Philips SAA7345 User Manual

INTEGRATED CIRCUITS  
DATA SHEET  
SAA7345  
CMOS digital decoding IC with  
RAM for Compact Disc  
1998 Feb 16  
Product specification  
Supersedes data of 1996 Jan 09  
File under Integrated Circuits, IC01  
Philips Semiconductors  
Product specification  
CMOS digital decoding IC with RAM for  
Compact Disc  
SAA7345  
BLOCK DIAGRAM  
V
V
V
V
V
V
DD1  
DD2  
DDA  
SSA  
SS1  
16  
SS2  
43  
11  
12  
15  
44  
HFIN  
8
22  
23  
MOTO1  
MOTO2  
DIGITAL  
PLL  
MOTOR  
CONTROL  
HFREF  
ISLICE  
9
7
PLL  
FRONT-  
END  
EFM  
DEMODULATOR  
IREF  
10  
ERROR  
CORRECTOR  
TEST1  
TEST2  
6
CFLG  
33  
FLAGS  
5
SRAM  
13  
CRIN  
AUDIO  
PROCESSOR  
CROUT 14  
CL11  
1
RAM  
ADDRESSER  
TIMING  
SAA7345  
EBU  
INTER-  
FACE  
CLA 29  
CL16 17  
2
DOBM  
Q - CHANNEL  
CRC CHECK  
21 SCLK  
WCLK  
PEAK  
DETECT  
Q - CHANNEL  
REGISTER  
CL 31  
DA 30  
SERIAL  
DATA  
INTER-  
FACE  
20  
MICRO-  
CONTROLLER  
INTERFACE  
19 DATA  
18 MISC  
RAB 32  
VERSATILE PINS  
INTERFACE  
KILL  
PORE 28  
3
4
26  
V3  
25  
V4  
24  
V5  
27  
KILL  
MGA371 - 2  
V1  
V2  
Fig.1 Block diagram.  
1998 Feb 16  
3
Philips Semiconductors  
Product specification  
CMOS digital decoding IC with RAM for  
Compact Disc  
SAA7345  
PINNING  
SYMBOL  
CL11  
PIN  
DESCRIPTION  
1
11.2896 or 5.6448 MHz clock output (3-state); (divide-by-3)  
bi-phase mark output (externally buffered; 3-state)  
versatile input pin  
DOBM  
V1  
2
3
V2  
4
versatile input pin  
TEST2  
TEST1  
ISLICE  
HFIN  
HFREF  
IREF  
VDDA  
VSSA  
CRIN  
CROUT  
VDD1  
VSS1  
5
test input; this pin should be tied LOW  
test input; this pin should be tied LOW  
current feedback output from data slicer  
comparator signal input  
6
7
8
9
comparator common-mode input  
reference current pin (nominally 12VDD)  
analog supply voltage; note 1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
analog ground; note 1  
crystal/resonator input  
crystal/resonator output  
digital supply to input and output buffers; note 1  
digital ground to input and output buffers; note 1  
16.9344 MHz system clock output  
general purpose DAC output (3-state)  
serial data output (3-state)  
CL16  
MISC  
DATA  
WCLK  
SCLK  
MOTO1  
MOTO2  
V5  
word clock output (3-state)  
serial bit clock output (3-state)  
motor output 1; versatile (3-state)  
motor output 2; versatile (3-state)  
versatile output pin  
V4  
versatile output pin  
V3  
versatile output pin (open-drain)  
kill output; programmable (open-drain)  
power-on reset enable input (active LOW)  
4.2336 MHz microcontroller clock output  
interface data I/O line  
KILL  
PORE  
CLA  
DA  
CL  
interface clock input line  
RAB  
interface R/W and acknowledge input  
correction flag output (open-drain)  
CFLG  
n.c.  
34 to 42 no internal connection  
VSS2  
43  
44  
digital ground to internal logic; note 1  
digital supply voltage to internal logic; note 1  
VDD2  
Note  
1. All supply pins must be connected to the same external power supply.  
1998 Feb 16  
4
Philips Semiconductors  
Product specification  
CMOS digital decoding IC with RAM for  
Compact Disc  
SAA7345  
Pins 34 to 42 (inclusive)  
have no internal connection  
CL11  
DOBM  
V1  
1
2
3
4
5
6
7
8
9
33 CFLG  
32  
RAB  
31 CL  
30 DA  
29 CLA  
V2  
TEST2  
TEST1  
ISLICE  
HFIN  
28  
PORE  
SAA7345  
27 KILL  
26 V3  
25 V4  
24 V5  
HFREF  
IREF 10  
11  
23  
V
MOTO2  
DDA  
MGA359 - 1  
Fig.2 Pin configuration.  
1998 Feb 16  
5
Philips Semiconductors  
Product specification  
CMOS digital decoding IC with RAM for  
Compact Disc  
SAA7345  
Regeneration of the bit clock is achieved with an internal  
fully digital PLL. No external components are required and  
the bit clock is not output. The PLL has two microcontroller  
control registers (addresses 1000 and 1001) for  
bandwidth and equalization.  
FUNCTIONAL DESCRIPTION  
Demodulator  
FRAME SYNC PROTECTION  
This circuit will detect the frame synchronization signals.  
Two synchronization counters are used in the SAA7345:  
For certain applications an off-track input is necessary. If  
this flag is HIGH, the SAA7345 will assume that the servo  
is following on the wrong track, and will flag all incoming  
HF data as incorrect. The off-track is input via the V1 pin  
when the versatile pins interface register (address 1100)  
bit 0 is set to logic 1.  
1. The coincidence counter which is used to detect the  
coincidence of successive syncs. It generates a Sync  
coincidence signal if 2 syncs are 588 ±1 EFM clocks  
apart.  
2. The main counter is used to partition the EFM signal  
into 17-bit words. This counter is reset when:  
EFM demodulation  
a) A Sync coincidence is generated.  
The 14-bit EFM data and subcode words are decoded into  
8-bit symbols.  
b) A sync is found within ±6 EFM clocks of its  
expected position.  
Subcode data processing  
The Sync coincidence signal is also used to generate the  
Lock signal which will go active HIGH when 1 Sync  
coincidence is found. It will reset to LOW when, during 61  
consecutive frames, no Sync coincidence is found. This  
Lock signal is accessed via the status signal when the  
status control register (address 0010) is set to X100. See  
section on “Microcontroller interface” .  
Q-CHANNEL PROCESSING  
The 96-bit Q-channel word is accumulated in an internal  
buffer. Sixteen bits are used to perform a Cyclic  
Redundancy Check (CRC). If the data is good, the  
SUBQREADY-I signal will go LOW. SUBQREADY-I can  
be read via the status signal when the status control  
register (address 0010) is set to X000 (normal reset  
condition). Good Q-channel data may be read via the  
microcontroller interface.  
Data Slicer and Clock Regenerator  
The SAA7345 has an integrated slice level comparator  
which is clocked by the crystal frequency clock. The slice  
level is controlled by an internal current source applied to  
an external capacitor under the control of the digital  
phase-locked loop (DPLL).  
crystal  
clock  
2.2 k  
HFIN  
HF  
input  
2.2 nF  
47 pF  
22 nF  
D
Q
HFREF  
DPLL  
22 kΩ  
1/2V  
DD  
I
ref  
100 µA  
V
V
SS  
SSA  
ISLICE  
100 nF  
V
DD  
MGA368 - 1  
100 µA  
V
SSA  
Fig.3 Data slicer showing typical application components.  
6
1998 Feb 16  
Philips Semiconductors  
Product specification  
CMOS digital decoding IC with RAM for  
Compact Disc  
SAA7345  
OTHER SUBCODE CHANNELS  
Write operation sequence  
Data of the other subcode channels (Q-to-W) may be read  
via the V4 pin if the versatile pins interface register  
(address 1101) is set to XX01.  
RAB is held LOW by the microcontroller to hold the  
SAA7345 DA pin at high-impedance.  
Microcontroller data is clocked into the internal shift  
register on the LOW-to-HIGH clock transition CL.  
The format is similar to RS232. The subcode sync word is  
formed by a pause of 200 µs minimum. Each subcode byte  
starts with a logic 1 followed by 7 bits (Q-to-W). The gap  
between bytes is variable between 11.3 µs and 90 µs.  
