| 	
		 CY7C1460AV33   
					CY7C1462AV33   
					CY7C1464AV33   
					36-Mbit (1M x 36/2M x 18/512K x 72)   
					Pipelined SRAM with NoBL™ Architecture   
					Functional Description   
					Features   
					• Pin-compatible and functionally equivalent to ZBT™   
					• Supports 250-MHz bus operations with zero wait states   
					— Available speed grades are 250, 200 and 167 MHz   
					The CY7C1460AV33/CY7C1462AV33/CY7C1464AV33 are   
					3.3V, 1M x 36/2M x 18/512K x72 Synchronous pipelined burst   
					SRAMs with No Bus Latency™ (NoBL™) logic, respectively.   
					They are designed to support unlimited true back-to-back   
					Read/Write operations with no wait states. The   
					• Internally self-timed output buffer control to eliminate   
					the need to use asynchronous OE   
					CY7C1460AV33/CY7C1462AV33/CY7C1464AV33   
					are   
					equipped with the advanced (NoBL) logic required to enable   
					consecutive Read/Write operations with data being trans-   
					ferred on every clock cycle. This feature dramatically improves   
					the throughput of data in systems that require frequent   
					• Fully registered (inputs and outputs) for pipelined   
					operation   
					• Byte Write capability   
					Write/Read   
					transitions.   
					The   
					• 3.3V power supply   
					CY7C1460AV33/CY7C1462AV33/CY7C1464AV33 are pin   
					compatible and functionally equivalent to ZBT devices.   
					• 3.3V/2.5V I/O power supply   
					• Fast clock-to-output times   
					— 2.6 ns (for 250-MHz device)   
					• Clock Enable (CEN) pin to suspend operation   
					• Synchronous self-timed writes   
					All synchronous inputs pass through input registers controlled   
					by the rising edge of the clock. All data outputs pass through   
					output registers controlled by the rising edge of the clock. The   
					clock input is qualified by the Clock Enable (CEN) signal,   
					which when deasserted suspends operation and extends the   
					previous clock cycle.   
					• CY7C1460AV33, CY7C1462AV33 available in   
					JEDEC-standard lead-free 100-pin TQFP, lead-free and   
					non-lead-free 165-ball FBGA package. CY7C1464AV33   
					available in lead-free and non-lead-free 209-ball FBGA   
					package   
					Write operations are controlled by the Byte Write Selects   
					(BW –BW   
					for   
					CY7C1464AV33,   
					BW –BW   
					for   
					a 
					h 
					a 
					d 
					CY7C1460AV33 and BW –BW for CY7C1462AV33) and a   
					Write Enable (WE) input. All writes are conducted with on-chip   
					synchronous self-timed write circuitry.   
					a 
					b 
					• IEEE 1149.1 JTAG-Compatible Boundary Scan   
					• Burst capability—linear or interleaved burst order   
					• “ZZ” Sleep Mode option and Stop Clock option   
					Three synchronous Chip Enables (CE , CE , CE ) and an   
					1 
					2 
					3 
					asynchronous Output Enable (OE) provide for easy bank   
					selection and output tri-state control. In order to avoid bus   
					contention, the output drivers are synchronously tri-stated   
					during the data portion of a write sequence.   
					Logic Block Diagram-CY7C1460AV33 (1M x 36)   
					ADDRESS   
					REGISTER 0   
					A0, A1, A   
					A1   
					A0   
					A1'   
					A0'   
					D1   
					D0   
					Q1   
					Q0   
					BURST   
					LOGIC   
					MODE   
					C 
					ADV/LD   
					C 
					CLK   
					CEN   
					WRITE ADDRESS   
					REGISTER 1   
					WRITE ADDRESS   
					REGISTER 2   
					O 
					O 
					S 
					U 
					D 
					A 
					T 
					U 
					T 
					P 
					T 
					P 
					E 
					N 
					S 
					U 
					T 
					U 
					T 
					ADV/LD   
					BWa   
					BWb   
					BWc   
					BWd   
					A 
					E 
					WRITE REGISTRY   
					AND DATA COHERENCY   
					CONTROL LOGIC   
					R 
					E 
					G 
					I 
					MEMORY   
					ARRAY   
					B 
					U 
					F 
					S 
					T 
					E 
					E 
					R 
					I 
					DQs   
					WRITE   
					DRIVERS   
					DQPa   
					DQPb   
					DQPc   
					DQPd   
					A 
					M 
					P 
					S 
					T 
					E 
					R 
					S 
					F 
					E 
					R 
					S 
					S 
					WE   
					E 
					E 
					N 
					G 
					INPUT   
					REGISTER 1   
					INPUT   
					REGISTER 0   
					E 
					E 
					OE   
					READ LOGIC   
					CE1   
					CE2   
					CE3   
					SLEEP   
					CONTROL   
					ZZ   
					Cypress Semiconductor Corporation   
					Document #: 38-05353 Rev. *D   
					• 
					198 Champion Court   
					• 
					San Jose, CA 95134-1709   
					• 
					408-943-2600   
					Revised June 22, 2006   
					
				CY7C1460AV33   
					CY7C1462AV33   
					CY7C1464AV33   
					Pin Configurations   
					100-pin TQFP Pinout   
					DQPc   
					DQc   
					DQc   
					1 
					2 
					3 
					4 
					5 
					6 
					7 
					8 
					NC   
					NC   
					NC   
					DDQ   
					1 
					2 
					3 
					4 
					5 
					6 
					7 
					8 
					A 
					NC   
					NC   
					78   
					DQPb   
					DQb   
					DQb   
					80   
					79   
					78   
					77   
					76   
					75   
					74   
					73   
					72   
					71   
					70   
					69   
					68   
					67   
					66   
					65   
					64   
					63   
					62   
					61   
					60   
					59   
					58   
					57   
					56   
					55   
					54   
					53   
					52   
					51   
					80   
					79   
					V 
					V 
					DDQ   
					V 
					V 
					V 
					NC   
					DQPa   
					DQa   
					DQa   
					DDQ   
					77   
					76   
					75   
					74   
					73   
					72   
					71   
					70   
					69   
					68   
					67   
					66   
					65   
					64   
					63   
					62   
					61   
					60   
					59   
					58   
					57   
					56   
					55   
					54   
					53   
					52   
					51   
					DDQ   
					SS   
					V 
					V 
					V 
					SS   
					SS   
					SS   
					DQc   
					DQc   
					NC   
					NC   
					DQb   
					DQb   
					DQb   
					DQb   
					DQb   
					DQc   
					DQc   
					9 
					DQb   
					9 
					V 
					V 
					SS   
					10   
					11   
					12   
					13   
					14   
					15   
					16   
					17   
					18   
					19   
					20   
					21   
					22   
					23   
					24   
					25   
					26   
					27   
					28   
					29   
					30   
					V 
					SS   
					10   
					11   
					12   
					13   
					14   
					15   
					16   
					17   
					18   
					19   
					20   
					21   
					22   
					23   
					24   
					25   
					26   
					27   
					28   
					29   
					30   
					V 
					SS   
					SS   
					V 
					V 
					DDQ   
					DDQ   
					V 
					V 
					DQa   
					DQa   
					V 
					NC   
					DDQ   
					DDQ   
					DQc   
					DQc   
					NC   
					DQb   
					DQb   
					DQb   
					DQb   
					NC   
					V 
					SS   
					CY7C1462AV33   
					(2M × 18)   
					CY7C1460AV33   
					(1M × 36)   
					SS   
					V 
					V 
					DD   
					NC   
					DD   
					NC   
					NC   
					V 
					V 
					ZZ   
					DD   
					DD   
					V 
					V 
					SS   
					SS   
					ZZ   
					DQa   
					DQa   
					DQd   
					DQb   
					DQa   
					DQa   
					DQd   
					DQb   
					DDQ   
					V 
					V 
					DDQ   
					V 
					V 
					V 
					DQa   
					DQa   
					NC   
					NC   
					V 
					V 
					DDQ   
					DDQ   
					V 
					V 
					SS   
					V 
					SS   
					SS   
					SS   
					DQd   
					DQd   
					DQd   
					DQd   
					DQa   
					DQa   
					DQb   
					DQb   
					DQa DQPb   
					DQa   
					NC   
					V 
					SS   
					V 
					V 
					SS   
					SS   
					SS   
					V 
					V 
					DDQ   
					DDQ   
					V 
					DDQ   
					DDQ   
					DQd   
					DQd   
					DQPd   
					DQa   
					DQa   
					DQPa   
					NC   
					NC   
					NC   
					NC   
					NC   
					NC   
					Document #: 38-05353 Rev. *D   
					Page 3 of 27   
					
				CY7C1460AV33   
					CY7C1462AV33   
					CY7C1464AV33   
					Pin Configurations (continued)   
					165-ball FBGA (15 x 17 x 1.4 mm) Pinout   
					CY7C1460AV33 (1M × 36)   
					1 
					2 
					A 
					3 
					4 
					5 
					6 
					7 
					8 
					9 
					A 
					10   
					A 
					11   
					NC   
					NC/576M   
					NC/1G   
					DQPc   
					ADV/LD   
					A 
					B 
					C 
					D 
					CE1   
					BWc   
					BWd   
					VSS   
					VDD   
					BWb   
					BWa   
					VSS   
					VSS   
					CE   
					CEN   
					WE   
					3 
					A 
					CE2   
					VDDQ   
					VDDQ   
					CLK   
					VSS   
					VSS   
					OE   
					VSS   
					VDD   
					A 
					A 
					NC   
					NC   
					DQc   
					VSS   
					VSS   
					VDDQ   
					VDDQ   
					NC   
					DQb   
					DQPb   
					DQb   
					DQc   
					DQc   
					DQc   
					DQc   
					NC   
					DQc   
					DQc   
					DQc   
					NC   
					VDDQ   
					VDDQ   
					VDDQ   
					NC   
					VDD   
					VDD   
					VDD   
					VDD   
					VDD   
					VDD   
					VDD   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VDD   
					VDD   
					VDD   
					VDD   
					VDD   
					VDD   
					VDD   
					VDDQ   
					VDDQ   
					VDDQ   
					NC   
					DQb   
					DQb   
					DQb   
					NC   
					DQb   
					DQb   
					DQb   
					ZZ   
					E 
					F 
					G 
					H 
					J 
					DQd   
					DQd   
					DQd   
					DQd   
					DQd   
					DQd   
					VDDQ   
					VDDQ   
					VDDQ   
					VDDQ   
					VDDQ   
					VDDQ   
					DQa   
					DQa   
					DQa   
					DQa   
					DQa   
					DQa   
					K 
					L 
					DQd   
					DQd   
					NC   
					VDDQ   
					VDDQ   
					A 
					VDD   
					VSS   
					A 
					VSS   
					NC   
					VSS   
					NC   
					A1   
					VSS   
					NC   
					VDD   
					VSS   
					A 
					VDDQ   
					VDDQ   
					A 
					DQa   
					NC   
					A 
					DQa   
					DQPa   
					M 
					N 
					P 
					DQPd   
					NC/144M NC/72M   
					TDI   
					TDO   
					NC/288M   
					A 
					MODE   
					A 
					A 
					TMS   
					A0   
					TCK   
					A 
					A 
					A 
					A 
					R 
					CY7C1462AV33 (2M × 18)   
					1 
					NC/576M   
					NC/1G   
					NC   
					2 
					A 
					3 
					4 
					5 
					NC   
					6 
					CE   
					7 
					8 
					9 
					A 
					10   
					A 
					11   
					A 
					A 
					B 
					C 
					D 
					CE1   
					BWb   
					NC   
					CEN   
					ADV/LD   
					3 
					NC   
					A 
					CE2   
					VDDQ   
					VDDQ   
					BWa   
					VSS   
					VSS   
					CLK   
					VSS   
					VSS   
					A 
					A 
					WE   
					VSS   
					VSS   
					OE   
					VSS   
					VDD   
					NC   
					DQb   
					VSS   
					VDD   
					VDDQ   
					VDDQ   
					NC   
					NC   
					DQPa   
					DQa   
					NC   
					NC   
					NC   
					DQb   
					DQb   
					DQb   
					NC   
					VDDQ   
					VDDQ   
					VDDQ   
					NC   
					VDD   
					VDD   
					VDD   
					VDD   
					VDD   
					VDD   
					VDD   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VDD   
					VDD   
					VDD   
					VDD   
					VDD   
					VDD   
					VDD   
					VDDQ   
					VDDQ   
					VDDQ   
					NC   
					NC   
					NC   
					DQa   
					DQa   
					DQa   
					ZZ   
					E 
					F 
					NC   
					NC   
					G 
					H 
					J 
					NC   
					NC   
					DQb   
					DQb   
					DQb   
					NC   
					VDDQ   
					VDDQ   
					VDDQ   
					VDDQ   
					VDDQ   
					VDDQ   
					DQa   
					DQa   
					DQa   
					NC   
					NC   
					NC   
					K 
					L 
					NC   
					NC   
					DQb   
					NC   
					NC   
					VDDQ   
					VDDQ   
					A 
					VDD   
					VSS   
					A 
					VSS   
					NC   
					VSS   
					NC   
					A1   
					VSS   
					NC   
					VDD   
					VSS   
					A 
					VDDQ   
					VDDQ   
					A 
					DQa   
					NC   
					A 
					NC   
					NC   
					M 
					N 
					P 
					DQPb   
					NC/144M NC/72M   
					TDI   
					TDO   
					NC/288M   
					A 
					MODE   
					A 
					A 
					TMS   
					A0   
					TCK   
					A 
					A 
					A 
					A 
					R 
					Document #: 38-05353 Rev. *D   
					Page 4 of 27   
					
