Cypress CY14B104NA User Manual

PRELIMINARY  
CY14B104LA, CY14B104NA  
4 Mbit (512K x 8/256K x 16) nvSRAM  
Features  
Functional Description  
20 ns, 25 ns, and 45 ns access times  
The Cypress CY14B104LA/CY14B104NA is a fast static RAM,  
with a nonvolatile element in each memory cell. The memory is  
Internally organized as 512K x 8 (CY14B104LA) or 256K x 16  
(CY14B104NA)  
organized as 512K bytes of 8 bits each or 256K words of 16 bits  
each. The embedded nonvolatile elements incorporate  
QuantumTrap technology, producing the world’s most reliable  
nonvolatile memory. The SRAM provides infinite read and write  
cycles, while independent nonvolatile data resides in the highly  
reliable QuantumTrap cell. Data transfers from the SRAM to the  
nonvolatile elements (the STORE operation) takes place  
automatically at power down. On power up, data is restored to  
the SRAM (the RECALL operation) from the nonvolatile memory.  
Both the STORE and RECALL operations are also available  
under software control.  
Hands off automatic STORE on power down with only a small  
capacitor  
STORE to QuantumTrap® nonvolatile elements initiated by  
software, device pin, or AutoStore® on power down  
RECALL to SRAM initiated by software or power up  
Infinite Read, Write, and Recall cycles  
200,000 STORE cycles to QuantumTrap  
20 year data retention  
Single 3V +20%, -10% operation  
Commercial and industrial temperatures  
48-ball FBGA and 44/54-pin TSOP-II packages  
Pb-free and RoHS compliance  
Logic Block Diagram[1, 2, 3]  
9&$3  
9&&  
4XDWUXPꢀ7UDS  
ꢁꢂꢃꢄꢀ;ꢀꢁꢂꢃꢄ  
$
$
$
$
$
$
$
32:(5  
5
2
:
&21752/  
6725(  
5(&$//  
6725(ꢅ5(&$//  
&21752/  
'
(
&
2
'
(
5
+6%  
67$7,&ꢀ5$0  
$55$<  
ꢁꢂꢃꢄꢀ;ꢀꢁꢂꢃꢄ  
$
62)7:$5(  
'(7(&7  
$
$ꢇꢃꢀꢋꢀ$ꢁ  
$
ꢇꢌ  
$
ꢇꢄ  
'4ꢂ  
'4ꢇ  
'4ꢁ  
'4ꢈ  
,
'4ꢃ  
'4ꢉ  
'4ꢊ  
1
3
8
7
%
8
)
)
(
5
6
'4ꢌ  
&2/801ꢀ,ꢅ2  
'4ꢄ  
'4ꢆ  
'4ꢇꢂ  
2(  
&2/801ꢀ'(&  
:(  
'4ꢇꢇ  
'4ꢇꢁ  
'4ꢇꢈ  
'4ꢇꢃ  
&(  
%/(  
$
$
$
$
$
$
$
$
ꢇꢊ  
ꢇꢇ  
ꢇꢂ  
ꢇꢁ  
ꢇꢈ  
ꢇꢃ  
ꢇꢉ  
'4ꢇꢉ  
%+(  
Notes  
1. Address A - A for x8 configuration and Address A - A for x16 configuration.  
0
18  
0
17  
2. Data DQ - DQ for x8 configuration and Data DQ - DQ for x16 configuration.  
0
7
0
15  
3. BHE and BLE are applicable for x16 configuration only.  
Cypress Semiconductor Corporation  
Document #: 001-49918 Rev. *A  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised March 11, 2009  
     
PRELIMINARY  
CY14B104LA, CY14B104NA  
Pinouts (continued)  
Figure 3. Pin Diagram - 54 Pin TSOP II (x16)  
NC  
54  
53  
52  
51  
50  
49  
HSB  
NC  
1
2
3
[4]  
NC  
A
0
A
17  
A
1
A
16  
4
5
6
A
2
A
15  
A
3
OE  
48  
47  
46  
45  
A
4
BHE  
BLE  
DQ  
7
8
9
10  
11  
12  
13  
14  
CE  
DQ  
DQ  
0
1
15  
DQ  
DQ  
DQ  
V
14  
13  
12  
54 - TSOP II  
(x16)  
DQ  
DQ  
44  
43  
42  
41  
40  
39  
2
3
V
CC  
SS  
Top View  
(not to scale)  
V
SS  
V
CC  
DQ  
DQ  
4
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
11  
DQ  
DQ  
DQ  
DQ  
5
10  
38  
37  
36  
35  
DQ  
DQ  
6
9
8
7
WE  
A
5
V
CAP  
A
14  
34  
33  
32  
31  
30  
29  
28  
A
6
A
13  
A
A
7
A
8
12  
A
11  
A
A
9
10  
NC  
NC  
NC  
NC  
NC  
NC  
25  
26  
27  
Pin Definitions  
Pin Name  
A0 – A18  
A0 – A17  
I/O Type  
Description  
Input  
Address Inputs Used to Select one of the 524,288 bytes of the nvSRAM for x8 Configuration.  
Address Inputs Used to Select one of the 262,144 words of the nvSRAM for x16 Configuration.  
DQ0 – DQ7 Input/Output Bidirectional Data I/O Lines for x8 Configuration. Used as input or output lines depending on  
operation.  
DQ0 – DQ15  
WE  
Bidirectional Data I/O Lines for x16 Configuration. Used as input or output lines depending on  
operation.  
Input  
Write Enable Input, Active LOW. When selected LOW, data on the I/O pins is written to the specific  
address location.  
Input  
Input  
Chip Enable Input, Active LOW. When LOW, selects the chip. When HIGH, deselects the chip.  
CE  
OE  
Output Enable, Active LOW. The active LOW OE input enables the data output buffers during read  
cycles. I/O pins are tri-stated on deasserting OE HIGH.  
Input  
Input  
Byte High Enable, Active LOW. Controls DQ15 - DQ8.  
Byte Low Enable, Active LOW. Controls DQ7 - DQ0.  
BHE  
BLE  
VSS  
Ground  
Ground for the Device. Must be connected to the ground of the system.  
VCC  
Power Supply Power Supply Inputs to the Device.  
