CY7C1411BV18, CY7C1426BV18
CY7C1413BV18, CY7C1415BV18
36-Mbit QDR™-II SRAM 4-Word
Burst Architecture
Features
Configurations
■ Separate independent read and write data ports
❐ Supports concurrent transactions
CY7C1411BV18 – 4M x 8
CY7C1426BV18 – 4M x 9
CY7C1413BV18 – 2M x 18
CY7C1415BV18 – 1M x 36
■ 300 MHz clock for high bandwidth
■ 4-word burst for reducing address bus frequency
Functional Description
■ DoubleDataRate(DDR)interfacesonbothreadandwriteports
(data transferred at 600 MHz) at 300 MHz
The CY7C1411BV18, CY7C1426BV18, CY7C1413BV18, and
CY7C1415BV18 are 1.8V Synchronous Pipelined SRAMs,
equipped with QDR™-II architecture. QDR-II architecture
consists of two separate ports to access the memory array. The
read port has dedicated data outputs to support the read opera-
tions and the write port has dedicated data inputs to support the
write operations. QDR-II architecture has separate data inputs
and data outputs to completely eliminate the need to
“turn-around” the data bus required with common IO devices.
Access to each port is through a common address bus.
Addresses for read and write addresses are latched on alternate
rising edges of the input (K) clock. Accesses to the QDR-II read
and write ports are completely independent of one another. To
maximize data throughput, read and write ports are equipped
with DDR interfaces. Each address location is associated with
■ Two input clocks (K and K) for precise DDR timing
❐ SRAM uses rising edges only
■ Two input clocks for output data (C and C) to minimize clock
skew and flight time mismatches
■ Echo clocks (CQ and CQ) simplify data capture in high-speed
systems
■ Single multiplexed address input bus latches address inputs
for both read and write ports
■ Separate port selects for depth expansion
■ Synchronous internally self-timed writes
■ QDR-II operates with 1.5 cycle read latency when DLL is
enabled
four
8-bit
words
(CY7C1411BV18),
9-bit
words
■ Operates as a QDR-I device with 1 cycle read latency in DLL
off mode
(CY7C1426BV18), 18-bit words (CY7C1413BV18), or 36-bit
words (CY7C1415BV18) that burst sequentially into or out of the
device. Because data can be transferred into and out of the
device on every rising edge of both input clocks (K and K and C
and C), memory bandwidth is maximized while simplifying
system design by eliminating bus “turn-arounds.”
■ Available in x 8, x 9, x 18, and x 36 configurations
■ Full data coherency, providing most current data
■ Core V = 1.8 (±0.1V); IO V
= 1.4V to V
DD
DD
DDQ
Depth expansion is accomplished with port selects, which
enables each port to operate independently.
■ Available in 165-Ball FBGA package (15 x 17 x 1.4 mm)
■ Offered in both Pb-free and non Pb-free packages
■ Variable drive HSTL output buffers
All synchronous inputs pass through input registers controlled by
the K or K input clocks. All data outputs pass through output
registers controlled by the C or C (or K or K in a single clock
domain) input clocks. Writes are conducted with on chip
synchronous self-timed write circuitry.
■ JTAG 1149.1 compatible test access port
■ Delay Lock Loop (DLL) for accurate data placement
Selection Guide
Description
300 MHz
300
278 MHz
278
250 MHz
250
200 MHz
200
167 MHz
167
Unit
MHz
mA
Maximum Operating Frequency
Maximum Operating Current
x8
x9
885
815
745
620
535
900
830
760
620
535
x18
x36
940
865
790
655
565
1040
950
870
715
615
Cypress Semiconductor Corporation
Document Number: 001-07037 Rev. *D
•
198 Champion Court
•
San Jose, CA 95134-1709
•
408-943-2600
Revised June 16, 2008
CY7C1411BV18, CY7C1426BV18
CY7C1413BV18, CY7C1415BV18
Logic Block Diagram (CY7C1413BV18)
18
D
[17:0]
Write Write Write Write
19
Address
Register
A
Reg
Reg
Reg
Reg
(18:0)
19
Address
Register
A
(18:0)
RPS
K
Control
Logic
CLK
Gen.
K
C
C
DOFF
Read Data Reg.
CQ
CQ
72
36
V
REF
18
18
18
18
Reg.
Reg.
Reg.
Control
Logic
WPS
BWS
18
36
Q
[17:0]
[1:0]
Logic Block Diagram (CY7C1415BV18)
36
D
[35:0]
Write Write Write Write
18
Address
Register
A
Reg
Reg
Reg
Reg
(17:0)
18
Address
Register
A
(17:0)
RPS
K
Control
Logic
CLK
Gen.
K
C
C
DOFF
Read Data Reg.
CQ
CQ
144
72
V
REF
36
36
36
36
Reg.
Reg.
Reg.
Control
Logic
WPS
BWS
36
72
Q
[35:0]
[3:0]
Document Number: 001-07037 Rev. *D
Page 3 of 30
CY7C1411BV18, CY7C1426BV18
CY7C1413BV18, CY7C1415BV18
Pin Configuration
The pin configuration for CY7C1411BV18, CY7C1426BV18, CY7C1413BV18, and CY7C1415BV18 follow.
165-Ball FBGA (15 x 17 x 1.4 mm) Pinout
CY7C1411BV18 (4M x 8)
1
CQ
NC
NC
NC
NC
NC
NC
DOFF
NC
NC
NC
NC
NC
NC
TDO
2
NC/72M
NC
3
4
WPS
A
5
6
K
7
8
RPS
A
9
10
A
11
CQ
Q3
D3
NC
Q2
NC
NC
ZQ
D1
NC
Q0
D0
NC
NC
TDI
A
B
C
D
E
F
A
NWS
NC/144M
A
1
NC
NC
NC
Q4
NC
Q5
NC/288M
A
K
NWS
A
NC
NC
NC
NC
NC
NC
NC
NC
NC
D2
NC
NC
0
NC
V
V
NC
V
V
SS
SS
SS
SS
D4
V
V
V
V
V
V
V
V
V
V
V
V
V
SS
SS
DD
DD
DD
DD
DD
SS
SS
SS
SS
SS
SS
SS
SS
SS
SS
SS
DD
DD
DD
DD
DD
NC
V
V
V
V
V
V
V
V
V
V
V
V
V
V
DDQ
DDQ
DDQ
DDQ
DDQ
DDQ
DDQ
DDQ
DDQ
DDQ
DDQ
DDQ
DDQ
DDQ
NC
V
V
V
V
V
V
V
V
V
V
G
H
J
D5
V
V
V
V
REF
REF
DDQ
DDQ
NC
NC
Q6
NC
NC
Q1
K
L
NC
D6
NC
NC
Q7
A
NC
NC
NC
NC
NC
A
NC
NC
V
V
V
V
SS
SS
SS
SS
M
N
P
R
NC
D7
V
V
NC
SS
SS
SS
V
A
A
A
A
C
C
A
A
A
V
NC
SS
NC
TCK
A
A
A
A
NC
TMS
CY7C1426BV18 (4M x 9)
1
CQ
NC
NC
NC
NC
NC
NC
DOFF
NC
NC
NC
NC
NC
NC
TDO
2
NC/72M
NC
3
4
5
NC
6
K
7
8
9
10
A
11
CQ
Q4
D4
NC
Q3
NC
NC
ZQ
D2
NC
Q1
D1
NC
Q0
TDI
A
B
C
D
E
F
A
WPS
A
NC/144M
RPS
A
A
NC
NC
NC
Q5
NC
Q6
NC/288M
A
K
BWS
A
NC
NC
NC
NC
NC
NC
NC
NC
NC
D3
NC
NC
0
NC
V
V
NC
V
V
SS
SS
SS
SS
D5
V
V
V
V
V
V
V
V
V
V
V
V
V
SS
SS
DD
DD
DD
DD
DD
SS
SS
SS
SS
SS
SS
SS
SS
SS
SS
SS
DD
DD
DD
DD
DD
NC
V
V
V
V
V
V
V
V
V
V
V
V
V
V
DDQ
DDQ
DDQ
DDQ
DDQ
DDQ
DDQ
DDQ
DDQ
DDQ
DDQ
DDQ
DDQ
DDQ
NC
V
V
V
V
V
V
V
V
V
V
G
H
J
D6
V
V
V
V
REF
REF
DDQ
DDQ
NC
NC
Q7
NC
NC
Q2
NC
NC
NC
NC
D0
K
L
NC
D7
NC
NC
Q8
A
NC
NC
NC
NC
NC
A
V
V
SS
SS
SS
SS
M
N
P
R
NC
D8
V
V
V
V
SS
SS
SS
V
A
A
A
A
C
C
A
A
A
V
SS
NC
TCK
A
A
A
A
TMS
Note
1. NC/72M, NC/144M and NC/288M are not connected to the die and can be tied to any voltage level.
Document Number: 001-07037 Rev. *D
Page 4 of 30
CY7C1411BV18, CY7C1426BV18
CY7C1413BV18, CY7C1415BV18
Pin Configuration (continued)
[1]
The pin configuration for CY7C1411BV18, CY7C1426BV18, CY7C1413BV18, and CY7C1415BV18 follow.
