Cypress NoBL CY7C1472BV25 User Manual

CY7C1470BV25  
CY7C1472BV25, CY7C1474BV25  
72-Mbit (2M x 36/4M x 18/1M x 72)  
Pipelined SRAM with NoBL™ Architecture  
Features  
Functional Description  
Pin-compatible and functionally equivalent to ZBT™  
The CY7C1470BV25, CY7C1472BV25, and CY7C1474BV25  
are 2.5V, 2M x 36/4M x 18/1M x 72 synchronous pipelined burst  
SRAMs with No Bus Latency™ (NoBL™) logic, respectively.  
They are designed to support unlimited true back-to-back read  
or write operations with no wait states. The CY7C1470BV25,  
Supports 250 MHz bus operations with zero wait states  
Available speed grades are 250, 200, and 167 MHz  
Internally self-timed output buffer control to eliminate the need  
CY7C1472BV25, and CY7C1474BV25 are equipped with the  
advanced (NoBL) logic required to enable consecutive read or  
write operations with data being transferred on every clock cycle.  
This feature dramatically improves the throughput of data in  
systems that require frequent read or write transitions. The  
CY7C1470BV25, CY7C1472BV25, and CY7C1474BV25 are  
pin-compatible and functionally equivalent to ZBT devices.  
to use asynchronous OE  
Fully registered (inputs and outputs) for pipelined operation  
Byte Write capability  
Single 2.5V power supply  
2.5V IO supply (V  
)
DDQ  
All synchronous inputs pass through input registers controlled by  
the rising edge of the clock. All data outputs pass through output  
registers controlled by the rising edge of the clock. The clock  
input is qualified by the Clock Enable (CEN) signal, which when  
deasserted suspends operation and extends the previous clock  
cycle. Write operations are controlled by the Byte Write Selects  
Fast clock-to-output times  
3.0 ns (for 250-MHz device)  
Clock Enable (CEN) pin to suspend operation  
Synchronous self-timed writes  
(BW –BW  
for  
CY7C1470BV25,  
BW –BW  
for  
a
d
a
b
CY7C1470BV25, CY7C1472BV25 available in  
CY7C1472BV25, and BW –BW for CY7C1474BV25) and a  
a
h
JEDEC-standard Pb-free 100-pin TQFP, Pb-free and  
non-Pb-free 165-ball FBGA package. CY7C1474BV25  
available in Pb-free and non-Pb-free 209-ball FBGA package  
Write Enable (WE) input. All writes are conducted with on-chip  
synchronous self-timed write circuitry.  
Three synchronous Chip Enables (CE , CE , CE ) and an  
1
2
3
IEEE 1149.1 JTAG Boundary Scan compatible  
Burst capability—linear or interleaved burst order  
“ZZ” Sleep Mode option and Stop Clock option  
asynchronous Output Enable (OE) provide for easy bank  
selection and output tri-state control. To avoid bus contention,  
the output drivers are synchronously tri-stated during the data  
portion of a write sequence.  
Selection Guide  
Description  
Maximum Access Time  
250 MHz  
200 MHz  
3.0  
167 MHz  
3.4  
Unit  
ns  
3.0  
450  
120  
Maximum Operating Current  
450  
400  
mA  
mA  
Maximum CMOS Standby Current  
120  
120  
Cypress Semiconductor Corporation  
Document #: 001-15032 Rev. *D  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised February 29, 2008  
CY7C1470BV25  
CY7C1472BV25, CY7C1474BV25  
Logic Block Diagram – CY7C1474BV25 (1M x 72)  
ADDRESS  
REGISTER  
A0, A1,  
A
0
A1  
A0  
A1'  
A0'  
D1  
D0  
Q1  
Q0  
BURST  
LOGIC  
MODE  
ADV/LD  
CLK  
CEN  
C
C
WRITE ADDRESS  
REGISTER  
WRITE ADDRESS  
1
REGISTER  
2
O
U
T
O
U
T
P
U
T
S
E
P
U
T
D
A
T
ADV/LD  
N
S
WRITE REGISTRY  
AND DATA COHERENCY  
CONTROL LOGIC  
A
BW  
BW  
BW  
BW  
BW  
a
R
E
G
I
MEMORY  
ARRAY  
E
B
U
F
F
E
R
S
DQ s  
WRITE  
DRIVERS  
b
S
T
E
E
R
I
A
M
P
DQ Pa  
DQ Pb  
DQ Pc  
DQ Pd  
DQ Pe  
DQ Pf  
DQ Pg  
DQ Ph  
c
d
e
S
T
E
R
S
S
BW  
f
N
G
BW  
g
E
E
BW  
h
WE  
INPUT  
REGISTER  
INPUT  
REGISTER  
E
E
1
0
OE  
CE1  
CE2  
CE3  
READ LOGIC  
Sleep  
Control  
ZZ  
Document #: 001-15032 Rev. *D  
Page 3 of 29  
CY7C1470BV25  
CY7C1472BV25, CY7C1474BV25  
Pin Configurations  
Figure 1. 100-Pin TQFP Pinout  
DQPc  
DQc  
DQc  
1
2
3
4
5
6
7
8
NC  
NC  
NC  
DDQ  
1
2
3
4
5
6
7
8
A
DQPb  
DQb  
DQb  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
NC  
V
V
NC  
DQPa  
DQa  
DQa  
V
V
DDQ  
V
DDQ  
DDQ  
V
V
V
SS  
SS  
SS  
SS  
DQc  
DQc  
NC  
NC  
DQb  
DQb  
DQb  
DQb  
DQc  
DQc  
DQb  
DQb  
9
9
V
V
SS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
V
SS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
V
SS  
SS  
V
V
DDQ  
DDQ  
V
V
DQa  
DQa  
V
NC  
V
ZZ  
DDQ  
DDQ  
DQc  
DQc  
NC  
DQb  
DQb  
DQb  
DQb  
NC  
V
SS  
SS  
V
V
DD  
NC  
DD  
CY7C1470BV25  
(2M × 36)  
CY7C1472BV25  
(4M × 18)  
NC  
NC  
V
DD  
DD  
V
V
SS  
SS  
ZZ  
DQa  
DQa  
DQd  
DQb  
DQb  
DQa  
DQa  
DQd  
V
V
DDQ  
DDQ  
V
V
V
DQa  
DQa  
NC  
NC  
V
V
DDQ  
DDQ  
V
V
SS  
V
SS  
SS  
SS  
DQd  
DQd  
DQd  
DQd  
DQa  
DQa  
DQa  
DQa  
DQb  
DQb  
DQPb  
NC  
V
SS  
V
V
SS  
SS  
SS  
V
V
DDQ  
DDQ  
V
DDQ  
DDQ  
DQd  
DQd  
DQPd  
DQa  
DQa  
DQPa  
NC  
NC  
NC  
NC  
NC  
NC  
Document #: 001-15032 Rev. *D  
Page 4 of 29  
CY7C1470BV25  
CY7C1472BV25, CY7C1474BV25  
Pin Configurations (continued)  
165-Ball FBGA (15 x 17 x 1.4 mm) Pinout  
CY7C1470BV25 (2M x 36)  
1
2
A
3
4
5
6
7
8
9
A
10  
A
11  
NC  
NC/576M  
NC/1G  
DQPc  
ADV/LD  
A
B
C
D
CE1  
BWc  
BWd  
VSS  
VDD  
BWb  
BWa  
VSS  
VSS  
CE  
CEN  
WE  
3
A
CE2  
VDDQ  
VDDQ  
CLK  
VSS  
VSS  
OE  
VSS  
VDD  
A
A
NC  
NC  
DQc  
VSS  
VSS  
VDDQ  
VDDQ  
NC  
DQb  
DQPb  
DQb  
DQc  
DQc  
DQc  
DQc  
NC  
DQc  
DQc  
DQc  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
DQb  
DQb  
DQb  
NC  
DQb  
DQb  
DQb  
ZZ  
E
F
G
H
J
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
K
L
DQd  
DQPd  
DQd  
NC  
A
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
NC  
A1  
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQa  
NC  
A
DQa  
DQPa  
M
N
P
NC/144M  
TDI  
TDO  
NC/288M  
MODE  
A
A
TMS  
A0  
TCK  
A
A
A
A
R
A
CY7C1472BV25 (4M x 18)  
1
NC/576M  
NC/1G  
NC  
2
A
3
4
5
NC  
6
CE  
7
8
9
A
10  
A
11  
A
A
B
C
D
CE1  
BWb  
NC  
CEN  
ADV/LD  
3
A
CE2  
VDDQ  
VDDQ  
BWa  
VSS  
VSS  
CLK  
VSS  
VSS  
A
A
NC  
WE  
VSS  
VSS  
OE  
VSS  
VDD  
NC  
DQb  
VSS  
VDD  
VDDQ  
VDDQ  
NC  
NC  
DQPa  
DQa  
NC  
NC  
NC  
DQb  
DQb  
DQb  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
NC  
NC  
DQa  
DQa  
DQa  
ZZ  
E
F
NC  
NC  
G
H
J
NC  
NC  
DQb  
DQb  
DQb  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQa  
DQa  
DQa  
NC  
NC  
NC  
K
L
NC  
NC  
DQb  
