| Marathon Sensors Inc.   Oxymit™ Transmitter   Operators Manual   Download from Www.Somanuals.com. All Manuals Search And Download.   Table of Contents   GENERAL DESCRIPTION............................................................................................................................ 2   SAFETY SUMMARY......................................................................................................................................3   CONNECTIONS .............................................................................................................................................. 3   GROUNDING AND SHIELDING .........................................................................................................................4   PARAMETER SELECTIONS........................................................................................................................ 4   PROCESS PARAMETERS................................................................................................................................... 4   Process Type.............................................................................................................................................5   Carbon Process Factor.............................................................................................................................5   Dew Point Process Factor........................................................................................................................ 5   Oxygen Exponent......................................................................................................................................6   TC Type.....................................................................................................................................................6   ANALOG OUTPUT CHANNELS .........................................................................................................................6   CALIBRATION...............................................................................................................................................7   PROCESS VARIABLE CALCULATIONS................................................................................................... 8   PERCENT OXYGEN.......................................................................................................................................... 8   PERCENT CARBON.......................................................................................................................................... 8   DEWPOINT...................................................................................................................................................... 8   COMMUNICATIONS..................................................................................................................................... 9   MODBUS.........................................................................................................................................................9   RTU Framing............................................................................................................................................ 9   Address Field.......................................................................................................................................... 10   Function Field.........................................................................................................................................10   Data Field...............................................................................................................................................10   Error Check Field (CRC)........................................................................................................................ 10   MEMORY MAP.............................................................................................................................................12   OPERATIONAL SPECIFICATIONS.......................................................................................................... 18   Download from Www.Somanuals.com. All Manuals Search And Download.   NOTE:   Please specify the following parameters when ordering a transmitter; process type, process   range (%, ppm), thermocouple type, temperature scale F/C, analog output 1 process and   scale, analog output 2 process and scale.   