| CY7C1381DV25, CY7C1381FV25   CY7C1383DV25, CY7C1383FV25   18-Mbit (512K x 36/1M x 18) Flow-Through SRAM   Features   Functional Description [1]   • Supports 133 MHz bus operations   • 512K x 36/1M x 18 common IO   The   CY7C1381DV25/CY7C1383DV25/CY7C1381FV25/   CY7C1383FV25 is a 2.5V, 512K x 36 and 1M x 18   synchronous flow through SRAMs, designed to interface with   high-speed microprocessors with minimum glue logic.   Maximum access delay from clock rise is 6.5 ns (133 MHz   version). A 2-bit on-chip counter captures the first address in   a burst and increments the address automatically for the rest   of the burst access. All synchronous inputs are gated by   registers controlled by a positive edge triggered clock input   (CLK). The synchronous inputs include all addresses, all data   inputs, address pipelining chip enable (CE ), depth expansion   chip enables (CE and CE   ADSP, and ADV), write enables BW , and BWE), and global   write (GW). Asynchronous inputs include the output enable   (OE) and the ZZ pin.   • 2.5V core power supply (V   ) DD   • 2.5V IO supply (V   ) DDQ   • Fast clock-to-output times, 6.5 ns (133 MHz version)   • Provides high-performance 2-1-1-1 access rate   ® ® • User selectable burst counter supporting Intel Pentium   interleaved or linear burst sequences   • Separate processor and controller address strobes   • Synchronous self timed write   1 ), burst control inputs (ADSC,   2 3 ( x • Asynchronous output enable   • CY7C1381DV25/CY7C1383DV25 available in   JEDEC-standard Pb-free 100-pin TQFP, Pb-free and non   Pb-free 165-ball FBGA package.   CY7C1381FV25/CY7C1383FV25 available in Pb-free and   non Pb-free 119-ball BGA package   CY7C1381DV25/CY7C1383DV25/CY7C1381FV25/   CY7C1383FV25   The   allows interleaved or linear burst sequences,   selected by the MODE input pin. A HIGH selects an   interleaved burst sequence, while a LOW selects a linear burst   sequence. Burst accesses can be initiated with the processor   • IEEE 1149.1 JTAG-Compatible Boundary Scan   • ZZ sleep mode option   (ADSP) or the cache controller address strobe   address strobe   (ADSC) inputs. Address advancement is controlled by the   address advancement (ADV) input.   Addresses and chip enables are registered at rising edge of   clock when either address strobe processor (ADSP) or   address strobe controller (ADSC) are active. Subsequent   burst addresses can be internally generated as controlled by   the advance pin (ADV).   The   CY7C1381DV25/CY7C1383DV25/CY7C1381FV25/   CY7C1383FV25 operates from a +2.5V core power supply   while all outputs also operate with a +2.5 supply. All inputs and   outputs are JEDEC-standard and JESD8-5-compatible.   Selection Guide   133 MHz   6.5   100 MHz   8.5   Unit   ns   Maximum Access Time   Maximum Operating Current   Maximum CMOS Standby Current   210   175   mA   mA   70   70   Notes   1. For best practices or recommendations, please refer to the Cypress application note AN1064, SRAM System Design Guidelines on www.cypress.com.   2. CE CE are for TQFP and 165 FBGA package only. 119 BGA is offered only in 1 chip enable.   3,   2 Cypress Semiconductor Corporation   Document #: 38-05547 Rev. *E   • 198 Champion Court   • San Jose, CA 95134-1709   • 408-943-2600   Revised Feburary 14, 2007   CY7C1381DV25, CY7C1381FV25   CY7C1383DV25, CY7C1383FV25   Pin Configurations   100-pin TQFP Pinout (3 Chip Enable)   DQPC   1 DQPB   DQB   DQB   VDDQ   VSSQ   DQB   DQB   DQB   DQB   VSSQ   VDDQ   DQB   DQB   VSS   80   79   78   77   76   75   74   73   72   71   70   69   68   67   66   65   64   63   62   61   60   59   58   57   56   55   54   53   52   51   NC   NC   NC   VDDQ   VSSQ   NC   A NC   NC   VDDQ   VSSQ   NC   DQPA   DQA   DQA   VSSQ   VDDQ   DQA   DQA   VSS   NC   1 2 3 4 5 6 7 8 80   79   78   77   76   75   74   73   72   71   70   69   68   67   66   65   64   63   62   61   60   59   58   57   56   55   54   53   52   51   DQC   2 DQC   VDDQ   VSSQ   DQC   3 4 5 6 DQC   7 NC   DQC   8 DQB   DQB   VSSQ   VDDQ   DQB   DQB   NC   VDD   NC   VSS   DQB   DQB   VDDQ   VSSQ   DQB   DQB   DQPB   NC   DQC   9 10   11   9 VSSQ   VDDQ   DQC   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   12   DQC   13   NC   14   VDD   NC   VSS   NC   VDD   ZZ   15   CY7C1383DV25   (1 Mbit x 18)   CY7C1381DV25   (512K x 36)   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   VDD   ZZ   DQD   DQD   VDDQ   VSSQ   DQD   DQD   DQD   DQD   VSSQ   VDDQ   DQD   DQD   DQPD   DQA   DQA   VDDQ   VSSQ   DQA   DQA   DQA   DQA   VSSQ   VDDQ   DQA   DQA   DQPA   DQA   DQA   VDDQ   VSSQ   DQA   DQA   NC   NC   VSSQ   VDDQ   NC   NC   NC   VSSQ   VDDQ   NC   NC   NC   Document #: 38-05547 Rev. *E   Page 3 of 28   CY7C1381DV25, CY7C1381FV25   CY7C1383DV25, CY7C1383FV25   Pin Configurations (continued)   119-Ball BGA   Pinout   CY7C1381FV25 (512K x 36)   1 2 3 4 5 6 7 A V A A A A V DDQ   ADSP   ADSC   DDQ   B C NC/288M   NC/144M   A A A A A A A A NC/576M   NC/1G   V DD   D E F DQ   DQ   DQP   DQ   V NC   CE   V DQP   DQ   DQ   DQ   C C C SS   SS   SS   SS   SS   SS   B B B V V V V C B 1 V DQ   DQ   V DDQ   OE   ADV   GW   DDQ   C B G H J DQ   DQ   DQ   DQ   DQ   DQ   BW   V BW   V C C C C B B B C B DQ   DQ   SS   SS   B V V NC   V NC   V V DDQ   DDQ   DD   DD   DD   K DQ   DQ   DQ   DQ   DQ   V CLK   NC   V DQ   DQ   DQ   DQ   DQ   D D D SS   SS   A A A L M N DQ   DQ   BW   V BW   A D D D A A A D V V V V DDQ   BWE   A1   DDQ   SS   SS   SS   DQ   V V DQ   D SS   A DQ   DQP   A A0   V DQP   A DQ   P R D D SS   SS   A NC   NC   MODE   V NC   A NC   DD   T NC/72M   TMS   A A A NC/36M   NC   ZZ   V TDI   TCK   TDO   V DDQ   U DDQ   CY7C1383FV25 (1M x 18)   2 A 1 3 A A A 4 5 A A A 6 7 A B C D E F V A V DDQ   ADSP   ADSC   DDQ   NC/288M   A NC/576M   A A NC/144M   A V NC/1G   NC   DD   DQ   NC   DQ   V NC   CE   V DQP   B SS   SS   SS   SS   SS   SS   A NC   V V V V NC   DQ   B A 1 V NC   DQ   DQ   V OE   ADV   GW   DDQ   A DDQ   NC   NC   NC   DQ   G H J BW   V B A B DQ   NC   V DQ   NC   B SS   SS   A V V NC   V V V NC   DDQ   DD   DD   DD   DDQ   K NC   DQ   V CLK   NC   V NC   DQ   A B SS   SS   L M N P DQ   NC   DQ   NC   DQ   NC   BW   B A A V V V V V NC   V DDQ   BWE   A1   DDQ   B SS   SS   SS   SS   DQ   NC   V V DQ   A NC   B SS   SS   NC   DQP   A0   NC   DQ   B A R T NC   A A MODE   A V NC   A A A NC   ZZ   DD   NC/72M   NC/36M   TCK   V TMS   TDI   TDO   NC   V DDQ   U DDQ   Document #: 38-05547 Rev. *E   Page 4 of 28   CY7C1381DV25, CY7C1381FV25   CY7C1383DV25, CY7C1383FV25   Pin Configurations (continued)   165-Ball FBGA Pinout(3 Chip Enable)   CY7C1381DV25 (512K x 36)   1 2 A 3 CE1   4 BWC   5 BWB   6 CE   7 8 9 ADV   10   A 11   NC   NC/288M   NC/144M   DQPC   BWE   GW   VSS   VSS   ADSC   A B C D 3 A CE2   VDDQ   VDDQ   BWD   VSS   BWA   VSS   VSS   CLK   VSS   VSS   OE   VSS   VDD   ADSP   VDDQ   VDDQ   A NC/576M   DQPB   DQB   NC   DQC   NC/1G   DQB   DQC   VDD   DQC   DQC   DQC   NC   DQC   DQC   DQC   NC   VDDQ   VDDQ   VDDQ   NC   VDD   VDD   VDD   VDD   VDD   VDD   VDD   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VDD   VDD   VDD   VDD   VDD   VDD   VDD   VDDQ   VDDQ   VDDQ   NC   DQB   DQB   DQB   NC   DQB   DQB   DQB   ZZ   E F G H J DQD   DQD   DQD   DQD   DQD   DQD   VDDQ   VDDQ   VDDQ   VDDQ   VDDQ   VDDQ   DQA   DQA   DQA   DQA   DQA   DQA   K L DQD   DQPD   NC   DQD   NC   VDDQ   VDDQ   A VDD   VSS   A VSS   NC   VSS   A VSS   NC   VDD   VSS   A VDDQ   