				CY7C1460AV33   
					CY7C1462AV33   
					CY7C1464AV33   
					Pin Configurations (continued)   
					209-ball FBGA (14 x 22 x 1.76 mm) Pinout   
					CY7C1464AV33 (512K x 72)   
					1 
					DQg   
					DQg   
					DQg   
					2 
					3 
					4 
					5 
					6 
					7 
					8 
					9 
					10   
					DQb   
					11   
					A 
					B 
					C 
					D 
					E 
					F 
					DQg   
					DQg   
					CE   
					CE   
					ADV/LD   
					WE   
					DQb   
					DQb   
					3 
					2 
					A 
					A 
					A 
					A 
					A 
					BWS   
					DQb   
					DQb   
					NC   
					BWS   
					BWS   
					f 
					BWS   
					b 
					c 
					g 
					DQg   
					DQg   
					DQPc   
					DQc   
					DQc   
					NC/576M   
					NC   
					NC   
					BWS   
					NC   
					BWS   
					CE   
					BWS   
					a 
					BWS   
					DQb   
					DQb   
					DQPb   
					DQf   
					e 
					d 
					1 
					h 
					DQg   
					V 
					NC/1G   
					OE   
					V 
					NC   
					V 
					SS   
					DQb   
					SS   
					DQPg   
					DQc   
					V 
					V 
					V 
					V 
					V 
					V 
					DD   
					DDQ   
					DDQ   
					DDQ   
					SS   
					DDQ   
					DD   
					DD   
					DQPf   
					DQf   
					V 
					V 
					V 
					V 
					V 
					NC   
					NC   
					NC   
					NC   
					CEN   
					NC   
					NC   
					V 
					V 
					SS   
					SS   
					SS   
					SS   
					SS   
					G 
					H 
					J 
					DQc   
					DQc   
					V 
					V 
					V 
					DDQ   
					V 
					V 
					V 
					DD   
					DDQ   
					DQf   
					DQf   
					DD   
					DDQ   
					DQf   
					DDQ   
					V 
					V 
					V 
					V 
					V 
					V 
					SS   
					V 
					DQc   
					DQc   
					NC   
					SS   
					SS   
					SS   
					SS   
					SS   
					DQf   
					DQf   
					NC   
					DQc   
					NC   
					V 
					V 
					DDQ   
					V 
					V 
					V 
					DDQ   
					DD   
					DD   
					DDQ   
					DDQ   
					DQf   
					NC   
					K 
					L 
					CLK   
					V 
					V 
					NC   
					V 
					SS   
					SS   
					NC   
					NC   
					DQh   
					DQh   
					DQh   
					V 
					V 
					V 
					V 
					DDQ   
					DD   
					DD   
					SS   
					DDQ   
					DDQ   
					DQa   
					DQa   
					DQa   
					DDQ   
					M 
					N 
					P 
					R 
					T 
					V 
					V 
					V 
					V 
					V 
					V 
					V 
					DQh   
					DQh   
					DQh   
					V 
					V 
					SS   
					SS   
					SS   
					SS   
					SS   
					DQa   
					DQa   
					DQa   
					V 
					V 
					V 
					V 
					V 
					DDQ   
					DQh   
					DQh   
					DQPd   
					DQd   
					DQd   
					V 
					V 
					V 
					V 
					V 
					NC   
					ZZ   
					DD   
					DD   
					SS   
					DDQ   
					SS   
					DDQ   
					DDQ   
					DQa   
					DQa   
					DQPa   
					DQe   
					DQe   
					V 
					V 
					V 
					V 
					SS   
					SS   
					SS   
					SS   
					V 
					DQPh   
					DQd   
					DQd   
					DQd   
					DQd   
					V 
					V 
					DDQ   
					SS   
					DD   
					DD   
					DDQ   
					DDQ   
					SS   
					DDQ   
					DD   
					DQPe   
					DQe   
					DQe   
					DQe   
					DQe   
					NC   
					V 
					NC   
					NC   
					NC   
					A 
					MODE   
					A 
					U 
					V 
					W 
					NC/72M   
					A 
					A 
					NC/288M   
					NC/144M   
					A 
					A 
					A1   
					A 
					DQd   
					DQd   
					A 
					A 
					A 
					A 
					DQe   
					DQe   
					TDI   
					TDO   
					TCK   
					A0   
					A 
					TMS   
					Pin Definitions   
					Pin Name   
					I/O Type   
					Pin Description   
					A0   
					A1   
					A 
					Input-   
					Synchronous   
					Address Inputs used to select one of the address locations. Sampled at the rising   
					edge of the CLK.   
					BW   
					Input-   
					Synchronous   
					Byte Write Select Inputs, active LOW. Qualified with WE to conduct writes to the SRAM.   
					a 
					BW   
					BW   
					BW   
					BW   
					BW   
					BW   
					BW   
					Sampled on the rising edge of CLK. BW controls DQ and DQP , BW controls DQ and   
					b 
					c 
					d 
					e 
					f 
					a 
					a 
					a 
					b 
					b 
					DQP , BW controls DQ and DQP , BW controls DQ and DQP , BW controls DQ and   
					b 
					c 
					c 
					c 
					d 
					d 
					d 
					e 
					e 
					DQP , BW controls DQ and DQP , BW controls DQ and DQP , BW controls DQ and   
					e 
					f 
					f 
					f 
					g 
					g 
					g 
					h 
					h 
					DQP .   
					h 
					g 
					h 
					WE   
					Input-   
					Synchronous   
					Write Enable Input, active LOW. Sampled on the rising edge of CLK if CEN is active   
					LOW. This signal must be asserted LOW to initiate a write sequence.   
					ADV/LD   
					Input-   
					Synchronous   
					Advance/Load Input used to advance the on-chip address counter or load a new   
					address. When HIGH (and CEN is asserted LOW) the internal burst counter is advanced.   
					When LOW, a new address can be loaded into the device for an access. After being   
					deselected, ADV/LD should be driven LOW in order to load a new address.   
					Document #: 38-05353 Rev. *D   
					Page 5 of 27   
					
				CY7C1460AV33   
					CY7C1462AV33   
					CY7C1464AV33   
					Pin Definitions (continued)   
					Pin Name   
					CLK   
					I/O Type   
					Pin Description   
					Input-   
					Clock   
					Clock Input. Used to capture all synchronous inputs to the device. CLK is qualified with   
					CEN. CLK is only recognized if CEN is active LOW.   
					CE   
					CE   
					CE   
					Input-   
					Synchronous   
					Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction   
					1 
					2 
					3 
					with CE and CE to select/deselect the device.   
					2 
					3 
					Input-   
					Synchronous   
					Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK. Used in   
					conjunction with CE and CE to select/deselect the device.   
					1 
					3 
					Input-   
					Synchronous   
					Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction   
					with CE and CE to select/deselect the device.   
					1 
					2 
					OE   
					Input-   
					Output Enable, active LOW. Combined with the synchronous logic block inside the device   
					Asynchronous to control the direction of the I/O pins. When LOW, the I/O pins are allowed to behave as   
					outputs. When deasserted HIGH, I/O pins are tri-stated, and act as input data pins. OE is   
					masked during the data portion of a write sequence, during the first clock when emerging   
					from a deselected state and when the device has been deselected.   
					CEN   
					Input-   
					Synchronous   
					Clock Enable Input, active LOW. When asserted LOW the clock signal is recognized by   
					the SRAM. When deasserted HIGH the clock signal is masked. Since deasserting CEN   
					does not deselect the device, CEN can be used to extend the previous cycle when required.   
					DQ   
					DQ   
					DQ   
					DQ   
					DQ   
					DQ   
					DQ   
					DQ   
					I/O-   
					Synchronous   
					Bidirectional Data I/O lines. As inputs, they feed into an on-chip data register that is   
					triggered by the rising edge of CLK. As outputs, they deliver the data contained in the   
					a 
					b 
					c 
					d 
					e 
					f 
					memory location specified by A during the previous clock rise of the read cycle. The   
					X 
					direction of the pins is controlled by OE and the internal control logic. When OE is asserted   
					LOW, the pins can behave as outputs. When HIGH, DQ –DQ are placed in a tri-state   
					a 
					d 
					condition. The outputs are automatically tri-stated during the data portion of a write   
					sequence, during the first clock when emerging from a deselected state, and when the   
					device is deselected, regardless of the state of OE.   
					g 
					h 
					DQP DQP   
					I/O-   
					Synchronous   
					Bidirectional Data Parity I/O lines. Functionally, these signals are identical to DQ   
					. 
					[31:0]   
					a,   
					b,   
					d 
					DQP DQP   
					During write sequences, DQP is controlled by BW , DQP is controlled by BW , DQP is   
					c,   
					a 
					a 
					b 
					b 
					c 
					DQP DQP   
					controlled by BW , and DQP is controlled by BW , DQP is controlled by BW , DQP is   
					e,   
					f 
					c 
					d 
					d 
					e 
					e 
					f 
					DQP DQP   
					controlled by BW , DQP is controlled by BW , DQP is controlled by BW .   
					g,   
					h 
					f 
					g 
					g 
					h 
					h 
					MODE   
					Input Strap Pin Mode Input. Selects the burst order of the device. Tied HIGH selects the interleaved burst   
					order. Pulled LOW selects the linear burst order. MODE should not change states during   
					operation. When left floating MODE will default HIGH, to an interleaved burst order.   
					TDO   
					TDI   
					JTAG serial output Serial data-out to the JTAG circuit. Delivers data on the negative edge of TCK.   
					Synchronous   
					JTAG serial input Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK.   
					Synchronous   
					TMS   
					TCK   
					Test Mode Select This pin controls the Test Access Port state machine. Sampled on the rising edge of   
					Synchronous   
					TCK.   
					JTAG-Clock   
					Clock input to the JTAG circuitry.   
					V 
					V 
					V 
					Power Supply Power supply inputs to the core of the device.   
					DD   
					I/O Power Supply Power supply for the I/O circuitry.   
					DDQ   
					Ground   
					N/A   
					Ground for the device. Should be connected to ground of the system.   
					SS   
					NC   
					No connects. This pin is not connected to the die.   
					NC/72M   
					N/A   
					Not connected to the die. Can be tied to any voltage level.   
					NC/144M   
					NC/288M   
					NC/576M   
					NC/1G   
					N/A   
					N/A   
					Not connected to the die. Can be tied to any voltage level.   
					Not connected to the die. Can be tied to any voltage level.   
					Not connected to the die. Can be tied to any voltage level.   
					Not connected to the die. Can be tied to any voltage level.   
					ZZ “sleep” Input. This active HIGH input places the device in a non-time critical “sleep”   
					N/A   
					N/A   
					ZZ   
					Input-   
					Asynchronous condition with data integrity preserved. During normal operation, this pin can be connected   
					to V or left floating. ZZ pin has an internal pull-down.   
					SS   
					Document #: 38-05353 Rev. *D   
					Page 6 of 27   
					
