HP Hewlett Packard Server SL6000 User Manual

HP ProLiant SL6000 Scalable System technology  
technology brief  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Abstract  
The HP ProLiant SL6000 Scalable System implements an entirely new mechanical design and  
architecture in the industry-standard server market. The SL6000 server family is optimized for extreme  
scale-out computing applications such as High Performance Computing, large-scale enterprise server  
deployments, and the latest web and cloud computing applications. HP expertise in design and  
technology implementation in the SL6000 system led to achieving a record-setting performance in the  
SPECpower_ssj2008benchmark: In the benchmark report published on November 4, 2009, HP  
ProLiant SL2x170z G6 server garnered the SPECpower_ssj2008 result of 2316 overall ssj_ops/watt.  
Based on industry-standard components, the ProLiant SL6000 Scalable System provides extreme  
density and high performance at low acquisition costs. SL6000 servers are uniquely serviceable in  
racks and are optimized for power and cooling efficiency. Simplified management and monitoring of  
each server reduce the cost and effort needed to manage thousands of servers.  
Mechanical design for extreme scale-out computing  
Computing environments such as High Performance Computing, large-scale enterprise server  
deployments, and the latest web and cloud computing applications require unusually high processing  
power and density plus maximized operating efficiency. For the ProLiant SL servers, HP developed a  
new mechanical design and infrastructure to meet several customer needs:  
Economical purchase price  
Extreme density  
High performance  
Programmable power supplies for maximizing power efficiency  
Highly efficient and inexpensive cooling subsystem  
Integrated remote system management  
Easy, in-rack serviceability  
A ProLiant SL6000 Scalable System consists of a 2U ProLiant z6000 G6 chassis and two  
self-contained 1U server trays, each with its own industry-standard processors, Double Data Rate-3  
(DDR3) memory, I/O, and storage (Figure 1). The rack-mountable chassis includes a highly efficient  
and modular power and cooling infrastructure that supports the slide-in pluggable server trays. More  
information about the ProLiant SL6000 Scalable System is available at  
SPEC® and the benchmark name SPECpower_ssj® are registered trademarks of the Standard Performance  
Evaluation Corporation. Benchmark results stated above reflect results published on www.spec.org as  
of 11/04/2009. For the latest benchmark results, visit http://www.spec.org/power_ssj2008/.  
3
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Figure 1. HP ProLiant SL6000 Scalable System  
HP ProLiant z6000 G6 chassis  
The HP ProLiant Scalable System implements a new chassis/rack architecture in the industry-standard  
server market space. The chassis provides shared power and cooling to the system components by  
means of one or two high efficiency, HP common slot power supplies and up to four system fans.  
Each 2U chassis contains an embedded microcontroller that provides power metering and throttling  
capabilities for the entire chassis. The chassis has no midplane and the I/O connectors are at the  
front of the chassis to optimize serviceability and to provide unrestricted airflow to the two server  
trays.  
Rack and cabling options  
The z6000 G6 chassis mounts into an industry standard 19-inch rack using standard mounting  
hardware or an HP rack using a more cost-effective 10U bulk rail system (only for HP racks). The  
standard rail kit or the 10U bulk rail kit can be mixed within the HP rack to optimize the deployment.  
In a 42U rack, it is possible to install 21 z6000 G6 chassis containing a total of 42 server trays. To  
avoid risk of personal injury or damage to the equipment, HP ProLiant z6000 G6 chassis should be  
installed first in the bottom of a rack and added from the bottom to the top until the rack is fully  
populated. Network switches provide an aggregation point for all network cables and are typically  
installed in the middle of the rack to accommodate shorter cable lengths and to optimize  
serviceability. In the rear, all power cables are cleanly installed on the right side of the cabinet (Figure  
2). For detailed information about rack and cabling options, refer to the HP ProLiant SL6000 Scalable  
System Cabling Guide at this website:  
4
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Figure 2. Front and rear views of HP 42U rack fully populated with SL6000 systems  
SL6000 server trays  
HP developed multiple SL6000 server trays to meet various customer needs: memory capacity,  
internal storage, or compute density. The chassis supports two server trays of the same model within  
an SL6000 chassis. To optimize air flow, if one server tray is removed for maintenance, fan speeds  
increase to ensure adequate cooling of the other tray. If a server tray is removed and a replacement  
tray is not immediately available, users should install a tray blank within two minutes to maintain  
proper cooling. The z6000 tray blank kit is a core option available for the z6000 G6 chassis.  
Each server tray accommodates Intel® Xeon® 5500 Series processors, DDR3 memory, an integrated  
Serial ATA (SATA) controller with HP Smart Array software RAID, non hot-plug SATA storage drives  
housed in quick-release drive carriers, an integrated dual-port 1 gigabit network adapter, and an  
optional PCIe 2.0 x16 slot available on a riser.  