VDDQ   A DQA   NC   A DQA   DQPA   A M N P NC/72M   TDI   A1   TDO   A0   MODE NC/36M   A A TMS   TCK   A A A A R CY7C1383DV25 (1Mx 18)   1 2 A 3 CE1   4 BWB   5 NC   6 CE   7 8 9 ADV   10   A 11   A NC/288M   NC/144M   NC   BWE   GW   VSS   VSS   ADSC   A B C D 3 A CE2   VDDQ   VDDQ   NC   VSS   VDD   BWA   VSS   VSS   CLK   VSS   VSS   OE   VSS   VDD   ADSP   VDDQ   VDDQ   A NC/576M   DQPA   DQA   NC   NC/1G   NC   NC   DQB   NC   NC   DQB   DQB   DQB   NC   VDDQ   VDDQ   VDDQ   NC   VDD   VDD   VDD   VDD   VDD   VDD   VDD   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VDD   VDD   VDD   VDD   VDD   VDD   VDD   VDDQ   VDDQ   VDDQ   NC   NC   NC   DQA   DQA   DQA   ZZ   E F NC   NC   G H J VSS   DQB   DQB   DQB   NC   NC   VDDQ   VDDQ   VDDQ   VDDQ   VDDQ   VDDQ   DQA   DQA   DQA   NC   NC   NC   K L NC   NC   DQB   DQPB   NC   NC   NC   VDDQ   VDDQ   A VDD   VSS   A VSS   NC   VSS   A VSS   NC   VDD   VSS   A VDDQ   VDDQ   A DQA   NC   A NC   NC   A M N P NC/72M   TDI   A1   TDO   MODE NC/36M   A A TMS   A0   TCK   A A A A R Document #: 38-05547 Rev. *E   Page 5 of 28   CY7C1381DV25, CY7C1381FV25   CY7C1383DV25, CY7C1383FV25   Pin Definitions   Name   IO   Description   A , A , A   Input-   Synchronous   Address inputs used to select one of the address locations. Sampled at the rising edge   0 1 of the CLK if ADSP or ADSC is active LOW, and CE , CE , and CE   3 are sampled active.   1 2 A feed the 2-bit counter.   [1:0]   BW , BW   Input-   Byte write select inputs, active LOW. Qualified with BWE to conduct byte writes to the   A B BW , BW   Synchronous   SRAM. Sampled on the rising edge of CLK.   C D GW   Input-   Global write enable input, active LOW. When asserted LOW on the rising edge of CLK, a   Synchronous   global write is conducted (all bytes are written, regardless of the values on BW   and BWE).   [A:D]   CLK   Input-   Clock   Clock input. Used to capture all synchronous inputs to the device. Also used to increment   the burst counter when ADV is asserted LOW, during a burst operation.   CE   CE   CE   Input-   Synchronous   Chip enable 1 input, active LOW. Sampled on the rising edge of CLK. Used in conjunction   1 2 3 with CE and CE   to select or deselect the device. ADSP is ignored if CE is HIGH. CE   1 2 3 1 is sampled only when a new external address is loaded.   Input-   Synchronous   Chip enable 2 input, active HIGH. Sampled on the rising edge of CLK. Used in conjunction   [2]   with CE and CE   to select or deselect the device. CE is sampled only when a new   1 3 2 external address is loaded.   Input-   Chip enable 3 input, active LOW. Sampled on the rising edge of CLK. Used in conjunction   Synchronous   with CE and CE to select or deselect the device. CE is sampled only when a new external   1 2 3 address is loaded.   OE   Input-   Output enable, asynchronous input, active LOW. Controls the direction of the IO pins.   Asynchronous When LOW, the IO pins behave as outputs. When deasserted HIGH, IO pins are tri-stated,   and act as input data pins. OE is masked during the first clock of a read cycle when emerging   from a deselected state.   ADV   Input-   Advance input signal. Sampled on the rising edge of CLK. When asserted, it automatically   Synchronous   increments the address in a burst cycle.   ADSP   Input-   Address strobe from processor, sampled on the rising edge of CLK, active LOW. When   Synchronous   asserted LOW, addresses presented to the device are captured in the address registers.   A are also loaded into the burst counter. When ADSP and ADSC are both asserted, only   [1:0]   ADSP is recognized. ASDP is ignored when CE is deasserted HIGH.   1 ADSC   Input-   Address strobe from controller, sampled on the rising edge of CLK, active LOW. When   Synchronous   asserted LOW, addresses presented to the device are captured in the address registers.   A are also loaded into the burst counter. When ADSP and ADSC are both asserted, only   . [1:0]   ADSP is recognized   BWE   ZZ   Input-   Synchronous   Byte write enable input, active LOW. Sampled on the rising edge of CLK. This signal must   be asserted LOW to conduct a byte write.   Input-   ZZ sleep input. This active HIGH input places the device in a non-time critical sleep   Asynchronous condition with data integrity preserved. For normal operation, this pin has to be LOW or left   floating. ZZ pin has an internal pull down.   IO-   Bidirectional dataIO lines. As inputs, they feed into an on-chip data register that is triggered   by the rising edge of CLK. As outputs, they deliver the data contained in the memory location   specified by the addresses presented during the previous clock rise of the read cycle. The   direction of the pins is controlled by OE. When OE is asserted LOW, the pins behave as   DQ   s Synchronous   outputs. When HIGH, DQ and DQP are placed in a tri-state condition.The outputs are   s X automatically tri-stated during the data portion of a write sequence, during the first clock   when emerging from a deselected state, and when the device is deselected, regardless of   the state of OE.   IO-   Bidirectional data parity IO lines. Functionally, these signals are identical to DQ . During   DQP   s X Synchronous   write sequences, DQP is controlled by BW correspondingly.   X X Document #: 38-05547 Rev. *E   Page 6 of 28   CY7C1381DV25, CY7C1381FV25   CY7C1383DV25, CY7C1383FV25   Pin Definitions (continued)   Name   MODE   IO   Description   Input-Static   Selects burst order. When tied to GND selects linear burst sequence. When tied to V or   DD   left floating selects interleaved burst sequence. This is a strap pin and must remain static   during device operation. Mode pin has an internal pull up.   V V V V Power Supply Power supply inputs to the core of the device.   DD   IO Power Supply Power supply for the IO circuitry.   DDQ   SS   Ground   Ground for the core of the device.   IO Ground   Ground for the IO circuitry.   SSQ   TDO   JTAG serial output Serial data-out to the JTAG circuit. Delivers data on the negative edge of TCK. If the JTAG   Synchronous   feature is not used, this pin can be left unconnected. This pin is not available on TQFP   packages.   TDI   JTAG serial input Serial data-in to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG feature   Synchronous   is not used, this pin can be left floating or connected to V through a pull up resistor. This   DD   pin is not available on TQFP packages.   TMS   TCK   JTAG serial input Serial data-in to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG feature   Synchronous   is not used, this pin can be disconnected or connected to V . This pin is not available on   DD   TQFP packages.   JTAG-   Clock   Clock input to the JTAG circuitry. If the JTAG feature is not used, this pin must be   connected to V . This pin is not available on TQFP packages.   SS   NC, NC/(36M,   72M, 144M,   288M, 576M,   1G)   - No Connects. Not internally connected to the die. 36M, 72M, 144M, 288M, 576M, and 1G   are address expansion pins and are not internally connected to the die.   V /DNU   Ground/DNU   This pin can be connected to ground or can be left floating.   selection and output tri-state control. ADSP is ignored if CE   SS   Functional Overview   1 is HIGH.   All synchronous inputs pass through input registers controlled   by the rising edge of the clock. Maximum access delay from   Single Read Accesses   the clock rise (t   ) is 6.5 ns (133 MHz device).   