Data D (3 : 0) is latched into the appropriate control  
register [address bits A (3 : 0)] on the LOW-to-HIGH  
transition of RAB with CL HIGH.  
If more data is clocked into SAA7345 before the  
LOW-to-HIGH transition of RAB then only the last 8 bits  
are used.  
The subcode data is also available in the EBU output  
(DOBM) in a similar format.  
Microcontroller interface  
If less data is clocked into SAA7345, unpredictable  
operation will result.  
The SAA7345 has a 3-line microcontroller interface which  
is compatible with the digital servo IC TDA1301.  
If the LOW-to-HIGH transition of RAB occurs with CL  
LOW, the command will be disregarded.  
WRITING DATA TO SAA7345  
The SAA7345 has thirteen 4-bit programmable  
configuration registers as shown in Table 2. These can be  
written to via the microcontroller interface using the  
protocol shown in Fig.5.  
200 µs  
min  
11.3  
µs  
11.3 µs min  
90 µs max  
W96  
1
Q1  
R1  
S1  
T1  
U1  
V1 W1  
1
Q2  
MGA369  
Fig.4 Subcode format and timing at V4 pin.  
RAB  
(microcontroller)  
CL  
(microcontroller)  
DA  
A3  
A2  
A1  
A0  
D3  
D2  
D1  
D0  
(microcontroller)  
DA (SAA7345)  
high impedance  
MGA379 - 1  
Fig.5 Microcontroller WRITE timing.  
7
1998 Feb 16  
Philips Semiconductors  
Product specification  
CMOS digital decoding IC with RAM for  
Compact Disc  
SAA7345  
WRITING DATA TO SAA7345; REPEAT MODE  
The same command can be repeated several times (e.g. for fade function) by applying extra RAB pulses as shown in  
Fig.6.  
RAB  
(microcontroller)  
CL  
(microcontroller)  
DA  
A3  
A2  
A1  
A0  
D3  
D2  
D1  
D0  
(microcontroller)  
DA (SAA7345)  
high impedance  
MGA380 - 1  
Note that CL must stay HIGH between RAB pulses.  
Fig.6 Microcontroller WRITE timing; repeat mode.  
READING STATUS INFORMATION FROM SAA7345  
There are several internal status signals which can be made available on the DA line (Table 1).  
Table 1 Internal status signals.  
SIGNAL  
DESCRIPTION  
SUBQREADY-I LOW if new subcode word is ready in Q-channel register.  
MOTSTART1  
MOTSTART2  
MOTSTOP  
PLL Lock  
V1  
HIGH if motor is turning at 75% or more of nominal speed.  
HIGH if motor is turning at 50% or more of nominal speed.  
HIGH if motor is turning at 12% or less of nominal speed.  
HIGH if Sync coincidence signals are found.  
Follows input on V1 pin.  
V2  
Follows input on V2 pin.  
MOTOR-OV  
HIGH if the motor servo output stage saturates.  
The status signal to be output is selected by status control register (address 0010). The timing for reading the status  
signal is shown in Fig.7.  
Status read operation sequence  
Write appropriate data to register 0010 to select required status signal.  
With RAB LOW; set CL LOW.  
Set RAB HIGH; this will instruct the SAA7345 to output status signal on DA.  
1998 Feb 16  
8
Philips Semiconductors  
Product specification  
CMOS digital decoding IC with RAM for  
Compact Disc  
SAA7345  
RAB  
(microcontroller)  
CL  
(microcontroller)  
DA  
(microcontroller)  
high impedance  
DA (SAA7345)  
STATUS  
MGA381 - 1  
Fig.7 SAA7345 status READ timing.  
READING Q-CHANNEL SUBCODE FROM SAA7345  
To read Q-channel subcode from SAA7345, the SUBQREADY-I signal should be selected as status signal. The subcode  
read timing is shown in Fig.8.  
Read subcode operation sequence  
Monitor SUBQREADY-I status signal.  
When this signal is LOW, and up to 2.3 ms after its LOW-to-HIGH transition, it is permitted to read subcode.  
Set CL LOW, SAA7345 will output first subcode bit (Q1).  
After subcode read starts, the microcontroller may take as long as it wants to terminate read operation.  
SAA7345 will output consecutive subcode bits after each HIGH-to-LOW transition of CL.  
When enough subcode has been read (1 to 96 bits), stop reading by pulling RAB LOW.  
RAB  
(microcontroller)  
CL  
(microcontroller)  
CRC  
OK  
DA (SAA7345)  
Q1  
Q2  
Q3  
Qn–2 Qn–1 Qn  
MGA382 - 1  
STATUS  
Fig.8 SAA7345 Q-channel subcode READ timing.  
PEAK DETECTOR OUTPUT  
In place of the CRC-bits (bits 81 to 96), the peak detector information is added to the Q-channel data. The peak  
information corresponds to the highest audio level (absolute value) and is measured on positive peaks. Only the most  
significant 8 bits of the peak level are given, in unsigned notation. Bits 81 to 88 contain the LEFT peak value  
(bit 88 = MSB) and bits 89 to 96 contain the RIGHT channel (bit 96 = MSB). Value is reset after reading Q-channel data.  
1998 Feb 16  
9
Philips Semiconductors  
Product specification  
CMOS digital decoding IC with RAM for  
Compact Disc  
SAA7345  
BEHAVIOUR OF THE SUBQREADY-I SIGNAL  
SHARING THE MICROCONTROLLER INTERFACE  
When the CRC of the Q-channel word is good, and no  
subcode is being read, the SUBQREADY-I signal will react  
as shown in Fig.9.  
When the RAB pin is held LOW by the microcontroller, it is  
permitted to put any signal on the DA and CL lines  
(SAA7345 will set output DA to high-impedance). Under  
this circumstance these lines may be used for another  
purpose (e.g. TDA1301 microcontroller interface Data and  
Clock line, see Fig.11).  
When the CRC is good and subcode is being read, the  
timing in Fig.10 applies.  
If t1 (SUBQREADY-I LOW to end of subcode read) is  
below 2.6 ms, then t2 = 13.1 ms (i.e. the microcontroller  
can read all subcode frames if it completes the read  
operation within 2.6 ms after subcode ready).  
If this criterion is not met, it is only possible to guarantee  
that t3 will be below 26.2 ms (approximately).  
If subcode frames with failed CRCs are present, the t2 and  
t3 times will be increased by 13.1 ms for each defective  
subcode frame.  
RAB  
(microcontroller)  
CL  
(microcontroller)  
high  
DA (SAA7345)  
CRC OK  
CRC OK  
impedance  
MGA373 - 1  
10.8 ms  
15.4 ms  
2.3  
ms  
READ start allowed  
Fig.9 SUBQREADY-I timing when no subcode is read.  
t
2
t
t
1
3
RAB  
(microcontroller)  
CL  
(microcontroller)  
DA (SAA7345)  
Q1  
Q2  
Q3  
Qn  
MGA374 - 1  
Fig.10 SUBQREADY-I timing when subcode is being read.  
1998 Feb 16  
10  
Philips Semiconductors  
Product specification  
CMOS digital decoding IC with RAM for  
Compact Disc  
SAA7345  
TDA1301  
SAA7345  
I/O  
O
O
O
MICROCONTROLLER  
MGA361 - 1  
Fig.11 SAA7345 microcontroller interface application diagram.  
Table 2 Command registers.  
