TDA8932B
Class-D audio amplifier
Rev. 03 — 21 June 2007
Product data sheet
1. General description
The TDA8932B is a high efficiency class-D amplifier with low power dissipation.
The continuous time output power is 2 × 15 W in stereo half-bridge application (RL = 4 Ω)
or 1 × 30 W in mono full-bridge application (RL = 8 Ω). Due to the low power dissipation
the device can be used without any external heat sink when playing music. Due to the
implementation of thermal foldback, even for high supply voltages and/or lower load
impedances, the device remains operating with considerable music output power without
the need for an external heat sink.
The device has two full-differential inputs driving two independent outputs. It can be used
as mono full-bridge configuration (BTL) or as stereo half-bridge configuration (SE).
2. Features
I Operating voltage from 10 V to 36 V asymmetrical or ±5 V to ±18 V symmetrical
I Mono-bridged tied load (full-bridge) or stereo single-ended (half-bridge) application
I Application without heatsink using thermally enhanced small outline package
I High efficiency and low-power dissipation
I Thermally protected and thermal foldback
I Current limiting to avoid audio holes
I Full short-circuit proof across load and to supply lines (using advanced current
protection)
I Switchable internal or external oscillator (master-slave setting)
I No pop noise
I Full-differential inputs
3. Applications
I Flat panel television sets
I Flat panel monitor sets
I Multimedia systems
I Wireless speakers
I Mini and micro systems
I Home sound sets
Download from Www.Somanuals.com. All Manuals Search And Download.
TDA8932B
NXP Semiconductors
Class-D audio amplifier
6. Block diagram
OSCREF OSCIO
V
DDA
8
10
31
28
BOOT1
OSCILLATOR
29
2
V
DDP1
IN1P
DRIVER
HIGH
27
26
PWM
MODULATOR
OUT1
V
SSD
CTRL
DRIVER
LOW
V
SSP1
3
IN1N
INREF
IN2P
21
20
22
23
12
15
MANAGER
BOOT2
V
DDP2
DRIVER
HIGH
PWM
MODULATOR
OUT2
CTRL
DRIVER
LOW
V
SSP2
14
4
IN2N
DIAG
PROTECTIONS:
OVP, OCP, OTP,
UVP, TF, WP
V
DDA
25
24
18
STABILIZER 11 V
STAB1
STAB2
DREF
V
SSP1
V
DDA
STABILIZER 11 V
V
7
6
CGND
SSP2
POWERUP
REGULATOR 5 V
V
SSD
MODE
5
ENGAGE
11
30
19
V
V
DDA
HVPREF
HVP1
SSA
TDA8932B
13
TEST
HVP2
HALF SUPPLY VOLTAGE
9
1, 16, 17, 32
001aaf597
V
V
SSD(HW)
SSA
Fig 1. Block diagram
TDA8932B_3
© NXP B.V. 21 June 2007. All rights reserved.
Product data sheet
Rev. 03— 21 June 2007
3 of 48
Download from Www.Somanuals.com. All Manuals Search And Download.
TDA8932B
NXP Semiconductors
Class-D audio amplifier
7. Pinning information
7.1 Pinning
1
2
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
1
2
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
V
V
V
V
SSD(HW)
SSD(HW)
IN1P
SSD(HW)
SSD(HW)
IN1P
OSCIO
HVP1
OSCIO
HVP1
3
3
IN1N
DIAG
IN1N
DIAG
4
4
V
V
DDP1
DDP1
5
5
ENGAGE
POWERUP
CGND
BOOT1
OUT1
ENGAGE
POWERUP
CGND
BOOT1
OUT1
6
6
7
7
V
V
SSP1
SSP1
8
8
V
STAB1
STAB2
V
STAB1
STAB2
DDA
DDA
TDA8932BT
TDA8932BTW
9
9
V
SSA
V
SSA
V
10
11
12
13
14
15
16
10
11
12
13
14
15
16
OSCREF
HVPREF
INREF
TEST
OSCREF
HVPREF
INREF
TEST
V
SSP2
SSP2
OUT2
OUT2
BOOT2
BOOT2
V
V
DDP2
DDP2
IN2N
HVP2
DREF
IN2N
HVP2
DREF
IN2P
IN2P
V
V
V
V
SSD(HW)
SSD(HW)
SSD(HW)
SSD(HW)
001aaf598
001aaf599
Fig 2. Pin configuration SO32
Fig 3. Pin configuration HTSSOP32
7.2 Pin description
Table 3.
Symbol
VSSD(HW)
IN1P
Pin description
Pin
1
Description
negative digital supply voltage and handle wafer connection
positive audio input for channel 1
2
IN1N
3
negative audio input for channel 1
DIAG
4
diagnostic output; open-drain
ENGAGE
POWERUP
CGND
VDDA
5
engage input to switch between Mute mode and Operating mode
power-up input to switch between Sleep mode and Mute mode
control ground; reference for POWERUP, ENGAGE and DIAG
positive analog supply voltage
6
7
8
VSSA
9
negative analog supply voltage
OSCREF
HVPREF
INREF
TEST
10
11
12
13
14
15
16
17
18
input internal oscillator setting (only master setting)
decoupling of internal half supply voltage reference
decoupling for input reference voltage
test signal input; for testing purpose only
IN2N
negative audio input for channel 2
IN2P
positive audio input for channel 2
VSSD(HW)
VSSD(HW)
DREF
negative digital supply voltage and handle wafer connection
negative digital supply voltage and handle wafer connection
decoupling of internal (reference) 5 V regulator for logic supply
TDA8932B_3
© NXP B.V. 21 June 2007. All rights reserved.
Product data sheet
Rev. 03— 21 June 2007
4 of 48
Download from Www.Somanuals.com. All Manuals Search And Download.
TDA8932B
NXP Semiconductors
Class-D audio amplifier
Table 3.
Pin description (Continued)
Symbol
Pin
Description
HVP2
19
half supply output voltage 2 for charging single-ended capacitor for
channel 2
VDDP2
BOOT2
OUT2
VSSP2
STAB2
STAB1
VSSP1
OUT1
BOOT1
VDDP1
HVP1
20
21
22
23
24
25
26
27
28
29
30
positive power supply voltage for channel 2
bootstrap high-side driver channel 2
PWM output channel 2
negative power supply voltage for channel 2
decoupling of internal 11 V regulator for channel 2 drivers
decoupling of internal 11 V regulator for channel 1 drivers
negative power supply voltage for channel 1
PWM output channel 1
bootstrap high-side driver channel 1
positive power supply voltage for channel 1
half supply output voltage 1 for charging single-ended capacitor for
channel 1
OSCIO
31
oscillator input in slave configuration or oscillator output in master
configuration
VSSD(HW)
32
-
negative digital supply voltage and handle wafer connection
HTSSOP32 package only[1]
Exposed die
pad
[1] The exposed die pad has to be connected to VSSD(HW)
.
8. Functional description
8.1 General
The TDA8932B is a mono full-bridge or stereo half-bridge audio power amplifier using
class-D technology. The audio input signal is converted into a Pulse Width Modulated
(PWM) signal via an analog input stage and PWM modulator. To enable the output power
Diffusion Metal Oxide Semiconductor (DMOS) transistors to be driven, this digital PWM
signal is applied to a control and handshake block and driver circuits for both the high side
and low side. A 2nd-order low-pass filter converts the PWM signal to an analog audio
signal across the loudspeakers.
The TDA8932B contains two independent half-bridges with full differential input stages.
The loudspeakers can be connected in the following configurations:
• Mono full-bridge: Bridge Tied Load (BTL)
• Stereo half-bridge: Single-Ended (SE)
The TDA8932B contains common circuits to both channels such as the oscillator, all
reference sources, the mode functionality and a digital timing manager. The following
protections are built-in: thermal foldback, temperature, current and voltage protections.
TDA8932B_3
© NXP B.V. 21 June 2007. All rights reserved.
Product data sheet
Rev. 03— 21 June 2007
5 of 48
Download from Www.Somanuals.com. All Manuals Search And Download.
TDA8932B
NXP Semiconductors
Class-D audio amplifier
8.2 Mode selection and interfacing
The TDA8932B can be switched in three operating modes using pins POWERUP and
ENGAGE:
• Sleep mode: with low supply current.
• Mute mode: the amplifiers are switching idle (50 % duty cycle), but the audio signal at
the output is suppressed by disabling the Vl-converter input stages. The capacitors on
pins HVP1 and HVP2 have been charged to half the supply voltage (asymmetrical
supply only).
• Operating mode: the amplifiers are fully operational with output signal.
• Fault mode.
Both pins POWERUP and ENGAGE refer to pin CGND.
ENGAGE pins.
Table 4.
Mode
Mode selection
Pin
POWERUP
ENGAGE
< 0.8 V
< 0.8 V[1]
DIAG
Sleep
< 0.8 V
don’t care
> 2 V
Mute
2 V to 6.0 V[1]
2 V to 6.0 V[1]
2 V to 6.0 V[1]
Operating
Fault
2.4 V to 6.0 V[1]
> 2 V
don’t care
< 0.8 V
[1] In case of symmetrical supply conditions the voltage applied to pins POWERUP and ENGAGE must never
exceed the supply voltage (VDDA, VDDP1 or VDDP2).
If the transition between Mute mode and Operating mode is controlled via a time constant,
the start-up will be pop free since the DC output offset voltage is applied gradually to the
output between Mute mode and Operating mode. The bias current setting of the
VI-converters is related to the voltage on pin ENGAGE:
• Mute mode: the bias current setting of the VI-converters is zero (VI-converters
disabled)
• Operating mode: the bias current is at maximum
The time constant required to apply the DC output offset voltage gradually between Mute
mode and Operating mode can be generated by applying a decoupling capacitor on pin
ENGAGE. The value of the capacitor on pin ENGAGE should be 470 nF.
TDA8932B_3
© NXP B.V. 21 June 2007. All rights reserved.
Product data sheet
Rev. 03— 21 June 2007
6 of 48
Download from Www.Somanuals.com. All Manuals Search And Download.