HSB[6]  
Input/Output Hardware Store Busy (HSB). When LOW this output indicates that a hardware store is in progress.  
When pulled LOW external to the chip it initiates a nonvolatile STORE operation. A weak internal pull  
up resistor keeps this pin HIGH if not connected (connection optional). After each store operation HSB  
is driven HIGH for short time with standard output high current.  
VCAP  
NC  
Power Supply AutoStore Capacitor. Supplies power to the nvSRAM during power loss to store data from SRAM to  
nonvolatile elements.  
No Connect No Connect. This pin is not connected to the die.  
Document #: 001-49918 Rev. *A  
Page 3 of 23  
PRELIMINARY  
CY14B104LA, CY14B104NA  
Characteristics on page 8 for the size of VCAP. The voltage on  
the VCAP pin is driven to VCC by a regulator on the chip. A pull  
up should be placed on WE to hold it inactive during power up.  
This pull up is effective only if the WE signal is tri-state during  
power up. Many MPUs tri-state their controls on power up. This  
should be verified when using the pull up. When the nvSRAM  
comes out of power-on-recall, the MPU must be active or the WE  
held inactive until the MPU comes out of reset.  
Device Operation  
The CY14B104LA/CY14B104NA nvSRAM is made up of two  
functional components paired in the same physical cell. They are  
a SRAM memory cell and a nonvolatile QuantumTrap cell. The  
SRAM memory cell operates as a standard fast static RAM. Data  
in the SRAM is transferred to the nonvolatile cell (the STORE  
operation), or from the nonvolatile cell to the SRAM (the RECALL  
operation). Using this unique architecture, all cells are stored and  
recalled in parallel. During the STORE and RECALL operations,  
SRAM read and write operations are inhibited. The  
CY14B104LA/CY14B104NA supports infinite reads and writes  
similar to a typical SRAM. In addition, it provides infinite RECALL  
operations from the nonvolatile cells and up to 200K STORE  
16 for a complete description of read and write modes.  
To reduce unnecessary nonvolatile stores, AutoStore and  
hardware store operations are ignored unless at least one write  
operation has taken place since the most recent STORE or  
RECALL cycle. Software initiated STORE cycles are performed  
regardless of whether a write operation has taken place. The  
HSB signal is monitored by the system to detect if an AutoStore  
cycle is in progress.  
Figure 4. AutoStore Mode  
SRAM Read  
Vcc  
The CY14B104LA/CY14B104NA performs a read cycle when  
CE and OE are LOW and WE and HSB are HIGH. The address  
specified on pins A0-18 or A0-17 determines which of the 524,288  
data bytes or 262,144 words of 16 bits each are accessed. Byte  
enables (BHE, BLE) determine which bytes are enabled to the  
output, in the case of 16-bit words. When the read is initiated by  
an address transition, the outputs are valid after a delay of tAA  
(read cycle 1). If the read is initiated by CE or OE, the outputs  
are valid at tACE or at tDOE, whichever is later (read cycle 2). The  
data output repeatedly responds to address changes within the  
tAA access time without the need for transitions on any control  
input pins. This remains valid until another address change or  
until CE or OE is brought HIGH, or WE or HSB is brought LOW.  
0.1uF  
Vcc  
WE  
VCAP  
VCAP  
VSS  
SRAM Write  
A write cycle is performed when CE and WE are LOW and HSB  
is HIGH. The address inputs must be stable before entering the  
write cycle and must remain stable until CE or WE goes HIGH at  
the end of the cycle. The data on the common I/O pins DQ0–15  
are written into the memory if the data is valid tSD before the end  
of a WE controlled write or before the end of an CE controlled  
write. The Byte Enable inputs (BHE, BLE) determine which bytes  
are written, in the case of 16-bit words. It is recommended that  
OE be kept HIGH during the entire write cycle to avoid data bus  
contention on common I/O lines. If OE is left LOW, internal  
circuitry turns off the output buffers tHZWE after WE goes LOW.  
Hardware STORE Operation  
The CY14B104LA/CY14B104NA provides the HSB[6] pin to  
control and acknowledge the STORE operations. Use the HSB  
pin to request a hardware STORE cycle. When the HSB pin is  
driven LOW, the CY14B104LA/CY14B104NA conditionally  
initiates a STORE operation after tDELAY. An actual STORE cycle  
only begins if a write to the SRAM has taken place since the last  
STORE or RECALL cycle. The HSB pin also acts as an open  
drain driver that is internally driven LOW to indicate a busy  
condition when the STORE (initiated by any means) is in  
progress.  
AutoStore Operation  
SRAM read and write operations that are in progress when HSB  
is driven LOW by any means are given time to complete before  
the STORE operation is initiated. After HSB goes LOW, the  
CY14B104LA/CY14B104NA continues SRAM operations for  
The CY14B104LA/CY14B104NA stores data to the nvSRAM  
using one of the following three storage operations: Hardware  
Store activated by HSB; Software Store activated by an address  
sequence; AutoStore on device power down. The AutoStore  
operation is a unique feature of QuantumTrap technology and is  
enabled by default on the CY14B104LA/CY14B104NA.  
t
DELAY. If a write is in progress when HSB is pulled LOW it is  
enabled a time, tDELAY to complete. However, any SRAM write  
cycles requested after HSB goes LOW are inhibited until HSB  
returns HIGH. In case the write latch is not set, HSB is not driven  
LOW by the CY14B104LA/CY14B104NA. But any SRAM read  
and write cycles are inhibited until HSB is returned HIGH by MPU  
or other external source.  
During a normal operation, the device draws current from VCC to  
charge a capacitor connected to the VCAP pin. This stored  
charge is used by the chip to perform a single STORE operation.  
If the voltage on the VCC pin drops below VSWITCH, the part  
automatically disconnects the VCAP pin from VCC. A STORE  
operation is initiated with power provided by the VCAP capacitor.  
During any STORE operation, regardless of how it is initiated,  
the CY14B104LA/CY14B104NA continues to drive the HSB pin  
LOW, releasing it only when the STORE is complete. When the  
STORE operation is completed, the CY14B104LA/CY14B104NA  
Figure 4 shows the proper connection of the storage capacitor  
(VCAP) for automatic store operation. Refer to DC Electrical  
Document #: 001-49918 Rev. *A  
Page 4 of 23  
 
PRELIMINARY  
CY14B104LA, CY14B104NA  
remains disabled until the HSB pin returns HIGH. Leave the HSB  
unconnected if it is not used.  
