TFA9812
BTL stereo Class-D audio amplifier with I2S input
Rev. 02 — 22 January 2009
Preliminary data sheet
1. General description
The TFA9812 is a high-efficiency Bridge Tied Load (BTL) stereo Class-D audio amplifier
with a digital I2S audio input. It is available in a HVQFN48 package with exposed die
paddle. The exposed die paddle technology enhances the thermal and electrical
performances of the device.
The TFA9812 features digital sound processing and audio power amplification. It supports
I2C control mode and Legacy mode. In Legacy mode I2C involvement is not needed
because the key features are controlled by hardware pin connections.
A continuous time output power of 2 × 12 W (RL = 8 Ω, VDDP = 15 V) is supported without
an external heat sink. Due to the implementation of a programmable thermal foldback
even for high supply voltages, higher ambient temperatures, and/or lower load
impedances, the device operates without sound interrupting behavior.
TFA9812 is designed in such a way that it starts up easily (no special power-up sequence
required). It features various soft and hard impact protection mechanisms to ensure an
application that is both user friendly and robust.
A modulation technique is applied for the TFA9812, which supports common mode choke
approach (1 common mode choke only per BTL amplifier stage). This minimizes the
number of external components.
2. Features
2.1 General features
I 3.3 V and 8 V to 20 V external power supply
I High efficiency and low power dissipation
I Speaker outputs fully short circuit proof across load, to supply lines and ground
I Pop noise free at power-up/power-down and sample rate switching
I Low power Sleep mode
I Overvoltage and undervoltage protection on the 8 V to 20 V power supply
I Undervoltage protection on the 3.3 V power supply
I Overcurrent protection (no audible interruptions)
I Overdissipation protection
I Thermally protected and programmable thermal foldback
I Clock error protection
I I2C mode control or Legacy mode (i.e. no I2C) control
I Four different I2C addresses supported
I Internal Phase-Locked Loop (PLL) without using external components
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
4. Quick reference data
Table 1.
Unless specified otherwise, VDDA = VDDP = 12 V, VSSP1 = VSSP2 = 0 V, VDDA(3V3) = VDDD(3V3) = 3.3 V,
SS1 = VSS2 = REFD = REFA = 0 V, Tamb = 25 °C, RL = 8 Ω, fi = 1 kHz, fs = 44.1 kHz, fsw = 400 kHz,
Quick reference table
V
Symbol
General
VDDA
Parameter
Conditions
Min
Typ
Max
Unit
analog supply
voltage
8
12
12
3.3
3.3
38
20
20
3.6
3.6
45
V
VDDP
power supply
voltage
8
V
VDDA(3V3)
VDDD(3V3)
IP
analog supply
voltage (3.3 V)
3.0
3.0
-
V
digital supply
voltage (3.3 V)
V
supply current
soft mute mode, with load,
filter and snubbers
connected
mA
sleep mode
-
160
270
µA
IDDA(3V3)
analog supply
current (3.3 V)
operating mode
I2S slave mode
I2S master mode
sleep mode
-
-
2
4
4
6
mA
mA
VDDA = VDDP = 12 V
VDDA = VDDP = 1 V
operating mode
I2S slave mode
I2S master mode
-
-
120
40
-
µA
70
µA
IDDD(3V3)
digital supply
current (3.3 V)
-
-
-
15
25
4
25
40
30
mA
mA
µA
sleep mode;
DATA = WS = BCK =
MCLK = 0 V
Po(RMS)
RMS output power Continuous time output power per channel; THD = 10 %;
RL = 8 Ω
VDDA = VDDP = 12 V
VDDA = VDDP = 13.5 V
VDDA = VDDP = 15 V
-
-
-
8.3
10
12
-
-
-
W
W
W
Short time (≤ 10 s) output power per channel; THD = 10 %;
RL = 8 Ω
VDDA = VDDP = 17 V
-
-
15
88
-
-
W
%
ηpo
output power
efficiency
RL = 8 Ω; Po(RMS) = 8.3 W
[1] IP is the current through the analog supply voltage (VDDA) pin added to the current through the power supply
voltage (VDDP) pin.
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
3 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
5. Ordering information
Table 2.
Ordering information
Type number
Package
Name
Description
Version
TFA9812HN
HVQFN48 plastic thermal enhanced very thin quad flat package; no leads;
SOT619-8
48 terminals; body 7 × 7 × 0.85 mm
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
4 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx
6. Block diagram
TEST1 TEST2
AVOL
32
V
V
V
DDD(3V3)
40
DDA(3V3)
DDA
6
7
43
3
15 BOOT1P
18, 19
V
DDP
PHASED
LOCKED
LOOP
REGISTER
ADDRESS
HEX 01
DRIVER
HIGH
ADC
TFA9812
16, 17 OUT1P
CONTROL
LOGIC
XTALIN
1
DRIVER
LOW
CLOCK
PROTECTION
LP
10, 11
V
SSP2
OSCILLATOR
1
0
XTALOUT
2
CSEL
PWM
CONTROLLER
STAB1
UFP
OFP
25 BOOT1N
DDP
MCLK 47
V
IBP
THERMAL
FOLDBACK
DRIVER
HIGH
23, 24 OUT1N
CONTROL
LOGIC
DRIVER
LOW
V
SSP1
26, 27
BCK 46
WS 45
VOLUME
CONTROL
AND SOFT
MUTE
INTER-
POLATION
FILTER AND
DE-EMPHASIS
SERIAL
AUDIO
INTERFACE
10-BAND
PARAMETRIC
EQUALIZER
28 STAB1
POWER
LIMITER
GAIN
22 BOOT2P
DATA 44
V
DDP
DRIVER
HIGH
20, 21 OUT2P
CONTROL
LOGIC
DRIVER
LOW
V
SSP2
PWM
CONTROLLER
STAB2
POWERUP 31
ENABLE 33
12 BOOT2N
V
DDP
GAIN 34
PROTECTION
DRIVER
HIGH
CSEL 35
OVP
UVP
OCP
OTP
ODP
WP
OUT2N
ADSEL2/PLIM2 36
ADSEL1/PLIM1 37
SCL/SFOR 38
SDA/MS 39
13, 14
CONTROL
INTERFACE
CONTROL
LOGIC
REFERENCES
DRIVER
LOW
V
SSP2
9
STAB2
41
42
4
5
8
48
29
DIAG
30
010aaa217
CDELAY STABD REFD STABA REFA
EXPOSED DIE PADDLE
V
V
SS2
SS1
Fig 1. TFA9812 block diagram
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
Figure 1 shows the block diagram of the TFA9812. For a detailed description of the audio
7. Pinning information
7.1 Pinning
terminal 1
index area
1
2
36
35
34
33
32
31
30
29
28
27
26
25
XTALIN
ADSEL2/PLIM2
CSEL
XTALOUT
3
V
GAIN
DDA(3V3)
STABA
4
ENABLE
AVOL
5
REFA
6
V
DDA
POWERUP
CDELAY
DIAG
TFA9812HN
7
TEST1
8
V
SS1
9
STAB2
STAB1
10
11
12
V
SSP2
V
SSP2
V
V
SSP1
SSP1
BOOT2N
BOOT1N
010aaa218
Transparent top view
Fig 2. Pin configuration, transparent top view
Table 3.
Pinning description TFA9812
Pin
1
Symbol
XTALIN
XTALOUT
VDDA(3V3)
STABA
REFA
Type Description
I
Crystal oscillator input
Crystal oscillator output
2
O
P
O
P
P
I
3
Analog supply voltage (3.3 V)
1.8 V analog stabilizer output
Analog reference voltage
4
5
6
VDDA
Analog supply voltage (8 V to 20 V)
7
TEST1
VSS1
Test signal input 1. For test purposes only (connect to VSS
PCB ground reference
)
8
P
O
P
P
O
O
9
STAB2
VSSP2
Decoupling of internal 11 V regulator for channel 2 drivers
10
11
12
13
Negative power supply voltage for channel 1 and channel 2
Negative power supply voltage for channel 1 and channel 2
Bootstrap high-side driver negative PWM output channel 2
Negative PWM output channel 2
VSSP2
BOOT2N
OUT2N
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
6 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
Table 3.
Pinning description TFA9812 …continued
Pin
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
Symbol
OUT2N
BOOT1P
OUT1P
OUT1P
VDDP
Type Description
O
O
O
O
P
P
O
O
O
O
O
O
P
P
O
O
I
Negative PWM output channel 2
Bootstrap high-side driver positive PWM output channel 1
Positive PWM output channel 1
Positive PWM output channel 1
Positive power supply voltage (8 V to 20 V)
Positive power supply voltage (8 V to 20 V)
Positive PWM output channel 2
VDDP
OUT2P
OUT2P
BOOT2P
OUT1N
OUT1N
BOOT1N
VSSP1
Positive PWM output channel 2
Bootstrap high-side driver positive PWM output channel 2
Negative PWM output channel 1
Negative PWM output channel 1
Bootstrap high-side driver negative PWM output channel 1
Negative power supply voltage for channel 1 and channel 2
Negative power supply voltage for channel 1 and channel 2
Decoupling of internal 11 V regulator for channel 1 drivers
Fault mode indication output (open-drain pin)
Timing reference
VSSP1
STAB1
DIAG
CDELAY
POWERUP
I
Power-up pin to switch between Sleep and other operational
modes
32
33
AVOL
I
I
Analog volume control (Legacy mode)
ENABLE
Enable input to switch between 3-state and other
operational modes
34
35
36
37
38
39
GAIN
I
Gain selection input to select between 0 dB and +24 dB
gain (Legacy mode)
CSEL
I
Control selection input to select between Legacy mode
(no I2C bus control) and I2C bus control
Address selection in I2C mode input 2, power limiter
selection input 2 in Legacy mode
Address selection in I2C mode input 1, power limiter
selection input 1 in Legacy mode
I2C bus clock input in I2C mode, I2S serial data format
selection input in Legacy mode
ADSEL2/PLIM2
ADSEL1/PLIM1
SCL/SFOR
SDA/MS
I
I
I
I/O
I2C bus data input and output in I2C mode, master/slave
selection input in Legacy mode
40
41
42
43
44
45
VDDD(3V3)
STABD
REFD
TEST2
DATA
P
O
P
I
Digital supply voltage (3.3 V)
1.8 V digital stabilizer output
Digital reference voltage
Test signal input 2; for test purposes only (connect to VSS
I2S bus data input
I2S bus word select input (I2S slave mode) or output (I2S
master mode)
)
I
WS
I/O
46
BCK
I/O
I2S bus bit clock input (I2S slave mode) or output (I2S
master mode)
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
7 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
Table 3.
Pinning description TFA9812 …continued
Pin
Symbol
Type Description
47
MCLK
I/O
Master clock input (I2S slave mode) or output (I2S master
mode)
48
VSS2
-
P
P
PCB ground reference
PCB ground reference
Exposed
die-paddle
8. Functional description
8.1 General
The TFA9812 is a high-efficiency stereo BTL Class-D amplifier with a digital I2S audio
input. It supports all commonly used I2S formats.
Figure 1 shows the functional block diagram, which includes the key function blocks of the
TFA9812. In the digital domain the audio signal is processed and converted to a pulse
width modulated signal using BD modulation. A BTL configured power comparator carries
out power amplification.
The audio signal processing path is as follows:
1. The Digital Audio Input (DAI) block translates the I2S (-like) input signal into a
standard internal stereo audio stream.
2. The 10-band parametric equalizer can optionally equalize the stereo audio stream.
Both channels have separate equalization streams. It can be used for speaker transfer
curve compensation to optimize the audio performance of applied speakers.
3. Volume control in the TFA9812 is done by attenuation. The attenuation depends on
the volume control settings and the thermal foldback value. Soft mute is also arranged
at this part. In Legacy mode the volume control is done by an on-board
Analog-to-Digital Converter (ADC) which measures the analog voltage on pin 32.
4. The interpolation filter interpolates from 1 fs to the PWM controller sample rate
(2048 fs at 44.1 kHz) by cascading FIR filters.
5. The gain block can boost the signal with 0 dB or +24 dB. Four specific gain settings
are also provided in this block. These specific gain settings are related to maximum
clip levels of < 0.5 %, 10 %, 20 % or 30 % THD at the TFA9812 output. These
maximum clip levels are only valid with the gain boost set to 0 dB and a 0 dBFS input
signal.
6. The power limiter limits the maximum output signal of the TFA9812. The power limiter
settings are 0 dB, −1.5 dB, −3 dB, and −4.5 dB. This function can be used to reduce
the maximum output power delivered to the speakers at a fixed supply voltage and
speaker impedance.
7. The PWM controller block transforms the audio signal into a BD-modulated PWM
signal. The BD-modulation provides a high signal-to-noise performance and
eliminates clock jitter noise.
8. Via four differential comparators the PWM signals are amplified by two BTL power
output stages. By default the left audio signal is connected to channel 1 and the right
audio signal to channel 2.
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
8 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
The block control defines the operational control settings of the TFA9812 in line with the
actual I2C settings and the pin-controlled settings.
The PLL block creates the system clock and can take the I2S BCK, the MCLK or an
external crystal as reference source.