165-Ball FBGA (15 x 17 x 1.4 mm) Pinout
CY7C1413BV18 (2M x 18)
1
CQ
NC
NC
NC
NC
NC
NC
DOFF
NC
NC
NC
NC
NC
NC
TDO
2
NC/144M
Q9
3
4
WPS
A
5
BWS
NC
A
6
K
7
8
RPS
A
9
10
NC/72M
NC
11
CQ
Q8
D8
D7
Q6
Q5
D5
ZQ
D4
Q3
Q2
D2
D1
Q0
TDI
A
B
C
D
E
F
A
NC/288M
A
1
D9
K
BWS
A
NC
NC
NC
NC
NC
NC
0
NC
D10
Q10
Q11
D12
Q13
V
V
NC
V
V
Q7
SS
SS
SS
SS
D11
V
V
V
V
V
V
V
V
V
V
V
V
V
NC
SS
SS
DD
DD
DD
DD
DD
SS
SS
SS
SS
SS
SS
SS
SS
SS
SS
SS
DD
DD
DD
DD
DD
NC
V
V
V
V
V
V
V
V
V
V
V
V
V
V
D6
DDQ
DDQ
DDQ
DDQ
DDQ
DDQ
DDQ
DDQ
DDQ
DDQ
DDQ
DDQ
DDQ
DDQ
Q12
D13
V
V
V
V
V
V
V
V
V
V
NC
G
H
J
NC
V
V
V
V
REF
REF
DDQ
DDQ
NC
NC
D14
NC
Q4
D3
K
L
Q14
D15
D16
Q16
Q17
A
NC
NC
NC
NC
NC
A
Q15
NC
V
V
V
V
NC
Q1
SS
SS
SS
SS
M
N
P
R
V
V
SS
SS
SS
D17
NC
V
A
A
A
A
C
C
A
A
A
V
NC
D0
SS
A
A
A
A
TCK
TMS
CY7C1415BV18 (1M x 36)
1
2
3
4
5
BWS
BWS
A
6
K
7
BWS
BWS
A
8
9
10
NC/144M
Q17
11
CQ
Q8
D8
D7
Q6
Q5
D5
ZQ
D4
Q3
Q2
D2
D1
Q0
TDI
A
B
C
D
E
F
CQ
NC/288M NC/72M
WPS
A
RPS
A
A
2
3
1
0
Q27
D27
D28
Q29
Q30
D30
DOFF
D31
Q32
Q33
D33
D34
Q35
TDO
Q18
Q28
D20
D29
Q21
D22
D18
D19
Q19
Q20
D21
Q22
K
D17
D16
Q16
Q15
D14
Q13
V
V
NC
V
V
Q7
SS
SS
SS
SS
V
V
V
V
V
V
V
V
V
V
V
V
V
D15
SS
SS
DD
DD
DD
DD
DD
SS
SS
SS
SS
SS
SS
SS
SS
SS
SS
SS
DD
DD
DD
DD
DD
V
V
V
V
V
V
V
V
V
V
V
V
V
V
D6
DDQ
DDQ
DDQ
DDQ
DDQ
DDQ
DDQ
DDQ
DDQ
DDQ
DDQ
DDQ
DDQ
DDQ
V
V
V
V
V
V
V
V
V
V
Q14
G
H
J
D13
V
V
V
V
REF
REF
DDQ
DDQ
Q31
D23
D12
Q4
D3
K
L
D32
Q24
Q34
D26
D35
TCK
Q23
D24
D25
Q25
Q26
A
Q12
D11
D10
Q10
Q9
V
V
Q11
Q1
SS
SS
SS
SS
M
N
P
R
V
V
V
V
SS
SS
SS
V
A
A
A
A
C
C
A
A
A
V
D9
SS
A
A
A
A
D0
A
TMS
Document Number: 001-07037 Rev. *D
Page 5 of 30
CY7C1411BV18, CY7C1426BV18
CY7C1413BV18, CY7C1415BV18
Pin Definitions
Pin Name
IO
Pin Description
Data Input Signals. Sampled on the rising edge of K and K clocks when valid write operations are active.
D
Input-
[x:0]
Synchronous CY7C1411BV18 − D
[7:0]
CY7C1426BV18 − D
[8:0]
CY7C1413BV18 − D
CY7C1415BV18 − D
[17:0]
[35:0]
WPS
Input-
Write Port Select − Active LOW. Sampled on the rising edge of the K clock. When asserted active, a
Synchronous write operation is initiated. Deasserting deselects the write port. Deselecting the write port ignores D
.
[x:0]
NWS ,
Input-
Nibble Write Select 0, 1 − Active LOW (CY7C1411BV18 Only). Sampled on the rising edge of the K
. Used to select which nibble is written into the device
during
0
Synchronous and K clocks
NWS ,
when write operations are active
NWS controls D
1
and NWS controls D .
the current portion of the write operations.
All the Nibble Write Selects are sampled on the same edge as the data. Deselecting a Nibble Write Select
ignores the corresponding nibble of data and it is not written into the device
0
[3:0]
1
[7:4]
.
BWS ,
Input-
Byte Write Select 0, 1, 2 and 3 − Active LOW. Sampled on the rising edge of the K and K clocks when
0
BWS ,
Synchronous write operations are active. Used to select which byte is written into the device during the current portion
of the write operations. Bytes not written remain unaltered.
1
BWS ,
2
BWS
CY7C1426BV18 − BWS controls D
3
0
[8:0]
[8:0]
CY7C1413BV18 − BWS controls D
and BWS controls D
[17:9].
0
1
CY7C1415BV18− BWS controls D
[35:27].
, BWS controls D
, BWS controls D
and BWS controls
0
[8:0]
1
[17:9]
2
[26:18]
3
D
All the Byte Write Selects are sampled on the same edge as the data. Deselecting a Byte Write Select
ignores the corresponding byte of data and it is not written into the device
.
A
Input-
Address Inputs. Sampled on the rising edge of the K clock during active read and write operations. These
Synchronous address inputs are multiplexed for both read and write operations. Internally, the device is organized as
4M x 8 (4 arrays each of 1M x 8) for CY7C1411BV18, 4M x 9 (4 arrays each of 1M x 9) for CY7C1426BV18,
2M x 18 (4 arrays each of 512K x 18) for CY7C1413BV18 and 1M x 36 (4 arrays each of 256K x 36) for
CY7C1415BV18. Therefore, only 20 address inputs are needed to access the entire memory array of
CY7C1411BV18 and CY7C1426BV18, 19 address inputs for CY7C1413BV18 and 18 address inputs for
CY7C1415BV18. These inputs are ignored when the appropriate port is deselected.
Q
Outputs-
Data Output Signals. These pins drive out the requested data when the read operation is active. Valid
[x:0]
Synchronous data is driven out on the rising edge of the C and C clocks during read operations or K and K, when in
single clock mode. On deselecting the read port, Q
are automatically tri-stated.
[x:0]
CY7C1411BV18 − Q
[7:0]
CY7C1426BV18 − Q
[8:0]
CY7C1413BV18 − Q
CY7C1415BV18 − Q
[17:0]
[35:0]
RPS
C
Input-
Read Port Select − Active LOW. Sampled on the rising edge of positive input clock (K). When active, a
Synchronous read operation is initiated. Deasserting deselects the read port. When deselected, the pending access is
allowed to complete and the output drivers are automatically tri-stated following the next rising edge of
the C clock. Each read access consists of a burst of four sequential transfers.
Input Clock Positive Input Clock for Output Data. C is used in conjunction with C to clock out the read data from
the device. C and C can be used together to deskew the flight times of various devices on the board back
to the controller. See application example for further details.
Input Clock Negative Input Clock for Output Data. C is used in conjunction with C to clock out the read data from
the device. C and C can be used together to deskew the flight times of various devices on the board back
to the controller. See application example for further details.
C
K
K
Input Clock Positive Input Clock Input. The rising edge of K is used to capture synchronous inputs to the device
and to drive out data through Q
when in single clock mode. All accesses are initiated on the rising
[x:0]
edge of K.
Input Clock Negative Input Clock Input. K is used to capture synchronous inputs being presented to the device and
to drive out data through Q when in single clock mode.
[x:0]
Document Number: 001-07037 Rev. *D
Page 6 of 30
CY7C1411BV18, CY7C1426BV18
CY7C1413BV18, CY7C1415BV18
Pin Definitions (continued)
Pin Name
IO
Pin Description
CQ
Echo Clock CQ Referenced with Respect to C. This is a free running clock and is synchronized to the input clock
for output data (C) of the QDR-II. In the single clock mode, CQ is generated with respect to K. The timings
for the echo clocks are shown in the AC timing table.
CQ
ZQ
Echo Clock CQ Referenced with Respect to C. This is a free running clock and is synchronized to the input clock
for output data (C) of the QDR-II. In the single clock mode, CQ is generated with respect to K. The timings
for the echo clocks are shown in the AC timing table.
Input
Output Impedance Matching Input. This input is used to tune the device outputs to the system data bus
impedance. CQ, CQ, and Q output impedance are set to 0.2 x RQ, where RQ is a resistor connected
[x:0]
between ZQ and ground. Alternatively, this pin can be connected directly to V
, which enables the
DDQ
minimum impedance mode. This pin cannot be connected directly to GND or left unconnected.
DOFF
Input
DLL Turn Off − Active LOW. Connecting this pin to ground turns off the DLL inside the device. The
timings in the DLL turned off operation differs from those listed in this data sheet. For normal operation,
this pin can be connected to a pull up through a 10 KΩ or less pull up resistor. The device behaves in
QDR-I mode when the DLL is turned off. In this mode, the device can be operated at a frequency of up
to 167 MHz with QDR-I timing.
TDO
Output
Input
Input
Input
N/A
TDO for JTAG.
TCK
TCK Pin for JTAG.
TDI
TDI Pin for JTAG.
TMS
TMS Pin for JTAG.
NC
Not Connected to the Die. Can be tied to any voltage level.
Not Connected to the Die. Can be tied to any voltage level.
Not Connected to the Die. Can be tied to any voltage level.
Not Connected to the Die. Can be tied to any voltage level.
Reference Voltage Input. Static input used to set the reference level for HSTL inputs, outputs, and AC
NC/72M
NC/144M
NC/288M
N/A
N/A
N/A
V
Input-
REF
Reference measurement points.
V
V
V
Power Supply Power Supply Inputs to the Core of the Device.
