
If second operand is not a memory location.
If the LOCK prefix is used.
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
Real-Address Mode Exceptions
#BR
#UD
If the bounds test fails.
If second operand is not a memory location.
If the LOCK prefix is used.
#GP
#SS
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If a memory operand effective address is outside the SS
segment limit.
Virtual-8086 Mode Exceptions
#BR
#UD
If the bounds test fails.
If second operand is not a memory location.
If the LOCK prefix is used.
#GP(0)
#SS(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made.
BOUND—Check Array Index Against Bounds
Vol. 2A 3-67
INSTRUCTION SET REFERENCE, A-M
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#UD
If in 64-bit mode.
3-68 Vol. 2A
BOUND—Check Array Index Against Bounds
INSTRUCTION SET REFERENCE, A-M
BSF—Bit Scan Forward
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
0F BC /r
BSF r16, r/m16
BSF r32, r/m32
BSF r64, r/m64
Valid
Valid
Valid
Valid
Valid
N.E.
Bit scan forward on r/m16.
Bit scan forward on r/m32.
Bit scan forward on r/m64.
0F BC /r
REX.W + 0F BC
Description
Searches the source operand (second operand) for the least significant set bit (1 bit).
If a least significant 1 bit is found, its bit index is stored in the destination operand
(first operand). The source operand can be a register or a memory location; the
destination operand is a register. The bit index is an unsigned offset from bit 0 of the
source operand. If the content of the source operand is 0, the content of the destina-
tion operand is undefined.
In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.
Operation
IF SRC = 0
THEN
ZF ←1;
DEST is undefined;
ELSE
ZF ←0;
temp ←0;
WHILE Bit(SRC, temp) = 0
DO
temp ←temp +1;
DEST ←temp;
OD;
FI;
Flags Affected
The ZF flag is set to 1 if all the source operand is 0; otherwise, the ZF flag is cleared.
The CF, OF, SF, AF, and PF, flags are undefined.
BSF—Bit Scan Forward
Vol. 2A 3-69
INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP
#SS
#UD
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If a memory operand effective address is outside the SS
segment limit.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made.
#UD
If the LOCK prefix is used.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
3-70 Vol. 2A
BSF—Bit Scan Forward
INSTRUCTION SET REFERENCE, A-M
BSR—Bit Scan Reverse
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
0F BD /r
BSR r16, r/m16
BSR r32, r/m32
BSR r64, r/m64
Valid
Valid
Valid
Valid
Valid
N.E.
Bit scan reverse on r/m16.
Bit scan reverse on r/m32.
Bit scan reverse on r/m64.
0F BD /r
REX.W + 0F BD
Description
Searches the source operand (second operand) for the most significant set bit (1 bit).
If a most significant 1 bit is found, its bit index is stored in the destination operand
(first operand). The source operand can be a register or a memory location; the
destination operand is a register. The bit index is an unsigned offset from bit 0 of the
source operand. If the content source operand is 0, the content of the destination
operand is undefined.
In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.
Operation
IF SRC = 0
THEN
ZF ←1;
DEST is undefined;
ELSE
ZF ←0;
temp ←OperandSize – 1;
WHILE Bit(SRC, temp) = 0
DO
temp ←temp −1;
DEST ←temp;
OD;
FI;
Flags Affected
The ZF flag is set to 1 if all the source operand is 0; otherwise, the ZF flag is cleared.
The CF, OF, SF, AF, and PF, flags are undefined.
BSR—Bit Scan Reverse
Vol. 2A 3-71
INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP
#SS
#UD
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If a memory operand effective address is outside the SS
segment limit.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made.
#UD
If the LOCK prefix is used.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
3-72 Vol. 2A
BSR—Bit Scan Reverse
INSTRUCTION SET REFERENCE, A-M
BSWAP—Byte Swap
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
0F C8+rd
BSWAP r32
Valid*
Valid
N.E.
Reverses the byte order of a 32-
bit register.
REX.W + 0F
C8+rd
BSWAP r64
Valid
Reverses the byte order of a 64-
bit register.
NOTES:
* See IA-32 Architecture Compatibility section below.
Description
Reverses the byte order of a 32-bit or 64-bit (destination) register. This instruction is
provided for converting little-endian values to big-endian format and vice versa. To
swap bytes in a word value (16-bit register), use the XCHG instruction. When the
BSWAP instruction references a 16-bit register, the result is undefined.
In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.
IA-32 Architecture Legacy Compatibility
The BSWAP instruction is not supported on IA-32 processors earlier than the
Intel486™ processor family. For compatibility with this instruction, software
should include functionally equivalent code for execution on Intel processors earlier
than the Intel486 processor family.
Operation
TEMP ←DEST
IF 64-bit mode AND OperandSize = 64
THEN
DEST[7:0] ←TEMP[63:56];
DEST[15:8] ←TEMP[55:48];
DEST[23:16] ←TEMP[47:40];
DEST[31:24] ←TEMP[39:32];
DEST[39:32] ←TEMP[31:24];
DEST[47:40] ←TEMP[23:16];
DEST[55:48] ←TEMP[15:8];
DEST[63:56] ←TEMP[7:0];
ELSE
DEST[7:0] ←TEMP[31:24];
BSWAP—Byte Swap
Vol. 2A 3-73
INSTRUCTION SET REFERENCE, A-M
DEST[15:8] ←TEMP[23:16];
DEST[23:16] ←TEMP[15:8];
DEST[31:24] ←TEMP[7:0];
FI;
Flags Affected
None.
Exceptions (All Operating Modes)
#UD
If the LOCK prefix is used.
3-74 Vol. 2A
BSWAP—Byte Swap
INSTRUCTION SET REFERENCE, A-M
BT—Bit Test
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
0F A3
BT r/m16, r16
BT r/m32, r32
BT r/m64, r64
Valid
Valid
Valid
Valid
Store selected bit in CF
flag.
0F A3
Valid
N.E.
Store selected bit in CF
flag.
REX.W + 0F A3
0F BA /4 ib
0F BA /4 ib
REX.W + 0F BA /4 ib
Store selected bit in CF
flag.
BT r/m16, imm8 Valid
BT r/m32, imm8 Valid
BT r/m64, imm8 Valid
Valid
Valid
N.E.
Store selected bit in CF
flag.
Store selected bit in CF
flag.
Store selected bit in CF
flag.
Description
Selects the bit in a bit string (specified with the first operand, called the bit base) at
the bit-position designated by the bit offset (specified by the second operand) and
stores the value of the bit in the CF flag. The bit base operand can be a register or a
memory location; the bit offset operand can be a register or an immediate value:
• If the bit base operand specifies a register, the instruction takes the modulo 16,
register size; 64-bit operands are available only in 64-bit mode).
• If the bit base operand specifies a memory location, the operand represents the
address of the byte in memory that contains the bit base (bit 0 of the specified
byte) of the bit string. The range of the bit position that can be referenced by the
offset operand depends on the operand size.
See also: Bit(BitBase, BitOffset) on page 3-10.
Some assemblers support immediate bit offsets larger than 31 by using the imme-
diate bit offset field in combination with the displacement field of the memory
operand. In this case, the low-order 3 or 5 bits (3 for 16-bit operands, 5 for 32-bit
operands) of the immediate bit offset are stored in the immediate bit offset field, and
the high-order bits are shifted and combined with the byte displacement in the
addressing mode by the assembler. The processor will ignore the high order bits if
they are not zero.
When accessing a bit in memory, the processor may access 4 bytes starting from the
memory address for a 32-bit operand size, using by the following relationship:
Effective Address +(4 ∗ (BitOffset DIV 32))
BT—Bit Test
Vol. 2A 3-75
INSTRUCTION SET REFERENCE, A-M
Or, it may access 2 bytes starting from the memory address for a 16-bit operand,
using this relationship:
Effective Address +(2 ∗ (BitOffset DIV 16))
It may do so even when only a single byte needs to be accessed to reach the given
bit. When using this bit addressing mechanism, software should avoid referencing
areas of memory close to address space holes. In particular, it should avoid refer-
ences to memory-mapped I/O registers. Instead, software should use the MOV
instructions to load from or store to these addresses, and use the register form of
these instructions to manipulate the data.
In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bit operands. See the summary
chart at the beginning of this section for encoding data and limits.
Operation
CF ←Bit(BitBase, BitOffset);
Flags Affected
The CF flag contains the value of the selected bit. The OF, SF, ZF, AF, and PF flags are
undefined.
Protected Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP
#SS
#UD
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If a memory operand effective address is outside the SS
segment limit.
If the LOCK prefix is used.
3-76 Vol. 2A
BT—Bit Test
INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made.
#UD
If the LOCK prefix is used.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
BT—Bit Test
Vol. 2A 3-77
INSTRUCTION SET REFERENCE, A-M
BTC—Bit Test and Complement
Opcode
Instruction
64-Bit Compat/
Description
Mode
Leg Mode
0F BB
BTC r/m16, r16
BTC r/m32, r32
BTC r/m64, r64
BTC r/m16, imm8
BTC r/m32, imm8
Valid
Valid
Store selected bit in CF flag
and complement.
0F BB
Valid
Valid
Valid
Valid
Valid
Valid
N.E.
Store selected bit in CF flag
and complement.
REX.W + 0F BB
0F BA /7 ib
0F BA /7 ib
Store selected bit in CF flag
and complement.
Valid
Valid
N.E.
Store selected bit in CF flag
and complement.
Store selected bit in CF flag
and complement.
REX.W + 0F BA /7 ib BTC r/m64, imm8
Store selected bit in CF flag
and complement.
Description
Selects the bit in a bit string (specified with the first operand, called the bit base) at
the bit-position designated by the bit offset operand (second operand), stores the
value of the bit in the CF flag, and complements the selected bit in the bit string. The
bit base operand can be a register or a memory location; the bit offset operand can
be a register or an immediate value:
• If the bit base operand specifies a register, the instruction takes the modulo 16,
32, or 64 of the bit offset operand (modulo size depends on the mode and
register size; 64-bit operands are available only in 64-bit mode). This allows any
bit position to be selected.
• If the bit base operand specifies a memory location, the operand represents the
byte) of the bit string. The range of the bit position that can be referenced by the
offset operand depends on the operand size.
See also: Bit(BitBase, BitOffset) on page 3-10.
Some assemblers support immediate bit offsets larger than 31 by using the imme-
diate bit offset field in combination with the displacement field of the memory
operand. See “BT—Bit Test” in this chapter for more information on this addressing
mechanism.
This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.
In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
3-78 Vol. 2A
BTC—Bit Test and Complement
INSTRUCTION SET REFERENCE, A-M
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.
Operation
CF ←Bit(BitBase, BitOffset);
Bit(BitBase, BitOffset) ←NOT Bit(BitBase, BitOffset);
Flags Affected
The CF flag contains the value of the selected bit before it is complemented. The OF,
SF, ZF, AF, and PF flags are undefined.
Protected Mode Exceptions
#GP(0)
#SS(0)
If the destination operand points to a non-writable segment.
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used but the destination is not a memory
operand.
Real-Address Mode Exceptions
#GP
#SS
#UD
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If a memory operand effective address is outside the SS
segment limit.
If the LOCK prefix is used but the destination is not a memory
operand.
Virtual-8086 Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
If a page fault occurs.
BTC—Bit Test and Complement
Vol. 2A 3-79
INSTRUCTION SET REFERENCE, A-M
#AC(0)
#UD
If alignment checking is enabled and an unaligned memory
reference is made.
If the LOCK prefix is used but the destination is not a memory
operand.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used but the destination is not a memory
operand.
3-80 Vol. 2A
BTC—Bit Test and Complement
INSTRUCTION SET REFERENCE, A-M
BTR—Bit Test and Reset
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
0F B3
BTR r/m16, r16
BTR r/m32, r32
BTR r/m64, r64
Valid
Valid
Valid
Valid
Store selected bit in CF flag
and clear.
0F B3
Valid
N.E.
Store selected bit in CF flag
and clear.
REX.W + 0F B3
0F BA /6 ib
0F BA /6 ib
REX.W + 0F BA /6 ib
Store selected bit in CF flag
and clear.
BTR r/m16, imm8 Valid
BTR r/m32, imm8 Valid
BTR r/m64, imm8 Valid
Valid
Valid
N.E.
Store selected bit in CF flag
and clear.
Store selected bit in CF flag
and clear.
Store selected bit in CF flag
and clear.
DESCRIPTION
Selects the bit in a bit string (specified with the first operand, called the bit base) at
the bit-position designated by the bit offset operand (second operand), stores the
value of the bit in the CF flag, and clears the selected bit in the bit string to 0. The bit
base operand can be a register or a memory location; the bit offset operand can be a
register or an immediate value:
• If the bit base operand specifies a register, the instruction takes the modulo 16,
32, or 64 of the bit offset operand (modulo size depends on the mode and
bit position to be selected.
• If the bit base operand specifies a memory location, the operand represents the
byte) of the bit string. The range of the bit position that can be referenced by the
offset operand depends on the operand size.
See also: Bit(BitBase, BitOffset) on page 3-10.
Some assemblers support immediate bit offsets larger than 31 by using the imme-
diate bit offset field in combination with the displacement field of the memory
operand. See “BT—Bit Test” in this chapter for more information on this addressing
mechanism.
This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.
In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
BTR—Bit Test and Reset
Vol. 2A 3-81
INSTRUCTION SET REFERENCE, A-M
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.
Operation
CF ←Bit(BitBase, BitOffset);
Bit(BitBase, BitOffset) ←0;
Flags Affected
The CF flag contains the value of the selected bit before it is cleared. The OF, SF, ZF,
AF, and PF flags are undefined.
Protected Mode Exceptions
#GP(0)
#SS(0)
If the destination operand points to a non-writable segment.
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used but the destination is not a memory
operand.
Real-Address Mode Exceptions
#GP
#SS
#UD
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If a memory operand effective address is outside the SS
segment limit.
If the LOCK prefix is used but the destination is not a memory
operand.
Virtual-8086 Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
If a page fault occurs.
3-82 Vol. 2A
BTR—Bit Test and Reset
INSTRUCTION SET REFERENCE, A-M
#AC(0)
#UD
If alignment checking is enabled and an unaligned memory
reference is made.
If the LOCK prefix is used but the destination is not a memory
operand.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used but the destination is not a memory
operand.
BTR—Bit Test and Reset
Vol. 2A 3-83
INSTRUCTION SET REFERENCE, A-M
BTS—Bit Test and Set
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
0F AB
BTS r/m16, r16
BTS r/m32, r32
BTS r/m64, r64
BTS r/m16, imm8
BTS r/m32, imm8
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
N.E.
Store selected bit in CF
flag and set.
0F AB
Store selected bit in CF
flag and set.
REX.W + 0F AB
0F BA /5 ib
0F BA /5 ib
Store selected bit in CF
flag and set.
Valid
Valid
N.E.
Store selected bit in CF
flag and set.
Store selected bit in CF
flag and set.
REX.W + 0F BA /5 ib BTS r/m64, imm8
Store selected bit in CF
flag and set.
Description
Selects the bit in a bit string (specified with the first operand, called the bit base) at
the bit-position designated by the bit offset operand (second operand), stores the
value of the bit in the CF flag, and sets the selected bit in the bit string to 1. The bit
base operand can be a register or a memory location; the bit offset operand can be a
register or an immediate value:
• If the bit base operand specifies a register, the instruction takes the modulo 16,
32, or 64 of the bit offset operand (modulo size depends on the mode and
register size; 64-bit operands are available only in 64-bit mode). This allows any
bit position to be selected.
• If the bit base operand specifies a memory location, the operand represents the
byte) of the bit string. The range of the bit position that can be referenced by the
offset operand depends on the operand size.
See also: Bit(BitBase, BitOffset) on page 3-10.
Some assemblers support immediate bit offsets larger than 31 by using the imme-
diate bit offset field in combination with the displacement field of the memory
operand. See “BT—Bit Test” in this chapter for more information on this addressing
mechanism.
This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.
In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
3-84 Vol. 2A
BTS—Bit Test and Set
INSTRUCTION SET REFERENCE, A-M
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.
Operation
CF ←Bit(BitBase, BitOffset);
Bit(BitBase, BitOffset) ←1;
Flags Affected
The CF flag contains the value of the selected bit before it is set. The OF, SF, ZF, AF,
and PF flags are undefined.
Protected Mode Exceptions
#GP(0)
#SS(0)
If the destination operand points to a non-writable segment.
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used but the destination is not a memory
operand.
Real-Address Mode Exceptions
#GP
#SS
#UD
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If a memory operand effective address is outside the SS
segment limit.
If the LOCK prefix is used but the destination is not a memory
operand.
Virtual-8086 Mode Exceptions
#GP
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
If a page fault occurs.
BTS—Bit Test and Set
Vol. 2A 3-85
INSTRUCTION SET REFERENCE, A-M
#AC(0)
#UD
If alignment checking is enabled and an unaligned memory
reference is made.
If the LOCK prefix is used but the destination is not a memory
operand.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used but the destination is not a memory
operand.
3-86 Vol. 2A
BTS—Bit Test and Set
INSTRUCTION SET REFERENCE, A-M
CALL—Call Procedure
Opcode
E8 cw
E8 cd
Instruction
CALL rel16
CALL rel32
64-Bit
Mode
Compat/
Description
Leg Mode
N.S.
Valid
Valid
Call near, relative, displacement relative
to next instruction.
Valid
Call near, relative, displacement relative
to next instruction. 32-bit
displacement sign extended to 64-bits
in 64-bit mode.
FF /2
FF /2
FF /2
9A cd
9A cp
FF /3
CALL r/m16
CALL r/m32
CALL r/m64
N.E.
Valid
Valid
N.E.
Call near, absolute indirect, address
given in r/m16.
N.E.
Call near, absolute indirect, address
given in r/m32.
Valid
Invalid
Invalid
Call near, absolute indirect, address
given in r/m64.
CALL
ptr16:16
Valid
Valid
Valid
Call far, absolute, address given in
operand.
CALL
ptr16:32
Call far, absolute, address given in
operand.
CALL m16:16 Valid
Call far, absolute indirect address given
in m16:16.
In 32-bit mode: if selector points to a
gate, then RIP = 32-bit zero extended
displacement taken from gate; else RIP
= zero extended 16-bit offset from far
pointer referenced in the instruction.
FF /3
CALL m16:32 Valid
Valid
N.E.
In 64-bit mode: If selector points to a
gate, then RIP = 64-bit displacement
taken from gate; else RIP = zero
extended 32-bit offset from far
pointer referenced in the instruction.
REX.W + FF /3 CALL m16:64 Valid
In 64-bit mode: If selector points to a
gate, then RIP = 64-bit displacement
taken from gate; else RIP = 64-bit
offset from far pointer referenced in
the instruction.
Description
Saves procedure linking information on the stack and branches to the called proce-
dure specified using the target operand. The target operand specifies the address of
CALL—Call Procedure
Vol. 2A 3-87
INSTRUCTION SET REFERENCE, A-M
the first instruction in the called procedure. The operand can be an immediate value,
a general-purpose register, or a memory location.
This instruction can be used to execute four types of calls:
• Near Call — A call to a procedure in the current code segment (the segment
currently pointed to by the CS register), sometimes referred to as an intra-
segment call.
• Far Call — A call to a procedure located in a different segment than the current
code segment, sometimes referred to as an inter-segment call.
• Inter-privilege-level far call — A far call to a procedure in a segment at a
different privilege level than that of the currently executing program or
procedure.
• Task switch — A call to a procedure located in a different task.
The latter two call types (inter-privilege-level call and task switch) can only be
executed in protected mode. See “Calling Procedures Using Call and RET” in Chapter
6 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1,
for additional information on near, far, and inter-privilege-level calls. See Chapter 6,
“Task Management,” in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3A, for information on performing task switches with the
CALL instruction.
Near Call. When executing a near call, the processor pushes the value of the EIP
register (which contains the offset of the instruction following the CALL instruction)
on the stack (for use later as a return-instruction pointer). The processor then
branches to the address in the current code segment specified by the target operand.
The target operand specifies either an absolute offset in the code segment (an offset
from the base of the code segment) or a relative offset (a signed displacement rela-
tive to the current value of the instruction pointer in the EIP register; this value
points to the instruction following the CALL instruction). The CS register is not
changed on near calls.
For a near call absolute, an absolute offset is specified indirectly in a general-purpose
register or a memory location (r/m16, r/m32, or r/m64). The operand-size attribute
determines the size of the target operand (16, 32 or 64 bits). When in 64-bit mode,
the operand size for near call (and all near branches) is forced to 64-bits. Absolute
offsets are loaded directly into the EIP(RIP) register. If the operand size attribute is
16, the upper two bytes of the EIP register are cleared, resulting in a maximum
instruction pointer size of 16 bits. When accessing an absolute offset indirectly using
the stack pointer [ESP] as the base register, the base value used is the value of the
ESP before the instruction executes.
A relative offset (rel16 or rel32) is generally specified as a label in assembly code. But
at the machine code level, it is encoded as a signed, 16- or 32-bit immediate value.
This value is added to the value in the EIP(RIP) register. In 64-bit mode the relative
offset is always a 32-bit immediate value which is sign extended to 64-bits before it
is added to the value in the RIP register for the target calculation. As with absolute
offsets, the operand-size attribute determines the size of the target operand (16, 32,
3-88 Vol. 2A
CALL—Call Procedure
INSTRUCTION SET REFERENCE, A-M
or 64 bits). In 64-bit mode the target operand will always be 64-bits because the
operand size is forced to 64-bits for near branches.
Far Calls in Real-Address or Virtual-8086 Mode. When executing a far call in real-
address or virtual-8086 mode, the processor pushes the current value of both the CS
and EIP registers on the stack for use as a return-instruction pointer. The processor
then performs a “far branch” to the code segment and offset specified with the target
operand for the called procedure. The target operand specifies an absolute far
address either directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a
memory location (m16:16 or m16:32). With the pointer method, the segment and
offset of the called procedure is encoded in the instruction using a 4-byte (16-bit
operand size) or 6-byte (32-bit operand size) far address immediate. With the indi-
rect method, the target operand specifies a memory location that contains a 4-byte
(16-bit operand size) or 6-byte (32-bit operand size) far address. The operand-size
attribute determines the size of the offset (16 or 32 bits) in the far address. The far
address is loaded directly into the CS and EIP registers. If the operand-size attribute
is 16, the upper two bytes of the EIP register are cleared.
Far Calls in Protected Mode. When the processor is operating in protected mode, the
CALL instruction can be used to perform the following types of far calls:
• Far call to the same privilege level
• Far call to a different privilege level (inter-privilege level call)
• Task switch (far call to another task)
In protected mode, the processor always uses the segment selector part of the far
address to access the corresponding descriptor in the GDT or LDT. The descriptor
type (code segment, call gate, task gate, or TSS) and access rights determine the
type of call operation to be performed.
If the selected descriptor is for a code segment, a far call to a code segment at the
same privilege level is performed. (If the selected code segment is at a different priv-
ilege level and the code segment is non-conforming, a general-protection exception
is generated.) A far call to the same privilege level in protected mode is very similar
to one carried out in real-address or virtual-8086 mode. The target operand specifies
an absolute far address either directly with a pointer (ptr16:16 or ptr16:32) or indi-
rectly with a memory location (m16:16 or m16:32). The operand- size attribute
determines the size of the offset (16 or 32 bits) in the far address. The new code
segment selector and its descriptor are loaded into CS register; the offset from the
instruction is loaded into the EIP register.
A call gate (described in the next paragraph) can also be used to perform a far call to
a code segment at the same privilege level. Using this mechanism provides an extra
level of indirection and is the preferred method of making calls between 16-bit and
32-bit code segments.
When executing an inter-privilege-level far call, the code segment for the procedure
being called must be accessed through a call gate. The segment selector specified by
the target operand identifies the call gate. The target operand can specify the call
gate segment selector either directly with a pointer (ptr16:16 or ptr16:32) or indi-
rectly with a memory location (m16:16 or m16:32). The processor obtains the
CALL—Call Procedure
Vol. 2A 3-89
INSTRUCTION SET REFERENCE, A-M
segment selector for the new code segment and the new instruction pointer (offset)
from the call gate descriptor. (The offset from the target operand is ignored when a
call gate is used.)
On inter-privilege-level calls, the processor switches to the stack for the privilege
level of the called procedure. The segment selector for the new stack segment is
specified in the TSS for the currently running task. The branch to the new code
segment occurs after the stack switch. (Note that when using a call gate to perform
a far call to a segment at the same privilege level, no stack switch occurs.) On the
new stack, the processor pushes the segment selector and stack pointer for the
calling procedure’s stack, an optional set of parameters from the calling procedures
stack, and the segment selector and instruction pointer for the calling procedure’s
code segment. (A value in the call gate descriptor determines how many parameters
to copy to the new stack.) Finally, the processor branches to the address of the
procedure being called within the new code segment.
Executing a task switch with the CALL instruction is similar to executing a call
through a call gate. The target operand specifies the segment selector of the task
gate for the new task activated by the switch (the offset in the target operand is
ignored). The task gate in turn points to the TSS for the new task, which contains the
segment selectors for the task’s code and stack segments. Note that the TSS also
contains the EIP value for the next instruction that was to be executed before the
calling task was suspended. This instruction pointer value is loaded into the EIP
register to re-start the calling task.
The CALL instruction can also specify the segment selector of the TSS directly, which
eliminates the indirection of the task gate. See Chapter 6, “Task Management,” in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for
information on the mechanics of a task switch.
When you execute at task switch with a CALL instruction, the nested task flag (NT) is
set in the EFLAGS register and the new TSS’s previous task link field is loaded with
the old task’s TSS selector. Code is expected to suspend this nested task by executing
an IRET instruction which, because the NT flag is set, automatically uses the previous
task link to return to the calling task. (See “Task Linking” in Chapter 6 of the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for information
on nested tasks.) Switching tasks with the CALL instruction differs in this regard from
JMP instruction. JMP does not set the NT flag and therefore does not expect an IRET
instruction to suspend the task.
Mixing 16-Bit and 32-Bit Calls. When making far calls between 16-bit and 32-bit code
segments, use a call gate. If the far call is from a 32-bit code segment to a 16-bit
code segment, the call should be made from the first 64 KBytes of the 32-bit code
segment. This is because the operand-size attribute of the instruction is set to 16, so
only a 16-bit return address offset can be saved. Also, the call should be made using
a 16-bit call gate so that 16-bit values can be pushed on the stack. See Chapter 16,
“Mixing 16-Bit and 32-Bit Code,” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A, for more information.
3-90 Vol. 2A
CALL—Call Procedure
INSTRUCTION SET REFERENCE, A-M
Far Calls in Compatibility Mode. When the processor is operating in compatibility
mode, the CALL instruction can be used to perform the following types of far calls:
• Far call to the same privilege level, remaining in compatibility mode
• Far call to the same privilege level, transitioning to 64-bit mode
• Far call to a different privilege level (inter-privilege level call), transitioning to 64-
bit mode
Note that a CALL instruction can not be used to cause a task switch in compatibility
mode since task switches are not supported in IA-32e mode.
In compatibility mode, the processor always uses the segment selector part of the far
address to access the corresponding descriptor in the GDT or LDT. The descriptor
type (code segment, call gate) and access rights determine the type of call operation
to be performed.
If the selected descriptor is for a code segment, a far call to a code segment at the
same privilege level is performed. (If the selected code segment is at a different priv-
ilege level and the code segment is non-conforming, a general-protection exception
is generated.) A far call to the same privilege level in compatibility mode is very
similar to one carried out in protected mode. The target operand specifies an abso-
lute far address either directly with a pointer (ptr16:16 or ptr16:32) or indirectly with
a memory location (m16:16 or m16:32). The operand-size attribute determines the
size of the offset (16 or 32 bits) in the far address. The new code segment selector
and its descriptor are loaded into CS register and the offset from the instruction is
loaded into the EIP register. The difference is that 64-bit mode may be entered. This
specified by the L bit in the new code segment descriptor.
Note that a 64-bit call gate (described in the next paragraph) can also be used to
perform a far call to a code segment at the same privilege level. However, using this
mechanism requires that the target code segment descriptor have the L bit set,
causing an entry to 64-bit mode.
When executing an inter-privilege-level far call, the code segment for the procedure
being called must be accessed through a 64-bit call gate. The segment selector spec-
ified by the target operand identifies the call gate. The target operand can specify the
call gate segment selector either directly with a pointer (ptr16:16 or ptr16:32) or
indirectly with a memory location (m16:16 or m16:32). The processor obtains the
segment selector for the new code segment and the new instruction pointer (offset)
from the 16-byte call gate descriptor. (The offset from the target operand is ignored
when a call gate is used.)
On inter-privilege-level calls, the processor switches to the stack for the privilege
level of the called procedure. The segment selector for the new stack segment is set
to NULL. The new stack pointer is specified in the TSS for the currently running task.
The branch to the new code segment occurs after the stack switch. (Note that when
using a call gate to perform a far call to a segment at the same privilege level, an
implicit stack switch occurs as a result of entering 64-bit mode. The SS selector is
unchanged, but stack segment accesses use a segment base of 0x0, the limit is
ignored, and the default stack size is 64-bits. The full value of RSP is used for the
offset, of which the upper 32-bits are undefined.) On the new stack, the processor
CALL—Call Procedure
Vol. 2A 3-91
INSTRUCTION SET REFERENCE, A-M
pushes the segment selector and stack pointer for the calling procedure’s stack and
the segment selector and instruction pointer for the calling procedure’s code
segment. (Parameter copy is not supported in IA-32e mode.) Finally, the processor
branches to the address of the procedure being called within the new code segment.
Near/(Far) Calls in 64-bit Mode. When the processor is operating in 64-bit mode, the
CALL instruction can be used to perform the following types of far calls:
• Far call to the same privilege level, transitioning to compatibility mode
• Far call to the same privilege level, remaining in 64-bit mode
• Far call to a different privilege level (inter-privilege level call), remaining in 64-bit
mode
Note that in this mode the CALL instruction can not be used to cause a task switch in
64-bit mode since task switches are not supported in IA-32e mode.
In 64-bit mode, the processor always uses the segment selector part of the far
address to access the corresponding descriptor in the GDT or LDT. The descriptor
type (code segment, call gate) and access rights determine the type of call operation
to be performed.
If the selected descriptor is for a code segment, a far call to a code segment at the
same privilege level is performed. (If the selected code segment is at a different priv-
ilege level and the code segment is non-conforming, a general-protection exception
is generated.) A far call to the same privilege level in 64-bit mode is very similar to
one carried out in compatibility mode. The target operand specifies an absolute far
address indirectly with a memory location (m16:16, m16:32 or m16:64). The form
of CALL with a direct specification of absolute far address is not defined in 64-bit
mode. The operand-size attribute determines the size of the offset (16, 32, or 64
bits) in the far address. The new code segment selector and its descriptor are loaded
into the CS register; the offset from the instruction is loaded into the EIP register. The
new code segment may specify entry either into compatibility or 64-bit mode, based
on the L bit value.
A 64-bit call gate (described in the next paragraph) can also be used to perform a far
call to a code segment at the same privilege level. However, using this mechanism
requires that the target code segment descriptor have the L bit set.
When executing an inter-privilege-level far call, the code segment for the procedure
being called must be accessed through a 64-bit call gate. The segment selector spec-
ified by the target operand identifies the call gate. The target operand can only
specify the call gate segment selector indirectly with a memory location (m16:16,
m16:32 or m16:64). The processor obtains the segment selector for the new code
segment and the new instruction pointer (offset) from the 16-byte call gate
descriptor. (The offset from the target operand is ignored when a call gate is used.)
On inter-privilege-level calls, the processor switches to the stack for the privilege
level of the called procedure. The segment selector for the new stack segment is set
to NULL. The new stack pointer is specified in the TSS for the currently running task.
The branch to the new code segment occurs after the stack switch.
3-92 Vol. 2A
CALL—Call Procedure
INSTRUCTION SET REFERENCE, A-M
Note that when using a call gate to perform a far call to a segment at the same priv-
ilege level, an implicit stack switch occurs as a result of entering 64-bit mode. The SS
selector is unchanged, but stack segment accesses use a segment base of 0x0, the
limit is ignored, and the default stack size is 64-bits. (The full value of RSP is used for
the offset.) On the new stack, the processor pushes the segment selector and stack
pointer for the calling procedure’s stack and the segment selector and instruction
pointer for the calling procedure’s code segment. (Parameter copy is not supported in
IA-32e mode.) Finally, the processor branches to the address of the procedure being
called within the new code segment.
Operation
IF near call
THEN IF near relative call
THEN
IF OperandSize = 64
THEN
tempDEST ←SignExtend(DEST); (* DEST is rel32 *)
tempRIP ←RIP +tempDEST;
IF stack not large enough for a 8-byte return address
THEN #SS(0); FI;
Push(RIP);
RIP ←tempRIP;
FI;
IF OperandSize = 32
THEN
tempEIP ←EIP +DEST; (* DEST is rel32 *)
IF tempEIP is not within code segment limit THEN #GP(0); FI;
IF stack not large enough for a 4-byte return address
THEN #SS(0); FI;
Push(EIP);
EIP ←tempEIP;
FI;
IF OperandSize = 16
THEN
tempEIP ←(EIP +DEST) AND 0000FFFFH; (* DEST is rel16 *)
IF tempEIP is not within code segment limit THEN #GP(0); FI;
IF stack not large enough for a 2-byte return address
THEN #SS(0); FI;
Push(IP);
EIP ←tempEIP;
FI;
ELSE (* Near absolute call *)
IF OperandSize = 64
CALL—Call Procedure
Vol. 2A 3-93
INSTRUCTION SET REFERENCE, A-M
THEN
tempRIP ←DEST; (* DEST is r/m64 *)
IF stack not large enough for a 8-byte return address
THEN #SS(0); FI;
Push(RIP);
RIP ←tempRIP;
FI;
IF OperandSize = 32
THEN
tempEIP ←DEST; (* DEST is r/m32 *)
IF tempEIP is not within code segment limit THEN #GP(0); FI;
IF stack not large enough for a 4-byte return address
THEN #SS(0); FI;
Push(EIP);
EIP ←tempEIP;
FI;
IF OperandSize = 16
THEN
tempEIP ←DEST AND 0000FFFFH; (* DEST is r/m16 *)
IF tempEIP is not within code segment limit THEN #GP(0); FI;
IF stack not large enough for a 2-byte return address
THEN #SS(0); FI;
Push(IP);
EIP ←tempEIP;
FI;
FI;rel/abs
FI; near
IF far call and (PE = 0 or (PE = 1 and VM = 1)) (* Real-address or virtual-8086 mode *)
THEN
IF OperandSize = 32
THEN
IF stack not large enough for a 6-byte return address
THEN #SS(0); FI;
IF DEST[31:16] is not zero THEN #GP(0); FI;
Push(CS); (* Padded with 16 high-order bits *)
Push(EIP);
CS ←DEST[47:32]; (* DEST is ptr16:32 or [m16:32] *)
EIP ←DEST[31:0]; (* DEST is ptr16:32 or [m16:32] *)
ELSE (* OperandSize = 16 *)
IF stack not large enough for a 4-byte return address
THEN #SS(0); FI;
Push(CS);
3-94 Vol. 2A
CALL—Call Procedure
INSTRUCTION SET REFERENCE, A-M
Push(IP);
CS ←DEST[31:16]; (* DEST is ptr16:16 or [m16:16] *)
EIP ←DEST[15:0]; (* DEST is ptr16:16 or [m16:16]; clear upper 16 bits *)
FI;
FI;
IF far call and (PE = 1 and VM = 0) (* Protected mode or IA-32e Mode, not virtual-8086 mode*)
THEN
IF segment selector in target operand NULL
THEN #GP(0); FI;
IF segment selector index not within descriptor table limits
THEN #GP(new code segment selector); FI;
Read type and access rights of selected segment descriptor;
IF IA32_EFER.LMA = 0
THEN
IF segment type is not a conforming or nonconforming code segment, call
gate, task gate, or TSS
THEN #GP(segment selector); FI;
ELSE
IF segment type is not a conforming or nonconforming code segment or
64-bit call gate,
THEN #GP(segment selector); FI;
FI;
Depending on type and access rights:
GO TO CONFORMING-CODE-SEGMENT;
GO TO NONCONFORMING-CODE-SEGMENT;
GO TO CALL-GATE;
GO TO TASK-GATE;
GO TO TASK-STATE-SEGMENT;
FI;
CONFORMING-CODE-SEGMENT:
IF L-Bit = 1 and D-BIT = 1 and IA32_EFER.LMA = 1
THEN GP(new code segment selector); FI;
IF DPL >CPL
THEN #GP(new code segment selector); FI;
IF segment not present
THEN #NP(new code segment selector); FI;
IF stack not large enough for return address
THEN #SS(0); FI;
tempEIP ←DEST(Offset);
IF OperandSize = 16
THEN
CALL—Call Procedure
Vol. 2A 3-95
INSTRUCTION SET REFERENCE, A-M
tempEIP ←tempEIP AND 0000FFFFH; FI; (* Clear upper 16 bits *)
IF (EFER.LMA = 0 or target mode = Compatibility mode) and (tempEIP outside new code
segment limit)
THEN #GP(0); FI;
IF tempEIP is non-canonical
THEN #GP(0); FI;
IF OperandSize = 32
THEN
Push(CS); (* Padded with 16 high-order bits *)
Push(EIP);
CS ←DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) ←CPL;
EIP ←tempEIP;
ELSE
IF OperandSize = 16
THEN
Push(CS);
Push(IP);
CS ←DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) ←CPL;
EIP ←tempEIP;
ELSE (* OperandSize = 64 *)
Push(CS); (* Padded with 48 high-order bits *)
Push(RIP);
CS ←DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) ←CPL;
RIP ←tempEIP;
FI;
FI;
END;
NONCONFORMING-CODE-SEGMENT:
IF L-Bit = 1 and D-BIT = 1 and IA32_EFER.LMA = 1
THEN GP(new code segment selector); FI;
IF (RPL >CPL) or (DPL ≠ CPL)
THEN #GP(new code segment selector); FI;
IF segment not present
THEN #NP(new code segment selector); FI;
IF stack not large enough for return address
THEN #SS(0); FI;
3-96 Vol. 2A
CALL—Call Procedure
INSTRUCTION SET REFERENCE, A-M
tempEIP ←DEST(Offset);
IF OperandSize = 16
THEN tempEIP ←tempEIP AND 0000FFFFH; FI; (* Clear upper 16 bits *)
IF (EFER.LMA = 0 or target mode = Compatibility mode) and (tempEIP outside new code
segment limit)
THEN #GP(0); FI;
IF tempEIP is non-canonical
THEN #GP(0); FI;
IF OperandSize = 32
THEN
Push(CS); (* Padded with 16 high-order bits *)
Push(EIP);
CS ←DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) ←CPL;
EIP ←tempEIP;
ELSE
IF OperandSize = 16
THEN
Push(CS);
Push(IP);
CS ←DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) ←CPL;
EIP ←tempEIP;
ELSE (* OperandSize = 64 *)
Push(CS); (* Padded with 48 high-order bits *)
Push(RIP);
CS ←DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) ←CPL;
RIP ←tempEIP;
FI;
FI;
END;
CALL-GATE:
IF call gate (DPL < CPL) or (RPL > DPL)
THEN #GP(call gate selector); FI;
IF call gate not present
THEN #NP(call gate selector); FI;
IF call gate code-segment selector is NULL
THEN #GP(0); FI;
IF call gate code-segment selector index is outside descriptor table limits
CALL—Call Procedure
Vol. 2A 3-97
INSTRUCTION SET REFERENCE, A-M
THEN #GP(code segment selector); FI;
Read code segment descriptor;
IF code-segment segment descriptor does not indicate a code segment
or code-segment segment descriptor DPL >CPL
THEN #GP(code segment selector); FI;
IF IA32_EFER.LMA = 1 AND (code-segment segment descriptor is
not a 64-bit code segment or code-segment descriptor has both L-Bit and D-bit set)
THEN #GP(code segment selector); FI;
IF code segment not present
THEN #NP(new code segment selector); FI;
IF code segment is non-conforming and DPL < CPL
THEN go to MORE-PRIVILEGE;
ELSE go to SAME-PRIVILEGE;
FI;
END;
MORE-PRIVILEGE:
IF current TSS is 32-bit TSS
THEN
TSSstackAddress ←new code segment (DPL ∗ 8) +4;
IF (TSSstackAddress +7) >TSS limit
THEN #TS(current TSS selector); FI;
newSS ←TSSstackAddress +4;
newESP ←stack address;
ELSE
IF current TSS is 16-bit TSS
THEN
TSSstackAddress ←new code segment (DPL ∗ 4) +2;
IF (TSSstackAddress +4) >TSS limit
THEN #TS(current TSS selector); FI;
newESP ←TSSstackAddress;
newSS ←TSSstackAddress +2;
ELSE (* TSS is 64-bit *)
TSSstackAddress ←new code segment (DPL ∗ 8) +4;
IF (TSSstackAddress +8) >TSS limit
THEN #TS(current TSS selector); FI;
newESP ←TSSstackAddress;
newSS ←NULL;
FI;
FI;
IF IA32_EFER.LMA = 0 and stack segment selector = NULL
THEN #TS(stack segment selector); FI;
Read code segment descriptor;
IF IA32_EFER.LMA = 0 and (stack segment selector's RPL ≠ DPL of code segment
3-98 Vol. 2A
CALL—Call Procedure
INSTRUCTION SET REFERENCE, A-M
or stack segment DPL ≠ DPL of code segment or stack segment is not a
writable data segment)
THEN #TS(SS selector); FI
IF IA32_EFER.LMA = 0 and stack segment not present
THEN #SS(SS selector); FI;
IF CallGateSize = 32
THEN
IF stack does not have room for parameters plus 16 bytes
THEN #SS(SS selector); FI;
IF CallGate(InstructionPointer) not within code segment limit
THEN #GP(0); FI;
SS ←newSS;
(* Segment descriptor information also loaded *)
ESP ←newESP;
CS:EIP ←CallGate(CS:InstructionPointer);
(* Segment descriptor information also loaded *)
Push(oldSS:oldESP); (* From calling procedure *)
temp ←parameter count from call gate, masked to 5 bits;
Push(parameters from calling procedure’s stack, temp)
Push(oldCS:oldEIP); (* Return address to calling procedure *)
ELSE
IF CallGateSize = 16
THEN
IF stack does not have room for parameters plus 8 bytes
THEN #SS(SS selector); FI;
IF (CallGate(InstructionPointer) AND FFFFH) not in code segment limit
THEN #GP(0); FI;
SS ←newSS;
(* Segment descriptor information also loaded *)
ESP ←newESP;
CS:IP ←CallGate(CS:InstructionPointer);
(* Segment descriptor information also loaded *)
Push(oldSS:oldESP); (* From calling procedure *)
temp ←parameter count from call gate, masked to 5 bits;
Push(parameters from calling procedure’s stack, temp)
Push(oldCS:oldEIP); (* Return address to calling procedure *)
ELSE (* CallGateSize = 64 *)
IF pushing 32 bytes on the stack touches non-canonical addresses
THEN #SS(SS selector); FI;
IF (CallGate(InstructionPointer) is non-canonical)
THEN #GP(0); FI;
SS ←newSS; (* New SS is NULL)
RSP ←newESP;
CS:IP ←CallGate(CS:InstructionPointer);
CALL—Call Procedure
Vol. 2A 3-99
INSTRUCTION SET REFERENCE, A-M
(* Segment descriptor information also loaded *)
Push(oldSS:oldESP); (* From calling procedure *)
Push(oldCS:oldEIP); (* Return address to calling procedure *)
FI;
FI;
CPL ←CodeSegment(DPL)
CS(RPL) ←CPL
END;
SAME-PRIVILEGE:
IF CallGateSize = 32
THEN
IF stack does not have room for 8 bytes
THEN #SS(0); FI;
IF CallGate(InstructionPointer) not within code segment limit
THEN #GP(0); FI;
CS:EIP ←CallGate(CS:EIP) (* Segment descriptor information also loaded *)
Push(oldCS:oldEIP); (* Return address to calling procedure *)
ELSE
If CallGateSize = 16
THEN
IF stack does not have room for 4 bytes
THEN #SS(0); FI;
IF CallGate(InstructionPointer) not within code segment limit
THEN #GP(0); FI;
CS:IP ←CallGate(CS:instruction pointer);
(* Segment descriptor information also loaded *)
Push(oldCS:oldIP); (* Return address to calling procedure *)
ELSE (* CallGateSize = 64)
IF pushing 16 bytes on the stack touches non-canonical addresses
THEN #SS(0); FI;
IF RIP non-canonical
THEN #GP(0); FI;
CS:IP ←CallGate(CS:instruction pointer);
(* Segment descriptor information also loaded *)
Push(oldCS:oldIP); (* Return address to calling procedure *)
FI;
FI;
CS(RPL) ←CPL
END;
TASK-GATE:
IF task gate DPL < CPL or RPL
3-100 Vol. 2A
CALL—Call Procedure
INSTRUCTION SET REFERENCE, A-M
THEN #GP(task gate selector); FI;
IF task gate not present
THEN #NP(task gate selector); FI;
Read the TSS segment selector in the task-gate descriptor;
IF TSS segment selector local/global bit is set to local
or index not within GDT limits
THEN #GP(TSS selector); FI;
Access TSS descriptor in GDT;
IF TSS descriptor specifies that the TSS is busy (low-order 5 bits set to 00001)
THEN #GP(TSS selector); FI;
IF TSS not present
THEN #NP(TSS selector); FI;
SWITCH-TASKS (with nesting) to TSS;
IF EIP not within code segment limit
THEN #GP(0); FI;
END;
TASK-STATE-SEGMENT:
IF TSS DPL < CPL or RPL
or TSS descriptor indicates TSS not available
THEN #GP(TSS selector); FI;
IF TSS is not present
THEN #NP(TSS selector); FI;
SWITCH-TASKS (with nesting) to TSS;
IF EIP not within code segment limit
THEN #GP(0); FI;
END;
Flags Affected
All flags are affected if a task switch occurs; no flags are affected if a task switch does
not occur.
Protected Mode Exceptions
#GP(0)
If the target offset in destination operand is beyond the new
code segment limit.
If the segment selector in the destination operand is NULL.
If the code segment selector in the gate is NULL.
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.
CALL—Call Procedure
Vol. 2A 3-101
INSTRUCTION SET REFERENCE, A-M
#GP(selector)
If a code segment or gate or TSS selector index is outside
descriptor table limits.
If the segment descriptor pointed to by the segment selector in
the destination operand is not for a conforming-code segment,
nonconforming-code segment, call gate, task gate, or task state
segment.
If the DPL for a nonconforming-code segment is not equal to the
CPL or the RPL for the segment’s segment selector is greater
than the CPL.
If the DPL for a conforming-code segment is greater than the
CPL.
If the DPL from a call-gate, task-gate, or TSS segment
descriptor is less than the CPL or than the RPL of the call-gate,
task-gate, or TSS’s segment selector.
If the segment descriptor for a segment selector from a call gate
does not indicate it is a code segment.
If the segment selector from a call gate is beyond the descriptor
table limits.
If the DPL for a code-segment obtained from a call gate is
greater than the CPL.
If the segment selector for a TSS has its local/global bit set for
local.
If a TSS segment descriptor specifies that the TSS is busy or not
available.
#SS(0)
If pushing the return address, parameters, or stack segment
pointer onto the stack exceeds the bounds of the stack segment,
when no stack switch occurs.
If a memory operand effective address is outside the SS
segment limit.
#SS(selector)
If pushing the return address, parameters, or stack segment
pointer onto the stack exceeds the bounds of the stack segment,
when a stack switch occurs.
If the SS register is being loaded as part of a stack switch and
the segment pointed to is marked not present.
If stack segment does not have room for the return address,
parameters, or stack segment pointer, when stack switch
occurs.
#NP(selector)
#TS(selector)
If a code segment, data segment, stack segment, call gate, task
gate, or TSS is not present.
If the new stack segment selector and ESP are beyond the end
of the TSS.
If the new stack segment selector is NULL.
3-102 Vol. 2A
CALL—Call Procedure
INSTRUCTION SET REFERENCE, A-M
If the RPL of the new stack segment selector in the TSS is not
equal to the DPL of the code segment being accessed.
If DPL of the stack segment descriptor for the new stack
segment is not equal to the DPL of the code segment descriptor.
If the new stack segment is not a writable data segment.
If segment-selector index for stack segment is outside
descriptor table limits.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the target offset is beyond the code segment limit.
If the LOCK prefix is used.
#UD
Virtual-8086 Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the target offset is beyond the code segment limit.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made.
#UD
If the LOCK prefix is used.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
#GP(selector)
If a memory address accessed by the selector is in non-canon-
ical space.
#GP(0)
If the target offset in the destination operand is non-canonical.
64-Bit Mode Exceptions
#GP(0)
If a memory address is non-canonical.
If target offset in destination operand is non-canonical.
If the segment selector in the destination operand is NULL.
If the code segment selector in the 64-bit gate is NULL.
#GP(selector)
If code segment or 64-bit call gate is outside descriptor table
limits.
CALL—Call Procedure
Vol. 2A 3-103
INSTRUCTION SET REFERENCE, A-M
If code segment or 64-bit call gate overlaps non-canonical
space.
If the segment descriptor pointed to by the segment selector in
the destination operand is not for a conforming-code segment,
nonconforming-code segment, or 64-bit call gate.
If the segment descriptor pointed to by the segment selector in
the destination operand is a code segment and has both the D-
bit and the L- bit set.
If the DPL for a nonconforming-code segment is not equal to the
CPL, or the RPL for the segment’s segment selector is greater
than the CPL.
If the DPL for a conforming-code segment is greater than the
CPL.
If the DPL from a 64-bit call-gate is less than the CPL or than the
RPL of the 64-bit call-gate.
If the upper type field of a 64-bit call gate is not 0x0.
If the segment selector from a 64-bit call gate is beyond the
descriptor table limits.
If the DPL for a code-segment obtained from a 64-bit call gate is
greater than the CPL.
If the code segment descriptor pointed to by the selector in the
64-bit gate doesn't have the L-bit set and the D-bit clear.
If the segment descriptor for a segment selector from the 64-bit
call gate does not indicate it is a code segment.
#SS(0)
If pushing the return offset or CS selector onto the stack
exceeds the bounds of the stack segment when no stack switch
occurs.
If a memory operand effective address is outside the SS
segment limit.
If the stack address is in a non-canonical form.
#SS(selector)
If pushing the old values of SS selector, stack pointer, EFLAGS,
CS selector, offset, or error code onto the stack violates the
canonical boundary when a stack switch occurs.
#NP(selector)
#TS(selector)
#UD
If a code segment or 64-bit call gate is not present.
If the load of the new RSP exceeds the limit of the TSS.
(64-bit mode only) If a far call is direct to an absolute address in
memory.
If the LOCK prefix is used.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
3-104 Vol. 2A
CALL—Call Procedure
INSTRUCTION SET REFERENCE, A-M
CBW/CWDE/CDQE—Convert Byte to Word/Convert Word to
Doubleword/Convert Doubleword to Quadword
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
98
CBW
Valid
Valid
Valid
Valid
Valid
N.E.
AX ←sign-extend of AL.
EAX ←sign-extend of AX.
RAX ←sign-extend of EAX.
98
CWDE
CDQE
REX.W + 98
Description
Double the size of the source operand by means of sign extension. The CBW (convert
byte to word) instruction copies the sign (bit 7) in the source operand into every bit
in the AH register. The CWDE (convert word to doubleword) instruction copies the
sign (bit 15) of the word in the AX register into the high 16 bits of the EAX register.
CBW and CWDE reference the same opcode. The CBW instruction is intended for use
when the operand-size attribute is 16; CWDE is intended for use when the operand-
size attribute is 32. Some assemblers may force the operand size. Others may treat
these two mnemonics as synonyms (CBW/CWDE) and use the setting of the
operand-size attribute to determine the size of values to be converted.
In 64-bit mode, the default operation size is the size of the destination register. Use
of the REX.W prefix promotes this instruction (CDQE when promoted) to operate on
64-bit operands. In which case, CDQE copies the sign (bit 31) of the doubleword in
the EAX register into the high 32 bits of RAX.
Operation
IF OperandSize = 16 (* Instruction = CBW *)
THEN
AX ←SignExtend(AL);
ELSE IF (OperandSize = 32, Instruction = CWDE)
EAX ←SignExtend(AX); FI;
ELSE (* 64-Bit Mode, OperandSize = 64, Instruction = CDQE*)
RAX ←SignExtend(EAX);
FI;
Flags Affected
None.
Exceptions (All Operating Modes)
#UD
If the LOCK prefix is used.
CBW/CWDE/CDQE—Convert Byte to Word/Convert Word to Doubleword/Convert Double-
word to Quadword
Vol. 2A 3-105
INSTRUCTION SET REFERENCE, A-M
CLC—Clear Carry Flag
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
F8
CLC
Valid
Valid
Clear CF flag.
Description
Clears the CF flag in the EFLAGS register. Operation is the same in all non-64-bit
modes and 64-bit mode.
Operation
CF ←0;
Flags Affected
The CF flag is set to 0. The OF, ZF, SF, AF, and PF flags are unaffected.
Exceptions (All Operating Modes)
#UD
If the LOCK prefix is used.
3-106 Vol. 2A
CLC—Clear Carry Flag
INSTRUCTION SET REFERENCE, A-M
CLD—Clear Direction Flag
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
FC
CLD
Valid
Valid
Clear DF flag.
Description
Clears the DF flag in the EFLAGS register. When the DF flag is set to 0, string opera-
tions increment the index registers (ESI and/or EDI). Operation is the same in all
non-64-bit modes and 64-bit mode.
Operation
DF ←0;
Flags Affected
The DF flag is set to 0. The CF, OF, ZF, SF, AF, and PF flags are unaffected.
Exceptions (All Operating Modes)
#UD
If the LOCK prefix is used.
CLD—Clear Direction Flag
Vol. 2A 3-107
INSTRUCTION SET REFERENCE, A-M
CLFLUSH—Flush Cache Line
Opcode
Instruction
64-Bit Mode Compat/
Leg Mode
Description
0F AE /7
CLFLUSH m8
Valid
Valid
Flushes cache line
containing m8.
Description
Invalidates the cache line that contains the linear address specified with the source
operand from all levels of the processor cache hierarchy (data and instruction). The
invalidation is broadcast throughout the cache coherence domain. If, at any level of
the cache hierarchy, the line is inconsistent with memory (dirty) it is written to
memory before invalidation. The source operand is a byte memory location.
The availability of CLFLUSH is indicated by the presence of the CPUID feature flag
CLFSH (bit 19 of the EDX register, see “CPUID—CPU Identification” in this chapter).
The aligned cache line size affected is also indicated with the CPUID instruction (bits
8 through 15 of the EBX register when the initial value in the EAX register is 1).
The memory attribute of the page containing the affected line has no effect on the
behavior of this instruction. It should be noted that processors are free to specula-
tively fetch and cache data from system memory regions assigned a memory-type
allowing for speculative reads (such as, the WB, WC, and WT memory types).
PREFETCHh instructions can be used to provide the processor with hints for this spec-
ulative behavior. Because this speculative fetching can occur at any time and is not
tied to instruction execution, the CLFLUSH instruction is not ordered with respect to
PREFETCHh instructions or any of the speculative fetching mechanisms (that is, data
can be speculatively loaded into a cache line just before, during, or after the execu-
tion of a CLFLUSH instruction that references the cache line).
CLFLUSH is only ordered by the MFENCE instruction. It is not guaranteed to be
ordered by any other fencing or serializing instructions or by another CLFLUSH
instruction. For example, software can use an MFENCE instruction to insure that
previous stores are included in the write-back.
The CLFLUSH instruction can be used at all privilege levels and is subject to all
permission checking and faults associated with a byte load (and in addition, a
CLFLUSH instruction is allowed to flush a linear address in an execute-only segment).
Like a load, the CLFLUSH instruction sets the A bit but not the D bit in the page
tables.
The CLFLUSH instruction was introduced with the SSE2 extensions;
however, because it has its own CPUID feature flag, it can be implemented in
IA-32 processors that do not include the SSE2 extensions. Also, detecting
the presence of the SSE2 extensions with the CPUID instruction does not
guarantee that the CLFLUSH instruction is implemented in the processor.
CLFLUSH operation is the same in non-64-bit modes and 64-bit mode.
3-108 Vol. 2A
CLFLUSH—Flush Cache Line
INSTRUCTION SET REFERENCE, A-M
Operation
Flush_Cache_Line(SRC);
Intel C/C++Compiler Intrinsic Equivalents
CLFLUSH void _mm_clflush(void const *p)
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
#SS(0)
For an illegal address in the SS segment.
For a page fault.
#PF(fault-code)
#UD
If CPUID.01H:EDX.CLFSH[bit 19] = 0.
If the LOCK prefix is used.
Real-Address Mode Exceptions
GP(0)
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#UD
If CPUID.01H:EDX.CLFSH[bit 19] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
For a page fault.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
For a page fault.
#PF(fault-code)
#UD
If CPUID.01H:EDX.CLFSH[bit 19] = 0.
If the LOCK prefix is used.
CLFLUSH—Flush Cache Line
Vol. 2A 3-109
INSTRUCTION SET REFERENCE, A-M
CLI — Clear Interrupt Flag
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
FA
CLI
Valid
Valid
Clear interrupt flag; interrupts disabled
when interrupt flag cleared.
Description
If protected-mode virtual interrupts are not enabled, CLI clears the IF flag in the
EFLAGS register. No other flags are affected. Clearing the IF flag causes the
processor to ignore maskable external interrupts. The IF flag and the CLI and STI
instruction have no affect on the generation of exceptions and NMI interrupts.
When protected-mode virtual interrupts are enabled, CPL is 3, and IOPL is less than
3; CLI clears the VIF flag in the EFLAGS register, leaving IF unaffected. Table 3-6 indi-
cates the action of the CLI instruction depending on the processor operating mode
and the CPL/IOPL of the running program or procedure.
CLI operation is the same in non-64-bit modes and 64-bit mode.
Table 3-6. Decision Table for CLI Results
PE
VM
X
0
IOPL
CPL
PVI
VIP
VME
CLI Result
IF = 0
0
X
X
X
X
X
1
≥ CPL
< CPL
< CPL
< CPL
3
X
X
X
X
IF = 0
1
0
3
1
X
X
VIF = 0
GP Fault
GP Fault
IF = 0
1
0
< 3
X
X
X
X
1
0
0
X
X
1
1
X
X
X
X
1
1
1
< 3
X
X
X
1
VIF = 0
GP Fault
1
< 3
X
X
X
0
NOTES:
* X = This setting has no impact.
Operation
IF PE = 0
THEN
IF ←0; (* Reset Interrupt Flag *)
ELSE
IF VM = 0;
3-110 Vol. 2A
CLI — Clear Interrupt Flag
INSTRUCTION SET REFERENCE, A-M
THEN
IF IOPL ←CPL
THEN
IF ←0; (* Reset Interrupt Flag *)
ELSE
IF ((IOPL < CPL) and (CPL = 3) and (PVI = 1))
THEN
VIF ←0; (* Reset Virtual Interrupt Flag *)
ELSE
#GP(0);
FI;
FI;
ELSE (* VM = 1 *)
IF IOPL = 3
THEN
IF ←0; (* Reset Interrupt Flag *)
ELSE
IF (IOPL < 3) AND (VME = 1)
THEN
VIF ←0; (* Reset Virtual Interrupt Flag *)
ELSE
#GP(0);
FI;
FI;
FI;
FI;
Flags Affected
If protected-mode virtual interrupts are not enabled, IF is set to 0 if the CPL is equal
to or less than the IOPL; otherwise, it is not affected. The other flags in the EFLAGS
register are unaffected.
When protected-mode virtual interrupts are enabled, CPL is 3, and IOPL is less than
3; CLI clears the VIF flag in the EFLAGS register, leaving IF unaffected.
Protected Mode Exceptions
#GP(0)
If the CPL is greater (has less privilege) than the IOPL of the
current program or procedure.
#UD
If the LOCK prefix is used.
Real-Address Mode Exceptions
#UD
If the LOCK prefix is used.
CLI — Clear Interrupt Flag
Vol. 2A 3-111
INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions
#GP(0)
If the CPL is greater (has less privilege) than the IOPL of the
current program or procedure.
#UD
If the LOCK prefix is used.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#GP(0)
If the CPL is greater (has less privilege) than the IOPL of the
current program or procedure.
#UD
If the LOCK prefix is used.
3-112 Vol. 2A
CLI — Clear Interrupt Flag
INSTRUCTION SET REFERENCE, A-M
CLTS—Clear Task-Switched Flag in CR0
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
0F 06
CLTS
Valid
Valid
Clears TS flag in CR0.
Description
Clears the task-switched (TS) flag in the CR0 register. This instruction is intended for
use in operating-system procedures. It is a privileged instruction that can only be
executed at a CPL of 0. It is allowed to be executed in real-address mode to allow
initialization for protected mode.
The processor sets the TS flag every time a task switch occurs. The flag is used to
synchronize the saving of FPU context in multitasking applications. See the descrip-
tion of the TS flag in the section titled “Control Registers” in Chapter 2 of the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for more infor-
mation about this flag.
CLTS operation is the same in non-64-bit modes and 64-bit mode.
See Chapter 21, “VMX Non-Root Operation,” of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3B, for more information about the behavior
of this instruction in VMX non-root operation.
Operation
CR0.TS[bit 3] ←0;
Flags Affected
The TS flag in CR0 register is cleared.
Protected Mode Exceptions
#GP(0)
If the current privilege level is not 0.
If the LOCK prefix is used.
Real-Address Mode Exceptions
#UD
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
#GP(0)
#UD
CLTS is not recognized in virtual-8086 mode.
If the LOCK prefix is used.
CLTS—Clear Task-Switched Flag in CR0
Vol. 2A 3-113
INSTRUCTION SET REFERENCE, A-M
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#GP(0)
#UD
If the CPL is greater than 0.
If the LOCK prefix is used.
3-114 Vol. 2A
CLTS—Clear Task-Switched Flag in CR0
INSTRUCTION SET REFERENCE, A-M
CMC—Complement Carry Flag
Opcode
Instruction
64-Bit Mode Compat/
Description
Leg Mode
F5
CMC
Valid
Valid
Complement CF flag.
Description
Complements the CF flag in the EFLAGS register. CMC operation is the same in non-
64-bit modes and 64-bit mode.
Operation
EFLAGS.CF[bit 0]←NOT EFLAGS.CF[bit 0];
Flags Affected
The CF flag contains the complement of its original value. The OF, ZF, SF, AF, and PF
flags are unaffected.
Exceptions (All Operating Modes)
#UD
If the LOCK prefix is used.
CMC—Complement Carry Flag
Vol. 2A 3-115
INSTRUCTION SET REFERENCE, A-M
CMOVcc—Conditional Move
Opcode
Instruction
64-Bit Compat/
Description
Mode
Leg Mode
0F 47 /r
CMOVA r16, r/m16
CMOVA r32, r/m32
CMOVA r64, r/m64
CMOVAE r16, r/m16
CMOVAE r32, r/m32
CMOVAE r64, r/m64
Valid
Valid
Move if above (CF=0 and
ZF=0).
0F 47 /r
Valid
Valid
Valid
Valid
Valid
Valid
N.E.
Move if above (CF=0 and
ZF=0).
REX.W + 0F 47 /r
0F 43 /r
Move if above (CF=0 and
ZF=0).
Valid
Valid
N.E.
Move if above or equal
(CF=0).
0F 43 /r
Move if above or equal
(CF=0).
REX.W + 0F 43 /r
Move if above or equal
(CF=0).
0F 42 /r
CMOVB r16, r/m16
CMOVB r32, r/m32
CMOVB r64, r/m64
CMOVBE r16, r/m16
Valid
Valid
Valid
Valid
Valid
Valid
N.E.
Move if below (CF=1).
Move if below (CF=1).
Move if below (CF=1).
0F 42 /r
REX.W + 0F 42 /r
0F 46 /r
Valid
Move if below or equal
(CF=1 or ZF=1).
0F 46 /r
CMOVBE r32, r/m32
Valid
Valid
Valid
N.E.
Move if below or equal
(CF=1 or ZF=1).
REX.W + 0F 46 /r
CMOVBE r64, r/m64
Move if below or equal
(CF=1 or ZF=1).
0F 42 /r
CMOVC r16, r/m16
CMOVC r32, r/m32
CMOVC r64, r/m64
CMOVE r16, r/m16
CMOVE r32, r/m32
CMOVE r64, r/m64
CMOVG r16, r/m16
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
N.E.
Move if carry (CF=1).
Move if carry (CF=1).
Move if carry (CF=1).
Move if equal (ZF=1).
Move if equal (ZF=1).
Move if equal (ZF=1).
0F 42 /r
REX.W + 0F 42 /r
0F 44 /r
Valid
Valid
N.E.
0F 44 /r
REX.W + 0F 44 /r
0F 4F /r
Valid
Move if greater (ZF=0
and SF=OF).
0F 4F /r
CMOVG r32, r/m32
CMOVG r64, r/m64
CMOVGE r16, r/m16
Valid
Valid
Valid
Valid
N.E.
Move if greater (ZF=0
and SF=OF).
REX.W + 0F 4F /r
0F 4D /r
Move if greater (ZF=0
and SF=OF).
Valid
Move if greater or equal
(SF=OF).
3-116 Vol. 2A
CMOVcc—Conditional Move
INSTRUCTION SET REFERENCE, A-M
Opcode
Instruction
64-Bit Compat/
Description
Mode
Leg Mode
0F 4D /r
CMOVGE r32, r/m32
CMOVGE r64, r/m64
Valid
Valid
Move if greater or equal
(SF=OF).
REX.W + 0F 4D /r
Valid
N.E.
Move if greater or equal
(SF=OF).
0F 4C /r
CMOVL r16, r/m16
CMOVL r32, r/m32
CMOVL r64, r/m64
CMOVLE r16, r/m16
Valid
Valid
Valid
Valid
Valid
Valid
N.E.
Move if less (SF≠ OF).
Move if less (SF≠ OF).
Move if less (SF≠ OF).
0F 4C /r
REX.W + 0F 4C /r
0F 4E /r
Valid
Move if less or equal
(ZF=1 or SF≠ OF).
0F 4E /r
CMOVLE r32, r/m32
CMOVLE r64, r/m64
CMOVNA r16, r/m16
CMOVNA r32, r/m32
CMOVNA r64, r/m64
Valid
Valid
Valid
Valid
Valid
Valid
N.E.
Move if less or equal
(ZF=1 or SF≠ OF).
Move if less or equal
(ZF=1 or SF≠ OF).
Move if not above (CF=1
or ZF=1).
REX.W + 0F 4E /r
0F 46 /r
Valid
Valid
N.E.
0F 46 /r
Move if not above (CF=1
or ZF=1).
REX.W + 0F 46 /r
0F 42 /r
Move if not above (CF=1
or ZF=1).
CMOVNAE r16, r/m16 Valid
CMOVNAE r32, r/m32 Valid
CMOVNAE r64, r/m64 Valid
Valid
Valid
N.E.
Move if not above or
equal (CF=1).
0F 42 /r
Move if not above or
equal (CF=1).
REX.W + 0F 42 /r
0F 43 /r
Move if not above or
equal (CF=1).
CMOVNB r16, r/m16
CMOVNB r32, r/m32
CMOVNB r64, r/m64
Valid
Valid
Valid
Valid
Valid
N.E.
Move if not below
(CF=0).
0F 43 /r
Move if not below
(CF=0).
REX.W + 0F 43 /r
0F 47 /r
Move if not below
(CF=0).
CMOVNBE r16, r/m16 Valid
CMOVNBE r32, r/m32 Valid
CMOVNBE r64, r/m64 Valid
Valid
Valid
N.E.
Move if not below or
equal (CF=0 and ZF=0).
0F 47 /r
Move if not below or
equal (CF=0 and ZF=0).
REX.W + 0F 47 /r
Move if not below or
equal (CF=0 and ZF=0).
CMOVcc—Conditional Move
Vol. 2A 3-117
INSTRUCTION SET REFERENCE, A-M
Opcode
Instruction
64-Bit Compat/
Description
Mode
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Leg Mode
Valid
Valid
N.E.
0F 43 /r
CMOVNC r16, r/m16
CMOVNC r32, r/m32
CMOVNC r64, r/m64
CMOVNE r16, r/m16
CMOVNE r32, r/m32
CMOVNE r64, r/m64
CMOVNG r16, r/m16
Move if not carry (CF=0).
Move if not carry (CF=0).
Move if not carry (CF=0).
Move if not equal (ZF=0).
Move if not equal (ZF=0).
Move if not equal (ZF=0).
0F 43 /r
REX.W + 0F 43 /r
0F 45 /r
Valid
Valid
N.E.
0F 45 /r
REX.W + 0F 45 /r
0F 4E /r
Valid
Move if not greater
(ZF=1 or SF≠ OF).
0F 4E /r
CMOVNG r32, r/m32
Valid
Valid
Valid
N.E.
Move if not greater
(ZF=1 or SF≠ OF).
Move if not greater
(ZF=1 or SF≠ OF).
Move if not greater or
equal (SF≠ OF).
Move if not greater or
equal (SF≠ OF).
REX.W + 0F 4E /r
0F 4C /r
CMOVNG r64, r/m64
CMOVNGE r16, r/m16 Valid
CMOVNGE r32, r/m32 Valid
CMOVNGE r64, r/m64 Valid
Valid
Valid
N.E.
0F 4C /r
REX.W + 0F 4C /r
Move if not greater or
equal (SF≠ OF).
0F 4D /r
CMOVNL r16, r/m16
CMOVNL r32, r/m32
CMOVNL r64, r/m64
CMOVNLE r16, r/m16
Valid
Valid
Valid
Valid
Valid
Valid
N.E.
Move if not less (SF=OF).
Move if not less (SF=OF).
Move if not less (SF=OF).
0F 4D /r
REX.W + 0F 4D /r
0F 4F /r
Valid
Move if not less or equal
(ZF=0 and SF=OF).
0F 4F /r
CMOVNLE r32, r/m32
CMOVNLE r64, r/m64
CMOVNO r16, r/m16
CMOVNO r32, r/m32
CMOVNO r64, r/m64
CMOVNP r16, r/m16
CMOVNP r32, r/m32
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
N.E.
Move if not less or equal
(ZF=0 and SF=OF).
REX.W + 0F 4F /r
0F 41 /r
Move if not less or equal
(ZF=0 and SF=OF).
Valid
Valid
N.E.
Move if not overflow
(OF=0).
0F 41 /r
Move if not overflow
(OF=0).
REX.W + 0F 41 /r
0F 4B /r
Move if not overflow
(OF=0).
Valid
Valid
Move if not parity
(PF=0).
0F 4B /r
Move if not parity
(PF=0).
3-118 Vol. 2A
CMOVcc—Conditional Move
INSTRUCTION SET REFERENCE, A-M
Opcode
Instruction
64-Bit Compat/
Description
Mode
Leg Mode
REX.W + 0F 4B /r
CMOVNP r64, r/m64
Valid
N.E.
Move if not parity
(PF=0).
0F 49 /r
CMOVNS r16, r/m16
CMOVNS r32, r/m32
CMOVNS r64, r/m64
CMOVNZ r16, r/m16
CMOVNZ r32, r/m32
CMOVNZ r64, r/m64
CMOVO r16, r/m16
CMOVO r32, r/m32
CMOVO r64, r/m64
CMOVP r16, r/m16
CMOVP r32, r/m32
CMOVP r64, r/m64
CMOVPE r16, r/m16
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
N.E.
Move if not sign (SF=0).
Move if not sign (SF=0).
Move if not sign (SF=0).
Move if not zero (ZF=0).
Move if not zero (ZF=0).
Move if not zero (ZF=0).
Move if overflow (OF=0).
Move if overflow (OF=0).
Move if overflow (OF=0).
Move if parity (PF=1).
Move if parity (PF=1).
Move if parity (PF=1).
0F 49 /r
REX.W + 0F 49 /r
0F 45 /r
Valid
Valid
N.E.
0F 45 /r
REX.W + 0F 45 /r
0F 40 /r
Valid
Valid
N.E.
0F 40 /r
REX.W + 0F 40 /r
0F 4A /r
Valid
Valid
N.E.
0F 4A /r
REX.W + 0F 4A /r
0F 4A /r
Valid
Move if parity even
(PF=1).
0F 4A /r
CMOVPE r32, r/m32
CMOVPE r64, r/m64
CMOVPO r16, r/m16
CMOVPO r32, r/m32
CMOVPO r64, r/m64
Valid
Valid
Valid
Valid
Valid
Valid
N.E.
Move if parity even
(PF=1).
REX.W + 0F 4A /r
0F 4B /r
Move if parity even
(PF=1).
Valid
Valid
N.E.
Move if parity odd
(PF=0).
0F 4B /r
Move if parity odd
(PF=0).
REX.W + 0F 4B /r
Move if parity odd
(PF=0).
0F 48 /r
CMOVS r16, r/m16
CMOVS r32, r/m32
CMOVS r64, r/m64
CMOVZ r16, r/m16
CMOVZ r32, r/m32
CMOVZ r64, r/m64
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
N.E.
Move if sign (SF=1).
Move if sign (SF=1).
Move if sign (SF=1).
Move if zero (ZF=1).
Move if zero (ZF=1).
Move if zero (ZF=1).
0F 48 /r
REX.W + 0F 48 /r
0F 44 /r
Valid
Valid
N.E.
0F 44 /r
REX.W + 0F 44 /r
CMOVcc—Conditional Move
Vol. 2A 3-119
INSTRUCTION SET REFERENCE, A-M
Description
The CMOVcc instructions check the state of one or more of the status flags in the
EFLAGS register (CF, OF, PF, SF, and ZF) and perform a move operation if the flags are
in a specified state (or condition). A condition code (cc) is associated with each
instruction to indicate the condition being tested for. If the condition is not satisfied,
a move is not performed and execution continues with the instruction following the
CMOVcc instruction.
These instructions can move 16-bit, 32-bit or 64-bit values from memory to a
general-purpose register or from one general-purpose register to another. Condi-
tional moves of 8-bit register operands are not supported.
The condition for each CMOVcc mnemonic is given in the description column of the
above table. The terms “less” and “greater” are used for comparisons of signed inte-
gers and the terms “above” and “below” are used for unsigned integers.
Because a particular state of the status flags can sometimes be interpreted in two
ways, two mnemonics are defined for some opcodes. For example, the CMOVA
(conditional move if above) instruction and the CMOVNBE (conditional move if not
below or equal) instruction are alternate mnemonics for the opcode 0F 47H.
The CMOVcc instructions were introduced in P6 family processors; however, these
instructions may not be supported by all IA-32 processors. Software can determine if
the CMOVcc instructions are supported by checking the processor’s feature informa-
tion with the CPUID instruction (see “CPUID—CPU Identification” in this chapter).
In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R
prefix permits access to additional registers (R8-R15). Use of the REX.W prefix
promotes operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.
Operation
temp ←SRC
IF (64-Bit Mode)
THEN
IF condition TRUE
THEN
IF (OperandSize = 64)
THEN
DEST ←temp;
ELSE
DEST ←temp AND 0x00000000_FFFFFFFF;
FI;
FI;
ELSE
IF condition TRUE
THEN
3-120 Vol. 2A
CMOVcc—Conditional Move
INSTRUCTION SET REFERENCE, A-M
DEST ←temp;
FI;
FI;
Flags Affected
None.
Protected Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP
#SS
#UD
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If a memory operand effective address is outside the SS
segment limit.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made.
#UD
If the LOCK prefix is used.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
CMOVcc—Conditional Move
Vol. 2A 3-121
INSTRUCTION SET REFERENCE, A-M
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
3-122 Vol. 2A
CMOVcc—Conditional Move
INSTRUCTION SET REFERENCE, A-M
CMP—Compare Two Operands
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
3C ib
CMP AL, imm8
Valid
Valid
Compare imm8 with AL.
Compare imm16 with AX.
Compare imm32 with EAX.
3D iw
CMP AX, imm16 Valid
CMP EAX, imm32 Valid
CMP RAX, imm32 Valid
Valid
3D id
Valid
REX.W + 3D id
N.E.
Compare imm32 sign-
extended to 64-bits with
RAX.
80 /7 ib
CMP r/m8, imm8 Valid
Valid
N.E.
Compare imm8 with r/m8.
*
REX + 80 /7 ib
81 /7 iw
CMP r/m8 , imm8 Valid
Compare imm8 with r/m8.
CMP r/m16,
imm16
Valid
Valid
Valid
Valid
Compare imm16 with
r/m16.
81 /7 id
CMP r/m32,
imm32
Valid
N.E.
Compare imm32 with
r/m32.
REX.W + 81 /7 id
CMP r/m64,
Compare imm32 sign-
extended to 64-bits with
r/m64.
imm32
83 /7 ib
CMP r/m16, imm8 Valid
CMP r/m32, imm8 Valid
CMP r/m64, imm8 Valid
Valid
Valid
N.E.
Compare imm8 with r/m16.
Compare imm8 with r/m32.
Compare imm8 with r/m64.
Compare r8 with r/m8.
83 /7 ib
REX.W + 83 /7 ib
38 /r
CMP r/m8, r8
Valid
Valid
Valid
N.E.
*
*
REX + 38 /r
39 /r
CMP r/m8 , r8
Compare r8 with r/m8.
CMP r/m16, r16 Valid
Valid
Valid
N.E.
Compare r16 with r/m16.
Compare r32 with r/m32.
Compare r64 with r/m64.
Compare r/m8 with r8.
39 /r
CMP r/m32, r32 Valid
REX.W + 39 /r
3A /r
CMP r/m64,r64
Valid
Valid
Valid
Valid
Valid
Valid
CMP r8, r/m8
Valid
N.E.
*
*
REX + 3A /r
3B /r
CMP r8 , r/m8
Compare r/m8 with r8.
CMP r16, r/m16
CMP r32, r/m32
CMP r64, r/m64
Valid
Valid
N.E.
Compare r/m16 with r16.
Compare r/m32 with r32.
Compare r/m64 with r64.
3B /r
REX.W + 3B /r
NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.
CMP—Compare Two Operands
Vol. 2A 3-123
INSTRUCTION SET REFERENCE, A-M
Description
Compares the first source operand with the second source operand and sets the
status flags in the EFLAGS register according to the results. The comparison is
performed by subtracting the second operand from the first operand and then setting
the status flags in the same manner as the SUB instruction. When an immediate
value is used as an operand, it is sign-extended to the length of the first operand.
The condition codes used by the Jcc, CMOVcc, and SETcc instructions are based on
the results of a CMP instruction. Appendix B, “EFLAGS Condition Codes,” in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, shows
the relationship of the status flags and the condition codes.
In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R
prefix permits access to additional registers (R8-R15). Use of the REX.W prefix
promotes operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.
Operation
temp ←SRC1 −SignExtend(SRC2);
ModifyStatusFlags; (* Modify status flags in the same manner as the SUB instruction*)
Flags Affected
The CF, OF, SF, ZF, AF, and PF flags are set according to the result.
Protected Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS
If a memory operand effective address is outside the SS
segment limit.
3-124 Vol. 2A
CMP—Compare Two Operands
INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made.
#UD
If the LOCK prefix is used.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
CMP—Compare Two Operands
Vol. 2A 3-125
INSTRUCTION SET REFERENCE, A-M
CMPPD—Compare Packed Double-Precision Floating-Point Values
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
66 0F C2 /r ib CMPPD xmm1,
xmm2/m128, imm8
Valid
Valid
Compare packed double-
precision floating-point
values in xmm2/m128 and
xmm1 using imm8 as
comparison predicate.
Description
Performs a SIMD compare of the two packed double-precision floating-point values in
the source operand (second operand) and the destination operand (first operand)
and returns the results of the comparison to the destination operand. The compar-
on each of the pairs of packed values. The result of each comparison is a quadword
mask of all 1s (comparison true) or all 0s (comparison false).
The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. The comparison predicate operand is an 8-bit
immediate, the first 3 bits of which define the type of comparison to be made (see
Table 3-7). Bits 4 through 7 of the immediate are reserved.
Table 3-7. Comparison Predicate for CMPPD and CMPPS Instructions
Predi-
cate
imm8
Encod-
ing
Description
Relation where: Emulation Result if QNaN
A Is 1st Operand
B Is 2nd
NaN
Oper-and
Operand Signals
Invalid
Operand
EQ
LT
LE
000B Equal
A = B
False
False
False
False
No
001B Less-than
A < B
Yes
Yes
Yes
010B Less-than-or-equal A ≤B
Greater than
A >B
Swap
Operands,
Use LT
Greater-than-or-
equal
A ≥ B
Swap
Operands,
Use LE
False
Yes
UNORD
NEQ
011B Unordered
A, B = Unordered
A ≠ B
True
True
True
No
No
Yes
100B Not-equal
NLT
101B Not-less-than
NOT(A < B)
3-126 Vol. 2A
CMPPD—Compare Packed Double-Precision Floating-Point Values
INSTRUCTION SET REFERENCE, A-M
Table 3-7. Comparison Predicate for CMPPD and CMPPS Instructions (Contd.)
Predi-
cate
imm8
Encod-
ing
Description
Relation where: Emulation Result if QNaN
A Is 1st Operand
B Is 2nd
NaN
Oper-and
Operand Signals
Invalid
Operand
NLE
110B Not-less-than-or-
equal
NOT(A ≤B)
True
Yes
Not-greater-than
NOT(A >B)
Swap
Operands,
Use NLT
True
Yes
Not-greater-than- NOT(A ≥ B)
Swap
Operands,
Use NLE
True
Yes
No
or-equal
ORD
111B Ordered
A , B = Ordered
False
The unordered relationship is true when at least one of the two source operands
being compared is a NaN; the ordered relationship is true when neither source
operand is a NaN.
A subsequent computational instruction that uses the mask result in the destination
operand as an input operand will not generate an exception, because a mask of all 0s
corresponds to a floating-point value of +0.0 and a mask of all 1s corresponds to a
QNaN.
equal, not-greater-than, and not-greater-than-or-equal relations. These compari-
sons can be made either by using the inverse relationship (that is, use the “not-less-
than-or-equal” to make a “greater-than” comparison) or by using software emula-
tion. When using software emulation, the program must swap the operands (copying
registers when necessary to protect the data that will now be in the destination), and
then perform the compare using a different predicate. The predicate to be used for
these emulations is listed in Table 3-7 under the heading Emulation.
Compilers and assemblers may implement the following two-operand pseudo-ops in
addition to the three-operand CMPPD instruction. See Table 3-7.
:
Table 3-8. Pseudo-Op and CMPPD Implementation
Pseudo-Op
CMPPD Implementation
CMPPD xmm1, xmm2, 0
CMPPD xmm1, xmm2, 1
CMPPD xmm1, xmm2, 2
CMPPD xmm1, xmm2, 3
CMPPD xmm1, xmm2, 4
CMPPD xmm1, xmm2, 5
CMPEQPD xmm1, xmm2
CMPLTPD xmm1, xmm2
CMPLEPD xmm1, xmm2
CMPUNORDPD xmm1, xmm2
CMPNEQPD xmm1, xmm2
CMPNLTPD xmm1, xmm2
CMPPD—Compare Packed Double-Precision Floating-Point Values
Vol. 2A 3-127
INSTRUCTION SET REFERENCE, A-M
Table 3-8. Pseudo-Op and CMPPD Implementation
Pseudo-Op
CMPPD Implementation
CMPPD xmm1, xmm2, 6
CMPPD xmm1, xmm2, 7
CMPNLEPD xmm1, xmm2
CMPORDPD xmm1, xmm2
The greater-than relations that the processor does not implement require more than
one instruction to emulate in software and therefore should not be implemented as
pseudo-ops. (For these, the programmer should reverse the operands of the corre-
sponding less than relations and use move instructions to ensure that the mask is
moved to the correct destination register and that the source operand is left intact.)
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
CASE (COMPARISON PREDICATE) OF
0: OP ←EQ;
1: OP ←LT;
2: OP ←LE;
3: OP ←UNORD;
4: OP ←NEQ;
5: OP ←NLT;
6: OP ←NLE;
7: OP ←ORD;
DEFAULT: Reserved;
CMP0 ←DEST[63:0] OP SRC[63:0];
CMP1 ←DEST[127:64] OP SRC[127:64];
IF CMP0 = TRUE
THEN DEST[63:0] ←FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0] ←0000000000000000H; FI;
IF CMP1 = TRUE
THEN DEST[127:64] ←FFFFFFFFFFFFFFFFH;
ELSE DEST[127:64] ←0000000000000000H; FI;
Intel C/C++Compiler Intrinsic Equivalents
CMPPD for equality
__m128d _mm_cmpeq_pd(__m128d a, __m128d b)
__m128d _mm_cmplt_pd(__m128d a, __m128d b)
__m128d _mm_cmple_pd(__m128d a, __m128d b)
__m128d _mm_cmpgt_pd(__m128d a, __m128d b)
CMPPD for less-than
CMPPD for less-than-or-equal
CMPPD for greater-than
CMPPD for greater-than-or-equal__m128d _mm_cmpge_pd(__m128d a, __m128d b)
3-128 Vol. 2A
CMPPD—Compare Packed Double-Precision Floating-Point Values
INSTRUCTION SET REFERENCE, A-M
CMPPD for inequality
__m128d _mm_cmpneq_pd(__m128d a, __m128d b)
CMPPD for not-less-than
CMPPD for not-greater-than
__m128d _mm_cmpnlt_pd(__m128d a, __m128d b)
__m128d _mm_cmpngt_pd(__m128d a, __m128d b)
CMPPD for not-greater-than-or-equal__m128d _mm_cmpnge_pd(__m128d a, __m128d b)
CMPPD for ordered
__m128d _mm_cmpord_pd(__m128d a, __m128d b)
__m128d _mm_cmpunord_pd(__m128d a, __m128d b)
CMPPD for unordered
CMPPD for not-less-than-or-equal__m128d _mm_cmpnle_pd(__m128d a, __m128d b)
SIMD Floating-Point Exceptions
Invalid if SNaN operand and invalid if QNaN and predicate as listed in above table,
Denormal.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#SS(0)
For an illegal address in the SS segment.
For a page fault.
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP(0)
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#XM
If CR0.TS[bit 3] = 1.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
CMPPD—Compare Packed Double-Precision Floating-Point Values
Vol. 2A 3-129
INSTRUCTION SET REFERENCE, A-M
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
For a page fault.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#PF(fault-code)
#NM
For a page fault.
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
3-130 Vol. 2A
CMPPD—Compare Packed Double-Precision Floating-Point Values
INSTRUCTION SET REFERENCE, A-M
CMPPS—Compare Packed Single-Precision Floating-Point Values
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
0F C2 /r ib
CMPPS xmm1,
xmm2/m128, imm8
Valid
Valid
Compare packed single-
precision floating-point values
in xmm2/mem and xmm1
using imm8 as comparison
predicate.
Description
Performs a SIMD compare of the four packed single-precision floating-point values in
the source operand (second operand) and the destination operand (first operand)
and returns the results of the comparison to the destination operand. The compar-
on each of the pairs of packed values. The result of each comparison is a doubleword
mask of all 1s (comparison true) or all 0s (comparison false).
The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. The comparison predicate operand is an 8-bit
immediate, the first 3 bits of which define the type of comparison to be made (see
Table 3-7). Bits 4 through 7 of the immediate are reserved.
being compared is a NaN; the ordered relationship is true when neither source
operand is a NaN.
A subsequent computational instruction that uses the mask result in the destination
operand as an input operand will not generate a fault, because a mask of all 0s corre-
Some of the comparisons listed in Table 3-7 (such as the greater-than, greater-than-
or-equal, not-greater-than, and not-greater-than-or-equal relations) can be made
only through software emulation. For these comparisons the program must swap the
operands (copying registers when necessary to protect the data that will now be in
the destination), and then perform the compare using a different predicate. The
predicate to be used for these emulations is listed in Table 3-7 under the heading
Emulation.
Compilers and assemblers may implement the following two-operand pseudo-ops in
addition to the three-operand CMPPS instruction. See Table 3-9.
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
CMPPS—Compare Packed Single-Precision Floating-Point Values
Vol. 2A 3-131
INSTRUCTION SET REFERENCE, A-M
Table 3-9. Pseudo-Ops and CMPPS
Pseudo-Op
Implementation
CMPEQPS xmm1, xmm2
CMPLTPS xmm1, xmm2
CMPLEPS xmm1, xmm2
CMPUNORDPS xmm1, xmm2
CMPNEQPS xmm1, xmm2
CMPNLTPS xmm1, xmm2
CMPNLEPS xmm1, xmm2
CMPORDPS xmm1, xmm2
CMPPS xmm1, xmm2, 0
CMPPS xmm1, xmm2, 1
CMPPS xmm1, xmm2, 2
CMPPS xmm1, xmm2, 3
CMPPS xmm1, xmm2, 4
CMPPS xmm1, xmm2, 5
CMPPS xmm1, xmm2, 6
CMPPS xmm1, xmm2, 7
The greater-than relations not implemented by the processor require more than one
instruction to emulate in software and therefore should not be implemented as
pseudo-ops. (For these, the programmer should reverse the operands of the corre-
sponding less than relations and use move instructions to ensure that the mask is
moved to the correct destination register and that the source operand is left intact.)
Operation
CASE (COMPARISON PREDICATE) OF
0: OP ←EQ;
1: OP ←LT;
2: OP ←LE;
3: OP ←UNORD;
4: OP ←NE;
5: OP ←NLT;
6: OP ←NLE;
7: OP ←ORD;
EASC;
CMP0 ←DEST[31:0] OP SRC[31:0];
CMP1 ←DEST[63:32] OP SRC[63:32];
CMP2 ←DEST [95:64] OP SRC[95:64];
CMP3 ←DEST[127:96] OP SRC[127:96];
IF CMP0 = TRUE
THEN DEST[31:0] ←FFFFFFFFH;
ELSE DEST[31:0] ←00000000H; FI;
IF CMP1 = TRUE
THEN DEST[63:32] ←FFFFFFFFH;
ELSE DEST[63:32] ←00000000H; FI;
IF CMP2 = TRUE
3-132 Vol. 2A
CMPPS—Compare Packed Single-Precision Floating-Point Values
INSTRUCTION SET REFERENCE, A-M
THEN DEST95:64] ←FFFFFFFFH;
ELSE DEST[95:64] ←00000000H; FI;
IF CMP3 = TRUE
THEN DEST[127:96] ←FFFFFFFFH;
ELSE DEST[127:96] ←00000000H; FI;
Intel C/C++Compiler Intrinsic Equivalents
CMPPS for equality
__m128 _mm_cmpeq_ps(__m128 a, __m128 b)
__m128 _mm_cmplt_ps(__m128 a, __m128 b)
CMPPS for less-than
CMPPS for less-than-or-equal
CMPPS for greater-than
__m128 _mm_cmple_ps(__m128 a, __m128 b)
__m128 _mm_cmpgt_ps(__m128 a, __m128 b)
CMPPS for greater-than-or-equal__m128 _mm_cmpge_ps(__m128 a, __m128 b)
CMPPS for inequality
__m128 _mm_cmpneq_ps(__m128 a, __m128 b)
__m128 _mm_cmpnlt_ps(__m128 a, __m128 b)
__m128 _mm_cmpngt_ps(__m128 a, __m128 b)
CMPPS for not-less-than
CMPPS for not-greater-than
CMPPS for not-greater-than-or-equal__m128 _mm_cmpnge_ps(__m128 a, __m128 b)
CMPPS for ordered
__m128 _mm_cmpord_ps(__m128 a, __m128 b)
__m128 _mm_cmpunord_ps(__m128 a, __m128 b)
CMPPS for unordered
CMPPS for not-less-than-or-equal__m128 _mm_cmpnle_ps(__m128 a, __m128 b)
SIMD Floating-Point Exceptions
Invalid if SNaN operand and invalid if QNaN and predicate as listed in above table,
Denormal.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#SS(0)
For an illegal address in the SS segment.
For a page fault.
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
CMPPS—Compare Packed Single-Precision Floating-Point Values
Vol. 2A 3-133
INSTRUCTION SET REFERENCE, A-M
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP(0)
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#XM
If CR0.TS[bit 3] = 1.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
For a page fault.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#PF(fault-code)
#NM
For a page fault.
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
3-134 Vol. 2A
CMPPS—Compare Packed Single-Precision Floating-Point Values
INSTRUCTION SET REFERENCE, A-M
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
CMPPS—Compare Packed Single-Precision Floating-Point Values
Vol. 2A 3-135
INSTRUCTION SET REFERENCE, A-M
CMPS/CMPSB/CMPSW/CMPSD/CMPSQ—Compare String Operands
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
A6
CMPS m8, m8
Valid
Valid
Valid
Valid
For legacy mode, compare byte at
address DS:(E)SI with byte at
address ES:(E)DI; For 64-bit mode
compare byte at address (R|E)SI to
byte at address (R|E)DI. The status
flags are set accordingly.
A7
A7
CMPS m16, m16 Valid
For legacy mode, compare word at
address DS:(E)SI with word at
address ES:(E)DI; For 64-bit mode
compare word at address (R|E)SI
with word at address (R|E)DI. The
status flags are set accordingly.
CMPS m32, m32 Valid
For legacy mode, compare dword
at address DS:(E)SI at dword at
address ES:(E)DI; For 64-bit mode
compare dword at address (R|E)SI
at dword at address (R|E)DI. The
status flags are set accordingly.
REX.W + A7 CMPS m64, m64 Valid
N.E.