CDV   A single read access is initiated when the following conditions   The   CY7C1381DV25/CY7C1383DV25/CY7C1381FV25/   are satisfied at clock rise: (1) CE , CE , and CE   are all   1 2 3 CY7C1383FV25 supports secondary cache in systems using   a linear or interleaved burst sequence. The interleaved burst   order supports Pentium and i486™ processors. The linear   asserted active, and (2) ADSP or ADSC is asserted LOW (if   the access is initiated by ADSC, the write inputs must be   deserted during this first cycle). The address presented to the   address inputs is latched into the address register and the   burst counter and/or control logic, and presented to the   memory core. If the OE input is asserted LOW, the requested   data will be available at the data outputs with a maximum to   ® burst sequence is suited for processors that use a linear burst   sequence. The burst order is user selectable, and is   determined by sampling the MODE input. Accesses can be   initiated with either the processor address strobe (ADSP) or   the controller address strobe (ADSC). Address advancement   through the burst sequence is controlled by the ADV input. A   two-bit on-chip wraparound burst counter captures the first   address in a burst sequence and automatically increments the   address for the rest of the burst access.   t after clock rise. ADSP is ignored if CE is HIGH.   CDV   1 Single Write Accesses Initiated by ADSP   This access is initiated when the following conditions are   satisfied at clock rise: (1) CE , CE , CE   are all asserted   1 2 3 active, and (2) ADSP is asserted LOW. The addresses   presented are loaded into the address register and the burst   inputs (GW, BWE, and BWX) are ignored during this first clock   Byte write operations are qualified with the byte write enable   (BWE) and byte write select (BW ) inputs. A global write   X enable (GW) overrides all byte write inputs and writes data to   all four bytes. All writes are simplified with on-chip   synchronous self timed write circuitry.   indicate a write) on the next clock rise, the appropriate data will   be latched and written into the device. Byte writes are allowed.   All IOs are tri-stated during a byte write. As this is a common   IO device, the asynchronous OE input signal must be deserted   Three synchronous chip selects (CE , CE , CE   3 ) and an   1 2 asynchronous output enable (OE) provide for easy bank   Document #: 38-05547 Rev. *E   Page 7 of 28   CY7C1381DV25, CY7C1381FV25   CY7C1383DV25, CY7C1383FV25   and the IOs must be tri-stated prior to the presentation of data   to DQs. As a safety precaution, the data lines are tri-stated   once a write cycle is detected, regardless of the state of OE.   Sleep Mode   The ZZ input pin is an asynchronous input. Asserting ZZ   places the SRAM in a power conservation sleep mode. Two   clock cycles are required to enter into or exit from this sleep   mode. While in this mode, data integrity is guaranteed.   Accesses pending when entering the sleep mode are not   considered valid nor is the completion of the operation   guaranteed. The device must be deselected prior to entering   the sleep mode. CE , CE , CE   remain inactive for the duration of t   returns LOW.   Single Write Accesses Initiated by ADSC   This write access is initiated when the following conditions are   satisfied at clock rise: (1) CE , CE , and CE   are all   1 2 3 asserted active, (2) ADSC is asserted LOW, (3) ADSP is   deserted HIGH, and (4) the write input signals (GW, BWE, and   , ADSP, and ADSC must   1 2 3 BW ) indicate a write access. ADSC is ignored if ADSP is   X after the ZZ input   ZZREC   active LOW.   The addresses presented are loaded into the address register   and the burst counter, the control logic, or both, and delivered   Interleaved Burst Address Table   (MODE = Floating or VDD   ) to the memory core. The information presented to DQ will be   X written into the specified address location. Byte writes are   allowed. All IOs are tri-stated when a write is detected, even a   First   Address   A1: A0   Second   Address   A1: A0   Third   Address   A1: A0   Fourth   Address   A1: A0   byte write. Since this is   a common IO device, the   asynchronous OE input signal must be deasserted and the IOs   must be tri-stated prior to the presentation of data to DQs. As   a safety precaution, the data lines are tri-stated once a write   cycle is detected, regardless of the state of OE.   00   01   10   11   01   00   11   10   10   11   00   01   11   10   01   00   Burst Sequences   Linear Burst Address Table (MODE = GND)   The   CY7C1383FV25 provides an on-chip two-bit wraparound burst   counter inside the SRAM. The burst counter is fed by A   CY7C1381DV25/CY7C1383DV25/CY7C1381FV25/   First   Address   A1: A0   Second   Address   A1: A0   Third   Address   A1: A0   Fourth   Address   A1: A0   , [1:0]   and can follow either a linear or interleaved burst order. The   burst order is determined by the state of the MODE input. A   LOW on MODE will select a linear burst sequence. A HIGH on   MODE will select an interleaved burst order. Leaving MODE   unconnected will cause the device to default to a interleaved   burst sequence.   00   01   10   11   01   10   11   00   10   11   00   01   11   00   01   10   ZZ Mode Electrical Characteristics   Parameter   Description   Sleep mode standby current   Device operation to ZZ   Test Conditions   ZZ > V – 0.2V   Min.   Max.   80   Unit   mA   ns   I t t t t DDZZ   DD   ZZ > V – 0.2V   2t   ZZS   DD   CYC   ZZ recovery time   ZZ < 0.2V   2t   ns   ZZREC   ZZI   CYC   ZZ active to sleep current   ZZ Inactive to exit sleep current   This parameter is sampled   This parameter is sampled   2t   ns   CYC   0 ns   RZZI   Document #: 38-05547 Rev. *E   Page 8 of 28   CY7C1381DV25, CY7C1381FV25   CY7C1383DV25, CY7C1383FV25   Address   Used   Cycle Description   CE CE CE ZZ   ADSP   ADSC ADV WRITE OE CLK   DQ   1 2 3 Deselected Cycle, Power   Down   None   None   None   None   None   H L L L X X L X X H X X L L L L L X L X X L X X X X X X X X X X X X X X X L-H Tri-State   L-H Tri-State   L-H Tri-State   L-H Tri-State   L-H Tri-State   Deselected Cycle, Power   Down   L L Deselected Cycle, Power   Down   X L Deselected Cycle, Power   Down   H H Deselected Cycle, Power   Down   X L Sleep Mode, Power Down   Read Cycle, Begin Burst   Read Cycle, Begin Burst   Write Cycle, Begin Burst   Read Cycle, Begin Burst   Read Cycle, Begin Burst   Read Cycle, Continue Burst   Read Cycle, Continue Burst   Read Cycle, Continue Burst   Read Cycle, Continue Burst   Write Cycle, Continue Burst   Write Cycle, Continue Burst   Read Cycle, Suspend Burst   Read Cycle, Suspend Burst   Read Cycle, Suspend Burst   Read Cycle, Suspend Burst   Write Cycle, Suspend Burst   Write Cycle, Suspend Burst   None   External   External   External   External   External   Next   X L X H H H H H X X X X X X X X X X X X X L H L L L L L L L L L L L L L L L L L X L X X X L X X X X X X L X X X L X L X Tri-State   Q L-H   L L L H X L L-H Tri-State   L L H H H H H X X H X H H X X H X L-H   L-H   D Q L L L H H H H H H L L L L H L L-H Tri-State   L-H   L-H Tri-State   L-H   L-H Tri-State   X X H H X H X X H H X H X X X X X X X X X X X X H H H H H H H H H H H H Q Next   L H L Next   L Q Next   L H X X L Next   L L-H   L-H   L-H   D D Q Next   L L Current   Current   Current   Current   Current   Current   H H H H H H H H H H L H L L-H Tri-State   L-H   L-H Tri-State   Q H X X L-H   L-H   D D L Notes   4. X = Don't Care, H = Logic HIGH, L = Logic LOW.   5. WRITE = L when any one or more byte write enable signals, and BWE = L or GW = L. WRITE = H when all byte write enable signals, BWE, GW = H.   6. The DQ pins are controlled by the current cycle and the OE signal. OE is asynchronous and is not sampled with the clock.   