Magnetek Computer Hardware TM7310rev01 User Manual

QuattroDC Elevator Drive  
Technical Manual  
TM7310 rev 01  
© 2006 Magnetek Elevator  
Table of Contents  
1
2
Quattro DC Quick Parameter Reference  
Sub  
menu  
A1  
Site  
Setting  
Parameter  
Units  
Range  
Default  
Drive A1 Submenu – See Drive A1 submenu on page 30.  
fpm  
m/s  
0.0 – 1500.0  
0.000 – 8.000  
400.0  
A1 CONTRACT CAR SPD  
2.000  
1130.0  
10.0  
2.00  
2.0  
A1 CONTRACT MTR SPD  
A1 RESPONSE  
RPM  
30.0 – 3000.0  
1.0 – 20.0  
0.25 – 50.00  
0.1 – 20.0  
0.0 – 275.0  
10 – 100  
rad/sec  
A1 INERTIA  
sec  
A1 INNER LOOP XOVER  
A1 CURRENT LIMIT  
rad/sec  
%
200  
100  
100.0  
100  
0.0  
A1 GAIN REDUCE MULT  
A1 GAIN CHNG LEVEL  
A1 TACH FILTER BW  
A1 TACH RATE GAIN  
A1 SPD PHASE MARGIN  
A1 RAMPED STOP TIME  
A1 CONTACT FLT TIME  
A1 BRAKE PICK TIME  
A1 BRAKE HOLD TIME  
A1 OVERSPEED LEVEL  
A1 OVERSPEED TIME  
A1 OVERSPEED MULT  
A1 ENCODER PULSES  
A1 SPD DEV LO LEVEL  
A1 SPD DEV TIME  
%
% of rated spd  
0.0 – 100.0  
1 – 100  
rad/sec  
none  
0.0 – 30.0  
45 – 90  
degrees  
80  
sec  
0.00 – 2.50  
0.10 – 5.00  
0.00 – 5.00  
0.00 – 5.00  
90.0 – 150.0  
0.00 – 9.99  
100.0 – 150.0  
600 – 10000  
0.1 – 20.0  
0.00 – 9.99  
0.0 – 99.9  
0.00 – 6.00  
0.90 – 5.00  
-6.00 – +6.00  
-10.00 – +10.00  
0.00 – 99.99  
0.00 – 9.99  
0.00 – 9.99  
-99.9 – +99.9  
-99.9 – +99.9  
0.0 – 10.0  
0.0 – 10.0  
0 – 120  
0.20  
0.50  
1.00  
0.20  
115.0  
1.00  
125.0  
5000  
10.0  
0.50  
10.0  
0.00  
1.00  
0.00  
1.00  
1.00  
0.10  
1.00  
0.0  
sec  
sec  
sec  
% of contract spd  
sec  
%
PPR  
% of contract spd  
sec  
A1 SPD DEV HI LEVEL  
A1 SPD COMMAND BIAS  
A1 SPD COMMAND MULT  
A1 EXT TORQUE BIAS  
A1 EXT TORQUE MULT  
A1 ZERO SPEED LEVEL  
A1 ZERO SPEED TIME  
A1 UP/DWN THRESHOLD  
A1 ANA 1 OUT OFFSET  
A1 ANA 2 OUT OFFSET  
A1 ANA 1 OUT GAIN  
A1 ANA 2 OUT GAIN  
A1 FLT RESET DELAY  
A1 FLT RESETS/HOUR  
A1 UP TO SPD LEVEL  
A1 RUN DELAY TIMER  
A1 AB ZERO SPD LEV  
A1 AB OFF DELAY  
% of contract spd  
volts  
none  
volts  
none  
% of contract spd  
sec  
% of contract spd  
%
%
0.0  
none  
1.0  
none  
1.0  
sec  
5
faults  
0 – 10  
3
% of contract spd  
0.00 – 110.00  
0.00 – 0.99  
0.00 – 2.00  
0.00 – 9.99  
0.00 – 5.00  
0.00 – 10.00  
1 – 99  
80.00  
0.00  
0.00  
0.00  
0.00  
0.50  
1
sec  
%
sec  
sec  
sec  
none  
Hz  
A1 CONTACTOR DO DLY  
A1 TRQ LIM MSG DLY  
A1 ROLLBACK GAIN  
A1 NOTCH FILTER FRQ  
A1 NOTCH FILT DEPTH  
A1 STNDBY FLD TIME  
A1 DSPR TIME  
5 – 60  
20  
%
0 – 100  
0
sec  
min  
min  
0 – 999  
30  
0 – 999  
120  
5
A1 FULL FIELD TIME  
0 – 99  
3
Quattro DC Quick Parameter Reference  
Sub  
menu  
Site  
Setting  
Parameter  
Units  
Range  
Default  
A2  
ft/s2  
m/s2  
ft/s2  
m/s2  
ft/s3  
m/s3  
ft/s3  
m/s3  
ft/s3  
m/s3  
ft/s3  
m/s3  
ft/s2  
m/s2  
ft/s2  
m/s2  
ft/s3  
m/s3  
ft/s3  
m/s3  
ft/s3  
m/s3  
ft/s3  
m/s3  
ft/s2  
m/s2  
ft/s2  
m/s2  
ft/s3  
m/s3  
ft/s3  
m/s3  
ft/s3  
m/s3  
ft/s3  
m/s3  
ft/s2  
m/s2  
ft/s2  
m/s2  
ft/s3  
m/s3  
ft/s3  
m/s3  
ft/s3  
m/s3  
ft/s3  
m/s3  
0.00 – 7.99  
0.000 – 3.999  
0.00 – 7.99  
0.000 – 3.999  
0.0 – 29.9  
0.000 – 9.999  
0.0 – 29.9  
0.000 – 9.999  
0.0 – 29.9  
7.99  
2.435  
7.99  
2.435  
0.0  
0.000  
0.0  
0.000  
0.0  
A2 ACCEL RATE 0  
A2 DECEL RATE 0  
A2 ACCEL JERK IN 0  
A2 ACCEL JERK OUT 0  
A2 DECEL JERK IN 0  
A2 DECEL JERK OUT 0  
A2 ACCEL RATE 1  
0.000 – 9.999  
0.0 – 29.9  
0.000  
0.0  
0.000 – 9.999  
0.00 – 7.99  
0.000 – 3.999  
0.00 – 7.99  
0.000 – 3.999  
0.0 – 29.9  