Compares quadword at address
(R|E)SI with quadword at address
(R|E)DI and sets the status flags
accordingly.
A6
CMPSB
Valid
Valid
For legacy mode, compare byte at
address DS:(E)SI with byte at
address ES:(E)DI; For 64-bit mode
compare byte at address (R|E)SI
with byte at address (R|E)DI. The
status flags are set accordingly.
3-136 Vol. 2A
CMPS/CMPSB/CMPSW/CMPSD/CMPSQ—Compare String Operands
INSTRUCTION SET REFERENCE, A-M
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
A7
CMPSW
Valid
Valid
Valid
Valid
Valid
N.E.
For legacy mode, compare word at
address DS:(E)SI with word at
address ES:(E)DI; For 64-bit mode
compare word at address (R|E)SI
with word at address (R|E)DI. The
status flags are set accordingly.
A7
CMPSD
For legacy mode, compare dword
at address DS:(E)SI with dword at
address ES:(E)DI; For 64-bit mode
compare dword at address (R|E)SI
with dword at address (R|E)DI. The
status flags are set accordingly.
REX.W + A7 CMPSQ
Compares quadword at address
(R|E)SI with quadword at address
(R|E)DI and sets the status flags
accordingly.
Description
Compares the byte, word, doubleword, or quadword specified with the first source
operand with the byte, word, doubleword, or quadword specified with the second
source operand and sets the status flags in the EFLAGS register according to the
results.
Both source operands are located in memory. The address of the first source operand
is read from DS:SI, DS:ESI or RSI (depending on the address-size attribute of the
instruction is 16, 32, or 64, respectively). The address of the second source operand
is read from ES:DI, ES:EDI or RDI (again depending on the address-size attribute of
the instruction is 16, 32, or 64). The DS segment may be overridden with a segment
override prefix, but the ES segment cannot be overridden.
At the assembly-code level, two forms of this instruction are allowed: the “explicit-
operands” form and the “no-operands” form. The explicit-operands form (specified
with the CMPS mnemonic) allows the two source operands to be specified explicitly.
Here, the source operands should be symbols that indicate the size and location of
the source values. This explicit-operand form is provided to allow documentation.
However, note that the documentation provided by this form can be misleading. That
is, the source operand symbols must specify the correct type (size) of the operands
(bytes, words, or doublewords, quadwords), but they do not have to specify the
correct location. Locations of the source operands are always specified by the
DS:(E)SI (or RSI) and ES:(E)DI (or RDI) registers, which must be loaded correctly
before the compare string instruction is executed.
The no-operands form provides “short forms” of the byte, word, and doubleword
versions of the CMPS instructions. Here also the DS:(E)SI (or RSI) and ES:(E)DI (or
CMPS/CMPSB/CMPSW/CMPSD/CMPSQ—Compare String Operands
Vol. 2A 3-137
INSTRUCTION SET REFERENCE, A-M
RDI) registers are assumed by the processor to specify the location of the source
operands. The size of the source operands is selected with the mnemonic: CMPSB
(byte comparison), CMPSW (word comparison), CMPSD (doubleword comparison),
or CMPSQ (quadword comparison using REX.W).
After the comparison, the (E/R)SI and (E/R)DI registers increment or decrement
automatically according to the setting of the DF flag in the EFLAGS register. (If the DF
flag is 0, the (E/R)SI and (E/R)DI register increment; if the DF flag is 1, the registers
decrement.) The registers increment or decrement by 1 for byte operations, by 2 for
word operations, 4 for doubleword operations. If operand size is 64, RSI and RDI
registers increment by 8 for quadword operations.
The CMPS, CMPSB, CMPSW, CMPSD, and CMPSQ instructions can be preceded by the
REP prefix for block comparisons. More often, however, these instructions will be
used in a LOOP construct that takes some action based on the setting of the status
flags before the next comparison is made. See
“REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix” in Chapter 4, in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B, for
a description of the REP prefix.
In 64-bit mode, the instruction’s default address size is 64 bits, 32 bit address size is
supported using the prefix 67H. Use of the REX.W prefix promotes doubleword oper-
ation to 64 bits (see CMPSQ). See the summary chart at the beginning of this section
for encoding data and limits.
Operation
temp SRC1 - SRC2;
SetStatusFlags(temp);
IF (64-Bit Mode)
THEN
IF (Byte comparison)
THEN IF DF = 0
THEN
(R|E)SI ←(R|E)SI +1;
(R|E)DI ←(R|E)DI +1;
ELSE
(R|E)SI ←(R|E)SI – 1;
(R|E)DI ←(R|E)DI – 1;
FI;
ELSE IF (Word comparison)
THEN IF DF = 0
THEN
(R|E)SI ←(R|E)SI +2;
(R|E)DI ←(R|E)DI +2;
ELSE
(R|E)SI ←(R|E)SI – 2;
3-138 Vol. 2A
CMPS/CMPSB/CMPSW/CMPSD/CMPSQ—Compare String Operands
INSTRUCTION SET REFERENCE, A-M
(R|E)DI ←(R|E)DI – 2;
FI;
ELSE IF (Doubleword comparison)
THEN IF DF = 0
THEN
(R|E)SI ←(R|E)SI +4;
(R|E)DI ←(R|E)DI +4;
ELSE
(R|E)SI ←(R|E)SI – 4;
(R|E)DI ←(R|E)DI – 4;
FI;
ELSE (* Quadword comparison *)
THEN IF DF = 0
(R|E)SI ←(R|E)SI +8;
(R|E)DI ←(R|E)DI +8;
ELSE
(R|E)SI ←(R|E)SI – 8;
(R|E)DI ←(R|E)DI – 8;
FI;
FI;
ELSE (* Non-64-bit Mode *)
IF (byte comparison)
THEN IF DF = 0
THEN
(E)SI ←(E)SI +1;
(E)DI ←(E)DI +1;
ELSE
(E)SI ←(E)SI – 1;
(E)DI ←(E)DI – 1;
FI;
ELSE IF (Word comparison)
THEN IF DF = 0
(E)SI ←(E)SI +2;
(E)DI ←(E)DI +2;
ELSE
(E)SI ←(E)SI – 2;
(E)DI ←(E)DI – 2;
FI;
ELSE (* Doubleword comparison *)
THEN IF DF = 0
(E)SI ←(E)SI +4;
(E)DI ←(E)DI +4;
ELSE
CMPS/CMPSB/CMPSW/CMPSD/CMPSQ—Compare String Operands
Vol. 2A 3-139
INSTRUCTION SET REFERENCE, A-M
(E)SI ←(E)SI – 4;
(E)DI ←(E)DI – 4;
FI;
FI;
FI;
Flags Affected
The CF, OF, SF, ZF, AF, and PF flags are set according to the temporary result of the
comparison.
Protected Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP
#SS
#UD
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If a memory operand effective address is outside the SS
segment limit.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made.
#UD
If the LOCK prefix is used.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
3-140 Vol. 2A
CMPS/CMPSB/CMPSW/CMPSD/CMPSQ—Compare String Operands
INSTRUCTION SET REFERENCE, A-M
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
CMPS/CMPSB/CMPSW/CMPSD/CMPSQ—Compare String Operands
Vol. 2A 3-141
INSTRUCTION SET REFERENCE, A-M
CMPSD—Compare Scalar Double-Precision Floating-Point Values
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
F2 0F C2 /r ib
CMPSD xmm1,
xmm2/m64, imm8
Valid
Valid
Compare low double-
precision floating-point
value in xmm2/m64 and
xmm1 using imm8 as
comparison predicate.
Description
Compares the low double-precision floating-point values in the source operand
(second operand) and the destination operand (first operand) and returns the results
of the comparison to the destination operand. The comparison predicate operand
a quadword mask of all 1s (comparison true) or all 0s (comparison false).
The source operand can be an XMM register or a 64-bit memory location. The desti-
nation operand is an XMM register. The result is stored in the low quadword of the
destination operand; the high quadword remains unchanged. The comparison predi-
cate operand is an 8-bit immediate, the first 3 bits of which define the type of
comparison to be made (see Table 3-7). Bits 4 through 7 of the immediate are
reserved.
being compared is a NaN; the ordered relationship is true when neither source
operand is a NaN.
A subsequent computational instruction that uses the mask result in the destination
operand as an input operand will not generate a fault, because a mask of all 0s corre-
sponds to a floating-point value of +0.0 and a mask of all 1s corresponds to a QNaN.
emulation. For these comparisons the program must swap the operands (copying
registers when necessary to protect the data that will now be in the destination
operand), and then perform the compare using a different predicate. The predicate
to be used for these emulations is listed in Table 3-7 under the heading Emulation.
Compilers and assemblers may implement the following two-operand pseudo-ops in
addition to the three-operand CMPSD instruction. See Table 3-10.
Table 3-10. Pseudo-Ops and CMPSD
Pseudo-Op
Implementation
CMPEQSD xmm1, xmm2
CMPLTSD xmm1, xmm2
CMPLESD xmm1, xmm2
CMPSD xmm1,xmm2, 0
CMPSD xmm1,xmm2, 1
CMPSD xmm1,xmm2, 2
3-142 Vol. 2A
CMPSD—Compare Scalar Double-Precision Floating-Point Values
INSTRUCTION SET REFERENCE, A-M
Table 3-10. Pseudo-Ops and CMPSD (Contd.)
Pseudo-Op
Implementation
CMPUNORDSD xmm1, xmm2
CMPNEQSD xmm1, xmm2
CMPNLTSD xmm1, xmm2
CMPNLESD xmm1, xmm2
CMPORDSD xmm1, xmm2
CMPSD xmm1,xmm2, 3
CMPSD xmm1,xmm2, 4
CMPSD xmm1,xmm2, 5
CMPSD xmm1,xmm2, 6
CMPSD xmm1,xmm2, 7
The greater-than relations not implemented in the processor require more than one
instruction to emulate in software and therefore should not be implemented as
pseudo-ops. (For these, the programmer should reverse the operands of the corre-
sponding less than relations and use move instructions to ensure that the mask is
moved to the correct destination register and that the source operand is left intact.)
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
CASE (COMPARISON PREDICATE) OF
0: OP ←EQ;
1: OP ←LT;
2: OP ←LE;
3: OP ←UNORD;
4: OP ←NEQ;
5: OP ←NLT;
6: OP ←NLE;
7: OP ←ORD;
DEFAULT: Reserved;
CMP0 ←DEST[63:0] OP SRC[63:0];
IF CMP0 = TRUE
THEN DEST[63:0] ←FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0] ←0000000000000000H; FI;
(* DEST[127:64] unchanged *)
Intel C/C++Compiler Intrinsic Equivalents
CMPSD for equality
__m128d _mm_cmpeq_sd(__m128d a, __m128d b)
__m128d _mm_cmplt_sd(__m128d a, __m128d b)
__m128d _mm_cmple_sd(__m128d a, __m128d b)
__m128d _mm_cmpgt_sd(__m128d a, __m128d b)
CMPSD for less-than
CMPSD for less-than-or-equal
CMPSD for greater-than
CMPSD—Compare Scalar Double-Precision Floating-Point Values
Vol. 2A 3-143
INSTRUCTION SET REFERENCE, A-M
CMPSD for greater-than-or-equal__m128d _mm_cmpge_sd(__m128d a, __m128d b)
CMPSD for inequality
__m128d _mm_cmpneq_sd(__m128d a, __m128d b)
__m128d _mm_cmpnlt_sd(__m128d a, __m128d b)
__m128d _mm_cmpngt_sd(__m128d a, __m128d b)
CMPSD for not-less-than
CMPSD for not-greater-than
CMPSD for not-greater-than-or-equal__m128d _mm_cmpnge_sd(__m128d a, __m128d b)
CMPSD for ordered
__m128d _mm_cmpord_sd(__m128d a, __m128d b)
__m128d _mm_cmpunord_sd(__m128d a, __m128d b)
CMPSD for unordered
CMPSD for not-less-than-or-equal__m128d _mm_cmpnle_sd(__m128d a, __m128d b)
SIMD Floating-Point Exceptions
Invalid if SNaN operand, Invalid if QNaN and predicate as listed in above table,
Denormal.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
#SS(0)
For an illegal address in the SS segment.
For a page fault.
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#UD
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
Real-Address Mode Exceptions
#GP(0)
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#XM
If CR0.TS[bit 3] = 1.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
3-144 Vol. 2A
CMPSD—Compare Scalar Double-Precision Floating-Point Values
INSTRUCTION SET REFERENCE, A-M
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
#AC(0)
For a page fault.
If alignment checking is enabled and an unaligned memory
reference is made.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#PF(fault-code)
#NM
If the memory address is in a non-canonical form.
For a page fault.
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
CMPSD—Compare Scalar Double-Precision Floating-Point Values
Vol. 2A 3-145
INSTRUCTION SET REFERENCE, A-M
CMPSS—Compare Scalar Single-Precision Floating-Point Values
Opcode
Instruction
64-Bit Mode Compat/
Leg Mode
Description
F3 0F C2 /r ib CMPSS xmm1,
Valid
Valid
Compare low single-precision
floating-point value in
xmm2/m32 and xmm1 using
imm8 as comparison
predicate.
xmm2/m32,
imm8
Description
Compares the low single-precision floating-point values in the source operand
(second operand) and the destination operand (first operand) and returns the results
of the comparison to the destination operand. The comparison predicate operand
a doubleword mask of all 1s (comparison true) or all 0s (comparison false).
The source operand can be an XMM register or a 32-bit memory location. The desti-
nation operand is an XMM register. The result is stored in the low doubleword of the
destination operand; the 3 high-order doublewords remain unchanged. The compar-
ison predicate operand is an 8-bit immediate, the first 3 bits of which define the type
of comparison to be made (see Table 3-7). Bits 4 through 7 of the immediate are
reserved.
being compared is a NaN; the ordered relationship is true when neither source
operand is a NaN
A subsequent computational instruction that uses the mask result in the destination
sponds to a floating-point value of +0.0 and a mask of all 1s corresponds to a QNaN.
emulation. For these comparisons the program must swap the operands (copying
registers when necessary to protect the data that will now be in the destination
operand), and then perform the compare using a different predicate. The predicate
to be used for these emulations is listed in Table 3-7 under the heading Emulation.
Compilers and assemblers may implement the following two-operand pseudo-ops in
addition to the three-operand CMPSS instruction. See Table 3-11.
3-146 Vol. 2A
CMPSS—Compare Scalar Single-Precision Floating-Point Values
INSTRUCTION SET REFERENCE, A-M
Table 3-11. Pseudo-Ops and CMPSS
Pseudo-Op
CMPSS Implementation
CMPSS xmm1, xmm2, 0
CMPSS xmm1, xmm2, 1
CMPSS xmm1, xmm2, 2
CMPSS xmm1, xmm2, 3
CMPSS xmm1, xmm2, 4
CMPSS xmm1, xmm2, 5
CMPSS xmm1, xmm2, 6
CMPSS xmm1, xmm2, 7
CMPEQSS xmm1, xmm2
CMPLTSS xmm1, xmm2
CMPLESS xmm1, xmm2
CMPUNORDSS xmm1, xmm2
CMPNEQSS xmm1, xmm2
CMPNLTSS xmm1, xmm2
CMPNLESS xmm1, xmm2
CMPORDSS xmm1, xmm2
The greater-than relations not implemented in the processor require more than one
instruction to emulate in software and therefore should not be implemented as
pseudo-ops. (For these, the programmer should reverse the operands of the corre-
sponding less than relations and use move instructions to ensure that the mask is
moved to the correct destination register and that the source operand is left intact.)
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
CASE (COMPARISON PREDICATE) OF
0: OP ←EQ;
1: OP ←LT;
2: OP ←LE;
3: OP ←UNORD;
4: OP ←NEQ;
5: OP ←NLT;
6: OP ←NLE;
7: OP ←ORD;
DEFAULT: Reserved;
CMP0 ←DEST[31:0] OP SRC[31:0];
IF CMP0 = TRUE
THEN DEST[31:0] ←FFFFFFFFH;
ELSE DEST[31:0] ←00000000H; FI;
(* DEST[127:32] unchanged *)
Intel C/C++Compiler Intrinsic Equivalents
CMPSS for equality
__m128 _mm_cmpeq_ss(__m128 a, __m128 b)
CMPSS—Compare Scalar Single-Precision Floating-Point Values
Vol. 2A 3-147
INSTRUCTION SET REFERENCE, A-M
CMPSS for less-than
__m128 _mm_cmplt_ss(__m128 a, __m128 b)
CMPSS for less-than-or-equal
CMPSS for greater-than
__m128 _mm_cmple_ss(__m128 a, __m128 b)
__m128 _mm_cmpgt_ss(__m128 a, __m128 b)
CMPSS for greater-than-or-equal__m128 _mm_cmpge_ss(__m128 a, __m128 b)
CMPSS for inequality
__m128 _mm_cmpneq_ss(__m128 a, __m128 b)
__m128 _mm_cmpnlt_ss(__m128 a, __m128 b)
__m128 _mm_cmpngt_ss(__m128 a, __m128 b)
CMPSS for not-less-than
CMPSS for not-greater-than
CMPSS for not-greater-than-or-equal__m128 _mm_cmpnge_ss(__m128 a, __m128 b)
CMPSS for ordered
__m128 _mm_cmpord_ss(__m128 a, __m128 b)
__m128 _mm_cmpunord_ss(__m128 a, __m128 b)
CMPSS for unordered
CMPSS for not-less-than-or-equal__m128 _mm_cmpnle_ss(__m128 a, __m128 b)
SIMD Floating-Point Exceptions
Invalid if SNaN operand, Invalid if QNaN and predicate as listed in above table,
Denormal.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
#SS(0)
For an illegal address in the SS segment.
For a page fault.
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
#UD
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
Real-Address Mode Exceptions
#GP(0)
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#XM
If CR0.TS[bit 3] = 1.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
3-148 Vol. 2A
CMPSS—Compare Scalar Single-Precision Floating-Point Values
INSTRUCTION SET REFERENCE, A-M
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
#AC(0)
For a page fault.
If alignment checking is enabled and an unaligned memory
reference is made.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#PF(fault-code)
#NM
If the memory address is in a non-canonical form.
For a page fault.
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
CMPSS—Compare Scalar Single-Precision Floating-Point Values
Vol. 2A 3-149
INSTRUCTION SET REFERENCE, A-M
CMPXCHG—Compare and Exchange
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
0F B0/r
CMPXCHG r/m8, r8 Valid
Valid*
Compare AL with r/m8. If
equal, ZF is set and r8 is
loaded into r/m8. Else, clear
ZF and load r/m8 into AL.
REX + 0F B0/r
CMPXCHG
r/m8**,r8
Valid
N.E.
Compare AL with r/m8. If
equal, ZF is set and r8 is
loaded into r/m8. Else, clear
ZF and load r/m8 into AL.
0F B1/r
CMPXCHG r/m16, Valid
r16
Valid*
Compare AX with r/m16. If
equal, ZF is set and r16 is
loaded into r/m16. Else,
clear ZF and load r/m16
into AX.
0F B1/r
CMPXCHG r/m32, Valid
r32
Valid*
N.E.
Compare EAX with r/m32.
If equal, ZF is set and r32 is
loaded into r/m32. Else,
clear ZF and load r/m32
into EAX.
REX.W + 0F B1/r
NOTES:
CMPXCHG r/m64, Valid
r64
Compare RAX with r/m64.
If equal, ZF is set and r64 is
loaded into r/m64. Else,
clear ZF and load r/m64
into RAX.
* See the IA-32 Architecture Compatibility section below.
** In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.
Description
Compares the value in the AL, AX, EAX, or RAX register with the first operand (desti-
nation operand). If the two values are equal, the second operand (source operand) is
loaded into the destination operand. Otherwise, the destination operand is loaded
into the AL, AX, EAX or RAX register. RAX register is available only in 64-bit mode.
This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically. To simplify the interface to the processor’s bus, the destination
operand receives a write cycle without regard to the result of the comparison. The
destination operand is written back if the comparison fails; otherwise, the source
operand is written into the destination. (The processor never produces a locked read
without also producing a locked write.)
3-150 Vol. 2A
CMPXCHG—Compare and Exchange
INSTRUCTION SET REFERENCE, A-M
In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R
prefix permits access to additional registers (R8-R15). Use of the REX.W prefix
promotes operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.
IA-32 Architecture Compatibility
This instruction is not supported on Intel processors earlier than the Intel486 proces-
sors.
Operation
(* Accumulator = AL, AX, EAX, or RAX depending on whether a byte, word, doubleword, or
quadword comparison is being performed *)
IF accumulator = DEST
THEN
ZF ←1;
DEST ←SRC;
ELSE
ZF ←0;
accumulator ←DEST;
FI;
Flags Affected
The ZF flag is set if the values in the destination operand and register AL, AX, or EAX
are equal; otherwise it is cleared. The CF, PF, AF, SF, and OF flags are set according to
the results of the comparison operation.
Protected Mode Exceptions
#GP(0)
If the destination is located in a non-writable segment.
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used but the destination is not a memory
operand.
CMPXCHG—Compare and Exchange
Vol. 2A 3-151
INSTRUCTION SET REFERENCE, A-M
Real-Address Mode Exceptions
#GP
#SS
#UD
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If a memory operand effective address is outside the SS
segment limit.
If the LOCK prefix is used but the destination is not a memory
operand.
Virtual-8086 Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made.
#UD
If the LOCK prefix is used but the destination is not a memory
operand.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used but the destination is not a memory
operand.
3-152 Vol. 2A
CMPXCHG—Compare and Exchange
INSTRUCTION SET REFERENCE, A-M
CMPXCHG8B/CMPXCHG16B—Compare and Exchange Bytes
Opcode*
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
0F C7 /1 m64
CMPXCHG8B m64
Valid
Valid*
Compare EDX:EAX with
m64. If equal, set ZF and
load ECX:EBX into m64.
Else, clear ZF and load m64
into EDX:EAX.
REX.W + 0F C7 /1 CMPXCHG16B
Valid
N.E.
Compare RDX:RAX with
m128. If equal, set ZF and
load RCX:RBX into m128.
Else, clear ZF and load
m128 into RDX:RAX.
m128
m128
NOTES:
* See IA-32 Architecture Compatibility section below.
Description
Compares the 64-bit value in EDX:EAX (or 128-bit value in RDX:RAX if operand size
is 128 bits) with the operand (destination operand). If the values are equal, the
64-bit value in ECX:EBX (or 128-bit value in RCX:RBX) is stored in the destination
operand. Otherwise, the value in the destination operand is loaded into EDX:EAX (or
RDX:RAX). The destination operand is an 8-byte memory location (or 16-byte
memory location if operand size is 128 bits). For the EDX:EAX and ECX:EBX register
pairs, EDX and ECX contain the high-order 32 bits and EAX and EBX contain the low-
order 32 bits of a 64-bit value. For the RDX:RAX and RCX:RBX register pairs, RDX
and RCX contain the high-order 64 bits and RAX and RBX contain the low-order
64bits of a 128-bit value.
This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically. To simplify the interface to the processor’s bus, the destination
operand receives a write cycle without regard to the result of the comparison. The
destination operand is written back if the comparison fails; otherwise, the source
operand is written into the destination. (The processor never produces a locked read
without also producing a locked write.)
In 64-bit mode, default operation size is 64 bits. Use of the REX.W prefix promotes
operation to 128 bits. Note that CMPXCHG16B requires that the destination
(memory) operand be 16-byte aligned. See the summary chart at the beginning of
this section for encoding data and limits. For information on the CPUID flag that indi-
cates CMPXCHG16B, see page 3-173.
IA-32 Architecture Compatibility
This instruction encoding is not supported on Intel processors earlier than the
Pentium processors.
CMPXCHG8B/CMPXCHG16B—Compare and Exchange Bytes
Vol. 2A 3-153
INSTRUCTION SET REFERENCE, A-M
Operation
IF (64-Bit Mode and OperandSize = 64)
THEN
IF (RDX:RAX = DEST)
ZF ←1;
DEST ←RCX:RBX;
ELSE
ZF ←0;
RDX:RAX ←DEST;
FI
ELSE
IF (EDX:EAX = DEST)
ZF ←1;
DEST ←ECX:EBX;
ELSE
ZF ←0;
EDX:EAX ←DEST;
FI;
FI;
Flags Affected
The ZF flag is set if the destination operand and EDX:EAX are equal; otherwise it is
cleared. The CF, PF, AF, SF, and OF flags are unaffected.
Protected Mode Exceptions
#UD
If the destination is not a memory operand.
#GP(0)
If the destination is located in a non-writable segment.
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
Real-Address Mode Exceptions
#UD
#GP
If the destination operand is not a memory location.
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
3-154 Vol. 2A
CMPXCHG8B/CMPXCHG16B—Compare and Exchange Bytes
INSTRUCTION SET REFERENCE, A-M
#SS
If a memory operand effective address is outside the SS
segment limit.
Virtual-8086 Mode Exceptions
#UD
If the destination operand is not a memory location.
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If memory operand for CMPXCHG16B is not aligned on a 16-byte
boundary.
IfIf CPUID.01H:ECX.CMPXCHG16B[bit 13] = 0.
If the destination operand is not a memory location.
If a page fault occurs.
#UD
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
CMPXCHG8B/CMPXCHG16B—Compare and Exchange Bytes
Vol. 2A 3-155
INSTRUCTION SET REFERENCE, A-M
COMISD—Compare Scalar Ordered Double-Precision Floating-Point
Values and Set EFLAGS
Opcode
Instruction
64-Bit Mode Compat/
Leg Mode
Description
66 0F 2F /r COMISD xmm1,
Valid
Valid
Compare low double-precision
floating-point values in xmm1
and xmm2/mem64 and set
the EFLAGS flags accordingly.
xmm2/m64
Description
Compares the double-precision floating-point values in the low quadwords of
operand 1 (first operand) and operand 2 (second operand), and sets the ZF, PF, and
CF flags in the EFLAGS register according to the result (unordered, greater than, less
than, or equal). The OF, SF and AF flags in the EFLAGS register are set to 0. The unor-
dered result is returned if either source operand is a NaN (QNaN or SNaN).
Operand 1 is an XMM register; operand 2 can be an XMM register or a 64 bit memory
location.
The COMISD instruction differs from the UCOMISD instruction in that it signals a
SIMD floating-point invalid operation exception (#I) when a source operand is either
a QNaN or SNaN. The UCOMISD instruction signals an invalid numeric exception only
if a source operand is an SNaN.
The EFLAGS register is not updated if an unmasked SIMD floating-point exception is
generated.
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
RESULT ←OrderedCompare(DEST[63:0] <>SRC[63:0]) {
(* Set EFLAGS *) CASE (RESULT) OF
UNORDERED:
GREATER_THAN:
LESS_THAN:
EQUAL:
ZF,PF,CF ←111;
ZF,PF,CF ←000;
ZF,PF,CF ←001;
ZF,PF,CF ←100;
ESAC;
OF, AF, SF ←0; }
Intel C/C++Compiler Intrinsic Equivalents
int _mm_comieq_sd (__m128d a, __m128d b)
int _mm_comilt_sd (__m128d a, __m128d b)
3-156 Vol. 2A
COMISD—Compare Scalar Ordered Double-Precision Floating-Point Values and Set
EFLAGS
INSTRUCTION SET REFERENCE, A-M
int _mm_comile_sd (__m128d a, __m128d b)
int _mm_comigt_sd (__m128d a, __m128d b)
int _mm_comige_sd (__m128d a, __m128d b)
int _mm_comineq_sd (__m128d a, __m128d b)
SIMD Floating-Point Exceptions
Invalid (if SNaN or QNaN operands), Denormal.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
#SS(0)
For an illegal address in the SS segment.
For a page fault.
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
Real-Address Mode Exceptions
GP(0)
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#XM
If CR0.TS[bit 3] = 1.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
COMISD—Compare Scalar Ordered Double-Precision Floating-Point Values and Set
EFLAGS
Vol. 2A 3-157
INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
#AC(0)
For a page fault.
If alignment checking is enabled and an unaligned memory
reference is made.
#UD
If the LOCK prefix is used.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#PF(fault-code)
#NM
If the memory address is in a non-canonical form.
For a page fault.
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
3-158 Vol. 2A
COMISD—Compare Scalar Ordered Double-Precision Floating-Point Values and Set
EFLAGS
INSTRUCTION SET REFERENCE, A-M
COMISS—Compare Scalar Ordered Single-Precision Floating-Point
Values and Set EFLAGS
Opcode Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
0F 2F /r COMISS xmm1,
Valid
Valid
Compare low single-precision
floating-point values in xmm1 and
xmm2/mem32 and set the EFLAGS
flags accordingly.
xmm2/m32
Description
Compares the single-precision floating-point values in the low doublewords of
operand 1 (first operand) and operand 2 (second operand), and sets the ZF, PF, and
CF flags in the EFLAGS register according to the result (unordered, greater than, less
than, or equal). The OF, SF, and AF flags in the EFLAGS register are set to 0. The
unordered result is returned if either source operand is a NaN (QNaN or SNaN).
Operand 1 is an XMM register; Operand 2 can be an XMM register or a 32 bit memory
location.
The COMISS instruction differs from the UCOMISS instruction in that it signals a
SIMD floating-point invalid operation exception (#I) when a source operand is either
a QNaN or SNaN. The UCOMISS instruction signals an invalid numeric exception only
if a source operand is an SNaN.
The EFLAGS register is not updated if an unmasked SIMD floating-point exception is
generated.
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
RESULT ←OrderedCompare(SRC1[31:0] <>SRC2[31:0]) {
(* Set EFLAGS *) CASE (RESULT) OF
UNORDERED:
GREATER_THAN:
LESS_THAN:
EQUAL:
ZF,PF,CF ←111;
ZF,PF,CF ←000;
ZF,PF,CF ←001;
ZF,PF,CF ←100;
ESAC;
OF,AF,SF ←0; }
Intel C/C++Compiler Intrinsic Equivalents
int _mm_comieq_ss (__m128 a, __m128 b)
int _mm_comilt_ss (__m128 a, __m128 b)
COMISS—Compare Scalar Ordered Single-Precision Floating-Point Values and Set EFLAGS
Vol. 2A 3-159
INSTRUCTION SET REFERENCE, A-M
int _mm_comile_ss (__m128 a, __m128 b)
int _mm_comigt_ss (__m128 a, __m128 b)
int _mm_comige_ss (__m128 a, __m128 b)
int _mm_comineq_ss (__m128 a, __m128 b)
SIMD Floating-Point Exceptions
Invalid (if SNaN or QNaN operands), Denormal.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
For an illegal address in the SS segment.
For a page fault.
#SS(0)
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
Real-Address Mode Exceptions
GP(0)
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#XM
If CR0.TS[bit 3] = 1.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
3-160 Vol. 2A
COMISS—Compare Scalar Ordered Single-Precision Floating-Point Values and Set EFLAGS
INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
#AC(0)
For a page fault.
If alignment checking is enabled and an unaligned memory
reference is made.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#PF(fault-code)
#NM
If the memory address is in a non-canonical form.
For a page fault.
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
COMISS—Compare Scalar Ordered Single-Precision Floating-Point Values and Set EFLAGS
Vol. 2A 3-161
INSTRUCTION SET REFERENCE, A-M
CPUID—CPU Identification
Opcode
Instruction
64-Bit Mode Compat/
Leg Mode
Description
0F A2
CPUID
Valid
Valid
Returns processor identification
and feature information to the
EAX, EBX, ECX, and EDX registers,
as determined by input entered in
EAX (in some cases, ECX as well).
Description
The ID flag (bit 21) in the EFLAGS register indicates support for the CPUID instruc-
tion. If a software procedure can set and clear this flag, the processor executing the
procedure supports the CPUID instruction. This instruction operates the same in non-
64-bit modes and 64-bit mode.
CPUID returns processor identification and feature information in the EAX, EBX, ECX,
1
and EDX registers. The instruction’s output is dependent on the contents of the EAX
register upon execution (in some cases, ECX as well). For example, the following
Value and the Vendor Identification String in the appropriate registers:
MOV EAX, 00H
CPUID
Table 3-12 shows information returned, depending on the initial value loaded into the
EAX register. Table 3-13 shows the maximum CPUID input value recognized for each
family of IA-32 processors on which CPUID is implemented.
Two types of information are returned: basic and extended function information. If a
value is entered for CPUID.EAX is invalid for a particular processor, the data for the
highest basic information leaf is returned. For example, using the Intel Core 2 Duo
processor, the following is true:
CPUID.EAX = 05H (* Returns MONITOR/MWAIT leaf. *)
CPUID.EAX = 0AH (* Returns Architectural Performance Monitoring leaf. *)
CPUID.EAX = 0BH (* INVALID: Returns the same information as CPUID.EAX = 0AH. *)
CPUID.EAX = 80000008H (* Returns virtual/physical address size data. *)
CPUID.EAX = 8000000AH (* INVALID: Returns same information as CPUID.EAX = 0AH. *)
CPUID can be executed at any privilege level to serialize instruction execution. Seri-
alizing instruction execution guarantees that any modifications to flags, registers,
and memory for previous instructions are completed before the next instruction is
fetched and executed.
1. On Intel 64 processors, CPUID clears the high 32 bits of the RAX/RBX/RCX/RDX registers in all
modes.
3-162 Vol. 2A
CPUID—CPU Identification
INSTRUCTION SET REFERENCE, A-M
See also:
“Serializing Instructions” in Chapter 7, “Multiple-Processor Management,” in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A
AP-485, Intel Processor Identification and the CPUID Instruction (Order Number
241618)
Table 3-12. Information Returned by CPUID Instruction
Initial EAX
Value
Information Provided about the Processor
Basic CPUID Information
0H
EAX
EBX
ECX
EDX
Maximum Input Value for Basic CPUID Information (see Table 3-13)
“Genu”
“ntel”
“ineI”
01H
EAX
Version Information: Type, Family, Model, and Stepping ID (see
Figure 3-5)
EBX
Bits 7-0: Brand Index
Bits 15-8: CLFLUSH line size (Value ∗ 8 = cache line size in bytes)
package.
Bits 31-24: Initial APIC ID
ECX
EDX
Extended Feature Information (see Figure 3-6 and Table 3-15)
Feature Information (see Figure 3-7 and Table 3-16)
02H
03H
EAX
EBX
ECX
EDX
Cache and TLB Information (see Table 3-17)
Cache and TLB Information
Cache and TLB Information
Cache and TLB Information
EAX
EBX
Reserved.
Reserved.
ECX
EDX
Bits 00-31 of 96 bit processor serial number. (Available in Pentium III
processor only; otherwise, the value in this register is reserved.)
Bits 32-63 of 96 bit processor serial number. (Available in Pentium III
processor only; otherwise, the value in this register is reserved.)
NOTES:
Processor serial number (PSN) is not supported in the Pentium 4 pro-
cessor or later. On all models, use the PSN flag (returned using
CPUID) to check for PSN support before accessing the feature.
See AP-485, Intel Processor Identification and the CPUID Instruc-
tion (Order Number 241618) for more information on PSN.
CPUID—CPU Identification
Vol. 2A 3-163
INSTRUCTION SET REFERENCE, A-M
Table 3-12. Information Returned by CPUID Instruction (Contd.)
Initial EAX
Value
Information Provided about the Processor
CPUID leaves > 3 < 80000000 are visible only when
IA32_MISC_ENABLES.BOOT_NT4[bit 22] = 0 (default).
Deterministic Cache Parameters Leaf
04H
NOTES:
04H output depends on the initial value in ECX.
See also: “INPUT EAX = 4: Returns Deterministic Cache Parameters
for each level on page 3-180.
EAX
Bits 4-0: Cache Type Field
0 = Null - No more caches 3 = Unified Cache
1 = Data Cache
4-31 = Reserved
2 = Instruction Cache
Bits 7-5: Cache Level (starts at 1)
Bits 8: Self Initializing cache level (does not need SW initialization)
Bits 9: Fully Associative cache
Bit 10: Write-Back Invalidate/Invalidate
0 = WBINVD/INVD from threads sharing this cache acts upon lower
level caches for threads sharing this cache
1 = WBINVD/INVD is not guaranteed to act upon lower level caches
of non-originating threads sharing this cache.
Bit 11: Cache Inclusiveness
0 = Cache is not inclusive of lower cache levels.
1 = Cache is inclusive of lower cache levels.
Bits 13-12: Reserved
Bits 25-14: Maximum number of threads sharing this cache in a physi-
cal package*
Bits 31-26: Maximum number of processor cores in the physical
package* **
EBX
Bits 11-00: L = System Coherency Line Size*
Bits 21-12: P = Physical Line partitions*
Bits 31-22: W = Ways of associativity*
ECX
EDX
Bits 31-00: S = Number of Sets*
Reserved = 0
NOTES:
* Add one to the return value to get the result.
** The returned value is constant for valid initial values in ECX. Valid
ECX values start from 0.
3-164 Vol. 2A
CPUID—CPU Identification
INSTRUCTION SET REFERENCE, A-M
Table 3-12. Information Returned by CPUID Instruction (Contd.)
Initial EAX
Value
Information Provided about the Processor
MONITOR/MWAIT Leaf
5H
EAX
EBX
ECX
Bits 15-00: Smallest monitor-line size in bytes (default is processor's
monitor granularity)
Bits 31-16: Reserved = 0
Bits 15-00: Largest monitor-line size in bytes (default is processor's
monitor granularity)
Bits 31-16: Reserved = 0
Bits 00: Enumeration of Monitor-Mwait extensions (beyond EAX and
EBX registers) supported
Bits 01: Supports treating interrupts as break-event for MWAIT, even
when interrupts disabled
Bits 31 - 02: Reserved
EDX
Bits 03 - 00: Number of C0* sub C-states supported using MWait
Bits 07 - 04: Number of C1* sub C-states supported using MWAIT
Bits 11 - 08: Number of C2* sub C-states supported using MWAIT
Bits 15 - 12: Number of C3* sub C-states supported using MWAIT
Bits 19 - 16: Number of C4* sub C-states supported using MWAIT
Bits 31 - 20: Reserved = 0
NOTE:
* The definition of C0 through C4 states for MWAIT extension are pro-
cessor-specific C-states, not ACPI C-states.
Thermal and Power Management Leaf
6H
EAX
Bits 00: Digital temperature sensor is supported if set
Bits 01: Intel Dynamic Acceleration Enabled
Bits 31 - 02: Reserved
EBX
ECX
Bits 03 - 00: Number of Interrupt Thresholds in Digital Thermal Sensor
Bits 31 - 04: Reserved
Bits 00: Hardware Coordination Feedback Capability (Presence of MCNT
and ACNT MSRs). The capability to provide a measure of delivered pro-
cessor performance (since last reset of the counters), as a percentage
of expected processor performance at frequency specified in CPUID
Brand String
Bits 31 - 01: Reserved = 0
EDX
Reserved = 0
Architectural Performance Monitoring Leaf
CPUID—CPU Identification
Vol. 2A 3-165
INSTRUCTION SET REFERENCE, A-M
Table 3-12. Information Returned by CPUID Instruction (Contd.)
Initial EAX
Value
Information Provided about the Processor
0AH
EAX
EBX
Bits 07 - 00: Version ID of architectural performance monitoring
Bits 15- 08: Number of general-purpose performance monitoring
counter per logical processor
Bits 23 - 16: Bit width of general-purpose, performance monitoring
counter
Bits 31 - 24: Length of EBX bit vector to enumerate architectural per-
formance monitoring events
Bit 0: Core cycle event not available if 1
Bit 1: Instruction retired event not available if 1
Bit 2: Reference cycles event not available if 1
Bit 3: Last-level cache reference event not available if 1
Bit 4: Last-level cache misses event not available if 1
Bit 5: Branch instruction retired event not available if 1
Bit 6: Branch mispredict retired event not available if 1
Bits 31- 07: Reserved = 0
ECX
EDX
Reserved = 0
Bits 04 - 00: Number of fixed-function performance counters (if Ver-
sion ID > 1)
sion ID > 1)
Reserved = 0
Extended Function CPUID Information
80000000H EAX
Maximum Input Value for Extended Function CPUID Information (see
Table 3-13).
EBX
ECX
EDX
Reserved
Reserved
Reserved
80000001H EAX
Extended Processor Signature and Extended Feature Bits.
EBX
ECX
Reserved
Bit 0: LAHF/SAHF available in 64-bit mode
Bits 31-1 Reserved
3-166 Vol. 2A
CPUID—CPU Identification
INSTRUCTION SET REFERENCE, A-M
Table 3-12. Information Returned by CPUID Instruction (Contd.)
Initial EAX
Value
Information Provided about the Processor
Bits 10-0: Reserved
EDX
Bit 11: SYSCALL/SYSRET available (when in 64-bit mode)
Bits 19-12: Reserved = 0
Bit 20: Execute Disable Bit available
Bits 28-21: Reserved = 0
®
Bit 29: Intel 64 Technology available = 1
Bits 31-30: Reserved = 0
80000002H EAX
Processor Brand String
EBX
ECX
EDX
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
80000003H EAX
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
EBX
ECX
EDX
80000004H EAX
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
EBX
ECX
EDX
80000005H EAX
Reserved = 0
Reserved = 0
Reserved = 0
Reserved = 0
EBX
ECX
EDX
80000006H EAX
EBX
Reserved = 0
Reserved = 0
ECX
Bits 7-0: Cache Line size in bytes
Bits 15-12: L2 Associativity field *
Bits 31-16: Cache size in 1K units
Reserved = 0
EDX
NOTES:
* L2 associativity field encodings:
00H - Disabled
01H - Direct mapped
02H - 2-way
04H - 4-way
06H - 8-way
08H - 16-way
0FH - Fully associative
CPUID—CPU Identification
Vol. 2A 3-167
INSTRUCTION SET REFERENCE, A-M
Table 3-12. Information Returned by CPUID Instruction (Contd.)
Initial EAX
Value
Information Provided about the Processor
Reserved = 0
80000007H EAX
EBX
ECX
EDX
Reserved = 0
Reserved = 0
Reserved = 0
80000008H EAX
Virtual/Physical Address size
Bits 7-0: #Physical Address Bits*
Bits 15-8: #Virtual Address Bits
Bits 31-16: Reserved = 0
EBX
ECX
EDX
Reserved = 0
Reserved = 0
Reserved = 0
NOTES:
* If CPUID.80000008H:EAX[7:0] is supported, the maximum physical
address number supported should come from this field.
INPUT EAX = 0: Returns CPUID’s Highest Value for Basic Processor Information and
the Vendor Identification String
When CPUID executes with EAX set to 0, the processor returns the highest value the
CPUID recognizes for returning basic processor information. The value is returned in
the EAX register (see Table 3-13) and is processor specific.
A vendor identification string is also returned in EBX, EDX, and ECX. For Intel
processors, the string is “GenuineIntel” and is expressed:
EBX ←756e6547h (* "Genu", with G in the low nibble of BL *)
EDX ←49656e69h (* "ineI", with i in the low nibble of DL *)
INPUT EAX = 80000000H: Returns CPUID’s Highest Value for Extended Processor
Information
When CPUID executes with EAX set to 0, the processor returns the highest value the
processor recognizes for returning extended processor information. The value is
returned in the EAX register (see Table 3-13) and is processor specific.
3-168 Vol. 2A
CPUID—CPU Identification
INSTRUCTION SET REFERENCE, A-M
Table 3-13. Highest CPUID Source Operand for Intel 64 and IA-32 Processors
Highest Value in EAX
Intel 64 or IA-32 Processors
Basic Information
Extended Function
Information
Earlier Intel486 Processors
CPUID Not Implemented
01H
CPUID Not Implemented
Not Implemented
Later Intel486 Processors and
Pentium Processors
Pentium Pro and Pentium II
Processors, Intel Celeron
02H
Not Implemented
®
®
Processors
Pentium III Processors
Pentium 4 Processors
Intel Xeon Processors
Pentium M Processor
Pentium 4 Processor
03H
02H
02H
02H
05H
Not Implemented
80000004H
80000004H
80000004H
80000008H
supporting Hyper-Threading
Technology
Pentium D Processor (8xx)
Pentium D Processor (9xx)
Intel Core Duo Processor
Intel Core 2 Duo Processor
05H
06H
0AH
0AH
0AH
80000008H
80000008H
80000008H
80000008H
80000008H
Intel Xeon Processor 3000,
5100, 5300 Series
IA32_BIOS_SIGN_ID Returns Microcode Update Signature
For processors that support the microcode update facility, the IA32_BIOS_SIGN_ID
returned in the upper DWORD. For details, see Chapter 9 in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.
INPUT EAX = 1: Returns Model, Family, Stepping Information
When CPUID executes with EAX set to 1, version information is returned in EAX (see
Figure 3-5). For example: model, family, and processor type for the Intel Xeon
processor 5100 series is as follows:
• Model — 1111B
• Family — 0101B
• Processor Type — 00B
CPUID—CPU Identification
Vol. 2A 3-169
INSTRUCTION SET REFERENCE, A-M
See Table 3-14 for available processor type values. Stepping IDs are provided as
needed.
31
28 27
20 19
16 15 14 13 12 11
8
7
4
3
0
Extended
Family ID
Extended
Model ID
Family
ID
Stepping
ID
EAX
Model
Extended Family ID (0)
Extended Model ID (0)
Processor Type
Family (0FH for the Pentium 4 Processor Family)
Model
Reserved
OM16525
Figure 3-5. Version Information Returned by CPUID in EAX
Table 3-14. Processor Type Field
Type
Encoding
Original OEM Processor
00B
®
Intel OverDrive Processor
01B
Dual processor (not applicable to Intel486
processors)
10B
Intel reserved
11B
NOTE
See AP-485, Intel Processor Identification and the CPUID Instruction
(Order Number 241618) and Chapter 14 in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1, for
information on identifying earlier IA-32 processors.
The Extended Family ID needs to be examined only when the Family ID is 0FH. Inte-
grate the fields into a display using the following rule:
IF Family_ID ≠ 0FH
THEN Displayed_Family = Family_ID;
ELSE Displayed_Family = Extended_Family_ID + Family_ID;
3-170 Vol. 2A
CPUID—CPU Identification
INSTRUCTION SET REFERENCE, A-M
(* Right justify and zero-extend 4-bit field. *)
FI;
(* Show Display_Family as HEX field. *)
The Extended Model ID needs to be examined only when the Family ID is 06H or 0FH.
Integrate the field into a display using the following rule:
IF (Family_ID = 06H or Family_ID = 0FH)
THEN Displayed_Model = (Extended_Model_ID << 4) + Model_ID;
(* Right justify and zero-extend 4-bit field; display Model_ID as HEX field.*)
ELSE Displayed_Model = Model_ID;
FI;
(* Show Display_Model as HEX field. *)
INPUT EAX = 1: Returns Additional Information in EBX
When CPUID executes with EAX set to 1, additional information is returned to the
EBX register:
• Brand index (low byte of EBX) — this number provides an entry into a brand
string table that contains brand strings for IA-32 processors. More information
about this field is provided later in this section.
• CLFLUSH instruction cache line size (second byte of EBX) — this number
indicates the size of the cache line flushed with CLFLUSH instruction in 8-byte
increments. This field was introduced in the Pentium 4 processor.
• Local APIC ID (high byte of EBX) — this number is the 8-bit ID that is assigned to
the local APIC on the processor during power up. This field was introduced in the
Pentium 4 processor.
INPUT EAX = 1: Returns Feature Information in ECX and EDX
When CPUID executes with EAX set to 1, feature information is returned in ECX and
EDX.
• Figure 3-6 and Table 3-15 show encodings for ECX.
• Figure 3-7 and Table 3-16 show encodings for EDX.
For all feature flags, a 1 indicates that the feature is supported. Use Intel to properly
interpret feature flags.
NOTE
Software must confirm that a processor feature is present using
feature flags returned by CPUID prior to using the feature. Software
should not depend on future offerings retaining all features.
CPUID—CPU Identification
Vol. 2A 3-171
INSTRUCTION SET REFERENCE, A-M
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10
9
8
7
6
5
4
3
2
1
0
ECX
POPCNT
SSE4.2
SSE4.1
PDCM — Perf/Debug Capability MSR
xTPR Update Control
CMPXCHG16B
CNXT-ID — L1 Context ID
SSSE3 — SSSE3 Extensions
TM2 — Thermal Monitor 2
EST — Enhanced Intel SpeedStep® Technology
SMX — Safer Mode Extensions
VMX — Virtual Machine Extensions
DS-CPL — CPL Qualified Debug Store
MONITOR — MONITOR/MWAIT
SSE3 — SSE3 Extensions
OM16524b
Reserved
Figure 3-6. Feature Information Returned in the ECX Register
3-172 Vol. 2A
CPUID—CPU Identification
INSTRUCTION SET REFERENCE, A-M
Table 3-15. Feature Information Returned in the ECX Register
Bit #
Mnemonic
Description
0
SSE3
Streaming SIMD Extensions 3 (SSE3). A value of 1 indicates the
processor supports this technology.
1-2
3
Reserved
MONITOR
Reserved
MONITOR/MWAIT. A value of 1 indicates the processor supports
this feature.
4
DS-CPL
CPL Qualified Debug Store. A value of 1 indicates the processor
supports the extensions to the Debug Store feature to allow for
branch message storage qualified by CPL.
5
6
VMX
SMX
Virtual Machine Extensions. A value of 1 indicates that the
processor supports this technology
Safer Mode Extensions. A value of 1 indicates that the processor
supports this technology. See Chapter 6, “Procedure Calls,
Interrupts, and Exceptions”.
7
8
9
EST
Enhanced Intel SpeedStep® technology. A value of 1 indicates that
the processor supports this technology.
TM2
SSSE3
Thermal Monitor 2. A value of 1 indicates whether the processor
supports this technology.
A value of 1 indicates the presence of the Supplemental
Streaming SIMD Extensions 3 (SSSE3). A value of 0 indicates the
instruction extensions are not present in the processor
10
CNXT-ID
L1 Context ID. A value of 1 indicates the L1 data cache mode can
be set to either adaptive mode or shared mode. A value of 0
IA32_MISC_ENABLE MSR Bit 24 (L1 Data Cache Context Mode) for
details.
11-12
13
Reserved
Reserved
CMPXCHG16B
CMPXCHG16B Available. A value of 1 indicates that the feature is
available. See the “CMPXCHG8B/CMPXCHG16B—Compare and
Exchange Bytes” section in this chapter for a description.
14
15
xTPR Update
Control
xTPR Update Control. A value of 1 indicates that the processor
supports changing IA32_MISC_ENABLES[bit 23].
PDCM
Perfmon and Debug Capability: A value of 1 indicates the
processor supports the performance and debug feature indication
MSR IA32_PERF_CAPABILITIES.
18 - 16
19
Reserved
SSE4.1
Reserved
A value of 1 indicates that the processor supports SSE4.1.
A value of 1 indicates that the processor supports SSE4.2.
20
SSE4.2
CPUID—CPU Identification
Vol. 2A 3-173
INSTRUCTION SET REFERENCE, A-M
Table 3-15. Feature Information Returned in the ECX Register (Contd.)
Bit #
21 - 22
23
Mnemonic
Reserved
POPCNT
Description
Reserved
A value of 1 indicates that the processor supports the POPCNT
instruction.
31 - 24
Reserved
Reserved
ꢋꢂ ꢋꢁ ꢅꢊ ꢅꢒ ꢅꢌ ꢅꢐ ꢅꢆ ꢅꢉ ꢅꢋ ꢅꢅ ꢅꢂ ꢅꢁ ꢂꢊ ꢂꢒ ꢂꢌ ꢂꢐ ꢂꢆ ꢂꢉ ꢂꢋ ꢂꢅ ꢂꢂ ꢂꢁ ꢊ
ꢒ
ꢌ
ꢐ
ꢆ ꢉ
ꢋ
ꢅ
ꢂ
ꢁ
(';
3%(±3HQGꢀꢄ%UNꢀꢄ(1ꢀ
70±7KHUPꢀꢄ0RQLWRU
+77±0XOWLꢏWKUHDGLQJ
66±6HOIꢄ6QRRS
66(ꢅ±66(ꢅꢄ([WHQVLRQV
66(±66(ꢄ([WHQVLRQV
);65±);6$9(ꢎ);56725
00;±00;ꢄ7HFKQRORJ\
$&3,±7KHUPDOꢄ0RQLWRUꢄDQGꢄ&ORFNꢄ&WUO
'6±'HEXJꢄ6WRUH
&/)6+±&)/86+ꢄLQVWUXFWLRQ
361±3URFHVVRUꢄ6HULDOꢄ1XPEHU
36(ꢏꢋꢐꢄ±ꢄ3DJHꢄ6L]Hꢄ([WHQVLRQ
3$7±3DJHꢄ$WWULEXWHꢄ7DEOH
&029±&RQGLWLRQDOꢄ0RYHꢎ&RPSDUHꢄ,QVWUXFWLRQ
0&$±0DFKLQHꢄ&KHFNꢄ$UFKLWHFWXUH
3*(±37(ꢄ*OREDOꢄ%LW
0755±0HPRU\ꢄ7\SHꢄ5DQJHꢄ5HJLVWHUV
6(3±6<6(17(5ꢄDQGꢄ6<6(;,7
$3,&±$3,&ꢄRQꢄ&KLS
&;ꢒ±&03;&+*ꢒ%ꢄ,QVWꢀ
0&(±0DFKLQHꢄ&KHFNꢄ([FHSWLRQ
3$(±3K\VLFDOꢄ$GGUHVVꢄ([WHQVLRQV
065±5'065ꢄDQGꢄ:5065ꢄ6XSSRUW
76&±7LPHꢄ6WDPSꢄ&RXQWHU
36(±3DJHꢄ6L]Hꢄ([WHQVLRQV
'(±'HEXJJLQJꢄ([WHQVLRQV
90(±9LUWXDOꢏꢒꢁꢒꢐꢄ0RGHꢄ(QKDQFHPHQW
)38±[ꢒꢌꢄ)38ꢄRQꢄ&KLS
5HVHUYHG
20ꢂꢐꢆꢅꢋ
Figure 3-7. Feature Information Returned in the EDX Register
3-174 Vol. 2A
CPUID—CPU Identification
INSTRUCTION SET REFERENCE, A-M
Table 3-16. More on Feature Information Returned in the EDX Register
Bit # Mnemonic Description
0
1
FPU
VME
Floating Point Unit On-Chip. The processor contains an x87 FPU.
Virtual 8086 Mode Enhancements. Virtual 8086 mode enhancements,
including CR4.VME for controlling the feature, CR4.PVI for protected mode
virtual interrupts, software interrupt indirection, expansion of the TSS with
the software indirection bitmap, and EFLAGS.VIF and EFLAGS.VIP flags.
2
3
DE
Debugging Extensions. Support for I/O breakpoints, including CR4.DE for
controlling the feature, and optional trapping of accesses to DR4 and DR5.
PSE
Page Size Extension. Large pages of size 4 MByte are supported, including
CR4.PSE for controlling the feature, the defined dirty bit in PDE (Page
Directory Entries), optional reserved bit trapping in CR3, PDEs, and PTEs.
4
5
TSC
Time Stamp Counter. The RDTSC instruction is supported, including CR4.TSD
for controlling privilege.
MSR
Model Specific Registers RDMSR and WRMSR Instructions. The RDMSR and
WRMSR instructions are supported. Some of the MSRs are implementation
dependent.
6
7
PAE
MCE
Physical Address Extension. Physical addresses greater than 32 bits are
supported: extended page table entry formats, an extra level in the page
translation tables is defined, 2-MByte pages are supported instead of 4
Mbyte pages if PAE bit is 1. The actual number of address bits beyond 32 is
not defined, and is implementation specific.
Machine Check Exception. Exception 18 is defined for Machine Checks,
including CR4.MCE for controlling the feature. This feature does not define
the model-specific implementations of machine-check error logging,
reporting, and processor shutdowns. Machine Check exception handlers may
have to depend on processor version to do model specific processing of the
exception, or test for the presence of the Machine Check feature.
8
9
CX8
CMPXCHG8B Instruction. The compare-and-exchange 8 bytes (64 bits)
instruction is supported (implicitly locked and atomic).
APIC
APIC On-Chip. The processor contains an Advanced Programmable Interrupt
Controller (APIC), responding to memory mapped commands in the physical
address range FFFE0000H to FFFE0FFFH (by default - some processors
permit the APIC to be relocated).
10
11
Reserved
SEP
Reserved
SYSENTER and SYSEXIT Instructions. The SYSENTER and SYSEXIT and
associated MSRs are supported.
12
MTRR
Memory Type Range Registers. MTRRs are supported. The MTRRcap MSR
contains feature bits that describe what memory types are supported, how
many variable MTRRs are supported, and whether fixed MTRRs are
supported.
CPUID—CPU Identification
Vol. 2A 3-175
INSTRUCTION SET REFERENCE, A-M
Table 3-16. More on Feature Information Returned in the EDX Register (Contd.)
Bit # Mnemonic Description
13
PGE
PTE Global Bit. The global bit in page directory entries (PDEs) and page table
entries (PTEs) is supported, indicating TLB entries that are common to
different processes and need not be flushed. The CR4.PGE bit controls this
feature.
14
MCA
Machine Check Architecture. The Machine Check Architecture, which
provides a compatible mechanism for error reporting in P6 family, Pentium 4,
Intel Xeon processors, and future processors, is supported. The MCG_CAP
MSR contains feature bits describing how many banks of error reporting
MSRs are supported.
15
16
CMOV
PAT
Conditional Move Instructions. The conditional move instruction CMOV is
supported. In addition, if x87 FPU is present as indicated by the CPUID.FPU
feature bit, then the FCOMI and FCMOV instructions are supported
Page Attribute Table. Page Attribute Table is supported. This feature
augments the Memory Type Range Registers (MTRRs), allowing an operating
system to specify attributes of memory on a 4K granularity through a linear
address.
17
PSE-36
36-Bit Page Size Extension. Extended 4-MByte pages that are capable of
addressing physical memory beyond 4 GBytes are supported. This feature
indicates that the upper four bits of the physical address of the 4-MByte
page is encoded by bits 13-16 of the page directory entry.
18
PSN
Processor Serial Number. The processor supports the 96-bit processor
identification number feature and the feature is enabled.
19
20
21
CLFSH
Reserved
DS
CLFLUSH Instruction. CLFLUSH Instruction is supported.
Reserved
Debug Store. The processor supports the ability to write debug information
into a memory resident buffer. This feature is used by the branch trace store
(BTS) and precise event-based sampling (PEBS) facilities (see Chapter 18,
“Debugging and Performance Monitoring,” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3B).
22
ACPI
Thermal Monitor and Software Controlled Clock Facilities. The processor
implements internal MSRs that allow processor temperature to be monitored
and processor performance to be modulated in predefined duty cycles under
software control.
23
24
MMX
FXSR
Intel MMX Technology. The processor supports the Intel MMX technology.
FXSAVE and FXRSTOR Instructions. The FXSAVE and FXRSTOR instructions
are supported for fast save and restore of the floating point context.
Presence of this bit also indicates that CR4.OSFXSR is available for an
operating system to indicate that it supports the FXSAVE and FXRSTOR
instructions.
3-176 Vol. 2A
CPUID—CPU Identification
INSTRUCTION SET REFERENCE, A-M
Table 3-16. More on Feature Information Returned in the EDX Register (Contd.)
Bit # Mnemonic Description
25
26
27
SSE
SSE2
SS
SSE. The processor supports the SSE extensions.
SSE2. The processor supports the SSE2 extensions.
Self Snoop. The processor supports the management of conflicting memory
types by performing a snoop of its own cache structure for transactions
issued to the bus.
28
29
HTT
TM
Multi-Threading. The physical processor package is capable of supporting
more than one logical processor.
Thermal Monitor. The processor implements the thermal monitor automatic
thermal control circuitry (TCC).
30
31
Reserved
PBE
Reserved
Pending Break Enable. The processor supports the use of the FERR#/PBE#
pin when the processor is in the stop-clock state (STPCLK# is asserted) to
signal the processor that an interrupt is pending and that the processor
should return to normal operation to handle the interrupt. Bit 10 (PBE
enable) in the IA32_MISC_ENABLE MSR enables this capability.
INPUT EAX = 2: Cache and TLB Information Returned in EAX, EBX, ECX, EDX
When CPUID executes with EAX set to 2, the processor returns information about the
processor’s internal caches and TLBs in the EAX, EBX, ECX, and EDX registers.
The encoding is as follows:
• The least-significant byte in register EAX (register AL) indicates the number of
complete description of the processor’s caches and TLBs. The first member of the
family of Pentium 4 processors will return a 1.
• The most significant bit (bit 31) of each register indicates whether the register
contains valid information (set to 0) or is reserved (set to 1).
• If a register contains valid information, the information is contained in 1 byte
descriptors. Table 3-17 shows the encoding of these descriptors. Note that the
order of descriptors in the EAX, EBX, ECX, and EDX registers is not defined; that
is, specific bytes are not designated to contain descriptors for specific cache or
TLB types. The descriptors may appear in any order.
CPUID—CPU Identification
Vol. 2A 3-177
INSTRUCTION SET REFERENCE, A-M
Table 3-17. Encoding of Cache and TLB Descriptors
Cache or TLB Description
Descriptor Value
00H
01H
02H
03H
04H
05H
06H
08H
0AH
0BH
0CH
22H
Null descriptor
Instruction TLB: 4 KByte pages, 4-way set associative, 32 entries
Instruction TLB: 4 MByte pages, 4-way set associative, 2 entries
Data TLB: 4 KByte pages, 4-way set associative, 64 entries
Data TLB: 4 MByte pages, 4-way set associative, 8 entries
Data TLB1: 4 MByte pages, 4-way set associative, 32 entries
1st-level instruction cache: 8 KBytes, 4-way set associative, 32 byte line size
1st-level instruction cache: 16 KBytes, 4-way set associative, 32 byte line size
1st-level data cache: 8 KBytes, 2-way set associative, 32 byte line size
Instruction TLB: 4 MByte pages, 4-way set associative, 4 entries
1st-level data cache: 16 KBytes, 4-way set associative, 32 byte line size
3rd-level cache: 512 KBytes, 4-way set associative, 64 byte line size, 2 lines
per sector
23H
25H
29H
3rd-level cache: 1 MBytes, 8-way set associative, 64 byte line size, 2 lines per
sector
3rd-level cache: 2 MBytes, 8-way set associative, 64 byte line size, 2 lines per
sector
3rd-level cache: 4 MBytes, 8-way set associative, 64 byte line size, 2 lines per
sector
2CH
30H
40H
1st-level data cache: 32 KBytes, 8-way set associative, 64 byte line size
1st-level instruction cache: 32 KBytes, 8-way set associative, 64 byte line size
No 2nd-level cache or, if processor contains a valid 2nd-level cache, no 3rd-
level cache
41H
42H
43H
44H
45H
46H
47H
49H
50H
51H
52H
2nd-level cache: 128 KBytes, 4-way set associative, 32 byte line size
2nd-level cache: 256 KBytes, 4-way set associative, 32 byte line size
2nd-level cache: 512 KBytes, 4-way set associative, 32 byte line size
2nd-level cache: 1 MByte, 4-way set associative, 32 byte line size
2nd-level cache: 2 MByte, 4-way set associative, 32 byte line size
3rd-level cache: 4 MByte, 4-way set associative, 64 byte line size
3rd-level cache: 8 MByte, 8-way set associative, 64 byte line size
2nd-level cache: 4 MByte, 16-way set associative, 64 byte line size
Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 64 entries
Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 128 entries
Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 256 entries
3-178 Vol. 2A
CPUID—CPU Identification
INSTRUCTION SET REFERENCE, A-M
Table 3-17. Encoding of Cache and TLB Descriptors (Contd.)
Descriptor Value
Cache or TLB Description
Data TLB0: 4 MByte pages, 4-way set associative, 16 entries
Data TLB0: 4 KByte pages, 4-way associative, 16 entries
Data TLB: 4 KByte and 4 MByte pages, 64 entries
56H
57H
5BH
5CH
Data TLB: 4 KByte and 4 MByte pages,128 entries
5DH
Data TLB: 4 KByte and 4 MByte pages,256 entries
60H
1st-level data cache: 16 KByte, 8-way set associative, 64 byte line size
1st-level data cache: 8 KByte, 4-way set associative, 64 byte line size
1st-level data cache: 16 KByte, 4-way set associative, 64 byte line size
1st-level data cache: 32 KByte, 4-way set associative, 64 byte line size
Trace cache: 12 K-μop, 8-way set associative
66H
67H
68H
70H
71H
Trace cache: 16 K-μop, 8-way set associative
72H
Trace cache: 32 K-μop, 8-way set associative
78H
2nd-level cache: 1 MByte, 4-way set associative, 64byte line size
79H
2nd-level cache: 128 KByte, 8-way set associative, 64 byte line size, 2 lines
per sector
7AH
7BH
7CH
2nd-level cache: 256 KByte, 8-way set associative, 64 byte line size, 2 lines
per sector
2nd-level cache: 512 KByte, 8-way set associative, 64 byte line size, 2 lines
per sector
2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size, 2 lines per
sector
7DH
7FH
82H
83H
84H
85H
86H
87H
B0H
B3H
B4H
F0H
F1H
2nd-level cache: 2 MByte, 8-way set associative, 64byte line size
2nd-level cache: 512 KByte, 2-way set associative, 64-byte line size
2nd-level cache: 256 KByte, 8-way set associative, 32 byte line size
2nd-level cache: 512 KByte, 8-way set associative, 32 byte line size
2nd-level cache: 1 MByte, 8-way set associative, 32 byte line size
2nd-level cache: 2 MByte, 8-way set associative, 32 byte line size
2nd-level cache: 512 KByte, 4-way set associative, 64 byte line size
2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size
Instruction TLB: 4 KByte pages, 4-way set associative, 128 entries
Data TLB: 4 KByte pages, 4-way set associative, 128 entries
Data TLB1: 4 KByte pages, 4-way associative, 256 entries
64-Byte prefetching
128-Byte prefetching
CPUID—CPU Identification
Vol. 2A 3-179
INSTRUCTION SET REFERENCE, A-M
Example 3-1. Example of Cache and TLB Interpretation
The first member of the family of Pentium 4 processors returns the following informa-
tion about caches and TLBs when the CPUID executes with an input value of 2:
EAX
EBX
ECX
EDX
66 5B 50 01H
0H
0H
00 7A 70 00H
Which means:
• The least-significant byte (byte 0) of register EAX is set to 01H. This indicates
that CPUID needs to be executed once with an input value of 2 to retrieve
complete information about caches and TLBs.
• The most-significant bit of all four registers (EAX, EBX, ECX, and EDX) is set to 0,
indicating that each register contains valid 1-byte descriptors.
• Bytes 1, 2, and 3 of register EAX indicate that the processor has:
— 50H - a 64-entry instruction TLB, for mapping 4-KByte and 2-MByte or 4-
MByte pages.
— 5BH - a 64-entry data TLB, for mapping 4-KByte and 4-MByte pages.
— 66H - an 8-KByte 1st level data cache, 4-way set associative, with a 64-Byte
cache line size.
• The descriptors in registers EBX and ECX are valid, but contain NULL descriptors.
• Bytes 0, 1, 2, and 3 of register EDX indicate that the processor has:
— 00H - NULL descriptor.
— 70H - Trace cache: 12 K-μop, 8-way set associative.
— 7AH - a 256-KByte 2nd level cache, 8-way set associative, with a sectored,
64-byte cache line size.
— 00H - NULL descriptor.
INPUT EAX = 4: Returns Deterministic Cache Parameters for Each Level
When CPUID executes with EAX set to 4 and ECX contains an index value, the
processor returns encoded data that describe a set of deterministic cache parame-
ters (for the cache level associated with the input in ECX). Valid index values start
from 0.
Software can enumerate the deterministic cache parameters for each level of the
cache hierarchy starting with an index value of 0, until the parameters report the
value associated with the cache type field is 0. The architecturally defined fields
reported by deterministic cache parameters are documented in Table 3-12.
The CPUID leaf 4 also reports information about maximum number of cores in a
physical package. This information is constant for all valid index values. Software can
3-180 Vol. 2A
CPUID—CPU Identification
INSTRUCTION SET REFERENCE, A-M
query maximum number of cores per physical package by executing CPUID with
EAX=4 and ECX=0.
INPUT EAX = 5: Returns MONITOR and MWAIT Features
When CPUID executes with EAX set to 5, the processor returns information about
features available to MONITOR/MWAIT instructions. The MONITOR instruction is used
for address-range monitoring in conjunction with MWAIT instruction. The MWAIT
instruction optionally provides additional extensions for advanced power manage-
ment. See Table 3-12.
INPUT EAX = 6: Returns Thermal and Power Management Features
When CPUID executes with EAX set to 6, the processor returns information about
thermal and power management features. See Table 3-12.
INPUT EAX = 10: Returns Architectural Performance Monitoring Features
When CPUID executes with EAX set to 10, the processor returns information about
support for architectural performance monitoring capabilities. Architectural perfor-
mance monitoring is supported if the version ID (see Table 3-12) is greater than
Pn 0. See Table 3-12.
For each version of architectural performance monitoring capability, software must
enumerate this leaf to discover the programming facilities and the architectural
performance events available in the processor. The details are described in Chapter
18, “Debugging and Performance Monitoring,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3B.
METHODS FOR RETURNING BRANDING INFORMATION
Use the following techniques to access branding information:
1. Processor brand string method; this method also returns the processor’s
maximum operating frequency
2. Processor brand index; this method uses a software supplied brand string table.
available in early processors, see Section: “Identification of Earlier IA-32 Processors”
in Chapter 14 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1.
The Processor Brand String Method
Figure 3-8 describes the algorithm used for detection of the brand string. Processor
brand identification software should execute this algorithm on all Intel 64 and IA-32
processors.
CPUID—CPU Identification
Vol. 2A 3-181
INSTRUCTION SET REFERENCE, A-M
This method (introduced with Pentium 4 processors) returns an ASCII brand identifi-
cation string and the maximum operating frequency of the processor to the EAX,
EBX, ECX, and EDX registers.
Input: EAX=
0x80000000
CPUID
Processor Brand
String Not
False
IF (EAX & 0x80000000)
Supported
CPUID
True ≥
Function
Extended
Supported
EAX Return Value =
Max. Extended CPUID
Function Index
True
Processor Brand
String Supported
IF (EAX Return Value
≥ 0x80000004)
OM15194
Figure 3-8. Determination of Support for the Processor Brand String
How Brand Strings Work
To use the brand string method, execute CPUID with EAX input of 8000002H through
80000004H. For each input value, CPUID returns 16 ASCII characters using EAX,
EBX, ECX, and EDX. The returned string will be NULL-terminated.
3-182 Vol. 2A
CPUID—CPU Identification
INSTRUCTION SET REFERENCE, A-M
Table 3-18 shows the brand string that is returned by the first processor in the
Pentium 4 processor family.
Table 3-18. Processor Brand String Returned with Pentium 4 Processor
EAX Input Value
80000002H
Return Values
ASCII Equivalent
EAX = 20202020H
“
“
“
”
EBX = 20202020H
ECX = 20202020H
EDX = 6E492020H
”
”
“nI ”
80000003H
80000004H
EAX = 286C6574H
EBX = 50202952H
ECX = 69746E65H
EDX = 52286D75H
“(let”
“P )R”
“itne”
“R(mu”
EAX = 20342029H
EBX = 20555043H
EDX = 007A484DH
“ 4 )”
“ UPC”
“0051”
“\0zHM”
Extracting the Maximum Processor Frequency from Brand Strings
Figure 3-9 provides an algorithm which software can use to extract the maximum
processor operating frequency from the processor brand string.
NOTE
When a frequency is given in a brand string, it is the maximum
qualified frequency of the processor, not the frequency at which the
processor is currently running.
CPUID—CPU Identification
Vol. 2A 3-183
INSTRUCTION SET REFERENCE, A-M
6FDQꢄꢓ%UDQGꢄ6WULQJꢓꢄLQ
5HYHUVHꢄ%\WHꢄ2UGHU
ꢓ]+0ꢓꢍꢄRUꢄ
0DWFK
ꢓ]+*ꢓꢍꢄRUꢄ
6XEVWULQJ
ꢓ]+7ꢓ
)DOVH
,)ꢄ6XEVWULQJꢄ0DWFKHG
5HSRUWꢄ(UURU
'HWHUPLQHꢄꢓ)UHTꢓ
7UXH
,Iꢄꢓ]+0ꢓ
,Iꢄꢓ]+*ꢓ
,Iꢄꢓ]+7ꢓ
0XOWLSOLHUꢄ ꢄꢂꢄ[ꢄꢂꢁꢐ
0XOWLSOLHUꢄ ꢄꢂꢄ[ꢄꢂꢁꢊ
0XOWLSOLHUꢄ ꢄꢂꢄ[ꢄꢂꢁꢂꢅ
DQGꢄꢓ0XOWLSOLHUꢓ
'HWHUPLQHꢄꢓ0XOWLSOLHUꢓ
6FDQꢄ'LJLWVꢄ
8QWLOꢄ%ODQN
5HYHUVHꢄ'LJLWV
7Rꢄ'HFLPDOꢄ9DOXH
'HWHUPLQHꢄꢓ)UHTꢓ
,Qꢄ5HYHUVHꢄ2UGHU
0D[ꢀꢄ4XDOLILHG
)UHTXHQF\ꢄ
ꢓ)UHTꢓꢄ[ꢄꢓ0XOWLSOLHUꢓ
ꢓ)UHTꢓꢄ ꢄ;<ꢀ=ꢄLI
'LJLWVꢄ ꢄꢓ=ꢀ<;ꢓ
20ꢂꢆꢂꢊꢆ
Figure 3-9. Algorithm for Extracting Maximum Processor Frequency
The Processor Brand Index Method
®
The brand index method (introduced with Pentium® III Xeon processors) provides
an entry point into a brand identification table that is maintained in memory by
system software and is accessible from system- and user-level code. In this table,
each brand index is associate with an ASCII brand identification string that identifies
the official Intel family and model number of a processor.
When CPUID executes with EAX set to 1, the processor returns a brand index to the
low byte in EBX. Software can then use this index to locate the brand identification
string for the processor in the brand identification table. The first entry (brand index
0) in this table is reserved, allowing for backward compatibility with processors that
3-184 Vol. 2A
CPUID—CPU Identification
INSTRUCTION SET REFERENCE, A-M
do not support the brand identification feature. Starting with processor signature
family ID = 0FH, model = 03H, brand index method is no longer supported. Use
brand string method instead.
Table 3-19 shows brand indices that have identification strings associated with them.
Table 3-19. Mapping of Brand Indices; and
Intel 64 and IA-32 Processor Brand Strings
Brand Index
00H
Brand String
This processor does not support the brand identification feature
1
01H
Intel(R) Celeron(R) processor
1
02H
Intel(R) Pentium(R) III processor
03H
Intel(R) Pentium(R) III Xeon(R) processor; If processor signature =
000006B1h, then Intel(R) Celeron(R) processor
04H
06H
07H
08H
09H
0AH
0BH
Intel(R) Pentium(R) III processor
Mobile Intel(R) Pentium(R) III processor-M
1
Mobile Intel(R) Celeron(R) processor
Intel(R) Pentium(R) 4 processor
Intel(R) Pentium(R) 4 processor
1
Intel(R) Celeron(R) processor
Intel(R) Xeon(R) processor; If processor signature = 00000F13h, then Intel(R)
Xeon(R) processor MP
0CH
0EH
Intel(R) Xeon(R) processor MP
Mobile Intel(R) Pentium(R) 4 processor-M; If processor signature =
00000F13h, then Intel(R) Xeon(R) processor
1
0FH
11H
Mobile Intel(R) Celeron(R) processor
Mobile Genuine Intel(R) processor
Intel(R) Celeron(R) M processor
12H
1
13H
Mobile Intel(R) Celeron(R) processor
14H
Intel(R) Celeron(R) processor
Mobile Genuine Intel(R) processor
Intel(R) Pentium(R) M processor
15H
16H
1
17H
Mobile Intel(R) Celeron(R) processor
18H – 0FFH
RESERVED
NOTES:
1. Indicates versions of these processors that were introduced after the Pentium III
CPUID—CPU Identification
Vol. 2A 3-185
INSTRUCTION SET REFERENCE, A-M
IA-32 Architecture Compatibility
CPUID is not supported in early models of the Intel486 processor or in any IA-32
processor earlier than the Intel486 processor.
Operation
IA32_BIOS_SIGN_ID MSR ←Update with installed microcode revision number;
CASE (EAX) OF
EAX = 0:
EAX ←Highest basic function input value understood by CPUID;
EBX ←Vendor identification string;
EDX ←Vendor identification string;
ECX ←Vendor identification string;
BREAK;
EAX = 1H:
EAX[3:0] ←Stepping ID;
EAX[7:4] ←Model;
EAX[11:8] ←Family;
EAX[13:12] ←Processor type;
EAX[15:14] ←Reserved;
EAX[19:16] ←Extended Model;
EAX[23:20] ←Extended Family;
EAX[31:24] ←Reserved;
EBX[7:0] ←Brand Index; (* Reserved if the value is zero. *)
EBX[15:8] ←CLFLUSH Line Size;
EBX[16:23] ←Reserved; (* Number of threads enabled = 2 if MT enable fuse set. *)
EBX[24:31] ←Initial APIC ID;
ECX ←Feature flags; (* See Figure 3-6. *)
EDX ←Feature flags; (* See Figure 3-7. *)
BREAK;
EAX = 2H:
EAX ←Cache and TLB information;
EBX ←Cache and TLB information;
ECX ←Cache and TLB information;
EDX ←Cache and TLB information;
BREAK;
EAX = 3H:
EAX ←Reserved;
EBX ←Reserved;
ECX ←ProcessorSerialNumber[31:0];
(* Pentium III processors only, otherwise reserved. *)
EDX ←ProcessorSerialNumber[63:32];
(* Pentium III processors only, otherwise reserved. *
3-186 Vol. 2A
CPUID—CPU Identification
INSTRUCTION SET REFERENCE, A-M
BREAK
EAX = 4H:
EAX ←Deterministic Cache Parameters Leaf; (* See Table 3-12. *)
EBX ←Deterministic Cache Parameters Leaf;
ECX ←Deterministic Cache Parameters Leaf;
EDX ←Deterministic Cache Parameters Leaf;
BREAK;
EAX = 5H:
EAX ←MONITOR/MWAIT Leaf; (* See Table 3-12. *)
EBX ←MONITOR/MWAIT Leaf;
ECX ←MONITOR/MWAIT Leaf;
EDX ←MONITOR/MWAIT Leaf;
BREAK;
EAX = 6H:
EAX ←Thermal and Power Management Leaf; (* See Table 3-12. *)
EBX ←Thermal and Power Management Leaf;
ECX ←Thermal and Power Management Leaf;
EDX ←Thermal and Power Management Leaf;
BREAK;
EAX = 7H or 8H or 9H:
EAX ←Reserved = 0;
EBX ←Reserved = 0;
ECX ←Reserved = 0;
EDX ←Reserved = 0;
BREAK;
EAX = AH:
EAX ←Architectural Performance Monitoring Leaf; (* See Table 3-12. *)
EBX ←Architectural Performance Monitoring Leaf;
ECX ←Architectural Performance Monitoring Leaf;
EDX ←Architectural Performance Monitoring Leaf;
BREAK;
EAX = 80000000H:
EAX ←Highest extended function input value understood by CPUID;
EBX ←Reserved;
ECX ←Reserved;
EDX ←Reserved;
BREAK;
EAX = 80000001H:
EAX ←Reserved;
EBX ←Reserved;
ECX ←Extended Feature Bits (* See Table 3-12.*);
EDX ←Extended Feature Bits (* See Table 3-12. *);
BREAK;
CPUID—CPU Identification
Vol. 2A 3-187
INSTRUCTION SET REFERENCE, A-M
EAX = 80000002H:
EAX ←Processor Brand String;
EBX ←Processor Brand String, continued;
ECX ←Processor Brand String, continued;
EDX ←Processor Brand String, continued;
BREAK;
EAX = 80000003H:
EAX ←Processor Brand String, continued;
EBX ←Processor Brand String, continued;
ECX ←Processor Brand String, continued;
EDX ←Processor Brand String, continued;
BREAK;
EAX = 80000004H:
EAX ←Processor Brand String, continued;
EBX ←Processor Brand String, continued;
ECX ←Processor Brand String, continued;
EDX ←Processor Brand String, continued;
BREAK;
EAX = 80000005H:
EAX ←Reserved = 0;
EBX ←Reserved = 0;
ECX ←Reserved = 0;
EDX ←Reserved = 0;
BREAK;
EAX = 80000006H:
EAX ←Reserved = 0;
EBX ←Reserved = 0;
ECX ←Cache information;
EDX ←Reserved = 0;
BREAK;
EAX = 80000007H:
EAX ←Reserved = 0;
EBX ←Reserved = 0;
ECX ←Reserved = 0;
EDX ←Reserved = 0;
BREAK;
EAX = 80000008H:
EAX ←Reserved = 0;
EBX ←Reserved = 0;
ECX ←Reserved = 0;
EDX ←Reserved = 0;
BREAK;
DEFAULT: (* EAX = Value outside of recognized range for CPUID. *)
3-188 Vol. 2A
CPUID—CPU Identification
INSTRUCTION SET REFERENCE, A-M
EAX ←Reserved; (* Information returned for highest basic information leaf. *)
EBX ←Reserved; (* Information returned for highest basic information leaf. *)
ECX ←Reserved; (* Information returned for highest basic information leaf. *)
EDX ←Reserved; (* Information returned for highest basic information leaf. *)
BREAK;
ESAC;
Flags Affected
None.
Exceptions (All Operating Modes)
#UD
If the LOCK prefix is used.
In earlier IA-32 processors that do not support the CPUID
instruction, execution of the instruction results in an invalid
opcode (#UD) exception being generated.
CPUID—CPU Identification
Vol. 2A 3-189
INSTRUCTION SET REFERENCE, A-M
CVTDQ2PD—Convert Packed Doubleword Integers to Packed Double-
Precision Floating-Point Values
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
F3 0F E6
CVTDQ2PD xmm1,
xmm2/m64
Valid
Valid
Convert two packed signed
doubleword integers from
xmm2/m128 to two packed
double-precision floating-point
values in xmm1.
Description
Converts two packed signed doubleword integers in the source operand (second
operand) to two packed double-precision floating-point values in the destination
operand (first operand).
The source operand can be an XMM register or a 64-bit memory location. The desti-
nation operand is an XMM register. When the source operand is an XMM register, the
packed integers are located in the low quadword of the register.
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
DEST[63:0] ←Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0]);
DEST[127:64] ←Convert_Integer_To_Double_Precision_Floating_Point(SRC[63:32]);
Intel C/C++Compiler Intrinsic Equivalent
CVTDQ2PD
__m128d _mm_cvtepi32_pd(__m128i a)
SIMD Floating-Point Exceptions
None.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
For an illegal address in the SS segment.
For a page fault.
#SS(0)
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
#UD
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
3-190 Vol. 2A
CVTDQ2PD—Convert Packed Doubleword Integers to Packed Double-Precision Floating-
Point Values
INSTRUCTION SET REFERENCE, A-M
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
Real-Address Mode Exceptions
GP(0)
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#UD
If CR0.TS[bit 3] = 1.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
#AC(0)
For a page fault.
If alignment checking is enabled and an unaligned memory
reference is made.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#PF(fault-code)
#NM
If the memory address is in a non-canonical form.
For a page fault.
If CR0.TS[bit 3] = 1.
#UD
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
CVTDQ2PD—Convert Packed Doubleword Integers to Packed Double-Precision Floating-
Point Values
Vol. 2A 3-191
INSTRUCTION SET REFERENCE, A-M
CVTDQ2PS—Convert Packed Doubleword Integers to Packed Single-
Precision Floating-Point Values
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
0F 5B /r
CVTDQ2PS xmm1,
xmm2/m128
Valid
Valid
Convert four packed signed
doubleword integers from
xmm2/m128 to four packed
single-precisionfloating-point
values in xmm1.
Description
Converts four packed signed doubleword integers in the source operand (second
operand) to four packed single-precision floating-point values in the destination
operand (first operand).
The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. When a conversion is inexact, rounding is
performed according to the rounding control bits in the MXCSR register.
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
DEST[31:0] ←Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0]);
DEST[63:32] ←Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:32]);
DEST[95:64] ←Convert_Integer_To_Single_Precision_Floating_Point(SRC[95:64]);
DEST[127:96] ←Convert_Integer_To_Single_Precision_Floating_Point(SRC[127:96]);
Intel C/C++Compiler Intrinsic Equivalent
CVTDQ2PS
__m128 _mm_cvtepi32_ps(__m128i a)
SIMD Floating-Point Exceptions
Precision.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#SS(0)
For an illegal address in the SS segment.
For a page fault.
#PF(fault-code)
3-192 Vol. 2A
CVTDQ2PS—Convert Packed Doubleword Integers to Packed Single-Precision Floating-
Point Values
INSTRUCTION SET REFERENCE, A-M
#NM
#XM
If CR0.TS[bit 3] = 1.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP(0)
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#XM
If CR0.TS[bit 3] = 1.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
For a page fault.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#PF(fault-code)
For a page fault.
CVTDQ2PS—Convert Packed Doubleword Integers to Packed Single-Precision Floating-
Point Values
Vol. 2A 3-193
INSTRUCTION SET REFERENCE, A-M
#NM
#XM
If CR0.TS[bit 3] = 1.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
3-194 Vol. 2A
CVTDQ2PS—Convert Packed Doubleword Integers to Packed Single-Precision Floating-
Point Values
INSTRUCTION SET REFERENCE, A-M
CVTPD2DQ—Convert Packed Double-Precision Floating-Point Values to
Packed Doubleword Integers
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
F2 0F E6
CVTPD2DQ xmm1,
xmm2/m128
Valid
Valid
Convert two packed double-
precision floating-point values
from xmm2/m128 to two
packed signed doubleword
integers in xmm1.
Description
Converts two packed double-precision floating-point values in the source operand
(second operand) to two packed signed doubleword integers in the destination
operand (first operand).
The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. The result is stored in the low quadword of the
destination operand and the high quadword is cleared to all 0s.
When a conversion is inexact, the value returned is rounded according to the
rounding control bits in the MXCSR register. If a converted result is larger than the
maximum signed doubleword integer, the floating-point invalid exception is raised,
and if this exception is masked, the indefinite integer value (80000000H) is returned.
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
DEST[31:0] ←Convert_Double_Precision_Floating_Point_To_Integer(SRC[63:0]);
DEST[63:32] ←Convert_Double_Precision_Floating_Point_To_Integer(SRC[127:64]);
DEST[127:64] ←0000000000000000H;
Intel C/C++Compiler Intrinsic Equivalent
CVTPD2DQ
__m128i _mm_cvtpd_epi32(__m128d a)
SIMD Floating-Point Exceptions
Invalid, Precision.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.segments.
CVTPD2DQ—Convert Packed Double-Precision Floating-Point Values to Packed Double-
word Integers
Vol. 2A 3-195
INSTRUCTION SET REFERENCE, A-M
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
For an illegal address in the SS segment.
For a page fault.
#SS(0)
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP(0)
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#XM
If CR0.TS[bit 3] = 1.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
For a page fault.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
3-196 Vol. 2A
CVTPD2DQ—Convert Packed Double-Precision Floating-Point Values to Packed Double-
word Integers
INSTRUCTION SET REFERENCE, A-M
#GP(0)
If the memory address is in a non-canonical form.
If memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#PF(fault-code)
#NM
For a page fault.
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
CVTPD2DQ—Convert Packed Double-Precision Floating-Point Values to Packed Double-
word Integers
Vol. 2A 3-197
INSTRUCTION SET REFERENCE, A-M
CVTPD2PI—Convert Packed Double-Precision Floating-Point Values to
Packed Doubleword Integers
Opcode
Instruction
64-Bit Mode Compat/
Leg Mode
Description
66 0F 2D /r CVTPD2PI mm,
Valid
Valid
Convert two packed double-
precision floating-point
values from xmm/m128 to
two packed signed
xmm/m128
doubleword integers in mm.
Description
Converts two packed double-precision floating-point values in the source operand
(second operand) to two packed signed doubleword integers in the destination
operand (first operand).
The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an MMX technology register.
When a conversion is inexact, the value returned is rounded according to the
rounding control bits in the MXCSR register. If a converted result is larger than the
maximum signed doubleword integer, the floating-point invalid exception is raised,
and if this exception is masked, the indefinite integer value (80000000H) is returned.
This instruction causes a transition from x87 FPU to MMX technology operation (that
is, the x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all
0s [valid]). If this instruction is executed while an x87 FPU floating-point exception is
pending, the exception is handled before the CVTPD2PI instruction is executed.
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
DEST[31:0] ←Convert_Double_Precision_Floating_Point_To_Integer(SRC[63:0]);
DEST[63:32] ←Convert_Double_Precision_Floating_Point_To_Integer(SRC[127:64]);
Intel C/C++Compiler Intrinsic Equivalent
CVTPD1PI
__m64 _mm_cvtpd_pi32(__m128d a)
SIMD Floating-Point Exceptions
Invalid, Precision.
3-198 Vol. 2A
CVTPD2PI—Convert Packed Double-Precision Floating-Point Values to Packed Double-
word Integers
INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#SS(0)
#PF(fault-code)
#MF
For an illegal address in the SS segment.
For a page fault.
If there is a pending x87 FPU exception.
If CR0.TS[bit 3] = 1.
#NM
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP(0)
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#MF
#XM
If CR0.TS[bit 3] = 1.
If there is a pending x87 FPU exception.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
For a page fault.
CVTPD2PI—Convert Packed Double-Precision Floating-Point Values to Packed Double-
word Integers
Vol. 2A 3-199
INSTRUCTION SET REFERENCE, A-M
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#PF(fault-code)
For a page fault.
#MF
#NM
#XM
If there is a pending x87 FPU exception.
If CR0.TS[bit 3] = 1.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
3-200 Vol. 2A
CVTPD2PI—Convert Packed Double-Precision Floating-Point Values to Packed Double-
word Integers
INSTRUCTION SET REFERENCE, A-M
CVTPD2PS—Convert Packed Double-Precision Floating-Point Values to
Packed Single-Precision Floating-Point Values
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
66 0F 5A /r
CVTPD2PS xmm1,
xmm2/m128
Valid
Valid
Convert two packed double-
precision floating-point values in
xmm2/m128 to two packed single-
precision floating-point values in
xmm1.
Description
Converts two packed double-precision floating-point values in the source operand
(second operand) to two packed single-precision floating-point values in the destina-
tion operand (first operand).
The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. The result is stored in the low quadword of the
destination operand, and the high quadword is cleared to all 0s. When a conversion
is inexact, the value returned is rounded according to the rounding control bits in the
MXCSR register.
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
DEST[31:0] ←Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[63:0]);
DEST[63:32] ←Convert_Double_Precision_To_Single_Precision_
Floating_Point(SRC[127:64]);
DEST[127:64] ←0000000000000000H;
Intel C/C++Compiler Intrinsic Equivalent
CVTPD2PS
__m128 _mm_cvtpd_ps(__m128d a)
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
CVTPD2PS—Convert Packed Double-Precision Floating-Point Values to Packed Single-
Precision Floating-Point Values
Vol. 2A 3-201
INSTRUCTION SET REFERENCE, A-M
#SS(0)
For an illegal address in the SS segment.
#PF(fault-code)
#NM
For a page fault.
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP(0)
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#XM
If CR0.TS[bit 3] = 1.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
For a page fault.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
3-202 Vol. 2A
CVTPD2PS—Convert Packed Double-Precision Floating-Point Values to Packed Single-
Precision Floating-Point Values
INSTRUCTION SET REFERENCE, A-M
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#PF(fault-code)
#NM
For a page fault.
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
CVTPD2PS—Convert Packed Double-Precision Floating-Point Values to Packed Single-
Precision Floating-Point Values
Vol. 2A 3-203
INSTRUCTION SET REFERENCE, A-M
CVTPI2PD—Convert Packed Doubleword Integers to Packed Double-
Precision Floating-Point Values
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
66 0F 2A /r CVTPI2PD
xmm,
Valid
Valid
Convert two packed signed
doubleword integers from
mm/mem64 to two packed double-
precision floating-point values in
xmm.
mm/m64*
NOTES:
* Operation is different for different operand sets; see the Description section.
Description
Converts two packed signed doubleword integers in the source operand (second
operand) to two packed double-precision floating-point values in the destination
operand (first operand).
The source operand can be an MMX technology register or a 64-bit memory location.
The destination operand is an XMM register. In addition, depending on the operand
configuration:
• For operands xmm, mm: the instruction causes a transition from x87 FPU to
MMX technology operation (that is, the x87 FPU top-of-stack pointer is set to 0
and the x87 FPU tag word is set to all 0s [valid]). If this instruction is executed
while an x87 FPU floating-point exception is pending, the exception is handled
before the CVTPI2PD instruction is executed.
• For operands xmm, m64: the instruction does not cause a transition to MMX
technology and does not take x87 FPU exceptions.
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
DEST[63:0] ←Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0]);
DEST[127:64] ←Convert_Integer_To_Double_Precision_Floating_Point(SRC[63:32]);
Intel C/C++Compiler Intrinsic Equivalent
CVTPI2PD __m128d _mm_cvtpi32_pd(__m64 a)
SIMD Floating-Point Exceptions
None.
3-204 Vol. 2A
CVTPI2PD—Convert Packed Doubleword Integers to Packed Double-Precision Floating-
Point Values
INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
#SS(0)
#PF(fault-code)
#NM
For an illegal address in the SS segment.
For a page fault.
If CR0.TS[bit 3] = 1.
#MF
If there is a pending x87 FPU exception.