7. The SRAM always initiates a read cycle when ADSP is asserted, regardless of the state of GW, BWE, or BW . Writes may occur only on subsequent clocks after   X the ADSP or with the assertion of ADSC. As a result, OE must be driven HIGH prior to the start of the write cycle to allow the outputs to tri-state. OE is a don't   care for the remainder of the write cycle.   8. OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle all data bits are tri-state when OE is   inactive or when the device is deselected, and all data bits behave as output when OE is active (LOW).   Document #: 38-05547 Rev. *E   Page 9 of 28   CY7C1381DV25, CY7C1381FV25   CY7C1383DV25, CY7C1383FV25   Truth Table for Read/Write [4, 9]   Function (CY7C1381DV25/CY7C1381FV25)   GW   H BWE   BW   X BW   X BW   X BW   A D C B Read   Read   H L L L L L L L L X H L H H H H H H L H H L Write Byte A (DQ , DQP )   H H A A Write Byte B (DQ , DQP )   H H H L B B Write Bytes A, B (DQ , DQ , DQP , DQP )   H H L A B A B Write Byte C (DQ , DQP )   H H H H L H L C C Write Bytes C, A (DQ , DQ DQP , DQP )   H H L C A,   C A Write Bytes C, B (DQ , DQ DQP , DQP )   H H L H L C B,   C B Write Bytes C, B, A (DQ , DQ , DQ DQP ,   H H L L C B A,   C DQP , DQP )   B A Write Byte D (DQ , DQP )   H H H H L L L L L L L L H H H H H H L H L D D Write Bytes D, A (DQ , DQ DQP , DQP )   D A,   D A Write Bytes D, B (DQ , DQ DQP , DQP )   H L D A,   D A Write Bytes D, B, A (DQ , DQ , DQ DQP ,   L D B A,   D DQP , DQP )   B A Write Bytes D, B (DQ , DQ DQP , DQP )   H H L L L L L L H H H L D B,   D B Write Bytes D, B, A (DQ , DQ , DQ DQP ,   D C A,   D DQP , DQP )   C A Write Bytes D, C, A (DQ , DQ , DQ DQP ,   H L L L L H D B A,   D DQP , DQP )   B A Write All Bytes   Write All Bytes   H L L L L L L X X X X X Truth Table for Read/Write [4, 9]   Function (CY7C1383DV25/CY7C1383FV25)   Read   Read   Write Byte A – (DQ and DQP )   GW   H BWE   BW   X BW   A B H L L L L X X H L H H H L H A A Write Byte B – (DQ and DQP )   H H L B B Write All Bytes   Write All Bytes   H L L X X Note   9. Table only lists a partial listing of the byte write combinations. Any combination of BW is valid. Appropriate write will be done based on which byte write is active.   X Document #: 38-05547 Rev. *E   Page 10 of 28   CY7C1381DV25, CY7C1381FV25   CY7C1383DV25, CY7C1383FV25   Test Data-In (TDI)   IEEE 1149.1 Serial Boundary Scan (JTAG)   The TDI ball is used to serially input information into the   registers and can be connected to the input of any of the   registers. The register between TDI and TDO is chosen by the   instruction that is loaded into the TAP instruction register. For   information on loading the instruction register, see TAP   Controller State Diagram. TDI is internally pulled up and can   be unconnected if the TAP is unused in an application. TDI is   connected to the most significant bit (MSB) of any register.   The CY7C1381DV25/CY7C1383DV25 incorporates a serial   boundary scan test access port (TAP). This part is fully   compliant with 1149.1. The TAP operates using   JEDEC-standard 3.3V or 2.5V IO logic levels.   The CY7C1381DV25/CY7C1383DV25 contains   a TAP   controller, instruction register, boundary scan register, bypass   register, and ID register.   Disabling the JTAG Feature   It is possible to operate the SRAM without using the JTAG   feature. To disable the TAP controller, TCK must be tied LOW   Test Data-Out (TDO)   The TDO output ball is used to serially clock data out from the   registers. The output is active depending upon the current   state of the TAP state machine. The output changes on the   falling edge of TCK. TDO is connected to the least significant   (V ) to prevent clocking of the device. TDI and TMS are   SS   internally pulled up and may be unconnected. They may   alternately be connected to V   through a pull up resistor.   DD   TDO may be left unconnected. Upon power up, the device will   come up in a reset state, which will not interfere with the   operation of the device.   TAP Controller Block Diagram   TAP Controller State Diagram   0 TEST-LOGIC   1 Bypass Register   RESET   0 2 1 0 0 0 1 1 1 RUN-TEST/   IDLE   SELECT   DR-SCAN   SELECT   IR-SCAN   0 Selection   Circuitry   Instruction Register   31 30 29   Identification Register   S election   TDI   TDO   0 0 Circuitr   y . . . 2 1 1 1 CAPTURE-DR   CAPTURE-IR   0 0 x . . . . . 2 1 SHIFT-DR   0 SHIFT-IR   0 Boundary Scan Register   1 1 1 1 EXIT1-DR   EXIT1-IR   0 0 TCK   TMS   TAP CONTROLLER   PAUSE-DR   1 0 PAUSE-IR   1 0 0 0 EXIT2-DR   1 EXIT2-IR   1 Performing a TAP Reset   UPDATE-DR   UPDATE-IR   A Reset is performed by forcing TMS HIGH (V ) for five rising   DD   edges of TCK. This Reset does not affect the operation of the   SRAM and may be performed while the SRAM is operating. At   power up, the TAP is reset internally to ensure that TDO   comes up in a High-Z state.   1 0 1 0 The 0 or 1 next to each state represents the value of TMS at   the rising edge of TCK.   TAP Registers   Registers are connected between the TDI and TDO balls and   allow data to be scanned in and out of the SRAM test circuitry.   Only one register can be selected at a time through the   instruction registers. Data is serially loaded into the TDI ball on   the rising edge of TCK. Data is output on the TDO ball on the   falling edge of TCK.   Test Access Port (TAP)   Test Clock (TCK)   The test clock is used only with the TAP controller. All inputs   are captured on the rising edge of TCK. All outputs are driven   from the falling edge of TCK.   Instruction Register   Test MODE SELECT (TMS)   Three-bit instructions can be serially loaded into the instruction   register. This register is loaded when it is placed between the   TDI and TDO balls as shown in the TAP Controller Block   Diagram. Upon power up, the instruction register is loaded   with the IDCODE instruction. It is also loaded with the IDCODE   instruction if the controller is placed in a reset state as   described in the previous section.   The TMS input is used to give commands to the TAP controller   and is sampled on the rising edge of TCK. This pin may be left   unconnected if the TAP is not used. The ball is pulled up   internally, resulting in a logic HIGH level.   Document #: 38-05547 Rev. *E   Page 11 of 28   CY7C1381DV25, CY7C1381FV25   CY7C1383DV25, CY7C1383FV25   When the TAP controller is in the Capture-IR state, the two   least significant bits are loaded with a binary ‘01’ pattern to   allow for fault isolation of the board level serial test data path.   the IDCODE to be shifted out of the device when the TAP   controller enters the Shift-DR state.   The IDCODE instruction is loaded into the instruction register   upon power up or whenever the TAP controller is given a test   logic reset state.   