0.000 – 9.999  
0.0 – 29.9  
0.000 – 9.999  
0.0 – 29.9  
0.000  
7.00  
2.134  
3.00  
0.090  
8.0  
2.400  
8.0  
2.400  
8.0  
A2 DECEL RATE 1  
A2 ACCEL JERK IN 1  
A2 ACCEL JERK OUT 1  
A2 DECEL JERK IN 1  
A2 DECEL JERK OUT 1  
A2 ACCEL RATE 2  
0.000 – 9.999  
0.0 – 29.9  
2.400  
8.0  
0.000 – 9.999  
0.00 – 7.99  
0.000 – 3.999  
0.00 – 7.99  
0.000 – 3.999  
0.0 – 29.9  
0.000 – 9.999  
0.0 – 29.9  
0.000 – 9.999  
0.0 – 29.9  
2.400  
3.00  
0.090  
3.00  
0.090  
8.0  
2.400  
8.0  
2.400  
8.0  
A2 DECEL RATE 2  
A2 ACCEL JERK IN 2  
A2 ACCEL JERK OUT 2  
A2 DECEL JERK IN 2  
A2 DECEL JERK OUT 2  
A2 ACCEL RATE 3  
0.000 – 9.999  
0.0 – 29.9  
2.400  
8.0  
0.000 – 9.999  
0.00 – 7.99  
0.000 – 3.999  
0.00 – 7.99  
0.000 – 3.999  
0.0 – 29.9  
0.000 – 9.999  
0.0 – 29.9  
0.000 – 9.999  
0.0 – 29.9  
2.400  
3.00  
0.090  
3.00  
0.090  
8.0  
2.400  
8.0  
2.400  
8.0  
A2 DECEL RATE 3  
A2 ACCEL JERK IN 3  
A2 ACCEL JERK OUT 3  
A2 DECEL JERK IN 3  
A2 DECEL JERK OUT 3  
0.000 – 9.999  
0.0 – 29.9  
0.000 – 9.999  
2.400  
8.0  
2.400  
4
Quattro DC Quick Parameter Reference  
Sub  
menu  
Site  
Setting  
Parameter  
Units  
Range  
Default  
A3  
ft/min  
m/sec  
ft/min  
m/sec  
ft/min  
m/sec  
ft/min  
m/sec  
ft/min  
m/sec  
ft/min  
m/sec  
ft/min  
m/sec  
ft/min  
m/sec  
ft/min  
m/sec  
ft/min  
m/sec  
ft/min  
m/sec  
ft/min  
m/sec  
ft/min  
m/sec  
ft/min  
m/sec  
ft/min  
m/sec  
-3000.0 – +3000.0  
-16.000 – +16.000  
-3000.0 – +3000.0  
-16.000 – +16.000  
-3000.0 – +3000.0  
-16.000 – +16.000  
-3000.0 – +3000.0  
-16.000 – +16.000  
-3000.0 – +3000.0  
-16.000 – +16.000  
-3000.0 – +3000.0  
-16.000 – +16.000  
-3000.0 – +3000.0  
-16.000 – +16.000  
-3000.0 – +3000.0  
-16.000 – +16.000  
-3000.0 – +3000.0  
-16.000 – +16.000  
-3000.0 – +3000.0  
-16.000 – +16.000  
-3000.0 – +3000.0  
-16.000 – +16.000  
-3000.0 – +3000.0  
-16.000 – +16.000  
-3000.0 – +3000.0  
-16.000 – +16.000  
-3000.0 – +3000.0  
-16.000 – +16.000  
-3000.0 – +3000.0  
-16.000 – +16.000  
0.0  
0.000  
0.0  
0.000  
0.0  
0.000  
0.0  
0.000  
0.0  
0.000  
0.0  
0.000  
0.0  
0.000  
0.0  
0.000  
0.0  
0.000  
0.0  
0.000  
0.0  
0.000  
0.0  
0.000  
0.0  
0.000  
0.0  
0.000  
0.0  
A3 SPEED COMMAND 1  
A3 SPEED COMMAND 2  
A3 SPEED COMMAND 3  
A3 SPEED COMMAND 4  
A3 SPEED COMMAND 5  
A3 SPEED COMMAND 6  
A3 SPEED COMMAND 7  
A3 SPEED COMMAND 8  
A3 SPEED COMMAND 9  
A3 SPEED COMMAND 10  
A3 SPEED COMMAND 11  
A3 SPEED COMMAND 12  
A3 SPEED COMMAND 13  
A3 SPEED COMMAND 14  
A3 SPEED COMMAND 15  
0.000  
A4  
Motor Side Power Convert A4 Submenu – See Motor Side Power Convert on page 43.  
A4 ARM RESISTANCE  
ohm  
mH  
0.0001 – 2.9999  
0.01 – 327.67  
0.01 – 30.00  
0.00 – 30.00  
0.00 – 16.38  
Start Autotune?  
manual  
autotune  
100 – 2000  
1 – 40  
0.5000  
15.00  
4.80  
0.90  
6.07  
-
A4 ARM INDUCTANCE  
A4 MTR REV VLT LIM  
A4 If REG INT GAIN  
A4 If REG PROP GAIN  
A4 AUTO TUNE MOTOR  
%
none  
none  
none  
A4 GAIN SELECTION  
none  
MANUAL  
A4 GAIN BANDWIDTH A  
A4 GAIN BANDWIDTH F  
A4 PWM FREQUENCY  
A4 FAN OFF DELAY  
rad/sec  
rad/sec  
kHz  
500  
5
2.5 – 16.0  
6.0  
180  
sec  
0 – 999  
auto  
temp  
off  
low  
medium  
high  
A4 MAIN FAN CONTROL  
none  
TEMP  
A4 UV-ALARM LEVEL  
A4 UV FAULT LEVEL  
A4 FLD CARRIER FRQ  
%
%
80 – 99  
50 – 99  
3 – 10  
90  
80  
3
kHz  
5
Quattro DC Quick Parameter Reference  
Sub  
menu  
Site  
Setting  
Parameter  
Units  
Range  
Default  
A5  
Line Side Power converter A5 Submenu – See Line Side Power Converter on page 46.  