While SL6000 server trays include an integrated SATA RAID controller, they also support optional HP  
Smart Array SAS controllers and SAS hard drives. For specific information on supported SAS  
controllers, SAS hard drive options, and server node storage configuration, refer to the HP technology  
document “Configuring SATA and SAS in HP ProLiant SL6000 servers” at  
5
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
For easy servicing, video and serial ports, USB ports, NIC ports, and optional out-of-band  
management LAN ports are located on the front panel of each server tray. Also on the front panel are  
two LEDs for health and UID status, and an access port for a low profile PCIe 2.0 x16 adapter  
(Figures 3 and 4).  
Figure 3. Front view of a ProLiant z6000 G6 chassis fully populated with two HP ProLiant SL170z G6 server  
trays  
Figure 4. Front view of a ProLiant z6000 G6 chassis fully populated with two HP ProLiant SL160z G6 server  
trays  
6
Download from Www.Somanuals.com. All Manuals Search And Download.  
HP ProLiant SL160z G6 server  
The SL160z G6 server tray is optimized for maximum expansion (Figure 5). The system board  
accommodates up to two Intel Xeon 5500 Series processors and up to 18 slots for DDR3 memory  
modules (nine per processor). In addition to the optional PCI Express (PCIe) 2.0 x16 slot, there is  
room for another optional internal PCIe 2.0 x4 slot. The SL160z G6 server can support large form  
factor (LFF), small form factor (SFF), or solid state (SSD) SATA storage drives housed in quick-release  
drive carriers. More detailed information about memory configuration and internal drive support is  
available in the QuickSpecs at this URL: www.hp.com/servers/SL160z.  
Figure 5. Internal view of the HP ProLiant SL160z G6 server tray  
7
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
HP ProLiant SL170z G6 server  
The HP ProLiant SL170z G6 server tray is optimized for maximum storage capability (Figure 6). It  
supports LFF, SFF, or SSD SATA storage drives housed in quick-release drive carriers. The system  
board accommodates up to two Intel Xeon 5500 Series processors and provides up to 16 slots for  
DDR3 memory modules (eight per processor). More detailed information about memory configuration  
and internal drive support is available in the QuickSpecs at this URL: www.hp.com/servers/SL170z.  
Figure 6. Internal view of the HP ProLiant SL170z G6 server tray  
8
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
HP ProLiant SL2x170z G6 server  
The HP ProLiant SL2x170z G6 server tray is optimized for compute power and density (Figure 7). It  
contains two SL170z G6 server nodes side-by-side in the tray. This means it has up to four sockets for  
Intel Xeon 5500 Series processors and 32 slots for DDR3 memory modules (eight per processor).  
Each server node has its own embedded SATA controller that accesses one of the two LFF, SFF, or  
SSD SATA storage drives housed in quick-release carriers. More detailed information about memory  
configuration and internal drive support is available in the QuickSpecs at this URL:  
Figure 7. Internal view of the HP ProLiant SL2x170z G6 server tray  
9
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Because two server nodes are installed side-by-side, the front of the unit has twice as many ports and  
LEDs as the SL170z G6 server. Each server node has its own video and serial connectors, USB ports,  
NIC ports, health and UID LEDs, optional out-of-band management LAN port, and a slot for an  
optional PCIe 2.0 x16 adapter (Figure 8).  
Figure 8. Front view of a ProLiant z6000 G6 chassis populated with 2 HP ProLiant SL2x170z G6 server trays  
Intel Xeon 5500 Series processor technology  
HP ProLiant SL6000 Scalable Systems use Xeon 5500 Series processors that include multi-level  
caches, an integrated memory controller, and Intel’s QuickPath Technology to boost bandwidth  
between processors, memory, and I/O subsystems.  
The Intel Xeon 5500 Series microarchitecture is built on hafnium-based, 45-nanometer, high-k metal  
gate, silicon technology to reduce electrical leakage. These small, energy-efficient, high-performance  
processors support distributed shared memory, Intel Hyper-Threading technology, and Intel Turbo  
Boost Technology with Intelligent Power Technology.1  
1 For additional information about Intel processors, see the HP technology brief titled “The Intel processor  
roadmap for industry-standard servers” at  
10  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Multi-level caches  
Intel Xeon 5500 Series processors have a three-level cache hierarchy (Figure 9):  
An on-core 64-kilobyte Level 1 cache, split into two 32-kilobyte caches: one for data and one for  
instructions  
256-kilobyte, Level 2 cache for each core to reduce latency  
A Level 3 cache of up to 8 megabytes  
Figure 9. Block diagram of three-level cache hierarchy for Intel Xeon 5500 Series processors  
The Level 3 cache is shared by all cores. It is inclusive, which means that it duplicates the data stored  
in each core’s Level 1 and 2 caches. This duplication minimizes latency by eliminating unnecessary  
core snoops to the Level 1 and 2 caches. Flags in the Level 3 cache track the cache source of data. If  
one core modifies another core’s data in Level 3 cache, the Level 1 and 2 caches of those cores are  
updated as well. This eliminates excessive inter-core traffic and ensures multi-level cache coherence.  
