Texas Instruments Network Card TSB12LV26 User Manual

Data Manual  
2000  
Bus Solutions  
Download from Www.Somanuals.com. All Manuals Search And Download.  
TSB12LV26  
OHCI-Lynx PCI-Based IEEE 1394  
Host Controller  
Data Manual  
Literature Number: SLLS366A  
March 2000  
Printed on Recycled Paper  
Download from Www.Somanuals.com. All Manuals Search And Download.  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
Customers are responsible for their applications using TI components.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 2000, Texas Instruments Incorporated  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Contents  
Section  
Title  
Page  
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–1  
1.1  
1.2  
1.3  
1.4  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–1  
Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–2  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–2  
2
3
Terminal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–1  
TSB12LV26 Controller Programming Model . . . . . . . . . . . . . . . . . . . . . . . . . 3–1  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
PCI Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–3  
Vendor ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–3  
Device ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–4  
Command Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–4  
Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–5  
Class Code and Revision ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . 3–6  
Latency Timer and Class Cache Line Size Register . . . . . . . . . . . . . . 3–6  
Header Type and BIST Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–7  
OHCI Base Address Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–7  
3.10 TI Extension Base Address Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–8  
3.11 Subsystem Identification Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–8  
3.12 Power Management Capabilities Pointer Register . . . . . . . . . . . . . . . 3–9  
3.13 Interrupt Line and Pin Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–9  
3.14 MIN_GNT and MAX_LAT Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–10  
3.15 OHCI Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–10  
3.16 Capability ID and Next Item Pointer Register . . . . . . . . . . . . . . . . . . . . 3–11  
3.17 Power Management Capabilities Register . . . . . . . . . . . . . . . . . . . . . . 3–12  
3.18 Power Management Control and Status Register . . . . . . . . . . . . . . . . 3–13  
3.19 Power Management Extension Register . . . . . . . . . . . . . . . . . . . . . . . . 3–13  
3.20 Miscellaneous Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . 3–14  
3.21 Link Enhancement Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–15  
3.22 Subsystem Access Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–16  
3.23 GPIO Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–17  
OHCI Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–1  
4
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
OHCI Version Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–4  
GUID ROM Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–5  
Asynchronous Transmit Retries Register . . . . . . . . . . . . . . . . . . . . . . . 4–6  
CSR Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–6  
CSR Compare Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–7  
CSR Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–7  
iii  
Download from Www.Somanuals.com. All Manuals Search And Download.  
4.7  
4.8  
4.9  
Configuration ROM Header Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–8  
Bus Identification Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–8  
Bus Options Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–9  
4.10 GUID High Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–10  
4.11 GUID Low Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–10  
4.12 Configuration ROM Mapping Register . . . . . . . . . . . . . . . . . . . . . . . . . . 4–11  
4.13 Posted Write Address Low Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–11  
4.14 Posted Write Address High Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–12  
4.15 Vendor ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–12  
4.16 Host Controller Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–13  
4.17 Self-ID Buffer Pointer Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–14  
4.18 Self-ID Count Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–14  
4.19 Isochronous Receive Channel Mask High Register . . . . . . . . . . . . . . 4–15  
4.20 Isochronous Receive Channel Mask Low Register . . . . . . . . . . . . . . . 4–16  
4.21 Interrupt Event Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–17  
4.22 Interrupt Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–19  
4.23 Isochronous Transmit Interrupt Event Register . . . . . . . . . . . . . . . . . . 4–20  
4.24 Isochronous Transmit Interrupt Mask Register . . . . . . . . . . . . . . . . . . . 4–21  
4.25 Isochronous Receive Interrupt Event Register . . . . . . . . . . . . . . . . . . . 4–22  
4.26 Isochronous Receive Interrupt Mask Register . . . . . . . . . . . . . . . . . . . 4–22  
4.27 Fairness Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–23  
4.28 Link Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–24  
4.29 Node Identification Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–25  
4.30 PHY Layer Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–26  
4.31 Isochronous Cycle Timer Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–27  
4.32 Asynchronous Request Filter High Register . . . . . . . . . . . . . . . . . . . . . 4–28  
4.33 Asynchronous Request Filter Low Register . . . . . . . . . . . . . . . . . . . . . 4–30  
4.34 Physical Request Filter High Register . . . . . . . . . . . . . . . . . . . . . . . . . . 4–31  
4.35 Physical Request Filter Low Register . . . . . . . . . . . . . . . . . . . . . . . . . . 4–33  
4.36 Physical Upper Bound Register (Optional Register) . . . . . . . . . . . . . . 4–34  
4.37 Asynchronous Context Control Register . . . . . . . . . . . . . . . . . . . . . . . . 4–35  
4.38 Asynchronous Context Command Pointer Register . . . . . . . . . . . . . . 4–36  
4.39 Isochronous Transmit Context Control Register . . . . . . . . . . . . . . . . . . 4–37  
4.40 Isochronous Transmit Context Command Pointer Register . . . . . . . . 4–38  
4.41 Isochronous Receive Context Control Register . . . . . . . . . . . . . . . . . . 4–38  
4.42 Isochronous Receive Context Command Pointer Register . . . . . . . . 4–40  
4.43 Isochronous Receive Context Match Register . . . . . . . . . . . . . . . . . . . 4–41  
GPIO Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–1  
Serial ROM Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–1  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–1  
5
6
7
7.1  
7.2  
7.3  
7.4  
Absolute Maximum Ratings Over Operating Temperature Ranges . 7–1  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 7–2  
Electrical Characteristics Over Recommended Operating Conditions 7–3  
Switching Characteristics for PCI Interface . . . . . . . . . . . . . . . . . . . . . . 7–3  
iv  
Download from Www.Somanuals.com. All Manuals Search And Download.  
7.5  
Switching Characteristics for PHY-Link Interface . . . . . . . . . . . . . . . . . 7–3  
8
Mechanical Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–1  
v
Download from Www.Somanuals.com. All Manuals Search And Download.  
List of Illustrations  
Figure  
2–1  
Title  
Page  
Terminal Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–1  
TSB12LV26 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–2  
GPIO2 and GPIO3 Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–1  
3–1  
5–1  
vi  
Download from Www.Somanuals.com. All Manuals Search And Download.  
List of Tables  
Table  
Title  
Page  
2–1  
2–2  
2–3  
2–4  
2–5  
2–6  
2–7  
2–8  
3–1  
3–2  
3–3  
3–4  
3–5  
3–6  
3–7  
3–8  
3–9  
Signals Sorted by Terminal Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–2  
Signal Names Sorted Alphanumerically to Terminal Number . . . . . . . . . . 2–3  
Power Supply Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–3  
PCI System Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–4  
PCI Address and Data Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–5  
PCI Interface Control Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–6  
IEEE 1394 PHY/Link Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–7  
Miscellaneous Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–7  
Bit Field Access Tag Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–1  
PCI Configuration Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–3  
Command Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–4  
Status Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–5  
Class Code and Revision ID Register Description . . . . . . . . . . . . . . . . . . . 3–6  
Latency Timer and Class Cache Line Size Register Description . . . . . . . 3–6  
Header Type and BIST Register Description . . . . . . . . . . . . . . . . . . . . . . . . 3–7  
OHCI Base Address Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . 3–7  
Subsystem Identification Register Description . . . . . . . . . . . . . . . . . . . . . . 3–8  
3–10 Interrupt Line and Pin Register Description . . . . . . . . . . . . . . . . . . . . . . . . . 3–9  
3–11 MIN_GNT and MAX_LAT Register Description . . . . . . . . . . . . . . . . . . . . . 3–10  
3–12 OHCI Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–10  
3–13 Capability ID and Next Item Pointer Register Description . . . . . . . . . . . . . 3–11  
3–14 Power Management Capabilities Register Description . . . . . . . . . . . . . . . 3–12  
3–15 Power Management Control and Status Register Description . . . . . . . . . 3–13  
3–16 Power Management Extension Register Description . . . . . . . . . . . . . . . . . 3–13  
3–17 Miscellaneous Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–14  
3–18 Link Enhancement Control Register Description . . . . . . . . . . . . . . . . . . . . 3–15  
3–19 Subsystem Access Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–16  
3–20 GPIO Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–17  
4–1  
4–2  
4–3  
4–4  
4–5  
4–6  
4–7  
4–8  
4–9  
OHCI Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–1  
OHCI Version Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–4  
GUID ROM Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–5  
Asynchronous Transmit Retries Register Description . . . . . . . . . . . . . . . . 4–6  
CSR Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–7  
Configuration ROM Header Register Description . . . . . . . . . . . . . . . . . . . . 4–8  
Bus Options Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–9  
Configuration ROM Mapping Register Description . . . . . . . . . . . . . . . . . . . 4–11  
Posted Write Address High Register Description . . . . . . . . . . . . . . . . . . . . 4–12  
vii  
Download from Www.Somanuals.com. All Manuals Search And Download.  
4–10 Host Controller Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . 4–13  
4–11 Self-ID Count Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–14  
4–12 Isochronous Receive Channel Mask High Register Description . . . . . . . 4–15  
4–13 Isochronous Receive Channel Mask Low Register Description . . . . . . . . 4–16  
4–14 Interrupt Event Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–17  
4–15 Interrupt Mask Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–19  
4–16 Isochronous Transmit Interrupt Event Register Description . . . . . . . . . . . 4–20  
4–17 Isochronous Receive Interrupt Event Register Description . . . . . . . . . . . 4–22  
4–18 Fairness Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–23  
4–19 Link Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–24  
4–20 Node Identification Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–25  
4–21 PHY Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–26  
4–22 Isochronous Cycle Timer Register Description . . . . . . . . . . . . . . . . . . . . . . 4–27  
4–23 Asynchronous Request Filter High Register Description . . . . . . . . . . . . . 4–28  
4–24 Asynchronous Request Filter Low Register Description . . . . . . . . . . . . . . 4–30  
4–25 Physical Request Filter High Register Description . . . . . . . . . . . . . . . . . . . 4–31  
4–26 Physical Request Filter Low Register Description . . . . . . . . . . . . . . . . . . . 4–33  
4–27 Asynchronous Context Control Register Description . . . . . . . . . . . . . . . . . 4–35  
4–28 Asynchronous Context Command Pointer Register Description . . . . . . . 4–36  
4–29 Isochronous Transmit Context Control Register Description . . . . . . . . . . 4–37  
4–30 Isochronous Receive Context Control Register Description . . . . . . . . . . . 4–38  
4–31 Isochronous Receive Context Match Register Description . . . . . . . . . . . . 4–41  
6–1  
6–2  
Registers and Bits Loadable through Serial ROM . . . . . . . . . . . . . . . . . . . 6–1  
Serial ROM Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–2  
viii  
Download from Www.Somanuals.com. All Manuals Search And Download.  
1 Introduction  
1.1 Description  
The Texas Instruments TSB12LV26 is a PCI-to-1394 host controller compatible with the latest PCI Local Bus, PCI  
Bus Power Management Interface, IEEE 1394-1995, and 1394 Open Host Controller Interface Specification. The  
chip provides the IEEE 1394 link function, and is compatible with serial bus data rates of 100 Mbits/s, 200 Mbits/s,  
and 400 Mbits/s.  
As required by the 1394 Open Host Controller Interface Specification (OHCI) and IEEE proposal 1394a specification,  
internal control registers are memory-mapped and nonprefetchable. The PCI configuration header is accessed  
through configuration cycles specified by PCI, and provides Plug-and-Play (PnP) compatibility. Furthermore, the  
TSB12LV26 is compliant with the PCI Bus Power Management Interface Specification, per the PC 99 Design Guide  
requirements. TSB12LV26 supports the D0, D2, and D3 power states.  
The TSB12LV26 design provides PCI bus master bursting, and is capable of transferring a cacheline of data at  
132 Mbytes/s after connection to the memory controller. Since PCI latency can be large, deep FIFOs are provided  
to buffer 1394 data.  
TheTSB12LV26providesphysicalwritepostingbuffersandahighlytunedphysicaldatapathforSBP-2performance.  
The TSB12LV26 also provides multiple isochronous contexts, multiple cacheline burst transfers, advanced internal  
arbitration, and bus holding buffers on the PHY/link interface.  
An advanced CMOS process is used to achieve low power consumption while operating at PCI clock rates up to  
33 MHz.  
1.2 Features  
The TSB12LV26 supports the following features:  
3.3-V core logic with universal PCI interfaces compatible with 3.3-V and 5-V PCI signaling environments  
Serial bus data rates of 100, 200, and 400 Mbits/s  
Provides bus-hold buffers on physical interface for low-cost single capacitor isolation  
Physical write posting of up to three outstanding transactions  
Serial ROM interface supports 2-wire devices  
External cycle timer control for customized synchronization  
Implements PCI burst transfers and deep FIFOs to tolerate large host latency  
Provides two general-purpose I/Os  
Fabricated in advanced low-power CMOS process  
Packaged in 100-terminal LQFP (PZ)  
Supports PCI_CLKRUN protocol  
1–1  
Download from Www.Somanuals.com. All Manuals Search And Download.  
1.3 Related Documents  
1394 Open Host Controller Interface Specification 1.0  
P1394 Standard for a High Performance Serial Bus (IEEE 1394-1995)  
P1394a Draft Standard for a High Performance Serial Bus (Supplement)  
PC 99 Design Guide  
PCI Bus Power Management Interface Specification (Revision 1.0)  
PCI Local Bus Specification (Revision 2.2)  
Serial Bus Protocol 2 (SBP–2)  
1.4 Ordering Information  
ORDERING NUMBER  
NAME  
OHCI-Lynx PCI-Based IEEE 1394 Host Controller  
VOLTAGE  
PACKAGE  
TSB12LV26  
3.3V-, 5V-Tolerant I/Os  
100-Terminal LQFP  
1–2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
2 Terminal Descriptions  
This section provides the terminal descriptions for the TSB12LV26. Figure 2–1 shows the signal assigned to each  
terminal in the package. Table 2–1 is a listing of signal names arranged in terminal number order, and Table 2–2 lists  
terminals in alphanumeric order by signal names.  
PZ PACKAGE  
(TOP VIEW)  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
GND  
GPIO2  
GPIO3  
SCL  
GND  
PCI_AD0  
PCI_AD1  
PCI_AD2  
2
3
4
5
SDA  
PCI_AD3  
3.3 V  
V
6
CCP  
CC  
7
PCI_CLKRUN  
PCI_INTA  
PCI_AD4  
PCI_AD5  
PCI_AD6  
PCI_AD7  
PCI_C/BE0  
PCI_AD8  
8
3.3 V  
9
CC  
G_RST  
GND  
PCI_CLK  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
3.3 V  
V
CC  
CCP  
PCI_GNT  
PCI_REQ  
PCI_AD9  
PCI_AD10  
GND  
PCI_AD11  
PCI_AD12  
PCI_AD13  
PCI_AD14  
V
CCP  
PCI_PME  
PCI_AD31  
PCI_AD30  
3.3 V  
CC  
PCI_AD29  
3.3 V  
CC  
PCI_AD28  
PCI_AD27  
GND  
PCI_AD15  
PCI_C/BE1  
PCI_PAR  
PCI_AD26  
PCI_SERR  
Figure 2–1. Terminal Assignments  
2–1  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Table 2–1. Signals Sorted by Terminal Number  
NO.  
1
TERMINAL NAME  
NO.  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
TERMINAL NAME  
PCI_AD25  
PCI_AD24  
PCI_C/BE3  
PCI_IDSEL  
GND  
NO.  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
TERMINAL NAME  
PCI_SERR  
PCI_PAR  
NO.  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
TERMINAL NAME  
PCI_RST  
GND  
GPIO2  
GPIO3  
SCL  
2
CYCLEOUT  
CYCLEIN  
3
PCI_C/BE1  
PCI_AD15  
4
REG_EN  
5
SDA  
3.3 V  
3.3 V  
CC  
CC  
6
V
CCP  
PCI_AD23  
PCI_AD22  
PCI_AD21  
PCI_AD20  
PCI_AD14  
PCI_AD13  
PCI_AD12  
PCI_AD11  
GND  
PHY_DATA7  
PHY_DATA6  
GND  
7
PCI_CLKRUN  
PCI_INTA  
8
9
3.3 V  
PHY_DATA5  
PHY_DATA4  
PHY_DATA3  
CC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
G_RST  
GND  
3.3 V  
CC  
PCI_AD19  
PCI_AD18  
PCI_AD17  
PCI_AD10  
PCI_AD9  
PCI_CLK  
V
CCP  
3.3 V  
V
CCP  
PHY_DATA2  
PHY_DATA1  
PHY_DATA0  
CC  
PCI_GNT  
PCI_REQ  
V
CCP  
PCI_AD8  
PCI_C/BE0  
PCI_AD7  
PCI_AD6  
PCI_AD5  
PCI_AD4  
PCI_AD16  
PCI_C/BE2  
REG18  
V
CCP  
3.3 V  
CC  
PCI_PME  
PCI_AD31  
PCI_AD30  
PHY_CTL1  
PHY_CTL0  
GND  
PCI_FRAME  
PCI_IRDY  
PCI_TRDY  
3.3 V  
3.3 V  
PHY_SCLK  
CC  
CC  
PCI_AD29  
PCI_AD28  
PCI_AD27  
GND  
3.3 V  
PCI_AD3  
PCI_AD2  
PCI_AD1  
PCI_AD0  
GND  
3.3 V  
CC  
CC  
PCI_DEVSEL  
PCI_STOP  
PCI_PERR  
GND  
PHY_LREQ  
PHY_LINKON  
PHY_LPS  
PCI_AD26  
REG18  
2–2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Table 2–2. Signal Names Sorted Alphanumerically to Terminal Number  
TERMINAL NAME  
CYCLEIN  
CYCLEOUT  
GND  
NO.  
78  
77  
1
TERMINAL NAME  
PCI_AD11  
PCI_AD12  
PCI_AD13  
PCI_AD14  
PCI_AD15  
PCI_AD16  
PCI_AD17  
PCI_AD18  
PCI_AD19  
PCI_AD20  
PCI_AD21  
PCI_AD22  
PCI_AD23  
PCI_AD24  
PCI_AD25  
PCI_AD26  
PCI_AD27  
PCI_AD28  
PCI_AD29  
PCI_AD30  
PCI_AD31  
PCI_C/BE0  
PCI_C/BE1  
PCI_C/BE2  
PCI_C/BE3  
NO.  
59  
58  
57  
56  
54  
40  
38  
37  
36  
34  
33  
32  
31  
27  
26  
25  
23  
22  
21  
19  
18  
65  
53  
41  
28  
TERMINAL NAME  
PCI_CLK  
NO.  
12  
7
TERMINAL NAME  
PHY_DATA7  
PHY_LINKON  
PHY_LPS  
PHY_LREQ  
PHY_SCLK  
REG_EN  
NO.  
81  
98  
99  
97  
95  
79  
42  
100  
4
PCI_CLKRUN  
PCI_DEVSEL  
PCI_FRAME  
PCI_GNT  
47  
43  
14  
29  
8
GND  
11  
24  
30  
50  
60  
75  
83  
94  
2
GND  
GND  
PCI_IDSEL  
PCI_INTA  
GND  
REG18  
GND  
PCI_IRDY  
44  
52  
49  
17  
15  
76  
51  
48  
45  
93  
92  
90  
89  
88  
86  
85  
84  
82  
REG18  
GND  
PCI_PAR  
SCL  
GND  
PCI_PERR  
PCI_PME  
SDA  
5
GND  
V
CCP  
V
CCP  
V
CCP  
V
CCP  
V
CCP  
6
GPIO2  
PCI_REQ  
16  
39  
63  
87  
9
GPIO3  
3
PCI_RST  
G_RST  
PCI_AD0  
PCI_AD1  
PCI_AD2  
PCI_AD3  
PCI_AD4  
PCI_AD5  
PCI_AD6  
PCI_AD7  
PCI_AD8  
PCI_AD9  
PCI_AD10  
10  
74  
73  
72  
71  
69  
68  
67  
66  
64  
62  
61  
PCI_SERR  
PCI_STOP  
PCI_TRDY  
PHY_CTL0  
PHY_CTL1  
PHY_DATA0  
PHY_DATA1  
PHY_DATA2  
PHY_DATA3  
PHY_DATA4  
PHY_DATA5  
PHY_DATA6  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
13  
20  
35  
46  
55  
70  
80  
91  
96  
The terminals in Table 2–3 through Table 2–8 are grouped in tables by functionality, such as PCI system function  
and power supply function. The terminal numbers are also listed for convenient reference.  