A5 Id REG PROP GAIN  
none  
none  
none  
none  
none  
none  
volts  
volts  
volts  
0.00 – 9.99  
0 – 999  
0.00 – 9.99  
0 – 999  
0.00 – 9.99  
0 – 999  
110 – 552  
15 – 75  
0.30  
10  
0.30  
40  
3.00  
40  
480  
30  
A5 Id REG INTGRL GAIN  
A5 Iq REG PROP GAIN  
A5 Iq REG INTGRL GAIN  
A5 DC BUS REG P GAIN  
A5 DC BUS REG I GAIN  
A5 INPUT L-L VOLTS  
A5 DC BUS V BOOST  
A5 SW BUS OV LEVEL  
100 – 850  
850  
track line v  
A5 BUS VREF SOURCE  
none  
TRK Vin PARAM  
trk vin param  
0.0 – 150.0  
2.5 – 16.0  
A5 PLL FILTER FC  
A5 LS PWM FREQ  
Hz  
kHz  
40.0  
10.0  
A6  
A6 MOTOR ID  
none  
amps  
volts  
amps  
amps  
amps  
%
%
%
sec  
-
-
A6 RATED MOTOR CURR  
A6 ARMATURE VOLTS  
A6 FULL FLD CURRENT  
A6 WEAK FLD CURRENT  
A6 STANDBY FIELD  
A6 FLUX CONFIRM LEV  
A6 ARMATURE IR DROP  
A6 OVLD START LEVEL  
A6 OVLD TIME OUT  
1.0 – 400.0  
55 – 600  
0.0  
0
1.0 – 40.0  
1.0 – 40.0  
0.0 – 40.0  
25.0 – 99.0  
0.0 – 25.0  
100 – 150  
5.0 – 120.0  
0.0  
0.0  
0.0  
0.0  
0.0  
110  
60.0  
C1  
analog input  
multi-step  
ser mult step  
serial  
external tb  
serial  
serial+extrn  
external tb  
serial  
2-bit serial  
enable on run  
external tb  
serial  
C1 SPD COMMAND SRC  
none  
none  
none  
none  
none  
MULTI-STEP  
EXTERNAL TB  
ENABLE ON RUN  
INTERNAL  
C1 RUN COMMAND SRC  
C1 FIELD ENA SOURCE  
C1 HI/LO GAIN SRC  
internal  
elev spd reg  
pi speed reg  
external reg  
cemf reg  
forward  
reverse  
forward  
reverse  
reg release  
brake picked  
none  
external tb  
off  
C1 SPEED REG TYPE  
ELEV SPD REG  
C1 MOTOR ROTATION  
C1 ENCODER CONNECT  
C1 SPD REF RELEASE  
C1 CONT CONFIRM SRC  
C1 TACH FILTER  
none  
none  
none  
none  
none  
FORWARD  
FORWARD  
REG RELEASE  
NONE  
OFF  
on  
6
Quattro DC Quick Parameter Reference  
Sub  
menu  
Site  
Setting  
Parameter  
Units  
Range  
Default  
User Switches C1 Submenu continued …  
C1  
none  
analog Input  
serial  
not latched  
latched  
serial  
external tb  
external tb  
serial  
automatic  
external tb  
serial  
internal  
serial  
C1 PreTorque SOURCE  
none  
NONE  
C1 PreTorque LATCH  
C1 PTorq LATCH CLCK  
none  
none  
NOT LATCHED  
EXTERNAL TB  
C1 FAULT RESET SRC  
none  
EXTERNAL TB  
C1 OVERSPD TEST SRC  
C1 BRAKE PICK SRC  
none  
none  
EXTERNAL TB  
INTERNAL  
none  
C1 BRAKE PICK CNFM  
none  
NONE  
internal time  
external tb  
internal  
serial  
C1 BRAKE HOLD SRC  
C1 RAMPED STOP SEL  
none  
none  
INTERNAL  
NONE  
none  
ramp on stop  
external tb  
run logic  
serial  
disable  
enable  
disable  
enable  
none  
analog input  
serial  
disable  
enable  
disable  
enable  
disable  
enable  
C1 RAMP DOWN EN SRC  
none  
EXTERNAL TB  
C1 BRK PICK FLT ENA  
C1 BRK HOLD FLT ENA  
none  
none  
DISABLE  
DISABLE  
C1 EXT TORQ CMD SRC  
none  
NONE  
C1 DIR CONFIRM  
none  
none  
none  
none  
none  
none  
none  
DISABLE  
DISABLE  
ENABLE  
C1 S-CURVE ABORT  
C1 ENCODER FAULT  
C1 PRIORITY MESSAGE  
C1 STOPPING MODE  
C1 AUTO STOP  
disable  
enable  
immediate  
ramp to stop  
disable  
enable  
ENABLE  
IMMEDIATE  
DISABLE  
DISABLE  
disable  
enable  
C1 DSPR ENABLE  
7
Quattro DC Quick Parameter Reference  
Sub  
menu  
Site  
Setting  
Parameter  
Units  
Range  
Default  
C2  
C2 N.C. INPUTS  
None  
Hex Number  
0x01  
C2 LOGIC INPUT 1 TB1(1)  
C2 LOGIC INPUT 2 TB1(2)  
C2 LOGIC INPUT 3 TB1(3)  
C2 LOGIC INPUT 4 TB1(4)  
C2 LOGIC INPUT 5 TB1(5)  
C2 LOGIC INPUT 6 TB1(6)  
C2 LOGIC INPUT 7 TB1(7)  
C2 LOGIC INPUT 8 TB1(8)  
C2 LOGIC INPUT 9 TB1(9)  
CONTACT CFIRM  
contact cfirm  
ctr pwr sense  
drive enable  
extrn fault 1  
extrn fault 2  
extrn fault 3  
extrn /flt 4  
pre-trq latch  
run  
run down  
run up  
s-curve sel 0  
s-curve sel 1  
ser2 insp ena  
step ref b0  
step ref b1  
step ref b2  
step ref b3  
trq ramp down  
up/dwn  
CTR PWR SENSE  
NO FUNCTION  
DRIVE ENABLE  
RUN  
fault reset  
field enable  
low gain sel  
mech brk hold  
mech brk pick  
no function  
ospd test src  
UP/DWN  
STEP REF B0  
STEP REF B1  
FAULT RESET  
C3  
C3  
LOGIC OUTPUT 1  
TB1(25)  
CLOSE  
CONTACT  
alarm  
alarm+flt  
not alarm  
LOGIC OUTPUT 2  
TB1(26)  
RUN  
COMMANDED  
over curr flt  
overspeed flt  
overtemp flt  
overvolt flt  
ovrtemp alarm  
phase fault  
ramp down ena  
ready 2 start  
ready to run  
regen trq lim  
run commanded  
run confirm  
speed dev  
speed dev low  
speed ref rls  
speed reg rls  
undervolt flt  
up to speed  
uv alarm  
C3  
C3  
C3  
C3  
C3  
C3  
auto brake  
brake hold  
brake pick  
brk hold flt  
brk pick flt  
car going dwn  
car going up  
charge fault  
close contact  
contactor flt  
curr reg flt  
drv overload  
encoder flt  
fault  
flux confirm  
ground fault  
in low gain  
motor trq lim  
mtr overload  
no function  
LOGIC OUTPUT 3  
TB1(27)  
MTR OVERLOAD  
ENCODER FLT  
FAULT  
LOGIC OUTPUT 4  
TB1(28)  
LOGIC OUTPUT 5  
TB1(29)  
LOGIC OUTPUT 6  
TB1(30)  
SPEED REG  
RLS  
LOGIC OUTPUT 7  
TB1(31)  
SPEED REG  
RLS  
C3 SSR1 TB1(21/22)  
C3 SSR2 TB1(23/24)  
NO FUNCTION  
NO FUNCTION  
RELAY COIL 1 TB2  
(1/3/5)  
C3  
NO FUNCTION  
NO FUNCTION  
zero speed  
RELAY COIL 2 TB2  
C3  
(8/10/12)  
C4  
arm current  
spd rg tq cmd  
arm voltage  
C4 ANALOG OUTPUT 1  
SPEED REF  
speed command  
speed error  
speed feedbk  
speed ref  
aux torq cmd  
bus voltage  
est motor spd  
field current  
iarm error  
tach rate cmd  
tach speed  
torque ref  
C4 ANALOG OUTPUT 2  
SPEED FEEDBK  
pretorque ref  
motor mode  
8
Quattro DC Quick Parameter Reference  
Menu Parameter  
D1 Elevator Data Submenu  
D1 Speed Command  
Unit  
Menu Parameter  
U1 Password U1 Submenu  
U1 Enter password  
Unit  
ft/min or m/sec  
ft/min or m/sec  
ft/min or m/sec  
ft/min or m/sec  
% of rated torque  
% of rated current  
-
-
-
D1 Speed Reference  
D1 Speed Feedback  
D1 Speed Error  
U1 New password  
U1 Password Lockout  
U2  
U2 Hidden Items Enable  
U3 Units U3 Submenu  
U3 Units Selection  
Hidden Items U2 Submenu  
D1 Pre-Torque Ref  
D1 Ext-Torque Cmd  
-
-
-
D1 Spd Reg Torq Cmd % of rated torque  
D1 Tach Rate Cmd  
D1 Aux Torque Cmd  
D1 Est Inertia  
% of rated torque  
% of rated torque  
Seconds  
U4  
Ovrspeed Test U4 Submenu  
U4 Overspeed Test  
U5  
