56F8322/56F8122
Data Sheet
Preliminary Technical Data
56F8300
16-bit Hybrid Controllers
MC56F8322
Rev. 10.0
10/2004
freescale.com
56F8322/56F8122 General Description
Note: Features in italics are NOT available in the 56F8122 device.
• Up to 60 MIPS at 60MHz core frequency
• FlexCAN module
• DSP and MCU functionality in a unified,
C-efficient architecture
• Up to two Serial Communication Interfaces (SCIs)
• Up to two Serial Peripheral Interfaces (SPIs)
• Two general-purpose Quad Timers
• Computer Operating Properly (COP)/Watchdog
• On-Chip Relaxation Oscillator
• 32KB Program Flash
• 4KB Program RAM
• 8KB Data Flash
• 8KB Data RAM
• JTAG/Enhanced On-Chip Emulation (OnCE™) for
unobtrusive, real-time debugging
• 8KB Boot Flash
• One 6-channel PWM module
• Two 3-channel 12-bit ADCs
• Temperature Sensor
• One Quadrature Decoder
• Up to 21 GPIO lines
• 48-pin LQFP Package
V
V
V
V
V
SSA
CAP
DD
SS
DDA
RESET
4
2
4
4
JTAG/
EOnCE
Port
Digital Reg
Low Voltage
Supervisor
Analog Reg
6
PWMA or
SPI1 or
GPIOA
PWM Outputs
Fault Inputs
16-Bit
56800E Core
Data ALU
Program Controller
and Hardware
Looping Unit
Address
Generation Unit
Bit
Manipulation
Unit
16 x 16 + 36 -> 36-Bit MAC
Three 16-bit Input Registers
Four 36-bit Accumulators
PAB
PDB
CDBR
CDBW
3
3
AD0
AD1
Memory
R/W Control
XDB2
XAB1
XAB2
Program Memory
16K x 16 Flash
2K x 16 RAM
4K x 16 Boot
Flash
3
VREF
System Bus
Control
TEMP_SENSE
PAB
PDB
CDBR
CDBW
Data Memory
4K x 16 Flash
4K x 16 RAM
Quadrature
Decoder 0 or
Quad
4
Timer A or
GPIO B
IPBus Bridge (IPBB)
Quad Timer C
or SCI0
or GPIOC
Peripheral
Device Selects
2
RW
Control
IPWDB
IPRDB
Decoding
Peripherals
FlexCAN or
GPIOC
2
Clock
resets
PLL
SPI0 or
SCI1 or
GPIOB
P
System
Integration
Module
COP/
Watchdog
Interrupt
Controller
O
O
XTAL or GPIOC
EXTAL or GPIOC
Clock
Generator*
R
S
C
*Includes On-Chip
Relaxation Oscillator
4
IRQA
56F8322/56F8122 Block Diagram
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
3
Table of Contents
Part 1: Overview . . . . . . . . . . . . . . . . . . . . . . 5
Part 8: General Purpose Input/Output
1.1. 56F8322/56F8122 Features . . . . . . . . . . . . . 5
1.2. Device Description . . . . . . . . . . . . . . . . . . . . 7
1.3. Award-Winning Development Environment . 8
1.4. Architecture Block Diagram . . . . . . . . . . . . . 9
1.5. Product Documentation . . . . . . . . . . . . . . . 13
1.6. Data Sheet Conventions . . . . . . . . . . . . . . . 13
(GPIO) . . . . . . . . . . . . . . . . . . . . . . . . 96
8.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . .96
8.2. Configuration . . . . . . . . . . . . . . . . . . . . . . . .96
8.3. Memory Maps . . . . . . . . . . . . . . . . . . . . . . . .98
Part 9: Joint Test Action Group (JTAG) . . . 98
9.1. JTAG Information . . . . . . . . . . . . . . . . . . . . .98
Part 2: Signal/Connection Descriptions . . 14
2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2. Signal Pins . . . . . . . . . . . . . . . . . . . . . . . . . 17
Part 10: Specifications . . . . . . . . . . . . . . . . 99
10.1. General Characteristics . . . . . . . . . . . . . . .99
10.2. DC Electrical Characteristics . . . . . . . . . .103
10.3. AC Electrical Characteristics . . . . . . . . . .107
10.4. Flash Memory Characteristics . . . . . . . . .108
10.5. External Clock Operation Timing . . . . . . .109
10.6. Phase Locked Loop Timing . . . . . . . . . . .110
10.7. Oscillator Parameters . . . . . . . . . . . . . . . .110
10.8. Reset, Stop, Wait, Mode Select, and
Part 3: On-Chip Clock Synthesis (OCCS) . 26
3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2. External Clock Operation . . . . . . . . . . . . . . 26
3.3. Use of On-Chip Relaxation Oscillator . . . . . 28
3.4. Internal Clock Operation . . . . . . . . . . . . . . . 28
3.5. Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Interrupt Timing . . . . . . . . . . . . . .113
Part 4: Memory Map . . . . . . . . . . . . . . . . . . 30
4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2. Program Map . . . . . . . . . . . . . . . . . . . . . . . 30
4.3. Interrupt Vector Table . . . . . . . . . . . . . . . . . 31
4.4. Data Map . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.5. Flash Memory Map . . . . . . . . . . . . . . . . . . . 34
4.6. EOnCE Memory Map . . . . . . . . . . . . . . . . . 36
4.7. Peripheral Memory Mapped Registers . . . . 36
4.8. Factory-Programmed Memory . . . . . . . . . . 52
10.9. Serial Peripheral Interface (SPI) Timing . .115
10.10. Quad Timer Timing . . . . . . . . . . . . . . . . .118
10.11. Quadrature Decoder Timing . . . . . . . . . .118
10.12. Serial Communication Interface (SCI)
Timing . . . . . . . . . . . . . . . . . . . . .119
10.13. Controller Area Network (CAN) Timing .120
10.14. JTAG Timing . . . . . . . . . . . . . . . . . . . . . .120
10.15. Analog-to-Digital Converter (ADC)
Parameters . . . . . . . . . . . . . . . . .122
10.16. Equivalent Circuit for ADC Inputs . . . . . .125
10.17. Power Consumption . . . . . . . . . . . . . . . .125
Part 5: Interrupt Controller (ITCN) . . . . . . . 52
5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2. Features . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3. Functional Description . . . . . . . . . . . . . . . . 52
5.4. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . 54
5.5. Operating Modes . . . . . . . . . . . . . . . . . . . . 54
5.6. Register Descriptions . . . . . . . . . . . . . . . . . 55
5.7. Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Part 11: Packaging . . . . . . . . . . . . . . . . . . 127
11.1. 56F8322 Package and Pin-Out
Information . . . . . . . . . . . . . . . . . .127
11.2. 56F8122 Package and Pin-Out
Information . . . . . . . . . . . . . . . . . .129
Part 12: Design Considerations . . . . . . . . 132
12.1. Thermal Design Considerations . . . . . . . .132
12.2. Electrical Design Considerations . . . . . . .133
12.3. Power Distribution and I/O Ring
Part 6: System Integration Module (SIM) . . 77
6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.2. Features . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.3. Operating Modes . . . . . . . . . . . . . . . . . . . . 78
6.4. Operating Mode Register . . . . . . . . . . . . . . 79
6.5. Register Descriptions . . . . . . . . . . . . . . . . . 79
6.6. Clock Generation Overview . . . . . . . . . . . . 91
6.7. Power-Down Modes . . . . . . . . . . . . . . . . . . 91
6.8. Stop and Wait Mode Disable Function . . . . 92
6.9. Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Implementation . . . . . . . . . . . . . .134
Part 13: Ordering Information . . . . . . . . . 135
Part 7: Security Features . . . . . . . . . . . . . . 93
7.1. Operation with Security Enabled . . . . . . . . . 93
7.2. Flash Access Blocking Mechanisms . . . . . . 93
56F8322 Techncial Data, Rev. 10.0
4
Freescale Semiconductor
Preliminary
56F8322/56F8122 Features
Part 1 Overview
1.1 56F8322/56F8122 Features
1.1.1
Hybrid Controller Core
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Efficient 16-bit 56800E family hybrid controller engine with dual Harvard architecture
Up to 60 Million Instructions Per Second (MIPS) at 60MHz core frequency
Single-cycle 16 × 16-bit parallel Multiplier-Accumulator (MAC)
Four 36-bit accumulators, including extension bits
Arithmetic and logic multi-bit shifter
Parallel instruction set with unique DSP addressing modes
Hardware DO and REP loops
Three internal address buses
Four internal data buses
Instruction set supports both DSP and controller functions
Controller-style addressing modes and instructions for compact code
Efficient C compiler and local variable support
Software subroutine and interrupt stack with depth limited only by memory
JTAG/EOnCE debug programming interface
1.1.2
Differences Between Devices
Table 1-1 outlines the key differences between the 56F8322 and 56F8122 devices.
Table 1-1 Device Differences
Feature
Guaranteed Speed
Program RAM
Data Flash
56F8322
56F8122
60MHz/60 MIPS
40MHz/40 MIPS
Not Available
Not Available
Not Available
Not Available
Not Available
Not Available
5
4KB
8KB
1 x 6
1
PWM
CAN
Quadrature Decoder
Temperature Sensor
Dedicated GPIO
1 x 4
1
—
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
5
1.1.3
Memory
Note: Features in italics are NOT available in the 56F8122 device.
•
•
•
Harvard architecture permits as many as three simultaneous accesses to program and data memory
Flash security protection
On-chip memory, including a low-cost, high-volume Flash solution
— 32KB of Program Flash
— 4KB of Program RAM
— 8KB of Data Flash
— 8KB of Data RAM
— 8KB of Boot Flash
•
EEPROM emulation capability
1.1.4
Peripheral Circuits
Note: Features in italics are NOT available in the 56F8122 device.
•
One Pulse Width Modulator module with six PWM outputs and one Fault input; fault-tolerant design with
dead time insertion; supports both center-aligned and edge-aligned modes
•
Two 12-bit, Analog-to-Digital Converters (ADCs), which support two simultaneous conversions with dual,
3-pin multiplexed inputs; ADC and PWM modules can be synchronized through Timer C, Channel 2
•
Temperature Sensor is tied internally to analog input (ANA7) to monitor the on-chip temperature
•
Two 16-bit Quad Timer modules (TMR) totaling six pins:
— In the 56F8322, Timer A works in conjunction with Quad Decoder 0 and Timer C works in conjunction
with the PWMA and ADCA
— In the 56F8122, Timer C works in conjunction with ADCA
One Quadature Decoder which works in conjunction with Quad Timer A
FlexCAN (Can Version 2.0 B-compliant) module with 2-pin port for transmit and receive
Up to two Serial Communication Interfaces (SCIs)
•
•
•
•
•
•
•
•
•
Up to two Serial Peripheral Interfaces (SPIs)
Computer Operating Properly (COP)/Watchdog timer
One dedicated external interrupt pin
21 General Purpose I/O (GPIO) pins
Integrated Power-On Reset and Low-Voltage Interrupt Module
JTAG/Enhanced On-Chip Emulation (OnCE) for unobtrusive, processor speed-independent, real-time
debugging
•
•
Software-programmable, Phase Lock Loop (PLL)
On-chip relaxation oscillator
56F8322 Techncial Data, Rev. 10.0
6
Freescale Semiconductor
Preliminary
Device Description
1.1.5
Energy Information
•
•
•
•
•
•
Fabricated in high-density CMOS with 5V-tolerant, TTL-compatible digital inputs
On-board 3.3V down to 2.6V voltage regulator for powering internal logic and memories
On-chip regulators for digital and analog circuitry to lower cost and reduce noise
Wait and Stop modes available
ADC smart power management
Each peripheral can be individually disabled to save power
1.2 Device Description
The 56F8322 and 56F8122 are members of the 56800E core-based family of hybrid controllers. Each
combines, on a single chip, the processing power of a Digital Signal Processor (DSP) and the
functionality of a microcontroller with a flexible set of peripherals to create an extremely cost-effective
solution. Because of their low cost, configuration flexibility, and compact program code, the 56F8322
and 56F8122 are well-suited for many applications. These devices include many peripherals that are
especially useful for automotive control (56F8322 only); industrial control and networking; motion
control; home appliances; general purpose inverters; smart sensors; fire and security systems; power
management; and medical monitoring applications.
The 56800E core is based on a Harvard-style architecture consisting of three execution units operating in
parallel, allowing as many as six operations per instruction cycle. The MCU-style programming model and
optimized instruction set allow straightforward generation of efficient, compact DSP and control code.
The instruction set is also highly efficient for C Compilers to enable rapid development of optimized
control applications.
The 56F8322 and 56F8122 support program execution from internal memories. Two data operands can be
accessed from the on-chip data RAM per instruction cycle. These devices also provide one external
dedicated interrupt line and up to 21 General Purpose Input/Output (GPIO) lines, depending on peripheral
configuration.
1.2.1
56F8322 Features
The 56F8322 hybrid controller includes 32KB of Program Flash and 8KB of Data Flash, each
programmable through the JTAG port, and 4KB of Program RAM and 8KB of Data RAM. A total of 8KB
of Boot Flash is incorporated for easy customer inclusion of field-programmable software routines that can
be used to program the main Program and Data Flash memory areas. Both Program and Data Flash
memories can be independently bulk erased or erased in pages. Program Flash page erase size is 1KB. Boot
and Data Flash page erase size is 512 bytes. The Boot Flash memory can also be either bulk or page erased.
A key application-specific feature of the 56F8322 is the inclusion of one Pulse Width Modulator (PWM)
module. This module incorporates three complementary, individually programmable PWM signal output
pairs and is also capable of supporting six independent PWM functions to enhance motor control
functionality. Complementary operation permits programmable dead time insertion, distortion correction
via current sensing by software, and separate top and bottom output polarity control. The up-counter value
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
7
is programmable to support a continuously variable PWM frequency. Edge-aligned and center-aligned
synchronous pulse width control (0% to 100% modulation) is supported. The device is capable of
controlling most motor types: ACIM (AC Induction Motors); both BDC and BLDC (Brush and Brushless
DC motors); SRM and VRM (Switched and Variable Reluctance Motors); and stepper motors. The PWM
incorporates fault protection and cycle-by-cycle current limiting with sufficient output drive capability to
directly drive standard optoisolators. A “smoke-inhibit”, write-once protection feature for key parameters
is also included. A patented PWM waveform distortion correction circuit is also provided. Each PWM is
double-buffered and includes interrupt controls to permit integral reload rates to be programmable from
1/2 (center-aligned mode only) to 16. The PWM module provides reference outputs to synchronize the
Analog-to-Digital Converters (ADCs) through Quad Timer C, channel 2.
The 56F8322 incorporates one Quadrature Decoder capable of capturing all four transitions on the
two-phase inputs, permitting generation of a number proportional to actual position. Speed computation
capabilities accommodate both fast- and slow-moving shafts. An integrated watchdog timer in the
Quadrature Decoder can be programmed with a time-out value to alarm when no shaft motion is detected.
Each input is filtered to ensure only true transitions are recorded.
This hybrid controller also provides a full set of standard programmable peripherals that include two Serial
Communications Interfaces (SCIs), two Serial Peripheral Interfaces (SPIs), two Quad Timers and
FlexCAN. Any of these interfaces can be used as General Purpose Input/Outputs (GPIOs) if that function
is not required. A Flex Controller Area Network interface (CAN Version 2.0 B-compliant) and an internal
interrupt controller are also a part of the 56F8322.
1.2.2
56F8122 Features
The 56F8122 hybrid controller includes 32KB of Program Flash, programmable through the JTAG port,
and 8KB of Data RAM. A total of 8KB of Boot Flash is incorporated for easy customer inclusion of
field-programmable software routines that can be used to program the main Program Flash memory area.
The Program Flash memory can be independently bulk erased or erased in pages; Program Flash page
erase size is 1KB. The Boot Flash memory can also be either bulk or page erased.
This hybrid controller also provides a full set of standard programmable peripherals that include two Serial
Communications Interfaces (SCIs), two Serial Peripheral Interfaces (SPIs), and two Quad Timers. Any of
these interfaces can be used as General Purpose Input/Outputs (GPIOs) if that function is not required. An
internal interrupt controller is also a part of the 56F8122.
1.3 Award-Winning Development Environment
TM
Processor Expert
(PE) provides a Rapid Application Design (RAD) tool that combines easy-to-use
component-based software application creation with an expert knowledge system.
The CodeWarrior Integrated Development Environment is a sophisticated tool for code navigation,
compiling, and debugging. A complete set of evaluation modules (EVMs), demonstration board kit and
development system cards will support concurrent engineering. Together, PE, CodeWarrior and EVMs
create a complete, scalable tools solution for easy, fast, and efficient development.
56F8322 Techncial Data, Rev. 10.0
8
Freescale Semiconductor
Preliminary
Architecture Block Diagram
1.4 Architecture Block Diagram
Note: Features in italics are NOT available in the 56F8122 device and are shaded in the following figures.
The 56F8322/56F8122 architecture is shown in Figure 1-1 and Figure 1-2. Figure 1-1 illustrates how the
internal buses in the 56800E architecture and provides a brief description of their function. Figure 1-2
shows the peripherals and control blocks connected to the IPBus Bridge. The figures do not show the
on-board regulator and power and ground signals. They also do not show the multiplexing between
signals are multiplexed with those of other peripherals.
connections allow the PWM and/or Timer C to control the timing of the start of ADC conversions. The
Timer C, Channel 2, output can generate periodic start (SYNC) signals to the ADC to start its conversions.
In another operating mode, the PWM load interrupt (SYNC output) signal is routed internally to the Timer
C, Channel 2, input as indicated. The timer can then be used to introduce a controllable delay before
generating its output signal. The timer output then triggers the ADC. To fully understand this interaction,
please see the 56F8300 Peripheral User Manual for clarification on the operation of all three of these
peripherals.
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
9
4
JTAG / EOnCE
Boot
Flash
pdb_m[15:0]
pab[20:0]
Program
Flash
Program
RAM
cdbw[31:0]
56800E
CHIP
TAP
Controller
TAP
Linking
Module
Data RAM
xab1[23:0]
xab2[23:0]
Data
Flash
External
JTAG Port
cdbr_m[31:0]
xdb2_m[15:0]
To Flash
Control Logic
IPBus
Bridge
Flash
Memory
Module
Not available on the 56F8122 device.
IPBus
Figure 1-1 System Bus Interfaces
Note:
Note:
Flash memories are encapsulated within the Flash Memory Module (FM). Flash control is
accomplished by the I/O to the FM over the peripheral bus, while reads and writes are completed
between the core and the Flash memories.
The primary data RAM port is 32 bits wide. Other data ports are 16 bits.
56F8322 Techncial Data, Rev. 10.0
10
Freescale Semiconductor
Preliminary
Architecture Block Diagram
To/From IPBus Bridge
CLKGEN
(OSC/PLL)
(ROSC)
Interrupt
Controller
Low-Voltage Interrupt
POR & LVI
System POR
RESET
Timer A
4
Quadrature Decoder 0
SIM
COP Reset
COP
2
4
FlexCAN
2
SPI 1
SCI 1
SPI 0
4
3
PWMA
SYNC Output
2
GPIO A
GPIO B
GPIO C
SCI 0
ch2i
2
Timer C
ch2o
6
ADCA
TEMP_SENSE
The dotted line on Temperature Sense signifies the
pad-to-pad bond between TEMP_SENSE and
ANA7 on the 56F8322
Not available on the 56F8122 device.
IPBus
Figure 1-2 Peripheral Subsystem
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
11
Table 1-2 Bus Signal Names
Name
Function
Program Memory Interface
pdb_m[15:0]
cdbw[15:0]
Program data bus for instruction word fetches or read operations.
Primary core data bus used for program memory writes. (Only these 16 bits of the cdbw[31:0] bus
are used for writes to program memory.)
pab[20:0]
Program memory address bus. Data is returned on pdb_m bus.
Primary Data Memory Interface Bus
cdbr_m[31:0]
cdbw[31:0]
xab1[23:0]
Primary core data bus for memory reads. Addressed via xab1 bus.
Primary core data bus for memory writes. Addressed via xab1 bus.
1
Primary data address bus. Capable of addressing bytes , words, and long data types. Data is written
on cdbw and returned on cdbr_m. Also used to access memory-mapped I/O.
Secondary Data Memory Interface
xdb2_m[15:0] Secondary data bus used for secondary data address bus xab2 in the dual memory reads.
xab2[23:0]
Secondary data address bus used for the second of two simultaneous accesses. Capable of
addressing only words. Data is returned on xdb2_m.
Peripheral Interface Bus
IPBus [15:0]
Peripheral bus accesses all on-chip peripherals registers. This bus operates at the same clock rate
as the Primary Data Memory and therefore generates no delays when accessing the processor.
Write data is obtained from cdbw. Read data is provided to cdbr_m.
1. Byte accesses can only occur in the bottom half of the memory address space. The MSB of the address will be forced
to 0.
56F8322 Techncial Data, Rev. 10.0
12
Freescale Semiconductor
Preliminary
Product Documentation
1.5 Product Documentation
The documents listed in Table 1-3 are required for a complete description and proper design with the 56F8322
and 56F8122 devices. Documentation is available from local Freescale distributors, Freescale semiconductor
sales offices, Freescale Literature Distribution Centers, or online at
http://www.freescale.com/semiconductors/
.
Table 1-3 Chip Documentation
Topic
DSP56800E
Description
Order Number
DSP56800ERM
Detailed description of the 56800E family architecture,
16-bit hybrid controller core processor, and the
instruction set
Reference Manual
56F8300 Peripheral User
Manual
Detailed description of peripherals of the 56800E
family of devices
MC56F8300UM
MC56F83xxBLUM
MC56F8322
56F8300 SCI/CAN
Bootloader User Manual
Detailed description of the SCI/CAN Bootloaders
56F8300 family of devices
56F8322/56F8122
Technical Data Sheet
Electrical and timing specifications, pin descriptions,
and package descriptions (this document)
Product Brief
Errata
Summary description and block diagram of the device
core, memory, peripherals and interfaces
MC56F8322PB
MC56F8122PB
Details any chip issues that might be present
MC56F8322E
MC56F8122E
1.6 Data Sheet Conventions
This data sheet uses the following conventions:
OVERBAR
This is used to indicate a signal that is active when pulled low. For example, the RESET pin is
active when low.
“asserted”
“deasserted”
Examples:
A high true (active high) signal is high or a low true (active low) signal is low.
A high true (active high) signal is low or a low true (active low) signal is high.
1
Signal/Symbol
Logic State
True
Signal State
Asserted
Voltage
V /V
PIN
PIN
PIN
PIN
IL OL
False
Deasserted
Asserted
V /V
IH OH
True
V /V
IH OH
False
Deasserted
V /V
IL OL
1. Values for V , V , V , and V are defined by individual product specifications.
OH
IL
OL
IH
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
13
Part 2 Signal/Connection Descriptions
2.1 Introduction
The input and output signals of the 56F8322 and 56F8122 devices are organized into functional groups,
as detailed in Table 2-1 and as illustrated in Figure 2-1 and Figure 2-2. In Table 2-2, each table row
describes the signal or signals present on a pin.
Table 2-1 Functional Group Pin Allocations
Number of Pins in Package
Functional Group
56F8322
56F8122
Power (V or V
)
5
5
2
5
5
2
DD
DDA
Ground (V or V
)
SS
SSA
1
Supply Capacitors & V
PLL and Clock
PP
2
2
7
2
2
Interrupt and Program Control
2
—
Pulse Width Modulator (PWM) Ports
3
4
4
2
9
2
8
—
—
9
Serial Peripheral Interface (SPI) Port 0
4
Quadrature Decoder Port 0
CAN Ports
Analog to Digital Converter (ADC) Ports
5
2
Timer Module Port C
Timer Module Port A
—
4
4
4
JTAG/Enhanced On-Chip Emulation (EOnCE)
6
0
—
Temperature Sense
Dedicated GPIO
—
5
1. The V input shares the IRQA input
PP
2. Pins in this section can function as SPI #1 and GPIO.
3. Pins in this section can function as SCI #1 and GPIO.
4. Alternately, can function as Quad Timer A pins or GPIO.
5. Pins can function as SCI #0 and GPIO.
6. Tied internally to ANA7
56F8322 Techncial Data, Rev. 10.0
14
Freescale Semiconductor
Preliminary
Introduction
PHASEA0 (TA0, GPIOB7)
V
DD_IO
1
Power
Ground
Power
Quadrature
4
4
PHASEB0 (TA1, GPIOB6)
INDEX0 (TA2, GPIOB5)
V
Decoder 0
or Quad
Timer A or
GPIO
SS
DDA_ADC
1
1
V
1
1
V
SSA_ADC
HOME0 (TA3, GPIOB4)
Ground
1
56F8322
SCLK0 (GPIOB3)
MOSI0 (GPIOB2)
1
1
Other
Supply
Ports
V
1 - V
2
CAP
CAP
2
SPI0 or
SCI1 or
GPIO
MISO0 (RXD1, GPIOB1)
SS0 (TXD1, GPIOB0)
1
1
EXTAL (GPIOC0)
XTAL (GPIOC1)
PLL and
Clock or
GPIO
1
1
PWMA0 -1 (GPIOA0 - 1)
PWMA2 (SS1, GPIOA2)
2
1
PWMA3 (MISO1, GPIOA3)
PWMA4 (MOSI1, GPIOA4)
PWMA5 (SCLK1, GPIOA5)
FAULTA0 (GPIOA6)
PWMA or
SPI1 or
GPIO
1
1
1
1
ANA0 - 2
ANA4 - 6
3
ADCA
3
3
V
REF
CAN_RX (GPIOC2)
CAN_TX (GPIOC3)
FlexCAN
or GPIO
1
1
TC0 (TXD0, GPIOC6)
TC1 (RXD0, GPIOC5)
Quad Timer C
or SCI0 or
GPIO
TCK
1
1
1
JTAG/
EOnCE
Port
TMS
TDI
1
1
1
IRQA (V
RESET
)
PP
Interrupt/
Program
Control
1
1
TDO
Figure 2-1 56F8322 Signals Identified by Functional Group (48-Pin LQFP)
Note: V
is tied to V
and V
is tied to V
inside this package
SSA
REFH
DDA
REFLO
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
15
TA0 (GPIOB7)
TA1 (GPIOB6)
TA2 (GPIOB5)
V
DD_IO
1
1
1
Power
Ground
Power
4
4
V
Quad
Timer A or
GPIO
SS
V
DDA_ADC
1
1
V
SSA_ADC
TA3 (GPIOB4)
Ground
1
56F8122
SCLK0 (GPIOB3)
MOSI0 (GPIOB2)
1
1
Other
Supply
Ports
V
1 - V
2
CAP
CAP
2
SPI0 or
SCI1 or
GPIO
MISO0 (RXD1, GPIOB1)
SS0 (TXD1, GPIOB0)
1
1
EXTAL (GPIOC0)
XTAL (GPIOC1)
PLL and
Clock or
GPIO
1
1
GPIOA0 - 1
2
1
1
SS1 (GPIOA2)
MISO1 (GPIOA3)
MOSI1 (GPIOA4)
SCLK1 (GPIOA5)
GPIOA6
SPI1 or
GPIO
1
1
1
ANA0 - 2
ANA4 - 6
3
ADCA
GPIO
3
3
V
REF
GPIOC2
GPIOC3
1
1
Quad Timer C
or SCI0 or
GPIO
TC0 (TXD0, GPIOC6)
TC1 (RXD0, GPIOC5)
TCK
1
1
1
JTAG/
EOnCE
Port
TMS
TDI
1
1
1
IRQA (V
RESET
)
PP
Interrupt/
Program
Control
1
1
TDO
Figure 2-2 56F8122 Signals Identified by Functional Group (48-Pin LQFP)
56F8322 Techncial Data, Rev. 10.0
16
Freescale Semiconductor
Preliminary
Signal Pins
2.2 Signal Pins
After reset, each pin is configured for its primary function (listed first). In the 56F8122, after reset, each
pin must be configured for the desired function. The initialization software will configure each pin for the
function listed first for each pin, as shown in Table 2-2. Any alternate functionality must be programmed.
Note: Signals in italics are not available in the 56F8122 device.
If the “State During Reset” lists more than one state for a pin, the first state is the actual reset state. Other
states show the reset condition of the alternate function, which you get if the alternate pin function is
selected without changing the configuration of the alternate peripheral. For example, the SCLK0/GPIOB3
pin shows that it is tri-stated during reset. If the GPIOB_PER is changed to select the GPIO function of
the pin, it will become an input if no other registers are changed.
Table 2-2 Signal and Package Information for the 48-Pin LQFP
StateDuring
Signal Name
Pin No.
Type
Signal Description
Reset
V
V
V
V
5
Supply
I/O Power — This pin supplies 3.3V power to the chip I/O interface
and also the Processor core throught the on-chip voltage regulator, if
it is enabled.
DD_IO
DD_IO
DD_IO
DD_IO
14
34
44
30
V
Supply
Supply
ADC Power — This pin supplies 3.3V power to the ADC modules. It
must be connected to a clean analog power supply.
DDA_ADC
V
V
V
V
10
13
31
45
29
Ground — These pins provide ground for chip logic and I/O drivers.
