™
Air-Cooled Series R
Helical-Rotary Liquid Chiller
Model RTAC 120 to 200
(400 to 760kw - 50 Hz)
Built for the Industrial and
Commercial Markets
RLC-PRC005-E4
Download from Www.Somanuals.com. All Manuals Search And Download.
Contents
2
4
Introduction
Features and Benefits
Improved Acoustical Performance
Simple Installation
Superior Control withTracer™ Chiller Controls
Options
5
6
7
8
Application Considerations
Selection Procedure
General Data
9
12
13
Performance Data
Performance Adjustment Factors
Controls
19
33
36
36
39
44
Generic Building Automation System Controls
TypicalWiring Diagrams
Job Site Data
45
47
50
Electrical Data
Dimensional Data
Mechanical Specifications
RLC-PRC005-E4
3
Download from Www.Somanuals.com. All Manuals Search And Download.
Features and
Benefits
™
The Series R
Water Chiller Systems Business Unit
• Resistance to liquid slugging.The
robust design of the Series R
compressor can ingest amounts of
liquid refrigerant that normally would
severely damage reciprocating
compressor valves, piston rods, and
cylinders.
Helical-Rotary Compressor
• Unequaled reliability.The next
generationTrane helical-rotary
compressor is designed, built, and
tested to the same demanding and
rugged standards as theTrane scroll
compressors, the centrifugal
compressors, and the previous
generation helical-rotary compressors
used in both air- and water-cooled
chillers for more than 13 years.
• Fewer moving parts.The helical-rotary
compressor has only two rotating
parts: the male rotor and the female
rotor. Unlike reciprocating
compressors, theTrane helical-rotary
compressor has no pistons,
connecting rods, suction and
discharge valves, or mechanical oil
pump. In fact, a typical reciprocating
compressor has 15 times as many
critical parts as the Series R
compressor. Fewer moving parts leads
to increased reliability and longer life.
• Years of research and testing.The
Trane helical-rotary compressor has
amassed thousands of hours of
testing, much of it at severe operating
conditions beyond normal commercial
air-conditioning applications.
• Proven track record.TheTrane
Company is the world’s largest
manufacturer of large helical-rotary
compressors used for refrigeration.
Over 90,000 compressors worldwide
have proven that theTrane helical-
rotary compressor has a reliability rate
of greater than 99.5 percent in the first
year of operation—unequalled in the
industry.
• Direct-drive, low-speed, semi-hermetic
compressor for high efficiency and
high reliability.
• Field-serviceable compressor for easy
maintenance.
• Suction-gas-cooled motor.The motor
operates at lower temperatures for
longer motor life.
• Five minute start-to-start and two
minute stop-to-start anti-recycle timer
allows for closer water-loop
temperature control.
RLC-PRC005-E4
4
Download from Www.Somanuals.com. All Manuals Search And Download.
Improved
Acoustical
Performance
Figure 2 Cutaway of a compressor
The sound levels of the Series R Model
RTAA have been steadily improved
since its introduction. With the advent of
the Model RTAC, sound levels are
reduced significantly by addressing two
major sources: the compressor and the
refrigerant piping. First, the compressor
has been specifically designed to
minimize sound generation. Second, the
refrigerant components and piping have
been optimized to reduce sound
propagation throughout the system.The
result: sound levels achieved on the
Model RTAC represent the lowest sound
levels ever onTrane air-cooled helical-
rotary compressor water chillers.
The modern technology of the RTAC
with the efficient direct-drive
unloading valve for the majority of the
unloading function.This allows the
compressor to modulate infinitely, to
exactly match building load and to
maintain chilled-water supply
compressor, the flooded evaporator, the
unique design to separate liquid and
vapor, the electronic expansion valve,
™
and the revolutionaryTracer Chiller
temperatures within 0.3°C [ 0.5°F] of
the set point. Reciprocating and helical-
rotary chillers that rely on stepped
capacity control must run at a capacity
equal to or greater than the load, and
typically can only maintain water
temperature to around 1°C [ 2°F].
Much of this excess capacity is lost
because overcooling goes toward
removing building latent heat, causing
the building to be dried beyond normal
comfort requirements. When the load
becomes very low, the compressor also
uses a step unloader valve, which is a
single unloading step to achieve the
minimum unloading point of the
compressor.The result of this design is
optimized part-load performance far
superior to single reciprocating
Controls, has permittedTrane to achieve
these efficiency levels, unmatched in the
industry.
Precise RotorTip Clearances
Higher energy efficiency in a helical-
rotary compressor is obtained by
reducing the rotor tip clearances.This
next-generation compressor is no
exception. With today’s advanced
manufacturing technology, clearances
can be controlled to even tighter
tolerances.This reduces the leakage
between high- and low-pressure cavities
during compression, allowing for more
efficient compressor operation.
Superior Efficiency Levels:
The Bar Has Been Raised
The standard-efficiencyTrane Model
RTAC has COP levels up to 2.90 kW/kW
[9.9 EER] (including fans), while the
premium-efficiency, or high-efficiency,
units leap to COP levels of 3.08 kW/kW
[10.51 EER] (including fans).
Capacity Control and Load Matching
The combination patented unloading
system onTrane helical-rotary
compressors and step-only helical-
rotary compressors.
compressors uses the variable
RLC-PRC005-E4
5
Download from Www.Somanuals.com. All Manuals Search And Download.
Simple Installation
Compact Physical Size
FactoryTestingMeansTrouble-Free
Start-up
TheTrane Model RTAC chiller averages a
20 percent reduction in physical
All air-cooled Series R chillers are given
a complete functional test at the factory.
This computer-based test program
completely checks the sensors, wiring,
electrical components, microprocessor
function, communication capability,
expansion valve performance, and fans.
In addition, each compressor is run-
tested to verify capacity and efficiency.
Where applicable, each unit is factory
preset to the customer’s design
conditions. An example would be the
leaving-liquid temperature set point.The
result of this test program is that the
chiller arrives at the job site fully tested
and ready for operation.
footprint, while the greatest change is
actually 40 percent smaller when
compared against the previous design.
This improvement makes the RTAC the
smallest air-cooled chiller in the industry
and a prime candidate for installations
that have space constraints. All physical
sizes were changed without sacrificing
the side clearances needed to supply
fresh airflow without coil starvation—the
tightest operational clearances in the
industry.
Close Spacing Installation
™
The air-cooled Series R chiller has the
tightest recommended side clearance in
the industry, 1.2 meters, but that is not
all. In situations where equipment must
be installed with less clearance than
recommended, which frequently occurs
in retrofit applications, restricted airflow
is common. Conventional chillers may
not work at all. However, the air-cooled
Series R chiller with the Adaptive
Factory-InstalledandTestedControls
and Options Speed Installation
All Series R chiller options, including
main power-supply disconnect, low
ambient control, ambient temperature
sensor, low ambient lockout,
communication interface and ice-
making controls are factory installed and
tested. Some manufacturers send
accessories in pieces to be field
installed. WithTrane, the customer saves
on installation expense and has
assurance that ALL chiller controls and
options have been tested and will
function as expected.
™
Control microprocessor will make as
much chilled water as possible given the
actual installed conditions, stay on-line
during any unforeseen abnormal
conditions, and optimize its
performance. Consult yourTrane sales
engineer for more details.
RLC-PRC005-E4
6
Download from Www.Somanuals.com. All Manuals Search And Download.
Superior Control with
™
Tracer Chiller Controls
is lowered to around -5.5 to -5°C [22 to
24°F]. Second, the ambient temperature
has typically dropped about 8.3 to 11°C
[15 to 20°F] from the peak daytime
ambient.This effectively places a lift on
the compressors that is similar to
daytime running conditions.The chiller
can operate in lower ambient at night
and successfully produce ice to
supplement the next day’s cooling
demands.
4. Freeze ice storage
The End of Nuisance
5. Freeze ice storage when comfort
cooling is required
6. Off
Trip-Outsand
Unnecessary Service Calls?
™
The Adaptive Control microprocessor
Tracer optimization software controls
operation of the required equipment
and accessories to easily move from
one mode of operation to another. For
example: even with ice-storage systems,
there are numerous hours when ice is
neither produced nor consumed, but
saved. In this mode, the chiller is the
sole source of cooling. For example, to
cool the building after all ice is produced
but before high electrical-demand
system enhances the air-cooled Series R
chiller by providing the very latest chiller
control technology. With the Adaptive
Control microprocessor, unnecessary
service calls and unhappy tenants are
avoided.The unit does not nuisance-trip
or unnecessarily shut down. Only when
theTracer chiller controls have
The Model RTAC produces ice by
supplying ice storage tanks with a
constant supply of glycol solution. Air-
cooled chillers selected for these lower
leaving-fluid temperatures are also
selected for efficient production of
chilled fluid at nominal comfort-cooling
conditions.The ability ofTrane chillers to
serve “double duty” in ice production
and comfort cooling greatly reduces the
capital cost of ice-storage systems.
exhausted all possible corrective
actions, and the unit is still violating an
operating limit, will the chiller shut
down. Controls on other equipment
typically shut down the chiller, usually
just when it is needed the most.
charges take effect,Tracer sets the air-
cooled chiller leaving-fluid set point to
its most efficient setting and starts the
chiller, chiller pump, and load pump.
For Example:
When electrical demand is high, the ice
pump is started and the chiller is either
demand limited or shut down
completely.Tracer controls have the
intelligence to optimally balance the
contribution of the ice and the chiller in
meeting the cooling load.
A typical five-year-old chiller with dirty
coils might trip out on high-pressure
cutout on a 38°C [100°F] day in August.
A hot day is just when comfort cooling
is needed the most. In contrast, the air-
cooled Series R chiller with an Adaptive
Control microprocessor will stage fans
on, modulate the electronic expansion
valve, and modulate the slide valve as it
approaches a high-pressure cutout,
thereby keeping the chiller on line when
you need it the most.
When cooling is required, ice-chilled
glycol is pumped from the ice storage
tanks directly to the cooling coils. No
expensive heat exchanger is required.
The glycol loop is a sealed system,
eliminating expensive annual chemical
treatment costs.The air-cooled chiller is
also available for comfort-cooling duty
at nominal cooling conditions and
efficiencies.The modular concept of
glycol ice-storage systems, and the
The capacity of the chiller plant is
extended by operating the chiller and ice
in tandem.Tracer rations the ice,
augmenting chiller capacity while
reducing cooling costs. When ice is
produced,Tracer will lower the air-
cooled chiller leaving-fluid set point and
start the chiller, ice and chiller pumps,
and other accessories. Any incidental
loads that persists while producing ice
can be addressed by starting the load
pump and drawing spent cooling fluid
from the ice storage tanks.
System Options: Ice Storage
™
proven simplicity ofTraneTracer
Trane air-cooled chillers are well-suited
for ice production.The unique ability to
operate at decreased ambient
temperature while producing ice results
in approximately the same amount of
work for the compressor. An air-cooled
machine typically switches to ice
production at night.Two things happen
under this assumption. First, the leaving
brine temperature from the evaporator
controls, allow the successful blend of
reliability and energy-saving
performance in any ice-storage
application.
The ice-storage system is operated in
six different modes, each optimized for
the utility cost at a particular time of day.
1. Provide comfort cooling with chiller
2. Provide comfort cooling with ice
3. Provide comfort cooling with ice and
chiller
For specific information on ice storage
applications, contact your localTrane
sales office.
Figure 3 — Ice storage demand cost savings
LOAD
ICE
CHILLER
MN
6 A.M.
NOON
6 P.M.
MN
RLC-PRC005-E4
7
Download from Www.Somanuals.com. All Manuals Search And Download.
Options
Protection Grilles
Night Noise Setback
Premium Efficiency and
Performance Option
This option provides oversized heat
exchangers with two purposes. One, it
allows the unit to be more energy
efficient.Two, the unit will have
enhanced operation in high-ambient
conditions.
Protection grilles cover the complete
condensing coils and the service areas
beneath the coils.
At night, on contact closure all the fans
run at low speed, bringing the overall
sound level further down.
Coil Protection
SCR (Short-Circuit Rating)
A coated wire mesh that covers the
condenser coils only.
Offers a measure of safety for what the
starter-panel enclosure is able to
withstand in the event of an explosion
caused by a short circuit; protection up
to 35,000 amps is available on most
voltages.
Access Protection
Low-TemperatureBrine
A coated wire mesh that covers the
access area underneath the condenser
coils.
The hardware and software on the unit
are factory set to handle low-
temperature brine applications, typically
below 5°C [41°F].
Neoprene Isolators
ServiceValves
Isolators provide isolation between the
chiller and the structure to help
eliminate vibration transmission.
Neoprene isolators are more effective
and recommended over spring
isolators.
Provides a service valve on the suction
and discharge lines of each circuit to
facilitate compressor servicing.
Ice Making
The unit controls are factory set to
handle ice making for thermal storage
applications.
High-Ambient Option
The high-ambient option consists of
special control logic to permit high-
ambient (up to 52°C [125°F]) operation.
This option offers the best performance
when coupled with the premium
TracerSummit™Communication
Interface
Victaulic Connection Kit
Provides a kit that includes a set of two
pipe stubs andVictaulic couplings.
Permits bi-directional communication to
theTrane Integrated Comfort™ system.
Low NoiseVersion
efficiency and performance option.
Remote Input Options
The unit is equipped with low-speed
fans and a compressor sound-
attenuating enclosure. All the
sound-emitting parts, like refrigerant
lines and panels subject to vibration, are
acoustically treated with sound-
absorbent material.
Low-Ambient Option
Permits remote chilled-liquid set point,
remote current-limit set point, or both,
by accepting a 4-20 mA or 2-10VDC
analog signal.
The low-ambient option consists of
special control logic and fans to permit
low-ambient (down to -23°C [-9°F])
operation.
Remote Output Options
Low-Ambient Lockout
Permits alarm relay outputs, ice-making
outputs, or both.
Evaporator Freeze Protection
A factory-installed ambient sensor and
control logic will prevent starting below
the recommended ambient
temperature.
Chilled-Water Reset
Factory-installed and -wired trace
heaters on the water boxes and on the
intermediate tube plate, with an ambient
thermostat and protected by a circuit
breaker.
This option provides the control logic
and field-installed sensors to reset
leaving-chilled-water temperature.The
set point can be reset based on either
ambient temperature or return
Power Disconnect Switch
A disconnect switch with a through-the-
door handle, plus compressor
protection fuses, is provided to
disconnect main power.
Ground Fault Detection
evaporator-water temperature.
Sensing ground current for improved
chiller protection.
RLC-PRC005-E4
8
Download from Www.Somanuals.com. All Manuals Search And Download.
Application Considerations
Certain application constraints should
be considered when sizing, selecting,
and installingTrane air-cooled Series R
chillers. Unit and system reliability is
often dependent on properly and
completely complying with these
considerations. When the application
varies from the guidelines presented, it
should be reviewed with your local
Trane sales engineer.
and local water characteristics. Neither
salt nor brackish water is recommended
for use inTrane air-cooled Series R
chillers. Use of either will lead to a
shortened chiller life.TheTrane
Company encourages the employment
of a reputable water-treatment specialist,
familiar with local water conditions, to
assist in this determination and in the
establishment of a proper water-
treatment program.
51°C [125°F], and selecting the low-
ambient option will increase the
operational capability of the water chiller
to ambient temperatures as low as 18°C
[0°F]. For operation outside of these
ranges, contact the localTrane sales
office.
Water Flow Limits
The minimum water flow rates are
given inTables G-1 and G-2. Evaporator
flow rates below the tabulated values
will result in laminar flow and cause
freeze-up problems, scaling,
stratification, and poor control.The
maximum evaporator water flow rate is
also given in the general data section.
Flow rates exceeding those listed may
result in excessive tube erosion.
Unit Sizing
Effect of Altitude on Capacity
Unit capacities are listed in the
performance data section. Intentionally
oversizing a unit to ensure adequate
capacity is not recommended. Erratic
system operation and excessive
compressor cycling are often a direct
result of an oversized chiller. In addition,
an oversized unit is usually more
expensive to purchase, install, and
operate. If oversizing is desired, consider
using two units.
Air-cooled Series R chiller capacities
given in the performance data tables are
for use at sea level. At elevations
substantially above sea level, the
decreased air density will reduce
condenser capacity and, therefore, unit
capacity and efficiency.The adjustment
factors inTable F-1 can be applied
directly to the catalog performance data
to determine the unit’s adjusted
performance.
Flow Rates Out of Range
Many process cooling jobs require flow
rates that cannot be met with the
minimum and maximum published
values within the Model RTAC
evaporator. A simple piping change can
alleviate this problem. For example: a
plastic injection molding process
requires 5.0 Lps [80 gpm] of 10°C [50°F]
water and returns that water at 15.6°C
[60°F].The selected chiller can operate at
these temperatures, but has a minimum
flow rate of 7.6 Lps [120 gpm].The
following system can satisfy the process.
WaterTreatment
Ambient Limitations
Dirt, scale, products of corrosion, and
other foreign material will adversely
affect heat transfer between the water
and system components. Foreign matter
in the chilled-water system can also
increase pressure drop and,
consequently, reduce water flow. Proper
water treatment must be determined
locally, depending on the type of system
Trane air-cooled Series R chillers are
designed for year-round operation over
a range of ambient temperatures.The
air-cooled Model RTAC chiller will
operate in ambient temperatures of 4 to
46°C [25 to 115°F]. Selecting the high-
ambient option will allow the chiller to
operate in ambient temperatures of
10°C
Figure 4 — GPM Out of Range
5 Lps
10°C
7.6 Lps
CV Pump
5 Lps
Load
10°C
2.5 Lps
13.7°C
7.6 Lps
15.6°C
5 Lps
CV pump
7.5 Lps
RLC-PRC005-E4
9
Download from Www.Somanuals.com. All Manuals Search And Download.
Application Considerations
29.4°C
7.6 Lps
Figure 5 — GPM Out of Range
15.6°C
2.2 Lps
15.6°C
7.6 Lps
CV Pump
Load
35°C
15°C
5.4 Lps
5.4 Lps
21°C
7.6 Lps
35°C
7.6 Lps
35°C
2.2 Lps
CV Pump
Leaving-WaterTemperature Range
29.4°C [85°F] and returning at 35°C
[95°F].The accuracy required is higher
than the cooling tower can give.The
selected chiller has adequate capacity,
but has a maximum leaving-chilled-
water temperature of 15.6°C [60°F].
