| 	
		 Cheetah T10 SAS   
					ST3300555SS   
					ST3146755SS   
					ST373355SS   
				Contents   
					
					
					Scope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1   
					Standards, compliance and reference documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3   
					
					
					
					Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3   
					2.1.1 Electromagnetic compatibility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3   
					Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4   
					2.2.1 Electromagnetic compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4   
					Reference documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5   
					
					General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7   
					
					
					
					
					
					
					
					
					
					Standard features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8   
					Media description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8   
					Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8   
					Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9   
					Formatted capacities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9   
					Programmable drive capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9   
					Factory-installed accessories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9   
					Options (factory installed) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10   
					User-installed accessories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10   
					
					Performance characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11   
					
					
					Internal drive characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11   
					Seek time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11   
					
					
					
					Access time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11   
					
					General performance characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12   
					
					
					
					Start/stop time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12   
					Prefetch/multi-segmented cache control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13   
					Cache operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13   
					
					
					Caching write data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14   
					Prefetch operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14   
					
					Reliability specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15   
					
					Error rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15   
					
					
					
					
					Recoverable Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15   
					Unrecoverable Errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15   
					Seek errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16   
					Interface errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16   
					
					Reliability and service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16   
					
					
					
					
					
					
					
					Mean time between failure (MTBF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16   
					Preventive maintenance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16   
					Hot plugging the drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17   
					S.M.A.R.T. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17   
					Thermal monitor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18   
					Drive Self Test (DST). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19   
					Product warranty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21   
					
					Physical/electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23   
					
					
					AC power requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23   
					DC power requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23   
					
					
					
					Conducted noise immunity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25   
					Power sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25   
					Current profiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25   
					
					6.4   
					Power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29   
					Environmental limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32   
					Cheetah T10 SAS Product Manual, Rev. A   
					i 
				Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32   
					Relative humidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33   
					
					
					Air cleanliness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35   
					
					Acoustics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36   
					Electromagnetic susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36   
					
					Mechanical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36   
					
					
					
					
					
					
					
					
					
					Drive internal defects/errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37   
					Drive error recovery procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37   
					
					
					
					
					
					
					
					
					
					
					
					
					Drive orientation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41   
					Cooling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42   
					Drive mounting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43   
					Grounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43   
					
					
					
					
					
					
					task management responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45   
					
					
					
					
					
					
					
					
					
					Miscellaneous operating features and conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56   
					
					
					
					
					
					
					
					
					Physical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59   
					Connector requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59   
					
					Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60   
					
					
					
					
					
					
					Ready LED Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61   
					Differential signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62   
					10.0   
					
					ii   
					Cheetah T10 SAS Product Manual, Rev. A   
				List of Figures   
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					Figure 26.   
					Cheetah T10 SAS disc drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1   
					Typical ST3300555SS drive current profiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26   
					Typical ST3146755SS drive current profiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27   
					Typical ST373355SS drive current profiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28   
					ST3300555SS (3 Gbit) DC current and power vs. input/output operations per second . . . . . . . . . . . . . . . . .29   
					ST3300555SS (1.5 Gbit) DC current and power vs. input/output operations per second. . . . . . . . . . . . . . . .29   
					ST3146755SS (3 Gbit) DC current and power vs. input/output operations per second . . . . . . . . . . . . . . . . .30   
					ST3146755SS (1.5 Gbit) DC current and power vs. input/output operations per second. . . . . . . . . . . . . . . .30   
					
					ST373355SS (1.5 Gbit) DC current and power vs. input/output operations per second. . . . . . . . . . . . . . . . .31   
					Location of the HDA temperature check point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32   
					Recommended mounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34   
					Physical dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36   
					Physical interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41   
					Air flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42   
					Physical interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57   
					SAS connector dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58   
					SAS connector dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59   
					SAS transmitters and receivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61   
					
					Reveive tolerance eye mask. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63   
					Sinusoidal jitter mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64   
					Compliance interconnect test load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69   
					Zero-length test load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70   
					ISI loss example at 3.0 Gbps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70   
					ISI loss example at 1.5 Gbps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70   
					Cheetah T10 SAS Product Manual, Rev. A   
					1 
				2 
					Cheetah T10 SAS Product Manual, Rev. A   
				1.0   
					Scope   
					This manual describes Seagate Technology® LLC, Cheetah® SAS (Serial Attached SCSI) disc drives.   
					Cheetah drives support the SAS Protocol specifications to the extent described in this manual. The SAS Inter-   
					face Manual (part number 100293071) describes the general SAS characteristics of Cheetah T10 and other   
					Seagate SAS drives.   
					Figure 1.   
					Cheetah T10 SAS disc drive   
					Cheetah T10 SAS Product Manual, Rev. A   
					1 
					 
					 
					 
				2 
					Cheetah T10 SAS Product Manual, Rev. A   
				2.0   
					Standards, compliance and reference documents   
					The drive has been developed as a system peripheral to the highest standards of design and construction. The   
					drive depends on its host equipment to provide adequate power and environment for optimum performance   
					and compliance with applicable industry and governmental regulations. Special attention must be given in the   
					areas of safety, power distribution, shielding, audible noise control, and temperature regulation. In particular,   
					the drive must be securely mounted to guarantee the specified performance characteristics. Mounting by bot-   
					
					2.1   
					Standards   
					The Cheetah SAS family complies with Seagate standards as noted in the appropriate sections of this manual   
					and the Seagate SAS Interface Manual, part number 100293071.   
					The Cheetah disc drive is a UL recognized component per UL1950, CSA certified to CAN/CSA C22.2 No. 950-   
					95, and VDE certified to VDE 0805 and EN60950.   
					2.1.1   
					Electromagnetic compatibility   
					The drive, as delivered, is designed for system integration and installation into a suitable enclosure prior to   
					use. The drive is supplied as a subassembly and is not subject to Subpart B of Part 15 of the FCC Rules and   
					Regulations nor the Radio Interference Regulations of the Canadian Department of Communications.   
					The design characteristics of the drive serve to minimize radiation when installed in an enclosure that provides   
					reasonable shielding. The drive is capable of meeting the Class B limits of the FCC Rules and Regulations of   
					the Canadian Department of Communications when properly packaged; however, it is the user’s responsibility   
					to assure that the drive meets the appropriate EMI requirements in their system. Shielded I/O cables may be   
					required if the enclosure does not provide adequate shielding. If the I/O cables are external to the enclosure,   
					shielded cables should be used, with the shields grounded to the enclosure and to the host controller.   
					2.1.1.1   
					Electromagnetic susceptibility   
					As a component assembly, the drive is not required to meet any susceptibility performance requirements. It is   
					the responsibility of those integrating the drive within their systems to perform those tests required and design   
					their system to ensure that equipment operating in the same system as the drive or external to the system   
					does not adversely affect the performance of the drive. See Tables 2, 3 and 4, for DC power requirements.   
					Cheetah T10 SAS Product Manual, Rev. A   
					3 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
				2.2   
					Compliance   
					2.2.1   
					Electromagnetic compliance   
					Seagate uses an independent laboratory to confirm compliance with the directives/standards for CE Marking   
					and C-Tick Marking. The drive was tested in a representative system for typical applications. The selected sys-   
					tem represents the most popular characteristics for test platforms. The system configurations include:   
					• Typical current use microprocessor   
					• 3.5-inch floppy disc drive   
					• Keyboard   
					• Monitor/display   
					• Printer   
					• External modem   
					• Mouse   
					Although the test system with this Seagate model complies with the directives/standards, we cannot guarantee   
					that all systems will comply. The computer manufacturer or system integrator shall confirm EMC compliance   
					and provide the appropriate marking for their product.   
					Electromagnetic compliance for the European Union   
					If this model has the CE Marking it complies with the European Union requirements of the Electromagnetic   
					Compatibility Directive 89/336/EEC of 03 May 1989 as amended by Directive 92/31/EEC of 28 April 1992 and   
					Directive 93/68/EEC of 22 July 1993.   
					Australian C-Tick   
					If this model has the C-Tick Marking it complies with the Australia/New Zealand Standard AS/NZS3548 1995   
					and meets the Electromagnetic Compatibility (EMC) Framework requirements of Australia’s Spectrum Man-   
					agement Agency (SMA).   
					Korean MIC   
					If this model has the Korean Ministry of Information and Communication (MIC) logo, it complies with paragraph   
					1 of Article 11 of the Electromagnetic Compatibility (EMC) Control Regulation and meets the Electromagnetic   
					Compatibility Framework requirements of the Radio Research Laboratory (RRL) Ministry of Information and   
					Communication Republic of Korea.   
					Taiwanese BSMI   
					If this model has two Chinese words meaning “EMC certification” followed by an eight digit identification num-   
					ber, as a Marking, it complies with Chinese National Standard (CNS) 13438 and meets the Electromagnetic   
					Compatibility (EMC) Framework requirements of the Taiwanese Bureau of Standards, Metrology, and Inspec-   
					tion (BSMI).   
					4 
					Cheetah T10 SAS Product Manual, Rev. A   
					 
					 
				2.3   
					Reference documents   
					Cheetah T10 SAS Installation Guide   
					SCSI Commands Reference Manual   
					SAS Interface Manual   
					Seagate part number: 100433695   
					Seagate part number: 100293068   
					Seagate part number: 100293071   
					Applicable ANSI SAS documents   
					SFF-8323   
					3.5” Drive Form Factor with Serial Connector   
					HSS Backplane Design Guidelines   
					Multi Lane Copper Connector   
					SFF-8460   
					SFF-8470   
					SFF-8482   
					SAS Plug Connector   
					ANSI INCITS.xxx   
					Serial Attached SCSI (SAS) Standard (T10/1562-D)   
					ISO/IEC 14776-xxx SCSI Architecure Model-3 (SAM-3) Standard (T10/1561-D)   
					ISO/IEC 14776-xxx SCSI Primary Commands-3 (SPC-3) Standard (T10/1416-D)   
					ISO/IEC 14776-xxx SCSI Block Commands-2 (SBC-2) Standard (T10/1417-D)   
					ANSI Small Computer System Interface (SCSI) Documents   
					X3.270-1996(SCSI-3) Architecture Model   
					Seagate part number: 30553-001   
					Specification for Acoustic Test Requirement and Procedures   
					Package Test Specification   
					Seagate P/N 30190-001 (under 100 lb.)   
					Seagate P/N 30191-001 (over 100 lb.)   
					Package Test Specification   
					In case of conflict between this document and any referenced document, this document takes precedence.   
					Cheetah T10 SAS Product Manual, Rev. A   
					5 
					 
					 
					 
					 
					 
					 
					 
				6 
					Cheetah T10 SAS Product Manual, Rev. A   
				3.0   
					General description   
					Cheetah drives combine giant magnetoresistive (GMR) heads, partial response/maximum likelihood (PRML)   
					read channel electronics, embedded servo technology, and a Serial Attached SCSI (SAS) interface to provide   
					high performance, high capacity data storage for a variety of systems including engineering workstations, net-   
					work servers, mainframes, and supercomputers. The Serial Attached SCSI interface is designed to meet next-   
					generation computing demands for performance, scalability, flexibility and high-density storage requirements.   
					Cheetah drives are random access storage devices designed to support the Serial Attached SCSI Protocol as   
					described in the ANSI specifications, this document, and the SAS Interface Manual (part number 100293071)   
					which describes the general interface characteristics of this drive. Cheetah drives are classified as intelligent   
					peripherals and provide level 2 conformance (highest level) with the ANSI SCSI-1 standard. The SAS connec-   
					tors, cables and electrical interface are compatible with Serial ATA (SATA), giving future users the choice of   
					populating their systems with either SAS or SATA hard disc drives. This allows you to continue to leverage your   
					existing investment in SCSI while gaining a 3Gb/s serial data transfer rate.   
					The head and disc assembly (HDA) is sealed at the factory. Air recirculates within the HDA through a non-   
					replaceable filter to maintain a contamination-free HDA environment.   
					Note. Never disassemble the HDA and do not attempt to service items in the sealed enclosure (heads,   
					media, actuator, etc.) as this requires special facilities. The drive does not contain user-replaceable   
					parts. Opening the HDA for any reason voids your warranty.   
					Cheetah drives use a dedicated landing zone at the innermost radius of the media to eliminate the possibility of   
					destroying or degrading data by landing in the data zone. The heads automatically go to the landing zone when   
					power is removed from the drive.   
					An automatic shipping lock prevents potential damage to the heads and discs that results from movement dur-   
					ing shipping and handling. The shipping lock disengages and the head load process begins when power is   
					applied to the drive.   
					Cheetah drives decode track 0 location data from the servo data embedded on each surface to eliminate   
					mechanical transducer adjustments and related reliability concerns.   
					The drives also use a high-performance actuator assembly with a low-inertia, balanced, patented, straight arm   
					design that provides excellent performance with minimal power dissipation.   
					Cheetah T10 SAS Product Manual, Rev. A   
					7 
					 
					 
					 
					 
				3.1   
					Standard features   
					Cheetah drives have the following standard features:   
					• 1.5 / 3 Gbit Serial Attached SCSI (SAS) interface   
					• Integrated dual port SAS controller supporting the SCSI protocol   
					• Support for SAS expanders and fanout adapters   
					• Firmware downloadable using the SAS interface   
					• 128-deep task set (queue)   
					• Supports up to 32 initiators   
					• Jumperless configuration.   
					• User-selectable logical block size (512, 520, 524, or 528 bytes per logical block)   
					• Perpendicular recording technology   
					• Programmable logical block reallocation scheme   
					• Flawed logical block reallocation at format time   
					• Programmable auto write and read reallocation   
					• Reallocation of defects on command (Post Format)   
					• ECC maximum burst correction length of 320 bits   
					• No preventive maintenance or adjustments required   
					• Dedicated head landing zone   
					• Embedded servo design   
					• Automatic shipping lock   
					• Embedded servo design   
					• Self diagnostics performed when power is applied to the drive   
					• Zone bit recording (ZBR)   
					• Vertical, horizontal, or top down mounting   
					• Dynamic spindle brake   
					
					• Drive Self Test (DST)   
					• Background Media Scan (BGMS)   
					• Power Save   
					3.2   
					Media description   
					The media used on the drive has an aluminum substrate coated with a thin film magnetic material, overcoated   
					with a proprietary protective layer for improved durability and environmental protection.   
					3.3   
					Performance   
					• Programmable multi-segmentable cache buffer   
					• 300 Mbytes/sec maximum instantaneous data transfers.   
					• 15k RPM spindle. Average latency = 2.0 msec   
					• Background processing of queue   
					• Supports start and stop commands (spindle stops spinning)   
					• Adaptive seek velocity; improved seek performance   
					8 
					Cheetah T10 SAS Product Manual, Rev. A   
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
				3.4   
					Reliability   
					• 1,400,000 hour MTBF (Annualized Failure Rate (AFR) of 0.62%)   
					• Incorporates industry-standard Self-Monitoring Analysis and Reporting Technology (S.M.A.R.T.)   
					• 5-year warranty   
					3.5   
					Formatted capacities   
					Standard OEM models are formatted to 512 bytes per block. The block size is selectable at format time and   
					must be a multiple of 4 bytes. Users having the necessary equipment may modify the data block size before   
					issuing a format command and obtain different formatted capacities than those listed.   
					To provide a stable target capacity environment and at the same time provide users with flexibility if they   
					choose, Seagate recommends product planning in one of two modes:   
					1. Seagate designs specify capacity points at certain block sizes that Seagate guarantees current and future   
					products will meet. We recommend customers use this capacity in their project planning, as it ensures a   
					stable operating point with backward and forward compatibility from generation to generation. The current   
					guaranteed operating points for this product are:   
					Capacity (Blocks)   
					ST3300555SS   
					Decimal   
					ST3146755SS   
					Decimal   
					ST373355SS   
					Decimal   
					Sector Size   
					512   
					Hex   
					Hex   
					Hex   
					585,937,500   
					573,653,847   
					566,007,800   
					557,874,778   
					22ECB25C   
					22314357   
					21BC97F8   
					21407E5A   
					286,749,488   
					280,790,184   
					275,154,368   
					272,662,935   
					11177330   
					10BC84A8   
					106685C0   
					10408197   
					143,374,744   
					140,395,092   
					137,577,184   
					136,331,467   
					88BB998   
					85E4254   
					83342E0   
					82040CB   
					520   
					524   
					528   
					2. Seagate drives also may be used at the maximum available capacity at a given block size, but the excess   
					capacity above the guaranteed level will vary between other drive families and from generation to genera-   
					tion, depending on how each block size actually formats out for zone frequencies and splits over servo   
					bursts. This added capacity potential may range from 0.1 to 1.3 percent above the guaranteed capacities   
					listed above. Using the drives in this manner gives the absolute maximum capacity potential, but the user   
					must determine if the extra capacity potential is useful, or whether their assurance of backward and for-   
					ward compatibility takes precedence.   
					3.6   
					Programmable drive capacity   
					Using the Mode Select command, the drive can change its capacity to something less than maximum. See the   
					Mode Select (6) parameter list table in the SAS Interface Manual, part number 100293071. A value of zero in   
					the Number of Blocks field indicates that the drive will not change the capacity it is currently formatted to have.   
					A number other than zero and less than the maximum number of LBAs in the Number of Blocks field changes   
					the total drive capacity to the value in the Number of Blocks field. A value greater than the maximum number of   
					LBAs is rounded down to the maximum capacity.   
					3.7   
					Factory-installed accessories   
					OEM standard drives are shipped with the Cheetah T10 SAS Installation Guide, part number 100433695, and   
					the Safety and Regulatory Agency Specifications, part number 75789512 (unless otherwise specified).   
					Cheetah T10 SAS Product Manual, Rev. A   
					9 
					 
					 
					 
					 
					 
					 
					 
					 
					 
				3.8   
					Options (factory installed)   
					You may order the following items which are incorporated at the manufacturing facility during production or   
					packaged before shipping. Some of the options available are (not an exhaustive list of possible options):   
					• Other capacities can be ordered depending on sparing scheme and sector size requested.   
					• Single-unit shipping pack. The drive is normally shipped in bulk packaging to provide maximum protection   
					against transit damage. Units shipped individually require additional protection as provided by the single unit   
					shipping pack. Users planning single unit distribution should specify this option.   
					• The Cheetah T10 SAS Installation Guide, part number 100433695, is usually included with each standard   
					OEM drive shipped, but extra copies may be ordered.   
					• The Safety and Regulatory Agency Specifications, part number 75789512, is usually included with each   
					standard OEM drive shipped, but extra copies may be ordered.   
					3.9   
					User-installed accessories   
					The following accessory is available:   
					• Single-unit shipping pack.   
					10   
					Cheetah T10 SAS Product Manual, Rev. A   
					 
					 
					 
