CY7C1361C
CY7C1363C
9-Mbit (256K x 36/512K x 18) Flow-Through SRAM
Features
Functional Description[1]
• Supports 100, 133-MHz bus operations
• Supports 100-MHz bus operations (Automotive)
• 256K × 36/512K × 18 common I/O
The CY7C1361C/CY7C1363C is a 3.3V, 256K x 36/512K x 18
Synchronous Flow-through SRAMs, respectively designed to
interface with high-speed microprocessors with minimum glue
logic. Maximum access delay from clock rise is 6.5 ns
(133-MHz version). A 2-bit on-chip counter captures the first
address in a burst and increments the address automatically
for the rest of the burst access. All synchronous inputs are
gated by registers controlled by a positive-edge-triggered
Clock Input (CLK). The synchronous inputs include all
• 3.3V –5% and +10% core power supply (V
)
DD
• 2.5V or 3.3V I/O power supply (V
• Fast clock-to-output times
— 6.5 ns (133-MHz version)
)
DDQ
addresses, all data inputs, address-pipelining Chip Enable
[2]
• Provide high-performance 2-1-1-1 access rate
(CE ), depth-expansion Chip Enables (CE and CE ), Burst
1
2
3
®
Control inputs (ADSC, ADSP, and ADV), Write Enables (BW ,
• User-selectable burst counter supporting Intel
x
®
and BWE), and Global Write (GW). Asynchronous inputs
include the Output Enable (OE) and the ZZ pin.
Pentium interleaved or linear burst sequences
• Separate processor and controller address strobes
• Synchronous self-timed write
The CY7C1361C/CY7C1363C allows either interleaved or
linear burst sequences, selected by the MODE input pin. A
HIGH selects an interleaved burst sequence, while a LOW
selects a linear burst sequence. Burst accesses can be
initiated with the Processor Address Strobe (ADSP) or the
cache Controller Address Strobe (ADSC) inputs. Address
advancement is controlled by the Address Advancement
(ADV) input.
• Asynchronous output enable
• Available in lead-free 100-Pin TQFP package, lead-free
and non lead-free 119-Ball BGA package and 165-Ball
FBGA package
• TQFP Available with 3-Chip Enable and 2-Chip Enable
• IEEE 1149.1 JTAG-Compatible Boundary Scan
•“ZZ” Sleep Mode option
Addresses and chip enables are registered at rising edge of
clock when either Address Strobe Processor (ADSP) or
Address Strobe Controller (ADSC) are active. Subsequent
burst addresses can be internally generated as controlled by
the Advance pin (ADV).
The CY7C1361C/CY7C1363C operates from a +3.3V core
power supply while all outputs may operate with either a +2.5
or +3.3V supply. All inputs and outputs are JEDEC-standard
JESD8-5-compatible.
Selection Guide
133 MHz
6.5
100 MHz
8.5
Unit
ns
Maximum Access Time
Maximum Operating Current
250
180
mA
mA
mA
Maximum CMOS Standby Current
Comm/Ind’l
Automotive
40
40
60
Notes:
1. For best-practices recommendations, please refer to the Cypress application note System Design Guidelines on www.cypress.com.
2. CE is for A version of TQFP (3 Chip Enable Option) and 165 FBGA package only. 119 BGA is offered only in 2 Chip Enable.
3
Cypress Semiconductor Corporation
Document #: 38-05541 Rev. *F
•
198 Champion Court
•
San Jose, CA 95134-1709
•
408-943-2600
Revised September 14, 2006
CY7C1361C
CY7C1363C
Pin Configurations
100-Pin TQFP Pinout (3 Chip Enables) (A version)
DQPC
1
DQPB
DQB
DQB
VDDQ
VSSQ
DQB
DQB
DQB
DQB
VSSQ
VDDQ
DQB
DQB
VSS
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
NC
NC
NC
VDDQ
VSSQ
NC
A
NC
NC
VDDQ
VSSQ
NC
DQPA
DQA
DQA
VSSQ
VDDQ
DQA
DQA
VSS
NC
1
2
3
4
5
6
7
8
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
DQC
2
DQC
VDDQ
VSSQ
DQC
3
4
5
6
DQC
7
NC
DQC
8
DQB
DQB
VSSQ
VDDQ
DQB
DQB
VSS/DNU
VDD
DQC
9
10
11
9
VSSQ
VDDQ
DQC
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
12
DQC
13
VSS/DNU
14
VDD
15
NC
VDD
ZZ
CY7C1363C
(512K x 18)
CY7C1361C
(256K x 36)
NC
16
NC
VSS
VDD
ZZ
VSS
17
DQD
18
DQA
DQA
VDDQ
VSSQ
DQA
DQA
DQA
DQA
VSSQ
VDDQ
DQA
DQA
DQPA
DQB
DQB
VDDQ
VSSQ
DQB
DQB
DQPB
NC
VSSQ
VDDQ
NC
NC
NC
DQA
DQA
VDDQ
VSSQ
DQA
DQA
NC
DQD
19
20
21
VDDQ
VSSQ
DQD
22
DQD
23
DQD
24
DQD
25
26
27
NC
VSSQ
VDDQ
DQD
DQD
29
VSSQ
VDDQ
NC
NC
NC
28
DQPD
30
Document #: 38-05541 Rev. *F
Page 3 of 31
CY7C1361C
CY7C1363C
Pin Configurations (continued)
100-Pin TQFP Pinout (2 Chip Enables) (AJ Version)
DQPC
DQC
DQC
VDDQ
VSSQ
DQC
DQC
DQC
DQC
VSSQ
VDDQ
DQC
DQC
VSS/DNU
DQPB
DQB
DQB
VDDQ
VSSQ
DQB
DQB
DQB
DQB
VSSQ
VDDQ
DQB
DQB
VSS
1
2
3
4
5
6
7
8
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
NC
NC
NC
VDDQ
VSSQ
NC
A
NC
NC
VDDQ
VSSQ
NC
DQPA
DQA
DQA
VSSQ
VDDQ
DQA
DQA
VSS
NC
1
2
3
4
5
6
7
8
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
NC
DQB
DQB
VSSQ
VDDQ
DQB
DQB
VSS/DNU
VDD
9
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
VDD
NC
VSS
DQD
NC
VDD
ZZ
CY7C1363C
(512K x 18)
CY7C1361C
(256K x 36)
NC
VSS
VDD
ZZ
DQA
DQA
VDDQ
VSSQ
DQA
DQA
DQA
DQA
VSSQ
VDDQ
DQA
DQA
DQPA
DQB
DQB
VDDQ
VSSQ
DQB
DQB
DQPB
NC
VSSQ
VDDQ
NC
NC
NC
DQA
DQA
VDDQ
VSSQ
DQA
DQA
NC
DQD
VDDQ
VSSQ
DQD
DQD
DQD
DQD
NC
VSSQ
VDDQ
DQD
DQD
DQPD
VSSQ
VDDQ
NC
NC
NC
Document #: 38-05541 Rev. *F
Page 4 of 31
CY7C1361C
CY7C1363C
Pin Configurations (continued)
119-Ball BGA Pinout (2 Chip Enables with JTAG)
CY7C1361C (256K x 36)
1
2
3
4
5
6
7
A
V
A
A
A
A
V
DDQ
ADSP
ADSC
DDQ
B
C
NC/288M
NC/144M
CE
A
A
A
A
A
A
A
NC/512M
NC/1G
2
V
DD
D
E
F
DQ
DQ
DQP
DQ
V
NC
CE
V
DQP
DQ
DQ
DQ
C
C
SS
SS
SS
SS
SS
SS
B
B
V
V
V
V
C
C
B
B
1
V
DQ
DQ
V
DDQ
OE
ADV
GW
DDQ
C
B
G
H
J
DQ
DQ
DQ
DQ
DQ
DQ
BW
V
BW
V
C
C
C
B
B
B
C
B
DQ
DQ
C
SS
SS
B
V
V
NC
V
NC
V
V
DDQ
DDQ
DD
DD
DD
K
DQ
DQ
DQ
DQ
DQ
V
CLK
NC
V
DQ
DQ
DQ
DQ
DQ
D
D
D
SS
SS
A
A
A
L
M
N
DQ
DQ
BW
V
BW
A
D
D
D
A
A
A
D
V
V
V
V
DDQ
BWE
A1
DDQ
SS
SS
SS
DQ
V
V
DQ
D
SS
A
DQ
DQP
A
A0
V
DQP
A
DQ
P
R
D
D
SS
SS
A
NC
NC
MODE
V
NC
A
NC
DD
T
NC/72M
TMS
A
A
A
NC/36M
NC
ZZ
V
TDI
TCK
TDO
V
DDQ
U
DDQ
CY7C1363C (512K x 18)
2
A
1
3
A
A
A
4
5
A
A
A
6
7
V
A
V
DDQ
A
B
C
D
E
F
ADSP
ADSC
DDQ
NC/288M
CE
A
NC/512M
A
A
2
NC/144M
V
NC/1G
NC
DD
DQ
NC
DQ
V
NC
CE
V
DQP
B
SS
SS
SS
SS
SS
SS
SS
SS
A
NC
V
V
V
V
V
V
NC
DQ
B
A
1
V
NC
DQ
DQ
V
OE
ADV
GW
DDQ
A
DDQ
NC
NC
DQ
G
H
J
BW
V
B
A
B
DQ
NC
DQ
NC
B
SS
A
V
V
NC
V
V
V
NC
DDQ
DD
DD
DD
DDQ
K
NC
DQ
V
CLK
NC
V
NC
DQ
A
B
SS
SS
L
M
N
P
DQ
NC
DQ
V
V
V
V
DQ
NC
BW
B
SS
SS
SS
SS
A
A
V
V
V
V
NC
V
DDQ
BWE
A1
DDQ
B
SS
SS
SS
DQ
NC
DQ
NC
B
A
NC
DQP
A0
NC
DQ
B
A
R
T
NC
A
A
MODE
A
V
NC
A
A
A
NC
ZZ
DD
NC/72M
NC/36M
TCK
V
TMS
TDI
TDO
NC
V
DDQ
U
DDQ
Document #: 38-05541 Rev. *F
Page 5 of 31
CY7C1361C
CY7C1363C
Pin Configurations (continued)