DQPb  
NC  
NC  
A
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
NC  
A1  
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQa  
NC  
A
NC  
NC  
M
N
P
NC/144M  
TDI  
TDO  
NC/288M  
MODE  
A
A
A
TMS  
A0  
TCK  
A
A
A
A
R
Document #: 001-15032 Rev. *D  
Page 5 of 29  
CY7C1470BV25  
CY7C1472BV25, CY7C1474BV25  
Pin Configurations (continued)  
209-Ball FBGA (14 x 22 x 1.76 mm) Pinout  
CY7C1474BV25 (1M × 72)  
1
2
3
4
5
6
7
8
9
10  
11  
DQg  
DQg  
DQg  
DQg  
DQg  
A
CE  
A
ADV/LD  
WE  
A
A
CE  
A
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
A
B
C
2
3
BWS  
BWS  
BWS  
NC  
BWS  
BWS  
NC  
BWS  
BWS  
c
g
d
b
e
f
DQg  
DQg  
DQPc  
DQc  
BWS  
NC  
V
NC/576M CE  
NC  
NC  
h
1
a
DQg  
DQPg  
DQc  
V
NC/1G  
OE  
V
SS  
D
E
SS  
V
V
V
V
V
V
DD  
DDQ  
DDQ  
DDQ  
DDQ  
DD  
DD  
DQPf  
DQf  
DQPb  
DQf  
F
V
V
V
V
V
NC  
NC  
NC  
NC  
CEN  
NC  
NC  
V
SS  
SS  
SS  
SS  
SS  
SS  
G
H
J
DQc  
DQc  
V
DQc  
V
V
V
V
V
DD  
DDQ  
DDQ  
DQf  
DQf  
DD  
DDQ  
DQf  
DDQ  
V
V
V
V
V
V
V
DQc  
DQc  
NC  
SS  
SS  
SS  
SS  
SS  
SS  
DQf  
DQf  
NC  
V
DQc  
NC  
V
V
V
V
DDQ  
DD  
DD  
DDQ  
DDQ  
DDQ  
DQf  
NC  
K
L
CLK  
V
V
NC  
SS  
SS  
DD  
NC  
NC  
DQh  
DQh  
DQh  
V
V
V
V
V
V
DDQ  
DD  
DDQ  
DDQ  
DQa  
DQa  
DQa  
DDQ  
M
N
P
R
T
V
V
V
V
V
SS  
DQh  
DQh  
DQh  
V
V
SS  
SS  
SS  
SS  
SS  
DQa  
DQa  
DQa  
V
V
DQh  
DQh  
DQPd  
DQd  
DQd  
V
V
V
NC  
ZZ  
DD  
DD  
DDQ  
DDQ  
DDQ  
DDQ  
DQa  
DQa  
DQPa  
DQe  
DQe  
V
V
V
V
V
V
SS  
SS  
SS  
SS  
DD  
SS  
SS  
V
V
V
V
V
DQPh  
DQd  
DQd  
DQd  
DQd  
V
V
DDQ  
DD  
DDQ  
DDQ  
DDQ  
DD  
DQPe  
DQe  
DQe  
DQe  
DQe  
V
NC  
A
V
NC  
A
NC  
A
NC  
A
MODE  
A
SS  
SS  
U
V
W
NC/288M  
NC/144M  
A
A
A1  
A
DQd  
DQd  
A
A
A
A
DQe  
DQe  
TDI  
TDO  
TCK  
A0  
A
TMS  
Document #: 001-15032 Rev. *D  
Page 6 of 29  
CY7C1470BV25  
CY7C1472BV25, CY7C1474BV25  
Table 1. Pin Definitions  
Pin Name  
IO Type  
Pin Description  
A0  
A1  
A
Input-  
Synchronous  
Address Inputs Used to Select One of the Address Locations. Sampled at the rising edge of the  
CLK.  
BW  
Input-  
Synchronous  
Byte Write Select Inputs, Active LOW. Qualified with WE to conduct writes to the SRAM. Sampled  
a
BW  
BW  
BW  
BW  
BW  
BW  
BW  
on the rising edge of CLK. BW controls DQ and DQP , BW controls DQ and DQP , BW controls  
b
c
d
e
f
a
a
a
b
b
b
c
DQ and DQP , BW controls DQ and DQP , BW controls DQ and DQP BW controls DQ and  
c
c
d
d
d
e
e
e,  
f
f
DQP BW controls DQ and DQP BW controls DQ and DQP .  
f,  
g
g
g,  
h
h
h
g
h
WE  
Input-  
Synchronous  
Write Enable Input, Active LOW. Sampled on the rising edge of CLK if CEN is active LOW. This  
signal must be asserted LOW to initiate a write sequence.  
ADV/LD  
Input-  
Synchronous  
Advance/Load Input Used to Advance the On-Chip Address Counter or Load a New Address.  
When HIGH (and CEN is asserted LOW) the internal burst counter is advanced. When LOW, a new  
address can be loaded into the device for an access. After being deselected, ADV/LD must be driven  
LOW to load a new address.  
CLK  
Input-  
Clock  
Clock Input. Used to capture all synchronous inputs to the device. CLK is qualified with CEN. CLK  
is only recognized if CEN is active LOW.  
CE  
CE  
CE  
Input-  
Synchronous  
Chip Enable 1 Input, Active LOW. Sampled on the rising edge of CLK. Used in conjunction with  
1
2
3
CE and CE to select/deselect the device.  
2
3
Input-  
Synchronous  
Chip Enable 2 Input, Active HIGH. Sampled on the rising edge of CLK. Used in conjunction with  
CE and CE to select/deselect the device.  
1
3
Input-  
Synchronous  
Chip Enable 3 Input, Active LOW. Sampled on the rising edge of CLK. Used in conjunction with  
CE and CE to select/deselect the device.  
1
2
OE  
Input-  
Output Enable, Active LOW. Combined with the synchronous logic block inside the device to control  
Asynchronous the direction of the IO pins. When LOW, the IO pins can behave as outputs. When deasserted HIGH,  
IO pins are tri-stated, and act as input data pins. OE is masked during the data portion of a write  
sequence, during the first clock when emerging from a deselected state and when the device has  
been deselected.  
CEN  
Input-  
Synchronous  
Clock Enable Input, Active LOW. When asserted LOW the clock signal is recognized by the SRAM.  
When deasserted HIGH the clock signal is masked. Since deasserting CEN does not deselect the  
device, CEN can be used to extend the previous cycle when required.  
DQ  
IO-  
Bidirectional Data IO Lines. As inputs, they feed into an on-chip data register that is triggered by  
the rising edge of CLK. As outputs, they deliver the data contained in the memory location specified  
s
Synchronous  
by A  
during the previous clock rise of the read cycle. The direction of the pins is controlled by  
[18:0]  
OE and the internal control logic. When OE is asserted LOW, the pins can behave as outputs. When  
HIGH, DQ –DQ are placed in a tri-state condition. The outputs are automatically tri-stated during  
a
h
the data portion of a write sequence, during the first clock when emerging from a deselected state, and  
when the device is deselected, regardless of the state of OE.  
DQP  
IO-  
Bidirectional Data Parity IO Lines. Functionally, these signals are identical to DQ  
. During write  
[71:0]  
X
Synchronous  
sequences, DQP is controlled by BW , DQP is controlled by BW , DQP is controlled by BW , and  
a
a
b
b
c
c
DQP is controlled by BW , DQP is controlled by BW DQP is controlled by BW DQP is controlled  
d
d
e
e,  
f
f,  
g
by BW DQP is controlled by BW .  
g,  
h
h
MODE  
TDO  
TDI  
Input Strap Pin Mode Input. Selects the burst order of the device. Tied HIGH selects the interleaved burst order.  
Pulled LOW selects the linear burst order. MODE must not change states during operation. When  
left floating MODE defaults HIGH, to an interleaved burst order.  
JTAG Serial  
Output  
Serial Data Out to the JTAG Circuit. Delivers data on the negative edge of TCK.  
Synchronous  
JTAG Serial Input Serial Data In to the JTAG Circuit. Sampled on the rising edge of TCK.  
Synchronous  
Document #: 001-15032 Rev. *D  
Page 7 of 29  
CY7C1470BV25  
CY7C1472BV25, CY7C1474BV25  
Table 1. Pin Definitions (continued)  
Pin Name  
IO Type  
Pin Description  
TMS  
Test Mode Select TMS Pin Controls the Test Access Port State Machine. Sampled on the rising edge of TCK.  
