NEX-DDR3INTR-THIN
DDR3 800/1066MT/s Interposer
For use with the TLA7BB4 Logic Analyzer
Modules
Including these Software Support packages:
B_DDR3D_2D (Single/Dual/Quad Rank, single slot with Selective Clocking)
*B_DDR3D_2G (2 or 3 DIMM slots, two Rank @ 800MT/s)
*B_DDR3D_3A (2 DIMM slots, two Rank @ 1066MT/s)
* Optional Software
Copyright © 2007 Nexus Technology, Inc. All rights reserved.
Contents of this publication may not be reproduced in any form without
the written permission of Nexus Technology, Inc.
Brand and product names used throughout this manual are the trademarks
of their respective holders.
DDR3THIN-MN-XXX
1
Doc. Rev. 1.11
License Agreement
In return for payment for this product, Nexus Technology grants the Customer a SINGLE user
LICENSE in the software subject to the following:
Use of the Software:
- Customer may use the software on only one Tektronix mainframe logic analysis system at
any given time
- Customer may make copies or adaptations of the software (see Copies and Adaptations below
for more information)
- Customer may NOT reverse assemble or decompile the software
Copies and Adaptations:
- Are allowed for archival purpose only
- When copying for adaptation is an essential step in the use of the software with the logic
analyzer and/or logic analysis mainframe so long as the copies and adaptations are used in no
other manner. Customer has no right to copy software unless it acquires an appropriate
license to reproduce from Nexus Technology.
- Customer agrees that it does not have any title or ownership of the software, other than the
physical media.
Ownership:
- Customer acknowledges and agrees that the software is copyrighted and protected under the
copyright laws.
- Transfer of the right of ownership shall only be done with the consent of Nexus Technology.
Sublicensing and Distribution:
- Customer may not sublicense the software or distribute copies of the software to the public in
physical media or by electronic means or any other means without the prior written consent
of Nexus Technology.
Compliance with WEEE and RoHS Directives
This product is subject to European Union regulations on Waste Electrical and Electronics
Equipment. Return to Nexus Technology for recycle at end of life. Costs associated with the
return to Nexus Technology are the responsibility of the sender.
DDR3THIN-MN-XXX
3
Doc. Rev. 1.11
TABLE OF CONTENTS
1.0 OVERVIEW ........................................................................................................................... 9
1.1 General Information ............................................................................................................ 9
1.2 Software Package description.............................................................................................. 9
1.3 Eye size required ............................................................................................................... 11
2.0 SOFTWARE INSTALLATION........................................................................................... 11
3.1 General .............................................................................................................................. 12
3.2 B_DDR3D_2D Support..................................................................................................... 12
3.3 B_DDR3D_2G Support..................................................................................................... 12
3.4 B_DDR3D_3A Support..................................................................................................... 13
3.5 Short “LEASH” probes ..................................................................................................... 15
3.5.1 Samtec connector on the LEASH probe pins ............................................................ 16
3.5.2 LEASH probe to NEX-PRB1X/2X connection......................................................... 17
3.7 Display Groups not in Tables 1,2 or 3............................................................................... 39
4.0 CLOCK SELECTION .......................................................................................................... 40
4.1 B_DDR3D_2D Clocking Selections ................................................................................. 40
4.2 B_DDR3D_2G Clocking Selections ................................................................................. 41
4.3 B_DDR3D_3A Clocking Selections ................................................................................. 43
5.1 A Note About the Different Data Groups.......................................................................... 44
5.2 MagniVu Signals............................................................................................................... 44
5.3 Adjusting Input Thresholds for Proper Data Acquisition.................................................. 53
5.4 DDR3 and DDR3SPA ....................................................................................................... 53
5.5 Selecting B_DDR3E_XX Read Data Sample Points ........................................................ 53
5.6 Selecting B_DDR3D_XX Write Data Sample Points....................................................... 54
5.7 B_DDR3D_XX Support Setup.......................................................................................... 55
5.8 Setting B_DDR3D_3A Read Data Sample Points ............................................................ 62
6.0 VIEWING DATA................................................................................................................. 63
6.1 Viewing B_DDR3D_XX Data .......................................................................................... 63
6.3 B_DDR3D_2A / 3A Mnemonics Description................................................................... 66
6.4 B_DDR3D_2G Mnemonics Description........................................................................... 66
6.5 Viewing Timing Data on the TLA .................................................................................... 67
7.0 HINTS & TIPS ..................................................................................................................... 69
7.3 Capturing MRS (Mode Register Set) Cycles .................................................................... 70
7.4 Clock Capture quality........................................................................................................ 71
7.5 Thresholds ......................................................................................................................... 72
A.1 Background....................................................................................................................... 73
A.2 DDR Acquisition - General .............................................................................................. 73
A.3 B_DDR3D_2D / 2G / 3A Data Acquisition ..................................................................... 74
B.1 NEX-DDR3INTR-THIN Bus Loading............................................................................. 75
B.2 DIMM connector location for best quality signal capture................................................ 75
DDR3THIN-MN-XXX
4
Doc. Rev. 1.11
B.3 TLA7BB4 Module to module skew.................................................................................. 75
APPENDIX J – Keep out area...................................................................................................... 88
APPENDIX K – Simulation Model.............................................................................................. 89
DDR3THIN-MN-XXX
5
Doc. Rev. 1.11
TABLE OF FIGURES
Figure 4 - Read Data Latency = CAS Latency + CAS Additive Latency + RDIMM (5+0+1) = 6
Figure 17 - Disassembly Properties.............................................................................................. 64
DDR3THIN-MN-XXX
6
Doc. Rev. 1.11
DDR3THIN-MN-XXX
8
Doc. Rev. 1.11
1.0 OVERVIEW
1.1 General Information
The DDR3 Interposer Products are designed for ease of use. Interposers extra signal trace
length, also an extra connector that might affect the quality of the system operation in some
systems.
• This Product is designed for capture of 1066MT/s or slower, and may only be used with
the Tektronix TLA7BB4 acquisition modules.
This product requires the use of the new NEX-PRB1X-T / PRB2X-T Low Profile Distributed
probes available from Nexus. Tektronix P68xx or P69xx probes can not be used.
This Interposer has been designed to provide a quick and easy connection to interface to a
Tektronix TLA7BB4 Logic Analyzer acquisition cards to a 240-pin DDR3 (Double Data Rate 3)
bus. Contact NEXUS Technology for other available DDR3 Products. The Nexus Technology
1.2 Software Package description
The NEX-DDR3INTR-THIN support includes the following software packages:
B_DDR3D_2D allows the user to acquire Read AND Write data from a single, dual or
quad rank DDR3 DIMM running 1066MT/s or less. This support requires 1ea. NEX-
PRB1X-T and 3ea. NEX-PRB2X-T Low Profile Distributed probes, and two merged
Tektronix TLA7BB4 acquisition cards. This support can use selective clocking to reduce
the number of Idle states acquired by the logic analyzer.
Optional software available for the NEX-DDR3INTR-THIN support includes the following
software packages:
B_DDR3D_2G allows the user to acquire Read AND Write data from a memory
channel made up of two or three DIMM slots with one or two rank DDR3 DIMMs
running 800MT/s or less. This is total disassembly for the 3 DIMM memory channel.
This support requires 2ea. NEX-PRB1X-T and 3ea. NEX-PRB2X-T Low Profile
Distributed probes, and two merged Tektronix TLA7BB4 acquisition cards. This support
also requires the NEX-PRBCOAX product. This support can be used with Single Rank
and Dual Rank DIMMs (will also support a single quad rank DIMM). Reads for the three
DIMMs must have a common data eye (over lap) of 330ps. No selective clocking
B_DDR3D_3A allows the user to acquire Read AND Write data from a memory channel
made up of two DIMM slots with single or dual rank DDR3 DIMMs running 1066MT/s
or less. This is total disassembly for the 2 DIMM memory channel. This support
requires 5ea. NEX-PRB1X-T and 3ea. NEX-PRB2X-T Low Profile Distributed probes,
and three merged Tektronix TLA7BB4 acquisition cards. This support also requires two
DDR3THIN-MN-XXX
9
Doc. Rev. 1.11
NEX-DDR3INTR-THIN Interposer products. This support can be used with Single
Rank and Dual Rank DIMMs.
Note that this manual uses some terms generically. For instance, references to the TLA700/7000
apply to all suitable TLA700/7000 Logic Analyzers, or PCs being used to control the TLA.
NEX-DDR3INTR-THIN refers to the B_DDR3D_2D/2G/3A software support packages.
Appendix G has a silk-screened print of the NEX-DDR3INTR-THIN Logic Analyzer Interposer
board. Referring to this drawing while reading the manual is suggested.
This manual assumes that the user is familiar with the DDR3 SDRAM Specification and the
Tektronix TLA Logic Analyzers. It is also expected that the user is familiar with the Windows
environment used with the TLA.
DDR3THIN-MN-XXX
10
Doc. Rev. 1.11
1.3 Eye size required
The Eye size (stable data) required at the input resistor to the Nexus passive probes (NEX-
PRB1X(-T) & NEX-PRB2X(-T)) is 330ps, and 0.2V. Capture accuracy may be affected if a
stable eye can not meet this requirement. . The eye is a perfectly shaped diamond with each side
equal distant from the center.
2.0 SOFTWARE INSTALLATION
To Install the NEX-DDR3INTR-THIN software support place the B_DDR3D_XX Install CD in
the CD drive of the TLA or the PC being used to control the TLA. Using Windows Explorer
select the CD, navigate to the support_software folder, select the folder of the support to be
installed (B_DDR3D_2D, B_DDR3D_2G or B_DDR3D_3A) and then run the .MSI file within
the folder. The selected software will be installed on the TLA’s hard disk.
To load the support into the TLA, first select the desired Logic Analyzer module (different
supports require different module counts) in the Setup window, select Load Support Package
from the File pull-down, then choose the software package name you are want to load and click
on Okay. Note that this support requires two or more merged modules and that the TLA
acquisition cards must be configured properly for the software to load.
DDR3THIN-MN-XXX
11
Doc. Rev. 1.11
3.0 CONNECTING to the NEX-DDR3INTR-THIN INTERPOSER
3.1 General
Care should be taken to support the weight of the acquisition probes so that the Logic Analyzer
Interposer board and/or target socket are not damaged.
3.2 B_DDR3D_2D Support
To acquire DDR3 Read and Write data at speeds up to 1066MT/s requires two merged
TLA7BB4 136-channel, with 1.4G state option, acquisition cards and the use of the
B_DDR3D_2D support software. The Master card will be in the lower numbered of the two
cards. Slave card #1 is in the adjacent high-numbered slots. The logic analyzer modules should
be connected to the DDR3 DIMM Interposer as follows using (1) NEX-PPRB1X-T probes and
three (3) NEX-PRB2X-T probes:
TLA Master
Connect the NEX-PRB1X-T “C” probe head to DDR3 Interposer’s LEASH (soldered-on
coax cable) that is attached to “M_C” position on the Interposer.
Connect the NEX-PRB2X-T A3/2 & A1/0 probe head to DDR3 Interposer’s LEASH
that is attached to “M_ A3/2 A1/0” position on the Interposer.
Match the label on the end of the NEX-PRB1X-T/2X-T probes with the labels on the
front of the Tektronix Logic Analyzer Master module and connect.
TLA Slave
Connect the NEX-PRB2X-T A3/2 & A1/0 probe head to DDR3 Interposer’s LEASH
that is attached to “S_ A3/2 A1/0” position on the Interposer.
Connect the NEX-PRB2X-T “C3/2” & “E3/2” probe head to DDR3 Interposer’s LEASH
that is attached to “S_C3/2 E3/2” position on the Interposer.
See Figure 1 for connections. Table 1 shows the Channel Grouping / Wiring for use with the
B_DDR3D_2D support.
3.3 B_DDR3D_2G Support
To acquire DDR3 Read and Write data from two or three DIMM slots, for total memory channel
disassembly, at speeds up to 800MT/s requires two merged TLA7BB4 136-channel, with 1.4G
state option, acquisition cards and the use of the B_DDR3D_2G optional support software. The
Master card will be in the lower numbered, of the two cards. Slave card #1 will be in the
adjacent high-numbered slots. This support requires an additional NEX-PRB1X-T (for a total of
2), and the NEX-PRBCOAX product. The logic analyzer modules should be connected to the
DDR3 DIMM Interposer as follows using (1) NEX-PPRB1X-T probes and three (3) NEX-
PRB2X-T probes, with the additional NEX-PRB1X-T connected to the NEX-PRBCOAX:
DDR3THIN-MN-XXX
12
Doc. Rev. 1.11
TLA Master
Connect the NEX-PRB1X-T “C” probe head to DDR3 Interposer’s LEASH (soldered-on
coax cable) that is attached to “M_C” position on the Interposer.
Connect the NEX-PRB2X-T A3/2 & A1/0 probe head to DDR3 Interposer’s LEASH
that is attached to “M_ A3/2 A1/0” position on the Interposer.
Connect the NEX-PRB1X-T “E” probe head to the NEX-PRBCOAX.
Note the leads 9- 12 of the NEX-PRBCOAX must be connected to the second slots Chip
Select lines (CS) near the second and third DIMM socket, usually on the back of the
mother board.
Match the label on the end of the NEX-PRB1X-T/2X-T probes with the labels on the
front of the Tektronix Logic Analyzer Master module and connect.
TLA Slave
Connect the NEX-PRB2X-T A3/2 & A1/0 probe head to DDR3 Interposer’s LEASH
that is attached to “S_ A3/2 A1/0” position on the Interposer.
Connect the NEX-PRB2X-T “C3/2” & “E3/2” probe head to DDR3 Interposer’s LEASH
that is attached to “S_C3/2 E3/2” position on the Interposer.
See Figure 1 for connections. Table 2 shows the Channel Grouping / Wiring for use with the
B_DDR3D_2G support.
3.4 B_DDR3D_3A Support
To acquire DDR3 Read and Write data from a two DIMM slots, for total memory channel
disassembly, at speeds up to 1066MT/s requires three merged TLA7BB4 136-channel, with
1.4G state option, acquisition cards and the use of the B_DDR3D_3A optional support software.
The Master card will be in the lower numbered, of the three cards. Slave card #1 will be in the
adjacent high-numbered slots. Slave card #2 will be in the adjacent low-numbered slots. This
support also requires two NEX-DDR3INTR-THIN Interposer products. The logic analyzer
modules should be connected to the DDR3 DIMM Interposer as follows using (5) NEX-
PPRB1X-T probes and three (3) NEX-PRB2X-T probes:
TLA Master
Connect the NEX-PRB1X-T “C” probe head to DDR3 Interposer’s LEASH (soldered-on
coax cable) that is attached to “M_C” position on the Interposer.
Connect the NEX-PRB2X-T A3/2 & A1/0 probe head to DDR3 Interposer’s LEASH
that is attached to “M_ A3/2 A1/0” position on the Interposer.
Match the label on the end of the NEX-PRB1X-T/2X-T probes with the labels on the
front of the Tektronix Logic Analyzer Master module and connect.
DDR3THIN-MN-XXX
13
Doc. Rev. 1.11
TLA Slave1
Connect the NEX-PRB2X-T A3/2 & A1/0 probe head to DDR3 Interposer’s LEASH
that is attached to “S_ A3/2 A1/0” position on the Interposer.
Connect the NEX-PRB2X-T “C3/2” & “E3/2” probe head to DDR3 Interposer’s LEASH
that is attached to “S_C3/2 E3/2” position on the Interposer.
TLA Slave2
Connect the NEX-PRB1X-T A3/2 D3/2 probe head to DDR3 Interposer’s LEASH that is
attached to “M_A3/2 A1/0” position on the second Interposer.
Connect the NEX-PRB1X-T A1/0 D1/0 probe head to DDR3 Interposer’s LEASH that is
attached to “S_A3/2 A1/0” position on the second Interposer.
Connect the NEX-PRB1X-T “C” probe head to DDR3 Interposer’s LEASH that is
attached to “M_C3/2 C1/0” position on the second Interposer.
Connect the NEX-PRB1X-T “E” probe head to DDR3 Interposer’s LEASH that is
attached to “S_C3/2 E3/2” position on the second Interposer.
See Figure 1 for connections. Table 3 shows the Channel Grouping / Wiring for use with the
B_DDR3D_3A support.
DDR3THIN-MN-XXX
14
Doc. Rev. 1.11
3.5 Short “LEASH” probes
The standard product includes 4 “LEASH” probes connected to this Interposer product. These
short probes are soldered directly onto the interposer and interface the Interposer to the Passive
probes that connect to the logic analyzer. These “LEASH” probes are to allow the user to easily
install and remove the Interposer product in their system with out the added weight of the
passive probe attached. There may be other probing options in the future. Contact Nexus for any
updates.
Figure 1 below shows the location on the Interposer of the LEASH probe connections.
Location of HCD connectors, right under metal compression plate, and probe tip board:
S_C3/2
M_A3/2 A1/0
M_
S_A3/2 A1/0
PRB2
PRB2
PRB1
PRB2
Figure 1 – Drawing of Interposer with probes attached
The four (4) each, 1 foot long, “LEASH” probes that are soldered onto the Interposer are in turn
connected to either a NEX-PRB1X-T or NEX-PRB2X-T probe. The NEX-PRB1X-T or NEX-
PRB2X-T probe in turn connects to the input of the logic analyzer modules. The connection
between the LEASH Probes and the logic Analyzer is a Samtec connector with a pin out as
shown below on the LEASH probe. Refer to 3.2 to determine if a NEX-PRB1X-T or NEX-
PRB2X-T connects to each LEASH probe.
DDR3THIN-MN-XXX
15
Doc. Rev. 1.11
The strain relief on the LEASH to NEXPRB1X/2X interface, while designed for bench handling,
can be damaged by twisting the coax cables. Bends of over 45 degrees in this area should be
avoided. The coax connection points, under any circumstances, are not to be bent.
3.5.1 Samtec connector on the LEASH probe pins
Figure 2 – Samtec connector on the LEASH probe
The LEASH probe connects to the NEX-PRB1X-T or NEX-PRB2X-T probe using two plastic
nuts and screws, with a plastic spacer between the two boards. These parts are supplied.
DDR3THIN-MN-XXX
16
Doc. Rev. 1.11
3.5.2 LEASH probe to NEX-PRB1X/2X connection
Probe tip on the NEX-PRB1X-T or
NEX-PRB2X-T
Two each plastic
Spacers
Screws
&
Nuts
Hold each probe
together
Interposer
here
Transition board on the “LEASH”
Cable end
Figure 3 – LEASH probe to NEX-PRB1X/2X connection
3.5.3 Alternate use of NEX-PRB1X or NEX-PRB2X probes
The NEX-PRB1X or NEX-PRB2X can be used in place of the “-T” probes but will have to be
secured for long term connection by tie-wraps.
DDR3THIN-MN-XXX
17
Doc. Rev. 1.11
3.6 Slot Numbering
The Interposer must be installed in the furthest slot from the memory controller. For 1066MT/s
support only the two furthest slots may be used. Slots are named as shown below:
Slot naming for a three slot system
Memory controller
Slot C Slot B Slot A
cS0-1#
bS0-1#
S0-3#
cCLKE0-1 bCLKE0-1 CLKE0-
(from NEX- (from NEX-
PRBCOAX) PRBCOAX)
If only one slot is used it must be the furthest slot from the memory controller.
If two slots are used they must be the furthest slots from the memory controller.
Quad rank is only supported in the single slot configuration
Interposer in any two or three slot configuration must be in the furthest slot.
1066MT/s full channel support (B_DDR3D_3A) requires two interposers in the two
furthest slots from the memory controller.