TDA8932B
NXP Semiconductors
Class-D audio amplifier
V
P
POWERUP
DREF
HVPREF
HVP1, HVP2
2.0 V (typical)
1.2 V (typical)
ENGAGE
≤ 0.8 V
AUDIO
AUDIO
AUDIO
PWM
audio
OUT1, OUT2
PWM
PWM
DIAG
OSCIO
operating
mute
operating
fault
operating
sleep
001aaf885
Fig 4. Start-up sequence
8.3 Pulse width modulation frequency
The output signal of the amplifier is a PWM signal with a carrier frequency of
approximately 320 kHz. Using a 2nd-order low-pass filter in the application results in an
analog audio signal across the loudspeaker. The PWM switching frequency can be set by
an external resistor Rosc connected between pins OSCREF and VSSD(HW). The carrier
frequency can be set between 300 kHz and 500 kHz. Using an external resistor of 39 kΩ,
If two or more TDA8932B devices are used in the same audio application, it is
recommended to synchronize the switching frequency of all devices. This can be realized
by connecting all pins OSCIO together and configure one of the TDA8932B in the
application as clock master, while the other TDA8932B devices are configured in slave
mode.
Pin OSCIO is a 3-state input or output buffer. Pin OSCIO is configured in master mode as
oscillator output and in slave mode as oscillator input. Master mode is enabled by applying
a resistor while slave mode is entered by connecting pin OSCREF directly to pin VSSD(HW)
(without any resistor).
The value of the resistor also sets the frequency of the carrier which can be estimated by
the following formula:
TDA8932B_3
© NXP B.V. 21 June 2007. All rights reserved.
Product data sheet
Rev. 03— 21 June 2007
7 of 48
Download from Www.Somanuals.com. All Manuals Search And Download.
TDA8932B
NXP Semiconductors
Class-D audio amplifier
12.45 × 109
---------------------------
Rosc
f osc
=
(1)
Where:
fosc = oscillator frequency (Hz)
Rosc = oscillator resistor (on pin OSCREF) (Ω)
001aad758
550
f
osc
(kHz)
450
350
250
25
30
35
40
45
Rosc (kΩ)
Fig 5. Oscillation frequency as a function of resistor Rosc
Table 5.
Master or slave configuration
Configuration
Pin
OSCREF
OSCIO
output
input
Master
Slave
Rosc > 25 kΩ to VSSD(HW)
Rosc = 0 Ω; shorted to VSSD(HW)
8.4 Protection
The following protection is included in the TDA8932B:
• Thermal Foldback (TF)
• OverTemperature Protection (OTP)
• OverCurrent Protection (OCP)
• Window Protection (WP)
• Supply voltage protection:
– UnderVoltage Protection (UVP)
– OverVoltage Protection (OVP)
– UnBalance Protection (UBP)
• ElectroStatic Discharge (ESD)
The reaction of the device to the different fault conditions differs per protection.
TDA8932B_3
© NXP B.V. 21 June 2007. All rights reserved.
Product data sheet
Rev. 03— 21 June 2007
8 of 48
Download from Www.Somanuals.com. All Manuals Search And Download.
TDA8932B
NXP Semiconductors
Class-D audio amplifier
8.4.1 Thermal Foldback (TF)
If the junction temperature of the TDA8932B exceeds the threshold level (Tj > 140 °C) the
gain of the amplifier is decreased gradually to a level where the combination of dissipation
(P) and the thermal resistance from junction to ambient [Rth(j-a)] results in a junction
temperature around the threshold level.
This means that the device will not completely switch off, but remains operational at lower
output power levels. Especially with music output signals this feature enables high peak
output power while still operating without any external heat sink other than the
printed-circuit board area.
If the junction temperature still increases due to external causes, the OTP shuts down the
amplifier completely.
8.4.2 OverTemperature Protection (OTP)
If the junction temperature Tj > 155 °C, then the power stage will shut down immediately.
8.4.3 OverCurrent Protection (OCP)
When the loudspeaker terminals are short-circuited or if one of the demodulated outputs
of the amplifier is short-circuited to one of the supply lines, this will be detected by the
OCP.
If the output current exceeds the maximum output current (IO(ocp) > 4 A), this current will
be limited by the amplifier to 4 A while the amplifier outputs remain switching (the amplifier
is NOT shutdown completely). This is called current limiting.
The amplifier can distinguish between an impedance drop of the loudspeaker and a
low-ohmic short-circuit across the load or to one of the supply lines. This impedance
threshold depends on the supply voltage used:
• In case of a short-circuit across the load, the audio amplifier is switched off completely
and after approximately 100 ms it will try to restart again. If the short-circuit condition
is still present after this time, this cycle will be repeated. The average dissipation will
be low because of this low duty cycle.
• In case of a short to one of the supply lines, this will trigger the OCP and the amplifier
will be shut down. During restart the window protection will be activated. As a result
the amplifier will not start until 100 ms after the short to the supply lines is removed.
• In case of impedance drop (e.g. due to dynamic behavior of the loudspeaker) the
same protection will be activated. The maximum output current is again limited to 4 A,
but the amplifier will NOT switch off completely (thus preventing audio holes from
occurring). The result will be a clipping output signal without any artifacts.
8.4.4 Window Protection (WP)
The WP checks the PWM output voltage before switching from Sleep mode to Mute mode
(outputs switching) and is activated:
• During the start-up sequence, when pin POWERUP is switched from Sleep mode to
Mute mode. In the event of a short-circuit at one of the output terminals to VDDP1
,
VSSP1, VDDP2 or VSSP2 the start-up procedure is interrupted and the TDA8932B waits
for open-circuit outputs. Because the check is done before enabling the power stages,
no large currents will flow in the event of a short-circuit.
TDA8932B_3
© NXP B.V. 21 June 2007. All rights reserved.
Product data sheet
Rev. 03— 21 June 2007
9 of 48
Download from Www.Somanuals.com. All Manuals Search And Download.
TDA8932B
NXP Semiconductors
Class-D audio amplifier
• When the amplifier is completely shut down due to activation of the OCP because a
short-circuit to one of the supply lines is made, then during restart (after 100 ms) the
window protection will be activated. As a result the amplifier will not start until the
short-circuit to the supply lines is removed.
8.4.5 Supply voltage protection
If the supply voltage drops below 10 V, the UnderVoltage Protection (UVP) circuit is
activated and the system will shut down directly. This switch-off will be silent and without
pop noise. When the supply voltage rises above the threshold level, the system is
restarted again after 100 ms.
If the supply voltage exceeds 36 V the OverVoltage Protection (OVP) circuit is activated
and the power stages will shut down. It is re-enabled as soon as the supply voltage drops
below the threshold level. The system is restarted again after 100 ms.
It should be noted that supply voltages > 40 V may damage the TDA8932B. Two
conditions should be distinguished:
1. If the supply voltage is pumped to higher values by the TDA8932B application itself
supply voltage will decrease and the TDA8932B is protected against any overstress.
2. If a supply voltage > 40 V is caused by other or external causes, then the TDA8932B
will shut down, but the device can still be damaged since the supply voltage will
remain > 40 V in this case. The OVP protection is not a supply voltage clamp.
An additional UnBalance Protection (UBP) circuit compares the positive analog supply
voltage (VDDA) and the negative analog supply voltage (VSSA) and is triggered if the
voltage difference between them exceeds a certain level. This level depends on the sum
of both supply voltages. The unbalance threshold levels can be defined as follows:
• LOW-level threshold: VP(th)(ubp)l < 8⁄5 × VHVPREF
• HIGH-level threshold: VP(th)(ubp)h > 8⁄3 × VHVPREF
In a symmetrical supply the UBP is released when the unbalance of the supply voltage is
within 6 % of its starting value.
Table 6.
Protection overview
Restart
Protection
When fault is removed
Every 100 ms
OTP
OCP
WP
no
yes
no
yes
yes
no
no
UVP
OVP
UBP
yes
yes
yes
no
no
TDA8932B_3
© NXP B.V. 21 June 2007. All rights reserved.
Product data sheet
Rev. 03— 21 June 2007
10 of 48
Download from Www.Somanuals.com. All Manuals Search And Download.
TDA8932B
NXP Semiconductors
Class-D audio amplifier
8.5 Diagnostic input and output
Whenever a protection is triggered, except for TF, pin DIAG is activated to LOW level (see
approximately 2.4 V. This internal reference supply can deliver approximately 50 µA.
Pin DIAG refers to pin CGND. The diagnostic output signal during different short
device into Fault mode.
V
V
o
o
2.4 V
2.4 V
amplifier
restart
no restart
0 V
0 V
≈ 50 ms ≈ 50 ms
short to
shorted load
supply line
001aad759
Fig 6. Diagnostic output for different short-circuit conditions
8.6 Differential inputs
For a high common-mode rejection ratio and a maximum of flexibility in the application,
the audio inputs are fully differential. By connecting the inputs anti-parallel, the phase of
one of the two channels can be inverted, so that the amplifier can operate as a mono BTL
In SE configuration it is also recommended to connect the two differential inputs in
anti-phase. This has advantages for the current handling of the power supply at low signal
IN1P
OUT1
IN1N
audio
input
IN2P
OUT2
IN2N
001aad760
Fig 7. Input configuration for mono BTL application
8.7 Output voltage buffers
When pin POWERUP is set HIGH, the half supply output voltage buffers are switched on
in asymmetrical supply configuration. The start-up will be pop free since the device starts
switching when the capacitor on pin HVPREF and the SE capacitors are completely
charged.
Output voltage buffers:
TDA8932B_3
© NXP B.V. 21 June 2007. All rights reserved.
Product data sheet
Rev. 03— 21 June 2007
11 of 48
Download from Www.Somanuals.com. All Manuals Search And Download.
TDA8932B
NXP Semiconductors
Class-D audio amplifier
• Pins HVP1 and HVP2: The time required for charging the SE capacitor depends on its
value. The half supply voltage output is disabled when the TDA8932B is used in a
symmetrical supply application.
• Pin HVPREF: This output voltage reference buffer charges the capacitor on pin
HVPREF.
• Pin INREF: This output voltage reference buffer charges the input reference capacitor
on pin INREF. Pin INREF applies the bias voltage for the inputs.
9. Internal circuitry
Table 7.
Internal circuitry
Pin
1
Symbol
VSSD(HW)
VSSD(HW)
VSSD(HW)
VSSD(HW)
Equivalent circuit
1, 16,
17, 32
V
V
DDA
16
17
32
SSA
001aad784
2
IN1P
IN1N
INREF
IN2N
IN2P
V
DDA
3
2 kΩ
± 20 %
12
14
15
2, 15
V/I
48 kΩ
± 20 %
12
HVPREF
48 kΩ
± 20 %
2 kΩ
± 20 %
3, 14
V/I
V
SSA
001aad785
4
DIAG
V
2.5 V
DDA
50 µA
500 Ω
± 20 %
4
100 kΩ
± 20 %
V
CGND
SSA
001aaf607
TDA8932B_3
© NXP B.V. 21 June 2007. All rights reserved.