Synchronous  
TCK  
JTAG Clock  
Clock Input to the JTAG Circuitry.  
V
V
V
Power Supply  
Power Supply Inputs to the Core of the Device.  
DD  
IO Power Supply Power Supply for the IO Circuitry.  
DDQ  
SS  
Ground  
Ground for the Device. Must be connected to ground of the system.  
NC  
No Connects. This pin is not connected to the die.  
NC(144M,  
288M,  
These Pins are Not Connected. They are used for expansion to the 144M, 288M, 576M, and 1G  
densities.  
576M, 1G)  
ZZ  
Input-  
ZZ “Sleep” Input. This active HIGH input places the device in a non-time critical “sleep” condition  
Asynchronous with data integrity preserved. For normal operation, this pin has must be LOW or left floating.  
ZZ pin has an internal pull down.  
register and onto the data bus within 2.6 ns (250-MHz device)  
Functional Overview  
provided OE is active LOW. After the first clock of the read  
access the output buffers are controlled by OE and the internal  
control logic. OE must be driven LOW to drive out the requested  
data. During the second clock, a subsequent operation (read,  
write, or deselect) can be initiated. Deselecting the device is also  
pipelined. Therefore, when the SRAM is deselected at clock rise  
by one of the chip enable signals, its output tri-states following  
the next clock rise.  
The CY7C1470BV25, CY7C1472BV25, and CY7C1474BV25  
are synchronous-pipelined Burst NoBL SRAMs designed specif-  
ically to eliminate wait states during read or write transitions. All  
synchronous inputs pass through input registers controlled by  
the rising edge of the clock. The clock signal is qualified with the  
Clock Enable input signal (CEN). If CEN is HIGH, the clock signal  
is not recognized and all internal states are maintained. All  
synchronous operations are qualified with CEN. All data outputs  
pass through output registers controlled by the rising edge of the  
Burst Read Accesses  
clock. Maximum access delay from the clock rise (t ) is 3.0 ns  
(250-MHz device).  
The CY7C1470BV25, CY7C1472BV25, and CY7C1474BV25  
have an on-chip burst counter that enables the user to supply a  
single address and conduct up to four reads without reasserting  
the address inputs. ADV/LD must be driven LOW to load a new  
address into the SRAM, as described in the Single Read  
Accesses section. The sequence of the burst counter is deter-  
mined by the MODE input signal. A LOW input on MODE selects  
a linear burst mode, a HIGH selects an interleaved burst  
sequence. Both burst counters use A0 and A1 in the burst  
sequence, and wraps around when incremented sufficiently. A  
HIGH input on ADV/LD increments the internal burst counter  
regardless of the state of chip enables inputs or WE. WE is  
latched at the beginning of a burst cycle. Therefore, the type of  
access (read or write) is maintained throughout the burst  
sequence.  
CO  
Accesses can be initiated by asserting all three Chip Enables  
(CE , CE , CE ) active at the rising edge of the clock. If CEN is  
1
2
3
active LOW and ADV/LD is asserted LOW, the address  
presented to the device is latched. The access can either be a  
read or write operation, depending on the status of the Write  
Enable (WE). BW can be used to conduct Byte Write opera-  
[x]  
tions.  
Write operations are qualified by the Write Enable (WE). All  
writes are simplified with on-chip synchronous self-timed write  
circuitry.  
Three synchronous Chip Enables (CE , CE , CE ) and an  
1
2
3
asynchronous Output Enable (OE) simplify depth expansion. All  
operations (reads, writes, and deselects) are pipelined. ADV/LD  
must be driven LOW after the device is deselected to load a new  
address for the next operation.  
Single Write Accesses  
Write accesses are initiated when the following conditions are  
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE , CE ,  
1
2
Single Read Accesses  
and CE are ALL asserted active, and (3) the signal WE is  
3
A read access is initiated when the following conditions are  
asserted LOW. The address presented to the address inputs is  
loaded into the Address Register. The write signals are latched  
into the Control Logic block.  
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE , CE ,  
1
2
and CE are ALL asserted active, (3) the input signal WE is  
3
deasserted HIGH, and (4) ADV/LD is asserted LOW. The  
address presented to the address inputs is latched into the  
Address Register and presented to the memory core and control  
logic. The control logic determines that a read access is in  
progress and allows the requested data to propagate to the input  
of the output register. At the rising edge of the next clock the  
requested data is allowed to propagate through the output  
On the subsequent clock rise the data lines are automatically  
tri-stated regardless of the state of the OE input signal. This  
allows the external logic to present the data on DQ and DQP  
(DQ  
/DQP  
for CY7C1470BV25, DQ /DQP  
for  
for  
a,b,c,d  
a,b,c,d  
a,b  
a,b  
/DQP  
a,b,c,d,e,f,g,h  
CY7C1472BV25, and DQ  
a,b,c,d,e,f,g,h  
CY7C1474BV25). In addition, the address for the subsequent  
Document #: 001-15032 Rev. *D  
Page 8 of 29  
   
CY7C1470BV25  
CY7C1472BV25, CY7C1474BV25  
access (read, write, or deselect) is latched into the Address  
Register (provided the appropriate control signals are asserted).  
on page 8. When ADV/LD is driven HIGH on the subsequent  
clock rise, the Chip Enables (CE , CE , and CE ) and WE inputs  
1
2
3
are ignored and the burst counter is incremented. The correct  
On the next clock rise the data presented to DQ and DQP  
BW (BW  
for CY7C1470BV25, BW for CY7C1472BV25,  
a,b,c,d  
a,b  
(DQ  
/DQP  
for CY7C1470BV25, DQ /DQP  
DQ  
for  
for  
a,b,c,d  
a,b,c,d  
a,b  
/DQP  
a,b,c,d,e,f,g,h a,b,c,d,e,f,g,h  
a,b  
and BW  
for CY7C1474BV25) inputs must be driven  
a,b,c,d,e,f,g,h  
CY7C1472BV25,  
in each cycle of the burst write to write the correct bytes of data.  
CY7C1474BV25) (or a subset for Byte Write operations, see  
latched into the device and the Write is complete.  
Sleep Mode  
The ZZ input pin is an asynchronous input. Asserting ZZ places  
the SRAM in a power conservation “sleep” mode. Two clock  
cycles are required to enter into or exit from this “sleep” mode.  
While in this mode, data integrity is guaranteed. Accesses  
pending when entering the “sleep” mode are not considered valid  
nor is the completion of the operation guaranteed. The device  
The data written during the Write operation is controlled by BW  
(BW  
for CY7C1470BV25, BW for CY7C1472BV25, and  
a,b,c,d  
a,b  
BW  
for  
CY7C1474BV25)  
signals.  
The  
a,b,c,d,e,f,g,h  
CY7C1470BV25, CY7C1472BV25, and CY7C1474BV25  
provides Byte Write capability that is described in “Partial Write  
Cycle Description” on page 11. Asserting the WE input with the  
selected BW input selectively writes to only the desired bytes.  
Bytes not selected during a Byte Write operation remain  
unaltered. A synchronous self-timed write mechanism has been  
provided to simplify the write operations. Byte Write capability  
has been included to greatly simplify read, modify, or write  
sequences, which can be reduced to simple Byte Write opera-  
tions.  
must be deselected before entering the “sleep” mode. CE , CE ,  
1
2
and CE , must remain inactive for the duration of t  
after the  
3
ZZREC  
ZZ input returns LOW.  
Table 2. Linear Burst Address Table (MODE = GND)  
First  
Second  
Third  
Fourth  
Address  
Address  
Address  
Address  
A1,A0  
11  
Because the CY7C1470BV25, CY7C1472BV25, and  
CY7C1474BV25 are common IO devices, data must not be  
driven into the device while the outputs are active. OE can be  
deasserted HIGH before presenting data to the DQ and DQP  
A1,A0  
00  
A1,A0  
01  
A1,A0  
10  
01  
10  
11  
00  
(DQ  
/DQP  
for CY7C1470BV25, DQ /DQP  
for  
for  
10  
11  
00  
01  
a,b,c,d  
a,b,c,d  
a,b  
a,b  
/DQP  
a,b,c,d,e,f,g,h  
CY7C1472BV25, and DQ  
CY7C1474BV25) inputs. Doing so tri-states the output drivers.  
As a safety precaution, DQ and DQP (DQ /DQP for  
a,b,c,d,e,f,g,h  
11  
00  
01  
10  
a,b,c,d  
a,b,c,d  
CY7C1470BV25, DQ /DQP  
for CY7C1472BV25, and  
for CY7C1474BV25) are  
a,b  
/DQP  
a,b,c,d,e,f,g,h  
a,b  
Table 3. Interleaved Burst Address Table  
(MODE = Floating or V  
DQ  
a,b,c,d,e,f,g,h  
)
DD  
automatically tri-stated during the data portion of a write cycle,  
regardless of the state of OE.  