The ‘INITIAL’ column shows the power-on reset state  
REGISTER  
ADDRESS  
DATA  
FUNCTION  
INITIAL  
Fade and Attenuation  
0 0 0 0  
X 0 0 0  
X 0 1 X  
X 0 0 1  
X 1 0 0  
X 1 0 1  
X 0 0 0  
X 0 0 1  
X 0 1 0  
X 0 1 1  
X 1 0 0  
X 1 0 1  
Mute  
Reset  
Attenuate  
Full Scale  
Step Down  
Step Up  
Motor mode  
0 0 0 1  
Motor off mode  
Reset  
Motor brake mode 1  
Motor brake mode 2  
Motor start mode 1  
Motor start mode 2  
Motor jump mode  
X 1 1 1 Motor play mode  
X 1 1 0  
1 X X X  
0 X X X  
X 0 0 0  
X 0 0 1  
X 0 1 0  
X 0 1 1  
X 1 0 0  
X 1 0 1  
X 1 1 0  
Motor jump mode 1  
anti-windup active  
anti-windup off  
Reset  
Reset  
Status control  
0 0 1 0  
status = SUBQREADY-I  
status = MOTSTART1  
status = MOTSTART2  
status = MOTSTOP  
status = PLL Lock  
status = V1  
status = V2  
X 1 1 1 status = MOTOR-OV  
0 X X X  
1 X X X  
L channel first at DAC (WCLK normal)  
R channel first at DAC (WCLK inverted)  
Reset  
1998 Feb 16  
11  
Philips Semiconductors  
Product specification  
CMOS digital decoding IC with RAM for  
Compact Disc  
SAA7345  
REGISTER  
DAC output  
ADDRESS  
DATA  
FUNCTION  
I2S CD-ROM mode  
INITIAL  
0 0 1 1  
1 0 1 0  
1 0 1 1  
1 1 0 X  
1 1 1 1  
1 1 1 0  
0 0 0 X  
0 0 1 1  
0 0 1 0  
0 1 0 X  
0 1 1 1  
0 1 1 0  
X 0 0 0  
X 0 0 1  
X 0 1 0  
X 0 1 1  
X 1 0 0  
X 1 0 1  
X 1 1 0  
EIAJ; CD-ROM mode  
I2S; 4fs mode  
I2S; 2fs mode  
Reset  
I2S; fs mode  
EIAJ; 16-bit; 4fs  
EIAJ; 16-bit; 2fs  
EIAJ; 16-bit; fs  
EIAJ; 18-bit; 4fs  
EIAJ; 18-bit; 2fs  
EIAJ; 18-bit; fs  
Motor gain  
0 1 0 0  
Motor gain G = 3.2  
Motor gain G = 4.0  
Motor gain G = 6.4  
Motor gain G = 8.0  
Motor gain G = 12.8  
Motor gain G = 16.0  
Motor gain G = 25.6  
Reset  
X 1 1 1 Motor gain G = 32.0  
Motor bandwidth  
0 1 0 1  
X X 0 0  
X X 0 1  
X X 1 0  
Motor f4 = 0.5 Hz  
Motor f4 = 0.7 Hz  
Motor f4 = 1.4 Hz  
Reset  
X X 1 1 Motor f4 = 2.8 Hz  
0 0 X X  
0 1 X X  
1 0 X X  
X X 0 0  
X X 0 1  
X X 1 0  
Motor f3 = 0.85 Hz  
Reset  
Reset  
Motor f3 = 1.71 Hz  
Motor f3 = 3.42 Hz  
Motor output configuration  
0 1 1 0  
Motor power maximum 37%  
Motor power maximum 50%  
Motor power maximum 75%  
X X 1 1 Motor power maximum 100%  
0 0 X X  
0 1 X X  
1 0 X X  
MOTO1, MOTO2 pins 3-state  
Reset  
Motor Pulse Width Modulation (PWM) mode  
Motor Pulse Density Modulation (PDM) mode  
1 1 X X Motor Compact Disc Video (CDV) mode  
1998 Feb 16  
12  
Philips Semiconductors  
Product specification  
CMOS digital decoding IC with RAM for  
Compact Disc  
SAA7345  
REGISTER  
ADDRESS  
DATA  
FUNCTION  
INITIAL  
Loop BW  
(Hz)  
Internal BW  
(Hz)  
Low-pass  
BW (Hz)  
PLL loop filter bandwidth  
1 0 0 0  
0 0 0 0  
0 0 0 1  
0 0 1 0  
0 1 0 0  
0 1 0 1  
0 1 1 0  
1 0 0 0  
1 0 0 1  
1 0 1 0  
1 1 0 0  
1 1 0 1  
1 1 1 0  
0 0 0 1  
0 0 1 0  
0 0 1 1  
0 1 0 0  
0 1 0 1  
X X 0 0  
X X 1 0  
1640  
3279  
6560  
1640  
3279  
6560  
1640  
3279  
6560  
1640  
3279  
6560  
525  
263  
8400  
16800  
33600  
8400  
131  
1050  
525  
16800  
33600  
8400  
263  
2101  
1050  
525  
16800  
33600  
8400  
Reset  
4200  
2101  
1050  
16800  
33600  
PLL loop filter equalization  
1 0 0 1  
PLL 30 ns over-equalization  
PLL 15 ns over-equalization  
PLL nominal equalization  
Reset  
PLL 15 ns under-equalization  
PLL 30 ns under-equalization  
EBU data before concealment  
EBU output  
1 0 1 0  
EBU data after concealment and fade  
Reset  
Reset  
Reset  
X X 1 1 EBU off output LOW  
X 0 X X  
X 1 X X  
0 X X X  
1 X X X  
1 X X X  
0 X X X  
X 0 X X  
X 1 X X  
X X 0 0  
X X 1 0  
Level II clock accuracy (<1000 × 106)  
Level III clock accuracy (>1000 × 106)  
Flags in EBU off  
Flags in EBU on  
Speed control  
1 0 1 1  
double-speed mode  
single-speed mode  
Reset  
Reset  
33.869 MHz crystal present  
16.934 MHz crystal present  
standby 1: ‘CD-STOP’ mode (note 1)  
standby 2: ‘CD-PAUSE’ mode (note 1)  
Reset  
X X 1 1 operating mode  
Versatile pins interface  
1 1 0 0  
X X X 1  
X X X 0  
X X 0 X  
X 0 1 X  
off-track input at V1  
no off-track input (V1 may be read via status)  
Kill-L at KILL output, Kill-R at V3 output  
V3 = 0; single Kill output  
Reset  
Reset  
X 1 1 X V3 = 1; single Kill output  
1998 Feb 16  
13  
Philips Semiconductors  
Product specification  
CMOS digital decoding IC with RAM for  
Compact Disc  
SAA7345  
REGISTER  
ADDRESS  
DATA  
FUNCTION  
4-line motor (using V4, V5)  
INITIAL  
Versatile pins interface  
1 1 0 1  
0 0 0 0  
X X 0 1  
X X 1 0  
Q-to-W subcode at V4  
V4 = 0  
X X 1 1 V4 = 1  
Reset  
Reset  
0 1 X X  
1 0 X X  
de-emphasis signal at V5  
V5 = 0  
1 1 X X V5 = 1  
Note  
1. Standby modes = CL, DA and RAB; normal operation.  
a) MISC, SCLK, WCLK, DATA, CL11 and DOBM; 3-state.  
b) CRIN, CROUT, CL16 and CLA; normal operation.  
c) V1, V2, V3, V4 and V5; normal operation.  
d) MOTO1 and MOTO2 - in standby 2 ‘CD-PAUSE’; normal operation.  
e) MOTO1 and MOTO2 - in standby 1 ‘CD-STOP’; held LOW in PWM mode; 3-state in PDM mode.  
Error corrector  
Audio functions  
The error corrector carries out t = 2, e = 0 error corrections  
on both C1 (32 symbol) and C2 (28 symbol) frames. Four  
symbols are used from each frame as parity symbols. The  
strategy t = 2, e = 0 means that the error corrector can  
correct two erroneous symbols per frame and detect all  
erroneous frames.  
DE-EMPHASIS AND PHASE LINEARITY  
When de-emphasis is detected in the Q-channel subcode,  
the digital filter automatically includes a de-emphasis filter  
section. When de-emphasis is not required, a phase  
compensation filter section controls the phase linearity of  
the digital oversampling filter to ±1° within the band  
0 to 16 kHz.  
The error corrector also contains a flag controller. Flags  
are assigned to symbols when the error corrector cannot  
ascertain if the symbols are definitely good. C1 generates  
output flags which are read (after de-interleaving) by C2,  
to help in the generation of C2 output flags.  
DIGITAL OVERSAMPLING FILTER  
The SAA7345 contains a 2 to 4 times oversampling filter.  
The filter specification of the 4 × oversampling filter is  
given in Table 2 and shown in Fig.12.  
The C2 output flags are used by the interpolator for  
concealment of non-correctable errors. They are also  
output via the EBU signal (DOBM) and the MISC output  
with I2S for CD-ROM applications.  
These attenuations do not include the sample and hold at  
the DAC output or the DAC post filter.  