				4.0   
					Performance characteristics   
					This section provides detailed information concerning performance-related characteristics and features of   
					Cheetah drives.   
					4.1   
					Internal drive characteristics   
					ST3300555SS ST3146755SS ST373355SS   
					*,**   
					Drive capacity   
					300.0   
					8 
					146.8   
					4 
					73.4   
					2 
					Gbytes (formatted, rounded off value)   
					Read/write data heads   
					Tracks per surface (total)   
					Tracks per inch   
					Peak bits per inch   
					Areal Density   
					74,340   
					125,000   
					890k   
					74,340   
					125,000   
					890k   
					74,340   
					125,000   
					890k   
					110   
					Tracks (user accessible)   
					TPI   
					KBPI   
					Gbits/inch   
					2 
					110   
					110   
					Internal data rate   
					Disc rotation speed   
					Avg rotational latency   
					960 to 1607   
					15k   
					2.0   
					960 to 1607   
					15k   
					2.0   
					960 to 1607   
					15k   
					2.0   
					Mbits/sec (variable with zone)   
					rpm   
					msec   
					*One Gbyte equals one billion bytes when referring to hard drive capacity. Accessible capacity may vary depending on operating environment   
					and formatting.   
					**Rounded off value.   
					4.2   
					Seek time   
					
					100293071) for additional timing details.   
					4.2.1   
					Access time   
					1 2   
					, 
					Not Including controller overhead   
					(msec)   
					Read   
					3.5   
					Write   
					4.0   
					Average   
					Typical   
					Typical   
					Typical   
					Single track   
					Full stroke   
					0.2   
					0.4   
					6.8   
					7.5   
					1.   
					2.   
					Typical access times are measured under nominal conditions of temperature, voltage,   
					and horizontal orientation as measured on a representative sample of drives.   
					Access to data = access time + latency time.   
					Cheetah T10 SAS Product Manual, Rev. A   
					11   
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
				4.2.2   
					Format command execution time (minutes)   
					ST3300555SS   
					ST3146755SS   
					ST373355SS   
					145   
					90   
					45   
					60   
					Maximum (with verify)   
					90   
					30   
					Maximum (without verify)   
					Execution time measured from receipt of the last byte of the Command Descriptor Block (CDB) to the request   
					for a Status Byte Transfer to the Initiator (excluding connect/disconnect).   
					4.2.3   
					General performance characteristics   
					Sustainable disc transfer rate*:   
					Minimum   
					55.5 Mbytes/sec   
					93 Mbytes/sec   
					Maximum   
					SAS Interface maximum instantaneous transfer rate   
					300 Mbytes/sec* per port   
					(dual port = 600 Mbytes/sec*)   
					Logical block sizes   
					Default is 512-byte data blocks   
					Sector sizes variable to 512, 520, 524 an 528 bytes.   
					Read/write consecutive sectors on a track   
					Yes   
					Flaw reallocation performance impact (for flaws reallocated at format time using   
					the spare sectors per sparing zone reallocation scheme.)   
					Negligible   
					Average rotational latency   
					2.0 msec   
					*Assumes system ability to support the rates listed and no cable loss.   
					4.3   
					Start/stop time   
					The drive accepts the commands listed in the SAS Interface Manual less than 3 seconds after DC power has   
					been applied.   
					If the drive receives a NOTIFY (ENABLE SPINUP) primitive through either port and has not received a START   
					STOP UNIT command with the START bit equal to 0, the drive becomes ready for normal operations within 20   
					seconds (excluding the error recovery procedure).   
					If the drive receives a START STOP UNIT command with the START bit equal to 0 before receiving a NOTIFY   
					(ENABLE SPINUP) primitive, the drive waits for a START STOP UNIT command with the START bit equal to 1.   
					After receiving a START STOP UNIT command with the START bit equal to 1, the drive waits for a NOTIFY   
					(ENABLE SPINUP) primitive. After receiving a NOTIFY (ENABLE SPINUP) primitive through either port, the   
					drive becomes ready for normal operations within 20 seconds (excluding the error recovery procedure).   
					If the drive receives a START STOP UNIT command with the START bit and IMMED bit equal to 1 and does   
					not receive a NOTIFY (ENABLE SPINUP) primitive within 5 seconds, the drive fails the START STOP UNIT   
					command.   
					12   
					Cheetah T10 SAS Product Manual, Rev. A   
					 
					 
					 
					 
					 
					 
					 
					 
					 
				The START STOP UNIT command may be used to command the drive to stop the spindle. Stop time is 30 sec-   
					onds (maximum) from removal of DC power. There is no power control switch on the drive.   
					4.4   
					Prefetch/multi-segmented cache control   
					The drive provides a prefetch (read look-ahead) and multi-segmented cache control algorithms that in many   
					cases can enhance system performance. Cache refers to the drive buffer storage space when it is used in   
					cache operations. To select this feature, the host sends the Mode Select command with the proper values in   
					the applicable bytes in page 08h. Prefetch and cache operations are independent features from the standpoint   
					that each is enabled and disabled independently using the Mode Select command; however, in actual opera-   
					tion, the prefetch feature overlaps cache operation somewhat as described in sections 4.5.1 and 4.5.2.   
					All default cache and prefetch mode parameter values (Mode Page 08h) for standard OEM versions of this   
					
					4.5   
					Cache operation   
					Note. Refer to the SAS Interface Manual for more detail concerning the cache bits.   
					Of the 16 Mbytes physical buffer space in the drive, approximately 13,000 kbytes can be used as a cache. The   
					buffer is divided into logical segments from which data is read and to which data is written.   
					The drive keeps track of the logical block addresses of the data stored in each segment of the buffer. If the   
					cache is enabled (see RCD bit in the SAS Interface Manual), data requested by the host with a read command   
					is retrieved from the buffer, if possible, before any disc access is initiated. If cache operation is not enabled, the   
					buffer is still used, but only as circular buffer segments during disc medium read operations (disregarding   
					Prefetch operation for the moment). That is, the drive does not check in the buffer segments for the requested   
					read data, but goes directly to the medium to retrieve it. The retrieved data merely passes through some buffer   
					segment on the way to the host. All data transfers to the host are in accordance with buffer-full ratio rules. See   
					the explanation provided with the information about Mode Page 02h (disconnect/reconnect control) in the SAS   
					Interface Manual.   
					The following is a simplified description of the prefetch/cache operation:   
					Case A—read command is received and all of the requested logical blocks are already in the cache:   
					1. Drive transfers the requested logical blocks to the initiator.   
					Case B—A Read command requests data, and at least one requested logical block is not in any segment of   
					the cache:   
					1. The drive fetches the requested logical blocks from the disc and transfers them into a segment, and then   
					from there to the host in accordance with the Mode Select Disconnect/Reconnect parameters, page 02h.   
					
					Each cache segment is actually a self-contained circular buffer whose length is an integer number of logical   
					blocks. The drive dynamically creates and removes segments based on the workload. The wrap-around capa-   
					bility of the individual segments greatly enhances the cache’s overall performance.   
					Note. The size of each segment is not reported by Mode Sense command page 08h, bytes 14 and 15.   
					The value 0XFFFF is always reported regardless of the actual size of the segment. Sending a size   
					specification using the Mode Select command (bytes 14 and 15) does not set up a new segment   
					size. If the STRICT bit in Mode page 00h (byte 2, bit 1) is set to one, the drive responds as it does   
					for any attempt to change an unchangeable parameter.   
					Cheetah T10 SAS Product Manual, Rev. A   
					13   
					 
					 
					 
					 
					 
					 
					 
					 
					 
				4.5.1   
					Caching write data   
					Write caching is a write operation by the drive that makes use of a drive buffer storage area where the data to   
					be written to the medium is stored while the drive performs the Write command.   
					If read caching is enabled (RCD=0), then data written to the medium is retained in the cache to be made avail-   
					able for future read cache hits. The same buffer space and segmentation is used as set up for read functions.   
					The buffer segmentation scheme is set up or changed independently, having nothing to do with the state of   
					RCD. When a write command is issued, if RCD=0, the cache is first checked to see if any logical blocks that   
					are to be written are already stored in the cache from a previous read or write command. If there are, the   
					respective cache segments are cleared. The new data is cached for subsequent Read commands.   
					If the number of write data logical blocks exceed the size of the segment being written into, when the end of the   
					segment is reached, the data is written into the beginning of the same cache segment, overwriting the data that   
					was written there at the beginning of the operation; however, the drive does not overwrite data that has not yet   
					been written to the medium.   
					If write caching is enabled (WCE=1), then the drive may return Good status on a write command after the data   
					has been transferred into the cache, but before the data has been written to the medium. If an error occurs   
					while writing the data to the medium, and Good status has already been returned, a deferred error will be gen-   
					erated.   
					The Synchronize Cache command may be used to force the drive to write all cached write data to the medium.   
					Upon completion of a Synchronize Cache command, all data received from previous write commands will have   
					been written to the medium.   
					
					4.5.2   
					Prefetch operation   
					If the Prefetch feature is enabled, data in contiguous logical blocks on the disc immediately beyond that which   
					was requested by a Read command are retrieved and stored in the buffer for immediate transfer from the   
					buffer to the host on subsequent Read commands that request those logical blocks (this is true even if cache   
					operation is disabled). Though the prefetch operation uses the buffer as a cache, finding the requested data in   
					the buffer is a prefetch hit, not a cache operation hit.   
					To enable Prefetch, use Mode Select page 08h, byte 12, bit 5 (Disable Read Ahead - DRA bit). DRA bit = 0   
					enables prefetch.   
					The drive does not use the Max Prefetch field (bytes 8 and 9) or the Prefetch Ceiling field (bytes 10 and 11).   
					When prefetch (read look-ahead) is enabled (enabled by DRA = 0), the drive enables prefetch of contiguous   
					blocks from the disc when it senses that a prefetch hit will likely occur. The drive disables prefetch when it   
					decides that a prefetch hit is not likely to occur.   
					14   
					Cheetah T10 SAS Product Manual, Rev. A   
					 
					 
					 
				5.0   
					Reliability specifications   
					The following reliability specifications assume correct host and drive operational interface, including all inter-   
					face timings, power supply voltages, environmental requirements and drive mounting constraints.   
					Seek error rate:   
					Less than 10 errors in 108 seeks   
					1 
					Read Error Rates   
					Recovered Data   
					Unrecovered Data   
					Miscorrected Data   
					Less than 10 errors in 1012 bits transferred (OEM default settings)   
					Less than 1 sector in 1016 bits transferred   
					Less than 1 sector in 1021 bits transferred   
					Less than 1 error in 1012 bits transferred   
					1,400,000 hours   
					Interface error rate:   
					MTBF   
					Preventive maintenance:   
					None required   
					1.   
					Error rate specified with automatic retries and data correction with ECC enabled and all flaws reallocated.   
					5.1   
					Error rates   
					The error rates stated in this manual assume the following:   
					• The drive is operated per this specification using DC power as defined in this manual (see Section 6.2).   
					• Errors caused by host system failures are excluded from error rate computations.   
					• Assume random data.   
					• Default OEM error recovery settings are applied. This includes AWRE, ARRE, full read retries, full write   
					retries and full retry time.   
					5.1.1   
					Recoverable Errors   
					Recovereable errors are those detected and corrected by the drive, and do not require user intervention.   
					Recoverable Data errors will use correction, although ECC on-the-fly is not considered for purposes of recov-   
					ered error specifications.   
					Recovered Data error rate is determined using read bits transferred for recoverable errors occurring during a   
					read, and using write bits transferred for recoverable errors occurring during a write.   
					5.1.2   
					Unrecoverable Errors   
					Unrecoverable Data Errors (Sense Key = 03h) are specified at less than 1 sector in error per 1016 bits trans-   
					ferred. Unrecoverable Data Errors resulting from the same cause are treated as 1 error for that block.   
					Cheetah T10 SAS Product Manual, Rev. A   
					15   
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
				5.1.3   
					Seek errors   
					A seek error is defined as a failure of the drive to position the heads to the addressed track. After detecting an   
					initial seek error, the drive automatically performs an error recovery process. If the error recovery process fails,   
					a seek positioning error (Error code = 15h or 02h) will be reported with a Hardware error (04h) in the Sense   
					8 
					Key. Recoverable seek errors are specified at Less than 10 errors in 10 seeks. Unrecoverable seek errors   
					(Sense Key = 04h) are classified as drive failures.   
					5.1.4   
					Interface errors   
					An interface error is defined as a failure of the receiver on a port to recover the data as transmitted by the   
					device port connected to the receiver. The error may be detected as a running disparity error, illegal code, loss   
					of word sync, or CRC error.   
					5.2   
					Reliability and service   
					You can enhance the reliability of Cheetah disc drives by ensuring that the drive receives adequate cooling.   
					Section 6.0 provides temperature measurements and other information that may be used to enhance the ser-   
					
					5.2.1   
					Mean time between failure (MTBF)   
					The production disc drive shall achieve a MTBF of 1,400,000 hours when operated in an environment that   
					ensures the HDA case temperatures specified in Section 6.4 are not exceeded. Short-term excursions up to   
					the specification limits of the operating environment will not affect MTBF performance. Continual or sustained   
					operation at case temperatures above the values shown in Section 6.4.1 may degrade product reliability.   
					The MTBF target is specified as device power-on hours (POH) for all drives in service per failure.   
					MTBF =   
					Estimate power-on operating hours in the period   
					-----------------------------------------------------------------   
					Number of drive failures in the period   
					Estimated power-on operation hours means power-up hours per disc drive times the total number of disc   
					drives in service. Each disc drive shall have accumulated at least nine months of operation. Data shall be cal-   
					culated on a rolling average base for a minimum period of six months.   
					MTBF is based on the following assumptions:   
					• 8,760 power-on hours per year.   
					• 250 average on/off cycles per year.   
					• Operations at nominal voltages.   
					• Systems will provide adequate cooling to ensure the case temperatures specified in Section 6.4.1 are not   
					exceeded.   
					Drive failure means any stoppage or substandard performance caused by drive malfunction.   
					A S.M.A.R.T. predictive failure indicates that the drive is deteriorating to an imminent failure and is considered   
					an MTBF hit.   
					5.2.2   
					Preventive maintenance   
					No routine scheduled preventive maintenance is required.   
					16   
					Cheetah T10 SAS Product Manual, Rev. A   
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
				5.2.3   
					Hot plugging the drive   
					When a disc is powered on by switching the power or hot plugged, the drive runs a self test before attempting   
					to communicate on its’ interfaces. When the self test completes successfully, the drive initiates a Link Reset   
					starting with OOB. An attached device should respond to the link reset. If the link reset attempt fails, or any   
					time the drive looses sync, the drive initiated link reset. The drive will initiate link reset once per second but   
					alternates between port A and B. Therefore each port will attempt a link reset once per 2 seconds assuming   
					both ports are out of sync..   
					If the self-test fails, the does not respond to link reset on the failing port.   
					Note. It is the responsibility of the systems integrator to assure that no temperature, energy, voltage haz-   
					ard, or ESD potential hazard is presented during the hot connect/disconnect operation. Discharge   
					the static electricity from the drive carrier prior to inserting it into the system.   
					Caution. The drive motor must come to a complete stop prior to changing the plane of operation. This time is   
					required to insure data integrity.   
					5.2.4   
					S.M.A.R.T.   
					S.M.A.R.T. is an acronym for Self-Monitoring Analysis and Reporting Technology. This technology is intended   
					to recognize conditions that indicate imminent drive failure and is designed to provide sufficient warning of a   
					failure to allow you to back up the data before an actual failure occurs.   
					Note. The drive’s firmware monitors specific attributes for degradation over time but can’t predict instanta-   
					neous drive failures.   
					Each monitored attribute has been selected to monitor a specific set of failure conditions in the operating per-   
					formance of the drive and the thresholds are optimized to minimize “false” and “failed” predictions.   
					Controlling S.M.A.R.T.   
					The operating mode of S.M.A.R.T. is controlled by the DEXCPT and PERF bits on the Informational Exceptions   
					Control mode page (1Ch). Use the DEXCPT bit to enable or disable the S.M.A.R.T. feature. Setting the DEX-   
					CPT bit disables all S.M.A.R.T. functions. When enabled, S.M.A.R.T. collects on-line data as the drive performs   
					normal read and write operations. When the PERF bit is set, the drive is considered to be in “On-line Mode   
					Only” and will not perform off-line functions.   
					You can measure off-line attributes and force the drive to save the data by using the Rezero Unit command.   
					Forcing S.M.A.R.T. resets the timer so that the next scheduled interrupt is in two hours.   
					You can interrogate the drive through the host to determine the time remaining before the next scheduled mea-   
					surement and data logging process occurs. To accomplish this, issue a Log Sense command to log page 0x3E.   
					This allows you to control when S.M.A.R.T. interruptions occur. Forcing S.M.A.R.T. with the RTZ command   
					resets the timer.   
					Performance impact   
					S.M.A.R.T. attribute data is saved to the disc so that the events that caused a predictive failure can be recre-   
					ated. The drive measures and saves parameters once every two hours subject to an idle period on the drive   
					interfaces. The process of measuring off-line attribute data and saving data to the disc is uninterruptable. The   
					maximum on-line only processing delay is summarized below:   
					Maximum processing delay   
					On-line only delay   
					Fully-enabled delay   
					DEXCPT = 0, PERF = 1   
					DEXCPT = 0, PERF = 0   
					42 milliseconds   
					S.M.A.R.T. delay times   
					163 milliseconds   
					Cheetah T10 SAS Product Manual, Rev. A   
					17   
					 
					 
					 