SS
SS
SS
SS
V
Supply
Supply
ADC Analog Ground — This pin supplies an analog ground to the
ADC modules.
SSA_ADC
V
V
1
2
43
17
Supply
V
1 - 2 — Connect each pin to a 2.2µF or greater bypass capacitor
CAP
CAP
in order to bypass the core logic voltage regulator, required for proper
chip operation.
CAP
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
17
Table 2-2 Signal and Package Information for the 48-Pin LQFP
StateDuring
Signal Name
EXTAL
Pin No.
Type
Signal Description
Reset
32
Input/
Input
External Crystal Oscillator Input — This input can be connected to
an 8MHz external crystal. If an external clock is used, XTAL must be
used as the input and EXTAL connected to V
.
SS
The input clock can be selected to provide the clock directly to the
core. This input clock can also be selected as the input clock for the
on-chip PLL.
(GPIOC0)
XTAL
Schmitt
Input/
Output
Input
Port C GPIO — This GPIO pin can be individually programmed as an
input or output pin.
After reset, the default state is an EXTAL input with pull-ups disabled.
33
Output
Output
Crystal Oscillator Output — This output connects the internal crystal
oscillator output to an external crystal.
If an external clock is used, XTAL must be used as the input and
EXTAL connected to V
.
SS
The input clock can be selected to provide the clock directly to the
core. This input clock can also be selected as the input clock for the
on-chip PLL.
(GPIOC1)
TCK
Schmitt
Input/
Output
Input
Port C GPIO — This GPIO pin can be individually programmed as an
input or output pin.
After reset, the default state is an XTAL input with pull-ups disabled.
39
Schmitt
Input
Input, pulled Test Clock Input — This input pin provides a gated clock to
low internally synchronize the test logic and shift serial data to the JTAG/EOnCE
port. The pin is connected internally to a pull-down resistor. A Schmitt
trigger input is used for noise immunity.
TMS
TDI
40
41
42
Schmitt
Input
Input, pulled Test Mode Select Input — This input pin is used to sequence the
high
JTAG TAP controller’s state machine. It is sampled on the rising edge
internally of TCK and has an on-chip pull-up resistor.
Schmitt
Input
Input, pulled Test Data Input — This input pin provides a serial input data stream
high
to the JTAG/EOnCE port. It is sampled on the rising edge of TCK and
internally has an on-chip pull-up resistor.
TDO
Output
Tri-stated Test Data Output — This tri-stateable output pin provides a serial
output data stream from the JTAG/EOnCE port. It is driven in the
shift-IR and shift-DR controller states, and changes on the falling edge
of TCK.
56F8322 Techncial Data, Rev. 10.0
18
Freescale Semiconductor
Preliminary
Signal Pins
Table 2-2 Signal and Package Information for the 48-Pin LQFP
StateDuring
Signal Name
Pin No.
Type
Signal Description
Reset
PHASEA0
38
Schmitt
Input
Input
Phase A — Quadrature Decoder 0, PHASEA input
(TA0)
Schmitt
Input/
Output
Input
Input
TA0 — Timer A, Channel 0
(GPIOB7)
Schmitt
Input/
Port B GPIO — This GPIO pin can be individually programmed as an
input or output pin.
Output
(oscillator_
clock)
Output
Output
Clock Output - can be used to monitor the internal oscillator clock
In the 56F8322, the default state after reset is PHASEA0.
In the 56F8122, the default state is not one of the functions offered
and must be reconfigured.
PHASEB0
37
Schmitt
Input
Input
Input
Phase B — Quadrature Decoder 0, PHASEB input
(TA1)
Schmitt
Input/
TA1 — Timer A ,Channel 1
Output
(GPIOB6)
Schmitt
Input/
Input
Port B GPIO — This GPIO pin can be individually programmed as an
input or output pin.
Output
(SYS_CLK2)
Output
Output
Clock Output - can be used to monitor the internal SYS_CLK2 signal
In the 56F8322, the default state after reset is PHASEB0.
In the 56F8122, the default state is not one of the functions offered
and must be reconfigured.
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
19
Table 2-2 Signal and Package Information for the 48-Pin LQFP
StateDuring
Signal Name
Pin No.
Type
Signal Description
Reset
INDEX0
36
Schmitt
Input
Input
Index — Quadrature Decoder 0, INDEX input
(TA2)
Schmitt
Input/
Output
Input
Input
TA2 — Timer A, Channel 2
(GPIOB5)
(SYS_CLK)
Schmitt
Input/
Output
Port B GPIO — This GPIO pin can be individually programmed as an
input or output pin.
Output
Output
Clock Output - can be used to monitor the internal SYS_CLK signal
In the 56F8322, the default state after reset is INDEX0.
In the 56F8122, the default state is not one of the functions offered
and must be reconfigured.
HOME0
35
Schmitt
Input
Input
Input
Home — Quadrature Decoder 0, HOME input
(TA3)
Schmitt
Input/
TA3 — Timer A, Channel 3
Output
(GPIOB4)
Schmitt
Input/
Input
Port B GPIO — This GPIO pin can be individually programmed as an
input or output pin.
Output
(prescaler_
clock)
Output
Output
Clock Output - can be used to monitor the internal prescaler_clock
In the 56F8322, the default state after reset is HOME0.
In the 56F8122, the default state is not one of the functions offered
and must be reconfigured.
SCLK0
19
Schmitt
Input/
Output
Tri-stated SPI 0 Serial Clock — In the master mode, this pin serves as an
output, clocking slaved listeners. In slave mode, this pin serves as the
data clock input. A Schmitt trigger input is used for noise immunity.
(GPIOB3)
Schmitt
Input/
Input
Port B GPIO — This GPIO pin can be individually programmed as an
input or output pin.
Output
After reset, the default state is SCLK0.
56F8322 Techncial Data, Rev. 10.0
20
Freescale Semiconductor
Preliminary
Signal Pins
Table 2-2 Signal and Package Information for the 48-Pin LQFP
StateDuring
Signal Name
MOSI0
Pin No.
Type
Signal Description
Reset
18
Schmitt
Input/
Output
Tri-stated SPI 0 Master Out/Slave In — This serial data pin is an output from a
master device and an input to a slave device. The master device
places data on the MOSI line a half-cycle before the clock edge the
slave device uses to latch the data.
(GPIOB2)
MISO0
Schmitt
Input/
Output
Input
Port B GPIO — This GPIO pin can be individually programmed as an
input or output pin.
After reset, the default state is MOSI0.
16
Schmitt
Input/
Output
Input
SPI 0 Master In/Slave Out — This serial data pin is an input to a
master device and an output from a slave device. The MISO line of a
slave device is placed in the high-impedance state if the slave device
is not selected. The slave device places data on the MISO line a
half-cycle before the clock edge the master device uses to latch the
data.
(RXD1)
Schmitt
Input
Input
Input
Receive Data — SCI1 receive data input
(GPIOB1)
Schmitt
Input/
Port B GPIO - This GPIO pin can be individually programmed as an
input or output pin.
Output
After reset, the default state is MISO0.
SS0
15
Schmitt
Input
Input
SPI 0 Slave Select — SS0 is used in slave mode to indicate to the
SPI module that the current transfer is to be received.
(TXD1)
Schmitt
Output
Tri-stated Transmit Data — SCI1 transmit data output
(GPIOB0)
Schmitt
Input/
Input
Port B GPIO — This GPIO pin can be individually programmed as an
input or output pin.
Output
After reset, the default state is SS0.
PWMA0
3
Schmitt
Output
Tri-stated PWMA0 — This is one of six PWMA output pins.
(GPIOA0)
Schmitt
Input/
Input
Port A GPIO — This GPIO pin can be individually programmed as an
input or output pin.
Output
In the 56F8322, the default state after reset is PWMA0.
In the 56F8122, the default state is not one of the functions offered
and must be reconfigured.
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
21
Table 2-2 Signal and Package Information for the 48-Pin LQFP
StateDuring
Signal Name
Pin No.
Type
Signal Description
Reset
PWMA1
4
Schmitt
Output
Tri-stated PWMA1 — This is one of six PWMA output pins.
(GPIOA1)
Schmitt
Input/
Input
Port A GPIO - This GPIO pin can be individually programmed as an
input or output pin.
Output
In the 56F8322, the default state after reset is PWMA1.
In the 56F8122, the default state is not one of the functions offered
and must be reconfigured.
PWMA2
6
Ou
tpTuri-statedt PWMA2 — This is one of six PWMA output pins.
(SS1)
Schmitt
Input
Input
Input
SPI 1 Slave Select — SS1 is used in slave mode to indicate to the
SPI module that the current transfer is to be received.
(GPIOA2)
Schmitt
Input/
Port A GPIO — This GPIO pin can be individually programmed as an
input or output pin.
Output
In the 56F8322, the default state after reset is PWMA2.
In the 56F8122, the default state is not one of the functions offered
and must be reconfigured.
PWMA3
7
Ou
tpTuri-statedt PWMA3 — This is one of six PWMA output pins.
(MISO1)
Schmitt
Input/
Output
Input
SPI 1 Master In/Slave Out — This serial data pin is an input to a
master device and an output from a slave device. The MISO line of a
slave device is placed in the high-impedance state if the slave device
is not selected. The slave device places data on the MISO line a
half-cycle before the clock edge the master device uses to latch the
data.
(GPIOA3)
Schmitt
Input/
Input
Port A GPIO — This GPIO pin can be individually programmed as an
input or output pin.
Output
In the 56F8322, the default state after reset is PWMA3.
In the 56F8122, the default state is not one of the functions offered
and must be reconfigured.
56F8322 Techncial Data, Rev. 10.0
22
Freescale Semiconductor
Preliminary
Signal Pins
Table 2-2 Signal and Package Information for the 48-Pin LQFP
StateDuring
Signal Name
Pin No.
Type
Ou
Signal Description
Reset
PWMA4
8
tpTuri-statedt PWMA4 — This is one of six PWMA output pins.
(MOSI1)
Schmitt
Input/
Output
Tri-stated SPI 1 Master Out/Slave In — This serial data pin is an output from a
master device and an input to a slave device. The master device
places data on the MOSI line a half-cycle before the clock edge the
slave device uses to latch the data.
(GPIOA4)
Schmitt
Input/
Input
Port A GPIO — This GPIO pin can be individually programmed as an
input or output pin.
Output
In the 56F8322, the default state after reset is PWMA4.
In the 56F8122, the default state is not one of the functions offered
and must be reconfigured.
PWMA5
9
Ou
tpTuri-statedt PWMA5 — This is one of six PWMA output pins.
(SCLK1)
Schmitt
Input/
Output
Input
SPI 1 Serial Clock — In the master mode, this pin serves as an
output, clocking slaved listeners. In slave mode, this pin serves as the
data clock input. A Schmitt trigger input is used for noise immunity.
(GPIOA5)
Schmitt
Input/
Input
Port A GPIO — This GPIO pin can be individually programmed as an
input or output pin.
Output
In the 56F8322, the default state after reset is PWMA5.
In the 56F8122, the default state is not one of the functions offered
and must be reconfigured.
FAULTA0
12
Schmitt
Input
Input
Input
FAULTA0 — This fault input pin is used for disabling selected PWMA
outputs in cases where fault conditions originate off-chip.
(GPIOA6)
Schmitt
Input/
Port A GPIO — This GPIO pin can be individually programmed as an
input or output pin.
Output
In the 56F8322, the default state after reset is FAULTA0.
In the 56F8122, the default state is not one of the functions offered
and must be reconfigured.
ANA0
ANA1
ANA2
ANA4
ANA5
ANA6
20
21
22
23
24
25
Input
Input
Input
Input
ANA0 - 2 — Analog inputs to ADCA, Channel 0
ANA4 - 6 — Analog inputs to ADCA, Channel 1
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
23
Table 2-2 Signal and Package Information for the 48-Pin LQFP
StateDuring
Signal Name
Pin No.
Type
Signal Description
— Internal pins for voltage reference which
are brought off-chip so that they can be bypassed. Connect to a 0.1µF
ceramic low ESR capacitor.
Reset
V
28
27
26
46
Input/
Output
Input/
Output
V
, V
& V
REFP
REFP
REFMID REFN
V
REFMID
V
REFN
CAN_RX
Schmitt
Input
Input
Input
FlexCAN Receive Data — This is the CAN input. This pin has an
internal pull-up resistor.
(GPIOC2)
Schmitt
Input/
Port C GPIO — This GPIO pin can be individually programmed as an
input or output pin.
Output
In the 56F8322, the default state after reset is CAN_RX.
In the 56F8122, the default state is not one of the functions offered
and must be reconfigured.
CAN_TX
47
Output
Tri-stated FlexCAN Transmit Data — CAN output
(GPIOC3)
Schmitt
Input/
Input
Port C GPIO — This GPIO pin can be individually programmed as an
input or output pin.
Output
In the 56F8322, the default state after reset is CAN_TX.
In the 56F8122, the default state is not one of the functions offered
and must be reconfigured.
TC0
1
Schmitt
Input/
Input
TC0 — Timer C, Channel 0
Output
(TXD0)
Schmitt
Input
Tri-stated Transmit Data — SCI0 transmit data output
(GPIOC6)
Schmitt
Input/
Output
Input
Input
Port C GPIO — This GPIO pin can be individually programmed as an
input or output pin.
After reset, the default state is TC0.
TC1
48
Schmitt
Input/
TC1 — Timer C, Channel 1
Output
(RXD0)
Output
Input
Input
Receive Data — SCI0 receive data input
(GPIOC5)
Schmitt
Input/
Port C GPIO — This GPIO pin can be individually programmed as an
input or output pin.
Output
After reset, the default state is TC1.
56F8322 Techncial Data, Rev. 10.0
24
Freescale Semiconductor
Preliminary
Signal Pins
Table 2-2 Signal and Package Information for the 48-Pin LQFP
StateDuring
Signal Name
IRQA
Pin No.
Type
Signal Description
Reset
11
Schmitt
Input
Input
External Interrupt Request A — The IRQA input is an asynchronous
external interrupt request during Stop and Wait mode operation.
During other operating modes, it is a synchronized external interrupt
request which indicates an external device is requesting service. It
can be programmed to be level-sensitive or negative-edge-triggered.
(V
)
N/A
V
— This pin is used for Flash debugging purposes.
PP
PP
RESET
2
Schmitt
Input
Input
Reset — This input is a direct hardware reset on the processor. When
RESET is asserted low, the hybrid controller is initialized and placed
in the reset state. A Schmitt trigger input is used for noise immunity.
The internal reset signal will be deasserted synchronous with the
internal clocks after a fixed number of internal clocks.
To ensure complete hardware reset, RESET and TRST should be
asserted together. The only exception occurs in a debugging
environment when a hardware DSP reset is required and it is
necessary not to reset the JTAG/EOnCE module. In this case, assert
RESET, but do not assert TRST.
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
25
Part 3 On-Chip Clock Synthesis (OCCS)
3.1 Introduction
Refer to the OCCS chapter of the 56F8300 Peripheral User Manual for a full description of the OCCS.
The material contained here identifies the specific features of the OCCS design.
3.2 External Clock Operation
The system clock can be derived from an external crystal, ceramic resonator or an external system clock
signal. To generate a reference frequency using the internal oscillator, a reference crystal or ceramic
resonator must be connected between the EXTAL and XTAL pins.
3.2.1
Crystal Oscillator
The internal oscillator is designed to interface with a parallel-resonant crystal resonator in the frequency
range specified for the external crystal in Table 10-15. A recommended crystal oscillator circuit is shown
in Figure 3-1. Follow the crystal supplier’s recommendations when selecting a crystal, since crystal
parameters determine the component values required to provide maximum stability and reliable start-up.
The crystal and associated components should be mounted as near as possible to the EXTAL and XTAL
pins to minimize output distortion and start-up stabilization time.
Crystal Frequency = 4 - 8MHz (optimized for 8MHz)
EXTAL XTAL
Rz
EXTAL XTAL
Rz
Sample External Crystal Parameters:
R = 750 KΩ
z
Note: If the operating temperature range is limited to
CLKMODE = 0
o
o
below 85 C (105 C junction), then R = 10 Meg Ω
z
CL1
CL2
Figure 3-1 Connecting to a Crystal Oscillator
Note:
The OCCS_COHL bit should be set to 1 when a crystal oscillator is used. The reset condition on the
OCCS_COHL bit is 0. Please see the COHL bit in the Oscillator Control (OSCTL) register, discussed
in the 56F8300 Peripheral User Manual.
56F8322 Techncial Data, Rev. 10.0
26
Freescale Semiconductor
Preliminary
External Clock Operation
3.2.2
Ceramic Resonator (Default)
It is also possible to drive the internal oscillator with a ceramic resonator, assuming the overall system
design can tolerate the reduced signal integrity. A typical ceramic resonator circuit is shown in Figure 3-2.
Refer to the supplier’s recommendations when selecting a ceramic resonator and associated components.
The resonator and components should be mounted as near as possible to the EXTAL and XTAL pins.
Resonator Frequency = 4 - 8MHz (optimized for 8MHz)
3 Terminal
2 Terminal
EXTAL XTAL
Rz
Sample External Ceramic Resonator Parameters:
EXTAL XTAL
Rz
R = 750 KΩ
z
CLKMODE = 0
CL1
CL2
C1
C2
Figure 3-2 Connecting a Ceramic Resonator
Note:
The OCCS_COHL bit must be set to 0 when a crystal resonator is used. The reset condition on the
OCCS_COHL bit is 0. Please see the COHL bit in the Oscillator Control (OSCTL) register, discussed
in the 56F8300 Peripheral User Manual.
3.2.3
External Clock Source
The recommended method of connecting an external clock is illustrated in Figure 3-3. The external clock
source is connected to XTAL and the EXTAL pin is grounded.
XTAL
EXTAL
Note: when using an external clocking
source with this configuration, the
CLKMODE and COHL bits
VSS
or GPIO
External
Clock
of the OSCTL register should be set to 1.
Figure 3-3 Connecting an External Clock Register
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
27
3.3 Use of On-Chip Relaxation Oscillator
An internal relaxtion oscillator can supply the reference frequency when an external frequency source of
crystal is not used. During a boot or reset sequence, the relaxation oscillator is enabled by default, and the
PRECS bit in the PLLCR word is set to 0. If an external oscillator is connected, the relaxation oscillator
can be deselected instead by setting the PRECS bit in the PLLCR to 1. If a changeover between internal
and external oscillators is required at start up, internal device circuits compensate for any asynchronous
transitions between the two clock signals so that no glitches occur in the resulting master clock to the chip.
When changing clocks, the user must ensure that the clock source is not switched until the desired clock
is enabled and stable.
To compensate for variances in the device manufacturing process, the accuracy of the relaxation oscillator
can be incrementally adjusted to within + 0.1% of 8MHz by trimming an internal capacitor. Bits 0-9 of the
OSCTL (oscillator control) register allow the user to set in an additional offset (trim) to this preset value
to increase or decrease capacitance. Upon power-up, the default value of this trim is 512 units. Each unit
added or deleted changes the output frequency by about 0.1%, allowing incremental adjustment until the
desired frequency accuracy is achieved.
The internal oscillator is calibrated at the factory to 8MHz and the TRIM value is stored in the Flash
information block and loaded to the FMOPT1 register at reset. When using the relaxation oscillator, the
boot code should read the FMOPT1 register and set this value as OSCTL TRIM. For further information,
see the 56F8300 Peripheral User Manual.
3.4 Internal Clock Operation
At reset, both oscillators will be powered up; however, the relaxation oscillator will be the default clock
reference for the PLL. Software should power down the block not being used and program the PLL for the
correct frequency.
56F8322 Techncial Data, Rev. 10.0
28
Freescale Semiconductor
Preliminary
Registers
CLK_MODE
Relaxation
OSC
XTAL
MUX
PRECS
Crystal
OSC
ZSRC
SYS_CLK2
source to the
SIM
EXTAL
PLLCID
PLLDB
PLLCOD
F
F
/2
OUT
OUT
Prescaler
÷ (1, 2, 4, 8)
PLL
x (1 to 128)
Postscaler
÷ (1, 2, 4, 8)
÷ 2
Postscaler CLK
Bus Interface
& Control
Bus
Interface
LCK
Lock
Detector
Loss of
Reference
Clock
loss of reference
clock interrupt
Detector
Figure 3-4 Internal Clock Operation
3.5 Registers
When referring to the register definitions for the OCCS in the 56F8300 Peripheral User Manual, use the
register definitions with the internal Relaxation Oscillator, since the 56F8322 and 56F8122 contain this
oscillator.
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
29
Part 4 Memory Map
4.1 Introduction
The 56F8322 and 56F8122 devices are 16-bit motor-control chips based on the 56800E core. These parts
use a Harvard-style architecture with two independent memory spaces for Data and Program. On-chip
RAM and Flash memories are used in both spaces.
This section provides memory maps for:
•
•
Program Address Space, including the Interrupt Vector Table
Data Address Space, including the EOnCE Memory and Peripheral Memory Maps
Note: Data Flash and Program RAM are NOT available on the 56F8122 device.
Table 4-1 Chip Memory Configurations
On-Chip Memory
56F8322
56F8122
Use Restrictions
Program Flash
Erase / Program via Flash interface unit and word writes
to CDBW
32KB
32KB
Data Flash
Erase / Program via Flash interface unit and word writes
to CDBW. Data Flash can be read via either CDBR or
XDB2, but not by both simultaneously.
8KB
—
Program RAM
Data RAM
None
None
4KB
8KB
8KB
—
8KB
8KB
Program Boot Flash
Erase / Program via Flash Interface unit and word
writes to CDBW
4.2 Program Map
Operating Mode Register (OMR) usually control the Program Memory map. Because the 56F8322 and
56F8122 do not include EMI, the OMR MA bit, which is used to decide internal or external BOOT, will
have no effect on the Program Memory Map. OMR MB reflects the security status of the Program Flash.
After reset, changing the OMR MB bit will have no effect on the Program Flash.
56F8322 Techncial Data, Rev. 10.0
30
Freescale Semiconductor
Preliminary
Interrupt Vector Table
Note: Program RAM is NOT available on the 56F8122 device.
Table 4-2 Program Memory Map at Reset
Begin/End Address
Memory Allocation
P: $1F FFFF
P: $03 0000
RESERVED
P: $02 FFFF
P: $02 F800
On-Chip Program RAM
4KB
P: $02 F7FF
P: $02 1000
RESERVED
P: $02 0FFF
P: $02 0000
Boot Flash
8KB
Cop Reset Address = $02 0002
Boot Location = $02 0000
P: $01 FFFF
P: $00 4000
RESERVED
P: $00 3FFF
P: $00 0000
Internal Program Flash
32KB
4.3 Interrupt Vector Table
Table 4-3 provides the device’s reset and interrupt priority structure, including on-chip peripherals. The
table is organized with higher-priority vectors at the top and lower-priority interrupts lower in the table.
As indicated, the priority of an interrupt can be assigned to different levels, allowing some control over
interrupt priorities. All level 3 interrupts will be serviced before level 2, and so on. For a selected priority
level, the lowest vector number has the highest priority.
The location of the vector table is determined by the Vector Base Address (VBA). Please see
In some configurations, the reset address and COP reset address will correspond to vector 0 and 1 of the
interrupt vector table. In these instances, the first two locations in the vector table must contain branch or
JMP instructions. All other entries must contain JSR instructions.
Note: PWM, CAN and Quadrature Decoder are NOT available on the 56F8122 device.
1
Table 4-3 Interrupt Vector Table Contents
Vector
Number
Priority
Level
Vector Base
Address +
Peripheral
Interrupt Function
2
Reserved for Reset Overlay
2
Reserved for COP Reset Overlay
Illegal Instruction
core
core
core
core
2
3
4
5
3
3
3
3
P:$04
P:$06
P:$08
P:$0A
SW Interrupt 3
HW Stack Overflow
Misaligned Long Word Access
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
31
1
Table 4-3 Interrupt Vector Table Contents (Continued)
Vector
Number
Priority
Level
Vector Base
Address +
Peripheral
Interrupt Function
core
core
6
7
1-3
P:$0C
P:$0E
OnCE Step Counter
1-3
OnCE Breakpoint Unit 0
Reserved
core
core
core
9
1-3
1-3
1-3
P:$12
P:$14
P:$16
OnCE Trace Buffer
OnCE Transmit Register Empty
OnCE Receive Register Full
Reserved
10
11
core
core
core
core
14
15
16
17
2
P:$1C
P:$1E
P:$20
P:$22
SW Interrupt 2
1
SW Interrupt 1
0
SW Interrupt 0
0-2
IRQA
Reserved
LVI
PLL
FM
FM
FM
20
21
22
23
24
0-2
0-2
0-2
0-2
0-2
P:$28
P:$2A
P:$2C
P:$2E
P:$30
Low-Voltage Detector (power sense)
PLL
FM Access Error Interrupt
FM Command Complete
FM Command, data and address Buffers Empty
Reserved
FLEXCAN 26
FLEXCAN 27
FLEXCAN 28
FLEXCAN 29
0-2
0-2
0-2
0-2
P:$34
P:$36
P:$38
P:$3A
FLEXCAN Bus Off
FLEXCAN Error
FLEXCAN Wake Up
FLEXCAN Message Buffer Interrupt
Reserved
GPIOC
GPIOB
GPIOA
33
34
35
0-2
0-2
0-2
P:$42
P:$44
P:$46
GPIO C
GPIO B
GPIO A
Reserved
SPI1
SPI1
SPI0
SPI0
SCI1
SCI1
38
39
40
41
42
43
0-2
0-2
0-2
0-2
0-2
0-2
P:$4C
P:$4E
P:$50
P:$52
P:$54
P:$56
SPI 1 Receiver Full
SPI 1 Transmitter Empty
SPI 0 Receiver Full
SPI 0 Transmitter Empty
SCI 1 Transmitter Empty
SCI 1Transmitter Idle
Reserved
SCI1
SCI1
45
46
0-2
0-2
P:$5A
P:$5C
SCI 1 Receiver Error
SCI 1 Receiver Full
Reserved
DEC0
DEC0
49
50
0-2
0-2
P:$62
P:$64
Quadrature Decoder #0 Home Switch or Watchdog
Quadrature Decoder #0 INDEX Pulse
56F8322 Techncial Data, Rev. 10.0
32
Freescale Semiconductor
Preliminary
Interrupt Vector Table
1
Table 4-3 Interrupt Vector Table Contents (Continued)
Vector
Number
Priority
Level
Vector Base
Address +
Peripheral
Interrupt Function
Reserved
TMRC
TMRC
TMRC
TMRC
56
0-2
P:$70
P:$72
P:$74
P:$76
Timer C Channel 0
Timer C Channel 1
Timer C Channel 2
Timer C Channel 3
Reserved
57
58
59
0-2
0-2
0-2
TMRA
TMRA
TMRA
TMRA
SCI0
64
65
66
67
68
69
0-2
0-2
0-2
0-2
0-2
0-2
P:$80
P:$82
P:$84
P:$86
P:$88
P:$8A
Timer A Channel 0
Timer A Channel 1
Timer A Channel 2
Timer A Channel 3
SCI 0 Transmitter Empty
SCI 0 Transmitter Idle
Reserved
SCI0
SCI0
SCI0
71
72
0-2
0-2
P:$8E
P:$90
SCI 0 Receiver Error
SCI 0 Receiver Full
Reserved
ADCA
ADCA
PWMA
74
76
78
0-2
0-2
0-2
P:$94
P:$98
P:$9C
ADC A Conversion Complete / End of Scan
Reserved
ADC A Zero Crossing or Limit Error
Reserved
Reload PWM A
Reserved
PWMA
80
81
82
0-2
- 1
P:$A0
P:$A2
P:$A4
PWM A Fault
core
SW Interrupt LP
0 - 2
1. Two words are allocated for each entry in the vector table. This does not allow the full address range to be referenced
from the vector table, providing only 19 bits of address.
2. If the VBA is set to $0200, the first two locations of the vector table will overlay the chip reset addresses.
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
33
4.4 Data Map
Note: Data Flash is NOT available on the 56F8122 device.
1
Table 4-4 Data Memory Map
Begin/End Address
Memory Allocation
X:$FF FFFF
X:$FF FF00
EOnCE
256 locations allocated
X:$FF FEFF
X:$01 0000
RESERVED
X:$00 FFFF
X:$00 F000
On-Chip Peripherals
4096 locations allocated
X:$00 EFFF
X:$00 2000
RESERVED
X:$00 1FFF
X:$00 1000
On-Chip Data Flash
8KB
X:$00 0FFF
X:$00 0000
On-Chip Data RAM
2
8KB
1. All addresses are 16-bit Word addresses.
2. The Data RAM is organized as a 2K x 32-bit memory to allow single-cycle,
long-word operations
4.5 Flash Memory Map
Figure 4-1 illustrates the Flash Memory (FM) map on the system bus.
Flash Memory is divided into three functional blocks. The Program and boot memories reside on the
Program Memory buses. They are controlled by one set of banked registers. Data Memory Flash resides
on the Data Memory buses and is controlled separately by its own set of banked registers.