Product data sheet
Rev. 03— 21 June 2007
12 of 48
Download from Www.Somanuals.com. All Manuals Search And Download.
TDA8932B
NXP Semiconductors
Class-D audio amplifier
Table 7.
Internal circuitry (Continued)
Pin
Symbol
Equivalent circuit
5
ENGAGE
V
2.8 V
DDA
I
= 50 µA
ref
2 kΩ
± 20 %
5
100 kΩ
± 20 %
V
CGND
SSA
001aaf608
6
POWERUP
V
DDA
6
V
CGND
001aad788
SSA
7
CGND
V
DDA
7
V
SSA
001aad789
8
VDDA
8
V
V
SSA
SSD
001aad790
TDA8932B_3
© NXP B.V. 21 June 2007. All rights reserved.
Product data sheet
Rev. 03— 21 June 2007
13 of 48
Download from Www.Somanuals.com. All Manuals Search And Download.
TDA8932B
NXP Semiconductors
Class-D audio amplifier
Table 7.
Internal circuitry (Continued)
Pin
Symbol
Equivalent circuit
9
VSSA
V
DDA
9
V
SSD
001aad791
10
OSCREF
V
DDA
I
ref
10
V
001aad792
SSA
11
HVPREF
V
DDA
11
V
SSA
001aaf604
13
TEST
V
V
DDA
13
SSA
001aad795
18
DREF
V
DD
18
V
SSD
001aag025
TDA8932B_3
© NXP B.V. 21 June 2007. All rights reserved.
Product data sheet
Rev. 03— 21 June 2007
14 of 48
Download from Www.Somanuals.com. All Manuals Search And Download.
TDA8932B
NXP Semiconductors
Class-D audio amplifier
Table 7.
Internal circuitry (Continued)
Pin
19
Symbol
HVP2
Equivalent circuit
V
DDA
30
HVP1
19, 30
V
001aag026
SSA
20
23
26
29
VDDP2
VSSP2
VSSP1
VDDP1
20, 29
23, 26
001aad798
21
28
BOOT2
BOOT1
21, 28
OUT1, OUT2
001aad799
22
27
OUT2
OUT1
V
V
DDP1,
DDP2
22, 27
V
SSP1,
V
SSP2
001aag027
24
25
STAB2
STAB1
V
DDA
24, 25
V
SSP1,
V
SSP2
001aag028
31
OSCIO
DREF
31
V
SSD
001aag029
TDA8932B_3
© NXP B.V. 21 June 2007. All rights reserved.
Product data sheet
Rev. 03— 21 June 2007
15 of 48
Download from Www.Somanuals.com. All Manuals Search And Download.
TDA8932B
NXP Semiconductors
Class-D audio amplifier
10. Limiting values
Table 8.
Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).
Symbol Parameter
Conditions
Min
Max
Unit
VP
Vx
supply voltage
asymmetrical supply
−0.3
+40
V
voltage on pin x
IN1P, IN1N, IN2P, IN2N
OSCREF, OSCIO, TEST
−5
+5
V
V
V
VSSD(HW) − 0.3 5
POWERUP, ENGAGE,
DIAG
VCGND − 0.3
6
all other pins
VSS − 0.3
VDD + 0.3 V
IORM
repetitive peak output
current
maximum output
current limiting
4
-
A
Tj
junction temperature
storage temperature
ambient temperature
power dissipation
-
150
°C
°C
°C
W
V
Tstg
Tamb
P
−55
−40
-
+150
+85
5
Vesd
electrostatic discharge
voltage
HBM
MM
−2000
−200
+2000
+200
V
[1] VP = VDDP1 − VSSP1 = VDDP2 − VSSP2
.
[2] Measured with respect to pin INREF; Vx < VDD + 0.3 V.
[3] Measured with respect to pin VSSD(HW); Vx < VDD + 0.3 V.
[4] Measured with respect to pin CGND; Vx < VDD + 0.3 V.
[5] VSS = VSSP1 = VSSP2; VDD = VDDP1 = VDDP2
.
[6] Current limiting concept.
[7] Human Body Model (HBM); Rs = 1500 Ω; C = 100 pF
For pins 2, 3, 11, 14 and 15 Vesd = ±1800 V.
[8] Machine Model (MM); Rs = 0 Ω; C = 200 pF; L = 0.75 µH.
11. Thermal characteristics
Table 9.
Symbol
Thermal characteristics
Parameter
Conditions
Min
Typ
Max
Unit
SO32 package
Rth(j-a)
thermal resistance from junction free air natural convection
to ambient
JEDEC test board
-
-
-
41
44
-
44
-
K/W
K/W
K/W
2 layer application board
Ψj-lead
Ψj-top
thermal characterization
30
parameter from junction to lead
thermal characterization
parameter from junction to top
-
-
8
K/W
TDA8932B_3
© NXP B.V. 21 June 2007. All rights reserved.
Product data sheet
Rev. 03— 21 June 2007
16 of 48
Download from Www.Somanuals.com. All Manuals Search And Download.
TDA8932B
NXP Semiconductors
Class-D audio amplifier
Table 9.
Symbol
Thermal characteristics (Continued)
Parameter Conditions
Min
Typ
Max
Unit
HTSSOP32 package
Rth(j-a)
thermal resistance from junction free air natural convection
to ambient
JEDEC test board
-
-
-
47
48
-
50
-
K/W
K/W
K/W
2 layer application board
Ψj-lead
Ψj-top
thermal characterization
30
parameter from junction to lead
thermal characterization
parameter from junction to top
-
-
-
2
-
K/W
K/W
Rth(j-c)
thermal resistance from junction free air natural convection
to case
4.0
[1] Measured on a JEDEC high K-factor test board (standard EIA/JESD 51-7) in free air with natural convection.
[2] Two layer application board (55 mm × 45 mm), 35 µm copper, FR4 base material in free air with natural convection.
[3] Strongly depends on where the measurement is taken on the package.
[4] Two layer application board (55 mm × 40 mm), 35 µm copper, FR4 base material in free air with natural convection.
12. Static characteristics
Table 10. Static characteristics
VP = 22 V; fosc = 320 kHz; Tamb = 25 °C; unless otherwise specified.
Symbol
Supply
VP
Parameter
Conditions
Min
Typ
Max
Unit
supply voltage
asymmetrical supply
symmetrical supply
Sleep mode; no load
10
±5
-
22
36
V
±11
0.6
40
±18
1.0
50
V
IP
supply current
mA
mA
Iq(tot)
total quiescent current
Operating mode; no load, no
-
snubbers and no filter connected
Series resistance output power switches
RDSon
drain-source on-state
resistance
Tj = 25 °C
-
-
150
234
-
-
mΩ
Tj = 125 °C
mΩ
Power-up input: pin POWERUP[1]
VI
input voltage
0
-
-
6.0
20
V
II
input current
VI = 3 V
1
-
µA
V
VIL
LOW-level input voltage
0
2
0.8
6.0
VIH
HIGH-level input voltage
-
V
Engage input: pin ENGAGE[1]
VO
VI
output voltage
open pin
VI = 0 V
2.4
0
2.8
3.1
6.0
60
V
input voltage
-
V
IO
output current
-
50
-
µA
V
VIL
VIH
LOW-level input voltage
HIGH-level input voltage
0
0.8
6.0
2.4
-
V
TDA8932B_3
© NXP B.V. 21 June 2007. All rights reserved.
Product data sheet
Rev. 03— 21 June 2007
17 of 48
Download from Www.Somanuals.com. All Manuals Search And Download.
TDA8932B
NXP Semiconductors
Class-D audio amplifier
Table 10. Static characteristics (Continued)
VP = 22 V; fosc = 320 kHz; Tamb = 25 °C; unless otherwise specified.
Symbol
Diagnostic output: pin DIAG[1]
VO output voltage
Parameter
Conditions
Min
Typ
Max
Unit
Operating mode
-
-
0.8
3.3
V
V
2
2.5
Bias voltage for inputs: pin INREF
VO(bias) bias output voltage
with respect to pin VSSA
-
2.1
-
V
Half supply voltage
Pins HVP1 and HVP2
VO
output voltage
half supply voltage to charge SE
capacitor
0.5VP − 0.5VP
0.2
0.5VP +
0.2
V
IO
output current
output voltage
VHVP1 = VO − 1 V;
-
50
-
mA
VHVP2 = VO − 1 V
Pin HVPREF
VO
half supply reference voltage in
Mute mode
0.5VP − 0.5VP
0.2
0.5VP +
0.2
V
V
Reference voltage for internal logic: pin DREF
VO output voltage
Amplifier outputs: pins OUT1 and OUT2
|VO(offset) output offset voltage
4.5
4.8
5.1
|
SE; with respect to pin HVPREF
Mute mode
-
-
-
-
15
mV
mV
Operating mode
BTL
100
Mute mode
-
-
-
-
20
mV
mV
Operating mode
150
Stabilizer output: pins STAB1 and STAB2
VO output voltage
Mute mode and Operating mode;
with respect to pins VSSP1 and
VSSP2
10
11
12
V
Voltage protection
VP(uvp)
undervoltage protection
supply voltage
8.0
36.1
-
9.2
9.9
40
18
-
V
V
V
V
VP(ovp)
overvoltage protection
supply voltage
37.4
VP(th)(ubp)l
VP(th)(ubp)h
low unbalance protection
threshold supply voltage
VHVPREF = 11 V
VHVPREF = 11 V
-
-
high unbalance protection
threshold supply voltage
29
Current protection
IO(ocp) overcurrent protection
output current
Temperature protection
current limiting
4
5
-
-
A
Tact(th_prot)
thermal protection activation
temperature
155
160
°C
TDA8932B_3
© NXP B.V. 21 June 2007. All rights reserved.
Product data sheet
Rev. 03— 21 June 2007
18 of 48
Download from Www.Somanuals.com. All Manuals Search And Download.
TDA8932B
NXP Semiconductors
Class-D audio amplifier
Table 10. Static characteristics (Continued)
VP = 22 V; fosc = 320 kHz; Tamb = 25 °C; unless otherwise specified.