Restore Dflts U5 Submenu  
D1 Rx Com Status  
D1 Logic Outputs  
D1 Logic Inputs  
1 = true; 0 = false  
1 = true; 0 = false  
1 = true; 0 = false  
U5 Restore Motor Dflts  
U5 Restore Drive Dflts  
U5 Restore Utility Dflts  
-
-
-
D2  
MS Power Data Submenu  
U6  
U6 MS Type  
U6 MS Code Version  
Motor Side Info U6 Submenu  
D2 Armature Current  
Amps  
-
-
-
-
-
-
D2 Field Current  
Amps  
D2 Armature Voltage  
D2 MS Bus Voltage  
D2 Motor Mode  
Volts  
U6 MS S/W Date  
U6 MS S/W Time  
U6 MS FPGA Version  
U6 MS Cube ID  
Volts  
None  
D2 Torque Ref  
%
D2 Est Spd Fdbk  
D2 Encoder Spd  
ft/min or m/sec  
U7  
Line Side Info U7 Submenu  
ft/min or m/sec  
U7 LS Type  
-
-
-
-
-
-
D2 DS Module Temp  
D2 LS Module Temp  
D2 Highest Temp  
D2 Field IGBT Temp  
D2 Armature Cur Err  
D2 Auto Fld Int  
°C  
°C  
U7 LS Code Version  
U7 LS S/W Date  
U7 LS S/W Time  
U7 LS FPGA Version  
U7 LS Cube ID  
°C  
°C  
Amps  
none  
none  
mH  
U8  
U8 Hex Monitor  
F1 Active Faults F1 Submenu  
Hex Monitor U8 Submenu  
D2 Auto Fld Prop  
D2 Auto Meas Arm L  
D2 Auto Meas Arm R  
D2 Auto Field Res  
D2 Auto Field Tc  
-
Ohm  
Ohm  
sec  
F1 Display Active Faults  
F1 Reset Active Faults  
Faults History F2 Submenu  
F2 Display Fault History  
F2 Clear Fault History  
-
-
F2  
D3  
LS Power Data Submenu  
-
-
-
D3 LS Pwr Output  
D3 DC Bus Voltage  
D3 DC Bus Volts Ref  
D3 LS Overload  
D3 LS Input Current  
D3 LS D Axis I  
kW  
Volts  
Volts  
%
F2 Display Fault Counters  
Amps  
%
D3 LS Q Axis I  
%
D3 LS D Axis Volts  
D3 LS Q Axis Volts  
D3 Input Hz  
%
%
Hz  
D3 Input Vab  
Volts  
Volts  
°C  
D3 Input Vca  
D3 LS Module Temp  
9
Quattro DC Introduction  
User choice of P-I type or MagneTek  
exclusive E-Reg, elevator velocity  
regulators (see pages 59 and 60)  
Optional CEMF speed regulator for use  
during initial construction stage start-up  
Torque Feed-Forward when available from  
the car controller (see pg 23)  
Introduction  
Drive Ratings and Specifications  
The Quattro drive is designed for connection to  
a 4 wire grounded 3-phase input along with a  
single-phase 230 VAC control power input.  
Basic Drive Specifications  
Pre-Torque at drive start to reduce roll-back  
125, 200, 250 amps DC armature output  
(Elevator Run Current) at up to 550VDC in  
2 basic model sizes  
150% overload for 60 seconds  
250% overload for 6 seconds  
Up to 40 ADC motor field control  
<8% utility input current harmonics at full  
power (<5% on 125 amp unit)  
Unity Power Factor (1.0 Service Factor)  
0–45ºC (32–115ºF) ambient temp range  
Fully regenerative operation  
Includes motor armature contactor w/  
provision for armature DB resistors  
4+ Million Start-Stop operating cycles  
(9) 24VDC Programmable Logic Inputs  
(11) Programmable Logic Outputs:  
Controlled torque Ramp-Down to prevent  
elevator brake thumping at stops (see pg 23)  
Internal frequency notch filter to reject rope  
resonance interference (see pg 38)  
Closed loop motor field current regulator  
with simplified motor field weakening and  
stand-by adjustments  
Quiet, variable speed cooling fan  
Drive Stand-by Power Reduction (see pg 24)  
User selectable choices for relay logic  
outputs, including (see Logic Outputs C3  
Drive OK / No Faults relay  
Alarms Relay  
Drive operating, OK to release brake  
Car above/below speed X threshold  
Car above/below Zero speed threshold  
Car Moving Up  
(7) 24VDC  
(2) Solid-State Relays  
(2) Relays  
5V or 12V Isolated encoder power source  
Car Moving Down  
w/ differential receivers  
Speed Error above/below X threshold for Y  
secs  
Service Conditions  
Drive Standby Power Reduction (DSPR)  
Elevator Brake actuation  
User selectable analog trace outputs for  
system diagnostics (see Analog Outputs C4  
Diagnostic indicator for verifying logic input  
and output conditions  
Programmable Alarm Relay to indicate  
important but non-critical conditions  
Motor thermostat over-temperature  
Motor Over-Load  
Required: 200-480 VAC, 3-phase, 50/60 Hz  
input power, Line Impedance Z < 6%  
Required: 220-240 VAC, single-phase  
control power, 50/60 Hz, 3.5/5.5 amps  
maximum for 125/200-250 amp drives  
respectively  
Software Operating Features  
The General Purpose Quattro-DC elevator  
drive is a four-quadrant torque and speed  
regulated motor drive with low power line  
harmonic currents and unity power factor. It  
can be configured to operate geared and  
gearless elevators and lifts. Basic features  
include...  
Drive Over-Heating  
Low Utility Line Input  
Safety related fault trapping with  
diagnostics, including:  
Motor Over-Current  
Motor field Malfunction  
Contactor Failure  
Severe Utility Line disturbances  
Encoder Loss  
Over-Speed Trip  
User choice of operating speed reference  
External analog reference follower  
Serial link reference follower  
Internal reference generator with  
controlled S-Curve smoothing to one of 15  
preset speeds  
User selectable automatic or external  
commanded Fault Reset (see User  
User choice of ft/min or m/sec speed  
programming and display units (see pg 71)  
User choice of input control logic for Run-Up /  
Run-Down or Run / Direction relay control  
with internal preset speeds (see pg 23)  
10  
 
Quattro DC Introduction  
The next option consists of shipping, either  
domestically or internationally. Due to  
international standards, the shipping crate  
must be heat-treated.  
The final option section determines the type of  
motor contactor and Magnetek Operator. The  
Magnetek Operator is not required to start  
running, but allows for easy access to  
parameters, overspeed test, and auto tuning.  
Drive Model Numbers  
The Quattro DC drive is currently available  
with three different output currents and a  
variety of options.  
The enclosure options consist of a customer  
I/O panel and a side Dynamic Braking Resistor  
box. The Dynamic Braking Resistor box is an  
optional box that is attached to the right hand  
side of the cabinet. It is used to hold the  
dynamic braking resistors. The customer I/O  
panel is an optional larger width cabinet that  
allows for customer interfacing within the  
supplied cabinet. See Dimensions / Weights  
on page 104.  