DDR3THIN-MN-XXX
18
Doc. Rev. 1.11
Group
Name
RdA_DatHi
(Hex)
Signal
Name
DDR3
Pin #
234
233
228
227
115
114
109
108
225
224
219
218
106
105
100
99
216
215
210
209
97
96
91
90
TLA
Input
Group
Name
RdA_DatLo
(Hex)
Signal
Name
DDR3
Pin #
156
155
150
149
37
36
31
30
147
146
141
140
28
27
22
21
138
137
132
131
19
18
13
12
129
128
123
122
10
9
4
3
TLA
Input
RD_A_DQ63
RD_A_DQ62
RD_A_DQ61
RD_A_DQ60
RD_A_DQ59
RD_A_DQ58
RD_A_DQ57
RD_A_DQ56
RD_A_DQ55
RD_A_DQ54
RD_A_DQ53
RD_A_DQ52
RD_A_DQ51
RD_A_DQ50
RD_A_DQ49
RD_A_DQ48
RD_A_DQ47
RD_A_DQ46
RD_A_DQ45
RD_A_DQ44
RD_A_DQ43
RD_A_DQ42
RD_A_DQ41
RD_A_DQ40
RD_A_DQ39
RD_A_DQ38
RD_A_DQ37
RD_A_DQ36
RD_A_DQ35
RD_A_DQ34
RD_A_DQ33
RD_A_DQ32
S_A2:0
S_A2:1
S_A2:5
S_CK0
S_A2:2
S_A2:3
S_A2:7
S_A3:0
S_A3:2
S_A3:3
S_A3:7
S_A1:5
S_A3:1
S_A3:4
S_A1:7
S_A1:6
S_A1:4
S_A1:1
S_A0:7
S_A0:6
S_A1:3
S_A1:2
S_A0:5
S_A0:4
S_A0:3
S_A0:2
M_C2:1
M_C2:4
S_A0:1
S_A0:0
M_C2:6
M_C2:7
RD_A_DQ31
RD_A_DQ30
RD_A_DQ29
RD_A_DQ28
RD_A_DQ27
RD_A_DQ26
RD_A_DQ25
RD_A_DQ24
RD_A_DQ23
RD_A_DQ22
RD_A_DQ21
RD_A_DQ20
RD_A_DQ19
RD_A_DQ18
RD_A_DQ17
RD_A_DQ16
RD_A_DQ15
RD_A_DQ14
RD_A_DQ13
RD_A_DQ12
RD_A_DQ11
RD_A_DQ10
RD_A_DQ9
RD_A_DQ8
RD_A_DQ7
RD_A_DQ6
RD_A_DQ5
RD_A_DQ4
RD_A_DQ3
RD_A_DQ2
RD_A_DQ1
RD_A_DQ0
M_A0:6
M_A0:3
S_C2:0
S_C2:1
M_A0:4
M_A0:1
S_C2:2
S_C2:3
S_C2:4
S_C2:5
S_C3:2
S_C3:3
S_C2:6
S_C2:7
S_C3:1
S_C3:4
S_C3:6
S_C3:7
S_E3:4
S_E3:1
S_C3:5
S_E3:7
S_E3:3
S_E3:2
S_E3:0
S_E2:7
S_E2:3
S_E2:2
S_Q3
207
206
201
200
88
87
83
81
S_E2:5
S_E2:1
S_E2:0
Table 1 - B_DDR3D_2D (<=1066MT/s Read and Write) TLA Channel Grouping
Notes:
1. All signals on this page are required for accurate post-processing of acquired data
2. The ‘S’ in front of a TLA channel denotes the Slave card of the merged pair
DDR3THIN-MN-XXX
19
Doc. Rev. 1.11
Group
Name
Signal
Name
DDR3
Pin#
TLA
Input
Group
Name
Signal
Name
DDR3
Pin#
TLA
Input
RdB_DatHi
(Hex)
RD_B_DQ63
RD_B_DQ62
RD_B_DQ61
RD_B_DQ60
RD_B_DQ59
RD_B_DQ58
RD_B_DQ57
RD_B_DQ56
RD_B_DQ55
RD_B_DQ54
RD_B_DQ53
RD_B_DQ52
RD_B_DQ51
RD_B_DQ50
RD_B_DQ49
RD_B_DQ48
RD_B_DQ47
RD_B_DQ46
RD_B_DQ45
RD_B_DQ44
RD_B_DQ43
RD_B_DQ42
RD_B_DQ41
RD_B_DQ40
RD_B_DQ39
RD_B_DQ38
RD_B_DQ37
RD_B_DQ36
RD_B_DQ35
RD_B_DQ34
RD_B_DQ33
RD_B_DQ32
234
233
228
227
115
114
109
108
225
224
219
218
106
105
100
99
216
215
210
209
97
96
91
90
S_A2:0^1
S_A2:1^1
S_A2:5^1
S_CK0^1
S_A2:2^1
S_A2:3^1
S_A2:7^1
S_A3:0^1
S_A3:2^1
S_A3:3^1
S_A3:7^1
S_A1:5^1
S_A3:1^1
S_A3:4^1
S_A1:7^1
S_A1:6^1
S_A1:4^1
S_A1:1^1
S_A0:7^1
S_A0:6^1
S_A1:3^1
S_A1:2^1
S_A0:5^1
S_A0:4^1
S_A0:3^1
S_A0:2^1
M_C2:1^1
M_C2:4^1
S_A0:1^1
S_A0:0^1
M_C2:6^1
M_C2:7^1
RdB_DatLo
(Hex)
RD_B_DQ31
RD_B_DQ30
RD_B_DQ29
RD_B_DQ28
RD_B_DQ27
RD_B_DQ26
RD_B_DQ25
RD_B_DQ24
RD_B_DQ23
RD_B_DQ22
RD_B_DQ21
RD_B_DQ20
RD_B_DQ19
RD_B_DQ18
RD_B_DQ17
RD_B_DQ16
RD_B_DQ15
RD_B_DQ14
RD_B_DQ13
RD_B_DQ12
RD_B_DQ11
RD_B_DQ10
RD_B_DQ9
RD_B_DQ8
RD_B_DQ7
RD_B_DQ6
RD_B_DQ5
RD_B_DQ4
RD_B_DQ3
RD_B_DQ2
RD_B_DQ1
RD_B_DQ0
156
155
150
149
37
36
31
30
147
146
141
140
28
27
22
21
138
137
132
131
19
18
13
12
129
128
123
122
10
9
4
3
M_A0:6^1
M_A0:3^1
S_C2:0^1
S_C2:1^1
M_A0:4^1
M_A0:1^1
S_C2:2^1
S_C2:3^1
S_C2:4^1
S_C2:5^1
S_C3:2^1
S_C3:3^1
S_C2:6^1
S_C2:7^1
S_C3:1^1
S_C3:4^1
S_C3:6^1
S_C3:7^1
S_E3:4^1
S_E3:1^1
S_C3:5^1
S_E3:7^1
S_E3:3^1
S_E3:2^1
S_E3:0^1
S_E2:7^1
S_E2:3^1
S_E2:2^1
S_Q3^1
207
206
201
200
88
87
83
81
S_E2:5^1
S_E2:1^1
S_E2:0^1
Table 1 – B_DDR3D_2D (<=1066MT/s Read and Write) TLA Channel Grouping (cont’d.)
Notes:
1. All signals on this page are required for accurate post-processing of acquired data
2. The ‘S’ in front of a TLA channel denotes the Slave card of the merged pair
3. All signals on this page are stored in the TLA7BB4’s Prime memory and will not have a
MagniVu display value
DDR3THIN-MN-XXX
20
Doc. Rev. 1.11
Group
Name
WrA_DatHi
(Hex)
Signal
Name
DDR3
Pin #
234
233
228
227
115
114
109
108
225
224
219
218
106
105
100
99
216
215
210
209
97
96
91
90
TLA
Input
S_D2:0
S_D2:1
S_D2:5
S_Q1
Group
Name
WrA_DatLo
(Hex)
Signal
Name
DDR3
Pin #
156
155
150
149
37
36
31
30
147
146
141
140
28
27
22
21
138
137
132
131
19
18
13
12
129
128
123
122
10
9
4
3
TLA
Input
WR_A_DQ63
WR_A_DQ62
WR_A_DQ61
WR_A_DQ60
WR_A_DQ59
WR_A_DQ58
WR_A_DQ57
WR_A_DQ56
WR_A_DQ55
WR_A_DQ54
WR_A_DQ53
WR_A_DQ52
WR_A_DQ51
WR_A_DQ50
WR_A_DQ49
WR_A_DQ48
WR_A_DQ47
WR_A_DQ46
WR_A_DQ45
WR_A_DQ44
WR_A_DQ43
WR_A_DQ42
WR_A_DQ41
WR_A_DQ40
WR_A_DQ39
WR_A_DQ38
WR_A_DQ37
WR_A_DQ36
WR_A_DQ35
WR_A_DQ34
WR_A_DQ33
WR_A_DQ32
WR_A_DQ31
WR_A_DQ30
WR_A_DQ29
WR_A_DQ28
WR_A_DQ27
WR_A_DQ26
WR_A_DQ25
WR_A_DQ24
WR_A_DQ23
WR_A_DQ22
WR_A_DQ21
WR_A_DQ20
WR_A_DQ19
WR_A_DQ18
WR_A_DQ17
WR_A_DQ16
WR_A_DQ15
WR_A_DQ14
WR_A_DQ13
WR_A_DQ12
WR_A_DQ11
WR_A_DQ10
WR_A_DQ9
WR_A_DQ8
WR_A_DQ7
WR_A_DQ6
WR_A_DQ5
WR_A_DQ4
WR_A_DQ3
WR_A_DQ2
WR_A_DQ1
WR_A_DQ0
M_D0:6
M_D0:3
S_C0:0
S_C0:1
M_D0:4
M_D0:1
S_C0:2
S_C0:3
S_C0:4
S_C0:5
S_C1:2
S_C1:3
S_C0:6
S_C0:7
S_C1:1
S_C1:4
S_C1:6
S_C1:7
S_E1:4
S_E1:1
S_C1:5
S_E1:7
S_E1:3
S_E1:2
S_E1:0
S_E0:7
S_E0:3
S_E0:2
S_CK2
S_E0:5
S_E0:1
S_E0:0
S_D2:2
S_D2:3
S_D2:7
S_D3:0
S_D3:2
S_D3:3
S_D3:7
S_D1:5
S_D3:1
S_D3:4
S_D1:7
S_D1:6
S_D1:4
S_D1:1
S_D0:7
S_D0:6
S_D1:3
S_D1:2
S_D0:5
S_D0:4
S_D0:3
S_D0:2
M_C0:1
M_C0:4
S_D0:1
S_D0:0
M_C0:6
M_C0:7
207
206
201
200
88
87
83
81
Table 1 – B_DDR3D_2D (<=1066MT/s Read and Write) TLA Channel Grouping (cont’d.)
Notes:
1. All signals on this page are required for accurate post-processing of acquired data
2. The ‘S’ in front of a TLA channel denotes the Slave card of the merged pair
DDR3THIN-MN-XXX
21
Doc. Rev. 1.11
Group
Name
WrB_DatHi
(Hex)
Signal
Name
DDR3
Pin #
234
233
228
227
115
114
109
108
225
224
219
218
106
105
100
99
216
215
210
209
97
96
91
90
TLA
Input
S_D2:0^1
S_D2:1^1
S_D2:5^1
S_Q1^1
Group
Name
WrB_DatLo
(Hex)
Signal
Name
DDR3
Pin #
156
155
150
149
37
36
31
30
147
146
141
140
28
27
22
21
138
137
132
131
19
18
13
12
129
128
123
122
10
9
4
3
TLA
Input
WR_B_DQ63
WR_B_DQ62
WR_B_DQ61
WR_B_DQ60
WR_B_DQ59
WR_B_DQ58
WR_B_DQ57
WR_B_DQ56
WR_B_DQ55
WR_B_DQ54
WR_B_DQ53
WR_B_DQ52
WR_B_DQ51
WR_B_DQ50
WR_B_DQ49
WR_B_DQ48
WR_B_DQ47
WR_B_DQ46
WR_B_DQ45
WR_B_DQ44
WR_B_DQ43
WR_B_DQ42
WR_B_DQ41
WR_B_DQ40
WR_B_DQ39
WR_B_DQ38
WR_B_DQ37
WR_B_DQ36
WR_B_DQ35
WR_B_DQ34
WR_B_DQ32
WR_B_DQ33
WR_B_DQ31
WR_B_DQ30
WR_B_DQ29
WR_B_DQ28
WR_B_DQ27
WR_B_DQ26
WR_B_DQ25
WR_B_DQ24
WR_B_DQ23
WR_B_DQ22
WR_B_DQ21
WR_B_DQ20
WR_B_DQ19
WR_B_DQ18
WR_B_DQ17
WR_B_DQ16
WR_B_DQ15
WR_B_DQ14
WR_B_DQ13
WR_B_DQ12
WR_B_DQ11
WR_B_DQ10
WR_B_DQ9
WR_B_DQ8
WR_B_DQ7
WR_B_DQ6
WR_B_DQ5
WR_B_DQ4
WR_B_DQ3
WR_B_DQ2
WR_B_DQ1
WR_B_DQ0
M_D0:6^1
M_D0:3^1
S_C0:0^1
S_C0:1^1
M_D0:4^1
M_D0:1^1
S_C0:2^1
S_C0:3^1
S_C0:4^1
S_C0:5^1
S_C1:2^1
S_C1:3^1
S_C0:6^1
S_C0:7^1
S_C1:1^1
S_C1:4^1
S_C1:6^1
S_C1:7^1
S_E1:4^1
S_E1:1^1
S_C1:5^1
S_E1:7^1
S_E1:3^1
S_E1:2^1
S_E1:0^1
S_E0:7^1
S_E0:3^1
S_E0:2^1
S_CK2^1
S_E0:5^1
S_E0:1^1
S_E0:0^1
S_D2:2^1
S_D2:3^1
S_D2:7^1
S_D3:0^1
S_D3:2^1
S_D3:3^1
S_D3:7^1
S_D1:5^1
S_D3:1^1
S_D3:4^1
S_D1:7^1
S_D1:6^1
S_D1:4^1
S_D1:1^1
S_D0:7^1
S_D0:6^1
S_D1:3^1
S_D1:2^1
S_D0:5^1
S_D0:4^1
S_D0:3^1
S_D0:2^1
M_C0:1^1
M_C0:4^1
S_D0:1^1
S_D0:0^1
M_C0:6^1
M_C0:7^1
207
206
201
200
88
87
83
81
Table 1 – B_DDR3D_2D (<=1066MT/s Read and Write) TLA Channel Grouping (cont’d.)
Notes:
1. All signals on this page are required for accurate post-processing of acquired data
2. The ‘S’ in front of a TLA channel denotes the Slave card of the merged pair
3. All signals on this page are stored in the TLA7BB4’s Prime memory and will not have a
MagniVu display value
DDR3THIN-MN-XXX
22
Doc. Rev. 1.11
Group
Name
RdAChkBits
(OFF)
Signal
Name
DDR3
Pin #
165
164
159
158
46
45
40
39
165
164
159
158
46
45
40
39
230
221
212
203
152
143
134
125
TLA
Input
Group
Name
Signal
Name
DDR3
Pin #
165
164
159
158
46
45
40
39
165
164
159
158
46
45
40
39
230
221
212
203
152
143
134
125
TLA
Input
M_D1:5
M_D1:4
M_D1:0
M_D0:7
M_D1:6
M_D1:3
RD_A_CB7
RD_A_CB6
RD_A_CB5
RD_A_CB4
RD_A_CB3
RD_A_CB2
RD_A_CB1
RD_A_CB0
RD_B_CB7
RD_B_CB6
RD_B_CB5
RD_B_CB4
RD_B_CB3
RD_B_CB2
RD_B_CB1
RD_B_CB0
A_DM7/DQS16
A_DM6/DQS15
A_DM5/DQS14
A_DM4/DQS13
A_DM3/DQS12
A_DM2/DQS11
A_DM1/DQS10
A_DM0/DQS9
M_A1:5
M_A1:4
M_A1:0
M_A0:7
M_A1:6
M_A1:3
M_CK1
M_A0:5
WrAChkBits 4
(OFF)
WR_A_CB7
WR_A_CB6
WR_A_CB5
WR_A_CB4
WR_A_CB3
WR_A_CB2
WR_A_CB1
WR_A_CB0
WR_B_CB7
WR_B_CB6
WR_B_CB5
WR_B_CB4
WR_B_CB3
WR_B_CB2
WR_B_CB1
WR_B_CB0
B_DM7/DQS16
B_DM6/DQS15
B_DM5/DQS14
B_DM4/DQS13
B_DM3/DQS12
B_DM2/DQS11
B_DM1/DQS10
B_DM0/DQS9
M_Q0
M_D0:5
RdBChkBits 4
(OFF)
M_A1:5^1 WrBChkBits 4
M_A1:4^1 (OFF)
M_A1:0^1
M_A0:7^1
M_A1:6^1
M_A1:3^1
M_CK1^1
M_A0:5^1
S_A2:4
S_A3:6
S_A1:0
M_C2:0
M_A0:2
S_CK3
S_E3:5
S_E2:6
M_D1:5^1
M_D1:4^1
M_D1:0^1
M_D0:7^1
M_D1:6^1
M_D1:3^1
M_Q0^1
M_D0:5^1
S_A2:4^1
S_A3:6^1
S_A1:0^1
M_C2:0^1
M_A0:2^1
S_CK3^1
S_E3:5^1
S_E2:6^1
ADatMsks
(BIN)
BDatMsks 4
(BIN)
Table 1 – B_DDR3D_2D (<=1066MT/s Read and Write) TLA Channel Grouping (cont’d.)
Notes:
1. ‘ # ‘ denotes a low-true signal
2. The ‘S’ in front of a TLA channel denotes the Slave card of the merged set
3. The ‘M’ in front of a TLA channel denotes the Master card of the merged pair
4. Signals in these groups are acquired using the TLA’s demux capability and will not have
a MagniVu display value
DDR3THIN-MN-XXX
23
Doc. Rev. 1.11
Group
Name
Signal
Name
CKE1
CKE0
S3#
S2#
S1#
S0#
BA2
BA1
BA0
A15
A14
DDR3
Pin #
169
50
49
48
76
193
52
190
71
171
172
196
174
70
192
74
73
111
103
94
85
34
TLA
Input
Group
Name
Signal
Name
BA2
BA1
BA0
A15
A14
A13
A12/BC#
A11
A10/AP
A9
A8
A7
A6
A5
A4
A3
A2
DDR3
Pin #
52
190
71
171
172
196
174
55
TLA
Input
Control 2
M_A3:2
M_A3:1
M_C2:5
M_C3:0
M_C3:4
M_C3:3
M_A3:0
M_C3:7
M_C1:6
M_CK0
M_A2:5
M_CK3
M_A2:4
M_C1:3
M_C3:6
M_C3:5
M_C1:7
S_A2:6
S_A3:5
S_CK1
M_C2:3
M_A0:1
S_C3:0
S_E3:6
S_E2:4
Address 2
M_A3:0
M_C3:7
M_C1:6
M_CK0
M_A2:5
M_CK3
M_A2:4
M_A2:6
M_C1:3
M_A2:1
M_A2:0
M_A2:3
M_C0:3
M_A2:2
M_C0:5
M_C1:0
M_Q1
(SYM)
(Hex)
70
175
177
56
178
58
59
180
61
A13
A12/BC#
A10/AP
RAS#
CAS#
WE#
DQS7
DQS6
DQS5
DQS4
DQS3
DQS2
DQS1
DQS0
All DQSx#
DDRCK1+/-
SA1
Strobes
(HEX)
A1
A0
181
188
Placeholder
Placeholder
184/185
43
M_C1:1
M_C1:5
Misc 2
(OFF)
MISC1
MISC0
DDRCK0+/-
DQS8
DM8
ERR_OUT#³
RESET#
TEST
ODT0
ODT1
PAR_IN
M_C1:4
M_A1:2
M_A1:1
M_A2:7
M_A3:6
M_A3:7
M_C2:0
M_C2:1
M_C1:2
25
16
7
Ungrouped
161
53
168
167
195
77
Unprobed
63/64
237
238
SDA
SA0
117
68
SCL
118
Table 1 – B_DDR3D_2D TLA Channel Grouping (cont’d.)
Notes:
1. ‘ # ‘ denotes a low-true signal
2. These signals are required for accurate acquisition and post-processing of acquired data
3. The ‘S’ in front of a TLA channel denotes the Slave card of the merged pair
4. The ‘M’ in front of a TLA channel denotes the Master card of the merged pair
5. Signals in these groups are acquired using the TLA’s demux capability and will not have
a MagniVu display value
DDR3THIN-MN-XXX
24
Doc. Rev. 1.11
Group
Name
RdA_DatHi
(Hex)
Signal
Name
DDR3
Pin #
234
233
228
227
115
114
109
108
225
224
219
218
106
105
100
99
216
215
210
209
97
96
91
90
TLA
Input
Group
Name
RdA_DatLo
(Hex)
Signal
Name
DDR3
Pin #
156
155
150
149
37
36
31
30
147
146
141
140
28
27
22
21
138
137
132
131
19
18
13
12
129
128
123
122
10
9
4
3
TLA
Input
RD_A_DQ63
RD_A_DQ62
RD_A_DQ61
RD_A_DQ60
RD_A_DQ59
RD_A_DQ58
RD_A_DQ57
RD_A_DQ56
RD_A_DQ55
RD_A_DQ54
RD_A_DQ53
RD_A_DQ52
RD_A_DQ51
RD_A_DQ50
RD_A_DQ49
RD_A_DQ48
RD_A_DQ47
RD_A_DQ46
RD_A_DQ45
RD_A_DQ44
RD_A_DQ43
RD_A_DQ42
RD_A_DQ41
RD_A_DQ40
RD_A_DQ39
RD_A_DQ38
RD_A_DQ37
RD_A_DQ36
RD_A_DQ35
RD_A_DQ34
RD_A_DQ33
RD_A_DQ32
S_A2:0
S_A2:1
S_A2:5
S_CK0
S_A2:2
S_A2:3
S_A2:7
S_A3:0
S_A3:2
S_A3:3
S_A3:7
S_A1:5
S_A3:1
S_A3:4
S_A1:7
S_A1:6
S_A1:4
S_A1:1
S_A0:7
S_A0:6
S_A1:3
S_A1:2
S_A0:5
S_A0:4
S_A0:3
S_A0:2
M_C2:1
M_C2:4
S_A0:1
S_A0:0
M_C2:6
M_C2:7
RD_A_DQ31
RD_A_DQ30
RD_A_DQ29
RD_A_DQ28
RD_A_DQ27
RD_A_DQ26
RD_A_DQ25
RD_A_DQ24
RD_A_DQ23
RD_A_DQ22
RD_A_DQ21
RD_A_DQ20
RD_A_DQ19
RD_A_DQ18
RD_A_DQ17
RD_A_DQ16
RD_A_DQ15
RD_A_DQ14
RD_A_DQ13
RD_A_DQ12
RD_A_DQ11
RD_A_DQ10
RD_A_DQ9
RD_A_DQ8
RD_A_DQ7
RD_A_DQ6
RD_A_DQ5
RD_A_DQ4
RD_A_DQ3
RD_A_DQ2
RD_A_DQ1
RD_A_DQ0
M_A0:6
M_A0:3
S_C2:0
S_C2:1
M_A0:4
M_A0:1
S_C2:2
S_C2:3
S_C2:4
S_C2:5
S_C3:2
S_C3:3
S_C2:6
S_C2:7
S_C3:1
S_C3:4
S_C3:6
S_C3:7
S_E3:4
S_E3:1
S_C3:5
S_E3:7
S_E3:3
S_E3:2
S_E3:0
S_E2:7
S_E2:3
S_E2:2
S_Q3
207
206
201
200
88
87
83
81
S_E2:5
S_E2:1
S_E2:0
Table 2 - B_DDR3D_2G (<=1066MT/s Read and Write) TLA Channel Grouping
Notes:
1. All signals on this page are required for accurate post-processing of acquired data
2. The ‘S’ in front of a TLA channel denotes the Slave card of the merged set
DDR3THIN-MN-XXX
25
Doc. Rev. 1.11
Group
Name
Signal
Name
DDR3
Pin#
TLA
Input
Group
Name
Signal
Name
DDR3
Pin#
TLA
Input
RdB_DatHi
(Hex)
RD_B_DQ63
RD_B_DQ62
RD_B_DQ61
RD_B_DQ60
RD_B_DQ59
RD_B_DQ58
RD_B_DQ57
RD_B_DQ56
RD_B_DQ55
RD_B_DQ54
RD_B_DQ53
RD_B_DQ52
RD_B_DQ51
RD_B_DQ50
RD_B_DQ49
RD_B_DQ48
RD_B_DQ47
RD_B_DQ46
RD_B_DQ45
RD_B_DQ44
RD_B_DQ43
RD_B_DQ42
RD_B_DQ41
RD_B_DQ40
RD_B_DQ39
RD_B_DQ38
RD_B_DQ37
RD_B_DQ36
RD_B_DQ35
RD_B_DQ34
RD_B_DQ33
RD_B_DQ32
234
233
228
227
115
114
109
108
225
224
219
218
106
105
100
99
216
215
210
209
97
96
91
90
S_A2:0^1
S_A2:1^1
S_A2:5^1
S_CK0^1
S_A2:2^1
S_A2:3^1
S_A2:7^1
S_A3:0^1
S_A3:2^1
S_A3:3^1
S_A3:7^1
S_A1:5^1
S_A3:1^1
S_A3:4^1
S_A1:7^1
S_A1:6^1
S_A1:4^1
S_A1:1^1
S_A0:7^1
S_A0:6^1
S_A1:3^1
S_A1:2^1
S_A0:5^1
S_A0:4^1
S_A0:3^1
S_A0:2^1
M_C2:1^1
M_C2:4^1
S_A0:1^1
S_A0:0^1
M_C2:6^1
M_C2:7^1
RdB_DatLo
(Hex)
RD_B_DQ31
RD_B_DQ30
RD_B_DQ29
RD_B_DQ28
RD_B_DQ27
RD_B_DQ26
RD_B_DQ25
RD_B_DQ24
RD_B_DQ23
RD_B_DQ22
RD_B_DQ21
RD_B_DQ20
RD_B_DQ19
RD_B_DQ18
RD_B_DQ17
RD_B_DQ16
RD_B_DQ15
RD_B_DQ14
RD_B_DQ13
RD_B_DQ12
RD_B_DQ11
RD_B_DQ10
RD_B_DQ9
RD_B_DQ8
RD_B_DQ7
RD_B_DQ6
RD_B_DQ5
RD_B_DQ4
RD_B_DQ3
RD_B_DQ2
RD_B_DQ1
RD_B_DQ0
156
155
150
149
37
36
31
30
147
146
141
140
28
27
22
21
138
137
132
131
19
18
13
12
129
128
123
122
10
9
4
3
M_A0:6^1
M_A0:3^1
S_C2:0^1
S_C2:1^1
M_A0:4^1
M_A0:1^1
S_C2:2^1
S_C2:3^1
S_C2:4^1
S_C2:5^1
S_C3:2^1
S_C3:3^1
S_C2:6^1
S_C2:7^1
S_C3:1^1
S_C3:4^1
S_C3:6^1
S_C3:7^1
S_E3:4^1
S_E3:1^1
S_C3:5^1
S_E3:7v
S_E3:3^1
S_E3:2^1
S_E3:0^1
S_E2:7^1
S_E2:3^1
S_E2:2^1
S_Q3^1
S_E2:5^1
S_E2:1^1
S_E2:0^1
207
206
201
200
88
87
83
81
Table 2 – B_DDR3D_2G (<=1066MT/s Read and Write) TLA Channel Grouping (cont’d.)