Trane air-cooled Series R chillers have
three distinct leaving-water categories:
standard, low temperature, and ice
making.The standard leaving-solution
temperature range is 4.4 to 15.6°C [40 to
60°F]. Low-temperature machines
produce leaving-liquid temperatures
less than 4.4°C [40°F]. Since liquid
supply temperature set points less than
4.4°C [40°F] result in suction
In the example shown, both the chiller and
process flow rates are equal.This is not
necessary. For example, if the chiller had a
higher flow rate, there would be more water
bypassing and mixing with warm water.
temperatures at or below the freezing
point of water, a glycol solution is
required for all low-temperature
machines. Ice-making machines have a
leaving-liquid temperature range of -6.7
to 15.6°C [20 to 60°F]. Ice-making
controls include dual set point controls
and safeties for ice making and standard
cooling capabilities. Consult your local
Trane sales engineer for applications or
selections involving low temperature or
ice making machines.The maximum
water temperature that can be circulated
through an evaporator when the unit is
not operating is 42°C [108°F].
Supply-WaterTemperature Drop
The performance data for theTrane air-
cooled Series R chiller is based on a
chilled-water temperature drop of 6°C
[10.8°F]. Chilled-water temperature
drops from 3.3 to 10°C [6 to 18°F] may
be used as long as minimum and
maximum water temperature, and
minimum and maximum flow rates, are
not violated.Temperature drops outside
this range are beyond the optimum
range for control, and may adversely
affect the microcomputer’s ability to
maintain an acceptable supply-water
temperature range. Further, temperature
drops of less than 3.3°C [6°F] may result
in inadequate refrigerant superheat.
Sufficient superheat is always a primary
concern in any direct-expansion
Leaving-WaterTemperature
Out of Range
Similar to the flow rates above, many
process cooling jobs require
temperature ranges that cannot be met
with the minimum and maximum
published values for the Model RTAC
evaporator. A simple piping change can
alleviate this problem. For example: a
laboratory load requires 7.6 Lps [120
gpm] of water entering the process at
refrigerant system and is especially
important in a package chiller where the
evaporator is closely coupled to the
compressor. When temperature drops
are less than 3.3°C [6°F], an evaporator
runaround loop may be required.
RLC-PRC005-E4
10
Download from Www.Somanuals.com. All Manuals Search And Download.
Application Considerations
Variable Flow in the Evaporator
Ice Storage Provides
Reduced Electrical Demand
ShortWater Loops
An attractive chilled-water system
option may be a variable primary flow
(VPF) system. VPF systems present
building owners with several cost-
saving benefits that are directly related
to the pumps.The most obvious cost
savings result from eliminating the
secondary distribution pump, which in
turn avoids the expense incurred with
the associated piping connections
(material, labor), electrical service, and
variable-frequency drive. Building
owners often cite pump-related energy
savings as the reason that prompted
them to install aVPF system. With the
help of a software analysis tool such as
The proper location of the temperature
control sensor is in the supply (outlet)
water connection or pipe.This location
allows the building to act as a buffer and
assures a slowly-changing return-water
temperature. If there is not a sufficient
volume of water in the system to
provide an adequate buffer, temperature
control can be lost, resulting in erratic
system operation and excessive
compressor cycling. A short water loop
has the same effect as attempting to
control using the building return water.
Typically, a two-minute water loop is
sufficient to prevent a short water loop.
Therefore, as a guideline, ensure that
the volume of water in the evaporator
loop equals or exceeds two times the
evaporator flow rate. For a rapidly
changing load profile, the amount of
volume should be increased.To prevent
the effect of a short water loop, the
following item should be given careful
consideration: a storage tank or larger
header pipe to increase the volume of
water in the system and, therefore,
reduce the rate of change of the return
water temperature.
An ice-storage system uses a standard
chiller to make ice at night, when utilities
charge less for electricity.The ice
supplements, or even replaces,
mechanical cooling during the day,
when utility rates are at their highest.
This reduced need for cooling results in
big utility cost savings.
Another advantage of ice storage is
standby cooling capacity. If the chiller is
unable to operate, one or two days of
ice may still be available to provide
cooling. In that period of time, the chiller
can be repaired before building
occupants feel any loss of comfort.
™
™
System Analyzer ,TRACE , or DOE-2,
you can determine whether the
anticipated energy savings justify the
use of variable primary flow in a
TheTrane Model RTAC chiller is uniquely
suited to low-temperature applications
like ice storage because of the ambient
relief experienced at night.This allows
the Model RTAC chiller to produce ice
efficiently, with less stress on the
machine.
particular application. It may also be
easier to apply variable primary flow in
an existing chilled-water plant. Unlike
the “decoupled” design, the bypass can
be positioned at various points in the
chilled-water loop and an additional
pump is unnecessary.The evaporator in
the Model RTAC can withstand up to 50
percent water flow reduction as long as
this flow is equal to or above the
minimum flow-rate requirements.The
microprocessor and capacity control
algorithms are designed to take a
minimum of 10 percent change in water
flow rate per minute.
Simple and smart control strategies are
another advantage the Model RTAC
chiller offers for ice-storage applications.
™
TraneTracer building management
systems can actually anticipate how
much ice needs to be made at night,
and operate the system accordingly.The
controls are integrated right into the
chiller.Two wires and preprogrammed
software dramatically reduce field
installation cost and complex
ApplicationsTypes
• Comfort cooling
• Industrial process cooling
• Ice or thermal storage
• Low-temperature process cooling.
programming.
RLC-PRC005-E4
11
Download from Www.Somanuals.com. All Manuals Search And Download.
Selection Procedure
The chiller capacity tables cover the
most frequently encountered leaving-
liquid temperatures.The tables reflect a
6°C [10.8°F] temperature drop through
the evaporator. For other temperature
drops, apply the appropriate
performance data adjustment factors.
For chilled brine selections, refer to
Figures F-3 and F-4 for ethylene and
propylene glycol adjustment factors.
Selection Procedure SI Units
5
The chiller capacity tables P-1 through
P-4 cover the most frequently
encountered leaving-water
temperatures.The tables reflect a 6°C
temperature drop through the
evaporator
The final unit selection is:
• Quantity (1) RTAA 140
• Cooling capacity = 505.9 kW
• Design ambient temperature 35°C
• Entering chilled-water
temperatures = 12°C
To select aTrane air-cooled RTAC chiller,
the following information is required:
• Leaving chilled-water
temperatures = 7°C
™
1
To select aTrane air-cooled Series R
chiller, the following information is
required:
Design load in kW of refrigeration
• Chilled-water flow rate = 24.2 Lps
2
• Evaporator water pressure
drop = 53 kPa
Design chilled-water temperature drop
• Compressor power input = 159 kW
• Unit COP = 2.9 kW/kW
3
Design leaving-chilled-water
temperature
Contact the localTrane sales engineer
for a proper selection at the given
operating conditions.
4
Design ambient temperature
For a selection in English units:
Evaporator flow rates can be
determined by using the following
formula:
• 1 ton = 3.5168 kW
• Evaporator flow rate in gpm =
24 x tons ÷ deltaT (°F)
Lps = kW (capacity) x 0.239 ÷
temperature drop (°C)
• DeltaT (°F) = deltaT (°C) x 1.8
• 1 gpm = 0.06309 Lps
• 1 ftWG = 3 kPa
To determine the evaporator pressure
drop we use the flow rate (Lps) and the
evaporator water pressure drop Figure
F1.
• EER = COP ÷ 0.293
For selection of chilled brine units, or
applications where the altitude is
significantly greater than sea level or the
temperature drop is different than 6°C,
the performance adjustment factors
fromTable F-1 should be applied at this
point.
For example:
Corrected Capacity = Capacity
(unadjusted) x Glycol Capacity
Adjustment Factor
Corrected Flow Rate = Flow Rate
(unadjusted) x Glycol Flow Rate
Adjustment Factor
RLC-PRC005-E4
12
Download from Www.Somanuals.com. All Manuals Search And Download.
General Data
SI Units
Table G-1 — RTAC Standard
Size
140
155
170
185
200
Compressor
Quantity
Nominal Size (1)
Evaporator
2
2
2
2
2
tons
70/70
70/85
85/85
85/100
100/100
Evaporator Model
Water Storage
Minimum Flow
Maximum Flow
Condenser
F140
132.3
10.8
F155
141.3
11.5
F170
150.7
12.5
F185
156
13.6
39.5
F200
163.5
13.6
L
Lps
Lps
33.1
38.2
43.1
48.4
Qty of Coils
Coil Length
Coil Height
4
3962/3962
1067
192
4
4572/3962
1067
192
4
4572/4572
1067
192
4
5486/4572
1067
192
4
5486/5486
1067
192
mm
mm
fins/ft
Fin series
Number of Rows
Condenser Fans
Quantity (1)
Diameter
3
3
3
3
3
4/4
762
35.82
915
36.48
1.9
5/4
762
39.53
915
36.48
1.9
5/5
762
43.22
915
36.48
1.9
6/5
762
47.55
915
36.48
1.9
6/6
762
51.88
915
36.48
1.9
mm
m /s
3
Total Air Flow
Nominal RPM
Tip Speed
m/s
kW
Motor kW
Min Starting/Operating Ambient(2)
Standard Unit
Low-Ambient Unit
General Unit
°C
°C
-4
-23
-4
-23
-4
-23
-4
-23
-4
-23
Refrigerant
HFC 134a
HFC 134a
HFC 134a
HFC 134a
HFC 134a
Number of Independent
Refrigerant Circuits
% Minimum Load (3)
Refrigerant Charge (1)
Oil Charge (1)
2
15
65.8/65.8
7.6/7.6
5216
5107
2
15
70.3/65.8
7.6/7.6
5407
5265
2
15
70.3/70.3
7.6/7.6
5586
5434
2
15
99.8/95.3
9.9/7.6
6268
6111
2
15
99.8/99.8
9.9/9.9
6396
kg
L
kg
kg
Operating Weight
Shipping Weight
6232
Table G-2 — RTAC High Efficiency
Size
120
130
140
155
170
185
200
Compressor
Quantity
Nominal Size (1)
Evaporator
2
2
2
2
2
2
2
tons
60/60
60/70
70/70
70/85
85/85
85/100
100/100
Evaporator Model
Water Storage
Minimum Flow
Maximum Flow
F140
132.3
10.8
F155
141.3
11.5
F170
150.7
12.5
F185
156
13.6
39.5
F200
163.5
13.6
F220
175.9
14.9
F240
188.3
16.3
L
Lps
Lps
33.1
38.2
43.3
48.4
53.5
58.6
Condenser
Qty of Coils
Coil Length
Coil Height
4
3962/3962
1067
192
4
4572/3962
1067
192
4
4572/4572
1067
192
4
5486/4572
1067
192
4
5486/5486
1067
192
4
6400/2486
1067
192
4
6400/6400
1067
192
mm
mm
fins/ft
Fin series
Number of Rows
3
3
3
3
3
3
3
Condenser Fans
Quantity (1)
Diameter
Total Air Flow
Nominal RPM
Tip Speed
4/4
762
35.82
915
36.48
1.9
5/4
762
39.53
915
36.48
1.9
5/5
762
43.22
915
36.48
1.9
6/5
762
47.55
915
36.48
1.9
6/6
762
51.88
915
36.48
1.9
7/6
762
56.17
915
36.48
1.9
7/7
762
60.47
915
36.48
1.9
mm
m /s
3
m/s
kW
Motor kW
Min Starting/Operating Ambient(2)
Standard Unit
Low-Ambient Unit
General Unit
°C
°C
-4
-23
-4
-23
-4
-23
-4
-23
-4
-23
-4
-23
-4
-23
Refrigerant
HFC 134a
HFC 134a
HFC 134a
HFC 134a
HFC 134a
HFC 134a
HFC 134a
Number of Independent
Refrigerant Circuits
% Minimum Load (3)
Refrigerant Charge (1)
Oil Charge (1)
2
15
65.8/65.8
7.6/7.6
5198
2
15
70.3/65.8
7.6/7.6
5271
5129
2
15
70.3/70.3
7.6/7.6
5274
2
15
99.8/95.3
7.6/7.6
6073
5916
2
15
99.8/99.8
7.6/7.6
6323
6159
2
15
2
15
kg
L
kg
kg
104.4/99.8
9.9/7.6
6555
104.4/104.4
9.9/9.9
6759
Operating Weight
Shipping Weight
5089
5122
6378
6569
RLC-PRC005-E4
13
Download from Www.Somanuals.com. All Manuals Search And Download.
General Data
SI Units
Table G-3 — RTAC Low Noise Standard
Size
140
155
170
185
200
Compressor
Quantity
2
2
2
2
2
Nominal Size (1)
Evaporator
tons
70/70
70/85
85/85
85/100
100/100
Evaporator Model
Water Storage
Minimum Flow
Maximum Flow
F140
132.3
10.8
F155
141.3
11.5
F170
150.7
12.5
F185
156
13.6
39.5
F200
163.5
13.6
L
Lps
Lps
33.1
38.2
43.1
48.4
Condenser
Qty of Coils
Coil Length
Coil Height
4
3962/3962
1067
192
4
4572/3962
1067
192
4
4572/4572
1067
192
4
5486/4572
1067
192
4
5486/5486
1067
192
mm
mm
fins/ft
Fin series
Number of Rows
3
3
3
3
3
Condenser Fans
Quantity (1)
Diameter
Total Air Flow
Nominal RPM
Tip Speed
4/4
762
25.61
680
27.5
0.85
5/4
762
28.27
680
27.5
0.85
5/5
762
30.93
680
27.5
0.85
6/5
762
34.02
680
27.5
0.85
6/6
762
37.11
680
27.5
0.85
mm
m /s
3
m/s
kW
Motor kW
Min Starting/Operating Ambient(2)
Standard Unit
Low-Ambient Unit
General Unit
°C
°C
-4
-23
-4
-23
-4
-23
-4
-23
-4
-23
Refrigerant
HFC 134a
HFC 134a
HFC 134a
HFC 134a
HFC 134a
Number of Independent
Refrigerant Circuits
% Minimum Load (3)
Refrigerant Charge (1)
Oil Charge (1)
2
15
65.8/65.8
7.6/7.6
5306
5197
2
15
70.3/65.8
7.6/7.6
5497
5355
2
15
70.3/70.3
7.6/7.6
5676
2
15
99.8/95.3
9.9/7.6
6358
2
15
99.8/99.8
9.9/9.9
6486
kg
L
kg
kg
Operating Weight
Shipping Weight
5524
6201
6322
RLC-PRC005-E4
14
Download from Www.Somanuals.com. All Manuals Search And Download.
General Data
SI Units
Table G-4 — RTAC High Efficiency Low Noise
Size
120
130
140
155
170
185
200
Compressor
Quantity
Nominal Size (1)
Evaporator
2
2
2
2
2
2
2
tons
60/60
60/70
70/70
70/85
85/85
85/100
100/100
Evaporator Model
Water Storage
Minimum Flow
Maximum Flow
F140
132.3
10.8
F155
141.3
11.5
F170
150.7
12.5
F185
156
13.6
39.5
F200
163.5
13.6
F220
175.9
14.9
F240
188.3
16.3
L
Lps
Lps
33.1
38.2
43.3
48.4
53.5
58.6
Condenser
Qty of Coils
Coil Length
Coil Height
4
3962/3962
1067
192
4
4572/3962
1067
192
4
4572/4572
1067
192
4
5486/4572
1067
192
4
5486/5486
1067
192
4
6400/2486
1067
192
4
6400/6400
1067
192
mm
mm
fins/ft
Fin series
Number of Rows
3
3
3
3
3
3
3
Condenser Fans
Quantity (1)
Diameter
Total Air Flow
Nominal RPM
Tip Speed
4/4
762
25.61
680
27.5
0.85
5/4
762
28.27
680
27.5
0.85
5/5
762
30.93
680
27.5
0.85
6/5
762
34.02
680
27.5
0.85
6/6
762
37.11
680
27.5
0.85
7/6
762
40.23
680
27.5
0.85
7/7
762
43.34
680
27.5
0.85
mm
m /s
3
m/s
kW
Motor kW
Min Starting/Operating Ambient(2)
Standard Unit
Low-Ambient Unit
General Unit
°C
°C
-4
-23
-4
-23
-4
-23
-4
-23
-4
-23
-4
-23
-4
-23
Refrigerant
HFC 134a
HFC 134a
HFC 134a
HFC 134a
HFC 134a
HFC 134a
HFC 134a
Number of Independent
Refrigerant Circuits
% Minimum Load (3)
Refrigerant Charge (1)
Oil Charge (1)
2
15
65.8/65.8
7.6/7.6
5288
5179
2
15
70.3/65.8
7.6/7.6
5361
5219
2
15
70.3/70.3
7.6/7.6
5364
5212
2
15
99.8/95.3
7.6/7.6
6163
2
15
99.8/99.8
7.6/7.6
6413
6249
2
15
2
15
kg
L
kg
kg
104.4/99.8
9.9/7.6
6645
104.4/104.4
9.9/9.9
6849
Operating Weight
Shipping Weight
6006
6468
6659
Notes:
1. Data containing information on two circuits shown as follows: ckt1/ckt2
2. Minimum start-up/operation ambient based on a 2.22 m/s (5mph) wind across the condenser.
3. Percent minimum load is for total machine at 10°C (50°F) ambient and 7°C (44°F) leaving chilled water temperature. Not each individual circuit.
RLC-PRC005-E4
15
Download from Www.Somanuals.com. All Manuals Search And Download.
General Data
English Units
Table G-5 — RTAC Standard
Size
140
155
170
185
200
Compressor
Quantity
2
2
2
2
2
Nominal Size (1)
Evaporator
Evaporator Model
Water Storage
Minimum Flow
Maximum Flow
Condenser
tons
70/70
70/85
85/85
85/100
100/100
F140
35
171.2
524.7
F155
37.3
182.3
605.6
F170
39.8
198.2
683.2
F185
41.2
215.6
626.2
F200
43.2
215.6
767.2
gal
gpm
gpm
Quantity of Coils
Coil Length
Coil Height
4
13/13
3.5
192
3
4
15/13
3.5
192
3
4
15/15
3.5
192
3
4
18/15
3.5
192
3
4
ft
ft
18/18
3.5
192
3
Fin Series
fins/ft
Number of Rows
Condenser Fans
Quantity (1)
4/4
30
5/4
30
5/5
30
6/5
30
6/6
30
Diameter
in.