Typical Oxygen Transmitter Calibration   (F840030)   Calibration   Function   Measured Value or   Input   Output / Units   Cold Junction   Thermocouple   min   Room Temp   800°F (B type)   standard t/c type   °F   °F   Thermocouple   max   Millivolt   3000°F (B type)   standard t/c type   0.0 mV   °F   Millivolts   Millivolts   Millivolt   2000 mV   Analog 1 Zero   Analog 1 Span   Analog 2 Zero   Analog 2 Span   0% O2   20.9% O2   800°F +/- 5°   3000°F +/- 5°   4.0 mA +/- 0.1   20.0 mA +/- 0.1   4.0 mA +/- 0.1   20.0 mA +/- 0.1   Typical Carbon Transmitter Calibration   (F840031)   Calibration   Function   Measured Value or   Input   Output / Units   Cold Junction   Thermocouple   Min   Thermocouple   Max   Room Temp   MUST BE   SPECIFIED   MUST BE   SPECIFIED   0.0 mV   °F   °F   °F   Millivolt   Millivolt   Millivolts   Millivolts   2000 mV   Analog 1 Zero   Analog 1 Span   Analog 2 Zero   0% Carbon   2.55% Carbon   MUST BE   SPECIFIED   4.0 mA +/- 0.1   20.0 mA +/- 0.1   4.0 mA +/- 0.1   Analog 2 Span   MUST BE   SPECIFIED   20.0 mA +/- 0.1   Page 1 of 23   11/14/2006   Rev. 14   Download from Www.Somanuals.com. All Manuals Search And Download.   General Description   The Oxymit™ Transmitter has been designed to work as an analog or digital interface for   any zirconia based oxygen probe used to track dew point, carbon potential, or oxygen. The   transmitter connects to the temperature and millivolts outputs of an oxygen probe and can   produce analog outputs proportional to the selected process value.   The features available are:    Isolated inputs for thermocouple and probe millivolt    24 bit Sigma-Delta ADC for inputs.    Serial EEPROM to store setup and calibration values.    Two isolated self-powered 4-20mA outputs for process value and temperature.   The transmitter makes a carbon or oxygen probe an intelligent stand alone sensor. The   transmitter is located near the probe, preferably mounted in an enclosure. The transmitter   mounts onto a DIN rail and requires a 24VDC power supply. It measures the probe   temperature and millivolts. At the time of order the transmitter can be configured to   calculate percent carbon, dewpoint, or percent oxygen from these inputs. The results of   any of these calculations are made available via two 4-20mA loop outputs. Typically one   first loop is set up for the process value the second loop transmits probe temperature.   5V_A   10   9 RTX+   RTX-   5V_A   5V_B   +15V   5V_B   +24V   12   11   RS485   B Power   Supplies   -15V   +15V   -15V   A 24V   COM   ISOLATED   ISOLATED   5V_A   5V_A   44M   +15V   D/A   22M   C C C 1 2 ANALOG   OUT 1   4-20mA   6 5 8 7 T/C INPUT   EEPROM   A/D   CONV.   mV INPUT   -15V   Process   Controller   ISOLATED   5V_A   +15V   D/A   D D D 14   13   3 4 ANALOG   OUT 2   4-20mA   EVENT INPUT   DISPLAY   CONN.   -15V   Figure 1 BLOCK DIAGRAM   Page 2 of 23   11/14/2006   Rev. 14   Download from Www.Somanuals.com. All Manuals Search And Download.   Safety Summary   All cautions and instructions that appear in this manual must be complied with to prevent   personnel injury or damage to the Probe Transmitter or connected equipment. The   specified limits of this equipment must not be exceeded. If these limits are exceeded or if   this instrument is used in a manner not intended by Marathon Sensors Inc., damage to this   instrument or connected devices could occur.   Do not connect this device directly to AC motors, valves, or other actuators. All AC alarm   functions must be connected through an interposing DC coil relay with a maximum coil   load of 0.5 amps DC. The Probe Transmitter is not rated to act as a safety device. It   should not be used to provide interlocking safety functions for any temperature or process   functions. Alarm capabilities are provided for probe test and input faults only and are not   to be considered or used as safety contacts in any application.   Connections   The Probe Transmitter has four removable terminal blocks grouped with four terminals   each. Each terminal is a wire clamp type with a standard slot screw. Each clamp can   accommodate AWG 24 to 12 flexible stranded wire. Maximum torque on the terminal   screws should not exceed 0.8 Nm.   The figure below shows the arrangement of the terminals.   