The software sequence may be clocked with CE controlled reads  
or OE controlled reads. After the sixth address in the sequence  
is entered, the STORE cycle commences and the chip is  
disabled. HSB is driven LOW. It is important to use read cycles  
and not write cycles in the sequence, although it is not necessary  
that OE be LOW for a valid sequence. After the tSTORE cycle time  
is fulfilled, the SRAM is activated again for the read and write  
operation.  
Hardware RECALL (Power Up)  
During power up or after any low power condition  
(VCC< VSWITCH), an internal RECALL request is latched. When  
VCC again exceeds the sense voltage of VSWITCH, a RECALL  
cycle is automatically initiated and takes tHRECALL to complete.  
During this time, HSB is driven LOW by the HSB driver.  
Software RECALL  
Software STORE  
Transfer the data from the nonvolatile memory to the SRAM with  
a software address sequence. A software RECALL cycle is  
initiated with a sequence of read operations in a manner similar  
to the software STORE initiation. To initiate the RECALL cycle,  
the following sequence of CE controlled read operations must be  
performed.  
Transfer data from the SRAM to the nonvolatile memory with a  
software address sequence. The CY14B104LA/CY14B104NA  
software STORE cycle is initiated by executing sequential CE  
controlled read cycles from six specific address locations in  
exact order. During the STORE cycle an erase of the previous  
nonvolatile data is first performed, followed by a program of the  
nonvolatile elements. After a STORE cycle is initiated, further  
input and output are disabled until the cycle is completed.  
1. Read Address 0x4E38 Valid READ  
2. Read Address 0xB1C7 Valid READ  
3. Read Address 0x83E0 Valid READ  
4. Read Address 0x7C1F Valid READ  
5. Read Address 0x703F Valid READ  
6. Read Address 0x4C63 Initiate RECALL Cycle  
Because a sequence of READs from specific addresses is used  
for STORE initiation, it is important that no other read or write  
accesses intervene in the sequence, or the sequence is aborted  
and no STORE or RECALL takes place.  
To initiate the software STORE cycle, the following read  
sequence must be performed.  
Internally, RECALL is a two step procedure. First, the SRAM data  
is cleared; then, the nonvolatile information is transferred into the  
SRAM cells. After the tRECALL cycle time, the SRAM is again  
ready for read and write operations. The RECALL operation  
does not alter the data in the nonvolatile elements.  
1. Read Address 0x4E38 Valid READ  
2. Read Address 0xB1C7 Valid READ  
3. Read Address 0x83E0 Valid READ  
4. Read Address 0x7C1F Valid READ  
5. Read Address 0x703F Valid READ  
6. Read Address 0x8FC0 Initiate STORE Cycle  
Table 1. Mode Selection  
[7]  
A15 - A0  
Mode  
I/O  
Power  
Standby  
Active  
CE  
WE  
OE, BHE, BLE[3]  
H
X
X
X
X
X
Not Selected  
Read SRAM  
Write SRAM  
Output High Z  
Output Data  
Input Data  
L
L
L
H
L
L
X
L
Active  
Active[8]  
H
0x4E38  
0xB1C7  
0x83E0  
0x7C1F  
0x703F  
0x8B45  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
AutoStore  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Disable  
Notes  
7. While there are 19 address lines on the CY14B104LA (18 address lines on the CY14B104NA), only the 13 address lines (A - A ) are used to control software modes.  
14  
2
Rest of the address lines are don’t care.  
8. The six consecutive address locations must be in the order listed. WE must be HIGH during all six cycles to enable a nonvolatile cycle.  
Document #: 001-49918 Rev. *A  
Page 5 of 23  
     
PRELIMINARY  
CY14B104LA, CY14B104NA  
Table 1. Mode Selection (continued)  
[7]  
OE, BHE, BLE[3]  
A15 - A0  
Mode  
I/O  
Power  
CE  
WE  
L
H
L
0x4E38  
0xB1C7  
0x83E0  
0x7C1F  
0x703F  
0x4B46  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
AutoStore Enable  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Active[8]  
[8]  
L
L
H
H
L
L
0x4E38  
0xB1C7  
0x83E0  
0x7C1F  
0x703F  
0x8FC0  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Active ICC2  
Nonvolatile Store Output High Z  
0x4E38  
0xB1C7  
0x83E0  
0x7C1F  
0x703F  
0x4C63  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Nonvolatile  
Recall  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
Active[8]  
Preventing AutoStore  
Data Protection  
The AutoStore function is disabled by initiating an AutoStore  
disable sequence. A sequence of read operations is performed  
in a manner similar to the software STORE initiation. To initiate  
the AutoStore disable sequence, the following sequence of CE  
controlled read operations must be performed:  
The CY14B104LA/CY14B104NA protects data from corruption  
during low voltage conditions by inhibiting all externally initiated  
STORE and write operations. The low voltage condition is  
detected  
when  
VCC  
<
VSWITCH  
.
If  
the  
CY14B104LA/CY14B104NA is in a write mode (both CE and WE  
are LOW) at power up, after a RECALL or STORE, the write is  
inhibited until the SRAM is enabled after tLZHSB (HSB to output  
active). This protects against inadvertent writes during power up  
or brown out conditions.  
1. Read address 0x4E38 Valid READ  
2. Read address 0xB1C7 Valid READ  
3. Read address 0x83E0 Valid READ  
4. Read address 0x7C1F Valid READ  
5. Read address 0x703F Valid READ  
6. Read address 0x8B45 AutoStore Disable  
Noise Considerations  
The AutoStore is re-enabled by initiating an AutoStore enable  
sequence. A sequence of read operations is performed in a  
manner similar to the software RECALL initiation. To initiate the  
AutoStore enable sequence, the following sequence of CE  
controlled read operations must be performed:  
1. Read address 0x4E38 Valid READ  
2. Read address 0xB1C7 Valid READ  
3. Read address 0x83E0 Valid READ  
4. Read address 0x7C1F Valid READ  
5. Read address 0x703F Valid READ  
6. Read address 0x4B46 AutoStore Enable  
If the AutoStore function is disabled or re-enabled, a manual  
STORE operation (hardware or software) must be issued to save  
the AutoStore state through subsequent power down cycles. The  
part comes from the factory with AutoStore enabled.  