The top nine words of the Program Memory Flash are treated as special memory locations. The content of
these words is used to control the operation of the Flash Controller. Because these words are part of the
Flash Memory content, their state is maintained during power-down and reset. During chip initialization,
the content of these memory locations is loaded into Flash Memory control registers, detailed in the Flash
Memory chapter of the 56F8300 Peripheral User Manual. These configure parameters are located
between $00_3FF7 and $00_3FFF.
56F8322 Techncial Data, Rev. 10.0
34
Freescale Semiconductor
Preliminary
Flash Memory Map
Data Memory
Program Memory
BOOT_FLASH_START + $0FFF
FM_BASE + $14
FM_BASE + $00
Banked Registers
8KB
Boot
Unbanked Registers
BOOT_FLASH_START = $02_0000
Reserved
DATA_FLASH_START + $0FFF
DATA_FLASH_START + $0000
8KB
Note: Data Flash is
NOT available in the
56F8122 device.
FM_PROG_MEM_TOP = $00_3FFF
PROG_FLASH_START + $00_3FFF
PROG_FLASH_START + $00_3FF7
PROG_FLASH_START + $00_3FF6
Configure Field
Block 0 Odd
Block 0 Even
32KB
BLOCK 0 Odd (2 Bytes) $00_0003
BLOCK 0 Even (2 Bytes) $00_0002
BLOCK 0 Odd (2 Bytes) $00_0001
BLOCK 0 Even (2 Bytes) $00_0000
PROG_FLASH_START = $00_0000
Figure 4-1 Flash Array Memory Maps
Table 4-5 shows the page and sector sizes used within each Flash memory block on the chip.
Note: Data Flash is NOT available on the 56F8122 device.
Table 4-5 Flash Memory Partitions
Flash Size
Sectors
Sector Size
Page Size
Program Flash
Data Flash
32KB
8KB
8KB
16
16
4
1K x 16 bits
256 x 16 bits
1K x 16 bits
512 x 16 bits
256 x 16 bits
256 x 16 bits
Boot Flash
Please see the 56F8300 Peripheral User Manual for additional Flash information.
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
35
4.6 EOnCE Memory Map
Table 4-6 EOnCE Memory Map
Address
Register Acronym
Register Name
Reserved
X:$FF FF8A
OESCR
External Signal Control Register
Reserved
X:$FF FF8E
OBCNTR
Breakpoint Unit [0] Counter
Reserved
X:$FF FF90
X:$FF FF91
X:$FF FF92
X:$FF FF93
X:$FF FF94
X:$FF FF95
X:$FF FF96
X:$FF FF97
X:$FF FF98
X:$FF FF99
X:$FF FF9A
X:$FF FF9B
X:$FF FF9C
X:$FF FF9D
X:$FF FF9E
X:$FF FF9F
X:$FF FFA0
OBMSK (32 bits)
Breakpoint 1 Unit [0] Mask Register
Breakpoint 1 Unit [0] Mask Register
Breakpoint 2 Unit [0] Address Register
Breakpoint 2 Unit [0] Address Register
Breakpoint 1 Unit [0] Address Register
Breakpoint 1 Unit [0] Address Register
Breakpoint Unit [0] Control Register
Breakpoint Unit [0] Control Register
Trace Buffer Register Stages
Trace Buffer Register Stages
Trace Buffer Pointer Register
Trace Buffer Control Register
Peripheral Base Address Register
Status Register
—
OBAR2 (32 bits)
—
OBAR1 (24 bits)
—
OBCR (24 bits)
—
OTB (21-24 bits/stage)
—
OTBPR (8 bits)
OTBCR
OBASE (8 bits)
OSR
OSCNTR (24 bits)
—
Instruction Step Counter
Instruction Step Counter
OCR (bits)
Control Register
Reserved
X:$FF FFFC
X:$FF FFFD
X:$FF FFFE
X:$FF FFFF
OCLSR (8 bits)
Core Lock / Unlock Status Register
Transmit and Receive Status and Control Register
Transmit Register / Receive Register
OTXRXSR (8 bits)
OTX / ORX (32 bits)
OTX1 / ORX1
Transmit Register Upper Word
Receive Register Upper Word
4.7 Peripheral Memory Mapped Registers
On-chip peripheral registers are part of the data memory map on the 56800E series. These locations may
be accessed with the same addressing modes used for ordinary Data memory, except all peripheral
registers should be read/written using word accesses only.
Table 4-7 summarizes base addresses for the set of peripherals on the 56F8322 and 56F8122 devices.
Peripherals are listed in order of the base address.
56F8322 Techncial Data, Rev. 10.0
36
Freescale Semiconductor
Preliminary
Peripheral Memory Mapped Registers
The following tables list all of the peripheral registers required to control or access the peripherals.
Note: Features in italics are NOT available on the 56F8122 device.
Table 4-7 Data Memory Peripheral Base Address Map Summary
Peripheral
Prefix
Base Address
Table Number
Timer A
Timer C
PWM A
TMRA
TMRC
PWMA
DEC0
ITCN
X:$00 F040
X:$00 F0C0
X:$00 F140
X:$00 F180
X:$00 F1A0
X:$00 F200
X:$00 F270
X:$00 F280
X:$00 F290
X:$00 F2A0
X:$00 F2B0
X:$00 F2C0
X:$00 F2D0
X:$00 F2E0
X:$00 F300
X:$00 F310
X:$00 F350
X:$00 F360
X:$00 F400
X:$00 F800
Quadrature Decoder 0
ITCN
ADC A
ADCA
Temperature Sensor
SCI #0
TSENSOR
SCI0
SCI #1
SCI1
SPI #0
SPI0
SPI #1
SPI1
COP
COP
PLL, OSC
GPIO Port A
GPIO Port B
GPIO Port C
SIM
CLKGEN
GPIOA
GPIOB
GPIOC
SIM
Power Supervisor
FM
LVI
FM
FlexCAN
FC
Table 4-8 Quad Timer A Registers Address Map
(TMRA_BASE = $00 F040)
Register Acronym
Address Offset
Register Description
Compare Register 1
TMRA0_CMP1
TMRA0_CMP2
TMRA0_CAP
$0
$1
$2
$3
$4
$5
$6
$7
$8
Compare Register 2
Capture Register
TMRA0_LOAD
TMRA0_HOLD
TMRA0_CNTR
TMRA0_CTRL
TMRA0_SCR
Load Register
Hold Register
Counter Register
Control Register
Status and Control Register
Comparator Load Register 1
TMRA0_CMPLD1
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
37
Table 4-8 Quad Timer A Registers Address Map (Continued)
(TMRA_BASE = $00 F040)
Register Acronym
Address Offset
Register Description
Comparator Load Register 2
TMRA0_CMPLD2
TMRA0_COMSCR
$9
$A
Comparator Status and Control Register
Reserved
TMRA1_CMP1
TMRA1_CMP2
TMRA1_CAP
$10
$11
$12
$13
$14
$15
$16
$17
$18
$19
$1A
Compare Register 1
Compare Register 2
Capture Register
TMRA1_LOAD
TMRA1_HOLD
TMRA1_CNTR
TMRA1_CTRL
TMRA1_SCR
Load Register
Hold Register
Counter Register
Control Register
Status and Control Register
Comparator Load Register 1
Comparator Load Register 2
Comparator Status and Control Register
Reserved
TMRA1_CMPLD1
TMRA1_CMPLD2
TMRA1_COMSCR
TMRA2_CMP1
TMRA2_CMP2
TMRA2_CAP
$20
$21
$22
$23
$24
$25
$26
$27
$28
$29
$2A
Compare Register 1
Compare Register 2
Capture Register
TMRA2_LOAD
TMRA2_HOLD
TMRA2_CNTR
TMRA2_CTRL
TMRA2_SCR
Load Register
Hold Register
Counter Register
Control Register
Status and Control Register
Comparator Load Register 1
Comparator Load Register 2
Comparator Status and Control Register
Reserved
TMRA2_CMPLD1
TMRA2_CMPLD2
TMRA2_COMSCR
TMRA3_CMP1
TMRA3_CMP2
TMRA3_CAP
$30
$31
$32
$33
$34
$35
$36
$37
$38
$39
$3A
Compare Register 1
Compare Register 2
Capture Register
TMRA3_LOAD
TMRA3_HOLD
TMRA3_CNTR
TMRA3_CTRL
TMRA3_SCR
Load Register
Hold Register
Counter Register
Control Register
Status and Control Register
Comparator Load Register 1
Comparator Load Register 2
Comparator Status and Control Register
TMRA3_CMPLD1
TMRA3_CMPLD2
TMRA3_COMSCR
56F8322 Techncial Data, Rev. 10.0
38
Freescale Semiconductor
Preliminary
Peripheral Memory Mapped Registers
Table 4-9 Quad Timer C Registers Address Map
(TMRC_BASE = $00 F0C0)
Register Acronym
Address Offset
$0
Register Description
Compare Register 1
TMRC0_CMP1
TMRC0_CMP2
TMRC0_CAP
$1
$2
$3
$4
$5
$6
$7
$8
$9
$A
Compare Register 2
Capture Register
TMRC0_LOAD
TMRC0_HOLD
TMRC0_CNTR
TMRC0_CTRL
TMRC0_SCR
Load Register
Hold Register
Counter Register
Control Register
Status and Control Register
Comparator Load Register 1
Comparator Load Register 2
Comparator Status and Control Register
Reserved
TMRC0_CMPLD1
TMRC0_CMPLD2
TMRC0_COMSCR
TMRC1_CMP1
TMRC1_CMP2
TMRC1_CAP
$10
$11
$12
$13
$14
$15
$16
$17
$18
$19
$1A
Compare Register 1
Compare Register 2
Capture Register
TMRC1_LOAD
TMRC1_HOLD
TMRC1_CNTR
TMRC1_CTRL
TMRC1_SCR
Load Register
Hold Register
Counter Register
Control Register
Status and Control Register
Comparator Load Register 1
Comparator Load Register 2
Comparator Status and Control Register
Reserved
TMRC1_CMPLD1
TMRC1_CMPLD2
TMRC1_COMSCR
TMRC2_CMP1
TMRC2_CMP2
TMRC2_CAP
$20
$21
$22
$23
$24
$25
$26
$27
$28
$29
$2A
Compare Register 1
Compare Register 2
Capture Register
TMRC2_LOAD
TMRC2_HOLD
TMRC2_CNTR
TMRC2_CTRL
TMRC2_SCR
Load Register
Hold Register
Counter Register
Control Register
Status and Control Register
Comparator Load Register 1
Comparator Load Register 2
Comparator Status and Control Register
Reserved
TMRC2_CMPLD1
TMRC2_CMPLD2
TMRC2_COMSCR
TMRC3_CMP1
$30
Compare Register 1
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
39
Table 4-9 Quad Timer C Registers Address Map (Continued)
(TMRC_BASE = $00 F0C0)
Register Acronym
Address Offset
Register Description
Compare Register 2
TMRC3_CMP2
TMRC3_CAP
$31
$32
$33
$34
$35
$36
$37
$38
$39
$3A
Capture Register
TMRC3_LOAD
TMRC3_HOLD
TMRC3_CNTR
TMRC3_CTRL
TMRC3_SCR
Load Register
Hold Register
Counter Register
Control Register
Status and Control Register
Comparator Load Register 1
Comparator Load Register 2
Comparator Status and Control Register
TMRC3_CMPLD1
TMRC3_CMPLD2
TMRC3_COMSCR
Table 4-10 Pulse Width Modulator A Registers Address Map
(PWMA_BASE = $00 F140)
PWM is NOT available in the 56F8122 device
Register Acronym
Address Offset
Register Description
PWMA_PMCTRL
PWMA_PMFCTRL
PWMA_PMFSA
$0
$1
Control Register
Fault Control Register
Fault Status Acknowledge Register
Output Control Register
Counter Register
$2
PWMA_PMOUT
$3
PWMA_PMCNT
$4
PWMA_PWMCM
PWMA_PWMVAL0
PWMA_PWMVAL1
PWMA_PWMVAL2
PWMA_PWMVAL3
PWMA_PWMVAL4
PWMA_PWMVAL5
PWMA_PMDEADTM
PWMA_PMDISMAP1
PWMA_PMDISMAP2
PWMA_PMCFG
$5
Counter Modulo Register
Value Register 0
$6
$7
Value Register 1
$8
Value Register 2
$9
Value Register 3
$A
$B
$C
$D
$E
$F
$10
$11
$12
Value Register 4
Value Register 5
Dead Time Register
Disable Mapping Register 1
Disable Mapping Register 2
Configure Register
PWMA_PMCCR
Channel Control Register
Port Register
PWMA_PMPORT
PWMA_PMICCR
Internal Correction Control
56F8322 Techncial Data, Rev. 10.0
40
Freescale Semiconductor
Preliminary
Peripheral Memory Mapped Registers
Table 4-11 Quadrature Decoder 0 Registers Address Map
(DEC0_BASE = $00 F180)
Quadrature Decoder is NOT available in the 56F8122 device
Register Acronym
Address Offset
Register Description
Decoder Control Register
DEC0_DECCR
DEC0_FIR
$0
$1
$2
$3
$4
$5
$6
$7
$8
$9
$A
$B
$C
$D
Filter Interval Register
DEC0_WTR
DEC0_POSD
DEC0_POSDH
DEC0_REV
DEC0_REVH
DEC0_UPOS
DEC0_LPOS
DEC0_UPOSH
DEC0_LPOSH
DEC0_UIR
Watchdog Time-out Register
Position Difference Counter Register
Position Difference Counter Hold Register
Revolution Counter Register
Revolution Hold Register
Upper Position Counter Register
Lower Position Counter Register
Upper Position Hold Register
Lower Position Hold Register
Upper Initialization Register
Lower Initialization Register
Input Monitor Register
DEC0_LIR
DEC0_IMR
Table 4-12 Interrupt Control Registers Address Map
(ITCN_BASE = $00 F1A0)
Register Acronym
IPR0
Address Offset
Register Description
Interrupt Priority Register 0
$0
$1
$2
$3
$4
$5
$6
$7
$8
$9
$A
$B
$C
$D
$E
$F
$10
IPR1
Interrupt Priority Register 1
IPR2
Interrupt Priority Register 2
IPR3
Interrupt Priority Register 3
IPR4
Interrupt Priority Register 4
IPR5
Interrupt Priority Register 5
IPR6
Interrupt Priority Register 6
IPR7
Interrupt Priority Register 7
IPR8
Interrupt Priority Register 8
IPR9
Interrupt Priority Register 9
VBA
Vector Base Address Register
Fast Interrupt Match Register 0
Fast Interrupt Vector Address Low 0 Register
Fast Interrupt Vector Address High 0 Register
Fast Interrupt Match Register 1
Fast Interrupt Vector Address Low 1 Register
Fast Interrupt Vector Address High 1 Register
FIM0
FIVAL0
FIVAH0
FIM1
FIVAL1
FIVAH1
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
41
Table 4-12 Interrupt Control Registers Address Map (Continued)
(ITCN_BASE = $00 F1A0)
Register Acronym
IRQP 0
Address Offset
Register Description
IRQ Pending Register 0
$11
$12
$13
$14
$15
$16
IRQP 1
IRQP 2
IRQP 3
IRQP 4
IRQP 5
IRQ Pending Register 1
IRQ Pending Register 2
IRQ Pending Register 3
IRQ Pending Register 4
IRQ Pending Register 5
Reserved
ICTL
$1D
Interrupt Control Register
Table 4-13 Analog to Digital Converter Registers Address Map
(ADCA_BASE = $00 F200)
Register Acronym
Address Offset
Register Description
Control Register 1
ADCA_CR1
$0
$1
ADCA_CR2
Control Register 2
ADCA_ZCC
$2
Zero Crossing Control Register
Channel List Register 1
Channel List Register 2
Sample Disable Register
Status Register
ADCA_LST 1
ADCA_LST 2
ADCA_SDIS
$3
$4
$5
ADCA_STAT
ADCA_LSTAT
ADCA_ZCSTAT
ADCA_RSLT 0
ADCA_RSLT 1
ADCA_RSLT 2
ADCA_RSLT 3
ADCA_RSLT 4
ADCA_RSLT 5
ADCA_RSLT 6
ADCA_RSLT 7
ADCA_LLMT 0
ADCA_LLMT 1
ADCA_LLMT 2
ADCA_LLMT 3
ADCA_LLMT 4
ADCA_LLMT 5
ADCA_LLMT 6
ADCA_LLMT 7
ADCA_HLMT 0
$6
$7
Limit Status Register
Zero Crossing Status Register
Result Register 0
$8
$9
$A
Result Register 1
$B
Result Register 2
$C
$D
$E
Result Register 3
Result Register 4
Result Register 5
$F
Result Register 6
$10
$11
$12
$13
$14
$15
$16
$17
$18
$19
Result Register 7
Low Limit Register 0
Low Limit Register 1
Low Limit Register 2
Low Limit Register 3
Low Limit Register 4
Low Limit Register 5
Low Limit Register 6
Low Limit Register 7
High Limit Register 0
56F8322 Techncial Data, Rev. 10.0
42
Freescale Semiconductor
Preliminary
Peripheral Memory Mapped Registers
Table 4-13 Analog to Digital Converter Registers Address Map (Continued)
(ADCA_BASE = $00 F200)
Register Acronym
Address Offset
$1A
Register Description
High Limit Register 1
ADCA_HLMT 1
ADCA_HLMT 2
ADCA_HLMT 3
ADCA_HLMT 4
ADCA_HLMT 5
ADCA_HLMT 6
ADCA_HLMT 7
ADCA_OFS 0
ADCA_OFS 1
ADCA_OFS 2
ADCA_OFS 3
ADCA_OFS 4
ADCA_OFS 5
ADCA_OFS 6
ADCA_OFS 7
ADCA_POWER
ADCA_CAL
$1B
$1C
$1D
$1E
$1F
$20
$21
$22
$23
$24
$25
$26
$27
$28
$29
$2A
High Limit Register 2
High Limit Register 3
High Limit Register 4
High Limit Register 5
High Limit Register 6
High Limit Register 7
Offset Register 0
Offset Register 1
Offset Register 2
Offset Register 3
Offset Register 4
Offset Register 5
Offset Register 6
Offset Register 7
Power Control Register
ADC Calibration Register
Table 4-14 Temperature Sensor Register Address Map
(TSENSOR_BASE = $00 F270)
Temperature Sensor is NOT available in the 56F8122 device
Register Acronym
Address Offset
Register Description
TSENSOR_CNTL
$0
Control Register
Table 4-15 Serial Communication Interface 0 Registers Address Map
(SCI0_BASE = $00 F280)
Register Acronym
Address Offset
Register Description
Baud Rate Register
SCI0_SCIBR
SCI0_SCICR
$0
$1
Control Register
Reserved
SCI0_SCISR
SCI0_SCIDR
$3
$4
Status Register
Data Register
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
43
Table 4-16 Serial Communication Interface 1 Registers Address Map
(SCI1_BASE = $00 F290)
Register Acronym
Address Offset
Register Description
Baud Rate Register
SCI1_SCIBR
SCI1_SCICR
$0
$1
Control Register
Reserved
SCI1_SCISR
SCI1_SCIDR
$3
$4
Status Register
Data Register
Table 4-17 Serial Peripheral Interface 0 Registers Address Map
(SPI0_BASE = $00 F2A0)
Register Acronym
Address Offset
Register Description
Status and Control Register
SPI0_SPSCR
SPI0_SPDSR
SPI0_SPDRR
SPI0_SPDTR
$0
$1
$2
$3
Data Size Register
Data Receive Register
Data Transmitter Register
Table 4-18 Serial Peripheral Interface 1 Registers Address Map
(SPI1_BASE = $00 F2B0)
Register Acronym
Address Offset
Register Description
Status and Control Register
SPI1_SPSCR
SPI1_SPDSR
SPI1_SPDRR
SPI1_SPDTR
$0
$1
$2
$3
Data Size Register
Data Receive Register
Data Transmitter Register
Table 4-19 Computer Operating Properly Registers Address Map
(COP_BASE = $00 F2C0)
Register Acronym
Address Offset
Register Description
COPCTL
COPTO
$0
$1
$2
Control Register
Time-Out Register
Counter Register
COPCTR
56F8322 Techncial Data, Rev. 10.0
44
Freescale Semiconductor
Preliminary
Peripheral Memory Mapped Registers
Table 4-20 Clock Generation Module Registers Address Map
(CLKGEN_BASE = $00 F2D0)
Register Acronym
PLLCR
Address Offset
Register Description
$0
$1
$2
Control Register
Divide-By Register
Status Register
PLLDB
PLLSR
Reserved
SHUTDOWN
OSCTL
$4
$5
Shutdown Register
Oscillator Control Register
Table 4-21 GPIOA Registers Address Map
(GPIOA_BASE = $00 F2E0)
Address Offset
Register Description
Reset Value
0 x 0FFF
0 x 0000
0 x 0000
0 x 0FFF
0 x 0000
0 x 0000
0 x 0000
0 x 0000
0 x 0000
0 x 0FFF
—
Register Acronym
GPIOA_PUR
$0
$1
$2
$3
$4
$5
$6
$7
$8
$9
$A
Pull-up Enable Register
GPIOA_DR
Data Register
GPIOA_DDR
Data Direction Register
Peripheral Enable Register
Interrupt Assert Register
Interrupt Enable Register
Interrupt Polarity Register
Interrupt Pending Register
Interrupt Edge-Sensitive Register
Push-Pull Mode Register
Raw Data Input Register
GPIOA_PER
GPIOA_IAR
GPIOA_IENR
GPIOA_IPOLR
GPIOA_IPR
GPIOA_IESR
GPIOA_PPMODE
GPIOA_RAWDATA
Table 4-22 GPIOB Registers Address Map
(GPIOB_BASE = $00 F300)
Register Acronym
Address Offset
Register Description
Pull-up Enable Register
Reset Value
GPIOB_PUR
GPIOB_DR
$0
$1
$2
$3
$4
$5
$6
$7
$8
$9
$A
0 x 00FF
0 x 0000
0 x 0000
0 x 00FF
0 x 0000
0 x 0000
0 x 0000
0 x 0000
0 x 0000
0 x 00FF
—
Data Register
GPIOB_DDR
GPIOB_PER
GPIOB_IAR
Data Direction Register
Peripheral Enable Register
Interrupt Assert Register
Interrupt Enable Register
Interrupt Polarity Register
Interrupt Pending Register
Interrupt Edge-Sensitive Register
Push-Pull Mode Register
Raw Data Input Register
GPIOB_IENR
GPIOB_IPOLR
GPIOB_IPR
GPIOB_IESR
GPIOB_PPMODE
GPIOB_RAWDATA
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
45
Table 4-23 GPIOC Registers Address Map
(GPIOC_BASE = $00F310)
Register Acronym
Address Offset
Register Description
Pull-up Enable Register
Reset Value
GPIOC_PUR
GPIOC_DR
$0
$1
$2
$3
$4
$5
$6
$7
$8
$9
$A
0 x 007C
0 x 0000
0 x 0000
0 x 007F
0 x 0000
0 x 0000
0 x 0000
0 x 0000
0 x 0000
0 x 007F
—
Data Register
GPIOC_DDR
GPIOC_PER
GPIOC_IAR
Data Direction Register
Peripheral Enable Register
Interrupt Assert Register
Interrupt Enable Register
Interrupt Polarity Register
Interrupt Pending Register
Interrupt Edge-Sensitive Register
Push-Pull Mode Register
Raw Data Input Register
GPIOC_IENR
GPIOC_IPOLR
GPIOC_IPR
GPIOC_IESR
GPIOC_PPMODE
GPIOC_RAWDATA
Table 4-24 System Integration Module Registers Address Map
(SIM_BASE = $00 F350)
Register Acronym
Address Offset
Register Description
SIM_CONTROL
SIM_RSTSTS
SIM_SCR0
$0
$1
$2
$3
$4
$5
$6
$7
$8
Control Register
Reset Status Register
Software Control Register 0
Software Control Register 1
Software Control Register 2
Software Control Register 3
Most Significant Half JTAG ID
Least Significant Half JTAG ID
Pull-up Disable Register
SIM_SCR1
SIM_SCR2
SIM_SCR3
SIM_MSH_ID
SIM_LSH_ID
SIM_PUDR
Reserved
SIM_CLKOSR
SIM_GPS
$A
$B
$C
$D
$E
Clock Out Select Register
GPIO Peripheral Select Register
Peripheral Clock Enable Register
I/O Short Address Location High Register
I/O Short Address Location Low Register
SIM_PCE
SIM_ISALH
SIM_ISALL
Table 4-25 Power Supervisor Registers Address Map
(LVI_BASE = $00 F360)
Register Acronym
Address Offset
Register Description
LVI_CONTROL
LVI_STATUS
$0
$1
Control Register
Status Register
56F8322 Techncial Data, Rev. 10.0
46
Freescale Semiconductor
Preliminary
Peripheral Memory Mapped Registers
Table 4-26 Flash Module Registers Address Map
(FM_BASE = $00 F400)
Register Acronym
Address Offset
Register Description
FMCLKD
FMMCR
$0
$1
Clock Divider Register
Module Control Register
Reserved
FMSECH
FMSECL
$3
$4
Security High Half Register
Security Low Half Register
Reserved
Reserved
FMPROT
$10
$11
Protection Register (Banked)
Protection Boot Register (Banked)
Reserved
FMPROTB
FMUSTAT
FMCMD
$13
$14
User Status Register (Banked)
Command Register (Banked)
Reserved
Reserved
FMOPT 0
$1A
16-Bit Information Option Register 0
Hot temperature ADC reading of Temperature Sensor; value
set during factory test
FMOPT 1
FMOPT 2
$1B
$1C
16-Bit Information Option Register 1
Trim cap setting of the relaxation oscillator
16-Bit Information Option Register 2
Room temperature ADC reading of Temperature Sensor; value
set during factory test
Table 4-27 FlexCAN Registers Address Map
(FC_BASE = $00 F800)
FlexCAN is NOT available in the 56F8122 device
Register Acronym
Address Offset
Register Description
FCMCR
$0
Module Configuration Register
Reserved
FCCTL0
FCCTL1
FCTMR
$3
$4
$5
$6
Control Register 0 Register
Control Register 1 Register
Free-Running Timer Register
Maximum Message Buffer Configuration Register
Reserved
FCMAXMB
FCRXGMASK_H
FCRXGMASK_L
$8
$9
Receive Global Mask High Register
Receive Global Mask Low Register
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
47
Table 4-27 FlexCAN Registers Address Map (Continued)
(FC_BASE = $00 F800)
FlexCAN is NOT available in the 56F8122 device
Register Acronym
Address Offset
Register Description
FCRX14MASK_H
FCRX14MASK_L
FCRX15MASK_H
FCRX15MASK_L
$A
$B
$C
$D
Receive Buffer 14 Mask High Register
Receive Buffer 14 Mask Low Register
Receive Buffer 15 Mask High Register
Receive Buffer 15 Mask Low Register
Reserved
FCSTATUS
$10
$11
$12
$13
Error and Status Register
FCIMASK1
Interrupt Masks 1 Register
FCIFLAG1
Interrupt Flags 1 Register
FCR/T_ERROR_CNTRS
Receive and Transmit Error Counters Register
Reserved
Reserved
Reserved
FCMB0_CONTROL
FCMB0_ID_HIGH
FCMB0_ID_LOW
FCMB0_DATA
$40
$41
$42
$43
$44
$45
$46
Message Buffer 0 Control / Status Register
Message Buffer 0 ID High Register
Message Buffer 0 ID Low Register
Message Buffer 0 Data Register
Message Buffer 0 Data Register
Message Buffer 0 Data Register
Message Buffer 0 Data Register
Reserved
FCMB0_DATA
FCMB0_DATA
FCMB0_DATA
FCMSB1_CONTROL
FCMSB1_ID_HIGH
FCMSB1_ID_LOW
FCMB1_DATA
$48
$49
$4A
$4B
$4C
$4D
$4E
Message Buffer 1 Control / Status Register
Message Buffer 1 ID High Register
Message Buffer 1 ID Low Register
Message Buffer 1 Data Register
Message Buffer 1 Data Register
Message Buffer 1 Data Register
Message Buffer 1 Data Register
Reserved
FCMB1_DATA
FCMB1_DATA
FCMB1_DATA
FCMB2_CONTROL
FCMB2_ID_HIGH
FCMB2_ID_LOW
FCMB2_DATA
$50
$51
$52
$53
$54
$55
$56
Message Buffer 2 Control / Status Register
Message Buffer 2 ID High Register
Message Buffer 2 ID Low Register
Message Buffer 2 Data Register
Message Buffer 2 Data Register
Message Buffer 2 Data Register
Message Buffer 2 Data Register
Reserved
FCMB2_DATA
FCMB2_DATA
FCMB2_DATA
56F8322 Techncial Data, Rev. 10.0
48
Freescale Semiconductor
Preliminary
Peripheral Memory Mapped Registers
Table 4-27 FlexCAN Registers Address Map (Continued)
(FC_BASE = $00 F800)
FlexCAN is NOT available in the 56F8122 device
Register Acronym
Address Offset
Register Description
FCMB3_CONTROL
FCMB3_ID_HIGH
FCMB3_ID_LOW
FCMB3_DATA
$58
$59
$5A
$5B
$5C
$5D
$5E
Message Buffer 3 Control / Status Register
Message Buffer 3 ID High Register
Message Buffer 3 ID Low Register
Message Buffer 3 Data Register
Message Buffer 3 Data Register
Message Buffer 3 Data Register
Message Buffer 3 Data Register
Reserved
FCMB3_DATA
FCMB3_DATA
FCMB3_DATA
FCMB4_CONTROL
FCMB4_ID_HIGH
FCMB4_ID_LOW
FCMB4_DATA
$60
$61
$62
$63
$64
$65
$66
Message Buffer 4 Control / Status Register
Message Buffer 4 ID High Register
Message Buffer 4 ID Low Register
Message Buffer 4 Data Register
Message Buffer 4 Data Register
Message Buffer 4 Data Register
Message Buffer 4 Data Register
Reserved
FCMB4_DATA
FCMB4_DATA
FCMB4_DATA
FCMB5_CONTROL
FCMB5_ID_HIGH
FCMB5_ID_LOW
FCMB5_DATA
$68
$69
$6A
$6B
$6C
$6D
$6E
Message Buffer 5 Control / Status Register
Message Buffer 5 ID High Register
Message Buffer 5 ID Low Register
Message Buffer 5 Data Register
Message Buffer 5 Data Register
Message Buffer 5 Data Register
Message Buffer 5 Data Register
Reserved
FCMB5_DATA
FCMB5_DATA
FCMB5_DATA
FCMB6_CONTROL
FCMB6_ID_HIGH
FCMB6_ID_LOW
FCMB6_DATA
$70
$71
$72
$73
$74
$75
$76
Message Buffer 6 Control / Status Register
Message Buffer 6 ID High Register
Message Buffer 6 ID Low Register
Message Buffer 6 Data Register
Message Buffer 6 Data Register
Message Buffer 6 Data Register
Message Buffer 6 Data Register
Reserved
FCMB6_DATA
FCMB6_DATA
FCMB6_DATA
FCMB7_CONTROL
FCMB7_ID_HIGH
FCMB7_ID_LOW
FCMB7_DATA
$78
$79
$7A
$7B
Message Buffer 7 Control / Status Register
Message Buffer 7 ID High Register
Message Buffer 7 ID Low Register
Message Buffer 7 Data Register
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
49
Table 4-27 FlexCAN Registers Address Map (Continued)
(FC_BASE = $00 F800)
FlexCAN is NOT available in the 56F8122 device
Register Acronym
FCMB7_DATA
Address Offset
Register Description
Message Buffer 7 Data Register
$7C
$7D
$7E
FCMB7_DATA
FCMB7_DATA
Message Buffer 7 Data Register
Message Buffer 7 Data Register
Reserved
FCMB8_CONTROL
FCMB8_ID_HIGH
FCMB8_ID_LOW
FCMB8_DATA
$80
$81
$82
$83
$84
$85
$86
Message Buffer 8 Control / Status Register
Message Buffer 8 ID High Register
Message Buffer 8 ID Low Register
Message Buffer 8 Data Register
Message Buffer 8 Data Register
Message Buffer 8 Data Register
Message Buffer 8 Data Register
Reserved
FCMB8_DATA
FCMB8_DATA
FCMB8_DATA
FCMB9_CONTROL
FCMB9_ID_HIGH
FCMB9_ID_LOW
FCMB9_DATA
$88
$89
$8A
$8B
$8C
$8D
$8E
Message Buffer 9 Control / Status Register
Message Buffer 9 ID High Register
Message Buffer 9 ID Low Register
Message Buffer 9 Data Register
Message Buffer 9 Data Register
Message Buffer 9 Data Register
Message Buffer 9 Data Register
Reserved
FCMB9_DATA
FCMB9_DATA
FCMB9_DATA
FCMB10_CONTROL
FCMB10_ID_HIGH
FCMB10_ID_LOW
FCMB10_DATA
FCMB10_DATA
FCMB10_DATA
FCMB10_DATA
$90
$91
$92
$93
$94
$95
$96
Message Buffer 10 Control / Status Register
Message Buffer 10 ID High Register
Message Buffer 10 ID Low Register
Message Buffer 10 Data Register
Message Buffer 10 Data Register
Message Buffer 10 Data Register
Message Buffer 10 Data Register
Reserved
FCMB11_CONTROL
FCMB11_ID_HIGH
FCMB11_ID_LOW
FCMB11_DATA
FCMB11_DATA
FCMB11_DATA
FCMB11_DATA
$98
$99
$9A
$9B
$9C
$9D
$9E
Message Buffer 11 Control / Status Register
Message Buffer 11 ID High Register
Message Buffer 11 ID Low Register
Message Buffer 11 Data Register
Message Buffer 11 Data Register
Message Buffer 11 Data Register
Message Buffer 11 Data Register
Reserved
FCMB12_CONTROL
$A0
Message Buffer 12 Control / Status Register
56F8322 Techncial Data, Rev. 10.0
50
Freescale Semiconductor
Preliminary
Peripheral Memory Mapped Registers
Table 4-27 FlexCAN Registers Address Map (Continued)
(FC_BASE = $00 F800)
FlexCAN is NOT available in the 56F8122 device
Register Acronym
Address Offset
Register Description
FCMB12_ID_HIGH
FCMB12_ID_LOW
FCMB12_DATA
FCMB12_DATA
FCMB12_DATA
FCMB12_DATA
$A1
$A2
$A3
$A4
$A5
$A6
Message Buffer 12 ID High Register
Message Buffer 12 ID Low Register
Message Buffer 12 Data Register
Message Buffer 12 Data Register
Message Buffer 12 Data Register
Message Buffer 12 Data Register
Reserved
FCMB13_CONTROL
FCMB13_ID_HIGH
FCMB13_ID_LOW
FCMB13_DATA
FCMB13_DATA
FCMB13_DATA
FCMB13_DATA
$A8
$A9
$AA
$AB
$AC
$AD
$AE
Message Buffer 13 Control / Status Register
Message Buffer 13 ID High Register
Message Buffer 13 ID Low Register
Message Buffer 13 Data Register
Message Buffer 13 Data Register
Message Buffer 13 Data Register
Message Buffer 13 Data Register
Reserved
FCMB14_CONTROL
FCMB14_ID_HIGH
FCMB14_ID_LOW
FCMB14_DATA
FCMB14_DATA
FCMB14_DATA
FCMB14_DATA
$B0
$B1
$B2
$B3
$B4
$B5
$B6
Message Buffer 14 Control / Status Register
Message Buffer 14 ID High Register
Message Buffer 14 ID Low Register
Message Buffer 14 Data Register
Message Buffer 14 Data Register
Message Buffer 14 Data Register
Message Buffer 14 Data Register
Reserved
FCMB15_CONTROL
FCMB15_ID_HIGH
FCMB15_ID_LOW
FCMB15_DATA
FCMB15_DATA
FCMB15_DATA
FCMB15_DATA
$B8
$B9
$BA
$BB
$BC
$BD
$BE
Message Buffer 15 Control / Status Register
Message Buffer 15 ID High Register
Message Buffer 15 ID Low Register
Message Buffer 15 Data Register
Message Buffer 15 Data Register
Message Buffer 15 Data Register
Message Buffer 15 Data Register
Reserved
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
51
4.8 Factory-Programmed Memory
The Boot Flash memory block is programmed during manufacturing with a default Serial Bootloader
program. The Serial Bootloader application can be used to load a user application into the Program and
Data Flash (not available on the 56F8122) memories of the device. The 56F83xx SCI/CAN Bootloader
User Manual provides detailed information on this firmware. An application note, Production Flash
Programming, details how the Serial Bootloader program can be used to perform production Flash
programming of the on-board Flash memories as well as other optional methods.
