™
VariTrac Changeover
BypassVAV
(Tracker System CB)
VAV-PRC003-EN
June 2004
Download from Www.Somanuals.com. All Manuals Search And Download.
Contents
Introduction ............................................................. 4
Comfort Made Simple ................................................................ 4
The Changeover BypassVAV Comfort Advantage ....................... 4
VariTrac Product Enhancements ................................................. 4
Features and Benefits........................................... 5–12
Overview ................................................................................... 6
Central Control Panel ................................................................. 7
Optional Operator Display .......................................................... 7
Communicating Bypass Controller ............................................. 8
Tracker System Integration ......................................................... 8
VariTrac Bypass Dampers ........................................................... 9
VariTrac Zone Dampers ............................................................ 10
Unit Control Module ................................................................ 10
Zone Sensors ...................................................................... 11–12
Application Considerations ................................ 13–24
Introduction .............................................................................. 13
Zoning Considerations.............................................................. 13
Effective Changeover BypassVAV System Design ................ 14–19
Pressure Dependent vs. Pressure Independent .......................... 20
Local Reheat Capabilities UsingVariTraneVAV Units ............. 20–21
Bypass Damper Operation ........................................................ 22
Building Pressure Control ......................................................... 23
ApplicationTip Summary .......................................................... 24
Selection Procedures ......................................... 25–28
VariTrac Dampers ................................................................25–26
Service Model Numbers........................................................... 27
Typical Bill of Materials ............................................................. 28
Electrical Data and Connections ......................... 29–34
Specifications ................................................... 35–38
Acoustics.......................................................... 39–40
Dimensions and Weights .................................... 41–46
Glossary ........................................................... 47–48
™ ® The following are trademarks or
registered trademarks of their respective
companies: Precedent, ReliaTel, Trace, Tracker,
VariTrac, VariTrane, Voyager.
VAV-PRC003-EN
3
Download from Www.Somanuals.com. All Manuals Search And Download.
Introduction
Comfort Made Simple
Trane has a long history of innovative
leadership in variable air volume (VAV)
technology.Trane introduced the:
The Changeover Bypass
VAV Comfort Advantage
VariTrac Product
Enhancements
Selected enhancements of the new
VariTrac product are listed below.
Packaged unitary systems offer a
popular and cost-effective method of
supplying conditioned air to light
commercial buildings.These systems
commonly have a constant-volume fan
with a fixed outside air damper and a
single thermostat.While a constant
volume system may meet the overall
thermal requirements of the space, only
a single thermostat is available.This
system may be insufficient in multiple-
space applications with independent
thermal load requirements.
• first fan-poweredVAV unit
• A new central control panel (CCP) with
improved system temperature and
pressure control functions
• first factory-commissioned DDC
controller
• An optional touch-screen operator
display for the CCP with built-in
time clock for easier system setup and
control
• first preprogrammedVAV controller
designed specifically for VAV
applications
Trane is now the leading manufacturer
ofVAV terminal units andVAV-related
products in the world.
• A communicating bypass controller
allows duct pressure and duct
temperature to communicate to the
system via a twisted shielded wire pair,
thus eliminating costly “home-run”
wiring
The introduction ofVariTrac™ in 1989
broughtVAV controls expertise into the
changeover bypass zoning market.
Changeover bypass systems use the
practicality and cost effectiveness of
constant volume unitary components
like packaged rooftop units, split
systems, or water-source heat pumps,
and simply add dampers and a central
control panel to coordinate the
components.This allows up to
24 individual sensors (thermostats) for
independent temperature control.
Trane is committed to continuous
product improvement and now
introduces a new generation ofVariTrac
controls.This latest generation retains
the functionality of the originalVariTrac
system with exciting new
• The next generation UCM zone
controller allows CO2 and occupancy
sensor inputs
• A digital display zone sensor for
simplified occupant control
enhancements, utilizing the best of
today’s technology.
Advanced Control Options
Some of theVariTrac intelligent system
control features are listed below.
• CO2-based demand control ventilation
resets the position of the HVAC unit
ventilation air damper when zone CO2
levels rise
Figure 1. TheVariTrac CCP maximizes
system efficiency and reliability by
coordinating the components of the
changeover-bypass system
Figure 2. TheVariTrac CCP with
optional touch-screen interface
simplifies system operation with
intuitive icon-driven design
• Zone-based HVAC unit control operates
heating and cooling only when zone
demand exists
• Discharge air control to avoid extreme
supply air conditions and maximize
equipment life and occupant comfort
• A simplified system-balancing process
is available via PC software or the
touch-screen interface
• Global zone temperature setpoint limits
simplify startup, commissioning, and
operator control
4
VAV-PRC003-EN
Download from Www.Somanuals.com. All Manuals Search And Download.
Features and
Benefits
Figure 3. VariTrac changeover-bypass VAV system components
VariTrac Central Control
Panel with touchscreen
interface
HVAC
Unit
Bypass
Damper
Communicating
Bypass
Controller
VariTrac Zone
Damper
Zone Sensor
VariTrac Central Control Panel (CCP)
The CCP is the system level controller which
coordinates and monitorsVariTrac system
Bypass Damper w/Wire and Quick Connect
A round or rectangular damper ducted
between the HVAC supply and return ducts. It
is easily connected via a “quick-connector”
which provides quick and consistent field wiring.The bypass
damper is modulated by the CCP to maintain required system
static pressure.
operation, including HVAC system supply
pressure and airflow, heating/cooling mode,
supply air temperature, all zone temperatures and setpoints,
fan mode, economizer position (when paired with CO2
demand controlled ventilation), time-of-day scheduling, zone
grouping logic, system override mode (after hours
operation), and much more.
Communicating Bypass Controller
A single enclosure with duct temperature sensor,
static pressure sensor, and communicating
controller (UCM) which easily mounts on the
supply ductwork.The UCM provides power to
drive the bypass damper actuator.
HVAC Unit
VariTrac changeover bypass systems
Rooftop
operate withTrane and non-Trane products,
including split systems, packaged rooftop
units, and water-source heat pumps.These
systems are generically referred to as HVAC
(heating, ventilating, and air conditioning)
units.When combined with aTrane
packaged rooftop with ReliaTel™ controller,
wiring, installation, and system startup
efficiency is maximized by connecting with a
simple twisted shielded wire pair.
Zone Sensor
Zone sensors (sometimes referred to as
thermostats) measure space temperature and
report it to the zone damper controller (UCM).
Five models are available to satisfy varied aesthetic and
application preferences.
Split System
WSHP
5VAV-PRC003-EN
5
Download from Www.Somanuals.com. All Manuals Search And Download.
Features and
Benefits
How the System Works
TheVAV terminal unit controller
communicates zone temperature
information to a central control panel
(CCP). The CCP also gathers
information from the system, including
duct static pressure and supply-air
temperature.The CCP determines zone
heating or cooling needs using voting
(or polling) logic, then requests heating
or cooling from the HVAC unit.The CCP
directs the HVAC unit to provide
ventilation air to high-occupancy areas
(demand control ventilation) or free-
cooling when the outside air
Overview
A changeover-bypassVAV system
commonly consists of an HVAC unit
with a constant-volume supply fan, and
direct-expansion (DX) cooling.This
combined system has the ability to
“change” to the heating mode or
cooling mode, depending on individual
zone comfort requirements. A heating
coil or a gas-fired heater and an outside
air damper are possible options.
Changeover-bypassVAV is a comfort
system developed for light commercial
applications. A changeover-bypassVAV
system responds to changing cooling
or heating requirements by varying the
quantity or volume of air delivered to
each zone. Each zone has a thermostat
for individual comfort control. An
HVAC unit delivers a constant volume
of air to the system. As the volume of
air required by the zone changes,
excess supply air is directed to the
return duct via a bypass duct and
damper. (See Figure 3 for typical
A temperature sensor in each zone
communicates information to an
electronic controller on theVAV
terminal unit.The controller then
modulates the zone damper open or
closed, supplying heating or cooling air
to the zone.
temperature falls below the
temperature setpoint (economizer
control).
system components.)
A changeover-bypassVAV system
combines the comfort benefits ofVAV
with the cost effectiveness and
simplicity of packaged, constant-
volume unitary equipment.
Auto Changeover
“Auto changeover” refers to the ability
of the system to automatically change
between the heating and cooling
modes.
The HVAC unit delivers a constant
volume of supply air to the system. In
order to maintain duct static pressure, a
bypass duct and damper are required
to bypass (detour) air not required in
the zones.
In a changeover-bypassVAV system,
the CCP determines whether the HVAC
unit should heat or cool by polling the
temperature of the individual zones. It
then compares the zone temperatures
to the space temperature setpoints. If
the supply air does not meet the criteria
for the heat or cool mode called for, the
CCP sends a signal to the HVAC unit to
change the system to the opposite
mode.
6
VAV-PRC003-EN
Download from Www.Somanuals.com. All Manuals Search And Download.
Features and
Benefits
Figure 5.VariTrac central control panel
Figure 6.VariTrac central control panel
with optional operator display
Central Control Panel
TheVariTrac central control panel (CCP)
serves as the central source of
communications and decisionmaking
between the individual zones and the
HVAC unit.The CCP determines system
heating and cooling modes and
coordinates the system supply air
temperature and static pressure to
satisfy building thermal load
conditions. Inputs to the CCP include
24VAC power and communication
wiring to the zone dampers and bypass
control.
Binary inputs consist of priority
shutdown and occupied/unoccupied
modes. Heating, cooling, and the HVAC
unit fan on split systems and non-Trane
HVAC units can be controlled through
binary outputs on an accessory relay
board. If aTrane rooftop air conditioner
with factory-installed electronic
controls is used, the CCP can control
heating, cooling, and the fan with a two-
wire communication link tied to an
interface board mounted in the rooftop.
It can also display status information
from the electronic controller in the
rooftop. (See Figure 4.)
CCP Feature Summary
• Communicates with up to 24VAV unit
control modules (UCMs)
Optional Operator Display
The optional operator display is a
backlit, liquid crystal display with touch-
screen programming capability.
• Makes optimal heating and cooling
decisions based on setpoint and
temperature information received from
individual zones
The operator can access system and
zone status through the display and
perform basic setup of zoneVAV UCMs
and CCP system operating parameters.
The display allows an installer to
commission aVariTrac system without
using a PC. The operator display has a
seven-day time clock for stand-alone
scheduling capability.
• Automatically calibrates all dampers,
significantly reducing labor-intensive
and costly field calibration
• Windows-based PC software simplifies
setup and control
• Provides diagnostic information for all
system components via the operator
display or PC software
Operator Display Feature Summary
Figure 4. A screen representation
from the central control panel
illustrating system status
• Backlit LCD touch-screen display for
easy operator interface
• Provides status and diagnostic
information forTrane HVAC units
equipped withTrane ReliaTel or UCP
electronic controls
• Combination of icon- and menu-based
navigation provides intuitive operation
• Provides a level of control for the daily
operator, and a second level for
commissioning and service
• Three levels of security are available to
protect system settings
• Seven-day time clock for stand-alone,
time-of-day scheduling
VAV-PRC003-EN
7
Download from Www.Somanuals.com. All Manuals Search And Download.
Features and
Benefits
• 365-day scheduling function and the
flexibility of up to 10 schedules
Communicating Bypass
Controller
The communicating bypass controller
is a single control enclosure with the
following integrated devices included:
Tracker System Integration
TheVariTrac system can be fully
integrated with the new family of
Tracker building controls. ATracker
building management system can
manage multipleVariTrac systems from
a single control point.