Table 2–3. Power Supply Terminals  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
NO.  
1, 11, 24, 30,  
50, 60, 75, 83,  
94  
GND  
I
I
I
Device ground terminals  
6, 16, 39, 63,  
87  
V
CCP  
PCI signaling clamp voltage power input. PCI signals are clamped per the PCI Local Bus Specification.  
3.3-V power supply terminals  
9, 13, 20, 35,  
46, 55, 70, 80,  
91, 96  
3.3 V  
CC  
2–3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Table 2–4. PCI System Terminals  
TERMINAL  
NAME  
I/O  
DESCRIPTION  
NO.  
Global power reset. This reset brings all of the TSB12LV26 internal registers to their default states, including  
those registers not reset by PCI_RST. When G_RST is asserted, the device is completely nonfunctional.  
When implementing wake capabilities from the 1394 host controller, it is necessary to implement two resets  
to the TSB12LV26. G_RST should be a one-time power-on reset, and PCI_RST should be connected to the  
PCI bus RST. If wake capabilities are not required, G_RST may be connected to the PCI bus RST (see  
PCI_RST, terminal 76).  
G_RST  
10  
I
PCI bus clock. Provides timing for all transactions on the PCI bus. All PCI signals are sampled at rising edge  
of PCI_CLK.  
PCI_CLK  
PCI_INTA  
12  
8
I
Interruptsignal. This output indicates interrupts from the TSB12LV26 to the host. This terminal is implemented  
as open-drain.  
O
PCI reset. When this bus reset is asserted, the TSB12LV26 places all output buffers in a high impedance state  
and resets all internal registers except device power management context- and vendor-specific bits initialized  
by host power-on software. When PCI_RST is asserted, the device is completely nonfunctional.  
If this terminal is implemented, then it should be connected to the PCI bus RST signal. Otherwise, it should  
PCI_RST  
76  
I
be pulled high to link V  
10).  
through a 4.7-kresistor, or strapped to the G_RST terminal (see G_RST, terminal  
CC  
2–4  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Table 2–5. PCI Address and Data Terminals  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
NO.  
PCI_AD31  
PCI_AD30  
PCI_AD29  
PCI_AD28  
PCI_AD27  
PCI_AD26  
PCI_AD25  
PCI_AD24  
PCI_AD23  
PCI_AD22  
PCI_AD21  
PCI_AD20  
PCI_AD19  
PCI_AD18  
PCI_AD17  
PCI_AD16  
PCI_AD15  
PCI_AD14  
PCI_AD13  
PCI_AD12  
PCI_AD11  
PCI_AD10  
PCI_AD9  
PCI_AD8  
PCI_AD7  
PCI_AD6  
PCI_AD5  
PCI_AD4  
PCI_AD3  
PCI_AD2  
PCI_AD1  
PCI_AD0  
18  
19  
21  
22  
23  
25  
26  
27  
31  
32  
33  
34  
36  
37  
38  
40  
54  
56  
57  
58  
59  
61  
62  
64  
66  
67  
68  
69  
71  
72  
73  
74  
PCI address/data bus. These signals make up the multiplexed PCI address and data bus on the PCI interface.  
During the address phase of a PCI cycle, AD31–AD0 contain a 32-bit address or other destination information.  
During the data phase, AD31–AD0 contain data.  
I/O  
2–5  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Table 2–6. PCI Interface Control Terminals  
TERMINAL  
NAME  
I/O  
DESCRIPTION  
NO.  
PCI_C/BE0  
65  
53  
41  
28  
PCI bus commands and byte enables. The command and byte enable signals are multiplexed on the same PCI  
I/O terminals. During the address phase of a bus cycle PCI_C/BE3–PCI_C/BE0 defines the bus command. During  
the data phase, this 4-bit bus is used as byte enables.  
PCI_C/BE1  
PCI_C/BE2  
PCI_C/BE3  
Clock run. This terminal provides clock control through the PCI_CLKRUN protocol. An internal pulldown  
I/O resistor is implemented on this terminal.  
PCI_CLKRUN  
PCI_DEVSEL  
PCI_FRAME  
7
This terminal is implemented as open-drain.  
PCI device select. The TSB12LV26 asserts this signal to claim a PCI cycle as the target device. As a PCI  
I/O initiator, the TSB12LV26 monitors this signal until a target responds. If no target responds before time-out  
occurs, then the TSB12LV26 terminates the cycle with an initiator abort.  
47  
43  
PCI cycle frame. This signal is driven by the initiator of a PCI bus cycle. PCI_FRAME is asserted to indicate  
I/O thatabustransactionisbeginning, anddatatransferscontinuewhilethissignalisasserted. WhenPCI_FRAME  
is deasserted, the PCI bus transaction is in the final data phase.  
PCI bus grant. This signal is driven by the PCI bus arbiter to grant the TSB12LV26 access to the PCI bus after  
PCI_GNT  
PCI_IDSEL  
PCI_IRDY  
14  
29  
44  
I
I
the current data transaction has completed. This signal may or may not follow a PCI bus request, depending  
upon the PCI bus parking algorithm.  
Initializationdevice select. IDSEL selects the TSB12LV26 during configuration space accesses. IDSEL can be  
connected to one of the upper 24 PCI address lines on the PCI bus.  
PCI initiator ready. IRDY indicates the ability of the PCI bus initiator to complete the current data phase of the  
I/O transaction. A data phase is completed upon a rising edge of PCLK where both PCI_IRDY and PCI_TRDY are  
asserted.  
PCI parity. In all PCI bus read and write cycles, the TSB12LV26 calculates even parity across the AD and C/BE  
buses. As an initiator during PCI cycles, the TSB12LV26 outputs this parity indicator with a one PCI_CLK delay.  
As a target during PCI cycles, the calculated parity is compared to the initiator parity indicator; a miscompare  
PCI_PAR  
52  
I/O  
can result in a parity error assertion (PCI_PERR).  
PCI parity error indicator. This signal is driven by a PCI device to indicate that calculated parity does not match  
PCI_PAR when PERR_ENB (bit 6) is set in the PCI command register (offset 04h, see Section 3.4).  
PCI_PERR  
PCI_PME  
PCI_REQ  
49  
17  
15  
I/O  
O
O
Power management event. This terminal indicates wake events to the host.  
PCI bus request. Asserted by the TSB12LV26 to request access to the bus as an initiator. The host arbiter  
asserts the PCI_GNT signal when the TSB12LV26 has been granted access to the bus.  
PCI system error. When SERR_ENB (bit 8) in the PCI command register (offset 04h, see Section 3.4) is set  
the output is pulsed, indicating an address parity error has occurred. The TSB12LV26 needs not be the target  
of the PCI cycle to assert this signal.  
PCI_SERR  
51  
O
This terminal is implemented as open-drain.  
PCI cycle stop signal. This signal is driven by a PCI target to request the initiator to stop the current PCI bus  
PCI_STOP  
PCI_TRDY  
48  
45  
I/O transaction. This signal is used for target disconnects, and is commonly asserted by target devices which do  
not support burst data transfers.  
PCI target ready. PCI_TRDY indicates the ability of the PCI bus targer to complete the current data phase of  
I/O the transaction. A data phase is completed upon a rising edge of PCI_CLK where both PCI_IRDY and  
PCI_TRDY are asserted.  
2–6  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Table 2–7. IEEE 1394 PHY/Link Terminals  
DESCRIPTION  
TERMINAL  
NAME  
I/O  
NO.  
PHY-link interface control. These bidirectional signals control passage of information between the two devices.  
I/O The TSB12LV26 can only drive these terminals after the PHY has granted permission following a link request  
(PHY_LREQ).  
PHY_CTL1  
PHY_CTL0  
92  
93  
PHY_DATA7  
PHY_DATA6  
PHY_DATA5  
PHY_DATA4  
PHY_DATA3  
PHY_DATA2  
PHY_DATA1  
PHY_DATA0  
81  
82  
84  
85  
86  
88  
89  
90  
PHY-link interface data. These bidirectional signals pass data between the TSB12LV26 and the PHY device.  
These terminals are driven by the TSB12LV26 on transmissions and are driven by the PHY on reception. Only  
PHY_DATA1–PHY_DATA0 are valid for 100-Mbit speeds, PHY_DATA3–PHY_DATA0 are valid for 200-Mbit  
speeds, and PHY_DATA7–PHY_DATA0 are valid for 400-Mbit speeds.  
I/O  
LinkOn wake indication. The PHY_LINKON signal is pulsed by the PHY to activate the link, and 3.3-V signaling  
is required.  
PHY_LINKON  
98  
I/O  
When connected to the TSB41LV0X C/LKON terminal, a 1-kseries resistor is required between the link and  
PHY.  
Link power status. The PHY_LPS signal is asserted when the link is powered on, and 3.3-V signaling is  
required.  
PHY_LPS  
99  
I/O  
PHY_LREQ  
PHY_SCLK  
97  
95  
O
I
Link request. This signal is driven by the TSB12LV26 to initiate a request for the PHY to perform some service.  
System clock. This input from the PHY provides a 49.152-MHz clock signal for data synchronization.  
Table 2–8. Miscellaneous Terminals  
TERMINAL  
NAME  
I/O  
DESCRIPTION  
NO.  
CYCLEOUT  
77  
I/O This terminal provides an 8-kHz cycle timer synchronization signal.  
TheCYCLEIN terminal allows an external 8-kHz clock to be used as a cycle timer for synchronization with other  
system devices.  
CYCLEIN  
GPIO2  
78  
2
I/O  
I/O  
If this terminal is not implemented, then it should be pulled high to the link V  
through a 4.7-kresistor.  
CC  
General-purpose I/O [2]. This terminal defaults as an input and if it is not implemented, then it is recommended  
that it be pulled low to ground with a 220-resistor.  
General-purpose I/O [3]. This terminal defaults as an input and if it is not implemented, then it is recommended  
that it be pulled low to ground with a 220-resistor.  
GPIO3  
3
I/O  
REG_EN  
REG18  
79  
I
I
Regulator enable. This terminal is pulled low to ground through a 220-resistor.  
42  
100  
The REG18 terminals are connected to a 0.01 µF capacitor which, in turn, is connected to ground. The  
capacitor provides a local bypass for the internal core voltage.  
Serial clock. The TSB12LV26 determines whether a two-wire serial ROM is implemented at reset. If a two-wire  
serial ROM is implemented, then this terminal provides the SCL serial clock signaling.  
SCL  
SDA  
4
5
I/O  
I/O  
This terminal is implemented as open-drain, and for normal operation (a ROM is implemented in the design),  
this terminal should be pulled high to the ROM V  
to ground with a 220-resistor.  
with a 2.7-kresistor. Otherwise, it should be pulled low  
CC  
Serial data. The TSB12LV26 determines whether a two-wire serial ROM is implemented at reset. If a two-wire  
serial ROM is detected, then this terminal provides the SDA serial data signaling. This terminal must be wired  
low to indicate no serial ROM is present.  
This terminal is implemented as open-drain, and for normal operation (a ROM is implemented in the design),  
this terminal should be pulled high to the ROM V  
to ground with a 220-resistor.  
with a 2.7-kresistor. Otherwise, it should be pulled low  
CC  
2–7  
Download from Www.Somanuals.com. All Manuals Search And Download.  
2–8  
Download from Www.Somanuals.com. All Manuals Search And Download.  
3 TSB12LV26 Controller Programming Model  
This section describes the internal registers used to program the TSB12LV26. All registers are detailed in the same  
format: a brief description for each register, followed by the register offset and a bit table describing the reset state  
for each register.  
A bit description table, typically included when the register contains bits of more than one type or purpose, indicates  
bit field names, field access tags which appear in the type column,and a detailed field description. Table 3–1  
describes the field access tags.  
Table 3–1. Bit Field Access Tag Descriptions  
ACCESS TAG  
NAME  
Read  
Write  
Set  
MEANING  
Field may be read by software.  
R
W
S
Field may be written by software to any value.  
Field may be set by a write of 1. Writes of 0 have no effect.  
Field may be cleared by a write of 1. Writes of 0 have no effect.  
Field may be autonomously updated by the TSB12LV26.  
C
U
Clear  
Update  
A simplified block diagram of the TSB12LV26 is provided in Figure 3–1.  
3–1  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Serial  
ROM  
PCI  
Target  
SM  
Internal  
Registers  
OHCI PCI Power  
Mgmt & CLKRUN  
GPIOs  
MISC  
Interface  
ISO Transmit  
Contexts  
Transmit  
FIFO  
Async Transmit  
Contexts  
Physical DMA  
& Response  
Link  
Transmit  
Resp  
Timeout  
Receive  
Acknowledge  
PCI  
Host  
Bus  
Central  
Arbiter  
&
PCI  
Initiator  
SM  
PHY  
Cycle Start  
Generator &  
Cycle Monitor  
Interface  
Register  
Access  
& Status  
Monitor  
CRC  
PHY /  
Link  
Interface  
Synthesized  
Bus Reset  
Request  
Filters  
Link  
General  
Receive  
Request Receive  
Receive  
FIFO  
Async Response  
Receive  
ISO Receive  
Contexts  
Figure 3–1. TSB12LV26 Block Diagram  
3–2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
3.1 PCI Configuration Registers  
The TSB12LV26 is a single-function PCI device. The configuration header is compliant with the PCI Local Bus  
Specification as a standard header. Table 3–2 illustrates the PCI configuration header that includes both the  
predefined portion of the configuration space and the user definable registers.  
Table 3–2. PCI Configuration Register Map  
REGISTER NAME  
OFFSET  
00h  
Device ID  
Status  
Vendor ID  
Command  
04h  
Class code  
Header type  
OHCI registers base address  
Revision ID  
08h  
BIST  
Latency timer  
Cache line size  
0Ch  
10h  
TI extension registers base address  
14h  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
18h  
1Ch  
20h  
24h  
28h  
Subsystem ID  
Subsystem vendor ID  
2Ch  
30h  
Reserved  
Reserved  
PCI power  
management  
capabilities pointer  
Reserved  
34h  
38h  
3Ch  
Maximum latency  
Minimum grant  
Interrupt pin  
Interrupt line  
Capability ID  
PCI OHCI control register  
40h  
Power management capabilities  
PM data PMCSR_BSE  
Reserved  
Next item pointer  
44h  
Power management CSR  
48h  
4Ch–ECh  
F0h  
PCI miscellaneous configuration register  
Link_Enhancements register  
F4h  
Subsystem ID alias  
Subsystem vendor ID alias  
Reserved  
F8h  
GPIO3  
GPIO2  
FCh  
3.2 Vendor ID Register  
The vendor ID register contains a value allocated by the PCI SIG and identifies the manufacturer of the PCI device.  
The vendor ID assigned to Texas Instruments is 104Ch.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Vendor ID  
R
0
R
0
R
0
R
1
R
0
R
0
R
0
R
0
R
0
R
1
R
0
R
0
R
1
R
1
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
Vendor ID  
Read-only  
00h  
104Ch  
3–3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
3.3 Device ID Register  
The device ID register contains a value assigned to the TSB12LV26 by Texas Instruments. The device identification  
for the TSB12LV26 is 8020h.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Device ID  
R
1
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
1
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
Device ID  
Read-only  
02h  
8020h  
3.4 Command Register  
The command register provides control over the TSB12LV26 interface to the PCI bus. All bit functions adhere to the  
definitions in the PCI Local Bus Specification, as seen in the bit descriptions of Table 3–3.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Command  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R/W  
0
R
0
R/W  
0
R
0
R/W  
0
R
0
R/W  
0
R/W  
0
R
0
Register:  
Type:  
Command  
Read/Write, Read-only  
Offset:  
Default:  
04h  
0000h  
Table 3–3. Command Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
15–10 RSVD  
R
Reserved. Bits 15–10 return 0s when read.  
Fast back-to-back enable. The TSB12LV26 does not generate fast back-to-back transactions, thus  
this bit returns 0 when read.  
9
8
7
6
5
FBB_ENB  
R
R/W  
R
PCI_SERR enable. When this bit is set, the TSB12LV26 PCI_SERR driver is enabled. PCI_SERR can  
be asserted after detecting an address parity error on the PCI bus.  
SERR_ENB  
STEP_ENB  
PERR_ENB  
VGA_ENB  
Address/data stepping control. The TSB12LV26 does not support address/data stepping, thus this bit  
is hardwired to 0.  
Parity error enable. When this bit is set, the TSB12LV26 is enabled to drive PCI_PERR response to  
parity errors through the PCI_PERR signal.  
R/W  
R
VGA palette snoop enable. The TSB12LV26 does not feature VGA palette snooping. This bit returns 0  
when read.  
Memory write and invalidate enable. When this bit is set, the TSB12LV26 is enabled to generate MWI  
PCI bus commands. If this bit is cleared, then the TSB12LV26 generates memory write commands  
instead.  
4
MWI_ENB  
R/W  
Specialcycle enable. The TSB12LV26function does not respond to special cycle transactions. This bit  
returns 0 when read.  
3
2
1
SPECIAL  
R
MASTER_ENB  
MEMORY_ENB  
R/W  
R/W  
Bus master enable. When this bit is set, the TSB12LV26 is enabled to initiate cycles on the PCI bus.  
Memoryresponse enable. Setting this bit enables the TSB12LV26 to respond to memory cycles on the  
PCI bus. This bit must be set to access OHCI registers.  
I/O space enable. The TSB12LV26 does not implement any I/O mapped functionality; thus, this bit re-  
turns 0 when read.  
0
IO_ENB  
R
3–4  
Download from Www.Somanuals.com. All Manuals Search And Download.  
3.5 Status Register  
The status register provides status over the TSB12LV26 interface to the PCI bus. All bit functions adhere to the  
definitions in the PCI Local Bus Specification. See Table 3–4 for a complete description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Status  
RCU RCU RCU RCU RCU  
R
0
R
1
RCU  
0
R
0
R
0
R
0
R
1
R
0
R
0
R
0
R
0
0
0
0
0
0
Register:  
Type:  
Status  
Read/Clear/Update, Read-only  
Offset:  
Default:  
06h  
0210h  
Table 3–4. Status Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
15  
PAR_ERR  
RCU  
Detected parity error. This bit is set when a parity error is detected, either address or data parity errors.  
Signaled system error. This bit is set when PCI_SERR is enabled and the TSB12LV26 has signaled a  
system error to the host.  
14  
13  
SYS_ERR  
RCU  
RCU  
RCU  
RCU  
R
Receivedmasterabort.ThisbitissetwhenacycleinitiatedbytheTSB12LV26onthePCIbushasbeen  
terminated by a master abort.  
MABORT  
Received target abort. This bit is set when a cycle initiated by the TSB12LV26 on the PCI bus was  
terminated by a target abort.  
12  
TABORT_REC  
TABORT_SIG  
PCI_SPEED  
Signaledtarget abort. This bit is set by the TSB12LV26 when it terminates a transaction on the PCI bus  
with a target abort.  
11  
DEVSEL timing. Bits 10–9 encode the timing of PCI_DEVSEL and are hardwired to 01b indicating that  
the TSB12LV26 asserts this signal at a medium speed on nonconfiguration cycle accesses.  
10–9  
Data parity error detected. This bit is set when the following conditions have been met:  
a. PCI_PERR was asserted by any PCI device including the TSB12LV26.  
b. The TSB12LV26 was the bus master during the data parity error.  
8
DATAPAR  
RCU  
c. The parity error response bit is set in the PCI command register (offset 04h, see Section 3.4).  
Fast back-to-back capable. The TSB12LV26 cannot accept fast back-to-back transactions; thus, this  
bit is hardwired to 0.  
7
6
5
FBB_CAP  
UDF  
R
R
R
User definable features (UDF) supported. The TSB12LV26 does not support the UDF; thus, this bit is  
hardwired to 0.  
66-MHz capable. The TSB12LV26 operates at a maximum PCI_CLK frequency of 33 MHz; therefore,  
this bit is hardwired to 0.  
66MHZ  
Capabilitieslist. This bit returns 1 when read, indicating that capabilities additional to standard PCI are  
implemented. The linked list of PCI power management capabilities is implemented in this function.  
4
CAPLIST  
RSVD  
R
R
3–0  
Reserved. Bits 3–0 return 0s when read.  
3–5  
Download from Www.Somanuals.com. All Manuals Search And Download.  