Bypass Register   To save time when serially shifting data through registers, it is   sometimes advantageous to skip certain chips. The bypass   register is a single-bit register that can be placed between the   TDI and TDO balls. This allows data to be shifted through the   SRAM with minimal delay. The bypass register is set LOW   SAMPLE Z   The SAMPLE Z instruction causes the boundary scan register   to be connected between the TDI and TDO balls when the TAP   controller is in a Shift-DR state. The SAMPLE Z command   places all SRAM outputs into a High-Z state.   (V ) when the BYPASS instruction is executed.   SS   Boundary Scan Register   SAMPLE/PRELOAD   The boundary scan register is connected to all the input and   bidirectional balls on the SRAM.   SAMPLE/PRELOAD is a 1149.1 mandatory instruction. When   the SAMPLE/PRELOAD instructions are loaded into the   instruction register and the TAP controller is in the Capture-DR   state, a snapshot of data on the inputs and output pins is   captured in the boundary scan register.   The boundary scan register is loaded with the contents of the   RAM IO ring when the TAP controller is in the Capture-DR   state and is then placed between the TDI and TDO balls when   the controller is moved to the Shift-DR state. The EXTEST,   SAMPLE/PRELOAD, and SAMPLE Z instructions can be used   to capture the contents of the input and output ring.   The user must be aware that the TAP controller clock can only   operate at a frequency up to 20 MHz, while the SRAM clock   operates more than an order of magnitude faster. Because   there is a large difference in the clock frequencies, it is   possible that during the Capture-DR state, an input or output   will undergo a transition. The TAP may then try to capture a   signal while in transition (metastable state). This will not harm   the device, but there is no guarantee as to the value that will   be captured. Repeatable results may not be possible.   The boundary scan order tables show the order in which the   bits are connected. Each bit corresponds to one of the bumps   on the SRAM package. The MSB of the register is connected   to TDI, and the LSB is connected to TDO.   (ID) Register   The ID register is loaded with a vendor specific 32-bit code   during the Capture-DR state when the IDCODE command is   loaded in the instruction register. The IDCODE is hardwired   into the SRAM and can be shifted out when the TAP controller   is in the Shift-DR state. The ID register has a vendor code and   other information described in the Identification Register   To guarantee that the boundary scan register will capture the   correct value of a signal, the SRAM signal must be stabilized   long enough to meet the TAP controller's capture setup plus   hold times (t and t ). The SRAM clock input might not be   CS   CH   captured correctly if there is no way in a design to stop (or   slow) the clock during a SAMPLE/PRELOAD instruction. If this   is an issue, it is still possible to capture all other signals and   simply ignore the value of the CK and CK captured in the   boundary scan register.   TAP Instruction Set   Overview   Once the data is captured, it is possible to shift out the data by   putting the TAP into the Shift-DR state. This places the   boundary scan register between the TDI and TDO pins.   Eight different instructions are possible with the three bit   instruction register. All combinations are listed in Identification   Codes on page 15. Three of these instructions are listed as   RESERVED and must not be used. The other five instructions   are described in detail below.   PRELOAD allows an initial data pattern to be placed at the   latched parallel outputs of the boundary scan register cells   prior to the selection of another boundary scan test operation.   Instructions are loaded into the TAP controller during the   Shift-IR state, when the instruction register is placed between   TDI and TDO. During this state, instructions are shifted   through the instruction register through the TDI and TDO balls.   To execute the instruction once it is shifted in, the TAP   controller needs to be moved into the Update-IR state.   The shifting of data for the SAMPLE and PRELOAD phases   can occur concurrently when required; that is, while data   captured is shifted out, the preloaded data is shifted in.   BYPASS   When the BYPASS instruction is loaded in the instruction   register and the TAP is placed in a Shift-DR state, the bypass   register is placed between the TDI and TDO balls. The   advantage of the BYPASS instruction is that it shortens the   boundary scan path when multiple devices are connected   together on a board.   EXTEST   The EXTEST instruction enables the preloaded data to be   driven out through the system output pins. This instruction also   selects the boundary scan register to be connected for serial   access between the TDI and TDO in the Shift-DR controller   state.   EXTEST Output Bus Tri-State   IEEE Standard 1149.1 mandates that the TAP controller be   able to put the output bus into a tri-state mode.   IDCODE   The IDCODE instruction causes a vendor specific 32-bit code   to be loaded into the instruction register. It also places the   instruction register between the TDI and TDO balls and allows   The boundary scan register has a special bit located at bit #85   (for 119-BGA package) or bit #89 (for 165-fBGA package).   When this scan cell, called the “extest output bus tri-state,” is   latched into the preload register during the Update-DR state in   Document #: 38-05547 Rev. *E   Page 12 of 28   CY7C1381DV25, CY7C1381FV25   CY7C1383DV25, CY7C1383FV25   the TAP controller, it will directly control the state of the output   (Q-bus) pins, when the EXTEST is entered as the current   instruction. When HIGH, it will enable the output buffers to   drive the output bus. When LOW, this bit will place the output   bus into a High-Z condition.   register. When the EXTEST instruction is entered, this bit will   directly control the output Q-bus pins. Note that this bit is   preset HIGH to enable the output when the device is powered   up, and also when the TAP controller is in the Test-Logic-Reset   state.   This bit can be set by entering the SAMPLE/PRELOAD or   EXTEST command, and then shifting the desired bit into that   cell, during the Shift-DR state. During Update-DR, the value   loaded into that shift-register cell will latch into the preload   Reserved   These instructions are not implemented but are reserved for   future use. Do not use these instructions.   TAP Timing   1 2 3 4 5 6 Test Clock   (TCK)   t t t TH   CYC   TL   t t t t TMSS   TDIS   TMSH   Test Mode Select   (TMS)   TDIH   Test Data-In   (TDI)   t TDOV   t TDOX   Test Data-Out   (TDO)   DON’T CARE   UNDEFINED   TAP AC Switching Characteristics   Over the Operating Range   Parameter   Clock   Description   Min.   Max.   Unit   t t t t TCK Clock Cycle Time   TCK Clock Frequency   TCK Clock HIGH time   TCK Clock LOW time   50   ns   MHz   ns   TCYC   TF   20   20   20   TH   ns   TL   Output Times   t t TCK Clock LOW to TDO Valid   TCK Clock LOW to TDO Invalid   10   ns   ns   TDOV   TDOX   0 Setup Times   t t t TMS Setup to TCK Clock Rise   TDI Setup to TCK Clock Rise   Capture Setup to TCK Rise   5 5 5 ns   ns   ns   TMSS   TDIS   CS   Hold Times   t t t TMS Hold after TCK Clock Rise   TDI Hold after Clock Rise   5 5 5 ns   ns   ns   TMSH   TDIH   CH   Capture Hold after Clock Rise   Notes   10. t and t refer to the setup and hold time requirements of latching data from the boundary scan register.   CS   CH   11. Test conditions are specified using the load in TAP AC test conditions. t /t = 1 ns.   