Total Air Flow
Nominal RPM
Tip Speed
cfm
75867
915
120
1.9
83725
915
120
1.9
91540
915
120
1.9
100710
915
120
109882
915
120
1.9
ft/s
kW
Motor kW
1.9
Minimum Starting/Operating Ambient(2)
Standard Unit
Low-Ambient Unit
General Unit
°F
°F
25
-9
25
-9
25
-9
25
-9
25
-9
Refrigerant
HFC 134a
HFC 134a
HFC 134a
HFC 134a
HFC 134a
Number of Independent
Refrigerant Circuits
% Minimum Load (3)
Refrigerant Charge (1)
Oil Charge (1)
Operating Weight
Shipping Weight
2
15
145/145
2/2
12018
11767
2
15
155/145
2.2
12459
12131
2
15
155/155
2.2
12871
12521
2
15
220/210
2.6/2
14442
14081
2
15
220/220
2.6/2.6
14737
14359
lb
gal
lb
lb
Table G-6 — RTAC High Efficiency
Size
120
130
140
155
170
185
200
Compressor
Quantity
Nominal Size (1)
Evaporator
2
2
2
2
2
2
2
tons
60/60
60/70
70/70
70/85
85/85
85/100
100/100
Evaporator Model
Water Storage
Minimum Flow
Maximum Flow
F140
35
171.2
524.7
F155
37.3
182.3
605.6
F170
39.8
198.2
683.2
F185
41.2
215.6
626.2
F200
43.2
215.6
767.2
F220
46.5
231.4
848.1
F240
49.8
258.4
928.9
gal
gpm
gpm
Condenser
Quantity of Coils
Coil Length
4
13/13
3.5
192
3
4
15/13
3.5
192
3
4
15/15
3.5
192
3
4
18/15
3.5
192
3
4
18/18
3.5
192
3
4
21/18
3.5
192
3
4
21/21
3.5
192
3
ft
ft
Coil Height
Fin Series
fins/ft
Number of Rows
Condenser Fans
Quantity (1)
Diameter
4/4
30
5/4
30
5/5
30
6/5
30
6/6
30
7/6
30
7/7
30
in.
Total Air Flow
Nominal RPM
Tip Speed
cfm
75867
915
120
1.9
83725
915
120
1.9
91540
915
120
1.9
100710
915
120
109882
915
120
118968
915
120
128075
915
120
ft/s
kW
Motor kW
1.9
1.9
1.9
1.9
Minimum Starting/Operating Ambient(2)
Standard Unit
°F
°F
25
-9
25
-9
25
-9
25
-9
25
-9
25
-9
25
-9
Low-Ambient Unit
General Unit
Refrigerant
Number of Independent
Refrigerant Circuits
% Minimum Load (3)
Refrigerant Charge (1)
Oil Charge (1)
HFC 134a
HFC 134a
HFC 134a
HFC 134a
HFC 134a
HFC 134a
HFC 134a
2
15
145/145
2/2
11977
11726
2
15
155/145
2.2
12145
11818
2
15
155/155
2.2
12152
11802
2
15
220/210
2.6/2
13993
13631
2
15
220/220
2.6/2.6
14569
14191
2
15
230/220
2.6/2
15104
14696
2
15
230/230
2.6/2.6
15574
15136
lb
gal
lb
Operating Weight
Shipping Weight
lb
RLC-PRC005-E4
16
Download from Www.Somanuals.com. All Manuals Search And Download.
General Data
English Units
Table G-7 — RTAC Low Noise Standard
Size
140
155
170
185
200
Compressor
Quantity
2
2
2
2
2
Nominal Size (1)
Evaporator
tons
70/70
70/85
85/85
85/100
100/100
Evaporator Model
Water Storage
F140
35
F155
37.3
F170
39.8
F185
41.2
F200
43.2
gal
Minimum Flow
Maximum Flow
gpm
gpm
171.2
524.7
182.3
605.6
198.2
683.2
215.6
626.2
215.6
767.2
Condenser
Quantity of Coils
Coil Length
Coil Height
Fin Series
Number of Rows
4
13/13
3.5
192
3
4
15/13
3.5
192
3
4
15/15
3.5
192
3
4
18/15
3.5
192
3
4
18/18
3.5
192
3
ft
ft
fins/ft
Condenser Fans
Quantity (1)
Diameter
4/4
30
5/4
30
5/5
30
6/5
30
6/6
30
in.
Total Air Flow
Nominal RPM
Tip Speed
cfm
54242
680
90
59876
680
90
65510
680
90
72054
680
90
78600
680
90
ft/s
Motor kW
kW
0.85
0.85
0.85
0.85
0.85
Minimum Starting/Operating Ambient(2)
Standard Unit
Low-Ambient Unit
°F
°F
25
-9
25
-9
25
-9
25
-9
25
-9
General Unit
Refrigerant
Number of Independent
Refrigerant Circuits
% Minimum Load (3)
Refrigerant Charge (1)
Oil Charge (1)
HFC 134a
HFC 134a
HFC 134a
HFC 134a
HFC 134a
2
15
145/145
2/2
12226
11975
2
15
155/145
2.2
12666
12339
2
15
155/155
2.2
13078
12728
2
15
220/210
2.6/2
14650
14288
2
15
220/220
2.6/2.6
14945
14567
lb
gal
lb
Operating Weight
Shipping Weight
lb
RLC-PRC005-E4
17
Download from Www.Somanuals.com. All Manuals Search And Download.
General Data
English Units
Table G-8 — RTAC High Efficiency Low Noise
Size
120
130
140
155
170
185
200
Compressor
Quantity
Nominal Size (1)
Evaporator
2
2
2
2
2
2
2
tons
60/60
60/70
70/70
70/85
85/85
85/100
100/100
Evaporator Model
Water Storage
F140
35
F155
37.3
F170
39.8
F185
41.2
F200
43.2
F220
46.5
F240
49.8
gal
Minimum Flow
Maximum Flow
gpm
gpm
171.2
524.7
182.3
605.6
198.2
683.2
215.6
626.2
215.6
767.2
231.4
848.1
258.4
928.9
Condenser
Quantity of Coils
Coil Length
Coil Height
Fin Series
Number of Rows
4
13/13
3.5
192
3
4
15/13
3.5
192
3
4
15/15
3.5
192
3
4
18/15
3.5
192
3
4
18/18
3.5
192
3
4
21/18
3.5
192
3
4
21/21
3.5
192
3
ft
ft
fins/ft
Condenser Fans
Quantity (1)
Diameter
4/4
30
5/4
30
5/5
30
6/5
30
6/6
30
7/6
30
7/7
30
in.
Total Air Flow
Nominal RPM
Tip Speed
cfm
54242
680
90
59876
680
90
65510
680
90
72054
680
90
78600
680
90
85207
680
90
91794
680
90
ft/s
Motor kW
kW
0.85
0.85
0.85
0.85
0.85
0.85
0.85
Minimum Starting/Operating Ambient(2)
Standard Unit
Low-Ambient Unit
°F
°F
25
-9
25
-9
25
-9
25
-9
25
-9
25
-9
25
-9
General Unit
Refrigerant
Number of Independent
Refrigerant Circuits
% Minimum Load (3)
Refrigerant Charge (1)
Oil Charge (1)
HFC 134a
HFC 134a
HFC 134a
HFC 134a
HFC 134a
HFC 134a
HFC 134a
2
15
145/145
2/2
12184
11933
2
15
155/145
2.2
12353
12025
2
15
155/155
2.2
12359
12009
2
15
220/210
2.6/2
14200
13839
2
15
220/220
2.6/2.6
14776
14399
2
15
230/220
2.6/2
15311
14903
2
15
230/230
2.6/2.6
15781
15343
lb
gal
lb
Operating Weight
Shipping Weight
lb
Notes:
1. Data containing information on two circuits shown as follows: ckt1/ckt2
2. Minimum start-up/operation ambient based on a 5mph wind across the condenser.
3. Percent minimum load is for total machine at 10°C [50°F] ambient and 7°C [44°F] leaving chilled water temperature. Not each individual circuit.
RLC-PRC005-E4
18
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Data
Standard Units (SI Units)
Table P-1 — RTAC 140
Entering Condenser AirTemperature (°C)
LWT
°C
25
P.I.
kW/kW
30
P.I.
35
P.I.
kW/kW
40
P.I.
kW/kW
46
P.I.
kW/kW
50
P.I.
C.C.
kW
COP
kW
C.C.
kW
COP
C.C.
kW
COP
kW
C.C.
kW
COP
kW
C.C.
kW
COP
kW
C.C.
kW
COP
kW/kW kW
kW/kW kW
5
7
9
11
13
536.3
571.1
606.9
643.4
680.6
131.3
136.4
141.7
147.2
152.8
3.65
3.75
3.85
3.95
4.04
505.7
539.0
573.2
608.1
643.7
141.8
147.1
152.6
158.2
164.0
3.21
3.31
3.41
3.50
3.58
474.1
505.9
538.4
571.7
605.6
153.5
159.0
164.6
170.4
176.4
2.80
2.90
2.99 502.6
3.07 534.2
441.6
471.7
166.5
172.1
177.9
183.9
190.0
2.42 400.7
2.51 428.8
184.0
189.8
195.8
202.0
204.9
2.01
2.09 400.9
2.16 409.6
2.24
2.31 423.3
374.2
196.1
202.1
197.1
191.3
184.6
1.77
1.84
1.92
2.01
2.11
2.60
457.6
2.68 486.9
2.75 509.4
417.2
3.15
566.3
Table P-2 — RTAC 155
Entering Condenser AirTemperature (°C)
LWT
°C
25
P.I.
kW/kW
30
P.I.
35
P.I.
kW/kW
40
P.I.
kW/kW
46
P.I.
kW/kW
50
P.I.
C.C.
kW
COP
kW
C.C.
kW
COP
C.C.
kW
COP
kW
C.C.
kW
COP
kW
C.C.
kW
COP
kW
C.C.
kW
COP
kW/kW kW
kW/kW kW
5
7
9
11
13
587.8
625.7
664.3
703.7
743.7
145.8
151.7
157.8
164.1
170.6
3.60
3.70
3.79
3.87
3.95
554.5
590.6
627.5
665.1
703.4
156.9
163.0
169.3
175.7
182.4
3.18
3.27
3.36
3.44
3.52
520.0
554.4
589.5
625.3
661.7
169.4
175.6
182.0
188.7
195.5
2.78 484.5
2.87 517.1
2.95 550.3
3.03 584.2
183.2
189.6
196.2
203.0
209.9
2.41 440.0
2.50 470.2
201.9
208.5
215.3
222.3
225.5
2.00
411.0
214.9
221.7
217.4
209.3
202.5
1.77
1.84
1.92
2.00
2.10
2.08 439.7
2.15 450.5
2.22 454.9
2.57
501.1
2.65 532.6
3.10
618.7
2.72
561.8
2.31
461.3
Table P-3 — RTAC 170
Entering Condenser AirTemperature (°C)
LWT
°C
25
P.I.
kW/kW
30
P.I.
35
P.I.
kW/kW
40
P.I.
kW/kW
46
P.I.
kW/kW
50
P.I.
C.C.
kW
COP
kW
C.C.
kW
COP
C.C.
kW
COP
kW
C.C.
kW
COP
kW
C.C.
kW
COP
kW
C.C.
kW
COP
kW/kW kW
kW/kW kW
5
7
9
11
13
640.2
681.1
722.7
765.0
807.9
160.5
167.2
174.2
181.4
188.8
3.56
3.65
3.73
3.81
3.88
603.9
642.9
682.6
723.0
763.9
172.2
179.1
186.2
193.5
201.1
3.15
3.24
3.32
3.39
3.46
566.5
603.5
641.2
679.5
718.5
185.4
192.4
199.7
207.2
214.8
2.77
527.9
200.0
207.2
214.6
222.2
230.0
2.41 479.5
2.48 511.9
2.56 545.0
2.63 578.7
220.0
227.4
234.9
242.7
245.1
2.00 448.1
2.07 478.8
233.9
241.4
237.7
230.3
222.7
1.77
1.84
1.91
1.99
2.08
2.85 562.9
2.93 598.6
3.00 634.9
2.14
2.21
491.5
497.9
3.07
671.8
2.69
607.7
2.30 504.4
Table P-4 — RTAC 185
Entering Condenser AirTemperature (°C)
LWT
°C
25
P.I.
kW/kW
30
P.I.
35
P.I.
kW/kW
40
P.I.
kW/kW
46
P.I.
kW/kW
50
P.I.
C.C.
kW
COP
kW
C.C.
kW
COP
C.C.
kW
COP
kW
C.C.
kW
COP
kW
C.C.
kW
COP
kW
C.C.
kW
COP
kW/kW kW
kW/kW kW
5
7
9
11
13
708.2
753.1
798.8
845.3
892.5
177.3
184.7
192.3
200.2
208.4
3.57
3.66
3.74
3.81
3.88
669.4
712.2
755.9
800.3
845.4
190.2
197.8
205.7
213.8
222.2
3.16
3.25
3.33
3.40
3.47
629.1
669.8
711.3
753.6
796.6
204.6
212.5
220.6
229.0
237.6
2.78
2.86 625.9
2.94 665.2
3.01
3.08
587.4
220.8
228.9
237.3
245.9
254.8
2.43 534.9
2.50 570.5
242.8
251.2
259.9
268.9
271.9
2.03 500.5
2.09 525.9
2.16 539.2
2.22 548.1
258.0
261.3
256.9
249.3
238.7
1.79
1.86
1.94
2.03
2.12
2.57
607.0
705.3
746.1
2.64 644.2
2.70 672.6
2.29
551.0
Table P-5 — RTAC 200
Entering Condenser AirTemperature (°C)
LWT
°C
25
P.I.
kW/kW
30
P.I.
35
P.I.
kW/kW
40
P.I.
kW/kW
46
P.I.
kW/kW
50
P.I.
C.C.
kW
COP
kW
C.C.
kW
COP
C.C.
kW
COP
kW
C.C.
kW
COP
kW
C.C.
kW
COP
kW
C.C.
kW
COP
kW/kW kW
kW/kW kW
5
7
9
11
13
777.8
827.0
877.0
928.0
979.8
194.3
202.4
210.8
219.5
228.5
3.58
3.66
3.75
3.82
3.89
736.2
783.1
830.9
879.7
929.3
208.3
216.7
225.5
234.5
243.8
3.18
3.26
3.34
3.41
3.48
692.9
737.4
782.9
829.4
876.7
224.2
232.9
241.9
251.3
260.9
2.80
2.88 690.1
2.95 733.1
3.02
3.08 822.1
647.9
241.8
250.8
260.2
270.0
280.0
2.44
2.52 630.0
2.59 670.1
2.65
2.71
591.0
265.7
275.3
285.1
295.4
298.2
2.04 553.7
2.11 580.4
2.17 588.7
2.23 598.7
282.4
285.5
276.7
268.6
258.8
1.81
1.88
1.96
2.05
2.15
777.2
711.0
741.1
2.31
607.0
Notes :
1. Ratings based on sea level altitude and evaporator fouling factor of 0.0176 m²°K/kW.
2. ConsultTrane representative for performance at temperatures outside of the ranges shown.
3. P.I. kW = compressor power input only.
4. COP = Coefficient of Performance (kW/kW). Power input includes compressors, condenser fans and control power.
5. Ratings are based on an evaporator temperature drop of 6°C.
6. Interpolation between points is permissible. Extrapolation is not permitted.
7. Above 40°C ambient, the units will have the High-Ambient option.
8. Shaded area reflects Adaptive Control™ Microprocessor control algorithms.
RLC-PRC005-E4
19
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Data
High Efficiency Units (SI Units)
Table P-6 — RTAC 120
Entering Condenser AirTemperature (°C)
LWT
°C
25
P.I.
kW
30
P.I.
kW
35
P.I.
kW
40
P.I.
kW
46
P.I.
kW
52
P.I.
kW
C.C.
kW
COP
kW/kW
C.C.
kW
COP
kW/kW
C.C.
kW
COP
kW/kW
C.C.
kW
COP
kW/kW
C.C.
kW
COP
C.C.
COP
kW/kW
kW/kW kW
5
7
9
11
459.3 104.9
490.9 108.9
523.2 113.0
556.3 117.2
3.81
3.94
4.07
4.18
4.29
433.2 112.9
463.4 117.0
494.3 121.3
525.8 125.7
558.0 130.3
3.37
3.49
3.61
3.72
3.82
406.2 122.1
434.8 126.3
464.2 130.7
494.2 135.3
524.8 140.0
2.95
3.06
3.17
3.27
3.37
378.2
405.3
433.1
461.5
490.6
132.4
136.8
141.4
146.1
150.9
2.55
2.66
2.76
2.85
2.94
342.9
368.1
393.9
420.3
447.3
146.6
151.2
155.9
160.8
165.8
2.11
2.21
2.29
2.38
2.46
310.0
333.4 165.8
350.7
366.3
383.8
161.0
1.75
1.84
1.92
2.00
2.09
167.0
167.0
167.5
13 590.0 121.6
Table P-7 — RTAC 130
Entering Condenser AirTemperature (°C)
LWT
°C
25
P.I.
kW
30
P.I.
kW
35
P.I.
kW
40
P.I.
kW
46
P.I.
kW
52
P.I.
kW
C.C.
kW
COP
kW/kW
C.C.
kW
COP
kW/kW
C.C.
kW
COP
kW/kW
C.C.
kW
COP
kW/kW
C.C.
kW
COP
C.C.
COP
kW/kW
kW/kW kW
5
7
9
11
506.6 115.3
541.5 119.7
577.2 124.3
613.9 129.0
3.81
3.94
4.07
4.19
4.30
478.2 124.2
511.5 128.7
545.7 133.4
580.8 138.3
616.7 143.3
3.37
3.50
3.61
3.73
3.83
448.7 134.2
480.4 138.9
2.95
3.07
3.18
3.28
3.39
418.3
448.4
479.3
511.1
543.5
145.5
150.3
155.3
160.4
165.7
2.56
2.67
2.77
2.87
2.97
380.0
408.1
436.9
466.5
496.7
160.9
165.9
171.0
176.3
181.7
2.13
2.22
2.32
2.41
2.49
344.3 176.5
370.4 181.7
393.9 185.0
413.3 185.9
425.5 182.7
1.77
1.86
1.94
2.03
2.12
513.0
143.8
546.5 148.7
580.7 153.9
13 651.4 133.9
Table P-8 — RTAC 140
Entering Condenser AirTemperature (°C)
LWT
°C
25
P.I.
kW
30
P.I.
kW
35
P.I.
kW
40
P.I.
kW
46
P.I.
kW
52
P.I.
kW
C.C.
kW
COP
kW/kW
C.C.
kW
COP
kW/kW
C.C.
kW
COP
kW/kW
C.C.
kW
COP
kW/kW
C.C.
kW
COP
C.C.