				CY7C1460AV33   
					CY7C1462AV33   
					CY7C1464AV33   
					Functional Overview   
					the internal burst counter regardless of the state of chip   
					enables inputs or WE. WE is latched at the beginning of a burst   
					cycle. Therefore, the type of access (Read or Write) is   
					maintained throughout the burst sequence.   
					The CY7C1460AV33/CY7C1462AV33/CY7C1464AV33 are   
					synchronous-pipelined Burst NoBL SRAMs designed specifi-   
					cally to eliminate wait states during Write/Read transitions. All   
					synchronous inputs pass through input registers controlled by   
					the rising edge of the clock. The clock signal is qualified with   
					the Clock Enable input signal (CEN). If CEN is HIGH, the clock   
					signal is not recognized and all internal states are maintained.   
					All synchronous operations are qualified with CEN. All data   
					outputs pass through output registers controlled by the rising   
					edge of the clock. Maximum access delay from the clock rise   
					Single Write Accesses   
					Write access are initiated when the following conditions are   
					satisfied at clock rise: (1) CEN is asserted LOW, (2) CE , CE ,   
					1 
					2 
					and CE are ALL asserted active, and (3) the write signal WE   
					3 
					is asserted LOW. The address presented to the address inputs   
					is loaded into the Address Register. The write signals are   
					latched into the Control Logic block.   
					(t ) is 2.6 ns (250-MHz device).   
					CO   
					On the subsequent clock rise the data lines are automatically   
					tri-stated regardless of the state of the OE input signal. This   
					allows the external logic to present the data on DQ and DQP   
					Accesses can be initiated by asserting all three Chip Enables   
					(CE , CE , CE ) active at the rising edge of the clock. If Clock   
					1 
					2 
					3 
					Enable (CEN) is active LOW and ADV/LD is asserted LOW,   
					the address presented to the device will be latched. The   
					access can either be a read or write operation, depending on   
					(DQ   
					DQ   
					/DQP   
					for   
					for CY7C1460AV33 and DQ /DQP   
					a,b   
					CY7C1464AV33,   
					a,b,c,d,e,f,g,h   
					a,b,c,d,e,f,g,h   
					/DQP   
					a,b,c,d   
					a,b,c,d   
					a,b   
					for CY7C1462AV33). In addition, the address for the subse-   
					quent access (Read/Write/Deselect) is latched into the   
					Address Register (provided the appropriate control signals are   
					asserted).   
					the status of the Write Enable (WE). BW can be used to   
					[x]   
					conduct byte write operations.   
					Write operations are qualified by the Write Enable (WE). All   
					writes are simplified with on-chip synchronous self-timed write   
					circuitry.   
					On the next clock rise the data presented to DQ and DQP   
					(DQ   
					/DQP   
					for   
					CY7C1464AV33,   
					a,b,c,d,e,f,g,h   
					a,b,c,d,e,f,g,h   
					Three synchronous Chip Enables (CE , CE , CE ) and an   
					1 
					2 
					3 
					DQ   
					/DQP   
					for CY7C1460AV33 & DQ /DQP for   
					a,b,c,d   
					a,b,c,d   
					a,b   
					a,b   
					asynchronous Output Enable (OE) simplify depth expansion.   
					All operations (Reads, Writes, and Deselects) are pipelined.   
					ADV/LD should be driven LOW once the device has been   
					deselected in order to load a new address for the next   
					operation.   
					CY7C1462AV33) (or a subset for byte write operations, see   
					Write Cycle Description table for details) inputs is latched into   
					the device and the write is complete.   
					The data written during the Write operation is controlled by BW   
					(BW   
					for   
					CY7C1464AV33,   
					BW   
					for   
					a,b,c,d,e,f,g,h   
					a,b,c,d   
					Single Read Accesses   
					CY7C1460AV33 and BW for CY7C1462AV33) signals. The   
					a,b   
					CY7C1460AV33/CY7C1462AV33/CY7C1464AV33 provides   
					byte write capability that is described in the Write Cycle   
					Description table. Asserting the Write Enable input (WE) with   
					the selected Byte Write Select (BW) input will selectively write   
					to only the desired bytes. Bytes not selected during a byte   
					A read access is initiated when the following conditions are   
					satisfied at clock rise: (1) CEN is asserted LOW, (2) CE , CE ,   
					1 
					2 
					and CE are ALL asserted active, (3) the Write Enable input   
					3 
					signal WE is deasserted HIGH, and (4) ADV/LD is asserted   
					LOW. The address presented to the address inputs is latched   
					into the Address Register and presented to the memory core   
					and control logic. The control logic determines that a read   
					access is in progress and allows the requested data to   
					propagate to the input of the output register. At the rising edge   
					of the next clock the requested data is allowed to propagate   
					through the output register and onto the data bus within 2.6 ns   
					(250-MHz device) provided OE is active LOW. After the first   
					clock of the read access the output buffers are controlled by   
					OE and the internal control logic. OE must be driven LOW in   
					order for the device to drive out the requested data. During the   
					second clock, a subsequent operation (Read/Write/Deselect)   
					can be initiated. Deselecting the device is also pipelined.   
					Therefore, when the SRAM is deselected at clock rise by one   
					of the chip enable signals, its output will tri-state following the   
					next clock rise.   
					write operation will remain unaltered.   
					A 
					synchronous   
					self-timed write mechanism has been provided to simplify the   
					write operations. Byte write capability has been included in   
					order to greatly simplify Read/Modify/Write sequences, which   
					can be reduced to simple byte write operations.   
					Because   
					the   
					are   
					CY7C1460AV33/CY7C1462AV33/CY7C1464AV33   
					common I/O devices, data should not be driven into the device   
					while the outputs are active. The Output Enable (OE) can be   
					deasserted HIGH before presenting data to the DQ and DQP   
					(DQ   
					/DQP   
					for   
					for CY7C1460AV33 and DQ /DQP   
					a,b   
					CY7C1464AV33,   
					a,b,c,d,e,f,g,h   
					a,b,c,d,e,f,g,h   
					DQ   
					/DQP   
					a,b,c,d   
					a,b,c,d   
					a,b   
					for CY7C1462AV33) inputs. Doing so will tri-state the output   
					drivers. As   
					(DQ   
					a 
					safety precaution, DQ and DQP   
					for CY7C1464AV33,   
					for CY7C1460AV33 and DQ /DQP   
					a,b   
					/DQP   
					a,b,c,d,e,f,g,h   
					a,b,c,d,e,f,g,h   
					DQ   
					/DQP   
					a,b,c,d   
					a,b,c,d   
					a,b   
					Burst Read Accesses   
					for CY7C1462AV33) are automatically tri-stated during the   
					data portion of a write cycle, regardless of the state of OE.   
					The CY7C1460AV33/CY7C1462AV33/CY7C1464AV33 have   
					an on-chip burst counter that allows the user the ability to   
					supply a single address and conduct up to four Reads without   
					reasserting the address inputs. ADV/LD must be driven LOW   
					in order to load a new address into the SRAM, as described in   
					the Single Read Access section above. The sequence of the   
					burst counter is determined by the MODE input signal. A LOW   
					input on MODE selects a linear burst mode, a HIGH selects an   
					interleaved burst sequence. Both burst counters use A0 and   
					A1 in the burst sequence, and will wrap-around when incre-   
					mented sufficiently. A HIGH input on ADV/LD will increment   
					Burst Write Accesses   
					The CY7C1460AV33/CY7C1462AV33/CY7C1464AV33 has   
					an on-chip burst counter that allows the user the ability to   
					supply a single address and conduct up to four WRITE opera-   
					tions without reasserting the address inputs. ADV/LD must be   
					driven LOW in order to load the initial address, as described   
					in the Single Write Access section above. When ADV/LD is   
					driven HIGH on the subsequent clock rise, the chip enables   
					(CE , CE , and CE ) and WE inputs are ignored and the burst   
					1 
					2 
					3 
					Document #: 38-05353 Rev. *D   
					Page 7 of 27   
					
				CY7C1460AV33   
					CY7C1462AV33   
					CY7C1464AV33   
					counter is incremented. The correct BW (BW   
					for   
					a,b,c,d,e,f,g,h   
					Interleaved Burst Address Table   
					(MODE = Floating or VDD   
					CY7C1464AV33, BW   
					for CY7C1460AV33 and BW for   
					a,b,c,d   
					a,b   
					) 
					CY7C1462AV33) inputs must be driven in each cycle of the   
					burst write in order to write the correct bytes of data.   
					First   
					Address   
					Second   
					Address   
					Third   
					Address   
					Fourth   
					Address   
					Sleep Mode   
					A1,A0   
					00   
					A1,A0   
					01   
					A1,A0   
					10   
					A1,A0   
					11   
					The ZZ input pin is an asynchronous input. Asserting ZZ   
					places the SRAM in a power conservation “sleep” mode. Two   
					clock cycles are required to enter into or exit from this “sleep”   
					mode. While in this mode, data integrity is guaranteed.   
					Accesses pending when entering the “sleep” mode are not   
					considered valid nor is the completion of the operation   
					guaranteed. The device must be deselected prior to entering   
					01   
					00   
					11   
					10   
					10   
					11   
					00   
					01   
					11   
					10   
					01   
					00   
					Linear Burst Address Table (MODE = GND)   
					the “sleep” mode. CE , CE , and CE , must remain inactive   
					1 
					2 
					3 
					for the duration of t   
					after the ZZ input returns LOW.   
					ZZREC   
					First   
					Second   
					Address   
					Third   
					Address   
					Fourth   
					Address   
					Address   
					A1,A0   
					00   
					A1,A0   
					01   
					A1,A0   
					10   
					A1,A0   
					11   
					01   
					10   
					11   
					00   
					10   
					11   
					00   
					01   
					11   
					00   
					01   
					10   
					ZZ Mode Electrical Characteristics   
					Parameter   
					Description   
					Sleep mode standby current   
					Device operation to ZZ   
					ZZ recovery time   
					Test Conditions   
					Min.   
					Max.   
					100   
					Unit   
					mA   
					ns   
					I 
					t 
					t 
					t 
					t 
					ZZ > V − 0.2V   
					DD   
					DDZZ   
					ZZ > V − 0.2V   
					2t   
					ZZS   
					DD   
					CYC   
					ZZ < 0.2V   
					2t   
					ns   
					ZZREC   
					ZZI   
					CYC   
					ZZ active to sleep current   
					ZZ Inactive to exit sleep current   
					This parameter is sampled   
					This parameter is sampled   
					2t   
					ns   
					CYC   
					0 
					ns   
					RZZI   
					Truth Table[1, 2, 3, 4, 5, 6, 7]   
					Address   
					Operation   
					Deselect Cycle   
					Continue   
					Used   
					None   
					None   
					CE   
					H 
					X 
					ZZ   
					L 
					L 
					ADV/LD WE   
					BW   
					X 
					X 
					OE   
					X 
					X 
					CEN   
					L 
					L 
					CLK   
					L-H   
					L-H   
					DQ   
					Tri-State   
					Tri-State   
					x 
					L 
					X 
					X 
					H 
					Deselect Cycle   
					Read Cycle   
					(Begin Burst)   
					Read Cycle   
					(Continue Burst)   
					NOP/Dummy Read   
					(Begin Burst)   
					Dummy Read   
					External   
					Next   
					L 
					X 
					L 
					L 
					L 
					L 
					L 
					L 
					H 
					L 
					H 
					X 
					H 
					X 
					X 
					X 
					X 
					X 
					L 
					L 
					L 
					L 
					L 
					L 
					L-H   
					L-H   
					L-H   
					L-H   
					Data Out (Q)   
					Data Out (Q)   
					Tri-State   
					External   
					Next   
					H 
					H 
					X 
					H 
					Tri-State   
					(Continue Burst)   
					Notes:   
					1. X = “Don't Care”, H = Logic HIGH, L = Logic LOW, CE stands for ALL Chip Enables active. BWx = L signifies at least one Byte Write Select is active, BWx =   
					Valid signifies that the desired byte write selects are asserted, see Write Cycle Description table for details.   
					2. Write is defined by WE and BW . See Write Cycle Description table for details.   
					X 
					3. When a write cycle is detected, all I/Os are tri-stated, even during byte writes.   
					4. The DQ and DQP pins are controlled by the current cycle and the OE signal.   
					5. CEN = H inserts wait states.   
					6. Device will power-up deselected and the I/Os in a tri-state condition, regardless of OE.   
					7. OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles.During a read cycle DQ and DQP = Tri-state when OE   
					s 
					X 
					is inactive or when the device is deselected, and DQ =data when OE is active.   
					s 
					Document #: 38-05353 Rev. *D   
					Page 8 of 27   
					