If CR0.EM[bit 2] = 1.
#UD
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
Real-Address Mode Exceptions
GP(0)
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#MF
#UD
If CR0.TS[bit 3] = 1.
If there is a pending x87 FPU exception.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
#AC(0)
For a page fault.
If alignment checking is enabled and an unaligned memory
reference is made.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
For a page fault.
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
CVTPI2PD—Convert Packed Doubleword Integers to Packed Double-Precision Floating-
Point Values
Vol. 2A 3-205
INSTRUCTION SET REFERENCE, A-M
#MF
#UD
If there is a pending x87 FPU exception.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
3-206 Vol. 2A
CVTPI2PD—Convert Packed Doubleword Integers to Packed Double-Precision Floating-
Point Values
INSTRUCTION SET REFERENCE, A-M
CVTPI2PS—Convert Packed Doubleword Integers to Packed Single-
Precision Floating-Point Values
Opcode
Instruction
64-Bit Compat/
Description
Mode
Leg Mode
0F 2A /r
CVTPI2PS xmm,
mm/m64
Valid
Valid
Convert two signed doubleword
integers from mm/m64 to two single-
precision floating-point values in xmm.
Description
Converts two packed signed doubleword integers in the source operand (second
operand) to two packed single-precision floating-point values in the destination
operand (first operand).
The source operand can be an MMX technology register or a 64-bit memory location.
The destination operand is an XMM register. The results are stored in the low quad-
word of the destination operand, and the high quadword remains unchanged. When
a conversion is inexact, the value returned is rounded according to the rounding
control bits in the MXCSR register.
This instruction causes a transition from x87 FPU to MMX technology operation (that
is, the x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all
0s [valid]). If this instruction is executed while an x87 FPU floating-point exception is
pending, the exception is handled before the CVTPI2PS instruction is executed.
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
DEST[31:0] ←Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0]);
DEST[63:32] ←Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:32]);
(* High quadword of destination unchanged *)
Intel C/C++Compiler Intrinsic Equivalent
CVTPI2PS
__m128 _mm_cvtpi32_ps(__m128 a, __m64 b)
SIMD Floating-Point Exceptions
Precision.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
#SS(0)
For an illegal address in the SS segment.
CVTPI2PS—Convert Packed Doubleword Integers to Packed Single-Precision Floating-
Point Values
Vol. 2A 3-207
INSTRUCTION SET REFERENCE, A-M
#PF(fault-code)
For a page fault.
#NM
#MF
#XM
If CR0.TS[bit 3] = 1.
If there is a pending x87 FPU exception.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
Real-Address Mode Exceptions
GP(0)
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#MF
#XM
If CR0.TS[bit 3] = 1.
If there is a pending x87 FPU exception.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
#AC(0)
For a page fault.
If alignment checking is enabled and an unaligned memory
reference is made.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
3-208 Vol. 2A
CVTPI2PS—Convert Packed Doubleword Integers to Packed Single-Precision Floating-
Point Values
INSTRUCTION SET REFERENCE, A-M
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#PF(fault-code)
#NM
If the memory address is in a non-canonical form.
For a page fault.
If CR0.TS[bit 3] = 1.
#MF
If there is a pending x87 FPU exception.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
CVTPI2PS—Convert Packed Doubleword Integers to Packed Single-Precision Floating-
Point Values
Vol. 2A 3-209
INSTRUCTION SET REFERENCE, A-M
CVTPS2DQ—Convert Packed Single-Precision Floating-Point Values to
Packed Doubleword Integers
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
66 0F 5B /r CVTPS2DQ xmm1, Valid
Valid
Convert four packed single-precision
floating-point values from
xmm2/m128
xmm2/m128 to four packed signed
doubleword integers in xmm1.
Description
Converts four packed single-precision floating-point values in the source operand
(second operand) to four packed signed doubleword integers in the destination
operand (first operand).
The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register.
When a conversion is inexact, the value returned is rounded according to the
rounding control bits in the MXCSR register. If a converted result is larger than the
maximum signed doubleword integer, the floating-point invalid exception is raised,
and if this exception is masked, the indefinite integer value (80000000H) is returned.
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
DEST[31:0] ←Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0]);
DEST[63:32] ←Convert_Single_Precision_Floating_Point_To_Integer(SRC[63:32]);
DEST[95:64] ←Convert_Single_Precision_Floating_Point_To_Integer(SRC[95:64]);
DEST[127:96] ←Convert_Single_Precision_Floating_Point_To_Integer(SRC[127:96]);
Intel C/C++Compiler Intrinsic Equivalent
CVTPS2DQ __m128i _mm_cvtps_epi32(__m128 a)
SIMD Floating-Point Exceptions
Invalid, Precision.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
3-210 Vol. 2A
CVTPS2DQ—Convert Packed Single-Precision Floating-Point Values to Packed Double-
word Integers
INSTRUCTION SET REFERENCE, A-M
#SS(0)
For an illegal address in the SS segment.
#PF(fault-code)
#NM
For a page fault.
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP(0)
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#XM
If CR0.TS[bit 3] = 1.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
For a page fault.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
CVTPS2DQ—Convert Packed Single-Precision Floating-Point Values to Packed Double-
word Integers
Vol. 2A 3-211
INSTRUCTION SET REFERENCE, A-M
If memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#PF(fault-code)
#NM
For a page fault.
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
3-212 Vol. 2A
CVTPS2DQ—Convert Packed Single-Precision Floating-Point Values to Packed Double-
word Integers
INSTRUCTION SET REFERENCE, A-M
CVTPS2PD—Convert Packed Single-Precision Floating-Point Values to
Packed Double-Precision Floating-Point Values
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
0F 5A /r
CVTPS2PD xmm1,
xmm2/m64
Valid
Valid
Convert two packed single-precision
floating-point values in xmm2/m64
to two packed double-precision
floating-point values in xmm1.
Description
Converts two packed single-precision floating-point values in the source operand
(second operand) to two packed double-precision floating-point values in the desti-
nation operand (first operand).
The source operand can be an XMM register or a 64-bit memory location. The desti-
nation operand is an XMM register. When the source operand is an XMM register, the
packed single-precision floating-point values are contained in the low quadword of
the register.
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
DEST[63:0] ←Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[31:0]);
DEST[127:64] ←Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[63:32]);
Intel C/C++Compiler Intrinsic Equivalent
CVTPS2PD
__m128d _mm_cvtps_pd(__m128 a)
SIMD Floating-Point Exceptions
Invalid, Denormal.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
For an illegal address in the SS segment.
For a page fault.
#SS(0)
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
CVTPS2PD—Convert Packed Single-Precision Floating-Point Values to Packed Double-
Precision Floating-Point Values
Vol. 2A 3-213
INSTRUCTION SET REFERENCE, A-M
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
Real-Address Mode Exceptions
GP(0)
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#XM
If CR0.TS[bit 3] = 1.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
#AC(0)
For a page fault.
If alignment checking is enabled and an unaligned memory
reference is made.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#PF(fault-code)
#NM
If the memory address is in a non-canonical form.
For a page fault.
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
3-214 Vol. 2A
CVTPS2PD—Convert Packed Single-Precision Floating-Point Values to Packed Double-
Precision Floating-Point Values
INSTRUCTION SET REFERENCE, A-M
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
CVTPS2PD—Convert Packed Single-Precision Floating-Point Values to Packed Double-
Precision Floating-Point Values
Vol. 2A 3-215
INSTRUCTION SET REFERENCE, A-M
CVTPS2PI—Convert Packed Single-Precision Floating-Point Values to
Packed Doubleword Integers
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
0F 2D /r
CVTPS2PI mm,
xmm/m64
Valid
Valid
Convert two packed single-precision
floating-point values from xmm/m64 to
two packed signed doubleword integers in
mm.
Description
Converts two packed single-precision floating-point values in the source operand
(second operand) to two packed signed doubleword integers in the destination
operand (first operand).
The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an MMX technology register. When the source operand is an XMM
register, the two single-precision floating-point values are contained in the low quad-
word of the register. When a conversion is inexact, the value returned is rounded
according to the rounding control bits in the MXCSR register. If a converted result is
larger than the maximum signed doubleword integer, the floating-point invalid
exception is raised, and if this exception is masked, the indefinite integer value
(80000000H) is returned.
CVTPS2PI causes a transition from x87 FPU to MMX technology operation (that is, the
x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all 0s
[valid]). If this instruction is executed while an x87 FPU floating-point exception is
pending, the exception is handled before the CVTPS2PI instruction is executed.
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
DEST[31:0] ←Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0]);
DEST[63:32] ←Convert_Single_Precision_Floating_Point_To_Integer(SRC[63:32]);
Intel C/C++Compiler Intrinsic Equivalent
CVTPS2PI __m64 _mm_cvtps_pi32(__m128 a)
SIMD Floating-Point Exceptions
Invalid, Precision.
3-216 Vol. 2A
CVTPS2PI—Convert Packed Single-Precision Floating-Point Values to Packed Double-
word Integers
INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
#SS(0)
#PF(fault-code)
#MF
For an illegal address in the SS segment.
For a page fault.
If there is a pending x87 FPU exception.
If CR0.TS[bit 3] = 1.
#NM
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
Real-Address Mode Exceptions
GP(0)
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#MF
#XM
If CR0.TS[bit 3] = 1.
If there is a pending x87 FPU exception.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
#AC(0)
For a page fault.
If alignment checking is enabled and an unaligned memory
reference is made.
CVTPS2PI—Convert Packed Single-Precision Floating-Point Values to Packed Double-
word Integers
Vol. 2A 3-217
INSTRUCTION SET REFERENCE, A-M
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#PF(fault-code)
#NM
If the memory address is in a non-canonical form.
For a page fault.
If CR0.TS[bit 3] = 1.
#MF
If there is a pending x87 FPU exception.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
3-218 Vol. 2A
CVTPS2PI—Convert Packed Single-Precision Floating-Point Values to Packed Double-
word Integers
INSTRUCTION SET REFERENCE, A-M
CVTSD2SI—Convert Scalar Double-Precision Floating-Point Value to
Doubleword Integer
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
F2 0F 2D /r
CVTSD2SI r32, Valid
xmm/m64
Valid
Convert one double-precision
floating-point value from
xmm/m64 to one signed
doubleword integer r32.
F2 REX.W 0F 2D /r
CVTSD2SI r64, Valid
xmm/m64
N.E.
Convert one double-precision
floating-point value from
xmm/m64 to one signed
quadword integer sign-
extended into r64.
Description
Converts a double-precision floating-point value in the source operand (second
operand) to a signed doubleword integer in the destination operand (first operand).
The source operand can be an XMM register or a 64-bit memory location. The desti-
nation operand is a general-purpose register. When the source operand is an XMM
register, the double-precision floating-point value is contained in the low quadword of
the register.
When a conversion is inexact, the value returned is rounded according to the
rounding control bits in the MXCSR register. If a converted result is larger than the
maximum signed doubleword integer, the floating-point invalid exception is raised,
and if this exception is masked, the indefinite integer value (80000000H) is returned.
In 64-bit mode, the instruction can access additional registers (XMM8-XMM15,
R8-R15) when used with a REX.R prefix. Use of the REX.W prefix promotes the
instruction to 64-bit operation. See the summary chart at the beginning of this
section for encoding data and limits.
Operation
IF 64-Bit Mode and OperandSize = 64
THEN
DEST[63:0] ←Convert_Double_Precision_Floating_Point_To_Integer(SRC[63:0]);
ELSE
DEST[31:0] ←Convert_Double_Precision_Floating_Point_To_Integer(SRC[63:0]);
FI;
Intel C/C++Compiler Intrinsic Equivalent
int _mm_cvtsd_si32(__m128d a)
CVTSD2SI—Convert Scalar Double-Precision Floating-Point Value to Doubleword Integer
Vol. 2A 3-219
INSTRUCTION SET REFERENCE, A-M
SIMD Floating-Point Exceptions
Invalid, Precision.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
For an illegal address in the SS segment.
For a page fault.
#SS(0)
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
Real-Address Mode Exceptions
GP(0)
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#XM
If CR0.TS[bit 3] = 1.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
#AC(0)
For a page fault.
If alignment checking is enabled and an unaligned memory
reference is made.
3-220 Vol. 2A
CVTSD2SI—Convert Scalar Double-Precision Floating-Point Value to Doubleword Integer
INSTRUCTION SET REFERENCE, A-M
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#PF(fault-code)
#NM
If the memory address is in a non-canonical form.
For a page fault.
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
CVTSD2SI—Convert Scalar Double-Precision Floating-Point Value to Doubleword Integer
Vol. 2A 3-221
INSTRUCTION SET REFERENCE, A-M
CVTSD2SS—Convert Scalar Double-Precision Floating-Point Value to
Scalar Single-Precision Floating-Point Value
Opcode
Instruction
64-Bit Compat/
Description
Mode
Leg Mode
F2 0F 5A /r CVTSD2SS xmm1, Valid
Valid
Convert one double-precision floating-
point value in xmm2/m64 to one
single-precision floating-point value in
xmm1.
xmm2/m64
Description
Converts a double-precision floating-point value in the source operand (second
operand) to a single-precision floating-point value in the destination operand (first
operand).
The source operand can be an XMM register or a 64-bit memory location. The desti-
nation operand is an XMM register. When the source operand is an XMM register, the
double-precision floating-point value is contained in the low quadword of the register.
The result is stored in the low doubleword of the destination operand, and the upper
3 doublewords are left unchanged. When the conversion is inexact, the value
returned is rounded according to the rounding control bits in the MXCSR register.
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
DEST[31:0] ←Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[63:0]);
(* DEST[127:32] unchanged *)
Intel C/C++Compiler Intrinsic Equivalent
CVTSD2SS
__m128 _mm_cvtsd_ss(__m128d a, __m128d b)
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
For an illegal address in the SS segment.
For a page fault.
#SS(0)
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
3-222 Vol. 2A
CVTSD2SS—Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Preci-
sion Floating-Point Value
INSTRUCTION SET REFERENCE, A-M
#XM
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
Real-Address Mode Exceptions
GP(0)
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#XM
If CR0.TS[bit 3] = 1.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
#AC(0)
For a page fault.
If alignment checking is enabled and an unaligned memory
reference is made.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
For a page fault.
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
CVTSD2SS—Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Preci-
sion Floating-Point Value
Vol. 2A 3-223
INSTRUCTION SET REFERENCE, A-M
#XM
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
3-224 Vol. 2A
CVTSD2SS—Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Preci-
sion Floating-Point Value
INSTRUCTION SET REFERENCE, A-M
CVTSI2SD—Convert Doubleword Integer to Scalar Double-Precision
Floating-Point Value
Opcode
Instruction
64-Bit Compat/
Mode Leg Mode
Description
F2 0F 2A /r
CVTSI2SD xmm, Valid
r/m32
Valid
Convert one signed doubleword
integer from r/m32 to one
double-precision floating-point
value in xmm.
F2 REX.W 0F 2A /r
CVTSI2SD xmm, Valid
r/m64
N.E.
Convert one signed quadword
integer from r/m64 to one
double-precision floating-point
value in xmm.
Description
Converts a signed doubleword integer (or signed quadword integer if operand size is
64 bits) in the source operand (second operand) to a double-precision floating-point
value in the destination operand (first operand). The source operand can be a
general-purpose register or a memory location. The destination operand is an XMM
register. The result is stored in the low quadword of the destination operand, and the
high quadword left unchanged.
In 64-bit mode, the instruction can access additional registers (XMM8-XMM15,
R8-R15) when used with a REX.R prefix. Use of the REX.W prefix promotes the
instruction to 64-bit operands. See the summary chart at the beginning of this
section for encoding data and limits.
Operation
IF 64-Bit Mode And OperandSize = 64
THEN
DEST[63:0] ←Convert_Integer_To_Double_Precision_Floating_Point(SRC[63:0]);
(* DEST[127:64] unchanged *)
ELSE
DEST[63:0] ←Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0]);
(* DEST[127:64] unchanged *)
FI;
Intel C/C++Compiler Intrinsic Equivalent
CVTSI2SD
__m128d _mm_cvtsi32_sd(__m128d a, int b)
SIMD Floating-Point Exceptions
None.
CVTSI2SD—Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
Vol. 2A 3-225
INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
For an illegal address in the SS segment.
For a page fault.
#SS(0)
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
Real-Address Mode Exceptions
GP(0)
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#XM
If CR0.TS[bit 3] = 1.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
#AC(0)
For a page fault.
If alignment checking is enabled and an unaligned memory
reference is made.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
3-226 Vol. 2A
CVTSI2SD—Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
INSTRUCTION SET REFERENCE, A-M
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#PF(fault-code)
#NM
If the memory address is in a non-canonical form.
For a page fault.
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
CVTSI2SD—Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
Vol. 2A 3-227
INSTRUCTION SET REFERENCE, A-M
CVTSI2SS—Convert Doubleword Integer to Scalar Single-Precision
Floating-Point Value
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
F3 0F 2A /r
CVTSI2SS
xmm, r/m32
Valid
Valid
Convert one signed doubleword
integer from r/m32 to one single-
precision floating-point value in
xmm.
F3 REX.W 0F 2A /r
CVTSI2SS
xmm, r/m64
Valid
N.E.
Convert one signed quadword
integer from r/m64 to one single-
precision floating-point value in
xmm.
Description
Converts a signed doubleword integer (or signed quadword integer if operand size is
64 bits) in the source operand (second operand) to a single-precision floating-point
value in the destination operand (first operand). The source operand can be a
general-purpose register or a memory location. The destination operand is an XMM
register. The result is stored in the low doubleword of the destination operand, and
the upper three doublewords are left unchanged. When a conversion is inexact, the
value returned is rounded according to the rounding control bits in the MXCSR
register.
In 64-bit mode, the instruction can access additional registers (XMM8-XMM15,
R8-R15) when used with a REX.R prefix. Use of the REX.W prefix promotes the
instruction to 64-bit operands. See the summary chart at the beginning of this
section for encoding data and limits.
Operation
IF 64-Bit Mode And OperandSize = 64
THEN
DEST[31:0] ←Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:0]);
(* DEST[127:32] unchanged *)
ELSE
DEST[31:0] ←Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0]);
(* DEST[127:32] unchanged *)
FI;
Intel C/C++Compiler Intrinsic Equivalent
CVTSI2SS
__m128 _mm_cvtsi32_ss(__m128 a, int b)
3-228 Vol. 2A
CVTSI2SS—Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value
INSTRUCTION SET REFERENCE, A-M
SIMD Floating-Point Exceptions
Precision.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
#SS(0)
For an illegal address in the SS segment.
For a page fault.
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
Real-Address Mode Exceptions
GP(0)
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#XM
If CR0.TS[bit 3] = 1.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
#AC(0)
For a page fault.
If alignment checking is enabled and an unaligned memory
reference is made.
CVTSI2SS—Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value
Vol. 2A 3-229
INSTRUCTION SET REFERENCE, A-M
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#PF(fault-code)
#NM
If the memory address is in a non-canonical form.
For a page fault.
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
3-230 Vol. 2A
CVTSI2SS—Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value
INSTRUCTION SET REFERENCE, A-M
CVTSS2SD—Convert Scalar Single-Precision Floating-Point Value to
Scalar Double-Precision Floating-Point Value
Opcode
Instruction
64-Bit Compat/
Description
Mode
Leg Mode
F3 0F 5A /r CVTSS2SD xmm1, Valid
Valid
Convert one single-precision floating-
point value in xmm2/m32 to one
double-precision floating-point value
in xmm1.
xmm2/m32
Description
Converts a single-precision floating-point value in the source operand (second
operand) to a double-precision floating-point value in the destination operand (first
operand). The source operand can be an XMM register or a 32-bit memory location.
The destination operand is an XMM register. When the source operand is an XMM
register, the single-precision floating-point value is contained in the low doubleword
of the register. The result is stored in the low quadword of the destination operand,
and the high quadword is left unchanged.
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
DEST[63:0] ←Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[31:0]);
(* DEST[127:64] unchanged *)
Intel C/C++Compiler Intrinsic Equivalent
CVTSS2SD __m128d _mm_cvtss_sd(__m128d a, __m128 b)
SIMD Floating-Point Exceptions
Invalid, Denormal.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
#SS(0)
For an illegal address in the SS segment.
For a page fault.
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
CVTSS2SD—Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Preci-
sion Floating-Point Value
Vol. 2A 3-231
INSTRUCTION SET REFERENCE, A-M
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
Real-Address Mode Exceptions
GP(0)
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#XM
If CR0.TS[bit 3] = 1.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
#AC(0)
For a page fault.
If alignment checking is enabled and an unaligned memory
reference is made.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#PF(fault-code)
#NM
If the memory address is in a non-canonical form.
For a page fault.
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
3-232 Vol. 2A
CVTSS2SD—Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Preci-
sion Floating-Point Value
INSTRUCTION SET REFERENCE, A-M
#UD
If an unmasked SIMD floating-point exception and
CR4.OSXMMEXCPT[bit 10] = 0exception and
CR4.OSXMMEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
CVTSS2SD—Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Preci-
sion Floating-Point Value
Vol. 2A 3-233
INSTRUCTION SET REFERENCE, A-M
CVTSS2SI—Convert Scalar Single-Precision Floating-Point Value to
Doubleword Integer
Opcode
Instruction
64-Bit Compat/
Description
Mode
Leg Mode
F3 0F 2D /r
CVTSS2SI r32, Valid
xmm/m32
Valid
Convert one single-precision
floating-point value from
xmm/m32 to one signed
doubleword integer in r32.
F3 REX.W 0F 2D /r
CVTSS2SI r64, Valid
xmm/m32
N.E.
Convert one single-precision
floating-point value from
xmm/m32 to one signed
quadword integer in r64.
Description
Converts a single-precision floating-point value in the source operand (second
operand) to a signed doubleword integer (or signed quadword integer if operand size
is 64 bits) in the destination operand (first operand). The source operand can be an
XMM register or a memory location. The destination operand is a general-purpose
register. When the source operand is an XMM register, the single-precision floating-
point value is contained in the low doubleword of the register.
When a conversion is inexact, the value returned is rounded according to the
rounding control bits in the MXCSR register. If a converted result is larger than the
maximum signed doubleword integer, the floating-point invalid exception is raised,
and if this exception is masked, the indefinite integer value (80000000H) is returned.
In 64-bit mode, the instruction can access additional registers (XMM8-XMM15,
R8-R15) when used with a REX.R prefix. Use of the REX.W prefix promotes the
instruction to 64-bit operands. See the summary chart at the beginning of this
section for encoding data and limits.
Operation
IF 64-bit Mode and OperandSize = 64
THEN
DEST[64:0] ←Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0]);
ELSE
DEST[31:0] ←Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0]);
FI;
Intel C/C++Compiler Intrinsic Equivalent
int _mm_cvtss_si32(__m128d a)
3-234 Vol. 2A
CVTSS2SI—Convert Scalar Single-Precision Floating-Point Value to Doubleword Integer
INSTRUCTION SET REFERENCE, A-M
SIMD Floating-Point Exceptions
Invalid, Precision.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
#SS(0)
For an illegal address in the SS segment.
For a page fault.
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
Real-Address Mode Exceptions
GP(0)
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#XM
If CR0.TS[bit 3] = 1.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
#AC(0)
For a page fault.
If alignment checking is enabled and an unaligned memory
reference is made.
CVTSS2SI—Convert Scalar Single-Precision Floating-Point Value to Doubleword Integer
Vol. 2A 3-235
INSTRUCTION SET REFERENCE, A-M
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#PF(fault-code)
#NM
If the memory address is in a non-canonical form.
For a page fault.
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
3-236 Vol. 2A
CVTSS2SI—Convert Scalar Single-Precision Floating-Point Value to Doubleword Integer
INSTRUCTION SET REFERENCE, A-M
CVTTPD2PI—Convert with Truncation Packed Double-Precision
Floating-Point Values to Packed Doubleword Integers
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
66 0F 2C /r CVTTPD2PI mm, Valid
Valid
Convert two packer double-precision
floating-point values from xmm/m128
to two packed signed doubleword
integers in mm using truncation.
xmm/m128
Description
Converts two packed double-precision floating-point values in the source operand
(second operand) to two packed signed doubleword integers in the destination
operand (first operand). The source operand can be an XMM register or a 128-bit
memory location. The destination operand is an MMX technology register.
When a conversion is inexact, a truncated (round toward zero) result is returned. If a
converted result is larger than the maximum signed doubleword integer, the floating-
point invalid exception is raised, and if this exception is masked, the indefinite
integer value (80000000H) is returned.
This instruction causes a transition from x87 FPU to MMX technology operation (that
is, the x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all
0s [valid]). If this instruction is executed while an x87 FPU floating-point exception is
pending, the exception is handled before the CVTTPD2PI instruction is executed.
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
DEST[31:0] ←Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[63:0]);
DEST[63:32] ←Convert_Double_Precision_Floating_Point_To_Integer_
Truncate(SRC[127:64]);
Intel C/C++Compiler Intrinsic Equivalent
CVTTPD1PI__m64 _mm_cvttpd_pi32(__m128d a)
SIMD Floating-Point Exceptions
Invalid, Precision.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
CVTTPD2PI—Convert with Truncation Packed Double-Precision Floating-Point Values to
Packed Doubleword Integers
Vol. 2A 3-237
INSTRUCTION SET REFERENCE, A-M
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#SS(0)
#PF(fault-code)
#MF
For an illegal address in the SS segment.
For a page fault.
If there is a pending x87 FPU exception.
If CR0.TS[bit 3] = 1.
#NM
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP(0)
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#MF
#XM
If CR0.TS[bit 3] = 1.
If there is a pending x87 FPU exception.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
For a page fault.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
3-238 Vol. 2A
CVTTPD2PI—Convert with Truncation Packed Double-Precision Floating-Point Values to
Packed Doubleword Integers
INSTRUCTION SET REFERENCE, A-M
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#PF(fault-code)
#NM
For a page fault.
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
CVTTPD2PI—Convert with Truncation Packed Double-Precision Floating-Point Values to
Packed Doubleword Integers
Vol. 2A 3-239
INSTRUCTION SET REFERENCE, A-M
CVTTPD2DQ—Convert with Truncation Packed Double-Precision
Floating-Point Values to Packed Doubleword Integers
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
66 0F E6
CVTTPD2DQ xmm1, Valid
xmm2/m128
Valid
Convert two packed double-
precision floating-point values
from xmm2/m128 to two packed
signed doubleword integers in
xmm1 using truncation.
Description
Converts two packed double-precision floating-point values in the source operand
(second operand) to two packed signed doubleword integers in the destination
operand (first operand). The source operand can be an XMM register or a 128-bit
memory location. The destination operand is an XMM register. The result is stored in
the low quadword of the destination operand and the high quadword is cleared to all
0s.
When a conversion is inexact, a truncated (round toward zero) result is returned. If a
converted result is larger than the maximum signed doubleword integer, the floating-
point invalid exception is raised, and if this exception is masked, the indefinite
integer value (80000000H) is returned.
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
DEST[31:0] ←Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[63:0]);
DEST[63:32] ←Convert_Double_Precision_Floating_Point_To_Integer_
Truncate(SRC[127-64]);
DEST[127:64] ←0000000000000000H;
Intel C/C++Compiler Intrinsic Equivalent
CVTTPD2DQ
__m128i _mm_cvttpd_epi32(__m128d a)
SIMD Floating-Point Exceptions
Invalid, Precision.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
3-240 Vol. 2A
CVTTPD2DQ—Convert with Truncation Packed Double-Precision Floating-Point Values
to Packed Doubleword Integers
INSTRUCTION SET REFERENCE, A-M
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#SS(0)
For an illegal address in the SS segment.
For a page fault.
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP(0)
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#XM
If CR0.TS[bit 3] = 1.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
For a page fault.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
CVTTPD2DQ—Convert with Truncation Packed Double-Precision Floating-Point Values
to Packed Doubleword Integers
Vol. 2A 3-241
INSTRUCTION SET REFERENCE, A-M
#GP(0)
If the memory address is in a non-canonical form.
If memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#PF(fault-code)
#NM
For a page fault.
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
3-242 Vol. 2A
CVTTPD2DQ—Convert with Truncation Packed Double-Precision Floating-Point Values
to Packed Doubleword Integers
INSTRUCTION SET REFERENCE, A-M
CVTTPS2DQ—Convert with Truncation Packed Single-Precision
Floating-Point Values to Packed Doubleword Integers
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
F3 0F 5B /r CVTTPS2DQ xmm1,
Valid
Valid
Convert four single-precision
floating-point values from
xmm2/m128 to four signed
doubleword integers in xmm1 using
truncation.
xmm2/m128
Description
Converts four packed single-precision floating-point values in the source operand
(second operand) to four packed signed doubleword integers in the destination
operand (first operand). The source operand can be an XMM register or a 128-bit
memory location. The destination operand is an XMM register. When a conversion is
inexact, a truncated (round toward zero) result is returned. If a converted result is
larger than the maximum signed doubleword integer, the floating-point invalid
exception is raised, and if this exception is masked, the indefinite integer value
(80000000H) is returned.
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
DEST[31:0] ←Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31:0]);
DEST[63:32] ←Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[63:32]);
DEST[95:64] ←Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[95:64]);
DEST[127:96] ←Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[127:96]);
Intel C/C++Compiler Intrinsic Equivalent
CVTTPS2DQ
__m128i _mm_cvttps_epi32(__m128 a)
SIMD Floating-Point Exceptions
Invalid, Precision.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#SS(0)
For an illegal address in the SS segment.
CVTTPS2DQ—Convert with Truncation Packed Single-Precision Floating-Point Values to
Packed Doubleword Integers
Vol. 2A 3-243
INSTRUCTION SET REFERENCE, A-M
#PF(fault-code)
#NM
For a page fault.
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP(0)
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#XM
If CR0.TS[bit 3] = 1.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
For a page fault.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If memory operand is not aligned on a 16-byte boundary,
regardless of segment.
3-244 Vol. 2A
CVTTPS2DQ—Convert with Truncation Packed Single-Precision Floating-Point Values to
Packed Doubleword Integers
INSTRUCTION SET REFERENCE, A-M
#PF(fault-code)
#NM
For a page fault.
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
CVTTPS2DQ—Convert with Truncation Packed Single-Precision Floating-Point Values to
Packed Doubleword Integers
Vol. 2A 3-245
INSTRUCTION SET REFERENCE, A-M
CVTTPS2PI—Convert with Truncation Packed Single-Precision
Floating-Point Values to Packed Doubleword Integers
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
0F 2C /r
CVTTPS2PI mm,
xmm/m64
Valid
Valid
Convert two single-precision floating-
point values from xmm/m64 to two
signed doubleword signed integers in mm
using truncation.
Description
Converts two packed single-precision floating-point values in the source operand
(second operand) to two packed signed doubleword integers in the destination
operand (first operand). The source operand can be an XMM register or a 64-bit
memory location. The destination operand is an MMX technology register. When the
source operand is an XMM register, the two single-precision floating-point values are
contained in the low quadword of the register.
When a conversion is inexact, a truncated (round toward zero) result is returned. If a
converted result is larger than the maximum signed doubleword integer, the floating-
point invalid exception is raised, and if this exception is masked, the indefinite
integer value (80000000H) is returned.
This instruction causes a transition from x87 FPU to MMX technology operation (that
is, the x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all
0s [valid]). If this instruction is executed while an x87 FPU floating-point exception is
pending, the exception is handled before the CVTTPS2PI instruction is executed.
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
DEST[31:0] ←Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31:0]);
DEST[63:32] ←Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[63:32]);
Intel C/C++Compiler Intrinsic Equivalent
CVTTPS2PI
__m64 _mm_cvttps_pi32(__m128 a)
SIMD Floating-Point Exceptions
Invalid, Precision.
3-246 Vol. 2A
CVTTPS2PI—Convert with Truncation Packed Single-Precision Floating-Point Values to
Packed Doubleword Integers
INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
#SS(0)
#PF(fault-code)
#MF
For an illegal address in the SS segment.
For a page fault.
If there is a pending x87 FPU exception.
If CR0.TS[bit 3] = 1.
#NM
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
Real-Address Mode Exceptions
GP(0)
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#MF
#XM
If CR0.TS[bit 3] = 1.
If there is a pending x87 FPU exception.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
#AC(0)
For a page fault.
If alignment checking is enabled and an unaligned memory
reference is made.
CVTTPS2PI—Convert with Truncation Packed Single-Precision Floating-Point Values to
Packed Doubleword Integers
Vol. 2A 3-247
INSTRUCTION SET REFERENCE, A-M
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#PF(fault-code)
#NM
If the memory address is in a non-canonical form.
For a page fault.
If CR0.TS[bit 3] = 1.
#MF
If there is a pending x87 FPU exception.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
3-248 Vol. 2A
CVTTPS2PI—Convert with Truncation Packed Single-Precision Floating-Point Values to
Packed Doubleword Integers
INSTRUCTION SET REFERENCE, A-M
CVTTSD2SI—Convert with Truncation Scalar Double-Precision Floating-
Point Value to Signed Doubleword Integer
Opcode
Instruction
64-Bit Compat/
Description
Mode
Leg Mode
F2 0F 2C /r
CVTTSD2SI r32, Valid
xmm/m64
Valid
Convert one double-precision
floating-point value from
xmm/m64 to one signed
doubleword integer in r32 using
truncation.
F2 REX.W 0F 2C /r
CVTTSD2SI r64, Valid
xmm/m64
N.E.
Convert one double precision
floating-point value from
xmm/m64 to one
signedquadword integer in r64
using truncation.
Description
Converts a double-precision floating-point value in the source operand (second
operand) to a signed doubleword integer (or signed quadword integer if operand size
is 64 bits) in the destination operand (first operand). The source operand can be an
XMM register or a 64-bit memory location. The destination operand is a general-
purpose register. When the source operand is an XMM register, the double-precision
floating-point value is contained in the low quadword of the register.
When a conversion is inexact, a truncated (round toward zero) result is returned. If a
converted result is larger than the maximum signed doubleword integer, the floating-
point invalid exception is raised. If this exception is masked, the indefinite integer
value (80000000H) is returned.
In 64-bit mode, the instruction can access additional registers (XMM8-XMM15,
R8-R15) when used with a REX.R prefix. Use of the REX.W prefix promotes the
instruction to 64-bit operation. See the summary chart at the beginning of this
section for encoding data and limits.
Operation
IF 64-Bit Mode and OperandSize = 64
THEN
DEST[63:0] ←Convert_Double_Precision_Floating_Point_To_
Integer_Truncate(SRC[63:0]);
ELSE
DEST[31:0] ←Convert_Double_Precision_Floating_Point_To_
Integer_Truncate(SRC[63:0]);
FI;
CVTTSD2SI—Convert with Truncation Scalar Double-Precision Floating-Point Value to
Signed Doubleword Integer
Vol. 2A 3-249
INSTRUCTION SET REFERENCE, A-M
Intel C/C++Compiler Intrinsic Equivalent
int _mm_cvttsd_si32(__m128d a)
SIMD Floating-Point Exceptions
Invalid, Precision.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
For an illegal address in the SS segment.
For a page fault.
#SS(0)
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
Real-Address Mode Exceptions
GP(0)
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#XM
If CR0.TS[bit 3] = 1.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
For a page fault.
3-250 Vol. 2A
CVTTSD2SI—Convert with Truncation Scalar Double-Precision Floating-Point Value to
Signed Doubleword Integer
INSTRUCTION SET REFERENCE, A-M
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#PF(fault-code)
#NM
If the memory address is in a non-canonical form.
For a page fault.
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
CVTTSD2SI—Convert with Truncation Scalar Double-Precision Floating-Point Value to
Signed Doubleword Integer
Vol. 2A 3-251
INSTRUCTION SET REFERENCE, A-M
CVTTSS2SI—Convert with Truncation Scalar Single-Precision Floating-
Point Value to Doubleword Integer
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
F3 0F 2C /r
CVTTSS2SI r32, Valid
xmm/m32
Valid
Convert one single-precision
floating-point value from
xmm/m32 to one signed
doubleword integer in r32
using truncation.
F3 REX.W 0F 2C /r
CVTTSS2SI r64, Valid
xmm/m32
N.E.
Convert one single-precision
floating-point value from
xmm/m32 to one signed
quadword integer in r64 using
truncation.
Description
Converts a single-precision floating-point value in the source operand (second
operand) to a signed doubleword integer (or signed quadword integer if operand size
is 64 bits) in the destination operand (first operand). The source operand can be an
XMM register or a 32-bit memory location. The destination operand is a general-
purpose register. When the source operand is an XMM register, the single-precision
floating-point value is contained in the low doubleword of the register.
When a conversion is inexact, a truncated (round toward zero) result is returned. If a
converted result is larger than the maximum signed doubleword integer, the floating-
point invalid exception is raised. If this exception is masked, the indefinite integer
value (80000000H) is returned.
In 64-bit mode, the instruction can access additional registers (XMM8-XMM15,
R8-R15) when used with a REX.R prefix. Use of the REX.W prefix promotes the
instruction to 64-bit operation. See the summary chart at the beginning of this
section for encoding data and limits.
Operation
IF 64-Bit Mode and OperandSize = 64
THEN
DEST[63:0] ←Convert_Single_Precision_Floating_Point_To_
Integer_Truncate(SRC[31:0]);
ELSE
DEST[31:0] ←Convert_Single_Precision_Floating_Point_To_
Integer_Truncate(SRC[31:0]);
FI;
3-252 Vol. 2A
CVTTSS2SI—Convert with Truncation Scalar Single-Precision Floating-Point Value to
Doubleword Integer
INSTRUCTION SET REFERENCE, A-M
Intel C/C++Compiler Intrinsic Equivalent
int _mm_cvttss_si32(__m128d a)
SIMD Floating-Point Exceptions
Invalid, Precision.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
#SS(0)
For an illegal address in the SS segment.
For a page fault.
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
Real-Address Mode Exceptions
GP(0)
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#XM
If CR0.TS[bit 3] = 1.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
For a page fault.
CVTTSS2SI—Convert with Truncation Scalar Single-Precision Floating-Point Value to
Doubleword Integer
Vol. 2A 3-253
INSTRUCTION SET REFERENCE, A-M
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#PF(fault-code)
#NM
If the memory address is in a non-canonical form.
For a page fault.
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
3-254 Vol. 2A
CVTTSS2SI—Convert with Truncation Scalar Single-Precision Floating-Point Value to
Doubleword Integer
INSTRUCTION SET REFERENCE, A-M
CWD/CDQ/CQO—Convert Word to Doubleword/Convert Doubleword to
Quadword
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
99
CWD
CDQ
CQO
Valid
Valid
Valid
Valid
Valid
N.E.
DX:AX ←sign-extend of AX.
EDX:EAX ←sign-extend of EAX.
RDX:RAX←sign-extend of RAX.
99
REX.W + 99
Description
Doubles the size of the operand in register AX, EAX, or RAX (depending on the
operand size) by means of sign extension and stores the result in registers DX:AX,
EDX:EAX, or RDX:RAX, respectively. The CWD instruction copies the sign (bit 15) of
the value in the AX register into every bit position in the DX register. The CDQ
instruction copies the sign (bit 31) of the value in the EAX register into every bit posi-
tion in the EDX register. The CQO instruction (available in 64-bit mode only) copies
the sign (bit 63) of the value in the RAX register into every bit position in the RDX
register.
The CWD instruction can be used to produce a doubleword dividend from a word
before word division. The CDQ instruction can be used to produce a quadword divi-
dend from a doubleword before doubleword division. The CQO instruction can be
used to produce a double quadword dividend from a quadword before a quadword
division.
The CWD and CDQ mnemonics reference the same opcode. The CWD instruction is
intended for use when the operand-size attribute is 16 and the CDQ instruction for
when the operand-size attribute is 32. Some assemblers may force the operand size
to 16 when CWD is used and to 32 when CDQ is used. Others may treat these
mnemonics as synonyms (CWD/CDQ) and use the current setting of the operand-
size attribute to determine the size of values to be converted, regardless of the
mnemonic used.
In 64-bit mode, use of the REX.W prefix promotes operation to 64 bits. The CQO
mnemonics reference the same opcode as CWD/CDQ. See the summary chart at the
beginning of this section for encoding data and limits.
Operation
IF OperandSize = 16 (* CWD instruction *)
THEN
DX ←SignExtend(AX);
ELSE IF OperandSize = 32 (* CDQ instruction *)
EDX ←SignExtend(EAX); FI;
ELSE IF 64-Bit Mode and OperandSize = 64 (* CQO instruction*)
CWD/CDQ/CQO—Convert Word to Doubleword/Convert Doubleword to Quadword
Vol. 2A 3-255
INSTRUCTION SET REFERENCE, A-M
RDX ←SignExtend(RAX); FI;
FI;
Flags Affected
None.
Exceptions (All Operating Modes)
#UD
If the LOCK prefix is used.
3-256 Vol. 2A
CWD/CDQ/CQO—Convert Word to Doubleword/Convert Doubleword to Quadword
INSTRUCTION SET REFERENCE, A-M
DAA—Decimal Adjust AL after Addition
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
27
DAA
Invalid
Valid
Decimal adjust AL after addition.
Description
Adjusts the sum of two packed BCD values to create a packed BCD result. The AL
register is the implied source and destination operand. The DAA instruction is only
useful when it follows an ADD instruction that adds (binary addition) two 2-digit,
packed BCD values and stores a byte result in the AL register. The DAA instruction
then adjusts the contents of the AL register to contain the correct 2-digit, packed
BCD result. If a decimal carry is detected, the CF and AF flags are set accordingly.
This instruction executes as described above in compatibility mode and legacy mode.
It is not valid in 64-bit mode.
Operation
IF 64-Bit Mode
THEN
#UD;
ELSE
old_AL ←AL;
old_CF ←CF;
CF ←0;
IF (((AL AND 0FH) > 9) or AF = 1)
THEN
AL ←AL +6;
CF ←old_CF or (Carry from AL ←AL +6);
AF ←1;
ELSE
AF ←0;
FI;
IF ((old_AL >99H) or (old_CF = 1))
THEN
AL ←AL +60H;
CF ←1;
ELSE
CF ←0;
FI;
FI;
DAA—Decimal Adjust AL after Addition
Vol. 2A 3-257
INSTRUCTION SET REFERENCE, A-M
Example
ADD
DAA
DAA
AL, BL Before: AL=79H BL=35H EFLAGS(OSZAPC)=XXXXXX
After: AL=AEH BL=35H EFLAGS(0SZAPC)=110000
Before: AL=AEH BL=35H EFLAGS(OSZAPC)=110000
After: AL=14H BL=35H EFLAGS(0SZAPC)=X00111
Before: AL=2EH BL=35H EFLAGS(OSZAPC)=110000
After: AL=34H BL=35H EFLAGS(0SZAPC)=X00101
Flags Affected
The CF and AF flags are set if the adjustment of the value results in a decimal carry
in either digit of the result (see the “Operation” section above). The SF, ZF, and PF
flags are set according to the result. The OF flag is undefined.
Protected Mode Exceptions
#UD
If the LOCK prefix is used.
Real-Address Mode Exceptions
#UD
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
#UD
If the LOCK prefix is used.
Compatibility Mode Exceptions
#UD
If the LOCK prefix is used.
64-Bit Mode Exceptions
#UD
If in 64-bit mode.
3-258 Vol. 2A
DAA—Decimal Adjust AL after Addition
INSTRUCTION SET REFERENCE, A-M
DAS—Decimal Adjust AL after Subtraction
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
2F
DAS
Invalid
Valid
Decimal adjust AL after
subtraction.
Description
Adjusts the result of the subtraction of two packed BCD values to create a packed
BCD result. The AL register is the implied source and destination operand. The DAS
instruction is only useful when it follows a SUB instruction that subtracts (binary
subtraction) one 2-digit, packed BCD value from another and stores a byte result in
the AL register. The DAS instruction then adjusts the contents of the AL register to
contain the correct 2-digit, packed BCD result. If a decimal borrow is detected, the CF
and AF flags are set accordingly.
This instruction executes as described above in compatibility mode and legacy mode.
It is not valid in 64-bit mode.
Operation
IF 64-Bit Mode
THEN
#UD;
ELSE
old_AL ←AL;
old_CF ←CF;
CF ←0;
IF (((AL AND 0FH) >9) or AF = 1)
THEN
AL ←AL −6;
CF ←old_CF or (Borrow from AL ←AL −6);
AF ←1;
ELSE
AF ←0;
FI;
IF ((old_AL >99H) or (old_CF = 1))
THEN
AL ←AL −60H;
CF ←1;
FI;
FI;
DAS—Decimal Adjust AL after Subtraction
Vol. 2A 3-259
INSTRUCTION SET REFERENCE, A-M
Example
SUB
DAA
AL, BL Before: AL = 35H, BL = 47H, EFLAGS(OSZAPC) = XXXXXX
After: AL = EEH, BL = 47H, EFLAGS(0SZAPC) = 010111
Before: AL = EEH, BL = 47H, EFLAGS(OSZAPC) = 010111
After: AL = 88H, BL = 47H, EFLAGS(0SZAPC) = X10111
Flags Affected
The CF and AF flags are set if the adjustment of the value results in a decimal borrow
in either digit of the result (see the “Operation” section above). The SF, ZF, and PF
flags are set according to the result. The OF flag is undefined.
Protected Mode Exceptions
#UD
If the LOCK prefix is used.
Real-Address Mode Exceptions
#UD
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
#UD
If the LOCK prefix is used.
Compatibility Mode Exceptions
#UD
If the LOCK prefix is used.
64-Bit Mode Exceptions
#UD
If in 64-bit mode.
3-260 Vol. 2A
DAS—Decimal Adjust AL after Subtraction
INSTRUCTION SET REFERENCE, A-M
DEC—Decrement by 1
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
FE /1
DEC r/m8
Valid
Valid
Valid
Valid
Valid
N.E.
Valid
N.E.
Decrement r/m8 by 1.
Decrement r/m8 by 1.
Decrement r/m16 by 1.
Decrement r/m32 by 1.
Decrement r/m64 by 1.
Decrement r16 by 1.
Decrement r32 by 1.
*
REX + FE /1
FF /1
DEC r/m8
DEC r/m16
DEC r/m32
DEC r/m64
DEC r16
Valid
Valid
N.E.
FF /1
REX.W + FF /1
48+rw
Valid
Valid
48+rd
DEC r32
N.E.
NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.
Description
Subtracts 1 from the destination operand, while preserving the state of the CF flag.
The destination operand can be a register or a memory location. This instruction
allows a loop counter to be updated without disturbing the CF flag. (To perform a
decrement operation that updates the CF flag, use a SUB instruction with an imme-
diate operand of 1.)
This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.
In 64-bit mode, DEC r16 and DEC r32 are not encodable (because opcodes 48H
through 4FH are REX prefixes). Otherwise, the instruction’s 64-bit mode default
operation size is 32 bits. Use of the REX.R prefix permits access to additional regis-
ters (R8-R15). Use of the REX.W prefix promotes operation to 64 bits.
See the summary chart at the beginning of this section for encoding data and limits.
Operation
DEST ←DEST – 1;
Flags Affected
The CF flag is not affected. The OF, SF, ZF, AF, and PF flags are set according to the
result.
DEC—Decrement by 1
Vol. 2A 3-261
INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#GP(0)
If the destination operand is located in a non-writable segment.
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used but the destination is not a memory
operand.
Real-Address Mode Exceptions
#GP
#SS
#UD
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If a memory operand effective address is outside the SS
segment limit.
If the LOCK prefix is used but the destination is not a memory
operand.
Virtual-8086 Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made.
#UD
If the LOCK prefix is used but the destination is not a memory
operand.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If a page fault occurs.
#PF(fault-code)
3-262 Vol. 2A
DEC—Decrement by 1
INSTRUCTION SET REFERENCE, A-M
#AC(0)
#UD
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
If the LOCK prefix is used but the destination is not a memory
operand.
DEC—Decrement by 1
Vol. 2A 3-263
INSTRUCTION SET REFERENCE, A-M
DIV—Unsigned Divide
Opcode
Instruction 64-Bit
Compat/
Leg Mode
Description
Mode
F6 /6
DIV r/m8
Valid
Valid
Unsigned divide AX by r/m8, with
result stored in AL ←Quotient, AH ←
Remainder.
*
REX + F6 /6
F7 /6
DIV r/m8
Valid
Valid
Valid
Valid
N.E.
Unsigned divide AX by r/m8, with
result stored in AL ←Quotient, AH ←
Remainder.
DIV r/m16
DIV r/m32
DIV r/m64
Valid
Valid
N.E.
Unsigned divide DX:AX by r/m16, with
result stored in AX ←Quotient, DX ←
Remainder.
F7 /6
Unsigned divide EDX:EAX by r/m32,
with result stored in EAX ←Quotient,
EDX ←Remainder.
REX.W + F7 /6
NOTES:
Unsigned divide RDX:RAX by r/m64,
with result stored in RAX ←Quotient,
RDX ←Remainder.
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.
Description
Divides unsigned the value in the AX, DX:AX, EDX:EAX, or RDX:RAX registers (divi-
dend) by the source operand (divisor) and stores the result in the AX (AH:AL),
DX:AX, EDX:EAX, or RDX:RAX registers. The source operand can be a general-
purpose register or a memory location. The action of this instruction depends on the
operand size (dividend/divisor). Division using 64-bit operand is available only in
64-bit mode.
Non-integral results are truncated (chopped) towards 0. The remainder is always less
than the divisor in magnitude. Overflow is indicated with the #DE (divide error)
exception rather than with the CF flag.
prefix permits access to additional registers (R8-R15). Use of the REX.W prefix
promotes operation to 64 bits. In 64-bit mode when REX.W is applied, the instruction
divides the unsigned value in RDX:RAX by the source operand and stores the
quotient in RAX, the remainder in RDX.
See the summary chart at the beginning of this section for encoding data and limits.
See Table 3-20.
3-264 Vol. 2A
DIV—Unsigned Divide
INSTRUCTION SET REFERENCE, A-M
Table 3-20. DIV Action
Maximum
Operand Size
Dividend
AX
Divisor
r/m8
Quotient
AL
Remainder
AH
Quotient
Word/byte
255
Doubleword/word
Quadword/doubleword
DX:AX
r/m16
r/m32
r/m64
AX
DX
65,535
232 −1
264 −1
EDX:EAX
RDX:RAX
EAX
EDX
Doublequadword/
quadword
RAX
RDX
Operation
IF SRC = 0
THEN #DE; FI; (* Divide Error *)
IF OperandSize = 8 (* Word/Byte Operation *)
THEN
temp ←AX / SRC;
IF temp >FFH
THEN #DE; (* Divide error *)
ELSE
AL ←temp;
AH ←AX MOD SRC;
FI;
ELSE IF OperandSize = 16 (* Doubleword/word operation *)
THEN
temp ←DX:AX / SRC;
IF temp >FFFFH
THEN #DE; (* Divide error *)
ELSE
AX ←temp;
DX ←DX:AX MOD SRC;
FI;
FI;
ELSE IF Operandsize = 32 (* Quadword/doubleword operation *)
THEN
temp ←EDX:EAX / SRC;
IF temp >FFFFFFFFH
THEN #DE; (* Divide error *)
ELSE
EAX ←temp;
EDX ←EDX:EAX MOD SRC;
FI;
FI;
DIV—Unsigned Divide
Vol. 2A 3-265
INSTRUCTION SET REFERENCE, A-M
ELSE IF 64-Bit Mode and Operandsize = 64 (* Doublequadword/quadword operation *)
THEN
temp ←RDX:RAX / SRC;
IF temp >FFFFFFFFFFFFFFFFH
THEN #DE; (* Divide error *)
ELSE
RAX ←temp;
RDX ←RDX:RAX MOD SRC;
FI;
FI;
FI;
Flags Affected
The CF, OF, SF, ZF, AF, and PF flags are undefined.
Protected Mode Exceptions
#DE
If the source operand (divisor) is 0
If the quotient is too large for the designated register.
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
Real-Address Mode Exceptions
#DE
If the source operand (divisor) is 0.
If the quotient is too large for the designated register.
#GP
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.
#SS(0)
#UD
If a memory operand effective address is outside the SS
segment limit.
If the LOCK prefix is used.
3-266 Vol. 2A
DIV—Unsigned Divide
INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions
#DE
If the source operand (divisor) is 0.
If the quotient is too large for the designated register.
#GP(0)
#SS
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made.
#UD
If the LOCK prefix is used.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#DE
If the memory address is in a non-canonical form.
If the source operand (divisor) is 0
If the quotient is too large for the designated register.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
DIV—Unsigned Divide
Vol. 2A 3-267
INSTRUCTION SET REFERENCE, A-M
DIVPD—Divide Packed Double-Precision Floating-Point Values
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
66 0F 5E /r DIVPD xmm1,
Valid
Valid
Divide packed double-precision floating-
point values in xmm1 by packed double-
precision floating-point values
xmm2/m128.
xmm2/m128
Description
Performs a SIMD divide of the two packed double-precision floating-point values in
the destination operand (first operand) by the two packed double-precision floating-
point values in the source operand (second operand), and stores the packed double-
precision floating-point results in the destination operand. The source operand can
be an XMM register or a 128-bit memory location. The destination operand is an XMM
register. See Chapter 11 in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 1, for an overview of a SIMD double-precision floating-point
operation.
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
DEST[63:0] ←DEST[63:0] / (SRC[63:0]);
DEST[127:64] ←DEST[127:64] / (SRC[127:64]);
Intel C/C++Compiler Intrinsic Equivalent
DIVPD
__m128d _mm_div_pd(__m128d a, __m128d b)
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#SS(0)
For an illegal address in the SS segment.
For a page fault.
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
3-268 Vol. 2A
DIVPD—Divide Packed Double-Precision Floating-Point Values
INSTRUCTION SET REFERENCE, A-M
#XM
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP(0)
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#XM
If CR0.TS[bit 3] = 1.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
For a page fault.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#PF(fault-code)
#NM
For a page fault.
If CR0.TS[bit 3] = 1.
DIVPD—Divide Packed Double-Precision Floating-Point Values
Vol. 2A 3-269
INSTRUCTION SET REFERENCE, A-M
#XM
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
3-270 Vol. 2A
DIVPD—Divide Packed Double-Precision Floating-Point Values
INSTRUCTION SET REFERENCE, A-M
DIVPS—Divide Packed Single-Precision Floating-Point Values
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
0F 5E /r
DIVPS xmm1,
xmm2/m128
Valid
Valid
Divide packed single-precision floating-
point values in xmm1 by packed single-
precision floating-point values
xmm2/m128.
Description
Performs a SIMD divide of the four packed single-precision floating-point values in
the destination operand (first operand) by the four packed single-precision floating-
point values in the source operand (second operand), and stores the packed single-
precision floating-point results in the destination operand. The source operand can
be an XMM register or a 128-bit memory location. The destination operand is an XMM
register. See Chapter 10 in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 1, for an overview of a SIMD single-precision floating-point
operation.
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
DEST[31:0] ←DEST[31:0] / (SRC[31:0]);
DEST[63:32] ←DEST[63:32] / (SRC[63:32]);
DEST[95:64] ←DEST[95:64] / (SRC[95:64]);
DEST[127:96] ←DEST[127:96] / (SRC[127:96]);
Intel C/C++Compiler Intrinsic Equivalent
DIVPS
__m128 _mm_div_ps(__m128 a, __m128 b)
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#SS(0)
For an illegal address in the SS segment.
For a page fault.
#PF(fault-code)
DIVPS—Divide Packed Single-Precision Floating-Point Values
Vol. 2A 3-271
INSTRUCTION SET REFERENCE, A-M
#NM
#XM
If CR0.TS[bit 3] = 1.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP(0)
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#XM
If CR0.TS[bit 3] = 1.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
For a page fault.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#PF(fault-code)
For a page fault.
3-272 Vol. 2A
DIVPS—Divide Packed Single-Precision Floating-Point Values
INSTRUCTION SET REFERENCE, A-M
#NM
#XM
If CR0.TS[bit 3] = 1.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
DIVPS—Divide Packed Single-Precision Floating-Point Values
Vol. 2A 3-273
INSTRUCTION SET REFERENCE, A-M
DIVSD—Divide Scalar Double-Precision Floating-Point Values
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
F2 0F 5E /r
DIVSD xmm1,
xmm2/m64
Valid
Valid
Divide low double-precision floating-
point value n xmm1 by low double-
precision floating-point value in
xmm2/mem64.
Description
Divides the low double-precision floating-point value in the destination operand (first
operand) by the low double-precision floating-point value in the source operand
(second operand), and stores the double-precision floating-point result in the desti-
nation operand. The source operand can be an XMM register or a 64-bit memory
location. The destination operand is an XMM register. The high quadword of the desti-
nation operand remains unchanged. See Chapter 11 in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1, for an overview of a scalar
double-precision floating-point operation.
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
DEST[63:0]←DEST[63:0] / SRC[63:0];
(* DEST[127:64] unchanged *)
Intel C/C++Compiler Intrinsic Equivalent
DIVSD
__m128d _mm_div_sd (m128d a, m128d b)
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
For an illegal address in the SS segment.
For a page fault.
#SS(0)
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
3-274 Vol. 2A
DIVSD—Divide Scalar Double-Precision Floating-Point Values
INSTRUCTION SET REFERENCE, A-M
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
Real-Address Mode Exceptions
GP(0)
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#XM
If CR0.TS[bit 3] = 1.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
#AC(0)
For a page fault.
If alignment checking is enabled and an unaligned memory
reference is made.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#PF(fault-code)
#NM
If the memory address is in a non-canonical form.
For a page fault.
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
DIVSD—Divide Scalar Double-Precision Floating-Point Values
Vol. 2A 3-275
INSTRUCTION SET REFERENCE, A-M
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
3-276 Vol. 2A
DIVSD—Divide Scalar Double-Precision Floating-Point Values
INSTRUCTION SET REFERENCE, A-M
DIVSS—Divide Scalar Single-Precision Floating-Point Values
Opcode
Instruction
64-Bit
Mode
Compat/
Leg
Mode
Description
F3 0F 5E /r
DIVSS xmm1,
xmm2/m32
Valid
Valid
Divide low single-precision floating-
point value in xmm1 by low single-
precision floating-point value in
xmm2/m32.
Description
Divides the low single-precision floating-point value in the destination operand (first
operand) by the low single-precision floating-point value in the source operand
(second operand), and stores the single-precision floating-point result in the destina-
tion operand. The source operand can be an XMM register or a 32-bit memory loca-
tion. The destination operand is an XMM register. The three high-order doublewords
of the destination operand remain unchanged. See Chapter 10 in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 1, for an overview of a
scalar single-precision floating-point operation.
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
DEST[31:0]←DEST[31:0] / SRC[31:0];
(* DEST[127:32] unchanged *)
Intel C/C++Compiler Intrinsic Equivalent
DIVSS
__m128 _mm_div_ss(__m128 a, __m128 b)
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
For an illegal address in the SS segment.
For a page fault.
#SS(0)
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
DIVSS—Divide Scalar Single-Precision Floating-Point Values
Vol. 2A 3-277
INSTRUCTION SET REFERENCE, A-M
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
Real-Address Mode Exceptions
GP(0)
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#XM
If CR0.TS[bit 3] = 1.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
#AC(0)
For a page fault.
If alignment checking is enabled and an unaligned memory
reference is made.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#PF(fault-code)
#NM
If the memory address is in a non-canonical form.
For a page fault.
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
3-278 Vol. 2A
DIVSS—Divide Scalar Single-Precision Floating-Point Values
INSTRUCTION SET REFERENCE, A-M
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
DIVSS—Divide Scalar Single-Precision Floating-Point Values
Vol. 2A 3-279
INSTRUCTION SET REFERENCE, A-M
EMMS—Empty MMX Technology State
Opcode
Instruction
64-Bit Compat/
Description
Mode
Leg Mode
0F 77
EMMS
Valid
Valid
Set the x87 FPU tag word to empty.
Description
Sets the values of all the tags in the x87 FPU tag word to empty (all 1s). This opera-
tion marks the x87 FPU data registers (which are aliased to the MMX technology
registers) as available for use by x87 FPU floating-point instructions. (See Figure 8-7
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for
the format of the x87 FPU tag word.) All other MMX instructions (other than the
EMMS instruction) set all the tags in x87 FPU tag word to valid (all 0s).
The EMMS instruction must be used to clear the MMX technology state at the end of
all MMX technology procedures or subroutines and before calling other procedures or
subroutines that may execute x87 floating-point instructions. If a floating-point
instruction loads one of the registers in the x87 FPU data register stack before the
x87 FPU tag word has been reset by the EMMS instruction, an x87 floating-point
register stack overflow can occur that will result in an x87 floating-point exception or
incorrect result.
EMMS operation is the same in non-64-bit modes and 64-bit mode.
Operation
x87FPUTagWord ←FFFFH;
Intel C/C++Compiler Intrinsic Equivalent
void _mm_empty()
Flags Affected
None.
Protected Mode Exceptions
#UD
#NM
#MF
#UD
If CR0.EM[bit 2] = 1.
If CR0.TS[bit 3] = 1.
If there is a pending FPU exception.
If the LOCK prefix is used.
Real-Address Mode Exceptions
Same exceptions as in protected mode.
3-280 Vol. 2A
EMMS—Empty MMX Technology State
INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
Same exceptions as in protected mode.
EMMS—Empty MMX Technology State
Vol. 2A 3-281
INSTRUCTION SET REFERENCE, A-M
ENTER—Make Stack Frame for Procedure Parameters
Opcode
C8 iw 00
C8 iw 01
C8 iw ib
Instruction
64-Bit Compat/
Description
Mode
Leg Mode
ENTER imm16, 0
ENTER imm16,1
Valid
Valid
Create a stack frame for a
procedure.
Valid
Valid
Valid
Create a nested stack frame for a
procedure.
ENTER imm16, imm8 Valid
Create a nested stack frame for a
procedure.
Description
Creates a stack frame for a procedure. The first operand (size operand) specifies the
size of the stack frame (that is, the number of bytes of dynamic storage allocated on
the stack for the procedure). The second operand (nesting level operand) gives the
lexical nesting level (0 to 31) of the procedure. The nesting level determines the
number of stack frame pointers that are copied into the “display area” of the new
stack frame from the preceding frame. Both of these operands are immediate values.
The stack-size attribute determines whether the BP (16 bits), EBP (32 bits), or RBP
(64 bits) register specifies the current frame pointer and whether SP (16 bits), ESP
(32 bits), or RSP (64 bits) specifies the stack pointer. In 64-bit mode, stack-size
attribute is always 64-bits.
The ENTER and companion LEAVE instructions are provided to support block struc-
tured languages. The ENTER instruction (when used) is typically the first instruction
in a procedure and is used to set up a new stack frame for a procedure. The LEAVE
instruction is then used at the end of the procedure (just before the RET instruction)
to release the stack frame.
If the nesting level is 0, the processor pushes the frame pointer from the BP/EBP/RBP
register onto the stack, copies the current stack pointer from the SP/ESP/RSP
register into the BP/EBP/RBP register, and loads the SP/ESP/RSP register with the
current stack-pointer value minus the value in the size operand. For nesting levels of
1 or greater, the processor pushes additional frame pointers on the stack before
adjusting the stack pointer. These additional frame pointers provide the called proce-
dure with access points to other nested frames on the stack. See “Procedure Calls for
Block-Structured Languages” in Chapter 6 of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 1, for more information about the actions of
the ENTER instruction.
The ENTER instruction causes a page fault whenever a write using the final value of
the stack pointer (within the current stack segment) would do so.
In 64-bit mode, default operation size is 64 bits; 32-bit operation size cannot be
encoded.
3-282 Vol. 2A
ENTER—Make Stack Frame for Procedure Parameters
INSTRUCTION SET REFERENCE, A-M
Operation
NestingLevel ←NestingLevel MOD 32
IF 64-Bit Mode (StackSize = 64)
THEN
Push(RBP);
FrameTemp ←RSP;
ELSE IF StackSize = 32
THEN
Push(EBP);
FrameTemp ←ESP; FI;
ELSE (* StackSize = 16 *)
Push(BP);
FrameTemp ←SP;
FI;
IF NestingLevel = 0
THEN GOTO CONTINUE;
FI;
IF (NestingLevel > 1)
THEN FOR i ←1 to (NestingLevel - 1)
DO
IF 64-Bit Mode (StackSize = 64)
THEN
RBP ←RBP - 8;
Push([RBP]); (* Quadword push *)
ELSE IF OperandSize = 32
THEN
IF StackSize = 32
EBP ←EBP - 4;
Push([EBP]); (* Doubleword push *)
ELSE (* StackSize = 16 *)
BP ←BP - 4;
Push([BP]); (* Doubleword push *)
FI;
FI;
ELSE (* OperandSize = 16 *)
IF StackSize = 32
THEN
EBP ←EBP - 2;
Push([EBP]); (* Word push *)
ELSE (* StackSize = 16 *)
BP ←BP - 2;
Push([BP]); (* Word push *)
ENTER—Make Stack Frame for Procedure Parameters
Vol. 2A 3-283
INSTRUCTION SET REFERENCE, A-M
FI;
FI;
OD;
FI;
IF 64-Bit Mode (StackSize = 64)
THEN
Push(FrameTemp); (* Quadword push *)
ELSE IF OperandSize = 32
THEN
Push(FrameTemp); FI; (* Doubleword push *)
ELSE (* OperandSize = 16 *)
Push(FrameTemp); (* Word push *)
FI;
CONTINUE:
IF 64-Bit Mode (StackSize = 64)
THEN
RBP ←FrameTemp;
RSP ←RSP −Size;
ELSE IF StackSize = 32
THEN
EBP ←FrameTemp;
ESP ←ESP −Size; FI;
ELSE (* StackSize = 16 *)
BP ←FrameTemp;
SP ←SP −Size;
FI;
END;
Flags Affected
None.
Protected Mode Exceptions
#SS(0)
If the new value of the SP or ESP register is outside the stack
segment limit.
#PF(fault-code)
If a page fault occurs or if a write using the final value of the
stack pointer (within the current stack segment) would cause a
page fault.
#UD
If the LOCK prefix is used.
3-284 Vol. 2A
ENTER—Make Stack Frame for Procedure Parameters
INSTRUCTION SET REFERENCE, A-M
Real-Address Mode Exceptions
#SS(0)
If the new value of the SP or ESP register is outside the stack
segment limit.
#UD
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
#SS(0)
If the new value of the SP or ESP register is outside the stack
segment limit.
#PF(fault-code)
If a page fault occurs or if a write using the final value of the
stack pointer (within the current stack segment) would cause a
page fault.
#UD
If the LOCK prefix is used.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If the stack address is in a non-canonical form.
#PF(fault-code)
If a page fault occurs or if a write using the final value of the
stack pointer (within the current stack segment) would cause a
page fault.
#UD
If the LOCK prefix is used.
ENTER—Make Stack Frame for Procedure Parameters
Vol. 2A 3-285
INSTRUCTION SET REFERENCE, A-M
x
F2XM1—Compute 2 –1
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
D9 F0
F2XM1
Valid
Valid
Replace ST(0) with (2ST(0) – 1).
Description
Computes the exponential value of 2 to the power of the source operand minus 1.
The source operand is located in register ST(0) and the result is also stored in ST(0).
The value of the source operand must lie in the range –1.0 to +1.0. If the source value
is outside this range, the result is undefined.
The following table shows the results obtained when computing the exponential
value of various classes of numbers, assuming that neither overflow nor underflow
occurs.
Table 3-21. Results Obtained from F2XM1
ST(0) SRC
−1.0 to −0
−0
ST(0) DEST
−0.5 to −0
−0
+0
+0
+0 to +1.0
+0 to 1.0
Values other than 2 can be exponentiated using the following formula:
∗ log x)
xy ←2(y
2
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
Operation
ST(0) ←(2ST(0) −1);
FPU Flags Affected
C1
Set to 0 if stack underflow occurred.
Set if result was rounded up; cleared otherwise.
Undefined.
C0, C2, C3
Floating-Point Exceptions
#IS
#IA
#D
Stack underflow occurred.
Source operand is an SNaN value or unsupported format.
Source is a denormal value.
3-286 Vol. 2A
F2XM1—Compute 2x–1
INSTRUCTION SET REFERENCE, A-M
#U
#P
Result is too small for destination format.
Value cannot be represented exactly in destination format.
Protected Mode Exceptions
#NM
#UD
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If the LOCK prefix is used.
Real-Address Mode Exceptions
Same exceptions as in protected mode.
Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
Same exceptions as in protected mode.
F2XM1—Compute 2x–1
Vol. 2A 3-287
INSTRUCTION SET REFERENCE, A-M
FABS—Absolute Value
Opcode
Instruction
64-Bit Compat/
Description
Mode
Leg Mode
D9 E1
FABS
Valid
Valid
Replace ST with its absolute value.
Description
Clears the sign bit of ST(0) to create the absolute value of the operand. The following
table shows the results obtained when creating the absolute value of various classes
of numbers.
Table 3-22. Results Obtained from FABS
ST(0) SRC
ST(0) DEST
−•
−F
+•
+F
+0
+0
+F
−0
+0
+F
+∞
NaN
+•
NaN
NOTES:
F Means finite floating-point value.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
Operation
ST(0) ←|ST(0)|;
FPU Flags Affected
C1
Set to 0 if stack underflow occurred; otherwise, set to 0.
Undefined.
C0, C2, C3
Floating-Point Exceptions
#IS
Stack underflow occurred.
Protected Mode Exceptions
#NM
#UD
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If the LOCK prefix is used.
3-288 Vol. 2A
FABS—Absolute Value
INSTRUCTION SET REFERENCE, A-M
Real-Address Mode Exceptions
Same exceptions as in protected mode.
Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
Same exceptions as in protected mode.
FABS—Absolute Value
Vol. 2A 3-289
INSTRUCTION SET REFERENCE, A-M
FADD/FADDP/FIADD—Add
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
D8 /0
FADD m32fp
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Add m32fp to ST(0) and store result
in ST(0).
DC /0
FADD m64fp
Add m64fp to ST(0) and store result
in ST(0).
D8 C0+i
DC C0+i
DE C0+i
DE C1
FADD ST(0), ST(i)
FADD ST(i), ST(0)
Add ST(0) to ST(i) and store result in
ST(0).
Add ST(i) to ST(0) and store result in
ST(i).
FADDP ST(i), ST(0) Valid
Add ST(0) to ST(i), store result in
ST(i), and pop the register stack.
FADDP
Valid
Valid
Valid
Add ST(0) to ST(1), store result in
ST(1), and pop the register stack.
DA /0
FIADD m32int
FIADD m16int
Add m32int to ST(0) and store
result in ST(0).
DE /0
Add m16int to ST(0) and store
result in ST(0).
Description
Adds the destination and source operands and stores the sum in the destination loca-
tion. The destination operand is always an FPU register; the source operand can be a
register or a memory location. Source operands in memory can be in single-precision
or double-precision floating-point format or in word or doubleword integer format.
The no-operand version of the instruction adds the contents of the ST(0) register to
the ST(1) register. The one-operand version adds the contents of a memory location
(either a floating-point or an integer value) to the contents of the ST(0) register. The
two-operand version, adds the contents of the ST(0) register to the ST(i) register or
vice versa. The value in ST(0) can be doubled by coding:
FADD ST(0), ST(0);
The FADDP instructions perform the additional operation of popping the FPU register
stack after storing the result. To pop the register stack, the processor marks the
ST(0) register as empty and increments the stack pointer (TOP) by 1. (The no-
operand version of the floating-point add instructions always results in the register
stack being popped. In some assemblers, the mnemonic for this instruction is FADD
rather than FADDP.)
The FIADD instructions convert an integer source operand to double extended-preci-
sion floating-point format before performing the addition.
3-290 Vol. 2A
FADD/FADDP/FIADD—Add
INSTRUCTION SET REFERENCE, A-M
The table on the following page shows the results obtained when adding various
When the sum of two operands with opposite signs is 0, the result is +0, except for the
round toward −∞mode, in which case the result is −0. When the source operand is an
integer 0, it is treated as a +0.
When both operand are infinities of the same sign, the result is ∞of the expected
sign. If both operands are infinities of opposite signs, an invalid-operation exception
is generated. See Table 3-23.
Table 3-23. FADD/FADDP/FIADD Results
DEST
-∞
-∞
-∞
-∞
-∞
-∞
*
−F
−0
+0
+F
+∞
*
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
-∞
-∞
-∞
-∞
-∞
−F or −I
−0
−F
SRC
−0
SRC
0
F or 0
+∞
+∞
+∞
+∞
+∞
NaN
SRC
DEST
DEST
F or 0
+∞
DEST
DEST
+F
+0
0
+0
+F or +I
+∞
SRC
+∞
NaN
SRC
+∞
NaN
+∞
NaN
NaN
NaN
NaN
NOTES:
F Means finite floating-point value.
Means integer.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
I
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
Operation
IF Instruction = FIADD
THEN
DEST ←DEST +ConvertToDoubleExtendedPrecisionFP(SRC);
ELSE (* Source operand is floating-point value *)
DEST ←DEST +SRC;
FI;
IF Instruction = FADDP
THEN
PopRegisterStack;
FI;
FADD/FADDP/FIADD—Add
Vol. 2A 3-291
INSTRUCTION SET REFERENCE, A-M
FPU Flags Affected
C1
Set to 0 if stack underflow occurred.
Set if result was rounded up; cleared otherwise.
Undefined.
C0, C2, C3
Floating-Point Exceptions
#IS
#IA
Stack underflow occurred.
Operand is an SNaN value or unsupported format.
Operands are infinities of unlike sign.
#D
#U
#O
#P
Source operand is a denormal value.
Result is too small for destination format.
Result is too large for destination format.
Value cannot be represented exactly in destination format.
Protected Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#NM
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS
If a memory operand effective address is outside the SS
segment limit.
#NM
#UD
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
3-292 Vol. 2A
FADD/FADDP/FIADD—Add
INSTRUCTION SET REFERENCE, A-M
#NM
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made.
#UD
If the LOCK prefix is used.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#NM
If the memory address is in a non-canonical form.
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If there is a pending x87 FPU exception.
If a page fault occurs.
#MF
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
FADD/FADDP/FIADD—Add
Vol. 2A 3-293
INSTRUCTION SET REFERENCE, A-M
FBLD—Load Binary Coded Decimal
Opcode
Instruction
64-Bit Compat/
Description
Mode
Leg Mode
DF /4
FBLD m80 dec
Valid
Valid
Convert BCD value to floating-point and
push onto the FPU stack.
Description
Converts the BCD source operand into double extended-precision floating-point
format and pushes the value onto the FPU stack. The source operand is loaded
without rounding errors. The sign of the source operand is preserved, including that
of −0.
The packed BCD digits are assumed to be in the range 0 through 9; the instruction
does not check for invalid digits (AH through FH). Attempting to load an invalid
encoding produces an undefined result.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
Operation
TOP ←TOP −1;
ST(0) ←ConvertToDoubleExtendedPrecisionFP(SRC);
FPU Flags Affected
C1
Set to 1 if stack overflow occurred; otherwise, set to 0.
Undefined.
C0, C2, C3
Floating-Point Exceptions
#IS
Stack overflow occurred.
Protected Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#NM
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
3-294 Vol. 2A
FBLD—Load Binary Coded Decimal
INSTRUCTION SET REFERENCE, A-M
Real-Address Mode Exceptions
#GP
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS
If a memory operand effective address is outside the SS
segment limit.
#NM
#UD
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#NM
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made.
#UD
If the LOCK prefix is used.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#NM
If the memory address is in a non-canonical form.
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If there is a pending x87 FPU exception.
If a page fault occurs.
#MF
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
FBLD—Load Binary Coded Decimal
Vol. 2A 3-295
INSTRUCTION SET REFERENCE, A-M
FBSTP—Store BCD Integer and Pop
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
DF /6
FBSTP m80bcd
Valid
Valid
Store ST(0) in m80bcd and pop ST(0).
Description
Converts the value in the ST(0) register to an 18-digit packed BCD integer, stores the
result in the destination operand, and pops the register stack. If the source value is a
non-integral value, it is rounded to an integer value, according to rounding mode
specified by the RC field of the FPU control word. To pop the register stack, the
processor marks the ST(0) register as empty and increments the stack pointer (TOP)
by 1.
The destination operand specifies the address where the first byte destination value
is to be stored. The BCD value (including its sign bit) requires 10 bytes of space in
memory.
The following table shows the results obtained when storing various classes of
numbers in packed BCD format.
Table 3-24. FBSTP Results
ST(0)
DEST
-∞or Value Too Large for DEST Format
*
−D
F ≤−1
−1 < F < −0
−0
**
−0
+0
**
+D
*
+0
+0 < F < +1
F ≥ +1
+∞or Value Too Large for DEST Format
NaN
*
NOTES:
F Means finite floating-point value.
D Means packed-BCD number.
* Indicates floating-point invalid-operation (#IA) exception.
** 0 or 1, depending on the rounding mode.
If the converted value is too large for the destination format, or if the source operand
is an ∞, SNaN, QNAN, or is in an unsupported format, an invalid-arithmetic-operand
condition is signaled. If the invalid-operation exception is not masked, an invalid-
arithmetic-operand exception (#IA) is generated and no value is stored in the desti-
3-296 Vol. 2A
FBSTP—Store BCD Integer and Pop
INSTRUCTION SET REFERENCE, A-M
nation operand. If the invalid-operation exception is masked, the packed BCD indef-
inite value is stored in memory.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
Operation
DEST ←BCD(ST(0));
PopRegisterStack;
FPU Flags Affected
C1
Set to 0 if stack underflow occurred.
Set if result was rounded up; cleared otherwise.
Undefined.
C0, C2, C3
Floating-Point Exceptions
#IS
#IA
Stack underflow occurred.
Converted value that exceeds 18 BCD digits in length.
Source operand is an SNaN, QNaN, ∞, or in an unsupported
format.
#P
Value cannot be represented exactly in destination format.
Protected Mode Exceptions
#GP(0)
If a segment register is being loaded with a segment selector
that points to a non-writable segment.
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#NM
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS
If a memory operand effective address is outside the SS
segment limit.
FBSTP—Store BCD Integer and Pop
Vol. 2A 3-297
INSTRUCTION SET REFERENCE, A-M
#NM
#UD
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#NM
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made.
#UD
If the LOCK prefix is used.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#NM
If the memory address is in a non-canonical form.
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If there is a pending x87 FPU exception.
If a page fault occurs.
#MF
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
3-298 Vol. 2A
FBSTP—Store BCD Integer and Pop
INSTRUCTION SET REFERENCE, A-M
FCHS—Change Sign
Opcode
Instruction
64-Bit
Mode
Compat/
Description
Complements sign of ST(0).
Leg Mode
D9 E0
FCHS
Valid
Valid
Description
Complements the sign bit of ST(0). This operation changes a positive value into a
negative value of equal magnitude or vice versa. The following table shows the
results obtained when changing the sign of various classes of numbers.
Table 3-25. FCHS Results
ST(0) SRC
ST(0) DEST
−∞
−F
+∞
+F
−0
+0
+0
−0
+F
−F
+∞
NaN
NOTES:
−∞
NaN
* F means finite floating-point value.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
Operation
SignBit(ST(0)) ←NOT (SignBit(ST(0)));
FPU Flags Affected
C1
Set to 0 if stack underflow occurred; otherwise, set to 0.
Undefined.
C0, C2, C3
Floating-Point Exceptions
#IS
Stack underflow occurred.
Protected Mode Exceptions
#NM
#UD
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If the LOCK prefix is used.
FCHS—Change Sign
Vol. 2A 3-299
INSTRUCTION SET REFERENCE, A-M
Real-Address Mode Exceptions
Same exceptions as in protected mode.
Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
Same exceptions as in protected mode.
3-300 Vol. 2A
FCHS—Change Sign
INSTRUCTION SET REFERENCE, A-M
FCLEX/FNCLEX—Clear Exceptions
Opcode*
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
9B DB E2
FCLEX
Valid
Valid
Clear floating-point exception flags after
checking for pending unmasked floating-
point exceptions.
*
DB E2
FNCLEX
Valid
Valid
Clear floating-point exception flags
without checking for pending unmasked
floating-point exceptions.
NOTES:
* See IA-32 Architecture Compatibility section below.
Description
Clears the floating-point exception flags (PE, UE, OE, ZE, DE, and IE), the exception
summary status flag (ES), the stack fault flag (SF), and the busy flag (B) in the FPU
status word. The FCLEX instruction checks for and handles any pending unmasked
floating-point exceptions before clearing the exception flags; the FNCLEX instruction
does not.
The assembler issues two instructions for the FCLEX instruction (an FWAIT instruc-
tion followed by an FNCLEX instruction), and the processor executes each of these
instructions separately. If an exception is generated for either of these instructions,
the save EIP points to the instruction that caused the exception.
IA-32 Architecture Compatibility
When operating a Pentium or Intel486 processor in MS-DOS* compatibility mode, it
is possible (under unusual circumstances) for an FNCLEX instruction to be inter-
rupted prior to being executed to handle a pending FPU exception. See the section
titled “No-Wait FPU Instructions Can Get FPU Interrupt in Window” in Appendix D of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for a
description of these circumstances. An FNCLEX instruction cannot be interrupted in
this way on a Pentium 4, Intel Xeon, or P6 family processor.
This instruction affects only the x87 FPU floating-point exception flags. It does not
affect the SIMD floating-point exception flags in the MXCRS register.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
Operation
FPUStatusWord[0:7] ←0;
FPUStatusWord[15] ←0;
FCLEX/FNCLEX—Clear Exceptions
Vol. 2A 3-301
INSTRUCTION SET REFERENCE, A-M
FPU Flags Affected
The PE, UE, OE, ZE, DE, IE, ES, SF, and B flags in the FPU status word are cleared.
The C0, C1, C2, and C3 flags are undefined.
Floating-Point Exceptions
None.
Protected Mode Exceptions
#NM
#UD
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If the LOCK prefix is used.
Real-Address Mode Exceptions
Same exceptions as in protected mode.
Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
Same exceptions as in protected mode.
3-302 Vol. 2A
FCLEX/FNCLEX—Clear Exceptions
INSTRUCTION SET REFERENCE, A-M
FCMOVcc—Floating-Point Conditional Move
Opcode*
Instruction
64-Bit Compat/
Description
Mode
Valid
Valid
Valid
Leg Mode*
DA C0+i
DA C8+i
DA D0+i
FCMOVB ST(0), ST(i)
FCMOVE ST(0), ST(i)
FCMOVBE ST(0), ST(i)
Valid
Move if below (CF=1).
Move if equal (ZF=1).
Valid
Valid
Move if below or equal (CF=1 or
ZF=1).
DA D8+i
DB C0+i
DB C8+i
DB D0+i
FCMOVU ST(0), ST(i)
FCMOVNB ST(0), ST(i)
FCMOVNE ST(0), ST(i)
FCMOVNBE ST(0), ST(i)
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Move if unordered (PF=1).
Move if not below (CF=0).
Move if not equal (ZF=0).
Move if not below or equal (CF=0
and ZF=0).
DB D8+i
FCMOVNU ST(0), ST(i)
Valid
Valid
Move if not unordered (PF=0).
NOTES:
* See IA-32 Architecture Compatibility section below.
Description
Tests the status flags in the EFLAGS register and moves the source operand (second
operand) to the destination operand (first operand) if the given test condition is true.
The condition for each mnemonic os given in the Description column above and in
Chapter 7 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1. The source operand is always in the ST(i) register and the destination
operand is always ST(0).
help eliminate branching overhead for IF operations and the possibility of branch
mispredictions by the processor.
A processor may not support the FCMOVcc instructions. Software can check if the
FCMOVcc instructions are supported by checking the processor’s feature information
with the CPUID instruction (see “COMISS—Compare Scalar Ordered Single-Precision
Floating-Point Values and Set EFLAGS” in this chapter). If both the CMOV and FPU
feature bits are set, the FCMOVcc instructions are supported.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
IA-32 Architecture Compatibility
The FCMOVcc instructions were introduced to the IA-32 Architecture in the P6 family
processors and are not available in earlier IA-32 processors.
FCMOVcc—Floating-Point Conditional Move
Vol. 2A 3-303
INSTRUCTION SET REFERENCE, A-M
Operation
IF condition TRUE
THEN ST(0) ←ST(i);
FI;
FPU Flags Affected
C1
Set to 0 if stack underflow occurred.
Undefined.
C0, C2, C3
Floating-Point Exceptions
#IS
Stack underflow occurred.
Integer Flags Affected
None.
Protected Mode Exceptions
#NM
#UD
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If the LOCK prefix is used.
Real-Address Mode Exceptions
Same exceptions as in protected mode.
Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
Same exceptions as in protected mode.
3-304 Vol. 2A
FCMOVcc—Floating-Point Conditional Move
INSTRUCTION SET REFERENCE, A-M
FCOM/FCOMP/FCOMPP—Compare Floating Point Values
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
D8 /2
FCOM m32fp
FCOM m64fp
FCOM ST(i)
FCOM
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Compare ST(0) with m32fp.
Compare ST(0) with m64fp.
Compare ST(0) with ST(i).
Compare ST(0) with ST(1).
DC /2
D8 D0+i
D8 D1
D8 /3
FCOMP m32fp
Compare ST(0) with m32fp and
pop register stack.
DC /3
FCOMP m64fp
FCOMP ST(i)
FCOMP
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Compare ST(0) with m64fp and
pop register stack.
D8 D8+i
D8 D9
DE D9
Compare ST(0) with ST(i) and pop
register stack.
Compare ST(0) with ST(1) and pop
register stack.
FCOMPP
Compare ST(0) with ST(1) and pop
register stack twice.
Description
Compares the contents of register ST(0) and source value and sets condition code
flags C0, C2, and C3 in the FPU status word according to the results (see the table
below). The source operand can be a data register or a memory location. If no source
operand is given, the value in ST(0) is compared with the value in ST(1). The sign of
zero is ignored, so that –0.0 is equal to +0.0.
Table 3-26. FCOM/FCOMP/FCOMPP Results
Condition
ST(0) >SRC
ST(0) < SRC
Unordered*
C3
C2
C0
0
0
0
0
0
1
1
0
0
1
1
1
NOTES:
* Flags not set if unmasked invalid-arithmetic-operand (#IA) exception is generated.
This instruction checks the class of the numbers being compared (see “FXAM—Exam-
ineModR/M” in this chapter). If either operand is a NaN or is in an unsupported
format, an invalid-arithmetic-operand exception (#IA) is raised and, if the exception
is masked, the condition flags are set to “unordered.” If the invalid-arithmetic-
operand exception is unmasked, the condition code flags are not set.
FCMOVcc—Floating-Point Conditional Move
Vol. 2A 3-305
INSTRUCTION SET REFERENCE, A-M
The FCOMP instruction pops the register stack following the comparison operation
and the FCOMPP instruction pops the register stack twice following the comparison
operation. To pop the register stack, the processor marks the ST(0) register as
empty and increments the stack pointer (TOP) by 1.
The FCOM instructions perform the same operation as the FUCOM instructions. The
only difference is how they handle QNaN operands. The FCOM instructions raise an
invalid-arithmetic-operand exception (#IA) when either or both of the operands is a
NaN value or is in an unsupported format. The FUCOM instructions perform the same
operation as the FCOM instructions, except that they do not generate an invalid-
arithmetic-operand exception for QNaNs.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
Operation
CASE (relation of operands) OF
ST >SRC:
ST < SRC:
ST = SRC:
C3, C2, C0 ←000;
C3, C2, C0 ←001;
C3, C2, C0 ←100;
ESAC;
IF ST(0) or SRC = NaN or unsupported format
THEN
#IA
IF FPUControlWord.IM = 1
THEN
C3, C2, C0 ←111;
FI;
FI;
IF Instruction = FCOMP
THEN
PopRegisterStack;
FI;
IF Instruction = FCOMPP
THEN
PopRegisterStack;
PopRegisterStack;
FI;
FPU Flags Affected
C1
Set to 0 if stack underflow occurred; otherwise, set to 0.
See table on previous page.
C0, C2, C3
3-306 Vol. 2A
FCMOVcc—Floating-Point Conditional Move
INSTRUCTION SET REFERENCE, A-M
Floating-Point Exceptions
#IS
#IA
Stack underflow occurred.
One or both operands are NaN values or have unsupported
formats.
Register is marked empty.
#D
One or both operands are denormal values.
Protected Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#NM
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS
If a memory operand effective address is outside the SS
segment limit.
#NM
#UD
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#NM
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made.
#UD
If the LOCK prefix is used.
FCMOVcc—Floating-Point Conditional Move
Vol. 2A 3-307
INSTRUCTION SET REFERENCE, A-M
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#NM
If the memory address is in a non-canonical form.
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If there is a pending x87 FPU exception.
If a page fault occurs.
#MF
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
3-308 Vol. 2A
FCMOVcc—Floating-Point Conditional Move
INSTRUCTION SET REFERENCE, A-M
FCOMI/FCOMIP/FUCOMI/FUCOMIP—Compare Floating Point Values and
Set EFLAGS
Opcode
DB F0+i
DF F0+i
DB E8+i
Instruction
64-Bit
Mode
Compat/
Description
Leg Mode
FCOMI ST, ST(i)
Valid
Valid
Valid
Valid
Compare ST(0) with ST(i) and set status
flags accordingly.
FCOMIP ST, ST(i) Valid
FUCOMI ST, ST(i) Valid
Compare ST(0) with ST(i), set status flags
accordingly, and pop register stack.
Compare ST(0) with ST(i), check for
ordered values, and set status flags
accordingly.
DF E8+i
FUCOMIP ST, ST(i) Valid
Valid
Compare ST(0) with ST(i), check for
ordered values, set status flags
accordingly, and pop register stack.
Description
Performs an unordered comparison of the contents of registers ST(0) and ST(i) and
sets the status flags ZF, PF, and CF in the EFLAGS register according to the results
(see the table below). The sign of zero is ignored for comparisons, so that –0.0 is
equal to +0.0.
Table 3-27. FCOMI/FCOMIP/ FUCOMI/FUCOMIP Results
Comparison Results*
ZF
PF
CF
0
ST0 >ST(i)
0
0
ST0 < ST(i)
0
0
1
ST0 = ST(i)
1
0
0
1
1
1
NOTES:
* See the IA-32 Architecture Compatibility section below.
** Flags not set if unmasked invalid-arithmetic-operand (#IA) exception is generated.
An unordered comparison checks the class of the numbers being compared (see
“FXAM—ExamineModR/M” in this chapter). The FUCOMI/FUCOMIP instructions
perform the same operations as the FCOMI/FCOMIP instructions. The only difference
is that the FUCOMI/FUCOMIP instructions raise the invalid-arithmetic-operand
exception (#IA) only when either or both operands are an SNaN or are in an unsup-
ported format; QNaNs cause the condition code flags to be set to unordered, but do
not cause an exception to be generated. The FCOMI/FCOMIP instructions raise an
invalid-operation exception when either or both of the operands are a NaN value of
any kind or are in an unsupported format.
FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Floating Point Values and Set EFLAGS
Vol. 2A 3-309
INSTRUCTION SET REFERENCE, A-M
If the operation results in an invalid-arithmetic-operand exception being raised, the
status flags in the EFLAGS register are set only if the exception is masked.
The FCOMI/FCOMIP and FUCOMI/FUCOMIP instructions clear the OF flag in the
EFLAGS register (regardless of whether an invalid-operation exception is detected).
The FCOMIP and FUCOMIP instructions also pop the register stack following the
comparison operation. To pop the register stack, the processor marks the ST(0)
register as empty and increments the stack pointer (TOP) by 1.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
IA-32 Architecture Compatibility
The FCOMI/FCOMIP/FUCOMI/FUCOMIP instructions were introduced to the IA-32
Architecture in the P6 family processors and are not available in earlier IA-32 proces-
sors.
Operation
CASE (relation of operands) OF
ST(0) >ST(i):
ST(0) < ST(i):
ST(0) = ST(i):
ZF, PF, CF ←000;
ZF, PF, CF ←001;
ZF, PF, CF ←100;
ESAC;
IF Instruction is FCOMI or FCOMIP
THEN
IF ST(0) or ST(i) = NaN or unsupported format
THEN
#IA
IF FPUControlWord.IM = 1
THEN
ZF, PF, CF ←111;
FI;
FI;
FI;
IF Instruction is FUCOMI or FUCOMIP
THEN
IF ST(0) or ST(i) = QNaN, but not SNaN or unsupported format
THEN
ZF, PF, CF ←111;
ELSE (* ST(0) or ST(i) is SNaN or unsupported format *)
#IA;
IF FPUControlWord.IM = 1
THEN
3-310 Vol. 2A
FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Floating Point Values and Set EFLAGS
INSTRUCTION SET REFERENCE, A-M
ZF, PF, CF ←111;
FI;
FI;
FI;
IF Instruction is FCOMIP or FUCOMIP
THEN
PopRegisterStack;
FI;
FPU Flags Affected
C1
Set to 0 if stack underflow occurred; otherwise, set to 0.
Not affected.
C0, C2, C3
Floating-Point Exceptions
#IS
#IA
Stack underflow occurred.
(FCOMI or FCOMIP instruction) One or both operands are NaN
values or have unsupported formats.
(FUCOMI or FUCOMIP instruction) One or both operands are
SNaN values (but not QNaNs) or have undefined formats.
Detection of a QNaN value does not raise an invalid-operand
exception.
Protected Mode Exceptions
#NM
#MF
#UD
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If there is a pending x87 FPU exception.
If the LOCK prefix is used.
Real-Address Mode Exceptions
Same exceptions as in protected mode.
Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
Same exceptions as in protected mode.
FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Floating Point Values and Set EFLAGS
Vol. 2A 3-311
INSTRUCTION SET REFERENCE, A-M
FCOS—Cosine
Opcode
Instruction
64-Bit Compat/
Description
Mode
Leg Mode
D9 FF
FCOS
Valid
Valid
Replace ST(0) with its cosine.
Description
Computes the cosine of the source operand in register ST(0) and stores the result in
ST(0). The source operand must be given in radians and must be within the range −
263 to +263. The following table shows the results obtained when taking the cosine of
various classes of numbers.
Table 3-28. FCOS Results
ST(0) SRC
ST(0) DEST
−∞
−F
*
−1 to +1
+1
−0
+0
+1
+F
−1 to +1
*
+∞
NaN
NaN
NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
If the source operand is outside the acceptable range, the C2 flag in the FPU status
word is set, and the value in register ST(0) remains unchanged. The instruction does
not raise an exception when the source operand is out of range. It is up to the
program to check the C2 flag for out-of-range conditions. Source values outside the
63
63
range −2 to +2 can be reduced to the range of the instruction by subtracting an
appropriate integer multiple of 2π or by using the FPREM instruction with a divisor of
2π. See the section titled “Pi” in Chapter 8 of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 1, for a discussion of the proper value to use
for π in performing such reductions.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
Operation
63
IF |ST(0)| < 2
THEN
C2 ←0;
3-312 Vol. 2A
FCOS—Cosine
INSTRUCTION SET REFERENCE, A-M
ST(0) ←cosine(ST(0));
ELSE (* Source operand is out-of-range *)
C2 ←1;
FI;
FPU Flags Affected
C1
Set to 0 if stack underflow occurred.
Set if result was rounded up; cleared otherwise.
Undefined if C2 is 1.
63
63
C2
Set to 1 if outside range (−2 < source operand < +2 ); other-
wise, set to 0.
C0, C3
Undefined.
Floating-Point Exceptions
#IS
#IA
#D
#P
Stack underflow occurred.
Source operand is an SNaN value, ∞, or unsupported format.
Source is a denormal value.
Value cannot be represented exactly in destination format.
Protected Mode Exceptions
#NM
#MF
#UD
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If there is a pending x87 FPU exception.
If the LOCK prefix is used.
Real-Address Mode Exceptions
Same exceptions as in protected mode.
Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
Same exceptions as in protected mode.
FCOS—Cosine
Vol. 2A 3-313
INSTRUCTION SET REFERENCE, A-M
FDECSTP—Decrement Stack-Top Pointer
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
D9 F6
FDECSTP
Valid
Valid
Decrement TOP field in FPU status
word.
Description
Subtracts one from the TOP field of the FPU status word (decrements the top-of-
stack pointer). If the TOP field contains a 0, it is set to 7. The effect of this instruction
is to rotate the stack by one position. The contents of the FPU data registers and tag
register are not affected.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
Operation
IF TOP = 0
THEN TOP ←7;
ELSE TOP ←TOP – 1;
FI;
FPU Flags Affected
The C1 flag is set to 0. The C0, C2, and C3 flags are undefined.
Floating-Point Exceptions
None.
Protected Mode Exceptions
#NM
#MF
#UD
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If there is a pending x87 FPU exception.
If the LOCK prefix is used.
Real-Address Mode Exceptions
Same exceptions as in protected mode.
Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.
3-314 Vol. 2A
FDECSTP—Decrement Stack-Top Pointer
INSTRUCTION SET REFERENCE, A-M
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
Same exceptions as in protected mode.
FDECSTP—Decrement Stack-Top Pointer
Vol. 2A 3-315
INSTRUCTION SET REFERENCE, A-M
FDIV/FDIVP/FIDIV—Divide
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
D8 /6
FDIV m32fp
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Divide ST(0) by m32fp and store
result in ST(0).
DC /6
FDIV m64fp
Divide ST(0) by m64fp and store
result in ST(0).
D8 F0+i
DC F8+i
DE F8+i
DE F9
FDIV ST(0), ST(i)
FDIV ST(i), ST(0)
Divide ST(0) by ST(i) and store result
in ST(0).
Divide ST(i) by ST(0) and store result
in ST(i).
FDIVP ST(i), ST(0) Valid
Divide ST(i) by ST(0), store result in
ST(i), and pop the register stack.
FDIVP
Valid
Valid
Valid
Divide ST(1) by ST(0), store result in
ST(1), and pop the register stack.
DA /6
FIDIV m32int
FIDIV m16int
Divide ST(0) by m32int and store
result in ST(0).
DE /6
Divide ST(0) by m64int and store
result in ST(0).
Description
Divides the destination operand by the source operand and stores the result in the
destination location. The destination operand (dividend) is always in an FPU register;
the source operand (divisor) can be a register or a memory location. Source oper-
ands in memory can be in single-precision or double-precision floating-point format,
word or doubleword integer format.
The no-operand version of the instruction divides the contents of the ST(1) register
by the contents of the ST(0) register. The one-operand version divides the contents
of the ST(0) register by the contents of a memory location (either a floating-point or
an integer value). The two-operand version, divides the contents of the ST(0)
register by the contents of the ST(i) register or vice versa.
The FDIVP instructions perform the additional operation of popping the FPU register
stack after storing the result. To pop the register stack, the processor marks the
ST(0) register as empty and increments the stack pointer (TOP) by 1. The no-
operand version of the floating-point divide instructions always results in the register
stack being popped. In some assemblers, the mnemonic for this instruction is FDIV
rather than FDIVP.
The FIDIV instructions convert an integer source operand to double extended-preci-
sion floating-point format before performing the division. When the source operand
is an integer 0, it is treated as a +0.
3-316 Vol. 2A
FDIV/FDIVP/FIDIV—Divide
INSTRUCTION SET REFERENCE, A-M
If an unmasked divide-by-zero exception (#Z) is generated, no result is stored; if the
exception is masked, an ∞of the appropriate sign is stored in the destination
operand.
The following table shows the results obtained when dividing various classes of
numbers, assuming that neither overflow nor underflow occurs.
Table 3-29. FDIV/FDIVP/FIDIV Results
DEST
-∞
*
−F
−0
+0
+0
+0
*
+0
−0
−0
−0
*
+F
+∞
*
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
-∞
−F
+0
+F
−0
−F
+∞
+∞
+∞
-∞
-∞
-∞
*
-∞
-∞
-∞
+∞
+∞
+∞
*
−I
+F
−F
SRC
−0
**
**
−F
**
**
+F
+0
*
*
+I
−0
−0
−0
NaN
+0
+0
+0
NaN
+F
−F
+F
+∞
NaN
−0
NaN
+0
NaN
NaN
NaN
NOTES:
F Means finite floating-point value.
Means integer.
I
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
** Indicates floating-point zero-divide (#Z) exception.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
Operation
IF SRC = 0
THEN
#Z;
ELSE
IF Instruction is FIDIV
THEN
DEST ←DEST / ConvertToDoubleExtendedPrecisionFP(SRC);
ELSE (* Source operand is floating-point value *)
DEST ←DEST / SRC;
FI;
FI;
FDIV/FDIVP/FIDIV—Divide
Vol. 2A 3-317
INSTRUCTION SET REFERENCE, A-M
IF Instruction = FDIVP
THEN
PopRegisterStack;
FI;
FPU Flags Affected
C1
Set to 0 if stack underflow occurred.
Set if result was rounded up; cleared otherwise.
Undefined.
C0, C2, C3
Floating-Point Exceptions
#IS
#IA
Stack underflow occurred.
Operand is an SNaN value or unsupported format.
∞ / ∞; 0 / 0
#D
#Z
#U
#O
#P
Source is a denormal value.
DEST / 0, where DEST is not equal to 0.
Result is too small for destination format.
Result is too large for destination format.
Value cannot be represented exactly in destination format.
Protected Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#NM
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS
If a memory operand effective address is outside the SS
segment limit.
#NM
#UD
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If the LOCK prefix is used.
3-318 Vol. 2A
FDIV/FDIVP/FIDIV—Divide
INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#NM
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made.
#UD
If the LOCK prefix is used.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#NM
If the memory address is in a non-canonical form.
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If there is a pending x87 FPU exception.
If a page fault occurs.
#MF
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
FDIV/FDIVP/FIDIV—Divide
Vol. 2A 3-319
INSTRUCTION SET REFERENCE, A-M
FDIVR/FDIVRP/FIDIVR—Reverse Divide
Opcode
Instruction
64-Bit Compat/
Description
Mode
Leg Mode
D8 /7
FDIVR m32fp
FDIVR m64fp
Valid
Valid
Divide m32fp by ST(0) and store result
in ST(0).
DC /7
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Divide m64fp by ST(0) and store result
in ST(0).
D8 F8+i
DC F0+i
DE F0+i
DE F1
FDIVR ST(0), ST(i) Valid
FDIVR ST(i), ST(0) Valid
FDIVRP ST(i), ST(0) Valid
Divide ST(i) by ST(0) and store result in
ST(0).
Divide ST(0) by ST(i) and store result in
ST(i).
Divide ST(0) by ST(i), store result in
ST(i), and pop the register stack.
FDIVRP
Valid
Valid
Valid
Divide ST(0) by ST(1), store result in
ST(1), and pop the register stack.
DA /7
FIDIVR m32int
FIDIVR m16int
Divide m32int by ST(0) and store result
in ST(0).
DE /7
Divide m16int by ST(0) and store result
in ST(0).
Description
Divides the source operand by the destination operand and stores the result in the
destination location. The destination operand (divisor) is always in an FPU register;
the source operand (dividend) can be a register or a memory location. Source oper-
ands in memory can be in single-precision or double-precision floating-point format,
word or doubleword integer format.
These instructions perform the reverse operations of the FDIV, FDIVP, and FIDIV
instructions. They are provided to support more efficient coding.
The no-operand version of the instruction divides the contents of the ST(0) register
by the contents of the ST(1) register. The one-operand version divides the contents
of a memory location (either a floating-point or an integer value) by the contents of
the ST(0) register. The two-operand version, divides the contents of the ST(i)
register by the contents of the ST(0) register or vice versa.
The FDIVRP instructions perform the additional operation of popping the FPU register
stack after storing the result. To pop the register stack, the processor marks the
ST(0) register as empty and increments the stack pointer (TOP) by 1. The no-
operand version of the floating-point divide instructions always results in the register
stack being popped. In some assemblers, the mnemonic for this instruction is FDIVR
rather than FDIVRP.
3-320 Vol. 2A
FDIVR/FDIVRP/FIDIVR—Reverse Divide
INSTRUCTION SET REFERENCE, A-M
The FIDIVR instructions convert an integer source operand to double extended-preci-
sion floating-point format before performing the division.
If an unmasked divide-by-zero exception (#Z) is generated, no result is stored; if the
exception is masked, an ∞of the appropriate sign is stored in the destination
operand.
The following table shows the results obtained when dividing various classes of
numbers, assuming that neither overflow nor underflow occurs.
Table 3-30. FDIVR/FDIVRP/FIDIVR Results
DEST
−∞
*
−F
+∞
+F
−0
+∞
**
+0
−∞
**
+F
−∞
-F
+∞
*
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
−∞
−F
SRC
+0
−0
−I
+0
+F
**
**
-F
−0
−0
+0
+0
*
*
−0
−0
+0
−0
−0
*
*
+0
+0
+I
−0
-F
**
**
+F
+0
+F
−0
-F
**
**
+F
+0
+∞
NaN
*
−∞
NaN
−∞
NaN
+∞
NaN
+∞
NaN
*
NaN
NaN
NOTES:
F Means finite floating-point value.
Means integer.
I
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
** Indicates floating-point zero-divide (#Z) exception.
When the source operand is an integer 0, it is treated as a +0. This instruction’s oper-
ation is the same in non-64-bit modes and 64-bit mode.
Operation
IF DEST = 0
THEN
#Z;
ELSE
IF Instruction = FIDIVR
THEN
DEST ←ConvertToDoubleExtendedPrecisionFP(SRC) / DEST;
ELSE (* Source operand is floating-point value *)
FDIVR/FDIVRP/FIDIVR—Reverse Divide
Vol. 2A 3-321
INSTRUCTION SET REFERENCE, A-M
DEST ←SRC / DEST;
FI;
FI;
IF Instruction = FDIVRP
THEN
PopRegisterStack;
FI;
FPU Flags Affected
C1
Set to 0 if stack underflow occurred.
Set if result was rounded up; cleared otherwise.
Undefined.
C0, C2, C3
Floating-Point Exceptions
#IS
#IA
Stack underflow occurred.
Operand is an SNaN value or unsupported format.
∞ / ∞; 0 / 0
#D
#Z
#U
#O
#P
Source is a denormal value.
SRC / 0, where SRC is not equal to 0.
Result is too small for destination format.
Result is too large for destination format.
Value cannot be represented exactly in destination format.
Protected Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#NM
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
3-322 Vol. 2A
FDIVR/FDIVRP/FIDIVR—Reverse Divide
INSTRUCTION SET REFERENCE, A-M
#SS
If a memory operand effective address is outside the SS
segment limit.
#NM
#UD
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#NM
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made.
#UD
If the LOCK prefix is used.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#NM
If the memory address is in a non-canonical form.
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If there is a pending x87 FPU exception.
If a page fault occurs.
#MF
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
FDIVR/FDIVRP/FIDIVR—Reverse Divide
Vol. 2A 3-323
INSTRUCTION SET REFERENCE, A-M
FFREE—Free Floating-Point Register
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
DD C0+i
FFREE ST(i)
Valid
Valid
Sets tag for ST(i) to empty.
Description
Sets the tag in the FPU tag register associated with register ST(i) to empty (11B).
The contents of ST(i) and the FPU stack-top pointer (TOP) are not affected.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
Operation
TAG(i) ←11B;
FPU Flags Affected
C0, C1, C2, C3 undefined.
Floating-Point Exceptions
None.
Protected Mode Exceptions
#NM
#MF
#UD
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If there is a pending x87 FPU exception.
If the LOCK prefix is used.
Real-Address Mode Exceptions
Same exceptions as in protected mode.
Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
Same exceptions as in protected mode.
3-324 Vol. 2A
FFREE—Free Floating-Point Register
INSTRUCTION SET REFERENCE, A-M
FICOM/FICOMP—Compare Integer
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
DE /2
DA /2
DE /3
FICOM m16int
FICOM m32int
FICOMP m16int
Valid
Valid
Valid
Valid
Valid
Valid
Compare ST(0) with m16int.
Compare ST(0) with m32int.
Compare ST(0) with m16int and pop
stack register.
DA /3
FICOMP m32int
Valid
Valid
Compare ST(0) with m32int and pop
stack register.
Description
Compares the value in ST(0) with an integer source operand and sets the condition
code flags C0, C2, and C3 in the FPU status word according to the results (see table
below). The integer value is converted to double extended-precision floating-point
format before the comparison is made.
Table 3-31. FICOM/FICOMP Results
Condition
ST(0) >SRC
ST(0) < SRC
ST(0) = SRC
Unordered
C3
C2
C0
0
0
0
0
0
1
1
0
0
1
1
1
These instructions perform an “unordered comparison.” An unordered comparison
also checks the class of the numbers being compared (see “FXAM—ExamineModR/M”
in this chapter). If either operand is a NaN or is in an undefined format, the condition
flags are set to “unordered.”
The sign of zero is ignored, so that –0.0 ←+0.0.
The FICOMP instructions pop the register stack following the comparison. To pop the
register stack, the processor marks the ST(0) register empty and increments the
stack pointer (TOP) by 1.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
Operation
CASE (relation of operands) OF
ST(0) >SRC:
ST(0) < SRC:
ST(0) = SRC:
Unordered:
C3, C2, C0 ←000;
C3, C2, C0 ←001;
C3, C2, C0 ←100;
C3, C2, C0 ←111;
FICOM/FICOMP—Compare Integer
Vol. 2A 3-325
INSTRUCTION SET REFERENCE, A-M
ESAC;
IF Instruction = FICOMP
THEN
PopRegisterStack;
FI;
FPU Flags Affected
C1
Set to 0 if stack underflow occurred; otherwise, set to 0.
See table on previous page.
C0, C2, C3
Floating-Point Exceptions
#IS
#IA
Stack underflow occurred.
One or both operands are NaN values or have unsupported
formats.
#D
One or both operands are denormal values.
Protected Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#NM
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS
If a memory operand effective address is outside the SS
segment limit.
#NM
#UD
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
3-326 Vol. 2A
FICOM/FICOMP—Compare Integer
INSTRUCTION SET REFERENCE, A-M
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#NM
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made.
#UD
If the LOCK prefix is used.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#NM
If the memory address is in a non-canonical form.
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If there is a pending x87 FPU exception.
If a page fault occurs.
#MF
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
FICOM/FICOMP—Compare Integer
Vol. 2A 3-327
INSTRUCTION SET REFERENCE, A-M
FILD—Load Integer
Opcode
Instruction 64-Bit
Mode
Compat/
Leg Mode
Description
DF /0
FILD m16int Valid
FILD m32int Valid
FILD m64int Valid
Valid
Valid
Valid
Push m16int onto the FPU register
stack.
DB /0
DF /5
Push m32int onto the FPU register
stack.
Push m64int onto the FPU register
stack.
Description
Converts the signed-integer source operand into double extended-precision floating-
point format and pushes the value onto the FPU register stack. The source operand
can be a word, doubleword, or quadword integer. It is loaded without rounding
errors. The sign of the source operand is preserved.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
Operation
TOP ←TOP −1;
ST(0) ←ConvertToDoubleExtendedPrecisionFP(SRC);
FPU Flags Affected
C1
Set to 1 if stack overflow occurred; set to 0 otherwise.
Undefined.
C0, C2, C3
Floating-Point Exceptions
#IS
Stack overflow occurred.
Protected Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#NM
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
3-328 Vol. 2A
FILD—Load Integer
INSTRUCTION SET REFERENCE, A-M
#UD
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP
#SS
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If a memory operand effective address is outside the SS
segment limit.
#NM
#UD
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#NM
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made.
#UD
If the LOCK prefix is used.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#NM
If the memory address is in a non-canonical form.
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If there is a pending x87 FPU exception.
If a page fault occurs.
#MF
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
FILD—Load Integer
Vol. 2A 3-329
INSTRUCTION SET REFERENCE, A-M
FINCSTP—Increment Stack-Top Pointer
Opcode
Instruction 64-Bit
Mode
Compat/
Leg Mode
Description
D9 F7
FINCSTP
Valid
Valid
Increment the TOP field in the FPU
status register.
Description
Adds one to the TOP field of the FPU status word (increments the top-of-stack
pointer). If the TOP field contains a 7, it is set to 0. The effect of this instruction is to
rotate the stack by one position. The contents of the FPU data registers and tag
register are not affected. This operation is not equivalent to popping the stack,
because the tag for the previous top-of-stack register is not marked empty.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
Operation
IF TOP = 7
THEN TOP ←0;
ELSE TOP ←TOP +1;
FI;
FPU Flags Affected
The C1 flag is set to 0. The C0, C2, and C3 flags are undefined.
Floating-Point Exceptions
None.
Protected Mode Exceptions
#NM
#MF
#UD
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If there is a pending x87 FPU exception.
If the LOCK prefix is used.
Real-Address Mode Exceptions
Same exceptions as in protected mode.
Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.
3-330 Vol. 2A
FINCSTP—Increment Stack-Top Pointer
INSTRUCTION SET REFERENCE, A-M
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
Same exceptions as in protected mode.
FINCSTP—Increment Stack-Top Pointer
Vol. 2A 3-331
INSTRUCTION SET REFERENCE, A-M
FINIT/FNINIT—Initialize Floating-Point Unit
Opcode
9B DB E3
DB E3
Instruction
64-Bit
Mode
Compat/
Description
Leg Mode
FINIT
Valid
Valid
Valid
Initialize FPU after checking for pending
unmasked floating-point exceptions.
*
FNINIT
Valid
Initialize FPU without checking for
pending unmasked floating-point
exceptions.
NOTES:
* See IA-32 Architecture Compatibility section below.
Description
Sets the FPU control, status, tag, instruction pointer, and data pointer registers to
their default states. The FPU control word is set to 037FH (round to nearest, all
exceptions masked, 64-bit precision). The status word is cleared (no exception flags
set, TOP is set to 0). The data registers in the register stack are left unchanged, but
they are all tagged as empty (11B). Both the instruction and data pointers are
cleared.
The FINIT instruction checks for and handles any pending unmasked floating-point
exceptions before performing the initialization; the FNINIT instruction does not.
The assembler issues two instructions for the FINIT instruction (an FWAIT instruction
followed by an FNINIT instruction), and the processor executes each of these instruc-
tions in separately. If an exception is generated for either of these instructions, the
save EIP points to the instruction that caused the exception.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
IA-32 Architecture Compatibility
When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is
possible (under unusual circumstances) for an FNINIT instruction to be interrupted
prior to being executed to handle a pending FPU exception. See the section titled
“No-Wait FPU Instructions Can Get FPU Interrupt in Window” in Appendix D of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for a
description of these circumstances. An FNINIT instruction cannot be interrupted in
this way on a Pentium 4, Intel Xeon, or P6 family processor.
In the Intel387 math coprocessor, the FINIT/FNINIT instruction does not clear the
instruction and data pointers.
This instruction affects only the x87 FPU. It does not affect the XMM and MXCSR
registers.
3-332 Vol. 2A
FINIT/FNINIT—Initialize Floating-Point Unit
INSTRUCTION SET REFERENCE, A-M
Operation
FPUControlWord ←037FH;
FPUStatusWord ←0;
FPUTagWord ←FFFFH;
FPUDataPointer ←0;
FPUInstructionPointer ←0;
FPULastInstructionOpcode ←0;
FPU Flags Affected
C0, C1, C2, C3 set to 0.
Floating-Point Exceptions
None.
Protected Mode Exceptions
#NM
#MF
#UD
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If there is a pending x87 FPU exception.
If the LOCK prefix is used.
Real-Address Mode Exceptions
Same exceptions as in protected mode.
Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
Same exceptions as in protected mode.
FINIT/FNINIT—Initialize Floating-Point Unit
Vol. 2A 3-333
INSTRUCTION SET REFERENCE, A-M
FIST/FISTP—Store Integer
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
DF /2
DB /2
DF /3
FIST m16int
FIST m32int
FISTP m16int
Valid
Valid
Valid
Valid
Valid
Valid
Store ST(0) in m16int.
Store ST(0) in m32int.
Store ST(0) in m16int and pop
register stack.
DB /3
DF /7
FISTP m32int
Valid
Valid
Valid
Valid
Store ST(0) in m32int and pop
register stack.
FISTP m64int
Store ST(0) in m64int and pop
register stack.
Description
The FIST instruction converts the value in the ST(0) register to a signed integer and
stores the result in the destination operand. Values can be stored in word or double-
word integer format. The destination operand specifies the address where the first
byte of the destination value is to be stored.
The FISTP instruction performs the same operation as the FIST instruction and then
pops the register stack. To pop the register stack, the processor marks the ST(0)
register as empty and increments the stack pointer (TOP) by 1. The FISTP instruction
also stores values in quadword integer format.
The following table shows the results obtained when storing various classes of
numbers in integer format.
Table 3-32. FIST/FISTP Results
ST(0)
−∞or Value Too Large for DEST Format
F ≤−1
DEST
*
- I
−1 < F < −0
**
0
−0
+0
0
+0 < F < +1
F ≥ +1
**
+ I
*
+∞or Value Too Large for DEST Format
3-334 Vol. 2A
FIST/FISTP—Store Integer
INSTRUCTION SET REFERENCE, A-M
Table 3-32. FIST/FISTP Results (Contd.)
ST(0)
DEST
*
NaN
NOTES:
F Means finite floating-point value.
Means integer.
I
* Indicates floating-point invalid-operation (#IA) exception.
** 0 or 1, depending on the rounding mode.
If the source value is a non-integral value, it is rounded to an integer value, according
to the rounding mode specified by the RC field of the FPU control word.
If the converted value is too large for the destination format, or if the source operand
is an ∞, SNaN, QNAN, or is in an unsupported format, an invalid-arithmetic-operand
condition is signaled. If the invalid-operation exception is not masked, an invalid-
arithmetic-operand exception (#IA) is generated and no value is stored in the desti-
nation operand. If the invalid-operation exception is masked, the integer indefinite
value is stored in memory.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
Operation
DEST ←Integer(ST(0));
IF Instruction = FISTP
THEN
PopRegisterStack;
FI;
FPU Flags Affected
C1
Set to 0 if stack underflow occurred.
Indicates rounding direction of if the inexact exception (#P) is
generated: 0 ←not roundup; 1 ←roundup.
Set to 0 otherwise.
Undefined.
C0, C2, C3
Floating-Point Exceptions
#IS
#IA
Stack underflow occurred.
Converted value is too large for the destination format.
Source operand is an SNaN, QNaN, ∞, or unsupported format.
Value cannot be represented exactly in destination format.
#P
FIST/FISTP—Store Integer
Vol. 2A 3-335
INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#GP(0)
If the destination is located in a non-writable segment.
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#NM
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS
If a memory operand effective address is outside the SS
segment limit.
#NM
#UD
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#NM
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made.
#UD
If the LOCK prefix is used.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
3-336 Vol. 2A
FIST/FISTP—Store Integer
INSTRUCTION SET REFERENCE, A-M
#NM
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF
If there is a pending x87 FPU exception.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
FIST/FISTP—Store Integer
Vol. 2A 3-337
INSTRUCTION SET REFERENCE, A-M
FISTTP—Store Integer with Truncation
Opcode
Instruction
64-Bit Mode Compat/
Leg Mode
Description
DF /1
FISTTP m16int
FISTTP m32int
FISTTP m64int
Valid
Valid
Valid
Valid
Valid
Valid
Store ST(0) in m16int with
truncation.
DB /1
DD /1
Store ST(0) in m32int with
truncation.
Store ST(0) in m64int with
truncation.
Description
FISTTP converts the value in ST into a signed integer using truncation (chop) as
rounding mode, transfers the result to the destination, and pop ST. FISTTP accepts
word, short integer, and long integer destinations.
The following table shows the results obtained when storing various classes of
numbers in integer format.
Table 3-33. FISTTP Results
ST(0)
DEST
−∞ or Value Too Large for DEST Format
*
−I
F ≤ −1
−1 < F < + 1
0
+ I
*
F ≥ +1
+∞ or Value Too Large for DEST Format
NaN
*
NOTES:
F Means finite floating-point value.
Ι Means integer.
∗ Indicates floating-point invalid-operation (#IA) exception.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
Operation
DEST ←ST;
pop ST;
Flags Affected
C1 is cleared; C0, C2, C3 undefined.
3-338 Vol. 2A
FISTTP—Store Integer with Truncation
INSTRUCTION SET REFERENCE, A-M
Numeric Exceptions
Invalid, Stack Invalid (stack underflow), Precision.
Protected Mode Exceptions
#GP(0)
If the destination is in a nonwritable segment.
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
#SS(0)
For an illegal address in the SS segment.
For a page fault.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#NM
#UD
If CR0.EM[bit 2] = 1.
If CR0.TS[bit 3] = 1.
If CPUID.01H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.
Real Address Mode Exceptions
GP(0)
If any part of the operand would lie outside of the effective
address space from 0 to 0FFFFH.
#NM
If CR0.EM[bit 2] = 1.
If CR0.TS[bit 3] = 1.
#UD
If CPUID.01H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.
Virtual 8086 Mode Exceptions
GP(0)
If any part of the operand would lie outside of the effective
address space from 0 to 0FFFFH.
#NM
If CR0.EM[bit 2] = 1.
If CR0.TS[bit 3] = 1.
#UD
If CPUID.01H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.
#PF(fault-code)
#AC(0)
For a page fault.
For unaligned memory reference if the current privilege is 3.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
FISTTP—Store Integer with Truncation
Vol. 2A 3-339
INSTRUCTION SET REFERENCE, A-M
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#NM
If the memory address is in a non-canonical form.
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If there is a pending x87 FPU exception.
If a page fault occurs.
#MF
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
If the LOCK prefix is used.
3-340 Vol. 2A
FISTTP—Store Integer with Truncation
INSTRUCTION SET REFERENCE, A-M
FLD—Load Floating Point Value
Opcode
Instruction 64-Bit
Mode
Compat/
Leg Mode
Description
D9 /0
FLD m32fp Valid
FLD m64fp Valid
FLD m80fp Valid
Valid
Valid
Valid
Valid
Push m32fp onto the FPU register stack.
Push m64fp onto the FPU register stack.
Push m80fp onto the FPU register stack.
Push ST(i) onto the FPU register stack.
DD /0
DB /5
D9 C0+i
FLD ST(i)
Valid
Description
Pushes the source operand onto the FPU register stack. The source operand can be in
single-precision, double-precision, or double extended-precision floating-point
format. If the source operand is in single-precision or double-precision floating-point
format, it is automatically converted to the double extended-precision floating-point
format before being pushed on the stack.
The FLD instruction can also push the value in a selected FPU register [ST(i)] onto the
stack. Here, pushing register ST(0) duplicates the stack top.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
Operation
IF SRC is ST(i)
THEN
temp ←ST(i);
FI;
TOP ←TOP −1;
IF SRC is memory-operand
THEN
ST(0) ←ConvertToDoubleExtendedPrecisionFP(SRC);
ELSE (* SRC is ST(i) *)
ST(0) ←temp;
FI;
FPU Flags Affected
C1
Set to 1 if stack overflow occurred; otherwise, set to 0.
Undefined.
C0, C2, C3
Floating-Point Exceptions
#IS
Stack underflow or overflow occurred.
FLD—Load Floating Point Value
Vol. 2A 3-341
INSTRUCTION SET REFERENCE, A-M
#IA
#D
Source operand is an SNaN. Does not occur if the source
operand is in double extended-precision floating-point format
(FLD m80fp or FLD ST(i)).
Source operand is a denormal value. Does not occur if the
source operand is in double extended-precision floating-point
format.
Protected Mode Exceptions
#GP(0)
If destination is located in a non-writable segment.
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#NM
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS
If a memory operand effective address is outside the SS
segment limit.
#NM
#UD
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#NM
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made.
#UD
If the LOCK prefix is used.
3-342 Vol. 2A
FLD—Load Floating Point Value
INSTRUCTION SET REFERENCE, A-M
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#NM
If the memory address is in a non-canonical form.
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If there is a pending x87 FPU exception.
If a page fault occurs.
#MF
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
FLD—Load Floating Point Value
Vol. 2A 3-343
INSTRUCTION SET REFERENCE, A-M
FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/FLDZ—Load Constant
Opcode*
Instruction
64-Bit Compat/
Description
Mode
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Leg Mode
D9 E8
D9 E9
D9 EA
D9 EB
D9 EC
D9 ED
D9 EE
NOTES:
FLD1
Valid
Push +1.0 onto the FPU register stack.
FLDL2T
FLDL2E
FLDPI
Valid
Push log 10 onto the FPU register stack.
2
Valid
Push log e onto the FPU register stack.
2
Valid
Push π onto the FPU register stack.
FLDLG2
FLDLN2
FLDZ
Valid
Push log 2 onto the FPU register stack.
10
Valid
Push log 2 onto the FPU register stack.
e
Valid
Push +0.0 onto the FPU register stack.
* See IA-32 Architecture Compatibility section below.
Description
Push one of seven commonly used constants (in double extended-precision floating-
point format) onto the FPU register stack. The constants that can be loaded with
these instructions include +1.0, +0.0, log 10, log e, π, log 2, and log 2. For each
2
2
10
e
constant, an internal 66-bit constant is rounded (as specified by the RC field in the
FPU control word) to double extended-precision floating-point format. The inexact-
result exception (#P) is not generated as a result of the rounding, nor is the C1 flag
set in the x87 FPU status word if the value is rounded up.
See the section titled “Pi” in Chapter 8 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1, for a description of the π constant.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
IA-32 Architecture Compatibility
When the RC field is set to round-to-nearest, the FPU produces the same constants
that is produced by the Intel 8087 and Intel 287 math coprocessors.
Operation
TOP ←TOP −1;
ST(0) ←CONSTANT;
FPU Flags Affected
C1
Set to 1 if stack overflow occurred; otherwise, set to 0.
Undefined.
C0, C2, C3
3-344 Vol. 2A
FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/FLDZ—Load Constant
INSTRUCTION SET REFERENCE, A-M
Floating-Point Exceptions
#IS
Stack overflow occurred.
Protected Mode Exceptions
#NM
#MF
#UD
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If there is a pending x87 FPU exception.
If the LOCK prefix is used.
Real-Address Mode Exceptions
Same exceptions as in protected mode.
Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.
Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
Same exceptions as in protected mode.
FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/FLDZ—Load Constant
Vol. 2A 3-345
INSTRUCTION SET REFERENCE, A-M
FLDCW—Load x87 FPU Control Word
Opcode
Instruction
64-Bit Compat/
Description
Mode
Leg Mode
D9 /5
FLDCW m2byte
Valid
Valid
Load FPU control word from m2byte.
Description
Loads the 16-bit source operand into the FPU control word. The source operand is a
memory location. This instruction is typically used to establish or change the FPU’s
mode of operation.
If one or more exception flags are set in the FPU status word prior to loading a new
FPU control word and the new control word unmasks one or more of those excep-
tions, a floating-point exception will be generated upon execution of the next
floating-point instruction (except for the no-wait floating-point instructions, see the
section titled “Software Exception Handling” in Chapter 8 of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1). To avoid raising exceptions
when changing FPU operating modes, clear any pending exceptions (using the FCLEX
or FNCLEX instruction) before loading the new control word.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
Operation
FPUControlWord ←SRC;
FPU Flags Affected
C0, C1, C2, C3 undefined.
Floating-Point Exceptions
None; however, this operation might unmask a pending exception in the FPU status
word. That exception is then generated upon execution of the next “waiting” floating-
point instruction.
Protected Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#NM
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If a page fault occurs.
#PF(fault-code)
3-346 Vol. 2A
FLDCW—Load x87 FPU Control Word
INSTRUCTION SET REFERENCE, A-M
#AC(0)
#UD
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS
If a memory operand effective address is outside the SS
segment limit.
#NM
#UD
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#NM
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made.
#UD
If the LOCK prefix is used.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#NM
If the memory address is in a non-canonical form.
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If there is a pending x87 FPU exception.
If a page fault occurs.
#MF
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
FLDCW—Load x87 FPU Control Word
Vol. 2A 3-347
INSTRUCTION SET REFERENCE, A-M
FLDENV—Load x87 FPU Environment
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
D9 /4
FLDENV m14/28byte
Valid
Valid
Load FPU environment from
m14byte or m28byte.
Description
Loads the complete x87 FPU operating environment from memory into the FPU regis-
ters. The source operand specifies the first byte of the operating-environment data in
memory. This data is typically written to the specified memory location by a FSTENV
or FNSTENV instruction.
The FPU operating environment consists of the FPU control word, status word, tag
word, instruction pointer, data pointer, and last opcode. Figures 8-9 through 8-12 in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, show
the layout in memory of the loaded environment, depending on the operating mode
of the processor (protected or real) and the current operand-size attribute (16-bit or
32-bit). In virtual-8086 mode, the real mode layouts are used.
The FLDENV instruction should be executed in the same operating mode as the corre-
sponding FSTENV/FNSTENV instruction.
If one or more unmasked exception flags are set in the new FPU status word, a
floating-point exception will be generated upon execution of the next floating-point
instruction (except for the no-wait floating-point instructions, see the section titled
“Software Exception Handling” in Chapter 8 of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 1). To avoid generating exceptions when
loading a new environment, clear all the exception flags in the FPU status word that
is being loaded.
If a page or limit fault occurs during the execution of this instruction, the state of the
x87 FPU registers as seen by the fault handler may be different than the state being
loaded from memory. In such situations, the fault handler should ignore the status of
the x87 FPU registers, handle the fault, and return. The FLDENV instruction will then
complete the loading of the x87 FPU registers with no resulting context inconsis-
tency.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
Operation
FPUControlWord ←SRC[FPUControlWord];
FPUStatusWord ←SRC[FPUStatusWord];
FPUTagWord ←SRC[FPUTagWord];
FPUDataPointer ←SRC[FPUDataPointer];
FPUInstructionPointer ←SRC[FPUInstructionPointer];
FPULastInstructionOpcode ←SRC[FPULastInstructionOpcode];
3-348 Vol. 2A
FLDENV—Load x87 FPU Environment
INSTRUCTION SET REFERENCE, A-M
FPU Flags Affected
The C0, C1, C2, C3 flags are loaded.
Floating-Point Exceptions
None; however, if an unmasked exception is loaded in the status word, it is generated
upon execution of the next “waiting” floating-point instruction.
Protected Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#NM
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS
If a memory operand effective address is outside the SS
segment limit.
#NM
#UD
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#NM
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made.
#UD
If the LOCK prefix is used.
FLDENV—Load x87 FPU Environment
Vol. 2A 3-349
INSTRUCTION SET REFERENCE, A-M
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#NM
If the memory address is in a non-canonical form.
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If there is a pending x87 FPU exception.
If a page fault occurs.
#MF
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
3-350 Vol. 2A
FLDENV—Load x87 FPU Environment
INSTRUCTION SET REFERENCE, A-M
FMUL/FMULP/FIMUL—Multiply
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
D8 /1
FMUL m32fp
FMUL m64fp
FMUL ST(0), ST(i)
FMUL ST(i), ST(0)
FMULP ST(i), ST(0)
FMULP
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Multiply ST(0) by m32fp and store
result in ST(0).
DC /1
Multiply ST(0) by m64fp and store
result in ST(0).
D8 C8+i
DC C8+i
DE C8+i
DE C9
Multiply ST(0) by ST(i) and store result
in ST(0).
Multiply ST(i) by ST(0) and store result
in ST(i).
Multiply ST(i) by ST(0), store result in
ST(i), and pop the register stack.
Multiply ST(1) by ST(0), store result in
ST(1), and pop the register stack.
DA /1
FIMUL m32int
FIMUL m16int
Multiply ST(0) by m32int and store
result in ST(0).
DE /1
Multiply ST(0) by m16int and store
result in ST(0).
Description
Multiplies the destination and source operands and stores the product in the destina-
tion location. The destination operand is always an FPU data register; the source
operand can be an FPU data register or a memory location. Source operands in
memory can be in single-precision or double-precision floating-point format or in
word or doubleword integer format.
The no-operand version of the instruction multiplies the contents of the ST(1)
register by the contents of the ST(0) register and stores the product in the ST(1)
register. The one-operand version multiplies the contents of the ST(0) register by the
contents of a memory location (either a floating point or an integer value) and stores
the product in the ST(0) register. The two-operand version, multiplies the contents of
the ST(0) register by the contents of the ST(i) register, or vice versa, with the result
being stored in the register specified with the first operand (the destination
operand).
The FMULP instructions perform the additional operation of popping the FPU register
stack after storing the product. To pop the register stack, the processor marks the
ST(0) register as empty and increments the stack pointer (TOP) by 1. The no-
operand version of the floating-point multiply instructions always results in the
register stack being popped. In some assemblers, the mnemonic for this instruction
is FMUL rather than FMULP.
FMUL/FMULP/FIMUL—Multiply
Vol. 2A 3-351
INSTRUCTION SET REFERENCE, A-M
The FIMUL instructions convert an integer source operand to double extended-
precision floating-point format before performing the multiplication.
The sign of the result is always the exclusive-OR of the source signs, even if one or
more of the values being multiplied is 0 or ∞. When the source operand is an integer
0, it is treated as a +0.
The following table shows the results obtained when multiplying various classes of
numbers, assuming that neither overflow nor underflow occurs.
Table 3-34. FMUL/FMULP/FIMUL Results
DEST
−∞
+∞
+∞
+∞
*
−F
+∞
+F
−0
*
+0
*
+F
−∞
−F
+∞
−∞
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
−∞
−F
+0
+0
+0
−0
−0
−0
*
−0
−0
−0
+0
+0
+0
*
−∞
−I
+F
−F
−∞
SRC
−0
+0
−0
*
+0
*
−0
+0
*
+I
−∞
−F
+F
+∞
+∞
+∞
NaN
+F
−∞
−F
+F
+∞
NaN
−∞
−∞
NaN
+∞
NaN
NaN
NaN
NaN
NOTES:
F Means finite floating-point value.
Means Integer.
* Indicates invalid-arithmetic-operand (#IA) exception.
I
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
Operation
IF Instruction = FIMUL
THEN
DEST ←DEST ∗ ConvertToDoubleExtendedPrecisionFP(SRC);
ELSE (* Source operand is floating-point value *)
DEST ←DEST ∗ SRC;
FI;
IF Instruction = FMULP
THEN
PopRegisterStack;
FI;
3-352 Vol. 2A
FMUL/FMULP/FIMUL—Multiply
INSTRUCTION SET REFERENCE, A-M
FPU Flags Affected
C1
Set to 0 if stack underflow occurred.
Set if result was rounded up; cleared otherwise.
Undefined.
C0, C2, C3
Floating-Point Exceptions
#IS
#IA
Stack underflow occurred.
Operand is an SNaN value or unsupported format.
One operand is 0 and the other is ∞.
#D
#U
#O
#P
Source operand is a denormal value.
Result is too small for destination format.
Result is too large for destination format.
Value cannot be represented exactly in destination format.
Protected Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#NM
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS
If a memory operand effective address is outside the SS
segment limit.
#NM
#UD
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
FMUL/FMULP/FIMUL—Multiply
Vol. 2A 3-353
INSTRUCTION SET REFERENCE, A-M
#NM
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made.
#UD
If the LOCK prefix is used.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#NM
If the memory address is in a non-canonical form.
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If there is a pending x87 FPU exception.
If a page fault occurs.
#MF
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
3-354 Vol. 2A
FMUL/FMULP/FIMUL—Multiply
INSTRUCTION SET REFERENCE, A-M
FNOP—No Operation
Opcode
Instruction
64-Bit Compat/
Description
No operation is performed.
Mode
Leg Mode
D9 D0
FNOP
Valid
Valid
Description
Performs no FPU operation. This instruction takes up space in the instruction stream
but does not affect the FPU or machine context, except the EIP register.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
FPU Flags Affected
C0, C1, C2, C3 undefined.
Floating-Point Exceptions
None.
Protected Mode Exceptions
#NM
#MF
#UD
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If there is a pending x87 FPU exception.
If the LOCK prefix is used.
Real-Address Mode Exceptions
Same exceptions as in protected mode.
Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
Same exceptions as in protected mode.
FNOP—No Operation
Vol. 2A 3-355
INSTRUCTION SET REFERENCE, A-M
FPATAN—Partial Arctangent
Opcode* Instruction 64-Bit
Mode
Compat/
Leg Mode
Description
D9 F3
FPATAN
Valid
Valid
Replace ST(1) with arctan(ST(1)/ ST(0)) and pop
the register stack.
NOTES:
* See IA-32 Architecture Compatibility section below.
Description
Computes the arctangent of the source operand in register ST(1) divided by the
source operand in register ST(0), stores the result in ST(1), and pops the FPU
register stack. The result in register ST(0) has the same sign as the source operand
ST(1) and a magnitude less than +π.
The FPATAN instruction returns the angle between the X axis and the line from the
origin to the point (X,Y), where Y (the ordinate) is ST(1) and X (the abscissa) is
ST(0). The angle depends on the sign of X and Y independently, not just on the sign
of the ratio Y/X. This is because a point (−X,Y) is in the second quadrant, resulting in
an angle between π/2 and π, while a point (X,−Y) is in the fourth quadrant, resulting in
an angle between 0 and −π/2. A point (−X,−Y) is in the third quadrant, giving an angle
between −π/2 and −π.
The following table shows the results obtained when computing the arctangent of
various classes of numbers, assuming that underflow does not occur.
3-356 Vol. 2A
FPATAN—Partial Arctangent
INSTRUCTION SET REFERENCE, A-M
Table 3-35. FPATAN Results
ST(0)
+0
-∞
−F
−0
+F
+∞
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
-∞
ST(1) −F
−3π/ 4*
-p
−π/2
−π/2
−π/2
-p*
−π/2
−π/2
−0*
−π/2
−π/4*
−π to −π/ 2
-p
−π/ 2 to −0 -0
−0
-p
−0
−0
+0
+p
+p
+π*
+0*
+0
+0
+F
+p
+π to +π/ 2
+π/ 2
NaN
+π/ 2
+π/ 2
+π/ 2
+π/ 2
+π/ 2 to +0 +0
+π/ 2 +π/4*
NaN NaN
+∞
+3π/ 4*
NaN
NaN
NaN
NaN
NOTES:
F Means finite floating-point value.
* Table 8-10 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1,
specifies that the ratios 0/0 and •/• generate the floating-point invalid arithmetic-operation
exception and, if this exception is masked, the floating-point QNaN indefinite value is returned.
With the FPATAN instruction, the 0/0 or •/• value is actually not calculated using division.
Instead, the arctangent of the two variables is derived from a standard mathematical formula-
tion that is generalized to allow complex numbers as arguments. In this complex variable formu-
lation, arctangent(0,0) etc. has well defined values. These values are needed to develop a library
to compute transcendental functions with complex arguments, based on the FPU functions that
only allow floating-point values as arguments.
There is no restriction on the range of source operands that FPATAN can accept.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
IA-32 Architecture Compatibility
The source operands for this instruction are restricted for the 80287 math copro-
cessor to the following range:
0 ≤|ST(1)| < |ST(0)| < +∞
Operation
ST(1) ←arctan(ST(1) / ST(0));
PopRegisterStack;
FPU Flags Affected
C1
Set to 0 if stack underflow occurred.
Set if result was rounded up; cleared otherwise.
Undefined.
C0, C2, C3
FPATAN—Partial Arctangent
Vol. 2A 3-357
INSTRUCTION SET REFERENCE, A-M
Floating-Point Exceptions
#IS
#IA
#D
#U
#P
Stack underflow occurred.
Source operand is an SNaN value or unsupported format.
Source operand is a denormal value.
Result is too small for destination format.
Value cannot be represented exactly in destination format.
Protected Mode Exceptions
#NM
#MF
#UD
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If there is a pending x87 FPU exception.
If the LOCK prefix is used.
Real-Address Mode Exceptions
Same exceptions as in protected mode.
Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
Same exceptions as in protected mode.
3-358 Vol. 2A
FPATAN—Partial Arctangent
INSTRUCTION SET REFERENCE, A-M
FPREM—Partial Remainder
Opcode
Instruction 64-Bit
Mode
Compat/
Leg Mode
Description
D9 F8
FPREM
Valid
Valid
Replace ST(0) with the remainder obtained
from dividing ST(0) by ST(1).
Description
Computes the remainder obtained from dividing the value in the ST(0) register (the
dividend) by the value in the ST(1) register (the divisor or modulus), and stores the
result in ST(0). The remainder represents the following value:
Remainder ←ST(0) −(Q ∗ ST(1))
Here, Q is an integer value that is obtained by truncating the floating-point number
quotient of [ST(0) / ST(1)] toward zero. The sign of the remainder is the same as the
sign of the dividend. The magnitude of the remainder is less than that of the
modulus, unless a partial remainder was computed (as described below).
This instruction produces an exact result; the inexact-result exception does not occur
and the rounding control has no effect. The following table shows the results
obtained when computing the remainder of various classes of numbers, assuming
that underflow does not occur.
Table 3-36. FPREM Results
ST(1)
−∞
*
−F
*
−0
*
+0
*
+F
*
+∞
*
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
−∞
−F
ST(0)
ST(0)
−0
−F or −0
−0
**
*
**
*
−F or −0
−0
ST(0)
−0
−0
+0
+0
+0
*
*
+0
+0
+F
ST(0)
*
+F or +0
*
**
*
**
*
+F or +0
*
ST(0)
*
+∞
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
** Indicates floating-point zero-divide (#Z) exception.
When the result is 0, its sign is the same as that of the dividend. When the modulus
is ∞, the result is equal to the value in ST(0).
FPREM—Partial Remainder
Vol. 2A 3-359
INSTRUCTION SET REFERENCE, A-M
The FPREM instruction does not compute the remainder specified in IEEE Std 754.
The IEEE specified remainder can be computed with the FPREM1 instruction. The
FPREM instruction is provided for compatibility with the Intel 8087 and Intel287 math
coprocessors.
The FPREM instruction gets its name “partial remainder” because of the way it
computes the remainder. This instruction arrives at a remainder through iterative
subtraction. It can, however, reduce the exponent of ST(0) by no more than 63 in one
execution of the instruction. If the instruction succeeds in producing a remainder that
is less than the modulus, the operation is complete and the C2 flag in the FPU status
word is cleared. Otherwise, C2 is set, and the result in ST(0) is called the partial
remainder. The exponent of the partial remainder will be less than the exponent of
the original dividend by at least 32. Software can re-execute the instruction (using
the partial remainder in ST(0) as the dividend) until C2 is cleared. (Note that while
executing such a remainder-computation loop, a higher-priority interrupting routine
that needs the FPU can force a context switch in-between the instructions in the
loop.)
An important use of the FPREM instruction is to reduce the arguments of periodic
functions. When reduction is complete, the instruction stores the three least-signifi-
cant bits of the quotient in the C3, C1, and C0 flags of the FPU status word. This infor-
mation is important in argument reduction for the tangent function (using a modulus
of π/4), because it locates the original angle in the correct one of eight sectors of the
unit circle.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
Operation
D ←exponent(ST(0)) – exponent(ST(1));
IF D < 64
THEN
Q ←Integer(TruncateTowardZero(ST(0) / ST(1)));
ST(0) ←ST(0) – (ST(1) ∗ Q);
C2 ←0;
C0, C3, C1 ←LeastSignificantBits(Q); (* Q2, Q1, Q0 *)
ELSE
C2 ←1;
N ←An implementation-dependent number between 32 and 63;
QQ ←Integer(TruncateTowardZero((ST(0) / ST(1)) / 2(D −N)));
ST(0) ←ST(0) – (ST(1) ∗ QQ ∗ 2(D −N));
FI;
3-360 Vol. 2A
FPREM—Partial Remainder
INSTRUCTION SET REFERENCE, A-M
FPU Flags Affected
C0
C1
Set to bit 2 (Q2) of the quotient.
Set to 0 if stack underflow occurred; otherwise, set to least
significant bit of quotient (Q0).
C2
C3
Set to 0 if reduction complete; set to 1 if incomplete.
Set to bit 1 (Q1) of the quotient.
Floating-Point Exceptions
#IS
#IA
Stack underflow occurred.
Source operand is an SNaN value, modulus is 0, dividend is ∞, or
unsupported format.
#D
#U
Source operand is a denormal value.
Result is too small for destination format.
Protected Mode Exceptions
#NM
#MF
#UD
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If there is a pending x87 FPU exception.
If the LOCK prefix is used.
Real-Address Mode Exceptions
Same exceptions as in protected mode.
Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
Same exceptions as in protected mode.
FPREM—Partial Remainder
Vol. 2A 3-361
INSTRUCTION SET REFERENCE, A-M
FPREM1—Partial Remainder
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
D9 F5
FPREM1
Valid
Valid
Replace ST(0) with the IEEE remainder
obtained from dividing ST(0) by ST(1).
Description
Computes the IEEE remainder obtained from dividing the value in the ST(0) register
(the dividend) by the value in the ST(1) register (the divisor or modulus), and stores
the result in ST(0). The remainder represents the following value:
Remainder ←ST(0) −(Q ∗ ST(1))
Here, Q is an integer value that is obtained by rounding the floating-point number
quotient of [ST(0) / ST(1)] toward the nearest integer value. The magnitude of the
remainder is less than or equal to half the magnitude of the modulus, unless a partial
remainder was computed (as described below).
This instruction produces an exact result; the precision (inexact) exception does not
occur and the rounding control has no effect. The following table shows the results
obtained when computing the remainder of various classes of numbers, assuming
that underflow does not occur.
Table 3-37. FPREM1 Results
ST(1)
−∞
*
−F
*
−0
*
+0
*
+F
*
+∞
*
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
−∞
−F
ST(0)
ST(0)
−0
F or −0
−0
**
*
**
*
F or −0
−0
ST(0)
−0
−0
+0
+0
+0
*
*
+0
+0
+F
ST(0)
*
F or +0
*
**
*
**
*
F or +0
*
ST(0)
*
+∞
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
** Indicates floating-point zero-divide (#Z) exception.
When the result is 0, its sign is the same as that of the dividend. When the modulus
is ∞, the result is equal to the value in ST(0).
3-362 Vol. 2A
FPREM1—Partial Remainder
INSTRUCTION SET REFERENCE, A-M
The FPREM1 instruction computes the remainder specified in IEEE Standard 754.
This instruction operates differently from the FPREM instruction in the way that it
rounds the quotient of ST(0) divided by ST(1) to an integer (see the “Operation”
section below).
Like the FPREM instruction, FPREM1 computes the remainder through iterative
subtraction, but can reduce the exponent of ST(0) by no more than 63 in one execu-
tion of the instruction. If the instruction succeeds in producing a remainder that is
less than one half the modulus, the operation is complete and the C2 flag in the FPU
status word is cleared. Otherwise, C2 is set, and the result in ST(0) is called the
partial remainder. The exponent of the partial remainder will be less than the expo-
nent of the original dividend by at least 32. Software can re-execute the instruction
(using the partial remainder in ST(0) as the dividend) until C2 is cleared. (Note that
while executing such a remainder-computation loop, a higher-priority interrupting
routine that needs the FPU can force a context switch in-between the instructions in
the loop.)
An important use of the FPREM1 instruction is to reduce the arguments of periodic
functions. When reduction is complete, the instruction stores the three least-signifi-
cant bits of the quotient in the C3, C1, and C0 flags of the FPU status word. This infor-
mation is important in argument reduction for the tangent function (using a modulus
of π/4), because it locates the original angle in the correct one of eight sectors of the
unit circle.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
Operation
D ←exponent(ST(0)) – exponent(ST(1));
IF D < 64
THEN
Q ←Integer(RoundTowardNearestInteger(ST(0) / ST(1)));
ST(0) ←ST(0) – (ST(1) ∗ Q);
C2 ←0;
C0, C3, C1 ←LeastSignificantBits(Q); (* Q2, Q1, Q0 *)
ELSE
C2 ←1;
N ←An implementation-dependent number between 32 and 63;
QQ ←Integer(TruncateTowardZero((ST(0) / ST(1)) / 2(D −N)));
ST(0) ←ST(0) – (ST(1) ∗ QQ ∗ 2(D −N));
FI;
FPU Flags Affected
C0
C1
Set to bit 2 (Q2) of the quotient.
Set to 0 if stack underflow occurred; otherwise, set to least
significant bit of quotient (Q0).
FPREM1—Partial Remainder
Vol. 2A 3-363
INSTRUCTION SET REFERENCE, A-M
C2
C3
Set to 0 if reduction complete; set to 1 if incomplete.
Set to bit 1 (Q1) of the quotient.
Floating-Point Exceptions
#IS
#IA
Stack underflow occurred.
Source operand is an SNaN value, modulus (divisor) is 0, divi-
dend is ∞, or unsupported format.
#D
#U
Source operand is a denormal value.
Result is too small for destination format.
Protected Mode Exceptions
#NM
#MF
#UD
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If there is a pending x87 FPU exception.
If the LOCK prefix is used.
Real-Address Mode Exceptions
Same exceptions as in protected mode.
Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
Same exceptions as in protected mode.
3-364 Vol. 2A
FPREM1—Partial Remainder
INSTRUCTION SET REFERENCE, A-M
FPTAN—Partial Tangent
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
D9 F2
FPTAN
Valid
Valid
Replace ST(0) with its tangent and
push 1 onto the FPU stack.
Description
Computes the tangent of the source operand in register ST(0), stores the result in
ST(0), and pushes a 1.0 onto the FPU register stack. The source operand must be
63
given in radians and must be less than ±2 . The following table shows the
unmasked results obtained when computing the partial tangent of various classes of
numbers, assuming that underflow does not occur.
Table 3-38. FPTAN Results
ST(0) SRC
ST(0) DEST
−∞
−F
*
−F to +F
−0
−0
+0
+0
+F
−F to +F
*
+∞
NaN
NaN
NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
If the source operand is outside the acceptable range, the C2 flag in the FPU status
word is set, and the value in register ST(0) remains unchanged. The instruction does
not raise an exception when the source operand is out of range. It is up to the
program to check the C2 flag for out-of-range conditions. Source values outside the
63
63
range −2 to +2 can be reduced to the range of the instruction by subtracting an
appropriate integer multiple of 2π or by using the FPREM instruction with a divisor of
2π. See the section titled “Pi” in Chapter 8 of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 1, for a discussion of the proper value to use
for π in performing such reductions.
The value 1.0 is pushed onto the register stack after the tangent has been computed
to maintain compatibility with the Intel 8087 and Intel287 math coprocessors. This
operation also simplifies the calculation of other trigonometric functions. For
instance, the cotangent (which is the reciprocal of the tangent) can be computed by
executing a FDIVR instruction after the FPTAN instruction.
FPTAN—Partial Tangent
Vol. 2A 3-365
INSTRUCTION SET REFERENCE, A-M
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
Operation
IF ST(0) < 263
THEN
C2 ←0;
ST(0) ←tan(ST(0));
TOP ←TOP −1;
ST(0) ←1.0;
ELSE (* Source operand is out-of-range *)
C2 ←1;
FI;
FPU Flags Affected
C1
Set to 0 if stack underflow occurred; set to 1 if stack overflow
occurred.
Set if result was rounded up; cleared otherwise.
63
63
C2
Set to 1 if outside range (−2 < source operand < +2 ); other-
wise, set to 0.
C0, C3
Undefined.
Floating-Point Exceptions
#IS
#IA
#D
#U
#P
Stack underflow or overflow occurred.
Source operand is an SNaN value, ∞, or unsupported format.
Source operand is a denormal value.
Result is too small for destination format.
Value cannot be represented exactly in destination format.
Protected Mode Exceptions
#NM
#MF
#UD
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If there is a pending x87 FPU exception.
If the LOCK prefix is used.
Real-Address Mode Exceptions
Same exceptions as in protected mode.
Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.
3-366 Vol. 2A
FPTAN—Partial Tangent
INSTRUCTION SET REFERENCE, A-M
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
Same exceptions as in protected mode.
FPTAN—Partial Tangent
Vol. 2A 3-367
INSTRUCTION SET REFERENCE, A-M
FRNDINT—Round to Integer
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
D9 FC
FRNDINT
Valid
Valid
Round ST(0) to an integer.
Description
Rounds the source value in the ST(0) register to the nearest integral value,
depending on the current rounding mode (setting of the RC field of the FPU control
word), and stores the result in ST(0).
If the source value is ∞, the value is not changed. If the source value is not an integral
value, the floating-point inexact-result exception (#P) is generated.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
Operation
ST(0) ←RoundToIntegralValue(ST(0));
FPU Flags Affected
C1
Set to 0 if stack underflow occurred.
Set if result was rounded up; cleared otherwise.
Undefined.
C0, C2, C3
Floating-Point Exceptions
#IS
#IA
#D
#P
Stack underflow occurred.
Source operand is an SNaN value or unsupported format.
Source operand is a denormal value.
Source operand is not an integral value.
Protected Mode Exceptions
#NM
#MF
#UD
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If there is a pending x87 FPU exception.
If the LOCK prefix is used.
Real-Address Mode Exceptions
Same exceptions as in protected mode.
Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.
3-368 Vol. 2A
FRNDINT—Round to Integer
INSTRUCTION SET REFERENCE, A-M
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
Same exceptions as in protected mode.
FRNDINT—Round to Integer
Vol. 2A 3-369
INSTRUCTION SET REFERENCE, A-M
FRSTOR—Restore x87 FPU State
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
DD /4
FRSTOR m94/108byte Valid
Valid
Load FPU state from
m94byte or m108byte.
Description
Loads the FPU state (operating environment and register stack) from the memory
area specified with the source operand. This state data is typically written to the
specified memory location by a previous FSAVE/FNSAVE instruction.
The FPU operating environment consists of the FPU control word, status word, tag
word, instruction pointer, data pointer, and last opcode. Figures 8-9 through 8-12 in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, show
the layout in memory of the stored environment, depending on the operating mode
of the processor (protected or real) and the current operand-size attribute (16-bit or
32-bit). In virtual-8086 mode, the real mode layouts are used. The contents of the
FPU register stack are stored in the 80 bytes immediately following the operating
environment image.
The FRSTOR instruction should be executed in the same operating mode as the
corresponding FSAVE/FNSAVE instruction.
If one or more unmasked exception bits are set in the new FPU status word, a
floating-point exception will be generated. To avoid raising exceptions when loading
a new operating environment, clear all the exception flags in the FPU status word
that is being loaded.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
Operation
FPUControlWord ←SRC[FPUControlWord];
FPUStatusWord ←SRC[FPUStatusWord];
FPUTagWord ←SRC[FPUTagWord];
FPUDataPointer ←SRC[FPUDataPointer];
FPUInstructionPointer ←SRC[FPUInstructionPointer];
FPULastInstructionOpcode ←SRC[FPULastInstructionOpcode];
ST(0) ←SRC[ST(0)];
ST(1) ←SRC[ST(1)];
ST(2) ←SRC[ST(2)];
ST(3) ←SRC[ST(3)];
ST(4) ←SRC[ST(4)];
ST(5) ←SRC[ST(5)];
ST(6) ←SRC[ST(6)];
3-370 Vol. 2A
FRSTOR—Restore x87 FPU State
INSTRUCTION SET REFERENCE, A-M
ST(7) ←SRC[ST(7)];
FPU Flags Affected
The C0, C1, C2, C3 flags are loaded.
Floating-Point Exceptions
None; however, this operation might unmask an existing exception that has been
detected but not generated, because it was masked. Here, the exception is gener-
ated at the completion of the instruction.
Protected Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#NM
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS
If a memory operand effective address is outside the SS
segment limit.
#NM
#UD
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#NM
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If a page fault occurs.
#PF(fault-code)
FRSTOR—Restore x87 FPU State
Vol. 2A 3-371
INSTRUCTION SET REFERENCE, A-M
#AC(0)
#UD
If alignment checking is enabled and an unaligned memory
reference is made.
If the LOCK prefix is used.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If a page fault occurs.
#NM
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
3-372 Vol. 2A
FRSTOR—Restore x87 FPU State
INSTRUCTION SET REFERENCE, A-M
FSAVE/FNSAVE—Store x87 FPU State
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
9B DD /6 FSAVE m94/108byte
Valid
Valid
Store FPU state to m94byte or
m108byte after checking for
pending unmasked floating-
point exceptions. Then re-
initialize the FPU.
*
DD /6
FNSAVE m94/108byte
Valid
Valid
Store FPU environment to
m94byte or m108byte without
checking for pending unmasked
floating-point exceptions. Then
re-initialize the FPU.
NOTES:
* See IA-32 Architecture Compatibility section below.
Description
Stores the current FPU state (operating environment and register stack) at the spec-
ified destination in memory, and then re-initializes the FPU. The FSAVE instruction
checks for and handles pending unmasked floating-point exceptions before storing
the FPU state; the FNSAVE instruction does not.
The FPU operating environment consists of the FPU control word, status word, tag
word, instruction pointer, data pointer, and last opcode. Figures 8-9 through 8-12 in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, show
the layout in memory of the stored environment, depending on the operating mode
of the processor (protected or real) and the current operand-size attribute (16-bit or
32-bit). In virtual-8086 mode, the real mode layouts are used. The contents of the
FPU register stack are stored in the 80 bytes immediately follow the operating envi-
ronment image.
The saved image reflects the state of the FPU after all floating-point instructions
preceding the FSAVE/FNSAVE instruction in the instruction stream have been
executed.
After the FPU state has been saved, the FPU is reset to the same default values it is
set to with the FINIT/FNINIT instructions (see “FINIT/FNINIT—Initialize Floating-
Point Unit” in this chapter).
The FSAVE/FNSAVE instructions are typically used when the operating system needs
to perform a context switch, an exception handler needs to use the FPU, or an appli-
cation program needs to pass a “clean” FPU to a procedure.
The assembler issues two instructions for the FSAVE instruction (an FWAIT instruc-
tion followed by an FNSAVE instruction), and the processor executes each of these
FSAVE/FNSAVE—Store x87 FPU State
Vol. 2A 3-373
INSTRUCTION SET REFERENCE, A-M
instructions separately. If an exception is generated for either of these instructions,
the save EIP points to the instruction that caused the exception.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
IA-32 Architecture Compatibility
For Intel math coprocessors and FPUs prior to the Intel Pentium processor, an FWAIT
instruction should be executed before attempting to read from the memory image
stored with a prior FSAVE/FNSAVE instruction. This FWAIT instruction helps insure
that the storage operation has been completed.
When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is
possible (under unusual circumstances) for an FNSAVE instruction to be interrupted
prior to being executed to handle a pending FPU exception. See the section titled
“No-Wait FPU Instructions Can Get FPU Interrupt in Window” in Appendix D of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for a
description of these circumstances. An FNSAVE instruction cannot be interrupted in
this way on a Pentium 4, Intel Xeon, or P6 family processor.
Operation
(* Save FPU State and Registers *)
DEST[FPUControlWord] ←FPUControlWord;
DEST[FPUStatusWord] ←FPUStatusWord;
DEST[FPUTagWord] ←FPUTagWord;
DEST[FPUDataPointer] ←FPUDataPointer;
DEST[FPUInstructionPointer] ←FPUInstructionPointer;
DEST[FPULastInstructionOpcode] ←FPULastInstructionOpcode;
DEST[ST(0)] ←ST(0);
DEST[ST(1)] ←ST(1);
DEST[ST(2)] ←ST(2);
DEST[ST(3)] ←ST(3);
DEST[ST(4)]←ST(4);
DEST[ST(5)] ←ST(5);
DEST[ST(6)] ←ST(6);
DEST[ST(7)] ←ST(7);
(* Initialize FPU *)
FPUControlWord ←037FH;
FPUStatusWord ←0;
FPUTagWord ←FFFFH;
FPUDataPointer ←0;
FPUInstructionPointer ←0;
FPULastInstructionOpcode ←0;
3-374 Vol. 2A
FSAVE/FNSAVE—Store x87 FPU State
INSTRUCTION SET REFERENCE, A-M
FPU Flags Affected
The C0, C1, C2, and C3 flags are saved and then cleared.
Floating-Point Exceptions
None.
Protected Mode Exceptions
#GP(0)
If destination is located in a non-writable segment.
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#NM
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS
If a memory operand effective address is outside the SS
segment limit.
#NM
#UD
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#NM
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made.
#UD
If the LOCK prefix is used.
FSAVE/FNSAVE—Store x87 FPU State
Vol. 2A 3-375
INSTRUCTION SET REFERENCE, A-M
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#NM
If the memory address is in a non-canonical form.
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If there is a pending x87 FPU exception.
If a page fault occurs.
#MF
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
3-376 Vol. 2A
FSAVE/FNSAVE—Store x87 FPU State
INSTRUCTION SET REFERENCE, A-M
FSCALE—Scale
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
D9 FD
FSCALE
Valid
Valid
Scale ST(0) by ST(1).
Description
Truncates the value in the source operand (toward 0) to an integral value and adds
that value to the exponent of the destination operand. The destination and source
operands are floating-point values located in registers ST(0) and ST(1), respectively.
This instruction provides rapid multiplication or division by integral powers of 2. The
following table shows the results obtained when scaling various classes of numbers,
assuming that neither overflow nor underflow occurs.
Table 3-39. FSCALE Results
ST(1)
NaN
−∞
NaN
−F
−∞
−F
−0
−∞
−F
−0
+0
−∞
−F
−0
+F
−∞
−F
+∞
−∞
-∞
NaN
NaN
NaN
NaN
NaN
NaN
NaN
−∞
−F
ST(0)
−0
−0
NaN
−0
−0
−0
NaN
+0
+0
+0
+0
+F
+0
+F
+0
+F
+0
+F
+F
+∞
+∞
NaN
+∞
NaN
+∞
NaN
+∞
NaN
+∞
NaN
+∞
NaN
NaN
NaN
NOTES:
F Means finite floating-point value.
In most cases, only the exponent is changed and the mantissa (significand) remains
unchanged. However, when the value being scaled in ST(0) is a denormal value, the
mantissa is also changed and the result may turn out to be a normalized number.
Similarly, if overflow or underflow results from a scale operation, the resulting
mantissa will differ from the source’s mantissa.
The FSCALE instruction can also be used to reverse the action of the FXTRACT
instruction, as shown in the following example:
FXTRACT;
FSCALE;
FSTP ST(1);
In this example, the FXTRACT instruction extracts the significand and exponent from
the value in ST(0) and stores them in ST(0) and ST(1) respectively. The FSCALE then
scales the significand in ST(0) by the exponent in ST(1), recreating the original value
FSCALE—Scale
Vol. 2A 3-377
INSTRUCTION SET REFERENCE, A-M
before the FXTRACT operation was performed. The FSTP ST(1) instruction overwrites
the exponent (extracted by the FXTRACT instruction) with the recreated value, which
returns the stack to its original state with only one register [ST(0)] occupied.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
Operation
RoundTowardZero(ST(1))
ST(0) ←ST(0) ∗ 2
;
FPU Flags Affected
C1
Set to 0 if stack underflow occurred.
Set if result was rounded up; cleared otherwise.
Undefined.
C0, C2, C3
Floating-Point Exceptions
#IS
#IA
#D
#U
#O
#P
Stack underflow occurred.
Source operand is an SNaN value or unsupported format.
Source operand is a denormal value.
Result is too small for destination format.
Result is too large for destination format.
Value cannot be represented exactly in destination format.
Protected Mode Exceptions
#NM
#MF
#UD
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If there is a pending x87 FPU exception.
If the LOCK prefix is used.
Real-Address Mode Exceptions
Same exceptions as in protected mode.
Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
Same exceptions as in protected mode.
3-378 Vol. 2A
FSCALE—Scale
INSTRUCTION SET REFERENCE, A-M
FSIN—Sine
Opcode
Instruction 64-Bit
Mode
Compat/
Description
Replace ST(0) with its sine.
Leg Mode
D9 FE
FSIN
Valid
Valid
Description
Computes the sine of the source operand in register ST(0) and stores the result in
ST(0). The source operand must be given in radians and must be within the range −
63
63
2
to +2 . The following table shows the results obtained when taking the sine of
various classes of numbers, assuming that underflow does not occur.
Table 3-40. FSIN Results
SRC (ST(0))
DEST (ST(0))
−∞
*
−1 to +1
−0
−F
−0
+0
+0
−1 to +1
*
+F
+•
NaN
NaN
NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
If the source operand is outside the acceptable range, the C2 flag in the FPU status
word is set, and the value in register ST(0) remains unchanged. The instruction does
not raise an exception when the source operand is out of range. It is up to the
program to check the C2 flag for out-of-range conditions. Source values outside the
63
63
range −2 to +2 can be reduced to the range of the instruction by subtracting an
appropriate integer multiple of 2π or by using the FPREM instruction with a divisor of
2π. See the section titled “Pi” in Chapter 8 of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 1, for a discussion of the proper value to use
for π in performing such reductions.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
Operation
IF ST(0) < 263
THEN
C2 ←0;
FSIN—Sine
Vol. 2A 3-379
INSTRUCTION SET REFERENCE, A-M
ST(0) ←sin(ST(0));
ELSE (* Source operand out of range *)
C2 ←1;
FI;
FPU Flags Affected
C1
Set to 0 if stack underflow occurred.
Set if result was rounded up; cleared otherwise.
63
63
C2
Set to 1 if outside range (−2 < source operand < +2 ); other-
wise, set to 0.
C0, C3
Undefined.
Floating-Point Exceptions
#IS
#IA
#D
#P
Stack underflow occurred.
Source operand is an SNaN value, ∞, or unsupported format.
Source operand is a denormal value.
Value cannot be represented exactly in destination format.
Protected Mode Exceptions
#NM
#MF
#UD
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If there is a pending x87 FPU exception.
If the LOCK prefix is used.
Real-Address Mode Exceptions
Same exceptions as in protected mode.
Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
Same exceptions as in protected mode.
3-380 Vol. 2A
FSIN—Sine
INSTRUCTION SET REFERENCE, A-M
FSINCOS—Sine and Cosine
Opcode
Instruction
64-Bit Compat/
Description
Mode
Leg Mode
D9 FB
FSINCOS
Valid
Valid
Compute the sine and cosine of ST(0);
replace ST(0) with the sine, and push the
cosine onto the register stack.
Description
Computes both the sine and the cosine of the source operand in register ST(0),
stores the sine in ST(0), and pushes the cosine onto the top of the FPU register stack.
(This instruction is faster than executing the FSIN and FCOS instructions in succes-
sion.)
63
The source operand must be given in radians and must be within the range −2 to
63
+2 . The following table shows the results obtained when taking the sine and cosine
of various classes of numbers, assuming that underflow does not occur.
Table 3-41. FSINCOS Results
SRC
ST(0)
−∞
DEST
ST(1) Cosine
ST(0) Sine
*
−1 to +1
+1
*
−1 to +1
−0
−F
−0
+0
+1
+0
+F
−1 to +1
*
−1 to +1
*
+∞
NaN
NaN
NaN
NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
If the source operand is outside the acceptable range, the C2 flag in the FPU status
word is set, and the value in register ST(0) remains unchanged. The instruction does
not raise an exception when the source operand is out of range. It is up to the
program to check the C2 flag for out-of-range conditions. Source values outside the
63
63
range −2 to +2 can be reduced to the range of the instruction by subtracting an
appropriate integer multiple of 2π or by using the FPREM instruction with a divisor of
2π. See the section titled “Pi” in Chapter 8 of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 1, for a discussion of the proper value to use
for π in performing such reductions.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
FSINCOS—Sine and Cosine
Vol. 2A 3-381
INSTRUCTION SET REFERENCE, A-M
Operation
IF ST(0) < 263
THEN
C2 ←0;
TEMP ←cosine(ST(0));
ST(0) ←sine(ST(0));
TOP ←TOP −1;
ST(0) ←TEMP;
ELSE (* Source operand out of range *)
C2 ←1;
FI;
FPU Flags Affected
C1
Set to 0 if stack underflow occurred; set to 1 of stack overflow
occurs.
Set if result was rounded up; cleared otherwise.
63
63
C2
Set to 1 if outside range (−2 < source operand < +2 ); other-
wise, set to 0.
C0, C3
Undefined.
Floating-Point Exceptions
#IS
#IA
#D
#U
#P
Stack underflow or overflow occurred.
Source operand is an SNaN value, ∞, or unsupported format.
Source operand is a denormal value.
Result is too small for destination format.
Value cannot be represented exactly in destination format.
Protected Mode Exceptions
#NM
#MF
#UD
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If there is a pending x87 FPU exception.
If the LOCK prefix is used.
Real-Address Mode Exceptions
Same exceptions as in protected mode.
Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.
3-382 Vol. 2A
FSINCOS—Sine and Cosine
INSTRUCTION SET REFERENCE, A-M
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
Same exceptions as in protected mode.
FSINCOS—Sine and Cosine
Vol. 2A 3-383
INSTRUCTION SET REFERENCE, A-M
FSQRT—Square Root
Opcode
Instruction 64-Bit
Mode
Compat/
Leg Mode
Description
D9 FA
FSQRT
Valid
Valid
Computes square root of ST(0) and stores
the result in ST(0).
Description
Computes the square root of the source value in the ST(0) register and stores the
result in ST(0).
The following table shows the results obtained when taking the square root of various
classes of numbers, assuming that neither overflow nor underflow occurs.
Table 3-42. FSQRT Results
SRC (ST(0))
DEST (ST(0))
−∞
−F
*
*
−0
−0
+0
+0
+F
+F
+∞
NaN
+∞
NaN
NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
Operation
ST(0) ←SquareRoot(ST(0));
FPU Flags Affected
C1
Set to 0 if stack underflow occurred.
Set if result was rounded up; cleared otherwise.
Undefined.
C0, C2, C3
Floating-Point Exceptions
#IS
#IA
Stack underflow occurred.
Source operand is an SNaN value or unsupported format.
3-384 Vol. 2A
FSQRT—Square Root
INSTRUCTION SET REFERENCE, A-M
Source operand is a negative value (except for −0).
#D
#P
Source operand is a denormal value.
Value cannot be represented exactly in destination format.
Protected Mode Exceptions
#NM
#MF
#UD
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If there is a pending x87 FPU exception.
If the LOCK prefix is used.
Real-Address Mode Exceptions
Same exceptions as in protected mode.
Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
Same exceptions as in protected mode.
FSQRT—Square Root
Vol. 2A 3-385
INSTRUCTION SET REFERENCE, A-M
FST/FSTP—Store Floating Point Value
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
D9 /2
FST m32fp
FST m64fp
FST ST(i)
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Copy ST(0) to m32fp.
Copy ST(0) to m64fp.
Copy ST(0) to ST(i).
DD /2
DD D0+i
D9 /3
FSTP m32fp Valid
FSTP m64fp Valid
FSTP m80fp Valid
Copy ST(0) to m32fp and pop register
stack.
DD /3
Valid
Valid
Valid
Copy ST(0) to m64fp and pop register
stack.
DB /7
Copy ST(0) to m80fp and pop register
stack.
DD D8+i
FSTP ST(i)
Valid
Copy ST(0) to ST(i) and pop register
stack.
Description
The FST instruction copies the value in the ST(0) register to the destination operand,
which can be a memory location or another register in the FPU register stack. When
storing the value in memory, the value is converted to single-precision or double-
precision floating-point format.
The FSTP instruction performs the same operation as the FST instruction and then
pops the register stack. To pop the register stack, the processor marks the ST(0)
register as empty and increments the stack pointer (TOP) by 1. The FSTP instruction
can also store values in memory in double extended-precision floating-point format.
If the destination operand is a memory location, the operand specifies the address
where the first byte of the destination value is to be stored. If the destination
operand is a register, the operand specifies a register in the register stack relative to
the top of the stack.
If the destination size is single-precision or double-precision, the significand of the
value being stored is rounded to the width of the destination (according to the
rounding mode specified by the RC field of the FPU control word), and the exponent
is converted to the width and bias of the destination format. If the value being stored
is too large for the destination format, a numeric overflow exception (#O) is gener-
ated and, if the exception is unmasked, no value is stored in the destination operand.
If the value being stored is a denormal value, the denormal exception (#D) is not
generated. This condition is simply signaled as a numeric underflow exception (#U)
condition.
If the value being stored is ±0, ±∞, or a NaN, the least-significant bits of the signifi-
cand and the exponent are truncated to fit the destination format. This operation
preserves the value’s identity as a 0, ∞, or NaN.
3-386 Vol. 2A
FST/FSTP—Store Floating Point Value
INSTRUCTION SET REFERENCE, A-M
If the destination operand is a non-empty register, the invalid-operation exception is
not generated.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
Operation
DEST ←ST(0);
IF Instruction = FSTP
THEN
PopRegisterStack;
FI;
FPU Flags Affected
C1
Set to 0 if stack underflow occurred.
Indicates rounding direction of if the floating-point inexact
exception (#P) is generated: 0 ←not roundup; 1 ←roundup.
C0, C2, C3
Undefined.
Floating-Point Exceptions
#IS
#IA
Stack underflow occurred.
Source operand is an SNaN value or unsupported format. Does
not occur if the source operand is in double extended-precision
floating-point format.
#U
#O
#P
Result is too small for the destination format.
Result is too large for the destination format.
Value cannot be represented exactly in destination format.
Protected Mode Exceptions
#GP(0)
If the destination is located in a non-writable segment.
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#NM
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
FST/FSTP—Store Floating Point Value
Vol. 2A 3-387
INSTRUCTION SET REFERENCE, A-M
Real-Address Mode Exceptions
#GP
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS
If a memory operand effective address is outside the SS
segment limit.
#NM
#UD
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#NM
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made.
#UD
If the LOCK prefix is used.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#NM
If the memory address is in a non-canonical form.
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If there is a pending x87 FPU exception.
If a page fault occurs.
#MF
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
3-388 Vol. 2A
FST/FSTP—Store Floating Point Value
INSTRUCTION SET REFERENCE, A-M
FSTCW/FNSTCW—Store x87 FPU Control Word
Opcode
Instruction
64-Bit Compat/
Description
Mode
Leg Mode
9B D9 /7
FSTCW m2byte
Valid
Valid
Store FPU control word to m2byte
after checking for pending unmasked
floating-point exceptions.
*
D9 /7
FNSTCW m2byte
Valid
Valid
Store FPU control word to m2byte
without checking for pending
unmasked floating-point exceptions.
NOTES:
* See IA-32 Architecture Compatibility section below.
Description
Stores the current value of the FPU control word at the specified destination in
memory. The FSTCW instruction checks for and handles pending unmasked floating-
point exceptions before storing the control word; the FNSTCW instruction does not.
The assembler issues two instructions for the FSTCW instruction (an FWAIT instruc-
tion followed by an FNSTCW instruction), and the processor executes each of these
instructions in separately. If an exception is generated for either of these instruc-
tions, the save EIP points to the instruction that caused the exception.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
IA-32 Architecture Compatibility
When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is
possible (under unusual circumstances) for an FNSTCW instruction to be interrupted
prior to being executed to handle a pending FPU exception. See the section titled
“No-Wait FPU Instructions Can Get FPU Interrupt in Window” in Appendix D of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for a
description of these circumstances. An FNSTCW instruction cannot be interrupted in
this way on a Pentium 4, Intel Xeon, or P6 family processor.
Operation
DEST ←FPUControlWord;
FPU Flags Affected
The C0, C1, C2, and C3 flags are undefined.
Floating-Point Exceptions
None.
FSTCW/FNSTCW—Store x87 FPU Control Word
Vol. 2A 3-389
INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#GP(0)
If the destination is located in a non-writable segment.
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#NM
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS
If a memory operand effective address is outside the SS
segment limit.
#NM
#UD
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#NM
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made.
#UD
If the LOCK prefix is used.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
3-390 Vol. 2A
FSTCW/FNSTCW—Store x87 FPU Control Word
INSTRUCTION SET REFERENCE, A-M
#NM
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF
If there is a pending x87 FPU exception.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
FSTCW/FNSTCW—Store x87 FPU Control Word
Vol. 2A 3-391
INSTRUCTION SET REFERENCE, A-M
FSTENV/FNSTENV—Store x87 FPU Environment
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
9B D9 /6
FSTENV m14/28byte Valid
Valid
Store FPU environment to m14byte
or m28byte after checking for
pending unmasked floating-point
exceptions. Then mask all floating-
point exceptions.
*
D9 /6
FNSTENV
Valid
Valid
Store FPU environment to m14byte
or m28byte without checking for
pending unmasked floating-point
exceptions. Then mask all floating-
point exceptions.
m14/28byte
NOTES:
* See IA-32 Architecture Compatibility section below.
Description
Saves the current FPU operating environment at the memory location specified with
the destination operand, and then masks all floating-point exceptions. The FPU oper-
ating environment consists of the FPU control word, status word, tag word, instruc-
tion pointer, data pointer, and last opcode. Figures 8-9 through 8-12 in the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 1, show the layout in
memory of the stored environment, depending on the operating mode of the
processor (protected or real) and the current operand-size attribute (16-bit or
32-bit). In virtual-8086 mode, the real mode layouts are used.
The FSTENV instruction checks for and handles any pending unmasked floating-point
exceptions before storing the FPU environment; the FNSTENV instruction does
not. The saved image reflects the state of the FPU after all floating-point instructions
preceding the FSTENV/FNSTENV instruction in the instruction stream have been
executed.
These instructions are often used by exception handlers because they provide access
to the FPU instruction and data pointers. The environment is typically saved in the
stack. Masking all exceptions after saving the environment prevents floating-point
exceptions from interrupting the exception handler.
The assembler issues two instructions for the FSTENV instruction (an FWAIT instruc-
tion followed by an FNSTENV instruction), and the processor executes each of these
instructions separately. If an exception is generated for either of these instructions,
the save EIP points to the instruction that caused the exception.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
3-392 Vol. 2A
FSTENV/FNSTENV—Store x87 FPU Environment
INSTRUCTION SET REFERENCE, A-M
IA-32 Architecture Compatibility
When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is
possible (under unusual circumstances) for an FNSTENV instruction to be interrupted
prior to being executed to handle a pending FPU exception. See the section titled
“No-Wait FPU Instructions Can Get FPU Interrupt in Window” in Appendix D of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for a
description of these circumstances. An FNSTENV instruction cannot be interrupted in
this way on a Pentium 4, Intel Xeon, or P6 family processor.
Operation
DEST[FPUControlWord] ←FPUControlWord;
DEST[FPUStatusWord] ←FPUStatusWord;
DEST[FPUTagWord] ←FPUTagWord;
DEST[FPUDataPointer] ←FPUDataPointer;
DEST[FPUInstructionPointer] ←FPUInstructionPointer;
DEST[FPULastInstructionOpcode] ←FPULastInstructionOpcode;
FPU Flags Affected
The C0, C1, C2, and C3 are undefined.
Floating-Point Exceptions
None.
Protected Mode Exceptions
#GP(0)
If the destination is located in a non-writable segment.
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#NM
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
FSTENV/FNSTENV—Store x87 FPU Environment
Vol. 2A 3-393
INSTRUCTION SET REFERENCE, A-M
#SS
If a memory operand effective address is outside the SS
segment limit.
#NM
#UD
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#NM
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made.
#UD
If the LOCK prefix is used.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#NM
If the memory address is in a non-canonical form.
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If there is a pending x87 FPU exception.
If a page fault occurs.
#MF
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
3-394 Vol. 2A
FSTENV/FNSTENV—Store x87 FPU Environment
INSTRUCTION SET REFERENCE, A-M
FSTSW/FNSTSW—Store x87 FPU Status Word
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
9B DD /7
FSTSW m2byte
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Store FPU status word at
m2byte after checking for
pending unmasked floating-
point exceptions.
9B DF E0
DD /7
FSTSW AX
Store FPU status word in AX
register after checking for
pending unmasked floating-
point exceptions.
*
FNSTSW m2byte
Store FPU status word at
m2byte without checking for
pending unmasked floating-
point exceptions.
*
DF E0
FNSTSW AX
Store FPU status word in AX
register without checking for
pending unmasked floating-
point exceptions.
NOTES:
* See IA-32 Architecture Compatibility section below.
Description
Stores the current value of the x87 FPU status word in the destination location. The
destination operand can be either a two-byte memory location or the AX register. The
FSTSW instruction checks for and handles pending unmasked floating-point excep-
tions before storing the status word; the FNSTSW instruction does not.
The FNSTSW AX form of the instruction is used primarily in conditional branching (for
instance, after an FPU comparison instruction or an FPREM, FPREM1, or FXAM
instruction), where the direction of the branch depends on the state of the FPU condi-
tion code flags. (See the section titled “Branching and Conditional Moves on FPU
Condition Codes” in Chapter 8 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1.) This instruction can also be used to invoke exception
handlers (by examining the exception flags) in environments that do not use inter-
rupts. When the FNSTSW AX instruction is executed, the AX register is updated
before the processor executes any further instructions. The status stored in the AX
register is thus guaranteed to be from the completion of the prior FPU instruction.
The assembler issues two instructions for the FSTSW instruction (an FWAIT instruc-
tion followed by an FNSTSW instruction), and the processor executes each of these
instructions separately. If an exception is generated for either of these instructions,
the save EIP points to the instruction that caused the exception.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
FSTSW/FNSTSW—Store x87 FPU Status Word
Vol. 2A 3-395
INSTRUCTION SET REFERENCE, A-M
IA-32 Architecture Compatibility
When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is
possible (under unusual circumstances) for an FNSTSW instruction to be interrupted
prior to being executed to handle a pending FPU exception. See the section titled
“No-Wait FPU Instructions Can Get FPU Interrupt in Window” in Appendix D of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for a
description of these circumstances. An FNSTSW instruction cannot be interrupted in
this way on a Pentium 4, Intel Xeon, or P6 family processor.
Operation
DEST ←FPUStatusWord;
FPU Flags Affected
The C0, C1, C2, and C3 are undefined.
Floating-Point Exceptions
None.
Protected Mode Exceptions
#GP(0)
If the destination is located in a non-writable segment.
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#NM
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP
#SS
#NM
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If a memory operand effective address is outside the SS
segment limit.
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
3-396 Vol. 2A
FSTSW/FNSTSW—Store x87 FPU Status Word
INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#NM
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made.
#UD
If the LOCK prefix is used.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#NM
If the memory address is in a non-canonical form.
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If there is a pending x87 FPU exception.
If a page fault occurs.
#MF
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
FSTSW/FNSTSW—Store x87 FPU Status Word
Vol. 2A 3-397
INSTRUCTION SET REFERENCE, A-M
FSUB/FSUBP/FISUB—Subtract
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
D8 /4
FSUB m32fp
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Subtract m32fp from ST(0)
and store result in ST(0).
DC /4
FSUB m64fp
Subtract m64fp from ST(0)
and store result in ST(0).
D8 E0+i
DC E8+i
DE E8+i
FSUB ST(0), ST(i)
FSUB ST(i), ST(0)
FSUBP ST(i), ST(0)
Subtract ST(i) from ST(0) and
store result in ST(0).
Subtract ST(0) from ST(i) and
store result in ST(i).
Subtract ST(0) from ST(i),
store result in ST(i), and pop
register stack.
DE E9
FSUBP
Valid
Valid
Subtract ST(0) from ST(1),
store result in ST(1), and pop
register stack.
DA /4
DE /4
FISUB m32int
Valid
Valid
Valid
Valid
Subtract m32int from ST(0)
and store result in ST(0).
FISUB m16int
Subtract m16int from ST(0)
and store result in ST(0).
Description
Subtracts the source operand from the destination operand and stores the difference
in the destination location. The destination operand is always an FPU data register;
the source operand can be a register or a memory location. Source operands in
memory can be in single-precision or double-precision floating-point format or in
word or doubleword integer format.
The no-operand version of the instruction subtracts the contents of the ST(0) register
from the ST(1) register and stores the result in ST(1). The one-operand version
subtracts the contents of a memory location (either a floating-point or an integer
value) from the contents of the ST(0) register and stores the result in ST(0). The
two-operand version, subtracts the contents of the ST(0) register from the ST(i)
register or vice versa.
The FSUBP instructions perform the additional operation of popping the FPU register
stack following the subtraction. To pop the register stack, the processor marks the
ST(0) register as empty and increments the stack pointer (TOP) by 1. The no-
operand version of the floating-point subtract instructions always results in the
register stack being popped. In some assemblers, the mnemonic for this instruction
is FSUB rather than FSUBP.
3-398 Vol. 2A
FSUB/FSUBP/FISUB—Subtract
INSTRUCTION SET REFERENCE, A-M
The FISUB instructions convert an integer source operand to double extended-preci-
sion floating-point format before performing the subtraction.
Table 3-43 shows the results obtained when subtracting various classes of numbers
from one another, assuming that neither overflow nor underflow occurs. Here, the
SRC value is subtracted from the DEST value (DEST −SRC = result).
When the difference between two operands of like sign is 0, the result is +0, except for
the round toward −∞mode, in which case the result is −0. This instruction also guaran-
tees that +0 −(−0) = +0, and that −0 −(+0) = −0. When the source operand is an integer 0,
it is treated as a +0.
When one operand is ∞, the result is ∞of the expected sign. If both operands are ∞of
the same sign, an invalid-operation exception is generated.
Table 3-43. FSUB/FSUBP/FISUB Results
SRC
−∞
*
−F or −I
−∞
−0
−∞
+0
−∞
+F or +I
−∞
+∞
−∞
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
−∞
−F
+∞
+∞
+∞
+∞
+∞
NaN
F or 0
−SRC
−SRC
+F
DEST
0
DEST
−0
−F
−∞
DEST
−0
−SRC
−SRC
F or 0
+∞
−∞
+0
+0
0
−∞
+F
DEST
+∞
NaN
DEST
+∞
NaN
−∞
+∞
NaN
+∞
*
NaN
NaN
NaN
NOTES:
F Means finite floating-point value.
Means integer.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
I
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
Operation
IF Instruction = FISUB
THEN
DEST ←DEST −ConvertToDoubleExtendedPrecisionFP(SRC);
ELSE (* Source operand is floating-point value *)
DEST ←DEST −SRC;
FI;
FSUB/FSUBP/FISUB—Subtract
Vol. 2A 3-399
INSTRUCTION SET REFERENCE, A-M
IF Instruction = FSUBP
THEN
PopRegisterStack;
FI;
FPU Flags Affected
C1
Set to 0 if stack underflow occurred.
Set if result was rounded up; cleared otherwise.
Undefined.
C0, C2, C3
Floating-Point Exceptions
#IS
#IA
Stack underflow occurred.
Operand is an SNaN value or unsupported format.
Operands are infinities of like sign.
#D
#U
#O
#P
Source operand is a denormal value.
Result is too small for destination format.
Result is too large for destination format.
Value cannot be represented exactly in destination format.
Protected Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#NM
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS
If a memory operand effective address is outside the SS
segment limit.
#NM
#UD
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If the LOCK prefix is used.
3-400 Vol. 2A
FSUB/FSUBP/FISUB—Subtract
INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#NM
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made.
#UD
If the LOCK prefix is used.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#NM
If the memory address is in a non-canonical form.
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If there is a pending x87 FPU exception.
If a page fault occurs.
#MF
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
FSUB/FSUBP/FISUB—Subtract
Vol. 2A 3-401
INSTRUCTION SET REFERENCE, A-M
FSUBR/FSUBRP/FISUBR—Reverse Subtract
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
D8 /5
FSUBR m32fp
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Subtract ST(0) from m32fp and
store result in ST(0).
DC /5
FSUBR m64fp
Subtract ST(0) from m64fp and
store result in ST(0).