When using the oversampling filter, the output level is  
scaled 0.5 dB down, to avoid overflow on full-scale  
sinewave inputs (0 to 20 kHz).  
The flags output pin CFLG provides information on the  
state of all error correction and concealment flags.  
1998 Feb 16  
14  
Philips Semiconductors  
Product specification  
CMOS digital decoding IC with RAM for  
Compact Disc  
SAA7345  
Table 3 Digital filter passband characteristics  
PASSBAND  
ATTENUATION  
0 to 19 kHz  
0.001 dB  
19 to 20 kHz  
0.03 dB  
Table 4 Digital filter stopband characteristics.  
STOPBAND  
24 kHz  
ATTENUATION  
25 dB  
24 to 27 kHz  
27 to 35 kHz  
35 to 64 kHz  
64 to 68 kHz  
68 kHz  
38 dB  
40 dB  
50 dB  
31 dB  
35 dB  
69 to 88 kHz  
40 dB  
MGA385  
20  
magnitude  
(dB)  
0
20  
40  
60  
0
10  
20  
30  
40  
50  
frequency (kHz)  
Fig.12 Digital filter characteristics.  
CONCEALMENT  
A 1-sample linear interpolator becomes active if a single sample is flagged as erroneous but cannot be corrected. The  
erroneous sample is replaced by a level midway between the preceding and following samples. Left and right channels  
have independent interpolators.  
If more than one consecutive non-correctable sample is found, the last good sample is held. A 1-sample linear  
interpolation is then performed before the next good sample (see Fig.13).  
1998 Feb 16  
15  
Philips Semiconductors  
Product specification  
CMOS digital decoding IC with RAM for  
Compact Disc  
SAA7345  
Interpolation  
Hold  
Interpolation  
OK  
Error  
OK  
Error  
Error  
Error  
OK  
OK  
MGA372  
Fig.13 Concealment mechanism.  
To control the fade counter in a continuous way, the  
step-up and step-down commands are available (fade  
control register data X101 and X100). They will increment  
or decrement the counter by 1 for each register write  
operation.  
MUTE, ATTENUATION AND FADE  
A digital level controller is present on the SAA7345 which  
performs the functions of soft mute, attenuation and fade.  
Mute and Attenuation  
When issuing more than 1 step-up or step-down  
command in sequence, the write repeat mode may be  
used (see Fig.6).  
Soft mute is activated by sending the Mute command to  
the fade control register (address 0000, data X000). The  
signal will reduced to zero in up to 128 steps (depending  
on the current position of the fade control), taking a  
maximum of 3 ms.  
A pause of at least 22 µs is necessary between any two  
step-up or step-down commands.  
When a step-up command is given when the fade  
counter is already at its full-scale value, the counter will  
not increment.  
Attenuation (12 dB) is activated by sending the Attenuate  
command to the fade control register (data X01X).  
Attenuation and mute are cancelled by sending the Full  
Scale command to the fade control register (data X001). It  
will take 3 ms to ramp the output from mute to the full-scale  
level.  
DAC Interface  
The SAA7345 is compatible with a wide range of  
Digital-to-Analog Converters. Eleven formats are  
supported and are shown in Table 5.  
Fade  
All formats are MSB first. fs is 44.1 kHz in single-speed  
mode and 88.2 kHz in double-speed mode.  
The audio output level is determined by the value of the  
internal fade counter.  
counter  
Level =  
× maximum level  
----------------------  
128  
The counter is preset to 128 by the Full Scale command  
if no oversampling is required.  
The counter is preset to 120 (0.5 dB scaling) by the Full  
Scale command if either 2fs or 4fs oversampling is  
programmed in the DAC output register (address 0011).  
The counter is preset to 32 by the Attenuate command.  
The counter is preset to 0 by the Mute command.  
1998 Feb 16  
16  
Philips Semiconductors  
Product specification  
CMOS digital decoding IC with RAM for  
Compact Disc  
SAA7345  
Table 5 DAC interface formats  
DAC CONTROL  
REGISTER DATA FREQUENCY  
SAMPLE  
MODE  
BITS  
SCLK (MHz)  
FORMAT  
INTERPOLATION  
1
2
1 0 1 0  
1 0 1 1  
1 1 1 0  
0 0 1 0  
0 1 1 0  
0 0 0 X  
0 1 0 X  
1 1 0 X  
0 0 1 1  
0 1 1 1  
1 1 1 1  
fs  
fs  
16  
16  
16  
16  
18  
16  
18  
18  
16  
18  
18  
2.1168 × n(1)  
2.1168 × n(1)  
2.1168 × n(1)  
2.1168 × n(1)  
2.1168 × n(1)  
8.4672 × n(1) EIAJ 16 bits  
8.4672 × n(1) EIAJ 18 bits  
8.4672 × n(1) Philips I2S 18 bits  
4.2336 × n(1) EIAJ 16 bits  
4.2336 × n(1) EIAJ 18 bits  
4.2336 × n(1) Philips I2S 18 bits  
CD-ROM (I2S)  
no  
CD-ROM (EIAJ)(2)  
Philips I2S 16 bits  
EIAJ 16 bits  
no  
3
fs  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
4
fs  
5
fs  
EIAJ 18 bits  
6
4fs  
4fs  
4fs  
2fs  
2fs  
2fs  
7
8
9
10  
11  
Note  
1. n = disc speed.  
2. EIAJ is the abbreviation for: Electronic Industries Associated of Japan.  
1998 Feb 16  
17  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
SCLK  
DATA  
WCLK  
0
15  
0
15  
LEFT CHANNEL DATA (WCLK NORMAL POLARITY)  
MSB VALID  
MISC  
LSB VALID  
LSB VALID  
MSB VALID  
CD-ROM  
MGA383  
MODE ONLY  
Fig.14 Philips I2S data format (16-bit word length shown).  
SCLK  
DATA  
0
17  
0
17  
LEFT CHANNEL DATA  
WCLK  
MISC  
MGA384  
Fig.15 EIAJ data format (18-bit word length shown).  
Philips Semiconductors  
Product specification  
CMOS digital decoding IC with RAM for  
Compact Disc  
SAA7345  
EBU interface  
The biphase-mark digital output signal at pin DOBM is in accordance with the format defined by the “IEC 958”  
specification.  
Three different modes can be selected via the EBU output control register (address 1010).  
Table 6 EBU output modes  
EBU CONTROL  
REGISTER DATA  
EBU OUTPUT AT DOBM PIN  
DOBM pin held LOW  
EBU VALIDITY FLAG (BIT 28)  
X X 1 1  
X X 0 0  
data taken before concealment, mute and fade HIGH if data is non-correctable  
(concealment flag)  
X X 1 0  
data taken after concealment, mute and fade  
HIGH if data is non-correctable  
(concealment flag)  
FORMAT  
The digital audio output consists of 32-bit words (subframes) transmitted in biphase-mark code (two transitions for a  
logic 1 and one transition for a logic 0). Words are transmitted in blocks of 384 (see Table 7).  
Table 7 EBU word format  
WORD  
BITS  
FUNCTION  
Sync  
0 to 3  
4 to 7  
4
Auxiliary  
not used; normally zero  
Error flags  
CFLG error and interpolation flags when bit 3 of EBU control  
register is set to logic 1  
Audio sample  
Validity flag  
User data  
8 to 27  
28  
first 4 bits not used (always zero)  
valid = logic 0  
29  
used for subcode data (Q-to-W)  
control bits and category code  
even parity for bits 4 to 30  
Channel status  
Parity bit  
30  
31  
SYNC  
AUDIO SAMPLE  
The sync word is formed by violation of the biphase rule  
and therefore does not contain any data. Its length is  
equivalent to 4 data bits. The three different sync patterns  
indicate the following situations:  
Left and right samples are transmitted alternately.  
VALIDITY FLAG  
Audio samples are flagged (bit 28 = logic 1) if an error has  
been detected but was non-correctable. This flag remains  
the same even if data is taken after concealment.  
Sync B:  
– Start of a block (384 words), word contains left  
sample.  
USER DATA  
Sync M:  
Subcode bits Q-to-W from the subcode section are  
transmitted via the user data bit. This data is asynchronous  
with the block rate.  
– Word contains left sample (no block start).  