				CY7C1460AV33   
					CY7C1462AV33   
					CY7C1464AV33   
					Truth Table[1, 2, 3, 4, 5, 6, 7] (continued)   
					Address   
					Operation   
					Write Cycle   
					(Begin Burst)   
					Write Cycle   
					(Continue Burst)   
					NOP/WRITE ABORT   
					(Begin Burst)   
					WRITE ABORT   
					(Continue Burst)   
					IGNORE CLOCK   
					EDGE   
					Used   
					CE   
					L 
					ZZ   
					L 
					ADV/LD WE   
					BW   
					L 
					OE   
					X 
					CEN   
					L 
					CLK   
					DQ   
					Data In (D)   
					x 
					External   
					L 
					H 
					L 
					L 
					X 
					L 
					L-H   
					L-H   
					L-H   
					L-H   
					L-H   
					Next   
					None   
					Next   
					X 
					L 
					L 
					L 
					L 
					L 
					L 
					H 
					H 
					X 
					X 
					X 
					X 
					X 
					L 
					L 
					Data In (D)   
					Tri-State   
					Tri-State   
					- 
					X 
					X 
					H 
					X 
					X 
					X 
					L 
					Current   
					H 
					(Stall)   
					SLEEP MODE   
					None   
					X 
					H 
					X 
					X 
					X 
					X 
					X 
					X 
					Tri-State   
					Partial Write Cycle Description[1, 2, 3, 8]   
					Function (CY7C1460AV33)   
					Read   
					WE   
					H 
					L 
					BW   
					X 
					H 
					H 
					H 
					H 
					H 
					H 
					H 
					H 
					L 
					BW   
					X 
					H 
					H 
					H 
					H 
					L 
					BW   
					X 
					H 
					H 
					L 
					BW   
					a 
					d 
					c 
					b 
					X 
					H 
					L 
					Write – No bytes written   
					Write Byte a – (DQ and DQP )   
					L 
					a 
					a 
					Write Byte b – (DQ and DQP )   
					L 
					H 
					L 
					b 
					b 
					Write Bytes b, a   
					Write Byte c – (DQ and DQP )   
					L 
					L 
					L 
					H 
					H 
					L 
					H 
					L 
					c 
					c 
					Write Bytes c, a   
					Write Bytes c, b   
					Write Bytes c, b, a   
					L 
					L 
					L 
					LL   
					L 
					H 
					L 
					L 
					L 
					Write Byte d – (DQ and DQP )   
					L 
					H 
					H 
					H 
					H 
					L 
					H 
					H 
					L 
					H 
					L 
					d 
					d 
					Write Bytes d, a   
					Write Bytes d, b   
					Write Bytes d, b, a   
					Write Bytes d, c   
					Write Bytes d, c, a   
					Write Bytes d, c, b   
					Write All Bytes   
					L 
					L 
					L 
					L 
					H 
					L 
					L 
					L 
					L 
					L 
					L 
					H 
					H 
					L 
					H 
					L 
					L 
					L 
					L 
					L 
					L 
					L 
					H 
					L 
					L 
					L 
					L 
					L 
					[2,8]   
					Function (CY7C1462AV33)   
					WE   
					BW   
					x 
					BW   
					x 
					b 
					a 
					Read   
					H 
					L 
					L 
					L 
					L 
					Write – No Bytes Written   
					Write Byte a – (DQ and DQP )   
					H 
					H 
					L 
					H 
					L 
					a 
					a 
					Write Byte b – (DQ and DQP )   
					H 
					L 
					b 
					b 
					Write Both Bytes   
					L 
					[2,8]   
					Function (CY7C1464AV33)   
					WE   
					H 
					BW   
					x 
					x 
					Read   
					Write – No Bytes Written   
					L 
					H 
					Write Byte X − (DQ and DQP   
					L 
					L 
					x 
					x)   
					Write All Bytes   
					L 
					All BW = L   
					Note:   
					8. Table only lists a partial listing of the byte write combinations. Any combination of BW   
					is valid. Appropriate write will be done based on which byte write is active.   
					[a:d]   
					Document #: 38-05353 Rev. *D   
					Page 9 of 27   
					
				CY7C1460AV33   
					CY7C1462AV33   
					CY7C1464AV33   
					Test Data-In (TDI)   
					IEEE 1149.1 Serial Boundary Scan (JTAG)   
					The TDI ball is used to serially input information into the   
					registers and can be connected to the input of any of the   
					registers. The register between TDI and TDO is chosen by the   
					instruction that is loaded into the TAP instruction register. TDI   
					is internally pulled up and can be unconnected if the TAP is   
					unused in an application. TDI is connected to the most signif-   
					icant bit (MSB) of any register. (See Tap Controller Block   
					Diagram.)   
					The CY7C1460AV33/CY7C1462AV33/CY7C1464AV33 incor-   
					porates a serial boundary scan test access port (TAP). This   
					part is fully compliant with 1149.1. The TAP operates using   
					JEDEC-standard 3.3V or 2.5V I/O logic level.   
					The   
					CY7C1460AV33/CY7C1462AV33/CY7C1464AV33   
					contains a TAP controller, instruction register, boundary scan   
					register, bypass register, and ID register.   
					Disabling the JTAG Feature   
					Test Data-Out (TDO)   
					It is possible to operate the SRAM without using the JTAG   
					feature. To disable the TAP controller, TCK must be tied LOW   
					The TDO output ball is used to serially clock data-out from the   
					registers. The output is active depending upon the current   
					state of the TAP state machine. The output changes on the   
					falling edge of TCK. TDO is connected to the least significant   
					bit (LSB) of any register. (See Tap Controller State Diagram.)   
					(V ) to prevent clocking of the device. TDI and TMS are inter-   
					SS   
					nally pulled up and may be unconnected. They may alternately   
					be connected to V through a pull-up resistor. TDO should be   
					DD   
					left unconnected. Upon power-up, the device will come up in   
					a reset state which will not interfere with the operation of the   
					device.   
					TAP Controller Block Diagram   
					0 
					TAP Controller State Diagram   
					Bypass Register   
					TEST-LOGIC   
					1 
					2 
					1 
					0 
					0 
					0 
					RESET   
					0 
					Selection   
					Circuitry   
					Instruction Register   
					31 30 29   
					Identification Register   
					Selection   
					Circuitry   
					TDI   
					TDO   
					1 
					1 
					1 
					RUN-TEST/   
					IDLE   
					SELECT   
					DR-SCAN   
					SELECT   
					IR-SCAN   
					0 
					. 
					. 
					. 
					2 
					1 
					0 
					0 
					1 
					1 
					CAPTURE-DR   
					CAPTURE-IR   
					x 
					. 
					. 
					. 
					. 
					. 
					2 
					1 
					0 
					0 
					Boundary Scan Register   
					SHIFT-DR   
					0 
					SHIFT-IR   
					0 
					1 
					1 
					1 
					1 
					EXIT1-DR   
					EXIT1-IR   
					TCK   
					TMS   
					TAP CONTROLLER   
					0 
					0 
					PAUSE-DR   
					0 
					PAUSE-IR   
					0 
					1 
					1 
					0 
					0 
					EXIT2-DR   
					1 
					EXIT2-IR   
					1 
					Performing a TAP Reset   
					A RESET is performed by forcing TMS HIGH (VDD) for five   
					rising edges of TCK. This RESET does not affect the operation   
					of the SRAM and may be performed while the SRAM is   
					operating.   
					UPDATE-DR   
					UPDATE-IR   
					1 
					0 
					1 
					0 
					At power-up, the TAP is reset internally to ensure that TDO   
					comes up in a High-Z state.   
					The 0/1 next to each state represents the value of TMS at the   
					rising edge of TCK.   
					TAP Registers   
					Registers are connected between the TDI and TDO balls and   
					allow data to be scanned into and out of the SRAM test   
					circuitry. Only one register can be selected at a time through   
					the instruction register. Data is serially loaded into the TDI ball   
					on the rising edge of TCK. Data is output on the TDO ball on   
					the falling edge of TCK.   
					Test Access Port (TAP)   
					Test Clock (TCK)   
					The test clock is used only with the TAP controller. All inputs   
					are captured on the rising edge of TCK. All outputs are driven   
					from the falling edge of TCK.   
					Instruction Register   
					Test MODE SELECT (TMS)   
					Three-bit instructions can be serially loaded into the instruction   
					register. This register is loaded when it is placed between the   
					TDI and TDO balls as shown in the Tap Controller Block   
					Diagram. Upon power-up, the instruction register is loaded   
					with the IDCODE instruction. It is also loaded with the IDCODE   
					instruction if the controller is placed in a reset state as   
					described in the previous section.   
					The TMS input is used to give commands to the TAP controller   
					and is sampled on the rising edge of TCK. It is allowable to   
					leave this ball unconnected if the TAP is not used. The ball is   
					pulled up internally, resulting in a logic HIGH level.   
					Document #: 38-05353 Rev. *D   
					Page 10 of 27   
					
