EMERSON ROSEMOUNT 8700M User Manual

Reference Manual  
00809-0100-4444, Rev AD  
August 2015  
Rosemount® 8700M  
Magnetic Flowmeter Platform  
with HART® Protocol  
Reference Manual  
00809-0100-4444, Rev AD  
Rosemount® 8700M  
Magnetic Flowmeter Platform  
Read this manual before working with the product. For personal and system safety, and for  
optimum product performance, make sure you thoroughly understand the contents before  
installing, using, or maintaining this product.  
Failure to follow these installation guidelines could result in death or serious injury.  
Installation and servicing instructions are for use by qualified personnel only. Do not  
perform any servicing other than that contained in the operating instructions, unless  
qualified.  
Verify the installation is done safely and is consistent with the operating environment.  
If installed in explosive atmospheres [hazardous areas, classified areas, or an “Ex”  
environment], it must be assured that the device certification and installation  
techniques are suitable for that particular environment.  
Explosion hazard. Do not disconnect equipment when a flammable or combustible  
atmosphere is present.  
To prevent ignition of flammable or combustible atmospheres, disconnect power  
before servicing circuits.  
Do not connect a Rosemount 8732EM Transmitter to a non-Rosemount sensor that is  
located in an explosive atmosphere.  
Substitution of components may impair Intrinsic Safety.  
Follow national, local, and plant standards to properly earth ground the transmitter and  
sensor. The earth ground must be separate from the process reference ground.  
Rosemount Magnetic Flowmeters ordered with non-standard paint options or  
non-metallic labels may be subject to electrostatic discharge. To avoid electrostatic  
charge build-up, do not rub the flowmeter with a dry cloth or clean with solvents.  
The electronics may store energy after power is removed. Allow ten minutes for charge to  
dissipate prior to removing electronics compartment cover.  
Explosions could result in death or serious injury.  
Verify the operating atmosphere of the sensor and transmitter is consistent with the  
appropriate hazardous locations certifications.  
Do not remove the transmitter cover in explosive atmospheres when the circuit is live.  
Before connecting a HART-based communicator in an explosive atmosphere, make  
sure the instruments in the loop are installed in accordance with intrinsically safe or  
non-incendive field wiring practices.  
Both transmitter covers must be fully engaged to meet explosion-proof requirements.  
iii  
Reference Manual  
00809-0100-4444, Rev AD  
Failure to follow safe installation and servicing guidelines could result in death or serious  
injury.  
Installation should be performed by qualified personnel only.  
Do not perform any service other than those contained in this manual.  
Process leaks may result in death or serious injury.  
The electrode compartment may contain line pressure; it must be depressurized before  
the cover is removed.  
High voltage that may be present on leads could cause electrical shock.  
Avoid contact with leads and terminals.  
Failure to follow these maintenance guidelines could result in death or serious injury.  
Installation and servicing instructions should be performed by qualified personnel only.  
Do not perform any servicing other than that contained in the operating instructions.  
Verify that the operating environment of the sensor and transmitter is consistent with  
the appropriate hazardous area approval.  
Do not connect a Rosemount 8732EM to a non-Rosemount sensor that is located in an  
explosive atmosphere.  
Mishandling products exposed to a hazardous substance may result in death or serious  
injury.  
If the product being returned was exposed to a hazardous substance as defined by  
OSHA, a copy of the required Material Safety Data Sheet (MSDS) for each hazardous  
substance identified must be included with the returned goods.  
Failure to follow these troubleshooting guidelines could result in death or serious injury.  
Installation and servicing instructions should be performed by qualified personnel only.  
Do not perform any servicing other than that contained in the operating instructions.  
Verify that the operating environment of the sensor and transmitter is consistent with  
the appropriate hazardous area approval.  
Do not connect a Rosemount 8732EM to a non-Rosemount sensor that is located in an  
explosive atmosphere.  
Mishandling products exposed to a hazardous substance may result in death or serious  
injury.  
If the product being returned was exposed to a hazardous substance as defined by  
OSHA, a copy of the required Material Safety Data Sheet (MSDS) for each hazardous  
substance identified must be included with the returned goods.  
The Rosemount 8732EM Transmitter has not been evaluated for use with other  
manufacturers' magnetic flowmeter sensors in hazardous (Ex or Classified) areas.  
Special care should be taken by the end-user and installer to ensure the 8732EM  
transmitter meets the safety and performance requirements of the other  
manufacturer’s equipment.  
iv  
Reference Manual  
00809-0100-4444, Rev AD  
Do not connect mains or line power to the magnetic flowtube sensor or to the transmitter coil  
excitation circuit.  
The products described in this document are NOT designed for nuclear-qualified applications.  
Using non-nuclear qualified products in applications that require nuclear-qualified hardware or  
products may cause inaccurate readings.  
For information on Rosemount nuclear-qualified products, contact your local Emerson Process  
Management Sales Representative.  
v
Reference Manual  
00809-0100-4444, Rev AD  
vi  
Reference Manual  
00809-0100-4444, Rev AD  
Table of Contents  
August 2015  
Contents  
1.1 System description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
1.2 Product recycling/disposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
2.2 Safety messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
2.3 Transmitter symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
2.4 Pre-installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
2.5 Installation procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
2.5.1 Transmitter installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
2.5.2 Identify options and configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
2.5.3 Mechanical considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
2.5.4 Electrical considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
2.5.5 Environmental considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.6 Handling and lifting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2.7 Mounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
2.7.1 Upstream/downstream piping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
2.7.2 Flow direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
2.8 Sensor location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
2.8.1 Electrode orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
2.9 Sensor installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
2.9.1 Flanged sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
2.9.2 Flange bolts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
2.10 Wafer sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
2.10.1 Gaskets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
2.10.2 Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
2.10.3 Flange bolts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
2.11 Process reference connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
2.12 Wiring the transmitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
2.12.1 Conduit entries and connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
2.12.2 Conduit requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
2.12.3 Connecting sensor to transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
vii  
Table of Contents  
Reference Manual  
00809-0100-4444, Rev AD  
Table of Contents  
August 2015  
2.12.4 8732EM terminal block connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
2.12.5 Analog output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
2.12.6 Powering the transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
2.13 Cover jam screw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
2.14 Basic configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
2.14.1 Basic setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
3.2 Safety messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
3.3 Hardware switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
3.3.1 Alarm mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
3.3.2 Transmitter security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
3.3.3 Internal/external analog power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
3.3.4 Internal/external pulse power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
3.3.5 Changing hardware switch settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
3.4 Additional loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
3.4.1 Connect pulse output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
3.4.2 Connect discrete output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48  
3.4.3 Connect discrete input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
3.5 Process reference connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
3.6 Coil housing configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
3.6.1 Standard coil housing configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
3.6.2 Process leak protection (option M1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52  
3.6.3 Process leak containment (Option M2 or M4). . . . . . . . . . . . . . . . . . . . . . .53  
3.6.4 Higher temperature applications and sensor insulation best practices .54  
4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
4.2 Local operator interface (LOI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
4.2.1 Basic features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
4.2.2 Data entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
viii  
Table of Contents  
Reference Manual  
00809-0100-4444, Rev AD  
Table of Contents  
August 2015  
4.2.3 Data entry examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
4.2.4 Totalizer functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
4.2.5 Display lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
4.2.6 Diagnostic messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
4.2.7 Display symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
4.3 Field Communicator interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
4.3.1 Field Communicator user interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
4.4 Process variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85  
4.4.1 PV - Primary variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85  
4.4.2 PV - Percent of range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85  
4.4.3 PV - Analog output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86  
4.4.4 Pulse output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86  
5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87  
5.2 Configure outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87  
5.2.1 Analog output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87  
5.2.2 Pulse output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90  
5.2.3 Totalizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
5.2.4 Discrete input/output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95  
5.3 Configure HART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
5.3.1 Variable mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
5.3.2 Poll address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
5.3.3 Burst mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
5.3.4 Configure LOI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
5.4 Additional parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
5.4.1 Coil drive frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
5.4.2 Process density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
5.4.3 Reverse flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
5.4.4 Low flow cutoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
5.4.5 PV damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
5.4.6 Signal processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
5.5 Configure special units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
5.5.1 Base volume unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
5.5.2 Conversion factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
ix  
Table of Contents  
Reference Manual  
00809-0100-4444, Rev AD  
Table of Contents  
August 2015  
5.5.3 Base time unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109  
5.5.4 Special volume unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110  
5.5.5 Special flow rate unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110  
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111  
6.2 Licensing and enabling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112  
6.2.1 Licensing the 8732EM diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112  
6.3 Tunable empty pipe detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113  
6.3.1 Tunable empty pipe parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113  
6.3.2 Optimizing tunable empty pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114  
6.4 Electronics temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115  
6.4.1 Turning electronics temperature on/off . . . . . . . . . . . . . . . . . . . . . . . . . .115  
6.4.2 Electronics temperature parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115  
6.5 Ground/wiring fault detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115  
6.5.1 Turning ground/wiring fault on/off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116  
6.5.2 Ground/wiring fault parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116  
6.6 High process noise detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116  
6.6.1 Turning high process noise on/off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116  
6.6.2 High process noise parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117  
6.7 Coated electrode detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117  
6.7.1 Turning coated electrode detection on/off. . . . . . . . . . . . . . . . . . . . . . . .118  
6.7.2 Coated electrode parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118  
6.8 4-20 mA loop verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119  
6.8.1 Initiating 4-20 mA loop verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119  
6.8.2 4-20 mA loop verification parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . .119  
6.9 SMARTMeter Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121  
6.9.1 Sensor baseline (signature) parameters . . . . . . . . . . . . . . . . . . . . . . . . . .121  
6.9.2 Establishing the sensor baseline (signature). . . . . . . . . . . . . . . . . . . . . . .122  
6.9.3 SMART Meter Verification test criteria. . . . . . . . . . . . . . . . . . . . . . . . . . . .122  
6.10 Run manual SMART Meter Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123  
6.10.1 Test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124  
6.10.2 Test scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124  
6.11 Continuous SMART Meter Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125  
6.11.1 Test scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125  
6.12 SMART Meter Verification test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126  
6.13 SMART Meter Verification measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127  
6.14 Optimizing the SMART Meter Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130  
x
Table of Contents  
Reference Manual  
00809-0100-4444, Rev AD  
Table of Contents  
August 2015  
6.14.1 Optimizing continuous SMART Meter Verification. . . . . . . . . . . . . . . . . 131  
7.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
7.2 Safety messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
7.3 Process noise profiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
7.4 High process noise diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
7.5 Optimizing flow reading in noisy applications . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
7.5.1 Coil drive frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
7.5.2 Auto zero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
7.5.3 Digital signal processing (DSP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
7.6 Explanation of signal processing algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
8.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
8.2 Safety information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
8.3 Installing a Local Operator Interface (LOI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
8.4 Replacing 8732EM revision 4 electronics stack. . . . . . . . . . . . . . . . . . . . . . . . . . 143  
8.5 Replacing socket module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
8.5.1 Integral mount socket module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
8.5.2 Replacing terminal block socket module . . . . . . . . . . . . . . . . . . . . . . . . . 147  
8.6 Trims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
8.6.1 D/A trim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
8.6.2 Scaled D/A trim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
8.6.3 Digital trim. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
8.6.4 Universal trim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
8.7 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
9.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
9.2 Safety information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
9.3 Installation check and guide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
9.3.1 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
9.3.2 Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
9.3.3 Remote wiring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
9.3.4 Process fluid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
9.4 Diagnostic messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
9.4.1 Troubleshooting empty pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
xi  
Table of Contents  
Reference Manual  
00809-0100-4444, Rev AD  
Table of Contents  
August 2015  
9.4.2 Troubleshooting ground/wiring fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
9.4.3 Troubleshooting high process noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
9.4.4 Troubleshooting coated electrode detection . . . . . . . . . . . . . . . . . . . . . 164  
9.4.5 Troubleshooting 4-20 mA loop verification. . . . . . . . . . . . . . . . . . . . . . . 164  
9.4.6 Troubleshooting the SMART Meter Verification test . . . . . . . . . . . . . . . 165  
9.5 Basic troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166  
9.6 Sensor troubleshooting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
9.6.1 Sensor adapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
9.6.2 Socket module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
9.6.3 Installed sensor tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
9.6.4 Uninstalled sensor tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
9.7 Technical support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
9.8 Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
A.1 Rosemount 8732EM Transmitter specifications. . . . . . . . . . . . . . . . . . . . . . . . . 177  
A.1.1 Functional specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
A.1.2 Advanced diagnostics capabilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181  
A.1.3 Output signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181  
A.1.4 Sensor compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
A.1.5 Performance specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
A.1.6 Analog output effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
A.1.7 Physical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
A.1.8 F0875 Low Power Software Option. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187  
A.2 Rosemount 8705-M Flanged Sensor specifications . . . . . . . . . . . . . . . . . . . . . . 188  
A.2.1 Functional specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188  
A.2.2 Physical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
A.3 Rosemount 8711-M/L Wafer Sensor specifications . . . . . . . . . . . . . . . . . . . . . . 194  
A.3.1 Functional specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194  
A.3.2 Physical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195  
A.4 Rosemount 8721 Hygienic (Sanitary) Sensor specifications . . . . . . . . . . . . . . 198  
A.4.1 Functional specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198  
A.4.2 Physical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199  
B.1 Product certifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203  
B.2 FM hazardous locations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214  
B.3 ATEX/IECEx hazardous locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219  
xii  
Table of Contents  
Reference Manual  
00809-0100-4444, Rev AD  
Table of Contents  
August 2015  
B.4 EC Declaration of Conformity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228  
C.1 8732EM wiring diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231  
C.2 775 Smart Wireless THUMAdapter wiring diagrams . . . . . . . . . . . . . . . . . . . 233  
C.3 475 Field Communicator wiring diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235  
D.1 Safety messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237  
D.2 Universal capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237  
D.2.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238  
D.3 Rosemount sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240  
D.3.1 8705/8707/8711/8721 sensors to 8732 Transmitter . . . . . . . . . . . . . . 240  
D.3.2 8701 sensor to 8732 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241  
D.3.3 Connecting sensors of other manufacturers . . . . . . . . . . . . . . . . . . . . . . 242  
D.4 Brooks sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243  
D.4.1 Model 5000 sensor to 8732 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . 243  
D.4.2 Model 7400 sensor to 8732 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . 244  
D.5 Endress and Hauser sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245  
D.5.1 Endress and Hauser sensor to 8732 Transmitter . . . . . . . . . . . . . . . . . . 245  
D.6 Fischer and Porter sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246  
D.6.1 Model 10D1418 sensor to 8732 transmitter. . . . . . . . . . . . . . . . . . . . . . 246  
D.6.2 Model 10D1419 sensor to 8732 Transmitter . . . . . . . . . . . . . . . . . . . . . 247  
D.6.3 Model 10D1430 sensor to 8732 Transmitter . . . . . . . . . . . . . . . . . . . . . 248  
D.6.4 Model 10D1430 sensor to 8732 Transmitter . . . . . . . . . . . . . . . . . . . . . 249  
D.6.5 Model 10D1465/10D1475 sensors to 8732 Transmitter . . . . . . . . . . . 250  
D.6.6 Fischer and Porter sensor to 8732 Transmitter. . . . . . . . . . . . . . . . . . . . 251  
D.7 Foxboro sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252  
D.7.1 Series 1800 sensor to 8732 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . 252  
D.7.2 Series 1800 sensor to 8732 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . 253  
D.7.3 Series 2800 Sensor to 8732 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . 254  
D.7.4 Foxboro Sensor to 8732 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255  
D.8 Kent Veriflux VTC sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256  
D.8.1 Veriflux VTC sensor to 8732 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . 256  
D.9 Kent sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257  
D.9.1 Kent sensor to 8732 Transmitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257  
D.10 Krohne sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258  
D.10.1 Krohne sensor to 8732 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258  
xiii  
Table of Contents  
Reference Manual  
00809-0100-4444, Rev AD  
Table of Contents  
August 2015  
D.11 Taylor sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259  
D.11.1 Series 1100 sensor to 8732 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . 259  
D.11.2 Taylor sensor to 8732 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260  
D.12 Yamatake Honeywell sensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261  
D.12.1 Yamatake Honeywell sensor to 8732 Transmitter . . . . . . . . . . . . . . . . . 261  
D.13 Yokogawa sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262  
D.13.1 Yokogawa sensor to 8732 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . 262  
D.14 Generic manufacturer sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263  
D.14.1 Generic manufacturer sensor to 8732 Transmitter . . . . . . . . . . . . . . . . 263  
D.14.2 Identify the terminals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263  
D.14.3 Wiring connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263  
xiv  
Table of Contents  
Reference Manual  
00809-0100-4444, Rev AD  
Section 1: Introduction  
August 2015  
Section 1  
Introduction  
1.1  
System description  
The 8700M Magnetic Flowmeter Platform consists of a sensor and a transmitter. The sensor is  
installed in-line with the process piping; the transmitter can be remotely mounted or integrally  
mounted to the sensor.  
Figure 1-1. Field Mount Transmitters  
Integral  
Remote  
There are three Rosemount® flow sensors available.(1) See Figure 1-2.  
Figure 1-2. Flow Sensors  
8705  
8711  
8721  
1. Also available for use with 8707 High Signal sensor with dual calibration (option code D2).  
Introduction  
1
     
Reference Manual  
00809-0100-4444, Rev AD  
Section 1: Introduction  
August 2015  
Figure 1-3. 8705 Cross Section  
The flow sensor contains two magnetic coils located on opposite sides of the sensor. Two  
electrodes, located perpendicular to the coils and opposite each other, make contact with the  
liquid. The transmitter energizes the coils and creates a magnetic field. A conductive liquid  
moving through the magnetic field generates an induced voltage at the electrodes. This voltage  
is proportional to the flow velocity. The transmitter converts the voltage detected by the  
electrodes into a flow reading.  
1.2  
Product recycling/disposal  
Recycling of equipment and packaging should be taken into consideration and disposed of in  
accordance with local and national legislation/regulations.  
2
Introduction  
   
Reference Manual  
00809-0100-4444, Rev AD  
Section 2: Installation  
August 2015  
Section 2  
Installation  
2.1  
2.2  
Introduction  
This section covers the steps required to physically install the magnetic flowmeter. Instructions  
and procedures in this section may require special precautions to ensure the safety of the  
personnel performing the operations. Refer to the following safety messages before performing  
any operation in this section.  
Safety messages  
Note  
This section provides basic installation guidelines for the Rosemount® 8700M Magnetic  
Flowmeter Platform with HART® protocol. For comprehensive instructions for detailed  
configuration, diagnostics, maintenance, service, installation, or troubleshooting refer to the  
appropriate sections in this manual. The quick start guide—as well as this manual—are available  
online at www.rosemount.com.  
3
Installation  
         
Reference Manual  
00809-0100-4444, Rev AD  
Section 2: Installation  
August 2015  
Failure to follow these installation guidelines could result in death or serious injury.  
Installation and servicing instructions are for use by qualified personnel only. Do not  
perform any servicing other than that contained in the operating instructions, unless  
qualified.  
Verify the installation is done safely and is consistent with the operating environment.  
If installed in explosive atmospheres [hazardous areas, classified areas, or an “Ex”  
environment], it must be assured that the device certification and installation  
techniques are suitable for that particular environment.  
Explosion hazard. Do not disconnect equipment when a flammable or combustible  
atmosphere is present.  
To prevent ignition of flammable or combustible atmospheres, disconnect power  
before servicing circuits.  
Do not connect a Rosemount 8732EM Transmitter to a non-Rosemount sensor that is  
located in an explosive atmosphere.  
Substitution of components may impair Intrinsic Safety.  
Follow national, local, and plant standards to properly earth ground the transmitter  
and sensor. The earth ground must be separate from the process reference ground.  
Rosemount Magnetic Flowmeters ordered with non-standard paint options or  
non-metallic labels may be subject to electrostatic discharge. To avoid electrostatic  
charge build-up, do not rub the flowmeter with a dry cloth or clean with solvents.  
NOTICE  
The sensor liner is vulnerable to handling damage. Never place anything through the  
sensor for the purpose of lifting or gaining leverage. Liner damage may render the sensor  
inoperable.  
Metallic or spiral-wound gaskets should not be used as they will damage the liner face of  
the sensor. If spiral wound or metallic gaskets are required for the application, lining  
protectors must be used. If frequent removal is anticipated, take precautions to protect  
the liner ends. Short spool pieces attached to the sensor ends are often used for  
protection.  
Correct flange bolt tightening is crucial for proper sensor operation and life. All bolts must  
be tightened in the proper sequence to the specified torque specifications. Failure to  
observe these instructions could result in severe damage to the sensor lining and possible  
sensor replacement.  
In cases where high voltage/high current are present near the meter installation, ensure  
proper protection methods are followed to prevent stray voltage / current from passing  
through the meter. Failure to adequately protect the meter could result in damage to the  
transmitter and lead to meter failure.  
Completely remove all electrical connections from both sensor and transmitter prior to  
welding on the pipe. For maximum protection of the sensor, consider removing it from the  
pipeline.  
2.3  
Transmitter symbols  
Caution symbol — check product documentation for details  
Protective conductor (grounding) terminal  
4
Installation  
 
Reference Manual  
00809-0100-4444, Rev AD  
Section 2: Installation  
August 2015  
2.4  
Pre-installation  
Before installing the Rosemount 8732EM Magnetic Flowmeter Transmitter, there are several  
pre-installation steps that should be completed to make the installation process easier:  
Identify the options and configurations that apply to your application  
Set the hardware switches if necessary  
Consider mechanical, electrical, and environmental requirements  
2.5  
Installation procedures  
2.5.1  
Transmitter installation  
Installation of the Rosemount Magnetic flowmeter includes both detailed mechanical and  
electrical installation procedures.  
2.5.2  
Identify options and configurations  
The typical installation of the 8732EM includes a device power connection, a 4–20mA output  
connection, and sensor coil and electrode connections. Other applications may require one or  
more of the following configurations or options:  
Pulse output  
Discrete input/discrete output  
HART multidrop configuration  
Hardware switches  
The 8732EM electronics stack is equipped with user-selectable hardware switches. These  
switches set the alarm mode, internal/external analog power, internal/external pulse power, and  
transmitter security. The standard configuration for these switches when shipped from the  
factory are as follows:  
Table 2-1. Standard Switch Configuration  
Alarm Mode  
High  
Internal/External Analog Power(1)  
Internal/External Pulse Power(1)  
Transmitter Security  
Internal  
External  
Off  
1. For electronics with intrinsically safe analog and pulse outputs, the power  
must be provided externally. In this configuration, these two hardware  
switches are not provided.  
In most cases, it will not be necessary to change the setting of the hardware switches. If the  
switch settings need to be changed, follow the steps outlined in “Changing hardware switch  
Note  
To prevent switch damage, use a non-metallic tool to move switch positions.  
5
Installation  
           
Reference Manual  
00809-0100-4444, Rev AD  
Section 2: Installation  
August 2015  
Identify any additional options and configurations that apply to the installation. Keep a list of  
these options for consideration during the installation and configuration procedures.  
2.5.3  
Mechanical considerations  
The mounting site for the 8732EM Transmitter should provide enough room for secure  
mounting, easy access to conduit entries, full opening of the transmitter covers, and easy  
readability of the Local Operator Interface (LOI) screen (if equipped).  
For remote mount transmitter (8732EMRxxx) installations, a mounting bracket is provided for  
use on a 2-in. pipe or a flat surface (see Figure 2-1).  
Note  
If the 8732EM is mounted separately from the sensor, it may not be subject to limitations that  
might apply to the sensor.  
Rotate integral mount transmitter housing  
The transmitter housing can be rotated on the sensor in 90-degree increments by removing the  
four mounting screws on the bottom of the housing. Do not rotate the housing more than  
180 degrees in any one direction. Prior to tightening, be sure the mating surfaces are clean, the  
O-ring is seated in the groove, and there is no gap between the housing and the sensor.  
6
Installation  
 
Reference Manual  
00809-0100-4444, Rev AD  
Section 2: Installation  
August 2015  
Figure 2-1. Rosemount 8732EM Dimensional Drawing  
ꢀꢁꢂꢃ  
>ꢂꢄꢅꢀ@  
Note  
Default conduit entries for FM approvals are 1/2-in. NPT. If M20 thread connections are required,  
thread adapters will be supplied.  
2.5.4  
Electrical considerations  
Before making any electrical connections to the 8732EM, consider national, local and plant  
electrical installation requirements. Be sure to have the proper power supply, conduit, and other  
accessories necessary to comply with these standards.  
Both remotely and integrally mounted 8732EM Transmitters require external power so there  
must be access to a suitable power source.  
7
Installation  
   
Reference Manual  
00809-0100-4444, Rev AD  
Section 2: Installation  
August 2015  
Table 2-2. Electrical Data  
Rosemount 8732EM Flow Transmitter  
Power input  
90–250VAC, 0.45A, 40VA  
12–42VDC, 1.2A, 15W  
Pulsed circuit  
Internally powered (Active): Outputs up to 12VDC, 12.1mA, 73mW  
Externally powered (Passive): Input up to 28VDC, 100mA, 1W  
4-20mA output  
circuit  
Internally Powered (Active): Outputs up to 25mA, 24VDC, 600mW  
Externally Powered (Passive): Input up to 25mA, 30VDC, 750mW  
Um  
250V  
Coil excitation  
output  
500mA, 40V max, 9W max  
Rosemount 8705-M and 8711-M/L Sensor(1)  
Coil excitation  
input  
500mA, 40V max, 20W max  
Electrode circuit 5V, 200uA, 1mW  
1. Provided by the transmitter.  
2.5.5  
Environmental considerations  
To ensure maximum transmitter life, avoid extreme temperatures and excessive vibration.  
Typical problem areas include the following:  
High-vibration lines with integrally mounted transmitters  
Tropical/desert installations in direct sunlight  
Outdoor installations in arctic climates  
Remote mounted transmitters may be installed in the control room to protect the electronics  
from the harsh environment and to provide easy access for configuration or service.  
8
Installation  
 
Reference Manual  
00809-0100-4444, Rev AD  
Section 2: Installation  
August 2015  
2.6  
Handling and lifting  
Handle all parts carefully to prevent damage. Whenever possible, transport the system  
to the installation site in the original shipping container.  
PTFE-lined sensors are shipped with end covers that protect it from both mechanical  
damage and normal unrestrained distortion. Remove the end covers just before  
installation.  
Keep the shipping plugs in the conduit connections until you are ready to connect and  
seal them.  
The sensor should be supported by the pipeline. Pipe supports are recommended on  
both the inlet and outlet sides of the sensor pipeline. There should be no additional  
support attached to the sensor.  
Additional safety recommendations for mechanical handling:  
-
Use proper PPE (Personal Protection Equipment) including safety glasses and  
steel toed shoes).  
-
Do not drop the device from any height.  
Do not lift the meter by holding the electronics housing or junction box.The sensor liner  
is vulnerable to handling damage. Never place anything through the sensor for the  
purpose of lifting or gaining leverage. Liner damage can render the sensor useless.  
If provided, use the lifting lugs on each flange to handle the Magnetic Flowmeter when  
it is transported and lowered into place at the installation site. If lifting lugs are not  
provided, the Magnetic Flowmeter must be supported with a lifting sling on each side  
of the housing.  
-
Standard Pressure 3-in. through 36-in. Flanged Magnetic Flowmeters come with  
lifting lugs.  
-
-
High Pressure (above 600#) 1-in. through 24-in. Flanged Magnetic Flowmeters  
come with lifting lugs.  
Wafers and Sanitary Magnetic Flowmeters do not come with lifting lugs.  
Figure 2-2. Rosemount 8705 Sensor Support for Handling and Lifting  
A
B
A. Without lifting lugs  
B. With lifting lugs  
9
Installation  
 
Reference Manual  
00809-0100-4444, Rev AD  
Section 2: Installation  
August 2015  
2.7  
Mounting  
2.7.1  
Upstream/downstream piping  
To ensure specified accuracy over widely varying process conditions, install the sensor with a  
minimum of five straight pipe diameters upstream and two pipe diameters downstream from the  
electrode plane (see Figure 2-3).  
Figure 2-3. Upstream and Downstream Straight Run  
2 Pipe Diameters  
5 Pipe Diameters  
Flow  
Installations with reduced upstream and downstream straight runs are possible. In reduced straight  
run installations, the meter may not meet absolute accuracy specifications. Reported flow rates will  
still be highly repeatable.  
2.7.2  
Flow direction  
The sensor should be mounted so that the arrow points in the direction of flow. See Figure 2-4.  
Figure 2-4. Flow Direction Arrow  
10  
Installation  
           
Reference Manual  
00809-0100-4444, Rev AD  
Section 2: Installation  
August 2015  
2.8  
Sensor location  
The sensor should be installed in a location that ensures it remains full during operation. Vertical  
installation with upward process fluid flow keeps the cross-sectional area full, regardless of flow  
rate. Horizontal installation should be restricted to low piping sections that are normally full.  
Figure 2-5. Sensor Orientation  
FLOW  
FLOW  
2.8.1  
Electrode orientation  
The electrodes in the sensor are properly oriented when the two measurement electrodes are in  
the 3 and 9 o’clock positions or within 45 degrees from the horizontal, as shown on the left in  
Figure 2-6. Avoid any mounting orientation that positions the top of the sensor at 90 degrees  
from the vertical position as shown on the right in Figure 2-6.  
Figure 2-6. Mounting Position  
CORRECT  
INCORRECT  
For hazardous location installations, refer to Appendix B for Installation Drawings 08732-2060  
and 08732-2062 for sensor orientation pertaining to specific T-code compliance.  
11  
Installation  
       
Reference Manual  
00809-0100-4444, Rev AD  
Section 2: Installation  
August 2015  
2.9  
Sensor installation  
2.9.1  
Flanged sensors  
Gaskets  
The sensor requires a gasket at each process connection. The gasket material must be compatible with  
the process fluid and operating conditions. Gaskets are required on each side of a grounding ring  
(see Figure 2-7). All other applications (including sensors with lining protectors or a grounding  
electrode) require only one gasket on each process connection.  
Note  
Metallic or spiral-wound gaskets should not be used as they will damage the liner face of the  
sensor. If spiral wound or metallic gaskets are required for the application, lining protectors  
must be used.  
Figure 2-7. Flanged Gasket Placement  
B
A
FLOW  
A. Grounding ring and gasket (optional)  
B. Customer-supplied gasket  
12  
Installation  
           
Reference Manual  
00809-0100-4444, Rev AD  
Section 2: Installation  
August 2015  
2.9.2  
Flange bolts  
Note  
Do not bolt one side at a time. Tighten both sides simultaneously. Example:  
1. Snug upstream  
2. Snug downstream  
3. Tighten upstream  
4. Tighten downstream  
Do not snug and tighten the upstream side and then snug and tighten the downstream side.  
Failure to alternate between the upstream and downstream flanges when tightening bolts may  
result in liner damage.  
Suggested torque values by sensor line size and liner type are listed in Table 2-4 for ASME B16.5  
flanges and Table 2-5 for EN flanges. Consult the factory if the flange rating of the sensor is not  
listed. Tighten flange bolts on the upstream side of the sensor in the incremental sequence  
shown in Figure 2-8 to 20% of the suggested torque values. Repeat the process on the  
downstream side of the sensor. For sensors with greater or fewer flange bolts, tighten the bolts  
in a similar crosswise sequence. Repeat this entire tightening sequence at 40%, 60%, 80%, and  
100% of the suggested torque values.  
If leakage occurs at the suggested torque values, the bolts can be tightened in additional 10%  
increments until the joint stops leaking, or until the measured torque value reaches the  
maximum torque value of the bolts. Practical consideration for the integrity of the liner often  
leads the user to distinct torque values to stop leakage due to the unique combinations of  
flanges, bolts, gaskets, and sensor liner material.  
Check for leaks at the flanges after tightening the bolts. Failure to use the correct tightening  
methods can result in severe damage. While under pressure, sensor materials may deform over  
time and require a second tightening 24 hours after the initial installation.  
Figure 2-8. Flange Bolt Torquing Sequence  
13  
Installation  
   
Reference Manual  
00809-0100-4444, Rev AD  
Section 2: Installation  
August 2015  
Prior to installation, identify the lining material of the flow sensor to ensure the suggested  
torque values are applied.  
Table 2-3. Lining Material  
Fluoropolymer liners Other liners  
T - PTFE  
F - ETFE  
A - PFA  
P - Polyurethane  
N - Neoprene  
L - Linatex (Natural Rubber)  
D - Adiprene  
K - PFA+  
Table 2-4. Suggested Flange Bolt Torque Values for Rosemount 8705 (ASME)  
Fluoropolymer liners Other liners  
Class 150 Class 300  
Size  
code  
Class 150  
(pound-feet) (pound-feet) (pound-feet)  
Class 300  
(pound-feet)  
Line size  
005  
010  
015  
020  
025  
030  
040  
050  
060  
080  
100  
120  
140  
160  
180  
200  
240  
0.5-in. (15 mm)  
1-in. (25 mm)  
8
8
N/A  
N/A  
7
N/A  
N/A  
18  
8
12  
1.5-in. (40 mm)  
2-in. (50 mm)  
13  
25  
19  
17  
14  
11  
2.5-in. (65 mm)  
3-in. (80 mm)  
22  
24  
17  
16  
34  
35  
23  
23  
4-in. (100 mm)  
5-in. (125 mm)  
6-in. (150 mm)  
8-in. (200 mm)  
10-in. (250 mm)  
12-in. (300 mm)  
14-in. (350 mm)  
16-in. (400 mm)  
18-in. (450 mm)  
20-in. (500 mm)  
24-in. (600 mm)  
26  
50  
17  
32  
36  
60  
25  
35  
45  
50  
30  
37  
60  
82  
42  
55  
55  
80  
40  
70  
65  
125  
110  
160  
170  
175  
280  
415  
575  
55  
105  
95  
85  
70  
85  
65  
140  
150  
150  
250  
375  
525  
120  
110  
165  
195  
280  
95  
90  
140  
165  
245  
300(1) 30-in. (750 mm)  
360(1) 36-in. (900 mm)  
1. Torque values are valid for ASME and AWWA flanges.  
14  
Installation  
 
Reference Manual  
00809-0100-4444, Rev AD  
Section 2: Installation  
August 2015  
Table 2-5. Flange Bolt Torque and Load Specifications for 8705 (EN 1092-1)  
Fluoropolymer liners (in Newton-meters)  
Size  
code  
Line size  
PN10  
PN 16  
PN 25  
PN 40  
0.5-in. (15 mm)  
005  
010  
015  
020  
025  
030  
040  
050  
060  
080  
100  
120  
140  
160  
180  
200  
240  
N/A  
N/A  
N/A  
10  
1-in. (25 mm)  
1.5-in. (40 mm)  
2-in. (50 mm)  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
130  
100  
120  
160  
220  
190  
230  
290  
N/A  
N/A  
N/A  
N/A  
N/A  
50  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
130  
190  
190  
320  
410  
330  
440  
590  
20  
50  
60  
2.5-in. (65 mm)  
3-in. (80 mm)  
50  
50  
4-in. (100 mm)  
5.0-in. (125 mm)  
6-in. (150 mm)  
8-in. (200 mm)  
10-in. (250 mm)  
12-in. (300 mm)  
14-in. (350 mm)  
16-in. (400 mm)  
18-in. (450 mm)  
20-in. (500 mm)  
24-in. (600 mm)  
70  
70  
100  
130  
170  
250  
270  
410  
610  
420  
520  
850  
90  
90  
130  
170  
220  
280  
340  
380  
570  
15  
Installation  
 
Reference Manual  
00809-0100-4444, Rev AD  
Section 2: Installation  
August 2015  
Table 2-6. Flange Bolt Torque and Load Specifications for 8705 (EN 1092-1)  
Other liners (in Newton-meters)  
Size  
code  
Line size  
PN 10  
PN 16  
PN 25  
PN 40  
010  
015  
020  
025  
030  
040  
050  
060  
080  
100  
120  
140  
160  
180  
200  
240  
1-in. (25 mm)  
N/A  
N/A  
N/A  
20  
1.5-in. (40 mm)  
2-in. (50 mm)  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
90  
N/A  
N/A  
N/A  
N/A  
40  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
90  
30  
40  
2.5-in. (65 mm)  
3-in. (80 mm)  
35  
30  
4-in. (100 mm)  
5.0-in. (125 mm)  
6-in. (150 mm)  
8-in. (200 mm)  
10-in. (250 mm)  
12-in. (300 mm)  
14-in. (350 mm)  
16-in. (400 mm)  
18-in. (450 mm)  
20-in. (500 mm)  
24-in. (600 mm)  
50  
50  
70  
60  
90  
60  
110  
170  
180  
280  
410  
280  
350  
560  
70  
80  
130  
130  
210  
280  
220  
300  
80  
110  
150  
190  
230  
260  
110  
150  
130  
150  
200  
380  
390  
16  
Installation  
Reference Manual  
00809-0100-4444, Rev AD  
Section 2: Installation  
August 2015  
2.10  
Wafer sensors  
2.10.1  
Gaskets  
The sensor requires a gasket at each process connection. The gasket material selected must be  
compatible with the process fluid and operating conditions. Gaskets are required on each side of  
a grounding ring. See Figure 2-9 below.  
Note  
Metallic or spiral-wound gaskets should not be used as they will damage the liner face of the  
sensor.  
Figure 2-9. Wafer Gasket Placement  
17  
Installation  
       
Reference Manual  
00809-0100-4444, Rev AD  
Section 2: Installation  
August 2015  
2.10.2  
Alignment  
On 1.5-in. through 8-in. (40 through 200 mm) line sizes, Rosemount requires installing the  
alignment spacers to ensure proper centering of the wafer sensor between the process flanges.  
1.  
2.  
Insert studs for the bottom side of the sensor between the pipe flanges and center the  
alignment spacer in the middle of the stud. See Figure 2-9 for the bolt hole locations  
recommended for the spacers provided. Stud specifications are listed in Table 2-7.  
Place the sensor between the flanges. Make sure the alignment spacers are properly  
centered on the studs. For vertical flow installations slide the O-ring over the stud to  
keep the spacer in place. See Figure 2-9. Ensure the spacers match the flange size and  
class rating for the process flanges. See Table 2-8.  
3.  
4.  
Insert the remaining studs, washers, and nuts.  
Tighten to the torque specifications shown in Table 2-9. Do not over-tighten the bolts  
or the liner may be damaged.  
Table 2-7. Stud Specifications  
Nominal sensor size  
Stud specifications  
1.5 through 8-in. (40 through 200 mm)  
CS, ASTM A193, Grade B7, threaded mounting studs  
Table 2-8. Rosemount Alignment Spacer Table  
Rosemount alignment spacer table  
Line size  
Dash no.  
(-xxxx)  
(in)  
(mm)  
Flange rating  
0A15  
0A20  
0A30  
0B15  
AA15  
AA20  
AA30  
AA40  
AA60  
AA80  
AB15  
AB20  
AB30  
AB40  
AB60  
AB80  
DB40  
DB60  
DB80  
DC80  
DD15  
DD20  
DD30  
1.5  
2
40  
50  
JIS 10K-20K  
JIS 10K-20K  
3
80  
JIS 10K  
1.5  
1.5  
2
40  
JIS 40K  
40  
ASME- 150#  
50  
ASME - 150#  
3
80  
ASME - 150#  
4
100  
150  
200  
40  
ASME - 150#  
6
ASME - 150#  
8
ASME - 150#  
1.5  
2
ASME - 300#  
50  
ASME - 300#  
3
80  
ASME - 300#  
4
100  
150  
200  
100  
150  
200  
200  
40  
ASME - 300#  
6
ASME - 300#  
8
ASME - 300#  
4
EN 1092-1 - PN10/16  
EN 1092-1 - PN10/16  
EN 1092-1 - PN10/16  
EN 1092-1 - PN25  
EN 1092-1 - PN10/16/25/40  
EN 1092-1 - PN10/16/25/40  
EN 1092-1 - PN10/16/25/40  
6
8
8
1.5  
2
50  
3
80  
18  
Installation  
     
Reference Manual  
00809-0100-4444, Rev AD  
Section 2: Installation  
August 2015  
Table 2-8. Rosemount Alignment Spacer Table (continued)  
Rosemount alignment spacer table  
Line size  
Dash no.  
(-xxxx)  
(in)  
(mm)  
Flange rating  
DD40  
DD60  
DD80  
RA80  
RC20  
RC30  
RC40  
RC60  
RC80  
4
6
8
8
2
3
4
6
8
100  
150  
200  
200  
50  
EN 1092-1 - PN25/40  
EN 1092-1 - PN25/40  
EN 1092-1 - PN40  
AS40871-PN16  
AS40871-PN21/35  
AS40871-PN21/35  
AS40871-PN21/35  
AS40871-PN21/35  
AS40871-PN21/35  
80  
100  
150  
200  
To order an Alignment Spacer Kit (qty 3 spacers) use p/n 08711-3211-xxxx along with the Dash  
no. above.  
2.10.3  
Flange bolts  
Wafer sensors require threaded studs. See Figure 2-8 on page 13 for torque sequence. Always  
check for leaks at the flanges after tightening the flange bolts. All sensors require a second  
tightening 24 hours after initial flange bolt tightening.  
Table 2-9. Rosemount 8711 Torque Specifications  
Size code  
Line size  
Pound-feet  
Newton-meter  
015  
020  
030  
040  
060  
080  
1.5-in. (40 mm)  
2-in. (50 mm)  
3-in. (80 mm)  
4-in. (100 mm)  
6-in. (150 mm)  
8-in. (200 mm)  
15  
25  
40  
30  
50  
70  
20  
34  
54  
41  
68  
95  
2.11  
Process reference connection  
Figure 2-10 through Figure 2-13 illustrate process reference connections only. Earth safety  
ground is also required as part of the installation but is not shown in the figures. Follow national,  
local, and plant electrical codes for safety ground.  
Use Table 2-10 to determine which process reference option to follow for proper installation.  
19  
Installation  
         
Reference Manual  
00809-0100-4444, Rev AD  
Section 2: Installation  
August 2015  
Table 2-10. Process Reference Installation Options  
Grounding  
straps  
Reference  
electrode  
Lining  
protectors  
Type of pipe  
Grounding rings  
Conductive  
Unlined Pipe  
See Figure 2-11(1)  
Conductive  
Lined Pipe  
Insufficient  
Grounding  
Non-Conductive  
Pipe  
Insufficient  
Grounding  
Not Recommended  
1. Grounding ring, reference electrode, and lining protectors are not required for process reference. Grounding straps per Figure 2-10  
are sufficient.  
Note  
For line sizes 10-in. and larger, the ground strap may come attached to the sensor body near the  
flange. See Figure 2-14.  
Figure 2-10. Grounding Straps in Conductive Unlined Pipe or Reference Electrode in Lined  
Pipe  
20  
Installation  
             
Reference Manual  
00809-0100-4444, Rev AD  
Section 2: Installation  
August 2015  
Figure 2-11. Grounding with Grounding Rings or Lining Protectors in Conductive Pipe  
Figure 2-12. Grounding with Grounding Rings or Lining Protectors in Non-conductive Pipe  
21  
Installation  
   
Reference Manual  
00809-0100-4444, Rev AD  
Section 2: Installation  
August 2015  
Figure 2-13. Grounding with Reference Electrode in Conductive Unlined Pipe  
Figure 2-14. Grounding for Line Sizes 10-in. and Larger  
22  
Installation  
   
Reference Manual  
00809-0100-4444, Rev AD  
Section 2: Installation  
August 2015  
2.12  
Wiring the transmitter  
This wiring section covers the wiring between the transmitter and sensor, the 4-20mA output,  
and supplying power to the transmitter. Follow the conduit, cable, and electrical disconnect  
requirements in the sections below.  
For sensor wiring diagrams, reference Electrical Drawing 08732-1504 in Appendix C Wiring  
Diagrams.  
For hazardous locations, reference Installation Drawings 08732-2060 and 08732-2062 in  
For information on connecting to another manufacturer’s sensor, refer to Appendix D  
2.12.1  
2.12.2  
Conduit entries and connections  
The standard conduit entries for the transmitter and sensor are 1/2 -in. NPT. Thread adapters are  
provided for units ordered with M20 conduit entries. Conduit connections should be made in  
accordance with national, local, and plant electrical codes. Unused conduit entries should be  
sealed with the appropriate certified plugs. The flow sensor is rated IP68 to a depth of 33 feet  
(10 meters) for 48 hours. For sensor installations requiring IP68 protection, the cable grands,  
conduit, and conduit plugs must be rated for IP68. The plastic shipping plugs do not provide  
ingress protection.  
Conduit requirements  
For installations with an intrinsically safe electrode circuit, a separate conduit for the  
coil cable and the electrode cable may be required. Refer to the Installation Drawings in  
For installations with non-intrinsically safe electrode circuit, or when using the  
combination cable, a single dedicated conduit run for the coil drive and electrode cable  
between the sensor and the remote transmitter may be acceptable. Bundled cables  
from other equipment in a single conduit are likely to create interference and noise in  
the system. See Figure 2-15.  
Electrode cables should not be run together and should not be in the same cable tray  
with power cables.  
Output cables should not be run together with power cables.  
Select conduit size appropriate to feed cables through to the flowmeter.  
23  
Installation  
       
Reference Manual  
00809-0100-4444, Rev AD  
Section 2: Installation  
August 2015  
Figure 2-15. Best Practice Conduit Preparation  
A
B
B
C
D
A. Power  
B. Output  
C. Coil  
D. Electrode  
2.12.3  
Connecting sensor to transmitter  
Integral mount transmitters  
Integral mount transmitters ordered with a sensor will be shipped assembled and wired at the  
factory using an interconnecting cable (see Figure 2-16). Use only the socket module or IMS  
cable provided by EmersonProcess Management.  
For replacement transmitters use the existing interconnecting cable from the original assembly.  
Replacement cables are available.  
Figure 2-16. Interconnecting Cables  
Remote mount transmitters  
Cables kits are available as individual component cables or as a combination coil/electrode  
cable. Remote cables can be ordered direct from Emerson Process Management using the kit  
numbers shown in Table 2-11. Equivalent Alpha cable part numbers are also provided as an  
alternative. To order cable, specify length as quantity desired. Equal length of component  
cables is required.  
Example: 25 feet = Qty (25) 08732-0065-0001  
Installation  
24  
     
Reference Manual  
00809-0100-4444, Rev AD  
Section 2: Installation  
August 2015  
Table 2-11. Component Cable Kits  
Standard temperature (-20 °C to 75 °C)  
Cable kit #  
Description  
Individual cables  
Alpha  
p/n  
08732-0065-0001  
(feet)  
Kit, Component Cables, Std Temp  
(includes Coil and Electrode)  
Coil  
Electrode  
518243  
518245  
08732-0065-0002  
(meters)  
Kit, Component Cables, Std Temp  
(includes Coil and Electrode)  
Coil  
Electrode  
518243  
518245  
08732-0065-0003  
(feet)  
Kit, Component Cables, Std Temp  
(includes Coil and I.S.Electrode)  
Coil  
518243  
518244  
Intrinsically Safe Blue Electrode  
08732-0065-0004  
(meters)  
Kit, Component Cables, Std Temp  
(includes Coil and I.S.Electrode)  
Coil  
518243  
518244  
Intrinsically Safe Blue Electrode  
Extended temperature (-50 °C to 125 °C)  
Cable kit #  
Description  
Individual cables  
Alpha  
p/n  
08732-0065-1001  
(feet)  
Kit, Component Cables, Ext Temp.  
(includes Coil and Electrode)  
Coil  
Electrode  
840310  
518189  
08732-0065-1002  
(meters)  
Kit, Component Cables, Ext Temp.  
(includes Coil and Electrode)  
Coil  
Electrode  
840310  
518189  
08732-0065-1003  
(feet)  
Kit, Component Cables, Ext Temp.  
(includes Coil and I.S.Electrode)  
Coil  
840310  
840309  
Intrinsically Safe Blue Electrode  
08732-0065-1004  
(meters)  
Kit, Component Cables, Ext Temp.  
(includes Coil and I.S.Electrode)  
Coil  
840310  
840309  
Intrinsically Safe Blue Electrode  
Table 2-12. Combination Cable kits  
Coil/electrode cable (-20 °C to 80 °C)  
Cable kit #  
Description  
08732-0065-2001  
(feet)  
Kit, Combination Cable,  
Standard  
08732-0065-2002  
(meters)  
08732-0065-3001  
(feet)  
Kit, Combination Cable,  
Submersible  
(80°C dry/60°C Wet)  
(33ft continuous)  
08732-0065-3002  
(meters)  
25  
Installation  
   
Reference Manual  
00809-0100-4444, Rev AD  
Section 2: Installation  
August 2015  
Cable requirements  
Shielded twisted pairs or triads must be used. For installations using the individual coil drive and  
electrode cable, see Figure 2-17. Cable lengths should be limited to less than 500 feet (152 m).  
Consult factory for length between 500–1000 feet (152–304 m). Equal length cable is required  
for each.  
For installations using the combination coil drive/electrode cable, see Figure 2-18. Combination  
cable lengths should be limited to less than 330 feet (100 m).  
Figure 2-17. Individual Component Cables  
Figure 2-18. Combination Coil / Electrode Cable  
26  
Installation  
   
Reference Manual  
00809-0100-4444, Rev AD  
Section 2: Installation  
August 2015  
Cable preparation  
When preparing all wire connections, remove only the insulation required to fit the wire  
completely under the terminal connection. Prepare the ends of the coil drive and electrode  
cables as shown in Figure 2-19. Limit the unshielded wire length to less than one inch on both  
the coil drive and electrode cables. Any length of unsheathed conductor should be insulated.  
Excessive removal of insulation may result in an unwanted electrical short to the transmitter  
housing or other wire connections. Excessive unshielded lead length, or failure to connect cable  
shields properly, may expose the unit to electrical noise, resulting in an unstable meter reading.  
Figure 2-19. Cable Ends  
Shock Hazard  
Potential shock hazard across remote junction box terminals 1 & 2 (40V).  
Explosion Hazard  
Electrodes exposed to process. Use only compatible transmitter and approved installation  
practices.  
For process temperatures greater than 284 °F (140 °C), use a wire rated for 257 °F (125 °C).  
27  
Installation  
   
Reference Manual  
00809-0100-4444, Rev AD  
Section 2: Installation  
August 2015  
Figure 2-20. Remote Junction Box Views  
Sensor  
Transmiter  
Wire  
Terminal  
Wire Terminal  
RED  
BLUE  
1
2
RED  
BLUE  
1
2
BLACK  
YELLOW  
WHITE  
17  
18  
19  
Shield  
BLACK  
YELLOW  
WHITE  
3
17  
18  
19  
For sensor wiring diagrams, reference the installation drawings in Appendix C Wiring Diagrams.  
For hazardous locations, reference the drawings in Appendix B Product Certifications.  
2.12.4  
8732EM terminal block connections  
Remove the back cover of the transmitter to access the terminal block. See Figure 2-21 for  
terminal identification. To connect pulse output and/or discrete input/output, reference  
Appendix C Wiring Diagrams. For installations with intrinsically safe outputs, reference the  
hazardous location installation drawings in Appendix B Product Certifications.  
Figure 2-21. Terminal Block Connections  
28  
Installation  
   
Reference Manual  
00809-0100-4444, Rev AD  
Section 2: Installation  
August 2015  
2.12.5  
Analog output  
The analog output signal is a 4-20mA current loop. The loop can be powered internally or  
externally via a hardware switch located on the front of the electronics stack. The switch is set to  
internal power when shipped from the factory. For units with a display, the LOI must be removed  
to change switch position.  
Intrinsically safe analog output requires a shielded twisted pair cable.  
For HART communication a minimum loop resistance of 250 ohms is required. It is  
recommended to use individually shielded twisted pair cable. The minimum conductor size is  
0.51 mm diameter (#24 AWG) for cable runs less than 5,000 feet (1,500m) and 0.81 mm  
diameter (#20 AWG) for longer distances.  
Internal power  
The 4-20mA analog signal is a 24VDC active output.  
Maximum allowable loop resistance is 500 ohms.  
Wire terminal 1 (+) and terminal 2 (-). See Figure 2-22.  
Figure 2-22. Analog Wiring—Internal Power  
- 4-20mA  
+ 4-20mA  
Note  
Terminal polarity for the analog output is reversed between internally and externally powered.  
29  
Installation  
     