The following protections are built into the TFA9812:
• Thermal Foldback (TF)
• OverTemperature Protection (OTP)
• OverCurrent Protection (OCP)
• OverVoltage Protection (OVP)
• UnderVoltage Protection (UVP)
• Window Protection (WP)
• Lock Protection (LP)
• UnderFrequency Protection (UFP)
• OverFrequency Protection (OFP)
• Invalid BCK Protection (IBP)
• DC-blocking
• ElectroStatic Discharge (ESD)
8.2 Functional modes
8.2.1 Control modes
The two control modes of the TFA9812 are I2C and legacy.
• In I2C mode the I2C format control is enabled.
• In Legacy mode a pin-based subset of the control options is available. The control
settings for features which are not available in Legacy mode are set to the default I2C
register settings.
Table 4.
Control mode selection
CSEL Pin value Control mode
0
1
Legacy (no I2C)
I2C
In the functional descriptions below the control for the various functions will be described
for the various TFA9812 functions.
8.2.2 Key operating modes
There are six key operating modes:
• In Sleep mode the voltage supplies are present, but power consumption for the whole
device is reduced to the minimum level. The output stages in Sleep mode are 3-state
and I2C communication is disabled.
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
9 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
• In Soft mute mode the I2S input signal is overruled with a soft mute.
– In Legacy control mode the analog input pin AVOL controls Soft mute mode.
– In I2C control mode I2C control can be used to enable an automatic soft mute
• In Hard mute mode the PWM controller is overruled with a 50 % duty cycle square
pulse. The Hard mute mode is only available in I2C control mode.
• In Operating mode the TFA9812 amplifies the I2S audio input signal in line with the
actual control setting.
• In 3-state mode the output stages are switched off.
• Fault mode is entered when a fault condition is detected by one or more of the
protection mechanisms implemented in the TFA9812. In Fault mode the actual device
Fault mode is for a subset of the faults flagged on the DIAG output pin. When the
DIAG pin is flagged the output stages will be forced to enter 3-state mode. In Sleep
mode the DIAG pin will not flag fault modes.
Table 5.
Pin:
Operational mode selection
DIAG Output
Operational mode
selected:
POWERUP ENABLE
CSEL
AVOL
0
1
-
-
-
-
-
-
floating
Sleep mode
0 / floating
Fault mode (enabled by
system)[1]
1
1
1
1
1
0
-
floating
floating
Soft mute mode (in I2C
control mode)[2]
< 0.8 V
Soft mute (in Legacy control
mode)
1
1
0
1
-
-
-
-
floating
floating
3-state mode
Operational mode
[1] Clocking faults do not trigger DIAG output.
[2] Under these conditions soft mute still has to be enabled by the appropriate I2C setting.
8.2.3 I2S master/slave modes and MCLK/BCK clock modes
The I2S interface can be set in master or in slave.
• In I2S master mode the PLL locks to the output signal of the internal crystal oscillator
circuit which uses an external crystal. The BCK, WS and MCLK signals are generated
by the TFA9812. On the MCLK pin the TFA9812 delivers a master clock running at the
crystal frequency.
• In I2S slave mode the PLL can lock to:
– The external MCLK signal on the MCLK pin called MCLK clock mode.
– The I2S input BCK signal on the BCK pin called BCK clock mode.
The I2S master or slave mode can be selected:
• In I2C control mode by selecting the right I2C setting.
• In legacy control mode by selecting the right setting on the SDA/MS pin.
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
10 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
Table 6.
I2S master/slave mode selection
Pin value
Clock mode
I2S mode
CSEL
SDA/MS
0
0
1
0
1
-
legacy
legacy
I2C
slave
master
slave or master[1]
[1] Under these conditions the mode is enabled by the appropriate I2C setting.
In I2S slave mode selection between BCK and MCLK clock modes is automatic.
MCLK clock mode is given higher priority than BCK. If the MCLK clock is judged valid by
the protection circuit then MCLK clock mode is enabled. BCK clock mode is enabled when
the MCLK clock is invalid (e.g. not available) and the BCK clock is judged valid by the
Table 7.
Valid crystal frequencies in I2S master mode
Control mode
fs (kHz)
Crystal frequency (MHz)
I2C
8, 16, 32, 64, 128
8.192
11.025, 22.05, 44.1, 88.2,
176.4
11.2896
12, 24, 48, 96, 192
12.288
8.192
Legacy
32
44.1
48
11.2896
12.288
Table 8.
Valid MCLK frequencies in I2S slave mode
Control mode
I2C
fs (kHz)
MLCK frequency (MHz)
8.192
8, 16, 32, 64, 128
12.288
32
18.432 (576 fs)
11.2896
11.025, 22.05, 44.1, 88.2,
176.4
16.9344
44.1
25.4016 (576 fs)
12.288
12, 24, 48, 96, 192
18.432
48
27.648 (576 fs)
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
11 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
Table 8.
Valid MCLK frequencies in I2S slave mode
Control mode
fs (kHz)
MLCK frequency (MHz)
8.192
Legacy
32
12.288
18.432 (576 fs)
11.2896
44.1
48
16.9344
25.4016 (576 fs)
12.288
18.432
27.648 (576 fs)
Table 9.
Valid BCK frequencies in I2S slave mode
Control mode
fs (kHz)
BCK (x fs input)
I2C
8 to 192[1]
8 to 192[1]
8 to 192[1]
32, 44.1, 48
32, 44.1, 48
32, 44.1, 48
32 fs
48 fs
64 fs
32 fs
48 fs
64 fs
Legacy
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
12 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
8.3 Power-up/power-down
external
voltage
supplies
POWERUP
pin
ENABLE
pin
2
I C
available
soft mute
setting in
2
I C mode
AVOL pin
in Legacy
mode
PWM
outputs
Operating
mode active
t
t
t
t
d(soft_mute)
wake
d(on)
d(mute_off)
010aaa219
Fig 3. Power-up/power-down timing
8.3.1 Power-up
for initiating a power-up reset.
Table 10. Power-up/power-down timing
Symbol
Parameter Conditions Min
Typ
Max
Unit
twake
wake-up
time
I2C control
-
4
-
ms
td(on)
turn-on
delay time
-
70
-
-
-
135
ms
s
td(mute_off)
td(soft_mute)
mute off
delay time
-
128/fs
Soft mute
delay time
I2C control
-
-
-
128/fs
-
s
legacy
control[1]
15
ms
[1] Mute in Legacy mode is controlled by AVOL pin.
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
13 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
In I2C control mode communication is enabled after 4 ms. The preferred I2C settings can
be made within 66 ms before the PLL starts running. Finally, the output stages are
enabled and the audio level is increased via a demute sequence if mute has previously
been disabled.
Remark: In I2C mode soft mute is enabled by default. It can be disabled at any time while
I2C communication is valid. In order to prevent audio clicks volume control (default setting
is 0 dB) should be set before soft mute is disabled.
Remark: For a proper start-up in I2S master mode and I2C mode the following sequence
should be followed:
1. The I2S master setting should be set and keep the default sample rate setting active.
2. Next, another sample rate setting than the default one should be selected.
3. Finally, when the default sample rate is used the default sample rate setting should be
selected again.
8.3.2 Power-down
power-down.
Table 11. Power-up/power-down selection
Power-up pin
value
Description
0
1
Power-down (Sleep mode)
Power-up
Putting the TFA9812 into power-down is equivalent to enabling Sleep mode
required.
In order to prevent audible clicks, soft mute should be enabled at least Td(soft_mute)
seconds before enabling Sleep mode.
enabling Sleep mode.
8.4 Digital audio data input
8.4.1 Digital audio data format support
The TFA9812 supports a commonly used range of I2S and I2S-like digital audio data input
Table 12. Supported digital audio data formats
BCK frequency Interface format (MSB first)
Supported in I2C Supported in Legacy
control mode
control mode
32 fs
32 fs
32 fs
48 fs
48 fs
I2S up to 16-bit data
yes
yes
yes
yes
yes
yes
yes
yes
yes
MSB-justified 16-bit data
LSB-justified 16-bit data
I2S up to 24-bit data
MSB-justified up to 24-bit data yes
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
14 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
Table 12. Supported digital audio data formats
BCK frequency Interface format (MSB first)
Supported in I2C Supported in Legacy
control mode
control mode
48 fs
48 fs
48 fs
48 fs
64 fs
64 fs
64 fs
64 fs
64 fs
64 fs
LSB-justified 16-bit data
LSB-justified 18-bit data
LSB-justified 20-bit data
LSB-justified 24-bit data
I2S up to 24-bit data
yes
yes
yes
yes
yes
no
no
no
yes
yes
yes
no
MSB-justified up to 24-bit data yes
LSB-justified 16-bit data
LSB-justified 18-bit data
LSB-justified 20-bit data
LSB-justified 24-bit data
yes
yes
yes
yes
no
no
no
Remark: Only MSB-first formats are supported.
RIGHT
WS
LEFT
1
2
3
1
2
3
BCK
DATA
MSB B2
MSB B2
S-BUS FORMAT
MSB
2
I
WS
LEFT
RIGHT
3
1
2
3
1
2
BCK
DATA
MSB B2
LSB MSB
B2
LSB MSB B2
MSB-JUSTIFIED FORMAT
WS
LEFT
RIGHT
16
15
2
1
16
15
2
1
BCK
DATA
MSB B2
B15
LSB
MSB B2
B15 LSB
LSB-JUSTIFIED FORMAT 16 BITS
WS
LEFT
RIGHT
18
17
16
15
2
1
18
17
16
15
2
1
BCK
DATA
MSB B2
B3
B4
B17
LSB
MSB B2
B3
B4
B17 LSB
LSB-JUSTIFIED FORMAT 18 BITS
WS
LEFT
20
RIGHT
20
19
18
17
16
15
2
1
19
18
17
16
15
2
1
BCK
DATA
MSB B2
B3
B4
B5
B6
B19
LSB
MSB B2
B3
B4
B5
B6
B19 LSB
LSB-JUSTIFIED FORMAT 20 BITS
WS
LEFT
RIGHT
24
23
22
21
20
19
18
17
16
15
2
1
24
23
22
21
20
19
18
17
16
15
2
1
BCK
DATA
MSB B2
B3
B4
B5
B6
B7
B8
B9 B10
B23
LSB
MSB B2
B3
B4
B5
B6
B7
B8
B9 B10
B23 LSB
010aaa458
LSB-JUSTIFIED FORMAT 24 BITS
Fig 4. Serial interface input and output formats
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
15 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
In I2C control mode the following sample frequency fs can be used: 8 kHz, 11.025 kHz,
12 kHz, 16 kHz, 22.05 kHz, 24 kHz, 32 kHz, 44.1 kHz, 48 kHz, 64 kHz, 88.2 kHz, 96 kHz,
128 kHz, 176.4 kHz or 192 kHz. The I2C control for fs selection can be found in
In Legacy control mode the following sample frequencies (fs) can be used: 32 kHz,
44.1 kHz or 48 kHz.
8.4.2 Digital audio data format control
The BCK-to-WS and MCLK-to-WS frequency ratios are automatically detected, so no
control settings need to be configured for these.
control mode only a subset of the supported formats can be used. These are shown in
Table 13. Digital audio data format selection in Legacy control mode
SCL/SFOR pin value
Interface formats (MSB-first)
0
1
I2S
MSB-justified
8.5 Digital signal-processing features
8.5.1 Equalizer
8.5.1.1 Equalizer options
The equalizer function can be bypassed and the equalizer can be configured to either a
5-band or 10-band function. These settings are for both audio channels simultaneously.
There are 20 bands in the equalizer. These are distributed as follows:
• Bands A1 to A5 are bands 1 to 5 of output 1 (used in 5-band and 10-band
configuration).
• Bands B1 to B5 are bands 1 to 5 of output 2 (used in 5-band and 10-band
configuration).
• Bands C1 to C5 are bands 6 to 10 of output 1 (used in 10-band configuration only).
• Bands D1 to D5 are bands 6 to 10 of output 2 (used in 10-band configuration only).
In I2C control mode each band can be configured separately using I2C register settings.
In Legacy control mode the equalizer is bypassed.
8.5.1.2 Equalizer band function
The shape of each parametric equalizer band is determined by the three filter parameters:
• (Relative) center frequency ω = 2π( f c ⁄ f s) .
• Quality factor Q.
• Gain factor G.
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
16 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
In the above equation fc is the center frequency and fs is the sample frequency.
The definition of the quality factor is the center frequency divided by the 3 dB bandwidth,
(−30 dB).
Af
--------
Af
c
f 1:
2010log
2010log
= 3dB f c > f 1
1
f c
Q =
;
(1)
-----------------
f 2 – f 1
Af
2
--------
Af
c
f 2:
= 3dB , f 2 > f c
Each band filter can be programmed to perform a band-suppression (G < 1) or a
band-amplification (G > 1) function around the center frequency.