D8 E8+i
DC E0+i
DE E0+i
FSUBR ST(0), ST(i)
FSUBR ST(i), ST(0)
FSUBRP ST(i), ST(0)
Subtract ST(0) from ST(i) and
store result in ST(0).
Subtract ST(i) from ST(0) and
store result in ST(i).
Subtract ST(i) from ST(0), store
result in ST(i), and pop register
stack.
DE E1
FSUBRP
Valid
Valid
Subtract ST(1) from ST(0), store
result in ST(1), and pop register
stack.
DA /5
DE /5
FISUBR m32int
Valid
Valid
Valid
Valid
Subtract ST(0) from m32int and
store result in ST(0).
FISUBR m16int
Subtract ST(0) from m16int and
store result in ST(0).
Description
Subtracts the destination operand from the source operand and stores the difference
in the destination location. The destination operand is always an FPU register; the
source operand can be a register or a memory location. Source operands in memory
can be in single-precision or double-precision floating-point format or in word or
doubleword integer format.
These instructions perform the reverse operations of the FSUB, FSUBP, and FISUB
instructions. They are provided to support more efficient coding.
The no-operand version of the instruction subtracts the contents of the ST(1) register
from the ST(0) register and stores the result in ST(1). The one-operand version
subtracts the contents of the ST(0) register from the contents of a memory location
(either a floating-point or an integer value) and stores the result in ST(0). The two-
operand version, subtracts the contents of the ST(i) register from the ST(0) register
or vice versa.
The FSUBRP instructions perform the additional operation of popping the FPU register
stack following the subtraction. To pop the register stack, the processor marks the
ST(0) register as empty and increments the stack pointer (TOP) by 1. The no-
operand version of the floating-point reverse subtract instructions always results in
3-402 Vol. 2A
FSUBR/FSUBRP/FISUBR—Reverse Subtract
INSTRUCTION SET REFERENCE, A-M
the register stack being popped. In some assemblers, the mnemonic for this instruc-
tion is FSUBR rather than FSUBRP.
The FISUBR instructions convert an integer source operand to double extended-
precision floating-point format before performing the subtraction.
The following table shows the results obtained when subtracting various classes of
numbers from one another, assuming that neither overflow nor underflow occurs.
Here, the DEST value is subtracted from the SRC value (SRC −DEST = result).
When the difference between two operands of like sign is 0, the result is +0, except for
the round toward −∞mode, in which case the result is −0. This instruction also guaran-
tees that +0 −(−0) = +0, and that −0 −(+0) = −0. When the source operand is an integer 0,
it is treated as a +0.
When one operand is ∞, the result is ∞of the expected sign. If both operands are ∞of
the same sign, an invalid-operation exception is generated.
Table 3-44. FSUBR/FSUBRP/FISUBR Results
SRC
−∞
*
−F or −I
+∞
−0
+∞
+0
+∞
+F or +I
+∞
+∞
+∞
+∞
+∞
+∞
+∞
*
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
−∞
−F
−∞
−∞
−∞
−∞
−∞
NaN
F or 0
SRC
SRC
−F
−DEST
0
−DEST
+0
+F
DEST
−0
SRC
SRC
F or 0
−∞
+0
−0
0
+F
−DEST
−∞
−DEST
−∞
+∞
NaN
−∞
NaN
NaN
NaN
NaN
NaN
NOTES:
F Means finite floating-point value.
Means integer.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
I
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
Operation
IF Instruction = FISUBR
THEN
DEST ←ConvertToDoubleExtendedPrecisionFP(SRC) −DEST;
ELSE (* Source operand is floating-point value *)
DEST ←SRC −DEST; FI;
FSUBR/FSUBRP/FISUBR—Reverse Subtract
Vol. 2A 3-403
INSTRUCTION SET REFERENCE, A-M
IF Instruction = FSUBRP
THEN
PopRegisterStack; FI;
FPU Flags Affected
C1
Set to 0 if stack underflow occurred.
Set if result was rounded up; cleared otherwise.
Undefined.
C0, C2, C3
Floating-Point Exceptions
#IS
#IA
Stack underflow occurred.
Operand is an SNaN value or unsupported format.
Operands are infinities of like sign.
#D
#U
#O
#P
Source operand is a denormal value.
Result is too small for destination format.
Result is too large for destination format.
Value cannot be represented exactly in destination format.
Protected Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#NM
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS
If a memory operand effective address is outside the SS
segment limit.
#NM
#UD
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If the LOCK prefix is used.
3-404 Vol. 2A
FSUBR/FSUBRP/FISUBR—Reverse Subtract
INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#NM
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made.
#UD
If the LOCK prefix is used.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#NM
If the memory address is in a non-canonical form.
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If there is a pending x87 FPU exception.
If a page fault occurs.
#MF
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
FSUBR/FSUBRP/FISUBR—Reverse Subtract
Vol. 2A 3-405
INSTRUCTION SET REFERENCE, A-M
FTST—TEST
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
D9 E4
FTST
Valid
Valid
Compare ST(0) with 0.0.
Description
Compares the value in the ST(0) register with 0.0 and sets the condition code flags
C0, C2, and C3 in the FPU status word according to the results (see table below).
Table 3-45. FTST Results
Condition
ST(0) >0.0
ST(0) < 0.0
ST(0) = 0.0
Unordered
C3
C2
0
C0
0
0
0
0
1
1
0
0
1
1
1
This instruction performs an “unordered comparison.” An unordered comparison also
checks the class of the numbers being compared (see “FXAM—ExamineModR/M” in
this chapter). If the value in register ST(0) is a NaN or is in an undefined format, the
condition flags are set to “unordered” and the invalid operation exception is gener-
ated.
The sign of zero is ignored, so that (– 0.0 ←+0.0).
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
Operation
CASE (relation of operands) OF
Not comparable: C3, C2, C0 ←111;
ST(0) >0.0:
ST(0) < 0.0:
ST(0) = 0.0:
C3, C2, C0 ←000;
C3, C2, C0 ←001;
C3, C2, C0 ←100;
ESAC;
FPU Flags Affected
C1
Set to 0 if stack underflow occurred; otherwise, set to 0.
See Table 3-45.
C0, C2, C3
Floating-Point Exceptions
#IS
Stack underflow occurred.
3-406 Vol. 2A
FTST—TEST
INSTRUCTION SET REFERENCE, A-M
#IA
#D
The source operand is a NaN value or is in an unsupported
format.
The source operand is a denormal value.
Protected Mode Exceptions
#NM
#MF
#UD
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If there is a pending x87 FPU exception.
If the LOCK prefix is used.
Real-Address Mode Exceptions
Same exceptions as in protected mode.
Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
Same exceptions as in protected mode.
FTST—TEST
Vol. 2A 3-407
INSTRUCTION SET REFERENCE, A-M
FUCOM/FUCOMP/FUCOMPP—Unordered Compare Floating Point Values
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
DD E0+i
DD E1
FUCOM ST(i)
FUCOM
Valid
Valid
Valid
Valid
Valid
Compare ST(0) with ST(i).
Compare ST(0) with ST(1).
DD E8+i
FUCOMP ST(i) Valid
Compare ST(0) with ST(i) and pop
register stack.
DD E9
DA E9
FUCOMP
Valid
Valid
Valid
Valid
Compare ST(0) with ST(1) and pop
register stack.
FUCOMPP
Compare ST(0) with ST(1) and pop
register stack twice.
Description
Performs an unordered comparison of the contents of register ST(0) and ST(i) and
sets condition code flags C0, C2, and C3 in the FPU status word according to the
results (see the table below). If no operand is specified, the contents of registers
ST(0) and ST(1) are compared. The sign of zero is ignored, so that –0.0 is equal to
+0.0.
Table 3-46. FUCOM/FUCOMP/FUCOMPP Results
Comparison Results*
C3
C2
C0
0
ST0 >ST(i)
0
0
ST0 < ST(i)
0
0
1
1
0
0
Unordered
1
1
1
NOTES:
* Flags not set if unmasked invalid-arithmetic-operand (#IA) exception is generated.
An unordered comparison checks the class of the numbers being compared (see
“FXAM—ExamineModR/M” in this chapter). The FUCOM/FUCOMP/FUCOMPP instruc-
tions perform the same operations as the FCOM/FCOMP/FCOMPP instructions. The
only difference is that the FUCOM/FUCOMP/FUCOMPP instructions raise the invalid-
arithmetic-operand exception (#IA) only when either or both operands are an SNaN
or are in an unsupported format; QNaNs cause the condition code flags to be set to
unordered, but do not cause an exception to be generated. The
FCOM/FCOMP/FCOMPP instructions raise an invalid-operation exception when either
or both of the operands are a NaN value of any kind or are in an unsupported format.
As with the FCOM/FCOMP/FCOMPP instructions, if the operation results in an invalid-
arithmetic-operand exception being raised, the condition code flags are set only if the
exception is masked.
3-408 Vol. 2A
FUCOM/FUCOMP/FUCOMPP—Unordered Compare Floating Point Values
INSTRUCTION SET REFERENCE, A-M
The FUCOMP instruction pops the register stack following the comparison operation
and the FUCOMPP instruction pops the register stack twice following the comparison
operation. To pop the register stack, the processor marks the ST(0) register as
empty and increments the stack pointer (TOP) by 1.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
Operation
CASE (relation of operands) OF
ST >SRC:
ST < SRC:
ST = SRC:
C3, C2, C0 ←000;
C3, C2, C0 ←001;
C3, C2, C0 ←100;
ESAC;
IF ST(0) or SRC = QNaN, but not SNaN or unsupported format
THEN
C3, C2, C0 ←111;
ELSE (* ST(0) or SRC is SNaN or unsupported format *)
#IA;
IF FPUControlWord.IM = 1
THEN
C3, C2, C0 ←111;
FI;
FI;
IF Instruction = FUCOMP
THEN
PopRegisterStack;
FI;
IF Instruction = FUCOMPP
THEN
PopRegisterStack;
FI;
FPU Flags Affected
C1
Set to 0 if stack underflow occurred.
See Table 3-46.
C0, C2, C3
Floating-Point Exceptions
#IS
Stack underflow occurred.
FUCOM/FUCOMP/FUCOMPP—Unordered Compare Floating Point Values
Vol. 2A 3-409
INSTRUCTION SET REFERENCE, A-M
#IA
#D
One or both operands are SNaN values or have unsupported
formats. Detection of a QNaN value in and of itself does not raise
an invalid-operand exception.
One or both operands are denormal values.
Protected Mode Exceptions
#NM
#MF
#UD
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If there is a pending x87 FPU exception.
If the LOCK prefix is used.
Real-Address Mode Exceptions
Same exceptions as in protected mode.
Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
Same exceptions as in protected mode.
3-410 Vol. 2A
FUCOM/FUCOMP/FUCOMPP—Unordered Compare Floating Point Values
INSTRUCTION SET REFERENCE, A-M
FXAM—ExamineModR/M
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
D9 E5
FXAM
Valid
Valid
Classify value or number in ST(0).
Description
Examines the contents of the ST(0) register and sets the condition code flags C0, C2,
and C3 in the FPU status word to indicate the class of value or number in the register
(see the table below).
.
Table 3-47. FXAM Results
Class
C3
C2
0
C0
0
Unsupported
NaN
0
0
0
1
Normal finite number
Infinity
0
1
0
0
1
1
Zero
1
0
0
Empty
1
0
1
Denormal number
1
1
0
The C1 flag is set to the sign of the value in ST(0), regardless of whether the register
is empty or full.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
Operation
C1 ←sign bit of ST; (* 0 for positive, 1 for negative *)
CASE (class of value or number in ST(0)) OF
Unsupported:C3, C2, C0 ←000;
NaN:
C3, C2, C0 ←001;
C3, C2, C0 ←010;
C3, C2, C0 ←011;
C3, C2, C0 ←100;
C3, C2, C0 ←101;
C3, C2, C0 ←110;
Normal:
Infinity:
Zero:
Empty:
Denormal:
ESAC;
FXAM—ExamineModR/M
Vol. 2A 3-411
INSTRUCTION SET REFERENCE, A-M
FPU Flags Affected
C1
Sign of value in ST(0).
See Table 3-47.
C0, C2, C3
Floating-Point Exceptions
None.
Protected Mode Exceptions
#NM
#MF
#UD
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If there is a pending x87 FPU exception.
If the LOCK prefix is used.
Real-Address Mode Exceptions
Same exceptions as in protected mode.
Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
Same exceptions as in protected mode.
3-412 Vol. 2A
FXAM—ExamineModR/M
INSTRUCTION SET REFERENCE, A-M
FXCH—Exchange Register Contents
Opcode
D9 C8+i
D9 C9
Instruction 64-Bit
Mode
Compat/
Description
Leg Mode
FXCH ST(i)
Valid
Valid
Valid
Exchange the contents of ST(0) and
ST(i).
FXCH
Valid
Exchange the contents of ST(0) and
ST(1).
Description
Exchanges the contents of registers ST(0) and ST(i). If no source operand is speci-
fied, the contents of ST(0) and ST(1) are exchanged.
This instruction provides a simple means of moving values in the FPU register stack
to the top of the stack [ST(0)], so that they can be operated on by those floating-
point instructions that can only operate on values in ST(0). For example, the
following instruction sequence takes the square root of the third register from the top
of the register stack:
FXCH ST(3);
FSQRT;
FXCH ST(3);
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
Operation
IF (Number-of-operands) is 1
THEN
temp ←ST(0);
ST(0) ←SRC;
SRC ←temp;
ELSE
temp ←ST(0);
ST(0) ←ST(1);
ST(1) ←temp;
FI;
FPU Flags Affected
C1
Set to 0 if stack underflow occurred; otherwise, set to 1.
Undefined.
C0, C2, C3
Floating-Point Exceptions
#IS
Stack underflow occurred.
FXCH—Exchange Register Contents
Vol. 2A 3-413
INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#NM
#MF
#UD
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If there is a pending x87 FPU exception.
If the LOCK prefix is used.
Real-Address Mode Exceptions
Same exceptions as in protected mode.
Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
Same exceptions as in protected mode.
3-414 Vol. 2A
FXCH—Exchange Register Contents
INSTRUCTION SET REFERENCE, A-M
FXRSTOR—Restore x87 FPU, MMX , XMM, and MXCSR State
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
0F AE /1 FXRSTOR m512byte Valid
Valid
Restore the x87 FPU, MMX, XMM,
and MXCSR register state from
m512byte.
Description
Reloads the x87 FPU, MMX technology, XMM, and MXCSR registers from the 512-byte
memory image specified in the source operand. This data should have been written
16-byte boundary. There are three distinct layout of the FXSAVE state map: one for
legacy and compatibility mode, a second format for 64-bit mode with promoted oper-
andsize, and the third format is for 64-bit mode with default operand size. Table 3-48
describes the fields in the memory image for the FXRSTOR and FXSAVE instructions.
Table 3-51 shows the layout of the 64-bit mode stat information when REX.W is set.
Table 3-52 shows the layout of the 64-bit mode stat information when REX.W is clear.
The state image referenced with an FXRSTOR instruction must have been saved
using an FXSAVE instruction or be in the same format as required by Table 3-48,
Table 3-51, or Table 3-52. Referencing a state image saved with an FSAVE, FNSAVE
instruction or incompatible field layout will result in an incorrect state restoration.
The FXRSTOR instruction does not flush pending x87 FPU exceptions. To check and
raise exceptions when loading x87 FPU state information with the FXRSTOR instruc-
tion, use an FWAIT instruction after the FXRSTOR instruction.
If the OSFXSR bit in control register CR4 is not set, the FXRSTOR instruction may not
restore the states of the XMM and MXCSR registers. This behavior is implementation
dependent.
If the MXCSR state contains an unmasked exception with a corresponding status flag
also set, loading the register with the FXRSTOR instruction will not result in a SIMD
floating-point error condition being generated. Only the next occurrence of this
unmasked exception will result in the exception being generated.
Bits 16 through 32 of the MXCSR register are defined as reserved and should be set
to 0. Attempting to write a 1 in any of these bits from the saved state image will
result in a general protection exception (#GP) being generated.
Operation
(x87 FPU, MMX, XMM7-XMM0, MXCSR) ←Load(SRC);
FXRSTOR—Restore x87 FPU, MMX , XMM, and MXCSR State
Vol. 2A 3-415
INSTRUCTION SET REFERENCE, A-M
x87 FPU and SIMD Floating-Point Exceptions
None.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment. (See alignment check exception [#AC]
below.)
For an attempt to set reserved bits in MXCSR.
For an illegal address in the SS segment.
For a page fault.
#SS(0)
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
#UD
If CR0.EM[bit 2] = 1.
If CPUID.01H:EDX.FXSR[bit 24] = 0.
If instruction is preceded by a LOCK prefix.
#AC
If this exception is disabled a general protection exception
(#GP) is signaled if the memory operand is not aligned on a 16-
byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC
is not guaranteed and may vary with implementation, as
follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition,
the width of the alignment check may also vary with implemen-
tation. For instance, for a given implementation, an alignment
check exception might be signaled for a 2-byte misalignment,
whereas a general protection exception might be signaled for all
other misalignments (4-, 8-, or 16-byte misalignments).
#UD
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP(0)
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
For an attempt to set reserved bits in MXCSR.
If CR0.TS[bit 3] = 1.
#NM
#UD
If CR0.EM[bit 2] = 1.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
3-416 Vol. 2A
FXRSTOR—Restore x87 FPU, MMX , XMM, and MXCSR State
INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
#AC
For a page fault.
For unaligned memory reference.
If the LOCK prefix is used.
#UD
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If memory operand is not aligned on a 16-byte boundary,
regardless of segment.
For an attempt to set reserved bits in MXCSR.
If there is a pending x87 FPU exception.
For a page fault.
#MF
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
#UD
If CR0.EM[bit 2] = 1.
If CPUID.01H:EDX.FXSR[bit 24] = 0.
If instruction is preceded by a LOCK prefix.
#AC
If this exception is disabled a general protection exception
(#GP) is signaled if the memory operand is not aligned on a
16-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC
is not guaranteed and may vary with implementation, as
follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition,
the width of the alignment check may also vary with implemen-
tation. For instance, for a given implementation, an alignment
check exception might be signaled for a 2-byte misalignment,
whereas a general protection exception might be signaled for all
other misalignments (4-, 8-, or 16-byte misalignments).
FXRSTOR—Restore x87 FPU, MMX , XMM, and MXCSR State
Vol. 2A 3-417
INSTRUCTION SET REFERENCE, A-M
FXSAVE—Save x87 FPU, MMX Technology, SSE, and SSE2 State
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
0F AE /0
FXSAVE m512byte Valid
Valid
Save the x87 FPU, MMX, XMM,
and MXCSR register state to
m512byte.
Description
Saves the current state of the x87 FPU, MMX technology, XMM, and MXCSR registers
to a 512-byte memory location specified in the destination operand. The content
layout of the 512 byte region depends on whether the processor is operating in non-
64-bit operating modes or 64-bit sub-mode of IA-32e mode. The operation of
FXSAVE in non-64-bit modes are described first.
Non-64-Bit Mode Operation
Table 3-48 shows the layout of the state information in memory when the processor
is operating in legacy modes.
Table 3-48. Non-64-bit-Mode Layout of FXSAVE and FXRSTOR
Memory Region
15 14 13 12 11 10
Rsrvd CS FPU IP
MXCSR_MASK MXCSR
Reserved
9
8
7
6
5
4
3
2
1
0
FOP
Rsrvd
FTW
FSW
FCW
0
DS
FPU DP
16
ST0/MM0
ST1/MM1
ST2/MM2
ST3/MM3
ST4/MM4
ST5/MM5
ST6/MM6
ST7/MM7
32
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
48
64
80
96
112
128
144
160
176
192
208
224
XMM0
XMM1
XMM2
XMM3
XMM4
3-418 Vol. 2A
FXSAVE—Save x87 FPU, MMX Technology, SSE, and SSE2 State
INSTRUCTION SET REFERENCE, A-M
Table 3-48. Non-64-bit-Mode Layout of FXSAVE and FXRSTOR
Memory Region (Contd.)
15 14 13 12 11 10
9
8
7
6
5
4
3
2
1
0
XMM5
XMM6
XMM7
240
256
272
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
288
304
320
336
352
368
384
400
416
432
448
464
480
496
The destination operand contains the first byte of the memory image, and it must be
general-protection (#GP) exception being generated (or in some cases, an alignment
check exception [#AC]).
The FXSAVE instruction is used when an operating system needs to perform a
context switch or when an exception handler needs to save and examine the current
state of the x87 FPU, MMX technology, and/or XMM and MXCSR registers.
The fields in Table 3-48 are defined in Table 3-49.
FXSAVE—Save x87 FPU, MMX Technology, SSE, and SSE2 State
Vol. 2A 3-419
INSTRUCTION SET REFERENCE, A-M
Table 3-49. Field Definitions
Definition
Field
FCW
x87 FPU Control Word (16 bits). See Figure 8-6 in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1, for the layout of the
x87 FPU control word.
FSW
FTW
x87 FPU Status Word (16 bits). See Figure 8-4 in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1, for the layout of the
x87 FPU status word.
x87 FPU Tag Word (8 bits). The tag information saved here is abridged, as
described in the following paragraphs. See Figure 8-7 in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 1, for the layout
of the x87 FPU tag word.
FOP
x87 FPU Opcode (16 bits). The lower 11 bits of this field contain the
opcode, upper 5 bits are reserved. See Figure 8-8 in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1, for the layout of the
x87 FPU opcode field.
FPU IP
x87 FPU Instruction Pointer Offset (32 bits). The contents of this field
differ depending on the current addressing mode (32-bit or 16-bit) of the
processor when the FXSAVE instruction was executed:
32-bit mode — 32-bit IP offset.
16-bit mode — low 16 bits are IP offset; high 16 bits are reserved.
See “x87 FPU Instruction and Operand (Data) Pointers” in Chapter 8 of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1,
for a description of the x87 FPU instruction pointer.
CS
x87 FPU Instruction Pointer Selector (16 bits).
FPU DP
x87 FPU Instruction Operand (Data) Pointer Offset (32 bits). The contents
of this field differ depending on the current addressing mode (32-bit or 16-
bit) of the processor when the FXSAVE instruction was executed:
32-bit mode — 32-bit IP offset.
16-bit mode — low 16 bits are IP offset; high 16 bits are reserved.
See “x87 FPU Instruction and Operand (Data) Pointers” in Chapter 8 of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1,
for a description of the x87 FPU operand pointer.
DS
x87 FPU Instruction Operand (Data) Pointer Selector (16 bits).
3-420 Vol. 2A
FXSAVE—Save x87 FPU, MMX Technology, SSE, and SSE2 State
INSTRUCTION SET REFERENCE, A-M
Table 3-49. Field Definitions (Contd.)
Definition
Field
MXCSR
MXCSR Register State (32 bits). See Figure 10-3 in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1, for the layout of the
MXCSR register. If the OSFXSR bit in control register CR4 is not set, the
FXSAVE instruction may not save this register. This behavior is
implementation dependent.
MXCSR_
MASK
MXCSR_MASK (32 bits). This mask can be used to adjust values written to
the MXCSR register, ensuring that reserved bits are set to 0. Set the mask
bits and flags in MXCSR to the mode of operation desired for SSE and SSE2
SIMD floating-point instructions. See “Guidelines for Writing to the MXCSR
Register” in Chapter 11 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1, for instructions for how to determine and
use the MXCSR_MASK value.
ST0/MM0 through
ST7/MM7
x87 FPU or MMX technology registers. These 80-bit fields contain the x87
FPU data registers or the MMX technology registers, depending on the
state of the processor prior to the execution of the FXSAVE instruction. If
the processor had been executing x87 FPU instruction prior to the FXSAVE
instruction, the x87 FPU data registers are saved; if it had been executing
MMX instructions (or SSE or SSE2 instructions that operated on the MMX
technology registers), the MMX technology registers are saved. When the
MMX technology registers are saved, the high 16 bits of the field are
reserved.
XMM0 through
XMM7
XMM registers (128 bits per field). If the OSFXSR bit in control register CR4
is not set, the FXSAVE instruction may not save these registers. This
behavior is implementation dependent.
The FXSAVE instruction saves an abridged version of the x87 FPU tag word in the
FTW field (unlike the FSAVE instruction, which saves the complete tag word). The tag
information is saved in physical register order (R0 through R7), rather than in top-of-
stack (TOS) order. With the FXSAVE instruction, however, only a single bit (1 for valid
or 0 for empty) is saved for each tag. For example, assume that the tag word is
currently set as follows:
R7 R6 R5 R4 R3 R2 R1 R0
11 xx xx xx 11 11 11 11
Here, 11B indicates empty stack elements and “xx” indicates valid (00B), zero (01B),
or special (10B).
For this example, the FXSAVE instruction saves only the following 8 bits of informa-
tion:
R7 R6 R5 R4 R3 R2 R1 R0
0
1
1
1
0
0
0
0
FXSAVE—Save x87 FPU, MMX Technology, SSE, and SSE2 State
Vol. 2A 3-421
INSTRUCTION SET REFERENCE, A-M
Here, a 1 is saved for any valid, zero, or special tag, and a 0 is saved for any empty
tag.
The operation of the FXSAVE instruction differs from that of the FSAVE instruction,
the as follows:
• FXSAVE instruction does not check for pending unmasked floating-point
exceptions. (The FXSAVE operation in this regard is similar to the operation of the
FNSAVE instruction).
• After the FXSAVE instruction has saved the state of the x87 FPU, MMX
technology, XMM, and MXCSR registers, the processor retains the contents of the
registers. Because of this behavior, the FXSAVE instruction cannot be used by an
application program to pass a “clean” x87 FPU state to a procedure, since it
retains the current state. To clean the x87 FPU state, an application must
explicitly execute an FINIT instruction after an FXSAVE instruction to reinitialize
the x87 FPU state.
• The format of the memory image saved with the FXSAVE instruction is the same
regardless of the current addressing mode (32-bit or 16-bit) and operating mode
(protected, real address, or system management). This behavior differs from the
FSAVE instructions, where the memory image format is different depending on
formats, the memory image saved with the FXSAVE instruction cannot be
restored correctly with the FRSTOR instruction, and likewise the state saved with
the FSAVE instruction cannot be restored correctly with the FXRSTOR instruction.
The FSAVE format for FTW can be recreated from the FTW valid bits and the stored
80-bit FP data (assuming the stored data was not the contents of MMX technology
registers) using Table 3-50.
Table 3-50. Recreating FSAVE Format
Exponent
all 1’s
Exponent
all 0’s
Fraction
all 0’s
J and M
bits
FTW valid
bit
x87 FTW
Special
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
0x
1x
00
10
0x
1x
00
10
1x
1x
1
1
1
1
1
1
1
1
1
1
10
00
10
00
10
10
01
10
10
10
Valid
Special
Valid
Special
Special
Zero
Special
Special
Special
3-422 Vol. 2A
FXSAVE—Save x87 FPU, MMX Technology, SSE, and SSE2 State
INSTRUCTION SET REFERENCE, A-M
Table 3-50. Recreating FSAVE Format (Contd.)
Exponent
all 1’s
Exponent
all 0’s
Fraction
all 0’s
J and M
bits
FTW valid
bit
x87 FTW
Special
1
1
0
0
1
1
00
10
1
1
0
10
10
11
Special
Empty
For all legal combinations above.
The J-bit is defined to be the 1-bit binary integer to the left of the decimal place in the
significand. The M-bit is defined to be the most significant bit of the fractional portion
of the significand (i.e., the bit immediately to the right of the decimal place).
When the M-bit is the most significant bit of the fractional portion of the significand,
it must be 0 if the fraction is all 0’s.
IA-32e Mode Operation
In compatibility sub-mode of IA-32e mode, legacy SSE registers, XMM0 through
registers, XMM0 through XMM15, are saved. But the layout of the 64-bit FXSAVE map
has two flavors, depending on the value of the REX.W bit. The difference of these two
flavors is in the FPU IP and FPU DP pointers. When REX.W = 0, the FPU IP is saved as
CS with the 32 bit IP, and the FPU DP is saved as DS with the 32 bit DP. When REX.W
= 1, the FPU IP and FPU DP are both 64 bit values without and segment selectors.
The IA-32e mode save formats are shown in Table 3-51 and Table 3-52 listed below.
Table 3-51. Layout of the 64-bit-mode FXSAVE Map
with Promoted OperandSize
15 14 13 12 11 10
9
8
7
6
5
4
3
2
1
0
FPU IP
FOP
FTW
FSW
FCW
0
MXCSR_MASK
Reserved
MXCSR
FPU DP
16
ST0/MM0
ST1/MM1
ST2/MM2
ST3/MM3
ST4/MM4
ST5/MM5
ST6/MM6
ST7/MM7
32
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
48
64
80
96
112
128
144
160
176
XMM0
XMM1
FXSAVE—Save x87 FPU, MMX Technology, SSE, and SSE2 State
Vol. 2A 3-423
INSTRUCTION SET REFERENCE, A-M
Table 3-51. Layout of the 64-bit-mode FXSAVE Map
with Promoted OperandSize (Contd.)
15 14 13 12 11 10
9
8
7
6
5
4
3
2
1
0
XMM2
XMM3
XMM4
XMM5
XMM6
XMM7
XMM8
XMM9
XMM10
XMM11
XMM12
XMM13
XMM14
XMM15
192
208
224
240
256
272
288
304
320
336
352
368
384
400
416
432
448
464
480
496
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Table 3-52. Layout of the 64-bit-mode FXSAVE Map with
Default OperandSize
15 14
13 12
11 10
9
8
7
6
5
4
3
2
1
0
Reserved
CS
FPU IP
MXCSR
FOP
FTW
FSW
FCW
0
Re-
MXCSR_MASK
DS
FPU DP
16
served
Reserved
Reserved
Reserved
Reserved
ST0/MM0
ST1/MM1
ST2/MM2
ST3/MM3
32
48
64
80
3-424 Vol. 2A
FXSAVE—Save x87 FPU, MMX Technology, SSE, and SSE2 State
INSTRUCTION SET REFERENCE, A-M
Table 3-52. Layout of the 64-bit-mode FXSAVE Map with
Default OperandSize (Contd.)
15 14
13 12
Reserved
Reserved
Reserved
Reserved
11 10
9
8
7
6
5
4
3
2
1
0
ST4/MM4
ST5/MM5
ST6/MM6
ST7/MM7
96
112
128
144
160
176
192
208
224
240
256
272
288
304
320
336
352
368
384
400
416
432
448
464
480
496
XMM0
XMM1
XMM2
XMM3
XMM4
XMM5
XMM6
XMM7
XMM8
XMM9
XMM10
XMM11
XMM12
XMM13
XMM14
XMM15
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Operation
IF 64-Bit Mode
THEN
IF REX.W = 1
FXSAVE—Save x87 FPU, MMX Technology, SSE, and SSE2 State
Vol. 2A 3-425
INSTRUCTION SET REFERENCE, A-M
THEN
DEST ←Save64BitPromotedFxsave(x87 FPU, MMX, XMM7-XMM0,
MXCSR);
ELSE
DEST ←Save64BitDefaultFxsave(x87 FPU, MMX, XMM7-XMM0, MXCSR);
FI;
ELSE
DEST ←SaveLegacyFxsave(x87 FPU, MMX, XMM7-XMM0, MXCSR);
FI;
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment. (See the description of the alignment
check exception [#AC] below.)
#SS(0)
For an illegal address in the SS segment.
For a page fault.
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
#UD
If CR0.EM[bit 2] = 1.
If CPUID.01H:EDX.FXSR[bit 24] = 0.
If the LOCK prefix is used.
#UD
#AC
If this exception is disabled a general protection exception
(#GP) is signaled if the memory operand is not aligned on a
16-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC
is not guaranteed and may vary with implementation, as
follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition,
the width of the alignment check may also vary with implemen-
tation. For instance, for a given implementation, an alignment
check exception might be signaled for a 2-byte misalignment,
whereas a general protection exception might be signaled for all
other misalignments (4-, 8-, or 16-byte misalignments).
Real-Address Mode Exceptions
#GP(0)
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
If CR0.TS[bit 3] = 1.
3-426 Vol. 2A
FXSAVE—Save x87 FPU, MMX Technology, SSE, and SSE2 State
INSTRUCTION SET REFERENCE, A-M
#UD
If CR0.EM[bit 2] = 1.
If CPUID.01H:EDX.FXSR[bit 24] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
#AC
For a page fault.
For unaligned memory reference.
If the LOCK prefix is used.
#UD
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#MF
If there is a pending x87 FPU exception.
For a page fault.
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
#UD
If CR0.EM[bit 2] = 1.
If CPUID.01H:EDX.FXSR[bit 24] = 0.
If the LOCK prefix is used.
#AC
If this exception is disabled a general protection exception
(#GP) is signaled if the memory operand is not aligned on a
16-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC
is not guaranteed and may vary with implementation, as
follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition,
the width of the alignment check may also vary with implemen-
tation. For instance, for a given implementation, an alignment
check exception might be signaled for a 2-byte misalignment,
whereas a general protection exception might be signaled for all
other misalignments (4-, 8-, or 16-byte misalignments).
FXSAVE—Save x87 FPU, MMX Technology, SSE, and SSE2 State
Vol. 2A 3-427
INSTRUCTION SET REFERENCE, A-M
Implementation Note
The order in which the processor signals general-protection (#GP) and page-fault
(#PF) exceptions when they both occur on an instruction boundary is given in Table
5-2 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
3B. This order vary for FXSAVE for different processor implementations.
3-428 Vol. 2A
FXSAVE—Save x87 FPU, MMX Technology, SSE, and SSE2 State
INSTRUCTION SET REFERENCE, A-M
FXTRACT—Extract Exponent and Significand
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
D9 F4
FXTRACT
Valid
Valid
Separate value in ST(0) into exponent and
significand, store exponent in ST(0), and
push the significand onto the register
stack.
Description
Separates the source value in the ST(0) register into its exponent and significand,
stores the exponent in ST(0), and pushes the significand onto the register stack.
Following this operation, the new top-of-stack register ST(0) contains the value of
the original significand expressed as a floating-point value. The sign and significand
of this value are the same as those found in the source operand, and the exponent is
3FFFH (biased value for a true exponent of zero). The ST(1) register contains the
value of the original operand’s true (unbiased) exponent expressed as a floating-
point value. (The operation performed by this instruction is a superset of the IEEE-
recommended logb(x) function.)
This instruction and the F2XM1 instruction are useful for performing power and range
scaling operations. The FXTRACT instruction is also useful for converting numbers in
double extended-precision floating-point format to decimal representations (e.g., for
printing or displaying).
If the floating-point zero-divide exception (#Z) is masked and the source operand is
zero, an exponent value of –∞is stored in register ST(1) and 0 with the sign of the
source operand is stored in register ST(0).
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
Operation
TEMP ←Significand(ST(0));
ST(0) ←Exponent(ST(0));
TOP←TOP −1;
ST(0) ←TEMP;
FPU Flags Affected
C1
Set to 0 if stack underflow occurred; set to 1 if stack overflow
occurred.
C0, C2, C3
Undefined.
Floating-Point Exceptions
#IS
Stack underflow or overflow occurred.
FXTRACT—Extract Exponent and Significand
Vol. 2A 3-429
INSTRUCTION SET REFERENCE, A-M
#IA
#Z
Source operand is an SNaN value or unsupported format.
ST(0) operand is 0.
#D
Source operand is a denormal value.
Protected Mode Exceptions
#NM
#MF
#UD
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If there is a pending x87 FPU exception.
If the LOCK prefix is used.
Real-Address Mode Exceptions
Same exceptions as in protected mode.
Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
Same exceptions as in protected mode.
3-430 Vol. 2A
FXTRACT—Extract Exponent and Significand
INSTRUCTION SET REFERENCE, A-M
FYL2X—Compute y ∗ log2x
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
D9 F1
FYL2X
Valid
Valid
Replace ST(1) with (ST(1) ∗ log2ST(0))
and pop the register stack.
Description
Computes (ST(1) ∗ log (ST(0))), stores the result in resister ST(1), and pops the
2
FPU register stack. The source operand in ST(0) must be a non-zero positive number.
The following table shows the results obtained when taking the log of various classes
of numbers, assuming that neither overflow nor underflow occurs.
Table 3-53. FYL2X Results
ST(0)
−∞
−F
0
+∞
**
+0 < +F < +1
+1
*
+F >+1
−∞
+∞
−∞
−∞
*
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
−∞
−F
*
*
+∞
+F
*
*
−0
−F
ST(1)
−0
*
*
*
*
*
+0
−0
−0
+0
*
−0
+0
+0
*
+F
*
*
**
−F
+0
+F
+∞
+∞
NaN
+∞
NaN
*
*
−∞
NaN
−∞
NaN
*
+∞
NaN
NaN
NaN
NaN
NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-operation (#IA) exception.
** Indicates floating-point zero-divide (#Z) exception.
If the divide-by-zero exception is masked and register ST(0) contains 0, the instruc-
tion returns ∞with a sign that is the opposite of the sign of the source operand in
register ST(1).
The FYL2X instruction is designed with a built-in multiplication to optimize the calcu-
lation of logarithms with an arbitrary positive base (b):
log x ←(log2b)–1 ∗ log2x
b
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
FYL2X—Compute y * log2x
Vol. 2A 3-431
INSTRUCTION SET REFERENCE, A-M
Operation
ST(1) ←ST(1) ∗ log2ST(0);
PopRegisterStack;
FPU Flags Affected
C1
Set to 0 if stack underflow occurred.
Set if result was rounded up; cleared otherwise.
Undefined.
C0, C2, C3
Floating-Point Exceptions
#IS
#IA
Stack underflow occurred.
Either operand is an SNaN or unsupported format.
Source operand in register ST(0) is a negative finite value
(not −0).
#Z
#D
#U
#O
#P
Source operand in register ST(0) is 0.
Source operand is a denormal value.
Result is too small for destination format.
Result is too large for destination format.
Value cannot be represented exactly in destination format.
Protected Mode Exceptions
#NM
#MF
#UD
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If there is a pending x87 FPU exception.
If the LOCK prefix is used.
Real-Address Mode Exceptions
Same exceptions as in protected mode.
Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
Same exceptions as in protected mode.
3-432 Vol. 2A
FYL2X—Compute y * log2x
INSTRUCTION SET REFERENCE, A-M
FYL2XP1—Compute y ∗ log2(x +1)
Opcode
Instruction 64-Bit
Mode
Compat/
Leg Mode
Description
D9 F9
FYL2XP1
Valid
Valid
Replace ST(1) with ST(1) ∗ log2(ST(0)
+ 1.0) and pop the register stack.
Description
Computes (ST(1) ∗ log (ST(0) +1.0)), stores the result in register ST(1), and pops
2
the FPU register stack. The source operand in ST(0) must be in the range:
–(1 – 2 ⁄ 2))to(1 – 2 ⁄ 2)
The source operand in ST(1) can range from −∞to +∞. If the ST(0) operand is outside
of its acceptable range, the result is undefined and software should not rely on an
exception being generated. Under some circumstances exceptions may be generated
when ST(0) is out of range, but this behavior is implementation specific and not
guaranteed.
The following table shows the results obtained when taking the log epsilon of various
classes of numbers, assuming that underflow does not occur.
Table 3-54. FYL2XP1 Results
ST(0)
−(1 −( 2 ⁄ 2 )) to −0
−0
*
+0
*
+0 to +(1 −( 2 ⁄ 2 ))
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
−∞
−F
+∞
+F
−∞
−F
ST(1)
+0
−0
−0
+0
+0
−0
−0
+0
−0
−0
+0
+0
+F
−F
−0
+0
+F
+∞
NaN
−∞
NaN
*
*
+∞
NaN
NaN
NaN
NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-operation (#IA) exception.
This instruction provides optimal accuracy for values of epsilon [the value in register
ST(0)] that are close to 0. For small epsilon (ε) values, more significant digits can be
retained by using the FYL2XP1 instruction than by using (ε+1) as an argument to the
FYL2X instruction. The (ε+1) expression is commonly found in compound interest and
annuity calculations. The result can be simply converted into a value in another loga-
rithm base by including a scale factor in the ST(1) source operand. The following
FYL2XP1—Compute y * log2(x +1)
Vol. 2A 3-433
INSTRUCTION SET REFERENCE, A-M
equation is used to calculate the scale factor for a particular logarithm base, where n
is the logarithm base desired for the result of the FYL2XP1 instruction:
scale factor ←log 2
n
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
Operation
ST(1) ←ST(1) ∗ log2(ST(0) +1.0);
PopRegisterStack;
FPU Flags Affected
C1
Set to 0 if stack underflow occurred.
Set if result was rounded up; cleared otherwise.
Undefined.
C0, C2, C3
Floating-Point Exceptions
#IS
#IA
#D
#U
#O
#P
Stack underflow occurred.
Either operand is an SNaN value or unsupported format.
Source operand is a denormal value.
Result is too small for destination format.
Result is too large for destination format.
Value cannot be represented exactly in destination format.
Protected Mode Exceptions
#NM
#MF
#UD
CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
If there is a pending x87 FPU exception.
If the LOCK prefix is used.
Real-Address Mode Exceptions
Same exceptions as in protected mode.
Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
Same exceptions as in protected mode.
3-434 Vol. 2A
FYL2XP1—Compute y * log2(x +1)
INSTRUCTION SET REFERENCE, A-M
HADDPD—Packed Double-FP Horizontal Add
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
66 0F 7C /r HADDPD xmm1,
Valid
Valid
Horizontal add packed double-
precision floating-point values
from xmm2/m128 to xmm1.
xmm2/m128
Description
Adds the double-precision floating-point values in the high and low quadwords of the
destination operand and stores the result in the low quadword of the destination
operand.
Adds the double-precision floating-point values in the high and low quadwords of the
source operand and stores the result in the high quadword of the destination operand.
See Figure 3-10.
+$''3'ꢄ[PPꢂꢍꢄ[PPꢅꢎPꢂꢅꢒ
[PPꢅ
>ꢂꢅꢌꢃꢐꢉ@
>ꢐꢋꢃꢁ@
ꢎPꢂꢅꢒ
>ꢂꢅꢌꢃꢐꢉ@
>ꢐꢋꢃꢁ@
[PPꢂ
[PPꢅꢎPꢂꢅꢒ>ꢐꢋꢃꢁ@ꢄꢑ
[PPꢅꢎPꢂꢅꢒ>ꢂꢅꢌꢃꢐꢉ@
5HVXOWꢃ
[PPꢂ
[PPꢂ>ꢐꢋꢃꢁ@ꢄꢑꢄ[PPꢂ>ꢂꢅꢌꢃꢐꢉ@
>ꢐꢋꢃꢁ@
>ꢂꢅꢌꢃꢐꢉ@
20ꢂꢆꢊꢊꢋ
Figure 3-10. HADDPD—Packed Double-FP Horizontal Add
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
HADDPD—Packed Double-FP Horizontal Add
Vol. 2A 3-435
INSTRUCTION SET REFERENCE, A-M
Operation
xmm1[63:0] = xmm1[63:0] + xmm1[127:64];
xmm1[127:64] = xmm2/m128[63:0] + xmm2/m128[127:64];
Intel C/C++Compiler Intrinsic Equivalent
HADDPD
__m128d _mm_hadd_pd(__m128d a, __m128d b)
Exceptions
When the source operand is a memory operand, the operand must be aligned on a
16-byte boundary or a general-protection exception (#GP) will be generated.
Numeric Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#SS(0)
For an illegal address in the SS segment.
For a page fault.
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
#XM
For an unmasked Streaming SIMD Extensions numeric excep-
tion (CR4.OSXMMEXCPT[bit 10] = 1).
#UD
If CR0.EM[bit 2] = 1.
For an unmasked Streaming SIMD Extensions numeric excep-
tion (CR4.OSXMMEXCPT[bit 10] = 0).
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.
Real Address Mode Exceptions
GP(0)
If any part of the operand would lie outside of the effective
address space from 0 to 0FFFFH.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#NM
#XM
If CR0.TS[bit 3] = 1.
For an unmasked Streaming SIMD Extensions numeric excep-
tion (CR4.OSXMMEXCPT[bit 10] = 1).
3-436 Vol. 2A
HADDPD—Packed Double-FP Horizontal Add
INSTRUCTION SET REFERENCE, A-M
#UD
If CR0.EM[bit 2] = 1.
For an unmasked Streaming SIMD Extensions numeric excep-
tion (CR4.OSXMMEXCPT[bit 10] = 0).
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.
Virtual 8086 Mode Exceptions
GP(0)
If any part of the operand would lie outside of the effective
address space from 0 to 0FFFFH.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#NM
#XM
If CR0.TS[bit 3] = 1.
For an unmasked Streaming SIMD Extensions numeric excep-
tion (CR4.OSXMMEXCPT[bit 10] = 1).
#UD
If CR0.EM[bit 2] = 1.
For an unmasked Streaming SIMD Extensions numeric excep-
tion (CR4.OSXMMEXCPT[bit 10] = 0).
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.
For a page fault.
#PF(fault-code)
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#PF(fault-code)
#NM
For a page fault.
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
HADDPD—Packed Double-FP Horizontal Add
Vol. 2A 3-437
INSTRUCTION SET REFERENCE, A-M
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID feature flag SSE3 is 0.
If the LOCK prefix is used.
3-438 Vol. 2A
HADDPD—Packed Double-FP Horizontal Add
INSTRUCTION SET REFERENCE, A-M
HADDPS—Packed Single-FP Horizontal Add
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
F2 0F 7C /r HADDPS xmm1,
Valid
Valid
Horizontal add packed single-
precision floating-point values from
xmm2/m128 to xmm1.
xmm2/m128
Description
Adds the single-precision floating-point values in the first and second dwords of the
destination operand and stores the result in the first dword of the destination
operand.
nation operand and stores the result in the second dword of the destination operand.
Adds single-precision floating-point values in the first and second dword of the
source operand and stores the result in the third dword of the destination operand.
Adds single-precision floating-point values in the third and fourth dword of the source
operand and stores the result in the fourth dword of the destination operand. See
Figure 3-11.
+$''36ꢄ[PPꢂꢍꢄ[PPꢅꢎPꢂꢅꢒ
[PPꢅꢎ
>ꢂꢅꢌꢃꢊꢐ@
>ꢂꢅꢌꢃꢊꢐ@
>ꢊꢆꢃꢐꢉ@
>ꢐꢋꢃꢋꢅ@
>ꢋꢂꢃꢁ@
>ꢋꢂꢃꢁ@
Pꢂꢅꢒ
>ꢊꢆꢃꢐꢉ@
>ꢐꢋꢃꢋꢅ@
[PPꢂ
[PPꢅꢎPꢂꢅꢒ
>ꢊꢆꢃꢐꢉ@ꢄꢑꢄ[PPꢅꢎ
Pꢂꢅꢒ>ꢂꢅꢌꢃꢊꢐ@
[PPꢅꢎPꢂꢅꢒ
>ꢋꢂꢃꢁ@ꢄꢑꢄ[PPꢅꢎ
Pꢂꢅꢒ>ꢐꢋꢃꢋꢅ@
[PPꢂ>ꢊꢆꢃꢐꢉ@ꢄꢑꢄ
[PPꢂ>ꢂꢅꢌꢃꢊꢐ@
[PPꢂ>ꢋꢂꢃꢁ@ꢄꢑꢄ
[PPꢂ>ꢐꢋꢃꢋꢅ@
5(68/7ꢃ
[PPꢂ
>ꢂꢅꢌꢃꢊꢐ@
>ꢊꢆꢃꢐꢉ@
>ꢐꢋꢃꢋꢅ@
>ꢋꢂꢃꢁ@
20ꢂꢆꢊꢊꢉ
Figure 3-11. HADDPS—Packed Single-FP Horizontal Add
HADDPS—Packed Single-FP Horizontal Add
Vol. 2A 3-439
INSTRUCTION SET REFERENCE, A-M
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
xmm1[31:0] = xmm1[31:0] + xmm1[63:32];
xmm1[63:32] = xmm1[95:64] + xmm1[127:96];
xmm1[95:64] = xmm2/m128[31:0] + xmm2/m128[63:32];
xmm1[127:96] = xmm2/m128[95:64] + xmm2/m128[127:96];
Intel C/C++Compiler Intrinsic Equivalent
HADDPS
__m128 _mm_hadd_ps(__m128 a, __m128 b)
Exceptions
When the source operand is a memory operand, the operand must be aligned on a
16-byte boundary or a general-protection exception (#GP) will be generated.
Numeric Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#SS(0)
For an illegal address in the SS segment.
For a page fault.
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
#XM
For an unmasked Streaming SIMD Extensions numeric excep-
tion (CR4.OSXMMEXCPT[bit 10] = 1).
#UD
If CR0.EM[bit 2] = 1.
For an unmasked Streaming SIMD Extensions numeric excep-
tion (CR4.OSXMMEXCPT[bit 10] = 0).
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.
3-440 Vol. 2A
HADDPS—Packed Single-FP Horizontal Add
INSTRUCTION SET REFERENCE, A-M
Real Address Mode Exceptions
GP(0)
If any part of the operand would lie outside of the effective
address space from 0 to 0FFFFH.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#NM
#XM
If CR0.TS[bit 3] = 1.
For an unmasked Streaming SIMD Extensions numeric excep-
tion (CR4.OSXMMEXCPT[bit 10] = 1).
#UD
If CR0.EM[bit 2] = 1.
For an unmasked Streaming SIMD Extensions numeric excep-
tion (CR4.OSXMMEXCPT[bit 10] = 0).
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.
Virtual 8086 Mode Exceptions
GP(0)
If any part of the operand would lie outside of the effective
address space from 0 to 0FFFFH.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#NM
#XM
If CR0.TS[bit 3] = 1.
For an unmasked Streaming SIMD Extensions numeric excep-
tion (CR4.OSXMMEXCPT[bit 10] = 1).
#UD
If CR0.EM[bit 2] = 1.
For an unmasked Streaming SIMD Extensions numeric excep-
tion (CR4.OSXMMEXCPT[bit 10] = 0).
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.
For a page fault.
#PF(fault-code)
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If memory operand is not aligned on a 16-byte boundary,
regardless of segment.
HADDPS—Packed Single-FP Horizontal Add
Vol. 2A 3-441
INSTRUCTION SET REFERENCE, A-M
#PF(fault-code)
#NM
For a page fault.
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID feature flag SSE3 is 0.
If the LOCK prefix is used.
3-442 Vol. 2A
HADDPS—Packed Single-FP Horizontal Add
INSTRUCTION SET REFERENCE, A-M
HLT—Halt
Opcode
Instruction
64-Bit
Mode
Compat/
Description
Halt
Leg Mode
F4
HLT
Valid
Valid
Description
Stops instruction execution and places the processor in a HALT state. An enabled
interrupt (including NMI and SMI), a debug exception, the BINIT# signal, the INIT#
signal, or the RESET# signal will resume execution. If an interrupt (including NMI) is
used to resume execution after a HLT instruction, the saved instruction pointer
(CS:EIP) points to the instruction following the HLT instruction.
When a HLT instruction is executed on an Intel 64 or IA-32 processor supporting
Hyper-Threading Technology, only the logical processor that executes the instruction
is halted. The other logical processors in the physical processor remain active, unless
they are each individually halted by executing a HLT instruction.
The HLT instruction is a privileged instruction. When the processor is running in
protected or virtual-8086 mode, the privilege level of a program or procedure must
be 0 to execute the HLT instruction.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
Operation
Enter Halt state;
Flags Affected
None.
Protected Mode Exceptions
#GP(0)
#UD
If the current privilege level is not 0.
If the LOCK prefix is used.
Real-Address Mode Exceptions
None.
Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.
HLT—Halt
Vol. 2A 3-443
INSTRUCTION SET REFERENCE, A-M
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
Same exceptions as in protected mode.
3-444 Vol. 2A
HLT—Halt
INSTRUCTION SET REFERENCE, A-M
HSUBPD—Packed Double-FP Horizontal Subtract
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
66 0F 7D /r HSUBPD xmm1,
Valid
Valid
Horizontal subtract packed double-
precision floating-point values from
xmm2/m128 to xmm1.
xmm2/m128
Description
The HSUBPD instruction subtracts horizontally the packed DP FP numbers of both
operands.
Subtracts the double-precision floating-point value in the high quadword of the desti-
nation operand from the low quadword of the destination operand and stores the
result in the low quadword of the destination operand.
Subtracts the double-precision floating-point value in the high quadword of the
source operand from the low quadword of the source operand and stores the result in
the high quadword of the destination operand. See Figure 3-12.
+68%3'ꢄ[PPꢂꢍꢄ[PPꢅꢎPꢂꢅꢒ
[PPꢅ
>ꢂꢅꢌꢃꢐꢉ@
>ꢂꢅꢌꢃꢐꢉ@
>ꢐꢋꢃꢁ@
ꢎPꢂꢅꢒ
>ꢐꢋꢃꢁ@
[PPꢂ
[PPꢅꢎPꢂꢅꢒ>ꢐꢋꢃꢁ@ꢄꢏ
[PPꢅꢎPꢂꢅꢒ>ꢂꢅꢌꢃꢐꢉ@
5HVXOWꢃ
[PPꢂ
[PPꢂ>ꢐꢋꢃꢁ@ꢄꢏꢄ[PPꢂ>ꢂꢅꢌꢃꢐꢉ@
>ꢐꢋꢃꢁ@
>ꢂꢅꢌꢃꢐꢉ@
20ꢂꢆꢊꢊꢆ
Figure 3-12. HSUBPD—Packed Double-FP Horizontal Subtract
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
HSUBPD—Packed Double-FP Horizontal Subtract
Vol. 2A 3-445
INSTRUCTION SET REFERENCE, A-M
Operation
xmm1[63:0] = xmm1[63:0] −xmm1[127:64];
xmm1[127:64] = xmm2/m128[63:0] −xmm2/m128[127:64];
Intel C/C++Compiler Intrinsic Equivalent
HSUBPD
__m128d _mm_hsub_pd(__m128d a, __m128d b)
Exceptions
When the source operand is a memory operand, the operand must be aligned on a
16-byte boundary or a general-protection exception (#GP) will be generated.
Numeric Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#SS(0)
For an illegal address in the SS segment.
For a page fault.
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
#XM
For an unmasked Streaming SIMD Extensions numeric excep-
tion (CR4.OSXMMEXCPT[bit 10] = 1).
#UD
If CR0.EM[bit 2] = 1.
For an unmasked Streaming SIMD Extensions numeric excep-
tion (CR4.OSXMMEXCPT[bit 10] = 0).
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.
Real Address Mode Exceptions
GP(0)
If any part of the operand would lie outside of the effective
address space from 0 to 0FFFFH.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#NM
#XM
If CR0.TS[bit 3] = 1.
For an unmasked Streaming SIMD Extensions numeric excep-
tion (CR4.OSXMMEXCPT[bit 10] = 1).
3-446 Vol. 2A
HSUBPD—Packed Double-FP Horizontal Subtract
INSTRUCTION SET REFERENCE, A-M
#UD
If CR0.EM[bit 2] = 1.
For an unmasked Streaming SIMD Extensions numeric excep-
tion (CR4.OSXMMEXCPT[bit 10] = 0).
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.
Virtual 8086 Mode Exceptions
GP(0)
If any part of the operand would lie outside of the effective
address space from 0 to 0FFFFH.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#NM
#XM
If CR0.TS[bit 3] = 1.
For an unmasked Streaming SIMD Extensions numeric excep-
tion (CR4.OSXMMEXCPT[bit 10] = 1).
#UD
If CR0.EM[bit 2] = 1.
For an unmasked Streaming SIMD Extensions numeric excep-
tion (CR4.OSXMMEXCPT[bit 10] = 0).
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.
For a page fault.
#PF(fault-code)
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#PF(fault-code)
#NM
For a page fault.
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
HSUBPD—Packed Double-FP Horizontal Subtract
Vol. 2A 3-447
INSTRUCTION SET REFERENCE, A-M
If CPUID feature flag SSE3 is 0.
If the LOCK prefix is used.
3-448 Vol. 2A
HSUBPD—Packed Double-FP Horizontal Subtract
INSTRUCTION SET REFERENCE, A-M
HSUBPS—Packed Single-FP Horizontal Subtract
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
F2 0F 7D /r
HSUBPS xmm1,
xmm2/m128
Valid
Valid
Horizontal subtract packed single-
precision floating-point values from
xmm2/m128 to xmm1.
Description
Subtracts the single-precision floating-point value in the second dword of the desti-
nation operand from the first dword of the destination operand and stores the result
in the first dword of the destination operand.
Subtracts the single-precision floating-point value in the fourth dword of the destina-
tion operand from the third dword of the destination operand and stores the result in
the second dword of the destination operand.
operand from the first dword of the source operand and stores the result in the third
dword of the destination operand.
Subtracts the single-precision floating-point value in the fourth dword of the source
operand from the third dword of the source operand and stores the result in the
fourth dword of the destination operand.
See Figure 3-13.
HSUBPS—Packed Single-FP Horizontal Subtract
Vol. 2A 3-449
INSTRUCTION SET REFERENCE, A-M
+68%36ꢄ[PPꢂꢍꢄ[PPꢅꢎPꢂꢅꢒ
[PPꢅꢎ
Pꢂꢅꢒ
>ꢂꢅꢌꢃꢊꢐ@
>ꢂꢅꢌꢃꢊꢐ@
>ꢊꢆꢃꢐꢉ@
>ꢐꢋꢃꢋꢅ@
>ꢋꢂꢃꢁ@
>ꢋꢂꢃꢁ@
>ꢊꢆꢃꢐꢉ@
>ꢐꢋꢃꢋꢅ@
[PPꢂ
[PPꢅꢎPꢂꢅꢒ
>ꢊꢆꢃꢐꢉ@ꢄꢏꢄ[PPꢅꢎ
Pꢂꢅꢒ>ꢂꢅꢌꢃꢊꢐ@
[PPꢅꢎPꢂꢅꢒ
>ꢋꢂꢃꢁ@ꢄꢏꢄ[PPꢅꢎ
Pꢂꢅꢒ>ꢐꢋꢃꢋꢅ@
5(68/7ꢃ
[PPꢂ
[PPꢂ>ꢊꢆꢃꢐꢉ@ꢄꢏꢄ
[PPꢂ>ꢂꢅꢌꢃꢊꢐ@
[PPꢂ>ꢋꢂꢃꢁ@ꢄꢏꢄ
[PPꢂ>ꢐꢋꢃꢋꢅ@
>ꢂꢅꢌꢃꢊꢐ@
>ꢊꢆꢃꢐꢉ@
>ꢐꢋꢃꢋꢅ@
>ꢋꢂꢃꢁ@
20ꢂꢆꢊꢊꢐ
Figure 3-13. HSUBPS—Packed Single-FP Horizontal Subtract
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
xmm1[31:0] = xmm1[31:0] −xmm1[63:32];
xmm1[63:32] = xmm1[95:64] −xmm1[127:96];
xmm1[95:64] = xmm2/m128[31:0] −xmm2/m128[63:32];
xmm1[127:96] = xmm2/m128[95:64] −xmm2/m128[127:96];
Intel C/C++Compiler Intrinsic Equivalent
HSUBPS __m128 _mm_hsub_ps(__m128 a, __m128 b)
Exceptions
When the source operand is a memory operand, the operand must be aligned on a
16-byte boundary or a general-protection exception (#GP) will be generated.
3-450 Vol. 2A
HSUBPS—Packed Single-FP Horizontal Subtract
INSTRUCTION SET REFERENCE, A-M
Numeric Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#SS(0)
For an illegal address in the SS segment.
For a page fault.
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
#XM
For an unmasked Streaming SIMD Extensions numeric excep-
tion (CR4.OSXMMEXCPT[bit 10] = 1).
#UD
If CR0.EM[bit 2] = 1.
For an unmasked Streaming SIMD Extensions numeric excep-
tion (CR4.OSXMMEXCPT[bit 10] = 0).
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.
Real Address Mode Exceptions
GP(0)
If any part of the operand would lie outside of the effective
address space from 0 to 0FFFFH.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#NM
#XM
If CR0.TS[bit 3] = 1.
For an unmasked Streaming SIMD Extensions numeric excep-
tion (CR4.OSXMMEXCPT[bit 10] = 1).
#UD
If CR0.EM[bit 2] = 1.
For an unmasked Streaming SIMD Extensions numeric excep-
tion (CR4.OSXMMEXCPT[bit 10] = 0).
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.
Virtual 8086 Mode Exceptions
GP(0) If any part of the operand would lie outside of the effective
address space from 0 to 0FFFFH.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
HSUBPS—Packed Single-FP Horizontal Subtract
Vol. 2A 3-451
INSTRUCTION SET REFERENCE, A-M
#NM
#XM
If CR0.TS[bit 3] = 1.
For an unmasked Streaming SIMD Extensions numeric excep-
tion (CR4.OSXMMEXCPT[bit 10] = 1).
#UD
If CR0.EM[bit 2] = 1.
For an unmasked Streaming SIMD Extensions numeric excep-
tion (CR4.OSXMMEXCPT[bit 10] = 0).
If CR4.OSFXSR[bit 9] = 0.
If the LOCK prefix is used.
If CPUID.01H:ECX.SSE3[bit 0] = 0.
For a page fault.
#PF(fault-code)
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#PF(fault-code)
#NM
For a page fault.
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.
3-452 Vol. 2A
HSUBPS—Packed Single-FP Horizontal Subtract
INSTRUCTION SET REFERENCE, A-M
IDIV—Signed Divide
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
F6 /7
IDIV r/m8
Valid
Valid
Valid
Valid
Valid
Valid
Signed divide AX by r/m8, with result
stored in: AL ←Quotient, AH ←
Remainder.
REX + F6 /7
F7 /7
IDIV r/m8*
IDIV r/m16
IDIV r/m32
N.E.
Signed divide AX by r/m8, with result
stored in AL ←Quotient, AH ←
Remainder.
Valid
Valid
N.E.
Signed divide DX:AX by r/m16, with
result stored in AX ←Quotient, DX ←
Remainder.
F7 /7
Signed divide EDX:EAX by r/m32, with
result stored in EAX ←Quotient, EDX ←
Remainder.
REX.W + F7 /7 IDIV r/m64
Signed divide RDX:RAX by r/m64, with
result stored in RAX ←Quotient, RDX ←
Remainder.
NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.
Description
Divides the (signed) value in the AX, DX:AX, or EDX:EAX (dividend) by the source
operand (divisor) and stores the result in the AX (AH:AL), DX:AX, or EDX:EAX regis-
ters. The source operand can be a general-purpose register or a memory location.
The action of this instruction depends on the operand size (dividend/divisor).
Non-integral results are truncated (chopped) towards 0. The remainder is always less
than the divisor in magnitude. Overflow is indicated with the #DE (divide error)
exception rather than with the CF flag.
prefix permits access to additional registers (R8-R15). Use of the REX.W prefix
promotes operation to 64 bits. In 64-bit mode when REX.W is applied, the instruction
divides the signed value in RDX:RAX by the source operand. RAX contains a 64-bit
quotient; RDX contains a 64-bit remainder.
See the summary chart at the beginning of this section for encoding data and limits.
See Table 3-55.
IDIV—Signed Divide
Vol. 2A 3-453
INSTRUCTION SET REFERENCE, A-M
Table 3-55. IDIV Results
Operand Size
Word/byte
Doubleword/word
Dividend
Divisor
r/m8
Quotient Remainder
Quotient Range
−128 to +127
AX
AL
AH
DX:AX
r/m16
r/m32
r/m64
AX
DX
−32,768 to +32,767
−231 to 232 −1
−263 to 264 −1
Quadword/doubleword EDX:EAX
EAX
RAX
EDX
RDX
Doublequadword/
quadword
RDX:RAX
Operation
IF SRC = 0
THEN #DE; (* Divide error *)
FI;
IF OperandSize = 8 (* Word/byte operation *)
THEN
temp ←AX / SRC; (* Signed division *)
IF (temp >7FH) or (temp < 80H)
(* If a positive result is greater than 7FH or a negative result is less than 80H *)
THEN #DE; (* Divide error *)
ELSE
AL ←temp;
AH ←AX SignedModulus SRC;
FI;
ELSE IF OperandSize = 16 (* Doubleword/word operation *)
THEN
temp ←DX:AX / SRC; (* Signed division *)
IF (temp >7FFFH) or (temp < 8000H)
(* If a positive result is greater than 7FFFH
or a negative result is less than 8000H *)
THEN
#DE; (* Divide error *)
ELSE
AX ←temp;
DX ←DX:AX SignedModulus SRC;
FI;
FI;
ELSE IF OperandSize = 32 (* Quadword/doubleword operation *)
temp ←EDX:EAX / SRC; (* Signed division *)
IF (temp >7FFFFFFFH) or (temp < 80000000H)
(* If a positive result is greater than 7FFFFFFFH
or a negative result is less than 80000000H *)
3-454 Vol. 2A
IDIV—Signed Divide
INSTRUCTION SET REFERENCE, A-M
THEN
#DE; (* Divide error *)
ELSE
EAX ←temp;
EDX ←EDXE:AX SignedModulus SRC;
FI;
FI;
ELSE IF OperandSize = 64 (* Doublequadword/quadword operation *)
temp ←RDX:RAX / SRC; (* Signed division *)
IF (temp >7FFFFFFFFFFFH) or (temp < 8000000000000000H)
(* If a positive result is greater than 7FFFFFFFFFFFH
or a negative result is less than 8000000000000000H *)
THEN
#DE; (* Divide error *)
ELSE
RAX ←temp;
RDX ←RDE:RAX SignedModulus SRC;
FI;
FI;
FI;
Flags Affected
The CF, OF, SF, ZF, AF, and PF flags are undefined.
Protected Mode Exceptions
#DE
If the source operand (divisor) is 0.
The signed result (quotient) is too large for the destination.
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
Real-Address Mode Exceptions
#DE
If the source operand (divisor) is 0.
The signed result (quotient) is too large for the destination.
IDIV—Signed Divide
Vol. 2A 3-455
INSTRUCTION SET REFERENCE, A-M
#GP
#SS
#UD
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If a memory operand effective address is outside the SS
segment limit.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
#DE
If the source operand (divisor) is 0.
The signed result (quotient) is too large for the destination.
#GP(0)
#SS(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made.
#UD
If the LOCK prefix is used.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#DE
If the memory address is in a non-canonical form.
If the source operand (divisor) is 0
If the quotient is too large for the designated register.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
3-456 Vol. 2A
IDIV—Signed Divide
INSTRUCTION SET REFERENCE, A-M
IMUL—Signed Multiply
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
F6 /5
IMUL r/m8*
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
N.E.
AX←AL ∗ r/m byte.
F7 /5
IMUL r/m16
IMUL r/m32
IMUL r/m64
IMUL r16, r/m16
DX:AX ←AX ∗ r/m word.
EDX:EAX ←EAX ∗ r/m32.
RDX:RAX ←RAX ∗ r/m64.
F7 /5
REX.W + F7 /5
0F AF /r
Valid
word register ←word register ∗
r/m16.
0F AF /r
IMUL r32, r/m32
Valid
Valid
Valid
N.E.
doubleword register ←
doubleword register ∗ r/m32.
REX.W + 0F AF /r IMUL r64, r/m64
Quadword register ←Quadword
register ∗ r/m64.
6B /r ib
IMUL r16, r/m16, Valid
imm8
Valid
Valid
N.E.
word register ←r/m16 ∗ sign-
extended immediate byte.
6B /r ib
IMUL r32, r/m32, Valid
imm8
doubleword register ←r/m32 ∗
sign-extended immediate byte.
REX.W + 6B /r ib IMUL r64, r/m64, Valid
Quadword register ←r/m64 ∗
sign-extended immediate byte.
imm8
6B /r ib
IMUL r16, imm8
Valid
Valid
Valid
Valid
word register ←word register ∗
sign-extended immediate byte.
6B /r ib
IMUL r32, imm8
doubleword register ←
doubleword register ∗ sign-
extended immediate byte.
REX.W + 6B /r ib IMUL r64, imm8
Valid
N.E.
Quadword register ←Quadword
register ∗ sign-extended
immediate byte.
69 /r iw
IMUL r16, r/m16, Valid
imm16
Valid
Valid
N.E.
word register ←r/m16 ∗
immediate word.
69 /r id
IMUL r32, r/m32, Valid
imm32
doubleword register ←r/m32 ∗
immediate doubleword.
REX.W + 69 /r id
69 /r iw
IMUL r64, r/m64, Valid
imm32
Quadword register ←r/m64 ∗
immediate doubleword.
IMUL r16, imm16 Valid
Valid
word register ←r/m16 ∗
immediate word.
IMUL—Signed Multiply
Vol. 2A 3-457
INSTRUCTION SET REFERENCE, A-M
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
69 /r id
IMUL r32, imm32 Valid
Valid
N.E.
doubleword register ←r/m32 ∗
immediate doubleword.
REX.W + 69 /r id IMUL r64, imm32 Valid
Quadword register ←r/m64 ∗
immediate doubleword.
NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.
Description
Performs a signed multiplication of two operands. This instruction has three forms,
depending on the number of operands.
• One-operand form — This form is identical to that used by the MUL instruction.
Here, the source operand (in a general-purpose register or memory location) is
multiplied by the value in the AL, AX, EAX, or RAX register (depending on the
operand size) and the product is stored in the AX, DX:AX, EDX:EAX, or RDX:RAX
registers, respectively.
• Two-operand form — With this form the destination operand (the first
operand) is multiplied by the source operand (second operand). The destination
operand is a general-purpose register and the source operand is an immediate
value, a general-purpose register, or a memory location. The product is then
stored in the destination operand location.
• Three-operand form — This form requires a destination operand (the first
operand) and two source operands (the second and the third operands). Here,
the first source operand (which can be a general-purpose register or a memory
location) is multiplied by the second source operand (an immediate value). The
product is then stored in the destination operand (a general-purpose register).
When an immediate value is used as an operand, it is sign-extended to the length of
the destination operand format.
The CF and OF flags are set when significant bit (including the sign bit) are carried
into the upper half of the result. The CF and OF flags are cleared when the result
(including the sign bit) fits exactly in the lower half of the result.
The three forms of the IMUL instruction are similar in that the length of the product
is calculated to twice the length of the operands. With the one-operand form, the
product is stored exactly in the destination. With the two- and three- operand forms,
however, the result is truncated to the length of the destination before it is stored in
the destination register. Because of this truncation, the CF or OF flag should be tested
to ensure that no significant bits are lost.
The two- and three-operand forms may also be used with unsigned operands
because the lower half of the product is the same regardless if the operands are
3-458 Vol. 2A
IMUL—Signed Multiply
INSTRUCTION SET REFERENCE, A-M
signed or unsigned. The CF and OF flags, however, cannot be used to determine if the
upper half of the result is non-zero.
In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R
prefix permits access to additional registers (R8-R15). Use of the REX.W prefix
promotes operation to 64 bits. Use of REX.W modifies the three forms of the instruc-
tion as follows.
• One-operand form —The source operand (in a 64-bit general-purpose register or
memory location) is multiplied by the value in the RAX register and the product is
stored in the RDX:RAX registers.
• Two-operand form — The source operand is promoted to 64 bits if it is a
register or a memory location. If the source operand is an immediate, it is sign
extended to 64 bits. The destination operand is promoted to 64 bits.
• Three-operand form — The first source operand (either a register or a memory
location) and destination operand are promoted to 64 bits.
Operation
IF (NumberOfOperands = 1)
THEN IF (OperandSize = 8)
THEN
AX ←AL ∗ SRC (* Signed multiplication *)
IF AL = AX
THEN CF ←0; OF ←0;
ELSE CF ←1; OF ←1; FI;
ELSE IF OperandSize = 16
THEN
DX:AX ←AX ∗ SRC (* Signed multiplication *)
IF sign_extend_to_32 (AX) = DX:AX
THEN CF ←0; OF ←0;
ELSE CF ←1; OF ←1; FI;
ELSE IF OperandSize = 32
THEN
EDX:EAX ←EAX ∗ SRC (* Signed multiplication *)
IF EAX = EDX:EAX
THEN CF ←0; OF ←0;
ELSE CF ←1; OF ←1; FI;
ELSE (* OperandSize = 64 *)
RDX:RAX ←RAX ∗ SRC (* Signed multiplication *)
IF RAX = RDX:RAX
THEN CF ←0; OF ←0;
ELSE CF ←1; OF ←1; FI;
FI;
FI;
IMUL—Signed Multiply
Vol. 2A 3-459
INSTRUCTION SET REFERENCE, A-M
ELSE IF (NumberOfOperands = 2)
THEN
temp ←DEST ∗ SRC (* Signed multiplication; temp is double DEST size *)
DEST ←DEST ∗ SRC (* Signed multiplication *)
IF temp ≠ DEST
THEN CF ←1; OF ←1;
ELSE CF ←0; OF ←0; FI;
ELSE (* NumberOfOperands = 3 *)
DEST ←SRC1 ∗ SRC2 (* Signed multiplication *)
temp ←SRC1 ∗ SRC2 (* Signed multiplication; temp is double SRC1 size *)
IF temp ≠ DEST
THEN CF ←1; OF ←1;
ELSE CF ←0; OF ←0; FI;
FI;
FI;
Flags Affected
For the one operand form of the instruction, the CF and OF flags are set when signif-
icant bits are carried into the upper half of the result and cleared when the result fits
exactly in the lower half of the result. For the two- and three-operand forms of the
instruction, the CF and OF flags are set when the result must be truncated to fit in the
destination operand size and cleared when the result fits exactly in the destination
operand size. The SF, ZF, AF, and PF flags are undefined.
Protected Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL NULL segment selector.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
3-460 Vol. 2A
IMUL—Signed Multiply
INSTRUCTION SET REFERENCE, A-M
#SS
#UD
If a memory operand effective address is outside the SS
segment limit.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made.
#UD
If the LOCK prefix is used.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
IMUL—Signed Multiply
Vol. 2A 3-461
INSTRUCTION SET REFERENCE, A-M
IN—Input from Port
Opcode
Instruction
IN AL, imm8
IN AX, imm8
64-Bit
Mode
Compat/
Description
Leg Mode
E4 ib
Valid
Valid
Valid
Valid
Input byte from imm8 I/O port address into
AL.
E5 ib
Valid
Input word from imm8 I/O port address into
AX.
E5 ib
IN EAX, imm8 Valid
Input dword from imm8 I/O port address into
EAX.
EC
ED
ED
IN AL,DX
IN AX,DX
IN EAX,DX
Valid
Valid
Valid
Valid
Valid
Valid
Input byte from I/O port in DX into AL.
Input word from I/O port in DX into AX.
Input doubleword from I/O port in DX into
EAX.
Description
Copies the value from the I/O port specified with the second operand (source
operand) to the destination operand (first operand). The source operand can be a
byte-immediate or the DX register; the destination operand can be register AL, AX,
or EAX, depending on the size of the port being accessed (8, 16, or 32 bits, respec-
tively). Using the DX register as a source operand allows I/O port addresses from 0
to 65,535 to be accessed; using a byte immediate allows I/O port addresses 0 to 255
to be accessed.
When accessing an 8-bit I/O port, the opcode determines the port size; when
accessing a 16- and 32-bit I/O port, the operand-size attribute determines the port
size. At the machine code level, I/O instructions are shorter when accessing 8-bit I/O
ports. Here, the upper eight bits of the port address will be 0.
This instruction is only useful for accessing I/O ports located in the processor’s I/O
address space. See Chapter 13, “Input/Output,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 1, for more information on accessing I/O
ports in the I/O address space.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
Operation
IF ((PE = 1) and ((CPL >IOPL) or (VM = 1)))
THEN (* Protected mode with CPL >IOPL or virtual-8086 mode *)
IF (Any I/O Permission Bit for I/O port being accessed = 1)
THEN (* I/O operation is not allowed *)
#GP(0);
ELSE ( * I/O operation is allowed *)
3-462 Vol. 2A
IN—Input from Port
INSTRUCTION SET REFERENCE, A-M
DEST ←SRC; (* Read from selected I/O port *)
FI;
ELSE (Real Mode or Protected Mode with CPL ≤IOPL *)
DEST ←SRC; (* Read from selected I/O port *)
FI;
Flags Affected
None.
Protected Mode Exceptions
#GP(0)
If the CPL is greater than (has less privilege) the I/O privilege
level (IOPL) and any of the corresponding I/O permission bits in
TSS for the I/O port being accessed is 1.
#UD
If the LOCK prefix is used.
Real-Address Mode Exceptions
#UD
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
#GP(0)
If any of the I/O permission bits in the TSS for the I/O port being
accessed is 1.
#PF(fault-code)
#UD
If a page fault occurs.
If the LOCK prefix is used.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#GP(0)
If the CPL is greater than (has less privilege) the I/O privilege
level (IOPL) and any of the corresponding I/O permission bits in
TSS for the I/O port being accessed is 1.
#UD
If the LOCK prefix is used.
IN—Input from Port
Vol. 2A 3-463
INSTRUCTION SET REFERENCE, A-M
INC—Increment by 1
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
FE /0
INC r/m8
Valid
Valid
Valid
Valid
Valid
N.E.
Valid
N.E.
Increment r/m byte by 1.
*
REX + FE /0
FF /0
INC r/m8
Increment r/m byte by 1.
INC r/m16
Valid
Valid
N.E.
Increment r/m word by 1.
FF /0
INC r/m32
Increment r/m doubleword by 1.
Increment r/m quadword by 1.
Increment word register by 1.
Increment doubleword register by 1.
REX.W + FF /0 INC r/m64
**
40+ rw
40+ rd
NOTES:
INC r16
Valid
Valid
INC r32
N.E.
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.
** 40H through 47H are REX prefixes in 64-bit mode.
Description
Adds 1 to the destination operand, while preserving the state of the CF flag. The
destination operand can be a register or a memory location. This instruction allows a
loop counter to be updated without disturbing the CF flag. (Use a ADD instruction
with an immediate operand of 1 to perform an increment operation that does updates
the CF flag.)
This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.
In 64-bit mode, INC r16 and INC r32 are not encodable (because opcodes 40H
through 47H are REX prefixes). Otherwise, the instruction’s 64-bit mode default
operation size is 32 bits. Use of the REX.R prefix permits access to additional regis-
ters (R8-R15). Use of the REX.W prefix promotes operation to 64 bits.
Operation
DEST ←DEST +1;
AFlags Affected
The CF flag is not affected. The OF, SF, ZF, AF, and PF flags are set according to the
result.
3-464 Vol. 2A
INC—Increment by 1
INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#GP(0)
If the destination operand is located in a non-writable segment.
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULLsegment selector.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used but the destination is not a memory
operand.
Real-Address Mode Exceptions
#GP
#SS
#UD
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If a memory operand effective address is outside the SS
segment limit.
If the LOCK prefix is used but the destination is not a memory
operand.
Virtual-8086 Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made.
#UD
If the LOCK prefix is used but the destination is not a memory
operand.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If a page fault occurs.
#PF(fault-code)
INC—Increment by 1
Vol. 2A 3-465
INSTRUCTION SET REFERENCE, A-M
#AC(0)
#UD
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
If the LOCK prefix is used but the destination is not a memory
operand.
3-466 Vol. 2A
INC—Increment by 1
INSTRUCTION SET REFERENCE, A-M
INS/INSB/INSW/INSD—Input from Port to String
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
6C
INS m8, DX
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Input byte from I/O port specified in DX
into memory location specified in ES:(E)DI
or RDI.*
6D
INS m16, DX
INS m32, DX
INSB
Input word from I/O port specified in DX
into memory location specified in ES:(E)DI
1
or RDI.
6D
Input doubleword from I/O port specified
in DX into memory location specified in
1
ES:(E)DI or RDI.
6C
Input byte from I/O port specified in DX
into memory location specified with
1
ES:(E)DI or RDI.
6D
INSW
Input word from I/O port specified in DX
into memory location specified in ES:(E)DI
1
or RDI.
6D
INSD
Input doubleword from I/O port specified
in DX into memory location specified in
1
ES:(E)DI or RDI.
NOTES:
* In 64-bit mode, only 64-bit (RDI) and 32-bit (EDI) address sizes are supported. In non-64-bit
mode, only 32-bit (EDI) and 16-bit (DI) address sizes are supported.
Description
Copies the data from the I/O port specified with the source operand (second
operand) to the destination operand (first operand). The source operand is an I/O
port address (from 0 to 65,535) that is read from the DX register. The destination
operand is a memory location, the address of which is read from either the ES:DI,
ES:EDI or the RDI registers (depending on the address-size attribute of the instruc-
tion, 16, 32 or 64, respectively). (The ES segment cannot be overridden with a
segment override prefix.) The size of the I/O port being accessed (that is, the size of
the source and destination operands) is determined by the opcode for an 8-bit I/O
port or by the operand-size attribute of the instruction for a 16- or 32-bit I/O port.
At the assembly-code level, two forms of this instruction are allowed: the “explicit-
operands” form and the “no-operands” form. The explicit-operands form (specified
with the INS mnemonic) allows the source and destination operands to be specified
explicitly. Here, the source operand must be “DX,” and the destination operand
should be a symbol that indicates the size of the I/O port and the destination
address. This explicit-operands form is provided to allow documentation; however,
note that the documentation provided by this form can be misleading. That is, the
INS/INSB/INSW/INSD—Input from Port to String
Vol. 2A 3-467
INSTRUCTION SET REFERENCE, A-M
destination operand symbol must specify the correct type (size) of the operand
(byte, word, or doubleword), but it does not have to specify the correct location.
The location is always specified by the ES:(E)DI registers, which must be loaded
correctly before the INS instruction is executed.
The no-operands form provides “short forms” of the byte, word, and doubleword
versions of the INS instructions. Here also DX is assumed by the processor to be the
source operand and ES:(E)DI is assumed to be the destination operand. The size of
the I/O port is specified with the choice of mnemonic: INSB (byte), INSW (word), or
INSD (doubleword).
After the byte, word, or doubleword is transfer from the I/O port to the memory loca-
tion, the DI/EDI/RDI register is incremented or decremented automatically according
to the setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the (E)DI
register is incremented; if the DF flag is 1, the (E)DI register is decremented.) The
(E)DI register is incremented or decremented by 1 for byte operations, by 2 for word
operations, or by 4 for doubleword operations.
The INS, INSB, INSW, and INSD instructions can be preceded by the REP prefix for
block input of ECX bytes, words, or doublewords. See
“REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix” in Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 2B, for a description of the
REP prefix.
These instructions are only useful for accessing I/O ports located in the processor’s
I/O address space. See Chapter 13, “Input/Output,” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1, for more information on
accessing I/O ports in the I/O address space.
In 64-bit mode, default address size is 64 bits, 32 bit address size is supported using
the prefix 67H. The address of the memory destination is specified by RDI or EDI.
16-bit address size is not supported in 64-bit mode. The operand size is not
promoted.
Operation
IF ((PE = 1) and ((CPL > IOPL) or (VM = 1)))
THEN (* Protected mode with CPL > IOPL or virtual-8086 mode *)
IF (Any I/O Permission Bit for I/O port being accessed = 1)
THEN (* I/O operation is not allowed *)
#GP(0);
ELSE (* I/O operation is allowed *)
DEST ←SRC; (* Read from I/O port *)
FI;
ELSE (Real Mode or Protected Mode with CPL IOPL *)
DEST ←SRC; (* Read from I/O port *)
FI;
Non-64-bit Mode:
3-468 Vol. 2A
INS/INSB/INSW/INSD—Input from Port to String
INSTRUCTION SET REFERENCE, A-M
IF (Byte transfer)
THEN IF DF = 0
THEN (E)DI ←(E)DI +1;
ELSE (E)DI ←(E)DI – 1; FI;
ELSE IF (Word transfer)
THEN IF DF = 0
THEN (E)DI ←(E)DI +2;
ELSE (E)DI ←(E)DI – 2; FI;
ELSE (* Doubleword transfer *)
THEN IF DF = 0
THEN (E)DI ←(E)DI +4;
ELSE (E)DI ←(E)DI – 4; FI;
FI;
FI;
FI64-bit Mode:
IF (Byte transfer)
THEN IF DF = 0
THEN (E|R)DI ←(E|R)DI +1;
ELSE (E|R)DI ←(E|R)DI – 1; FI;
ELSE IF (Word transfer)
THEN IF DF = 0
THEN (E)DI ←(E)DI +2;
ELSE (E)DI ←(E)DI – 2; FI;
ELSE (* Doubleword transfer *)
THEN IF DF = 0
THEN (E|R)DI ←(E|R)DI +4;
ELSE (E|R)DI ←(E|R)DI – 4; FI;
FI;
FI;
Flags Affected
None.
Protected Mode Exceptions
#GP(0)
If the CPL is greater than (has less privilege) the I/O privilege
level (IOPL) and any of the corresponding I/O permission bits in
TSS for the I/O port being accessed is 1.
If the destination is located in a non-writable segment.
If an illegal memory operand effective address in the ES
segments is given.
#PF(fault-code)
If a page fault occurs.
INS/INSB/INSW/INSD—Input from Port to String
Vol. 2A 3-469
INSTRUCTION SET REFERENCE, A-M
#AC(0)
#UD
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP
#SS
#UD
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If a memory operand effective address is outside the SS
segment limit.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
#GP(0)
If any of the I/O permission bits in the TSS for the I/O port being
accessed is 1.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made.
#UD
If the LOCK prefix is used.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the CPL is greater than (has less privilege) the I/O privilege
level (IOPL) and any of the corresponding I/O permission bits in
TSS for the I/O port being accessed is 1.
If the memory address is in a non-canonical form.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
3-470 Vol. 2A
INS/INSB/INSW/INSD—Input from Port to String
INSTRUCTION SET REFERENCE, A-M
INT n/INTO/INT 3—Call to Interrupt Procedure
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
CC
INT 3
Valid
Valid
Valid
Valid
Interrupt 3—trap to debugger.
CD ib
INT imm8
Interrupt vector number specified by
immediate byte.
CE
INTO
Invalid
Valid
Interrupt 4—if overflow flag is 1.
Description
The INT n instruction generates a call to the interrupt or exception handler specified
with the destination operand (see the section titled “Interrupts and Exceptions” in
Chapter 6 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1). The destination operand specifies an interrupt vector number from 0 to
255, encoded as an 8-bit unsigned intermediate value. Each interrupt vector number
provides an index to a gate descriptor in the IDT. The first 32 interrupt vector
numbers are reserved by Intel for system use. Some of these interrupts are used for
internally generated exceptions.
The INT n instruction is the general mnemonic for executing a software-generated
call to an interrupt handler. The INTO instruction is a special mnemonic for calling
overflow exception (#OF), interrupt vector number 4. The overflow interrupt checks
the OF flag in the EFLAGS register and calls the overflow interrupt handler if the OF
flag is set to 1.
The INT 3 instruction generates a special one byte opcode (CC) that is intended for
calling the debug exception handler. (This one byte form is valuable because it can be
used to replace the first byte of any instruction with a breakpoint, including other one
byte instructions, without over-writing other code). To further support its function as
a debug breakpoint, the interrupt generated with the CC opcode also differs from the
regular software interrupts as follows:
• Interrupt redirection does not happen when in VME mode; the interrupt is
handled by a protected-mode handler.
• The virtual-8086 mode IOPL checks do not occur. The interrupt is taken without
faulting at any IOPL level.
Note that the “normal” 2-byte opcode for INT 3 (CD03) does not have these special
features. Intel and Microsoft assemblers will not generate the CD03 opcode from any
mnemonic, but this opcode can be created by direct numeric code definition or by
self-modifying code.
The action of the INT n instruction (including the INTO and INT 3 instructions) is
similar to that of a far call made with the CALL instruction. The primary difference is
that with the INT n instruction, the EFLAGS register is pushed onto the stack before
the return address. (The return address is a far address consisting of the current
values of the CS and EIP registers.) Returns from interrupt procedures are handled
INT n/INTO/INT 3—Call to Interrupt Procedure
Vol. 2A 3-471
INSTRUCTION SET REFERENCE, A-M
with the IRET instruction, which pops the EFLAGS information and return address
from the stack.
The interrupt vector number specifies an interrupt descriptor in the interrupt
descriptor table (IDT); that is, it provides index into the IDT. The selected interrupt
descriptor in turn contains a pointer to an interrupt or exception handler procedure.
In protected mode, the IDT contains an array of 8-byte descriptors, each of which
is an interrupt gate, trap gate, or task gate. In real-address mode, the IDT is an
array of 4-byte far pointers (2-byte code segment selector and a 2-byte instruction
pointer), each of which point directly to a procedure in the selected segment. (Note
that in real-address mode, the IDT is called the interrupt vector table, and its
pointers are called interrupt vectors.)
The following decision table indicates which action in the lower portion of the table is
taken given the conditions in the upper portion of the table. Each Y in the lower
section of the decision table represents a procedure defined in the “Operation”
section for this instruction (except #GP).
Table 3-56. Decision Table
PE
0
–
–
–
1
–
1
–
–
–
1
1
1
0
–
1
1
VM
IOPL
–
–
1
1
–
–
–
<3
–
=3
–
DPL/CPL
DPL<
CPL
DPL>
CPL
DPL=
DPL<
RELATIONSHIP
CPL or C
CPL & NC
INTERRUPT TYPE
GATE TYPE
–
–
S/W
–
–
–
–
–
–
–
Task
Trap or
Trap or
Trap or
Trap or
Trap or
Interrupt
Interrupt
Interrupt
Interrupt
Interrupt
REAL-ADDRESS-
MODE
Y
PROTECTED-MODE
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
TRAP-OR-
INTERRUPT-GATE
INTER-PRIVILEGE-
LEVEL-INTERRUPT
Y
INTRA-PRIVILEGE-
LEVEL-INTERRUPT
Y
INTERRUPT-FROM-
VIRTUAL-8086-MODE
Y
TASK-GATE
#GP
Y
Y
Y
Y
NOTES:
−
Y
Don't Care.
Yes, action taken.
Blank Action not taken.
3-472 Vol. 2A
INT n/INTO/INT 3—Call to Interrupt Procedure
INSTRUCTION SET REFERENCE, A-M
When the processor is executing in virtual-8086 mode, the IOPL determines the
action of the INT n instruction. If the IOPL is less than 3, the processor generates a
#GP(selector) exception; if the IOPL is 3, the processor executes a protected mode
interrupt to privilege level 0. The interrupt gate's DPL must be set to 3 and the target
CPL of the interrupt handler procedure must be 0 to execute the protected mode
interrupt to privilege level 0.
The interrupt descriptor table register (IDTR) specifies the base linear address and
limit of the IDT. The initial base address value of the IDTR after the processor is
powered up or reset is 0.
Operation
The following operational description applies not only to the INT n and INTO instruc-
tions, but also to external interrupts and exceptions.