				CY7C1460AV33   
					CY7C1462AV33   
					CY7C1464AV33   
					When the TAP controller is in the Capture-IR state, the two   
					least significant bits are loaded with a binary “01” pattern to   
					allow for fault isolation of the board-level serial test data path.   
					SAMPLE Z   
					The SAMPLE Z instruction causes the boundary scan register   
					to be connected between the TDI and TDO pins when the TAP   
					controller is in a Shift-DR state. The SAMPLE Z command puts   
					the output bus into a High-Z state until the next command is   
					given during the “Update IR” state.   
					Bypass Register   
					To save time when serially shifting data through registers, it is   
					sometimes advantageous to skip certain chips. The bypass   
					register is a single-bit register that can be placed between the   
					TDI and TDO balls. This allows data to be shifted through the   
					SRAM with minimal delay. The bypass register is set LOW   
					SAMPLE/PRELOAD   
					SAMPLE/PRELOAD is a 1149.1 mandatory instruction. When   
					the SAMPLE/PRELOAD instructions are loaded into the   
					instruction register and the TAP controller is in the Capture-DR   
					state, a snapshot of data on the inputs and output pins is   
					captured in the boundary scan register.   
					(V ) when the BYPASS instruction is executed.   
					SS   
					Boundary Scan Register   
					The boundary scan register is connected to all the input and   
					bidirectional balls on the SRAM. The length of the Boundary   
					Scan Register for the SRAM in different packages is listed in   
					the Scan Register Sizes table.   
					The user must be aware that the TAP controller clock can only   
					operate at a frequency up to 20 MHz, while the SRAM clock   
					operates more than an order of magnitude faster. Because   
					there is a large difference in the clock frequencies, it is   
					possible that during the Capture-DR state, an input or output   
					will undergo a transition. The TAP may then try to capture a   
					signal while in transition (metastable state). This will not harm   
					the device, but there is no guarantee as to the value that will   
					be captured. Repeatable results may not be possible.   
					The boundary scan register is loaded with the contents of the   
					RAM I/O ring when the TAP controller is in the Capture-DR   
					state and is then placed between the TDI and TDO balls when   
					the controller is moved to the Shift-DR state. The EXTEST,   
					SAMPLE/PRELOAD and SAMPLE Z instructions can be used   
					to capture the contents of the I/O ring.   
					To guarantee that the boundary scan register will capture the   
					correct value of a signal, the SRAM signal must be stabilized   
					long enough to meet the TAP controller's capture set-up plus   
					The Boundary Scan Order tables show the order in which the   
					bits are connected. Each bit corresponds to one of the bumps   
					on the SRAM package. The MSB of the register is connected   
					to TDI, and the LSB is connected to TDO.   
					hold times (t and t ). The SRAM clock input might not be   
					CS   
					CH   
					captured correctly if there is no way in a design to stop (or   
					slow) the clock during a SAMPLE/PRELOAD instruction. If this   
					is an issue, it is still possible to capture all other signals and   
					simply ignore the value of the CK and CK# captured in the   
					boundary scan register.   
					Identification (ID) Register   
					The ID register is loaded with a vendor-specific, 32-bit code   
					during the Capture-DR state when the IDCODE command is   
					loaded in the instruction register. The IDCODE is hardwired   
					into the SRAM and can be shifted out when the TAP controller   
					is in the Shift-DR state. The ID register has a vendor code and   
					other information described in the Identification Register   
					Definitions table.   
					Once the data is captured, it is possible to shift out the data by   
					putting the TAP into the Shift-DR state. This places the   
					boundary scan register between the TDI and TDO pins.   
					PRELOAD allows an initial data pattern to be placed at the   
					latched parallel outputs of the boundary scan register cells   
					prior to the selection of another boundary scan test operation.   
					TAP Instruction Set   
					The shifting of data for the SAMPLE and PRELOAD phases   
					can occur concurrently when required—that is, while data   
					captured is shifted out, the preloaded data can be shifted in.   
					Overview   
					Eight different instructions are possible with the three bit   
					instruction register. All combinations are listed in the   
					Instruction Codes table. Three of these instructions are listed   
					as RESERVED and should not be used. The other five instruc-   
					tions are described in detail below.   
					BYPASS   
					When the BYPASS instruction is loaded in the instruction   
					register and the TAP is placed in a Shift-DR state, the bypass   
					register is placed between the TDI and TDO pins. The   
					advantage of the BYPASS instruction is that it shortens the   
					boundary scan path when multiple devices are connected   
					together on a board.   
					Instructions are loaded into the TAP controller during the   
					Shift-IR state when the instruction register is placed between   
					TDI and TDO. During this state, instructions are shifted   
					through the instruction register through the TDI and TDO balls.   
					To execute the instruction once it is shifted in, the TAP   
					controller needs to be moved into the Update-IR state.   
					EXTEST   
					The EXTEST instruction enables the preloaded data to be   
					driven out through the system output pins. This instruction also   
					selects the boundary scan register to be connected for serial   
					access between the TDI and TDO in the shift-DR controller   
					state.   
					IDCODE   
					The IDCODE instruction causes a vendor-specific, 32-bit code   
					to be loaded into the instruction register. It also places the   
					instruction register between the TDI and TDO balls and allows   
					the IDCODE to be shifted out of the device when the TAP   
					controller enters the Shift-DR state.   
					EXTEST OUTPUT BUS TRI-STATE   
					IEEE Standard 1149.1 mandates that the TAP controller be   
					able to put the output bus into a tri-state mode.   
					The IDCODE instruction is loaded into the instruction register   
					upon power-up or whenever the TAP controller is given a test   
					logic reset state.   
					The boundary scan register has a special bit located at bit #89   
					(for 165-FBGA package) or bit #138 (for 209-FBGA package).   
					Document #: 38-05353 Rev. *D   
					Page 11 of 27   
					
				CY7C1460AV33   
					CY7C1462AV33   
					CY7C1464AV33   
					When this scan cell, called the “extest output bus tri-state,” is   
					latched into the preload register during the “Update-DR” state   
					in the TAP controller, it will directly control the state of the   
					output (Q-bus) pins, when the EXTEST is entered as the   
					current instruction. When HIGH, it will enable the output   
					buffers to drive the output bus. When LOW, this bit will place   
					the output bus into a High-Z condition.   
					loaded into that shift-register cell will latch into the preload   
					register. When the EXTEST instruction is entered, this bit will   
					directly control the output Q-bus pins. Note that this bit is   
					preset HIGH to enable the output when the device is   
					powered-up, and also when the TAP controller is in the   
					“Test-Logic-Reset” state.   
					Reserved   
					This bit can be set by entering the SAMPLE/PRELOAD or   
					EXTEST command, and then shifting the desired bit into that   
					cell, during the “Shift-DR” state. During “Update-DR,” the value   
					These instructions are not implemented but are reserved for   
					future use. Do not use these instructions.   
					TAP Timing   
					1 
					2 
					3 
					4 
					5 
					6 
					Test Clock   
					(TCK)   
					t 
					t 
					t 
					TH   
					CYC   
					TL   
					t 
					t 
					t 
					t 
					TMSS   
					TDIS   
					TMSH   
					Test Mode Select   
					(TMS)   
					TDIH   
					Test Data-In   
					(TDI)   
					t 
					TDOV   
					t 
					TDOX   
					Test Data-Out   
					(TDO)   
					DON’T CARE   
					UNDEFINED   
					[9, 10]   
					TAP AC Switching Characteristics Over the Operating Range   
					Parameter   
					Clock   
					Description   
					Min.   
					Max.   
					Unit   
					t 
					t 
					t 
					t 
					TCK Clock Cycle Time   
					TCK Clock Frequency   
					TCK Clock HIGH time   
					TCK Clock LOW time   
					50   
					ns   
					MHz   
					ns   
					TCYC   
					TF   
					20   
					20   
					20   
					TH   
					ns   
					TL   
					Output Times   
					t 
					t 
					TCK Clock LOW to TDO Valid   
					TCK Clock LOW to TDO Invalid   
					10   
					ns   
					ns   
					TDOV   
					TDOX   
					0 
					Set-up Times   
					t 
					t 
					t 
					TMS Set-up to TCK Clock Rise   
					TDI Set-up to TCK Clock Rise   
					Capture Set-up to TCK Rise   
					5 
					5 
					5 
					ns   
					ns   
					ns   
					TMSS   
					TDIS   
					CS   
					Hold Times   
					t 
					t 
					t 
					TMS Hold after TCK Clock Rise   
					TDI Hold after Clock Rise   
					5 
					5 
					5 
					ns   
					ns   
					ns   
					TMSH   
					TDIH   
					CH   
					Capture Hold after Clock Rise   
					Notes:   
					9. t and t refer to the set-up and hold time requirements of latching data from the boundary scan register.   
					CS   
					CH   
					10. Test conditions are specified using the load in TAP AC test Conditions. t /t = 1 ns.   
					R 
					F 
					Document #: 38-05353 Rev. *D   
					Page 12 of 27   
					
				CY7C1460AV33   
					CY7C1462AV33   
					CY7C1464AV33   
					3.3V TAP AC Test Conditions   
					2.5V TAP AC Test Conditions   
					Input pulse levels ................................................ V to 3.3V   
					Input pulse levels ................................................V to 2.5V   
					SS   
					SS   
					Input rise and fall times................................................... 1 ns   
					Input timing reference levels...........................................1.5V   
					Output reference levels...................................................1.5V   
					Test load termination supply voltage...............................1.5V   
					Input rise and fall time .....................................................1 ns   
					Input timing reference levels......................................... 1.25V   
					Output reference levels ................................................ 1.25V   
					Test load termination supply voltage ............................ 1.25V   
					3.3V TAP AC Output Load Equivalent   
					2.5V TAP AC Output Load Equivalent   
					1.5V   
					1.25V   
					50Ω   
					50Ω   
					TDO   
					TDO   
					ZO= 50Ω   
					ZO= 50Ω   
					20pF   
					20pF   
					TAP DC Electrical Characteristics And Operating Conditions   
					[11]   
					(0°C < TA < +70°C; V = 3.135V to 3.6V unless otherwise noted)   
					DD   
					Parameter   
					Description   
					Test Conditions   
					Min.   
					2.4   
					2.0   
					2.9   
					2.1   
					Max.   
					Unit   
					V 
					V 
					V 
					V 
					V 
					V 
					V 
					Output HIGH Voltage   
					I 
					I 
					I 
					= –4.0 mA, V   
					= –1.0 mA, V   
					= –100 µA   
					= 3.3V   
					= 2.5V   
					OH1   
					OH   
					OH   
					OH   
					DDQ   
					DDQ   
					V 
					Output HIGH Voltage   
					Output LOW Voltage   
					Output LOW Voltage   
					Input HIGH Voltage   
					Input LOW Voltage   
					Input Load Current   
					V 
					V 
					V 
					V 
					V 
					V 
					V 
					V 
					V 
					V 
					= 3.3V   
					= 2.5V   
					= 3.3V   
					= 2.5V   
					= 3.3V   
					= 2.5V   
					= 3.3V   
					= 2.5V   
					= 3.3V   
					= 2.5V   
					V 
					OH2   
					OL1   
					OL2   
					IH   
					DDQ   
					DDQ   
					DDQ   
					DDQ   
					DDQ   
					DDQ   
					DDQ   
					DDQ   
					DDQ   
					DDQ   
					V 
					I 
					I 
					I 
					= 8.0 mA   
					= 1.0 mA   
					= 100 µA   
					0.4   
					0.4   
					0.2   
					0.2   
					V 
					OL   
					OL   
					OL   
					V 
					V 
					V 
					2.0   
					1.7   
					V 
					V 
					+ 0.3   
					V 
					DD   
					DD   
					+ 0.3   
					V 
					–0.3   
					–0.3   
					–5   
					0.8   
					V 
					IL   
					0.7   
					5 
					V 
					I 
					GND < V < V   
					DDQ   
					µA   
					X 
					IN   
					Identification Register Definitions   
					CY7C1460AV33 CY7C1462AV33 CY7C1464AV33   
					Instruction Field   
					(1M ×36)   
					(2M ×18)   
					(512K ×72)   
					Description   
					Revision Number (31:29)   
					000   
					000   
					000   
					Describes the version number.   
					Reserved for Internal Use   
					[12]   
					Device Depth (28:24)   
					01011   
					001000   
					01011   
					001000   
					01011   
					Architecture/Memory Type(23:18)   
					001000   
					Defines memory type and archi-   
					tecture   
					Bus Width/Density(17:12)   
					100111   
					010111   
					110111   
					Defines width and density   
					Cypress JEDEC ID Code (11:1)   
					00000110100   
					00000110100   
					00000110100 Allows unique identification of   
					SRAM vendor.   
					ID Register Presence Indicator (0)   
					1 
					1 
					1 
					Indicates the presence of an ID   
					register.   
					Notes:   
					11. All voltages referenced to V (GND).   
					SS   
					12. Bit #24 is “1” in the ID Register Definitions for both 2.5V and 3.3V versions of this device.   
					Document #: 38-05353 Rev. *D   
					Page 13 of 27   
					