Reference Manual  
00809-0100-4444, Rev AD  
Section 2: Installation  
August 2015  
External power  
The 4-20mA analog signal is passive and must be powered from an external power source.  
Power at the transmitter terminals must be 10.8 - 30VDC.  
Wire terminal 1 (-) and terminal 2 (+). See Figure 2-23.  
Figure 2-23. Analog Wiring—External Power  
+
-
POWER  
SUPPLY  
Analog loop load limitations  
Maximum loop resistance is determined by the voltage level of the external power supply, as  
described in Figure 2-24.  
Figure 2-24. Analog Loop Load Limitations  
600  
0
Operating  
Region  
10.8  
30  
Power Supply (Volts)  
R
=
31.25 (V – 10.8)  
max  
ps  
V
=
Power Supply Voltage (Volts)  
ps  
R
=
Maximum Loop Resistance (Ohms)  
max  
30  
Installation  
   
Reference Manual  
00809-0100-4444, Rev AD  
Section 2: Installation  
August 2015  
2.12.6  
Powering the transmitter  
The 8732EM transmitter is available in two models. The AC powered transmitter is designed to  
be powered by 90–250VAC (50/60Hz). The DC powered transmitter is designed to be powered  
by 12–42VDC. Before connecting power to the 8732EM, be sure to have the proper power  
supply, conduit, and other accessories. Wire the transmitter according to national, local, and  
plant electrical requirements for the supply voltage. See Figure 2-25 or Figure 2-26.  
Figure 2-25. DC Power Requirements  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
12  
16  
20  
24  
28  
32  
36  
40  
Power Supply (DC Volts)  
Peak inrush is 42A at 42VDC supply, lasting approximately 1ms.  
Inrush for other supply voltages can be estimated with:  
Inrush (Amps) = Supply (Volts) / 1.0  
Figure 2-26. AC Power Requirements  
AC Supply Characteristics  
0.24  
0.22  
0.20  
0.18  
0.16  
0.14  
0.12  
90  
110  
130  
150  
170  
190  
210  
230  
250  
Power Supply (VAC)  
31  
Installation  
       
Reference Manual  
00809-0100-4444, Rev AD  
Section 2: Installation  
August 2015  
Apparent Power (VA)  
34  
32  
30  
28  
26  
24  
22  
20  
90  
110  
130  
150  
170  
190  
210  
230  
250  
Power Supply (VAC)  
Peak inrush is 35.7A at 250VAC supply, lasting approximately 1ms.  
Inrush for other supply voltages can be estimated with:  
Inrush (Amps) = Supply (Volts) / 7.0  
Supply wire requirements  
Use 10–18 AWG wire rated for the proper temperature of the application. For wire 10–14 AWG  
use lugs or other appropriate connectors. For connections in ambient temperatures above  
122 °F (50 °C), use a wire rated for 194 °F (90 °C). For DC powered transmitters with extended  
cable lengths, verify that there is a minimum of 12VDC at the terminals of the transmitter with  
the device under load.  
Electrical disconnect requirements  
Connect the device through an external disconnect or circuit breaker per national and local  
electrical code.  
Installation category  
The installation category for the 8732EM is OVERVOLTAGE CAT II.  
32  
Installation  
Reference Manual  
00809-0100-4444, Rev AD  
Section 2: Installation  
August 2015  
Overcurrent protection  
The 8732EM transmitter requires overcurrent protection of the supply lines. Fuse rating and  
compatible fuses are shown in Table 2-13.  
Table 2-13. Fuse Requirements  
Input  
voltage  
Fuse rating  
Compatible fuse  
90–250VAC  
rms  
1 Amp, 250V, I2t 1.5 A2s  
Bussman AGC-1, Littelfuse 31201.5HXP  
Rating, Fast Acting  
12–42VDC  
3 Amp, 250V, I2t 14 A2s  
Bel Fuse 3AG 3-R, Littelfuse 312003P, Schurter 0034.5135  
Rating, Fast Acting  
Power terminals  
See Figure 2-21 for terminal block connections.  
For AC powered transmitter (90–250VAC, 50/60 Hz):  
Connect AC Neutral to terminal 9 (AC N/L2) and AC Line to terminal 10 (AC/L1).  
For DC powered transmitter:  
Connect negative to terminal 9 (DC -) and positive to terminal 10 (DC +).  
DC powered units may draw up to 1.2A.  
2.13  
Cover jam screw  
For flow meters shipped with a cover jam screw, the screw should be installed after the  
instrument has been wired and powered up. Follow these steps to install the cover jam screw:  
1.  
2.  
3.  
Verify the cover jam screw is completely threaded into the housing.  
Install the housing cover and verify the cover is tight against the housing.  
Using a 2.5 mm hex wrench, loosen the jam screw until it contacts the transmitter  
cover.  
4.  
Turn the jam screw an additional 1/2 turn counterclockwise to secure the cover.  
Note  
Application of excessive torque may strip the threads.  
5. Verify the cover cannot be removed.  
33  
Installation  
     
Reference Manual  
00809-0100-4444, Rev AD  
Section 2: Installation  
August 2015  
2.14  
Basic configuration  
Once the magnetic flowmeter is installed and power has been supplied, the transmitter must be  
configured through the basic setup. The basic setup parameters can be configured through  
either an LOI or a HART communication device.  
For instructions on operation of the LOI or HART Communication device, refer to  
If configuration beyond the basic setup parameters is required, refer to Section 5 for a  
complete list of device parameters.  
Configuration settings are saved in nonvolatile memory within the transmitter.  
2.14.1  
Basic setup  
Tag  
Basic Setup, Tag  
LOI menu path  
1,3,1  
2,2,9,1,1  
Traditional Fast Keys  
Device dashboard  
Tag is the quickest and shortest way of identifying and distinguishing between transmitters.  
Transmitters can be tagged according to the requirements of your application. The tag may be  
up to eight characters long.  
Flow units (PV)  
Basic Setup, Flow Units, PV Units  
LOI menu path  
1,3,1  
2,2,1,2  
Traditional Fast Keys  
Device dashboard  
The flow units variable specifies the format in which the flow rate will be displayed. Units should  
be selected to meet your particular metering needs. See Table 2-14 for available units of  
measure.  
Line size  
Basic Setup, Line Size  
LOI menu path  
1,3,1  
2,2,1,4,2  
Traditional Fast Keys  
Device dashboard  
The line size (sensor size) must be set to match the actual sensor connected to the transmitter.  
The size must be specified in inches. See Table 2-15 for available sensor sizes.  
Upper Range Value (URV)  
Basic Setup, PV URV  
LOI menu path  
1,3,1  
2,2,1,3,3  
Traditional Fast Keys  
Device dashboard  
The URV sets the 20 mA point for the analog output. This value is typically set to full-scale flow.  
The units that appear will be the same as those selected under the flow units parameter. The  
URV may be set between –39.3 ft/s to 39.3 ft/s (–12 m/s to 12 m/s). There must be at least 1  
ft/s (0.3 m/s) span between the URV and LRV.  
34  
Installation  
                   
Reference Manual  
00809-0100-4444, Rev AD  
Section 2: Installation  
August 2015  
Lower Range Value (LRV)  
Basic Setup, PV LRV  
LOI menu path  
1,3,1  
2,2,1,3,2  
Traditional Fast Keys  
Device dashboard  
The LRV sets the 4 mA point for the analog output. This value is typically set to zero flow. The  
units that appear will be the same as those selected under the flow units parameter. The LRV  
may be set between –39.3 ft/s to 39.3 ft/s (–12 m/s to 12 m/s). There must be at least 1 ft/s (0.3  
m/s) span between the URV and LRV.  
Calibration number  
Basic Setup, Cal Number  
LOI menu path  
1,3,1  
2,2,1,4,1  
Traditional Fast Keys  
Device dashboard  
The sensor calibration number is a 16-digit number generated at the Rosemount factory during  
flow calibration, is unique to each sensor, and is located on the sensor tag.  
PV damping  
Basic Setup, PV Damping  
LOI menu path  
1,3,1  
2,2,1,3,4  
Traditional Fast Keys  
Device dashboard  
Primary variable damping allows selection of a response time, in seconds, to a step change in  
flow rate. It is most often used to smooth fluctuations in output.  
35  
Installation  
 
Reference Manual  
00809-0100-4444, Rev AD  
Section 2: Installation  
August 2015  
Table 2-14. Available Flow Units  
Volumetric units  
Mass units  
gal / sec  
gal / min  
gal / hr  
lbs / sec  
lbs / min  
lbs / hr  
gal / day  
L / sec  
lbs / day  
kg / sec  
L / min  
kg / min  
L / hr  
kg / hr  
L / day  
kg / day  
ft3 / sec  
ft3 / min  
ft3 / hr  
(s) tons / min  
(s) tons / hr  
(s) tons / day  
(m) tons / min  
(m) tons / hr  
(m) tons / day  
ft3 / day  
cm3 / min  
m3 / sec  
m3 / min  
m3 / hr  
Velocity units  
m3 / day  
ft / sec  
m / sec  
Impgal / sec  
Impgal / min  
Impgal / hr  
Special units  
Impgal / day  
Special (User Defined)  
B42 / sec (1 barrel = 42 gallons)  
B42 / min (1 barrel = 42 gallons)  
B42 / hr (1 barrel = 42 gallons)  
B42 / day (1 barrel = 42 gallons)  
B31 / sec (1 barrel = 31 gallons)  
B31 / min (1 barrel = 31 gallons)  
B31 / hr (1 barrel = 31 gallons)  
B31 / day (1 barrel = 31 gallons)  
36  
Installation  
   
Reference Manual  
00809-0100-4444, Rev AD  
Section 2: Installation  
August 2015  
Table 2-15. Available Sensor Sizes  
Sensor size  
0.10-in. (2.5 mm)  
0.15-in. (4 mm)  
0.25-in. (6 mm)  
0.30-in. (8 mm)  
0.50-in. (15 mm)  
0.75-in. (20 mm)  
1.0-in. (25 mm)  
1.5-in. (40 mm)  
2.0-in. (50 mm)  
2.5-in. (65 mm)  
3.0-in. (80 mm)  
4.0-in. (100 mm)  
5.0-in. (125 mm)  
6.0-in. (150 mm)  
8.0-in. (200 mm)  
10-in. (250 mm)  
12-in. (300 mm)  
14-in. (350 mm)  
16-in. (400 mm)  
18-in. (450 mm)  
20-in. (500 mm)  
24-in. (600 mm)  
28-in. (700 mm)  
30-in. (750 mm)  
32-in. (800 mm)  
36-in. (900 mm)  
40-in. (1000 mm)  
42-in. (1050 mm)  
44-in. (1100 mm)  
48-in. (1200 mm)  
54-in. (1350 mm)  
56-in. (1400 mm)  
60-in. (1500 mm)  
64-in. (1600 mm)  
66-in. (1650 mm)  
72-in. (1800 mm)  
78-in. (1950 mm)  
80-in. (2000 mm)  
37  
Installation  
 
Reference Manual  
00809-0100-4444, Rev AD  
Section 2: Installation  
August 2015  
38  
Installation  
Reference Manual  
00809-0100-4444, Rev AD  
Section 3: Advanced Installation Details  
August 2015  
Section 3  
Advanced Installation Details  
3.1  
3.2  
Introduction  
This section details some of the advanced installation considerations when utilizing the  
Rosemount® 8700M Magnetic Flowmeter Platform.  
Safety messages  
The electronics may store energy after power is removed. Allow ten minutes for charge to  
dissipate prior to removing electronics compartment cover.  
Note  
The electronics stack is electrostatically sensitive. Be sure to observe handling precautions for  
static-sensitive components.  
3.3  
Hardware switches  
The electronics are equipped with four user-selectable hardware switches. These switches set  
the Alarm Mode, Internal/External Analog Power, Transmitter Security, and Internal/External  
Pulse Power.  
Definitions of these switches and their functions are provided below. To change the settings, see  
below.  
3.3.1  
Alarm mode  
If an event occurs that would trigger an alarm in the electronics, the analog output will be driven  
high or low, depending on the switch position. The switch is set in the HIGH position when  
shipped from the factory. Refer to Table 5-1 on page 88 and Table 5-2 on page 88 for analog  
output values of the alarm.  
39  
Advanced Installation Details  
         
Reference Manual  
00809-0100-4444, Rev AD  
Section 3: Advanced Installation Details  
August 2015  
3.3.2  
3.3.3  
3.3.4  
3.3.5  
Transmitter security  
The security switch on the 8732EM allows the user to lock out any configuration changes  
attempted on the transmitter. No changes to the configuration are allowed when the switch is  
in the ON position. The flow rate indication and totalizer functions remain active at all times.  
With the switch in the ON position, access to review the operating parameters is available. No  
configuration changes are allowed.  
Transmitter security is set in the OFF position when shipped from the factory.  
Internal/external analog power  
The 8732EM 4-20 mA loop may be powered internally or by an external power supply. The  
internal /external power supply switch determines the source of the 4-20 mA loop power.  
Transmitters are shipped from the factory with the switch set in the INTERNAL position.  
The external power option is required for multidrop configurations. A 10-30 VDC external  
supply is required and the 4-20 mA power switch must be set to the EXTERNAL position. For  
further information on 4-20 mA external power, see “Analog output” on page 29.  
Internal/external pulse power  
The 8732EM pulse loop may be powered internally or by an external power supply. The inter-  
nal/external power supply switch determines the source of the pulse loop power.  
Transmitters are shipped from the factory with the switch set in the EXTERNAL position.  
A 5-28 VDC external supply is required when the pulse power switch is set to the EXTERNAL  
position. For further information on the pulse external power, see “Connect pulse output” on  
Changing hardware switch settings  
To change the switch settings, complete the steps below:  
Note  
The hardware switches are located on the top side of the electronics board and changing their  
settings requires opening the electronics housing. If possible, carry out these procedures away  
from the plant environment in order to protect the electronics.  
1.  
2.  
3.  
Place the control loop into manual control.  
Disconnect power to the transmitter  
Remove the electronics compartment cover. If the cover has a cover jam screw, this  
must be loosened prior to removal of the cover.  
4.  
5.  
Remove the LOI, if applicable.  
Identify the location of each switch (see Figure 3-1).  
40  
Advanced Installation Details  
           
Reference Manual  
00809-0100-4444, Rev AD  
Section 3: Advanced Installation Details  
August 2015  
6.  
7.  
Change the setting of the desired switches with a small, non-metallic tool.  
Replace the LOI if applicable, and the electronics compartment cover. If the cover has a  
cover jam screw, this must be tightened to comply with installation requirements. See  
“Cover jam screw” on page 33 for details on the cover jam screw.  
8.  
9.  
Return power to the transmitter and verify the flow measurement is correct.  
Return the control loop to automatic control.  
Figure 3-1. Rosemount 8732EM Electronics Stack and Hardware Switches  
3.4  
Additional loops  
There are three additional loop connections available on the 8732EM Transmitter:  
Pulse output - used for external or remote totalization.  
Channel 1 can be configured as discrete input or discrete output.  
Channel 2 can be configured as discrete output only.  
3.4.1  
Connect pulse output  
The pulse output function provides a galvanically isolated frequency signal that is proportional  
to the flow through the sensor. The signal is typically used in conjunction with an external  
totalizer or control system. The default position of the internal/external pulse power switch is in  
the EXTERNAL position. The user-selectable power switch is located on the electronics board.  
41  
Advanced Installation Details  
       
Reference Manual  
00809-0100-4444, Rev AD  
Section 3: Advanced Installation Details  
August 2015  
External  
For transmitters with the internal/external pulse power switch (output option code A) set in the  
EXTERNAL position or transmitters with intrinsically safe outputs (output option code B) the  
following requirements apply:  
Supply voltage: 5 to 28 VDC  
Maximum current: 100 mA  
Maximum power: 1.0 W  
Load resistance: 200 to 10k Ohms (typical value 1k Ohms)  
Output option  
code  
Supply voltage  
Resistance vs cable length  
A
B
B
B
5-28 VDC  
5 VDC  
12 VDC  
24 VDC  
Pulse mode: Fixed pulse width or 50% duty cycle  
Pulse duration: 0.1 to 650 ms (adjustable)  
Maximum pulse frequency: Output option code A is 10,000 Hz  
Maximum pulse frequency: Output option code B is 5000 Hz  
FET switch closure: solid state switch  
42  
Advanced Installation Details  
Reference Manual  
00809-0100-4444, Rev AD  
Section 3: Advanced Installation Details  
August 2015  
Figure 3-2. Output Option Code A—Maximum Frequency vs. Cable Length  
Figure 3-3. Output Option Code B—5 VDC Supply  
At 5000 Hz operation with a 5 VDC supply, pull-up resistances of 200 to 1000 Ohms allow  
cable lengths up to 660 ft (200 m).  
43  
Advanced Installation Details  
   
Reference Manual  
00809-0100-4444, Rev AD  
Section 3: Advanced Installation Details  
August 2015  
Figure 3-4. Output Option Code B—2 VDC Supply  
At 5000 Hz operation with a 12 VDC supply, pull-up resistances of 500 to 2500 Ohms allow  
cable lengths up to 660 ft (200 m). Resistances from 500 to 1000 Ohms allow a cable  
length of 1000 ft (330 m).  
Figure 3-5. Output Option Code B—24 VDC Supply  
At 5000 Hz operation with a 24 VDC supply, pull-up resistances of 1000 to 10,000 Ohms  
allow cable lengths up to 660 ft (200 m). Resistances from 1000 to 2500 Ohms allow a  
cable length of 1000 ft (330 m).  
44  
Advanced Installation Details  
   
Reference Manual  
00809-0100-4444, Rev AD  
Section 3: Advanced Installation Details  
August 2015  
Complete the following steps to connect an external power supply.  
1.  
Ensure the power source and connecting cable meet the requirements outlined  
previously.  
2.  
3.  
4.  
5.  
Turn off the transmitter and pulse output power sources.  
Run the power cable to the transmitter.  
Connect - DC to terminal 3.  
Connect + DC to terminal 4.  
Refer to Figure 3-6 and Figure 3-7.  
Figure 3-6. Connecting an Electromechanical Totalizer/Counter with External Power  
Supply  
Schematic showing  
FET between  
terminal 3 and 4  
Electro-mechanical  
Counter  
5-24 V DC  
Power Supply  
Note  
Total loop impedance must be sufficient to keep loop current below maximum rating. A resistor  
can be added in the loop to raise impedance.  
45  
Advanced Installation Details  
 
Reference Manual  
00809-0100-4444, Rev AD  
Section 3: Advanced Installation Details  
August 2015  
Figure 3-7. Connecting to an Electronic Totalizer/Counter with External Power Supply  
Schematic showing  
FET between  
terminal 3 and 4  
Electronic  
Counter  
5-24 V DC  
Power Supply  
Note  
Total loop impedance must be sufficient to keep loop current below maximum rating.  
46  
Advanced Installation Details  
 
Reference Manual  
00809-0100-4444, Rev AD  
Section 3: Advanced Installation Details  
August 2015  
Internal  
When the pulse switch is set to internal, the pulse loop will be powered from the transmitter.  
Supply voltage from the transmitter can be up to 12 VDC. Refer to Figure 3-8 and connect the  
transmitter directly to the counter. Internal pulse power can only be used with an electronic  
totalizer or counter and cannot be used with an electromechanical counter.  
1.  
2.  
3.  
Turn off the transmitter.  
Connect - DC to terminal 3.  
Connect + DC to terminal 4.  
Figure 3-8. Connecting to an Electronic Totalizer / Counter with Internal Power Supply  
Schematic showing  
FET between  
terminal 3 and 4  
Electronic  
Counter  
47  
Advanced Installation Details  
 
Reference Manual  
00809-0100-4444, Rev AD  
Section 3: Advanced Installation Details  
August 2015  
3.4.2  
Connect discrete output  
The discrete output control function can be configured to drive an external signal to indicate  
zero flow, reverse flow, empty pipe, diagnostic status, flow limit, or transmitter status. The  
following requirements apply:  
Supply Voltage: 5 to 28 VDC  
Maximum Voltage: 28 VDC at 240 mA  
Switch Closure: solid state relay  
For discrete output control, connect the power source and control relay to the transmitter. To  
connect external power for discrete output control, complete the following steps:  
1.  
Ensure the power source and connecting cable meet the requirements outlined  
previously.  
2.  
3.  
4.  
5.  
Turn off the transmitter and discrete power sources.  
Run the power cable to the transmitter.  
Channel 1: Connect -DC to terminal 5, connect +DC to terminal 6.  
Channel 2: Connect -DC to terminal 7, connect +DC to terminal 8.  
Refer to Figure 3-9 and Figure 3.5.  
Figure 3-9. Connect Discrete Output to Relay or Control System Input  
Control Relay  
or Input  
5-28 V DC  
Power Supply  
Note  
Total loop impedance must be sufficient to keep loop current below maximum rating. A resistor  
can be added in the loop to raise impedance.  
48  
Advanced Installation Details  
   
Reference Manual  
00809-0100-4444, Rev AD  
Section 3: Advanced Installation Details  
August 2015  
3.4.3  
Connect discrete input  
The discrete input can provide positive zero return (PZR) or net totalizer reset. The following  
requirements apply:  
Supply Voltage: 5 to 28 VDC  
Control Current: 1.5 - 20mA  
Input Impedance: 2.5 kΩ plus 1.2V Diode drop. See Figure 3-11.  
To connect the discrete input, complete the following steps.  
1.  
Ensure the power source and connecting cable meet the requirements outlined  
previously.  
2.  
3.  
4.  
5.  
Turn off the transmitter and discrete power sources.  
Run the power cable to the transmitter.  
Connect -DC to terminal 5.  
Connect +DC to terminal 6.  
Refer to Figure 3-10 and Figure 3-11.  
Figure 3-10. Connecting Discrete Input  
Relay Contact or Control  
System Output  
5-28 V DC  
Power Supply  
49  
Advanced Installation Details  
     
Reference Manual  
00809-0100-4444, Rev AD  
Section 3: Advanced Installation Details  
August 2015  
Figure 3-11. Discrete Input Operating Range  
30  
25  
20  
15  
10  
5
Digital Input Operating Range  
0
0
2.5  
5
7.5  
10  
12.5  
15  
Series Resistance Ωin + Ωext (Kohms)  
3.5  
3.6  
Process reference connection  
Establishing a process reference for the sensor is one of the most important details of sensor  
installation. Proper process reference creates the lowest noise environment for the transmitter  
to make a stable reading. Refer to Table 2-10 on page 20 to determine which option to follow for  
proper installation.  
Note  
Consult factory for installations requiring cathodic protection or situations where there are high  
electrical currents or high electrical potentials present in the process.  
Coil housing configuration  
The coil housing provides physical protection of the coils and other internal components from  
contamination and physical damage that might occur in an industrial environment. The coil  
housing is an all-welded and gasket-free design.  
The 8705 model is available in four coil housing configurations. Configurations are identified by  
the M0, M1, M2, or M4 options codes found in the model number. The 8711 and 8721 models  
are only available in one coil housing coil configuration; a separate option code is not available.  
50  
Advanced Installation Details  
     
Reference Manual  
00809-0100-4444, Rev AD  
Section 3: Advanced Installation Details  
August 2015  
3.6.1  
Standard coil housing configuration  
The standard coil housing configuration is a factory sealed all-welded enclosure and is available  
for the following models (see Figure 3-12):  
8705 with option code M0 - 8705xxxxxxxxM0  
8711 with option code M/L - 8711xxxxxxM/L  
8721 with option code R/U - 8721xxxxxxR/U  
Figure 3-12. Standard Housing Configuration (8705 Shown)  
51  
Advanced Installation Details  
   
Reference Manual  
00809-0100-4444, Rev AD  
Section 3: Advanced Installation Details  
August 2015  
3.6.2  
Process leak protection (option M1)  
The 8705 is available with process leak detection through the use of a threaded connection and  
pressure relief valve (PRV). This coil housing configuration is a factory sealed all-welded  
enclosure. The M1 configuration is available for the 8705 only.  
8705 with option code M1 - 8705xxxxxxxxM1  
A PRV can be installed in the threaded connection to prevent possible over-pressuring of the coil  
housing caused by a primary seal failure. The PRV is capable of venting fugitive emissions when  
pressure inside the coil housing exceeds five psi. Additional piping may be connected to the PRV  
to drain any process leakage to a safe location (see Figure 3-13).  
In the event of a primary seal failure, this configuration will not protect the coils or other internal  
components of the sensor from exposure to the process fluid.  
Note  
The PRV is supplied with the meter to be installed by the customer. Installation of the PRV and  
any associated piping must be performed in accordance with environmental and hazardous area  
requirements.  
Figure 3-13. 8705 with M1 Coil Housing Configuration and PRV  
52  
Advanced Installation Details  
   
Reference Manual  
00809-0100-4444, Rev AD  
Section 3: Advanced Installation Details  
August 2015  
3.6.3  
Process leak containment (Option M2 or M4)  
The 8705 is available with process leak containment. The coil housing configuration is a factory  
sealed all-welded enclosure with the addition of sealed electrode compartments. The M2/M4  
configuration is available for the 8705 only.  
8705 with option code M2/M4 - 8705xxxxxxxxM2/M4  
This configuration divides the coil housing into separate compartments, one for each electrode  
and one for the coils. In the event of a primary seal failure, the fluid is contained in the electrode  
compartment. The sealed electrode compartment prevents the process fluid from entering the  
coil compartment where it may damage the coils and other internal components. The electrode  
compartments are designed to contain the process fluid up to a maximum pressure of 740 psig.  
Code M2 - sealed, welded coil housing with separate sealed and welded electrode  
compartments (see Figure 3-14).  
Code M4 - sealed, welded coil housing with separate sealed and welded electrode  
compartments with a threaded port on the electrode tunnel cap, capable of venting  
fugitive emissions (see Figure 3-15).  
Note  
To properly vent process fluid from the electrode compartment to a safe location, additional  
piping is required and must be installed by the user. Installation of any associated piping must be  
performed in accordance with environmental and hazardous area requirements. In the event of  
primary seal failure, the electrode compartment may be pressurized. Use caution when  
removing the cap screw.  
Figure 3-14. 8705 with M2 Coil Housing Configuration  
53  
Advanced Installation Details  
   
Reference Manual  
00809-0100-4444, Rev AD  
Section 3: Advanced Installation Details  
August 2015  
Figure 3-15. 8705 with M4 Coil Housing Configuration  
3.6.4  
Higher temperature applications and sensor insulation  
best practices  
Insulation of the magnetic flowmeter sensor is not typically recommended. However, in  
applications with higher temperature process fluids (above 150°F / 65°C), plant safety, sensor  
reliability, and sensor longevity can be improved with careful attention to proper insulation.  
1.  
In applications where process fluid permeation of the liner has been observed or may  
be expected, the rate of permeation can be reduced by decreasing the temperature  
gradient between the process fluid and the outside of the meter body. In these  
applications only the space between the process flanges and the coil housing should  
be insulated (see Figure 3-16).  
54  
Advanced Installation Details  
   
Reference Manual  
00809-0100-4444, Rev AD  
Section 3: Advanced Installation Details  
August 2015  
Figure 3-16. Insulating a Rosemount Magnetic Flowmeter for Permeation  
2.  
When insulation of the magnetic flowmeter sensor is required due to plant safety  
standards designed to protect personnel from contact burns, extend the insulation up  
to the coil housing, covering both ends of the sensor and flanges (Figure 3-17). The  
insulation should NOT cover the coil housing or the terminal junction box. Insulating  
the coil housing and the terminal junction box can result in overheating of the coil  
compartment and terminals, resulting in erratic/erroneous flow readings and potential  
damage or failure of the meter.  
55  
Advanced Installation Details  
 
Reference Manual  
00809-0100-4444, Rev AD  
Section 3: Advanced Installation Details  
August 2015  
Figure 3-17. Insulating a Rosemount Magnetic Flowmeter for Safety/Plant Standards  
56  
Advanced Installation Details  
 
Section 4: Operation  
Reference Manual  
00809-0100-4444, Rev AD  
August 2015  
Section 4  
Operation  
4.1  
4.2  
Introduction  
The 8732EM transmitter features a full range of software functions, transmitter configurations,  
and diagnostic settings. These features can be accessed through the Local Operator Interface  
(LOI), a handheld Field Communicator, AMS® Device Manager, or a host control system.  
Configuration variables may be changed at any time; specific instructions are provided through  
on-screen instructions.  
This section covers the basic features of the LOI (optional) and provides general instructions on  
how to navigate the configuration menus using the optical buttons. The section also covers the  
use of a Field Communicator and provides menu trees to access each function.  
For detailed LOI configuration refer to Section 5: Advanced Configuration Functionality.  
Local operator interface (LOI)  
The optional LOI provides a communications center for the 8732EM.  
The LOI allows an operator to:  
Change transmitter configuration  
View flow and totalizer values  
Start/stop and reset totalizer values  
Run diagnostics and view the results  
Monitor transmitter status  
Other functions  
4.2.1  
Basic features  
The basic features of the LOI include a display window and four navigational arrow keys (see  
To activate the LOI, press the DOWN arrow two times. Use the UP, DOWN, LEFT, and RIGHT  
arrows to navigate the menu structure. A map of the LOI menu structure is shown on Figure 4-2  
and Figure 4-3.  
57  
Operation  
         
Reference Manual  
00809-0100-4444, Rev AD  
Section 4: Operation  
August 2015  
Figure 4-1. Local Operator Interface Keypad and Character Display  
4.2.2  
Data entry  
The LOI keypad does not have alphanumeric keys. Alphanumeric and symbolic data is entered  
by the following procedure. Use the steps below to access the appropriate functions.  
1.  
Use the arrow keys to navigate the menu structure (Figure 4-2 and Figure 4-3) in order  
to access the appropriate alphanumeric parameter.  
2.  
Use the UP, DOWN or RIGHT arrow key to begin editing the parameter. (Use the LEFT  
arrow key to go back without changing the value).  
For numerical data, toggle through the digits 0-9, decimal point, and dash. For  
alphabetical data, toggle through the letters of the alphabet A-Z, digits 0-9, and the  
symbols ?, &, +, -, *, /, $, @,%, and the blank space.  
3.  
4.  
Use the RIGHT arrow key to highlight each character you want to change and then use  
the UP or DOWN arrow keys to select the value. If you go past a character that you wish  
to change, keep using the RIGHT arrow key to wrap around in order to arrive at the  
character you want to change.  
Press “E” (the LEFT arrow key) when all changes are complete to save the entered  
values. Press the LEFT arrow key again to navigate back to the menu tree.  
58  
Operation  
   
Reference Manual  
00809-0100-4444, Rev AD  
Section 4: Operation  
August 2015  
4.2.3  
Data entry examples  
Press the DOWN arrow key twice to access the menu structures shown in Figure 4-2 and  
Figure 4-3. Use the arrow keys to navigate to the desired parameters to review/change.  
Parameter values are classified as table values or select values. Table values are available from a  
predefined list. For parameters such as line size or flow units. Select values are integers. floating  
point numbers, or character strings and are entered one character at a time using the arrow  
keys for parameters such as PV URV and calibration number.  
Table value example  
Setting the sensor size:  
1.  
2.  
3.  
4.  
5.  
Press the DOWN arrow key twice to access the menu. See Figure 4-2.  
Using the arrow keys, select line size from the basic setup menu.  
Press the UP/DOWN arrow to increase/decrease the sensor size to the next value.  
When you reach the desired sensor size, press “E” (the left arrow).  
Set the loop to manual if necessary, and press “E” again.  
After a moment, the LOI will display VALUE STORED SUCCESSFULLY and then display the  
selected value.  
Select value example  
Changing the upper range limit:  
1.  
2.  
3.  
4.  
5.  
6.  
Press the DOWN arrow key twice to access the menu. See Figure 4-2.  
Using the arrow keys, select PV URV from the basic setup menu.  
Press RIGHT arrow key to position the cursor.  
Press UP or DOWN to set the number.  
Repeat steps 3and 4 until desired number is displayed, press “E” (the left arrow).  
Set the loop to manual if necessary, and press “E” again.  
After a moment, the LOI will display VALUE STORED SUCCESSFULLY and then display the  
selected value.  
4.2.4  
Totalizer functionality  
Start totalizer  
To start the totalizer, press the DOWN arrow to display the totalizer screen and press “E” to  
begin totalization. A symbol will flash in the lower right hand corner indicating that the meter is  
totalizing.  
59  
Operation  
   
Reference Manual  
00809-0100-4444, Rev AD  
Section 4: Operation  
August 2015  
Pause totalizer  
To pause the totalizer, press the DOWN arrow to display the totalizer screen and press the  
RIGHT arrow to pause the totalizer. This will hold the current totalizer values on the screen for  
reading or recording. The totalizer will continue to run even though the values are not changing.  
To unpause the totalizer, press the RIGHT arrow again. The totalizer value will instantly  
increment to the correct value and continuing running.  
Stop totalizer  
To stop the totalizer, press the DOWN arrow to display the totalizer screen and press “E” to end  
totalization. The flashing symbol will no longer display in the lower right hand corner indicating  
that the meter has stopped totalizing.  
Reset totalizer  
To reset the totalizer, press the DOWN arrow to display the totalizer screen and follow the  
procedure above to stop totalization. Once totalization has stopped, press the RIGHT arrow key  
to reset the NET total value to zero. To reset the GROSS, FORWARD, and REVERSE total values,  
you must change the line size. See “Basic configuration” on page 34 for details on how to  
change the line size.  
4.2.5  
Display lock  
The 8732EM transmitter has display lock functionality to prevent unintentional configuration  
changes. The display can be locked manually or configured to automatically lock after a set  
period of time.  
Manual display lock  
To activate hold the UP arrow for 3 seconds and then following the on-screen instructions.  
When the display lock is activated, a lock symbol will appear in the lower right hand corner of  
the display. To deactivate the display lock, hold the UP arrow for 3 seconds and follow the  
on-screen instructions. Once deactivated, the lock symbol will no longer appear in the lower  
right hand corner of the display.  
Auto display lock  
1.  
2.  
3.  
Press the DOWN arrow key twice to access the menu. See Table 4-2.  
Using the arrow keys, select LOI config from the Detailed Setup menu.  
Press DOWN arrow to highlight disp auto lock and press the RIGHT arrow to enter the  
menu.  
4.  
5.  
6.  
Press DOWN arrow to select the auto lock time.  
When you reach the desired time, press “E” (the left arrow).  
Set the loop to manual if necessary, and press “E” again.  
After a moment, the LOI will display VALUE STORED SUCCESSFULLY and then display the  
selected value.  
60  
Operation  
 
Reference Manual  
00809-0100-4444, Rev AD  
Section 4: Operation  
August 2015  
4.2.6  
4.2.7  
Diagnostic messages  
Diagnostic messages may appear on the LOI. See Table 6-1 on page 111, Table 6-2 on page 126,  
and Table 6-3 on page 127 for a complete list of messages, potential causes, and corrective  
actions for these messages.  
Display symbols  
When certain transmitter functions are active, a symbol will appear in the lower-right corner of  
the display. The possible symbols include the following:  
Display Lock  
Totalizer  
Reverse flow  
Continuous meter verification  
61  
Operation  
   
Reference Manual  
00809-0100-4444, Rev AD  
Section 4: Operation  
August 2015  
Figure 4-2. Local Operator Interface (LOI) Menu Tree (Diagnostics and Basic Setup)  
Diagnostics  
Basic Setup  
Detailed Setup  
Diag Controls  
Basic Diag  
Advanced Diag  
Variables  
Trims  
Empty Pipe  
Coils  
Process Noise  
Ground/Wiring  
Elec Coating  
Elect Temp  
Electrodes  
Transmitter  
Analog Output  
Status  
Reverse Flow  
Cont Meter Ver  
EP Control  
EP Value  
EP Trig Level  
EP Counts  
Self Test  
Control 1  
AO Loop Test  
Pulse Out Test  
Empty Pipe  
Elect Temp  
Flow Limit 1  
Flow Limit 2  
Total Limit  
Mode 1  
Test Condition  
Test Criteria  
MV Results  
High Limit 1  
Low Limit 1  
Hysteresis  
Sim Velocity  
ActualVelocity  
Flow Sim Dev  
Xmtr Cal Verify  
Sensor Cal Dev  
Sensor Cal  
Control 2  
Mode 2  
High Limit 2  
Low Limit 2  
Hysteresis  
Coil Circuit  
Electrode Ckt  
Manual Results  
Continual Res  
Total Control  
Total Mode  
Tot Hi Limit  
Tot Low Limit  
Hysteresis  
Test Criteria  
Sim Velocity  
ActualVelocity  
Flow Sim Dev  
Coil Inductnce  
Sensor Cal Dev  
Coil Resist  
Electrode Res  
4-20 mA Expect  
4-20 mA Actual  
1AO FB Dev  
Valves  
Reset Baseline  
Recall Values  
Ground/Wiring  
Process Noise  
Elec Coating  
Meter Verify  
4-20 mA Verify  
Licensing  
EC Current Val  
EC Limit 1  
EC Limit 2  
No Flow  
EC Max Value  
Reset Max Val  
Flowing, Full  
Empty Pipe  
Continual  
Run Meter Ver  
View Results  
Sensr Baseline  
Test Criteria  
Coil Resist  
Manual Measure  
Continual Meas  
Coil Inductnce  
Electrode Res  
Measurements  
Process Noise  
Ground/Wiring  
Elec Coating  
Meter Verif  
DI/DO  
Coil Resist  
4-20mA Verify  
View Results  
Coil Inductnce  
Actual Velocity  
Electrode Res  
Device ID  
License Status  
License Key  
Coil Resist  
Software Rev  
License Key  
Coil Signature  
Electrode Res  
ActualVelocity  
Flow Sim Dev  
4-20 mA Expect  
4-20 mA Actual  
AO FB Dev  
Empty Pipe  
Elect Temp  
Line Noise  
5Hz SNR  
37Hz SNR  
Elec Coating  
Signal Power  
37Hz Auto Zero  
Coil Current  
MV Results  
Test Condition  
Test Criteria  
MV Results  
Sim Velocity  
ActualVelocity  
Flow Sim Dev  
Xmtr Cal Verify  
Sensor Cal Dev  
Sensor Cal  
EC Current Val  
EC Max Value  
Coil Circuit  
Electrode Ckt  
Manual Results  
Continual Results  
D/A Trim  
Digital Trim  
Test Criteria  
37Hz Auto Zero  
Universal Trim  
Sim Velocity  
ActualVelocity  
Flow Sim Dev  
Coil Inductnce  
Sensor Cal Dev  
Coil Resist  
Electrode Res  
4-20 mA Expect  
4-20 mA Actual  
AO FB Dev  
Tag  
Flow Units  
Line Size  
PV URV  
PV Units  
Special Units  
Totalize Units  
PV LRV  
Cal Number  
PV Damping  
Detailed Setup  
see Figure 4-3 on next page  
62  
Operation  
 
Reference Manual  
00809-0100-4444, Rev AD  
Section 4: Operation  
August 2015  
Figure 4-3. Local Operator Interface (LOI) Menu Tree (Detailed Setup)  
Diagnostics  
Basic Setup  
Detailed Setup  
More Params  
Output Config  
LOI Config  
Sig Processing  
Device Info  
Coil Frequency  
Proc Density  
PV USL  
PV URV  
PV LSL  
Empty Pipe  
PV LRV  
PV Min Span  
Process Noise  
Ground/Wiring  
Elec Coating  
Elect Temp  
PV AO  
Alarm Type  
Test  
Alarm Level  
AO Diag Alarm  
Reverse Flow  
Flow Limit 1  
Flow Limit 2  
Total Limit  
Analog  
Pulse  
Cont Meter Ver  
Pulse Scaling  
Pulse Width  
Pulse Mode  
Test  
DI/DO Config  
Totalizer  
Reverse Flow  
Alarm level  
HART  
Input  
Output  
N/A  
DI/O 1 Control  
DI 1  
DO 1  
DI/O 1  
DO 2  
Reverse Flow  
Zero Flow  
Flow Limit 1  
Flow Limit 2  
Total Limit  
Diag Alert  
XMTR Fault  
Empty Pipe  
Flow Limit 1  
Flow Limit 2  
Diag Alert  
Total Limit 1  
Control 1  
Mode 1  
High Limit 1  
Low Limit 1  
Hysteresis  
Control 2  
Mode 2  
High Limit 2  
Low Limit 2  
Hysteresis  
Total Control  
Total Mode  
Tot Hi Limit  
Tot Low Limit  
Hysteresis  
Totalizer Units  
Total Display  
Elec Failure  
Flow Display  
Total Display  
Language  
Coil Open Ckt  
Empty Pipe  
Reverse Flow  
Ground/Wiring  
Process Noise  
Elect Temp  
Elec Coat 1  
Elec Coat 2  
Cont Meter Ver  
Coil Over Curr  
Sensr Elec Sat  
Coil Power Lim  
LOI Err Mask  
Disp Auto Lock  
Variable Map  
Poll Address  
Req Preams  
Resp Preams  
Burse Mode  
Operating Mode  
SP Config  
Coil Frequency  
PV Damping  
Lo-Flow Cutoff  
Burst Command  
SP Control  
Samples  
% Rate  
Tag  
PV  
SV  
TV  
QV  
Description  
Message  
Time Limit  
Device ID  
PV Sensor S/N  
Sensor Tag  
Write Protect  
Revision Num  
Software Rev  
Final Asmbl #  
63  
Operation  
 
Reference Manual  
00809-0100-4444, Rev AD  
Section 4: Operation  
August 2015  
4.3  
Field Communicator interface  
The 8732EM transmitter can be configured with a Field Communicator using HART® Protocol  
gaining access to the software functions, transmitter configurations, and diagnostic settings. Refer  
to the Field Communicator Manual for detailed instructions on how to connect to the device.  
4.3.1  
Field Communicator user interface  
The 8732E device driver uses conditional formatting menus. If the diagnostic is not active, the  
diagnostic will not be displayed as a menu item in the Field Communicator. The Fast Key sequence  
and menu trees will be resequenced accordingly.  
There are two styles of interface available for Field Communicators. The traditional interface is  
shown in Figure 4-4. The device dashboard interface is shown in Figure 4-5.  
Figure 4-4. Traditional Interface  
The traditional interface Fast Keys are located in Table 4-1 on page 65. The corresponding menu  
64  
Operation  
     
Reference Manual  
00809-0100-4444, Rev AD  
Section 4: Operation  
August 2015  
Figure 4-5. Device Dashboard Interface  
The device dashboard interface Fast Keys are located in Table 4-2 on page 74. The corresponding  
menu tree is located Figure 4-8 on page 83 and Figure 4-9 on page 84.  
Table 4-1. Traditional Field Communicator Fast Keys  
Function  
Traditional Fast Keys  
Process variables  
Primary Variable (PV)  
PV Percent of Range (PV % rnge)  
PV Analog Output (AO) (PV Loop current)  
Totalizer Setup  
1, 1  
1, 1, 1  
1, 1, 2  
1, 1, 3  
1, 1, 4  
Totalizer Units  
1, 1, 4, 1  
1, 1, 4, 2  
1, 1, 4, 3  
1, 1, 4, 4  
1, 1, 4, 5  
1, 1, 4, 6  
1, 1, 4, 7  
1, 1, 5  
Gross Total  
Net Total  
Reverse Total  
Start Totalizer  
Stop Totalizer  
Reset Totalizer  
Pulse Output  
Diagnostics  
1, 2  
Diag Controls  
1, 2, 1  
Diagnostic Controls  
Empty Pipe  
1, 2, 1, 1  
1, 2, 1, 1, --(1)  
1, 2, 1, 1, --(1)  
1, 2, 1, 1, --(1)  
1, 2, 1, 1, --(1)  
Process Noise  
Grounding/Wiring  
Electrode Coating  
65  
Operation  
     