DD
Ground
Ground for the Device.
SS
Power Supply Power Supply Inputs for the Outputs of the Device.
DDQ
Document Number: 001-07037 Rev. *D
Page 7 of 30
CY7C1411BV18, CY7C1426BV18
CY7C1413BV18, CY7C1415BV18
rising edge of the output clocks (C and C, or K and K when in
single clock mode).
Functional Overview
The CY7C1411BV18, CY7C1426BV18, CY7C1413BV18 and
CY7C1415BV18 are synchronous pipelined burst SRAMs with a
read port and a write port. The read port is dedicated to read
operations and the write port is dedicated to write operations.
Data flows into the SRAM through the write port and flows out
through the read port. These devices multiplex the address
inputs to minimize the number of address pins required. By
having separate read and write ports, the QDR-II completely
eliminates the need to turn-around the data bus and avoids any
possible data contention, thereby simplifying system design.
Each access consists of four 8-bit data transfers in the case of
CY7C1411BV18, four 9-bit data transfers in the case of
CY7C1426BV18, four 18-bit data transfers in the case of
CY7C1413BV18, and four 36-bit transfers data in the case of
CY7C1415BV18 in two clock cycles.
When the read port is deselected, the CY7C1413BV18 first
completes the pending read transactions. Synchronous internal
circuitry automatically tri-states the outputs following the next
rising edge of the positive output clock (C). This enables for a
transition between devices without the insertion of wait states in
a depth expanded memory.
Write Operations
Write operations are initiated by asserting WPS active at the
rising edge of the positive input clock (K). On the following K
clock rise the data presented to D
the lower 18-bit write data register, provided BWS
is latched and stored into
[17:0]
are both
[1:0]
asserted active. On the subsequent rising edge of the negative
input clock (K), the information presented to D is also stored
[17:0]
are both asserted
into the write data register, provided BWS
[1:0]
This device operates with a read latency of one and half cycles
when DOFF pin is tied HIGH. When DOFF pin is set LOW or
active. This process continues for one more cycle until four 18-bit
words (a total of 72 bits) of data are stored in the SRAM. The 72
bits of data are then written into the memory array at the specified
location. Therefore, write accesses to the device can not be
initiated on two consecutive K clock rises. The internal logic of
the device ignores the second write request. Initiate write access
on every other rising edge of the positive input clock (K). Doing
so pipelines the data flow such that 18 bits of data transfers into
the device on every rising edge of the input clocks (K and K).
connected to V then device behaves in QDR-I mode with a
SS
read latency of one clock cycle.
Accesses for both ports are initiated on the positive input clock
(K). All synchronous input timing is referenced from the rising
edge of the input clocks (K and K) and all output timing is refer-
enced to the output clocks (C and C or K and K when in single
clock mode).
When deselected, the write port ignores all inputs after the
pending write operations have been completed.
All synchronous data inputs (D
controlled by the input clocks (K and K). All synchronous data
) pass through input registers
[x:0]
outputs (Q ) pass through output registers controlled by the
rising edge of the output clocks (C and C or K and K when in
single clock mode).
[x:0]
Byte Write Operations
Byte write operations are supported by the CY7C1413BV18. A
write operation is initiated as described in the Write Operations
section. The bytes that are written are determined by BWS and
All synchronous control (RPS, WPS, BWS
) inputs pass
[x:0]
0
through input registers controlled by the rising edge of the input
clocks (K and K).
BWS , which are sampled with each set of 18-bit data words.
1
Asserting the appropriate Byte Write Select input during the data
portion of a write latches the data being presented and writes it
into the device. Deasserting the Byte Write Select input during
the data portion of a write enables the data stored in the device
for that byte to remain unaltered. This feature can be used to
simplify read, modify, or write operations to a byte write
operation.
CY7C1413BV18 is described in the following sections. The
same basic descriptions apply to CY7C1411BV18,
CY7C1426BV18, and CY7C1415BV18.
Read Operations
The CY7C1413BV18 is organized internally as four arrays of
512K x 18. Accesses are completed in a burst of four sequential
18-bit data words. Read operations are initiated by asserting
RPS active at the rising edge of the positive input clock (K). The
address presented to address inputs are stored in the read
address register. Following the next K clock rise, the corre-
sponding lowest order 18-bit word of data is driven onto the
Single Clock Mode
The CY7C1411BV18 can be used with a single clock that
controls both the input and output registers. In this mode the
device recognizes only a single pair of input clock (K and K) that
control both the input and output registers. This operation is
identical to the operation if the device had zero skew between
the K/K and C/C clocks. All timing parameters remains the same
in this mode. To use this mode of operation, the user must tie C
and C HIGH at power on. This function is a strap option and not
alterable during device operation.
Q
using C as the output timing reference. On the subse-
[17:0]
quent rising edge of C, the next 18-bit data word is driven onto
the Q . This process continues until all four 18-bit data words
[17:0]
have been driven out onto Q
. The requested data is valid
[17:0]
0.45 ns from the rising edge of the output clock (C or C, or K or
K when in single clock mode). To maintain the internal logic, each
read access must be allowed to complete. Each read access
consists of four 18-bit data words and takes two clock cycles to
complete. Therefore, read accesses to the device can not be
initiated on two consecutive K clock rises. The internal logic of
the device ignores the second read request. Read accesses can
be initiated on every other K clock rise. Doing so pipelines the
data flow such that data is transferred out of the device on every
Concurrent Transactions
The read and write ports on the CY7C1413BV18 operates
independently of one another. As each port latches the address
inputs on different clock edges, the user can read or write to any
location, regardless of the transaction on the other port. If the
ports access the same location when a read follows a write in
successive clock cycles, the SRAM delivers the most recent
information associated with the specified address location. This
Document Number: 001-07037 Rev. *D
Page 8 of 30
CY7C1411BV18, CY7C1426BV18
CY7C1413BV18, CY7C1415BV18
includes forwarding data from a write cycle that was initiated on
the previous K clock rise.
of ±15% is between 175Ω and 350Ω, with V
= 1.5V. The
DDQ
output impedance is adjusted every 1024 cycles upon power up
to account for drifts in supply voltage and temperature.
Read accesses and write access must be scheduled such that
one transaction is initiated on any clock cycle. If both ports are
selected on the same K clock rise, the arbitration depends on the
previous state of the SRAM. If both ports were deselected, the
read port takes priority. If a read was initiated on the previous
cycle, the write port takes priority (as read operations can not be
initiated on consecutive cycles). If a write was initiated on the
previous cycle, the read port takes priority (as write operations
can not be initiated on consecutive cycles). Therefore, asserting
both port selects active from a deselected state results in alter-
nating read or write operations being initiated, with the first
access being a read.
Echo Clocks
Echo clocks are provided on the QDR-II to simplify data capture
on high-speed systems. Two echo clocks are generated by the
QDR-II. CQ is referenced with respect to C and CQ is referenced
with respect to C. These are free running clocks and are synchro-
nized to the output clock of the QDR-II. In the single clock mode,
CQ is generated with respect to K and CQ is generated with
respect to K. The timings for the echo clocks are shown in the
DLL
Depth Expansion
These chips use a Delay Lock Loop (DLL) that is designed to
function between 120 MHz and the specified maximum clock
frequency. During power up, when the DOFF is tied HIGH, the
DLL gets locked after 1024 cycles of stable clock. The DLL can
also be reset by slowing or stopping the input clock K and K for
a minimum of 30 ns. However, it is not necessary to reset the
DLL to lock to the desired frequency. The DLL automatically
locks 1024 clock cycles after a stable clock is presented. The
DLL may be disabled by applying ground to the DOFF pin. When
the DLL is turned off, the device behaves in QDR-I mode (with
one cycle latency and a longer access time). For information
refer to the application note “DLL Considerations in
QDRII/DDRII”.
The CY7C1413BV18 has a port select input for each port. This
enables for easy depth expansion. Both port selects are sampled
on the rising edge of the positive input clock only (K). Each port
select input can deselect the specified port. Deselecting a port
does not affect the other port. All pending transactions (read and
write) completes prior to the device being deselected.
Programmable Impedance
An external resistor, RQ, must be connected between the ZQ pin
on the SRAM and V to allow the SRAM to adjust its output
driver impedance. The value of RQ must be 5X the value of the
intended line impedance driven by the SRAM. The allowable
range of RQ to guarantee impedance matching with a tolerance
SS
Application Example
Figure 1 shows four QDR-II used in an application.
Figure 1. Application Example
SRAM #1
R = 250ohms
SRAM #4
R = 250ohms
ZQ
CQ/CQ#
Q
ZQ
CQ/CQ#
Q
R
P
S
#
R W
B
W
P
B
W
S
Vt
P
S
#
P
S
#
W
S
#
D
A
D
A
S
R
C
C#
K
K#
C
C#
K
K#
#
#
DATA IN
DATA OUT
Address
Vt
Vt
R
RPS#
BUS
MASTER
(CPU
or
WPS#
BWS#
CLKIN/CLKIN#
Source K
Source K#
ASIC)
Delayed K
Delayed K#
R
R = 50ohms
Vt = Vddq/2
Document Number: 001-07037 Rev. *D
Page 9 of 30
CY7C1411BV18, CY7C1426BV18
CY7C1413BV18, CY7C1415BV18
Truth Table
The truth table for CY7C1411BV18, CY7C1426BV18, CY7C1413BV18, and CY7C1415BV18 follows.
Operation
Write Cycle:
K
RPS WPS
DQ
DQ
DQ
DQ
[8]
L-H
H
L
D(A) at K(t + 1)↑ D(A + 1) at K(t + 1)↑ D(A + 2) at K(t + 2)↑ D(A + 3) at K(t + 2)↑
Load address on the rising
edge of K; input write data
on two consecutive K and
K rising edges.