					 
				Reporting control   
					Reporting is controlled by the MRIE bits in the Informational Exceptions Control mode page (1Ch). Subject to   
					the reporting method, the firmware will issue to the host an 01-5Dxx sense code. The error code is preserved   
					through bus resets and power cycles.   
					Determining rate   
					S.M.A.R.T. monitors the rate at which errors occur and signals a predictive failure if the rate of degraded errors   
					increases to an unacceptable level. To determine rate, error events are logged and compared to the number of   
					total operations for a given attribute. The interval defines the number of operations over which to measure the   
					rate. The counter that keeps track of the current number of operations is referred to as the Interval Counter.   
					S.M.A.R.T. measures error rates. All errors for each monitored attribute are recorded. A counter keeps track of   
					the number of errors for the current interval. This counter is referred to as the Failure Counter.   
					Error rate is the number of errors per operation. The algorithm that S.M.A.R.T. uses to record rates of error is to   
					set thresholds for the number of errors and their interval. If the number of errors exceeds the threshold before   
					the interval expires, the error rate is considered to be unacceptable. If the number of errors does not exceed   
					the threshold before the interval expires, the error rate is considered to be acceptable. In either case, the inter-   
					val and failure counters are reset and the process starts over.   
					Predictive failures   
					S.M.A.R.T. signals predictive failures when the drive is performing unacceptably for a period of time. The firm-   
					ware keeps a running count of the number of times the error rate for each attribute is unacceptable. To accom-   
					plish this, a counter is incremented each time the error rate is unacceptable and decremented (not to exceed   
					zero) whenever the error rate is acceptable. If the counter continually increments such that it reaches the pre-   
					dictive threshold, a predictive failure is signaled. This counter is referred to as the Failure History Counter.   
					There is a separate Failure History Counter for each attribute.   
					5.2.5   
					Thermal monitor   
					Cheetah drives implement a temperature warning system which:   
					1. Signals the host if the temperature exceeds a value which would threaten the drive.   
					2. Signals the host if the temperature exceeds a user-specified value.   
					3. Saves a S.M.A.R.T. data frame on the drive which exceeds the threatening temperature value.   
					A temperature sensor monitors the drive temperature and issues a warning over the interface when the tem-   
					perature exceeds a set threshold. The temperature is measured at power-up and then at ten-minute intervals   
					after power-up.   
					The thermal monitor system generates a warning code of 01-0B01 when the temperature exceeds the speci-   
					fied limit in compliance with the SCSI standard. The drive temperature is reported in the FRU code field of   
					mode sense data. You can use this information to determine if the warning is due to the temperature exceeding   
					the drive threatening temperature or the user-specified temperature.   
					This feature is controlled by the Enable Warning (EWasc) bit, and the reporting mechanism is controlled by the   
					Method of Reporting Informational Exceptions field (MRIE) on the Informational Exceptions Control (IEC)   
					mode page (1Ch).   
					The current algorithm implements two temperature trip points. The first trip point is set at 68°C which is the   
					maximum temperature limit according to the drive specification. The second trip point is user-selectable using   
					the Log Select command. The reference temperature parameter in the temperature log page (see Table 1) can   
					18   
					Cheetah T10 SAS Product Manual, Rev. A   
					 
				be used to set this trip point. The default value for this drive is 68°C, however, you can set it to any value in the   
					range of 0 to 68°C. If you specify a temperature greater than 68°C in this field, the temperature is rounded   
					down to 68°C. A sense code is sent to the host to indicate the rounding of the parameter field.   
					Table 1:   
					Temperature Log Page (0Dh)   
					Parameter Code   
					0000h   
					Description   
					Primary Temperature   
					Reference Temperature   
					0001h   
					5.2.6   
					Drive Self Test (DST)   
					Drive Self Test (DST) is a technology designed to recognize drive fault conditions that qualify the drive as a   
					failed unit. DST validates the functionality of the drive at a system level.   
					There are two test coverage options implemented in DST:   
					1. Extended test   
					2. Short text   
					The most thorough option is the extended test that performs various tests on the drive and scans every logical   
					block address (LBA) of the drive. The short test is time-restricted and limited in length—it does not scan the   
					entire media surface, but does some fundamental tests and scans portions of the media.   
					If DST encounters an error during either of these tests, it reports a fault condition. If the drive fails the test,   
					remove it from service and return it to Seagate for service.   
					5.2.6.1   
					DST failure definition   
					The drive will present a “diagnostic failed” condition through the self-tests results value of the diagnostic log   
					page if a functional failure is encountered during DST. The channel and servo parameters are not modified to   
					test the drive more stringently, and the number of retries are not reduced. All retries and recovery processes   
					are enabled during the test. If data is recoverable, no failure condition will be reported regardless of the number   
					of retries required to recover the data.   
					The following conditions are considered DST failure conditions:   
					• Seek error after retries are exhausted   
					• Track-follow error after retries are exhausted   
					• Read error after retries are exhausted   
					• Write error after retries are exhausted   
					Recovered errors will not be reported as diagnostic failures.   
					5.2.6.2   
					Implementation   
					This section provides all of the information necessary to implement the DST function on this drive.   
					Cheetah T10 SAS Product Manual, Rev. A   
					19   
					 
					 
				5.2.6.2.1   
					State of the drive prior to testing   
					The drive must be in a ready state before issuing the Send Diagnostic command. There are multiple reasons   
					why a drive may not be ready, some of which are valid conditions, and not errors. For example, a drive may be   
					in process of doing a format, or another DST. It is the responsibility of the host application to determine the “not   
					ready” cause.   
					While not technically part of DST, a Not Ready condition also qualifies the drive to be returned to Seagate as a   
					failed drive.   
					A Drive Not Ready condition is reported by the drive under the following conditions:   
					• Motor will not spin   
					• Motor will not lock to speed   
					• Servo will not lock on track   
					• Drive cannot read configuration tables from the disc   
					In these conditions, the drive responds to a Test Unit Ready command with an 02/04/00 or 02/04/03 code.   
					5.2.6.2.2   
					Invoking DST   
					To invoke DST, submit the Send Diagnostic command with the appropriate Function Code (001b for the short   
					test or 010b for the extended test) in bytes 1, bits 5, 6, and 7.   
					5.2.6.2.3   
					Short and extended tests   
					DST has two testing options:   
					1. short   
					2. extended   
					These testing options are described in the following two subsections.   
					Each test consists of three segments: an electrical test segment, a servo test segment, and a read/verify scan   
					segment.   
					Short test (Function Code: 001b)   
					The purpose of the short test is to provide a time-limited test that tests as much of the drive as possible within   
					120 seconds. The short test does not scan the entire media surface, but does some fundamental tests and   
					scans portions of the media. A complete read/verify scan is not performed and only factual failures will report a   
					fault condition. This option provides a quick confidence test of the drive.   
					Extended test (Function Code: 010b)   
					The objective of the extended test option is to empirically test critical drive components. For example, the seek   
					tests and on-track operations test the positioning mechanism. The read operation tests the read head element   
					and the media surface. The write element is tested through read/write/read operations. The integrity of the   
					media is checked through a read/verify scan of the media. Motor functionality is tested by default as a part of   
					these tests.   
					The anticipated length of the Extended test is reported through the Control Mode page.   
					5.2.6.2.4   
					Log page entries   
					When the drive begins DST, it creates a new entry in the Self-test Results Log page. The new entry is created   
					by inserting a new self-test parameter block at the beginning of the self-test results log parameter section of the   
					log page. Existing data will be moved to make room for the new parameter block. The drive reports 20 param-   
					eter blocks in the log page. If there are more than 20 parameter blocks, the least recent parameter block will be   
					deleted. The new parameter block will be initialized as follows:   
					1. The Function Code field is set to the same value as sent in the DST command   
					20   
					Cheetah T10 SAS Product Manual, Rev. A   
				2. The Self-Test Results Value field is set to Fh   
					3. The drive will store the log page to non-volatile memory   
					After a self-test is complete or has been aborted, the drive updates the Self-Test Results Value field in its Self-   
					Test Results Log page in non-volatile memory. The host may use Log Sense to read the results from up to the   
					last 20 self-tests performed by the drive. The self-test results value is a 4-bit field that reports the results of the   
					test. If the field is set to zero, the drive passed with no errors detected by the DST. If the field is not set to zero,   
					the test failed for the reason reported in the field.   
					The drive will report the failure condition and LBA (if applicable) in the Self-test Results Log parameter. The   
					Sense key, ASC, ASCQ, and FRU are used to report the failure condition.   
					5.2.6.2.5   
					Abort   
					There are several ways to abort a diagnostic. You can use a SCSI Bus Reset or a Bus Device Reset message   
					to abort the diagnostic.   
					You can abort a DST executing in background mode by using the abort code in the DST Function Code field.   
					This will cause a 01 (self-test aborted by the application client) code to appear in the self-test results values   
					log. All other abort mechanisms will be reported as a 02 (self-test routine was interrupted by a reset condition).   
					5.2.7   
					Product warranty   
					Beginning on the date of shipment to the customer and continuing for the period specified in your purchase   
					contract, Seagate warrants that each product (including components and subassemblies) that fails to function   
					properly under normal use due to defect in materials or workmanship or due to nonconformance to the applica-   
					ble specifications will be repaired or replaced, at Seagate’s option and at no charge to the customer, if returned   
					by customer at customer’s expense to Seagate’s designated facility in accordance with Seagate’s warranty   
					procedure. Seagate will pay for transporting the repair or replacement item to the customer. For more detailed   
					warranty information, refer to the standard terms and conditions of purchase for Seagate products on your pur-   
					chase documentation.   
					The remaining warranty for a particular drive can be determined by calling Seagate Customer Service at   
					1-800-468-3472. You can also determine remaining warranty using the Seagate web site (www.seagate.com).   
					The drive serial number is required to determine remaining warranty information.   
					Shipping   
					When transporting or shipping a drive, use only a Seagate-approved container. Keep your original box.   
					Seagate approved containers are easily identified by the Seagate Approved Package label. Shipping a drive in   
					a non-approved container voids the drive warranty.   
					Seagate repair centers may refuse receipt of components improperly packaged or obviously damaged in tran-   
					sit. Contact your authorized Seagate distributor to purchase additional boxes. Seagate recommends shipping   
					by an air-ride carrier experienced in handling computer equipment.   
					Product repair and return information   
					Seagate customer service centers are the only facilities authorized to service Seagate drives. Seagate does   
					not sanction any third-party repair facilities. Any unauthorized repair or tampering with the factory seal voids   
					the warranty.   
					Cheetah T10 SAS Product Manual, Rev. A   
					21   
					 
					 
					 
					 
					 
					 
					 
				22   
					Cheetah T10 SAS Product Manual, Rev. A   
				6.0   
					Physical/electrical specifications   
					This section provides information relating to the physical and electrical characteristics of the drive.   
					6.1   
					AC power requirements   
					None.   
					6.2   
					DC power requirements   
					The voltage and current requirements for a single drive are shown below. Values indicated apply at the drive   
					connector.   
					Table 2:   
					ST3300555SS DC power requirements   
					ST3300555SS   
					ST3300555SS   
					3 Gbit mode   
					1.5 Gbit mode   
					(Amps)   
					+5V   
					Notes   
					(Amps)   
					+12V [2]   
					±5% [2]   
					0.85   
					(Amps)   
					+5V   
					(Amps)   
					+12V [2]   
					±5% [2]   
					0.86   
					Voltage   
					Regulation   
					[5]   
					±5%   
					±5%   
					Avg idle current DCX   
					Maximum starting current   
					(peak DC) DC   
					(peak AC) AC   
					[1] [6]   
					0.79   
					0.78   
					3σ   
					[3]   
					0.90   
					1.19   
					0.65   
					1.98   
					3.32   
					0.03   
					0.89   
					1.21   
					0.68   
					1.97   
					3.28   
					0.03   
					3σ   
					[3]   
					Delayed motor start (max) DC 3σ   
					Peak operating current:   
					Typical DCX   
					[1] [4]   
					[1]   
					[1]   
					0.78   
					0.80   
					1.58   
					1.02   
					1.04   
					2.86   
					0.81   
					0.83   
					1.58   
					1.03   
					1.05   
					2.82   
					Maximum DC   
					3σ   
					Maximum (peak) DC   
					3σ   
					0.15A DC and 0.2A AC 12V max start current margin added.   
					Cheetah T10 SAS Product Manual, Rev. A   
					23   
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
				Table 3:   
					ST3146755SS DC power requirements   
					ST3146755SS   
					ST3146755SS   
					3 Gbit mode   
					1.5 Gbit mode   
					(Amps)   
					+5V   
					Notes   
					(Amps)   
					+12V [2]   
					±5% [2]   
					0.57   
					(Amps)   
					+5V   
					(Amps)   
					+12V [2]   
					±5% [2]   
					0.57   
					Voltage   
					Regulation   
					[5]   
					±5%   
					±5%   
					Avg idle current DCX   
					Maximum starting current   
					(peak DC) DC   
					(peak AC) AC   
					[1] [6]   
					0.80   
					0.78   
					3σ   
					[3]   
					0.87   
					1.20   
					0.64   
					2.12   
					3.49   
					0.03   
					0.87   
					1.21   
					0.68   
					1.93   
					3.45   
					0.03   
					3σ   
					[3]   
					Delayed motor start (max) DC 3σ   
					Peak operating current:   
					Typical DCX   
					[1] [4]   
					[1]   
					[1]   
					0.78   
					0.78   
					1.60   
					0.76   
					0.78   
					2.54   
					0.81   
					0.82   
					1.62   
					0.76   
					0.78   
					2.62   
					Maximum DC   
					3σ   
					Maximum (peak) DC   
					3σ   
					0.15A DC and 0.2A AC 12V max start current margin added..   
					Table 4:   
					ST373355SS DC power requirements   
					ST373355SS   
					1.5 Gbit mode   
					ST373355SS   
					3 Gbit mode   
					Notes   
					(Amps)   
					+5V   
					(Amps)   
					+12V [2]   
					±5% [2]   
					0.44   
					(Amps)   
					+5V   
					(Amps)   
					+12V [2]   
					±5% [2]   
					0.44   
					Voltage   
					Regulation   
					[5]   
					±5%   
					±5%   
					Avg idle current DCX   
					Maximum starting current   
					(peak DC) DC   
					(peak AC) AC   
					[1] [6]   
					0.78   
					0.77   
					3σ   
					[3]   
					0.84   
					1.18   
					0.66   
					1.91   
					3.17   
					0.03   
					0.84   
					1.12   
					0.66   
					1.91   
					3.23   
					0.03   
					3σ   
					[3]   
					Delayed motor start (max) DC 3σ   
					Peak operating current:   
					Typical DCX   
					[1] [4]   
					[1]   
					[1]   
					0.75   
					0.77   
					1.50   
					0.64   
					0.65   
					2.32   
					0.78   
					0.80   
					1.54   
					0.63   
					0.66   
					2.32   
					Maximum DC   
					3σ   
					Maximum (peak) DC   
					3σ   
					0.15A DC and 0.2A AC 12V max start current margin added.   
					[1] Measured with average reading DC ammeter or equivalent sampling scope. Instantaneous +12V current   
					peaks will exceed these values. Power supply at nominal voltage. N (number of drives tested) = 6, 35   
					24   
					Cheetah T10 SAS Product Manual, Rev. A   
					 
					 
					 
					 
				Degrees C ambient.   
					[2] For +12 V, a –10% tolerance is allowed during initial spindle start but must return to ±5% before reaching   
					15,000 RPM. The ±5% must be maintained after the drive signifies that its power-up sequence has been   
					completed and that the drive is able to accept selection by the host initiator.   
					
					[4] This condition occurs after OOB and Speed Negotiation completes but before the drive has received the   
					Notify Spinup primitive.   
					[5] See paragraph 6.2.1, "Conducted noise immunity." Specified voltage tolerance includes ripple, noise, and   
					transient response.   
					[6] During idle, the drive heads are relocated every 60 seconds to a random location within the band from   
					three-quarters to maximum track.   
					General DC power requirement notes.   
					1. Minimum current loading for each supply voltage is not less than 1.7% of the maximum operating current   
					shown.   
					2. The +5V and +12V supplies should employ separate ground returns.   
					3. Where power is provided to multiple drives from a common supply, careful consideration for individual   
					drive power requirements should be noted. Where multiple units are powered on simultaneously, the peak   
					starting current must be available to each device.   
					4. Parameters, other than spindle start, are measured after a 10-minute warm up.   
					5. No terminator power.   
					6.2.1   
					Conducted noise immunity   
					Noise is specified as a periodic and random distribution of frequencies covering a band from DC to 10 MHz.   
					Maximum allowed noise values given below are peak-to-peak measurements and apply at the drive power   
					connector.   
					+5V   
					+12V   
					0 to 100 kHz   
					150mV   
					100mV   
					150mV   
					100mV   
					100 kHz to 10 MHz   
					6.2.2   
					Power sequencing   
					The drive does not require power sequencing. The drive protects against inadvertent writing during power-up   
					and down.   
					6.2.3   
					Current profiles   
					The +12V and +5V current profiles for these drive are shown below in the following figures.   
					Note: All times and currents are typical. See Tables 2, 3, and 4 for maximum current requirements.   
					Cheetah T10 SAS Product Manual, Rev. A   
					25   
					 
					 
					 
					 
					 
					 
					 
				6.3   
					Power dissipation   
					ST3300555SS in 3 Gbit operation   
					Typical power dissipation under idle conditions in 3Gb operation is 14.22 watts (48.52 BTUs per hour).   
					To obtain operating power for typical random read operations, refer to the following I/O rate curve (see Figure   
					5). Locate the typical I/O rate for a drive in your system on the horizontal axis and read the corresponding +5   
					volt current, +12 volt current, and total watts on the vertical axis. To calculate BTUs per hour, multiply watts by   
					3.4123.   
					CURRENT/POWER vs THROUGHPUT (SAS - 3.0GB)   
					Random 8 Block Reads   
					1.400   
					1.200   
					1.000   
					0.800   
					0.600   
					0.400   
					0.200   
					0.000   
					18 . 0 0   
					16 . 0 0   
					14 . 0 0   
					12 . 0 0   
					10 . 0 0   
					8.00   
					6.00   
					4.00   
					2.00   
					0.00   
					5Volt A   
					12 V o l t A   
					Watts   
					0.0   
					50.0   
					100.0   
					150.0   
					200.0   
					250.0   
					300.0   
					I/Os per Second   
					Figure 5.   
					ST3300555SS (3 Gbit) DC current and power vs. input/output operations per second   
					ST3300555SS in 1.5 Gbit operation   
					Typical power dissipation under idle conditions in 1.5 Gbit operation is 14.15 watts (48.28 BTUs per hour).   
					To obtain operating power for typical random read operations, refer to the following I/O rate curve (see Figure   
					5). Locate the typical I/O rate for a drive in your system on the horizontal axis and read the corresponding +5   
					volt current, +12 volt current, and total watts on the vertical axis. To calculate BTUs per hour, multiply watts by   
					3.4123.   
					CURRENT/POWER vs THROUGHPUT (SAS - 1.5GB)   
					Random 8 Block Reads   
					1. 4 0 0   
					1. 2 0 0   
					1. 0 0 0   
					0.800   
					0.600   
					0.400   
					0.200   
					0.000   
					18 . 0 0   
					16 . 0 0   
					14 . 0 0   
					12 . 0 0   
					10 . 0 0   
					8.00   
					6.00   
					4.00   
					2.00   
					0.00   
					5Volt A   
					12 V o lt A   
					Watts   
					0.0   
					50.0   
					100.0   
					150.0   
					200.0   
					250.0   
					300.0   
					I/Os per Second   
					Figure 6.   
					ST3300555SS (1.5 Gbit) DC current and power vs. input/output operations per second   
					Cheetah T10 SAS Product Manual, Rev. A   
					29   
					 
					 
					 
