Performance Verification
TDS 520A, 524A, 540A, & 544A
Digitizing Oscilloscopes
070-8712-01
Please check for change information at the rear
of this manual.
First Printing: July 1993.
Download from Www.Somanuals.com. All Manuals Search And Download.
WARRANTY
Tektronix warrants that this product will be free from defects in materials and workmanship for a period of three (3) years from
the date of shipment. If any such product proves defective during this warranty period, Tektronix, at its option, either will repair
the defective product without charge for parts and labor, or will provide a replacement in exchange for the defective product.
In order to obtain service under this warranty, Customer must notify Tektronix of the defect before the expiration of the
warranty period and make suitable arrangements for the performance of service. Customer shall be responsible for
packaging and shipping the defective product to the service center designated by Tektronix, with shipping charges prepaid.
Tektronix shall pay for the return of the product to Customer if the shipment is to a location within the country in which the
Tektronix service center is located. Customer shall be responsible for paying all shipping charges, duties, taxes, and any
other charges for products returned to any other locations.
This warranty shall not apply to any defect, failure or damage caused by improper use or improper or inadequate
maintenance and care. Tektronix shall not be obligated to furnish service under this warranty a) to repair damage resulting
from attempts by personnel other than Tektronix representatives to install, repair or service the product; b) to repair damage
resulting from improper use or connection to incompatible equipment; or c) to service a product that has been modified or
integrated with other products when the effect of such modification or integration increases the time or difficulty of servicing
the product.
THIS WARRANTY IS GIVEN BY TEKTRONIX WITH RESPECT TO THIS PRODUCT IN LIEU OF ANY OTHER
WARRANTIES, EXPRESS OR IMPLIED. TEKTRONIX AND ITS VENDORS DISCLAIM ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. TEKTRONIX’ RESPONSIBILITY TO REPAIR OR
REPLACE DEFECTIVE PRODUCTS IS THE SOLE AND EXCLUSIVE REMEDY PROVIDED TO THE CUSTOMER FOR
BREACH OF THIS WARRANTY. TEKTRONIX AND ITS VENDORS WILL NOT BE LIABLE FOR ANY INDIRECT,
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES IRRESPECTIVE OF WHETHER TEKTRONIX OR THE
VENDOR HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.
Download from Www.Somanuals.com. All Manuals Search And Download.
Download from Www.Somanuals.com. All Manuals Search And Download.
Welcome
This is the Performance Verification for the TDS 520A, 524A, 540A, and 544A
Oscilloscope. It contains procedures suitable for determining if the instrument
functions, was adjusted properly, and meets the performance characteristics
as warranted.
Also contained in this document are technical specifications for these oscillo-
scopes.
The following documents are related to the use or service of the digitizing
oscilloscope.
Related Manuals
The TDS 520A, 524A, 540A, & 544A User Manual (Tektronix part number
070–8710–01).
The TDS Family Programmer Manual (Tektronix part number
070–8709–01) describes using a computer to control the digitizing oscillo-
scope through the GPIB interface.
The TDS 520A, 524A, 540A, 544A, & 644A Reference (Tektronix part
number 070–8711–01) gives you a quick overview of how to operate your
digitizing oscilloscope.
The TDS 520A, 524A, 540A, & 544A Service Manual (Tektronix part
number 070–8713–01) provides information for maintaining and servicing
your digitizing oscilloscope to the module level.
TDS 520A, 524A, 540A, & 544A Performance Verification
Download from Www.Somanuals.com. All Manuals Search And Download.
Welcome
Welcome
Download from Www.Somanuals.com. All Manuals Search And Download.
Table of Contents
Safety Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
v
Performance Verification Procedures
Brief Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-1
General Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Self Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-1
1-2
1-4
Verify Internal Adjustment, Self Compensation, and
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-4
1-6
1-6
1-9
1-10
1-12
Functional Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Verify All Input Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Verify the Time Base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Verify the Main and Delayed Trigger Systems . . . . . . . . . . . . .
Verify the File System (Optional on TDS 520A and 540A) . . .
Performance Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-15
Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Equipment Required . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Test Record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Signal Acquisition System Checks . . . . . . . . . . . . . . . . . . . . . . . .
Check Accuracy of Offset (Zero Setting) . . . . . . . . . . . . . . . . . .
Check DC Gain and Voltage Measurement Accuracy . . . . . .
Check Analog Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Check Delay Between Channels . . . . . . . . . . . . . . . . . . . . . . . .
Time Base System Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-15
1-16
1-19
1-23
1-23
1-25
1-32
1-36
1-39
Check Accuracy for Long-Term Sample Rate, Delay Time,
and Delta Time Measurements . . . . . . . . . . . . . . . . . . . . . .
1-39
Trigger System Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-42
Check Accuracy (Time) for Pulse-Glitch or Pulse-Width
Triggering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Check Accuracy, Trigger-level or Threshold, DC Coupled . . .
Sensitivity, Edge Trigger, DC Coupled . . . . . . . . . . . . . . . . . . . .
Output Signal Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-42
1-45
1-48
1-54
Check Outputs — CH 3 and Main and Delayed Trigger
(TDS 540A and 544A only) . . . . . . . . . . . . . . . . . . . . . . . . .
Check Probe Compensator Outputs . . . . . . . . . . . . . . . . . . . . .
Option 05 Video Trigger Checks . . . . . . . . . . . . . . . . . . . . . . . . . .
Check Video Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-54
1-57
1-61
1-61
TDS 520A, 524A, 540A, & 544A Performance Verification
Download from Www.Somanuals.com. All Manuals Search And Download.
Table of Contents
Specifications
Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-1
General Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Menus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
General Purpose Knob . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Signal Acquisition System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Horizontal System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Trigger System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Acquisition Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
On-Board User Assistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Autoset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Measurement Assistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Cursor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Digital Signal Processing (DSP) . . . . . . . . . . . . . . . . . . . . . . . . .
Storage and I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Zoom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-1
2-2
2-2
2-2
2-3
2-3
2-3
2-4
2-5
2-6
2-6
2-6
2-6
2-6
2-6
2-7
2-7
2-7
2-8
2-8
Nominal Traits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Warranted Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Typical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-9
2-15
2-21
Contents
Download from Www.Somanuals.com. All Manuals Search And Download.
Safety Summary
Please take a moment to review these safety precautions. They are provided
for your protection and to prevent damage to the digitizing oscilloscope. This
safety information applies to all operators and service personnel.
These two terms appear in manuals:
Symbols and Terms
statements identify conditions or practices that could result in
damage to the equipment or other property.
statements identify conditions or practices that could result in
personal injury or loss of life.
These two terms appear on equipment:
CAUTION indicates a personal injury hazard not immediately accessible
as one reads the marking, or a hazard to property including the equip-
ment itself.
DANGER indicates a personal injury hazard immediately accessible as
one reads the marking.
This symbol appears in manuals:
Static-Sensitive Devices
These symbols appear on equipment:
DANGER
High Voltage
Protective
ground (earth)
terminal
ATTENTION
Refer to
manual
TDS 620A, 640A, & 644A Performance Verification
Download from Www.Somanuals.com. All Manuals Search And Download.
Safety Summary
Observe all of these precautions to ensure your personal safety and to pre-
vent damage to either the digitizing oscilloscope or equipment connected to it.
Specific Precautions
Power Source
The digitizing oscilloscope is intended to operate from a power source that will
not apply more than 250 V
between the supply conductors or between
RMS
either supply conductor and ground. A protective ground connection, through
the grounding conductor in the power cord, is essential for safe system
operation.
Grounding the Digitizing Oscilloscope
The digitizing oscilloscope is grounded through the power cord. To avoid
electric shock, plug the power cord into a properly wired receptacle where
earth ground has been verified by a qualified service person. Do this before
making connections to the input or output terminals of the digitizing oscillo-
scope.
Without the protective ground connection, all parts of the digitizing oscillo-
scope are potential shock hazards. This includes knobs and controls that may
appear to be insulators.
Use the Proper Power Cord
Use only the power cord and connector specified for your product. Use only a
power cord that is in good condition.
Use the Proper Fuse
To avoid fire hazard, use only the fuse specified in the parts list for your
product, matched by type, voltage rating, and current rating.
Do Not Remove Covers or Panels
To avoid personal injury, do not operate the digitizing oscilloscope without the
panels or covers.
Electric Overload
Never apply to a connector on the digitizing oscilloscope a voltage that is
outside the range specified for that connector.
Do Not Operate in Explosive Atmospheres
The digitizing oscilloscope provides no explosion protection from static dis-
charges or arcing components. Do not operate the digitizing oscilloscope in
an atmosphere of explosive gases.
Safety
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Verification
Procedures
Download from Www.Somanuals.com. All Manuals Search And Download.
Download from Www.Somanuals.com. All Manuals Search And Download.
Brief Procedures
The Self Tests use internal routines to confirm basic functionality and proper
adjustment. No test equipment is required to do these test procedures.
The Functional Tests utilize the probe-compensation output at the front panel
as a test-signal source for further verifying that the oscilloscope functions
properly. A standard-accessory probe, included with this oscilloscope, is the
only equipment required.
Besides the Brief Procedures, the set of procedures that can be used to verify
oscilloscope performance includes the Performance Tests, found later in this
section. You may not need to perform all of these procedures, depending on
what you want to accomplish:
General Instructions
To rapidly confirm that this oscilloscope functions and was adjusted
properly, just do the procedures under Self Tests, which begin on
page 1-4.
Advantages: These procedures are quick to do, require no external
equipment or signal sources, and perform extensive functional and accu-
racy testing to provide high confidence that the oscilloscope will perform
properly. They can be used as a quick check before making a series of
important measurements.
To further check functionality, first do the Self Tests just mentioned; then
do the procedures under Functional Tests that begin on page 1-6.
Advantages: These procedures require minimal additional time to per-
form, require no additional equipment other than a standard-accessory
probe, and more completely test the internal hardware of this oscillo-
scope. They can be used to quickly determine if the oscilloscope is
suitable for putting into service, such as when it is first received.
If more extensive confirmation of performance is desired, do the Perform-
ance Tests, beginning on page 1-15, after doing the Functional and Self
Tests just referenced.
Advantages: These procedures add direct checking of warranted specifi-
cations. They require more time to perform and suitable test equipment is
required. (See Equipment Required on page 1-15.)
If you are not familiar with operating this oscilloscope, read the TDS 520A,
524A, 540A, 544A, & 644A Reference or the TDS 520A, 524A, 540A, & 544A
User manual. These contain instructions that acquaint you with the use of the
front-panel controls and the menu system.
TDS 520A, 524A, 540A, & 544A Performance Verification
Download from Www.Somanuals.com. All Manuals Search And Download.
Brief Procedures
Throughout these procedures the following conventions apply:
Conventions
Each test procedure uses the following general format:
Title of Test
Equipment Required
Prerequisites
Procedure
Each procedure consists of as many steps, substeps, and subparts as
required to do the test. Steps, substeps, and subparts are sequenced as
follows:
1. First Step
a. First Substep
First Subpart
Second Subpart
b. Second Substep
2. Second Step
In steps and substeps, the lead-in statement in italics instructs you what
to do, while the instructions that follow tell you how to do it: in the exam-
ple step below, “Initialize the oscilloscope” by doing “Press save/recall
SETUP. Now, press the main-menu button...”.
Initialize the oscilloscope: Press save/recall SETUP. Now, press the
main-menu button Recall Factory Setup; then the side-menu button
OK Confirm Factory Init.
Where instructed to use a front-panel button or knob, or select from a
main or side menu, or verify a readout or status message, the name of
the button or knob appears in boldface type: “press SHIFT; then AC-
QUIRE MENU”, “press the main-menu button Coupling”, or “verify that
the status message is Pass.
The symbol at the left is accompanied by information you must read
to do the procedure properly.
Performance Verification Procedures
Download from Www.Somanuals.com. All Manuals Search And Download.
Brief Procedures
Refer to Figure 1-1: “Main menu” refers to the menu that labels the seven
menu buttons under the display; “side menu” refers to the menu that
labels the five buttons to the right of the display. “Pop-up menu” refers to
a menu that pops up when a main-menu button is pressed.
Position of Waveform
Record Relative to
the Screen and Display
General Purpose
Knob Readout
Brief Status
Information
Graticuleand Waveforms
Waveform Reference
Symbols:GroundLevels
and Waveform Sources
Vertical Scale,
Horizontal Scale, and
Trigger Level Readouts
Side menu area.
Readouts for
measurements
move here when
CLEAR MENU is
pressed.
Pop-up Menu
Main menu display area. Readouts in
lower graticule area move here when
CLEAR MENU is pressed.
Figure 1-1: Map of Display Functions
TDS 520A, 524A, 540A, & 544A Performance Verification
Download from Www.Somanuals.com. All Manuals Search And Download.
Brief Procedures
This procedure uses internal routines to verify that this oscilloscope functions
and was adjusted properly. No test equipment or hookups are required.
Self Tests
Verify Internal Adjustment, Self Compensation, and
Diagnostics
Equipment Required: None.
Prerequisites: Power on the Digitizing Oscilloscope and allow a 20 minute
warm-up before doing this procedure.
Procedure:
1. Verify that internal diagnostics pass: Do the following substeps to verify
passing of internal diagnostics.
a. Display the System diagnostics menu:
Press SHIFT; then press UTILITY.
Repeatedly press the main-menu button System until Diag/Err is
highlighted in the pop-up menu.
b. Run the System Diagnostics: Press the main-menu button Execute;
then press the side-menu button OK Confirm Run Test.
c. Wait: The internal diagnostics do an exhaustive verification of proper
oscilloscope function. This verification will take up to two minutes. At
some time during the wait, a “clock” icon (shown at left) will appear
on-screen. When the verification is finished, the resulting status will
appear on the screen.
d. Confirm no failures are found: Verify that no failures are found and
reported on-screen.
e. Confirm the three adjustment sections have passed status:
Press SHIFT; then press UTILITY.
Press the main menu button System until Cal is highlighted in
the pop-up menu.
Verify that the word Pass appears in the main menu under the
following menu labels: Voltage Reference, Frequency Re-
sponse, and Pulse Trigger. (See Figure 1-2.)
Performance Verification Procedures
Download from Www.Somanuals.com. All Manuals Search And Download.
Brief Procedures
First, the CAL menu is displayed.
Second, the adjustment
sections are verified.
Third, a signal path
compensation is run and is
verified.
Figure 1-2: Verifying Adjustments and Signal-Path Compensation
When doing steps f and g, do not turn off the oscilloscope until signal-
path compensation completes. If you interrupt (or lose) power to the
instrument while signal-path compensation is running, a message is
logged in the oscilloscope error log. If such a case occurs, rerun
signal-path compensation.
f. Run the signal-path compensation: Press the main-menu button
Signal Path; then press the side-menu button OK Compensate
Signal Paths.
g. Wait: Signal-path compensation runs in about one to two minutes.
While it progresses, a “clock” icon (shown at left) is displayed on-
screen. When compensation completes, the status message will be
updated to Pass or Fail in the main menu (see step h).
h. Confirm signal-path compensation returns passed status: Verify the
word Pass appears under Signal Path in the main menu. (See
Figure 1-2.)
2. Return to regular service: Press CLEAR MENU to exit the system me-
nus.
TDS 520A, 524A, 540A, & 544A Performance Verification
Download from Www.Somanuals.com. All Manuals Search And Download.
Brief Procedures
The purpose of these procedures is to confirm that this oscilloscope functions
properly. The only equipment required is one of the standard-accessory
probes and, to check the file system, a 3.5 inch. 720 K or 1.44 Mbyte floppy
disk.
Functional Tests
These procedures verify functions; that is, they verify that oscillo-
scope features operate. They do not verify that they operate within
limits.
Therefore, when the instructions in the functional tests that follow call
for you to verify that a signal appears on-screen “that is about five
divisions in amplitude” or “has a period of about six horizontal divi-
sions”, etc., do NOT interpret the quantities given as limits. Operation
within limits is checked in Performance Tests, which begin on
page 1-15.
DO NOT make changes to the front-panel settings that are not called
out in the procedures. Each verification procedure will require you to
set the oscilloscope to certain default settings before verifying func-
tions. If you make changes to these settings, other than those called
out in the procedure, you may obtain invalid results. In this case, just
redo the procedure from step 1.
When you are instructed to press a menu button, the button may
already be selected (its label will be highlighted). If this is the case, it
is not necessary to press the button.
Verify All Input Channels
Equipment Required: One P6139A probe.
Prerequisites: None.
Procedure:
1. Install the test hookup and preset the oscilloscope controls:
Figure 1-3: Universal Test Hookup for Functional Tests
a. Hook up the signal source: Install the probe on CH 1. Connect the
probe tip to PROBE COMPENSATION SIGNAL on the front panel;
connect the probe ground to PROBE COMPENSATION GND.
Performance Verification Procedures
Download from Www.Somanuals.com. All Manuals Search And Download.
Brief Procedures
b. Initialize the oscilloscope:
Press save/recall SETUP.
Press the main-menu button Recall Factory Setup.
Press the side-menu button OK Confirm Factory Init.
2. Verify that all input channels operate: Do the following substeps — test
CH 1 first, skipping substep a since CH 1 is already set up for verification
from step 1.
a. Select an unverified channel:
Press WAVEFORM OFF to remove from display the channel just
verified.
Press the front-panel button that corresponds to the channel you
are to verify.
Move the probe to the channel you selected.
b. Set up the selected channel:
Press AUTOSET to obtain a viewable, triggered display in the
selected channel.
Set the horizontal SCALE to 200 s. Press CLEAR MENU to
remove any menu that may be on the screen.
c. Verify that the channel is operational: Confirm that the following
statements are true.
The vertical scale readout for the channel under test shows a
setting of 200 mV, and a square-wave probe-compensation signal
about 2.5 divisions in amplitude is on-screen. (See Figure 1-1 on
page 1-3 to locate the readout.)
The vertical POSITION knob moves the signal up and down the
screen when rotated.
Turning the vertical SCALE knob counterclockwise decreases the
amplitude of the waveform on-screen, turning the knob clockwise
increases the amplitude, and returning the knob to 200 mV
returns the amplitude to about 2.5 divisions.
d. Verify that the channel acquires in all acquisition modes: Press
SHIFT; then press ACQUIRE MENU. Use the side menu to select, in
turn, each of the five hardware acquire modes and confirm that the
following statements are true. Refer to the icons at the left of each
statement as you confirm those statements.
Sample mode displays an actively acquiring waveform on-
screen. (Note that there is noise present on the peaks of the
square wave.)