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
Tact(th_fold)
thermal foldback activation
temperature
140
-
150
°C
Oscillator reference; pin OSCIO[2]
VIH
HIGH-level input voltage
LOW-level input voltage
HIGH-level output voltage
LOW-level output voltage
4.0
0
-
-
-
-
-
5
V
V
V
V
-
VIL
0.8
5
VOH
4.0
0
VOL
0.8
-
Nslave(max)
maximum number of slaves driven by one master
12
[1] Measured with respect to pin CGND.
[2] Measured with respect to pin VSSD(HW)
.
13. Dynamic characteristics
Table 11. Switching characteristics
VP = 22 V; Tamb = 25 °C; unless otherwise specified.
Symbol Parameter
Internal oscillator
Conditions
Min
Typ
Max
Unit
fosc
oscillator frequency
Rosc = 39 kΩ
-
320
-
-
kHz
kHz
range
300
500
Timing PWM output: pins OUT1 and OUT2
tr
rise time
IO = 0 A
IO = 0 A
IO = 0 A
-
-
-
10
10
80
-
-
-
ns
ns
ns
tf
fall time
tw(min)
minimum pulse width
Table 12. SE characteristics
VP = 22 V; RL = 2 × 4 Ω; fi = 1 kHz; fosc = 320 kHz; Rs < 0.1 Ω[1]; Tamb = 25 °C; unless otherwise specified.
Symbol Parameter
Conditions
Po = 1 W
Min
Typ
Max
Unit
THD+N
total harmonic
distortion-plus-noise
fi = 1 kHz
-
0.015
0.08
30
0.05
0.10
31
1
%
fi = 6 kHz
-
%
Gv(cl)
|∆Gv|
αcs
closed-loop voltage gain
voltage gain difference
channel separation
Vi = 100 mV; no load
29
-
dB
dB
dB
0.5
Po = 1 W; fi = 1 kHz
Operating mode
fi = 100 Hz
70
80
-
SVRR
supply voltage ripple rejection
-
60
-
dB
dB
kΩ
µV
µV
µV
fi = 1 kHz
40
70
-
50
-
|Zi|
input impedance
differential
100
100
70
-
Vn(o)
noise output voltage
Operating mode; Rs = 0 Ω
Mute mode
150
100
-
-
VO(mute)
mute output voltage
Mute mode; Vi = 1 V (RMS) and
fi = 1 kHz
-
100
TDA8932B_3
© NXP B.V. 21 June 2007. All rights reserved.
Product data sheet
Rev. 03— 21 June 2007
19 of 48
Download from Www.Somanuals.com. All Manuals Search And Download.
TDA8932B
NXP Semiconductors
Class-D audio amplifier
Table 12. SE characteristics (Continued)
VP = 22 V; RL = 2 × 4 Ω; fi = 1 kHz; fosc = 320 kHz; Rs < 0.1 Ω[1]; Tamb = 25 °C; unless otherwise specified.
Symbol Parameter
Conditions
Min
Typ
Max
Unit
CMRR
common mode rejection ratio
Vi(cm) = 1 V (RMS)
Po = 15 W
-
75
-
dB
ηpo
output power efficiency
RMS output power
VP = 22 V; RL = 4 Ω
VP = 30 V; RL = 8 Ω
90
91
92
93
-
-
%
%
Po(RMS)
continuous time output power per
channel
RL = 4 Ω; VP = 22 V
THD+N = 0.5 %; fi = 1 kHz
THD+N = 0.5 %; fi = 100 Hz
THD+N = 10 %; fi = 1 kHz
THD+N = 10 %; fi = 100 Hz
RL = 8 Ω; VP = 30 V
10.9
12.1
12.1
15.3
15.3
-
-
-
-
W
W
W
W
-
13.8
-
THD+N = 0.5 %; fi = 1 kHz
THD+N = 0.5 %; fi = 100 Hz
THD+N = 10 %; fi = 1 kHz
THD+N = 10 %; fi = 100 Hz
short time output power per channel
RL = 4 Ω; VP = 29 V
11.1
12.3
12.3
15.5
15.5
-
-
-
-
W
W
W
W
-
14.0
-
THD+N = 0.5 %
19.0
23.8
21.1
26.5
-
-
W
W
THD+N = 10 %
[1] Rs is the series resistance of inductor and capacitor of low-pass LC filter in the application.
[2] THD+N is measured in a bandwidth of 20 Hz to 20 kHz, AES17 brick wall.
[3] Maximum Vripple = 2 V (p-p); Rs = 0 Ω.
[4] B = 20 Hz to 20 kHz, AES17 brick wall.
[5] Output power is measured indirectly; based on RDSon measurement.
Two layer application board (55 mm × 45 mm), 35 µm copper, FR4 base material in free air with natural convection.
Table 13. BTL characteristics
VP = 22 V; RL = 8 Ω; fi = 1 kHz; fosc = 320 kHz; Rs < 0.1 Ω[1]; Tamb = 25 °C; unless otherwise specified.
Symbol Parameter
Conditions
Po = 1 W
fi = 1 kHz
fi = 6 kHz
Min
Typ
Max
Unit
THD+N
total harmonic
distortion-plus-noise
-
0.007 0.1
%
-
0.05
36
0.1
37
%
Gv(cl)
closed-loop voltage gain
35
dB
SVRR
supply voltage ripple rejection
Operating mode
fi = 100 Hz
-
75
75
80
50
-
-
-
dB
dB
dB
kΩ
fi = 1000 Hz
70
-
sleep; fi = 100 Hz
differential
|Zi|
input impedance
35
TDA8932B_3
© NXP B.V. 21 June 2007. All rights reserved.
Product data sheet
Rev. 03— 21 June 2007
20 of 48
Download from Www.Somanuals.com. All Manuals Search And Download.
TDA8932B
NXP Semiconductors
Class-D audio amplifier
Table 13. BTL characteristics (Continued)
VP = 22 V; RL = 8 Ω; fi = 1 kHz; fosc = 320 kHz; Rs < 0.1 Ω[1]; Tamb = 25 °C; unless otherwise specified.
Symbol Parameter
Conditions
Rs = 0 Ω
Min
Typ
Max
Unit
Vn(o)
noise output voltage
Operating mode
Mute mode
-
-
-
100
70
150
100
-
µV
µV
µV
VO(mute)
mute output voltage
Mute mode; Vi = 1 V (RMS) and
fi = 1 kHz
100
CMRR
common mode rejection ratio
output power efficiency
Vi(cm) = 1 V (RMS)
-
75
90
92
-
-
-
dB
%
ηpo
Po = 15 W; VP = 12 V and RL = 4 Ω
Po = 30 W; VP = 22 V and RL = 8 Ω
continuous time output power
RL = 4 Ω; VP = 12 V
88
90
%
Po(RMS)
RMS output power
THD+N = 0.5 %; fi = 1 kHz
THD+N = 0.5 %; fi = 100 Hz
THD+N = 10 %; fi = 1 kHz
THD+N = 10 %; fi = 100 Hz
RL = 8 Ω; VP = 22 V
11.8
13.2
13.2
17.2
17.2
-
-
-
-
W
W
W
W
-
15.5
-
THD+N = 0.5 %; fi = 1 kHz
THD+N = 0.5 %; fi = 100 Hz
THD+N = 10 %; fi = 1 kHz
THD+N = 10 %; fi = 100 Hz
short time output power
RL = 4 Ω; VP = 15 V
23.1
25.7
25.7
32.1
32.1
-
-
-
-
W
W
W
W
-
28.9
-
THD+N = 0.5 %
18.5
23.9
20.6
26.6
-
-
W
W
THD+N = 10 %
RL = 8 Ω; VP = 29 V
THD+N = 0.5 %
36.0
49.5
40.0
55.0
-
-
W
W
THD+N = 10 %
[1] Rs is the series resistance of inductor and capacitor of low-pass LC filter in the application.
[2] THD+N is measured in a bandwidth of 20 Hz to 20 kHz, AES17 brick wall.
[3] Maximum Vripple = 2 V (p-p); Rs = 0 Ω.
[4] B = 20 Hz to 20 kHz, AES17 brick wall.
[5] Output power is measured indirectly; based on RDSon measurement.
Two layer application board (55 mm × 45 mm), 35 µm copper, FR4 base material in free air with natural convection.
TDA8932B_3
© NXP B.V. 21 June 2007. All rights reserved.
Product data sheet
Rev. 03— 21 June 2007
21 of 48
Download from Www.Somanuals.com. All Manuals Search And Download.
TDA8932B
NXP Semiconductors
Class-D audio amplifier
14. Application information
14.1 Output power estimation
The output power Po at THD+N = 0.5 %, just before clipping, for the SE and BTL
SE configuration:
2
RL
× (1 – tw(min) × f osc) × VP
----------------------------------------------------------
RL + RDSon + Rs + RESR
------------------------------------------------------------------------------------------------------------------------------------------
8 × RL
Po(0.5%)
=
(2)
(3)
BTL configuration:
2
RL
-----------------------------------------------------
RL + 2 × (RDSon + Rs)
-------------------------------------------------------------------------------------------------------------------------------------
2 × RL
× (1 – tw(min) × f osc) × VP
Po(0.5%)
=
Where:
VP = supply voltage VDDP1 − VSSP1 (V) or VDDP2 − VSSP2 (V)
RL = load impedance (Ω)
RDSon = on-resistance power switch (Ω)
Rs = series resistance output inductor (Ω)
RESR = equivalent series resistance SE capacitor (Ω)
tw(min) = minimum pulse width (s); 80 ns typical
fosc = oscillator frequency (Hz); 320 kHz typical with Rosc = 39 kΩ
The output power Po at THD+N = 10 % can be estimated by:
Po(10%) = 1.25 × Po(0.5%)
(4)
THD+N = 10 % as a function of the supply voltage for SE and BTL configurations at
different load impedances. The output power is calculated with: RDSon = 0.15 Ω (at
Tj = 25 °C), Rs = 0.05 Ω, RESR = 0.05 Ω and IO(ocp) = 4 A (minimum).
TDA8932B_3
© NXP B.V. 21 June 2007. All rights reserved.
Product data sheet
Rev. 03— 21 June 2007
22 of 48
Download from Www.Somanuals.com. All Manuals Search And Download.