• Assign all systems to a single
schedule, if desired, for simplified
schedule changes
• Exception scheduling feature for easy
management of vacations and holidays
• integrated UCM board
• static pressure sensor
Tracker System Summary
• Automatically adjusts for daylight
savings time and leap year
• discharge air temperature sensor
• Controls up to 10VariTrac systems
from a singleTracker panel for easy
building operation
The communicating bypass controller
directly controls the bypass damper
and communicates duct conditions to
the central control panel via a simple
twisted shielded wire pair.
• Remote communications capability
via modem for system programming
and control
• LCD touch-screen operator display or
Tracker PC software interface provides
single-point building management by a
local operator
Quick Connect
Minimizes field wiring labor and
assures wiring consistency
Figure 8.Tracker System Architecture
DuctTemperature Sensor
The supply air temperature sensor
allows the CCP to control heating and
cooling stages to maintain the supply
air temperature. Supply air
temperature setpoints can be edited
through the operator display or
PC software.
Static Pressure Sensor
The static pressure sensor measures
duct static pressure and positions the
bypass damper(s) to maintain the static
pressure setpoint.
Figure 7. Communicating bypass
controller side view and 3-D view
Up to 24
VariTrac or
VariTrane
Dampers
DuctTemperature
Sensor
Static Pressure
Sensor
Quick
Connect
8
VAV-PRC003-EN
Download from Www.Somanuals.com. All Manuals Search And Download.
Features and
Benefits
Rectangular Bypass Damper Summary
Round Bypass Damper Summary
VariTrac Bypass Dampers
• Rectangular bypass dampers are
available in sizes 14 x 12, 16 x 16,
20 x 20, and 30 x 20 inches
• Round bypass dampers are available
with inlet diameters 6, 8, 10, or 12 inches
Bypass dampers are non-
communicatingVariTrac dampers and
include an integrated fully-modulating
24VAC electric actuator.
• Heavy gage galvanized steel cylinder
with rolled bend for high structural
integrity and corrosive resistance
• Formed heavy gage galvanized steel
frame, mechanically joined with linkage
concealed in the side channel
Field wiring errors are reduced with a
quick-connect harness that plugs into
the communicating bypass controller.
• Metal-to-metal blade seal provides tight
shutoff for low leakage
• Air linkage is minimized with an
opposed blade design with stainless
steel side seals
Dampers are nominally rated up to
1800–2400 fpm at 1.75" of static
pressure, depending on size.
• Aerodynamic blade design provides a
constant torque for stable operation at
high velocity
• Damper casing is 16 inches long and
constructed of heavy gage galvanized
sheet metal with S cleats on the inlet
and outlet for easy installation
For damper performance information,
seeTable 2.
• Factory-installed, direct-coupled, fully-
modulating 24VAC actuator
• Rated up to 2400 fpm at 1.75" of static
pressure
• Blades are six-inch nominal width,
heavy gage galvanized steel
• A blade rotation stop feature prevents
over-rotation of the blades in the fully
open position
• Factory-installed, direct-coupled, fully-
modulating 24VAC actuator
• Rated up to 3000 fpm at 2" of static
pressure
VAV-PRC003-EN
9
Download from Www.Somanuals.com. All Manuals Search And Download.
Features and
Benefits
Rectangular Zone Damper
VariTrac Zone Dampers
Unit Control Module
• Rectangular dampers are available in
sizes 8 x 12, 8 x 14, 8 x 16, 10 x 16,
10 x 20, and 14 x 18 inches
VariTrac zone dampers are fully-
A unit control module (UCM) is the
individual zone controller for the
VariTrac air damper and is mounted on
each zone damper.The unit controller
continually monitors the zone
modulating, pressure-dependentVAV
devices. The dampers control zone
temperature by varying the volume of
air flowing into a space. EachVariTrac
damper has a control box with aVAV
control board and actuator enclosed.
The dampers are designed to operate in
static pressures up to 1.75 in. wg.
• Heavy gage G90 galvanized steel
frame assembled by a mechanical
joining process
temperature to maintain space
temperature.The UCM varies the
damper position as needed to meet
zone setpoints and communicates
current space requirements and
system operating modes to the CCP.
• Single-ply, heavy gage G90 galvanized
steel blades
• Linkage has high impact ABS gears,
and is 3" nominal diameter
Round Zone Damper
• Round dampers are available in 6, 8, 10,
12, 14, and 16 inch diameters
The UCM can also control local heat.
Local heat may be duct- or space-
mounted, and can be staged electric,
pulse-width modulating electric, and
modulating or two-position staged
hot water.
• Factory-installed 24VAC direct-coupled
actuator
• Heavy gage galvanized steel cylinder
with rolled bend for high structural
integrity and corrosive resistance
• Rated up to 2400 fpm at 2" of static
pressure
• Metal-to-metal seal provides tight
shutoff
• 90° blade rotation for a wide control
range and stable operation
• Aerodynamic blade design provides
constant torque for stable operation at
high velocity
• Rated up to 2000 fpm at 1.75" of static
pressure
Figure 9.VariTrac rectangular and round zone dampers with UCMs
10
VAV-PRC003-EN
Download from Www.Somanuals.com. All Manuals Search And Download.
Features and
Benefits
Zone Sensors
Figure 10. DDC zone sensors
Figure 11. DDC zone sensor with LCD
DDC Zone Sensor
Digital Zone Sensor Summary
DDC Zone Sensor with LCD
The direct digital control (DDC) zone
sensor is an uncomplicated, reliable
electro-mechanical room sensor. No
programming is required and most
sensors contain an internal
• Displays setpoint adjustment and space
temperature in °F or °C
The DDC zone sensor with LCD (liquid
crystal display or digital) is compatible
withVariTraneVAV andVariTrac
controllers.
• Simple, two-button control of space
setpoint
• Setpoint control and room temperature
display can be optionally disabled
communications jack.
Models are available with combinations
of features such as override (on-cancel)
buttons and space-mounted setpoint.
• Includes button for timed override and
a cancel feature for after-hours system
operation
Four sensor variations are available:
• Sensor only (no communications jack)
• Sensor with override buttons
• An easily accessible communications
jack is provided forTrane portable edit
terminal devices
• Sensor with temperature setpoint only
• Nonvolatile memory stores last
programmed setpoints
• Sensor with temperature setpoint and
override buttons
• For field balancing, maximum and
minimum airflow or position can be
overridden from the sensor
VAV-PRC003-EN
11
Download from Www.Somanuals.com. All Manuals Search And Download.
Features and
Benefits
Figure 12. Wall-mounted CO2 sensor
Figure 15. Auxiliary temperature
sensor
Figure 14. Zone occupancy sensor
Zone Occupancy Sensor
AuxiliaryTemperature Sensor
The energy-saving zone occupancy
sensor is ideal for zones having
intermittent use during the occupied
mode.The sensor sends a signal to the
VAV controller upon detection of
movement in the coverage area.The
VAV system then changes the zone
from occupied standby mode to
occupied mode.
The auxiliary temperature sensor is
used with any UCM damper control.
The sensor allows the operator to
monitor duct temperature or air
temperature leaving a reheat device at
the zone damper.This sensor is used
for automatic changeover of a UCM
damper when not using a CCP.The
auxiliary temperature sensor is ideal for
remote monitoring and diagnostics
from the CCP operator display.
Figure 13. Duct-mounted CO2 sensor
Occupancy Zone Sensor Summary
• Compatible withVariTraneVAV and
VariTrac controllers
AuxiliaryTemperature Sensor Summary
• Thermistor sensing element 10,000
Ohms @ 77°F
• Used with zone damper UCM for
controlling the occupied standby
function
CO2 Sensor
Wall- and duct-mounted carbon dioxide
(CO2) sensors are designed for
demand-controlled ventilation zone
applications.The sensor is compatible
withVariTraneVAV andVariTrac
controllers. TheTrane CO2 sensors
measure carbon dioxide in parts-per-
million (ppm) in occupied building
spaces. Carbon dioxide measurements
are used to identify under-ventilated
building zones. Outdoor airflow
• Wiring connection 8 feet, 18 awg
• Ceiling-mount PIR occupancy sensor
detects motion over an adjustable
range up to 360 degrees
• Sleeving for wire leads is acrylic #5 awg
grade C rated @ 155C
• Single detector covers up to 1200
square feet. For areas larger than 1200
square feet, multiple sensors can be
wired in parallel
• Adjustable time delay avoids nuisance
change of state on loss of detection
increases beyond design ventilation
rates if the CO2 exceeds specified levels.
• Adjustable sensitivity
• SPDT isolated contacts connect to
UCM input
CO2 Zone Sensor Summary
• Use with the UCM CO2 input for
demand control ventilation
• Silicone-based NDIR sensor technology
for long-term stability
• Measurement range of 2000 ppm CO2
input with an output of 0–10Vdc
• Wall-mount transmitter is compact and
aesthetic in appearance
• Optional zone return duct-mount
transmitter is available
12
VAV-PRC003-EN
Download from Www.Somanuals.com. All Manuals Search And Download.
Application
Considerations
Zoned unitary systems, such as
changeover-bypassVAV, divide thermal
zones into smaller comfort zones. Each
comfort zone has a damper and zone
sensor that controls the amount of
heated or cooled air delivered to the
zone. A central system controller
monitors the status of each zone
damper and zone sensor.The controller
then makes the decision to heat or cool
for the HVAC unit.
Zoning Considerations
Consider the following two questions
when evaluating your HVAC system
design:
Introduction
TheVariTrac system is a changeover-
bypassVAV system. One fan supplies
either warm air for heating or cool air
for cooling. It is typically applied in
small buildings which use unitary
heating/cooling air conditioners.These
buildings need the simplicity and low
cost of unitary equipment, but more
than one comfort control zone (one
zone temperature sensor) for each air
conditioner.
Will the building occupants be
comfortable? A system designed
with a single-zone HVAC unit and one
zone sensor provides comfort to
occupants near the zone sensor.
However, occupants in perimeter areas
or interior rooms may be too hot or too
cold.
Individual comfort zones served by a
common HVAC unit (part of the same
thermal zone) can require heating and
cooling at the same time. In a
changeover-bypassVAV system, the
unit alternately provides warm and cool
air in an attempt to satisfy the needs of
all comfort zones.This is effective if the
simultaneous calls for heating and
cooling exist for short time periods
only. Wide temperature variations may
occur if some comfort zones need
heating for extended periods of time
while others need cooling.
When isVariTrac a good HVAC system
choice?To help answer this question,
several important application concepts
and considerations are discussed
below.
Will comfort be consistent from
room to room and area by area? A
building is normally divided into
thermal zones for increased comfort
control and energy savings. Each
thermal zone should have a dedicated
HVAC unit. For optimum comfort, each
thermal zone should be further divided
into comfort zones.
Figure 16. System design affects
occupancy comfort
Choosing the number and location of
thermal and comfort zones is critical in
planning an effective system. Some
things to consider in the design
process include:
Least
Single Zone Building
One thermal and
one comfort zone
Some comfort zones require special
consideration because of their use or
location. An example is the foyer or
reception area of an office building.
These areas often have wide variations
in thermal load because of glass
(relative to other areas of the building)
and frequently-opened exterior doors.
Another example is an interior storage
room with the need for ventilation but
little or no heating or cooling.These
zones can significantly influence
efficient operation and comfort levels
throughout the building.