First  
Second  
Third  
Fourth  
Address  
Address  
Address  
Address  
Burst Write Accesses  
A1,A0  
00  
A1,A0  
01  
A1,A0  
10  
A1,A0  
11  
The CY7C1470BV25, CY7C1472BV25, and CY7C1474BV25  
has an on-chip burst counter that enables the user to supply a  
single address and conduct up to four write operations without  
reasserting the address inputs. ADV/LD must be driven LOW to  
load the initial address, as described in “Single Write Accesses”  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
ZZ Mode Electrical Characteristics  
Parameter  
Description  
Sleep mode standby current  
Device operation to ZZ  
ZZ recovery time  
Test Conditions  
Min  
Max  
Unit  
mA  
ns  
I
t
t
t
t
ZZ > V 0.2V  
120  
DDZZ  
DD  
ZZ > V 0.2V  
2t  
ZZS  
DD  
CYC  
ZZ < 0.2V  
2t  
ns  
ZZREC  
ZZI  
CYC  
ZZ active to sleep current  
ZZ Inactive to exit sleep current  
This parameter is sampled  
This parameter is sampled  
2t  
ns  
CYC  
0
ns  
RZZI  
Document #: 001-15032 Rev. *D  
Page 9 of 29  
CY7C1470BV25  
CY7C1472BV25, CY7C1474BV25  
Table 4. Truth Table  
[1, 2, 3, 4, 5, 6, 7]  
The truth table for CY7C1470BV25, CY7C1472BV25, and CY7C1474BV25 follows.  
Address  
Operation  
Deselect Cycle  
CE ZZ ADV/LD WE BW  
OE CEN CLK  
DQ  
x
Used  
None  
H
X
L
L
L
L
L
H
L
X
X
H
X
X
X
X
X
L
L
L
L
L-H  
L-H  
L-H  
Tri-State  
Tri-State  
Continue Deselect Cycle  
None  
Read Cycle  
External  
Data Out (Q)  
(Begin Burst)  
Read Cycle  
(Continue Burst)  
Next  
External  
Next  
X
L
L
L
L
L
L
L
L
H
L
X
H
X
L
X
X
X
L
L
H
H
X
X
X
X
L
L
L
L
L
L
L
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
Data Out (Q)  
Tri-State  
NOP/Dummy Read  
(Begin Burst)  
Dummy Read  
(Continue Burst)  
X
L
H
L
Tri-State  
Write Cycle  
(Begin Burst)  
External  
Next  
Data In (D)  
Data In (D)  
Tri-State  
Write Cycle  
(Continue Burst)  
X
L
H
L
X
L
L
NOP/Write Abort  
(Begin Burst)  
None  
H
H
Write Abort  
Next  
X
H
X
Tri-State  
(Continue Burst)  
Ignore Clock Edge (Stall)  
Sleep Mode  
Current  
None  
X
X
L
X
X
X
X
X
X
X
X
H
X
L-H  
X
H
Tri-State  
Notes  
1. X = “Don't Care”, H = Logic HIGH, L = Logic LOW, CE stands for ALL Chip Enables active. BW = L signifies at least one Byte Write Select is active, BW = Valid  
x
x
signifies that the desired Byte Write Selects are asserted, see “Partial Write Cycle Description” on page 11 for details.  
2. Write is defined by WE and BW  
[a:d]  
3. When a write cycle is detected, all IOs are tri-stated, even during Byte Writes.  
4. The DQ and DQP pins are controlled by the current cycle and the OE signal.  
5. CEN = H inserts wait states.  
6. Device powers up deselected with the IOs in a tri-state condition, regardless of OE.  
7. OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles.During a Read cycle DQ and DQP  
= tri-state when OE is  
s
[a:d]  
inactive or when the device is deselected, and DQ = data when OE is active.  
s
Document #: 001-15032 Rev. *D  
Page 10 of 29  
               
CY7C1470BV25  
CY7C1472BV25, CY7C1474BV25  
Table 5. Partial Write Cycle Description  
The partial write cycle description for CY7C1470BV25, CY7C1472BV25, and CY7C1474BV25 follows.  
Function (CY7C1470BV25)  
Read  
WE  
H
L
BW  
X
H
H
H
H
H
H
H
H
L
BW  
X
H
H
H
H
L
BW  
X
H
H
L
BW  
a
d
c
b
X
H
L
Write – No bytes written  
Write Byte a – (DQ and DQP )  
L
a
a
Write Byte b – (DQ and DQP )  
L
H
L
b
b
Write Bytes b, a  
Write Byte c – (DQ and DQP )  
L
L
L
H
H
L
H
L
c
c
Write Bytes c, a  
Write Bytes c, b  
Write Bytes c, b, a  
L
L
L
LL  
L
H
L
L
L
Write Byte d – (DQ and DQP )  
L
H
H
H
H
L
H
H
L
H
L
d
d
Write Bytes d, a  
Write Bytes d, b  
Write Bytes d, b, a  
Write Bytes d, c  
Write Bytes d, c, a  
Write Bytes d, c, b  
Write All Bytes  
L
L
L
L
H
L
L
L
L
L
L
H
H
L
H
L
L
L
L
L
L
L
H
L
L
L
L
L
Function (CY7C1472BV25)  
Read  
WE  
H
L
BW  
x
BW  
a
b
x
H
L
Write – No Bytes Written  
H
H
L
Write Byte a – (DQ and DQP )  
L
a
a
Write Byte b – (DQ and DQP )  
L
H
L
b
b
Write Both Bytes  
L
L
Function (CY7C1474BV25)  
Read  
WE  
H
BW  
x
x
Write – No Bytes Written  
L
H
Write Byte X (DQ and DQP  
L
L
x
x)  
Write All Bytes  
L
All BW = L  
Note  
8. Table lists only a partial listing of the Byte Write combinations. Any combination of BW  
is valid. Appropriate write is based on which Byte Write is active.  
[a:d]  
Document #: 001-15032 Rev. *D  
Page 11 of 29  
   
CY7C1470BV25  
CY7C1472BV25, CY7C1474BV25  
Test MODE SELECT (TMS)  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. It is allowable to leave  
this ball unconnected if the TAP is not used. The ball is pulled up  
internally, resulting in a logic HIGH level.  
The CY7C1470BV25, CY7C1472BV25, and CY7C1474BV25  
incorporates a serial boundary scan test access port (TAP). This  
port operates in accordance with IEEE Standard 1149.1-1990  
but does not have the set of functions required for full 1149.1  
compliance. These functions from the IEEE specification are  
excluded because their inclusion places an added delay in the  
critical speed path of the SRAM. Note that the TAP controller  
functions in a manner that does not conflict with the operation of  
other devices using 1149.1 fully compliant TAPs. The TAP  
operates using JEDEC-standard 2.5V IO logic levels.  
Test Data-In (TDI)  
The TDI ball is used to serially input information into the registers  
and can be connected to the input of any of the registers. The  
register between TDI and TDO is chosen by the instruction that  
is loaded into the TAP instruction register. For information about  
loading the instruction register, see the TAP Controller State  
Diagram. TDI is internally pulled up and can be unconnected if  
the TAP is unused in an application. TDI is connected to the most  
significant bit (MSB) of any register. (See TAP Controller Block  
Diagram.)  
The CY7C1470BV25, CY7C1472BV25, and CY7C1474BV25  
contains a TAP controller, instruction register, boundary scan  
register, bypass register, and ID register.  
Disabling the JTAG Feature  
Test Data-Out (TDO)  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, TCK must be tied LOW  
The TDO output ball is used to serially clock data-out from the  
registers. The output is active depending upon the current state  
of the TAP state machine. The output changes on the falling edge  
of TCK. TDO is connected to the least significant bit (LSB) of any  
register. (See TAP Controller State Diagram.)  
(V ) to prevent clocking of the device. TDI and TMS are inter-  
SS  
nally pulled up and may be unconnected. They may alternately  
be connected to V through a pull up resistor. TDO must be left  
DD  
unconnected. During power up, the device comes up in a reset  
state, which does not interfere with the operation of the device.  
Figure 3. TAP Controller Block Diagram  
Figure 2. TAP Controller State Diagram  
0
TEST-LOGIC  
1
RESET  
0
Bypass Register  
2
1
0
0
0
1
1
1
RUN-TEST/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
0
Selection  
Circuitry  
Selection  
Circuitry  
Instruction Register  
31 30 29  
Identification Register  
0
0
TDI  
TDO  
1
1
.
.
.
2
1
CAPTURE-DR  
CAPTURE-IR  
0
0
x
.
.
.
.
.