Integrated memory controller  
Instead of sharing a single pool of system memory, each processor accesses its own dedicated DDR3  
system memory directly through an integrated memory controller. Three memory channels from each  
memory controller to its dedicated DDR3 memory provide a total bandwidth of 32 gigabytes per  
second. The three memory channels eliminate the bottleneck associated with earlier processor  
architectures in which all system memory access was through a single memory controller over the front  
side bus. When needed, a processor can access another processor’s memory through the QuickPath  
Interconnect.  
11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
QuickPath Interconnect controller  
Intel Xeon 5500 Series processors attain their performance potential through Intel QuickPath  
architecture (Figure 10). High-speed, point-to-point interconnects directly connect the processors with  
one another. Intel QuickPath architecture also connects each processor to distributed shared memory  
and to the I/O chipset.  
Figure 10. Block diagram of QuickPath architecture  
Each QuickPath Interconnect (QPI) consists of two unidirectional links that operate simultaneously in  
opposite directions using differential signaling. Unlike a typical serial bus, the QPIs transmit data  
packets in parallel across multiple lanes, and packets are broken into multiple parallel transfers. Each  
link is comprised of twenty 1-bit lanes. Data transfer uses a maximum of 16 bits, while the protocol  
and error correction use the remaining 4 bits. The interconnect performs a maximum of 6.4  
gigatransfers per second and has a bandwidth of 12.8 gigabytes per second in each direction, for a  
total bandwidth of 25.6 gigabytes per second. If an application requests data from the memory of  
another processor, the QPI uses high-bandwidth inter-processor communication to retrieve the data.  
To reduce power requirements, administrators can use the ROM-Based Setup Utility (RBSU)2 to set QPI  
links to enter a low power state when the QPI links are not active. Once this feature is enabled, the  
Intel processor determines when to put the QPI links into a low power state. This reduces power use  
with minimal performance impact.  
Hyper-Threading  
With Intel Hyper-Threading Technology, also called Simultaneous Multi-threading Technology (SMT),  
each core can execute two computational threads at the same time. This means that a single  
processor can simultaneously execute up to eight threads. In addition, the high-bandwidth memory  
subsystem supplies data faster to the two computational processes than traditional front side buses,  
and the low-latency cache hierarchy allows more instructions to be processed simultaneously. Hyper-  
Threading improves performance per watt, allowing Intel-based ProLiant G6 servers to accomplish  
more using the same or less power than servers based on previous-generation Intel processors.  
2 RBSU information is provided in the software configuration guide for each server tray. Additional information is  
provided in the “HP ROM-Based Setup Utility User Guide” at  
12  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Turbo Boost technology  
Intel Turbo Boost Technology complements Hyper-Threading by increasing the performance of both  
multi-threaded and single-threaded workloads. For workloads and applications that do not benefit  
from multi-threading, Turbo Boost Technology can increase performance. Turbo Boost is engaged by  
enabling the Turbo Mode option in the Advanced Power Configuration submenu in RBSU (Figure 11).  
It automatically increases the clock frequency of active cores operating below power and thermal  
design points determined by the processor.  
Figure 11. Example of RBSU Advanced Power Configuration submenu with default settings  
Turbo Boost Technology is operating system independent, which means that Advanced Configuration  
and Power Interface-aware (ACPI) operating systems require no changes to support it. However, it is  
application dependent and increases processor power consumption.  
Processor socket technology  
The latest Intel 5000 Sequence processors use a processor socket technology called Land Grid Array  
(LGA). The processor package designs no longer have pins. Instead, the processor package has pads  
of gold-plated copper that touch processor socket pins on the motherboard.  
Technicians must be careful when installing processors to avoid damaging the delicate processor  
socket pins. Because pin damage could require replacing the motherboard, HP engineers developed  
a special installation tool to simplify processor installation and reduce the possibility of damaging the  
socket pins (Figure 12).  
13  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Figure 12. Diagram showing how the processor installation tool simplifies installation  
Memory technologies  
Xeon 5500 Series processors connect directly to memory rather than through a chipset. These  
processors support only DDR3 dual inline memory modules (DIMMs). DDR3 is part of the synchronous  
dynamic random access memory (SDRAM) group of technologies. Administrators control all processor  
functionality options, including memory mirroring and memory channel interleaving, through the G6  
server RBSU.  