Like all the Flash memory blocks, the Boot Flash can be erased and programmed by the user. The Serial
Bootloader application is programmed as an aid to the end user, but is not required to be used or maintained
in the Boot Flash memory.
Part 5 Interrupt Controller (ITCN)
5.1 Introduction
The Interrupt Controller (ITCN) module is used to arbitrate between various interrupt requests (IRQs), to
signal to the 56800E core when an interrupt of sufficient priority exists, and to what address to jump in
order to service this interrupt.
5.2 Features
The ITCN module design includes these distinctive features:
•
•
•
•
Programmable priority levels for each IRQ
Two programmable Fast Interrupts
Notification to SIM module to restart clocks out of Wait and Stop modes
Drives initial address on the address bus after reset
5.3 Functional Description
The Interrupt Controller is a slave on the IPBus. It contains registers allowing each of the 82 interrupt
sources to be set to one of four priority levels, excluding certain interrupts of fixed priority. Next, all of
the interrupt requests of a given level are priority encoded to determine the lowest numerical value of the
active interrupt requests for that level. Within a given priority level, 0 is the highest priority, while number
81 is the lowest.
5.3.1
Normal Interrupt Handling
Once the ITCN has determined that an interrupt is to be serviced and which interrupt has the highest
priority, an interrupt vector address is generated. Normal interrupt handling concatenates the VBA and the
vector number to determine the vector address. In this way, an offset is generated into the vector table for
each interrupt.
56F8322 Techncial Data, Rev. 10.0
52
Freescale Semiconductor
Preliminary
Functional Description
5.3.2
Interrupt Nesting
Interrupt exceptions may be nested to allow an IRQ of higher priority than the current exception to be
serviced. The following tables define the nesting requirements for each priority level.
Table 5-1 Interrupt Mask Bit Definition
1
1
Permitted Exceptions Masked Exceptions
SR[9]
SR[8]
0
0
1
1
0
1
0
1
Priorities 0, 1, 2, 3
Priorities 1, 2, 3
Priorities 2, 3
Priority 3
None
Priority 0
Priorities 0, 1
Priorities 0, 1, 2
1. Core status register bits indicating current interrupt mask within the core.
Table 5-2. Interrupt Priority Encoding
1
Current Interrupt
Priority Level
Required Nested
Exception Priority
IPIC_LEVEL[1:0]
00
01
10
11
No Interrupt or SWILP Priorities 0, 1, 2, 3
Priority 0
Priorities 1, 2, 3
Priorities 2, 3
Priority 3
Priority 1
Priorities 2 or 3
1. See IPIC field definition in Section 5.6.30.2
5.3.3
Fast Interrupt Handling
Fast interrupts are described in the DSP56800E Reference Manual. The interrupt controller recognizes
fast interrupts before the core does.
A fast interrupt is defined (to the ITCN) by:
1. Setting the priority of the interrupt as level 2, with the appropriate field in the IPR registers
2. Setting the FIMn register to the appropriate vector number
3. Setting the FIVALn and FIVAHn registers with the address of the code for the fast interrupt
When an interrupt occurs, its vector number is compared with the FIM0 and FIM1 register values. If a
match occurs, and it is a level 2 interrupt, the ITCN handles it as a fast interrupt. The ITCN takes the vector
address from the appropriate FIVALn and FIVAHn registers, instead of generating an address that is an
offset from the VBA.
The core then fetches the instruction from the indicated vector adddress and if it is not a JSR, the core starts
its fast interrupt handling.
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
53
5.4 Block Diagram
any0
Priority
Level
Level 0
82 -> 7
Priority
Encoder
7
2 -> 4
INT1
Decode
INT
VAB
IPIC
CONTROL
any3
IACK
SR[9:8]
Level 3
Priority
Level
82 -> 7
Priority
PIC_EN
7
Encoder
2 -> 4
Decode
INT82
Figure 5-1 Interrupt Controller Block Diagram
5.5 Operating Modes
The ITCN module design contains two major modes of operation:
•
Functional Mode
The ITCN is in this mode by default.
•
Wait and Stop Modes
During Wait and Stop modes, the system clocks and the 56800E core are turned off. The ITCN will signal
a pending IRQ to the System Integration Module (SIM) to restart the clocks and service the IRQ. An IRQ
can only wake up the core if the IRQ is enabled prior to entering the Wait or Stop mode. Also, the IRQA
signal automatically becomes low-level sensitive in these modes, even if the control register bits are set to
make them falling-edge sensitive. This is because there is no clock available to detect the falling edge.
A peripheral which requires a clock to generate interrupts will not be able to generate interrupts during Stop
mode. The FlexCAN module can wake the device from Stop mode, and a reset will do just that, or IRQA
and IRQB can wake it up.
56F8322 Techncial Data, Rev. 10.0
54
Freescale Semiconductor
Preliminary
Register Descriptions
5.6 Register Descriptions
A register address is the sum of a base address and an address offset. The base address is defined at the
system level and the address offset is defined at the module level. The ITCN peripheral has 24 registers.
Table 5-3 ITCN Register Summary
(ITCN_BASE = $00 F1A0)
Register
Acronym
Base Address +
Register Name
Section Location
IPR0
$0
$1
Interrupt Priority Register 0
IPR1
Interrupt Priority Register 1
Interrupt Priority Register 2
Interrupt Priority Register 3
Interrupt Priority Register 4
Interrupt Priority Register 5
Interrupt Priority Register 6
Interrupt Priority Register 7
Interrupt Priority Register 8
Interrupt Priority Register 9
Vector Base Address Register
Fast Interrupt 0 Match Register
Fast Interrupt 0 Vector Address Low Register
Fast Interrupt 0 Vector Address High Register
Fast Interrupt 1 Match Register
Fast Interrupt 1 Vector Address Low Register
Fast Interrupt 1 Vector Address High Register
IRQ Pending Register 0
IPR2
$2
IPR3
$3
IPR4
$4
IPR5
$5
IPR6
$6
IPR7
$7
IPR8
$8
IPR9
$9
VBA
$A
$B
$C
$D
$E
$F
FIM0
FIVAL0
FIVAH0
FIM1
FIVAL1
FIVAH1
IRQP0
IRQP1
IRQP2
IRQP3
IRQP4
IRQP5
$10
$11
$12
$13
$14
$15
$16
IRQ Pending Register 1
IRQ Pending Register 2
IRQ Pending Register 3
IRQ Pending Register 4
IRQ Pending Register 5
Reserved
ICTL
$1D
Interrupt Control Register
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
55
Add.
Offset
Register
Name
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
R
W
R
0
0
0
0
0
0
0
0
0
0
0
0
BKPT_ U0
IPL
$0
$1
IPR0
IPR1
STPCNT IPL
0
0
0
0
0
0
0
0
0
0
RX_REG IPL
TX_REG IPL
TRBUF IPL
IRQA IPL
W
R
0
0
0
0
$2
IPR2
FMCBE IPL
FMCC IPL
FMERR IPL
LOCK IPL
LVI IPL
W
R
0
0
0
0
0
0
0
0
FCMSGBUF
IPL
FCWKUP
IPL
$3
IPR3
FCERR IPL
GPIOA IPL
FCBOFF IPL
GPIOB IPL
W
R
0
0
0
0
0
0
0
0
0
0
SPI0_RCV
IPL
SPI1_XMIT
IPL
SPI1_RCV
IPL
$4
IPR4
GPIOC IPL
W
R
0
0
0
0
0
0
0
0
SCI1_RCV
IPL
SCI1_RERR
IPL
SCI1_TIDL
IPL
SCI1_XMIT
IPL
SPI0_XMIT
IPL
$5
IPR5
W
R
0
0
0
0
0
0
0
0
0
0
0
0
DEC0_XIRQ
IPL
DEC0_HIRQ
IPL
$6
IPR6
TMRC0 IPL
TMRA0 IPL
W
R
0
0
$7
IPR7
TMRC3 IPL
TMRA3 IPL
TMRC2 IPL
TMRA2 IPL
TMRC1 IPL
TMRA1 IPL
W
R
SCI0_RCV
IPL
SCI0_RERR
IPL
SCI0_TIDL
IPL
SCI0_XMIT
IPL
$8
IPR8
W
R
0
0
0
0
0
0
0
0
0
0
PWMA_RL
IPL
ADCA_ZC
IPL
$9
IPR9
PWMA F IPL
ADCA_CC IPL
W
R
0
0
0
0
$A
$B
$C
$D
$E
$F
VBA
VECTOR BASE ADDRESS
0
W
R
0
0
0
0
0
FIM0
FAST INTERRUPT 0
W
R
FAST INTERRUPT 0
VECTOR ADDRESS LOW
FIVAL0
FIVAH0
FIM1
W
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
FAST INTERRUPT 0
VECTOR ADDRESS HIGH
W
R
FAST INTERRUPT 1
W
R
FAST INTERRUPT 1
VECTOR ADDRESS LOW
FIVAL1
FIVAH1
IRQP0
IRQP1
IRQP2
IRQP3
IRQP4
W
R
0
0
0
0
0
0
0
0
0
0
FAST INTERRUPT 1
VECTOR ADDRESS HIGH
$10
$11
$12
$13
$14
$15
W
R
PENDING [16:2]
1
W
R
PENDING [32:17]
W
R
PENDING [48:33]
PENDING [64:49]
PENDING [80:65]
W
R
W
R
W
PEND-
ING
[81]
R
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
0
$16
$1D
IRQP5
W
Reserved
ICTL
IRQA
STATE
R
INT
IPIC
VAB
INT_
DIS
IRQA
EDG
W
= Reserved
Figure 5-2 ITCN Register Map Summary
56F8322 Techncial Data, Rev. 10.0
56
Freescale Semiconductor
Preliminary
Register Descriptions
5.6.1
Interrupt Priority Register 0 (IPR0)
Base + $0
Read
15
0
14
0
13
12
11
10
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
BKPT_U0IPL
STPCNT IPL
Write
RESET
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-3 Interrupt Priority Register 0 (IPR0)
5.6.1.1
Reserved—Bits 15–14
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.
5.6.1.2
EOnCE Breakpoint Unit 0 Interrupt Priority Level (BKPT_U0 IPL)—
Bits13–12
This field is used to set the interrupt priority levels for IRQs. This IRQ is limited to priorities 1 through 3.
It is disabled by default.
•
•
•
•
00 = IRQ disabled (default)
01 = IRQ is priority level 1
10 = IRQ is priority level 2
11 = IRQ is priority level 3
5.6.1.3
EOnCE Step Counter Interrupt Priority Level (STPCNT IPL)—
Bits 11–10
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 1 through 3.
It is disabled by default.
•
•
•
•
00 = IRQ disabled (default)
01 = IRQ is priority level 1
10 = IRQ is priority level 2
11 = IRQ is priority level 3
5.6.1.4
Reserved—Bits 9–0
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.
5.6.2
Interrupt Priority Register 1 (IPR1)
Base + $1
Read
15
0
14
0
13
0
12
0
11
0
10
0
9
0
8
0
7
0
6
0
5
4
3
2
1
0
RX_REG IPL TX_REG IPL
TRBUF IPL
Write
RESET
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-4 Interrupt Priority Register 1 (IPR1)
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
57
5.6.2.1
Reserved—Bits 15–6
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.
5.6.2.2
EOnCE Receive Register Full Interrupt Priority Level
(RX_REG IPL)—Bits 5–4
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 1 through 3.
It is disabled by default.
•
•
•
•
00 = IRQ disabled (default)
01 = IRQ is priority level 1
10 = IRQ is priority level 2
11 = IRQ is priority level 3
5.6.2.3
EOnCE Transmit Register Empty Interrupt Priority Level
(TX_REG IPL)—Bits 3–2
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 1 through 3.
It is disabled by default.
•
•
•
•
00 = IRQ disabled (default)
01 = IRQ is priority level 1
10 = IRQ is priority level 2
11 = IRQ is priority level 3
5.6.2.4
EOnCE Trace Buffer Interrupt Priority Level (TRBUF IPL)—
Bits 1–0
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 1 through 3.
It is disabled by default.
•
•
•
•
00 = IRQ disabled (default)
01 = IRQ is priority level 1
10 = IRQ is priority level 2
11 = IRQ is priority level 3
5.6.3
Interrupt Priority Register 2 (IPR2)
Base + $2
Read
15
14
13
12
11
10
9
8
7
6
0
5
0
4
0
3
0
2
0
1
0
FMCBE IPL
FMCC IPL
FMERR IPL
LOCK IPL
LVI IPL
IRQA IPL
Write
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET
Figure 5-5 Interrupt Priority Register 2 (IPR2)
56F8322 Techncial Data, Rev. 10.0
58
Freescale Semiconductor
Preliminary
Register Descriptions
5.6.3.1
Flash Memory Command, Data, Address Buffers Empty Interrupt
Priority Level (FMCBE IPL)—Bits 15–14
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.
It is disabled by default.
•
•
•
•
00 = IRQ disabled (default)
01 = IRQ is priority level 0
10 = IRQ is priority level 1
11 = IRQ is priority level 2
5.6.3.2
Flash Memory Command Complete Priority Level
(FMCC IPL)—Bits 13–12
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.
It is disabled by default.
•
•
•
•
00 = IRQ disabled (default)
01 = IRQ is priority level 0
10 = IRQ is priority level 1
11 = IRQ is priority level 2
5.6.3.3
Flash Memory Error Interrupt Priority Level
(FMERR IPL)—Bits 11–10
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.
It is disabled by default.
•
•
•
•
00 = IRQ disabled (default)
01 = IRQ is priority level 0
10 = IRQ is priority level 1
11 = IRQ is priority level 2
5.6.3.4
PLL Loss of Lock Interrupt Priority Level (LOCK IPL)—Bits 9–8
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.
It is disabled by default.
•
•
•
•
00 = IRQ disabled (default)
01 = IRQ is priority level 0
10 = IRQ is priority level 1
11 = IRQ is priority level 2
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
59
5.6.3.5
Low Voltage Detector Interrupt Priority Level (LVI IPL)—Bits 7–6
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.
It is disabled by default.
•
•
•
•
00 = IRQ disabled (default)
01 = IRQ is priority level 0
10 = IRQ is priority level 1
11 = IRQ is priority level 2
5.6.3.6
Reserved—Bits 5–2
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.
5.6.3.7
External IRQ A Interrupt Priority Level (IRQA IPL)—Bits 1–0
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.
It is disabled by default.
•
•
•
•
00 = IRQ disabled (default)
01 = IRQ is priority level 0
10 = IRQ is priority level 1
11 = IRQ is priority level 2
5.6.4
Interrupt Priority Register 3 (IPR3)
Base + $3
Read
15 14 13 12 11 10
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
FCMSGBUF IPL
FCWKUP IPL
FCERR IPL
FCBOFF IPL
Write
0
0
0
0
0
0
0
0
0
0
RESET
Figure 5-6 Interrupt Priority Register 3 (IPR3)
5.6.4.1
Reserved—Bits 15–10
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.
5.6.4.2
FlexCAN Message Buffer Interrupt Priority Level
(FCMSGBUF IPL)—Bits 9–8
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.
They are disabled by default.
•
•
•
•
00 = IRQ disabled (default)
01 = IRQ is priority level 0
10 = IRQ is priority level 1
11 = IRQ is priority level 2
56F8322 Techncial Data, Rev. 10.0
60
Freescale Semiconductor
Preliminary
Register Descriptions
5.6.4.3
FlexCAN Wake Up Interrupt Priority Level (FCWKUP IPL)—
Bits 7–6
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.
They are disabled by default.
•
•
•
•
00 = IRQ disabled (default)
01 = IRQ is priority level 0
10 = IRQ is priority level 1
11 = IRQ is priority level 2
5.6.4.4
FlexCAN Error Interrupt Priority Level (FCERR IPL)—
Bits 5–4
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.
They are disabled by default.
•
•
•
•
00 = IRQ disabled (default)
01 = IRQ is priority level 0
10 = IRQ is priority level 1
11 = IRQ is priority level 2
5.6.4.5
FlexCAN Bus Off Interrupt Priority Level (FCBOFF IPL)— Bits 3–2
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.
They are disabled by default.
•
•
•
•
00 = IRQ disabled (default)
01 = IRQ is priority level 0
10 = IRQ is priority level 1
11 = IRQ is priority level 2
5.6.4.6
Reserved—Bits 1–0
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.
5.6.5
Interrupt Priority Register 4 (IPR4)
Base + $4
Read
15
14
13
12
11
10
9
0
8
0
7
0
6
0
5
4
3
2
1
0
SPI0_RCV
IPL
SPI1_XMIT
IPL
SPI1_RCV
IPL
GPIOA IPL
GPIOB IPL
GPIOC IPL
Write
RESET
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-7 Interrupt Priority Register 4 (IPR4)
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
61
5.6.5.1
SPI0 Receiver Full Interrupt Priority Level (SPI0_RCV IPL)—
Bits 15–14
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.
They are disabled by default.
•
•
•
•
00 = IRQ disabled (default)
01 = IRQ is priority level 0
10 = IRQ is priority level 1
11 = IRQ is priority level 2
5.6.5.2
SPI1 Transmit Empty Interrupt Priority Level (SPI1_XMIT IPL)—
Bits 13–12
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.
They are disabled by default.
•
•
•
•
00 = IRQ disabled (default)
01 = IRQ is priority level 0
10 = IRQ is priority level 1
11 = IRQ is priority level 2
5.6.5.3
SPI1 Receiver Full Interrupt Priority Level (SPI1_RCV IPL)—
Bits 11–10
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.
They are disabled by default.
•
•
•
•
00 = IRQ disabled (default)
01 = IRQ is priority level 0
10 = IRQ is priority level 1
11 = IRQ is priority level 2
5.6.5.4
Reserved—Bits 9–6
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.
5.6.5.5
GPIO_A Interrupt Priority Level (GPIOA IPL)—Bits 5–4
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.
They are disabled by default.
•
•
•
•
00 = IRQ disabled (default)
01 = IRQ is priority level 0
10 = IRQ is priority level 1
11 = IRQ is priority level 2
56F8322 Techncial Data, Rev. 10.0
62
Freescale Semiconductor
Preliminary
Register Descriptions
5.6.5.6
GPIO_B Interrupt Priority Level (GPIOB IPL)—Bits 3–2
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.
They are disabled by default.
•
•
•
•
00 = IRQ disabled (default)
01 = IRQ is priority level 0
10 = IRQ is priority level 1
11 = IRQ is priority level 2
5.6.5.7
GPIO_C Interrupt Priority Level (GPIOC IPL)—Bits 1–0
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.
They are disabled by default.
•
•
•
•
00 = IRQ disabled (default)
01 = IRQ is priority level 0
10 = IRQ is priority level 1
11 = IRQ is priority level 2
5.6.6
Interrupt Priority Register 5 (IPR5)
Base + $5
Read
15
0
14
0
13
0
12
0
11
10
9
8
7
0
6
0
5
4
3
2
1
0
SCI1_RCV
IPL
SCI1_RERR
IPL
SCI1_TIDL
IPL
SCI1_XMIT
IPL
SPI0_XMIT
IPL
Write
RESET
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-8 Interrupt Priority Register 5 (IPR5)
5.6.6.1
Reserved—Bits 15–12
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.
5.6.6.2
SCI1 Receiver Full Interrupt Priority Level (SCI1_RCV IPL)—
Bits 11–10
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.
They are disabled by default.
•
•
•
•
00 = IRQ disabled (default)
01 = IRQ is priority level 0
10 = IRQ is priority level 1
11 = IRQ is priority level 2
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
63
5.6.6.3
SCI1 Receiver Error Interrupt Priority Level (SCI1_RERR IPL)—
Bits 9–8
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.
They are disabled by default.
•
•
•
•
00 = IRQ disabled (default)
01 = IRQ is priority level 0
10 = IRQ is priority level 1
11 = IRQ is priority level 2
5.6.6.4
Reserved—Bits 7–6
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.
5.6.6.5
SCI1 Transmitter Idle Interrupt Priority Level (SCI1_TIDL IPL)—
Bits 5–4
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.
They are disabled by default.
•
•
•
•
00 = IRQ disabled (default)
01 = IRQ is priority level 0
10 = IRQ is priority level 1
11 = IRQ is priority level 2
5.6.6.6
SCI1 Transmitter Empty Interrupt Priority Level (SCI1_XMIT IPL)— Bits
3–2
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.
They are disabled by default.
•
•
•
•
00 = IRQ disabled (default)
01 = IRQ is priority level 0
10 = IRQ is priority level 1
11 = IRQ is priority level 2
5.6.6.7
SPI0 Transmitter Empty Interrupt Priority Level (SPI0_XMIT IPL)—
Bits 1–0
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.
They are disabled by default.
•
•
•
•
00 = IRQ disabled (default)
01 = IRQ is priority level 0
10 = IRQ is priority level 1
11 = IRQ is priority level 2
56F8322 Techncial Data, Rev. 10.0
64
Freescale Semiconductor
Preliminary
Register Descriptions
5.6.7
Interrupt Priority Register 6 (IPR6)
Base + $6
Read
15
14
13
0
12
0
11
0
10
0
9
0
8
0
7
0
6
0
5
0
4
0
3
2
1
0
DEC0_XIRQ
IPL
DEC0_HIRQ
IPL
TMRC0 IPL
Write
RESET
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-9 Interrupt Priority Register 6 (IPR6)
5.6.7.1
Timer C, Channel 0 Interrupt Priority Level (TMRC_0 IPL)—
Bits 15–14
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.
They are disabled by default.