• Geographic location
• Orientation of the building to the sun
• Prevailing winds
Thermal Zoned Building
Multiple thermal zones
each with one
• Wall construction (glass, insulation,
building materials)
comfort zone
• Building layout, design, occupancy and
occupancy pattern throughout the day
and year
Thermal and
Comfort Zoned Building
Multiple thermal zones
each with multiple
• Activities in each zone
Preferably, areas such as these are
designed as separate thermal zones
with dedicated HVAC units. However,
this may be impractical or costly.
Instead, use fan-powered variable-
volume terminal units, or units with
local reheat.
comfort zones
Most
VAV-PRC003-EN
13
Download from Www.Somanuals.com. All Manuals Search And Download.
Application
Considerations
cooler, casual attire, such as golf shirts,
light slacks, skirts, or shorts?
Figure 17. Design process steps
Effective Changeover
Bypass VAV System Design
Gather as much usage information as
possible before designing a system.
This can be challenging, particularly
when finishing out tenant spaces.
However, usage information is crucial
to the selection of heating and cooling
equipment, building zoning, and duct
layout.
Step 1. Define Occupant
Comfort Needs
Involves architect,
engineer(s), and building owner
Unitary zoning systems feature low
first cost and quick, easy system design
and equipment selection. The system is
simple, but it is essential that key
elements are considered during the
design process.
This section offers a system design
sequence and discusses application
considerations that, when followed,
help avoid system control and
operational instabilities.
Step 2. Define Thermal Zones
Involves engineers
Several publications provide guidance
for properly assessing indoor space
comfort. An example is ASHRAE
(American Society of Heating,
and contractors
Refrigerating and Air Conditioning
Engineers) Standard 55,Thermal
Environmental Conditions for Human
Occupancy. This standard specifies the
combinations of indoor space
environments and personal factors
(activity and clothing) that will produce
thermal environmental conditions
acceptable to 80 percent or more of the
occupants within a space. Standard 55
addresses temperature, thermal
radiation, humidity, and air speed.
Suggested design steps for unitary
zoning systems are summarized in
Figure 17.
Step 3. Determine
Comfort Zones
Step 1. Define occupant comfort needs
Involves engineers,
The design process begins by
considering the needs of building
occupants and intended building use.
contractors, and building owner
y What is the intended use of the
building? Is the building usage
primarily office space? Is there a
manufacturing operation? Are there
areas that have special requirements
such as computer or electronic rooms,
video/television production, training
facilities, etc.?
Step 4. Size Heating/
Cooling Equipment
Involves engineer(s) and contractors
ASHRAE Standard 62,Ventilation for
Acceptable Indoor Air Quality, is
another source for occupant comfort
and safety issues regarding indoor air
quality. The standard recommends that
relative humidity be maintained
between 30 and 60 percent.This
maximizes comfort and reduces the
potential for microbial growth.
y What physical activity level is
expected of the occupants? Seated
occupants require different indoor
temperatures for comfort than
continuously moving occupants. An
example may be a building with a mix
of office space and light assembly or
manufacturing.
Step 5. Size Zone and
Bypass Damper Units
Involves engineer(s) and contractors
Step 2. Define theThermal Zones
A thermal zone is an area with similar
load profiles and occupant comfort
requirements. A thermal zone can be a
single room, an area, a group of rooms
or an entire building. Defining the
thermal zones within a building is
crucial to designing a comfortable
indoor environment. Each thermal zone
is conditioned by a single heating and/
or cooling unit.The load of the thermal
zone determines the size of the heating
and cooling unit.
Step 6. Design the Duct system
Involves engineer(s) and contractors
y Where will the occupants be
located and at what times? Pay
particular attention to areas with
intermittent use, such as conference,
training, and lunchrooms.
Step 7. Air Diffuser
Selection and Placement
Involves engineer(s) and contractors
y How are the occupants expected
to dress? Give consideration to how
the building occupants will dress.Will
they dress in traditional business attire,
such as long-sleeved shirts or blouses,
ties, and jackets? Or, will they dress in
14
VAV-PRC003-EN
Download from Www.Somanuals.com. All Manuals Search And Download.
Application
Considerations
Cost vs. Comfort
Building Example 1 (See Figure 18.)
of all areas. It also is not a good
candidate for a zoning system because
of the simultaneous need for heating
and cooling.
First cost can be reduced by limiting
the number of thermal zones.
Unfortunately, this may impact the
thermal flexibility of the system, and
result in zone comfort issues. Let’s take
a closer look at this important system
decision known as “thermal zoning.”
Consider an existing single-story office
building which is small, poorly
insulated, with many large windows
and few interior partitions. On a clear,
cool spring day, the entire building is
cool in the morning so heating is
A similar building with good insulation
and fewer shaded windows, on the
other hand, may be a good candidate
for a single thermal zone with individual
comfort zones. The reduction in wall
glass reduces the solar effect on the
building resulting in all areas of the
building having similar load profiles
throughout the day. In this case, the
building has a single thermal zone and
is a good candidate for one HVAC unit.
Individual comfort zones (zone
required. By afternoon, however, the
south side of the building being
Characteristics of a building which can
influence thermal load are:
influenced by the solar load, is warm
and requires cooling. The north side
remains shaded and continues to
require heating. This situation results in
a simultaneous requirement for heating
and cooling for extended periods. Due
to the varying loads throughout the
building, controlling the building as a
single thermal zone (with a single HVAC
unit) cannot satisfy the comfort needs
• Orientation of the building (North,
South, East,West)
• Amount and thermal resistance (R-
value) of glass (walls, skylights, etc.)
• Expected occupancy within the area
• Interior partitions and doors
dampers) will be needed to assure
comfortable conditions throughout the
zone.
• Varying loads from equipment or
processes
Let’s examine a few building examples
and discuss the zoning criteria of each.
Figure 18. Building Example 1 illustrates a small, poorly insulated office on the left, and improved design on the right.
Men's
Restroom
Women's
Restroom
Men's
Restroom
Women's
Restroom
T
Thermostat
T
Thermostat
Poor Design Elements
Improved Design Elements
• Multiple zone thermostats
• Shaded windows
• One thermostat for space
T
Thermostat
T
Thermostat
• Glass windows with no shading
• Minimal wall insulation
• Insulated walls
Shaded
Windows
Glass windows
with no shading
Insulated
Walls
Minimal wall
insulation
VAV-PRC003-EN
15
Download from Www.Somanuals.com. All Manuals Search And Download.
Application
Considerations
Building Example 2 (See Figure 19.)
Step 3. Define the Comfort Zones
Consider a strip mall in the spring or fall
with stores that face both east and
west. In the morning, the east side of
the building gets full sun and warms up
while the west side is shaded and
requires heating. In the afternoon, the
east side of the building may need heat
and the west side cooling. Because of
the thermal load variation throughout
the day, this building will not remain
comfortable if designed with a single
heating and cooling unit.
A primary criteria for defining a thermal
zone is that it will not require
Outside
Doors
Coffee
Shop
simultaneous heating and cooling. An
HVAC unit with one fan is limited to
supplying either heating or cooling.
Most applications with larger thermal
zones however will have varying
thermal needs throughout the zone.
These small variations can easily be
addressed by properly defining comfort
zones.
Jewelry
Store
Poor Design Elements
• One thermostat for entire space
• One HVAC unit
Electronics
Store
Pharmacy
A comfort zone is an area within a
thermal zone that is controlled by a
zone damper.The amount of
conditioned (heated or cooled) air
entering the space varies. This is in
response to a space thermostat.
ASHRAE Standard 55 recommends
limiting indoor temperature variations.
Temperature variations of less than 2°F
in 15 minutes or 4°F in an hour.
Deviations from this recommendation
will cause discomfort in 80 percent of
the occupants. Zoning systems can
greatly reduce temperature variations
caused by shifting occupancy and solar
load conditions in large thermal zones.
Toy
Store
On the other hand, comfort in this
building could be improved by dividing
the building into two thermal zones
(two HVAC units), one serving the east
exposure and the other serving the
west. Even with the two systems,
individual occupant comfort is not
necessarily assured. Interior
partitioning, varying schedules and
number of occupants within the
thermal zone will drive differing
amounts of heating and cooling. The
issues related to comfort zoning are
addressed in the next section.
Clothing
Store
N
Figure 19. Building Example 2
illustrates a poorly insulated store
design (above) and an improved design
(below)
Coffee
Shop
Jewelry
Store
Outside
Doors
Improved Design Elements
• Two thermal zones
• Two HVAC units
Electronics
Store
Pharmacy
Toy
Store
Clothing
Store
N
16
VAV-PRC003-EN
Download from Www.Somanuals.com. All Manuals Search And Download.
Application
Considerations
Step 4. Sizing HVAC Equipment
Calculating thermal zone diversity:
1. Determine the instantaneous peak
(or block) load for the thermal zone.
This information is output from load
analysis software such asTrane
TRACE® or manually calculated.
Once the building heating and cooling
loads are known and the thermal zones
have been determined, the heating and
cooling equipment can be selected.
Each thermal zone requires a separate
heating and cooling unit. As discussed
earlier, unitary zoning systems typically
use packaged DX rooftop units or DX
split systems. These systems are
offered as heating and cooling units or
heat pumps.
2. Calculate the sum of the peak loads
for each of the comfort zones within
the thermal zone.
3. The diversity factor is then calculated
by dividing the instantaneous peak
load value by the sum of the peak
loads.
When selecting the heating and cooling
unit for a thermal zone, load diversity
within the zone should be considered to
minimize equipment size and therefore
reduce system first cost and operating
expense. Load diversity is defined as
the ratio of the instantaneous peak
loads (block load) to the sum of the
peak loads within the thermal zone. In
recognizing load diversity, the designer
acknowledges that all areas of the
Instantaneous
Diversity
Factor
Peak Load
=
Sum of Peaks
The heating and cooling equipment will
never be called upon to provide more
capacity than was determined by the
instantaneous peak load value.
Consequently, the equipment capacity
can be reduced by the diversity factor.
thermal zone will not require maximum
cooling or heating at the same time.
Table 1. Diversity example
While using diversity may reduce the
size of the HVAC unit, the zone
ductwork, dampers, and diffusers must
be sized for the individual zone peak
loads.The main trunk duct may be sized
based on the HVAC unit airflow.
Zone
Time
Peak Load
Interior 3 p.m. in mid-July
7.5 tons
3.0 tons
2.5 tons
4.0 tons
2.5 tons
19.5 tons
North
East
South
West
5 p.m. in mid-July
9 a.m. in June
4 p.m. in November
5 p.m. in September
Sum of Peak Loads
Figure 20. Diversity example
Note:The sum of blocks loads = 17.5 tons
and occurs at 5 p.m. in mid-July.
Wedge Zone
Building Perimeter
Diversity = 17.5 = 90%
______
19.5
North Zone
Glass
East Zone
West Zone
Windows
Interior Zone
South Zone
VAV-PRC003-EN
17
Download from Www.Somanuals.com. All Manuals Search And Download.
Application
Considerations
Step 6. Designing the Duct System
Dampers located immediately adjacent
to the zone or diffuser may need to be
sized at a lower velocity to avoid sound
and airflow delivery issues.
Step 5. Size Zone and Bypass
Damper Units
Low pressure, low velocity air
distribution systems, such as zoned
unitary systems, are usually designed
using the equal friction method.