TDA8932B
NXP Semiconductors
Class-D audio amplifier
001aad768
001aad769
40
40
P
o
(W)
R
L
= 4 Ω
P
(W)
o
R
L
= 4 Ω
30
30
6 Ω
6 Ω
20
10
0
20
10
0
8 Ω
8 Ω
10
20
30
40
10
20
30
40
V
(V)
P
V
(V)
P
a. THD+N = 0.5 %
b. THD+N = 10 %
Fig 8. SE output power as a function of supply voltage
001aad770
001aad771
80
80
R
L
= 8 Ω
P
P
o
o
(W)
(W)
R
L
= 8 Ω
60
60
6 Ω
6 Ω
40
20
0
40
20
0
4 Ω
4 Ω
10
20
30
40
10
20
30
40
V
(V)
V
(V)
P
P
a. THD+N = 0.5 %
b. THD+N = 10 %
Fig 9. BTL output power as a function of supply voltage
TDA8932B_3
© NXP B.V. 21 June 2007. All rights reserved.
Product data sheet
Rev. 03— 21 June 2007
23 of 48
Download from Www.Somanuals.com. All Manuals Search And Download.
TDA8932B
NXP Semiconductors
Class-D audio amplifier
14.2 Output current limiting
The peak output current IO(max) is internally limited above a level of 4 A (minimum). During
normal operation the output current should not exceed this threshold level of 4 A
otherwise the output signal is distorted. The peak output current in SE or BTL
SE configuration:
0.5 × VP
RL + RDSon + Rs + RESR
IO(max)
≤
≤4 A
(5)
(6)
----------------------------------------------------------
BTL configuration:
VP
IO(max)
≤
≤4 A
-----------------------------------------------------
RL + 2 × (RDSon + Rs)
Where:
VP = supply voltage VDDP1 − VSSP1 (V) or VDDP2 − VSSP2 (V)
RL = load impedance (Ω)
RDSon = on-resistance power switch (Ω)
Rs = series resistance output inductor (Ω)
RESR = equivalent series resistance SE capacitor (Ω)
Example:
A 4 Ω speaker in the BTL configuration can be used up to a supply voltage of 18 V without
running into current limiting. Current limiting (clipping) will avoid audio holes but it causes
a comparable distortion like voltage clipping.
14.3 Speaker configuration and impedance
For a flat frequency response (second-order Butterworth filter) it is necessary to change
the low-pass filter components Llc and Clc according to the speaker configuration and
Table 14. Filter component values
Configuration
RL (Ω)
Llc (µH)
22
Clc (nF)
680
SE
4
6
8
4
6
8
33
470
47
330
BTL
10
1500
1000
680
15
22
14.4 Single-ended capacitor
The SE capacitor forms a high-pass filter with the speaker impedance. So the frequency
response will roll-off with 20 dB per decade below f-3dB (3 dB cut-off frequency).
TDA8932B_3
© NXP B.V. 21 June 2007. All rights reserved.
Product data sheet
Rev. 03— 21 June 2007
24 of 48
Download from Www.Somanuals.com. All Manuals Search And Download.
TDA8932B
NXP Semiconductors
Class-D audio amplifier
The 3 dB cut-off frequency is equal to:
1
f –3dB
=
(7)
----------------------------------
2π × RL × Cse
Where:
-3dB = 3 dB cut-off frequency (Hz)
f
RL = load impedance (Ω)
Cse = single-ended capacitance (F); see Figure 36
or 20 Hz 3 dB cut-off frequency.
Table 15. SE capacitor values
Impedance (Ω)
Cse (µF)
f-3dB = 60 Hz
680
f-3dB = 40 Hz
1000
f-3dB = 20 Hz
2200
4
6
8
470
680
1500
330
470
1000
14.5 Gain reduction
The gain of the TDA8932B is internally fixed at 30 dB for SE (or 36 dB for BTL). The gain
R1
R2
470 nF
470 nF
100
kΩ
R3
audio in
001aad762
Fig 10. Input configuration for reducing gain
When applying a resistive divider, the total closed-loop gain Gv(tot) can be calculated by
REQ
Gv(tot) = Gv(cl) + 20log
(8)
-----------------------------------------
REQ + (R1 + R2)
Where:
Gv(tot) = total closed-loop voltage gain (dB)
Gv(cl) = closed-loop voltage gain, fixed at 30 dB for SE (dB)
REQ = equivalent resistance, R3 and Zi (Ω)
R1 = series resistor (Ω)
R2 = series resistor (Ω)
TDA8932B_3
© NXP B.V. 21 June 2007. All rights reserved.
Product data sheet
Rev. 03— 21 June 2007
25 of 48
Download from Www.Somanuals.com. All Manuals Search And Download.
TDA8932B
NXP Semiconductors
Class-D audio amplifier
R3 × Zi
R3 + Zi
REQ
=
(9)
------------------
Where:
REQ = equivalent resistance (Ω)
R3 = parallel resistor (Ω)
Zi = internal input impedance (Ω)
Example:
results in a gain of Gv(tot) = 26.3 dB.
14.6 Device synchronization
If two or more TDA8932B devices are used in one application it is recommended that all
devices are synchronized running at the same switching frequency to avoid beat tones.
Synchronization can be realized by connecting all OSCIO pins together and configure one
of the TDA8932B devices as master, while the other TDA8932B devices are configured as
A device is configured as master when connecting a resistor between pins OSCREF and
VSSD(HW) setting the carrier frequency. Pin OSCIO of the master is then configured as an
oscillator output for synchronization. The OSCREF pins of the slave devices should be
shorted to VSSD(HW) configuring pin OSCIO as an input.
master
slave
IC1
IC2
TDA8932B
TDA8932B
OSCREF
V
OSCIO
OSCIO
V
OSCREF
SSD(HW)
SSD(HW)
C
R
osc
39 kΩ
osc
100 nF
001aaf600
Fig 11. Master slave concept in two chip application
14.7 Thermal behavior (printed-circuit board considerations)
The TDA8932B is available in two different thermally enhanced packages:
TDA8932BT in a SO32 (SOT287-1) package for reflow and wave solder process
TDA8932BTW in an HTSSOP32 (SOT549-1) package for reflow solder process only
The SO32 package has special thermal corner-leads, increasing the power capability
(reducing the overall Rth(j-a). To benefit from the corner leads pins VSSD(HW) (pins 1, 16, 17
and 32) should be attached to a copper plane. The SO package is very suitable for
applications with limited space for a thermal plane (in a single layer PCB design).
TDA8932B_3
© NXP B.V. 21 June 2007. All rights reserved.
Product data sheet
Rev. 03— 21 June 2007
26 of 48
Download from Www.Somanuals.com. All Manuals Search And Download.
TDA8932B
NXP Semiconductors
Class-D audio amplifier
The HTSSOP32 package has an exposed die-pad that reduces significantly the overall
Rth(j-a). Therefore it is required to solder the exposed die-pad (at VSSD level) to a copper
plane for cooling. The HTSSOP package will have a low thermal resistance when used on
a multi-layer PCB with sufficient space for one or two thermal planes.
Increasing the area of the thermal plane, the number of planes or the copper thickness
can reduce further the thermal resistance Rth(j-a) of both packages.
Typical thermal resistance Rth(j-a) of the SO32 package soldered at a small 2-layer
application board (55 mm × 45 mm), 35 µm copper, FR4 base material is 44 K/W.
Typical thermal resistance Rth(j-a) of the HTSSOP32 package soldered at a small 2-layer
application board (55 mm × 40 mm), 35 µm copper, FR4 base material is 48 K/W.
Equation 10 shows the relation between the maximum allowable power dissipation P and
the thermal resistance from junction to ambient.
T
j(max) – Tamb
Rth( j – a)
=
(10)
-----------------------------------
P
Where:
Rth(j-a) = thermal resistance from junction to ambient
Tj(max) = maximum junction temperature
Tamb = ambient temperature
P = power dissipation which is determined by the efficiency of the TDA8932B
The thermal foldback will limit the maximum junction temperature to 140 °C.
14.8 Pumping effects
When the amplifier is used in a SE configuration, a so-called 'pumping effect' can occur.
During one switching interval, energy is taken from one supply (e.g. VDDP1), while a part of
that energy is delivered back to the other supply line (e.g. VSSP1) and visa versa. When
the power supply cannot sink energy, the voltage across the output capacitors of that
power supply will increase.
The voltage increase caused by the pumping effect depends on:
• Speaker impedance
• Supply voltage
• Audio signal frequency
• Value of decoupling capacitors on supply lines
• Source and sink currents of other channels
The pumping effect should not cause a malfunction of either the audio amplifier and/or the
power supply. For instance, this malfunction can be caused by triggering of the
undervoltage or overvoltage protection of the amplifier.
Pumping effects in a SE configuration can be minimized by connecting audio inputs in
TDA8932B_3
© NXP B.V. 21 June 2007. All rights reserved.
Product data sheet
Rev. 03— 21 June 2007
27 of 48
Download from Www.Somanuals.com. All Manuals Search And Download.
TDA8932B
NXP Semiconductors
Class-D audio amplifier
IN1P
IN1N
OUT1
OUT2
audio
in1
IN2N
IN2P
audio
in2
001aad763
Fig 12. SE application for reducing pumping effects
TDA8932B_3
© NXP B.V. 21 June 2007. All rights reserved.
Product data sheet
Rev. 03— 21 June 2007
28 of 48
Download from Www.Somanuals.com. All Manuals Search And Download.
TDA8932B
NXP Semiconductors
Class-D audio amplifier
14.9 SE curves measured in reference design
001aad772
001aad773
2
2
10
10
THD+N
(%)
THD+N
(%)
10
10
1
1
(1)
−1
(1)
−1
10
10
(2)
(3)
(2)
(3)
−2
−2
10
10
−3
10
−3
10
10
10
−2
−1
2
−2
−1
2
10
1
10
10
(W/channel)
10
1
10
10
P
(W/channel)
P
o
o
a. VP = 22 V; RL = 2 × 4 Ω
b. VP = 30 V; RL = 2 × 8 Ω
(1) fi = 6 kHz
(2) fi = 100 Hz
(3) fi = 1 kHz
Fig 13. Total harmonic distortion-plus-noise as a function of output power per channel
001aad774
001aad775
2
2
10
10
THD+N
(%)
THD+N
(%)
10
10
1
1
(1)
(2)
(1)
(2)
−1
−1
10
10
−2
−2
10
10
−3
−3
10
10
2
3
4
5
2
3
4
5
10
10
10
10
10
10
10
10
10
10
f (Hz)
i
f (Hz)
i
a. VP = 22 V; RL = 2 × 4 Ω
b. VP = 30 V; RL = 2 × 8 Ω
(1) Po = 10 W
(2) Po = 1 W
Fig 14. Total harmonic distortion-plus-noise as a function of frequency
TDA8932B_3
© NXP B.V. 21 June 2007. All rights reserved.