165-Ball FBGA Pinout (3 Chip Enable)
CY7C1361C (256K x 36)
1
2
A
3
CE1
4
BWC
5
BWB
6
CE
7
8
9
ADV
10
A
11
NC
NC/288M
NC/144M
DQPC
BWE
GW
VSS
VSS
ADSC
A
B
C
D
3
A
CE2
VDDQ
VDDQ
BWD
VSS
BWA
VSS
VSS
CLK
VSS
VSS
OE
VSS
VDD
ADSP
VDDQ
VDDQ
A
NC/576M
DQPB
DQB
NC
DQC
NC/1G
DQB
DQC
VDD
DQC
DQC
DQC
DQC
VSS
VDDQ
VDDQ
VDDQ
NC
VDD
VDD
VDD
VDD
VDD
VDD
VDD
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VDD
VDD
VDD
VDD
VDD
VDD
VDD
VDDQ
VDDQ
VDDQ
NC
DQB
DQB
DQB
NC
DQB
E
F
DQC
DQC
NC
VSS
VSS
VSS
VSS
VSS
VSS
DQB
DQB
ZZ
G
H
J
DQD
DQD
DQD
DQD
DQD
DQD
VDDQ
VDDQ
VDDQ
VDDQ
VDDQ
VDDQ
DQA
DQA
DQA
DQA
DQA
DQA
K
L
DQD
DQPD
NC
DQD
NC
VDDQ
VDDQ
A
VDD
VSS
A
VSS
NC
VSS
VSS
NC
VDD
VSS
A
VDDQ
VDDQ
A
DQA
NC
A
DQA
DQPA
A
M
N
P
NC/18M
A1
NC/72M
TDI
TDO
A0
MODE
NC/36M
A
A
TMS
TCK
A
A
A
A
R
CY7C1363C (512K x 18)
1
2
A
3
CE1
4
BWB
5
NC
6
CE
7
8
9
ADV
10
A
11
A
NC/288M
NC/144M
NC
BWE
GW
VSS
VSS
VSS
ADSC
A
3
A
CE2
VDDQ
VDDQ
NC
VSS
VDD
BWA
VSS
VSS
CLK
VSS
VSS
OE
VSS
VDD
ADSP
VDDQ
VDDQ
A
NC/576M
DQPA
DQA
B
C
D
NC
NC/1G
NC
NC
DQB
NC
DQB
DQB
DQB
VSS
NC
VDDQ
VDDQ
VDDQ
NC
VDD
VDD
VDD
VDD
VDD
VDD
VDD
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VDD
VDD
VDD
VDD
VDD
VDD
VDD
VDDQ
VDDQ
VDDQ
NC
NC
NC
DQA
E
F
NC
NC
VSS
VSS
VSS
VSS
VSS
VSS
DQA
DQA
ZZ
NC
G
H
J
VSS
DQB
DQB
DQB
NC
VDDQ
VDDQ
VDDQ
VDDQ
VDDQ
VDDQ
DQA
DQA
DQA
NC
NC
NC
K
L
NC
NC
DQB
DQPB
NC
NC
NC
VDDQ
VDDQ
A
VDD
VSS
A
VSS
NC
VSS
NC/18M
A1
VSS
NC
VDD
VSS
A
VDDQ
VDDQ
A
DQA
NC
A
NC
NC
A
M
N
P
NC/72M
TDI
TDO
MODE
NC/36M
A
A
TMS
A0
TCK
A
A
A
A
R
Document #: 38-05541 Rev. *F
Page 6 of 31
CY7C1361C
CY7C1363C
Pin Definitions
Name
I/O
Description
Address Inputs used to select one of the address locations. Sampled at the rising
A , A , A
Input-
0
1
[2]
Synchronous edge of the CLK if ADSP or ADSC is active LOW, and CE , CE , and CE
are sampled
1
2
3
active. A
feed the 2-bit counter.
[1:0]
BW ,BW
Input-
Byte Write Select Inputs, active LOW. Qualified with BWE to conduct byte writes to the
A
B
BW ,BW
Synchronous SRAM. Sampled on the rising edge of CLK.
C
D
GW
Input- Global Write Enable Input, active LOW. When asserted LOW on the rising edge of CLK, a
Synchronous global write is conducted (ALL bytes are written, regardless of the values on BW and BWE).
X
CLK
Input-
Clock
Clock Input. Used to capture all synchronous inputs to the device. Also used to increment
the burst counter when ADV is asserted LOW, during a burst operation.
CE
CE
CE
Input-
Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK. Used in
1
2
3
[2]
Synchronous conjunction with CE and CE
to select/deselect the device. ADSP is ignored if CE is
2
3
1
HIGH. CE is sampled only when a new external address is loaded.
1
Input-
Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK. Used in
[2]
Synchronous conjunction with CE and CE
to select/deselect the device. CE is sampled only when
1
3
2
a new external address is loaded.
Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used in
Synchronous conjunction with CE and CE to select/deselect the device.CE is sampled only when a
[2]
Input-
1
2
3
new external address is loaded.
OE
Input-
Output Enable, asynchronous input, active LOW. Controls the direction of the I/O pins.
Asynchronous When LOW, the I/O pins behave as outputs. When deasserted HIGH, I/O pins are
tri-stated, and act as input data pins. OE is masked during the first clock of a read cycle
when emerging from a deselected state.
ADV
Input-
Advance Input signal, sampled on the rising edge of CLK. When asserted, it automat-
Synchronous ically increments the address in a burst cycle.
ADSP
Input-
Address Strobe from Processor, sampled on the rising edge of CLK, active LOW.
Synchronous When asserted LOW, addresses presented to the device are captured in the address
registers. A
are also loaded into the burst counter. When ADSP and ADSC are both
[1:0]
asserted, only ADSP is recognized. ASDP is ignored when
is deasserted HIGH.
CE
1
ADSC
Input-
Synchronous When asserted LOW, addresses presented to the device are captured in the address
registers. A are also loaded into the burst counter. When ADSP and ADSC are both
Address Strobe from Controller, sampled on the rising edge of CLK, active LOW.
[1:0]
asserted, only ADSP is recognized.
BWE
ZZ
Input-
Byte Write Enable Input, active LOW. Sampled on the rising edge of CLK. This signal
Synchronous must be asserted LOW to conduct a byte write.
Input-
ZZ “sleep” Input, active HIGH. When asserted HIGH places the device in a
Asynchronous non-time-critical “sleep” condition with data integrity preserved. For normal operation,
this pin has to be LOW or left floating. ZZ pin has an internal pull-down.
I/O-
Bidirectional Data I/O lines. As inputs, they feed into an on-chip data register that is
DQ
s
Synchronous triggered by the rising edge of CLK. As outputs, they deliver the data contained in the
memory location specified by the addresses presented during the previous clock rise of
the read cycle. The direction of the pins is controlled by OE. When OE is asserted LOW,
the pins behave as outputs. When HIGH, DQ and DQP are placed in a tri-state
s
X
condition.The outputs are automatically tri-stated during the data portion of a write
sequence, during the first clock when emerging from a deselected state, and when the
device is deselected, regardless of the state of OE.
I/O-
Bidirectional Data Parity I/O Lines. Functionally, these signals are identical to DQ .
DQP
s
X
Synchronous During write sequences, DQP is controlled by BW correspondingly.
X
X
MODE
Input-
Static
Selects Burst Order. When tied to GND selects linear burst sequence. When tied to V
DD
or left floating selects interleaved burst sequence. This is a strap pin and should remain
static during device operation. Mode Pin has an internal pull-up.
V
V
Power Supply Power supply inputs to the core of the device.
DD
I/O Power Supply Power supply for the I/O circuitry.
DDQ
Document #: 38-05541 Rev. *F
Page 7 of 31
CY7C1361C
CY7C1363C
Pin Definitions (continued)
Name
I/O
Description
V
V
Ground
Ground for the core of the device.
SS
I/O Ground
Ground for the I/O circuitry.
SSQ
TDO
JTAG serial output Serial data-out to the JTAG circuit. Delivers data on the negative edge of TCK. If the
Synchronous JTAG feature is not being utilized, this pin should be left unconnected. This pin is not
available on TQFP packages.