Sync W:  
– Word contains right sample.  
1998 Feb 16  
19  
Philips Semiconductors  
Product specification  
CMOS digital decoding IC with RAM for  
Compact Disc  
SAA7345  
CHANNEL STATUS  
The channel status bit is the same for left and right words. Therefore a block of 384 words contains 192 channel status  
bits. The category code is always CD. The bit assignment is shown in Table 8.  
Table 8 EBU channel status  
WORD  
BITS  
FUNCTION  
Control  
0 to 3  
copy of CRC checked Q-channel control bits 0 to 3;  
bit 2 is logic 1 when copy permitted;  
bit 3 is logic 1 when recording has pre-emphasis  
Reserved mode  
Category code  
Clock accuracy  
4 to 7  
8 to 15  
28 to 29  
always zero  
CD: bit 8 = logic 1; all other bits = logic 0  
set by EBU control register:  
00 = Level II  
01 = Level III  
Remaining  
16 to 27 and 30 to 191 always zero  
Several output modes are supported:  
KILL circuit  
1. Pulse Density, 2-line (true complement output), 1 MHz  
sample frequency.  
The KILL circuit detects digital silence by testing for an  
all-zero or all-ones data word in the left or right channel  
before the digital filter. The output is switched active LOW  
when silence has been detected for at least 200 ms. Two  
modes are available, selected by the versatile pins register  
(address 1100):  
2. PWM output, 2-line, 22.05 kHz modulation frequency.  
3. PWM-output, 4-line, 22.05 kHz modulation frequency.  
4. CDV motor mode.  
The modes are selected via the motor output configuration  
register (address 0110).  
1-PIN KILL MODE  
Active LOW signal on KILL pin when digital silence has  
been detected on both LEFT and RIGHT channels for  
200 ms.  
PULSE DENSITY MODE  
In the Pulse Density mode the motor output pin MOTO1 is  
the pulse density modulated motor output signal. A 50%  
duty cycle corresponds with the motor not actuated, higher  
duty cycles mean acceleration, lower mean braking.  
2-PIN KILL MODE  
Independent digital silence detection for left and right  
channels. The KILL pin is active LOW when digital silence  
has been detected in the LEFT channel for 200 ms, and V3  
is active LOW when digital silence has been detected in  
the RIGHT channel for 200 ms.  
In this mode, the MOTO2 signal is the inverse of the  
MOTO1 signal. Both signals change state only on the  
edges of a 1 MHz internal clock signal.  
Possible application diagrams are shown in Fig.16.  
When MUTE is active then the KILL output is forced LOW.  
Spindle motor control  
The spindle motor speed is controlled by a fully integrated  
digital servo. Address information from the internal  
±8 frame FIFO and disc speed information are used to  
calculate the motor control output signals.  
1998 Feb 16  
20  
Philips Semiconductors  
Product specification  
CMOS digital decoding IC with RAM for  
Compact Disc  
SAA7345  
22 kΩ  
22 kΩ  
MOTO1  
+
MOTO2  
+
M
10 nF  
10 nF  
V
SS  
V
SS  
V
DD  
22 kΩ  
22 kΩ  
MOTO1  
+
V
M
SS  
22 kΩ  
10 nF  
22 kΩ  
V
V
SS  
SS  
22 kΩ  
V
DD  
MGA363 - 1  
Fig.16 Motor pulse density application diagrams.  
PWM MODE, 2-LINE  
In the PWM mode the motor acceleration signal is put in pulse-width modulation form on the MOTO1 output and the  
motor braking signal is pulse-width modulated on the MOTO2 output.  
Figure 17 shows the timing and Fig.18 a typical application diagram.  
t
240 ns  
t
= 45 µs  
dead  
rep  
MOTO1  
MOTO2  
MGA366  
Accelerate  
Brake  
Fig.17 Motor 2-line PWM mode timing.  
+
M
10 Ω  
100 nF  
MOTO1  
MOTO2  
V
MGA365 - 2  
SS  
Fig.18 Motor 2-line PWM mode application diagram.  
1998 Feb 16  
21  
Philips Semiconductors  
Product specification  
CMOS digital decoding IC with RAM for  
Compact Disc  
SAA7345  
PWM MODE, 4-LINE  
Using two extra outputs from the Versatile Pins Interface, it is possible to use the SAA7345 with a 4-input motor bridge.  
Figure 19 shows the timing and Fig.20 a typical application diagram.  
t
= 45 µs  
t
240 ns  
rep  
dead  
MOTO1  
MOTO2  
V4  
V5  
MGA367 - 1  
t
= 240 ns  
ovl  
Accelerate  
Brake  
Fig.19 Motor 4-line PWM mode timing.  
+
V4  
V5  
M
10 Ω  
100 nF  
MOTO1  
MOTO2  
V
SS  
MGA364 - 2  
Fig.20 Motor 4-line PWM mode application diagram.  
CDV MODE  
In the CDV motor mode, the FIFO position will be put in pulse-width modulated form on the MOTO1 pin (carrier frequency  
300 Hz) and the PLL frequency signal will be put in pulse-density modulated form on the MOTO2 pin (carrier frequency  
4.23 MHz). The integrated motor servo is disabled in this mode.  
Remark:  
The PWM signal on MOTO1 corresponds to a total memory space of 20 frames, therefore the nominal FIFO position  
(half-full) will result in a PWM output of 60%.  
1998 Feb 16  
22  
Philips Semiconductors  
Product specification  
CMOS digital decoding IC with RAM for  
Compact Disc  
SAA7345  
OPERATION MODES  
The motor servo has the operation modes as shown in Table 9 and is controlled by the motor mode register  
(address 0001).  
Table 9 Operation modes.  
MODE  
DESCRIPTION  
Start mode 1  
Disc is accelerated by applying a positive voltage to the spindle motor. No decisions are involved  
and the PLL is reset. No disc speed information is available for the microcontroller.  
Start mode 2  
Jump mode  
The disc is accelerated as in Start mode 1, however the PLL will monitor the disc speed. When the  
disc reaches 75% of its nominal speed, the controller will switch to Jump mode. The motor status  
signals are valid (register 0010).  
Motor servo enabled but FIFO kept reset at 50%. The audio is muted but it is possible to read the  
subcode.  
Jump mode 1 Similar to Jump mode but motor integrator is kept at zero. Used for long jumps.  
Play mode  
FIFO released after resetting to 50%. Audio mute released.  
Stop mode 1  
Stop mode 2  
Disc is braked by applying a negative voltage to the motor. No decisions are involved.  
The disc is braked as in Stop mode 1, but the PLL will monitor the disc speed. As soon as the disc  
reaches 12% of its nominal speed, the MOTSTOP status signal will go HIGH and switch the motor  
servo to off mode.  
Off mode  
Motor not steered.  
POWER LIMIT  
FIFO OVERFLOW  
In Start mode 1, Start mode 2, Stop mode 1 and Stop  
mode 2, a fixed positive or negative voltage is applied to  
the motor. This voltage can be programmed as a  
percentage of the maximum possible voltage via the motor  
output configuration register (address 0110) to limit  
current drain during start and stop. The following power  
limits are possible:  
If FIFO overflow occurs during Play mode (e.g. as a result  
of motor shock), the FIFO will be automatically reset  
to 50% and the audio interpolator is activated to minimize  
the effect of data loss.  
100% of maximum (no power limit)  
75% of maximum  
50% of maximum  
37% of maximum.  
LOOP CHARACTERISTICS  
The gain and cross-over frequencies of the motor control  
loop can be programmed via the motor gain and bandwidth  
registers (addresses 0100 and 0101). The possible  
parameter values are as follows:  
Gain: 3.2, 4.0, 6.4, 8.0 12.8, 16, 26.6 or 32.  
Cross-over frequency, f4: 0.5, 0.7, 1.4 or 2.8 Hz.  
Cross-over frequency, f3: 0.85, 1.71 or 3.42 Hz.  
1998 Feb 16  
23  
Philips Semiconductors  
Product specification  
CMOS digital decoding IC with RAM for  
Compact Disc  
SAA7345  
MGA362 - 2  
G
f
f
BW  
f
4
3
Fig.21 Motor servo mode diagram.  
Versatile pins interface  
The SAA7345 has five pins that can be reconfigured for different applications as shown in Table 10.  