					 
				ST3146755SS in 3 Gbit operation   
					Typical power dissipation under idle conditions in 3Gb operation is 10.74 watts (36.65 BTUs per hour).   
					To obtain operating power for typical random read operations, refer to the following I/O rate curve (see Figure   
					5). Locate the typical I/O rate for a drive in your system on the horizontal axis and read the corresponding +5   
					volt current, +12 volt current, and total watts on the vertical axis. To calculate BTUs per hour, multiply watts by   
					3.4123.   
					CURRENT/POWER vs THROUGHPUT (SAS - 3.0GB)   
					Random 8 Block Reads   
					1. 4 0 0   
					1. 2 0 0   
					1. 0 0 0   
					0.800   
					0.600   
					0.400   
					0.200   
					0.000   
					14 . 0 0   
					12 . 0 0   
					10 . 0 0   
					8.00   
					6.00   
					4.00   
					2.00   
					0.00   
					5Volt A   
					12 V o l t A   
					Watts   
					0.0   
					50.0   
					100.0   
					150.0   
					200.0   
					250.0   
					300.0   
					I/Os per Second   
					Figure 7.   
					ST3146755SS (3 Gbit) DC current and power vs. input/output operations per second   
					ST3146755SS in 1.5 Gbit operation   
					Typical power dissipation under idle conditions in 1.5 Gbit operation is 10.84 watts (36.99 BTUs per hour).   
					To obtain operating power for typical random read operations, refer to the following I/O rate curve (see Figure   
					5). Locate the typical I/O rate for a drive in your system on the horizontal axis and read the corresponding +5   
					volt current, +12 volt current, and total watts on the vertical axis. To calculate BTUs per hour, multiply watts by   
					3.4123.   
					CURRENT/POWER vs THROUGHPUT (SAS - 1.5GB)   
					Random 8 Block Reads   
					1.400   
					1.200   
					1.000   
					0.800   
					0.600   
					0.400   
					0.200   
					0.000   
					14 . 0 0   
					12 . 0 0   
					10 . 0 0   
					8.00   
					6.00   
					4.00   
					2.00   
					0.00   
					5Volt A   
					12 V o l t A   
					Watts   
					0.0   
					50.0   
					100.0   
					150.0   
					200.0   
					250.0   
					300.0   
					I/Os per Second   
					Figure 8.   
					ST3146755SS (1.5 Gbit) DC current and power vs. input/output operations per second   
					30   
					Cheetah T10 SAS Product Manual, Rev. A   
					 
					 
				ST373355SS in 3 Gbit operation   
					Typical power dissipation under idle conditions in 3Gb operation is 9.13 watts (31.15 BTUs per hour).   
					To obtain operating power for typical random read operations, refer to the following I/O rate curve (see Figure   
					5). Locate the typical I/O rate for a drive in your system on the horizontal axis and read the corresponding +5   
					volt current, +12 volt current, and total watts on the vertical axis. To calculate BTUs per hour, multiply watts by   
					3.4123.   
					CURRENT/POWER vs THROUGHPUT (SAS - 3.0GB)   
					Random 8 Block Reads   
					1. 4 0 0   
					1. 2 0 0   
					1. 0 0 0   
					0.800   
					0.600   
					0.400   
					0.200   
					0.000   
					14 . 0 0   
					12 . 0 0   
					10 . 0 0   
					8.00   
					6.00   
					4.00   
					2.00   
					0.00   
					5Volt A   
					12 V o l t A   
					Watts   
					0.0   
					50.0   
					100.0   
					150.0   
					200.0   
					250.0   
					300.0   
					I/Os per Second   
					Figure 9.   
					ST373355SS (3 Gbit) DC current and power vs. input/output operations per second   
					ST373355SS in 1.5 Gbit operation   
					Typical power dissipation under idle conditions in 1.5 Gbit operation is 9.18 watts (31.32 BTUs per hour).   
					To obtain operating power for typical random read operations, refer to the following I/O rate curve (see Figure   
					5). Locate the typical I/O rate for a drive in your system on the horizontal axis and read the corresponding +5   
					volt current, +12 volt current, and total watts on the vertical axis. To calculate BTUs per hour, multiply watts by   
					3.4123.   
					CURRENT/POWER vs THROUGHPUT (SAS - 1.5GB)   
					Random 8 Block Reads   
					1.400   
					1.200   
					1.000   
					0.800   
					0.600   
					0.400   
					0.200   
					0.000   
					14 . 0 0   
					12 . 0 0   
					10 . 0 0   
					8.00   
					6.00   
					4.00   
					2.00   
					0.00   
					5Volt A   
					12 V o lt A   
					Watts   
					0.0   
					50.0   
					100.0   
					150.0   
					200.0   
					250.0   
					300.0   
					I/Os per Second   
					Figure 10. ST373355SS (1.5 Gbit) DC current and power vs. input/output operations per second   
					Cheetah T10 SAS Product Manual, Rev. A   
					31   
					 
					 
				6.4   
					Environmental limits   
					Temperature and humidity values experienced by the drive must be such that condensation does not occur on   
					any drive part. Altitude and atmospheric pressure specifications are referenced to a standard day at 58.7°F   
					(14.8°C). Maximum wet bulb temperature is 82°F (28°C).   
					6.4.1   
					Temperature   
					a. Operating   
					The maximum allowable continuous or sustained HDA case temperature for the rated MTBF is 122°F   
					(50°C) The maximum allowable HDA case temperature is 60°C. Occasional excursions of HDA case tem-   
					peratures above 122°F (50°C) or below 41°F (5°C) may occur without impact to specified MTBF. Continual   
					or sustained operation at HDA case temperatures outside these limits may degrade MTBF.   
					Provided the HDA case temperatures limits are met, the drive meets all specifications over a 41°F to 131°F   
					(5°C to 55°C) drive ambient temperature range with a maximum temperature gradient of 36°F (20°C) per   
					hour. Air flow may be needed in the drive enclosure to keep within this range (see Section 8.3). Operation at   
					HDA case temperatures outside this range may adversely affect the drives ability to meet specifications. To   
					confirm that the required cooling for the electronics and HDA case is provided, place the drive in its final   
					mechanical configuration, perform random write/read operations and measure the HDA case temperature   
					after it has stabilized.   
					b. Non-operating   
					–40° to 158°F (–40° to 70°C) package ambient with a maximum gradient of 36°F (20°C) per hour. This   
					specification assumes that the drive is packaged in the shipping container designed by Seagate for use with   
					drive.   
					HDA Temp.   
					1.0"   
					Check Point   
					.5"   
					Figure 11. Location of the HDA temperature check point   
					32   
					Cheetah T10 SAS Product Manual, Rev. A   
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
				6.4.2   
					Relative humidity   
					The values below assume that no condensation on the drive occurs.   
					a. Operating   
					5% to 95% non-condensing relative humidity with a maximum gradient of 20% per hour.   
					b. Non-operating   
					5% to 95% non-condensing relative humidity.   
					6.4.3   
					Effective altitude (sea level)   
					a. Operating   
					–1,000 to +10,000 feet (–305 to +3,048 meters)   
					b. Non-operating   
					–1,000 to +40,000 feet (–305 to +12,210 meters)   
					6.4.4   
					Shock and vibration   
					Shock and vibration limits specified in this document are measured directly on the drive chassis. If the drive is   
					installed in an enclosure to which the stated shock and/or vibration criteria is applied, resonances may occur   
					internally to the enclosure resulting in drive movement in excess of the stated limits. If this situation is apparent,   
					it may be necessary to modify the enclosure to minimize drive movement.   
					The limits of shock and vibration defined within this document are specified with the drive mounted by any of   
					
					6.4.4.1   
					Shock   
					a. Operating—normal   
					The drive, as installed for normal operation, shall operate error free while subjected to intermittent shock not   
					exceeding 15 Gs at a maximum duration of 11 msec (half sinewave). The drive, as installed for normal   
					operation, shall operate error free while subjected to intermittent shock not exceeding 60 Gs at a maximum   
					duration of 2 msec (half sinewave). Shock may be applied in the X, Y, or Z axis.   
					b. Operating—abnormal   
					Equipment, as installed for normal operation, does not incur physical damage while subjected to intermit-   
					tent shock not exceeding 40 Gs at a maximum duration of 11 msec (half sinewave). Shock occurring at   
					abnormal levels may promote degraded operational performance during the abnormal shock period. Speci-   
					fied operational performance will continue when normal operating shock levels resume. Shock may be   
					applied in the X, Y, or Z axis. Shock is not to be repeated more than two times per second.   
					c. Non-operating   
					The limits of non-operating shock shall apply to all conditions of handling and transportation. This includes   
					both isolated drives and integrated drives.   
					The drive subjected to nonrepetitive shock not exceeding 75 Gs at a maximum duration of 11 msec (half   
					sinewave) shall not exhibit device damage or performance degradation. Shock may be applied in the X, Y,   
					or Z axis.   
					The drive subjected to nonrepetitive shock not exceeding 250 Gs at a maximum duration of 2 msec (half   
					sinewave) does not exhibit device damage or performance degradation. Shock may be applied in the X, Y,   
					or Z axis.   
					The drive subjected to nonrepetitve shock not exceeding 120 Gs at a maximum duration of 0.5 msec (half   
					sinewave) does not exhibit device damage or performance degradation. Shock may be applied in the X, Y,   
					or Z axis.   
					Cheetah T10 SAS Product Manual, Rev. A   
					33   
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
				d. Packaged   
					Disc drives shipped as loose load (not palletized) general freight will be packaged to withstand drops from   
					heights as defined in the table below. For additional details refer to Seagate specifications 30190-001   
					(under 100 lbs/45 kg) or 30191-001 (over 100 lbs/45 Kg).   
					Package size   
					Packaged/product weight   
					Any   
					Drop height   
					<600 cu in (<9,800 cu cm)   
					600-1800 cu in (9,800-19,700 cu cm)   
					>1800 cu in (>19,700 cu cm)   
					>600 cu in (>9,800 cu cm)   
					60 in (1524 mm)   
					48 in (1219 mm)   
					42 in (1067 mm)   
					36 in (914 mm)   
					0-20 lb (0 to 9.1 kg)   
					0-20 lb (0 to 9.1 kg)   
					20-40 lb (9.1 to 18.1 kg)   
					Drives packaged in single or multipacks with a gross weight of 20 pounds (8.95 kg) or less by Seagate for   
					general freight shipment shall withstand a drop test from 48 inches (1,070 mm) against a concrete floor or   
					equivalent.   
					Z 
					X 
					Y 
					X 
					Z 
					Y 
					Figure 12. Recommended mounting   
					34   
					Cheetah T10 SAS Product Manual, Rev. A   
					 
					 
					 
					 
				6.4.4.2   
					Vibration   
					a. Operating—normal   
					The drive as installed for normal operation, shall comply with the complete specified performance while   
					subjected to continuous vibration not exceeding   
					10-500 Hz @ 0.5 G (zero to peak)   
					Vibration may be applied in the X, Y, or Z axis.   
					Operating normal translational random flat profile   
					10 - 500 Hz   
					0.4 gRMS   
					b. Operating—abnormal   
					Equipment as installed for normal operation shall not incur physical damage while subjected to periodic   
					vibration not exceeding:   
					15 minutes of duration at major resonant frequency   
					10-500 Hz @ 0.75 G (X, Y, or Z axis)   
					Vibration occurring at these levels may degrade operational performance during the abnormal vibration   
					period. Specified operational performance will continue when normal operating vibration levels are   
					resumed. This assumes system recovery routines are available.   
					Operating abnormal translational random flat profile   
					10 - 500 Hz   
					1.2 gRMS   
					c. Non-operating   
					The limits of non-operating vibration shall apply to all conditions of handling and transportation. This   
					includes both isolated drives and integrated drives.   
					The drive shall not incur physical damage or degraded performance as a result of continuous vibration not   
					exceeding   
					5-22 Hz @ 0.040 inches (1.02 mm) displacement (zero to peak)   
					22-500 Hz @ 2.00 G (zero to peak)   
					Vibration may be applied in the X, Y, or Z axis.   
					Non-operating translational random flat profile   
					10 - 500 Hz   
					1.2 gRMS   
					6.4.5   
					Air cleanliness   
					The drive is designed to operate in a typical office environment with minimal environmental control.   
					6.4.6   
					Corrosive environment   
					Seagate electronic drive components pass accelerated corrosion testing equivalent to 10 years exposure to   
					light industrial environments containing sulfurous gases, chlorine and nitric oxide, classes G and H per ASTM   
					B845. However, this accelerated testing cannot duplicate every potential application environment.   
					Users should use caution exposing any electronic components to uncontrolled chemical pollutants and corro-   
					sive chemicals as electronic drive component reliability can be affected by the installation environment. The sil-   
					ver, copper, nickel and gold films used in Seagate products are especially sensitive to the presence of sulfide,   
					chloride, and nitrate contaminants. Sulfur is found to be the most damaging. In addition, electronic components   
					should never be exposed to condensing water on the surface of the printed circuit board assembly (PCBA) or   
					exposed to an ambient relative humidity greater than 95%. Materials used in cabinet fabrication, such as vulca-   
					nized rubber, that can outgas corrosive compounds should be minimized or eliminated. The useful life of any   
					electronic equipment may be extended by replacing materials near circuitry with sulfide-free alternatives.   
					Cheetah T10 SAS Product Manual, Rev. A   
					35   
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
				6.4.7   
					Acoustics   
					Sound power during idle mode shall be 3.6 bels typical when measured to ISO 7779 specification. Sound   
					power while operating shall be 4.3 bels typical when measured to ISO 7779 specification.   
					There will not be any discrete tones more than 10 dB above the masking noise on typical drives when mea-   
					sured according to Seagate specification 30553-001. There will not be any tones more than 24 dB above the   
					masking noise on any drive.   
					6.4.8   
					Electromagnetic susceptibility   
					
					6.5   
					Mechanical specifications   
					
					Height:   
					Width:   
					Depth:   
					Weight:   
					1.028 in   
					26.11 mm   
					4.010 in   
					101.85 mm   
					146.99 mm   
					0.839 kilograms   
					5.787 in   
					1.85 pounds   
					26.11 MAX   
					(1.028 MAX)   
					2X 20.14   
					(2X .793)   
					24.00   
					(.945)   
					6.35 (.250)   
					4.22 X 90 ( .166 X 90 )   
					0.36   
					2X 28.45   
					(2X 1.120)   
					( 
					.014)   
					2X 70.05 (2X 2.758)   
					122.00 (4.803)   
					2X 130.05 (2X 5.120)   
					UNITS OF MEASURE: mm (inches)   
					146.99 MAX (5.787 MAX)   
					131.17 (5.164)   
					4.57 MIN BLIND   
					( .18 MIN BLIND)   
					85.60 (3.370)   
					41.15 (1.620)   
					4.22 X 90 ( .166 X 90 )   
					20.14   
					(.793)   
					0.36   
					2X 29.21   
					(2X 1.150)   
					( 
					.014)   
					1.45 (.057)   
					3.17 (.125)   
					DRIVE   
					CENTER   
					LINE   
					101.60 +/- .25   
					(4.000 +/- .010)   
					50.80   
					(2.000)   
					2X 100.13   
					(2X 3.942)   
					20.68 (.814)   
					98.42   
					(3.875)   
					33.40   
					(1.315)   
					0.76   
					.030)   
					( 
					0.13   
					(.005)   
					36.37   
					(1.432)   
					0.13   
					(.005)   
					3.50 +/- .38   
					(.138 +/- .015)   
					0.99   
					(.039)   
					0.41   
					0.25   
					(.010)   
					(.016)   
					Figure 13. Physical dimensions   
					36   
					Cheetah T10 SAS Product Manual, Rev. A   
					 
					 
					 
					 
					 
					 
					 
					 
					 
				7.0   
					Defect and error management   
					Seagate continues to use innovative technologies to manage defects and errors. These technologies are   
					designed to increase data integrity, perform drive self-maintenance, and validate proper drive operation.   
					SCSI defect and error management involves drive internal defect/error management and SAS system error   
					considerations (errors in communications between the initiator and the drive). In addition, Seagate provides   
					the following technologies used to increase data integrity and drive reliability:   
					
					
					
					
					The read error rates and specified storage capacities are not dependent on host (initiator) defect management   
					routines.   
					7.1   
					Drive internal defects/errors   
					During the initial drive format operation at the factory, media defects are identified, tagged as being unusable,   
					and their locations recorded on the drive primary defects list (referred to as the “P’ list and also as the ETF   
					defect list). At factory format time, these known defects are also reallocated, that is, reassigned to a new place   
					on the medium and the location listed in the defects reallocation table. The “P” list is not altered after factory   
					formatting. Locations of defects found and reallocated during error recovery procedures after drive shipment   
					are listed in the “G” list (defects growth list). The “P” and “G” lists may be referenced by the initiator using the   
					Read Defect Data command.   
					Details of the SCSI commands supported by the drive are described in the SAS Interface Manual. Also, more   
					information on the drive Error Recovery philosophy is presented in the SAS Interface Manual.   
					7.2   
					Drive error recovery procedures   
					When an error occurs during drive operation, the drive, if programmed to do so, performs error recovery proce-   
					dures to attempt to recover the data. The error recovery procedures used depend on the options previously set   
					in the Error Recovery Parameters mode page. Error recovery and defect management may involve using sev-   
					eral SCSI commands described in the SAS Interface Manual. The drive implements selectable error recovery   
					time limits required in video applications.   
					The error recovery scheme supported by the drive provides a way to control the total error recovery time for the   
					entire command in addition to controlling the recovery level for a single LBA. The total amount of time spent in   
					error recovery for a command can be limited using the Recovery Time Limit bytes in the Error Recovery mode   
					page. The total amount of time spent in error recovery for a single LBA can be limited using the Read Retry   
					Count or Write Retry Count bytes in the Error Recovery mode page.   
					Cheetah T10 SAS Product Manual, Rev. A   
					37   
					 
					 
					 
					 
					 
					 
					 
					 
					 
				The drive firmware error recovery algorithms consists of 11 levels for read recoveries and five levels for write.   
					Each level may consist of multiple steps, where a step is defined as a recovery function involving a single re-   
					read or re-write attempt. The maximum level used by the drive in LBA recovery is determined by the read and   
					write retry counts.   
					Table 5 equates the read and write retry count with the maximum possible recovery time for read and write   
					recovery of individual LBAs. The times given do not include time taken to perform reallocations. Reallocations   
					are performed when the ARRE bit (for reads) or AWRE bit (for writes) is one, the RC bit is zero, and the recov-   
					ery time limit for the command has not yet been met. Time needed to perform reallocation is not counted   
					against the recovery time limit.   
					When the RC bit is one, reallocations are disabled even if the ARRE or AWRE bits are one. The drive will still   
					perform data recovery actions within the limits defined by the Read Retry Count, Write Retry Count, and   
					Recovery Time Limit parameters. However, the drive does not report any unrecovered errors.   
					Table 5:   
					Read and write retry count maximum recovery times   
					Maximum recovery time per   
					Maximum recovery time per   
					LBA (cumulative, msec)   
					Read retry count1 LBA (cumulative, msec)   
					Write retry count1   
					0 
					51.87   
					0 
					23.94   
					35.91   
					55.86   
					67.83   
					119.79   
					147.72   
					1 
					59.85   
					1 
					2 
					203.49   
					219.45   
					253.11   
					279.35   
					311.27   
					395.12   
					463.12   
					495.04   
					530.95   
					1,282.97   
					2 
					3 
					3 
					4 
					4 
					5 
					5 (default)   
					6 
					7 
					8 
					9 
					10   
					11 (default)   
					[1] These values are subject to change.   
					Setting these retry counts to a value below the default setting could result in degradation of the unrecov-   
					ered error rate which may exceed the value given in this product manual. A setting of zero (0) will result in   
					the drive not performing error recovery.   
					For example, suppose the read/write recovery page has the RC bit set to 0, read retry count set to 4, and   
					the recovery time limit field (Mode Sense page 01, bytes 10 and 11) set to FF FF hex (maximum). A four   
					LBA Read command is allowed to take up to 253.11 msec recovery time for each of the four LBAs in the   
					command. If the recovery time limit is set to 00 C8 hex (200 msec decimal) a four LBA read command is   
					allowed to take up to 200 msec for all error recovery within that command. The use of the Recovery Time   
					Limit field allows finer granularity on control of the time spent in error recovery. The recovery time limit   
					only starts counting when the drive is executing error recovery and it restarts on each command. There-   
					fore, each command’s total recovery time is subject to the recovery time limit. Note: A recovery time limit   
					of 0 will use the drive’s default value of FF FF. Minimum recovery time limit is achieved by setting the   
					Recovery Time Limit field to 00 01.   
					38   
					Cheetah T10 SAS Product Manual, Rev. A   
					 