1 2 3 4 - + EVT EVT   AO1   COM NO   LOWER   5 6 7 8 - + - + TC   MV   UPPER   UPPER   9 10 11 12   - + - + RS485   24VDC   LOWER   13 14 15 16   - + N/C N/C   AO2   Figure 2 Terminal Layout   Page 3 of 23   11/14/2006   Rev. 14   Download from Www.Somanuals.com. All Manuals Search And Download.   The next figure shows a schematic representation of the Probe Transmitter and typical   connections required in the field.   Figure 3 Schematic Connections   Grounding and Shielding   To minimize the pick-up of electrical noise, the low voltage DC connections and the sensor   input wiring should be routed away from high-current power cables. Where it is   impractical to do this, use shielded cables with the shield grounded at the Probe Transmitter   enclosure ground as show above.   Parameter Selections   The following tables list the parameters available in the Probe Transmitter. Default values   are also listed. The default values are loaded if a reset is force in the device. Changes to   these parameters must be specified at the time of order.   Process Parameters   The following table shows the process selections and other parameters that effect the   process value.   Page 4 of 23   11/14/2006   Rev. 14   Download from Www.Somanuals.com. All Manuals Search And Download.   Table 1 Process Parameters   Parameter Name   PROCESS TYPE   Selection   Default   %O2   Units or Options   Range   CARBON, DPT,   %O2, MV   CARB PROC FACT   150   0 to 1000   DEWPT PROC FACT 150   0 to 1000   0 to 31   OXYGEN EXPON   0002   POWER OF TEN   TC TYPE   B B, C, E, J, K, N,   NNM, R, S, T   Process Type   Selecting the process type determines what type of calculation the Smart Transmitter is   going to do based on the probe millivolt and probe temperature inputs. The default process   value for the Smart Transmitter is %O2 with an exponent selection of 2. This is the   selection most often used in Boiler control and Combustion applications.   Percent Carbon and dew point are typically processes that are used in steel treating   applications. Percent Carbon is the process value most often used for the control of case   depth or the percent of carbon in a steel hardening furnace. Dew Point is used in the control   for endothermic generators.   Carbon Process Factor   The carbon process factor can be used to adjust the % carbon value. This number takes   into account a number of assumptions that the carbon value is based on. Primary among   these is the assumed level of CO in the atmosphere. See the Theory of Process Calculation   section for a complete explanation of this value.   It maybe necessary to change the apparent furnace carbon as measured by the oxygen   probe if this value is different than actual load samples, shim stocks, or gas analysis. The   basic rule of thumb is that an increase is the carbon process factor will decrease the   apparent carbon level in the furnace. The default value is 150. Typical values can very   from 50 to 400. Increase or decrease the process factor until the desired carbon level is   achieved. A process factor that is drastically different than normal may be an indication of   a failing probe, water or air leak in the furnace, or excess methane present. Refer to probe   troubleshooting guides to determine what other factors maybe effecting the carbon value.   Dew Point Process Factor   The dew point process factor is similar to the carbon process factor but is used to adjust the   dew point value if dew point is selected as the process value. This number takes into   account a number of assumptions that the dew point value is based on. Primary among   these is the assumed level of hydrogen in the atmosphere. See the Theory of Process   Calculation section for a complete explanation of this value.   Page 5 of 23   11/14/2006   Rev. 14   Download from Www.Somanuals.com. All Manuals Search And Download.   Oxygen Exponent   The range of oxygen is factory configured using the oxygen exponent number. Percent   oxygen is the standard setting where the oxygen exponent is set to 2 and the output range is   0.00% to 20.9%. For a part per million (ppm) range the exponent would be set to 6 and the   -6   output range of 0.00 X 10 to 99.99 X 10-6.   TC Type   The following table shows the available thermocouple types and the ranges. BOLD   indicates the typical oxygen default.   