TDI
JTAG serial input Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG
Synchronous feature is not being utilized, this pin can be left floating or connected to V through a pull
DD
up resistor. This pin is not available on TQFP packages.
TMS
JTAG serial input Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG
Synchronous feature is not being utilized, this pin can be disconnected or connected to V . This pin
DD
is not available on TQFP packages.
TCK
NC
JTAG-
Clock
Clock input to the JTAG circuitry. If the JTAG feature is not being utilized, this pin must
be connected to V . This pin is not available on TQFP packages.
SS
–
No Connects. Not internally connected to the die. 18M, 36M, 72M, 144M, 288M, 576M
and 1G are address expansion pins and are not internally connected to the die.
V
/DNU
Ground/DNU
This pin can be connected to Ground or should be left floating.
SS
Document #: 38-05541 Rev. *F
Page 8 of 31
CY7C1361C
CY7C1363C
active, (2) ADSC is asserted LOW, (3) ADSP is deasserted
Functional Overview
HIGH, and (4) the write input signals (GW, BWE, and BW )
X
All synchronous inputs pass through input registers controlled
by the rising edge of the clock. Maximum access delay from
indicate a write access. ADSC is ignored if ADSP is active
LOW.
the clock rise (t
) is 6.5 ns (133-MHz device).
CDV
The addresses presented are loaded into the address register
and the burst counter/control logic and delivered to the
The CY7C1361C/CY7C1363C supports secondary cache in
systems utilizing either a linear or interleaved burst sequence.
The interleaved burst order supports Pentium and i486™
processors. The linear burst sequence is suited for processors
that utilize a linear burst sequence. The burst order is
user-selectable, and is determined by sampling the MODE
input. Accesses can be initiated with either the Processor
Address Strobe (ADSP) or the Controller Address Strobe
(ADSC). Address advancement through the burst sequence is
controlled by the ADV input. A two-bit on-chip wraparound
burst counter captures the first address in a burst sequence
and automatically increments the address for the rest of the
burst access.
memory core. The information presented to DQ
will be
[A:D]
written into the specified address location. Byte writes are
allowed. All I/Os are tri-stated when a write is detected, even
a byte write. Since this is a common I/O device, the
asynchronous OE input signal must be deasserted and the
I/Os must be tri-stated prior to the presentation of data to DQ .
s
As a safety precaution, the data lines are tri-stated once a write
cycle is detected, regardless of the state of OE.
Burst Sequences
The CY7C1361C/CY7C1363C provides an on-chip two-bit
wraparound burst counter inside the SRAM. The burst counter
Byte write operations are qualified with the Byte Write Enable
(BWE) and Byte Write Select (BW ) inputs. A Global Write
is fed by A
, and can follow either a linear or interleaved
[1:0]
X
burst order. The burst order is determined by the state of the
MODE input. A LOW on MODE will select a linear burst
sequence. A HIGH on MODE will select an interleaved burst
order. Leaving MODE unconnected will cause the device to
default to a interleaved burst sequence.
Enable (GW) overrides all byte write inputs and writes data to
all four bytes. All writes are simplified with on-chip
synchronous self-timed write circuitry.
[2]
Three synchronous Chip Selects (CE , CE , CE ) and an
1
2
3
asynchronous Output Enable (OE) provide for easy bank
Interleaved Burst Address Table
selection and output tri-state control. ADSP is ignored if CE
1
is HIGH.
(MODE = Floating or VDD
)
First
Second
Address
A1: A0
Third
Address
A1: A0
Fourth
Address
A1: A0
Single Read Accesses
Address
A1: A0
A single read access is initiated when the following conditions
are satisfied at clock rise: (1) CE , CE , and CE
[2]
are all
1
2
3
00
01
10
11
01
00
11
10
10
11
00
01
11
10
01
00
asserted active, and (2) ADSP or ADSC is asserted LOW (if
the access is initiated by ADSC, the write inputs must be
deasserted during this first cycle). The address presented to
the address inputs is latched into the address register and the
burst counter/control logic and presented to the memory core.
If the OE input is asserted LOW, the requested data will be
Linear Burst Address Table (MODE = GND)
available at the data outputs a maximum to t
rise. ADSP is ignored if CE is HIGH.
after clock
CDV
First
Address
A1: A0
Second
Address
A1: A0
Third
Address
A1: A0
Fourth
Address
A1: A0
1
Single Write Accesses Initiated by ADSP
00
01
10
11
01
10
11
00
10
11
00
01
11
00
01
10
This access is initiated when the following conditions are
[2]
satisfied at clock rise: (1) CE , CE , CE
are all asserted
1
2
3
active, and (2) ADSP is asserted LOW. The addresses
presented are loaded into the address register and the burst
inputs (GW, BWE, and BW )are ignored during this first clock
X
cycle. If the write inputs are asserted active (see Write Cycle
Descriptions table for appropriate states that indicate a write)
on the next clock rise, the appropriate data will be latched and
written into the device.Byte writes are allowed. All I/Os are
tri-stated during a byte write.Since this is a common I/O
device, the asynchronous OE input signal must be deasserted
and the I/Os must be tri-stated prior to the presentation of data
to DQs. As a safety precaution, the data lines are tri-stated
once a write cycle is detected, regardless of the state of OE.
Sleep Mode
The ZZ input pin is an asynchronous input. Asserting ZZ
places the SRAM in a power conservation “sleep” mode. Two
clock cycles are required to enter into or exit from this “sleep”
mode. While in this mode, data integrity is guaranteed.
Accesses pending when entering the “sleep” mode are not
considered valid nor is the completion of the operation
guaranteed. The device must be deselected prior to entering
the “sleep” mode. CE , CE , CE , ADSP, and ADSC must
remain inactive for the duration of t
returns LOW.
[2]
1
2
3
Single Write Accesses Initiated by ADSC
after the ZZ input
ZZREC
This write access is initiated when the following conditions are
[2]
satisfied at clock rise: (1) CE , CE , and CE
are all asserted
1
2
3
Document #: 38-05541 Rev. *F
Page 9 of 31
CY7C1361C
CY7C1363C
ZZ Mode Electrical Characteristics
Parameter
Description
Test Conditions
ZZ > V – 0.2V
Min.
Max.
50
Unit
mA
mA
ns
I
Sleep mode standby current
Comm/ind’l
Automotive
DDZZ
DD
60
t
t
t
t
Device operation to ZZ
ZZ recovery time
ZZ > V – 0.2V
2t
ZZS
DD
CYC
CYC
ZZ < 0.2V
2t
ns
ZZREC
ZZI
CYC
ZZ active to sleep current
ZZ Inactive to exit sleep current
This parameter is sampled
This parameter is sampled
2t
ns
0
ns
RZZI
Truth Table [3, 4, 5, 6, 7]
Address
Used CE CE CE ZZ ADSP
Cycle Description
ADSC ADV WRITE OE CLK
DQ
1
2
3
Deselected Cycle, Power-down None
Deselected Cycle, Power-down None
Deselected Cycle, Power-down None
Deselected Cycle, Power-down None
Deselected Cycle, Power-down None
H
L
X
L
X
X
H
X
X
X
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
L
L
X
X
L
X
X
X
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
L
L-H
L-H
L-H
L-H
L-H
X
Tri-state
Tri-state
Tri-state
Tri-state
Tri-state
Tri-state
L
X
L
L
L
H
H
X
L
X
X
L
X
X
H
H
H
H
H
X
X
X
X
X
X
X
X
X
X
X
X
L
Sleep Mode, Power-down
Read Cycle, Begin Burst
Read Cycle, Begin Burst
Write Cycle, Begin Burst
Read Cycle, Begin Burst
Read Cycle, Begin Burst
Read Cycle, Continue Burst
Read Cycle, Continue Burst
Read Cycle, Continue Burst
Read Cycle, Continue Burst
Write Cycle, Continue Burst
Write Cycle, Continue Burst
Read Cycle, Suspend Burst
Read Cycle, Suspend Burst
Read Cycle, Suspend Burst
Read Cycle, Suspend Burst
Write Cycle, Suspend Burst
Write Cycle, Suspend Burst
None
External
External
External
External
External
Next
X
X
X
L
L-H
L-H
L-H
L-H
L-H
L-H
L-H
L-H
L-H
L-H
L-H
L-H
L-H
L-H
L-H
L-H
L-H
Q
Tri-state
L
L
L
H
X
L
D
Q
L
L
H
H
H
H
H
X
X
H
X
H
H
X
X
H
X
L
L
L
H
H
H
H
H
H
L
Tri-state
Q
L
L
L
H
L
X
X
H
H
X
H
X
X
H
H
X
H
X
X
X
X
X
X
X
X
X
X
X
X
H
H
H
H
H
H
H
H
H
H
H
H
Tri-state
Next
L
H
L
Next
L
Q
Next
L
H
X
X
L
Tri-state
Next
L
D
Next
L
L
D
Current
Current
Current
Current
Current
Current
H
H
H
H
H
H
H
H
H
H
L
Q
H
L
Tri-state
Q
H
X
X
Tri-state
D
D
L
Notes:
3. X=”Don't Care.” H = Logic HIGH, L = Logic LOW.
4. WRITE = L when any one or more Byte Write enable signals and BWE = L or GW = L. WRITE = H when all Byte write enable signals, BWE, GW = H.