3.6 Class Code and Revision ID Register  
The class code and revision ID register categorizes the TSB12LV26 as a serial bus controller (0Ch), controlling an  
IEEE 1394 bus (00h), with an OHCI programming model (10h). Furthermore, the TI chip revision is indicated in the  
least significant byte. See Table 3–5 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Class code and revision ID  
R
0
R
0
R
0
R
0
R
1
R
1
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Class code and revision ID  
R
0
R
0
R
0
R
1
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
Class code and revision ID  
Read-only  
08h  
0C00 1000h  
Table 3–5. Class Code and Revision ID Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
Base class. This field returns 0Ch when read, which broadly classifies the function as a serial bus  
controller.  
31–24 BASECLASS  
23–16 SUBCLASS  
R
Subclass. This field returns 00h when read, which specifically classifies the function as controlling an  
IEEE 1394 serial bus.  
R
Programming interface. This field returns 10h when read, indicating that the programming model is  
compliant with the 1394 Open Host Controller Interface Specification.  
15–8  
7–0  
PGMIF  
R
R
CHIPREV  
Silicon revision. This field returns 00h when read, indicating the silicon revision of the TSB12LV26.  
3.7 Latency Timer and Class Cache Line Size Register  
The latency timer and class cache line size register is programmed by host BIOS to indicate system cache line size  
and the latency timer associated with the TSB12LV26. See Table 3–6 for a complete description of the register  
contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Latency timer and class cache line size  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
Latency timer and class cache line size  
Read/Write,  
0Ch  
0000h  
Table 3–6. Latency Timer and Class Cache Line Size Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
PCI latency timer. The value in this register specifies the latency timer for the TSB12LV26, in units of  
PCI clock cycles. When the TSB12LV26 is a PCI bus initiator and asserts PCI_FRAME, the latency  
timer begins counting from zero. If the latency timer expires before the TSB12LV26 transaction has  
terminated, then the TSB12LV26 terminates the transaction when its PCI_GNT is deasserted.  
15–8  
LATENCY_TIMER  
R/W  
Cache line size. This value is used by the TSB12LV26 during memory write and invalidate, memory  
read line, and memory read multiple transactions.  
7–0  
CACHELINE_SZ  
R/W  
3–6  
Download from Www.Somanuals.com. All Manuals Search And Download.  
3.8 Header Type and BIST Register  
The header type and BIST register indicates the TSB12LV26 PCI header type, and indicates no built-in self test. See  
Table 3–7 for a complete description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Header type and BIST  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
Header type and BIST  
Read-only  
0Eh  
0000h  
Table 3–7. Header Type and BIST Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
Built-in self test. The TSB12LV26 does not include a built-in self test; thus, this field returns 00h when  
read.  
15–8  
BIST  
HEADER_TYPE  
R
R
PCI header type. The TSB12LV26 includes the standard PCI header, and this is communicated by  
returning 00h when this field is read.  
7–0  
3.9 OHCI Base Address Register  
The OHCI base address register is programmed with a base address referencing the memory-mapped OHCI control.  
When BIOS writes all 1s to this register, the value read back is FFFF F800h, indicating that at least 2K bytes of  
memory address space are required for the OHCI registers. See Table 3–8 for a complete description of the register  
contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
OHCI base address  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
OHCI address  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
OHCI base address  
Read/Write, Read-only  
10h  
0000 0000h  
Table 3–8. OHCI Base Address Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
OHCI register pointer. Specifies the upper 21 bits of the 32-bit OHCI base address register.  
31–11  
OHCIREG_PTR  
R/W  
OHCI register size. This field returns 0s when read, indicating that the OHCI registers require a  
2-Kbyte region of memory.  
10–4  
3
OHCI_SZ  
OHCI_PF  
R
OHCI register prefetch. This bit returns 0 when read, indicating that the OHCI registers are  
nonprefetchable.  
R
R
R
OHCImemorytype. Thisfieldreturns0swhenread, indicatingthattheOHCIbaseaddressregisteris  
32 bits wide and mapping can be done anywhere in the 32-bit memory space.  
2–1  
0
OHCI_MEMTYPE  
OHCI_MEM  
OHCI memory indicator. This bit returns 0 when read, indicating that the OHCI registers are mapped  
into system memory space.  
3–7  
Download from Www.Somanuals.com. All Manuals Search And Download.  
3.10 TI Extension Base Address Register  
The TI extension base address register is programmed with a base address referencing the memory-mapped TI  
extension registers. See the OHCI Base Address Register, Section 3.9, for bit field details.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
TI extension base address  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
TI extension base address  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
TI extension base address  
Read/Write, Read-only  
14h  
0000 0000h  
3.11 Subsystem Identification Register  
The subsystem identification register is used for system and option card identification purposes. This register can  
be initialized from the serial ROM or programmed via the subsystem ID and subsystem vendor ID alias registers at  
offset F8h. See Table 3–9 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Subsystem identification  
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Subsystem identification  
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
Register:  
Type:  
Offset:  
Default:  
Subsystem identification  
Read/Update  
2Ch  
0000 0000h  
Table 3–9. Subsystem Identification Register Description  
BIT  
31–16  
15–0  
FIELD NAME  
TYPE  
RU  
DESCRIPTION  
OHCI_SSID  
Subsystem device ID. This field indicates the subsystem device ID.  
Subsystem vendor ID. This field indicates the subsystem vendor ID.  
OHCI_SSVID  
RU  
3–8  
Download from Www.Somanuals.com. All Manuals Search And Download.  
3.12 Power Management Capabilities Pointer Register  
The power management capabilities pointer register provides a pointer into the PCI configuration header where the  
PCI power management register block resides. The TSB12LV26 configuration header double-words at offsets 44h  
and 48h provide the power management registers. This register is read-only and returns 44h when read.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Power management capabilities pointer  
R
0
R
1
R
0
R
0
R
0
R
1
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
Power management capabilities pointer  
Read-only  
34h  
44h  
3.13 Interrupt Line and Pin Register  
The interrupt line and pin register is used to communicate interrupt line routing information. See Table 3–10 for a  
complete description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Interrupt line and pin  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
1
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
Interrupt line and pin  
Read/Write, Read-only  
3Ch  
0100h  
Table 3–10. Interrupt Line and Pin Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
Interruptpin. Returns 01h when read, indicating that the TSB12LV26 PCI function signals interrupts on  
the PCI_INTA pin.  
15–8  
INTR_PIN  
R
Interrupt line. This field is programmed by the system and indicates to software which interrupt line the  
TSB12LV26 PCI_INTA is connected to.  
7–0  
INTR_LINE  
R/W  
3–9  
Download from Www.Somanuals.com. All Manuals Search And Download.  
3.14 MIN_GNT and MAX_LAT Register  
The MIN_GNT and MAX_LAT register is used to communicate to the system the desired setting of bits 15–8 of the  
latency timer and class cache line size register (offset 0Ch, see Section 3.7). If a serial ROM is detected, then the  
contents of this register are loaded through the serial ROM interface after a PCI reset. If no serial ROM is detected,  
then this register returns a default value that corresponds to the MIN_GNT = 2, MAX_LAT = 4. See Table 3–11 for  
a complete description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
MIN_GNT and MAX_LAT  
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
1
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
1
RU  
0
Register:  
Type:  
Offset:  
Default:  
MIN_GNT and MAX_LAT  
Read/Update  
3Eh  
0402h  
Table 3–11. MIN_GNT and MAX_LAT Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
Maximum latency. The contents of this register may be used by host BIOS to assign an arbitration  
priority-level to the TSB12LV26. The default for this register indicates that the TSB12LV26 may need to  
access the PCI bus as often as every 0.25 µs; thus, an extremely high priority level is requested. The  
contents of this field may also be loaded through the serial ROM.  
15–8  
MAX_LAT  
RU  
RU  
Minimum grant. The contents of this register may be used by host BIOS to assign a latency timer and class  
cache line size register (offset 0Ch, see Section 3.7) value to the TSB12LV26. The default for this register  
indicates that the TSB12LV26 may need to sustain burst transfers for nearly 64 µs; thus, requesting a large  
value be programmed in bits 15–8 of the TSB12LV26 latency timer and class cache line size register.  
7–0  
MIN_GNT  
3.15 OHCI Control Register  
The OHCI control register is defined by the 1394 Open Host Controller Interface Specification and provides a bit for  
big endian PCI support. See Table 3–12 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
OHCI control  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
OHCI control  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
OHCI control  
Read/Write  
40h  
0000 0000h  
Table 3–12. OHCI Control Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
31–1  
RSVD  
R
Reserved. Bits 31–1 return 0s when read.  
When this bit is set, all quadlets read from and written to the PCI interface are byte swapped (big  
endian). This bit is loaded from ROM and should be programmed to 0 for normal operation.  
0
GLOBAL_SWAP  
R/W  
3–10  
Download from Www.Somanuals.com. All Manuals Search And Download.  
3.16 Capability ID and Next Item Pointer Register  
The capability ID and next item pointer register identifies the linked list capability item and provides a pointer to the  
next capability item. See Table 3–13 for a complete description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Capability ID and next item pointer  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
1
Register:  
Type:  
Offset:  
Default:  
Capability ID and next item pointer  
Read-only  
44h  
0001h  
Table 3–13. Capability ID and Next Item Pointer Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
Next item pointer. The TSB12LV26 supports only one additional capability that is communicated to  
the system through the extended capabilities list; thus, this field returns 00h when read.  
15–8  
NEXT_ITEM  
R
Capabilityidentification. This field returns 01h when read, which is the unique ID assigned by the PCI  
SIG for PCI power management capability.  
7–0  
CAPABILITY_ID  
R
3–11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
3.17 Power Management Capabilities Register  
The power management capabilities register indicates the capabilities of the TSB12LV26 related to PCI power  
management. See Table 3–14 for a complete description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Power management capabilities  
RU  
0
RU  
1
RU  
1
RU  
0
RU  
0
RU  
1
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
1
Register:  
Type:  
Power management capabilities  
Read/Update, Read-only  
Offset:  
Default:  
46h  
6401h  
Table 3–14. Power Management Capabilities Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
PCI_PMEsupportfromD3  
from D3  
configured by host software using bit 15 (PME_D3COLD) in the PCI miscellaneous configuration  
register (see Section 3.20).  
.Whenthisbitisset,theTSB12LV26generatesaPCI_PMEwakeevent  
cold  
. This bit state is dependent upon the TSB12LV26 V  
implementation and may be  
cold AUX  
15  
PME_D3COLD  
RU  
PCI_PME support. This 4-bit field indicates the power states from which the TSB12LV26 may assert  
PCI_PME. This field returns a value of 1100b by default, indicating that PCI_PME may be asserted  
14–11  
PME_SUPPORT  
RU  
from the D3  
and D2 power states. Bit 13 may be modified by host software using bit 13  
hot  
(PME_SUPPORT_D2) in the PCI miscellaneous configuration register (offset F0h, see Section 3.20).  
D2 support. This bit can be set or cleared via bit 10 (D2_SUPPORT) in the PCI miscellaneous  
configuration register (see Section 3.20). The PCI miscellaneous configuration register is loaded from  
ROM. When this bit is set, it indicates that D2 support is present. When this bit is cleared, it indicates  
that D2 support is not present for backward compatibility with the TSB12LV22. For normal operation,  
this bit is set to 1.  
10  
9
D2_SUPPORT  
D1_SUPPORT  
RU  
R
D1 support. This bit returns a 0 when read, indicating that the TSB12LV26 does not support the D1  
power state.  
Dynamic data support. This bit returns a 0 when read, indicating that the TSB12LV26 does not report  
dynamic power consumption data.  
8
DYN_DATA  
RSVD  
R
R
7–6  
Reserved. Bits 7–6 return 0s when read.  
Device specific initialization. This bit returns 0 when read, indicating that the TSB12LV26 does not  
require special initialization beyond the standard PCI configuration header before a generic class  
driver is able to use it.  
5
DSI  
R
Auxiliary power source. Since the TSB12LV26 does not support PCI_PME generation in the D3  
device state, this bit returns 0 when read.  
cold  
4
3
AUX_PWR  
PME_CLK  
R
R
PME clock. This bit returns 0 when read, indicating that no host bus clock is required for the  
TSB12LV26 to generate PCI_PME.  
Power management version. This field returns 001b when read, indicating that the TSB12LV26 is  
compatible with the registers described in the PCI Bus Power Management Interface Specification  
Rev. 1.0.  
2–0  
PM_VERSION  
R
3–12  
Download from Www.Somanuals.com. All Manuals Search And Download.  
3.18 Power Management Control and Status Register  
The power management control and status register implements the control and status of the PCI power management  
function. This register is not affected by the internally generated reset caused by the transition from the D3 to D0  
hot  
state. See Table 3–15 for a complete description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Power management control and status  
RC  
0
R
0
R
0
R
0
R
0
R
0
R
0
R/W  
0
R
0
R
0
R
0
R
0
R
0
R
0
R/W  
0
R/W  
0
Register:  
Type:  
Power management control and status  
Read/Clear, Read/Write, Read-only  
Offset:  
Default:  
48h  
0000h  
Table 3–15. Power Management Control and Status Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
This bit is set when the TSB12LV26 would normally be asserting the PME signal, independent of the  
state of bit 8 (PME_ENB). This bit is cleared by a writeback of 1, and this also clears the PCI_PME  
signal driven by the TSB12LV26. Writing a 0 to this bit has no effect.  
15  
PME_STS  
RC  
Dynamic data control. This field returns 0s when read since the TSB12LV26 does not report dynamic  
data.  
14–9  
8
DYN_CTRL  
PME_ENB  
R
PCI_PME enable. This bit enables the function to assert PCI_PME. If this bit is cleared, then assertion  
of PCI_PME is disabled.  
R/W  
7–5  
4
RSVD  
DYN_DATA  
RSVD  
R
R
R
Reserved. Bits 7–5 return 0s when read.  
Dynamic data. This bit returns 0 when read since the TSB12LV26 does not report dynamic data.  
Reserved. Bits 3–2 return 0s when read.  
3–2  
Power state. This 2-bit field is used to set the TSB12LV26 device power state and is encoded as  
follows:  
00 = Current power state is D0  
01 = Current power state is D1  
10 = Current power state is D2  
11 = Current power state is D3  
1–0  
PWR_STATE  
R/W  
3.19 Power Management Extension Register  
The power management extension register provides extended power management features not applicable to the  
TSB12LV26, thus it is read-only and returns 0s when read. See Table 3–16 for a complete description of the register  
contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Power management extension  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
Power management extension  
Read-only  
4Ah  
0000h  
Table 3–16. Power Management Extension Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
Power management data. This field returns 00h when read since the TSB12LV26 does not report  
dynamic data.  
15–8  
PM_DATA  
R
Power management CSR – bridge support extensions. This field returns 00h when read since the  
TSB12LV26 does not provide P2P bridging.  
7–0  
PMCSR_BSE  
R
3–13  
Download from Www.Somanuals.com. All Manuals Search And Download.  
3.20 Miscellaneous Configuration Register  
The miscellaneous configuration register provides miscellaneous PCI-related configuration. See Table 3–17 for a  
complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Miscellaneous configuration  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Miscellaneous configuration  
R/W  
0
R
0
R/W  
1
R
0
R
0
R/W  
1
R
0
R
0
R
0
R
0
R
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
Miscellaneous configuration  
Read/Write, Read-only  
F0h  
0000 2400h  
Table 3–17. Miscellaneous Configuration Register  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
Reserved. Bits 31–16 return 0s when read.  
PCI_PME support from D3 . This bit is used to program bit 15 (PME_D3COLD) in the power  
31–16  
RSVD  
PME_D3COLD  
RSVD  
R
cold  
15  
14  
R/W  
R
management capabilities register (offset 46h, see Section 3.17).  
Reserved. Bit 14 returns 0 when read.  
PCI_PME support. This bit is used to program bit 13 (PME_SUPPORT_D2) in the power  
managementcapabilities register (offset 46h, see Section 3.17). If wake from the D2 power state  
implemented in the TSB12LV26 is not desired, then this bit may be cleared to indicate to power  
management software that wake-up from D2 is not supported.  
13  
12–11  
10  
PME_SUPPORT_D2  
RSVD  
R/W  
R
Reserved. Bits 12–11 return 0s when read.  
D2 support. This bit is used to program bit 10 (D2_SUPPORT) in the power management  
capabilities register (offset 46h, see Section 3.17). If the D2 power state implemented in the  
TSB12LV26isnotdesired, thenthisbitmaybeclearedtoindicatetopowermanagementsoftware  
that D2 is not supported.  
D2_SUPPORT  
RSVD  
R/W  
R
9–5  
Reserved. Bits 9–5 return 0s when read.  
Thisbitdefaultsto0, whichprovidesOHCI-Lynxcompatibletargetabortsignaling. Whenthisbitis  
set to 1, it enables the no-target-abort mode, in which the TSB12LV26 returns indeterminate data  
instead of signaling target abort.  
ThelinkisdividedintothePCI_CLKandSCLKdomains. Ifsoftwaretriestoaccessregistersinthe  
link that are not active because the SCLK is disabled, a target abort is issued by the link. On some  
systems this can cause a problem resulting in a fatal system error. Enabling this bit allows the link  
to respond to these types of requests by returning FFh.  
4
DIS_TGT_ABT  
R/W  
It is recommended that this bit be set to 1.  
When this bit is set to 1, the GPIO3 and GPIO2 signals are internally routed to the SCL and SDA,  
respectively. The GPIO3 and GPIO2 terminals are also placed in a high impedance state.  
3
2
1
0
GP2IIC  
R/W  
R/W  
R/W  
R/W  
When this bit is set to 1, the internal SCLK runs identically with the chip input. This bit is a test  
feature only and should be cleared to 0 (all applications).  
DISABLE_SCLKGATE  
DISABLE_PCIGATE  
KEEP_PCLK  
When this bit is set, the internal PCI clock runs identically with the chip input. This bit is a test  
feature only and should be cleared to 0 (all applications).  
When this bit is set to 1, the PCI clock is always kept running through the PCI_CLKRUN protocol.  
When this bit is cleared, the PCI clock may be stopped using PCI_CLKRUN.  
3–14  
Download from Www.Somanuals.com. All Manuals Search And Download.  
3.21 Link Enhancement Control Register  
The link enhancement control register implements TI proprietary bits that are initialized by software or by a serial  
ROM, if present. After these bits are set, their functionality is enabled only if bit 22 (aPhyEnhanceEnable) in the host  
controller control register (OHCI offset 50h/54h, see Section 4.16) is set. See Table 3–18 for a complete description  
of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Link enhancement control  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Link enhancement control  
R
0
R
0
R/W  
0
R/W  
1
R
0
R
0
R
0
R
0
R/W  
0
R
0
R
0
R
0
R
0
R/W  
0
R/W  
0
R
0
Register:  
Type:  
Offset:  
Default:  
Link enhancement control  
Read/Write, Read-only  
F4h  
0000 1000h  
Table 3–18. Link Enhancement Control Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
Reserved. Bits 31–14 return 0s when read.  
31–14  
RSVD  
R
This field sets the initial AT threshold value, which is used until the AT FIFO is underrun. When the  
TSB12LV26 retries the packet, it uses a 2-Kbyte threshold resulting in a store-and-forward operation.  
00 = Threshold ~ 2K bytes resulting in a store-and-forward operation  
01 = Threshold ~ 1.7K bytes (default)  
10 = Threshold ~ 1K bytes  
11 = Threshold ~ 512 bytes  
These bits fine-tune the asynchronous transmit threshold. For most applications the 1.7K threshold  
is optimal. Changing this value may increase or decrease the 1394 latency depending on the average  
PCI bus latency.  
13–12  
atx_thresh  
R/W  
Setting the AT threshold to 1.7K, 1K, or 512 bytes results in data being transmitted at these thresholds,  
or when an entire packet has been checked into the FIFO. If the packet to be transmitted is larger than  
the AT threshold, then the remaning data must be received before the AT FIFO is emptied; otherwise,  
an underrun condition will occur, resulting in a packet error at the receiving node. As a result, the link  
will then commence store-and-forward operation, i.e., wait until it has the complete packet in the FIFO  
before retransmitting it on the second attempt, to ensure delivery.  
An AT threshold of 2K results in store-and-forward operation, which means that asynchronous data  
will not be transmitted until an end-of-packet token is received. Restated, setting the AT threshold to  
2K results in only complete packets being transmitted.  