Product data sheet
Rev. 03— 21 June 2007
29 of 48
Download from Www.Somanuals.com. All Manuals Search And Download.
TDA8932B
NXP Semiconductors
Class-D audio amplifier
001aad776
001aad777
40
0
SVRR
(dB)
G
v
(dB)
−20
30
−40
−60
(1)
(2)
(1)
(2)
20
10
−80
−100
2
3
4
5
2
3
4
5
10
10
10
10
10
10
10
10
10
10
f (Hz)
i
f (Hz)
i
Vi = 100 mV (RMS); Ri = 0 Ω; Cse = 1000 µF
(1) VP = 30 V; RL = 2 × 8 Ω
Vripple = 500 mV (RMS) referenced to ground;
Ri = 0 Ω (shorted input)
(1) VP = 30 V; RL = 2 × 8 Ω
(2) VP = 22 V; RL = 2 × 4 Ω
(2) VP = 22 V; RL = 2 × 4 Ω
Fig 15. Gain as a function of frequency
Fig 16. Supply voltage ripple rejection as a function of
frequency
001aad778
001aad779
120
0
α
cs
(dB)
(2)
(1)
S/N
(dB)
−20
80
−40
−60
40
(1)
−80
(2)
0
10
−100
−2
−1
2
2
3
4
5
10
1
10
10
(W/channel)
10
10
10
10
10
f (Hz)
i
P
o
Ri = 0 Ω; 20 kHz brick-wall filter AES17
(1) VP = 22 V; RL = 2 × 4 Ω
Po = 1 W; CHVPREF = 47 µF
(1) VP = 22 V; RL = 2 × 4 Ω
(2) VP = 30 V; RL = 2 × 8 Ω
(2) VP = 30 V; RL = 2 × 8 Ω
Fig 17. Signal-to-noise ratio as a function of output
power per channel
Fig 18. Channel separation as a function of frequency
TDA8932B_3
© NXP B.V. 21 June 2007. All rights reserved.
Product data sheet
Rev. 03— 21 June 2007
30 of 48
Download from Www.Somanuals.com. All Manuals Search And Download.
TDA8932B
NXP Semiconductors
Class-D audio amplifier
001aaf889
001aaf886
6
4
2
0
32
P
o
(1)
(2)
P
(W)
(W/channel)
24
(1)
16
8
(3)
(4)
(2)
0
10
14
18
22
26
30
34
38
(V)
10
14
18
22
26
30
34
38
(V)
V
V
P
P
fi = 1 kHz (short time PO); dashed line will require
heat sink for continuous time output power
fi = 1 kHz; power dissipation in junction only; short
time Po at THD+N = 10 %; dashed line will require
heat sink for continuous time output power
(1) RL = 2 × 4 Ω; THD+N = 10 %
(2) RL = 2 × 4 Ω; THD+N = 0.5 %
(3) RL = 2 × 8 Ω; THD+N = 10 %
(4) RL = 2 × 8 Ω; THD+N = 0.5 %
(1) RL = 2 × 4 Ω
(2) RL = 2 × 8 Ω
Fig 19. Output power per channel as a function of
supply voltage
Fig 20. Power dissipation as a function of supply
voltage
001aad780
001aad781
100
3.0
(2)
η
po
(%)
(1)
P
(W)
80
60
40
20
0
2.0
(2)
(1)
1.0
0
10
−2
−1
2
0
5
10
15
20
10
1
10
10
(W/channel)
P
(W/channel)
P
o
o
fi = 1 kHz; power dissipation in junction only
(1) VP = 22 V; RL = 2 × 4 Ω
2 × Po
2 × Po + p
fi = 1 kHz; ηPO
=
------------------------
(2) VP = 30 V; RL = 2 × 8 Ω
(1) VP = 22 V; RL = 2 × 4 Ω
(2) VP = 30 V; RL = 2 × 8 Ω
Fig 21. Output power efficiency as a function of output
power per channel
Fig 22. Power dissipation as a function of output power
per channel (two channels driven)
TDA8932B_3
© NXP B.V. 21 June 2007. All rights reserved.
Product data sheet
Rev. 03— 21 June 2007
31 of 48
Download from Www.Somanuals.com. All Manuals Search And Download.
TDA8932B
NXP Semiconductors
Class-D audio amplifier
001aaf887
001aaf888
32
32
P
P
o
o
(W/channel)
(W/channel)
(3)
24
24
(2)
(1)
(2)
(1)
16
8
16
8
0
0
0
0
120
240
360
480
600
120
240
360
480
600
t (s)
t (s)
a. RL = 2 × 4 Ω; fi = 1 kHz; 2 layer SO32 application
b. RL = 2 × 8 Ω; fi = 1 kHz; 2 layer SO32 application
board (55 mm × 45 mm) without heat sink
board (55 mm × 45 mm) without heat sink
(1) VP = 22 V
(2) VP = 26 V
(3) VP = 29 V
(1) VP = 30 V
(2) VP = 34 V
Fig 23. Output power per channel as a function of time
001aaf890
001aaf891
4
4
V
V
o
o
(V)
(V)
3
2
1
0
3
2
1
0
operating
operating
sleep
0.5
mute
0.5
0
1
1.5
2
2.5
3
0
1
1.5
2
2.5
3
V
(V)
V
(V)
POWERUP
ENGAGE
Vi = 100 mV (RMS value); fi = 1 kHz; VENGAGE > 3 V
Vi = 100 mV (RMS value); fi = 1 kHz;
VPOWERUP > 2 V
Fig 24. Output voltage as a function of voltage on pin
POWERUP
Fig 25. Output voltage as a function of voltage on pin
ENGAGE
TDA8932B_3
© NXP B.V. 21 June 2007. All rights reserved.
Product data sheet
Rev. 03— 21 June 2007
32 of 48
Download from Www.Somanuals.com. All Manuals Search And Download.
TDA8932B
NXP Semiconductors
Class-D audio amplifier
14.10 BTL curves measured in reference design
001aad782
001aad783
2
2
10
10
THD+N
(%)
THD+N
(%)
10
10
1
1
(1)
−1
−1
10
10
(1)
(2)
(3)
(2)
(3)
−2
−2
10
10
−3
10
−3
10
10
10
−2
−1
2
−2
−1
2
10
1
10
10
10
1
10
10
P
(W)
P
(W)
o
o
a. VP = 12 V; RL = 4 Ω
b. VP = 22 V; RL = 8 Ω
(1) fi = 6 kHz
(2) fi = 1 kHz
(3) fi = 100 Hz
Fig 26. Total harmonic distortion-plus-noise as a function of output power
001aae114
001aae115
2
2
10
10
THD+N
(%)
THD+N
(%)
10
10
1
1
−1
−1
10
10
(1)
(2)
−2
−2
(1)
(2)
10
10
−3
−3
10
10
2
3
4
5
2
3
4
5
10
10
10
10
10
10
10
10
10
10
f (Hz)
i
f (Hz)
i
a. VP = 12 V; RL = 4 Ω
b. VP = 22 V; RL = 8 Ω
(1) Po = 10 W
(2) Po = 1 W
Fig 27. Total harmonic distortion-plus-noise as a function of frequency
TDA8932B_3
© NXP B.V. 21 June 2007. All rights reserved.
Product data sheet
Rev. 03— 21 June 2007
33 of 48
Download from Www.Somanuals.com. All Manuals Search And Download.
TDA8932B
NXP Semiconductors
Class-D audio amplifier
001aae116
(2) (1)
001aae117
40
0
SVRR
(dB)
G
v
(dB)
−20
30
−40
−60
20
10
(1)
(2)
−80
−100
2
3
4
5
2
3
4
5
10
10
10
10
10
10
10
10
10
10
f (Hz)
i
f (Hz)
i
Vi = 100 mV (RMS); Ri = 0 Ω
(1) VP = 12 V; RL = 4 Ω
Vripple = 500 mV (RMS) referenced to ground;
Ri = 0 Ω (shorted input)
(1) VP = 22 V; RL = 8 Ω
(2) VP = 22 V; RL = 8 Ω
(2) VP = 12 V; RL = 4 Ω
Fig 28. Gain as a function of frequency
Fig 29. Supply voltage ripple rejection as a function of
frequency
001aae118
001aaf893
120
S/N
70
P
o
(W)
60
(dB)
(2)
(1)
50
80
(3)
(4)
40
30
20
10
0
(1)
(2)
40
0
10
−2
−1
2
10
1
10
10
10
14
18
22
26
30
V
34
(V)
P
(W)
o
P
Ri = 0 Ω; 20 kHz brick-wall filter AES17
(1) RL = 4 Ω; VP = 12 V
fi = 1 kHz (short time PO); dashed line will require
heat sink for continuous time output power
(1) RL = 4 Ω; THD+N = 10 %
(2) RL = 4 Ω; THD+N = 0.5 %
(3) RL = 8 Ω; THD+N = 10 %
(4) RL = 8 Ω; THD+N = 0.5 %
(2) RL = 8 Ω; VP = 22 V
Fig 30. Signal-to-noise ratio as a function of output
power
Fig 31. Output power as a function of supply voltage
TDA8932B_3
© NXP B.V. 21 June 2007. All rights reserved.
Product data sheet
Rev. 03— 21 June 2007
34 of 48
Download from Www.Somanuals.com. All Manuals Search And Download.
TDA8932B
NXP Semiconductors
Class-D audio amplifier
001aaf896
001aaf899
32
60
P
(W)
50
o
P
(W)
o
(3)
(2)
(1)
(3)
24
40
30
20
10
0
(2)
(1)
16
8
0
0
120
240
360
480
600
0
120
240
360
480
600
t (s)
t (s)
a. RL = 4 Ω; fi = 1 kHz; 2 layer SO32 application
b. RL = 8 Ω; fi = 1 kHz; 2 layer SO32 application
board (55 mm × 45 mm) without heat sink
board (55 mm × 45 mm) without heat sink
(1) VP = 12 V
(2) VP = 13.5 V
(3) VP = 15 V
(1) VP = 22 V
(2) VP = 26 V
(3) VP = 29 V
Fig 32. Output power as a function of time
001aae119
001aae120
100
3.0
η
po
(%)
(1)
P
(W)
80
(2)
2.0
60
40
20
0
(2)
1.0
(1)
0
10
−2
−1
2
0
10
20
30
10
1
10
10
P
(W)
P
(W)
o
o
fi = 1 kHz; power dissipation in junction only
(1) VP = 12 V; RL = 4 Ω
Po
fi = 1 kHz; ηPO
=
--------------------
(Po + p)
(2) VP = 22 V; RL = 8 Ω
(1) VP = 12 V; RL = 4 Ω
(2) VP = 22 V; RL = 8 Ω
Fig 33. Output power efficiency as a function of output
power
Fig 34. Power dissipation as a function of output power
TDA8932B_3
© NXP B.V. 21 June 2007. All rights reserved.