IF PE = 0
THEN
GOTO REAL-ADDRESS-MODE;
ELSE (* PE = 1 *)
IF (VM = 1 and IOPL < 3 AND INT n)
THEN
#GP(0);
ELSE (* Protected mode, IA-32e mode, or virtual-8086 mode interrupt *)
IF (IA32_EFER.LMA = 0)
THEN (* Protected mode, or virtual-8086 mode interrupt *)
GOTO PROTECTED-MODE;
ELSE (* IA-32e mode interrupt *)
GOTO IA-32e-MODE;
FI;
FI;
FI;
REAL-ADDRESS-MODE:
IF ((vector_number ∗ 4) +3) is not within IDT limit
THEN #GP; FI;
IF stack not large enough for a 6-byte return information
THEN #SS; FI;
Push (EFLAGS[15:0]);
IF ←0; (* Clear interrupt flag *)
TF ←0; (* Clear trap flag *)
AC ←0; (* Clear AC flag *)
Push(CS);
Push(IP);
(* No error codes are pushed *)
INT n/INTO/INT 3—Call to Interrupt Procedure
Vol. 2A 3-473
INSTRUCTION SET REFERENCE, A-M
CS ←IDT(Descriptor (vector_number ∗ 4), selector));
EIP ←IDT(Descriptor (vector_number ∗ 4), offset)); (* 16 bit offset AND 0000FFFFH *)
END;
PROTECTED-MODE:
IF ((vector_number ∗ 8) +7) is not within IDT limits
or selected IDT descriptor is not an interrupt-, trap-, or task-gate type
THEN #GP((vector_number ∗ 8) +2 +EXT); FI;
(* EXT is bit 0 in error code *)
IF software interrupt (* Generated by INT n, INT 3, or INTO *)
THEN
IF gate descriptor DPL < CPL
THEN #GP((vector_number ∗ 8) +2 ); FI;
(* PE = 1, DPL<CPL, software interrupt *)
FI;
IF gate not present
THEN #NP((vector_number ∗ 8) +2 +EXT); FI;
IF task gate (* Specified in the selected interrupt table descriptor *)
THEN GOTO TASK-GATE;
ELSE GOTO TRAP-OR-INTERRUPT-GATE; (* PE = 1, trap/interrupt gate *)
FI;
END;
IA-32e-MODE:
IF ((vector_number ∗ 16) +15) is not in IDT limits
or selected IDT descriptor is not an interrupt-, or trap-gate type
THEN #GP((vector_number ∗ 16) +2 +EXT); FI;
(* EXT is bit 0 in error code *)
IF software interrupt (* Generated by INT n, INT 3, but not INTO *)
THEN
IF gate descriptor DPL < CPL
THEN #GP((vector_number ∗ 16) +2 ); FI;
(* PE = 1, DPL < CPL, software interrupt *)
ELSE (* Generated by INTO *)
THEN #UD;
FI;
IF gate not present
THEN #NP((vector_number ∗ 16) +2 +EXT); FI;
IF ((vector_number * 16)[IST] ≠ 0)
NewRSP ←TSS[ISTx]; FI;
GOTO TRAP-OR-INTERRUPT-GATE; (* Trap/interrupt gate *)
END;
TASK-GATE: (* PE = 1, task gate *)
Read segment selector in task gate (IDT descriptor);
IF local/global bit is set to local
3-474 Vol. 2A
INT n/INTO/INT 3—Call to Interrupt Procedure
INSTRUCTION SET REFERENCE, A-M
or index not within GDT limits
THEN #GP(TSS selector); FI;
Access TSS descriptor in GDT;
IF TSS descriptor specifies that the TSS is busy (low-order 5 bits set to 00001)
THEN #GP(TSS selector); FI;
IF TSS not present
THEN #NP(TSS selector); FI;
SWITCH-TASKS (with nesting) to TSS;
IF interrupt caused by fault with error code
THEN
IF stack limit does not allow push of error code
THEN #SS(0); FI;
Push(error code);
FI;
IF EIP not within code segment limit
THEN #GP(0); FI;
END;
TRAP-OR-INTERRUPT-GATE:
Read segment selector for trap or interrupt gate (IDT descriptor);
IF segment selector for code segment is NULL
THEN #GP(0H +EXT); FI; (* NULL selector with EXT flag set *)
IF segment selector is not within its descriptor table limits
THEN #GP(selector +EXT); FI;
Read trap or interrupt handler descriptor;
IF descriptor does not indicate a code segment
or code segment descriptor DPL >CPL
THEN #GP(selector +EXT); FI;
IF trap or interrupt gate segment is not present,
THEN #NP(selector +EXT); FI;
IF code segment is non-conforming and DPL < CPL
THEN
IF VM = 0
THEN
GOTO INTER-PRIVILEGE-LEVEL-INTERRUPT;
(* PE = 1, interrupt or trap gate, nonconforming
code segment, DPL < CPL, VM = 0 *)
ELSE (* VM = 1 *)
IF code segment DPL ≠ 0
THEN #GP; (new code segment selector);
GOTO INTERRUPT-FROM-VIRTUAL-8086-MODE; FI;
(* PE = 1, interrupt or trap gate, DPL < CPL, VM = 1 *)
FI;
ELSE (* PE = 1, interrupt or trap gate, DPL ≥ CPL *)
INT n/INTO/INT 3—Call to Interrupt Procedure
Vol. 2A 3-475
INSTRUCTION SET REFERENCE, A-M
IF VM = 1
THEN #GP(new code segment selector); FI;
IF code segment is conforming or code segment DPL = CPL
THEN
GOTO INTRA-PRIVILEGE-LEVEL-INTERRUPT;
ELSE
#GP(CodeSegmentSelector +EXT);
(* PE = 1, interrupt or trap gate, nonconforming
code segment, DPL > CPL *)
FI;
FI;
END;
INTER-PRIVILEGE-LEVEL-INTERRUPT:
(* PE = 1, interrupt or trap gate, non-conforming code segment, DPL < CPL *)
(* Check segment selector and descriptor for stack of new privilege level in current TSS *)
IF current TSS is 32-bit TSS
THEN
TSSstackAddress ←(new code segment DPL ∗ 8) +4;
IF (TSSstackAddress +7) >TSS limit
THEN #TS(current TSS selector); FI;
NewSS ←TSSstackAddress +4;
NewESP ←stack address;
ELSE
IF current TSS is 16-bit TSS
THEN(* TSS is 16-bit *)
TSSstackAddress ←(new code segment DPL ∗ 4) +2
IF (TSSstackAddress +4) >TSS limit
THEN #TS(current TSS selector); FI;
NewESP ←TSSstackAddress;
NewSS ←TSSstackAddress +2;
ELSE (* TSS is 64-bit *)
NewESP ←TSS[RSP FOR NEW TARGET DPL];
NewSS ←0;
FI;
FI;
IF segment selector is NULL
THEN #TS(EXT); FI;
IF segment selector index is not within its descriptor table limits
or segment selector's RPL ≠ DPL of code segment,
THEN #TS(SS selector +EXT); FI;
IF (IA32_EFER.LMA = 0) (* Not IA-32e mode *)
Read segment descriptor for stack segment in GDT or LDT;
IF stack segment DPL ≠ DPL of code segment,
3-476 Vol. 2A
INT n/INTO/INT 3—Call to Interrupt Procedure
INSTRUCTION SET REFERENCE, A-M
or stack segment does not indicate writable data segment
THEN #TS(SS selector +EXT); FI;
IF stack segment not present
THEN #SS(SS selector +EXT); FI;
FI
IF 32-bit gate
THEN
IF new stack does not have room for 24 bytes (error code pushed)
or 20 bytes (no error code pushed)
THEN #SS(segment selector +EXT); FI;
FI
ELSE
IF 16-bit gate
THEN
IF new stack does not have room for 12 bytes (error code pushed)
or 10 bytes (no error code pushed);
THEN #SS(segment selector +EXT); FI;
ELSE (* 64-bit gate*)
IF StackAddress is non-canonical
THEN #SS(0);FI;
FI;
FI;
IF (IA32_EFER.LMA = 0) (* Not IA-32e mode *)
THEN
IF instruction pointer is not within code segment limits
THEN #GP(0); FI;
SS:ESP ←TSS(NewSS:NewESP);
(* Segment descriptor information also loaded *)
ELSE
IF instruction pointer points to non-canonical address
THEN #GP(0); FI:
FI;
IF 32-bit gate
THEN
CS:EIP ←Gate(CS:EIP); (* Segment descriptor information also loaded *)
ELSE
IF 16-bit gate
THEN
CS:IP ←Gate(CS:IP);
(* Segment descriptor information also loaded *)
ELSE (* 64-bit gate *)
CS:RIP ←Gate(CS:RIP);
(* Segment descriptor information also loaded *)
FI;
INT n/INTO/INT 3—Call to Interrupt Procedure
Vol. 2A 3-477
INSTRUCTION SET REFERENCE, A-M
FI;
IF 32-bit gate
THEN
Push(far pointer to old stack);
(* Old SS and ESP, 3 words padded to 4 *)
Push(EFLAGS);
Push(far pointer to return instruction);
(* Old CS and EIP, 3 words padded to 4 *)
Push(ErrorCode); (* If needed, 4 bytes *)
ELSE
IF 16-bit gate
THEN
Push(far pointer to old stack);
(* Old SS and SP, 2 words *)
Push(EFLAGS(15-0]);
Push(far pointer to return instruction);
(* Old CS and IP, 2 words *)
Push(ErrorCode); (* If needed, 2 bytes *)
ELSE (* 64-bit gate *)
Push(far pointer to old stack);
(* Old SS and SP, each an 8-byte push *)
Push(RFLAGS); (* 8-byte push *)
Push(far pointer to return instruction);
(* Old CS and RIP, each an 8-byte push *)
Push(ErrorCode); (* If needed, 8-bytes *)
FI;
FI;
CPL ←CodeSegmentDescriptor(DPL);
CS(RPL) ←CPL;
IF interrupt gate
THEN IF ←0 (* Interrupt flag set to 0: disabled *); FI;
TF ←0;
VM ←0;
RF ←0;
NT ←0;
END;
INTERRUPT-FROM-VIRTUAL-8086-MODE:
(* Check segment selector and descriptor for privilege level 0 stack in current TSS *)
IF current TSS is 32-bit TSS
THEN
TSSstackAddress ←(new code segment DPL ∗ 8) +4;
IF (TSSstackAddress +7) >TSS limit
THEN #TS(current TSS selector); FI;
NewSS ←TSSstackAddress +4;
3-478 Vol. 2A
INT n/INTO/INT 3—Call to Interrupt Procedure
INSTRUCTION SET REFERENCE, A-M
NewESP ←stack address;
ELSE (* TSS is 16-bit *)
TSSstackAddress ←(new code segment DPL ∗ 4) +2;
IF (TSSstackAddress +4) >TSS limit
THEN #TS(current TSS selector); FI;
NewESP ←TSSstackAddress;
NewSS ←TSSstackAddress +2;
FI;
IF segment selector is NULL
THEN #TS(EXT); FI;
IF segment selector index is not within its descriptor table limits
or segment selector's RPL ≠ DPL of code segment
THEN #TS(SS selector +EXT); FI;
Access segment descriptor for stack segment in GDT or LDT;
IF stack segment DPL ≠ DPL of code segment,
or stack segment does not indicate writable data segment
THEN #TS(SS selector +EXT); FI;
IF stack segment not present
THEN #SS(SS selector +EXT); FI;
IF 32-bit gate
THEN
IF new stack does not have room for 40 bytes (error code pushed)
or 36 bytes (no error code pushed)
THEN #SS(segment selector +EXT); FI;
ELSE IF 16-bit gate
THEN
IF new stack does not have room for 20 bytes (error code pushed)
or 18 bytes (no error code pushed)
THEN #SS(segment selector +EXT); FI;
ELSE (* 64-bit gate*)
IF StackAddress is non-canonical
THEN #SS(0);
FI;
FI;
IF instruction pointer is not within code segment limits
THEN #GP(0); FI;
tempEFLAGS ←EFLAGS;
VM ←0;
TF ←0;
RF ←0;
NT ←0;
IF service through interrupt gate
THEN IF = 0; FI;
INT n/INTO/INT 3—Call to Interrupt Procedure
Vol. 2A 3-479
INSTRUCTION SET REFERENCE, A-M
TempSS ←SS;
TempESP ←ESP;
SS:ESP ←TSS(SS0:ESP0); (* Change to level 0 stack segment *)
(* Following pushes are 16 bits for 16-bit gate and 32 bits for 32-bit gates;
Segment selector pushes in 32-bit mode are padded to two words *)
Push(GS);
Push(FS);
Push(DS);
Push(ES);
Push(TempSS);
Push(TempESP);
Push(TempEFlags);
Push(CS);
Push(EIP);
GS ←0; (* Segment registers NULLified, invalid in protected mode *)
FS ←0;
DS ←0;
ES ←0;
CS ←Gate(CS);
IF OperandSize = 32
THEN
EIP ←Gate(instruction pointer);
ELSE (* OperandSize is 16 *)
EIP ←Gate(instruction pointer) AND 0000FFFFH;
FI;
(* Start execution of new routine in Protected Mode *)
END;
INTRA-PRIVILEGE-LEVEL-INTERRUPT:
(* PE = 1, DPL = CPL or conforming segment *)
IF 32-bit gate and IA32_EFER.LMA = 0
THEN
IF current stack does not have room for 16 bytes (error code pushed)
or 12 bytes (no error code pushed)
THEN #SS(0); FI;
ELSE IF 16-bit gate
IF current stack does not have room for 8 bytes (error code pushed)
or 6 bytes (no error code pushed)
THEN #SS(0); FI;
ELSE (* 64-bit gate*)
IF StackAddress is non-canonical
THEN #SS(0);
FI;
FI;
3-480 Vol. 2A
INT n/INTO/INT 3—Call to Interrupt Procedure
INSTRUCTION SET REFERENCE, A-M
IF instruction pointer not within code segment limit
THEN #GP(0); FI;
IF 32-bit gate
THEN
Push (EFLAGS);
Push (far pointer to return instruction); (* 3 words padded to 4 *)
CS:EIP ←Gate(CS:EIP); (* Segment descriptor information also loaded *)
Push (ErrorCode); (* If any *)
ELSE
IF 16-bit gate
THEN
Push (FLAGS);
Push (far pointer to return location); (* 2 words *)
CS:IP ←Gate(CS:IP);
(* Segment descriptor information also loaded *)
Push (ErrorCode); (* If any *)
ELSE (* 64-bit gate*)
Push(far pointer to old stack);
(* Old SS and SP, each an 8-byte push *)
Push(RFLAGS); (* 8-byte push *)
Push(far pointer to return instruction);
(* Old CS and RIP, each an 8-byte push *)
Push(ErrorCode); (* If needed, 8 bytes *)
CS:RIP ←GATE(CS:RIP);
(* Segment descriptor information also loaded *)
FI;
FI;
CS(RPL) ←CPL;
IF interrupt gate
THEN IF ←0; FI; (* Interrupt flag set to 0: disabled *)
TF ←0;
NT ←0;
VM ←0;
RF ←0;
END;
Flags Affected
The EFLAGS register is pushed onto the stack. The IF, TF, NT, AC, RF, and VM flags
may be cleared, depending on the mode of operation of the processor when the INT
instruction is executed (see the “Operation” section). If the interrupt uses a task
gate, any flags may be set or cleared, controlled by the EFLAGS image in the new
task’s TSS.
INT n/INTO/INT 3—Call to Interrupt Procedure
Vol. 2A 3-481
INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#GP(0)
If the instruction pointer in the IDT or in the interrupt-, trap-, or
task gate is beyond the code segment limits.
#GP(selector)
If the segment selector in the interrupt-, trap-, or task gate is
NULL.
If an interrupt-, trap-, or task gate, code segment, or TSS
segment selector index is outside its descriptor table limits.
If the interrupt vector number is outside the IDT limits.
If an IDT descriptor is not an interrupt-, trap-, or task-descriptor.
If an interrupt is generated by the INT n, INT 3, or INTO instruc-
tion and the DPL of an interrupt-, trap-, or task-descriptor is less
than the CPL.
If the segment selector in an interrupt- or trap-gate does not
point to a segment descriptor for a code segment.
If the segment selector for a TSS has its local/global bit set for
local.
If a TSS segment descriptor specifies that the TSS is busy or not
available.
#SS(0)
If pushing the return address, flags, or error code onto the stack
exceeds the bounds of the stack segment and no stack switch
occurs.
#SS(selector)
If the SS register is being loaded and the segment pointed to is
marked not present.
If pushing the return address, flags, error code, or stack
segment pointer exceeds the bounds of the new stack segment
when a stack switch occurs.
#NP(selector)
#TS(selector)
If code segment, interrupt-, trap-, or task gate, or TSS is not
present.
If the RPL of the stack segment selector in the TSS is not equal
to the DPL of the code segment being accessed by the interrupt
or trap gate.
If DPL of the stack segment descriptor pointed to by the stack
segment selector in the TSS is not equal to the DPL of the code
segment descriptor for the interrupt or trap gate.
If the stack segment selector in the TSS is NULL.
If the stack segment for the TSS is not a writable data segment.
If segment-selector index for stack segment is outside
descriptor table limits.
#PF(fault-code)
#UD
If a page fault occurs.
If the LOCK prefix is used.
3-482 Vol. 2A
INT n/INTO/INT 3—Call to Interrupt Procedure
INSTRUCTION SET REFERENCE, A-M
Real-Address Mode Exceptions
#GP
#SS
#UD
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the interrupt vector number is outside the IDT limits.
If stack limit violation on push.
If pushing the return address, flags, or error code onto the stack
exceeds the bounds of the stack segment.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
#GP(0)
(For INT n, INTO, or BOUND instruction) If the IOPL is less than
3 or the DPL of the interrupt-, trap-, or task-gate descriptor is
not equal to 3.
If the instruction pointer in the IDT or in the interrupt-, trap-, or
task gate is beyond the code segment limits.
#GP(selector)
If the segment selector in the interrupt-, trap-, or task gate is
NULL.
If a interrupt-, trap-, or task gate, code segment, or TSS
segment selector index is outside its descriptor table limits.
If the interrupt vector number is outside the IDT limits.
If an IDT descriptor is not an interrupt-, trap-, or task-descriptor.
If an interrupt is generated by the INT n instruction and the DPL
of an interrupt-, trap-, or task-descriptor is less than the CPL.
If the segment selector in an interrupt- or trap-gate does not
point to a segment descriptor for a code segment.
If the segment selector for a TSS has its local/global bit set for
local.
#SS(selector)
If the SS register is being loaded and the segment pointed to is
marked not present.
If pushing the return address, flags, error code, stack segment
pointer, or data segments exceeds the bounds of the stack
segment.
#NP(selector)
#TS(selector)
If code segment, interrupt-, trap-, or task gate, or TSS is not
present.
If the RPL of the stack segment selector in the TSS is not equal
to the DPL of the code segment being accessed by the interrupt
or trap gate.
If DPL of the stack segment descriptor for the TSS’s stack
segment is not equal to the DPL of the code segment descriptor
for the interrupt or trap gate.
If the stack segment selector in the TSS is NULL.
INT n/INTO/INT 3—Call to Interrupt Procedure
Vol. 2A 3-483
INSTRUCTION SET REFERENCE, A-M
If the stack segment for the TSS is not a writable data segment.
If segment-selector index for stack segment is outside
descriptor table limits.
#PF(fault-code)
If a page fault occurs.
#BP
#OF
#UD
If the INT 3 instruction is executed.
If the INTO instruction is executed and the OF flag is set.
If the LOCK prefix is used.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#GP(0)
If the instruction pointer in the 64-bit interrupt gate or 64-bit
trap gate is non-canonical.
#GP(selector)
If the segment selector in the 64-bit interrupt or trap gate is
NULL.
If the interrupt vector number is outside the IDT limits.
If the interrupt vector number points to a gate which is in non-
canonical space.
If the interrupt vector number points to a descriptor which is not
a 64-bit interrupt gate or 64-bit trap gate.
If the descriptor pointed to by the gate selector is outside the
descriptor table limit.
If the descriptor pointed to by the gate selector is in non-canon-
ical space.
If the descriptor pointed to by the gate selector is not a code
segment.
If the descriptor pointed to by the gate selector doesn’t have the
L-bit set, or has both the L-bit and D-bit set.
If the descriptor pointed to by the gate selector has DPL > CPL.
#SS(0)
If a push of the old EFLAGS, CS selector, EIP, or error code is in
non-canonical space with no stack switch.
#SS(selector)
If a push of the old SS selector, ESP, EFLAGS, CS selector, EIP, or
error code is in non-canonical space on a stack switch (either
CPL change or no-CPL with IST).
#NP(selector)
If the 64-bit interrupt-gate, 64-bit trap-gate, or code segment is
not present.
3-484 Vol. 2A
INT n/INTO/INT 3—Call to Interrupt Procedure
INSTRUCTION SET REFERENCE, A-M
#TS(selector)
If an attempt to load RSP from the TSS causes an access to non-
canonical space.
If the RSP from the TSS is outside descriptor table limits.
If a page fault occurs.
#PF(fault-code)
#UD
If the LOCK prefix is used.
INT n/INTO/INT 3—Call to Interrupt Procedure
Vol. 2A 3-485
INSTRUCTION SET REFERENCE, A-M
INVD—Invalidate Internal Caches
Opcode*
Instruction 64-Bit
Mode
Compat/
Leg Mode
Description
0F 08
INVD
Valid
Valid
Flush internal caches; initiate flushing of
external caches.
NOTES:
* See the IA-32 Architecture Compatibility section below.
Description
Invalidates (flushes) the processor’s internal caches and issues a special-function
bus cycle that directs external caches to also flush themselves. Data held in internal
caches is not written back to main memory.
After executing this instruction, the processor does not wait for the external caches
to complete their flushing operation before proceeding with instruction execution. It
is the responsibility of hardware to respond to the cache flush signal.
The INVD instruction is a privileged instruction. When the processor is running in
protected mode, the CPL of a program or procedure must be 0 to execute this
instruction.
Use this instruction with care. Data cached internally and not written back to main
memory will be lost. Unless there is a specific requirement or benefit to flushing
caches without writing back modified cache lines (for example, testing or fault
recovery where cache coherency with main memory is not a concern), software
should use the WBINVD instruction.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
IA-32 Architecture Compatibility
The INVD instruction is implementation dependent; it may be implemented differ-
ently on different families of Intel 64 or IA-32 processors. This instruction is not
supported on IA-32 processors earlier than the Intel486 processor.
Operation
Flush(InternalCaches);
SignalFlush(ExternalCaches);
Continue (* Continue execution *)
Flags Affected
None.
3-486 Vol. 2A
INVD—Invalidate Internal Caches
INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#GP(0)
#UD
If the current privilege level is not 0.
If the LOCK prefix is used.
Real-Address Mode Exceptions
#UD
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
#GP(0)
The INVD instruction cannot be executed in virtual-8086 mode.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
Same exceptions as in protected mode.
INVD—Invalidate Internal Caches
Vol. 2A 3-487
INSTRUCTION SET REFERENCE, A-M
INVLPG—Invalidate TLB Entry
Opcode
0F 01/7
NOTES:
Instruction
64-Bit
Mode
Compat/
Description
Leg Mode
INVLPG m
Valid
Valid
Invalidate TLB Entry for page that
contains m.
* See the IA-32 Architecture Compatibility section below.
Description
Invalidates (flushes) the translation lookaside buffer (TLB) entry specified with the
source operand. The source operand is a memory address. The processor determines
The INVLPG instruction is a privileged instruction. When the processor is running in
protected mode, the CPL of a program or procedure must be 0 to execute this
instruction.
The INVLPG instruction normally flushes the TLB entry only for the specified page;
however, in some cases, it flushes the entire TLB. See “MOV—Move to/from Control
Registers” in this chapter for further information on operations that flush the TLB.
This instruction’s operation is the same in all non-64-bit modes. It also operates the
same in 64-bit mode, except if the memory address is in non-canonical form. In this
case, INVLPG is the same as a NOP.
IA-32 Architecture Compatibility
The INVLPG instruction is implementation dependent, and its function may be imple-
mented differently on different families of Intel 64 or IA-32 processors. This instruc-
tion is not supported on IA-32 processors earlier than the Intel486 processor.
Operation
Flush(RelevantTLBEntries);
Continue; (* Continue execution *)
Flags Affected
None.
Protected Mode Exceptions
#GP(0)
#UD
If the current privilege level is not 0.
Operand is a register.
If the LOCK prefix is used.
3-488 Vol. 2A
INVLPG—Invalidate TLB Entry
INSTRUCTION SET REFERENCE, A-M
Real-Address Mode Exceptions
#UD Operand is a register.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
#GP(0)
The INVLPG instruction cannot be executed at the virtual-8086
mode.
64-Bit Mode Exceptions
#GP(0)
#UD
If the current privilege level is not 0.
Operand is a register.
If the LOCK prefix is used.
INVLPG—Invalidate TLB Entry
Vol. 2A 3-489
INSTRUCTION SET REFERENCE, A-M
IRET/IRETD—Interrupt Return
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
CF
IRET
Valid
Valid
Valid
Valid
Valid
N.E.
Interrupt return (16-bit operand
size).
CF
IRETD
Interrupt return (32-bit operand
size).
REX.W + CF
IRETQ
Interrupt return (64-bit operand
size).
Description
Returns program control from an exception or interrupt handler to a program or
procedure that was interrupted by an exception, an external interrupt, or a software-
generated interrupt. These instructions are also used to perform a return from a
nested task. (A nested task is created when a CALL instruction is used to initiate a
task switch or when an interrupt or exception causes a task switch to an interrupt or
exception handler.) See the section titled “Task Linking” in Chapter 6 of the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 3A.
IRET and IRETD are mnemonics for the same opcode. The IRETD mnemonic (inter-
rupt return double) is intended for use when returning from an interrupt when using
the 32-bit operand size; however, most assemblers use the IRET mnemonic inter-
changeably for both operand sizes.
In Real-Address Mode, the IRET instruction preforms a far return to the interrupted
program or procedure. During this operation, the processor pops the return instruc-
tion pointer, return code segment selector, and EFLAGS image from the stack to the
EIP, CS, and EFLAGS registers, respectively, and then resumes execution of the inter-
rupted program or procedure.
In Protected Mode, the action of the IRET instruction depends on the settings of the
NT (nested task) and VM flags in the EFLAGS register and the VM flag in the EFLAGS
image stored on the current stack. Depending on the setting of these flags, the
processor performs the following types of interrupt returns:
• Return from virtual-8086 mode.
• Return to virtual-8086 mode.
• Intra-privilege level return.
• Inter-privilege level return.
• Return from nested task (task switch).
If the NT flag (EFLAGS register) is cleared, the IRET instruction performs a far return
from the interrupt procedure, without a task switch. The code segment being
returned to must be equally or less privileged than the interrupt handler routine (as
indicated by the RPL field of the code segment selector popped from the stack).
3-490 Vol. 2A
IRET/IRETD—Interrupt Return
INSTRUCTION SET REFERENCE, A-M
As with a real-address mode interrupt return, the IRET instruction pops the return
instruction pointer, return code segment selector, and EFLAGS image from the stack
to the EIP, CS, and EFLAGS registers, respectively, and then resumes execution of
the interrupted program or procedure. If the return is to another privilege level, the
IRET instruction also pops the stack pointer and SS from the stack, before resuming
program execution. If the return is to virtual-8086 mode, the processor also pops the
data segment registers from the stack.
If the NT flag is set, the IRET instruction performs a task switch (return) from a
nested task (a task called with a CALL instruction, an interrupt, or an exception) back
to the calling or interrupted task. The updated state of the task executing the IRET
instruction is saved in its TSS. If the task is re-entered later, the code that follows the
IRET instruction is executed.
If the NT flag is set and the processor is in IA-32e mode, the IRET instruction causes
a general protection exception.
In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.W
prefix promotes operation to 64 bits (IRETQ). See the summary chart at the begin-
ning of this section for encoding data and limits.
See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 21 of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, for
more information about the behavior of this instruction in VMX non-root operation.
Operation
IF PE = 0
THEN
GOTO REAL-ADDRESS-MODE;
ELSE
IF (IA32_EFER.LMA = 0)
THEN (* Protected mode *)
GOTO PROTECTED-MODE;
ELSE (* IA-32e mode *)
GOTO IA-32e-MODE;
FI;
FI;
REAL-ADDRESS-MODE;
IF OperandSize = 32
THEN
IF top 12 bytes of stack not within stack limits
THEN #SS; FI;
tempEIP ←4 bytes at end of stack
IF tempEIP[31:16] is not zero THEN #GP(0); FI;
EIP ←Pop();
CS ←Pop(); (* 32-bit pop, high-order 16 bits discarded *)
tempEFLAGS ←Pop();
IRET/IRETD—Interrupt Return
Vol. 2A 3-491
INSTRUCTION SET REFERENCE, A-M
EFLAGS ←(tempEFLAGS AND 257FD5H) OR (EFLAGS AND 1A0000H);
ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack are not within stack limits
THEN #SS; FI;
EIP ←Pop(); (* 16-bit pop; clear upper 16 bits *)
CS ←Pop(); (* 16-bit pop *)
EFLAGS[15:0] ←Pop();
FI;
END;
PROTECTED-MODE:
IF VM = 1 (* Virtual-8086 mode: PE = 1, VM = 1 *)
THEN
GOTO RETURN-FROM-VIRTUAL-8086-MODE; (* PE = 1, VM = 1 *)
FI;
IF NT = 1
THEN
GOTO TASK-RETURN; (* PE = 1, VM = 0, NT = 1 *)
FI;
IF OperandSize = 32
THEN
IF top 12 bytes of stack not within stack limits
THEN #SS(0); FI;
tempEIP ←Pop();
tempCS ←Pop();
tempEFLAGS ←Pop();
ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack are not within stack limits
THEN #SS(0); FI;
tempEIP ←Pop();
tempCS ←Pop();
tempEFLAGS ←Pop();
tempEIP ←tempEIP AND FFFFH;
tempEFLAGS ←tempEFLAGS AND FFFFH;
FI;
IF tempEFLAGS(VM) = 1 and CPL = 0
THEN
GOTO RETURN-TO-VIRTUAL-8086-MODE;
ELSE
GOTO PROTECTED-MODE-RETURN;
FI;
IA-32e-MODE:
IF NT = 1
THEN #GP(0);
3-492 Vol. 2A
IRET/IRETD—Interrupt Return
INSTRUCTION SET REFERENCE, A-M
ELSE IF OperandSize = 32
THEN
IF top 12 bytes of stack not within stack limits
THEN #SS(0); FI;
tempEIP ←Pop();
tempCS ←Pop();
tempEFLAGS ←Pop();
ELSE IF OperandSize = 16
THEN
IF top 6 bytes of stack are not within stack limits
THEN #SS(0); FI;
tempEIP ←Pop();
tempCS ←Pop();
tempEFLAGS ←Pop();
tempEIP ←tempEIP AND FFFFH;
tempEFLAGS ←tempEFLAGS AND FFFFH;
FI;
ELSE (* OperandSize = 64 *)
THEN
tempRIP ←Pop();
tempCS ←Pop();
tempEFLAGS ←Pop();
tempRSP ←Pop();
tempSS ←Pop();
FI;
GOTO IA-32e-MODE-RETURN;
RETURN-FROM-VIRTUAL-8086-MODE:
(* Processor is in virtual-8086 mode when IRET is executed and stays in virtual-8086 mode *)
IF IOPL = 3 (* Virtual mode: PE = 1, VM = 1, IOPL = 3 *)
THEN IF OperandSize = 32
THEN
IF top 12 bytes of stack not within stack limits
THEN #SS(0); FI;
IF instruction pointer not within code segment limits
THEN #GP(0); FI;
EIP ←Pop();
CS ←Pop(); (* 32-bit pop, high-order 16 bits discarded *)
EFLAGS ←Pop();
(* VM, IOPL,VIP and VIF EFLAG bits not modified by pop *)
ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack are not within stack limits
THEN #SS(0); FI;
IF instruction pointer not within code segment limits
IRET/IRETD—Interrupt Return
Vol. 2A 3-493
INSTRUCTION SET REFERENCE, A-M
THEN #GP(0); FI;
EIP ←Pop();
EIP ←EIP AND 0000FFFFH;
CS ←Pop(); (* 16-bit pop *)
EFLAGS[15:0] ←Pop(); (* IOPL in EFLAGS not modified by pop *)
FI;
ELSE
#GP(0); (* Trap to virtual-8086 monitor: PE = 1, VM = 1, IOPL < 3 *)
FI;
END;
RETURN-TO-VIRTUAL-8086-MODE:
(* Interrupted procedure was in virtual-8086 mode: PE = 1, CPL=0, VM = 1 in flag image *)
IF top 24 bytes of stack are not within stack segment limits
THEN #SS(0); FI;
IF instruction pointer not within code segment limits
THEN #GP(0); FI;
CS ←tempCS;
EIP ←tempEIP;
EFLAGS ←tempEFLAGS;
TempESP ←Pop();
TempSS ←Pop();
ES ←Pop(); (* Pop 2 words; throw away high-order word *)
DS ←Pop(); (* Pop 2 words; throw away high-order word *)
FS ←Pop(); (* Pop 2 words; throw away high-order word *)
GS ←Pop(); (* Pop 2 words; throw away high-order word *)
SS:ESP ←TempSS:TempESP;
CPL ←3;
(* Resume execution in Virtual-8086 mode *)
END;
TASK-RETURN: (* PE = 1, VM = 0, NT = 1 *)
Read segment selector in link field of current TSS;
IF local/global bit is set to local
or index not within GDT limits
THEN #TS (TSS selector); FI;
Access TSS for task specified in link field of current TSS;
IF TSS descriptor type is not TSS or if the TSS is marked not busy
THEN #TS (TSS selector); FI;
IF TSS not present
THEN #NP(TSS selector); FI;
SWITCH-TASKS (without nesting) to TSS specified in link field of current TSS;
Mark the task just abandoned as NOT BUSY;
3-494 Vol. 2A
IRET/IRETD—Interrupt Return
INSTRUCTION SET REFERENCE, A-M
IF EIP is not within code segment limit
THEN #GP(0); FI;
END;
PROTECTED-MODE-RETURN: (* PE = 1 *)
IF return code segment selector is NULL
THEN GP(0); FI;
IF return code segment selector addresses descriptor beyond descriptor table limit
THEN GP(selector); FI;
Read segment descriptor pointed to by the return code segment selector;
IF return code segment descriptor is not a code segment
THEN #GP(selector); FI;
IF return code segment selector RPL < CPL
THEN #GP(selector); FI;
IF return code segment descriptor is conforming
and return code segment DPL > return code segment selector RPL
THEN #GP(selector); FI;
IF return code segment descriptor is not present
THEN #NP(selector); FI;
IF return code segment selector RPL > CPL
THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL; FI;
END;
RETURN-TO-SAME-PRIVILEGE-LEVEL: (* PE = 1, RPL = CPL *)
IF new mode ≠ 64-Bit Mode
THEN
IF tempEIP is not within code segment limits
THEN #GP(0); FI;
EIP ←tempEIP;
ELSE (* new mode = 64-bit mode *)
IF tempRIP is non-canonical
THEN #GP(0); FI;
RIP ←tempRIP;
FI;
CS ←tempCS; (* Segment descriptor information also loaded *)
EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT) ←tempEFLAGS;
IF OperandSize = 32 or OperandSize = 64
THEN EFLAGS(RF, AC, ID) ←tempEFLAGS; FI;
IF CPL ≤IOPL
THEN EFLAGS(IF) ←tempEFLAGS; FI;
IF CPL = 0
THEN (* VM = 0 in flags image *)
IRET/IRETD—Interrupt Return
Vol. 2A 3-495
INSTRUCTION SET REFERENCE, A-M
EFLAGS(IOPL) ←tempEFLAGS;
IF OperandSize = 32 or OperandSize = 64
THEN EFLAGS(VIF, VIP) ←tempEFLAGS; FI;
FI;
END;
RETURN-TO-OUTER-PRIVILEGE-LEVEL:
IF OperandSize = 32
THEN
IF top 8 bytes on stack are not within limits
THEN #SS(0); FI;
ELSE (* OperandSize = 16 *)
IF top 4 bytes on stack are not within limits
THEN #SS(0); FI;
FI;
Read return segment selector;
IF stack segment selector is NULL
THEN #GP(0); FI;
IF return stack segment selector index is not within its descriptor table limits
THEN #GP(SSselector); FI;
Read segment descriptor pointed to by return segment selector;
IF stack segment selector RPL ≠ RPL of the return code segment selector
or the stack segment descriptor does not indicate a a writable data segment;
or the stack segment DPL ≠ RPL of the return code segment selector
THEN #GP(SS selector); FI;
IF stack segment is not present
THEN #SS(SS selector); FI;
IF new mode ≠ 64-Bit Mode
THEN
IF tempEIP is not within code segment limits
THEN #GP(0); FI;
EIP ←tempEIP;
ELSE (* new mode = 64-bit mode *)
IF tempRIP is non-canonical
THEN #GP(0); FI;
RIP ←tempRIP;
FI;
CS ←tempCS;
EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT) ←tempEFLAGS;
IF OperandSize = 32
THEN EFLAGS(RF, AC, ID) ←tempEFLAGS; FI;
IF CPL ≤IOPL
THEN EFLAGS(IF) ←tempEFLAGS; FI;
3-496 Vol. 2A
IRET/IRETD—Interrupt Return
INSTRUCTION SET REFERENCE, A-M
IF CPL = 0
THEN
EFLAGS(IOPL) ←tempEFLAGS;
IF OperandSize = 32
THEN EFLAGS(VM, VIF, VIP) ←tempEFLAGS; FI;
IF OperandSize = 64
THEN EFLAGS(VIF, VIP) ←tempEFLAGS; FI;
FI;
CPL ←RPL of the return code segment selector;
FOR each of segment register (ES, FS, GS, and DS)
DO
IF segment register points to data or non-conforming code segment
and CPL >segment descriptor DPL (* Stored in hidden part of segment register *)
THEN (* Segment register invalid *)
SegmentSelector ←0; (* NULL segment selector *)
FI;
OD;
END;
IA-32e-MODE-RETURN: (* IA32_EFER.LMA = 1, PE = 1 *)
IF ( (return code segment selector is NULL) or (return RIP is non-canonical) or
(SS selector is NULL going back to compatibility mode) or
(SS selector is NULL going back to CPL3 64-bit mode) or
(RPL <> CPL going back to non-CPL3 64-bit mode for a NULL SS selector) )
THEN GP(0); FI;
IF return code segment selector addresses descriptor beyond descriptor table limit
THEN GP(selector); FI;
Read segment descriptor pointed to by the return code segment selector;
IF return code segment descriptor is not a code segment
THEN #GP(selector); FI;
IF return code segment selector RPL < CPL
THEN #GP(selector); FI;
IF return code segment descriptor is conforming
and return code segment DPL > return code segment selector RPL
THEN #GP(selector); FI;
IF return code segment descriptor is not present
THEN #NP(selector); FI;
IF return code segment selector RPL > CPL
THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL; FI;
END;
IRET/IRETD—Interrupt Return
Vol. 2A 3-497
INSTRUCTION SET REFERENCE, A-M
Flags Affected
All the flags and fields in the EFLAGS register are potentially modified, depending on
the mode of operation of the processor. If performing a return from a nested task to
a previous task, the EFLAGS register will be modified according to the EFLAGS image
stored in the previous task’s TSS.
Protected Mode Exceptions
#GP(0)
If the return code or stack segment selector is NULL.
If the return instruction pointer is not within the return code
segment limit.
#GP(selector)
If a segment selector index is outside its descriptor table limits.
If the return code segment selector RPL is greater than the CPL.
If the DPL of a conforming-code segment is greater than the
return code segment selector RPL.
If the DPL for a nonconforming-code segment is not equal to the
RPL of the code segment selector.
If the stack segment descriptor DPL is not equal to the RPL of
the return code segment selector.
If the stack segment is not a writable data segment.
If the stack segment selector RPL is not equal to the RPL of the
return code segment selector.
If the segment descriptor for a code segment does not indicate
it is a code segment.
If the segment selector for a TSS has its local/global bit set for
local.
If a TSS segment descriptor specifies that the TSS is not busy.
If a TSS segment descriptor specifies that the TSS is not avail-
able.
#SS(0)
If the top bytes of stack are not within stack limits.
If the return code or stack segment is not present.
If a page fault occurs.
#NP(selector)
#PF(fault-code)
#AC(0)
If an unaligned memory reference occurs when the CPL is 3 and
alignment checking is enabled.
#UD
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP
If the return instruction pointer is not within the return code
segment limit.
#SS
If the top bytes of stack are not within stack limits.
3-498 Vol. 2A
IRET/IRETD—Interrupt Return
INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions
#GP(0)
If the return instruction pointer is not within the return code
segment limit.
IF IOPL not equal to 3.
#PF(fault-code)
#SS(0)
If a page fault occurs.
If the top bytes of stack are not within stack limits.
#AC(0)
If an unaligned memory reference occurs and alignment
checking is enabled.
#UD
If the LOCK prefix is used.
Compatibility Mode Exceptions
#GP(0)
If EFLAGS.NT[bit 14] = 1.
Other exceptions same as in Protected Mode.
64-Bit Mode Exceptions
#GP(0)
If EFLAGS.NT[bit 14] = 1.
If the return code segment selector is NULL.
If the stack segment selector is NULL going back to compatibility
mode.
If the stack segment selector is NULL going back to CPL3 64-bit
mode.
If a NULL stack segment selector RPL is not equal to CPL going
back to non-CPL3 64-bit mode.
If the return instruction pointer is not within the return code
segment limit.
If the return instruction pointer is non-canonical.
#GP(Selector)
If a segment selector index is outside its descriptor table limits.
If a segment descriptor memory address is non-canonical.
If the segment descriptor for a code segment does not indicate
it is a code segment.
If the proposed new code segment descriptor has both the D-bit
and L-bit set.
If the DPL for a nonconforming-code segment is not equal to the
RPL of the code segment selector.
If CPL is greater than the RPL of the code segment selector.
If the DPL of a conforming-code segment is greater than the
return code segment selector RPL.
If the stack segment is not a writable data segment.
If the stack segment descriptor DPL is not equal to the RPL of
the return code segment selector.
IRET/IRETD—Interrupt Return
Vol. 2A 3-499
INSTRUCTION SET REFERENCE, A-M
If the stack segment selector RPL is not equal to the RPL of the
return code segment selector.
#SS(0)
If an attempt to pop a value off the stack violates the SS limit.
If an attempt to pop a value off the stack causes a non-canonical
address to be referenced.
#NP(selector)
#PF(fault-code)
#AC(0)
If the return code or stack segment is not present.
If a page fault occurs.
If an unaligned memory reference occurs when the CPL is 3 and
alignment checking is enabled.
#UD
If the LOCK prefix is used.
3-500 Vol. 2A
IRET/IRETD—Interrupt Return
INSTRUCTION SET REFERENCE, A-M
Jcc—Jump if Condition Is Met
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
77 cb
73 cb
72 cb
76 cb
JA rel8
JAE rel8
JB rel8
JBE rel8
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Jump short if above (CF=0 and ZF=0).
Jump short if above or equal (CF=0).
Jump short if below (CF=1).
Jump short if below or equal (CF=1 or
ZF=1).
72 cb
E3 cb
E3 cb
E3 cb
74 cb
7F cb
7D cb
7C cb
7E cb
JC rel8
Valid
N.E.
Valid
Valid
Valid
N.E.
Jump short if carry (CF=1).
JCXZ rel8
JECXZ rel8
JRCXZ rel8
JE rel8
Jump short if CX register is 0.
Jump short if ECX register is 0.
Jump short if RCX register is 0.
Jump short if equal (ZF=1).
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
JG rel8
Jump short if greater (ZF=0 and SF=OF).
Jump short if greater or equal (SF=OF).
Jump short if less (SF≠ OF).
JGE rel8
JL rel8
JLE rel8
Jump short if less or equal (ZF=1 or SF≠
OF).
76 cb
72 cb
73 cb
77 cb
JNA rel8
JNAE rel8
JNB rel8
JNBE rel8
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Jump short if not above (CF=1 or ZF=1).
Jump short if not above or equal (CF=1).
Jump short if not below (CF=0).
Jump short if not below or equal (CF=0
and ZF=0).
73 cb
75 cb
7E cb
JNC rel8
JNE rel8
JNG rel8
Valid
Valid
Valid
Valid
Valid
Valid
Jump short if not carry (CF=0).
Jump short if not equal (ZF=0).
Jump short if not greater (ZF=1 or SF≠
OF).
7C cb
JNGE rel8
Valid
Valid
Jump short if not greater or equal (SF≠
OF).
7D cb
JNL rel8
Valid
Valid
Valid
Valid
Jump short if not less (SF=OF).
7F cb
JNLE rel8
Jump short if not less or equal (ZF=0 and
SF=OF).
71 cb
7B cb
79 cb
JNO rel8
JNP rel8
JNS rel8
Valid
Valid
Valid
Valid
Valid
Valid
Jump short if not overflow (OF=0).
Jump short if not parity (PF=0).
Jump short if not sign (SF=0).
Jcc—Jump if Condition Is Met
Vol. 2A 3-501
INSTRUCTION SET REFERENCE, A-M
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
75 cb
70 cb
7A cb
7A cb
7B cb
78 cb
74 cb
0F 87 cw
JNZ rel8
JO rel8
JP rel8
Valid
Valid
Valid
Valid
Valid
Valid
Valid
N.S.
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Jump short if not zero (ZF=0).
Jump short if overflow (OF=1).
Jump short if parity (PF=1).
Jump short if parity even (PF=1).
Jump short if parity odd (PF=0).
Jump short if sign (SF=1).
JPE rel8
JPO rel8
JS rel8
JZ rel8
Jump short if zero (ZF ←1).
JA rel16
Jump near if above (CF=0 and ZF=0). Not
supported in 64-bit mode.
0F 87 cd
JA rel32
Valid
N.S.
Valid
Valid
Jump near if above (CF=0 and ZF=0).
0F 83 cw
JAE rel16
Jump near if above or equal (CF=0). Not
supported in 64-bit mode.
0F 83 cd
JAE rel32
Valid
N.S.
Valid
Valid
Jump near if above or equal (CF=0).
0F 82 cw
JB rel16
Jump near if below (CF=1). Not supported
in 64-bit mode.
0F 82 cd
JB rel32
Valid
N.S.
Valid
Valid
Jump near if below (CF=1).
0F 86 cw
JBE rel16
Jump near if below or equal (CF=1 or
ZF=1). Not supported in 64-bit mode.
0F 86 cd
JBE rel32
Valid
N.S.
Valid
Valid
Jump near if below or equal (CF=1 or
ZF=1).
0F 82 cw
JC rel16
Jump near if carry (CF=1). Not supported
in 64-bit mode.
0F 82 cd
JC rel32
Valid
N.S.
Valid
Valid
Jump near if carry (CF=1).
0F 84 cw
JE rel16
Jump near if equal (ZF=1). Not supported
in 64-bit mode.
0F 84 cd
JE rel32
Valid
N.S.
Valid
Valid
Jump near if equal (ZF=1).
0F 84 cw
JZ rel16
Jump near if 0 (ZF=1). Not supported in
64-bit mode.
0F 84 cd
JZ rel32
Valid
N.S.
Valid
Valid
Jump near if 0 (ZF=1).
0F 8F cw
JG rel16
Jump near if greater (ZF=0 and SF=OF).
Not supported in 64-bit mode.
0F 8F cd
JG rel32
Valid
N.S.
Valid
Valid
Jump near if greater (ZF=0 and SF=OF).
0F 8D cw
JGE rel16
Jump near if greater or equal (SF=OF).
Not supported in 64-bit mode.
0F 8D cd
JGE rel32
Valid
Valid
Jump near if greater or equal (SF=OF).
3-502 Vol. 2A
Jcc—Jump if Condition Is Met
INSTRUCTION SET REFERENCE, A-M
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
0F 8C cw
JL rel16
N.S.
Valid
Jump near if less (SF≠ OF). Not supported
in 64-bit mode.
0F 8C cd
JL rel32
Valid
N.S.
Valid
Valid
Jump near if less (SF≠ OF).
0F 8E cw
JLE rel16
Jump near if less or equal (ZF=1 or SF≠
OF). Not supported in 64-bit mode.
0F 8E cd
JLE rel32
Valid
N.S.
Valid
Valid
Jump near if less or equal (ZF=1 or SF≠
OF).
0F 86 cw
JNA rel16
Jump near if not above (CF=1 or ZF=1).
Not supported in 64-bit mode.
0F 86 cd
JNA rel32
Valid
N.S.
Valid
Valid
Jump near if not above (CF=1 or ZF=1).
0F 82 cw
JNAE rel16
Jump near if not above or equal (CF=1).
Not supported in 64-bit mode.
0F 82 cd
JNAE rel32
Valid
N.S.
Valid
Valid
Jump near if not above or equal (CF=1).
0F 83 cw
JNB rel16
Jump near if not below (CF=0). Not
supported in 64-bit mode.
0F 83 cd
JNB rel32
Valid
N.S.
Valid
Valid
Jump near if not below (CF=0).
0F 87 cw
JNBE rel16
Jump near if not below or equal (CF=0
and ZF=0). Not supported in 64-bit
mode.
0F 87 cd
JNBE rel32
Valid
N.S.
Valid
Valid
Jump near if not below or equal (CF=0
and ZF=0).
0F 83 cw
JNC rel16
Jump near if not carry (CF=0). Not
supported in 64-bit mode.
0F 83 cd
JNC rel32
Valid
N.S.
Valid
Valid
Jump near if not carry (CF=0).
0F 85 cw
JNE rel16
Jump near if not equal (ZF=0). Not
supported in 64-bit mode.
0F 85 cd
JNE rel32
Valid
N.S.
Valid
Valid
Jump near if not equal (ZF=0).
0F 8E cw
JNG rel16
Jump near if not greater (ZF=1 or SF≠
OF). Not supported in 64-bit mode.
0F 8E cd
JNG rel32
Valid
N.S.
Valid
Valid
Jump near if not greater (ZF=1 or SF≠
OF).
0F 8C cw
JNGE rel16
Jump near if not greater or equal (SF≠
OF). Not supported in 64-bit mode.
Jcc—Jump if Condition Is Met
Vol. 2A 3-503
INSTRUCTION SET REFERENCE, A-M
Opcode
0F 8C cd
0F 8D cw
Instruction
JNGE rel32
JNL rel16
64-Bit
Mode
Compat/
Description
Leg Mode
Valid
Valid
Valid
Jump near if not greater or equal (SF≠
OF).
N.S.
Jump near if not less (SF=OF). Not
supported in 64-bit mode.
0F 8D cd
JNL rel32
Valid
N.S.
Valid
Valid
Jump near if not less (SF=OF).
0F 8F cw
JNLE rel16
Jump near if not less or equal (ZF=0 and
SF=OF). Not supported in 64-bit mode.
0F 8F cd
JNLE rel32
Valid
N.S.
Valid
Valid
Jump near if not less or equal (ZF=0 and
SF=OF).
0F 81 cw
JNO rel16
Jump near if not overflow (OF=0). Not
supported in 64-bit mode.
0F 81 cd
JNO rel32
Valid
N.S.
Valid
Valid
Jump near if not overflow (OF=0).
0F 8B cw
JNP rel16
Jump near if not parity (PF=0). Not
supported in 64-bit mode.
0F 8B cd
JNP rel32
Valid
N.S.
Valid
Valid
Jump near if not parity (PF=0).
0F 89 cw
JNS rel16
Jump near if not sign (SF=0). Not
supported in 64-bit mode.
0F 89 cd
JNS rel32
Valid
N.S.
Valid
Valid
Jump near if not sign (SF=0).
0F 85 cw
JNZ rel16
Jump near if not zero (ZF=0). Not
supported in 64-bit mode.
0F 85 cd
JNZ rel32
Valid
N.S.
Valid
Valid
Jump near if not zero (ZF=0).
0F 80 cw
JO rel16
Jump near if overflow (OF=1). Not
supported in 64-bit mode.
0F 80 cd
JO rel32
Valid
N.S.
Valid
Valid
Jump near if overflow (OF=1).
0F 8A cw
JP rel16
Jump near if parity (PF=1). Not supported
in 64-bit mode.
0F 8A cd
JP rel32
Valid
N.S.
Valid
Valid
Jump near if parity (PF=1).
0F 8A cw
JPE rel16
Jump near if parity even (PF=1). Not
supported in 64-bit mode.
0F 8A cd
JPE rel32
Valid
N.S.
Valid
Valid
Jump near if parity even (PF=1).
0F 8B cw
JPO rel16
Jump near if parity odd (PF=0). Not
supported in 64-bit mode.
0F 8B cd
JPO rel32
Valid
N.S.
Valid
Valid
Jump near if parity odd (PF=0).
0F 88 cw
JS rel16
Jump near if sign (SF=1). Not supported
in 64-bit mode.
3-504 Vol. 2A
Jcc—Jump if Condition Is Met
INSTRUCTION SET REFERENCE, A-M
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
0F 88 cd
JS rel32
Valid
N.S.
Valid
Valid
Jump near if sign (SF=1).
0F 84 cw
JZ rel16
Jump near if 0 (ZF=1). Not supported in
64-bit mode.
0F 84 cd
JZ rel32
Valid
Valid
Jump near if 0 (ZF=1).
Description
Checks the state of one or more of the status flags in the EFLAGS register (CF, OF, PF,
SF, and ZF) and, if the flags are in the specified state (condition), performs a jump to
the target instruction specified by the destination operand. A condition code (cc) is
associated with each instruction to indicate the condition being tested for. If the
condition is not satisfied, the jump is not performed and execution continues with the
instruction following the Jcc instruction.
The target instruction is specified with a relative offset (a signed offset relative to the
current value of the instruction pointer in the EIP register). A relative offset (rel8,
rel16, or rel32) is generally specified as a label in assembly code, but at the machine
code level, it is encoded as a signed, 8-bit or 32-bit immediate value, which is added
to the instruction pointer. Instruction coding is most efficient for offsets of –128 to
+127. If the operand-size attribute is 16, the upper two bytes of the EIP register are
cleared, resulting in a maximum instruction pointer size of 16 bits.
The conditions for each Jcc mnemonic are given in the “Description” column of the
table on the preceding page. The terms “less” and “greater” are used for compari-
sons of signed integers and the terms “above” and “below” are used for unsigned
integers.
Because a particular state of the status flags can sometimes be interpreted in two
ways, two mnemonics are defined for some opcodes. For example, the JA (jump if
above) instruction and the JNBE (jump if not below or equal) instruction are alternate
mnemonics for the opcode 77H.
The Jcc instruction does not support far jumps (jumps to other code segments).
When the target for the conditional jump is in a different segment, use the opposite
condition from the condition being tested for the Jcc instruction, and then access the
target with an unconditional far jump (JMP instruction) to the other segment. For
example, the following conditional far jump is illegal:
JZ FARLABEL;
To accomplish this far jump, use the following two instructions:
JNZ BEYOND;
JMP FARLABEL;
BEYOND:
The JRCXZ, JECXZ and JCXZ instructions differ from other Jcc instructions because
they do not check status flags. Instead, they check RCX, ECX or CX for 0. The register
Jcc—Jump if Condition Is Met
Vol. 2A 3-505
INSTRUCTION SET REFERENCE, A-M
checked is determined by the address-size attribute. These instructions are useful
when used at the beginning of a loop that terminates with a conditional loop instruc-
tion (such as LOOPNE). They can be used to prevent an instruction sequence from
64
entering a loop when RCX, ECX or CX is 0. This would cause the loop to execute 2 ,
32
2
or 64K times (not zero times).
All conditional jumps are converted to code fetches of one or two cache lines, regard-
less of jump address or cacheability.
In 64-bit mode, operand size is fixed at 64 bits. JMP Short is RIP = RIP + 8-bit offset
sign extended to 64 bits. JMP Near is RIP = RIP + 32-bit offset sign extended to
64-bits.
Operation
IF condition
THEN
tempEIP ←EIP + SignExtend(DEST);
IF OperandSize = 16
THEN tempEIP ←tempEIP AND 0000FFFFH;
FI;
IF tempEIP is not within code segment limit
THEN #GP(0);
ELSE EIP ←tempEIP
FI;
FI;
Protected Mode Exceptions
#GP(0)
If the offset being jumped to is beyond the limits of the CS
segment.
#UD
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP
If the offset being jumped to is beyond the limits of the CS
segment or is outside of the effective address space from 0 to
FFFFH. This condition can occur if a 32-bit address size override
prefix is used.
#UD
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
3-506 Vol. 2A
Jcc—Jump if Condition Is Met
INSTRUCTION SET REFERENCE, A-M
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#GP(0)
#UD
If the memory address is in a non-canonical form.
If the LOCK prefix is used.
Jcc—Jump if Condition Is Met
Vol. 2A 3-507
INSTRUCTION SET REFERENCE, A-M
JMP—Jump
Opcode
EB cb
Instruction 64-Bit Mode Compat/
Description
Leg Mode
JMP rel8
Valid
N.S.
Valid
Jump short, RIP = RIP + 8-bit displacement
sign extended to 64-bits
E9 cw
JMP rel16
Valid
Jump near, relative, displacement relative
to next instruction. Not supported in 64-bit
mode.
E9 cd
JMP rel32
Valid
N.S.
Valid
Valid
Jump near, relative, RIP = RIP + 32-bit
displacement sign extended to 64-bits
FF /4
JMP r/m16
Jump near, absolute indirect, address =
sign-extended r/m16. Not supported in 64-
bit mode.
FF /4
JMP r/m32
N.S.
Valid
Jump near, absolute indirect, address =
sign-extended r/m32. Not supported in 64-
bit mode.
FF /4
EA cd
EA cp
FF /5
FF /5
JMP r/m64
Valid
N.E.
Jump near, absolute indirect, RIP = 64-Bit
offset from register or memory
JMP ptr16:16 Inv.
JMP ptr16:32 Inv.
JMP m16:16 Valid
JMP m16:32 Valid
Valid
Valid
Valid
Valid
N.E.
Jump far, absolute, address given in
operand
Jump far, absolute, address given in
operand
Jump far, absolute indirect, address given in
m16:16
Jump far, absolute indirect, address given in
m16:32.
REX.W + JMP m16:64 Valid
Jump far, absolute indirect, address given in
FF /5
m16:64.
Description
Transfers program control to a different point in the instruction stream without
recording return information. The destination (target) operand specifies the address
of the instruction being jumped to. This operand can be an immediate value, a
general-purpose register, or a memory location.
This instruction can be used to execute four different types of jumps:
• Near jump—A jump to an instruction within the current code segment (the
segment currently pointed to by the CS register), sometimes referred to as an
intrasegment jump.
3-508 Vol. 2A
JMP—Jump
INSTRUCTION SET REFERENCE, A-M
• Short jump—A near jump where the jump range is limited to –128 to +127 from
the current EIP value.
• Far jump—A jump to an instruction located in a different segment than the
current code segment but at the same privilege level, sometimes referred to as
an intersegment jump.
• Task switch—A jump to an instruction located in a different task.
A task switch can only be executed in protected mode (see Chapter 6, in the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for information
on performing task switches with the JMP instruction).
Near and Short Jumps. When executing a near jump, the processor jumps to the
address (within the current code segment) that is specified with the target operand.
The target operand specifies either an absolute offset (that is an offset from the base
of the code segment) or a relative offset (a signed displacement relative to the
current value of the instruction pointer in the EIP register). A near jump to a relative
offset of 8-bits (rel8) is referred to as a short jump. The CS register is not changed on
near and short jumps.
An absolute offset is specified indirectly in a general-purpose register or a memory
location (r/m16 or r/m32). The operand-size attribute determines the size of the
target operand (16 or 32 bits). Absolute offsets are loaded directly into the EIP
register. If the operand-size attribute is 16, the upper two bytes of the EIP register
are cleared, resulting in a maximum instruction pointer size of 16 bits.
A relative offset (rel8, rel16, or rel32) is generally specified as a label in assembly
code, but at the machine code level, it is encoded as a signed 8-, 16-, or 32-bit
immediate value. This value is added to the value in the EIP register. (Here, the EIP
register contains the address of the instruction following the JMP instruction). When
using relative offsets, the opcode (for short vs. near jumps) and the operand-size
attribute (for near relative jumps) determines the size of the target operand (8, 16,
or 32 bits).
Far Jumps in Real-Address or Virtual-8086 Mode. When executing a far jump in real-
address or virtual-8086 mode, the processor jumps to the code segment and offset
specified with the target operand. Here the target operand specifies an absolute far
address either directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a
memory location (m16:16 or m16:32). With the pointer method, the segment and
address of the called procedure is encoded in the instruction, using a 4-byte (16-bit
operand size) or 6-byte (32-bit operand size) far address immediate. With the indi-
rect method, the target operand specifies a memory location that contains a 4-byte
(16-bit operand size) or 6-byte (32-bit operand size) far address. The far address is
loaded directly into the CS and EIP registers. If the operand-size attribute is 16, the
upper two bytes of the EIP register are cleared.
Far Jumps in Protected Mode. When the processor is operating in protected mode, the
JMP instruction can be used to perform the following three types of far jumps:
• A far jump to a conforming or non-conforming code segment.
• A far jump through a call gate.
JMP—Jump
Vol. 2A 3-509
INSTRUCTION SET REFERENCE, A-M
• A task switch.
(The JMP instruction cannot be used to perform inter-privilege-level far jumps.)
In protected mode, the processor always uses the segment selector part of the far
address to access the corresponding descriptor in the GDT or LDT. The descriptor
type (code segment, call gate, task gate, or TSS) and access rights determine the
type of jump to be performed.
If the selected descriptor is for a code segment, a far jump to a code segment at the
same privilege level is performed. (If the selected code segment is at a different priv-
ilege level and the code segment is non-conforming, a general-protection exception
is generated.) A far jump to the same privilege level in protected mode is very similar
to one carried out in real-address or virtual-8086 mode. The target operand specifies
an absolute far address either directly with a pointer (ptr16:16 or ptr16:32) or indi-
rectly with a memory location (m16:16 or m16:32). The operand-size attribute
determines the size of the offset (16 or 32 bits) in the far address. The new code
segment selector and its descriptor are loaded into CS register, and the offset from
the instruction is loaded into the EIP register. Note that a call gate (described in the
next paragraph) can also be used to perform far call to a code segment at the same
privilege level. Using this mechanism provides an extra level of indirection and is the
preferred method of making jumps between 16-bit and 32-bit code segments.
When executing a far jump through a call gate, the segment selector specified by the
target operand identifies the call gate. (The offset part of the target operand is
ignored.) The processor then jumps to the code segment specified in the call gate
descriptor and begins executing the instruction at the offset specified in the call gate.
No stack switch occurs. Here again, the target operand can specify the far address of
the call gate either directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a
memory location (m16:16 or m16:32).
Executing a task switch with the JMP instruction is somewhat similar to executing a
jump through a call gate. Here the target operand specifies the segment selector of
the task gate for the task being switched to (and the offset part of the target operand
is ignored). The task gate in turn points to the TSS for the task, which contains the
segment selectors for the task’s code and stack segments. The TSS also contains the
EIP value for the next instruction that was to be executed before the task was
suspended. This instruction pointer value is loaded into the EIP register so that the
task begins executing again at this next instruction.
The JMP instruction can also specify the segment selector of the TSS directly, which
eliminates the indirection of the task gate. See Chapter 6 in Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A, for detailed information on
the mechanics of a task switch.
Note that when you execute at task switch with a JMP instruction, the nested task
flag (NT) is not set in the EFLAGS register and the new TSS’s previous task link field
is not loaded with the old task’s TSS selector. A return to the previous task can thus
not be carried out by executing the IRET instruction. Switching tasks with the JMP
instruction differs in this regard from the CALL instruction which does set the NT flag
3-510 Vol. 2A
JMP—Jump
INSTRUCTION SET REFERENCE, A-M
and save the previous task link information, allowing a return to the calling task with
an IRET instruction.
In 64-Bit Mode — The instruction’s operation size is fixed at 64 bits. If a selector
points to a gate, then RIP equals the 64-bit displacement taken from gate; else RIP
equals the zero-extended offset from the far pointer referenced in the instruction.
See the summary chart at the beginning of this section for encoding data and limits.
Operation
IF near jump
IF 64-bit Mode
THEN
IF near relative jump
THEN
tempRIP ←RIP +DEST; (* RIP is instruction following JMP instruction*)
ELSE (* Near absolute jump *)
tempRIP ←DEST;
FI:
ELSE
IF near relative jump
THEN
tempEIP ←EIP +DEST; (* EIP is instruction following JMP instruction*)
ELSE (* Near absolute jump *)
tempEIP ←DEST;
FI:
FI;
IF (IA32_EFER.LMA = 0 or target mode = Compatibility mode)
and tempEIP outside code segment limit
THEN #GP(0); FI
IF 64-bit mode and tempRIP is not canonical
THEN #GP(0);
FI;
IF OperandSize = 32
THEN
EIP ←tempEIP;
ELSE
IF OperandSize = 16
THEN (* OperandSize = 16 *)
EIP ←tempEIP AND 0000FFFFH;
ELSE (* OperandSize = 64)
RIP ←tempRIP;
FI;
FI;
JMP—Jump
Vol. 2A 3-511
INSTRUCTION SET REFERENCE, A-M
FI;
IF far jump and (PE = 0 or (PE = 1 AND VM = 1)) (* Real-address or virtual-8086 mode *)
THEN
tempEIP ←DEST(Offset); (* DEST is ptr16:32 or [m16:32] *)
IF tempEIP is beyond code segment limit
THEN #GP(0); FI;
CS ←DEST(segment selector); (* DEST is ptr16:32 or [m16:32] *)
IF OperandSize = 32
THEN
EIP ←tempEIP; (* DEST is ptr16:32 or [m16:32] *)
ELSE (* OperandSize = 16 *)
EIP ←tempEIP AND 0000FFFFH; (* Clear upper 16 bits *)
FI;
FI;
IF far jump and (PE = 1 and VM = 0)
(* IA-32e mode or protected mode, not virtual-8086 mode *)
THEN
IF effective address in the CS, DS, ES, FS, GS, or SS segment is illegal
or segment selector in target operand NULL
THEN #GP(0); FI;
IF segment selector index not within descriptor table limits
THEN #GP(new selector); FI;
Read type and access rights of segment descriptor;
IF (EFER.LMA = 0)
THEN
IF segment type is not a conforming or nonconforming code
segment, call gate, task gate, or TSS
THEN #GP(segment selector); FI;
ELSE
IF segment type is not a conforming or nonconforming code segment
call gate
THEN #GP(segment selector); FI;
FI;
Depending on type and access rights:
GO TO CONFORMING-CODE-SEGMENT;
GO TO NONCONFORMING-CODE-SEGMENT;
GO TO CALL-GATE;
GO TO TASK-GATE;
GO TO TASK-STATE-SEGMENT;
ELSE
#GP(segment selector);
FI;
CONFORMING-CODE-SEGMENT:
IF L-Bit = 1 and D-BIT = 1 and IA32_EFER.LMA = 1
3-512 Vol. 2A
JMP—Jump
INSTRUCTION SET REFERENCE, A-M
THEN GP(new code segment selector); FI;
IF DPL >CPL
THEN #GP(segment selector); FI;
IF segment not present
THEN #NP(segment selector); FI;
tempEIP ←DEST(Offset);
IF OperandSize = 16
THEN tempEIP ←tempEIP AND 0000FFFFH;
FI;
IF (IA32_EFER.LMA = 0 or target mode = Compatibility mode) and
tempEIP outside code segment limit
THEN #GP(0); FI
IF tempEIP is non-canonical
THEN #GP(0); FI;
CS ←DEST[segment selector]; (* Segment descriptor information also loaded *)
CS(RPL) ←CPL
EIP ←tempEIP;
END;
NONCONFORMING-CODE-SEGMENT:
IF L-Bit = 1 and D-BIT = 1 and IA32_EFER.LMA = 1
THEN GP(new code segment selector); FI;
IF (RPL >CPL) OR (DPL ≠ CPL)
THEN #GP(code segment selector); FI;
IF segment not present
THEN #NP(segment selector); FI;
tempEIP ←DEST(Offset);
IF OperandSize = 16
THEN tempEIP ←tempEIP AND 0000FFFFH; FI;
IF (IA32_EFER.LMA = 0 OR target mode = Compatibility mode)
and tempEIP outside code segment limit
THEN #GP(0); FI
IF tempEIP is non-canonical THEN #GP(0); FI;
CS ←DEST[segment selector]; (* Segment descriptor information also loaded *)
CS(RPL) ←CPL;
EIP ←tempEIP;
END;
CALL-GATE:
IF call gate DPL < CPL
or call gate DPL < call gate segment-selector RPL
THEN #GP(call gate selector); FI;
IF call gate not present
THEN #NP(call gate selector); FI;
IF call gate code-segment selector is NULL
JMP—Jump
Vol. 2A 3-513
INSTRUCTION SET REFERENCE, A-M
THEN #GP(0); FI;
IF call gate code-segment selector index outside descriptor table limits
THEN #GP(code segment selector); FI;
Read code segment descriptor;
IF code-segment segment descriptor does not indicate a code segment
or code-segment segment descriptor is conforming and DPL >CPL
or code-segment segment descriptor is non-conforming and DPL ≠ CPL
THEN #GP(code segment selector); FI;
IF IA32_EFER.LMA = 1 and (code-segment descriptor is not a 64-bit code segment
or code-segment segment descriptor has both L-Bit and D-bit set)
THEN #GP(code segment selector); FI;
IF code segment is not present
THEN #NP(code-segment selector); FI;
IF instruction pointer is not within code-segment limit
THEN #GP(0); FI;
tempEIP ←DEST(Offset);
IF GateSize = 16
THEN tempEIP ←tempEIP AND 0000FFFFH; FI;
IF (IA32_EFER.LMA = 0 OR target mode = Compatibility mode) AND tempEIP
outside code segment limit
THEN #GP(0); FI
CS ←DEST[SegmentSelector); (* Segment descriptor information also loaded *)
CS(RPL) ←CPL;
EIP ←tempEIP;
END;
TASK-GATE:
IF task gate DPL < CPL
or task gate DPL < task gate segment-selector RPL
THEN #GP(task gate selector); FI;
IF task gate not present
THEN #NP(gate selector); FI;
Read the TSS segment selector in the task-gate descriptor;
IF TSS segment selector local/global bit is set to local
or index not within GDT limits
or TSS descriptor specifies that the TSS is busy
THEN #GP(TSS selector); FI;
IF TSS not present
THEN #NP(TSS selector); FI;
SWITCH-TASKS to TSS;
IF EIP not within code segment limit
THEN #GP(0); FI;
END;
TASK-STATE-SEGMENT:
IF TSS DPL < CPL
3-514 Vol. 2A
JMP—Jump
INSTRUCTION SET REFERENCE, A-M
or TSS DPL < TSS segment-selector RPL
or TSS descriptor indicates TSS not available
THEN #GP(TSS selector); FI;
IF TSS is not present
THEN #NP(TSS selector); FI;
SWITCH-TASKS to TSS;
IF EIP not within code segment limit
THEN #GP(0); FI;
END;
Flags Affected
All flags are affected if a task switch occurs; no flags are affected if a task switch does
not occur.
Protected Mode Exceptions
#GP(0)
If offset in target operand, call gate, or TSS is beyond the code
segment limits.
If the segment selector in the destination operand, call gate,
task gate, or TSS is NULL.
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.
#GP(selector)
If the segment selector index is outside descriptor table limits.
If the segment descriptor pointed to by the segment selector in
the destination operand is not for a conforming-code segment,
nonconforming-code segment, call gate, task gate, or task state
segment.
If the DPL for a nonconforming-code segment is not equal to the
CPL
(When not using a call gate.) If the RPL for the segment’s
segment selector is greater than the CPL.
If the DPL for a conforming-code segment is greater than the
CPL.
If the DPL from a call-gate, task-gate, or TSS segment
descriptor is less than the CPL or than the RPL of the call-gate,
task-gate, or TSS’s segment selector.
If the segment descriptor for selector in a call gate does not indi-
cate it is a code segment.
If the segment descriptor for the segment selector in a task gate
does not indicate an available TSS.
JMP—Jump
Vol. 2A 3-515
INSTRUCTION SET REFERENCE, A-M
If the segment selector for a TSS has its local/global bit set for
local.
If a TSS segment descriptor specifies that the TSS is busy or not
available.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#NP (selector)
If the code segment being accessed is not present.
If call gate, task gate, or TSS not present.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3. (Only
occurs when fetching target from memory.)
#UD
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS
#UD
If a memory operand effective address is outside the SS
segment limit.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
#GP(0)
If the target operand is beyond the code segment limits.
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made. (Only occurs when fetching target from
memory.)
#UD
If the LOCK prefix is used.
Compatibility Mode Exceptions
Same as 64-bit mode exceptions.
64-Bit Mode Exceptions
#GP(0)
If a memory address is non-canonical.
3-516 Vol. 2A
JMP—Jump
INSTRUCTION SET REFERENCE, A-M
If target offset in destination operand is non-canonical.
If target offset in destination operand is beyond the new code
segment limit.
If the segment selector in the destination operand is NULL.
If the code segment selector in the 64-bit gate is NULL.
#GP(selector)
If the code segment or 64-bit call gate is outside descriptor table
limits.
If the code segment or 64-bit call gate overlaps non-canonical
space.
If the segment descriptor from a 64-bit call gate is in non-
canonical space.
If the segment descriptor pointed to by the segment selector in
the destination operand is not for a conforming-code segment,
nonconforming-code segment, 64-bit call gate.
If the segment descriptor pointed to by the segment selector in
the destination operand is a code segment, and has both the
D-bit and the L-bit set.
If the DPL for a nonconforming-code segment is not equal to the
CPL, or the RPL for the segment’s segment selector is greater
than the CPL.
If the DPL for a conforming-code segment is greater than the
CPL.
If the DPL from a 64-bit call-gate is less than the CPL or than the
RPL of the 64-bit call-gate.
If the upper type field of a 64-bit call gate is not 0x0.
If the segment selector from a 64-bit call gate is beyond the
descriptor table limits.
If the code segment descriptor pointed to by the selector in the
64-bit gate doesn't have the L-bit set and the D-bit clear.
If the segment descriptor for a segment selector from the 64-bit
call gate does not indicate it is a code segment.
If the code segment is non-confirming and CPL ≠ DPL.
If the code segment is confirming and CPL < DPL.
If a code segment or 64-bit call gate is not present.
#NP(selector)
#UD
(64-bit mode only) If a far jump is direct to an absolute address
in memory.
If the LOCK prefix is used.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
JMP—Jump
Vol. 2A 3-517
INSTRUCTION SET REFERENCE, A-M
LAHF—Load Status Flags into AH Register
Opcode
Instruction 64-Bit
Mode
Compat/
Leg Mode
Description
9F
LAHF
Invalid*
Valid
Load: AH ←EFLAGS(SF:ZF:0:AF:0:PF:1:CF).
NOTES:
* Valid in specific steppings. See Description section.
Description
This instruction executes as described above in compatibility mode and legacy mode.
It is valid in 64-bit mode only if CPUID.80000001H:ECX.LAHF-SAHF[bit 0] = 1.
Operation
IF 64-Bit Mode
THEN
IF CPUID.80000001H:ECX.LAHF-SAHF[bit 0] = 1;
THEN AH ←RFLAGS(SF:ZF:0:AF:0:PF:1:CF);
ELSE #UD;
FI;
ELSE
AH ←EFLAGS(SF:ZF:0:AF:0:PF:1:CF);
FI;
Flags Affected
None. The state of the flags in the EFLAGS register is not affected.
Protected Mode Exceptions
#UD
If the LOCK prefix is used.
Real-Address Mode Exceptions
Same exceptions as in protected mode.
Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
3-518 Vol. 2A
LAHF—Load Status Flags into AH Register
INSTRUCTION SET REFERENCE, A-M
64-Bit Mode Exceptions
#UD If CPUID.80000001H:ECX.LAHF-SAHF[bit 0] = 0.
If the LOCK prefix is used.
LAHF—Load Status Flags into AH Register
Vol. 2A 3-519
INSTRUCTION SET REFERENCE, A-M
LAR—Load Access Rights Byte
Opcode
0F 02 /r
0F 02 /r
Instruction
64-Bit Mode Compat/
Leg Mode
Description
LAR r16, r16/m16 Valid
Valid
Valid
N.E.
r16 ←r16/m16 masked by
FF00H.
1
LAR r32, r32/m16 Valid
r32 ←r32/m16 masked by
00FxFF00H
1
REX.W +
0F 02 /r
LAR r64, r32/m16 Valid
r64 ←r32/m16 masked by
00FxFF00H and zero extended
NOTES:
1. For all loads (regardless of source or destination sizing) only bits 16-0 are used. Other bits are
ignored.
Description
Loads the access rights from the segment descriptor specified by the second operand
(source operand) into the first operand (destination operand) and sets the ZF flag in
the flag register. The source operand (which can be a register or a memory location)
contains the segment selector for the segment descriptor being accessed. If the
source operand is a memory address, only 16 bits of data are accessed. The destina-
tion operand is a general-purpose register.
The processor performs access checks as part of the loading process. Once loaded in
the destination register, software can perform additional checks on the access rights
information.
When the operand size is 32 bits, the access rights for a segment descriptor include
the type and DPL fields and the S, P, AVL, D/B, and G flags, all of which are located in
the second doubleword (bytes 4 through 7) of the segment descriptor. The double-
word is masked by 00FXFF00H before it is loaded into the destination operand. When
the operand size is 16 bits, the access rights include the type and DPL fields. Here,
the two lower-order bytes of the doubleword are masked by FF00H before being
loaded into the destination operand.
This instruction performs the following checks before it loads the access rights in the
destination register:
• Checks that the segment selector is not NULL.
• Checks that the segment selector points to a descriptor that is within the limits of
the GDT or LDT being accessed
• Checks that the descriptor type is valid for this instruction. All code and data
segment descriptors are valid for (can be accessed with) the LAR instruction. The
valid system segment and gate descriptor types are given in Table 3-57.
3-520 Vol. 2A
LAR—Load Access Rights Byte
INSTRUCTION SET REFERENCE, A-M
• If the segment is not a conforming code segment, it checks that the specified
segment descriptor is visible at the CPL (that is, if the CPL and the RPL of the
segment selector are less than or equal to the DPL of the segment selector).
If the segment descriptor cannot be accessed or is an invalid type for the instruction,
the ZF flag is cleared and no access rights are loaded in the destination operand.
The LAR instruction can only be executed in protected mode and IA-32e mode.
In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.W
prefix permits access to 64-bit registers as destination.
When the destination operand size is 64 bits, the access rights are loaded from the
second doubleword (bytes 4 through 7) of the segment descriptor. The doubleword is
masked by 00FXFF00H and zero extended to 64 bits before it is loaded into the desti-
nation operand.
Table 3-57. Segment and Gate Types
Type
Protected Mode
Name
IA-32e Mode
Name
Valid
No
Valid
No
No
No
No
No
No
No
No
No
Yes
No
Yes
Yes
No
No
No
0
1
2
3
4
5
6
7
8
9
A
B
C
Reserved
Reserved
Reserved
LDT
Available 16-bit TSS
LDT
Yes
Yes
Yes
Yes
Yes
No
Busy 16-bit TSS
16-bit call gate
16-bit/32-bit task gate
16-bit interrupt gate
16-bit trap gate
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
No
No
Available 32-bit TSS
Reserved
Yes
No
Available 64-bit TSS
Reserved
Busy 32-bit TSS
32-bit call gate
Reserved
Yes
Yes
No
Busy 64-bit TSS
64-bit call gate
Reserved
D
E
32-bit interrupt gate
32-bit trap gate
No
64-bit interrupt gate
64-bit trap gate
F
No
Operation
IF Offset(SRC) >descriptor table limit
THEN
LAR—Load Access Rights Byte
Vol. 2A 3-521
INSTRUCTION SET REFERENCE, A-M
ZF = 0;
ELSE
IF SegmentDescriptor(Type) ≠ conforming code segment
and (CPL >DPL) or (RPL >DPL)
or segment type is not valid for instruction
THEN
ZF ←0
ELSE
TEMP ←Read segment descriptor ;
IF OperandSize = 64
THEN
DEST ←(ACCESSRIGHTWORD(TEMP) AND 00000000_00FxFF00H);
ELSE (* OperandSize = 32*)
DEST ←(ACCESSRIGHTWORD(TEMP) AND 00FxFF00H);
ELSE (* OperandSize = 16 *)
DEST ←(ACCESSRIGHTWORD(TEMP) AND FF00H);
FI;
FI;
FI:
Flags Affected
The ZF flag is set to 1 if the access rights are loaded successfully; otherwise, it is set
to 0.
Protected Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and the memory operand effec-
tive address is unaligned while the current privilege level is 3.
#UD
If the LOCK prefix is used.
Real-Address Mode Exceptions
#UD
The LAR instruction is not recognized in real-address mode.
3-522 Vol. 2A
LAR—Load Access Rights Byte
INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions
#UD The LAR instruction cannot be executed in virtual-8086 mode.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If the memory operand effective address referencing the SS
segment is in a non-canonical form.
#GP(0)
If the memory operand effective address is in a non-canonical
form.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and the memory operand effec-
tive address is unaligned while the current privilege level is 3.
#UD
If the LOCK prefix is used.
LAR—Load Access Rights Byte
Vol. 2A 3-523
INSTRUCTION SET REFERENCE, A-M
LDDQU—Load Unaligned Integer 128 Bits
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
F2 0F F0 /r LDDQU xmm1, mem Valid
Valid
Load unaligned data from mem
and return double quadword in
xmm1.
Description
The instruction is functionally similar to MOVDQU xmm, m128 for loading from
memory. That is: 16 bytes of data starting at an address specified by the source
memory operand (second operand) are fetched from memory and placed in a desti-
nation register (first operand). The source operand need not be aligned on a 16-byte
boundary. Up to 32 bytes may be loaded from memory; this is implementation
dependent.
This instruction may improve performance relative to MOVDQU if the source operand
crosses a cache line boundary. In situations that require the data loaded by LDDQU
be modified and stored to the same location, use MOVDQU or MOVDQA instead of
LDDQU. To move a double quadword to or from memory locations that are known to
be aligned on 16-byte boundaries, use the MOVDQA instruction.
Implementation Notes
• If the source is aligned to a 16-byte boundary, based on the implementation, the
16 bytes may be loaded more than once. For that reason, the usage of LDDQU
should be avoided when using uncached or write-combining (WC) memory
regions. For uncached or WC memory regions, keep using MOVDQU.
• This instruction is a replacement for MOVDQU (load) in situations where cache
line splits significantly affect performance. It should not be used in situations
where store-load forwarding is performance critical. If performance of store-load
forwarding is critical to the application, use MOVDQA store-load pairs when data
is 128-bit aligned or MOVDQU store-load pairs when data is 128-bit unaligned.
• If the memory address is not aligned on 16-byte boundary, some implementa-
tions may load up to 32 bytes and return 16 bytes in the destination. Some
processor implementations may issue multiple loads to access the appropriate 16
bytes. Developers of multi-threaded or multi-processor software should be aware
that on these processors the loads will be performed in a non-atomic way.
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
xmm[127:0] = m128;
3-524 Vol. 2A
LDDQU—Load Unaligned Integer 128 Bits
INSTRUCTION SET REFERENCE, A-M
Intel C/C++Compiler Intrinsic Equivalent
LDDQU
__m128i _mm_lddqu_si128(__m128i const *p)
Numeric Exceptions
None.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
#SS(0)
For an illegal address in the SS segment.
For a page fault.
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
#UD
If CR4.OSFXSR[bit 9] = 0.
If CR0.EM[bit 2] = 1.
If CPUID.01H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
Real Address Mode Exceptions
GP(0)
If any part of the operand would lie outside of the effective
address space from 0 to 0FFFFH.
#NM
#UD
If CR0.TS[bit 3] = 1.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.
Virtual 8086 Mode Exceptions
GP(0)
If any part of the operand would lie outside of the effective
address space from 0 to 0FFFFH.
#NM
#UD
If CR0.TS[bit 3] = 1.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.
For a page fault.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made.
LDDQU—Load Unaligned Integer 128 Bits
Vol. 2A 3-525
INSTRUCTION SET REFERENCE, A-M
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#NM
If the memory address is in a non-canonical form.
If CR0.TS[bit 3] = 1.
#UD
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.
If a page fault occurs.
#PF(fault-code)
3-526 Vol. 2A
LDDQU—Load Unaligned Integer 128 Bits
INSTRUCTION SET REFERENCE, A-M
LDMXCSR—Load MXCSR Register
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
0F,AE,/2
LDMXCSR m32
Valid
Valid
Load MXCSR register from m32.
Description
Loads the source operand into the MXCSR control/status register. The source
operand is a 32-bit memory location. See “MXCSR Control and Status Register” in
Chapter 10, of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1, for a description of the MXCSR register and its contents.
The LDMXCSR instruction is typically used in conjunction with the STMXCSR instruc-
tion, which stores the contents of the MXCSR register in memory.
The default MXCSR value at reset is 1F80H.
If a LDMXCSR instruction clears a SIMD floating-point exception mask bit and sets
the corresponding exception flag bit, a SIMD floating-point exception will not be
immediately generated. The exception will be generated only upon the execution of
the next SSE or SSE2 instruction that causes that particular SIMD floating-point
exception to be reported.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
Operation
MXCSR ←m32;
C/C++Compiler Intrinsic Equivalent
_mm_setcsr(unsigned int i)
Numeric Exceptions
None.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.
For an attempt to set reserved bits in MXCSR.
For an illegal address in the SS segment.
For a page fault.
#SS(0)
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
#UD
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
LDMXCSR—Load MXCSR Register
Vol. 2A 3-527
INSTRUCTION SET REFERENCE, A-M
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
Real Address Mode Exceptions
GP(0)
If any part of the operand would lie outside of the effective
address space from 0 to FFFFH.
For an attempt to set reserved bits in MXCSR.
If CR0.TS[bit 3] = 1.
#NM
#UD
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
Virtual 8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
#AC(0)
For a page fault.
If alignment checking is enabled and an unaligned memory
reference is made.
If the LOCK prefix is used.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
For an attempt to set reserved bits in MXCSR.
For a page fault.
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
#UD
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
3-528 Vol. 2A
LDMXCSR—Load MXCSR Register
INSTRUCTION SET REFERENCE, A-M
LDS/LES/LFS/LGS/LSS—Load Far Pointer
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
C5 /r
LDS
r16,m16:16
Invalid
Valid
Valid
Valid
Valid
N.E.
Load DS:r16 with far pointer from
memory.
C5 /r
LDS
r32,m16:32
Invalid
Load DS:r32 with far pointer from
memory.
0F B2 /r
0F B2 /r
LSS r16,m16:16 Valid
Load SS:r16 with far pointer from
memory.
LSS r32,m16:32 Valid
Load SS:r32 with far pointer from
memory.
REX + 0F B2 /r LSS r64,m16:64 Valid
Load SS:r64 with far pointer from
memory.
C4 /r
LES r16,m16:16 Invalid
LES r32,m16:32 Invalid
LFS r16,m16:16 Valid
LFS r32,m16:32 Valid
Valid
Valid
Valid
Valid
N.E.
Load ES:r16 with far pointer from
memory.
C4 /r
Load ES:r32 with far pointer from
memory.
0F B4 /r
0F B4 /r
Load FS:r16 with far pointer from
memory.
Load FS:r32 with far pointer from
memory.
REX + 0F B4 /r LFS r64,m16:64 Valid
Load FS:r64 with far pointer from
memory.
0F B5 /r
LGS
r16,m16:16
Valid
Valid
Valid
Valid
Valid
N.E.
Load GS:r16 with far pointer from
memory.
0F B5 /r
LGS
r32,m16:32
Load GS:r32 with far pointer from
memory.
REX + 0F B5 /r LGS
r64,m16:64
Load GS:r64 with far pointer from
memory.
Description
Loads a far pointer (segment selector and offset) from the second operand (source
operand) into a segment register and the first operand (destination operand). The
source operand specifies a 48-bit or a 32-bit pointer in memory depending on the
current setting of the operand-size attribute (32 bits or 16 bits, respectively). The
instruction opcode and the destination operand specify a segment register/general-
purpose register pair. The 16-bit segment selector from the source operand is loaded
into the segment register specified with the opcode (DS, SS, ES, FS, or GS). The
32-bit or 16-bit offset is loaded into the register specified with the destination
operand.
LDS/LES/LFS/LGS/LSS—Load Far Pointer
Vol. 2A 3-529
INSTRUCTION SET REFERENCE, A-M
If one of these instructions is executed in protected mode, additional information
from the segment descriptor pointed to by the segment selector in the source
operand is loaded in the hidden part of the selected segment register.
Also in protected mode, a NULL selector (values 0000 through 0003) can be loaded
into DS, ES, FS, or GS registers without causing a protection exception. (Any subse-
quent reference to a segment whose corresponding segment register is loaded with
a NULL selector, causes a general-protection exception (#GP) and no memory refer-
ence to the segment occurs.)
In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.W promotes operation to specify a source operand referencing an
80-bit pointer (16-bit selector, 64-bit offset) in memory. Using a REX prefix in the
form of REX.R permits access to additional registers (R8-R15). See the summary
chart at the beginning of this section for encoding data and limits.
Operation
64-BIT_MODE
IF SS is loaded
THEN
IF SegmentSelector = NULL and ( (RPL = 3) or
(RPL ≠ 3 and RPL ≠ CPL) )
THEN #GP(0);
ELSE IF descriptor is in non-canonical space
THEN #GP(0); FI;
ELSE IF Segment selector index is not within descriptor table limits
or segment selector RPL ≠ CPL
or access rights indicate nonwritable data segment
or DPL ≠ CPL
THEN #GP(selector); FI;
ELSE IF Segment marked not present
THEN #SS(selector); FI;
FI;
SS ←SegmentSelector(SRC);
SS ←SegmentDescriptor([SRC]);
ELSE IF attempt to load DS, or ES
THEN #UD;
ELSE IF FS, or GS is loaded with non-NULL segment selector
THEN IF Segment selector index is not within descriptor table limits
or access rights indicate segment neither data nor readable code segment
or segment is data or nonconforming-code segment
and ( RPL > DPL or CPL >DPL)
THEN #GP(selector); FI;
ELSE IF Segment marked not present
THEN #NP(selector); FI;
3-530 Vol. 2A
LDS/LES/LFS/LGS/LSS—Load Far Pointer
INSTRUCTION SET REFERENCE, A-M
FI;
SegmentRegister ←SegmentSelector(SRC) ;
SegmentRegister ←SegmentDescriptor([SRC]);
FI;
ELSE IF FS, or GS is loaded with a NULL selector:
THEN
SegmentRegister ←NULLSelector;
SegmentRegister(DescriptorValidBit) ←0; FI; (* Hidden flag;
not accessible by software *)
FI;
DEST ←Offset(SRC);
PREOTECTED MODE OR COMPATIBILITY MODE;
IF SS is loaded
THEN
IF SegementSelector = NULL
THEN #GP(0);
ELSE IF Segment selector index is not within descriptor table limits
or segment selector RPL ≠ CPL
or access rights indicate nonwritable data segment
or DPL ≠ CPL
THEN #GP(selector); FI;
ELSE IF Segment marked not present
THEN #SS(selector); FI;
FI;
SS ←SegmentSelector(SRC);
SS ←SegmentDescriptor([SRC]);
ELSE IF DS, ES, FS, or GS is loaded with non-NULL segment selector
THEN IF Segment selector index is not within descriptor table limits
or access rights indicate segment neither data nor readable code segment
or segment is data or nonconforming-code segment
and (RPL > DPL or CPL >DPL)
THEN #GP(selector); FI;
ELSE IF Segment marked not present
THEN #NP(selector); FI;
FI;
SegmentRegister ←SegmentSelector(SRC) AND RPL;
SegmentRegister ←SegmentDescriptor([SRC]);
FI;
ELSE IF DS, ES, FS, or GS is loaded with a NULL selector:
THEN
SegmentRegister ←NULLSelector;
SegmentRegister(DescriptorValidBit) ←0; FI; (* Hidden flag;
not accessible by software *)
LDS/LES/LFS/LGS/LSS—Load Far Pointer
Vol. 2A 3-531
INSTRUCTION SET REFERENCE, A-M
FI;
DEST ←Offset(SRC);
Real-Address or Virtual-8086 Mode
SegmentRegister ←SegmentSelector(SRC); FI;
DEST ←Offset(SRC);
Flags Affected
None.
Protected Mode Exceptions
#UD
If source operand is not a memory location.
If the LOCK prefix is used.
#GP(0)
If a NULL selector is loaded into the SS register.
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.
#GP(selector)
If the SS register is being loaded and any of the following is true:
the segment selector index is not within the descriptor table
limits, the segment selector RPL is not equal to CPL, the
segment is a non-writable data segment, or DPL is not equal to
CPL.
If the DS, ES, FS, or GS register is being loaded with a non-NULL
segment selector and any of the following is true: the segment
selector index is not within descriptor table limits, the segment
is neither a data nor a readable code segment, or the segment is
a data or nonconforming-code segment and both RPL and CPL
are greater than DPL.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#SS(selector)
#NP(selector)
If the SS register is being loaded and the segment is marked not
present.
If DS, ES, FS, or GS register is being loaded with a non-NULL
segment selector and the segment is marked not present.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
Real-Address Mode Exceptions
#GP
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
3-532 Vol. 2A
LDS/LES/LFS/LGS/LSS—Load Far Pointer
INSTRUCTION SET REFERENCE, A-M
#SS
#UD
If a memory operand effective address is outside the SS
segment limit.
If source operand is not a memory location.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
#UD
If source operand is not a memory location.
If the LOCK prefix is used.
#GP(0)
#SS(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#GP(0)
If the memory address is in a non-canonical form.
If a NULL selector is attempted to be loaded into the SS register
in compatibility mode.
If a NULL selector is attempted to be loaded into the SS register
in CPL3 and 64-bit mode.
If a NULL selector is attempted to be loaded into the SS register
in non-CPL3 and 64-bit mode where its RPL is not equal to CPL.
#GP(Selector)
If the FS, or GS register is being loaded with a non-NULL
segment selector and any of the following is true: the segment
selector index is not within descriptor table limits, the memory
address of the descriptor is non-canonical, the segment is
neither a data nor a readable code segment, or the segment is a
data or nonconforming-code segment and both RPL and CPL are
greater than DPL.
If the SS register is being loaded and any of the following is true:
the segment selector index is not within the descriptor table
limits, the memory address of the descriptor is non-canonical,
the segment selector RPL is not equal to CPL, the segment is a
nonwritable data segment, or DPL is not equal to CPL.
#SS(0)
If a memory operand effective address is non-canonical
#SS(Selector)
If the SS register is being loaded and the segment is marked not
present.
LDS/LES/LFS/LGS/LSS—Load Far Pointer
Vol. 2A 3-533
INSTRUCTION SET REFERENCE, A-M
#NP(selector)
If FS, or GS register is being loaded with a non-NULL segment
selector and the segment is marked not present.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If source operand is not a memory location.
If the LOCK prefix is used.
3-534 Vol. 2A
LDS/LES/LFS/LGS/LSS—Load Far Pointer
INSTRUCTION SET REFERENCE, A-M
LEA—Load Effective Address
Opcode
Instruction
LEA r16,m
LEA r32,m
64-Bit
Mode
Compat/
Description
Leg Mode
8D /r
Valid
Valid
Valid
Valid
Valid
N.E.
Store effective address for m in register
r16.
8D /r
Store effective address for m in register
r32.
REX.W + 8D /r LEA r64,m
Store effective address for m in register
r64.
Description
Computes the effective address of the second operand (the source operand) and
stores it in the first operand (destination operand). The source operand is a memory
address (offset part) specified with one of the processors addressing modes; the
destination operand is a general-purpose register. The address-size and operand-size
attributes affect the action performed by this instruction, as shown in the following
table. The operand-size attribute of the instruction is determined by the chosen
register; the address-size attribute is determined by the attribute of the code
segment.
Table 3-58. Non-64-bit Mode LEA Operation with Address and Operand Size
Attributes
Operand Size
Address Size
Action Performed
16
16
16-bit effective address is calculated and stored in
requested 16-bit register destination.
16
32
32
32
16
32
32-bit effective address is calculated. The lower 16 bits of
the address are stored in the requested 16-bit register
destination.