Read Cycle:
L-H
L-H
L
X
Q(A) at C(t + 1)↑ Q(A + 1) at C(t + 2)↑ Q(A + 2) at C(t + 2)↑ Q(A + 3) at C(t + 3)↑
Load address on the rising
edge of K; wait one and a
half cycle; read data on
two consecutive C and C
rising edges.
NOP: No Operation
H
H
X
D = X
Q = High-Z
D = X
Q = High-Z
D = X
Q = High-Z
D = X
Q = High-Z
Standby: Clock Stopped Stopped
X
Previous State
Previous State
Previous State
Previous State
Write Cycle Descriptions
The write cycle description table for CY7C1411BV18 and CY7C1413BV18 follows.
BWS / BWS /
0
1
K
Comments
K
NWS
NWS
1
0
L
L
L–H
–
During the data portion of a write sequence :
CY7C1411BV18 − both nibbles (D
) are written into the device,
[7:0]
CY7C1413BV18 − both bytes (D
) are written into the device.
[17:0]
L
L
–
L–H
–
L-H During the data portion of a write sequence :
CY7C1411BV18 − both nibbles (D
) are written into the device,
[7:0]
CY7C1413BV18 − both bytes (D
) are written into the device.
[17:0]
L
H
H
L
–
During the data portion of a write sequence :
CY7C1411BV18 − only the lower nibble (D
) is written into the device, D
) is written into the device, D
remains unaltered.
remains unaltered.
[3:0]
[7:4]
[17:9]
CY7C1413BV18 − only the lower byte (D
[8:0]
L
L–H During the data portion of a write sequence :
CY7C1411BV18 − only the lower nibble (D
) is written into the device, D
remains unaltered.
remains unaltered.
[3:0]
[7:4]
CY7C1413BV18 − only the lower byte (D
) is written into the device, D
[8:0]
[17:9]
H
H
L–H
–
–
During the data portion of a write sequence :
CY7C1411BV18 − only the upper nibble (D
) is written into the device, D
) is written into the device, D
remains unaltered.
[3:0]
[7:4]
CY7C1413BV18 − only the upper byte (D
remains unaltered.
[17:9]
[8:0]
L
L–H During the data portion of a write sequence :
CY7C1411BV18 − only the upper nibble (D
) is written into the device, D
) is written into the device, D
remains unaltered.
remains unaltered.
[7:4]
[3:0]
[8:0]
CY7C1413BV18 − only the upper byte (D
[17:9]
H
H
H
H
L–H
–
–
No data is written into the devices during this portion of a write operation.
L–H No data is written into the devices during this portion of a write operation.
Notes
2. X = “Don't Care,” H = Logic HIGH, L = Logic LOW, ↑represents rising edge.
3. Device powers up deselected with the outputs in a tri-state condition.
4. “A” represents address location latched by the devices when transaction was initiated. A + 1, A + 2, and A +3 represents the address sequence in the burst.
5. “t” represents the cycle at which a read/write operation is started. t + 1, t + 2, and t + 3 are the first, second and third clock cycles respectively succeeding the “t” clock cycle.
6. Data inputs are registered at K and K rising edges. Data outputs are delivered on C and C rising edges, except when in single clock mode.
7. It is recommended that K = K and C = C = HIGH when clock is stopped. This is not essential, but permits most rapid restart by overcoming transmission line charging
symmetrically.
8. If this signal was LOW to initiate the previous cycle, this signal becomes a “Don’t Care” for this operation.
9. This signal was HIGH on previous K clock rise. Initiating consecutive read or write operations on consecutive K clock rises is not permitted. The device ignores the
second read or write request.
10. Is based on a write cycle that was initiated in accordance with the Write Cycle Descriptions table. NWS , NWS , BWS , BWS , BWS , and BWS can be altered on
0
1
0
1
2
3
different portions of a write cycle, as long as the setup and hold requirements are achieved.
Document Number: 001-07037 Rev. *D
Page 10 of 30
CY7C1411BV18, CY7C1426BV18
CY7C1413BV18, CY7C1415BV18
Write Cycle Descriptions
The write cycle description table for CY7C1426BV18 follows.
BWS
K
L–H
–
K
Comments
0
L
L
–
During the Data portion of a write sequence, the single byte (D
) is written into the device.
) is written into the device.
[8:0]
L–H During the Data portion of a write sequence, the single byte (D
[8:0]
H
H
L–H
–
–
No data is written into the device during this portion of a write operation.
L–H No data is written into the device during this portion of a write operation.
Write Cycle Descriptions
The write cycle description table for CY7C1415BV18 follows.
BWS
BWS
BWS
BWS
3
K
K
Comments
0
1
2
L
L
L
L
L–H
–
During the Data portion of a write sequence, all four bytes (D
the device.
) are written into
) are written into
[35:0]
L
L
L
H
H
L
L
H
H
H
H
L
L
H
H
H
H
H
H
L
–
L–H
–
L–H During the Data portion of a write sequence, all four bytes (D
the device.
[35:0]
–
During the Data portion of a write sequence, only the lower byte (D
) is written
) is written
[8:0]
into the device. D
remains unaltered.
[35:9]
L
L–H During the Data portion of a write sequence, only the lower byte (D
into the device. D remains unaltered.
[8:0]
[35:9]
H
H
H
H
H
H
L–H
–
–
During the Data portion of a write sequence, only the byte (D
) is written into
[17:9]
the device. D
and D
remains unaltered.
[8:0]
[35:18]
L
L–H During the Data portion of a write sequence, only the byte (D
the device. D and D remains unaltered.
) is written into
[17:9]
[8:0]
[35:18]
H
H
H
H
L–H
–
–
During the Data portion of a write sequence, only the byte (D
) is written into
) is written into
) is written into
) is written into
[26:18]
[26:18]
[35:27]
[35:27]
the device. D
and D
remains unaltered.
[17:0]
[35:27]
L
L–H During the Data portion of a write sequence, only the byte (D
the device. D and D remains unaltered.
[17:0]
[35:27]
H
H
L–H
–
–
During the Data portion of a write sequence, only the byte (D
the device. D remains unaltered.
[26:0]
L
L–H During the Data portion of a write sequence, only the byte (D
the device. D remains unaltered.
[26:0]
H
H
H
H
H
H
H
H
L–H
–
–
No data is written into the device during this portion of a write operation.
L–H No data is written into the device during this portion of a write operation.
Document Number: 001-07037 Rev. *D
Page 11 of 30
CY7C1411BV18, CY7C1426BV18
CY7C1413BV18, CY7C1415BV18
Instruction Register
IEEE 1149.1 Serial Boundary Scan (JTAG)
Three-bit instructions can be serially loaded into the instruction
register. This register is loaded when it is placed between the TDI
page 15. Upon power up, the instruction register is loaded with
the IDCODE instruction. It is also loaded with the IDCODE
instruction if the controller is placed in a reset state, as described
in the previous section.
These SRAMs incorporate a serial boundary scan Test Access
Port (TAP) in the FBGA package. This part is fully compliant with
IEEE Standard #1149.1-2001. The TAP operates using JEDEC
standard 1.8V IO logic levels.
Disabling the JTAG Feature
It is possible to operate the SRAM without using the JTAG
feature. To disable the TAP controller, TCK must be tied LOW
When the TAP controller is in the Capture-IR state, the two least
significant bits are loaded with a binary “01” pattern to allow for
fault isolation of the board level serial test path.
(V ) to prevent clocking of the device. TDI and TMS are inter-
SS
nally pulled up and may be unconnected. They may alternatively
be connected to V through a pull up resistor. TDO must be left
unconnected. Upon power up, the device comes up in a reset
state, which does not interfere with the operation of the device.
Bypass Register
DD
To save time when serially shifting data through registers, it is
sometimes advantageous to skip certain chips. The bypass
register is a single-bit register that can be placed between TDI
and TDO pins. This enables shifting of data through the SRAM
with minimal delay. The bypass register is set LOW (V ) when
the BYPASS instruction is executed.
Test Access Port—Test Clock
The test clock is used only with the TAP controller. All inputs are
captured on the rising edge of TCK. All outputs are driven from
the falling edge of TCK.
SS
Boundary Scan Register
Test Mode Select (TMS)
The boundary scan register is connected to all of the input and
output pins on the SRAM. Several No Connect (NC) pins are also
included in the scan register to reserve pins for higher density
devices.
The TMS input is used to give commands to the TAP controller
and is sampled on the rising edge of TCK. This pin may be left
unconnected if the TAP is not used. The pin is pulled up inter-
nally, resulting in a logic HIGH level.
The boundary scan register is loaded with the contents of the
RAM input and output ring when the TAP controller is in the
Capture-DR state and is then placed between the TDI and TDO
pins when the controller is moved to the Shift-DR state. The
EXTEST, SAMPLE/PRELOAD, and SAMPLE Z instructions can
be used to capture the contents of the input and output ring.
Test Data-In (TDI)
The TDI pin is used to serially input information into the registers
and can be connected to the input of any of the registers. The
register between TDI and TDO is chosen by the instruction that
is loaded into the TAP instruction register. For information on
loading the instruction register, see the TAP Controller State
unconnected if the TAP is unused in an application. TDI is
connected to the most significant bit (MSB) on any register.
the bits are connected. Each bit corresponds to one of the bumps
on the SRAM package. The MSB of the register is connected to
TDI, and the LSB is connected to TDO.
Identification (ID) Register
Test Data-Out (TDO)
The ID register is loaded with a vendor-specific, 32-bit code
during the Capture-DR state when the IDCODE command is
loaded in the instruction register. The IDCODE is hardwired into
the SRAM and can be shifted out when the TAP controller is in
the Shift-DR state. The ID register has a vendor code and other
The TDO output pin is used to serially clock data out from the
registers. The output is active, depending upon the current state
The output changes on the falling edge of TCK. TDO is
connected to the least significant bit (LSB) of any register.