COP
kW/kW
kW/kW kW
5
7
9
11
554.6 125.8
592.8 130.7
632.1 135.7
672.6 140.9
3.82
3.95
4.07
4.19
4.31
523.6 135.5
560.2 140.5
597.9 145.7
636.7 151.0
676.5 156.5
3.38
3.50
3.62
3.73
3.84
491.7
526.6
562.6 156.9
599.6 162.3
146.5
151.6
2.96
3.08
3.19
3.30
3.40
458.7
491.9
526.2
561.3
597.3
158.7
163.9
169.3
174.9
180.6
2.57
2.68
2.79
2.89
2.99
417.4
448.4
480.3
513.1
546.7
175.3
180.7
186.2
191.9
197.7
2.14
2.24
2.33
2.43
2.52
378.9 192.0
1.79
1.88
1.96
2.05
2.15
407.8
437.6
457.7
466.4
197.6
203.3
203.5
197.6
13 714.2 146.3
637.5
167.9
Table P-9 — RTAC 155
Entering Condenser AirTemperature (°C)
LWT
°C
25
P.I.
kW
30
P.I.
kW
35
P.I.
kW
40
P.I.
kW
46
P.I.
kW
52
P.I.
kW
C.C.
kW
COP
kW/kW
C.C.
kW
COP
kW/kW
C.C.
kW
COP
kW/kW
C.C.
kW
COP
kW/kW
C.C.
kW
COP
C.C.
COP
kW/kW
kW/kW kW
161.7 2.93
501.0
174.7
3.88
3.99
4.10
4.20
2.55
456.0
192.6
3.45
3.56
3.66
3.76
2.13
574.0
612.3 173.5
651.5
691.6
414.1
167.5
210.7
3.04
3.14
3.24
3.33
1.78
7
9
11
645.9 145.3
687.9 151.0
730.9 157.0
610.6 155.7
650.7 161.6
691.9 167.7
733.9 174.0
536.3
572.6
609.9
648.0
180.7
186.8
193.2
199.6
2.65
2.75
2.84
2.93
489.0
522.8
557.5
593.1
198.7
205.0
211.4
218.0
2.22
2.31
2.39
2.48
444.8
476.3 223.4
501.2
506.2
217.0
1.87
1.95
2.03
2.12
179.7
186.1
225.6
217.5
13 774.8 163.2
Table P-10 — RTAC 170
Entering Condenser AirTemperature (°C)
LWT
°C
25
P.I.
kW
30
P.I.
kW
35
P.I.
kW
40
P.I.
kW
46
P.I.
kW
52
P.I.
kW
C.C.
kW
COP
kW/kW
C.C.
kW
COP
kW/kW
C.C.
kW
COP
kW/kW
C.C.
kW
COP
kW/kW
C.C.
kW
COP
C.C.
COP
kW/kW
kW/kW kW
5
7
9
11
656.3 153.7
700.0 160.0
744.6 166.6
790.3 173.3
3.71
3.82
3.92
4.02
4.11
619.9 164.6
661.6 171.1
704.3 177.7
748.0 184.6
792.5 191.7
3.30
3.40
3.50
3.60
3.69
582.3
622.0 183.6
662.7
704.2
746.7
177.0
2.91
3.01
3.10
3.19
3.28
543.6
581.2
619.7
659.2
699.5
190.9
197.6
204.5
211.6
218.8
2.54
2.63
2.72
2.81
2.89
494.8
529.8
565.7
602.5
640.1
210.0
216.9
223.9
231.1
238.4
2.12
2.21
2.29
2.37
2.45
449.4 229.4
481.9 236.4
515.3 243.5
539.5 245.1
1.78
1.86
1.93
2.01
2.10
190.4
197.4
204.5
13 836.8 180.3
546.7
237.3
Table P-11 — RTAC 185
Entering Condenser AirTemperature (°C)
LWT
°C
25
P.I.
kW
30
P.I.
kW
35
P.I.
kW
40
P.I.
kW
46
P.I.
kW
52
P.I.
kW
C.C.
kW
COP
kW/kW
C.C.
kW
COP
kW/kW
C.C.
kW
COP
kW/kW
C.C.
kW
COP
kW/kW
C.C.
kW
COP
C.C.
COP
kW/kW
kW/kW kW
5
7
9
11
728.8 170.9
777.3 178.0
827.0 185.3
877.8 192.9
3.72
3.83
3.93
4.03
4.11
689.7 182.8
736.0 190.1
783.5 197.6
832.0 205.4
881.7 213.4
3.32
3.42
3.52
3.61
3.70
649.0
693.1 203.8
738.3
784.7
832.0
196.4
2.93
3.03
3.12
3.21
3.29
606.9
648.7
691.6
735.7
780.7
211.6
219.3
227.2
235.3
243.7
2.56
2.65
2.74
2.82
2.90
553.8
592.8
632.7
673.8
715.8
232.6
240.5
248.6
257.0
265.6
2.15
2.23
2.31
2.39
2.46
504.2 253.8
540.3 261.9
1.81
1.88
1.95
2.04
2.13
211.5
219.5
227.7
577.5
270.3
590.5 264.2
599.4 256.0
13 929.6 200.8
RLC-PRC005-E4
20
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Data
High Efficiency Units (SI Units)
Table P-12 — RTAC 200
Entering Condenser AirTemperature (°C)
LWT
°C
25
P.I.
kW
30
P.I.
kW
35
P.I.
kW
40
P.I.
kW
46
P.I.
kW
52
P.I.
kW
C.C.
kW
COP
kW/kW
C.C.
kW
COP
kW/kW
C.C.
kW
COP
kW/kW
C.C.
kW
COP
kW/kW
C.C.
kW
COP
C.C.
COP
kW/kW
kW/kW kW
5
7
9
11
803.3 188.3
856.9 196.2
911.8 204.4
968.0 212.9
3.73
3.84
3.94
4.04
4.12
761.2 201.3
812.3 209.4
864.8 217.8
918.6 226.5
973.7 235.5
3.33
3.44
3.53
3.62
3.71
717.3
766.0
816.0 233.0
867.3
919.9
216.1
224.4
2.95
3.05
3.14
3.22
3.31
671.8
717.9
765.4
814.1
864.1
232.6
241.2
250.2
259.4
269.0
2.59
2.68
2.76
2.84
2.92
614.2
657.1
701.3
746.8
793.5
255.4
264.3
273.7
283.3
293.3
2.17
2.26
2.33
2.41
2.48
560.1 278.4
600.0 287.8
629.6 290.6
642.5 283.5
648.9 272.4
1.83
1.91
1.98
2.07
2.17
242.0
251.2
13 1025.5 221.6
Notes :
1. Ratings based on sea level altitude and evaporator fouling factor of 0.0176 m²°K/kW.
2. ConsultTrane representative for performance at temperatures outside of the ranges shown.
3. P.I. kW = compressor power input only.
4. COP = Coefficient of Performance (kW/kW). Power input includes compressors, condenser fans and control power.
5. Ratings are based on an evaporator temperature drop of 6°C.
6. Interpolation between points is permissible. Extrapolation is not permitted.
7. Above 40°C ambient, the units will have the High-Ambient option.
8. Shaded area reflects Adaptive Control™ Microprocessor control algorithms.
RLC-PRC005-E4
21
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Data
Low Noise Standard Units (SI Units)
Table P-13 — RTAC 140
Entering Condenser AirTemperature (°C)
LWT
°C
5
7
9
25
30
35
40
C.C. kW
510.3
541.1
572.3
603.8
635.6
P.I. kW
144.5
150.7
157.1
163.7
170.6
COP kW/kW
3.36
C.C. kW
478.7
507.9
537.4
567.3
P.I. kW
156.3
162.7
169.4
176.2
183.3
COP kW/kW
2.92
C.C. kW
446.2
473.7
501.6
529.7
558.0
P.I. kW
169.3
175.9
182.8
189.9
197.2
COP kW/kW
2.52
C.C. kW
412.9
438.8
465.3
491.5
P.I. kW
183.5
190.4
197.4
204.7
205.6
COP kW/kW
2.16
3.42
3.48
3.53
3.57
2.98
3.04
3.09
3.13
2.58
2.64
2.68
2.73
2.22
2.27
2.32
2.39
11
13
597.3
509.0
Table P-14 — RTAC 155
Entering Condenser AirTemperature (°C)
LWT
°C
5
7
9
25
30
35
40
C.C. kW
560.0
593.4
627.1
661.1
695.3
P.I. kW
159.7
166.7
173.9
181.4
189.1
COP kW/kW
3.33
C.C. kW
525.5
557.0
588.9
621.1
P.I. kW
172.2
179.5
186.9
194.7
202.6
COP kW/kW
2.91
C.C. kW
490.0
519.8
549.8
580.0
610.5
P.I. kW
186.1
193.5
201.2
209.2
217.3
COP kW/kW
2.52
C.C. kW
453.8
481.6
509.8
538.1
556.8
P.I. kW
201.2
208.9
216.8
224.9
225.9
COP kW/kW
2.16
3.39
3.44
3.48
3.52
2.97
3.02
3.06
3.10
2.57
2.62
2.67
2.71
2.22
2.26
2.31
2.38
11
13
653.4
Table P-15 — RTAC 170
Entering Condenser AirTemperature (°C)
LWT
°C
5
7
9
25
30
35
40
C.C. kW
610.3
646.3
682.6
719.1
755.8
P.I. kW
175.1
182.9
191.0
199.4
208.0
COP kW/kW
3.31
C.C. kW
572.8
606.8
641.1
675.6
710.2
P.I. kW
188.3
196.4
204.7
213.3
222.1
COP kW/kW
2.90
C.C. kW
534.3
566.2
598.4
630.9
663.5
P.I. kW
203.0
211.3
219.9
228.6
237.6
COP kW/kW
2.52
C.C. kW
494.8
524.8
555.0
585.5
604.8
P.I. kW
219.1
227.7
236.3
245.3
246.2
COP kW/kW
2.17
3.36
3.41
3.45
3.48
2.95
3.00
3.04
3.07
2.57
2.61
2.65
2.69
2.22
2.26
2.30
2.37
11
13
Table P-16 — RTAC 185
Entering Condenser AirTemperature (°C)
LWT
°C
5
7
9
25
30
35
40
C.C. kW
675.9
715.5
755.4
795.7
836.2
P.I. kW
193.4
202.1
211.1
220.5
230.1
COP kW/kW
3.32
C.C. kW
635.4
672.8
710.6
748.6
787.0
P.I. kW
208.0
217.1
226.4
236.1
246.1
COP kW/kW
2.91
C.C. kW
593.7
628.9
664.4
700.2
736.3
P.I. kW
224.3
233.6
243.3
253.3
263.7
COP kW/kW
2.53
C.C. kW
550.9
583.8
615.2
648.6
668.0
P.I. kW
242.1
251.7
261.0
271.3
271.0
COP kW/kW
2.19
3.37
3.42
3.45
3.48
2.96
3.01
3.04
3.07
2.58
2.62
2.66
2.69
2.23
2.27
2.31
2.38
11
13
Table P-17 — RTAC 200
Entering Condenser AirTemperature (°C)
LWT
°C
5
7
9
25
30
35
40
C.C. kW
742.7
786.1
829.9
874.1
918.6
P.I. kW
212.0
221.6
231.6
242.0
252.8
COP kW/kW
3.33
C.C. kW
699.2
740.1
781.5
823.3
865.5
P.I. kW
228.1
238.0
248.5
259.3
270.6
COP kW/kW
2.93
C.C. kW
654.1
692.6
731.6
771.0
810.6
P.I. kW
245.8
256.2
267.1
278.4
290.2
COP kW/kW
2.55
C.C. kW
607.7
643.7
680.5
717.1
P.I. kW
265.2
276.1
287.3
299.2
292.2
COP kW/kW
2.20
3.38
3.42
3.46
3.48
2.97
3.01
3.05
3.07
2.59
2.63
2.66
2.69
2.24
2.28
2.31
2.41
11
13
730.4
Notes :
1. Ratings based on sea level altitude and evaporator fouling factor of 0.0176 m²°K/kW.
2. ConsultTrane representative for performance at temperatures outside of the ranges shown.
3. P.I. kW = compressor power input only.
4. COP = Coefficient of Performance (kW/kW). Power input includes compressors, condenser fans and control power.
5. Ratings are based on an evaporator temperature drop of 6°C.
6. Interpolation between points is permissible. Extrapolation is not permitted.
7. Above 40°C ambient, the units will have the High-Ambient option.
8. Shaded area reflects Adaptive Control™ Microprocessor control algorithms.
RLC-PRC005-E4
22
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Data
Low Noise HE Units (SI Units)
Table P-18 — RTAC 120
Entering Condenser AirTemperature (°C)
LWT
°C
25
P.I.
kW
30
P.I.
kW
35
P.I.
kW
40
P.I.
kW
46
P.I.
kW
C.C.
kW
COP
kW/kW
C.C.
kW
COP
kW/kW
C.C.
kW
COP
kW/kW
C.C.
kW
COP
kW/kW
C.C.
kW
COP
kW/kW
5
7
9
11
13.0
443.2
471.8
500.8
530.2
560.0
113.4
118.0
122.9
128.0
133.2
3.67
3.76
3.84
3.91
3.98
416.2
443.3
470.8
498.6
526.8
122.4
127.3
132.4
137.6
143.1
3.20
3.29
3.37
3.44
3.50
388.3
413.9
439.8
466.1
492.6
132.6
137.7
142.9
148.4
154.0
2.77
2.85
2.92
2.99
3.05
359.7
383.7
408.0
432.7
457.6
143.9
149.1
154.6
160.3
166.1
2.38
2.45
2.52
2.58
2.64
323.9
345.9
363.8
376.7
391.7
159.2
164.8
167.4
166.8
166.8
1.94
2.01
2.08
2.16
2.25
Table P-19 — RTAC 130
Entering Condenser AirTemperature (°C)
LWT
°C
25
P.I.
kW
30
P.I.
kW
35
P.I.
kW
40
P.I.
kW
46
P.I.
kW
C.C.
kW
COP
kW/kW
C.C.
kW
COP
kW/kW
C.C.
kW
COP
kW/kW
C.C.
kW
COP
kW/kW
C.C.
kW
COP
kW/kW
5
7
9
11
13
489.3
520.9
553.2
585.9
619.1
124.6
129.8
135.2
140.7
146.5
3.68
3.77
3.85
3.93
4.00
459.8
489.9
520.5
551.6
583.1
134.6
139.9
145.5
151.3
157.2
3.22
3.30
3.38
3.46
3.52
429.5
458.0
486.9
516.3
546.0
145.7
151.2
157.0
162.9
169.0
2.79
2.87
2.94
3.01
3.08
398.4
425.2
452.4
480.0
508.0
158.0
163.7
169.6
175.8
182.0
2.40
2.47
2.54
2.61
2.67
359.6
384.2
406.1
422.9
434.8
174.6
180.5
184.9
185.7
182.8
1.97
2.03
2.10
2.18
2.27
Table P-20 — RTAC 140
Entering Condenser AirTemperature (°C)
LWT
°C
25
P.I.
kW
30
P.I.
kW
35
P.I.
kW
40
P.I.
kW
46
P.I.
kW
C.C.
kW
COP
kW/kW
C.C.
kW
COP
kW/kW
C.C.
kW
COP
kW/kW
C.C.
kW
COP
kW/kW
C.C.
kW
COP
kW/kW
5
7
9
11
13
535.9
570.7
606.3
642.5
679.4
136.0
141.7
147.5
153.6
159.9
3.69
3.78
3.87
3.95
4.02
503.9
537.1
570.9
605.3
640.3
146.8
152.7
158.7
165.0
171.5
3.23
3.32
3.40
3.47
3.54
471.1
502.5
534.5
567.1
600.2
158.9
164.9
171.1
177.6
184.2
2.80
2.89
2.96
3.04
3.10
437.5
467.1
497.3
527.9
559.0
172.1
178.3
184.7
191.3
198.1
2.41
2.49
2.56
2.63
2.70
395.5
422.9
450.9
468.5
476.8
189.9
196.4
202.9
203.5
197.6
1.99
2.06
2.13
2.20
2.31
Table P-21 — RTAC 155
Entering Condenser AirTemperature (°C)
LWT
°C
25
P.I.
kW
30
P.I.
kW
35
P.I.
kW
40
P.I.
kW
46
P.I.
kW
C.C.
kW
COP
kW/kW
C.C.
kW
COP
kW/kW
C.C.
kW
COP
kW/kW
C.C.
kW
COP
kW/kW
C.C.
kW
COP
kW/kW
5
7
9
11
13
584.6
621.9
659.8
698.3
737.3
150.5
156.9
163.5
170.4
177.5
3.64
3.73
3.80
3.87
3.93
550.0
585.3
621.3
657.9
695.0
162.0
168.6
175.4
182.5
189.7
3.20
3.28
3.35
3.42
3.48
514.3
547.8
581.8
616.4
651.5
174.9
181.7
188.7
195.9
203.3
2.78
2.86
2.93
2.99
3.05
477.8
509.3
541.4
573.9
606.9
189.1
196.1
203.3
210.6
218.2
2.40
2.47
2.54
2.60
2.66
432.1
461.2
491.1
511.6
519.4
208.3
215.5
222.9
224.4
217.6
1.98
2.04
2.11
2.18
2.28
Table P-22 — RTAC 170
Entering Condenser AirTemperature (°C)
LWT
°C
25
P.I.
kW
30
P.I.
kW
35
P.I.
kW
40
P.I.
kW
46
P.I.
kW
C.C.
kW
COP
kW/kW
C.C.
kW
COP
kW/kW
C.C.
kW
COP
kW/kW
C.C.
kW
COP
kW/kW
C.C.
kW
COP
kW/kW
5
7
9
11
13
634.0
673.7
714.1
755.0
796.3
165.0
172.2
179.6
187.3
195.2
3.60
3.68
3.75
3.81
3.86
596.5
634.2
672.5
711.3
750.5
177.3
184.7
192.3
200.1
208.2
3.17
3.24
3.31
3.37
3.42
557.9
593.6
629.7
666.4
703.5
191.0
198.6
206.4
214.4
222.6
2.76
2.83
2.90
2.96
3.01
518.4
551.9
585.9
620.4
655.3
206.2
213.9
221.9
230.1
238.4
2.39
2.45
2.52
2.57
2.63
468.9
499.8
531.3
551.4
561.1
226.8
234.8
242.8
243.6
237.4
1.97
2.03
2.09
2.17
2.26
Table P-23 — RTAC 185
Entering Condenser AirTemperature (°C)
LWT
°C
25
P.I.
kW
30
P.I.
kW
35
P.I.
kW
40
P.I.
kW
46
P.I.
kW
C.C.
kW
COP
kW/kW
C.C.
kW
COP
kW/kW
C.C.
kW
COP
kW/kW
C.C.
kW
COP
kW/kW
C.C.
kW
COP
kW/kW
5
7
9
11
13
704.3
748.4
793.2
838.5
884.5
183.7
191.7
200.1
208.9
217.8
3.60
3.68
3.74
3.80
3.85
663.7
705.5
747.9
791.0
834.7
197.1
205.5
214.2
223.1
232.4
3.18
3.25
3.31
3.37
3.42
621.7
661.2
701.3
742.0
783.3
212.2
220.8
229.8
239.0
248.6
2.78
2.84
2.90
2.96
3.01
578.6
615.7
653.4
691.7
730.6
228.9
237.8
247.0
256.6
266.4
2.40
2.47
2.52
2.58
2.63
524.5
558.6
590.1
605.9
614.9
251.5
260.8
267.9
264.3
256.3
1.99
2.05
2.11
2.19
2.29
RLC-PRC005-E4
23
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Data
Low Noise HE Units (SI Units)
Table P-24 — RTAC 200
Entering Condenser AirTemperature (°C)
LWT
°C
25
P.I.
kW
30
P.I.
kW
35
P.I.
kW
40
P.I.
kW
46
P.I.
kW
C.C.
kW
COP
kW/kW
C.C.
kW
COP
kW/kW
C.C.
kW
COP
kW/kW
C.C.
kW
COP
kW/kW
C.C.
kW
COP
kW/kW
5
7
9
11
13
776.4
824.9
874.3
924.4
975.2
202.6
211.6
221.0
230.8
240.9
3.61
3.68
3.74
3.80
3.85
732.4
778.4
825.2
872.8
921.0
217.3
226.6
236.4
246.5
257.1
3.19
3.25
3.31
3.37
3.42
686.9
730.3
774.5
819.5
865.1
233.7
243.4
253.6
264.1
275.1
2.79
2.85
2.91
2.96
3.01
640.1
680.8
722.4
764.6
807.5
251.9
262.0
272.5
283.5
294.9
2.42
2.48
2.53
2.58
2.63
581.1
618.6
644.6
654.7
665.5
276.6
287.2
289.6
281.3
272.6
2.01
2.06
2.13
2.23
2.33
Notes :
1. Ratings based on sea level altitude and evaporator fouling factor of 0.0176 m²°K/kW.
2. ConsultTrane representative for performance at temperatures outside of the ranges shown.
3. P.I. kW = compressor power input only.
4. COP = Coefficient of Performance (kW/kW). Power input includes compressors, condenser fans and control power.
5. Ratings are based on an evaporator temperature drop of 6°C.
6. Interpolation between points is permissible. Extrapolation is not permitted.
7. Above 40°C ambient, the units will have the High-Ambient option.
8. Shaded area reflects Adaptive Control™ Microprocessor control algorithms.
RLC-PRC005-E4
24
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Data
Standard Units (English Units)
Table P-25 — RTAC 140
Entering Condenser AirTemperature (°F)
LWT
°F
77
P.I.
kW
86
P.I.
kW
95
P.I.
kW
104
P.I.
kW
115
P.I.
kW
122
P.I.
kW
C.C.