Table 10 Versatile pins  
CONTROL  
REGISTER  
ADDRESS  
CONTROL  
REGISTER  
DATA  
SYMBOL  
PIN  
TYPE  
FUNCTION  
V1  
3
input  
1 1 0 0  
X X X 1  
X X X 0  
off-track input (from digital servo)  
input may be read via status register  
(address 0010 data X101)  
V2  
V3  
4
input  
input may be read via status register  
(address 0010 data X110)  
26  
output  
1 1 0 0  
X X 0 X  
X 0 1 X  
X 1 1 X  
0 0 0 0  
X X 0 1  
X X 1 0  
X X 1 1  
0 1 X X  
1 0 X X  
1 1 X X  
kill output for right channel  
output = logic 0  
output = logic 1  
V4  
V5  
25  
24  
output  
output  
1 1 0 1  
1 1 0 1  
4-line motor drive (using V4 and V5)  
Q-to-W subcode output  
output = logic 0  
output = logic 1  
de-emphasis output (active HIGH)  
output = logic 0  
output = logic 1  
1998 Feb 16  
24  
Philips Semiconductors  
Product specification  
CMOS digital decoding IC with RAM for  
Compact Disc  
SAA7345  
Flags Output (CFLG) (open drain output)  
A 1-bit flag signal is available at the CFLG pin. This signal shows the status of the error corrector and interpolator and is  
updated every frame (7.35 kHz).  
11.3  
µs  
45.4 µs  
CFLG  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F1  
MGA370  
Fig.22 Flags output timing.  
Table 11 Meaning of flag bits.  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
MEANING  
0
1
X
X
0
X
X
0
X
X
X
X
X
X
0
X
X
X
X
X
X
0
X
X
X
X
X
X
X
X
X
X
0
X
X
X
X
X
X
X
X
X
X
0
no absolute time sync  
absolute time sync  
X
X
X
X
X
X
X
X
X
X
X
X
C1 frame contained no errors  
C1 frame contained 1 error  
C1 frame contained 2 errors  
C1 frame non-correctable  
C2 frame contained no errors  
C2 frame contained 1 error  
C2 frame contained 2 errors  
C2 frame non-correctable  
no interpolations  
0
1
1
0
1
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
1
1
0
1
1
X
X
X
X
X
X
X
X
0
1
at least one 1-sample interpolation  
1
0
at least one hold and no interpolations  
at least one hold and one 1-sample interpolation  
1
1
ABSOLUTE TIME SYNC  
Double speed mode  
The first flag bit (F1) is the absolute time sync signal. It is  
the FIFO-passed subcode-sync and relates the position of  
the subcode-sync to the audio data (DAC output).  
Double speed mode is programmed via the Speed control  
register (address 1011). It is possible to program double  
speed independent of clock frequency, but optimum  
performance is achieved with a 33.8688 MHz crystal or a  
ceramic resonator.  
The flag may be used for special purposes such as  
synchronization of different players.  
FLAGS AT EBU OUTPUT  
The CFLG flags are available on bit 4 of the EBU data  
format when bit 3 of the EBU output control register  
(address 1010) is set to logic 1.  
1998 Feb 16  
25  
Philips Semiconductors  
Product specification  
CMOS digital decoding IC with RAM for  
Compact Disc  
SAA7345  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 134).  
SYMBOL  
PARAMETER  
CONDITIONS  
note 1  
MIN.  
0.5  
0.5  
0.5  
40  
55  
2000  
200  
MAX.  
+6.5  
UNIT  
VDD  
VI(max)  
VO  
supply voltage  
V
V
V
maximum input voltage  
output voltage  
VDD + 0.5  
+6.5  
IO  
output current (continuous)  
operating ambient temperature  
storage temperature  
±20  
+85  
mA  
°C  
°C  
V
Tamb  
Tstg  
Ves1  
Ves2  
+125  
+2000  
+200  
electrostatic handling  
electrostatic handling  
note 2  
note 3  
V
Notes  
1. All VDD and VSS connections must be made externally to the same power supply.  
2. Equivalent to discharging a 100 pF capacitor via a 1.5 kseries resistor with a rise time of 15 ns.  
3. Equivalent to discharging a 200 pF capacitor via a 2.5 µH series inductor.  
CHARACTERISTICS  
VDD = 3.4 to 5.5 V; VSS = 0 V; Tamb = 40 to +85 °C; unless otherwise specified.  
SYMBOL  
Supply  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
VDD  
IDD  
supply voltage  
supply current  
3.4  
5.0  
5.5  
V
VDD = 5 V  
22  
50  
mA  
Analog Front End (VDD = 4.5 to 5.5 V); comparator inputs HFIN and HFREF  
fclk  
Vth  
clock frequency  
8
35  
MHz  
V
switching thresholds  
1.2  
VDD 0.4  
Analog Front End (VDD = 3.4 to 5.5 V); comparator inputs HFIN and HFREF  
fclk  
clock frequency  
8
1.0  
20  
MHz  
V
Vtpt  
HFIN input voltage level  
Digital inputs CL and RAB  
VIL  
VIH  
ILI  
LOW level input voltage  
0.3  
0.7VDD  
10  
0.3VDD  
VDD + 0.3  
+10  
V
HIGH level input voltage  
input leakage current  
input capacitance  
V
VI = 0 to VDD  
µA  
pF  
CI  
10  
1998 Feb 16  
26  
Philips Semiconductors  
Product specification  
CMOS digital decoding IC with RAM for  
Compact Disc  
SAA7345  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Digital inputs PORE, V1 and V2  
Vthr  
Vthf  
Vhys  
RPU  
CI  
switching threshold voltage rising  
0.8VDD  
V
V
V
switching threshold voltage falling  
hysteresis voltage  
0.2VDD  
10  
1
0.33VDD  
input pull-up resistance  
input capacitance  
VI = 0 V  
50  
kΩ  
pF  
µs  
trw  
reset pulse width  
PORE only  
Digital outputs CL16 and CLA  
VOL  
VOH  
CL  
tr  
LOW level output voltage  
HIGH level output voltage  
load capacitance  
IOL = 1 mA  
0
0.4  
VDD  
50  
V
IOH = 1 mA  
VDD 0.4  
V
pF  
ns  
ns  
output rise time  
CL = 20 pF; note 1  
CL = 20 pF; note 1  
15  
tf  
output fall time  
15  
Digital outputs V4 and V5  
VOL LOW level output voltage  
VDD = 4.5 to 5.5 V;  
IOL = 10 mA  
0
1.0  
V
V
V
V
VDD = 3.4 to 5.5 V;  
0
1.0  
IOL = 5 mA  
VOH  
HIGH level output voltage  
VDD = 4.5 to 5.5 V;  
IOH = 10 mA  
VDD 1  
VDD  
VDD  
V
DD = 3.4 V to 5.5 V; VDD 1  
IOH = 5 mA  
CL  
tr  
load capacitance  
output rise time  
output fall time  
50  
15  
15  
pF  
ns  
ns  
CL = 20 pF; note 1  
CL = 20 pF; note 1  
tf  
Open-drain output CFLG  
VOL  
IOL  
CL  
tf  
LOW level output voltage  
IOL = 1 mA  
0
0.4  
2
V
LOW level output current  
load capacitance  
mA  
pF  
ns  
50  
30  
output fall time  
CL = 20 pF; note 1  
IOL = 1 mA  
Open-drain outputs KILL and V3  
VOL  
IOL  
CL  
tf  
LOW level output voltage  
LOW level output current  
load capacitance  
0
0.4  
2
V
mA  
pF  
ns  
50  
15  
output fall time  
CL = 20 pF; note 1  
1998 Feb 16  
27  
Philips Semiconductors  
Product specification  
CMOS digital decoding IC with RAM for  
Compact Disc  
SAA7345  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
3-state outputs MISC, SCLK, WCLK, DATA and CL11  
VOL  
VOH  
CL  
tr  
LOW level output voltage  
HIGH level output voltage  
load capacitance  
IOL = 1 mA  
0
0.4  
V
V
IOH = 1 mA  
VDD 0.4  
VDD  