Performing a TAP Reset
A Reset is performed by forcing TMS HIGH (V ) for five rising
TAP Instruction Set
DD
edges of TCK. This Reset does not affect the operation of the
SRAM and can be performed while the SRAM is operating. At
power up, the TAP is reset internally to ensure that TDO comes
up in a high-Z state.
Eight different instructions are possible with the three-bit
instruction register. All combinations are listed in Instruction
RESERVED and must not be used. The other five instructions
are described in this section in detail.
TAP Registers
Instructions are loaded into the TAP controller during the Shift-IR
state when the instruction register is placed between TDI and
TDO. During this state, instructions are shifted through the
instruction register through the TDI and TDO pins. To execute
the instruction after it is shifted in, the TAP controller must be
moved into the Update-IR state.
Registers are connected between the TDI and TDO pins to scan
the data in and out of the SRAM test circuitry. Only one register
can be selected at a time through the instruction registers. Data
is serially loaded into the TDI pin on the rising edge of TCK. Data
is output on the TDO pin on the falling edge of TCK.
Document Number: 001-07037 Rev. *D
Page 12 of 30
CY7C1411BV18, CY7C1426BV18
CY7C1413BV18, CY7C1415BV18
IDCODE
PRELOAD places an initial data pattern at the latched parallel
outputs of the boundary scan register cells before the selection
of another boundary scan test operation.
The IDCODE instruction loads a vendor-specific, 32-bit code into
the instruction register. It also places the instruction register
between the TDI and TDO pins and shifts the IDCODE out of the
device when the TAP controller enters the Shift-DR state. The
IDCODE instruction is loaded into the instruction register at
power up or whenever the TAP controller is supplied a
Test-Logic-Reset state.
The shifting of data for the SAMPLE and PRELOAD phases can
occur concurrently when required, that is, while the data
captured is shifted out, the preloaded data can be shifted in.
BYPASS
When the BYPASS instruction is loaded in the instruction register
and the TAP is placed in a Shift-DR state, the bypass register is
placed between the TDI and TDO pins. The advantage of the
BYPASS instruction is that it shortens the boundary scan path
when multiple devices are connected together on a board.
SAMPLE Z
The SAMPLE Z instruction connects the boundary scan register
between the TDI and TDO pins when the TAP controller is in a
Shift-DR state. The SAMPLE Z command puts the output bus
into a High-Z state until the next command is supplied during the
Update IR state.
EXTEST
The EXTEST instruction drives the preloaded data out through
the system output pins. This instruction also connects the
boundary scan register for serial access between the TDI and
TDO in the Shift-DR controller state.
SAMPLE/PRELOAD
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. When
the SAMPLE/PRELOAD instructions are loaded into the
instruction register and the TAP controller is in the Capture-DR
state, a snapshot of data on the input and output pins is captured
in the boundary scan register.
EXTEST OUTPUT BUS TRI-STATE
IEEE Standard 1149.1 mandates that the TAP controller be able
to put the output bus into a tri-state mode.
The user must be aware that the TAP controller clock can only
operate at a frequency up to 20 MHz, while the SRAM clock
operates more than an order of magnitude faster. Because there
is a large difference in the clock frequencies, it is possible that
during the Capture-DR state, an input or output undergoes a
transition. The TAP may then try to capture a signal while in
transition (metastable state). This does not harm the device, but
there is no guarantee as to the value that is captured.
Repeatable results may not be possible.
The boundary scan register has a special bit located at bit #108.
When this scan cell, called the “extest output bus tri-state,” is
latched into the preload register during the Update-DR state in
the TAP controller, it directly controls the state of the output
(Q-bus) pins, when the EXTEST is entered as the current
instruction. When HIGH, it enables the output buffers to drive the
output bus. When LOW, this bit places the output bus into a
High-Z condition.
To guarantee that the boundary scan register captures the
correct value of a signal, the SRAM signal must be stabilized
long enough to meet the TAP controller's capture setup plus hold
times (t and t ). The SRAM clock input might not be captured
correctly if there is no way in a design to stop (or slow) the clock
during a SAMPLE/PRELOAD instruction. If this is an issue, it is
still possible to capture all other signals and simply ignore the
value of the CK and CK captured in the boundary scan register.
This bit can be set by entering the SAMPLE/PRELOAD or
EXTEST command, and then shifting the desired bit into that cell,
during the Shift-DR state. During Update-DR, the value loaded
into that shift-register cell latches into the preload register. When
the EXTEST instruction is entered, this bit directly controls the
output Q-bus pins. Note that this bit is preset HIGH to enable the
output when the device is powered up, and also when the TAP
controller is in the Test-Logic-Reset state.
CS
CH
After the data is captured, it is possible to shift out the data by
putting the TAP into the Shift-DR state. This places the boundary
scan register between the TDI and TDO pins.
Reserved
These instructions are not implemented but are reserved for
future use. Do not use these instructions.
Document Number: 001-07037 Rev. *D
Page 13 of 30
CY7C1411BV18, CY7C1426BV18
CY7C1413BV18, CY7C1415BV18
TAP Controller State Diagram
The state diagram for the TAP controller follows.
TEST-LOGIC
1
RESET
0
1
1
1
SELECT
TEST-LOGIC/
SELECT
0
IR-SCAN
IDLE
DR-SCAN
0
0
1
1
CAPTURE-DR
0
CAPTURE-IR
0
0
1
0
1
SHIFT-DR
1
SHIFT-IR
1
EXIT1-DR
0
EXIT1-IR
0
0
0
PAUSE-DR
1
PAUSE-IR
1
0
0
EXIT2-DR
1
EXIT2-IR
1
UPDATE-IR
0
UPDATE-DR
1
1
0
Note
11. The 0/1 next to each state represents the value at TMS at the rising edge of TCK.
Document Number: 001-07037 Rev. *D
Page 14 of 30
CY7C1411BV18, CY7C1426BV18
CY7C1413BV18, CY7C1415BV18
TAP Controller Block Diagram
0
Bypass Register
2
1
1
1
0
0
0
Selection
TDI
Selection
Circuitry
TDO
Instruction Register
Circuitry
31 30
29
.
.
2
Identification Register
.
108
.
.
.
2
Boundary Scan Register
TCK
TMS
TAP Controller
TAP Electrical Characteristics
Over the Operating Range
Parameter
Description
Output HIGH Voltage
Test Conditions
= −2.0 mA
Min
1.4
1.6
Max
Unit
V
V
V
V
V
V
I
I
I
I
I
V
V
OH1
OH2
OL1
OL2
IH
OH
OH
OL
OL
Output HIGH Voltage
Output LOW Voltage
Output LOW Voltage
Input HIGH Voltage
= −100 μA
= 2.0 mA
0.4
0.2
V
= 100 μA
V
0.65V
V
+ 0.3
V
DD
DD
Input LOW Voltage
–0.3
–5
0.35V
5
V
IL
DD
Input and Output Load Current
GND ≤ V ≤ V
DD
μA
X
I
Notes
12. These characteristics pertain to the TAP inputs (TMS, TCK, TDI and TDO). Parallel load levels are specified in the Electrical Characteristics Table.
13. Overshoot: V (AC) < V + 0.85V (Pulse width less than t /2).
/2), Undershoot: V (AC) > −1.5V (Pulse width less than t
IH
DDQ
CYC
IL
CYC
14. All Voltage referenced to Ground.
Document Number: 001-07037 Rev. *D
Page 15 of 30
CY7C1411BV18, CY7C1426BV18
CY7C1413BV18, CY7C1415BV18
TAP AC Switching Characteristics
Over the Operating Range
Parameter
Description
Min
Max
Unit
ns
t
t
t
t
TCK Clock Cycle Time
TCK Clock Frequency
TCK Clock HIGH
50
TCYC
TF
20
MHz
ns
20
20
TH
TCK Clock LOW
ns
TL
Setup Times
t
t
t
TMS Setup to TCK Clock Rise
TDI Setup to TCK Clock Rise
Capture Setup to TCK Rise
5
5
5
ns
ns
ns
TMSS
TDIS
CS
Hold Times
t
t
t
TMS Hold after TCK Clock Rise
TDI Hold after Clock Rise
5
5
5
ns
ns
ns
TMSH
TDIH
CH
Capture Hold after Clock Rise
Output Times
t
t
TCK Clock LOW to TDO Valid
TCK Clock LOW to TDO Invalid
10
ns
ns
TDOV
TDOX
0
TAP Timing and Test Conditions
Figure 2 shows the TAP timing and test conditions.
Figure 2. TAP Timing and Test Conditions
0.9V
ALL INPUT PULSES
1.8V
50Ω
0.9V
TDO
0V
Z = 50
Ω
0
C = 20 pF
L
t
t
TH
TL
GND
(a)
Test Clock
TCK
t
TCYC
t
TMSH
t
TMSS
Test Mode Select
TMS
t
TDIS
t
TDIH
Test Data In
TDI
Test Data Out
TDO
t
TDOV
t
TDOX
Notes
15. t and t refer to the setup and hold time requirements of latching data from the boundary scan register.
CS
CH
16. Test conditions are specified using the load in TAP AC Test Conditions. t /t = 1 ns.
R
F
Document Number: 001-07037 Rev. *D
Page 16 of 30
CY7C1411BV18, CY7C1426BV18
CY7C1413BV18, CY7C1415BV18
Identification Register Definitions
Value
Instruction Field
Description
CY7C1411BV18
CY7C1426BV18
000
CY7C1413BV18
000
CY7C1415BV18
Revision Number
(31:29)
000
000
Version number.
Cypress Device ID 11010011011000111 11010011011001111 11010011011010111 11010011011100111 Defines the type of
(28:12)
SRAM.
Cypress JEDEC ID
(11:1)
00000110100
1
00000110100
1
00000110100
1
00000110100
1
Allows unique
identification of
SRAM vendor.