Ton
EER
C.C.
Ton
EER
C.C.
Ton
EER
C.C.
Ton
EER
C.C.
Ton
EER
C.C.
Ton
EER
41
44
45
46
48
152.5 131.3
160.8 135.5
163.6 137.0
166.4 138.5
172.0 141.4
12.45
12.75
12.85
12.95
13.14
143.8
151.7
154.4
157.1
162.5
141.8
146.2
147.7
149.2
152.3
10.96
11.24
11.34
11.43
11.61
134.8
142.4
144.9
147.5
152.6
153.5
158.1
159.6
161.2
164.3
9.56
9.83
9.92
10.00
10.17
125.6
132.7
135.1
137.6
142.5
166.5
171.2
172.8
174.4
177.6
8.27
8.52
8.60
8.68
8.84
114.0
120.6
122.9
125.1
129.7
184.0
188.9
190.5
192.2
195.5
6.85 106.4 196.1 6.03
7.08
7.15
7.22
7.37
112.8 201.1 6.24
114.3 201.5 6.31
115.0 200.1 6.39
116.3
197.4 6.55
Table P-26 — RTAC 155
Entering Condenser AirTemperature (°F)
LWT
°F
77
P.I.
kW
86
P.I.
kW
95
P.I.
kW
104
P.I.
kW
115
P.I.
kW
122
P.I.
kW
C.C.
Ton
EER
C.C.
Ton
EER
C.C.
Ton
EER
C.C.
Ton
EER
C.C.
Ton
EER
C.C.
Ton
EER
41
44
45
46
48
167.2 145.8
176.2 150.7
179.2 152.4
182.2 154.1
188.3 157.5
12.28
12.56
12.65
12.74
12.91
157.7
166.3
169.1
172.1
177.9
156.9
162.0
163.7
165.4
168.9
10.84
11.11
11.20
11.28
11.44
147.9
156.0
158.8
161.6
167.1
169.4
174.6
176.3
178.1
181.7
9.49
9.74
9.83
9.91
10.06
137.8
145.5
148.1
150.7
156.0
183.2
188.5
190.3
192.1
195.8
8.24
8.47
8.55
8.62
8.77
125.1
132.3
134.7
137.2
142.0
201.9
207.4
209.3
211.2
214.9
6.84 116.9 214.9 6.03
7.05
7.12
7.19
7.33
123.7 220.6 6.23
125.4 221.2 6.30
126.2 220.0 6.38
127.9
217.6 6.53
Table P-27 — RTAC 170
Entering Condenser AirTemperature (°F)
LWT
°F
77
P.I.
kW
86
P.I.
kW
95
P.I.
kW
104
P.I.
kW
115
P.I.
kW
122
P.I.
kW
C.C.
Ton
EER
C.C.
Ton
EER
C.C.
Ton
EER
C.C.
Ton
EER
C.C.
Ton
EER
C.C.
Ton
EER
41
44
45
46
48
182.1 160.5
191.8 166.1
195.0 168.0
198.3 170.0
204.9 173.8
12.14
12.40
12.48
12.56
12.72
171.8
181.0
184.1
187.2
193.5
172.2
177.9
179.9
181.9
185.8
10.75
11.00
11.08
11.16
11.31
161.1
169.9
172.8
175.8
181.8
185.4
191.2
193.2
195.2
199.3
9.44
9.67
9.75
9.82
9.97
150.2
158.4
161.2
164.0
169.7
200.0
206.0
208.0
210.1
214.2
8.21
8.43
8.50
8.57
8.71
136.4
144.1
146.6
149.3
154.5
220.0
226.1
228.2
230.3
234.5
6.83
7.04
7.10
7.17
7.30
127.4 233.9 6.04
134.7 240.1 6.23
136.5 241.0 6.29
137.5 240.0 6.36
139.5 237.9 6.51
Table P-28 — RTAC 185
Entering Condenser AirTemperature (°F)
LWT
°F
77
P.I.
kW
86
P.I.
kW
95
P.I.
kW
104
P.I.
kW
115
P.I.
kW
122
P.I.
kW
C.C.
Ton
EER
C.C.
Ton
EER
C.C.
Ton
EER
C.C.
Ton
EER
C.C.
Ton
EER
C.C.
Ton
EER
41
44
45
46
48
201.4 177.3
212.1 183.4
215.6 185.5
219.3 187.6
226.5 191.9
12.17
12.43
12.51
12.59
12.74
190.4
200.5
203.9
207.4
214.3
190.2
196.5
198.6
200.8
205.2
10.80
11.04
11.12
11.20
11.35
178.9
188.6
191.8
195.1
201.6
204.6
211.2
213.4
215.7
220.2
9.50
9.73
9.80
9.88
10.02
167.1
176.2
179.3
182.4
188.6
220.8
227.5
229.8
232.1
236.8
8.28
8.49
8.56
8.63
8.76
152.1
160.6
163.4
166.3
172.1
242.8
249.8
252.1
254.6
259.4
6.91 142.4 258.0 6.11
7.11
7.17
7.23
7.35
148.3 260.8 6.31
150.0 260.8 6.38
151.0 259.6 6.45
153.1 257.1 6.60
Table P-29 — RTAC 200
Entering Condenser AirTemperature (°F)
LWT
°F
77
P.I.
kW
86
P.I.
kW
95
P.I.
kW
104
P.I.
kW
115
P.I.
kW
122
P.I.
kW
C.C.
Ton
EER
C.C.
Ton
EER
C.C.
Ton
EER
C.C.
Ton
EER
C.C.
Ton
EER
C.C.
Ton
EER
41
44
45
46
48
221.2 194.3
232.9 201.0
236.8 203.3 12.54
240.7 205.7 12.62
12.21
12.46
209.4
220.5
224.2
228.0
235.6
208.3
215.3
217.7
220.1
225.0
10.85
11.09
11.17
11.24
11.39
197.1
207.6
211.2
214.8
221.9
224.2
231.4
233.9
236.4
241.4
9.56
9.78
9.85
9.93
10.06
184.3
194.3
197.6
201.0
207.8
241.8
249.3
251.9
254.5
259.7
8.34
8.55
8.62
8.69
8.81
168.1
177.3
180.5
183.6
189.9
265.7
273.7
276.3
279.1
284.6
6.98
7.17
7.23
7.29
7.40
157.5 282.4 6.18
163.8 285.0 6.38
165.3 284.5 6.45
166.0 282.1 6.53
248.6 210.3
12.77
167.3
277.2 6.68
Notes :
1. Ratings based on sea level altitude and evaporator fouling factor of 0.0176 m²°K/kW.
2. ConsultTrane representative for performance at temperatures outside of the ranges shown.
3. P.I. kW = compressor power input only.
4. COP = Coefficient of Performance (kW/kW). Power input includes compressors, condenser fans and control power.
5. Ratings are based on an evaporator temperature drop of 6°C.
6. Interpolation between points is permissible. Extrapolation is not permitted.
7. Above 40°C ambient, the units will have the High-Ambient option.
8. Shaded area reflects Adaptive Control™ Microprocessor control algorithms.
RLC-PRC005-E4
25
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Data
High Efficiency Units (English Units)
Table P-30 — RTAC 120
Entering Condenser AirTemperature (°F)
LWT
°F
77
P.I.
kW
86
P.I.
kW
95
P.I.
kW
104
P.I.
kW
115
P.I.
kW
122
P.I. EER
kW EER
C.C.
Ton
EER
EER
C.C.
Ton
EER
EER
C.C.
Ton
EER
EER
C.C.
Ton
EER
EER
C.C.
Ton
EER C.C.
EER
Ton
41
44
45
46
48
130.6
138.1
140.6
143.2
148.3
104.9
108.2
109.3
110.5
112.7
12.99 123.2
13.37 130.4
13.49 132.8
13.62 135.2
13.85 140.1
112.9
116.3
117.5
118.7 12.07
121.0 12.29
11.49
11.84
11.96
115.5
122.3
124.6
126.9
131.6
122.1
125.6
126.8
128.0
130.5
10.06
10.38
10.49
10.59
107.6
114.0
116.2
118.3
132.4 8.71
136.1 9.01 103.5
97.5
146.6 7.21
150.4 7.48
151.7 7.56
153.0 7.65
155.7 7.81
88.1
93.7
95.3
96.7
99.4
161.0 1.72
165.0 6.22
165.9 6.30
166.3 6.38
166.9 6.53
137.3
9.11
105.5
107.5
111.6
138.6 9.20
10.80 122.7
141.1
9.39
Table P-31 — RTAC 130
Entering Condenser AirTemperature (°F)
LWT
°F
77
P.I.
kW
86
P.I.
kW
95
P.I.
kW
104
P.I.
kW
115
P.I.
kW
122
P.I. EER
kW EER
C.C.
Ton
EER
EER
C.C.
Ton
EER
EER
C.C.
Ton
EER
EER
C.C.
Ton
EER
EER
C.C.
Ton
EER C.C.
EER
Ton
41
44
45
46
48
144.1
152.4
155.1
158.0
163.6
115.3
119.0
120.2
121.5
124.0
13.01 136.0
13.38 143.9
13.51 146.6
13.63 149.3
13.86 154.7
124.2
128.0
129.2
130.5 12.09
133.2 12.31
11.51
11.86
11.98
127.6
135.1
137.7
140.2
145.4
134.2
138.1
139.5
140.8
143.5
10.08
10.41 126.1
10.52 128.5
10.62
10.83 135.8
119.0
145.5 8.75 108.1
160.9 7.27
97.9
176.5 1.74
180.8 6.30
182.0 6.38
183.0 6.46
184.8 6.62
149.5 9.05
150.9 9.15
152.2 9.25
114.7
117.0
119.2
165.1 7.54 104.1
166.5 7.62 106.1
167.9 7.71 107.9
131.0
155.0 9.44 123.8
170.8 7.89
111.6
Table P-32 — RTAC 140
Entering Condenser AirTemperature (°F)
LWT
°F
77
P.I.
kW
86
P.I.
kW
95
P.I.
kW
104
P.I.
kW
115
P.I.
kW
122
P.I. EER
kW EER
C.C.
Ton
EER
EER
C.C.
Ton
EER
EER
C.C.
Ton
EER
EER
C.C.
Ton
EER
EER
C.C.
Ton
EER C.C.
EER Ton
41
44
45
46
48
157.7
166.8
169.8
172.9
179.2
125.8
129.8
131.2
132.6
135.4
13.03 148.9
13.40 157.6
13.52 160.5
13.64 163.5
13.88 169.5
135.5
139.7
141.1 12.00
142.5 12.11
145.4 12.33
11.53
11.88
139.8
148.1
150.9
153.7
159.4
146.5
150.7
152.2
153.6
156.6
10.11
10.44 138.3
10.55 141.0
10.66 143.7
10.87 149.1
130.5
158.7 8.79
118.7
175.3 7.31 107.7
179.8 7.59 114.6
181.3 7.68 116.9
182.8 7.77 119.3
185.9 7.95 124.0
192.0 6.11
196.6 6.36
198.2 6.44
199.8 6.53
203.0 6.69
163.0 9.10 126.1
164.5 9.20 128.5
166.0 9.30 131.1
169.0 9.49 136.1
Table P-33 — RTAC 155
Entering Condenser AirTemperature (°F)
LWT
°F
77
P.I.
kW
86
P.I.
kW
95
P.I.
kW
104
P.I.
kW
115
P.I.
kW
122
P.I. EER
kW EER
C.C.
Ton
EER
EER
C.C.
Ton
EER
EER
C.C.
Ton
EER
EER
C.C.
Ton
EER
EER
C.C.
Ton
EER C.C.
EER
Ton
41
44
45
46
48
172.1
181.8
185.0
188.4
195.0
139.7
144.3
145.9
147.5
150.7
12.82 162.5
13.16 171.8
13.27 174.9
13.38 178.1
13.59 184.4
150.0
154.8
156.4
158.0
11.38
11.70
11.81
11.91
152.7
161.5
164.5
167.5
173.5
161.7
166.5
168.2
169.9
173.2
10.01 142.5
10.31 150.9
10.41 153.7
10.51 156.6
10.70 162.3
174.7 8.72 129.7
179.7 9.00 137.5
181.4 9.09 140.1
183.1 9.19 142.8
186.5 9.37 148.2
192.6 7.27
117.7
210.7 6.09
215.9 6.32
217.7 6.40
219.4 6.48
223.0 6.63
197.7 7.53 125.0
199.4 7.62 127.5
201.2 7.70 130.0
204.7 7.87 134.9
161.3 12.12
Table P-34 — RTAC 170
Entering Condenser AirTemperature (°F)
LWT
°F
77
P.I.
kW
86
P.I.
kW
95
P.I.
kW
104
P.I.
kW
115
P.I.
kW
122
P.I. EER
kW EER
C.C.
Ton
EER
EER
C.C.
Ton
EER
EER
C.C.
Ton
EER
EER
C.C.
Ton
EER
EER
C.C.
Ton
EER C.C.
EER Ton
41
44
45
46
48
186.7
197.0
200.5
204.0
211.1
153.7
159.0
160.7
162.6
166.2
12.66 176.3
12.97 186.2
13.07 189.5
13.17 192.9
13.37 199.6
164.6
170.0
171.8
173.6
177.4
11.26
11.56
11.66
11.76
11.94
165.6
175.0
178.2
181.4
187.8
177.0
182.5
184.3
186.2
190.0
9.92
154.6
190.9 8.66 140.7
196.5 8.93 149.0
198.4 9.02 151.8
200.3 9.10 154.7
204.1 9.27 160.3
210.0 7.24 127.8
215.7 7.48 135.5
217.7 7.56 138.1
219.6 7.64 140.7
223.5 7.80 146.0
229.4 6.07
235.2 6.29
237.2 6.36
239.1 6.44
243.1 6.58
10.21 163.5
10.30 166.5
10.39 169.6
10.57 175.6
Table P-35 — RTAC 185
Entering Condenser AirTemperature (°F)
LWT
°F
77
P.I.
kW
86
P.I.
kW
95
P.I.
kW
104
P.I.
kW
115
P.I.
kW
122
P.I. EER
kW EER
C.C.
Ton
EER
EER
C.C.
Ton
EER
EER
C.C.
Ton
EER
EER
C.C.
Ton
EER
EER
C.C.
Ton
EER C.C.
EER Ton
41
44
45
46
48
207.3
218.8
222.7
226.6
234.4
170.9
176.8
178.8
180.8
184.9
12.69 196.2
13.00 207.1
13.10 210.8
13.20 214.6
13.39 222.1
182.8
188.9
190.9
193.0
197.2
11.32
11.61
11.71
11.80
11.99
184.6
195.0
198.5
202.1
209.3
196.4
202.6
204.7
206.8
211.1
10.00 172.6
10.28 182.5
10.37 185.9
10.46 189.3
10.63 196.0
211.6
8.75
157.5
232.6 7.34 143.4
239.1 7.57 151.9
241.4 7.65 154.8
243.6 7.72 157.8
248.1 7.87 163.6
253.8 6.17
260.6 6.38
262.9 6.45
265.2 6.52
269.9 6.66
218.0 9.01 166.7
220.2 9.09 169.9
222.4 9.18 173.0
226.7 9.34 179.3
RLC-PRC005-E4
26
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Data
Table P-36 — RTAC 200
Entering Condenser AirTemperature (°F)
LWT
°F
77
P.I.
kW
86
P.I.
kW
95
P.I.
kW
104
P.I.
kW
115
P.I.
kW
122
P.I. EER
kW EER
C.C.
Ton
EER
EER
C.C.
Ton
EER
EER
C.C.
Ton
EER
EER
C.C.
Ton
EER
EER
C.C.
Ton
EER C.C.