Document #: 001-49918 Rev. *A  
Page 6 of 23  
PRELIMINARY  
CY14B104LA, CY14B104NA  
Power up boot firmware routines should rewrite the nvSRAM  
into the desired state (for example, autostore enabled). While  
the nvSRAM is shipped in a preset state, best practice is to  
again rewrite the nvSRAM into the desired state as a safeguard  
against events that might flip the bit inadvertently such as  
program bugs and incoming inspection routines.  
Best Practices  
nvSRAM products have been used effectively for over 15 years.  
While ease-of-use is one of the product’s main system values,  
experience gained working with hundreds of applications has  
resulted in the following suggestions as best practices:  
The VCAP value specified in this data sheet includes a minimum  
and a maximum value size. Best practice is to meet this  
requirementandnotexceedthemaximumVCAPvaluebecause  
the nvSRAM internal algorithm calculates VCAP charge and  
discharge time based on this max VCAP value. Customers that  
want to use a larger VCAP value to make sure there is extra  
store charge and store time should discuss their VCAP size  
selection with Cypress to understand any impact on the VCAP  
voltage level at the end of a tRECALL period.  
ThenonvolatilecellsinthisnvSRAMproductaredeliveredfrom  
Cypress with 0x00 written in all cells. Incoming inspection  
routines at customer or contract manufacturer’s sites  
sometimes reprogram these values. Final NV patterns are  
typically repeating patterns of AA, 55, 00, FF, A5, or 5A. End  
product’s firmware should not assume an NV array is in a set  
programmed state. Routines that check memory content  
values to determine first time system configuration, cold or  
warm boot status, and so on should always program a unique  
NV pattern (that is, complex 4-byte pattern of 46 E6 49 53 hex  
or more random bytes) as part of the final system manufac-  
turing test to ensure these system routines work consistently.  
Document #: 001-49918 Rev. *A  
Page 7 of 23  
PRELIMINARY  
CY14B104LA, CY14B104NA  
Transient Voltage (<20 ns) on  
Any Pin to Ground Potential................ ..–2.0V to VCC + 2.0V  
Maximum Ratings  
Exceeding maximum ratings may impair the useful life of the  
device. These user guidelines are not tested.  
Package Power Dissipation  
Capability (TA = 25°C)....................................................1.0W  
Storage Temperature ..................................–65°C to +150°C  
Maximum Accumulated Storage Time  
Surface Mount Pb Soldering  
Temperature (3 Seconds)...........................................+260°C  
DC Output Current (1 output at a time, 1s duration) ....15 mA  
At 150°C Ambient Temperature..........................1000h  
At 85°C Ambient Temperature.................... ..20 Years  
Static Discharge Voltage ......................................... > 2001V  
(per MIL-STD-883, Method 3015)  
Ambient Temperature with  
Power Applied.............................................–55°C to +150°C  
Latch Up Current................................................... > 200 mA  
Supply Voltage on VCC Relative to GND.......... –0.5V to 4.1V  
Operating Range  
Voltage Applied to Outputs  
in High-Z State ...................................... –0.5V to VCC + 0.5V  
Range  
Commercial  
Industrial  
Ambient Temperature  
0°C to +70°C  
VCC  
2.7V to 3.6V  
2.7V to 3.6V  
Input Voltage ..........................................0.5V to Vcc + 0.5V  
–40°C to +85°C  
DC Electrical Characteristics  
Over the Operating Range (VCC = 2.7V to 3.6V)  
Parameter  
Description  
Test Conditions  
Min  
Max  
Unit  
ICC1  
Average VCC Current tRC = 20 ns  
tRC = 25 ns  
Commercial  
Industrial  
65  
65  
50  
mA  
mA  
mA  
t
RC = 45 ns  
Values obtained without output loads (IOUT = 0 mA)  
70  
70  
52  
mA  
mA  
mA  
ICC2  
Average VCC Current All Inputs Don’t Care, VCC = Max  
during STORE Average current for duration tSTORE  
10  
mA  
[9]  
ICC3  
AverageVCC Currentat All I/P cycling at CMOS levels.  
RC= 200 ns, 3V, 25°C Values obtained without output loads (IOUT = 0 mA).  
35  
mA  
t
typical  
ICC4  
ISB  
Average VCAP Current All Inputs Don’t Care, VCC = Max  
during AutoStore Cycle Average current for duration tSTORE  
5
5
mA  
mA  
VCC Standby Current CE > (VCC – 0.2V). All others VIN < 0.2V or > (VCC – 0.2V). Standby  
current level after nonvolatile cycle is complete.  
Inputs are static. f = 0 MHz.  
IIX  
Input Leakage Current VCC = Max, VSS < VIN < VCC  
(except HSB)  
–1  
–100  
–1  
+1  
+1  
+1  
μA  
μA  
μA  
V
Input Leakage Current VCC = Max, VSS < VIN < VCC  
(for HSB)  
IOZ  
VIH  
Off-State Output  
Leakage Current  
VCC = Max, VSS < VOUT < VCC, CE or OE > VIH or BHE/BLE > VIH  
or WE < VIL  
Input HIGH Voltage  
2.0  
VCC  
0.5  
+
VIL  
Input LOW Voltage  
Vss – 0.5  
2.4  
0.8  
V
V
VOH  
VOL  
Output HIGH Voltage IOUT = –2 mA  
Output LOW Voltage  
Storage Capacitor  
IOUT = 4 mA  
0.4  
V
VCAP  
Between VCAP pin and VSS, 5V Rated  
61  
180  
μF  
Notes  
9. Typical conditions for the active current shown on the DC Electrical characteristics are average values at 25°C (room temperature), and V = 3V. Not 100% tested.  
CC  
10. The HSB pin has I  
= -2 uA for V of 2.4V when both active HIGH and LOW drivers are disabled. When they are enabled standard V and V are valid. This  
OUT  
O
H
O
H
O
L
parameter is characterized but not tested.  