2
1
SHIFT-DR  
0
SHIFT-IR  
0
Boundary Scan Register  
1
1
1
1
EXIT1-DR  
EXIT1-IR  
0
0
TCK  
PAUSE-DR  
0
PAUSE-IR  
1
0
TAP CONTROLLER  
TM S  
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
Performing a TAP Reset  
UPDATE-DR  
UPDATE-IR  
A RESET is performed by forcing TMS HIGH (V ) for five rising  
edges of TCK. This RESET does not affect the operation of the  
DD  
1
0
1
0
SRAM and may be performed while the SRAM is operating.  
During power up, the TAP is reset internally to ensure that TDO  
comes up in a High-Z state.  
The 0/1 next to each state represents the value of TMS at the  
rising edge of TCK.  
TAP Registers  
Test Access Port (TAP)  
Registers are connected between the TDI and TDO balls to scan  
the data in and out of the SRAM test circuitry. Only one register  
can be selected at a time through the instruction register. Data is  
serially loaded into the TDI ball on the rising edge of TCK. Data  
is output on the TDO ball on the falling edge of TCK.  
Test Clock (TCK)  
The test clock is used only with the TAP controller. All inputs are  
captured on the rising edge of TCK. All outputs are driven from  
the falling edge of TCK.  
Document #: 001-15032 Rev. *D  
Page 12 of 29  
   
CY7C1470BV25  
CY7C1472BV25, CY7C1474BV25  
Instruction Register  
Instructions are loaded into the TAP controller during the Shift-IR  
state when the instruction register is placed between TDI and  
TDO. During this state, instructions are shifted through the  
instruction register through the TDI and TDO balls. To execute  
the instruction after it is shifted in, the TAP controller must be  
moved into the Update-IR state.  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the TDI  
and TDO balls as shown in the “TAP Controller Block Diagram”  
on page 12. During power up, the instruction register is loaded  
with the IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state as described  
in the previous section.  
EXTEST  
EXTEST is a mandatory 1149.1 instruction which is executed  
whenever the instruction register is loaded with all 0s. EXTEST  
is not implemented in this SRAM TAP controller, and therefore  
this device is not compliant to 1149.1. The TAP controller does  
recognize an all-0 instruction.  
When the TAP controller is in the Capture-IR state, the two least  
significant bits are loaded with a binary ‘01’ pattern to enable fault  
isolation of the board-level serial test data path.  
Bypass Register  
When an EXTEST instruction is loaded into the instruction  
register, the SRAM responds as if a SAMPLE/PRELOAD  
instruction has been loaded. There is one difference between the  
two instructions. Unlike the SAMPLE/PRELOAD instruction,  
EXTEST places the SRAM outputs in a High-Z state.  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain chips. The bypass  
register is a single-bit register that can be placed between the  
TDI and TDO balls. This shifts the data through the SRAM with  
minimal delay. The bypass register is set LOW (V ) when the  
SS  
BYPASS instruction is executed.  
IDCODE  
Boundary Scan Register  
The IDCODE instruction loads a vendor-specific, 32-bit code into  
the instruction register. It also places the instruction register  
between the TDI and TDO balls and shifts the IDCODE out of the  
device when the TAP controller enters the Shift-DR state.  
The boundary scan register is connected to all the input and  
bidirectional balls on the SRAM.  
The boundary scan register is loaded with the contents of the  
RAM IO ring when the TAP controller is in the Capture-DR state  
and is then placed between the TDI and TDO balls when the  
controller is moved to the Shift-DR state. The EXTEST,  
SAMPLE/PRELOAD and SAMPLE Z instructions can be used to  
capture the contents of the IO ring.  
The IDCODE instruction is loaded into the instruction register  
during power up or whenever the TAP controller is in a test logic  
reset state.  
SAMPLE Z  
The SAMPLE Z instruction connects the boundary scan register  
between the TDI and TDO pins when the TAP controller is in a  
Shift-DR state. It also places all SRAM outputs into a High-Z  
state.  
The Boundary Scan Order tables on page 17 show the order in  
which the bits are connected. Each bit corresponds to one of the  
bumps on the SRAM package. The MSB of the register is  
connected to TDI and the LSB is connected to TDO.  
SAMPLE/PRELOAD  
Identification (ID) Register  
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. The  
PRELOAD portion of this instruction is not implemented, so the  
device TAP controller is not fully 1149.1 compliant.  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired into  
the SRAM and can be shifted out when the TAP controller is in  
the Shift-DR state. The ID register has a vendor code and other  
When the SAMPLE/PRELOAD instruction is loaded into the  
instruction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the inputs and bidirectional balls is  
captured in the boundary scan register.  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 20 MHz, while the SRAM clock  
operates more than an order of magnitude faster. Because there  
is a large difference in the clock frequencies, it is possible that  
during the Capture-DR state, an input or output may undergo a  
transition. The TAP may then try to capture a signal while in  
transition (metastable state). This does not harm the device, but  
there is no guarantee as to the value that is captured.  
Repeatable results may not be possible.  
TAP Instruction Set  
Overview  
Eight different instructions are possible with the three-bit  
instruction register. All combinations are listed in “Identification  
Codes” on page 17. Three of these instructions are listed as  
RESERVED and must not be used. The other five instructions  
are described in this section in detail.  
The TAP controller used in this SRAM is not fully compliant to the  
1149.1 convention because some of the mandatory 1149.1  
instructions are not fully implemented.  
To guarantee that the boundary scan register captures the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controller’s capture setup plus hold  
time (t plus t ).  
CS  
CH  
The TAP controller cannot be used to load address data or  
control signals into the SRAM and cannot preload the IO buffers.  
The SRAM does not implement the 1149.1 commands EXTEST  
or INTEST or the PRELOAD portion of SAMPLE/PRELOAD;  
rather, it performs a capture of the IO ring when these instruc-  
tions are executed.  
The SRAM clock input might not be captured correctly if there is  
no way in a design to stop (or slow) the clock during a  
SAMPLE/PRELOAD instruction. If this is an issue, it is still  
Document #: 001-15032 Rev. *D  
Page 13 of 29  
CY7C1470BV25  
CY7C1472BV25, CY7C1474BV25  
possible to capture all other signals and simply ignore the value  
of the CLK captured in the boundary scan register.  
BYPASS  
When the BYPASS instruction is loaded in the instruction register  
and the TAP is placed in a Shift-DR state, the bypass register is  
placed between the TDI and TDO balls. The advantage of the  
BYPASS instruction is that it shortens the boundary scan path  
when multiple devices are connected together on a board.  
After the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the boundary  
scan register between the TDI and TDO balls.  
Note that since the PRELOAD part of the command is not imple-  
mented, putting the TAP to the Update-DR state while performing  
a SAMPLE/PRELOAD instruction has the same effect as the  
Pause-DR command.  
Reserved  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
Figure 4. TAP Timing  
1
2
3
4
5
6
Test Clock  
(TCK)  
t
t
t
TH  
CYC  
TL  
t
t
t
t
TM SS  
TDIS  
TM SH  
Test M ode Select  
(TM S)  
TDIH  
Test Data-In  
(TDI)  
t
TDOV  
t
TDOX  
Test Data-Out  
(TDO)  
DON’T CARE  
UNDEFINED  
Document #: 001-15032 Rev. *D  
Page 14 of 29  
CY7C1470BV25  
CY7C1472BV25, CY7C1474BV25  
TAP AC Switching Characteristics  
[9, 10]  
Over the Operating Range  
Parameter  
Clock  
Description  
Min  
Max  
Unit  
t
t
t
t
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH time  
TCK Clock LOW time  
50  
ns  
MHz  
ns  
TCYC  
TF  
20  
20  
20  
TH  
ns  
TL  
Output Times  
t
t
TCK Clock LOW to TDO Valid  
TCK Clock LOW to TDO Invalid  
10  
ns  
ns  
TDOV  
TDOX  
0
Setup Times  
t
t
t
TMS Setup to TCK Clock Rise  
TDI Setup to TCK Clock Rise  
Capture Setup to TCK Rise  
5
5
5
ns  
ns  
ns  
TMSS  
TDIS  
CS  
Hold Times  
t
t
t
TMS Hold after TCK Clock Rise  
TDI Hold after Clock Rise  
5
5
5
ns  
ns  
ns  
TMSH  
TDIH  
CH  
Capture Hold after Clock Rise  
Notes  
9.  
10. Test conditions are specified using the load in TAP AC Test Conditions. t /t = 1 ns.  
t
and t refer to the setup and hold time requirements of latching data from the boundary scan register.  