Each band of the TFA9812 equalizer has a second-order Regalia-Mitra all-pass filter
+
½
+
Y(z)
+
s
X(z)
−
K /2
0
A(z)
010aaa406
Fig 5. Regalia filter flow-diagram
H(z) = 1 ⁄ 2 ⋅ (1 + A(z)) + K0 ⁄ 2 ⋅ (1 – A(z))
(2)
(3)
A(z) is the second-order filter structure. The transfer function of A(z) is shown in
K1 + K2 ⋅ (1 + K1) ⋅ Z–1 + Z–2
1 + K2 ⋅ (1 + K1) ⋅ Z–1 + K1 ⋅ Z–2
A(z) =
--------------------------------------------------------------------------------
The relationship between the programmable parameters K0, K1, and K2 and the filter
K0 = G
K1 = –cosω
(4)
K2 = (2Q ⋅ G – sinω) ⁄ (2Q ⋅ G + sinω)
G < 1
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
17 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
K0 = G
K1 = –cosω
(5)
K2 = (2Q – sinω) ⁄ (2Q + sinω)
G ≥ 1
The ranges of the TFA9812 parametric equalizer settings for each band are:
• The Gain, G is from −30 dB to +12 dB.
• The center frequency, fc is from 0.0004 * fs to 0.49 * fs.
• The quality factor Q is from 0.001 to 8.
Using I2C control, filter coefficients need to be entered for each filter stage to configure it
as desired.
equalizer bands. The relations are symmetrical for the suppression and amplification
functions. A skewing effect can be observed for the higher frequencies.
Different configurations are available for the same filter transfer function, thus allowing
optimum numerical noise performance. The binary filter configuration parameters t1 and t2
0
ω<=π ⁄ 2
t1
=
1
ω>π ⁄ 2
(6)
0
1
k2>=0
k2<0
t2
=
A maximum of 12 dB amplification per equalizer stage can be achieved with respect to the
input signal. Each band of the equalizer is provided with a −6 dB amplification, so in order
to prevent numerical clipping for some filter settings with over 6 dB of amplification, band
filters can be scaled by 0 dB or −6 dB. For optimum numerical noise performance steps of
−6 dB amplification should be applied to the highest possible sections that are still within
scale signal processing safeguards. Band filters can be scaled with the binary parameters
Table 14. Equalizer scale factor coding
s
0
1
scale factor (dB)
0
−6
8.5.1.3 Equalizer band control
For compact representation with positive signed parameters, parameters k1’ and k2’ are
The parameters k0, k1', k2', t1, t2 and s must be combined in two 16-bit control words,
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
18 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
1 – k1
t1 = 1
k1′ =
1 + k1
t1 = 0
(7)
(8)
1 – k2
t2 = 0
k2′ =
1 + k2
t2 = 1
kx = M ⋅ 2–E
M < 1
−1
example, in word2 bits [14:8] = [0111 010] represent k2' = (7/24) × 2−2 = 1.09375 10 .
Table 15. Equalizer control word construction
Word
word1
word1
word1
word2
word2
word2
word2
word2
Section
15
Data
t1
[14:4]
[3:0]
15
11 mantissa bits of k1’
Four exponent bits of k1’
t2
[14:11]
[10:8]
[7:1]
0
Four mantissa bits of k2’
Three exponents bits of k2’
k0
s
equalizer.
010aaa222
12
Q1 = 0.27
Gain
(dB)
Q2 = 0.61
8
Q3 = 1.65
4
0
10
1
2
3
4
5
10
10
10
10
Frequency (Hz)
Fig 6. Transfer functions for several quality factors Q
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
19 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
010aaa223
12
Gain
(dB)
8
4
0
1
2
3
4
5
10
10
10
10
10
Frequency (Hz)
Fig 7. Transfer functions for several center frequencies fc
010aaa224
12
Gain
(dB)
6
0
-6
-12
10
1
2
3
4
5
10
10
10
10
Frequency (Hz)
Fig 8. Transfer functions for several gain factors G
8.5.2 Digital volume control
In I2C control mode both audio channels have separate digital volume control. In Legacy
control mode the volume control of both channels is common and the volume control
setting depends on the supply voltage on the pin AVOL (32).
8-bit volume control is available per channel. This is dB-linear down to −124 dB in steps of
0.5 dB. The last step of the volume control is mute.
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
20 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
Table 16. Volume control channel suppression table
[7:0] control value (hexadecimal)
Gain (dB)
0
00
01
...
−0.5
steps of 0.5 dB
−123.5
−124
F7
F8
F9
mute
In Legacy mode the pin AVOL (32) can be used to control the volume.
Voltage levels of 0.8 V to 2.8 V correspond linearly to control values of 00h (0 dB) to F9h
An external pull-up resistor connected to the VDDD(3V3) can be applied to provide a default
volume of 0 dB. Pin AVOL has no function in I2C mode.
8.5.3 Soft mute and mute
Soft mute is available in I2C and in Legacy control modes: hard mute can be enabled only
in I2C control mode.
In I2C control mode the soft mute function smoothly reduces the gain setting for both
channels to mute level over a duration of 128/fs seconds. The smooth shape is
implemented as a raised cosine function. Soft demute results in a similar gain increase.
This implementation avoids audible plops.
A different soft mute and soft demute function is implemented in Legacy mode. This works
via the analog gain control under the control of pin AVOL. The analog volume control input
signal is first-order low-pass filtered with a time constant of 10 ms in the digital domain.
Suddenly switching on or switching off volume by setting the control voltage to
> 2.8 V or < 0.8 V respectively will result in a fading which lasts approximately 15 ms
(switching between 0 V and 3.3 V at AVOL).
In Legacy mode the soft demute function that is part of the automatic power-up sequence
is similar to the I2C mode soft demute function described above. The I2C control for the
8.5.4 Output signal and word-select polarity control
In I2C control mode the TFA9812 can switch the polarity of the stereo output signal. The
effect is a 180 degree phase shift of both output signals.
The TFA9812 also has the option of switching the polarity of the WS signal. Without
polarity inversion the left audio signal is connected to channel 1 and the right audio signal
is connected to channel 2.
8.5.5 Gain boost and clip level control
An additional gain boost of +24 dB can be selected in the TFA9812. In Legacy mode this
© NXP B.V. 2009. All rights reserved.
TFA9812_2
Preliminary data sheet
Rev. 02 — 22 January 2009
21 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
Table 17. GAIN pin functionality
GAIN pin value
Function
0 dB gain
+24 dB gain
0
1
pin has no function In I2C mode.
The TFA9812 features also specific gain settings which are related to < 0.5 %, 10 %, 20 %
or 30 % clipping at the output of the TFA9812. These clipping values are only valid under
the following conditions:
• The volume control is set to 0 dB.
• The gain boost is set to 0 dB.
• A 0 dBFs I2S input signal is obtained.
mode the clip level is set to 10 %.
8.5.6 Output power limiter
Output power can be limited to three discrete levels with respect to the maximum power.
The maximum power output value is determined by the value of the high voltage supply.
voltage swings.
In I2C control mode the same output power limiting levels can be selected, see
Section 9.5.6. In Legacy control mode two pins can be used to select the output power
Table 18. Legacy mode output power limiter control
Pin value
Function
ADSEL2/PLIM2
ADSEL1/PLIM1
0
0
1
1
0
1
0
1
Maximum power
Maximum power − 1.5 dB
Maximum power − 3.0 dB
Maximum power − 4.5 dB
8.5.7 PWM control for performance improvement
The PWM switching frequency of the TFA9812 is dependent on:
• The sampling frequency, fs.
Equation 9 shows the relationship between these settings and the PWM carrier
frequency:
f s
f sw
=
⋅ f
(9)
---------------------------
sw(selected)
f s(selected ))
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
22 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
The selected PWM switching frequency is 400 kHz by default and can be set to 350 kHz,
700 kHz and 750 kHz in I2C control mode. In Legacy mode 400 kHz is the only option and
this scales linearly if 32 kHz or 48 kHz is used as fs.
Remark: The selected sample frequency, fs (selected) must be equal to the sample
frequency (fs) in I2C control mode.
Remark: The performance of AM radio reception can sometimes be improved by
selecting non-interfering frequencies for the PWM signal.
8.6 Class-D amplification
The Class-D power amplification of the PWM signal is carried out in two BTL power
stages. The output signal voltage level is determined by the values on the VDDP pins.
The power amplifiers can be explicitly put into 3-state mode by using the pin ENABLE as
Table 19. ENABLE pin functionality
ENABLE pin value
Function
0
1
Output stages in 3-state mode.
Switching enabled [1]
.
[1] Can be overruled by a forced 3-state in Sleep or Fault mode.
8.7 Protection mechanisms
The TFA9812 has a wide range of protection mechanisms to facilitate optimal and safe
application. All of these are active in both I2C and Legacy control modes.
The following protections are included in the TFA9812:
• Thermal Foldback (TF)
• OverTemperature Protection (OTP)
• OverCurrent Protection (OCP)
• OverVoltage Protection (OVP)
• UnderVoltage Protection (UVP)
• Window Protection (WP)
• Lock Protection (LP)
• UnderFrequency Protection (UFP)
• OverFrequency Protection (OFP)
• Invalid BCK Protection (IBP)
• DC-blocking
• ESD
The reaction of the device to the different fault conditions differs per protection.
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
23 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
8.7.1 Thermal foldback
If the junction temperature of the TFA9812 exceeds the programmable Thermal foldback
threshold temperature the gain of the amplifier is decreased gradually to a level where the
combination of dissipation (P) and the thermal resistance from junction to ambient (Rth(j-a)
)
results in a junction temperature around the threshold temperature.
This means that the device will not completely switch off, but remains operational at lower
output power levels. Especially with music output signals this feature enables high peak
output power while still operating without any external heat sink other than the
printed-circuit board area. If the junction temperature still increases due to external
causes, the OTP switches the amplifier to 3-state mode.
Under I2C control the Thermal foldback threshold temperature value can be lowered
8.7.2 Overtemperature protection
This is a ‘hard’ protection to prevent heat damage to the TFA9812. The overtemperature
threshold level is the 160 °C junction temperature.
When the threshold temperature is exceeded the output stages are set to 3-state mode.
The temperature is then checked at 1 µs intervals and the output stages will operate
normally again once the temperature has dropped below the threshold level.
OTP is flagged by a low DIAG pin. The TFA9812 temperature is an I2C reading, see
Under normal conditions thermal foldback prevents the overtemperature protection from
being triggered.
8.7.3 Overcurrent protection
The output current of the power amplifiers is current-limited. When an output stage
exceeds a current of 3 A typical, the output stages are set to 3-state mode and after 1 µs
the stages will start operating normally again. These interruptions are not audible.
I2C settings remain valid.
8.7.4 Overvoltage protection
The supply for the power stages (VDDA, VDDP) is protected against overvoltage. When a
supply voltage exceeds 20 V the device will enter Sleep mode. When the supply voltage
has fallen below 20 V again the power-up sequence is started.
I2C settings remain valid.
8.7.5 Undervoltage protections
The supplies are protected against undervoltage. When this is detected the device will
enter Sleep mode. When the supply voltage has risen to a sufficient level again the
power-up sequence is started.
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
24 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
Table 20. Undervoltage trigger levels
Pin name
UVP level
Min
DIAG pin (protection active)
Max
VDDA
≥ 7 V
< 8 V
< 3 V
LOW
-
VDDA(3V3)
≥ 1.6 V
8.7.6 Overdissipation protection
When the output current of the power amplifiers exceeds a current value of 3 A and the
temperature is above 140 °C, overdissipation protection is activated and the device enters
Sleep mode. A restart will be initiated automatically when the two overdissipation
conditions are both changed to ‘false’.
Overdissipation is flagged by a low DIAG pin and by a high DIAG I2C status bit, see
Under normal conditions thermal foldback prevents overdissipation protection from being
triggered. I2C settings remain valid.
8.7.7 Window protection
Window protection is a feature for protecting the device against shorts from the outputs to
the ground or supply lines. If during power-up one of the outputs is shorted to VSSPx or
VDDP, power-up does not proceed any further. The trigger levels for these conditions are:
• OUTxx > VDDA − 1 V, or
• OUTxx < REFA + 1 V.
The WP alarm is flagged by a low DIAG pin and by a high DIAG I2C status bit, see
8.7.8 Lock protection
When the selected clock input source (MCLK, BCK or crystal) stops running, the TFA9812
is able to detect this and set the output stages to 3-state mode. Without this protection
peripheral devices in an application might be damaged.
The PLL lock indication is an I2C reading and will be ‘false’ in the event of a clock
8.7.9 Underfrequency protection
UFP sets the output stages to 3-state mode when the clock input source is too low. The
PWM switching frequency can becomes critically low when the clock input source is lower
than specified. Without UFP peripheral devices in an application might be damaged.
8.7.10 Overfrequency protection
OFP sets the output stages to 3-state mode when the clock input source is too high. The
PWM controller can become unstable when the clock input source is higher than
specified. Without OFP peripheral devices in an application might be damaged.
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
25 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
8.7.11 Invalid BCK protection
The BCK clock signal is verified as being at one of the allowed relative frequencies: 32 fs,
48 fs or 64 fs. If it is not at one of these frequencies the TFA9812 will set the output stages
to 3-state mode to prevent audible effects.
Detection of violation results in an automatic internal overruling of the MCLK assignment
to BCK.