DDR3 memory enhancements  
DDR3 has several key enhancements over DDR2 memory, including an 8-bit prefetch buffer for storing  
data before it is requested. DDR2 has a 4-bit buffer. For DDR3, the data signal rate can increase to  
1333 megatransfers per second (MT/s). Although this is commonly referred to as having a speed of  
1333 MHz, the maximum clock speed for the DIMMs is actually 667 MHz. The signal is double-  
pumped to achieve the data rate of 1333 MT/s. DDR3-1333 DIMMs can operate at clock speeds of  
667 MHz, 533 MHz, and 400 MHz with corresponding data rates of 1333, 1066, and 800 MT/s.  
Controlled fan speed  
HP DDR3 DIMM modules have an integrated thermal sensor that signals the chipset to limit memory  
traffic to the DIMM if the DIMM temperature exceeds a programmable critical trip point. Using the  
data from these thermal sensors, ProLiant G6 servers can reduce fan speed when memory is idle,  
which reduces power consumption. The BIOS in ProLiant G6 servers verifies the presence of the  
thermal DIMM sensor during POST. Some third-party DIMMs may not include this DIMM thermal  
sensor. If the thermal sensor is absent, a POST message will warn that the DIMM does not have a  
thermal sensor, and the fans will run at higher speeds (requiring more power).  
Reduced operating voltage  
Operating voltage for DDR3 has been reduced: DDR2 operates at 1.8V, while at this writing DDR3  
operates at 1.5V and consumes less power than DDR2 DIMMs at the same capacity and speed. Even  
though DDR3 DIMMs and DDR2 DIMMs are the same size and have the same number of pins, they  
have different key notch locations and are electrically incompatible.  
14  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Unbuffered and registered DIMMs  
DDR3 DIMMs are available as both Unbuffered (UDIMMs) and Registered (RDIMMs). Both UDIMMs  
and RDIMMs support error correcting code (ECC). There are three types of DDR3 memory:  
PC3-8500R (RDIMM) —1066 or 800 MT/s data rate, depending on memory configuration and  
processor  
PC3-10600E (UDIMM) —1333, 1066, or 800 MT/s data rate, depending on memory  
configuration and processor  
PC3-10600R (RDIMM) —1333, 1066, or 800 MT/s data rate, depending on memory  
configuration and processor  
Administrators can use either RDIMMs or UDIMMs, but RDIMM and UDIMM memory cannot be  
mixed within a single server. When choosing memory configurations using DDR3 memory, the  
following guidelines are useful:  
UDIMM configurations are limited to a maximum of two UDIMMs per memory channel because the  
memory controller must drive the address and command signals to each DRAM chip on a channel.  
This results in a 24 GB maximum configuration. Because they require fewer components, UDIMMs  
are typically less expensive than RDIMMs.  
RDIMM configurations can provide larger memory capacity because the memory controller only  
drives the address and command signals to a single register chip, thereby reducing the electrical  
load on the memory controller. Users requiring large memory footprints can install three 8-GB  
RDIMMs per channel for a total of 144 GB.  
For smaller memory configurations, installing only one or two DIMMs per memory channel can  
potentially increase memory performance. In many instances this allows administrators to clock the  
memory channel at a higher data rate.  
Table 1 summarizes the choices available for DDR3 memory.  
Table 1. DDR3 memory options  
Type  
DIMM  
capacity  
(GB)  
Rank  
Max. data rate in  
MT/s (1 or 2  
DIMMs/channel  
Max. data rate in MT/s  
(3 DIMMs/channel)  
PC3-8500R  
PC3-8500R  
PC3-10600R  
PC3-10600R  
PC3-10600R  
PC3-10600E  
PC3-10600E  
RDIMM  
RDIMM  
RDIMM  
RDIMM  
RDIMM  
UDIMM  
UDIMM  
4
8
2
4
8
1
2
quad  
dual  
dual  
dual  
dual  
single  
dual  
1066  
1066  
1333  
1333  
1333  
1333  
1333  
800  
800  
800  
800  
800  
N/A  
N/A  
An RBSU setting allows PC3-10600R memory modules to run at 1333 MT/s with two DIMMs per  
channel and without performance degradation. Only HP branded DIMMs have been fully validated to  
operate at this speed. Third-party DIMMs may not meet stringent design requirements; therefore, HP  
does not recommend configuring third-party DIMMs for 1333 MT/s data rates with two DIMMs per  
channel. At this writing, operating the memory at 1333 MT/s is supported only on select ProLiant SL  
G6 server trays using the Xeon 5500 Series processors operating at 95W.  
15  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
For detailed memory configuration guidelines, use the Online DDR3 Memory Configuration Tool  
available on the HP website: www.hp.com/go/ddr3memory-configurator.  
I/O technologies  
ProLiant SL G6 server trays incorporate PCIe and SATA I/O technologies. PCIe lets administrators  
add expansion cards with various capabilities to the system. SATA is a serial communication protocol  
for direct-attached storage devices such as SATA hard drives.  