				7.3   
					SAS system errors   
					Information on the reporting of operational errors or faults across the interface is given in the SAS Interface   
					Manual. The SSP Response returns information to the host about numerous kinds of errors or faults. The   
					Receive Diagnostic Results reports the results of diagnostic operations performed by the drive.   
					Status returned by the drive to the initiator is described in the SAS Interface Manual. Status reporting plays a   
					role in systems error management and its use in that respect is described in sections where the various com-   
					mands are discussed.   
					7.4   
					Background Media Scan   
					Background Media Scan (BMS) is a self-initiated media scan. BMS is defined in the T10 document SPC-4   
					available from the T10 committee. BMS performs sequential reads across the entire pack of the media while   
					the drive is idle. In RAID arrays, BMS allows hot spare drives to be scanned for defects prior to being put into   
					service by the host system. On regular duty drives, if the host system makes use of the BMS Log Page, it can   
					avoid placing data in suspect locations on the media. Unreadable and recovered error sites will be logged or   
					reallocated per ARRE/AWRE settings.   
					With BMS, the host system can consume less power and system overhead by only checking BMS status and   
					results rather than tying up the bus and consuming power in the process of host-initiated media scanning activ-   
					ity.   
					Since the background scan functions are only done during idle periods, BMS causes a negligible impact to sys-   
					tem performance. The first BMS scan for a newly manufactured drive is performed as quickly as possible to   
					verify the media and protect data by setting the “Start time after idle” to 5ms, all subsequent scans begin after   
					500ms of idle time. Other features that normally use idle time to function will function normally because BMS   
					functions for bursts of 800ms and then suspends activity for 100ms to allow other background functions to   
					operate.   
					BMS interrupts immediately to service host commands from the interface bus while performing reads. BMS will   
					complete any BMS-initiated error recovery prior to returning to service host-initiated commands. Overhead   
					associated with a return to host-servicing activity from BMS only impacts the first command that interrupted   
					BMS, this results in a typical delay of about 1 ms.   
					7.5   
					Media Pre-Scan   
					Media Pre-Scan is a feature that allows the drive to repair media errors that would otherwise have been found   
					by the host system during critical data accesses early in the drive’s life. The default setting for Media Pre-Scan   
					is enabled on standard products. Media Pre-Scan checks each write command to determine if the destination   
					LBAs have been scanned by BMS. If the LBAs have been verified, the drive proceeds with the normal write   
					command. If the LBAs have not been verified by BMS, Pre-Scan will convert the write to a write verify to certify   
					that the data was properly written to the disc.   
					Note. During Pre-Scan write verify commands, write performance may decrease by 50% until Pre-Scan   
					completes. Write performance testing should be performed after Pre-Scan is complete. This may   
					be checked by reading the BMS status.   
					To expedite the scan of the full pack and subsequently exit from the Pre-Scan period, BMS will begin scanning   
					immediately when the drive goes to idle during the Pre-Scan period. In the event that the drive is in a high   
					transaction traffic environment and is unable to complete a BMS scan within 24 power on hours BMS will dis-   
					able Pre-Scan to restore full performance to the system.   
					Cheetah T10 SAS Product Manual, Rev. A   
					39   
					 
					 
					 
					 
					 
					 
				7.6   
					Deferred Auto-Reallocation   
					Deferred Auto-Reallocation (DAR) simplifies reallocation algorithms at the system level by allowing the drive to   
					reallocate unreadable locations on a subsequent write command. Sites are marked for DAR during read oper-   
					ations performed by the drive. When a write command is received for an LBA marked for DAR, the auto-reallo-   
					cation process is invoked and attempts to rewrite the data to the original location. If a verification of this rewrite   
					fails, the sector is re-mapped to a spare location.   
					This is in contrast to the system having to use the Reassign Command to reassign a location that was unread-   
					able and then generate a write command to rewrite the data. DAR is most effective when AWRE and ARRE   
					are enabled—this is the default setting from the Seagate factory. With AWRE and ARRE disabled DAR is   
					unable to reallocate the failing location and will report an error sense code indicating that a write command is   
					being attempted to a previously failing location.   
					7.7   
					Idle Read After Write   
					Idle Read After Write (IRAW) utilizes idle time to verify the integrity of recently written data. During idle periods,   
					no active system requests, the drive reads recently written data from the media and compares it to valid write   
					command data resident in the drives data buffer. Any sectors that fail the comparison result in the invocation of   
					a rewrite and auto-reallocation process. The process attempts to rewrite the data to the original location. If a   
					verification of this rewrite fails, the sector is re-mapped to a spare location.   
					40   
					Cheetah T10 SAS Product Manual, Rev. A   
					 
					 
					 
					 
					 
					 
				8.0   
					Installation   
					Cheetah disc drive installation is a plug-and-play process. There are no jumpers, switches, or terminators on   
					the drive.   
					SAS drives are designed to be used in a host system that provides a SAS-compatible backplane with bays   
					designed to accomodate the drive. In such systems, the host system typically provides a carrier or tray into   
					which you need to mount the drive. Mount the drive to the carrier or tray provided by the host system using four   
					6-32 UNC screws. Do not over-tighten or force the screws. You can mount the drive in any orientation.   
					Note. SAS drives are designed to be attached to the host system without I/O or power cables. If you   
					intend the use the drive in a non-backplane host system, connecting the drive using high-quality   
					cables is acceptable as long as the I/O cable length does not exceed 4 meters (13.1 feet).   
					Slide the carrier or tray into the appropriate bay in your host system using the instructions provided by the host   
					system. This connects the drive directly to your system’s SAS connector. The SAS connector is normally   
					
					Power is supplied through the SAS connector.   
					The drive is shipped from the factory low-level formatted in 512-byte logical blocks. You need to reformat the   
					drive only if you want to select a different logical block size.   
					SAS Interface   
					connector   
					Figure 14. Physical interface   
					8.1   
					Drive orientation   
					The drive may be mounted in any orientation. All drive performance characterizations, however, have been   
					done with the drive in horizontal (discs level) and vertical (drive on its side) orientations, which are the two pre-   
					ferred mounting orientations.   
					Cheetah T10 SAS Product Manual, Rev. A   
					41   
					 
					 
					 
					 
					 
					 
					 
					 
				8.2   
					Cooling   
					Cabinet cooling must be designed by the customer so that the ambient temperature immediately surrounding   
					
					The rack, cabinet, or drawer environment for the drive must provide heat removal from the electronics and   
					head and disc assembly (HDA). You should confirm that adequate heat removal is provided using the temper-   
					
					Forced air flow may be required to keep temperatures at or below the temperatures specified in Section 6.4.1   
					in which case the drive should be oriented, or air flow directed, so that the least amount of air flow resistance is   
					created while providing air flow to the electronics and HDA. Also, the shortest possible path between the air   
					inlet and exit should be chosen to minimize the travel length of air heated by the drive and other heat sources   
					within the rack, cabinet, or drawer environment.   
					If forced air is determined to be necessary, possible air-flow patterns are shown in Figure 15. The air-flow pat-   
					terns are created by one or more fans, either forcing or drawing air as shown in the illustrations. Conduction,   
					convection, or other forced air-flow patterns are acceptable as long as the temperature measurement guide-   
					
					Above unit   
					Under unit   
					Note. Air flows in the direction shown (back to front)   
					or in reverse direction (front to back)   
					Above unit   
					Under unit   
					Note. Air flows in the direction shown or   
					in reverse direction (side to side)   
					Figure 15. Air flow   
					42   
					Cheetah T10 SAS Product Manual, Rev. A   
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
				8.3   
					Drive mounting   
					Mount the drive using the bottom or side mounting holes. If you mount the drive using the bottom holes, ensure   
					that you do not physically distort the drive by attempting to mount it on a stiff, non-flat surface.   
					The allowable mounting surface stiffness is 80 lb/in (14.0 N/mm). The following equation and paragraph define   
					the allowable mounting surface stiffness:   
					K x X = F < 15lb = 67N   
					where K is the mounting surface stiffness (units in lb/in or N/mm) and X is the out-of-plane surface distortion   
					(units in inches or millimeters). The out-of-plane distortion (X) is determined by defining a plane with three of   
					the four mounting points fixed and evaluating the out-of-plane deflection of the fourth mounting point when a   
					known force (F) is applied to the fourth point.   
					8.4   
					Grounding   
					Signal ground (PCBA) and HDA ground are connected together in the drive and cannot be separated by the   
					user. The equipment in which the drive is mounted is connected directly to the HDA and PCBA with no electri-   
					cally isolating shock mounts. If it is desired for the system chassis to not be connected to the HDA/PCBA   
					ground, the systems integrator or user must provide a nonconductive (electrically isolating) method of mount-   
					ing the drive in the host equipment.   
					Increased radiated emissions may result if you do not provide the maximum surface area ground connection   
					between system ground and drive ground. This is the system designer’s and integrator’s responsibility.   
					Cheetah T10 SAS Product Manual, Rev. A   
					43   
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
				44   
					Cheetah T10 SAS Product Manual, Rev. A   
				9.0   
					Interface requirements   
					This section partially describes the interface requirements as implemented on Cheetah drives. Additional infor-   
					mation is provided in the SAS Interface Manual (part number 100293071).   
					9.1   
					SAS features   
					This section lists the SAS-specific features supported by Cheetah drives.   
					9.1.1   
					task management functions   
					
					Table 6:   
					SAS task management functions supported   
					Task name   
					Abort Task   
					Supported   
					Yes   
					Clear ACA   
					Yes   
					Clear task set   
					Abort task set   
					Yes   
					Yes   
					Logical Unit Reset   
					Query Task   
					Yes   
					Yes   
					9.1.2   
					task management responses   
					
					Table 7:   
					Task management response codes   
					Function name   
					Function complete   
					Invalid frame   
					Response code   
					00   
					02   
					04   
					05   
					08   
					09   
					Function not supported   
					Function failed   
					Function succeeded   
					Invalid logical unit   
					Cheetah T10 SAS Product Manual, Rev. A   
					45   
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
				9.2   
					Dual port support   
					Cheetah SAS drives have two independent ports. These ports may be connected in the same or different SCSI   
					domains. Each drive port has a unique SAS address.   
					The two ports run at the same link rate. The first port to successfully complete speed negotiation sets the link   
					rate support by both ports. When the second port participates in speed negotiation, it indicates the only sup-   
					ported speed is the speed selected by the first port. If the first port to complete speed negotiation looses sync   
					before the second port completes speed negotiation, both ports revert back to the power on condition of allow-   
					ing either link rate (1.5 or 3.0 Gbits/sec).   
					Subject to buffer availability, the Cheetah drives support:   
					• Concurrent port transfers—The drive supports receiving COMMAND, TASK management transfers on both   
					ports at the same time.   
					• Full duplex—The drive supports sending XFER_RDY, DATA and RESPONSE transfers while receiving   
					frames on both ports.   
					46   
					Cheetah T10 SAS Product Manual, Rev. A   
					 
					 
				9.3   
					SCSI commands supported   
					Table 8 lists the SCSI commands supported by Cheetah drives.   
					Table 8: Commands supported by Cheetah T10 SAS family drives   
					Command name   
					Command code   
					Supported   
					Change Definition   
					40h   
					39h   
					18h   
					3Ah   
					04h   
					N 
					Compare   
					N 
					N 
					N 
					Y 
					N 
					Y 
					Y 
					Y 
					Y 
					Y 
					N 
					Y 
					Y 
					Y 
					Y 
					Y 
					Y 
					Y 
					Y 
					N 
					Y 
					Y 
					N 
					Y 
					Y 
					N 
					N 
					N 
					Y 
					Y 
					N 
					Y 
					Y 
					N 
					N 
					Copy   
					Copy and Verify   
					Format Unit [1]   
					DPRY bit supported   
					DCRT bit supported   
					STPF bit supported   
					IP bit supported   
					DSP bit supported   
					IMMED bit supported   
					VS (vendor specific)   
					Inquiry   
					12h   
					Date Code page (C1h)   
					Device Behavior page (C3h)   
					Firmware Numbers page (C0h)   
					Implemented Operating Def page (81h)   
					Jumper Settings page (C2h)   
					Supported Vital Product Data page (00h)   
					Unit Serial Number page (80h)   
					Lock-unlock cache   
					Log Select   
					36h   
					4Ch   
					PCR bit   
					DU bit   
					DS bit   
					TSD bit   
					ETC bit   
					TMC bit   
					LP bit   
					Log Sense   
					4Dh   
					Application Client Log page (0Fh)   
					Buffer Over-run/Under-run page (01h)   
					Cache Statistics page (37h)   
					Factory Log page (3Eh)   
					Last n Deferred Errors or Asynchronous Events page (0Bh)   
					Last n Error Events page (07h)   
					Cheetah T10 SAS Product Manual, Rev. A   
					47   
					 
					 
				Table 8:   
					Commands supported by Cheetah T10 SAS family drives (continued)   
					Command name   
					Command code   
					Supported   
					Non-medium Error page (06h)   
					Pages Supported list (00h)   
					Y 
					Y 
					Read Error Counter page (03h)   
					Read Reverse Error Counter page (04h)   
					Self-test Results page (10h)   
					Y 
					N 
					Y 
					Background Medium Scan page (15h)   
					Start-stop Cycle Counter page (0Eh)   
					Temperature page (0Dh)   
					Y 
					Y 
					Y 
					Verify Error Counter page (05h)   
					Write error counter page (02h)   
					Mode Select (same pages as Mode Sense 1Ah)   
					Mode Select (10) (same pages as Mode Sense 1Ah)   
					Mode Sense   
					Y 
					Y 
					15h   
					55h   
					1Ah   
					Y [2]   
					Y 
					Y [2]   
					Y 
					Caching Parameters page (08h)   
					Control Mode page (0Ah)   
					Y 
					Disconnect/Reconnect (02h)   
					Y 
					Error Recovery page (01h)   
					Y 
					Format page (03h)   
					Y 
					Information Exceptions Control page (1Ch)   
					Background Medium Scan mode subpage (01h)   
					Notch and Partition Page (0Ch)   
					Protocol-Specific Port page (19h)   
					Power Condition page (1Ah)   
					Y 
					Y 
					N 
					Y 
					Y 
					Rigid Disc Drive Geometry page (04h)   
					Unit Attention page (00h)   
					Y 
					Y 
					Verify Error Recovery page (07h)   
					Xor Control page (10h)   
					Y 
					N 
					Mode Sense (10) (same pages as Mode Sense 1Ah)   
					5Ah   
					34h   
					08h   
					3Ch   
					25h   
					37h   
					B7h   
					28h   
					Y 
					N 
					Y 
					Y 
					Y 
					Y 
					Y 
					Y 
					Y 
					Y 
					Y 
					Prefetch   
					Read   
					Read Buffer (modes 0, 2, 3, Ah and Bh supported)   
					Read Capacity   
					Read Defect Data (10)   
					Read Defect Data (12)   
					Read Extended   
					DPO bit supported   
					FUA bit supported   
					Read Long   
					3Eh   
					48   
					Cheetah T10 SAS Product Manual, Rev. A   
				Table 8:   
					Commands supported by Cheetah T10 SAS family drives (continued)   
					Command name   
					Reassign Blocks   
					Receive Diagnostic Results   
					Supported Diagnostics pages (00h)   
					Translate page (40h)   
					Release   
					Command code   
					Supported   
					07h   
					Y 
					1Ch   
					Y 
					Y 
					Y 
					Y 
					Y 
					Y 
					Y 
					Y 
					Y 
					Y 
					Y 
					N 
					Y 
					Y 
					N 
					Y 
					N 
					N 
					N 
					Y 
					Y 
					Y 
					Y 
					Y 
					N 
					Y 
					Y 
					Y 
					Y 
					Y 
					Y 
					Y 
					Y 
					Y 
					Y 
					17h   
					57h   
					03h   
					Release (10)   
					Request Sense   
					Actual Retry Count bytes   
					Extended Sense   
					Field Pointer bytes   
					Reserve   
					16h   
					56h   
					3rd Party Reserve   
					Extent Reservation   
					Reserve (10)   
					3rd Party Reserve   
					Extent Reservation   
					Rezero Unit   
					01h   
					31h   
					30h   
					32h   
					0Bh   
					2Bh   
					1Dh   
					Search Data Equal   
					Search Data High   
					Search Data Low   
					Seek   
					Seek Extended   
					Send Diagnostics   
					Supported Diagnostics pages (00h)   
					Translate page (40h)   
					Set Limits   
					33h   
					1Bh   
					35h   
					00h   
					2Fh   
					Start Unit/Stop Unit (spindle ceases rotating)   
					Synchronize Cache   
					Test Unit Ready   
					Verify   
					BYTCHK bit   
					Write   
					0Ah   
					2Eh   
					Write and Verify   
					DPO bit   
					Write Buffer (modes 0, 2, supported)   
					3Bh   
					2Ah   
					Firmware Download option   
					(modes 5, 7, Ah and Bh supported) [3]   
					Write Extended   
					DPO bit   
					Y 
					Y 
					Cheetah T10 SAS Product Manual, Rev. A   
					49   
				Table 8:   
					Commands supported by Cheetah T10 SAS family drives (continued)   
					Command name   
					FUA bit   
					Command code   
					Supported   
					Y 
					Write Long   
					Write Same   
					PBdata   
					3Fh   
					41h   
					Y 
					Y 
					N 
					N 
					N 
					N 
					N 
					LBdata   
					XDRead   
					52h   
					50h   
					51h   
					XDWrite   
					XPWrite   
					[1] Cheetah drives can format to 512, 520, 524, or 528 bytes per logical block.   
					[2] Warning. Power loss during flash programming can result in firmware corruption. This usually makes the   
					drive inoperable.   
					[3] Reference Mode Sense command 1Ah for mode pages supported.   
					[4] Y = Yes. Command is supported.   
					N = No. Command is not supported.   
					A = Support is available on special request.   
					50   
					Cheetah T10 SAS Product Manual, Rev. A   
					 