11. V (storage capacitor) nominal value is 68 uF.  
CAP  
Document #: 001-49918 Rev. *A  
Page 8 of 23  
       
PRELIMINARY  
CY14B104LA, CY14B104NA  
Data Retention and Endurance  
Parameter  
Description  
Min  
20  
Unit  
Years  
K
DATAR  
NVC  
Data Retention  
Nonvolatile STORE Operation  
200  
Capacitance  
In the following table, the capacitance parameters are listed.[12]  
Parameter  
Description  
Input Capacitance  
Output Capacitance  
Test Conditions  
Max  
7
Unit  
pF  
CIN  
TA = 25°C, f = 1 MHz,  
CC = 0 to 3.0V  
V
COUT  
7
pF  
Thermal Resistance  
In the following table, the thermal resistance parameters are listed. [12]  
Parameter  
Description  
Test Conditions  
48-FBGA 44-TSOP II 54-TSOP II Unit  
ΘJA  
Thermal Resistance  
(Junction to Ambient) and procedures for measuring thermal  
Test conditions follow standard test methods  
28.82  
31.11  
30.73  
°C/W  
impedance, in accordance with EIA/JESD51.  
ΘJC  
Thermal Resistance  
(Junction to Case)  
7.84  
5.56  
6.08  
°C/W  
Figure 5. AC Test Loads  
577Ω  
R1  
for tri-state specs  
577Ω  
3.0V  
OUTPUT  
3.0V  
OUTPUT  
R1  
R2  
789Ω  
R2  
789Ω  
5 pF  
30 pF  
AC Test Conditions  
Input Pulse Levels ....................................................0V to 3V  
Input Rise and Fall Times (10% - 90%)........................ <3 ns  
Input and Output Timing Reference Levels .................... 1.5V  
Note  
12. These parameters are guaranteed but not tested.  
Document #: 001-49918 Rev. *A  
Page 9 of 23  
 
PRELIMINARY  
CY14B104LA, CY14B104NA  
AC Switching Characteristics  
Parameters  
20 ns  
25 ns  
45 ns  
Description  
Unit  
Cypress  
Parameters  
Alt  
Min  
Max  
Min  
Max  
Min  
Max  
Parameters  
SRAM Read Cycle  
tACE  
tACS  
tRC  
tAA  
tOE  
tOH  
tLZ  
tHZ  
tOLZ  
tOHZ  
tPA  
tPS  
-
Chip Enable Access Time  
20  
25  
45  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tRC  
Read Cycle Time  
20  
25  
45  
tAA  
Address Access Time  
20  
10  
25  
12  
45  
20  
tDOE  
Output Enable to Data Valid  
Output Hold After Address Change  
Chip Enable to Output Active  
Chip Disable to Output Inactive  
Output Enable to Output Active  
Output Disable to Output Inactive  
Chip Enable to Power Active  
Chip Disable to Power Standby  
Byte Enable to Data Valid  
tOHA  
3
3
3
3
3
3
tLZCE  
tHZCE  
tLZOE  
[12, 15]  
8
8
10  
10  
15  
15  
0
0
0
0
0
0
tHZOE  
[12]  
tPU  
[12]  
tPD  
20  
10  
25  
12  
45  
20  
tDBE  
tLZBE  
-
Byte Enable to Output Active  
Byte Disable to Output Inactive  
0
0
0
tHZBE  
-
8
10  
15  
SRAM Write Cycle  
tWC  
tPWE  
tSCE  
tSD  
tWC  
Write Cycle Time  
20  
15  
15  
8
25  
20  
20  
10  
0
45  
30  
30  
15  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tWP  
tCW  
tDW  
tDH  
tAW  
tAS  
tWR  
tWZ  
tOW  
-
Write Pulse Width  
Chip Enable To End of Write  
Data Setup to End of Write  
Data Hold After End of Write  
Address Setup to End of Write  
Address Setup to Start of Write  
Address Hold After End of Write  
Write Enable to Output Disable  
Output Active after End of Write  
Byte Enable to End of Write  
tHD  
0
tAW  
15  
0
20  
0
30  
0
tSA  
tHA  
0
0
0
tHZWE  
8
10  
15  
tLZWE  
tBW  
3
3
3
15  
20  
30  
Switching Waveforms  
Figure 6. SRAM Read Cycle #1: Address Controlled[13, 14, 17]  
tRC  
Address  
Address Valid  
tAA  
Output Data Valid  
Previous Data Valid  
tOHA  
Data Output  
Notes  
13. WE must be HIGH during SRAM read cycles.  
14. Device is continuously selected with CE, OE and BHE / BLE LOW.  
15. Measured ±200 mV from steady state output voltage.  
16. If WE is LOW when CE goes LOW, the outputs remain in the high impedance state.  
17. HSB must remain HIGH during read and write cycles.  
Document #: 001-49918 Rev. *A  
Page 10 of 23  
         
PRELIMINARY  
CY14B104LA, CY14B104NA  
Figure 7. SRAM Read Cycle #2: CE and OE Controlled[3, 13, 17]  
Address  
CE  
Address Valid  
tRC  
tHZCE  
tACE  
tAA  
tLZCE  
tHZOE  
tDOE  
OE  
tHZBE  
tLZOE  
tDBE  
BHE, BLE  
tLZBE  
High Impedance  
Standby  
Data Output  
Output Data Valid  
tPU  
tPD  
Active  
ICC  
Figure 8. SRAM Write Cycle #1: WE Controlled[3, 16, 17, 18]  