Thermocouple   Zero ºF   Zero °C   Span ºF   Span °C   type   B C E J K 800   32   32   32   32   32   32   300   300   32   425   0 0 0 0 0 0 150   150   0 3000   3000   1300   1300   2300   2300   2000   3000   3000   700   1650   1650   700   700   1260   1260   1090   1650   1650   370   N NNM   R S T The Cold Junction correction is applied to all thermocouple types.   Analog Output Channels   The analog outputs are factory configured to provide 4 to 20mA signals proportional to   selectable process values.   NOTE   The Analog Output Channels are isolated self-powered   current sources and do not require an external supply.   If a chart recorder is to be used, it should have input specifications within 4 to 20 mA. If   the recorder only responds to VDC inputs it will be necessary to add a 250 ohm dropping   resistor across its input terminals.   The ideal location of the recorder is adjacent to the instrument but it may be located   remotely if the connecting wires are properly shielded. For best results, the chart recorder   input(s) should be isolated from ground.   Page 6 of 23   11/14/2006   Rev. 14   Download from Www.Somanuals.com. All Manuals Search And Download.   Table 2 Analog Outputs   Parameter   Name   Oxygen   Default   Possible   Options   Possible   Ranges   OUTPUT 1   MODE   O2   O2, CARBON,   DEWPT, TEMP, LIN,   PROG   O2 = 0 – 9999   %C = 0.00 – 2.55   DP = -99.9 – 212.0   Temp = -999 – 3000   LIN = -999 – 9999   PROG = 0 – 4095   O2 = 0 – 9999   %C = 0.00 – 2.55   DP = -99.9 – 212.0   Temp = -999 – 3000   LIN = -999 – 9999   PROG = 0 – 4095   0–20.9%   4-20mA   OUTPUT 2   MODE   TEMP   O2, CARBON,   DEWPT, TEMP, LIN,   PROG   800-3000°F   4-20mA   NOTE: SEE PAGE 4 FOR TYPICAL CALIBRATION VALUES.   Calibration   The Smart Transmitter is factory calibrated. The calibration can be verified once a year or   according to customer calibration schedules. The instrument should be returned to the   factory if calibration is required.   Page 7 of 23   11/14/2006   Rev. 14   Download from Www.Somanuals.com. All Manuals Search And Download.   Process Variable Calculations   The transmitter has a selectable process calculation for percent carbon, percent oxygen, or   dewpoint. The following equations are used to derive these values;   Percent Oxygen   20.95   %O2 = -----------------------   e(E/0.0215*Tk)   Where: E = probe millivolts, Tk = probe temperature in degrees Kelvin.   The 20.95 is the %O2 in air.   Percent Carbon   e((E-786)/(0.043102*Tk))   %C = 5.102 ---------------------------------------------------   (29*PF + 400)+ e((E-786)/(0.043102*Tk))   Where: E = probe millivolts, Tk = probe temperature in Kelvin, and PF is the process   factor.   Dewpoint   4238.7   DP = -------------------------------------------------------------------- - 459.69   6.281216 + log((29*PF+400)+(E-1267.8)/(0.05512*Tr)   Where: E = probe millivolts, Tr = probe temperature in Rankin, PF is the process factor,   and DP is the dewpoint in Fahrenheit.   Page 8 of 23   11/14/2006   Rev. 14   Download from Www.Somanuals.com. All Manuals Search And Download.   Communications   The Transmitter is capable of digital communications using the Modbus protocol. This is   possible by connecting to the half duplex RS-485 terminals using a shielded twisted pair.   Modbus   The MODBUS protocol describes an industrial communications and distributed control   system (DCS) that integrates PLCs computers, terminals, and other monitoring, sensing,   and control devices. MODBUS is a Master/Slave communications protocol, whereby one   device, (the Master), controls all serial activity by selectively polling one or more slave   devices. The protocol provides for one master device and up to 247 slave devices on a RS-   485 half duplex twisted pair line. Each device is assigned an address to distinguish it from   all other connected devices. All instruments are connected in a daisy-chain configuration.   The instrument communicates with baud rate settings 1200, 2400, 4800, 9600, or 19.2K.   The default baud rate is 19.2Kbuad. The default address is 1. Changes to these values can   be made by writing to the appropriate memory register.   