				CY7C1460AV33   
					CY7C1462AV33   
					CY7C1464AV33   
					Scan Register Sizes   
					Register Name   
					Bit Size (×36)   
					Bit Size (×18)   
					Bit Size (×72)   
					Instruction   
					3 
					1 
					3 
					1 
					3 
					1 
					Bypass   
					ID   
					32   
					89   
					- 
					32   
					89   
					- 
					32   
					- 
					Boundary Scan Order (165-ball FBGA package)   
					Boundary Scan Order (209-ball FBGA package)   
					138   
					Identification Codes   
					Instruction   
					EXTEST   
					Code   
					Description   
					000   
					Captures I/O ring contents. Places the boundary scan register between TDI and TDO.   
					Forces all SRAM outputs to High-Z state.   
					IDCODE   
					001   
					010   
					Loads the ID register with the vendor ID code and places the register between TDI and   
					TDO. This operation does not affect SRAM operations.   
					SAMPLE Z   
					Captures I/O ring contents. Places the boundary scan register between TDI and TDO.   
					Forces all SRAM output drivers to a High-Z state.   
					RESERVED   
					011   
					100   
					Do Not Use: This instruction is reserved for future use.   
					SAMPLE/PRELOAD   
					Captures I/O ring contents. Places the boundary scan register between TDI and TDO.   
					Does not affect SRAM operation.   
					RESERVED   
					RESERVED   
					BYPASS   
					101   
					110   
					111   
					Do Not Use: This instruction is reserved for future use.   
					Do Not Use: This instruction is reserved for future use.   
					Places the bypass register between TDI and TDO. This operation does not affect SRAM   
					operations.   
					Document #: 38-05353 Rev. *D   
					Page 14 of 27   
					
				CY7C1460AV33   
					CY7C1462AV33   
					CY7C1464AV33   
					165-ball FBGA Boundary Scan Order [13]   
					CY7C1460AV33 (1M x 36), CY7C1462AV33 (2M x 18)   
					Bit#   
					1 
					ball ID   
					N6   
					Bit#   
					26   
					27   
					28   
					29   
					30   
					31   
					32   
					33   
					34   
					35   
					36   
					37   
					38   
					39   
					40   
					41   
					42   
					43   
					44   
					45   
					46   
					47   
					48   
					49   
					50   
					ball ID   
					E11   
					D11   
					G10   
					F10   
					E10   
					D10   
					C11   
					A11   
					B11   
					A10   
					B10   
					A9   
					Bit#   
					51   
					52   
					53   
					54   
					55   
					56   
					57   
					58   
					59   
					60   
					61   
					62   
					63   
					64   
					65   
					66   
					67   
					68   
					69   
					70   
					71   
					72   
					73   
					74   
					75   
					ball ID   
					A3   
					A2   
					B2   
					C2   
					B1   
					A1   
					C1   
					D1   
					E1   
					F1   
					Bit#   
					76   
					77   
					78   
					79   
					80   
					81   
					82   
					83   
					84   
					85   
					86   
					87   
					88   
					89   
					ball ID   
					N1   
					2 
					N7   
					N2   
					3 
					10N   
					P11   
					P8   
					P1   
					4 
					R1   
					5 
					R2   
					6 
					R8   
					P3   
					7 
					R9   
					R3   
					8 
					P9   
					P2   
					9 
					P10   
					R10   
					R11   
					H11   
					N11   
					M11   
					L11   
					K11   
					J11   
					M10   
					L10   
					K10   
					J10   
					H9   
					R4   
					10   
					11   
					12   
					13   
					14   
					15   
					16   
					17   
					18   
					19   
					20   
					21   
					22   
					23   
					24   
					25   
					P4   
					G1   
					D2   
					E2   
					F2   
					N5   
					P6   
					B9   
					R6   
					C10   
					A8   
					Internal   
					G2   
					H1   
					H3   
					J1   
					B8   
					A7   
					B7   
					B6   
					K1   
					L1   
					A6   
					B5   
					M1   
					J2   
					A5   
					H10   
					G11   
					F11   
					A4   
					K2   
					L2   
					B4   
					B3   
					M2   
					Note:   
					13. Bit# 89 is preset HIGH.   
					Document #: 38-05353 Rev. *D   
					Page 15 of 27   
					
				CY7C1460AV33   
					CY7C1462AV33   
					CY7C1464AV33   
					209-ball BGA Boundary Scan Order [13, 14]   
					CY7C14604V33 (512K x 72)   
					Bit#   
					1 
					Ball ID   
					Bit#   
					36   
					37   
					38   
					39   
					40   
					41   
					42   
					43   
					44   
					45   
					46   
					47   
					48   
					49   
					50   
					51   
					52   
					53   
					54   
					55   
					56   
					57   
					58   
					59   
					60   
					61   
					62   
					63   
					64   
					65   
					66   
					67   
					68   
					69   
					70   
					ball ID   
					6F   
					Bit#   
					71   
					ball ID   
					6H   
					6C   
					6B   
					6A   
					5A   
					5B   
					5C   
					5D   
					4D   
					4C   
					4A   
					4B   
					3C   
					3B   
					3A   
					2A   
					1A   
					2B   
					1B   
					2C   
					1C   
					2D   
					1D   
					1E   
					2E   
					2F   
					Bit#   
					106   
					107   
					108   
					109   
					110   
					111   
					112   
					113   
					114   
					115   
					116   
					117   
					118   
					119   
					120   
					121   
					122   
					123   
					124   
					125   
					126   
					127   
					128   
					129   
					130   
					131   
					132   
					133   
					134   
					135   
					136   
					137   
					138   
					ball ID   
					3K   
					W6   
					V6   
					2 
					8K   
					72   
					4K   
					3 
					U6   
					9K   
					73   
					6K   
					4 
					W7   
					V7   
					10K   
					11J   
					10J   
					11H   
					10H   
					11G   
					10G   
					11F   
					10F   
					10E   
					11E   
					11D   
					10D   
					11C   
					10C   
					11B   
					10B   
					11A   
					10A   
					9C   
					74   
					2K   
					5 
					75   
					2L   
					6 
					U7   
					76   
					1L   
					7 
					T7   
					77   
					2 Mbit   
					1 Mbit   
					2N   
					8 
					V8   
					78   
					9 
					U8   
					79   
					10   
					11   
					12   
					13   
					14   
					15   
					16   
					17   
					18   
					19   
					20   
					21   
					22   
					23   
					24   
					25   
					26   
					27   
					28   
					29   
					30   
					31   
					32   
					33   
					34   
					35   
					T8   
					80   
					1N   
					V9   
					81   
					2P   
					U9   
					82   
					1P   
					P6   
					83   
					2R   
					W11   
					W10   
					V11   
					V10   
					U11   
					U10   
					T11   
					T10   
					R11   
					R10   
					P11   
					P10   
					N11   
					N10   
					M11   
					M10   
					L11   
					L10   
					K11   
					M6   
					84   
					1R   
					85   
					2T   
					86   
					1T   
					87   
					2U   
					88   
					1U   
					89   
					2V   
					90   
					1V   
					91   
					2W   
					1W   
					6T   
					92   
					93   
					9B   
					94   
					3U   
					9A   
					95   
					3V   
					8D   
					96   
					4T   
					8C   
					97   
					1F   
					5T   
					8B   
					98   
					1G   
					2G   
					2H   
					1H   
					2J   
					4U   
					8A   
					99   
					4V   
					7D   
					100   
					101   
					102   
					103   
					104   
					105   
					5W   
					5V   
					7C   
					7B   
					5U   
					7A   
					1J   
					Internal   
					L6   
					6D   
					1K   
					6N   
					J6   
					6G   
					Note:   
					14. Bit# 138 is preset HIGH.   
					Document #: 38-05353 Rev. *D   
					Page 16 of 27   
					
				CY7C1460AV33   
					CY7C1462AV33   
					CY7C1464AV33   
					Current into Outputs (LOW)......................................... 20 mA   
					Maximum Ratings   
					Static Discharge Voltage.......................................... > 2001V   
					(per MIL-STD-883, Method 3015)   
					(Above which the useful life may be impaired. For user guide-   
					lines, not tested.)   
					Latch-up Current.................................................... > 200 mA   
					Storage Temperature .................................–65°C to +150°C   
					Operating Range   
					Ambient Temperature with   
					Power Applied.............................................–55°C to +125°C   
					Ambient   
					Supply Voltage on V Relative to GND........ –0.5V to +4.6V   
					Range   
					Temperature   
					V 
					V 
					DDQ   
					DD   
					DD   
					Supply Voltage on V   
					Relative to GND ......–0.5V to +V   
					Commercial 0°C to +70°C   
					Industrial –40°C to +85°C   
					3.3V   
					–5%/+10%   
					2.5V –5% to   
					DDQ   
					DD   
					V 
					DD   
					DC to Outputs in Tri-State................... –0.5V to V   
					+ 0.5V   
					DDQ   
					DC Input Voltage....................................–0.5V to V + 0.5V   
					DD   
					[15, 16]   
					Electrical Characteristics Over the Operating Range   
					DC Electrical Characteristics Over the Operating Range   
					Parameter   
					Description   
					Power Supply Voltage   
					I/O Supply Voltage   
					Test Conditions   
					Min.   
					3.135   
					3.135   
					2.375   
					2.4   
					Max.   
					Unit   
					V 
					3.6   
					V 
					V 
					DD   
					V 
					V 
					V 
					V 
					V 
					I 
					for 3.3V I/O   
					for 2.5V I/O   
					V 
					DD   
					DDQ   
					2.625   
					V 
					Output HIGH Voltage   
					Output LOW Voltage   
					for 3.3V I/O, I = −4.0 mA   
					V 
					OH   
					OL   
					IH   
					OH   
					for 2.5V I/O, I = −1.0 mA   
					2.0   
					V 
					OH   
					for 3.3V I/O, I = 8.0 mA   
					0.4   
					0.4   
					V 
					OL   
					for 2.5V I/O, I = 1.0 mA   
					V 
					OL   
					[15]   
					Input HIGH Voltage   
					for 3.3V I/O   
					for 2.5V I/O   
					for 3.3V I/O   
					for 2.5V I/O   
					2.0   
					1.7   
					V 
					V 
					+ 0.3V   
					+ 0.3V   
					0.8   
					V 
					DD   
					DD   
					V 
					[15]   
					Input LOW Voltage   
					–0.3   
					–0.3   
					–5   
					V 
					IL   
					0.7   
					V 
					Input Leakage Current GND ≤ V ≤ V   
					except ZZ and MODE   
					5 
					µA   
					X 
					I 
					DDQ   
					Input Current of MODE Input = V   
					–30   
					–5   
					µA   
					µA   
					SS   
					Input = V   
					5 
					DD   
					Input Current of ZZ   
					Input = V   
					Input = V   
					µA   
					SS   
					DD   
					30   
					5 
					µA   
					I 
					I 
					Output Leakage Current GND ≤ V ≤ V   
					Output Disabled   
					–5   
					µA   
					OZ   
					I 
					DDQ,   
					V 
					Operating Supply   
					V 
					f = f   
					= Max., I   
					= 0 mA,   
					4-ns cycle, 250 MHz   
					5-ns cycle, 200 MHz   
					6-ns cycle, 167 MHz   
					475   
					425   
					375   
					225   
					mA   
					mA   
					mA   
					mA   
					DD   
					DD   
					DD   
					OUT   
					= 1/t   
					CYC   
					MAX   
					I 
					I 
					I 
					I 
					Automatic CE   
					Power-down   
					Current—TTL Inputs   
					Max. V , Device Deselected, All speed grades   
					DD   
					SB1   
					SB2   
					SB3   
					SB4   
					V 
					≥ V or V ≤ V , f = f   
					= 
					IN   
					IH   
					IN   
					IL   
					MAX   
					1/t   
					CYC   
					Automatic CE   
					Power-down   
					Current—CMOS Inputs f = 0   
					Max. V , Device Deselected, All speed grades   
					120   
					200   
					135   
					mA   
					mA   
					mA   
					DD   
					V 
					≤ 0.3V or V > V   
					− 0.3V,   
					IN   
					IN   
					DDQ   
					Automatic CE   
					Power-down   
					Current—CMOS Inputs f = f   
					Max. V , Device Deselected, All speed grades   
					DD   
					V 
					≤ 0.3V or V > V   
					− 0.3V,   
					IN   
					IN   
					CYC   
					DDQ   
					= 1/t   
					MAX   
					Automatic CE   
					Max. V , Device Deselected, All speed grades   
					DD   
					Power-down   
					Current—TTL Inputs   
					V 
					≥ V or V ≤ V , f = 0   
					IN   
					IH   
					IN   
					IL   
					Notes:   
					15. Overshoot: V (AC) < V +1.5V (Pulse width less than t   
					/2), undershoot: V (AC)> –2V (Pulse width less than t   
					/2).   
					IH   
					DD   
					CYC   
					IL   
					CYC   
					. 
					16. T   
					: Assumes a linear ramp from 0V to V (min.) within 200 ms. During this time V < V and V   
					< V   
					Power-up   
					DD   
					IH   
					DD   
					DDQ DD   
					Document #: 38-05353 Rev. *D   
					Page 17 of 27   
					