Notes:
1. All signals on this page are required for accurate post-processing of acquired data
2. The ‘S’ in front of a TLA channel denotes the Slave card of the merged set
3. All signals on this page are acquired using the TLA’s demux capability and will not have
a MagniVu display value
DDR3THIN-MN-XXX
26
Doc. Rev. 1.11
Group
Name
WrA_DatHi
(Hex)
Signal
Name
DDR3
Pin #
234
233
228
227
115
114
109
108
225
224
219
218
106
105
100
99
216
215
210
209
97
96
91
90
TLA
Input
S_D2:0
S_D2:1
S_D2:5
S_Q1
Group
Name
WrA_DatLo
(Hex)
Signal
Name
DDR3
Pin #
156
155
150
149
37
36
31
30
147
146
141
140
28
27
22
21
138
137
132
131
19
18
13
12
129
128
123
122
10
9
4
3
TLA
Input
WR_A_DQ63
WR_A_DQ62
WR_A_DQ61
WR_A_DQ60
WR_A_DQ59
WR_A_DQ58
WR_A_DQ57
WR_A_DQ56
WR_A_DQ55
WR_A_DQ54
WR_A_DQ53
WR_A_DQ52
WR_A_DQ51
WR_A_DQ50
WR_A_DQ49
WR_A_DQ48
WR_A_DQ47
WR_A_DQ46
WR_A_DQ45
WR_A_DQ44
WR_A_DQ43
WR_A_DQ42
WR_A_DQ41
WR_A_DQ40
WR_A_DQ39
WR_A_DQ38
WR_A_DQ37
WR_A_DQ36
WR_A_DQ35
WR_A_DQ34
WR_A_DQ33
WR_A_DQ32
WR_A_DQ31
WR_A_DQ30
WR_A_DQ29
WR_A_DQ28
WR_A_DQ27
WR_A_DQ26
WR_A_DQ25
WR_A_DQ24
WR_A_DQ23
WR_A_DQ22
WR_A_DQ21
WR_A_DQ20
WR_A_DQ19
WR_A_DQ18
WR_A_DQ17
WR_A_DQ16
WR_A_DQ15
WR_A_DQ14
WR_A_DQ13
WR_A_DQ12
WR_A_DQ11
WR_A_DQ10
WR_A_DQ9
WR_A_DQ8
WR_A_DQ7
WR_A_DQ6
WR_A_DQ5
WR_A_DQ4
WR_A_DQ3
WR_A_DQ2
WR_A_DQ1
WR_A_DQ0
M_D0:6
M_D0:3
S_C0:0
S_C0:1
M_D0:4
M_D0:1
S_C0:2
S_C0:3
S_C0:4
S_C0:5
S_C1:2
S_C1:3
S_C0:6
S_C0:7
S_C1:1
S_C1:4
S_C1:6
S_C1:7
S_E1:4
S_E1:1
S_C1:5
S_E1:7
S_E1:3
S_E1:2
S_E1:0
S_E0:7
S_E0:3
S_E0:2
S_CK2
S_E0:5
S_E0:1
S_E0:0
S_D2:2
S_D2:3
S_D2:7
S_D3:0
S_D3:2
S_D3:3
S_D3:7
S_D1:5
S_D3:1
S_D3:4
S_D1:7
S_D1:6
S_D1:4
S_D1:1
S_D0:7
S_D0:6
S_D1:3
S_D1:2
S_D0:5
S_D0:4
S_D0:3
S_D0:2
M_C0:1
M_C0:4
S_D0:1
S_D0:0
M_C0:6
M_C0:7
207
206
201
200
88
87
83
81
Table 2 – B_DDR3D_2G (<=1066MT/s Read and Write) TLA Channel Grouping (cont’d.)
Notes:
1. All signals on this page are required for accurate post-processing of acquired data
2. The ‘S’ in front of a TLA channel denotes the Slave card of the merged set
DDR3THIN-MN-XXX
27
Doc. Rev. 1.11
Group
Name
WrB_DatHi
(Hex)
Signal
Name
DDR3
Pin #
234
233
228
227
115
114
109
108
225
224
219
218
106
105
100
99
216
215
210
209
97
96
91
90
TLA
Input
S_D2:0^1
S_D2:1^1
S_D2:5^1
S_Q1^1
Group
Name
WrB_DatLo
(Hex)
Signal
Name
DDR3
Pin #
156
155
150
149
37
36
31
30
147
146
141
140
28
27
22
21
138
137
132
131
19
18
13
12
129
128
123
122
10
9
4
3
TLA
Input
WR_B_DQ63
WR_B_DQ62
WR_B_DQ61
WR_B_DQ60
WR_B_DQ59
WR_B_DQ58
WR_B_DQ57
WR_B_DQ56
WR_B_DQ55
WR_B_DQ54
WR_B_DQ53
WR_B_DQ52
WR_B_DQ51
WR_B_DQ50
WR_B_DQ49
WR_B_DQ48
WR_B_DQ47
WR_B_DQ46
WR_B_DQ45
WR_B_DQ44
WR_B_DQ43
WR_B_DQ42
WR_B_DQ41
WR_B_DQ40
WR_B_DQ39
WR_B_DQ38
WR_B_DQ37
WR_B_DQ36
WR_B_DQ35
WR_B_DQ34
WR_B_DQ32
WR_B_DQ33
WR_B_DQ31
WR_B_DQ30
WR_B_DQ29
WR_B_DQ28
WR_B_DQ27
WR_B_DQ26
WR_B_DQ25
WR_B_DQ24
WR_B_DQ23
WR_B_DQ22
WR_B_DQ21
WR_B_DQ20
WR_B_DQ19
WR_B_DQ18
WR_B_DQ17
WR_B_DQ16
WR_B_DQ15
WR_B_DQ14
WR_B_DQ13
WR_B_DQ12
WR_B_DQ11
WR_B_DQ10
WR_B_DQ9
WR_B_DQ8
WR_B_DQ7
WR_B_DQ6
WR_B_DQ5
WR_B_DQ4
WR_B_DQ3
WR_B_DQ2
WR_B_DQ1
WR_B_DQ0
M_D0:6^1
M_D0:3^1
S_C0:0^1
S_C0:1^1
M_D0:4^1
M_D0:1^1
S_C0:2^1
S_C0:3^1
S_C0:4^1
S_C0:5^1
S_C1:2^1
S_C1:3^1
S_C0:6^1
S_C0:7^1
S_C1:1^1
S_C1:4^1
S_C1:6^1
S_C1:7^1
S_E1:4^1
S_E1:1^1
S_C1:5^1
S_E1:7^1
S_E1:3^1
S_E1:2^1
S_E1:0^1
S_E0:7^1
S_E0:3^1
S_E0:2^1
S_CK2^1
S_E0:5^1
S_E0:1^1
S_E0:0^1
S_D2:2^1
S_D2:3^1
S_D2:7^1
S_D3:0^1
S_D3:2^1
S_D3:3^1
S_D3:7^1
S_D1:5^1
S_D3:1^1
S_D3:4^1
S_D1:7^1
S_D1:6^1
S_D1:4^1
S_D1:1^1
S_D0:7^1
S_D0:6^1
S_D1:3^1
S_D1:2^1
S_D0:5^1
S_D0:4^1
S_D0:3^1
S_D0:2v
207
206
201
200
88
87
83
81
M_C0:1^1
M_C0:4^1
S_D0:1v
S_D0:0^1
M_C0:6^1
M_C0:7^1
Table 2 – B_DDR3D_2G (<=1066MT/s Read and Write) TLA Channel Grouping (cont’d.)
Notes:
1. All signals on this page are required for accurate post-processing of acquired data
2. The ‘S’ in front of a TLA channel denotes the Slave card of the merged set
3. All signals on this page are stored in the TLA7BB4’s Prime memory and will not have a
MagniVu display value
DDR3THIN-MN-XXX
28
Doc. Rev. 1.11
Group
Name
RdAChkBits
(OFF)
Signal
Name
DDR3
Pin #
165
164
159
158
46
45
40
39
165
164
159
158
46
45
40
39
230
221
212
203
152
143
134
125
TLA
Input
Group
Name
Signal
Name
DDR3
Pin #
165
164
159
158
46
45
40
39
165
164
159
158
46
45
40
39
230
221
212
203
152
143
134
125
TLA
Input
M_D1:5
M_D1:4
M_D1:0
M_D0:7
M_D1:6
M_D1:3
RD_A_CB7
RD_A_CB6
RD_A_CB5
RD_A_CB4
RD_A_CB3
RD_A_CB2
RD_A_CB1
RD_A_CB0
RD_B_CB7
RD_B_CB6
RD_B_CB5
RD_B_CB4
RD_B_CB3
RD_B_CB2
RD_B_CB1
RD_B_CB0
A_DM7/DQS16
A_DM6/DQS15
A_DM5/DQS14
A_DM4/DQS13
A_DM3/DQS12
A_DM2/DQS11
A_DM1/DQS10
A_DM0/DQS9
M_A1:5
M_A1:4
M_A1:0
M_A0:7
M_A1:6
M_A1:3
M_CK1
M_A0:5
WrAChkBits 4
(OFF)
WR_A_CB7
WR_A_CB6
WR_A_CB5
WR_A_CB4
WR_A_CB3
WR_A_CB2
WR_A_CB1
WR_A_CB0
WR_B_CB7
WR_B_CB6
WR_B_CB5
WR_B_CB4
WR_B_CB3
WR_B_CB2
WR_B_CB1
WR_B_CB0
B_DM7/DQS16
B_DM6/DQS15
B_DM5/DQS14
B_DM4/DQS13
B_DM3/DQS12
B_DM2/DQS11
B_DM1/DQS10
B_DM0/DQS9
M_Q0
M_D0:5
RdBChkBits 4
(OFF)
M_A1:5^1 WrBChkBits 4
M_A1:4^1 (OFF)
M_A1:0^1
M_A0:7^1
M_A1:6^1
M_A1:3^1
M_CK1^1
M_A0:5^1
S_A2:4
S_A3:6
S_A1:0
M_C2:0
M_A0:2
S_CK3
S_E3:5
S_E2:6
M_D1:5^1
M_D1:4^1
M_D1:0^1
M_D0:7^1
M_D1:6^1
M_D1:3^1
M_Q0^1
M_D0:5^1
S_A2:4^1
S_A3:6^1
S_A1:0^1
M_C2:0^1
M_A0:2^1
S_CK3^1
S_E3:5^1
S_E2:6^1
ADatMsks
(BIN)
BDatMsks 4
(BIN)
Table 2 – B_DDR3D_2G (<=1066MT/s Read and Write) TLA Channel Grouping (cont’d.)
Notes:
1. ‘ # ‘ denotes a low-true signal
2. The ‘S’ in front of a TLA channel denotes the Slave card of the merged set
3. The ‘M’ in front of a TLA channel denotes the Master card of the merged set
4. All signals on this page are stored in the TLA7BB4’s Prime memory and will not have a
MagniVu display value
DDR3THIN-MN-XXX
29
Doc. Rev. 1.11
Group
Name
Signal
Name
cCKE1
cCKE0
bCLK1
bCLK0
CKE1
CKE0
cS1#
cS0#
bS1#
bS0#
S3#
S2#
S1#
S0#
BA2
BA1
BA0
A15
A14
DDR3
Pin #
From Slot C
From Slot C
From Slot B
TLA
Input
M_E3:5
M_E3:4
M_Q2
Group
Name
Signal
Name
BA2
BA1
BA0
A15
A14
A13
A12/BC#
A11
A10/AP
A9
A8
A7
A6
A5
A4
A3
A2
DDR3
Pin #
52
190
71
171
172
196
174
55
TLA
Input
Control 2
(SYM)
Address 2
(Hex)
M_A3:0
M_C3:7
M_C1:6
M_CK0
M_A2:5
M_CK3
M_A2:4
M_A2:6
M_C1:3
M_A2:1
M_A2:0
M_A2:3
M_C0:3
M_A2:2
M_C0:5
M_C1:0
M_Q1
M_C1:1
M_C1:5
S_A2:6
S_A3:5
S_CK1
M_C2:3
M_A0:1
S_C3:0
S_E3:6
From Slot B
M_E1:7
M_A3:2
M_A3:1
M_E2:6
M_E2:2
M_E0:4
M_E0:0
M_C2:5
M_C3:0
M_C3:4
M_C3:3
M_A3:0
M_C3:7
M_C1:6
M_CK0
M_A2:5
M_CK3
M_A2:4
M_C1:3
M_C3:6
M_C3:5
M_C1:7
M_A3:5
M_A3:4
M_C1:4
169
50
From Slot C
From Slot C
From Slot B
From Slot B
70
175
177
56
178
58
59
180
61
181
188
111
103
94
85
34
25
16
7
43
43
161
53
49
48
76
193
52
190
71
171
172
196
174
70
192
74
73
A1
A0
A13
Strobes
(HEX)
DQS7
DQS6
DQS5
DQS4
DQS3
DQS2
DQS1
DQS0
DQS8
1_DQS8
DM8
ERR_OUT#³
RESET#
TEST
ODT0
ODT1
PAR_IN
A12/BC#
A10/AP
RAS#
CAS#
WE#
MISC1
MISC0
DDRCK0+/-
All DQSx#
DDRCK1+/-
SA1
Misc 2
(OFF)
Placeholder
Placeholder
S_E2:4
184/185
Ungrouped
M_A1:2
S2_D3:2
M_A1:1
M_A2:7
M_A3:6
M_A3:7
M_C2:0
M_C2:1
M_C1:2
Unprobed
63/64
237
238
117
118
SDA
SA0
SCL
168
167
195
77
68
Table 2 – B_DDR3D_2G (<=1066MT/s Read and Write) TLA Channel Grouping (cont’d.)
Notes:
1. ‘ # ‘ denotes a low-true signal
2. These signals are required for accurate acquisition and post-processing of acquired data
3. The ‘S’ in front of a TLA channel denotes the Slave card of the merged set
4. The ‘M’ in front of a TLA channel denotes the Master card of the merged set
DDR3THIN-MN-XXX
30
Doc. Rev. 1.11
Group
Name
RdA_DatHi
(Hex)
Signal
Name
DDR3
Pin #
234
233
228
227
115
114
109
108
225
224
219
218
106
105
100
99
216
215
210
209
97
96
91
90
TLA
Input
Group
Name
RdA_DatLo
(Hex)
Signal
Name
DDR3
Pin #
156
155
150
149
37
36
31
30
147
146
141
140
28
27
22
21
138
137
132
131
19
18
13
12
129
128
123
122
10
9
4
3
TLA
Input
RD_A_DQ63
RD_A_DQ62
RD_A_DQ61
RD_A_DQ60
RD_A_DQ59
RD_A_DQ58
RD_A_DQ57
RD_A_DQ56
RD_A_DQ55
RD_A_DQ54
RD_A_DQ53
RD_A_DQ52
RD_A_DQ51
RD_A_DQ50
RD_A_DQ49
RD_A_DQ48
RD_A_DQ47
RD_A_DQ46
RD_A_DQ45
RD_A_DQ44
RD_A_DQ43
RD_A_DQ42
RD_A_DQ41
RD_A_DQ40
RD_A_DQ39
RD_A_DQ38
RD_A_DQ37
RD_A_DQ36
RD_A_DQ35
RD_A_DQ34
RD_A_DQ33
RD_A_DQ32
S_A2:0
S_A2:1
S_A2:5
S_CK0
S_A2:2
S_A2:3
S_A2:7
S_A3:0
S_A3:2
S_A3:3
S_A3:7
S_A1:5
S_A3:1
S_A3:4
S_A1:7
S_A1:6
S_A1:4
S_A1:1
S_A0:7
S_A0:6
S_A1:3
S_A1:2
S_A0:5
S_A0:4
S_A0:3
S_A0:2
M_C2:1
M_C2:4
S_A0:1
S_A0:0
M_C2:6
M_C2:7
RD_A_DQ31
RD_A_DQ30
RD_A_DQ29
RD_A_DQ28
RD_A_DQ27
RD_A_DQ26
RD_A_DQ25
RD_A_DQ24
RD_A_DQ23
RD_A_DQ22
RD_A_DQ21
RD_A_DQ20
RD_A_DQ19
RD_A_DQ18
RD_A_DQ17
RD_A_DQ16
RD_A_DQ15
RD_A_DQ14
RD_A_DQ13
RD_A_DQ12
RD_A_DQ11
RD_A_DQ10
RD_A_DQ9
RD_A_DQ8
RD_A_DQ7
RD_A_DQ6
RD_A_DQ5
RD_A_DQ4
RD_A_DQ3
RD_A_DQ2
RD_A_DQ1
RD_A_DQ0
M_A0:6
M_A0:3
S_C2:0
S_C2:1
M_A0:4
M_A0:1
S_C2:2
S_C2:3
S_C2:4
S_C2:5
S_C3:2
S_C3:3
S_C2:6
S_C2:7
S_C3:1
S_C3:4
S_C3:6
S_C3:7
S_E3:4
S_E3:1
S_C3:5
S_E3:7
S_E3:3
S_E3:2
S_E3:0
S_E2:7
S_E2:3
S_E2:2
S_Q3
207
206
201
200
88
87
83
81
S_E2:5
S_E2:1
S_E2:0
Table 3 - B_DDR3D_3A (<=1066MT/s Read and Write) TLA Channel Grouping
Notes:
1. All signals on this page are required for accurate post-processing of acquired data
2. The ‘M’ in front of a TLA channel denotes the Master card of the merged set
3. The ‘S’ in front of a TLA channel denotes Slave card #1 of the merged set
DDR3THIN-MN-XXX
31
Doc. Rev. 1.11
Group
Name
Signal
Name
DDR3
Pin#
TLA
Input
Group
Name
Signal
Name
DDR3
Pin#
TLA
Input
RdB_DatHi
(Hex)
RD_B_DQ63
RD_B_DQ62
RD_B_DQ61
RD_B_DQ60
RD_B_DQ59
RD_B_DQ58
RD_B_DQ57
RD_B_DQ56
RD_B_DQ55
RD_B_DQ54
RD_B_DQ53
RD_B_DQ52
RD_B_DQ51
RD_B_DQ50
RD_B_DQ49
RD_B_DQ48
RD_B_DQ47
RD_B_DQ46
RD_B_DQ45
RD_B_DQ44
RD_B_DQ43
RD_B_DQ42
RD_B_DQ41
RD_B_DQ40
RD_B_DQ39
RD_B_DQ38
RD_B_DQ37
RD_B_DQ36
RD_B_DQ35
RD_B_DQ34
RD_B_DQ33
RD_B_DQ32
234
233
228
227
115
114
109
108
225
224
219
218
106
105
100
99
216
215
210
209
97
96
91
90
S_A2:0^1
S_A2:1^1
S_A2:5^1
S_CK0^1
S_A2:2^1
S_A2:3^1
S_A2:7^1
S_A3:0^1
S_A3:2^1
S_A3:3^1
S_A3:7^1
S_A1:5^1
S_A3:1^1
S_A3:4^1
S_A1:7^1
S_A1:6^1
S_A1:4^1
S_A1:1^1
S_A0:7^1
S_A0:6^1
S_A1:3^1
S_A1:2^1
S_A0:5^1
S_A0:4^1
S_A0:3^1
S_A0:2^1
M_C2:1^1
M_C2:4^1
S_A0:1^1
S_A0:0^1
M_C2:6^1
M_C2:7^1
RdB_DatLo
(Hex)
RD_B_DQ31
RD_B_DQ30
RD_B_DQ29
RD_B_DQ28
RD_B_DQ27
RD_B_DQ26
RD_B_DQ25
RD_B_DQ24
RD_B_DQ23
RD_B_DQ22
RD_B_DQ21
RD_B_DQ20
RD_B_DQ19
RD_B_DQ18
RD_B_DQ17
RD_B_DQ16
RD_B_DQ15
RD_B_DQ14
RD_B_DQ13
RD_B_DQ12
RD_B_DQ11
RD_B_DQ10
RD_B_DQ9
RD_B_DQ8
RD_B_DQ7
RD_B_DQ6
RD_B_DQ5
RD_B_DQ4
RD_B_DQ3
RD_B_DQ2
RD_B_DQ1
RD_B_DQ0
156
155
150
149
37
36
31
30
147
146
141
140
28
27
22
21
138
137
132
131
19
18
13
12
129
128
123
122
10
9
4
3
M_A0:6^1
M_A0:3^1
S_C2:0^1
S_C2:1^1
M_A0:4^1
M_A0:1^1
S_C2:2^1
S_C2:3^1
S_C2:4^1
S_C2:5^1
S_C3:2^1
S_C3:3^1
S_C2:6^1
S_C2:7^1
S_C3:1^1
S_C3:4^1
S_C3:6^1
S_C3:7^1
S_E3:4^1
S_E3:1^1
S_C3:5^1
S_E3:7^1
S_E3:3^1
S_E3:2^1
S_E3:0^1
S_E2:7^1
S_E2:3^1
S_E2:2^1
S_Q3^1
207
206
201
200
88
87
83
81
S_E2:5^1
S_E2:1^1
S_E2:0^1
Table 3 – B_DDR3D_3A (<=1066MT/s Read and Write) TLA Channel Grouping (cont’d.)