ID Register
Presence (0)
Indicates the
presence of an ID
register.
Scan Register Sizes
Register Name
Bit Size
Instruction
Bypass
3
1
ID
32
109
Boundary Scan
Instruction Codes
Instruction
EXTEST
Code
000
Description
Captures the input and output ring contents.
IDCODE
001
Loads the ID register with the vendor ID code and places the register between TDI and TDO.
This operation does not affect SRAM operation.
SAMPLE Z
010
Captures the input and output contents. Places the boundary scan register between TDI and
TDO. Forces all SRAM output drivers to a High-Z state.
RESERVED
011
100
Do Not Use: This instruction is reserved for future use.
SAMPLE/PRELOAD
Captures the input and output ring contents. Places the boundary scan register between TDI
and TDO. Does not affect the SRAM operation.
RESERVED
RESERVED
BYPASS
101
110
111
Do Not Use: This instruction is reserved for future use.
Do Not Use: This instruction is reserved for future use.
Places the bypass register between TDI and TDO. This operation does not affect SRAM
operation.
Document Number: 001-07037 Rev. *D
Page 17 of 30
CY7C1411BV18, CY7C1426BV18
CY7C1413BV18, CY7C1415BV18
Boundary Scan Order
Bit #
0
Bump ID
6R
Bit #
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
Bump ID
10G
9G
Bit #
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
Bump ID
6A
5B
5A
4A
5C
4B
3A
2A
1A
2B
3B
1C
1B
3D
3C
1D
2C
3E
2D
2E
1E
2F
Bit #
84
Bump ID
1J
1
6P
85
2J
2
6N
11F
11G
9F
86
3K
3
7P
87
3J
4
7N
88
2K
5
7R
10F
11E
10E
10D
9E
89
1K
6
8R
90
2L
7
8P
91
3L
8
9R
92
1M
1L
9
11P
10P
10N
9P
93
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
10C
11D
9C
94
3N
95
3M
1N
96
10M
11N
9M
9D
97
2M
3P
11B
11C
9B
98
99
2N
9N
100
101
102
103
104
105
106
107
108
2P
11L
11M
9L
10B
11A
10A
9A
1P
3R
4R
10L
11K
10K
9J
4P
8B
5P
7C
3F
5N
6C
1G
1F
5R
9K
8A
Internal
10J
11J
11H
7A
3G
2G
1H
7B
6B
Document Number: 001-07037 Rev. *D
Page 18 of 30
CY7C1411BV18, CY7C1426BV18
CY7C1413BV18, CY7C1415BV18
DLL Constraints
Power Up Sequence in QDR-II SRAM
■ DLL uses K clock as its synchronizing input. The input must
have low phase jitter, which is specified as t
QDR-II SRAMs must be powered up and initialized in a
predefined manner to prevent undefined operations.
.
KC Var
■ The DLL functions at frequencies down to 120 MHz.
Power Up Sequence
■ If the input clock is unstable and the DLL is enabled, then the
DLL may lock onto an incorrect frequency, causing unstable
SRAM behavior. To avoid this, provide1024 cycles stable clock
to relock to the desired clock frequency.
■ Apply power and drive DOFF either HIGH or LOW (All other
inputs can be HIGH or LOW).
❐ Apply V before V
.
DD
DDQ
❐ Apply V
before V
or at the same time as V
.
DDQ
REF
REF
❐ Drive DOFF HIGH.
■ Provide stable DOFF (HIGH), power and clock (K, K) for 1024
cycles to lock the DLL.
Figure 3. Power Up Waveforms
K
K
Unstable Clock
> 1024 Stable clock
Stable)
DDQ
Start Normal
Operation
/
V
Clock Start (Clock Starts after V
DD
Stable (< +/- 0.1V DC per 50ns )
/
/
V
VDDQ
V
VDD
DD
DDQ
Fix High (or tie to V
)
DDQ
DOFF
Document Number: 001-07037 Rev. *D
Page 19 of 30
CY7C1411BV18, CY7C1426BV18
CY7C1413BV18, CY7C1415BV18
Current into Outputs (LOW) ........................................ 20 mA
Static Discharge Voltage (MIL-STD-883, M. 3015).. > 2001V
Latch-up Current ................................................... > 200 mA
Maximum Ratings
Exceeding maximum ratings may impair the useful life of the
device. These user guidelines are not tested.
Storage Temperature ................................. –65°C to +150°C
Ambient Temperature with Power Applied.. –55°C to +125°C
Operating Range
Ambient
Range
Commercial
Industrial
Temperature (T )
V
V
DDQ
Supply Voltage on V Relative to GND........–0.5V to +2.9V
A
DD
DD
0°C to +70°C
1.8 ± 0.1V
1.4V to
Supply Voltage on V
Relative to GND.......–0.5V to +V
DD
DDQ
V
DD
–40°C to +85°C
DC Applied to Outputs in High-Z ........ –0.5V to V
+ 0.3V
DDQ
DC Input Voltage
.............................. –0.5V to V + 0.3V
DD
Electrical Characteristics
DC Electrical Characteristics
Over the Operating Range
Parameter
Description
Power Supply Voltage
IO Supply Voltage
Test Conditions
Min
1.7
1.4
Typ
Max
Unit
V
1.8
1.5
1.9
V
V
DD
V
V
V
V
V
V
V
I
V
DD
DDQ
OH
Output HIGH Voltage
Output LOW Voltage
Output HIGH Voltage
Output LOW Voltage
Input HIGH Voltage
Input LOW Voltage
Note 18
Note 19
V
V
/2 – 0.12
/2 – 0.12
– 0.2
V
V
/2 + 0.12
/2 + 0.12
V
DDQ
DDQ
DDQ
V
OL
DDQ
I
I
= −0.1 mA, Nominal Impedance
V
V
V
OH(LOW)
OL(LOW)
IH
OH
OL
DDQ
DDQ
= 0.1 mA, Nominal Impedance
V
0.2
V
SS
V
+ 0.1
V
+ 0.15
V
REF
DDQ
–0.3
V
– 0.1
V
IL
REF
Input Leakage Current
Output Leakage Current
Input Reference Voltage
GND ≤ V ≤ V
−5
−5
5
μA
μA
V
X
I
DDQ
I
GND ≤ V ≤ V
Output Disabled
5
OZ
I
DDQ,
V
Typical Value = 0.75V
0.68
0.75
0.95
885
900
940
1040
815
830
865
950
745
760
790
870
REF
I
V
Operating Supply
V
= Max,
300MHz
278MHz
250MHz
(x8)
(x9)
mA
DD
DD
DD
I
= 0 mA,
OUT
f = f
= 1/t
MAX
CYC
(x18)
(x36)
(x8)
mA
mA
(x9)
(x18)
(x36)
(x8)
(x9)
(x18)
(x36)
Notes
17. Power up: Assumes a linear ramp from 0V to V (min) within 200 ms. During this time V < V and V
< V .
DD
DD
IH
DD
DDQ
18. Output are impedance controlled. I = −(V
/2)/(RQ/5) for values of 175 ohms <= RQ <= 350 ohms.
/2)/(RQ/5) for values of 175 ohms <= RQ <= 350 ohms.
DDQ
OH
DDQ
19. Output are impedance controlled. I = (V
OL
20. V
(min) = 0.68V or 0.46V
, whichever is larger, V
(max) = 0.95V or 0.54V
, whichever is smaller.
REF
DDQ
REF
DDQ
21. The operation current is calculated with 50% read cycle and 50% write cycle.
Document Number: 001-07037 Rev. *D
Page 20 of 30
CY7C1411BV18, CY7C1426BV18
CY7C1413BV18, CY7C1415BV18
Electrical Characteristics (continued)
DC Electrical Characteristics
[14]
Over the Operating Range
Parameter
Description
Test Conditions
200MHz
= 0 mA,
Min
Typ
Max
620
620
655
715
535
535
565
615
370
370
370
400
355
355
355
370
355
355
355
370
300
300
300
300
270
270
270
270
Unit
I
V
Operating Supply
V
= Max,
(x8)
(x9)
mA
DD
DD
DD
I
OUT
f = f
= 1/t
MAX
CYC
(x18)
(x36)
(x8)
167MHz
300MHz
278MHz
250MHz
200MHz
167MHz
mA
mA
mA
mA
mA
mA
(x9)
(x18)
(x36)
(x8)
I
Automatic Power down
Current
Max V
,
SB1
DD
Both Ports Deselected,
(x9)
V
≥ V or V ≤ V
IN
IH
IN
IL
(x18)
(x36)
(x8)
f = f
Static
= 1/t
, Inputs
MAX
CYC
(x9)
(x18)
(x36)
(x8)
(x9)
(x18)
(x36)
(x8)
(x9)
(x18)
(x36)
(x8)
(x9)
(x18)
(x36)
AC Electrical Characteristics
Over the Operating Range
Parameter
Description
Input HIGH Voltage
Input LOW Voltage
Test Conditions
Min
+ 0.2
REF
Typ
–
Max
Unit
V
V
V
–
IH
IL
V
–
–
V
– 0.2
V
REF
Document Number: 001-07037 Rev. *D
Page 21 of 30
CY7C1411BV18, CY7C1426BV18
CY7C1413BV18, CY7C1415BV18
Capacitance
Tested initially and after any design or process change that may affect these parameters.
Max
Parameter
Description
Input Capacitance
Test Conditions
Unit
C
T = 25°C, f = 1 MHz, V = 1.8V, V = 1.5V
DDQ
5
4
6
pF
pF
pF
IN
A
DD
C
C
Clock Input Capacitance
Output Capacitance
CLK
O
Thermal Resistance
Tested initially and after any design or process change that may affect these parameters.