Although static regain is the duct
design method of choice for medium
and high velocity variable air volume
systems, the added complexity is
difficult to justify with smaller unitary
systems. In addition, the low operating
velocity of most unitary systems makes
the pressure available to “regain”, small
and inconsequential.
Sizing zone damper is relatively
straightforward. The volume of airflow
(in cfm or L/s) for each comfort zone
should be known from the load
analysis. The designer must select the
duct velocity to be used for the system.
Recommended zone damper velocities
are 1000 to 1600 feet per minute (fpm)
when applied at the branch level.
Sizing dampers in this range will
minimize damper cost, reduce the risk
of excessive noise, and ensure
Bypass dampers are typically sized for
80 percent of HVAC unit airflow.
Recommended velocities are 1600 to
2000 fpm. Bypass dampers should be
located as close to the HVAC unit as
possible. (See Bypass Damper
Operation for additional details.)
Note:VariTrac systems are designed
for HVAC unit static pressures up to
1.75" w.c.
adequate zone modulation/temperature
control.
With the equal friction method, ducts
are sized for a constant pressure loss
per given length of duct and fitting(s).
Where low noise levels are especially
critical, the system velocity can be
reduced by enlarging the entering and
leaving ductwork, damper unit or
adding duct liner. A characteristic of the
equal friction method that must be
considered however, is that there is no
natural provision for equalizing
pressure drops in the branch sections.
This results in each branch duct, and
thus the damper units, having different
entering static pressure and airflow
characteristics.
Figure 21. Hand balancing dampers
Hand
Balancing
Damper
A robust system and zone unit
controller, like theTraneVariTrac
system, will compensate for system
static changes.The use of manual (or
hand) balancing dampers in the
branches will also ensure that airflow is
appropriately distributed to each
diffuser. (See Figure 21.)The overall
effect is improved acoustical and
system performance.
VariTrac
Damper
Supply
Duct
18
VAV-PRC003-EN
Download from Www.Somanuals.com. All Manuals Search And Download.
Application
Considerations
Step 7. Air Diffuser Selection and
Placement
• When the average glass plus wall heat
loss is less than 250 Btuh/linear foot,
the slot diffuser may be located in
the center of the room with one or
more slots blowing toward the
perimeter wall.
Return Diffusers
Slot-style return diffusers offer some
acoustical advantages over perforated
grille styles. Perforated drop-in grilles
typically offer little attenuation effect
and thus allow sound in the plenum to
break out into the occupied space. This
is a problem in areas near the unitary
heating and cooling unit. Improved
ceiling aesthetics is also an advantage
of slot return diffusers in jobs where
slot supply diffusers are used. Within
the occupied space, they blend with the
slot supply diffusers.
Supply Diffusers
Many types of supply air diffusers are
used in variable air volume systems.
Performance, and ultimately space
comfort, can vary greatly depending on
the diffuser selected. Although
constant-volume diffusers will provide
air to the space at full cfm, as air
volume delivered to the space
• With glass and wall heat loss between
250 and 450 Btuh/linear foot, diffusers
should be positioned to blow toward
the window and the perimeter wall with
a collision velocity of 75 to 150 fpm. If
using a continuous glass design,
decreases, so does performance.
Linear slot diffusers are recommended
for mostVAV systems.
position diffusers every four feet.
• If heat loss exceeds 450 Btuh/linear
foot, radiation or floor mounted heated
air will be required to offset the high
wall heat loss.
A general rule of thumb is for the return
air openings to equal the total area of
the supply openings. If the ceiling is not
tight, such as a drop-in ceiling, the
return openings can be reduced by up
to 50% of the supply air openings.
Linear supply air slot diffusers are
designed to properly mix variable air
delivery of both heated and cooled air.
Linear slot diffusers supply conditioned
air which “hugs” the ceiling rather than
“dumps” air downward on the
To promote good air distribution, return
diffusers should be positioned to
minimize supply air short-circuiting to
the return slot. The returns should be
either perpendicular to the supply
airflow or parallel and offset from the
supply diffusers.
occupants.This airflow characteristic is
known as the “coanda effect”. The
throw and aspiration characteristics of
slot diffusers help to evenly distribute
the air throughout the room or space.
Locate linear slot diffusers in the center
of the room with the discharge air
pattern perpendicular to a perimeter
wall. To maximize diffuser
performance, placement in which air
discharge patterns converge at right
angles should be avoided. (See Diffuser
section of theVariTrane catalog (VAV-
PRC008-EN) for additional diffuser
placement and performance
Figure 22. Proper return diffuser orientation
recommendations.)
The throw characteristics of diffusers is
well-documented. Slot diffusers should
be positioned so that the velocity of the
air striking an obstruction (such as a
wall or column) is 75 feet per minute
(fpm) or less. If airstreams from two
diffusers collide, the collision velocity
should not exceed 150 fpm. Higher
collision velocities result in
uncomfortable drafts in the lower levels
of the room.
In heating applications, linear slot
diffusers must be placed to offset heat
loss and prevent downdraft problems
along perimeter walls. The following
techniques have been proven by test
and experience:
VAV-PRC003-EN
19
Download from Www.Somanuals.com. All Manuals Search And Download.
Application
Considerations
Example 2
Local Reheat Capabilities
Using VariTrane VAV Units
Pressure Dependent vs.
Pressure Independent
Pressure-Dependent
Parallel fan powered units with
local heat applied help solve
VariTrane pressure independentVAV
units are a simple way to upgrade the
zoneVAV capabilities on aVariTrac
system.The main advantage is the
ability to integrate units with either hot
water or electric reheat. Here are
application examples whereVAV units
may enhance your design:
problems in difficult areas to control
like lobbies and vestibules. The parallel
fan provides local heat to an individual
zone without relying on the main HVAC
unit’s heat or supply fan. This allows
greater flexibility for mixing zones on a
VariTrac system.
A pressure-dependentVAV control
sequence uses the space temperature
sensor to directly control the position
of the zone damper.The actual airflow
delivered to the space is a by-product of
this damper position and the static
pressure in the duct upstream of the
zone damper.
VariTrane units with integral electric or
hot water heat are available as:
Example 1
Series fan-powered VAV units
work well in conference rooms and
training rooms. Series fan-powered
units supply constant air volume to the
space.This provides excellent air
movement in the space regardless of
the internal load requirements. Hot
water or electric heat are integral to the
unit and optionally available to temper
the air at partial load conditions.
Ventilation air is a fixed-damper
position and must be measured and set
during the commissioning process.
• single-duct
• parallel fan-powered
• series fan-powered
Pressure-Independent
A pressure-independentVAV control
scheme directly controls the actual
volume of primary air that flows to the
space. An airflow-measuring device in
theVAV terminal unit makes this
possible.The position of the modulating
device is not directly controlled and is a
by-product of regulating the airflow
through the unit. Because the airflow
delivered to the space is directly
controlled, it is independent of inlet
static pressure.
Figure 25. Parallel fan-poweredVAV
terminal unit
Figure 24. Series fan-poweredVAV
terminal unit
Figure 23. Single-ductVAV unit is
available with integral electric or hot
water heat
20
VAV-PRC003-EN
Download from Www.Somanuals.com. All Manuals Search And Download.
Application
Considerations
Local Reheat Capabilities
Non-VAV Options
Figure 26. Trane hydronic wall fin
This is ideal for spaces with large
windows or perimeter heat losses
which exceed 450 Btuh per linear foot.
Trane wallfin is available with various
grilles and paint options and can be
pedestal or wall-mounted
TheTraneVariTrac Zone Controller has
built-in capabilities and logic to control
a number of reheat sources.The
previous page discussed how a
VariTraneVAV unit with reheat can
solve application issues by providing
local reheat.
Local Reheat
Let’s investigate a few other alternatives
which will provide local reheat, and
result in exceptional zone temperature
control.
Local reheat is particularly important
when an HVAC unit is in cooling mode.
Cold air is delivered to all zones
whether it is needed or not. Setting the
minimum cooling position to zero may
not be practical based on ventilation
and/or general airflow requirements. In
this case, local reheat options which
can be controlled by the standard
VariTrac zone controller include:
Figure 27. Trane electric wall fin
• hydronic wall fin or convector unit with
either modulating or two position
control. (See trane.com for a full line of
wall fin and convector products.)
• electric wall fin with multi-stage control
• duct-mounted electric heater with
multi-stage control
• duct-mounted hot water coil with either
modulating or two-position control.
(See trane.com for a full line of duct-
mounted water coils.)
VAV-PRC003-EN
21
Download from Www.Somanuals.com. All Manuals Search And Download.
Application
Considerations
Proper operation requires
Bypass Damper Operation
When zone dampers modulate airflow
to the spaces, static pressure changes
in the supply duct system. High
pressure in a duct system creates
excessive noise and causes poor
comfort control. Low pressure results
in insufficient airflow to the spaces.
consideration of all aspects of bypass
design and location.The bypass
dampers and ductwork should be sized
and located according to the following
general recommendations:
y Avoid turbulence by locating the
bypass two to three equivalent duct
diameters downstream of the HVAC
unit discharge.
The HVAC unit in a changeover bypass
system is constant volume and does
not modulate supply airflow.
Changeover-bypassVAV systems
support variable-air-volume operation
in the zones by using a bypass duct
with a motorized damper and a
pressure-sensing device.
y Locate the static pressure and supply
air sensors in the main supply duct
upstream of the bypass.
y Locate the bypass before the zone
dampers (as close to the HVAC unit as
possible) to avoid comfort or noise
issues.
As duct pressure rises above the static
pressure setpoint, the bypass damper
begins to open. Conversely, when static
pressure falls below the static pressure
setpoint, the bypass damper begins to
close until the static pressure setpoint
is reached.The optimal static pressure
setpoint is automatically determined
upon system calibration.
y Size the bypass damper to maintain the
minimum required airflow through the
HVAC unit (usually 80 percent of the
total design cfm)
y Provide adequate access for servicing
the damper.
Figure 28. Changeover bypass variable-air-volume system
Rooftop
Micro Control
Heating and
and Supply
Temperature Sensors
Return
Air
Duct
Bypass
Damper
Supply
Air Duct
22
VAV-PRC003-EN
Download from Www.Somanuals.com. All Manuals Search And Download.
Application
Considerations
In buildings that have a ducted return to
the fan, bypass air pressurizes the
return air duct. As the return air duct
pressure rises, the air flows out of the
building through the barometric relief
damper in the rooftop unit. Excess
bypass air flows into the zones through
the return air grilles.
• Use an exhaust fan with no exhaust
damper. Energize the exhaust fan when
the outdoor air damper opens beyond
25 percent to remove excess outside air
from the building. This method is used
with some rooftop units and is
Building Pressure Control
Comfortable, efficient building
operation requires that the air pressure
inside the building be slightly higher
than the atmospheric pressure outside
of the building.That is, the building is at
a “positive” pressure with respect to
the outside environment. If the indoor
pressure is too low (negative), the
doors may be hard to open and cold air
may leak in through construction
cracks, causing drafts and cold floors.
On the other hand, if the indoor
pressure is too high, the doors may
stand open and the supply air flow to
the zones may decrease, decreasing
comfort.
effective, affordable, and easy to install.
• Use a back draft damper to prevent
airflow to the return air plenum or
grilles. When bypass airflow
Using the following suggestions will
help maintain building pressurization
control:
pressurizes the return duct, the back
draft damper closes. Pressure in the
HVAC unit return air inlet rises, causing
the rooftop barometric relief damper to
open.This method is less effective
because the rooftop barometric relief
damper is sized for a portion of the total
airflow, not 100 percent of airflow which
may be seen in economizer mode. As
the economizer drives to the maximum
position, the building usually becomes
over-pressurized.