Reference Manual  
00809-0100-4444, Rev AD  
Section 4: Operation  
August 2015  
Table 4-1. Traditional Field Communicator Fast Keys (continued)  
Function  
Traditional Fast Keys  
Electronics Temp  
Reverse Flow  
Continual Ver.  
Coils  
1, 2, 1, 1, --(1)  
1, 2, 1, 2  
1, 2, 1, 3  
1, 2, 1, 3, 1 --(1)  
1, 2, 1, 3, 2 --(1)  
1, 2, 1, 3, 3 --(1)  
1, 2, 1, 3, 4 --(1)  
1, 2, 2  
Electrodes  
Transmitter  
Analog Output  
Basic Diagnostics  
Self Test  
1, 2, 2, 1  
AO Loop Test  
4 mA  
1, 2, 2, 2  
1, 2, 2, 2, 1  
1, 2, 2, 2, 2  
1, 2, 2, 2, 3  
1, 2, 2, 2, 4  
1, 2, 2, 2, 5  
1, 2, 2, 3  
20 mA  
Simulate Alarm  
Other  
End  
Pulse Output Loop Test  
Tune Empty Pipe  
EP Value  
1, 2, 2, 4  
1, 2, 2, 4, 1  
1, 2, 2, 4, 2  
1, 2, 2, 4, 3  
1, 2, 2, 5  
EP Trig. Level  
EP Counts  
Electronics Temp  
Flow Limit 1  
Control 1  
1, 2, 2, 6  
1, 2, 2, 6, 1  
1, 2, 2, 6, 2  
1, 2, 2, 6, 3  
1, 2, 2, 6, 4  
1, 2, 2, 6, 5  
1, 2, 2, 7  
Mode 1  
High Limit 1  
Low Limit 1  
Flow Limit Hysteresis  
Flow Limit 2  
Control 2  
1, 2, 2, 7, 1  
1, 2, 2, 7, 2  
1, 2, 2, 7, 3  
1, 2, 2, 7, 4  
1, 2, 2, 7, 5  
1, 2, 2, 8  
Mode 2  
High Limit 2  
Low Limit 2  
Flow Limit Hysteresis  
Total Limit  
Total Control  
Total Mode  
Total High Limit  
Total Low Limit  
1, 2, 2, 8, 1  
1, 2, 2, 8, 2  
1, 2, 2, 8, 3  
1, 2, 2, 8, 4  
66  
Operation  
Reference Manual  
00809-0100-4444, Rev AD  
Section 4: Operation  
August 2015  
Table 4-1. Traditional Field Communicator Fast Keys (continued)  
Function  
Traditional Fast Keys  
Total Limit Hysteresis  
Advanced Diagnostics  
Electrode Coat  
1, 2, 2, 8, 5  
1, 2, 3  
1, 2, 3, 1  
EC Value  
1, 2, 3, 1, 1  
EC Level 1 Limit  
1, 2, 3, 1, 2  
EC Level 2 Limit  
1, 2, 3, 1, 3  
Max EC Value  
1, 2, 3, 1, 4  
Clear Max Electrode  
8714i Cal Verification  
Run 8714i Cal Verification  
View Results  
1, 2, 3, 1, 5  
1, 2, 3, 2  
1, 2, 3, 2, 1  
1, 2, 3, 2, 2  
Manual Results  
1, 2, 3, 2, 2, 1  
1, 2, 3, 2, 2, 1, 1  
1, 2, 3, 2, 2, 1, 2  
1, 2, 3, 2, 2, 1, 3  
1, 2, 3, 2, 2, 1, 4  
1, 2, 3, 2, 2, 1, 5  
1, 2, 3, 2, 2, 1, 6  
1, 2, 3, 2, 2, 1, 7  
1, 2, 3, 2, 2, 1, 8  
1, 2, 3, 2, 2, 1, 9  
1, 2, 3, 2, 2, 1, 10(2)  
1, 2, 3, 2, 2, 1, 11(2)  
1, 2, 3, 2, 2, 2  
1, 2, 3, 2, 2, 2, 1  
1, 2, 3, 2, 2, 2, 2  
1, 2, 3, 2, 2, 2, 3  
1, 2, 3, 2, 2, 2, 4  
1, 2, 3, 2, 2, 2, 5  
1, 2, 3, 2, 2, 2, 6  
1, 2, 3, 2, 2, 2, 7  
1, 2, 3, 2, 2, 2, 8  
1, 2, 3, 2, 2, 2, 9  
1, 2, 3, 2, 2, 2, 10(2)  
1, 2, 3, 2, 2, 2, 11(2)  
1, 2, 3, 2, 3  
Test Condition  
Test Criteria  
8714i Test Result  
Simulated Velocity  
Actual Velocity  
Velocity Deviation  
Xmter Cal Test Result  
Sensor Cal Deviation  
Sensor Cal Test Result  
Coil Circuit Test Result(2)  
Electrode Circuit Test Result(2)  
Continual Results  
Continuous Limit  
Simulated Velocity  
Actual Velocity  
Velocity Deviation  
Coil Signature  
Sensor Cal Deviation  
Coil Resistance  
Electrode Resistance  
mA Expected  
mA Actual(2)  
mA Deviation(2)  
Sensor Signature  
Signature Values  
1, 2, 3, 2, 3, 1  
67  
Operation  
Reference Manual  
00809-0100-4444, Rev AD  
Section 4: Operation  
August 2015  
Table 4-1. Traditional Field Communicator Fast Keys (continued)  
Function  
Traditional Fast Keys  
Coil Resistance  
Coil Signature  
1, 2, 3, 2, 3, 1, 1  
1, 2, 3, 2, 3, 1, 2  
1, 2, 3, 2, 3, 1, 3  
1, 2, 3, 2, 3, 2  
1, 2, 3, 2, 3, 3  
1, 2, 3, 2, 4  
Electrode Resistance  
Re-Signature Meter  
Recall Last Saved Values  
Set Pass/Fail Criteria  
No Flow Limit  
1, 2, 3, 2, 4, 1  
1, 2, 3, 2, 4, 2  
1, 2, 3, 2, 4, 3  
1, 2, 3, 2, 4, 4  
1, 2, 3, 2, 5  
Flowing Limit  
Empty Pipe Limit  
Continuous Limit  
Measurements  
Manual Measurements  
Coil Resistance  
Coil Signature  
1, 2, 3, 2, 5, 1  
1, 2, 3, 2, 5, 1, 1  
1, 2, 3, 2, 5, 1, 2  
1, 2, 3, 2, 5, 1, 3  
1, 2, 3, 2, 5, 2  
1, 2, 3, 2, 5, 2, 1  
1, 2, 3, 2, 5, 2, 2  
1, 2, 3, 2, 5, 2, 3  
1, 2, 3, 2, 5, 2, 4  
1, 2, 3, 2, 5, 2, 5  
1, 2, 3, 2, 5, 2, 6  
1, 2, 3, 3  
Electrode Resistance  
Continual Measurements  
Coil Resistance  
Coil Signature  
Electrode Resistance  
Actual Velocity  
mA Expected  
mA Actual  
4-20 mA Verify  
4-20 mA Verification  
View Results  
1, 2, 3, 3, 1  
1, 2, 3, 3, 2  
Licensing  
1, 2, 3, 4  
License Status  
1, 2, 3, 4, 1  
Process Noise Detect  
Line Noise Detection  
Electrode Coating  
8714i  
1, 2, 3, 4, 1, 1 --(1)  
1, 2, 3, 4, 1, 2 --(1)  
1, 2, 3, 4, 1, 3 --(1)  
1, 2, 3, 4, 1, 4 --(1)  
1, 2, 3, 4, 1, 5 --(1)  
1, 2, 3, 4, 2  
Digital I/O  
License Key  
Device ID  
1, 2, 3, 4, 2, 1  
1, 2, 3, 4, 2, 2  
1, 2, 4  
License Key  
Diagnostic Variables  
EP Value  
1, 2, 4, 1  
Electronics Temp  
1, 2, 4, 2  
68  
Operation  
Reference Manual  
00809-0100-4444, Rev AD  
Section 4: Operation  
August 2015  
Table 4-1. Traditional Field Communicator Fast Keys (continued)  
Function  
Traditional Fast Keys  
Line Noise  
1, 2, 4, 3  
5 Hz SNR  
1, 2, 4, 4  
37 Hz SNR  
1, 2, 4, 5  
Electrode Coat  
EC Value  
1, 2, 4, 6  
1, 2, 4, 6, 1  
1, 2, 4, 6, 2  
1, 2, 4, 7  
Max EC Value  
Sig Power  
8714i Results  
1, 2, 4, 8  
Manual Results  
Test Condition  
Test Criteria  
1, 2, 4, 8, 1  
1, 2, 4, 8, 1, 1  
1, 2, 4, 8, 1, 2  
1, 2, 4, 8, 1, 3  
1, 2, 4, 8, 1, 4  
1, 2, 4, 8, 1, 5  
1, 2, 4, 8, 1, 6  
1, 2, 4, 8, 1, 7  
1, 2, 4, 8, 1, 8  
1, 2, 4, 8, 1, 9  
1, 2, 4, 8, 1, 10(2)  
1, 2, 4, 8, 1, 11(2)  
1, 2, 4, 8, 2  
1, 2, 4, 8, 2, 1  
1, 2, 4, 8, 2, 2  
1, 2, 4, 8, 2, 3  
1, 2, 4, 8, 2, 4  
1, 2, 4, 8, 2, 5  
1, 2, 4, 8, 2, 6  
1, 2, 4, 8, 2, 7  
1, 2, 4, 8, 2, 8  
1, 2, 4, 8, 2, 9  
1, 2, 4, 8, 2, 10(2)  
1, 2, 4, 8, 2, 11(2)  
1, 2, 4, 9  
8714i Test Result  
Simulated Velocity  
Actual Velocity  
Velocity Deviation  
Xmtr Cal Test Result  
Sensor Cal Deviation  
Sensor Cal Test Result  
Coil Circuit Test Result  
Electrode Circuit Test Result  
Continual Results  
Continuous Limit  
Simulated Velocity  
Actual Velocity  
Velocity Deviation  
Coil Signature  
Sensor Cal Deviation  
Coil Resistance  
Electrode Resistance  
mA Expected  
mA Actual  
mA Deviation  
Auto Zero Offset  
Trims  
1, 2, 5  
D/A Trim  
1, 2, 5, 1  
Scaled D/A Trim  
Digital Trim  
1, 2, 5, 2  
1, 2, 5, 3  
69  
Operation  
Reference Manual  
00809-0100-4444, Rev AD  
Section 4: Operation  
August 2015  
Table 4-1. Traditional Field Communicator Fast Keys (continued)  
Function  
Traditional Fast Keys  
Auto Zero  
1, 2, 5, 4  
1, 2, 5, 5  
1, 2, 6  
Universal Trim  
View Status  
Basic setup  
1, 3  
Tag  
1, 3, 1  
Flow Units  
1, 3, 2  
PV Units  
1, 3, 2, 1  
1, 3, 2, 2  
1, 3, 2, 2, 1  
1, 3, 2, 2, 2  
1, 3, 2, 2, 3  
1, 3, 2, 2, 4  
1, 3, 2, 2, 5  
1, 3, 3  
Special Units  
Volume Unit  
Base Volume Unit  
Conversion Number  
Base Time Unit  
Flow Rate Unit  
Line Size  
PV URV  
1, 3, 4  
PV LRV  
1, 3, 5  
Calibration Number  
PV Damping  
Detailed setup  
Additional Parameters  
Coil Drive Frequency  
Density Value  
PV USL  
1, 3, 6  
1, 3, 7  
1, 4  
1, 4, 1  
1, 4, 1, 1  
1, 4, 1, 2  
1, 4, 1, 3  
1, 4, 1, 4  
1, 4, 1, 5  
1, 4, 2  
PV LSL  
PV Minimum Span  
Configure Output  
Analog Output  
PV URV  
1, 4, 2, 1  
1, 4, 2, 1, 1  
1, 4, 2, 1, 2  
1, 4, 2, 1, 3  
1, 4, 2, 1, 4  
1, 4, 2, 1, 5  
1, 4, 2, 1, 6  
1, 4, 2, 1, 7  
1, 4, 2, 1, 8  
1, 4, 2, 1, 9  
1, 4, 2, 1, 9, 1 --(1)  
PV LRV  
PV Loop Current  
AO Alarm Type (PV Alrm typ)  
AO Loop Test  
D/A Trim  
Scaled D/A Trim  
Alarm Level  
AO Diagnostic Alarm  
Empty Pipe  
70  
Operation  
Reference Manual  
00809-0100-4444, Rev AD  
Section 4: Operation  
August 2015  
Table 4-1. Traditional Field Communicator Fast Keys (continued)  
Function  
Traditional Fast Keys  
Reverse Flow  
Ground/Wiring Fault  
High Process Noise  
Elect Temp Out of Range  
Electrode Coat Limit 2  
Totalizer Limit 1  
Flow Limit 1  
1, 4, 2, 1, 9, 2 --(1)  
1, 4, 2, 1, 9, 3 --(1)  
1, 4, 2, 1, 9, 4 --(1)  
1, 4, 2, 1, 9, 5 --(1)  
1, 4, 2, 1, 9, 6 --(1)  
1, 4, 2, 1, 9, 7 --(1)  
1, 4, 2, 1, 9, 8 --(1)  
1, 4, 2, 1, 9, 9 --(1)  
1, 4, 2, 1, 9, 10 --(1)  
1, 4, 2, 2  
Flow Limit 2  
Cont. Meter Verification  
Pulse Output  
Pulse Scaling  
Pulse Width  
1, 4, 2, 2, 1  
1, 4, 2, 2, 2  
Pulse Mode  
1, 4, 2, 2, 3  
Pulse Out Loop Test  
DI/DO Output (Digital I/O)  
DI/DO 1  
1, 4, 2, 2, 4  
1, 4, 2, 3  
1, 4, 2, 3, 1  
Configure I/O 1  
Input  
1, 4, 2, 3, 1, 1  
1, 4, 2, 3, 1, 1, 1  
1, 4, 2, 3, 1, 1, 2  
1, 4, 2, 3, 1, 1, 3  
1, 4, 2, 3, 1, 2  
1, 4, 2, 3, 1, 3  
1, 4, 2, 3, 1, 4  
1, 4, 2, 3, 2  
Output  
Not Available/Off  
DIO 1 Control  
Digital Input 1  
Digital Output 1  
DO 2  
Flow Limit 1  
1, 4, 2, 3, 3  
Control 1  
1, 4, 2, 3, 3, 1  
1, 4, 2, 3, 3, 2  
1, 4, 2, 3, 3, 3  
1, 4, 2, 3, 3, 4  
1, 4, 2, 3, 3, 5  
1, 4, 2, 3, 4  
Mode 1  
High Limit 1  
Low Limit 1  
Flow Limit Hysteresis  
Flow Limit 2  
Control 2  
1, 4, 2, 3, 4, 1  
1, 4, 2, 3, 4, 2  
1, 4, 2, 3, 4, 3  
1, 4, 2, 3, 4, 4  
1, 4, 2, 3, 4, 5  
1, 4, 2, 3, 5  
Mode 2  
High Limit 2  
Low Limit 2  
Flow Limit Hysteresis  
Total Limit  
Total Control  
1, 4, 2, 3, 5, 1  
71  
Operation  
Reference Manual  
00809-0100-4444, Rev AD  
Section 4: Operation  
August 2015  
Table 4-1. Traditional Field Communicator Fast Keys (continued)  
Function  
Traditional Fast Keys  
Total Mode  
1, 4, 2, 3, 5, 2  
1, 4, 2, 3, 5, 3  
1, 4, 2, 3, 5, 4  
1, 4, 2, 3, 5, 5  
1, 4, 2, 3, 6  
1, 4, 2, 3, 6, --(1)  
1, 4, 2, 3, 6, --(1)  
1, 4, 2, 3, 6, --(1)  
1, 4, 2, 3, 6, --(1)  
1, 4, 2, 3, 6, --(1)  
1, 4, 2, 3, 6, --(1)  
1, 4, 2, 3, 6, --(1)  
1, 4, 2, 3, 6, --(1)  
1, 4, 2, 3, 6, --(1)  
1, 4, 2, 3, 6, --(1)  
1, 4, 2, 4  
Total High Limit  
Total Low Limit  
Total Limit Hysteresis  
Diagnostic Status Alert  
Electronics Failure  
Coil Open Circuit  
Empty Pipe  
Reverse Flow  
Ground/Wiring Fault  
High Process Noise  
Elect Temp Out of Range  
Electrode Coat Limit 1  
Electrode Coat Limit 2  
Cont. Meter Verification  
Reverse Flow  
Totalizer Setup  
Totalizer Units  
Gross Total  
1, 4, 2, 5  
1, 4, 2, 5, 1  
1, 4, 2, 5, 2  
Net Total  
1, 4, 2, 5, 3  
Reverse Total  
Start Totalizer  
Stop Totalizer  
Reset Totalizer  
Alarm Levels  
1, 4, 2, 5, 4  
1, 4, 2, 5, 5  
1, 4, 2, 5, 6  
1, 4, 2, 5, 7  
1, 4, 2, 6  
Alarm Level  
1, 4, 2, 6, 1  
Hi Alarm  
1, 4, 2, 6, 2  
Hi Sat  
1, 4, 2, 6, 3  
Low Sat  
1, 4, 2, 6, 4  
Low Alarm  
1, 4, 2, 6, 5  
HART Output  
Variable Mapping  
PV is  
1, 4, 2, 7  
1, 4, 2, 7, 1  
1, 4, 2, 7, 1, 1  
1, 4, 2, 7, 1, 2  
1, 4, 2, 7, 1, 3  
1, 4, 2, 7, 1, 4  
1, 4, 2, 7, 2  
SV is  
TV is  
QV is  
Poll Address  
Num Req Preams  
1, 4, 2, 7, 3  
72  
Operation  
Reference Manual  
00809-0100-4444, Rev AD  
Section 4: Operation  
August 2015  
Table 4-1. Traditional Field Communicator Fast Keys (continued)  
Function  
Traditional Fast Keys  
Num Resp Preams  
Burst Mode  
Burst Option  
PV  
1, 4, 2, 7, 4  
1, 4, 2, 7, 5  
1, 4, 2, 7, 6  
1, 4, 2, 7, 6, --(1)  
1, 4, 2, 7, 6, --(1)  
1, 4, 2, 7, 6, --(1)  
1, 4, 2, 7, 6, --(1)  
1, 4, 3  
% Range/Current  
Process Vars/Current  
Dynamic Vars  
LOI Config  
Language  
1, 4, 3, 1  
Flowrate Display  
Totalizer Display  
Display Lock  
Meter type  
1, 4, 3, 2  
1, 4, 3, 3  
1, 4, 3, 4  
1, 4, 3, 5  
LOI Error Mask  
Signal Processing  
Operating Mode  
Man Config DSP  
Status  
1, 4, 3, 6  
1, 4, 4  
1, 4, 4, 1  
1, 4, 4, 2  
1, 4, 4, 2, 1  
1, 4, 4, 2, 2  
1, 4, 4, 2, 3  
1, 4, 4, 2, 4  
1, 4, 4, 3  
Samples  
% Limit  
Time Limit  
Coil Drive Freq  
Low Flow Cutoff  
PV Damping  
Universal Trim  
Device Info  
1, 4, 4, 4  
1, 4, 4, 5  
1, 4, 5  
1, 4, 6  
Manufacturer  
Tag  
1, 4, 6, 1  
1, 4, 6, 2  
Descriptor  
1, 4, 6, 3  
Message  
1, 4, 6, 4  
Date  
1, 4, 6, 5  
Device ID  
1, 4, 6, 6  
PV Sensor S/N  
Sensor Tag  
1, 4, 6, 7  
1, 4, 6, 8  
Write protect  
Revision No.  
Universal Rev  
Transmitter Rev  
1, 4, 6, 9  
1, 4, 6, 10(2)  
1, 4, 6, 10, 1--(2)  
1, 4, 6, 10, 2--(2)  
73  
Operation  
Reference Manual  
00809-0100-4444, Rev AD  
Section 4: Operation  
August 2015  
Table 4-1. Traditional Field Communicator Fast Keys (continued)  
Function  
Traditional Fast Keys  
Software Rev  
1, 4, 6, 10, 3--(2)  
1, 4, 6, 10, 4--(2)  
1, 4, 6, 11(2)  
1, 4, 6, 11,1--(2)  
1, 4, 6, 11, 2--(2)  
1, 4, 6, 11, 3--(2)  
1, 4, 6, 11, 4--(2)  
1, 4, 6, 11, 5--(2)  
1, 4, 7  
Final Assembly #  
Construction Materials  
Flange Type  
Flange Material  
Electrode Type  
Electrode Material  
Liner Material  
Device Reset  
Review  
1, 5  
(1) These items are in a list format without numeric labels.  
(2) To access these features, you must scroll to this option in the HART Field Communicator.  
Table 4-2. Device Dashboard Fast Keys  
Function  
Overview  
Fast Keys  
1
Device Status  
Flow Rate  
1,1  
1,2  
Analog Output Value  
Upper Range Value  
Lower Range Value  
Run Meter Verificaiton  
Meter Verification Results  
Device Information  
Tag  
1,3  
1,4  
1,5  
1,6  
1,7  
1,8  
1,8,1,1  
1,8,1,2  
1,8,1,3  
1,8,1,4  
1,8,1,5  
1,8,1,6  
1,8,1,7  
1,8,1,8  
1,8,2,1  
Manufacturer  
Model  
Final Assembly Number  
Device ID  
Date  
Description  
Message  
Universal Revision  
Device Revision  
1,8,2,2  
Software Revision  
Hardware Revision  
DD Revision  
1,8,2,3  
1,8,2,4  
1,8,2,5  
1,8,3,1  
1,8,3,2  
1,8,3,3  
1,8,3,4  
1,8,3,5  
1,8,3,6  
1,8,3,7  
Sensor Serial Number  
Sensor Tag  
Calibration Number  
Line Size  
Lower Sensor Limit  
Upper Sensor Limit  
Minimum Span  
74  
Operation  
     
Reference Manual  
00809-0100-4444, Rev AD  
Section 4: Operation  
August 2015  
Table 4-2. Device Dashboard Fast Keys (continued)  
Function  
Fast Keys  
Liner Material  
1,8,3,8,1  
1,8,3,8,2  
1,8,3,8,3  
1,8,3,8,4  
1,8,3,8,5  
1,8,4,1  
1,8,4,2  
1,8,4,3  
1,8,4,4  
1,8,4,5  
1,8,4,6  
1,8,4,7  
1,8,5  
Electrode Type  
Electrode Material  
Flange Type  
Flange Material  
Write Protect  
Alarm Direction  
Alarm Type  
High Alarm  
High Saturation  
Low Saturation  
Low Alarm  
Licenses  
Configure  
2
Guided Setup  
2,1  
Initial Setup  
2,1,1  
Basic Setup  
2,1,1,1  
2,1,1,2  
2,1,1,3  
2,1,2  
Configure Display  
Special Units  
Outputs  
Analog Output  
Pulse Output  
2,1,2,1  
2,1,2,2  
2,1,2,3  
2,1,2,4  
2,1,2,5  
2,1,2,7  
2,1,2,8  
2,1,3  
Dicrete Input/Output  
Totalizer  
Reverse Flow  
Burst Mode  
Variable Mapping  
Diagnostics  
Configure Basic Diagnostics  
Upgrade License  
Configure Process Diagnostics  
Configure Meter Verification  
Re-Baseline Sensor  
Alerts  
2,1,3,1  
2,1,3,2  
2,1,3,3  
2,1,3,4  
2,1,3,5  
2,1,4  
User Alert Conifguration  
Analog Alarm Configuration  
Optimize Signal Processing  
Manual Setup  
2,1,4,1  
2,1,4,2  
2,1,5  
2,2  
Flow Units  
2,2,1,2  
2,2,1,3,2  
2,2,1,3,3  
2,2,1,3,4  
2,2,1,4,1  
2,2,1,4,2  
2,2,1,5,1  
2,2,1,5,2  
Lower Range Value  
Upper Range Value  
Damping  
Calibration Number  
Line Size  
Language  
Flow Display  
75  
Operation  
Reference Manual  
00809-0100-4444, Rev AD  
Section 4: Operation  
August 2015  
Table 4-2. Device Dashboard Fast Keys (continued)  
Function  
Fast Keys  
Totalizer Display  
Display Lock  
2,2,1,5,3  
2,2,1,5,4  
2,2,2,1,6  
2,2,2,2,2  
2,2,2,2,3  
2,2,2,2,4  
2,2,2,3,1  
2,2,2,3,2  
2,2,2,3,3  
2,2,2,3,4  
2,2,2,3,5  
2,2,3,1,1  
2,2,3,1,3  
2,2,3,2,1  
2,2,3,2,2  
2,2,3,2,3  
2,2,3,2,4  
2,2,4,1,1  
2,2,4,1,2  
2,2,4,1,3  
2,2,4,2  
Density  
Pulse Mode  
Pulse Scaling  
Pulse Width  
Net Total  
Gross Total  
Reverse Total  
Totalizer Control  
Totalizer Units  
Polling Address  
Burst Option  
Primary Variable  
Secondary Variable  
Third Variable  
Fourth Variable  
Discrete I/O 1 Direction  
Dicrete Input 1  
Discrete Output 1  
Discrete Output 2  
Flow Limit 1  
2,2,4,3  
High Limit 1  
2,2,4,3,1  
2,2,4,3,2  
2,2,4,3,3  
2,2,4,3,4  
2,2,4,4  
Low Limit 1  
Limit 1 Control  
Limit 1 Status Alert  
Flow Limit 2  
High Limit 2  
2,2,4,4,1  
2,2,4,4,2  
2,2,4,4,3  
2,2,4,4,4  
2,2,4,6  
Low Limit 2  
Limit 2 Control  
Limit 2 Status Alert  
Flow Hysteresis  
Totalizer Limit  
2,2,4,5  
Totalizer High Limit  
Totalizer LowLimit  
Totalizer Limit Control  
Totalizer Limit Status Alert  
Totalizer Hysteresis  
Diagnostics Status Alert  
Enable Diagnostics  
License Status  
2,2,4,5,1  
2,2,4,5,2  
2,2,4,5,3  
2,2,4,5,4  
2,2,4,7  
2,2,4,8  
2,2,5,1  
2,2,5,2  
Empty Pipe Value  
Empty Pipe Trigger Level  
Empty Pipe Counts  
Electrode Coating Value  
Electrode Coating Level 1 Limit  
Electrode Coating Level 2 Limit  
2,2,5,3,1  
2,2,5,3,2  
2,2,5,3,3  
2,2,5,6,1  
2,2,5,6,2  
2,2,5,6,3  
76  
Operation  
Reference Manual  
00809-0100-4444, Rev AD  
Section 4: Operation  
August 2015  
Table 4-2. Device Dashboard Fast Keys (continued)  
Function  
Fast Keys  
Electrode Coating Maximum Value  
Reset Maximum Electrode Coating Value  
Diagnostic Analog Alarm  
Recall Last Baseline  
2,2,5,6,4  
2,2,5,6,5  
2,2,5,9  
2,2,6,1,5  
2,2,6,3,1  
2,2,6,3,2  
2,2,6,3,3  
2,2,6,4,1  
No Flow Limit  
Flowing Limit  
Empty Pipe Limit  
Continuous Meter Verification Limit  
Enable Continuous Meter Verification Parameters 2,2,6,4,2  
Coils  
2,2,6,4,2,1  
2,2,6,4,2,2  
2,2,6,4,2,3  
2,2,6,4,2,4  
2,2,8,3  
2,2,8,4  
2,2,8,5  
2,2,8,6,1  
2,2,8,6,2  
2,2,8,6,3  
2,2,8,6,4  
2,2,9,1,1  
2,2,9,3,1  
2,2,9,3,2  
2,2,9,3,3  
2,2,9,4,1  
2,2,9,4,2  
2,2,9,4,3,1  
2,2,9,4,3,2  
2,2,9,4,3,3  
2,2,9,4,3,4  
2,2,9,4,3,5  
2,2,9,5,2  
2,3  
Electrodes  
Transmitter  
Analog Output (Continuous Meter Verification)  
Coil Drive Frequency  
Auto Zero  
Digital Signal Processing (DSP) Operation  
DSP Control  
Number of Samples  
Percent of Rate  
Time Limit  
Tag  
Date  
Description  
Message  
Sensor Serial Number  
Sensor Tag  
Liner Material  
Electrode Type  
Electrode Material  
Flange Type  
Flange Material  
Alarm Type  
Alert Setup  
Flow/Totalizer Limits  
Diagnostics  
2,3,1  
2,3,2  
Flow Limit 1  
2,3,3  
Flow Limit 2  
2,3,4  
Totalizer Limit  
Analog Alarm  
Discrete Output Alert  
Calibration  
2,3,5  
2,3,6  
2,3,7  
2,4  
Universal Trim  
Service tools  
Alerts  
2,4,1  
3
3,1  
77  
Operation  
Reference Manual  
00809-0100-4444, Rev AD  
Section 4: Operation  
August 2015  
Table 4-2. Device Dashboard Fast Keys (continued)  
Function  
Fast Keys  
Refresh Alerts  
3,1,1  
Active Alerts  
3,1,2  
Variables  
3,2  
Flow Rate  
3,2,1,1  
3,2,1,2  
3,2,1,3  
3,2,1,4,1  
3,2,1,4,2  
3,2,1,4,3  
3,2,2,1  
3,2,2,2  
3,2,2,3  
3,2,3,1  
3,2,3,2  
3,2,3,3,1  
3,2,3,3,2  
3,2,3,3,3  
3,2,4  
Pulse Output  
Analog Output  
Net Total  
Gross Total  
Reverse Total  
Empty Pipe Value  
Electronics Temperature  
Coil Current  
Line Noise  
Electrode Coating Value  
5 Hz Signal-to-Noise Ratio  
37 Hz Signal-to-Noise Ratio  
Signal Power  
Continuous Meter Verification  
Baseline Coil Resistance  
3,2,4,1,1  
Baseline Coil Inductance  
3,2,4,1,2  
3,2,4,1,3  
3,2,4,2  
3,2,4,2,1  
3,2,4,2,2  
3,2,4,2,3  
3,2,4,2,4  
3,2,4,3  
3,2,4,3,1  
3,2,4,3,2  
3,2,4,3,3  
3,2,4,4  
3,2,4,4,1  
3,2,4,4,2  
3,2,4,4,3  
3,3  
Baseline Electrode Resistance  
Continuous Sensor Measurements  
Continuous Measured Coil Resistance  
Continuous Measured Coil Inductance  
Continuous Coil Baseline Deviation  
Continuous Measured Electrode Resistance  
Continuous Transmitter Measurements  
Continuous Simulated Velocity  
Continuous Actual Velocity  
Continuous Velocity Deviation  
Continuous Analog Output Measurements  
Continuous Expected mA Value  
Continuous Actual mA Value  
Continuous mA Deviation  
Trends  
Flow Rate Trend  
3,3,1  
Empty Pipe Trend  
3,3,2  
Electronics Temperature Trend  
Line Noise Trend  
3,3,3  
3,3,4  
5 Hz Signal-to-Noise Ratio Trend  
37 Hz Signal-to-Noise Ratio Trend  
Coil Inductance Trend  
3,3,5  
3,3,6  
3,3,7  
Coil Resistance Trend  
3,3,8  
Electrode Resistance Trend  
3,3,9  
78  
Operation  
Reference Manual  
00809-0100-4444, Rev AD  
Section 4: Operation  
August 2015  
Table 4-2. Device Dashboard Fast Keys (continued)  
Function  
Fast Keys  
3,4  
Maintenance  
Re-Baseline Sensor  
3,4,1,1,4  
3,4,1,1,5  
3,4,1,2,1  
3,4,1,2,2  
3,4,1,2,3  
3,4,1,3  
Recall Last Baseline  
No Flow Limit  
Flowing Limit  
Empty Pipe Limit  
Manual Sensor Measurements  
Manual Measured Coil Resistance  
Manual Measured Coil Inductance  
Manual Measured Electrode Resistance  
Run Manual Meter Verification  
Manual Meter Verification Results  
Manual Coil Circuit Test Result  
Manual Electrode Circuit Test Result  
Manual Sensor Deviation  
Manual Sensot Test Result  
Manual Simulated Velocity  
Manual Actual Velocity  
3,4,1,3,1  
3,4,1,3,2  
3,4,1,3,3  
3,4,1,4  
3,4,1,5  
3,4,1,5,1,3  
3,4,1,5,1,6  
3,4,1,5,2,3  
3,4,1,5,2,4  
3,4,1,5,3,1  
3,4,1,5,3,2  
3,4,1,5,3,3  
3,4,1,5,3,4  
3,4,1,5,4,1  
3,4,1,5,4,2  
3,4,2,2  
Manual Transmitter Deviation  
Manual Transmitter Test Result  
Manul Test Conditions  
Manual Overall Test Result  
Continuous Meter Verification Limit  
Enable Continuous Meter Verification Parameters 3,4,2,3  
Coils  
3,4,2,3,1  
3,4,2,3,2  
3,4,2,3,3  
3,4,2,3,4  
3,4,3  
Electrodes  
Transmitter  
Analog Output (Continuous Meter Verification)  
4-20 mA Verification  
Run Manual 4-20 mA Verification  
4 mA Measurement  
12 mA Measurement  
20 mA Measurement  
Low Alarm Measurement  
High Alarm Measurement  
Analog D/A Trim  
3,4,3,1  
3,4,3,2  
3,4,3,3  
3,4,3,4  
3,4,3,5  
3,4,3,6  
3,4,4,5  
3,4,4,6  
3,4,5  
Scaled Analog D/A Trim  
Electronics (Digital) Trim  
Master Reset  
3,4,6  
Simulate  
3,5  
Analog Loop Test  
3,5,1,1  
3,5,2,1  
Pulse Loop Test  
79  
Operation  
Reference Manual  
00809-0100-4444, Rev AD  
Section 4: Operation  
August 2015  
Figure 4-6. Field Communicator Traditional Menu Tree (Basic Setup and Detailed Setup)  
Home  
1 Device Setup  
2 PV  
Device Setup  
1 Process Variables  
2 Diagnostics  
3 Basic Setup  
4 Detailed Setup  
5 Review  
3 PV AO  
4 PV LRV  
5 PV URV  
Basic Setup  
1 Tag  
2 Flow Units  
3 Line Size  
Flow Units  
1 PV Units  
4 PV URV  
2 Special Units  
Special Units  
1 Volume Unit  
5 PV LRV  
6 Calibration Number  
7 PV Damping  
2 Base Volume Unit  
AO Diagnostic Alarm  
Empty Pipe  
3
Conversion Number  
4 Base Time Unit  
5 Flow Rate Unit  
Reverse Flow  
Ground/Wiring Fault  
High Process Noise  
Elect Temp Out of Range  
Electrode Coat Limit 2  
Totalizer Limit 1  
Detailed Setup  
Analog Output  
1 PV URV  
2 PV LRV  
3 PV Loop Current  
4 PV Alarm Type  
5 AO Loop Test  
6 D/A Trim  
7 Scaled D/A Trim  
8 Alarm Level  
9 AO Diagnostic Alarm  
Additional Params  
1 Coil Drive Freq  
2 Density Value  
3 PV USL  
1 Additional Params  
2 Configure Output  
3 LOI Config  
Flow Limit 1  
4 Signal Processing  
5 Universal Trim  
6 Device Info  
4 PV LSL  
Flow Limit 2  
5 PV Min Span  
Cont. Meter Verification  
7 Device Reset  
DI/DO 1  
1 Configure I/O 1  
2 DIO 1 Control  
3 Digital Input 1  
4 Digital Output 1  
Configure Output  
1 Analog Output  
2 Pulse Output  
3 Digital I/O  
4 Reverse Flow  
5 Totalizer Setup  
6 Alarm Levels  
7 HART Output  
Pulse Output  
1 Pulse Scaling  
2 Pulse Width  
3 Pulse Mode  
4 Pulse Out Loop Test  
Configure I/O 1  
Input  
Output  
Digital I/O  
Not Available/Off  
1 DI/DO 1  
2 DO 2  
Flow Limit 1  
1 Control 1  
2 Mode 1  
3 High Limit 1  
4 Low Limit 1  
5 Flow Limit Hysteresis  
3 Flow Limit 1  
4 Flow Limit 2  
5 Total Limit  
6
Diagnostic Status  
Alert  
Flow Limit 2  
1 Control 2  
2 Mode 2  
3 High Limit 2  
4 Low Limit 2  
5 Flow Limit Hysteresis 2  
Totalizer Setup  
1 Totalizer Units  
2 Gross Total  
Total Limit  
1 Total Control  
2 Total Mode  
3 Net Total  
3 Total Hi Limit  
4 Total Low Limit  
5 Total Limit Hysteresis  
4 Reverse Total  
5 Start Totalizer  
6 Stop Totalizer  
7 Reset Totalizer  
Diagnostic Status Alert  
Electronics Failure  
Coil Open Circuit  
Alarm Levels  
1 Alarm Level  
2 Hi Alarm  
3 Hi Sat  
Empty Pipe  
Reverse Flow  
Ground/Wiring Fault  
High Process Noise  
Elect Temp Out of Range  
Electrode Coat Limit 1  
Electrode Coat Limit 2  
Cont. Meter Verification  
Coil Over Current  
4 Low Sat  
5 Low Alarm  
LOI Config  
1 Language  
Sensor Electrode Saturated  
Coil Power Limit  
2 Flowrate Display  
3 Totalizer Display  
4 Display Lock  
5 Meter Type  
HART Output  
Variable Mapping  
1 PV is  
1 Variable Mapping  
2 Poll Address  
2 SV is  
3 Num Req Preams  
4 Num Resp Preams  
5 Burse Mode  
6 LOI Error Mask  
3 TV is  
4 QV is  
6 Burst Option  
Burst Option  
PV  
Signal Processing  
1 Operating Mode  
2 Man Config DSP  
3 Coil Drive Freq  
4 Low Flow Cutoff  
5 PV Damping  
% Range/Current  
Process Vars/Current  
Dynamic Vars  
Man Config DSP  
1 Status  
2 Samples  
3 % Limit  
4 Time Limit  
Revision No.  
Device Info  
1 Manufacturer  
2 Tag  
1 Universal Rev  
2 Transmitter Rev  
3 Software Rev  
4 Final Assembly #  
3 Descriptor  
4 Message  
5 Date  
6 Device ID  
7 PV Sensor S/N  
8 Sensor Tag  
9 Write protect  
Revision No.  
Construction Materials  
Construction Materials  
1 Flange Type  
2 Flange Material  
3 Electrode Type  
4 Electrode Material  
5 Liner Material  
80  
Operation  
 
Reference Manual  
00809-0100-4444, Rev AD  
Section 4: Operation  
August 2015  
Figure 4-7. Field Communicator Traditional Menu Tree (Process Variables and Diagnostics)  
Home  
1 Device Setup  
2 PV  
Device Setup  
1 Process Variables  
2 Diagnostics  
3 Basic Setup  
4 Detailed Setup  
5 Review  
3 PV AO  
4 PV LRV  
5 PV URV  
Basic Setup  
1 Tag  
2 Flow Units  
3 Line Size  
Flow Units  
1 PV Units  
4 PV URV  
2 Special Units  
Special Units  
5 PV LRV  
6 Calibration Number  
7 PV Damping  
1 Volume Unit  
2 Base Volume Unit  
AO Diagnostic Alarm  
Empty Pipe  
3
Conversion Number  
4 Base Time Unit  
5 Flow Rate Unit  
Reverse Flow  
Ground/Wiring Fault  
High Process Noise  
Elect Temp Out of Range  
Electrode Coat Limit 2  
Totalizer Limit 1  
Detailed Setup  
Analog Output  
1 PV URV  
2 PV LRV  
3 PV Loop Current  
4 PV Alarm Type  
5 AO Loop Test  
6 D/A Trim  
7 Scaled D/A Trim  
8 Alarm Level  
9 AO Diagnostic Alarm  
Additional Params  
1 Coil Drive Freq  
2 Density Value  
3 PV USL  
1 Additional Params  
2 Configure Output  
3 LOI Config  
Flow Limit 1  
4 Signal Processing  
5 Universal Trim  
6 Device Info  
4 PV LSL  
Flow Limit 2  
5 PV Min Span  
Cont. Meter Verification  
7 Device Reset  
DI/DO 1  
1 Configure I/O 1  
2 DIO 1 Control  
3 Digital Input 1  
4 Digital Output 1  
Configure Output  
1 Analog Output  
2 Pulse Output  
3 Digital I/O  
Pulse Output  
1 Pulse Scaling  
2 Pulse Width  
4 Reverse Flow  
5 Totalizer Setup  
6 Alarm Levels  
7 HART Output  
3 Pulse Mode  
4 Pulse Out Loop Test  
Configure I/O 1  
Input  
Output  
Digital I/O  
Not Available/Off  
1 DI/DO 1  
2 DO 2  
Flow Limit 1  
1 Control 1  
2 Mode 1  
3 High Limit 1  
4 Low Limit 1  
5 Flow Limit Hysteresis  
3 Flow Limit 1  
4 Flow Limit 2  
5 Total Limit  
6
Diagnostic Status  
Alert  
Flow Limit 2  
1 Control 2  
2 Mode 2  
3 High Limit 2  
4 Low Limit 2  
5 Flow Limit Hysteresis 2  
Totalizer Setup  
1 Totalizer Units  
2 Gross Total  
Total Limit  
1 Total Control  
2 Total Mode  
3 Net Total  
3 Total Hi Limit  
4 Total Low Limit  
5 Total Limit Hysteresis  
4 Reverse Total  
5 Start Totalizer  
6 Stop Totalizer  
7 Reset Totalizer  
Diagnostic Status Alert  
Electronics Failure  
Coil Open Circuit  
Alarm Levels  
1 Alarm Level  
2 Hi Alarm  
3 Hi Sat  
Empty Pipe  
Reverse Flow  
Ground/Wiring Fault  
High Process Noise  
Elect Temp Out of Range  
Electrode Coat Limit 1  
Electrode Coat Limit 2  
Cont. Meter Verification  
Coil Over Current  
4 Low Sat  
5 Low Alarm  
LOI Config  
Sensor Electrode Saturated  
Coil Power Limit  
1 Language  
2 Flowrate Display  
3 Totalizer Display  
4 Display Lock  
5 Meter Type  
HART Output  
Variable Mapping  
1 PV is  
1 Variable Mapping  
2 Poll Address  
2 SV is  
3 Num Req Preams  
4 Num Resp Preams  
5 Burse Mode  
6 LOI Error Mask  
3 TV is  
4 QV is  
6 Burst Option  
Burst Option  
PV  
Signal Processing  
1 Operating Mode  
2 Man Config DSP  
3 Coil Drive Freq  
4 Low Flow Cutoff  
5 PV Damping  
% Range/Current  
Process Vars/Current  
Dynamic Vars  
Man Config DSP  
1 Status  
2 Samples  
3 % Limit  
4 Time Limit  
Revision No.  
Device Info  
1 Manufacturer  
2 Tag  
1 Universal Rev  
2 Transmitter Rev  
3 Software Rev  
4 Final Assembly #  
3 Descriptor  
4 Message  
5 Date  
6 Device ID  
7 PV Sensor S/N  
8 Sensor Tag  
9 Write protect  
Revision No.  
Construction Materials  
Construction Materials  
1 Flange Type  
2 Flange Material  
3 Electrode Type  
4 Electrode Material  
5 Liner Material  
81  
Operation  
 
Reference Manual  
00809-0100-4444, Rev AD  
Section 4: Operation  
August 2015  
Figure 4-8. Field Communicator Dashboard Menu Tree (Overview and Configuring Guided/Manual Setup)  
82  
Operation  
 
Reference Manual  
00809-0100-4444, Rev AD  
Section 4: Operation  
August 2015  
Figure 4-9. Field Communicator Dashboard Menu Tree (Configuring Alert Setup and Service Tools)  
83  
Operation  
 
Reference Manual  
00809-0100-4444, Rev AD  
Section 4: Operation  
August 2015  
4.4  
Process variables  
LOI menu path  
N/A  
1,1  
1
Traditional Fast Keys  
Device dashboard  
Process variables are available through the Field Communicator or AMS software suite. These  
variables display flow in several ways that reflect your needs and the configuration of your  
flowmeter. When commissioning a flowmeter, review each process variable, its function and output,  
and take corrective action if necessary before using the flowmeter in a process application.  
Primary variable (PV) - The actual measured flow rate of the process fluid. Use the flow units function  
to select the units for your application.  
Percent of range - The process variable as a percentage of the analog output range, provides an  
indication where the current flow of the meter is within the configured range of the flowmeter. For  
example, the analog output range may be defined as 0 gal/min to 20 gal/min. If the measured flow is  
10 gal/min, the percent of range is 50 percent.  
Analog output - The analog output variable provides the analog value for the flow rate. The analog  
output refers to the industry standard output in the 4-20 mA range. The analog output and 4-20 mA  
loop can be verified using the Analog Feedback diagnostic capability internal to the transmitter (See  
Pulse output - The pulse output variable provides the pulse value in terms of a frequency for the flow  
rate.  
4.4.1  
4.4.2  
PV - Primary variable  
Home screen if configured to display flow  
LOI menu path  
1,1,1  
1,2  
Traditional Fast Keys  
Device dashboard  
The primary variable shows the current measured flow rate. This value determines the analog output  
from the transmitter.  
PV - Percent of range  
Home screen if configured to display percent span  
LOI menu path  
1,1,2  
Traditional Fast Keys  
Device dashboard  
3,4,4,2  
The PV% range shows where in the flow range the current flow value is as a percentage of the  
configured span.  
84  
Operation  
     
Reference Manual  
00809-0100-4444, Rev AD  
Section 4: Operation  
August 2015  
4.4.3  
4.4.4  
PV - Analog output  
N/A  
LOI menu path  
1,1,3  
1,3  
Traditional Fast Keys  
Device dashboard  
The PV analog output displays the mA output of the transmitter corresponding to the measured  
flow rate.  
Pulse output  
N/A  
LOI menu path  
1,1,5  
Traditional Fast Keys  
Device dashboard  
3,2,1,2  
The pulse output displays the value of the pulse signal.  
85  
Operation  
   
Reference Manual  
00809-0100-4444, Rev AD  
Section 4: Operation  
August 2015  
86  
Operation  
Reference Manual  
00809-0100-4444, Rev AD  
Section 5: Advanced Configuration Functionality  
August 2015  
Section 5  
Advanced Configuration  
Functionality  
5.1  
Introduction  
This section contains information for advanced configuration parameters.  
The software configuration settings for the Rosemount 8732EM can be accessed through a  
HART®-based communicator, Local Operator Interface (LOI), AMS, or through a control system.  
Before operating the 8732EM in an actual installation, you should review all of the factory set  
configuration data to ensure that they reflect the current application.  
5.2  
Configure outputs  
LOI menu path  
Detailed Setup, Output Config  
Traditional fast keys  
Device dashboard  
1,4,2  
2,2,2  
The configure outputs functionality is used to configure advanced features that control the  
analog, pulse, auxiliary, and totalizer outputs of the transmitter.  
5.2.1  
Analog output  
LOI menu path  
Detailed Setup, Output Config, Analog  
Traditional fast keys  
Device dashboard  
1,4,2,1  
2,2,2,1  
The analog output function is used to configure all of the features of the 4-20 mA output.  
Upper range value  
LOI menu path  
Detailed Setup, Output Config, Analog, PV URV  
Traditional fast keys  
Device dashboard  
1,4,2,1  
2,2,2,1,4  
The upper range value (URV) sets the 20 mA point for the analog output. This value is typically  
set to full-scale flow. The units that appear will be the same as those selected under the units  
parameter. The URV may be set between –39.3 ft/s to 39.3 ft/s (–12 m/s to 12 m/s) or the  
equivalent range based on the selected flow units. There must be at least 1 ft/s (0.3 m/s) span or  
equivalent between the URV and LRV.  
87  
Advanced Configuration Functionality  
           
Reference Manual  
00809-0100-4444, Rev AD  
Section 5: Advanced Configuration Functionality  
August 2015  
Lower range value  
LOI menu path  
Detailed Setup, Output Config, Analog, PV LRV  
Traditional fast keys  
Device dashboard  
1,4,2,1  
2,2,2,1,3  
The lower range value (LRV) sets the 4 mA point for the analog output. This value is typically set  
to zero flow. The units that appear will be the same as those selected under the units parameter.  
The LRV may be set between –39.3 ft/s to 39.3 ft/s (–12 m/s to 12 m/s) or the equivalent range  
based on the selected flow units. There must be at least 1 ft/s (0.3 m/s) span or equivalent  
between the URV and LRV.  
Alarm type  
LOI menu path  
Detailed Setup, Output Config, Analog, Alarm Type  
Traditional fast keys  
Device dashboard  
1,4,2,1,4  
2,2,9,5,1  
The analog output alarm type displays the position of the alarm switch on the electronics board.  
There are two available positions for this switch:  
High  
Low  
Alarm level  
LOI menu path  
Detailed Setup, Output Config, Analog, Alarm Level  
Traditional fast keys  
Device dashboard  
1,4,2,1,8 or 1,4,2,6  
2,2,9,5,2  
The alarm level configuration will drive the transmitter to preset values if an alarm occurs. There  
are two options:  
Rosemount Alarm and Saturation Values (see table Table 5-1 for specific values)  
NAMUR-Compliant Alarm and Saturation Values (see Table 5-2 for specific values)  
Table 5-1. Rosemount Values  
Level  
4-20 mA saturation  
4-20 mA alarm  
Low  
3.9 mA  
3.75 mA  
22.5 mA  
High  
20.8 mA  
Table 5-2. NAMUR Values  
Level  
4-20 mA saturation  
4-20 mA alarm  
Low  
3.8 mA  
3.5 mA  
High  
20.5 mA  
22.6 mA  
88  
Advanced Configuration Functionality  
       
Reference Manual  
00809-0100-4444, Rev AD  
Section 5: Advanced Configuration Functionality  
August 2015  
AO diagnostic alarm  
LOI menu path  
Detailed Setup, Output Config, Analog, AO Diag Alarm  
Traditional fast keys  
Device dashboard  
1,4,2,1,9  
2,2,5,9  
There are diagnostics that, when under active conditions, do not drive the analog output to  
alarm level. The AO diagnostic alarm menu enables selection of these diagnostics to be  
associated with an analog alarm. If any of the selected diagnostics are active, it will cause the  
analog output to go to the configured alarm level. For a list of diagnostic alarms that can be  
configured to drive an analog alarm, see Table 5-3.  
Table 5-3. Analog Alarm Diagnostic Options  
Diagnostic  
LOI Menu Path  
Fast Keys  
Description  
Detailed Setup, Output  
Config, Analog, AO Diag  
Alarm, Empty Pipe  
Drive to an alarm state when  
empty pipe is detected.  
Empty Pipe (1)  
1,4,2,1,9,1  
Detailed Setup, Output  
Config, Analog, AO Diag  
Alarm, Reverse Flow  
Drive to an alarm state when  
reverse flow is detected.  
Reverse Flow  
1,4,2,1,9,2  
1,4,2,1,9,3  
1,4,2,1,9,4  
1,4,2,1,9,5  
Detailed Setup, Output  
Config, Analog, AO Diag  
Alarm, Ground/Wiring  
Drive to an alarm state when  
grounding or wiring fault is  
detected.  
Grounding / Wiring  
Fault(1)  
Detailed Setup, Output  
Drive to an alarm state when the  
transmitter detects high levels of  
process noise.  
High Process Noise(1) Config, Analog, AO Diag  
Alarm, Process Noise  
Electronics  
Detailed Setup, Output  
Config, Analog, AO Diag  
Alarm, Elect Temp  
Drive to an alarm state when the  
temperature of the electronics  
exceeds allowable limits  
Temperature Out of  
Range(1)  
Drive to an alarm state when  
electrode coating reaches a point  
where it impacts the flow  
measurement  
Detailed Setup, Output  
Config, Analog, AO Diag  
Alarm, Elec Coating  
Electrode Coating  
Limit 2(1)  
1,4,2,1,9,6  
1,4,2,1,9,7  
Drive to an alarm state when the  
totalizer value exceeds the  
parameters set in the totalizer  
limit configuration (see page 5-x  
for more details on this  
Detailed Setup, Output  
Config, Analog, AO Diag  
Alarm, Total Limit  
Totalizer Limit 1  
functionality)  
Drive to an alarm state when the  
flow rate exceeds the parameters  
set in the flow limit 1  
Detailed Setup, Output  
Config, Analog, AO Diag  
Alarm, Flow Limit 1  
Flow Limit 1  
Flow Limit 2  
1,4,2,1,9,8  
configuration (see page 5-x for  
more details on this functionality)  
Drive to an alarm state when the  
flow rate exceeds the parameters  
set in the flow limit 2  
configuration (see page 5-x for  
more details on this functionality)  
Detailed Setup, Output  
Config, Analog, AO Diag  
Alarm, Flow Limit 2  
1,4,2,1,9,9  
Drive to an alarm state when the  
continuous meter verification  
diagnostic detects a failure of one  
of the tests  
Detailed Setup, Output  
Config, Analog, AO Diag  
Alarm, Cont Meter Ver  
Continuous Meter  
Verification(1)  
1,4,2,1,9,--(2)  
(1) See Section 6 for more details on each of the diagnostics  
(2) To access these features, you must scroll to this option in the HART Field Communicator.  
89  
Advanced Configuration Functionality  
   
Reference Manual  
00809-0100-4444, Rev AD  
Section 5: Advanced Configuration Functionality  
August 2015  
5.2.2  
Pulse output  
LOI menu path  
Detailed Setup, Output Config, Pulse  
Traditional fast keys  
Device dashboard  
1,4,2,2  
2,2,2,2  
Under this function the pulse output of the 8732EM can be configured.  
Pulse scaling  
LOI menu path  
Detailed Setup, Output Config, Pulse, Pulse Scaling  
Traditional fast keys  
Device dashboard  
1,4,2,2,1  
2,2,2,2,3  
Transmitter may be commanded to supply a specified frequency between 1 pulse/ day at 39.37  
ft/sec (12 m/s) to 10,000Hz at 1 ft/sec (0.3 m/s).  
Note  
Line size, special units, and density must be selected prior to configuration of the pulse scaling  
factor.  
The pulse output scaling equates one transistor switch closure pulse to a selectable number of  
volume units. The volume unit used for scaling pulse output is taken from the numerator of the  
configured flow units. For example, if gal/min had been chosen when selecting the flow unit, the  
volume unit displayed would be gallons.  
Note  
The pulse output scaling is designed to operate between 0 and 10,000Hz. The minimum  
conversion factor value is found by dividing the minimum span (in units of volume per second)  
by 10,000Hz.  
Note  
The maximum pulse scaling frequency for transmitters with an intrinsically safe output (output  
option code B) is 5000Hz.  
When selecting pulse output scaling, the maximum pulse rate is 10,000Hz. With the 110  
percent over range capability, the absolute limit is 11,000Hz. For example, if you want the  
Rosemount 8732EM to pulse every time 0.01 gallons pass through the sensor, and the flow rate  
is 10,000 gal/min, you will exceed the 10,000Hz full-scale limit:  
The best choice for this parameter depends upon the required resolution, the number of digits  
in the totalizer, the extent of range required, and the maximum frequency limit of the external  
counter.  
90  
Advanced Configuration Functionality  
 
Reference Manual  
00809-0100-4444, Rev AD  
Section 5: Advanced Configuration Functionality  
August 2015  
Pulse width  
LOI menu path  
Detailed Setup, Output Config, Pulse, Pulse Width  
Traditional fast keys  
Device dashboard  
1,4,2,2,2  
2,2,2,2,4  
The factory default pulse width is 0.5 ms.  
The width, or duration, of the pulse can be adjusted to match the requirements of different  
counters or controllers (see Figure 5-1). These are typically lower frequency applications (<  
1000Hz). The transmitter will accept values from 0.1 ms to 650 ms.  
For frequencies higher than 1000Hz, it is recommended to set the pulse mode to 50% duty cycle  
by setting the pulse mode to frequency output.  
The pulse width will limit the maximum frequency output, If the pulse width is set too wide  
(more than 1/2 the period of the pulse) the transmitter will limit the pulse output. See example  
below.  
Figure 5-1. Pulse Output  
Example  
If pulse width is set to 100 ms, the maximum output is 5Hz; for a pulse width of 0.5 ms, the  
maximum output would be 1000Hz (at the maximum frequency output there is a 50% duty  
cycle).  
Pulse width  
Minimum period (50% duty cycle)  
Maximum frequency  
100 ms  
200 ms  
0.5 ms  
1.0 ms  
91  
Advanced Configuration Functionality  
   
Reference Manual  
00809-0100-4444, Rev AD  
Section 5: Advanced Configuration Functionality  
August 2015  
To achieve the greatest maximum frequency output, set the pulse width to the lowest value  
that is consistent with the requirements of the pulse output power source, pulse driven external  
totalizer, or other peripheral equipment.  
Example  
The maximum flow rate is 10,000 gpm. Set the pulse output scaling such that the transmitter  
outputs 10,000Hz at 10,000 gpm.  
Note  
Changes to pulse width are only required when there is a minimum pulse width required for  
external counters, relays, etc.  
Example  
The external counter is ranged for 350 gpm and pulse is set for one gallon. Assuming the pulse  
width is 0.5 ms, the maximum frequency output is 5.833Hz.  
92  
Advanced Configuration Functionality  
Reference Manual  
00809-0100-4444, Rev AD  
Section 5: Advanced Configuration Functionality  
August 2015  
Example  
The upper range value (20mA) is 3000 gpm. To obtain the highest resolution of the pulse  
output, 10,000Hz is scaled to the full scale analog reading.  
Pulse mode  
LOI menu path  
Detailed Setup, Output Config, Pulse, Pulse Mode  
1,4,2,2,3  
2,2,2,2,2  
Traditional fast keys  
Device dashboard  
The pulse mode configures the frequency output of the pulse. It can be set to either 50% duty  
cycle, or fixed. There are two options that pulse mode can be configured to:  
Pulse Output (user defines a fixed pulse width)  
Frequency Output (pulse width automatically set to 50% duty cycle)  
To use pulse width settings, pulse mode must be set to pulse output.  
5.2.3  
Totalizer  
The totalizer provides the total amount of fluid that has passed through the meter. There are  
three available totalizers:  
Net total - increments with forward flow and decrements with reverse flow (reverse  
flow must be enabled). Can be reset to zero using the net total reset function.  
Gross/forward total - will only increment with forward flow  
Reverse total - will only increment with reverse flow if reverse flow is enabled  
93  
Advanced Configuration Functionality  
 