Notes:
1. All signals on this page are required for accurate post-processing of acquired data
2. The ‘M’ in front of a TLA channel denotes the Master card of the merged set
3. The ‘S’ in front of a TLA channel denotes Slave card #1 of the merged set
4. All signals on this page are stored in the TLA7BB4’s Prime memory and will not have a
MagniVu display value
DDR3THIN-MN-XXX
32
Doc. Rev. 1.11
Group
Name
1_RdA_DatHi
(Hex)
Signal
Name
DDR3
Pin #
234
233
228
227
115
114
109
108
225
224
219
218
106
105
100
99
216
215
210
209
97
96
91
90
TLA
Input
Group
Name
1_RdA_DatLo
(Hex)
Signal
Name
DDR3
Pin #
156
155
150
149
37
36
31
30
147
146
141
140
28
27
22
21
138
137
132
131
19
18
13
12
129
128
123
122
10
9
4
3
TLA
Input
1_RD_A_DQ63
1_RD_A_DQ62
1_RD_A_DQ61
1_RD_A_DQ60
1_RD_A_DQ59
1_RD_A_DQ58
1_RD_A_DQ57
1_RD_A_DQ56
1_RD_A_DQ55
1_RD_A_DQ54
1_RD_A_DQ53
1_RD_A_DQ52
1_RD_A_DQ51
1_RD_A_DQ50
1_RD_A_DQ49
1_RD_A_DQ48
1_RD_A_DQ47
1_RD_A_DQ46
1_RD_A_DQ45
1_RD_A_DQ44
1_RD_A_DQ43
1_RD_A_DQ42
1_RD_A_DQ41
1_RD_A_DQ40
1_RD_A_DQ39
1_RD_A_DQ38
1_RD_A_DQ37
1_RD_A_DQ36
1_RD_A_DQ35
1_RD_A_DQ34
1_RD_A_DQ33
1_RD_A_DQ32
S2_A0:0
S2_A0:1
S2_A0:5
S2_CK1
S2_A0:2
S2_A0:3
S2_A0:7
S2_A1:0
S2_A1:2
S2_A1:3
S2_A1:7
S2_D1:5
S2_A1:1
S2_A1:4
S2_D1:7
S2_D1:6
S2_D1:4
S2_D1:1
S2_D0:7
S2_D0:6
S2_D1:3
S2_D1:2
S2_D0:5
S2_D0:4
S2_D0:3
S2_D0:2
S2_C2:1
S2_C2:4
S2_D0:1
S2_D0:0
S2_C2:6
S2_C2:7
1_RD_A_DQ31
1_RD_A_DQ30
1_RD_A_DQ29
1_RD_A_DQ28
1_RD_A_DQ27
1_RD_A_DQ26
1_RD_A_DQ25
1_RD_A_DQ24
1_RD_A_DQ23
1_RD_A_DQ22
1_RD_A_DQ21
1_RD_A_DQ20
1_RD_A_DQ19
1_RD_A_DQ18
1_RD_A_DQ17
1_RD_A_DQ16
1_RD_A_DQ15
1_RD_A_DQ14
1_RD_A_DQ13
1_RD_A_DQ12
1_RD_A_DQ11
1_RD_A_DQ10
1_RD_A_DQ9
1_RD_A_DQ8
1_RD_A_DQ7
1_RD_A_DQ6
1_RD_A_DQ5
1_RD_A_DQ4
1_RD_A_DQ3
1_RD_A_DQ2
1_RD_A_DQ1
1_RD_A_DQ0
S2_D2:6
S2_D2:3
S2_E2:0
S2_E2:1
S2_D2:4
S2_D2:1
S2_E2:2
S2_E2:3
S2_E2:4
S2_E2:5
S2_E3:2
S2_E3:3
S2_E2:6
S2_E2:7
S2_E3:1
S2_E3:4
S2_E3:6
S2_E3:7
S2_E1:4
S2_E1:1
S2_E3:5
S2_E1:7
S2_E1:3
S2_E1:2
S2_E1:0
S2_E0:7
S2_E0:3
S2_E0:2
S2_Q2
207
206
201
200
88
87
83
81
S2_E0:5
S2_E0:1
S2_E0:0
Table 3 – B_DDR3D_3A (<=1066MT/s Read and Write) TLA Channel Grouping (cont’d.)
Notes:
1. These signals are acquired from the second DIMM slot
2. All signals on this page are required for accurate post-processing of acquired data
3. The ‘S2’ in front of a TLA channel denotes Slave card #2 of the merged set
DDR3THIN-MN-XXX
33
Doc. Rev. 1.11
Group
Name
Signal
Name
DDR3
Pin#
TLA
Input
Group
Name
Signal
Name
DDR3
Pin#
TLA
Input
1_RdB_DatHi
(Hex)
1_RD_B_DQ63
1_RD_B_DQ62
1_RD_B_DQ61
1_RD_B_DQ60
1_RD_B_DQ59
1_RD_B_DQ58
1_RD_B_DQ57
1_RD_B_DQ56
1_RD_B_DQ55
1_RD_B_DQ54
1_RD_B_DQ53
1_RD_B_DQ52
1_RD_B_DQ51
1_RD_B_DQ50
1_RD_B_DQ49
1_RD_B_DQ48
1_RD_B_DQ47
1_RD_B_DQ46
1_RD_B_DQ45
1_RD_B_DQ44
1_RD_B_DQ43
1_RD_B_DQ42
1_RD_B_DQ41
1_RD_B_DQ40
1_RD_B_DQ39
1_RD_B_DQ38
1_RD_B_DQ37
1_RD_B_DQ36
1_RD_B_DQ35
1_RD_B_DQ34
1_RD_B_DQ33
1_RD_B_DQ32
234
233
228
227
115
114
109
108
225
224
219
218
106
105
100
99
216
215
210
209
97
96
91
90
S2_A0:0^1 1_RdB_DatLo
S2_A0:1^1 (Hex)
S2_A0:5^1
S2_CK1^1
1_RD_B_DQ31
1_RD_B_DQ30
1_RD_B_DQ29
1_RD_B_DQ28
1_RD_B_DQ27
1_RD_B_DQ26
1_RD_B_DQ25
1_RD_B_DQ24
1_RD_B_DQ23
1_RD_B_DQ22
1_RD_B_DQ21
1_RD_B_DQ20
1_RD_B_DQ19
1_RD_B_DQ18
1_RD_B_DQ17
1_RD_B_DQ16
1_RD_B_DQ15
1_RD_B_DQ14
1_RD_B_DQ13
1_RD_B_DQ12
1_RD_B_DQ11
1_RD_B_DQ10
1_RD_B_DQ9
1_RD_B_DQ8
1_RD_B_DQ7
1_RD_B_DQ6
1_RD_B_DQ5
1_RD_B_DQ4
1_RD_B_DQ3
1_RD_B_DQ2
1_RD_B_DQ1
1_RD_B_DQ0
156
155
150
149
37
36
31
30
147
146
141
140
28
27
22
21
138
137
132
131
19
18
13
12
129
128
123
122
10
9
4
3
S2_D2:6^1
S2_D2:3^1
S2_E2:0^1
S2_E2:1^1
S2_D2:4^1
S2_D2:1^1
S2_E2:2^1
S2_E2:3^1
S2_E2:4^1
S2_E2:5^1
S2_E3:2^1
S2_E3:3^1
S2_E2:6^1
S2_E2:7^1
S2_E3:1^1
S2_E3:4^1
S2_E3:6^1
S2_E3:7^1
S2_E1:4^1
S2_E1:1^1
S2_E3:5^1
S2_E1:7^1
S2_E1:3^1
S2_E1:2^1
S2_E1:0^1
S2_E0:7^1
S2_E0:3^1
S2_E0:2^1
S2_Q2^1
S2_A0:2^1
S2_A0:3^1
S2_A0:7^1
S2_A1:0^1
S2_A1:2^1
S2_A1:3^1
S2_A1:7^1
S2_D1:5^1
S2_A1:1^1
S2_A1:4^1
S2_D1:7^1
S2_D1:6^1
S2_D1:4^1
S2_D1:1^1
S2_D0:7^1
S2_D0:6^1
S2_D1:3^1
S2_D1:2^1
S2_D0:5^1
S2_D0:4^1
S2_D0:3^1
S2_D0:2^1
S2_C2:1^1
S2_C2:4^1
S2_D0:1^1
S2_D0:0^1
S2_C2:6^1
S2_C2:7^1
207
206
201
200
88
87
83
81
S2_E0:5^1
S2_E0:1^1
S2_E0:0^1
Table 3 – B_DDR3D_3A (<=1066MT/s Read and Write) TLA Channel Grouping (cont’d.)
Notes:
1. These signals are acquired from the second DIMM slot
2. All signals on this page are required for accurate post-processing of acquired data
3. The ‘S2’ in front of a TLA channel denotes Slave card #2 of the merged set
4. All signals on this page are stored in the TLA7BB4’s Prime memory and will not have a
MagniVu display value
DDR3THIN-MN-XXX
34
Doc. Rev. 1.11
Group
Name
WrA_DatHi
(Hex)
Signal
Name
DDR3
Pin #
234
233
228
227
115
114
109
108
225
224
219
218
106
105
100
99
216
215
210
209
97
96
91
90
TLA
Input
S_D2:0
S_D2:1
S_D2:5
S_Q1
Group
Name
WrA_DatLo
(Hex)
Signal
Name
DDR3
Pin #
156
155
150
149
37
36
31
30
147
146
141
140
28
27
22
21
138
137
132
131
19
18
13
12
129
128
123
122
10
9
4
3
TLA
Input
WR_A_DQ63
WR_A_DQ62
WR_A_DQ61
WR_A_DQ60
WR_A_DQ59
WR_A_DQ58
WR_A_DQ57
WR_A_DQ56
WR_A_DQ55
WR_A_DQ54
WR_A_DQ53
WR_A_DQ52
WR_A_DQ51
WR_A_DQ50
WR_A_DQ49
WR_A_DQ48
WR_A_DQ47
WR_A_DQ46
WR_A_DQ45
WR_A_DQ44
WR_A_DQ43
WR_A_DQ42
WR_A_DQ41
WR_A_DQ40
WR_A_DQ39
WR_A_DQ38
WR_A_DQ37
WR_A_DQ36
WR_A_DQ35
WR_A_DQ34
WR_A_DQ33
WR_A_DQ32
WR_A_DQ31
WR_A_DQ30
WR_A_DQ29
WR_A_DQ28
WR_A_DQ27
WR_A_DQ26
WR_A_DQ25
WR_A_DQ24
WR_A_DQ23
WR_A_DQ22
WR_A_DQ21
WR_A_DQ20
WR_A_DQ19
WR_A_DQ18
WR_A_DQ17
WR_A_DQ16
WR_A_DQ15
WR_A_DQ14
WR_A_DQ13
WR_A_DQ12
WR_A_DQ11
WR_A_DQ10
WR_A_DQ9
WR_A_DQ8
WR_A_DQ7
WR_A_DQ6
WR_A_DQ5
WR_A_DQ4
WR_A_DQ3
WR_A_DQ2
WR_A_DQ1
WR_A_DQ0
M_D0:6
M_D0:3
S_C0:0
S_C0:1
M_D0:4
M_D0:1
S_C0:2
S_C0:3
S_C0:4
S_C0:5
S_C1:2
S_C1:3
S_C0:6
S_C0:7
S_C1:1
S_C1:4
S_C1:6
S_C1:7
S_E1:4
S_E1:1
S_C1:5
S_E1:7
S_E1:3
S_E1:2
S_E1:0
S_E0:7
S_E0:3
S_E0:2
S_CK2
S_E0:5
S_E0:1
S_E0:0
S_D2:2
S_D2:3
S_D2:7
S_D3:0
S_D3:2
S_D3:3
S_D3:7
S_D1:5
S_D3:1
S_D3:4
S_D1:7
S_D1:6
S_D1:4
S_D1:1
S_D0:7
S_D0:6
S_D1:3
S_D1:2
S_D0:5
S_D0:4
S_D0:3
S_D0:2
M_C0:1
M_C0:4
S_D0:1
S_D0:0
M_C0:6
M_C0:7
207
206
201
200
88
87
83
81
Table 3 – B_DDR3D_3A (<=1066MT/s Read and Write) TLA Channel Grouping (cont’d.)
Notes:
1. All signals on this page are required for accurate post-processing of acquired data
2. The ‘M’ in front of a TLA channel denotes the Master card of the merged set
3. The ‘S’ in front of a TLA channel denotes Slave card #1 of the merged set
DDR3THIN-MN-XXX
35
Doc. Rev. 1.11
Group
Name
WrB_DatHi
(Hex)
Signal
Name
DDR3
Pin #
234
233
228
227
115
114
109
108
225
224
219
218
106
105
100
99
216
215
210
209
97
96
91
90
TLA
Input
S_D2:0^1
S_D2:1^1
S_D2:5^1
S_Q1^1
Group
Name
WrB_DatLo
(Hex)
Signal
Name
DDR3
Pin #
156
155
150
149
37
36
31
30
147
146
141
140
28
27
22
21
138
137
132
131
19
18
13
12
129
128
123
122
10
9
4
3
TLA
Input
WR_B_DQ63
WR_B_DQ62
WR_B_DQ61
WR_B_DQ60
WR_B_DQ59
WR_B_DQ58
WR_B_DQ57
WR_B_DQ56
WR_B_DQ55
WR_B_DQ54
WR_B_DQ53
WR_B_DQ52
WR_B_DQ51
WR_B_DQ50
WR_B_DQ49
WR_B_DQ48
WR_B_DQ47
WR_B_DQ46
WR_B_DQ45
WR_B_DQ44
WR_B_DQ43
WR_B_DQ42
WR_B_DQ41
WR_B_DQ40
WR_B_DQ39
WR_B_DQ38
WR_B_DQ37
WR_B_DQ36
WR_B_DQ35
WR_B_DQ34
WR_B_DQ32
WR_B_DQ33
WR_B_DQ31
WR_B_DQ30
WR_B_DQ29
WR_B_DQ28
WR_B_DQ27
WR_B_DQ26
WR_B_DQ25
WR_B_DQ24
WR_B_DQ23
WR_B_DQ22
WR_B_DQ21
WR_B_DQ20
WR_B_DQ19
WR_B_DQ18
WR_B_DQ17
WR_B_DQ16
WR_B_DQ15
WR_B_DQ14
WR_B_DQ13
WR_B_DQ12
WR_B_DQ11
WR_B_DQ10
WR_B_DQ9
WR_B_DQ8
WR_B_DQ7
WR_B_DQ6
WR_B_DQ5
WR_B_DQ4
WR_B_DQ3
WR_B_DQ2
WR_B_DQ1
WR_B_DQ0
M_D0:6^1
M_D0:3^1
S_C0:0^1
S_C0:1^1
M_D0:4^1
M_D0:1^1
S_C0:2^1
S_C0:3^1
S_C0:4^1
S_C0:5^1
S_C1:2^1
S_C1:3^1
S_C0:6^1
S_C0:7^1
S_C1:1v
S_C1:4^1
S_C1:6^1
S_C1:7^1
S_E1:4^1
S_E1:1v
S_C1:5^1
S_E1:7^1
S_E1:3^1
S_E1:2^1
S_E1:0^1
S_E0:7^1
S_E0:3^1
S_E0:2^1
S_CK2^1
S_E0:5^1
S_E0:1^1
S_E0:0^1
S_D2:2^1
S_D2:3^1
S_D2:7^1
S_D3:0^1
S_D3:2^1
S_D3:3^1
S_D3:7^1
S_D1:5^1
S_D3:1^1
S_D3:4^1
S_D1:7^1
S_D1:6^1
S_D1:4^1
S_D1:1^1
S_D0:7^1
S_D0:6^1
S_D1:3^1
S_D1:2^1
S_D0:5^1
S_D0:4^1
S_D0:3^1
S_D0:2^1
M_C0:1^1
M_C0:4^1
S_D0:1^1
S_D0:0^1
M_C0:6^1
M_C0:7^1
207
206
201
200
88
87
83
81
Table 3 – B_DDR3D_3A (<=1066MT/s Read and Write) TLA Channel Grouping (cont’d.)
Notes:
1. All signals on this page are required for accurate post-processing of acquired data
2. The ‘M’ in front of a TLA channel denotes the Master card of the merged set
3. The ‘S’ in front of a TLA channel denotes Slave card #1 of the merged set
4. All signals on this page are stored in the TLA7BB4’s Prime memory and will not have a
MagniVu display value
DDR3THIN-MN-XXX
36
Doc. Rev. 1.11
Group
Name
RdAChkBits
(OFF)
Signal
Name
RD_A_CB7
RD_A_CB6
RD_A_CB5
RD_A_CB4
RD_A_CB3
RD_A_CB2
RD_A_CB1
RD_A_CB0
RD_B_CB7
RD_B_CB6
RD_B_CB5
RD_B_CB4
RD_B_CB3
RD_B_CB2
DDR3
Pin #
165
164
159
158
46
45
40
39
165
164
159
158
46
45
40
39
165
164
159
158
46
45
40
39
230
221
212
203
152
143
134
125
TLA
Input
Group
Name
Signal
Name
DDR3
Pin #
165
164
159
158
46
45
40
39
165
164
159
158
46
45
40
39
165
164
159
158
46
45
40
39
230
221
212
203
152
143
134
125
TLA
Input
M_D1:5
M_D1:4
M_D1:0
M_D0:7
M_D1:6
M_D1:3
M_A1:5
M_A1:4
M_A1:0
M_A0:7
M_A1:6
M_A1:3
M_CK1
M_A0:5
WrAChkBits 4
(OFF)
WR_A_CB7
WR_A_CB6
WR_A_CB5
WR_A_CB4
WR_A_CB3
WR_A_CB2
WR_A_CB1
WR_A_CB0
WR_B_CB7
WR_B_CB6
WR_B_CB5
WR_B_CB4
WR_B_CB3
WR_B_CB2
WR_B_CB1
WR_B_CB0
1_RD_B_CB7
1_RD_B_CB6
1_RD_B_CB5
1_RD_B_CB4
1_RD_B_CB3
1_RD_B_CB2
1_RD_B_CB1
1_RD_B_CB0
B_DM7/DQS16
B_DM6/DQS15
B_DM5/DQS14
B_DM4/DQS13
B_DM3/DQS12
B_DM2/DQS11
B_DM1/DQS10
B_DM0/DQS9
M_Q0
M_D0:5
RdBChkBits 4
(OFF)
M_A1:5^1 WrBChkBits 4
M_A1:4^1 (OFF)
M_A1:0^1
M_A0:7^1
M_A1:6^1
M_A1:3^1
M_CK1^1
M_A0:5^1
S2_D3:5
S2_D3:4
S2_D3:0
S2_D2:7
S2_D3:6
S2_D3:3
S2_Q0
S2_D2:5
S_A2:4
S_A3:6
S_A1:0
M_C2:0
M_A0:2
S_CK3
M_D1:5^1
M_D1:4^1
M_D1:0^1
M_D0:7^1
M_D1:6^1
M_D1:3^1
M_Q0^1
M_D0:5^1
S2_D3:5^1
S2_D3:4^1
S2_D3:0^1
S2_D2:7^1
S2_D3:6^1
S2_D3:3^1
S2_Q0^1
S2_D2:5^1
S_A2:4^1
S_A3:6^1
S_A1:0^1
M_C2:0^1
M_A0:2^1
S_CK3^1
S_E3:5^1
S_E2:6^1
RD_B_CB1
RD_B_CB0
1_RdAChkBits
(OFF)
1_RD_A_CB7
1_RD_A_CB6
1_RD_A_CB5
1_RD_A_CB4
1_RD_A_CB3
1_RD_A_CB2
1_RD_A_CB1
1_RD_A_CB0
A_DM7/DQS16
A_DM6/DQS15
A_DM5/DQS14
A_DM4/DQS13
A_DM3/DQS12
A_DM2/DQS11
A_DM1/DQS10
A_DM0/DQS9
1_RdBChkBits 4
(OFF)
ADatMsks
(BIN)
BDatMsks 4
(BIN)
S_E3:5
S_E2:6
Table 3 – B_DDR3D_3A (<=1066MT/s Read and Write) TLA Channel Grouping (cont’d.)
Notes:
1. ‘ # ‘ denotes a low-true signal
2. The ‘M’ in front of a TLA channel denotes the Master card of the merged set
3. The ‘S’ in front of a TLA channel denotes Slave card #1 of the merged set
4. The ‘S2’ in front of a TLA channel denotes Slave card #2 of the merged set
5. Signals in these groups are acquired using the TLA’s demux capability and will not have
a MagniVu display value
DDR3THIN-MN-XXX
37
Doc. Rev. 1.11
Group
Name
Control 2
(SYM)
Signal
Name
CKE1
CKE0
S3#
S2#
S1#
S0#
BA2
BA1
BA0
A15
A14
DDR3
Pin #
169
50
49
48
76
193
52
190
71
171
172
196
174
70
192
74
73
TLA
Input
Group
Name
Signal
Name
BA2
BA1
BA0
A15
A14
A13
A12/BC#
A11
A10/AP
A9
A8
A7
A6
A5
A4
A3
A2
DDR3
Pin #
52
190
71
171
172
196
174
55
TLA
Input
M_A3:2 Address 2
M_A3:1 (Hex)
S2_C2:5
S2_C3:0
M_C3:4
M_A3:0
M_C3:7
M_C1:6
M_CK0
M_A2:5
M_CK3
M_A2:4
M_A2:6
M_C1:3
M_A2:1
M_A2:0
M_A2:3
M_C0:3
M_A2:2
M_C0:5
M_C1:0
M_Q1
M_C3:3
M_A3:0
M_C3:7
M_C1:6
M_CK0
M_A2:5
M_CK3
M_A2:4
M_C1:3
M_C3:6
M_C3:5
M_C1:7
70
175
177
56
178
58
59
180
61
A13
A12/BC#
A10/AP
RAS#
CAS#
WE#
Strobes
(HEX)
DQS7
DQS6
DQS5
DQS4
DQS3
DQS2
DQS1
DQS0
All DQSx#
111
103
94
85
34
25
16
7
S_A2:6
S_A3:5
S_CK1
M_C2:3 (OFF)
M_A0:1
S_C3:0
S_E3:6
S_E2:4
A1
A0
181
188
Placeholder
Placeholder
184/185
43
M_C1:1
M_C1:5
M_A3:5
M_A3:4
M_C1:4
M_A1:2
M_A1:1
M_A2:7
M_A3:6
M_A3:7
M_C2:0
M_C2:1
M_C1:2
Misc 2
MISC1
MISC0
DDRCK0+/-
DQS8
DM8
ERR_OUT#³
RESET#
TEST
ODT0
ODT1
PAR_IN
Ungrouped
161
53
168
167
195
77
Unprobed
DDRCK1+/- 63/64
SA1
SDA
SA0
SCL
237
238
117
118
68
Table 3 – B_DDR3D_3A TLA Channel Grouping (cont’d.)