CH  
CS  
R
F
Document #: 001-15032 Rev. *D  
Page 15 of 29  
   
CY7C1470BV25  
CY7C1472BV25, CY7C1474BV25  
Figure 5. 2.5V TAP AC Output Load Equivalent  
2.5V TAP AC Test Conditions  
1.25V  
Input pulse levels.................................................V to 2.5V  
SS  
Input rise and fall time .....................................................1 ns  
Input timing reference levels......................................... 1.25V  
Output reference levels ................................................ 1.25V  
Test load termination supply voltage ............................ 1.25V  
50Ω  
TDO  
ZO= 50Ω  
20pF  
TAP DC Electrical Characteristics And Operating Conditions  
(0°C < T < +70°C; V = 2.5V ±0.125V unless otherwise noted)  
A
DD  
Parameter  
Description  
Test Conditions  
Min  
1.7  
2.1  
Max  
Unit  
V
V
V
V
V
V
V
I
Output HIGH Voltage  
Output HIGH Voltage  
Output LOW Voltage  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage  
Input Load Current  
I
I
I
I
= –1.0 mA, V  
= 2.5V  
= 2.5V  
OH1  
OH  
OH  
OL  
OL  
DDQ  
DDQ  
= –100 μA, V  
V
OH2  
OL1  
OL2  
IH  
= 1.0 mA, V  
= 2.5V  
= 2.5V  
0.4  
0.2  
V
DDQ  
DDQ  
= 100 μA, V  
V
V
V
= 2.5V  
= 2.5V  
1.7  
–0.3  
–5  
V
+ 0.3  
V
DDQ  
DDQ  
DD  
0.7  
5
V
IL  
GND V V  
DDQ  
μA  
X
I
Table 6. Identification Register Definitions  
CY7C1470BV25 CY7C1472BV25 CY7C1474BV25  
Instruction Field  
Description  
(2M x 36)  
(4M x 18)  
(1M x 72)  
Revision Number (31:29)  
Device Depth (28:24)  
000  
000  
000  
Describes the version number  
Reserved for internal use  
01011  
01011  
01011  
Architecture/Memory Type(23:18)  
001000  
001000  
001000  
Defines memory type and archi-  
tecture  
Bus Width/Density(17:12)  
100100  
010100  
110100  
Defines width and density  
Cypress JEDEC ID Code (11:1)  
00000110100  
00000110100  
00000110100 Allows unique identification of  
SRAM vendor  
ID Register Presence Indicator (0)  
1
1
1
Indicates the presence of an ID  
register  
Table 7. Scan Register Sizes  
Register Name  
Bit Size (x36)  
Bit Size (x18)  
Bit Size (x72)  
Instruction  
3
1
3
1
3
1
Bypass  
ID  
32  
71  
32  
52  
32  
Boundary Scan Order–165FBGA  
Boundary Scan Order–209BGA  
110  
Note  
11. All voltages refer to V (GND).  
SS  
Document #: 001-15032 Rev. *D  
Page 16 of 29  
   
CY7C1470BV25  
CY7C1472BV25, CY7C1474BV25  
Table 8. Identification Codes  
Instruction Code  
EXTEST  
Description  
000 Captures IO ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM outputs to High-Z state. This instruction is not 1149.1-compliant.  
IDCODE  
001 Loads the ID register with the vendor ID code and places the register between TDI and TDO. This  
operation does not affect SRAM operations.  
SAMPLE Z  
010 Captures IO ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM output drivers to a High-Z state.  
RESERVED  
011 Do Not Use: This instruction is reserved for future use.  
SAMPLE/PRELOAD  
100 Captures IO ring contents. Places the boundary scan register between TDI and TDO.  
Does not affect SRAM operation. This instruction does not implement 1149.1 preload function and  
is therefore not 1149.1-compliant.  
RESERVED  
RESERVED  
BYPASS  
101 Do Not Use: This instruction is reserved for future use.  
110 Do Not Use: This instruction is reserved for future use.  
111  
Places the bypass register between TDI and TDO. This operation does not affect SRAM operations.  
Table 9. Boundary Scan Exit Order (2M x 36)  
Bit #  
1
165-Ball ID  
C1  
Bit #  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
165-Ball ID  
R3  
Bit #  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
165-Ball ID  
J11  
Bit #  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
165-Ball ID  
B7  
B6  
A6  
B5  
A5  
A4  
B4  
B3  
A3  
A2  
B2  
2
D1  
P2  
K10  
J10  
3
E1  
R4  
4
D2  
P6  
H11  
G11  
F11  
E11  
D10  
D11  
C11  
G10  
F10  
E10  
A9  
5
E2  
R6  
6
F1  
R8  
7
G1  
F2  
P3  
8
P4  
9
G2  
J1  
P8  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
P9  
K1  
P10  
R9  
L1  
J2  
R10  
R11  
N11  
M11  
L11  
M10  
L10  
K11  
M1  
N1  
B9  
K2  
A10  
B10  
A8  
L2  
M2  
R1  
B8  
R2  
A7  
Document #: 001-15032 Rev. *D  
Page 17 of 29  
   
CY7C1470BV25  
CY7C1472BV25, CY7C1474BV25  
Boundary Scan Exit Order (4M x 18)  
Bit #  
1
165-Ball ID  
Bit #  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
165-Ball ID  
R4  
Bit #  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
165-Ball ID  
L10  
Bit #  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
165-Ball ID  
B10  
A8  
D2  
E2  
F2  
G2  
J1  
2
P6  
K10  
J10  
3
R6  
B8  
4
R8  
H11  
G11  
F11  
A7  
5
P3  
B7  
6
K1  
L1  
P4  
B6  
7
P8  
E11  
A6  
8
M1  
N1  
R1  
R2  
R3  
P2  
P9  
D11  
C11  
A11  
B5  
9
P10  
R9  
A4  
10  
11  
12  
13  
B3  
R10  
R11  
M10  
A9  
A3  
B9  
A2  
A10  
B2  
Boundary Scan Exit Order (1M x 72)  
Bit #  
1
209-Ball ID  
A1  
Bit #  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
209-Ball ID  
T1  
Bit #  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
209-Ball ID  
U10  
T11  
Bit #  
85  
209-Ball ID  
B11  
B10  
A11  
A10  
A7  
2
A2  
T2  
86  
3
B1  
U1  
T10  
R11  
R10  
P11  
P10  
N11  
N10  
M11  
M10  
L11  
87  
4
B2  
U2  
88  
5
C1  
C2  
D1  
D2  
E1  
V1  
89  
6
V2  
90  
A5  
7
W1  
W2  
T6  
91  
A9  
8
92  
U8  
9
93  
A6  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
E2  
V3  
94  
D6  
F1  
V4  
95  
K6  
F2  
U4  
96  
B6  
G1  
G2  
H1  
H2  
J1  
W5  
V6  
L10  
97  
K3  
P6  
98  
A8  
W6  
V5  
J11  
99  
B4  
J10  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
B3  
U5  
H11  
H10  
G11  
G10  
F11  
C3  
J2  
U6  
C4  
L1  
W7  
V7  
C8  
L2  
C9  
M1  
M2  
N1  
N2  
P1  
U7  
B9  
V8  
F10  
E10  
E11  
D11  
D10  
C11  
C10  
B8  
V9  
A4  
W11  
W10  
V11  
V10  
U11  
C6  
B7  
P2  
A3  
R2  
R1  
Document #: 001-15032 Rev. *D  
Page 18 of 29  
CY7C1470BV25  
CY7C1472BV25, CY7C1474BV25  
Current into Outputs (LOW) ........................................ 20 mA  
Maximum Ratings  
Static Discharge Voltage.......................................... > 2001V  
(MIL-STD-883, Method 3015)  
Exceeding maximum ratings may impair the useful life of the  
device. These user guidelines are not tested.  
Latch up Current.................................................... > 200 mA  
Storage Temperature ................................. –65°C to +150°C  
Operating Range  
Ambient Temperature with  
Power Applied ............................................ –55°C to +125°C  
Ambient  
Range  
V
V
DDQ  
DD  
Supply Voltage on V Relative to GND........–0.5V to +3.6V  
Temperature  
DD  
Supply Voltage on V  
Relative to GND.......–0.5V to +V  
Commercial 0°C to +70°C 2.5V –5%/+5% 2.5V–5% to  
DDQ  
DD  
V
DD  
DC to Outputs in Tri-State....................0.5V to V  
+ 0.5V  
Industrial  
–40°C to +85°C  
DDQ  
DC Input Voltage ................................... –0.5V to V + 0.5V  
DD  
Electrical Characteristics  
Over the Operating Range  
Parameter  
Description  
Power Supply Voltage  
IO Supply Voltage  
Test Conditions  
Min  
2.375  
2.375  
2.0  
Max  
Unit  
V
V
V
V
V
V
I
2.625  
V
V
DD  
DDQ  
OH  
OL  
IH  
For 2.5V IO  
For 2.5V IO, I = 1.0 mA  
V
DD  
Output HIGH Voltage  
Output LOW Voltage  
V
OH  
For 2.5V IO, I = 1.0 mA  
0.4  
V
OL  
Input HIGH Voltage  
For 2.5V IO  
For 2.5V IO  
GND V V  
1.7  
–0.3  
–5  
V
+ 0.3V  
0.7  
V
DD  
Input LOW Voltage  
V
IL  
Input Leakage Current  
except ZZ and MODE  
5
μA  
X
I
DDQ  
Input Current of MODE Input = V  
Input = V  
–30  
–5  
μA  
μA  
SS  
DD  
SS  
DD  
5
Input Current of ZZ  
Input = V  
Input = V  
μA  
30  
5
μA  
I
I
Output Leakage Current GND V V  
Output Disabled  
–5  
μA  
OZ  
I
DDQ,  
V
Operating Supply  
V
f = f  
= Max, I  
= 0 mA,  
4.0-ns cycle, 250 MHz  
5.0-ns cycle, 200 MHz  
6.0-ns cycle, 167 MHz  
450  
450  
400  
200  
200  
200  
120  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
DD  
DD  
DD  
OUT  
CYC  
= 1/t  
MAX  
I
I
Automatic CE  
Power Down  
Current—TTL Inputs  
Max. V , Device Deselected, 4.0-ns cycle, 250MHz  
DD  
SB1  
SB2  
V
V or V V ,  
IN  
IH  
IN  
IL  
5.0-ns cycle, 200 MHz  
6.0-ns cycle, 167 MHz  
f = f  
= 1/t  
MAX CYC  
Automatic CE  
Max. V , Device Deselected, All speed grades  
DD  
Power Down  
Current—CMOS Inputs  
V
V
0.3V or  
IN  
IN  
> V  
0.3V, f = 0  
DDQ  
Notes  
12. Overshoot: V (AC) < V +1.5V (pulse width less than t  
/2). Undershoot: V (AC)> –2V (pulse width less than t /2).  