Reference Manual  
00809-0100-4444, Rev AD  
Section 5: Advanced Configuration Functionality  
August 2015  
The maximum value for the totalizers is based on 4,294,967,296 (232) feet or corresponding  
unit equivalent. If a totalizer reaches this value, it will automatically reset to zero and then  
continue counting.  
The gross/forward and reverse totalizers can be reset by manually changing the line size.  
Totalizer units  
LOI menu path  
Detailed Setup, Output Config, Totalizer, Totalizer Units  
1,4,2,5,1  
2,2,2,3,5  
Traditional fast keys  
Device dashboard  
Totalizer units is used to configure the units in which the totalized value will be displayed. These  
units are independent of the flow units. Totalizer units are updated to match the flow units  
whenever the flow units are written.  
Totalizer display  
LOI menu path  
Detailed Setup, Output Config, Totalizer Setup, Total Display  
1,4,3,3  
Traditional fast keys  
Device dashboard  
2,2,1,5,3  
The totalizer screen can be configured to display the net and gross totals or the forward and  
reverse totals.  
Note: Gross and forward totals are the same value.  
Start totalizer  
LOI menu path  
On totalizer screen, press “E”  
1,4,2,5,5  
Traditional fast keys  
Device dashboard  
2,2,2,3,4  
Start totalizer starts the totalizer counting from its current value.  
Stop totalizer  
LOI menu path  
On totalizer screen, press “E”  
1,4,2,5,6  
Traditional fast keys  
Device dashboard  
2,2,2,3,4  
Stop totalizer interrupts the totalizer count until it is restarted again. This feature is often used  
during pipe cleaning or other maintenance operations.  
Reset totalizer  
LOI menu path  
On totalizer screen, press right arrow (totalizer must be stopped)  
1,4,2,5,7  
2,2,2,3,4  
Traditional fast keys  
Device dashboard  
Reset totalizer resets the net totalizer value to zero. The totalizer must be stopped before  
resetting.  
94  
Advanced Configuration Functionality  
Reference Manual  
00809-0100-4444, Rev AD  
Section 5: Advanced Configuration Functionality  
August 2015  
Note  
The totalizer value is stored in the non-volatile memory of the electronics every three seconds. If  
power to the transmitter is interrupted, the totalizer value will start at the last saved value when  
power is reapplied.  
5.2.4  
Discrete input/output  
This configuration option is only available if the auxiliary output suite (option code AX) was  
ordered. The auxiliary output suite provides two channels for control. The discrete input can  
provide positive zero return (PZR) and net totalizer reset. The discrete output control function  
can be configured to drive an external signal to indicate zero flow, reverse flow, empty pipe,  
diagnostic status, flow limit, or transmitter status. A complete list and description of the  
available auxiliary functions is provided below.  
Discrete input options (Channel 1 only)  
PZR (Positive Zero Return). When conditions are met to activate the input, the  
transmitter will force the output to zero flow.  
Net Total Reset - When conditions are met to activate the input, the transmitter will  
reset the net total value to zero.  
Discrete output options  
Reverse Flow - The output will activate when the transmitter detects a reverse flow  
condition.  
Zero Flow - The output will activate when a no flow condition is detected.  
Transmitter Fault - The output will activate when a transmitter fault condition is  
detected.  
Empty Pipe - The output will activate when the transmitter detects an empty pipe  
condition.  
Flow Limit 1 - The output will activate when the transmitter measures a flow rate that  
meets the conditions established for the flow limit 1 alert.  
Flow Limit 2 - The output will activate when the transmitter measures a flow rate that  
meets the conditions established for the flow limit 2 alert.  
Diagnostic Status Alert - The output will activate when the transmitter detects a  
condition that meets the configured criteria of the diagnostic status alert.  
Total Limit - The output will activate when the transmitter net total value meets the  
conditions established for the total limit alert.  
Channel 1  
Channel 1 can be configured as either a discrete input (DI) or as a discrete output (DO).  
95  
Advanced Configuration Functionality  
 
Reference Manual  
00809-0100-4444, Rev AD  
Section 5: Advanced Configuration Functionality  
August 2015  
DI/O 1 control  
LOI menu path  
Detailed Setup, Output Config, DI/DO Config, DI/O 1, DI/O 1 Control  
Traditional fast keys  
Device dashboard  
1,4,2,3,1,1  
2,2,4,1,1  
This parameter configures the auxiliary output channel 1. It controls whether channel 1 will be a  
discrete input or discrete output on terminals 5(-) and 6(+). Note that the transmitter must have  
been ordered with the auxiliary output suite (option code AX) to have access to this  
functionality.  
Discrete input 1  
LOI menu path  
Detailed Setup, Output Config, DI/DO Config, DI/O 1, DI 1  
Traditional fast keys  
Device dashboard  
1,4,2,3,1,1,3  
2,2,4,1,2  
This parameter displays the configuration for channel 1 when used as a discrete input. Refer to  
the list above for available discrete input functions.  
Discrete output 1  
LOI menu path  
Detailed Setup, Output Config, DI/DO Config, DI/O 1, DO 1  
Traditional fast keys  
Device dashboard  
1,4,2,3,1,2,4  
2,2,4,1,3  
This parameter displays the configuration for channel 1 when used as a discrete output. Refer to  
the list above for available discrete output functions.  
Channel 2  
Channel 2 is available as discrete output only.  
Discrete output 2  
LOI menu path  
Detailed Setup, Output Config, DI/DO Config, DO 2  
Traditional fast keys  
Device dashboard  
1,4,2,3,2  
2,2,4,2  
This parameter displays the configuration for channel 2. Refer to the list above for available  
discrete output functions.  
96  
Advanced Configuration Functionality  
Reference Manual  
00809-0100-4444, Rev AD  
Section 5: Advanced Configuration Functionality  
August 2015  
Flow limit (1 and 2)  
LOI menu path  
Flow 1: Detailed Setup, Output Config, DI/DO Config, Flow Limit 1  
Flow 2: Detailed Setup, Output Config, DI/DO Config, Flow Limit 2  
Flow 1: 1,4,2,3,3 Flow 2: 1,4,2,3,4  
Traditional fast keys  
Device dashboard  
Flow 1: 2,2,4,3  
Flow 2: 2,2,4,4  
There are two configurable flow limits. Configure the parameters that will determine the criteria  
for activation of a HART alert if the measured flow rate falls within a set of configured criteria.  
This functionality can be used for operating simple batching operations or generating alerts  
when certain flow conditions are met. This parameter can be configured as a discrete output if  
the transmitter was ordered with the auxiliary output suite (option code AX) and the outputs  
are enabled. If a discrete output is configured for flow limit, the discrete output will activate  
when the conditions defined under mode configuration are met. See “Mode” on page 97 below.  
Control  
LOI menu path  
Flow 1: Detailed Setup, Output Config, DI/DO Config, Flow Limit 1, Control 1  
Flow 2: Detailed Setup, Output Config, DI/DO Config, Flow Limit 2, Control 2  
Flow 1: 1,4,2,3,3,1 Flow 2: 1,4,2,3,4,1  
Traditional fast keys  
Device dashboard  
Flow 1: 2,2,4,3,4  
Flow 2: 2,2,4,4,4  
This parameter turns the flow limit HART alert ON or OFF.  
ON - The transmitter will generate a HART alert when the defined conditions are met. If a  
discrete output is configured for flow limit, the discrete output will activate when the conditions  
for mode are met.  
OFF - The transmitter will not generate a HART alert for the flow limit.  
Mode  
LOI menu path  
Flow 1: Detailed Setup, Output Config, DI/DO Config, Flow Limit 1, Mode 1  
Flow 2: Detailed Setup, Output Config, DI/DO Config, Flow Limit 2, Mode 2  
Flow 1: 1,4,2,3,3,2 Flow 2: 1,4,2,3,4,2  
Traditional fast keys  
Device dashboard  
Flow 1: 2,2,4,3,3  
Flow 2: 2,2,4,4,3  
The mode parameter sets the conditions under which the flow limit HART alert will activate.  
High and low limits exist for each channel and can be configured independently.  
> High limit - The HART alert will activate when the measured flow rate exceeds the high limit  
set point.  
< Low limit - The HART alert will activate when the measured flow rate falls below the low limit  
set point.  
In range - The HART alert will activate when the measured flow rate is between the high limit  
and low limit set points.  
Out of range - The HART alert will activate when the measured flow rate exceeds the high limit  
set point or falls below the low limit set point.  
97  
Advanced Configuration Functionality  
 
Reference Manual  
00809-0100-4444, Rev AD  
Section 5: Advanced Configuration Functionality  
August 2015  
High limit  
LOI menu path  
Flow 1: Detailed Setup, Output Config, DI/DO Config, Flow Limit 1, High Limit 1  
Flow 2: Detailed Setup, Output Config, DI/DO Config, Flow Limit 2, High Limit 2  
Flow 1: 1,4,2,3,3,3 Flow 2: 1,4,2,3,4,3  
Traditional fast keys  
Device dashboard  
Flow 1: 2,2,4,3,1  
Flow 2: 2,2,4,4,1  
Set the flow rate value that corresponds to the high limit set point for the flow limit alert.  
Low limit  
LOI menu path  
Flow 1: Detailed Setup, Output Config, DI/DO Config, Flow Limit 1, Low Limit 1  
Flow 2: Detailed Setup, Output Config, DI/DO Config, Flow Limit 2, Low Limit 2  
Flow 1: 1,4,2,3,3,4 Flow 2: 1,4,2,3,4,4  
Traditional fast keys  
Device dashboard  
Flow 1: 2,2,4,3,2  
Flow 2: 2,2,4,4,2  
Set the flow rate value that corresponds to the low limit set point for the flow limit alert.  
Flow limit hysteresis  
LOI menu path  
Flow 1: Detailed Setup, Output Config, DI/DO Config, Flow Limit 1, Hysteresis  
Flow 2: Detailed Setup, Output Config, DI/DO Config, Flow Limit 2, Hysteresis  
Traditional fast keys  
Device dashboard  
Flow 1: 1,4,2,3,3,5 Flow 2: 1,4,2,3,4,5  
2,2,4,6  
Set the hysteresis band for the flow limit to determine how quickly the transmitter comes out of  
alert status. The hysteresis value is used for both flow limit 1 and flow limit 2. Changing this  
parameter under the configuration parameters for one channel will cause it to also change in the  
other channel.  
Total limit  
LOI menu path  
Detailed Setup, Output Config, Totalizer, Total Limit  
Traditional fast keys  
Device dashboard  
1,4,2,3,5  
2,2,4,5  
Configure the parameters that will determine the criteria for activating a HART alert if the  
measured net total falls within a set of configured criteria. This functionality can be used for  
operating simple batching operations or generating alerts when certain localized values are  
met. This parameter can be configured as a discrete output if the transmitter was ordered with  
auxiliary outputs enabled (option code AX). If a digital output is configured for total limit, the  
digital output will activate when the conditions for total mode are met.  
98  
Advanced Configuration Functionality  
Reference Manual  
00809-0100-4444, Rev AD  
Section 5: Advanced Configuration Functionality  
August 2015  
Total control  
LOI menu path  
Detailed Setup, Output Config, Totalizer, Total Limit, Total Control  
Traditional fast keys  
Device dashboard  
1,4,2,3,5,1  
2,2,4,5,4  
This parameter turns the total limit HART alert ON or OFF.  
ON - The transmitter will generate a HART alert when the defined conditions are met.  
OFF - The transmitter will not generate a HART alert for the total limit.  
Total mode  
LOI menu path  
Detailed Setup, Output Config, Totalizer, Total Limit, Total Mode  
Traditional fast keys  
Device dashboard  
1,4,2,3,5,2  
2,2,4,5,3  
The total mode parameter sets the conditions under which the total limit HART alert will  
activate. High and low limits exist for each channel and can be configured independently.  
> High limit - The HART alert will activate when the totalizer value exceeds the high limit set  
point.  
< Low limit - The HART alert will activate when the totalizer value falls below the low limit set  
point.  
In range - The HART alert will activate when the totalizer value is between the high limit and low  
limit set points.  
Out of range - The HART alert will activate when the totalizer value exceeds the high limit set  
point or falls below the low limit set point.  
Total high limit  
LOI menu path  
Detailed Setup, Output Config, Totalizer, Total Limit, Tot Hi Limit  
Traditional fast keys  
Device dashboard  
1,4,2,3,5,3  
2,2,4,5,1  
Set the net total value that corresponds to the high limit set point for the total high limit alert.  
Total low limit  
LOI menu path  
Detailed Setup, Output Config, Totalizer, Total Limit, Tot Low Limit  
Traditional fast keys  
Device dashboard  
1,4,2,3,5,4  
2,2,4,5,2  
Set the net total value that corresponds to the low limit set point for the total low limit alert.  
99  
Advanced Configuration Functionality  
Reference Manual  
00809-0100-4444, Rev AD  
Section 5: Advanced Configuration Functionality  
August 2015  
Total limit hysteresis  
LOI menu path  
Detailed Setup, Output Config, Totalizer, Total Limit, Hysteresis  
Traditional fast keys  
Device dashboard  
1,4,2,3,5,5  
2,2,4,7  
Set the hysteresis band for the total limit to determine how quickly the transmitter comes out of  
alert status.  
Diagnostic status alert  
LOI menu path  
Detailed Setup, Output Config, Totalizer, Diagnostic Status Alert  
Traditional fast keys  
Device dashboard  
1,4,2,3,6  
2,2,4,8  
The diagnostic status alert is used to turn on or off the diagnostics that will cause this alert to  
activate.  
ON - The diagnostic status alert will activate when a transmitter detects a diagnostic designated  
as ON.  
OFF - The diagnostic status alert will not activate when diagnostics designated as OFF are  
detected.  
Alerts for the following diagnostics can be turned ON or OFF:  
Electronics Failure  
Coil Open Circuit  
Empty Pipe  
Reverse Flow  
Ground/Wiring Fault  
High Process Noise  
Electronics Temperature Out of Range  
Electrode Coat Limit 1  
Electrode Coat Limit 2  
Continuous Meter Verification  
5.3  
Configure HART  
The 8732EM has four HART variables available as outputs. The variables can be configured for  
dynamic readings including flow, total, and diagnostic values. The HART output can also be  
configured for burst mode or multi-drop communication if required.  
100  
Advanced Configuration Functionality  
 
Reference Manual  
00809-0100-4444, Rev AD  
Section 5: Advanced Configuration Functionality  
August 2015  
5.3.1  
Variable mapping  
LOI menu path  
Detailed Setup, Output Config, Hart, Variable Map  
Traditional fast keys  
Device dashboard  
1,4,2,7,1  
2,2,3,2  
Variable mapping allows configuration of the variables that are mapped to the secondary,  
tertiary and quaternary variables. The primary variable is fixed to output flow and cannot be  
configured.  
Primary variable (PV)  
LOI menu path  
Detailed Setup, Output Config, Hart, Variable Map, PV  
Traditional fast keys  
Device dashboard  
1,4,2,7,1,1  
2,2,3,2,1  
The primary variable is configured for flow. This variable is fixed and cannot be configured. The  
primary variable is tied to the analog output.  
Secondary variable (SV)  
LOI menu path  
Detailed Setup, Output Config, Hart, Variable Map, SV  
Traditional fast keys  
Device dashboard  
1,4,2,7,1,2  
2,2,3,2,2  
The secondary variable maps the second variable of the transmitter. This variable is a HART only  
variable and can be read from the HART signal with a HART enabled input card, or can be burst  
for use with a HART Tri-Loop to convert the HART signal to an analog output. Options available  
for mapping to this variable can be found in Table 5-4.  
Tertiary variable (TV)  
LOI menu path  
Detailed Setup, Output Config, Hart, Variable Map, TV  
Traditional fast keys  
Device dashboard  
1,4,2,7,1,3  
2,2,3,2,3  
The tertiary variable maps the third variable of the transmitter. This variable is a HART only  
variable and can be read from the HART signal with a HART enabled input card, or can be burst  
for use with a HART Tri-Loop to convert the HART signal to an analog output. Options available  
for mapping to this variable can be found in Table 5-4.  
101  
Advanced Configuration Functionality  
 
Reference Manual  
00809-0100-4444, Rev AD  
Section 5: Advanced Configuration Functionality  
August 2015  
Quaternary variable (QV)  
LOI menu path  
Detailed Setup, Output Config, Hart, Variable Map, QV  
Traditional fast keys  
Device dashboard  
1,4,2,7,1,4  
2,2,3,2,4  
The quaternary variable maps the fourth variable of the transmitter. This variable is a HART only  
variable and can be read from the HART signal with a HART enabled input card, or can be burst  
for use with a HART Tri-Loopto convert the HART signal to an analog output. Options available  
for mapping to this variable can be found in Table 5-4.  
Table 5-4. Available Variables  
Pulse Output  
Empty Pipe Value  
Gross Total – TV Default  
Net Total – SV Default  
Reverse Total – QV Default  
Electronics Temp  
Transmitter Velocity Deviation  
Electrode Coating Value  
Electrode Resistance Value  
Coil Resistance Value  
Line Noise Value  
Sensor Calibration Deviation Value  
mA Loop Deviation Value  
5 Hz Signal to Noise Value  
37 Hz Signal to Noise Value  
5.3.2  
Poll address  
LOI menu path  
Detailed Setup, Output Config, Hart Output, Poll Address  
Traditional fast keys  
Device dashboard  
1,4,2,7,2  
2,2,3,1,1  
Poll address enables the poll address to be set for use in a multi-drop configuration. The poll  
address is used to identify each meter on the multi-drop line. Follow the on-screen instructions  
to set the poll address at a number from 1 to 15. To set or change the flowmeter address,  
establish communication with the selected 8732EM in the loop.  
Note  
The 8732EM poll address is set to zero at the factory, allowing standard operation in a  
point-to-point manner with a 4-20 mA output signal. To activate multi-drop communication,  
the transmitter poll address must be changed to a number between 1 and 15. This change  
deactivates the analog output, sets the output value to 4 mA, and disables the failure mode  
alarm signal.  
102  
Advanced Configuration Functionality  
   
Reference Manual  
00809-0100-4444, Rev AD  
Section 5: Advanced Configuration Functionality  
August 2015  
5.3.3  
Burst mode  
LOI menu path  
Detailed Setup, Output Config, HART, Burst Mode  
Traditional fast keys  
Device dashboard  
1,4,2,7,5  
2,2,3,1,2  
The 8732EM includes a burst mode function that can be enabled to broadcast the primary  
variable or all dynamic variables approximately three to four times per second. Burst mode is a  
specialized function used in very specific applications. The burst mode function enables you to  
select the variables that are broadcast while in the burst mode.  
Burst mode enables you to set the burst mode as OFF or ON:  
OFF - Turns burst mode off; no data are broadcast over the loop  
ON - Turns burst mode on; data selected under burst option are broadcast over the loop  
Additional command options may appear that are reserved and do not apply to the 8732EM.  
Burst option (burst command)  
LOI menu path  
Detailed Setup, Output Config, HART, Burst Command  
Traditional fast keys  
Device dashboard  
1,4,2,7,6  
2,2,3,1,3  
Burst option enables you to select the variable(s) that is broadcast during the transmitter burst.  
Choose one of the following options:  
1; PV; Primary Variable - Selects the primary variable  
2; % range/current; Percent of Range and Loop Current - Selects the variable as  
percent of range and analog output  
3; Process vars/crnt; All Variables and Loop Current - Selects all variables and analog  
output  
110; Dynamic vars; Dynamic Variables - Burst all dynamic variables in the transmitter  
Request preambles  
LOI menu path  
Detailed Setup, Output Config, HART, Req Preams  
Traditional fast keys  
Device dashboard  
1,4,2,7,3  
N/A  
Request preambles is the number of preambles required by the 8732EM for HART communica-  
tions.  
103  
Advanced Configuration Functionality  
 
Reference Manual  
00809-0100-4444, Rev AD  
Section 5: Advanced Configuration Functionality  
August 2015  
Response preambles  
LOI menu path  
Detailed Setup, Output Config, HART, Resp Preams  
Traditional fast keys  
Device dashboard  
1,4,2,7,4  
N/A  
Response preambles is the number of preambles sent by the 8732EM in response to any host  
request.  
5.3.4  
Configure LOI  
LOI menu path  
Detailed Setup, LOI Config  
Traditional fast keys  
Device dashboard  
1,4,3  
2,2,1,5  
The LOI configuration contains functionality to configure the display of the transmitter.  
Flow display  
LOI menu path  
Detailed Setup, LOI Config, Flow Display  
Traditional fast keys  
Device dashboard  
1,4,3,2  
2,2,1,5,2  
Use flow display to configure the parameters that will appear on the LOI flowrate screen. The  
flowrate screen displays two lines of information. Choose one of the following options:  
Flowrate and % of Span  
% of Span and Net Total  
Flowrate and Net Total  
% of Span and Gross Total  
Flowrate and Gross Total  
Totalizer display  
LOI menu path  
Detailed Setup, LOI Config, Total Display  
Traditional fast keys  
Device dashboard  
1,4,3,3  
2,2,1,5,3  
Use totalizer display to configure the parameters that will appear on the LOI totalizer screen. The  
totalizer screen has two lines of information. Choose one of the following options:  
Forward Total and Reverse Total  
Net Total and Gross Total  
104  
Advanced Configuration Functionality  
 
Reference Manual  
00809-0100-4444, Rev AD  
Section 5: Advanced Configuration Functionality  
August 2015  
Language  
LOI menu path  
Detailed Setup, LOI Config, Language  
Traditional fast keys  
Device dashboard  
1,4,3,1  
2,2,1,5,1  
Use language to configure the display language shown on the LOI. Choose one of the following  
options:  
English  
Spanish  
Portuguese  
German  
French  
LOI error mask  
LOI menu path  
Detailed Setup, LOI Config, LOI Err Mask  
Traditional fast keys  
Device dashboard  
N/A  
N/A  
Use LOI error mask to turn off the analog output power error message (AO No Power). This may  
be desired if the analog output is not being used.  
Display auto lock  
LOI menu path  
Detailed Setup, LOI Config, Disp Auto Lock  
Traditional fast keys  
Device dashboard  
1,4,3,4  
2,2,1,5,4  
Use display auto lock to configure the LOI to automatically lock the LOI after a set period of time.  
Choose one of the following options:  
OFF  
1 Minute  
10 Minutes (default)  
105  
Advanced Configuration Functionality  
Reference Manual  
00809-0100-4444, Rev AD  
Section 5: Advanced Configuration Functionality  
August 2015  
5.4  
Additional parameters  
The following parameters may be required for detailed configuration settings based on your  
application.  
5.4.1  
Coil drive frequency  
LOI menu path  
Detailed Setup, More Params, Coil Frequency  
Traditional fast keys  
Device dashboard  
1,4,3,1  
2,2,8,3  
Use coil drive frequency to change the pulse rate of the coils. Choose one of the following  
options:  
5 Hz - The standard coil drive frequency is 5 Hz, which is sufficient for nearly all  
applications.  
37 Hz - If the process fluid causes a noisy or unstable output, increase the coil drive  
frequency to 37.5 Hz. If the 37 Hz mode is selected, perform the auto zero function for  
optimum performance.  
5.4.2  
Process density  
LOI menu path  
Detailed Setup, More Params, Proc Density  
Traditional fast keys  
Device dashboard  
1,4,3,1  
2,2,8,2  
Use the process density value to convert from a volumetric flow rate to a mass flow rate using  
the following equation:  
Qm = Qv x p  
Where:  
Qm is the mass flow rate  
Qv is the volumetric flow rate, and  
p is the fluid density  
5.4.3  
Reverse flow  
LOI menu path  
Detailed Setup, Output Config, Reverse Flow  
Traditional fast keys  
Device dashboard  
1,4,3,1  
2,2,5,1,5  
Use reverse flow to enable or disable the transmitter's ability to read flow in the opposite  
direction of the flow direction arrow (see Figure 2-4 on page 10). This may occur when the  
process has bi-directional flow, or when either the electrode wires or the coil wires are reversed  
(see Troubleshooting 9.3.3: Remote wiring). This also enables the totalizer to count in the  
reverse direction.  
106  
Advanced Configuration Functionality  
       
Reference Manual  
00809-0100-4444, Rev AD  
Section 5: Advanced Configuration Functionality  
August 2015  
5.4.4  
Low flow cutoff  
LOI menu path  
Detailed Setup, Sig Processing, Low Flow Cutoff  
1,4,4,4  
Traditional fast keys  
Device dashboard  
2,2,8,5,2  
Low flow cutoff allows the user to set a low flow limit to be specified. The analog output signal is  
driven to 4mA for flow rates below the set point. The low flow cutoff units are the same as the PV  
units and cannot be changed. The low flow cutoff value applies to both forward and reverse  
flows.  
5.4.5  
5.4.6  
PV damping  
LOI menu path  
Detailed Setup, Sig Processing, PV Damping  
1,4,4,5  
2,2,8,1  
Traditional fast keys  
Device dashboard  
Primary variable damping allows selection of a response time, in seconds, to a step change in  
flow rate. It is most often used to smooth fluctuations in output.  
Signal processing  
LOI menu path  
Detailed Setup, Sig Processing  
Traditional fast keys  
Device dashboard  
1,4,3,1  
2,2,8,6  
The 8732EM contains several advanced functions that can be used to stabilize erratic outputs  
caused by process noise. The signal processing menu contains this functionality.  
If the 37 Hz coil drive mode has been set, and the output is still unstable, the damping and signal  
processing function should be used. It is important to set the coil drive mode to 37 Hz first, so  
the loop response time is not increased.  
The 8732EM provides for a very easy and straightforward start-up, and also incorporates the  
capability to deal with difficult applications that have previously manifested themselves in a  
noisy output signal. In addition to selecting a higher coil drive frequency (37 Hz vs. 5 Hz) to  
isolate the flow signal from the process noise, the 8732EM microprocessor can actually  
scrutinize each input based on three user-defined parameters to reject the noise specific to the  
application.  
See Section 7 for the detailed description of how the signal processing works.  
Operating mode  
LOI menu path  
Detailed Setup, Sig Processing, Operating Mode  
Traditional fast keys  
Device dashboard  
1,4,3,1  
2,2,8,5,1  
The operating mode function can be set to normal mode or filter mode. If set to normal mode,  
and the signal is noisy and provides an unstable flow reading, switch to filter mode. Filter mode  
automatically uses 37 Hz coil drive frequency and activates signal processing at the factory set  
107  
Advanced Configuration Functionality  
     
Reference Manual  
00809-0100-4444, Rev AD  
Section 5: Advanced Configuration Functionality  
August 2015  
default values. When using filter mode, perform an auto zero with no flow and a full sensor.  
Either of the parameters (coil drive mode or signal processing) may still be changed individually.  
Turning signal processing off or changing the coil drive frequency to 5 Hz will automatically  
change the operating mode from filter mode to normal mode.  
Signal processing control  
LOI menu path  
Detailed Setup, Sig Processing, SP Control  
Traditional fast keys  
Device dashboard  
1,4,3,1  
2,2,8,6,1  
DSP can be turned on or off. When on is selected, the 8732EM output is derived using a running  
average of the individual flow inputs. DSP is a software algorithm that examines the quality of  
the electrode signal against user-specified tolerances. This average is updated at the rate of 10  
samples per second with a coil drive frequency of 5 Hz, and 75 samples per second with a coil  
drive frequency of 37Hz. The three parameters that make up signal processing (number of  
samples, percent limit, and time limit) are described below.  
Number of samples  
LOI menu path  
Detailed Setup, Sig Processing, SP Control, Samples:  
Traditional fast keys  
Device dashboard  
1,4,3,1  
2,2,8,6,2  
The number of samples sets the amount of time that inputs are collected and used to calculate  
the average value. Each second is divided into tenths with the number of samples equaling the  
number of increments used to calculate the average. This parameter can be configured for an  
integer value between 0 and 125. The default value is 90 samples.  
Percent rate  
LOI menu path  
Detailed Setup, Sig Processing, SP Control, % Rate:  
Traditional fast keys  
Device dashboard  
1,4,3,1  
2,2,8,6,3  
This parameter will set the tolerance band on either side of the running average, referring to  
percent deviation from the average flow rate. Values within the limit are accepted while values  
outside the limit are scrutinized to determine if they are a noise spike or an actual flow change.  
This parameter can be configured for an integer value between 0 and 100 percent. The default  
value is 2 percent.  
Time limit  
LOI menu path  
Detailed Setup, Sig Processing, SP Control, Time Limit:  
Traditional fast keys  
Device dashboard  
1,4,3,1  
2,2,8,6,4  
The time limit parameter forces the output and running average values to the new value of an  
actual flow rate change that is outside the percent limit boundaries. It thereby limits response  
time to flow changes to the time limit value rather than the length of the running average.  
108  
Advanced Configuration Functionality  
Reference Manual  
00809-0100-4444, Rev AD  
Section 5: Advanced Configuration Functionality  
August 2015  
For example, if the number of samples selected is 100, then the response time of the system is  
10 seconds. In some cases this may be unacceptable. By setting the time limit, you can force the  
8732EM to clear the value of the running average and re-establish the output and average at the  
new flow rate once the time limit has elapsed. This parameter limits the response time added to  
the loop. A suggested time limit value of two seconds is a good starting point for most  
applicable process fluids. This parameter can be configured between 0 and 256 seconds. The  
default value is 2 seconds.  
5.5  
Configure special units  
Special units are used when the application requires units that are not included in the flow units  
available from the device. Refer to Table 2-14 for a complete list of the available units.  
5.5.1  
Base volume unit  
LOI menu path  
Basic Setup, Flow Units, Special Units, Base Vol Units  
1,3,2,2,2  
2,2,1,6  
Traditional fast keys  
Device dashboard  
Base volume unit is the unit from which the conversion is being made. Set this variable to the  
appropriate option.  
5.5.2  
5.5.3  
Conversion factor  
LOI menu path  
Basic Setup, Flow Units, Special Units, Conv Factor  
1,3,2,2,3  
2,2,1,6  
Traditional fast keys  
Device dashboard  
The special units conversion factor is used to convert base units to special units. For a straight  
conversion of units from one unit of measure to a different unit of measure, the conversion  
factor is the number of base units in the new unit.  
For example, if you are converting from gallons to barrels and there are 31 gallons in a barrel,  
the conversion factor is 31.  
Base time unit  
LOI menu path  
Basic Setup, Flow Units, Special Units, Base Time Unit  
1,3,2,2,4  
2,2,1,6  
Traditional fast keys  
Device dashboard  
Base time unit provides the time unit from which to calculate the special units.  
For example, if your special units is a volume per minute, select minutes.  
109  
Advanced Configuration Functionality  
       
Reference Manual  
00809-0100-4444, Rev AD  
Section 5: Advanced Configuration Functionality  
August 2015  
5.5.4  
5.5.5  
Special volume unit  
LOI menu path  
Basic Setup, Flow Units, Special Units, Volume Unit  
1,3,2,2,1  
2,2,1,6  
Traditional fast keys  
Device dashboard  
Special volume unit enables you to display the volume unit format to which you have converted  
the base volume units. For example, if the special units are abc/min, the special volume variable  
is abc. The volume units variable is also used in totalizing the special units flow.  
Special flow rate unit  
LOI menu path  
Basic Setup, Flow Units, Special Units, Rate Unit  
1,3,2,2,5  
2,2,1,6  
Traditional fast keys  
Device dashboard  
Flow rate unit is a format variable that provides a record of the units to which you are converting.  
The Handheld Communicator will display a special units designator as the units format for your  
primary variable. The actual special units setting you define will not appear. Four characters are  
available to store the new units designation. The 8732EM LOI will display the four character  
designation as configured.  
Example  
To display flow in acre-feet per day, and acre-foot is equal to 43560 cubic feet, the procedure  
would be:  
1.  
2.  
3.  
4.  
5.  
Set the volume unit to ACFT.  
Set the base volume unit to ft3.  
Set the conversion factor to 43560.  
Set the time base unit to Day.  
Set the flow rate unit to AF/D.  
110  
Advanced Configuration Functionality  
   
Reference Manual  
00809-0100-4444, Rev AD  
Section 6: Advanced Diagnostics Configuration  
August 2015  
Section 6  
Advanced Diagnostics  
Configuration  
SMARTMeter Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 121  
6.1  
Introduction  
Rosemount Magnetic Flowmeters provide device diagnostics that detect and warn of abnormal  
situations throughout the life of the meter - from Installation to Maintenance and Meter  
Verification. With Rosemount Magnetic Flowmeter diagnostics enabled, plant availability and  
throughput can be improved, and costs through simplified installation, maintenance and trou-  
bleshooting can be reduced.  
Table 6-1. Diagnostics Availability  
Diagnostic name  
Diagnostic category Product capability  
Basic diagnostics  
Tunable Empty Pipe  
Electronics Temperature  
Coil Fault  
Process  
Standard  
Standard  
Standard  
Standard  
Standard  
Standard  
Standard  
Standard  
Maintenance  
Maintenance  
Maintenance  
Process  
Transmitter Fault  
Reverse Flow  
Electrode Saturation  
Coil Current  
Process  
Maintenance  
Maintenance  
Coil Power  
Advanced diagnostics  
High Process Noise  
Grounding and Wiring Fault  
Coated Electrode Detection  
Commanded Meter Verification  
Continuous Meter Verification  
4-20 mA Loop Verification  
Process  
Suite 1 (DA1)  
Suite 1 (DA1)  
Suite 1 (DA1)  
Suite 2 (DA2)  
Suite 2 (DA2)  
Suite 2 (DA2)  
Installation  
Process  
Meter Health  
Meter Health  
Installation  
111  
Advanced Diagnostics Configuration  
       
Reference Manual  
00809-0100-4444, Rev AD  
Section 6: Advanced Diagnostics Configuration  
August 2015  
Options for accessing Rosemount Magmeter Diagnostics  
Rosemount Magmeter Diagnostics can be accessed through the Local Operator Interface (LOI),  
a Field Communicator, and AMS® Device Manager.  
Access diagnostics through the LOI for quicker installation, maintenance,  
and meter verification  
Rosemount Magmeter Diagnostics are available through the LOI to make maintenance of every  
magmeter easier.  
Access diagnostics through AMS Device Manager  
The value of the diagnostics increases significantly when AMS is used. The user will see  
simplified screen flow and procedures on how to respond to the diagnostics messages.  
6.2  
Licensing and enabling  
All advanced diagnostics are licensed by ordering option code DA1, DA2, or both. In the event  
that a diagnostic option is not ordered, advanced diagnostics can be licensed in the field  
through the use of a license key. Each transmitter has a unique license key specific to the  
diagnostic option code. A trial license is also available to enable the advanced diagnostics. This  
temporary functionality will be automatically disabled after 30-days or when power to the  
transmitter is cycled, whichever occurs first. This trial code can be used a maximum of three  
times per transmitter. See the detailed procedures below for entering the license key and  
enabling the advanced diagnostics. To obtain a permanent or trial license key, contact your local  
Rosemount representative.  
6.2.1  
Licensing the 8732EM diagnostics  
For licensing the advanced diagnostics, follow the steps below.  
1.  
2.  
Power up the 8732EM transmitter.  
Verify the software version is 5.4.4 software or later.  
LOI menu path  
Traditional Fast Keys  
Device dashboard  
Detailed Setup, Device Info, Revision Num  
1,4,6,10, -- (1)  
1,8,2  
1. This item is in a list format without numeric labels.  
3.  
Determine the Device ID.  
LOI menu path  
Detailed Setup, Device Info, Device ID  
Traditional Fast Keys  
Device dashboard  
1,4,6,6  
1,8,1,5  
4.  
Obtain a license key from a local Rosemount representative.  
112  
Advanced Diagnostics Configuration  
   
Reference Manual  
00809-0100-4444, Rev AD  
Section 6: Advanced Diagnostics Configuration  
August 2015  
5.  
Enter license key.  
LOI menu path  
Diagnostics, Advanced Diagnostics, Licensing, License Key, License Key  
Traditional Fast Keys 1,2,3,4,2,2  
Device dashboard  
1,8,5,4  
6.  
Enable Advanced Diagnostics.  
LOI menu path  
Diagnostics, Diag Controls  
Traditional Fast Keys 1,2,3  
Device dashboard  
2,2,5,1  
6.3  
Tunable empty pipe detection  
The tunable empty pipe detection provides a means of minimizing issues and false readings  
when the pipe is empty. This is most important in batching applications where the pipe may run  
empty with some regularity. If the pipe is empty, this diagnostic will activate, set the flow rate to  
0, and deliver an alert.  
Turning empty pipe on/off  
LOI menu path  
Diagnostics, Diag Controls, Empty Pipe  
Traditional Fast Keys  
Device dashboard  
1,2,1,1  
2,2,5,1,1  
The tunable empty pipe detection diagnostic can be turned on or off as required by the  
application. The empty pipe diagnostic is shipped turned “On” by default.  
6.3.1  
Tunable empty pipe parameters  
The tunable empty pipe diagnostic has one read-only parameter, and two parameters that can  
be custom configured to optimize the diagnostic performance.  
Empty pipe (EP) value  
LOI menu path  
Diagnostics, Variables, Empty Pipe  
Traditional Fast Keys  
Device dashboard  
1,2,2,4,1  
2,2,5,3,1  
This parameter shows the current empty pipe value. This is a read-only value. This number is a  
unit-less number and is calculated based on multiple installation and process variables such as  
sensor type, line size, process fluid properties, and wiring. If the empty pipe value exceeds the  
empty pipe trigger level for a specified number of updates, then the empty pipe diagnostic alert  
will activate.  
113  
Advanced Diagnostics Configuration  
   
Reference Manual  
00809-0100-4444, Rev AD  
Section 6: Advanced Diagnostics Configuration  
August 2015  
Empty pipe (EP) trigger level  
LOI menu path  
Diagnostics, Basic Diagnostics, Empty Pipe, EP Trig Level  
Traditional Fast Keys  
Device dashboard  
1,2,2,4,2  
2,2,5,3,2  
Limits: 3 to 2000  
Empty pipe trigger level is the threshold limit that the empty pipe value must exceed before the  
empty pipe diagnostic alert activates. The default setting from the factory is 100.  
Empty pipe (EP) counts  
LOI menu path  
Diagnostics, Basic Diagnostics, Empty Pipe, EP Counts  
Traditional Fast Keys  
Device dashboard  
1,2,2,4,3  
2,2,5,3,3  
Limits: 2 to 50  
Empty pipe counts is the number of consecutive updates that the transmitter must receive  
where the empty pipe value exceeds the empty pipe trigger level before the empty pipe  
diagnostic alert activates. The default setting from the factory is 5.  
6.3.2  
Optimizing tunable empty pipe  
The tunable empty pipe diagnostic is set at the factory to properly diagnose most applications.  
If this diagnostic activates, the following procedure can be followed to optimize the empty pipe  
diagnostic for the application.  
Example  
1.  
2.  
3.  
Record the empty pipe value with a full pipe condition.  
Example: Full reading = 0.2  
Record the empty pipe value with an empty pipe condition.  
Example: Empty reading = 80.0  
Set the empty pipe trigger level to a value between the full and empty readings. For  
increased sensitivity to empty pipe conditions, set the trigger level to a value closer to  
the full pipe value.  
Example: Set the trigger level to 25.0  
4.  
Set the empty pipe counts to a value corresponding to the desired sensitivity level for  
the diagnostic. For applications with entrained air or potential air slugs, less sensitivity  
may be desired.  
Example: Set the counts to 10  
114  
Advanced Diagnostics Configuration  
 
Reference Manual  
00809-0100-4444, Rev AD  
Section 6: Advanced Diagnostics Configuration  
August 2015  
6.4  
Electronics temperature  
The 8732EM continuously monitors the temperature of the internal electronics. If the measured  
electronics temperature exceeds the operating limits of –40 to 140 °F (–40 to 60 °C) the  
transmitter will go into alarm and generate an alert.  
6.4.1  
Turning electronics temperature on/off  
LOI menu path  
Diagnostics, Diag Controls, Elect Temp  
1,2,1,1, -- (1)  
Traditional Fast Keys  
Device dashboard  
2,2,5,1,4  
1. This item is in a list format without numeric labels.  
The electronics temperature diagnostic can be turned on or off as required by the applica-  
tion.The electronics temperature diagnostic will be turned on by default.  
6.4.2  
Electronics temperature parameters  
The electronics temperature diagnostic has one read-only parameter. It does not have any  
configurable parameters.  
Electronics temperature  
LOI menu path  
Traditional Fast Keys 1,2,4,2  
Device dashboard 2,2,5,7  
Diagnostics, Variables, Elect Temp  
This parameter shows the current temperature of the electronics. This is a read-only value.  
6.5  
Ground/wiring fault detection  
The transmitter continuously monitors signal amplitudes over a wide range of frequencies. For  
the ground/wiring fault detection diagnostic, the transmitter specifically looks at the signal  
amplitude at frequencies of 50 Hz and 60 Hz which are the common AC cycle frequencies found  
throughout the world. If the amplitude of the signal at either of these frequencies exceeds 5 mV,  
that is an indication that there is a ground or wiring issue and that stray electrical signals are  
getting into the transmitter. The diagnostic alert will activate indicating that the ground and  
wiring of the installation should be carefully reviewed.  
The ground/wiring fault detection diagnostic provides a means of verifying installations are  
done correctly. If the installation is not wired or grounded properly, this diagnostic will activate  
and deliver an alert. This diagnostic can also detect if the grounding is lost over-time due to  
corrosion or another root cause.  
115  
Advanced Diagnostics Configuration  
       
Reference Manual  
00809-0100-4444, Rev AD  
Section 6: Advanced Diagnostics Configuration  
August 2015  
6.5.1  
Turning ground/wiring fault on/off  
LOI menu path  
Diagnostics, Diag Controls, Ground/Wiring  
1,2,1,1, -- (1)  
Traditional Fast Keys  
Device dashboard  
2,2,5,1,3  
1. This item is in a list format without numeric labels.  
The ground/wiring fault detection diagnostic can be turned on or off as required by the  
application. If the advanced diagnostics suite 1 (DA1 Option) was ordered, then the  
ground/wiring fault detection diagnostic will be turned on. If DA1 was not ordered or licensed,  
this diagnostic is not available.  
6.5.2  
Ground/wiring fault parameters  
The ground/wiring fault detection diagnostic has one read-only parameter. It does not have any  
configurable parameters.  
Line noise  
LOI menu path  
Traditional Fast Keys 1,2,4,3  
Device dashboard  
2,2,5,4,1  
Diagnostics, Variables, Line Noise  
The line noise parameter shows the amplitude of the line noise. This is a read-only value. This  
number is a measure of the signal strength at 50/60 Hz. If the line noise value exceeds 5 mV,  
then the ground/wiring fault diagnostic alert will activate.  
6.6  
High process noise detection  
The high process noise diagnostic detects if there is a process condition causing an unstable or  
noisy reading that is not an actual flow variation. A common cause of high process noise is slurry  
flow, like pulp stock or mining slurries. Other conditions that cause this diagnostic to activate  
are high levels of chemical reaction or entrained gas in the liquid. If unusual noise or flow  
variation is seen, this diagnostic will activate and deliver an alert. If this situation exists and is left  
without remedy, it will add additional uncertainty and noise to the flow reading.  
6.6.1  
Turning high process noise on/off  
LOI menu path  
Diagnostics, Diag Controls, Process Noise  
1,2,1,1, -- (1)  
Traditional Fast Keys  
Device dashboard  
2,2,5,1,2  
1. This item is in a list format without numeric labels.  
The high process noise diagnostic can be turned on or off as required by the application. If the  
advanced diagnostics suite 1 (DA1 Option) was ordered, then the high process noise diagnostic  
will be turned on. If DA1 was not ordered or licensed, this diagnostic is not available.  
116  
Advanced Diagnostics Configuration  
       
Reference Manual  
00809-0100-4444, Rev AD  
Section 6: Advanced Diagnostics Configuration  
August 2015  
6.6.2  
High process noise parameters  
The high process noise diagnostic has two read-only parameters. It does not have any  
configurable parameters. This diagnostic requires that flow be present in the pipe and the  
velocity be greater than1 ft/s (0.3 m/s).  
5 Hz signal to noise ratio (SNR)  
LOI menu path  
Traditional Fast Keys 1,2,4,4  
Device dashboard  
2,2,5,5,1  
Diagnostics, Variables, 5Hz SNR  
This parameter shows the value of the signal to noise ratio at the coil drive frequency of 5 Hz.  
This is a read-only value. This number is a measure of the signal strength at 5 Hz relative to the  
amount of process noise. If the transmitter is operating in 5 Hz mode, and the signal to noise  
ratio remains below 25 for one minute, then the high process noise diagnostic alert will activate.  
37 Hz signal to noise ratio (SNR)  
LOI menu path  
Traditional Fast Keys 1,2,4,5  
Device dashboard  
2,2,5,5,2  
Diagnostics, Variables, 37Hz SNR  
This parameter shows the current value of the signal to noise ratio at the coil drive frequency of  
37 Hz. This is a read-only value. This number is a measure of the signal strength at 37 Hz relative  
to the amount of process noise. If the transmitter is operating in 37 Hz mode, and the signal to  
noise ratio remains below 25 for one minute, then the high process noise diagnostic alert will  
activate.  
6.7  
Coated electrode detection  
The coated electrode detection diagnostic provides a means of monitoring insulating coating  
buildup on the measurement electrodes. If coating is not detected, buildup over time can lead  
to a compromised flow measurement. This diagnostic can detect if the electrode is coated and if  
the amount of coating is affecting the flow measurement. There are two levels of electrode  
coating.  
Limit 1 indicates when coating is starting to occur, but has not compromised the flow  
measurement.  
Limit 2 indicates when coating is affecting the flow measurement and the meter should be  
serviced immediately.  
6.7.1  
Turning coated electrode detection on/off  
LOI menu path  
Traditional Fast Keys 1,2,3,1  
Device dashboard  
2,2,5,1,5  
Diagnostics, Diag Controls, Elec Coating  
The coated electrode detection diagnostic can be turned on or off as required by the  
application. If the advanced diagnostics suite 1 (DA1 option) was ordered, then the coated  
117  
Advanced Diagnostics Configuration  
     
Reference Manual  
00809-0100-4444, Rev AD  
Section 6: Advanced Diagnostics Configuration  
August 2015  
electrode detection diagnostic will be turned on. If DA1 was not ordered or licensed, this  
diagnostic is not available.  
6.7.2  
Coated electrode parameters  
The coated electrode detection diagnostic has four parameters. Two are read-only and two are  
configurable parameters. The electrode coating parameters need to be initially monitored to  
accurately set the electrode coating limit levels for each application.  
Electrode coating (EC) value  
LOI menu path  
Diagnostics, Advanced Diag, Elec Coating, EC Current Val  
Traditional Fast Keys  
Device dashboard  
1,2,3,1,1  
2,2,5,6,1  
The electrode coating value reads the value of the coated electrode detection diagnostic.  
Electrode coating (EC) level 1 limit  
LOI menu path  
Diagnostics, Advanced Diag, Elec Coat, EC Limit 1  
Traditional Fast Keys  
Device dashboard  
1,2,3,1,2  
2,2,5,6,2  
Set the criteria for the electrode coating limit 1 which indicates when coating is starting to  
occur, but has not compromised the flow measurement. The default value for this parameter is  
1000 k Ohm.  
Electrode coating (EC) level 2 limit  
LOI menu path  
Traditional Fast Keys 1,2,3,1,3  
Device dashboard 2,2,5,6,3  
Diagnostics, Advanced Diag, Elec Coat, EC Limit 2  
Set the criteria for the electrode coating limit 2 which indicates when coating is affecting the  
flow measurement and the meter should be serviced immediately. The default value for this  
parameter is 2000 k Ohm.  
Maximum electrode coating (EC)  
LOI menu path  
Diagnostics, Advanced Diag, Elec Coat, EC Max Value  
Traditional Fast Keys  
Device dashboard  
1,2,3,1,4  
2,2,5,6,4  
The maximum electrode coating value reads the maximum value of the coated electrode  
detection diagnostic since the last maximum value reset.  
118  
Advanced Diagnostics Configuration  
 
Reference Manual  
00809-0100-4444, Rev AD  
Section 6: Advanced Diagnostics Configuration  
August 2015  
Clear maximum electrode value  
LOI menu path  
Traditional Fast Keys 1,2,3,1,5  
Device dashboard  
2,2,5,6,5  
Diagnostics, Advanced Diag, Elec Coat, Reset Max Val  
Use this method to reset the maximum electrode coating value.  
6.8  
4-20 mA loop verification  
The 4-20 mA loop verification diagnostic provides a means of verifying the analog output loop is  
functioning properly. This is a manually initiated diagnostic test. This diagnostic checks the  
integrity of the analog loop and provides a health status of the circuit. If the verification does not  
pass, this will be highlighted in the results given at the end of the check.  
The 4-20 mA loop verification diagnostic is useful for testing the analog output when errors are  
suspected. The diagnostic tests the analog loop at five different mA output levels:  
4 mA  
12 mA  
20 mA  
Low alarm level  
High alarm level  
6.8.1  
6.8.2  
Initiating 4-20 mA loop verification  
LOI menu path  
Diagnostics, Advanced Diag, 4-20mA Verify, 4-20mA Verify  
Traditional Fast Keys 1,2,3,3,1  
Device dashboard  
3,4,3,1  
The 4-20 mA loop verification diagnostic can be initiated as required by the application. If the  
advanced diagnostics suite 2 (DA2 Option) was ordered, then the 4-20 mA loop verification  
diagnostic will be available. If DA2 was not ordered or licensed, this diagnostic is not available.  
4-20 mA loop verification parameters  
The 4-20 mA loop verification diagnostic has five read-only parameters plus an overall test  
result. It does not have any configurable parameters.  
4-20 mA loop verification test result  
LOI menu path  
Traditional Fast Keys 1,2,3,3,2  
Device dashboard 3,4,3  
Diagnostics, Advanced Diag, 4-20mA Verify, View Results  
Shows the results of the 4-20 mA loop verification test as either passed or failed.  
119  
Advanced Diagnostics Configuration  
       
Reference Manual  
00809-0100-4444, Rev AD  
Section 6: Advanced Diagnostics Configuration  
August 2015  
4 mA measurement  
LOI menu path  
N/A  
Traditional Fast Keys N/A  
Device dashboard  
3,4,3,2  
Shows the measured value of the 4 mA loop verification test.  
12 mA measurement  
LOI menu path  
N/A  
Traditional Fast Keys N/A  
Device dashboard  
3,4,3,3  
Shows the measured value of the 12 mA loop verification test.  
20 mA measurement  
LOI menu path  
N/A  
Traditional Fast Keys N/A  
Device dashboard  
3,4,3,4  
Shows the measured value of the 20 mA loop verification test.  
Low alarm measurement  
LOI menu path  
N/A  
Traditional Fast Keys N/A  
Device dashboard  
3,4,3,5  
Shows the measured value of the low alarm verification test.  
High alarm measurement  
LOI menu path  
N/A  
Traditional Fast Keys N/A  
Device dashboard  
3,4,3,6  
Shows the measured value of the high alarm verification test.  
6.9  
SMARTMeter Verification  
The SMART Meter Verification diagnostic provides a means of verifying the flowmeter is within  
calibration without removing the sensor from the process. This diagnostic test provides a review  
of the transmitter and sensor's critical parameters as a means to document verification of  
calibration. The results of this diagnostic provide the deviation amount from expected values  
and a pass/fail summary against user-defined criteria for the application and conditions. The  
SMART Meter Verification diagnostic can be configured to run continuously in the background  
during normal operation, or it can be manually initiated as required by the application.  
120  
Advanced Diagnostics Configuration  
 
Reference Manual  
00809-0100-4444, Rev AD  
Section 6: Advanced Diagnostics Configuration  
August 2015  
6.9.1  
Sensor baseline (signature) parameters  
The SMART Meter Verification diagnostic functions by taking a baseline sensor signature and  
then comparing measurements taken during the verification test to these baseline results.  
The sensor signature describes the magnetic behavior of the sensor. Based on Faraday's law, the  
induced voltage measured on the electrodes is proportional to the magnetic field strength.  
Thus, any changes in the magnetic field will result in a calibration shift of the sensor. Having the  
transmitter take an initial sensor signature when first installed will provide the baseline for the  
verification tests that are done in the future. There are three specific measurements that are  
stored in the transmitter's non-volatile memory that are used when performing the calibration  
verification.  
Coil circuit resistance  
LOI menu path  
Diagnostics, Advanced Diag, Meter Verify, Sensr Baseline, Values, Coil Resist  
Traditional Fast Keys  
Device dashboard  
1,2,3,2,3,1,1  
2,2,6,1,1  
The coil circuit resistance is a measurement of the coil circuit health. This value is used as a  
baseline to determine if the coil circuit is still operating correctly.  
Coil inductance (signature)  
LOI menu path  
Diagnostics, Advanced Diag, Meter Verify, Sensr Baseline, Values, Inductnce  
Traditional Fast Keys  
Device dashboard  
1,2,3,2,3,1,2  
2,2,6,1,2  
The coil inductance is a measurement of the magnetic field strength. This value is used as a  
baseline to determine if a sensor calibration shift has occurred.  
Electrode circuit resistance  
LOI menu path  
Diagnostics, Advanced Diag, Meter Verify, Sensr Baseline, Values, Electrode  
Res  
Traditional Fast Keys  
Device dashboard  
1,2,3,2,3,1,3  
2,2,6,1,3  
The electrode circuit resistance is a measurement of the electrode circuit health. This value is  
used as a baseline to determine if the electrode circuit is still operating correctly.  
6.9.2  
Establishing the sensor baseline (signature)  
The first step in running the SMART Meter Verification test is establishing the reference  
signature that the test will use as the baseline for comparison. This is accomplished by having  
the transmitter take a signature of the sensor.  
121  
Advanced Diagnostics Configuration  
   