tWC  
Address  
Address Valid  
tSCE  
tHA  
CE  
tBW  
BHE, BLE  
tAW  
tPWE  
WE  
Data Input  
Data Output  
tSA  
tHD  
tSD  
Input Data Valid  
tLZWE  
tHZWE  
High Impedance  
Previous Data  
Note  
18. CE or WE must be >V during address transitions.  
IH  
Document #: 001-49918 Rev. *A  
Page 11 of 23  
 
PRELIMINARY  
CY14B104LA, CY14B104NA  
Figure 9. SRAM Write Cycle #2: CE Controlled[3, 16, 17, 18]  
tWC  
Address Valid  
Address  
tSA  
tSCE  
tHA  
CE  
tBW  
BHE, BLE  
tPWE  
WE  
tHD  
tSD  
Input Data Valid  
Data Input  
High Impedance  
Data Output  
Figure 10. SRAM Write Cycle #3: BHE and BLE Controlled[3, 16, 17, 18]  
tWC  
Address  
CE  
Address Valid  
tSCE  
tSA  
tHA  
tBW  
BHE, BLE  
WE  
tAW  
tPWE  
tSD  
tHD  
Data Input  
Input Data Valid  
High Impedance  
Data Output  
Document #: 001-49918 Rev. *A  
Page 12 of 23  
PRELIMINARY  
CY14B104LA, CY14B104NA  
AutoStore/Power Up RECALL  
20 ns  
25 ns  
45 ns  
Parameters  
Description  
Unit  
Min  
Max  
20  
Min  
Max  
20  
Min  
Max  
20  
tHRECALL  
Power Up RECALL Duration  
STORE Cycle Duration  
ms  
ms  
ns  
V
tSTORE  
8
8
8
tDELAY  
Time Allowed to Complete SRAM Cycle  
Low Voltage Trigger Level  
VCC Rise Time  
20  
25  
25  
VSWITCH  
2.65  
2.65  
2.65  
tVCCRISE  
150  
150  
150  
μs  
V
VHDIS  
HSB Output Driver Disable Voltage  
HSB To Output Active Time  
HSB High Active Time  
1.9  
5
1.9  
5
1.9  
5
tLZHSB  
tHHHD  
μs  
ns  
500  
500  
500  
Switching Waveforms  
Figure 11. AutoStore or Power Up RECALL[22]  
VSWITCH  
VHDIS  
Note20  
Note20  
VVCCRISE  
tSTORE  
tSTORE  
Note23  
tHHHD  
tHHHD  
HSB OUT  
Autostore  
tDELAY  
tLZHSB  
tLZHSB  
tDELAY  
POWER-  
UP  
RECALL  
tHRECALL  
tHRECALL  
Read & Write  
Inhibited  
(RWI)  
Read & Write  
Read & Write  
POWER-UP  
RECALL  
BROWN  
OUT  
Autostore  
POWER  
DOWN  
Autostore  
POWER-UP  
RECALL  
Notes  
19. t  
starts from the time V rises above V  
SWITCH.  
HRECALL  
CC  
20. If an SRAM write has not taken place since the last nonvolatile cycle, no AutoStore or Hardware Store takes place.  
21. On a Hardware STORE, Software Store / Recall, AutoStore Enable / Disable and AutoStore initiation, SRAM operation continues to be enabled for time t  
.
DELAY  
22. Read and write cycles are ignored during STORE, RECALL, and while VCC is below V  
SWITCH.  
23. HSB pin is driven HIGH to VCC only by internal 100 kOhm resistor, HSB driver is disabled.  
Document #: 001-49918 Rev. *A  
Page 13 of 23  
       
PRELIMINARY  
CY14B104LA, CY14B104NA  
Software Controlled STORE/RECALL Cycle  
In the following table, the software controlled STORE and RECALL cycle parameters are listed.[24, 25]  
20 ns  
Max  
25 ns  
Max  
45 ns  
Max  
Parameters  
tRC  
tSA  
tCW  
tHA  
tRECALL  
Description  
Unit  
Min  
20  
0
Min  
25  
0
Min  
45  
0
STORE/RECALL Initiation Cycle Time  
Address Setup Time  
ns  
ns  
ns  
ns  
μs  
Clock Pulse Width  
15  
0
20  
0
30  
0
Address Hold Time  
RECALL Duration  
200  
200  
200  
Switching Waveforms  
Figure 12. CE and OE Controlled Software STORE/RECALL Cycle[25]  
W5&  
W5&  
$GGUHVV  
&(  
$GGUHVVꢀꢍꢇ  
W&:  
$GGUHVVꢀꢍꢊ  
W&:  
W6$  
W+$  
W+$  
W+$  
W6$  
W+$  
2(  
W+++'  
W+=&(  
+6%ꢀꢎ6725(ꢀRQO\ꢏ  
'4ꢀꢎ'$7$ꢏ  
W'(/$<  
W/=&(  
W/=+6%  
+LJKꢀ,PSHGDQFH  
W6725(ꢅW5(&$//  
5:,  
Figure 13. AutoStore Enable/Disable Cycle  
W5&  
W5&  
$GGUHVV  
&(  
$GGUHVVꢀꢍꢇ  
W&:  
$GGUHVVꢀꢍꢊ  
W&:  
W6$  
W+$  
W+$  
W+$  
W6$  
W+$  
2(  
W66  
W+=&(  
W/=&(  
W'(/$<  
'4ꢀꢎ'$7$ꢏ  
5:,  
Notes  
24. The software sequence is clocked with CE controlled or OE controlled reads.  
25. The six consecutive addresses must be read in the order listed in Table 1 on page 5. WE must be HIGH during all six consecutive cycles.  
Document #: 001-49918 Rev. *A  
Page 14 of 23  
   
PRELIMINARY  
CY14B104LA, CY14B104NA  
Hardware STORE Cycle  
20 ns  
25 ns  
45 ns  
Parameters  
Description  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
tDHSB  
tPHSB  
HSB To Output Active Time when write latch not set  
Hardware STORE Pulse Width  
20  
25  
25  
ns  
ns  
μs  
15  
15  
15  
tSS  
Soft Sequence Processing Time  
100  
100  
100  
Switching Waveforms  
Figure 14. Hardware STORE Cycle[20]  
Write latch set  
tPHSB  
HSB (IN)  
tSTORE  
tHHHD  
tDELAY  
HSB (OUT)  
DQ (Data Out)  
RWI  
tLZHSB  
Write latch not set  
tPHSB  
HSB pin is driven high to VCC only by Internal  
100kOhm resistor,  
HSB (IN)  
HSB driver is disabled  
SRAM is disabled as long as HSB (IN) is driven low.  
tDELAY  
tDHSB  
tDHSB  
HSB (OUT)  
RWI  
Figure 15. Soft Sequence Processing[26, 27]  
tSS  
tSS  
Soft Sequence  
Command  
Soft Sequence  
Command  
Address  
Address #1  
tSA  
Address #6  
tCW  
Address #1  
Address #6  
tCW  
CE  
VCC  
Notes  
26. This is the amount of time it takes to take action on a soft sequence command. Vcc power must remain HIGH to effectively register command.  
27. Commands such as STORE and RECALL lock out I/O until operation is complete which further increases this time. See the specific command.  