					 
				9.3.1   
					Inquiry data   
					Table 9 lists the Inquiry command data that the drive should return to the initiator per the format given in the   
					SAS Interface Manual.   
					Table 9:   
					Cheetah T10 SAS inquiry data   
					Data (hex)   
					Bytes   
					0-15   
					00   
					[53   
					R#   
					00   
					00   
					00   
					00   
					00   
					54   
					R#   
					00   
					00   
					00   
					43   
					xx** 12   
					8B   
					30   
					S#   
					00   
					00   
					00   
					79   
					53   
					74   
					00   
					30   
					S#   
					00   
					00   
					00   
					72   
					65   
					73   
					10   
					35   
					S#   
					00   
					00   
					00   
					69   
					61   
					20   
					0A   
					35   
					S#   
					00   
					00   
					00   
					67   
					67   
					72   
					53   
					35   
					S#   
					00   
					00   
					00   
					68   
					61   
					65   
					45   
					53   
					S#   
					00   
					00   
					00   
					74   
					74   
					73   
					41   
					47   
					41   
					20   
					00   
					00   
					00   
					00   
					63   
					41   
					76   
					54   
					20   
					00   
					00   
					00   
					00   
					29   
					6C   
					65   
					45   
					20   
					00   
					00   
					00   
					00   
					20   
					6C   
					64   
					20   
					20   
					00   
					00   
					00   
					00   
					Vendor ID   
					Product ID   
					16-31   
					32-47   
					48-63   
					64-79   
					80-95   
					96-111   
					112-127   
					128-143   
					33   
					R#   
					00   
					00   
					00   
					6F   
					33   
					R#   
					00   
					00   
					00   
					70   
					20   
					68   
					53]1 20   
					S#   
					00   
					00   
					00   
					20   
					65   
					65   
					S#   
					00   
					00   
					00   
					28   
					20   
					72   
					32* *Copyright   
					30* 30* 36*   
					72 69 67   
					20   
					20   
					notice   
					* 
					Copyright year (changes with actual year).   
					SCSI Revision support. See the appropriate SPC release documention for definitions.   
					**   
					PP 10 = Inquiry data for an Inquiry command received on Port A.   
					30 = Inquiry data for an Inquiry command received on Port B.   
					R# Four ASCII digits representing the last four digits of the product firmware release number.   
					S# Eight ASCII digits representing the eight digits of the product serial number.   
					[ ]   
					Bytes 16 through 26 reflect model of drive. The table above shows the hex values for Model ST3300555SS.   
					Refer to the values below for the values of bytes 16 through 26 of your particular model:   
					ST3300555SS   
					ST3146755SS   
					ST373355SS   
					53 54 33 33 30 30 35 35 35 53 53   
					53 54 33 31 34 36 37 35 35 53 53   
					53 54 33 37 33 33 35 35 53 53 20   
					9.3.2   
					Mode Sense data   
					The Mode Sense command provides a way for the drive to report its operating parameters to the initiator. The   
					drive maintains four sets of mode parameters:   
					1. Default values   
					Default values are hard-coded in the drive firmware stored in flash E-PROM (nonvolatile memory) on the   
					drive’s PCB. These default values can be changed only by downloading a complete set of new firmware   
					into the flash E-PROM. An initiator can request and receive from the drive a list of default values and use   
					those in a Mode Select command to set up new current and saved values, where the values are change-   
					able.   
					2. Saved values   
					Saved values are stored on the drive’s media using a Mode Select command. Only parameter values that   
					are allowed to be changed can be changed by this method. Parameters in the saved values list that are not   
					changeable by the Mode Select command get their values from default values storage.   
					When power is applied to the drive, it takes saved values from the media and stores them as current val-   
					ues in volatile memory. It is not possible to change the current values (or the saved values) with a Mode   
					Cheetah T10 SAS Product Manual, Rev. A   
					51   
					 
					 
					 
					 
					 
				Select command before the drive achieves operating speed and is “ready.” An attempt to do so results in a   
					“Check Condition” status.   
					On drives requiring unique saved values, the required unique saved values are stored into the saved val-   
					ues storage location on the media prior to shipping the drive. Some drives may have unique firmware with   
					unique default values also.   
					On standard OEM drives, the saved values are taken from the default values list and stored into the saved   
					values storage location on the media prior to shipping.   
					3. Current values   
					Current values are volatile values being used by the drive to control its operation. A Mode Select command   
					can be used to change the values identified as changeable values. Originally, current values are installed   
					from saved or default values after a power on reset, hard reset, or Bus Device Reset message.   
					4. Changeable values   
					Changeable values form a bit mask, stored in nonvolatile memory, that dictates which of the current values   
					and saved values can be changed by a Mode Select command. A one (1) indicates the value can be   
					changed. A zero (0) indicates the value is not changeable. For example, in Table 10, refer to Mode page   
					81, in the row entitled “CHG.” These are hex numbers representing the changeable values for Mode page   
					81. Note in columns 5 and 6 (bytes 04 and 05), there is 00h which indicates that in bytes 04 and 05 none of   
					the bits are changeable. Note also that bytes 06, 07, 09, 10, and 11 are not changeable, because those   
					fields are all zeros. In byte 02, hex value FF equates to the binary pattern 11111111. If there is a zero in any   
					bit position in the field, it means that bit is not changeable. Since all of the bits in byte 02 are ones, all of   
					these bits are changeable.   
					The changeable values list can only be changed by downloading new firmware into the flash E-PROM.   
					Note. Because there are often several different versions of drive control firmware in the total population of   
					drives in the field, the Mode Sense values given in the following tables may not exactly match those   
					of some drives.   
					The following tables list the values of the data bytes returned by the drive in response to the Mode Sense com-   
					mand pages for SCSI implementation (see the SAS Interface Manual).   
					Definitions:   
					DEF = Default value. Standard OEM drives are shipped configured this way.   
					CHG = Changeable bits; indicates if default value is changeable.   
					52   
					Cheetah T10 SAS Product Manual, Rev. A   
				Table 10:   
					ST3300555SS Mode Sense data   
					MODE DATA HEADER:   
					03 fa 00 10 00 00 00 08   
					BLOCK DESCRIPTOR:   
					22 ec b2 5c 00 00 02 00   
					MODE PAGES:   
					DEF 81 0a c0 0b ff 00 00 00 05 00 ff ff   
					CHG 81 0a ff ff 00 00 00 00 ff 00 ff ff   
					DEF 82 0e 00 00 00 00 00 00 00 00 01 3a 00 00 00 00   
					CHG 82 0e 00 00 00 00 00 00 00 00 ff ff 00 00 00 00   
					DEF 83 16 68 58 00 00 00 38 00 00 03 db 02 00 00 01 00 e6 03 02 40 00 00 00   
					CHG 83 16 00 00 00 00 ff ff 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00   
					DEF 84 16 01 22 64 08 00 00 00 00 00 00 00 00 00 00 00 00 00 00 3a a7 00 00   
					CHG 84 16 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00   
					DEF 87 0a 00 0b ff 00 00 00 00 00 ff ff   
					CHG 87 0a 0f ff 00 00 00 00 00 00 ff ff   
					DEF 88 12 14 00 ff ff 00 00 ff ff ff ff 80 20 00 00 00 00 00 00   
					CHG 88 12 a5 00 00 00 ff ff ff ff 00 00 20 00 00 00 00 00 00 00   
					DEF 8a 0a 02 00 00 00 00 00 00 00 0f 0c   
					CHG 8a 0a 03 f0 00 00 00 00 00 00 00 00   
					DEF 18 06 06 00 00 00 00 00   
					CHG 18 06 00 00 00 00 00 00   
					DEF 99 06 06 00 07 d0 00 00   
					CHG 99 06 10 00 ff ff ff ff   
					DEF 9a 0a 00 02 00 00 00 05 00 00 00 04   
					CHG 9a 0a 00 03 ff ff ff ff 00 00 00 00   
					DEF 9c 0a 10 00 00 00 00 00 00 00 00 01   
					CHG 9c 0a 9d 0f ff ff ff ff ff ff ff ff   
					DEF dc 01 00 0c 01 01 00 18 00 18 00 00 00 00 00 00   
					CHG dc 01 00 0c 01 01 ff ff ff ff 00 00 00 00 00 00   
					DEF b9 0a 00 00 00 00 00 00 00 00 00 00   
					CHG b9 0a 00 08 00 00 00 00 00 00 00 00   
					DEF ba 0a 00 05 01 19 01 00 00 0a 00 00   
					CHG ba 0a 00 ff 03 ff ff ff 06 ff 00 00   
					DEF 80 06 00 80 0f 00 00 00   
					CHG 80 06 b7 c0 0f 00 00 00   
					Cheetah T10 SAS Product Manual, Rev. A   
					53   
					 
					 
				Table 11:   
					ST3146755SS Mode Sense data   
					MODE DATA HEADER:   
					03 fa 00 10 00 00 00 08   
					BLOCK DESCRIPTOR:   
					11 17 73 30 00 00 02 00   
					MODE PAGES:   
					DEF 81 0a c0 0b ff 00 00 00 05 00 ff ff   
					CHG 81 0a ff ff 00 00 00 00 ff 00 ff ff   
					DEF 82 0e 00 00 00 00 00 00 00 00 01 3a 00 00 00 00   
					CHG 82 0e 00 00 00 00 00 00 00 00 ff ff 00 00 00 00   
					DEF 83 16 34 2c 00 00 00 1c 00 00 03 db 02 00 00 01 00 e6 03 02 40 00 00 00   
					CHG 83 16 00 00 00 00 ff ff 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00   
					DEF 84 16 01 22 64 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 3a a7 00 00   
					CHG 84 16 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00   
					DEF 87 0a 00 0b ff 00 00 00 00 00 ff ff   
					CHG 87 0a 0f ff 00 00 00 00 00 00 ff ff   
					DEF 88 12 14 00 ff ff 00 00 ff ff ff ff 80 20 00 00 00 00 00 00   
					CHG 88 12 a5 00 00 00 ff ff ff ff 00 00 20 00 00 00 00 00 00 00   
					DEF 8a 0a 02 00 00 00 00 00 00 00 07 95   
					CHG 8a 0a 03 f0 00 00 00 00 00 00 00 00   
					DEF 18 06 06 00 00 00 00 00   
					CHG 18 06 00 00 00 00 00 00   
					DEF 99 06 06 00 07 d0 00 00   
					CHG 99 06 10 00 ff ff ff ff   
					DEF 9a 0a 00 02 00 00 00 05 00 00 00 04   
					CHG 9a 0a 00 03 ff ff ff ff 00 00 00 00   
					DEF 9c 0a 10 00 00 00 00 00 00 00 00 01   
					CHG 9c 0a 9d 0f ff ff ff ff ff ff ff ff   
					DEF dc 01 00 0c 01 01 00 18 00 18 00 00 00 00 00 00   
					CHG dc 01 00 0c 01 01 ff ff ff ff 00 00 00 00 00 00   
					DEF b9 0a 00 00 00 00 00 00 00 00 00 00   
					CHG b9 0a 00 08 00 00 00 00 00 00 00 00   
					DEF ba 0a 00 05 01 19 01 00 00 0a 00 00   
					CHG ba 0a 00 ff 03 ff ff ff 06 ff 00 00   
					DEF 80 06 00 80 0f 00 00 00   
					CHG 80 06 b7 c0 0f 00 00 00   
					54   
					Cheetah T10 SAS Product Manual, Rev. A   
					 
				Table 12:   
					ST373355SS Mode Sense data   
					MODE DATA HEADER:   
					03 fa 00 10 00 00 00 08   
					BLOCK DESCRIPTOR:   
					08 8b b9 98 00 00 02 00   
					MODE PAGES:   
					DEF 81 0a c0 0b ff 00 00 00 05 00 ff ff   
					CHG 81 0a ff ff 00 00 00 00 ff 00 ff ff   
					DEF 82 0e 00 00 00 00 00 00 00 00 01 3a 00 00 00 00   
					CHG 82 0e 00 00 00 00 00 00 00 00 ff ff 00 00 00 00   
					DEF 83 16 1a 16 00 00 00 0e 00 00 03 db 02 00 00 01 00 e6 03 02 40 00 00 00   
					CHG 83 16 00 00 00 00 ff ff 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00   
					DEF 84 16 01 22 64 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 3a a7 00 00   
					CHG 84 16 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00   
					DEF 87 0a 00 0b ff 00 00 00 00 00 ff ff   
					CHG 87 0a 0f ff 00 00 00 00 00 00 ff ff   
					DEF 88 12 14 00 ff ff 00 00 ff ff ff ff 80 20 00 00 00 00 00 00   
					CHG 88 12 a5 00 00 00 ff ff ff ff 00 00 20 00 00 00 00 00 00 00   
					DEF 8a 0a 02 00 00 00 00 00 00 00 03 ed   
					CHG 8a 0a 03 f0 00 00 00 00 00 00 00 00   
					DEF 18 06 06 00 00 00 00 00   
					CHG 18 06 00 00 00 00 00 00   
					DEF 99 06 06 00 07 d0 00 00   
					CHG 99 06 10 00 ff ff ff ff   
					DEF 9a 0a 00 02 00 00 00 05 00 00 00 04   
					CHG 9a 0a 00 03 ff ff ff ff 00 00 00 00   
					DEF 9c 0a 10 00 00 00 00 00 00 00 00 01   
					CHG 9c 0a 9d 0f ff ff ff ff ff ff ff ff   
					DEF b9 0a 00 00 00 00 00 00 00 00 00 00   
					CHG b9 0a 00 08 00 00 00 00 00 00 00 00   
					DEF ba 0a 00 05 01 19 01 00 00 0a 00 00   
					CHG ba 0a 00 ff 03 ff ff ff 06 ff 00 00   
					DEF 80 06 00 80 0f 00 00 00   
					CHG 80 06 b7 c0 0f 00 00 00   
					Cheetah T10 SAS Product Manual, Rev. A   
					55   
					 
				9.4   
					Miscellaneous operating features and conditions   
					Table 13 lists various features and conditions. A “Y” in the support column indicates the feature or condition is   
					supported. An “N” in the support column indicates the feature or condition is not supported.   
					Table 13:   
					Miscellaneous features   
					Supported   
					Feature or condition   
					N 
					N 
					N 
					Y 
					N 
					Y 
					Y 
					Y 
					Y 
					N 
					Y 
					Automatic contingent allegiance   
					Asynchronous event notification   
					Synchronized (locked) spindle operation   
					Segmented caching   
					Zero latency read   
					Queue tagging (up to 64 queue tags supported)   
					Deferred error handling   
					Parameter rounding (controlled by Round bit in Mode Select page 0)   
					Reporting actual retry count in Extended Sense bytes 15, 16, and 17   
					Adaptive caching   
					SMP = 1 in Mode Select command needed to save RPL and rotational offset bytes   
					Table 14:   
					Miscellaneous status   
					Supported   
					Status   
					Y 
					Y 
					Y 
					Y 
					Y 
					Y 
					Y 
					Y 
					N 
					N 
					Good   
					Check condition   
					Condition met/good   
					Busy   
					Intermediate/good   
					Intermediate/condition met/good   
					Reservation conflict   
					Task set full   
					ACA active   
					ACA active, faulted initiator   
					56   
					Cheetah T10 SAS Product Manual, Rev. A   
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
				9.4.1   
					SAS physical interface   
					Figure 16 shows the location of the SAS device connector J1. Figures 17 and 18 provide the dimensions of the   
					SAS device.   
					Details of the physical, electrical, and logical characteristics are provided within this section. The operational   
					aspects of Seagate’s SAS drives are provided in the SAS Interface Manual..   
					SAS Interface   
					connector   
					Figure 16.   
					Physical interface   
					Cheetah T10 SAS Product Manual, Rev. A   
					57   
					 
					 
					 
					 
				0.80 (6X)   
					5.92   
					7.62   
					4.65   
					0.52 0.08 x 45   
					2.00 (3X)   
					0.45 0.03 (7X)   
					0.10 M E   
					5.08   
					42.73 REF.   
					41.13 0.15   
					0.20B   
					0.30 0.05 (2X)   
					C 
					A 
					B 
					1.10   
					4.00 0.08   
					0.15D   
					C OF DATUM D   
					L 
					R0.30 0.08 (4X)   
					A 
					0.30 0.05 (4X)   
					B 
					C 
					SEE Detail1   
					B 
					33.43 0.05   
					15.875   
					15.875   
					1.27 (14X)   
					1.27 (6X)   
					0.84 0.05 (22X)   
					5.08   
					0.15B   
					4.90 0.08   
					0.35MIN   
					P15   
					S1   
					P1   
					S7   
					C OF DATUM B   
					L 
					Figure 17. SAS connector dimensions   
					58   
					Cheetah T10 SAS Product Manual, Rev. A   
					 
				Detail A   
					6.10   
					S14   
					S8   
					0.30 0.05 x 45 (5X)   
					2.25 0.05   
					0.40 0.05 X 45 (3X)   
					4.85 0.05   
					0.10B   
					CORING ALLOWED   
					IN THIS AREA.   
					E 
					4.40 0.15   
					R0.30 0.08   
					45   
					C 
					SEE Detail 2   
					1.95 0.08   
					A 
					0.35 0.05   
					SECTION C - C   
					3.90 0.15   
					SECTION A - A   
					CONTACT SURFACE FLUSH   
					TO DATUM A 0.03   
					0.08 0.05   
					65   
					1.90 0.08   
					1.23 0.05   
					0.08 0.05   
					30   
					Detail 2   
					2.40 0.08   
					0.10 A   
					SECTION B - B   
					D 
					Figure 18. SAS connector dimensions   
					9.4.2   
					Physical characteristics   
					This section defines physical interface connector.   
					9.4.3   
					Connector requirements   
					Contact your preferred connector manufacturer for mating part information. Part numbers for SAS connectors   
					will be provided in a future revision of this publication when production parts are available from major connec-   
					tor manufacturers.   
					