The Transmitter communicates in Modbus RTU (Remote Terminal Unit) protocol using 8-   bit binary data characters. Message characters are transmitted in a continuous stream. The   message stream is setup based on the following structure:   Number of bits per character:   Start bits   1 Data bits (least significant first)   Parity   8 None only (no bits for no parity)   Stop bits   1 Error Checking   CRC (Cyclical Redundancy Check)   The Transmitter recognizes three RTU commands. These are: read single I registers   (command 4), read a single H register (command 3), and preset a single H register   (command 6)   In Modbus mode, the Transmitter can be only be configured for the ‘none’ parity option.   The instrument never initiates communications and is always in receive mode unless   responding to a query.   RTU Framing   Frame synchronization can be maintained in RTU transmission mode only by simulating a   synchronous message. The instrument monitors the elapsed time between receipt of   characters. If three and one-half character times elapse without a new character or   completion of the frame, then the instrument flushes the frame and assumes that the next   Page 9 of 23   11/14/2006   Rev. 14   Download from Www.Somanuals.com. All Manuals Search And Download.   byte received will be an address. The follow command message structure is used, where T   is the required character delay. Response from the instrument is based on the command.   T1,T2,T3 ADDRESS FUNCTION DATA   CHECKSUM   T1,T2,T3   8-BITS   8-BITS   N X 8-BITS 16-BITS   Address Field   The address field immediately follows the beginning of the frame and consists of 8-bits.   These bits indicate the user assigned address of the slave device that is to receive the   message sent by the attached master.   Each slave must be assigned a unique address and only the addressed slave will respond to   a query that contains its address. When the slave sends a response, the slave address   informs the master which slave is communicating.   Function Field   The Function Code field tells the addressed slave what function to perform. MODBUS   function codes are specifically designed for interacting with a PLC on the MODBUS   industrial communications system. Command codes were established to manipulate PLC   registers and coils. As far as the Transmitter is concerned, they are all just memory   locations, but the response to each command is consistent with Modbus specifications.   The high order bit in this field is set by the slave device to indicate an exception condition   in the response message. If no exceptions exist, the high-order bit is maintained as zero in   the response message.   Data Field   The data field contains information needed by the slave to perform the specific function or   it contains data collected by the slave in response to a query. This information may be   values, address references, or limits. For example, the function code tells the slave to read   a holding register, and the data field is needed to indicate which register to start at and how   many to read.   Error Check Field (CRC)   This field allows the master and slave devices to check a message for errors in   transmission. Sometimes, because of electrical noise or other interference, a message may   be changed slightly while it is on its way from one device to another. The error checking   assures that the slave or master does not react to messages that have changed during   transmission. This increases the safety and the efficiency of the MODBUS system.   The error check field uses a CRC-16 check in the RTU mode.   Page 10 of 23   11/14/2006   Rev. 14   Download from Www.Somanuals.com. All Manuals Search And Download.   The following is an example of a function 03 call for data at memory location 03. The   value returned by the instrument is the hex value 1E.   Transmit from Host or Master   Address Cmd Reg Reg   HI LO   00 03   Count Count   HI LO   00 01   CRC CRC   HI LO   74 0A   01   03   Response from Transmitter   Address Cmd Byte Byte Data Data   Count Count HI LO   CRC CRC   HI Lo   HI   03 00   LO   02   01   00   1E   38   4C   Note that all the values are interpreted as hexadecimal values. The CRC calculation is   based on the A001 polynomial for RTU Modbus. The function 04 command structure is   similar to the 03 structure.   The following is an example of a function 06 call to change data in register 01 to 200. The   response from the instrument confirms the new value as being set.   