•
•
•
•
00 = IRQ disabled (default)
01 = IRQ is priority level 0
10 = IRQ is priority level 1
11 = IRQ is priority level 2
5.6.7.2
Reserved—Bits 13–4
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.
5.6.7.3
Quadrature Decoder 0, INDEX Pulse Interrupt Priority Level (DEC0_XIRQ
IPL)—Bits 3–2
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.
They are disabled by default.
•
•
•
•
00 = IRQ disabled (default)
01 = IRQ is priority level 0
10 = IRQ is priority level 1
11 = IRQ is priority level 2
5.6.7.4
Quadrature Decoder 0, HOME Signal Transition or Watchdog Timer
Interrupt Priority Level (DEC0_HIRQ IPL)—Bits 1–0
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.
They are disabled by default.
•
•
•
•
00 = IRQ disabled (default)
01 = IRQ is priority level 0
10 = IRQ is priority level 1
11 = IRQ is priority level 2
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
65
5.6.8
Interrupt Priority Register 7 (IPR7)
Base + $7
Read
15
14
13
0
12
0
11
0
10
0
9
0
8
0
7
0
6
0
5
4
3
2
1
0
TMRA0 IPL
TMRC3 IPL
TMRC2 IPL
TMRC1 IPL
Write
RESET
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-10 Interrupt Priority Register (IPR7)
5.6.8.1
Timer A, Channel 0 Interrupt Priority Level (TMRA0 IPL)—
Bits 15–14
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.
They are disabled by default.
•
•
•
•
00 = IRQ disabled (default)
01 = IRQ is priority level 0
10 = IRQ is priority level 1
11 = IRQ is priority level 2
5.6.8.2
Reserved—Bits 13–6
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.
5.6.8.3
Timer C, Channel 3 Interrupt Priority Level (TMRC3 IPL)—Bits 5–4
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.
They are disabled by default.
•
•
•
•
00 = IRQ disabled (default)
01 = IRQ is priority level 0
10 = IRQ is priority level 1
11 = IRQ is priority level 2
5.6.8.4
Timer C, Channel 2 Interrupt Priority Level (TMRC2 IPL)—Bits 3–2
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.
They are disabled by default.
•
•
•
•
00 = IRQ disabled (default)
01 = IRQ is priority level 0
10 = IRQ is priority level 1
11 = IRQ is priority level 2
56F8322 Techncial Data, Rev. 10.0
66
Freescale Semiconductor
Preliminary
Register Descriptions
5.6.8.5
Timer C, Channel 1 Interrupt Priority Level (TMRC1 IPL)—Bits 1–0
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.
They are disabled by default.
•
•
•
•
00 = IRQ disabled (default)
01 = IRQ is priority level 0
10 = IRQ is priority level 1
11 = IRQ is priority level 2
5.6.9
Interrupt Priority Register 8 (IPR8)
Base + $8
Read
15
14
13
12
11
0
10
0
9
8
7
6
5
4
3
2
1
0
SCI0_RCV
IPL
SCI0_RERR
IPL
SCI0_TIDL
IPL
SCI0_XMIT
IPL
TMRA3 IPL
TMRA2 IPL
TMRA1 IPL
Write
RESET
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-11 Interrupt Priority Register 8 (IPR8)
5.6.9.1
SCI0 Receiver Full Interrupt Priority Level (SCI0_RCV IPL)—
Bits 15–14
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.
They are disabled by default.
•
•
•
•
00 = IRQ disabled (default)
01 = IRQ is priority level 0
10 = IRQ is priority level 1
11 = IRQ is priority level 2
5.6.9.2
SCI0 Receiver Error Interrupt Priority Level (SCI0_RERR IPL)—
Bits 13–12
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.
They are disabled by default.
•
•
•
•
00 = IRQ disabled (default)
01 = IRQ is priority level 0
10 = IRQ is priority level 1
11 = IRQ is priority level 2
5.6.9.3
Reserved—Bits 11–10
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
67
5.6.9.4
SCI0 Transmitter Idle Interrupt Priority Level (SCI0_TIDL IPL)—
Bits 9–8
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.
They are disabled by default.
•
•
•
•
00 = IRQ disabled (default)
01 = IRQ is priority level 0
10 = IRQ is priority level 1
11 = IRQ is priority level 2
5.6.9.5
SCI0 Transmitter Empty Interrupt Priority Level (SCI0_XMIT IPL)—
Bits 7–6
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.
They are disabled by default.
•
•
•
•
00 = IRQ disabled (default)
01 = IRQ is priority level 0
10 = IRQ is priority level 1
11 = IRQ is priority level 2
5.6.9.6
Timer A, Channel 3 Interrupt Priority Level (TMRA3 IPL)—Bits 5–4
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.
They are disabled by default.
•
•
•
•
00 = IRQ disabled (default)
01 = IRQ is priority level 0
10 = IRQ is priority level 1
11 = IRQ is priority level 2
5.6.9.7
Timer A, Channel 2 Interrupt Priority Level (TMRA2 IPL)—Bits 3–2
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.
They are disabled by default.
•
•
•
•
00 = IRQ disabled (default)
01 = IRQ is priority level 0
10 = IRQ is priority level 1
11 = IRQ is priority level 2
56F8322 Techncial Data, Rev. 10.0
68
Freescale Semiconductor
Preliminary
Register Descriptions
5.6.9.8
Timer A, Channel 1 Interrupt Priority Level (TMRA1 IPL)—Bits 1–0
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.
They are disabled by default.
•
•
•
•
00 = IRQ disabled (default)
01 = IRQ is priority level 0
10 = IRQ is priority level 1
11 = IRQ is priority level 2
5.6.10 Interrupt Priority Register 9 (IPR9)
Base + $9
Read
15
14
13
0
12
0
11
10
9
0
8
0
7
6
5
0
4
0
3
2
1
0
0
0
PWMA_RL
IPL
ADCA_CC
IPL
PWMAF IPL
ADCA_ZC IPL
Write
RESET
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-12 Interrupt Priority Register 9 (IPR9)
5.6.10.1 PWM A Fault Interrupt Priority Level (PWMAF IPL)—Bits 15–14
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.
They are disabled by default.
•
•
•
•
00 = IRQ disabled (default)
01 = IRQ is priority level 0
10 = IRQ is priority level 1
11 = IRQ is priority level 2
5.6.10.2 Reserved—Bits 13–12
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.
5.6.10.3 Reload PWM A Interrupt Priority Level (PWMA_RL IPL)—
Bits 11–10
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.
They are disabled by default.
•
•
•
•
00 = IRQ disabled (default)
01 = IRQ is priority level 0
10 = IRQ is priority level 1
11 = IRQ is priority level 2
5.6.10.4 Reserved—Bits 9–8
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
69
5.6.10.5 ADC A Zero Crossing or Limit Error Interrupt Priority Level
(ADCA_ZC IPL)—Bits 7–6
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.
They are disabled by default.
•
•
•
•
00 = IRQ disabled (default)
01 = IRQ is priority level 0
10 = IRQ is priority level 1
11 = IRQ is priority level 2
5.6.10.6 Reserved—Bits 5–4
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.
5.6.10.7 ADC A Conversion Complete Interrupt Priority Level
(ADCA_CC IPL)—Bits 3–2
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.
They are disabled by default.
•
•
•
•
00 = IRQ disabled (default)
01 = IRQ is priority level 0
10 = IRQ is priority level 1
11 = IRQ is priority level 2
5.6.10.8 Reserved—Bits 1–0
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.
5.6.11 Vector Base Address Register (VBA)
Base + $A
Read
15
0
14
0
13
0
12
11
10
9
8
7
6
5
4
0
3
0
2
0
1
0
0
0
VECTOR BASE ADDRESS
Write
RESET
0
0
0
0
0
0
0
0
0
0
0
Figure 5-13 Vector Base Address Register (VBA)
5.6.11.1 Reserved—Bits 15–13
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.
5.6.11.2 Interrupt Vector Base Address (VECTOR BASE ADDRESS)—
Bits 12–0
The contents of this register determine the location of the Vector Address Table. The value in this register
is used as the upper 13 bits of the interrupt vector address. The lower eight bits of the ISR address are
56F8322 Techncial Data, Rev. 10.0
70
Freescale Semiconductor
Preliminary
Register Descriptions
5.6.12 Fast Interrupt 0 Match Register (FIM0)
Base + $B
Read
15
0
14
0
13
0
12
0
11
0
10
0
9
0
8
0
7
0
6
0
5
0
4
3
2
1
0
0
0
FAST INTERRUPT 0
Write
RESET
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-14 Fast Interrupt 0 Match Register (FIM0)
5.6.12.1 Reserved—Bits 15–7
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.
5.6.12.2 Fast Interrupt 0 Vector Number (FAST INTERRUPT 0)—Bits 6–0
This value determines which IRQ will be a Fast Interrupt 0. Fast interrupts vector directly to a service
routine based on values in the Fast Interrupt Vector Address registers without having to go to a jump table
first; see Section 5.3.3 for details. IRQs used as fast interrupts must be set to priority level 2. Unexpected
results will occur if a fast interrupt vector is set to any other priority. Fast interrupts automatically become
the highest-priority level 2 interrupt, regardless of their location in the interrupt table, prior to being
declared as fast interrupt. Fast Interrupt 0 has priority over Fast Interrupt 1. To determine the vector
5.6.13 Fast Interrupt 0 Vector Address Low Register (FIVAL0)
Base + $C
Read
15
14
13
12
11
10
9
8
7
6
5
4
3
2
0
1
0
0
0
FAST INTERRUPT 0 VECTOR ADDRESS LOW
Write
RESET
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-15 Fast Interrupt 0 Vector Address Low Register (FIVAL0)
5.6.13.1 Fast Interrupt 0 Vector Address Low (FIVAL0)—Bits 15–0
The lower 16 bits of the vector address used for Fast Interrupt 0. This register is combined with FIVAH0
to form the 21-bit vector address for Fast Interrupt 0 defined in the FIM0 register.
5.6.14 Fast Interrupt 0 Vector Address High Register (FIVAH0)
Base + $D
Read
15
0
14
0
13
0
12
0
11
0
10
0
9
0
8
0
7
0
6
0
5
0
4
3
2
1
0
0
FAST INTERRUPT 0 VECTOR
ADDRESS HIGH
Write
RESET
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-16 Fast Interrupt 0 Vector Address High Register (FIVAH0)
5.6.14.1 Reserved—Bits 15–5
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
71
5.6.14.2 Fast Interrupt 0 Vector Address High (FIVAH0)—Bits 4–0
The upper five bits of the vector address used for Fast Interrupt 0. This register is combined with FIVAL0
to form the 21-bit vector address for Fast Interrupt 0 defined in the FIM0 register.
5.6.15 Fast Interrupt 1 Match Register (FIM1)
Base + $E
Read
15
0
14
0
13
0
12
0
11
0
10
0
9
0
8
0
7
0
6
0
5
0
4
3
2
1
0
0
0
FAST INTERRUPT 1
Write
0
0
0
0
0
0
0
0
0
0
0
0
RESET
Figure 5-17 Fast Interrupt 1 Match Register (FIM1)
5.6.15.1 Reserved—Bits 15–7
This bit field is reserved or not implemented. It is read as 0, but cannot be modified by writing.
5.6.15.2 Fast Interrupt 1 Vector Number (FAST INTERRUPT 1)—Bits 6–0
This value determines which IRQ will be a Fast Interrupt 1. Fast interrupts vector directly to a service
routine based on values in the Fast Interrupt Vector Address registers without having to go to a jump table
first; see Section 5.3.3 for details. IRQs used as fast interrupts must be set to priority level 2. Unexpected
results will occur if a fast interrupt vector is set to any other priority. Fast interrupts automatically become
the highest-priority level 2 interrupt, regardless of their location in the interrupt table, prior to being
declared as fast interrupt. Fast Interrupt 0 has priority over Fast Interrupt 1. To determine the vector
5.6.16 Fast Interrupt 1 Vector Address Low Register (FIVAL1)
Base + $F
Read
15
14
13
12
11
10
9
8
7
6
5
4
3
2
0
1
0
0
0
FAST INTERRUPT 1 VECTOR
ADDRESS LOW
Write
RESET
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-18 Fast Interrupt 1 Vector Address Low Register (FIVAL1)
5.6.16.1 Fast Interrupt 1 Vector Address Low (FIVAL1)—Bits 15–0
The lower 16 bits of the vector address used for Fast Interrupt 1. This register is combined with FIVAH1
to form the 21-bit vector address for Fast Interrupt 1 defined in the FIM1 register.
5.6.17 Fast Interrupt 1 Vector Address High Register (FIVAH1)
Base + $10
Read
15
0
14
0
13
0
12
0
11
0
10
0
9
0
8
0
7
0
6
0
5
0
4
3
2
1
0
0
FAST INTERRUPT 1
VECTOR ADDRESS HIGH
Write
RESET
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-19 Fast Interrupt 1 Vector Address High Register (FIVAH1)
56F8322 Techncial Data, Rev. 10.0
72
Freescale Semiconductor
Preliminary
Register Descriptions
5.6.17.1 Reserved—Bits 15–5
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.
5.6.17.2 Fast Interrupt 1 Vector Address High (FIVAH1)—Bits 4–0
The upper five bits of the vector address are used for Fast Interrupt 1. This register is combined with
FIVAL1 to form the 21-bit vector address for Fast Interrupt 1 defined in the FIM1 register.
5.6.18 IRQ Pending 0 Register (IRQP0)
Base + $11
Read
15
14
13
12
11
10
9
8
7
6
1
5
1
4
1
3
1
2
1
1
1
0
1
PENDING [16:2]
Write
RESET
1
1
1
1
1
1
1
1
1
1
Figure 5-20 IRQ Pending 0 Register (IRQP0)
5.6.18.1 IRQ Pending (PENDING)—Bits 16–2
This register combines with the other five to represent the pending IRQs for interrupt vector numbers 2
through 81.
•
•
0 = IRQ pending for this vector number
1 = No IRQ pending for this vector number
5.6.18.2 Reserved—Bit 0
This bit is reserved or not implemented. It is read as 1 and cannot be modified by writing.
5.6.19 IRQ Pending 1 Register (IRQP1)
$Base + $12
Read
15
14
13
12
11
10
9
8
7
6
1
5
1
4
1
3
1
2
1
1
1
0
1
PENDING [32:17]
Write
1
1
1
1
1
1
1
1
1
RESET
Figure 5-21 IRQ Pending 1 Register (IRQP1)
5.6.19.1 IRQ Pending (PENDING)—Bits 32–17
This register combines with the other five to represent the pending IRQs for interrupt vector numbers 2
through 81.
•
•
0 = IRQ pending for this vector number
1 = No IRQ pending for this vector number
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
73
5.6.20 IRQ Pending 2 Register (IRQP2)
Base + $13
Read
15
14
13
12
11
10
9
8
7
6
1
5
1
4
1
3
1
2
1
1
1
0
1
PENDING [48:33]
Write
RESET
1
1
1
1
1
1
1
1
1
Figure 5-22 IRQ Pending 2 Register (IRQP2)
5.6.20.1 IRQ Pending (PENDING)—Bits 48–33
This register combines with the other five to represent the pending IRQs for interrupt vector numbers 2
through 81.
•
•
0 = IRQ pending for this vector number
1 = No IRQ pending for this vector number
5.6.21 IRQ Pending 3 Register (IRQP3)
Base + $14
Read
15
14
13
12
11
10
9
8
7
6
1
5
1
4
1
3
1
2
1
1
1
0
1
PENDING [64:49]
Write
RESET
1
1
1
1
1
1
1
1
1
Figure 5-23 IRQ Pending 3 Register (IRQP3)
5.6.21.1 IRQ Pending (PENDING)—Bits 64–49
This register combines with the other five to represent the pending IRQs for interrupt vector numbers 2
through 81.
•
•
0 = IRQ pending for this vector number
1 = No IRQ pending for this vector number
5.6.22 IRQ Pending 4 Register (IRQP4)
Base + $15
Read
15
14
13
12
11
10
9
8
7
6
1
5
1
4
1
3
1
2
1
1
1
0
1
PENDING [80:65]
Write
RESET
1
1
1
1
1
1
1
1
1
Figure 5-24 IRQ Pending 4 Register (IRQP4)
5.6.22.1 IRQ Pending (PENDING)—Bits 80–65
This register combines with the other five to represent the pending IRQs for interrupt vector numbers 2
through 81.
•
•
0 = IRQ pending for this vector number
1 = No IRQ pending for this vector number
56F8322 Techncial Data, Rev. 10.0
74
Freescale Semiconductor
Preliminary
Register Descriptions
5.6.23 IRQ Pending 5 Register (IRQP5)
Base + $16
15
1
14
1
13
1
12
1
11
1
10
1
9
1
8
1
7
1
6
1
5
1
4
1
3
1
2
1
1
1
0
PEND-
ING
[81]
Read
Write
RESET
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Figure 5-25 IRQ Pending Register 5 (IRQP5)
5.6.23.1 Reserved—Bits 96–82
This bit field is reserved or not implemented. The bits are read as 1 and cannot be modified by writing.
5.6.23.2 IRQ Pending (PENDING)—Bit 81
This register combines with the other five to represent the pending IRQs for interrupt vector numbers 2
through 81.
•
•
0 = IRQ pending for this vector number
1 = No IRQ pending for this vector number
5.6.24 Reserved—Base + 17
5.6.25 Reserved—Base + 18
5.6.26 Reserved—Base + 19
5.6.27 Reserved—Base + 1A
5.6.28 Reserved—Base + 1B
5.6.29 Reserved—Base + 1C
5.6.30 ITCN Control Register (ICTL)
Base + $1D
Read
15
14
13
12 11 10
9
8
7
6
0
5
INT_DIS
0
4
1
3
0
2
1
0
0
IRQA EDG
0
INT
IPIC
VAB
IRQA STATE
Write
0
0
0
1
0
0
0
0
0
1
1
1
0
RESET
Figure 5-26 ITCN Control Register (ICTL)
5.6.30.1 Interrupt (INT)—Bit 15
This read-only bit reflects the state of the interrupt to the 56800E core.
•
•
0 = No interrupt is being sent to the 56800E core
1 = An interrupt is being sent to the 56800E core
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
75
5.6.30.2 Interrupt Priority Level (IPIC)—Bits 14–13
These read-only bits reflect the state of the new interrupt priority level bits being presented to the 56800E
core at the time the last IRQ was taken. This field is only updated when the 56800E core jumps to a new
interrupt service routine.
Note:
Nested interrupts may cause this field to be updated before the original interrupt service routine can
read it.
•
•
•
•
00 = Required nested exception priority levels are 0, 1, 2, or 3
01 = Required nested exception priority levels are 1, 2, or 3
10 = Required nested exception priority levels are 2 or 3
11 = Required nested exception priority level is 3
5.6.30.3 Vector Number - Vector Address Bus (VAB)—Bits 12–6
This read-only field shows the vector number (VAB[7:1]) used at the time the last IRQ was taken. This
field is only updated when the 56800E core jumps to a new interrupt service routine.
Note:
Nested interrupts may cause this field to be updated before the original interrupt service routine can
read it.
5.6.30.4 Interrupt Disable (INT_DIS)—Bit 5
This bit allows all interrupts to be disabled.
•
•
0 = Normal operation (default)
1 = All interrupts disabled
5.6.30.5 Reserved—Bit 4
This bit field is reserved or not implemented. It is read as 1 and cannot be modified by writing.
5.6.30.6 Reserved—Bit 3
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.
5.6.30.7 IRQA State Pin (IRQA STATE)—Bit 2
This read-only bit reflects the state of the external IRQA pin.
5.6.30.8 Reserved—Bit 1
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.
5.6.30.9 IRQA Edge Pin (IRQA Edg)—Bit 0
This bit controls whether the external IRQA interrupt is edge- or level-sensitive. During Stop and Wait
modes, it is automatically level-sensitive.
•
•
0 = IRQA interrupt is a low-level sensitive (default)
1 = IRQA interrupt is falling-edge sensitive
56F8322 Techncial Data, Rev. 10.0
76
Freescale Semiconductor
Preliminary
Resets
5.7 Resets
5.7.1
Reset Handshake Timing
The ITCN provides the 56800E core with a reset vector address whenever RESET is asserted. The reset
vector will be presented until the second rising clock edge after RESET is released.
5.7.2
ITCN After Reset
After reset, all of the ITCN registers are in their default states. This means all interrupts are disabled,
except the core IRQs with fixed priorities:
•
•
•
•
•
•
•
•
Illegal Instruction
SW Interrupt 3
HW Stack Overflow
Misaligned Long Word Access
SW Interrupt 2
SW Interrupt 1
SW Interrupt 0
SW Interrupt LP
These interrupts are enabled at their fixed priority levels.
Part 6 System Integration Module (SIM)
6.1 Introduction
The SIM module is a system catchall for the glue logic that ties together the system-on-chip. It controls
distribution of resets and clocks and provides a number of control features. The system integration module
is responsible for the following functions:
•
•
•
•
•
•
•
Reset sequencing
Clock control & distribution
Stop/Wait control
Pull-up enables for selected peripherals
System status registers
Registers for software access to the JTAG ID of the chip
Enforcing Flash security
These are discussed in more detail in the sections that follow.
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
77
6.2 Features
The SIM has the following features:
•
•
•
Flash security feature prevents unauthorized access to code/data contained in on-chip flash memory
Power-saving clock gating for peripherals
Three power modes (Run, Wait, Stop) to control power utilization
— Stop mode shuts down the 56800E core, system clock, and peripheral clock
— Stop mode entry can optionally disable PLL and Oscillator (low power vs. fast restart)
— Wait mode shuts down the 56800E core and unnecessary system clock operation
— Run mode supports full part operation
•
•
•
•
•
•
Controls to enable/disable the 56800E core WAIT and STOP instructions
Controls reset sequencing after reset
Software-initiated reset
Four 16-bit registers reset only by a Power-On Reset usable for general purpose software control
System Control Register
Registers for software access to the JTAG ID of the chip
6.3 Operating Modes
Since the SIM is responsible for distributing clocks and resets across the chip, it must understand the
various chip operating modes and take appropriate action. These are:
•
Reset Mode, which has two submodes:
— Total Reset Mode
– 56800E Core and all peripherals are reset
— Core-Only Reset Mode
– 56800E Core in reset, peripherals are active
– This mode is required to provide the on-chip Flash interface module time to load data from Flash
into FM registers
•
•
Run Mode
This is the primary mode of operation for this device. In this mode, the 56800E controls chip operation.
Debug Mode
The 56800E is controlled via JTAG/EOnCE when in debug mode. All peripherals, except the COP and
PWMs, continue to run. COP is disabled and PWM outputs are optionally switched off to disable any motor
from being driven; see the PWM chapter in the 56F8300 Peripheral User Manual for details.
•
•
Wait Mode
In Wait mode, the core clock and memory clocks are disabled. Optionally, the COP can be stopped.
Similarly, it is an option to switch off PWM outputs to disable any motor from being driven. All other
peripherals continue to run.
Stop Mode
56800E, memory and most peripheral clocks are shut down. Optionally, the COP and CAN can be stopped.
For lowest power consumption in Stop mode, the PLL can be shut down. This must be done explicitly before
entering Stop mode, since there is no automatic mechanism for this. The CAN (along with any non-gated
interrupt) is capable of waking the chip up from Stop mode, but is not fully functional in Stop mode.
56F8322 Techncial Data, Rev. 10.0
78
Freescale Semiconductor
Preliminary
Operating Mode Register
6.4 Operating Mode Register
Bit
15
NL
R/W
0
14
0
13
0
12
0
11
0
10
9
0
8
CM
R/W
0
7
XP
R/W
0
6
SD
R/W
0
5
R
4
SA
R/W
0
3
EX
R/W
0
2
0
1
MB
R/W
X
0
MA
R/W
0
Type
R/W
0
0
0
RESET
Figure 6-1 OMR
The reset state for the MB bit will depend on the Flash secured state. See Section 4.2 and Part 7 for
detailed information on how the Operating Mode Register (OMR) MA and MB bits operate in this device.
The EX bit is not functional in this device since there is no external memory interface. For all other bits,
see the 56F8300 Peripheral User Manual.
Note:
The OMR is not a Memory Map register; it is directly accessible in code through the acronym OMR.
6.5 Register Descriptions
Table 6-1 SIM Registers
(SIM_BASE = $00 F350)
Address Offset
Base + $0
Base + $1
Base + $2
Base + $3
Base + $4
Base + $5
Base + $6
Base + $7
Base + $8
Address Acronym
Register Name
Control Register
Section Location
SIM_CONTROL
SIM_RSTSTS
SIM_SCR0
Reset Status Register
Software Control Register 0
Software Control Register 1
Software Control Register 2
Software Control Register 3
Most Significant Half of JTAG ID
Least Significant Half of JTAG ID
Pull-up Disable Register
SIM_SCR1
SIM_SCR2
SIM_SCR3
SIM_MSH_ID
SIM_LSH_ID
SIM_PUDR
Reserved
Base + $A
Base + $B
Base + $C
Base + $D
Base + $E
SIM_CLKOSR
SIM_GPS
CLKO Select Register
GPIO Peripheral Select Register
Peripheral Clock Enable Register
I/O Short Address Location High Register
I/O Short Address Location Low Register
SIM_PCE
SIM_ISALH
SIM_ISALL
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
79
Add.
Offset
Register
Name
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
R
W
R
0
0
0
0
0
0
0
0
0
0
SIM_
CONTROL
ONCE SW
EBL0 RST
STOP_
DISABLE
WAIT_
DISABLE
$0
$1
$2
$3
$4
$5
0
0
0
0
0
0
0
0
0
0
0
0
SIM_
RSTSTS
SWR COPR EXTR POR
W
R
SIM_SCR0
SIM_SCR1
SIM_SCR2
SIM_SCR3
FIELD
FIELD
FIELD
FIELD
W
R
W
R
W
R
W
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
1
0
0
1
1
1
0
0
0
0
0
1
0
$6 SIM_MSH_ID
W
R
$7
$8
SIM_LSH_ID
W
R
SIM_PUDR
Reserved
RESET IRQ
JTAG
W
R
W
R
0
0
1
1
0
0
1
1
0
0
0
0
0
0
1
1
0
0
SIM_
CLKOSR
CLK
DIS
$A
$B
$C
$D
$E
PHSA PHSB INDEX HOME
CLKOSEL
A4
0
1
1
0
SIM_GPS
SIM_PCE
C6
1
C5
B1
B0
A5
A3
1
A2
W
R
ADCA CAN
DEC0
1
TMRC
1
TMRA SCI1 SCI0 SPI1
SPI0
1
PWMA
W
R
1
1
1
1
1
1
1
SIM_ISALH
SIM_ISALL
ISAL[23:22]
W
R
ISAL[21:6]
W
= Reserved
Figure 6-2 SIM Register Map Summary
6.5.1
SIM Control Register (SIM_CONTROL)
Base + $0
15
0
14
0
13
0
12
0
11
0
10
0
9
0
8
0
7
0
6
0
5
4
3
2
1
0
Read
Write
ONCE SW
EBL0 RST
STOP_
DISABLE
WAIT_
DISABLE
RESET
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 6-3 SIM Control Register (SIM_CONTROL)
Reserved—Bits 15–6
6.5.1.1
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.
56F8322 Techncial Data, Rev. 10.0
80
Freescale Semiconductor
Preliminary
Register Descriptions
6.5.1.2
OnCE Enable (ONCE EBL)—Bit 5
•
0 = OnCE clock to 56800E core enabled when core TAP is enabled
•
1 = OnCE clock to 56800E core is always enabled
6.5.1.3
Software Reset (SW RST)—Bit 4
Writing 1 to this field will cause the part to reset.
6.5.1.4
Stop Disable (STOP_DISABLE)—Bits 3–2
•
00 = Stop mode will be entered when the 56800E core executes a STOP instruction
•
01 = The 56800E STOP instruction will not cause entry into Stop mode; STOP_DISABLE can be
reprogrammed in the future
•
•
10 = The 56800E STOP instruction will not cause entry into Stop mode; STOP_DISABLE can then only be
changed by resetting the device
11 = Same operation as 10
6.5.1.5
Wait Disable (WAIT_DISABLE)—Bits 1–0
•
00 = Wait mode will be entered when the 56800E core executes a WAIT instruction
•
01 = The 56800E WAIT instruction will not cause entry into Wait mode; WAIT_DISABLE can be
reprogrammed in the future
•
10 = The 56800E WAIT instruction will not cause entry into Wait mode; WAIT_DISABLE can then only
be changed by resetting the device
•
11 = Same operation as 10
6.5.2
SIM Reset Status Register (SIM_RSTSTS)
Bits in this register are set upon any system reset and are initialized only by a Power-On Reset (POR). A
reset (other than POR) will only set bits in the register; bits are not cleared. Only software should clear this
register.
Base + $1
Read
15
0
14
0
13
0
12
0
11
0
10
0
9
0
8
0
7
0
6
0
5
4
3
2
1
0
0
0
SWR COPR
EXTR POR
Write
0
0
0
0
0
0
0
0
0
0
0
0
RESET
Figure 6-4 SIM Reset Status Register (SIM_RSTSTS)
6.5.2.1
Reserved—Bits 15–6
This bit field is reserved or not implemented. It is read as zero and cannot be modified by writing.