11–8  
7
RSVD  
R
Reserved. Bits 11–8 return 0s when read.  
Enable asynchronous priority requests. OHCI-Lynx compatible. Setting this bit to 1 enables the link  
to respond to requests with priority arbitration. It is recommended that this bit be set to 1.  
enab_unfair  
R/W  
This bit is not assigned in the TSB12LV26 follow-on products since this bit location loaded by the serial  
ROM from the enhancements field corresponds to bit 23 (programPhyEnable) in the host controller  
control register (OHCI offset 50h/54h, see Section 4.16).  
6
RSVD  
RSVD  
R
R
5–3  
Reserved. Bits 5–3 return 0s when read.  
Enable insert idle. OHCI-Lynx compatible. When the PHY has control of the Ct[0:1] control lines and  
D[0:8] data lines and the link requests control, the PHY drives 11b on the Ct[0:1] lines. The link can  
then start driving these lines immediately. Setting this bit to 1 inserts an idle state, so the link waits one  
clock cycle before it starts driving the lines (turnaround time). It is recommended that this bit be set to  
1.  
2
enab_insert_idle  
R/W  
3–15  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Table 3–18. Link Enhancement Control Register Description (Continued)  
BIT  
1
FIELD NAME  
enab_accel  
RSVD  
TYPE  
R/W  
R
DESCRIPTION  
Enable acceleration enhancements. OHCI-Lynx compatible. When set to 1, this bit notifies the PHY  
that the link supports the 1394a acceleration enhancements, i.e., ack-accelerated, fly-by  
concatenation, etc. It is recommended that this bit be set to 1.  
0
Reserved. Bit 0 returns 0 when read.  
3.22 Subsystem Access Register  
Write access to the subsystem access register updates the subsystem identification registers identically to  
OHCI-Lynx. The system ID value written to this register may also be read back from this register. See Table 3–19 for  
a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Subsystem access  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Subsystem access  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
Subsystem access  
Read/Write  
F8h  
0000 0000h  
Table 3–19. Subsystem Access Register Description  
BIT  
31–16  
15–0  
FIELD NAME  
SUBDEV_ID  
SUBVEN_ID  
TYPE  
DESCRIPTION  
R/W  
R/W  
Subsystem device ID. This field indicates the subsystem device ID.  
Subsystem vendor ID. This field indicates the subsystem vendor ID.  
3–16  
Download from Www.Somanuals.com. All Manuals Search And Download.  
3.23 GPIO Control Register  
The GPIO control register has the control and status bits for the GPIO2 and GPIO3 ports. See Table 3–20 for a  
complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
GPIO control  
RWU R/W  
R/W  
0
R
0
R/W  
0
R/W  
0
R
0
R
0
R
0
9
R
0
6
R/W  
0
R/W  
0
R
0
3
R
0
2
R
0
1
RWU  
0
0
0
15  
14  
13  
12  
11  
10  
8
7
5
4
0
Name  
Type  
Default  
GPIO control  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
GPIO control  
Read/Write/Update, ReadWrite, Read-only  
Offset:  
Default:  
FCh  
0000 0000h  
Table 3–20. GPIO Control Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
When this bit is set, a TSB12LV26 general-purpose interrupt event occurs on a level change of the  
GPIO3 input. This event may generate an interrupt, with mask and event status reported through the  
OHCI interrupt mask (OHCI offset 88h/8Ch, see Section 4.22) and interrupt event (OHCI offset  
80h/84h, see Section 4.21) registers.  
31  
INT_3EN  
R/W  
30  
29  
RSVD  
R
Reserved. Bit 30 returns 0 when read.  
GPIO_INV3  
R/W  
GPIO3 polarity invert. When this bit is set, the polarity of GPIO3 is inverted.  
GPIO3 enable control. When this bit is set, the output is enabled. Otherwise, the output is high  
impedance.  
28  
27–25  
24  
GPIO_ENB3  
RSVD  
R/W  
R
Reserved. Bits 27–25 return 0s when read.  
GPIO3 data. Reads from this bit return the logical value of the input to GPIO3. Writes to this bit update  
the value to drive to GPIO3 when output is enabled.  
GPIO_DATA3  
RWU  
When this bit is set, a TSB12LV26 general-purpose interrupt event occurs on a level change of the  
GPIO2 input. This event may generate an interrupt, with mask and event status reported through the  
OHCI interrupt mask (OHCI offset 88h/8Ch, see Section 4.22) and interrupt event (OHCI offset  
80h/84h, see Section 4.21) registers.  
23  
INT_2EN  
R/W  
22  
21  
RSVD  
R
Reserved. Bit 22 returns 0 when read.  
GPIO_INV2  
R/W  
GPIO2 polarity invert. When this bit is set, the polarity of GPIO2 is inverted.  
GPIO2 enable control. When this bit is set, the output is enabled. Otherwise, the output is high  
impedance.  
20  
19–17  
16  
GPIO_ENB2  
RSVD  
R/W  
R
Reserved. Bits 19–17 return 0s when read.  
GPIO2 data. Reads from this bit return the logical value of the input to GPIO2. Writes to this bit update  
the value to drive to GPIO2 when the output is enabled.  
GPIO_DATA2  
RSVD  
RWU  
R
15–0  
Reserved. Bits 15–0 return 0s when read.  
3–17  
Download from Www.Somanuals.com. All Manuals Search And Download.  
3–18  
Download from Www.Somanuals.com. All Manuals Search And Download.  
4 OHCI Registers  
The OHCI registers defined by the 1394 Open Host Controller Interface Specification are memory-mapped into a  
2-Kbyte region of memory pointed to by the OHCI base address register at offset 10h in PCI configuration space (see  
Section 3.9). These registers are the primary interface for controlling the TSB12LV26 IEEE 1394 link function.  
This section provides the register interface and bit descriptions. There are several set/clear register pairs in this  
programming model, which are implemented to solve various issues with typical read-modify-write control registers.  
There are two addresses for a set/clear register: RegisterSet and RegisterClear. Refer to Table 4–1 for an illustration.  
A 1 bit written to RegisterSet causes the corresponding bit in the set/clear register to be set, while a 0 bit leaves the  
corresponding bit unaffected. A 1 bit written to RegisterClear causes the corresponding bit in the set/clear register  
to be cleared, while a 0 bit leaves the corresponding bit in the set/clear register unaffected.  
Typically, a read from either RegisterSet or RegisterClear returns the contents of the set or clear register, respectively.  
However, sometimes reading the RegisterClear provides a masked version of the set or clear register. The interrupt  
event register is an example of this behavior.  
Table 4–1. OHCI Register Map  
DMA CONTEXT  
REGISTER NAME  
OHCI version  
ABBREVIATION  
Version  
OFFSET  
00h  
GUID ROM  
GUID_ROM  
ATRetries  
04h  
Asynchronous transmit retries  
CSR data  
08h  
CSRData  
0Ch  
CSR compare data  
CSR control  
CSRCompareData  
CSRControl  
ConfigROMhdr  
BusID  
10h  
14h  
Configuration ROM header  
Bus identification  
Bus options  
18h  
1Ch  
BusOptions  
GUIDHi  
20h  
GUID high  
24h  
GUID low  
GUIDLo  
28h  
Reserved  
2Ch–30h  
34h  
Configuration ROM map  
Posted write address low  
Posted write address high  
Vendor identification  
ConfigROMmap  
PostedWriteAddressLo  
PostedWriteAddressHi  
VendorID  
38h  
3Ch  
40h–4Ch  
50h  
HCControlSet  
HCControlClr  
Host controller control  
Reserved  
54h  
58h–5Ch  
4–1  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Table 4–1. OHCI Register Map (Continued)  
DMA CONTEXT  
REGISTER NAME  
ABBREVIATION  
OFFSET  
60h  
Self ID  
Reserved  
Self ID buffer  
Self ID count  
Reserved  
SelfIDBuffer  
64h  
SelfIDCount  
68h  
6Ch  
IRChannelMaskHiSet  
IRChannelMaskHiClear  
IRChannelMaskLoSet  
IRChannelMaskLoClear  
IntEventSet  
70h  
Isochronous receive channel mask high  
Isochronous receive channel mask low  
Interrupt event  
74h  
78h  
7Ch  
80h  
IntEventClear  
84h  
IntMaskSet  
88h  
Interrupt mask  
IntMaskClear  
8Ch  
IsoXmitIntEventSet  
IsoXmitIntEventClear  
IsoXmitIntMaskSet  
IsoXmitIntMaskClear  
IsoRecvIntEventSet  
IsoRecvIntEventClear  
IsoRecvIntMaskSet  
IsoRecvIntMaskClear  
90h  
Isochronous transmit interrupt event  
Isochronous transmit interrupt mask  
Isochronous receive interrupt event  
Isochronous receive interrupt mask  
94h  
98h  
9Ch  
A0h  
A4h  
A8h  
ACh  
B0–D8h  
DCh  
E0h  
Reserved  
Fairness control  
FairnessControl  
LinkControlSet  
LinkControlClear  
NodeID  
Link control  
E4h  
Node identification  
PHY layer control  
Isochronous cycle timer  
Reserved  
E8h  
PhyControl  
ECh  
F0h  
Isocyctimer  
F4h–FCh  
100h  
104h  
108h  
10Ch  
110h  
114h  
118h  
11Ch  
120h  
124h–17Ch  
AsyncRequestFilterHiSet  
AsyncRequestFilterHiClear  
AsyncRequestFilterLoSet  
AsyncRequestFilterloClear  
PhysicalRequestFilterHiSet  
PhysicalRequestFilterHiClear  
PhysicalRequestFilterLoSet  
PhysicalRequestFilterloClear  
PhysicalUpperBound  
Asynchronous request filter high  
Asynchronous request filter low  
Physical request filter high  
Physical request filter low  
Physical upper bound  
Reserved  
4–2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Table 4–1. OHCI Register Map (Continued)  
DMA CONTEXT  
REGISTER NAME  
ABBREVIATION  
OFFSET  
180h  
ContextControlSet  
Asynchronous context control  
ContextControlClear  
184h  
Asychronous  
Request Transmit  
[ ATRQ ]  
Reserved  
188h  
Asynchronous context command pointer  
Reserved  
CommandPtr  
18Ch  
190h–19Ch  
1A0h  
ContextControlSet  
Asynchronous context control  
ContextControlClear  
1A4h  
Asychronous  
Response Transmit  
[ ATRS ]  
Reserved  
1A8h  
Asynchronous context command pointer  
Reserved  
CommandPtr  
1ACh  
1B0h–1BCh  
1C0h  
ContextControlSet  
Asynchronous context control  
ContextControlClear  
1C4h  
Asychronous  
Request Receive  
[ ARRQ ]  
Reserved  
1C8h  
Asynchronous context command pointer  
Reserved  
CommandPtr  
1CCh  
1D0h–1DCh  
1E0h  
ContextControlSet  
Asynchronous context control  
ContextControlClear  
1E4h  
Asychronous  
Response Receive  
[ ARRS ]  
Reserved  
1E8h  
Asynchronous context command pointer  
Reserved  
CommandPtr  
1ECh  
1F0h–1FCh  
200h + 16*n  
204h + 16*n  
208h + 16*n  
ContextControlSet  
ContextControlClear  
Isochronous transmit context control  
Reserved  
Isochronous  
Transmit Context n  
n = 0, 1, 2, 3, , 7  
Isochronous transmit context command  
pointer  
CommandPtr  
20Ch + 16*n  
Reserved  
280h – 3FCh  
400h + 32*n  
404h + 32*n  
408h + 32*n  
ContextControlSet  
ContextControlClear  
Isochronous receive context control  
Isochronous  
Receive Context n  
n = 0, 1, 2, 3  
Reserved  
Isochronous receive context command  
pointer  
CommandPtr  
ContextMatch  
40Ch + 32*n  
410h + 32*n  
Context match  
4–3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
4.1 OHCI Version Register  
This register indicates the OHCI version support, and whether or not the serial ROM is present. See Table 4–2 for  
a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
OHCI version  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
X
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
1
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
OHCI version  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
OHCI version  
Read-only  
00h  
0X01 0000h  
Table 4–2. OHCI Version Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
31–25  
RSVD  
R
Reserved. Bits 31–25 return 0s when read.  
The TSB12LV26 sets this bit if the serial ROM is detected. If the serial ROM is present, then the  
Bus_Info_Block is automatically loaded on hardware reset.  
24  
GUID_ROM  
R
Major version of the OHCI. The TSB12LV26 is compliant with the 1394 Open Host Controller Interface  
Specification; thus, this field reads 01h.  
23–16  
15–8  
7–0  
version  
RSVD  
R
R
R
Reserved. Bits 15–8 return 0s when read.  
Minor version of the OHCI. The TSB12LV26 is compliant with the 1394 Open Host Controller Interface  
Specification; thus, this field reads 00h.  
revision  
4–4  
Download from Www.Somanuals.com. All Manuals Search And Download.  
4.2 GUID ROM Register  
The GUID ROM register is used to access the serial ROM, and is only applicable if bit 24 (GUID_ROM) in the OHCI  
version register (OHCI offset 00h, see Section 4.1) is set. See Table 4–3 for a complete description of the register  
contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
GUID ROM  
RSU  
0
R
0
R
0
R
0
R
0
R
0
RSU  
R
0
8
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
0
15  
14  
13  
12  
11  
10  
9
7
6
5
4
3
2
1
0
Name  
Type  
Default  
GUID ROM  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
GUID ROM  
Read/Set/Update, Read/Update, Read-only  
Offset:  
Default:  
04h  
00XX 0000h  
Table 4–3. GUID ROM Register Description  
BIT  
31  
FIELD NAME  
addrReset  
RSVD  
TYPE  
RSU  
R
DESCRIPTION  
Software sets this bit to reset the GUID ROM address to 0. When the TSB12LV26 completes the reset,  
it clears this bit. The TSB12LV26 does not automatically fill bits 23–16 (rdData field) with the 0 byte.  
th  
30–26  
25  
Reserved. Bits 30–26 return 0s when read.  
A read of the currently addressed byte is started when this bit is set. This bit is automatically cleared  
when the TSB12LV26 completes the read of the currently addressed GUID ROM byte.  
rdStart  
RSU  
24  
RSVD  
rdData  
RSVD  
R
RU  
R
Reserved. Bit 24 returns 0 when read.  
23–16  
15–0  
This field represents the data read from the GUID ROM.  
Reserved. Bits 15–0 return 0s when read.  
4–5  
Download from Www.Somanuals.com. All Manuals Search And Download.  
4.3 Asynchronous Transmit Retries Register  
The asynchronous transmit retries register indicates the number of times the TSB12LV26 attempts a retry for  
asynchronous DMA request transmit and for asynchronous physical and DMA response transmit. See Table 4–4 for  
a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Asynchronous transmit retries  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Asynchronous transmit retries  
R
0
R
0
R
0
R
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
Asynchronous transmit retries  
Read/Write, Read-only  
08h  
0000 0000h  
Table 4–4. Asynchronous Transmit Retries Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
31–29  
28–16  
15–12  
secondLimit  
cycleLimit  
RSVD  
R
R
R
The second limit field returns 0s when read, since outbound dual-phase retry is not implemented.  
The cycle limit field returns 0s when read, since outbound dual-phase retry is not implemented.  
Reserved. Bits 15–12 return 0s when read.  
This field tells the physical response unit how many times to attempt to retry the transmit operation  
for the response packet when a busy acknowledge or ack_data_error is received from the target  
node.  
11–8  
7–4  
3–0  
maxPhysRespRetries  
maxATRespRetries  
maxATReqRetries  
R/W  
R/W  
R/W  
This field tells the asynchronous transmit response unit how many times to attempt to retry the  
transmit operation for the response packet when a busy acknowledge or ack_data_error is  
received from the target node.  
This field tells the asynchronous transmit DMA request unit how many times to attempt to retry the  
transmit operation for the response packet when a busy acknowledge or ack_data_error is  
received from the target node.  
4.4 CSR Data Register  
The CSR data register is used to access the bus management CSR registers from the host through compare-swap  
operations. This register contains the data to be stored in a CSR if the compare is successful.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
CSR data  
R
X
R
X
R
X
R
X
R
X
R
X
R
X
9
R
X
8
R
X
7
R
X
6
R
X
5
R
X
4
R
X
3
R
X
2
R
X
1
R
X
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
CSR data  
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
Register:  
Type:  
Offset:  
Default:  
CSR data  
Read-only  
0Ch  
XXXX XXXXh  
4–6  
Download from Www.Somanuals.com. All Manuals Search And Download.  
4.5 CSR Compare Register  
The CSR compare register is used to access the bus management CSR registers from the host through  
compare-swap operations. This register contains the data to be compared with the existing value of the CSR  
resource.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
CSR compare  
R
X
R
X
R
X
R
X
R
X
R
X
R
X
9
R
X
8
R
X
7
R
X
6
R
X
5
R
X
4
R
X
3
R
X
2
R
X
1
R
X
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
CSR compare  
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
Register:  
Type:  
Offset:  
Default:  
CSR compare  
Read-only  
10h  
XXXX XXXXh  
4.6 CSR Control Register  
The CSR control register is used to access the bus management CSR registers from the host through compare-swap  
operations. This register is used to control the compare-swap operation and to select the CSR resource. See  
Table 4–5 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
CSR control  
RU  
1
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
CSR control  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R/W  
X
R/W  
X
Register:  
Type:  
CSR control  
Read/Write, Read/Update, Read-only  
Offset:  
Default:  
14h  
8000 000Xh  
Table 4–5. CSR Control Register Description  
BIT  
31  
FIELD NAME  
csrDone  
TYPE  
RU  
DESCRIPTION  
This bit is set by the TSB12LV26 when a compare-swap operation is complete. It is cleared whenever  
this register is written.  
30–2  
RSVD  
R
Reserved. Bits 30–2 return 0s when read.  
This field selects the CSR resource as follows:  
00 = BUS_MANAGER_ID  
01 = BANDWIDTH_AVAILABLE  
10 = CHANNELS_AVAILABLE_HI  
11 = CHANNELS_AVAILABLE_LO  
1–0  
csrSel  
R/W  
4–7  
Download from Www.Somanuals.com. All Manuals Search And Download.  
4.7 Configuration ROM Header Register  
The configuration ROM header register externally maps to the first quadlet of the 1394 configuration ROM, offset  
FFFF F000 0400h. See Table 4–6 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Configuration ROM header  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Configuration ROM header  
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
Register:  
Type:  
Configuration ROM header  
Read/Write  
Offset:  
Default:  
18h  
0000 XXXXh  
Table 4–6. Configuration ROM Header Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
IEEE 1394 bus management field. Must be valid when bit 17 (linkEnable) of the host controller control  
register (OHCI offset 50h/54h, see Section 4.16) is set.  
31–24  
info_length  
R/W  
IEEE 1394 bus management field. Must be valid when bit 17 (linkEnable) of the host controller control  
register (OHCI offset 50h/54h, see Section 4.16) is set.  
23–16  
15–0  
crc_length  
R/W  
R/W  
IEEE 1394 bus management field. Must be valid at any time bit 17 (linkEnable) of the host controller  
control register (OHCI offset 50h/54h, see Section 4.16) is set. The reset value is undefined if no serial  
ROM is present. If a serial ROM is present, then this field is loaded from the serial ROM.  
rom_crc_value  
4.8 Bus Identification Register  
The bus identification register externally maps to the first quadlet in the Bus_Info_Block, and contains the constant  
3133 3934h, which is the ASCII value of 1394.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Bus identification  
R
0
R
0
R
1
R
1
R
0
R
0
R
0
9
R
1
8
R
0
7
R
0
6
R
1
5
R
1
4
R
0
3
R
0
2
R
1
1
R
1
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Bus identification  
R
0
R
0
R
1
R
1
R
1
R
0
R
0
R
1
R
0
R
0
R
1
R
1
R
0
R
1
R
0
R
0
Register:  
Type:  
Bus identification  
Read-only  
Offset:  
Default:  
1Ch  
3133 3934h  
4–8  
Download from Www.Somanuals.com. All Manuals Search And Download.  