EER Ton
232.6 8.83
174.7
194.9
197.1
199.4
204.0
255.4
7.42
159.3 278.4
208.1 11.67
6.26
215.5
219.4
223.4
231.3
44
45
46
48
241.2
245.5
249.8
258.5
13.04 228.6
13.14 232.7
13.24 236.8
13.43 245.1
223.0
225.4
227.8
232.6
10.34 202.0
10.43 205.7
10.52 209.4
10.69 216.9
239.8 9.08 184.9
242.2 9.17 188.3
262.8 7.65 168.7
265.4 7.73 171.5
268.0 7.80 173.9
273.1 7.95 178.6
286.2 6.46
288.1 6.53
288.9 6.61
290.4 6.75
210.3
212.7
11.76
11.86
244.7 9.25
191.8
217.3 12.04
249.7 9.41 198.8
Notes :
1. Ratings based on sea level altitude and evaporator fouling factor of 0.0176 m²°K/kW.
2. ConsultTrane representative for performance at temperatures outside of the ranges shown.
3. P.I. kW = compressor power input only.
4. COP = Coefficient of Performance (kW/kW). Power input includes compressors, condenser fans and control power.
5. Ratings are based on an evaporator temperature drop of 6°C.
6. Interpolation between points is permissible. Extrapolation is not permitted.
7. Above 40°C ambient, the units will have the High-Ambient option.
8. Shaded area reflects Adaptive Control™ Microprocessor control algorithms.
RLC-PRC005-E4
27
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Data
Low Noise Standard Units (English Units)
Table P-37 — RTAC 140
Entering Condenser AirTemperature (°F)
LWT
°F
41
44
45
77
86
P.I. kW
95
104
P.I. kW
183.5
189.2
191.1
193.1
197.0
C.C.Ton
145.1
152.4
154.9
157.3
P.I. kW
144.5
149.7
151.4
153.2
156.7
EER
11.46
11.64
11.70
11.75
11.86
C.C.Ton
136.1
143.1
145.4
147.7
EER
9.97
10.15
10.20
10.26
10.36
C.C.Ton
126.9
133.4
135.6
137.8
P.I. kW
169.3
174.8
176.7
178.6
182.4
EER
8.61
8.78
8.83
8.89
8.98
C.C.Ton
117.4
123.5
125.6
127.7
EER
7.38
7.54
7.59
7.64
7.74
156.3
161.7
163.5
165.3
169.0
46
48
162.3
152.4
142.2
131.9
Table P-38 — RTAC 155
Entering Condenser AirTemperature (°F)
LWT
°F
41
44
45
77
86
95
104
P.I. kW
201.2
207.7
209.8
212.0
216.3
C.C.Ton
159.3
167.2
169.8
172.5
177.8
P.I. kW
159.7
165.5
167.5
169.5
173.5
EER
11.37
11.54
11.59
11.64
11.73
C.C.Ton
149.5
156.9
159.4
162.0
167.0
P.I. kW
172.2
178.3
180.3
182.4
186.5
EER
9.93
10.09
10.14
10.19
10.28
C.C.Ton
139.4
146.4
148.8
151.2
P.I. kW
186.1
192.3
194.4
196.5
200.8
EER
8.60
8.76
8.81
8.85
8.94
C.C.Ton
129.0
135.6
137.8
140.1
144.5
EER
7.39
7.54
7.58
7.63
7.72
46
48
155.9
Table P-39 — RTAC 170
Entering Condenser AirTemperature (°F)
LWT
°F
41
44
45
77
86
95
104
P.I. kW
219.1
226.2
228.6
231.0
235.8
C.C.Ton
173.6
182.1
185.0
187.8
P.I. kW
175.1
181.6
183.8
186.0
190.6
EER
11.30
11.45
11.50
11.54
11.63
C.C.Ton
162.9
171.0
173.7
176.4
181.8
P.I. kW
188.3
195.0
197.3
199.6
204.3
EER
9.90
10.05
10.09
10.13
10.22
C.C.Ton
152.0
159.5
162.1
164.6
169.7
P.I. kW
203.0
209.9
212.3
214.6
219.4
EER
8.59
8.74
8.78
8.82
8.91
C.C.Ton
140.7
147.8
150.2
152.6
157.3
EER
7.40
7.53
7.58
7.62
7.71
46
48
193.6
Table P-40 — RTAC 185
Entering Condenser AirTemperature (°F)
LWT
°F
41
44
45
77
86
95
104
C.C.Ton
192.2
201.6
204.7
207.9
P.I. kW
193.4
200.6
203.1
205.6
210.6
EER
11.34
11.48
11.53
11.57
11.65
C.C.Ton
180.7
189.6
192.6
195.5
201.5
P.I. kW
208.0
215.6
218.1
220.7
225.9
EER
9.94
10.08
10.13
10.17
10.25
C.C.Ton
168.9
177.2
180.0
182.8
188.4
P.I. kW
224.3
232.0
234.7
237.4
242.7
EER
8.65
8.78
8.83
8.87
8.94
C.C.Ton
156.7
164.4
167.0
169.5
174.4
P.I. kW
242.1
250.1
252.8
255.3
260.5
EER
7.46
7.59
7.63
7.66
7.74
46
48
214.2
Table P-41 — RTAC 200
Entering Condenser AirTemperature (°F)
LWT
°F
41
44
45
77
86
95
104
P.I. kW
265.2
274.3
277.3
280.4
286.7
C.C.Ton
211.2
221.5
225.0
228.4
235.3
P.I. kW
212.0
220.0
222.7
225.5
231.0
EER
11.37
11.51
11.55
11.59
11.67
C.C.Ton
198.9
208.6
211.8
215.1
221.6
P.I. kW
228.1
236.4
239.2
242.1
247.9
EER
9.99
10.12
10.16
10.20
10.28
C.C.Ton
186.0
195.2
198.2
201.3
P.I. kW
245.8
254.5
257.4
260.4
266.5
EER
8.70
8.83
8.87
8.90
8.98
C.C.Ton
172.8
181.3
184.2
187.1
EER
7.51
7.63
7.67
7.71
7.78
46
48
207.5
192.9
Notes :
1. Ratings based on sea level altitude and evaporator fouling factor of 0.0176 m²°K/kW.
2. ConsultTrane representative for performance at temperatures outside of the ranges shown.
3. P.I. kW = compressor power input only.
4. COP = Coefficient of Performance (kW/kW). Power input includes compressors, condenser fans and control power.
5. Ratings are based on an evaporator temperature drop of 6°C.
6. Interpolation between points is permissible. Extrapolation is not permitted.
7. Above 40°C ambient, the units will have the High-Ambient option.
8. Shaded area reflects Adaptive Control™ Microprocessor control algorithms.
RLC-PRC005-E4
28
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Data
Low Noise HE Units (English Units)
Table P-42 — RTAC 120
Entering Condenser AirTemperature (°F)
LWT
°F
41
44
45
77
P.I. kW
113.4
117.3
118.6
119.9
122.6
86
95
104
115
C.C.Ton
126.0
132.8
135.1
137.4
EER
C.C.Ton
118.4
124.8
126.9
129.1
133.5
P.I. kW
122.4
126.5
127.9
129.3
132.1
EER
10.93
11.18
11.25
11.33
11.47
C.C.Ton
110.4
116.5
118.5
120.6
124.7
P.I. kW
132.6
136.8
138.2
139.7
142.6
EER
9.46
9.69
9.76
9.83
9.97
C.C.Ton
102.3
108.0
109.9
111.8
P.I. kW
143.9
148.3
149.8
151.3
154.3
EER
8.11
8.32
8.38
8.45
8.58
C.C.Ton
92.1
97.3
98.9
100.3
103.2
P.I. kW
159.2
163.8
165.1
165.8
167.3
EER
6.63
6.82
6.88
6.95
7.08
12.51
12.78
12.86
12.94
13.09
46
48
142.0
115.6
Table P-43 — RTAC 130
Entering Condenser AirTemperature (°F)
LWT
°F
41
44
45
77
86
95
104
115
C.C.Ton
139.2
146.7
149.2
151.7
P.I. kW
124.6
128.9
130.4
131.9
134.9
EER
C.C.Ton
130.8
137.9
140.3
142.7
147.6
P.I. kW
134.6
139.1
140.6
142.1
145.2
EER
10.98
11.23
11.31
11.38
11.53
C.C.Ton
122.2
128.9
131.2
133.4
138.0
P.I. kW
145.7
150.3
151.9
153.5
156.7
EER
9.52
9.75
9.82
9.90
10.04
C.C.Ton
113.3
119.7
121.8
123.9
128.2
P.I. kW
158.0
162.7
164.4
166.0
169.3
EER
8.18
8.39
8.46
8.53
8.66
C.C.Ton
102.2
108.1
109.9
111.7
P.I. kW
174.6
179.5
181.0
182.2
184.6
EER
6.71
6.90
6.97
7.03
7.16
12.56
12.82
12.90
12.98
13.14
46
48
156.8
115.1
Table P-44 — RTAC 140
Entering Condenser AirTemperature (°F)
LWT
°F
41
44
45
77
P.I. kW
136.0
140.7
142.3
143.9
147.2
86
95
104
115
C.C.Ton
152.4
160.7
163.4
166.3
171.9
EER
C.C.Ton
143.3
151.2
153.8
156.5
161.8
P.I. kW
146.8
151.7
153.3
155.0
158.4
EER
11.02
11.27
11.36
11.43
11.59
C.C.Ton
134.0
141.4
143.9
146.5
151.5
P.I. kW
158.9
163.9
165.6
167.3
170.8
EER
9.57
9.81
9.88
9.96
10.10
C.C.Ton
124.4
131.5
133.8
136.2
140.9
P.I. kW
172.1
177.3
179.0
180.8
184.4
EER
8.24
8.46
8.53
8.60
8.74
C.C.Ton
112.5
119.0
121.1
123.4
127.8
P.I. kW
189.9
195.3
197.1
198.9
202.5
EER
6.78
6.98
7.05
7.11
12.60
12.86
12.94
13.03
13.19
46
48
7.24
Table P-45 — RTAC 155
Entering Condenser AirTemperature (°F)
LWT
°F
41
44
45
77
86
95
104
115
C.C.Ton
166.3
175.1
178.1
181.1
P.I. kW
150.5
155.8
157.6
159.4
163.1
EER
C.C.Ton
156.4
164.8
167.6
170.5
176.1
P.I. kW
162.0
167.5
169.4
171.3
175.1
EER
10.91
11.14
11.21
11.28
11.42
C.C.Ton
146.3
154.2
156.9
159.6
164.9
P.I. kW
174.9
180.5
182.5
184.4
188.3
EER
9.49
9.71
9.78
9.85
9.98
C.C.Ton
135.9
143.4
145.9
148.4
153.4
P.I. kW
189.1
194.9
196.9
198.9
202.9
EER
8.19
8.39
8.46
8.52
8.65
C.C.Ton
122.9
129.8
132.1
134.4
139.2
P.I. kW
208.3
214.3
216.4
218.4
222.5
EER
6.75
6.94
7.00
7.06
7.18
12.43
12.67
12.75
12.82
12.96
46
48
187.1
Table P-46 — RTAC 170
Entering Condenser AirTemperature (°F)
LWT
°F
41
44
45
77
86
95
104
115
C.C.Ton
180.3
189.7
192.9
196.1
202.5
P.I. kW
165.0
171.0
173.0
175.1
179.2
EER
C.C.Ton
169.7
178.6
181.6
184.6
190.7
P.I. kW
177.3
183.4
185.5
187.6
191.9
EER
10.82
11.03
11.09
11.16
11.28
C.C.Ton
158.7
167.1
170.0
172.8
178.5
P.I. kW
191.0
197.3
199.4
201.6
205.9
EER
9.43
9.63
9.70
9.76
9.88
C.C.Ton
147.4
155.4
158.1
160.7
166.1
P.I. kW
206.2
212.6
214.9
217.1
221.5
EER
8.15
8.34
8.40
8.46
8.58
C.C.Ton
133.3
140.6
143.1
145.6
150.6
P.I. kW
226.8
233.4
235.7
237.9
242.4
EER
6.73
6.91
6.97
7.02
7.14
12.30
12.52
12.59
12.65
12.78
46
48
Table P-47 — RTAC 185 Entering Condenser AirTemperature (°F)
LWT
°F
41
44
45
77
86
95
104
115
C.C.Ton
200.3
210.8
214.3
217.8
P.I. kW
183.7
190.4
192.7
195.0
199.7
EER
C.C.Ton
188.8
198.7
202.0
205.3
212.0
P.I. kW
197.1
204.1
206.4
208.9
213.7
EER
10.84
11.04
11.11
11.17
11.29
C.C.Ton
176.8
186.2
189.3
192.5
198.8
P.I. kW
212.2
219.4
221.8
224.3
229.3
EER
9.47
9.67
9.73
9.79
9.90
C.C.Ton
164.6
173.4
176.3
179.3
185.2
P.I. kW
228.9
236.3
238.9
241.4
246.5
EER
8.21
8.39
8.44
8.50
8.61
C.C.Ton
149.1
157.2
159.8
162.3
167.3
P.I. kW
251.5
259.3
261.6
263.6
267.5
EER
6.80
6.96
7.02
7.08
7.19
12.30
12.51
12.58
12.64
12.76
46
48
224.9
RLC-PRC005-E4
29
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Data
Table P-48 — RTAC 200 Entering Condenser AirTemperature (°F)
LWT
°F
41
44
45
77
86
95
104
115
C.C.Ton
220.8
232.3
236.2
240.1
247.9
P.I. kW
202.6
210.1
212.6
215.3
220.5
EER
C.C.Ton
208.3
219.2
222.9
226.6
234.0
P.I. kW
217.3
225.1
227.7
230.4
235.8
EER
10.87
11.07
11.13
11.19
11.30
C.C.Ton
195.4
205.7
209.1
212.6
219.6
P.I. kW
233.7
241.8
244.6
247.4
253.0
EER
9.52
9.70
9.76
9.81
9.92
C.C.Ton
182.0
191.7
195.0
198.2
204.8
P.I. kW
251.9
260.3
263.2
266.1
272.0
EER
8.26
8.43
8.48
8.53
8.64
C.C.Ton
165.2
174.1
176.7
178.8
182.9
P.I. kW
276.6
285.4
287.4
288.1
289.5
EER
6.86
7.01
7.07
7.14
7.27
12.32
12.52
12.58
12.64
12.76
46
48
Notes :