Peak Detect mode displays an actively acquiring waveform
on-screen with the noise present in Sample mode “peak de-
tected.”
TDS 520A, 524A, 540A, & 544A Performance Verification
Download from Www.Somanuals.com. All Manuals Search And Download.
Brief Procedures
Hi Res mode displays an actively acquiring waveform on-screen
with the noise that was present in Sample mode reduced.
Envelope mode displays an actively acquiring waveform on-
screen with the noise displayed.
Average mode displays an actively acquiring waveform on-
screen with the noise reduced like in Hi Res mode.
TDS 520A and 524A only: Substep e will have you repeat the pre-
vious substeps to check all input channels. Be sure to check only CH
1 and CH 2 when testing the TDS 520A or 524A. (Step 3 will test the
AUX 1 and AUX 2 inputs.) When testing the TDS 540A or 544A, test
all four channels, CH 1 through CH 4.)
e. Test all channels: Repeat substeps a through d until all four input
channels are verified.
3. TDS 520A and 524A Only: Verify auxiliary inputs operate: Perform the
following substeps when checking the AUX 1 and AUX 2 inputs only.
a. Select an auxiliary channel:
Press WAVEFORM OFF to remove from display the channel just
verified.
Press the front-panel button that corresponds to the channel you
are to verify.
Move probe to the channel you selected.
b. Set up the selected channel: Press AUTOSET to obtain a viewable
display in the selected channel.
The display obtained might not trigger stably because autoset cannot
provide more than about
signal
amplitude in an auxiliary channel equipped with a 10X probe. This
amount is less than the minimum trigger sensitivity for auxiliary
channel trigger sources; therefore, triggering is not required.
c. Verify that the channel is operational: Confirm that the following
statements are true.
The vertical scale readout for the channel under test shows a
setting of 1 V, and a square-wave probe-compensation signal
about
on
page 1-3 to locate the readout.)
The vertical POSITION knob moves the signal up and down the
screen when rotated.
Turning the vertical SCALE knob counterclockwise to 10 V
decreases the amplitude of the waveform on-screen. (The ampli-
tude will drop to near zero when doing this substep.)
Returning the knob to 1 V returns the amplitude to about divi-
sion.
d. Verify that the channel acquires in all acquisition modes: Disconnect
the probe ground lead from the probe-compensation terminal. Do
step 2, substep d to verify the five acquire modes.
Performance Verification Procedures
Download from Www.Somanuals.com. All Manuals Search And Download.
Brief Procedures
e. Test all channels: Repeat substeps a through d to verify AUX 2.
4. Remove the test hookup: Disconnect the probe from the channel input
and the probe-compensation terminals.
Verify the Time Base
Equipment Required: One P6139A probe.
Prerequisites: None.
Procedure:
1. Install the test hookup and preset the oscilloscope controls:
a. Hook up the signal source: Install the probe on CH 1. Connect the
probe tip to PROBE COMPENSATION SIGNAL on the front panel;
connect the probe ground to PROBE COMPENSATION GND. (See
Figure 1-3 on page 1-6.)
b. Initialize the oscilloscope:
Press save/recall SETUP.
Press the main-menu button Recall Factory Setup; then press
the side-menu button OK Confirm Factory Init.
c. Modify default settings:
Press AUTOSET to obtain a viewable, triggered display.
Set the horizontal SCALE to 200 s.
Press CLEAR MENU to remove the menus from the screen.
2. Verify that the time base operates: Confirm the following statements.
a. One period of the square-wave probe-compensation signal is about
five horizontal divisions on-screen for the 200 s horizontal scale
setting (set in step 1c).
b. Rotating the horizontal SCALE knob clockwise expands the wave-
form on-screen (more horizontal divisions per waveform period), and
that counterclockwise rotation contracts it, and that returning the
horizontal scale to 200 s returns the period to about five divisions.
c. The horizontal POSITION knob positions the signal left and right
on-screen when rotated.
3. Remove the test hookup: Disconnect the probe from the channel input
and the probe-compensation terminals.
TDS 520A, 524A, 540A, & 544A Performance Verification
Download from Www.Somanuals.com. All Manuals Search And Download.
Brief Procedures
Verify the Main and Delayed Trigger Systems
Equipment Required: One P6139A probe.
Prerequisites: None.
Procedure:
1. Install the test hookup and preset the oscilloscope controls:
a. Hook up the signal source: Install the probe on CH 1. Connect the
probe tip to PROBE COMPENSATION SIGNAL on the front panel;
connect the probe ground to PROBE COMPENSATION GND. (See
Figure 1-3 on page 1-6.)
b. Initialize the oscilloscope:
Press save/recall SETUP.
Press the main-menu button Recall Factory Setup.
Press the side-menu button OK Confirm Factory Init.
c. Modify default settings:
Press AUTOSET to obtain a viewable, triggered display.
Set the horizontal SCALE for the M (main) time base to 200 s.
Press TRIGGER MENU.
Press the main-menu button Mode & Holdoff.
Press the side-menu button Normal.
Press CLEAR MENU to remove the menus from the screen.
2. Verify that the main trigger system operates: Confirm that the following
statements are true.
The trigger level readout for the main trigger system changes with
the trigger LEVEL knob.
The trigger-level knob can trigger and untrigger the square-wave
signal as you rotate it. (Leave the signal untriggered.)
Pressing SET LEVEL TO 50% triggers the signal that you just
left untriggered. (Leave the signal triggered.)
3. Verify that the delayed trigger system operates:
a. Select the delayed time base:
Press HORIZONTAL MENU.
Press the main-menu button Time Base.
Press the side-menu button Delayed Triggerable; then press the
side-menu button Delayed Only.
Set the horizontal SCALE for the D (delayed) time base to
200 s.
Performance Verification Procedures
Download from Www.Somanuals.com. All Manuals Search And Download.
Brief Procedures
b. Select the delayed trigger level menu:
Press SHIFT; then press DELAYED TRIG.
Press the main-menu button Level; then press the side-menu
button Level.
c. Confirm that the following statements are true:
The trigger-level readout for the delayed trigger system changes
as you turn the general purpose knob.
The general purpose knob can trigger and untrigger the square-
wave probe-compensation signal as you rotate it. (Leave the
signal untriggered.)
Pressing the side-menu button Set to 50% triggers the probe-
compensation signal that you just left untriggered. (Leave the
signal triggered.)
d. Verify the delayed trigger counter:
Press the main-menu button Delay by Time.
Use the keypad to enter a delay time of 1 second (press 1 then
press ENTER).
Verify that the trigger READY indicator on the front panel flashes
about once every second as the waveform is updated on-screen.
4. Remove the test hookup: Disconnect the standard-accessory probe from
the channel input and the probe-compensation terminals.
TDS 520A, 524A, 540A, & 544A Performance Verification
Download from Www.Somanuals.com. All Manuals Search And Download.
Brief Procedures
Verify the File System (Optional on TDS 520A and 540A)
Equipment Required: One P6139A probe and one 720 K or 1.44 Mbyte, 3.5
inch DOS compatible disk. You can use a disk of your own or you can use the
Programming Examples Software 3.5 inch disk (Tektronix part number
063–1134–00) contained in the TDS Family Programmer Manual (Tektronix
part number 070–8709–01).
Prerequisites: None.
Procedure:
1. Install the test hookup and preset the oscilloscope controls:
a. Hook up the signal source: Install the probe on CH 1. Connect the
probe tip to PROBE COMPENSATION SIGNAL on the front panel;
connect the probe ground to PROBE COMPENSATION GND. (See
Figure 1-3 on page 1-6.)
b. Insert the test disk: Insert the disk in the disk drive to the left of the
monitor.
Position the disk so the metal shutter faces the drive.
Position the disk so the stamped arrow is on the top right side. In
other words, place the angled corner in the front bottom location.
Push the disk into the drive until it goes all the way in and clicks
into place.
c. Initialize the oscilloscope:
Press save/recall SETUP.
Press the main-menu button Recall Factory Setup.
Press the side-menu button OK Confirm Factory Init.
d. Modify default settings:
Press AUTOSET to obtain a viewable, triggered display.
Set the horizontal SCALE for the M (main) time base to 200 s
(one click clockwise). Notice the waveform on the display now
shows two cycles instead of five.
Press CLEAR MENU to remove the menus from the screen.
e. Save the settings:
Press SETUP.
Press the main-menu button Save Current Setup; then press the
side-menu button To File.
Turn the general purpose knob to select the file to save. Choose
TEK?????.SET (or fdo:). With this choice, you’ll save a file
starting with TEK, then containing 5-numbers, and a .SET exten-
sion. For example, the first time you run this on a blank, for-
matted disk or on the Example Programs Disk, the TDS will
assign the name TEK00000.SET to your file. If you ran the
procedure again, the TDS would increment the name and call the
file TEK00001.SET.
Performance Verification Procedures
Download from Www.Somanuals.com. All Manuals Search And Download.
Brief Procedures
Press the side-menu button Save To Selected File.
2. Verify the file system works:
Press AUTOSET to restore the 500 s time base and the five
cycle waveform.
Press the main-menu button Recall Saved Setup; then press the
side-menu button From File.
Turn the general purpose knob to select the file to recall. For
example, if you followed the instructions above and used a blank
disk, you had the TDS assign the name TEK00000.SET to your
file.
Press the side-menu button Recall From Selected File.
Verify that Digitizing Oscilloscope retrieved the saved setup from
the disk. Do this by noticing the horizontal SCALE for the M
(main) time base is again 200 s and the waveform shows only
two cycles just as it was when you saved the setup.
3. Remove the test hookup:
Disconnect the standard-accessory probe from the channel input
and the probe-compensation terminals.
Remove the disk from the disk drive. Do this by pushing in the
tab at the bottom of the disk drive.
TDS 520A, 524A, 540A, & 544A Performance Verification
Download from Www.Somanuals.com. All Manuals Search And Download.
Brief Procedures
Performance Verification Procedures
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
This subsection contains a collection of procedures for checking that TDS
520A, 524A, 540A, and 544A Digitizing Oscilloscopes perform as warranted.
Since the procedures cover models with both two full-featured channels (TDS
520A and 524A) and four full-featured models (TDS 540A and 544A),
instructions that apply only to one of the model types are clearly identified.
Otherwise, all test instructions apply to both the two and four channel models.
The procedures are arranged in four logical groupings: Signal Acquisition
System Checks, Time Base System Checks, Triggering System Checks, and
Output Ports Checks. They check all the characteristics that are designated
as checked in Section 2, Specifications. (The characteristics that are checked
appear in boldface type under Warranted Characteristics in Section 2.)
These procedures extend the confidence level provided by the basic
procedures described on page 1-1. The basic procedures should be
done first, then these procedures performed if desired.
Prerequisites
The tests in this subsection comprise an extensive, valid confirmation of
performance and functionality when the following requirements are met:
The cabinet must be installed on the Digitizing Oscilloscope.
You must have performed and passed the procedures under Self Tests,
found on page 1-4, and those under Functional Tests, found on page 1-6.
A signal-path compensation must have been done within the recom-
mended calibration interval and at a temperature within
C of the
present operating temperature. (If at the time you did the prerequisite Self
Tests, the temperature was within the limits just stated, consider this
prerequisite met.)
The Digitizing Oscilloscope must have been last adjusted at an ambient
temperature between +20 C and +30 C, must have been operating for
a warm-up period of at least 20 minutes, and must be operating at an
ambient temperature between +4 C and +50 C. (The warm-up require-
ment is usually met in the course of meeting the first prerequisite listed
above.)
Related Information — Read General Instructions and Conventions that
start on page 1-1.
Equipment Required
These procedures use external, traceable signal sources to directly check
warranted characteristics. The required equipment list is shown in Table 1-1.
TDS 520A, 524A, 540A, & 544A Performance Verification
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
Table 1-1: Test Equipment
Item Number and
Description
Minimum Requirements
Example
Purpose
1
2
3
4
5
Attenuator,10X
Ratio: 10X; impedance 50
;
Tektronix part number
Signal Attenuation
(three required) connectors: female BNC input, 011–0059–02
male BNC output
Attenuator, 5X
Ratio: 5X; impedance 50
connectors: female BNC input, 011–0060–02
male BNC output
;
Tektronix part number
Signal Attenuation
Terminator, 50
Impedance 50 ; connectors: Tektronix part number
female BNC input, male BNC 011–0049–01
output
Signal Termination
for Channel Delay
Test
Cable, Precision 50 , 36 inch, male to male
50 Coaxial
(two required)
Tektronix part number
012–0482–00
Signal Interconnec-
tion
BNC connectors
Connector, Dual- Female BNC to dual banana
Banana (two
required)
Tektronix part number
103–0090–00
Various Accuracy
Tests
6
7
8
Connector, BNC Male BNC to dual female BNC Tektronix part number
Checking Trigger
Sensitivity
“T”
103–0030–00
Coupler, Dual-
Input
Female BNC to dual male
BNC
Tektronix part number
067–0525–02
Checking Delay
Between Channels
Generator, DC
Calibration
Variable amplitude to 10 V; Data Precision 8200, with
Checking DC Offset,
Gain, and Measure-
ment Accuracy
accuracy to 0.1%
1 kV option installed
1
9
Generator, Cali- 500 mV square wave calibra- PG 506A
To check accuracy
of the CH 3 Signal
Out (TDS 540A and
544A only)
bration
tor amplitude; accuracy to
0.25%
10 Generator, Lev- 200 kHz to 250 MHz; Variable Tektronix SG 503 Leveled Sine Checking Trigger
1
eled Sine Wave, amplitude from 5 mV to
Wave Generator
Sensitivity at low fre-
quencies
Medium-Fre-
quency
5.5 V into 50
p-p
11 Generator, Lev- 250 MHz to 500 MHz; Variable Tektronix SG 504 Leveled Sine Checking Analog
1
eled Sine Wave, amplitude from 500 mV to
Wave Generator with its Level- Bandwidth and Trig-
High-Frequency 4 V into 50 ; 6 MHz
ing Head
ger Sensitivity at
high frequencies
p-p
reference
12 Generator, Time Variable marker frequency
Tektronix TG 501 Time
Checking Sample-
Rate and Delay-time
Accuracy
1
Mark
from 10 ms to 10 ns; accuracy Mark Generator
within 2 ppm
1
13 Generator, Cali- 500 mV square wave calibra- PG 506A
Use to check accu-
racy of the CH 3
Output
bration
tor amplitude; accuracy to
0.25%
1
Requires a TM 500 or TM 5000 Series Power Module Mainframe.
Performance Verification Procedures
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
Table 1-1: Test Equipment (Cont.)
Item Number and
Description
Minimum Requirements
Example
Purpose
14 Probe, 10X, in-
cluded with this
instrument
A P6139A probe
Tektronix number P6139A
Signal Interconnec-
tion
15 Adapter, BNC
female to Clip
Leads
BNC female to Clip Leads
Tektronix part number
013–0076–00
Signal Coupling for
Probe Compensator
Output Check
16 Power Supply,
Dual Output
0–35 V and 60 V 2 A; current
limit without foldback
Tektronix PS 280 Power Supply Power Supply
Troubleshooting
17 3.5 inch, 720 K
or 1.44 Mbyte,
DOS-compatible
floppy disk
Programming Examples Soft-
ware Disk (Tektronix part num-
ber 063–1134–00) that comes
with the TDS Family Program-
mer Manual (Tektronix part
number 070–8709–01)
Checking File Sys-
tem Basic Function-
ality
18 Generator,
Video Signal
Provides NTSC compatible
outputs.
Tektronix TSG 121
Used to Test Video
Option 05 Equipped
Instruments Only
19 Oscillator, Lev-
eled Sinewave
Generator
60 Hz. Sine Wave
Tektronix part number SG 502
Tektronix part number PG 502
Used to Test Video
Option 05 Equipped
Instruments Only
20 Pulse Generator
Used to Test Video
Option 05 Equipped
Instruments Only
21 Cable, 75
Coaxial
75 , 36 inch, male to male
BNC connectors
Tektronix part number
012–1338–00
Used to Test Video
Option 05 Equipped
Instruments Only
22 Termination,
75
Impedance 75 ; connectors: Tektronix part number
female BNC input, male BNC 011–0102–01
output
Used to Test Video
Option 05 Equipped
Instruments Only
TDS 520A, 524A, 540A, & 544A Performance Verification
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
Performance Verification Procedures
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
Test Record
Photocopy the next four pages and use them to record the performance test
results for your instrument.
TDS 500A Test Record
Instrument Serial Number:
Temperature:
Certificate Number:
RH %:
Date of Calibration:
Technician:
Performance Test
Minimum
Incoming
Outgoing
Maximum
Offset Accuracy
CH1 Offset
CH2 Offset
CH3 Offset
CH4 Offset
+1 mV
+100 mV
+1 V
– 1.6 mV
– 25 mV
250 mV
__________
__________
__________
__________
__________
__________
+ 1.6 mV
+ 25 mV
+ 250 mV
–
–
–
–
+1 mV
+100 mV
+1 V
– 1.6 mV
– 25 mV
250 mV
__________
__________
__________
__________
__________
__________
+ 1.6 mV
+ 25 mV
+ 250 mV
+1 mV
+100 mV
+1 V
– 1.6 mV
– 25 mV
250 mV
__________
__________
__________
__________
__________
__________
+ 1.6 mV
+ 25mV
+ 250 mV
+1 mV
+100 mV
+1 V
– 1.6 mV
– 25 mV
250 mV
__________
__________
__________
__________
__________
__________
+ 1.6 mV
+ 25 mV
+ 250 mV
DC Voltage Measurement Accuracy (Averaged)
CH1
CH1
CH1
CH1
CH1
CH1
CH2
CH2
5 mV Vert scale setting,
–5 Div position setting
+ 1.0355 V
– 1.0445 V
+ 11.525 V
– 11.675 V
+ 107.450 V
– 108.550 V
+ 1.0355 V
– 1.0445 V
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
+ 1.0445 V
– 1.0355 V
+ 11.675 V
– 11.525 V
+ 108.550 V
– 107.450 V
+ 1.0445 V
– 1.0355 V
5 mV Vert scale setting,
+5 Div position setting
200 mV Vert scale setting,
–5 Div position setting
200 mV Vert scale setting,
+5 Div position setting
1 V Vert scale setting,
–5 Div position setting
1 V Vert scale setting,
+5 Div position setting
5 mV Vert scale setting,
–5 Div position setting
5 mV Vert scale setting,
+5 Div position setting
TDS 520A, 524A, 540A, & 544A Performance Verification
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
TDS 500A Test Record (Cont.)