				CY7C1460AV33   
					CY7C1462AV33   
					CY7C1464AV33   
					Capacitance[17]   
					100 TQFP   
					Max.   
					165 FBGA   
					209 FBGA   
					Max.   
					Parameter   
					Description   
					Test Conditions   
					Max.   
					Unit   
					pF   
					C 
					C 
					C 
					Input Capacitance   
					T = 25°C, f = 1 MHz,   
					6.5   
					3 
					7 
					7 
					6 
					5 
					5 
					7 
					IN   
					A 
					V 
					= 2.5V V   
					= 2.5V   
					DD   
					DDQ   
					Clock Input Capacitance   
					Input/Output Capacitance   
					pF   
					CLK   
					I/O   
					5.5   
					pF   
					Thermal Resistance[17]   
					100 TQFP   
					Package   
					165 FBGA   
					Package   
					209 FBGA   
					Package   
					Parameters   
					Description   
					Test Conditions   
					Unit   
					Θ 
					Thermal Resistance   
					(Junction to Ambient)   
					Testconditionsfollowstandard   
					test methods and procedures   
					for measuring thermal   
					25.21   
					20.8   
					25.31   
					°C/W   
					JA   
					Θ 
					Thermal Resistance   
					(Junction to Case)   
					2.28   
					3.2   
					4.48   
					°C/W   
					JC   
					impedance, per EIA/JESD51.   
					AC Test Loads and Waveforms   
					3.3V I/O Test Load   
					OUTPUT   
					R = 317Ω   
					3.3V   
					OUTPUT   
					R = 50Ω   
					ALL INPUT PULSES   
					90%   
					VDDQ   
					GND   
					90%   
					10%   
					Z = 50Ω   
					0 
					10%   
					L 
					5 pF   
					R = 351Ω   
					≤ 1 ns   
					≤ 1 ns   
					INCLUDING   
					V = 1.5V   
					T 
					(a)   
					JIG AND   
					SCOPE   
					(b)   
					(c)   
					2.5V I/O Test Load   
					OUTPUT   
					R = 1667Ω   
					2.5V   
					OUTPUT   
					R = 50Ω   
					ALL INPUT PULSES   
					90%   
					VDDQ   
					GND   
					90%   
					10%   
					Z = 50Ω   
					0 
					10%   
					L 
					5 pF   
					R =1538Ω   
					≤ 1 ns   
					INCLUDING   
					JIG AND   
					SCOPE   
					≤ 1 ns   
					V = 1.25V   
					T 
					(a)   
					(b)   
					(c)   
					Note:   
					17. Tested initially and after any design or process changes that may affect these parameters.   
					Document #: 38-05353 Rev. *D   
					Page 18 of 27   
					
				CY7C1460AV33   
					CY7C1462AV33   
					CY7C1464AV33   
					[22, 23]   
					Switching Characteristics Over the Operating Range   
					–250   
					Max.   
					–200   
					Max.   
					–167   
					Parameter   
					Description   
					Min.   
					Min.   
					Min.   
					Max.   
					Unit   
					[18]   
					t 
					V 
					(typical) to the first access read or write   
					1 
					1 
					1 
					ms   
					Power   
					CC   
					Clock   
					t 
					Clock Cycle Time   
					Maximum Operating Frequency   
					Clock HIGH   
					4.0   
					5.0   
					6.0   
					ns   
					MHz   
					ns   
					CYC   
					F 
					250   
					200   
					167   
					MAX   
					t 
					t 
					1.5   
					1.5   
					2.0   
					2.0   
					2.4   
					2.4   
					CH   
					CL   
					Clock LOW   
					ns   
					Output Times   
					t 
					t 
					t 
					t 
					t 
					t 
					t 
					Data Output Valid After CLK Rise   
					OE LOW to Output Valid   
					2.6   
					2.6   
					3.2   
					3.0   
					3.4   
					3.4   
					ns   
					ns   
					ns   
					ns   
					ns   
					ns   
					ns   
					CO   
					EOV   
					DOH   
					CHZ   
					CLZ   
					Data Output Hold After CLK Rise   
					1.0   
					1.0   
					0 
					1.5   
					1.3   
					0 
					1.5   
					1.5   
					0 
					[19, 20, 21]   
					Clock to High-Z   
					2.6   
					2.6   
					3.0   
					3.0   
					3.4   
					3.4   
					[19, 20, 21]   
					Clock to Low-Z   
					[19, 20, 21]   
					OE   
					HIGH to Output High-Z   
					EOHZ   
					EOLZ   
					[19, 20, 21]   
					OE LOW to Output Low-Z   
					Set-up Times   
					t 
					t 
					t 
					t 
					t 
					t 
					Address Set-up Before CLK Rise   
					Data Input Set-up Before CLK Rise   
					CEN Set-up Before CLK Rise   
					1.2   
					1.2   
					1.2   
					1.2   
					1.2   
					1.2   
					1.4   
					1.4   
					1.4   
					1.4   
					1.4   
					1.4   
					1.5   
					1.5   
					1.5   
					1.5   
					1.5   
					1.5   
					ns   
					ns   
					ns   
					ns   
					ns   
					ns   
					AS   
					DS   
					CENS   
					WES   
					ALS   
					CES   
					WE, BW Set-up Before CLK Rise   
					x 
					ADV/LD Set-up Before CLK Rise   
					Chip Select Set-up   
					Hold Times   
					t 
					t 
					t 
					t 
					t 
					t 
					Address Hold After CLK Rise   
					Data Input Hold After CLK Rise   
					CEN Hold After CLK Rise   
					0.3   
					0.3   
					0.3   
					0.3   
					0.3   
					0.3   
					0.4   
					0.4   
					0.4   
					0.4   
					0.4   
					0.4   
					0.5   
					0.5   
					0.5   
					0.5   
					0.5   
					0.5   
					ns   
					ns   
					ns   
					ns   
					ns   
					ns   
					AH   
					DH   
					CENH   
					WEH   
					ALH   
					CEH   
					WE, BW Hold After CLK Rise   
					x 
					ADV/LD Hold after CLK Rise   
					Chip Select Hold After CLK Rise   
					Notes:   
					18. This part has a voltage regulator internally; tpower is the time power needs to be supplied above Vdd minimum initially, before a Read or Write operation can be   
					initiated.   
					19. t   
					, t   
					, t   
					, and t   
					are specified with AC test conditions shown in (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.   
					CHZ CLZ EOLZ   
					EOHZ   
					20. At any given voltage and temperature, t   
					is less than t   
					and t   
					is less than t   
					to eliminate bus contention between SRAMs when sharing the same   
					EOHZ   
					EOLZ   
					CHZ   
					CLZ   
					data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed   
					to achieve High-Z prior to Low-Z under the same system conditions.   
					21. This parameter is sampled and not 100% tested.   
					22. Timing reference is 1.5V when V   
					3.3V and is 1.25V when V   
					2.5V.   
					DDQ=   
					DDQ=   
					23. Test conditions shown in (a) of AC Test Loads unless otherwise noted.   
					Document #: 38-05353 Rev. *D   
					Page 19 of 27   
					
				CY7C1460AV33   
					CY7C1462AV33   
					CY7C1464AV33   
					Switching Waveforms   
					[24, 25, 26]   
					Read/Write/Timing   
					1 
					2 
					3 
					4 
					5 
					6 
					7 
					8 
					9 
					10   
					t 
					CYC   
					t 
					CLK   
					t 
					t 
					t 
					CENS CENH   
					CL   
					CH   
					CEN   
					t 
					t 
					CES   
					CEH   
					CE   
					ADV/LD   
					WE   
					BWx   
					A1   
					A2   
					A4   
					CO   
					A3   
					A5   
					A6   
					A7   
					ADDRESS   
					t 
					t 
					t 
					t 
					DS   
					DH   
					t 
					t 
					t 
					DOH   
					OEV   
					CLZ   
					CHZ   
					t 
					t 
					AS   
					AH   
					Data   
					D(A1)   
					D(A2)   
					D(A2+1)   
					Q(A3)   
					Q(A4)   
					Q(A4+1)   
					D(A5)   
					Q(A6)   
					In-Out (DQ)   
					t 
					OEHZ   
					t 
					DOH   
					t 
					OELZ   
					OE   
					WRITE   
					D(A1)   
					WRITE   
					D(A2)   
					BURST   
					WRITE   
					READ   
					Q(A3)   
					READ   
					Q(A4)   
					BURST   
					READ   
					WRITE   
					D(A5)   
					READ   
					Q(A6)   
					WRITE   
					D(A7)   
					DESELECT   
					D(A2+1)   
					Q(A4+1)   
					DON’T CARE   
					UNDEFINED   
					Notes:   
					24. For this waveform ZZ is tied low.   
					25. When CE is LOW, CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH,CE is HIGH or CE is LOW or CE is HIGH.   
					1 
					2 
					3 
					1 
					2 
					3 
					26. Order of the Burst sequence is determined by the status of the MODE (0 = Linear, 1 = Interleaved).Burst operations are optional.   
					Document #: 38-05353 Rev. *D   
					Page 20 of 27   
					