1. Ratings based on sea level altitude and evaporator fouling factor of 0.0176 m²°K/kW.
2. ConsultTrane representative for performance at temperatures outside of the ranges shown.
3. P.I. kW = compressor power input only.
4. COP = Coefficient of Performance (kW/kW). Power input includes compressor, condenser fans and control power.
5. Ratings are based on an evaporator temperature drop of 6°C.
6. Interpolation between points is permissible. Extrapolation is not permitted.
7. Above 40°C ambient, the units will have the High-Ambient option.
8. Shaded area reflects Adaptive Control Microprocessor control algorithms.
RLC-PRC005-E4
30
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Data
SI Units
English Units
Table P-49 — ARI Part-LoadValues RTAC Standard
(along with ARI 550/590-98)
Table P-51 — ARI Part-LoadValues RTAC Standard
(along with ARI 550/590-98)
Unit % Load
kW cooling
505.9
372.0
247.9
124.1
554.3
407.6
271.9
135.7
603.4
443.8
295.8
148.1
669.7
491.7
328.1
164.2
737.6
P.I. kW
159.0
85.8
47.3
21.0
175.6
94.7
52.2
COP (kW/kW) IPLV (kW/kW)
Unit
140
% Load
100
75
50
25
100
75
50
25
100
75
50
25
100
75
50
25
100
75
tons
143.9
105.8
70.5
P.I. kW
159.0
85.8
47.3
21.0
175.6
94.7
52.2
EER
9.88
12.51
15.24
14.51
9.79
12.39
14.89
13.29
9.72
12.29
14.74
14.02
9.77
12.34
15.02
13.00
9.83
12.42
14.81
13.81
IPLV
13.95
140
155
170
185
200
100
75
50
25
100
75
50
25
100
75
50
25
100
75
50
25
2.90
3.67
4.47
4.25
2.87
3.63
4.36
3.89
2.85
3.60
4.32
4.11
2.86
3.62
4.40
3.81
2.88
3.64
4.34
4.05
4.09
3.98
3.98
3.98
4.00
35.3
155
170
185
200
157.6
115.9
77.3
13.59
13.58
13.60
13.64
24.8
38.6
24.8
192.4
103.7
58.4
171.6
126.2
84.1
192.4
103.7
58.4
26.0
42.1
26.0
212.5
114.6
62.6
190.4
139.8
93.3
212.5
114.6
62.6
31.1
46.7
31.1
100
75
232.9
125.8
71.3
209.7
154.2
102.8
51.4
232.9
125.8
71.3
542.3
361.5
180.8
50
25
50
25
32.7
32.7
Table P-50 — ARI Part-LoadValues RTAC High-Efficiency
(along with ARI 550/590-98)
Table P-52 — ARI Part-LoadValues RTAC High-Efficiency
(along with ARI 550/590-98)
Unit % Load
kW cooling
434.8
320.0
213.1
106.6
480.3
353.5
235.3
117.8
P.I. kW
126.3
70.5
38.3
16.3
138.9
76.9
41.2
COP (kW/kW) IPLV (kW/kW)
Unit
120
% Load
100
75
50
25
100
75
50
25
100
75
50
25
100
75
50
25
100
75
50
25
100
75
50
25
100
75
50
25
tons
434.8
320.0
213.1
106.6
480.3
353.5
235.3
117.8
526.6
387.2
258.1
129.1
574.0
423.4
281.4
140.7
622.0
456.9
304.9
152.3
693.1
510.3
339.7
169.9
765.9
561.7
375.6
187.8
P.I. kW
126.3
70.5
38.3
16.3
138.9
76.9
41.2
EER
10.45
12.66
15.63
14.82
10.47
12.76
15.66
13.55
10.50
12.84
15.65
14.37
10.37
12.73
15.31
13.26
10.26
12.64
15.20
13.90
10.33
12.71
15.35
13.04
10.40
12.80
15.17
13.93
IPLV
14.23
120
130
140
155
170
185
200
100
75
50
25
100
75
50
25
100
75
50
25
100
75
50
25
100
75
50
25
100
75
3.06
3.71
4.58
4.34
3.07
3.74
4.59
3.97
3.08
3.76
4.59
4.21
3.04
3.73
4.49
3.89
3.01
3.70
4.45
4.07
3.03
3.72
4.50
3.82
3.05
3.75
4.45
4.08
4.17
4.14
4.18
4.08
4.08
4.08
4.10
130
140
155
170
185
200
14.14
14.27
13.93
13.92
13.91
13.98
19.6
19.6
526.6
387.2
151.6
83.4
46.2
20.6
167.5
92.1
50.7
24.2
183.6
100.1
56.5
25.4
203.9
111.9
61.7
151.6
83.4
46.2
20.6
167.5
92.1
50.7
24.2
183.6
100.1
56.5
25.4
203.9
111.9
61.7
258.1
129.1
574.0
423.4
281.4
140.7
622.0
456.9
304.9
152.3
693.1
510.3
339.7
169.9
765.9
561.7
375.6
187.8
50
25
100
75
30.6
224.4
122.8
70.6
32.2
30.6
224.4
122.8
70.6
32.2
50
25
RLC-PRC005-E4
31
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Data
SI Units
English Units
Table P-53 — ARI Part-LoadValues RTAC Low-Noise Standard
(along with ARI 550/590-98)
Table P-55 — ARI Part-LoadValues RTAC Low-Noise Standard
(along with ARI 550/590-98)
Unit % Load
kW cooling
473.9
353.4
232.5
116.1
519.8
382.6
254.6
127.3
P.I. kW
175.9
90.2
49.6
21.9
193.6
99.5
53.5
COP (kW/kW) IPLV (kW/kW)
Unit
140
% Load
100
75
50
25
100
75
50
25
100
75
50
25
100
75
50
25
100
75
tons
473.9
353.4
232.5
116.1
519.8
382.6
254.6
127.3
566.1
417.1
277.5
138.9
628.8
463.5
308.1
154.0
692.7
508.9
339.4
169.9
P.I. kW
175.9
90.2
49.6
21.9
193.6
99.5
53.5
EER
8.82
12.35
14.77
15.26
8.78
12.11
14.86
14.48
8.76
12.06
14.56
15.03
8.81
12.11
14.98
13.89
8.85
12.16
14.61
14.64
IPLV
13.75
140
155
170
185
200
100
75
50
25
100
75
50
25
100
75
50
25
100
75
50
25
2.58
3.62
4.33
4.47
2.57
3.55
4.35
4.24
2.57
3.53
4.27
4.40
2.58
3.55
4.39
4.07
2.59
3.56
4.28
4.29
4.03
3.98
3.96
3.98
3.96
155
170
185
200
13.60
13.51
13.58
13.53
25.1
25.1
566.1
417.1
277.5
211.3
108.8
60.1
211.3
108.8
60.1
138.9
628.8
463.5
308.1
154.0
692.7
508.9
339.4
169.9
26.6
26.6
233.5
120.6
64.4
233.5
120.6
64.4
32.1
32.1
100
75
256.2
131.9
73.5
256.2
131.9
73.5
50
25
50
25
33.8
33.8
Table P-54 — ARI Part-LoadValues RTAC Low-Noise High-Efficiency
(along with ARI 550/590-98)
Table P-56 — ARI Part-LoadValues RTAC Low-Noise High-
Efficiency (along with ARI 550/590-98)
Unit % Load
kW cooling
412.6
302.8
202.2
101.3
P.I. kW
137.4
73.9
39.8
16.9
151.2
81.1
42.7
20.2
164.9
87.8
COP (kW/kW) IPLV (kW/kW)
Unit
120
% Load
100
75
50
25
100
75
50
25
100
75
50
25
100
75
50
25
100
75
50
25
tons
117.3
86.1
57.5
28.8
130.3
96.1
63.8
31.9
142.9
105.4
70.0
35.0
155.7
114.2
76.3
38.2
168.8
124.5
82.8
41.4
P.I. kW
137.4
73.9
39.8
16.9
151.2
81.1
42.7
20.2
164.9
87.8
EER
9.72
IPLV
14.48
120
130
140
155
170
185
200
100
75
50
25
100
75
50
25
100
75
50
25
100
75
50
25
100
75
50
25
100
75
2.85
3.72
4.61
4.83
2.87
3.78
4.71
4.45
2.89
3.82
4.64
4.69
2.86
3.79
4.63
4.41
2.83
3.78
4.54
4.58
2.84
3.78
4.63
4.25
2.85
3.79
4.54
4.49
4.24
4.27
4.28
4.24
4.20
4.21
4.20
12.70
15.73
16.49
9.80
12.89
16.09
15.20
9.85
13.04
15.83
15.99
9.75
12.95
15.81
15.04
9.67
12.88
15.49
15.62
9.70
12.90
15.79
14.49
9.74
458.1
337.9
130
140
155
170
185
200
14.58
14.62
14.46
14.35
14.36
14.34
224.4
112.2
502.6
370.7
246.2
123.1
547.7
401.6
268.3
134.3
593.7
437.9
291.2
145.6
661.2
484.3
324.3
162.1
730.4
536.7
358.0
179.0
48.1
21.3
48.1
21.3
181.7
95.8
52.1
24.7
198.6
105.1
58.4
26.0
220.9
116.4
63.5
31.5
181.7
95.8
52.1
24.7
198.6
105.1
58.4
26.0
220.9
116.4
63.5
31.5
100
75
50
25
100
75
188.0
137.7
92.2
46.1
207.7
152.6
101.8
50.9
50
25
100
75
243.4
129.0
72.3
33.2
243.4
129.0
72.3
33.2
12.94
15.48
15.33
50
25
50
25
RLC-PRC005-E4
32
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Adjustment Factors
Table F1 — Performance Data Adjustment Factors
Chilled
Altitude
Fouling
Factor
(SI)
Water
Temperature
Drop °C
4
5
Sea level
Evaporator
Flow Rate
1.500
600 m
Evaporator
Flow Rate
1.485
1.188
0.990
0.849
0.743
0.660
0.594
1.464
1.171
0.976
0.837
0.732
0.651
0.586
1200 m
Evaporator
Flow Rate
1.466
1800 m
Evaporator Compressor
Cooling
Capacity
0.998
1.000
1.000
1.002
1.003
1.004
1.005
0.982
0.984
0.986
0.987
0.99
Compressor
kW
Cooling
Capacity
0.986
0.989
0.99
0.991
0.992
0.995
0.997
0.972
0.974
0.976
0.978
0.98
Compressor
kW
Cooling
Capacity
0.974
0.975
0.977
0.979
0.98
0.982
0.983
0.96
0.962
0.964
0.966
0.968
0.97
Compressor
kW
Cooling
Capacity
0.96
0.961
0.962
0.964
0.966
0.967
0.97
0.946
0.947
0.95
0.952
0.954
0.956
0.958
Flow Rate
1.443
1.154
0.962
0.825
0.722
0.641
0.577
1.425
1.140
0.950
0.814
0.713
0.633
0.570
kW
0.999
1.000
1.000
1.001
1.001
1.02
1.011
1.011
1.013
1.013
1.015
1.016
1.017
1.020
1.030
1.050
1.060
1.080
1.090
1.010
1.026
1.027
1.028
1.029
1.03
1.031
1.032
1.017
1.019
1.02
1.044
1.045
1.046
1.047
1.049
1.05
1.051
1.035
1.036
1.038
1.039
1.041
1.042
1.043
1.200
1.172
0.0176
m² K/kW
6
7
8
9
10
4
5
6
7
1.000
0.857
0.750
0.667
0.600
1.479
0.977
0.837
0.733
0.651
0.586
1.446
1.025
0.99
1.183
0.991
0.992
0.993
0.995
0.996
0.997
1.157
0.044
m² K/kW
0.986
0.845
0.740
0.657
0.592
0.964
0.826
0.723
0.643
0.578
1.021
1.022
1.023
1.024
8
9
10
0.993
0.995
0.983
0.985
0.973
Chilled
Altitude
Fouling
Factor
(US)
Water
Temperature
Drop °F
8
Sea level
Evaporator
gpm
1.246
1
0.835
0.717
0.629
1.227
0.985
0.823
0.708
0.621
2000 ft
Evaporator
gpm
4000 ft
Evaporator
gpm
6000 ft
Evaporator Compressor
gpm
Cooling
Capacity
0.997
1
1.003
1.004
1.006
0.982
0.986
0.988
0.991
0.992
Compressor
kW
0.999
1
1.001
1.002
1.003
0.991
0.992
0.994
0.995
0.996
Cooling
Capacity
0.987
0.989
0.992
0.993
0.995
0.972
0.975
0.978
0.980
0.982
Compressor
kW
Cooling
Capacity
0.975
0.977
0.979
0.981
0.982
0.961
0.963
0.966
0.968
0.970
Compressor
kW
Cooling
Capacity
0.960
0.963
0.965
0.966
0.968
0.947
0.950
0.952
0.954
0.956
kW
1.233
0.989
0.826
0.710
0.622
1.215
0.975
0.815
0.700
0.614
1.012
1.013
1.014
1.016
1.016
1.003
1.005
1.006
1.008
1.009
1.217
0.977
0.816
0.701
0.614
1.200
0.963
0.805
0.692
0.606
1.027
1.028
1.030
1.031
1.032
1.018
1.020
1.022
1.023
1.024
1.200
0.963
0.804
0.690
0.605
1.183
0.950
0.793
0.682
0.598
1.045
1.047
1.048
1.049
1.050
1.036
1.038
1.040
1.041
1.042
10
12
14
16
8
10
12
14
16
0.0001
0.00025
RLC-PRC005-E4
33
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Adjustment Factors
Figure F1 — EvaporatorWater Pressure Drops, RTAC 120 to 200 (SI)
100
90
80
70
60
50
40
30
20
10
30
40
50
60 70 80 90
20
10
100
Flow Lps
Evp. F140 (RTAC 120/140)
Evp. F155 (RTAC 130/155)
Evp. F185 RTAC (155/185)
Evp. F220 (RTAC 185HE)
Evp. F170 (RTAC 140/170)
Evp. F200 (RTAC 170/200)
Evp. F240 (RTAC 200HE)
Legend (RTAC HE/STD)
Figure F2 — EvaporatorWater Pressure Drops, RTAC 120 to 200 (US Units)
100.0
10.0
1.0
200
300
400
500
600 700 800 900
100.0
1000.0
Flow GPM
Evp. F140 (RTAC 120/140)
Evp. F155 (RTAC 130/155)
Evp. F185 RTAC (155/185)
Evp. F220 (RTAC 185HE)
Evp. F170 (RTAC 140/170)
Evp. F200 (RTAC 170/200)
Evp. F240 (RTAC 200HE)
Legend (RTAC HE/STD)
RLC-PRC005-E4
34
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Adjustment Factors
Figure F-3 — Ethylene Glycol Performance Factors
Figure F-4 — Propylene Glycol Performance Factors
Figure F-5 — Ethylene Glycol and Propylene Glycol Freeze Point
RLC-PRC005-E4
35
Download from Www.Somanuals.com. All Manuals Search And Download.
Generic Building Automation
System Controls
External Chilled-Water Set Point
Simple Interface with Other
Allows the external setting independent
Control Systems
of the front panel set point by one of
Microcomputer controls afford a simple
two means:
interface with other control systems,
a) 2-10VDC input, or
such as time clocks, building automation
b) 4-20 mA input.
systems, and ice storage systems.This
means you can have the flexibility to
meet job requirements while not having
to learn a complicated control system.
This setup has the same standard
features as a stand-alone water chiller,
with the possibility of having the
following optional features.
External Current-Limit Set Point
Allows the external setting independent
of the front panel set point by one of
two means:
a) 2-10VDC input, or
b) 4-20 mA input.
Ice-Making Control
Provides an interface to ice-making
control systems.
Alarm Indication Contacts
The unit provides four single-pole,
double-throw contact closures to
indicate that a failure has occurred, if
any compressors are running, or if the
compressors are running at maximum
capacity.These contact closures may be
used to trigger job-site-provided alarm
lights or alarm bells.
Chilled-WaterTemperature Reset
Reset can be based on return water
temperature or outdoor air temperature.
Figure 6
Modem
Pumps
IBM PC with Building
Management Network
Tracer Chiller Plant Manager
RLC-PRC005-E4
36
Download from Www.Somanuals.com. All Manuals Search And Download.
Generic Building Automation
System Controls
ExternalTrane Devices Required
the powerful diagnostic information can
be read back at theTracer system. Best
of all, this powerful capability comes
over a single twisted pair of wires! Air-
cooled Series R chillers can interface
with many different external control
systems, from simple stand-alone units
to ice-making systems. Each unit
requires a single-source, three-phase
power supply and a 115-volt power
supply.The 115-volt supply handles the
freeze protection for the evaporator
heaters.
Tracer Summit™ Controls —
Interface with theTrane
™
Tracer Summit ,Tracer 100 System or
Tracer Chiller Plant Manager
Integrated Comfort System (ICS)
Ice-Making Systems Controls
Trane Chiller Plant Manager with ICS
TheTracer Chiller Plant Manager
An ice-making option may be ordered
™
with the air-cooled Series R chiller.The
building management system provides
building automation and energy
management functions through stand-
alone control.The Chiller Plant Manager
is capable of monitoring and controlling
your entire chiller plant system.
unit will have two operating modes, ice
making and normal daytime cooling. In
the ice-making mode, the air-cooled
Series R chiller will operate at full
compressor capacity until the return
chilled-fluid temperature entering the
evaporator meets the ice-making set
point.This ice-making set point is
Application software available:
•Time-of-day scheduling
• Duty cycle
A single twisted pair of wires tied
™
manually adjusted on the unit’s
directly between the air-cooled Series R
™
microcomputer.Two input signals are
required to the air-cooled Series R chiller
for the ice-making option.The first is an
auto/stop signal for scheduling, and the
second is required to switch the unit
between the ice-making mode and
normal daytime operation.The signals are
provided by a remote job site building-
automation device such as a time clock or
a manual switch. In addition, the signals
may be provided over the twisted wire
• Demand limiting
chiller and aTracer system provides
• Chiller sequencing
• Process control language
• Boolean processing
• Zone control
control, monitoring, and diagnostic
capabilities. Control functions include
auto/stop, adjustment of leaving-water-
temperature set point, compressor
operation lockout for kW demand
limiting, and control of ice-making
mode.TheTracer system reads
• Reports and logs
• Custom messages
• Run time and maintenance
•Trend log
monitoring information such as
• PID control loops
entering- and leaving-evaporator-water
temperatures and outdoor air
And of course, theTrane Chiller Plant
Manager panel can be used on a stand-
alone basis or tied into a complete
building automation system.
™
pair from aTracer system.
temperature. Over 60 individual
diagnostic codes can be read by the
Tracer system. In addition, theTracer
system can provide sequencing control
for two to six units on the same chilled-
water loop. Pump sequencing control
can be provided from theTracer system.
Tracer ICS is not available in conjunction
with the remote display or the external
set point capability.
Required Options
External Auto/Stop (Standard)
Ice-Making Control
™
When the air-cooled Series R chiller is
™
used in conjunction with aTraneTracer
Additional OptionsThat May Be Used
Failure Indication Contacts
system, the unit can be monitored and
controlled from a remote location.The
air-cooled Series R chiller can be
Communications Interface (ForTracer
Systems)
controlled to fit into the overall building
automation strategy by using time-of-
day scheduling, timed override, duty
cycling, demand limiting, and chiller
sequencing. A building owner can
completely monitor the air-cooled Series
R chiller from theTracer system, since all
of the monitoring information indicated
on the microcomputer can be read on
theTracer system display. In addition, all
Chilled-WaterTemperature Reset
Required Options
ExternalTrane Devices Required-None
1
Note: All wiring outside the unit is
supplied at the job site.
Tracer Comm 3 Interface
Additional Options that May Be Used
Ice-Making Control
RLC-PRC005-E4
37
Download from Www.Somanuals.com. All Manuals Search And Download.
Controls
™
Tracer Chiller Control human interfaces
TheTrane air-cooled Series R Model
RTAC chiller offers two easy-to-use
operator interface panels, the EasyView,
and the DynaView.
Standard Features
External Auto/Stop
A job-site-provided contact closure will
turn the unit on and off.
ChilledWaterflow Interlock
A job-site-provided contact closure from
a chilled-water pump contactor, or a
flow switch, is required and will allow
unit operation if a load exists.This
feature will allow the unit to run in
conjunction with the pump system.
Figure 7 — EasyView
External Interlock
A job-site-provided contact opening
wired to this input will turn the unit off
and require a manual reset of the unit
microcomputer.This closure is typically
triggered by a job-site-provided system
such as a fire alarm.
ChilledWater Pump Control
Unit controls provide an output to
control the chilled-water pump(s). One
contact closure to the chiller is all that is
required to initiate the chilled-water
system.
Figure 8 — DynaView
Additional FeaturesThat May Be Used
(requires some optional factory-installed
hardware)
Alarm Indication Contacts
Chilled-WaterTemperature Reset
Note: All wiring outside the unit is
supplied at the job site.
conditions, the microprocessor will
continue to optimize chiller performance
by taking the corrective action necessary
to avoid shutdown.This keeps cooling
capacity available until the problem can
be solved. Whenever possible, the chiller
is allowed to perform its function: make
chilled water. In addition,
microcomputer controls allow for more
types of protection, such as over and
under voltage! Overall, the safety
controls help keep the building or
process running and out of trouble.
Safety Controls
A centralized microcomputer offers a
higher level of machine protection.
Because the safety controls are smarter,
they limit compressor operation in order
to avoid compressor or evaporator
failures, thereby minimizing nuisance
Integrated Comfort™
System Interface
Easy Interface to a Generic Building
Management System
™
shutdowns.Tracer Chiller Controls
directly senses the control variables that
govern the operation of the chiller:
motor current draw, evaporator
Controlling the air-cooled Series R chiller
with building management systems is
state-of-the-art, yet simple. Chiller inputs
include:
pressure, condenser pressure, and so
forth. When any one of these variables
approaches a limit condition at which
the unit may be damaged or shut down
on a safety,Tracer Chiller Controls takes
corrective action to avoid shutdown and
keep the chiller operating. It does this
through combined actions of
compressor slide-valve modulation,
electronic expansion-valve modulation,
and fan staging.Tracer Chiller Controls
optimizes total chiller power
• Chiller enable/disable
Stand-alone controls
• Circuit enable/disable
Interfacing to stand-alone units is very
simple: only a remote auto/stop for
scheduling is required for unit operation.
Signals from the chilled-water pump
contactor auxiliary, or a flow switch, are
wired to the chilled-water flow interlock.
Signals from a time clock or some other
remote device are wired to the external
auto/stop input.
• Chilled liquid set point
• Current limit set point
• Ice-making enable
Chiller outputs include:
• Compressor running indication
• Alarm indication (ckt 1/ckt 2)
• Maximum capacity
• Ice making
consumption during normal operating
conditions. During abnormal operating
RLC-PRC005-E4
38
Download from Www.Somanuals.com. All Manuals Search And Download.
Typical Wiring Diagram
Figure 9 — Compressor wiring diagram and control supply
RTAC 120-200
Figure 10 — Control diagram
RLC-PRC005-E4
39
Download from Www.Somanuals.com. All Manuals Search And Download.
Typical Wiring Diagram
Figure 11 — Compressor control diagram
RTAC 120-200
RLC-PRC005-E4
40
Download from Www.Somanuals.com. All Manuals Search And Download.
Typical Wiring Diagram
Figure 12 — Control wiring diagram
RTAC 120-200
Figure 13 — Option control diagram
RLC-PRC005-E4
41
Download from Www.Somanuals.com. All Manuals Search And Download.