Certificate Number:
Instrument Serial Number:
Temperature:
RH %:
Date of Calibration:
Technician:
Performance Test
Minimum
Incoming
Outgoing
Maximum
CH2
CH2
CH2
CH2
CH3
CH3
CH3
CH3
CH3
CH3
CH4
CH4
CH4
CH4
CH4
CH4
200 mV Vert scale setting,
–5 Div position setting
+ 11.525 V
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
+ 11.675 V
200 mV Vert scale setting,
+5 Div position setting
– 11.675 V
+ 107.450 V
– 108.550 V
+ 1.0355 V
– 1.0445 V
+ 11.525 V
– 11.675 V
+ 107.450 V
– 108.550 V
+ 1.0355 V
– 1.0445 V
+ 11.525 V
– 11.675 V
+ 107.450 V
– 108.550 V
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
– 11.525 V
+ 108.550 V
– 107.450 V
+ 1.0445 V
– 1.0355 V
+ 11.675 V
– 11.525 V
+ 108.550 V
– 107.450 V
+ 1.0445 V
– 1.0355 V
+ 11.675 V
– 11.525 V
+ 108.550 V
– 107.450 V
1 V Vert scale setting,
–5 Div position setting
1 V Vert scale setting,
+5 Div position setting
5 mV Vert scale setting,
–5 Div position setting
5 mV Vert scale setting,
+5 Div position setting
200 mV Vert scale setting,
–5 Div position setting
200 mV Vert scale setting,
+5 Div position setting
1 V Vert scale setting,
–5 Div position setting
1 V Vert scale setting,
+5 Div position setting
5 mV Vert scale setting,
–5 Div position setting
5 mV Vert scale setting,
+5 Div position setting
200 mV Vert scale setting,
–5 Div position setting
200 mV Vert scale setting,
+5 Div position setting
1 V Vert scale setting,
–5 Div position setting
1 V Vert scale setting,
+5 Div position setting
Performance Verification Procedures
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
TDS 500A Test Record (Cont.)
Certificate Number:
Instrument Serial Number:
Temperature:
RH %:
Date of Calibration:
Technician:
Performance Test
Minimum
Incoming
Outgoing
Maximum
Analog Bandwidth
CH1
CH2
CH3
CH4
100 mV
100 mV
100 mV
100 mV
424 mV
424 mV
424 mV
424 mV
__________
__________
__________
__________
__________
__________
__________
__________
N/A
N/A
N/A
N/A
Delay Between Channels
N/A __________
Time Base System
Delay Between Channels
__________
250 ps
Long Term Sample Rate/
Delay Time @ 500 ns/10 ms
–2.5 Div
__________
__________
__________
__________
+2.5 Div
Delta Time @ 5 ns (100 MHz)
19.760 ns
20.240 ns
Trigger System Accuracy
Pulse-Glitch or Pulse-WIdth,
Hor. scale ≤ 1 s
Lower Limit
2.5 ns
2.5 ns
__________
__________
__________
__________
7.5 ns
7.5 ns
Upper Limit
Pulse-Glitch or Pulse-WIdth,
Hor. scale > 1 s
Lower Limit
1 s
1 s
__________
__________
__________
__________
3 s
3 s
Upper Limit
Main Trigger, DC Coupled)
Delayed Trigger, DC Coupled)
9.940 V
9.940 V
__________
__________
__________
___________
10.060 V
10.060 V
Output Signal Checks
MAIN TRIGGER OUTPUT, 1 M
MAIN TRIGGER OUTPUT, 50
DELAYED TRIGGER OUTPUT, 50
DELAYED TRIGGER OUTPUT, 1 M
CH 3 SIGNAL OUTPUT, 1 M
CH 3 SIGNAL OUTPUT, 50
High ≥ 2.5 V
High ≥ 1.0 V
High ≥ 1.0 V
High ≥ 2.5 V
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
Low ≤ 0.7 V
Low ≤ 0.25 V
Low ≤ 0.25 V
Low ≤ 0.7 V
Pk-Pk ≥ 90 mV __________
Pk-Pk ≤ 110 mV
Pk-Pk ≤ 55 mV
Pk-Pk ≥ 45 mV __________
TDS 520A, 524A, 540A, & 544A Performance Verification
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
TDS 500A Test Record (Cont.)
Certificate Number:
Instrument Serial Number:
Temperature:
RH %:
Date of Calibration:
Technician:
Performance Test
Minimum
Incoming
Outgoing
Maximum
Probe Compensator Output Signal
Frequency (CH1 Freq.)
Voltage (difference)
950 Hz
495 mV
__________
__________
__________
__________
1050 Hz
505 mV
Performance Verification Procedures
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
These procedures check those characteristics that relate to the signal-acqui-
sition system and are listed as checked under Warranted Characteristics in
Section 2, Specifications.
Signal Acquisition
System Checks
Check Accuracy of Offset (Zero Setting)
Equipment Required: None.
Prerequisites: The oscilloscope must meet the prerequisites listed on
page 1-15.
1. Preset the instrument controls:
a. Initialize the oscilloscope:
Press save/recall SETUP.
Press the main-menu button Recall Factory Setup.
Press the side-menu button OK Confirm Factory Init.
Press CLEAR MENU to remove the menus from the screen.
b. Modify the default settings:
Set the horizontal SCALE to 1 ms.
Press SHIFT; then ACQUIRE MENU.
Press the main-menu button Mode; then press the side-menu
button Hi Res.
Press DISPLAY.
Press the main-menu button Graticule; then press the side-menu
button Frame.
Press CURSOR.
Press the main-menu button Function; then press the side-menu
button H Bars.
Press CLEAR MENU.
2. Confirm input channels are within limits for offset accuracy at zero offset:
Do the following substeps — test CH 1 first, skipping substep a since
CH 1 is already set up to be checked from step 1.
a. Select an unchecked channel: Press WAVEFORM OFF to remove
the channel just confirmed from the display. Then, press the front-pa-
nel button that corresponds to the channel you are to confirm.
TDS 520A, 524A, 540A, & 544A Performance Verification
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
Follow these rules to match this procedure to the model of the oscillo-
scope under test:
Models TDS 540A, 544A Only—When using Table 1-2 to test
CH 1—CH 4; ignore the columns for AUX 1 & AUX 2 settings and
limits.
Model TDS 520A, 524A Only—Use Table 1-2 to test input channels;
use the columns for CH 1—CH 4 when testing CH 1 and CH 2; use
the columns for AUX 1 and AUX 2 when testing those channels.
Table 1-2: DC Offset Accuracy (Zero Setting)
Vertical Scale
Setting
Vertical
Position
Offset Accuracy Limits
CH 1 –
CH 4
AUX 1 & and Offset
1
AUX 2
100 mV
1 V
Setting
CH 1 – CH 4
mV
mV
mV
AUX 1 & AUX 2
mV
mV
1 mV
100 mV
1 V
0
0
10 V
0
V
1
Vertical position is set to 0 divisions and vertical offset to 0 V when the oscilloscope is
initialized in step 1.
b. Set the vertical scale: Set the vertical SCALE to one of the settings
listed in Table 1-2 that is not yet checked. (Start with the first setting
listed.)
c. Display the test signal: The baseline DC test level was initialized for
all channels in step 1 and is displayed as you select each channel
and its vertical scale. Be sure not to use the vertical POSITION knob
while checking any channel for accuracy of offset, since varying the
position invalidates the check.
d. Measure the test signal: Rotate the general purpose knob to superim-
pose the active cursor over the baseline DC test level. (Ignore the
other cursor.)
e. Read the measurement results at the absolute (@:) cursor readout,
not the delta ( :) readout on screen (see Figure 1-4).
f. Check against limits: Do the following subparts in the order listed.
CHECK that the measurement results are within the limits listed
for the current vertical scale setting.
Repeat substeps b through f until all vertical scale settings set-
tings listed in Table 1-2 are checked for the channel under test.
g. Test all channels: Repeat substeps a through f for all input channels.
3. Disconnect the hookup: No hookup was required.
Performance Verification Procedures
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
Ignore the
inactive cursor.
Align the active
cursor to the DC
baseline (no input).
Then read the
offset relative to
ground reference.
Figure 1-4: Measurement of DC Offset Accuracy at Zero Setting
Check DC Gain and Voltage Measurement Accuracy
Performance of this procedure requires input voltages up to
130 VDC. Be sure to set the DC calibration generator to 0 volts
before connecting, disconnecting, and/or moving the test hookup
during the performance of this procedure.
Equipment Required: Two dual-banana connectors (Item 5), one BNC T
connector (Item 6), one DC calibration generator (Item 8), and two precision
coaxial cables (Item 4).
Prerequisites: The oscilloscope must meet the prerequisites listed on
page 1-15.
TDS 520A, 524A, 540A, & 544A Performance Verification
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
Procedure:
1. Install the test hookup and preset the instrument controls (see Fig-
ure 1-5):
DC Calibrator
Output Sense
HI
LO
Dual Banana to
BNC Adapters
50 Coaxial Cables
BNC T
Connector
Figure 1-5: Initial Test Hookup
a. Hook up the test-signal source:
Set the output of a DC calibration generator to 0 volts.
Connect the output of a DC calibration generator through a
dual-banana connector followed by a 50 precision coaxial cable
to one side of a BNC T connector.
Connect the Sense output of the generator through a second
dual-banana connector followed by a 50 precision coaxial cable
to the other side of the BNC T connector. Now connect the
BNC T connector to CH 1.
b. Initialize the oscilloscope:
Press save/recall SETUP.
Press the main-menu button Recall Factory Setup.
Press the side-menu button OK Confirm Factory Init.
c. Modify the default settings:
Press SHIFT; then ACQUIRE MENU.
Press the main-menu button Mode; then press the side-menu
button Average 16.
Press CURSOR.
Press the main-menu button Function; then press the side-menu
button H Bars.
Press DISPLAY.
Performance Verification Procedures
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
Press the main-menu button Graticule; then press the side-menu
button Frame.
2. Confirm input channels are within limits for DC delta voltage accuracy: Do
the following substeps — test CH 1 first, skipping substep a since CH 1 is
already selected from step 1.
a. Select an unchecked channel:
Set the generator output to 0 V.
Press WAVEFORM OFF to remove the channel just confirmed
from the display.
Press the front-panel button that corresponds to the next channel
you are to confirm.
Move the test hook up to the channel you select.
b. Display the test signal:
Press VERTICAL MENU. Press the main-menu button Position.
Use the keypad to set vertical position to –2.5 divisions (press
–2.5, then ENTER, on the keypad).
c. Measure the test signal:
Press CURSOR. Use the general purpose knob to precisely align
the active cursor to the DC baseline level on screen.
Set the generator output to 500 mV.
Press SELECT. Use the general purpose knob to precisely align
the alternate cursor to the 500 mV DC test level on screen.
Press CLEAR MENU. Read the measurement results from the
delta ( ) readout, not the absolute (@:) readout. See Figure 1-6
on page 1-28.
d. Check against limits: CHECK that the : readout on screen is within
485 mV to 515 mV (see Figure 1-6).
REV JULY 93
TDS 520A, 524A, 540A, & 544A Performance Verification
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
First align a cursor to the
DC baseline (no input).
Second align the second
cursor to the DC test
level that you input.
Third read the
results of the DC
measurement here.
Figure 1-6: Measurement of the DC Accuracy for Delta Measurements
e. Test all channels: Repeat substeps a through d for all four channels.
3. Reestablish the initial test hookup setup:
a. Hook up the test-signal source:
Set the output of a DC calibration generator to 0 volts.
Move the BNC T connector back to CH 1.
b. Initialize the oscilloscope:
Press save/recall SETUP.
Press the main-menu button Recall Factory Setup.
Press the side-menu button OK Confirm Factory Init.
c. Modify the default settings:
Press SHIFT; then ACQUIRE MENU.
Press the main-menu button Mode; then press the side-menu
button Average 16.
Press DISPLAY.
Press the main-menu button Graticule; then press the side-menu
button Frame.
Performance Verification Procedures
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
4. Confirm input channels are within limits for DC accuracy at maximum
offset and position: Do the following substeps — test CH 1 first, skipping
substep a since CH 1 is already selected from step 3.
a. Select an unchecked channel:
Press WAVEFORM OFF to remove the channel just confirmed
from the display.
Press the front-panel button that corresponds to the channel you
are to confirm.
Set the generator output to 0 V.
Move the test hookup to the channel you select.
b. Turn on the measurement Mean for the channel:
Press MEASURE, then press the main-menu button Select
Measrmnt for CHx.
Press the side menu button more until the menu label Mean
appears in the side menu (its icon is shown at the left). Press the
side-menu button Mean.
Press CLEAR MENU.
Follow these rules to match this procedure to the model of the oscillo-
scope under test:
Models TDS 540A, 544A Only—Use Table 1-3 to test CH 1—CH 4;
ignore Table 1-4 AUX 1 & AUX 2 settings and limits.
Model TDS 520A, 524A Only—Use Table 1-3 to test CH 1 and CH 2
only; use Table 1-4 to test AUX 1 and AUX 2 only.
c. Set its vertical scale: Set the vertical SCALE to one of the settings
listed in Table 1-3 (and Table 1-4 for the TDS 520A and 524A) that is
not yet checked. (Start with the first setting listed.)
Table 1-3: DC Accuracy: CH 1–CH 4
Scale
Position Offset
Generator
Setting
Accuracy
Limits
Setting Setting Setting
(Divs)
5 mV
–5
+5
+1 V
+1.040 V
–1.040 V
+11.6 V
–11.6 V
+108 V
+1.0355 V to +1.0445 V
–1.0355 V to –1.0445 V
+11.525 V to +11.675 V
–11.525 V to –11.675 V
+107.450 V to +108.550 V
–107.450 V to –108.550 V
–1 V
200 mV –5
+5
+10 V
–10 V
+100 V
–100 V
1 V
–5
+5
–108 V
TDS 520A, 524A, 540A, & 544A Performance Verification
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
Table 1-4: DC Accuracy: AUX 1–AUX 2
Scale
Setting
Positio Offset
Generator
Setting
Accuracy
Limits
n
Setting
Setting
(Divs)
100 mV –5
+5
+0.5 V
–0.5 V
+5 V
+1.3 V
–1.3 V
+13 V
+1.271 V to +1.329 V
–1.271 V to –1.329 V
+12.710 V to +13.290 V
–12.710 V to –13.290 V
+127.10 V to +132.90 V
–127.10 V to –132.90 V
1 V
–5
+5
–5
+5
–5 V
–13 V
10 V
+50 V
–50 V
+130 V
–130 V
d. Display the test signal:
Press VERTICAL MENU. Press the main-menu button Position.
Use the keypad to set vertical position to –5 divisions (press –5,
then ENTER, on the keypad). The baseline level will move off
screen.
Press the main-menu button Offset.
Use the keypad to set vertical offset to the positive-polarity set-
ting listed in the table for the current vertical scale setting. The
baseline level will remain off screen.
Set the generator to the level and polarity indicated in the table
for the vertical scale, position, and offset settings you have made.
The DC test level should appear on screen. (If it doesn’t return,
the DC accuracy check is failed for the current vertical scale
setting of the current channel.)
e. Measure the test signal: Press CLEAR MENU. Read the measure-
ment results at the Mean measurement readout. See Figure 1-7.
Performance Verification Procedures
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
First set vertical and position
offsets to maximum (no input). Note
gnd ref indicator bounded
on-screen for the offset baseline
below screen.
Second, input a DC
level equal to the offset
plus 3 divisions.
Third, turn on the
Measurement called
mean and read the
results here.
Figure 1-7: Measurement of DC Accuracy at Maximum Offset and Position
f. Check against limits:
CHECK that the readout for the measurement Mean readout on
screen is within the limits listed for the current vertical scale and
position/offset/generator settings.
Repeat step d, reversing the polarity of the position, offset, and
generator settings as is listed in the table.
CHECK that the Mean measurement readout on screen is within
the limits listed for the current vertical scale setting and position/
offset/generator settings.
Repeat substeps c through f until all vertical scale settings set-
tings listed in Table 1-3 (and Table 1-4 for the TDS 520A and
524A) are checked for the channel under test.
g. Test all channels: Repeat substeps a through f for all four channels.
5. Disconnect the hookup:
a. Set the generator output to 0 V.
b. Then disconnect the cable from the generator output at the input
connector of the channel last tested.
TDS 520A, 524A, 540A, & 544A Performance Verification
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
Check Analog Bandwidth
Equipment Required: One high-frequency leveled sine wave generator and
its leveling head (Item 11), plus two10X attenuators (Item 1).
Prerequisites: See page 1-15.
Procedure:
1. Install the test hookup and preset the instrument controls:
a. Initialize the oscilloscope:
Press save/recall SETUP.
Press the main-menu button Recall Factory Setup.
Press the side-menu button OK Confirm Factory Init.
b. Modify the default settings:
Set the horizontal SCALE to 50 ns.
Now press SHIFT, then ACQUIRE MENU.
Press the main-menu button Mode; then press the side-menu
button Average 16.
Press TRIGGER MENU.
Press the main-menu button Coupling; then press the side-
menu button Noise Rej.
Press Measure. Now press the main-menu button High–Low
Setup; then press the side-menu button Min–Max.
c. Hook up the test-signal source: Connect, through its leveling head,
the sine wave output of a high-frequency leveled sine wave generator
to CH 1. Set the output of the generator to a reference frequency of
6 MHz. See Figure 1-8.
High
Frequency
Sine Wave
Generator
Output
Leveling Head
Figure 1-8: Initial Test Hookup
Performance Verification Procedures
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
2. Confirm the input channels are within limits for analog bandwidth: Do the
following substeps — test CH 1 first, skipping substeps a and b since
CH 1 is already set up for testing from step 1.
a. Select an unchecked channel:
Press WAVEFORM OFF to remove the channel just confirmed
from display.
Press the front-panel button that corresponds to the channel you
are to confirm.
Move the leveling head to the channel you select.
b. Match the trigger source to the channel selected:
Press TRIGGER MENU.
Press the main-menu button Source.
Press the side-menu button that corresponds to the channel
selected.
c. Set its input impedance:
Press VERTICAL MENU; then press the main-menu button
Coupling.
Press the side-menu button to toggle it to the 50 setting.
d. Set the vertical scale: Set the vertical SCALE to one of the settings
listed in Table 1-5 not yet checked. (Start with the 100 mV setting.)