8.7.12 DC blocking
The TFA9812 features a high pass filter after the I2S input to block DC signals. DC values
at the output can damage the peripheral devices. The high pass filter is always enabled.
8.7.13 Overview protections
Table 21. Overview protections
Protections
Symbol Conditions
DIAG
pin
I2C
flag[1]
Output
Recovering
TF
programmable
max. Tj > 125 °C
Floating
-
Switching Automatic, increasing
volume control back to
volume setting
OTP
OCP
OVP
Tj > 160 °C
IO > IORM
LOW
LOW
LOW
DIAG Floating
DIAG Floating
DIAG Floating
Automatic, after 1 µs and
Tj < 160 °C
Automatic, after 1 µs and
IO < IORM
VDDA > 20 V
Restart (fault to operating
when VDDA > 8 V and
VDDA(3V3) > 3 V)
UVP
ODP
WP[2]
VDDA < 8 V or
LOW
DIAG Floating
DIAG Floating
DIAG Floating
Restart (fault to operating
when VDDA > 8 V and
V
DDA(3V3) < 3 V
VDDA(3V3) > 3 V)
Tj > 140 °C and IO > IORM LOW
Restart (fault to operating
when Tj < 140 °C or
IO < IORM
)
OUTX > VDDA − 1 V or
OUTX < REFA + 1 V
LOW
Restart (fault to operating
when OUTX < VDDA − 1 V
and OUTX > VSSA + 1 V)
LP
PLL out of lock
Floating LP
Floating
Floating
Restart (fault to operating
when PLL is in lock)
UFP
PLL frequency < 45 MHz
Floating UFP
Restart (fault to operating
when
PLL frequency > 45 MHz)
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
26 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
Table 21. Overview protections …continued
Protections
Symbol Conditions
DIAG
pin
I2C
flag[1]
Output
Recovering
OFP
IBP
PLL frequency > 140 MHz Floating OFP
Floating
Restart (fault to operating
when
PLL frequency < 140 MHz)
BCK/WS is not 32 ± 2,
Floating
-
Floating
Restart (fault to operating
when BCK/WS is 32 ± 2,
48 2 or 64 2)
48 2 or 64 2
[2] Window Protection is only checked at power-up.
9. I2C bus interface and register settings
9.1 I2C bus interface
The TFA9812 supports the 400 kHz I2C bus microcontroller interface mode standard. This
can be used to control the TFA9812 and to exchange data with it when in I2C control
The TFA9812 can operate in I2C slave mode only as slave receiver or a slave transmitter.
Table 22. I2C pins in I2C control mode
Pin name
Description
SCL/SFOR
SDA/MS
I2C bus clock input
I2C bus data input and output
I2C bus device address bit A2
I2C bus device address bit A1
ADSEL2/PLIM2
ADSEL1/PLIM1
Voltage values applied to the I2C bus device address pins are interpreted as described in
Table 23. I2C pin voltages in I2C control mode
Logic value
Voltage A2/A1
< VIL
0
1
> VIH
9.2 I2C bus TFA9812 device addresses
contains the device address as well as the bit indicator read/write_not R/!W. The TFA9812
supports four different addresses, each of which can be configured using the pins
Table 24. I2C bus device address
(MSB)
Bit
(LSB)
1
1
0
1
0
A2
A1
R/!W
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
27 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
9.3 I2C write cycle description
byte size is 8 bits. The I2C registers of the TFA9812 store two data bytes. Data is always
written in pairs of two bytes. Data transfer is always MSB first.
The cycle format for writing to the TFA9812 using SDA is as follows:
1. The microcontroller asserts a start condition (S).
2. The microcontroller sends the device address (7 bits) of the TFA9812 followed by the
R/!W bit set to 0.
3. The TFA9812 asserts an acknowledge (A).
4. The microcontroller writes the 8-bit TFA9812 register address to which the first data
byte will be written.
5. The TFA9812 asserts an acknowledge.
6. The microcontroller sends the first byte. This is the most significant byte of the
register.
7. The TFA9812 asserts an acknowledge.
8. The microcontroller sends the second byte.
9. The TFA9812 asserts an acknowledgement.
10. The microcontroller can either assert the stop condition (P) or continue with a further
pair of data bytes, repeating step 6. In the latter case the targeted register address will
have been auto-increased by the TFA9812.
Table 25. I2C write cycle
Start TFA9812
Address
R/!W
TFA9812 first
register address
MS
databyte
LS
More Stop
databyte data...
S
11010A2A1
0
A
ADDR
A
MS1
A
LS1 <....>
P
9.4 I2C read cycle description
The byte size is 8 bits. The I2C registers of the TFA9812 store two data bytes. Data is
always read in pairs of two bytes. Data transfer is always MSB-first.
The read cycle format for writing to the TFA9812 using SDA is as follows:
1. The microcontroller asserts a start condition (S).
2. The microcontroller sends the device address (7 bits) of the TFA9812 followed by the
R/!W bit set to 0.
3. The TFA9812 asserts an acknowledge (A).
4. The microcontroller writes the 8-bit TFA9812 register address from which the first data
byte will be read.
5. The TFA9812 asserts an acknowledge.
6. The microcontroller asserts a repeated start (Sr).
7. The microcontroller resends the device address (7 bits) of the TFA9812 followed by
the R/!W bit set to 1.
8. The TFA9812 asserts an acknowledge.
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
28 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
9. The TFA9812 sends the first byte. This is the most significant byte of the register.
10. The microcontroller asserts an acknowledge.
11. The TFA9812 sends the second byte.
12. The microcontroller asserts either an acknowledge or a negative acknowledge (NA).
– If the microcontroller has asserted an acknowledge, the targeted register address
is auto-increased by the TFA9812 and steps 9 to 12 are repeated.
– If the microcontroller has asserted a negative acknowledge, the TFA9812 frees the
I2C bus and the microcontroller generates a stop condition (P).
Table 26. I2C read cycle
Start TFA9812
address
R/!W
First
register
address
TFA9812
address
R/!W
MS
data
byte
LS More More
data data... data...
byte
Stop
S
11010A2A1
0
A
ADDR
A
Sr 11010A2A1
1
A
MS1
A
LS1 <A>
<....>
NA
P
9.5 Top-level register map
control or status areas at top level. There are 47 control registers and 2 status registers.
The following subsections give the individual register interpretations and bit level details.
Table 27. Top-level register map
Register Default (hex)
Access See:
Description
address
(hex)
0x00
0x0020;
R/W
Interpolator settings and soft mute
Legacy_mode
0x0021; I2C_mode
0x01
0x02
0x03
0x04
0x0000
R/W
R/W
R/W
R/W
Volume control
0x0006
Format digital in
0x0002
Equalizer configuration
0x0058
Equalizer_A1 word_1; word_1 for
equalizer band A1, see Section 8.5.1.2
0x05
0x4F40
R/W
Equalizer_A1 word_2; see
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E
0x0F
0x10
0x0058
0x4F40
0x0A63
0x4240
0x0A63
0x4240
0x00B7
0x4E40
0x00B7
0x4E40
0x14A2
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Equalizer_B1 word_1
Equalizer_B1 word_2
Equalizer_C1 word_1
Equalizer_C1 word_2
Equalizer_D1 word_1
Equalizer_D1 word_2
Equalizer_A2 word_1
Equalizer_A2 word_2
Equalizer_B2 word_1
Equalizer_B2 word_2
Equalizer_C2 word_1
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
29 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
Table 27. Top-level register map …continued
Register Default (hex) Access See:
Description
address
(hex)
0x11
0x12
0x13
0x14
0x15
0x16
0x17
0x18
0x19
0x1A
0x1B
0x1C
0x1D
0x1E
0x1F
0x20
0x21
0x22
0x23
0x24
0x25
0x26
0x27
0x28
0x29
0x2A
0x2B
0x2C
0x2D
0x2E
0x2F
0x30
0x7A40
0x14A2
0x7A40
0x0156
0x4D40
0x0156
0x4D40
0x2871
0x7140
0x2871
0x7140
0x02A5
0x4C40
0x02A5
0x4C40
0x4A80
0x5040
0x4A80
0x5040
0x0534
0x4B40
0x0534
0x4B40
0xD961
0x4840
0xD961
0x4840
0x0005
0x000E
0x0000
-
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R
Equalizer_C2 word_2
Equalizer_D2 word_1
Equalizer_D2 word_2
Equalizer_A3 word_1
Equalizer_A3 word_2
Equalizer_B3 word_1
Equalizer_B3 word_2
Equalizer_C3 word_1
Equalizer_C3 word_2
Equalizer_D3 word_1
Equalizer_D3 word_2
Equalizer_A4 word_1
Equalizer_A4 word_2
Equalizer_B4 word_1
Equalizer_B4 word_2
Equalizer_C4 word_1
Equalizer_C4 word_2
Equalizer_D4 word_1
Equalizer_D4 word_2
Equalizer_A5 word_1
Equalizer_A5 word_2
Equalizer_B5 word_1
Equalizer_B5 word_2
Equalizer_C5 word_1
Equalizer_C5 word_2
Equalizer_D5 word_1
Equalizer_D5 word_2
PWM signal control
Digital-in clock configuration
Thermal foldback control
TFA9812 temperature
-
R
Reserved registers or bits will be indicated by RSD.
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
30 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
9.5.1 Interpolator settings and soft mute
Table 28. Register address 00h: miscellaneous I2C interpolator settings
Bit
15
RSD
0
14
13
12
11
10
9
8
Symbol
Default
Bit
RSD
RSD
RSD
RSD
RSD
RSD
RSD
0
0
0
0
0
0
0
0
7
6
INV_POL
0
5
ROFF1
1
4
ROFF0
0
3
FDEMP2
0
2
FDEMP1
0
1
FDEMP0
0
Symbol
Default
RSD
0
S_MUTE
1/0
Table 29. Bit description of register 00h: miscellaneous I2C interpolator settings
Bit
Symbol
Description
6
INV_POL
Enable polarity inversion:
0 = No polarity inversion (left audio signal connected to
channel 1; right signal to channel 2)
1 = Polarity inversion enabled
5 to 4
ROFF[1:0]
Filter roll-off sharpness:
0 = Slow filter roll-off (2 to 8 fs) ≥ stop band > 0.7619 fs
1 = Slow filter roll-off (2 to 8 fs) ≥ stop band > 0.7619 fs
2 = Fast filter roll-off (2 to 8 fs) ≥ stop band > 0.6094 fs
3 = Fast filter roll-off (2 to 8 fs) ≥ stop band > 0.6094 fs
Digital de-emphasis setting:
3 to 1
FDEMP[2:0]
0 = No digital de-emphasis
1 = Digital de-emphasis for fs = 32 kHz
2 = Digital de-emphasis for fs = 44.1 kHz
3 = Digital de-emphasis for fs = 48 kHz
4 = Digital de-emphasis for fs = 96 kHz
5 to 8 = No digital de-emphasis
0
S_MUTE
Soft mute:
0 = Soft mute disabled using raised cosine (default in
Legacy control mode)
1 = Soft mute enabled using raised cosine (default in
I2C control mode)
9.5.2 Volume control
Table 30. Register address 01h: volume control
Bit
15
14
13
12
11
10
9
8
Symbol
Default
Bit
VOL_L7
VOL_L6
VOL_L5
VOL_L4
VOL_L3
VOL_L2
VOL_L1
VOL_L0
0
0
0
0
0
0
0
0
7
VOL_R7
0
6
VOL_R6
0
5
VOL_R5
0
4
VOL_R4
0
3
VOL_R3
0
2
VOL_R2
0
1
VOL_R1
0
0
VOL_R0
0
Symbol
Default
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
31 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
Table 31. Bit description of register 00h: miscellaneous I2C interpolator settings
Bit
Symbol
Description
15 to 8
VOL_L[15:8]
function of data byte setting.
7 to 0
VOL_R[7:0]
function of data byte setting.