Typical Wiring Diagram
Notes
5B53 Evaporator Refrigerant Level
Control
RTAC 120-200
Legend
1
2
3
Refer to PowerWiring Diagram
Refer to ControlWiring Diagram
Refer to Fans PowerWiring
Diagram
5B56 High PressureTransducer
5E51 Evaporator Heater
Item
Designation
5R3
Ambient Air Sensor
4
5
Remove the JumperWireWhen
Using the Remote Contact
Not Supplied with Night Noise
Setback (Option 19)
SuppliedWhen PED Approval
Factory Connected
Valid for RTAC 155-170-185-200
Valid for RTAC 185-200
Valid for RTAC 170 - 185 - 200
Valid for RTAC 200
Valid for RTAC 130- 140-155-170-
185-200
5R51 Leaving-Evaporator-Water
Temperature Sensor
5R52 Entering-Evaporator-Water
Temperature Sensor
5Y53 Electronic ExpansionValve
6K51 Chilled-water Pump Contactor
6M51 Chilled-Water Pump Motor
A2
Dual Analog Input/Output
Module
Fans Inverter Interface Module
4 Relays Output Module
2 Relays Output Module
Dual LowVoltage Binary Input
Module
Dual HighVoltage Binary Input
Module
DualTriac Output Module
Communication Module
Power Supply Module
Starter Module
A3
A4
A5
A6
6
7
10
11
12
13
14
6Q...
6S1
6S3
6S6
6S7
Circuit Breaker
A7
Chiller On/Off Switch
Stop/Manual Reset Switch
Circuit 1 Interlock Switch
Circuit 2 Interlock Switch
A8
A9
A10
A14
A53
A54
A55
K43
Q2
15
Valid for RTAC 140- 155- 170-
185- 200
6S43 Time Clock Contact
6S51 Chilled-water Pump On/Off
Switch
Local Human Interface
Remote Human Interface
IPC Buffer
6S43 Relay
Circuit Breaker
6S55 Ice-making Enable
6S56 Chilled-water Flow Switch
Customer Inputs
6X
CustomerWiringTerminal
E1
E2
E4
External Current Limit Set Point
External Chilled-Water Set Point
Ice-Making Enable Customer
Outputs
1B52 Evaporator HeaterThermostat
1 F3
1F25 Compressor Fuse
1F45 Fan Motor Fuse
1K4
1K21 CompressorTransition
Contactor
1K22 Compressor Line
Contactor
Optional
Item
1T3 Protection Fuse
Designation (circled items)
S2
Programmable Relays
Ice-Making Enable
Tracer™ Communication Link
B
MainTerminal Block and Fuses
Unit Disconnect Switch
Over/UndervoltageTransformer
Ground Fault Detection Relay
Evaporator HeaterThermostat
Low-Ambient Option
Communication Card
Remote Operator Interface
Night Noise Setback
Ice-Making Controls Card
External Setpoints Input Card
Evaporator Heaters
S8
Protection Relay
E
S10
J
K
TraneWiring
R
9
CustomerWiring
1K23 Star Compressor Contactor
1K24 Delta Compressor Starter
1K40 Fan Contactor
11
15
19
20
22
24
Component Identification
1Q5
Circuit Breaker
1Q10 Disconnect Switch
1Q45 Condenser Fan Motor Circuit
Breaker
Ex 1K20-1
Index
1R20 CompressorTransition Resistors
1T2
1T3
1T10 to 1T20 CurrentTransformers
1X
1X20 Compressor PowerTerminal
2M20 Compressor Motor
Control PowerTransformer
Over/UndervoltageTransformer
Attribute
Designation
Location
ControlTerminal
Location Numbering
Nothing = Control PanelWiring
2Y21 Compressor Unloading
SolenoidValve
2Y22 Compressor Loading Solenoid
Valve
2Y23 Compressor Unloading Step
SolenoidValve
3B30 Oil Control Sensor
3E30 Compressor Oil Heater
3E31 Oil Separator Heater
3R30 OilTemperature Sensor
3Y30 Oil Line SolenoidValve
4M40 Condenser Fan Motor
5B23 Low Pressure Control
5B51 High Pressure Control
1
2
3
4
5
6
7
Control Panel PowerWiring
Compressor
Oil Circuit
Fans
Heat Exchanger
CustomerWiring
Miscellaneous
RLC-PRC005-E4
42
Download from Www.Somanuals.com. All Manuals Search And Download.
Typical Wiring Diagram
Figure 14 — Condenser fan wiring diagram
RTAC 120-200
Figure 15 — Condenser fan control diagram
RLC-PRC005-E4
43
Download from Www.Somanuals.com. All Manuals Search And Download.
Job Site Data
Job Site Connections
Table J-1 — CustomerWire Selection
Unit without Disconnect Switch
Unit with Disconnect Switch
Wire Selection Size
Voltage 400/3/50
Wire Selection Size
to MainTerminal Block
to Disconnect Switch
Unit
Minimum cable
Maximum cable
Disconnect Switch
Minimum cable
Maximum cable
Size
size mm²
size mm²
Size (amps)
size mm²
size mm²
Standard
140
155
170
185
2x95 mm²
2x185 mm²
2x185 mm²
2x185 mm²
2x185 mm²
2x240 mm²
2x240 mm²
2x240 mm²
2x240 mm²
2x240 mm²
6x250 + 3x125
6x400 + 3x125
6x400 + 3x125
6x400 + 3x125
6x400 + 3x125
2x95 mm²
2x185 mm²
2x185 mm²
2x185 mm²
2x185 mm²
2x240 mm²
2x240 mm²
2x240 mm²
2x240 mm²
2x240 mm²
200
Standard Low Noise
140
155
170
185
2x95 mm²
2x185 mm²
2x185 mm²
2x185 mm²
2x185 mm²
2x240 mm²
2x240 mm²
2x240 mm²
2x240 mm²
2x240 mm²
6x250 + 3x125
6x400 + 3x125
6x400 + 3x125
6x400 + 3x125
6x400 + 3x125
2x95 mm²
2x185 mm²
2x185 mm²
2x185 mm²
2x185 mm²
2x240 mm²
2x240 mm²
2x240 mm²
2x240 mm²
2x240 mm²
200
High Efficiency
120
130
140
155
170
185
200
2x95 mm²
2x95 mm²
2x95 mm²
2x185 mm²
2x185 mm²
2x185 mm²
2x185 mm²
2x240 mm²
2x240 mm²
2x240 mm²
2x240 mm²
2x240 mm²
2x240 mm²
2x240 mm²
6x250 + 3x125
6x250 + 3x125
6x250 + 3x125
6x400 + 3x125
6x400 + 3x125
6x400 + 3x125
6x400 + 3x125
2x95 mm²
2x95 mm²
2x95 mm²
2x185 mm²
2x185 mm²
2x185 mm²
2x185 mm²
2x240 mm²
2x240 mm²
2x240 mm²
2x240 mm²
2x240 mm²
2x240 mm²
2x240 mm²
High Efficiency Low Noise
120
130
140
155
170
185
200
2x95 mm²
2x95 mm²
2x95 mm²
2x185 mm²
2x185 mm²
2x185 mm²
2x185 mm²
2x240 mm²
2x240 mm²
2x240 mm²
2x240 mm²
2x240 mm²
2x240 mm²
2x240 mm²
6x250 + 3x125
6x250 + 3x125
6x250 + 3x125
6x400 + 3x125
6x400 + 3x125
6x400 + 3x125
6x400 + 3x125
2x95 mm²
2x95 mm²
2x95 mm²
2x185 mm²
2x185 mm²
2x185 mm²
2x185 mm²
2x240 mm²
2x240 mm²
2x240 mm²
2x240 mm²
2x240 mm²
2x240 mm²
2x240 mm²
RLC-PRC005-E4
44
Download from Www.Somanuals.com. All Manuals Search And Download.
Electrical Data
Table E-1 — Electrical Data 400/3/50
Unit Wiring
Unit
Size
Number of Power
Connections
Maximum
Amps (1)
Starting
Amps (2)
Power
Factor
Disconnect
Switch Size
Compressor
Fuse Size (A)
Standard
140
155
170
185
1
1
1
1
1
398
437
475
525
574
469
494
532
596
645
0.88
0.88
0.88
0.88
0.88
0.88
0.88
0.88
0.88
0.88
0.88
0.88
0.88
0.88
0.88
0.88
0.88
0.88
0.88
0.88
0.88
0.88
0.88
0.88
0.88
0.88
0.88
6x250 + 3x125
6x400 + 3x125
6x400 + 3x125
6x400 + 3x125
6x400 + 3x125
250/250
315/250
315/315
400/400
400/400
200
Standard Low Noise
140
155
170
185
200
High Efficiency
120
130
140
155
170
185
200
1
1
1
1
1
383
420
456
504
551
454
477
513
575
622
6x250 + 3x125
6x400 + 3x125
6x400 + 3x125
6x400 + 3x125
6x400 + 3x125
250/250
315/250
315/315
400/400
400/400
1
1
1
1
1
1
1
330
369
407
444
484
534
583
398
440
478
501
541
605
654
6x250 + 3x125
6x250 + 3x125
6x250 + 3x125
6x400 + 3x125
6x400 + 3x125
6x400 + 3x125
6x400 + 3x125
250/250
250/250
250/250
315/250
315/315
400/400
400/400
High Efficiency Low Noise
120
130
140
155
170
185
200
1
1
1
1
1
1
1
315
352
388
423
461
509
557
383
423
459
480
518
580
628
6x250 + 3x125
6x250 + 3x125
6x250 + 3x125
6x400 + 3x125
6x400 + 3x125
6x400 + 3x125
6x400 + 3x125
250/250
250/250
250/250
315/250
315/315
400/400
400/400
Notes:
1. Maximum Compressors FLA + all fans FLA + control Amps
2. Starting Amps of the circuit with the largest compressor circuit including fans plus RLA of the second circuit including fans and control amps
RLC-PRC005-E4
45
Download from Www.Somanuals.com. All Manuals Search And Download.
Electrical Data
Table E-1 — Electrical Data 400/3/50
Motor Data
Option
Evaporator
Heater
Compressor (Each)
Fans (Each)
Control
Max Amps (1)
Starting Amps (2)
Circuit 1 Circuit 2
Fans Fuse
Size (A)
Quantity
Circuit 1 Circuit 2
Quantity kW
FLA
VA
A
kW
Standard
2
2
2
2
2
180
214
214
259
259
180
180
214
214
259
251
271
271
330
330
251
251
271
271
330
8
9
10
11
12
1.88
1.88
1.88
1.88
1.88
4.5
4.5
4.5
4.5
4.5
80
80
80
80
80
860
860
860
860
860
2.15
2.15
2.15
2.15
2.15
0.5
0.5
0.5
0.5
0.5
Standard Low Noise
2
2
2
2
180
180
180
214
214
259
251
271
271
330
330
251
251
271
271
330
8
9
10
11
12
0.85
0.85
0.85
0.85
0.85
2.6
2.6
2.6
2.6
2.6
80
80
80
80
80
860
860
860
860
860
2.15
2.15
2.15
2.15
2.15
0.5
0.5
0.5
0.5
0.5
214
214
259
259
2
High Efficiency
2
2
2
2
2
2
2
146
180
180
214
214
259
259
146
146
180
178
214
214
259
214
251
251
271
271
330
330
214
214
251
251
271
271
330
8
9
1.88
1.88
1.88
1.88
1.88
1.88
1.88
4.5
4.5
4.5
4.5
4.5
4.5
4.5
80
80
80
80
80
80
80
860
860
860
860
860
860
860
2.15
2.15
2.15
2.15
2.15
2.15
2.15
0.5
0.5
0.5
0.5
0.5
0.5
0.5
10
11
12
13
14
High Efficiency Low Noise
2
2
2
2
2
2
2
146
180
180
214
214
259
259
146
146
180
178
214
214
259
214
251
251
271
271
330
330
214
214
251
251
271
271
330
8
9
0.85
0.85
0.85
0.85
0.85
0.85
0.85
2.6
2.6
2.6
2.6
2.6
2.6
2.6
80
80
80
80
80
80
80
860
860
860
860
860
860
860
2.15
2.15
2.15
2.15
2.15
2.15
2.15
0.5
0.5
0.5
0.5
0.5
0.5
0.5
10
11
12
13
14
Notes:
1. Maximum FLA per compressor.
2. Compressors starting amps, Star delta start.
RLC-PRC005-E4
46
Download from Www.Somanuals.com. All Manuals Search And Download.
Dimensional Data
Figure 16
140-155-170 STD
120-130-140 HE
RLC-PRC005-E4
47
Download from Www.Somanuals.com. All Manuals Search And Download.
Dimensional Data
Figure 17
185-200 STD
185-200 HE
RLC-PRC005-E4
48
Download from Www.Somanuals.com. All Manuals Search And Download.
Dimensional Data
Liquid Chillers
1
2
3
4
5
6
7
8
9
EvaporatorWater Inlet Connection
EvaporatorWater Outlet Connection
Electrical Panel
Power Supply Inlet (155 X 400)
Rigging Eyes 045
OperatingWeight (Kg)
Refrigerant Charge (Kg) R134a
Oil Charge (Litres)
Minimum Clearance (For Maintenance)
10 Minimum Clearance (EvaporatorTubes
Removal)
11 Minimum Clearance (Air Entering)
12 Frame Post
13 Recommended ChilledWater Pipework Layout
Options
14 Power Disconnect Switch
15 Isolators
16 ChilledWater Pump Starter Panel
Figure 18
RLC-PRC005-E4
49
Download from Www.Somanuals.com. All Manuals Search And Download.
Mechanical Specifications
General
permanently-lubricated ball bearings
are provided. Standard units will start
and operate from -4 to 46°C [25 to
115°F] ambient.
electronic expansion-valve modulation,
Units are leak- and pressure-tested at
24.5 bars [350 psi] high side and 14 bars
[200 psi] low side, and then evacuated
and charged. Packaged units ship with a
full operating charge of oil and
fan sequencing, anti-recycle logic,
automatic lead/lag compressor starting,
and load limiting.The unit control
™
module, utilizing the Adaptive Control
Compressor and Lube Oil System
The helical-rotary compressor is semi-
hermetic, direct drive, 3000 rpm, with
capacity-control slide valve, a
load/unload valve, rolling element
bearings, differential refrigerant
microprocessor, automatically takes
action to avoid unit shutdown due to
abnormal operating conditions
refrigerant. Unit panels, structural
elements, and control boxes are
constructed of 1.5 to 3 mm [11 to 16
gauge] galvanized sheet metal and
mounted on a welded structural-steel
base. Unit panels and control boxes are
finished with baked-on powder paint,
and the structural-steel base is finished
with an air-dry paint RAL 1019.
associated with low refrigerant pressure,
high condensing pressure, and motor
current overload. Should the abnormal
operating condition continue until a
protective limit is violated, the unit will
be shut down. Unit protective functions
include loss of chilled-water flow,
pressure oil pump, and oil heater.The
motor is a suction-gas-cooled,
hermetically sealed, two-pole squirrel-
cage induction motor. Oil separator and
filtration devices are provided separate
from the compressor. Check valves in
the compressor discharge and lube oil
system, and a solenoid valve in the
lube system, are provided.
evaporator freezing, loss of refrigerant,
low refrigerant pressure, high refrigerant
pressure, reverse rotation, compressor-
starting and -running overcurrent, phase
loss, phase imbalance, phase reversal,
and loss of oil flow. A digital display
indicates chilled-water set point and
leaving-chilled-water temperature as
standard, while current-limit set point,
evaporator and condenser refrigerant
pressures, and electrical information are
an option. Both standard and optional
displays can be viewed on the unit
without opening any control panel
doors. Standard power connections
include main three-phase power to the
compressors, condenser fans, and
control power transformer, and optional
connections are available for the 230
volt single-phase power for freeze
protection on the evaporator heaters.
Evaporator
The evaporator is a tube-in-shell heat
exchanger design, with internally-finned
copper tubes roller-expanded into the
tube sheet.The evaporator is designed,
tested, and stamped in accordance with
the appropriate pressure-vessel code
approval.The evaporator is designed for
a waterside working pressure of 14
bars[200 psi]. Water connections are
grooved pipe forVictaulic couplings.
Each shell includes a vent, a drain, and
fittings for temperature control sensors,
and is insulated with 19mm [3/4 inch]
Armaflex II (or equivalent) insulation
(K=0.26). Optional evaporator heaters
with thermostats are provided to protect
the evaporator from freezing at ambient
temperatures down to -25°C [-13°F].
Refrigeration Circuits
Each unit has two refrigerant circuits,
with one helical-rotary compressor per
circuit. Each refrigerant circuit includes
a removable-core filter drier, liquid-line
shutoff valve, liquid-line sight glass with
moisture indicator, charging port, and
an electronic expansion valve. Fully
modulating compressors and electronic
expansion valves provide variable
capacity modulation over the entire
operating range. (Optional compressor
discharge and suction service valve).
Unit Controls
All unit controls are housed in a
weather-tight enclosure, with
Condenser and Fans
Air-cooled condenser coils have
aluminum fins mechanically bonded to
internally-finned seamless copper
tubing.The condenser coil has an
integral subcooling circuit. Condensers
are factory proof- and leak-tested at 35
bars [500 psi]. Direct-drive vertical-
discharge airfoil ZephyrWing condenser
fans are dynamically balanced.Three-
phase condenser fan motors with
removable plates to allow for customer
connection of power wiring and remote
interlocks. All controls, including
sensors, are factory-mounted and -
tested prior to shipment.
Microcomputer controls provide all
control functions including startup and
shutdown, leaving-chilled-water
temperature control, compressor and
Starters
Starters are housed in a weather-tight
enclosure with hinged doors to allow for
customer connection of power wiring.
Wye-Delta closed transition starters (33
percent of LRA inrush) are standard. An
optionalWye-Delta closed transition
starter (33 percent of LRA inrush) is
available on 400/3/50 volt units.
RLC-PRC005-E4
50
Download from Www.Somanuals.com. All Manuals Search And Download.
Literature Order Number
File Number
RLC-PRC005-E4
PL-RF-RLC-PRC-0005-E4-0800
New
Supersedes
Stocking Location
La Crosse
The Trane Company
An American Standard Company
wwwꢀtraneꢀcom
Since The Trane Company has a policy of continuous product improvement, it reserves the right to change
design and specifications without notice.
For more information contact
your local sales office or
e-mail us at [email protected]
Société Trane – Société Anonyme au capital de 41500 000 F – Siege Social: 1 rue des Amériques –
88190 Golbey – France – Siret 306 050 188-00011 – RSC Epinal B 306 050 188
Numéro d’identification taxe intracommunanutaire: FR 83 3060501888
Download from Www.Somanuals.com. All Manuals Search And Download.
|