16-bit effective address is calculated. The 16-bit address is
zero-extended and stored in the requested 32-bit register
destination.
32-bit effective address is calculated and stored in the
requested 32-bit register destination.
Different assemblers may use different algorithms based on the size attribute and
symbolic reference of the source operand.
In 64-bit mode, the instruction’s destination operand is governed by operand size
attribute, the default operand size is 32 bits. Address calculation is governed by
address size attribute, the default address size is 64-bits. In 64-bit mode, address
size of 16 bits is not encodable. See Table 3-59.
LEA—Load Effective Address
Vol. 2A 3-535
INSTRUCTION SET REFERENCE, A-M
Table 3-59. 64-bit Mode LEA Operation with Address and Operand Size Attributes
Operand Size
Address Size
Action Performed
16
32
32-bit effective address is calculated (using 67H prefix). The
lower 16 bits of the address are stored in the requested
16-bit register destination (using 66H prefix).
16
64
64-bit effective address is calculated (default address size).
The lower 16 bits of the address are stored in the requested
16-bit register destination (using 66H prefix).
32
32
32
64
32-bit effective address is calculated (using 67H prefix) and
stored in the requested 32-bit register destination.
64-bit effective address is calculated (default address size)
and the lower 32 bits of the address are stored in the
requested 32-bit register destination.
64
64
32
64
32-bit effective address is calculated (using 67H prefix),
zero-extended to 64-bits, and stored in the requested 64-bit
register destination (using REX.W).
64-bit effective address is calculated (default address size)
and all 64-bits of the address are stored in the requested
64-bit register destination (using REX.W).
Operation
IF OperandSize = 16 and AddressSize = 16
THEN
DEST ←EffectiveAddress(SRC); (* 16-bit address *)
ELSE IF OperandSize = 16 and AddressSize = 32
THEN
temp ←EffectiveAddress(SRC); (* 32-bit address *)
DEST ←temp[0:15]; (* 16-bit address *)
FI;
ELSE IF OperandSize = 32 and AddressSize = 16
THEN
temp ←EffectiveAddress(SRC); (* 16-bit address *)
DEST ←ZeroExtend(temp); (* 32-bit address *)
FI;
ELSE IF OperandSize = 32 and AddressSize = 32
THEN
DEST ←EffectiveAddress(SRC); (* 32-bit address *)
FI;
ELSE IF OperandSize = 16 and AddressSize = 64
THEN
temp ←EffectiveAddress(SRC); (* 64-bit address *)
3-536 Vol. 2A
LEA—Load Effective Address
INSTRUCTION SET REFERENCE, A-M
DEST ←temp[0:15]; (* 16-bit address *)
FI;
ELSE IF OperandSize = 32 and AddressSize = 64
THEN
temp ←EffectiveAddress(SRC); (* 64-bit address *)
DEST ←temp[0:31]; (* 16-bit address *)
FI;
ELSE IF OperandSize = 64 and AddressSize = 64
THEN
DEST ←EffectiveAddress(SRC); (* 64-bit address *)
FI;
FI;
Flags Affected
None.
Protected Mode Exceptions
#UD
If source operand is not a memory location.
If the LOCK prefix is used.
Real-Address Mode Exceptions
Same exceptions as in protected mode.
Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
Same exceptions as in protected mode.
LEA—Load Effective Address
Vol. 2A 3-537
INSTRUCTION SET REFERENCE, A-M
LEAVE—High Level Procedure Exit
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
C9
C9
C9
LEAVE
LEAVE
LEAVE
Valid
N.E.
Valid
Valid
N.E.
Set SP to BP, then pop BP.
Set ESP to EBP, then pop EBP.
Set RSP to RBP, then pop RBP.
Valid
Description
Releases the stack frame set up by an earlier ENTER instruction. The LEAVE instruc-
tion copies the frame pointer (in the EBP register) into the stack pointer register
(ESP), which releases the stack space allocated to the stack frame. The old frame
pointer (the frame pointer for the calling procedure that was saved by the ENTER
instruction) is then popped from the stack into the EBP register, restoring the calling
procedure’s stack frame.
A RET instruction is commonly executed following a LEAVE instruction to return
program control to the calling procedure.
See “Procedure Calls for Block-Structured Languages” in Chapter 6 of the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 1, for detailed infor-
mation on the use of the ENTER and LEAVE instructions.
In 64-bit mode, the instruction’s default operation size is 64 bits; 32-bit operation
cannot be encoded. See the summary chart at the beginning of this section for
encoding data and limits.
Operation
IF StackAddressSize = 32
THEN
ESP ←EBP;
ELSE IF StackAddressSize = 64
THEN RSP ←RBP; FI;
ELSE IF StackAddressSize = 16
THEN SP ←BP; FI;
FI;
IF OperandSize = 32
THEN EBP ←Pop();
ELSE IF OperandSize = 64
THEN RBP ←Pop(); FI;
ELSE IF OperandSize = 16
THEN BP ←Pop(); FI;
FI;
3-538 Vol. 2A
LEAVE—High Level Procedure Exit
INSTRUCTION SET REFERENCE, A-M
Flags Affected
None.
Protected Mode Exceptions
#SS(0)
If the EBP register points to a location that is not within the
limits of the current stack segment.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP
If the EBP register points to a location outside of the effective
address space from 0 to FFFFH.
#UD
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
#GP(0)
If the EBP register points to a location outside of the effective
address space from 0 to FFFFH.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made.
#UD
If the LOCK prefix is used.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
#AC(0)
If the stack address is in a non-canonical form.
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
LEAVE—High Level Procedure Exit
Vol. 2A 3-539
INSTRUCTION SET REFERENCE, A-M
LFENCE—Load Fence
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
0F AE /5
LFENCE
Valid
Valid
Serializes load operations.
Description
Performs a serializing operation on all load-from-memory instructions that were
issued prior the LFENCE instruction. This serializing operation guarantees that every
load instruction that precedes in program order the LFENCE instruction is globally
visible before any load instruction that follows the LFENCE instruction is globally
visible. The LFENCE instruction is ordered with respect to load instructions, other
LFENCE instructions, any MFENCE instructions, and any serializing instructions (such
as the CPUID instruction). It is not ordered with respect to store instructions or the
SFENCE instruction.
Weakly ordered memory types can be used to achieve higher processor performance
through such techniques as out-of-order issue and speculative reads. The degree to
which a consumer of data recognizes or knows that the data is weakly ordered varies
among applications and may be unknown to the producer of this data. The LFENCE
instruction provides a performance-efficient way of insuring load ordering between
routines that produce weakly-ordered results and routines that consume that data.
It should be noted that processors are free to speculatively fetch and cache data from
system memory regions that are assigned a memory-type that permits speculative
reads (that is, the WB, WC, and WT memory types). The PREFETCHh instruction is
considered a hint to this speculative behavior. Because this speculative fetching can
occur at any time and is not tied to instruction execution, the LFENCE instruction is
not ordered with respect to PREFETCHh instructions or any other speculative fetching
mechanism (that is, data could be speculative loaded into the cache just before,
during, or after the execution of an LFENCE instruction).
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
Operation
Wait_On_Following_Loads_Until(preceding_loads_globally_visible);
Intel C/C++Compiler Intrinsic Equivalent
void _mm_lfence(void)
Exceptions (All Modes of Operation)
#UD
If the LOCK prefix is used.
3-540 Vol. 2A
LFENCE—Load Fence
INSTRUCTION SET REFERENCE, A-M
LGDT/LIDT—Load Global/Interrupt Descriptor Table Register
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
0F 01 /2
0F 01 /3
0F 01 /2
0F 01 /3
LGDT m16&32
LIDT m16&32
LGDT m16&64
LIDT m16&64
N.E.
Valid
Valid
N.E.
Load m into GDTR.
Load m into IDTR.
Load m into GDTR.
Load m into IDTR.
N.E.
Valid
Valid
N.E.
Description
Loads the values in the source operand into the global descriptor table register
(GDTR) or the interrupt descriptor table register (IDTR). The source operand speci-
fies a 6-byte memory location that contains the base address (a linear address) and
the limit (size of table in bytes) of the global descriptor table (GDT) or the interrupt
descriptor table (IDT). If operand-size attribute is 32 bits, a 16-bit limit (lower 2
bytes of the 6-byte data operand) and a 32-bit base address (upper 4 bytes of the
data operand) are loaded into the register. If the operand-size attribute is 16 bits,
a 16-bit limit (lower 2 bytes) and a 24-bit base address (third, fourth, and fifth byte)
are loaded. Here, the high-order byte of the operand is not used and the high-order
byte of the base address in the GDTR or IDTR is filled with zeros.
The LGDT and LIDT instructions are used only in operating-system software; they are
not used in application programs. They are the only instructions that directly load a
linear address (that is, not a segment-relative address) and a limit in protected
mode. They are commonly executed in real-address mode to allow processor initial-
ization prior to switching to protected mode.
In 64-bit mode, the instruction’s operand size is fixed at 8+2 bytes (an 8-byte base
and a 2-byte limit). See the summary chart at the beginning of this section for
encoding data and limits.
See “SGDT—Store Global Descriptor Table Register” in Chapter 4, Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 2B, for information on
storing the contents of the GDTR and IDTR.
Operation
IF Instruction is LIDT
THEN
IF OperandSize = 16
THEN
IDTR(Limit) ←SRC[0:15];
IDTR(Base) ←SRC[16:47] AND 00FFFFFFH;
ELSE IF 32-bit Operand Size
THEN
LGDT/LIDT—Load Global/Interrupt Descriptor Table Register
Vol. 2A 3-541
INSTRUCTION SET REFERENCE, A-M
IDTR(Limit) ←SRC[0:15];
IDTR(Base) ←SRC[16:47];
FI;
ELSE IF 64-bit Operand Size (* In 64-Bit Mode *)
THEN
IDTR(Limit) ←SRC[0:15];
IDTR(Base) ←SRC[16:79];
FI;
FI;
ELSE (* Instruction is LGDT *)
IF OperandSize = 16
THEN
GDTR(Limit) ←SRC[0:15];
GDTR(Base) ←SRC[16:47] AND 00FFFFFFH;
ELSE IF 32-bit Operand Size
THEN
GDTR(Limit) ←SRC[0:15];
GDTR(Base) ←SRC[16:47];
FI;
ELSE IF 64-bit Operand Size (* In 64-Bit Mode *)
THEN
GDTR(Limit) ←SRC[0:15];
GDTR(Base) ←SRC[16:79];
FI;
FI;
FI;
Flags Affected
None.
Protected Mode Exceptions
#UD
If source operand is not a memory location.
If the LOCK prefix is used.
#GP(0)
If the current privilege level is not 0.
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
If a page fault occurs.
3-542 Vol. 2A
LGDT/LIDT—Load Global/Interrupt Descriptor Table Register
INSTRUCTION SET REFERENCE, A-M
Real-Address Mode Exceptions
#UD
If source operand is not a memory location.
If the LOCK prefix is used.
#GP
#SS
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If a memory operand effective address is outside the SS
segment limit.
Virtual-8086 Mode Exceptions
#UD
If source operand is not a memory location.
If the LOCK prefix is used.
#GP(0)
#GP
The LGDT and LIDT instructions are not recognized in virtual-
8086 mode.
If the current privilege level is not 0.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the current privilege level is not 0.
If the memory address is in a non-canonical form.
If source operand is not a memory location.
If the LOCK prefix is used.
#UD
#PF(fault-code)
If a page fault occurs.
LGDT/LIDT—Load Global/Interrupt Descriptor Table Register
Vol. 2A 3-543
INSTRUCTION SET REFERENCE, A-M
LLDT—Load Local Descriptor Table Register
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
0F 00 /2
LLDT r/m16
Valid
Valid
Load segment selector r/m16 into
LDTR.
Description
Loads the source operand into the segment selector field of the local descriptor table
register (LDTR). The source operand (a general-purpose register or a memory loca-
tion) contains a segment selector that points to a local descriptor table (LDT). After
the segment selector is loaded in the LDTR, the processor uses the segment selector
to locate the segment descriptor for the LDT in the global descriptor table (GDT). It
then loads the segment limit and base address for the LDT from the segment
descriptor into the LDTR. The segment registers DS, ES, SS, FS, GS, and CS are not
affected by this instruction, nor is the LDTR field in the task state segment (TSS) for
the current task.
If bits 2-15 of the source operand are 0, LDTR is marked invalid and the LLDT instruc-
tion completes silently. However, all subsequent references to descriptors in the LDT
(except by the LAR, VERR, VERW or LSL instructions) cause a general protection
exception (#GP).
The operand-size attribute has no effect on this instruction.
The LLDT instruction is provided for use in operating-system software; it should not
be used in application programs. This instruction can only be executed in protected
mode or 64-bit mode.
In 64-bit mode, the operand size is fixed at 16 bits.
Operation
IF SRC(Offset) >descriptor table limit
THEN #GP(segment selector); FI;
IF segment selector is valid
Read segment descriptor;
IF SegmentDescriptor(Type) ≠ LDT
THEN #GP(segment selector); FI;
IF segment descriptor is not present
THEN #NP(segment selector); FI;
LDTR(SegmentSelector) ←SRC;
LDTR(SegmentDescriptor) ←GDTSegmentDescriptor;
3-544 Vol. 2A
LLDT—Load Local Descriptor Table Register
INSTRUCTION SET REFERENCE, A-M
ELSE LDTR ←INVALID
FI;
Flags Affected
None.
Protected Mode Exceptions
#GP(0)
If the current privilege level is not 0.
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.
#GP(selector)
#SS(0)
If the selector operand does not point into the Global Descriptor
Table or if the entry in the GDT is not a Local Descriptor Table.
Segment selector is beyond GDT limit.
If a memory operand effective address is outside the SS
segment limit.
#NP(selector)
#PF(fault-code)
#UD
If the LDT descriptor is not present.
If a page fault occurs.
If the LOCK prefix is used.
Real-Address Mode Exceptions
#UD
The LLDT instruction is not recognized in real-address mode.
Virtual-8086 Mode Exceptions
#UD
The LLDT instruction is not recognized in virtual-8086 mode.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the current privilege level is not 0.
If the memory address is in a non-canonical form.
#GP(selector)
#NP(selector)
If the selector operand does not point into the Global Descriptor
Table or if the entry in the GDT is not a Local Descriptor Table.
Segment selector is beyond GDT limit.
If the LDT descriptor is not present.
LLDT—Load Local Descriptor Table Register
Vol. 2A 3-545
INSTRUCTION SET REFERENCE, A-M
#PF(fault-code)
#UD
If a page fault occurs.
If the LOCK prefix is used.
3-546 Vol. 2A
LLDT—Load Local Descriptor Table Register
INSTRUCTION SET REFERENCE, A-M
LMSW—Load Machine Status Word
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
0F 01 /6
LMSW r/m16
Valid
Valid
Loads r/m16 in machine status word
of CR0.
Description
Loads the source operand into the machine status word, bits 0 through 15 of register
CR0. The source operand can be a 16-bit general-purpose register or a memory loca-
tion. Only the low-order 4 bits of the source operand (which contains the PE, MP, EM,
and TS flags) are loaded into CR0. The PG, CD, NW, AM, WP, NE, and ET flags of CR0
are not affected. The operand-size attribute has no effect on this instruction.
If the PE flag of the source operand (bit 0) is set to 1, the instruction causes the
processor to switch to protected mode. While in protected mode, the LMSW instruc-
tion cannot be used to clear the PE flag and force a switch back to real-address mode.
The LMSW instruction is provided for use in operating-system software; it should not
be used in application programs. In protected or virtual-8086 mode, it can only be
executed at CPL 0.
This instruction is provided for compatibility with the Intel 286 processor; programs
and procedures intended to run on the Pentium 4, Intel Xeon, P6 family, Pentium,
Intel486, and Intel386 processors should use the MOV (control registers) instruction
to load the whole CR0 register. The MOV CR0 instruction can be used to set and clear
the PE flag in CR0, allowing a procedure or program to switch between protected and
real-address modes.
This instruction is a serializing instruction.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode. Note
that the operand size is fixed at 16 bits.
See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 21 of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, for
more information about the behavior of this instruction in VMX non-root operation.
Operation
CR0[0:3] ←SRC[0:3];
Flags Affected
None.
LMSW—Load Machine Status Word
Vol. 2A 3-547
INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#GP(0)
If the current privilege level is not 0.
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#UD
If a page fault occurs.
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#UD
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#UD
If a page fault occurs.
If the LOCK prefix is used.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the current privilege level is not 0.
If the memory address is in a non-canonical form.
If a page fault occurs.
#PF(fault-code)
#UD
If the LOCK prefix is used.
3-548 Vol. 2A
LMSW—Load Machine Status Word
INSTRUCTION SET REFERENCE, A-M
LOCK—Assert LOCK# Signal Prefix
Opcode*
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
F0
LOCK
Valid
Valid
Asserts LOCK# signal for duration of
the accompanying instruction.
NOTES:
* See IA-32 Architecture Compatibility section below.
Description
Causes the processor’s LOCK# signal to be asserted during execution of the accom-
panying instruction (turns the instruction into an atomic instruction). In a multipro-
cessor environment, the LOCK# signal insures that the processor has exclusive use
of any shared memory while the signal is asserted.
Note that, in later Intel 64 and IA-32 processors (including the Pentium 4, Intel Xeon,
and P6 family processors), locking may occur without the LOCK# signal being
asserted. See the “IA-32 Architecture Compatibility” section below.
The LOCK prefix can be prepended only to the following instructions and only to those
forms of the instructions where the destination operand is a memory operand: ADD,
ADC, AND, BTC, BTR, BTS, CMPXCHG, CMPXCH8B, DEC, INC, NEG, NOT, OR, SBB,
SUB, XOR, XADD, and XCHG. If the LOCK prefix is used with one of these instructions
and the source operand is a memory operand, an undefined opcode exception (#UD)
may be generated. An undefined opcode exception will also be generated if the LOCK
prefix is used with any instruction not in the above list. The XCHG instruction always
asserts the LOCK# signal regardless of the presence or absence of the LOCK prefix.
The LOCK prefix is typically used with the BTS instruction to perform a read-modify-
write operation on a memory location in shared memory environment.
The integrity of the LOCK prefix is not affected by the alignment of the memory field.
Memory locking is observed for arbitrarily misaligned fields.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
IA-32 Architecture Compatibility
Beginning with the P6 family processors, when the LOCK prefix is prefixed to an
instruction and the memory area being accessed is cached internally in the
processor, the LOCK# signal is generally not asserted. Instead, only the processor’s
cache is locked. Here, the processor’s cache coherency mechanism insures that the
operation is carried out atomically with regards to memory. See “Effects of a Locked
Operation on Internal Processor Caches” in Chapter 7 of Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3A, the for more information on
locking of caches.
LOCK—Assert LOCK# Signal Prefix
Vol. 2A 3-549
INSTRUCTION SET REFERENCE, A-M
Operation
AssertLOCK#(DurationOfAccompaningInstruction);
Flags Affected
None.
Protected Mode Exceptions
#UD
If the LOCK prefix is used with an instruction not listed: ADD,
ADC, AND, BTC, BTR, BTS, CMPXCHG, CMPXCH8B, DEC, INC,
NEG, NOT, OR, SBB, SUB, XOR, XADD, XCHG.
Other exceptions can be generated by the instruction when the
LOCK prefix is applied.
Real-Address Mode Exceptions
Same exceptions as in protected mode.
Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
Same exceptions as in protected mode.
3-550 Vol. 2A
LOCK—Assert LOCK# Signal Prefix
INSTRUCTION SET REFERENCE, A-M
LODS/LODSB/LODSW/LODSD/LODSQ—Load String
Opcode
Instruction 64-Bit
Mode
Compat/
Leg Mode
Description
AC
LODS m8
Valid
Valid
Valid
Valid
Valid
Valid
For legacy mode, Load byte at address
DS:(E)SI into AL. For 64-bit mode load byte
at address (R)SI into AL.
AD
AD
LODS m16
LODS m32
For legacy mode, Load word at address
DS:(E)SI into AX. For 64-bit mode load
word at address (R)SI into AX.
For legacy mode, Load dword at address
DS:(E)SI into EAX. For 64-bit mode load
dword at address (R)SI into EAX.
REX.W + AD
AC
LODS m64
Valid
Valid
N.E.
Load qword at address (R)SI into RAX.
LODSB
Valid
For legacy mode, Load byte at address
DS:(E)SI into AL. For 64-bit mode load byte
at address (R)SI into AL.
AD
LODSW
LODSD
LODSQ
Valid
Valid
Valid
Valid
Valid
N.E.
For legacy mode, Load word at address
DS:(E)SI into AX. For 64-bit mode load
word at address (R)SI into AX.
AD
For legacy mode, Load dword at address
DS:(E)SI into EAX. For 64-bit mode load
dword at address (R)SI into EAX.
REX.W + AD
Description
Load qword at address (R)SI into RAX.
Loads a byte, word, or doubleword from the source operand into the AL, AX, or EAX
register, respectively. The source operand is a memory location, the address of which
is read from the DS:EDI or the DS:SI registers (depending on the address-size
attribute of the instruction, 32 or 16, respectively). The DS segment may be over-
ridden with a segment override prefix.
At the assembly-code level, two forms of this instruction are allowed: the “explicit-
operands” form and the “no-operands” form. The explicit-operands form (specified
with the LODS mnemonic) allows the source operand to be specified explicitly. Here,
the source operand should be a symbol that indicates the size and location of the
source value. The destination operand is then automatically selected to match the
size of the source operand (the AL register for byte operands, AX for word operands,
and EAX for doubleword operands). This explicit-operands form is provided to allow
documentation; however, note that the documentation provided by this form can be
misleading. That is, the source operand symbol must specify the correct type (size)
of the operand (byte, word, or doubleword), but it does not have to specify the
LODS/LODSB/LODSW/LODSD/LODSQ—Load String
Vol. 2A 3-551
INSTRUCTION SET REFERENCE, A-M
correct location. The location is always specified by the DS:(E)SI registers, which
must be loaded correctly before the load string instruction is executed.
The no-operands form provides “short forms” of the byte, word, and doubleword
versions of the LODS instructions. Here also DS:(E)SI is assumed to be the source
operand and the AL, AX, or EAX register is assumed to be the destination operand.
The size of the source and destination operands is selected with the mnemonic:
LODSB (byte loaded into register AL), LODSW (word loaded into AX), or LODSD
(doubleword loaded into EAX).
After the byte, word, or doubleword is transferred from the memory location into the
AL, AX, or EAX register, the (E)SI register is incremented or decremented automati-
cally according to the setting of the DF flag in the EFLAGS register. (If the DF flag is
0, the (E)SI register is incremented; if the DF flag is 1, the ESI register is decre-
mented.) The (E)SI register is incremented or decremented by 1 for byte operations,
by 2 for word operations, or by 4 for doubleword operations.
In 64-bit mode, use of the REX.W prefix promotes operation to 64 bits. LODS/LODSQ
load the quadword at address (R)SI into RAX. The (R)SI register is then incremented
or decremented automatically according to the setting of the DF flag in the EFLAGS
register.
The LODS, LODSB, LODSW, and LODSD instructions can be preceded by the REP
prefix for block loads of ECX bytes, words, or doublewords. More often, however,
these instructions are used within a LOOP construct because further processing of
the data moved into the register is usually necessary before the next transfer can be
made. See “REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix” in
Chapter 4, Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
2B, for a description of the REP prefix.
Operation
IF AL ←SRC; (* Byte load *)
THEN AL ←SRC; (* Byte load *)
IF DF = 0
THEN (E)SI ←(E)SI +1;
ELSE (E)SI ←(E)SI – 1;
FI;
ELSE IF AX ←SRC; (* Word load *)
THEN IF DF = 0
THEN (E)SI ←(E)SI +2;
ELSE (E)SI ←(E)SI – 2;
IF;
FI;
ELSE IF EAX ←SRC; (* Doubleword load *)
THEN IF DF = 0
THEN (E)SI ←(E)SI +4;
ELSE (E)SI ←(E)SI – 4;
3-552 Vol. 2A
LODS/LODSB/LODSW/LODSD/LODSQ—Load String
INSTRUCTION SET REFERENCE, A-M
FI;
FI;
ELSE IF RAX ←SRC; (* Quadword load *)
THEN IF DF = 0
THEN (R)SI ←(R)SI +8;
ELSE (R)SI ←(R)SI – 8;
FI;
FI;
FI;
Flags Affected
None.
Protected Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP
#SS
#UD
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If a memory operand effective address is outside the SS
segment limit.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made.
#UD
If the LOCK prefix is used.
LODS/LODSB/LODSW/LODSD/LODSQ—Load String
Vol. 2A 3-553
INSTRUCTION SET REFERENCE, A-M
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
3-554 Vol. 2A
LODS/LODSB/LODSW/LODSD/LODSQ—Load String
INSTRUCTION SET REFERENCE, A-M
LOOP/LOOPcc—Loop According to ECX Counter
Opcode
Instruction 64-Bit Compat/
Description
Mode
Leg Mode
E2 cb
LOOP rel8
Valid
Valid
Decrement count; jump short if count ≠ 0.
E1 cb
LOOPE rel8 Valid
Valid
Decrement count; jump short if count ≠ 0
and ZF = 1.
E0 cb
LOOPNE rel8 Valid
Valid
Decrement count; jump short if count ≠ 0
and ZF = 0.
Description
Performs a loop operation using the RCX, ECX or CX register as a counter (depending
on whether address size is 64 bits, 32 bits, or 16 bits). Note that the LOOP instruction
ignores REX.W; but 64-bit address size can be over-ridden using a 67H prefix.
Each time the LOOP instruction is executed, the count register is decremented, then
checked for 0. If the count is 0, the loop is terminated and program execution
continues with the instruction following the LOOP instruction. If the count is not zero,
a near jump is performed to the destination (target) operand, which is presumably
the instruction at the beginning of the loop.
The target instruction is specified with a relative offset (a signed offset relative to the
current value of the instruction pointer in the IP/EIP/RIP register). This offset is
generally specified as a label in assembly code, but at the machine code level, it is
encoded as a signed, 8-bit immediate value, which is added to the instruction pointer.
Offsets of –128 to +127 are allowed with this instruction.
Some forms of the loop instruction (LOOPcc) also accept the ZF flag as a condition for
terminating the loop before the count reaches zero. With these forms of the instruc-
tion, a condition code (cc) is associated with each instruction to indicate the condition
being tested for. Here, the LOOPcc instruction itself does not affect the state of the ZF
flag; the ZF flag is changed by other instructions in the loop.
Operation
IF (AddressSize = 32)
THEN Count is ECX;
ELSE IF (AddressSize = 64)
Count is RCX;
ELSE Count is CX;
FI;
Count ←Count – 1;
IF Instruction is not LOOP
THEN
LOOP/LOOPcc—Loop According to ECX Counter
Vol. 2A 3-555
INSTRUCTION SET REFERENCE, A-M
IF (Instruction ←LOOPE) or (Instruction ←LOOPZ)
THEN IF (ZF = 1) and (Count ≠ 0)
THEN BranchCond ←1;
ELSE BranchCond ←0;
FI;
ELSE (Instruction = LOOPNE) or (Instruction = LOOPNZ)
IF (ZF = 0 ) and (Count ≠ 0)
THEN BranchCond ←1;
ELSE BranchCond ←0;
FI;
FI;
ELSE (* Instruction = LOOP *)
IF (Count ≠ 0)
THEN BranchCond ←1;
ELSE BranchCond ←0;
FI;
FI;
IF BranchCond = 1
THEN
IF OperandSize = 32
THEN EIP ←EIP +SignExtend(DEST);
ELSE IF OperandSize = 64
THEN RIP ←RIP +SignExtend(DEST);
FI;
ELSE IF OperandSize = 16
THEN EIP ←EIP AND 0000FFFFH;
FI;
ELSE IF OperandSize = (32 or 64)
THEN IF (R/E)IP < CS.Base or (R/E)IP >CS.Limit
#GP; FI;
FI;
FI;
ELSE
Terminate loop and continue program execution at (R/E)IP;
FI;
Flags Affected
None.
3-556 Vol. 2A
LOOP/LOOPcc—Loop According to ECX Counter
INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#GP(0)
If the offset being jumped to is beyond the limits of the CS
segment.
#UD
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP
If the offset being jumped to is beyond the limits of the CS
segment or is outside of the effective address space from 0 to
FFFFH. This condition can occur if a 32-bit address size override
prefix is used.
#UD
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#GP(0)
#UD
If the offset being jumped to is in a non-canonical form.
If the LOCK prefix is used.
LOOP/LOOPcc—Loop According to ECX Counter
Vol. 2A 3-557
INSTRUCTION SET REFERENCE, A-M
LSL—Load Segment Limit
Opcode
0F 03 /r
0F 03 /r
Instruction
64-Bit
Mode
Compat/
Description
Leg Mode
LSL r16, r16/m16 Valid
Valid
Valid
Valid
Load: r16 ←segment limit,
selector r16/m16.
*
LSL r32, r32/m16 Valid
Load: r32 ←segment limit,
selector r32/m16.
*
REX.W + 0F 03 /r LSL r64, r32/m16 Valid
Load: r64 ←segment limit,
selector r32/m16
NOTES:
* For all loads (regardless of destination sizing), only bits 16-0 are used. Other bits are ignored.
Description
Loads the unscrambled segment limit from the segment descriptor specified with the
second operand (source operand) into the first operand (destination operand) and
sets the ZF flag in the EFLAGS register. The source operand (which can be a register
or a memory location) contains the segment selector for the segment descriptor
being accessed. The destination operand is a general-purpose register.
The processor performs access checks as part of the loading process. Once loaded in
the destination register, software can compare the segment limit with the offset of a
pointer.
The segment limit is a 20-bit value contained in bytes 0 and 1 and in the first 4 bits
of byte 6 of the segment descriptor. If the descriptor has a byte granular segment
limit (the granularity flag is set to 0), the destination operand is loaded with a byte
granular value (byte limit). If the descriptor has a page granular segment limit (the
granularity flag is set to 1), the LSL instruction will translate the page granular limit
(page limit) into a byte limit before loading it into the destination operand. The trans-
lation is performed by shifting the 20-bit “raw” limit left 12 bits and filling the low-
order 12 bits with 1s.
When the operand size is 32 bits, the 32-bit byte limit is stored in the destination
operand. When the operand size is 16 bits, a valid 32-bit limit is computed; however,
the upper 16 bits are truncated and only the low-order 16 bits are loaded into the
destination operand.
This instruction performs the following checks before it loads the segment limit into
the destination register:
• Checks that the segment selector is not NULL.
• Checks that the segment selector points to a descriptor that is within the limits of
the GDT or LDT being accessed
3-558 Vol. 2A
LSL—Load Segment Limit
INSTRUCTION SET REFERENCE, A-M
• Checks that the descriptor type is valid for this instruction. All code and data
segment descriptors are valid for (can be accessed with) the LSL instruction. The
valid special segment and gate descriptor types are given in the following table.
• If the segment is not a conforming code segment, the instruction checks that the
specified segment descriptor is visible at the CPL (that is, if the CPL and the RPL
of the segment selector are less than or equal to the DPL of the segment
selector).
If the segment descriptor cannot be accessed or is an invalid type for the instruction,
the ZF flag is cleared and no value is loaded in the destination operand.
Table 3-60. Segment and Gate Descriptor Types
Type
Protected Mode
Name
Reserved
IA-32e Mode
Name
Valid
Valid
0
No
Upper 8 byte of a 16-
Byte descriptor
Yes
1
2
3
4
5
Available 16-bit TSS
LDT
Yes
Yes
Yes
No
Reserved
LDT
No
Yes
No
No
No
Busy 16-bit TSS
16-bit call gate
Reserved
Reserved
Reserved
16-bit/32-bit task
gate
No
6
7
8
9
A
B
C
D
E
F
16-bit interrupt gate
16-bit trap gate
Reserved
No
No
No
Yes
No
Yes
No
No
No
No
Reserved
No
No
No
Yes
No
Yes
No
No
No
No
Reserved
Reserved
Available 32-bit TSS
Reserved
64-bit TSS
Reserved
Busy 32-bit TSS
32-bit call gate
Reserved
Busy 64-bit TSS
64-bit call gate
Reserved
32-bit interrupt gate
32-bit trap gate
64-bit interrupt gate
64-bit trap gate
Operation
IF SRC(Offset) >descriptor table limit
THEN ZF ←0; FI;
LSL—Load Segment Limit
Vol. 2A 3-559
INSTRUCTION SET REFERENCE, A-M
Read segment descriptor;
IF SegmentDescriptor(Type) ≠ conforming code segment
and (CPL >DPL) OR (RPL >DPL)
or Segment type is not valid for instruction
THEN
ZF ←0;
ELSE
temp ←SegmentLimit([SRC]);
IF (G ←1)
THEN temp ←ShiftLeft(12, temp) OR 00000FFFH;
ELSE IF OperandSize = 32
THEN DEST ←temp; FI;
ELSE IF OperandSize = 64 (* REX.W used *)
THEN DEST (* Zero-extended *) ←temp; FI;
ELSE (* OperandSize = 16 *)
DEST ←temp AND FFFFH;
FI;
FI;
Flags Affected
The ZF flag is set to 1 if the segment limit is loaded successfully; otherwise, it is set
to 0.
Protected Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and the memory operand effec-
tive address is unaligned while the current privilege level is 3.
#UD
If the LOCK prefix is used.
Real-Address Mode Exceptions
#UD
The LAR instruction cannot be executed in real-address mode.
Virtual-8086 Mode Exceptions
#UD
The LAR instruction cannot be executed in virtual-8086 mode.
3-560 Vol. 2A
LSL—Load Segment Limit
INSTRUCTION SET REFERENCE, A-M
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If the memory operand effective address referencing the SS
segment is in a non-canonical form.
#GP(0)
If the memory operand effective address is in a non-canonical
form.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and the memory operand effec-
tive address is unaligned while the current privilege level is 3.
#UD
If the LOCK prefix is used.
LSL—Load Segment Limit
Vol. 2A 3-561
INSTRUCTION SET REFERENCE, A-M
LTR—Load Task Register
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
0F 00 /3
LTR r/m16
Valid
Valid
Load r/m16 into task register.
Description
Loads the source operand into the segment selector field of the task register. The
source operand (a general-purpose register or a memory location) contains a
segment selector that points to a task state segment (TSS). After the segment
selector is loaded in the task register, the processor uses the segment selector to
locate the segment descriptor for the TSS in the global descriptor table (GDT). It then
loads the segment limit and base address for the TSS from the segment descriptor
into the task register. The task pointed to by the task register is marked busy, but a
switch to the task does not occur.
The LTR instruction is provided for use in operating-system software; it should not be
used in application programs. It can only be executed in protected mode when the
CPL is 0. It is commonly used in initialization code to establish the first task to be
executed.
The operand-size attribute has no effect on this instruction.
In 64-bit mode, the operand size is still fixed at 16 bits. The instruction references a
16-byte descriptor to load the 64-bit base.
Operation
IF SRC is a NULL selector
THEN #GP(0);
IF SRC(Offset) >descriptor table limit OR IF SRC(type) ≠ global
THEN #GP(segment selector); FI;
Read segment descriptor;
IF segment descriptor is not for an available TSS
THEN #GP(segment selector); FI;
IF segment descriptor is not present
THEN #NP(segment selector); FI;
TSSsegmentDescriptor(busy) ←1;
(* Locked read-modify-write operation on the entire descriptor when setting busy flag *)
TaskRegister(SegmentSelector) ←SRC;
TaskRegister(SegmentDescriptor) ←TSSSegmentDescriptor;
3-562 Vol. 2A
LTR—Load Task Register
INSTRUCTION SET REFERENCE, A-M
Flags Affected
None.
Protected Mode Exceptions
#GP(0)
If the current privilege level is not 0.
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the source operand contains a NULL segment selector.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.
#GP(selector)
If the source selector points to a segment that is not a TSS or to
one for a task that is already busy.
If the selector points to LDT or is beyond the GDT limit.
If the TSS is marked not present.
#NP(selector)
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#UD
If a page fault occurs.
If the LOCK prefix is used.
Real-Address Mode Exceptions
#UD
The LTR instruction is not recognized in real-address mode.
Virtual-8086 Mode Exceptions
#UD
The LTR instruction is not recognized in virtual-8086 mode.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the current privilege level is not 0.
If the memory address is in a non-canonical form.
If the source operand contains a NULL segment selector.
#GP(selector)
If the source selector points to a segment that is not a TSS or to
one for a task that is already busy.
If the selector points to LDT or is beyond the GDT limit.
If the descriptor type of the upper 8-byte of the 16-byte
descriptor is non-zero.
LTR—Load Task Register
Vol. 2A 3-563
INSTRUCTION SET REFERENCE, A-M
#NP(selector)
#PF(fault-code)
#UD
If the TSS is marked not present.
If a page fault occurs.
If the LOCK prefix is used.
3-564 Vol. 2A
LTR—Load Task Register
INSTRUCTION SET REFERENCE, A-M
MASKMOVDQU—Store Selected Bytes of Double Quadword
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
66 0F F7 /r MASKMOVDQU
Valid
Valid
Selectively write bytes from xmm1 to
memory location using the byte mask in
xmm2. The default memory location is
specified by DS:EDI.
xmm1, xmm2
Description
Stores selected bytes from the source operand (first operand) into an 128-bit
memory location. The mask operand (second operand) selects which bytes from the
source operand are written to memory. The source and mask operands are XMM
registers. The location of the first byte of the memory location is specified by DI/EDI
and DS registers. The memory location does not need to be aligned on a natural
boundary. (The size of the store address depends on the address-size attribute.)
The most significant bit in each byte of the mask operand determines whether the
corresponding byte in the source operand is written to the corresponding byte loca-
tion in memory: 0 indicates no write and 1 indicates write.
The MASKMOVEDQU instruction generates a non-temporal hint to the processor to
minimize cache pollution. The non-temporal hint is implemented by using a write
combining (WC) memory type protocol (see “Caching of Temporal vs. Non-Temporal
Data” in Chapter 10, of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1). Because the WC protocol uses a weakly-ordered memory consis-
tency model, a fencing operation implemented with the SFENCE or MFENCE instruc-
tion should be used in conjunction with MASKMOVEDQU instructions if multiple
processors might use different memory types to read/write the destination memory
locations.
Behavior with a mask of all 0s is as follows:
• No data will be written to memory.
• Signaling of breakpoints (code or data) is not guaranteed; different processor
implementations may signal or not signal these breakpoints.
• Exceptions associated with addressing memory and page faults may still be
signaled (implementation dependent).
• If the destination memory region is mapped as UC or WP, enforcement of
associated semantics for these memory types is not guaranteed (that is, is
reserved) and is implementation-specific.
The MASKMOVDQU instruction can be used to improve performance of algorithms
that need to merge data on a byte-by-byte basis. MASKMOVDQU should not cause a
read for ownership; doing so generates unnecessary bandwidth since data is to be
written directly using the byte-mask without allocating old data prior to the store.
MASKMOVDQU—Store Selected Bytes of Double Quadword
Vol. 2A 3-565
INSTRUCTION SET REFERENCE, A-M
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
IF (MASK[7] = 1)
THEN DEST[DI/EDI] ←SRC[7:0] ELSE (* Memory location unchanged *); FI;
IF (MASK[15] = 1)
THEN DEST[DI/EDI +1] ←SRC[15:8] ELSE (* Memory location unchanged *); FI;
(* Repeat operation for 3rd through 14th bytes in source operand *)
IF (MASK[127] = 1)
THEN DEST[DI/EDI +15] ←SRC[127:120] ELSE (* Memory location unchanged *); FI;
Intel C/C++Compiler Intrinsic Equivalent
void _mm_maskmoveu_si128(__m128i d, __m128i n, char * p)
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments. (even if mask is all 0s).
If the destination operand is in a nonwritable segment.
If the DS, ES, FS, or GS register contains a NULL segment
selector.
#SS(0)
For an illegal address in the SS segment (even if mask is all 0s).
For a page fault (implementation specific).
If CR0.TS[bit 3] = 1.
#PF(fault-code)
#NM
#UD
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Real-Address Mode Exceptions
GP(0)
If any part of the operand lies outside the effective address
space from 0 to FFFFH. (even if mask is all 0s).
#NM
#UD
If CR0.TS[bit 3] = 1.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
3-566 Vol. 2A
MASKMOVDQU—Store Selected Bytes of Double Quadword
INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
#UD
For a page fault (implementation specific).
If the LOCK prefix is used.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#GP(0)
#SS(0)
If the memory address is in a non-canonical form.
If a memory address referencing the SS segment is in a non-
canonical form.
#PF(fault-code)
#NM
For a page fault (implementation specific).
If CR0.TS[bit 3] = 1.
#UD
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
MASKMOVDQU—Store Selected Bytes of Double Quadword
Vol. 2A 3-567
INSTRUCTION SET REFERENCE, A-M
MASKMOVQ—Store Selected Bytes of Quadword
Opcode Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
0F F7 /r MASKMOVQ mm1,
Valid
Valid
Selectively write bytes from mm1 to
memory location using the byte mask in
mm2. The default memory location is
specified by DS:EDI.
mm2
Description
Stores selected bytes from the source operand (first operand) into a 64-bit memory
location. The mask operand (second operand) selects which bytes from the source
operand are written to memory. The source and mask operands are MMX technology
registers. The location of the first byte of the memory location is specified by DI/EDI
and DS registers. (The size of the store address depends on the address-size
attribute.)
The most significant bit in each byte of the mask operand determines whether the
corresponding byte in the source operand is written to the corresponding byte loca-
tion in memory: 0 indicates no write and 1 indicates write.
The MASKMOVQ instruction generates a non-temporal hint to the processor to mini-
mize cache pollution. The non-temporal hint is implemented by using a write
combining (WC) memory type protocol (see “Caching of Temporal vs. Non-Temporal
Data” in Chapter 10, of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1). Because the WC protocol uses a weakly-ordered memory consis-
tency model, a fencing operation implemented with the SFENCE or MFENCE instruc-
tion should be used in conjunction with MASKMOVEDQU instructions if multiple
processors might use different memory types to read/write the destination memory
locations.
This instruction causes a transition from x87 FPU to MMX technology state (that is,
the x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all 0s
[valid]).
The behavior of the MASKMOVQ instruction with a mask of all 0s is as follows:
• No data will be written to memory.
• Transition from x87 FPU to MMX technology state will occur.
• Exceptions associated with addressing memory and page faults may still be
signaled (implementation dependent).
• Signaling of breakpoints (code or data) is not guaranteed (implementation
dependent).
• If the destination memory region is mapped as UC or WP, enforcement of
associated semantics for these memory types is not guaranteed (that is, is
reserved) and is implementation-specific.
3-568 Vol. 2A
MASKMOVQ—Store Selected Bytes of Quadword
INSTRUCTION SET REFERENCE, A-M
The MASKMOVQ instruction can be used to improve performance for algorithms that
need to merge data on a byte-by-byte basis. It should not cause a read for owner-
ship; doing so generates unnecessary bandwidth since data is to be written directly
using the byte-mask without allocating old data prior to the store.
In 64-bit mode, the memory address is specified by DS:RDI.
Operation
IF (MASK[7] = 1)
THEN DEST[DI/EDI] ←SRC[7:0] ELSE (* Memory location unchanged *); FI;
IF (MASK[15] = 1)
THEN DEST[DI/EDI +1] ←SRC[15:8] ELSE (* Memory location unchanged *); FI;
(* Repeat operation for 3rd through 6th bytes in source operand *)
IF (MASK[63] = 1)
THEN DEST[DI/EDI +15] ←SRC[63:56] ELSE (* Memory location unchanged *); FI;
Intel C/C++Compiler Intrinsic Equivalent
void _mm_maskmove_si64(__m64d, __m64n, char * p)
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments (even if mask is all 0s).
If the destination operand is in a nonwritable segment.
If the DS, ES, FS, or GS register contains a NULL segment
selector.
#SS(0)
#PF(fault-code)
#NM
For an illegal address in the SS segment (even if mask is all 0s).
For a page fault (implementation specific).
If CR0.TS[bit 3] = 1.
#MF
If there is a pending FPU exception.
If CR0.EM[bit 2] = 1.
#UD
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If Mod field of the ModR/M byte not 11B.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
Real-Address Mode Exceptions
GP(0)
If any part of the operand lies outside the effective address
space from 0 to FFFFH. (even if mask is all 0s).
#NM
If CR0.TS[bit 3] = 1.
MASKMOVQ—Store Selected Bytes of Quadword
Vol. 2A 3-569
INSTRUCTION SET REFERENCE, A-M
#MF
#UD
If there is a pending FPU exception.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
#AC(0)
For a page fault (implementation specific).
If alignment checking is enabled and an unaligned memory
reference is made.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#GP(0)
#SS(0)
If the memory address is in a non-canonical form.
If a memory address referencing the SS segment is in a non-
canonical form.
#PF(fault-code)
For a page fault (implementation specific).
If CR0.TS[bit 3] = 1.
#NM
#MF
#UD
If there is a pending FPU exception.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If Mod field of the ModR/M byte not 11B.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
3-570 Vol. 2A
MASKMOVQ—Store Selected Bytes of Quadword
INSTRUCTION SET REFERENCE, A-M
MAXPD—Return Maximum Packed Double-Precision Floating-Point
Values
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
66 0F 5F /r MAXPD xmm1,
Valid
Valid
Return the maximum double-
precision floating-point values
between xmm2/m128 and xmm1.
xmm2/m128
Description
Performs a SIMD compare of the packed double-precision floating-point values in the
destination operand (first operand) and the source operand (second operand), and
returns the maximum value for each pair of values to the destination operand. The
source operand can be an XMM register or a 128-bit memory location. The destina-
tion operand is an XMM register.
If the values being compared are both 0.0s (of either sign), the value in the second
operand (source operand) is returned. If a value in the second operand is an SNaN,
that SNaN is forwarded unchanged to the destination (that is, a QNaN version of the
SNaN is not returned).
If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand
(source operand), either a NaN or a valid floating-point value, is written to the result.
If instead of this behavior, it is required that the NaN source operand (from either the
first or second operand) be returned, the action of MAXPD can be emulated using a
sequence of instructions, such as, a comparison followed by AND, ANDN and OR.
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
DEST[63:0] ←
IF ((DEST[63:0] = 0.0) and (SRC[63:0] = 0.0))
THEN SRC[63:0];
ELSE IF (DEST[63:0] = SNaN) THEN SRC[63:0]; FI;
ELSE IF (SRC[63:0] = SNaN) THEN SRC[63:0]; FI;
ELSE IF (DEST[63:0] >SRC[63:0])
THEN DEST[63:0];
ELSE SRC[63:0]; FI; FI;
DEST[127:64] ←
IF ((DEST[127:64] = 0.0) and (SRC[127:64] = 0.0))
THEN SRC[127:64];
ELSE IF (DEST[127:64] = SNaN) THEN SRC[127:64]; FI;
ELSE IF (SRC[127:64] = SNaN) THEN SRC[127:64]; FI;
ELSE IF (DEST[127:64] >SRC[63:0])
THEN DEST[127:64];
MAXPD—Return Maximum Packed Double-Precision Floating-Point Values
Vol. 2A 3-571
INSTRUCTION SET REFERENCE, A-M
ELSE SRC[127:64]; FI; FI;
Intel C/C++Compiler Intrinsic Equivalent
MAXPD
__m128d _mm_max_pd(__m128d a, __m128d b)
SIMD Floating-Point Exceptions
Invalid (including QNaN source operand), Denormal.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#NM
For a page fault.
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP(0)
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#XM
If CR0.TS[bit 3] = 1.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
3-572 Vol. 2A
MAXPD—Return Maximum Packed Double-Precision Floating-Point Values
INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
For a page fault.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#PF(fault-code)
#NM
For a page fault.
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
MAXPD—Return Maximum Packed Double-Precision Floating-Point Values
Vol. 2A 3-573
INSTRUCTION SET REFERENCE, A-M
MAXPS—Return Maximum Packed Single-Precision Floating-Point
Values
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
0F 5F /r
MAXPS xmm1, Valid
xmm2/m128
Valid
Return the maximum single-precision
floating-point values between
xmm2/m128 and xmm1.
Description
Performs a SIMD compare of the packed single-precision floating-point values in the
destination operand (first operand) and the source operand (second operand), and
returns the maximum value for each pair of values to the destination operand. The
source operand can be an XMM register or a 128-bit memory location. The destina-
tion operand is an XMM register.
If the values being compared are both 0.0s (of either sign), the value in the second
operand (source operand) is returned. If a value in the second operand is an SNaN,
that SNaN is returned unchanged to the destination (that is, a QNaN version of the
SNaN is not returned).
If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand
(source operand), either a NaN or a valid floating-point value, is written to the result.
If instead of this behavior, it is required that the NaN source operand (from either the
first or second operand) be returned, the action of MAXPS can be emulated using a
sequence of instructions, such as, a comparison followed by AND, ANDN and OR.
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
DEST[31:0] ←
IF ((DEST[31:0] = 0.0) and (SRC[31:0] = 0.0))
THEN SRC[31:0];
ELSE IF (DEST[31:0] = SNaN) THEN SRC[31:0]; FI;
ELSE IF (SRC[31:0] = SNaN) THEN SRC[31:0]; FI;
ELSE IF (DEST[31:0] >SRC[31:0]); FI;
THEN DEST[31:0];
ELSE SRC[31:0]; FI; FI;
(* Repeat operation for 2nd and 3rd doublewords *);
DEST[127:64] ←
IF ((DEST[127:96] = 0.0) and (SRC[127:96] = 0.0))
THEN SRC[127:96];
ELSE IF (DEST[127:96] = SNaN) THEN SRC[127:96];
ELSE IF (SRC[127:96] = SNaN) THEN SRC[127:96];
ELSE IF (DEST[127:96] >SRC[127:96])
3-574 Vol. 2A
MAXPS—Return Maximum Packed Single-Precision Floating-Point Values
INSTRUCTION SET REFERENCE, A-M
THEN DEST[127:96];
ELSE SRC[127:96]; FI; FI;
Intel C/C++Compiler Intrinsic Equivalent
MAXPS __m128d _mm_max_ps(__m128d a, __m128d b)
SIMD Floating-Point Exceptions
Invalid (including QNaN source operand), Denormal.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#NM
For a page fault.
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP(0)
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#XM
If CR0.TS[bit 3] = 1.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
MAXPS—Return Maximum Packed Single-Precision Floating-Point Values
Vol. 2A 3-575
INSTRUCTION SET REFERENCE, A-M
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code) For a page fault.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#PF(fault-code)
#NM
For a page fault.
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
3-576 Vol. 2A
MAXPS—Return Maximum Packed Single-Precision Floating-Point Values
INSTRUCTION SET REFERENCE, A-M
MAXSD—Return Maximum Scalar Double-Precision Floating-Point
Value
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
F2 0F 5F /r MAXSD xmm1,
Valid
Valid
Return the maximum scalar double-
precision floating-point value
xmm2/m64
between xmm2/mem64 and xmm1.
Description
Compares the low double-precision floating-point values in the destination operand
(first operand) and the source operand (second operand), and returns the maximum
value to the low quadword of the destination operand. The source operand can be an
XMM register or a 64-bit memory location. The destination operand is an XMM
register. When the source operand is a memory operand, only 64 bits are accessed.
The high quadword of the destination operand remains unchanged.
If the values being compared are both 0.0s (of either sign), the value in the second
operand (source operand) is returned. If a value in the second operand is an SNaN,
that SNaN is returned unchanged to the destination (that is, a QNaN version of the
SNaN is not returned).
If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand
(source operand), either a NaN or a valid floating-point value, is written to the result.
If instead of this behavior, it is required that the NaN source operand (from either the
first or second operand) be returned, the action of MAXSD can be emulated using a
sequence of instructions, such as, a comparison followed by AND, ANDN and OR.
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
DEST[63:0] ←
IF ((DEST[63:0] = 0.0) and (SRC[63:0] = 0.0))
THEN SRC[63:0]; FI;
IF (DEST[63:0] = SNaN)
THEN SRC[63:0];
ELSE IF (SRC[63:0] = SNaN)
THEN SRC[63:0]; FI;
ELSE IF (DEST[63:0] >SRC[63:0])
THEN DEST[63:0];
ELSE SRC[63:0]; FI; FI;
(* DEST[127:64] is unchanged *);
MAXSD—Return Maximum Scalar Double-Precision Floating-Point Value
Vol. 2A 3-577
INSTRUCTION SET REFERENCE, A-M
Intel C/C++Compiler Intrinsic Equivalent
MAXSD
__m128d _mm_max_sd(__m128d a, __m128d b)
SIMD Floating-Point Exceptions
Invalid (including QNaN source operand), Denormal.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#NM
For a page fault.
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
Real-Address Mode Exceptions
GP(0)
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#XM
If CR0.TS[bit 3] = 1.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
3-578 Vol. 2A
MAXSD—Return Maximum Scalar Double-Precision Floating-Point Value
INSTRUCTION SET REFERENCE, A-M
#PF(fault-code)
#AC(0)
For a page fault.
If alignment checking is enabled and an unaligned memory
reference is made.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#PF(fault-code)
#NM
If the memory address is in a non-canonical form.
For a page fault.
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
MAXSD—Return Maximum Scalar Double-Precision Floating-Point Value
Vol. 2A 3-579
INSTRUCTION SET REFERENCE, A-M
MAXSS—Return Maximum Scalar Single-Precision Floating-Point Value
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
F3 0F 5F /r MAXSS xmm1,
Valid
Valid
Return the maximum scalar single-
precision floating-point value
between xmm2/mem32 and
xmm1.
xmm2/m32
Description
Compares the low single-precision floating-point values in the destination operand
(first operand) and the source operand (second operand), and returns the maximum
value to the low doubleword of the destination operand. The source operand can be
an XMM register or a 32-bit memory location. The destination operand is an XMM
register. When the source operand is a memory operand, only 32 bits are accessed.
The three high-order doublewords of the destination operand remain unchanged.
If the values being compared are both 0.0s (of either sign), the value in the second
operand (source operand) is returned. If a value in the second operand is an SNaN,
that SNaN is returned unchanged to the destination (that is, a QNaN version of the
SNaN is not returned).
If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand
(source operand), either a NaN or a valid floating-point value, is written to the result.
If instead of this behavior, it is required that the NaN source operand (from either the
first or second operand) be returned, the action of MAXSS can be emulated using a
sequence of instructions, such as, a comparison followed by AND, ANDN and OR.
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
DEST[63:0] ← IF ((DEST[31:0] = 0.0) and (SRC[31:0] = 0.0))
THEN SRC[31:0];
ELSE IF (DEST[31:0] = SNaN) THEN SRC[31:0]; FI;
ELSE IF (SRC[31:0] = SNaN) THEN SRC[31:0]; FI;
ELSE IF (DEST[31:0] >SRC[31:0])
THEN DEST[31:0]
ELSE SRC[31:0]; FI; FI;
(* DEST[127:32] is unchanged *)
Intel C/C++Compiler Intrinsic Equivalent
__m128d _mm_max_ss(__m128d a, __m128d b)
3-580 Vol. 2A
MAXSS—Return Maximum Scalar Single-Precision Floating-Point Value
INSTRUCTION SET REFERENCE, A-M
SIMD Floating-Point Exceptions
Invalid (including QNaN source operand), Denormal.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#NM
For a page fault.
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
Real-Address Mode Exceptions
GP(0)
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#XM
If CR0.TS[bit 3] = 1.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
#AC(0)
For a page fault.
If alignment checking is enabled and an unaligned memory
reference is made.
MAXSS—Return Maximum Scalar Single-Precision Floating-Point Value
Vol. 2A 3-581
INSTRUCTION SET REFERENCE, A-M
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#PF(fault-code)
#NM
If the memory address is in a non-canonical form.
For a page fault.
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
3-582 Vol. 2A
MAXSS—Return Maximum Scalar Single-Precision Floating-Point Value
INSTRUCTION SET REFERENCE, A-M
MFENCE—Memory Fence
Opcode
Instruction 64-Bit
Mode
Compat/
Description
Serializes load and store operations.
Leg Mode
0F AE /6
MFENCE
Valid
Valid
Description
Performs a serializing operation on all load-from-memory and store-to-memory
instructions that were issued prior the MFENCE instruction. This serializing operation
guarantees that every load and store instruction that precedes in program order the
MFENCE instruction is globally visible before any load or store instruction that follows
the MFENCE instruction is globally visible. The MFENCE instruction is ordered with
respect to all load and store instructions, other MFENCE instructions, any SFENCE
and LFENCE instructions, and any serializing instructions (such as the CPUID instruc-
tion).
Weakly ordered memory types can be used to achieve higher processor performance
through such techniques as out-of-order issue, speculative reads, write-combining,
and write-collapsing. The degree to which a consumer of data recognizes or knows
that the data is weakly ordered varies among applications and may be unknown to
the producer of this data. The MFENCE instruction provides a performance-efficient
way of ensuring load and store ordering between routines that produce weakly-
ordered results and routines that consume that data.
It should be noted that processors are free to speculatively fetch and cache data from
system memory regions that are assigned a memory-type that permits speculative
reads (that is, the WB, WC, and WT memory types). The PREFETCHh instruction is
considered a hint to this speculative behavior. Because this speculative fetching can
occur at any time and is not tied to instruction execution, the MFENCE instruction is
not ordered with respect to PREFETCHh instructions or any other speculative fetching
mechanism (that is, data could be speculatively loaded into the cache just before,
during, or after the execution of an MFENCE instruction).
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
Operation
Wait_On_Following_Loads_And_Stores_Until(preceding_loads_and_stores_globally_visible);
Intel C/C++Compiler Intrinsic Equivalent
void _mm_mfence(void)
Exceptions (All Modes of Operation)
#UD
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
MFENCE—Memory Fence
Vol. 2A 3-583
INSTRUCTION SET REFERENCE, A-M
MINPD—Return Minimum Packed Double-Precision Floating-Point
Values
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
66 0F 5D /r MINPD xmm1,
Valid
Valid
Return the minimum double-
precision floating-point values
between xmm2/m128 and xmm1.
xmm2/m128
Description
Performs a SIMD compare of the packed double-precision floating-point values in the
destination operand (first operand) and the source operand (second operand), and
returns the minimum value for each pair of values to the destination operand. The
source operand can be an XMM register or a 128-bit memory location. The destina-
tion operand is an XMM register.
If the values being compared are both 0.0s (of either sign), the value in the second
operand (source operand) is returned. If a value in the second operand is an SNaN,
that SNaN is returned unchanged to the destination (that is, a QNaN version of the
SNaN is not returned).
If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand
(source operand), either a NaN or a valid floating-point value, is written to the result.
If instead of this behavior, it is required that the NaN source operand (from either the
first or second operand) be returned, the action of MINPD can be emulated using a
sequence of instructions, such as, a comparison followed by AND, ANDN and OR.
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
DEST[63:0] ←
IF ((DEST[63:0] = 0.0) and (SRC[63:0] = 0.0))
THEN SRC[63:0]; FI;
ELSE IF (DEST[63:0] = SNaN) THEN SRC[63:0]; FI;
ELSE IF (SRC[63:0] = SNaN) THEN SRC[63:0]; FI;
ELSE IF (DEST[63:0] < SRC[63:0])
THEN DEST[63:0]
ELSE SRC[63:0]; FI; FI;
DEST[127:64] ←
IF ((DEST[127:64] = 0.0) and (SRC[127:64] = 0.0))
THEN SRC[127:64]; FI;
ELSE IF (DEST[127:64] = SNaN) THEN SRC[127:64]; FI;
ELSE IF (SRC[127:64] = SNaN) THEN SRC[127:64]; FI;
ELSE IF (DEST[127:64] < SRC[63:0])
3-584 Vol. 2A
MINPD—Return Minimum Packed Double-Precision Floating-Point Values
INSTRUCTION SET REFERENCE, A-M
THEN DEST[127:64]
ELSE SRC[127:64]; FI; FI;
Intel C/C++Compiler Intrinsic Equivalent
MINPD __m128d _mm_min_pd(__m128d a, __m128d b)
SIMD Floating-Point Exceptions
Invalid (including QNaN source operand), Denormal.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#NM
For a page fault.
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP(0)
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#XM
If CR0.TS[bit 3] = 1.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
MINPD—Return Minimum Packed Double-Precision Floating-Point Values
Vol. 2A 3-585
INSTRUCTION SET REFERENCE, A-M
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code) For a page fault.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#PF(fault-code)
#NM
For a page fault.
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
3-586 Vol. 2A
MINPD—Return Minimum Packed Double-Precision Floating-Point Values
INSTRUCTION SET REFERENCE, A-M
MINPS—Return Minimum Packed Single-Precision Floating-Point
Values
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
0F 5D /r
MINPS xmm1,
xmm2/m128
Valid
Valid
Return the minimum single-precision
floating-point values between
xmm2/m128 and xmm1.
Description
Performs a SIMD compare of the packed single-precision floating-point values in the
destination operand (first operand) and the source operand (second operand), and
returns the minimum value for each pair of values to the destination operand. The
source operand can be an XMM register or a 128-bit memory location. The destina-
tion operand is an XMM register.
If the values being compared are both 0.0s (of either sign), the value in the second
operand (source operand) is returned. If a value in the second operand is an SNaN,
that SNaN is returned unchanged to the destination (that is, a QNaN version of the
SNaN is not returned).
If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand
(source operand), either a NaN or a valid floating-point value, is written to the result.
If instead of this behavior, it is required that the NaN source operand (from either the
first or second operand) be returned, the action of MINPS can be emulated using a
sequence of instructions, such as, a comparison followed by AND, ANDN and OR.
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
DEST[63:0] ←
IF ((DEST[31:0] = 0.0) and (SRC[31:0] = 0.0))
THEN SRC[31:0];
ELSE IF (DEST[31:0] = SNaN) THEN SRC[31:0]; FI;
ELSE IF (SRC[31:0] = SNaN) THEN SRC[31:0]; FI;
ELSE IF (DEST[31:0] >SRC[31:0])
THEN DEST[31:0]
ELSE SRC[31:0]; FI; FI;
(* Repeat operation for 2nd and 3rd doublewords *);
DEST[127:64] ←
IF ((DEST127:96] = 0.0) and (SRC[127:96] = 0.0))
THEN SRC[127:96];
ELSE IF (DEST[127:96] = SNaN) THEN SRC[127:96]; FI;
ELSE IF (SRC[127:96] = SNaN) THEN SRC[127:96]; FI;
ELSE IF (DEST[127:96] < SRC[127:96])
MINPS—Return Minimum Packed Single-Precision Floating-Point Values
Vol. 2A 3-587
INSTRUCTION SET REFERENCE, A-M
THEN DEST[127:96]
ELSE SRC[127:96]; FI; FI;
Intel C/C++Compiler Intrinsic Equivalent
MINPS __m128d _mm_min_ps(__m128d a, __m128d b)
SIMD Floating-Point Exceptions
Invalid (including QNaN source operand), Denormal.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#NM
For a page fault.
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP(0)
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#XM
If CR0.TS[bit 3] = 1.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
3-588 Vol. 2A
MINPS—Return Minimum Packed Single-Precision Floating-Point Values
INSTRUCTION SET REFERENCE, A-M
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code) For a page fault.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#PF(fault-code)
#NM
For a page fault.
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
MINPS—Return Minimum Packed Single-Precision Floating-Point Values
Vol. 2A 3-589
INSTRUCTION SET REFERENCE, A-M
MINSD—Return Minimum Scalar Double-Precision Floating-Point Value
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
F2 0F 5D /r MINSD xmm1,
Valid
Valid
Return the minimum scalar double-
precision floating-point value
xmm2/m64
between xmm2/mem64 and xmm1.
Description
Compares the low double-precision floating-point values in the destination operand
(first operand) and the source operand (second operand), and returns the minimum
value to the low quadword of the destination operand. The source operand can be an
XMM register or a 64-bit memory location. The destination operand is an XMM
register. When the source operand is a memory operand, only the 64 bits are
accessed. The high quadword of the destination operand remains unchanged.
If the values being compared are both 0.0s (of either sign), the value in the second
operand (source operand) is returned. If a value in the second operand is an SNaN,
that SNaN is returned unchanged to the destination (that is, a QNaN version of the
SNaN is not returned).
If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand
(source operand), either a NaN or a valid floating-point value, is written to the result.
If instead of this behavior, it is required that the NaN source operand (from either the
first or second operand) be returned, the action of MINSD can be emulated using a
sequence of instructions, such as, a comparison followed by AND, ANDN and OR.
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
DEST[63:0] ←
IF ((DEST[63:0] = 0.0) and (SRC[63:0] = 0.0))
THEN SRC[63:0];
ELSE IF (DEST[63:0] = SNaN) THEN SRC[63:0]; FI;
ELSE IF (SRC[63:0] = SNaN) THEN SRC[63:0]; FI;
ELSE IF (DEST[63:0] < SRC[63:0])
THEN DEST[63:0];
ELSE SRC[63:0]; FI; FI;
(* DEST[127:64] is unchanged *);
Intel C/C++Compiler Intrinsic Equivalent
MINSD
__m128d _mm_min_sd(__m128d a, __m128d b)
3-590 Vol. 2A
MINSD—Return Minimum Scalar Double-Precision Floating-Point Value
INSTRUCTION SET REFERENCE, A-M
SIMD Floating-Point Exceptions
Invalid (including QNaN source operand), Denormal.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#NM
For a page fault.
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
Real-Address Mode Exceptions
GP(0)
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#XM
If CR0.TS[bit 3] = 1.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
#AC(0)
For a page fault.
If alignment checking is enabled and an unaligned memory
reference is made.
MINSD—Return Minimum Scalar Double-Precision Floating-Point Value
Vol. 2A 3-591
INSTRUCTION SET REFERENCE, A-M
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#PF(fault-code)
#NM
If the memory address is in a non-canonical form.
For a page fault.
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
3-592 Vol. 2A
MINSD—Return Minimum Scalar Double-Precision Floating-Point Value
INSTRUCTION SET REFERENCE, A-M
MINSS—Return Minimum Scalar Single-Precision Floating-Point Value
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
F3 0F 5D /r
MINSS xmm1,
xmm2/m32
Valid
Valid
Return the minimum scalar single-
precision floating-point value
between xmm2/mem32 and
xmm1.
Description
Compares the low single-precision floating-point values in the destination operand
(first operand) and the source operand (second operand), and returns the minimum
value to the low doubleword of the destination operand. The source operand can be
an XMM register or a 32-bit memory location. The destination operand is an XMM
register. When the source operand is a memory operand, only 32 bits are accessed.
The three high-order doublewords of the destination operand remain unchanged.
If the values being compared are both 0.0s (of either sign), the value in the second
operand (source operand) is returned. If a value in the second operand is an SNaN,
that SNaN is returned unchanged to the destination (that is, a QNaN version of the
SNaN is not returned).
If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand
(source operand), either a NaN or a valid floating-point value, is written to the result.
If instead of this behavior, it is required that the NaN source operand (from either the
first or second operand) be returned, the action of MINSD can be emulated using a
sequence of instructions, such as, a comparison followed by AND, ANDN and OR.
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
DEST[63:0] ←
IF ((DEST[31:0] = 0.0) AND (SRC[31:0] = 0.0))
THEN SRC[31:0];
ELSE IF (DEST[31:0] = SNaN) THEN SRC[31:0]; FI;
ELSE IF (SRC[31:0] = SNaN) THEN SRC[31:0]; FI;
ELSE IF (DEST[31:0] < SRC[31:0])
THEN DEST[31:0]
ELSE SRC[31:0]; FI; FI;
(* DEST[127:32] is unchanged *);
Intel C/C++Compiler Intrinsic Equivalent
MINSS
__m128d _mm_min_ss(__m128d a, __m128d b)
MINSS—Return Minimum Scalar Single-Precision Floating-Point Value
Vol. 2A 3-593
INSTRUCTION SET REFERENCE, A-M
SIMD Floating-Point Exceptions
Invalid (including QNaN source operand), Denormal.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#NM
For a page fault.
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
Real-Address Mode Exceptions
GP(0)
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#XM
If CR0.TS[bit 3] = 1.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
#AC(0)
For a page fault.
If alignment checking is enabled and an unaligned memory
reference is made.
3-594 Vol. 2A
MINSS—Return Minimum Scalar Single-Precision Floating-Point Value
INSTRUCTION SET REFERENCE, A-M
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#PF(fault-code)
#NM
If the memory address is in a non-canonical form.
For a page fault.
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
MINSS—Return Minimum Scalar Single-Precision Floating-Point Value
Vol. 2A 3-595
INSTRUCTION SET REFERENCE, A-M
MONITOR—Set Up Monitor Address
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
OF 01 C8
MONITOR
Valid
Valid
Sets up a linear address range to be
monitored by hardware and activates
the monitor. The address range should
be a write-back memory caching type.
The default address is DS:EAX.
Description
The MONITOR instruction arms address monitoring hardware using an address spec-
ified in EAX (the address range that the monitoring hardware checks for store opera-
tions can be determined by using CPUID). A store to an address within the specified
address range triggers the monitoring hardware. The state of monitor hardware is
used by MWAIT.
The content of EAX is an effective address. By default, the DS segment is used to
create a linear address that is monitored. Segment overrides can be used.
ECX and EDX are also used. They communicate other information to MONITOR. ECX
specifies optional extensions. EDX specifies optional hints; it does not change the
architectural behavior of the instruction. For the Pentium 4 processor (family 15,
model 3), no extensions or hints are defined. Undefined hints in EDX are ignored by
the processor; undefined extensions in ECX raises a general protection fault.
The address range must use memory of the write-back type. Only write-back
memory will correctly trigger the monitoring hardware. Additional information on
determining what address range to use in order to prevent false wake-ups is
described in Chapter 7, “Multiple-Processor Management” of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.
The MONITOR instruction is ordered as a load operation with respect to other
memory transactions. The instruction can be used at all privilege levels and is subject
to the permission checking and faults associated with a byte load. Like a load,
MONITOR sets the A-bit but not the D-bit in page tables.
The MONITOR CPUID feature flag (ECX bit 3; CPUID executed EAX = 1) indicates the
availability of MONITOR and MWAIT in the processor. When set, the unconditional
execution of MONITOR is supported at privilege levels 0; conditional execution is
supported at privilege levels 1 through 3 (test for the appropriate support before
unconditional use). The operating system or system BIOS may disable this instruc-
tion by using the IA32_MISC_ENABLES MSR; disabling MONITOR clears the CPUID
feature flag and causes execution to generate an illegal opcode exception.
The instruction’s operation is the same in non-64-bit modes and 64-bit mode.
3-596 Vol. 2A
MONITOR—Set Up Monitor Address
INSTRUCTION SET REFERENCE, A-M
Operation
MONITOR sets up an address range for the monitor hardware using the content of
EAX as an effective address and puts the monitor hardware in armed state. Always
use memory of the write-back caching type. A store to the specified address range
will trigger the monitor hardware. The content of ECX and EDX are used to commu-
nicate other information to the monitor hardware.
Intel C/C++Compiler Intrinsic Equivalent
MONITOR
void _mm_monitor(void const *p, unsigned extensions,unsigned hints)
Numeric Exceptions
None
Protected Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.
If ECX ←0.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#UD
For a page fault.
If CPUID.01H:ECX.MONITOR[bit 3] = 0.
If current privilege level is not 0.
Real Address Mode Exceptions
#GP
If any part of the operand in the CS, DS, ES, FS, or GS segment
lies outside of the effective address space from 0 to FFFFH.
If ECX ←0.
#SS
#UD
If any part of the operand in the SS segment lies outside of the
effective address space from 0 to FFFFH.
If CPUID.01H:ECX.MONITOR[bit 3] = 0.
Virtual 8086 Mode Exceptions
#UD The MONITOR instruction is not recognized in virtual-8086 mode
(even if CPUID.01H:ECX.MONITOR[bit 3] = 1).
Compatibility Mode Exceptions
Same exceptions as in protected mode.
MONITOR—Set Up Monitor Address
Vol. 2A 3-597
INSTRUCTION SET REFERENCE, A-M
64-Bit Mode Exceptions
#GP(0)
If the linear address of the operand in the CS, DS, ES, FS, or GS
segment is in a non-canonical form.
If RCX ←0.
#SS(0)
If the linear address of the operand in the SS segment is in a
non-canonical form.
#PF(fault-code)
#UD
For a page fault.
If the current privilege level is not 0.
If CPUID.01H:ECX.MONITOR[bit 3] = 0.
3-598 Vol. 2A
MONITOR—Set Up Monitor Address
INSTRUCTION SET REFERENCE, A-M
MOV—Move
Opcode
Instruction
64-Bit
Mode
Compat/
Description
Leg Mode
Valid
N.E.
88 /r
MOV r/m8,r8
Valid
Valid
Valid
Valid
Valid
Valid
Move r8 to r/m8.
Move r8 to r/m8.
Move r16 to r/m16.
Move r32 to r/m32.
Move r64 to r/m64.
Move r/m8 to r8.
Move r/m8 to r8.
Move r/m16 to r16.
Move r/m32 to r32.
Move r/m64 to r64.
***, ***
REX + 88 /r
89 /r
MOV r/m8 r8
MOV r/m16,r16
MOV r/m32,r32
MOV r/m64,r64
MOV r8,r/m8
Valid
Valid
N.E.
89 /r
REX.W + 89 /r
8A /r
Valid
N.E.
REX + 8A /r
8B /r
MOV r8***,r/m8*** Valid
MOV r16,r/m16
MOV r32,r/m32
MOV r64,r/m64
MOV r/m16,Sreg**
Valid
Valid
Valid
Valid
Valid
Valid
N.E.
8B /r
REX.W + 8B /r
8C /r
Valid
Move segment register to
r/m16.
REX.W + 8C /r
8E /r
MOV r/m64,Sreg**
MOV Sreg,r/m16**
MOV Sreg,r/m64**
MOV AL,moffs8*
MOV AL,moffs8*
MOV AX,moffs16*
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
N.E.
Move zero extended 16-bit
segment register to r/m64.
Move r/m16 to segment
register.
REX.W + 8E /r
A0
Move lower 16 bits of
r/m64 to segment register.
Move byte at (seg:offset)
to AL.
REX.W + A0
A1
Move byte at (offset) to
AL.
Valid
Valid
N.E.
Move word at (seg:offset)
to AX.
A1
MOV EAX,moffs32* Valid
Move doubleword at
(seg:offset) to EAX.
REX.W + A1
MOV RAX,moffs64* Valid
Move quadword at (offset)
to RAX.
A2
MOV moffs8,AL
Valid
Valid
Valid
Valid
N.E.
Move AL to (seg:offset).
Move AL to (offset).
***
REX.W + A2
MOV moffs8 ,AL
A3
A3
MOV moffs16*,AX
Valid
Valid
Move AX to (seg:offset).
Move EAX to (seg:offset).
MOV moffs32*,EAX Valid
MOV—Move
Vol. 2A 3-599
INSTRUCTION SET REFERENCE, A-M
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
REX.W + A3
B0+ rb
MOV moffs64*,RAX Valid
N.E.
Move RAX to (offset).
Move imm8 to r8.
MOV r8, imm8
Valid
Valid
Valid
Valid
Valid
Valid
Valid
N.E.
***
REX + B0+ rb
B8+ rw
MOV r8 , imm8
Move imm8 to r8.
MOV r16, imm16
MOV r32, imm32
MOV r64, imm64
MOV r/m8, imm8
Valid
Valid
N.E.
Move imm16 to r16.
Move imm32 to r32.
Move imm64 to r64.
Move imm8 to r/m8.
Move imm8 to r/m8.
Move imm16 to r/m16.
Move imm32 to r/m32.
B8+ rd
REX.W + B8+ rd
C6 /0
Valid
N.E.
REX + C6 /0
C7 /0
MOV r/m8***, imm8 Valid
MOV r/m16, imm16 Valid
MOV r/m32, imm32 Valid
MOV r/m64, imm32 Valid
Valid
Valid
N.E.
C7 /0
REX.W + C7 /0
Move imm32 sign
extended to 64-bits to
r/m64.
NOTES:
* The moffs8, moffs16, moffs32 and moffs64 operands specify a simple offset relative to the seg-
ment base, where 8, 16, 32 and 64 refer to the size of the data. The address-size attribute of the
instruction determines the size of the offset, either 16, 32 or 64 bits.
** In 32-bit mode, the assembler may insert the 16-bit operand-size prefix with this instruction (see
the following “Description” section for further information).
***In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.
Description
Copies the second operand (source operand) to the first operand (destination
operand). The source operand can be an immediate value, general-purpose register,
segment register, or memory location; the destination register can be a general-
purpose register, segment register, or memory location. Both operands must be the
same size, which can be a byte, a word, or a doubleword.
The MOV instruction cannot be used to load the CS register. Attempting to do so
results in an invalid opcode exception (#UD). To load the CS register, use the far JMP,
CALL, or RET instruction.
If the destination operand is a segment register (DS, ES, FS, GS, or SS), the source
operand must be a valid segment selector. In protected mode, moving a segment
selector into a segment register automatically causes the segment descriptor infor-
mation associated with that segment selector to be loaded into the hidden (shadow)
part of the segment register. While loading this information, the segment selector
and segment descriptor information is validated (see the “Operation” algorithm
3-600 Vol. 2A
MOV—Move
INSTRUCTION SET REFERENCE, A-M
below). The segment descriptor data is obtained from the GDT or LDT entry for the
specified segment selector.
A NULL segment selector (values 0000-0003) can be loaded into the DS, ES, FS, and
GS registers without causing a protection exception. However, any subsequent
attempt to reference a segment whose corresponding segment register is loaded
with a NULL value causes a general protection exception (#GP) and no memory
reference occurs.
Loading the SS register with a MOV instruction inhibits all interrupts until after the
execution of the next instruction. This operation allows a stack pointer to be loaded
into the ESP register with the next instruction (MOV ESP, stack-pointer value)
1
before an interrupt occurs . Be aware that the LSS instruction offers a more efficient
method of loading the SS and ESP registers.
When operating in 32-bit mode and moving data between a segment register and a
general-purpose register, the 32-bit IA-32 processors do not require the use of the
16-bit operand-size prefix (a byte with the value 66H) with this instruction, but most
assemblers will insert it if the standard form of the instruction is used (for example,
MOV DS, AX). The processor will execute this instruction correctly, but it will usually
require an extra clock. With most assemblers, using the instruction form MOV DS,
EAX will avoid this unneeded 66H prefix. When the processor executes the instruc-
tion with a 32-bit general-purpose register, it assumes that the 16 least-significant
bits of the general-purpose register are the destination or source operand. If the
register is a destination operand, the resulting value in the two high-order bytes of
the register is implementation dependent. For the Pentium 4, Intel Xeon, and P6
family processors, the two high-order bytes are filled with zeros; for earlier 32-bit
IA-32 processors, the two high order bytes are undefined.
In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R
prefix permits access to additional registers (R8-R15). Use of the REX.W prefix
promotes operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.
Operation
DEST ←SRC;
1. If a code instruction breakpoint (for debug) is placed on an instruction located immediately after
a MOV SS instruction, the breakpoint may not be triggered. However, in a sequence of instruc-
tions that load the SS register, only the first instruction in the sequence is guaranteed to delay
an interrupt.
In the following sequence, interrupts may be recognized before MOV ESP, EBP executes:
MOV SS, EDX
MOV SS, EAX
MOV ESP, EBP
MOV—Move
Vol. 2A 3-601
INSTRUCTION SET REFERENCE, A-M
Loading a segment register while in protected mode results in special checks and
actions, as described in the following listing. These checks are performed on the
segment selector and the segment descriptor to which it points.
IF SS is loaded
THEN
IF segment selector is NULL
THEN #GP(0); FI;
IF segment selector index is outside descriptor table limits
or segment selector's RPL ≠ CPL
or segment is not a writable data segment
or DPL ≠ CPL
THEN #GP(selector); FI;
IF segment not marked present
THEN #SS(selector);
ELSE
SS ←segment selector;
SS ←segment descriptor; FI;
FI;
IF DS, ES, FS, or GS is loaded with non-NULL selector
THEN
IF segment selector index is outside descriptor table limits
or segment is not a data or readable code segment
or ((segment is a data or nonconforming code segment)
and (both RPL and CPL > DPL))
THEN #GP(selector); FI;
IF segment not marked present
THEN #NP(selector);
ELSE
SegmentRegister ←segment selector;
SegmentRegister ←segment descriptor; FI;
FI;
IF DS, ES, FS, or GS is loaded with NULL selector
THEN
SegmentRegister ←segment selector;
SegmentRegister ←segment descriptor;
FI;
Flags Affected
None.
3-602 Vol. 2A
MOV—Move
INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#GP(0)
If attempt is made to load SS register with NULL segment
selector.
If the destination operand is in a non-writable segment.
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.
#GP(selector)
If segment selector index is outside descriptor table limits.
If the SS register is being loaded and the segment selector's RPL
and the segment descriptor’s DPL are not equal to the CPL.
If the SS register is being loaded and the segment pointed to is a
non-writable data segment.
If the DS, ES, FS, or GS register is being loaded and the
segment pointed to is not a data or readable code segment.
If the DS, ES, FS, or GS register is being loaded and the
segment pointed to is a data or nonconforming code segment,
but both the RPL and the CPL are greater than the DPL.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#SS(selector)
#NP
If the SS register is being loaded and the segment pointed to is
marked not present.
If the DS, ES, FS, or GS register is being loaded and the
segment pointed to is marked not present.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If attempt is made to load the CS register.
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP
#SS
#UD
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If a memory operand effective address is outside the SS
segment limit.
If attempt is made to load the CS register.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
MOV—Move
Vol. 2A 3-603
INSTRUCTION SET REFERENCE, A-M
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made.
#UD
If attempt is made to load the CS register.
If the LOCK prefix is used.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#GP(0)
If the memory address is in a non-canonical form.
If an attempt is made to load SS register with NULL segment
selector when CPL = 3.
If an attempt is made to load SS register with NULL segment
selector when CPL < 3 and CPL ≠ RPL.
If segment selector index is outside descriptor table limits.
#GP(selector)
If the memory access to the descriptor table is non-canonical.
If the SS register is being loaded and the segment selector's RPL
and the segment descriptor’s DPL are not equal to the CPL.
If the SS register is being loaded and the segment pointed to is
a nonwritable data segment.
If the DS, ES, FS, or GS register is being loaded and the
segment pointed to is not a data or readable code segment.
If the DS, ES, FS, or GS register is being loaded and the
segment pointed to is a data or nonconforming code segment,
but both the RPL and the CPL are greater than the DPL.
#SS(0)
If the stack address is in a non-canonical form.
#SS(selector)
If the SS register is being loaded and the segment pointed to is
marked not present.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If attempt is made to load the CS register.
If the LOCK prefix is used.
3-604 Vol. 2A
MOV—Move
INSTRUCTION SET REFERENCE, A-M
MOV—Move to/from Control Registers
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
0F 20 /0
0F 20 /0
0F 20 /2
0F 20 /2
0F 20 /3
0F 20 /3
0F 20 /4
0F 20 /4
REX.R + 0F 20 /0
0F 22 /0
0F 22 /0
0F 22 /2
0F 22 /2
0F 22 /3
0F 22 /3
0F 22 /4
0F 22 /4
REX.R + 0F 22 /0
NOTE:
MOV r32,CR0
MOV r64,CR0
MOV r32,CR2
MOV r64,CR2
MOV r32,CR3
MOV r64,CR3
MOV r32,CR4
MOV r64,CR4
MOV r64,CR8
MOV CR0,r32
MOV CR0,r64
MOV CR2,r32
MOV CR2,r64
MOV CR3,r32
MOV CR3,r64
MOV CR4,r32
MOV CR4,r64
MOV CR8,r64
N.E.
Valid
N.E.
Move CR0 to r32.
Valid
N.E.
Move extended CR0 to r64.
Move CR2 to r32.
Valid
N.E.
Valid
N.E.
Move extended CR2 to r64.
Move CR3 to r32.
Valid
N.E.
Valid
N.E.
Move extended CR3 to r64.
Move CR4 to r32.
Valid
N.E.
Valid
Valid
N.E.
Move extended CR4 to r64.
1
N.E.
Move extended CR8 to r64.
Valid
N.E.
Move r32 to CR0.
Valid
N.E.
Move r64 to extended CR0.
Move r32 to CR2.
Valid
N.E.
Valid
N.E.
Move r64 to extended CR2.
Move r32 to CR3.
Valid
N.E.
Valid
N.E.
Move r64 to extended CR3.
Move r32 to CR4.
Valid
N.E.
Valid
Valid
Move r64 to extended CR4.
Move r64 to extended CR8.
N.E.
1. MOV CR* instructions, except for MOV CR8, are serializing instructions. MOV CR8 is not
architecturally defined as a serializing instruction. For more information, see Chapter 7 in Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.
Description
Moves the contents of a control register (CR0, CR2, CR3, CR4, or CR8) to a general-
purpose register or the contents of a general purpose register to a control register.
The operand size for these instructions is always 32 bits in non-64-bit modes,
regardless of the operand-size attribute. (See “Control Registers” in Chapter 2 of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for a
detailed description of the flags and fields in the control registers.) This instruction
can be executed only when the current privilege level is 0.
When loading control registers, programs should not attempt to change the reserved
bits; that is, always set reserved bits to the value previously read. An attempt to
change CR4's reserved bits will cause a general protection fault. Reserved bits in CR0
MOV—Move to/from Control Registers
Vol. 2A 3-605
INSTRUCTION SET REFERENCE, A-M
and CR3 remain clear after any load of those registers; attempts to set them have no
impact. On Pentium 4, Intel Xeon and P6 family processors, CR0.ET remains set after
any load of CR0; attempts to clear this bit have no impact.
At the opcode level, the reg field within the ModR/M byte specifies which of the
control registers is loaded or read. The 2 bits in the mod field are always 11B. The
r/m field specifies the general-purpose register loaded or read.
These instructions have the following side effect:
• When writing to control register CR3, all non-global TLB entries are flushed (see
“Translation Lookaside Buffers (TLBs)” in Chapter 3 of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A).
The following side effects are implementation specific for the Pentium 4, Intel Xeon,
and P6 processor family. Software should not depend on this functionality in all Intel
64 or IA-32 processors:
• When modifying any of the paging flags in the control registers (PE and PG in
register CR0 and PGE, PSE, and PAE in register CR4), all TLB entries are flushed,
including global entries.
• If the PG flag is set to 1 and control register CR4 is written to set the PAE flag to
1 (to enable the physical address extension mode), the pointers in the page-
directory pointers table (PDPT) are loaded into the processor (into internal, non-
architectural registers).
• If the PAE flag is set to 1 and the PG flag set to 1, writing to control register CR3
will cause the PDPTRs to be reloaded into the processor. If the PAE flag is set to 1
and control register CR0 is written to set the PG flag, the PDPTRs are reloaded
into the processor.
In 64-bit mode, the instruction’s default operation size is 64 bits. The REX.R prefix
must be used to access CR8. Use of REX.B permits access to additional registers (R8-
R15). Use of the REX.W prefix or 66H prefix is ignored. See the summary chart at the
beginning of this section for encoding data and limits.
See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 21 of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, for
more information about the behavior of this instruction in VMX non-root operation.
Operation
DEST ←SRC;
Flags Affected
The OF, SF, ZF, AF, PF, and CF flags are undefined.
Protected Mode Exceptions
#GP(0)
If the current privilege level is not 0.
3-606 Vol. 2A
MOV—Move to/from Control Registers
INSTRUCTION SET REFERENCE, A-M
If an attempt is made to write invalid bit combinations in CR0
(such as setting the PG flag to 1 when the PE flag is set to 0, or
setting the CD flag to 0 when the NW flag is set to 1).
If an attempt is made to write a 1 to any reserved bit in CR4.
If any of the reserved bits are set in the page-directory pointers
table (PDPT) and the loading of a control register causes the
PDPT to be loaded into the processor.
#UD
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP
If an attempt is made to write a 1 to any reserved bit in CR4.
If an attempt is made to write invalid bit combinations in CR0
(such as setting the PG flag to 1 when the PE flag is set to 0).
#UD
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
#GP(0)
These instructions cannot be executed in virtual-8086 mode.
Compatibility Mode Exceptions
#GP(0)
If the current privilege level is not 0.
If an attempt is made to write invalid bit combinations in CR0
(such as setting the PG flag to 1 when the PE flag is set to 0, or
setting the CD flag to 0 when the NW flag is set to 1).
If an attempt is made to write a 1 to any reserved bit in CR3.
If an attempt is made to leave IA-32e mode by clearing
CR4.PAE[bit 5].
#UD
If the LOCK prefix is used.
64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.
If an attempt is made to write invalid bit combinations in CR0
(such as setting the PG flag to 1 when the PE flag is set to 0, or
setting the CD flag to 0 when the NW flag is set to 1).
Attempting to clear CR0.PG[bit 32].
If an attempt is made to write a 1 to any reserved bit in CR4.
If an attempt is made to write a 1 to any reserved bit in CR8.
If an attempt is made to write a 1 to any reserved bit in CR3.
If an attempt is made to leave IA-32e mode by clearing
CR4.PAE[bit 5].
#UD
If the LOCK prefix is used.
MOV—Move to/from Control Registers
Vol. 2A 3-607
INSTRUCTION SET REFERENCE, A-M
MOV—Move to/from Debug Registers
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
0F 21/r
MOV r32, DR0-DR7
N.E.
Valid
N.E.
Move debug register to r32
0F 21/r
MOV r64, DR0-DR7
Valid
Move extended debug register
to r64.
0F 23 /r
MOV DR0-DR7, r32
N.E.
Valid
N.E.
Move r32 to debug register
0F 23 /r
MOV DR0-DR7, r64
Valid
Move r64 to extended debug
register.
Description
Moves the contents of a debug register (DR0, DR1, DR2, DR3, DR4, DR5, DR6, or
DR7) to a general-purpose register or vice versa. The operand size for these instruc-
tions is always 32 bits in non-64-bit modes, regardless of the operand-size attribute.
(See Chapter 18, “Debugging and Performance Monitoring”, of the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A, for a detailed descrip-
tion of the flags and fields in the debug registers.)
The instructions must be executed at privilege level 0 or in real-address mode.
When the debug extension (DE) flag in register CR4 is clear, these instructions
operate on debug registers in a manner that is compatible with Intel386 and Intel486
processors. In this mode, references to DR4 and DR5 refer to DR6 and DR7, respec-
tively. When the DE flag in CR4 is set, attempts to reference DR4 and DR5 result in
an undefined opcode (#UD) exception. (The CR4 register was added to the IA-32
Architecture beginning with the Pentium processor.)
At the opcode level, the reg field within the ModR/M byte specifies which of the debug
registers is loaded or read. The two bits in the mod field are always 11. The r/m field
specifies the general-purpose register loaded or read.
In 64-bit mode, the instruction’s default operation size is 64 bits. Use of the REX.B
prefix permits access to additional registers (R8-R15). Use of the REX.W or 66H
prefix is ignored. See the summary chart at the beginning of this section for encoding
data and limits.
Operation
IF ((DE = 1) and (SRC or DEST = DR4 or DR5))
THEN
#UD;
ELSE
DEST ←SRC;
FI;
3-608 Vol. 2A
MOV—Move to/from Debug Registers
INSTRUCTION SET REFERENCE, A-M
Flags Affected
The OF, SF, ZF, AF, PF, and CF flags are undefined.
Protected Mode Exceptions
#GP(0)
#UD
If the current privilege level is not 0.
If CR4.DE[bit 3] = 1 (debug extensions) and a MOV instruction
is executed involving DR4 or DR5.
If the LOCK prefix is used.
#DB
If any debug register is accessed while the DR7.GD[bit 13] = 1.
Real-Address Mode Exceptions
#UD
If CR4.DE[bit 3] = 1 (debug extensions) and a MOV instruction
is executed involving DR4 or DR5.
If the LOCK prefix is used.
#DB
If any debug register is accessed while the DR7.GD[bit 13] = 1.
Virtual-8086 Mode Exceptions
#GP(0) The debug registers cannot be loaded or read when in virtual-
8086 mode.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#GP(0)
#UD
If the current privilege level is not 0.
If CR4.DE[bit 3] = 1 (debug extensions) and a MOV instruction
is executed involving DR4 or DR5.
If the LOCK prefix is used.
#DB
If any debug register is accessed while the DR7.GD[bit 13] = 1.
MOV—Move to/from Debug Registers
Vol. 2A 3-609
INSTRUCTION SET REFERENCE, A-M
MOVAPD—Move Aligned Packed Double-Precision Floating-Point
Values
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
66 0F 28 /r MOVAPD xmm1,
Valid
Valid
Move packed double-precision
floating-point values from
xmm2/m128 to xmm1.
xmm2/m128
66 0F 29 /r MOVAPD
Valid
Valid
Move packed double-precision
floating-point values from xmm1 to
xmm2/m128.
xmm2/m128, xmm1
Description
Moves a double quadword containing two packed double-precision floating-point
values from the source operand (second operand) to the destination operand (first
operand). This instruction can be used to load an XMM register from a 128-bit
memory location, to store the contents of an XMM register into a 128-bit memory
location, or to move data between two XMM registers. When the source or destina-
tion operand is a memory operand, the operand must be aligned on a 16-byte
boundary or a general-protection exception (#GP) will be generated.
To move double-precision floating-point values to and from unaligned memory loca-
tions, use the MOVUPD instruction.
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
DEST ←SRC;
(* #GP if SRC or DEST unaligned memory operand *)
Intel C/C++Compiler Intrinsic Equivalent
__m128 _mm_load_pd(double * p)
void _mm_store_pd(double *p, __m128 a)
SIMD Floating-Point Exceptions
None.