R F Document #: 38-05547 Rev. *E   Page 13 of 28   CY7C1381DV25, CY7C1381FV25   CY7C1383DV25, CY7C1383FV25   2.5V TAP AC Test Conditions   2.5V TAP AC Output Load Equivalent   1.25V   Input pulse levels.................................................V to 2.5V   SS   Input rise and fall time..................................................... 1 ns   Input timing reference levels.........................................1.25V   Output reference levels.................................................1.25V   Test load termination supply voltage.............................1.25V   50Ω   TDO   ZO= 50 Ω   20pF   TAP DC Electrical Characteristics And Operating Conditions   (0°C < TA < +70°C; V = 2.5V ±0.125V unless otherwise noted)   DD   Parameter   Description   Test Conditions   Min.   2.0   Max.   Unit   V V V V V V V Output HIGH Voltage   Output HIGH Voltage   Output LOW Voltage   Output LOW Voltage   Input HIGH Voltage   Input LOW Voltage   Input Load Current   I I I I = –1.0 mA, V   = –100 µA, V   = 2.5V   = 2.5V   OH1   OH   OH   OL   OL   DDQ   DDQ   2.1   V OH2   OL1   OL2   IH   = 8.0 mA, V   = 100 µA   = 2.5V   0.4   0.2   V DDQ   V V V = 2.5V   = 2.5V   = 2.5V   V DDQ   DDQ   DDQ   1.7   –0.3   –5   V + 0.3   V DD   0.7   5 V IL   I GND < V < V   µA   X IN   DDQ   Identification Register Definitions   CY7C1381DV25/   CY7C1381FV25   (512K x 36)   CY7C1383DV25/   CY7C1383FV25   (1 Mbit x 18)   Instruction Field   Description   Revision Number (31:29)   000   01011   000   01011   Describes the version number   Reserved for internal use.   Device Depth (28:24)   Device Width (23:18) 119-BGA   Device Width (23:18) 165-FBGA   Cypress Device ID (17:12)   Cypress JEDEC ID Code (11:1)   ID Register Presence Indicator (0)   101001   000001   100101   00000110100   1 101001   000001   010101   00000110100   1 Defines the memory type and architecture   Defines the memory type and architecture   Defines the width and density   Allows unique identification of SRAM vendor   Indicates the presence of an ID register   Scan Register Sizes   Register Name   Bit Size (x36)   Bit Size (x18)   Instruction Bypass   3 3 Bypass   ID   1 1 32   85   89   32   85   89   Boundary Scan Order (119-ball BGA package)   Boundary Scan Order (165-ball FBGA package)   Note   12. All voltages referenced to V (GND).   SS   Document #: 38-05547 Rev. *E   Page 14 of 28   CY7C1381DV25, CY7C1381FV25   CY7C1383DV25, CY7C1383FV25   Identification Codes   Instruction   Code   Description   EXTEST   000   Captures IO ring contents. Places the boundary scan register between TDI and TDO.   Forces all SRAM outputs to High-Z state.   IDCODE   001   010   Loads the ID register with the vendor ID code and places the register between TDI and   TDO. This operation does not affect SRAM operations.   SAMPLE Z   Captures IO ring contents. Places the boundary scan register between TDI and TDO.   Forces all SRAM output drivers to a High-Z state.   RESERVED   011   100   Do Not Use. This instruction is reserved for future use.   SAMPLE/PRELOAD   Captures IO ring contents. Places the boundary scan register between TDI and TDO.   Does not affect SRAM operation.   RESERVED   RESERVED   BYPASS   101   110   111   Do Not Use. This instruction is reserved for future use.   Do Not Use. This instruction is reserved for future use.   Places the bypass register between TDI and TDO. This operation does not affect SRAM   operations.   Bit #   1 Ball ID   Bit #   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   Ball ID   F6   Bit #   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   Ball ID   G4   A4   G3   C3   B2   B3   A3   C2   A2   B1   C1   D2   E1   F2   Bit #   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   Ball ID   L1   H4   T4   T5   T6   R5   L5   2 E7   D7   H7   G6   E6   D6   C7   B7   C6   A6   C5   B5   G5   B6   D4   B4   F4   M2   N1   3 4 P1   5 K1   6 L2   7 R6   U6   R7   T7   P6   N7   M6   L7   N2   P2   8 9 R3   10   11   12   13   14   15   16   17   18   19   20   21   22   T1   R1   T2   L3   R2   K6   P7   N6   L6   G1   H2   D1   E2   G2   H1   J3   T3   L4   N4   P4   K7   J5   M4   A5   K4   E4   Internal   H6   G7   2K   Notes   13. Balls that are NC (No Connect) are preset LOW.   14. Bit #85 is preset HIGH.   Document #: 38-05547 Rev. *E   Page 15 of 28   CY7C1381DV25, CY7C1381FV25   CY7C1383DV25, CY7C1383FV25   Bit #   1 Ball ID   N6   Bit #   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   Ball ID   D10   C11   A11   B11   A10   B10   A9   Bit #   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   Ball ID   G1   D2   E2   2 N7   3 N10   P11   P8   4 F2   5 G2   H1   H3   J1   6 R8   7 R9   8 P9   B9   9 P10   R10   R11   H11   N11   M11   L11   K11   J11   M10   L10   K10   J10   H9   C10   A8   K1   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   L1   B8   M1   J2   A7   B7   K2   B6   L2   A6   M2   N1   N2   P1   B5   A5   A4   B4   R1   R2   P3   B3   A3   A2   R3   P2   H10   G11   F11   E11   D11   G10   F10   E10   B2   C2   R4   P4   B1   A1   N5   P6   C1   D1   R6   Internal   E1   F1   Note   15. Bit #89 is preset HIGH.   Document #: 38-05547 Rev. *E   Page 16 of 28   CY7C1381DV25, CY7C1381FV25   CY7C1383DV25, CY7C1383FV25   DC Input Voltage ................................... –0.5V to V + 0.5V   Maximum Ratings   DD   Current into Outputs (LOW) ........................................ 20 mA   Exceeding the maximum ratings may impair the useful life of   the device. For user guidelines, not tested.   Static Discharge Voltage.......................................... > 2001V   (per MIL-STD-883, Method 3015)   Storage Temperature .................................–65°C to +150°C   Latch-up Current ................................................... > 200 mA   Ambient Temperature with   Power Applied.............................................–55°C to +125°C   Operating Range   Supply Voltage on V Relative to GND ....... –0.3V to +3.6V   DD   Range   Commercial   Industrial   Ambient Temperature   0°C to +70°C   V V DDQ   DD   Supply Voltage on V   Relative to GND ...... –0.3V to +V   DD   DDQ   2.5V ± 5% 2.5V – 5%   DC Voltage Applied to Outputs   in Tri-State........................................... –0.5V to V   to V   DD   –40°C to +85°C   + 0.5V   DDQ   Electrical Characteristics   Over the Operating Range   Parameter   Description   Power Supply Voltage   IO Supply Voltage   Test Conditions   Min.   Max.   Unit   V V 2.375   2.375   2.0   2.625   DD   DDQ   OH   OL   IH   V V V V V I for 2.5V IO   for 2.5V IO, I = –1.0 mA   V V DD   Output HIGH Voltage   Output LOW Voltage   V OH   for 2.5V IO, I = 1.0 mA   0.4   + 0.3V   V OL   Input HIGH Voltage   Input LOW Voltage   for 2.5V IO   for 2.5V IO   1.7   –0.3   –5   V V DD   0.7   5 V IL   Input Leakage Current GND ≤ V ≤ V   except ZZ and MODE   µA   X I DDQ   Input Current of MODE Input = V   –30   –5   µA   µA   µA   µA   µA   mA   mA   mA   SS   Input = V   5 DD   Input Current of ZZ   Input = V   Input = V   SS   DD   30   5 I I Output Leakage Current GND ≤ V ≤ V   Output Disabled   –5   OZ   I DD,   V Operating Supply   V f = f   = Max., I   = 0 mA,   7.5-ns cycle, 133 MHz   10-ns cycle, 100 MHz   7.5-ns cycle, 133 MHz   10-ns cycle, 100 MHz   210   175   140   120   DD   DD   DD   OUT   CYC   Current   = 1/t   MAX   I I I I Automatic CE   Power Down   Current—TTL Inputs   Max. V , Device Deselected,   DD   SB1   V ≥ V or V ≤ V , f = f   IN IH IN IL MAX,   inputs switching   Automatic CE   Power Down   Current—CMOS Inputs f = 0, inputs static   Max. V , Device Deselected,   All speeds   70   mA   SB2   SB3   SB4   DD   V ≥ V – 0.3V or V ≤ 0.3V,   IN   DD IN   Automatic CE   Power Down   Current—CMOS Inputs f = f   Max. V , Device Deselected,   7.5-ns cycle, 133 MHz   10-ns cycle, 100 MHz   130   110   mA   mA   DD   V ≥ V   – 0.3V or V ≤ 0.3V,   IN   DDQ IN   , inputs switching   MAX   Automatic CE   Power Down   Current—TTL Inputs   Max. V , Device Deselected,   All speeds   80   mA   DD   V ≥ V – 0.3V or V ≤ 0.3V,   IN DD IN   f = 0, inputs static   Notes   16. Overshoot: V (AC) < V +1.5V (Pulse width less than t   /2), undershoot: V (AC) > –2V (Pulse width less than t /2).   