Table 1-5: Analog Bandwidth
Vertical
Scale
Attenuators
(10X)
Reference Amplitude
(at 6 MHz)
Horizontal
Scale
Test
Frequency
Limits
424 mV
100 mV
1 V
none
none
600 mV (6 divisions)
5 V (5 divisions)
1 ns
1 ns
500 MHz
500 MHz
3.535 V
2.121 V
848 mV
212 mV
84 mV
500 mV
200 mV
50 mV
20 mV
10 mV
5 mV
none
3 V (6 divisions)
1 ns
1 ns
1 ns
1 ns
1 ns
1 ns
2 ns
500 MHz
500 MHz
500 MHz
500 MHz
500 MHz
500 MHz
350 MHz
none
1.2 V (6 divisions)
300 mV (6 divisions)
120 mV (6 divisions)
60 mV (6 divisions)
30 mV (6 divisions)
12 mV (6 divisions)
1
1
1
2
2
42 mV
21 mV
2 mV
8.48 mV
TDS 520A, 524A, 540A, & 544A Performance Verification
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
e. Display the test signal: Do the following subparts to first display the
reference signal and then the test signal.
Press MEASURE; then press the main-menu button Select
Measrmnt for CHx.
Now press the side menu button more until the menu label Pk-Pk
appears in the side menu (its icon is shown at the left). Press the
side-menu button Pk-Pk.
Press CLEAR MENU.
Set the generator output so the CHx Pk-Pk readout equals the
reference amplitude in Table 1-5 that corresponds to the vertical
scale set in substep d.
Press the front-panel button SET LEVEL TO 50% as necessary
to trigger a stable display.
f. Measure the test signal:
Increase the frequency of the generator output to the test fre-
quency in Table 1-5 that corresponds to the vertical scale set in
substep d.
Set the horizontal SCALE to 1 ns. Press SET LEVEL TO 50% as
necessary.
Read the results at the CHx Pk-Pk readout, which will automati-
cally measure the amplitude of the test signal. See Figure 1-9.
First, increase the reference
frequency to the test
frequency; then decrease the
horizontal scale.
Second, read the results
from the readout of
measurement Pk-Pk.
Figure 1-9: Measurement of Analog Bandwidth
Performance Verification Procedures
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
g. Check against limits:
CHECK that the Pk-Pk readout on screen is within the limits
listed in Table 1-5 for the current vertical scale setting.
When finished checking, set the horizontal SCALE back to the
50 ns setting.
Checking each channel’s bandwidth at all vertical scale settings is
time consuming and unnecessary. You may skip checking the remain-
ing vertical scale settings in Table 1-5 (that is, skip the following
substep, h) if this digitizing oscilloscope has performed as follows:
Passed the 100 mV vertical scale setting just checked in this
procedure.
Passed the Verify Internal Adjustment, Self Compensation, and
Diagnostics procedure found under Self Tests, on page 1-4.
NOTE
Passing the signal path compensation confirms the signal path for
all vertical scale settings for all channels. Passing the internal
diagnostics ensures that the factory-set adjustment constants that
control the bandwidth for each vertical scale setting have not
changed.
h. Check remaining vertical scale settings against limits (optional):
If desired, finish checking the remaining vertical scale settings for
the channel under test by repeating substeps d through g for
each of the remaining scale settings settings listed in Table 1-5
for the channel under test.
When doing substep e, skip the subparts that turn on the CHx
Pk-Pk measurement until you check a new channel.
Install/remove 10X attenuators between the generator leveling
head and the channel input as is needed to obtain the six division
reference signals listed in the table.
i. Test all channels: Repeat substeps a through g for all four channels.
3. Disconnect the hookup: Disconnect the test hook up from the input con-
nector of the channel last tested.
TDS 520A, 524A, 540A, & 544A Performance Verification
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
Check Delay Between Channels
Equipment Required: One medium-frequency leveled sine-wave generator
(Item 10), one precision, 50
coaxial cable (Item 4), one 50 terminator
(Item 3), and a dual-input-coupler (Item 7).
Prerequisites: See page 1-15.
Procedure:
DO NOT use the vertical position knob to reposition any channel
while doing this check. To do so invalidates the test.
1. Install the test hookup and preset the instrument controls:
a. Initialize the front panel;
Press save/recall SETUP.
Press the main-menu button Recall Factory Setup.
Press the side-menu button OK Confirm Factory Init.
b. Modify the initialized front-panel control settings:
Do not adjust the vertical position of any channel during this
procedure.
Set the horizontal SCALE to 500 ps.
Press SHIFT; then ACQUIRE MENU.
Press the main-menu button Mode, and then press the side-me-
nu button Average 16.
c. Hook up the test-signal source:
Connect, through a 50 precision coaxial cable, followed by a
50 termination, the sine wave output of a medium-frequency
sine wave generator to a dual-input coupler. See Figure 1-10.
Medium
Frequency
Sine Wave
Generator
Output
50 Cable
Dual Input Coupler
50 Terminator
Figure 1-10: Initial Test Hookup
Performance Verification Procedures
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
Connect the coupler to both CH 1 and CH 2.
2. Confirm CH 1 through CH 4 (CH 2 for 520A and 524A) are within limits
for channel delay:
a. Set up the generator: Set the generator frequency to 250 MHz and
the amplitude for about five divisions in CH 1.
Hint: as you are adjusting the generator amplitude, push SET LEVEL
TO 50% frequently to speed up the updating of the waveform ampli-
tude on screen.
TDS 520A and 524A only: Press CH 2; then skip to substep e and
continue this check. If testing a TDS 540A or 544A model, continue
with the next substep, b.
b. Save a CH 2 waveform: Press CH 2; then press save/recall WAVE-
FORM. Now, press the main-menu button Save Wfm Ch2; then
press the side-menu button To Ref 2.
c. Save CH 3 waveform: Move the coupler from CH 2 to CH 3, so that
CH 1 and CH 3 are driven. Press CH 3; then press the side-menu
button To Ref 3.
d. Display all test signals:
Press WAVEFORM OFF twice to remove CH 2 and CH 3 from
the display.
Move the coupler from CH 3 to CH 4, so that CH 1 and CH 4 are
driven. Press CH 4.
Now, press the front-panel button MORE. Press the main-menu
buttons Ref 2 and Ref 3.
e. Measure the test signal:
Locate the point on the rising edge of the left-most waveform
where it crosses the center horizontal graticule line. This is the
time reference point for this waveform. Note the corresponding
time reference point for right-most waveform. See Figure 1-11.
Press CURSOR; then press the side-menu button V Bars.
Press CLEAR MENU.
Rotate the General Purpose knob to align one cursor to the time
reference point of the left-most waveform edge and the other
cursor to the time reference point of the right-most waveform
edge. (Press SELECT to switch between the two cursors.) See
Figure 1-11.
TDS 520A, 524A, 540A, & 544A Performance Verification
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
Read the measurement results at the : cursor readout, not the
@: readout on screen.
First, display the live/reference
waveforms for channels. Note their
overlapping ground reference
indicators.
Second, identify the time reference
points of those waveforms.
Third, turn on the cursor and align
the V bar cursors to the time
reference points.
Fourth, read the results
here.
Figure 1-11: Measurement of Channel Delay
f. Check against limits: CHECK that the cursor readout on screen is
250 ps.
3. Disconnect the hookup: Disconnect the cable from the generator output
at the input connectors of the channels.
Performance Verification Procedures
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
These procedures check those characteristics that relate to the Main and
Delayed time base system and are listed as checked under Warranted Char-
acteristics in Section 2, Specifications.
Time Base System
Checks
Check Accuracy for Long-Term Sample Rate, Delay Time,
and Delta Time Measurements
Equipment Required: One time-mark generator (Item 12) and one precision
coaxial cable (Item 4).
Prerequisites: See page 1-15.
Procedure:
1. Install the test hookup and preset the instrument controls:
a. Hook up the test-signal source: Connect, through a 50 precision
coaxial cable, the time-mark output of a time-mark generator to CH 1.
Set the output of the generator for 10 ms markers. See Figure 1-12.
Time-Mark
Generator
Output
50 Coaxial Cables
Figure 1-12: Initial Test Hookup
b. Initialize the oscilloscope:
Press save/recall SETUP.
Press the main-menu button Recall Factory Setup.
Press the side-menu button OK Confirm Factory Init.
c. Modify the initialized front-panel control settings:
Set the vertical SCALE to 500 mV.
Press VERTICAL MENU; then press the main-menu button
Coupling. Press the side-menu button to 50
.
Press SET LEVEL TO 50%.
Use the vertical POSITION knob to center the test signal on
screen.
Set the horizontal SCALE of the Main time base to 1 ms.
TDS 520A, 524A, 540A, & 544A Performance Verification
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
Press TRIGGER MENU; then press the main-menu button Mode
& Holdoff. Now press the side-menu button Normal.
Press SET LEVEL TO 50%.
Press horizontal MENU. Press the main-menu button Record
Length; then press the side-menu button 1000 points in
20 divs.
Press the main-menu button Trigger Position. Press the side-
menu button Pretrigger; then set pretrigger to 20%: press 20,
then ENTER, on the keypad.
2. Confirm Main and Delayed time bases are within limits for accuracies:
a. Display the test signal:
Adjust the horizontal POSITION so the trigger T is aligned to the
center vertical graticule line.
Press the main-menu button Time Base.
Press the side-menu buttons Delayed Only and Delayed Runs
After Main.
b. Measure the test signal:
Set the horizontal SCALE of the D (delayed) time base to 100 ns.
Use the keypad to set delayed time to 10 ms. (Press 10, then
SHIFT, then m followed by ENTER.)
First, the trigger T is aligned
to the center graticule line.
Second, the horizontal
modes are set.
Third, the horizontal scale for
D time base is set and a
10 ms delay is entered.
Fourth, the waveforms rising edge is
checked to be within
horizontal
divisions of the center horizontal
graticule line.
Figure 1-13: Measurement of Accuracy — Long-Term and Delay-Time
Performance Verification Procedures
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
c. Check long-term sample rate and delay time accuracies against
limits: CHECK that the rising edge of the marker crosses the center
horizontal graticule line at a point within
graticule. See Figure 1-13.
center
d. Check delta-time accuracy against limits:
Press the side-menu button Main Only. Set horizontal SCALE to
2 ns.
Set the output of the generator for 20 ns markers.
Press SET LEVEL TO 50%.
Press SHIFT; then ACQUIRE MENU. Next, press the main-menu
button Mode. Finally, press the side-menu button Average.
Enter 8, for eight averages, on the keypad.
Press MEASURE.
Press the main-menu button High-Low Setup; then press the
side-menu button Min-Max.
Press the main-menu button Select Measrmnt for Ch1.
Press the side-menu button –more–, until PERIOD appears in
the side menu. Press PERIOD.
Press CLEAR MENU.
CHECK that the readout for CH 1 Per is within 19.760 ns to
20.240 ns.
3. Disconnect the hookup: Disconnect the cable from the generator output
at the input connector of CH 1.
TDS 520A, 524A, 540A, & 544A Performance Verification
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
These procedures check those characteristics that relate to the Main and
Delayed trigger systems and are listed as checked under Warranted Charac-
teristics in Section 2, Specifications.
Trigger System
Checks
Check Accuracy (Time) for Pulse-Glitch or Pulse-Width
Triggering
Equipment Required: One medium-frequency leveled sine wave generator
(Item 10), one 10X attenuator (Item 1), and one precision, 50 , coaxial cable
(Item 4).
Prerequisites: See page 1-15.
Procedure:
1. Install the test hookup and preset the instrument controls:
a. Initialize the instrument:
Press save/recall SETUP.
Press the main-menu button Recall Factory Setup.
Press the side-menu button OK Confirm Factory Init.
b. Modify the default setup:
Press vertical MENU.
Press the main-menu button Coupling; then press the side-me-
nu button to select 50 coupling.
Set the horizontal SCALE to 10 ns.
c. Hook up the test-signal source: Connect, through a 50 precision
coaxial cable, followed by a 10X attenuator, the output of a medium-
frequency leveled sine wave generator (Item 10) to CH 1. See Fig-
ure 1-14.
Medium
Frequency
Sine Wave
Generator
Output
50 Coaxial Cable
10X Attenuator
Figure 1-14: Initial Test Hookup
Performance Verification Procedures
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
2. Confirm the trigger system is within time-accuracy limits for pulse-glitch or
pulse-width triggering (Horizontal Scale 1 s):
a. Display the test signal: Set the output of the sine wave generator for
a 100 MHz, five-division sine wave on screen. Press SET LEVEL TO
50%.
b. Set the trigger mode: Press TRIGGER MENU. Now press the main-
menu button Mode & Holdoff; then the side-menu button Normal.
c. Set upper and lower limits that ensures triggering:
Press the main-menu button Type; then repeatedly press the
same button until Pulse is highlighted in the menu that pops up.
Press the main-menu button Class; then repeatedly press the
same button until Width is highlighted in the menu that pops up.
Press the main-menu button Trig When; then press the side-me-
nu button Within Limits.
Press the side-menu button Upper Limit. Use the keyboard to
set the upper limit to 10 ns: press 10; then SHIFT; then n; then
ENTER.
Press the side-menu button Lower Limit. Use the keypad to set
the lower limit to 2 ns.
d. Check against limits:
Press SET LEVEL TO 50%.
While doing the following subparts, monitor the display (it will stop
acquiring) and the front-panel light TRIG (it will extinguish) to
determine when triggering is lost.
Use the general purpose knob to increase the Lower Limit
readout until triggering is lost.
CHECK that the Lower Limit readout is within 2.5 ns to 7.5 ns,
inclusive.
Use the keypad to return the Lower Limit to 2 ns and reestablish
triggering.
Press the side-menu button Upper Limit; then use the general
purpose knob to slowly decrease the the Upper Limit readout
until triggering is lost.
CHECK that the Upper Limit readout is within 2.5 ns to 7.5 ns,
inclusive.
TDS 520A, 524A, 540A, & 544A Performance Verification
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
First, the upper and lower
limits are set so the test
waveform triggers within limits.
Second, a limit (here, the lower
limit) is increased until triggering
stops.
Figure 1-15: Measurement of Time Accuracy for Pulse and Glitch Triggering
3. Confirm the trigger system is within time-accuracy limits for pulse-glitch or
pulse-width triggering (horizontal scale >1 s):
a. Set upper and lower limits that ensure triggering at 250 kHz:
Press the side-menu button Upper Limit. Use the keyboard to
set the upper limit to 4 s.
Press the side-menu button Lower Limit. Use the keypad to set
the lower limit to 500 ns.
b. Display the test signal:
Set the horizontal SCALE to 5 s.
Set the output of the sine-wave generator for a 250 kHz, five-divi-
sion sine wave on screen. Set the vertical SCALE to 20 mV (the
waveform will overdrive the display).
Press SET LEVEL TO 50%.
c. Check against limits: Do the following subparts in the order listed.
Use the general purpose knob to increase Lower Limit readout
until triggering is lost.
CHECK that the Lower Limit readout is within 1 s to 3 s,
inclusive.
Use the keypad to return the Lower Limit to 500 ns and reestab-
lish triggering.
Performance Verification Procedures
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
Press the side-menu button Upper Limit; then use the general
purpose knob to slowly decrease the the Upper Limit readout
until triggering is lost.
CHECK that the Upper Limit readout is within 1 s to 3 s,
inclusive.
4. Disconnect the hookup: Disconnect the cable from the generator output
at the input connector of CH 1.
Check Accuracy, Trigger-level or Threshold, DC Coupled
Equipment Required: One DC calibration generator (Item 8), one BNC T
connector (Item 6), and two precision, 50 , coaxial cables (Item 4).
Prerequisites: The oscilloscope must meet the prerequisites listed on
page 1-15.
Procedure:
1. Install the test hookup and preset the instrument controls:
a. Hook up the test-signal source:
Set the output of a DC calibration generator to 0 volts.
Connect the output of a DC calibration generator through a
dual-banana connector followed by a 50 precision coaxial cable
to one side of a BNC T connector. See Figure 1-16.
Connect the Sense output of the generator, through a second
dual-banana connector followed by a 50 precision coaxial
cable, to other side of the BNC T connector. Now connect the
BNC T connector to CH 1. See Figure 1-16.
DC Calibrator
Output
Sense
HI
LO
Dual Banana to
BNC Adapter
50 Coaxial Cables
BNC T Connector
Figure 1-16: Initial Test Hookup
TDS 520A, 524A, 540A, & 544A Performance Verification
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
b. Initialize the oscilloscope:
Press save/recall Setup.
Press the main-menu button Recall Factory Setup.
Press the side-menu button OK Confirm Factory Init.
c. Select Delayed Triggerable:
Press HORIZONTAL MENU.
Press the main-menu button Time Base.
Press the side-menu button Delayed Triggerable.
2. Confirm Main trigger system is within limits for Trigger-level/Threshold
accuracy:
a. Display the test signal:
Press VERTICAL MENU. Press the main-menu button Position.
Use the keypad to set vertical position to –3 divisions (press –3,
then ENTER, on the keypad.) The baseline level will move down
three divisions.
Press the main-menu button Offset.
Use the keypad to set vertical offset to +10 volts. Press 10, then
ENTER. The baseline level will move off-screen.
Set the standard output of a DC calibration generator to
+10 volts. The DC test level will appear on screen.
b. Measure the test signal:
Press SET LEVEL TO 50%.
Press TRIGGER MENU.
Read the measurement results from the readout below the label
Level in the menu; not the trigger readout in the graticule area.
c. Check against limits:
CHECK that the Level readout in the main menu is within
9.940 V to 10.060 V, inclusive.
Press TRIGGER MENU. Press the main-menu button Slope;
then press the side-menu button for negative slope. (See icon at
left.) Repeat substep b.
CHECK that the Level readout in the main menu is within
9.940 V to 10.060 V, inclusive. See Figure 1-17.
Performance Verification Procedures
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
First, set vertical offset to maximum
and vertical position to –3 divisions.
Second, set input equal to
the offset to return the DC
level to the screen.
Third, push SET LEVEL to
50% and check the results in
the main menu under “Level.”
Figure 1-17: Measurement of Trigger-level Accuracy
3. Confirm Delayed trigger system is within limits for Trigger-level/Threshold
accuracy:
a. Select the Delayed time base:
Press HORIZONTAL MENU.
Press the main-menu button Time Base.
Press the side-menu buttons Delayed Only and Delayed Trig-
gerable.
Set D (delayed) horizontal SCALE to 500 s.
b. Select the Delayed trigger system:
Press SHIFT; then press the front-panel button DELAYED TRIG.
Press the main-menu button Level.
c. Measure the test signal: Press the side-menu button SET TO 50%.
The TRIG’D indicator should be lit. Read the measurement results in
the side menu below the label Level.
d. Check against limits: Do the following subparts in the order listed.