6.5.2.2
Software Reset (SWR)—Bit 5
When 1, this bit indicates that the previous reset occurred as a result of a software reset (write to SW RST
bit in the SIM_CONTROL register). This bit will be cleared by any hardware reset or by software. Writing
a 0 to this bit position will set the bit, while writing a 1 to the bit will clear it.
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
81
6.5.2.3
COP Reset (COPR)—Bit 4
When 1, the COPR bit indicates the Computer Operating Properly (COP) timer-generated reset has
occurred. This bit will be cleared by a Power-On Reset or by software. Writing a 0 to this bit position will
set the bit, while writing a 1 to the bit will clear it.
6.5.2.4
External Reset (EXTR)—Bit 3
If 1, the EXTR bit indicates an external system reset has occurred. This bit will be cleared by a Power-On
Reset or by software. Writing a 0 to this bit position will set the bit while writing a 1 to the bit position will
clear it. Basically, when the EXTR bit is 1, the previous system reset was caused by the external RESET
pin being asserted low.
6.5.2.5
Power-On Reset (POR)—Bit 2
When 1, the POR bit indicates a Power-On Reset occurred some time in the past. This bit can be cleared
only by software or by another type of reset. Writing a 0 to this bit will set the bit, while writing a 1 to the
bit position will clear the bit. In summary, if the bit is 1, the previous system reset was due to a Power-On
Reset.
6.5.2.6
Reserved—Bits 1–0
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.
6.5.3
SIM Software Control Registers (SIM_SCR0, SIM_SCR1, SIM_SCR2,
and SIM_SCR3)
Only SIM_SCR0 is shown in this section. SIM_SCR1, SIM_SCR2, and SIM_SCR3 are identical in
functionality.
Base + $2
Read
15
14
13
12
11
10
9
8
7
6
5
4
3
2
0
1
0
0
0
FIELD
0
Write
POR
0
0
0
0
0
0
0
0
0
0
0
0
Figure 6-5 SIM Software Control Register 0 (SIM_SCR0)
Software Control Data 1 (FIELD)—Bits 15–0
6.5.3.1
This register is reset only by the Power-On Reset (POR). It has no part-specific functionality and is
intended for use by a software developer to contain data that will be unaffected by the other reset sources
(RESET pin, software reset, and COP reset).
56F8322 Techncial Data, Rev. 10.0
82
Freescale Semiconductor
Preliminary
Register Descriptions
6.5.4
Most Significant Half of JTAG ID (SIM_MSH_ID)
This read-only register displays the most significant half of the JTAG ID for the chip. This register reads
$01F4.
Base + $6
Read
15
0
14
0
13
0
12
0
11
0
10
0
9
0
8
1
7
1
6
1
5
1
4
1
3
0
2
1
1
0
0
0
Write
RESET
0
0
0
0
0
0
0
1
1
1
1
1
0
1
0
0
Figure 6-6 Most Significant Half of JTAG ID (SIM_MSH_ID)
6.5.5
Least Significant Half of JTAG ID (SIM_LSH_ID)
This read-only register displays the least significant half of the JTAG ID for the chip. This register reads
$001D.
Base + $7
Read
15
0
14
0
13
0
12
0
11
0
10
0
9
0
8
0
7
0
6
0
5
0
4
1
3
1
2
1
1
0
0
1
Write
RESET
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
1
Figure 6-7 Least Significant Half of JTAG ID (SIM_LSH_ID)
6.5.6
SIM Pull-up Disable Register (SIM_PUDR)
Most of the pins on the chip have on-chip pull-up resistors. Pins which can operate as GPIO can have these
resistors disabled via the GPIO function. Non-GPIO pins can have their pull-ups disabled by setting the
appropriate bit in this register. Disabling pull-ups is done on a peripheral-by-peripheral basis (for pins not
muxed with GPIO). Each bit in the register (see Figure 6-8) corresponds to a functional group of pins. See
Table 2-2 to identify which pins can deactivate the internal pull-up resistor.
Base + $8
Read
15
0
14
13
12
11
10
9
8
7
6
5
4
3
JTAG
0
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET IRQ
Write
RESET
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 6-8 SIM Pull-up Disable Register (SIM_PUDR)
6.5.6.1
Reserved—Bits 15–12
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.
6.5.6.2
RESET—Bit 11
This bit controls the pull-up resistors on the RESET pin.
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
83
6.5.6.3
IRQ—Bit 10
This bit controls the pull-up resistors on the IRQA pin.
6.5.6.4
Reserved—Bits 9–4
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.
6.5.6.5
JTAG—Bit 3
This bit controls the pull-up resistors on the TRST (This pin is always tied inactive on the 56F8322), TMS
and TDI pins.
6.5.6.6
Reserved—Bits 2–0
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.
6.5.7
CLKO Select Register (SIM_CLKOSR)
The CLKO select register can be used to multiplex out any one of the clocks generated inside the clock
generation and SIM modules. The default value is SYS_CLK. All other clocks primarily muxed out are
for test purposes only, and are subject to significant unspecified latencies at high frequencies.
The upper four bits of the GPIOB register can function as GPIO, Quad Decoder #0 signals, or as additional
clock output signals. GPIO has priority and is enabled/disabled via the GPIOB_PER. If GPIOB[7:4] are
programmed to operate as peripheral outputs, then the choice between Quad Decoder #0 and additional
clock outputs is made here in the CLKOSR. The default state is for the peripheral function of GPIOB[7:4]
to be programmed as Quad Decoder #0. This can be changed by altering PHASE0 through INDEX as
The CLKOUT pin is not bonded out in this device. Instead, it is offered only as a pad for die-level testing.
Base + $A
Read
15
0
14
0
13
0
12
0
11
0
10
0
9
8
7
6
5
4
3
0
2
CLKOSEL
0
1
0
0
0
CLK
DIS
PHSA PHSB INDEX HOME
Write
RESET
0
0
0
0
0
0
0
0
0
0
1
0
Figure 6-9 CLKO Select Register (SIM_CLKOSR)
6.5.7.1
Reserved—Bits 15–10
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.
6.5.7.2
PHASEA0 (PHSA)—Bit 9
•
0 = Peripheral output function of GPIOB[7] is defined to be PHASEA0
•
1 = Peripheral output function of GPI B[7] is defined to be the oscillator clock (MSTR_OSC, see
6.5.7.3
PHASEB0 (PHSB)—Bit 8
•
0 = Peripheral output function of GPIOB[6] is defined to be PHASEB0
•
1 = Peripheral output function of GPIOB[6] is defined to be SYS_CLK2
56F8322 Techncial Data, Rev. 10.0
84
Freescale Semiconductor
Preliminary
Register Descriptions
6.5.7.4
INDEX0 (INDEX)—Bit 7
•
0 = Peripheral output function of GPIOB[5] is defined to be INDEX0
•
1 = Peripheral output function of GPIOB[5] is defined to be SYS_CLK
6.5.7.5
HOME0 (HOME)—Bit 6
•
0 = Peripheral output function of GPIOB[4] is defined to be HOME0
•
1 = Peripheral output function of GPIOB[4] is defined to be the prescaler clock (FREF, see Figure 3-4)
6.5.7.6
Clockout Disable (CLKDIS)—Bit 5
•
0 = CLKOUT output is enabled and will output the signal indicated by CLKOSEL
•
1 = CLKOUT is tri-stated
6.5.7.7
CLockout Select (CLKOSEL)—Bits 4–0
Selects clock to be muxed out on the CLKO pin.
•
•
•
•
•
•
•
•
•
00000 = SYS_CLK (from ROCS - DEFAULT)
00001 = Reserved for factory test—56800E clock
00010 = Reserved for factory test—XRAM clock
00011 = Reserved for factory test—PFLASH odd clock
00100 = Reserved for factory test—PFLASH even clock
00101 = Reserved for factory test—BFLASH clock
00110 = Reserved for factory test—DFLASH clock
00111 = MSTR_OSC Oscillator output
01000 = F (from OCCS)
out
•
•
•
•
•
•
•
•
01001 = Reserved for factory test—IPB clock
01010 = Reserved for factory test—Feedback (from OCCS, this is path to PLL)
01011 = Reserved for factory test—Prescaler clock (from OCCS)
01100 = Reserved for factory test—Postscaler clock (from OCCS)
01101 = Reserved for factory test—SYS_CLK2 (from OCCS)
01110 = Reserved for factory test—SYS_CLK_DIV2
01111 = Reserved for factory test—SYS_CLK_D
10000 = ADCA clock
6.5.8
SIM GPIO Peripheral Select Register (SIM_GPS)
All of the peripheral pins on the 56F8322 and 56F8122 share their I/O with GPIO ports. To select
peripheral or GPIO control, program the GPIOx_PER register. When SPI 0 and SCI 1, Quad Timer C and
SCI 0, or PWMA and SPI 1 are multiplexed, there are two possible peripherals as well as the GPIO
functionality available for control of the I/O. The SIM_GPS register is used to determine which peripheral
has control. The default peripherals are SPI 0, Quad Timer C, and PWMA.
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
85
Note: PWM is NOT available in the 56F8122 device.
As shown in Figure 6-10, the GPIO has the final control over which pin controls the I/O. SIM_GPS simply
decides which peripheral will be routed to the I/O.
GPIOX_PER Register
GPIO Controlled
0
1
I/O Pad Control
SIM_GPS Register
0
1
Quad Timer Controlled
SCI Controlled
Figure 6-10 Overall Control of Pads Using SIM_GPS Control
Base + $B
Read
15
0
14
0
13
0
12
0
11
0
10
0
9
0
8
0
7
C6
0
6
C5
0
5
B1
0
4
B0
0
3
A5
0
2
A4
0
1
A3
0
0
A2
0
Write
0
0
0
0
0
0
0
0
RESET
Figure 6-11 GPIO Peripheral Select Register (SIM_GPS)
6.5.8.1
Reserved—Bits 15–8
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.
6.5.8.2
GPIO C6 (C6)—Bit 7
This bit selects the alternate function for GPIOC6.
•
•
0 = TC0 (default)
1 = TXD0
6.5.8.3
GPIOC5 (C5)—Bit 6
This bit selects the alternate function for GPIOC5.
•
•
0 = TC1 (default)
1 = RXD0
56F8322 Techncial Data, Rev. 10.0
86
Freescale Semiconductor
Preliminary
Register Descriptions
6.5.8.4
GPIOB1 (B1)—Bit 5
This bit selects the alternate function for GPIOB1.
•
•
0 = MISO0 (default)
1 = RXD1
6.5.8.5
GPIOB0 (B0)—Bit 4
This bit selects the alternate function for GPIOB0.
•
•
0 = SS0 (default)
1 = TXD1
6.5.8.6
GPIOA5 (A5)—Bit 3
This bit selects the alternate function for GPIOA5.
•
•
0 = PWMA5
1 = SCLK1
6.5.8.7
GPIOA4 (A4)—Bit 2
This bit selects the alternate function for GPIOA4.
•
•
0 = PWMA4
1 = MOS1
6.5.8.8
GPIOA3 (A3)—Bit 1
This bit selects the alternate function for GPIOA3.
•
•
0 = PWMA3
1 = MISO1
6.5.8.9
GPIOA2 (A2)—Bit 0
This bit selects the alternate function for GPIOA2.
•
•
0 = PWMA2
1 = SS1
6.5.9
Peripheral Clock Enable Register (SIM_PCE)
The Peripheral Clock Enable register is used to enable or disable clocks to the peripherals as a power
savings feature. The clocks can be individually controlled for each peripheral on the chip.
Base + $C
Read
15
1
14
1
13
12
11
1
10
DEC0
1
9
1
8
TMRC
1
7
1
6
5
4
3
2
SPI0
1
1
1
0
PWMA
1
ADCA CAN
TMRA SCI 1 SCI 0 SPI1
Write
1
1
1
1
1
1
1
1
1
1
1
1
RESET
Figure 6-12 Peripheral Clock Enable Register (SIM_PCE)
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
87
6.5.9.1
Reserved—Bits 15–14
This bit field is reserved or not implemented. It is read as 1 and cannot be modified by writing.
6.5.9.2
Analog-to-Digital Converter A Enable (ADCA)—Bit 13
Each bit controls clocks to the indicated peripheral.
•
•
1 = Clocks are enabled
0 = The clock is not provided to the peripheral (the peripheral is disabled)
6.5.9.3
FlexCAN Enable (CAN)—Bit 12
Each bit controls clocks to the indicated peripheral.
•
•
1 = Clocks are enabled
0 = The clock is not provided to the peripheral (the peripheral is disabled)
6.5.9.4
Reserved—Bit 11
This bit field is reserved or not implemented. It is read as 1 and cannot be modified by writing.
6.5.9.5
Decoder 0 Enable (DEC0)—Bit 10
Each bit controls clocks to the indicated peripheral.
•
•
1 = Clocks are enabled
0 = The clock is not provided to the peripheral (the peripheral is disabled)
6.5.9.6
Reserved—Bit 9
This bit field is reserved or not implemented. It is read as 1 and cannot be modified by writing.
6.5.9.7
Quad Timer C Enable (TMRC)—Bit 8
Each bit controls clocks to the indicated peripheral.
•
•
1 = Clocks are enabled
0 = The clock is not provided to the peripheral (the peripheral is disabled)
6.5.9.8
Reserved—Bit 7
This bit field is reserved or not implemented. It is read as 1 and cannot be modified by writing.
6.5.9.9
Quad Timer A Enable (TMRA)—Bit 6
Each bit controls clocks to the indicated peripheral.
•
•
1 = Clocks are enabled
0 = The clock is not provided to the peripheral (the peripheral is disabled)
56F8322 Techncial Data, Rev. 10.0
88
Freescale Semiconductor
Preliminary
Register Descriptions
6.5.9.10 Serial Communications Interface 1 Enable (SCI1)—Bit 5
Each bit controls clocks to the indicated peripheral.
•
•
1 = Clocks are enabled
0 = The clock is not provided to the peripheral (the peripheral is disabled)
6.5.9.11 Serial Communications Interface 0 Enable (SCI0)—Bit 4
Each bit controls clocks to the indicated peripheral.
•
•
1 = Clocks are enabled
0 = The clock is not provided to the peripheral (the peripheral is disabled)
6.5.9.12 Serial Peripheral Interface 1 Enable (SPI1)—Bit 3
Each bit controls clocks to the indicated peripheral.
•
•
1 = Clocks are enabled
0 = The clock is not provided to the peripheral (the peripheral is disabled)
6.5.9.13 Serial Peripheral Interface 0 Enable (SPI0)—Bit 2
Each bit controls clocks to the indicated peripheral.
•
•
1 = Clocks are enabled
0 = The clock is not provided to the peripheral (the peripheral is disabled)
6.5.9.14 Reserved—Bit 1
This bit field is reserved or not implemented. It is read as 1 and cannot be modified by writing.
6.5.9.15 Pulse Width Modulator A Enable (PWMA)—Bit 0
Each bit controls clocks to the indicated peripheral.
•
•
1 = Clocks are enabled
0 = The clock is not provided to the peripheral (the peripheral is disabled)
6.5.10 I/O Short Address Location Register (SIM_ISALH and SIM_ISALL)
The I/O Short Address Location registers are used to specify the memory referenced via the I/O short
address mode. The I/O short address mode allows the instruction to specify the lower six bits of address;
the upper address bits are not directly controllable. This register set allows limited control of the full
Note:
If this register is set to something other than the top of memory (EOnCE register space) and the EX bit
in the OMR is set to 1, the JTAG port cannot access the on-chip EOnCE registers, and debug functions
will be affected.
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
89
Instruction Portion
“Hard Coded” Address Portion
6 Bits from I/O Short Address Mode Instruction
16 Bits from SIM_ISALL Register
2 bits from SIM_ISALH Register
Full 24-Bit for Short I/O Address
Figure 6-13 I/O Short Address Determination
With this register set, an interrupt driver can set the SIM_ISALL register pair to point to its peripheral
registers and then use the I/O Short addressing mode to reference them. The ISR should restore this register
to its previous contents prior to returning from interrupt.
Note:
Note:
The default value of this register set points to the EOnCE registers.
The pipeline delay between setting this register set and using short I/O addressing with the new value
is five cycles.
Base + $D
Read
15
1
14
1
13
1
12
1
11
1
10
1
9
1
8
1
7
1
6
1
5
1
4
1
3
1
2
1
1
0
ISAL[23:22]
Write
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
RESET
Figure 6-14 I/O Short Address Location High Register (SIM_ISALH)
6.5.10.1 Input/Output Short Address Low (ISAL[23:22])—Bit 1–0
This field represents the upper two address bits of the “hard coded” I/O short address.
Base + $E
Read
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
1
1
0
1
ISAL[21:6]
Write
1
1
1
1
1
1
1
1
1
1
1
1
1
RESET
Figure 6-15 I/O Short Address Location Low Register (SIM_ISALL)
56F8322 Techncial Data, Rev. 10.0
90
Freescale Semiconductor
Preliminary
Clock Generation Overview
6.5.10.2 Input/Output Short Address Low (ISAL[21:6])—Bit 15–0
This field represents the lower 16 address bits of the “hard coded” I/O short address.
6.6 Clock Generation Overview
The SIM uses an internal master clock from the OCCS (CLKGEN) module to produce the peripheral and
system (core and memory) clocks. The maximum master clock frequency is 120MHz. Peripheral and
system clocks are generated at half the master clock frequency and therefore at a maximum 60MHz. The
SIM provides power modes (Stop, Wait) and clock enables (SIM_PCE register, CLK_DIS, ONCE_EBL)
to control which clocks are in operation. The OCCS, power modes, and clock enables provide a flexible
means to manage power consumption.
Power utilization can be minimized in several ways. In the OCCS, the relaxation oscillator, crystal
oscillator, and PLL may be shut down when not in use. When the PLL is in use, its prescaler and postscaler
can be used to limit PLL and master clock frequency. Power modes permit system and/or peripheral clocks
to be disabled when unused. Clock enables provide the means to disable individual clocks. Some
peripherals provide further controls to disable unused subfunctions. Refer to Part 3 On-Chip Clock
The memory, peripheral and core clocks all operate at the same frequency (60MHz max).
6.7 Power-Down Modes
Table 6-2 Clock Operation in Power-Down Modes
Mode
Core Clocks
Active
Peripheral Clocks
Description
Device is fully functional
Run
Wait
Active
Active
Core and memory
clocks disabled
Peripherals are active and can produce
interrupts if they have not been masked off.
Interrupts will cause the core to come out of its
suspended state and resume normal operation.
Typically used for power-conscious applications.
Stop
System clocks continue to be generated in The only possible recoveries from Stop mode
the SIM, but most are gated prior to
are:
reaching memory, core and peripherals.
1. CAN traffic (1st message will be lost)
2. Non-clocked interrupts (IRQA)
3. COP reset
4. External reset
5. Power-on reset
All peripherals, except the COP/watchdog timer, run off the IPBus clock frequency, which is the same as
the main processor frequency in this architecture. The maximum frequency of operation is
SYS_CLK = 60MHz.
frequency, which can be controlled through the OCCS.
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
91
6.8 Stop and Wait Mode Disable Function
Permanent
Disable
D
Q
D-FLOP
C
56800E
Reprogrammable
Disable
STOP_DIS
D
Q
D-FLOP
Clock
Select
C
R
Note: Wait disable circuit is similar
Reset
Figure 6-16 Internal Stop Disable Circuit
The 56800E core contains both STOP and WAIT instructions. Both put the CPU to sleep. For lowest
power consumption in Stop mode, the PLL can be shut down. This must be done explicitly before entering
Stop mode, since there is no automatic mechanism for this. When the PLL is shut down, the 56800E
system clock must be set equal to the prescaler output.
Some applications require the 56800E STOP and WAIT instructions be disabled. To disable those
procedure can be on either a permanent or temporary basis. Permanently assigned applications last only
until their next reset.
6.9 Resets
The SIM supports four sources of reset. The two asynchronous sources are the external RESET pin and
the Power-On Reset (POR). The two synchronous sources are the software reset, which is generated within
the SIM itself, by writing to the SIM_CONTROL register, and the COP reset.
Reset begins with the assertion of any of the reset sources. Release of reset to various blocks is sequenced
to permit proper operation of the device. A POR reset is declared when reset is removed and any of the
three voltage detectors (1.8V POR, 2.2V core voltage, or 2.7V I/O voltage) indicate a low supply voltage
condition. POR will continue to be asserted until all voltage detectors indicate a stable supply is available
(note that as power is removed POR is not declared until the 1.8V core voltage threshold is reached.) A
POR reset is then extended for 64 clock cycles to permit stabilization of the clock source, followed by a
32 clock window in which SIM clocking is initiated. It is then followed by a 32 clock window in which
peripherals are released to implement Flash security, and, finally, followed by a 32 clock window in which
the core is initialized. After completion of the described reset sequence, application code will begin
execution.
Resets may be asserted asynchronously, but are always released internally on a rising edge of the system
clock.
56F8322 Techncial Data, Rev. 10.0
92
Freescale Semiconductor
Preliminary
Operation with Security Enabled
Part 7 Security Features
The 56F8322/56F8122 offer security features intended to prevent unauthorized users from reading the
contents of the Flash Memory (FM) array. The Flash security consists of several hardware interlocks that
block the means by which an unauthorized user could gain access to the Flash array.
However, part of the security must lie with the user’s code. An extreme example would be user’s code that
dumps the contents of the internal program, as this code would defeat the purpose of security. At the same
time, the user may also wish to put a “backdoor” in his program. As an example, the user downloads a
security key through the SCI, allowing access to a programming routine that updates parameters stored in
another section of the Flash.
7.1 Operation with Security Enabled
Once the user has programmed the Flash with his application code, the device can be secured by
programming the security bytes located in the FM configuration field, which occupies a portion of the FM
array. These non-volatile bytes will keep the part secured through reset and through power-down of the
device. Only two bytes within this field are used to enable or disable security. Refer to the Flash Memory
chapter in the 56F8300 Peripheral User Manual for the state of the security bytes and the resulting state
of security. When Flash security mode is enabled in accordance with the method described in the Flash
Memory module specification, the device will disable the core EOnCE debug capabilities. Normal
program execution is otherwise unaffected.
7.2 Flash Access Blocking Mechanisms
The 56F8322/56F8122 have several operating functional and test modes. Effective Flash security must
address operating mode selection and anticipate modes in which the on-chip Flash can be compromised
and read without explicit user permission. Methods to block these are outlined in the next subsections.
7.2.1
Forced Operating Mode Selection
At boot time, the SIM determines in which functional modes the device will operate. These are:
•
•
Unsecured Mode
Secure Mode (EOnCE disabled)
When Flash security is enabled as described in the Flash Memory module specification, the device will
disable the EOnCE debug interface.
7.2.2
Disabling EOnCE Access
On-chip Flash can be read by issuing commands across the EOnCE port, which is the debug interface for
the 56800E CPU. The TRST, TCLK, TMS, TDO, and TDI pins comprise a JTAG interface onto which
the EOnCE port functionality is mapped. When the device boots, the chip-level JTAG TAP (Test Access
Port) is active and provides the chip’s boundary scan capability and access to the ID register.
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
93
Proper implementation of Flash security requires that no access to the EOnCE port is provided when
security is enabled. The 56800E core has an input which disables reading of internal memory via the
JTAG/EOnCE. The FM sets this input at reset to a value determined by the contents of the FM security
bytes.
7.2.3
Flash Lockout Recovery
If a user inadvertently enables Flash security on the device, a built-in lockout recovery mechanism can be
used to reenable access to the device. This mechanism completely reases all on-chip Flash, thus disabling
Flash security. Access to this recovery mechanism is built into CodeWarrior via an instruction in memory
configuration (.cfg) files. Add, or uncomment the following configuration command:
unlock_flash_on_connect 1
For more information, please see CodeWarrior MC56F83xx/DSP5685x Family Targeting Manual.
The LOCKOUT_RECOVERY instruction has an associated 7-bit Data Register (DR) that is used to
control the clock divider circuit within the FM module. This divider, FM_CLKDIV[6:0], is used to control
the period of the clock used for timed events in the FM erase algorithm. This register must be set with
appropriate values before the lockout sequence can begin. Refer to the 56F8300 Peripheral User Manual
for more details on setting this register value.
The value of the JTAG FM_CLKDIV[6:0] will replace the value of the FM register FMCLKD that divides
PRDIV8 bit, and FM_CLKDIV[5:0] will map to the DIV[5:0] bits. The combination of PRDIV8 and DIV
must divide the FM input clock down to a frequency of 150kHz-200kHz. The “Writing the FMCLKD
Register” section in the Flash Memory chapter of the 56F8300 Peripheral User Manual gives specific
equations for calculating the correct values.
Flash Memory
SYS_CLK
2
input
clock
DIVIDER
7
FMCLKD
7
7
FMCLKDIV
FMERASE
JTAG
Figure 7-1 JTAG to FM Connection for Lockout Recovery
Two examples of FM_CLKDIV calculations follow.
56F8322 Techncial Data, Rev. 10.0
94
Freescale Semiconductor
Preliminary
Flash Access Blocking Mechanisms
EXAMPLE 1: If the system clock is the 8MHz crystal frequency because the PLL has not been set up,
the input clock will be below 12.8MHz, so PRDIV8=FM_CLKDIV[6]=0. Using the following equation
yields a DIV value of 19 for a clock of 200kHz, and a DIV value of 20 for a clock of 190kHz. This
translates into an FM_CLKDIV[6:0] value of $13 or $14, respectively.
SYS_CLK
( )
(2)
150[kHz]
200[kHz]
<
<
(DIV + 1)
EXAMPLE 2: In this example, the system clock has been set up with a value of 32MHz, making the FM
input clock 16MHz. Because that is greater than 12.8MHz, PRDIV8=FM_CLKDIV[6]=1.Using the
following equation yields a DIV value of 9 for a clock of 200kHz, and a DIV value of 10 for a clock of
181kHz. This translates to an FM_CLKDIV[6:0] value of $49 or $4A, respectively.
SYS_CLK
( )
(2)(8)
150[kHz]
200[kHz]
<
<
(DIV + 1)
Once the LOCKOUT_RECOVERY instruction has been shifted into the instruction register, the clock
divider value must be shifted into the corresponding 7-bit data register. After the data register has been
updated, the user must transition the TAP controller into the RUN-TEST/IDLE state for the lockout
sequence to commence. The controller must remain in this state until the erase sequence has completed.
For details, see the JTAG Section in the 56F8300 Peripheral User Manual.
Note:
Once the lockout recovery sequence has completed, the user must reset both the JTAG TAP controller
(by asserting TRST) and the device (by asserting external chip reset) to return to normal unsecured
operation.
7.2.4
Product Analysis
The recommended method of unsecuring a programmed device for product analysis of field failures is via
the backdoor key access. The customer would need to supply Technical Support with the backdoor key
and the protocol to access the backdoor routine in the Flash. Additionally, the KEYEN bit that allows
backdoor key access must be set.
An alternative method for performing analysis on a secured microcontroller would be to mass-erase and
reprogram the Flash with the original code, but modify the security bytes.
To insure that a customer does not inadvertently lock himself out of the device during programming, it is
recommended that he program the backdoor access key first, his application code second and the security
bytes within the FM configuration field last.
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
95
Part 8 General Purpose Input/Output (GPIO)
8.1 Introduction
This section is intended to supplement the GPIO information found in the 56F8300 Peripheral User
Manual and contains only chip-specific information. This information supercedes the generic information
in the 56F8300 Peripheral User Manual.