Notes:
1. ‘ # ‘ denotes a low-true signal
2. These signals are required for accurate acquisition and post-processing of acquired data
3. The ‘M’ in front of a TLA channel denotes the Master card of the merged set
4. The ‘S’ in front of a TLA channel denotes Slave card #1 of the merged set
5. The ‘S2’ in front of a TLA channel denotes Slave card #2 of the merged set
6. Signals in these groups are acquired using the TLA’s demux capability and will not have
a MagniVu display value
DDR3THIN-MN-XXX
38
Doc. Rev. 1.11
3.7 Display Groups not in Tables 1,2 or 3
There are several groups in the List window that are not documented in the tables as these
groups are used only by the post-processing display software. To ensure correct data display
these groups must not be modified. These groups are:
• DataHi
• DataLo
• ChekBits
• Command
• DataMasks
• MRSAddr
DDR3THIN-MN-XXX
39
Doc. Rev. 1.11
4.0 CLOCK SELECTION
4.1 B_DDR3D_2D Clocking Selections
There are two clocking option fields available when using the B_DDR3D_2D support package.
These select fields permit the user to setup the TLA acquisition as follows:
SDRAM Clocking: – Permits selecting the Clocking Mode to be used to acquire DDR3
data. It is important to note that the selection chosen will force unused Chip Selects and
CKE1 into inactive states. The field choices are:
S0#; Every Rising Edge (default) – Clocks data using every rising edge of DDR
Clock 0. Forces CKE1 low and S1-3# high. No Idle Cycle filtering is done.
S0# & S1#; Every Rising Edge – Clocks data using every rising edge of DDR
Clock 0. Forces S2-3# high. No Idle Cycle filtering is done.
S0-3#; Every Rising Edge – Clocks data using every rising edge of DDR Clock
0. No Idle Cycle filtering is done.
S0#; Total L <=5 – utilizes Selective Clocking to reduce acquisition of Idle bus
states. Forces CKE1 low and S1-3# high.
S0# & S1#; Total L <=5 - utilizes Selective Clocking to reduce acquisition of
Idle bus states. Forces S2-3# high.
S0-3#; Total L <=5 - utilizes Selective Clocking to reduce acquisition of Idle bus
states.
S0#; Total L <=6
S0# & S1#; Total L <=6
S0-3#; Total L <=6
.
.
.
S0#; Total L <=25
S0# & S1#; Total L <=25
S0-3#; Total L <=25
The above selections reduce the number of Idle cycles stored by the acquisition
card to provide optimum use of the acquisition memory. Data is stored whenever
RAS# or CAS# is asserted low along with a valid Chip Select. After every
assertion of CAS# (paired with a valid Chip Select) samples are taken during the
next X DDR Clock cycles to ensure that all valid memory cycles have been
acquired. The acquisition then pauses and waits for the next Command. If CAS#
and a Chip Select are asserted during these X clock cycles the count is reset. The
X-clock cycle value is determined by adding the maximum Burst Length of 8
clock cycles to the selected maximum Read Latency. So for a selected Total
DDR3THIN-MN-XXX
40
Doc. Rev. 1.11
Latency of <= 5 cycles the support software will store a total of 13 clock cycles
worth of data after the Read or Write Command appears on the bus.
Refresh Cycles: – Permits choosing whether Refresh Cycles will be stored or not. The
field choices are:
Acquire (default) – Refresh Cycles will be stored.
Do Not Acquire – This mode will reduce the number of Refresh cycles stored by
the acquisition card to provide optimum use of the acquisition memory.
NOTE: This mode is disabled when the SDRAM Clocking choice is set to a
Every Rising Edge selection.
4.2 B_DDR3D_2G Clocking Selections
There is one clocking option field available when using the B_DDR3D_2G support package.
These select fields permit the user to setup the TLA acquisition as follows:
Active Chip Selects: – Permits selecting which of 8 possible Chip Selects are active on
the target. The rising edge of the DDR Clock is always used to acquire data. How the
display software interprets which Chip Selects are active will be based on this field
setting. With 8 possible Chip Selects and 6 Clock Enable signals it is possible to support
data acquisition from a 3 slot channel at 800. See section 3.6 for channel configuration.
This support only allows one quad rank support in slot A (the interposer slot), or most
combinations of single and dual rank DIMMs in the three slots.
The “B” slot is the DIMM slot between the Interposer and the memory controller.
The “C” slot is the slot nearest the memory controller in a three slot system.
The field choices shown correspond to the Chip Select number defined in the channel
map, and are as follows:
Chip Select(s)
C:____B:____A:___0
Equivalent Memory DIMM configuration
0r0r1r (default) –
Only S0# in the Interposer slot is active; all other Chip Selects will be
forced inactive (high) by the support package. Equivalent to one Single
Rank DIMM.
C:____B:____A:__10
0r0r2r –
S0# and S1# in the Interposer slot are active, equivalent to a Dual Rank
DIMM.
C:____B:____A:3210
0r0r4r –
S0#, S1#, S2# and S3# in the Interposer slot are active, equivalent to a
Quad Rank DIMM.
DDR3THIN-MN-XXX
41
Doc. Rev. 1.11
C:____B:_0__A:___0
0r1r1r –
bS0# in the slot between the Interposer and the memory controller and
S0# in the Interposer slot are active, equivalent to two Single Rank
DIMMs.
C:____B:_0__A:__10
0r1r2r –
bS0#, S0# and S1# are active, equivalent to one Single Rank DIMM and
one Dual Rank DIMM.
C:____B:10__A:___0 0r2r1r –
bS1#, bS0# and S0# are active, equivalent to a Dual Rank DIMM and a
Single Rank DIMM.
C:____B:10__A:__10 0r2r2r –
bS1#, bS0#, S1# and S0# are active, equivalent to two Dual Rank
DIMMs.
C:_0__B:_0__A:___0 1r1r1r –
cS0# is the slot nearest the memory control if three slot channel, bS0# is
the slot in the middle of a three slot channel and S0# in the Interposer slot
are active, equivalent to three Single Rank DIMMs.
C:_0__B:_0__A:__10 1r1r2r –
cS0#, bS0#, S0# and S1# are active, equivalent to two Single Rank
DIMMs and one Dual Rank DIMM.
C:_0__B:10__A:___0 1r2r1r –
cS0#, bS1#, bS0# and S0# are active, equivalent to a Dual Rank DIMM
and two Single Rank DIMMs.
C:_0__B:10__A:__10 1r2r2r –
cS0#, bS1#, bS0#, S1# and S0# are active, equivalent to a Single Rank
DIMM, and two Dual Rank DIMMs.
C:10__B:_0__A:___0 2r1r1r –
cS1#, cS0#, bS0# and S0# are active, equivalent to two Single Rank
DIMMs, and a dual rank DIMM.
C:10__B:_0__A:__10 2r1r2r –
cS1#, cS0#, bS0#, S0# and S1# are active, equivalent to one Single Rank
DIMM and two Dual Rank DIMMs.
C:10__B:10__A:___0 2r2r1r –
cS1#, cS0#, bS1#, bS0# and S0# are active, equivalent to two Dual Rank
DIMM and a Single Rank DIMM.
C:10__B:10__A:__10 2r2r2r –
cS1#, cS0#, bS1#, bS0#, S1# and S0# are active, equivalent to three Dual
Rank DIMMs.
DDR3THIN-MN-XXX
42
Doc. Rev. 1.11
4.3 B_DDR3D_3A Clocking Selections
There is one clocking option field available when using the B_DDR3D_3A support package.
This select field sets up the TLA acquisition as follows:
SDRAM DDR CLK0 Clocking: – Permits selecting the Clocking Mode to be used to
acquire DDR3 data. Only one choice is available:
Every Rising Edge – As the name implies this will cause the acquisition card to
acquire data on every Rising edge of the DDR Clock 0.
DDR3THIN-MN-XXX
43
Doc. Rev. 1.11
5.0 CONFIGURING FOR READ / WRITE DATA ACQUISITION
Prior to configuring your NEX-DDR3INTR-THIN support package it is strongly recommended
that Appendix A (“How DDR Data is Clocked”), section 5.4 (“Selecting DDR Read Sample
Points”) and section 5.5. (“Selecting DDR Write Sample Points”) be read. This background
information is very helpful and facilitates proper support configuration.
5.1 A Note About the Different Data Groups
The NEX-DDR3INTR-THIN support software have three different areas where signal groups are
defined to provide specific functionality. There are the MagniVu data groups (see Table 4) are
the groups that contain raw MagniVu data. Storage data groups (see Tables 1, 2 and 3) can be
seen in the acquisition card Setup window and contain the data stored in Main Memory which is
used for the Listing display. Capture data groups (not defined in this manual) are the groups seen
in the TLA’s Setup & Hold dialog box and are the groups used to capture data during each DDR
clock cycle. The MagniVu and Capture data groups will be referred to in the following
explanation on determining and setting the correct sample points to acquire Read and Write data.
Please contact your local Tektronix representative for a detailed explanation of the different data
group areas and what they mean.
5.2 MagniVu Signals
Because of the design of the Tektronix TLA7BB4 acquisition cards different data groups need to
be defined for use within MagniVu. Table 4 shows the MagniVu group definitions present in the
B_DDR3D_2D/_2G supports. Table 5 shows the MagniVu group definitions present in the
B_DDR3D_3A support.
DDR3THIN-MN-XXX
44
Doc. Rev. 1.11
Group
Name
Data_H
i
Signal
Name
DQ63
TLA
Input
S_A2:0 Data_L
o
Group
Name
Signal
Name
DQ31 M_A0:6
TLA
Input
DQ62
DQ61
DQ60
DQ59
DQ58
DQ57
DQ56
DQ55
DQ54
DQ53
DQ52
DQ51
DQ50
DQ49
DQ48
DQ47
DQ46
DQ45
DQ44
DQ43
DQ42
DQ41
DQ40
DQ39
DQ38
DQ37
DQ36
DQ35
DQ34
DQ33
DQ32
S_A2:1
S_A2:5
S_CK0
S_A2:2
S_A2:3
S_A2:7
S_A3:0
S_A3:2
S_A3:3
S_A3:7
S_A1:5
S_A3:1
S_A3:4
S_A1:7
S_A1:6
S_A1:4
S_A1:1
S_A0:7
S_A0:6
S_A1:3
S_A1:2
S_A0:5
S_A0:4
S_A0:3
S_A0:2
M_C2:1
M_C2:4
S_A0:1
S_A0:0
M_C2:6
M_C2:7
DQ30 M_A0:3
DQ29
DQ28
S_C2:0
S_C2:1
DQ27 M_A0:4
DQ26 M_A0:1
DQ25
DQ24
DQ23
DQ22
DQ21
DQ20
DQ19
DQ18
DQ17
DQ16
DQ15
DQ14
DQ13
DQ12
DQ11
DQ10
DQ9
S_C2:2
S_C2:3
S_C2:4
S_C2:5
S_C3:2
S_C3:3
S_C2:6
S_C2:7
S_C3:1
S_C3:4
S_C3:6
S_C3:7
S_E3:4
S_E3:1
S_C3:5
S_E3:7
S_E3:3
S_E3:2
S_E3:0
S_E2:7
S_E2:3
S_E2:2
S_Q3
DQ8
DQ7
DQ6
DQ5
DQ4
DQ3
DQ2
DQ1
DQ0
S_E2:5
S_E2:1
S_E2:0
Table 4 - B_DDR3D_2D/_2G TLA MagniVu Channel Grouping
Notes:
1. The ‘S’ in front of a TLA channel denotes the Slave card of the merged pair
2. The ‘M’ in front of a TLA channel denotes the Master card of the merged pair
DDR3THIN-MN-XXX
45
Doc. Rev. 1.11
Group
Name
DataByte
7
Signal
Name
TLA
Input
Group
Name
Signal
Name
DQ31 M_A0:6
TLA
Input
DQ63 S_A2:0 DataByte
3
DQ62 S_A2:1
DQ61 S_A2:5
DQ30 M_A0:3
DQ29
DQ28
S_C2:0
S_C2:1
DQ60
S_CK0
DQ59 S_A2:2
DQ58 S_A2:3
DQ57 S_A2:7
DQ56 S_A3:0
DQ55 S_A3:2 DataByte
2
DQ27 M_A0:4
DQ26 M_A0:1
DQ25
DQ24
DQ23
S_C2:2
S_C2:3
S_C2:4
DataByte
6
DQ54 S_A3:3
DQ53 S_A3:7
DQ52 S_A1:5
DQ51 S_A3:1
DQ50 S_A3:4
DQ49 S_A1:7
DQ48 S_A1:6
DQ47 S_A1:4 DataByte
1
DQ22
DQ21
DQ20
DQ19
DQ18
DQ17
DQ16
DQ15
S_C2:5
S_C3:2
S_C3:3
S_C2:6
S_C2:7
S_C3:1
S_C3:4
S_C3:6
DataByte
5
DQ46 S_A1:1
DQ45 S_A0:7
DQ44 S_A0:6
DQ43 S_A1:3
DQ42 S_A1:2
DQ41 S_A0:5
DQ40 S_A0:4
DQ39 S_A0:3 DataByte
0
DQ14
DQ13
DQ12
DQ11
DQ10
DQ9
S_C3:7
S_E3:4
S_E3:1
S_C3:5
S_E3:7
S_E3:3
S_E3:2
S_E3:0
DQ8
DQ7
DataByte
4
DQ38 S_A0:2
DQ37 M_C2:1
DQ36 M_C2:4
DQ35 S_A0:1
DQ34 S_A0:0
DQ33 M_C2:6
DQ32 M_C2:7
DQ6
DQ5
DQ4
DQ3
DQ2
DQ1
DQ0
S_E2:7
S_E2:3
S_E2:2
S_Q3
S_E2:5
S_E2:1
S_E2:0
Table 4 – B_DDR3D_2D/_2G TLA MagniVu Channel Grouping (cont’d.)
Notes:
1. The ‘S’ in front of a TLA channel denotes the Slave card of the merged pair
2. The ‘M’ in front of a TLA channel denotes the Master card of the merged pair
DDR3THIN-MN-XXX
46
Doc. Rev. 1.11
Group
Name
CheckBit
s
Signal
Name
CB7
TLA
Input
M_A1:5 DataMasks
Group
Name
Signal
Name
DM7
TLA
Input
S_A2:4
CB6
CB5
CB4
CB3
CB2
M_A1:4
M_A1:0
M_A0:7
M_A1:6
M_A1:3
M_CK1
M_A0:5
M_A1:2 Address 2
S_A2:6
S_A3:5
S_CK1
M_C2:3
M_A0:0
S_C3:0
DM6
DM5
DM4
DM3
DM2
DM1
DM0
BA2
BA1
BA0
A15
A14
A13
A12/BC#
A11
A10/AP
A9
S_A3:6
S_A1:0
M_C2:0
M_A0:2
S_CK3
CB1
CB0
S_E3:5
S_E2:6
Strobes 2
DQS8
DQS7
DQS6
DQS5
DQS4
DQS3
DQS2
DQS1
DQS0
CKE1
CKE0
S3#
S2#
S1#
S0#
BA2
BA1
BA0
A15
A14
A13
M_A3:0
M_C3:7
M_C1:6
M_CK0
M_A2:5
M_CK3
M_A2:4
M_A2:6
M_C1:3
M_A2:1
M_A2:0
M_A2:3
M_C0:2
M_A2:2
M_C0:5
M_C1:0
M_Q1
S_E3:6
S_E2:4
Control 2
M_A3:2
M_A3:1
M_C2:5
M_C3:0
M_C3:4
M_C3:3
M_A3:0
M_C3:7
M_C1:6
M_CK0
A8
A7
A6
A5
A4
A3
A2
A1
M_C1:1
M_C1:5
M_C1:2
A0
M_A2:5 Orphans
M_CK3
PAR_IN
ERR_OUT# M_A2:7
A12/BC# M_A2:4
TEST
RESET#
ODT1
M_A3:7
M_A3:6
M_C3:1
M_C3:2
M_A3:5
M_A3:4
M_C1:4
A10/AP
RAS#
CAS#
WE#
M_C1:3
M_C3:6
M_C3:5
ODT0
M_C1:7 Misc 2,5
MISC1
MISC0
DDRCK0
Table 4 – B_DDR3D_2D/_2G (<=1333MT/s Read and Write) TLA Channel Grouping (cont’d.)
Notes:
1. ‘ # ‘ denotes a low-true signal
2. These signals are required for accurate acquisition and post-processing of acquired data
3. The ‘S’ in front of a TLA channel denotes the Slave card of the merged pair
4. The ‘M’ in front of a TLA channel denotes the Master card of the merged pair
5. MISC1 and MISC0 are placeholders only and will not have interesting data on them
DDR3THIN-MN-XXX
47
Doc. Rev. 1.11
Group
Name
Data_H
i
Signal
Name
DQ63
TLA
Input
S_A2:0 Data_L
o
Group
Name
Signal
Name
DQ31 M_A0:6
TLA
Input
DQ62
DQ61
DQ60
DQ59
DQ58
DQ57
DQ56
DQ55
DQ54
DQ53
DQ52
DQ51
DQ50
DQ49
DQ48
DQ47
DQ46
DQ45
DQ44
DQ43
DQ42
DQ41
DQ40
DQ39
DQ38
DQ37
DQ36
DQ35
DQ34
DQ33
DQ32
S_A2:1
S_A2:5
S_CK0
S_A2:2
S_A2:3
S_A2:7
S_A3:0
S_A3:2
S_A3:3
S_A3:7
S_A1:5
S_A3:1
S_A3:4
S_A1:7
S_A1:6
S_A1:4
S_A1:1
S_A0:7
S_A0:6
S_A1:3
S_A1:2
S_A0:5
S_A0:4
S_A0:3
S_A0:2
M_C2:1
M_C2:4
S_A0:1
S_A0:0
M_C2:6
M_C2:7
DQ30 M_A0:3
DQ29
DQ28
S_C2:0
S_C2:1
DQ27 M_A0:4
DQ26 M_A0:1
DQ25
DQ24
DQ23
DQ22
DQ21
DQ20
DQ19
DQ18
DQ17
DQ16
DQ15
DQ14
DQ13
DQ12
DQ11
DQ10
DQ9
S_C2:2
S_C2:3
S_C2:4
S_C2:5
S_C3:2
S_C3:3
S_C2:6
S_C2:7
S_C3:1
S_C3:4
S_C3:6
S_C3:7
S_E3:4
S_E3:1
S_C3:5
S_E3:7
S_E3:3
S_E3:2
S_E3:0
S_E2:7
S_E2:3
S_E2:2
S_Q3
DQ8
DQ7
DQ6
DQ5
DQ4
DQ3
DQ2
DQ1
DQ0
S_E2:5
S_E2:1
S_E2:0
Table 5 - B_DDR3D_3A TLA MagniVu Channel Grouping
Notes:
1. The ‘S’ in front of a TLA channel denotes the Slave card of the merged pair
2. The ‘M’ in front of a TLA channel denotes the Master card of the merged pair
DDR3THIN-MN-XXX
48
Doc. Rev. 1.11
Group
Name
DataByte
7
Signal
Name
TLA
Input
Group
Name
Signal
Name
DQ31 M_A0:6
TLA
Input
DQ63 S_A2:0 DataByte
3
DQ62 S_A2:1
DQ61 S_A2:5
DQ30 M_A0:3
DQ29
DQ28
S_C2:0
S_C2:1
DQ60
S_CK0
DQ59 S_A2:2
DQ58 S_A2:3
DQ57 S_A2:7
DQ56 S_A3:0
DQ55 S_A3:2 DataByte
2
DQ27 M_A0:4
DQ26 M_A0:1
DQ25
DQ24
DQ23
S_C2:2
S_C2:3
S_C2:4
DataByte
6
DQ54 S_A3:3
DQ53 S_A3:7
DQ52 S_A1:5
DQ51 S_A3:1
DQ50 S_A3:4
DQ49 S_A1:7
DQ48 S_A1:6
DQ47 S_A1:4 DataByte
1
DQ22
DQ21
DQ20
DQ19
DQ18
DQ17
DQ16
DQ15
S_C2:5
S_C3:2
S_C3:3
S_C2:6
S_C2:7
S_C3:1
S_C3:4
S_C3:6
DataByte
5
DQ46 S_A1:1
DQ45 S_A0:7
DQ44 S_A0:6
DQ43 S_A1:3
DQ42 S_A1:2
DQ41 S_A0:5
DQ40 S_A0:4
DQ39 S_A0:3 DataByte
0
DQ14
DQ13
DQ12
DQ11
DQ10
DQ9
S_C3:7
S_E3:4
S_E3:1
S_C3:5
S_E3:7
S_E3:3
S_E3:2
S_E3:0
DQ8
DQ7
DataByte
4
DQ38 S_A0:2
DQ37 M_C2:1
DQ36 M_C2:4
DQ35 S_A0:1
DQ34 S_A0:0
DQ33 M_C2:6
DQ32 M_C2:7
DQ6
DQ5
DQ4
DQ3
DQ2
DQ1
DQ0
S_E2:7
S_E2:3
S_E2:2
S_Q3
S_E2:5
S_E2:1
S_E2:0
Table 5 – B_DDR3D_3A TLA MagniVu Channel Grouping (cont’d.)