Reference Manual  
00809-0100-4444, Rev AD  
Section 6: Advanced Diagnostics Configuration  
August 2015  
Reset baseline (re-signature meter)  
LOI menu path  
Traditional Fast Keys 1,2,3,2,3,2  
Device dashboard  
2,2,6,1,4  
Diagnostics, Advanced Diag, Meter Verify, Sensr Baseline, Reset Baseline  
Having the transmitter take an initial sensor signature when first installed will provide the  
baseline for the verification tests that are done in the future. The sensor signature should be  
taken during the start-up process when the transmitter is first connected to the sensor, with a  
full line, and ideally with no flow in the line. Running the sensor signature procedure when there  
is flow in the line is permissible, but this may introduce some noise into the electrode circuit  
resistance measurement. If an empty pipe condition exists, then the sensor signature should  
only be run for the coils.  
Once the sensor signature process is complete, the measurements taken during this procedure  
are stored in non-volatile memory to prevent loss in the event of a power interruption to the  
meter. This initial sensor signature is required for both manual and continuous SMART Meter  
Verification.  
Recall values (recall last saved)  
LOI menu path  
Traditional Fast Keys 1,2,3,2,3,3  
Device dashboard 2,2,6,1,5  
Diagnostics, Advanced Diag, Meter Verify, Sensr Baseline, Recall Values  
In the event that the sensor baseline was reset accidentally or incorrectly, this function will  
restore the previously saved sensor baseline values.  
6.9.3  
SMART Meter Verification test criteria  
The Smart Meter Verification diagnostic provides the ability to customize the test criteria to  
which the verification must be tested. The test criteria can be set for each of the flow conditions  
discussed above.  
No flow limit  
LOI menu path  
Traditional Fast Keys 1,2,3,2,4,1  
Device dashboard  
2,2,6,3,1  
Diagnostics, Advanced Diag, Meter Verify, Test Criteria, No Flow  
Set the test criteria for the no flow condition. The factory default for this value is set to five  
percent with limits configurable between one and ten percent. This parameter applies to  
manually initiated test only.  
122  
Advanced Diagnostics Configuration  
 
Reference Manual  
00809-0100-4444, Rev AD  
Section 6: Advanced Diagnostics Configuration  
August 2015  
Flowing full limit  
LOI menu path  
Diagnostics, Advanced Diag, Meter Verify, Test Criteria, Flowing Full  
Traditional Fast Keys 1,2,3,2,4,2  
Device dashboard  
2,2,6,3,2  
Set the test criteria for the flowing, full condition. The factory default for this value is set to five  
percent with limits configurable between one and ten percent. This parameter applies to  
manually initiated tests only.  
Empty pipe limit  
LOI menu path  
Traditional Fast Keys 1,2,3,2,4,3  
Device dashboard 2,2,6,3,3  
Diagnostics, Advanced Diag, Meter Verify, Test Criteria, Empty Pipe  
Set the test criteria for the empty pipe condition. The factory default for this value is set to five  
percent with limits configurable between one and ten percent. This parameter applies to  
manually initiated test only.  
Continuous limit  
LOI menu path  
Diagnostics, Advanced Diag, Meter Verify, Test Criteria, Continual  
Traditional Fast Keys  
Device dashboard  
1,2,3,2,4,4  
2,2,6,4,1  
Set the test criteria for the continuous SMART Meter Verification diagnostic. The factory default  
for this value is set to five percent with limits configurable between two and ten percent. If the  
tolerance band is set too tightly, under empty pipe conditions or noisy flowing conditions, a  
false failure of the transmitter test may occur.  
6.10  
Run manual SMART Meter Verification  
LOI menu path  
Diagnostics, Advanced Diag, Meter Verify, Run Meter Ver  
Traditional Fast Keys  
Device dashboard  
1,2,3,2,1  
1,6  
The SMART Meter Verification diagnostic will be available if the advanced diagnostic suite (DA2)  
was ordered. If DA2 was not ordered or licensed, this diagnostic will not be available. This  
method will initiate the manual meter verification test.  
123  
Advanced Diagnostics Configuration  
 
Reference Manual  
00809-0100-4444, Rev AD  
Section 6: Advanced Diagnostics Configuration  
August 2015  
6.10.1  
Test conditions  
SMART Meter Verification can be initiated under three possible test conditions. This parameter  
is set at the time that the sensor baseline or SMART Meter Verification test is manually initiated.  
No flow  
Run the SMART Meter Verification test with a full pipe and no flow in the line. Running the  
SMART Meter Verification test under this condition provides the most accurate results and the  
best indication of magnetic flowmeter health.  
Flowing full  
Run the SMART Meter Verification test with a full pipe and flow in the line. Running the SMART  
Meter Verification test under this condition provides the ability to verify the magnetic  
flowmeter health without shutting down the process flow in applications when a shutdown is  
not possible. Running the diagnostic under flowing conditions can cause a false test failure if  
there is significant process noise present.  
Empty pipe  
Run the SMART Meter Verification test with an empty pipe. Running the SMART Meter  
Verification test under this condition provides the ability to verify the magnetic flowmeter  
health with an empty pipe. Running the verification diagnostic under empty pipe conditions will  
not check the electrode circuit health.  
6.10.2  
Test scope  
The manually initiated SMART Meter Verification test can be used to verify the entire flowmeter  
installation or individual parts such as the transmitter or sensor. This parameter is set at the time  
that the SMART Meter Verification test is manually initiated. There are three test scopes from  
which to choose.  
All  
Run the SMART Meter Verification test and verify the entire flowmeter installation. This  
parameter results in the diagnostic performing the transmitter calibration verification, sensor  
calibration verification, coil health check, and electrode health check. Transmitter calibration  
and sensor calibration are verified to the percentage associated with the test condition selected  
when the test was initiated. This setting applies to manually initiated tests only.  
Transmitter  
Run the SMART Meter Verification test on the transmitter only. This results in the verification  
test only checking the transmitter calibration to the limits of the test criteria selected when the  
verification test was initiated. This setting applies to manually initiated tests only.  
Sensor  
Run the SMART Meter Verification test on the sensor only. This results in the verification test  
checking the sensor calibration to the limits of the test criteria selected when the SMART Meter  
Verification test was initiated, verifying the coil circuit health, and the electrode circuit health.  
This setting applies to manually initiated tests only.  
124  
Advanced Diagnostics Configuration  
   
Reference Manual  
00809-0100-4444, Rev AD  
Section 6: Advanced Diagnostics Configuration  
August 2015  
6.11  
Continuous SMART Meter Verification  
LOI menu path  
Traditional Fast Keys 1,2,1,3  
Device dashboard  
2,2,6,4  
Diagnostics, Diag Controls, Cont Meter Ver  
Continuous SMART Meter Verification can be used to monitor and verify the health of the  
flowmeter system. The continuous SMART Meter Verification will not report results until 30  
minutes after powering up to ensure the system is stable and to avoid false failures.  
6.11.1  
Test scope  
Continuous SMART Meter Verification can be configured to monitor the sensor coils, electrodes,  
transmitter calibration, and analog output. All of these parameters can be individually enabled  
or disabled. These parameters apply to continuous SMART Meter Verification only.  
Coils  
LOI menu path  
Diagnostics, Diag Controls, Cont Meter Ver, Coils  
Traditional Fast Keys  
Device dashboard  
1,2,1,3,1  
2,2,6,4,2,1  
Continuously monitor the sensor coil circuit by enabling this continuous SMART Meter  
Verification parameter.  
Electrodes  
LOI menu path  
Diagnostics, Diag Controls, Cont Meter Ver, Electrodes  
Traditional Fast Keys  
Device dashboard  
1,2,1,3,2  
2,2,6,4,2,2  
Continuously monitor the electrode resistance by enabling this continuous SMART Meter  
Verification parameter.  
Transmitter  
LOI menu path  
Diagnostics, Diag Controls, Cont Meter Ver, Transmitter  
Traditional Fast Keys  
Device dashboard  
1,2,1,3,3  
2,2,6,4,2,3  
Continuously monitor the transmitter calibration by enabling this continuous SMART Meter  
Verification parameter.  
Analog output  
LOI menu path  
Diagnostics, Diag Controls, Cont Meter Ver, Analog Output  
Traditional Fast Keys  
Device dashboard  
1,2,1,3,4  
2,2,6,4,2,4  
Continuously monitor the analog output signal by enabling this continuous SMART Meter  
Verification parameter.  
125  
Advanced Diagnostics Configuration  
   
Reference Manual  
00809-0100-4444, Rev AD  
Section 6: Advanced Diagnostics Configuration  
August 2015  
6.12  
SMART Meter Verification test results  
If the SMART Meter Verification test is manually initiated, the transmitter will make several  
measurements to verify the transmitter calibration, sensor calibration, coil circuit health, and  
electrode circuits health. The results of these tests can be reviewed and recorded on the Manual  
Calibration Verification Results form found on page 132. Print the "Manual Calibration  
Verification Results" form and enter the test results as you view them. The completed form can  
be used to validate that the meter is within the required calibration limits to comply with  
governmental regulatory agencies.  
Depending on the method used to view the results, they will be displayed in either a menu  
structure, as a method, or in the report format. When using the HART® Field Communicator,  
each individual parameter can be viewed as a menu item. When using the LOI, the parameters  
are viewed as a method using the left arrow key to cycle through the results. In AMS, the  
calibration verification report is populated with the necessary data eliminating the need to  
manually complete the form found on page 132.  
When using AMS there are two possible methods that can be used to print the report:  
Method one involves using the print functionality within the EDDL screen. This print  
functionality essentially prints a screen shot of the report.  
Method two involves using the print feature within AMS while on the Maintenance  
Service Tools screen. This will result in a printout of all of the maintenance information.  
Page one of the report contains the meter verification result data.  
The results are displayed in the order found in the table below. Each parameter displays a value  
used by the diagnostic to evaluate meter health.  
Table 6-2. Manual Smart Meter Verification Test Parameters  
Traditional Device Dashboard  
LOI menu path  
(Diagnostics, Variables, MV Results, Manual Results)  
Parameter  
Fast keys  
Fast keys  
1
2
3
4
5
6
7
8
9
Test Condition  
Test Criteria  
Test Condition  
Test Criteria  
MV Results  
1,2,3,2,2,1,1  
1,2,3,2,2,1,2  
1,2,3,2,2,1,3  
1,2,3,2,2,1,4  
1,2,3,2,2,1,5  
1,2,3,2,2,1,6  
1,2,3,2,2,1,7  
1,2,3,2,2,1,8  
1,2,3,2,2,1,9  
1,2,3,2,2,1,--(1)  
1,2,3,2,2,1,--(1)  
3,4,1,5,4,1  
3,4,1,3  
8714i Test Result  
Simulated Velocity  
Actual Velocity  
3,4,1,5,4,2  
3,4,1,5,3,1  
3,4,1,5,3,2  
3,4,1,5,3,3  
3,4,1,5,3,4  
3,4,1,5,2,3  
3,4,1,5,2,4  
3,4,1,5,1,3  
3,4,1,5,1,6  
Sim Velocity  
ActualVelocity  
Flow Sim Dev  
Xmtr Cal Verify  
Sensor Cal Dev  
Sensor Cal  
Velocity Deviation  
Xmtr Cal Test Result  
Sensor Cal Deviation  
Sensor Cal Test Result  
10 Coil Circuit Test Result  
Coil Circuit  
11 Electrode Circuit Test  
Result  
Electrode Ckt  
1. To get to this value, use the down arrow to scroll through the menu list.  
126  
Advanced Diagnostics Configuration  
   
Reference Manual  
00809-0100-4444, Rev AD  
Section 6: Advanced Diagnostics Configuration  
August 2015  
Table 6-3. Continuous SMART Meter Verification Test Parameters  
LOI menu path  
Traditional Device Dashboard  
Parameter  
Fast keys  
Fast keys  
(Diagnostics, Variables, MV Results, Continual Res,...)  
1
2
Continuous Limit  
Simulated Velocity  
Actual Velocity  
Velocity Deviation  
Coil Signature  
Test Criteria  
Sim Velocity  
ActualVelocity  
Flow Sim Dev  
Coil Inductnce  
Sensor Cal Dev  
Coil Resist  
1,2,3,2,2,2,1  
1,2,3,2,2,2,2  
1,2,3,2,2,2,3  
1,2,3,2,2,2,4  
1,2,3,2,2,2,5  
1,2,3,2,2,2,6  
1,2,3,2,2,2,7  
1,2,3,2,2,2,8  
1,2,3,2,2,2,9  
1,2,3,2,2,2,--(1)  
1,2,3,2,2,2,--(1)  
3,4,2,2  
3,2,4,3,1  
3,2,4,3,2  
3,2,4,3,3  
3,2,4,2,2  
3,2,4,2,3  
3,2,4,2,1  
3,2,4,2,4  
3,2,4,4,1  
3,2,4,4,2  
3,2,4,4,3  
3
4
5
6
Sensor Cal Deviation  
Coil Resistance  
Electrode Resistance  
mA Expected  
7
8
Electrode Res  
4-20 mA Expect  
4-20 mA Actual  
AO FB Dev  
9
10  
11  
mA Actual  
mA Deviation  
1. To get to this value, use the down arrow to scroll through the menu list.  
6.13  
SMART Meter Verification measurements  
The SMART Meter Verification test will make measurements of the coil resistance, coil signature,  
and electrode resistance and compare these values to the values taken during the sensor  
signature process to determine the sensor calibration deviation, the coil circuit health, and the  
electrode circuit health. In addition, the measurements taken by this test can provide additional  
information when troubleshooting the meter.  
Coil circuit resistance  
Manual: Diagnostics, Advanced Diag, Meter Verify, Measurements, Manual  
Measure, Coil Resist  
LOI menu path  
Continuous: Diagnostics, Advanced Diag, Meter Verify, Measurements,  
Continual Meas, Coil Resist  
Traditional Fast Keys  
Device dashboard  
Manual: 1,2,3,2,5,1,1  
Continuous: 1,2,3,2,5,2,1  
Manual: 3,4,1,3,1  
Continuous: 3,2,4,2,1  
The coil circuit resistance is a measurement of the coil circuit health. This value is compared to  
the coil circuit resistance baseline measurement taken during the sensor signature process to  
determine coil circuit health. This value can be continuously monitored using continuous  
SMART Meter Verification.  
127  
Advanced Diagnostics Configuration  
   
Reference Manual  
00809-0100-4444, Rev AD  
Section 6: Advanced Diagnostics Configuration  
August 2015  
Coil signature  
Manual: Diagnostics, Advanced Diag, Meter Verify, Measurements, Manual  
Measure, Coil Inductnce  
LOI menu path  
Continuous: Diagnostics, Advanced Diag, Meter Verify, Measurements,  
Continual Meas, Coil Inductnce  
Traditional Fast Keys  
Device dashboard  
Manual: 1,2,3,2,5,1,2  
Continuous: 1,2,3,2,5,2,2  
Manual: 3,4,1,3,2  
Continuous: 3,2,4,2,2  
The coil signature is a measurement of the magnetic field strength. This value is compared to  
the coil signature baseline measurement taken during the sensor signature process to  
determine sensor calibration deviation. This value can be continuously monitored using  
continuous SMART Meter Verification.  
Electrode circuit resistance  
Manual: Diagnostics, Advanced Diag, Meter Verify, Measurements, Manual  
Measure, Electrode Res  
LOI menu path  
Continuous: Diagnostics, Advanced Diag, Meter Verify, Measurements,  
Continual Meas, Electrode Res  
Traditional Fast Keys  
Device dashboard  
Manual: 1,2,3,2,5,1,3  
Continuous: 1,2,3,2,5,2,3  
Manual: 3,4,1,3,3  
Continuous: 3,2,4,2,4  
The electrode circuit resistance is a measurement of the electrode circuit health. This value is  
compared to the electrode circuit resistance baseline measurement taken during the sensor  
signature process to determine electrode circuit health. This value can be continuously  
monitored using continuous SMART Meter Verification.  
Actual velocity  
Manual: Diagnostics, Advanced Diag, Meter Verify, Measurements, Manual  
Measure, Actual Velocity  
LOI menu path  
Continuous: Diagnostics, Advanced Diag, Meter Verify, Measurements,  
Continual Meas, Actual Velocity  
Traditional Fast Keys  
Device dashboard  
Manual: 1,2,3,2,2,1,5  
Continuous: 1,2,3,2,5,2,4  
Manual: 3,4,1,5,3,2  
Continuous: 3,2,4,3,2  
The actual velocity is a measurement of the simulated velocity signal. This value is compared to  
the simulated velocity to determine transmitter calibration deviation. This value can be  
continuously monitored using continuous SMART Meter Verification.  
128  
Advanced Diagnostics Configuration  
Reference Manual  
00809-0100-4444, Rev AD  
Section 6: Advanced Diagnostics Configuration  
August 2015  
Flow simulation deviation  
Manual: Diagnostics, Variables, MV Results, Manual Results, Flow Sim Dev  
LOI menu path  
Continuous: Diagnostics, Advanced Diag, Meter Verify, Measurements,  
Continual Meas, Flow Sim Dev  
Traditional Fast Keys  
Device dashboard  
Manual: 1,2,3,2,2,1,6  
Continuous: 1, 2, 3, 2, 2, 2, 4  
Manual: 3,4,1,5,3,3  
Continuous: 3,2,4,3,3  
The flow simulation deviation is a measurement of the percent difference between the  
simulated velocity and the actual measured velocity from the transmitter calibration  
verification test. This value can be continuously monitored using continuous SMART Meter  
Verification.  
4-20 mA expected value  
Manual: Diagnostics, Advanced Diag, 4-20 mA Verify, View Results  
LOI menu path  
Continuous: Diagnostics, Advanced Diag, Meter Verify, Measurements,  
Continual Meas, 4-20 mA Expect  
Traditional Fast Keys  
Device dashboard  
Manual: 1,2,3,3,2  
Continuous: 1,2,3,2,5,2,5  
Manual: N/A  
Continuous: 3,2,4,4,1  
The 4-20 mA expected value is the simulated analog signal used for the 4-20 mA meter  
verification test. This value is compared to the actual analog signal to determine analog output  
deviation. This value can be continuously monitored using continuous SMART Meter  
Verification.  
4-20 mA actual value  
Manual: Diagnostics, Advanced Diag, 4-20 mA Verify, View Results  
LOI menu path  
Continuous: Diagnostics, Advanced Diag, Meter Verify, Measurements,  
Continual Meas, 4-20 mA Actual  
Traditional Fast Keys  
Device dashboard  
Manual: 1,2,3,3,2  
Continuous: 1,2,3,2,5,2,6  
Manual: N/A  
Continuous: 3,2,4,4,1  
The 4-20 mA actual value is the measured analog signal used for the 4-20 mA meter verification  
test. This value is compared to the simulated analog signal to determine analog output  
deviation. This value can be continuously monitored using continuous SMART Meter  
Verification.  
129  
Advanced Diagnostics Configuration  
Reference Manual  
00809-0100-4444, Rev AD  
Section 6: Advanced Diagnostics Configuration  
August 2015  
4-20 mA deviation  
Manual: Diagnostics, Advanced Diag, 4-20 mA Verify, View Results  
Continuous: Diagnostics, Advanced Diag, Meter Verify, Measurements,  
LOI menu path  
Continual Meas, AO FB Dev  
Traditional Fast Keys  
Manual: 1,2,3,3,2  
Continuous: 1,2,3,2,2,2, --(1)  
Manual: N/A  
Device dashboard  
Continuous: 3,2,4,4,1  
1. To get to this value, the down arrow must be used to scroll through the menu list  
The 4-20 mA deviation is a measurement of the percent difference between the simulated  
analog signal and the actual measured analog signal from the analog output verification test.  
This value can be continuously monitored using continuous SMART Meter Verification.  
6.14  
Optimizing the SMART Meter Verification  
The SMART Meter Verification diagnostic can be optimized by setting the test criteria to the  
desired levels necessary to meet the compliance requirements of the application. The following  
examples below will provide some guidance on how to set these levels.  
Example  
An effluent meter must be certified annually to comply with environmental regulations. This  
example regulation requires that the meter be certified to five percent.  
Since this is an effluent meter, shutting down the process may not be viable. In this instance the  
SMART Meter Verification test will be performed under flowing conditions. Set the test criteria  
for flowing, full to five percent to meet the requirements of the governmental agencies.  
Example  
A pharmaceutical company requires bi-annual verification of meter calibration on a critical feed  
line for one of their products. This is an internal standard, and the plant requires a calibration  
record be kept on-hand. Meter calibration on this process must meet two percent. The process  
is a batch process so it is possible to perform the calibration verification with the line full and  
with no flow.  
Since the SMART Meter Verification test can be run under no flow conditions, set the test criteria  
for no flow to two percent to comply with the necessary plant standards.  
Example  
A food and beverage company requires an annual calibration of a meter on a product line. The  
plant standard calls for the accuracy to be three percent or better. They manufacture this  
product in batches, and the measurement cannot be interrupted when a batch is in process.  
When the batch is complete, the line goes empty.  
Since there is no means of performing the SMART Meter Verification test while there is product  
in the line, the test must be performed under empty pipe conditions. The test criteria for empty  
pipe should be set to three percent, and it should be noted that the electrode circuit health  
cannot be verified.  
130  
Advanced Diagnostics Configuration  
 
Reference Manual  
00809-0100-4444, Rev AD  
Section 6: Advanced Diagnostics Configuration  
August 2015  
6.14.1  
Optimizing continuous SMART Meter Verification  
Example  
For continuous SMART Meter Verification, there is only one test criteria value to configure, and it  
will be used for all flow conditions. The factory default is set to five percent to minimize the  
potential for false failures under empty pipe conditions. For best results, set the criteria to match  
the maximum value of the three test criteria set during manual meter verification (no flow,  
flowing full, and empty pipe).  
For example, a plant might set the following manual meter verification test criteria: two percent  
for no flow, three percent for flowing full, and four percent for empty pipe. In this case, the  
maximum test criterion is four percent, so the test criteria for continuous SMART Meter  
Verification should be set to four percent. If the tolerance band is set too tightly, under empty  
pipe conditions or noisy flowing conditions, a false failure of the transmitter test may occur.  
131  
Advanced Diagnostics Configuration  
 
Reference Manual  
00809-0100-4444, Rev AD  
Section 6: Advanced Diagnostics Configuration  
August 2015  
Manual Calibration Verification Results  
Report parameters  
User Name: _____________________________________________ Calibration Conditions: qInternal qExternal  
Tag #:__________________________________________________ Test Conditions:  
q Flowing q No Flow, Full Pipe q Empty Pipe  
Flowmeter information and configuration  
Software Tag:  
Calibration Number:  
Line Size:  
PV URV (20 mA scale):____________________________________  
PV LRV (4 mA scale):_____________________________________  
PV Damping:____________________________________________  
Sensor calibration verification results  
Transmitter calibration verification results  
Simulated Velocity:  
Actual Velocity:  
Sensor Deviation %:_____________________________________  
Sensor Test:  
q PASS / q FAIL / q NOT TESTED  
Deviation %:  
Coil Circuit Test:  
q PASS / q FAIL / q NOT TESTED  
Transmitter:  
Electrode Circuit Test:  
q PASS / q FAIL / q NOT TESTED  
q PASS / q FAIL / q NOT TESTED  
Summary of Calibration Verification results  
Verification Results: The result of the flowmeter verification test is: q PASSED / q FAILED  
Verification Criteria: This meter was verified to be functioning within _____________ % of deviation from the original test parameters.  
Signature:____________________________________________  
Date:__________________________________________________  
132  
Advanced Diagnostics Configuration  
   
Reference Manual  
00809-0100-4444, Rev AD  
Section 7: Digital Signal Processing  
August 2015  
Section 7  
Digital Signal Processing  
7.1  
7.2  
Introduction  
Magmeters are used in applications that can create noisy flow readings. The Rosemount  
8732EM has the capability to deal with difficult applications that have previously manifested  
themselves in a noisy output signal. In addition to selecting a higher coil drive frequency (37 Hz  
vs. 5 Hz) to isolate the flow signal from the process noise, the 8732EM microprocessor has  
digital signal processing that is capable of rejecting the noise specific to the application. This  
section explains the different types of process noise, provides instructions for optimizing the  
flow reading in noisy applications, and provides a detailed description of the digital signal  
processing functionality.  
Safety messages  
Instructions and procedures in this section may require special precautions to ensure the safety  
of the personnel performing the operations. Read the following safety messages before  
performing any operation described in this section.  
Explosions could result in death or serious injury.  
Verify the operating atmosphere of the sensor and transmitter is consistent with the  
appropriate hazardous locations certifications.  
Do not remove the transmitter cover in explosive atmospheres when the circuit is live.  
Before connecting a HART-based communicator in an explosive atmosphere, make  
sure the instruments in the loop are installed in accordance with intrinsically safe or  
non-incendive field wiring practices.  
Both transmitter covers must be fully engaged to meet explosion-proof requirements.  
Failure to follow safe installation and servicing guidelines could result in death or  
serious injury.  
Installation should be performed by qualified personnel only.  
Do not perform any service other than those contained in this manual.  
Process leaks may result in death or serious injury.  
The electrode compartment may contain line pressure; it must be depressurized  
before the cover is removed.  
High voltage that may be present on leads could cause electrical shock.  
Avoid contact with leads and terminals.  
133  
         
Reference Manual  
00809-0100-4444, Rev AD  
Section 7: Digital Signal Processing  
August 2015  
7.3  
Process noise profiles  
1/f noise  
This type of noise has higher amplitudes at lower frequencies, but generally degrades over  
increasing frequencies. Potential sources of 1/f noise include chemical mixing and slurry flow  
particles rubbing against the electrodes.  
Spike noise  
This type of noise generally results in a high amplitude signal at specific frequencies which can  
vary depending on the source of the noise. Common sources of spike noise include chemical  
injections directly upstream of the flowmeter, hydraulic pumps, and slurry flows with low  
concentrations of particles in the stream. The particles bounce off of the electrode generating a  
“spike” in the electrode signal. An example of this type of flow stream would be a recycle flow in  
a paper mill.  
White noise  
This type of noise results in a high amplitude signal that is relatively constant over the frequency  
range. Common sources of white noise include chemical reactions or mixing that occurs as the  
fluid passes through the flowmeter and high concentration slurry flows where the particulates  
are constantly passing over the electrode head. An example of this type of flow stream would be  
a basis weight stream in a paper mill.  
7.4  
7.5  
High process noise diagnostic  
The transmitter continuously monitors signal amplitudes over a wide range of frequencies. For  
the high process noise diagnostic, the transmitter specifically looks at the signal amplitude at  
frequencies of 2.5 Hz, 7.5 Hz, 32.5 Hz, and 42.5 Hz. The transmitter uses the values from 2.5  
and 7.5 Hz and calculates an average noise level. This average is compared to the amplitude of  
the signal at 5 Hz. If the signal amplitude is not 25 times greater than the noise level, and the coil  
drive frequency is set at 5 Hz, the high process noise diagnostic will trip indicating that the flow  
signal may be compromised. The transmitter performs the same analysis around the 37.5 Hz  
coil drive frequency using the 32.5 Hz and 42.5 Hz values to establish a noise level.  
Optimizing flow reading in noisy applications  
If the flow reading of the 8732EM is unstable, first check the wiring, grounding, and process  
reference associated with the magnetic flowmeter system. Ensure that the following conditions  
are met:  
Ground straps are attached to the adjacent flange or ground ring  
Grounding rings, lining protectors, or a process reference electrode are being used in  
lined or non-conductive piping  
The causes of unstable transmitter output can usually be traced to extraneous voltages on the  
measuring electrodes. This “process noise” can arise from several causes including electro-  
chemical reactions between the fluid and the electrode, chemical reactions in the process itself,  
134  
     
Reference Manual  
00809-0100-4444, Rev AD  
Section 7: Digital Signal Processing  
August 2015  
free ion activity in the fluid, or some other disturbance of the fluid/electrode capacitive layer. In  
such noisy applications, an analysis of the frequency spectrum reveals process noise that  
typically becomes significant below 15 Hz.  
In some cases, the effects of process noise may be sharply reduced by elevating the coil drive  
frequency above the 15 Hz region. The Rosemount 8732EM coil drive mode is selectable  
between the standard 5 Hz and the noise-reducing 37 Hz.  
7.5.1  
Coil drive frequency  
LOI menu path  
Device Setup, Detailed Setup, Additional Params, Coil Drive Freq  
Traditional fast keys  
Device dashboard  
1,4,1,1  
2,2,8,3  
This parameter changes the pulse rate of the magnetic coils.  
5 Hz  
The standard coil drive frequency is 5 Hz, which is sufficient for nearly all applications.  
37 Hz  
If the process fluid causes a noisy or unstable flow reading, increase the coil drive frequency to  
37 Hz. If the 37 Hz mode is selected, perform the auto zero function for optimum performance.  
7.5.2  
Auto zero  
LOI menu path  
Traditional fast keys  
Device dashboard  
Device Setup, Diagnostics, Trims, Auto Zero  
1,2,5,4  
2,2,8,4  
To ensure optimum accuracy when using 37 Hz coil drive mode, there is an auto zero function  
that should be initiated. When using 37 Hz coil drive mode it is important to zero the system for  
the specific application and installation.  
The auto zero procedure should be performed only under the following conditions:  
With the transmitter and sensor installed in their final positions. This procedure is not  
applicable on the bench.  
With the transmitter in 37 Hz coil drive mode. Never attempt this procedure with the  
transmitter in 5 Hz coil drive mode.  
With the sensor full of process fluid at zero flow.  
These conditions should cause an output equivalent to zero flow.  
Set the loop to manual if necessary and begin the auto zero procedure. The transmitter  
completes the procedure automatically in about 90 seconds. A clock symbol will appear in the  
lower right-hand corner of the display to indicate that the procedure is running.  
Note  
Failure to complete an auto zero may result in a flow velocity error of 5 to10% at1 ft/s (0.3 m/s).  
While the output level will be offset by the error, the repeatability will not be affected.  
135  
       
Reference Manual  
00809-0100-4444, Rev AD  
Section 7: Digital Signal Processing  
August 2015  
7.5.3  
Digital signal processing (DSP)  
LOI menu path  
Device Setup, Detailed Setup, Signal Processing  
Traditional fast keys  
Device dashboard  
1,4,4  
2,2,8,6  
The 8732EM contains several advanced functions that can be used to stabilize erratic outputs  
caused by process noise. The signal processing menu contains this functionality.  
If the 37 Hz coil drive frequency has been set, and the output is still unstable, the damping and  
signal processing function should be used. It is important to set the coil drive frequency to 37 Hz  
to increase the flow sampling rate.  
The 8732EM provides an easy and straightforward start-up, and also incorporates the capability  
to deal with difficult applications that have previously manifested themselves in a noisy output  
signal. In addition to selecting a higher coil drive frequency (37 Hz vs. 5 Hz) to isolate the flow  
signal from the process noise, the 8732EM microprocessor can actually scrutinize each input  
based on three user-defined parameters to reject the noise specific to the application.  
Operating mode  
LOI menu path  
Device Setup, Detailed Setup, Signal Processing, Operating Mode  
Traditional fast keys  
Device dashboard  
1,4,4,1  
2,2,8,5  
The operating mode should be used only when the signal is noisy and gives an unstable output.  
Filter mode automatically uses 37 Hz coil drive mode and activates signal processing at the  
factory set default values. When using filter mode, perform an auto zero with no flow and a full  
sensor. Either of the parameters, coil drive mode or signal processing, may still be changed  
individually. Turning signal processing off or changing the coil drive frequency to 5 Hz will  
automatically change the operating mode from filter mode to normal mode.  
This software technique, known as signal processing, “qualifies” individual flow signals based on  
historic flow information and three user-definable parameters, plus an on/off control. These  
parameters are described below.  
Status  
LOI menu path  
Device Setup, Detailed Setup, Signal Processing, Main Config DSP, Status  
Traditional fast keys  
Device dashboard  
1,4,4,2,1  
2,2,8,6,1  
Enable or disable the DSP capabilities. When ON is selected, the Rosemount 8732EM output is  
derived using a running average of the individual flow inputs. Signal processing is a software  
algorithm that examines the quality of the electrode signal against user-specified tolerances.  
The three parameters that make up signal processing (number of samples, maximum percent  
limit, and time limit) are described below.  
Number of samples  
LOI menu path  
Traditional fast keys  
Device dashboard  
Device Setup, Detailed Setup, Signal Processing, Main Config DSP, Samples  
1,4,4,2,2  
2,2,8,6,2  
The number of samples sets the amount of time that inputs are collected and used to calculate  
the average value. Each second is divided into tenths with the number of samples equaling the  
136  
 
Reference Manual  
00809-0100-4444, Rev AD  
Section 7: Digital Signal Processing  
August 2015  
number of increments used to calculate the average. This parameter can be configured for an  
integer value between 1 and 125. The default value is 90 samples.  
For example:  
A value of 1 averages the inputs over the past 1/ second  
10  
A value of 10 averages the inputs over the past 1 second  
A value of 100 averages the inputs over the past 10 seconds  
A value of 125 averages the inputs over the past 12.5 seconds  
Percent limit  
LOI menu path  
Device Setup, Detailed Setup, Signal Processing, Main Config DSP, % Limit  
Traditional fast keys  
Device dashboard  
1,4,4,2,3  
2,2,8,6,3  
This parameter will set the tolerance band on either side of the running average, referring to  
percent deviation from the average. Values within the limit are accepted while value outside the  
limit are scrutinized to determine if they are a noise spike or an actual flow change. This  
parameter can be configured for an integer value between 0 and 100 percent. The default value  
is 2 percent.  
Time limit  
LOI menu path  
Traditional fast keys  
Device dashboard  
Device Setup, Detailed Setup, Signal Processing, Main Config DSP, Time Limit  
1,4,4,2,4  
2,2,8,6,4  
The time limit parameter forces the output and running average values to the new value of an  
actual flow rate change that is outside the percent limit boundaries. It thereby limits response  
time to flow changes to the time limit value rather than the length of the running average.  
If the number of samples selected is 100, then the response time of the system is 10 seconds. In  
some cases this may be unacceptable. Setting the time limit forces the 8732EM to clear the  
value of the running average and re-establish the output and average at the new flow rate once  
the time limit has elapsed. This parameter limits the response time added to the loop. A  
suggested time limit value of two seconds is a good starting point for most applicable process  
fluids. This parameter can be configured for a value between 0.6 and 256 seconds. The default  
value is 2 seconds.  
137  
Reference Manual  
00809-0100-4444, Rev AD  
Section 7: Digital Signal Processing  
August 2015  
7.6  
Explanation of signal processing algorithm  
An example plotting flow rate versus time is given below to help visualize the signal processing  
algorithm.  
Figure 7-1. Signal Processing Functionality  
Flow  
Rate  
Max  
%
Limit  
Time Limit  
10 Samples = 1  
Second  
Time  
X: Input flow signal from sensor.  
O: Average flow signals and transmitter output, determined by the number of samples  
parameter.  
Tolerance band, determined by the percent limit parameter.  
- Upper value = average flow + [(percent limit/100) average flow]  
- Lower value = average flow - [(percent limit/100) average flow]  
1.  
This scenario is that of a typical non-noisy flow. The input flow signal is within the  
percent limit tolerance band, therefore qualifying itself as a good input. In this case the  
new input is added directly into the running average and is passed on as a part of the  
average value to the output.  
2.  
3.  
This signal is outside the tolerance band and therefore is held in memory until the next  
input can be evaluated. The running average is provided as the output.  
The previous signal currently held in memory is simply rejected as a noise spike since  
the next flow input signal is back within the tolerance band. This results in complete  
rejection of noise spikes rather than allowing them to be “averaged” with the good  
signals as occurs in the typical analog damping circuits.  
4.  
As in number 2 above, the input is outside the tolerance band. This first signal is held in  
memory and compared to the next signal. The next signal is also outside the tolerance  
band (in the same direction), so the stored value is added to the running average as the  
next input and the running average begins to slowly approach the new input level.  
138  
 
Reference Manual  
00809-0100-4444, Rev AD  
Section 7: Digital Signal Processing  
August 2015  
5.  
To avoid waiting for the slowly incrementing average value to catch up to the new level  
input, an algorithm is provided. This is the “time limit” parameter. The user can set this  
parameter to eliminate the slow ramping of the output toward the new input level.  
139  
Reference Manual  
00809-0100-4444, Rev AD  
Section 7: Digital Signal Processing  
August 2015  
140  
Reference Manual  
00809-0100-4444, Rev AD  
Section 8: Maintenance  
August 2015  
Section 8  
Maintenance  
8.1  
8.2  
Introduction  
This section covers basic transmitter maintenance. Instructions and procedures in this section  
may require special precautions to ensure the safety of the personnel performing the  
operations. Read the following safety messages before performing any operation described in  
this section. Refer to these warnings when appropriate throughout this section.  
Safety information  
Failure to follow these maintenance guidelines could result in death or serious  
injury.  
Installation and servicing instructions should be performed by qualified personnel  
only.  
Do not perform any servicing other than that contained in the operating instructions.  
Verify the operating environment of the sensor and transmitter is consistent with the  
appropriate hazardous area approval.  
Do not connect a Rosemount 8732EM to a non-Rosemount sensor that is located in an  
explosive atmosphere.  
Mishandling products exposed to a hazardous substance may result in death or  
serious injury.  
If the product being returned was exposed to a hazardous substance as defined by  
OSHA, a copy of the required Material Safety Data Sheet (MSDS) for each hazardous  
substance identified must be included with the returned goods.  
141  
       
Reference Manual  
00809-0100-4444, Rev AD  
Section 8: Maintenance  
August 2015  
8.3  
Installing a Local Operator Interface (LOI)  
Figure 8-1. Installing a Local Operator Interface (LOI)  
1.  
2.  
3.  
If the transmitter is installed in a control loop, secure the loop.  
Remove power from the transmitter.  
Remove the cover on the electronics compartment of the transmitter housing. If the  
cover has a cover jam screw, loosen it before removing the cover. See “Cover jam screw”  
on page 33 for details on the cover jam screw.  
4.  
5.  
On the electronics stack, locate the serial connection labeled “DISPLAY”. See Figure  
8-1.  
Plug the serial connector from the back of the LOI into the receptacle on the electronics  
stack. The LOI can be rotated in 90 degree increments to provide the best viewing  
position. Rotate the LOI to the desired orientation, taking care to not exceed 360  
degrees of rotation. Exceeding 360 degrees of rotation could damage the LOI cable  
and/or connector.  
6.  
7.  
Once the serial connector is installed on the electronics stack, and the LOI is oriented in  
the desired position, tighten the three mounting screws.  
Install the extended cover with the glass viewing pane and tighten to metal-to-metal  
contact. If the cover has a cover jam screw, this must be tightened to comply with  
installation requirements. Return power to the transmitter and verify that it is  
functioning correctly and reporting the expected flow rate.  
8.  
If installed in a control loop, return the loop to automatic control.  
142  
   
Reference Manual  
00809-0100-4444, Rev AD  
Section 8: Maintenance  
August 2015  
8.4  
Replacing 8732EM revision 4 electronics stack  
Prior to installing the replacement electronics stack, it is important to verify that the transmitter  
housing you have is of the correct design to accept the Revision 4 electronics.  
Follow the steps below to confirm the transmitter housing is compatible with this electronics  
kit.  
1.  
Verify the model number is 8732EM. If the transmitter model is not 8732EM, then  
these electronics are not compatible. See Figure 8-2 for the location of the model  
number. If the model is 8732C, 8742C, 8732ES, or some other model, then these  
electronics are not compatible with the enclosure. If you have one of these  
Product Data Sheet (00813-0100-4444) for details on ordering a new transmitter.  
Figure 8-2. Transmitter Nameplate Location  
143  
   
Reference Manual  
00809-0100-4444, Rev AD  
Section 8: Maintenance  
August 2015  
2.  
Verify the electronics board inside the housing is green and looks like the board  
pictured on the left in Figure 8-3. If the board is not green, or does not look like the  
board pictured, then the electronics are not compatible.  
Figure 8-3. Transmitter Housing Electronics Board Identification  
3.  
Confirm the electronics stack is for an 8732EM transmitter. Refer to the picture on the  
left in Figure 8-4.  
Figure 8-4. Electronics Stack Identification  
144  
   
Reference Manual  
00809-0100-4444, Rev AD  
Section 8: Maintenance  
August 2015  
8.5  
Replacing socket module  
The socket module connects the sensor adapter to the transmitter. There are two versions of  
the socket module - one for integral mount transmitters and one for remote mount  
transmitters. The socket module is a replaceable component.  
To remove the socket module, loosen the two mounting screws and pull up on the socket  
module from the base. When removing the socket module, do not pull on the wires. See  
Figure 8-5. Socket Module Warning  
8.5.1  
Integral mount socket module  
The integral mount socket module is shown in Figure 8-6. To gain access to the socket module,  
the transmitter must be removed from the sensor adapter.  
Figure 8-6. Socket Module—Integral Mount  
145  
       
Reference Manual  
00809-0100-4444, Rev AD  
Section 8: Maintenance  
August 2015  
Removing integral mount socket module  
1.  
2.  
3.  
Disconnect power.  
Remove electronics cover to gain access to the coil and electrode cables.  
If the transmitter has an LOI, it will need to be removed to gain access to the coil and  
electrode cables.  
4.  
5.  
6.  
7.  
Disconnect the coil and electrode cables.  
Remove the four transmitter mounting screws.  
Lift the transmitter off of the sensor adapter.  
To remove the socket module, loosen the two mounting screws and pull up on the  
socket module from the base.  
8.  
When removing the socket module, do not pull on the wires. See Figure 8-5.  
Installing integral mount socket module  
1.  
To insert a new integral mount socket module, press the base into its keyed position  
and tighten the two mounting screws.  
2.  
The coil and electrode cables are fed through the bottom opening of the transmitter  
and plugged into the face of the electronics.  
3.  
4.  
The coil and electrode cables are keyed so they will only fit into their dedicated location.  
If the transmitter has an LOI, it will need to be removed to access the coil and electrode  
ports.  
5.  
Once the connections are made, the transmitter can be secured to the sensor adapter  
using the four mounting bolts.  
146  
Reference Manual  
00809-0100-4444, Rev AD  
Section 8: Maintenance  
August 2015  
8.5.2  
Replacing terminal block socket module  
The terminal block socket module is shown in Figure 8-7. To gain access to the socket module,  
remove the junction box from the sensor adapter.  
Figure 8-7. Socket Module—Terminal Block  
Removing terminal block socket module  
1.  
Disconnect power to the transmitter and the remote cabling connected to the terminal  
block.  
2.  
3.  
Remove the junction box cover to gain access to the remote cabling.  
To disconnect the terminal block from the junction box housing, remove the two  
mounting screws and the two divider mounting screws (if applicable).  
4.  
5.  
Pull up on the terminal block to expose the socket module base.  
To remove the socket module, loosen the two mounting screws and pull up on the  
socket module from the base.  
6.  
When removing the socket module, do not pull on the wires. See Figure 8-5.  
147  
   
Reference Manual  
00809-0100-4444, Rev AD  
Section 8: Maintenance  
August 2015  
Installing terminal block socket module  
1.  
2.  
3.  
Insert the new terminal block socket module, press the base into its keyed position, and  
tighten the two mounting screws.  
Connect the terminal block to the junction box housing by tightening the two  
mounting screws. Install the divider with the two mounting screws if applicable.  
Reconnect remote cabling and power and replace junction box cover.  
8.6  
Trims  
LOI menu path  
Diagnostics, Trims  
Traditional fast keys  
Device dashboard  
1,2,5  
3,4  
Trims are used to calibrate the analog loop, calibrate the transmitter, re-zero the transmitter,  
and calibrate the transmitter with another manufacturer's sensor. Proceed with caution  
whenever performing a trim function.  
8.6.1  
D/A trim  
LOI menu path  
Diagnostics, Trims, D/A Trim  
Traditional fast keys  
Device dashboard  
1,2,5,1  
3,4,4,5  
The D/A trim is used to calibrate the 4-20mA analog loop output from the transmitter. For  
maximum accuracy, the analog output should be trimmed for your system loop. Use the  
following steps to complete the output trim function.  
1.  
2.  
3.  
4.  
5.  
6.  
Set the loop to manual, if necessary.  
Connect a precision ammeter in the 4-20mA loop.  
Initiate the D/A trim function with the LOI or Handheld Communicator.  
Enter the 4mA meter value when prompted.  
Enter the 20mA meter value when prompted.  
Return the loop to automatic control, if necessary.  
The 4-20mA trim is now complete. The D/A trim can be repeated to check the results.  
Alternatively, the analog output test can also be used to verify loop performance.  
148  
   
Reference Manual  
00809-0100-4444, Rev AD  
Section 8: Maintenance  
August 2015  
8.6.2  
Scaled D/A trim  
LOI menu path  
Diagnostics, Trims, Scaled D/A Trim  
1,2,5,2 or 1,4,2,1,7  
3,4,4,6  
Traditional fast keys  
Device dashboard  
A scaled D/A trim enables calibration of the flowmeter analog output using a different scale than  
the standard 4-20mA output scale. Non-scaled D/A trimming (described above), is typically  
performed using an ammeter where calibration values are entered in units of milliamperes.  
Scaled D/A trimming enables trimming of the flowmeter using a scale that may be more  
convenient based upon the method of measurement.  
For example, it may be more convenient to make current measurements by direct voltage  
readings across the loop resistor. If the loop resistor is 500 ohms, and calibration of the meter  
will be done using voltage measurements across this resistor, the trim points can be rescaled  
from 4-20mA to 4-20mA x 500 ohm or 2-10VDC. Once the scaled trim points have been entered  
as 2 and 10, calibration of the flowmeter can be done by entering voltage measurements  
directly from the voltmeter.  
8.6.3  
Digital trim  
LOI menu path  
Device Setup, Diagnostics, Trims, Digital Trim  
Traditional fast keys  
Device dashboard  
1,2,5,3  
3,4,5  
Digital trim is the function by which the factory calibrates the transmitter. This procedure is  
rarely needed by users. It is only necessary if the Rosemount 8732EM is suspected to be no  
longer accurate. A Rosemount 8714D Calibration Standard is required to complete a digital  
trim. Attempting a digital trim without a Rosemount 8714D Calibration Standard may result in  
an inaccurate transmitter or an error message. The digital trim must be performed with the coil  
drive mode set to 5Hz and with a nominal sensor calibration number stored in the memory.  
Note  
Attempting a digital trim without a Rosemount 8714D Calibration Standard may result in an  
inaccurate transmitter, or a “DIGITAL TRIM FAILURE” message may appear. If this message  
occurs, no values were changed in the transmitter. Simply cycle power on the Rosemount  
8732EM to clear the message.  
To simulate a nominal sensor with the Rosemount 8714D Calibration Standard, change/verify  
the following five parameters in the Rosemount 8732EM:  
Calibration Number-1000015010000000  
Units-ft/s  
PV URV-20mA = 30.00 ft/s  
PV LRV-4mA = 0 ft/s  
Coil Drive Frequency-5Hz  
149  
   
Reference Manual  
00809-0100-4444, Rev AD  
Section 8: Maintenance  
August 2015  
Note  
Before changing any of the configuration parameters, be sure to record the original values so  
that the transmitter can be returned to the original configuration prior to being placed back into  
operation. Failure to return the settings to the original configuration will result in incorrect flow  
and totalizer readings.  
The instructions for changing the calibration number, units, PV URV, and PV LRV are located in  
“Basic setup” on page 34. Instructions for changing the coil drive frequency can be found on  
Set the loop to manual (if necessary) and then complete the following steps:  
1.  
2.  
3.  
Power down the transmitter.  
Connect the transmitter to a Rosemount 8714D Calibration Standard.  
Power up the transmitter with the Rosemount 8714D connected and read the flow rate.  
The electronics need about a 5-minute warm-up time to stabilize.  
4.  
5.  
Set the 8714D Calibration Standard to the 30 ft/s (9.1 m/s) setting.  
The flow rate reading after warm-up should be between 29.97 (9.1 m/s) and 30.03 ft/s  
(9.2 m/s).  
6.  
7.  
If the reading is within the range, return the transmitter to the original configuration  
parameters.  
If the reading is not within this range, initiate a digital trim with the LOI or Handheld  
Communicator. The digital trim takes about 90 seconds to complete. No transmitter  
adjustments are required.  
8.6.4  
Universal trim  
LOI menu path  
Device Setup, Diagnostics, Trims, Universal Trim  
Traditional fast keys  
Device dashboard  
1,2,5,5  
2,4,1  
The universal auto trim function enables the Rosemount 8732EM to calibrate sensors that were  
not calibrated at the Rosemount factory. The function is activated as one step in a procedure  
known as in-process calibration. If a Rosemount sensor has a 16-digit calibration number,  
in-process calibration is not required. If it does not, or if the sensor is made by another  
manufacturer, complete the following steps for in-process calibration. Refer to Appendix D  
1.  
Determine the flow rate of the process fluid in the sensor.  
Note  
The flow rate in the line can be determined by using another sensor in the line, by counting the  
revolutions of a centrifugal pump, or by performing a bucket test to determine how fast a given  
volume is filled by the process fluid.  
2.  
Complete the universal auto trim function.  
150  
 
Reference Manual  
00809-0100-4444, Rev AD  
Section 8: Maintenance  
August 2015  
When the routine is completed, the sensor is ready for use.  
8.7  
Review  
LOI menu path  
Device Setup, Review  
1,5  
Traditional fast keys  
Device dashboard  
N/A  
The 8732EM includes a capability to review the configuration variable settings.  
The flowmeter configuration parameters set at the factory should be reviewed to ensure  
accuracy and compatibility with the particular application of the flowmeter.  
Note  
If the LOI is used to review variables, each variable must be accessed as if changing its setting.  
The value displayed on the LOI screen is the configured value of the variable.  
151  
 
Reference Manual  
00809-0100-4444, Rev AD  
Section 8: Maintenance  
August 2015  
152  
Reference Manual  
00809-0100-4444, Rev AD  
Section 9: Troubleshooting  
August 2015  
Section 9  
Troubleshooting  
9.1  
Introduction  
This section covers basic transmitter and sensor troubleshooting. Problems in the magnetic  
flowmeter system are usually indicated by incorrect output readings from the system, error  
messages, or failed tests. Consider all sources when identifying a problem in the system. If the  
problem persists, consult the local Rosemount representative to determine if the material  
should be returned to the factory. Emerson Process Management offers several diagnostics that  
aid in the troubleshooting process. Instructions and procedures in this section may require  
special precautions to ensure the safety of the personnel performing the operations. Read the  
following safety messages before performing any operation described in this section. Refer to  
these warnings when appropriate throughout this section.  
The Rosemount 8732EM performs self-diagnostics on the entire magnetic flowmeter system:  
the transmitter, the sensor, and the interconnecting wiring. By sequentially troubleshooting  
each individual piece of the magmeter system, it becomes easier to identify the problem and  
make the appropriate adjustments.  
If there are problems with a new magmeter installation, see 9.3 Installation check and guide  
below for a quick guide to solve the most common installation problems. For existing magmeter  
installations, Table on page 166 lists the most common magmeter problems and corrective  
actions.  
153  
   