8.2 Configuration
There are three GPIO ports defined on the 56F8322/56F8122. The width of each port and the associated
Table 8-1 56F8322 GPIO Ports Configuration
Available
Port
GPIO Port
Pins in
Peripheral Function
Reset Function
Width
56F8322
PWM, SPI 1
PWM
A
B
C
12
8
7
8
6
SPI 0, DEC 0, TMRA, SCI 1
SPI 0, DEC 0
XTAL, EXTAL, CAN, TMRC, SCI 0
XTAL, EXTAL, CAN, TMRC
7
Table 8-2 56F8122 GPIO Ports Configuration
Available
Pins in
56F8122
Port
Width
GPIO Port
Peripheral Function
Reset Function
SPI 1
Must be reconfigured
A
B
C
12
8
7
8
6
SPI 0, SCI1, TMRA
SPI 0, other pins must be reconfigured
XTAL, EXTAL, TMRC, SCI 0
XTAL, EXTAL, TMRC; other pins must be
reconfigured
7
56F8322 Techncial Data, Rev. 10.0
96
Freescale Semiconductor
Preliminary
Configuration
Table 8-3 GPIO External Signals Map
Pins in shaded rows are not available in 56F8322 / 56F8122
Pins in italics are NOT available in the 56F8122 device
Package Pin
Notes
GPIO Function Peripheral Function
GPIOA0
GPIOA1
GPIOA2
PWMA0
3
4
6
PWM is NOT available in 56F8122
PWM is NOT available in 56F8122
PWMA1
PWMA2 / SSI
SIM register SIM_GPS is used to select between SPI1 and
PWMA on a pin-by-pin basis
PWM is NOT available in 56F8122
GPIOA3
GPIOA4
GPIOA5
PWMA3 / MISO1
PWMA4 / MOSI1
PWMA5 / SCLK1
7
8
SIM register SIM_GPS is used to select between SPI1 and
PWMA on a pin-by-pin basis
PWM is NOT available in 56F8122
SIM register SIM_GPS is used to select between SPI1 and
PWMA on a pin-by-pin basis
PWM is NOT available in 56F8122
9
SIM register SIM_GPS is used to select between SPI1 and
PWMA on a pin-by-pin basis
PWM is NOT available in 56F8122
GPIOA6
GPIOA7
GPIOA8
GPIOA9
GPIOA10
GPIOA11
GPIOB0
FAULTA0
FAULTA1
FAULTA2
ISA0
12
ISA1
ISA2
SS0 / TXD1
15
16
SIM register SIM_GPS is used to select between SPI1 and
PWMA on a pin-by-pin basis
GPIOB1
MISO0 / RXD1
SIM register SIM_GPS is used to select between SPI1 and
PWMA on a pin-by-pin basis
GPIOB2
GPIOB3
GPIOB4
MOSI0
18
19
35
SCLK0
HOME0 / TA3
Quad Decoder 0 register DECCR is used to select
between Decoder 0 and Timer A
Quad Dec is NOT available in 56F8122
GPIOB5
GPIOB6
INDEX0 / TA2
36
37
Quad Decoder 0 register DECCR is used to select
between Decoder 0 and Timer A
Quad Dec is NOT available in 56F8122
PHASEB0 / TA1
Quad Decoder 0 register DECCR is used to select
between Decoder 0 and Timer A
Quad Dec is NOT available in 56F8122
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
97
Table 8-3 GPIO External Signals Map (Continued)
Pins in shaded rows are not available in 56F8322 / 56F8122
Pins in italics are NOT available in the 56F8122 device
Package Pin
Notes
GPIO Function Peripheral Function
GPIOB7
PHASEA0 / TA0
38
Quad Decoder 0 register DECCR is used to select
between Decoder 0 and Timer A
Quad Dec is NOT available in 56F8122
GPIOC0
GPIOC1
GPIOC2
GPIOC3
GPIOC4
GPIOC5
EXTAL
XTAL
32
33
46
47
Pull-ups should default to disabled
Pull-ups should default to disabled
CAN is NOT available in 56F8122
CAN is NOT available in 56F8122
CAN_RX
CAN_TX
TC3
TC1 / RXD0
48
1
SIM register SIM_GPS is used to select between Timer C
and SCI0 on a pin-by-pin basis
GPIOC6
TC0 / TXD0
SIM register SIM_GPS is used to select between Timer C
and SCI0 on a pin-by-pin basis
8.3 Memory Maps
The width of the GPIO port defines how many bits are implemented in each of the GPIO registers. Based
on this and the default function of each of the GPIO pins, the reset values of the GPIOx_PUR and
GPIOx_PER registers change from port to port. Tables 4-21 through 4-23 define the actual reset values of
these registers.
Part 9 Joint Test Action Group (JTAG)
9.1 JTAG Information
Please contact your Freescale marketing representative or authorized distributor for
device/package-specific BSDL information.
The TRST pin is not available in this package. The pin is tied to V in the package.
DD
The JTAG state machine is reset during POR and can also be reset via a soft reset by holding TMS high
for five rising edges of TCK, as described in the 56F8300 Peripheral User Manual.
56F8322 Techncial Data, Rev. 10.0
98
Freescale Semiconductor
Preliminary
General Characteristics
Part 10 Specifications
10.1 General Characteristics
The 56F8322/56F8122 are fabricated in high-density CMOS with 5V-tolerant TTL-compatible digital
inputs. The term “5V-tolerant” refers to the capability of an I/O pin, built on a 3.3V-compatible process
technology, to withstand a voltage up to 5.5V without damaging the device. Many systems have a mixture
of devices designed for 3.3V and 5V power supplies. In such systems, a bus may carry both 3.3V- and
5V-compatible I/O voltage levels (a standard 3.3V I/O is designed to receive a maximum voltage of 3.3V
± 10% during normal operation without causing damage). This 5V-tolerant capability therefore offers the
power savings of 3.3V I/O levels combined with the ability to receive 5V levels without damage.
Absolute maximum ratings in Table 10-1 are stress ratings only, and functional operation at the maximum
is not guaranteed. Stress beyond these ratings may affect device reliability or cause permanent damage to
the device.
Note: All specifications meet both Automotive and Industrial requirements unless individual
specifications are listed.
Note: The 56F8122 device is guaranteed to 40MHz and specified to meet Industrial requirements only.
CAUTION
This device contains protective circuitry to guard
against damage due to high static voltage or electrical
fields. However, normal precautions are advised to
avoid application of any voltages higher than
maximum-rated voltages to this high-impedance circuit.
Reliability of operation is enhanced if unused inputs are
tied to an appropriate voltage level.
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
99
Note:
The 56F8122 device is specified to meet Industrial requirements only; PWM, CAN
and Quad Decoder are NOT available on the 56F8122 device.
Table 10-1 Absolute Maximum Ratings
(V = V
= 0)
SS
SSA_ADC
Characteristic
Symbol
Notes
Min
- 0.3
- 0.3
Max
4.0
Unit
V
Supply voltage
V
DD_IO
ADC Supply Voltage
V
V
must be less than
4.0
V
DDA_ADC,
REFH
or equal to V
V
REFH
DDA_ADC
Oscillator / PLL Supply Voltage
Internal Logic Core Supply Voltage
Input Voltage (digital)
V
- 0.3
- 0.3
-0.3
-0.3
-0.3
-0.3
4.0
3.0
6.0
4.0
4.0
6.0
V
V
V
V
V
V
DDA_OSC_PLL
OCR_DIS is High
Pin Groups 1, 3, 4, 5
Pin Group 7
V
DD_CORE
V
IN
Input Voltage (analog)
V
INA
Output Voltage
Pin Groups 1, 2, 3
V
OUT
Output Voltage (open drain)
GPIO pins used in open
drain mode
V
OD
Ambient Temperature (Automotive)
Ambient Temperature (Industrial)
Junction Temperature (Automotive)
Junction Temperature (Industrial)
T
-40
-40
-40
-40
-55
-55
125
105
150
125
150
150
°C
°C
°C
°C
°C
°C
A
T
A
T
T
J
J
Storage Temperature (Automotive)
Storage Temperature (Industrial)
T
T
STG
STG
Note: The overall life of this device may be reduced if subjected to extended use over 110°C junction. For additional information,
please contact your sales representative.
Note: Pins in italics are NOT available in the 56F8122 device.
Pin Group 1: TC0-1, FAULTA0, SS0, MISO0, MOSI0, SCLK0, HOME0, INDEX0, PHASEA0, PHASEB0, CAN_RX, CAN_TX
Pin Group 2: TDO
Pin Group 3: PWMA0-5
Pin Group 4: RESET, TMS, TDI, IRQA
Pin Group 5: TCK
Pin Group 6: XTAL, EXTAL
Pin Group 7: ANA0-6
56F8322 Techncial Data, Rev. 10.0
100
Freescale Semiconductor
Preliminary
General Characteristics
Table 10-2 56F8322/56F8122 ElectroStatic Discharge (ESD) Protection
Characteristic
Min
Typ
Max
Unit
ESD for Human Body Model (HBM)
ESD for Machine Model (MM)
2000
200
—
—
—
—
—
—
V
V
V
ESD for Charge Device Model (CDM)
500
6
Table 10-3 Thermal Characteristics
Value
Characteristic
Comments
Symbol
Unit
Notes
48-pin LQFP
Junction to ambient
Natural Convection
R
41
°C/W
2
θJA
Junction to ambient (@1m/sec)
R
R
34
34
°C/W
°C/W
2
θJMA
Junction to ambient
Natural Convection
Four layer board
(2s2p)
1,2
θJMA
(2s2p)
Junction to ambient (@1m/sec)
Four layer board
(2s2p)
R
29
°C/W
1,2
θJMA
Junction to case
R
8
°C/W
°C/W
W
3
θJC
Junction to center of case
I/O pin power dissipation
Power dissipation
Ψ
2
4, 5
JT
I/O
P
User-determined
= (I x V + P )
I/O
P
P
W
D
D
DD
DD
Maximum allowed PD
P
°C
(TJ - TA) / θJA
DMAX
1. Theta-JA determined on 2s2p test boards is frequently lower than would be observed in an application. Determined on 2s2p ther-
mal test board.
2. Junction to ambient thermal resistance, Theta-JA (R
), was simulated to be equivalent to the JEDEC specification JESD51-2
qJA
in a horizontal configuration in natural convection. Theta-JA was also simulated on a thermal test board with two internal planes
(2s2p, where “s” is the number of signal layers and “p” is the number of planes) per JESD51-6 and JESD51-7. The correct name
for Theta-JA for forced convection or with the non-single layer boards is Theta-JMA.
3. Junction to case thermal resistance, Theta-JC (R
), was simulated to be equivalent to the measured values using the cold
qJC
plate technique with the cold plate temperature used as the "case" temperature. The basic cold plate measurement technique is
described by MIL-STD 883D, Method 1012.1. This is the correct thermal metric to use to calculate thermal performance when
the package is being used with a heat sink.
4. Thermal Characterization Parameter, Psi-JT (Y ), is the "resistance" from junction to reference point thermocouple on top cen-
JT
ter of case as defined in JESD51-2. Y is a useful value to use to estimate junction temperature in steady-state customer envi-
JT
ronments.
5. Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature,
ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
101
Note:
The 56F8122 device is guaranteed to 40MHz and specified to meet Industrial requirements
only; PWM, CAN and Quad Decoder are NOT available on the 56F8122 device.
Table 10-4 Recommended Operating Conditions
(V
= 0V, V = V
= 0V V
= V
= V
DDA_OSC_PLL
)
REFLO
SS
SSA_ADC
,
DDA
DDA_ADC
Characteristic
Supply voltage
ADC Supply Voltage
Symbol
Notes
Min
Typ
3.3
3.3
Max
3.6
Unit
V
V
3
3
DD_IO
V
V
V
must be less than
REFH
3.6
DDA_ADC,
or equal to V
V
DDA_ADC
REFH
Oscillator / PLL Supply Voltage
V
V
3
3.3
3.6
DDA_OSC
_PLL
Internal Logic Core Supply Voltage
Device Clock Frequency
OCR_DIS is High
V
MHz
V
V
2.25
0
2.5
—
—
—
2.75
60/40
5.5
DD_CORE
FSYSCLK
Input High Voltage (digital)
Pin Groups 1, 3 ,4, 5
Pin Group 6
V
2
IN
Input High Voltage (XTAL/EXTAL,
XTAL is not driven by an external clock)
V
V
V
-0.8
V
V
+0.3
IHC
DDA
DDA
Input high voltage (XTAL/EXTAL,
XTAL is driven by an external clock)
Pin Group 6
V
V
2
—
+0.3
IHC
DDA
Input Low Voltage
Pin Groups 1, 3, 4, 5, 6
V
V
-0.3
—
—
—
—
—
—
0.8
IL
Output High Source Current
Pin Groups 1, 2
Pin Group 3
mA
I
—
—
-4
-12
4
OH
V
= 2.4V (V min.)
OH
OH
Output Low Sink Current
= 0.4V (V max)
Pin Groups 1, 2
Pin Group 3
mA
I
—
OL
V
OL
OL
—
12
Ambient Operating Temperature
(Automotive)
125 -
°C
T
-40
A
(R
(R
X P )
θJA
D
Ambient Operating Temperature
(Industrial)
105 -
°C
T
-40
—
—
—
—
A
X P )
θJA
D
Flash Endurance (Automotive)
(Program Erase Cycles)
T = -40°C to 125°C
Cycles
Cycles
Years
N
10,000
10,000
15
—
A
F
Flash Endurance (Industrial)
(Program Erase Cycles)
T = -40°C to 105°C
N
—
—
A
F
Flash Data Retention
T <= 70°C avg
T
J
R
Note: Total chip source or sink current cannot exceed 150mA.
Note: Pins in italics are NOT available in the 56F8122 device.
See Pin Groups in Table 10-1
56F8322 Techncial Data, Rev. 10.0
102
Freescale Semiconductor
Preliminary
DC Electrical Characteristics
10.2 DC Electrical Characteristics
Note:
The 56F8122 device is specified to meet Industrial requirements only; PWM, CAN
and Quad Decoder are NOT available on the 56F8122 device.
Table 10-5 DC Electrical Characteristics
At Recommended Operating Conditions; see Table 10-4
Characteristic
Symbol
Notes
Min
2.4
—
Typ
—
—
0
Max
—
Unit
V
Test Conditions
Output High Voltage
Output Low Voltage
I
= I
V
OH
OHmax
OLmax
OH
V
I
OL
= I
V
0.4
OL
Digital Input Current High
pull-up enabled or disabled
Pin Groups
1, 3, 4
µA
V
V
= 3.0V to 5.5V
= 3.0V to 5.5V
I
—
+/- 2.5
IN
IH
Digital Input Current High
with pull-down
Pin Group 5
µA
I
40
80
160
IN
IH
ADC Input Current High
Pin Group 7
µA
V
= V
DDA
I
—
0
+/- 3.5
-50
IN
IHADC
Digital Input Current Low
pull-up enabled
Pin Groups 1, 3, 4
µA
V
= 0V
I
-200
-100
IN
IL
Digital Input Current Low
pull-up disabled
Pin Groups 1, 3, 4
Pin Group 5
µA
V
V
V
= 0V
= 0V
= 0V
I
—
—
0
0
+/- 2.5
+/- 2.5
IN
IN
IN
IL
Digital Input Current Low
with pull-down
µA
I
IL
ADC Input Current Low
Pin Group 7
µA
I
—
—
0
0
+/- 3.5
+/- 2.5
ILADC
EXTAL Input Current Low
clock input
µA
V
= V
or 0V
DDA
I
IN
EXTAL
XTAL Input Current Low
clock input
CLKMODE = High
CLKMODE = Low
Pin Groups 1, 2, 3
µA
µA
µA
V
V
= V
= V
or 0V
or 0V
I
—
—
—
0
—
0
+/- 2.5
200
IN
DDA
DDA
XTAL
IN
Output Current
High Impedance State
V
= 3.0V to
I
+/- 2.5
OUT
OZ
5.5V or 0V
Schmitt Trigger Input
Hysteresis
Pin Groups 1, 3, 4, 5
V
V
—
—
—
0.3
4.5
5.5
—
—
—
—
HYS
Input Capacitance
(EXTAL/XTAL)
pF
pF
C
—
—
INC
Output Capacitance
(EXTAL/XTAL)
C
OUTC
Input Capacitance
Output Capacitance
pF
pF
C
—
—
6
6
—
—
—
—
IN
C
OUT
See Pin Groups in Table 10-1
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
103
Table 10-6 Power-On Reset Low Voltage Parameters
Characteristic
Symbol
Min
—
Typ
—
Max
—
Units
V
1
POR
POR Trip Point Rising
R
POR Trip Point Falling
POR
V
1.75
—
1.8
1.9
—
V
F
2
2.14
2.7
V
LVI, 2.5V Supply, trip point
EI2.5
EI3.3
3
V
I
—
—
V
LVI, 3.3V supply, trip point
Bias Current
—
110
130
µA
bias
1. Both V
and V
thresholds must be met for POR to be released on power-up.
EI3.3
EI2.5
2. When V
3. When V
drops below V
drops below V
, an interrupt is generated.
, an interrupt is generated.
DD_CORE
DD_CORE
EI2.5
EI3.3
Table 10-7 Current Consumption per Power Supply Pin (Typical)
On-Chip Regulator Enabled (OCR_DIS = Low)
1
I
I
DD_OSC_PLL
Mode
Test Conditions
I
DD_ADC
DD_IO
• 60MHz Device Clock
• All peripheral clocks are enabled
RUN1_MAC
115mA
25mA
2.5mA
• Continuous MAC instructions with fetches from
Data RAM
• ADC powered on and clocked
• 60MHz Device Clock
Wait3
Stop1
60mA
35µA
2.5mA
• All peripheral clocks are enabled
• ADC powered off
• 4MHz Device Clock
• All peripheral clocks are off
• Relaxation oscillator is on
• ADC powered off
5.7mA
0µA
360µA
• PLL powered off
• Relaxation oscillator is off
• All peripheral clocks are off
• ADC powered off
Stop2
5mA
0µA
145µA
• PLL powered off
1. No Output Switching (Output switching current can be estimated from I = CVf for each output)
2. Includes Processor Core current supplied by internal voltage regulator
56F8322 Techncial Data, Rev. 10.0
104
Freescale Semiconductor
Preliminary
DC Electrical Characteristics
Table 10-8 Current Consumption per Power Supply Pin (Typical)
On-Chip Regulator Disabled (OCR_DIS = High)
1
I
I
I
DD_OSC_PLL
Mode
Test Conditions
• 60MHz Device Clock
I
DD_Core
DD_ADC
DD_IO
RUN1_MAC
110mA
13µA
25mA
2.5mA
• All peripheral clocks are enabled
• Continuous MAC instructions with
fetches from Data RAM
• ADC powered on and clocked
• 60MHz Device Clock
• All peripheral clocks are enabled
• ADC powered off
Wait3
Stop1
55mA
13µA
35µA
2.5mA
• 4MHz Device Clock
700µA
13µA
0µA
360µA
• All peripheral clocks are off
• Relaxation oscillator is on
• ADC powered off
• PLL powered off
• Relaxation oscillator is off
• All peripheral clocks are off
• ADC powered off
Stop2
100µA
13µA
0µA
145µA
• PLL powered off
1. No Output Switching
10.2.1 Voltage Regulator Specifications
The 56F8322/56F8122 have two on-chip regulators. One supplies the PLL and has no external pins;
therefore, it has no external characteristics which must be guaranteed (other than proper operation of the
device). The second regulator supplies approximately 2.6V to the device’s core logic. This regulator
requires two external 2.2µF, or greater, capacitors for proper operation. Ceramic and tantalum capacitors
tend to provide better performance tolerances. The output voltage can be measured directly on the V
CAP
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
105
Table 10-9. Regulator Parameters
Characteristic
Unloaded Output Voltage (0mA Load)
Loaded Output Voltage (200mA load)
Line Regulation @ 200mA load
Symbol
Min
2.25
2.25
2.25
Typical
Max
2.75
2.75
2.75
Unit
V
V
—
—
—
RNL
V
V
RL
V
V
R
(V 33 ranges from 3.0V to 3.6V)
DD
Short Circuit Current
Iss
—
—
700
mA
(output shorted to ground)
Bias Current
I
—
—
—
5.8
0
7
2
mA
µA
bias
Power-down Current
I
pd
Short-Circuit Tolerance
T
—
30
minutes
RSC
(output shorted to ground)
Table 10-10. PLL Parameters
Characteristics
PLL Start-up time
Symbol
Min
0.3
0.1
120
—
Typical
0.5
Max
10
Unit
ms
ms
ps
T
T
T
PS
RS
PV
Resonator Start-up time
Min-Max Period Variation
Peak-to-Peak Jitter
0.18
—
1
200
175
2
T
—
ps
PJ
Bias Current
I
—
1.5
mA
µA
BIAS
Quiescent Current, power-down mode
I
—
100
150
PD
56F8322 Techncial Data, Rev. 10.0
106
Freescale Semiconductor
Preliminary
AC Electrical Characteristics
10.2.2 Temperature Sense
Note: Temperature Sensor is NOT available in the 56F8122 device.
Table 10-11 Temperature Sense Parametrics
Characteristics
Symbol
Min
Typical
7.762
26
Max
Unit
mV/°C
°C
1
m
—
—
Slope (Gain)
1, 2
T
24
28
Room Trim Temp.
Hot Trim Temp. (Industrial)
RT
1,2
T
122
147
—
125
128
153
—
°C
HT
1,2
T
150
°C
Hot Trim Temp. (Automotive)
HT
Output Voltage @
V
1.370
V
TS0
1
V
= 3.3V, T =0°C
DDA_ADC
J
Supply Voltage
Supply Current - OFF
Supply Current - ON
3,1
V
3.0
—
3.3
—
—
0
3.6
10
V
DDA_ADC
I
µA
µA
°C
DD-OFF
I
—
250
6.7
DD-ON
T
-6.7
Accuracy
from -40°C to 150°C
ACC
Using V = mT + V
TS
TS0
4, 5,1
R
—
0.104
—
°C / bit
Resolution
ES
1. Includes the ADC conversion of the analog Temperature Sense voltage.
2. The ADC is not calibrated for the conversion of the Temperature Sensor trim value stored in the Flash Memory at
FMOPT0 and FMOPT1.
3. See Application Note, AN1980, for methods to increase accuracy.
4. Assuming a 12-bit range from 0V to 3.3V.
(V
- V
) X 1
m
5. Typical resolution calculated using equation, R
=
REFH
12
REFLO
ES
2
10.3 AC Electrical Characteristics
propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
107
Low
VIL
High
VIH
90%
50%
10%
Input Signal
Midpoint1
Fall Time
Note: The midpoint is V + (V – V )/2.
Rise Time
IL
IH
IL
Figure 10-1 Input Signal Measurement References
Figure 10-2 shows the definitions of the following signal states:
•
•
•
Active state, when a bus or signal is driven, and enters a low impedance state
Tri-stated, when a bus or signal is placed in a high impedance state
Data Valid state, when a signal level has reached V or V
OL
OH
•
Data Invalid state, when a signal level is in transition between V and V
OL OH
Data2 Valid
Data2
Data1 Valid
Data1
Data3 Valid
Data3
Data
Tri-stated
Data Invalid State
Data Active
Data Active
Figure 10-2 Signal States
10.4 Flash Memory Characteristics
Table 10-12 Flash Timing Parameters
Characteristic
Symbol
Tprog
Terase
Tme
Min
20
Typ
—
Max
—
Unit
µs
1
Program time
2
20
—
—
ms
ms
Erase time
Mass erase time
100
—
—
1. There is additional overhead which is part of the programming sequence. See the 56F8300 Peripheral User Manual for details.
Program time is per 16-bit word in Flash memory. Two words at a time can be programmed within the Program Flash module,
as it contains two interleaved memories.
2. Specifies page erase time. There are 512 bytes per page in the Data and Boot Flash memories. The Program Flash module
uses two interleaved Flash memories, increasing the effective page size to 1024 bytes.
56F8322 Techncial Data, Rev. 10.0
108
Freescale Semiconductor
Preliminary
External Clock Operation Timing
10.5 External Clock Operation Timing
1
Table 10-13 External Clock Operation Timing Requirements
Characteristic
Symbol
Min
0
Typ
—
Max
120
80
Unit
MHz
MHz
ns
2
f
Frequency of operation (external clock driver) —56F8322
osc
2
f
0
—
Frequency of operation (external clock driver) —56F8122
osc
3
t
3.0
—
—
—
—
PW
Clock Pulse Width
4
t
—
15
ns
External clock input rise time
rise
5
t
—
15
ns
External clock input fall time
fall
1. Parameters listed are guaranteed by design.
3. The high or low pulse width must be no smaller than 8.0ns or the chip will not function.
4. External clock input rise time is measured from 10% to 90%.
5. External clock input fall time is measured from 90% to 10%.
V
IH
External
Clock
90%
50%
10%
90%
50%
10%
V
t
IL
fall
t
rise
t
t
PW
PW
Note: The midpoint is V + (V – V )/2.
IL
IH
IL
Figure 10-3 External Clock Timing
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
109
10.6 Phase Locked Loop Timing
Table 10-14 PLL Timing
Characteristic
Symbol
Min
4
Typ
8
Max
8
Unit
MHz
MHz
MHz
ms
1
f
External reference crystal frequency for the PLL
osc
2
f
160
160
—
—
—
1
260
160
10
PLL output frequency (f
)—56F8322
op
OUT
2
f
PLL output frequency (f
)—56F8122
op
OUT
3
t
PLL stabilization time -40° to +125°C
plls
1. An externally supplied reference clock should be as free as possible from any phase jitter for the PLL to work
correctly. The PLL is optimized for 8MHz input crystal.
2. ZCLK may not exceed 60MHz. For additional information on ZCLK and (f
/2), please refer to the OCCS chapter in the
OUT
56F8300 Peripheral User Manual.
3. This is the minimum time required after the PLL set up is changed to ensure reliable operation.
10.7 Oscillator Parameters
Table 10-15 Crystal Oscillator Parameters
Characteristic
Crystal Start-up time
Symbol
Min
4
Typ
5
Max
10
Unit
ms
ms
ohms
ps
T
T
CS
RS
Resonator Start-up time
0.1
—
0.18
—
1
Crystal ESR
R
120
250
1.5
300
300
290
110
1
ESR
Crystal Peak-to-Peak Jitter
Crystal Min-Max Period Variation
Resonator Peak-to-Peak Jitter
Resonator Min-Max Period Variation
Bias Current, high-drive mode
Bias Current, low-drive mode
Quiescent Current, power-down mode
T
70
0.12
—
—
D
T
—
ns
PV
T
—
ps
RJ
T
—
—
ps
RP
I
—
250
80
0
µA
BIASH
I
—
µA
BIASL
I
—
µA
PD
56F8322 Techncial Data, Rev. 10.0
110
Freescale Semiconductor
Preliminary
Oscillator Parameters
Table 10-16 Relaxation Oscillator Parameters
Characteristic
Center Frequency
Min
Typ
Max
Units
—
—
8
—
—
MHz
ps
Minimum Tuning Step Size
(See Note)
82
Maximum Tuning Step Size
(See Note)
—
—
41
—
ns
%
Frequency Accuracy
-50°C to +150°C
+/- 1.78
+/- 2.0
Maximum Cycle-to-Cycle
Jitter
—
—
—
—
500
4
ps
Stabilization Time from Power-up
µs
Note: An LSB change in the tuning code results in an 82ps shift in the frequency period, while an MSB change in the tuning code
results in a 41ns shift in the frequency period.
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
111
Reset, Stop, Wait, Mode Select, and Interrupt Timing
10.8 Reset, Stop, Wait, Mode Select, and Interrupt Timing
Note: All address and data buses described here are internal.
1,2
Table 10-17 Reset, Stop, Wait, Mode Select, and Interrupt Timing
Typical
Min
Typical
Max
See
Figure
Characteristic
Symbol
Unit
Minimum RESET Assertion Duration
Edge-sensitive Interrupt Request Width
t
16T
1.5T
18T
14T
1.5T
—
—
—
—
—
ns
ns
ns
RA
t
IRW
IRQA, IRQB Assertion to General Purpose Output
Valid, caused by first instruction execution in the
interrupt service routine
t
IG
t
IG - FAST
3
t
ns
IRQA Width Assertion to Recover from Stop State
IW
1. In the formulas, T = clock cycle. For an operating frequency of 60MHz, T = 16.67ns. At 8MHz (used during Reset and Stop
modes), T = 125ns.