4.9 Bus Options Register  
The bus options register externally maps to the second quadlet of the Bus_Info_Block. See Table 4–7 for a complete  
description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Bus options  
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
0
R
0
R
0
9
R
0
8
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
15  
14  
13  
12  
11  
10  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Bus options  
R/W  
1
R/W  
0
R/W  
1
R/W  
0
R
0
R
0
R
0
R
0
R/W  
X
R/W  
X
R
0
R
0
R
0
R
0
R
1
R
0
Register:  
Type:  
Offset:  
Default:  
Bus options  
Read/Write, Read-only  
20h  
X0XX A0X2h  
Table 4–7. Bus Options Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
Isochronous resource manager capable. IEEE 1394 bus management field. Must be valid when bit 17  
(linkEnable) of the host controller control register (OHCI offset 50h/54h, see Section 4.16) is set.  
31  
irmc  
R/W  
Cycle master capable. IEEE 1394 bus management field. Must be valid when bit 17 (linkEnable) of the  
host controller control register (OHCI offset 50h/54h, see Section 4.16) is set.  
30  
29  
28  
cmc  
isc  
R/W  
R/W  
R/W  
Isochronous support capable. IEEE 1394 bus management field. Must be valid when bit 17  
(linkEnable) of the host controller control register (OHCI offset 50h/54h, see Section 4.16) is set.  
Bus manager capable. IEEE 1394 bus management field. Must be valid when bit 17 (linkEnable) of the  
host controller control register (OHCI offset 50h/54h, see Section 4.16) is set.  
bmc  
Power management capable. When set, this indicates that the node is power management capable.  
Must be valid when bit 17 (linkEnable) of the host controller control register (OHCI offset 50h/54h, see  
Section 4.16) is set.  
27  
pmc  
RSVD  
R/W  
R
26–24  
23–16  
Reserved. Bits 26–24 return 0s when read.  
Cycle master clock accuracy, in parts per million. IEEE 1394 bus management field. Must be valid  
when bit 17 (linkEnable) of the host controller control register (OHCI offset 50h/54h, see Section 4.16)  
is set.  
cyc_clk_acc  
R/W  
Maximum request. IEEE 1394 bus management field. Hardware initializes this field to indicate the  
maximum number of bytes in a block request packet that is supported by the implementation. This  
value, max_rec_bytes must be 512 or greater, and is calculated by 2^(max_rec + 1). Software may  
change this field; however, this field must be valid at any time bit 17 (linkEnable) of the host controller  
control register (OHCI offset 50h/54h, see Section 4.16) is set. A received block write request packet  
withalengthgreaterthanmax_rec_bytesmaygenerateanack_type_error. Thisfieldisnotaffectedby  
a soft reset, and defaults to a value indicating 2048 bytes on a hard reset.  
15–12  
max_rec  
R/W  
11–8  
7–6  
5–3  
2–0  
RSVD  
g
R
R/W  
R
Reserved. Bits 11–8 return 0s when read.  
Generation counter. This field is incremented if any portion of the configuration ROM has been  
incremented since the prior bus reset.  
RSVD  
Lnk_spd  
Reserved. Bits 5–3 return 0s when read.  
Link speed. This field returns 010, indicating that the link speeds of 100, 200, and 400 Mbits/s are  
supported.  
R
4–9  
Download from Www.Somanuals.com. All Manuals Search And Download.  
4.10 GUID High Register  
The GUID high register represents the upper quadlet in a 64-bit global unique ID (GUID) which maps to the third  
quadlet in the Bus_Info_Block. This register contains node_vendor_ID and chip_ID_hi fields. This register initializes  
to 0s on a hardware reset, which is an illegal GUID value. If a serial ROM is detected, then the contents of this register  
are loaded through the serial ROM interface after a PCI reset. At that point, the contents of this register cannot be  
changed. If no serial ROM is detected, then the contents of this register are loaded by the BIOS after a PCI reset.  
At that point, the contents of this register cannot be changed.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
GUID high  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
GUID high  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
GUID high  
Read-only  
24h  
0000 0000h  
4.11 GUID Low Register  
The GUID low register represents the lower quadlet in a 64-bit global unique ID (GUID) which maps to chip_ID_lo  
in the Bus_Info_Block. This register initializes to 0s on a hardware reset and behaves identically to the GUID high  
register (OHCI offset 24h, see Section 4.10).  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
GUID low  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
GUID low  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
GUID low  
Read-only  
28h  
0000 0000h  
4–10  
Download from Www.Somanuals.com. All Manuals Search And Download.  
4.12 Configuration ROM Mapping Register  
The configuration ROM mapping register contains the start address within system memory that maps to the start  
address of 1394 configuration ROM for this node. See Table 4–8 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Configuration ROM mapping  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Configuration ROM mapping  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
Configuration ROM mapping  
Read/Write, Read-only  
34h  
0000 0000h  
Table 4–8. Configuration ROM Mapping Register Description  
BIT  
31–10  
9–0  
FIELD NAME  
configROMaddr  
RSVD  
TYPE  
R/W  
R
DESCRIPTION  
If a quadlet read request to 1394 offset FFFF F000 0400h through offset FFFF F000 07FFh is  
received,thenthelow-order10bitsoftheoffsetareaddedtothisregistertodeterminethehostmemory  
address of the read request.  
Reserved. Bits 9–0 return 0s when read.  
4.13 Posted Write Address Low Register  
The posted write address low register is used to communicate error information if a write request is posted and an  
error occurs while writing the posted data packet. This register contains the lower 32 bits of the 1394 destination offset  
of the write request that failed.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Posted write address low  
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Posted write address low  
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
Register:  
Type:  
Offset:  
Default:  
Posted write address low  
Read/Update  
38h  
XXXX XXXXh  
4–11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
4.14 Posted Write Address High Register  
The posted write address high register is used to communicate error information if a write request is posted and an  
error occurs while writing the posted data packet. See Table 4–9 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Posted write address high  
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Posted write address high  
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
Register:  
Type:  
Posted write address high  
Read/Update  
Offset:  
Default:  
3Ch  
XXXX XXXXh  
Table 4–9. Posted Write Address High Register Description  
BIT  
31–16  
15–0  
FIELD NAME  
sourceID  
TYPE  
DESCRIPTION  
This field is the bus and node number of the node that issued the write request that failed. Bits 31–22  
are the 10-bit bus number and bits 21–16 are the 6-bit node number.  
RU  
offsetHi  
RU  
The upper 16 bits of the 1394 destination offset of the write request that failed.  
4.15 Vendor ID Register  
The vendor ID register holds the company ID of an organization that specifies any vendor-unique registers. The  
TSB12LV26 does not implement Texas Instruments unique behavior with regards to OHCI. Thus, this register is  
read-only and returns 0s when read.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Vendor ID  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Vendor ID  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
Vendor ID  
Read-only  
40h  
0000 0000h  
4–12  
Download from Www.Somanuals.com. All Manuals Search And Download.  
4.16 Host Controller Control Register  
The host controller control set/clear register pair provides flags for controlling the TSB12LV26. See Table 4–10 for  
a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Host controller control  
R
0
RSC  
X
R
0
R
0
R
0
R
0
R
0
9
R
0
8
RC  
0
RSC  
R
0
5
R
0
4
RSC  
RSC  
X
RSC RSCU  
0
0
0
0
15  
14  
13  
12  
11  
10  
7
6
3
2
1
0
Name  
Type  
Default  
Host controller control  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Host controller control  
Read/Set/Clear/Update, Read/Set/Clear, Read/Clear, Read-only  
Offset:  
50h  
54h  
set register  
clear register  
Default:  
X00X 0000h  
Table 4–10. Host Controller Control Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
31  
RSVD  
noByteSwapData  
RSVD  
R
Reserved. Bit 31 returns 0 when read.  
This bit is used to control whether physical accesses to locations outside the TSB12LV26 itself as  
well as any other DMA data accesses should be swapped.  
30  
RSC  
R
29–24  
Reserved. Bits 29–24 return 0s when read.  
This bit informs upper level software that lower level software has consistently configured the  
P1394aenhancementsintheLinkandPHY. Whenthisbitis1, genericsoftwaresuchastheOHCI  
driver is responsible for configuring P1394a enhancements in the PHY and bit 22  
(aPhyEnhanceEnable)in the TSB12LV26. When this bit is 0, the generic software may not modify  
the P1394a enhancements in the TSB12LV26 or PHY and cannot interpret the setting of bit 22  
(aPhyEnhanceEnable). This bit is initialized from serial EEPROM.  
23  
programPhyEnable  
RC  
When bits 23 (programPhyEnable) and 17 (linkEnable) are 1, the OHCI driver can set this bit to  
use all P1394a enhancements. When bit 23 (programPhyEnable) is set to 0, the software does  
not change PHY enhancements or this bit.  
22  
aPhyEnhanceEnable  
RSC  
21–20  
19  
RSVD  
LPS  
R
Reserved. Bits 21–20 return 0s when read.  
This bit is used to control the link power status. Software must set this bit to 1 to permit link-PHY  
communication. A 0 prevents link-PHY communication.  
RSC  
This bit is used to enable (1) or disable (0) posted writes. Software should change this bit only  
when bit 17 (linkEnable) is 0.  
18  
17  
postedWriteEnable  
linkEnable  
RSC  
RSC  
This bit is cleared to 0 by either a hardware or software reset. Software must set this bit to 1 when  
the system is ready to begin operation and then force a bus reset. This bit is necessary to keep  
other nodes from sending transactions before the local system is ready. When this bit is cleared,  
the TSB12LV26 is logically and immediately disconnected from the 1394 bus, no packets are  
received or processed nor are packets transmitted.  
When this bit is set, all TSB12LV26 states are reset, all FIFOs are flushed, and all OHCI registers  
aresettotheirhardwareresetvaluesunlessotherwisespecified. PCIregistersarenotaffectedby  
this bit. This bit remains set while the soft reset is in progress and reverts back to 0 when the reset  
has completed.  
16  
SoftReset  
RSVD  
RSCU  
R
15–0  
Reserved. Bits 15–0 return 0s when read.  
4–13  
Download from Www.Somanuals.com. All Manuals Search And Download.  
4.17 Self-ID Buffer Pointer Register  
The self-ID buffer pointer register points to the 2-Kbyte aligned base address of the buffer in host memory where the  
self-ID packets are stored during bus initialization. Bits 31–11 are read/write accessible. Reserved bits 10–0 are  
read-only and return 0s when read.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Self-ID buffer pointer  
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Self-ID buffer pointer  
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
Self ID-buffer pointer  
Read/Write, Read-only  
64h  
XXXX XX00h  
4.18 Self-ID Count Register  
The self-ID count register keeps a count of the number of times the bus self-ID process has occurred, flags self-ID  
packet errors, and keeps a count of the self-ID data in the self-ID buffer. See Table 4–11 for a complete description  
of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Self-ID count  
RU  
X
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
15  
14  
13  
12  
11  
10  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Self-ID count  
R
0
R
0
R
0
R
0
R
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
Self-ID count  
Read/Update, Read-only  
68h  
X0XX 0000h  
Table 4–11. Self-ID Count Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
When this bit is 1, an error was detected during the most recent self-ID packet reception. The con-  
tents of the self-ID buffer are undefined. This bit is cleared after a self-ID reception in which no errors  
are detected. Note that an error can be a hardware error or a host bus write error.  
31  
selfIDError  
RU  
30–24  
23–16  
15–11  
RSVD  
selfIDGeneration  
RSVD  
R
RU  
R
Reserved. Bits 30–24 return 0s when read.  
The value in this field increments each time a bus reset is detected. This field rolls over to 0 after  
reaching 255.  
Reserved. Bits 15–11 return 0s when read.  
Thisfield indicates thenumberof quadlets that havebeenwritten intotheself-ID bufferfor the current  
bits 23–16(selfIDGenerationfield). Thisincludestheheaderquadletandtheself-IDdata. Thisfieldis  
cleared to 0 when the self-ID reception begins.  
10–2  
1–0  
selfIDSize  
RSVD  
RU  
R
Reserved. Bits 1–0 return 0s when read.  
4–14  
Download from Www.Somanuals.com. All Manuals Search And Download.  
4.19 Isochronous Receive Channel Mask High Register  
The isochronous receive channel mask high set/clear register is used to enable packet receives from the upper 32  
isochronous data channels. A read from either the set register or clear register returns the content of the isochronous  
receive channel mask high register. See Table 4–12 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Isochronous receive channel mask high  
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Isochronous receive channel mask high  
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
Register:  
Type:  
Isochronous receive channel mask high  
Read/Set/Clear  
Offset:  
70h  
74h  
set register  
clear register  
Default:  
XXXX XXXXh  
Table 4–12. Isochronous Receive Channel Mask High Register Description  
BIT  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
FIELD NAME  
isoChannel63  
isoChannel62  
isoChannel61  
isoChannel60  
isoChannel59  
isoChannel58  
isoChannel57  
isoChannel56  
isoChannel55  
isoChannel54  
isoChannel53  
isoChannel52  
isoChannel51  
isoChannel50  
isoChannel49  
isoChannel48  
isoChannel47  
isoChannel46  
isoChannel45  
isoChannel44  
isoChannel43  
isoChannel42  
isoChannel41  
isoChannel40  
isoChannel39  
TYPE  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
DESCRIPTION  
When this bit is set, the TSB12LV26 is enabled to receive from iso channel number 63.  
When this bit is set, the TSB12LV26 is enabled to receive from iso channel number 62.  
When this bit is set, the TSB12LV26 is enabled to receive from iso channel number 61.  
When this bit is set, the TSB12LV26 is enabled to receive from iso channel number 60.  
When this bit is set, the TSB12LV26 is enabled to receive from iso channel number 59.  
When this bit is set, the TSB12LV26 is enabled to receive from iso channel number 58.  
When this bit is set, the TSB12LV26 is enabled to receive from iso channel number 57.  
When this bit is set, the TSB12LV26 is enabled to receive from iso channel number 56.  
When this bit is set, the TSB12LV26 is enabled to receive from iso channel number 55.  
When this bit is set, the TSB12LV26 is enabled to receive from iso channel number 54.  
When this bit is set, the TSB12LV26 is enabled to receive from iso channel number 53.  
When this bit is set, the TSB12LV26 is enabled to receive from iso channel number 52.  
When this bit is set, the TSB12LV26 is enabled to receive from iso channel number 51.  
When this bit is set, the TSB12LV26 is enabled to receive from iso channel number 50.  
When this bit is set, the TSB12LV26 is enabled to receive from iso channel number 49.  
When this bit is set, the TSB12LV26 is enabled to receive from iso channel number 48.  
When this bit is set, the TSB12LV26 is enabled to receive from iso channel number 47.  
When this bit is set, the TSB12LV26 is enabled to receive from iso channel number 46.  
When this bit is set, the TSB12LV26 is enabled to receive from iso channel number 45.  
When this bit is set, the TSB12LV26 is enabled to receive from iso channel number 44.  
When this bit is set, the TSB12LV26 is enabled to receive from iso channel number 43.  
When this bit is set, the TSB12LV26 is enabled to receive from iso channel number 42.  
When this bit is set, the TSB12LV26 is enabled to receive from iso channel number 41.  
When this bit is set, the TSB12LV26 is enabled to receive from iso channel number 40.  
When this bit is set, the TSB12LV26 is enabled to receive from iso channel number 39.  
8
7
4–15  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Table 4–12. Isochronous Receive Channel Mask High Register Description (Continued)  
BIT  
6
FIELD NAME  
isoChannel38  
isoChannel37  
isoChannel36  
isoChannel35  
isoChannel34  
isoChannel33  
isoChannel32  
TYPE  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
DESCRIPTION  
When this bit is set, the TSB12LV26 is enabled to receive from iso channel number 38.  
When this bit is set, the TSB12LV26 is enabled to receive from iso channel number 37.  
When this bit is set, the TSB12LV26 is enabled to receive from iso channel number 36.  
When this bit is set, the TSB12LV26 is enabled to receive from iso channel number 35.  
When this bit is set, the TSB12LV26 is enabled to receive from iso channel number 34.  
When this bit is set, the TSB12LV26 is enabled to receive from iso channel number 33.  
When this bit is set, the TSB12LV26 is enabled to receive from iso channel number 32.  
5
4
3
2
1
0
4.20 Isochronous Receive Channel Mask Low Register  
The isochronous receive channel mask low set/clear register is used to enable packet receives from the lower 32  
isochronous data channels. See Table 4–13 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Isochronous receive channel mask low  
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Isochronous receive channel mask low  
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
Register:  
Type:  
Isochronous receive channel mask low  
Read/Set/Clear  
Offset:  
78h  
7Ch  
set register  
clear register  
Default:  
XXXX XXXXh  
Table 4–13. Isochronous Receive Channel Mask Low Register Description  
BIT  
31  
FIELD NAME  
isoChannel31  
isoChannel30  
TYPE  
RSC  
RSC  
DESCRIPTION  
When this bit is set, the TSB12LV26 is enabled to receive from iso channel number 31.  
When this bit is set, the TSB12LV26 is enabled to receive from iso channel number 30.  
Bits 29 through 2 follow the same pattern.  
30  
1
0
isoChannel1  
isoChannel0  
RSC  
RSC  
When this bit is set, the TSB12LV26 is enabled to receive from iso channel number 1.  
When this bit is set, the TSB12LV26 is enabled to receive from iso channel number 0.  
4–16  
Download from Www.Somanuals.com. All Manuals Search And Download.  
4.21 Interrupt Event Register  
The interrupt event set/clear register reflects the state of the various TSB12LV26 interrupt sources. The interrupt bits  
are set by an asserting edge of the corresponding interrupt signal or by writing a 1 in the corresponding bit in the set  
register. The only mechanism to clear a bit in this register is to write a 1 to the corresponding bit in the clear register.  
This register is fully compliant with OHCI and the TSB12LV26 adds an OHCI 1.0 compliant vendor-specific interrupt  
function to bit 30. When reading the interrupt event register, the return value is the bit-wise AND function of the  
interrupt event and interrupt mask registers per the 1394 Open Host Controller Interface Specification. See  
Table 4–14 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
Interrupt event  
RSCU RSCU RSCU RSCU RSCU RSCU RSCU RSCU  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
R
0
RSC  
X
R
0
R
0
R
0
R
0
2
RSCU RSCU  
X
X
X
X
X
X
X
X
X
X
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
1
0
Name  
Type  
Default  
Interrupt event  
R
0
R
0
R
0
R
0
R
0
R
0
RSCU RSCU  
RU  
X
RU  
X
RSCU RSCU RSCU RSCU RSCU RSCU  
X
X
X
X
X
X
X
X
Register:  
Type:  
Interrupt event  
Read/Set/Clear/Update, Read/Set/Clear, Read/Update, Read-only  
Offset:  
80h  
84h  
set register  
clear register [returns the content of the interrupt event and interrupt mask registers  
when read]  
Default:  
XXXX 0XXXh  
Table 4–14. Interrupt Event Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
31  
RSVD  
R
Reserved. Bit 31 returns 0 when read.  
This vendor-specific interrupt event is reported when either of the general-purpose interrupts occur  
which are enabled via INT3_EN and INT2_EN in the GPIO control register (offset FCh, see Section  
3.23).  
30  
vendorSpecific  
RSC  
29–27  
26  
RSVD  
R
Reserved. Bits 29–27 return 0s when read.  
TheTSB12LV26 has received a PHY register data byte which can be read from the PHY layercontrol  
register (OHCI offset ECh, see Section 4.30).  
phyRegRcvd  
RSCU  
If bit 21 (cycleMaster) of the link control register (OHCI offset E0h/E4h, see Section 4.28) is set, then  
25  
24  
23  
cycleTooLong  
RSCU this indicates that over 125 µs have elapsed between the start of sending a cycle start packet and the  
end of a subaction gap. The link control register bit 21 (cycleMaster) is cleared by this event.  
This event occurs when the TSB12LV26 encounters any error that forces it to stop operations on any  
unrecoverableError RSCU or all of its subunits, for example, when a DMA context sets its dead bit. While this bit is set, all normal  
interrupts for the context(s) that caused this interrupt are blocked from being set.  
A cycle start was received that had values for cycleSeconds and cycleCount fields that are different  
RSCU from the values in bits 31–25 (cycleSeconds field) and bits 24–12 (cycleCount field) of the  
isochronous cycle timer register (OHCI offset F0h, see Section 4.31).  
cycleInconsistent  
A lost cycle is indicated when no cycle_start packet is sent/received between two successive  
cycleSynch events. A lost cycle can be predicted when a cycle_start packet does not immediately  
follow the first subaction gap after the cycleSynch event or if an arbitration reset gap is detected after  
a cycleSynch event without an intervening cycle start. This bit may be set either when a lost cycle  
occurs or when logic predicts that one will occur.  