Reference Manual  
00809-0100-4444, Rev AD  
Section 9: Troubleshooting  
August 2015  
9.2  
Safety information  
Failure to follow these troubleshotting guidelines could result in death or serious  
injury.  
Installation and servicing instructions should be performed by qualified personnel  
only.  
Do not perform any servicing other than that contained in the operating instructions.  
Verify that the operating environment of the sensor and transmitter is consistent with  
the appropriate hazardous area approval.  
Do not connect a Rosemount 8732EM to a non-Rosemount sensor that is located in an  
explosive atmosphere.  
Mishandling products exposed to a hazardous substance may result in death or  
serious injury.  
If the product being returned was exposed to a hazardous substance as defined by  
OSHA, a copy of the required Material Safety Data Sheet (MSDS) for each hazardous  
substance identified must be included with the returned goods.  
9.3  
Installation check and guide  
Use this guide to check new installations of Rosemount magnetic flowmeter systems that  
appear to malfunction.  
9.3.1  
Transmitter  
Before applying power to the magnetic flowmeter system, make the following transmitter  
checks:  
1.  
2.  
3.  
Record the transmitter model number and serial number.  
Visually inspect the transmitter for any damage including the terminal block.  
Verify the proper wiring connections have been made for the power and outputs.  
154  
     
Reference Manual  
00809-0100-4444, Rev AD  
Section 9: Troubleshooting  
August 2015  
Apply power to the magnetic flowmeter system before making the following transmitter  
checks:  
1.  
2.  
Check for an active error message or status alert. Refer to 9.4 Diagnostic messages.  
Verify the correct sensor calibration number is entered in the transmitter. The  
calibration number is listed on the sensor nameplate.  
3.  
4.  
5.  
6.  
Verify the correct sensor line size is entered in the transmitter. The line size value is  
listed on the sensor nameplate.  
Verify the analog range of the transmitter matches the analog range in the control  
system.  
Verify the forced analog output and forced pulse output of the transmitter produces  
the correct output at the control system.  
If desired, use a Rosemount 8714D to verify the transmitter calibration.  
9.3.2  
Sensor  
Be sure that power to magnetic flowmeter system is removed before beginning the following  
sensor checks:  
1.  
2.  
Record the sensor model number and serial number.  
Visually inspect the sensor for any damage including inside the remote junction box, if  
applicable.  
3.  
For horizontal flow installations, ensure that the electrodes remain covered by process  
fluid. For vertical or inclined installations, ensure that the process fluid is flowing up into  
the sensor to keep the electrodes covered by process fluid.  
4.  
5.  
Verify the flow arrow is pointing in the same direction as forward flow.  
Ensure the grounding straps on the sensor are connected to grounding rings, lining  
protectors, or the adjacent pipe flanges. Improper grounding will cause erratic  
operation of the system. Sensors with a ground electrode will not require the  
grounding straps to be connected.  
155  
 
Reference Manual  
00809-0100-4444, Rev AD  
Section 9: Troubleshooting  
August 2015  
9.3.3  
Remote wiring  
1.  
The electrode signal and coil drive wires must be separate cables, unless Rosemount  
specified combo cable is used. See 2.12 Wiring the transmitter.  
2.  
The electrode signal wire and coil drive wire must be twisted shielded cable.  
Rosemount recommends 20 AWG twisted shielded cable for the electrode signal and  
14 AWG twisted shielded cable for the coil drive. See 2.12 Wiring the transmitter.  
3.  
4.  
5.  
See Appendix B Product Certifications regarding wiring installation requirements.  
See Appendix C Wiring Diagrams for component and/or combination cable wiring.  
Verify there is minimal exposed wiring and shielding. Less than 1 inch (25 mm) is  
recommended.  
6.  
The single conduit that houses both the electrode signal and coil drive cables should  
not contain any other wires. This includes wires from other magmeters.  
Note  
For installations requiring intrinsically safe electrodes, the signal and coil drive cables must be  
run in Individual conduits.  
9.3.4  
Process fluid  
1.  
The process fluid should have a minimum conductivity of 5 microSiemens/cm (5 micro  
mhos/cm).  
2.  
3.  
4.  
The process fluid must be free of air and gas.  
The sensor must be full of process fluid.  
The process fluid must be compatible with the wetted materials - liner, electrodes,  
ground rings, and lining protectors. Refer to the “Rosemount Magnetic Flowmeter  
5.  
If the process is electrolytic or has cathodic protection, refer to the “Installation and  
Technical Note for special installation requirements.  
156  
     
Reference Manual  
00809-0100-4444, Rev AD  
Section 9: Troubleshooting  
August 2015  
9.4  
Diagnostic messages  
Problems in the magnetic flowmeter system are usually indicated by incorrect output readings  
from the system, error messages, or failed tests. Consider all sources in identifying a problem in  
the system.  
Table 9-1. Basic Diagnostic Messages  
Error message  
Potential cause  
Empty pipe  
Corrective action  
• None - message will clear when pipe is full  
• Check that wiring matches appropriate wiring diagrams  
• Perform sensor tests - see Table 9-8 on page 172  
Wiring error  
Electrode error  
Empty Pipe  
Conductivity less than 5  
microSiemens per cm  
• Increase conductivity to greater than or equal to 5 microSiemens per  
cm  
Intermittent diagnostic  
Improper wiring  
• Adjust tuning of empty pipe parameters - see Section 8.4.1  
• Check coil drive wiring and sensor coils  
Perform sensor tests - see Table 9-8 on page 172  
• Change coil current to 75 mA - set calibration numbers to  
10000550100000030  
• Perform a universal auto-trim to select the proper coil current  
Other manufacturer’s sensor  
Coil Open Circuit  
Auto Zero Failure  
Electronics board failure  
Coil circuit open fuse  
Flow is not set to zero  
Unshielded cable in use  
Moisture problems  
• Replace 8732EM electronics stack  
• Return the unit to the factory for fuse replacement  
• Force flow to zero, perform auto zero trim  
• Change wire to shielded cable  
No flow in pipe while performing  
Universal Auto Trim  
• Establish a known flow rate, and perform universal auto-trim  
calibration  
• Check that wiring matches appropriate wiring diagrams - see  
Wiring error  
Flow rate is changing in pipe while  
performing Universal Auto-Trim  
routine  
• Establish a constant flow rate, and perform universal auto-trim  
calibration  
Flow rate through sensor is  
significantly different than value  
entered during Universal Auto-Trim  
routine  
• Verify flow in sensor and perform universal auto-trim calibration  
Auto-Trim Failure  
Incorrect calibration number entered  
into transmitter for Universal  
Auto-Trim routine  
• Replace sensor calibration number with 1000005010000000  
Wrong sensor size selected  
Sensor failure  
• Correct sensor size setting - see Line size on page 34  
• Perform sensor tests - see Table 9-8 on page 172  
• Cycle power to see if diagnostic message clears  
• Replace Electronics stack  
Electronics Failure  
Electronics self check failure  
Ambient temperature exceeded the  
electronics temperature limits  
• Move transmitter to a location with an ambient temperature range of  
-40 to 140 °F (-40 to 60 °C)  
Electronics Temp Fail  
Electrode or coil wires reverse  
Flow is reverse  
• Verify wiring between sensor and transmitter  
• Turn ON Reverse Flow Enable to read flow  
Reverse Flow  
• Install sensor correctly, or switch either the electrode wires (18 and 19)  
or the coil wires (1 and 2)  
Sensor installed backwards  
External voltage applied to terminals  
5 and 6  
PZR Activated  
(Positive Zero Return)  
• Remove voltage to turn PZR off  
157  
   
Reference Manual  
00809-0100-4444, Rev AD  
Section 9: Troubleshooting  
August 2015  
Table 9-1. Basic Diagnostic Messages (continued)  
Error message  
Potential cause  
Corrective action  
• Standard pulse - increase pulse scaling to prevent pulse output from  
exceeding 11,000 Hz  
• Intrinsically safe pulse - Increase pulse scaling to prevent pulse output  
from exceeding 5,500 Hz  
• Pulse output is in fixed pulse mode and is trying to generate a  
frequency greater than the pulse width can support - see Pulse width  
The transmitter is trying to generate  
a frequency greater than allowed  
Pulse Out of Range  
• Verify the sensor calibration number and line size are correctly entered  
in the electronics  
• Reduce flow, adjust URV and LRV values  
• Verify the sensor calibration number and line sizes are correctly entered  
in the electronics  
Flow rate is greater than analog  
output range  
Analog Out of Range  
Flowrate > 43 ft/sec  
Flow rate is greater than 43 ft/sec  
Improper wiring  
• Lower flow velocity, increase pipe diameter  
• Check coil drive wiring and sensor coils  
• Perform sensor tests - see Table 9-8 on page 172  
The calibrator (8714B/C/D) is not  
connected properly  
• Review calibrator connections  
Digital Trim Failure  
(Cycle power to clear  
messages, no changes  
were made)  
Incorrect calibration number entered  
into transmitter  
• Replace sensor calibration number with 1000015010000000  
Calibrator is not set to 30 FPS  
• Change calibrator setting to 30 FPS  
Bad calibrator or calibrator cable  
• Replace calibrator and/or calibrator cable  
• Check coil drive wiring and sensor coils  
Perform sensor tests - see Table 9-8 on page 172  
Improper wiring  
Coil Over Current  
Transmitter failure  
Improper wiring  
• Replace the electronics stack  
• Check coil drive wiring and sensor coils  
Perform sensor tests - see Table 9-8 on page 172  
Incorrect calibration number  
• Verify configured calibration number matches sensor tag  
Transmitter connected to other  
manufacturer’s sensor  
• Change coil current to 75 mA - set calibration number to  
10000550100000030  
Coil Power Limit  
• Perform a universal auto-trim to select the proper coil current  
Coil drive frequency set to 37 Hz  
• Sensor may not be compatible with 37 Hz. Switch coil drive frequency  
to 5 Hz.  
Sensor failure  
• Perform sensor tests - see Table 9-8 on page 172  
Improper wiring  
• Check the analog loop wiring - see Wiring the transmitter on page 23  
• Verify the analog power switch position (internal/external)  
• For externally powered loop, verify power supply requirements - see  
No external loop power  
No AO Power  
• Install resistance across the analog output terminals  
• Disable message using LOI Error Mask parameter  
No loop resistance (open loop)  
Transmitter failure  
• Replace the electronics stack  
Improper wiring  
Improper process reference  
• Verify earth ground connections - see Wiring the transmitter on  
Electrode Saturation  
Improper earth grounding  
Application requires special  
transmitter  
• Replace transmitter with transmitter that includes special option F0100  
158  
Reference Manual  
00809-0100-4444, Rev AD  
Section 9: Troubleshooting  
August 2015  
Table 9-2. Advanced Process Diagnostic Messages  
Error message  
Potential cause  
Corrective action  
Improper installation of wiring  
Coil/electrode shield not connected  
Improper process grounding  
• Check wiring for corrosion, moisture in the terminal block -see  
Grounding/Wiring Fault  
Faulty ground connection  
Sensor not full  
• Verify sensor is full  
• Enable empty pipe detection  
• Decrease the flow rate below 10 ft/s (3 m/s)  
• Complete the possible solutions listed under Troubleshooting high  
Slurry flows - mining/pulp stock  
• Move injection point downstream of the sensor or move the sensor to  
a new location  
• Complete the possible solutions listed under Troubleshooting high  
Chemical additives upstream of the  
sensor  
Electrode not compatible with the  
process fluid  
• Refer to the Rosemount Magnetic Flowmeter Material Selection Guide  
(00816-0100-3033)  
• Move the sensor to another location in the process line to ensure that  
it is full under all conditions  
Gas/air in line  
High Process Noise  
• Enable coated electrode etection diagnostic  
• Use bullet-nose electrodes  
• Downsize sensor to increase flowrate above 3 ft/s (1 m/s)  
• Periodically clean sensor  
Electrode coating  
• Complete the possible solutions listed under Troubleshooting high  
• Consult factory  
Styrofoam or other insulating  
particles  
• Trim electrode and coil wires - see Sensor installation on page 12  
• Use integral mount transmitter  
• Set coil drive frequency to 37Hz  
Low conductivity fluids  
(below 10 microsiemens/cm)  
Coating is starting to buildup on  
electrode and interfering with  
measurement signal  
• Schedule maintenance to clean electrode  
• Use bullet nose electrodes  
• Downsize sensor to increase flow rate above 3ft/s (1ms)  
Electrode Coating Level 1  
Electrode Coating Level 2  
Process fluid conductivity has  
changed  
• Verify process fluid conductivity  
Coating has built-up on electrode  
and is interfering with measurement  
signal  
• Schedule maintenance to clean electrode  
• Use bullet nose electrodes  
• Downsize sensor to increase flow rate above 3ft/s (1ms)  
Process fluid conductivity has  
changed  
• Verify process fluid conductivity  
159  
 
Reference Manual  
00809-0100-4444, Rev AD  
Section 9: Troubleshooting  
August 2015  
Table 9-3. Advanced Meter Verification Messages  
Error message  
Potential cause  
Corrective action  
• Verify pass/fail criteria  
• Rerun SMARTMeter Verification (8714i) under no flow conditions  
• Verify calibration using 8714 Calibration Standard  
• Perform digital trim  
Transmitter calibration verification  
test failed  
• Replace electronics board  
• Verify pass/fail criteria  
Sensor calibration test failed  
Sensor coil circuit test failed  
• Rerun SMART Meter Verification (8714i)  
• Perform sensor tests - see Table 9-8 on page 172  
8714i Failed  
• Verify pass/fail criteria  
• Rerun SMART Meter Verification (8714i)  
• Perform sensor tests - see Table 9-8 on page 172  
• Verify electrode resistance has a baseline (signature) value from a full  
pipe baseline  
• Verify test condition was selected properly  
• Verify pass/fail criteria  
Sensor electrode circuit test failed  
• Rerun SMART Meter Verification (8714i)  
• Perform sensor tests - see Table 9-8 on page 172  
• Check 4-20 mA internal/external loop power switch - see  
• Check external supply voltage to the transmitter  
• Check for parallel paths in the current loop  
Analog loop not powered  
Transmitter failure  
4-20 mA loop  
verification failed  
• Perform transmitter self test  
• Perform manual analog loop test and D/A trim if necessary  
• Replace the electronics board  
• Verify pass/fail criteria  
• Run manual SMART Meter Verification (8714i) under no flow conditions  
• Verify calibration using 8714D Calibration Standard  
• Perform digital trim  
Transmitter calibration verification  
test failed  
• Replace electronics stack  
• Run manual SMART Meter Verification (8714i)  
• Perform sensor tests - see Table 9-8 on page 172  
Sensor calibration test failed  
Sensor coil circuit test failed  
Continuous Meter  
Verification Error  
• Run manual SMART Meter Verification (8714i)  
• Perform sensor tests - see Table 9-8 on page 172  
• Run manual SMART Meter Verification (8714i)  
• Perform sensor tests - see Table 9-8 on page 172  
• Verify electrode resistance has a signature value from a full pipe  
baseline  
Sensor electrode circuit test failed  
Unstable flow rate during the  
verification test or noisy process  
• Run manual transmitter verification test with no flow and a full pipe  
• Verify transmitter electronics with 8714D Calibration Standard. The  
dial on the 8714D should be set to 30 ft/s (9.14 m/s). The transmitter  
should be set up with the nominal calibration number  
Simulated Velocity Out of  
Spec  
Transmitter drift or faulty  
electronics  
(1000015010000000) and 5 Hz coil drive frequency.  
• Perform an electronics trim using the 8714  
• If the electronics trim doesn't correct the issue, replace the electronics  
Moisture in the terminal block of the  
sensor or shorted coil  
• Perform sensor tests - see Table 9-8 on page 172  
• If the problem persists, replace the sensor  
Coil Resistance Out of  
Spec  
Moisture in the terminal block of the  
sensor or shorted coil  
• Perform sensor tests - see Table 9-8 on page 172  
• If the problem persists, replace the sensor  
Coil Signature Out of Spec  
Calibration shift caused by heat  
cycling or vibration  
• Perform sensor tests - see Table 9-8 on page 172  
• If the problem persists, replace the sensor  
160  
 
Reference Manual  
00809-0100-4444, Rev AD  
Section 9: Troubleshooting  
August 2015  
Table 9-3. Advanced Meter Verification Messages (continued)  
Error message  
Potential cause  
Corrective action  
Moisture in the terminal block of the  
sensor  
• Perform sensor tests - see Table 9-8 on page 172  
• If the problem persists, replace the sensor  
• Enable coated electrode detection diagnostic  
• Use bullet-nose electrodes  
• Downsize sensor to increases flowrate above 3 ft/s (1 m/s)  
• Periodically clean sensor  
Electrode Resistance Out  
of Spec  
Electrode coating  
• Perform sensor tests - see Table 9-8 on page 172  
• If the problem persists, replace the sensor  
Shorted electrodes  
Unstable flow rate during the  
verification test or noisy process  
• Run manual transmitter verification test with no flow and a full pipe  
Analog Output Out of  
Spec  
Analog output is no longer within  
accuracy specifications  
• Check the analog loop wiring. Excessive loop resistance can cause an  
invalid test  
161  
Reference Manual  
00809-0100-4444, Rev AD  
Section 9: Troubleshooting  
August 2015  
9.4.1  
Troubleshooting empty pipe  
The following actions can be taken if empty pipe detection is unexpected:  
1.  
2.  
Verify the sensor is full.  
Verify the sensor has not been installed with a measurement electrode at the top of the  
pipe.  
3.  
4.  
Decrease the sensitivity by setting the empty pipe trigger level to a value of at least 20  
counts above the empty pipe value read with a full pipe.  
Decrease the sensitivity by increasing the empty pipe counts to compensate for process  
noise. The empty pipe counts is the number of consecutive empty pipe value readings  
above the empty pipe trigger level required to set the empty pipe diagnostic. The count  
range is 2-50, factory default set at 5.  
5.  
6.  
Increase process fluid conductivity above 50 microsiemens/cm.  
Properly connect the wiring between the sensor and the transmitter. Corresponding  
terminal block numbers in the sensor and transmitter must be connected.  
7.  
Perform the sensor electrical resistance tests. For more detailed information, consult  
9.4.2  
Troubleshooting ground/wiring fault  
If transmitter detects high levels (greater than 5mV) 50/60 Hz noise caused by improper wiring  
or poor process grounding:  
1.  
2.  
Verify the transmitter is earth grounded.  
Connect ground rings, grounding electrode, lining protector, or grounding straps.  
Grounding diagrams can be found in Process reference connection on page 19.  
3.  
4.  
Verify the sensor is full.  
Verify wiring between sensor and transmitter is prepared properly. Shielding should be  
stripped back less than 1 inch (25 mm).  
5.  
6.  
Use separate shielded twisted pairs for wiring between sensor and transmitter.  
Properly connect the wiring between the sensor and the transmitter. Corresponding  
terminal block numbers in the sensor and transmitter must be connected.  
162  
   
Reference Manual  
00809-0100-4444, Rev AD  
Section 9: Troubleshooting  
August 2015  
9.4.3  
Troubleshooting high process noise  
The transmitter detected high levels of process noise. If the signal to noise ratio is less than 25  
while operating in 5 Hz mode, proceed with the following steps:  
1.  
Increase transmitter coil drive frequency to 37 Hz (refer to Coil drive frequency on  
page 135) and, if possible, perform auto zero function (Auto zero on page 135).  
2.  
Verify sensor is electrically connected to the process with process reference electrode,  
grounding rings with grounding straps, or lining protector with grounding straps.  
3.  
4.  
If possible, redirect chemical additions downstream of the magmeter.  
Verify process fluid conductivity is above 10 microSiemens/cm.  
If the signal to noise ratio is less than 25 while operating in 37 Hz mode, proceed with the  
following steps:  
1.  
Turn on the Digital Signal Processing (DSP) technology and follow the setup procedure  
(see Section 7 Digital Signal Processing). This will minimize the level of damping in the  
flow measurement and control loop while also stabilizing the reading to minimize valve  
actuation.  
2.  
3.  
Increase damping to stabilize the signal (refer to PV damping on page 35). This will add  
response time to the control loop.  
Move to a Rosemount High-Signal flowmeter system. This flowmeter will deliver a  
stable signal by increasing the amplitude of the flow signal by ten times to increase the  
signal to noise ratio. For example if the signal to noise ratio (SNR) of a standard  
magmeter is 5, the High-Signal would have a SNR of 50 in the same application. The  
Rosemount High-Signal system is comprised of the 8707 sensor which has modified  
coils and magnetics and the 8712H High-Signal transmitter.  
Note  
In applications where very high levels of noise are a concern, it is recommended that a  
dual-calibrated Rosemount High-Signal 8707 sensor be used. These sensors can be calibrated to  
run at lower coil drive current supplied by the standard Rosemount transmitters, but can also be  
upgraded by changing to the 8712H High-Signal transmitter.  
1/f noise  
This type of noise has higher amplitudes at lower frequencies, but generally degrades over  
increasing frequencies. Potential sources of 1/f noise include chemical mixing and slurry flow  
particles rubbing against the electrodes. This type of noise can be mitigated by switching to the  
37Hz coil drive frequency.  
Spike noise  
This type of noise generally results in a high amplitude signal at specific frequencies which can  
vary depending on the source of the noise. Common sources of spike noise include chemical  
injections directly upstream of the flowmeter, hydraulic pumps, and slurry flows with low  
concentrations of particles in the stream. The particles bounce off of the electrode generating a  
“spike” in the electrode signal. An example of this type of flow stream would be a recycle flow in  
163  
 
Reference Manual  
00809-0100-4444, Rev AD  
Section 9: Troubleshooting  
August 2015  
a paper mill. The type of noise can be mitigated by switching to the 37Hz coil drive frequency  
and enabling the digital signal processing.  
White noise  
This type of noise results in a high amplitude signal that is relatively constant over the frequency  
range. Common sources of white noise include chemical reactions or mixing that occurs as the  
fluid passes through the flowmeter and high concentration slurry flows where the particulates  
are constantly passing over the electrode head. An example of this type of flow stream would be  
a basis weight stream in a paper mill. This type of noise can be mitigated by switching to the  
37Hz coil drive frequency and enabling the digital signal processing.  
9.4.4  
Troubleshooting coated electrode detection  
In the event that electrode coating is detected, use the following table to determine the  
appropriate course of action.  
Table 9-4. Troubleshooting the Electrode Coating Diagnostic  
Error message  
Potential causes of error  
Steps to correct  
• Insulating coating is starting to build up on • Verify process fluid conductivity  
the electrode and may interfere with the  
flow measurement signal  
• Process fluid conductivity has decreased to • Replace the meter with a smaller diameter meter to  
• Schedule maintenance to clean the electrodes  
• Use bullet nose electrodes  
Electrode Coating Level 1  
a level close to operational limits of the  
meter  
increase the flow velocity to above 3 ft/s (1 m/s)  
• Insulating coating has built up on the  
• Verify process fluid conductivity  
electrodes and is interfering with the flow • Schedule maintenance to clean the electrodes  
measurement signal • Use bullet nose electrodes  
• Process fluid conductivity has decreased to • Replace the meter with a smaller diameter meter to  
Electrode Coating Level 2  
a level below the operational limits of the  
meter  
increase the flow velocity to above 3 ft/s (1 m/s)  
9.4.5  
Troubleshooting 4-20 mA loop verification  
In the event that the 4-20 mA Loop Verification fails, use the following table to determine the  
appropriate course of action.  
Table 9-5. Troubleshooting the Analog Loop Verification Diagnostic  
Test  
Potential cause  
Corrective action  
• Analog loop not powered  
• Check analog loop wiring  
• Check loop resistance  
• Check analog loop power switch – see Internal/external  
• Check external supply voltage to the transmitter  
• Check for parallel paths in the current loop  
4-20 mA Loop Verification Failure  
• Analog drift  
• Perform D/A trim  
• Transmitter failure  
• Perform transmitter self-test  
• Perform manual analog loop test  
• Replace the electronics stack  
164  
   
Reference Manual  
00809-0100-4444, Rev AD  
Section 9: Troubleshooting  
August 2015  
9.4.6  
Troubleshooting the SMART Meter Verification test  
If the SMART Meter Verification test fails, use the following table to determine the appropriate  
course of action. Begin by reviewing the SMART Meter Verification results to determine the  
specific test that failed.  
Table 9-6. Troubleshooting the SMART Meter Verification Diagnostic  
Test  
Potential cause  
Corrective action  
• Unstable flow reading during the test • Rerun SMART Meter Verification (8714i) under No Flow  
• Noise in the process  
• Transmitter drift  
• Faulty electronics  
conditions  
• Check the transmitter calibration with the 8714D  
Calibration Standard  
Transmitter Verification Test  
• Perform a digital trim  
• Replace the electronics stack  
• Moisture in the sensor terminal block • Rerun SMART Meter Verification (8714i)  
Sensor Calibration Verification  
Coil Circuit Health  
• Calibration shift caused by heat  
cycling or vibration  
• Perform the sensor checks detailed in 9.6 Sensor  
• Remove the sensor and send back for evaluation and / or  
recalibration  
• Moisture in the sensor terminal block  
• Shorted Coil  
• Electrode resistance baseline was not  
taken after installation  
• Test condition was not selected  
properly  
Electrode Circuit Health  
• Moisture in the sensor terminal block  
• Coated electrodes  
• Shorted electrodes  
165  
 
Reference Manual  
00809-0100-4444, Rev AD  
Section 9: Troubleshooting  
August 2015  
9.5  
Basic troubleshooting  
When troubleshooting a magmeter, it is important to identify the issue. Table 9-7 provides  
common symptoms displayed by a magmeter that is not functioning properly. This table  
provides potential causes and suggested corrective actions for each symptom.  
Table 9-7. Common Magmeter Issue  
Symptom  
Potential cause  
Corrective action  
• No power to transmitter  
• Check power source and connections to the transmitter  
• Analog output improperly  
configured  
• Check the analog power switch position  
• Verify wiring and analog power  
Output at 0 mA  
• Electronics failure  
• Verify transmitter operation with an 8714D Calibration Standard or  
replace the electronic stack  
• Blown fuse  
• Check the fuse and replace with an appropriately rated fuse, if  
necessary  
• Transmitter in multidrop mode  
• Low Flow Cutoff set too high  
• Configure Poll Address to 0 to take transmitter out of multidrop  
mode  
• Configure Low Flow Cutoff to a lower setting or increase flow to a  
value above the low flow cutoff  
• PZR Activated  
• Open PZR switch at terminals 5 and 6 to deactivate the PZR  
• Enable Reverse Flow function  
• Coil check – perform sensor test  
• Fill pipe  
Output at 4 mA  
• Flow is in reverse direction  
• Shorted coil  
• Empty pipe  
• Electronics failure  
• Verify transmitter operation with an 8714D Calibration Standard or  
replace the electronics stack  
• Loop resistance is greater than  
600 ohms  
• Reduce loop resistance to less than 600 ohms  
• Perform analog loop test  
Output will not reach 20 mA  
Output at 20.8 mA  
• Insufficient supply voltage to  
analog output  
• Verify analog output supply voltage  
• Perform analog loop test  
• Transmitter not ranged properly • Reset the transmitter range values –  
• Check tube size setting in transmitter and make sure it matches the  
actual tube size – see Line size on page 34  
• Electronics failure  
• Open coil circuit  
• Cycle power. If alarm is still present, verify transmitter operation with  
an 8714 D Calibration Standard or replace the electronics stack  
• Check coil drive circuit connections at the sensor and at the  
transmitter  
• Analog output diagnostic alarm  
is active  
Output at alarm level  
• Coil power or coil current is over • Check coil drive circuit connections at the sensor and at the  
limit  
transmitter  
• Cycle power. If alarm is still present, verify transmitter operation with  
an 8714 D Calibration Standard or replace the electronics stack  
• Connected to incompatible  
sensor  
166  
     
Reference Manual  
00809-0100-4444, Rev AD  
Section 9: Troubleshooting  
August 2015  
Table 9-7. Common Magmeter Issue (continued)  
Symptom  
Potential cause  
Corrective action  
• Wiring error  
• Check pulse output wiring at terminals 3 and 4. Refer to wiring  
diagram for pulse counter and pulse output. See Connect pulse  
• PZR activated  
• Remove signal at terminals 5 and 6 to deactivate the PZR.  
• No power to transmitter  
• Check pulse output wiring at terminals 3 and 4. Refer to wiring  
diagram for pulse counter and pulse output.  
• Power the transmitter  
Pulse output at zero,  
regardless of flow  
• Reverse flow  
• Enable Reverse Flow function  
• Electronics failure  
• Verify transmitter operation with an 8714D Calibration Standard or  
replace the electronics stack  
• Pulse output incorrectly  
configured  
• Review configuration and correct as necessary  
• 4–20 mA output configuration  
• Check analog power switch (internal/external). The Handheld  
Communicator requires a 4–20 mA output to function.  
• Communication interface wiring • Incorrect load resistance (250 Ohm minimum, 600 Ohm maximum)  
Communication problems  
with the Handheld  
Communicator  
problems  
Check appropriate wiring diagram  
• Low batteries in the Handheld  
Communicator  
• Replace the batteries in the Handheld Communicator – see the  
communicator manual for instructions  
• Old revision of software in the  
Handheld Communicator  
• Consult your local sales office about updating to the latest revision  
of software  
Error Messages on LOI or  
Handheld Communicator  
• Many possible causes depending • See Table 9-1 on page 157, Table 9-2 on page 159, and Table 9-3 on  
upon the message  
page 160 for the LOI or Handheld Communicator messages  
• Input signal does not provide  
enough counts  
• Verify that the discrete input provided meets the requirements in  
Discrete input does not  
register  
• Perform a loop test to validate the analog control loop  
• Perform a D/A trim. This allows the calibration of the analog output  
with an external reference at operating endpoints of the analog  
output.  
167  
Reference Manual  
00809-0100-4444, Rev AD  
Section 9: Troubleshooting  
August 2015  
Table 9-7. Common Magmeter Issue (continued)  
Symptom  
Potential cause  
Corrective action  
• Transmitter, control system, or  
other receiving device not  
configured properly  
• Check all configuration variables for the transmitter, sensor,  
communicator, and/or control system  
• Check these other transmitter settings:  
•Sensor calibration number  
•Units  
•Line size  
•Perform a loop test to check the integrity of the circuit  
• Electrode Coating  
• Enable Coated Electrode Detection diagnostic  
• Use bullet-nose electrodes  
• Downsize sensor to increase flow rate above 3 ft/s  
• Periodically clean sensor  
• Gas/air in line  
• Move the sensor to another location in the process line to ensure it is  
full under all conditions  
• Moisture problem  
• Perform the sensor tests - see Table 9-8 on page 172  
• Insufficient  
upstream/downstream pipe  
diameter  
• Move sensor to a new location with 5 pipe diameters upstream and 2  
pipe diameters downstream if possible  
Reading does not appear to  
be within rated accuracy  
• Cables for multiple magmeters  
run through same conduit  
• Use dedicated conduit run for each sensor and transmitter  
• Improper wiring  
• If electrode shield and electrode signal wires are switched, flow  
indication will be about half of what is expected. Check wiring  
diagrams.  
• Flow rate is below 1 ft/s  
(specification issue)  
• See accuracy specification for specific transmitter and sensor  
• Auto zero was not performed  
when the coil drive frequency  
was changed from 5 Hz to 37 Hz  
• Set the coil drive frequency to 37 Hz, verify the sensor is full, verify  
there is no flow, and perform the auto zero function  
• Sensor failure–shorted  
electrode  
• Perform the sensor tests - see Table 9-8 on page 172  
• Perform the sensor tests - see Table 9-8 on page 172  
• Sensor failure–shorted or open  
coil  
• Transmitter failure  
• Verify transmitter operation with an 8714 Calibration Standard or  
replace the electronics board  
• Chemical additives upstream of  
magnetic flowmeter  
• Move injection point downstream of magnetic flowmeter, or move  
magnetic flowmeter  
• Sludge flows–mining/coal/  
sand/slurries (other slurries with  
hard particles)  
• Decrease flow rate below 10 ft/s  
• Styrofoam or other insulating  
particles in process  
• Consult factory  
Noisy Process  
• Electrode coating  
• Enable Coated Electrode Detection diagnostic  
• Use a smaller sensor to increase flow rate above 3 ft/s  
• Periodically clean sensor  
• Gas/air in line  
• Move the sensor to another location in the process line to ensure it is  
full under all conditions  
• Low conductivity fluids (below  
10 microsiemens/cm)  
• Trim electrode and coil wires – see Cable preparation on page 27  
• Keep flow rate below 3 FPS  
• Integral mount transmitter  
• Use component cable - see Table 2-11 on page 25  
168  
Reference Manual  
00809-0100-4444, Rev AD  
Section 9: Troubleshooting  
August 2015  
Table 9-7. Common Magmeter Issue (continued)  
Symptom  
Potential cause  
Corrective action  
• Medium to low conductivity  
fluids (10–25  
microsiemens/cm) combined  
with cable vibration or 60 Hz  
interference  
• Eliminate cable vibration  
• Move cable to lower vibration run  
• Tie down cable mechanically  
• Use an integral mount  
• Trim electrode and coil wires - see Cable preparation on page 27  
• Route cable line away from other equipment  
powered by 60 Hz  
• Use component cable - see Table 2-11 on page 25  
• Electrode incompatibility  
• Improper grounding  
• Check the Technical Data Sheet, Magnetic Flowmeter Material  
Selection Guide (document number 00816-0100-3033), for  
chemical compatibility with electrode material  
• Check ground wiring – see Process reference connection on page 19  
for wiring and grounding procedures  
Meter output is unstable  
• High local magnetic or electric  
fields  
• Move magnetic flowmeter (20–25 ft away is usually acceptable)  
• Control loop improperly tuned  
• Check control loop tuning  
• Service valve  
• Sticky valve (look for periodic  
oscillation of meter output)  
• Sensor failure  
• Perform the sensor tests  
• Analog output loop problem  
• Check that the 4 to 20 mA loop matches the digital value Perform  
analog output test  
9.6  
Sensor troubleshooting  
This section describes manual tests that can be performed on the sensor to verify the health of  
individual components. The tests will require the use of a digital multimeter capable of  
measuring conductance in nanoSiemens and an LCR meter. A sensor circuit diagram is shown in  
Figure 9-1. The tests described below will check for continuity or isolation of the internal  
components of the sensor.  
Figure 9-1. Sensor Circuit Diagram (Simplified)  
169  
   
Reference Manual  
00809-0100-4444, Rev AD  
Section 9: Troubleshooting  
August 2015  
9.6.1  
Sensor adapter  
The sensor adapter is the part of the sensor that provides the internal connection feed-through  
wiring from the internal sensor components to the socket module connections. The top of the  
adapter has 10 pins - four pins for the coils, four pins for the electrodes, and two pins for the  
process reference. Each connection point has two pins associated for redundant continuity. See  
The best location for testing the sensor components is taking measurements directly on the  
feed-through pins. Direct measurement on the pins eliminates the possibility of an erroneous  
measurement caused by a bad socket module or remote wiring. The figure below shows the  
feed-through pin connections as they relate to the terminal connections described in the tests.  
Figure 9-2. Sensor Adapter Feed-through Pins  
9.6.2  
Socket module  
The socket module connects the sensor adapter to the transmitter. There are two versions of  
the socket module—one for integral mount transmitters and one for remote mount  
transmitters. Refer to Figure 9-3 and Figure 9-4. The socket module is a replaceable component.  
If test measurements taken through the socket module show a failure, remove the socket  
module and confirm measurements directly on the feed-through pins of the sensor adapter. To  
remove the socket module, refer to Section 8: Maintenance.  
170  
     
Reference Manual  
00809-0100-4444, Rev AD  
Section 9: Troubleshooting  
August 2015  
Figure 9-3. IIntegral Mount Socket Module  
Figure 9-4. Remote Mount Socket Module  
171  
   
Reference Manual  
00809-0100-4444, Rev AD  
Section 9: Troubleshooting  
August 2015  
9.6.3  
Installed sensor tests  
If a problem with an installed sensor is identified, refer to Table 9-8 on page 172 to assist in trou-  
bleshooting the sensor. Disconnect or turn off power to the transmitter before performing any  
of the sensor tests. Always check the operation of test equipment before each test.  
If possible, take all readings from feed-through pins in the sensor adapter. If the pins in the  
sensor adapter are inaccessible, take measurements at the sensor terminal block or through  
remote cabling as close to the sensor as possible. Readings taken through remote cabling that is  
more than 100 feet (30 meters) in length may provide incorrect or inconclusive information and  
should be avoided.  
The expected values in the test below assume the measurements have been taken directly at  
the pins.  
Table 9-8. Sensor Tests and Expected Values  
Sensor  
Required  
Measuring at  
Test  
location  
equipment connections Expected value  
Potential cause Corrective action  
Installed or  
uninstalled  
• Open or shorted • Remove and  
2Ω ≤ R 18Ω  
A. Sensor coil  
Multimeter  
Multimeter  
1 and 2 = R  
17 and 3  
coil  
replace sensor  
• Moisture in  
terminal block  
• Leaky electrode  
• Process behind  
liner  
3 and case  
ground  
• Clean terminal  
block  
• Remove sensor  
B. Shields to  
case  
Installed or  
uninstalled  
< 0.3Ω  
17 and case  
ground  
• Remove sensor  
and dry  
• Clean terminal  
block  
• Confirm with  
sensor coil test  
• Process behind  
liner  
• Leaky electrode  
• Moisture in  
terminal block  
1 and 3  
2 and 3  
C. Coil to coil  
shield  
Installed or  
uninstalled  
(< 1nS)  
(< 1nS)  
∞Ω  
∞Ω  
Multimeter  
• Unstable R1 or R2  
values confirm  
coated electrode  
• Shorted  
• Remove coating  
from sensor wall  
• Use bullet-nose  
electrodes  
electrode  
• Electrode not in  
contact with  
process  
• Empty pipe  
• Low conductivity  
• Leaky electrode  
• Process  
• Repeat  
measurement  
• Remove sensor  
and complete  
tests in Table 9-9  
• Connect process  
reference ground  
D. Electrode to  
electrode  
shield  
LCR (Set to  
Resistance  
and 120 Hz)  
R1 and R2 should be stable  
18 and 17 = R1  
19 and 17 = R2  
Installed  
R R 300Ω  
1
2
reference  
ground not  
connected  
properly  
LCR (set to  
resistance  
and 120 Hz)  
Should be stable and same  
relative magnitude of R1 and  
E. Electrode to  
Electrode  
18 and 19  
Installed  
• See Test D above • See Test D above  
R2 from Test D  
To test the sensor, a multimeter capable of measuring conductance in nanoSiemens is  
preferred. Conductance is the reciprocal of resistance.  
Or:  
172  
   
Reference Manual  
00809-0100-4444, Rev AD  
Section 9: Troubleshooting  
August 2015  
9.6.4  
Uninstalled sensor tests  
Sensor troubleshooting can also be performed on an uninstalled sensor. If test results from  
installed sensor tests are inconclusive, the next step is remove the sensor and perform the tests  
outlined in Table 9-9. Take measurements from the feed-through pins and directly on the  
electrode head inside the sensor. The measurement electrodes, 18 and 19, are on opposite  
sides in the inside diameter of the sensor. If applicable, the third process reference electrode is  
between the two measurement electrodes.  
The expected values in the test below assume the measurements have been taken directly at  
the pins.  
Table 9-9. Uninstalled Sensor Tests and Expected Values  
Sensor  
location  
Required  
equipment connections  
Measuring at  
Expected  
value  
Test  
Potential cause  
Corrective action  
• Shorted electrode • Replace sensor  
A. Terminal to  
front  
Uninstalled Multimeter  
Uninstalled Multimeter  
Uninstalled Multimeter  
18 and electrode 18(1)  
19 and electrode 19(1)  
• Open electrode  
• Coated electrode  
• Remove coating  
from sensor wall  
1  
electrode  
• Shorted electrode • Replace sensor  
B. Terminal to  
back electrode  
• Open electrode  
• Coated electrode  
• Remove coating  
from sensor wall  
1 Ω  
• Shorted electrode • Replace sensor  
C. Terminal to  
reference  
electrode  
17 and process  
• Open electrode  
• Coated electrode  
• Remove coating  
from sensor wall  
0.3 Ω  
reference electrode(2)  
• Moisture in  
terminal block  
• Leaky electrode  
• Process behind  
liner  
• Clean terminal  
block  
• Replace terminal  
block  
D. Terminal to  
case ground  
Uninstalled Multimeter  
Uninstalled Multimeter  
Uninstalled Multimeter  
17 and safety ground  
0.3 Ω  
• Replace sensor  
• Shorted electrode • Replace sensor  
• Leaky electrode  
• Moisture in  
• Clean terminal  
block  
• Replace terminal  
block  
18 and 17  
(<1 nS)  
∞Ω  
∞Ω  
∞Ω  
terminal block  
E. Electrode to  
electrode  
shield  
• Shorted electrode • Replace sensor  
• Leaky electrode  
• Moisture in  
• Clean terminal  
block  
• Replace terminal  
block  
19 and 17  
(<1 nS)  
(<1 nS)  
terminal block  
• Process in coil  
housing  
• Moisture in  
terminal block  
• Replace sensor  
• Clean terminal  
block  
• Replace terminal  
block  
F. Electrode  
shield to coil  
17 and 1  
1. When the connection head is in the vertical upright position and the flow arrow (see Figure 2-4 on page 10) on the connection head flange points to the  
right, the front of the meter will be facing towards you. Electrode 18 is on the front of the meter. If you cannot determine the front of the meter, measure  
both electrodes. One electrode should result in an open reading, while the other electrode should be less than 0.3 ohm.  
2. Only valid if the sensor has a process reference electrode.  
173  
     
Reference Manual  
00809-0100-4444, Rev AD  
Section 9: Troubleshooting  
August 2015  
9.7  
Technical support  
Email addresses:  
Worldwide: [email protected]  
Asia-Pacific: [email protected]  
Middle East and Africa: [email protected]  
North and South America  
United States 800-522-6277  
Europe and Middle East  
Asia Pacific  
U.K.  
0870 240 1978  
Australia  
800 158 727  
Canada  
+1 303-527-5200  
+41 (0) 41 7686 111  
+54 11 4837 7000  
+55 15 3238 3677  
+58 26 1731 3446  
The Netherlands  
France  
+31 (0) 318 495 555 New Zealand  
099 128 804  
Mexico  
0800 917 901  
0800 182 5347  
8008 77334  
India  
800 440 1468  
888 550 2682  
+86 21 2892 9000  
+81 3 5769 6803  
+82 2 3438 4600  
+65 6 777 8211  
001 800 441 6426  
800 814 008  
Argentina  
Brazil  
Germany  
Italy  
Pakistan  
China  
Venezuela  
Central & Eastern  
Russia/CIS  
Egypt  
+41 (0) 41 7686 111 Japan  
+7 495 981 9811  
0800 000 0015  
800 70101  
South Korea  
Singapore  
Thailand  
Malaysia  
Oman  
Qatar  
431 0044  
Kuwait  
663 299 01  
South Africa  
Saudi Arabia  
UAE  
800 991 390  
800 844 9564  
800 0444 0684  
174  
 
Reference Manual  
00809-0100-4444, Rev AD  
Section 9: Troubleshooting  
August 2015  
9.8  
Service  
To expedite the return process outside the United States, contact the nearest Rosemount repre-  
sentative.  
Within the United States and Canada, call the North American Response Center using the  
800-654-RSMT (7768) toll-free number. The Response Center, available 24 hours a day, will  
assist you with any needed information or materials.  
The center will ask for product, model, and serial numbers and will provide a Return Material  
Authorization (RMA) number. The center will also ask for the name of the process material to  
which the product was last exposed.  
Mishandling products exposed to a hazardous substance may result in death or serious injury. If  
the product being returned was exposed to a hazardous substance as defined by OSHA, a copy  
of the required Material Safety Data Sheet (MSDS) for each hazardous substance identified must  
be included with the returned goods.  
The North American Response Center will detail the additional information and procedures  
necessary to return goods exposed to hazardous substances.  
175  
 
Reference Manual  
00809-0100-4444, Rev AD  
Section 9: Troubleshooting  
August 2015  
176  
Reference Manual  
00809-0100-4444, Rev AD  
Appendix A: Specifications and Reference Data  
August 2015  
Appendix A  
Specifications and Reference  
Data  
A.1  
Rosemount 8732EM Transmitter specifications  
A.1.1  
Functional specifications  
Sensor compatibility  
Compatible with Rosemount 8705, 8711, and 8721 sensors. Compatible with AC and DC  
powered sensors of other manufacturers.  
Transmitter coil drive current  
500mA  
Flow rate range  
Capable of processing signals from fluids that are traveling between 0.04 and 39 ft/s (0.01 to 12  
m/s) for both forward and reverse flow in all sensor sizes. Full scale continuously adjustable  
between –39 and 39 ft/s (–12 to 12 m/s).  
Conductivity limits  
Process liquid must have a conductivity of 5 microSiemens/cm (5 micromhos/cm) or greater.  
Power supply  
90 - 250VAC, 50/60Hz or 12 - 42VDC  
Specifications and Reference Data  
177  
     
Reference Manual  
00809-0100-4444, Rev AD  
Appendix A: Specifications and Reference Data  
August 2015  
Line power fuses  
90-250VAC systems  
1A, 250V, I2t 1.5 A2s Rating, Fast Acting  
Bussman AGC-1, Littelfuse 31201.5HXP  
12-42VDC systems  
3 Amp, 250V, I2t 14 A2s Rating, Fast Acting  
Bel Fuse 3AG 3-R, Littelfuse 312003P, Schurter 0034.5135  
Power consumption  
15W maximum - DC  
40VA maximum - AC  
Switch-on current  
AC: Maximum 35.7A (< 5ms) at 250VAC  
DC: Maximum 42A (< 5ms) at 42VDC  
AC power supply requirements  
Units powered by 90 - 250VAC have the following power requirements.  
Figure A-1. AC Current Requirements  
178  
Specifications and Reference Data  
Appendix A: Specifications and Reference Data  
Reference Manual  
00809-0100-4444, Rev AD  
August 2015  
Figure A-2. Apparent Power  
DC supply current requirements  
Units powered by 12VDC power supply may draw up to 1.2A of current steady state.  
Figure A-3. DC Current Requirements  
Ambient temperature limits  
Operating  
–40 to 140 °F (–40 to 60 °C) without local operator interface  
–4 to 140 °F (–20 to 60 °C) with local operator interface  
The Local Operator Interface (LOI) will not display at temperatures below -20°C  
Specifications and Reference Data  
179  
Reference Manual  
00809-0100-4444, Rev AD  
Appendix A: Specifications and Reference Data  
August 2015  
Storage  
–40 to 185 °F (–40 to 85 °C) without local operator interface  
–22 to 176 °F (–30 to 80 °C) with local operator interface(1)  
Humidity limits  
0–95% RH to 140 °F (60 °C)  
Altitude  
2000 meters maximum  
Enclosure rating  
Type 4X, IEC 60529, IP66 (transmitter)  
Transient protection rating  
Built in transient protection that conforms to:  
IEC 61000-4-4 for burst currents  
IEC 61000-4-5 for surge currents.  
IEC 611185-2.2000, Class 3 up to 2kV and up to 2kA protection.  
Turn-on time  
Five minutes to rated accuracy from power up  
Five seconds from power interruption  
Start-up time  
50ms from zero flow  
Low flow cut-off  
Adjustable between 0.01 and 38.37 ft/s (0.003 and 11.7 m/s). Below selected value, output is  
driven to the zero flow rate signal level.  
Overrange capability  
Signal output will remain linear until 110% of upper range value or 44 ft/s (13 m/s). The signal  
output will remain constant above these values. Out of range message displayed on LOI and the  
Field Communicator.  
Damping  
Adjustable between 0 and 256 seconds  
180  
Specifications and Reference Data  
Appendix A: Specifications and Reference Data  
Reference Manual  
00809-0100-4444, Rev AD  
August 2015  
A.1.2  
Advanced diagnostics capabilities  
Basic  
Self test  
Transmitter faults  
Analog output test  
Pulse output test  
Tunable empty pipe  
Reverse flow  
Coil circuit fault  
Electronics temperature  
Process diagnostics (DA1)  
Ground/wiring fault  
High process noise  
Electrode coating diagnostic  
Smart meter verification (DA2)  
SMARTMeter Verification (continuous or on-demand)  
4-20mA loop verification  
A.1.3  
Output signals  
Analog output adjustment(1)  
4–20mA, switch-selectable as internally or externally powered.  
Analog loop load limitations  
Internally powered 24VDC max, 500 ohms max loop resistance  
Externally powered 10.8 - 30VDC max.  
Loop resistance is determined by the voltage level of the external power supply at the  
transmitter terminals.  
(1) For transmitters with intrinsically safe outputs (option code B), power must be supplied externally.  
Specifications and Reference Data  
181  
       
Reference Manual  
00809-0100-4444, Rev AD  
Appendix A: Specifications and Reference Data  
August 2015  
Figure A-4. Analog Loop Load Limitations  
600  
Operating  
Region  
0
10.8  
30  
Power Supply (Volts)  
R
V
=
=
31.25 (V – 10.8)  
Power Supply Voltage (Volts)  
Maximum Loop Resistance (Ohms)  
max  
ps  
=
ps  
R
max  
The analog output is automatically scaled to provide 4mA at lower range value and 20mA at  
upper range value. Full scale continuously adjustable between -39 and 39 ft/s (-12 to 12 m/sec),  
1 ft/s (0.3 m/s) minimum span.  
HART Communications is a digital flow signal. The digital signal is superimposed on the 4–  
20mA signal and is available for the control system interface. A minimum of 250 Ohms loop  
resistance is required for HART communications.  
Scalable pulse frequency adjustment(1)(2)  
0-10,000Hz, switch-selectable as internally or externally powered. Pulse value can be set to  
equal desired volume in selected engineering units. Pulse width adjustable from 0.1 to 650 ms.  
Internally powered: Outputs up to 12VDC  
Externally powered: Input 5 - 28VDC  
Output testing  
Analog output test(3)  
Transmitter may be commanded to supply a specified current between 3.5 and 23mA.  
Pulse output test(4)  
Transmitter may be commanded to supply a specified frequency between 1 and 10,000Hz.  
Optional discrete output function (AX option)  
Externally powered at 5 - 28VDC, 240mA max, solid state switch closure to indicate either:  
Reverse flow  
Activates switch closure output when reverse flow is detected.  
(1) For transmitters with intrinsically safe outputs (option code B), power must be supplied externally.  
(2) For transmitters with intrinsically safe outputs (option code B), frequency range is limited to 0-5000Hz.  
(3) For transmitters with intrinsically safe outputs (option code B), power must be supplied externally.  
(4) For transmitters with intrinsically safe outputs (option code B), power must be supplied externally.  
182  
Specifications and Reference Data  
         
Appendix A: Specifications and Reference Data  
Reference Manual  
00809-0100-4444, Rev AD  
August 2015  
Zero flow  
Activates switch closure output when flow goes to 0 ft/s or below low flow cutoff.  
Empty pipe  
Activates switch closure output when an empty pipe condition is detected.  
Transmitter faults  
Activates switch closure output when a transmitter fault is detected.  
Flow limit 1, Flow limit 2  
Activates switch closure output when the transmitter measures a flow rate that meets the  
conditions established for this alert. There are two independent flow limit alerts that can be  
configured as discrete outputs.  
Totalizer limit  
Activates switch closure output when the transmitter measures a total flow that meets the  
conditions established for this alert.  
Diagnostic status  
Activates switch closure output when the transmitter detects a condition that meets the  
configured criteria of this output.  
Optional discrete input function (AX option)  
Externally powered at 5 - 28VDC, 1.4 - 20mA to activate switch closure to indicate either:  
Net total reset  
Resets the net totalizer value to zero.  
Positive zero return (PZR)  
Forces outputs of the transmitter to zero flow.  
Security lockout  
Security lockout switch on the electronics board can be set to deactivate all LOI and HART-based  
communicator functions to protect configuration variables from unwanted or accidental  
change.  
LOI lockout  
The display can be manually locked to prevent unintentional configuration changes. The display  
lock can be activated through a HART® communication device, or by holding the UP arrow for 3  
seconds and then following the on-screen instructions. When the display lock is activated, a lock  
symbol will appear in the lower right hand corner of the display. To deactivate the display lock,  
hold the UP arrow for 3 seconds and follow the on-screen instructions.  
Specifications and Reference Data  
183  
 