3-610 Vol. 2A
MOVAPD—Move Aligned Packed Double-Precision Floating-Point Values
INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#SS(0)
For an illegal address in the SS segment.
For a page fault.
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
#UD
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP(0)
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#UD
If CR0.TS[bit 3] = 1.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
For a page fault.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#PF(fault-code)
#NM
For a page fault.
If CR0.TS[bit 3] = 1.
MOVAPD—Move Aligned Packed Double-Precision Floating-Point Values
Vol. 2A 3-611
INSTRUCTION SET REFERENCE, A-M
#UD
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
3-612 Vol. 2A
MOVAPD—Move Aligned Packed Double-Precision Floating-Point Values
INSTRUCTION SET REFERENCE, A-M
MOVAPS—Move Aligned Packed Single-Precision Floating-Point Values
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
0F 28 /r
MOVAPS xmm1,
xmm2/m128
Valid
Valid
Move packed single-precision
floating-point values from
xmm2/m128 to xmm1.
0F 29 /r
MOVAPS
xmm2/m128, xmm1
Valid
Valid
Move packed single-precision
floating-point values from xmm1 to
xmm2/m128.
Description
Moves a double quadword containing four packed single-precision floating-point
values from the source operand (second operand) to the destination operand (first
operand). This instruction can be used to load an XMM register from a 128-bit
memory location, to store the contents of an XMM register into a 128-bit memory
location, or to move data between two XMM registers. When the source or destina-
tion operand is a memory operand, the operand must be aligned on a 16-byte
boundary or a general-protection exception (#GP) is generated.
To move packed single-precision floating-point values to or from unaligned memory
locations, use the MOVUPS instruction.
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
DEST ←SRC;
(* #GP if SRC or DEST unaligned memory operand *)
Intel C/C++Compiler Intrinsic Equivalent
__m128 _mm_load_ps (float * p)
void _mm_store_ps (float *p, __m128 a)
SIMD Floating-Point Exceptions
None.
MOVAPS—Move Aligned Packed Single-Precision Floating-Point Values
Vol. 2A 3-613
INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#SS(0)
For an illegal address in the SS segment.
For a page fault.
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
#UD
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP(0)
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#UD
If CR0.TS[bit 3] = 1.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
For a page fault.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#PF(fault-code)
#NM
For a page fault.
If CR0.TS[bit 3] = 1.
3-614 Vol. 2A
MOVAPS—Move Aligned Packed Single-Precision Floating-Point Values
INSTRUCTION SET REFERENCE, A-M
#UD
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
MOVAPS—Move Aligned Packed Single-Precision Floating-Point Values
Vol. 2A 3-615
INSTRUCTION SET REFERENCE, A-M
MOVD/MOVQ—Move Doubleword/Move Quadword
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
0F 6E /r
MOVD mm, r/m32 Valid
MOVQ mm, r/m64 Valid
MOVD r/m32, mm Valid
MOVQ r/m64, mm Valid
Valid
N.E.
Move doubleword from
r/m32 to mm.
REX.W + 0F 6E /r
0F 7E /r
Move quadword from r/m64
to mm.
Valid
N.E.
Move doubleword from mm
to r/m32.
REX.W + 0F 7E /r
66 0F 6E /r
Move quadword from mm to
r/m64.
MOVD xmm,
Valid
Valid
Valid
Valid
Valid
N.E.
Move doubleword from
r/m32 to xmm.
r/m32
66 REX.W 0F 6E /r
66 0F 7E /r
MOVQ xmm,
Move quadword from r/m64
to xmm.
r/m64
MOVD r/m32,
Valid
N.E.
Move doubleword from
xmm register to r/m32.
xmm
66 REX.W 0F 7E /r
MOVQ r/m64,
Move quadword from xmm
xmm
register to r/m64.
Description
Copies a doubleword from the source operand (second operand) to the destination
operand (first operand). The source and destination operands can be general-
purpose registers, MMX technology registers, XMM registers, or 32-bit memory loca-
tions. This instruction can be used to move a doubleword to and from the low double-
word of an MMX technology register and a general-purpose register or a 32-bit
memory location, or to and from the low doubleword of an XMM register and a
general-purpose register or a 32-bit memory location. The instruction cannot be
used to transfer data between MMX technology registers, between XMM registers,
between general-purpose registers, or between memory locations.
When the destination operand is an MMX technology register, the source operand is
written to the low doubleword of the register, and the register is zero-extended to 64
bits. When the destination operand is an XMM register, the source operand is written
to the low doubleword of the register, and the register is zero-extended to 128 bits.
In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R
prefix permits access to additional registers (R8-R15). Use of the REX.W prefix
promotes operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.
3-616 Vol. 2A
MOVD/MOVQ—Move Doubleword/Move Quadword
INSTRUCTION SET REFERENCE, A-M
Operation
MOVD instruction when destination operand is MMX technology register:
DEST[31:0] ←SRC;
DEST[63:32] ←00000000H;
MOVD instruction when destination operand is XMM register:
DEST[31:0] ←SRC;
DEST[127:32] ←000000000000000000000000H;
MOVD instruction when source operand is MMX technology or XMM register:
DEST ←SRC[31:0];
MOVQ instruction when destination operand is XMM register:
DEST[63:0] ←SRC[63:0];
DEST[127:64] ←0000000000000000H;
MOVQ instruction when destination operand is r/m64:
DEST[63:0] ←SRC[63:0];
MOVQ instruction when source operand is XMM register or r/m64:
DEST ←SRC[63:0];
Intel C/C++Compiler Intrinsic Equivalent
MOVD
MOVD
MOVD
MOVD
__m64 _mm_cvtsi32_si64 (int i )
int _mm_cvtsi64_si32 ( __m64m )
__m128i _mm_cvtsi32_si128 (int a)
int _mm_cvtsi128_si32 ( __m128i a)
Flags Affected
None.
SIMD Floating-Point Exceptions
None.
Protected Mode Exceptions
#GP(0)
If the destination operand is in a non-writable segment.
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
MOVD/MOVQ—Move Doubleword/Move Quadword
Vol. 2A 3-617
INSTRUCTION SET REFERENCE, A-M
#UD
If CR0.EM[bit 2] = 1.
128-bit operations will generate #UD only if CR4.OSFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.
If the LOCK prefix is used.
If CR0.TS[bit 3] = 1.
#NM
#MF
(MMX register operations only) If there is a pending FPU excep-
tion.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
Real-Address Mode Exceptions
#GP
If any part of the operand lies outside of the effective address
space from 0 to FFFFH.
#UD
If CR0.EM[bit 2] = 1.
128-bit operations will generate #UD only if CR4.OSFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.
If the LOCK prefix is used.
If CR0.TS[bit 3] = 1.
#NM
#MF
(MMX register operations only) If there is a pending FPU excep-
tion.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
3-618 Vol. 2A
MOVD/MOVQ—Move Doubleword/Move Quadword
INSTRUCTION SET REFERENCE, A-M
#UD
If CR0.EM[bit 2] = 1.
(XMM register operations only) if CR4.OSFXSR[bit 9] = 0.
(XMM register operations only) if CPUID.01H:EDX.SSE2[bit 26]
= 0.
If the LOCK prefix is used.
If CR0.TS[bit 3] = 1.
#NM
#MF
(MMX register operations only) If there is a pending FPU excep-
tion.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
MOVD/MOVQ—Move Doubleword/Move Quadword
Vol. 2A 3-619
INSTRUCTION SET REFERENCE, A-M
MOVDDUP—Move One Double-FP and Duplicate
Opcode
Instruction
64-Bit Compat/
Description
Mode
Leg Mode
F2 0F 12 /r MOVDDUP xmm1,
Valid
Valid
Move one double-precision floating-
point value from the lower 64-bit
operand in xmm2/m64 to xmm1 and
duplicate.
xmm2/m64
Description
The linear address corresponds to the address of the least-significant byte of the
referenced memory data. When a memory address is indicated, the 8 bytes of data
at memory location m64 are loaded. When the register-register form of this opera-
tion is used, the lower half of the 128-bit source register is duplicated and copied into
the 128-bit destination register. See Figure 3-14.
029''83ꢄ[PPꢂꢍꢄ[PPꢅꢎPꢐꢉ
>ꢐꢋꢃꢁ@
[PPꢅꢎPꢐꢉ
5(68/7ꢃ
[PPꢂ
[PPꢂ>ꢂꢅꢌꢃꢐꢉ@ꢄꢄꢄꢄꢄꢄꢄꢄ[PPꢅꢎPꢐꢉ>ꢐꢋꢃꢁ@
>ꢂꢅꢌꢃꢐꢉ@
[PPꢂ>ꢐꢋꢃꢁ@ꢄꢄꢄꢄꢄꢄꢄꢄ[PPꢅꢎPꢐꢉ>ꢐꢋꢃꢁ@
>ꢐꢋꢃꢁ@
20ꢂꢆꢊꢊꢌ
Figure 3-14. MOVDDUP—Move One Double-FP and Duplicate
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
IF (Source == m64)
THEN
(* Load instruction *)
xmm1[63:0] = m64;
3-620 Vol. 2A
MOVDDUP—Move One Double-FP and Duplicate
INSTRUCTION SET REFERENCE, A-M
xmm1[127:64] = m64;
ELSE
(* Move instruction *)
xmm1[63:0] = xmm2[63:0];
xmm1[127:64] = xmm2[63:0];
FI;
Intel C/C++Compiler Intrinsic Equivalent
MOVDDUP
__m128d _mm_movedup_pd(__m128d a)
__m128d _mm_loaddup_pd(double const * dp)
Exceptions
None
Numeric Exceptions
None
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
#SS(0)
For an illegal address in the SS segment.
For a page fault.
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
#UD
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
Real Address Mode Exceptions
GP(0)
If any part of the operand would lie outside of the effective
address space from 0 to 0FFFFH.
#NM
#UD
If CR0.TS[bit 3] = 1.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.
MOVDDUP—Move One Double-FP and Duplicate
Vol. 2A 3-621
INSTRUCTION SET REFERENCE, A-M
Virtual 8086 Mode Exceptions
GP(0)
If any part of the operand would lie outside of the effective
address space from 0 to 0FFFFH.
#NM
#UD
If CR0.TS[bit 3] = 1.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.
For a page fault.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#PF(fault-code)
#NM
If the memory address is in a non-canonical form.
For a page fault.
If CR0.TS[bit 3] = 1.
#UD
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.SSE3(ECX, bit 0) is 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
3-622 Vol. 2A
MOVDDUP—Move One Double-FP and Duplicate
INSTRUCTION SET REFERENCE, A-M
MOVDQA—Move Aligned Double Quadword
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
66 0F 6F /r
66 0F 7F /r
MOVDQA xmm1,
xmm2/m128
Valid
Valid
Valid
Move aligned double quadword
from xmm2/m128 to xmm1.
MOVDQA xmm2/m128, Valid
xmm1
Move aligned double quadword
from xmm1 to xmm2/m128.
Description
Moves a double quadword from the source operand (second operand) to the destina-
tion operand (first operand). This instruction can be used to load an XMM register
from a 128-bit memory location, to store the contents of an XMM register into a
128-bit memory location, or to move data between two XMM registers. When the
source or destination operand is a memory operand, the operand must be aligned on
a 16-byte boundary or a general-protection exception (#GP) will be generated.
To move a double quadword to or from unaligned memory locations, use the
MOVDQU instruction.
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
DEST ←SRC;
(* #GP if SRC or DEST unaligned memory operand *)
Intel C/C++Compiler Intrinsic Equivalent
MOVDQA __m128i _mm_load_si128 ( __m128i *p)
MOVDQA void _mm_store_si128 ( __m128i *p, __m128i a)
SIMD Floating-Point Exceptions
None.
Protected Mode Exceptions
#PF(fault-code)
#GP(0)
If a page fault occurs.
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
MOVDQA—Move Aligned Double Quadword
Vol. 2A 3-623
INSTRUCTION SET REFERENCE, A-M
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#NM
#UD
If CR0.TS[bit 3] = 1.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP(0)
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
If any part of the operand lies outside of the effective address
space from 0 to FFFFH.
#NM
#UD
If CR0.TS[bit 3] = 1.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
For a page fault.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#PF(fault-code)
#NM
For a page fault.
If CR0.TS[bit 3] = 1.
#UD
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
3-624 Vol. 2A
MOVDQA—Move Aligned Double Quadword
INSTRUCTION SET REFERENCE, A-M
MOVDQU—Move Unaligned Double Quadword
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
F3 0F 6F /r
MOVDQU xmm1,
xmm2/m128
Valid
Valid
Valid
Move unaligned double
quadword from xmm2/m128 to
xmm1.
F3 0F 7F /r
MOVDQU xmm2/m128, Valid
xmm1
Move unaligned double
quadword from xmm1 to
xmm2/m128.
Description
Moves a double quadword from the source operand (second operand) to the destina-
tion operand (first operand). This instruction can be used to load an XMM register
from a 128-bit memory location, to store the contents of an XMM register into a
128-bit memory location, or to move data between two XMM registers. When the
source or destination operand is a memory operand, the operand may be unaligned
on a 16-byte boundary without causing a general-protection exception (#GP) to be
generated.
To move a double quadword to or from memory locations that are known to be
aligned on 16-byte boundaries, use the MOVDQA instruction.
While executing in 16-bit addressing mode, a linear address for a 128-bit data access
that overlaps the end of a 16-bit segment is not allowed and is defined as reserved
behavior. A specific processor implementation may or may not generate a general-
protection exception (#GP) in this situation, and the address that spans the end of
the segment may or may not wrap around to the beginning of the segment.
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
DEST ←SRC;
Intel C/C++Compiler Intrinsic Equivalent
MOVDQU void _mm_storeu_si128 ( __m128i *p, __m128i a)
MOVDQU __m128i _mm_loadu_si128 ( __m128i *p)
SIMD Floating-Point Exceptions
None.
MOVDQU—Move Unaligned Double Quadword
Vol. 2A 3-625
INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#AC(0)
#GP(0)
#SS(0)
If alignment checking is enabled and an unaligned memory
reference is made.
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If a memory operand effective address is outside the SS
segment limit.
#NM
#UD
If CR0.TS[bit 3] = 1.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If a page fault occurs.
#PF(fault-code)
Real-Address Mode Exceptions
#GP(0)
If any part of the operand lies outside of the effective address
space from 0 to FFFFH.
#NM
#UD
If CR0.TS[bit 3] = 1.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made.
#PF(fault-code)
For a page fault.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made.
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
For a page fault.
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
3-626 Vol. 2A
MOVDQU—Move Unaligned Double Quadword
INSTRUCTION SET REFERENCE, A-M
#UD
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
MOVDQU—Move Unaligned Double Quadword
Vol. 2A 3-627
INSTRUCTION SET REFERENCE, A-M
MOVDQ2Q—Move Quadword from XMM to MMX Technology Register
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
F2 0F D6
MOVDQ2Q mm, xmm Valid
Valid
Move low quadword from
xmm to mmx register.
Description
Moves the low quadword from the source operand (second operand) to the destina-
tion operand (first operand). The source operand is an XMM register and the destina-
tion operand is an MMX technology register.
This instruction causes a transition from x87 FPU to MMX technology operation (that
is, the x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all
0s [valid]). If this instruction is executed while an x87 FPU floating-point exception is
pending, the exception is handled before the MOVDQ2Q instruction is executed.
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
DEST ←SRC[63:0];
Intel C/C++Compiler Intrinsic Equivalent
MOVDQ2Q __m64 _mm_movepi64_pi64 ( __m128i a)
SIMD Floating-Point Exceptions
None.
Protected Mode Exceptions
#NM
#UD
If CR0.TS[bit 3] = 1.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
If there is a pending x87 FPU exception.
#MF
Real-Address Mode Exceptions
Same exceptions as in protected mode.
3-628 Vol. 2A
MOVDQ2Q—Move Quadword from XMM to MMX Technology Register
INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
Same exceptions as in protected mode.
MOVDQ2Q—Move Quadword from XMM to MMX Technology Register
Vol. 2A 3-629
INSTRUCTION SET REFERENCE, A-M
MOVHLPS— Move Packed Single-Precision Floating-Point Values High
to Low
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
OF 12 /r
MOVHLPS xmm1, xmm2 Valid
Valid
Move two packed single-
precision floating-point values
from high quadword of xmm2 to
low quadword of xmm1.
Description
Moves two packed single-precision floating-point values from the high quadword of
the source operand (second operand) to the low quadword of the destination
operand (first operand). The high quadword of the destination operand is left
unchanged.
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
DEST[63:0] ←SRC[127:64];
(* DEST[127:64] unchanged *)
Intel C/C++Compiler Intrinsic Equivalent
MOVHLPS __m128 _mm_movehl_ps(__m128 a, __m128 b)
SIMD Floating-Point Exceptions
None.
Protected Mode Exceptions
#NM
#UD
If CR0.TS[bit 3] = 1.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
Real Address Mode Exceptions
Same exceptions as in protected mode.
3-630 Vol. 2A
MOVHLPS— Move Packed Single-Precision Floating-Point Values High to Low
INSTRUCTION SET REFERENCE, A-M
Virtual 8086 Mode Exceptions
Same exceptions as in protected mode.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
Same exceptions as in protected mode.
MOVHLPS— Move Packed Single-Precision Floating-Point Values High to Low
Vol. 2A 3-631
INSTRUCTION SET REFERENCE, A-M
MOVHPD—Move High Packed Double-Precision Floating-Point Value
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
66 0F 16 /r MOVHPD xmm,
Valid
Valid
Move double-precision floating-point
value from m64 to high quadword of
xmm.
m64
66 0F 17 /r MOVHPD m64,
Valid
Valid
Move double-precision floating-point
value from high quadword of xmm to
m64.
xmm
Description
Moves a double-precision floating-point value from the source operand (second
operand) to the destination operand (first operand). The source and destination
operands can be an XMM register or a 64-bit memory location. This instruction allows
a double-precision floating-point value to be moved to and from the high quadword
of an XMM register and memory. It cannot be used for register to register or memory
to memory moves. When the destination operand is an XMM register, the low quad-
word of the register remains unchanged.
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
MOVHPD instruction for memory to XMM move:
DEST[127:64] ←SRC;
(* DEST[63:0] unchanged *)
MOVHPD instruction for XMM to memory move:
DEST ←SRC[127:64];
Intel C/C++Compiler Intrinsic Equivalent
MOVHPD __m128d _mm_loadh_pd ( __m128d a, double *p)
MOVHPD void _mm_storeh_pd (double *p, __m128d a)
SIMD Floating-Point Exceptions
None.
3-632 Vol. 2A
MOVHPD—Move High Packed Double-Precision Floating-Point Value
INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
#SS(0)
For an illegal address in the SS segment.
For a page fault.
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
#UD
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
Real-Address Mode Exceptions
GP(0)
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#UD
If CR0.TS[bit 3] = 1.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
#AC(0)
For a page fault.
If alignment checking is enabled and an unaligned memory
reference is made.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#PF(fault-code)
#NM
If the memory address is in a non-canonical form.
For a page fault.
If CR0.TS[bit 3] = 1.
#UD
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
MOVHPD—Move High Packed Double-Precision Floating-Point Value
Vol. 2A 3-633
INSTRUCTION SET REFERENCE, A-M
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
3-634 Vol. 2A
MOVHPD—Move High Packed Double-Precision Floating-Point Value
INSTRUCTION SET REFERENCE, A-M
MOVHPS—Move High Packed Single-Precision Floating-Point Values
Opcode
Instruction
64-Bit Compat/
Description
Mode
Leg Mode
0F 16 /r
MOVHPS xmm,
m64
Valid
Valid
Move two packed single-precision
floating-point values from m64 to
high quadword of xmm.
0F 17 /r
MOVHPS m64,
xmm
Valid
Valid
Move two packed single-precision
floating-point values from high
quadword of xmm to m64.
Description
Moves two packed single-precision floating-point values from the source operand
(second operand) to the destination operand (first operand). The source and destina-
tion operands can be an XMM register or a 64-bit memory location. This instruction
allows two single-precision floating-point values to be moved to and from the high
quadword of an XMM register and memory. It cannot be used for register to register
or memory to memory moves. When the destination operand is an XMM register, the
low quadword of the register remains unchanged.
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
MOVHPS instruction for memory to XMM move:
DEST[127:64] ←SRC;
(* DEST[63:0] unchanged *)
MOVHPS instruction for XMM to memory move:
DEST ←SRC[127:64];
Intel C/C++Compiler Intrinsic Equivalent
MOVHPS __m128d _mm_loadh_pi ( __m128d a, __m64 *p)
MOVHPS void _mm_storeh_pi (__m64 *p, __m128d a)
SIMD Floating-Point Exceptions
None.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
MOVHPS—Move High Packed Single-Precision Floating-Point Values
Vol. 2A 3-635
INSTRUCTION SET REFERENCE, A-M
#SS(0)
For an illegal address in the SS segment.
#PF(fault-code)
#NM
For a page fault.
If CR0.TS[bit 3] = 1.
#UD
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
Real-Address Mode Exceptions
GP(0)
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#UD
If CR0.TS[bit 3] = 1.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
#AC(0)
For a page fault.
If alignment checking is enabled and an unaligned memory
reference is made.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#PF(fault-code)
#NM
If the memory address is in a non-canonical form.
For a page fault.
If CR0.TS[bit 3] = 1.
#UD
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
3-636 Vol. 2A
MOVHPS—Move High Packed Single-Precision Floating-Point Values
INSTRUCTION SET REFERENCE, A-M
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
MOVHPS—Move High Packed Single-Precision Floating-Point Values
Vol. 2A 3-637
INSTRUCTION SET REFERENCE, A-M
MOVLHPS—Move Packed Single-Precision Floating-Point Values Low to
High
Opcode Instruction
64-Bit Compat/
Description
Mode
Leg Mode
OF 16 /r MOVLHPS xmm1, Valid
Valid
Move two packed single-precision
floating-point values from low quadword
of xmm2 to high quadword of xmm1.
xmm2
Description
Moves two packed single-precision floating-point values from the low quadword of
the source operand (second operand) to the high quadword of the destination
operand (first operand). The low quadword of the destination operand is left
unchanged.
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
DEST[127:64] ←SRC[63:0];
(* DEST[63:0] unchanged *)
Intel C/C++Compiler Intrinsic Equivalent
MOVHLPS __m128 _mm_movelh_ps(__m128 a, __m128 b)
SIMD Floating-Point Exceptions
None.
Protected Mode Exceptions
#NM
#UD
If CR0.TS[bit 3] = 1.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
Real Address Mode Exceptions
Same exceptions as in protected mode.
Virtual 8086 Mode Exceptions
Same exceptions as in protected mode.
3-638 Vol. 2A
MOVLHPS—Move Packed Single-Precision Floating-Point Values Low to High
INSTRUCTION SET REFERENCE, A-M
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
Same exceptions as in protected mode.
MOVLHPS—Move Packed Single-Precision Floating-Point Values Low to High
Vol. 2A 3-639
INSTRUCTION SET REFERENCE, A-M
MOVLPD—Move Low Packed Double-Precision Floating-Point Value
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
66 0F 12 /r MOVLPD xmm,
Valid
Valid
Move double-precision floating-point
value from m64 to low quadword of xmm
register.
m64
66 0F 13 /r MOVLPD m64,
Valid
Valid
Move double-precision floating-point
nvalue from low quadword of xmm
register to m64.
xmm
Description
Moves a double-precision floating-point value from the source operand (second
operand) to the destination operand (first operand). The source and destination
operands can be an XMM register or a 64-bit memory location. This instruction allows
a double-precision floating-point value to be moved to and from the low quadword of
an XMM register and memory. It cannot be used for register to register or memory to
memory moves. When the destination operand is an XMM register, the high quad-
word of the register remains unchanged.
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
MOVLPD instruction for memory to XMM move:
DEST[63:0] ←SRC;
(* DEST[127:64] unchanged *)
MOVLPD instruction for XMM to memory move:
DEST ←SRC[63:0];
Intel C/C++Compiler Intrinsic Equivalent
MOVLPD __m128d _mm_loadl_pd ( __m128d a, double *p)
MOVLPD void _mm_storel_pd (double *p, __m128d a)
SIMD Floating-Point Exceptions
None.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
3-640 Vol. 2A
MOVLPD—Move Low Packed Double-Precision Floating-Point Value
INSTRUCTION SET REFERENCE, A-M
#SS(0)
For an illegal address in the SS segment.
#PF(fault-code)
#NM
For a page fault.
If CR0.TS[bit 3] = 1.
#UD
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
Real-Address Mode Exceptions
GP(0)
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#UD
If CR0.TS[bit 3] = 1.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
#AC(0)
For a page fault.
If alignment checking is enabled and an unaligned memory
reference is made.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#PF(fault-code)
#NM
If the memory address is in a non-canonical form.
For a page fault.
If CR0.TS[bit 3] = 1.
#UD
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
MOVLPD—Move Low Packed Double-Precision Floating-Point Value
Vol. 2A 3-641
INSTRUCTION SET REFERENCE, A-M
MOVLPS—Move Low Packed Single-Precision Floating-Point Values
Opcode
Instruction
64-Bit Compat/
Description
Mode
Leg Mode
0F 12 /r
MOVLPS xmm,
m64
Valid
Valid
Move two packed single-precision
floating-point values from m64 to low
quadword of xmm.
0F 13 /r
MOVLPS m64,
xmm
Valid
Valid
Move two packed single-precision
floating-point values from low
quadword of xmm to m64.
Description
Moves two packed single-precision floating-point values from the source operand
(second operand) and the destination operand (first operand). The source and desti-
nation operands can be an XMM register or a 64-bit memory location. This instruction
allows two single-precision floating-point values to be moved to and from the low
quadword of an XMM register and memory. It cannot be used for register to register
or memory to memory moves. When the destination operand is an XMM register, the
high quadword of the register remains unchanged.
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
MOVLPD instruction for memory to XMM move:
DEST[63:0] ←SRC;
(* DEST[127:64] unchanged *)
MOVLPD instruction for XMM to memory move:
DEST ←SRC[63:0];
Intel C/C++Compiler Intrinsic Equivalent
MOVLPS __m128 _mm_loadl_pi ( __m128 a, __m64 *p)
MOVLPS void _mm_storel_pi (__m64 *p, __m128 a)
SIMD Floating-Point Exceptions
None.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
3-642 Vol. 2A
MOVLPS—Move Low Packed Single-Precision Floating-Point Values
INSTRUCTION SET REFERENCE, A-M
#SS(0)
For an illegal address in the SS segment.
#PF(fault-code)
#NM
For a page fault.
If CR0.TS[bit 3] = 1.
#UD
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
Real-Address Mode Exceptions
GP(0)
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#UD
If CR0.TS[bit 3] = 1.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
#AC(0)
For a page fault.
If alignment checking is enabled and an unaligned memory
reference is made.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#PF(fault-code)
#NM
If the memory address is in a non-canonical form.
For a page fault.
If CR0.TS[bit 3] = 1.
#UD
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
MOVLPS—Move Low Packed Single-Precision Floating-Point Values
Vol. 2A 3-643
INSTRUCTION SET REFERENCE, A-M
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
3-644 Vol. 2A
MOVLPS—Move Low Packed Single-Precision Floating-Point Values
INSTRUCTION SET REFERENCE, A-M
MOVMSKPD—Extract Packed Double-Precision Floating-Point Sign
Mask
Opcode
Instruction
64-Bit Compat/
Description
Mode
Leg Mode
66 0F 50 /r
66 REX.W 0F 50 /r
MOVMSKPD r32,
xmm
Valid
Valid
Extract 2-bit sign mask
from xmm and store in r32.
MOVMSKPD r64,
xmm
Valid
N.E.
Extract 2-bit sign mask
from xmm and store in r64.
Zero extend 32-bit results
to 64-bits.
Description
Extracts the sign bits from the packed double-precision floating-point values in the
source operand (second operand), formats them into a 2-bit mask, and stores the
mask in the destination operand (first operand). The source operand is an XMM
register, and the destination operand is a general-purpose register. The mask is
stored in the 2 low-order bits of the destination operand.
In 64-bit mode, the instruction can access additional registers (XMM8-XMM15,
R8-R15) when used with a REX.R prefix. Use of the REX.W prefix promotes the
instruction to 64-bit operands. See the summary chart at the beginning of this
section for encoding data and limits.
Operation
DEST[0] ←SRC[63];
DEST[1] ←SRC[127];
IF DEST = r32
THEN DEST[31:2] ←ZeroExtend;
ELSE DEST[63:2] ←ZeroExtend;
FI;
Intel C/C++Compiler Intrinsic Equivalent
MOVMSKPD
int _mm_movemask_pd ( __m128 a)
SIMD Floating-Point Exceptions
None.
Protected Mode Exceptions
#NM
If CR0.TS[bit 3] = 1.
MOVMSKPD—Extract Packed Double-Precision Floating-Point Sign Mask
Vol. 2A 3-645
INSTRUCTION SET REFERENCE, A-M
#UD
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Real-Address Mode Exceptions
Same exceptions as in protected mode.
Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
Same exceptions as in protected mode.
3-646 Vol. 2A
MOVMSKPD—Extract Packed Double-Precision Floating-Point Sign Mask
INSTRUCTION SET REFERENCE, A-M
MOVMSKPS—Extract Packed Single-Precision Floating-Point Sign Mask
Opcode
Instruction
64-Bit Compat/
Description
Mode
Leg Mode
0F 50 /r
MOVMSKPS r32,
xmm
Valid
Valid
Extract 4-bit sign mask from xmm
and store in r32.
REX.W + 0F 50 /r
MOVMSKPS r64,
xmm
Valid
N.E.
Extract 4-bit sign mask from xmm
and store in r64. Zero extend
32-bit results to 64-bits.
Description
Extracts the sign bits from the packed single-precision floating-point values in the
source operand (second operand), formats them into a 4-bit mask, and stores the
mask in the destination operand (first operand). The source operand is an XMM
register, and the destination operand is a general-purpose register. The mask is
stored in the 4 low-order bits of the destination operand.
In 64-bit mode, the instruction can access additional registers (XMM8-XMM15,
R8-R15) when used with a REX.R prefix. Use of the REX.W prefix promotes the
instruction to 64-bit operands. See the summary chart at the beginning of this
section for encoding data and limits.
Operation
DEST[0] ←SRC[31];
DEST[1] ←SRC[63];
DEST[2] ←SRC[95];
DEST[3] ←SRC[127];
IF DEST = r32
THEN DEST[31:4] ←ZeroExtend;
ELSE DEST[63:4] ←ZeroExtend;
FI;
Intel C/C++Compiler Intrinsic Equivalent
int _mm_movemask_ps(__m128 a)
SIMD Floating-Point Exceptions
None.
Protected Mode Exceptions
#NM
If CR0.TS[bit 3] = 1.
MOVMSKPS—Extract Packed Single-Precision Floating-Point Sign Mask
Vol. 2A 3-647
INSTRUCTION SET REFERENCE, A-M
#UD
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
Real-Address Mode Exceptions
Same exceptions as in protected mode.
Virtual 8086 Mode Exceptions
Same exceptions as in protected mode.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
Same exceptions as in protected mode.
3-648 Vol. 2A
MOVMSKPS—Extract Packed Single-Precision Floating-Point Sign Mask
INSTRUCTION SET REFERENCE, A-M
MOVNTDQ—Store Double Quadword Using Non-Temporal Hint
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
66 0F E7 /r
MOVNTDQ m128,
xmm
Valid
Valid
Move double quadword from xmm
to m128 using non-temporal hint.
Description
Moves the double quadword in the source operand (second operand) to the destina-
tion operand (first operand) using a non-temporal hint to prevent caching of the data
during the write to memory. The source operand is an XMM register, which is
assumed to contain integer data (packed bytes, words, doublewords, or quadwords).
The destination operand is a 128-bit memory location.
The non-temporal hint is implemented by using a write combining (WC) memory
type protocol when writing the data to memory. Using this protocol, the processor
does not write the data into the cache hierarchy, nor does it fetch the corresponding
cache line from memory into the cache hierarchy. The memory type of the region
being written to can override the non-temporal hint, if the memory address specified
for the non-temporal store is in an uncacheable (UC) or write protected (WP)
memory region. For more information on non-temporal stores, see “Caching of
Temporal vs. Non-Temporal Data” in Chapter 10 in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 1.
Because the WC protocol uses a weakly-ordered memory consistency model, a
fencing operation implemented with the SFENCE or MFENCE instruction should be
used in conjunction with MOVNTDQ instructions if multiple processors might use
different memory types to read/write the destination memory locations.
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
DEST ←SRC;
Intel C/C++Compiler Intrinsic Equivalent
MOVNTDQ void _mm_stream_pd( double* p, __m128d a)
SIMD Floating-Point Exceptions
None.
MOVNTDQ—Store Double Quadword Using Non-Temporal Hint
Vol. 2A 3-649
INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#SS(0)
For an illegal address in the SS segment.
For a page fault.
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
#UD
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP(0)
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#UD
If CR0.TS[bit 3] = 1.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
For a page fault.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#PF(fault-code)
#NM
For a page fault.
If CR0.TS[bit 3] = 1.
3-650 Vol. 2A
MOVNTDQ—Store Double Quadword Using Non-Temporal Hint
INSTRUCTION SET REFERENCE, A-M
#UD
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
MOVNTDQ—Store Double Quadword Using Non-Temporal Hint
Vol. 2A 3-651
INSTRUCTION SET REFERENCE, A-M
MOVNTI—Store Doubleword Using Non-Temporal Hint
Opcode
Instruction
64-Bit Compat/
Description
Mode
Leg Mode
0F C3 /r
MOVNTI m32, r32 Valid
Valid
Move doubleword from r32 to
m32 using non-temporal hint.
REX.W + 0F C3 /r MOVNTI m64, r64 Valid
N.E.
Move quadword from r64 to
m64 using non-temporal hint.
Description
Moves the doubleword integer in the source operand (second operand) to the desti-
nation operand (first operand) using a non-temporal hint to minimize cache pollution
during the write to memory. The source operand is a general-purpose register. The
destination operand is a 32-bit memory location.
The non-temporal hint is implemented by using a write combining (WC) memory
type protocol when writing the data to memory. Using this protocol, the processor
does not write the data into the cache hierarchy, nor does it fetch the corresponding
cache line from memory into the cache hierarchy. The memory type of the region
being written to can override the non-temporal hint, if the memory address specified
for the non-temporal store is in an uncacheable (UC) or write protected (WP)
memory region. For more information on non-temporal stores, see “Caching of
Temporal vs. Non-Temporal Data” in Chapter 10 in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 1.
Because the WC protocol uses a weakly-ordered memory consistency model, a
fencing operation implemented with the SFENCE or MFENCE instruction should be
used in conjunction with MOVNTI instructions if multiple processors might use
different memory types to read/write the destination memory locations.
In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R
prefix permits access to additional registers (R8-R15). Use of the REX.W prefix
promotes operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.
Operation
DEST ←SRC;
Intel C/C++Compiler Intrinsic Equivalent
MOVNTI void _mm_stream_si32 (int *p, int a)
SIMD Floating-Point Exceptions
None.
3-652 Vol. 2A
MOVNTI—Store Doubleword Using Non-Temporal Hint
INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
#SS(0)
For an illegal address in the SS segment.
For a page fault.
#PF(fault-code)
#UD
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP(0)
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#UD
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
For a page fault.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
For a page fault.
#PF(fault-code)
#UD
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
MOVNTI—Store Doubleword Using Non-Temporal Hint
Vol. 2A 3-653
INSTRUCTION SET REFERENCE, A-M
MOVNTPD—Store Packed Double-Precision Floating-Point Values Using
Non-Temporal Hint
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
66 0F 2B /r MOVNTPD m128,
Valid
Valid
Move packed double-precision
floating-point values from xmm to
m128 using non-temporal hint.
xmm
Description
Moves the double quadword in the source operand (second operand) to the destina-
tion operand (first operand) using a non-temporal hint to minimize cache pollution
during the write to memory. The source operand is an XMM register, which is
assumed to contain two packed double-precision floating-point values. The destina-
tion operand is a 128-bit memory location.
The non-temporal hint is implemented by using a write combining (WC) memory
type protocol when writing the data to memory. Using this protocol, the processor
does not write the data into the cache hierarchy, nor does it fetch the corresponding
cache line from memory into the cache hierarchy. The memory type of the region
being written to can override the non-temporal hint, if the memory address specified
for the non-temporal store is in an uncacheable (UC) or write protected (WP)
memory region. For more information on non-temporal stores, see “Caching of
Temporal vs. Non-Temporal Data” in Chapter 10 in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 1.
Because the WC protocol uses a weakly-ordered memory consistency model, a
fencing operation implemented with the SFENCE or MFENCE instruction should be
used in conjunction with MOVNTPD instructions if multiple processors might use
different memory types to read/write the destination memory locations.
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
DEST ←SRC;
Intel C/C++Compiler Intrinsic Equivalent
MOVNTPD void _mm_stream_pd(double *p, __m128d a)
SIMD Floating-Point Exceptions
None.
3-654 Vol. 2A
MOVNTPD—Store Packed Double-Precision Floating-Point Values Using Non-Temporal
Hint
INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#SS(0)
For an illegal address in the SS segment.
For a page fault.
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
#UD
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP(0)
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#UD
If CR0.TS[bit 3] = 1.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
For a page fault.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#PF(fault-code)
#NM
For a page fault.
If CR0.TS[bit 3] = 1.
MOVNTPD—Store Packed Double-Precision Floating-Point Values Using Non-Temporal
Hint
Vol. 2A 3-655
INSTRUCTION SET REFERENCE, A-M
#UD
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
3-656 Vol. 2A
MOVNTPD—Store Packed Double-Precision Floating-Point Values Using Non-Temporal
Hint
INSTRUCTION SET REFERENCE, A-M
MOVNTPS—Store Packed Single-Precision Floating-Point Values Using
Non-Temporal Hint
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
0F 2B /r MOVNTPS m128,
Valid
Valid
Move packed single-precision floating-
point values from xmm to m128 using
non-temporal hint.
xmm
Description
Moves the double quadword in the source operand (second operand) to the destina-
tion operand (first operand) using a non-temporal hint to minimize cache pollution
during the write to memory. The source operand is an XMM register, which is
assumed to contain four packed single-precision floating-point values. The destina-
tion operand is a 128-bit memory location.
The non-temporal hint is implemented by using a write combining (WC) memory
type protocol when writing the data to memory. Using this protocol, the processor
does not write the data into the cache hierarchy, nor does it fetch the corresponding
cache line from memory into the cache hierarchy. The memory type of the region
being written to can override the non-temporal hint, if the memory address specified
for the non-temporal store is in an uncacheable (UC) or write protected (WP)
memory region. For more information on non-temporal stores, see “Caching of
Temporal vs. Non-Temporal Data” in Chapter 10 in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 1.
Because the WC protocol uses a weakly-ordered memory consistency model, a
fencing operation implemented with the SFENCE or MFENCE instruction should be
used in conjunction with MOVNTPS instructions if multiple processors might use
different memory types to read/write the destination memory locations.
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
DEST ←SRC;
Intel C/C++Compiler Intrinsic Equivalent
MOVNTDQ
void _mm_stream_ps(float * p, __m128 a)
SIMD Floating-Point Exceptions
None.
MOVNTPS—Store Packed Single-Precision Floating-Point Values Using Non-Temporal
Hint
Vol. 2A 3-657
INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#SS(0)
For an illegal address in the SS segment.
For a page fault.
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
#UD
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP(0)
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#UD
If CR0.TS[bit 3] = 1.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
For a page fault.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#PF(fault-code)
#NM
For a page fault.
If CR0.TS[bit 3] = 1.
3-658 Vol. 2A
MOVNTPS—Store Packed Single-Precision Floating-Point Values Using Non-Temporal
Hint
INSTRUCTION SET REFERENCE, A-M
#UD
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
MOVNTPS—Store Packed Single-Precision Floating-Point Values Using Non-Temporal
Hint
Vol. 2A 3-659
INSTRUCTION SET REFERENCE, A-M
MOVNTQ—Store of Quadword Using Non-Temporal Hint
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
0F E7 /r
MOVNTQ m64, Valid
mm
Valid
Move quadword from mm to m64 using
non-temporal hint.
Description
Moves the quadword in the source operand (second operand) to the destination
operand (first operand) using a non-temporal hint to minimize cache pollution during
the write to memory. The source operand is an MMX technology register, which is
assumed to contain packed integer data (packed bytes, words, or doublewords). The
destination operand is a 64-bit memory location.
The non-temporal hint is implemented by using a write combining (WC) memory
type protocol when writing the data to memory. Using this protocol, the processor
does not write the data into the cache hierarchy, nor does it fetch the corresponding
cache line from memory into the cache hierarchy. The memory type of the region
being written to can override the non-temporal hint, if the memory address specified
for the non-temporal store is in an uncacheable (UC) or write protected (WP)
memory region. For more information on non-temporal stores, see “Caching of
Temporal vs. Non-Temporal Data” in Chapter 10 in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 1.
Because the WC protocol uses a weakly-ordered memory consistency model, a
fencing operation implemented with the SFENCE or MFENCE instruction should be
used in conjunction with MOVNTQ instructions if multiple processors might use
different memory types to read/write the destination memory locations.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
Operation
DEST ←SRC;
Intel C/C++Compiler Intrinsic Equivalent
MOVNTQ void _mm_stream_pi(__m64 * p, __m64 a)
SIMD Floating-Point Exceptions
None.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
3-660 Vol. 2A
MOVNTQ—Store of Quadword Using Non-Temporal Hint
INSTRUCTION SET REFERENCE, A-M
#SS(0)
#PF(fault-code)
#NM
For an illegal address in the SS segment.
For a page fault.
If CR0.TS[bit 3] = 1.
#MF
If there is a pending x87 FPU exception.
If CR0.EM[bit 2] = 1.
#UD
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
Real-Address Mode Exceptions
#GP(0)
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#MF
#UD
If CR0.TS[bit 3] = 1.
If there is a pending x87 FPU exception.
If CR0.EM[bit 2] = 1.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#UD
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
#AC(0)
For a page fault.
If alignment checking is enabled and an unaligned memory
reference is made.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#PF(fault-code)
#NM
If the memory address is in a non-canonical form.
For a page fault.
If CR0.TS[bit 3] = 1.
#MF
If there is a pending x87 FPU exception.
MOVNTQ—Store of Quadword Using Non-Temporal Hint
Vol. 2A 3-661
INSTRUCTION SET REFERENCE, A-M
#UD
If CR0.EM[bit 2] = 1.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
3-662 Vol. 2A
MOVNTQ—Store of Quadword Using Non-Temporal Hint
INSTRUCTION SET REFERENCE, A-M
MOVQ—Move Quadword
Opcode
0F 6F /r
0F 7F /r
Instruction
64-Bit
Mode
Compat/
Description
Leg Mode
MOVQ mm, mm/m64
MOVQ mm/m64, mm
Valid
Valid
Valid
Valid
Valid
Move quadword from mm/m64
to mm.
Valid
Move quadword from mm to
mm/m64.
F3 0F 7E MOVQ xmm1, xmm2/m64 Valid
Move quadword from
xmm2/mem64 to xmm1.
66 0F D6 MOVQ xmm2/m64, xmm1 Valid
Move quadword from xmm1 to
xmm2/mem64.
Description
Copies a quadword from the source operand (second operand) to the destination
operand (first operand). The source and destination operands can be MMX tech-
nology registers, XMM registers, or 64-bit memory locations. This instruction can be
used to move a quadword between two MMX technology registers or between an
MMX technology register and a 64-bit memory location, or to move data between two
XMM registers or between an XMM register and a 64-bit memory location. The
instruction cannot be used to transfer data between memory locations.
When the source operand is an XMM register, the low quadword is moved; when the
destination operand is an XMM register, the quadword is stored to the low quadword
of the register, and the high quadword is cleared to all 0s.
In 64-bit mode, use of the REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
Operation
MOVQ instruction when operating on MMX technology registers and memory locations:
DEST ←SRC;
MOVQ instruction when source and destination operands are XMM registers:
DEST[63:0] ←SRC[63:0];
MOVQ instruction when source operand is XMM register and destination
operand is memory location:
DEST ←SRC[63:0];
MOVQ instruction when source operand is memory location and destination
operand is XMM register:
DEST[63:0] ←SRC;
MOVQ—Move Quadword
Vol. 2A 3-663
INSTRUCTION SET REFERENCE, A-M
DEST[127:64] ←0000000000000000H;
Flags Affected
None.
SIMD Floating-Point Exceptions
None.
Protected Mode Exceptions
#GP(0)
If the destination operand is in a non-writable segment.
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0)
#UD
If a memory operand effective address is outside the SS
segment limit.
If CR0.EM[bit 2] = 1.
128-bit operations will generate #UD only if CR4.OSFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.
If the LOCK prefix is used.
If CR0.TS[bit 3] = 1.
#NM
#MF
(MMX register operations only) If there is a pending FPU
exception.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
Real-Address Mode Exceptions
#GP
If any part of the operand lies outside of the effective address
space from 0 to FFFFH.
#UD
If CR0.EM[bit 2] = 1.
128-bit operations will generate #UD only if CR4.OSFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.
If the LOCK prefix is used.
If CR0.TS[bit 3] = 1.
#NM
#MF
(MMX register operations only) If there is a pending FPU
exception.
3-664 Vol. 2A
MOVQ—Move Quadword
INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#UD
If the memory address is in a non-canonical form.
If CR0.EM[bit 2] = 1.
(XMM register operations only) If CR4.OSFXSR[bit 9] = 0.
(XMM register operations only) If CPUID.01H:EDX.SSE2[bit 26]
= 0.
If the LOCK prefix is used.
If CR0.TS[bit 3] = 1.
#NM
#MF
(MMX register operations only) If there is a pending FPU
exception.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
MOVQ—Move Quadword
Vol. 2A 3-665
INSTRUCTION SET REFERENCE, A-M
MOVQ2DQ—Move Quadword from MMX Technology to XMM Register
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
F3 0F D6 MOVQ2DQ xmm, mm Valid
Valid
Move quadword from mmx to low
quadword of xmm.
Description
Moves the quadword from the source operand (second operand) to the low quadword
of the destination operand (first operand). The source operand is an MMX technology
register and the destination operand is an XMM register.
This instruction causes a transition from x87 FPU to MMX technology operation (that
is, the x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all
0s [valid]). If this instruction is executed while an x87 FPU floating-point exception is
pending, the exception is handled before the MOVQ2DQ instruction is executed.
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
DEST[63:0] ←SRC[63:0];
DEST[127:64] ←00000000000000000H;
Intel C/C++Compiler Intrinsic Equivalent
MOVQ2DQ
__128i _mm_movpi64_pi64 ( __m64 a)
SIMD Floating-Point Exceptions
None.
Protected Mode Exceptions
#NM
#UD
If CR0.TS[bit 3] = 1.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#MF
If there is a pending x87 FPU exception.
Real-Address Mode Exceptions
Same exceptions as in protected mode.
3-666 Vol. 2A
MOVQ2DQ—Move Quadword from MMX Technology to XMM Register
INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
Same exceptions as in protected mode.
MOVQ2DQ—Move Quadword from MMX Technology to XMM Register
Vol. 2A 3-667
INSTRUCTION SET REFERENCE, A-M
MOVS/MOVSB/MOVSW/MOVSD/MOVSQ—Move Data from
String to String
\
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
A4
MOVS m8, m8
Valid
Valid
Valid
Valid
For legacy mode, Move byte from
address DS:(E)SI to ES:(E)DI. For 64-bit
mode move byte from address (R|E)SI
to (R|E)DI.
A5
A5
MOVS m16, m16 Valid
For legacy mode, move word from
address DS:(E)SI to ES:(E)DI. For 64-bit
mode move word at address (R|E)SI to
(R|E)DI.
MOVS m32, m32 Valid
For legacy mode, move dword from
address DS:(E)SI to ES:(E)DI. For 64-bit
mode move dword from address (R|E)SI
to (R|E)DI.
REX.W + A5 MOVS m64, m64 Valid
N.E.
Move qword from address (R|E)SI to
(R|E)DI.
A4
A5
A5
MOVSB
MOVSW
MOVSD
Valid
Valid
Valid
Valid
Valid
For legacy mode, Move byte from
address DS:(E)SI to ES:(E)DI. For 64-bit
mode move byte from address (R|E)SI
to (R|E)DI.
Valid
Valid
N.E.
For legacy mode, move word from
address DS:(E)SI to ES:(E)DI. For 64-bit
mode move word at address (R|E)SI to
(R|E)DI.
For legacy mode, move dword from
address DS:(E)SI to ES:(E)DI. For 64-bit
mode move dword from address (R|E)SI
to (R|E)DI.
REX.W + A5 MOVSQ
Move qword from address (R|E)SI to
(R|E)DI.
Description
Moves the byte, word, or doubleword specified with the second operand (source
operand) to the location specified with the first operand (destination operand). Both
the source and destination operands are located in memory. The address of the
source operand is read from the DS:ESI or the DS:SI registers (depending on the
address-size attribute of the instruction, 32 or 16, respectively). The address of the
destination operand is read from the ES:EDI or the ES:DI registers (again depending
on the address-size attribute of the instruction). The DS segment may be overridden
with a segment override prefix, but the ES segment cannot be overridden.
3-668 Vol. 2A
MOVS/MOVSB/MOVSW/MOVSD/MOVSQ—Move Data from String to String
INSTRUCTION SET REFERENCE, A-M
At the assembly-code level, two forms of this instruction are allowed: the “explicit-
operands” form and the “no-operands” form. The explicit-operands form (specified
with the MOVS mnemonic) allows the source and destination operands to be speci-
fied explicitly. Here, the source and destination operands should be symbols that
indicate the size and location of the source value and the destination, respectively.
This explicit-operands form is provided to allow documentation; however, note that
the documentation provided by this form can be misleading. That is, the source and
destination operand symbols must specify the correct type (size) of the operands
(bytes, words, or doublewords), but they do not have to specify the correct location.
The locations of the source and destination operands are always specified by the
DS:(E)SI and ES:(E)DI registers, which must be loaded correctly before the move
string instruction is executed.
The no-operands form provides “short forms” of the byte, word, and doubleword
versions of the MOVS instructions. Here also DS:(E)SI and ES:(E)DI are assumed to
be the source and destination operands, respectively. The size of the source and
destination operands is selected with the mnemonic: MOVSB (byte move), MOVSW
(word move), or MOVSD (doubleword move).
After the move operation, the (E)SI and (E)DI registers are incremented or decre-
mented automatically according to the setting of the DF flag in the EFLAGS register.
(If the DF flag is 0, the (E)SI and (E)DI register are incremented; if the DF flag is 1,
the (E)SI and (E)DI registers are decremented.) The registers are incremented or
decremented by 1 for byte operations, by 2 for word operations, or by 4 for double-
word operations.
The MOVS, MOVSB, MOVSW, and MOVSD instructions can be preceded by the REP
prefix (see “REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix” in
Chapter 4, Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
2B) for block moves of ECX bytes, words, or doublewords.
In 64-bit mode, the instruction’s default address size is 64 bits, 32-bit address size is
supported using the prefix 67H. The 64-bit addresses are specified by RSI and RDI;
32-bit address are specified by ESI and EDI. Use of the REX.W prefix promotes
doubleword operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.
Operation
DEST ←SRC;
Non-64-bit Mode:
IF (Byte move)
THEN IF DF = 0
THEN
(E)SI ←(E)SI +1;
(E)DI ←(E)DI +1;
ELSE
MOVS/MOVSB/MOVSW/MOVSD/MOVSQ—Move Data from String to String
Vol. 2A 3-669
INSTRUCTION SET REFERENCE, A-M
(E)SI ←(E)SI – 1;
(E)DI ←(E)DI – 1;
FI;
ELSE IF (Word move)
THEN IF DF = 0
(E)SI ←(E)SI +2;
(E)DI ←(E)DI +2;
FI;
ELSE
(E)SI ←(E)SI – 2;
(E)DI ←(E)DI – 2;
FI;
ELSE IF (Doubleword move)
THEN IF DF = 0
(E)SI ←(E)SI +4;
(E)DI ←(E)DI +4;
FI;
ELSE
(E)SI ←(E)SI – 4;
(E)DI ←(E)DI – 4;
FI;
FI;
64-bit Mode:
IF (Byte move)
THEN IF DF = 0
THEN
(R|E)SI ←(R|E)SI +1;
(R|E)DI ←(R|E)DI +1;
ELSE
(R|E)SI ←(R|E)SI – 1;
(R|E)DI ←(R|E)DI – 1;
FI;
ELSE IF (Word move)
THEN IF DF = 0
(R|E)SI ←(R|E)SI +2;
(R|E)DI ←(R|E)DI +2;
FI;
ELSE
(R|E)SI ←(R|E)SI – 2;
(R|E)DI ←(R|E)DI – 2;
FI;
ELSE IF (Doubleword move)
THEN IF DF = 0
3-670 Vol. 2A
MOVS/MOVSB/MOVSW/MOVSD/MOVSQ—Move Data from String to String
INSTRUCTION SET REFERENCE, A-M
(R|E)SI ←(R|E)SI +4;
(R|E)DI ←(R|E)DI +4;
FI;
ELSE
(R|E)SI ←(R|E)SI – 4;
(R|E)DI ←(R|E)DI – 4;
FI;
ELSE IF (Quadword move)
THEN IF DF = 0
(R|E)SI ←(R|E)SI +8;
(R|E)DI ←(R|E)DI +8;
FI;
ELSE
(R|E)SI ←(R|E)SI – 8;
(R|E)DI ←(R|E)DI – 8;
FI;
FI;
Flags Affected
None.
Protected Mode Exceptions
#GP(0)
If the destination is located in a non-writable segment.
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP
#SS
#UD
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If a memory operand effective address is outside the SS
segment limit.
If the LOCK prefix is used.
MOVS/MOVSB/MOVSW/MOVSD/MOVSQ—Move Data from String to String
Vol. 2A 3-671
INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made.
#UD
If the LOCK prefix is used.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
3-672 Vol. 2A
MOVS/MOVSB/MOVSW/MOVSD/MOVSQ—Move Data from String to String
INSTRUCTION SET REFERENCE, A-M
MOVSD—Move Scalar Double-Precision Floating-Point Value
Opcode
Instruction
64-Bit Compat/
Description
Mode
Leg Mode
F2 0F 10 /r MOVSD xmm1,
Valid
Valid
Move scalar double-precision
floating-point value from
xmm2/m64
xmm2/m64 to xmm1 register.
F2 0F 11 /r MOVSD xmm2/m64, Valid
Valid
Move scalar double-precision
floating-point value from xmm1
register to xmm2/m64.
xmm1
Description
Moves a scalar double-precision floating-point value from the source operand
(second operand) to the destination operand (first operand). The source and destina-
tion operands can be XMM registers or 64-bit memory locations. This instruction can
be used to move a double-precision floating-point value to and from the low quad-
word of an XMM register and a 64-bit memory location, or to move a double-precision
floating-point value between the low quadwords of two XMM registers. The instruc-
tion cannot be used to transfer data between memory locations.
When the source and destination operands are XMM registers, the high quadword of
the destination operand remains unchanged. When the source operand is a memory
location and destination operand is an XMM registers, the high quadword of the desti-
nation operand is cleared to all 0s.
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
MOVSD instruction when source and destination operands are XMM registers:
DEST[63:0] ←SRC[63:0];
(* DEST[127:64] unchanged *)
MOVSD instruction when source operand is XMM register and destination operand is
memory location:
DEST ←SRC[63:0];
MOVSD instruction when source operand is memory location and destination operand is
XMM register:
DEST[63:0] ←SRC;
DEST[127:64] ←0000000000000000H;
Intel C/C++Compiler Intrinsic Equivalent
MOVSD
__m128d _mm_load_sd (double *p)
MOVSD—Move Scalar Double-Precision Floating-Point Value
Vol. 2A 3-673
INSTRUCTION SET REFERENCE, A-M
MOVSD
MOVSD
void _mm_store_sd (double *p, __m128d a)
__m128d _mm_store_sd (__m128d a, __m128d b)
SIMD Floating-Point Exceptions
None.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
#SS(0)
For an illegal address in the SS segment.
For a page fault.
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
#UD
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
Real-Address Mode Exceptions
GP(0)
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#UD
If CR0.TS[bit 3] = 1.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
#AC(0)
For a page fault.
If alignment checking is enabled and an unaligned memory
reference is made.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
3-674 Vol. 2A
MOVSD—Move Scalar Double-Precision Floating-Point Value
INSTRUCTION SET REFERENCE, A-M
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#PF(fault-code)
#NM
If the memory address is in a non-canonical form.
For a page fault.
If CR0.TS[bit 3] = 1.
#UD
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
MOVSD—Move Scalar Double-Precision Floating-Point Value
Vol. 2A 3-675
INSTRUCTION SET REFERENCE, A-M
MOVSHDUP—Move Packed Single-FP High and Duplicate
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
F3 0F 16 /r MOVSHDUP xmm1,
Valid
Valid
Move two single-precision floating-
point values from the higher 32-bit
operand of each qword in
xmm2/m128
xmm2/m128 to xmm1 and
duplicate each 32-bit operand to the
lower 32-bits of each qword.
Description
The linear address corresponds to the address of the least-significant byte of the
referenced memory data. When a memory address is indicated, the 16 bytes of data
at memory location m128 are loaded and the single-precision elements in positions 1
and 3 are duplicated. When the register-register form of this operation is used, the
same operation is performed but with data coming from the 128-bit source register.
See Figure 3-15.
0296+'83ꢄ[PPꢂꢍꢄ[PPꢅꢎPꢂꢅꢒ
[PPꢅꢎ
>ꢂꢅꢌꢃꢊꢐ@
>ꢊꢆꢃꢐꢉ@
>ꢐꢋꢃꢋꢅ@
>ꢋꢂꢃꢁ@
Pꢂꢅꢒ
[PPꢂ>ꢂꢅꢌꢃꢊꢐ@ꢄ
ꢄꢄꢄꢄꢄꢄꢄꢄꢄꢄꢄ[PPꢅꢎ
Pꢂꢅꢒ>ꢂꢅꢌꢃꢊꢐ@
[PPꢂ>ꢊꢆꢃꢐꢉ@ꢄ
ꢄꢄꢄꢄꢄꢄꢄꢄꢄꢄ[PPꢅꢎ
Pꢂꢅꢒ>ꢂꢅꢌꢃꢊꢐ@
[PPꢂ>ꢐꢋꢃꢋꢅ@ꢄꢄ
ꢄꢄꢄꢄꢄꢄꢄꢄꢄ[PPꢅꢎ
Pꢂꢅꢒ>ꢐꢋꢃꢋꢅ@
[PPꢂ>ꢋꢂꢃꢁ@ꢄꢄ
ꢄꢄꢄꢄꢄꢄꢄ[PPꢅꢎ
Pꢂꢅꢒ>ꢐꢋꢃꢋꢅ@
5(68/7ꢃ
[PPꢂ
>ꢂꢅꢌꢃꢊꢐ@
>ꢊꢆꢃꢐꢉ@
>ꢐꢋꢃꢋꢅ@
>ꢋꢂꢃꢁ@
20ꢂꢆꢊꢊꢒ
Figure 3-15. MOVSHDUP—Move Packed Single-FP High and Duplicate
In 64-bit mode, use of the REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
3-676 Vol. 2A
MOVSHDUP—Move Packed Single-FP High and Duplicate
INSTRUCTION SET REFERENCE, A-M
Operation
IF (Source == m128)
THEN
(* Load instruction *)
xmm1[31:0] = m128[63:32];
xmm1[63:32] = m128[63:32];
xmm1[95:64] = m128[127:96];
xmm1[127:96] = m128[127:96];
(* Move instruction *)
ELSE
xmm1[31:0] = xmm2[63:32];
xmm1[63:32] = xmm2[63:32];
xmm1[95:64] = xmm2[127:96];
xmm1[127:96] = xmm2[127:96];
FI;
Intel C/C++Compiler Intrinsic Equivalent
MOVSHDUP
__m128 _mm_movehdup_ps(__m128 a)
Exceptions
General protection exception if not aligned on 16-byte boundary, regardless of
segment.
Numeric Exceptions
None
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
If memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#SS(0)
For an illegal address in the SS segment.
For a page fault.
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
#UD
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.
MOVSHDUP—Move Packed Single-FP High and Duplicate
Vol. 2A 3-677
INSTRUCTION SET REFERENCE, A-M
Real Address Mode Exceptions
GP(0)
If any part of the operand would lie outside of the effective
address space from 0 to 0FFFFH.
If memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#NM
#UD
If CR0.TS[bit 3] = 1.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.
Virtual 8086 Mode Exceptions
GP(0)
If any part of the operand would lie outside of the effective
address space from 0 to 0FFFFH.
If memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#NM
#UD
If CR0.TS[bit 3] = 1.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.
For a page fault.
#PF(fault-code)
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is not non-
canonical.
#GP(0)
If the memory address is in a non-canonical form.
If memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#PF(fault-code)
#NM
For a page fault.
If CR0.TS[bit 3] = 1.
#UD
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.SSE3(ECX, bit 0) is 0.
If the LOCK prefix is used.
3-678 Vol. 2A
MOVSHDUP—Move Packed Single-FP High and Duplicate
INSTRUCTION SET REFERENCE, A-M
MOVSLDUP—Move Packed Single-FP Low and Duplicate
Opcode
Instruction
64-Bit Compat/
Mode Leg Mode
Description
F3 0F 12 /r MOVSLDUP xmm1, Valid
Valid
Move two single-precision floating-point
values from the lower 32-bit operand of
each qword in xmm2/m128 to xmm1
and duplicate each 32-bit operand to
the higher 32-bits of each qword.
xmm2/m128
Description
The linear address corresponds to the address of the least-significant byte of the
referenced memory data. When a memory address is indicated, the 16 bytes of data
at memory location m128 are loaded and the single-precision elements in positions 0
and 2 are duplicated. When the register-register form of this operation is used, the
same operation is performed but with data coming from the 128-bit source register.
See Figure 3-16.
0296/'83ꢄ[PPꢂꢍꢄ[PPꢅꢎPꢂꢅꢒ
[PPꢅꢎ
>ꢂꢅꢌꢃꢊꢐ@
>ꢊꢆꢃꢐꢉ@
>ꢐꢋꢃꢋꢅ@
>ꢋꢂꢃꢁ@
Pꢂꢅꢒ
[PPꢂ>ꢂꢅꢌꢃꢊꢐ@ꢄ
ꢄꢄꢄꢄꢄꢄꢄꢄꢄꢄꢄ[PPꢅꢎ
Pꢂꢅꢒ>ꢊꢆꢃꢐꢉ@
[PPꢂ>ꢊꢆꢃꢐꢉ@ꢄ
ꢄꢄꢄꢄꢄꢄꢄꢄꢄꢄ[PPꢅꢎ
Pꢂꢅꢒ>ꢊꢆꢃꢐꢉ@
[PPꢂ>ꢐꢋꢃꢋꢅ@ꢄꢄ
ꢄꢄꢄꢄꢄꢄꢄꢄꢄ[PPꢅꢎ
Pꢂꢅꢒ>ꢋꢂꢃꢁ@
[PPꢂ>ꢋꢂꢃꢁ@ꢄꢄ
ꢄꢄꢄꢄꢄꢄꢄ[PPꢅꢎ
Pꢂꢅꢒ>ꢋꢂꢃꢁ@
5(68/7ꢃ
[PPꢂ
>ꢂꢅꢌꢃꢊꢐ@
>ꢊꢆꢃꢐꢉ@
>ꢐꢋꢃꢋꢅ@
>ꢋꢂꢃꢁ@
20ꢂꢆꢊꢊꢊ
Figure 3-16. MOVSLDUP—Move Packed Single-FP Low and Duplicate
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
MOVSLDUP—Move Packed Single-FP Low and Duplicate
Vol. 2A 3-679
INSTRUCTION SET REFERENCE, A-M
Operation
IF (Source == m128)
THEN
(* Load instruction *)
xmm1[31:0] = m128[31:0];
xmm1[63:32] = m128[31:0];
xmm1[95:64] = m128[95:64];
xmm1[127:96] = m128[95::64];
(* Move instruction *)
ELSE
xmm1[31:0] = xmm2[31:0];
xmm1[63:32] = xmm2[31:0];
xmm1[95:64] = xmm2[95:64];
xmm1[127:96] = xmm2[95:64];
FI;
Intel C/C++Compiler Intrinsic Equivalent
MOVSLDUP
__m128 _mm_moveldup_ps(__m128 a)
Exceptions
General protection exception if not aligned on 16-byte boundary, regardless of
segment.
Numeric Exceptions
None.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
If memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#SS(0)
For an illegal address in the SS segment.
For a page fault.
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
#UD
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.
3-680 Vol. 2A
MOVSLDUP—Move Packed Single-FP Low and Duplicate
INSTRUCTION SET REFERENCE, A-M
Real Address Mode Exceptions
GP(0)
If any part of the operand would lie outside of the effective
address space from 0 to 0FFFFH.
If memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#NM
#UD
If CR0.TS[bit 3] = 1.If CR0.TS[bit 3] = 1.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.
Virtual 8086 Mode Exceptions
GP(0)
If any part of the operand would lie outside of the effective
address space from 0 to 0FFFFH.
If memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#NM
#UD
If CR0.TS[bit 3] = 1.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.
For a page fault.
#PF(fault-code)
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#PF(fault-code)
#NM
For a page fault.
If CR0.TS[bit 3] = 1.
#UD
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.SSE3(ECX, bit 0) is 0.
If the LOCK prefix is used.
MOVSLDUP—Move Packed Single-FP Low and Duplicate
Vol. 2A 3-681
INSTRUCTION SET REFERENCE, A-M
MOVSS—Move Scalar Single-Precision Floating-Point Values
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
F3 0F 10 /r
MOVSS xmm1,
xmm2/m32
Valid
Valid
Valid
Move scalar single-precision
floating-point value from
xmm2/m32 to xmm1 register.
F3 0F 11 /r
MOVSS xmm2/m32, Valid
xmm
Move scalar single-precision
floating-point value from xmm1
register to xmm2/m32.
Description
Moves a scalar single-precision floating-point value from the source operand (second
operand) to the destination operand (first operand). The source and destination
operands can be XMM registers or 32-bit memory locations. This instruction can be
used to move a single-precision floating-point value to and from the low doubleword
of an XMM register and a 32-bit memory location, or to move a single-precision
floating-point value between the low doublewords of two XMM registers. The instruc-
tion cannot be used to transfer data between memory locations.
When the source and destination operands are XMM registers, the three high-order
doublewords of the destination operand remain unchanged. When the source
operand is a memory location and destination operand is an XMM registers, the three
high-order doublewords of the destination operand are cleared to all 0s.
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
MOVSS instruction when source and destination operands are XMM registers:
DEST[31:0] ←SRC[31:0];
(* DEST[127:32] remains unchanged *)
MOVSS instruction when source operand is XMM register and destination operand is
memory location:
DEST ←SRC[31:0];
MOVSS instruction when source operand is memory location and destination operand is
XMM register:
DEST[31:0] ←SRC;
DEST[127:32] ←000000000000000000000000H;
Intel C/C++Compiler Intrinsic Equivalent
MOVSS
__m128 _mm_load_ss(float * p)
3-682 Vol. 2A
MOVSS—Move Scalar Single-Precision Floating-Point Values
INSTRUCTION SET REFERENCE, A-M
MOVSS
MOVSS
void _mm_store_ss(float * p, __m128 a)
__m128 _mm_move_ss(__m128 a, __m128 b)
SIMD Floating-Point Exceptions
None.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
#SS(0)
For an illegal address in the SS segment.
For a page fault.
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
#UD
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
Real-Address Mode Exceptions
GP(0)
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#UD
If CR0.TS[bit 3] = 1.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
#AC(0)
For a page fault.
If alignment checking is enabled and an unaligned memory
reference is made.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
MOVSS—Move Scalar Single-Precision Floating-Point Values
Vol. 2A 3-683
INSTRUCTION SET REFERENCE, A-M
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#PF(fault-code)
#NM
If the memory address is in a non-canonical form.
For a page fault.
If CR0.TS[bit 3] = 1.
#UD
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
3-684 Vol. 2A
MOVSS—Move Scalar Single-Precision Floating-Point Values
INSTRUCTION SET REFERENCE, A-M
MOVSX/MOVSXD—Move with Sign-Extension
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
0F BE /r
MOVSX r16, r/m8
MOVSX r32, r/m8
MOVSX r64, r/m8*
MOVSX r32, r/m16
MOVSX r64, r/m16
Valid
Valid
Valid
Valid
Valid
Valid
Move byte to word with sign-
extension.
0F BE /r
Valid
N.E.
Move byte to doubleword
with sign-extension.
REX + 0F BE /r
0F BF /r
Move byte to quadword with
sign-extension.
Valid
N.E.
Move word to doubleword,
with sign-extension.
REX.W + 0F BF /r
REX.W** + 63 /r
Move word to quadword with
sign-extension.
MOVSXD r64, r/m32 Valid
N.E.
Move doubleword to
quadword with sign-
extension.
NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.
** The use of MOVSXD without REX.W in 64-bit mode is discouraged, Regular MOV should be used
instead of using MOVSXD without REX.W.
Description
Copies the contents of the source operand (register or memory location) to the desti-
nation operand (register) and sign extends the value to 16 or 32 bits (see Figure 7-6
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1).
The size of the converted value depends on the operand-size attribute.
In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R
prefix permits access to additional registers (R8-R15). Use of the REX.W prefix
promotes operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.
Operation
DEST ←SignExtend(SRC);
Flags Affected
None.
MOVSX/MOVSXD—Move with Sign-Extension
Vol. 2A 3-685
INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP
#SS
#UD
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If a memory operand effective address is outside the SS
segment limit.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#UD
If a page fault occurs.
If the LOCK prefix is used.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
3-686 Vol. 2A
MOVSX/MOVSXD—Move with Sign-Extension
INSTRUCTION SET REFERENCE, A-M
MOVUPD—Move Unaligned Packed Double-Precision Floating-Point
Values
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
66 0F 10 /r MOVUPD xmm1,
Valid
Valid
Move packed double-precision
floating-point values from
xmm2/m128 to xmm1.
xmm2/m128
66 0F 11 /r MOVUPD
Valid
Valid
Move packed double-precision
floating-point values from xmm1
to xmm2/m128.
xmm2/m128, xmm
Description
Moves a double quadword containing two packed double-precision floating-point
values from the source operand (second operand) to the destination operand (first
operand). This instruction can be used to load an XMM register from a 128-bit
memory location, store the contents of an XMM register into a 128-bit memory loca-
tion, or move data between two XMM registers. When the source or destination
operand is a memory operand, the operand may be unaligned on a 16-byte boundary
without causing a general-protection exception (#GP) to be generated.
To move double-precision floating-point values to and from memory locations that
are known to be aligned on 16-byte boundaries, use the MOVAPD instruction.
While executing in 16-bit addressing mode, a linear address for a 128-bit data access
that overlaps the end of a 16-bit segment is not allowed and is defined as reserved
behavior. A specific processor implementation may or may not generate a general-
protection exception (#GP) in this situation, and the address that spans the end of
the segment may or may not wrap around to the beginning of the segment.
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
DEST ←SRC;
Intel C/C++Compiler Intrinsic Equivalent
MOVUPD __m128 _mm_loadu_pd(double * p)
MOVUPD void _mm_storeu_pd(double *p, __m128 a)
SIMD Floating-Point Exceptions
None.
MOVUPD—Move Unaligned Packed Double-Precision Floating-Point Values
Vol. 2A 3-687
INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made.
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
#SS(0)
For an illegal address in the SS segment.
For a page fault.
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
#UD
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Real-Address Mode Exceptions
GP(0)
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#UD
If CR0.TS[bit 3] = 1.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made.
#PF(fault-code)
For a page fault.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made.
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
For a page fault.
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
3-688 Vol. 2A
MOVUPD—Move Unaligned Packed Double-Precision Floating-Point Values
INSTRUCTION SET REFERENCE, A-M
#UD
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
MOVUPD—Move Unaligned Packed Double-Precision Floating-Point Values
Vol. 2A 3-689
INSTRUCTION SET REFERENCE, A-M
MOVUPS—Move Unaligned Packed Single-Precision Floating-Point
Values
Opcode
Instruction
64-Bit Compat/
Description
Mode
Leg Mode
0F 10 /r
MOVUPS xmm1,
xmm2/m128
Valid
Valid
Move packed single-precision floating-
point values from xmm2/m128 to
xmm1.
0F 11 /r
MOVUPS xmm2/m128, Valid
xmm1
Valid
Move packed single-precision floating-
point values from xmm1 to
xmm2/m128.
Description
Moves a double quadword containing four packed single-precision floating-point
values from the source operand (second operand) to the destination operand (first
operand). This instruction can be used to load an XMM register from a 128-bit
memory location, store the contents of an XMM register into a 128-bit memory loca-
tion, or move data between two XMM registers. When the source or destination
operand is a memory operand, the operand may be unaligned on a 16-byte boundary
without causing a general-protection exception (#GP) to be generated.
To move packed single-precision floating-point values to and from memory locations
that are known to be aligned on 16-byte boundaries, use the MOVAPS instruction.
While executing in 16-bit addressing mode, a linear address for a 128-bit data access
that overlaps the end of a 16-bit segment is not allowed and is defined as reserved
behavior. A specific processor implementation may or may not generate a general-
protection exception (#GP) in this situation, and the address that spans the end of
the segment may or may not wrap around to the beginning of the segment.
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
DEST ←SRC;
Intel C/C++Compiler Intrinsic Equivalent
MOVUPS __m128 _mm_loadu_ps(double * p)
MOVUPS void _mm_storeu_ps(double *p, __m128 a)
SIMD Floating-Point Exceptions
None.
3-690 Vol. 2A
MOVUPS—Move Unaligned Packed Single-Precision Floating-Point Values
INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made.
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
#SS(0)
For an illegal address in the SS segment.
For a page fault.
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
#UD
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
Real-Address Mode Exceptions
GP(0)
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#UD
If CR0.TS[bit 3] = 1.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made.
#PF(fault-code)
For a page fault.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made.
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
For a page fault.
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
MOVUPS—Move Unaligned Packed Single-Precision Floating-Point Values
Vol. 2A 3-691
INSTRUCTION SET REFERENCE, A-M
#UD
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
3-692 Vol. 2A
MOVUPS—Move Unaligned Packed Single-Precision Floating-Point Values
INSTRUCTION SET REFERENCE, A-M
MOVZX—Move with Zero-Extend
Opcode
0F B6 /r
0F B6 /r
Instruction
64-Bit
Mode
Compat/
Description
Leg Mode
MOVZX r16, r/m8
MOVZX r32, r/m8
Valid
Valid
Valid
Valid
Valid
N.E.
Move byte to word with zero-
extension.
Move byte to doubleword,
zero-extension.
REX.W + 0F B6 /r MOVZX r64, r/m8*
0F B7 /r
Move byte to quadword, zero-
extension.
MOVZX r32, r/m16 Valid
Valid
N.E.
Move word to doubleword,
zero-extension.
REX.W + 0F B7 /r MOVZX r64, r/m16 Valid
Move word to quadword, zero-
extension.
NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if the REX prefix
is used: AH, BH, CH, DH.
Description
Copies the contents of the source operand (register or memory location) to the desti-
nation operand (register) and zero extends the value. The size of the converted value
depends on the operand-size attribute.
In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R
prefix permits access to additional registers (R8-R15). Use of the REX.W prefix
promotes operation to 64 bit operands. See the summary chart at the beginning of
this section for encoding data and limits.
Operation
DEST ←ZeroExtend(SRC);
Flags Affected
None.
Protected Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.
MOVZX—Move with Zero-Extend
Vol. 2A 3-693
INSTRUCTION SET REFERENCE, A-M
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP
#SS
#UD
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If a memory operand effective address is outside the SS
segment limit.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made.
#UD
If the LOCK prefix is used.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
3-694 Vol. 2A
MOVZX—Move with Zero-Extend
INSTRUCTION SET REFERENCE, A-M
MUL—Unsigned Multiply
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
F6 /4
MUL r/m8
Valid
Valid
Valid
Valid
N.E.
Unsigned multiply (AX ←AL ∗ r/m8).
*
REX + F6 /4
F7 /4
MUL r/m8
Unsigned multiply (AX ←AL ∗ r/m8).
MUL r/m16
Valid
Unsigned multiply (DX:AX ←AX ∗
r/m16).
F7 /4
MUL r/m32
Valid
Valid
Valid
N.E.
Unsigned multiply (EDX:EAX ←EAX ∗
r/m32).
REX.W + F7 /4 MUL r/m64
Unsigned multiply (RDX:RAX ←RAX ∗
r/m64.
NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.
Description
Performs an unsigned multiplication of the first operand (destination operand) and
the second operand (source operand) and stores the result in the destination
operand. The destination operand is an implied operand located in register AL, AX or
EAX (depending on the size of the operand); the source operand is located in a
general-purpose register or a memory location. The action of this instruction and the
location of the result depends on the opcode and the operand size as shown in Table
3-61.
The result is stored in register AX, register pair DX:AX, or register pair EDX:EAX
(depending on the operand size), with the high-order bits of the product contained in
register AH, DX, or EDX, respectively. If the high-order bits of the product are 0, the
CF and OF flags are cleared; otherwise, the flags are set.
In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R
prefix permits access to additional registers (R8-R15). Use of the REX.W prefix
promotes operation to 64 bits.
See the summary chart at the beginning of this section for encoding data and limits.
Table 3-61. MUL Results
Operand Size
Byte
Source 1
Source 2
Destination
AL
r/m8
AX
Word
AX
r/m16
r/m32
r/m64
DX:AX
Doubleword
Quadword
EAX
RAX
EDX:EAX
RDX:RAX
MUL—Unsigned Multiply
Vol. 2A 3-695
INSTRUCTION SET REFERENCE, A-M
Operation
IF (Byte operation)
THEN
AX ←AL ∗ SRC;
ELSE (* Word or doubleword operation *)
IF OperandSize = 16
THEN
DX:AX ←AX ∗ SRC;
ELSE IF OperandSize = 32
THEN EDX:EAX ←EAX ∗ SRC; FI;
ELSE (* OperandSize = 64 *)
RDX:RAX ←RAX ∗ SRC;
FI;
FI;
Flags Affected
The OF and CF flags are set to 0 if the upper half of the result is 0; otherwise, they
are set to 1. The SF, ZF, AF, and PF flags are undefined.
Protected Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP
#SS
#UD
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If a memory operand effective address is outside the SS
segment limit.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
3-696 Vol. 2A
MUL—Unsigned Multiply
INSTRUCTION SET REFERENCE, A-M
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#AC(0)
If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made.
#UD
If the LOCK prefix is used.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If a page fault occurs.
#PF(fault-code)
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
MUL—Unsigned Multiply
Vol. 2A 3-697
INSTRUCTION SET REFERENCE, A-M
MULPD—Multiply Packed Double-Precision Floating-Point Values
Opcode
Instruction
64-Bit Compat/
Description
Mode
Leg Mode
66 0F 59 /r MULPD xmm1,
Valid
Valid
Multiply packed double-precision
floating-point values in xmm2/m128 by
xmm1.
xmm2/m128
Description
Performs a SIMD multiply of the two packed double-precision floating-point values
from the source operand (second operand) and the destination operand (first
operand), and stores the packed double-precision floating-point results in the desti-
nation operand. The source operand can be an XMM register or a 128-bit memory
location. The destination operand is an XMM register. See Figure 11-3 in the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustra-
tion of a SIMD double-precision floating-point operation.
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
DEST[63:0] ←DEST[63:0] ∗ SRC[63:0];
DEST[127:64] ←DEST[127:64] ∗ SRC[127:64];
Intel C/C++Compiler Intrinsic Equivalent
MULPD
__m128d _mm_mul_pd (m128d a, m128d b)
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#SS(0)
For an illegal address in the SS segment.
For a page fault.
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
3-698 Vol. 2A
MULPD—Multiply Packed Double-Precision Floating-Point Values
INSTRUCTION SET REFERENCE, A-M
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP(0)
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
GP(0)
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#XM
If CR0.TS[bit 3] = 1.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
For a page fault.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#PF(fault-code)
#NM
For a page fault.
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
MULPD—Multiply Packed Double-Precision Floating-Point Values
Vol. 2A 3-699
INSTRUCTION SET REFERENCE, A-M
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
3-700 Vol. 2A
MULPD—Multiply Packed Double-Precision Floating-Point Values
INSTRUCTION SET REFERENCE, A-M
MULPS—Multiply Packed Single-Precision Floating-Point Values
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
0F 59 /r
MULPS xmm1,
xmm2/m128
Valid
Valid
Multiply packed single-precision
floating-point values in xmm2/mem by
xmm1.
Description
Performs a SIMD multiply of the four packed single-precision floating-point values
from the source operand (second operand) and the destination operand (first
operand), and stores the packed single-precision floating-point results in the desti-
nation operand. The source operand can be an XMM register or a 128-bit memory
location. The destination operand is an XMM register. See Figure 10-5 in the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustra-
tion of a SIMD single-precision floating-point operation.
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
DEST[31:0] ←DEST[31:0] ∗ SRC[31:0];
DEST[63:32] ←DEST[63:32] ∗ SRC[63:32];
DEST[95:64] ←DEST[95:64] ∗ SRC[95:64];
DEST[127:96] ←DEST[127:96] ∗ SRC[127:96];
Intel C/C++Compiler Intrinsic Equivalent
MULPS
__m128 _mm_mul_ps(__m128 a, __m128 b)
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#SS(0)
For an illegal address in the SS segment.
For a page fault.
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
MULPS—Multiply Packed Single-Precision Floating-Point Values
Vol. 2A 3-701
INSTRUCTION SET REFERENCE, A-M
#XM
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
Real-Address Mode Exceptions
#GP(0)
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#XM
If CR0.TS[bit 3] = 1.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
For a page fault.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
If the memory address is in a non-canonical form.
If memory operand is not aligned on a 16-byte boundary,
regardless of segment.
#PF(fault-code)
#NM
For a page fault.
If CR0.TS[bit 3] = 1.
3-702 Vol. 2A
MULPS—Multiply Packed Single-Precision Floating-Point Values
INSTRUCTION SET REFERENCE, A-M
#XM
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
MULPS—Multiply Packed Single-Precision Floating-Point Values
Vol. 2A 3-703
INSTRUCTION SET REFERENCE, A-M
MULSD—Multiply Scalar Double-Precision Floating-Point Values
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
F2 0F 59 /r MULSD xmm1,
Valid
Valid
Multiply the low double-precision
floating-point value in xmm2/mem64
by low double-precision floating-point
value in xmm1.
xmm2/m64
Description
Multiplies the low double-precision floating-point value in the source operand
(second operand) by the low double-precision floating-point value in the destination
operand (first operand), and stores the double-precision floating-point result in the
destination operand. The source operand can be an XMM register or a 64-bit memory
location. The destination operand is an XMM register. The high quadword of the desti-
nation operand remains unchanged. See Figure 11-4 in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1, for an illustration of a scalar
double-precision floating-point operation.
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
DEST[63:0] ←DEST[63:0] * xmm2/m64[63:0];
(* DEST[127:64] unchanged *)
Intel C/C++Compiler Intrinsic Equivalent
MULSD
__m128d _mm_mul_sd (m128d a, m128d b)
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
For an illegal address in the SS segment.
For a page fault.
#SS(0)
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
3-704 Vol. 2A
MULSD—Multiply Scalar Double-Precision Floating-Point Values
INSTRUCTION SET REFERENCE, A-M
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
Real-Address Mode Exceptions
GP(0)
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#XM
If CR0.TS[bit 3] = 1.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
#AC
For a page fault.
For unaligned memory reference.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#PF(fault-code)
#NM
If the memory address is in a non-canonical form.
For a page fault.
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
MULSD—Multiply Scalar Double-Precision Floating-Point Values
Vol. 2A 3-705
INSTRUCTION SET REFERENCE, A-M
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
3-706 Vol. 2A
MULSD—Multiply Scalar Double-Precision Floating-Point Values
INSTRUCTION SET REFERENCE, A-M
MULSS—Multiply Scalar Single-Precision Floating-Point Values
Opcode
Instruction
64-Bit Compat/
Mode Leg Mode
Description
F3 0F 59 /r MULSS xmm1,
Valid
Valid
Multiply the low single-precision floating-
point value in xmm2/mem by the low
single-precision floating-point value in
xmm1.
xmm2/m32
Description
Multiplies the low single-precision floating-point value from the source operand
(second operand) by the low single-precision floating-point value in the destination
operand (first operand), and stores the single-precision floating-point result in the
destination operand. The source operand can be an XMM register or a 32-bit memory
location. The destination operand is an XMM register. The three high-order double-
words of the destination operand remain unchanged. See Figure 10-6 in the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustra-
tion of a scalar single-precision floating-point operation.
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Operation
DEST[31:0] ←DEST[31:0] ∗ SRC[31:0];
(* DEST[127:32] unchanged *)
Intel C/C++Compiler Intrinsic Equivalent
MULSS
__m128 _mm_mul_ss(__m128 a, __m128 b)
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.
Protected Mode Exceptions
#GP(0)
For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
For an illegal address in the SS segment.
For a page fault.
#SS(0)
#PF(fault-code)
#NM
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
MULSS—Multiply Scalar Single-Precision Floating-Point Values
Vol. 2A 3-707
INSTRUCTION SET REFERENCE, A-M
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
Real-Address Mode Exceptions
GP(0)
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#NM
#XM
If CR0.TS[bit 3] = 1.
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code)
#AC
For a page fault.
For unaligned memory reference.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#SS(0)
If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0)
#PF(fault-code)
#NM
If the memory address is in a non-canonical form.
For a page fault.
If CR0.TS[bit 3] = 1.
#XM
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
3-708 Vol. 2A
MULSS—Multiply Scalar Single-Precision Floating-Point Values
INSTRUCTION SET REFERENCE, A-M
#UD
If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
#AC(0)
If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
MULSS—Multiply Scalar Single-Precision Floating-Point Values
Vol. 2A 3-709
INSTRUCTION SET REFERENCE, A-M
MWAIT—Monitor Wait
Opcode
Instruction
64-Bit
Mode
Compat/
Leg Mode
Description
OF 01 C9
MWAIT
Valid
Valid
A hint that allow the processor to stop
instruction execution and enter an
implementation-dependent optimized state
until occurrence of a class of events.
Description
MWAIT instruction provides hints to allow the processor to enter an implementation-
dependent optimized state. There are two principal targeted usages: address-range
monitor and advanced power management. Both usages of MWAIT require the use of
the MONITOR instruction.
A CPUID feature flag (ECX bit 3; CPUID executed EAX = 1) indicates the availability
of MONITOR and MWAIT in the processor. When set, the unconditional execution of
MWAIT is supported at privilege levels 0; conditional execution is supported at privi-
lege levels 1 through 3 (test for the appropriate support before unconditional use).
The operating system or system BIOS may disable this instruction by using the
IA32_MISC_ENABLES MSR; disabling MWAIT clears the CPUID feature flag and
causes execution to generate an illegal opcode exception.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
MWAIT for Address Range Monitoring
For address-range monitoring, the MWAIT instruction operates with the MONITOR
instruction. The two instructions allow the definition of an address at which to wait
(MONITOR) and a implementation-dependent-optimized operation to commence at
the wait address (MWAIT). The execution of MWAIT is a hint to the processor that it
can enter an implementation-dependent-optimized state while waiting for an event
or a store operation to the address range armed by MONITOR.
ECX specifies optional extensions for the MWAIT instruction. EAX may contain hints
such as the preferred optimized state the processor should enter. For Pentium 4
processors (CPUID signature family 15 and model 3), non-zero values for EAX and
ECX are reserved.
A store to the address range armed by the MONITOR instruction, an interrupt, an NMI
or SMI, a debug exception, a machine check exception, the BINIT# signal, the INIT#
signal, or the RESET# signal will exit the implementation-dependent-optimized
state. Note that an interrupt will cause the processor to exit only if the state was
entered with interrupts enabled.
If a store to the address range causes the processor to exit, execution will resume at
the instruction following the MWAIT instruction. If an interrupt (including NMI)
caused the processor to exit the implementation-dependent-optimized state, the
3-710 Vol. 2A
MWAIT—Monitor Wait
INSTRUCTION SET REFERENCE, A-M
processor will exit the state and handle the interrupt. If an SMI caused the processor
to exit the implementation-dependent-optimized state, execution will resume at the
instruction following MWAIT after handling of the SMI. Unlike the HLT instruction, the
MWAIT instruction does not support a restart at the MWAIT instruction. There may
also be other implementation-dependent events or time-outs that may take the
processor out of the implementation-dependent-optimized state and resume execu-
tion at the instruction following the MWAIT.
If the preceding MONITOR instruction did not successfully arm an address range or if
the MONITOR instruction has not been executed prior to executing MWAIT, then the
processor will not enter the implementation-dependent-optimized state. Execution
will resume at the instruction following the MWAIT.
MWAIT for Power Management
MWAIT accepts a hint and optional extension to the processor that it can enter a
specified target C state while waiting for an event or a store operation to the address
range armed by MONITOR. Support for MWAIT extensions for power management is
indicated by CPUID.05H.ECX[0] reporting 1.
EAX and ECX will be used to communicate the additional information to the MWAIT
ifies optional extensions for the MWAIT instruction. EAX may contain hints such as
the preferred optimized state the processor should enter. A given processor imple-
mentation may choose to ignore the hint and continue executing the next instruction.
Future processor implementations may implement several optimized “waiting” states
and will select among those states based on the hint argument.
Table 3-62 describes the meaning of ECX and EAX registers for MWAIT extensions.
Table 3-62. MWAIT Extension Register (ECX)
Bits
Description
0
Treat Interrupt as break-event, even when interrupts are disabled
(EFLAGS.IF=0)
31: 1
Reserved
MWAIT—Monitor Wait
Vol. 2A 3-711
INSTRUCTION SET REFERENCE, A-M
Table 3-63. MWAIT Hints Register (EAX)
Bits
3 : 0
7 : 4
Description
Sub C-state within a C-state, indicated by bits [7:4]
Target C-state*
Value of 0 means C1; 1 means C2 and so on
Value of 01111B means C0
Note: Target C states for MWAIT extensions are processor-specific C-states,
not ACPI C-states
31: 8
Reserved
Note that if MWAIT is used to enter any of the C-states that are numerically higher
than C1, a store to the address range armed by the MONITOR instruction will cause
the processor to exit MWAIT only if the store was originated by other processor
agents. A store from non-processor agent may not cause the processor to exit
MWAIT in such cases
For additional details of MWAIT extensions, see Chapter 13, “Power and Thermal
Management,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A.
Operation
(* MWAIT takes the argument in EAX as a hint extension and is architected to take the argument in
ECX as an instruction extension MWAIT EAX, ECX *)
{
WHILE (! ("Monitor Hardware is in armed state")) {
implementation_dependent_optimized_state(EAX, ECX); }
Set the state of Monitor Hardware as triggered;
}
Intel C/C++Compiler Intrinsic Equivalent
MWAIT
void _mm_mwait(unsigned extensions, unsigned hints)
Example
MONITOR/MWAIT instruction pair must be coded in the same loop because execution
of the MWAIT instruction will trigger the monitor hardware. It is not a proper usage
to execute MONITOR once and then execute MWAIT in a loop. Setting up MONITOR
without executing MWAIT has no adverse effects.
Typically the MONITOR/MWAIT pair is used in a sequence, such as:
EAX = Logical Address(Trigger)
ECX = 0 (*Hints *)
3-712 Vol. 2A
MWAIT—Monitor Wait
INSTRUCTION SET REFERENCE, A-M
EDX = 0 (* Hints *)
IF ( !trigger_store_happened) {
MONITOR EAX, ECX, EDX
IF ( !trigger_store_happened ) {
MWAIT EAX, ECX
}
}
The above code sequence makes sure that a triggering store does not happen
between the first check of the trigger and the execution of the monitor instruction.
Without the second check that triggering store would go un-noticed. Typical usage of
MONITOR and MWAIT would have the above code sequence within a loop.
Numeric Exceptions
None
Protected Mode Exceptions
#GP(0)
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.
If ECX = 0.
#SS(0)
If a memory operand effective address is outside the SS
segment limit.
#PF(fault-code)
#UD
For a page fault.
If CPUID.01H:ECX.MONITOR[bit 3] = 0.
If current privilege level is not 0.
Real Address Mode Exceptions
#GP
If any part of the operand in the CS, DS, ES, FS, or GS segment
lies outside of the effective address space from 0 to FFFFH.
If ECX ≠ 0.
#SS
#UD
If any part of the operand in the SS segment lies outside of the
effective address space from 0 to FFFFH.
If CPUID.01H:ECX.MONITOR[bit 3] = 0.
Virtual 8086 Mode Exceptions
#UD
The MONITOR instruction is not recognized in virtual-8086 mode
(even if CPUID.01H:ECX.MONITOR[bit 3] = 1).
MWAIT—Monitor Wait
Vol. 2A 3-713
INSTRUCTION SET REFERENCE, A-M
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#GP(0)
If the linear address of the operand in the CS, DS, ES, FS, or GS
segment is in a non-canonical form.
If RCX ≠ 0.
#SS(0)
If the linear address of the operand in the SS segment is in a
non-canonical form.
#PF(fault-code)
#UD
For a page fault.
If the current privilege level is not 0.
If CPUID.01H:ECX.MONITOR[bit 3] = 0.
3-714 Vol. 2A
MWAIT—Monitor Wait
|