CYC  
IH  
DD  
CYC  
IL  
13. T  
: assumes a linear ramp from 0V to V (min.) within 200 ms. During this time V < V and V  
< V  
.
Power-up  
DD  
IH  
DD  
DDQ  
DD  
14. The operation current is calculated with 50% read cycle and 50% write cycle.  
Document #: 001-15032 Rev. *D  
Page 19 of 29  
     
CY7C1470BV25  
CY7C1472BV25, CY7C1474BV25  
Electrical Characteristics  
[12, 13]  
Over the Operating Range  
(continued)  
Parameter Description  
Test Conditions  
Max. V , Device Deselected, 4.0-ns cycle, 250 MHz  
Min  
Max  
200  
200  
200  
135  
Unit  
mA  
mA  
mA  
mA  
I
I
Automatic CE  
SB3  
DD  
Power Down  
Current—CMOS Inputs  
V
V
f = f  
0.3V or  
IN  
5.0-ns cycle, 200 MHz  
6.0-ns cycle, 167 MHz  
> V  
0.3V,  
IN  
DDQ  
= 1/t  
CYC  
MAX  
Automatic CE  
Max. V , Device Deselected, All speed grades  
DD  
SB4  
Power Down  
Current—TTL Inputs  
V
V or V V , f = 0  
IN IH IN IL  
Capacitance  
Tested initially and after any design or process changes that may affect these parameters.  
100 TQFP 165 FBGA 209 FBGA  
Parameter  
Description  
Test Conditions  
Unit  
Max  
Max  
Max  
C
C
C
C
C
Address Input Capacitance  
Data Input Capacitance  
Control Input Capacitance  
Clock Input Capacitance  
Input/Output Capacitance  
T = 25°C, f = 1 MHz,  
6
5
8
6
5
6
5
8
6
5
6
5
8
6
5
pF  
pF  
pF  
pF  
pF  
ADDRESS  
DATA  
CTRL  
CLK  
A
V
= 2.5V  
= 2.5V  
DD  
V
DDQ  
IO  
Thermal Resistance  
Tested initially and after any design or process changes that may affect these parameters.  
100 TQFP  
Package  
165 FBGA 209 FBGA  
Parameter  
Description  
Test Conditions  
Unit  
Package  
Package  
Θ
Thermal Resistance Test conditions follow standard test  
(Junction to Ambient) methods and procedures for  
24.63  
16.3  
15.2  
°C/W  
JA  
measuring thermal impedance, per  
EIA/JESD51.  
Θ
Thermal Resistance  
(Junction to Case)  
2.28  
2.1  
1.7  
°C/W  
JC  
AC Test Loads and Waveforms  
2.5V IO Test Load  
R = 1667Ω  
2.5V  
OUTPUT  
R = 50Ω  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
90%  
10%  
Z = 50Ω  
0
10%  
L
GND  
5 pF  
R = 1538Ω  
1 ns  
1 ns  
V = 1.25V  
L
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
Document #: 001-15032 Rev. *D  
Page 20 of 29  
 
CY7C1470BV25  
CY7C1472BV25, CY7C1474BV25  
Switching Characteristics  
Over the Operating Range. Timing reference is 1.25V when V  
Waveforms” on page 20 unless otherwise noted.  
= 2.5V. Test conditions shown in (a) of “AC Test Loads and  
DDQ  
–250  
–200  
–167  
Parameter  
Description  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
t
V
(typical) to the First Access Read or Write  
1
1
1
ms  
Power  
CC  
Clock  
t
Clock Cycle Time  
Maximum Operating Frequency  
Clock HIGH  
4.0  
5.0  
6.0  
ns  
MHz  
ns  
CYC  
F
250  
200  
167  
MAX  
t
t
2.0  
2.0  
2.0  
2.0  
2.2  
2.2  
CH  
CL  
Clock LOW  
ns  
Output Times  
t
t
t
t
t
t
t
Data Output Valid After CLK Rise  
OE LOW to Output Valid  
3.0  
3.0  
3.0  
3.0  
3.4  
3.4  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CO  
OEV  
DOH  
CHZ  
CLZ  
Data Output Hold After CLK Rise  
1.3  
1.3  
0
1.3  
1.3  
0
1.5  
1.5  
0
Clock to High-Z  
3.0  
3.0  
3.0  
3.0  
3.4  
3.4  
Clock to Low-Z  
OE HIGH to Output High-Z  
EOHZ  
EOLZ  
OE LOW to Output Low-Z  
Setup Times  
t
t
t
t
t
t
Address Setup Before CLK Rise  
Data Input Setup Before CLK Rise  
CEN Setup Before CLK Rise  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
AS  
DS  
CENS  
WES  
ALS  
CES  
WE, BW Setup Before CLK Rise  
x
ADV/LD Setup Before CLK Rise  
Chip Select Setup  
Hold Times  
t
t
t
t
t
t
Address Hold After CLK Rise  
Data Input Hold After CLK Rise  
CEN Hold After CLK Rise  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
AH  
DH  
CENH  
WEH  
ALH  
CEH  
WE, BW Hold After CLK Rise  
x
ADV/LD Hold after CLK Rise  
Chip Select Hold After CLK Rise  
Notes  
15. This part has a voltage regulator internally; t  
is the time power is supplied above V minimum initially, before a read or write operation can be initiated.  
DD  
power  
16. t  
, t  
, t  
, and t  
are specified with AC test conditions shown in (b) of “AC Test Loads and Waveforms” on page 20. Transition is measured ±200 mV from  
CHZ CLZ EOLZ  
EOHZ  
steady-state voltage.  
17. At any supplied voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same data  
EOHZ  
EOLZ  
CHZ  
CLZ  
bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed to achieve  
High-Z before Low-Z under the same system conditions.  
18. This parameter is sampled and not 100% tested.  
Document #: 001-15032 Rev. *D  
Page 21 of 29  
       
CY7C1470BV25  
CY7C1472BV25, CY7C1474BV25  
Switching Waveforms  
Figure 6 shows read-write timing waveform.  
Figure 6. Read/Write Timing  
1
2
3
4
5
6
7
8
9
10  
t
CYC  
t
CLK  
CEN  
t
t
t
CENS  
CENH  
CL  
CH  
t
t
CES  
CEH  
CE  
ADV/LD  
WE  
BW  
x
A1  
A2  
A4  
CO  
A3  
A5  
A6  
A7  
ADDRESS  
t
t
t
t
DS  
DH  
t
t
t
DOH  
OEV  
CLZ  
CHZ  
t
t
AS  
AH  
Data  
D(A1)  
D(A2)  
D(A2+1)  
Q(A3)  
Q(A4)  
Q(A4+1)  
D(A5)  
Q(A6)  
In-Out (DQ)  
t
OEHZ  
t
DOH  
t
OELZ  
OE  
WRITE  
D(A1)  
WRITE  
D(A2)  
BURST  
WRITE  
READ  
Q(A3)  
READ  
Q(A4)  
BURST  
READ  
WRITE  
D(A5)  
READ  
Q(A6)  
WRITE  
D(A7)  
DESELECT  
D(A2+1)  
Q(A4+1)  
DON’T CARE  
UNDEFINED  
Notes  
19. For this waveform ZZ is tied LOW.  
20. When CE is LOW, CE is LOW, CE is HIGH, and CE is LOW. When CE is HIGH,CE is HIGH, CE is LOW, or CE is HIGH.  
1
2
3
1
2
3
21. Order of the Burst sequence is determined by the status of the MODE (0 = Linear, 1 = Interleaved).Burst operations are optional.  