• Use an exhaust fan with a modulated
exhaust damper to remove air from the
return air plenum or duct. Energize the
exhaust fan as the outside air damper
opens beyond the minimum position.
Sense building static and maintain
building air pressure at a slightly
positive level by modulating the
Fixed Outside Air Dampers
Achieving appropriate building
pressure is simple in a system with a
constant volume supply fan and fixed
outdoor air damper.To maintain a
slightly positive building pressure, size
the exhaust fans to remove slightly
less air than is introduced through the
outdoor air damper.
exhaust damper position.
Figure 29. Changeover bypass with an economizer.Without proper building
pressurization, bypass air may be forced out of the return duct.
Outside Economizer or Demand-
ControlledVentilation Systems
Fan
Economizer
If the system resets the quantity of
outdoor air in response to occupancy
demands (demand-controlled
Outdoor
ventilation), or uses an outdoor air
economizer, undesirable changes in
building pressure may result. As the
quantity of outdoor air intake varies,
the system must exhaust a similar
quantity of air to avoid over or under
pressurizing the building.
Air Damper
Return
Damper
Bypass
Return
Opening
When using an economizer in a
changeover-bypassVAV system under
low cooling load conditions (reduced
airflow to the zones), the bypass
damper opens to maintain the static
pressure setpoint and airflow through
the supply fan. As the outside air
damper opens to provide economizer
cooling, the return air damper closes.
In buildings with a ceiling plenum
return, the bypass air dumps into the
ceiling plenum since it can no longer
return to the fan. The plenum pressure
rises and plenum air enters the zones
through the return air grilles.
VAV-PRC003-EN
23
Download from Www.Somanuals.com. All Manuals Search And Download.
Application
Considerations
ApplicationTip Summary
Tip 1. Use comfort zones
Tip 4. Place dampers properly
Units serving thermal zones can
provide greater comfort by dividing the
thermal zones into “comfort zones”
using a changeover-bypass-VAV
system.
The bypass damper should be ducted
between the supply and the return of
the unit as close to the unit as possible,
and should be sized to handle 80% of
the total system CFM.
Tip 2. Create thermal zones
Tip 5. Control building pressure
Create thermal zones which minimize
simultaneous heating and cooling
requirements.This will avoid
unnecessary changeover of the system
and maximize comfort. As an example,
a computer room would be a poor
candidate for one comfort zone of a
changeover-bypass-VAV system
because it will rarely, if ever, require
heating.
It may be necessary to provide a
modulating means to control building
pressure, especially when economizers
or demand-controlled ventilation are
used in conjunction with a changeover-
bypass-VAV system.
Tip 6. Use fan-poweredVAV boxes
Consider using fan-poweredVAV boxes
to provide local heat or to enhance
comfort levels in some of your zones.
Conference rooms, or zones with high
wall heat loss are ideal for either series
or parallel units.
Tip 3. Use local heat
Zones which vary thermally by
requiring more heat than the other
zones or require heat when the HVAC
unit is in cooling mode should use local
heat. Local heat in the form ofVariTrane
VAV units with electric or hot water
heat, or wallfin, or convectors, or duct-
mounted coils.The standardVariTrac
controller is capable of controlling the
heat based on zone temperature
demands.
24
VAV-PRC003-EN
Download from Www.Somanuals.com. All Manuals Search And Download.
Selection
Procedures
Zone Damper Selection Procedures
VariTrac Dampers
Refer to the sizing chart inTable 2 for
zone dampers. Follow down the first
column in the table for the desired
velocity.Then follow across for the cfm
(air volume) of a givenVariTrac damper
based on that velocity.
VariTrac dampers are typically installed
onVariTrac changeover bypass variable
air volume (VAV) systems.VariTrac is
ideal when applied to buildings which
use unitary HVAC units.The damper
units have controls, which vary air
volume and maintain appropriate duct
static pressure in the system to make
sure that all zones receive the right
amount of airflow.
Note: If the cfm exceeds the damper
range, increase the damper size.
Minimum airflow damper position
should be set to10 percent in heating or
cooling when a zone duct temperature
sensor is used for stand-alone control.
In addition, when controlling duct-
mounted electric reheat coils, cooling
minimum airflow should meet the
heating unit manufacturer’s guidelines.
(See Application Considerations,
Maximum System Effectiveness for
more details.)
Trane offers fourVariTrac dampers:
• Round zone dampers with DDC
controls
• Rectangular zone dampers with DDC
controls
• Round bypass dampers
• Rectangular bypass dampers
Figure 30. Round and rectangular zone and bypass dampers
Bypass Damper Selection Procedures
To determine the cfm capacity required
for a bypass damper, calculate
80 percent of the cfm capacity of
the heating/cooling unit.
Example: If the rooftop capacity is 1200
cfm, the bypass damper should be
sized for 1200 x .8 = 960 cfm.
To determine the size of the damper,
locate the recommended velocity and
cfm for the bypass damper.
Since a 10" round bypass damper at
1800 fpm provides 980 cfm, a 10"
damper at 960 cfm would be slightly
less than 1800 fpm, but still within the
1600 to 2000 fpm recommended
velocity. A 10" bypass damper is
selected.
VAV-PRC003-EN
25
Download from Www.Somanuals.com. All Manuals Search And Download.
Selection
Procedures
Table 2. Damper sizing charts
Round Zone Damper
Capacity (cfm), Dimensions, and Weights
Round Bypass Damper
Capacity (cfm), Dimensions, Blades, andWeights
Size
600
6"
120
8"
210
10"
330
12"
470
14"
640
16"
840
Size
600
6"
120
8"
210
10"
330
12"
470
800
160
280
435
630
800
160
280
435
630
855
1115
1000
200
235
350
545
785
1000
200
235
350
545
785
1070
1280
1500
1710
20"
1395
1675
1955
2235
20"
1200
420
655
940
1200
420
655
940
1400
275
490
765
1100
1255
1415
1570
16"
1400
275
490
765
1100
1255
16"
1600
315
560
875
1600
315
560
875
1800
350
630
980
Length
Ship Wt
12"
12"
16"
2000
Length
ShipWt
390
700
12"
1090
16"
11 lbs
12 lbs
17 lbs
18 lbs
27 lbs
31 lbs
12"
11 lbs
12 lbs
17 lbs
18 lbs
Rectangular Zone Damper
Capacity (cfm), Dimensions, Blades, andWeights
Rectangular Bypass Damper
Capacity (cfm), Dimensions, Blades, andWeights
Size
600
8 x 12
398
531
663
796
928
1061
2
8 x 14
464
8 x 16
531
10 x 16
663
10 x 20
829
14 x 18
1045
1393
1741
2089
2437
2785
4
Size 14 x 12 16 x 16 20 x 20 30 x 20
600
800
696
928
1061
1415
1769
2122
2476
2830
3183
3537
3
1658
2211
2763
3316
3869
4421
4974
5527
3
2487
3316
4145
4974
5803
6632
7461
8290
3
800
619
707
884
1105
1382
1658
1934
2211
3
1000
1161
1393
1625
1857
2089
2321
2
1000
774
884
1105
1326
1547
1769
3
1200
1200
928
1061
1238
1415
2
1400
1400
1083
1238
2
1600
1600
1800
Blades
ShipWt
2000
8 lbs
10 lbs
12 lbs
14 lbs
16 lbs
18 lbs
Blades
ShipWt
16 lbs
21 lbs
29 lbs
40 lbs
Notes:
1. Recommended velocity for zone dampers is between 1000 and 1600 fpm. Use
good standard design practices (such as location of duct).
2. Recommended velocity for bypass damper is between 1600 and 2000 fpm.
26
VAV-PRC003-EN
Download from Www.Somanuals.com. All Manuals Search And Download.
Selection
Procedures
Service Model Numbers
V
1
A
2
D
3
A
4
0
5
6
6
A
7
0
8
0
9
P
0
10
11
Digits 1, 2, 3, 4 – ProductType
Digit 7 – Controls (all factory downloaded
and verified)
VADA =VariTrac Air Damper
A = Bypass with actuator
VARA = Rectangular Air Damper
B = Damper only control (Changeover)
Digits 5, 6 –VariTrac Damper Size
C = Damper plus up to 3 stages of
Electric
06 = 6" Damper
08 = 8" Damper
D = Damper plus 1-stage Normally-
open hot water
10 = 10" Damper
12 = 12" Damper
E = Damper plus 1-stage Normally-
closed hot water
14 = 14" Damper
F = Not used
16 = 16" Damper
G = No controls (Actuator Only)
H = Not used
1R = 14 x 12 bypass damper
2R = 16 x 16 bypass damper
3R = 20 x 20 bypass damper
4R = 30 x 20 bypass damper
5R = 8 x 12 zone damper
6R = 8 x 14 zone damper
7R = 8 x 16 zone damper
8R = 10 x 16 zone damper
9R = 10 x 20 zone damper
AR = 14 x 18 zone damper
J = Bypass for rectangular damper
with actuator
Digits 8, 9, 10, 11
00P0 = Design sequence
VAV-PRC003-EN
27
Download from Www.Somanuals.com. All Manuals Search And Download.
Selection
Procedures
Typical Bill of Materials
Device Name
Function in System
Number Required
Central control panel
w/optional operator display
Controls the HVAC system and provides local
operator interface
One per HVAC unit/VariTrac system
(thermal zone)
A
B
C
Table 3. TypicalVariTrac
changeover-bypassVAV
system components
Communicating bypass
controller
Sends supply duct temperature and pressure to
the central control panel
One per VariTrac system
Bypass damper(s)
Supply air duct volume control to maintain
appropriate static pressure in the duct
One or two per system as needed to
bypass from supply to return
airstream
VariTrac dampers
Zone sensors
Varies air volume to the space to control comfort
One per comfort zone
D
E
F
Sends space temperature and setpoint
information to the zone damper controller
One per comfort zone (DDC sensor
w/ LCD requires 4 VA)
CCP power supply
24V power for the central control panel
The CCP must have a dedicated 24V
power supply
Zone damper power supply(s)
24V power for the zone dampers
Power supplies may be shared; each
zone requires 10VA (plus the load of
optional outputs)
G
H
J
Trane rooftop communications
interface
Allows the CCP and Trane rooftop controller to
communicate with each other via simple twisted
shielded wire pair
One per controlled Trane rooftop
with ReliaTel controller
Optional relay board
Provides 24V control of any non-communicating
HVAC unit
One per controlled non-
communicating HVAC unit
H
Figure 31. Typical
components in a
changeover-bypass
VAV system
B
C
G
D
F
E
A
&
J
28
VAV-PRC003-EN
Download from Www.Somanuals.com. All Manuals Search And Download.
Electrical Data
and Connections
Figure 32. Central control panel field wiring
Termination Board TB2
Line voltage
24 Vac
Comm4 UCM
Comm4 UCM
+
+
Comm4
link
Comm4
link
-
-
Splice
Comm5 UCM
Tracker
A
A
Comm5
link
Comm5
link
B
B
Splice
Figure Notes:
1 All customer wiring must be in
accordance with national, state,
and local electrical codes.
2 Trane recommends a dedicated
transformer for 24 Vac power.
3 Do not apply voltage to the priority
shutdown and occupancy inputs.