9.5.3 Digital input format
Table 32. Register address 02h: digital input format
Bit
15
RSD
0
14
RSD
0
13
RSD
0
12
RSD
0
11
10
9
8
Symbol
Default
Bit
RSD
RSD
RSD
RSD
0
0
0
0
7
6
5
4
3
DI_FOR2
0
2
DI_FOR1
1
1
DI_FOR0
1
0
WS_POL
0
Symbol
Default
RSD
0
RSD
0
RSD
0
RSD
0
Table 33. Bit description of register 02h: digital input format
Bit
Symbol
Description
3 to 1
DI_FOR[2:0]
Digital audio input format:
0 = RSD
1 = RSD
2 = MSB-justified data up to 24 bits
3 = I2S data up to 24 bits
4 = LSB-justified 16-bit data
5 = LSB-justified 18-bit data
6 = LSB-justified 20-bit data
7 = LSB-justified 24-bit data
0
WS_POL
Enable WS signal polarity inversion:
0 = No WS signal polarity inversion
1 = WS signal polarity inversion enabled
9.5.4 Equalizer configuration
Table 34. Register address 03h: equalizer configuration
Bit
15
RSD
0
14
RSD
0
13
RSD
0
12
RSD
0
11
RSD
0
10
RSD
0
9
8
Symbol
Default
Bit
RSD
RSD
0
0
7
6
5
4
3
2
1
EQ_BP
1
0
EQ_BND
0
Symbol
Default
RSD
0
RSD
0
RSD
0
RSD
0
RSD
0
RSD
0
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
32 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
Table 35. Bit description of register 03h: equalizer configuration
Bit
Symbol
Description
1
EQ_BP
Equalizer bypass enable:
0 = Equalizer not bypassed
1 = Equalizer bypassed
0
EQ_BND
Equalizer 10-band or 5-band configuration selection:
0 = 10-band equalizer configuration enabled
1 = 5-band equalizer configuration enabled
9.5.5 Equalizer settings
Table 36. Register addresses xxh = 04, 06...2A
For word1 for equalizer 'yy' see Figure 9
Bit
15
14
13
12
11
10
9
8
Symbol
Default[1]
Bit
Eyy_t1
Eyy_k1m10
Eyy_k1m
9
1
Eyy_k1m
8
0
Eyy_k1m
7
Eyy_k1m
6
Eyy_k1m
5
Eyy_k1m4
-
-
-
-
-
-
-
-
7
Eyy_k1m
-
6
5
Eyy_k1m
-
4
Eyy_k1m
-
3
2
1
0
Symbol
Default[1]
3
Eyy_k1m
-
2
Eyy_k1e3
-
Eyy_k1e2
-
Eyy_k1e1
-
Eyy_k1e0
-
[1] Default settings are shown in Table 27. The corresponding equalizer configuration is shown in Table 40.
Table 37. Register addresses xxh = 05, 07...2B
For word2 for equalizer 'yy' see Figure 9
Bit
15
14
13
12
11
10
9
8
Symbol
Default
Bit
Eyy_t2
Eyy_k2m
3
Eyy_k2m
2
Eyy_k2m
1
Eyy_k2m
0
Eyy_k2e2
Eyy_k2e1
Eyy_k2e0
-
-
-
-
-
-
-
-
7
6
5
4
3
2
1
0
Eyy_s
-
Symbol
Default
Eyy_k06
-
Eyy_k05
-
Eyy_k04
-
Eyy_k03
-
Eyy_k02
-
Eyy_k01
-
Eyy_k00
-
[1] Default settings are shown in Table 27. The corresponding equalizer configuration is shown in Table 40.
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
33 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
A1
C1
A2
C2
A3
C3
A4
C4
A5
Left in
Left out
C5
2 × 5 or 2 × 10
B1
D1
B2
D2
B3
D3
B4
D4
B5
Right in
Right out
D5
2 × 5 or 2 × 10
010aaa404
Fig 9. Equalizer configuration and register location mapping
Table 38. Bit description of registers xxh = 04, 06...2A
Bit
Symbol
Description
15
Eyy_t1
14 to 4
Eyy_k1m[10:0]
The 11 mantissa bits of the filter parameter k1, see
3 to 0
Eyy_k1e[3:0]
The four exponent bits of the filter parameter k1, see
Table 39. Bit description of registers xxh = 05, 07...2B
Bit
Symbol
Description
15
Eyy_t2
14 to 11
Eyy_k2m[3:0]
The four mantissa bits of the filter parameter k2, see
10 to 8
7 to 1
0
Eyy_k2e[2:0]
Eyy_k0[6:0]
Eyy_s
The three exponent bits of the filter parameter k2, see
The seven bits of the filter gain parameter k0, see
0 = No scaling applied
1 = −6 dB amplification enabled
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
34 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
Table 40. Default configuration equalizer for fs = 44.1 kHz
Band
A1/B1
A2/B2
A3/B3
A4/B4
A5/B5
C1/D1
C2/D2
C3/D3
C4/D4
C5/D5
Frequency
(Hz)
31
63
125
250
500
1000
2000
4000
8000
16000
Q-factor
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
Gain (dB)
9.5.6 PWM signal control
Table 41. Register 2Ch: PWM signal control
Bit
15
RSD
0
14
RSD
0
13
RSD
0
12
11
10
9
8
Symbol
Default
Bit
RSD
RSD
RSD
RSD
RSD
0
0
0
0
0
7
6
5
4
PW_OFF
0
3
PW_SF1
0
2
1
PW_CL1
0
0
PW_CL0
1
Symbol
Default
RSD
0
PLIM1
0
PLIM0
0
PW_SF0
1
Table 42. Bit description address 2Ch
Bit
Symbol
Description
+24 dB gain boost:
7
GAIN
0 = Gain boost 0 dB
1 = Gain boost +24 dB
Output power limitation:
0 = Maximum power
6 to 5
PLIM[1:0]
1 = Maximum power − 1.5 dB
2 = Maximum power − 3.0 dB
3 = Maximum power − 4.5 dB
Hard mute control:
4
PW_OFF
0 = No hard mute
1 = Hard mute enabled, implemented by PWM signal
with 50 % duty cycle
3 to 2
PW_SF[1:0]
PWM switching frequency:
0 = 350 kHz
1 = 400 kHz
2 = 700 kHz
3 = 750 kHz
1 to 0
PW_CL[1:0]
PWM clip level:
0 = < 0.5 % THD
1 = 10 % THD
2 = 20 % THD
3 = 30 % THD
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
35 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
9.5.7 Digital-in clock configuration
Table 43. Register 2Dh: digital-in clock configuration
Bit
15
RSD
0
14
RSD
0
13
RSD
0
12
11
10
9
8
Symbol
Default
Bit
RSD
RSD
RSD
RSD
RSD
0
0
0
0
0
7
6
5
4
FSUB3
0
3
FSUB2
1
2
FSUB1
1
1
FSUB0
1
0
DI_MS
0
Symbol
Default
RSD
0
RSD
0
RSD
0
Table 44. Bit description of register 2Dh:digital-in clock configuration
Bit
Symbol
Description
4 to 1
FSUB[3:0]
Sample frequency fs of digital-in signal:
0 = 8 kHz
1 = 11.025 kHz
2 = 12 kHz
3 = 16 kHz
4 = 22.05 kHz
5 = 24 kHz
6 = 32 kHz
7 = 44.1 kHz
8 = 48 kHz
9 = 64 kHz
10 = 88.2 kHz
11 = 96 kHz
12 = 128 kHz
13 = 176.4 kHz
14 = 192 kHz
15 = RSD
0
DI_MS
TFA9812 digital-in Master/Slave mode selection:
0 = Slave mode
1 = Master mode
9.5.8 Thermal foldback control
Table 45. Register 2Eh: thermal foldback control
Bit
15
14
13
12
11
10
9
8
Symbol
Default
Bit
RSD
RSD
RSD
RSD
RSD
RSD
TP_THR9
TP_THR8
0
0
0
0
0
0
0
0
7
TP_THR7
0
6
TP_THR6
0
5
TP_THR5
0
4
TP_THR4
0
3
TP_THR3
0
2
TP_THR2
0
1
TP_THR1
0
0
TP_THR0
0
Symbol
Default
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
36 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
Table 46. Bit description of register 2Dh: digital-in clock configuration
Bit
Symbol
Description
9 to 0
TP_THR[9:0]
Reduction on the maximum temperature of 125 °C.
The reduction can be calculated by:
(TP_THR[9:0]
reduction = INTEGER
in °C
-----------------------------------
2.4552
9.5.9 TFA9812 temperature
Table 47. Register 2Fh: TFA9812 temperature
Bit
15
14
13
12
11
RSD
-
10
9
8
Symbol
Default
Bit
RSD
RSD
RSD
RSD
RSD
TEMP9
TEMP8
-
-
-
-
-
-
-
7
6
5
4
3
2
1
0
Symbol
Default
TEMP7
-
TEMP6
-
TEMP5
-
TEMP4
-
TEMP3
-
TEMP2
-
TEMP1
-
TEMP0
-
Table 48. Bit description of register 2Dh: digital-in clock configuration
Bit
Symbol
Description
9 to 0
TEMP[9:0]
Temperature of the TFA9812, which can be calculated in
°C using: Temp TFA9812 = (1023 − TEMP[9:0]) / 2.4552
9.5.10 Miscellaneous status
Table 49. Register 30h: miscellaneous status
Bit
15
14
13
12
11
10
9
8
Symbol
Default
Bit
RSD
RSD
RSD
RSD
RSD
RSD
RSD
RSD
-
-
6
-
5
-
-
-
-
1
-
7
RSD
-
4
3
2
DIAG
-
0
MUTE
-
Symbol
Default
OFP
-
UFP
-
UVP1V8
-
UVP3V3
-
LP
-
Table 50. Bit description of register 30h: miscellaneous status
Bit
Symbol
Description
6
OFP
PLL frequency-over-range indicator:
0 = PLL frequency in supported range
1 = PLL frequency exceeds highest supported
frequency value
5
4
UFP
PLL frequency under-range indicator:
0 = PLL frequency in supported range
1 = PLL frequency below lowest supported frequency
value
UVP1V8
Undervoltage detector for pins 4 and 41:
0 = No UVP has been detected
1 = A UVP has been detected since the last read-out of
the register
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
37 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
Table 50. Bit description of register 30h: miscellaneous status …continued
Bit
Symbol
Description
3
UVP3V3
Undervoltage detector for pins 3 and 40:
0 = No UVP has been detected
1 = A UVP has been detected since the last read-out of
the register
2
DIAG
0 = Diagnostic pin has not been flagged low
1 = Diagnostic pin has been flagged low since the last
read-out of the register
1
0
LP
PLL lock protection indicator:
0 = PLL is in locked status
1 = PLL is not in locked status
Soft mute status:
MUTE
0 = No soft-mute or soft mute/demute in progress
1 = Audio signal muted as result of a soft mute
[1] The diagnostic pin 30 DIAG is flagged when several protection mechanisms have been active, see
9.6 Overview of functional control in each control mode
description of each function.
Table 51. Functional control support in I2C and Legacy control modes
D = fixed control setting, determined by default I2C register setting; N = not supported; Y = fully
supported (i.e. all options implemented in the TFA9812).
Control function
Reference
I2C mode
Legacy mode
I2C register content
Y
N/D
Y
Sleep mode enable
Y
Operating mode enable
Y
Y
3-state mode enable
Master/Slave I2S
Y
Y
Y
Y
MCLK/BCK master input clock selection
Digital audio input format selection
Selection fs = 8 kHz to192 kHz
Equalizer enable and configuration
Detailed equalizer settings
Digital volume control per channel
Auto
Y
Auto
Subset
D[1]
D[2]
N
Y
Y
Y
Y
N
N
Y
Y
De-emphasis for subset of allowed fs
Soft mute
N
Y[3]
Y
Hard mute
Y
N
Polarity switch enable
+24 dB gain boost
Y
N
Y
Y
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
38 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
Table 51. Functional control support in I2C and Legacy control modes …continued
D = fixed control setting, determined by default I2C register setting; N = not supported; Y = fully
supported (i.e. all options implemented in the TFA9812).
Control function
Reference
I2C mode
Legacy mode
Clip level control
Y
Y
Y
Y
D[4]
Output power limit level control
PWM signal frequency selection
Y
D[5]
N
[1] 32 kHz, 44.1 kHz and 48 kHz supported
[2] Bypass.
[3] Special Legacy mode implementation.
[4] 10 % clip level.
[5] 400 kHz.
10. Internal circuitry
Table 52. Internal circuitry
Pin
1
Symbol
XTALIN
AVOL
Equivalent circuitry
1, 32
32
ESD
V
, V , REFA, REFD
SS1 SS2
Exposed die paddle
010aaa459
2
XTALOUT
STABA
2
ESD
V
, V
SS1 SS2
, REFA, REFD,
Exposed die-paddle
010aaa460
3
VDDA(3V3)
VDDD(3V3)
3, 40
ESD
40
V
, V
SS1 SS2
, REFA, REFD,
Exposed die-paddle
010aaa461
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
39 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
Table 52. Internal circuitry …continued
Pin
4
Symbol
STABA
STABD
Equivalent circuitry
V
V
DDA(3V3), DDD(3V3)
41
4, 41
ESD
V
, V
SS1 SS2
, REFA, REFD,
Exposed die-paddle
010aaa462
5
6
REFA
VDDA
6
5
24 V
V
, REFD, V
,
SS2
SS1
Exposed die-paddle
010aaa463
7
TEST1
V
DDA
7
13 kΩ
V
SS1
010aaa464
9
STAB2
STAB1
V
DDA
28
9, 28
12 V
V
SS1
010aaa465
10/11
18/19
26/27
VSSP2
VDDP
VSSP1
18/19
24 V
10/11, 26/27
010aaa466
12
15
22
25
BOOT2N
BOOT1P
BOOT2P
BOOT1N
12, 15, 22, 25
12 V
OUT2N, OUT1P, OUT2P, OUT1N
010aaa467
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
40 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
Table 52. Internal circuitry …continued
Pin
Symbol
OUT2N
OUT1P
OUT2P
OUT1N
Equivalent circuitry
13/14
16/17
20/21
23/24
V
DDP
13/14, 16/17, 20/21, 23/24
V
, V
SSP1 SSP2
010aaa468
29
DIAG
V
DDA
29
V
V
SS1
SS1
010aaa469
30
CDELAY
V
DDA
2 µA
30
200 nA
5 kΩ
DISCHARGE
V
SS1
010aaa470
31
POWERUP
V
DDA
3 kΩ
31
250 nA
V
SS1
010aaa471
33
34
35
36
37
43
ENABLE
33, 34, 35, 36, 37, 43
GAIN
Pull-down
ESD
CSEL
50 µA
ADSEL2/PLIM2
ADSEL1/PLIM1
TEST2
V
, V
, REFA, REFD,
SS1 SS2
Exposed die-paddle
010aaa472
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
41 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
Table 52. Internal circuitry …continued
Pin
Symbol
Equivalent circuitry
38
SCL/SFOR
38, 44
ESD
V
, V , REFA, REFD,
SS1 SS2
Exposed die-paddle
010aaa473
39
SDA/MS
39
ESD
V
, V , REFA, REFD,
SS1 SS2
Exposed die-paddle
010aaa474
45
46
47
WS
V
DDD(3V3)
BCK
MCLK
45, 46, 47
ESD
VSS1, VSS2, REFA, REFD,
Exposed die-paddle
010aaa475
11. Limiting values
Table 53. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).