5. The DQ pins are controlled by the current cycle and the OE signal. OE is asynchronous and is not sampled with the clock.
6. The SRAM always initiates a read cycle when ADSP is asserted, regardless of the state of GW, BWE, or BW . Writes may occur only on subsequent clocks after
X
the ADSP or with the assertion of ADSC. As a result, OE must be driven HIGH prior to the start of the write cycle to allow the outputs to tri-state. OE is a don't
care for the remainder of the write cycle.
7. OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle all data bits are tri-state when OE is
inactive or when the device is deselected, and all data bits behave as output when OE is active (LOW).
Document #: 38-05541 Rev. *F
Page 10 of 31
CY7C1361C
CY7C1363C
Partial Truth Table for Read/Write[3, 8]
Function (CY7C1361C)
GW
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
BWE
H
L
BW
X
H
H
H
H
H
H
H
H
L
BW
X
H
H
H
H
L
BW
X
H
H
L
BW
A
D
C
B
Read
Read
X
H
L
Write Byte (A, DQP )
L
A
Write Byte (B, DQP )
L
H
L
B
Write Bytes (B, A, DQP , DQP )
L
L
A
B
Write Byte (C, DQP )
L
H
H
L
H
L
C
Write Bytes (C, A, DQP , DQP )
L
L
C
A
Write Bytes (C, B, DQP , DQP )
L
L
H
L
C
B
Write Bytes (C, B, A, DQP , DQP , DQP )
L
L
L
C
B
A
Write Byte (D, DQP )
L
H
H
H
H
L
H
H
L
H
L
D
Write Bytes (D, A, DQP , DQP )
L
L
D
A
Write Bytes (D, B, DQP , DQP )
L
L
H
L
D
A
Write Bytes (D, B, A, DQP , DQP , DQP )
L
L
L
D
B
A
Write Bytes (D, B, DQP , DQP )
L
L
H
H
L
H
L
D
B
Write Bytes (D, B, A, DQP , DQP , DQP )
L
L
L
D
C
A
Write Bytes (D, C, A, DQP , DQP , DQP )
L
L
L
H
L
D
B
A
Write All Bytes
Write All Bytes
L
L
L
L
X
X
X
X
X
Truth Table for Read/Write[3, 8]
GW
H
BWE
BW
X
BW
A
Function (CY7C1363C)
B
Read
Read
H
L
L
L
L
X
X
H
L
H
H
H
L
Write Byte A – (DQ and DQP )
H
A
A
Write Byte B – (DQ and DQP )
H
H
L
B
B
Write All Bytes
Write All Bytes
H
L
L
X
X
Note:
8. Table only lists a partial listing of the byte write combinations. Any Combination of BW is valid Appropriate write will be done based on which byte write is active.
X
Document #: 38-05541 Rev. *F
Page 11 of 31
CY7C1361C
CY7C1363C
Test MODE SELECT (TMS)
IEEE 1149.1 Serial Boundary Scan (JTAG)
The TMS input is used to give commands to the TAP controller
and is sampled on the rising edge of TCK. It is allowable to
leave this ball unconnected if the TAP is not used. The ball is
pulled up internally, resulting in a logic HIGH level.
The CY7C1361C/CY7C1363C incorporates a serial boundary
scan test access port (TAP) in the BGA package only. The
TQFP package does not offer this functionality. This part
operates in accordance with IEEE Standard 1149.1-1900, but
doesn’t have the set of functions required for full 1149.1
compliance. These functions from the IEEE specification are
excluded because their inclusion places an added delay in the
critical speed path of the SRAM. Note the TAP controller
functions in a manner that does not conflict with the operation
of other devices using 1149.1 fully compliant TAPs. The TAP
operates using JEDEC-standard 3.3V or 2.5V I/O logic levels.
Test Data-In (TDI)
The TDI ball is used to serially input information into the
registers and can be connected to the input of any of the
registers. The register between TDI and TDO is chosen by the
instruction that is loaded into the TAP instruction register. TDI
is internally pulled up and can be unconnected if the TAP is
unused in an application. TDI is connected to the most signif-
icant bit (MSB) of any register. (See Tap Controller Block
Diagram.)
The CY7C1361C/CY7C1363C contains a TAP controller,
instruction register, boundary scan register, bypass register,
and ID register.
Test Data-Out (TDO)
Disabling the JTAG Feature
The TDO output ball is used to serially clock data-out from the
registers. The output is active depending upon the current
state of the TAP state machine. The output changes on the
falling edge of TCK. TDO is connected to the least significant
bit (LSB) of any register. (See Tap Controller State Diagram.)
It is possible to operate the SRAM without using the JTAG
feature. To disable the TAP controller, TCK must be tied LOW
(V ) to prevent clocking of the device. TDI and TMS are inter-
SS
nally pulled up and may be unconnected. They may alternately
be connected to V through a pull-up resistor. TDO should be
DD
left unconnected. Upon power-up, the device will come up in
a reset state which will not interfere with the operation of the
device.
TAP Controller Block Diagram
0
Bypass Register
TAP Controller State Diagram
2
1
0
0
0
TEST-LOGIC
1
Selection
Circuitry
RESET
0
Instruction Register
31 30 29
Identification Register
Selection
Circuitry
TDI
TDO
.
.
.
2
1
1
1
1
RUN-TEST/
IDLE
SELECT
DR-SCAN
SELECT
IR-SCAN
0
0
0
x
.
.
.
.
.
2
1
1
1
CAPTURE-DR
CAPTURE-IR
Boundary Scan Register
0
0
SHIFT-DR
0
SHIFT-IR
0
1
1
TCK
TMS
1
1
EXIT1-DR
EXIT1-IR
TAP CONTROLLER
0
0
PAUSE-DR
0
PAUSE-IR
0
1
1
Performing a TAP Reset
0
0
EXIT2-DR
1
EXIT2-IR
1
A RESET is performed by forcing TMS HIGH (V ) for five
DD
rising edges of TCK. This RESET does not affect the operation
of the SRAM and may be performed while the SRAM is
operating.
UPDATE-DR
UPDATE-IR
1
0
1
0
At power-up, the TAP is reset internally to ensure that TDO
comes up in a High-Z state.
TAP Registers
The 0/1 next to each state represents the value of TMS at the
rising edge of TCK.
Registers are connected between the TDI and TDO balls and
allow data to be scanned into and out of the SRAM test
circuitry. Only one register can be selected at a time through
the instruction register. Data is serially loaded into the TDI ball
on the rising edge of TCK. Data is output on the TDO ball on
the falling edge of TCK.
Test Access Port (TAP)
Test Clock (TCK)
The test clock is used only with the TAP controller. All inputs
are captured on the rising edge of TCK. All outputs are driven
from the falling edge of TCK.
Instruction Register
Three-bit instructions can be serially loaded into the instruction
register. This register is loaded when it is placed between the
Document #: 38-05541 Rev. *F
Page 12 of 31
CY7C1361C
CY7C1363C
TDI and TDO balls as shown in the Tap Controller Block
Diagram. Upon power-up, the instruction register is loaded
with the IDCODE instruction. It is also loaded with the IDCODE
instruction if the controller is placed in a reset state as
described in the previous section.
through the instruction register through the TDI and TDO balls.
To execute the instruction once it is shifted in, the TAP
controller needs to be moved into the Update-IR state.
EXTEST
EXTEST is a mandatory 1149.1 instruction which is to be
executed whenever the instruction register is loaded with all
0s. EXTEST is not implemented in this SRAM TAP controller,
and therefore this device is not compliant to 1149.1. The TAP
controller does recognize an all-0 instruction.
When the TAP controller is in the Capture-IR state, the two
least significant bits are loaded with a binary “01” pattern to
allow for fault isolation of the board-level serial test data path.
Bypass Register
To save time when serially shifting data through registers, it is
sometimes advantageous to skip certain chips. The bypass
register is a single-bit register that can be placed between the
TDI and TDO balls. This allows data to be shifted through the
SRAM with minimal delay. The bypass register is set LOW
When an EXTEST instruction is loaded into the instruction
register, the SRAM responds as if a SAMPLE/PRELOAD
instruction has been loaded. There is one difference between
the two instructions. Unlike the SAMPLE/PRELOAD
instruction, EXTEST places the SRAM outputs in a High-Z
state.
(V ) when the BYPASS instruction is executed.
SS
Boundary Scan Register
IDCODE
The boundary scan register is connected to all the input and
bidirectional balls on the SRAM.
The IDCODE instruction causes a vendor-specific, 32-bit code
to be loaded into the instruction register. It also places the
instruction register between the TDI and TDO balls and allows
the IDCODE to be shifted out of the device when the TAP
controller enters the Shift-DR state.
The boundary scan register is loaded with the contents of the
RAM I/O ring when the TAP controller is in the Capture-DR
state and is then placed between the TDI and TDO balls when
the controller is moved to the Shift-DR state. The EXTEST,
SAMPLE/PRELOAD and SAMPLE Z instructions can be used
to capture the contents of the I/O ring.
The IDCODE instruction is loaded into the instruction register
upon power-up or whenever the TAP controller is given a test
logic reset state.