PCI Express technology  
All ProLiant SL G6 server trays support the PCIe 2.0 specification. PCIe 2.0 has a per-lane signaling  
rate of 5 Gb/s, which is double the per-lane signaling rate of PCIe 1.0 (Figure 13).  
Figure 13. PCIe data transfer rates  
PCIe 2.0 is backward compatible with PCIe 1.0. A PCIe 2.0 device can be used in a PCIe 1.0 slot  
and a PCIe 1.0 device can be used in a PCIe 2.0 slot. For best performance, however, each card  
should be used in a slot that supports its logical link size. A ProLiant SL series G6 option allows all  
expansion slots to run at PCIe 1.0 speed rather than at PCIe 2.0 speed. Enabling this option saves  
power. Administrators can control expansion slot speed through the RBSU under the Advanced Power  
Configuration submenu.  
Table 2 shows the level of interoperability between PCIe cards and PCIe slots.  
Table 2. PCIe device interoperability  
PCIe  
device type  
x4 Connector  
x4 Link  
x8 Connector  
x4 Link  
x8 Connector  
x8 Link  
x16 Connector  
x8 Link  
x16 Connector  
x16 Link  
x4 card  
x8 card  
x16 card  
x4 operation  
Not allowed  
Not allowed  
x4 operation  
x4 operation  
Not allowed  
x4 operation  
x8 operation  
Not allowed  
x4 operation  
x8 operation  
x8 operation  
x4 operation  
x8 operation  
x16 operation  
Serial ATA technology  
Serial ATA (SATA) technology uses a point-to-point architecture in which each device connects directly  
to the controller rather than sharing a common bus as parallel devices do. SATA technology transmits  
signals in a single stream rather than in multiple parallel streams. Point-to-point links increase data  
16  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
throughput and improve the ability to locate and fix disk failures. More importantly, serial architecture  
solves the problems of clock skew and signal degradation at higher signaling rates.3  
HP has developed a software RAID solution based on Smart Array firmware. The B110i SATA  
Software RAID supports the Array Configuration Utility (ACU), ACU command line interface (CLI),  
Simple Network Management Protocol (SNMP) agents, and Web-Based Enterprise Management  
(WBEM) providers.  
B110i includes an OS-specific driver from HP that uses the embedded controller. It can use RAID 0, 1,  
and 1+0 and supports a maximum of two logical drives. The B100i supports up to four 1.5 Gb/s or  
3 Gb/s SATA drives. Administrators can move drives to a hardware-based Smart Array controller in a  
seamless procedure that maintains the user data and RAID configuration.  
For a listing of the complete feature set and support information for the B110i SATA Software RAID,  
refer to the B110i user guide at  
Networking technologies  
SL G6 servers have an integrated NC362i dual port, 1 Gb network adapter. These servers also  
support optional multifunction 1 Gb or 10 Gb Ethernet network adapters that provide several  
advantages, depending on the adapter:  
TCP/IP Offload engine (TOE) for Microsoft® Windows® operating systems improves CPU  
efficiency.  
Receive-side Scaling (RSS) for Windows dynamically load balances incoming traffic across all  
processors in a server.  
iSCSI Acceleration (available on some integrated network adapters) offloads some of the work in  
creating iSCSI packets from the processor onto the network controller, freeing up the processor for  
other work.  
iSCSI boot for Linux® operating systems enables booting the server from a storage area network  
(SAN) and eliminates the need for disk drives in a server.  
More information about ProLiant Ethernet network adapters is available at  
High Performance Computing technologies  
High Performance Computing (HPC) interconnect technologies are available for the ProLiant SL G6  
server trays under the HP Cluster Platform product portfolio. HP fully supports these high speed  
interconnects when they are part of these configure-to-order clusters. For additional information and  
configuration tools, refer to the HP Cluster Platforms website at  
Power and thermal technologies  
To increase power efficiency without degrading server performance, HP has developed high-  
efficiency, right-size power supplies and a common slot (CS) power supply bay that are used in  
multiple ProLiant server platforms. Like many other ProLiant G6 servers, the SL6000 Scalable System  
supports these common power supplies. By reducing the number of power supply designs for ProLiant  
servers, HP effectively reduces the number of spares customers must keep in their data centers.  
3 For more information about these features, refer to the technology brief “Serial ATA technology” at  
17  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Power supply options  
Common slot power supplies come in multiple power ratings and have achieved efficiency ratings of  
up to 92 percent. Three power supply options are available for the SL6000 Scalable System:  
460W AC  
750W AC  
1200W AC  
up to 92% efficiency  
up to 92% efficiency  
up to 90% efficiency  
Common slot power supplies provide improved power delivery and the advantage of reclaiming lost  
power. With the exception of the 1200W power supply, they meet Climate Savers Gold  
requirements. The 1200W power supply meets Climate Savers Silver requirements. The power  
loading efficiency curve for the 750W power supply (Figure 14) provides an example of the high  
levels of power efficiency achieved by power supplies used in ProLiant G6 servers.  