Symbol
VDDA
VDDP
VDDA(3V3)
VDDD(3V3)
Tj
Parameter
Conditions
−VSS
Min
Max
+24
+24
+4.6
+4.6
150
+150
+85
5
Unit
V
analog supply voltage
power supply voltage
analog supply voltage (3.3 V)
digital supply voltage (3.3 V)
junction temperature
storage temperature
ambient temperature
power dissipation
−0.3
−VSSPx; x = 1.2
−VSS
−0.3
V
−0.3
V
−VSS
−0.3
V
-
°C
°C
°C
W
Tstg
−55
−40
Tamb
P
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
42 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
Table 53. Limiting values …continued
In accordance with the Absolute Maximum Rating System (IEC 60134).
Symbol
Parameter
Conditions
DIAG
Min
Max
Unit
V
Vx
voltage on pin x
VSS − 0.3
VSS − 0.3
VSS − 0.5
VSS + 12
VDDA + 0.3
VSS + 5.5
POWERUP
V
ENABLE, GAIN, CSEL,
ADSEL2/PLIM2,
V
ADSEL2/PLIM1, SCL/SFOR,
SDA/MS, DATA, WS, BCK,
MCLK
AVOL
VSS − 0.5
VSS + 4.6
+1750
V
V
Vesd
electrostatic discharge voltage
according to the human body model
STAB1 and STAB2 with
respect to other pins
−1750
all other pins
−2
+2
kV
V
according to the charge
device model
−500
+500
[1] Vss = VSS1 = VSS2 = REFA = REFD
12. Thermal characteristics
Table 54. Thermal Characteristics
Symbol
Parameter
Condition
Min Typ Max Unit
Rth(j-a)
thermal resistance
from junction to
ambient
No air flow, JEDEC board
-
-
-
-
42 K/W
36 K/W
No air flow; typical 4L board in
the NXP 4L reference
application
No air flow; typical 2L board in
the NXP 2L reference
application
-
-
42
K/W
Rth(j-c)
thermal resistance
from junction to case
5
-
-
-
-
K/W
K/W
Rth(j-lead)
thermal resistance
from junction to lead
Worst-case pin
5
[1] Measured in a JEDEC high K-factor test board (standard EIA/JESD 51-7).
[2] Measured in free air with natural convection.
[3] Strongly depends on where measurement is made on the case: worst-case value stated.
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
43 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
13. Characteristics
13.1 DC Characteristics
Table 55. DC characteristics
Unless specified otherwise, VDDA = VDDP = 12 V, VSSP1 = VSSP2 = 0 V, VDDA(3V3) = VDDD(3V3) = 3.3 V,
SS1 = VSS2 = REFD = REFA = 0 V, Tamb = 25 °C, RL = 8 Ω, fi = 1 kHz, fs = 44.1 kHz, fsw = 400 kHz, 24-bit I2S input data,
V
Symbol
Parameter
Condition
Min
Typ
Max
Unit
Supply voltage
VDDA
analog supply
8
12
20
V
voltage
VDDP
power supply voltage
8
12
20
V
V
VDDA(3V3)
analog supply
voltage (3.3 V)
3.0
3.3
3.6
VDDD(3V3)
IP
digital supply voltage
(3.3 V)
3.0
-
3.3
38
3.6
45
V
supply current
soft mute mode, with
load, filter and snubbers
connected
mA
sleep mode
-
160
270
µA
IDDA(3V3)
analog supply
current (3.3 V)
operating mode
I2S slave mode
I2S master mode
sleep mode
-
-
2
4
4
6
mA
mA
VDDA = VDDP = 12 V
VDDA = VDDP = 1 V
-
-
120
40
-
µA
70
µA
IDDD(3V3)
digital supply current operating mode
(3.3 V)
I2S slave mode
I2S master mode
-
-
-
15
25
4
25
40
30
mA
mA
µA
sleep mode;
DATA = WS = BCK =
MLCK = 0 V
Amplifier output pins; pins OUT1P, OUT1N, OUT2P and OUT2N
|VO(offset)
|
output offset voltage soft mute mode
-
-
5
mV
Power-up pin
VIH
HIGH-level input
voltage
With respect to VSS1
With respect to VSS1
2.1
−0.3
-
-
VDDD(3V3)
+0.8
V
VIL
LOW-level input
voltage
-
V
II
input current
0.1
20
µA
MCLK, BCK, WS, DATA pin
VIH
HIGH-level input
voltage
With respect to VSS2
With respect to VSS2
0.7 × VDDD(3V3)
-
-
-
-
V
VIL
LOW-level input
voltage
-
-
0.3 × VDDD(3V3)
V
Ci
input capacitance
3
pF
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
44 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
Table 55. DC characteristics …continued
Unless specified otherwise, VDDA = VDDP = 12 V, VSSP1 = VSSP2 = 0 V, VDDA(3V3) = VDDD(3V3) = 3.3 V,
SS1 = VSS2 = REFD = REFA = 0 V, Tamb = 25 °C, RL = 8 Ω, fi = 1 kHz, fs = 44.1 kHz, fsw = 400 kHz, 24-bit I2S input data,
MCLK clock mode, typical application diagram (Figure 13).
V
Symbol
Parameter
Condition
Min
Typ
Max
Unit
VOH
HIGH-level output
voltage
At IOH = −0.4 mA
VDDD(3V3) − 0.4 V -
-
V
VOL
CL
LOW-level output
voltage
At IOL = 4 mA
-
-
-
-
400
50
mV
pF
load capacitance
SDA/MS, SCL/SFOR pin
VIH
HIGH-level input
voltage
With respect to VSS2
With respect to VSS2
With respect to VSS2
0.7 × VDDD(3V3)
−0.3
-
-
-
5.5
V
V
V
VIL
LOW-level input
voltage
0.3 × VDDD(3V3)
Vhys(i)
input hysteresis
voltage
0.1 × VDDD(3V3)
-
Ci
input capacitance
-
-
-
-
2.5
pF
VOL
LOW-level output
voltage
At IOL = 3 mA
400
mV
ENABLE, GAIN, CSEL, ADSEL2/PLIM2, ASEL1/PLIM1 pin
VIH
HIGH-level input
voltage
With respect to VSS2
With respect to VSS2
With respect to VSS2
0.7 × VDDD(3V3)
-
-
V
VIL
LOW-level input
voltage
-
0.3 × VDDD(3V3)
V
Vhys(i)
input hysteresis
voltage
0.1 × VDDD(3V3)
-
-
V
II
input current
-
50
93
µA
Regulators
Vo
output voltage
STAB1 − VSS1
STAB2 − VSS1
STABA − REFA
STABD − REFD
10
11
12
V
V
V
V
10
11
12
1.65
1.65
1.8
1.8
1.95
1.95
CDELAY pin
VCDELAY
voltage on pin
CDELAY
Relative to positive
analog power supply
-
-
VDDA −1
-
-
V
V
Crystal pins
Vo(xtal)(p-p)
peak-to-peak crystal With respect to VSS2
1.8
oscillator output
voltage
AVOL pin
Vi
input voltage
Mute level, with respect
to VSS2
0.77
2.74
-
0.8
2.8
-
0.83
2.86
1
V
0 dB level with respect
to VSS2
V
II
input current
µA
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
45 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
Table 55. DC characteristics …continued
Unless specified otherwise, VDDA = VDDP = 12 V, VSSP1 = VSSP2 = 0 V, VDDA(3V3) = VDDD(3V3) = 3.3 V,
SS1 = VSS2 = REFD = REFA = 0 V, Tamb = 25 °C, RL = 8 Ω, fi = 1 kHz, fs = 44.1 kHz, fsw = 400 kHz, 24-bit I2S input data,
MCLK clock mode, typical application diagram (Figure 13).
V
Symbol
Thermal Foldback (TF)
Tact(th_fold) thermal foldback
Parameter
Condition
Min
Typ
Max
Unit
118
125
132
°C
activation
temperature
OverTemperature Protection (OTP)
Tact(th_prot)
thermal protection
activation
temperature
-
-
160
24
°C
OverVoltage Protection (OVP)
VP(ovp)
overvoltage
protection supply
voltage
20
22.3
V
UnderVoltage Protections (UVP)
VP(uvp)
undervoltage
protection supply
voltage
UVP on VDDA
7
7.5
2.2
8
V
V
UVP on VDDA(3V3)
1.6
3.0
OverCurrent Protection (OCP)
IO(ocp)
overcurrent
protection output
current
3.0
3.3
3.6
A
Window Protection (WP)
Vo output voltage
high level
low level
-
-
VDDA − 1
-
-
V
V
REFA + 1
OverFrequency Protection (OFP)
fOFP
Overfrequency
protection frequency
At PLL output frequency
At PLL output frequency
100
30
140
45
185
60
MHz
MHz
UnderFrequency Protection (OFP)
fUFP
Underfrequency
protection frequency
[1] IP is the current through the analog supply voltage (VDDA) pin added to the current through the power supply voltage (VDDP) pin.
[2] Thermal foldback temperature sensor is not located at hottest spot. Hottest spot is 12 °C higher.
[3] Current limiting concept: in overcurrent condition no interruption of the audio signal in case of impedance drop.
[4] PLL output frequency not external available.
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
46 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
13.2 AC characteristics
Table 56. AC characteristics
Unless specified otherwise, VDDA = VDDP = 12 V, VDDA(3V3) = VDDD(3V3) = 3.3 V, Tamb = 25 °C, Rs < 0.1 Ω[1], RL = 8 Ω,
fi = 1 kHz, fs = 44.1 kHz, fsw = 400 kHz, 24-bit I2S input data, MCLK clock mode, typical application diagram (Figure 13).
Symbol Parameter
Condition
Min. Typ. Max. Unit
Output power per channel
Po(RMS)
RMS output power
Continuous time output power per channel; THD = 1 %, RL = 6 Ω
VDDA = VDDP = 12 V
VDDA = VDDP = 15 V
-
-
7.9
12
-
-
W
W
Continuous time output power per channel; THD = 10 %, RL = 6 Ω
VDDA = VDDP = 12 V 9.7
-
-
W
Short time (≤ 10 s) output power per channel; THD = 10 %, RL = 6 Ω
VDDA = VDDP = 15 V
-
15
-
W
Continuous time output power per channel; THD = 1 %, RL = 8 Ω
VDDA = VDDP = 12 V
VDDA = VDDP = 15 V
-
-
6.6
10
-
-
W
W
Continuous time output power per channel; THD = 10 %, RL = 8 Ω
VDDA = VDDP = 12 V
VDDA = VDDP = 13.5 V
VDDA = VDDP = 15 V
-
-
-
8.3
10
12
-
-
-
W
W
W
Short time (≤ 10 s) output power per channel; THD = 10 %, RL = 8 Ω
VDDA = VDDP = 17 V
-
15
-
W
Performance
THD+N
total harmonic
PO = 1 W; AES17 brick wall filter
VO = 10 V; A-weighted
-
-
0.07 0.1
%
distortion-plus-noise
signal-to-noise ratio
output noise voltage
S/N
103
-
dB
Vn(o)
MCLK clock jitter < 200 ps; AES17 brick-wall filter
operating mode
soft mute mode
hard mute mode
-
70
70
30
54
-
-
-
-
µV
µV
µV
dB
-
-
αcs
channel separation
Po(RMS) = 1 W; aggressor channel:
fi = 1 kHz
50
SVRR
supply voltage ripple rejection
output power efficiency
Vripple = 2 Vpp; fripple = 100 Hz
RL = 8 Ω; Po(RMS) = 8.3 W
RL = 6 Ω; Po(RMS) = 9.7 W
55
-
60
88
83
-
-
-
dB
%
ηpo
-
%
Power-up times and delay times
td(on)
turn-on delay time
-
-
155 ms
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
47 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
Table 56. AC characteristics …continued
Unless specified otherwise, VDDA = VDDP = 12 V, VDDA(3V3) = VDDD(3V3) = 3.3 V, Tamb = 25 °C, Rs < 0.1 Ω[1], RL = 8 Ω,
fi = 1 kHz, fs = 44.1 kHz, fsw = 400 kHz, 24-bit I2S input data, MCLK clock mode, typical application diagram (Figure 13).