				CY7C1460AV33   
					CY7C1462AV33   
					CY7C1464AV33   
					Switching Waveforms (continued)   
					[24, 25, 27]   
					NOP,STALL and DESELECT Cycles   
					1 
					2 
					3 
					4 
					5 
					6 
					7 
					8 
					9 
					10   
					CLK   
					CEN   
					CE   
					ADV/LD   
					WE   
					BWx   
					A1   
					A2   
					A3   
					A4   
					A5   
					ADDRESS   
					t 
					CHZ   
					D(A4)   
					D(A1)   
					Q(A2)   
					Q(A3)   
					Q(A5)   
					Data   
					In-Out (DQ)   
					WRITE   
					D(A1)   
					READ   
					Q(A2)   
					STALL   
					READ   
					Q(A3)   
					WRITE   
					D(A4)   
					STALL   
					NOP   
					READ   
					Q(A5)   
					DESELECT   
					CONTINUE   
					DESELECT   
					DON’T CARE   
					UNDEFINED   
					[28, 29]   
					ZZ Mode Timing   
					CLK   
					ZZ   
					t 
					t 
					ZZ   
					ZZREC   
					t 
					ZZI   
					I 
					SUPPLY   
					I 
					DDZZ   
					t 
					RZZI   
					ALL INPUTS   
					(except ZZ)   
					DESELECT or READ Only   
					Outputs (Q)   
					High-Z   
					DON’T CARE   
					Notes:   
					27. The IGNORE CLOCK EDGE or STALL cycle (Clock 3) illustrated CEN being used to create a pause. A write is not performed during this cycle.   
					28. Device must be deselected when entering ZZ mode. See cycle description table for all possible signal conditions to deselect the device.   
					29. I/Os are in High-Z when exiting ZZ sleep mode.   
					Document #: 38-05353 Rev. *D   
					Page 21 of 27   
					
				CY7C1460AV33   
					CY7C1462AV33   
					CY7C1464AV33   
					Ordering Information   
					Not all of the speed, package and temperature ranges are available. Please contact your local sales representative or   
					
					Speed   
					(MHz)   
					Package   
					Diagram   
					Operating   
					Range   
					Ordering Code   
					Part and Package Type   
					167 CY7C1460AV33-167AXC 51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free   
					CY7C1462AV33-167AXC   
					Commercial   
					CY7C1460AV33-167BZC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)   
					CY7C1462AV33-167BZC   
					CY7C1460AV33-167BZXC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Lead-Free   
					CY7C1462AV33-167BZXC   
					CY7C1464AV33-167BGC 51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)   
					CY7C1464AV33-167BGXC   
					CY7C1460AV33-167AXI   
					CY7C1462AV33-167AXI   
					CY7C1460AV33-167BZI   
					CY7C1462AV33-167BZI   
					209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Lead-Free   
					51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free   
					lndustrial   
					51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)   
					CY7C1460AV33-167BZXI 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Lead-Free   
					CY7C1462AV33-167BZXI   
					CY7C1464AV33-167BGI   
					CY7C1464AV33-167BGXI   
					51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)   
					209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Lead-Free   
					200 CY7C1460AV33-200AXC 51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free   
					CY7C1462AV33-200AXC   
					Commercial   
					CY7C1460AV33-200BZC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)   
					CY7C1462AV33-200BZC   
					CY7C1460AV33-200BZXC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Lead-Free   
					CY7C1462AV33-200BZXC   
					CY7C1464AV33-200BGC 51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)   
					CY7C1464AV33-200BGXC   
					CY7C1460AV33-200AXI   
					CY7C1462AV33-200AXI   
					CY7C1460AV33-200BZI   
					CY7C1462AV33-200BZI   
					209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Lead-Free   
					51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free   
					lndustrial   
					51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)   
					CY7C1460AV33-200BZXI 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Lead-Free   
					CY7C1462AV33-200BZXI   
					CY7C1464AV33-200BGI   
					CY7C1464AV33-200BGXI   
					51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)   
					209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Lead-Free   
					Document #: 38-05353 Rev. *D   
					Page 22 of 27   
					
				CY7C1460AV33   
					CY7C1462AV33   
					CY7C1464AV33   
					Ordering Information (continued)   
					Not all of the speed, package and temperature ranges are available. Please contact your local sales representative or   
					
					Speed   
					(MHz)   
					Package   
					Diagram   
					Operating   
					Range   
					Ordering Code   
					Part and Package Type   
					250 CY7C1460AV33-250AXC 51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free   
					CY7C1462AV33-250AXC   
					Commercial   
					CY7C1460AV33-250BZC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)   
					CY7C1462AV33-250BZC   
					CY7C1460AV33-250BZXC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Lead-Free   
					CY7C1462AV33-250BZXC   
					CY7C1464AV33-250BGC 51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)   
					CY7C1464AV33-250BGXC   
					CY7C1460AV33-250AXI   
					CY7C1462AV33-250AXI   
					CY7C1460AV33-250BZI   
					CY7C1462AV33-250BZI   
					209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Lead-Free   
					51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free   
					Industrial   
					51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)   
					CY7C1460AV33-250BZXI 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Lead-Free   
					CY7C1462AV33-250BZXI   
					CY7C1464AV33-250BGI   
					CY7C1464AV33-250BGXI   
					51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)   
					209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Lead-Free   
					Document #: 38-05353 Rev. *D   
					Page 23 of 27   
					
				CY7C1460AV33   
					CY7C1462AV33   
					CY7C1464AV33   
					Package Diagrams   
					100-pin TQFP (14 x 20 x 1.4 mm) (51-85050)   
					16.00 0.20   
					1.40 0.05   
					14.00 0.10   
					100   
					81   
					80   
					1 
					0.30 0.08   
					0.65   
					TYP.   
					12° 1°   
					(8X)   
					SEE DETAIL   
					A 
					30   
					51   
					31   
					50   
					0.20 MAX.   
					1.60 MAX.   
					R 0.08 MIN.   
					0.20 MAX.   
					0° MIN.   
					SEATING PLANE   
					STAND-OFF   
					0.05 MIN.   
					0.15 MAX.   
					NOTE:   
					0.25   
					1. JEDEC STD REF MS-026   
					GAUGE PLANE   
					2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH   
					MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE   
					R 0.08 MIN.   
					0.20 MAX.   
					BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH   
					3. DIMENSIONS IN MILLIMETERS   
					0°-7°   
					0.60 0.15   
					0.20 MIN.   
					51-85050-*B   
					1.00 REF.   
					DETAIL   
					A 
					Document #: 38-05353 Rev. *D   
					Page 24 of 27   
					
				CY7C1460AV33   
					CY7C1462AV33   
					CY7C1464AV33   
					Package Diagrams (continued)   
					165-ball FBGA (15 x 17 x 1.4 mm) (51-85165)   
					PIN 1 CORNER   
					BOTTOM VIEW   
					TOP VIEW   
					Ø0.05 M C   
					PIN 1 CORNER   
					Ø0.25 M C A B   
					Ø0.45 0.05(165X)   
					1 
					2 
					3 
					4 
					5 
					6 
					7 
					8 
					9 
					10   
					11   
					11 10   
					9 
					8 
					7 
					6 
					5 
					4 
					3 
					2 
					1 
					A 
					B 
					A 
					B 
					C 
					D 
					C 
					D 
					E 
					E 
					F 
					F 
					G 
					G 
					H 
					J 
					H 
					J 
					K 
					K 
					L 
					L 
					M 
					M 
					N 
					P 
					R 
					N 
					P 
					R 
					A 
					1.00   
					5.00   
					10.00   
					B 
					15.00 0.10   
					0.15(4X)   
					SEATING PLANE   
					C 
					51-85165-*A   
					Document #: 38-05353 Rev. *D   
					Page 25 of 27   
					
				CY7C1460AV33   
					CY7C1462AV33   
					CY7C1464AV33   
					Package Diagrams (continued)   
					209-ball FBGA (14 x 22 x 1.76 mm) (51-85167)   
					51-85167-**   
					ZBT is a registered trademark of Integrated Device Technology, Inc. No Bus Latency and NoBL are trademarks of Cypress   
					Semiconductor. All product and company names mentioned in this document are trademarks of their respective holders.   
					Document #: 38-05353 Rev. *D   
					Page 26 of 27   
					© Cypress Semiconductor Corporation, 2006. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use   
					of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be   
					used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its   
					products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress   
					products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.   
					
				CY7C1460AV33   
					CY7C1462AV33   
					CY7C1464AV33   
					Document History Page   
					Document Title: CY7C1460AV33/CY7C1462AV33/CY7C1464AV33 36-Mbit (1M x 36/2M x 18/512K x 72) Pipelined SRAM   
					with NoBL™ Architecture   
					Document Number: 38-05353   
					Orig. of   
					REV.   
					ECN No. Issue Date Change   
					Description of Change   
					**   
					254911   
					See ECN   
					SYT   
					New Data sheet   
					Part number changed from previous revision. New and old part number differ   
					by the letter “A”   
					*A   
					303533   
					See ECN   
					SYT   
					Changed H9 pin from V   
					FBGA on Page # 5   
					to V on the Pin Configuration table for 209   
					SSQ SS   
					Changed the test condition from V = Min to V = Max for V in the   
					DD   
					DD   
					OL   
					Electrical Characteristics table   
					Replaced ΘJA and ΘJC from TBD to respective Thermal Values for All   
					Packages on the Thermal Resistance Table   
					Changed I from 450, 400 & 350 mA to 475, 425 & 375 mA for 250, 200   
					DD   
					and 167 MHz respectively   
					Changed I   
					from 190, 180 and 170 mA to 225 mA for 250, 200 and 167   
					SB1   
					MHz respectively   
					Changed I   
					Changed I   
					from 80 mA to 100 mA for all frequencies   
					from 180, 170 & 160 mA to 200 mA for 250, 200 and 167 MHz   
					SB2   
					SB3   
					respectively   
					Changed I   
					from 100 mA to 110 mA for all frequencies   
					SB4   
					Changed C , C   
					and C to 6.5, 3 and 5.5 pF from 5, 5 and 7 pF for TQFP   
					IN CLK   
					I/O   
					Package   
					Changed t from 3.0 to 3.2 ns and t   
					from 1.3 ns to 1.5 ns for 200 MHz   
					CO   
					DOH   
					Speed Bin   
					Added lead-free information for 100-pin TQFP and 165 FBGA and 209 BGA   
					packages   
					*B   
					331778   
					See ECN   
					SYT   
					Modified Address Expansion balls in the pinouts for 165 FBGA and 209 BGA   
					Package as per JEDEC standards and updated the Pin Definitions accord-   
					ingly   
					Modified V   
					Changed C , C   
					V 
					test conditions   
					and C to 7, 7and 6 pF from 5, 5 and 7 pF for 165 FBGA   
					I/O   
					OL, OH   
					IN CLK   
					Package   
					Added Industrial Temperature Grade   
					Changed I and I from 100 and 110 mA to 120 and 135 mA respectively   
					SB2   
					SB4   
					Updated the Ordering Information by Shading and Unshading MPNs as per   
					availability   
					*C   
					417509   
					See ECN   
					RXU   
					Converted from Preliminary to Final   
					Changed address of Cypress Semiconductor Corporation on Page# 1 from   
					“3901 North First Street” to “198 Champion Court”   
					Changed I current value in MODE from –5 & 30 µA to –30 & 5 µA respec-   
					X 
					tively and also Changed I current value in ZZ from –30 & 5 µA to –5 & 30   
					X 
					µA respectively on page# 18   
					Modified test condition from V < V to V < V   
					IH   
					DD   
					IH   
					DD   
					Modified “Input Load” to “Input Leakage Current except ZZ and MODE” in the   
					Electrical Characteristics Table   
					Replaced Package Name column with Package Diagram in the Ordering   
					Information table   
					Replaced Package Diagram of 51-85050 from *A to *B   
					*D   
					473229   
					See ECN   
					NXR   
					Added the Maximum Rating for Supply Voltage on V   
					Relative to GND   
					DDQ   
					Changed t , t from 25 ns to 20 ns and t   
					from 5 ns to 10 ns in TAP   
					TH TL   
					TDOV   
					AC Switching Characteristics table   
					Updated the Ordering Information table.   
					Document #: 38-05353 Rev. *D   
					Page 27 of 27   
					
				 |