4 Example of Comm5 communication
link wiring. See product-specific
literature for Comm5 wire connection
details.
VAV-PRC003-EN
29
Download from Www.Somanuals.com. All Manuals Search And Download.
Electrical Data
and Connections
Figure 33. Relay board wiring
Relay Board TB2
TB1
1
24 VAC CLASS 2 COOL UNIT
24 VAC CLASS 2 HEAT UNIT
SUPPLY FAN
2
3
4
2 HEAT/2COOL
COOL 1
HEAT PUMP
COMP 1
COOL 2
HEAT 1
HEAT 2
COMP 2
5
6
AUX HEAT
REV VALVE
7
8
9
SPARE
OUTSIDE AIR
HEAT/COOL
OR ICS
10
11
12
13
14
15
Figure 34.Typical relay board wiring
Relay Board TB2
HVAC Unit
TB1
24V Terminal Strip
1
2
3
4
5
R
G
Y1
Y2
W1
W2
6
7
30
VAV-PRC003-EN
Download from Www.Somanuals.com. All Manuals Search And Download.
Electrical Data
and Connections
Figure 35. UCM Comm LinkWiring
C O M M 4
C O M M 5
P R E S S
P R E S S
P R E S S
T B 3 – 6
T B 3 – 5
T B 3 – 3
T B 3 – 2
T B 3 – 1
T B 1 – 1
T B 1 – 2
T B 4 – 1
T B 2 – 6
T B 2 – 5
J 8
T B 2 – 4
T B 2 – 3
J 7
J 9
T B 2 – 2
T B 2 – 1
J 1 0
J 1 1
T B 3 – 6
T B 3 – 5
T B 3 – 3
T B 3 – 2
T B 3 – 1
T B 1 – 1
T B 1 – 2
T B 4 – 1
T B 2 – 6
T B 2 – 5
J 8
T B 2 – 4
T B 2 – 3
J 7
J 9
T B 2 – 2
T B 2 – 1
J 1 0
J 1 1
T B 3 – 6
T B 3 – 5
T B 3 – 3
T B 3 – 2
T B 3 – 1
T B 1 – 1
T B 1 – 2
T B 4 – 1
T B 2 – 6
T B 2 – 5
J 8
T B 2 – 4
T B 2 – 3
J 7
J 9
T B 2 – 2
T B 2 – 1
J 1 0
J 1 1
VAV-PRC003-EN
31
Download from Www.Somanuals.com. All Manuals Search And Download.
Electrical Data
and Connections
Figure 36. Communicating bypass controller wiring
CLOSE
CCW OPEN
COM HOT
CW
TO NEC CLASS 2
24V TRANSFORMER
LOAD 8 VA
ACTUATOR
(WITHOUT ACTUATOR)
ACTUATOR
W–HOT
SPARE
BK–OPEN
CONNECTOR
R–CLOSE
STATIC
PRESSURE
2.
24VAC
PORT
GND 24V
ACT
BIP
FEMALE PLUG END
OF BYPASS SENSOR
ASSEMBLY CABLE
J1
1
HIGH
ADDRESS
SWITCH
J3
R
MALE PLUG END
LOCATED ON DDC\UCM
CONTROL BOARD
+
D.D.C.\U.C.M.
CONTROL BOARD
BK
VOUT
–
G
1
+
–
–
+
+
–
PRESSURE
TRANSDUCER
YEL
GRN
ZONE GND SET A/CO2
GND
D.D.C.\U.C.M.
CONTROL BOARD
AIR SUPPLY TEMP SENSOR
COMMUNICATING SENSOR/BYPASS
CONTROL BOX
SHIELDED
TWISTED PAIR
COMMUNICATIONS
WIRING
32
VAV-PRC003-EN
Download from Www.Somanuals.com. All Manuals Search And Download.
Electrical Data
and Connections
Figure 37. UCMWiring
24 VAC 60 HZ
NEC CLASS–2
8.
CONTROL CIRCUIT
R (HOT)
5.
(TB1–1) 24VAC
O (COMMON)
(TB4–1) BIP
R
G
W
GR (NC CONTACT)
(TB1–1) 24VAC
BK (RETURN)
(TB1–2) GND
Y
NOT CONNECTED
W
OPTIONAL FIELD INSTALLED
OCCUPANCY SENSOR
DAMPER
ACTUATOR
WIRING
3RD STG.
TO J11
HEATER STAGE
2ND STG.
CONTACTOR(S)
24 VAC, 12 VA
MAX/COIL
TO J10
TO J9
TO J8
1ST STG.
HOT
OPTIONALL FIELD INSTALLED
ELECTRIC HEATER
ACT
BIP
GND 24V
J1
1
W (HOT)
PROP. WATER
VALV
24VAC
TO J8
TO J9
BK (CLOSE)
R (OPEN)
TB3–2
TB3–1
TB1–2
TB3–3
TB2–5
TO J10
12 VA MAX
ADDRESS
SWITCH
J3
1
D.D.C. \ U.CM.
CONTROL BOARD
TB1–1
TB2–6
OPTIONAL FIELD INSTALLED
PROPORTIONAL WATER VALVE
1
2
1
2
3
1
2
+
+
+
–
–
–
ON–OFF
WATER VALVE
24VAC
TB1
TB2
TB3
7.
YEL
GRN
TO J9
TO J8
DIGITAL
ZONE SENSOR
OPTIONAL FIELD
12 VA MAX
A/CO2
ZONE GND SET
GND
INSTALLED DIGITAL ZONE SENSOR
OPTIONAL FIELD INSTALLED
ON–OFF WATER VALVE
TB2–6
TB3–1
TB2–5
TB3–2
TB3–3
D.D.C. \ U.CM.
CONTROL BOARD
6.
9.
(TB1–1) 24V
24V
GND
OUT
+
0
V
5
4
3
2
1
CO2
SENSOR
(TB3–6) GND
ZONE SENSOR
W/ COMM. JACK
REMOTE MTD.
SHIELDED
TWISTED PAIR
(TB3–5) A/CO2
OPTIONAL FIELD INSTALLED
CO2 SENSOR
3.
4.
COMMUNICATIONS
WIRING
OPTIONAL FIELD
INSTALLED DIGITAL ZONE SENSOR
TB3–5
TB3–6
NOTES:
Factory Wiring
Field Wiring
Optional or Alternate Wiring
1.
6.
OPTIONAL FIELD INSTALLED
AUX TEMP SENSOR
2. ¼" quick connect required for all field connection.
3. Zone sensor terminals 4 and 5 require shielded twisted pair wiring for communications jack equipped zone sensor options
4. No additional wiring required for night setback override (on/cancel).
5. The optional binary input connects between TB4–1 (BIP) and 24VAC (HOT) from transformer. The binary input can be
reconfigured as an occupancy input via the communications interface.
6. As shipped, the aux input is configured as an AUX input. The AUX input can be reconfigured as a CO2 sensor input via
the communications interface.
7. S terminal not to be used with this applications.
8. If unit mounted transformer is not provided, polarity from unit to unit must be maintained to prevent permanent damage
to control board. If one leg of 24VAC supply is grounded, then ground leg must be connected to TB1–2.
9. Shields of communication wiring should be tied together and insulated.
VAV-PRC003-EN
33
Download from Www.Somanuals.com. All Manuals Search And Download.
Electrical Data
and Connections
Figure 38. DDC zone sensor with LCD
Digital Sensor
Board
TB1–1
24V
–2
GND
J1
1
ACT
BIP
GND 24V
TB2–1
ADDRESS
SWITCH
Digital Sensor
J3
1
Temperature
–2
D.D.C.\U.C.M.
CONTROL BOARD
Terminal Connection Chart
Field Wire
Color Code
Sensor
UCM
Signal Common
–2
TB1–1 TB1–1
TB1–2 TB1–2
TB2–1 TB3–1
TB2–2 TB3–2
TB2–3 TB3–3
+
–
+
–
+
–
Setpoint
S
YEL
GRN
ZONE GND SET A/CO2
GND
TB3–1
1
Communications
+ (High)
–2
TB3–1
TB2–5
TB3–2 TB2–6
Communications
– (Low)
Optional
Field Mounted
Aux. Temp. Sensor
Figure 39. DDC zone sensor wiring
J1
1
ACT
BIP
GND 24V
ADDRESS
SWITCH
J3
1
D.D.C.\U.C.M.
CONTROL BOARD
+
–
+
–
+
–
S
YEL
GRN
ZONE GND SET A/CO2 GND
1
Night Setback
Override Option
TB1–1
Sensor
Optional
Field Mounted
Aux. Temp. Sensor
Temperature
–2
PB1
ON
Mechanical Sensor
Terminal Connection Chart
Signal Common
–3
Field Wire
Warmer
Cooler
Sensor
Adjustable
Setpoint Option
UCM
Color Code
Setpoint
–4
2
TB1–1 TB3–1
TB1–2 TB3–2
TB1–4 TB2–5
TB1–5 TB2–6
Comm 1
Communications (Optional)
Figure Notes:
+ (High)
Communications
Jack
–5
Shield must be spliced with other
communication link shields
1
2
Communications (Optional)
– (Low)
Shield must be cut back and taped
at sensor.
34
VAV-PRC003-EN
Download from Www.Somanuals.com. All Manuals Search And Download.
Specifications
Table 4. Zone sensor options
Figure 40.VariTrac DDC zone
sensors
Number of
Zone Sensor Options
RequiredWires1
Sensor only (no communications jack available)
Sensor with adjustable setpoint
Sensor with night setback override and cancel buttons
2
3
2
Sensor with adjustable setpoint and night setback
override and cancel buttons
3
Sensor with digital display and adjustable setpoint and
night setback override and cancel buttons
52
Notes:
1 Most sensors have a communication jack available as an option. If these jacks are used, they must be
wired to the UCM using an approved two-conductor, shielded cable.The communication jacks do not
need to be wired for the system to operate properly.
2 Three wires are required for sensor connections.Two wires are required for 24-Vac power connection.
VAV-PRC003-EN
35
Download from Www.Somanuals.com. All Manuals Search And Download.
Specifications
Figure 41.VariTrac central control
panel components
Table 5.VariTrac control panel specifications
Power Requirements
20–30 Vac, 60 Hz, single-phase, 30 VA minimum. Class 2 transformer
required.
Operating Environment
Storage Environment
Control Enclosure
Mounting
32°–122°F (0°–50°C), 10–90% relative humidity, non-condensing
-40°F–122°F (-40°–85°C), 5–95% relative humidity, non-condensing
NEMA 1 resin enclosure, plenum rated
Mount directly on wall surface or mount on recessed 4" x 4"
(101.6 mm x 101.6 mm) conduit box.
Weight
2.5 lbs. (1.13 kg)
Communication Link Wiring Communication link wiring must be Level 4 22-AWG twisted shielded
pair wire with stranded tinned copper conductors. Maximum total wire
length is 3,500 ft (1066.8 m). Wire must meetTrane specifications.
Binary Input
Voltage (provided by VariTrac CCP): 10–14 Vdc
Current (provided by VariTrac CCP): 10–14 mA
Note: Only “dry” contacts may be attached to binary inputs.
UL Approval
The VariTrac Central Control Panel is UL approved.
Memory Backup
Upon a power loss, all operator-edited data stored in the VariTrac Central
Control Panel is maintained permanently.
Figure 42.VariTrac UCM round
damper
Table 6. UCM damper specifications
Power Requirements
20–30Vac, 60Hz, single-phase 10VA minimum (plus load of optional heat
outputs). Class 2 transformer required.