					Cheetah T10 SAS Product Manual, Rev. A   
					59   
					 
					 
					 
					 
					 
				9.4.4   
					Electrical description   
					SAS drives use the device connector for:   
					• DC power   
					• SAS interface   
					• Activity LED   
					This connector is designed to either plug directly into a backpanel or accept cables.   
					9.4.5   
					Pin descriptions   
					This section provides a pin-out of the SAS device and a description of the functions provided by the pins.   
					Table 15:   
					SAS pin descriptions   
					Pin   
					S1   
					Signal name Signal type   
					Pin   
					P1*   
					P2*   
					P3   
					Signal name   
					NC (reserved 3.3Volts)   
					NC (reserved 3.3Volts)   
					NC (reserved 3.3Volts)   
					Ground   
					Signal type   
					Port A Ground   
					+Port A_in   
					S2*   
					S3*   
					S4   
					Diff. input pair   
					Diff output pair   
					-Port A_in   
					Port A Ground   
					-Port A_out   
					+Port A_out   
					Port A Ground   
					Port B Ground   
					+Port B_in   
					P4   
					S5*   
					S6*   
					S7   
					P5   
					Ground   
					P6   
					Ground   
					P7   
					5 Volts charge   
					5 Volts   
					S8   
					P8*   
					P9*   
					P10   
					S9*   
					Diff. input pair   
					Diff output pair   
					5 Volts   
					S10* -Port B_in   
					Ground   
					S11   
					Port A Ground   
					P11* Ready LED   
					Open collector out   
					S12* -Port B_out   
					S13* +Port B_out   
					P12   
					P13   
					Ground   
					12 Volts charge   
					S14   
					Port B Ground   
					P14* 12 Volts   
					P15* 12 Volts   
					* - Short pin to support hot plugging   
					NC - No connection in the drive.   
					60   
					Cheetah T10 SAS Product Manual, Rev. A   
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
				9.4.6   
					SAS transmitters and receivers   
					A typical SAS differential copper transmitter and receiver pair is shown in Figure 19. The receiver is AC cou-   
					pling to eliminate ground shift noise.   
					.01   
					.01   
					TX   
					RX   
					Differential   
					Transmitter   
					100   
					Receiver   
					100   
					RY   
					Transfer Medium   
					TY   
					Figure 19. SAS transmitters and receivers   
					9.4.7 Power   
					The drive receives power (+5 volts and +12 volts) through the SAS device connector.   
					Three +12 volt pins provide power to the drive, 2 short and 1 long. The current return for the +12 volt power   
					supply is through the common ground pins. The supply current and return current must be distributed as   
					evenly as possible among the pins.   
					Three +5 volt pins provide power to the drive, 2 short and 1 long. The current return for the +5 volt power sup-   
					ply is through the common ground pins. The supply current and return current must be distributed as evenly as   
					possible among the pins.   
					Current to the drive through the long power pins may be limited by the system to reduce inrush current to the   
					drive during hot plugging.   
					9.5   
					Signal characteristics   
					This section describes the electrical signal characteristics of the drive’s input and output signals. See Table 15   
					for signal type and signal name information.   
					9.5.1   
					Ready LED Out   
					
					Table 16:   
					Ready LED Out conditions   
					Normal command activity   
					LED status   
					0 
					1 
					Ready LED Meaning bit mode page 19h   
					Spun down and no activity   
					Off   
					On   
					On   
					Off   
					Off   
					On   
					Off   
					On   
					Spun down and activity (command executing)   
					Spun up and no activity   
					Spun up and activity (command executing)   
					Spinning up or down   
					Blinks steadily   
					(50% on and 50% off, 0.5 seconds on and off for 0.5 seconds)   
					Format in progress, each cylinder change   
					Toggles on/off   
					Cheetah T10 SAS Product Manual, Rev. A   
					61   
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
					 
				The Ready LED Out signal is designed to pull down the cathode of an LED. The anode is attached to the   
					proper +3.3 volt supply through an appropriate current limiting resistor. The LED and the current limiting resis-   
					tor are external to the drive. See Table 17 for the output characteristics of the LED drive signals.   
					Table 17:   
					LED drive signal   
					State   
					Test condition   
					0 V ≤ VOH ≤ 3.6 V   
					= 15 mA   
					Output voltage   
					LED off, high   
					LED on, low   
					-100 µA < I < 100 µA   
					OH   
					I 
					0 ≤ VOL ≤ 0.225 V   
					OL   
					9.5.2   
					Differential signals   
					The drive SAS differential signals comply with the intra-enclosure (internal connector) requirements of the SAS   
					standard.   
					Table 18 defines the general interface characteristics.   
					Table 18:   
					General interface characteristics   
					Characteristic   
					Units   
					Mbaud   
					ps   
					1.5 Gbps   
					1,500   
					666.6   
					100   
					3.0 Gbps   
					3,000   
					333.3   
					100   
					Bit rate (nominal)   
					Unit interval (UI)(nominal)   
					Impedance (nominal, differential )   
					Transmitter transients, maximum   
					Receiver transients, maximum   
					ohm   
					V 
					± 1.2   
					± 1.2   
					V 
					± 1.2   
					± 1.2   
					9.5.2.1   
					Eye masks   
					9.5.2.1.1   
					Eye masks overview   
					The eye masks are graphical representations of the voltage and time limits on the signal at the compliance   
					-12   
					point. The time values between X1 and (1 - X1) cover all but 10 of the jitter population. The random content   
					of the total jitter population has a range of ± 7 standard deviations.   
					62   
					Cheetah T10 SAS Product Manual, Rev. A   
					 
					 
					 
				9.5.2.1.2   
					Receive eye mask   
					Figure 20 describes the receive eye mask. This eye mask applies to jitter after the application of a single pole   
					high-pass frequency-weighting function that progressively attenuates jitter at 20 dB/decade below a frequency   
					of ((bit rate) / 1.667).   
					Absolute   
					amplitude   
					(in V)   
					Z2   
					Z1   
					0 V   
					-Z1   
					-Z2   
					0 
					X1   
					X2 1-X1   
					1-X2   
					1 
					Norm alized tim e (in UI)   
					Figure 20. Receive eye mask   
					Verifying compliance with the limits represented by the receive eye mask should be done with reverse channel   
					traffic present in order that the effects of crosstalk are taken into account.   
					9.5.2.1.3   
					Jitter tolerance masks   
					Figure 21 describes the receive tolerance eye masks and is constructed using the X2 and Z2 values given in   
					
					
					OP   
					TOL   
					jitter frequencies above ((bit rate) / 1.667).   
					Absolute   
					amplitude   
					(additional sinusoidal jitter) / 2   
					(in V)   
					Z2   
					Z1OP   
					Z1TOL   
					Outline of eye mask   
					before adding   
					0 V   
					-Z1   
					sinusoidal jitter   
					TOL   
					-Z1OP   
					Outline of eye mask   
					after adding   
					-Z2   
					sinusoidal jitter   
					0 
					X1OP   
					X2   
					1 
					1-X1   
					OP   
					X1TOL   
					1-X1   
					TOL   
					Normalized time (in UI)   
					Figure 21. Reveive tolerance eye mask   
					Cheetah T10 SAS Product Manual, Rev. A   
					63   
					 
					 
				The leading and trailing edge slopes of figure 20 shall be preserved. As a result the amplitude value of Z1 is   
					less than that given in table 20 and Z1   
					tion:   
					and Z1 shall be defined from those slopes by the following equa-   
					TOL   
					OP   
					X2OP – ((0, 5)xadditional sinusoidal jitter) – X1OP   
					Z1TOL = Z1OPx----------------------------------------------------------------------------------------------------------------------------------   
					X2OP – X1OP   
					where:   
					Z1   
					is the value for Z1 to be used for the tolerance masks; and   
					TOL   
					Z1 , X1 , and X2 are the values in table 20 for Z1, X1, and X2.   
					OP   
					OP   
					OP   
					The X1 points in the receive tolerance masks are greater than the X1 points in the receive masks, due to the   
					addition of sinusoidal jitter.   
					Figure 22 defines the sinusoidal jitter mask.   
					Peak-to-   
					peak   
					Sinusoidal jitter frequency   
					sinusoidal   
					(log/log plot)   
					jitter   
					(in UI)   
					FNOM = 1.5 x 10 9 for 1.5 Gbps   
					FNOM = 3.0 x 10 9 for 3.0 Gbps   
					1.5   
					1.0   
					0.1   
					0 
					FNOM / 25,000   
					FNOM / 1,667   
					Frequency (in kHz)   
					Figure 22. Sinusoidal jitter mask   
					64   
					Cheetah T10 SAS Product Manual, Rev. A   
					 
				9.5.2.2   
					Transmitter signal characteristics   
					Table 19 specifies the signal requirements at the transmitter end of a TxRx connection as measured into the   
					zero-length test load. All specifications are based on differential measurements.   
					The OOB sequence is performed at signal voltage levels corresponding to the lowest supported transfer rate.   
					
					Table 19:   
					Transmitter signal characteristics   
					a 
					Signal characteristic   
					Units   
					ps   
					1.5 Gbps   
					20   
					3.0 Gbps   
					15   
					b 
					Skew   
					c 
					Tx Off Voltage   
					mV(P-P)   
					ps   
					< 50   
					273   
					< 50   
					137   
					d 
					Maximum rise/fall time   
					d 
					Minimum rise/fall time   
					ps   
					67   
					67   
					e 
					Maximum transmitter output imbalance   
					% 
					10   
					10   
					f 
					OOB offset delta   
					mV   
					± 25   
					± 50   
					± 25   
					± 50   
					g 
					OOB common mode delta   
					mV   
					
					b The skew measurement shall be made at the midpoint of the transition with a repeating 0101b pattern on the physical   
					link. The same stable trigger, coherent to the data stream, shall be used for both the Tx+ and Tx- signals. Skew is   
					defined as the time difference between the means of the midpoint crossing times of the Tx+ signal and the Tx- signal.   
					c The transmitter off voltage is the maximum A.C. voltage measured at compliance points when the transmitter is   
					unpowered or transmitting D.C. idle (e.g., during idle time of an OOB signal).   
					d Rise/fall times are measured from 20 % to 80 % of the transition with a repeating 0101b pattern on the physical link.   
					e The maximum difference between the V+ and V- A.C. RMS transmitter amplitudes measured on a CJTPAT test   
					pattern (see 9.5.2.3.3) into the test load shown in figure 24, as a percentage of the average of the V+ and V- A.C.   
					RMS amplitudes.   
					f 
					The maximum difference in the average differential voltage (D.C. offset) component between the burst times and the   
					idle times of an OOB signal.   
					g The maximum difference in the average of the common mode voltage between the burst times and the idle times of   
					an OOB signal.   
					Cheetah T10 SAS Product Manual, Rev. A   
					65   
					 
				9.5.2.3   
					Receiver signal characteristics   
					Table 20 defines the compliance point requirements of the signal at the receiver end of a TxRx connection as   
					
					Table 20:   
					Receiver signal characteristics   
					Signal characteristic   
					Units   
					1.5 Gbps   
					3.0 Gbps   
					b 
					
					2 x Z2   
					N/A   
					
					mV(P-P)   
					mV(P-P)   
					UI   
					1,200   
					325   
					1,600   
					275   
					2 x Z1   
					a 
					X1   
					0.275   
					0.50   
					80   
					0.275   
					0.50   
					75   
					X2   
					UI   
					d 
					Skew   
					ps   
					Max voltage (non-op)   
					mV(P-P)   
					mV(P-P)   
					mV(P-P)   
					mV(P-P)   
					2.000   
					240   
					2.000   
					240   
					c 
					Minimum OOB ALIGN burst amplitude   
					c 
					Maximum noise during OOB idle time   
					120   
					120   
					e 
					Max near-end crosstalk   
					100   
					100   
					a The value for X1 shall be half the value given for total jitter in table 21. The test or analysis shall include the effects of   
					a single pole high-pass frequency-weighting function that progressively attenuates jitter at 20 dB/decade below a   
					frequency of ((bit rate) / 1,667).   
					-12   
					b The value for X1 applies at a total jitter probability of 10 . At this level of probability direct visual comparison   
					between the mask and actual signals is not a valid method for determining compliance with the jitter output   
					requirements.   
					c With a measurement bandwidth of 1.5 times the baud rate (i.e. 4.5 GHz for 3.0 Gbps).   
					d The skew measurement shall be made at the midpoint of the transition with a repeating 0101b pattern on the physical   
					link. The same stable trigger, coherent to the data stream, shall be used for both the Rx+ and Rx- signals. Skew is   
					defined as the time difference between the means of the midpoint crossing times of the Rx+ signal and the Rx- signal.   
					e Near-end crosstalk is the unwanted signal amplitude at receiver terminals DR, CR, and XR coupled from signals and   
					noise sources other than the desired signal. Refer to SFF-8410.   
					9.5.2.3.1   
					Jitter   
					
					Table 21:   
					Maximum allowable jitter   
					m, n   
					m, n   
					1.5 Gbps   
					3.0 Gbps   
					q 
					, 
					, ,   
					, 
					, ,   
					Deterministic jitter   
					Total jitterc d e f   
					Deterministic jittere   
					0.35   
					Total jitterc d e f   
					0.35   
					0.55   
					0.55   
					a Units are in UI.   
					b The values for jitter in this section are measured at the average amplitude point.   
					c Total jitter is the sum of deterministic jitter and random jitter. If the actual deterministic jitter is less than the maximum   
					specified, then the random jitter may increase as long as the total jitter does not exceed the specified maximum total   
					jitter.   
					-12   
					d Total jitter is specified at a probability of 10   
					. 
					e The deterministic and total values in this table apply to jitter after application of a single pole high-pass frequency-   
					weighting function that progressively attenuates jitter at 20 dB/decade below a frequency of ((bit rate) / 1 667).   
					f 
					If total jitter received at any point is less than the maximum allowed, then the jitter distribution of the signals is allowed   
					to be asymmetric. The total jitter plus the magnitude of the asymmetry shall not exceed the allowed maximum total   
					-12   
					jitter. The numerical difference between the average of the peaks with a BER < 10 and the average of the   
					individual events is the measure of the asymmetry. Jitter peak-to-peak measured < (maximum total jitter -   
					|Asymmetry|).   
					66   
					Cheetah T10 SAS Product Manual, Rev. A   
					 
				9.5.2.3.2   
					Receiver jitter tolerance   
					
					Table 22:   
					jitter   
					Receiver jitter tolerance   
					a 
					a 
					1.5 Gbps   
					3.0 Gbps   
					Sinusoidal   
					Deterministic   
					Total   
					Sinusoidal   
					Deterministic   
					Total   
					b,c   
					e,f,h   
					h 
					b,d   
					e,g,h   
					h 
					jitter   
					jitter   
					jitter   
					jitter   
					jitter   
					0.10   
					0.35   
					0.65   
					0.10   
					0.35   
					0.65   
					a Units are in UI.   
					b The jitter values given are normative for a combination of deterministic jitter, random jitter, and sinusoidal jitter that   
					-12   
					receivers shall be able to tolerate without exceeding a BER of 10 . Receivers shall tolerate sinusoidal jitter of   
					progressively greater amplitude at lower frequencies, according to the mask in figure 22 with the same deterministic   
					jitter and random jitter levels as were used in the high frequency sweep.   
					c Sinusoidal swept frequency: 900 kHz to > 5 MHz.   
					d Sinusoidal swept frequency: 1.800 kHz to > 5 MHz.   
					e No value is given for random jitter. For compliance with this standard, the actual random jitter amplitude shall be the   
					-12   
					value that brings total jitter to the stated value at a probability of 10 . The additional 0.1 UI of sinusoidal jitter is   
					added to ensure the receiver has sufficient operating margin in the presence of external interference.   
					Deterministic jitter: 900 kHz to 750 MHz.   
					f 
					g Deterministic jitter: 1.800 kHz to 1.500 MHz.   
					h The deterministic and total values in this table apply to jitter after application of a single pole high-pass frequency-   
					weighting function that progressively attenuates jitter at 20 dB/decade below a frequency of ((bit rate) / 1.667).   
					9.5.2.3.3   
					Compliant jitter test pattern (CJTPAT)   
					The CJTPAT within a compliant protocol frame is used for all jitter testing unless otherwise specified. See the   
					SAS Interface Manual for definition of the required pattern on the physical link and information regarding spe-   
					cial considerations for scrambling and running disparity.   
					9.5.2.3.4   
					Impedance specifications   
					
					Table 23:   
					Impedance requirements (Sheet 1 of 2)   
					Requirement   
					Units   
					1.5 Gbps   
					3.0 Gbps   
					a,b   
					Time domain reflectometer rise time 20 % to 80 %   
					Media (PCB or cable)   
					ps   
					100   
					50   
					b,c,d   
					Differential impedance   
					ohm   
					ohm   
					ohm   
					100 ± 10   
					5 
					100 ± 10   
					5 
					b,c,d,g   
					Differential impedance imbalance   
					b,c,d   
					Common mode impedance   
					32.5 ± 7.5   
					32.5 ± 7.5   
					Mated connectors   
					b,c,d   
					Differential impedance   
					ohm   
					ohm   
					ohm   
					100 ± 15   
					5 
					100 ± 15   
					5 
					b,c,d,g   
					Differential impedance imbalance   
					b,c,d   
					Common mode impedance   
					32.5 ± 7.5   
					32.5 ± 7.5   
					Receiver termination   
					b,e,f   
					Differential impedance   
					ohm   
					ohm   
					ps   
					100 ± 15   
					5 
					100 ± 15   
					5 
					b,e,f,g   
					Differential impedance imbalance   
					b,e,f   
					Receiver termination time constant   
					150 max   
					100 max   
					Cheetah T10 SAS Product Manual, Rev. A   
					67   
					 
					 
					 