Figure 14. Power/Efficiency curve for the 750 W HP power supply  
Oversized and lightly loaded power supplies do not run as efficiently as those that are heavily  
loaded. Therefore, HP recommends using the HP Power Advisor to identify the optimal power supply  
for each SL6000 configuration. With a choice of three power supplies of different wattage, customers  
can choose the power supply option that meets, but does not exceed their needs.  
The HP Power Advisor is available online at www.hp.com/go/hppoweradvisor.  
Redundant power operation  
The SL6000 Scalable System has four redundancy modes: User configurable, full AC or DC  
redundant, AC redundant with throttling, and no redundancy mode.  
The user configurable mode can be used to allocate power levels to each chassis, ensuring that total  
power is within the data center budget. The Power Management Controller monitors the chassis  
power and uses HP power capping technology to limit the AC input power. This feature is enabled as  
part of the LO100i Advanced Pack software license for the nodes.  
18  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Full AC or DC redundancy requires two power supplies to run the z6000 chassis. If one power supply  
fails and the remaining power supply can meet power demands of both server trays, both servers will  
continue to run without interruption.  
AC redundancy with throttling requires two power supplies to run the z6000 chassis. If one power  
supply fails and the remaining power supply cannot support the full load of both server trays, the  
servers will throttle using HP power capping technology so that the remaining power supply can  
support both trays (Figure 15). Although performance is reduced, the chassis continues to operate  
until the failed power supply is replaced. This is the default mode when two power supplies are  
installed in the system.  
Figure 15. Example of AC redundancy with throttling (default mode)  
Running the entire z6000 chassis with one power supply provides no redundancy. The single power  
supply will provide power to both trays.  
19  
Download from Www.Somanuals.com. All Manuals Search And Download.  
In a multimode environment, it is important to ensure that planning is completed prior to selecting the  
right power supply for the desired redundancy mode. Use of the HP Power Advisor is highly  
recommended for identifying the optimal power supply for each SL6000 configuration. The HP Power  
Advisor is available online at www.hp.com/go/hppoweradvisor.  
Management and deployment  
IT administrators using ProLiant SL6000 Scalable Systems will have different computing requirements.  
Consequently, the way they manage, deploy, and control servers can differ. With these requirements  
in mind, this section examines the following management topics:  
Systems management and monitoring  
Power and thermal management with the Power Management Controller  
Remote management and control with HP ProLiant Onboard Administrator powered by LO100i  
Intelligent Platform Management Interface (IPMI) 2.0 and Data Center Management Interface  
(DCMI) 1.0 standards  
Server deployment  
Systems management and monitoring  
The SL6000 Scalable System infrastructure operates through its extensive integrated management  
capabilities. These capabilities are based on the Power Management Controller and ProLiant  
Onboard Administrator powered by LO100i integrated on each server tray. Insight Management  
Agents provide alerts that can significantly reduce unplanned downtime. The Insight Management  
Agents are based on SNMP, the protocol developed to manage nodes (such as servers, workstations,  
routers, switches, and hubs) on an IP network. Network management systems detect problems by  
receiving traps or change notices from network devices implementing SNMP.  
The ProLiant SL6000 Scalable System uses the same SNMP-based Insight Management Agents  
supported by other ProLiant servers. As a result, administrators can use HP Systems Insight Manager  
(SIM) 5.3 and greater to manage SL6000 servers. Administrators can also use any other  
SNMP-based management tool. The agents can be downloaded from the ProLiant model-specific  
“Easy Set-up” CDs or from the Internet at http://www.hp.com/servers/easysetup.  
SNMP agents enable the following capabilities:  
Health monitoring for drives, fans, network, power supplies, and temperature  
Alerting, including basic alert notification for Smart Array drive pre-failure only  
Performance monitoring that provides information on processor, memory, free disk space, network  
utilization, and I/O  
Power and thermal management with the Power Management Controller  
Each 2U chassis contains an embedded microcontroller that provides advanced power metering and  
capping capabilities for the entire chassis (Figure 16). The Power Management Controller manages  
the power capping technology built into the chassis, making extreme density in the rack possible. The  
embedded Power Management Controller monitors power consumption throughout the chassis and  
throttles processor speed and memory in each node to maintain a preset power budget.  
HP provides a simple command-line utility, called PPIC, for reading and configuring the power control  
logic of the SL6000 Scalable System. Versions are available for Microsoft Windows Server 2003 and  
2008 and for the Linux operating system if the OS IPMI driver is installed. Refer to the appendix for  
PPIC command line utility use.  
20  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Figure 16. HP ProLiant z6000 G6 chassis node, fan, and power control block diagram  
Power control logic in the z6000 G6 chassis operates in one of four possible modes as shown in  
Table 3.  