The Boundary Scan Order tables show the order in which the
bits are connected. Each bit corresponds to one of the bumps
on the SRAM package. The MSB of the register is connected
to TDI and the LSB is connected to TDO.
SAMPLE Z
The SAMPLE Z instruction causes the boundary scan register
to be connected between the TDI and TDO balls when the TAP
controller is in a Shift-DR state. It also places all SRAM outputs
into a High-Z state.
Identification (ID) Register
The ID register is loaded with a vendor-specific, 32-bit code
during the Capture-DR state when the IDCODE command is
loaded in the instruction register. The IDCODE is hardwired
into the SRAM and can be shifted out when the TAP controller
is in the Shift-DR state. The ID register has a vendor code and
other information described in the Identification Register
Definitions table.
SAMPLE/PRELOAD
SAMPLE/PRELOAD is a 1149.1-mandatory instruction. When
the SAMPLE/PRELOAD instructions are loaded into the in-
struction register and the TAP controller is in the Capture-DR
state, a snapshot of data on the inputs and output pins is cap-
tured in the boundary scan register.
The user must be aware that the TAP controller clock can only
operate at a frequency up to 20 MHz, while the SRAM clock
operates more than an order of magnitude faster. Because
there is a large difference in the clock frequencies, it is possi-
ble that during the Capture-DR state, an input or output will
undergo a transition. The TAP may then try to capture a signal
while in transition (metastable state). This will not harm the
device, but there is no guarantee as to the value that will be
captured. Repeatable results may not be possible.
TAP Instruction Set
Overview
Eight different instructions are possible with the three-bit
instruction register. All combinations are listed in the
Instruction Codes table. Three of these instructions are listed
as RESERVED and should not be used. The other five instruc-
tions are described in detail below.
The TAP controller used in this SRAM is not fully compliant to
the 1149.1 convention because some of the mandatory 1149.1
instructions are not fully implemented.
To guarantee that the boundary scan register will capture the
correct value of a signal, the SRAM signal must be stabilized
long enough to meet the TAP controller's capture set-up plus
hold times (t and t ). The SRAM clock input might not be
captured correctly if there is no way in a design to stop (or
slow) the clock during a SAMPLE/PRELOAD instruction. If this
is an issue, it is still possible to capture all other signals and
simply ignore the value of the CK and CK# captured in the
boundary scan register.
The TAP controller cannot be used to load address data or
control signals into the SRAM and cannot preload the I/O
buffers. The SRAM does not implement the 1149.1 commands
EXTEST or INTEST or the PRELOAD portion of
SAMPLE/PRELOAD; rather, it performs a capture of the I/O
ring when these instructions are executed.
CS
CH
Once the data is captured, it is possible to shift out the data by
putting the TAP into the Shift-DR state. This places the bound-
ary scan register between the TDI and TDO pins.
Instructions are loaded into the TAP controller during the
Shift-IR state when the instruction register is placed between
TDI and TDO. During this state, instructions are shifted
Document #: 38-05541 Rev. *F
Page 13 of 31
CY7C1361C
CY7C1363C
PRELOAD allows an initial data pattern to be placed at the
latched parallel outputs of the boundary scan register cells
prior to the selection of another boundary scan test operation.
BYPASS
When the BYPASS instruction is loaded in the instruction
register and the TAP is placed in a Shift-DR state, the bypass
register is placed between the TDI and TDO balls. The
advantage of the BYPASS instruction is that it shortens the
boundary scan path when multiple devices are connected
together on a board.
The shifting of data for the SAMPLE and PRELOAD phases
can occur concurrently when required—that is, while data
captured is shifted out, the preloaded data can be shifted in.
Reserved
These instructions are not implemented but are reserved for
future use. Do not use these instructions.
TAP Timing
1
2
3
4
5
6
Test Clock
(TCK)
t
t
t
TH
CYC
TL
t
t
t
t
TMSS
TDIS
TMSH
Test Mode Select
(TMS)
TDIH
Test Data-In
(TDI)
t
TDOV
t
TDOX
Test Data-Out
(TDO)
DON’T CARE
UNDEFINED
[9, 10]
TAP AC Switching Characteristics Over the Operating Range
Parameter
Clock
Parameter
Min.
Max.
Unit
t
t
t
t
TCK Clock Cycle Time
TCK Clock Frequency
TCK Clock HIGH Time
TCK Clock LOW Time
50
ns
MHz
ns
TCYC
TF
20
20
20
TH
ns
TL
Output Times
t
t
TCK Clock LOW to TDO Valid
TCK Clock LOW to TDO Invalid
10
ns
ns
TDOV
TDOX
0
Set-up Times
t
t
t
TMS Set-Up to TCK Clock Rise
TDI Set-Up to TCK Clock Rise
Capture Set-Up to TCK Rise
5
5
5
ns
ns
ns
TMSS
TDIS
CS
Hold Times
t
t
t
TMS Hold after TCK Clock Rise
TDI Hold after Clock Rise
5
5
5
ns
ns
ns
TMSH
TDIH
CH
Capture Hold after Clock Rise
Notes:
9. t and t refer to the setup and hold time requirements of latching data from the boundary scan register.
CS
CH
10. Test conditions are specified using the load in TAP AC test conditions. t /t = 1 ns.
R
F
Document #: 38-05541 Rev. *F
Page 14 of 31
CY7C1361C
CY7C1363C
3.3V TAP AC Test Conditions
2.5V TAP AC Test Conditions
Input pulse levels ................................................ V to 3.3V
Input pulse levels.................................................V to 2.5V
SS
SS
Input rise and fall times................................................... 1 ns
Input timing reference levels...........................................1.5V
Output reference levels...................................................1.5V
Test load termination supply voltage...............................1.5V
Input rise and fall time .....................................................1 ns
Input timing reference levels......................................... 1.25V
Output reference levels ................................................ 1.25V
Test load termination supply voltage ............................ 1.25V
3.3V TAP AC Output Load Equivalent
2.5V TAP AC Output Load Equivalent
1.5V
1.25V
50Ω
50Ω
TDO
TDO
ZO= 50Ω
ZO= 50Ω
20pF
20pF
TAP DC Electrical Characteristics And Operating Conditions
[11]
(0°C < TA < +70°C; VDD = 3.3V ±0.165V unless otherwise noted)
Parameter
Description
Description
= –4.0 mA
Conditions
= 3.3V
= 2.5V
= 3.3V
= 2.5V
= 3.3V
= 2.5V
= 3.3V
= 2.5V
= 3.3V
= 2.5V
= 3.3V
= 2.5V
Min.
2.4
2.0
2.9
2.1
Max.
Unit
V
V
Output HIGH Voltage
I
I
I
V
V
V
V
V
V
V
V
V
V
V
V
OH1
OH2
OL1
OL2
IH
OH
OH
OH
DDQ
DDQ
DDQ
DDQ
DDQ
DDQ
DDQ
DDQ
DDQ
DDQ
DDQ
DDQ
= –1.0 mA
= –100 µA
V
V
V
V
V
V
Output HIGH Voltage
Output LOW Voltage
Output LOW Voltage
Input HIGH Voltage
Input LOW Voltage
Input Load Current
V
V
I
I
I
= 8.0 mA
= 8.0 mA
= 100 µA
0.4
0.4
0.2
0.2
V
OL
OL
OL
V
V
V
2.0
1.7
V
V
+ 0.3
V
DD
DD
+ 0.3
V
–0.5
–0.3
–5
0.7
V
IL
0.7
5
V
I
GND < V < V
DDQ
µA
X
IN
Identification Register Definitions
CY7C1361C
(256K x36)
CY7C1363C
(512K x18)
Instruction Field
Description
Revision Number (31:29)
000
01011
000
Describes the version number.
Reserved for Internal Use
[12]
Device Depth (28:24)
01011
Device Width (23:18) 119-BGA
Device Width (23:18) 165-FBGA
Cypress Device ID (17:12)
101001
000001
100110
00000110100
1
101001
000001
010110
Defines memory type and architecture
Defines memory type and architecture
Defines width and density
Cypress JEDEC ID Code (11:1)
ID Register Presence Indicator (0)
00000110100 Allows unique identification of SRAM vendor.
Indicates the presence of an ID register.
1
Notes:
11. All voltages referenced to V (GND).
SS
12. Bit #24 is “1” in the Register Definitions for both 2.5V and 3.3V versions of this device.
Document #: 38-05541 Rev. *F
Page 15 of 31
CY7C1361C
CY7C1363C
Scan Register Sizes
Register Name
Bit Size (x 36)
Bit Size (x 18)
Instruction
3
3
Bypass
1
1
ID
32
71
71
32
71
71
Boundary Scan Order (119-ball BGA package)
Boundary Scan Order (165-ball FBGA package)
Identification Codes
Instruction
EXTEST
Code
Description
000
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.
Forces all SRAM outputs to High-Z state.
IDCODE
001
010
Loads the ID register with the vendor ID code and places the register between TDI and TDO.
This operation does not affect SRAM operations.
SAMPLE Z
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.
Forces all SRAM output drivers to a High-Z state.
RESERVED
011
100
Do Not Use: This instruction is reserved for future use.
SAMPLE/PRELOAD
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.
Does not affect SRAM operation.