CYC   IH   DD   CYC   IL   17. T   : assumes a linear ramp from 0V to V (min.) within 200 ms. During this time V < V and V   < V   . DD   power up   DD   IH   DD   DDQ   Document #: 38-05547 Rev. *E   Page 17 of 28   CY7C1381DV25, CY7C1381FV25   CY7C1383DV25, CY7C1383FV25   Capacitance [18]   100 TQFP   Package   119 BGA   Package   165 FBGA   Package   Parameter   Description   Test Conditions   T = 25°C, f = 1 MHz,   Unit   C C C Input Capacitance   5 5 5 8 8 8 9 9 9 pF   pF   pF   IN   A V /V   = 2.5V   DD DDQ   Clock Input Capacitance   Input/Output Capacitance   CLK   IO   Thermal Resistance [18]   100 TQFP   Package   119 BGA   Package   165 FBGA   Package   Parameter   Description   Test Conditions   Unit   Θ Thermal Resistance   (Junction to Ambient)   Test conditions follow   standard test methods and   procedures for measuring   thermal impedance, in   accordance with   28.66   23.8   20.7   °C/W   JA   Θ Thermal Resistance   (Junction to Case)   4.08   6.2   4.0   °C/W   JC   EIA/JESD51.   AC Test Loads and Waveforms   2.5V IO Test Load   R = 1667Ω   2.5V   OUTPUT   OUTPUT   ALL INPUT PULSES   90%   VDDQ   GND   90%   10%   Z = 50Ω   0 R = 50Ω   10%   L 5 pF   INCLUDING   R = 1538Ω   ≤ 1 ns   ≤ 1 ns   V = 1.25V   T JIG AND   SCOPE   (a)   (b)   (c)   Note   18. Tested initially and after any design or process change that may affect these parameters.   Document #: 38-05547 Rev. *E   Page 18 of 28   CY7C1381DV25, CY7C1381FV25   CY7C1383DV25, CY7C1383FV25   Switching Characteristics   Over the Operating Range   133 MHz   100 MHz   Parameter   Description   (Typical) to the first Access   DD   Unit   Min.   Max.   Min.   Max.   t V 1 1 ms   POWER   Clock   t t t Clock Cycle Time   Clock HIGH   7.5   2.1   2.1   10   2.5   2.5   ns   ns   ns   CYC   CH   Clock LOW   CL   Output Times   t t t t t t t Data Output Valid After CLK Rise   Data Output Hold After CLK Rise   6.5   8.5   ns   ns   ns   ns   ns   ns   ns   CDV   DOH   CLZ   2.0   2.0   0 2.0   2.0   0 Clock to Low-Z   Clock to High-Z   4.0   3.2   5.0   3.8   CHZ   OEV   OELZ   OEHZ   OE LOW to Output Valid   OE LOW to Output Low-Z   OE HIGH to Output High-Z   0 0 4.0   5.0   Setup Times   t t t t t t Address Setup Before CLK Rise   ADSP, ADSC Setup Before CLK Rise   ADV Setup Before CLK Rise   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   ns   ns   ns   ns   ns   ns   AS   ADS   ADVS   WES   DS   GW, BWE, BW   Setup Before CLK Rise   [A:D]   Data Input Setup Before CLK Rise   Chip Enable Setup   CES   Hold Times   t t t t t t Address Hold After CLK Rise   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   ns   ns   ns   ns   ns   ns   AH   ADSP, ADSC Hold After CLK Rise   ADH   WEH   ADVH   DH   GW, BWE, BW   Hold After CLK Rise   [A:D]   ADV Hold After CLK Rise   Data Input Hold After CLK Rise   Chip Enable Hold After CLK Rise   CEH   Notes   19. Timing reference level is 1.25V.   20. Test conditions shown in (a) of AC Test Loads unless otherwise noted.   21. This part has a voltage regulator internally; t   can be initiated.   is the time that the power needs to be supplied above V (minimum) initially, before a read or write operation   DD   POWER   22. t   , t   ,t   , and t   are specified with AC test conditions shown in part (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.   OEHZ   CHZ CLZ OELZ   23. At any given voltage and temperature, t   is less than t   and t   is less than t   to eliminate bus contention between SRAMs when sharing the same   OEHZ   OELZ   CHZ   CLZ   data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed   to achieve High-Z prior to Low-Z under the same system conditions.   24. This parameter is sampled and not 100% tested.   Document #: 38-05547 Rev. *E   Page 19 of 28   CY7C1381DV25, CY7C1381FV25   CY7C1383DV25, CY7C1383FV25   Timing Diagrams   Read Cycle Timing   t CYC   CLK   t t CL   CH   t t ADH   ADS   ADSP   ADSC   t t ADH   ADS   t t AH   AS   A1   A2   ADDRESS   t t WES   WEH   GW, BWE,BW   X Deselect Cycle   t t CES   CEH   CE   t t ADVH   ADVS   ADV   OE   ADV suspends burst   t t t CDV   OEV   OELZ   t t OEHZ   CHZ   t DOH   t CLZ   Q(A2)   Q(A2 + 1)   Q(A2 + 2)   Q(A2 + 3)   Q(A2)   Q(A2 + 1)   Q(A2 + 2)   Q(A1)   Data Out (Q)   High-Z   t CDV   Burst wraps around   to its initial state   Single READ   BURST   READ   DON’T CARE   UNDEFINED   Note   25. On this diagram, when CE is LOW: CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH: CE is HIGH or CE is LOW or CE is HIGH.   1 2 3 1 2 3 Document #: 38-05547 Rev. *E   Page 20 of 28   CY7C1381DV25, CY7C1381FV25   CY7C1383DV25, CY7C1383FV25   Timing Diagrams (continued)   Write Cycle Timing   t CYC   CLK   t t CL   CH   t t ADH   ADS   ADSP   ADSC extends burst   t t ADH   ADS   t t ADH   ADS   ADSC   t t AH   AS   A1   A2   A3   ADDRESS   Byte write signals are ignored for first cycle when   ADSP initiates burst   t t WEH   WES   BWE,   BW   X t t WEH   WES   GW   t t CEH   CES   CE   t t ADVH   ADVS   ADV   ADV suspends burst   OE   t t DH   DS   Data in (D)   High-Z   D(A2)   D(A2 + 1)   D(A2 + 1)   D(A2 + 2)   D(A2 + 3)   D(A3)   D(A3 + 1)   D(A3 + 2)   D(A1)   t OEHZ   Data Out (Q)   BURST READ   BURST WRITE   Extended BURST WRITE   Single WRITE   DON’T CARE   UNDEFINED   Note   26.   Full width write can be initiated by either GW LOW, or by GW HIGH, BWE LOW and BW LOW.   X Document #: 38-05547 Rev. *E   Page 21 of 28   CY7C1381DV25, CY7C1381FV25   CY7C1383DV25, CY7C1383FV25   Timing Diagrams (continued)   Read/Write Cycle Timing   t CYC   CLK   t t CL   CH   t t ADH   ADS   ADSP   ADSC   t t AH   AS   A1   A2   A3   A4   A5   A6   ADDRESS   t t WEH   WES   BWE, BW   X t t CEH   CES   CE   ADV   OE   t t DH   DS   t OELZ   t High-Z   D(A3)   D(A5)   D(A6)   Data In (D)   t OEHZ   CDV   Data Out (Q)   Q(A1)   Q(A2)   Q(A4)   Q(A4+1)   Q(A4+2)   Q(A4+3)   Back-to-Back   WRITEs   Back-to-Back READs   Single WRITE   BURST READ   DON’T CARE   UNDEFINED   Notes   27. The data bus (Q) remains in high-Z following a write cycle, unless a new read access is initiated by ADSP or ADSC.   28. GW is HIGH.   Document #: 38-05547 Rev. *E   Page 22 of 28   CY7C1381DV25, CY7C1381FV25   CY7C1383DV25, CY7C1383FV25   Timing Diagrams (continued)   ZZ Mode Timing   CLK   ZZ   t t ZZ   ZZREC   t ZZI   I SUPPLY   I DDZZ   t RZZI   ALL INPUTS   (except ZZ)   DESELECT or READ Only   Outputs (Q)   High-Z   DON’T CARE   Notes   29. Device must be deselected when entering ZZ sleep mode. See Cycle Descriptions table for all possible signal conditions to deselect the device.   30. DQs are in high-Z when exiting ZZ sleep mode.   