165 FBGA
Package
Parameter
Description
Test Conditions
Unit
Θ
Thermal Resistance
(Junction to Ambient)
Test conditions follow standard test methods and
procedures for measuring thermal impedance, in
accordance with EIA/JESD51.
17.2
°C/W
JA
Θ
Thermal Resistance
(Junction to Case)
3.2
°C/W
JC
Figure 4. AC Test Loads and Waveforms
V
REF = 0.75V
0.75V
VREF
VREF
0.75V
R = 50Ω
OUTPUT
ALL INPUT PULSES
1.25V
Z = 50Ω
0
OUTPUT
Device
Under
Test
R = 50Ω
L
0.75V
Device
Under
0.25V
5 pF
VREF = 0.75V
Slew Rate = 2 V/ns
ZQ
Test
ZQ
RQ =
RQ =
250Ω
250Ω
INCLUDING
JIG AND
SCOPE
(a)
(b)
Note
22. Unless otherwise noted, test conditions are based on signal transition time of 2V/ns, timing reference levels of 0.75V, Vref = 0.75V, RQ = 250Ω, V
= 1.5V, input
DDQ
pulse levels of 0.25V to 1.25V, and output loading of the specified I /I and load capacitance shown in (a) of AC Test Loads and Waveforms.
OL OH
Document Number: 001-07037 Rev. *D
Page 22 of 30
CY7C1411BV18, CY7C1426BV18
CY7C1413BV18, CY7C1415BV18
Switching Characteristics
Over the Operating Range
300 MHz
278 MHz
250 MHz
200 MHz
167 MHz
Cypress Consortium
Parameter Parameter
Description
(Typical) to the First Access
DD
Unit
Min Max Min Max Min Max Min Max Min Max
t
t
t
t
t
V
1
1
1
1
1
ms
ns
ns
ns
ns
POWER
CYC
KH
t
t
t
t
K Clock and C Clock Cycle Time
Input Clock (K/K; C/C) HIGH
Input Clock (K/K; C/C) LOW
3.3 8.4 3.6 8.4 4.0 8.4 5.0 8.4 6.0 8.4
KHKH
KHKL
KLKH
KHKH
1.32
1.32
1.49
–
–
–
1.4
1.4
1.6
–
–
–
1.6
1.6
1.8
–
–
–
2.0
2.0
2.2
–
–
–
2.4
2.4
2.7
–
–
–
KL
K Clock Rise to K Clock Rise and C
to C Rise (rising edge to rising edge)
KHKH
t
t
0
1.45
0
1.55
0
1.8
0
2.2
0
2.7
ns
K/K Clock Rise to C/C Clock Rise
(rising edge to rising edge)
KHCH
KHCH
Setup Times
t
t
t
t
Address Setup to K Clock Rise
0.4
0.4
–
–
0.4
0.4
–
–
0.5
0.5
–
–
0.6
0.6
–
–
0.7
0.7
–
–
ns
ns
SA
SC
AVKH
IVKH
Control Setup to K Clock Rise
(RPS, WPS)
t
t
t
t
Double Data Rate Control Setup to 0.3
Clock (K/K) Rise
–
–
0.3
0.3
–
–
0.35
0.35
–
–
0.4
0.4
–
–
0.5
0.5
–
–
ns
ns
SCDDR
IVKH
(BWS , BWS , BWS , BWS )
0
1
2
3
SD
0.3
D
Setup to Clock (K/K) Rise
DVKH
[X:0]
Hold Times
t
t
t
t
0.4
0.4
–
–
0.4
0.4
–
–
0.5
0.5
–
–
0.6
0.6
–
–
0.7
0.7
–
–
ns
ns
Address Hold after K Clock Rise
HA
HC
KHAX
KHIX
Control Hold after K Clock Rise
(RPS, WPS)
t
t
t
t
Double Data Rate Control Hold after 0.3
Clock (K/K) Rise
–
–
0.3
0.3
–
–
0.35
0.35
–
–
0.4
0.4
–
–
0.5
0.5
–
–
ns
ns
HCDDR
HD
KHIX
(BWS , BWS , BWS , BWS )
0
1
2
3
0.3
D
Hold after Clock (K/K) Rise
KHDX
[X:0]
Notes
23. When a part with a maximum frequency above 167 MHz is operating at a lower clock frequency, it requires the input timings of the frequency range in which it is being
operated and outputs data with the output timings of that frequency range.
24. This part has a voltage regulator internally; t
initiated.
is the time that the power must be supplied above V minimum initially before a read or write operation can be
DD
POWER
25. For D2 data signal on CY7C1426BV18 device, t is 0.5 ns for 200 MHz, 250 MHz, 278 MHz and 300 MHz frequencies.
SD
Document Number: 001-07037 Rev. *D
Page 23 of 30
CY7C1411BV18, CY7C1426BV18
CY7C1413BV18, CY7C1415BV18
Switching Characteristics (continued)
[22, 23]
Over the Operating Range
300 MHz
278 MHz
250 MHz
200 MHz
167 MHz
Cypress Consortium
Description
Unit
Parameter Parameter
Min Max Min Max Min Max Min Max Min Max
Output Times
t
t
–
0.45
–
–
0.45
–
–
0.45
–
–
0.45
–
–
0.50 ns
ns
C/C Clock Rise (or K/K in single
clock mode) to Data Valid
CO
CHQV
t
t
–0.45
–0.45
–0.45
–0.45
–0.50
–
Data Output Hold after Output C/C
Clock Rise (Active to Active)
DOH
CHQX
t
t
t
t
–
0.45
–
–
0.45
–
–
0.45
–
–
0.45
–
–
0.50 ns
ns
C/C Clock Rise to Echo Clock Valid
CCQO
CQOH
CHCQV
CHCQX
–0.45
–0.45
–0.45
–0.45
–0.50
–
Echo Clock Hold after C/C Clock
Rise
t
t
t
t
t
t
t
t
Echo Clock High to Data Valid
Echo Clock High to Data Invalid
0.27
0.27
0.30
0.35
0.40 ns
CQD
CQHQV
CQHQX
CQHCQL
CQHCQH
–0.27
1.24
1.24
–
–
–
–0.27
1.35
1.35
–
–
–
–0.30
1.55
1.55
–
–
–
–0.35
1.95
1.95
–
–
–
–0.40
2.45
2.45
–
–
–
ns
ns
ns
CQDOH
CQH
Output Clock (CQ/CQ) HIGH
CQ Clock Rise to CQ Clock Rise
CQHCQH
(rising edge to rising edge)
t
t
t
t
–
0.45
–
–
0.45
–
–
0.45
–
–
0.45
–
–
0.50 ns
ns
Clock (C/C) Rise to High-Z
(Active to High-Z)
CHZ
CHQZ
–0.45
–0.45
–0.45
–0.45
–0.50
–
Clock (C/C) Rise to Low-Z
CLZ
CHQX1
DLL Timing
t
t
t
t
t
t
Clock Phase Jitter
–
0.20
–
–
0.20
–
–
0.20
–
–
0.20
–
–
0.20 ns
Cycles
ns
KC Var
KC Var
DLL Lock Time (K, C)
K Static to DLL Reset
1024
30
1024
30
1024
30
1024
30
1024
30
–
KC lock
KC Reset
KC lock
KC Reset
Notes
26. These parameters are extrapolated from the input timing parameters (t
- 250 ps, where 250 ps is the internal jitter. An input jitter of 200 ps (t
) is already
KHKH
KC Var
included in the t
). These parameters are only guaranteed by design and are not tested in production
KHKH
27. t
, t
, are specified with a load capacitance of 5 pF as in (b) of AC Test Loads and Waveforms. Transition is measured ± 100 mV from steady-state voltage.
CHZ CLZ
28. At any voltage and temperature t
is less than t
and t
less than t
.
CHZ
CLZ
CHZ
CO
Document Number: 001-07037 Rev. *D
Page 24 of 30
CY7C1411BV18, CY7C1426BV18
CY7C1413BV18, CY7C1415BV18
Switching Waveforms
Figure 5. Read/Write/Deselect Sequence
NOP
6
NOP
1
WRITE
3
READ
4
WRITE
5
READ
2
7
K
t
t
t
t
t
KHKH
KH
KL
SC
CYC
K
RPS
t
HC
t
t
SC
HC
WPS
A
A0
A1
A2
A3
t
t
HD
t
t
HD
SA
HA
t
t
SD
SD
D13
D30
D31
D12
D32
D33
D10
Q00
D11
D
Q
Q20
CQDOH
Q21
Q22
Q01
Q02
Q03
Q23
CHZ
t
t
t
CO
t
KHCH
t
CLZ
t
t
t
KHCH
DOH
CQD
C
t
t
t
t
KHKH
KH
CYC
KL
C
CQ
CQ
t
CCQO
t
CQOH
t
CQH
t
t
CCQO
CQHCQH
t
CQOH
DON’T CARE
UNDEFINED
Notes
29. Q00 refers to output from address A0. Q01 refers to output from the next internal burst address following A0, that is, A0+1.
30. Outputs are disabled (High-Z) one clock cycle after a NOP.
31. In this example, if address A2 = A1, then data Q20 = D10, Q21 = D11, Q22 = D12, and Q23 = D13. Write data is forwarded immediately as read results. This note
applies to the whole diagram.