- 1 0 -  
QDC  
drive  
options  
output current rating  
125 = 125A output current  
200 = 200A output current  
250 = 250A output current  
00 = No operator, ABB type  
Contactor  
01 = Operator, ABB type  
Contactor  
02 = No Magnetek Operator,  
Dual DC Contactor  
software program  
enclosure options  
03 = Operator, Dual DC  
Contactor  
1 = no customer I/O panel, no side DBR box  
2 = no customer I/O panel, side DBR box  
3 = customer I/O panel, no side DBR box  
4 = customer I/O panel, side DBR box  
shipping type  
1 = domestic  
2 = international  
11  
 
Quattro DC Startup Guide  
3. Never allow wire leads to contact metal  
surfaces. Short circuit may result.  
4. SIZE OF WIRE MUST BE SUITABLE FOR  
CLASS I CIRCUITS.  
Quattro startup guide  
Initial Inspection  
Unpacking  
5. Motor lead length should not exceed 20m  
(60 ft). If lead length must exceed this  
distance, contact Magnetek for proper  
installation procedures.  
6. The following are required to be contained  
in individual conduit runs: 3-phase  
incoming power, control power, DC  
armature wires, and DC shunt field.  
7. Use UL/CSA certified connectors sized for  
the selected wire gauge. Install  
connectors using the crimping tools  
specified by the connector manufacturer.  
8. Control wire lead length should not exceed  
20m (60 ft). Signal leads and feedback  
leads should be run in separate conduits  
from power and motor wiring.  
1. When unpacking, check drive for any  
shipping damage.  
2. The 200A and 250A versions of the  
Quattro arrive in separate shipping  
containers, which require connection in the  
field. Prior to connecting enclosures,  
check serial numbers on each cabinet  
section to insure mating compatible units.  
Proper mating of enclosures and wiring  
between is important. Refer to the re-  
connection instructions on page 98.  
3. Review the technical manual, shipped with  
the drive.  
4. Verify the proper drive model numbers and  
voltage ratings as specified on the  
purchase order.  
5. Location of the Quattro is important for  
proper operation of the drive and normal  
life expectancy.  
9. Verify that the input voltage matches the  
drive’s rating.  
10. Verify that the motor is wired for the  
application voltage and amperage.  
11. Tighten all of the three-phase power and  
ground connections. See Table 1 for  
torque specs.  
Installation  
The installation should comply with the  
following:  
DO NOT mount in direct sunlight, rain or  
extreme (condensing) humidity.  
DO NOT mount where corrosive gases or  
liquids are present.  
AVOID exposure to vibration, airborne dust  
or metallic particles.  
DO NOT allow the ambient temperature  
around the control to exceed the ambient  
temperature listed in the specification.  
Wire References  
Power Terminals  
Torque Specs  
56.6 N-m (500 in-lbs)  
Plastic Cover Screws 0.23-0.28 N-m (2-2.5  
in-lbs)  
Ground Terminals  
31.0 N-m (275 in-lbs)  
Table 1: Input Power Torque Specs  
12. Check that all control and signal  
terminations are also tight.  
Observe the following precautions:  
1. Wiring guide lines  
For Logic Input and Output I/O  
connections, use quality, multi-  
conductor cable or discrete stranded  
wire only.  
CAUTION: TO PREVENT DAMAGE TO THE  
DRIVE. THE FOLLOWING CHECKS MUST  
BE PERFORMED BEFORE APPLYING THE  
INPUT POWER.  
For Encoder and Analog I/O  
connections, use quality, multi-  
conductor braided shield cable*.  
For Communication I/O connections,  
use quality, multi-conductor braided  
shield* cable or twisted pair wire.  
During shipping, connections may loosen;  
inspect all equipment for signs of damage,  
loose connections, or other defects.  
Ensure the three-phase line voltage is  
within ±10% of the nominal input voltage.  
Also verify the frequency (50 or 60 Hz) is  
correct for the elevator control system.  
Remove all shipping devices.  
Ensure all electrical connections are  
secure.  
Ensure all transformers are connected for  
proper voltage.  
*Cable shields to be terminated with a 180/360  
degree metal cable clamp attached to Control  
Tray panel flange. Refer to the EMC  
Compliance on page 97.  
2. Never connect main AC power to the  
output terminals  
12  
   
Quattro DC Startup Guide  
problems, the following electrical and  
mechanical considerations are suggested.  
Open F1 and F2 and ensure control power  
brought into fuse F1 and F2 is 230VAC!  
IMPORTANT  
Proper encoder speed feedback is essential  
for a drive to provide proper motor control.  
IMPORTANT: Double-check all the power  
wires and motor wires to make sure that they  
are securely tightened down to their respective  
lugs (loose wire connections may cause  
problems at any time).  
Electrical Requirements:  
Insulate both the encoder case and shaft  
from the motor  
Grounding considerations  
1. Encoder  
Incremental encoder type  
Use twisted pair cable with shield tied to  
chassis ground at drive end  
a. Encoder isolation  
The encoder must be electrically  
isolated from the motor frame and  
the motor shaft.  
Use limited slew rate differential line  
drivers  
Do not allow capacitors from internal  
encoder electronics to case  
Do not exceed the operating specification  
of the encoder/drive (300Khz @ rated  
motor speed maximum)  
b. Encoder cable  
The cable type should PVC braided  
shielded type with three 22ga  
twisted pairs. A and A/, B and B/,  
common and V should be the  
signals paired together.  
The encoder shield is not to be  
connected at the encoder end. On  
the drive side of the cable a portion  
of PVC material 1inch [25mm]  
should be removed approximately  
12inches [300mm] from the  
Use the proper encoder supply voltage  
and use the highest possible voltage  
available. The Quattro DC provides both  
5VDC and 12VDC. Magnetek  
recommends using the 12VDC for the  
encoder supply.  
Mechanical Considerations:  
connection to the customer  
Use direct motor mounting without  
couplings  
Use hub or hollow shaft encoder with  
concentric motor stub shaft  
If possible, use a mechanical protective  
cover for exposed encoders  
It is not advisable to use friction wheels  
interface PCB (A6) to expose the  
shield material. This point is  
required to be secured under a  
clamp located under the control  
tray. Do not connect the shield to  
any other point. Refer to the EMC  
Compliance on page 97.  
2. Motor frame  
Enter / Verify the encoder pulses entered in  
the ENCODER PULSES (A1) parameter  
matches the encoder’s nameplate.  
a. The motor frame is required to be  
grounded. The bond wire should be  
returned to the common ground point  
located in the Quattro enclosure (PE).  
3. Three phase power  
Motor Parameter Set-up  
Enter / Verify the following from the motor’s  
nameplate:  
1. Motor Current (RATED MTR CURRENT  
(A6))  
2. Motor Voltage (RATED ARM VOLTS (A6))  
3. Motor field amps, forcing (FULL FLD  
AMPS (A6))  
4. Motor field amps, running (WEAK FLD  
AMPS (A6))  
a. The three phase wires must be run  
with a ground wire. This ground wire,  
which is connected back to the utility  
ground, is required to be connected to  
the Quattro ground (PE).  
4. Control power, 230VAC  
a. The neutral side of the control power is  
required to be grounded at the Quattro  
ground (PE).  
5. Motor field amps, standing (STNDBY  
FIELD (A6))  
Initial adjustments after power up  
Encoder Set-up  
Hoist way Parameter Set-up  
Enter / Verify the hoist way parameters:  
1. CONTRACT CAR SPD (A1) parameter  
programs the elevator contract speed in  
ft/min or m/s.  