22  
cycleLost  
RSCU  
th  
21  
20  
cycle64Seconds  
cycleSynch  
RSCU Indicates that the 7 bit of the cycle second counter has changed.  
Indicates that a new isochronous cycle has started. This bit is set when the low order bit of the cycle  
RSCU  
count toggles.  
19  
18  
phy  
RSCU Indicates that the PHY requests an interrupt through a status transfer.  
RSVD  
R
Reserved. Bit 18 returns 0 when read.  
4–17  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Table 4–14. Interrupt Event Register Description (Continued)  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
17  
busReset  
RSCU Indicates that the PHY chip has entered bus reset mode.  
A selfID packet stream has been received. It is generated at the end of the bus initialization process.  
This bit is turned off simultaneously when bit 17 (busReset) is turned on.  
16  
15–10  
9
selfIDcomplete  
RSVD  
RSCU  
R
Reserved. Bits 15–10 return 0s when read.  
Indicates that the TSB12LV26 sent a lock response for a lock request to a serial bus register, but did  
not receive an ack_complete.  
lockRespErr  
RSCU  
IndicatesthatahostbuserroroccurredwhiletheTSB12LV26wastryingtowritea1394writerequest,  
which had already been given an ack_complete, into system memory.  
8
7
postedWriteErr  
isochRx  
RSCU  
RU  
Isochronous receive DMA interrupt. Indicates that one or more isochronous receive contexts have  
generated an interrupt. This is not a latched event, it is the logical OR of all bits in the isochronous  
receive interrupt event (OHCI offset A0h/A4h, see Section 4.25) and isochronous receive interrupt  
mask (OHCI offset A8h/ACh, see Section 4.26) registers. The isochronous receive interrupt event  
register indicates which contexts have interrupted.  
Isochronous transmit DMA interrupt. Indicates that one or more isochronous transmit contexts have  
generated an interrupt. This is not a latched event, it is the logical OR of all bits in the isochronous  
transmit interrupt event (OHCI offset 90h/94h, see Section 4.23) and isochronous transmit interrupt  
mask (OHCI offset 98h/9Ch, see Section 4.24) registers. The isochronous transmit interrupt event  
register indicates which contexts have interrupted.  
6
isochTx  
RU  
Indicates that a packet was sent to an asynchronous receive response context buffer and the  
descriptor xferStatus and resCount fields have been updated.  
5
4
3
2
1
0
RSPkt  
RQPkt  
RSCU  
RSCU  
RSCU  
RSCU  
RSCU  
RSCU  
Indicates that a packet was sent to an asynchronous receive request context buffer and the  
descriptor xferStatus and resCount fields have been updated.  
AsyncreceiveresponseDMAinterrupt.ThisbitisconditionallysetuponcompletionofanARRSDMA  
context command descriptor.  
ARRS  
Async receive request DMA interrupt. This bit is conditionally set upon completion of an ARRQ DMA  
context command descriptor.  
ARRQ  
Asynchronous response transmit DMA interrupt. This bit is conditionally set upon completion of an  
ATRS DMA command.  
respTxComplete  
reqTxComplete  
Asynchronous request transmit DMA interrupt. This bit is conditionally set upon completion of an  
ATRQ DMA command.  
4–18  
Download from Www.Somanuals.com. All Manuals Search And Download.  
4.22 Interrupt Mask Register  
The interrupt mask set/clear register is used to enable the various TSB12LV26 interrupt sources. Reads from either  
the set register or the clear register always return the contents of the interrupt mask register. In all cases except  
masterIntEnable (bit 31) and VendorSpecific(bit30), theenablesforeachinterrupteventalignwiththeinterruptevent  
register bits detailed in Table 4–14. See Table 4–15 for a description of bits 31 and 30.  
This register is fully compliant with OHCI and the TSB12LV26 adds an OHCI 1.0 compliant interrupt function to bit 30.  
Bit  
31  
30  
29 28 27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Interrupt mask  
RSCU RSC  
R
0
R
0
R
0
RSCU RSCU RSCU RSCU RSCU RSCU RSCU RSCU  
R
0
2
RSCU RSCU  
X
X
X
X
X
X
X
X
X
X
X
X
15  
14  
13 12 11  
10  
9
8
7
6
5
4
3
1
0
Name  
Type  
Default  
Interrupt mask  
R
0
R
0
R
0
R
0
R
0
R
0
RSCU RSCU  
RU  
X
RU  
X
RSCU RSCU RSCU RSCU RSCU RSCU  
X
X
X
X
X
X
X
X
Register:  
Type:  
Interrupt mask  
Read/Set/Clear/Update, Read/Set/Clear, Read/Update, Read-only  
Offset:  
88h  
8Ch  
set register  
clear register  
Default:  
XXXX 0XXXh  
Table 4–15. Interrupt Mask Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
Master interrupt enable. If this bit is set, then external interrupts are generated in accordance with the  
31  
masterIntEnable  
RSCU interruptmask register. If this bit is cleared, then external interrupts are not generated regardless of the  
interrupt mask register settings.  
When this bit is set, this vendor-specific interrupt mask enables interrupt generation when bit 30  
(vendorSpecific) of the interrupt event register (OHCI offset 80h/84h, see Section 4.21) is set.  
30  
vendorSpecific  
RSC  
29–0  
See Table 4–14.  
4–19  
Download from Www.Somanuals.com. All Manuals Search And Download.  
4.23 Isochronous Transmit Interrupt Event Register  
The isochronous transmit interrupt event set/clear register reflects the interrupt state of the isochronous transmit  
contexts. An interrupt is generated on behalf of an isochronous transmit context if an OUTPUT_LAST* command  
completes and its interrupt bits are set. Upon determining that the interrupt event register (OHCI offset 80h/84h, see  
Section 4.21) isochTx (bit 6) interrupt has occurred, software can check this register to determine which context(s)  
caused the interrupt. The interrupt bits are set by an asserting edge of the corresponding interrupt signal, or by writing  
a 1 in the corresponding bit in the set register. The only mechanism to clear a bit in this register is to write a 1 to the  
corresponding bit in the clear register. See Table 4–16 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Isochronous transmit interrupt event  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Isochronous transmit interrupt event  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
Register:  
Type:  
Isochronous transmit interrupt event  
Read/Set/Clear, Read-only  
Offset:  
90h  
94h  
set register  
clear register [returns IsoXmitEvent and IsoXmitMask when read]  
Default:  
0000 00XXh  
Table 4–16. Isochronous Transmit Interrupt Event Register Description  
BIT  
FIELD NAME  
RSVD  
TYPE  
R
DESCRIPTION  
31–8  
Reserved. Bits 31–8 return 0s when read.  
7
6
5
4
3
2
1
0
isoXmit7  
isoXmit6  
isoXmit5  
isoXmit4  
isoXmit3  
isoXmit2  
isoXmit1  
isoXmit0  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
Isochronous transmit channel 7 caused the interrupt event register bit 6 (isochTx) interrupt.  
Isochronous transmit channel 6 caused the interrupt event register bit 6 (isochTx) interrupt.  
Isochronous transmit channel 5 caused the interrupt event register bit 6 (isochTx) interrupt.  
Isochronous transmit channel 4 caused the interrupt event register bit 6 (isochTx) interrupt.  
Isochronous transmit channel 3 caused the interrupt event register bit 6 (isochTx) interrupt.  
Isochronous transmit channel 2 caused the interrupt event register bit 6 (isochTx) interrupt.  
Isochronous transmit channel 1 caused the interrupt event register bit 6 (isochTx) interrupt.  
Isochronous transmit channel 0 caused the interrupt event register bit 6 (isochTx) interrupt.  
4–20  
Download from Www.Somanuals.com. All Manuals Search And Download.  
4.24 Isochronous Transmit Interrupt Mask Register  
The isochronous transmit interrupt mask set/clear register is used to enable the isochTx interrupt source on a  
per-channel basis. Reads from either the set register or the clear register always return the contents of the  
isochronous transmit interrupt mask register. In all cases the enables for each interrupt event align with the event  
register bits detailed in Table 4–16.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Isochronous transmit interrupt mask  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Isochronous transmit interrupt mask  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
Register:  
Type:  
Isochronous transmit interrupt mask  
Read/Set/Clear, Read-only  
Offset:  
98h  
9Ch  
set register  
clear register  
Default:  
0000 00XXh  
4–21  
Download from Www.Somanuals.com. All Manuals Search And Download.  
4.25 Isochronous Receive Interrupt Event Register  
The isochronous receive interrupt event set/clear register reflects the interrupt state of the isochronous receive  
contexts. An interrupt is generated on behalf of an isochronous receive context if an INPUT_* command completes  
and its interrupt bits are set. Upon determining that the interrupt event register (OHCI offset 80h/84h, see Section  
4.21) isochRx (bit 7) interrupt has occurred, software can check this register to determine which context(s) caused  
the interrupt. An interrupt bit is set by the asserting edge of the corresponding interrupt signal, or by writing a 1 to the  
corresponding bit in the set register. The only mechanism to clear a bit in this register is to write a 1 to the  
corresponding bit in the clear register. See Table 4–17 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Isochronous receive interrupt event  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Isochronous receive interrupt event  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
RSC  
X
RSC  
X
RSC  
X
RSC  
X
Register:  
Type:  
Isochronous receive interrupt event  
Read/Set/Clear, Read-only  
Offset:  
A0h  
A4h  
set register  
clear register [returns the contents of isochronous receive interrupt event and  
isochronous receive mask registers when read]  
Default:  
0000 000Xh  
Table 4–17. Isochronous Receive Interrupt Event Register Description  
BIT  
FIELD NAME  
RSVD  
TYPE  
R
DESCRIPTION  
Reserved. Bits 31–4 return 0s when read.  
31–4  
3
2
1
0
isoRecv3  
isoRecv2  
isoRecv1  
isoRecv0  
RSC  
RSC  
RSC  
RSC  
Isochronous receive channel 3 caused the interrupt event register bit 7 (isochRx) interrupt.  
Isochronous receive channel 2 caused the interrupt event register bit 7 (isochRx) interrupt.  
Isochronous receive channel 1 caused the interrupt event register bit 7 (isochRx) interrupt.  
Isochronous receive channel 0 caused the interrupt event register bit 7 (isochRx) interrupt.  
4.26 Isochronous Receive Interrupt Mask Register  
TheisochronousreceiveinterruptmaskregisterisusedtoenabletheisochRxinterruptsourceonaperchannelbasis.  
Reads from either the set register or the clear register always return the contents of the isochronous receive interrupt  
mask register. In all cases the enables for each interrupt event align with the event register bits detailed in Table 4–17.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Isochronous receive interrupt mask  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Isochronous receive interrupt mask  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
RSC  
X
RSC  
X
RSC  
X
RSC  
X
Register:  
Type:  
Isochronous receive interrupt mask  
Read/Set/Clear, Read-only  
Offset:  
A8h  
ACh  
set register  
clear register  
Default:  
0000 000Xh  
4–22  
Download from Www.Somanuals.com. All Manuals Search And Download.  
4.27 Fairness Control Register  
The fairness control register provides a mechanism by which software can direct the host controller to transmit  
multiple asynchronous requests during a fairness interval. See Table 4–18 for a complete description of the register  
contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Fairness control  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Fairness control  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
Fairness control  
Read-only, Read/Write  
DCh  
0000 0000h  
Table 4–18. Fairness Control Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
Reserved. Bits 31–8 return 0s when read.  
31–8  
RSVD  
R
This field specifies the maximum number of priority arbitration requests for asynchronous request  
packets that the link is permitted to make of the PHY during a fairness interval.  
7–0  
pri_req  
R/W  
4–23  
Download from Www.Somanuals.com. All Manuals Search And Download.  
4.28 Link Control Register  
The link control set/clear register provides the control flags that enable and configure the link core protocol portions  
of the TSB12LV26. It contains controls for the receiver and cycle timer. See Table 4–19 for a complete description  
of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Link control  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
RSC RSCU RSC  
R
0
3
R
0
2
R
0
1
R
0
0
X
X
X
15  
14  
13  
12  
11  
10  
6
5
4
Name  
Type  
Default  
Link control  
R
0
R
0
R
0
R
0
R
0
RSC  
X
RSC  
X
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Link control  
Read/Set/Clear/Update, Read/Set/Clear, Read-only  
Offset:  
E0h  
E4h  
set register  
clear register  
Default:  
00X0 0X00h  
Table 4–19. Link Control Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
31–23  
RSVD  
R
Reserved. Bits 31–23 return 0s when read.  
Whenthisbitisset, thecycletimerusesanexternalsource(CYCLEIN)todeterminewhentorollover  
the cycle timer. When this bit is cleared, the cycle timer rolls over when the timer reaches 3072 cycles  
of the 24.576-MHz clock (125 µs).  
22  
21  
20  
cycleSource  
cycleMaster  
RSC  
RSCU  
RSC  
When this bit is set, and the PHY has notified the TSB12LV26 that the PHY is root, the TSB12LV26  
generates a cycle start packet every time the cycle timer rolls over, based on the setting of bit 22.  
When this bit is cleared, the OHCI-Lynx accepts received cycle start packets to maintain  
synchronization with the node which is sending them. This bit is automatically cleared when bit 25  
(cycleTooLong) of the interrupt event register (OHCI offset 80h/84h, see Section 4.21) is set and  
cannot be set until bit 25 (cycleTooLong) is cleared.  
When this bit is set, the cycle timer offset counts cycles of the 24.576-MHz clock and rolls over at the  
appropriatetimebasedonthesettingsoftheabovebits. Whenthisbitiscleared, thecycletimeroffset  
does not count.  
CycleTimerEnable  
19–11  
10  
RSVD  
R
Reserved. Bits 19–11 return 0s when read.  
When this bit is set, the receiver accepts incoming PHY packets into the AR request context if the AR  
request context is enabled. This does not control receipt of self-ID packets.  
RcvPhyPkt  
RSC  
When this bit is set, the receiver accepts incoming self-ID packets. Before setting this bit to 1,  
software must ensure that the self-ID buffer pointer register contains a valid address.  
9
RcvSelfID  
RSVD  
RSC  
R
8–0  
Reserved. Bits 8–0 return 0s when read.  
4–24  
Download from Www.Somanuals.com. All Manuals Search And Download.  
4.29 Node Identification Register  
The node identification register contains the address of the node on which the OHCI-Lynx chip resides, and indicates  
the valid node number status. The 16-bit combination of the busNumber field (bits 15–6) and the NodeNumber field  
(bits 5–0) is referred to as the node ID. See Table 4–20 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Node identification  
RU  
0
RU  
0
R
0
R
0
RU  
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Node identification  
RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU  
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
1
1
1
1
1
1
1
1
1
1
Register:  
Type:  
Node identification  
Read/Write/Update, Read/Update, Read-only  
Offset:  
Default:  
E8h  
0000 FFXXh  
Table 4–20. Node Identification Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
ThisbitindicateswhetherornottheTSB12LV26hasavalidnodenumber.Itisclearedwhena1394bus  
reset is detected and set when the TSB12LV26 receives a new node number from the PHY.  
31  
iDValid  
RU  
30  
root  
RSVD  
CPS  
RU  
R
This bit is set during the bus reset process if the attached PHY is root.  
Reserved. Bits 29–28 return 0s when read.  
29–28  
27  
RU  
R
Set if the PHY is reporting that cable power status is OK.  
Reserved. Bits 26–16 return 0s when read.  
26–16  
RSVD  
This number is used to identify the specific 1394 bus the TSB12LV26 belongs to when multiple  
1394-compatible buses are connected via a bridge.  
15–6  
5–0  
BusNumber  
RWU  
This number is the physical node number established by the PHY during self-ID. It is automatically set  
to the value received from the PHY after the self-ID phase. If the PHY sets the NodeNumber to 63, then  
software should not set the run bit (bit 15) of the asynchronous context control register (see Section  
4.37) for either of the AT DMA contexts.  
NodeNumber  
RU  
4–25  
Download from Www.Somanuals.com. All Manuals Search And Download.  
4.30 PHY Layer Control Register  
The PHY layer control register is used to read or write a PHY register. See Table 4–21 for a complete description of  
the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
PHY layer control  
RU  
0
R
0
R
0
R
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
PHY layer control  
RWU RWU  
R
0
R
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
0
0
Register:  
Type:  
PHY layer control  
Read/Write/Update, Read/Write, Read/Update, Read-only  
Offset:  
Default:  
ECh  
0000 0000h  
Table 4–21. PHY Control Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
This bit is cleared to 0 by the TSB12LV26 when either bit 15 (rdReg) or bit 14 (wrReg) is set. This bit is  
set when a register transfer is received from the PHY.  
31  
rdDone  
RU  
30–28  
27–24  
23–16  
RSVD  
rdAddr  
rdData  
R
Reserved. Bits 30–28 return 0s when read.  
RU  
RU  
This is the address of the register most recently received from the PHY.  
This field is the contents of a PHY register which has been read.  
This bit is set by software to initiate a read request to a PHY register and is cleared by hardware when  
the request has been sent. Bits 14 (wrReg) and 15 (rdReg) must be used exclusively.  
15  
14  
rdReg  
wrReg  
RWU  
RWU  
This bit is set by software to initiate a write request to a PHY register and is cleared by hardware when  
the request has been sent. Bits 14 (wrReg) and 15 (rdReg) must be used exclusively.  
13–12  
11–8  
7–0  
RSVD  
regAddr  
wrData  
R
Reserved. Bits 13–12 return 0s when read.  
R/W  
R/W  
This field is the address of the PHY register to be written or read.  
This field is the data to be written to a PHY register and is ignored for reads.  
4–26  
Download from Www.Somanuals.com. All Manuals Search And Download.  
4.31 Isochronous Cycle Timer Register  
The isochronous cycle timer register indicates the current cycle number and offset. When the TSB12LV26 is cycle  
master, this register is transmitted with the cycle start message. When the TSB12LV26 is not cycle master, this  
registerisloadedwiththedatafieldinanincomingcyclestart. Intheeventthatthecyclestartmessageisnotreceived,  
the fields can continue incrementing on their own (if programmed) to maintain a local time reference. See Table 4–22  
for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
Isochronous cycle timer  
RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Isochronous cycle timer  
RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Register:  
Type:  
Offset:  
Default:  
Isochronous cycle timer  
Read/Write/Update  
F0h  
XXXX XXXXh  
Table 4–22. Isochronous Cycle Timer Register Description  
BIT  
FIELD NAME  
cycleSeconds  
cycleCount  
TYPE  
RWU  
RWU  
DESCRIPTION  
31–25  
24–12  
This field counts seconds [rollovers from bits 24–12 (cycleCount field)] modulo 128.  
This field counts cycles [rollovers from bits 11–0 (cycleOffset field)] modulo 8000.  
This field counts 24.576-MHz clocks modulo 3072, i.e., 125 µs. If an external 8-kHz clock configuration  
is being used, then this bit must be cleared to 0 at each tick of the external clock.  
11–0  
cycleOffset  
RWU  
4–27  
Download from Www.Somanuals.com. All Manuals Search And Download.  
4.32 Asynchronous Request Filter High Register  
The asynchronous request filter high set/clear register is used to enable asynchronous receive requests on a  
per-node basis, and handles the upper node IDs. When a packet is destined for either the physical request context  
or the ARRQ context, the source node ID is examined. If the bit corresponding to the node ID is not set in this register,  
then the packet is not acknowledged and the request is not queued. The node ID comparison is done if the source  
node is on the same bus as the TSB12LV26. Nonlocal bus sourced packets are not acknowledged unless bit 31 in  
this register is set. See Table 4–23 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Asynchronous request filter high  
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
0
0
0
0
0
0
0
0
0
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Asynchronous request filter high  
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
Register:  
Type:  
Asynchronous request filter high  
Read/Set/Clear  
Offset:  
100h set register  
104h clear register  
0000 0000h  
Default:  
Table 4–23. Asynchronous Request Filter High Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
If this bit is set, then all asynchronous requests received by the TSB12LV26 from nonlocal bus  
nodes are accepted.  