RESERVED
RESERVED
BYPASS
101
110
111
Do Not Use: This instruction is reserved for future use.
Do Not Use: This instruction is reserved for future use.
Places the bypass register between TDI and TDO. This operation does not affect SRAM
operations.
Document #: 38-05541 Rev. *F
Page 16 of 31
CY7C1361C
CY7C1363C
119-Ball BGA Boundary Scan Order
CY7C1361C (256K x 36)
CY7C1363C (512K x 18)
Signal
Signal
Signal
Name
Signal
Name
Bit # ball ID
Name
CLK
GW
Bit # ball ID
Bit #
1
ball ID
Name
CLK
GW
Bit #
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
ball ID
1
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
P4
N4
R6
T5
A0
P4
A0
K4
H4
M4
F4
B4
A4
G4
C3
B3
D6
H7
G6
E6
D7
E7
F6
G7
H6
T7
K7
L6
K4
H4
2
A1
2
N4
A1
3
BWE
OE
A
3
M4
BWE
OE
R6
A
4
A
A
4
F4
T5
A
5
ADSC
ADSP
ADV
A
T3
5
B4
ADSC
ADSP
ADV
A
T3
A
6
R2
R3
P2
A
6
A4
R2
A
7
MODE
7
G4
R3
MODE
Internal
Internal
Internal
Internal
8
DQP
8
C3
Internal
Internal
Internal
Internal
P2
D
9
A
P1
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
9
B3
A
D
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
DQP
L2
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
T2
A
B
D
D
D
D
D
D
D
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
K1
Internal
Internal
Internal
D6
Internal
Internal
Internal
B
N2
N1
M2
L1
DQP
B
B
B
B
B
B
B
B
N1
DQ
DQ
DQ
DQ
B
DQP
M2
A
B
B
B
E7
DQ
DQ
DQ
DQ
L1
A
A
A
A
K2
F6
K2
Internal
H1
G2
E2
Internal
G7
Internal
H1
Internal
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
H6
DQ
DQ
DQ
DQ
C
C
C
C
C
C
C
C
B
B
B
B
ZZ
T7
ZZ
G2
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
K7
DQ
DQ
DQ
DQ
E2
A
A
A
A
A
A
A
A
A
A
A
A
D1
H2
G1
F2
L6
D1
N6
P7
N7
M6
L7
N6
Internal
Internal
Internal
Internal
Internal
C2
Internal
Internal
Internal
Internal
Internal
A
P7
Internal
Internal
Internal
Internal
Internal
T6
Internal
E1
Internal
D2
C2
A2
DQP
A
Internal
C
K6
P6
T4
A3
C5
B5
A5
C6
A6
B6
Internal
DQP
A
Internal
A2
A
A
A
A
A
A
A
A
A
A
E4
CE
CE
A
A
A
A
A
A
A
A
E4
CE
CE
1
1
2
B2
A3
B2
2
L3
BWD
C5
Internal
Internal
G3
Internal
Internal
G3
G5
L5
BW
BW
B5
C
B
A5
BW
B
BW
C6
L5
BW
A
A
Internal
Internal
A6
Internal
Internal
B6
Document #: 38-05541 Rev. *F
Page 17 of 31
CY7C1361C
CY7C1363C
165-Ball FBGA Boundary Scan Order
CY7C1361C (256K x 36)
CY7C1363C (512K x 18)
Signal
Signal
Name
Signal
Name
Signal
Name
Bit # ball ID
Name
CLK
GW
Bit #
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
ball ID
R6
P6
R4
P4
R3
P3
R1
N1
L2
Bit # ball ID
Bit #
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
ball ID
R6
1
B6
B7
A0
1
B6
B7
CLK
GW
A0
A1
2
A1
2
P6
3
A7
BWE
OE
A
3
A7
BWE
OE
R4
A
4
B8
A
A
4
B8
P4
A
5
A8
ADSC
ADSP
ADV
A
5
A8
ADSC
ADSP
ADV
A
R3
A
6
B9
A
6
B9
P3
A
7
A9
MODE
7
A9
R1
MODE
Internal
Internal
Internal
Internal
8
B10
A10
C11
E10
F10
G10
D10
D11
E11
F11
G11
H11
J10
K10
L10
M10
J11
K11
L11
M11
N11
R11
R10
P10
R9
DQP
8
B10
Internal
Internal
Internal
Internal
N1
D
9
A
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
9
A10
A
D
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
DQP
K2
J2
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
A11
A
B
D
D
D
D
D
D
D
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
Internal
Internal
Internal
C11
Internal
Internal
Internal
B
M2
M1
L1
DQP
B
B
B
B
B
B
B
B
M1
DQ
DQ
DQ
DQ
B
DQP
L1
A
B
B
B
K1
J1
D11
DQ
DQ
DQ
DQ
K1
A
A
A
A
E11
J1
Internal
G2
F2
Internal
F11
Internal
G2
Internal
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
G11
H11
DQ
DQ
DQ
DQ
C
C
C
C
C
C
C
C
B
B
B
B
ZZ
ZZ
F2
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
E2
D2
G1
F1
J10
DQ
DQ
DQ
DQ
E2
A
A
A
A
A
A
A
A
A
A
A
A
K10
D2
L10
Internal
Internal
Internal
Internal
Internal
B2
Internal
Internal
Internal
Internal
Internal
A
M10
Internal
Internal
Internal
Internal
Internal
R11
E1
D1
C1
B2
Internal
Internal
DQP
A
Internal
C
Internal
DQP
A2
A
Internal
A2
A
A
A
A
A
A
A
A
A
A
A3
B3
B4
A4
A5
B5
A6
CE
CE
A
A
A
A
A
A
A
A
A3
CE
CE
1
1
2
R10
P10
B3
2
BW
BW
BW
Internal
Internal
A4
Internal
Internal
D
C
B
R9
P9
P9
BW
B
R8
BW
R8
B5
BW
A
A
3
P8
CE
P8
A6
CE
3
P11
P11
Document #: 38-05541 Rev. *F
Page 18 of 31
CY7C1361C
CY7C1363C
Current into Outputs (LOW)......................................... 20 mA
Maximum Ratings
Static Discharge Voltage........................................... >2001V
(per MIL-STD-883, Method 3015)
(Above which the useful life may be impaired. For user guide-
lines, not tested.)
Latch-up Current..................................................... >200 mA
Storage Temperature ................................–65°C to + 150°C
Operating Range
Ambient Temperature with
Power Applied............................................–55°C to + 125°C
Ambient
Range
Temperature
V
V
DDQ
Supply Voltage on V Relative to GND....... –0.5V to + 4.6V
DD
DD
Commercial 0°C to +70°C 3.3V – 5%/+10% 2.5V – 5%
Supply Voltage on V
Relative to GND .....–0.5V to + V
DD
DDQ
to V
DD
Industrial
–40°C to +85°C
DC Voltage Applied to Outputs
in tri-state ............................................ –0.5V to V
+ 0.5V
Automotive –40°C to +125°C
DDQ
DC Input Voltage....................................–0.5V to V + 0.5V
DD
[13, 14]
Electrical Characteristics Over the Operating Range
Parameter
Description
Power Supply Voltage
I/O Supply Voltage
Test Conditions
Min.
3.135
3.135
2.375
2.4
Max.
Unit
V
V
3.6
DD
V
V
V
V
V
I
for 3.3V I/O
for 2.5V I/O
V
V
DDQ
DD
2.625
V
Output HIGH Voltage
Output LOW Voltage
for 3.3V I/O, I = −4.0 mA
V
OH
OL
IH
OH
for 2.5V I/O, I = −1.0 mA
2.0
V
OH
for 3.3V I/O, I = 8.0 mA
0.4
0.4
V
OL
for 2.5V I/O, I = 1.0 mA
V
OL
[13]
Input HIGH Voltage
for 3.3V I/O
for 2.5V I/O
for 3.3V I/O
for 2.5V I/O
2.0
1.7
V
V
+ 0.3V
V
DD
DD
+ 0.3V
0.8
V
[13]
Input LOW Voltage
–0.3
–0.3
–5
V
IL
0.7
V
Input Leakage Current GND ≤ V ≤ V
except ZZ and MODE
5
µA
X
I
DDQ
Input Current of MODE Input = V
–30
–5
µA
µA
µA
µA
µA
mA
SS
Input = V
5
DD
Input Current of ZZ
Input = V
Input = V
SS
DD
30
5
I
I
Output Leakage Current GND < V < V
Output Disabled
–5
OZ
I
DDQ,
V
Operating Supply
V
f = f
= Max., I
= 0 mA,
7.5-ns cycle,133 MHz
10-ns cycle,100 MHz
250
180
110
150
DD
DD
DD
OUT
= 1/t
MAX CYC
Current
I
Automatic CE
Power-down
Max. V , Device Deselected, All speeds (Comm/Ind’l)
mA
mA
SB1
DD
V > V or V < V , f = f
IN IH IN IL MAX,
10-ns cycle,100 MHz
(Automotive)
Current—TTL Inputs
inputs switching
I
I
Automatic CE
Power-down
Current—CMOS Inputs f = 0, inputs static
Max. V , Device Deselected, All speeds
40
mA
SB2
DD
V
> V – 0.3V or V < 0.3V,
IN
DD IN
Automatic CE
Power-down
Current—CMOS Inputs f = f
Max. V , Device Deselected, All speeds (Comm/Ind’l)
100
120
mA
mA
SB3
DD
V
> V
– 0.3V or V < 0.3V,
IN
DDQ IN
10-ns cycle,100 MHz
(Automotive)
, inputs switching
MAX
I
Automatic CE
Power-down
Current—TTL Inputs
Max. V , Device Deselected, All speeds (Comm/Ind’l)
40
60
mA
mA
SB4
DD
V
> V or V < V
IN IH IN IL
10-ns cycle,100 MHz
(Automotive)
f = 0, inputs static
Notes:
13. Overshoot: V (AC) < V +1.5V (Pulse width less than t
/2), undershoot: V (AC) > –2V (Pulse width less than t /2).