Electrical interference and mechanical speed  
modulations are common problems that can  
result in improper speed feedback getting to  
the drive. To help avoid these common  
13  
 
Quattro DC Startup Guide  
2. CONTRACT MTR SPD (A1) parameter  
programs the motor speed at elevator  
contract speed in RPM.  
Low speed inspection mode  
Run the drive in low speed inspection mode  
and…  
1. Verify encoder polarity, the motor rotation  
should match the encoder phasing. The  
equivalent of swapping A and /A can be  
done with the ENCODER CONNECT (C1)  
parameter.  
Line voltage setup  
Enter / Verify the line voltage parameter:  
1. INPUT L-L VOLTS (A5) parameter  
programs the line voltage level  
Auto tune Procedure  
2. Verify proper hoist way direction. This can  
be reversed with the MOTOR ROTATION  
(C1) parameter.  
Refer to page 95 on how to implement Auto  
tune if desired. Auto tune will automatically  
measure the motor’s armature inductance,  
armature resistance including cable resistance,  
field resistance, and field time constant. Auto  
tune will also calculate the armature resistance  
voltage drop at motor rated current and the  
armature and field regulation gains.  
WARNING  
If using an external speed regulator, which  
produces an analog torque command to  
Quattro (SPEED REG TYPE (C1) =  
external reg and EXT TORQ CMD SRC  
(C1) = analog input), it is imperative that  
the encoder polarity matches the armature  
voltage. To verify polarity, insert a torque  
command into the analog input. Check  
ENCODER SPD (D2) against ARMATURE  
VOLTAGE (D2). Verify they are the same  
polarity. If not, swap A and /A or change  
the ENCODER CONNECT (C1) parameter.  
(C1, C2, C3, C4) configuration setup  
It will be required to adjust the configuration  
menus to operate the Quattro as the elevator  
manufacturer has specified to interact with the  
car controller. Magnetek does not supply this  
data.  
Verify that the Safety Chain / Emergency Stop  
works.  
14  
Quattro DC Interconnections  
Interconnections  
QUATTRO SIGNAL  
CONNECTIONS – A6  
TB1  
A9JCC1-4  
11  
+24 VISO  
TB1  
Contact  
Cfirm  
5*  
A9JCC1-2  
A9JCC1-1  
47  
48  
25  
26  
27  
28  
29  
30  
31  
32  
33  
45  
21  
22  
23  
24  
12  
13  
14  
+24VISO  
+24VISO  
1
2
6*  
LI1  
LI2  
A9JCC1-3  
To contactor  
pickup Relay K on  
A9  
CTR PWR Sense  
Open Collector  
Outputs, 24 VDC,  
15mA Max  
LO1  
Logic  
Inputs  
3
LI3  
LO2  
LO3  
4
LI4  
Open collector  
Outputs, 30VDC,  
150mA max  
5
LI5  
LO4  
6
LI6  
LO5  
7
LI7  
LO6  
8
LI8  
LO7  
9
LI9  
LOC  
10  
43  
44  
45  
46  
LIB  
C_24VISO  
C_24VISO  
*Located on A9TB1  
C_24VISO  
C_24VISO  
C_24VISO  
+24 VISO  
Solid State  
Solid State relay  
Outputs,  
50V AC/DC  
SSR1  
Relay Outputs,  
50V AC/DC  
Max 150 mA  
Max 150mA Max  
SSR2  
34  
35  
36  
37  
38  
39  
40  
41  
42  
15  
16  
18  
19  
17  
/A  
Analog Outputs,  
+/- 10 VDC,  
+/- 4mA  
Analog Outputs,  
+/- 10 VDC,  
+/- 4mA  
A01  
A02  
AC  
A
To / From  
Encoder,  
/B  
Use +5 or +12  
volt Supply Power  
As Required.  
To/ From  
B
Encoder, Use  
+5 or +12 Volt  
supply power  
TB2  
1
/Z  
Relay 1  
3
Z
Relays, 230 VAC  
1A or 30VDC 2A  
5
C_ISO  
+5VISO  
+12VISO  
AIN1+  
AIN1-  
AIN2+  
AIN2-  
ACOM  
Relays,  
230VAC 1A or  
30VDC 2A  
8
10  
12  
Relay 2  
From Customer  
Analog Outputs  
+/- 10V  
JC4  
Analog Inputs  
1
6
2
7
3
8
4
9
5
+5V_SA  
-RTSA  
+CTSA  
TXRX+  
TXRX-  
RX-  
RS422  
Customer  
Serial Link  
TB2  
RX+  
7
BB_1  
BB_2  
Base Enable  
Jumper  
COM_SA  
14  
Figure 1: Interconnection Diagram  
15  
 
Quattro DC Interconnections  
L(1) L(2) L(3)  
GND  
Control Power  
* Note 1  
230VAC hi  
* Note 1  
230VAC lo  
To Quattro Drive  
* Note 1  
F1  
F2  
TB1K1 K1 TB1 METB1 TB1  
* Note 1  
Internal Control  
Power  
4
3
2 1  
H(X) H(1)  
Safety Chain  
Safety Chain  
Provided for  
the Primary  
side of the  
230V control  
power  
Located on A9  
A24  
TB1  
2
SWout (+)  
Notes:  
Motor Shunt Field  
Motor Field Control  
1. * indicates components  
not supplied by Magnetek  
(F2)  
(F1)  
* Note 1  
DCout (-)  
3
transformer  
ME  
ME  
ME  
(21) (22) (13) (14) (43) (44)  
Motor Contactor Auxiliaries  
ME  
(4) (3)  
K1  
DBR DBR  
(A1) * Note 1  
Part of A9  
ME  
ME (5) (6)  
(2) (1)  
1-4  
5-8  
Hoist Motor  
(A2)  
Encoder to  
A6TB1  
Figure 2: Quattro DC Power Connections  
16  
Quattro DC Interconnections  
Logic Inputs  
Encoder Connections  
The Quattro DC’s nine programmable logic  
inputs are opto-isolated. For more information  
on programming logic inputs, see Logic Inputs  
C2 submenu on page 61. The inputs become  
“true” by closing contacts or switches between  
the logic input terminal and voltage source  
common (or voltage source). The inputs are  
sourcing inputs – nominally sitting at common  
and when the contacts or switches are closed,  
turning “true” at 24VDC. The voltage supply for  
the logic inputs is 24VDC.  
The Quattro DC has connections for an  
incremental two-channel quadrature encoder.  
The Quattro DC requires the use of an encoder  
coupled to the motor shaft. The encoder power  
can be either a +5VDC or +12VDC.  
The encoder pulses per revolution must be  
entered in the ENCODER PULSES parameter  
in the A1 submenu.  
Figure 3 shows the encoder connection  
terminals for non-single ended applications.  
IMPORTANT  
Internal 24VDC power supply has a capacity of  
100 mA  
Note: Logic input 1 and 2 are reserved and pre-  
wired for CONTACT CFIRM and CTR PWR  
SENSE respectively.  
TB1  
34  
/A  
35  
36  
37  
38  
39  
40  
A
/B  
B
The choices for the voltage source common (or  
voltage source) depend on if the user is using  
an external voltage supply or using the internal  
voltage supply. See Figure 5 for internal supply  
example and Figure 6 for external supply  
example.  