31  
asynReqAllBuses  
asynReqResource62  
asynReqResource61  
asynReqResource60  
asynReqResource59  
asynReqResource58  
asynReqResource57  
asynReqResource56  
asynReqResource55  
asynReqResource54  
asynReqResource53  
asynReqResource52  
asynReqResource51  
RSC  
If this bit is set for local bus node number 62, then asynchronous requests received by the  
TSB12LV26 from that node are accepted.  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
If this bit is set for local bus node number 61, then asynchronous requests received by the  
TSB12LV26 from that node are accepted.  
If this bit is set for local bus node number 60, then asynchronous requests received by the  
TSB12LV26 from that node are accepted.  
If this bit is set for local bus node number 59, then asynchronous requests received by the  
TSB12LV26 from that node are accepted.  
If this bit is set for local bus node number 58, then asynchronous requests received by the  
TSB12LV26 from that node are accepted.  
If this bit is set for local bus node number 57, then asynchronous requests received by the  
TSB12LV26 from that node are accepted.  
If this bit is set for local bus node number 56, then asynchronous requests received by the  
TSB12LV26 from that node are accepted.  
If this bit is set for local bus node number 55, then asynchronous requests received by the  
TSB12LV26 from that node are accepted.  
If this bit is set for local bus node number 54, then asynchronous requests received by the  
TSB12LV26 from that node are accepted.  
If this bit is set for local bus node number 53, then asynchronous requests received by the  
TSB12LV26 from that node are accepted.  
If this bit is set for local bus node number 52, then asynchronous requests received by the  
TSB12LV26 from that node are accepted.  
If this bit is set for local bus node number 51, then asynchronous requests received by the  
TSB12LV26 from that node are accepted.  
4–28  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Table 4–23. Asynchronous Request Filter High Register Description (Continued)  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
If this bit is set for local bus node number 50, then asynchronous requests received by the  
TSB12LV26 from that node are accepted.  
18  
asynReqResource50  
RSC  
If this bit is set for local bus node number 49, then asynchronous requests received by the  
TSB12LV26 from that node are accepted.  
17  
16  
15  
14  
13  
12  
11  
10  
9
asynReqResource49  
asynReqResource48  
asynReqResource47  
asynReqResource46  
asynReqResource45  
asynReqResource44  
asynReqResource43  
asynReqResource42  
asynReqResource41  
asynReqResource40  
asynReqResource39  
asynReqResource38  
asynReqResource37  
asynReqResource36  
asynReqResource35  
asynReqResource34  
asynReqResource33  
asynReqResource32  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
If this bit is set for local bus node number 48, then asynchronous requests received by the  
TSB12LV26 from that node are accepted.  
If this bit is set for local bus node number 47, then asynchronous requests received by the  
TSB12LV26 from that node are accepted.  
If this bit is set for local bus node number 46, then asynchronous requests received by the  
TSB12LV26 from that node are accepted.  
If this bit is set for local bus node number 45, then asynchronous requests received by the  
TSB12LV26 from that node are accepted.  
If this bit is set for local bus node number 44, then asynchronous requests received by the  
TSB12LV26 from that node are accepted.  
If this bit is set for local bus node number 43, then asynchronous requests received by the  
TSB12LV26 from that node are accepted.  
If this bit is set for local bus node number 42, then asynchronous requests received by the  
TSB12LV26 from that node are accepted.  
If this bit is set for local bus node number 41, then asynchronous requests received by the  
TSB12LV26 from that node are accepted.  
If this bit is set for local bus node number 40, then asynchronous requests received by the  
TSB12LV26 from that node are accepted.  
8
If this bit is set for local bus node number 39, then asynchronous requests received by the  
TSB12LV26 from that node are accepted.  
7
If this bit is set for local bus node number 38, then asynchronous requests received by the  
TSB12LV26 from that node are accepted.  
6
If this bit is set for local bus node number 37, then asynchronous requests received by the  
TSB12LV26 from that node are accepted.  
5
If this bit is set for local bus node number 36, then asynchronous requests received by the  
TSB12LV26 from that node are accepted.  
4
If this bit is set for local bus node number 35, then asynchronous requests received by the  
TSB12LV26 from that node are accepted.  
3
If this bit is set for local bus node number 34, then asynchronous requests received by the  
TSB12LV26 from that node are accepted.  
2
If this bit is set for local bus node number 33, then asynchronous requests received by the  
TSB12LV26 from that node are accepted.  
1
If this bit is set for local bus node number 32, then asynchronous requests received by the  
TSB12LV26 from that node are accepted.  
0
4–29  
Download from Www.Somanuals.com. All Manuals Search And Download.  
4.33 Asynchronous Request Filter Low Register  
The asynchronous request filter low set/clear register is used to enable asynchronous receive requests on a per-node  
basis, and handles the lower node IDs. Other than filtering different node IDs, this register behaves identically to the  
asynchronous request filter high register. See Table 4–24 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Asynchronous request filter low  
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
0
0
0
0
0
0
0
0
0
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Asynchronous request filter low  
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
Register:  
Type:  
Asynchronous request filter low  
Read/Set/Clear  
Offset:  
108h set register  
10Ch clear register  
0000 0000h  
Default:  
Table 4–24. Asynchronous Request Filter Low Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
If this bit is set for local bus node number 31, then asynchronous requests received by the  
TSB12LV26 from that node are accepted.  
31  
asynReqResource31  
asynReqResource30  
RSC  
If this bit is set for local bus node number 30, then asynchronous requests received by the  
TSB12LV26 from that node are accepted.  
30  
RSC  
Bits 29 through 2 follow the same pattern.  
If this bit is set for local bus node number 1, then asynchronous requests received by the  
TSB12LV26 from that node are accepted.  
1
0
asynReqResource1  
asynReqResource0  
RSC  
RSC  
If this bit is set for local bus node number 0, then asynchronous requests received by the  
TSB12LV26 from that node are accepted.  
4–30  
Download from Www.Somanuals.com. All Manuals Search And Download.  
4.34 Physical Request Filter High Register  
The physical request filter high set/clear register is used to enable physical receive requests on a per-node basis and  
handles the upper node IDs. When a packet is destined for the physical request context and the node ID has been  
compared against the ARRQ registers, then the comparison is done again with this register. If the bit corresponding  
to the node ID is not set in this register, then the request is handled by the ARRQ context instead of the physical  
request context. The node ID comparison is done if the source node is on the same bus as the TSB42AD2. Nonlocal  
bus sourced packets are not acknowledged unless bit 31 in this register is set. See Table 4–25 for a complete  
description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Physical request filter high  
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
0
0
0
0
0
0
0
0
0
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Physical request filter high  
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
Register:  
Type:  
Physical request filter high  
Read/Set/Clear  
Offset:  
110h set register  
114h clear register  
0000 0000h  
Default:  
Table 4–25. Physical Request Filter High Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
If this bit is set, then all physical requests received by the TSB12LV26 from non-local bus nodes  
are accepted.  
31  
physReqAllBusses  
physReqResource62  
physReqResource61  
physReqResource60  
physReqResource59  
physReqResource58  
physReqResource57  
physReqResource56  
physReqResource55  
physReqResource54  
physReqResource53  
physReqResource52  
RSC  
Ifthisbitissetforlocalbusnodenumber62, thenphysicalrequestsreceivedbytheTSB12LV26  
from that node are handled through the physical request context.  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
Ifthisbitissetforlocalbusnodenumber61, thenphysicalrequestsreceivedbytheTSB12LV26  
from that node are handled through the physical request context.  
Ifthisbitissetforlocalbusnodenumber60, thenphysicalrequestsreceivedbytheTSB12LV26  
from that node are handled through the physical request context.  
Ifthisbitissetforlocalbusnodenumber59, thenphysicalrequestsreceivedbytheTSB12LV26  
from that node are handled through the physical request context.  
Ifthisbitissetforlocalbusnodenumber58, thenphysicalrequestsreceivedbytheTSB12LV26  
from that node are handled through the physical request context.  
Ifthisbitissetforlocalbusnodenumber57, thenphysicalrequestsreceivedbytheTSB12LV26  
from that node are handled through the physical request context.  
Ifthisbitissetforlocalbusnodenumber56, thenphysicalrequestsreceivedbytheTSB12LV26  
from that node are handled through the physical request context.  
Ifthisbitissetforlocalbusnodenumber55, thenphysicalrequestsreceivedbytheTSB12LV26  
from that node are handled through the physical request context.  
Ifthisbitissetforlocalbusnodenumber54, thenphysicalrequestsreceivedbytheTSB12LV26  
from that node are handled through the physical request context.  
Ifthisbitissetforlocalbusnodenumber53, thenphysicalrequestsreceivedbytheTSB12LV26  
from that node are handled through the physical request context.  
Ifthisbitissetforlocalbusnodenumber52, thenphysicalrequestsreceivedbytheTSB12LV26  
from that node are handled through the physical request context.  
4–31  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Table 4–25. Physical Request Filter High Register Description (Continued)  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
Ifthisbitissetforlocalbusnodenumber51, thenphysicalrequestsreceivedbytheTSB12LV26  
from that node are handled through the physical request context.  
19  
physReqResource51  
RSC  
Ifthisbitissetforlocalbusnodenumber50, thenphysicalrequestsreceivedbytheTSB12LV26  
from that node are handled through the physical request context.  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
physReqResource50  
physReqResource49  
physReqResource48  
physReqResource47  
physReqResource46  
physReqResource45  
physReqResource44  
physReqResource43  
physReqResource42  
physReqResource41  
physReqResource40  
physReqResource39  
physReqResource38  
physReqResource37  
physReqResource36  
physReqResource35  
physReqResource34  
physReqResource33  
physReqResource32  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
Ifthisbitissetforlocalbusnodenumber49, thenphysicalrequestsreceivedbytheTSB12LV26  
from that node are handled through the physical request context.  
Ifthisbitissetforlocalbusnodenumber48, thenphysicalrequestsreceivedbytheTSB12LV26  
from that node are handled through the physical request context.  
Ifthisbitissetforlocalbusnodenumber47, thenphysicalrequestsreceivedbytheTSB12LV26  
from that node are handled through the physical request context.  
Ifthisbitissetforlocalbusnodenumber46, thenphysicalrequestsreceivedbytheTSB12LV26  
from that node are handled through the physical request context.  
Ifthisbitissetforlocalbusnodenumber45, thenphysicalrequestsreceivedbytheTSB12LV26  
from that node are handled through the physical request context.  
Ifthisbitissetforlocalbusnodenumber44, thenphysicalrequestsreceivedbytheTSB12LV26  
from that node are handled through the physical request context.  
Ifthisbitissetforlocalbusnodenumber43, thenphysicalrequestsreceivedbytheTSB12LV26  
from that node are handled through the physical request context.  
Ifthisbitissetforlocalbusnodenumber42, thenphysicalrequestsreceivedbytheTSB12LV26  
from that node are handled through the physical request context.  
Ifthisbitissetforlocalbusnodenumber41, thenphysicalrequestsreceivedbytheTSB12LV26  
from that node are handled through the physical request context.  
Ifthisbitissetforlocalbusnodenumber40, thenphysicalrequestsreceivedbytheTSB12LV26  
from that node are handled through the physical request context.  
8
Ifthisbitissetforlocalbusnodenumber39, thenphysicalrequestsreceivedbytheTSB12LV26  
from that node are handled through the physical request context.  
7
Ifthisbitissetforlocalbusnodenumber38, thenphysicalrequestsreceivedbytheTSB12LV26  
from that node are handled through the physical request context.  
6
Ifthisbitissetforlocalbusnodenumber37, thenphysicalrequestsreceivedbytheTSB12LV26  
from that node are handled through the physical request context.  
5
Ifthisbitissetforlocalbusnodenumber36, thenphysicalrequestsreceivedbytheTSB12LV26  
from that node are handled through the physical request context.  
4
Ifthisbitissetforlocalbusnodenumber35, thenphysicalrequestsreceivedbytheTSB12LV26  
from that node are handled through the physical request context.  
3
Ifthisbitissetforlocalbusnodenumber34, thenphysicalrequestsreceivedbytheTSB12LV26  
from that node are handled through the physical request context.  
2
Ifthisbitissetforlocalbusnodenumber33, thenphysicalrequestsreceivedbytheTSB12LV26  
from that node are handled through the physical request context.  
1
Ifthisbitissetforlocalbusnodenumber32, thenphysicalrequestsreceivedbytheTSB12LV26  
from that node are handled through the physical request context.  
0
4–32  
Download from Www.Somanuals.com. All Manuals Search And Download.  
4.35 Physical Request Filter Low Register  
The physical request filter low set/clear register is used to enable physical receive requests on a per-node basis and  
handles the lower node IDs. When a packet is destined for the physical request context and the node ID has been  
compared against the asynchronous request filter registers, then the node ID comparison is done again with this  
register. If the bit corresponding to the node ID is not set in this register, then the request is handled by the  
asynchronous request context instead of the physical request context. See Table 4–26 for a complete description of  
the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Physical request filter low  
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
0
0
0
0
0
0
0
0
0
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Physical request filter low  
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
Register:  
Type:  
Physical request filter low  
Read/Set/Clear  
Offset:  
118h set register  
11Ch clear register  
0000 0000h  
Default:  
Table 4–26. Physical Request Filter Low Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
If this bit is set for local bus node number 31, then physical requests received by the TSB12LV26  
from that node are handled through the physical request context.  
31  
physReqResource31  
physReqResource30  
RSC  
If this bit is set for local bus node number 30, then physical requests received by the TSB12LV26  
from that node are handled through the physical request context.  
30  
RSC  
Bits 29 through 2 follow the same pattern.  
If this bit is set for local bus node number 1, then physical requests received by the TSB12LV26  
from that node are handled through the physical request context.  
1
0
physReqResource1  
physReqResource0  
RSC  
RSC  
If this bit is set for local bus node number 0, then physical requests received by the TSB12LV26  
from that node are handled through the physical request context.  
4–33  
Download from Www.Somanuals.com. All Manuals Search And Download.  
4.36 Physical Upper Bound Register (Optional Register)  
The physical upper bound register is an optional register and is not implemented. It returns all 0s when read.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Physical upper bound  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Physical upper bound  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Physical upper bound  
Read-only  
Offset:  
Default:  
120h  
0000 0000h  
4–34  
Download from Www.Somanuals.com. All Manuals Search And Download.  
4.37 Asynchronous Context Control Register  
The asynchronous context control set/clear register controls the state and indicates status of the DMA context. See  
Table 4–27 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Asynchronous context control  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Asynchronous context control  
RSCU  
0
R
0
R
0
RSU  
X
RU  
0
RU  
0
R
0
R
0
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
Register:  
Type:  
Offset:  
Asynchronous context control  
Read/Set/Clear/Update, Read/Set/Update, Read/Update, Read-only  
180h set register [ATRQ]  
184h clear register [ATRQ]  
1A0h set register [ATRS]  
1A4h clear register [ATRS]  
1C0h set register [ARRQ]  
1C4h clear register [ARRQ]  
1E0h set register [ARRS]  
1E4h clear register [ARRS]  
0000 X0XXh  
Default:  
Table 4–27. Asynchronous Context Control Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
Reserved. Bits 31–16 return 0s when read.  
31–16  
RSVD  
R
This bit is set by software to enable descriptor processing for the context and cleared by software to  
stop descriptor processing. The TSB12LV26 changes this bit only on a hardware or software reset.  
15  
14–13  
12  
run  
RSCU  
R
RSVD  
wake  
Reserved. Bits 14–13 return 0s when read.  
Software sets this bit to cause the TSB12LV26 to continue or resume descriptor processing. The  
TSB12LV26 clears this bit on every descriptor fetch.  
RSU  
The TSB12LV26 sets this bit when it encounters a fatal error and clears the bit when software resets  
bit 15 (run).  
11  
dead  
RU  
10  
active  
RSVD  
RU  
R
The TSB12LV26 sets this bit to 1 when it is processing descriptors.  
Reserved. Bits 9–8 return 0s when read.  
9–8  
This field indicates the speed at which a packet was received or transmitted, and only contains  
meaningful information for receive contexts. This field is encoded as:  
000 = 100 Mbits/sec,  
7–5  
4–0  
spd  
RU  
RU  
001 = 200 Mbits/sec, and  
010 = 400 Mbits/sec. All other values are reserved.  
This field holds the acknowledge sent by the link core for this packet, or holds an internally generated  
error code if the packet was not transferred successfully.  
eventcode  
4–35  
Download from Www.Somanuals.com. All Manuals Search And Download.  
4.38 Asynchronous Context Command Pointer Register  
The asynchronous context command pointer register contains a pointer to the address of the first descriptor block  
that the TSB12LV26 accesses when software enables the context by setting the asynchronous context control  
register (see Section 4.37) bit 15 (run). See Table 4–28 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
Asynchronous context command pointer  
RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Asynchronous context command pointer  
RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Register:  
Type:  
Offset:  
Asynchronous context command pointer  
Read/Write/Update  
18Ch [ATRQ]  
1ACh [ATRS]  
1CCh [ArRQ]  
1ECh [ArRS]  
Default:  
XXXX XXXXh  
Table 4–28. Asynchronous Context Command Pointer Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
31–4  
descriptorAddress  
RWU  
Contains the upper 28 bits of the address of a 16-byte-aligned descriptor block.  
Indicatesthe number of contiguous descriptors at the address pointed to by the descriptor address. If  
Z is 0, then it indicates that the descriptorAddress field (bits 31–4) is not valid.  
3–0  
Z
RWU  
4–36  
Download from Www.Somanuals.com. All Manuals Search And Download.  
4.39 Isochronous Transmit Context Control Register  
The isochronous transmit context control set/clear register controls options, state, and status for the isochronous  
transmit DMA contexts. The n value in the following register addresses indicates the context number (n = 0, 1, 2, 3,,  
7). See Table 4–29 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Isochronous transmit context control  
RSCU RSC  
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC RSC  
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
X
X
X
X
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Isochronous transmit context control  
RSC  
0
R
0
R
0
RSU  
X
RU  
0
RU  
0
R
0
R
0
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
Register:  
Type:  
Isochronous transmit context control  
Read/Set/Clear/Update, Read/Set/Clear, Read/Update, Read-only  
Offset:  
200h + (16 * n)  
204h + (16 * n)  
XXXX X0XXh  
set register  
clear register  
Default:  
Table 4–29. Isochronous Transmit Context Control Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
When this bit is set to 1, processing occurs such that the packet described by the context first  
descriptor block is transmitted in the cycle whose number is specified in the cycleMatch field  
(bits 30–16). The cycleMatch field (bits 30–16) must match the low-order two bits of cycleSeconds  
and the 13-bit cycleCount field in the cycle start packet that is sent or received immediately before  
isochronous transmission begins. Since the isochronous transmit DMA controller may work ahead,  
the processing of the first descriptor block may begin slightly in advance of the actual cycle in which  
the first packet is transmitted.  
31  
cycleMatchEnable  
RSCU  
The effects of this bit, however, are impacted by the values of other bits in this register and are  
explained in the 1394 Open Host Controller Interface Specification. Once the context has become  
active, hardware clears this bit.  
Contains a 15-bit value, corresponding to the low-order two bits of the bus isochronous cycle timer  
register(OHCI offsetF0h, see Section 4.31) cycleSeconds field (bits 31–25) and the cycleCount field  
(bits 24–12). If bit 31 (cycleMatchEnable) is set, then this isochronous transmit DMA context  
becomes enabled for transmits when the low-order two bits of the bus isochronous cycle timer  
register cycleSeconds field (bits 31–25) and the cycleCount field (bits 24–12) value equal this field  
(cycleMatch) value.  
30–16  
cycleMatch  
RSC  
This bit is set by software to enable descriptor processing for the context and cleared by software to  
stop descriptor processing. The TSB12LV26 changes this bit only on a hardware or software reset.  
15  
14–13  
12  
run  
RSC  
R
RSVD  
wake  
Reserved. Bits 14–13 return 0s when read.  
Software sets this bit to cause the TSB12LV26 to continue or resume descriptor processing. The  
TSB12LV26 clears this bit on every descriptor fetch.  
RSU  
The TSB12LV26 sets this bit when it encounters a fatal error and clears the bit when software resets  
bit 15 (run).  
11  
dead  
RU  
10  
active  
RSVD  
spd  
RU  
R
The TSB12LV26 sets this bit to 1 when it is processing descriptors.  
Reserved. Bits 9–8 return 0s when read.  
9–8  
7–5  
RU  
This field is not meaningful for isochronous transmit contexts.  