Symbol Parameter
Condition
fs =
Min. Typ. Max. Unit
tPD
propagation delay
8 kHz
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3.6
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ms
ms
ms
ms
ms
ms
µs
µs
µs
µs
µs
µs
µs
µs
µs
11.025 kHz
12 kHz
2.58
2.39
1.78
1.3
16 kHz
22.05 kHz
24 kHz
1.18
892
664
600
458
320
306
67.2
48
32 kHz
44.1 kHz
48 kHz
64 kHz
88.2 kHz
96 kHz
128 kHz
176.4 kHz
192 kHz
40.8
PWM output
tr
rise time
IO = 0 A
IO = 0 A
IO = 0 A
-
-
-
-
10
10
40
-
-
-
ns
ns
ns
Ω
tf
fall time
tw(min)
RDSon
minimum pulse width
drain-source on-state resistance
per output MOSFET, for low and high
side
0.28 0.35
δmax
maximum duty factor
-
-
0.96
-
[1] Rs is the series resistance of inductor of low-pass LC filter in the application.
[2] Output power measured across the loudspeaker load. This is based on indirect measurement of RDSon
.
13.3 Timing
VDDD(3V3) = VDDA(3V3) = 2.7 V to 3.6 V; VDDA = VDDP = 8 V to 20 V;Tamb = −20 °C to +85 °C; all voltages referenced to ground;
unless otherwise specified.
Symbol
fSCL
Parameter
Conditions
Min
Typ
Max
Unit
kHz
µs
SCL clock frequency
LOW period of the SCL clock
HIGH period of the SCL clock
rise time
-
-
-
-
-
-
-
400
tLOW
tHIGH
tr
1.3
-
-
-
-
-
0.6
µs
SDA and SCL signals
SDA and SCL signals
20 + 0.1 Cb
20 + 0.1 Cb
0.6
ns
tf
fall time
ns
tHD;STA
hold time (repeated) START
condition
µs
tSU;STA
set-up time for a repeated START
condition
0.6
-
-
µs
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
48 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
Table 57. Characteristics I2C bus interface; see Figure 10 …continued
VDDD(3V3) = VDDA(3V3) = 2.7 V to 3.6 V; VDDA = VDDP = 8 V to 20 V;Tamb = −20 °C to +85 °C; all voltages referenced to ground;
unless otherwise specified.
Symbol
tSU;STO
tBUF
Parameter
Conditions
Min
0.6
1.3
Typ
Max
Unit
µs
set-up time for STOP condition
-
-
-
-
bus free time between a STOP and
START condition
µs
tSU;DAT
tHD;DAT
tSP
data set-up time
data hold time
100
0
-
-
-
-
ns
µs
ns
-
pulse width of spikes that must be
suppressed by the input filter
0
50
Cb
capacitive load for each bus line
-
-
400
pF
[1] Cb is the total capacitance of one bus line in pF. The maximum capacitive load for each bus line is 400 pF.
[2] After this period, the first clock pulse is generated.
[3] To be suppressed by the input filter.
SDA
t
LOW
t
t
t
t
t
SP
BUF
r
f
HD;STA
SCL
t
t
SU;STO
HD;STA
t
t
t
t
SU;DAT
SU;STA
Sr
HD;DAT
HIGH
P
S
P
010aaa225
Fig 10. Timing
14. Application information
14.1 Output power estimation
2
RL
⋅ δmax ⋅ VP
----------------------------------------------------
RL + 2 ⋅ (RDSon + RS)
---------------------------------------------------------------------------------------------
2 ⋅ RL
PO(0.5%) =
(10)
Where:
VP = supply voltage (V) (VDDP-VSSP).
RL = load impedance (Ω).
RDSon = ‘On’ resistance power switch (Ω).
RS = Series resistance output inductor (Ω).
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
49 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
δmax = Maximum duty factor (0.96).
PO(10%) = 1.25 ⋅ PO(0.5%)
(11)
THD = 10 % as a function of BTL supply voltage for different load impedances.
010aaa347
010aaa348
30
45
P
(10 %)
P
(0.5 %)
O
O
W/channel
(W/channel)
(1)
(1)
(2)
20
30
(2)
(3)
10
15
(3)
0
8
0
8
12
16
20
24
12
16
20
24
V
(V)
V
P
(V)
P
(1) 6 Ω
(2) 8 Ω
(3) 16 Ω
(1) 6 Ω
(2) 8 Ω
(3) 16 Ω
Fig 11. BTL PO (0.5 %) as a function of VP
Fig 12. BTL PO (10 %) as a function of VP
14.2 Output current limiting
The peak output current is internally limited above a level of 3 A minimum. During normal
operation the output current should not exceed this threshold level of 3 A otherwise the
output signal will be distorted. The peak output current in BTL can be estimated using
VP
IO(max)
≤
(12)
-----------------------------------------------------
RL + 2 ⋅ 〈 RDSon + RS〉
Where:
VP= supply voltage (V) (VDDP-VSSP
)
RL= load impedance (Ω)
RDSon= 'On' resistance power switch (Ω)
RS= series resistance output inductor (Ω)
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
50 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
Remark: A 4.8 Ω speaker (6 Ω speaker with 20 % spread) in BTL configuration can be
used up to a supply voltage of 17 V without running into current limiting. Current limiting
(clipping) will avoid audio holes, but it causes a distortion comparable to voltage clipping.
14.3 Speaker configuration and impedance
For a flat-frequency response (second-order Butterworth filter) it is necessary to change
the low pass filter components LLC and CLC according to the speaker configuration and
impedance.
Table 58. Filter component values
Impedance (Ω)
LLC (µH)
CLC (nF)
680
6
15
18
47
8
560
16
330
14.4 Typical application schematics
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
51 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx
14.4.1 I2S slave mode and Legacy control mode
DIAGNOSTIC
R
VDDA
VPA
VP
10 Ω
POWERUP
DC-VOLUME CONTROL
ENABLE
V
P
= 8 V to 20 V
GND
POWER IN
C
VDDP
220 µF / 25 V
C
C
DELAY
1 nF
STAB
100 nF
36
35
34
33
32
31
30 29 28
27
26 25
C
BOOT
15 nF
37
ADSEL1/PLIM1
24
23
22
21
20
19
18
17
16
15
14
13
OUT1N
OUT1N
BOOT2P
OUT2P
OUT2P
38
39
SCL/SFOR
SDA/MS
R
10 Ω
SN
Lic
F2
S1
S2
OUT1
C
C
LC
SN
470 pF
−
680 nF
6 Ω to 8 Ω
F1
C
C
SN
470 pF
LC
+
40
41
42
43
44
45
15 µH
680 nF
V
V
C
BOOT
DDD(3V3)
DDD
15 nF
R
SN
10 Ω
STABD
REFD
TEST2
DATA
WS
C
C
STABD
1 µF
vddd
VP
100 nF
C
VDDP
V
DDP
V
DDP
100 nF
TFA9812
C
VDDP
100 nF
2
I S DATA
OUT1P
OUT1P
BOOT1P
OUT2N
OUT2N
C
15 nF
BOOT
R
10 Ω
SN
2
I S WS
Lic
C
F2
S2
F1
LC
680 nF
C
SN
OUT2
2
46
47
I S BCK
470 pF
+
BCK
C
6 Ω to 8 Ω
SN
S1
C
LC
680 nF
2
470 pF
−
I S MLCK (optional)
15 µH
MCLK
R
10 Ω
48
SN
V
SS2
C
BOOT
15 nF
EXPOSED DIE PADDLE
1
2
3
4
5
6
7
8
9
10
11 12
3.3 V
VPA
R
STABA
1 kΩ
C
C
C
C
VDDA
100 nF
STAB
VPA
100 nF
STAB
100 nF
100 nF
010aaa476
Fig 13. Simplified application diagram for I2S slave mode and Legacy control mode
Download from Www.Somanuals.com. All Manuals Search And Download.
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx
14.4.2 I2S slave mode and I2C control mode
DIAGNOSTIC
POWERUP
R
VDDA
VPA
VP
10 Ω
V
P
= 8 V to 20 V
POWER IN
ENABLE
C
VDDP
220 µF / 25 V
GND
3.3 V
36
C
C
STAB
100 nF
DELAY
1 nF
35
34
33
32
31
30 29
28 27
26 25
C
15 nF
BOOT
37
ADSEL1/PLIM1
24
OUT1N
OUT1N
BOOT2P
OUT2P
OUT2P
R
10 Ω
2
SN
I C SCL
38
39
23
22
21
20
19
18
17
16
15
14
13
Lic
SCL/SFOR
SDA/MS
F2
S1
S2
F1
OUT1
C
C
LC
680 nF
2
SN
470 pF
I C SDA
−
6 Ω to 8 Ω
C
C
SN
LC
+
40
41
42
43
44
45
15 µH
470 pF
VDDD
680 nF
V
C
BOOT
DDD(3V3)
15 nF
R
10 Ω
SN
STABD
REFD
TEST2
DATA
WS
C
C
VDDD
100 nF
VP
STABD
1 µF
C
VDDP
V
DDP
V
DDP
100 nF
TFA9812
C
VDDP
100 nF
2
I S DATA
OUT1P
OUT1P
BOOT1P
OUT2N
OUT2N
C
15 nF
BOOT
R
10 Ω
2
SN
I S WS
Lic
F2
S2
F1
C
LC
680 nF
C
SN
OUT2
2
46
47
I S BCK
470 pF
+
BCK
C
6 Ω to 8 Ω
SN
S1
C
LC
680 nF
2
−
470 pF
I S MLCK
15 µH
MCLK
R
SN
10 Ω
48
V
SS2
C
BOOT
15 nF
EXPOSED DIE PADDLE
1
2
3
4
5
6
7
8
9
10 11 12
3.3 V
VDDA
VPA
R
1 kΩ
STABA
C
C
C
C
STAB
100 nF
VPA
100 nF
STAB
100 nF
100 nF
010aaa477
Fig 14. Simplified application diagram for I2S slave mode and I2C control mode
Download from Www.Somanuals.com. All Manuals Search And Download.
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx
14.4.3 I2S master mode and Legacy control mode
DIAGNOSTIC
R
VDDA
VPA
VP
10 Ω
POWERUP
DC-VOLUME CONTROL
ENABLE
V
P
= 8 V to 20 V
GND
POWER IN
C
VDDP
220 µF / 25 V
C
C
DELAY
1 nF
STAB
100 nF
36
35
34
33
32
31
30 29 28
27
26 25
C
BOOT
15 nF
37
ADSEL1/PLIM1
24
23
22
21
20
19
18
17
16
15
14
13
OUT1N
OUT1N
BOOT2P
OUT2P
OUT2P
38
39
SCL/SFOR
SDA/MS
R
10 Ω
SN
Lic
F2
S1
S2
OUT1
3.3 V
C
C
LC
SN
470 pF
−
680 nF
6 Ω to 8 Ω
F1
C
C
SN
470 pF
LC
+
40
41
42
43
44
45
15 µH
680 nF
V
V
DDD(3V3)
DDD
C
BOOT
15 nF
R
SN
10 Ω
STABD
REFD
TEST2
DATA
WS
C
C
STABD
1 µF
vddd
VP
100 nF
C
VDDP
V
DDP
V
DDP
100 nF
TFA9812
C
VDDP
100 nF
2
I S DATA
OUT1P
OUT1P
BOOT1P
OUT2N
OUT2N
C
15 nF
BOOT
R
10 Ω
2
SN
I S WS
Lic
C
F2
S2
F1
LC
C
SN
OUT2
680 nF
2
46
47
I S BCK
470 pF
+
BCK
C
SN
6 Ω to 8 Ω
S1
C
LC
680 nF
2
470 pF
−
I S MLCK (optional)
15 µH
MCLK
R
10 Ω
SN
48
V
SS2
C
BOOT
15 nF
EXPOSED DIE PADDLE
1
2
3
4
5
6
7
8
9
10 11 12
XTALL
3.3 V
C
VPA
C
R
1 kΩ
C
STAB
100 nF
C
C
C
STABA
VDDA
VPA
STAB
100 nF
XTALL
18 pF
XTALL
18 pF
100 nF
100 nF
010aaa478
Fig 15. Simplified application diagram for I2S master mode and Legacy control mode
Download from Www.Somanuals.com. All Manuals Search And Download.