2. Parameters listed are guaranteed by design.
3. The interrupt instruction fetch is visible on the pins only in Mode 3.
RESET
t
RA
t
t
RDA
RAZ
PAB
PDB
First Fetch
Figure 10-5 Asynchronous Reset Timing
IRQA
t
IRW
Figure 10-6 External Interrupt Timing (Negative Edge-Sensitive)
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
113
PAB
IRQA
First Interrupt Instruction Execution
a) First Interrupt Instruction Execution
t
IDM
General
Purpose
I/O Pin
t
IG
IRQA
b) General Purpose I/O
Figure 10-7 External Level-Sensitive Interrupt Timing
t
IW
IRQA
PAB
t
IF
First Instruction Fetch
Not IRQA Interrupt Vector
Figure 10-8 Recovery from Stop State Using Asynchronous Interrupt Timing
56F8322 Techncial Data, Rev. 10.0
114
Freescale Semiconductor
Preliminary
Serial Peripheral Interface (SPI) Timing
10.9 Serial Peripheral Interface (SPI) Timing
1
Table 10-18 SPI Timing
Characteristic
Symbol
Min
Max
Unit
See Figure
Cycle time
Master
Slave
t
C
50
50
—
—
ns
ns
Enable lead time
Master
Slave
t
ELD
ELG
—
25
—
—
ns
ns
Enable lag time
Master
Slave
t
—
100
—
—
ns
ns
Clock (SCK) high time
Master
Slave
t
CH
17.6
25
—
—
ns
ns
Clock (SCK) low time
Master
Slave
t
CL
DS
DH
16
16.67
—
—
ns
ns
Data set up time required for inputs
Master
Slave
t
20
0
—
—
ns
ns
Data hold time required for inputs
t
Master
Slave
0
2
—
—
ns
ns
Access time (time to data active from high-impedance
state)
Slave
t
A
4.8
3.7
15
ns
ns
Disable time (hold time to high-impedance state)
Slave
t
D
15.2
Data Valid for outputs
Master
Slave (after enable edge)
t
DV
—
—
4.5
20.4
ns
ns
Data invalid
Master
Slave
t
DI
0
0
—
—
ns
ns
Rise time
Master
Slave
t
R
—
—
11.5
10.0
ns
ns
Fall time
Master
Slave
t
F
—
—
9.7
9.0
ns
ns
1. Parameters listed are guaranteed by design.
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
115
1
SS
(Input)
SS is held High on master
t
C
t
R
t
F
t
CL
SCLK (CPOL = 0)
(Output)
t
CH
t
F
t
R
t
CL
SCLK (CPOL = 1)
(Output)
t
t
DH
CH
t
DS
MISO
MSB in
t
Bits 14–1
LSB in
t (ref)
(Input)
DI
t
DI
DV
MOSI
Master MSB out
Bits 14–1
Master LSB out
(Output)
t
t
F
R
Figure 10-9 SPI Master Timing (CPHA = 0)
SS
(Input)
SS is held High on master
t
C
t
F
t
R
t
CL
SCLK (CPOL = 0)
(Output)
t
CH
t
F
t
CL
SCLK (CPOL = 1)
(Output)
t
CH
t
DS
t
R
t
DH
MISO
MSB in
Bits 14–1
t
LSB in
(Input)
t
t
DV(ref)
DI
t (ref)
DV
DI
MOSI
Master MSB out
Bits 14– 1
Master LSB out
(Output)
t
t
R
F
Figure 10-10 SPI Master Timing (CPHA = 1)
56F8322 Techncial Data, Rev. 10.0
116
Freescale Semiconductor
Preliminary
Serial Peripheral Interface (SPI) Timing
SS
(Input)
t
C
t
F
t
ELG
t
CL
t
R
SCLK (CPOL = 0)
(Input)
t
CH
t
ELD
t
CL
SCLK (CPOL = 1)
(Input)
t
CH
t
F
t
t
A
R
t
D
MISO
Slave MSB out
Bits 14–1
Slave LSB out
(Output)
t
t
DS
DV
t
t
DI
DI
t
DH
MOSI
MSB in
Bits 14–1
LSB in
(Input)
Figure 10-11 SPI Slave Timing (CPHA = 0)
SS
(Input)
t
F
t
C
t
R
t
CL
SCLK (CPOL = 0)
(Input)
t
t
CH
t
ELG
t
ELD
CL
SCLK (CPOL = 1)
(Input)
t
t
DV
CH
t
R
t
t
D
t
A
F
MISO
Slave MSB out
Bits 14–1
Slave LSB out
(Output)
t
t
DV
DS
t
DI
t
DH
MOSI
MSB in
Bits 14–1
LSB in
(Input)
Figure 10-12 SPI Slave Timing (CPHA = 1)
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
117
10.10 Quad Timer Timing
1, 2
Table 10-19 Timer Timing
Characteristic
Timer input period
Symbol
Min
Max
—
Unit
ns
See Figure
P
2T + 6
1T + 3
1T - 3
IN
Timer input high / low period
Timer output period
P
—
ns
INHL
P
—
ns
OUT
Timer output high / low period
P
0.5T - 3
—
ns
OUTHL
1. In the formulas listed, T = the clock cycle. For 60MHz operation, T = 16.67ns.
2. Parameters listed are guaranteed by design.
Timer Inputs
P
P
INHL
INHL
P
IN
Timer Outputs
P
P
OUTHL
OUTHL
P
OUT
Figure 10-13 Timer Timing
10.11 Quadrature Decoder Timing
Note: The Quadrature Decoder is NOT available in the 56F8122 device.
1, 2
Table 10-20 Quadrature Decoder Timing
Characteristic
Quadrature input period
Symbol
Min
Max
Unit
See Figure
P
4T + 12
—
ns
ns
ns
IN
HL
PH
Quadrature input high / low period
Quadrature phase period
P
2T + 6
1T + 3
—
—
P
1. In the formulas listed, T = the clock cycle. For 60MHz operation, T=16.67ns.
2. Parameters listed are guaranteed by design.
56F8322 Techncial Data, Rev. 10.0
118
Freescale Semiconductor
Preliminary
Serial Communication Interface (SCI) Timing
P
P
P
P
PH
PH
PH
PH
Phase A
(Input)
P
HL
P
IN
P
HL
Phase B
(Input)
P
HL
P
P
HL
IN
Figure 10-14 Quadrature Decoder Timing
10.12 Serial Communication Interface (SCI) Timing
1
Table 10-21 SCI Timing
Characteristic
Symbol
Min
—
Max
/16)
Unit
See Figure
—
2
BR
(f
Mbps
Baud Rate
MAX
3
RXD
0.965/BR
0.965/BR
1.04/BR
1.04/BR
ns
ns
RXD Pulse Width
PW
4
TXD
TXD Pulse Width
PW
1. Parameters listed are guaranteed by design.
2. f is the frequency of operation of the system clock in MHz, which is 60MHz for the 56F8322 device and 40MHz for the
MAX
56F8122 device.
3. The RXD pin in SCI0 is named RXD0 and the RXD pin in SCI1 is named RXD1.
4. The TXD pin in SCI0 is named TXD0 and the TXD pin in SCI1 is named TXD1.
RXD
SCI receive
data pin
RXD
PW
(Input)
Figure 10-15 RXD Pulse Width
TXD
SCI receive
data pin
TXD
PW
(Input)
Figure 10-16 TXD Pulse Width
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
119
10.13 Controller Area Network (CAN) Timing
Note: CAN is NOT available in the 56F8122 device.
1
Table 10-22 CAN Timing
Characteristic
Baud Rate
Bus Wake-up detection
Symbol
Min
Max
Unit
See Figure
—
BR
1
Mbps
—
CAN
T
T
µs
—
WAKEUP
IPBUS
1. Parameters listed are guaranteed by design
MSCAN_RX
CAN receive
data pin
T
WAKEUP
(Input)
Figure 10-17 Bus Wakeup Detection
10.14 JTAG Timing
Table 10-23 JTAG Timing
Characteristic
Symbol
Min
Max
Unit
See Figure
TCK frequency of operation using
f
DC
SYS_CLK/8
MHz
MHz
OP
1
EOnCE
TCK frequency of operation not
f
DC
SYS_CLK/4
OP
1
using EOnCE
TCK clock pulse width
t
50
5
—
—
—
30
30
ns
ns
ns
ns
ns
PW
TMS, TDI data set-up time
TMS, TDI data hold time
TCK low to TDO data valid
TCK low to TDO tri-state
t
DS
t
5
DH
t
—
—
DV
t
TS
1. TCK frequency of operation must be less than 1/8 the processor rate.
56F8322 Techncial Data, Rev. 10.0
120
Freescale Semiconductor
Preliminary
JTAG Timing
1/f
OP
t
t
PW
VM
PW
VM
VIL
VIH
TCK
(Input)
VM = VIL + (VIH – VIL)/2
Figure 10-18 Test Clock Input Timing Diagram
TCK
(Input)
t
t
DH
DS
TDI
TMS
Input Data Valid
(Input)
t
DV
TDO
(Output)
Output Data Valid
t
TS
TDO
(Output)
t
DV
TDO
(Output)
Output Data Valid
Figure 10-19 Test Access Port Timing Diagram
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
121
10.15 Analog-to-Digital Converter (ADC) Parameters
Table 10-24 ADC Parameters
Characteristic
Symbol
Min
Typ
—
Max
Unit
V
Input voltages
Resolution
V
V
V
REFH
ADIN
REFL
R
12
—
12
Bits
ES
1
2
INL
—
—
+/- 2.4
+/- 0.7
+/- 3.2
< +1
Integral Non-Linearity
LSB
LSB
2
Differential Non-Linearity
DNL
Monotonicity
GUARANTEED
—
ADC internal clock
f
0.5
5
MHz
V
ADIC
Conversion range
R
V
—
6
V
REFH
AD
REFL
ADC channel power-up time
3
t
5
16
ADPU
t
cycles
AIC
4
t
—
—
—
6
25
—
ms
ADC reference circuit power-up time
Conversion time
VREF
3
3
t
ADC
t
t
cycles
AIC
AIC
Sample time
t
—
1
—
ADS
cycles
pF
Input capacitance
C
I
—
—
—
—
—
—
—
—
—
—
—
—
5
—
3
ADI
5
—
mA
Input injection current , per pin
ADI
Input injection current, total
I
—
20
3
mA
ADIT
V
current
I
1.2
mA
REFH
VREFH
ADC A current
ADC B current
I
I
25
—
—
10
mA
ADCA
ADCB
25
mA
µA
Quiescent current
I
0
+/- .004
+/- 26
ADCQ
Uncalibrated Gain Error (ideal)
Uncalibrated Offset Voltage
E
+/- .01
+/- 32
—
—
GAIN
V
mV
OFFSET
6
AE
See Figure 10-20
0.008597
-2.8
LSBs
—
Calibrated Absolute Error
CAL
7
CF1
—
Calibration Factor 1
7
CF2
—
—
—
Calibration Factor 2
Crosstalk between channels
Common Mode Voltage
—
—
-60
—
—
dB
V
V
(V
- V
) / 2
common
REFH
REFLO
Signal-to-noise ratio
SNR
—
64.6
—
db
56F8322 Techncial Data, Rev. 10.0
122
Freescale Semiconductor
Preliminary
Analog-to-Digital Converter (ADC) Parameters
Table 10-24 ADC Parameters (Continued)
Characteristic
Signal-to-noise plus distortion ratio
Total Harmonic Distortion
Symbol
Min
Typ
Max
Unit
SINAD
THD
—
—
—
—
59.1
60.6
61.1
9.6
—
—
—
—
db
db
Spurious Free Dynamic Range
SFDR
ENOB
db
8
Bits
Effective Number Of Bits
1. INL measured from V = .1V
to V = .9V
in REFH
in
REFH
10% to 90% Input Signal Range
2. LSB = Least Significant Bit
3. ADC clock cycles
4. Assumes each voltage reference pin is bypassed with 0.1µF ceramic capacitors to ground
5. The current that can be injected or sourced from an unselected ADC signal input without impacting the performance of
the ADC. This allows the ADC to operate in noisy industrial environments where inductive flyback is possible.
6. Absolute error includes the effects of both gain error and offset error.
7. Please see the 56F8300 Peripheral User’s Manual for additional information on ADC calibration.
8. ENOB = (SINAD - 1.76)/6.02
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
123
Figure 10-20 ADC Absolute Error Over Processing and Temperature Extremes Before
and After Calibration for VDC = 0.60V and 2.70V
in
Note: The absolute error data shown in the graphs above reflects the effects of both gain error and offset
error. The data was taken on 15 parts: three each from four processing corner lots as well as three from one
nominally processed lot, each at three temperatures: -40°C, 27°C, and 150°C (giving the 45 data points
shown above), for two input DC voltages: 0.60V and 2.70V. The data indicates that for the given
population of parts, calibration significantly reduced (by as much as 34%) the collective variation (spread)
of the absolute error of the population. It also significantly reduced (by as much as 80% when VDCin was
0.6V) the mean (average) of the absolute error and thereby brought it significantly closer to the ideal value
of zero. Although not guaranteed, it is believed that calibration will produce results similar to those shown
above for any population of parts, including those which represent processing and temperature extremes.
56F8322 Techncial Data, Rev. 10.0
124
Freescale Semiconductor
Preliminary
Equivalent Circuit for ADC Inputs
10.16 Equivalent Circuit for ADC Inputs
Figure 10-21 illustrates the ADC input circuit during sample and hold. S1 and S2 are always open/closed
at the same time that S3 is closed/open. When S1/S2 closed & S3 open, one input of the sample and hold
circuit moves to (V
-V
)/2, while the other charges to the analog input voltage. When the
REFH REFLO
switches are flipped, the charge on C1 and C2 are averaged via S3, with the result that a single-ended
analog input is switched to a differential voltage centered about (V -V )/2. The switches switch
REFH REFLO
on every cycle of the ADC clock (open one-half ADC clock, closed one-half ADC clock). Note that there
are additional capacitances associated with the analog input pad, routing, etc., but these do not filter into
the S/H output voltage, as S1 provides isolation during the charge-sharing phase.
One aspect of this circuit is that there is an on-going input current, which is a function of the analog input
voltage, V
and the ADC clock frequency.
REF
Analog Input
3
4
S1
C1
C2
S/H
S3
S2
- V / 2
REFLO )
(V
2
1
REFH
C1 = C2 = 1pF
1. Parasitic capacitance due to package, pin-to-pin and pin-to-package base coupling; 1.8pf
2. Parasitic capacitance due to the chip bond pad, ESD protection devices and signal routing; 2.04pf
3. Equivalent resistance for the ESD isolation resistor and the channel select mux; 500 ohms
4. Sampling capacitor at the sample and hold circuit. Capacitor C1 is normally disconnected from the input and is only
connected to it at sampling time; 1pf
Figure 10-21 Equivalent Circuit for A/D Loading
10.17 Power Consumption
See Section 10.1 for a list of IDD requirements for the device. This section provides additional detail
which can be used to optimize power consumption for a given application.
Power consumption is given by the following equation:
Total power =
A: internal [static component]
+B: internal [state-dependent component]
+C: internal [dynamic component]
+D: external [dynamic component]
+E: external [static]
A, the internal [static component], is comprised of the DC bias currents for the oscillator, leakage currents,
PLL, and voltage references. These sources operate independently of processor state or operating
frequency.
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
125
B, the internal [state-dependent component], reflects the supply current required by certain on-chip
resources only when those resources are in use. These include RAM, Flash memory and the ADCs.
2
C, the internal [dynamic component], is classic C*V *F CMOS power dissipation corresponding to the
56800E core and standard cell logic.
D, the external [dynamic component], reflects power dissipated on-chip as a result of capacitive loading
2
on the external pins of the chip. This is also commonly described as C*V *F, although simulations on two
of the IO cell types used on the 56800E reveal that the power-versus-load curve does have a non-zero
Y-intercept.
Note: V
is tied to V
and V
is tied to V
inside this package.
SSA
REFH
DDA
REFLO
Table 10-25 IO Loading Coefficients at 10MHz
Intercept
Slope
PDU08DGZ_ME
PDU04DGZ_ME
1.3
0.11mW / pF
0.11mW / pF
1.15mW
Power due to capacitive loading on output pins is (first order) a function of the capacitive load and
frequency at which the outputs change. Table 10-25 provides coefficients for calculating power dissipated
in the IO cells as a function of capacitive load. In these cases:
TotalPower = Σ((Intercept + Slope*Cload)*frequency/10MHz)
where:
•
•
•
Summation is performed over all output pins with capacitive loads
TotalPower is expressed in mW
Cload is expressed in pF
Because of the low duty cycle on most device pins, power dissipation due to capacitive loads was found
to be fairly low when averaged over a period of time.
E, the external [static component], reflects the effects of placing resistive loads on the outputs of the
2
device. Sum the total of all V /R or IV to arrive at the resistive load contribution to power. Assume V =
0.5 for the purposes of these rough calculations. For instance, if there is a total of eight PWM outputs
driving 10mA into LEDs, then P = 8*.5*.01 = 40mW.
In previous discussions, power consumption due to parasitics associated with pure input pins is ignored,
as it is assumed to be negligible.
56F8322 Techncial Data, Rev. 10.0
126
Freescale Semiconductor
Preliminary
56F8322 Package and Pin-Out Information
Part 11 Packaging
11.1 56F8322 Package and Pin-Out Information
This section contains package and pin-out information for the 56F8322. This device comes in a 48-pin
Figure 12-1 shows the mechanical parameters for this package, and Table 11-1 lists the pin-out for the
48-pin LQFP.
ORIENTATION
TC0
RESET
PWMA0
PWMA1
MARK
INDEX0
HOME0
37
V
PIN 1
DD_IO
XTAL
V
EXTAL
Freescale
56F8322
DD_IO
PWMA2
PWMA3
PWMA4
PWMA5
V
SS
V
V
V
V
V
DDA_ADC
SSA_ADC
REFP
V
SS
REFMID
REFN
25
IRQA
13
FAULTA0
ANA6
Figure 11-1 Top View, 56F8322 48-Pin LQFP Package
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
127
Table 11-1 56F8322 48-Pin LQFP Package Identification by Pin Number
Pin No.
Signal Name
TC0
Pin No.
13
Signal Name
Pin No.
25
Signal Name
Pin No.
37
Signal Name
PHASEB
PHASEA
TCK
1
2
V
ANA6
SS
RESET
14
V
26
V
38
DD_IO
REFN
3
PWMA0
PWMA1
15
SS0
27
V
39
REFMID
4
16
MISO0
28
V
40
TMS
REFP
5
V
17
V
2
29
V
41
TDI
DD_IO
CAP
SSA_ADC
DDA_ADC
6
PWMA2
PWMA3
PWMA4
PWMA5
18
MOSI0
SCLK0
ANA0
ANA1
ANA2
30
V
42
TDO
7
19
31
V
43
V
1
CAP
SS
8
20
32
EXTAL
XTAL
44
V
DD_IO
9
21
33
45
V
SS
10
V
22
34
V
46
CAN_RX
SS
DD_IO
11
12
IRQA
23
24
ANA4
ANA5
35
36
HOME0
INDEX0
47
48
CAN_TX
TC1
FAULTA0
56F8322 Techncial Data, Rev. 10.0
128
Freescale Semiconductor
Preliminary
56F8122 Package and Pin-Out Information
11.2 56F8122 Package and Pin-Out Information
This section contains package and pin-out information for the 56F8122. This device comes in a 48-pin
Figure 12-1 shows the mechanical parameters for this package, and Table 11-1 lists the pin-out for the
48-pin LQFP.
ORIENTATION
TC0
RESET
GPIOA0
GPIOA1
MARK
TA2
TA3
V
37
PIN 1
DD_IO
XTAL
V
EXTAL
Freescale
56F8122
DD_IO
SS1
MISO1
MOSI1
SCLK1
V
SS
V
V
V
V
V
DDA_ADC
SSA_ADC
REFP
V
SS
REFMID
REFN
25
IRQA
13
GPIOA6
ANA6
Figure 11-2 Top View, 56F8122 48-Pin LQFP Package
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
129
Table 11-2 56F8122 48-Pin LQFP Package Identification by Pin Number
Pin No.
Signal Name
TC0
Pin No.
13
Signal Name
Pin No.
25
Signal Name
Pin No.
37
Signal Name
TA1
1
2
V
ANA6
SS
RESET
14
V
26
V
38
TA0
DD_IO
REFN
3
GPIOA0
GPIOA1
15
SS0
27
V
39
TCK
REFMID
4
16
MISO0
28
V
40
TMS
REFP
5
V
17
V
2
29
V
41
TDI
DD_IO
CAP
SSA_ADC
DDA_ADC
6
SS1
18
MOSI0
SCLK0
ANA0
ANA1
ANA2
30
V
42
TDO
7
MISO1
MOSI1
SCLK1
19
31
V
43
V
1
CAP
SS
8
20
32
EXTAL
XTAL
44
V
DD_IO
9
21
33
45
V
SS
10
V
22
34
V
46
GPIOC2
SS
DD_IO
11
12
IRQA
23
24
ANA4
ANA5
35
36
TA3
47
48
GPIOC3
TC1
GPIOA6
TA2
56F8322 Techncial Data, Rev. 10.0
130
Freescale Semiconductor
Preliminary
56F8122 Package and Pin-Out Information
4X
0.200 AB T-U
Z
NOTES:
DETAIL Y
1. DIMENSIONING AND TOLERANCING PER ASME
Y14.5M, 1994.
9
A
P
2. CONTROLLING DIMENSION: MILLIMETER.
3. DATUM PLANE AB IS LOCATED AT BOTTOM OF LEAD
AND IS COINCIDENT WITH THE LEAD WHERE THE
LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF
THE PARTING LINE.
A1
48
37
4. DATUMS T, U, AND Z TO BE DETERMINED AT DATUM
PLANE AB.
1
36
5. DIMENSIONS S AND V TO BE DETERMINED AT
SEATING PLANE AC.
T
U
6. DIMENSIONS A AND B DO NOT INCLUDE MOLD
PROTRUSION. ALLOWABLE PROTRUSION IS 0.250
PER SIDE. DIMENSIONS A AND B DO INCLUDE MOLD
MISMATCH AND ARE DETERMINED AT DATUM PLANE
AB.
7. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. DAMBAR PROTRUSION SHALL NOT
CAUSE THE D DIMENSION TO EXCEED 0.350.
8. MINIMUM SOLDER PLATE THICKNESS SHALL BE
0.0076.
B
V
AE
AE
B1
V1
12
25
9. EXACT SHAPE OF EACH CORNER IS OPTIONAL.
13
24
Z
MILLIMETERS
DIM MIN
MAX
7.000 BSC
3.500 BSC
S1
A
A1
B
B1
C
T, U, Z
S
7.000 BSC
3.500 BSC
1.400
DETAIL Y
4X
1.600
0.270
1.450
0.230
D
E
F
0.170
1.350
0.170
0.200 AC T-U
Z
G
H
J
0.500 BSC
0.050
0.090
0.500
0.150
0.200
0.700
0.080 AC
K
G
AB
AC
L
M
N
P
R
0
7
°
°
12 REF
°
0.090
0.250 BSC
0.150 0.250
0.160
S
S1
V
V1
W
AA
9.000 BSC
4.500 BSC
9.000 BSC
4.500 BSC
0.200 REF
1.000 REF
AD
°
M
TOP & BOTTOM
BASE METAL
R
N
J
E
C
H
F
D
M
0.080
AC T-U
Z
W
°
L
SECTION AE-AE
K
DETAIL AD
AA
Figure 11-3 48-Pin LQFP Mechanical Information
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
131
Part 12 Design Considerations
12.1 Thermal Design Considerations
An estimation of the chip junction temperature, T , can be obtained from the equation:
J
T = T + (R
x P )
J
A
θJΑ
D
where:
o
T
R
= Ambient temperature for the package ( C)
A
o
= Junction to ambient thermal resistance ( C/W)
θJΑ
P
= Power dissipation in the package (W)
D
The junction to ambient thermal resistance is an industry-standard value that provides a quick and easy
estimation of thermal performance. Unfortunately, there are two values in common usage: the value
determined on a single-layer board and the value obtained on a board with two planes. For packages such
as the PBGA, these values can be different by a factor of two. Which value is closer to the application
depends on the power dissipated by other components on the board. The value obtained on a single layer
board is appropriate for the tightly packed printed circuit board. The value obtained on the board with the
internal planes is usually appropriate if the board has low-power dissipation and the components are well
separated.
When a heat sink is used, the thermal resistance is expressed as the sum of a junction-to-case thermal
resistance and a case-to-ambient thermal resistance:
R
= R
+ R
θJC θCA
θJA
where:
R
R
R
=
=
=
Package junction to ambient thermal resistance °C/W
Package junction to case thermal resistance °C/W
Package case to ambient thermal resistance °C/W
θJA
θJC
θCA
R
is device related and cannot be influenced by the user. The user controls the thermal environment to
θJC
change the case-to-ambient thermal resistance, R
sink, the air flow around the device, the interface material, the mounting arrangement on printed circuit
board, or change the thermal dissipation on the printed circuit board surrounding the device.
. For instance, the user can change the size of the heat
θCA
To determine the junction temperature of the device in the application when heat sinks are not used, the
Thermal Characterization Parameter (Ψ ) can be used to determine the junction temperature with a
JT
measurement of the temperature at the top center of the package case using the following equation:
T = T + (Ψ x P )
J
T
JT
D
where:
o
T
Ψ
= Thermocouple temperature on top of package ( C)
= Thermal characterization parameter ( C)/W
T
o
JT
P
= Power dissipation in package (W)
D
56F8322 Techncial Data, Rev. 10.0
132
Freescale Semiconductor
Preliminary
Electrical Design Considerations
The thermal characterization parameter is measured per JESD51-2 specification using a 40-gauge type T
thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so
that the thermocouple junction rests on the package. A small amount of epoxy is placed over the
thermocouple junction and over about 1mm of wire extending from the junction. The thermocouple wire
is placed flat against the package case to avoid measurement errors caused by cooling effects of the
thermocouple wire.
When heat sink is used, the junction temperature is determined from a thermocouple inserted at the
interface between the case of the package and the interface material. A clearance slot or hole is normally
required in the heat sink. Minimizing the size of the clearance is important to minimize the change in
thermal performance caused by removing part of the thermal interface to the heat sink. Because of the
experimental difficulties with this technique, many engineers measure the heat sink temperature and then
back-calculate the case temperature using a separate measurement of the thermal resistance of the
interface. From this case temperature, the junction temperature is determined from the junction-to-case
thermal resistance.
12.2 Electrical Design Considerations
CAUTION
This device contains protective circuitry to guard
against damage due to high static voltage or electrical
fields. However, normal precautions are advised to
avoid application of any voltages higher than
maximum-rated voltages to this high-impedance circuit.
Reliability of operation is enhanced if unused inputs are
tied to an appropriate voltage level.
Use the following list of considerations to assure correct operation of the 56F8322/56F8122:
•
Provide a low-impedance path from the board power supply to each V pin on the device and from the
DD
board ground to each V (GND) pin
SS
•
The minimum bypass requirement is to place six 0.01–0.1µF capacitors positioned as close as possible to
the package supply pins. The recommended bypass configuration is to place one bypass capacitor on each
of the V /V pairs, including V
/V
Ceramic and tantalum capacitors tend to provide better
DD SS
DDA SSA.
tolerances.
•
Ensure that capacitor leads and associated printed circuit traces that connect to the chip V and V (GND)
DD SS
pins are less than 0.5 inch per capacitor lead
•
•
Use at least a four-layer Printed Circuit Board (PCB) with two inner layers for V and V
DD
SS
Bypass the V and V layers of the PCB with approximately 100µF, preferably with a high-grade
DD
SS
capacitor such as a tantalum capacitor
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
133
•
•
Because the device’s output signals have fast rise and fall times, PCB trace lengths should be minimal
Consider all device loads as well as parasitic capacitance due to PCB traces when calculating capacitance.
This is especially critical in systems with higher capacitive loads that could create higher transient currents
in the V and V circuits.
DD
SS
•
•
Take special care to minimize noise levels on the V , V
and V
pins
SSA
REF DDA
Because the Flash memory is programmed through the JTAG/EOnCE port, the designer should provide an
interface to this port to allow in-circuit Flash programming
12.3 Power Distribution and I/O Ring Implementation
contains two internal power regulators. One of them is powered from the V
pin and cannot
DDA_OSC_PLL
be turned off. This regulator controls power to the internal clock generation circuitry. The other regulator
is powered from the V pins and provides power to all of the internal digital logic of the core, all
DD_IO
peripherals and the internal memories. This regulator can be turned off, if an external V
voltage
DD_CORE
is externally applied to the V
pins.
CAP
In summary, the entire chip can be supplied from a single 3.3 volt supply if the large core regulator is
enabled. If the regulator is not enabled, a dual supply 3.3V/2.5V configuration can also be used.
Notes:
•
•
Flash, RAM and internal logic are powered from the core regulator output
V 1 and V 2 are not connected in the customer system
PP
PP
•
All circuitry, analog and digital, shares a common V bus
SS
VDDA_OSC_PLL
VDD
VDDA_ADC
VREFH
VREFP
VREFMID
VREFN
VREFLO
VCAP
REG
REG
OCS
I/O
ADC
CORE
ROSC
VSS
VSSA_ADC
Figure 12-1 Power Management
56F8322 Techncial Data, Rev. 10.0
134
Freescale Semiconductor
Preliminary
Power Distribution and I/O Ring Implementation
Part 13 Ordering Information
Table 13-1 lists the pertinent information needed to place an order. Consult a Freescale Semiconductor
sales office or authorized distributor to determine availability and to order parts.
Table 13-1 Ordering Information
Supply
Voltage
Pin
Count
Frequency Temperature
Part
Package Type
Order Number
(MHz)
Range
Low-Profile Quad Flat Pack (LQFP)
Low-Profile Quad Flat Pack (LQFP)
Low-Profile Quad Flat Pack (LQFP)
MC56F8322
MC56F8322
MC56F8122
3.0–3.6 V
3.0–3.6 V
3.0–3.6 V
48
48
48
60
60
40
-40° to + 105° C
-40° to + 125° C
-40° to + 105° C
MC56F8322VFA60
MC56F8322MFA60
MC56F8122VFA
56F8322 Technical Data, Rev. 10.0
Freescale Semiconductor
Preliminary
135
How to Reach Us:
Home Page:
www.freescale.com
E-mail:
USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
Information in this document is provided solely to enable system and
software implementers to use Freescale Semiconductor products. There are
no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits or integrated circuits based on the
information in this document.
Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
Freescale Semiconductor reserves the right to make changes without further
notice to any products herein. Freescale Semiconductor makes no warranty,
representation or guarantee regarding the suitability of its products for any
particular purpose, nor does Freescale Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or
incidental damages. “Typical” parameters that may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer
application by customer’s technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized
for use as components in systems intended for surgical implant into the body,
or other applications intended to support or sustain life, or for any other
application in which the failure of the Freescale Semiconductor product could
create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended
or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized
use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
This product incorporates SuperFlash® technology licensed from SST.
© Freescale Semiconductor, Inc. 2004. All rights reserved.
MC56F8322
Rev. 10
10/2004
This datasheet has been download from:
Datasheets for electronics components.
|