CHECK that the Level readout in the side menu is within 9.940 V
to 10.060 V, inclusive.
Press the main-menu button Slope; then press the side-menu
button for negative slope. (See icon at left.) Press the main-menu
button Level. Repeat substep c.
TDS 520A, 524A, 540A, & 544A Performance Verification
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
CHECK that the Level readout in the side menu is within 9.940 V
to 10.060 V, inclusive.
4. Disconnect the hookup:
a. First set the output of the DC calibration generator to 0 volts.
b. Then disconnect the cable from the generator output at the input
connector of CH 1.
Sensitivity, Edge Trigger, DC Coupled
Equipment Required: One medium-frequency leveled sine wave generator
(Item 10), one high-frequency leveled sine wave generator (Item 11), one
precision 50 coaxial cable (Item 4), and one 10X attenuator (Item 1). When
checking the TDS 540A and 544A, a BNC T connector (Item 6), a 5X attenu-
ator (Item 2), and a second precision 50 coaxial cable (Item 4) are also
required.
Prerequisites: See page 1-15.
Procedure:
1. Install the test hookup and preset the instrument controls:
a. Initialize the oscilloscope:
Press save/recall SETUP.
Press the main-menu button Recall Factory Setup.
Press the side-menu button OK Confirm Factory Init.
b. Modify the initialized front-panel control settings:
Set the horizontal SCALE for the M (main) time base to 20 ns.
Press HORIZONTAL MENU; then press the main-menu button
Time Base.
Press the side-menu button Delayed Only; then the side-menu
button Delayed Triggerable.
Set the horizontal SCALE for the D (delayed) time base to 20 ns;
then press the side-menu button Main Only.
Press TRIGGER MENU; then press the main-menu button Mode
& Holdoff. Now press the side-menu button Normal.
Press VERTICAL MENU; then press the main-menu button
Coupling. Now press the side-menu button and select the
50 setting.
Press SHIFT; then press ACQUIRE MENU. Now press the
main-menu button Mode; then the side-menu Average 16 button.
Performance Verification Procedures
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
c. Hook up the test-signal source:
Medium
Frequency
Sine Wave
Generator
Output
50 Coaxial Cables
Figure 1-18: Initial Test Hookup—TDS 520A or 524A Only
TDS 520A, 524A only: Connect, through a 50 precision coaxial
cable, the signal output of a medium-frequency sine wave gener-
ator to CH 1. See Figure 1-18.
To AUX TRIG INPUT
on Rear Panel
Medium
Frequency
Sine Wave
Generator
Output
50 Coaxial Cables
Figure 1-19: Initial Test Hookup—TDS 540A or 544A Only
TDS 540A or 544A only: Connect the signal output of a medium-
frequency sine wave generator to a BNC T connector. Connect
one output of the T connector to CH 1 through a 50 precision
coaxial cable; connect the other output of the T connector to the
AUX TRIG INPUT at the rear panel. See Figure 1-19.
2. Confirm Main and Delayed trigger systems are within sensitivity limits
(50 MHz):
a. Display the test signal:
Set the generator frequency to 50 MHz.
Press MEASURE.
TDS 520A, 524A, 540A, & 544A Performance Verification
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
Press the main-menu button High-Low Setup; then press the
side-menu button Min-Max.
Press the main-menu button Select Measrmnt for Ch1.
Press the side-menu button –more– until Amplitude appears in
the side menu (its icon is shown at the left). Press the side-menu
button Amplitude.
Press SET LEVEL TO 50%.
Press CLEAR MENU.
Set the test signal amplitude for about three divisions on screen.
Now fine adjust the generator output until the CH 1 Amplitude
readout indicates the amplitude is 350 mV. (Readout may fluctu-
ate around 350 mV.)
Disconnect the 50 precision coaxial cable at CH 1 and recon-
nect it to CH 1 through a 10X attenuator.
b. Check for Main trigger system for stable triggering at limits:
Read the following definition: A stable trigger is one that is con-
sistent; that is, one that results in a uniform, regular display
triggered on the selected slope (positive or negative). This display
should not have its trigger point switching between opposite
slopes, nor should it “roll” across the screen. At horizontal scale
settings of 2 ms/division and faster, TRIG’D will remain constantly
lit. It will flash for slower settings.
Press TRIGGER MENU; then press the main-menu button
Slope.
Press SET LEVEL TO 50%. CHECK that a stable trigger is
obtained for the test waveform on both the positive and negative
slopes. (Use the side menu to switch between trigger slopes; use
the TRIGGER LEVEL knob to stabilize the trigger if required.)
See Figure 1-20.
Performance Verification Procedures
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
First, set a signal with an
amplitude at the minimum
trigger sensitivity.
Second, check for a stable
trigger at both the positive
and negative slope settings.
Figure 1-20: Measurement of Trigger Sensitivity
Leave the Main trigger system triggered on the positive slope of
the waveform before continuing to the next step. (The Main
trigger system must be triggered to check the delayed trigger
system in the next step.)
c. Check delayed trigger system for stable triggering at limits: Do the
following subparts in the order listed.
Press HORIZONTAL MENU; then press the main-menu button
Time Base. Now press the side-menu button Delayed Only.
Press SHIFT; then press DELAYED TRIG. Press the main-menu
button Level.
Press the side-menu button SET TO 50%. CHECK that a stable
trigger is obtained for the test waveform for both the positive and
negative slopes of the waveform. (Use the General Purpose knob
to stabilize the trigger if required.) Press the main-menu button
Slope; then use the side menu to switch between trigger slopes.
Leave the delayed trigger system triggered on the positive slope
of the waveform before continuing to the next step. Also, return to
the main time base: Press HORIZONTAL MENU; then press the
main-menu button Time Base. Now press the side-menu button
Main Only.
TDS 520A or 524A only: Skip to step 4 since the TDS 520A and
524A are not equipped with an AUX Trigger input. If testing the TDS
540A or 544A, continue with step 3.
TDS 520A, 524A, 540A, & 544A Performance Verification
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
3. Confirm the AUX Trigger input:
a. Display the test signal:
Remove the 10X attenuator and reconnect the cable to CH 1.
Set the test signal amplitude for about 2.5 divisions on screen.
Now fine adjust the generator output until the CH 1 Amplitude
readout indicates the amplitude is 250 mV. (Readout may fluctu-
ate around 250 mV.)
b. Check the AUX trigger source for stable triggering at limits: Do the
following in the order listed.
Use the definition for stable trigger from step 2.
Press TRIGGER MENU; then press the main-menu button
Source.
Press the side-menu button –more– until the side-menu label
Auxiliary appears; then press Auxiliary.
Press SET LEVEL TO 50%. CHECK that a stable trigger is
obtained for the test waveform on both the positive and negative
slopes. Press the main-menu button Slope; then use the side
menu to switch between trigger slopes. Use the TRIGGER LEV-
EL knob to stabilize the trigger if required.
Leave the Main trigger system triggered on the positive slope of
the waveform before proceeding to the next check.
Press the main-menu button Source; then press the side-menu
button –more– until CH 1 appears. Press CH 1.
4. Confirm that the Main and Delayed trigger systems are within sensitivity
limits (500 MHz):
a. Hook up the test-signal source: Disconnect the hookup installed in
step 1. Connect, through its leveling head, the signal output of a
high-frequency leveled sine-wave generator to CH 1.
b. Set the Main and Delayed Horizontal Scales:
Set the horizontal SCALE to 500 ps for the M (Main) time base.
Press HORIZONTAL MENU. Now press the main-menu button
Time base; then press the side-menu button Delayed Trigger-
able.
Press the side-menu button Delayed Only.
Set the horizontal SCALE to 500 ps for the D (Delayed) time
base. Press the side-menu button Main Only.
c. Display the test signal:
Set the generator frequency to 500 MHz.
Performance Verification Procedures
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
Set the test signal amplitude for about five divisions on screen.
Now fine adjust the generator output until the CH 1 Amplitude
readout indicates the amplitude is 500 mV. (Readout may fluctu-
ate around 500 mV.)
Disconnect the leveling head at CH 1 and reconnect it to CH 1
through a 5X attenuator.
d. Repeat step 2, substeps b and c only, since only the 500 MHz fre-
quency is to be checked here.
5. Confirm that the Main and Delayed trigger systems couple trigger signals
from all channels: Doing the procedure Check Analog Bandwidth, which
begins on page 1-32, checks coupling. If you have not done that proce-
dure, do so after finishing this procedure. See the following note.
NOTE
Steps 1 through 4 confirmed trigger sensitivity for the Main and
Delayed triggering systems using the CH 1 input. Doing the proce-
dure Check Analog Bandwidth ensures that trigger signals are
coupled from all four channels.
When checking delayed triggering sensitivity at 500 MHz, the
waveform record may have some missing interpolated record
points. The waveform is still stably triggered. (See definition of a
stable trigger earlier in this procedure.)
6. Disconnect the hookup: Disconnect the cable from the generator output
at the input connector of the channel last tested.
TDS 520A, 524A, 540A, & 544A Performance Verification
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
The procedure that follows checks those characteristics of the output signals
that are listed as checked under Warranted Characteristics in Section 2,
Specifications. The oscilloscope outputs these signals at its front and rear
panels.
Output Signal Checks
Check Outputs — CH 3 and Main and Delayed Trigger
(TDS 540A and 544A only)
Equipment Required: Two 50 precision cables (Item 4), and one calibra-
tion generator (Item 9).
Prerequisites: See page 1-15. Also, this Digitizing Oscilloscope must have
passed Check Accuracy — Long-Term Sample Rate, Delay time, Time Mea-
surement on page 1-39 and Check Accuracy for DC Gain and Voltage Mea-
surements on page 1-25.
Procedure:
1. Install the test hookup and preset the instrument controls:
a. Hook up test-signal source 1:
Connect the standard amplitude output of a calibration generator
through a 50 precision coaxial cable to CH 3. See Figure 1-21.
Set the output of the calibration generator to 0.500 V.
b. Hook up test-signal source 2: Connect the Main Trigger Out at the
rear panel to CH 2 through a 50 precision cable. See Figure 1-21.
To Main
Trigger Out
Calibration
Generator
Output
50 Coaxial Cables
Figure 1-21: Initial Test Hookup
c. Initialize the oscilloscope:
Press save/recall SETUP.
Press the main-menu button Recall Factory Setup.
Press the side-menu button OK Confirm Factory Init.
Performance Verification Procedures
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
d. Modify the initialized front-panel control settings:
Set the horizontal SCALE to 200 s.
Press SHIFT; then ACQUIRE MENU.
Press the main-menu button Mode. Then press the side-menu
button Hi Res.
2. Confirm Main and Delayed Trigger outputs are within limits for logic
levels:
a. Display the test signal:
Press WAVEFORM OFF to turn off CH 1; then press CH 2 to
display that channel. Set the vertical SCALE to 1 V.
Press TRIGGER MENU.
Press the main-menu button Source; then press the side-menu
button CH 3. Press SET LEVEL TO 50%.
Use the vertical POSITION knob to center the display on screen.
b. Measure logic levels:
Press MEASURE; then press the main-menu button Select
Measrmnt for Ch2.
Repeatedly press the side-menu button –more– until High and
Low appear in the side menu (their icons are shown at the left).
Press both side-menu buttons High and Low. See Figure 1-22.
First, turn on the
measurements
high and low.
Second, read the
measurement
results here.
Figure 1-22: Measurement of Main Trigger Out Limits
TDS 520A, 524A, 540A, & 544A Performance Verification
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
c. Check Main Trigger output against limits:
CHECK that the Ch2 High readout is 2.5 volts and that the
Ch2 Low readout is 700 mV.
Press VERTICAL MENU; then press the main-menu button
Coupling. Now press the side-menu button to toggle it to the
50 setting.
CHECK that the Ch2 High readout is 1.0 volt and that the Ch2
Low readout 250 mV.
d. Check Delayed Trigger output against limits:
Move the precision 50 cable from the Main Trigger Output
BNC to the Delayed Trigger Output BNC.
CHECK that the Ch2 High readout is 1.0 volt and that the Ch2
Low readout 250 mV.
Press the side-menu button select the 1 M setting.
Press CLEAR MENU.
CHECK that the Ch2 High readout is 2.5 volts and that the
Ch2 Low readout is 700 mV.
3. Confirm CH 3 output is within limits for gain:
a. Measure gain:
Move the precision 50 cable from the rear-panel DELAYED
TRIGGER OUTPUT BNC to the rear-panel SIGNAL OUTPUT
BNC.
Push SHIFT. Then push DELAYED TRIG.
Press the main-menu button Source. Then press the side-menu
button Ch3.
Push HORIZONTAL MENU.
Push the main-menu button Time Base. Then press the side-me-
nu button Delayed Triggerable.
Set vertical SCALE to 100 mV.
Press MEASURE; then press the main-menu button Select
Measrmnt for Ch2.
Repeatedly press the side-menu button –more– until Pk-Pk
appears in the side menu (its icon is shown at the left). Press the
side-menu button Pk-Pk.
Press CLEAR MENU.
Performance Verification Procedures
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
b. Check against limits:
CHECK that the readout Ch2 Pk-Pk is between 90 mV and
110 mV, inclusive.
Press VERTICAL MENU; then press the side-menu button to
toggle to the 50 setting.
Set vertical SCALE to 10 mV; then press CLEAR MENU.
CHECK that the readout Ch2 Pk-Pk is between 45 mV and
55 mV, inclusive.
4. Disconnect the hookup: Disconnect the cable from the generator output
at the input connector of the channel last tested.
Check Probe Compensator Outputs
One female BNC to clip adapter (Item 15), two dual-banana connectors (Item
5), one BNC T connector (Item 6), two 50 precision cables (Item 4), and
one DC calibration generator (Item 8).
Prerequisites: See page 1-15. Also, this Digitizing Oscilloscope must have
passed Check Accuracy — Long-Term Sample Rate, Delay time, Time Mea-
surement on page 1-39 and Check Accuracy for DC Gain and Voltage Mea-
surements on page 1-25.
Procedure:
1. Install the test hookup and preset the instrument controls:
a. Hook up test-signal:
Connect CH 1 to PROBE COMPENSATION SIGNAL and to
PROBE COMPENSATION GND through a precision coaxial
cable and a BNC to clip adapter. See Figure 1-23.
Black Lead
to GND
50 Coaxial Cable
Female BNC to
Clip Adapter
Figure 1-23: Initial Test Hookup
b. Initialize the oscilloscope:
Press save/recall SETUP.
Press the main-menu button Recall Factory Setup.
TDS 520A, 524A, 540A, & 544A Performance Verification
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
Press the side-menu button OK Confirm Factory Init.
c. Modify the initialized front-panel control settings:
Set the vertical SCALE to 100 mV as required.
Set the horizontal SCALE to 200 s.
Press Set Level to 50% and use the VERTICAL POSITION
knob to center the display on screen.
Press SHIFT; then ACQUIRE MENU.
Press the main-menu button Mode; then press the side-menu
Average button.
Select 128 averages. On the keypad, type 128; then press EN-
TER.
2. Confirm that the Probe Compensator signal is within limits for frequency:
a. Measure the frequency of the probe compensation signal:
Press MEASURE; then press the main-menu button Select
Measrmnt for Ch1.
Repeatedly press the side-menu button –more– until Frequency
appears in the side menu (its icon is shown at the left). Press the
side-menu button Frequency.
Press CLEAR MENU to remove the menus from the display. See
Figure 1-24.
Figure 1-24: Measurement of Probe Compensator Frequency
Performance Verification Procedures
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
b. Check against limits: CHECK that the CH 1 Freq readout is within
950 Hz to 1.050 kHz, inclusive.
3. Confirm that the Probe Compensator signal is within limits for amplitude:
a. Save the probe compensation signal in reference memory:
Press SAVE/RECALL WAVEFORM; then press the main-menu
button Save Wfm Ch 1.
Press the side-menu button to Ref 1 to save the probe compen-
sation signal in reference 1.
Disconnect the cable from CH 1 and the clips from the probe
compensation terminals.
Press MORE; then press the main-menu button Ref 1 to dis-
played the stored signal.
Press CH 1.
b. Hook up the DC standard source:
Set the output of a DC calibration generator to 0 volts.
Connect the output of a DC calibration generator through a
dual-banana connector followed by a 50 precision coaxial cable
to one side of a BNC T connector. See Figure 1-25.
Connect the Sense output of the generator through a second
dual-banana connector followed by a 50 precision coaxial cable
to the other side of the BNC T connector. Now connect the
BNC T connector to CH 1. See Figure 1-25.
DC Calibrator
Output Sense
HI
LO
Dual Banana to
BNC Adapters
50 Coaxial Cables
BNC T
Connector
Figure 1-25: Subsequent Test Hookup
c. Measure amplitude of the probe compensation signal:
Press SHIFT; then ACQUIRE MENU. Then use the keypad to set
AVERAGE to 16 in the side menu.
TDS 520A, 524A, 540A, & 544A Performance Verification
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
Adjust the output of DC calibration generator until it precisely
overlaps the top (upper) level of the stored probe compensation
signal. (This value will be near 500 mV.)
Record the setting of the DC generator.
Adjust the output of DC calibration generator until it precisely
overlaps the base (lower) level of the stored probe compensation
signal. (This value will be near zero volts.)
Record the setting of the DC generator.
d. Press CLEAR MENU to remove the menus from the display. See
Figure 1-26.
Figure 1-26: Measurement of Probe Compensator Amplitude
e. Check against limits:
Subtract the value just obtained (base level) from that obtained
previously (top level).
CHECK that the difference obtained is within 495 mV to 505 mV,
inclusive.
4. Disconnect the hookup: Disconnect the cable from CH 1.
Performance Verification Procedures
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
Equipment Required: PAL signal source (Item 18), 60 Hz. sine wave gener-
ator (Item 19), pulse generator (Item 20), 75 Cable (Item 21), 75 termina-
tor (Item 22), 50 cable (Item 4), 50 terminator (Item 3).
Option 05 Video
Trigger Checks
Check Video Trigger
Prerequisites: See page 1-15. These prerequisites include running the signal
path compensation routine.
Procedure:
1. Setup digitizing oscilloscope to factory defaults by completing the follow-
ing steps:
a. Press save/recall SETUP.
b. Press the main-menu Recall Factory Setup.
c. Press the side-menu OK Confirm Factory Init.
d. Wait for the Clock Icon to leave the screen.
e. CONFIRM the digitizing oscilloscope is setup as shown below.