Document #: 38-05547 Rev. *E   Page 23 of 28   CY7C1381DV25, CY7C1381FV25   CY7C1383DV25, CY7C1383FV25   Ordering Information   Not all of the speed, package, and temperature ranges are available. Please contact your local sales representative or visit   www.cypress.com for actual products offered.   Speed   (MHz)   Package   Diagram   Operating   Range   Part and Package Type   Ordering Code   133 CY7C1381DV25-133AXC 51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free   CY7C1383DV25-133AXC   Commercial   CY7C1381FV25-133BGC 51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm)   CY7C1383FV25-133BGC   CY7C1381FV25-133BGXC 51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Pb-Free   CY7C1383FV25-133BGXC   CY7C1381DV25-133BZC 51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)   CY7C1383DV25-133BZC   CY7C1381DV25-133BZXC 51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm) Pb-Free   CY7C1383DV25-133BZXC   CY7C1381DV25-133AXI   CY7C1383DV25-133AXI   CY7C1381FV25-133BGI   CY7C1383FV25-133BGI   51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free   lndustrial   51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm)   CY7C1381FV25-133BGXI 51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Pb-Free   CY7C1383FV25-133BGXI   CY7C1381DV25-133BZI   CY7C1383DV25-133BZI   51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)   CY7C1381DV25-133BZXI 51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm) Pb-Free   CY7C1383DV25-133BZXI   100 CY7C1381DV25-100AXC 51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free   CY7C1383DV25-100AXC   Commercial   CY7C1381FV25-100BGC 51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm)   CY7C1383FV25-100BGC   CY7C1381FV25-100BGXC 51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Pb-Free   CY7C1383FV25-100BGXC   CY7C1381DV25-100BZC 51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)   CY7C1383DV25-100BZC   CY7C1381DV25-100BZXC 51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm) Pb-Free   CY7C1383DV25-100BZXC   CY7C1381DV25-100AXI   CY7C1383DV25-100AXI   CY7C1381FV25-100BGI   CY7C1383FV25-100BGI   51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free   lndustrial   51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm)   CY7C1381FV25-100BGXI 51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Pb-Free   CY7C1383FV25-100BGXI   CY7C1381DV25-100BZI   CY7C1383DV25-100BZI   51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)   CY7C1381DV25-100BZXI 51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm) Pb-Free   CY7C1383DV25-100BZXI   Document #: 38-05547 Rev. *E   Page 24 of 28   CY7C1381DV25, CY7C1381FV25   CY7C1383DV25, CY7C1383FV25   Package Diagrams   Figure 1. 100-Pin Thin Plastic Quad Flat pack (14 x 20 x 1.4 mm) (51-85050)   16.00 0.20   14.00 0.10   1.40 0.05   100   81   80   1 0.30 0.08   0.65   TYP.   12° 1°   (8X)   SEE DETAIL   A 30   51   31   50   0.20 MAX.   1.60 MAX.   R 0.08 MIN.   0.20 MAX.   0° MIN.   SEATING PLANE   STAND-OFF   0.05 MIN.   0.15 MAX.   NOTE:   1. JEDEC STD REF MS-026   0.25   GAUGE PLANE   2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH   MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE   R 0.08 MIN.   0.20 MAX.   BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH   3. DIMENSIONS IN MILLIMETERS   0°-7°   0.60 0.15   0.20 MIN.   51-85050-*B   1.00 REF.   DETAIL   A Document #: 38-05547 Rev. *E   Page 25 of 28   CY7C1381DV25, CY7C1381FV25   CY7C1383DV25, CY7C1383FV25   Package Diagrams (continued)   Figure 2. 119-Ball BGA (14 x 22 x 2.4 mm) (51-85115)   51-85115-*B   Document #: 38-05547 Rev. *E   Page 26 of 28   CY7C1381DV25, CY7C1381FV25   CY7C1383DV25, CY7C1383FV25   Package Diagrams (continued)   Figure 3. 165-Ball FBGA (13 x 15 x 1.4 mm) (51-85180)   BOTTOM VIEW   PIN 1 CORNER   TOP VIEW   Ø0.05 M C   PIN 1 CORNER   Ø0.25 M C A B   -0.06   Ø0.50 (165X)   +0.14   1 2 3 4 5 6 7 8 9 10   11   11 10   9 8 7 6 5 4 3 2 1 A A B B C D C D E E F F G G H J H J K K L L M M N P R N P R A A 1.00   5.00   10.00   13.00 0.10   B B 13.00 0.10   0.15(4X)   NOTES :   SOLDER PAD TYPE : NON-SOLDER MASK DEFINED (NSMD)   PACKAGE WEIGHT : 0.475g   JEDECREFERENCE: MO-216 / DESIGN 4.6C   PACKAGE CODE : BB0AC   SEATING PLANE   C 51-85180-*A   Intel and Pentium are registered trademarks, and i486 is a trademark of Intel Corporation. All product and company names   mentioned in this document are the trademarks of their respective holders.   Document #: 38-05547 Rev. *E   Page 27 of 28   © Cypress Semiconductor Corporation, 2006-2007. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for   the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended   to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize   its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress   products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.   CY7C1381DV25, CY7C1381FV25   CY7C1383DV25, CY7C1383FV25   Document History Page   Document Title: CY7C1381DV25/CY7C1383DV25/CY7C1381FV25/CY7C1383FV25, 18-Mbit (512K x 36/1M x 18)   Flow-Through SRAM   Document Number: 38-05547   Orig. of   Change   REV.   ECN NO. Issue Date   Description of Change   **   254518   288531   See ECN   See ECN   RKF   New data sheet   *A   SYT   Edited description under “IEEE 1149.1 Serial Boundary Scan (JTAG)” for   non-compliance with 1149.1   Removed 117Mhz Speed Bin   Added Pb-free information for 100-Pin TQFP, 119 BGA and 165 FBGA   Packages   Added comment of ‘Pb-free BG packages availability’ below the Ordering   Information   *B   326078   See ECN   PCI   Address expansion pins/balls in the pinouts for all packages are modified as   per JEDEC standard   Added description on EXTEST Output Bus Tri-State   Changed description on the Tap Instruction Set Overview and Extest   Changed Device Width (23:18) for 119-BGA from 000001 to 101001   Added separate row for 165 -FBGA Device Width (23:18)   Changed Θ and Θ for TQFP Package from 31 and 6 °C/W to 28.66 and   JA   JC   4.08 °C/W respectively   Changed Θ and Θ or BGA Package from 45 and 7 °C/W to 23.8 and 6.2   JA   Jc   °C/W respectively   Changed Θ and Θ for FBGA Package from 46 and 3 °C/W to 20.7 and   JA   Jc   4.0 °C/W respectively   Modified V test conditions   V OL, OH   Removed comment of ‘Pb-free BG packages availability’ below the Ordering   Information   Updated Ordering Information Table   *C   416321   See ECN   NXR   Changed address of Cypress Semiconductor Corporation on Page# 1 from   “3901 North First Street” to “198 Champion Court”   Changed the description of I from Input Load Current to Input Leakage   X Current on page# 17   Changed the I current values of MODE on page # 18 from –5 µA and 30 µA   X to –30 µA and 5 µA   Changed the I current values of ZZ on page # 18 from –30 µA and 5 µA   X to –5 µA and 30 µA   Changed V < V to V < V on page # 18   IH   DD   IH   DD   Replaced Package Name column with Package Diagram in the Ordering   Information table   *D   *E   475009   793579   See ECN   See ECN   VKN   VKN   Converted from Preliminary to Final.   Added the Maximum Rating for Supply Voltage on V   Relative to GND   from 5 ns to 10 ns in TAP   DDQ   Changed t , t from 25 ns to 20 ns and t   TH TL   TDOV   AC Switching Characteristics table.   Updated the Ordering Information table.   Added Part numbers CY7C1381FV25 and CY7C1383FV25   Added footnote# 3 regarding Chip Enable   Updated Ordering Information table   Document #: 38-05547 Rev. *E   Page 28 of 28   |