Reference Manual  
00809-0100-4444, Rev AD  
Appendix A: Specifications and Reference Data  
August 2015  
Display auto lock can be configured from the LOI with the following settings: OFF, 1 Minute, or  
10 Minutes  
A.1.4  
A.1.5  
Sensor compensation  
Rosemount sensors are calibrated in a flow lab at the factory and are assigned a calibration  
number. The calibration number must be entered into the transmitter, enabling interchange-  
ability of sensors without calculations or a compromise in standard accuracy.  
8732EM transmitters and other manufacturers’ sensors can be calibrated at known process  
conditions or at the Rosemount NIST-Traceable Flow Facility. Transmitters calibrated on site  
require a two-step procedure to match a known flow rate. This procedure can be found in the  
operations manual.  
Performance specifications  
System specifications are given using the frequency output and with the unit at reference  
conditions.  
Accuracy  
Includes the combined effects of linearity, hysteresis, and repeatability.  
Rosemount 8705-M Sensor  
Standard system accuracy is 0.25% of rate 1.0 mm/sec from 0.04 to 6 ft/s (0.01 to 2 m/s);  
above 6 ft/s (2 m/s), the system has an accuracy of 0.25% of rate 1.5 mm/sec.  
Optional high accuracy is 0.15% of rate 1.0 mm/sec from 0.04 to 13 ft/s (0.01 to 4 m/s);  
above 13 ft/s (4 m/s), the system has an accuracy of 0.18% of rate.(1)  
2.5  
2.0  
1.5  
1.0  
0.25%  
0.15%  
0.5  
0
27  
(8)  
40  
(12)  
3
(1)  
6
(2)  
20  
(6)  
33  
(10)  
0
13  
(4)  
Velocitty in ft/s (m/s)  
(1) For sensor sizes greater than 12 in. (300 mm) the high accuracy is 0.25% of rate from 3 to 39 ft/sec (1 to 12 m/sec).  
184  
Specifications and Reference Data  
   
Appendix A: Specifications and Reference Data  
Reference Manual  
00809-0100-4444, Rev AD  
August 2015  
Rosemount 8711-M/L Sensor  
Standard system accuracy is 0.25% of rate 2.0 mm/sec from 0.04 to 39 ft/s (0.01 to 12 m/s).  
Optional high accuracy is 0.15% of rate 1.0 mm/sec from 0.04 to 13 ft/s (0.01 to 4 m/s);  
above 13 ft/s (4 m/s), the system has an accuracy of 0.18% of rate.  
2.5  
2.0  
1.5  
1.0  
0.25%  
0.15%  
0.5  
0
27  
(8)  
40  
(12)  
3
(1)  
6
(2)  
20  
(6)  
33  
(10)  
0
13  
(4)  
Velocityy in ft/s (m/s)  
Rosemount 8721 Sensor  
Standard system accuracy is 0.5% of rate from 1 to 39 ft/s (0.3 to 12 m/s); between 0.04 and  
1.0 ft/s (0.01 and 0.3 m/s), the system has an accuracy of 0.005 ft/s (0.0015 m/s).  
Optional high accuracy is 0.25% of rate from 3 to 39 ft/s (1 to 12 m/s).  
2.5  
2.0  
1.5  
1.0  
0.25%  
0.5%  
0.5  
0
27  
(8)  
40  
(12)  
3
(1)  
6
(2)  
20  
(6)  
33  
(10)  
0
13  
(4)  
Velocitty in ft/s (m/s)  
Other manufacturers’ sensors  
When calibrated in the Rosemount Flow Facility, system accuracies as good as 0.5% of rate can  
be attained.  
There is no accuracy specification for other manufacturers’ sensors calibrated in the process  
line.  
Specifications and Reference Data  
185  
Reference Manual  
00809-0100-4444, Rev AD  
Appendix A: Specifications and Reference Data  
August 2015  
A.1.6  
Analog output effects  
Analog output has the same accuracy as frequency output plus an additional 4μA at room  
temperature.  
Repeatability  
0.1% of reading  
Response time (analog output)  
20 ms max response time to step change in input  
Stability  
0.1% of rate over six months  
Ambient temperature effect  
0.25% change over operating temperature range  
A.1.7  
Physical specifications  
Materials of construction  
Standard housing  
Low copper aluminum  
Type 4X and IEC 60529 IP66  
Paint  
Polyurethane coat (1.3 to 5 mils thick)  
Optional housing  
316/316L unpainted, option code SH  
Type 4X and IEC 60529 IP66  
Cover gasket  
Buna-N  
Electrical connections  
Conduit entries: 1/2-in. NPT or M20.  
Terminal block screws: 6-32 (No. 6) suitable for up to 14 AWG wire.  
Safety grounding screws: external stainless assembly, M5; internal 8-32 (No. 8)  
186  
Specifications and Reference Data  
       
Appendix A: Specifications and Reference Data  
Reference Manual  
00809-0100-4444, Rev AD  
August 2015  
Vibration rating  
3G per IEC 61298  
Dimensions  
Weight  
Aluminum - approximately 7 lbs. (3.2 kg).  
316 stainless steel - approximately 23 lbs. (10.5 kg).  
Add 1 pound (0.5 kg) for display option code M4 or M5.  
A.1.8  
F0875 Low Power Software Option  
Available with DC power supply (2) and intrinsically safe outputs (B) only. This software option  
lowers the coil drive current from 500mA to 75mA in order to conserve power for applications  
where battery packs or solar panels are the primary power source. The coils are still driven in a  
continuous manner, optimizing measurement performance. Power consumption of the  
transmitter is reduced to approximately 2W. Use of the analog output results in a maximum of  
1W of additional power consumption under a high alarm condition (23.5mA) and 24VDC  
supply. Power consumption of the output loop can be minimized by utilizing the pulse output or  
pulling information off of the HART signal. Both the pulse loop and the analog loop require  
external power source to be applied. Flow performance reference accuracy is 1.0% of rate.  
To ensure the sensor is calibrated with a low power calibration number, Option Code D3 has  
been established. This code must appear in the transmitter and sensor model number. Sample  
model numbers for lower power are:  
8732EMT2B1N5M4DA1DA2D3F0875  
8705THA020C7M0N5B3D3  
Specifications and Reference Data  
187  
 
Reference Manual  
00809-0100-4444, Rev AD  
Appendix A: Specifications and Reference Data  
August 2015  
A.2  
Rosemount 8705-M Flanged Sensor specifications  
A.2.1  
Functional specifications  
Service  
Conductive liquids and slurries  
Line sizes  
1/2–in. to 36-in. (15 mm to 900 mm) for Rosemount 8705  
Sensor coil resistance  
7 - 16 Ω  
Interchangeability  
Rosemount 8705-M sensors are interchangeable with 8732EM transmitters. System accuracy is  
maintained regardless of line size or optional features. Each sensor nameplate has a 16-digit  
calibration number that can be entered into a transmitter through the Local Operator Interface  
(LOI) or the Field Communicator.  
Upper range limit  
39.37 ft/s (12 m/s)  
Process temperature limits  
PTFE lining  
–20 to 350 °F (–29 to 177 °C)  
ETFE lining  
–20 to 300 °F (–29 to 149 °C)  
PFA lining  
-20 to 350 °F (-29 to 177 °C)  
188  
Specifications and Reference Data  
               
Appendix A: Specifications and Reference Data  
Reference Manual  
00809-0100-4444, Rev AD  
August 2015  
Polyurethane lining  
0 to 140 °F (–18 to 60 °C)  
Neoprene lining  
0 to 176 °F (–18 to 80 °C)  
Linatex lining  
0 to 158 °F (–18 to 70 °C)  
Adiprene lining  
0 to 200 °F (–18 to 93 °C)  
Ambient temperature limits  
–20 to 140 °F (–29 to 60 °C)  
Pressure limits  
Vacuum limits  
PTFE lining  
Full vacuum to 350 °F (177 °C) through 4-in. (100 mm) line sizes. Consult factory for vacuum  
applications with line sizes of 6 in. (150 mm) or larger.  
All other standard sensor lining materials  
Full vacuum to maximum material temperature limits for all available line sizes.  
Submergence protection (IP68)  
The remote mount 8705-M sensor is rated IP68 for submergence to a depth of 33 ft. (10 m) for a  
period of 48 hours. IP68 rating requires the transmitter must be remote mount. Installer must  
use IP68 approved cable glands, conduit connections, and/or conduit plugs. For more details on  
proper installation techniques for IP68 submersible application, reference Rosemount Technical  
Note 00840-0100-4750 available on www.rosemount.com.  
Conductivity limits  
Process liquid must have a minimum conductivity of 5 microSiemens/cm (5 micromhos/cm) or  
greater.  
Specifications and Reference Data  
189  
       
Reference Manual  
00809-0100-4444, Rev AD  
Appendix A: Specifications and Reference Data  
August 2015  
Table A-1. Temperature vs. Pressure Limits(1)  
Sensor temperature vs. pressure limits for ASME B16.5 class flanges (1/2-in. to 36-in. line  
sizes)(2)  
Pressure  
@ -20 to 100 °F  
(-29 to 38 °C)  
@ 200 °F  
(93 °C)  
@ 300 °F  
(149 °C)  
@ 350 °F  
(177 °C)  
Flange material Flange rating  
Class 150  
Class 300  
285 psi  
740 psi  
260 psi  
675 psi  
230 psi  
655 psi  
215 psi  
645 psi  
650 psi  
1292 psi  
1935 psi  
3225 psi  
5375 psi  
190 psi  
500 psi  
650 psi  
997 psi  
1497 psi  
2495 psi  
4160 psi  
Class 600(3)  
1000 psi  
1480 psi  
2220 psi  
3705 psi  
6170 psi  
275 psi  
800 psi  
700 psi  
Carbon Steel  
Class 600(4)  
Class 900  
1350 psi  
2025 psi  
3375 psi  
5625 psi  
235 psi  
1315 psi  
1970 psi  
3280 psi  
5470 psi  
205 psi  
Class 1500  
Class 2500  
Class 150  
Class 300  
720 psi  
600 psi  
530 psi  
Class 600 (5)  
Class 600 (6)  
Class 900  
1000 psi  
1440 psi  
2160 psi  
3600 psi  
6000 psi  
800 psi  
700 psi  
304 Stainless  
Steel  
1200 psi  
1800 psi  
3000 psi  
5000 psi  
1055 psi  
1585 psi  
2640 psi  
4400 psi  
Class 1500  
Class 2500  
1. Liner temperature limits must also be considered.  
2. 30-in. and 36-in. AWWA C207 Class D rated to 150 psi at atmospheric temperature.  
3. Option Code C6.  
4. Option Code C7.  
5. Option Code S6.  
6. Option Code S7.  
Table A-2. Temperature vs. Pressure Limits(1)  
Sensor temperature vs. pressure limits for AS2129 Table D and E flanges (4-in. to 24-in. line sizes)  
Pressure  
@ -29 to 50 °C  
(-20 to 122 °F)  
@ 100 °C  
(212 °F)  
@ 150 °C  
(302 °F)  
@ 200 °C  
(392 °F)  
Flange material  
Flange rating  
D
E
101.6 psi  
203.1 psi  
101.6 psi  
203.1 psi  
101.6 psi  
203.1 psi  
94.3 psi  
Carbon Steel  
188.6 psi  
1. Liner temperature limits must also be considered.  
Table A-3. Temperature vs. Pressure Limits(1)  
Sensor temperature vs. pressure limits for EN 1092-1 flanges (15 mm to 600 mm line sizes)  
Pressure  
@ -29 to 50 °C  
(-20 to 122 °F)  
@ 100 °C  
(212 °F)  
@ 150°C  
(302 °F)  
@ 175°C  
(347 °F)  
Flange material  
Flange rating  
PN 10  
PN 16  
PN 25  
PN 40  
10 bar  
16 bar  
25 bar  
40 bar  
10 bar  
16 bar  
25 bar  
40 bar  
9.7 bar  
15.6 bar  
24.4 bar  
39.1 bar  
9.5 bar  
15.3 bar  
24.0 bar  
38.5 bar  
Carbon Steel  
190  
Specifications and Reference Data  
       
Appendix A: Specifications and Reference Data  
Reference Manual  
00809-0100-4444, Rev AD  
August 2015  
Table A-3. Temperature vs. Pressure Limits(1) (continued)  
Sensor temperature vs. pressure limits for EN 1092-1 flanges (15 mm to 600 mm line sizes)  
Pressure  
@ -29 to 50 °C  
(-20 to 122 °F)  
@ 100 °C  
(212 °F)  
@ 150°C  
(302 °F)  
@ 175°C  
(347 °F)  
Flange material  
Flange rating  
PN 10  
PN 16  
PN 25  
PN 40  
9.1 bar  
14.7 bar  
23 bar  
7.5 bar  
12.1 bar  
18.9 bar  
30.3 bar  
6.8 bar  
11.0 bar  
17.2 bar  
27.5 bar  
6.5 bar  
10.6 bar  
16.6 bar  
26.5 bar  
304 Stainless Steel  
36.8 bar  
1. Liner temperature limits must also be considered.  
A.2.2  
Physical specifications  
Non-wetted materials  
Sensor pipe  
Type 304/304L SST or Type 316/316L SST  
Flanges  
Carbon steel, Type 304/304L SST, or Type 316/316L SST  
Coil housing  
Rolled carbon steel  
Paint  
Polyurethane coat (1.3 to 5 mils thick)  
Optional coil housing  
316/316L unpainted, option code SH  
Process wetted materials  
Lining  
PTFE, ETFE, PFA, Polyurethane, Neoprene, Linatex, Adiprene, PFA+  
Electrodes  
316L SST, Nickel Alloy 276 (UNS N10276), Tantalum, 80% Platinum-20% Iridium, Titanium  
Flat-faced flanges  
Flat-faced flanges are manufactured with full-face liners. Available in Neoprene and Linatex only.  
Specifications and Reference Data  
191  
           
Reference Manual  
00809-0100-4444, Rev AD  
Appendix A: Specifications and Reference Data  
August 2015  
Process connections  
ASME B16.5  
1/2-in. to 24-in. (Class 150, 300, 600(1)  
1-in. to 12-in. (Class 900)(2)  
11/2-in. to 12-in. (Class 1500)(2)  
)
11/2-in. to 6-in. (Class 2500)(2)  
ASME B16.47  
30-in. to 36-in. (Class 150)  
30-in. to 36-in. (Class 300)  
AWWA C207 Class D  
30-in. and 36-in.  
MSS SP44  
30-in. to 36-in. (Class 150)  
EN 1092-1  
200 mm to 900 mm (8-in. to 36-in.) PN10  
100 mm to 900 mm (4 -in. to 36-in.) PN16  
200 mm to 900 mm (8-in. to 36-in.) PN 25  
15 mm to 900 mm (1/2-in. to 36-in.) PN40  
AS2129  
15 mm to 900 mm (1/2-in. to 36-in.) Table D and E  
AS4087  
50 mm to 600 mm (2-in. to 24-in.) PN16, PN21, PN35  
JIS B2220  
15 mm to 200 mm (1/2-in. to 8-in.) 10K, 20K, 40K  
(1) For PTFE and ETFE, maximum working pressure is derated to 1000 psig.  
(2) For Class 900 and higher flange ratings, liner selection is limited to resilient liners.  
192  
Specifications and Reference Data  
   
Appendix A: Specifications and Reference Data  
Reference Manual  
00809-0100-4444, Rev AD  
August 2015  
Electrical connections  
Conduit entries: 1/2 in. NPT or M20.  
Terminal block screws: 6-32 (No. 6) suitable for up to 14 AWG wire.  
Safety grounding screws: external stainless assembly, M5; internal 8-32 (No. 8)  
Process reference electrode (optional)  
A process reference electrode can be installed similarly to the measurement electrodes through  
the sensor lining on 8705 sensors. It will be made of the same material as the measurement  
electrodes.  
Grounding rings (optional)  
Grounding rings can be installed between the flange and the sensor face on both ends of the  
sensor. Single ground rings can be installed on either end of the sensor. They have an I.D. slightly  
larger than the sensor I.D. and an external tab to attach ground wiring. Grounding rings are  
available in 316L SST, Nickel Alloy 276 (UNS N10276), Titanium, and Tantalum. See Product  
Lining protectors (optional)  
Lining protectors can be installed between the flange and the sensor face on both ends of the  
sensor. The leading edge of lining material is protected by the lining protector; lining protectors  
cannot be removed once they are installed. Lining protectors are available in 316L SST, Nickel  
Alloy 276 (UNS N10276), and Titanium. See Product Data Sheet.  
Dimensions  
Weight  
Specifications and Reference Data  
193  
       
Reference Manual  
00809-0100-4444, Rev AD  
Appendix A: Specifications and Reference Data  
August 2015  
A.3  
Rosemount 8711-M/L Wafer Sensor specifications  
A.3.1  
Functional specifications  
Service  
Conductive liquids and slurries  
Line sizes  
1.5-in. to 8-in. (4 mm to 200 mm)  
Sensor coil resistance  
10 - 18 Ω  
Interchangeability  
Rosemount 8711-M/L sensors are interchangeable with 8732EM transmitter. System accuracy is  
maintained regardless of line size or optional features. Each sensor nameplate has a sixteen-digit  
calibration number that can be entered into a transmitter through the Local Operator Interface  
(LOI) or the Field Communicator.  
Upper range limit  
39.37 ft/s (12 m/s)  
Process temperature limits  
ETFE lining  
-20 to 300 °F (–29 to 149 °C)  
PTFE lining  
-20 to 350 °F (-29 to 177 °C)  
PFA Lining  
-20 to 200 °F (-29 to 93 °C)  
194  
Specifications and Reference Data  
               
Appendix A: Specifications and Reference Data  
Reference Manual  
00809-0100-4444, Rev AD  
August 2015  
Ambient temperature limits  
–20 to 140 °F (–29 to 60 °C)  
Maximum safe working pressure at 100 °F (38 °C)  
ETFE lining  
Full vacuum to 740 psi (5.1 MPa)  
PTFE lining  
Full vacuum through 4-in. (100 mm) line sizes. Consult factory for vacuum applications with line  
sizes of 6-in. (1450 mm) or larger.  
PFA lining  
Full vacuum to 285 psi (1.96 MPa)  
Submergence protection (IP68)  
The remote mount 8711-M/L sensor is rated IP68 for submergence to a depth of 33 ft. (10 m) for  
a period of 48 hours. IP68 rating requires the transmitter must be remote mount. Installer must  
use IP68 approved cable glands, conduit connections, and/or conduit plugs. For more details on  
proper installation techniques for IP68 submersible application, reference Rosemount Technical  
Note 00840-0100-4750 available on www.rosemount.com.  
Conductivity limits  
Process liquid must have a minimum conductivity of 5 microSiemens/cm (5 micromhos/cm) or  
greater for 8711.  
A.3.2  
Physical specifications  
Non-wetted materials  
Sensor body  
303 SST  
CF3M or CF8M  
Type 304/304L  
Coil housing  
Rolled carbon steel  
Paint  
Polyurethane coat (1.3 to 5 mils thick)  
Specifications and Reference Data  
195  
           
Reference Manual  
00809-0100-4444, Rev AD  
Appendix A: Specifications and Reference Data  
August 2015  
Process-wetted materials  
Lining  
ETFE, PTFE  
Electrodes  
316L SST, Nickel Alloy 276 (UNS N10276), Tantalum, 80% Platinum—20% Iridium, Titanium  
Process connections  
Mounts between these flange configurations  
ASME B16.5: Class 150, 300  
EN 1092-1: PN10, PN16, PN25, PN40  
JIS B2220: 10K, 20K,  
AS4087: PN16, PN21, PN35  
Studs, nuts, and washers  
MK2–Carbon Steel  
ASME B16.5  
Studs, full thread: CS, ASTM A193, Grade B7  
Hex nuts: ASTM A194 Grade 2H;  
Flat washers: CS, Type A, Series N, SAE per ANSI B18.2.1  
All items clear, chromate zinc-plated  
EN 1092-1  
Studs, full thread: CS, ASTM A193, Grade B7  
Hex nuts: ASTM A194 Grade 2H; DIN 934 H = D  
Flat washers: CS, DIN 125  
All items yellow zinc-plated  
196  
Specifications and Reference Data  
       
Appendix A: Specifications and Reference Data  
Reference Manual  
00809-0100-4444, Rev AD  
August 2015  
MK3–316 SST  
ASME B16.5  
Studs, full thread: ASTM A193, Grade B8M Class 1  
Hex nuts: ASTM A194 Grade 8M;  
Flat washers: 316 SST, Type A, Series N, SAE per ANSI B18.2.1  
EN 1092-1  
Studs, full thread: ASTM A193, Grade B8M Class 1  
Hex nuts: ASTM A194 Grade 8M; DIN 934 H = D  
Flat washers: 316 SST, DIN 125  
Electrical connections  
Conduit entries: 1/2 in. NPT or M20 standard  
Terminal block screws: 6-32 (No. 6) suitable for up to 14 AWG wire  
Safety grounding screws: external stainless assembly, M5; internal 8-32 (No. 8)  
Process reference electrode (optional)  
A process reference electrode can be installed similarly to the measurement electrodes through  
the sensor lining. It will be made of the same material as the measurement electrodes.  
Grounding rings (optional)  
Grounding rings can be installed between the flange and the sensor face on both ends of the  
sensor. They have an I.D. slightly smaller than the sensor I.D. and an external tab to attach  
ground wiring. Grounding rings are available in 316L SST, Nickel Alloy 276 (UNS N10276),  
titanium, and tantalum. See Product Data Sheet.  
Dimensions  
Weight  
Specifications and Reference Data  
197  
Reference Manual  
00809-0100-4444, Rev AD  
Appendix A: Specifications and Reference Data  
August 2015  
A.4  
Rosemount 8721 Hygienic (Sanitary) Sensor  
specifications  
A.4.1  
Functional specifications  
Service  
Conductive liquids and slurries  
Line sizes  
1/2-in. to 4-in. (15 mm to100 mm)  
Sensor coil resistance  
5 -10Ω  
Interchangeability  
The Rosemount 8721 sensors are interchangeable with Rosemount 8732EM transmitters.  
System accuracy is maintained regardless of line size or optional features.  
Each sensor label has a 16 digit calibration number that can be entered into the transmitter  
through the Local Operator Interface (LOI) or the Field Communicator.  
Conductivity limits  
Process liquid must have a minimum conductivity of 5 microSiemens/cm (5 micromhos/cm) or  
greater. Excludes the effect of interconnecting cable length in remote mount transmitter  
installations.  
Flow rate range  
Capable of processing signals from fluids that are traveling between 0.04 and 39 ft/s (0.01 to 12  
m/s) for both forward and reverse flow in all sensor sizes. Full scale continuously adjustable  
between –39 and 39 ft/s (–12 to 12 m/s).  
198  
Specifications and Reference Data  
   
Appendix A: Specifications and Reference Data  
Reference Manual  
00809-0100-4444, Rev AD  
August 2015  
Sensor ambient temperature limits  
14 to 140 °F (–15 to 60 °C)  
Process temperature limits  
PFA lining  
-20 to 350 °F (-29 to 177 °C)  
Table A-4. Pressure limits  
Line size  
in. (mm)  
Max working  
pressure  
CE Mark max. working  
pressure  
1/2 (15)  
300 psi (20.7 bar)  
300 psi (20.7 bar)  
300 psi (20.7 bar)  
300 psi (20.7 bar)  
300 psi (20.7 bar)  
300 psi (20.7 bar)  
210 psi (14.5 bar)  
300 psi (20.7 bar)  
300 psi (20.7 bar)  
300 psi (20.7 bar)  
300 psi (20.7 bar)  
240 psi (16.5 bar)  
198 psi (13.7 bar)  
148 psi (10.2 bar)  
1 (25)  
11/2 (40)  
2 (50)  
21/2 (65)  
3 (80)  
4 (100)  
Vacuum limits  
Full vacuum at maximum lining material temperature; consult factory.  
Submergence protection (IP68)  
period of 48 hours. IP68 rating requires the transmitter must be remote mount. Installer must  
use IP68 approved cable glands, conduit connections, and/or conduit plugs. For more details on  
Note 00840-0100-4750 available on www.rosemount.com.  
A.4.2  
Physical specifications  
Mounting  
Integrally mounted transmitters are factory-wired and do not require interconnecting cables.  
The transmitter can rotate in 90° increments. Remote mounted transmitters require only a  
single conduit connection to the sensor.  
Non-wetted materials  
Sensor  
304 Stainless Steel (wrapper), 304 Stainless Steel (pipe)  
Terminal junction box  
Low copper aluminum  
Optional: 304 Stainless Steel  
Specifications and Reference Data  
199  
 
Reference Manual  
00809-0100-4444, Rev AD  
Appendix A: Specifications and Reference Data  
August 2015  
Weight  
Table A-5. 8721 Sensor weight  
Line size  
008721-0350 Tri  
in. (mm)  
Sensor only  
Clamp fitting (each)  
1/2 (15)  
4.84 lbs (2.20 kg)  
4.52 lbs (2.05 kg)  
5.52 lbs (2.51 kg)  
6.78 lbs (3.08 kg)  
8.79 lbs (4.00 kg)  
13.26 lbs (6.03 kg)  
21.04 lbs (9.56 kg)  
0.58 lbs (0.263 kg)  
0.68 lbs (0.309 kg)  
0.88 lbs (0.400 kg)  
1.30 lbs (0.591 kg)  
1.66 lbs (0.727 kg)  
2.22 lbs (1.01 kg)  
3.28 lbs (1.49 kg)  
1 (25)  
11/2 (40)  
2 (50)  
21/2 (65)  
3 (80)  
4 (100)  
Aluminum remote junction box  
Approximately 1 lb. (0.45 kg)  
Paint - Polyurethane (1.3 to 5 mils)  
SST remote junction box  
Approximately 2.5 lbs. (1.13 kg)  
Unpainted  
Process wetted materials (sensor)  
Liner  
PFA with Ra < 32μ in. (0.81 μm)  
Electrodes  
316L SST with Ra < 15μ in. (0.38 μm)  
Nickel Alloy 276 (UNS N10276) with Ra < 15μ in. (0.38 μm)  
80% Platinum-20% Iridium with Ra < 15μ in. (0.38 μm)  
Process connections  
The Rosemount 8721 sanitary sensor is designed using a standard IDF fitting as the basis for  
providing a flexible, hygienic interface for a variety of process connections. The Rosemount  
8721 Sensor has the threaded or “male” end of the IDF fitting on the ends of the base sensor.  
The sensor can be directly connected with user supplied IDF fittings and gaskets. If other process  
connections are needed, the IDF fittings and gaskets can be provided and welded directly into  
the sanitary process tubing, or can be supplied with adapters to standard Tri Clamp process  
connections. All connections are PED compliant for group 2 fluids.  
Tri Clamp Sanitary Coupling  
IDF Sanitary Coupling (screw type)  
200  
Specifications and Reference Data  
Appendix A: Specifications and Reference Data  
Reference Manual  
00809-0100-4444, Rev AD  
August 2015  
IDF specification per BS4825 part 4  
ANSI Weld Nipple  
DIN 11850 Weld Nipple  
DIN 11851 (Imperial and Metric)  
DIN 11864-1 form A  
DIN 11864-2 form A  
SMS 1145  
Cherry-Burrell I-Line  
Process connection material  
316L Stainless Steel with Ra < 32μ in. (0.81μm)  
Optional electropolished surface finish with Ra < 15μ in. (0.38μ m)  
Process connection gasket material  
Silicone  
EPDM  
Viton®  
Electrical connections  
Conduit entries: 1/2 in. NPT standard.  
Terminal block screws: M3  
Safety grounding screws: external stainless assembly, M5; internal 6-32 (No. 6)  
Dimensions  
Specifications and Reference Data  
201  
Reference Manual  
00809-0100-4444, Rev AD  
Appendix A: Specifications and Reference Data  
August 2015  
202  
Specifications and Reference Data  
Reference Manual  
00809-0100-4444, Rev AD  
Appendix B: Product Certifications  
August 2015  
Appendix B  
Product Certifications  
B.1  
Product certifications  
Approvals Document  
July 24, 2015  
08732-AP01, Rev AF  
Rosemount 8700M Magnetic Flowmeter Platform  
Order  
Code  
8732EM  
Transmitter Rating  
8705M and 8711M/L  
Flowtube Rating  
Certification  
Num ber  
Region Agency  
USA  
FM  
-
Ordinary Locations *  
Ordinary Location *  
3048793  
3048793  
3048793  
70030489  
70030489  
***  
EU  
FM Non-Incendive  
Class I Div 2; DIP  
FM Explosion-Proof  
Class I Div 1; DIP  
CSA Non-Incendive  
Class I Div 2; DIP  
CSA Explosion-Proof  
Class I Div 1; DIP  
FM Non-Incendive with Intrinsically Safe Electrodes  
Class I Div 2; DIP  
FM Explosion-Proof with Intrinsically Safe Electrodes  
Class I Div 1; DIP  
CSA Non-Incendive with Intrinsically Safe Electrodes  
Class I Div 2; DIP  
CSA Explosion-Proof with Intrinsically Safe Electrodes  
Class I Div 1; DIP  
N5  
K5  
N6  
KU  
K6  
USA  
USA  
FM  
FM  
USA &  
Canada  
CSA  
CSA  
CSA  
USA  
Canada  
EU  
CSA Flameproof, Increased Safety, and Dust. CSA Increased Safety with Intrinsically Safe Electrodes and  
Zone 0 & 1  
Dust. Zone 0 & 1  
ND ATEX Dust  
ATEX Dust  
DEKRA 14ATEX0071 X  
DEKRA 14ATEX0071 X  
ATEX Non-Sparking  
ATEX Dust  
ATEX Flameproof with Increased Safety  
ATEX Dust  
ATEX Non-Sparking with Intrinsically Safe Electrodes  
ATEX Dust  
ATEX Increased Safety with Intrinsically Safe Electrodes  
ATEX Dust  
N1  
K1  
EU  
EU  
DEKRA 14ATEX0071 X  
IECEx  
NF IECEx Dust  
IECEx Non-Sparking  
IECEx Dust  
Global DEKRA  
Global DEKRA  
Global DEKRA  
DEK14.0031X  
IECEx  
DEK14.0031X  
IECEx  
DEK14.0031X  
IECEx Non-Sparking with Intrinsically Safe Electrodes  
IECEx Dust  
IECEx Increased Safety with Intrinsically Safe Electrodes  
IECEx Dust  
EAC Non-Sparking with Intrinsically Safe Electrodes  
EAC Dust  
EAC Increased Safety with Intrinsically Safe Electrodes  
EAC Dust  
N7  
K7  
N8  
K8  
N2  
K2  
N9  
K9  
N3  
K3  
IECEx Dust  
IECEx Flameproof with Increased Safety  
IECEx Dust  
EAC Non-Sparking  
EAC Dust  
EAC Flameproof with Increased Safety  
EAC Dust  
Russia  
***  
**  
***  
***  
Russia  
***  
**  
INMETRO Non-Sparking  
INMETRO Dust  
INMETRO Non-Sparking with Intrinsically Safe Electrodes  
INMETRO Dust  
DEKRA -  
INMETRO  
DEKRA  
15.0007 X  
DEKRA  
15.0007 X  
Brazil  
INMETRO Flameproof with Increased Safety INMETRO Increased Safety with Intrinsically Safe Electrodes  
INMETRO Dust  
KOSHA Non-Sparking  
KOSHA Dust  
KOSHA Flameproof with Increased Safety  
KOSHA Dust  
NEPSI Non-Sparking  
NEPSI Dust  
NEPSI Flameproof with Increased Safety  
NEPSI Dust  
DEKRA -  
INMETRO  
Brazil  
INMETRO Dust  
KOSHA Non-Sparking with Intrinsically Safe Electrodes  
KOSHA Dust  
KOSHA Increased Safety with Intrinsically Safe Electrodes  
KOSHA Dust  
NEPSI Non-Sparking with Intrinsically Safe Electrodes  
NEPSI Dust  
Korea  
Korea  
China  
China  
India  
***  
***  
***  
***  
NEPSI  
NEPSI  
PESO  
GYJ15.1180X  
GYJ15.1180X  
P354747/1  
NEPSI Increased Safety with Intrinsically Safe Electrodes  
NEPSI Dust  
KN CCOEFlameproof with Increased Safety  
CCOEIncreased Safety with Intrinsically Safe Electrodes  
Complies with only the local country product safety, electromagnetic, pressure and other applicable regulations.  
Cannot be used in a classified or zoned hazardous location environment. No ordering code required.  
*
Customs Union (Russia, Belarus and Kazakhstan)  
Planned submittal or in process with Agency.  
**  
***  
203  
Product Certifications  
     
Reference Manual  
00809-0100-4444, Rev AD  
Appendix B: Product Certifications  
August 2015  
Approvals Document  
July 24, 2015  
08732-AP01, Rev AF  
Approval Markings and Logos  
Marking or  
Symbol  
Symbol  
Name  
Region  
Meaning of Marking or Symbol  
CE  
European Union  
Compliance with all applicable European  
Union Directives.  
ATEX  
European Union  
Australia  
Compliance with Equipment and Protective  
systems intended for use in Potentially  
Explosive Atmospheres directive (ATEX)  
(94/9/EC)  
C-tick  
Compliance with Australian applicable  
electromagnetic compatibility standards  
FM Approved United States  
Compliance with the applicable ANSI  
standards.  
CSA  
US = United States  
C = Canada  
Indicates that the product was tested and has  
met the applicable certification requirements  
for the noted countries.  
Eurasian  
Conformity  
(EAC)  
Eurasian Customs Union Compliance with all of the applicable technical  
(Russia, Belarus and  
Kazakhstan)  
regulations of the EAC Customs Union  
EAC  
Hazardous  
Location  
Eurasian Customs Union Compliance with Technical regulation, (TR CU  
(Russia, Belarus and  
Kazakhstan)  
012/2011) – The safety of equipment for use  
in explosive environments.  
INMETRO  
Brazil  
Compliance with all of the applicable technical  
regulations of Brazil.  
NEPSI  
KCS  
China  
Korea  
Compliance with all of the applicable technical  
regulations of China.  
Compliance with all of the applicable technical  
regulations of Korea.  
Ordinary Location labels will be marked with CE, C-tick, FM, CSA and EAC logos.  
204  
Product Certifications  
Reference Manual  
00809-0100-4444, Rev AD  
Appendix B: Product Certifications  
August 2015  
Approvals Document  
July 24, 2015  
08732-AP01, Rev AF  
European Directive Information  
A copy of the EC Declaration of Conformity can be found at the end of the Quick Start Guide. The most recent  
revision of the EC Declaration of Conformity can be found at www.rosemount.com.  
Electro Magnetic Compatibility (EMC) (2004/108/EC)  
Transmitter and Flowtube: EN 61326-1: 2013  
Transmitters with output code “B” require shielded cable for the 4-20mA output, with shield terminated at the  
transmitter.  
Low Voltage Directive (LVD) (2006/95/EC)  
EN 61010-1: 2010  
Ingress Protection Rating for dust and water per EN 60079-0 and EN 60529 – IP66/68 (The IP68 rating only  
applies to the flowtube and the remote junction box when the transmitter is remotely mounted. The IP68 rating  
does not apply to the transmitter. The IP68 rating is only valid at a depth of 10 meters for 48 hours)  
European Pressure Equipment Directive (PED) (97/23/EC)  
PED Certification requires the “PD” option code.  
CE marked models that are ordered without the “PD” option will be marked “Not Complaint to (97/23/EC)”  
Mandatory CE-marking with notified body number 0575, for all flowtubes is located on the flowmeter label.  
Category I assessed for conformity per module A procedures.  
Categories II – III assessed for conformity per module H procedures.  
QS Certificate of Assessment  
EC No. 4741-2014-CE-HOU-DNV  
Module H Conformity Assessment  
8705 M Flanged Flowtubes  
Line size 40mm to 900mm (1½-in to 36-in)  
EN 1092-1 flanges and ASME B16.5 class 150 and ASME B16.5 Class 300 flanges.  
Also available in ASME B16.5 Class 600 flanges in limited line sizes.  
8711 Wafer Flowtubes  
Line size 40mm to 200mm (1½-in to 8-in)  
All other Rosemount Flowtubes – line sizes of 25mm (1-in) and less: Sound Engineering Practice (SEP).  
Flowtubes that are SEP are outside the scope of PED and cannot be marked for compliance with PED.  
205  
Product Certifications  
Reference Manual  
00809-0100-4444, Rev AD  
Appendix B: Product Certifications  
August 2015  
Approvals Document  
July 24, 2015  
08732-AP01, Rev AF  
Certifications  
Factory Mutual (FM)  
Ordinary Location Certification for FM Approvals  
As standard, the transmitter and flowtube have been examined and tested to determine that the design meets  
basic electrical, mechanical, and fire protection requirements by FM Approvals, a nationally recognized testing  
laboratory (NRTL) as accredited by the Federal Occupational Safety and Health Administration (OSHA).  
8732EM Transmitter  
Note: For Intrinsically Safe (IS) 4-20mA and Pulse Outputs on the 8732EM, output code “B” must be selected.  
N5  
Non-Incendive for Class I, Division 2, Groups ABCD: T4  
Dust-Ignition Proof for Class II/III, Division 1, Groups EFG: T5  
-ꢀꢁƒ&ꢂ”ꢂ7Dꢂ”ꢂꢃꢁƒ&  
Enclosure Type 4X, IP66  
Install per drawing 08732-2062  
Special Conditions for Safe Use (X):  
1. Units marked with “Warning: Electrostatic Charging Hazard” may either use non-conductive paint thicker  
than 0.2 mm or non-metallic labeling. Precautions shall be taken to avoid ignition due to electrostatic  
charge on the enclosure.  
2. The intrinsically safe 4-20mA and pulse output cannot withstand the 500V isolation test due to integral  
transient protection. This must be taken into consideration upon installation.  
3. Conduit entries must be installed to maintain the enclosure ingress rating of IP66.  
4. Unused conduit entries must use either used the Rosemount-supplied blanking plugs, or blanking plugs  
certified in accordance with the protection type.  
K5  
Explosion-Proof for Class I Division 1, Groups CD: T6  
Non-Incendive for Class I, Division 2, Groups ABCD: T4  
Dust-Ignition Proof for Class II/III, Division 1, Groups EFG: T5  
-ꢀꢁƒ&ꢂ”ꢂ7Dꢂ”ꢂꢃꢁƒ&  
Enclosure Type 4X, IP66  
Install per drawing 08732-2062  
Special Conditions for Safe Use (X):  
1. Units marked with “Warning: Electrostatic Charging Hazard” may either use non-conductive paint thicker  
than 0.2 mm or non-metallic labeling. Precautions shall be taken to avoid ignition due to electrostatic  
charge on the enclosure.  
2. The intrinsically safe 4-20mA and pulse output cannot withstand the 500V isolation test due to integral  
transient protection. This must be taken into consideration upon installation.  
3. Conduit entries must be installed to maintain the enclosure ingress rating of IP66.  
4. Unused conduit entries must use either used the Rosemount-supplied blanking plugs, or blanking plugs  
certified in accordance with the protection type.  
206  
Product Certifications  
Reference Manual  
00809-0100-4444, Rev AD  
Appendix B: Product Certifications  
August 2015  
Approvals Document  
July 24, 2015  
08732-AP01, Rev AF  
8705-M and 8711-M/L Flowtube  
Note: When used in hazardous (classified) locations:  
The 8705-M and 8711-M/L may only be used with a certified 8732EM transmitter.  
N5  
Non-Incendive with Intrinsically Safe Electrodes  
for Class I, Division 2, Groups ABCD: T3…T5  
Dust-Ignition Proof for Class II/III, Division 1, Groups EFG: T2…T5  
-ꢄꢅƒ&ꢂ”ꢂ7Dꢂ”ꢂꢃꢁƒ&  
Enclosure Type 4X, IP66/68 (IP68 remote mount only)  
Install per drawing 08732-2062  
Special Conditions for Safe Use (X):  
1. Units marked with “Warning: Electrostatic Charging Hazard” may either use non-conductive paint thicker  
than 0.2 mm or non-metallic labeling. Precautions shall be taken to avoid ignition due to electrostatic  
charge on the enclosure.  
2. If used with flammable process fluid, the electrode circuit must be installed as intrinsically safe (Ex ia).  
3. Conduit entries must be installed to maintain a minimum enclosure ingress rating of IP66.  
4. Unused conduit entries must use either used the Rosemount-supplied blanking plugs, or blanking plugs  
certified in accordance with the protection type.  
K5  
Explosion-Proof with Intrinsically Safe Electrodes  
for Class I Division 1, Groups CD: T3…T6  
Non-Incendive with Intrinsically Safe Electrodes  
for Class I, Division 2, Groups ABCD: T3…T5  
Dust-Ignition Proof for Class II/III, Division 1, Groups EFG: T2…T5  
-ꢄꢅƒ&ꢂ”ꢂ7Dꢂ”ꢂꢃꢁƒ&  
Enclosure Type 4X, IP66/68 (IP68 remote mount only)  
Install per drawing 08732-2062  
Special Conditions for Safe Use (X):  
1. Units marked with “Warning: Electrostatic Charging Hazard” may either use non-conductive paint thicker  
than 0.2 mm or non-metallic labeling. Precautions shall be taken to avoid ignition due to electrostatic  
charge on the enclosure.  
2. If used with flammable process fluid, or if installed in a Class I Division I area, the electrode circuit must  
be installed as intrinsically safe (Ex ia).  
3. Conduit entries must be installed to maintain a minimum enclosure ingress rating of IP66.  
4. Unused conduit entries must use either used the Rosemount-supplied blanking plugs, or blanking plugs  
certified in accordance with the protection type.  
207  
Product Certifications  
Reference Manual  
00809-0100-4444, Rev AD  
Appendix B: Product Certifications  
August 2015  
Approvals Document  
July 24, 2015  
08732-AP01, Rev AF  
Canadian Standards Association (CSA)  
CLASS 2258 02 - PROCESS CONTROL EQUIPMENT - For Hazardous Locations – To Canadian Requirements.  
N6  
Class I, Groups A, B, C and D (Intrinsically Safe Output and Electrode circuit)  
N6  
N6  
Class I, Division 2, Groups A, B, C and D (Non-Incendive)  
Class II, Division 1, Groups E, F and G (Dust Ignition Proof)  
Magnetic Flow Meter – Model 8732EM Transmitter with integral or remote mount to Model 8705M or Model  
8711M/L Magnetic Flow Tubes. Enclosure Type 4X and IP 66 Rated.  
For Remote Mount Configuration – Temperature Code T4 with an Ambient Operating Temperature Range: -40°C  
чꢀdĂꢀчꢀнϲϬΣꢁ͕ꢀǁŝƚŚꢀŽƌꢀǁŝƚŚŽƵƚꢀ>ꢁꢂꢀŵĞƚĞƌ͕ꢀǁŝƚŚꢀŽƌꢀǁŝƚŚŽƵƚꢀĚŝŐŝƚĂůꢀ/ͬKꢀĂŶĚͬŽƌꢀƉƵůƐĞꢀŽƵƚƉƵƚƐꢀǁŚĞŶꢀŝŶƐƚĂůůĞĚꢀƉĞƌꢀ  
Rosemount Drawing 08732-2061.  
For Integral Mount Configuration – Ambient Operating Temperature Range: -29°C чꢀdĂꢀчꢀнϲϬΣꢁ. Temperature  
Code T3-T6 dependent on line size of Flow Tubes for Process Temperature. The T-Code is defined as per  
Rosemount Drawing 08705-00CS and 08732-00CS for ‘N6’ option or ‘KU’ option.  
CLASS 2258 82 - PROCESS CONTROL EQUIPMENT - For Hazardous Locations –To US Requirements  
KU  
Class I, Division 1, Groups C and D (Explosion Proof)  
N6, KU  
Class I, Groups A, B, C and D (Intrinsically Safe Output and Electrode circuit  
N6, KU  
N6, KU  
Class I, Division 2, Groups A, B, C and D (Non-Incendive)  
Class II, Division 1, Groups E, F and G (Dust Ignition Proof)  
Magnetic Flow Meter – Model 8732EM Transmitter with integral or remote mount to Model 8705M or Model  
8711M/L Magnetic Flow Tubes. Enclosure Type 4X and IP 66 Rated.  
For Remote Mount Configuration – Temperature Code T6 for Explosion Proof, T5 for Dust Ignition Proof, and T4  
for Non-Incendive. Ambient Operating Temperature Range: -ϰϬΣꢁꢀчꢀdĂꢀчꢀнϲϬΣꢁ͕ꢀǁŝƚŚꢀŽƌꢀǁŝƚŚŽƵƚꢀ>ꢁꢂꢀŵĞƚĞƌ͕ꢀǁŝƚŚꢀ  
or without digital I/O and/or pulse outputs when installed per Rosemount Drawing 08732-2061.  
For Integral Mount Configuration – Ambient Operating Temperature Range: -ϮϵΣꢁꢀч dĂꢀчꢀнϲϬΣꢁ. Temperature  
Code T3-T6 dependent on line size of Flow Tubes for Process Temperature. The T-Code is defined as per  
Rosemount Drawing 08705-00CS and 08732-00CS for ‘N6’ option or ‘KU’ option.  
Special Conditions of Safe Use:  
1. For use with the appropriate 8705M and 8711M/L Flow tubes only.  
2. When the 8732EM transmitter is integrally mounted to 8705M or 8711M/L Flow Tubes, the ambient  
temperature ranges marked on each product need to be taken into consideration before installation.  
The Ambient temperature range for 8732EM transmitter is -ϰϬΣꢁꢀчꢀdĂꢀчꢀнϲϬΣꢁꢀĂŶĚꢀƚŚĞꢀĂŵďŝĞŶƚꢀ  
temperature range for 8705M or 8711M/L Flow Tubes is -ϮϵΣꢁꢀчꢀdĂꢀчꢀнϲϬΣꢁꢀ͘ Therefore, the -29°C rating  
of the flow tubes will limit the overall cold temperature range of the complete system unless other  
approved temperature control methods are employed.  
208  
Product Certifications  
Reference Manual  
00809-0100-4444, Rev AD  
Appendix B: Product Certifications  
August 2015  
Rosemount 8700M Magnetic Flowmeter Platform  
IEC EX & ATEX Approval Document  
January 29, 2015,  
08732-AP02, Rev AB  
1. Equipment Markings – See section VI in the tables on the following pages  
a. EC-Type Examination Certificate (ATEX): DEKRA 14ATEX0071_X  
b. Certificate of Conformity (IEC Ex): IEC Ex DEK 14.0031X  
2. Required Documentation:  
a. 08732-2060 Installation Drawing Model 8732EM, 8705M, 8711-M/L ATEX/IEC Ex Hazardous (Ex)  
Locations  
b. 08732-1504 Installation Drawing, 8732EM Transmitter Wiring  
3. Referenced Documentation:  
a. 00825-0100-4444.pdf(Hart) & 00825-0400-4444(Modbus), Quick Installation Guide  
b. 00809-0100-4444.pdf, Reference Manual  
c. 08732-AP01, Approvals Document  
4. The Required and Referenced Documents listed above address the following items:  
a. Instructions for safety i.e.  
i. Putting into service  
ii. Use  
iii. Assembling and dismantling  
iv. Maintenance, overhaul and repair  
v. Installation  
vi. Adjustment  
b. Where necessary, training instructions  
c. Details which allow a decision to be made as to whether the equipment can be used safely in the  
intended area under the expected operating conditions  
d. Electrical parameters, maximum surface temperatures and other limit values  
i. Electrical –  
1. See document 08732-2060  
2.  
Rosemount 8732EM Flow Transmitter  
Power input  
90 - 250VAC, 0.45A, 40VA  
12 - 42VDC, 1.2A, 15W  
Pulsed circuit  
4-20mA output circuit  
MODBUS  
Internally powered (Active): Outputs up to 12VDC, 12.1mA,  
73mW Externally powered (Passive): Input up to 28VDC,  
100mA, 1W  
Internally Powered (Active): Outputs up to 25mA, 24VDC,  
600mW Externally Powered (Passive): Input up to 25mA,  
30VDC, 750mW  
Internally Powered (Active): Outputs up to 100mA, 3.3VDC,  
100mW  
250V  
Um  
500mA, 40V max, 9W max  
Coil excitation output  
(1)  
Rosemount 8705-M and 8711-M/L Flowtube  
500mA, 40V max,  
20W max  
Coil excitation input  
Electrode circuit  
5V,200uA, 1mW  
(1) Provided by the transmitter  
209  
Product Certifications  
Reference Manual  
00809-0100-4444, Rev AD  
Appendix B: Product Certifications  
August 2015  
Rosemount 8700M Magnetic Flowmeter Platform  
IEC EX & ATEX Approval Document  
January 29, 2015,  
08732-AP02, Rev AB  
e. Special Conditions for Safe Use (X):  
i. For processes requiring EPL Ga and Gb, rated equipment: electrode, grounding ring, and lining  
protector materials Titanium and Zirconium are not allowed.  
ii. When “Special Paint Systems” are applied, instructions for safe use regarding potential  
electrostatic charging hazard have to be followed.  
iii. Terminals 1,2,3,4, for data communication, cannot withstand the 500 V isolation test between  
signal and ground, due to integral transient protection. This must be taken into account upon  
installation.  
iv. Conduit entries must be installed to maintain the enclosure ingress rating of IP66.  
v. In order to maintain the ingress protection level on the M3 and M4 electrode housing, the copper  
crush washer that seals the electrode access plug shall be replaced when the plug is reinstalled.  
The copper crush washer is one time use only.  
vi. The flow tube and transmitter are not allowed to be thermally insulated.  
vii. The property class of the special fasteners which attach the Magnetic Flow Tube or Transmitter  
Remote Junction Box to the Magnetic Transmitter is A2-70 or A4-70 SST.  
viii. For information on the dimensions of the flameproof joints the manufacturer shall be contacted.  
ix. The Magnetic Flow Meter Tube contains nonconductive liners over the grounded tube. For  
process requiring EPL Ga, precautions shall be taken to avoid the liner being charged by the flow  
of nonconductive media.  
f. Where necessary, the essential characteristics of tools which may be fitted to the equipment  
g. List of the standards, including the issue date, with which the equipment is declared to comply:  
i. ATEX - EN 60079-0: 2012 +A11, EN 60079-1: 2007, EN 60079-7: 2007. EN 60079-11: 2012, EN  
60079-15: 2010, EN 60079-26: 2007, EN 60079-31: 2014  
ii. IEC EX - IEC 60079-0: 2011, IEC 60079-1: 2007, IEC 60079-7: 2006 IEC 60079-11: 2011, IEC  
60079-15: 2010, IEC 60079-26: 2006, IEC 60079-31: 2013  
h. Supply wire requirements;  
Use 10 - 18 AWG wire rated for the proper temperature of the application. For wire 10 - 14 AWG use lugs  
or other appropriate connectors. For connections in ambient temperatures above 122°F (50 °C), use a  
wire rated for 194 °F (90 °C).  
i. Contact address;  
i. Rosemount Inc.  
12001 Technology Drive  
Eden Prairie  
MN 55344  
United States of America  
210  
Product Certifications  
Reference Manual  
00809-0100-4444, Rev AD  
Appendix B: Product Certifications  
August 2015  
Rosemount 8700M Magnetic Flowmeter Platform  
IEC EX & ATEX Approval Document  
January 29, 2015,  
08732-AP02, Rev AB  
Nomenclature Magnetic Flow Transmitter Model 8732EM and electrical data  
8732EM  
I
R
1
B
2
V
K1  
VI  
M4 RT50  
VII VIII  
SH  
IX  
V2  
F090…  
X
II III IV  
Desig-  
Value Explanation  
8732EM Magnetic Flow Transmitter – Field Mount  
Explanation  
nation  
I
Model  
R
T
Remote Mount  
Integral Mount  
II  
Transmitter Mount  
1
2
AC (90 - 250 Vac, 50 / 60 Hz), not for Ex nA  
DC (12 - 42 Vdc)  
III  
Transmitter Power Supply  
A
4 - 20 mA with digital HART Protocol & Scalable  
Pulse Output  
4 - 20 mA Intrinsically Safe Output with digital HART  
Protocol & Intrinsically Safe Scalable Pulse Output  
Modbus RS-485  
IV  
V
Outputs  
B
M
1 or 4 ½-14 NPT female  
2 or 5 CM20, M20 female  
Conduit entries  
II 2 (1) G Ex d e [ia Ga] IIC T6…T3 Gb  
II 2 D Ex tb IIIC T80 °C…T200 °C Db  
II 2 (1) G Ex d [ia Ga] IIC T6…T3 Gb *  
II 2 D Ex tb IIIC T80 °C…T200 °C Db  
Ex d e [ia Ga] IIC T6…T3 Gb  
Ex tb IIIC T80 °C…T200 °C Db  
K1 ATEX  
K7 IECEx  
Ex d [ia Ga] IIC T6…T3 Gb *  
Ex tb IIIC T80 °C…T200 °C Db  
II 3 (1) G Ex nA [ia Ga] IIC T4…T3 Gc ***  
N1 ATEX  
N7 IECEx  
II 2 D  
Ex tb IIIC T80 °C…T200 °C Db  
VI  
Safety Approval Option  
Ex nA [ia Ga] IIC T4…T3 Gc ***  
Ex tb IIIC T80 °C…T200 °C Db  
II 2 D  
II 2 D  
II (1) G  
Ex tb IIIC T80 °C…T200 °C Db  
Ex tb IIIC T80 °C…T200 °C Db  
[Ex ia Ga] IIC **  
ND ATEX  
NF IECEx  
Ex tb IIIC T80 °C…T200 °C Db  
Ex tb IIIC T80 °C…T200 °C Db  
[Ex ia Ga] IIC **  
NOTE: *  
Integral Mount (see II) option only  
** Intrinsically Safe Output (see IV) option only  
*** DC Transmitter Power Supply only (12 - 42 Vdc)  
M4  
M5  
LOI  
Display  
VII  
Display Option  
RTxx **** Standard Temperature Component  
RHxx **** Extended Temperature Component  
NOTE: **** Length = xx x 10 ft, max. 500 ft  
VIII  
Remote Cable Option  
--  
Aluminum, standard paint  
IX  
X
Options  
Specials  
SH  
Vx  
Stainless Steel Electronics Housing  
Special Paint Systems *****  
F090x Special Paint Systems *****  
NOTE: *****Subject to special conditions for safe use.  
211  
Product Certifications  
Reference Manual  
00809-0100-4444, Rev AD  
Appendix B: Product Certifications  
August 2015  
Rosemount 8700M Magnetic Flowmeter Platform  
IEC EX & ATEX Approval Document  
January 29, 2015,  
08732-AP02, Rev AB  
Nomenclature Magnetic Flow Tube Model 8705-M and electrical data  
8705 … S  
A
005 … M4 K1 … G1 L1 B3 … J1 SJ … V1 … SH … F090x  
I
II III IV  
V
VI  
VII VIII IX  
X
XI  
XII  
XIII  
XIV  
Designation  
Explanation  
Model  
Value  
8705  
Explanation  
Magnetic Flowtube  
I
II  
III  
Electrode Material  
Electrode Types  
Custom  
Custom  
See special conditions for safe use  
Seal of electrodes comply with IEC 61010-1  
005  
to  
½” NPS (15 mm)  
to  
IV  
V
Line Size  
360  
36” NPS (900 mm)  
M0  
M1  
M2  
M3  
M4  
Category 2 G or 3 G, EPL Gb or Gc  
Category 2 G or 3 G, EPL Gb or Gc  
Category 1/2 G or 1/3 G, EPL Ga/Gb or Ga/Gc  
Category 1/2 G or 1/3 G, EPL Ga/Gb or Ga/Gc  
Category 1/2 G or 1/3 G, EPL Ga/Gb or Ga/Gc  
Electrode Housing *  
II 1/2 G  
II 2 D  
II 2 G  
II 2 D  
Ex e ia IIC T5…T3 Ga/Gb *  
Ex tb IIIC T 80 °C…T 200 °C Db  
K1 ATEX  
K7 IECEx  
N1 ATEX  
N7 IECEx  
Ex e ib IIC T5…T3 Gb **  
Ex tb IIIC T 80 °C…T 200 °C Db  
Ex e ia IIC T5…T3 Ga/Gb *  
Ex tb IIIC T 80 °C…T 200 °C Db  
Ex e ib IIC T5…T3 Gb **  
Ex tb IIIC T 80 °C…T 200 °C Db  
II 1/3 G  
II 2 D  
II 3 G  
II 2 D  
Ex nA ia IIC T5…T3 Ga/Gc * line sizes 8”- 36”  
Ex tb IIIC T 80 °C…T 200 °C Db  
VI  
Safety Approvals  
Ex nA ic IIC T5…T3 Gc * line sizes 0.5” – 6” / **  
Ex tb IIIC T 80 °C…T 200 °C Db  
Ex nA ia IIC T5…T3 Ga/Gc * line sizes 8”- 36”  
Ex tb IIIC T 80 °C…T 200 °C Db  
Ex nA ic IIC T5…T3 Gc * line sizes 0.5” – 6” / **  
Ex tb IIIC T 80 °C…T 200 °C Db  
ND ATEX  
NF IECEx  
II 2 D  
Ex tb IIIC T 80 °C…T 200 °C Db  
NOTE: * Electrode Housing M2, M3 and M4 only  
** Electrode Housing M0 and M1 only  
Ex tb IIIC T 80 °C…T 200 °C Db  
Grounding rings  
material  
Lining protector  
material  
Mounting  
Configuration  
VII  
VIII  
IX  
Custom  
Custom  
B3  
See special conditions for safe use  
See special conditions for safe use  
Integral Mount with Model 8732EM  
CM20, M20 female  
Optional conduit  
entries  
X
J1  
Remote Junction Box  
(RJB) material  
--  
SJ  
Aluminum, Standard Paint  
316 Stainless Steel  
XI  
XII  
Special paint options  
Vx  
Special Paint Systems ***  
Wrapper (housing)  
--  
Carbon Steel (w. Aluminum RJB), Standard Paint  
XIII  
XIV  
material  
SH  
316 Stainless Steel (w. Stainless Steel RJB)  
Specials  
F090x  
Special Paint Systems ***  
NOTE: *** Subject to special conditions for safe use.  
212  
Product Certifications  
Reference Manual  
00809-0100-4444, Rev AD  
Appendix B: Product Certifications  
August 2015  
Rosemount 8700M Magnetic Flowmeter Platform  
IEC EX & ATEX Approval Document  
January 29, 2015,  
08732-AP02, Rev AB  
Nomenclature Magnetic Flow Tube Model 8711-M/L and electrical data  
8711  
I
S
A
15F  
L
V
K1  
VI  
G1  
VII  
J1 SJ … V1 … F090x  
II III IV  
VIII IX  
X
XI  
Designation  
Value  
8711  
Explanation  
Magnetic Flow Tube  
Explanation  
Model  
I
II  
III  
Electrode Material  
Electrode Types  
Custom See special conditions for safe use  
Custom Seal of electrodes comply with IEC 61010-1.  
015  
to  
1½” NPS (40 mm)  
to  
IV  
V
Line Size  
080  
8” NPS (900 mm)  
Mounting  
Configuration  
L
M
Remote Mount from Transmitter  
Integral Mount with Transmitter  
K1  
ATEX  
II 2 G  
II 2 D  
Ex e ib IIC T5…T3 Gb  
Ex tb IIIC T 80 °C…T 200 °C Db  
Ex e ib IIC T5…T3 Gb  
K7 IECEx  
N1 ATEX  
Ex tb IIIC T 80 °C…T 200 °C Db  
II 3 G  
II 2 D  
Ex nA ic IIC T5…T3 Gc  
Ex tb IIIC T 80 °C…T 200 °C Db  
VI  
Safety Approvals  
Ex nA ic IIC T5…T3 Gc  
N7 IECEx  
ND ATEX  
Ex tb IIIC T 80 °C…T 200 °C Db  
II 2 D  
Ex tb IIIC T 80 °C…T 200 °C Db  
NF IECEx Ex tb IIIC T 80 °C…T 200 °C Db  
Grounding rings  
material  
VII  
Custom See special conditions for safe use  
Optional conduit  
entries  
VIII  
J1  
CM20, M20 female  
--  
SJ  
Aluminum, Standard Paint *  
Remote Junction  
Box material  
316 Stainless Steel *  
IX  
NOTE:* Flowtube with Carbon Steel Wrapper (housing)  
Special paint  
options  
X
Vx  
Special Paint Systems **  
XI  
Specials  
F090x  
Special Paint Systems **  
NOTE: ** Subject to special conditions for safe use.  
213  
Product Certifications  
Reference Manual  
00809-0100-4444, Rev AD  
Appendix B: Product Certifications  
August 2015  
B.2  
FM hazardous locations  
214  
Product Certifications  
 