Operating Environment
Storage Environment
Control Enclosure
32°–120°F (0°–49°C). 10–90% relative humidity, non-condensing
-50°–200°F (-46°–93°C). 5–95% relative humidity, non-condensing
NEMA 1 metal enclosure, plenum rated
Communication Link Wiring Communication link wiring must be Level 4 22-AWG twisted shielded
pair wire with stranded tinned copper conductors. Maximum total wire is
3,500 ft (1066.8 m). Wire must meetTrane specifications.
36
VAV-PRC003-EN
Download from Www.Somanuals.com. All Manuals Search And Download.
Specifications
Figure 43. Communicating bypass
controller
Table 7. Communicating bypass control assembly specifications
Power Requirements
20–30 Vac, 60Hz, single-phase 15 VA minimum. Class 2 transformer
required.
Operating Environment
Storage Environment
Control Enclosure
32°–120°F (0°–49°C). 10–90% relative humidity, non-condensing
-50°–200°F (-46°–93°C). 5–95% relative humidity, non-condensing
NEMA 1 metal enclosure, plenum rated
Communication Link Wiring Communication link wiring must be Level 4 22-AWG twisted shielded
pair wire with stranded tinned copper conductors. Maximum total wire is
3,500 ft (1066.8 m). Wire must meetTrane specifications.
Table 8. Zone occupancy sensor specifications
Figure 44. Zone occupancy sensor
Power Supply
24 Vac or 24 Vdc, 10%
0.88 VA @ 24 Vac, 0.722 VA @ 24 Vdc
1 A @ 24 Vac or 24 Vdc
32°–131°F (0°–55°C)
-22°–176°F (-30°–80°C)
0–95% non-condensing
1200 sq. ft (365.8 m)
22 ft (6.7 m)
Maximum VA Load
Isolated Relay Rating
OperatingTemperature
StorageTemperature
Humidity Range
Effective Coverage Area
Effective Coverage Radius
Housing Material
ABS plastic
Ideal for zones with intermittent
occupancy like conference rooms).
When occupied, the zone reverts to
unoccupied setpoints to save energy.
VAV-PRC003-EN
37
Download from Www.Somanuals.com. All Manuals Search And Download.
Specifications
Figure 45. DDC zone sensor with
digital display
Table 9. Digital zone sensor specifications
Thermistor Resistance Rating
Accuracy at 77°F (25°C)
Setpoint Resistance Rating
Display ZoneTemperature Range
Display Setpoint Range
OperatingTemperature
StorageTemperature
Humidity Range
10kW at 77° (25°C)
0.4°F (0.2°C)
500 Ohms at 70°F (21.2°F)
40°–99°F (10° to 35°C)
50°–90°F (10° to 32°C)
0°–120°F (–18° to 49°C)
–20°–130°F (–29° to 54°C)
5–95% non-condensing
24 VAC
Power Supply
Maximum VA Load
4 VA
Housing Material
Rigid vinyl
Figure 46. CO2 duct sensor
Table 10. CO2 sensor specifications
Duct
Wall
Dimensions
3 1/8" × 3 1/8" × 7 3/4"
4 1/4" × 3 1/8" × 1 7/16"
OperatingTemperature
Accuracy at 77°F (25°C)
Measuring Range
23°–113°F (–5°–45°C)
59°–95°F (15°–35°C)
<
(30 ppm CO2 + 3% of reading)
<
(40 ppm CO2 + 3% of reading)
0-2000 parts per million (ppm)
Recommended Calibration Interval 5 years
Response Time
1 minute (0–63%)
StorageTemperature
Humidity Range
Output Signal (jumper selectable)
Resolution of Analog Outputs
Power Supply
–4°–158°F (–20°–70°C)
0 to 85% relative humidity (RH)
4-20 mA, 0-20 mA, 0-10 VDC
10 ppm CO2
Figure 47. CO2 wall sensor
Nominal 24 VAC
Power Consumption
Housing Material
<5 VA
ABS plastic
38
VAV-PRC003-EN
Download from Www.Somanuals.com. All Manuals Search And Download.
Acoustics
Acoustics are tricky to define for
specific jobsites. To provide an
acoustical overview of a typical office
system with mineral glass fiber
dropped ceiling, ARI standard 885-98
has generated the transfer functions in
Table 11.
Table 11. Acoustical transfer functions
Some general ideas to minimize
acoustical issues:
ARI 885-98 DischargeTransfer
Function Assumptions
Octave Band
• pay close attention to location of the
HVAC unit. This will typically set the
overall acoustical quality of your job.
2
3
4
5
6
7
Small Box
-24 -28 -39 -53 -59 -40
-27 -29 240 -51 -53 -39
-29 -30 -41 -51 -52 -39
• locateVariTrac dampers outside the
occupied space.
(<300 cfm)
Medium Box
(<300–700 cfm)
Large Box
Sound power data was collected in
accordance with ARI Standard 880.
Applying the transfer function for
sound reduction due to office
furnishings, materials, etc. generated
the NC data which follows. This is a
reference document only provided to
address general acoustical issues.
What you will find is that the sound in
the occupied spaces generated by the
VariTrac dampers is minimal when
compared to the main HVAC unit
sound generation.
• internally lined ductwork can be used to
reduce the discharge sound generated
by the HVAC unit.
(>700 cfm)
Note:Add to terminal unit sound power to
determine discharge sound pressure in the space.
• install flex duct with minimal sagging,
and turns.
ARI 885-98 RadiatedTransfer
Function Assumptions
Octave Band
• locate balancing dampers as far from
the diffuser as possible to limit airborne
noise.
2
3
4
5
6
7
Type 2 Mineral
Fiber Insulation
-18 -19 -20 -26 -31 -36
Note:VariTrac dampers do not carry the
ARI seal.
Table 12. Radiated sound data
NC Based on 885-98 MineralTile
Size
Radiated NC
Size
6 in.
8 in.
10 in.
12 in.
14 in.
16 in.
33
26
25
26
29
21
470
840
1310
1885
2140
2515
NC based on maximum rated airflow
conditions.
VAV-PRC003-EN
39
Download from Www.Somanuals.com. All Manuals Search And Download.
Acoustics
Table 13. Discharge sound data
Discharge
Discharge
Discharge
NC
Size
CFM
ISP
NC
Size
CFM
ISP
NC
Size
CFM
ISP
6 in.
6 in.
6 in.
6 in.
375
375
375
375
0.25
0.5
1
—
—
18
22
10 in.
10 in.
10 in.
10 in.
1031
1031
1031
1031
0.25
0.5
1
—
15
21
27
14 in.
14 in.
14 in.
14 in.
2000
2000
2000
2000
0.25
0.5
1
—
17
24
30
2
2
2
6 in.
6 in.
6 in.
6 in.
300
300
300
300
0.25
0.5
1
10 in.
10 in.
10 in.
10 in.
825
825
825
825
0.25
0.5
1
—
—
17
22
14 in.
14 in.
14 in.
14 in.
1600
1600
1600
1600
0.25
0.5
1
—
—
19
26
—
—
19
2
2
2
6 in.
6 in.
6 in.
6 in.
6 in.
6 in.
6 in.
6 in.
6 in.
6 in.
6 in.
6 in.
6 in.
6 in.
6 in.
6 in.
8 in.
8 in.
8 in.
8 in.
8 in.
8 in.
8 in.
8 in.
8 in.
8 in.
8 in.
8 in.
8 in.
8 in.
8 in.
8 in.
225
225
225
225
150
150
150
150
75
75
75
75
38
38
38
38
656
656
656
656
525
525
525
525
394
394
394
394
263
263
263
263
0.25
0.5
1
—
—
—
16
—
—
—
16
—
—
—
16
—
—
—
15
—
16
24
30
—
—
20
25
—
—
10 in.
10 in.
10 in.
10 in.
10 in.
10 in.
10 in.
10 in.
10 in.
10 in.
10 in.
10 in.
10 in.
10 in.
10 in.
10 in.
12 in. 1500
12 in. 1500
12 in. 1500
12 in. 1500
12 in. 1200
12 in. 1200
12 in. 1200
12 in. 1200
12 in.
12 in.
12 in.
12 in.
12 in.
12 in.
12 in.
12 in.
619
619
619
619
413
413
413
413
206
206
206
206
103
103
103
103
0.25
0.5
1
—
—
—
20
—
—
—
19
—
—
—
19
—
—
—
18
—
15
21
29
—
—
17
25
—
—
—
22
—
—
—
21
—
—
—
20
—
—
—
19
14 in.
14 in.
14 in.
14 in.
1200
1200
1200
1200
0.25
0.5
1
—
—
15
23
2
2
2
14 in.
14 in.
14 in.
14 in.
800
800
800
800
0.25
0.5
1
—
—
—
23
0.25
0.5
1
0.25
0.5
1
2
2
2
14 in.
14 in.
14 in.
14 in.
400
400
400
400
0.25
0.5
1
—
—
—
23
0.25
0.5
1
0.25
0.5
1
2
2
2
14 in.
14 in.
14 in.
14 in.
200
200
200
200
0.25
0.5
1
—
—
—
20
0.25
0.5
1
0.25
0.5
1
2
16 in.
16 in.
16 in.
16 in.
2625
2625
2625
2625
0.25
0.5
1
—
17
25
32
2
2
0.25
0.5
1
0.25
0.5
1
2
16 in.
16 in.
16 in.
16 in.
2100
2100
2100
2100
0.25
0.5
1
—
—
23
29
2
2
0.25
0.5
1
0.25
0.5
1
2
16 in.
16 in.
16 in.
1575
1575
1575
0.25
0.5
1
—
—
22
2
2
0.25
0.5
1
900
900
900
900
600
600
600
600
300
300
300
300
150
150
150
150
0.25
0.5
1
16 in.
1575
2
27
16 in.
16 in.
16 in.
16 in.
16 in.
16 in.
16 in.
16 in.
16 in.
16 in.
16 in.
16 in.
1050
1050
1050
1050
525
525
525
525
263
263
263
263
0.25
0.5
1
—
—
—
22
—
—
—
23
—
—
—
23
16
22
—
—
—
23
—
—
15
24
2
2
0.25
0.5
1
0.25
0.5
1
2
0.25
0.5
1
2
2
8 in.
8 in.
8 in.
8 in.
8 in.
8 in.
8 in.
8 in.
131
131
131
131
66
66
66
66
0.25
0.5
1
12 in.
12 in.
12 in.
12 in.
12 in.
12 in.
12 in.
12 in.
0.25
0.5
1
2
0.25
0.5
1
2
2
0.25
0.5
1
—
—
—
20
0.25
0.5
1
2
2
2
Note: NC data based on ARI 885-98Acoustical transfer functions inTable 11.
40
VAV-PRC003-EN
Download from Www.Somanuals.com. All Manuals Search And Download.
Dimensions and Weights
Figure 48. Central control panel dimensions
Top view
10.25 in.
2.75 in.
(26.04 cm)
(6.99 cm)
8.75 in.
(22.38 cm)
Front view
Side view
Bottom view
Note:
1. Central control panel weight is 2.5 lbs.
VAV-PRC003-EN
41
Download from Www.Somanuals.com. All Manuals Search And Download.