Document Number: 001-07037 Rev. *D
Page 25 of 30
CY7C1411BV18, CY7C1426BV18
CY7C1413BV18, CY7C1415BV18
Ordering Information
Not all of the speed, package and temperature ranges are available. Please contact your local sales representative or
Speed
(MHz)
Package
Diagram
Operating
Range
Ordering Code
Package Type
300 CY7C1411BV18-300BZC
CY7C1426BV18-300BZC
CY7C1413BV18-300BZC
CY7C1415BV18-300BZC
CY7C1411BV18-300BZXC
CY7C1426BV18-300BZXC
CY7C1413BV18-300BZXC
CY7C1415BV18-300BZXC
CY7C1411BV18-300BZI
CY7C1426BV18-300BZI
CY7C1413BV18-300BZI
CY7C1415BV18-300BZI
CY7C1411BV18-300BZXI
CY7C1426BV18-300BZXI
CY7C1413BV18-300BZXI
CY7C1415BV18-300BZXI
278 CY7C1411BV18-278BZC
CY7C1426BV18-278BZC
CY7C1413BV18-278BZC
CY7C1415BV18-278BZC
CY7C1411BV18-278BZXC
CY7C1426BV18-278BZXC
CY7C1413BV18-278BZXC
CY7C1415BV18-278BZXC
CY7C1411BV18-278BZI
CY7C1426BV18-278BZI
CY7C1413BV18-278BZI
CY7C1415BV18-278BZI
CY7C1411BV18-278BZXI
CY7C1426BV18-278BZXI
CY7C1413BV18-278BZXI
CY7C1415BV18-278BZXI
51-85195 165-Ball Fine Pitch Ball Grid Array (15 x 17 x 1.4 mm)
51-85195 165-Ball Fine Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free
51-85195 165-Ball Fine Pitch Ball Grid Array (15 x 17 x 1.4 mm)
51-85195 165-Ball Fine Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free
51-85195 165-Ball Fine Pitch Ball Grid Array (15 x 17 x 1.4 mm)
51-85195 165-Ball Fine Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free
51-85195 165-Ball Fine Pitch Ball Grid Array (15 x 17 x 1.4 mm)
51-85195 165-Ball Fine Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free
Commercial
Industrial
Commercial
Industrial
Document Number: 001-07037 Rev. *D
Page 26 of 30
CY7C1411BV18, CY7C1426BV18
CY7C1413BV18, CY7C1415BV18
Ordering Information (continued)
Not all of the speed, package and temperature ranges are available. Please contact your local sales representative or
Speed
(MHz)
Package
Diagram
Operating
Range
Ordering Code
Package Type
250 CY7C1411BV18-250BZC
CY7C1426BV18-250BZC
CY7C1413BV18-250BZC
CY7C1415BV18-250BZC
CY7C1411BV18-250BZXC
CY7C1426BV18-250BZXC
CY7C1413BV18-250BZXC
CY7C1415BV18-250BZXC
CY7C1411BV18-250BZI
CY7C1426BV18-250BZI
CY7C1413BV18-250BZI
CY7C1415BV18-250BZI
CY7C1411BV18-250BZXI
CY7C1426BV18-250BZXI
CY7C1413BV18-250BZXI
CY7C1415BV18-250BZXI
200 CY7C1411BV18-200BZC
CY7C1426BV18-200BZC
CY7C1413BV18-200BZC
CY7C1415BV18-200BZC
CY7C1411BV18-200BZXC
CY7C1426BV18-200BZXC
CY7C1413BV18-200BZXC
CY7C1415BV18-200BZXC
CY7C1411BV18-200BZI
CY7C1426BV18-200BZI
CY7C1413BV18-200BZI
CY7C1415BV18-200BZI
CY7C1411BV18-200BZXI
CY7C1426BV18-200BZXI
CY7C1413BV18-200BZXI
CY7C1415BV18-200BZXI
51-85195 165-Ball Fine Pitch Ball Grid Array (15 x 17 x 1.4 mm)
51-85195 165-Ball Fine Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free
51-85195 165-Ball Fine Pitch Ball Grid Array (15 x 17 x 1.4 mm)
51-85195 165-Ball Fine Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free
51-85195 165-Ball Fine Pitch Ball Grid Array (15 x 17 x 1.4 mm)
51-85195 165-Ball Fine Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free
51-85195 165-Ball Fine Pitch Ball Grid Array (15 x 17 x 1.4 mm)
51-85195 165-Ball Fine Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free
Commercial
Industrial
Commercial
Industrial
Document Number: 001-07037 Rev. *D
Page 27 of 30
CY7C1411BV18, CY7C1426BV18
CY7C1413BV18, CY7C1415BV18
Ordering Information (continued)
Not all of the speed, package and temperature ranges are available. Please contact your local sales representative or
Speed
(MHz)
Package
Diagram
Operating
Range
Ordering Code
Package Type
167 CY7C1411BV18-167BZC
CY7C1426BV18-167BZC
CY7C1413BV18-167BZC
CY7C1415BV18-167BZC
CY7C1411BV18-167BZXC
CY7C1426BV18-167BZXC
CY7C1413BV18-167BZXC
CY7C1415BV18-167BZXC
CY7C1411BV18-167BZI
CY7C1426BV18-167BZI
CY7C1413BV18-167BZI
CY7C1415BV18-167BZI
CY7C1411BV18-167BZXI
CY7C1426BV18-167BZXI
CY7C1413BV18-167BZXI
CY7C1415BV18-167BZXI
51-85195 165-Ball Fine Pitch Ball Grid Array (15 x 17 x 1.4 mm)
51-85195 165-Ball Fine Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free
51-85195 165-Ball Fine Pitch Ball Grid Array (15 x 17 x 1.4 mm)
51-85195 165-Ball Fine Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free
Commercial
Industrial
Document Number: 001-07037 Rev. *D
Page 28 of 30
CY7C1411BV18, CY7C1426BV18
CY7C1413BV18, CY7C1415BV18
Package Diagram
Figure 6. 165-ball FBGA (15 x 17 x 1.4 mm), 51-85195
"/44/- 6)%7
4/0 6)%7
0). ꢀ #/2.%2
ꢃꢂꢃꢄ - #
ꢃꢂꢇꢄ - # ! "
ꢌꢃꢂꢀꢈ
0). ꢀ #/2.%2
ꢃꢂꢄꢃ
ꢅꢀꢆꢄ8
ꢍꢃꢂꢃꢆ
ꢀ
ꢇ
ꢉ
ꢈ
ꢄ
ꢆ
ꢁ
ꢊ
ꢋ
ꢀꢃ
ꢀꢀ
ꢀꢀ ꢀꢃ
ꢋ
ꢊ
ꢁ
ꢆ
ꢄ
ꢈ
ꢉ
ꢇ
ꢀ
!
"
!
"
#
$
#
$
%
%
&
&
'
'
(
*
(
*
+
+
,
,
-
-
.
0
2
.
0
2
!
ꢀꢂꢃꢃ
ꢄꢂꢃꢃ
ꢀꢃꢂꢃꢃ
"
ꢀꢄꢂꢃꢃ¼ꢃꢂꢀꢃ
ꢃꢂꢀꢄꢅꢈ8
./4%3 ꢎ
3/,$%2 0!$ 490% ꢎ./. 3/,$%2 -!3+ $%&).%$ ꢅ.3-$
0!#+!'% 7%)'(4 ꢎꢃꢂꢆꢄG
*%$%# 2%&%2%.#% ꢎ-/ꢍꢇꢀꢆ ꢏ $%3)'. ꢈꢂꢆ#
0!#+!'% #/$% ꢎ""ꢃ!$
3%!4).' 0,!.%
#
51-85195-*A
Document Number: 001-07037 Rev. *D
Page 29 of 30
CY7C1411BV18, CY7C1426BV18
CY7C1413BV18, CY7C1415BV18
Document History Page
Document Title: CY7C1411BV18/CY7C1426BV18/CY7C1413BV18/CY7C1415BV18, 36-Mbit QDR™-II SRAM 4-Word
Burst Architecture
Document Number: 001-07037
SUBMISSION ORIG. OF
REV. ECN NO.
DESCRIPTION OF CHANGE
DATE
CHANGE
**
433267
462004
See ECN
See ECN
NXR
New Data Sheet
*A
NXR
Changed t and t from 40 ns to 20 ns, changed t
, t
, t , t
, t
,
TH
TL
TMSS TDIS CS TMSH TDIH
t
from10 ns to 5 ns and changed t
from 20 ns to 10 ns in TAP AC Switching
CH
TDOV
Characteristics table
Modified Power Up waveform
*B
*C
850381
See ECN
See ECN
VKN
Minor change: Moved datasheet to the web
1523289
VKN/AESA Converted from preliminary to final, Updated Logic Block diagram, Updated
/I specs, Changed DLL minimum operating frequency from 80MHz to
I
DD SB
120MHz, Changed t
max spec to 8.4ns, Modified footnotes 22 and 30
CYC
*D
2478647
See ECN
VKN/AESA Changed Ambient Temperature with Power Applied from “–10°C to +85°C” to
“–55°C to +125°C” in the “Maximum Ratings “ on page 20, Updated Power-up
sequence waveform and it’s description, Updated I /I specs, Added footnote
DD SB
#21 related to I , Changed JTAG ID [31:29] from 001 to 000.
DD
Sales, Solutions, and Legal Information
Worldwide Sales and Design Support
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office
closest to you, visit us at cypress.com/sales.
Products
PSoC
PSoC Solutions
General
psoc.cypress.com/solutions
psoc.cypress.com/low-power
psoc.cypress.com/precision-analog
psoc.cypress.com/lcd-drive
psoc.cypress.com/can
psoc.cypress.com
clocks.cypress.com
wireless.cypress.com
memory.cypress.com
image.cypress.com
Low Power/Low Voltage
Precision Analog
LCD Drive
Clocks & Buffers
Wireless
Memories
CAN 2.0b
Image Sensors
USB
psoc.cypress.com/usb
© Cypress Semiconductor Corporation, 2006-2008. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used
for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use
as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support
systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without
the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer
assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.
Document Number: 001-07037 Rev. *D
Revised June 16, 2008
Page 30 of 30
QDR RAMs and Quad Data Rate RAMs comprise a new family of products developed by Cypress, IDT, NEC, Renesas, and Samsung. All product and company names mentioned in this document
are the trademarks of their respective holders.
|