Product data sheet
Rev. 03— 21 June 2007
35 of 48
Download from Www.Somanuals.com. All Manuals Search And Download.
TDA8932B
NXP Semiconductors
Class-D audio amplifier
001aaf904
6
4
2
0
P
(W)
(1)
(2)
10
14
18
22
26
30
34
V
(V)
P
fi = 1 kHz; power dissipation in junction only; short time Po at THD+N = 10 %; dashed line will require heat sink for
continuous time output power
(1) RL = 4 Ω
(2) RL = 8 Ω
Fig 35. Power dissipation as a function of supply voltage
TDA8932B_3
© NXP B.V. 21 June 2007. All rights reserved.
Product data sheet
Rev. 03— 21 June 2007
36 of 48
Download from Www.Somanuals.com. All Manuals Search And Download.
TDA8932B
NXP Semiconductors
Class-D audio amplifier
14.11 Typical application schematics (simplified)
VP
Rvdda
VP
VPA
10 Ω
Cvdda
100 nF
Cvddp
220 µF
(35 V)
GND
V
V
SSD(HW)
SSD(HW)
IN1P
1
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
Cin
OSCIO
HVP1
2
Cin
470 nF
470 nF
IN1N
3
VP
V
DDP1
DIAG
4
Cvddp
Chvp
100 nF
100 nF
ENGAGE
POWERUP
CGND
BOOT1
OUT1
Cbo
15
nF
MUTE control
SLEEP control
5
Cen
470 nF
Llc
6
V
SSP1
7
Rsn
10 Ω
V
DDA
STAB1
STAB2
Cosc
VPA
8
U1
TDA8932B
Csn
470 pF
Clc
Cse
V
SSA
100 nF
Rosc
9
Cstab
100 nF
V
SSP2
OSCREF
HVPREF
INREF
TEST
10
11
12
13
14
15
16
39 kΩ
Llc
OUT2
Cbo
15
nF
Chvpref
47 µF (25 V)
Chvp
100 nF
BOOT2
Rsn
10 Ω
Cinref
100 nF
V
DDP2
VP
Cvddp
100 nF
Csn
470 pF
Clc
Cse
Cin
470 nF
IN2N
HVP2
DREF
Cin
470 nF
IN2P
Cdref
Chvp
V
V
SSD(HW)
SSD(HW)
100 nF
100 nF
001aaf601
Fig 36. Typical simplified application diagram for 2 × SE (asymmetrical supply)
TDA8932B_3
© NXP B.V. 21 June 2007. All rights reserved.
Product data sheet
Rev. 03— 21 June 2007
37 of 48
Download from Www.Somanuals.com. All Manuals Search And Download.
TDA8932B
NXP Semiconductors
Class-D audio amplifier
VP
Rvdda
10 Ω
VP
VPA
Cvdda
100 nF
Cvddp
220 µF
(35 V)
GND
V
V
SSD(HW)
SSD(HW)
IN1P
1
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
Rhvp
470 Ω
Rhvp
470 Ω
Cin
OSCIO
HVP1
2
Cin
1 µF
IN1N
3
VP
1 µF
V
DDP1
DIAG
4
Cvddp
100 nF
Chvp
100 nF
ENGAGE
POWERUP
CGND
BOOT1
OUT1
Cbo
15 nF
MUTE
control
5
Cen
470 nF
Llc
6
V
SSP1
SLEEP
control
7
Rsn
10 Ω
Clc
Clc
V
DDA
STAB1
STAB2
Cosc
VPA
8
U1
TDA8932B
Csn
470 pF
V
SSA
100 nF
Rosc
9
Cstab
100 nF
V
SSP2
OSCREF
HVPREF
INREF
TEST
10
11
12
13
14
15
16
39 kΩ
Llc
OUT2
Cbo
BOOT2
15 nF
Rsn
10 Ω
Chvp
100 nF
Cinref
V
DDP2
100 nF
VP
Cvddp
100 nF
Csn
470 pF
IN2N
HVP2
DREF
IN2P
Cdref
Chvp
V
V
SSD(HW)
SSD(HW)
100 nF
100 nF
001aaf602
Fig 37. Typical simplified application diagram for 1 × BTL (asymmetrical supply)
TDA8932B_3
© NXP B.V. 21 June 2007. All rights reserved.
Product data sheet
Rev. 03— 21 June 2007
38 of 48
Download from Www.Somanuals.com. All Manuals Search And Download.
TDA8932B
NXP Semiconductors
Class-D audio amplifier
VDD
Rvdda
VDD
GND
VSS
VDDA
VSSA
10 Ω
Cvddp
220 µF
(25 V)
Cvdda
100 nF
Cvssp
220 µF
(25 V)
Cvssa
100 nF
Rvssa
10 Ω
VSS
V
V
SSD(HW)
SSD(HW)
IN1P
VSSA
1
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
VSSA
Cin
OSCIO
HVP1
2
Cin
470 nF
470 nF
IN1N
3
VDD
V
DDP1
DIAG
4
Cvddp
100 nF
ENGAGE
POWERUP
CGND
BOOT1
OUT1
Cbo
15 nF
MUTE control
SLEEP control
5
Cen
470 nF
Llc
6
V
SSP1
Rsn
10 Ω
7
VSS
Cvssp
100 nF
V
DDA
STAB1
STAB2
Cosc
Csn
470 pF
VDDA
VSSA
8
U1
TDA8932B
Clc
V
SSA
VSS
100 nF
Rosc
9
Cstab
100 nF
Cvssp
V
SSP2
OSCREF
HVPREF
INREF
VSSA
10
11
12
13
14
15
16
39 kΩ
100 nF
Llc
OUT2
Cbo
15 nF
BOOT2
Rsn
10 Ω
Cinref
100 nF
V
DDP2
TEST
VDD
Cin
Cvddp
100 nF
Csn
470 pF
IN2N
HVP2
DREF
Clc
Cin
470 nF
470 nF
IN2P
Cdref
100 nF
V
V
SSD(HW)
SSD(HW)
VSSA
VSSA
001aaf603
Fig 38. Typical simplified application diagram for 2 × SE (symmetrical supply)
TDA8932B_3
© NXP B.V. 21 June 2007. All rights reserved.
Product data sheet
Rev. 03— 21 June 2007
39 of 48
Download from Www.Somanuals.com. All Manuals Search And Download.
TDA8932B
NXP Semiconductors
Class-D audio amplifier
VDD
Rvdda
VDD
GND
VSS
VDDA
VSSA
10 Ω
Cvddp
220 µF
(25 V)
Cvdda
100 nF
Cvssp
220 µF
(25 V)
Cvssa
100 nF
Rvssa
10 Ω
VSS
V
V
SSD(HW)
SSD(HW)
IN1P
VSSA
1
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
VSSA
Cin
OSCIO
HVP1
2
Cin
1 µF
IN1N
3
VDD
1 µF
V
DDP1
DIAG
4
Cvddp
100 nF
ENGAGE
POWERUP
CGND
BOOT1
OUT1
Cbo
15 nF
MUTE
control
5
Cen
470 nF
Llc
6
V
SSP1
Rsn
10 Ω
SLEEP
control
7
VSS
Cvssp
100 nF
Clc
V
DDA
STAB1
STAB2
Cosc
VDDA
VSSA
8
Csn
470 pF
U1
TDA8932B
V
SSA
VSS
100 nF
Rosc
9
Cstab
100 nF
Cvssp
100 nF
V
SSP2
OSCREF
HVPREF
INREF
TEST
Clc
VSSA
10
11
12
13
14
15
16
39 kΩ
Llc
OUT2
Cbo
15 nF
BOOT2
Rsn
10 Ω
Cinref
V
DDP2
100 nF
VDD
IN2N
HVP2
DREF
Cvddp
100 nF
Csn
470 pF
IN2P
Cdref
100 nF
V
V
SSD(HW)
SSD(HW)
VSSA
VSSA
001aaf606
Fig 39. Typical simplified application diagram for 1 × BTL (symmetrical supply)
15. Test information
15.1 Quality information
The General Quality Specification for Integrated Circuits, SNW-FQ-611 is applicable.
TDA8932B_3
© NXP B.V. 21 June 2007. All rights reserved.
Product data sheet
Rev. 03— 21 June 2007
40 of 48
Download from Www.Somanuals.com. All Manuals Search And Download.
TDA8932B
NXP Semiconductors
Class-D audio amplifier
16. Package outline
SO32: plastic small outline package; 32 leads; body width 7.5 mm
SOT287-1
D
E
A
X
c
y
H
v
M
A
E
Z
17
32
Q
A
2
A
(A )
3
A
1
pin 1 index
θ
L
p
L
16
1
w M
detail X
b
p
e
0
5
10 mm
scale
DIMENSIONS (inch dimensions are derived from the original mm dimensions)
A
(1)
(1)
(1)
UNIT
A
A
A
b
c
D
E
e
H
E
L
L
Q
v
w
y
Z
θ
p
p
1
2
3
max.
0.3
0.1
2.45
2.25
0.49
0.36
0.27 20.7
0.18 20.3
7.6
7.4
10.65
10.00
1.1
0.4
1.2
1.0
0.95
0.55
mm
2.65
0.25
0.01
1.27
0.05
1.4
0.25
0.01
0.25
0.01
0.1
8o
0o
0.012 0.096
0.004 0.089
0.02 0.011 0.81
0.01 0.007 0.80
0.30
0.29
0.419
0.394
0.043 0.047
0.016 0.039
0.037
0.022
inches
0.1
0.004
0.055
Note
1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.