Document #: 001-49918 Rev. *A  
Page 15 of 23  
   
PRELIMINARY  
CY14B104LA, CY14B104NA  
Truth Table For SRAM Operations  
HSB should remain HIGH for SRAM Operations.  
For x8 Configuration  
CE  
H
L
WE  
X
OE  
X
Inputs/Outputs[2]  
Mode  
Deselect/Power down  
Read  
Power  
Standby  
High Z  
H
L
Data Out (DQ0–DQ7);  
High Z  
Active  
Active  
Active  
L
H
H
Output Disabled  
Write  
L
L
X
Data in (DQ0–DQ7);  
For x16 Configuration  
CE  
H
L
WE  
X
OE  
X
BHE[3] BLE[3]  
Inputs/Outputs[2]  
Mode  
Deselect/Power down  
Output Disabled  
Read  
Power  
X
H
L
X
H
L
High-Z  
Standby  
Active  
Active  
Active  
X
X
High-Z  
L
H
L
Data Out (DQ0–DQ15)  
L
H
L
H
L
Data Out (DQ0–DQ7);  
DQ8–DQ15 in High-Z  
Read  
L
H
L
L
H
Data Out (DQ8–DQ15);  
DQ0–DQ7 in High-Z  
Read  
Active  
L
L
L
L
L
H
H
H
L
H
H
H
X
X
L
H
L
L
L
H
L
L
High-Z  
High-Z  
High-Z  
Output Disabled  
Output Disabled  
Output Disabled  
Write  
Active  
Active  
Active  
Active  
Active  
L
Data In (DQ0–DQ15)  
L
H
Data In (DQ0–DQ7);  
DQ8–DQ15 in High-Z  
Write  
L
L
X
L
H
Data In (DQ8–DQ15);  
DQ0–DQ7 in High-Z  
Write  
Active  
Document #: 001-49918 Rev. *A  
Page 16 of 23  
 
PRELIMINARY  
CY14B104LA, CY14B104NA  
Ordering Information  
Speed  
Package  
Operating  
Ordering Code  
Package Type  
(ns)  
Diagram  
51-85087  
51-85087  
51-85087  
51-85087  
51-85128  
51-85128  
51-85128  
51-85128  
51-85087  
51-85087  
51-85087  
51-85087  
51-85128  
51-85128  
51-85128  
51-85128  
51-85160  
51-85160  
51-85160  
51-85160  
51-85087  
51-85087  
51-85087  
51-85087  
51-85128  
51-85128  
51-85128  
51-85128  
51-85087  
51-85087  
51-85087  
51-85087  
51-85128  
51-85128  
51-85128  
51-85128  
51-85128  
51-85160  
51-85160  
51-85160  
51-85160  
Range  
20  
CY14B104LA-ZS20XCT  
CY14B104LA-ZS20XC  
CY14B104LA-ZS20XIT  
CY14B104LA-ZS20XI  
CY14B104LA-BA20XCT  
CY14B104LA-BA20XC  
CY14B104LA-BA20XIT  
CY14B104LA-BA20XI  
CY14B104NA-ZS20XCT  
CY14B104NA-ZS20XC  
CY14B104NA-ZS20XIT  
CY14B104NA-ZS20XI  
CY14B104NA-BA20XCT  
CY14B104NA-BA20XC  
CY14B104NA-BA20XIT  
CY14B104NA-BA20XI  
CY14B104NA-ZSP20XCT  
CY14B104NA-ZSP20XC  
CY14B104NA-ZSP20XIT  
CY14B104NA-ZSP20XI  
CY14B104LA-ZS25XCT  
CY14B104LA-ZS25XC  
CY14B104LA-ZS25XIT  
CY14B104LA-ZS25XI  
CY14B104LA-BA25XCT  
CY14B104LA-BA25XC  
CY14B104LA-BA25XIT  
CY14B104LA-BA25XI  
CY14B104NA-ZS25XCT  
CY14B104NA-ZS25XC  
CY14B104NA-ZS25XIT  
CY14B104NA-ZS25XI  
CY14B104NA-BA25XCT  
CY14B104NA-BA25XC  
CY14B104NA-BA25XIT  
CY14B104NA-BA25XI  
CY14B104NA-BA25I  
44-pin TSOP II  
44-pin TSOP II  
44-pin TSOP II  
44-pin TSOP II  
48-ball FBGA  
48-ball FBGA  
48-ball FBGA  
48-ball FBGA  
44-pin TSOP II  
44-pin TSOP II  
44-pin TSOP II  
44-pin TSOP II  
48-ball FBGA  
48-ball FBGA  
48-ball FBGA  
48-ball FBGA  
54-pin TSOP II  
54-pin TSOP II  
54-pin TSOP II  
54-pin TSOP II  
44-pin TSOP II  
44-pin TSOP II  
44-pin TSOP II  
44-pin TSOP II  
48-ball FBGA  
48-ball FBGA  
48-ball FBGA  
48-ball FBGA  
44-pin TSOP II  
44-pin TSOP II  
44-pin TSOP II  
44-pin TSOP II  
48-ball FBGA  
48-ball FBGA  
48-ball FBGA  
48-ball FBGA  
48-ball FBGA  
54-pin TSOP II  
54-pin TSOP II  
54-pin TSOP II  
54-pin TSOP II  
Commercial  
Industrial  
Commercial  
Industrial  
Commercial  
Industrial  
Commercial  
Industrial  
Commercial  
Industrial  
25  
Commercial  
Industrial  
Commercial  
Industrial  
Commercial  
Industrial  
Commercial  
Industrial  
CY14B104NA-ZSP25XCT  
CY14B104NA-ZSP25XC  
CY14B104NA-ZSP25XIT  
CY14B104NA-ZSP25XI  
Commercial  
Industrial  
Document #: 001-49918 Rev. *A  
Page 17 of 23  
PRELIMINARY  
CY14B104LA, CY14B104NA  
Ordering Information (continued)  
Speed  
Package  
Operating  
Ordering Code  
(ns)  
Package Type  
Diagram  
51-85087  
51-85087  
51-85087  
51-85087  
51-85128  
51-85128  
51-85128  
51-85128  
51-85087  
51-85087  
51-85087  
51-85087  
51-85128  
51-85128  
51-85128  
51-85128  
51-85160  
51-85160  
51-85160  
51-85160  
Range  
45  
CY14B104LA-ZS45XCT  
CY14B104LA-ZS45XC  
CY14B104LA-ZS45XIT  
CY14B104LA-ZS45XI  
CY14B104LA-BA45XCT  
CY14B104LA-BA45XC  
CY14B104LA-BA45XIT  
CY14B104LA-BA45XI  
CY14B104NA-ZS45XCT  
CY14B104NA-ZS45XC  
CY14B104NA-ZS45XIT  
CY14B104NA-ZS45XI  
CY14B104NA-BA45XCT  
CY14B104NA-BA45XC  
CY14B104NA-BA45XIT  
CY14B104NA-BA45XI  
CY14B104NA-ZSP45XCT  
CY14B104NA-ZSP45XC  
CY14B104NA-ZSP45XIT  
CY14B104NA-ZSP45XI  
44-pin TSOP II  
44-pin TSOP II  
44-pin TSOP II  
44-pin TSOP II  
48-ball FBGA  
48-ball FBGA  
48-ball FBGA  
48-ball FBGA  
44-pin TSOP II  
44-pin TSOP II  
44-pin TSOP II  
44-pin TSOP II  
48-ball FBGA  
48-ball FBGA  
48-ball FBGA  
48-ball FBGA  
54-pin TSOP II  
54-pin TSOP II  
54-pin TSOP II  
54-pin TSOP II  
Commercial  
Industrial  
Commercial  
Industrial  
Commercial  
Industrial  
Commercial  
Industrial  
Commercial  
Industrial  
The above table contains Preliminary information. Contact your local Cypress sales representative for availability of these parts.  