Transmit from Host or Master   Address   01   Cmd Reg Reg Data Data   HI LO HI LO   00 01 00 C8   CRC CRC   HI LO   D9 9C   06   Response from Transmitter   Cmd Reg Reg Data Data CRC CRC   Address   01   HI   00   LO   01   HI   00   LO   C8   HI   D9   LO   9C   06   The Transmitter will respond to several error conditions. The three exception codes that   will generate a response from the instrument are:   01 – Illegal Function   02 - Illegal Data Address   03 – Illegal Data Value   04 – Slave Device Failure   The response from the Transmitter with an exception code will have the most significant   bit of the requested function set followed by the exception code and the high and low CRC   bytes.   Page 11 of 23   11/14/2006   Rev. 14   Download from Www.Somanuals.com. All Manuals Search And Download.   Memory Map   NOTE: Modbus refers to the hexadecimal register location. These parameters are   formatted as unsigned 16 bit integers. Any real number such as temperature can be   evaluated as a signed number, other parameters are bit mapped words that must be   evaluated as single bits are bit groups.   BLOCK 0   HEX   00   DEC   PARAMETER   Not used   DESCRIPTION   READ/WRITE   READ ONLY   READ/WRITE   0 1 LOW BYTE - TIMER CONTROL   BIT 0 – Timer Disabled (0), Timer Enabled (1)   BIT 1 – 7 SPARE   01   TIME CONTROL   SIOSET   HIGH BYTE – SIO SETUP   BITS 8 – 9 PARITY SETTING   00 = Even Parity, 7 bits, 1 Stop bit   01 = No Parity, 8 bits, 1 Stop bit   10 = Odd Parity, 7 bits, 1 Stop bit   BITS 10 – 11 RESPONSE DELAY   0 = No delay applied to response   1 = 10ms delay applied to response   2 = 20ms delay applied to response   3 = 30ms delay applied to response   BITS 12 – 14 BAUD SELECT   000 = 76.8K   001 = 38.4K   010 = 19.2K (DEFAULT)   011 = 9600   100 = 4800   101 = 2400   110 = 1200   111 = 600   BIT 15 HOST FORMAT   0 = MSI (PROP)   1 = MODBUS (DEFAULT)   02   03   04   2 3 4 TC_ZERO   TC_SPAN   LOW BYTE - TC ZERO CALIBRATION   NUMBER   READ/WRITE   READ/WRITE   READ/WRITE   HIGH BYTE – TC SPAN CALIBRATION   NUMBER   LOW BYTE – MV ZERO CALIBRATION   NUMBER   MV_ZERO   MV_SPAN   HIGH BYTE – MV SPAN CALIBRATION   NUMBER   PROCESS FACTOR FOR CARBON OR   DEWPOINT   PF   RANGE = 0 to 4095   Page 12 of 23   11/14/2006   Rev. 14   Download from Www.Somanuals.com. All Manuals Search And Download.   BLOCK 0   DESCRIPTION   DEFAULT = 150   HEX   05   DEC   5 PARAMETER   READ/WRITE   READ/WRITE   EVENT   LDLN   LOW BYTE – INPUT EVENT   CONFIGURATION   Bits 0 – 3   0000 = None   0001 = Auto Mode Selected   0010 = Remote Setpoint Selected   0011 = Acknowledge alarms   0100 = Timer Hold   0101 = Timer End   0110 = Timer Start   0111 = Start probe test   1000 = Process hold   Bits 4 – 7 not used.   UPPER BYTE – LOAD LINE   LOW BYTE – COLD JUNCTION TRIM   COLD JUNCTION TRIM (unsigned integer)   RANGE = –128 TO +127 WHERE   06   6 CJTRM   HADR   1 COUNT = 1 DEG (C or F) and –128 = 65408   HIGH BYTE – HOST ADDRESS   BITS 0-7   RANGE = 0 – 255   07   08   7 8 SPARE   SPARE   CONFIG0   Input Configuration   BITS 0-3 TC Input TYPE   0000 = B (DEFAULT)   0001 = E   READ/WRITE   0010 = J   0011 = K   0100 = N   0101 = R   0110 = S   0111 = T   1000 = SPARE   1001 = SPARE   1010 = SPARE   1011 = SPARE   1100 = SPARE   1101 = SPARE   1110 = SPARE   1111 = SPARE   BIT 4 = SPARE   BIT 5 0 = NO CJ APPLIED, 1 = CJ APPLIED   BIT 6 0 = °F, 1 = °C   BIT 7 0 = 60HZ FILTER   BIT 8 – 11 Millivolt Input TYPE   0000 = LINEAR (DEFAULT)   All other bit combinations are spare   BITS 12 – 15 are spare   SETUP VALUES   09   9 CONFIG2   Page 13 of 23   11/14/2006   Rev. 14   Download from Www.Somanuals.com. All Manuals Search And Download.   BLOCK 0   HEX   DEC   PARAMETER   DESCRIPTION   READ/WRITE   BITS 0 - 4 OXYGEN EXPONENT   RANGE = 0 to 31, where 2 = % and 6 = ppm   DEFAULT = 2   BITS 5 - 6 DISPLAY DECIMAL PLACE   where:   0 = no decimal point in display   1 = Display XXX.X   2 = Display XX.XX   3 = Display X.XXX   DEFAULT = 0   BITS 8 – 12 REDOX METAL NUMBER   RANGE = 0 – 14   DEFAULT = 0   BITS 13 – 15 SPARE   0A   10   FAULT   FAULT BIT MAP   READ ONLY   BIT 0 = Temperature Input Open   BIT 1 = MV Input Open   BIT 2 = Range of input is low   BIT 3 = Range of input is high   BIT 4 = Timer End   BIT 5 = Probe Care Fault   BITS 6 – 7 = SPARE   BIT 8 = CPU Fault   BIT 9 = Min Idle counter = 0   BIT 10 = Keyboard failure, stuck key or a key   was pressed during power up.   