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx
14.4.4 I2S master mode and I2C control mode
DIAGNOSTIC
POWERUP
R
VDDA
VPA
VP
10 Ω
V
P
= 8 V to 20 V
POWER IN
ENABLE
C
VDDP
220 µF / 25 V
GND
3.3 V
36
C
C
DELAY
1 nF
STAB
100 nF
35
34
33
32
31
30 29 28
27
26 25
C
15 nF
BOOT
37
ADSEL1/PLIM1
24
OUT1N
OUT1N
BOOT2P
OUT2P
OUT2P
R
10 Ω
2
SN
I C SCL
38
39
23
22
21
20
19
18
17
16
15
14
13
Lic
SCL/SFOR
SDA/MS
F2
S1
S2
F1
OUT1
C
C
LC
680 nF
2
SN
470 pF
I C SDA
−
6 Ω to 8 Ω
C
C
SN
LC
+
40
41
42
43
44
45
15 µH
470 pF
VDDD
680 nF
V
C
BOOT
DDD(3V3)
15nF
R
10 Ω
SN
STABD
REFD
TEST2
DATA
WS
C
C
VDDD
100 nF
STABD
1 µF
VP
C
VDDP
V
DDP
V
DDP
100 nF
TFA9812
C
VDDP
100 nF
2
I S DATA
OUT1P
OUT1P
BOOT1P
OUT2N
OUT2N
C
BOOT
R
10 Ω
2
SN
105 nF
I S WS
Lic
F2
S2
F1
C
LC
680 nF
C
SN
OUT2
2
46
47
I S BCK
470 pF
+
BCK
C
6 Ω to 8 Ω
SN
S1
C
LC
680 nF
2
−
470 pF
I S MLCK
15 µH
MCLK
R
SN
10 Ω
48
V
SS2
C
BOOT
15 nF
EXPOSED DIE PADDLE
1
2
3
4
5
6
7
8
9
10 11 12
XTALL
XTALL
3.3 V
VPA
R
STABA
1 kΩ
C
18 pF
C
C
VDDA
C
C
C
XTALL
18 pF
STAB
100 nF
VPA
100 nF
STAB
100 nF
100 nF
010aaa479
Fig 16. Simplified application diagram for I2S master mode and I2C control mode
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
14.5 Curves measured in typical application
010aaa480
010aaa481
10
10
THD+N
(%)
THD+N
(%)
1
1
(2)
(3)
(1)
(2)
(3)
(1)
−1
−1
10
10
−2
10
−2
10
10
10
−2
−1
2
−2
−1
2
10
1
10
o
10
10
1
10
10
P
(W/channel)
P
o
(W/channel)
(1) fi = 6 kHz
(2) fi = 1 kHz
(1) fi = 6 kHz
(2) fi = 1 kHz
(3) fi = 100 Hz
(3) fi = 100 Hz
a. VP = 12 V; RL = 2 × 6 Ω
b. VP = 12 V; RL = 2 × 8 Ω
010aaa482
010aaa483
10
10
THD+N
THD+N
(%)
(%)
1
1
(2)
(3)
(1)
(2)
(3)
(1)
−1
−1
10
10
−2
10
−2
10
10
10
−2
−1
2
−2
−1
2
10
1
10
o
10
10
1
10
10
P
(W/channel)
P
o
(W/channel)
(1) fi = 6 kHz
(2) fi = 1 kHz
(1) fi = 6 kHz
(2) fi = 1 kHz
(3) fi = 100 Hz
(3) fi = 100 Hz
c. VP = 15 V; RL = 2 × 6 Ω
d. VP = 15 V; RL = 2 × 8 Ω
Fig 17. Total harmonic distortion-plus-noise as a function of output power
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
56 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
010aaa484
010aaa485
10
10
THD+N
(%)
THD+N
(%)
1
1
−1
−1
10
10
−2
−2
10
10
2
3
4
5
2
3
4
5
10
10
10
10
10
10
10
10
10
10
f (Hz)
f (Hz)
a. VP = 12 V; RL = 2 × 6 Ω; Po = 1 W
b. VP = 12 V; RL = 2 × 8 Ω; Po = 1 W
Fig 18. Total harmonic distortion-plus-noise as a function of frequency
010aaa486
010aaa487
3
1
0
G
(dB)
G
(dB)
−20
−40
(1)
(2)
(1)
−60
(2)
−1
−80
−100
−120
−3
2
3
4
5
10
10
10
10
10
0
0.5
1
1.5
2
2.5
AVOL (V)
3
f (Hz)
VP = 12 V; PO = 1 W
VP = 12 V; RL = 8 Ω; fi = 1 kHz
(1) RL = 6 Ω 15 µH / 680 µF
(1) 0 dB
(2) RL = 8 Ω 15 µH / 680 µF
(2) 24 dB gain boost
Fig 19. Gain as a function of frequency
Fig 20. Gain as a function of AVOL
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
57 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
010aaa488
010aaa489
0
100
SVRR
(dB)
S/N
(dB)
(1)
−20
−40
−60
−80
90
(2)
80
70
60
50
(1)
(2)
−100
2
3
4
5
−2
−1
2
10
10
10
10
10
10
10
1
10
10
f (Hz)
i
P
o
(W/channel)
VP = 12 V; Vripple = 500 mV (RMS) reference to ground;
No input signal
VP = 15 V; 20 kHz AES17 filter
(1) RL = 2 × 8 Ω
(2) RL = 2 × 6 Ω
(1) RL = 8 Ω
(2) RL = 6 Ω
Fig 21. SVRR as a function of frequency
Fig 22. S/N ratio as a function of output power
010aaa490
010aaa491
25
25
P
P
o
o
(W/chan.)
(W/chan.)
20
20
(1)
(2)
(1)
(2)
15
10
5
15
10
5
(3)
(3)
0
0
0
120
240
360
480
600
0
120
240
360
480
600
time (s)
time (s)
a. VP = 15 V; RL = 2 × 6 Ω BTL; fi = 1 kHz
b. VP = 20 V; RL = 2 × 8 Ω BTL; fi = 1 kHz
(1) Tact(th_fold) = 125 °C
(2) Tact(th_fold) = 105 °C
(3) Tact(th_fold) = 90 °C
Fig 23. Output power as a function of time
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
58 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
010aaa492
010aaa493
25
25
P
P
o
o
(W/chan.)
(W/chan.)
20
20
(1)
(2)
(1)
15
10
5
15
10
5
(2)
(3)
(3)
(4)
(4)
0
0
8
10
12
14
16
18
(V)
20
8
10
12
14
16
18
20
(V)
V
V
P
P
(1) Power limiter = 0 dB
(1) Power limiter = 0 dB
(2) Power limiter = −1.5 dB
(3) Power limiter = −3 dB
(4) Power limiter = −4.5 dB
(2) Power limiter = −1.5 dB
(3) Power limiter = −3 dB
(4) Power limiter = −4.5 dB
a. VP = 12 V; RL = 2 × 6 Ω; fi = 1 kHz; THD = 1 %
b. VP = 12 V; RL = 2 × 6 Ω; fi = 1 kHz; THD = 10 %
010aaa494
010aaa495
25
25
P
P
o
o
(W/chan.)
(W/chan.)
20
20
(1)
(1)
(2)
(3)
15
10
5
15
10
5
(2)
(3)
(4)
(4)
0
0
8
10
12
14
16
18
20
(V)
8
10
12
14
16
18
20
(V)
V
V
P
P
(1) Power limiter = 0 dB
(1) Power limiter = 0 dB
(2) Power limiter = −1.5 dB
(3) Power limiter = −3 dB
(4) Power limiter = −4.5 dB
(2) Power limiter = −1.5 dB
(3) Power limiter = −3 dB
(4) Power limiter = −4.5 dB
c. VP = 15 V; RL = 2 × 8 Ω; fi = 1 kHz; THD = 1 %
d. VP = 15 V; RL = 2 × 8 Ω; fi = 1 kHz; THD = 10 %
Fig 24. Output power as a function of supply voltage
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
59 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
010aaa496
010aaa497
3
100
η
PO
(%)
(2)
P
(W)
80
(1)
2
1
0
60
40
20
0
(1)
(2)
−2
−1
2
10
10
1
10
10
0
2
4
6
8
o
10
P
(W/channel)
P
(W/channel)
o
VP = 12 V; fi = 1 kHz; Power dissipation in junction only
(1) RL = 2 × 6 Ω
VP = 12 V; fi = 1 kHz; ηpo = (2 × Po) / (2 × Po + Pd)
(1) RL = 2 × 6 Ω
(2) RL = 2 × 8 Ω
(2) RL = 2 × 8 Ω
Fig 25. Power dissipation as a function of output
power
Fig 26. Efficiency as a function of output power
010aaa498
0
α
cs
(dB)
−20
−40
−60
−80
(1)
(2)
−100
2
3
4
5
10
10
10
10
10
f (Hz)
VP = 12 V; PO = 1 W
(1) RL = 2 × 6 Ω
(2) RL = 2 × 8 Ω
Fig 27. Channel separation as a function of frequency
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
60 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
15. Package outline
HVQFN48: plastic thermal enhanced very thin quad flat package; no leads;
48 terminals; body 7 x 7 x 0.85 mm
SOT619-8
D
B
A
terminal 1
index area
E
A
A
1
c
detail X
e
1
C
M
M
v
C A
C
B
b
e
1/2 e
y
y
w
C
1
13
24
L
25
12
e
e
2
E
h
1/2 e
1
36
terminal 1
index area
48
37
X
D
h
0
2.5
scale
5 mm
DIMENSIONS (mm are the original dimensions)
(1)
A
(1)
(1)
UNIT
A
b
c
D
D
E
E
e
e
1
e
2
L
v
w
y
y
1
1
h
h
max
0.05 0.30
0.00 0.18
7.1
6.9
5.75
5.45
7.1
6.9
5.75
5.45
0.5
0.3
mm
1
0.2
0.5
5.5
5.5
0.1
0.05 0.05
0.1
Note
1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.
REFERENCES
OUTLINE
VERSION
EUROPEAN
PROJECTION
ISSUE DATE
IEC
JEDEC
JEITA
- - -
07-01-10
07-01-30
SOT619-8
- - -
MO-220
Fig 28. Package outline SOT619-8 (HVQFN48)
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
61 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
16. Handling information
It is advisable to abide by the normal precautions appropriate to handling MOS devices.
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
62 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
17. Revision history
Table 59. Revision history
Document ID
TFA9812_2
Modifications:
TFA9812_1
Release date
20090122
Data sheet status
Change notice
Supersedes
Preliminary data sheet
-
TFA9812_1
2008/10/30
Preliminary data sheet
-
-
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
63 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
18. Legal information
18.1 Data sheet status
Document status[1][2]
Product status[3]
Development
Definition
Objective [short] data sheet
This document contains data from the objective specification for product development.
This document contains data from the preliminary specification.
This document contains the product specification.
Preliminary [short] data sheet Qualification
Product [short] data sheet Production
[1]
[2]
[3]
Please consult the most recently issued document before initiating or completing a design.
The term ‘short data sheet’ is explained in section “Definitions”.
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status
damage. NXP Semiconductors accepts no liability for inclusion and/or use of
NXP Semiconductors products in such equipment or applications and
therefore such inclusion and/or use is at the customer’s own risk.
18.2 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences of
use of such information.
Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Quick reference data — The Quick reference data is an extract of the
product data given in the Limiting values and Characteristics sections of this
document, and as such is not complete, exhaustive or legally binding.
Short data sheet — A short data sheet is an extract from a full data sheet
with the same product type number(s) and title. A short data sheet is intended
for quick reference only and should not be relied upon to contain detailed and
full information. For detailed and full information see the relevant full data
sheet, which is available on request via the local NXP Semiconductors sales
office. In case of any inconsistency or conflict with the short data sheet, the
full data sheet shall prevail.
Limiting values — Stress above one or more limiting values (as defined in
the Absolute Maximum Ratings System of IEC 60134) may cause permanent
damage to the device. Limiting values are stress ratings only and operation of
the device at these or any other conditions above those given in the
Characteristics sections of this document is not implied. Exposure to limiting
values for extended periods may affect device reliability.
Terms and conditions of sale — NXP Semiconductors products are sold
subject to the general terms and conditions of commercial sale, as published
intellectual property rights infringement and limitation of liability, unless
explicitly otherwise agreed to in writing by NXP Semiconductors. In case of
any inconsistency or conflict between information in this document and such
terms and conditions, the latter will prevail.
18.3 Disclaimers
General — Information in this document is believed to be accurate and
reliable. However, NXP Semiconductors does not give any representations or
warranties, expressed or implied, as to the accuracy or completeness of such
information and shall have no liability for the consequences of use of such
information.
No offer to sell or license — Nothing in this document may be interpreted
or construed as an offer to sell products that is open for acceptance or the
grant, conveyance or implication of any license under any copyrights, patents
or other industrial or intellectual property rights.
Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.
Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in medical, military, aircraft,
space or life support equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
18.4 Trademarks
Notice: All referenced brands, product names, service names and trademarks
are the property of their respective owners.
I2C-bus — logo is a trademark of NXP B.V.
19. Contact information
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: [email protected]
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
64 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
20. Contents
clock modes . . . . . . . . . . . . . . . . . . . . . . . . . . 10
control mode . . . . . . . . . . . . . . . . . . . . . . . . . 38
continued >>
TFA9812_2
© NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 02 — 22 January 2009
65 of 66
Download from Www.Somanuals.com. All Manuals Search And Download.
TFA9812
NXP Semiconductors
BTL stereo Class-D audio amplifier with I2S input
Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section ‘Legal information’.
© NXP B.V. 2009.
All rights reserved.
For sales office addresses, please send an email to: [email protected]
Date of release: 22 January 2009
Document identifier: TFA9812_2
Download from Www.Somanuals.com. All Manuals Search And Download.
|