Document #: 001-49918 Rev. *A  
Page 18 of 23  
PRELIMINARY  
CY14B104LA, CY14B104NA  
Part Numbering Nomenclature  
CY 14 B 104 L A -ZS P 20 X C T  
Option:  
T - Tape & Reel  
Blank - Std.  
Temperature:  
C - Commercial (0 to 70°C)  
I - Industrial (–40 to 85°C)  
X - Pb-Free  
Blank - SnPb  
Speed:  
20 - 20 ns  
25 - 25 ns  
45 - 45 ns  
P - 54 Pin  
Blank - 44 Pin/48 Ball  
Package:  
BA - 48 FBGA  
ZS - TSOP II  
Die Revision:  
Blank - No Rev  
A - 1st Rev  
Data Bus:  
L - x8  
N - x16  
Density:  
104 - 4 Mb  
Voltage:  
B - 3.0V  
NVSRAM  
14 - Auto Store + Software Store + Hardware Store  
Cypress  
Document #: 001-49918 Rev. *A  
Page 19 of 23  
PRELIMINARY  
CY14B104LA, CY14B104NA  
Package Diagrams  
Figure 16. 44-Pin TSOP II (51-85087)  
DIMENSION IN MM (INCH)  
MAX  
MIN.  
PIN 1 I.D.  
22  
1
R
O
E
K
A
X
S G  
EJECTOR PIN  
23  
44  
TOP VIEW  
BOTTOM VIEW  
10.262 (0.404)  
10.058 (0.396)  
0.400(0.016)  
0.300 (0.012)  
0.800 BSC  
(0.0315)  
BASE PLANE  
0.10 (.004)  
0.210 (0.0083)  
0.120 (0.0047)  
0°-5°  
18.517 (0.729)  
18.313 (0.721)  
0.597 (0.0235)  
0.406 (0.0160)  
SEATING  
PLANE  
51-85087-*A  
Document #: 001-49918 Rev. *A  
Page 20 of 23  
PRELIMINARY  
CY14B104LA, CY14B104NA  
Package Diagrams (continued)  
Figure 17. 48-Ball FBGA - 6 mm x 10 mm x 1.2 mm (51-85128)  
BOTTOM VIEW  
A1 CORNER  
TOP VIEW  
Ø0.05 M C  
Ø0.25 M C A B  
A1 CORNER  
Ø0.30 0.05(48X)  
1
2
3
4
5
6
6
5
4
3
2
1
A
A
B
C
D
B
C
D
E
E
F
F
G
G
H
H
1.875  
A
A
0.75  
B
6.00 0.10  
3.75  
B
6.00 0.10  
0.15(4X)  
SEATING PLANE  
C
51-85128-*D  
Document #: 001-49918 Rev. *A  
Page 21 of 23  
PRELIMINARY  
CY14B104LA, CY14B104NA  
Package Diagrams (continued)  
Figure 18. 54-Pin TSOP II (51-85160)  
51-85160-**  
Document #: 001-49918 Rev. *A  
Page 22 of 23  
PRELIMINARY  
CY14B104LA, CY14B104NA  
Document History Page  
Document Title: CY14B104LA/CY14B104NA 4 Mbit (512K x 8/256K x 16) nvSRAM  
Document Number: 001-49918  
Submission  
Rev. ECN No. Orig. of Change  
Description of Change  
Date  
**  
2606696  
2672700  
GVCH/PYRS  
GVCH/PYRS  
11/13/08  
03/12/09  
New Data Sheet  
*A  
Added best practices  
Added CY14B104NA-BA25I part number  
Added footnote12 for HZ/LZ parameters  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at cypress.com/sales.  
Products  
PSoC  
PSoC Solutions  
General  
Clocks & Buffers  
Wireless  
Low Power/Low Voltage  
Precision Analog  
LCD Drive  
Memories  
Image Sensors  
CAN 2.0b  
USB  
© Cypress Semiconductor Corporation, 2008-2009. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of  
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for  
medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as  
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems  
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document #: 001-49918 Rev. *A  
Revised March 11, 2009  
Page 23 of 23  
AutoStore and QuantumTrap are registered trademarks of Cypress Semiconductors. All other products and company names mentioned in this document are the trademarks of their respective holders.  

HP Hewlett Packard NVIDIA Quadro FX 3700 User Manual
GE 27920 User Manual
Franke Consumer Products Cooktop FPL 457 I XS 645H User Manual
Cobra Electronics CP 2507 User Manual
Bosch Appliances NKT 72 User Manual
A T International TL32300 User Manual
Asus JUMPERFREE A7V M User Manual
Asus CUSL2 User Manual
Alto Shaam AR 7E User Manual
Aiwa XD AX10 User Manual