REFERENCES
OUTLINE
EUROPEAN
PROJECTION
ISSUE DATE
VERSION
IEC
JEDEC
JEITA
00-08-17
03-02-19
SOT287-1
MO-119
Fig 40. Package outline SOT287-1 (SO32)
TDA8932B_3
© NXP B.V. 21 June 2007. All rights reserved.
Product data sheet
Rev. 03— 21 June 2007
41 of 48
Download from Www.Somanuals.com. All Manuals Search And Download.
TDA8932B
NXP Semiconductors
Class-D audio amplifier
HTSSOP32: plastic thermal enhanced thin shrink small outline package; 32 leads;
body width 6.1 mm; lead pitch 0.65 mm; exposed die pad
SOT549-1
E
A
X
D
c
H
v
M
y
A
exposed die pad side
E
D
h
Z
32
17
A
(A )
3
2
E
A
h
A
1
pin 1 index
θ
L
p
L
detail X
1
16
w
M
b
e
p
0
2.5
5 mm
scale
DIMENSIONS (mm are the original dimensions).
A
(1)
(2)
UNIT
A
A
A
b
c
D
D
E
E
e
H
L
L
p
v
w
y
Z
θ
1
2
3
p
h
h
E
max.
8o
0o
0.15 0.95
0.05 0.85
0.30 0.20 11.1
0.19 0.09 10.9
5.1
4.9
6.2
6.0
3.6
3.4
8.3
7.9
0.75
0.50
0.78
0.48
mm
1.1
0.65
1
0.2
0.25
0.1
0.1
Notes
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.
REFERENCES
OUTLINE
EUROPEAN
PROJECTION
ISSUE DATE
VERSION
IEC
JEDEC
JEITA
03-04-07
05-11-02
SOT549-1
MO-153
Fig 41. Package outline SOT549-1 (HTSSOP32)
TDA8932B_3
© NXP B.V. 21 June 2007. All rights reserved.
Product data sheet
Rev. 03— 21 June 2007
42 of 48
Download from Www.Somanuals.com. All Manuals Search And Download.
TDA8932B
NXP Semiconductors
Class-D audio amplifier
17. Soldering
This text provides a very brief insight into a complex technology. A more in-depth account
of soldering ICs can be found in Application Note AN10365 “Surface mount reflow
soldering description”.
17.1 Introduction to soldering
Soldering is one of the most common methods through which packages are attached to
Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both
the mechanical and the electrical connection. There is no single soldering method that is
ideal for all IC packages. Wave soldering is often preferred when through-hole and
Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not
suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high
densities that come with increased miniaturization.
17.2 Wave and reflow soldering
Wave soldering is a joining technology in which the joints are made by solder coming from
a standing wave of liquid solder. The wave soldering process is suitable for the following:
• Through-hole components
• Leaded or leadless SMDs, which are glued to the surface of the printed circuit board
Not all SMDs can be wave soldered. Packages with solder balls, and some leadless
packages which have solder lands underneath the body, cannot be wave soldered. Also,
leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered,
due to an increased probability of bridging.
The reflow soldering process involves applying solder paste to a board, followed by
component placement and exposure to a temperature profile. Leaded packages,
packages with solder balls, and leadless packages are all reflow solderable.
Key characteristics in both wave and reflow soldering are:
• Board specifications, including the board finish, solder masks and vias
• Package footprints, including solder thieves and orientation
• The moisture sensitivity level of the packages
• Package placement
• Inspection and repair
• Lead-free soldering versus PbSn soldering
17.3 Wave soldering
Key characteristics in wave soldering are:
• Process issues, such as application of adhesive and flux, clinching of leads, board
transport, the solder wave parameters, and the time during which components are
exposed to the wave
• Solder bath specifications, including temperature and impurities
TDA8932B_3
© NXP B.V. 21 June 2007. All rights reserved.
Product data sheet
Rev. 03— 21 June 2007
43 of 48
Download from Www.Somanuals.com. All Manuals Search And Download.
TDA8932B
NXP Semiconductors
Class-D audio amplifier
17.4 Reflow soldering
Key characteristics in reflow soldering are:
• Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to
higher minimum peak temperatures (see Figure 42) than a PbSn process, thus
reducing the process window
• Solder paste printing issues including smearing, release, and adjusting the process
window for a mix of large and small components on one board
• Reflow temperature profile; this profile includes preheat, reflow (in which the board is
heated to the peak temperature) and cooling down. It is imperative that the peak
temperature is high enough for the solder to make reliable solder joints (a solder paste
characteristic). In addition, the peak temperature must be low enough that the
packages and/or boards are not damaged. The peak temperature of the package
depends on package thickness and volume and is classified in accordance with
Table 16 and 17
Table 16. SnPb eutectic process (from J-STD-020C)
Package thickness (mm) Package reflow temperature (°C)
Volume (mm3)
< 350
235
≥ 350
220
< 2.5
≥ 2.5
220
220
Table 17. Lead-free process (from J-STD-020C)
Package thickness (mm) Package reflow temperature (°C)
Volume (mm3)
< 350
260
350 to 2000
> 2000
260
< 1.6
260
250
245
1.6 to 2.5
> 2.5
260
245
250
245
Moisture sensitivity precautions, as indicated on the packing, must be respected at all
times.
Studies have shown that small packages reach higher temperatures during reflow
soldering, see Figure 42.
TDA8932B_3
© NXP B.V. 21 June 2007. All rights reserved.
Product data sheet
Rev. 03— 21 June 2007
44 of 48
Download from Www.Somanuals.com. All Manuals Search And Download.
TDA8932B
NXP Semiconductors
Class-D audio amplifier
maximum peak temperature
= MSL limit, damage level
temperature
minimum peak temperature
= minimum soldering temperature
peak
temperature
time
001aac844
MSL: Moisture Sensitivity Level
Fig 42. Temperature profiles for large and small components
For further information on temperature profiles, refer to Application Note AN10365
“Surface mount reflow soldering description”.
18. Abbreviations
Table 18. Abbreviations
Acronym
BTL
Description
Bridge Tied Load
DMOS
ESD
OCP
OTP
OVP
PWM
SE
Double diffused Metal Oxide Semiconductor
ElectroStatic Discharge
OverCurrent Protection
OverTemperature Protection
OverVoltage Protection
Pulse Width Modulation
Single-Ended
TF
Thermal Foldback
UBP
UVP
WP
UnBalance Protection
UnderVoltage Protection
Window Protection
TDA8932B_3
© NXP B.V. 21 June 2007. All rights reserved.
Product data sheet
Rev. 03— 21 June 2007
45 of 48
Download from Www.Somanuals.com. All Manuals Search And Download.
TDA8932B
NXP Semiconductors
Class-D audio amplifier
19. Revision history
Table 19. Revision history
Document ID
TDA8932B_3
Modifications:
TDA8932B_2
TDA8932B_1
Release date
20070621
Data sheet status
Change notice
Supersedes
Product data sheet
-
TDA8932B_2
• Status upgraded to Product data sheet
20070329
Preliminary data sheet
-
-
TDA8932B_1
-
20070214
Objective data sheet
TDA8932B_3
© NXP B.V. 21 June 2007. All rights reserved.
Product data sheet
Rev. 03 — 21 June 2007
46 of 48
Download from Www.Somanuals.com. All Manuals Search And Download.
TDA8932B
NXP Semiconductors
Class-D audio amplifier
20. Legal information
20.1 Data sheet status
Document status[1][2]
Product status[3]
Development
Definition
Objective [short] data sheet
This document contains data from the objective specification for product development.
This document contains data from the preliminary specification.
This document contains the product specification.
Preliminary [short] data sheet Qualification
Product [short] data sheet Production
[1]
[2]
[3]
Please consult the most recently issued document before initiating or completing a design.
The term ‘short data sheet’ is explained in section “Definitions”.
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status
malfunction of a NXP Semiconductors product can reasonably be expected to
20.2 Definitions
result in personal injury, death or severe property or environmental damage.
NXP Semiconductors accepts no liability for inclusion and/or use of NXP
Semiconductors products in such equipment or applications and therefore
such inclusion and/or use is at the customer’s own risk.
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences of
use of such information.
Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Short data sheet — A short data sheet is an extract from a full data sheet
with the same product type number(s) and title. A short data sheet is intended
for quick reference only and should not be relied upon to contain detailed and
full information. For detailed and full information see the relevant full data
sheet, which is available on request via the local NXP Semiconductors sales
office. In case of any inconsistency or conflict with the short data sheet, the
full data sheet shall prevail.
Limiting values — Stress above one or more limiting values (as defined in
the Absolute Maximum Ratings System of IEC 60134) may cause permanent
damage to the device. Limiting values are stress ratings only and operation of
the device at these or any other conditions above those given in the
Characteristics sections of this document is not implied. Exposure to limiting
values for extended periods may affect device reliability.
Terms and conditions of sale — NXP Semiconductors products are sold
subject to the general terms and conditions of commercial sale, as published
intellectual property rights infringement and limitation of liability, unless
explicitly otherwise agreed to in writing by NXP Semiconductors. In case of
any inconsistency or conflict between information in this document and such
terms and conditions, the latter will prevail.
20.3 Disclaimers
General — Information in this document is believed to be accurate and
reliable. However, NXP Semiconductors does not give any representations or
warranties, expressed or implied, as to the accuracy or completeness of such
information and shall have no liability for the consequences of use of such
information.
No offer to sell or license — Nothing in this document may be interpreted
or construed as an offer to sell products that is open for acceptance or the
grant, conveyance or implication of any license under any copyrights, patents
or other industrial or intellectual property rights.
Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.
20.4 Trademarks
Notice: All referenced brands, product names, service names and trademarks
are the property of their respective owners.
Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in medical, military, aircraft,
space or life support equipment, nor in applications where failure or
21. Contact information
For additional information, please visit: http://www.nxp.com
For sales office addresses, send an email to: [email protected]
TDA8932B_3
© NXP B.V. 21 June 2007. All rights reserved.
Product data sheet
Rev. 03 — 21 June 2007
47 of 48
Download from Www.Somanuals.com. All Manuals Search And Download.
TDA8932B
NXP Semiconductors
Class-D audio amplifier
22. Contents
considerations) . . . . . . . . . . . . . . . . . . . . . . . . 26
Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section ‘Legal information’.
© NXP B.V. 21 June 2007.
All rights reserved.
For sales office addresses, please send an email to: [email protected]
Date of release: 21 June 2007
Document identifier: TDA8932B_3
Download from Www.Somanuals.com. All Manuals Search And Download.
|