				Table 23:   
					Impedance requirements (Sheet 2 of 2)   
					Requirement   
					Units   
					1.5 Gbps   
					3.0 Gbps   
					b,e   
					Common mode impedance   
					ohm   
					20 min/40 max 20 min/40 max   
					Transmitter source termination   
					b 
					Differential impedance   
					ohm   
					ohm   
					ohm   
					60 min/115 max 60 min/115 max   
					b,g   
					Differential impedance imbalance   
					5 
					5 
					b 
					Common mode impedance   
					15 min/40 max 15 min/40 max   
					a 
					All times indicated for time domain reflectometer measurements are recorded times. Recorded times are twice the   
					transit time of the time domain reflectometer signal.   
					b All measurements are made through mated connector pairs.   
					c The media impedance measurement identifies the impedance mismatches present in the media when terminated in   
					its characteristic impedance. This measurement excludes mated connectors at both ends of the media, when   
					present, but includes any intermediate connectors or splices. The mated connectors measurement applies only to the   
					mated connector pair at each end, as applicable.   
					d Where the media has an electrical length of > 4 ns the procedure detailed in SFF-8410, or an equivalent procedure,   
					shall be used to determine the impedance.   
					e The receiver termination impedance specification applies to all receivers in a TxRx connection and covers all time   
					points between the connector nearest the receiver, the receiver, and the transmission line terminator. This   
					measurement shall be made from that connector.   
					f 
					At the time point corresponding to the connection of the receiver to the transmission line the input capacitance of the   
					receiver and its connection to the transmission line may cause the measured impedance to fall below the minimum   
					impedances specified in this table. The area of the impedance dip (amplitude as ρ, the reflection coefficient, and   
					duration in time) caused by this capacitance is the receiver termination time constant. The receiver time constant   
					shall not be greater than the values shown in this table. An approximate value for the receiver termination time   
					constant is given by the product of the amplitude of the dip (as ρ) and its width (in ps) measured at the half amplitude   
					point. The amplitude is defined as being the difference in the reflection coefficient between the reflection coefficient at   
					the nominal impedance and the reflection coefficient at the minimum impedance point. The value of the receiver   
					excess input capacitance is given by the following equation:   
					receiver termination time constant   
					C = -----------------------------------------------------------------------------------------   
					(R0 | RR)   
					where (R0 || RR) is the parallel combination of the transmission line characteristic impedance and   
					termination resistance at the receiver.   
					g The difference in measured impedance to ground on the plus and minus terminals on the interconnect, transmitter or   
					receiver, with a differential test signal applied to those terminals.   
					9.5.2.4   
					Electrical TxRx connections   
					TxRx connections may be divided into TxRx connection segments. In a single TxRx connection individual   
					TxRx connection segments may be formed from differing media and materials, including traces on printed wir-   
					ing boards and optical fibers. This subclause applies only to TxRx connection segments that are formed from   
					electrically conductive media.   
					Each electrical TxRx connection segment shall comply with the impedance requirements of table 23 for the   
					media from which they are formed. An equalizer network, if present, shall be part of the TxRx connection.   
					TxRx connections that are composed entirely of electrically conducting media shall be applied only to homoge-   
					nous ground applications (e.g., between devices within an enclosure or rack, or between enclosures intercon-   
					nected by a common ground return or ground plane).   
					9.5.2.4.1   
					Transmitter characteristics   
					The drive is D.C. coupled.   
					68   
					Cheetah T10 SAS Product Manual, Rev. A   
				A combination of a zero-length test load and the transmitter compliance transfer function (TCTF) test load   
					methodology is used for the specification of transmitter characteristics. This methodology specifies the trans-   
					mitter signal at the test points on the required test loads. The transmitter uses the same settings (e.g., pre-   
					emphasis, voltage swing) with both the zero-length test load and the TCTF test load. The signal specifications   
					at IR are met under each of these loading conditions.   
					The TCTF is the mathematical statement of the transfer function through which the transmitter shall be capable   
					of producing acceptable signals as defined by a receive mask. The transmission magnitude response of the   
					TCTF in dB is given by the following equation for 1.5 Gbps:   
					S21 = –20 × log10(e) × ((6, 5 × 10–6 × f0, 5) + (2, 0 × 10–10 × f) + (3, 3 × 10–20 × f2)) dB   
					for 50 MHz < f < 1.5 GHz, and:   
					S21 = –5, 437dB   
					for 1.5 GHz < f < 5.0 GHz,   
					where:   
					a) f is the signal frequency in hertz.   
					The transmission magnitude response of the TCTF in dB is given by the following equation for 3.0 Gbps:   
					S21 = –20 × log10(e) × ((6, 5 × 10–6 × f0, 5) + (2, 0 × 10–10 × f) + (3, 3 × 10–20 × f2)) dB   
					for 50 MHz < f < 3.0 GHz, and:   
					S21 = –10, 884dB   
					for 3.0 GHz < f < 5.0 GHz,   
					where f is the signal frequency in hertz.   
					The TCTF is used to specify the requirements on transmitters that may or may not incorporate pre-emphasis or   
					other forms of compensation. A compliance interconnect is any physical interconnect with loss equal to or   
					greater than that of the TCTF at the above frequencies that also meets the ISI loss requirements shown in fig-   
					
					Compliance with the TCTF test load requirement is verified by measuring the signal produced by the transmit-   
					ter through a physical compliance interconnect attached to the transmitter.   
					Compliance with the zero-length test load requirement verified by measurement made across a load equiva-   
					
					For both test load cases, the transmitter delivers the output voltages and timing listed in table 20 at the desig-   
					nated compliance points. The default mask is IR for intra-cabinet TxRx connections. The eye masks are shown   
					
					Figure 23 shows the compliance interconnect test load.   
					10 nF   
					50 ohm   
					50 ohm   
					Tx+   
					Tx-   
					Probe   
					points   
					TCTF   
					10 nF   
					SAS internal connector   
					Figure 23. Compliance interconnect test load   
					Cheetah T10 SAS Product Manual, Rev. A   
					69   
					 
				Figure 24 shows the zero-length test load.   
					50 ohm   
					50 ohm   
					10 nF   
					Tx+   
					Tx-   
					Probe   
					points   
					10 nF   
					SAS internal connector   
					Figure 24. Zero-length test load   
					Figure 25 shows an ISI loss example at 3.0 Gbps.   
					S21 (dB)   
					Compliance interconnect magnitude response and   
					ISI loss example for 3.0 Gbps   
					0 
					ISI loss   
					> 3.9 dB   
					-10.9 dB   
					Sample compliance interconnect   
					Frequency (GHz)   
					0.3   
					1.5   
					3.0   
					Figure 25. ISI loss example at 3.0 Gbps   
					Figure 26 shows an ISI loss example at 1.5 Gbps.   
					S21 (dB)   
					Compliance interconnect magnitude response and ISI   
					loss example for 1.5 Gbps   
					0 
					ISI loss   
					> 2.0 dB   
					-5.4 dB   
					Sample c omplianc e inter c onnec t   
					Frequency (GHz)   
					0.15   
					0.75   
					1.5   
					Figure 26. ISI loss example at 1.5 Gbps   
					70   
					Cheetah T10 SAS Product Manual, Rev. A   
					 
					 
					 
				9.5.2.5   
					Receiver characteristics   
					The drive receiver is A.C. coupled. The receive network terminates the TxRx connection by a 100 ohm equiva-   
					
					-12   
					The receiver operates within a BER of 10 when a SAS signal with valid voltage and timing characteristics is   
					delivered to the compliance point from a 100 ohm source. The received SAS signal are considered valid if it   
					meets the voltage and timing limits specified in table 20.   
					Additionally the receiver operates within the BER objective when the signal at a receiving phy has the addi-   
					
					over frequency   
					CM   
					range F   
					as specified in table 18. The jitter tolerance is shown in Figure 22 for all Rx compliance points in a   
					CM   
					TxRx connection. The figure given assumes that any external interference occurs prior to the point at which the   
					test is applied. When testing the jitter tolerance capability of a receiver, the additional 0.1 UI of sinusoidal jitter   
					may be reduced by an amount proportional to the actual externally induced interference between the applica-   
					tion point of the test and the input to the receiving phy. The additional jitter reduces the eye opening in both   
					voltage and time.   
					Cheetah T10 SAS Product Manual, Rev. A   
					71   
				72   
					Cheetah T10 SAS Product Manual, Rev. A   
				10.0   
					Seagate Technology support services   
					Online services   
					Internet   
					www.seagate.com for information about Seagate products and services. Worldwide support is available 24   
					hours daily by e-mail for your questions.   
					
					
					mySeagate   
					my.seagate.com is the industry’s first Web portal designed specifically for OEMs and distributors. It provides   
					self-service access to critical applications, personalized content and the tools that allow our partners to man-   
					age their Seagate account functions. Submit pricing requests, orders and returns through a single, password-   
					protected Web interface—anytime, anywhere in the world.   
					spp.seagate.com   
					spp.seagate.com supports Seagate resellers with product information, program benefits and sales tools. You   
					may register for customized communications that are not available on the web. These communications contain   
					product launch, EOL, pricing, promotions and other channel-related information. To learn more about the ben-   
					efits or to register, go to spp.seagate.com, any time, from anywhere in the world.   
					Seagate Service Centers   
					Presales Support   
					Our Presales Support staff can help you determine which Seagate products are best suited for your specific   
					application or computer system, as well as product availability and compatibility.   
					Technical Support   
					Seagate technical support is available to assist you online at support.seagate.com or through one of our call   
					centers. Have your system configuration information and your “ST” model number available.   
					SeaTDD™ (+1-405-324-3655) is a telecommunications device for the deaf (TDD). You can send questions or   
					comments 24 hours daily and exchange messages with a technical support specialist during normal business   
					hours for the call center in your region.   
					Customer Service Operations   
					Warranty Service   
					Seagate offers worldwide customer support for Seagate drives. Seagate distributors, OEMs and other direct   
					customers should contact their Seagate Customer Service Operations (CSO) representative for warranty-   
					related issues. Resellers or end users of drive products should contact their place of purchase or one of the   
					Seagate CSO warranty centers for assistance. Have your drive’s “ST” model number and serial number avail-   
					able.   
					Cheetah T10 SAS Product Manual, Rev. A   
					73   
					 
					 
				Data Recovery Services   
					Seagate offers data recovery services for all formats and all brands of storage media. Our Data Recovery Ser-   
					vices labs are currently located in North America. To speak with a case management representative, call   
					1-800-475-0143. Additional information, including an online request form and data loss prevention resources,   
					
					Authorized Service Centers   
					In some locations outside the US, you can contact an Authorized Service Center for service.   
					USA/Canada/Latin America support services   
					Seagate Service Centers   
					Presales Support   
					Call center   
					Americas   
					Toll-free   
					Direct dial   
					FAX   
					+1-405-324-4704   
					1-877-271-32851   
					+1-405-324-47301   
					Technical Support   
					Call center   
					Americas   
					Toll-free   
					Direct dial   
					FAX   
					+1-405-324-3339   
					1-800-SEAGATE2   
					+1-405-324-47002   
					Customer Service Operations   
					Warranty Service   
					Call center   
					USA, Canada, Mexico and   
					Latin America   
					Toll-free   
					Direct dial   
					— 
					FAX / E-mail   
					+1-956-664-4725   
					1-800-468-34723   
					Brazil   
					Jabil Industrial Do Brasil   
					— 
					+55-11-4191-4761   
					+55-11-4191-5084   
					
					LTDA4   
					Data Recovery Services   
					Call center   
					Toll-free   
					Direct dial   
					FAX   
					USA, Canada,   
					and Mexico   
					1-800-475-01435   
					+1-905-474-2162   
					1-800-475-0158   
					+1-905-474-2459   
					1 
					Hours of operation are 8:00 A.M. to 7:00 P.M., Monday through Friday (Central time).   
					Hours of operation are 8:00 A.M. to 8:00 P.M., Monday through Friday (Central time).   
					Hours of operation are 8:00 A.M. to 5:00 P.M., Monday through Friday (Central time).   
					Authorized Service Center   
					2 
					3 
					4 
					5 
					Hours of operation are 8:00 A.M. to 8:00 P.M., Monday through Friday, and 9:00 A.M. to 5:00 P.M., Saturday (Eastern time).   
					74   
					Cheetah T10 SAS Product Manual, Rev. A   
				European support services   
					For presales and technical support in Europe, dial the Seagate Service Center toll-free number for your spe-   
					cific location. If your location is not listed here, dial our presales and technical support call center at +1-405-   
					324-4714 from 8:00 A.M. to 11:45 A.M. and 1:00 P.M. to 5:00 P.M. (Central Europe time) Monday through Friday.   
					The presales and technical support call center is located in Oklahoma City, USA.   
					For European warranty service, dial the toll-free number for your specific location. If your location is not listed   
					here, dial our European CSO warranty center at +31-20-316-7222 from 8:30 A.M. to 5:00 P.M. (Central Europe   
					time) Monday through Friday. The CSO warranty center is located in Amsterdam, The Netherlands.   
					Seagate Service Centers   
					Toll-free support numbers   
					Call center   
					Austria   
					Belgium   
					Denmark   
					France   
					Germany   
					Ireland   
					Italy   
					Presales and Technical Support   
					— 
					Warranty Service   
					00 800-47324289   
					00 800-47324289   
					00 800-47324289   
					00 800-47324289   
					00 800-47324289   
					00 800-47324289   
					00 800-47324289   
					00 800-47324289   
					00 800-47324289   
					00 800-311 12 38   
					00 800-47324289   
					00 800-47324289   
					00 800-47324289   
					00 800-31 92 91 40   
					00 800-47324289   
					00 800-47324283 (00 800-4SEAGATE)   
					00 800-47324283   
					00 800-47324283   
					00 800-47324283   
					00 800-47324283   
					00 800-47324283   
					00 800-47324283   
					00 800-47324283   
					00 800-311 12 38   
					00 800-47324283   
					00 800-47324283   
					00 800-47324283   
					00 800-31 92 91 40   
					00 800-47324283   
					Netherlands   
					Norway   
					Poland   
					Spain   
					Sweden   
					Switzerland   
					Turkey   
					United Kingdom   
					FAX services—All Europe (toll call)   
					Technical Support   
					Warranty Service   
					+1-405-324-3339   
					+31-20-653-3513   
					Cheetah T10 SAS Product Manual, Rev. A   
					75   
				Africa/Middle East support services   
					For presales and technical support in Africa and the Middle East, dial our presales and technical support call   
					center at +1-405-324-4714 from 8:00 A.M. to 11:45 A.M. and 1:00 P.M. to 5:00 P.M. (Central Europe time) Mon-   
					day through Friday. The presales and technical support call center is located in Oklahoma City, USA.   
					For warranty service in Africa and the Middle East, dial our European CSO warranty center at +31-20-316-   
					7222 from 8:30 A.M. to 5:00 P.M. (Central Europe time) Monday through Friday, or send a FAX to +31-20-653-   
					3513. The CSO warranty center is located in Amsterdam, The Netherlands.   
					Asia/Pacific support services   
					For Asia/Pacific presales and technical support, dial the toll-free number for your specific location. The Asia/   
					Pacific toll-free numbers are available from 6:00 A.M. to 10:45 A.M. and 12:00 P.M. to 6:00 P.M. (Australian East-   
					ern time) Monday through Friday, except as noted. If your location is not listed here, direct dial one of our tech-   
					nical support locations.   
					Warranty service is available from 9:00 A.M. to 5:00 P.M., Monday through Friday. Warranty service for Australia   
					is available from 10:00 A.M. to 7:00 P.M., April through October, and from 11:00 A.M. to 8:00 P.M. November   
					through March (Australian Eastern time) Monday through Friday.   
					Seagate Service Centers   
					Call center   
					Australia   
					China (Mandarin)   
					Hong Kong   
					Toll-free   
					1800-14-7201   
					800-810-9668   
					800-90-0474   
					Direct dial   
					— 
					+86-10-6225-5336   
					FAX   
					— 
					— 
					— 
					— 
					— 
					— 
					— 
					1, 4   
					— 
					— 
					— 
					— 
					— 
					— 
					— 
					— 
					— 
					— 
					— 
					1, 4   
					Hong Kong (Cantonese)   
					001-800-0830-1730   
					1-800-180-1104   
					001-803-1-003-2165   
					0034 800 400 554   
					007 98 8521 7635   
					1-800-80-2335   
					0800-443988   
					800-1101-150   
					00-800-0830-1730   
					001-800-11-0032165   
					2, 4   
					India   
					Indonesia   
					3, 4   
					Japan   
					Korea   
					3, 4   
					— 
					— 
					— 
					Malaysia   
					New Zealand   
					Singapore   
					Taiwan (Mandarin)   
					Thailand   
					+65-6488-7525   
					— 
					— 
					1, 4   
					Customer Service Operations   
					Warranty Service   
					Call center   
					Asia/Pacific   
					Australia   
					Toll-free   
					— 
					1800-12-9277   
					— 
					Direct dial   
					+65-6485-3595   
					— 
					FAX   
					+65-6485-4860   
					— 
					4 
					India   
					+91-44-42015000   
					+91-44-42015184   
					1 
					Hours of operation are 8:30 A.M. to 5:30 P.M., Monday through Friday (Australian Western time).   
					Hours of operation are 9:00 A.M. to 6:00 P.M., Monday through Saturday.   
					Hours of operation are 9:30 A.M. to 6:30 P.M., Monday through Friday.   
					Authorized Service Center   
					2 
					3 
					4 
					76   
					Cheetah T10 SAS Product Manual, Rev. A   
				unformatted 11   
					
					
					
					
					
					
					condensation 33   
					
					connector   
					Index   
					Numerics   
					12 volt   
					pins 61   
					
					A 
					illustrated 59   
					requirements 59   
					
					
					
					cooling 42   
					
					CRC   
					
					
					
					acoustics 36   
					error 16   
					
					
					
					actuator   
					
					
					AFR 9   
					
					
					illustrated 42   
					
					altitude 33   
					ambient 32   
					
					ANSI documents   
					D 
					DAR 40   
					data block size   
					
					data heads   
					read/write 11   
					data rate   
					internal 11   
					
					
					requirements 23   
					
					defects 37   
					
					
					description 7   
					dimensions 36   
					
					drive 35   
					
					
					
					
					
					SCSI 5   
					
					
					
					auto write and read reallocation   
					programmable 8   
					
					
					
					B 
					
					backpanel 60   
					BMS 39   
					buffer   
					
					data 8   
					space 13   
					
					E 
					electrical   
					C 
					
					
					specifications 23   
					
					
					
					
					
					
					
					capacity   
					Cheetah T10 SAS Product Manual, Rev. A   
					77   
				environment 42   
					environmental   
					limits 32   
					requirements 15   
					
					error   
					requirements 45   
					
					
					
					
					
					IRAW 40   
					management 37   
					rates 15   
					errors 37   
					J 
					jumpers 41   
					F 
					
					features 8   
					L 
					latency   
					interface 45   
					
					
					
					
					
					firmware 8   
					corruption 50   
					
					
					function   
					
					
					
					M 
					maintenance 15   
					
					
					
					
					miscellaneous feature support   
					
					G 
					
					
					
					grounding 43   
					
					
					
					
					
					
					
					
					
					
					H 
					
					
					
					heads   
					
					
					
					
					
					humidity 33   
					miscellaneous status support   
					
					
					Busy 56   
					
					
					
					Good 56   
					
					Intermediate/good 56   
					
					
					I 
					
					
					installation 41   
					guide 5   
					interface   
					
					Mode sense   
					
					mounting 43   
					
					
					errors 16   
					illustrated 57   
					physical 57   
					holes 43   
					orientations 41   
					78   
					Cheetah T10 SAS Product Manual, Rev. A   
				receivers 61   
					N 
					noise   
					
					
					
					reference   
					documents 5   
					
					reliability 9   
					audible 3   
					
					
					temperature 32   
					
					specifications 15   
					O 
					
					
					
					
					resonance 33   
					
					
					
					
					
					
					
					P 
					S 
					
					safety 3   
					SAS   
					
					packaged 34   
					interface 60   
					
					PCBA 43   
					
					
					
					
					SCSI interface   
					
					
					
					performance characteristics   
					detailed 11   
					
					seek error   
					general 12   
					defined 16   
					rate 15   
					
					seek time   
					
					
					
					
					
					
					
					
					
					
					
					Self-Monitoring Analysis and Reporting Technology   
					
					power 61   
					dissipation 29   
					
					
					sequencing 25   
					
					shielding 3   
					shipping 21   
					
					shock 33   
					
					
					
					
					
					
					
					signal   
					characteristics 61   
					
					
					Q 
					
					
					
					R 
					standards 3   
					
					Sulfur 35   
					
					
					
					
					
					Cheetah T10 SAS Product Manual, Rev. A   
					79   
				Seagate Technology LLC   
					920 Disc Drive, Scotts Valley, California 95066-4544, USA   
					Publication Number: 100433694, Rev. A, Printed in USA   
				 |