Reference Manual  
00809-0100-4444, Rev AD  
Appendix B: Product Certifications  
August 2015  
215  
Product Certifications  
Reference Manual  
00809-0100-4444, Rev AD  
Appendix B: Product Certifications  
August 2015  
216  
Product Certifications  
Reference Manual  
00809-0100-4444, Rev AD  
Appendix B: Product Certifications  
August 2015  
217  
Product Certifications  
Reference Manual  
00809-0100-4444, Rev AD  
Appendix B: Product Certifications  
August 2015  
218  
Product Certifications  
Reference Manual  
00809-0100-4444, Rev AD  
Appendix B: Product Certifications  
August 2015  
B.3  
ATEX/IECEx hazardous locations  
219  
Product Certifications  
 
Reference Manual  
00809-0100-4444, Rev AD  
Appendix B: Product Certifications  
August 2015  
220  
Product Certifications  
Reference Manual  
00809-0100-4444, Rev AD  
Appendix B: Product Certifications  
August 2015  
221  
Product Certifications  
Reference Manual  
00809-0100-4444, Rev AD  
Appendix B: Product Certifications  
August 2015  
222  
Product Certifications  
Reference Manual  
00809-0100-4444, Rev AD  
Appendix B: Product Certifications  
August 2015  
223  
Product Certifications  
Reference Manual  
00809-0100-4444, Rev AD  
Appendix B: Product Certifications  
August 2015  
224  
Product Certifications  
Reference Manual  
00809-0100-4444, Rev AD  
Appendix B: Product Certifications  
August 2015  
225  
Product Certifications  
Reference Manual  
00809-0100-4444, Rev AD  
Appendix B: Product Certifications  
August 2015  
226  
Product Certifications  
Reference Manual  
00809-0100-4444, Rev AD  
Appendix B: Product Certifications  
August 2015  
227  
Product Certifications  
Reference Manual  
00809-0100-4444, Rev AD  
Appendix B: Product Certifications  
August 2015  
B.4  
EC Declaration of Conformity  
Approvals Document  
July 24, 2015  
08732-AP01, Rev AF  
228  
Product Certifications  
 
Reference Manual  
00809-0100-4444, Rev AD  
Appendix B: Product Certifications  
August 2015  
Approvals Document  
July 24, 2015  
08732-AP01, Rev AF  
229  
Product Certifications  
Reference Manual  
00809-0100-4444, Rev AD  
Appendix B: Product Certifications  
August 2015  
Approvals Document  
July 24, 2015  
08732-AP01, Rev AF  
230  
Product Certifications  
Reference Manual  
00809-0100-4444, Rev AD  
Appendix C: Wiring Diagrams  
August 2015  
Appendix C  
Wiring Diagrams  
C.1  
8732EM wiring diagrams  
Figure C-1. 8732EM Wiring Diagram—Component Cables  
231  
Wiring Diagrams  
     
Reference Manual  
00809-0100-4444, Rev AD  
Appendix C: Wiring Diagrams  
August 2015  
Figure C-2. 8732EM Wiring Diagram—Combination Cable  
232  
Wiring Diagrams  
Reference Manual  
00809-0100-4444, Rev AD  
Appendix C: Wiring Diagrams  
August 2015  
C.2  
775 Smart Wireless THUMAdapter wiring  
diagrams  
Figure C-3. Wiring Diagram—775 Smart Wireless THUM Adapter with 8732EM Internal Analog Power  
233  
Wiring Diagrams  
 
Reference Manual  
00809-0100-4444, Rev AD  
Appendix C: Wiring Diagrams  
August 2015  
Figure C-4. Wiring Diagram—775 Smart Wireless THUM Adapter with 8732EM External Analog Power  
234  
Wiring Diagrams  
Reference Manual  
00809-0100-4444, Rev AD  
Appendix C: Wiring Diagrams  
August 2015  
C.3  
475 Field Communicator wiring diagrams  
Figure C-5. Wiring Diagram—475 Field Communicator with 8732EM Internal Analog Power  
235  
Wiring Diagrams  
 
Reference Manual  
00809-0100-4444, Rev AD  
Appendix C: Wiring Diagrams  
August 2015  
Figure C-6. Wiring Diagram—475 Field Communicator with 8732EM External Analog Power  
236  
Wiring Diagrams  
Appendix D: Implementing a Universal Transmitter  
Reference Manual  
00809-0100-4444, Rev AD  
August 2015  
Appendix D  
Implementing a Universal  
Transmitter  
D.1  
D.2  
Safety messages  
Instructions and procedures in this section may require special precautions to ensure the safety  
of the personnel performing the operations. Please read the following safety messages before  
performing any operation described in this section.  
The Rosemount 8732EM Transmitter has not been evaluated for use with other  
manufacturers' magnetic flowmeter sensors in hazardous (Ex or Classified) areas.  
Special care should be taken by the end-user and installer to ensure the 8732EM  
transmitter meets the safety and performance requirements of the other manufacturer’s  
equipment.  
Universal capability  
The 8732EM transmitter has the ability to drive other manufacturers' sensors and report a flow  
rate. In addition to providing a flow measurement, all of the diagnostic functionality is also  
available in a universal application. This capability can provide additional information into the  
installation, process, and meter health, in addition to enabling a common maintenance practice  
for all magnetic flowmeter installations and helping to reduce spares inventory of magnetic  
flowmeter transmitters.  
This section details how to wire the transmitter to other manufacturers' sensors and configure  
the universal capabilities.  
Implementing a Universal Transmitter  
237  
       
Reference Manual  
00809-0100-4444, Rev AD  
Appendix D: Implementing a Universal Transmitter  
August 2015  
D.2.1  
Implementation  
There are three easy steps when implementing a universal transmitter.  
1.  
Review the existing application. Verify the existing sensor is in good working order, and  
that it is compatible with a universal transmitter. Use Table D-1to help verify if the  
Rosemount universal transmitter is compatible with the existing sensor. Verifying the  
sensor is functioning correctly. While the universal transmitter may be able to drive the  
existing sensor, if the sensor is not in good working order the universal transmitter may  
not function correctly.  
2.  
3.  
Connect the universal transmitter to the existing sensor using the wiring diagrams in  
this appendix. If the existing sensor is not listed in this appendix, contact Rosemount  
technical support for more details on the application of the universal capabilities.  
Configure the transmitter following the guidelines in Section 4 and Section 5, setting  
up parameters as needed. One of the key configuration parameters is the sensor  
calibration number. There are several methods to determine the calibration number,  
but the most common method will be to use the universal trim capability. This  
functionality is detailed in this appendix. Accuracy of the meter when the universal trim  
is used to determine the calibration number will be dependent on the accuracy of the  
known flow rate used in the trim process.  
In addition to the universal trim, there are two other methodologies for determining a  
calibration number for the sensor.  
Method 1: Have the sensor sent to a Rosemount service center for determination of a  
calibration number compatible with the universal transmitter. This is the most accurate method  
for determining the calibration number and will provide a 0.5% of rate measurement accuracy  
from 3 to 40 fps (1-10 m/s).  
Method 2: Involves the conversion of the existing sensor calibration number/meter factors to  
an equivalent Rosemount 16-digit calibration number. Accuracy of the meter using this  
methodology is estimated to be in the range of 2-3%. Contact the Rosemount technical support  
for more information on this method or to determine a calibration number for the existing  
sensor.  
Once these steps are completed, the meter will begin measuring flow. Verify the measured flow  
rate is within the expected range and that the mA output correctly corresponds to the  
measured flow rate. Also verify the reading in the control system matches the reading at the  
transmitter. Once these items have been verified, the loop can be placed into automatic control  
as needed.  
Universal trim  
LOI menu path  
Fast keys  
Diagnostics, Trims, Universal Trim  
1, 2, 5, 5  
The universal auto trim function enables the Rosemount 8732 to determine a calibration  
number for sensors that were not calibrated at the Rosemount factory. The function is activated  
as one step in a procedure known as in-process calibration. If the sensor has a 16-digit  
Rosemount calibration number, in-process calibration is not required.  
1.  
Determine the flow rate of the process fluid in the sensor.  
238  
Implementing a Universal Transmitter  
 
Appendix D: Implementing a Universal Transmitter  
Reference Manual  
00809-0100-4444, Rev AD  
August 2015  
Note  
The flow rate in the line can be determined by using another sensor in the line, by counting the  
revolutions of a centrifugal pump, or by performing a bucket test to determine how fast a given  
volume is filled by the process fluid.  
2.  
3.  
Complete the universal auto trim function.  
When the routine is completed, the sensor is ready for use.  
Wiring the universal transmitter  
The wiring diagrams in this section illustrate the proper connections between the transmitter  
and most sensors currently on the market. Specific diagrams are included for most models, and  
where information for a particular model of a manufacturer is not available, a generic drawing  
pertaining to that manufacturer's sensors is provided. If the manufacturer for the existing  
sensor is not included, see the drawing for generic connections.  
Table D-1. Transmitter and Sensor Reference  
Rosemount transmitter  
Sensor manufacturer  
Page number  
Rosemount  
Rosemount 8732  
Rosemount 8732  
Brooks  
Rosemount 8705, 8707, 8711  
Rosemount 8701  
Rosemount 8732  
Rosemount 8732  
Endress and Hauser  
Rosemount 8732  
Fischer and Porter  
Rosemount 8732  
Rosemount 8732  
Rosemount 8732  
Rosemount 8732  
Rosemount 8732  
Rosemount 8732  
Foxboro  
Model 5000  
Model 7400  
Generic Wiring for Sensor  
Model 10D1418  
Model 10D1419  
Model 10D1430 (Remote)  
Model 10D1430  
Model 10D1465, 10D1475 (Integral)  
Generic Wiring for Sensors  
Rosemount 8732  
Rosemount 8732  
Rosemount 8732  
Rosemount 8732  
Kent  
Series 1800  
Series 1800 (Version 2)  
Series 2800  
Generic Wiring for Sensors  
Rosemount 8732  
Rosemount 8732  
Krohne  
Veriflux VTC  
Generic Wiring for Sensors  
Rosemount 8732  
Taylor  
Generic Wiring for Sensors  
Rosemount 8732  
Rosemount 8732  
Yamatake Honeywell  
Rosemount 8732  
Yokogawa  
Series 1100  
Generic Wiring for Sensors  
Generic Wiring for Sensors  
Generic Wiring for Sensors  
Generic Wiring for Sensors  
Rosemount 8732  
Generic Manufacturer Wiring  
Rosemount 8732  
Implementing a Universal Transmitter  
239  
 
Reference Manual  
00809-0100-4444, Rev AD  
Appendix D: Implementing a Universal Transmitter  
August 2015  
D.3  
Rosemount sensors  
D.3.1  
8705/8707/8711/8721 sensors to 8732 Transmitter  
To connect a Rosemount 8705/8707/8711/8721 Sensor to a Rosemount 8732 Transmitter,  
connect coil drive and electrode cables as shown in Figure D-1 on page 240.  
Figure D-1. Wiring Diagram to a Rosemount 8732 Transmitter  
Table D-2. Rosemount 8705/8707/8711/8721 Sensor Wiring Connections  
Rosemount 8732 transmitters Rosemount 8705/8707/8711/8721 sensors  
1
2
1
2
3
3
17  
18  
19  
17  
18  
19  
Do not connect mains or line power to the  
magnetic flowtube sensor or to the  
transmitter coil excitation circuit.  
240  
Implementing a Universal Transmitter  
     
Appendix D: Implementing a Universal Transmitter  
Reference Manual  
00809-0100-4444, Rev AD  
August 2015  
D.3.2  
8701 sensor to 8732 Transmitter  
To connect a Rosemount 8701 Sensor to a Rosemount 8732 Transmitter, connect coil drive and  
electrode cables as shown in Figure D-2.  
Figure D-2. Wiring Diagram for Rosemount 8701 Sensor and Rosemount 8732 Transmitter  
Rosemount 8701 sensor  
Rosemount 8732 Transmitter  
17 1  
1
18 2  
2
19  
3
17  
18  
19  
Refer to Figure D-1 on page 240 for actual  
terminal block configuration drawing.  
Table D-3. Rosemount 8701 Sensor Wiring Connections  
Rosemount 8732  
Rosemount 8701 sensors  
1
2
1
2
3
3
17  
18  
19  
17  
18  
19  
Do not connect mains or line power to the  
magnetic flowtube sensor or to the  
transmitter coil excitation circuit.  
Implementing a Universal Transmitter  
241  
   
Reference Manual  
00809-0100-4444, Rev AD  
Appendix D: Implementing a Universal Transmitter  
August 2015  
D.3.3  
Connecting sensors of other manufacturers  
Before connecting another manufacturer’s sensor to the transmitter, it is necessary to perform  
the following functions.  
1.  
Turn off the AC power to the sensor and transmitter. Failure to do so could result in  
electrical shock or damage to the transmitter.  
2.  
Verify the coil drive cables between the sensor and the transmitter are not connected  
to any other equipment.  
3.  
4.  
5.  
Label the coil drive cables and electrode cables for connection to the transmitter.  
Disconnect the wires from the existing transmitter.  
Remove the existing transmitter. Mount the new transmitter. See “Installation” on  
page 3.  
6.  
Verify the sensor coil is configured for series connection. Other manufacturers sensors  
may be wired in either a series or parallel circuit. All Rosemount magnetic sensors are  
wired in a series circuit. (Other manufacturers AC sensors (AC coils) wired for 220VAC  
operation are typically wired in parallel and must be rewired in series.)  
7.  
Verify the sensor is in good working condition. Use the manufacturer’s recommended  
test procedure for verification of sensor condition. Perform the basic checks:  
a. Check the coils for shorts or open circuits.  
b. Check the sensor liner for wear or damage.  
c. Check the electrodes for shorts, leaks, or damage.  
d. Connect the sensor to the transmitter in accordance with reference wiring  
drawings.  
e. Connect and verify all connections between the sensor and the transmitter, then  
apply power to the transmitter.  
f. Perform the Universal Auto Trim function.  
Do not connect mains or line  
power to the magnetic  
flowtube sensor or to the  
transmitter coil excitation  
circuit.  
242  
Implementing a Universal Transmitter  
   
Appendix D: Implementing a Universal Transmitter  
Reference Manual  
00809-0100-4444, Rev AD  
August 2015  
D.4  
Brooks sensors  
D.4.1  
Model 5000 sensor to 8732 Transmitter  
To connect a Model 5000 sensor to a Rosemount 8732 Transmitter, connect coil drive and  
electrode cables as shown in Figure D-3.  
Figure D-3. Wiring Diagram for Brooks Sensor Model 5000 and Rosemount 8732  
Brooks Model 5000  
Rosemount 8732 Transmitter  
19  
18  
17  
3
2
1
Refer to Figure D-1 on page 240 for actual terminal  
block configuration drawing.  
Table D-4. Brooks Model 5000 Sensor Wiring Connections  
Rosemount 8732  
Brooks sensors Model 5000  
1
2
1
2
3
3
17  
18  
19  
17  
18  
19  
Do not connect mains or line power to the  
magnetic flowtube sensor or to the  
transmitter coil excitation circuit.  
Implementing a Universal Transmitter  
243  
       
Reference Manual  
00809-0100-4444, Rev AD  
Appendix D: Implementing a Universal Transmitter  
August 2015  
D.4.2  
Model 7400 sensor to 8732 Transmitter  
To connect a Model 7400 sensor to a Rosemount 8732 Transmitter, connect coil drive and  
electrode cables as shown in Figure D-4.  
Figure D-4. Wiring Diagram for Brooks Sensor Model 7400 and Rosemount 8732  
BROOKS MODEL 7400  
ROSEMOUNT 8732  
TRANSMITTER  
19  
18  
17  
3
2
1
Refer to Figure D-1 on page 240 for actual  
terminal block configuration drawing.  
Table D-5. Brooks Model 7400 sensor Wiring Connections  
Rosemount 8732  
Brooks Sensors Model 7400  
1
2
Coils +  
Coils –  
3
3
17  
18  
19  
Shield  
Electrode +  
Electrode –  
Do not connect mains or line power to  
the magnetic flowtube sensor or to the  
transmitter coil excitation circuit.  
244  
Implementing a Universal Transmitter  
   
Appendix D: Implementing a Universal Transmitter  
Reference Manual  
00809-0100-4444, Rev AD  
August 2015  
D.5  
Endress and Hauser sensors  
D.5.1  
Endress and Hauser sensor to 8732 Transmitter  
To connect an Endress and Hauser sensor to a Rosemount 8732 Transmitter, connect coil drive  
and electrode cables as shown in Figure D-5.  
Figure D-5. Wiring Diagram for Endress and Hauser Sensors and Rosemount 8732  
ENDRESS AND HAUSER  
SENSORS  
ROSEMOUNT 8732  
TRANSMITTER  
41  
1
2
3
Coils  
42  
17  
18  
19  
4
Electrodes  
5
7
Refer to Figure D-1 on page 240 for actual terminal  
block configuration drawing.  
Table D-6. Endress and Hauser Sensor Wiring Connections  
Rosemount 8732  
Endress and Hauser sensors  
1
2
41  
42  
14  
4
3
17  
18  
19  
5
7
Do not connect mains or line power to the  
magnetic flowtube sensor or to the transmitter  
coil excitation circuit.  
Implementing a Universal Transmitter  
245  
     
Reference Manual  
00809-0100-4444, Rev AD  
Appendix D: Implementing a Universal Transmitter  
August 2015  
D.6  
Fischer and Porter sensors  
D.6.1  
Model 10D1418 sensor to 8732 transmitter  
To connect a Model 10D1418 sensor to a Rosemount 8732 Transmitter, connect coil drive and  
electrode cables as shown in Figure D-6.  
Figure D-6. Wiring Diagram for Fischer and Porter Sensor Model 10D1418 and Rosemount  
8732  
Electrode Connections  
ROSEMOUNT 8732 TRANSMITTER  
3
2
19  
1
18  
17  
3
U1  
2
1
U2  
G
L1  
L2  
8
6
Coil Connections  
7
5
Refer to Figure D-1 on page 240 for actual  
terminal block configuration drawing.  
Table D-7. Fischer and Porter Model 10D1418 Sensor Wiring Connections  
Rosemount 8732  
Fischer and Porter Model 10D1418 sensors  
1
2
L1  
L2  
3
Chassis Ground  
17  
18  
19  
3
1
2
Do not connect mains or line power to the  
magnetic flowtube sensor or to the transmitter  
coil excitation circuit.  
246  
Implementing a Universal Transmitter  
       
Appendix D: Implementing a Universal Transmitter  
Reference Manual  
00809-0100-4444, Rev AD  
August 2015  
D.6.2  
Model 10D1419 sensor to 8732 Transmitter  
To connect a Model 10D1419 sensor to a Rosemount 8732 Transmitter, connect coil drive and  
electrode cables as shown in Figure D-7.  
Figure D-7. Wiring Diagram for Fischer and Porter Sensor Model 10D1419 and Rosemount  
8732  
Electrode Connections  
ROSEMOUNT 8732 TRANSMITTER  
3
2
19  
1
18  
16  
17  
17  
3
18  
2
L1  
1
L2  
Refer to Figure D-1 on page 240 for actual  
terminal block configuration drawing.  
Coil Connections  
Table D-8. Fischer and Porter Model 10D1419 Sensor Wiring Connections  
Rosemount 8732  
Fischer and Porter Model 10D1419 sensors  
1
2
3
L1  
L2  
3
17  
18  
19  
3
1
2
Do not connect mains or line power to the  
magnetic flowtube sensor or to the transmitter  
coil excitation circuit.  
Implementing a Universal Transmitter  
247  
   
Reference Manual  
00809-0100-4444, Rev AD  
Appendix D: Implementing a Universal Transmitter  
August 2015  
D.6.3  
Model 10D1430 sensor to 8732 Transmitter  
To connect a Model 10D1430 sensor (Remote) to a Rosemount 8732 Transmitter, connect coil  
drive and electrode cables as shown in Figure D-8.  
Figure D-8. Wiring Diagram for Fischer and Porter Sensor Model 10D1430 (Remote) and  
Rosemount 8732  
Electrode Connections  
ROSEMOUNT 8732 TRANSMITTER  
1
2
19  
3
18  
17  
3
G
2
L1  
1
8
Refer to Figure D-1 on page 240 for actual  
terminal block configuration drawing.  
Coil Connections  
Table D-9. Fischer and Porter Model 10D1430 (Remote) Sensor Wiring Connections  
Fischer and Porter Model 10D1430  
Rosemount 8732  
(Remote) sensors  
1
2
L1  
8
3
G
3
1
17  
18  
19  
2
Do not connect mains or line power to the  
magnetic flowtube sensor or to the transmitter  
coil excitation circuit.  
248  
Implementing a Universal Transmitter  
   
Appendix D: Implementing a Universal Transmitter  
Reference Manual  
00809-0100-4444, Rev AD  
August 2015  
D.6.4  
Model 10D1430 sensor to 8732 Transmitter  
To connect a Model 10D1430 sensor (integral) to a Rosemount 8732 Transmitter, connect coil  
drive and electrode cables as shown in Figure D-9.  
Figure D-9. Wiring Diagram for Fischer and Porter Sensor Model 10D1430 (Integral) and  
Rosemount 8732  
Electrode Connections  
ROSEMOUNT 8732 TRANSMITTER  
1
19  
2
1
3
18  
2
17  
3
7
3
6
7
L2  
2
6
8
1
L1  
To L2  
U2  
L2  
L1  
U1  
G
U2  
Coil Connections  
U1  
TB2  
Refer to Figure D-1 on page 240 for actual terminal  
block configuration drawing.  
TB1  
To Calibration Device  
(Disconnect)  
Table D-10. Fischer and Porter Model 10D1430 (integral) Sensor Wiring Connections  
Rosemount 8732  
Fischer and Porter Model 10D1430 (Integral) sensors  
1
2
3
17  
18  
19  
L1  
L2  
G
3
1
2
Do not connect mains or line power to the  
magnetic flowtube sensor or to the transmitter  
coil excitation circuit.  
Implementing a Universal Transmitter  
249  
   
Reference Manual  
00809-0100-4444, Rev AD  
Appendix D: Implementing a Universal Transmitter  
August 2015  
D.6.5  
Model 10D1465/10D1475 sensors to 8732 Transmitter  
To connect a Model 10D1465 or 10D1475 sensor (integral) to a Rosemount 8732 Transmitter,  
connect coil drive and electrode cables as shown in Figure D-10.  
Figure D-10. Wiring Diagram for Fischer and Porter Sensor Model 10D1465 and Model  
10D1475 (integral) and Rosemount 8732  
Electrode  
ROSEMOUNT 8732 TRANSMITTER  
Connections  
2A  
2
1
5
19  
18  
17  
Disconnect  
3
2
1
6
16  
3
CT  
M2  
M1  
MR  
Coil Connections  
Refer to Figure D-1 on page 240 for actual terminal block  
configuration drawing.  
Table D-11. Fischer and Porter Model 10D1465 and 10D1475 Sensor Wiring Connections  
Fischer and Porter Model 10D1465 and  
Rosemount 8732  
10D1475 sensors  
1
2
3
M1  
MR  
3
17  
18  
19  
3
1
2
Do not connect mains or line power to the  
magnetic flowtube sensor or to the  
transmitter coil excitation circuit.  
250  
Implementing a Universal Transmitter  
   
Appendix D: Implementing a Universal Transmitter  
Reference Manual  
00809-0100-4444, Rev AD  
August 2015  
D.6.6  
Fischer and Porter sensor to 8732 Transmitter  
To connect a Fischer and Porter sensor to a Rosemount 8732 Transmitter, connect coil drive and  
electrode cables as shown in Figure D-11.  
Figure D-11. Generic Wiring Diagram for Fischer and Porter Sensors and Rosemount 8732  
FISCHER AND PORTER  
SENSORS  
ROSEMOUNT 8732  
TRANSMITTER  
Electrodes  
19  
2
1
18  
3
17  
Coils  
3
Chassis  
M2  
2
M1  
1
Refer to Figure D-1 on page 240 for actual terminal  
block configuration drawing.  
Table D-12. Fischer and Porter Generic Sensor Wiring Connections  
Rosemount 8732  
Fischer and Porter sensors  
1
2
M1  
M2  
3
Chassis Ground  
17  
18  
19  
3
1
2
Do not connect mains or line power  
to the magnetic flowtube sensor or  
to the transmitter coil excitation  
circuit.  
Implementing a Universal Transmitter  
251  
   
Reference Manual  
00809-0100-4444, Rev AD  
Appendix D: Implementing a Universal Transmitter  
August 2015  
D.7  
Foxboro sensors  
D.7.1  
Series 1800 sensor to 8732 Transmitter  
To connect a Series 1800 sensor to a Rosemount 8732 Transmitter, connect coil drive and  
electrode cables as shown in Figure D-12.  
Figure D-12. Wiring Diagram for Foxboro Series 1800 and Rosemount 8732  
FOXBORO SERIES 1800  
SENSOR  
Electrode Connections  
ROSEMOUNT 8732  
TRANSMITTER  
White Lead  
White Shield  
Outer Shield  
19  
18  
17  
3
2
1
Black Lead  
Black Shield  
Inner Shield  
Refer to Figure D-1 on page 240 for actual  
terminal block configuration drawing.  
Coil Connections  
Table D-13. Foxboro Series1800 Sensor Wiring Connections  
Rosemount 8732  
Foxboro Series 1800 sensors  
1
2
L1  
L2  
3
Chassis Ground  
Any Shield  
Black  
17  
18  
19  
White  
Do not connect mains or line power to the  
magnetic flowtube sensor or to the transmitter  
coil excitation circuit.  
252  
Implementing a Universal Transmitter  
         
Appendix D: Implementing a Universal Transmitter  
Reference Manual  
00809-0100-4444, Rev AD  
August 2015  
D.7.2  
Series 1800 sensor to 8732 Transmitter  
To connect a Series 1800 (version 2) sensor to a Rosemount 8732 Transmitter, connect coil drive  
and electrode cables as shown in Figure D-13.  
Figure D-13. Wiring Diagram for Foxboro Series 1800 (Version 2) and Rosemount 8732  
FOXBORO SERIES  
1800 SENSOR  
ROSEMOUNT  
(VERSION 2)  
8732  
TRANSMITTER  
19  
White  
Black  
18  
17  
Shield  
3
2
1
Electrode  
Connections  
L1  
GND  
L2  
actual terminal block configuration  
drawing.  
Coil Connections  
Table D-14. Foxboro Series 1800 (Version 2) Sensor Wiring Connections  
Rosemount 8732  
Foxboro Series 1800 sensors  
1
2
L1  
L2  
3
Chassis Ground  
Any Shield  
Black  
17  
18  
19  
White  
Do not connect mains or line power to the  
magnetic flowtube sensor or to the transmitter  
coil excitation circuit.  
Implementing a Universal Transmitter  
253  
   
Reference Manual  
00809-0100-4444, Rev AD  
Appendix D: Implementing a Universal Transmitter  
August 2015  
D.7.3  
Series 2800 Sensor to 8732 Transmitter  
To connect a Series 2800 Sensor to a Rosemount 8732 Transmitter, connect coil drive and  
electrode cables as shown in Figure D-14.  
Figure D-14. Wiring Diagram for Foxboro Series 2800 and Rosemount 8732  
FOXBORO SERIES 2800  
SENSOR  
ROSEMOUNT 8732  
TRANSMITTER  
Electrode Connections  
Outer Shield  
White Lead  
White Shield  
White  
Black  
19  
18  
17  
3
Any Shield  
Black Lead  
Black Shield  
Inner Shield  
2
1
L2  
L1  
G
Coil Connections  
actual terminal block configuration  
drawing.  
Table D-15. Foxboro Series 2800 Sensor Wiring Connections  
Rosemount 8732  
Foxboro Series 2800 Sensors  
1
2
L1  
L2  
3
Chassis Ground  
Any Shield  
Black  
17  
18  
19  
White  
Do not connect mains or line power to the  
magnetic flowtube sensor or to the transmitter  
coil excitation circuit.  
254  
Implementing a Universal Transmitter  
   
Appendix D: Implementing a Universal Transmitter  
Reference Manual  
00809-0100-4444, Rev AD  
August 2015  
D.7.4  
Foxboro Sensor to 8732 Transmitter  
To connect a Foxboro Sensor to a Rosemount 8732 Transmitter, connect coil drive and electrode  
cables as shown in Figure D-15.  
Figure D-15. Generic Wiring Diagram for Foxboro Sensors and Rosemount 8732  
ROSEMOUNT 8732  
FOXBORO SENSOR  
TRANSMITTER  
19  
White  
Black  
Electrodes  
18  
Any Shield  
17  
3
Ground  
Coils  
2
L2  
1
L1  
Refer to Figure D-1 on page 240 for actual  
terminal block configuration drawing.  
Table D-16. Foxboro Generic Sensor Wiring Connections  
Rosemount 8732  
Foxboro sensors  
1
2
L1  
L2  
3
Chassis Ground  
Any Shield  
Black  
17  
18  
19  
White  
Do not connect mains or line power to the  
magnetic flowtube sensor or to the transmitter  
coil excitation circuit.  
Implementing a Universal Transmitter  
255  
   
Reference Manual  
00809-0100-4444, Rev AD  
Appendix D: Implementing a Universal Transmitter  
August 2015  
D.8  
Kent Veriflux VTC sensor  
D.8.1  
Veriflux VTC sensor to 8732 Transmitter  
To connect a Veriflux VTC sensor to a Rosemount 8732 Transmitter, connect coil drive and  
electrode cables as shown in Figure D-16.  
Figure D-16. Wiring Diagram for Kent Veriflux VTC Sensor and Rosemount 8732  
KENT VERIFLUX VTC  
SENSOR  
ROSEMOUNT 8732  
TRANSMITTER  
Electrode Connections  
19  
18  
17  
3
2
1
actual terminal block configuration  
drawing.  
Coil Connections  
Table D-17. Kent Veriflux VTC Sensor Wiring Connections  
Rosemount 8732  
Kent Veriflux VTC sensors  
1
2
2
1
3
SCR OUT  
SCR OUT  
SIG1  
17  
18  
19  
SIG2  
Do not connect mains or line power to the  
magnetic flowtube sensor or to the transmitter  
coil excitation circuit.  
256  
Implementing a Universal Transmitter  
         
Appendix D: Implementing a Universal Transmitter  
Reference Manual  
00809-0100-4444, Rev AD  
August 2015  
D.9  
Kent sensors  
D.9.1  
Kent sensor to 8732 Transmitter  
To connect a Kent sensor to a Rosemount 8732 Transmitter, connect coil drive and electrode  
cables as shown in Figure D-17.  
Figure D-17. Generic Wiring Diagram for Kent Sensors and Rosemount 8732  
KENT SENSORS  
ROSEMOUNT 8732  
TRANSMITTER  
19  
18  
17  
SIG2  
Electrodes  
SIG1  
SCR OUT  
3
2
1
SCR OUT  
2
Coils  
1
actual terminal block configuration  
drawing.  
Table D-18. Kent Sensor Wiring Connections  
Rosemount 8732  
Kent sensors  
1
2
1
2
3
SCR OUT  
SCR OUT  
SIG1  
17  
18  
19  
SIG2  
Do not connect mains or line power to the  
magnetic flowtube sensor or to the transmitter  
coil excitation circuit.  
Implementing a Universal Transmitter  
257  
       
Reference Manual  
00809-0100-4444, Rev AD  
Appendix D: Implementing a Universal Transmitter  
August 2015  
D.10  
Krohne sensors  
D.10.1  
Krohne sensor to 8732 Transmitter  
To connect a Krohne sensor to a Rosemount 8732 Transmitter, connect coil drive and electrode  
cables as shown in Figure D-18.  
Figure D-18. Generic Wiring Diagram for Krohne Sensors and Rosemount 8732  
KROHNE SENSORS  
ROSEMOUNT 8732  
TRANSMITTER  
3
2
19  
18  
17  
Electrodes  
Electrode Shield  
3
2
1
Coil Shield  
7
Coils  
8
actual terminal block configuration  
drawing.  
Table D-19. Krohne Sensor Wiring Connections  
Rosemount 8732  
Krohne sensors  
1
2
8
7
3
Coil Shield  
17  
18  
19  
Electrode Shield  
2
3
Do not connect mains or line power to the magnetic  
flowtube sensor or to the transmitter coil excitation  
circuit.  
258  
Implementing a Universal Transmitter  
       
Appendix D: Implementing a Universal Transmitter  
Reference Manual  
00809-0100-4444, Rev AD  
August 2015  
D.11  
Taylor sensors  
D.11.1  
Series 1100 sensor to 8732 Transmitter  
To connect a Series 1100 sensor to a Rosemount 8732 Transmitter, connect coil drive and  
electrode cables as shown in Figure D-19.  
Figure D-19. Wiring Diagram for Taylor Series 1100 Sensors and Rosemount 8732  
TAYLOR SERIES 1100 SENSOR  
ROSEMOUNT 8732  
TRANSMITTER  
Electrode Connections  
19  
C
L
A
18  
17  
3
2
1
L N G 1 2 3 4  
White  
Black  
Green  
Coil Connections  
Refer to Figure D-1 on page 240 for actual  
terminal block configuration drawing.  
Table D-20. Taylor Series 1100 Sensor Wiring Connections  
Rosemount 8732  
Taylor Series 1100 sensors  
1
2
3
17  
18  
19  
Black  
White  
Green  
S1 and S2  
E1  
E2  
Do not connect mains or line power to the  
magnetic flowtube sensor or to the transmitter  
coil excitation circuit.  
Implementing a Universal Transmitter  
259  
       
Reference Manual  
00809-0100-4444, Rev AD  
Appendix D: Implementing a Universal Transmitter  
August 2015  
D.11.2  
Taylor sensor to 8732 Transmitter  
To connect a Taylor sensor to a Rosemount 8732 Transmitter, connect coil drive and electrode  
cables as shown in Figure D-20.  
Figure D-20. Generic Wiring Diagram for Taylor Sensors and Rosemount 8732  
TAYLOR SENSORS  
ROSEMOUNT 8732  
TRANSMITTER  
E2  
19  
18  
17  
E1  
Electrodes  
S1 and S2  
3
2
1
Green  
White  
Coils  
Black  
Refer to Figure D-1 on page 240 for actual  
terminal block configuration drawing.  
Table D-21. Taylor Sensor Wiring Connections  
Rosemount 8732  
Taylor sensors  
1
2
3
17  
18  
19  
Black  
White  
Green  
S1 and S2  
E1  
E2  
Do not connect mains or line power to the magnetic  
flowtube sensor or to the transmitter coil excitation  
circuit.  
260  
Implementing a Universal Transmitter  
   
Appendix D: Implementing a Universal Transmitter  
Reference Manual  
00809-0100-4444, Rev AD  
August 2015  
D.12  
Yamatake Honeywell sensors  
D.12.1  
Yamatake Honeywell sensor to 8732 Transmitter  
To connect a Yamatake Honeywell sensor to a Rosemount 8732 Transmitter, connect coil drive  
and electrode cables as shown in Figure D-21.  
Figure D-21. Generic Wiring Diagram for Yamatake Honeywell Sensors and Rosemount  
8732  
ROSEMOUNT 8732  
TRANSMITTER  
YAMATAKE  
HONEYWELL  
SENSORS  
19  
A
Electrodes  
B
C
18  
17  
3
2
1
Chassis Ground  
Y
Coils  
X
Refer to Figure D-1 on page 240 for actual terminal  
block configuration drawing.  
Table D-22. Yamatake Honeywell Sensor Wiring Connections  
Rosemount 8732  
Yamatake Honeywell sensors  
1
2
X
Y
3
Chassis Ground  
17  
18  
19  
C
B
A
Do not connect mains or line power to the  
magnetic flowtube sensor or to the transmitter  
coil excitation circuit.  
Implementing a Universal Transmitter  
261  
       
Reference Manual  
00809-0100-4444, Rev AD  
Appendix D: Implementing a Universal Transmitter  
August 2015  
D.13  
Yokogawa sensors  
D.13.1  
Yokogawa sensor to 8732 Transmitter  
To connect a Yokogawa sensor to a Rosemount 8732 Transmitter, connect coil drive and  
electrode cables as shown in Figure D-22.  
Figure D-22. Generic Wiring Diagram for Yokogawa Sensors and Rosemount 8732  
ROSEMOUNT 8732  
TRANSMITTER  
YOKOGAWA  
SENSORS  
A
19  
Electrodes  
B
C
18  
17  
3
2
1
Chassis Ground  
Ex 2  
Coils  
Ex 1  
actual terminal block configuration  
drawing.  
Table D-23. Yokogawa Sensor Wiring Connections  
Rosemount 8732  
Yokogawa sensors  
1
2
EX1  
EX2  
3
Chassis Ground  
17  
18  
19  
C
B
A
Do not connect mains or line  
power to the magnetic flowtube  
sensor or to the transmitter coil  
excitation circuit.  
262  
Implementing a Universal Transmitter  
       
Appendix D: Implementing a Universal Transmitter  
Reference Manual  
00809-0100-4444, Rev AD  
August 2015  
D.14  
Generic manufacturer sensor to 8732 Transmitter  
D.14.1  
Identify the terminals  
First check the sensor manufacturer’s manual to identify the appropriate terminals. Otherwise,  
perform the following procedure.  
Identify coil and electrode terminals  
1.  
2.  
Select a terminal and touch an ohmmeter probe to it.  
Touch the second probe to each of the other terminals and record the results for each  
terminal.  
3.  
Repeat the process and record the results for every terminal.  
Coil terminals will have a resistance of approximately 3-300 ohms.  
Electrode terminals will have an open circuit.  
Identify a chassis ground  
1.  
2.  
Touch one probe of an ohmmeter to the sensor chassis.  
Touch the other probe to the each sensor terminal and the record the results for each  
terminal.  
The chassis ground will have a resistance value of one ohm or less.  
D.14.2  
Wiring connections  
Connect the electrode terminals to Rosemount 8732 terminals 18 and 19. The electrode shield  
should be connected to terminal 17.  
Connect the coil terminals to Rosemount 8732 terminals 1, 2, and 3.  
If the Rosemount 8732 Transmitter indicates a reverse flow condition, switch the coil wires  
connected to terminals 1 and 2.  
Do not connect mains or line  
power to the magnetic flowtube  
sensor or to the transmitter coil  
excitation circuit.  
Implementing a Universal Transmitter  
263  
       
Reference Manual  
00809-0100-4444, Rev AD  
Appendix D: Implementing a Universal Transmitter  
August 2015  
264  
Implementing a Universal Transmitter  
Reference Manual  
00809-0100-4444, Rev AD  
Index  
August 2015  
Index  
A
G
Analog Output  
Grounding  
Analog Output Adjustment . . . . . . . . . . . . . . . . . . . . . 181  
Applications/Configurations . . . . . . . . . . . . . . . . . . . . . . 5  
I
B
Installation  
Bolts  
mechanical considerations. . . . . . . . . . . . . . . . . . . . .5  
Wafer Flowtube  
C
Conductivity  
L
Configurations/Applications . . . . . . . . . . . . . . . . . . . . . . 5  
Cover Gasket, Materials of Construction . . . . . . . . . . . 186  
Lining Protectors  
Local Operator Interface (LOI)  
D
M
Device Software Functions  
Messages  
F
Flow Rate  
O
Orientation  
Flowtube  
Flowtubes  
Endress and Hauser Models . . . . . . . . . . . . . . . . . 242  
Fischer and Porter Model 10D1418 . . . . . . . . . . . 246  
Yamatake Honeywell Flowtubes. . . . . . . . . . . . . . 261  
P
Paint, Materials of Construction. . . . . . . . . . . . . . . . . . 186  
Power Supply Load Limitations . . . . . . . . . . . . . . . . . . 182  
Pressure  
265  
Index  
Reference Manual  
00809-0100-4444, Rev AD  
Index  
August 2015  
S
W
Specifications  
Weight  
Wiring Diagrams  
Model 8705 and Model 8707  
ambient temperature limits . . . . . . . . . . . 189  
electrical connections . . . . . . . . . . . . . . . . 193  
functional specifications . . . . . . . . . . . . . . 188  
non-wetted materials . . . . . . . . . . . . . . . . 191  
performance specifications. . . . . . . . . . . . 190  
physical specifications. . . . . . . . . . . . . . . . 191  
process temperature limits . . . . . . . . . . . . 188  
process wetted materials . . . . . . . . . . . . . 191  
Model 8711  
Endress and Hauser Models . . . . . . . . . . . . . . . . . 242  
Fisher and Porter Model 10D1418 . . . . . . . . . . . . 246  
Yamatake Honeywell Flowtubes . . . . . . . . . . . . . 261  
ambient temperature limits . . . . . . . . . . . 195  
functional specifications . . . . . . . . . . . . . . 194  
non-wetted materials . . . . . . . . . . . . . . . . 195  
physical specifications. . . . . . . . . . . . . . . . 195  
process temperature limits . . . . . . . . . . . . 194  
process-wetted materials . . . . . . . . . . . . . 196  
safe working pressure . . . . . . . . . . . . . . . . 195  
Specifications and Reference Data  
Functional Specifications  
T
Temperature  
U
266  
Operation and Maintenance  
Reference Manual  
00809-0100-4444, Rev AD  
August 2015  
Global Headquarters  
Emerson Process Management  
6021 Innovation Blvd.  
Shakopee, MN 55379, USA  
+1 800 522 6277 or +1 303 527 5200  
+1 303 530 8459  
North America Regional Office  
Emerson Process Management  
7070 Winchester Circle  
Boulder, CO 80301 USA  
+1 800 522 6277 or +1 303 527 5200  
+1 303 530 8459  
Latin America Regional Office  
Emerson Process Management  
Multipark Office Center  
Turrubares Building, 3rd & 4th floor  
Guachipelin de Escazu, Costa Rica  
+1 506 2505-6962  
+1 954 846 5121  
Europe Regional Office  
Emerson Process Management Flow B.V.  
Neonstraat 1  
6718 WX Ede  
The Netherlands  
+31 (0) 318 495555  
+31 (0) 318 495556  
Asia Pacific Regional Office  
Emerson Process Management Asia Pacific Pte Ltd  
1 Pandan Crescent  
Singapore 128461  
+65 6777 8211  
+65 6777 0947  
Middle East and Africa Regional Office  
Emerson Process Management  
Emerson FZE P.O. Box 17033,  
Jebel Ali Free Zone - South 2  
Dubai, United Arab Emirates  
+971 4 8118100  
Standard Terms and Conditions of Sale can be found at:  
www.rosemount.com\terms_of_sale.  
The Emerson logo is a trademark and service mark of Emerson Electric Co.  
Rosemount and Rosemount logotype are registered trademarks of Rosemount Inc.  
All other marks are the property of their respective owners.  
© 2015 Rosemount Inc. All rights reserved.  
+971 4 8865465  

Zebra Technologies 22380100000 User Manual
White Rodgers Sst2000 User Manual
Tecumseh Automobile Parts Oh195ep User Manual
Sharp Af S85fx User Manual
Samsung As24w User Manual
Ricoh Mp 3090 User Manual
Mitsubishi Electronics Lossnay Lgh 150rx4 E User Manual
KENWOOD KMC5XX 02 User Manual
CANON POWERSHOT SX500 IS User Manual
ACER AS329 User Manual