BIT 11 = Flash Erase Failed   BIT 12 = Flash Checksum Failed   BIT 13 = EEPROM Checksum Failed   BIT 14 = Flash/EEPROM Size Fault   BIT 15 = ADC Fault   0B   11   ASRC   ANALOG OUT SOURCES   LOW BYTE, ANALOG OUTPUT 1   BITS 0 – 3   READ/WRITE   0000 = N/A   0001 = Temperature   0010 = Linear Input A   0011 = Carbon value   0100 = Dewpoint value   0101 = Oxygen value   0110 = Redox value   0111 = Output Power   1000 = Control Output 1   1001 = Control Output 2   1010 = Linear Input B   1011 = Programmable*   *For Programmable, write required output   value into DACV1, where DACV1 = 0 is   minimum output and   DACV1 = 4096 is maximum output.   BITS 4 – 7 SPARE   Page 14 of 23   11/14/2006   Rev. 14   Download from Www.Somanuals.com. All Manuals Search And Download.   BLOCK 0   HEX   DEC   PARAMETER   DESCRIPTION   READ/WRITE   HIGH BYTE, ANALOG OUTPUT 2   BITS 8 – 12   0000 = N/A   0001 = Temperature   0010 = Linear Input A   0011 = Carbon value   0100 = Dewpoint value   0101 = Oxygen value   0110 = Redox value   0111 = Output Power   1000 = Control Output 1   1001 = Control Output 2   1010 = Linear Input B   1011 = Programmable*   *For Reference Number and Programmable ,   write required output value into DACV2, where   DACV2 = 0 is minimum output and   DACV2 = 4096 is maximum output.   BITS 13 – 15 SPARE   Special case: If Analog Output 1 = CONTROL   OUTPUT 1 and Analog Output 2 = CONTROL   OUTPUT 2 and the Control Mode is dual, then   Analog Output 1 is 4-20ma for 0 to +100% PO   and Analog Output 2 is 4-20ma for 0 to -100%   PO.   0C   0D   0E   0F   10   12   13   14   15   16   DAC_OFFSET_1 DAC 1 OFFSET CALIBRATION   DAC_SPAN_1 DAC 1 SPAN CALIBRATION   DAC_OFFSET_2 DAC2 OFFSET CALIBRATION   READ/WRITE   READ/WRITE   READ/WRITE   READ/WRITE   READ/WRITE   DAC_SPAN_2   AOUTOF1   DAC2 SPAN CALIBRATION   ANALOG OUTPUT 1 OFFSET   Minimum source value that correlates to   minimum Analog Output of 4 mA. The source   value is based on the selection in ASRC lower   byte   11   17   AOUTRN1   ANALOG OUTPUT 1 RANGE   READ/WRITE   Maximum source value that correlates to   maximum Analog Output of 20 mA. The   source value is based on the selection in   ASRC lower byte where   12   13   18   19   AOUTOF2   AOUTRN2   ANALOG OUTPUT 2 OFFSET   READ/WRITE   READ/WRITE   Minimum source value that correlates to   minimum Analog Output of 4 mA. The source   value is based on the selection in ASRC upper   byte   ANALOG OUTPUT 2 RANGE   Maximum source value that correlates to   maximum Analog Output of 20 mA. The   Page 15 of 23   11/14/2006   Rev. 14   Download from Www.Somanuals.com. All Manuals Search And Download.   BLOCK 0   HEX   DEC   PARAMETER   DESCRIPTION   READ/WRITE   source value is based on the selection in   ASRC upper byte where   14   15   16   17   20   21   22   23   SPARE   SPARE   SPARE   TEMPFIL   SPARE   SPARE   SPARE   READ/WRITE   READ/WRITE   READ/WRITE   READ/WRITE   Temperature Input Filter in seconds   Range = 0 to 3276. The higher the number   the faster the reading update.   DEFAULT = 1000   BLOCK 1   HEX   18   DEC   24   PARAMETER   MVFIL   DESCRIPTION   READ/WRITE   READ/WRITE   Millivolt Input Filter in seconds   Range = 0 to 3276. The higher the number   the faster the reading update.   DEFAULT = 1000   19   25   AZERO   LINEAR OFFSET, Y INTERCEPT LINEAR   SCALING FOR INPUT A   READ/WRITE   1A   1B   26   27   ANUM   LINEAR SPAN VALUE FOR INPUT A   READ/WRITE   READ/WRITE   BZERO   LINEAR OFFSET, Y INTERCEPT LINEAR   SCALING FOR INPUT B   1C   1D   14   15   BNUM   PROC   LINEAR SPAN VALUE FOR INPUT B   READ/WRITE   READ ONLY   This value is the calculated process value   shown as an integer. The decimal point and   exponent values are required to determine the   actual scaled value.   Range = -999 to 9999.   For example: If the process = oxygen, display   decimal point = 2, and exponent = 6, and   PROC = 1234, then the actual value and   displayed as 12.34 ppm.   1E   1F   16   17   COLDJCT   TEMP   COLD JUNCTION   READ ONLY   READ ONLY   Where 1 COUNT = 1°F (°C), RANGE = -99 TO   255°F (°C). Note this parameter is an   unsigned integer.   MEASURED TEMPERATURE   Where temperature is presented in degrees C   or F, based on the C/F setting. Note this   parameter is an unsigned integer of   temperature -2721 = 62815   Range = max / min range of selected   thermocouple.   