CYC
IH
DD
CYC
IL
14. T
: Assumes a linear ramp from 0V to V (min.) within 200ms. During this time V < V and V
< V
.
Power-up
DD
IH
DD
DDQ
DD
Document #: 38-05541 Rev. *F
Page 19 of 31
CY7C1361C
CY7C1363C
Capacitance[15]
100 TQFP 119 BGA 165 FBGA
Parameter
Description
Input Capacitance
Test Conditions
Max.
Max.
Max.
Unit
pF
C
T = 25°C, f = 1 MHz,
5
5
5
5
5
7
5
5
7
IN
A
V
= 3.3V
= 2.5V
DD
C
C
Clock Input Capacitance
Input/Output Capacitance
pF
CLK
I/O
V
DDQ
pF
Thermal Resistance[15]
100 TQFP
Package
119 BGA
Package
165 FBGA
Package
Parameter
Description
Test Conditions
Unit
ΘJA
Thermal Resistance
(Junction to Ambient)
Test conditions follow standard
test methods and procedures
for measuring thermal
29.41
34.1
16.8
°C/W
ΘJC
Thermal Resistance
(Junction to Case)
6.31
14.0
3.0
°C/W
impedance, per EIA/JESD51
AC Test Loads and Waveforms
3.3V I/O Test Load
R = 317Ω
3.3V
OUTPUT
OUTPUT
ALL INPUT PULSES
90%
VDDQ
90%
10%
Z = 50Ω
0
R = 50Ω
10%
L
GND
5 pF
INCLUDING
R = 351Ω
≤ 1 ns
≤ 1 ns
V = 1.5V
T
JIG AND
SCOPE
(a)
(b)
(c)
2.5V I/O Test Load
R = 1667Ω
2.5V
OUTPUT
R = 50Ω
OUTPUT
ALL INPUT PULSES
90%
VDDQ
GND
90%
10%
Z = 50Ω
0
10%
L
5 pF
R = 1538Ω
≤ 1 ns
≤ 1 ns
V = 1.25V
T
INCLUDING
JIG AND
SCOPE
(a)
(b)
(c)
Note:
15. Tested initially and after any design or process change that may affect these parameters.
Document #: 38-05541 Rev. *F
Page 20 of 31
CY7C1361C
CY7C1363C
[20, 21]
Switching Characteristics Over the Operating Range
–133
–100
Parameter
Description
Min.
Max.
Min.
Max.
Unit
[16]
t
V
(Typical) to the first Access
1
1
ms
POWER
DD
Clock
t
t
t
Clock Cycle Time
Clock HIGH
7.5
3.0
3.0
10
4.0
4.0
ns
ns
ns
CYC
CH
Clock LOW
CL
Output Times
t
t
t
t
t
t
t
Data Output Valid After CLK Rise
Data Output Hold After CLK Rise
6.5
8.5
ns
ns
ns
ns
ns
ns
ns
CDV
DOH
CLZ
2.0
0
2.0
0
[17, 18, 19]
Clock to Low-Z
[17, 18, 19]
Clock to High-Z
3.5
3.5
3.5
3.5
CHZ
OEV
OELZ
OEHZ
OE LOW to Output Valid
[17, 18, 19]
OE LOW to Output Low-Z
0
0
[17, 18, 19]
OE HIGH to Output High-Z
3.5
3.5
Set-up Times
t
t
t
t
t
t
Address Set-up Before CLK Rise
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
ns
ns
ns
ns
ns
ns
AS
ADSP, ADSC Set-up Before CLK Rise
ADV Set-up Before CLK Rise
ADS
ADVS
WES
DS
GW, BWE, BW
Set-up Before CLK Rise
[A:D]
Data Input Set-up Before CLK Rise
Chip Enable Set-up
CES
Hold Times
t
t
t
t
t
t
Address Hold After CLK Rise
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
ns
ns
ns
ns
ns
ns
AH
ADSP, ADSC Hold After CLK Rise
ADH
WEH
ADVH
DH
GW, BWE, BW
Hold After CLK Rise
[A:D]
ADV Hold After CLK Rise
Data Input Hold After CLK Rise
Chip Enable Hold After CLK Rise
CEH
Notes:
16. This part has a voltage regulator internally; t
is the time that the power needs to be supplied above V (minimum) initially, before a read or write operation
DD
POWER
can be initiated.
17. t
, t
,t
, and t
are specified with AC test conditions shown in part (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.
OEHZ
CHZ CLZ OELZ
18. At any given voltage and temperature, t
is less than t
and t
is less than t
to eliminate bus contention between SRAMs when sharing the same
OEHZ
OELZ
CHZ
CLZ
data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed
to achieve High-Z prior to Low-Z under the same system conditions.
19. This parameter is sampled and not 100% tested.
20. Timing reference level is 1.5V when V
= 3.3V and is 1.25V when V
= 2.5V.
DDQ
DDQ
21. Test conditions shown in (a) of AC Test Loads unless otherwise noted.
Document #: 38-05541 Rev. *F
Page 21 of 31
CY7C1361C
CY7C1363C
Timing Diagrams
[22]
Read Cycle Timing
t
CYC
t
CLK
t
CL
CH
t
t
ADH
ADS
ADSP
ADSC
t
t
ADH
ADS
t
t
AH
AS
A1
A2
ADDRESS
t
t
WES
WEH
GW, BWE,BW
X
Deselect Cycle
t
t
CES
CEH
CE
t
t
ADVH
ADVS
ADV
OE
ADV suspends burst
t
t
t
CDV
OEV
OELZ
t
t
OEHZ
CHZ
t
DOH
t
CLZ
Q(A2)
Q(A2 + 1)
Q(A2 + 2)
Q(A2 + 3)
Q(A2)
Q(A2 + 1)
Q(A2 + 2)
Q(A1)
Data Out (Q)
High-Z
t
CDV
Burst wraps around
to its initial state
Single READ
BURST
READ
DON’T CARE
UNDEFINED
Note:
22. On this diagram, when CE is LOW: CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH: CE is HIGH or CE is LOW or CE is HIGH.
1
2
3
1
2
3
Document #: 38-05541 Rev. *F
Page 22 of 31
CY7C1361C
CY7C1363C
Timing Diagrams (continued)
[22, 23]
Write Cycle Timing
t
CYC
CLK
t
t
CL
CH
t
t
ADH
ADS
ADSP
ADSC extends burst
t
t
ADH
ADS
t
t
ADH
ADS
ADSC
t
t
AH
AS
A1
A2
A3
ADDRESS
Byte write signals are ignored for first cycle when
ADSP initiates burst
t
t
WEH
WES
BWE,
BWX
t
t
WEH
WES
GW
t
t
CEH
CES
CE
t
t
ADVH
ADVS
ADV
ADV suspends burst
OE
t
t
DH
DS
Data in (D)
High-Z
D(A2)
D(A2 + 1)
D(A2 + 1)
D(A2 + 2)
D(A2 + 3)
D(A3)
D(A3 + 1)
D(A3 + 2)
D(A1)
t
OEHZ
Data Out (Q)
BURST READ
BURST WRITE
Extended BURST WRITE
Single WRITE
DON’T CARE
UNDEFINED
Note:
23.
Full width write can be initiated by either GW LOW; or by GW HIGH, BWE LOW and BW LOW.
X
Document #: 38-05541 Rev. *F
Page 23 of 31
CY7C1361C
CY7C1363C
Timing Diagrams (continued)
[22, 24, 25]
Read/Write Cycle Timing
t
CYC
CLK
t
t
CL
CH
t
t
ADH
ADS
ADSP
ADSC
t
t
AH
AS
A1
A2
A3
A4
A5
A6
ADDRESS
BWE, BWX
CE
t
t
WEH
WES
t
t
CEH
CES
ADV
OE
t
t
DH
DS
t
OELZ
t
High-Z
D(A3)
D(A5)
D(A6)
Data In (D)
t
OEHZ
CDV
Data Out (Q)
Q(A1)
Q(A2)
Q(A4)
Q(A4+1)
Q(A4+2)
Q(A4+3)
Back-to-Back
Back-to-Back READs
Single WRITE
BURST READ
WRITEs
DON’T CARE
UNDEFINED
Notes:
24. The data bus (Q) remains in high-Z following a WRITE cycle, unless a new read access is initiated by ADSP or ADSC.
25.
GW is HIGH.