Channel: CH1
Volt/div: 100 mV
Horizontal scale: 500 s/div
2. Setup digitizing oscilloscope for TV triggers by completing the following
steps:
a. Press TRIGGER MENU.
b. Press the main-menu Type pop-up until you select Video.
c. Press the main-menu Standard pop-up until you select 625/PAL.
d. Press the main-menu Line.
e. Use the keypad to set the line number to 7 (press 7, then ENTER).
f. Press VERTICAL MENU.
g. Press the main-menu Bandwidth.
h. Select 100 MHz from the side menu.
i. Press the main-menu Fine Scale.
j. Use the keypad to set the fine scale to 282mV (press 282, SHIFT, m,
then ENTER).
k. Press HORIZONTAL MENU.
l. Press the main-menu Horiz Scale.
m. Use the keypad to set the horizontal scale to 200 ns (press 200,
SHIFT, n, then ENTER).
TDS 520A, 524A, 540A, & 544A Performance Verification
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
3. Check Jitter vs. Signal Amplitude
a. Setup equipment for Jitter Test (See Figure 1-27).
Connect one of the rear panel composite outputs marked
COMPST on the TSG121 through a 75 cable and a 75
terminator to the oscilloscope CH1 input.
Press the PAL signal source 100% FIELD control (the fourth
TSG121 front-panel button from the left).
PAL Signal
Source
TSG121
COMPST
75 Cable
75
Terminator
Figure 1-27: Jitter Test Hookup
b. CHECK that the oscilloscope lights up its front panel TRIG’D LED
and it displays the waveform on screen (See Figure 1-28).
Figure 1-28: Jitter Test Displayed Waveform
Performance Verification Procedures
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
CONFIRM that the TRIG’D LED is lit and the waveform is dis-
played on screen.
c. Press SHIFT; then ACQUIRE MENU.
d. Press the main-menu Mode.
e. Select the side-menu Average. It should be already set to 16.
f. Press the main-menu Create Limit Test Template.
g. Press the side-menu V Limit.
h. Use the keypad to set V Limit to 100 mdiv (press 100, SHIFT, m, then
ENTER)
i. Press the side-menu OK Store Template.
j. Press MORE.
k. Press the main-menu Ref1.
l. Press CH1.
m. Press SHIFT; then ACQUIRE MENU.
n. Press the main-menu Limit Test Setup.
o. Toggle the side-menu Limit Test to ON.
p. Toggle the side-menu Ring Bell if Condition Met to ON.
q. Press the main-menu Mode.
r. Press the side-menu Envelope.
s. Use the keypad to set envelope to use 100 acquisitions (press 100,
then ENTER).
t. Press the main-menu Stop After button.
u. Press the side-menu Single Acquisition Sequence.
v. CONFIRM that the oscilloscope successfully makes 100 acquisitions.
If not successful, the oscilloscope bell will ring. When the word Run in
the top left corner of the display changes to STOP, the test is com-
plete (See Figure 1-29).
TDS 520A, 524A, 540A, & 544A Performance Verification
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
STOP shows the
test is complete
Figure 1-29: Jitter Test When Completed
w. Press the main-menu Limit Test Setup.
x. Toggle the side-menu Ring Bell if Condition Met to OFF.
y. Toggle the side-menu Limit Test to OFF.
4. Check Triggered Signal Range.
Setup oscilloscope for Triggered Signal Test.
a. Press MORE.
b. Press WAVEFORM OFF.
c. Press HORIZONTAL MENU.
d. Use the keypad to set the horizontal scale time-per-division (Horiz
Scale (/div)) to 50 s (press 50, SHIFT, , then ENTER).
e. Press SHIFT; then ACQUIRE MENU.
f. Press the main-menu Stop After.
g. Press the side-menu RUN/STOP button only.
h. Press the main-menu Mode.
i. Press the side-menu Sample.
j. Press RUN/STOP.
k. Press VERTICAL MENU.
l. Use the keypad to set fine scale to 300 mV (press 300, SHIFT, m,
then ENTER).
Performance Verification Procedures
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
m. CONFIRM that the TRIG’D LED stays on and that the waveform on
screen is stable. ie; does not move horizontally or vertically. Also,
CONFIRM that the waveform on the screen has one positive pulse
and a number of negative pulses (See Figure 1-30).
Positive pulse
Negative pulses
Figure 1-30: Triggered Signal Range Test – 300 mV
n. Use the keypad to set the fine scale to 75 mV (press 75, SHIFT, m,
then ENTER).
o. CONFIRM that the TRIG’D LED stays lit and that the waveform on
screen is stable. ie; does not move horizontally or vertically. Also,
CONFIRM that the waveform on the screen has one positive pulse
and a number of negative pulses (See Figure 1-31).
TDS 520A, 524A, 540A, & 544A Performance Verification
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
Positive pulse
Negative pulses
Figure 1-31: Triggered Signal Range Test – 75 mV
p. Disconnect all test equipment (TSG121) from the digitizing oscillo-
scope.
5. Check 60 Hz Rejection.
a. Setup oscilloscope for 60 Hz Rejection Test.
Use the keypad to set the Ch1 Fine Scale to 282 mV (press 282,
SHIFT m, then ENTER).
Press WAVEFORM OFF.
Press CH2.
Press VERTICAL MENU.
Use the keypad set the fine scale to 2 V (press 2, then ENTER).
Press HORIZONTAL MENU.
Use the keypad to set the horizontal scale time-per-division
(Horiz Scale (/div)) to 5 ms (press 5, SHIFT, m, then ENTER).
b. Setup 60 Hz signal generator (SG 502).
Connect the output of the SG 502 to the CH2 input through a
50 cable (See Figure 1-32).
Performance Verification Procedures
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
Signal
Generator
SG 502
50 Cable
Figure 1-32: 60 Hz Rejection Test Hookup
Adjust the SG 502 for three vertical divisions of 60 Hz signal (See
Figure 1-33). The signal will not be triggered. That is, it will run
free.
Figure 1-33: 60 Hz Rejection Test Setup Signal
c. Check 60 Hz rejection.
Use the keypad to set the the horizontal scale time-per-division
(Horiz Scale (/div)) to 50 s (press 50, SHIFT, , then ENTER).
Reconnect the output of the signal generator (SG 502). Connect
the PAL signal source’s composite signal connector (labelled
COMPST on the TSG 121) to a 75 cable and a 75 termina-
tor. Connect both signals to the CH1 input through a BNC T (See
Figure 1-34).
TDS 520A, 524A, 540A, & 544A Performance Verification
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
Press VERTICAL MENU.
If needed, press the main-menu Fine Scale.
Use the keypad to set fine scale to 500 mV (press 500, SHIFT,
m, then ENTER).
Connect another the PAL signal source’s composite signal con-
nector (labelled COMPST on the TSG 121) through a 75 cable
and a 75 terminator to the CH2 input (See Figure 1-34).
PAL Signal
Source
TSG121
Signal
Generator
SG 502
COMPST
COMPST
75 Cable
75 Cable
50 Cable
75
BNC T
Connector Terminator
75
Terminator
Figure 1-34: Subsequent 60 Hz Rejection Test Hookup
CONFIRM that the TRIG’D LED stays on and that the waveform
on screen is stable. Stable means the waveform does not move
horizontally or vertically. Also, confirm that the waveform on the
screen has one positive pulse and a number of negative pulses
(See Figure 1-35).
Performance Verification Procedures
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
Figure 1-35: 60 Hz Rejection Test Result
Disconnect all test equipment from the digitizing oscilloscope.
6. Check Line Count Accuracy.
a. Setup oscilloscope for Line Count Accuracy Test.
Press WAVEFORM OFF.
Press CH1.
Press HORIZONTAL MENU.
Press the main-menu Record Length.
Press, if needed, the side-menu –more– 1 of 2.
Press the side-menu 5000 points in 100divs.
Press the main-menu Horiz Scale (/div).
Use the keypad to set the horizontal scale to 200 ns (press 200,
SHIFT, n, then ENTER).
b. Check Line Count Accuracy.
Connect a composite output signal from the PAL signal source
(on the TSG 121 this refers to the signal at the rear labelled
COMPST) to the CH1 input through a 75 cable and a 75
terminator (See Figure 1-36).
TDS 520A, 524A, 540A, & 544A Performance Verification
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
PAL Signal
Source
TSG121
COMPST
75 Cable
75
Terminator
Figure 1-36: Line Count Accuracy Test Hookup
Press the main-menu Trigger Position.
Press the side-menu to Set to 50%.
Press the main-menu Horiz Pos.
Press the side-menu to Set to 50%.
Use the HORIZONTAL POSITION knob to move the falling edge
of the sync pulse to two divisions to the left of center screen (See
Figure 1-37).
Figure 1-37: Line Count Accuracy Test Setup Waveform
Press CURSOR.
Press the main-menu Function.
Performance Verification Procedures
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
Press the side-menu V Bars.
Using the General Purpose knob, place the left cursor directly
over the trigger “T” icon.
Press SELECT.
Turn the General Purpose knob to adjust the right cursor for a
cursor delta reading of 6.780us.
Use the HORIZONTAL POSITION knob to position the right
cursor to center screen.
Verify that the cursor is positioned on a positive slope of the burst
signal (See Figure 1-38).
Figure 1-38: Line Count Accuracy Correct Result Waveform
Disconnect all test equipment (TSG 121) from the digitizing
oscilloscope.
Turn off cursors by pressing CURSOR, then the main-menu
Function button, and, finally, Off from the side menu.
7. Check the Sync Duty Cycle.
a. Setup digitizing oscilloscope for Sync Duty Cycle Test.
Press TRIGGER MENU.
Press the Standard pop-up to select FlexFmt. (Trigger Type
should already be set to Video)
Press the main-menu Setup.
TDS 520A, 524A, 540A, & 544A Performance Verification
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
Press the side-menu Field Rate.
Use the keypad to set the field rate to 60.05 Hz (press 60.05,
then ENTER).
Press the side-menu Lines.
Use the keypad to set the field rate to 793 lines (press 793, then
ENTER).
Press the side-menu Fields.
Use the keypad to set the number of fields to 1 (press 1, then
ENTER).
Press the side-menu Sync Width.
Use the keypad to set the width to 400 ns (press 400, SHIFT, n,
then ENTER).
Press the side-menu –more– 1 of 2. Then press V1 Start Time.
Use the keypad to set V1 start time to 10.10 s (press 10.10,
SHIFT, , then ENTER).
Press the side-menu V1 Stop Time.
Use the keypad to set V1 stop time to 10.50 s (press 10.50,
SHIFT, , then ENTER).
Press the main-menu Type pop-up to select Edge.
Press HORIZONTAL MENU.
Press the main-menu Record Length.
Select the side-menu 1000 points in 20div. (if needed, first
press the side-menu –more– 2 of 2).
Turn the HORIZONTAL POSITION knob to position the trigger ‘T’
two divisions to the left of the center screen.
Press MEASURE.
If needed, press the main-menu Select Measrmnt.
Press the side-menu Negative Width.
Press the side-menu Period.
b. Setup the pulse generator (PG502) for Sync Duty Cycle Test
Set PULSE DURATION to 50 ns.
Set PERIOD to 10 s.
Set OUTPUT (VOLTS) to –1 for LOW LEVEL and +1 for HIGH
LEVEL.
Depress the COMPLEMENT button.
Be sure BACK TERM is depressed (in).
Performance Verification Procedures
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
c. Check Sync Duty Cycle
Connect the pulse generator (PG502) through a 50 cable and a
50 terminator to the oscilloscope CH1 input (See Figure 1-39).
Pulse
Generator
PG502
50 Cable
50
Terminator
Figure 1-39: PG502 Setup for Sync Duty Cycle Test
Turn the pulse generator OUTPUT (VOLTS) control until the
signal on the oscilloscope shows a one division negative going
pulse (See Figure 1-40).
NOTE
You may need to adjust the trigger level control to obtain a stable
trigger.
TDS 520A, 524A, 540A, & 544A Performance Verification
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
Figure 1-40: Sync Duty Cycle Test: One-Div Neg Pulse Waveform
Turn the pulse generator PULSE DURATION variable control to
adjust the negative pulse so the oscilloscope CH1 – Width
measurement displays 400ns +/–10 ns.
Turn the HORIZONTAL SCALE knob to set the oscilloscope time
base to 5 s/div.
Turn the pulse generator PERIOD variable control to adjust the
period until the oscilloscope CH1 Period measurement reads
21.000 s –25/+50 ns (See Figure 1-41). Read note shown
below.
NOTE
The pulse duration and period adjustments are critical in making this
measurement. If the pulse duration and/or the duty cycle are not
stable, the FLEXFMT function may not function. You must take care
when making these adjustments.
Performance Verification Procedures
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
Figure 1-41: Sync Duty Cycle Test: Critically Adjusted Pulse
Press TRIGGER MENU.
Press the main-menu Type pop-up until you select Video.
If the TRIG’D LED is not on, check that the CH1 – Width and
CH1 Period measurements are adjusted correctly (see note
above). CONFIRM that the setup is correct and the oscilloscope
will trigger.
CONFIRM that the TRIG’D LED is on and the waveform is
stable.
Disconnect the signal source from CH1, wait a few seconds, then
reconnect the signal.
CONFIRM that the TRIG’D LED is on and the waveform is
stable.
Press Sync Polarity.
Press Pos Sync.
Push the pulse generator COMPLEMENT button out.
CONFIRM that the TRIG’D LED is on and the waveform is
stable.
Disconnect the signal source from CH1, wait a few seconds, then
reconnect the signal.
CONFIRM that the TRIG’D LED is on and the waveform is
stable.
TDS 520A, 524A, 540A, & 544A Performance Verification
Download from Www.Somanuals.com. All Manuals Search And Download.
Performance Tests
Disconnect all test equipment (TSG 121) from the oscilloscope.
Press save/recall SETUP, press the main-menu button Recall
Factory Setup, and the side-menu OK Confirm Factory Init.
Performance Verification Procedures
Download from Www.Somanuals.com. All Manuals Search And Download.
Specifications
Download from Www.Somanuals.com. All Manuals Search And Download.
Download from Www.Somanuals.com. All Manuals Search And Download.
Specifications
This subsection begins with a general description of the traits of the
TDS 520A, 524A, 540A and 544A Digitizing Oscilloscopes. Three subsections
follow, one for each of three classes of traits: nominal traits, warranted char-
acteristics, and typical characteristics.
The Tektronix TDS 520A, 524A, 540A and 544A Digitizing Oscilloscopes are
portable, four-channel instruments suitable for use in a variety of test and
measurement applications and systems. Key features include:
General Product
Description
500 MHz maximum analog bandwidth.
1 Gigasample/second maximum digitizing rate (TDS 540A and 544A);
500 Megasamples/second maximum digitizing rate (TDS 520A and
524A).
Four-channel acquisition — the TDS 540A and 544A offer four full-fea-
tured channels; the TDS 520A and 524A offer two full-featured channels
and two channels with limited vertical scale selections: 100 mV, 1 V, and
10 V.
Extensive triggering capabilities: such as edge, logic, and glitch. Video
trigger (Option 05) is also available. The video trigger modes are NTSC,
TM
PAL, SECAM, HDTV, and FlexFormat (user definable format).
Waveform Math — Invert a single waveform and add, subtract, and
multiply two waveforms. On the TDS 524A, 544A, and other TDS 500A
equipped with option 2F, integrate or differentiate a single waveform or
perform an FFT (fast fourier transform) on a waveform to display its
magnitude or phase versus its frequency.
Eight-bit digitizers.
Up to 15,000-point record length per channel (50,000-point with option
1M).
Full GPIB software programmability. Hardcopy output using GPIB,
RS-232, or Centronics ports (RS-232 and Centronics is standard on the
TDS 524A and 544A and optional, as option 13, on the TDS 520A and
540A).
Complete measurement and documentation capability.
Intuitive graphic icon operation blended with the familiarity of traditional
horizontal and vertical knobs.
On-line help at the touch of a button.
A full complement of advanced functions, like continuously-updated
measurements, results and local pass/fail decision making.
TDS 520A, 524A, 540A, & 544A Performance Verification
Download from Www.Somanuals.com. All Manuals Search And Download.
Specifications
Specialized display modes, such as variable persistence (with color
coding on the TDS 524A and 544A), dot or vector mode, sin(x)/x or linear
display filters, and, on the TDS 524A and 544A, user selectable color
palettes. The “Fit to Screen” feature compresses the entire waveform
record to fit on the screen.
A complement of advanced acquisition modes such as peak-detect,
TM
high-resolution, sample, envelope, and average. The FastFrame
feature acquires waveforms in rapid succession with a minimum of dead
TM
time between acquisitions. FastFrame allows acquisition rates of up to
50,000 frames per second.
A unique graphical user interface (GUI), an on-board help mode, and a
logical front-panel layout which combine to deliver a new standard in
usability.
VGA output for driving remote monitors.
A 1.44 Mbyte, DOS 3.3 or later, floppy disk drive for saving waveforms,
color images, and oscilloscope setups (standard on the TDS 524A and
544A and optional, as option 1F, on the TDS 520A and 540A). Also, all
TDS 500A have built-in NVRAM storage for saving waveforms and set-
ups.
On the 524A and 544A, a color display for distinguishing among wave-
forms, their measurements, and associated text.
Use a combination of front-panel buttons, knobs, and on-screen menus to
control the many functions of these oscilloscopes. The front-panel controls
are grouped according to function: vertical, horizontal, trigger, and special.
Set a function you adjust often, such as vertical positioning or the time base
setting, directly by its own front-panel knob. Set functions which you change
less often, such as vertical coupling and horizontal mode, indirectly using
selected menus.
User Interface
Menus
Pressing one (sometimes two) front-panel button(s), such as vertical menu,
displays a main menu of related functions, such as coupling, bandwidth, etc.,
at the bottom of the screen. Pressing a main-menu button, such as coupling,
displays a side menu of settings for that function, such as AC, DC, or GND
(ground) coupling, at the right side of the screen. Pressing a side-menu
button selects a setting such as DC.
Indicators
On-screen readouts help you keep track of the settings for various functions,
such as vertical and horizontal scale and trigger level. Some readouts use the
cursors or the automatic parameter extraction feature (called measure) to
display the results of measurements made or the status of the instrument.
Specifications
Download from Www.Somanuals.com. All Manuals Search And Download.
Specifications
General Purpose Knob
Assign the general purpose knob to adjust a selected parameter function.
More quickly change parameters by toggling the SHIFT button. Use the same
method as for selecting a function, except the final side-menu selection
assigns the general purpose knob to adjust some function, such as the posi-
tion of measurement cursors on screen, or the setting for a channels fine
gain.