50  
pF  
ns  
ns  
µA  
output rise time  
CL = 20 pF; note 1  
CL = 20 pF; note 1  
VI = 0 to VDD  
15  
tf  
output fall time  
15  
ILI  
3-state leakage current  
10  
+10  
3-state outputs MOTO1, MOTO2 and DOBM  
VOL  
LOW level output voltage  
HIGH level output voltage  
VDD = 4.5 to 5.5 V;  
IOL = 10 mA  
0
1.0  
V
V
V
V
VDD = 3.4 to 5.5 V;  
0
1.0  
IOL = 5 mA  
VOH  
VDD = 4.5 to 5.5 V;  
IOH = 10 mA  
VDD = 3.4 to 5.5 V;  
VDD 1  
VDD 1  
VDD  
VDD  
I
OH = 5 mA  
CL  
tr  
load capacitance  
output rise time  
10  
50  
pF  
ns  
ns  
µA  
CL = 20 pF; note 1  
CL = 20 pF; note 1  
VI = 0 to VDD  
10  
tf  
output fall time  
10  
ILI  
3-state leakage current  
+10  
Digital input/output DA  
VIL  
VIH  
ILI  
LOW level input voltage  
0.3  
0.7VDD  
0.3VDD  
VDD + 0.3  
+10  
10  
V
HIGH level input voltage  
3-state leakage current  
input capacitance  
V
VI = 0 to VDD  
10  
µA  
pF  
V
CI  
VOL  
VOH  
CL  
tr  
LOW level output voltage  
HIGH level output voltage  
load capacitance  
IOL = 1 mA  
0
0.4  
IOH = 1 mA  
VDD 0.4  
VDD  
50  
V
pF  
ns  
ns  
output rise time  
CL = 20 pF; note 1  
CL = 20 pF; note 1  
15  
tf  
output fall time  
15  
Crystal oscillator input CRIN (external clock)  
gm  
RO  
CI  
mutual conductance at start-up  
output resistance at start-up  
input capacitance  
10  
4
10  
+10  
mS  
kΩ  
pF  
11  
ILI  
input leakage current  
µA  
Crystal oscillator output CROUT (see Fig.26)  
fxtal  
Cfb  
CO  
crystal frequency  
8
16.9344  
35  
5
MHz  
pF  
feedback capacitance  
output capacitance  
10  
pF  
1998 Feb 16  
28  
Philips Semiconductors  
Product specification  
CMOS digital decoding IC with RAM for  
Compact Disc  
SAA7345  
SYMBOL  
I2S timing  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
CLOCK OUTPUT SCLK (see Fig.23)  
tcy  
tH  
tL  
output clock period  
clock HIGH time  
clock LOW time  
set-up time  
sample rate = fs  
sample rate = 2fs  
sample rate = 4fs  
sample rate = fs  
sample rate = 2fs  
sample rate = 4fs  
sample rate = fs  
sample rate = 2fs  
sample rate = 4fs  
sample rate = fs  
sample rate = 2fs  
sample rate = 4fs  
sample rate = fs  
sample rate = 2fs  
sample rate = 4fs  
472.4  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
236.2  
118.1  
166  
83  
42  
166  
83  
42  
95  
48  
24  
95  
48  
24  
tsu  
th  
hold time  
I2S timing (double speed)  
CLOCK OUTPUT SCLK (see Fig.23)  
tcy  
tH  
tL  
output clock period  
clock HIGH time  
clock LOW time  
set-up time  
sample rate = fs  
sample rate = 2fs  
sample rate = 4fs  
sample rate = fs  
sample rate = 2fs  
sample rate = 4fs  
sample rate = fs  
sample rate = 2fs  
sample rate = 4fs  
sample rate = fs  
sample rate = 2fs  
sample rate = 4fs  
sample rate = fs  
sample rate = 2fs  
sample rate = 4fs  
236.2  
118.1  
59.1  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
83  
42  
21  
83  
42  
21  
48  
24  
12  
48  
24  
12  
tsu  
th  
hold time  
1998 Feb 16  
29  
Philips Semiconductors  
Product specification  
CMOS digital decoding IC with RAM for  
Compact Disc  
SAA7345  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Microcontroller interface timing (see Figs 24 and 25)  
INPUTS CL AND RAB  
tL  
input LOW time  
single speed  
double speed  
single speed  
double speed  
single speed  
double speed  
500  
480  
240  
ns  
ns  
ns  
ns  
ns  
ns  
260  
500  
260  
tH  
input HIGH time  
tr  
tf  
rise time  
fall time  
READ MODE  
tdRD  
delay time RAB to DA valid  
0
0
50  
50  
ns  
ns  
tdRZ  
delay time RAB to DA  
high-impedance  
tpd  
propagation delay CL to DA  
single speed  
double speed  
700  
340  
980  
500  
ns  
ns  
WRITE MODE  
tsuD  
set-up time DA to CL  
hold time CL to DA  
set-up time CL to RAB  
single speed; note 2  
700  
980  
500  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
double speed; note 2 340  
thD  
single speed  
double speed  
single speed  
double speed  
260  
140  
50  
tsuCR  
tdWZ  
delay time DA high-impedance  
to RAB  
Notes  
1. Timing reference voltage levels are 0.8 V and VDD 0.8 V.  
2. Negative set-up time means that data may change after clock transition.  
clock period t  
cy  
t
t
L
H
V
– 0.8 V  
DD  
SCLK  
0.8 V  
t
su  
t
h
V
– 0.8 V  
WCLK  
DATA  
MISC  
DD  
0.8 V  
MGA376 - 1  
Fig.23 I2S timing.  
30  
1998 Feb 16  
Philips Semiconductors  
Product specification  
CMOS digital decoding IC with RAM for  
Compact Disc  
SAA7345  
t
t
r
f
V
– 0.8 V  
DD  
RAB  
CL  
t
t
r
f
0.8 V  
t
H
V
– 0.8 V  
DD  
t
dRD  
0.8 V  
t
dRZ  
t
L
t
pd  
V
– 0.8 V  
DD  
DA (SAA7345)  
high impedance  
0.8 V  
MGA377 - 1  
Fig.24 Microcontroller timing; READ mode.  
t
t
t
r
H
f
V
– 0.8 V  
t
DD  
suCR  
RAB  
0.8 V  
t
t
t
t
L
r
f
H
V
– 0.8 V  
DD  
0.8 V  
CL  
t
t
t
dWZ  
L
hD  
t
suD  
V
– 0.8 V  
DD  
DA  
(microcontroller)  
MGA378 - 1  
high impedance  
0.8 V  
Fig.25 Microcontroller timing; WRITE mode.  
31  
1998 Feb 16  
Philips Semiconductors  
Product specification  
CMOS digital decoding IC with RAM for  
Compact Disc  
SAA7345  
APPLICATION INFORMATION  
CRIN  
33.8688 MHz  
(3rd overtone)  
CRYSTAL  
100  
kΩ  
3.3  
µH  
CROUT  
2.2  
kΩ  
1 nF  
10 pF  
10 pF  
33 pF  
5 pF  
V
DDA  
V
SSA  
CRIN  
16.9344 MHz  
CRYSTAL  
100  
kΩ  
CROUT  
2.2  
kΩ  
33 pF  
V
DDA  
V
SSA  
CRIN  
33.8688  
CERAMIC  
GENERATOR  
100  
kΩ  
CROUT  
2.2  
kΩ  
5 pF  
V
DDA  
V
SSA  
MGA360 - 1  
Fig.26 Application circuits for crystal oscillator.  
1998 Feb 16  
32  
Philips Semiconductors  
Product specification  
CMOS digital decoding IC with RAM for  
Compact Disc  
SAA7345  
V
V
DD  
R6  
2.2 Ω  
C12  
4.7 µF  
(63 V)  
C13  
100 nF  
X8  
44 43 42 41 40 39 38 37 36 35 34  
11 MHz  
clock output  
V
DD2  
CL11  
1
2
3
33  
32  
31  
CFLG  
RAB  
CL  
to DOBM transformer  
DOBM  
V1  
micro-  
controller  
interface  
4
5
30  
29  
V2  
DA  
TEST2  
CLA  
6
7
8
9
28  
27  
26  
25  
24  
23  
TEST1  
ISLICE  
PORE  
KILL  
SAA7345  
HFIN  
V3  
V4  
R2  
22 kΩ  
HFREF  
C2 47 pF  
C3  
10  
11  
IREF  
V5  
V
R3  
2.2 kΩ  
MOTO2  
MOTOR  
DDA  
C4  
100 nF  
INTERFACE  
X6  
V
22 nF  
(1)  
SSA  
MOTO1  
HFIN  
12 13 14 15 16 17 18 19 20 21 22  
C1  
2.2 nF  
V
V
R4  
2.2 Ω  
DD  
C6  
4.7 µF  
(63 V)  
C11  
100  
nF  
C7  
100 nF  
to DAC  
X9  
16 MHz  
clock output  
(2)  
MGA375 - 1  
(1) Diagram is for a 5 V application. For 3.4 V applications an additional resistor of 150 kshould be added between IREF (pin 10) and ground.  