Table 3. HP ProLiant G6 chassis power control logic modes  
Mode  
Function  
0
1
No Redundancy. Power Control Disabled. No power throttling will occur.  
AC Redundancy with throttling. This is the default mode. It provides maximum  
performance with power supply redundancy. Power control logic will throttle the  
performance of each node if the chassis has only one operational power supply.  
In this mode, the servers are expected to survive an unexpected AC power loss to  
one of the power supplies.  
2
3
Full AC/DC Redundancy. Power control logic will maintain a power cap value at  
the DC rating of a single power supply (460W, 750W, or 1200W), such that if  
one power supply experiences a DC or AC failure, the chassis should remain  
online and operational. Users should be aware of the minimum power  
consumption of the chassis. It must be less than the rating of a single power  
supply. Running the PPIC utility with the –c option will provide this information.  
User Configurable (enabled with LO100i Advanced Pack purchase on the nodes).  
The user specifies the total power required to operate the 2U chassis, within the  
capabilities of the hardware installed. Before setting this mode, users are strongly  
advised to run the PPIC utility with the –c option to calibrate the minimum and  
maximum power consumption for the chassis. For accuracy, the –c command  
should be run after installing and configuring all hardware and bringing all nodes  
online in the 2U chassis. To avoid reduced performance due to throttling, a user  
configurable power cap value should not be set below or within 20% of the  
minimum power value provided by the –c option.  
21  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Remote management and control with ProLiant Onboard Administrator  
All ProLiant SL servers include ProLiant Onboard Administrator powered by LO100i. ProLiant  
Onboard Administrator provides the core embedded management functions in all ProLiant servers.  
LO100i works with HP SIM, RBSU, and Option ROM Configuration for Arrays (ORCA) to provide  
remote management, deployment, and control functions without additional software. Administrators  
can access this functionality locally though the RBSU, or remotely with a web browser through HP  
SIM. Additional software functionality can be added with HP LO100i advanced licenses.  
HP LO100i Remote Management is hardware and firmware that provides remote server access and  
control capabilities through an Ethernet interface. The HP LO100i management interface is active  
even when the operating system is not running because it obtains its power from the auxiliary power  
plane of the server. It is available as long as the server is connected to an active power source. HP  
LO100i Remote Management is compatible with industry standards including IPMI 2.0 for hardware  
health, DCMI 1.0, and Secure Sockets Layer (SSL) and Secure Shell (SSH) technology for secure  
communications over public and private local area networks. HP LO100i is fully accessible using  
popular web browsers including Microsoft Internet Explorer 6.0 (for Microsoft Windows clients),  
Firefox 1.5 (for Windows and Linux clients), and Mozilla 1.7.12 (for Windows and Linux clients). HP  
LO100i is also accessible using System Management Architecture for Server Hardware Command  
Line Protocol (SMASH CLP) for Telnet and SSH sessions.  
LO100i Advanced Pack contains all the features of LO100i Standard. Purchasing an optional license  
key provides access to Advanced Pack functionality:  
Improvements to HP SIM support through the addition of Insight Management (SNMP) Agents  
Host access to in-band IPMI 2.0 features supported by IPMI-aware operating systems  
DNS Registration—LO100i comes with default host names and will automatically register with the  
DNS if DHCP is enabled.  
LO100i supports a full-speed shared Ethernet port and a dedicated Ethernet port. LO100i and the  
server share the full-speed Ethernet port, using the system network for both. Since the connection is full  
speed, it supports Graphic Remote Console and virtual media.  
The dedicated Ethernet port is provided for SL series G6 server trays through an optional mezzanine  
card and enables a separate management network.  
IPMI 2.0 and DCMI 1.0  
ProLiant SL G6 server trays and LO100i include IPMI 2.0 and DCMI 1.0 standards so that customers  
in heterogeneous environments can manage these servers with either industry standard.  
The following are basic compliance mandates:  
Implementation of all mandatory IPMI 2.0 and DCMI 1.0 in-band and out-of-band commands  
Reliable local and remote power on/off/reset through IPMI chassis commands  
Serial over LAN console redirection from a remote server (IPMI 2.0)  
Server identification by device ID, globally unique identifier (GUID), asset tag, and chassis ID  
Accurate system event logging using IPMI  
Reliable in-band keyboard controller style (KCS) interface and out-of-band LAN interface  
For more information on HP LO100i remote management, go to www.hp.com/go/LO100.  
22  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Server deployment  
The HP ProLiant Easy Set-up CD provides easy, step-by-step, single- and multi-server server utilities to  
streamline server setup. It provides a user experience consistent with SmartStart:  
Boot environment and GUI  
Assisted Installation: Windows 2003 Server and Windows 2008 Server drivers  
Manual installation: Windows 2003 Server, Windows 2008 Server, and Linux drivers (Specific OS  
support varies by server. For supported versions, refer to QuickSpecs for each server.)  