Dimensions and Weights
Figure 49. Communicating bypass control dimensions
Mounting holes
See back view for dimensions
6 3/4"
5"
4 1/4"
3 3/8"
Duct Static
Pressure Sensor
3 7/8"
Duct Temp
Sensor
4 5/16"
0.300"
1 15/16"
3 5/16"
1.00"
1.00"
7/8" knockout
1/2" conduit
Back View
Side View
Customer entry
Notes:
Weight
3 1/4 lbs
Operating Temp
Humidity
Mounting Method
32˚ to 140˚
5 to 95% (non-condensing)
Metal screws
42
VAV-PRC003-EN
Download from Www.Somanuals.com. All Manuals Search And Download.
Dimensions and Weights
Figure 50. Round zone and bypass damper dimensions
Airflow
6.625"
8.875"
Controls Area
4.375"
0.50"
2.125"
C
Airflow
2.00"
Duct Temp Sensor (Optional)
N/A on Bypass Control
3.625"
Center of Bead
A
DIA
B
Damper
Size
Nominal
CFM
Weight
C
A
B
6"
12.00"
12.00"
16.00"
11.125"
13.125"
15.125"
17.125"
300
500
800
6 lbs
7 lbs
6.375"
8"
8.375"
8 lbs
10"
10.375"
1100
1600
2000
9 lbs
12"
14"
16"
12.375"
14.375"
16.375"
16.00"
20.00"
20.00"
19.125"
21.125"
11 lbs
12 lbs
VAV-PRC003-EN
43
Download from Www.Somanuals.com. All Manuals Search And Download.
Dimensions and Weights
Figure 51. Rectangular zone damper dimensions
X
16.00" Ref.
Y
Seam
Slip & Drive
Connection
6.00" Ref.
Dimensions
Damper Frame Data
Frame
Blades
16-gage galvanized steel
16-gage galvanized steel
X
Y
All blades are 3.19" nominal width
12.00"
14.00"
16.00"
16.00"
20.00"
18.00"
8.00"
8.00"
and 8" maximum
ABS plastic
3/8" rolled steel, zinc plated
Gear
Blade Pin
8.00"
10.00"
10.00"
14.00"
44
VAV-PRC003-EN
Download from Www.Somanuals.com. All Manuals Search And Download.
Dimensions and Weights
Figure 52 Rectangular bypass damper dimensions
Hub
1.20"
6"
X
16" Ref
.70"
2"
1.10"
4"
Actuator Dimensions
Seam
Dimensions
Y
X
14"
12"
Y
16"
20"
16"
20"
30"
20"
Seam
Actuator
CCP
Wiring
Red
Close
Com
CCW
COM
CW
White
Black
Open
Factory Installed
Cable Provided
Damper Frame Data
13 gage galvanized steel
Frame
Blades
16 gage galvanized steel; blades are
6" nominal width and 8" maximum
Actuator
5"
1/8" rolled steel, zinc plated
3/8" square steel, zinc plated
Linkage
Blade Pin
Blade Pin
Extension
7/16" diameter, 7" long
Included with all dampers
Bearings
Self-lubricating acetol
None
None
10"
Blade Seals
Side Seals
Cable
Weight
VAV-PRC003-EN
45
Download from Www.Somanuals.com. All Manuals Search And Download.
Dimensions and Weights
Figure 53. Occupancy Sensor
Figure 54. CO2 Sensor dimensions
3.125"
1.44"
4.25"
Figure 55. Digital Zone Sensor
1.1
1.0
3.60"
2.8
Front View
˚F
˚C
MAX
UNOCC SETPOINT OVERRIDE
2.50"
4.5
ON
Side
View
CANCEL
1.90"
R
46
VAV-PRC003-EN
Download from Www.Somanuals.com. All Manuals Search And Download.
Glossary
ABS gears – Gears formed of a
lightweight plastic known for its
toughness, impact strength, and
dimensional stability.
Non-volatile memory – System
memory that retains programming with
no battery or capacitor back up
required
CommercialVoyagerVAV rooftop unit
andVariTraneVAV boxes.
Demand control ventilation – A
method of maintaining indoor air
quality through intelligent ventilation
based on occupancy.The quantity of
ventilation is controlled based on
indoor CO2 levels, which correlate to
occupancy levels. Demand controlled
ventilation saves money by reducing
ventilation during periods of low
occupancy.
Back draft damper – A one-way
airflow damper in a parallel fan
powered unit prevents primary flow
from exiting the plenem inlet.
Normally closed (NC) – Electrical
contacts that are closed (current flows)
in the de-energized condition
Normally open (NO) – Electrical
contacts that are open (no current
flows) in the de-energized condition
Binary input – A two-position signal
indicating on/off status.
Binary output – A control output that
is either on or off.
Occupancy sensor – A binary sensor
that transmits a signal upon detection
of movement in the coverage area
Direct-expansion (DX) –When the
refrigerant in the system is either
condensed or evaporated directly by
the medium being heated or cooled.
Built-in time clock –The occupancy
timer included in the CCP operator
display.
Outdoor air (OA) –This is fresh air
drawn in to provide space ventilation.
Also see ‘Ventilation air”
Bypass damper – The motorized
damper ducted between the system
supply and return ducts used to
control static pressure in changeover
bypass VAV systems.
Discharge air (DA) – Air discharged
from the air handler into the ducts.
Outdoor air damper –The damper
that draws fresh air into the air handling
system for ventilation. Also referred to
as the ventilation or fresh air damper
Discharge air control – An air
handling system that provides fixed
temperature air (either fixed or variable
volume). Other control devices vary the
actual volume of air delivered to the
space to maintain occupant comfort.
Central control panel (CCP) –The
system level control device in aTrane
changeover bypass or deliveredVAV
system that gathers data from zone
controllers and operates the HVAC unit
to maintain the correct air flow and
temperature.
Override – A manual or automatic
action taken to bypass normal
operation
Packaged unitary system – An air
handling system with all the major
components contained in a single
cabinet or installed in a single location
Economizer – A damper arrangement
and automatic control system that
allows a heating, ventilation and air
conditioning (HVAC) system to supply
up to 100 percent outside air to satisfy
cooling demands, even if additional
mechanical cooling is required
Changeover-bypass VAV – A control
that provides variable air volume
functionality to a constant volume air
handling system.
PIR – Passive infrared sensing
technology (used in occupancy and
motion detection sensors)
Exception schedule – A one time
only time of day schedule in a system
that is removed automatically after use
Polling –The method aVariTrac CCP
uses to determine the need for heating
or cooling from the air handling system
by examining the zone requirements
CO2 sensor – An analog sensor that
detects and measures carbon dioxide
sensor to determine occupancy level.
Free cooling – Outdoor air introduced
to a system under correct conditions to
provided cooling to a space. Also see
also “Economizer”
Commissioning –The process of
starting up and verifying correct
operation of a building system.
Positive pressure –The condition that
exists when more air is supplied to a
space than is exhausted.
Conditioned air – Air that is heated,
cooled, humidified, or dehumidified to
maintain comfort in an interior space.
HVAC Unit – An air moving device
that conditions air. An HVAC unit may
provide cooling, or heating and cooling.
Typical HVAC units include packaged
rooftop units, split systems, and water
source heat pumps.
Pressure-dependent VAV control –
A VAV unit with airflow quantity
dependent upon static pressure.There
is no zone flow sensor in pressure
dependentVAV boxes.
Constant volume – An air
distribution system that varies the
temperature of a fixed volume of air to
maintain space comfort.
Pressure-independent VAV
control – A VAV unit with airflow
quantity independent of duct static
pressure. Actual airflow to the space is
measured and controlled by an airflow
sensor in the pressure independent
VAV box.
LCD – Liquid crystal display
Delivered VAV – A self configuring
system providing true pressure
independentVAV control to smaller
building applications. DeliveredVAV
requires a CCP with operator display, a
NDIR – Non-dispersive infrared
technology
Negative pressure –The condition
that exists when more air is exhausted
from a space than is supplied.
VAV-PRC003-EN
47
Download from Www.Somanuals.com. All Manuals Search And Download.
Glossary
Priority shutdown – An immediate
shutdown of the fan and heating or
cooling stages in aVariTrac changeover
bypass or DeliveredVAV system
caused by either the loss of critical
system information or an external
priority shutdown input
Staged electric reheat – Reheat that
operates one or more duct mounted
electric coils in a series in response to
increased space heating demand.
Unit control module UCM – ATrane
microelectronic circuit board that
controls individual HVAC equipment.
May link to an Integrated Comfort
System
Staged (or perimeter) hot water
reheat – Reheat that operates duct-
mounted hot water or space-mounted
electric or hot water reheat coils in
response to increased space heating
demand
Unitary – one or more factory-made
assemblies which normally include an
evaporator or cooling coil, an air
moving device, and a compressor and
condenser combination
Pulse-width modulating reheat –
Reheat that operates duct mounted
electric coils on a 0-100% duty cycle in
response to increased space heating
demand.
Static pressure –The difference
between the air pressure on the inside
of the duct and outside of the duct.
Static pressure is an indicator of how
much pressure the fans are creating
and how effective they will be at
distributing the supply air through the
ducts.
Variable air volume (VAV) – an air
handling system that varies the volume
(amount) of constant temperature air to
a space to control comfort
Reheat device – A source of heat
located downstream from a control
device such as aVAV box to add heat to
air entering a space to provide
occupant comfort
VariTrac –TheTrane changeover
bypassVAV system
VariTrane –TheTrane pressure
independentVAV box
ReliaTel (RTRM) – The latest
generationTrane factory mounted
unitary controller.
Supply air (SA) – air which blows out
of the air handler into the ducts. See
also “Discharge air (DA)”
VAV box – The damper or air valve
(plus associated controller) that
controls the zone air volume in aVAV
system. Also see “Variable air volume”
Return air (RA) – Air returned to the
air handler from the conditioned space,
to be reconditioned.
Terminal unit – HVAC equipment that
provides comfort directly to a space.
Ventilation air –The outdoor air
drawn into the HVAC unit to provide
fresh air to the space. Also see
“Outdoor air (OA)”
Setpoint –The desired room
temperature to be achieved and
maintained by an HVAC system.
Thermal requirements –The heating
or cooling load requirements for a
specific area or space in a building.
Care must be taken to not control areas
with different thermal requirements
from one air handling system
Setpoint limit – An electronic or
manual constraint imposed on a
setpoint to prevent misadjustment
Voting – See “Polling”
Zone sensor –The device that
measures a variable (usually
temperature) in a space and sends it to
a controller. Commonly referred to as a
thermostat.
Touch-screen operator display –
The LCD panel mounted onto aVariTrac
CCP to allow direct user interface and
time of day programming for the
system
SPDT – A relay with of one set of
normally-open, normally-closed
contacts
48
VAV-PRC003-EN
Download from Www.Somanuals.com. All Manuals Search And Download.
VAV-PRC003-EN
49
Download from Www.Somanuals.com. All Manuals Search And Download.
50
VAV-PRC003-EN
Download from Www.Somanuals.com. All Manuals Search And Download.
VAV-PRC003-EN
51
Download from Www.Somanuals.com. All Manuals Search And Download.
Literature Order Number
File Number
VAV-PRC003-EN
PL-TD-VAV-000-PRC003-EN-0604
VAV-DS-12
Trane
Supersedes
A business of American Standard Companies
Stocking Location
La Crosse
For more information contact your local district office
or email us at [email protected]
Trane has a policy of continuous product and product data improvement and reserves the right to change
design and specifications without notice.
Download from Www.Somanuals.com. All Manuals Search And Download.
|