(2) For crystal oscillator circuit see Fig.26.  
Fig.27 Typical SAA7345 application diagram.  
1998 Feb 16  
33  
Philips Semiconductors  
Product specification  
CMOS digital decoding IC with RAM for  
Compact Disc  
SAA7345  
PACKAGE OUTLINE  
QFP44: plastic quad flat package; 44 leads (lead length 2.35 mm); body 14 x 14 x 2.2 mm  
SOT205-1  
y
X
A
33  
23  
Z
34  
22  
E
e
A
H
2
E
E
A
(A )  
3
A
1
w M  
p
θ
b
L
p
pin 1 index  
L
44  
12  
detail X  
1
11  
Z
v
M
D
A
e
w M  
b
p
D
B
H
v
M
B
D
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
θ
1
2
3
p
E
p
D
E
max.  
7o  
0o  
0.25 2.3  
0.05 2.1  
0.50 0.25 14.1 14.1  
0.35 0.14 13.9 13.9  
19.2 19.2  
18.2 18.2  
2.0  
1.2  
2.4  
1.8  
2.4  
1.8  
mm  
1
2.60  
0.25  
2.35  
0.3 0.15 0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
95-02-04  
97-08-01  
SOT205-1  
133E01A  
1998 Feb 16  
34  
Philips Semiconductors  
Product specification  
CMOS digital decoding IC with RAM for  
Compact Disc  
SAA7345  
If wave soldering cannot be avoided, for QFP  
packages with a pitch (e) larger than 0.5 mm, the  
following conditions must be observed:  
SOLDERING  
Introduction  
There is no soldering method that is ideal for all IC  
packages. Wave soldering is often preferred when  
through-hole and surface mounted components are mixed  
on one printed-circuit board. However, wave soldering is  
not always suitable for surface mounted ICs, or for  
printed-circuits with high population densities. In these  
situations reflow soldering is often used.  
A double-wave (a turbulent wave with high upward  
pressure followed by a smooth laminar wave)  
soldering technique should be used.  
The footprint must be at an angle of 45° to the board  
direction and must incorporate solder thieves  
downstream and at the side corners.  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “IC Package Databook” (order code 9398 652 90011).  
Reflow soldering  
Maximum permissible solder temperature is 260 °C, and  
maximum duration of package immersion in solder is  
10 seconds, if cooled to less than 150 °C within  
Reflow soldering techniques are suitable for all QFP  
packages.  
6 seconds. Typical dwell time is 4 seconds at 250 °C.  
The choice of heating method may be influenced by larger  
plastic QFP packages (44 leads, or more). If infrared or  
vapour phase heating is used and the large packages are  
not absolutely dry (less than 0.1% moisture content by  
weight), vaporization of the small amount of moisture in  
them can cause cracking of the plastic body. For more  
information, refer to the Drypack chapter in our “Quality  
Reference Handbook” (order code 9397 750 00192).  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Repairing soldered joints  
Fix the component by first soldering two diagonally-  
opposite end leads. Use only a low voltage soldering iron  
(less than 24 V) applied to the flat part of the lead. Contact  
time must be limited to 10 seconds at up to 300 °C. When  
using a dedicated tool, all other leads can be soldered in  
one operation within 2 to 5 seconds between  
270 and 320 °C.  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
Several methods exist for reflowing; for example,  
infrared/convection heating in a conveyor type oven.  
Throughput times (preheating, soldering and cooling) vary  
between 50 and 300 seconds depending on heating  
method. Typical reflow peak temperatures range from  
215 to 250 °C.  
Wave soldering  
Wave soldering is not recommended for QFP packages.  
This is because of the likelihood of solder bridging due to  
closely-spaced leads and the possibility of incomplete  
solder penetration in multi-lead devices.  
CAUTION  
Wave soldering is NOT applicable for all QFP  
packages with a pitch (e) equal or less than 0.5 mm.  
1998 Feb 16  
35  
Philips Semiconductors  
Product specification  
CMOS digital decoding IC with RAM for  
Compact Disc  
SAA7345  
DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
1998 Feb 16  
36  
Philips Semiconductors  
Product specification  
CMOS digital decoding IC with RAM for  
Compact Disc  
SAA7345  
NOTES  
1998 Feb 16  
37  
Philips Semiconductors  
Product specification  
CMOS digital decoding IC with RAM for  
Compact Disc  
SAA7345  
NOTES  
1998 Feb 16  
38  
Philips Semiconductors  
Product specification  
CMOS digital decoding IC with RAM for  
Compact Disc  
SAA7345  
NOTES  
1998 Feb 16  
39  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,  
Tel. +61 2 9805 4455, Fax. +61 2 9805 4466  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160 1010,  
Fax. +43 160 101 1210  
Norway: Box 1, Manglerud 0612, OSLO,  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Belgium: see The Netherlands  
Brazil: see South America  
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,  
Tel. +48 22 612 2831, Fax. +48 22 612 2327  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 689 211, Fax. +359 2 689 102  
Portugal: see Spain  
Romania: see Italy  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 755 6918, Fax. +7 095 755 6919  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,  
Tel. +65 350 2538, Fax. +65 251 6500  
Colombia: see South America  
Slovakia: see Austria  
Czech Republic: see Austria  
Slovenia: see Italy  
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,  
Tel. +45 32 88 2636, Fax. +45 31 57 0044  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,  
Tel. +27 11 470 5911, Fax. +27 11 470 5494  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615800, Fax. +358 9 61580920  
South America: Al. Vicente Pinzon, 173, 6th floor,  
04547-130 SÃO PAULO, SP, Brazil,  
Tel. +55 11 821 2333, Fax. +55 11 821 2382  
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +34 3 301 6312, Fax. +34 3 301 4107  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 23 53 60, Fax. +49 40 23 536 300  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 632 2000, Fax. +46 8 632 2745  
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,  
Tel. +30 1 4894 339/239, Fax. +30 1 4814 240  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2686, Fax. +41 1 488 3263  
Hungary: see Austria  
India: Philips INDIA Ltd, Band Box Building, 2nd floor,  
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,  
Tel. +91 22 493 8541, Fax. +91 22 493 0966  
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,  
TAIPEI, Taiwan Tel. +886 2 2134 2865, Fax. +886 2 2134 2874  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,  
Tel. +66 2 745 4090, Fax. +66 2 398 0793  
Indonesia: see Singapore  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,  
Tel. +90 212 279 2770, Fax. +90 212 282 6707  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,  
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,  
20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,  
Tel. +81 3 3740 5130, Fax. +81 3 3740 5077  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +1 800 234 7381  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
Uruguay: see South America  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Vietnam: see Singapore  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Tel. +381 11 625 344, Fax.+381 11 635 777  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Tel. +9-5 800 234 7381  
Middle East: see Italy  
For all other countries apply to: Philips Semiconductors,  
International Marketing & Sales Communications, Building BE-p, P.O. Box 218,  
5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825  
© Philips Electronics N.V. 1998  
SCA57  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
545102/00/05/pp40  
Date of release: 1998 Feb 16  
Document order number: 9397 750 03314  

JVC AV 21YMG7B User Manual
JVC CRT Television AV 27F475 User Manual
JVC HD 56FH96 User Manual
KitchenAid W10271686C User Manual
Lenovo THINKCENTRE 4473 User Manual
Marantz PD6120D User Manual
NEC MultiSync IDC3000 User Manual
Nvidia Corp Computer Hardware nVIDIA GeForce 256 User Manual
Philips 107X4 User Manual
Philips Cooktop HD4929 User Manual