HP Insight Diagnostics  
Array Configuration Utility (ACU) to configure array controllers and storage devices  
Array Diagnostics Utility (ADU) to perform array controller hardware tests  
SmartStart Scripting Toolkit and Smart Components for software and drivers  
Data security technology with the Trusted Platform Module  
The Trusted Platform Module (TPM) is an optional hardware module that can securely store  
information such as passwords and encryption keys to authenticate the platform. Administrators can  
also use TPM to store platform measurements that help ensure that the platform remains trustworthy.  
ProLiant G6 servers support an optional TPM v1.2. A rivet supplied with the optional TPM v1.2  
module attaches and secures the module to the system board. To prevent possible damage to the TPM  
module or to the system board, the TPM cannot be removed once it has been installed.4  
Summary  
The HP ProLiant SL6000 Scalable System is a highly efficient, modular power and cooling  
infrastructure with a suite of pluggable server modules designed for extreme scale-out deployments. It  
provides right-sized dense server solutions based on industry standards with lower acquisition cost  
than traditional rack servers. Designed from the ground up for power efficiency, the ProLiant SL6000  
includes server solutions that enhance power efficiency by sharing power supplies and fans to  
significantly reduce data center costs. The modular design works with existing data center  
infrastructure to provide a tailored solution that provides for easy serviceability in standard racks.  
4 For additional information about the TPM, see the HP technology brief titled “Data security in HP ProLiant  
servers using the Trusted Platform Module and Microsoft® Windows® BitLocker™ Drive Encryption” at  
23  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Appendix: PPIC command line utility  
HP provides a simple command line utility, called PPIC, for reading and configuring the power control  
logic of the SL product line. Running the PPIC utility from the command line without any command-line  
options will provide the options shown below.  
HP ProLiant Power Interface Control Utility v.1.09  
Copyright (c) 2003, 2009 Hewlett-Packard Development Company, L.P.  
Usage: POW [Options]  
options:  
-d Display and Log Power Status and Configuration  
-v verbose data displayed  
-s Set Power Configuration Mode  
-m<mode>  
00= No Redundancy Mode (Power Throttling  
Disabled)  
01= AC Redundancy with Throttling Mode (Max  
Performance w/  
Redundancy)  
02= Full AC/DC Redundancy Mode  
03= User Configurable Mode (LO100 Advanced  
License  
Required)  
-l<power limit> (in Watts - Required for <Mode 03)  
-c Calibrate and Display Power Limits  
-p Poll and Log Power Readings  
-v verbose data logged  
-f<frequency> (in secs)  
-t<duration of run> (in secs)  
-o<name> override output log filename  
(default log filename= ppic.log)  
24  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
For more information  
For additional information, refer to the resources listed below.  
Resource description  
Web address  
HP ProLiant SL160z G6 Server Software  
Configuration Guide  
HP ProLiant SL170z G6 Server Software  
Configuration Guide  
HP ProLiant SL2x170z G6 Server Software  
Configuration Guide  
HP ProLiant SL6000 Scalable System Cabling  
Guide  
HP Power Interface Controller User Guide  
HP ROM-Based Setup Utility User Guide  
“The Intel processor roadmap for industry-  
standard servers” technology brief  
“Memory technology evolution: an overview of  
system memory technologies” technology brief  
“Serial ATA technology” technology brief  
HP Cluster Platforms  
Online DDR3 Memory Configuration Tool  
HP Power Advisor  
Call to action  
Send comments about this paper to [email protected].  
© 2009 Hewlett-Packard Development Company, L.P. The information contained  
herein is subject to change without notice. The only warranties for HP products and  
services are set forth in the express warranty statements accompanying such  
products and services. Nothing herein should be construed as constituting an  
additional warranty. HP shall not be liable for technical or editorial errors or  
omissions contained herein.  
Microsoft and Windows are U.S. registered trademarks of Microsoft Corporation.  
Linux is a U.S. registered trademark of Linus Torvalds.  
Intel and Xeon are trademarks of Intel Corporation in the United States and other  
countries.  
AMD and Opteron are trademarks of Advanced Micro Devices, Inc.  
HyperTransport is a licensed trademark of the HyperTransport Technology  
Consortium.  
TC091104TB, November 2009  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 

Haier Microwave Oven HGL 1770MB User Manual
Haier Refrigerator ACM03ARW User Manual
Haier Refrigerator PBFS21EDAE U User Manual
HandHeld Entertainment Scanner Quick Check 890 User Manual
Honeywell Dehumidifier H8908A B User Manual
HP Hewlett Packard Network Card 8990A User Manual
HP Hewlett Packard Printer 1200c User Manual
HP Hewlett Packard Server 654080 S01 User Manual
Hustler Turf Lawn Mower 927053 User Manual
IBM Projector ED X10 ED X12 User Manual