20   21   18   19   MV   MEASURED MILLIVOLT   READ ONLY   READ/WRITE   Where this value is scaled in 0.1 mV   increments, i.e. 10001 = 1000.1.   Range = 0 to 2000 mV.   DACV1   ANALOG OUTPUT 1   0 to 4095 is 4 to 20 mA In dual mode 4mA = -   100, 12mA = 0, 20mA = +100   Page 16 of 23   11/14/2006   Rev. 14   Download from Www.Somanuals.com. All Manuals Search And Download.   BLOCK 1   HEX   22   DEC   20   PARAMETER   DACV2   DESCRIPTION   READ/WRITE   READ/WRITE   ANALOG OUTPUT 2   0 to 4095 is 4 to 20 ma In dual mode 4mA = -   100, 12mA = 0, 20mA = +100   SPARE   23   24   25   26   27   28   29   2A   2B   2C   2D   2E   2F   35   36   37   38   39   40   41   42   43   44   45   46   47   SPARE   SPARE   SPARE   SPARE   SPARE   SPARE   SPARE   SPARE   SPARE   SPARE   SPARE   SPARE   SPARE   SPARE   SPARE   SPARE   SPARE   SPARE   SPARE   SPARE   SPARE   SPARE   SPARE   SPARE   SPARE   Page 17 of 23   11/14/2006   Rev. 14   Download from Www.Somanuals.com. All Manuals Search And Download.   Operational Specifications   Power input   21.6 to 26.4 volts DC / 130mA   Thermocouple input   Thermocouple type   Zero ºF   800   32   Span ºF   3000   3000   1300   1300   2300   2300   2000   3000   3000   700   B C E J K 32   32   32   32   N NNM   R S T 32   300   300   32   Bold shows default   Accuracy after linearization +/- 1 deg F   -200 to 2000 millivolts +/- 0.1 millivolt   25 Megohm   Millivolt input   Input Impedance   Cold junction compensation +/- 1 deg F   DC outputs (Isolated)   Isolation   0 to 20mA (650 max).   1000V DC/AC   Power input to signal inputs   Power input to communications   No Isolation   Calculations   Thermocouple input to Millivolt input, inputs must be differential.   Percent carbon 0 – 2.55%, no CO compensation   Dewpoint -99°F (-72.8°C) – 212 °F (100°C), no hydrogen   compensation   Percent oxygen. 0 – 20.9% (default)   CAUTION   DO NOT CONNECT ANY AC SOURCE OR LOAD TO   INSTRUMENT CONTACTS   Calibration Setups   Millivolt Null   Millivolt Span   Page 18 of 23   11/14/2006   Rev. 14   Download from Www.Somanuals.com. All Manuals Search And Download.   Thermocouple Null   Thermocouple Span   Cold Junction Trim   Communications port RS-485 Half Duplex Only   Protocol   Baud rates   Parity   Modbus RTU   1200, 2400, 4800, 9600, 19.2K (19.2K default)   None   Address   1 – 254 (Address 1 is default)   Housing   Material   Inflammability   Polyamide PA non-reinforced   Evaluation Class V0 (UL94)   Temperature Range -40 to 100°C   Dielectric Strength 600 kV/cm (IEC243-1)   Mounting   Snaps on to EN 50022 top hat (T) style DIN rail.   Terminals   Wire clamp screw terminals on four position removable terminal blocks.   Wire Size   AWG 24 – 12 flexible stranded, removable terminal blocks.   Max. Torque   0.8 Nm   CAUTION: DO NOT CONNECT OR DISCONNECT HOUSING PLUGS   WHILE MODULE IS POWERED OR UNDER LOAD.   Weight   10 oz   Environmental Conditions   Operating Temperature   Storage Temperature   -20 °C to 55 °C (-4 to 130 F)   -40 °C to 85 °C (-40 to 185 F)   Operating and Storage Humidity   85% max relative humidity, noncondensing, from –20   to 65°C   Certifications and Compliance (PENDING)   Safety   EN 61010-1, IEC 1010-1   Safety requirement for electrical equipment for measurement, control, and   laboratory use, Part 1   Electromagnetic Compatibility   Immunity as specified by EN 50082-2   Electrostatic discharge   Electromagnetic RF fields   EN 61000-4-2   EN 61000-403   Level 3: 8 kV air   Level 3: 10 V/m   80 MHz – 1 GHz   Page 19 of 23   11/14/2006   Rev. 14   Download from Www.Somanuals.com. All Manuals Search And Download.   Fast Transients   EN 61000-4-4   Level 4: 2 kV I/O   Level 3: 2 kV power   Level 3: 10 V/rms   150 KHz – 80 MHz   RF conducted interference EN 61000-4-6   Emissions as specified by EN 50081-2   RF Interference   EN 55011   Enclosure class A   Power main class A   Note: This instrument is designed for installation inside a grounded metal enclosure.   Always observe anti-static precautions when installing or servicing any electronic device.   Ground your body to discharge any static field before touching the body or terminals of any   electronic device.   This specification can change without notification.   Page 20 of 23   11/14/2006   Rev. 14   Download from Www.Somanuals.com. All Manuals Search And Download.   |