/Z  
Z
TB1  
C_ISO  
11  
+24VDC isolated  
Contact  
Cfirm  
41 +5V_ISO  
42  
A9JCC1-2  
A9JCC1-1  
A9TB1  
1
2
logic input 1  
logic input 2  
5
6
+12V_ISO  
Figure 3: Encoder Connections  
CTR PWR Sense  
3
logic input 3  
logic input 4  
logic input 5  
Below shows the connection for the encoder  
option card, if they are configured to be single  
ended. This configuration is not recommended,  
since, the Quattro DC encoder noise immunity  
circuitry is not in effect.  
4
5
6
logic input 6  
logic input 7  
logic input 8  
TB1  
34  
/A  
7
35  
36  
37  
38  
39  
40  
41  
42  
A
8
/B  
B
9
logic input 9  
10  
43  
44  
45  
46  
logic input common  
+24VDC iso. common  
+24VDC iso. common  
+24VDC iso. common  
+24VDC isolated  
/Z  
Z
C_ISO  
+5V_ISO  
+12V_ISO  
Figure 5: Logic Input Diagram (Internal  
Supply)  
Figure 4: Encoder Connections (Single-  
Ended)  
17  
   
Quattro DC Interconnections  
For more on the multiplier gain or bias  
TB1  
+24VDC isolated  
The scaling of the analog input signals, with  
BIAS set to 0.00 and MULT set to 1.0 follows:  
Speed Command  
+10VDC = positive contract speed  
-10VDC = negative contract speed  
Pre Torque Command  
+10VDC = positive rated pre-torque of motor  
-10VDC = negative rated pre-torque of motor  
Torque Command  
+10VDC = positive rated torque of motor  
-10VDC = negative rated torque of motor  
NOTE: The drive cannot recognize voltages  
outside of the ±10VDC on its analog input  
channels.  
11  
Contact  
Cfirm  
A9JCC1-2  
A9JCC1-1  
A9TB1  
5
1
2
logic input 1  
logic input 2  
6
CTR PWR Sense  
3
logic input 3  
logic input 4  
logic input 5  
4
5
6
logic input 6  
logic input 7  
logic input 8  
7
The Quattro DC provides common mode noise  
rejection with the differential analog inputs. The  
connection of these two differential inputs is  
8
shown in Figure 7.  
9
logic input 9  
TB1  
analog input 1+  
15  
10  
43  
44  
45  
46  
logic input common  
C_24VISO  
Speed Cmd  
analog input 1-  
16  
17  
18  
±10V  
C 24VISO  
analog input common  
analog input 2+  
+
PreTorque  
Cmd, ±10V  
or Torque  
C 24VISO  
+24V external  
supply  
+24VDC isolated  
Command, ±10V  
analog input 2-  
19  
Figure 6: Logic Inputs (External Supply)  
Analog Inputs  
Figure 7: Analog Inputs (Differential)  
Figure 8 shows the connection for the analog  
inputs if they are configured for single-ended  
connection. In this configuration, the Quattro  
DC noise immunity circuitry is not in effect.  
Note: For prevention of ground noise  
The Quattro DC has two non-programmable  
differential analog input channels.  
Analog input channel 1 is reserved for the  
speed command (if used).  
Analog input channel 2 is reserved for the  
pre-torque command (if used) or torque  
command source (if used).  
interference, a twisted shielded pair must be run  
to the source and not connected at the board.  
TB1  
The analog input channels are bipolar and have  
a voltage range of ±10VDC.  
analog input 1+  
15  
Available with the analog channels is multiplier  
gain parameters (SPD COMMAND MULT and  
EXT TORQUE MULT) and bias parameters  
(SPD COMMAND BIAS and EXT TORQUE  
BIAS). These parameters are used to scale the  
user’s analog command to the proper range for  
the drive software. The formula below shows  
the scaling effects of these two parameters.  
Speed Cmd  
analog input 1-  
16  
17  
18  
19  
±10V  
analog input common  
analog input 2+  
PreTorque  
Cmd, ±10V  
or Torque  
analog input 2-  
Command, ±10V  
analog  
channel  
input  
signal  
drive  
software  
uses  
BIAS  
×
MULT  
=
voltage  
Figure 8: Analog Inputs (Single Ended)  
18  
       
Quattro DC Interconnections  
Relay Outputs  
Logic Outputs  
The Quattro DC’s two programmable relay logic  
outputs are Form-C relays. The have both  
normally open and normally closed contacts.  
The Quattro DC’s seven programmable logic  
outputs are opto-isolated, open collector. The  
outputs are normally open and can withstand an  
applied maximum voltage of 30VDC. When the  
outputs become “true”, the output closes and is  
capable of sinking up to 150mA between the  
logic output terminal and the logic output  
shows the logic output terminals.  
The specifications for each relay are as follows:  
Relay 1  
2A at 30VDC or 1A at 230VAC  
Relay 2  
2A at 30VDC or 1A at 230VAC  
Figure 10: Relay Outputs shows the logic output  
terminals.  
Note: Logic Output 1 is prewired for CLOSE  
CONTACT.  
TB2  
TB1  
1
+24V iso.  
+24V iso.  
47  
48  
3
relay 1  
relay 2  
A9JCC1-3  
5
8
logic output 1  
25  
26  
27  
28  
29  
30  
31  
32  
33  
45  
logic output 2  
10  
12  
logic output 3  
logic output 4  
logic output 5  
Figure 10: Relay Outputs  
logic output 6  
For more information on programming the relay  
logic output 7  
logic output common  
+24V iso. common  
+24V iso. common  
Solid State Relay Outputs  
The Quattro DC has two programmable solid-  
state relays. They have a 30 VDC max with  
150mA load capability.  
Figure 9: Logic Outputs  
relay output connections.  
For more information on programming the logic  
TB1  
21  
solid state relay 1  
22  
23  
solid state relay 2  
24  
Figure 11: Solid State Relay Outputs  
For more information on programming the solid-  
19  
     
Quattro DC Interconnections  
For more on the gain or offset parameters, see  
Analog Outputs  
The Quattro DC has two programmable  
differential analog output channels. The two  
analog output channels were designed for  
diagnostic help. For more information on  
programming the analog output channels, see  
The analog output channels are bipolar and  
have a voltage range of ±10VDC and current  
draw of +/- 4mA.  
Available with the analog channels is multiplier  
gain parameters (ANA 1 OUT GAIN and ANA 2  
OUT GAIN) and a bias or offset parameters  
(ANA 1 OUT OFFSET and ANA 2 OUT  
OFFSET). These parameters are used to scale  
the user’s analog outputs to the proper range  
for the drive software. The formula below  
shows the scaling effects of these two  
parameters.  
The connection of these two outputs is shown in  
Figure 12: Analog Outputs.  
TB1  
analog output 1  
analog output 2  
12  
13  
14  
analog output com  
Figure 12: Analog Outputs  
For more information on programming the  
analog  
channel  
output  
signal  
drive  
software  
creates  
OFFSET × GAIN  
=
voltage  
20  
 
Quattro DC Drive Sequencing  
Pre-charge  
Field Enable (input)  
Stand-by On  
Boost On  
Drive Sequencing  
NORMAL operating sequence  
Pre-charge Cnfrm  
Boost On Confirm  
Field  
Control  
On  
1. Motor field current is at Stand-By during  
drive idle. The No Faults relay is active.  