Document #: 001-15032 Rev. *D  
Page 22 of 29  
       
CY7C1470BV25  
CY7C1472BV25, CY7C1474BV25  
Switching Waveforms (continued)  
Figure 7 shows NOP, STALL and DESELECT Cycles waveform.  
Figure 7. NOP, STALL and DESELECT Cycles  
1
2
3
4
5
6
7
8
9
10  
CLK  
CEN  
CE  
ADV/LD  
WE  
BWx  
A1  
A2  
A3  
A4  
A5  
ADDRESS  
t
CHZ  
D(A4)  
D(A1)  
Q(A2)  
Q(A3)  
Q(A5)  
Data  
In-Out (DQ)  
WRITE  
D(A1)  
READ  
Q(A2)  
STALL  
READ  
Q(A3)  
WRITE  
D(A4)  
STALL  
NOP  
READ  
Q(A5)  
DESELECT  
CONTINUE  
DESELECT  
DON’T CARE  
UNDEFINED  
Figure 8 shows ZZ Mode timing waveform.  
Figure 8. ZZ Mode Timing  
CLK  
t
t
ZZ  
ZZREC  
ZZ  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
Notes  
22. The IGNORE CLOCK EDGE or STALL cycle (Clock 3) illustrated CEN being used to create a pause. A write is not performed during this cycle.  
23. Device must be deselected when entering ZZ mode. See “Truth Table” on page 10 for all possible signal conditions to deselect the device.  
24. IOs are in High-Z when exiting ZZ sleep mode.  
Document #: 001-15032 Rev. *D  
Page 23 of 29  
         
CY7C1470BV25  
CY7C1472BV25, CY7C1474BV25  
Ordering Information  
Not all of the speed, package and temperature ranges are available. Please contact your local sales representative or visit  
www.cypress.com for actual products offered.  
Speed  
(MHz)  
Package  
Diagram  
Operating  
Range  
Part and Package Type  
Ordering Code  
167 CY7C1470BV25-167AXC  
CY7C1472BV25-167AXC  
CY7C1470BV25-167BZC  
CY7C1472BV25-167BZC  
CY7C1470BV25-167BZXC  
CY7C1472BV25-167BZXC  
CY7C1474BV25-167BGC  
CY7C1474BV25-167BGXC  
CY7C1470BV25-167AXI  
CY7C1472BV25-167AXI  
CY7C1470BV25-167BZI  
CY7C1472BV25-167BZI  
CY7C1470BV25-167BZXI  
CY7C1472BV25-167BZXI  
CY7C1474BV25-167BGI  
CY7C1474BV25-167BGXI  
200 CY7C1470BV25-200AXC  
CY7C1472BV25-200AXC  
CY7C1470BV25-200BZC  
CY7C1472BV25-200BZC  
CY7C1470BV25-200BZXC  
CY7C1472BV25-200BZXC  
CY7C1474BV25-200BGC  
CY7C1474BV25-200BGXC  
CY7C1470BV25-200AXI  
CY7C1472BV25-200AXI  
CY7C1470BV25-200BZI  
CY7C1472BV25-200BZI  
CY7C1470BV25-200BZXI  
CY7C1472BV25-200BZXI  
CY7C1474BV25-200BGI  
CY7C1474BV25-200BGXI  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free  
Commercial  
51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)  
209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Pb-Free  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
lndustrial  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free  
51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)  
209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Pb-Free  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
Commercial  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free  
51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)  
209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Pb-Free  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
lndustrial  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free  
51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)  
209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Pb-Free  
Document #: 001-15032 Rev. *D  
Page 24 of 29  
CY7C1470BV25  
CY7C1472BV25, CY7C1474BV25  
Ordering Information (continued)  
Not all of the speed, package and temperature ranges are available. Please contact your local sales representative or visit  
www.cypress.com for actual products offered.  
Speed  
(MHz)  
Package  
Diagram  
Operating  
Range  
Part and Package Type  
Ordering Code  
250 CY7C1470BV25-250AXC  
CY7C1472BV25-250AXC  
CY7C1470BV25-250BZC  
CY7C1472BV25-250BZC  
CY7C1470BV25-250BZXC  
CY7C1472BV25-250BZXC  
CY7C1474BV25-250BGC  
CY7C1474BV25-250BGXC  
CY7C1470BV25-250AXI  
CY7C1472BV25-250AXI  
CY7C1470BV25-250BZI  
CY7C1472BV25-250BZI  
CY7C1470BV25-250BZXI  
CY7C1472BV25-250BZXI  
CY7C1474BV25-250BGI  
CY7C1474BV25-250BGXI  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free  
Commercial  
51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)  
209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Pb-Free  
51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
Industrial  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free  
51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)  
209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Pb-Free  
Document #: 001-15032 Rev. *D  
Page 25 of 29  
CY7C1470BV25  
CY7C1472BV25, CY7C1474BV25  
Package Diagrams  
Figure 9. 100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm), 51-85050  
16.00 0.20  
14.00 0.10  
1.40 0.05  
100  
81  
80  
1
0.30 0.08  
0.65  
TYP.  
12° 1°  
(8X)  
SEE DETAIL  
A
30  
51  
31  
50  
0.20 MAX.  
1.60 MAX.  
R 0.08 MIN.  
0.20 MAX.  
0° MIN.  
SEATING PLANE  
STAND-OFF  
0.05 MIN.  
0.15 MAX.  
NOTE:  
1. JEDEC STD REF MS-026  
0.25  
GAUGE PLANE  
2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH  
MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE  
R 0.08 MIN.  
0.20 MAX.  
BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH  
3. DIMENSIONS IN MILLIMETERS  
0°-7°  
0.60 0.15  
0.20 MIN.  
1.00 REF.  
51-85050-*B  
DETAIL  
A
Document #: 001-15032 Rev. *D  
Page 26 of 29  
CY7C1470BV25  
CY7C1472BV25, CY7C1474BV25  
Package Diagrams (continued)  
Figure 10. 165-Ball FBGA (15 x 17 x 1.4 mm), 51-85165  
PIN 1 CORNER  
BOTTOM VIEW  
TOP VIEW  
Ø0.05 M C  
PIN 1 CORNER  
Ø0.25 M C A B  
Ø0.45 0.05(165X)  
1
2
3
4
5
6
7
8
9
10  
11  
11 10  
9
8
7
6
5
4
3
2
1
A
B
A
B
C
D
C
D
E
E
F
F
G
G
H
J
H
J
K
K
L
L
M
M
N
P
R
N
P
R
A
1.00  
5.00  
10.00  
B
15.00 0.10  
0.15(4X)  
SEATING PLANE  
C
51-85165-*A  
Document #: 001-15032 Rev. *D  
Page 27 of 29  
CY7C1470BV25  
CY7C1472BV25, CY7C1474BV25  
Package Diagrams (continued)  
Figure 11. 209-Ball FBGA (14 x 22 x 1.76 mm), 51-85167  
51-85167-**  
Document #: 001-15032 Rev. *D  
Page 28 of 29  
CY7C1470BV25  
CY7C1472BV25, CY7C1474BV25  
Document History Page  
Document Title: CY7C1470BV25/CY7C1472BV25/CY7C1474BV25, 72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined SRAM with  
NoBL™ Architecture  
Document Number: 001-15032  
REV.  
**  
ECN No. Issue Date Orig. of Change  
Description of Change  
1032642 See ECN  
1562503 See ECN  
1897447 See ECN  
2082487 See ECN  
2159486 See ECN  
VKN/KKVTMP New data sheet  
*A  
VKN/AESA  
VKN/AESA  
VKN  
Removed 1.8V IO offering from the data sheet  
Added footnote 14 related to IDD  
*B  
*C  
Converted from preliminary to final  
*D  
VKN/PYRS  
Minor Change-Moved to the external web  
© Cypress Semiconductor Corporation, 2007-2008. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used  
for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use  
as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support  
systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document #: 001-15032 Rev. *D  
Revised February 29, 2008  
Page 29 of 29  
NoBL and No Bus Latency are trademarks of Cypress Semiconductor Corporation. ZBT is a trademark of Integrated Device Technology, Inc. All products and company names mentioned in this  
document may be the trademarks of their respective holders.  

GE General Electric Cooktop JP910 User Manual
GE 25922 User Manual
Fujitsu Computer Drive DX90 S2 User Manual
Elo TouchSystems ET1915L User Manual
Cypress CY7C1424BV18 User Manual
Cypress AutoStore STK17T88 User Manual
COBY electronic 209SS User Manual
AT T E1813B User Manual
Asus K8V MX User Manual
Aastra Telecom BE 3872 User Manual