Notes:
1. The ‘S’ in front of a TLA channel denotes the Slave card of the merged pair
2. The ‘M’ in front of a TLA channel denotes the Master card of the merged pair
DDR3THIN-MN-XXX
49
Doc. Rev. 1.11
Group
Name
Signal
Name
TLA
Input
Group
Name
Signal
Name
TLA
Input
Data_Hi_1
1_DQ63 S2_A0:0 Data_Lo_
1
1_DQ31 S2_D2:6
1_DQ62 S2_A0:1
1_DQ61 S2_A0:5
1_DQ60 S2_CK1
1_DQ59 S2_A0:2
1_DQ58 S2_A0:3
1_DQ57 S2_A0:7
1_DQ56 S2_A1:0
1_DQ55 S2_A1:2
1_DQ54 S2_A1:3
1_DQ53 S2_A1:7
1_DQ52 S2_D1:5
1_DQ51 S2_A1:1
1_DQ50 S2_A1:4
1_DQ49 S2_D1:7
1_DQ48 S2_D1:6
1_DQ47 S2_D1:4
1_DQ46 S2_D1:1
1_DQ45 S2_D0:7
1_DQ44 S2_D0:6
1_DQ43 S2_D1:3
1_DQ42 S2_D1:2
1_DQ41 S2_D0:5
1_DQ40 S2_D0:4
1_DQ39 S2_D0:3
1_DQ38 S2_D0:2
1_DQ37 S2_C2:1
1_DQ36 S2_C2:4
1_DQ35 S2_D0:1
1_DQ34 S2_D0:0
1_DQ33 S2_C2:6
1_DQ32 S2_C2:7
1_DQ30
1_DQ29
1_DQ28
1_DQ27
1_DQ26
1_DQ25
1_DQ24
1_DQ23
1_DQ22
1_DQ21
1_DQ20
1_DQ19
1_DQ18
1_DQ17
1_DQ16
1_DQ15
1_DQ14
1_DQ13
1_DQ12
1_DQ11
1_DQ10
1_DQ9
S2_D2:3
S2_E2:0
S2_E2:1
S2_D2:4
S2_D2:1
S2_E2:2
S2_E2:3
S2_E2:4
S2_E2:5
S2_E3:2
S2_E3:3
S2_E2:6
S2_E2:7
S2_E3:1
S2_E3:4
S2_E3:6
S2_E3:7
S2_E1:4
S2_E1:1
S2_E3:5
S2_E1:7
S2_E1:3
S2_E1:2
S2_E1:0
S2_E0:7
S2_E0:3
S2_E0:2
S2_Q2
1_DQ8
1_DQ7
1_DQ6
1_DQ5
1_DQ4
1_DQ3
1_DQ2
1_DQ1
S2_E0:5
S2_E0:1
S2_E0:0
1_DQ0
Table 5 - B_DDR3D_3A TLA MagniVu Channel Grouping
Notes:
1. The ‘S’ in front of a TLA channel denotes the Slave card of the merged pair
2. The ‘M’ in front of a TLA channel denotes the Master card of the merged pair
DDR3THIN-MN-XXX
50
Doc. Rev. 1.11
Group
Name
Signal
Name
TLA
Input
Group
Name
Signal
Name
TLA
Input
DataByte7_
1
1_DQ63
S2_A0:0 DataByte3_
1
1_DQ31
S2_D2:6
1_DQ62
1_DQ61
1_DQ60
1_DQ59
1_DQ58
1_DQ57
1_DQ56
1_DQ55
S2_A0:1
S2_A0:5
S2_CK1
S2_A0:2
S2_A0:3
S2_A0:7
S2_A1:0
S2_A1:2 DataByte2_
1
1_DQ30
1_DQ29
1_DQ28
1_DQ27
1_DQ26
1_DQ25
1_DQ24
1_DQ23
S2_D2:3
S2_E2:0
S2_E2:1
S2_D2:4
S2_D2:1
S2_E2:2
S2_E2:3
S2_E2:4
DataByte6_
1
1_DQ54
1_DQ53
1_DQ52
1_DQ51
1_DQ50
1_DQ49
1_DQ48
1_DQ47
S2_A1:3
S2_A1:7
S2_D1:5
S2_A1:1
S2_A1:4
S2_D1:7
S2_D1:6
S2_D1:4 DataByte1_
1
1_DQ22
1_DQ21
1_DQ20
1_DQ19
1_DQ18
1_DQ17
1_DQ16
1_DQ15
S2_E2:5
S2_E3:2
S2_E3:3
S2_E2:6
S2_E2:7
S2_E3:1
S2_E3:4
S2_E3:6
DataByte5_
1
1_DQ46
1_DQ45
1_DQ44
1_DQ43
1_DQ42
1_DQ41
1_DQ40
1_DQ39
S2_D1:1
S2_D0:7
S2_D0:6
S2_D1:3
S2_D1:2
S2_D0:5
S2_D0:4
S2_D0:3 DataByte0_
1
1_DQ14
1_DQ13
1_DQ12
1_DQ11
1_DQ10
1_DQ9
S2_E3:7
S2_E1:4
S2_E1:1
S2_E3:5
S2_E1:7
S2_E1:3
S2_E1:2
S2_E1:0
1_DQ8
1_DQ7
DataByte4_
1
1_DQ38
1_DQ37
1_DQ36
1_DQ35
1_DQ34
1_DQ33
1_DQ32
S2_D0:2
S2_C2:1
S2_C2:4
S2_D0:1
S2_D0:0
S2_C2:6
1_DQ6
1_DQ5
1_DQ4
1_DQ3
1_DQ2
1_DQ1
1_DQ0
S2_E0:7
S2_E0:3
S2_E0:2
S2_Q2
S2_E0:5
S2_E0:1
S2_E0:0
S2_C2:7
Table 5 – B_DDR3D_3A TLA MagniVu Channel Grouping (cont’d.)
Notes:
1. The ‘S’ in front of a TLA channel denotes the Slave card of the merged pair
2. The ‘M’ in front of a TLA channel denotes the Master card of the merged pair
DDR3THIN-MN-XXX
51
Doc. Rev. 1.11
Group
Name
ChkBits
Signal
Name
CB7
CB6
CB5
CB4
CB3
CB2
CB1
TLA
Input
M_A1:5 ChkBits_1
M_A1:4
M_A1:0
M_A0:7
M_A1:6
M_A1:3
M_CK1
Group
Name
Signal
Name
1_CB7
1_CB6
1_CB5
1_CB4
1_CB3
1_CB2
1_CB1
1_CB0
1_DQS8
1_DQS7
1_DQS6
1_DQS5
1_DQS4
1_DQS3
1_DQS2
1_DQS1
1_DQS0
BA2
BA1
BA0
A15
A14
A13
A12/BC#
A11
A10/AP
A9
A8
TLA
Input
S2_D3:5
S2_D3:4
S2_D3:0
S2_D2:7
S2_D3:6
S2_D3:3
S2_Q0
CB0
M_A0:5
S2_D2:5
S2_D3:2
S2_A0:6
S2_A1:5
S2_CK2
S2_C2:3
S2_D2:0
S2_E3:0
S2_E1:6
S2:E0:4
M_A3:0
M_C3:7
M_C1:6
M_CK0
M_A2:5
M_CK3
M_A2:4
M_A2:6
M_C1:3
M_A2:1
M_A2:0
M_A2:3
M_C0:2
M_A2:2
M_C0:5
M_C1:0
M_Q1
Strobes 2
DQS8
DQS7
DQS6
DQS5
DQS4
DQS3
DQS2
DQS1
DQS0
DM7
DM6
DM5
DM4
DM3
DM2
DM1
DM0
CKE1
CKE0
S3#
M_A1:2 Strobes_1 2
S_A2:6
S_A3:5
S_CK1
M_C2:3
M_A0:0
S_C3:0
S_E3:6
S_E2:4
S_A2:4
S_A3:6
S_A1:0
M_C2:0
M_A0:2
S_CK3
DataMasks
Address 2
S_E3:5
S_E2:6
Control 2
M_A3:2
M_A3:1
S2_C2:5
S2_C3:0
M_C3:4
M_C3:3
M_A3:0
M_C3:7
M_C1:6
M_CK0
M_A2:5
S2#
S1#
S0#
BA2
BA1
BA0
A15
A14
A7
A6
A5
A4
A3
A2
A1
A0
M_C1:1
M_C1:5
M_C1:2
A13
M_CK3 Orphans
PAR_IN
A12/BC# M_A2:4
ERR_OUT# M_A2:7
A10/AP
RAS#
CAS#
WE#
MISC1
MISC0
M_C1:3
M_C3:6
M_C3:5
M_C1:7
M_A3:5
M_A3:4
TEST
RESET#
ODT1
M_A3:7
M_A3:6
M_C3:1
M_C3:2
ODT0
Misc 2,5
DDRCK0 M_C1:4
Table 5 – B_DDR3D_3A (<=1333MT/s Read and Write) TLA Channel Grouping (cont’d.)
Notes:
1. ‘ # ‘ denotes a low-true signal
2. These signals are required for accurate acquisition and post-processing of acquired data
3. The ‘S’ in front of a TLA channel denotes the Slave card of the merged pair
4. The ‘M’ in front of a TLA channel denotes the Master card of the merged pair
5. MISC1 and MISC0 are placeholders only and will not have interesting data on them
DDR3THIN-MN-XXX
52
Doc. Rev. 1.11
5.3 Adjusting Input Thresholds for Proper Data Acquisition
The Interposer DDR3 support was designed to work with the new Nexus Low Profile Distributed
probes. To maximize the electrical characteristics of the acquired waveforms the probe input
resistors values were placed at 510 ohms. This value results in a divide by ten of the signals to
the logic analyzer when using the NEX-PRB1X-T and NEX-PRB2X-T probes. The logic
analyzer expects a divide by 20. Since the divide value is different than the standard Tektronix
probe the voltage swing and offset will be higher than expected, and the thresholds will be
different. Instead of the expected 0.75 threshold of approximately 1.9V threshold will be
required. Use of the logic analyzer output to a scope will be required to determine the exact
threshold for the system under test.
5.4 DDR3 and DDR3SPA
It is strongly recommended that Nexus’ DDR3SPA (DDR3 Sample Point Analyzer) be used to
determine the proper sample point setting necessary for accurate Read and Write data
acquisition. Given the correct DDR bus parameters (Latency, Burst Length, etc.) SPA will
analyze any Read and/or Write bus transactions in MagniVu memory and return suggested
sample points. Refer to the DDR SPA documentation for more specific information on using this
software.
If for whatever reason DDR3SPA doesn’t appear to provide good sample point setting
information the following sections describe how to evaluate acquired DDR3 data to determine
the proper sample points manually.
5.5 Selecting B_DDR3E_XX Read Data Sample Points
For the DDR3 Read data to be properly acquired it is necessary to choose the proper sample
points to ensure that data is acquired at the proper point in the transaction. Since valid DDR3
Read data is straddled by the Strobes (see Figure 4) the Setup & Hold sample point must be set
for the valid data that occurs closest to the clock edge. The appropriate clock edge for Reads is
determined by adding the Additive Latency value to the CAS Latency value and adding one if
Registered memory (RDIMMs) are being used, resulting in the total number of clock cycles from
the Read Command to the first valid Read Data. (If these values are not known the technique
described in Section 7.3 can be used to determine the necessary values with the exception of
whether or not the memory is RDIMM or UDIMM.) In Figure 4 the total Read latency is 6
cycles.
The B_DDR3D_XX supports acquire two samples of valid Read data on each rising edge of the
DDR3 clock. So to acquire both pieces of data the RdA_DatHi/Lo data groups must have their
sample point set to that shown by Sample Pt. #1 in the Figure, and the RdB_DatHi/Lo data
groups must have their sample point set to that shown by Sample Pt. #2.
DDR3THIN-MN-XXX
53
Doc. Rev. 1.11
Sample Pt. #2
Sample Pt. #1
Figure 4 - Read Data Latency = CAS Latency + CAS Additive Latency + RDIMM (5+0+1) = 6 cycles)
5.6 Selecting B_DDR3D_XX Write Data Sample Points
Unlike valid DDR Read data, valid Write data is bisected by the Strobes. Since valid DDR3
Write data is bisected by the Strobes (see Figure 5) the Setup & Hold sample point must be set
for the valid data that occurs closest to the clock edge. The appropriate clock edge for Writes is
determined by counting the number of clock cycles specified by the Write Latency MRS value
from the Write Command to the first valid Write Data. (If these values are not known the
technique described in Section 7.3 can be used to determine them.) In Figure 5 the total Write
latency is 6 cycles (Write Latency plus the additional one cycle delay for RDIMM memory).
Sample Pt. #1
Write Data
Sample Pt. #2
Preamble
Figure 5 - Write Data Latency = CAS Write Latency + RDIMM (5+1) = 6 cycles
DDR3THIN-MN-XXX 54
Doc. Rev. 1.11
The B_DDR3D_XX supports acquire two samples of valid Write data on each rising edge of the
DDR3 clock. So to acquire both pieces of data the WrA_DatHi/Lo data groups must have their
sample point set to that shown by Sample Pt. #1 in the Figure, and the WrB_DatHi/Lo data
groups must have their sample point set to that shown by Sample Pt. #2.
NOTE - It is important to note that because of the design of the TLA acquisition card inputs and
the Strobe activity prior to Write data being placed on the data bus it will appear as if the Strobes
indicate valid Write data earlier than the data is actually there (see the circle indicated as Write
Data Preamble in Figure 5). These Write Preamble Strobe edges should NOT be used to
determine where valid Write data is on the data bus.
5.7 B_DDR3D_XX Support Setup
Using the B_DDR3D_XX supports it is possible to acquire both Read and Write data by setting
the sample point of the data groups appropriately. To adjust the Read Data group sample points
first make an appropriate acquisition of Read data by triggering on a Read command. Then
create a timing window display of MagniVu data and display the Data_Hi and Data_Lo 32-bit
data groups, the individual Command group signals and the DDR3 clock that was used for the
data acquisition (DDRCK0). A sample waveform display of MagniVu Read data is shown in
Figure 6. To determine the sample point, locate the smallest window of valid Read data during
the acquired burst (see Figure 6). Note that in this instance the first piece of valid data happens
significantly after the rising edge it is associated with. In fact the initial valid data appears at the
DDR Clock falling edge. This delay must be taken into account or data will not be aligned
properly in the Listing display window. Note that A and B data (corresponding to ADataHi/Lo
and BDataHi/Lo data groups) have been indicated.
Latency
expires
Minimum
S&H
Read Command
Valid Read
Data Begins
A
B
A
B
Figure 6 - Locating Minimum Valid B_DDR3D_XX Read Data Window
DDR3THIN-MN-XXX
55
Doc. Rev. 1.11
B
A
Figure 7 - Measuring B_DDR3D_XX RdA_DatHi / Lo Read Data Setup & Hold
Zoom in further to determine the Setup and Hold sample point necessary to acquire valid data at
that point (Figure 7) and use the cursors to measure the time from the clock edge to the start of
valid Read data. In this example the delay from edge to data is approximately -1.05ns after the
clock edge, meaning that a suitable Setup & Hold value for the RdA_DatHi capture group would
be -1.055ns/1.289ns. Note that the Data_Lo group is valid somewhat later than the Data_Hi
group with its valid time starting at approximately 1.23ns after the clock edge, so the Setup &
Hold sample point for the RdA_DatLo capture group would be set to -1.23ns/1.465ns.
Now the sample point for the RdB_DatHi and RdB_DatLo groups must be determined (see
Figure 8). The next valid Read data (after the cycle measured above) occurs approximately
2.37ns after the rising edge of DDRCK0, so a suitable Setup & Hold value for the RdB_DatHi
capture group would be –2.383ns/2.617ns. As with the A data the Data_Lo group is somewhat
later than the Data_Hi group. The Data_Lo valid time starts at approximately -2.52ns so a
suitable Setup & Hold value for the RdB_DatLo capture group would be -2.52ns/2.754ns.
DDR3THIN-MN-XXX
56
Doc. Rev. 1.11
A
B
Figure 8 - Measuring B_DDR3D_XX RdB_DatHi / Lo Read Data Setup & Hold
Now the sample point positions must be set for the RdA_DatHi, RdA_DatLo, RdB_DatHi and
RdB_DatLo capture groups in the Setup window (see Figure 9). This window is found by going
to the LA Card’s Setup window, then clicking on the More button to the right of the clock select
field. The TLA acquisition cards require a valid data window of approximately 300ps, and this
window can be placed to begin from 15.098ns prior to the clock edge to 7.383ns after the edge in
roughly 20ps increments. Each 32-bit data group (RdA_DatHi, RdA_DatLo, RdB_DatHi,
RdB_DatLo) will require its own value programmed from the measurements noted in the
MagniVu window.
Figure 9 - Setting B_DDR3D_XX RdA_DatHi / Lo and RdB_DatHi / Lo Sample Points
DDR3THIN-MN-XXX
57
Doc. Rev. 1.11
Setting the Setup & Hold values for acquiring Write data is a similar process. To determine the
Write Data group sample points first make an appropriate acquisition of Write data by triggering
on a Write Command. Then, as above, create a timing window display of MagniVu data and
display the Data_Hi and Data_Lo 32-bit data groups, the individual Command group signals and
the DDR3 clock that was used for the data acquisition (DDRCK0).
A sample waveform display of MagniVu Write data is shown in Figure 10. To determine the
sample point, locate the smallest window of valid Write data during the acquired burst (see
Figure 10). Note that in this instance the first piece of valid data happens before the rising edge it
is associated with. This shift must be taken into account or data will not be aligned properly in
the Listing display window. Note that A and B data (corresponding to ADataHi/Lo and
BDataHi/Lo data groups) have been indicated. Refer to section 5.6 for important information on
properly determining the Write data sample points.
Latency
expires
Minimum
S&H
Write Command
A
A
B
B
Write Data
Preamble
Figure 10 - Locating Minimum Valid B_DDR3D_XX Write Data Window
Zoom in further to determine the Setup and Hold sample point necessary to acquire valid data at
that point (Figure 11) and use the cursors to measure the time from the clock edge to the start of
valid Write data. In this example the data leads the clock edge by approximately 740ps, meaning
that a suitable Setup & Hold value for the WrA_DatHi capture group would be 742ps/-508ps.
Note that the Data_Lo group is valid somewhat later than the Data_Hi group with its valid time
starting at approximately 430ps prior to the clock edge, so the Setup & Hold sample point for the
WrA_DatLo capture group would be set to 430ps/-195ps.
DDR3THIN-MN-XXX
58
Doc. Rev. 1.11
A
B
Figure 11 - Measuring B_DDR3D_XX WrA_DatHi / Lo Write Data Setup & Hold
Now the sample point for the WrB_DatHi and WrB_DatLo groups must be determined (see
Figure 12). The next valid Write data (after the cycle measured above) occurs approximately
500ps after the rising edge of DDRCK0, so a suitable Setup & Hold value for the WrB_DatHi
capture group would be -508ps/742ps. As with the A data the Data_Lo group is somewhat later
than the Data_Hi group. The Data_Lo valid time starts at approximately -800ps so a suitable
Setup & Hold value for the WrB_DatLo capture group would be -801ps/1.035ns.
Figure 12 - Measuring B_DDR3D_XX WrB_DatHi / Lo Write Data Setup & Hold
The sample point positions must now be set for the WrA_DatHi, WrA_DatLo, WrB_DatHi,
WrB_DatLo groups in the Setup window (Figure 13). Note that if the Upper Strobes are being
DDR3THIN-MN-XXX
59
Doc. Rev. 1.11
used as Data Masks then the WrtMasks group should have a Setup & Hold value that matches
that of the Write Data groups.
Figure 13 - Setting B_DDR3D_XX WrA_DatHi / Lo and WrB_DatHi / Lo Sample Points
Because of the speeds of DDR3 data it may be necessary to program Setup & Hold values for
each of the 8-bit groups that are associated with a given Strobe. This could be required if there is
significant skew between the DDR Strobes. Figure 14 shows some of these additional data
groups (DataByte7-0) added to the same Waveform display shown in Figure 12. Note that it is
now possible to determine the skew between data groups and place these values into the Setup &
Hold Window settings in the TLA Setup window (see Figure 15). Refer to Appendix F Data
Group / Byte / Strobe Cross-Reference for details on which 8-bit groups make up a 32-bit group.
When setting the individual Setup & Hold values it is suggested that the settings for the
associated 32-bit group (RdA_DatHi, RdA_DatLo, RdB_DatHi, RdB_DatLo, WrA_DatHi,
WrA_DatLo, WrB_DatHi, WrB_DatLo) be reset to “Support Package Default”. This will
prevent the TLA from displaying warnings that conflicting values have been set for the data bits.
The Support Package Default Setup & Hold values are the same as the TLA default values –
117ps/117ps. It will also be necessary to program the Setup & Hold values for all of the 8-bit
groups in the affected 32-bit group. If conflicting Setup & Hold points are programmed then the
values will have exclamation marks beside them to denote the conflict.
DDR3THIN-MN-XXX
60
Doc. Rev. 1.11
5.8 Setting B_DDR3D_3A Read Data Sample Points
The same procedure outlined above for setting Read Data sample points should be used to
determine the sample points for Read Data from teh second DIMM slot. Set the sample points
for the groups named RdA_DatHi_1, RdA_DatLo_1, RdB_DatHi_1 and RdB_DatLo_1.
DDR3THIN-MN-XXX
62
Doc. Rev. 1.11
6.0 VIEWING DATA
6.1 Viewing B_DDR3D_XX Data
When using the NEX-DDR3INTR-THIN support packages the raw Address and Data groups are
suppressed and are replaced with post-processed data in new groups. This data is displayed in
new groups that have the support package name preceding it (i.e., B_DDR3D_XX Address,
B_DDR3D_XX DataHi, etc.). The raw data groups are suppressed so that the display of data can
be done in a more user-friendly fashion.
The Command group is suppressed because its function is replaced with a column labeled
“B_DDR3D_XX Mnemonics”. The Interposer support software includes post-processing code
that permits masking out all invalid Read / Write and non-Command data, providing the user a
much better overview of bus activity. Figure 16 shows the default B_DDR3D_XX display where
all DDR3 data is displayed.
Figure 16 - B_DDR3D_XX Listing Display
DDR3THIN-MN-XXX
63
Doc. Rev. 1.11
To change the display it is necessary to bring up the window’s Properties window (perform a
right mouse-click in the State display window) and select the Disassembly tab. This will bring up
the configuration window shown in Figure 17.
Figure 17 - Disassembly Properties
There are several select fields available in this window, some of which must be set correctly for
the post-processing software to work properly. These fields and their selections are:
Burst Length - permits setting the burst length for Read and Write data. Valid choices
are 4 (the default) 8, and 4/8 On-the-Fly. This value must be set properly for all valid
Read and Write data to be displayed.
CAS Latency (CL) - sets the delay, in clock cycles, from the Read command until the
first piece of valid Read data is available. This value must be set properly for all valid
Read Data to be displayed. Valid choices are 5 (default), 6, 7, 8, 9 or 10 cycles.
CAS Additive Latency - additional latency for data cycles. This value must also be set
properly for valid Read Data to be displayed. Valid choices are 0 (default), CL-1, or CL-
2 cycles.
CAS Write Latency – number of clock cycles from Write command to the first Write
Data. This value must be set properly for all valid Write Data to be displayed. Valid
choices are 5 (default), 6, 7, or 8 cycles.
Registered? – must be set to reflect whether or not Registered DDR memory is used.
Default is No. When set to Yes an additional clock cycle delay is added to CAS Latency
and to valid Read and Write Data tagging.
DDR3THIN-MN-XXX
64
Doc. Rev. 1.11
DM Signal Use - permits setting Data Mask functionality to Write Masks (default) or
Strobes. When set to Write Mask the DM signals will be used to mask Write Data to
show which data bytes were valid in the cycle.
In addition to these Disassembly Properties selections, changing the settings in the Show field
results in display changes as well:
Hardware - (default) displays all acquired cycles
Software - suppresses all idle or wait cycles
Control Flow - shows Address Command and valid Read / Write data cycles
Subroutine - shows valid Read / Write data cycles only
Figure 18 - B_DDR3D_XX Listing Display - Control Flow
Changing the Show field setting in the display of Figure 16 from Hardware to Control Flow
results in the display of Figure 18 where only Row and Column Address commands and valid
DDR3THIN-MN-XXX
65
Doc. Rev. 1.11
data are displayed. Note that the timestamp is updated to reflect the time between displayed
cycles.
6.2 Viewing Raw DDR3 Data using B_DDR3D_XX Supports
In order to make the display of DDR3 data more user-friendly the raw data from the Address, all
Data and other groups is suppressed in the B_DDR3D_2D Listing display. Instead the post-
processing display software formats and reorders the data to tag and display valid DDR3
Address, Commands and Data. In the case of the B_DDR3D_2D supports, which stores two
Read and two Write data cycles in each TLA Sample location, the data is reordered
chronologically in the display with the oldest data being shown on the line above the newer data.
To see the raw data using the Interposer support package perform a right mouse click in the
Listing window, select Add Column… then click on the group to be added. Refer to the TLA
User’s Manual or online help for further information on added or deleting data groups.
6.3 B_DDR3D_2A / 3A Mnemonics Description
Table 6 gives a brief description of each of the text lines displayed in the B_DDR3D_2A / _3A
post-processing software display.