GUI
The user interface also makes use of a GUI, or Graphical User Interface, to
make setting functions and interpreting the display more intuitive. Some
menus and status are displayed using iconic representations of function
settings such as those shown here for full, 100 MHz, and 20 MHz bandwidth.
Such icons allow you to more readily determine status or the available set-
tings.
TDS 540A and 544A: The signal acquisition system provides four vertical
channels with calibrated vertical scale factors from 1 mV to 10 V per division.
All four channels can be acquired simultaneously.
Signal Acquisition
System
Each of the four TDS 540A and 544A channels can be displayed, vertically
positioned, and offset, can have their bandwidth limited (100 MHz or 20 MHz)
and their vertical coupling specified. Fine gain can also be adjusted.
TDS 520A and 524A: The signal acquisition system provides four vertical
channels. Two are full-featured vertical channels (CH1 and CH2) with cali-
brated vertical scale factors from 1 mV to 10 V per division. The other two are
auxiliary channels (AUX1 and AUX2) with three calibrated deflection factors
of 100 mV, 1 V, and 10 V per division. Any two of the four channels can be
acquired simultaneously.
Each of the four TDS 520A and 524A channels can be displayed, vertically
positioned, and offset. CH1 and CH2 can also have their bandwidth limited
(100 MHz or 20 MHz) and their vertical coupling specified. Fine gain can also
be adjusted for CH1 and CH2.
On all TDS 520A, 524A, 540A and 544A: Besides the four channels, up to
three math waveforms and four reference waveforms are available for display.
(A math waveform results when dual waveform operations, such as add, are
specified on any two channels. A reference waveform results when you save
a live waveform in a reference memory.)
TDS 520A, 524A, 540A, & 544A Performance Verification
Download from Www.Somanuals.com. All Manuals Search And Download.
Specifications
There are three horizontal display modes: main only, main intensified, and
delayed only. You can select among various horizontal record length settings.
Horizontal System
A feature called “Fit to Screen” allows the user to view entire waveform
records within the 10 division screen area. In other words, waveforms are
compressed to fit on the screen. The exception is that, with Option 1M,
50,000 point records are displayed over a 15 division time span. (see
Table 2-1)
Table 2-1: Record Length vs. Divisions per Record,
Samples Per Division, and Sec/Div Sequence
Divisions per Records
Samples/Division (Sec/Div Sequence)
Record Length
Fit to Screen OFF
50 (1–2–5)
Fit to Screen ON
50 (1–2–5)
1
2
50000
15000
5000
2500
1000
500
1000 divisions
300 divisions
100 divisions
50 divisions
20 divisions
10 divisions
10 divisions
15 divisions
10 divisions
10 divisions
10 divisions
10 divisions
1
2
The 50,000 samples in 1,000 division record is only available with Option 1M.
The maximum record length of 15,000 samples (50,000 samples with Option 1M) is select-
able with all acquisition modes except Hi Res. In Hi Res, the maximum record length is
5,000 samples (15,000 samples with Option 1M).
TM
FastFrame allows multiple triggered acquisitions to occur with a minimum
of “dead time” between acquisitions. A maximum of 910 acquisition se-
quences (frames) are possible with 50 points per record (frame length) when
a 50,000 point waveform record length is available (with option 1M).
You can delay by time with respect to the main trigger both the delayed
display and the intensified zone on the main intensified display. You can set
them to display immediately after the delay (delayed runs after main mode).
The delayed display can also be set to display at the first valid trigger after
the delay (delayed triggerable mode).
You can also delay by a selected number of events the delayed display (or
the intensified zone). In this case, the events source is the delayed trigger
source. For any events signal, the delayed-trigger system conditions the
signal by determining the source, coupling, etc., of that signal.
Specifications
Download from Www.Somanuals.com. All Manuals Search And Download.
Specifications
The triggering system supports a varied set of features for triggering the
signal-acquisition system. Trigger signals recognized include:
Trigger System
Edge (main- and delayed-trigger systems): This familiar type of triggering
is fully configurable for source, slope, coupling, mode (auto or normal),
and holdoff.
Logic (main-trigger system): This type of triggering can be based on
pattern (asynchronous) or state (synchronous). In either case, logic
triggering is configurable for sources, for boolean operators to apply to
those sources, for logic pattern or state on which to trigger, for mode
(auto or normal), and for holdoff. Time-qualified logic triggering can also
be specified.
Pulse (main-trigger system): Pulse triggering is configurable for triggering
on runt or glitch pulses, or on pulse widths or periods inside or outside
limits that you specify. It is also configurable for source, polarity, mode,
and holdoff.
Video (with option 05: Video Trigger): Video triggering is compatible with
standard NTSC, PAL, SECAM, and HDTV formats. An additional feature
TM
called FlexFormat (flexible format) allows the user to define the video
format on which to trigger.
You can choose where the trigger point is located within the acquired wave-
form record by selecting the amount of pretrigger data displayed. Select
presets of 10%, 50%, and 90% of pretrigger data in the horizontal menu, or
assign the general purpose knob to set pretrigger data to any value within the
limits of trigger position resolution.
TDS 520A, 524A, 540A, & 544A Performance Verification
Download from Www.Somanuals.com. All Manuals Search And Download.
Specifications
You can specify a mode and manner to acquire and process signals.
Acquisition Control
Select equivalent-time sampling on repetitive signals or interpolation of
points sampled on non-repetitive signals. Both can increase apparent
sample rate on the waveform when maximum real-time rates are
reached. The apparent sample rate can be increased, even further, by
TM
using the FastFrame feature. Acquisition rates of 50,000 Frames/Se-
TM
cond are possible using FastFrame
.
Use peak-detect, high-resolution, sample, envelope, and average modes
can be used to acquire signals.
Set the acquisition to stop after a single acquisition (or sequence of
acquisitions if acquiring in average or envelope modes).
Select channel sources for compliance with limit tests. You can direct the
TDS to signal you or generate hard copy output based on the results.
Also, you can create templates for use in limit tests.
Help and autoset can assist you in setting up the Digitizing Oscilloscope to
make your measurements.
On-Board User
Assistance
Help
Help displays operational information about any front-panel control. When
help mode is in effect, manipulating any front-panel control causes the oscillo-
scope to display information about that control. When help is first invoked, an
introduction to help is displayed on screen.
Autoset
Autoset automatically sets up the oscilloscope for a viewable display based
on the input signal.
Once you have set up to make your measurements, the cursor and measure
features can help you quickly make those measurements.
Measurement
Assistance
Cursor
Three types of cursors are provided for making parametric measurements on
the displayed waveforms. Horizontal bar cursors (H Bar) measure vertical
parameters (typically volts). Vertical bar cursors (V Bar) measure horizontal
parameters (typically time or frequency) and now extend to the top and
bottom of the screen. Paired cursors measure both amplitude and time simul-
taneously. These are delta measurements; that is, measurements based on
the difference between two cursors.
Specifications
Download from Www.Somanuals.com. All Manuals Search And Download.
Specifications
Both H Bar and V Bar cursors can also be used to make absolute measure-
ments; that is measurements relative to a defined level or event. For the
H Bars, either cursor can be selected to read out its voltage with respect to
any channels ground reference level. For the V Bars, it’s time with respect to
the trigger point (event) of the acquisition, and the cursors can control the
portion of the waveform on which automatic measurements are made.
For time measurements, units can be either seconds or Hertz (for 1/time).
When the video trigger option installed (Option 05), the video line number can
be selected using the vertical cursors. IRE amplitude (NTSC) can be mea-
sured using the horizontal cursors with or without the video trigger option
installed.
Measure
Measure can automatically extract parameters from the signal input to the
Digitizing Oscilloscope. Any four out of the more than 20 parameters available
can be displayed to the screen. The waveform parameters are measured
continuously with the results updated on-screen as the Digitizing Oscilloscope
continues to acquire waveforms.
Digital Signal Processing (DSP)
An important component of the multiprocessor architecture of this Digitizing
Oscilloscope is Tektronix’s proprietary digital signal processor, the DSP. This
dedicated processor supports advanced analysis of your waveforms when
doing such compute-intensive tasks as interpolation, waveform math, and
signal averaging. It also teams with a custom display system to deliver spe-
cialized display modes (See Display, later in this description.)
Acquired waveforms may be saved in any of four nonvolatile REF (reference)
memories or, if available, on a 3.5 inch, DOS 3.3-or-later compatible disk. The
disk is standard on the TDS 524A and 544A. It is available as option 1F on
the 520A and 540A. Any or all of the saved waveforms may be displayed for
comparison with the waveforms being currently acquired.
Storage and I/O
The source and destination of waveforms to be saved may be chosen. As-
signment can be made to save any of the four channels to any REF memory
or to move a stored reference from one REF memory to another. Reference
waveforms may also be written into a REF memory location via the GPIB
interface.
The Digitizing Oscilloscope is fully controllable and capable of sending and
receiving waveforms over the GPIB interface (IEEE Std 488.1–1987/IEEE Std
488.2–1987 standard). This feature makes the instrument ideal for making
automated measurements in a production or research and development
environment that calls for repetitive data taking. Self-compensation and
TDS 520A, 524A, 540A, & 544A Performance Verification
Download from Www.Somanuals.com. All Manuals Search And Download.
Specifications
self-diagnostic features built into the Digitizing Oscilloscope to aid in fault
detection and servicing are also accessible using commands sent from a
GPIB controller.
Another standard feature is hardcopy. This feature allows you to output
waveforms and other on-screen information to a variety of graphic printers
and plotters from the Digitizing Oscilloscope front panel, providing hard copies
without requiring you to put the Digitizing Oscilloscope into a system-control-
ler environment. You can make hardcopies in a variety of popular output
formats, such as PCX, TIFF, BMP, RLE, EPS, Interleaf, and EPS mono or
color. You can also save hardcopies in a disk file in any of the formats above.
The hardcopies obtained are based on what is displayed on-screen at the
time hardcopy is invoked. The hardcopies can be stamped with date and time
and spooled to a queue for printing at a later time. You can output screen
information via GPIB, RS-232C, or Centronics interfaces.
The TDS 520A, 524A, 540A and 544A Digitizing Oscilloscopes offer flexible
display options. You can customize the following attributes of your display:
Display
Color: Waveforms, readouts, graticule, etc. on the TDS 524A and 544A;
Intensity: waveforms, readouts, and graticule;
Style of waveform display(s): vectors or dots, intensified or non-intensified
samples, infinite persistence, and variable persistence with color coding;
Interpolation method: Sin(x)/x or Linear;
Display format: xy or yt with various graticule selections including NTSC
and PAL to be used with video trigger.
Zoom
This Digitizing Oscilloscope also provides an easy way to focus in on those
waveform features you wish to examine up close. By invoking zoom, you can
magnify the waveform parameter using the vertical and horizontal controls to
expand (or contract) and position it for viewing.
Specifications
Download from Www.Somanuals.com. All Manuals Search And Download.
Nominal Traits
This subsection contains tables that list the electrical and mechanical nominal
traits that describe the TDS 520A, 524A, 540A and 544A Digitizing
Oscilloscopes.
Nominal traits are described using simple statements of fact such as “Four, all
identical” for the trait “Input Channels, Number of”, rather than in terms of
limits that are performance requirements.
Table 2-2: Nominal Traits — Signal Acquisition System
Name
Description
Bandwidth Selections
Digitizers, Number of
20 MHz, 100 MHz, and FULL (500 MHz)
TDS 540A and 544A: Four, all identical
TDS 520A and 524A: Two, both identical
1
Digitized Bits, Number of
Input Channels, Number of
8 bits
TDS 540A and 544A: Four, all identical, called CH1 – CH4
TDS 520A and 524A: Two full-featured (CH1 and CH2), plus two
limited, auxiliary inputs (AUX1 and AUX2)
2
Input Coupling
DC, AC, or GND
1 M or 50
Input Impedance Selections
Ranges, Offset, TDS 540A, 544A, and
CH1 and CH2 on TDS 520A and 524A
Volts/Div Setting
Offset Range
1 mV/div – 99.5 mV/div
100 mV/div – 995 mV/div
1 V/div – 10 V/div
V
V
V
Ranges, Offset, AUX1 and AUX2 on
TDS 520A and 524A
Volts/Div Setting
100 mV/div
1 V/div
Offset Range
V
V
10 V/div
V
Range, Position
divisions
3
Range, Sensitivity
TDS 540A and 544A: 1 mV/div to 10 V/div
3
TDS 520A and 524A: CH1 and CH2: 1 mV/div to 10 V/div
TDS 520A and 524A: AUX1 and AUX2: 100 mV/div, 1 V/div, 10 V/div
1
Displayed vertically with 25 digitization levels (DLs) per division and 10.24 divisions dynamic range with zoom off. A DL is the small-
est voltage level change that can be resolved by the 8-bit A-D Converter, with the input scaled to the volts/division setting of the
channel used. Expressed as a voltage, a DL is equal to 1/25 of a division times the volts/division setting.
2
3
The input characteristics (Input Coupling, Input Impedance Selections, etc.) apply to both full-featured and auxiliary inputs except
where otherwise specified.
The sensitivity ranges from 1 mV/div to 10 V/div in a 1–2–5 sequence of coarse settings. Between a pair of adjacent coarse settings,
the sensitivity can be finely adjusted. The resolution of such a fine adjustment is 1% of the more sensitive of the pair. For example,
between 50 mV/div and 100 mV/div, the volts/division can be set with 0.5 mV resolution.
TDS 520A, 524A, 540A, & 544A Performance Verification
Download from Www.Somanuals.com. All Manuals Search And Download.
Nominal Traits
Table 2-3: Nominal Traits — Time Base System
Description
Name
1,3
1,3
Range, Sample-Rate
TDS 540A, 544A
Number of
Channels On
Sample-Rate
Range
1
5 Samples/s – 1 GSamples/s
5 Samples/s – 500 MSamples/s
5 Samples/s – 250 MSamples/s
2
3 or 4
Range, Sample-Rate
TDS 520A, 524A
Number of
Channels On
Sample-Rate
Range
1
2
5 Samples/s – 500 MSamples/s
5 Samples/s – 250 MSamples/s
Range, Equivalent Time or Interpolated 500 MSamples/s to 100 GSamples/s
2,3
Waveform Rate
Range, Seconds/Division
500 ps/div to 10 s/div
4
Record Length
500 samples, 1000 samples, 2500 samples, 5000 samples,
15000 samples. A record length of 50000 samples is available with
Option 1M. Up to four 50 K waveform records may be saved in
NVRAM with Option 1M installed.
TM
FastFrame
Maximum Frame Rate: 50,000 Frames/Second
Frame Length Range: 50 points/Frame to 5,000 Points/Frame
Maximum Number of Frames:
910 Frames at 50 Points/Frame
(with Option 1M, 50,000 Record Length)
227 Frames at 50 Points/Frame
(standard configuration of 15,000 Record Length)
1
The range of real-time rates, expressed in samples/second, at which a digitizer samples signals at its inputs and stores the samples
in memory to produce a record of time-sequential samples
2
3
The range of waveform rates for equivalent time or interpolated waveform records.
The Waveform Rate (WR) is the equivalent sample rate of a waveform record. For a waveform record acquired by real-time sampling
of a single acquisition, the waveform rate is the same as the real-time sample rate; for a waveform created by interpolation of real-
time samples from a single acquisition or by equivalent-time sampling of multiple acquisitions, the waveform rate is faster than the
real time sample rate. For all three cases, the waveform rate is 1/(Waveform Interval) for the waveform record, where the waveform
interval (WI) is the time between the samples in the waveform record.
4
The maximum record length of 15,000 samples (50,000 samples with Option 1M) is selectable with all acquisition modes except
Hi Res. In Hi Res, the maximum record length is 5,000 samples (15,000 samples with Option 1M).
Specifications
Download from Www.Somanuals.com. All Manuals Search And Download.
Nominal Traits
Table 2-4: Nominal Traits — Triggering System
Description
Name
Range, Delayed Trigger Time Delay
Range, Events Delay
16 ns to 250 s
2 to 10,000,000
Range (Time) for Pulse-Glitch or Pulse- 2 ns to 1 s
Width Triggering
Ranges,Trigger Level or Threshold
Source
Range
Any Channel
screen
Auxiliary
V
(TDS 540A & 544A only)
Line
V
Video Trigger Modes of Operation
(Option 05 Video Trigger)
Supports the following video standards:
NTSC (525/60) – 2 field mono or 8 field
PAL (625/50) – 2 field mono, 8 field
SECAM
HDTV –
(787.5/60)
(1050.60)
(1125/60)
(1250/60)
TM
FlexFormat (user definable standards)
User can specify: field rate, number of lines, sync pulse width
and polarity, line rate, and vertical interval timing.
Table 2-5: Nominal Traits — Display System
Description
Name
Video Display
7 inch diagonal, with a color display area of 5.04 inches horizontally
by 3.78 inches vertically
Video Display Resolution
640 pixels horizontally by 480 pixels vertically
Waveform Display Graticule
Single Graticule: 401 × 501 pixels, 8 × 10 divisions, where divisions
are 1 cm by 1 cm
Waveform Display Colors/Grey Scale
TDS 524A and 544A: Sixteen colors in infinite-persistence or variable
persistence display with color coding.
TDS 520A and 540A: Sixteen levels in infinite-persistence and vari-
able persistence display styles.
TDS 520A, 524A, 540A, & 544A Performance Verification
Download from Www.Somanuals.com. All Manuals Search And Download.
Nominal Traits
Table 2-6: Nominal Traits — Interfaces, Output Ports, and Power Fuse
Description
Name
Interface, GPIB
GPIB interface complies with IEEE Std 488–1987
Interface, RS-232
RS-232 interface complies with EIA/TIA 574 (talk only)
(optional, as option 13, on TDS 520A and 540A)
Interface, Centronics
Interface, Video
Centronics interface complies with Centronics interface standard
C332-44 Feb 1977, REV A
(optional, as option 13, on TDS 520A and 540A)
VGA video output with levels that comply with ANSI R5343A stan-
dard. DB-15 connector.
Logic Polarity for Main- and Delayed-
Trigger Outputs
Negative TRUE. High to low transition indicates the trigger occurred.
1
Fuse Rating
Either of two fuses may be used: a .25 × 1.25 (UL 198.6, 3AG):
6 A FAST, 250 V, or a 5 mm × 20 mm, (IEC 127): 5 A (T), 250 V.
1
Each fuse type requires its own fuse cap.
Specifications
Download from Www.Somanuals.com. All Manuals Search And Download.