Document #: 38-05541 Rev. *F
Page 24 of 31
CY7C1361C
CY7C1363C
Timing Diagrams (continued)
[26, 27]
ZZ Mode Timing
CLK
ZZ
t
t
ZZ
ZZREC
t
ZZI
I
SUPPLY
I
DDZZ
t
RZZI
ALL INPUTS
(except ZZ)
DESELECT or READ Only
Outputs (Q)
High-Z
DON’T CARE
Notes:
26. Device must be deselected when entering ZZ mode. See Cycle Descriptions table for all possible signal conditions to deselect the device.
27. DQs are in high-Z when exiting ZZ sleep mode.
Document #: 38-05541 Rev. *F
Page 25 of 31
CY7C1361C
CY7C1363C
Ordering Information
Not all of the speed, package and temperature ranges are available. Please contact your local sales representative or
Speed
(MHz)
Package
Diagram
Operating
Range
Ordering Code
Part and Package Type
133 CY7C1361C-133AXC
CY7C1363C-133AXC
CY7C1361C-133AJXC
CY7C1363C-133AJXC
CY7C1361C-133BGC
CY7C1363C-133BGC
CY7C1361C-133BGXC
CY7C1363C-133BGXC
CY7C1361C-133BZC
CY7C1363C-133BZC
CY7C1361C-133BZXC
CY7C1363C-133BZXC
CY7C1361C-133AXI
CY7C1363C-133AXI
CY7C1361C-133AJXI
CY7C1363C-133AJXI
CY7C1361C-133BGI
CY7C1363C-133BGI
CY7C1361C-133BGXI
CY7C1363C-133BGXI
CY7C1361C-133BZI
CY7C1363C-133BZI
CY7C1361C-133BZXI
CY7C1363C-133BZXI
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free
(3 Chip Enable)
Commercial
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free
(2 Chip Enable)
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm)
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Lead-Free
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm) Lead-Free
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free
(3 Chip Enable)
lndustrial
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free
(2 Chip Enable)
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm)
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Lead-Free
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm) Lead-Free
Document #: 38-05541 Rev. *F
Page 26 of 31
CY7C1361C
CY7C1363C
Ordering Information (continued)
Not all of the speed, package and temperature ranges are available. Please contact your local sales representative or
Speed
(MHz)
Package
Diagram
Operating
Range
Ordering Code
Part and Package Type
100 CY7C1361C-100AXC
CY7C1363C-100AXC
CY7C1361C-100AJXC
CY7C1363C-100AJXC
CY7C1361C-100BGC
CY7C1363C-100BGC
CY7C1361C-100BGXC
CY7C1363C-100BGXC
CY7C1361C-100BZC
CY7C1363C-100BZC
CY7C1361C-100BZXC
CY7C1363C-100BZXC
CY7C1361C-100AXI
CY7C1363C-100AXI
CY7C1361C-100AJXI
CY7C1363C-100AJXI
CY7C1361C-100BGI
CY7C1363C-100BGI
CY7C1361C-100BGXI
CY7C1363C-100BGXI
CY7C1361C -100BZI
CY7C1363C-100BZI
CY7C1361C-100BZXI
CY7C1363C-100BZXI
100 CY7C1361C-100AXE
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free
(3 Chip Enable)
Commercial
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free
(2 Chip Enable)
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm)
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Lead-Free
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm) Lead-Free
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free
(3 Chip Enable)
lndustrial
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free
(2 Chip Enable)
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm)
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Lead-Free
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm) Lead-Free
51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free
Automotive
Document #: 38-05541 Rev. *F
Page 27 of 31
CY7C1361C
CY7C1363C
Package Diagrams
100-Pin TQFP (14 x 20 x 1.4 mm) (51-85050)
16.00 0.20
1.40 0.05
14.00 0.10
100
81
80
1
0.30 0.08
0.65
TYP.
12° 1°
(8X)
SEE DETAIL
A
30
51
31
50
0.20 MAX.
1.60 MAX.
R 0.08 MIN.
0.20 MAX.
0° MIN.
SEATING PLANE
STAND-OFF
0.05 MIN.
0.15 MAX.
NOTE:
0.25
1. JEDEC STD REF MS-026
GAUGE PLANE
2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH
MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE
R 0.08 MIN.
0.20 MAX.
BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH
3. DIMENSIONS IN MILLIMETERS
0°-7°
0.60 0.15
0.20 MIN.
51-85050-*B
1.00 REF.
DETAIL
A
Document #: 38-05541 Rev. *F
Page 28 of 31
CY7C1361C
CY7C1363C
Package Diagrams (continued)
119-Ball BGA (14 x 22 x 2.4 mm) (51-85115)
Ø0.05 M C
Ø0.25 M C A B
A1 CORNER
Ø0.75 0.15(119X)
Ø1.00(3X) REF.
1
2
3
4
5
6
7
7
6
5
4
3
2
1
A
B
C
D
E
A
B
C
D
E
F
F
G
H
G
H
J
K
L
J
K
L
M
N
P
R
T
M
N
P
R
T
U
U
1.27
0.70 REF.
A
3.81
12.00
7.62
B
14.00 0.20
0.15(4X)
30° TYP.
51-85115-*B
SEATING PLANE
C
Document #: 38-05541 Rev. *F
Page 29 of 31
CY7C1361C
CY7C1363C
Package Diagrams (continued)
165-Ball FBGA (13 x 15 x 1.4 mm) (51-85180)
BOTTOM VIEW
PIN 1 CORNER
TOP VIEW
Ø0.05 M C
PIN 1 CORNER
Ø0.25 M C A B
-0.06
Ø0.50
(165X)
+0.14
1
2
3
4
5
6
7
8
9
10
11
11 10
9
8
7
6
5
4
3
2
1
A
A
B
B
C
D
C
D
E
E
F
F
G
G
H
J
H
J
K
K
L
L
M
M
N
P
R
N
P
R
A
A
1.00
5.00
10.00
13.00 0.10
B
B
13.00 0.10
0.15(4X)
NOTES :
SOLDER PAD TYPE : NON-SOLDER MASK DEFINED (NSMD)
PACKAGE WEIGHT : 0.475g
JEDECREFERENCE: MO-216 / DESIGN 4.6C
PACKAGE CODE : BB0AC
SEATING PLANE
C
51-85180-*A
i486 is a trademark, and Intel and Pentium are registered trademarks of Intel Corporation. PowerPC is a trademark of IBM
Corporation. All product and company names mentioned in this document are the trademarks of their respective holders.
Document #: 38-05541 Rev. *F
Page 30 of 31
© Cypress Semiconductor Corporation, 2006. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
CY7C1361C
CY7C1363C
Document History Page
Document Title: CY7C1361C/CY7C1363C 9-Mbit (256K x 36/512K x 18) Flow-Through SRAM
Document Number: 38-05541
Orig. of
REV.
**
ECN NO. Issue Date
Change
Description of Change
241690
278969
332059
See ECN
See ECN
See ECN
RKF
New data sheet
*A
RKF
Changed Boundary Scan order to match the B rev of these devices.
*B
PCI
Removed 117-MHz Speed Bin
Address expansion pins/balls in the pinouts for all packages are modified
as per JEDEC standard
Added Address Expansion pins in the Pin Definitions Table
Changed Device Width (23:18) for 119-BGA from 000001 to 101001
Added separate row for 165 -FBGA Device Width (23:18)
Changed I
from 35 mA to 50 mA
DDZZ
Changed I
and I
from 40 mA to 110 and 100 mA, respectively
SB1
SB3
Modified V
Corrected I
V
test conditions
OL, OH
Test Condition from (V ≥ V – 0.3V or V ≤ 0.3V) to
SB4
IN
DD
IN
(V ≥ V or V ≤ V ) in the Electrical Characteristics table
IN
IH
IN
IL
Changed Θ and Θ for TQFP Package from 25 and 9 °C/W to 29.41
JA
Jc
and 6.13 °C/W
respectively
Changed Θ and Θ for BGA Package from 25 and 6°C/W to 34.1 and
JA
Jc
14.0 °C/W
respectively
Changed Θ and Θ for FBGA Package from 27 and 6 °C/W to 16.8
JA
Jc
and 3.0 °C/W respectively
Added lead-free information for 100-pin TQFP, 119 BGA and 165 FBGA
packages
Updated Ordering Information Table
*C
*D
377095
408298
See ECN
See ECN
PCI
Changed I
from 30 to 40 mA
SB2
Modified test condition in note# 14 from V < V to V < V
IH
DD
IH
DD
RXU
Changed address of Cypress Semiconductor Corporation on Page# 1
from “3901 North First Street” to “198 Champion Court”
Changed tri state to tri-state.
Modified “Input Load” to “Input Leakage Current except ZZ and MODE”
in the Electrical Characteristics Table.
Replaced Package Name column with Package Diagram in the Ordering
Information table.
Updated the ordering information.
*E
*F
433033
501793
See ECN
See ECN
NXR
VKN
Included Automotive range.
Added the Maximum Rating for Supply Voltage on V
Relative to GND
from 5 ns to 10 ns in TAP
DDQ
Changed t , t from 25 ns to 20 ns and t
TH TL
TDOV
AC Switching Characteristics table.
Updated the Ordering Information table.
Document #: 38-05541 Rev. *F
Page 31 of 31
|