Mnemonic
ACT – BANK ACTIVATE (Sx#) Bank:
Description
Active command – activate a row in a bank for subsequent access
(Chip Select 0-3; Bank x)
DESL - IGNORE COMMAND
(E)MRS – (EXTENDED) MODE
REGISTER SET x (Sx#)
Deselect function – no new command
Mode Register Set command, registers 0-3;
(Chip Select 0-3)
NOP - NO OPERATION (Sx#)
No Operation command (Chip Select 0-3)
PRE – SINGLE BANK PRECHARGE (Sx#) Precharge command (Chip Select 0-3; Bank x)
Bank:
PREA – PRECHARGE ALL BANK (Sx#)
RDA – READ W/AUTO PRECHARGE
(Sx#) Bank:
Precharge All command (Chip Select 0-3)
Read command with auto precharge (Chip Select 0-3; Bank x)
RD - READ (Sx#) Bank:
Read command – initiates a burst read access to active row
(Chip Select 0-3; Bank x)
READ DATA
Valid Read data on the bus
REF - REFRESH (Sx#)
WRA – WRITE W/AUTO PRECHARGE
(Sx#) Bank:
Self Refresh command (Chip Select 0-3)
Write command with auto precharge (Chip Select 0-3; Bank x)
WR - WRITE (Sx~) Bank:
Write command – initiates a burst write access to active row
(Chip Select 0-3; Bank x)
WRITE DATA
Valid Write data on the bus
ZQCL – ZQ CALIBRATION LONG (Sx#)
ZQ Calibration Long (Chip Select 0-3)
ZQCS – ZQ CALIBRATION SHORT (Sx#) ZQ Calibration Short (Chip Select 0-3)
Table 6 - B_DDR3D_2A / 3A Mnemonics Definition
6.4 B_DDR3D_2G Mnemonics Description
DDR3THIN-MN-XXX
66
Doc. Rev. 1.11
Table 7 gives a brief description of each of the text lines displayed in the B_DDR3D_2G post-
processing software display.
Mnemonic
ACT – BANK ACTIVATE
(Sx# / bS# / cS#) Bank:
Description
Active command – activate a row in a bank for subsequent access
(Slot A, B or C; Chip Select 0-3; Bank x)
DESL - IGNORE COMMAND
(E)MRS – (EXTENDED) MODE
REGISTER SET x (Sx# / bS# / cS#)
NOP - NO OPERATION (Sx# / bS# / cS#)
PRE – SINGLE BANK PRECHARGE
(Sx# / bS# / cS#) Bank:
Deselect function – no new command
Mode Register Set command, registers 0-3;
(Slot A, B or C; Chip Select 0-3)
No Operation command (Slot A, B or C; Chip Select 0-3)
Precharge command (Slot A, B or C; Chip Select 0-3; Bank x)
PREA – PRECHARGE ALL BANK
(Sx# / bS# / cS#)
Precharge All command (Slot A, B or C; Chip Select 0-3)
RDA – READ W/AUTO PRECHARGE
(Sx# / bS# / cS#) Bank:
RD - READ (Sx# / bS# / cS#) Bank:
Read command with auto precharge
(Slot A, B or C; Chip Select 0-3; Bank x)
Read command – initiates a burst read access to active row
(Slot A, B or C; Chip Select 0-3; Bank x)
Valid Read data on the bus
READ DATA
REF - REFRESH (Sx# / bS# / cS#)
WRA – WRITE W/AUTO PRECHARGE
(Sx# / bS# / cS#) Bank:
Self Refresh command (Slot A, B or C; Chip Select 0-3)
Write command with auto precharge
(Slot A, B or C; Chip Select 0-3; Bank x)
Write command – initiates a burst write access to active row
(Slot A, B or C; Chip Select 0-3; Bank x)
Valid Write data on the bus
WR - WRITE (Sx# / bS# / cS#) Bank:
WRITE DATA
ZQCL – ZQ CALIBRATION LONG
(Sx# / bS# / cS#)
ZQ Calibration Long (Slot A, B or C; Chip Select 0-3)
ZQCS – ZQ CALIBRATION SHORT
(Sx# / bS# / cS#)
ZQ Calibration Short (Slot A, B or C; Chip Select 0-3)
Table 7 - B_DDR3D_2G Mnemonics Definition
6.5 Viewing Timing Data on the TLA
By default, the TLA will display an acquisition in the Listing (State) mode. However, the same
data can be displayed in Timing form by adding a Waveform Display window. This is done by
clicking on the Window pull-down, selecting New Data Window, clicking on Waveform
Window Type, then choosing the Data Source. Two valid choices are presented:
B_DDR3D_XX and B_DDR3D_XX: MagniVu. The first will show the exact same data (same
acquisition mode) as that shown in the Listing window, except in Waveform format. The second
selection will show all of the channels in 8GHz MagniVu mode, so that edge relationships can
be examined around the MagniVu trigger point. MagniVu is very useful and in some cases
necessary to see/resolve DDR3 data. With either selection, all channels can be viewed by
scrolling down the window. Refer to the TLA System User’s Manual for additional information
on formatting the Waveform display.
DDR3THIN-MN-XXX
67
Doc. Rev. 1.11
7.0 HINTS & TIPS
7.1 Symbolic Triggering on a Command using B_DDR3D_XX Supports
A Symbol Table has been included for the Control data groups defined in each of the support
packages. The Symbol Table for the B_DDR3D_2D / 3A supports is shown in Table 8; the
Symbol Table for the B_DDR3D_2G support is shown in Table 9. The use of Symbol Tables
when triggering makes it easier for the user to define a given cycle to be triggered on. Rather
than trying to remember what signals make up the Control group, the Symbol Table has the
appropriate bits already set for the given cycle.
It is important to note that changing the channel definition of the Control group can result in
incorrect symbol information being displayed.
Symbol
Definition
cc ssss = x1 1110 for S0#
cc ssss = 1x 1101 for S1#
cc ssss = x1 1011 for S2#
cc ssss = 1x 0111 for S3#
x in Definition = Don’t Care
MRS – Sx# MODE REGISTER SET
REF – Sx# REFRESH
PRE – Sx# SINGLE BANK PRECHARGE
PREA – Sx# PRECHARGE ALL BANKS
ACT – Sx# ACTIVATE BANK
WR – Sx# WRITE
cc ssss xxx xxx xx000
cc ssss xxx xxx xx001
cc ssss xxx xxx x0010
cc ssss xxx xxx x1010
cc ssss xxx xxx xx011
cc ssss xxx xxx x0100
cc ssss xxx xxx x1100
WRA – Sx# WRITE WITH AUTO
PRECHARGE
RD – Sx# READ
RDA – Sx# READ WITH AUTO
PRECHARGE
cc ssss xxx xxx x0101
cc ssss xxx xxx x1101
NOP –Sx# NO OPERATION
DES - DEVICE DESELECT
ZQCL – Sx# ZQ CALIBRATION LONG
ZQCS – Sx# ZQ CALIBRATION SHORT
cc ssss xxx xxx xx111
cc ssss xxx xxx xxxxx
cc ssss xxx xxx x1110
cc ssss xxx xxx x0110
Table 8 - B_DDR3D_2D / 3A Control Symbol Table
Signals, left-to-right: CKE1, CKE0, S3#, S2#, S1#, S0#, BA2, BA1, BA0, A15, A14, A13,
A12/BC#, A10/AP, RAS#, CAS#, WE#
DDR3THIN-MN-XXX
69
Doc. Rev. 1.11
Symbol
Definition
cccc ssssssss = xxxxx1 1110 for S0#
cccc ssssssss = xxxx1x 1101 for S1#
cccc ssssssss = xxxxx1 1011 for S2#
cccc ssssssss = xxxx1x 0111 for S3#
cccc ssssssss = xxxxx1 1110 for bS0#
cccc ssssssss = xxxx1x 1101 for bS1#
cccc ssssssss = xxxxx1 1011 for cS0#
cccc ssssssss = xxxx1x 0111 for cS1#
x in Definition = Don’t Care
MRS – Sx# MODE REGISTER SET
cccc ssssssss xxx xxx xx000
cccc ssssssss xxx xxx xx000
cccc ssssssss xxx xxx xx000
cccc ssssssss xxx xxx xx001
cccc ssssssss xxx xxx x0010
cccc ssssssss xxx xxx x1010
cccc ssssssss xxx xxx xx011
cccc ssssssss xxx xxx x0100
cccc ssssssss xxx xxx x1100
MRS – bSx# MODE REGISTER SET
MRS – cSx# MODE REGISTER SET
REF – Sx# REFRESH
PRE – Sx# SINGLE BANK PRECHARGE
PREA – Sx# PRECHARGE ALL BANKS
ACT – Sx# ACTIVATE BANK
WR – Sx# WRITE
WRA – Sx# WRITE WITH AUTO
PRECHARGE
RD – Sx# READ
RDA – Sx# READ WITH AUTO
PRECHARGE
cccc ssssssss xxx xxx x0101
cccc ssssssss xxx xxx x1101
NOP –Sx# NO OPERATION
DES - DEVICE DESELECT
ZQCL – Sx# ZQ CALIBRATION LONG
ZQCS – Sx# ZQ CALIBRATION SHORT
cccc ssssssss xxx xxx xx111
cccc ssssssss xxx xxx xxxxx
cccc ssssssss xxx xxx x1110
cccc ssssssss xxx xxx x0110
Table 9 - B_DDR3D_2G Control Symbol Table
Signals, left-to-right: cCKE1, cCKE0, bCKE1, bCKE0, CKE1, CKE0,
cS1#, cS0#, bS1#, bS0#, S3#, S2#, S1#, S0#,
BA2, BA1, BA0, A15, A14, A13, A12/BC#, A10/AP, RAS#, CAS#, WE#
7.3 Capturing MRS (Mode Register Set) Cycles
If the characteristics of the DDR target (latency, burst length) are not known it is possible to
acquire this information using the TLA so that the post-processing Control settings can be
properly set. This information is programmed into the DDR memory upon system boot by use of
the MRS (Mode Register Set) command, and is required when using the NEX-DDR3INTR-
THIN supports for the post-processing software to properly decode the acquisitions. The TLA
trigger shown in Figure 19 can be used to acquire the MRS cycles when using either of these
supports.
Note that because there is no Trigger event defined in this example that it will be necessary to
Stop the TLA acquisition manually to display the MRS data. A trigger could certainly be added
in either (or both) of the Trigger events, but the method shown ensures that the last valid MRS
cycles will be acquired regardless of the memory depth setting of the acquisition card.
DDR3THIN-MN-XXX
70
Doc. Rev. 1.11
Figure 20 - B_DDR3D_2D MRS Trigger
In the trigger example a Storage condition has been created so that only MRS cycles will be
stored. In testing, multiple MRS cycles were seen during the boot process, and the example
triggers shown will ensure that all of the MRS cycles will be acquired, an example of which is
shown in Figure 20. The last acquired MRS cycle will reflect the settings used in the DDR target
– in this case, a CAS latency of 2 cycles with a Burst length of 8.
Figure 21 - MRS Cycle Acquisition Disassembly
7.4 Clock Capture quality
The clock captured by the logic analyzer may exhibit ringing. If this ringing is such that a clock
reference voltage can not be determined it is suggested that the capacitor on the DIMM across
DDR3THIN-MN-XXX
71
Doc. Rev. 1.11
the differential pair by removed. The added capacitance of the logic analyzer compensates for
this missing capacitor.
7.5 Thresholds
Analog waveforms and their associated thresholds viewed using the Tektronix Analog Mux will
display amplitudes and thresholds that are not an exact representation of the actual analog
waveform. The Nexus passive probes used on DDR3 NEXVu and Interposer products are
designed to supply maximum voltage swing to the Logic analyzer to insure correct digital signal
swing capture at the high DDR3 rates. While the Tektronix active P69xx and P68xx series of
probe, being general purpose probes, divide the input voltage swing by 20 the passive probes
from Nexus divide the signals by approximately 7.5. Since the divide value is different than the
standard Tektronix probe the voltage swing and offset will be higher than expected, and the
thresholds will be different. Instead of the expected 0.75 threshold of approximately 1.9V
threshold will be required. This was designed specifically for DDR3 signals to allow the best
possible capture of the digital representation of these signals. Viewing the output of the Logic
Analyzer analog mux should be used as a tool to provide fine adjustment of the logic analyzer
signal Vref. The threshold value determined in this manner should be used as the threshold
setting for the Nexus DDR3 product. Please note: Only the vertical resolution is affected by the
Nexus passive probes.
DDR3THIN-MN-XXX
72
Doc. Rev. 1.11
APPENDIX A – How DDR Data is Clocked
A.1 Background
Demultiplexing means that the TLA’s Logic Analyzer card can have one data probe connected to
the target yet store incoming data in two or four separate data sections of the card. For instance,
the A3 data section (8-bits) can be connected to the target and data can be stored in the A3
section and the D3 section. Using the equivalent of 4X demux (by utilizing both the cross-point
switch and prime memory capabilities of the acquisition card), connections made to the A3
channels permit data to be stored in the A3, A3B (prime channels), D3 and D3B sections. A very
useful side benefit of using demux is that, since only one set of TLA data channels has to be
connected, only one probe load is added to the target, even though data is stored in two or four
different locations of the acquisition card.
A.2 DDR Acquisition - General
All of the above is background necessary to understand how the TLA is able to acquire data at
rates that initially look too fast. The speeds of DDR3 (1066 MT/s) require different setups to
enable proper data acquisition. In addition, instead of trying to use the 8 Data Strobes to acquire
data our solution uses CLK0 of the DDR SDRAM Clocks and all data acquisition is adjusted in
relation to the clock edges. The 8 Data Strobes cannot be easily used to acquire data as some
TLA configurations only support 4 Clock Inputs. Also, the Strobes cannot be used to acquire
Address and Command information.
DDR3THIN-MN-XXX
73
Doc. Rev. 1.11
A.3 B_DDR3D_2D / 2G / 3A Data Acquisition
These supports requires two (2) merged 136-channel with 1.4G state option TLA7BB4
acquisition cards used in a TLA7XX logic analyzer. Data is acquired using the rising edge of the
DDR clock. A_Data information is earlier (older) data than the information stored in B_Data.
Different Sample Points must be set for each of the four 32-bit Data groups, and, if necessary,
sample points can be set for any of the 8-bit data groups or for individual data bits.
Clock
Rd
Read
Rb
Ra
Rc
Re
RdA-S&H
RdB-S&H
Write
Wa
Wb
Wc
Wd
We
WrA-S&H
WrB-S&H
DDR3THIN-MN-XXX
74
Doc. Rev. 1.11
APPENDIX B - Considerations
B.1 NEX-DDR3INTR-THIN Bus Loading
It must be noted that the NEX-DDR3INTR-THIN Interposer is designed to minimal effect on the
user’s circuit. The acquired signals are sampled at top edge connector, and then passed through
isolation resistors to the probe. There will be an effective 600 ohm load on all probed signals.
The B_DDR3D_3A support will use two Interposers and will double probe all signal. Thus the
DC load will be near 300 ohms. The DDR3 Interposer has been tested via detailed simulations,
and by actual in circuit testing.
B.2 DIMM connector location for best quality signal capture
An interposer is subject to reflected noise and the quality of the acquisitions should improve if
the Interposer is in the furthest slot away from the memory controller. If the memory channel
contains two DIMM slots and only one will be used, the slot used must be the furthest away from
the memory controller.
B.3 TLA7BB4 Module to module skew
At print time Tektronix had not yet specified the module to module skew that will be displayed
in MagniVu, and timing modes. This skew is around 300ps. It is expected that in future releases
Tektronix will remove this skew. Contact Tektronix for updates.
DDR3THIN-MN-XXX
75
Doc. Rev. 1.11
APPENDIX C – 240-pin DDR3 DIMM Pinout
Front Side (left 1-60)
X64
Back Side (right 121-180
Front Side (left 61-120)
X64
Back Side (right 181-240)
X64
Pin
#
X72
Pin
#
X64
X72
X72
X72
ECC
Non-
Parity
VREF
VSS
Pin #
Non-
Parity
A2
Pin #
Non-
Parity
A1
ECC
Non-Parity
ECC
ECC
1
2
3
4
VREF
VSS
121
122
123
124
VSS
DQ4
DQ5
VSS
VSS
DQ4
DQ5
VSS
61
62
63
64
A2
181
182
183
184
A1
VDD
CK1
CK1#
VDD
CK1
CK1#
VDD
VDD
CK0
VDD
VDD
CK0
DQ0
DQ1
DQ0
DQ1
DM0
DQS9
NC
DQS9#
VSS
DM0
DQS9
NC
DQS9#
VSS
5
VSS
VSS
125
65
VDD
VDD
VDD
VDD
185
CK0#
VDD
CK0#
VDD
6
7
8
DQS0#
DQS0
VSS
DQS0#
DQS0
VSS
126
127
128
66
67
68
186
187
188
VREF
NC
Par_In
VDD
A10/AP
BA0
VREF
NC
Par_In
VDD
A10/AP
BA0
TEST/NC TEST/NC
DQ6
DQ6
A0
A0
9
DQ2
DQ3
VSS
DQ8
DQ9
DQ2
DQ3
VSS
DQ8
DQ9
129
130
131
132
133
DQ7
VSS
DQ12
DQ13
VSS
DQ7
VSS
DQ12
DQ13
VSS
69
70
71
72
73
189
190
191
192
193
VDD
BA1
VDD
RAS#
S0#
VDD
BA1
VDD
RAS#
S0#
10
11
12
13
VDD
WE#
VDD
WE#
DM1
DQS10
NC
DQS10#
VSS
DM1
DQS10
NC
DQS10#
VSS
14
VSS
VSS
134
74
CAS#
VDD
CAS#
VDD
194
VDD
VDD
15
16
17
18
19
DQS1#
DQS1
VSS
DQS1#
DQS1
VSS
135
136
137
138
139
75
76
77
78
79
195
196
197
198
199
ODT0
A13
ODT0
A13
S1#
S1#
RSVD
ODT1
VDD
RSVD
Spd3
VSS
DQ32
DQ33
RSVD
ODT1
VDD
RSVD
SPD#
VSS
DQ14
DQ15
VSS
DQ14
DQ15
VSS
VDD
Free
VDD
Free
DQ10
DQ11
DQ10
DQ11
VSS
VSS
20
21
22
VSS
DQ16
DQ17
VSS
DQ16
DQ17
140
141
142
DQ20
DQ21
VSS
DQ20
DQ21
VSS
80
81
82
200
201
202
DQ36
DQ37
VSS
DQ36
DQ37
VSS
DQ32
DQ33
DML2,
DQS11
DQS11#
VSS
DQ22
DQ23
VSS
DQ28
DQ29
VSS
DML2
DQS11
DQS11#
VSS
DQ22
DQ23
VSS
DQ28
DQ29
VSS
DM4
DM4
23
VSS
VSS
143
83
VSS
VSS
203
DQS13
DQS13#
VSS
DQ38
DQ39
VSS
DQ44
DQ45
VSS
DQS13
DQS13#
VSS
DQ38
DQ39
VSS
DQ44
DQ45
VSS
24
25
26
27
28
29
30
31
DQS2#
DQS2
VSS
DQ18
DQ19
VSS
DQS2#
DQS2
VSS
DQ18
DQ19
VSS
144
145
146
147
148
149
150
151
84
85
86
87
88
89
90
91
DQS4#
DQS4
VSS
DQ34
DQ35
VSS
DQS4#
DQS4
VSS
DQ34
DQ35
VSS
204
205
206
207
208
209
210
211
DQ24
DQ25
DQ24
DQ25
DQ40
DQ41
DQ40
DQ41
DM3
DM3
DM5
DM5
32
VSS
VSS
152
92
VSS
VSS
212
DQS12
DQS12#
VSS
DQ30
DQ31
VSS
NC
NC
VSS
DQS12
DQS12#
VSS
DQ30
DQ31
VSS
CB4
CB5
VSS
DQS14
DQS14#
VSS
DQ46
DQ47
VSS
DQ52
DQ53
VSS
DQS14
DQS14#
VSS
DQ46
DQ47
VSS
DQ52
DQ53
VSS
33
34
35
36
37
38
39
40
DQS3#
DQS3
VSS
DQ26
DQ27
VSS
DQS3#
DQS3
VSS
DQ26
DQ27
VSS
153
154
155
156
157
158
159
160
93
94
95
96
97
98
99
100
DQS5#
DQS5
VSS
DQ42
DQ43
VSS
DQS5#
DQS5
VSS
DQ42
DQ43
VSS
213
214
215
216
217
218
219
220
NC
NC
CB0
CB1
DQ48
DQ49
DQ48
DQ49
DDR3THIN-MN-XXX
76
Doc. Rev. 1.11
APPENDIX C - 240-pin DDR3 DIMM Pinout (cont’d.)
Front Side (left 1-60)
X64
Back Side (right 121-180
Front Side (left 61-120)
X64
Back Side (right 181-240)
X64
Pin
#
X72
Pin
#
X64
X72
Pin
#
X72
Pin
X72
Non-
Non-
Non-
ECC
Non-Parity
ECC
ECC
#
ECC
Parity
Parity
Parity
DM8
DQS17
DQS17#
VSS
NC
NC
VSS
Test
Free
DM8
DQS17
DQS17#
VSS
CB6
CB7
VSS
Test
Free
DM6
DQS15
DQS15#
VSS
DQ54
DQ55
VSS
DQ60
DQ61
VSS
DM6
DQS15
DQS15#
VSS
DQ54
DQ55
VSS
DQ60
DQ61
VSS
41
VSS
VSS
161
101
VSS
VSS
221
42
43
44
45
46
47
48
DQS8#
DQS8
VSS
NC
NC
VSS
Free
DQS8#
DQS8
VSS
CB2
CB3
162
163
164
165
166
167
168
102
103
104
105
106
107
108
109
DQS6#
DQS6
VSS
DQ50
DQ51
VSS
DQS6#
DQS6
VSS
DQ50
DQ51
VSS
222
223
224
225
226
227
228
229
VSS
Free
DQ56
DQ57
DQ56
DQ57
KEY
KEY
DM7
DM7
49
RESET#
RESET#
169
CKE1
CKE1
110
VSS
VSS
230
DQS16
DQS16#
VSS
DQS16
DQS16#
VSS
50
51
52
CKE0
VDD
BA2
NC
ERR-OUT#
VDD
A11
A7
VDD
A5
CKE0
VDD
BA2
NC
ERR-OUT#
VDD
A11
A7
VDD
A5
170
171
172
VDD
A15
A14
VDD
A15
A14
111
112
113
DQS7#
DQS7
VSS
DQS7#
DQS7
VSS
231
232
233
DQ62
DQ62
53
173
VDD
VDD
114
DQ58
DQ58
234
DQ63
DQ63
54
55
56
57
58
59
60
174
175
176
177
178
179
180
A12
A9
VDD
A8
A6
VDD
A3
A12
A9
VDD
A8
A6
VDD
A3
115
116
117
118
119
120
DQ59
VSS
SA0
SLC
SA2
VTT
DQ59
VSS
SA0
SLC
SA2
VTT
235
236
237
238
239
240
VSS
VSS
VDDSPD VDDSPD
SA1
SDA
VSS
VTT
SA1
SDA
VSS
VTT
A4
VDD
A4
VDD
DDR3THIN-MN-XXX
77
Doc. Rev. 1.11
APPENDIX D –Data Flow Through the Probes (coax cable to channel)
Data flow
Master C3/2/1/0
Master A1/0 D1/0
Master A3/2 D3/2
Slave1 C3/2/1/0
Slave1 E3/2/1/0
Slave1 A3/2 D3/2
Slave1 A1/0 D1/0
Plastic Housing
that plugs into
TLA 7BB4
Samtec Connectors
plug together at this
point
J15-x Coax on top
J16-x Coax on
J15-1 edge
Master A3/2 &
J16-1 edge
Slave1 A3/2 & A1/0
Interposer
Slave1 C3/2 & E3/2
Master
DDR3THIN-MN-XXX
78
Doc. Rev. 1.11
APPENDIX D - Data Flow Through the Probes (cont’d.)