Nominal Traits
Table 2-7: Nominal Traits — Mechanical
Name
Description
Cooling Method
Construction Material
Forced-air circulation with no air filter
Chassis parts constructed of aluminum alloy; front panel constructed
of plastic laminate; circuit boards constructed of glass-laminate. Cabi-
net is aluminum and is clad in Tektronix Blue vinyl material.
Finish Type
Weight
Tektronix Blue vinyl-clad aluminum cabinet
Standard TDS 524A and 544A Digitizing Oscilloscope
13.7 kg (30 lbs), with front cover.
25.1 kg (55 lbs), when packaged for domestic shipment.
Standard TDS 520A and 540A Digitizing Oscilloscope
12.3 kg (27 lbs), with front cover.
20.0 kg (44 lbs), when packaged for domestic shipment.
Rackmount TDS 524A and 544A Digitizing Oscilloscope
13.7 kg (30 lbs) plus weight of rackmount parts, for the rack-
mounted Digitizing Oscilloscope (Option 1R).
Rackmount TDS 520A and 540A Digitizing Oscilloscope
12.3 kg (27 lbs) plus weight of rackmount parts, for the rack-
mounted Digitizing Oscilloscope (Option 1R).
Rackmount conversion kit
2.3 kg (5 lbs), parts only; 3.6 kg (8 lbs), parts plus package for
domestic shipping.
Overall Dimensions
Standard Digitizing Oscilloscope
Height: 193 mm (7.6 in), with the feet installed.
Width: 445 mm (17.5 in), with handle.
Depth: 434 mm (17.1 in), with front cover installed.
Rackmount Digitizing Oscilloscope
Height: 178 mm (7.0 in).
Width: 483 mm (19.0 in).
Depth: 558.8 mm (22.0 in).
TDS 520A, 524A, 540A, & 544A Performance Verification
Download from Www.Somanuals.com. All Manuals Search And Download.
Nominal Traits
Specifications
Download from Www.Somanuals.com. All Manuals Search And Download.
Warranted Characteristics
This subsection lists the electrical and environmental warranted
characteristics that describe the TDS 520A, 524A, 540A and 544A Digitizing
Oscilloscopes.
Warranted characteristics are described in terms of quantifiable performance
limits which are warranted.
NOTE
In these tables, those warranted characteristics that are checked in
the procedure Performance Verification, found in Section 1, appear
in boldface type under the column Name.
As stated above, this subsection lists only warranted characteristics. A list of
typical characteristics starts on page 2-21.
The electrical characteristics found in these tables of warranted characteris-
tics apply when the scope has been adjusted at an ambient temperature
between +20 C and +30 C, has had a warm-up period of at least 20 min-
utes, and is operating at an ambient temperature between +4 C and +50 C
(unless otherwise noted).
Performance
Conditions
Table 2-8: Warranted Characteristics — Signal Acquisition System
Name
Description
Accuracy, DC Gain
(For all sensitivities from 1 mV/div to 10 V/div with offsets from 0 V to
V.)
Accuracy, Offset
TDS 540A and 544A (all channels),
TDS 520A and 524A (CH1 and CH2)
Volts/Div Setting
Offset Accuracy
× Net Offset + 1.5 mV +
0.1 div × volts/div setting)
1
1 mV/div – 99.5 mV/div
1
100 mV/div – 995 mV/div
1 V/div – 10 V/div
× Net Offset + 15 mV +
0.1 div × volts/div setting)
1
× Net Offset + 150 mV
+ 0.1 div × volts/div setting)
Accuracy, Offset
TDS 520A and 524A (AUX1 and
AUX2)
Offset Accuracy
1
× Net Offset
+ 0.1 div × volts/div setting)
TDS 520A, 524A, 540A, & 544A Performance Verification
Download from Www.Somanuals.com. All Manuals Search And Download.
Warranted Characteristics
Table 2-8: Warranted Characteristics — Signal Acquisition System (Cont.)
Description
Name
4
Analog Bandwidth, DC-50 Coupled Volts/Div
or DC-1 M Coupled
Bandwidth
5 mV/div – 10 V/div
DC – 500 MHz
DC – 350 MHz
DC – 250 MHz
2 mV/div – 4.98 mV/div
1 mV/div – 1.99 mV/div
Cross Talk (Channel Isolation)
100:1 at 100 MHz and 30:1 at the derated bandwidth for any two
channels having equal volts/division settings
Input Impedance, DC-1 M Coupled
Input Impedance, DC-50 Coupled
1 M
50
pF
1.3:1 from DC – 500 MHz
Input Voltage, Maximum, DC-1 M ,
AC-1 M , or GND Coupled
MHz
Input Voltage, Maximum, DC-50 or
AC-50 Coupled
5 V
, with peaks
V
RMS
Lower Frequency Limit, AC Coupled
10 Hz when AC–1 M Coupled; 200 kHz when AC – 50
Coupled
5
1
Net Offset = Offset – (Position Volts/Div). Net Offset is the nominal voltage level at the center of the A-D converter dynamic range.
Offset Accuracy is the accuracy of this Voltage level.
2
3
The samples must be acquired under the same setup and ambient conditions.
To ensure the most accurate measurements possible, run an SPC calibration first. When using the oscilloscope at a Volts/Div set-
ting 5 mV/div, an SPC calibration should be run once per week to ensure that instrument performance levels meet specifications.
4
5
The limits given are for the ambient temperature range of 0 C to +30 C. Reduce the upper bandwidth frequencies by 2.5 MHz for
each C above +30 C.
The AC Coupled Lower Frequency Limits are reduced by a factor of 10 when 10X, passive probes are used.
Table 2-9: Warranted Characteristics — Time Base System
Name
Accuracy, Long Term Sample Rate
Description
1 ms interval
and Delay Time
Specifications
Download from Www.Somanuals.com. All Manuals Search And Download.
Warranted Characteristics
Table 2-10: Warranted Characteristics — Triggering System
Description
Name
Accuracy (Time) for Pulse-Glitch or
Pulse-Width Triggering
Time Range
2 ns to 1 s
1.02 s to 1 s
Accuracy
ns)
setting)
Sensitivity, Edge-Type Trigger, DC
Coupled
Trigger Source Sensitivity
1
TDS 540A,
544A
0.35 division from DC to 50 MHz, increasing to
1 division at 500 MHz
(CH1 – CH4)
TDS 520A,
524A
(CH1, CH2)
0.55 division from DC to 50 MHz, increasing to
1.5 division at 500 MHz
TDS 520A,
524A
(AUX1, AUX2)
0.25 volts from DC to 50 MHz
Auxiliary
(TDS 540A,
544A only)
Width, Minimum Pulse and Rearm,
for Pulse Triggering
Pulse Class
Minimum
Pulse Width
Minimum Rearm Width
2 ns
Glitch
2 ns + 5% of Glitch Width Setting
2.5 ns
2.5 ns
2 ns
Runt
2 ns + 5% of Width Upper Limit
Setting
Width
Jitter (Option 05 Video Trigger)
17 ns on HDTV signal; 60 ns on NTSC or PAL signal
p-p p-p
Input Signal Sync Amplitude for
Stable Triggering (Option 05 Video
Trigger)
0.6 division to 4 division (1 division to 4 divisions in Numerical Field)
1
The minimum sensitivity for obtaining a stable trigger. A stable trigger results in a uniform, regular display triggered on the selected
slope. The trigger point must not switch between opposite slopes on the waveform, and the display must not “roll” across the
screen on successive acquisitions. The TRIG’D LED stays constantly lighted when the SEC/DIV setting is 2 ms or faster but may
flash when the SEC/DIV setting is 10 ms or slower.
TDS 520A, 524A, 540A, & 544A Performance Verification
Download from Www.Somanuals.com. All Manuals Search And Download.
Warranted Characteristics
Table 2-11: Warranted Characteristics — Interfaces, Output Ports and Power Requirements
Name
Description
Logic Levels, Main- and Delayed-
Trigger Outputs
Characteristic
Limits
2.5 V open circuit; 1.0 V into a 50
Vout (HI)
load to ground
0.7 V into a load of 4 mA;
0.25 V into a 50 load to ground
Vout (LO)
Output Voltage and Frequency,
Probe Compensator
Characteristic
Output Voltage
Frequency
Limits
0.5 V (base-top)
1 kHz
50 load
Output Voltage, Channel 3 Signal
Out
20 mV/division
50 load
1M load; 10 mV/division
a
Source Voltage
90 to 250 VAC
, continuous range
RMS
Source Frequency
Power Consumption
47 Hz to 63 Hz
300 W (450 VA)
Specifications
Download from Www.Somanuals.com. All Manuals Search And Download.
Warranted Characteristics
Table 2-12: Warranted Characteristics — Environmental, Safety, and Reliability
Name
Description
Atmospherics
Temperature with floppy disk (optional on TDS 520A and 540A):
Operating: +4 C to +50 C;
Non-operating: –22 C to +60 C
Temperature without floppy disk:
Operating: 0 C to +50 C;
Non-operating: –40 C to +60 C
Relative humidity with floppy disk (optional on TDS 520A and 540A):
Operating: To 80%, at or below +29 C;
Operating: To 20%, at or below +50 C
Non-operating: To 90%, at or below +40 C;
Non-operating: To 5%, at or below +50 C
Relative humidity without floppy disk:
To 95%, at or below +40 C;
To 75%, from +41 C to +55 C
Altitude:
To 4570 m (15,000 ft.), operating;
To 12190 m (40,000 ft.), non-operating
Dynamics
Emissions
Random vibration without floppy disk installed:
0.31 g RMS, from 5 to 500 Hz, 10 minutes each axis, operating;
3.07 g RMS, from 5 to 500 Hz, 10 minutes each axis, non-operat-
ing
Meets or exceeds the requirements of the following standards:
Vfg. 243/1991 Amended per Vfg. 46/1992
FCC Code of Federal Regulations, 47 CFR, Part 15, Subpart B,
Class A
User-Misuse Simulation
Electrostatic Discharge Susceptibility: Up to 8 kV with no change to
control settings or impairment of normal operation; up to 15 kV with
no damage that prevents recovery of normal operation by the user
TDS 520A, 524A, 540A, & 544A Performance Verification
Download from Www.Somanuals.com. All Manuals Search And Download.
Warranted Characteristics
Specifications
Download from Www.Somanuals.com. All Manuals Search And Download.
Typical Characteristics
The tables in this subsection list the typical characteristics that describe the
TDS 520A, 524A, 540A and 544A Digitizing Oscilloscopes.
Typical characteristics are described in terms of typical or average
performance. Typical characteristics are not warranted.
Table 2-13: Typical Characteristics — Signal Acquisition System
Name
Description
Accuracy, Delta Time Measurement
For single-shot acquisitions using single-shot sample acquisition
modes.
1
Time Measurement Error ≤ .15* Si + (25 ppm |Reading|) + (Time
Per Div
1000)
Add 50 ps (typical) Channel Skew for 2 channel measurements.
Sample calculation:
To measure the width of a 65.5 ns pulse at 1 GS/sec sampling,
Time Measurement Error
–5
≤ (0.15 × 1 ns) + (2.5 × 10 )(65.5 ns) + (50 ns/div 1000)
≤ 0.15 ns + 0.002 ns + 0.05 ns
≤ 202 ps
Delay Between Channels, Full Band-
width, Equivalent Time
250 ps for any two channels with equal volts/division and coupling
settings
Frequency Limit, Upper, 100 MHz
Bandwidth Limited
100 MHz
Frequency Limit, Upper, 20 MHz
Bandwidth Limited
20 MHz
2
Calculated Rise Time
Volts/Div Setting
Rise Time
800 ps
1.2 ns
5 mV/div–10 V/div
2 mV/div–4.98 mV/div
1 mV/div–1.99 mV/div
1.6 ns
Nonlinearity
<1 DL, differential; 1 DL, integral, independently based
TDS 520A, 524A, 540A, & 544A Performance Verification
Download from Www.Somanuals.com. All Manuals Search And Download.
Typical Characteristics
Table 2-13: Typical Characteristics — Signal Acquisition System (Cont.)
Name
Description
3
Step Response Settling Errors
Volts/Div Setting
Step
Settling Error (%)
TDS 540A and 544A, all channels,
TDS 520A and 524A, CH1, CH2 only
Amplitude
20 ns 100 ns 20 ms
1 mV/div–99.5 mV/div
100 mV/div–995 mV/div
1 V/div–10 V/div
2 V
0.5
1.0
1.0
0.2
0.5
0.5
0.1
0.2
0.2
20 V
200 V
1
2
The limits are given for signals having pulse height ≥ 5 div, reference level = 50% mid-point, filter set to Sin (x) /x acquired at ≥ 5
Tr
mV/div, 1.4
/
5, where S is the hardware sample interval and t is the signal rise time.
Si
i
r
The numbers given are valid 0 C to +30 C and will increase as the temperature increases due to the degradation in bandwidth.
Rise time is calculated from the bandwidth. It is defined by the following formula:
Note that if you measure rise time, you must take into account the rise time of the test equipment (signal source, etc.) that you use
to provide the test signal. That is, the measured rise time (RT ) is determined by the instrument rise time (RT ) and the rise time of
m
i
the test signal source (RTgen) according to the following formula:
3
The values given are the maximum absolute difference between the value at the end of a specified time interval after the mid-level
crossing of the step, and the value one second after the mid-level crossing of the step, expressed as a percentage of the step ampli-
tude.
Table 2-14: Typical Characteristics — Time Base System
Name
Aperture Uncertainty
Description
5 ps
Specifications
Download from Www.Somanuals.com. All Manuals Search And Download.
Typical Characteristics
Table 2-15: Typical Characteristics — Triggering System
Name
Description
2
Accuracy, Trigger Level or Thresh-
old, DC Coupled
Trigger
Source
Accuracy
Any Channel
Offset) + 0.3 div
setting + Offset Accuracy)
volts/div
mV)
Auxiliary
(TDS 540A &
544A only)
Input, Auxiliary Trigger
The input resistance is 1.5 k ; the maximum safe input voltage is
AC).
1,2
Trigger Marker Position, Edge Trigger-
ing
Acquire Mode
Trigger-Position Marker
Sample, Hi-Res, Average
Peak Detect, Envelope
WI + 1 ns)
ns)
Holdoff, Variable, Main Trigger
Minimum: For any horizontal scale setting, the minimum holdoff is
10 times that setting, but is never less than 1 s or longer than 5 s.
Maximum: For any horizontal scale setting, the maximum holdoff is at
least 2 times the minimum holdoff for that setting, but is never more
than 10 times the minimum holdoff for that setting.
Width, Minimum Pulse and Rearm, for
Logic Triggering or Events Delay
5 ns
3
Lowest Frequency for Successful Op-
eration of “Set Level to 50%” Function
30 Hz
Sensitivity, Edge Trigger, Not DC
Coupled
Trigger Coupling
Typical Signal Level for
Stable Triggering
4
5
AC
Same as DC-coupled limits for frequen-
cies above 60 Hz. Attenuates signals be-
low 60 Hz.
Three and one half times the DC-coupled
limits.
Noise Reject
5
One and one half times the DC-coupled
limits from DC to 30 kHz. Attenuates sig-
High Frequency Reject
5
nals above 30 kHz.
Low Frequency Reject
One and one half times the DC-coupled
limits for frequencies above 80 kHz. At-
5
tenuates signals below 80 kHz.
Sensitivities, Logic-Type Trigger/Events 1.0 division, from DC to 100 MHz with a minimum slew rate of
6
Delay, DC Coupled
25 divisions/ s at the trigger level or the threshold crossing.
6
Sensitivities, Pulse-Type Runt Trigger
1.0 division, from DC to 200 MHz with a minimum slew rate of
25 divisions/ s at the trigger level or the threshold crossing.
TDS 520A, 524A, 540A, & 544A Performance Verification
Download from Www.Somanuals.com. All Manuals Search And Download.
Typical Characteristics
Table 2-15: Typical Characteristics — Triggering System (Cont.)
Name
Description
Sensitivities, Pulse-Type Trigger Width
and Glitch
1.0 division with a minimum slew rate of 25 div/ s at the trigger level
or the threshold crossing. For <5 nsec pulse width or rearm time,
2 divisions are required.
6
Sensitivities, Derating Aux Channel Trig- All trigger sensitivity specifications are derated by 50% for AUX 1 and
ger (TDS 520A & 524A) AUX2 inputs.
Sync Width (Option 05 Video Trigger) min. 400 ns for HDTV signals
Sync Duty Cycle
min. 50 to 1
(Option 05 Video Trigger)
Hum Rejection
(Option 05 Video Trigger)
NTSC and PAL: –20 dB without any trigger spec deterioration. Trig-
gering will continue down to 0 dB with some performance deteriora-
tion.
1
2
The trigger position errors are typically less than the values given here. These values are for triggering signals having a slew rate at
the trigger point of division/ns.
The waveform interval (WI) is the time between the samples in the waveform record. Also, see the footnote for the characteristics
Sample Rate Range and Equivalent Time or Interpolated Waveform Rates in Table 2-3 on page 2-10.
3
4
The minimum pulse width and rearm width required for logic-type triggering or events delaying to occur.
The minimum sensitivity for obtaining a stable trigger. A stable trigger results in a uniform, regular display triggered on the selected
slope. The trigger point must not switch between opposite slopes on the waveform, and the display must not “roll” across the
screen on successive acquisitions. The TRIG’D LED stays constantly lighted when the SEC/DIV setting is 2 ms or faster but may
flash when the SEC/DIV setting is 10 ms or slower.
5
6
See the characteristic Sensitivity, Edge-Type Trigger, DC Coupled in Table 2-10, which begins on page 2-17.
The minimum signal levels required for stable logic or pulse triggering of an acquisition or for stable counting of a DC-coupled
events delay signal. Also, see the footnote for Sensitivity, Edge-Type Trigger, DC Coupled in this table. (Stable counting of events is
counting that misses no events.)
Table 2-16: Typical Characteristics — Data Handling
Name
Time, Data-Retention, Nonvolatile
Description
Battery life is
5 years
1,2
Memory
Floppy disk
3.5 inch, 720 K or 1.44 Mbyte, DOS 3.3-or-later compatible
Standard on TDS 540A, 544A
Option 1F on TDS 520A, 524A
1
2
The time that reference waveforms, stored setups, and calibration constants are retained when there is no power to the oscillo-
scope.
Data is maintained by small lithium-thionyl-chloride batteries internal to the memory ICs. The amount of lithium is so small in these
ICs that they can typically be safely disposed of with ordinary garbage in a sanitary landfill.
Specifications
Download from Www.Somanuals.com. All Manuals Search And Download.
|