FollowinganOUTPUT_LAST*command, theerrorcodeisindicatedinthisfield. Possiblevaluesare:  
ack_complete, evt_descriptor_read, evt_data_read, and evt_unknown.  
4–0  
event code  
RU  
4–37  
Download from Www.Somanuals.com. All Manuals Search And Download.  
4.40 Isochronous Transmit Context Command Pointer Register  
The isochronous transmit context command pointer register contains a pointer to the address of the first descriptor  
block that the TSB12LV26 accesses when software enables an isochronous transmit context by setting the  
isochronous transmit context control register (see Section 4.39) bit 15 (run). The n value in the following register  
addresses indicates the context number (n = 0, 1, 2, 3, , 7).  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Isochronous transmit context command pointer  
R
X
R
X
R
X
R
X
R
X
R
X
R
X
9
R
X
8
R
X
7
R
X
6
R
X
5
R
X
4
R
X
3
R
X
2
R
X
1
R
X
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Isochronous transmit context command pointer  
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
Register:  
Type:  
Isochronous transmit context command pointer  
Read-only  
Offset:  
Default:  
20Ch + (16 * n)  
XXXX XXXXh  
4.41 Isochronous Receive Context Control Register  
The isochronous receive context control set/clear register controls options, state, and status for the isochronous  
receive DMA contexts. The n value in the following register addresses indicates the context number (n = 0, 1, 2, 3).  
See Table 4–30 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Isochronous receive context control  
RSC  
X
RSC RSCU RSC  
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
X
X
X
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Isochronous receive context control  
RSCU  
0
R
0
R
0
RSU  
X
RU  
0
RU  
0
R
0
R
0
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
Register:  
Type:  
Isochronous receive context control  
Read/Set/Clear/Update, Read/Set/Clear, Read/Update, Read-only  
Offset:  
400h + (32 * n)  
404h + (32 * n)  
X000 X0XXh  
set register  
clear register  
Default:  
Table 4–30. Isochronous Receive Context Control Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
When this bit is set, received packets are placed back-to-back to completely fill each receive buffer.  
When this bit is cleared, each received packet is placed in a single buffer. If bit 28 (multiChanMode)  
is set to 1, then this bit must also be set to 1. The value of this bit must not be changed while bit 10  
(active) or bit 15 (run) is set.  
31  
bufferFill  
RSC  
When this bit is 1, received isochronous packets include the complete 4-byte isochronous packet  
headerseenbythelinklayer. TheendofthepacketismarkedwithxferStatusinthefirstdoublet, and  
a 16-bit timeStamp indicating the time of the most recently received (or sent) cycleStart packet.  
When this bit is cleared, the packet header is stripped from received isochronous packets. The  
packet header, if received, immediately precedes the packet payload. The value of this bit must not  
be changed while bit 10 (active) or bit 15 (run) is set.  
30  
isochHeader  
RSC  
4–38  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Table 4–30. Isochronous Receive Context Control Register Description (Continued)  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
When this bit is set, the context begins running only when the 13-bit cycleMatch field (bits 24–12) in  
the isochronous receive context match register (see Section 4.43) matches the 13-bit cycleCount  
fieldin the cycleStart packet. The effects of this bit, however, are impacted by the values of other bits  
in this register. Once the context has become active, hardware clears this bit. The value of this bit  
must not be changed while bit 10 (active) or bit 15 (run) is set.  
29  
cycleMatchEnable  
RSCU  
When this bit is set, the corresponding isochronous receive DMA context receives packets for all  
isochronouschannelsenabledintheisochronousreceivechannelmaskhigh(OHCIoffset70h/74h,  
see Section 4.19) and isochronous receive channel mask low (OHCI offset 78h/7Ch, see Section  
4.20) registers. The isochronous channel number specified in the isochronous receive context  
match register (see Section 4.43) is ignored.  
When this bit is cleared, the isochronous receive DMA context receives packets for that single  
channel. Only one isochronous receive DMA context may use the isochronous receive channel  
mask registers. If more than one isochronous receive context control register has this bit set, then  
results are undefined. The value of this bit must not be changed while bit 10 (active) or bit 15 (run) is  
set to 1.  
28  
multiChanMode  
RSC  
27–16  
15  
RSVD  
run  
R
RSCU  
R
Reserved. Bits 27–16 return 0s when read.  
This bit is set by software to enable descriptor processing for the context and cleared by software to  
stop descriptor processing. The TSB12LV26 changes this bit only on a hardware or software reset.  
14–13  
12  
RSVD  
wake  
Reserved. Bits 14–13 return 0s when read.  
Software sets this bit to cause the TSB12LV26 to continue or resume descriptor processing. The  
TSB12LV26 clears this bit on every descriptor fetch.  
RSU  
The TSB12LV26 sets this bit when it encounters a fatal error and clears the bit when software resets  
bit 15 (run).  
11  
dead  
RU  
10  
active  
RSVD  
RU  
R
The TSB12LV26 sets this bit to 1 when it is processing descriptors.  
Reserved. Bits 9–8 return 0s when read.  
9–8  
This field indicates the speed at which the packet was received.  
000 = 100 Mbits/sec,  
7–5  
4–0  
spd  
RU  
001 = 200 Mbits/sec, and  
010 = 400 Mbits/sec. All other values are reserved.  
For bufferFill mode, possible values are: ack_complete, evt_descriptor_read, evt_data_write, and  
evt_unknown. Packets with data errors (either dataLength mismatches or dataCRC errors) and  
packets for which a FIFO overrun occurred are backed out. For packet-per-buffer mode, possible  
values are: ack_complete, ack_data_error, evt_long_packet, evt_overrun, evt_descriptor_read,  
evt_data_write, and evt_unknown.  
event code  
RU  
4–39  
Download from Www.Somanuals.com. All Manuals Search And Download.  
4.42 Isochronous Receive Context Command Pointer Register  
The isochronous receive context command pointer register contains a pointer to the address of the first descriptor  
block that the TSB12LV26 accesses when software enables an isochronous receive context by setting the  
isochronous receive context control register (see Section 4.41) bit 15 (run). The n value in the following register  
addresses indicates the context number (n = 0, 1, 2, 3).  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Isochronous receive context command pointer  
R
X
R
X
R
X
R
X
R
X
R
X
R
X
9
R
X
8
R
X
7
R
X
6
R
X
5
R
X
4
R
X
3
R
X
2
R
X
1
R
X
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Isochronous receive context command pointer  
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
Register:  
Type:  
Isochronous receive context command pointer  
Read-only  
Offset:  
Default:  
40Ch + (32 * n)  
XXXX XXXXh  
4–40  
Download from Www.Somanuals.com. All Manuals Search And Download.  
4.43 Isochronous Receive Context Match Register  
The isochronous receive context match register is used to start an isochronous receive context running on a specified  
cycle number, to filter incoming isochronous packets based on tag values, and to wait for packets with a specified  
sync value. The n value in the following register addresses indicates the context number (n = 0, 1, 2, 3). See  
Table 4–31 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Isochronous receive context match  
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R
0
R
0
R
0
9
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
15  
14  
13  
12  
11  
10  
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Isochronous receive context match  
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R
0
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
Register:  
Type:  
Offset:  
Default:  
Isochronous receive context match  
Read/Write, Read-only  
410Ch + (32 * n)  
XXXX XXXXh  
Table 4–31. Isochronous Receive Context Match Register Description  
BIT  
31  
FIELD NAME  
tag3  
TYPE  
R/W  
R/W  
R/W  
R/W  
R
DESCRIPTION  
If this bit is set, then this context matches on iso receive packets with a tag field of 11b.  
If this bit is set, then this context matches on iso receive packets with a tag field of 10b.  
If this bit is set, then this context matches on iso receive packets with a tag field of 01b.  
If this bit is set, then this context matches on iso receive packets with a tag field of 00b.  
Reserved. Bits 27–25 return 0s when read.  
30  
tag2  
29  
tag1  
28  
tag0  
27–25  
RSVD  
Contains a 15-bit value, corresponding to the low-order two bits of cycleSeconds and the 13-bit  
cycleCount field in the cycleStart packet. If isochronous receive context control register (see Section  
4.41)bit 29 (cycleMatchEnable) is set, then this context is enabled for receives when the two low-order  
bits of the bus isochronous cycle timer register (OHCI offset F0h, see Section 4.31) cycleSeconds field  
(bits 31–25) and cycleCount field (bits 24–12) value equal this (cycleMatch) field value.  
24–12  
cycleMatch  
R/W  
This field contains the 4-bit field which is compared to the sync field of each iso packet for this channel  
when the command descriptor w field is set to 11b.  
11–8  
7
sync  
R/W  
R
RSVD  
Reserved. Bit 7 returns 0 when read.  
Ifthisbitandbit29(tag1)areset, thenpacketswithtag01bareacceptedintothecontextifthetwomost  
significant bits of the packets sync field are 00b. Packets with tag values other than 01b are filtered  
according to tag0, tag2, and tag3 (bits 28, 30, and 31, respectively) without any additional restrictions.  
6
tag1SyncFilter  
R/W  
R/W  
If this bit is cleared, then this context matches on isochronous receive packets as specified in  
bits 28–31 (tag0–tag3) with no additional restrictions.  
This 6-bit field indicates the isochronous channel number for which this isochronous receive DMA  
context accepts packets.  
5–0  
channelNumber  
4–41  
Download from Www.Somanuals.com. All Manuals Search And Download.  
4–42  
Download from Www.Somanuals.com. All Manuals Search And Download.  
5 GPIO Interface  
The general-purpose input/output (GPIO) interface consists of two GPIO ports. GPIO2 and GPIO3 power up as  
general-purpose inputs and are programmable via the GPIO control register. Figure 5–1 shows the logic diagram for  
GPIO2 and GPIO3 implementation.  
GPIO Read Data  
GPIO Port  
GPIO Write Data  
D
Q
GPIO_Invert  
GPIO Enable  
Figure 5–1. GPIO2 and GPIO3 Logic Diagram  
5–1  
Download from Www.Somanuals.com. All Manuals Search And Download.  
5–2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
6 Serial ROM Interface  
The TSB12LV26 provides a serial bus interface to initialize the 1394 global unique ID register and a few PCI  
configurationregistersthroughaserialROM. TheTSB12LV26communicateswiththeserialROMviathe2-wireserial  
interface.  
After power-up the serial interface initializes the locations listed in Table 6–1. While the TSB12LV26 is accessing the  
serial ROM, all incoming PCI slave accesses are terminated with retry status. Table 6–2 shows the serial ROM  
memory map required for initializing the TSB12LV26 registers.  
Table 6–1. Registers and Bits Loadable through Serial ROM  
BITS LOADED  
FROM ROM  
ROM OFFSET  
OHCI/PCI OFFSET  
REGISTER  
00h  
01h  
03h  
PCI register (3Eh)  
PCI register (2Dh)  
PCI register (2Ch)  
OHCI register (50h)  
PCI register (F4h)  
OHCI register (24h)  
OHCI register(28h)  
PCI register (F4h)  
PCI register (F0h)  
PCI register (40h)  
PCI maximum latency, PCI minimum grant  
PCI vendor ID  
15–0  
15–0  
PCI subsystem ID  
15–0  
05h (bit 6)  
05h  
Host controller control register  
Link enhancements control register  
GUID high  
23  
7, 2, 1  
31–0  
06h – 0Ah  
0Bh – 0Eh  
10h  
GUID low  
31–0  
Link enhancements control register  
PCI miscellaneous register  
PCI OHCI register  
13, 12  
15, 13, 10  
0
12h  
13h  
6–1  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Table 6–2. Serial ROM Map  
BYTE  
ADDRESS  
BYTE DESCRIPTION  
00  
01  
02  
03  
04  
05  
PCI maximum latency (0h)  
PCI_minimum grant (0h)  
PCI vendor ID  
PCI vendor ID (msbyte)  
PCI subsystem ID (lsbyte)  
PCI subsystem ID  
[7]  
[6]  
[5]  
[4]  
[3]  
[2]  
[1]  
[0]  
Link_enhancement-  
HCControl.  
RSVD  
RSVD  
RSVD Link_enhancement- Link_enhancement-  
RSVD  
Control.enab_unfair ProgramPhy  
Enable  
Control.enab_  
insert_idle  
Control.enab_accel  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
Mini ROM address  
GUID high (lsbyte 0)  
GUID high (byte 1)  
GUID high (byte 2)  
GUID high (msbyte 3)  
GUID low (lsbyte 0)  
GUID low (byte 1)  
GUID low (byte 2)  
GUID low (msbyte 3)  
Checksum  
[15]  
RSVD  
[14]  
RSVD  
[13–12]  
AT threshold  
[11]  
RSVD  
[10]  
RSVD  
[9]  
RSVD  
[8]  
RSVD  
11  
12  
13  
[7]  
RSVD  
[6]  
RSVD  
[5]  
RSVD  
[4]  
[3]  
[2]  
[1]  
[0]  
Keep PCI  
Disable GP2IIC Disable SCLK gate  
Target  
Abort  
Disable PCI gate  
[15]  
PME D3 Cold  
[14]  
RSVD  
[13]  
PME  
Support  
D2  
[12]  
RSVD  
[11]  
RSVD  
[10]  
D2 support  
[9]  
RSVD  
[8]  
RSVD  
[7]  
[6]  
[5]  
[4]  
[3]  
[2]  
[1]  
[0]  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
Global  
swap  
14  
15–1E  
1F  
RSVD  
RSVD  
RSVD  
6–2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
7 Electrical Characteristics  
7.1 Absolute Maximum Ratings Over Operating Temperature Ranges  
Supply voltage range, V  
Supply voltage range, V  
Input voltage range for PCI, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 to V  
Input voltage range for miscellaneous and PHY interface, V . . . . . . . . . . . . . . . . . . . . . . . –0.5 to V  
Output voltage range for PCI, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 3.6 V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 5.5 V  
CC  
CCP  
+ 0.5 V  
+ 0.5 V  
+ 0.5 V  
+ 0.5 V  
I
CCP  
I
CCI  
CCP  
CCP  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 to V  
O
Input voltage range for miscellaneous and PHY interface, V . . . . . . . . . . . . . . . . . . . . . –0.5 to V  
O
Input clamp current, I (V < 0 or V > V ) (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA  
IK  
OK  
I
I
CC  
O
Output clamp current, I  
(V < 0 or V > V ) (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA  
O
CC  
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C  
Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and  
functionaloperationofthedeviceattheseoranyotherconditionsbeyondthoseindicatedunderrecommendedoperatingconditionsisnotimplied.  
Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. Applies to external input and bidirectional buffers. V > V  
.
I
CCP  
2. Applies to external output and bidirectional buffers. V > V  
.
O
CCP  
7–1  
Download from Www.Somanuals.com. All Manuals Search And Download.  
7.2 Recommended Operating Conditions  
OPERATION  
3.3 V  
MIN  
3
NOM  
3.3  
3.3  
5
MAX  
3.6  
UNIT  
V
V
Core voltage  
Commercial  
Commercial  
V
CC  
3.3 V  
3
3.6  
PCI I/O clamping voltage  
V
V
CCP  
5 V  
4.5  
5.5  
3.3 V  
0.475 V  
V
CCP  
CCP  
CCP  
CCP  
CCP  
PCI  
5 V  
2
2
2
0
0
0
0
0
0
0
0
0
0
0
0
0
V
V
V
V
IH  
High-level input voltage  
Low-level input voltage  
PHY interface  
Miscellaneous  
3.3 V  
5 V  
0.325 V  
CCP  
PCI  
0.8  
V
IL  
V
PHY interface  
Miscellaneous  
PCI  
0.8  
0.8  
3.3 V  
3.3 V  
V
V
V
V
V
V
CCP  
PHY interface  
Miscellaneous  
PCI  
V
V
Input voltage  
V
V
CCP  
CCP  
CCP  
CCP  
I
§
PHY interface  
Miscellaneous  
PCI  
Output voltage  
O
CCP  
6
t
t
Input transition time (t and t )  
ns  
°C  
°C  
r
f
T
A
Operating ambient temperature  
Virtual junction temperature  
25  
25  
70  
T
J
115  
§
Applies for external inputs and bidirectional buffers without hysteresis.  
Miscellaneous pins are: GPIO2, GPIO3, SDA, SCL, CYCLEOUT.  
Applies for external output buffers.  
The junction temperatures reflect simulation conditions. Customer is responsible for verifying junction temperature.  
7–2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
7.3 Electrical Characteristics Over Recommended Operating Conditions (unless  
otherwise noted)  
TEST  
OPERATION  
MIN  
0.9 V  
MAX  
UNIT  
CONDITIONS  
I
I
I
I
I
I
I
I
I
I
= – 0.5 mA  
= – 2 mA  
= – 4 µA  
= – 8 mA  
= – 4 mA  
= 1.5 mA  
= 6 mA  
OH  
OH  
OH  
OH  
OH  
OL  
OL  
OL  
OL  
OL  
CC  
PCI  
2.4  
2.8  
V
High-level output voltage  
Low-level output voltage  
V
OH  
PHY interface  
Miscellaneous  
PCI  
V
V
– 0.6  
CC  
– 0.6  
CC  
0.1 V  
CC  
0
0.55  
0.4  
V
OL  
= 4 mA  
V
PHY interface  
= 8 mA  
Miscellaneous  
Output pins  
Input pins  
= 4 mA  
0.5  
±20  
±20  
I
I
3-state output high-impedance  
Low-level input current  
3.6 V  
3.6 V  
3.6 V  
3.6 V  
3.6 V  
V
= V or GND  
CC  
µA  
OZ  
O
V = GND  
I
µA  
IL  
I/O pins  
V = GND  
±20  
I
PCI  
V = V  
±20  
I
CC  
CC  
I
IH  
High-level input current  
µA  
Others  
V = V  
±20  
I
For I/O pins, input leakage (I and I ) includes I  
IL IH  
of the disabled output.  
OZ  
Miscellaneous pins are: GPIO2, GPIO3, SDA, SCL, CYCLEOUT.  
§
7.4 Switching Characteristics for PCI Interface  
PARAMETER  
MEASURED  
–50% to 50%  
–50% to 50%  
–50% to 50%  
MIN  
TYP  
MAX  
UNIT  
ns  
t
su  
Setup time before PCLK  
3
0
2
t
t
Hold time before PCLK  
ns  
h
Delay time, PHY_CLK to data valid  
6
ns  
d
§
These parameters are ensured by design.  
§
7.5 Switching Characteristics for PHY-Link Interface  
PARAMETER  
MEASURED  
–50% to 50%  
–50% to 50%  
–50% to 50%  
MIN  
6
TYP  
MAX  
UNIT  
ns  
t
su  
Setup time, Dn, CTLn, LREQ to PHY_CLK  
Hold time, Dn, CTLn, LREQ before PHY_CLK  
Delay time, PHY_CLK to Dn, CTLn  
t
t
1
ns  
h
2
11  
ns  
d
§
These parameters are ensured by design.  
7–3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
7–4  
Download from Www.Somanuals.com. All Manuals Search And Download.  
8 Mechanical Information  
The TSB12LV26 is packaged in a 100-terminal PZ package. The following shows the mechanical dimensions for the  
PZ package.  
PZ (S-PQFP-G100)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
75  
M
0,08  
51  
50  
76  
26  
100  
0,13 NOM  
1
25  
12,00 TYP  
Gage Plane  
14,20  
SQ  
13,80  
0,25  
16,20  
SQ  
0,05 MIN  
0°7°  
15,80  
1,45  
1,35  
0,75  
0,45  
Seating Plane  
0,08  
1,60 MAX  
4040149/B 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MO-136  
8–1  
Download from Www.Somanuals.com. All Manuals Search And Download.  
8–2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
Customers are responsible for their applications using TI components.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 2000, Texas Instruments Incorporated  
Download from Www.Somanuals.com. All Manuals Search And Download.  

Thermador Oven DM301 User Manual
Tiffen Camera Accessories V User Manual
TP Link Security Camera TL SC3130 User Manual
Trango Broadband Network Router Atlas5010 User Manual
TRENDnet Network Card HS 6038 User Manual
Triarch Indoor Furnishings 25314 User Manual
Tripp Lite Mouse B012 000 User Manual
ViewSonic Laptop VS12638 User Manual
Vizio Flat Panel Television E220VA User Manual
Watlow Electric Network Card Power Series User Manual