Coax wire
PIN
M_C
Channel
M_A3/2 A1/0
Channel
S_A3/2 A1/0
Channel
S_C3/2 E3/2
Channel
J16-2
J16-5
J16-8
J16-11
J16-14
J16-17
J16-4
C2:0
C2:5
C3:3
C1:5
C1:0
C0:3
C2:4
C3:2
C3:7
C1:1
C0:6
C2:1
CLK3
C3:6
C1:4
C0:7
C0:2
C2:2
C2:7
C3:4
C1:6
Q1
C0:1
C2:6
C3:1
C1:7
C1:2
C0:4
C2:3
C3:0
C3:5
C1:3
C0:5
C0:0
A0:0
A0:5
A1:3
A3:5
A3:0
A2:3
A0:4
A1:2
A1:7
A3:1
A2:6
A0:1
CLK1
A1:6
A3:4
A2:7
A2:2
A0:2
A0:7
A1:4
A3:6
CLK0
A2:1
A0:6
A1:1
A3:7
A3:2
A2:4
A0:3
A1:0
A1:5
A3:3
A2:5
A2:0
A0:0
A0:5
A1:3
A3:5
A3:0
A2:3
A0:4
A1:2
A1:7
A3:1
A2:6
A0:1
CLK1
A1:6
A3:4
A2:7
A2:2
A0:2
A0:7
A1:4
A3:6
CLK0
A2:1
A0:6
A1:1
A3:7
A3:2
A2:4
A0:3
A1:0
A1:5
A3:3
A2:5
A2:0
E2:0
E2:5
E3:3
C3:5
C3:0
C2:3
E2:4
E3:2
E3:7
C3:1
C2:6
E2:1
Q3
E3:6
C3:4
C2:7
C2:2
E2:2
E2:7
E3:4
C3:6
CLK3
C2:1
E2:6
E3:1
C3:7
C3:2
C2:4
E2:3
E3:0
E3:5
C3:3
C2:5
C2:0
J16-7
J16-10
J16-13
J16-16
J16-3
J16-6
J16-9
J16-12
J16-15
J16-18
J15-18
J15-15
J15-12
J15-9
J15-6
J15-3
J15-16
J15-13
J15-10
J15-7
J15-4
J15-17
J15-14
J15-11
J15-8
J15-5
J15-2
DDR3THIN-MN-XXX
79
Doc. Rev. 1.11
APPENDIX E – B_DDR3D_2D Support Pinout, DIMM Slot 0
Samtec
Pin
Coax
Pin
TLA
Channe
l
DDR3
Signal
Samte
c
Pin
Coax
Pin
TLA
Channe
l
DDR3
Signal
15
29
25
28
24
21
19
20
16
12
10
11
9
6
4
5
3
46
32
36
33
37
40
J15-6
J15-10
J15-9
J16-11
J16-12
J15-8
CK1
A1:7
A1:6
A1:5
A1:4
A1:3
A1:2
A1:1
A1:0
A0:7
A0:6
A0:5
A0:4
A0:3
A0:2
A0:1
A0:0
CK0
A3:7
A3:6
A3:5
A3:4
A3:3
CB1
NC
CB3
CB7
CB6
46
32
36
33
37
40
42
41
45
49
51
50
52
55
57
56
58
15
29
25
28
24
21
J16-6
J16-10
J16-9
J15-11
J15-12
J16-8
CK3+
C3:7
C3:6
C3:5
C3:4
C3:3
C3:2
C3:1
C3:0
C2:7
C2:6
C2:5
C2:4
C2:3
C2:2
C2:1
C2:0
Q1+
C1:7
C1:6
C1:5
C1:4
C1:3
A13
BA1
RAS#
CAS#
S1#
CB2
S0#
J15-7
DQS8
DM8
CB5
CB4
DQ31
CB0
DQ27
DQ30
DM3
DQ26
DQS3
A15
TEST
RESET#
NC
J16-7
ODT0
ODT1
S2#
DQ32
DQ33
S3#
DQ36
DQS4
NC
DQ37
DM4
A2
WE#
BA0
A0
CK0
A10
J16-13
J16-14
J16-15
J16-16
J15-5
J15-13
J15-14
J15-15
J15-16
J16-5
J15-4
J16-4
J16-17
J16-18
J15-3
J15-2
J16-6
J16-10
J16-9
J15-11
J15-12
J16-8
J15-17
J15-18
J16-3
J16-2
J15-6
J15-10
J15-9
J16-11
J16-12
J15-8
NC
NC
PAR_I
N
A1
42
41
45
J16-7
J15-13
J15-14
A3:2
A3:1
A3:0
CKE1
CKE0
BA2
ERR_OUT
#
19
20
16
J15-7
J16-13
J16-14
C1:2
C1:1
C1:0
A3
49
51
50
52
55
57
56
58
J15-15
J15-16
J16-5
A2:7
A2:6
A2:5
A2:4
A2:3
A2:2
A2:1
A2:0
12
10
11
9
6
4
J16-15
J16-16
J15-5
C0:7
C0:6
C0:5
C0:4
C0:3
C0:2
C0:1
C0:0
NC
NC
A4
NC
A6
NC
NC
NC
A11
A14
A12
A7
A5
A9
A8
J16-4
J15-4
J15-17
J15-18
J16-3
J16-17
J16-18
J15-3
5
3
J16-2
J15-2
2X Probe Connection used with
B_DDR3D_2D software
M_A3/2 A1/0
1X Probe Connection used with
B_DDR3D_2D software
M_C3/2 C1/0
DDR3THIN-MN-XXX
80
Doc. Rev. 1.11
APPENDIX E – B_DDR3D_2D Support Pinout, DIMM Slot 0 (Cont’d.)
Coax
Pin
TLA
Channel Signal
DDR3
Coax
Pin
TLA
Channel Signal
DDR3
Samtec
Pin
Samtec
Pin
15
29
25
28
24
21
19
20
16
12
10
11
9
J15-6
J15-10
J15-9
J16-11
J16-12
J15-8
CK1
A1:7
A1:6
A1:5
A1:4
A1:3
A1:2
A1:1
A1:0
A0:7
A0:6
A0:5
A0:4
A0:3
A0:2
A0:1
A0:0
CK0
A3:7
A3:6
A3:5
A3:4
A3:3
A3:2
A3:1
A3:0
A2:7
A2:6
A2:5
A2:4
A2:3
A2:2
A2:1
A2:0
DQS5
DQ49
DQ48
DQ52
DQ47
DQ43
DQ42
DQ46
DM5
DQ45
DQ44
DQ41
DQ40
DQ39
DQ38
DQ35
DQ34
DQ60
DQ53
DM6
DQS6
DQ50
DQ54
DQ55
DQ51
DQ56
DQ57
DQS7
DQ61
DM7
46
32
36
33
37
40
42
41
45
49
51
50
52
55
57
56
58
15
29
25
28
24
21
19
20
16
12
10
11
9
J15-6
J15-10
J15-9
J16-11
J16-12
J15-8
Q3
DQ3
DQ10
DQS1
DM1
DQ13
DQ9
DQ8
DQ12
DQ7
DQ6
DM0
DQ2
DQS0
DQ5
DQ4
E3:7
E3:6
E3:5
E3:4
E3:3
E3:2
E3:1
E3:0
E2:7
E2:6
E2:5
E2:4
E2:3
E2:2
E2:1
E2:0
CK3
C3:7
C3:6
C3:5
C3:4
C3:3
C3:2
C3:1
C3:0
C2:7
C2:6
C2:5
C2:4
C2:3
C2:2
C2:1
C2:0
J15-7
J15-7
J16-13
J16-14
J16-15
J16-16
J15-5
J16-13
J16-14
J16-15
J16-16
J15-5
J15-4
J15-4
6
4
5
3
J16-17
J16-18
J15-3
J15-2
J16-6
J16-10
J16-9
J15-11
J15-12
J16-8
J16-17
J16-18
J15-3
J15-2
J16-6
J16-10
J16-9
J15-11
J15-12
J16-8
DQ1
DQ0
46
32
36
33
37
40
42
41
45
49
51
50
52
55
57
56
58
DM2
DQ14
DQ15
DQ11
DQ16
DQ20
DQ21
DQ17
DQS2
DQ18
DQ19
DQ22
DQ23
DQ24
DQ25
DQ28
DQ29
J16-7
J16-7
J15-13
J15-14
J15-15
J15-16
J16-5
J15-13
J15-14
J15-15
J15-16
J16-5
J16-4
J16-4
J15-17
J15-18
J16-3
DQ58
DQ59
DQ62
DQ63
6
4
5
3
J15-17
J15-18
J16-3
J16-2
J16-2
2X Probe Connection used with
B_DDR3D_2D software
S_A3/2 A1/0
2X Probe Connection used with
B_DDR3D_2D software
S_C3/2 E3/2
DDR3THIN-MN-XXX
81
Doc. Rev. 1.11
APPENDIX F – B_DDR3_2G Support Pinout, DIMM Slot 0 Auxiliary Signals
Samte
c Pin
Coax
Pin
TLA
Channe
l
DDR3
Signal
46
32
36
J16-6
J16-10
J16-9
NC
NC
NC
E3:7
E3:6
cCLKE1
LEAD-6
cCLKE0
LEAD-5
NC
33
J15-11
E3:5
37
40
42
41
45
49
J15-12
J16-8
J16-7
J15-13
J15-14
J15-15
E3:4
E3:3
E3:2
E3:1
E3:0
E2:7
NC
LEAD-4
LEAD-3
NC
cS1#
LEAD-2
NC
51
50
52
55
J15-16
J16-5
J16-4
E2:6
E2:5
E2:4
E2:3
NC
NC
J15-17
cS0#
LEAD-1
NC
57
56
58
J15-18
J16-3
J16-2
E2:2
E2:1
E2:0
NC
bCLKE1
LEAD-
10
15
J15-6
Q2
bCLKE0
LEAD-7
LEAD-8
NC
NC
NC
LEAD-9
NC
29
25
28
24
21
19
20
16
12
10
11
J15-10
J15-9
J16-11
J16-12
J15-8
E1:7
E1:6
E1:5
E1:4
E1:3
E1:2
E1:1
E1:0
E0:7
E0:6
E0:5
J15-7
J16-13
J16-14
J16-15
J16-16
J15-5
NC
NC
NC
NC
bS1#
LEAD-
11
NC
NC
9
6
4
5
J15-4
J16-17
J16-18
J15-3
E0:4
E0:3
E0:2
E0:1
NC
bS0#
LEAD-
12
3
J15-2
E0:0
Optional Flying Lead Probe Connection used with
B_DDR3D_2G software
M_E3/2 E1/0
DDR3THIN-MN-XXX
82
Doc. Rev. 1.11
DDR3THIN-MN-XXX
83
Doc. Rev. 1.11
APPENDIX G – B_DDR3D_3A Support Pinout, DIMM Slot 1
Samte
c Pin
Coax
Pin
TLA
Channe
l
DDR3
Signal
Samte
c
Pin
Coax
Pin
TLA
Channe
l
DDR3
Signal
15
29
25
28
24
21
19
20
16
12
10
11
9
6
4
5
3
46
32
36
33
37
40
42
41
45
J15-6
J15-10
J15-9
J16-11
J16-12
J15-8
Q0+
D3:7
D3:6
D3:5
D3:4
D3:3
D3:2
D3:1
D3:0
D2:7
D2:6
D2:5
D2:4
D2:3
D2:2
D2:1
D2:0
CK0+
A3:7
A3:6
A3:5
A3:4
A3:3
A3:2
A3:1
A3:0
CB1
NC
46
32
36
33
37
40
42
41
45
49
51
50
52
55
57
56
58
15
29
25
28
24
21
19
20
16
J16-6
J16-10
J16-9
J15-11
J15-12
J16-8
CK3+
C3:7
C3:6
C3:5
C3:4
C3:3
C3:2
C3:1
C3:0
C2:7
C2:6
C2:5
C2:4
C2:3
C2:2
C2:1
C2:0
Q1+
C1:7
C1:6
C1:5
C1:4
C1:3
C1:2
C1:1
C1:0
A13
BA1
RAS#
CAS#
S1#
CB3
CB7
CB6
CB2
DQS8
DM8
CB5
CB4
DQ31
CB0
DQ27
DQ30
DM3
DQ26
DQS3
A15
S0#
J15-7
J16-7
ODT0
ODT1
S2#
DQ32
DQ33
S3#
DQ36
DQS4
NC
DQ37
DM4
A2
WE#
BA0
A0
CK0
A10
J16-13
J16-14
J16-15
J16-16
J15-5
J15-13
J15-14
J15-15
J15-16
J16-5
J15-4
J16-4
J16-17
J16-18
J15-3
J15-2
J16-6
J16-10
J16-9
J15-11
J15-12
J16-8
J16-7
J15-13
J15-14
J15-17
J15-18
J16-3
J16-2
J15-6
J15-10
J15-9
J16-11
J16-12
J15-8
J15-7
J16-13
J16-14
TEST
RESET#
NC
NC
NC
CKE1
CKE0
BA2
ERR_OUT
#
PAR_IN
A1
A3
49
51
50
52
55
57
56
58
J15-15
J15-16
J16-5
A2:7
A2:6
A2:5
A2:4
A2:3
A2:2
A2:1
A2:0
12
10
11
9
6
4
J16-15
J16-16
J15-5
C0:7
C0:6
C0:5
C0:4
C0:3
C0:2
C0:1
C0:0
NC
NC
A4
NC
A6
NC
NC
NC
A11
A14
A12
A7
A5
A9
A8
J16-4
J15-4
J15-17
J15-18
J16-3
J16-17
J16-18
J15-3
5
3
J16-2
J15-2
2X Probe Connection used with
B_DDR3D_2D software
M_A3/2 A1/0
1X Probe Connection used with
B_DDR3D_2D software
M_C3/2 C1/0
(S2_A3/2 D3/2 Logic Analyzer Probe)
(S2_C3/2/1/0 Logic Analyzer Probe)
DDR3THIN-MN-XXX
84
Doc. Rev. 1.11
APPENDIX G – B_DDR3D_3A Support Pinout, DIMM Slot 1 (cont’d.)
Samtec
Pin
Coax
Pin
TLA
Channe
l
DDR
Samte
c
Pin
Coax
Pin
TLA
Channe
l
DDR
3
Signa
l
3
Signa
l
15
29
25
28
24
21
19
20
16
12
10
11
9
J15-6
J15-10
J15-9
J16-11
J16-12
J15-8
CK2+
D1:7
D1:6
D1:5
D1:4
D1:3
D1:2
D1:1
D1:0
D0:7
D0:6
D0:5
D0:4
D0:3
D0:2
D0:1
D0:0
CK1+
A1:7
A1:6
A1:5
A1:4
A1:3
A1:2
A1:1
A1:0
A0:7
A0:6
A0:5
A0:4
A0:3
A0:2
A0:1
A0:0
DQS5
DQ49
DQ48
DQ52
DQ47
DQ43
DQ42
DQ46
DM5
DQ45
DQ44
DQ41
DQ40
DQ39
DQ38
DQ35
DQ34
DQ60
DQ53
DM6
DQS6
DQ50
DQ54
DQ55
DQ51
DQ56
DQ57
DQS7
DQ61
DM7
15
29
25
28
24
21
19
20
16
12
10
11
9
J15-6
J15-10
J15-9
J16-11
J16-12
J15-8
Q2+
E1:7
E1:6
E1:5
E1:4
E1:3
E1:2
E1:1
E1:0
E0:7
E0:6
E0:5
E0:4
E0:3
E0:2
E0:1
E0:0
Q3+
E3:7
E3:6
E3:5
E3:4
E3:3
E3:2
E3:1
E3:0
E2:7
E2:6
E2:5
E2:4
E2:3
E2:2
E2:1
E2:0
DQ3
DQ10
DQS1
DM1
DQ13
DQ9
DQ8
DQ12
DQ7
DQ6
DM0
DQ2
DQS0
DQ5
DQ4
J15-7
J15-7
J16-13
J16-14
J16-15
J16-16
J15-5
J16-13
J16-14
J16-15
J16-16
J15-5
J15-4
J15-4
6
4
5
3
J16-17
J16-18
J15-3
J15-2
J16-6
J16-10
J16-9
J15-11
J15-12
J16-8
6
4
5
3
J16-17
J16-18
J15-3
J15-2
J16-6
J16-10
J16-9
J15-11
J15-12
J16-8
DQ1
DQ0
46
32
36
33
37
40
42
41
45
49
51
50
52
55
57
56
58
46
32
36
33
37
40
42
41
45
49
51
50
52
55
57
56
58
DM2
DQ14
DQ15
DQ11
DQ16
DQ20
DQ21
DQ17
DQS2
DQ18
DQ19
DQ22
DQ23
DQ24
DQ25
DQ28
DQ29
J16-7
J16-7
J15-13
J15-14
J15-15
J15-16
J16-5
J15-13
J15-14
J15-15
J15-16
J16-5
J16-4
J16-4
J15-17
J15-18
J16-3
DQ58
DQ59
DQ62
DQ63
J15-17
J15-18
J16-3
J16-2
J16-2
2X Probe Connection used with
B_DDR3D_2D software
2X Probe Connection used with
B_DDR3D_2D software
S_A3/2 A1/0
S_C3/2 E3/2
(S2_A1/0 D1/0 Logic Analyzer Probe)
(S2_E3/2/1/0 Logic Analyzer Probe)
DDR3THIN-MN-XXX
85
Doc. Rev. 1.11
APPENDIX H – Data Group / Data Byte / Strobe Cross-Reference
32-bit Data Group 8-bit Data Group Strobe
Data Bits
RdADatHi
RdADatLo
WrADatHi
WrADatLo
RdBDatHi
RdBDatLo
WrBDatHi
WrBDatLo
RdADatB7
RdADatB6
RdADatB5
RdADatB4
RdADatB3
RdADatB2
RdADatB1
RdADatB0
WrADatB7
WrADatB6
WrADatB5
WrADatB4
WrADatB3
WrADatB2
WrADatB1
WrADatB0
RdBDatB7
RdBDatB6
RdBDatB5
RdBDatB4
RdBDatB3
RdBDatB2
RdBDatB1
RdBDatB0
WrBDatB7
WrBDatB6
WrBDatB5
WrBDatB4
WrBDatB3
WrBDatB2
WrBDatB1
WrBDatB0
DQS7
DQS6
DQS5
DQS4
DQS3
DQS2
DQS1
DQS0
DQS7
DQS6
DQS5
DQS4
DQS3
DQS2
DQS1
DQS0
DQS7
DQS6
DQS5
DQS4
DQS3
DQS2
DQS1
DQS0
DQS7
DQS6
DQS5
DQS4
DQS3
DQS2
DQS1
DQS0
63,62,61,60,59,58,57,56
55,54,53,52,51,50,49,48
47,46,45,44,43,42,41,40
39,38,37,36,35,34,33,32
31,30,29,28,27,26,25,24
23,22,21,20,19,18,17,16
15,14,13,12,11,10,9,8
7,6,5,4,3,2,1,0
63,62,61,60,59,58,57,56
55,54,53,52,51,50,49,48
47,46,45,44,43,42,41,40
39,38,37,36,35,34,33,32
31,30,29,28,27,26,25,24
23,22,21,20,19,18,17,16
15,14,13,12,11,10,9,8
7,6,5,4,3,2,1,0
63,62,61,60,59,58,57,56
55,54,53,52,51,50,49,48
47,46,45,44,43,42,41,40
39,38,37,36,35,34,33,32
31,30,29,28,27,26,25,24
23,22,21,20,19,18,17,16
15,14,13,12,11,10,9,8
7,6,5,4,3,2,1,0
63,62,61,60,59,58,57,56
55,54,53,52,51,50,49,48
47,46,45,44,43,42,41,40
39,38,37,36,35,34,33,32
31,30,29,28,27,26,25,24
23,22,21,20,19,18,17,16
15,14,13,12,11,10,9,8
7,6,5,4,3,2,1,0
B_DDR3D_XX Groups/Bytes/Strobes Cross Reference
DDR3THIN-MN-XXX
86
Doc. Rev. 1.11
APPENDIX L - References
JEDEC PC3-6400/PC3-8500-10660 DDR3 SDRAM Unbuffered DIMM Design Specification
Revision 0.1 March 20, 2006.
Tektronix TLA7000 Series Installation Manual
Tek part number 071-1747-03
Tektronix TLA7000 Series Technical Reference Manual
Tektronix part number 071-1764-00
Nexus Low Profile Distributed Probe Manual—
Part number LowProfileProbes-MN-XXX
JEDEC DDR3 SDRAM Standard
JESD79-3 June 2007
DDR3THIN-MN-XXX
90
Doc. Rev. 1.11
APPENDIX M - Support
About Nexus Technology, Inc.
Established in 1991, Nexus Technology, Inc. is dedicated to developing, marketing, and
supporting Bus Analysis applications for Tektronix Logic Analyzers.
We can be reached at:
Nexus Technology, Inc.
P.O. Box 6575
Nashua, NH 03063
TEL: 877-595-8116
FAX: 877-595-8118
Support Contact Information
Technical Support
We will try to respond within one business day.
If Problems Are Found
Document the problem and e-mail the information to us. If at all possible please forward
a Saved System Setup (with acquired data) that shows the problem. Please do not send a
text listing alone as that does not contain enough data for analysis. To prevent corruption
during the mailing process it is strongly suggested that the Setup be zipped before
transmission.
DDR3THIN-MN-XXX
91
Doc. Rev. 1.11
|
Intel S845WD1 E User Manual
Jenn Air Cooktop JIC4536X User Manual
JVC AV 30W776 User Manual
Lenovo 7062 User Manual
MSi IM GM45 User Manual
NEC LCD17V User Manual
Panasonic Cordless Phone KXTG6842B User Manual
Philips 14GR2330 User Manual
Philips 21PT3732 User Manual
Philips 107S76 User Manual