Full-Field and Run command signals are  
OFF. Motor contactor Safety circuits may  
be open or closed. The DC bus will  
remain charged with regulated voltage as  
long as the drive is providing motor field  
current.  
2. A Field Enable Command, programmable  
by FLD ENA SRC (C1), is sent to the  
drive. If the DC bus is not pre-charged, a  
pre-charge cycle will be completed before  
motor field current is restored. See  
information of the Pre-Charge circuit.  
Motor field current will go to the Full-Field  
value in preparation to produce motor  
torque.  
Speed Reg Release  
Brake Release  
LATCH  
Flux Confirm  
Drive Enable  
Speed Ref  
Release  
(input)  
Pick Contactor  
Run Command  
(input)  
Contact Cfirm  
No Faults  
4. Once the regulators are released, motor  
current starts at pre-torque amperes. The  
velocity regulator starts at zero speed. (All  
conditions of 3. must be present and motor  
field current must be greater that the  
sensing threshold before the drive will Start.  
This is noted by the output Flux Confirm  
(programmable by Flux Cnfrm Level (A6)).  
5. Drive activates elevator Brake relays, if  
programmed to do so (or the car controller  
does it externally).  
Field Enable  
Full Fld  
Stndy Fld  
Motor Field  
6. Drive follows the external or internal  
velocity profile via the programmed  
FLUX CFRM  
(logic output)  
accel/decel rate as programmed during the  
remainder of the elevator run cycle.  
7. When at the next landing...the Drive (or  
car controller) de-activates elevator Brake.  
8. After the Brake has set, the Run command  
is removed causing...  
Drive Enable  
Run  
3. Pre-Torque command value is sent to the  
drive. It must be available before a run  
command is given. If the Pre-Torque  
Latch is used, see Pre-Torque Latch (C1),  
it can be placed inactive depending on the  
settings of Pre-Torque Latch Clk (C1). If  
latching is not used, it must remain active  
until the SPD REG RLS output is active.  
Safety circuit relays are closed making  
power available to the contactor coil  
circuit.  
9. Reference speed to be clamped to zero.  
10. Motor torque ramps down to zero, then the  
Motor contactor is opened.  
Brake Relay  
Run  
SPD REG RLS (logic output)  
Torque  
Motor Contactor  
Pre-Torque  
11. While idle, motor field current reference will  
drop to Stand-By, after the Full-Field timer  
expires. Safety circuit relays may (or may  
not) open to remove contactor-actuating  
power.  
12. A DSPR time-out may occur while field  
current is at stand-by. In that case motor  
field current goes to zero and the AC main  
power contactor to the drive is opened. A  
pre-charge cycle and power on recovery  
will occur on the next command to re-  
establish motor field current.  
Run  
Safety Chain  
CONTACT  
CFRM (input)  
SPD REG RLS  
(output)  
21  
   
Quattro DC Drive Sequencing  
c. Pre-charge contactor PCM is then  
pulled in. This provides resistor limited  
inrush current to DC bus capacitors  
from AC mains and separate rectifier.  
3. DC bus is Pre-Charged  
ABNORMAL Operation Sequence  
1. If a Drive or Drive Sequence Fault occurs  
the Drive will immediately open the motor  
contactor, de-energize the Brake Pick,  
Brake Hold, and Drive OK Relays if so  
programmed. May be caused by:  
a. “Fatal Error” drive Faults including loss  
of serial communications  
a. With pre-charge contactor PCM closed,  
separate resistor and rectifier circuits  
limit capacitor charging inrush current.  
b. Bus voltage is monitored during pre-  
charge to verify proper voltage build-up.  
(See 6.a. below)  
b. Opening of the contactor power Safety  
circuit while the contactor is pulled in  
c. Loss of correct motor contactor or  
Brake Relay feedback.  
c. Target bus voltage is nominal input  
VAC (INPUT L-L VOLTS (A5)) X 2.  
4. Mains contactor is closed  
2. If an Alarm occurs, the drive will signal an  
Alarm but continue to run. May be caused  
by:  
a. As measured DC bus voltage nears  
target value main utility power contactor  
UTM closes.  
a. Drive Alarms including motor overload,  
drive over temp warning  
b. Aux contact feedback from UTM  
indicates to controls that main utility  
contactor is closed.  
c. Then Pre-charge contactor PCM is  
opened. (See 6.b. below)  
b. Loss of correct feedback from Brake  
Hold relay or Brake Switches  
c. Open motor thermostat circuit  
d. Speed command is held at zero due to  
conflict with the analog speed  
5. Boost converter is turned ON.  
a. DC bus voltage is boosted to a higher  
level as programmed by the Boost  
Level parameter setting in order to  
achieve near unity power factor and low  
harmonic content of the Quattro drive.  
b. Motor field controls also turn ON to  
begin regulating motor field current  
and/or operate main motor armature  
circuits.  
command polarity and the run up/ run  
down logic  
e. Encoder Fault (C1) set to disabled  
f. The drive is or was being limited by  
the motor torque limit setting (Hit  
Torque Limit)  
g. Speed feedback is failing to properly  
track the speed reference (Speed Dev)  
h. DC bus voltage drops below user  
specified percent of the input line to  
line voltage  
c. The boost converter will remain ON as  
long as any field or armature current is  
being provided to the motor. (See 6.c.  
below) Time-out of the DSPR (Drive  
Stand-by Power Reduction) feature or  
other command may turn the Boost  
converter OFF when drive is idle  
although standby field will still be  
present. In that case as new pre-  
charge cycle must occur before drive  
re-start.  
Quattro Pre-Charge  
When power is first applied to the Quattro  
drive, or after it has shut itself down via a  
DSPR time-out, the internal DC bus must be  
pre-charged before operation can resume.  
The following sequence will occur:  
1. Power is applied to the Quattro drive  
a. Control power may be applied before or  
after 3-phase main power  
b. Some OEM drive versions may have a  
built-in control transformer  
c. Drive controls should become active  
but no contactors should operate  
2. Quattro drive receives command to  
‘energize’  
6. Problem prevention  
a. If DC bus voltage does not rise at the  
expected rate to the expected voltage  
level during pre-charge a “Charge  
Fault” is declared.  
b. UTM and PCM are interlocked with aux  
contacts such that UTM cannot be  
picked unless PCM is already closed.  
Once picked, an aux contact of UTM  
seals the same circuit allowing PCM to  
be dropped with UTM remaining ON.  
c. In the event of a major drive Fault, UTM  
will be opened to disconnect utility lines  
from main power devices of Quattro.  
a. This command may be from serial link  
software or hardware logic command to  
deliver motor field current in  
preparation to start.  
b. AC input voltage from mains is  
measured and verified to be adequate  
according to the setting of the VAC-  
input adjustment parameter.  
22  
   
Quattro DC Drive Operation and Feature Overview  
requires SPD COMMAND SRC (C1) to be set  
to SERIAL.  
Drive Operation and  
Feature Overview  
Pre-Torque  
The Quattro DC drive is a velocity and torque  
regulated motor drive designed specifically for  
operating elevators. Many of the features  
described below can be selectively  
programmed to customize an individual  
application.  
When enabled, the speed error integrator will  
be pre-conditioned by the supplied pre-torque  
signal before starting the regulator. This will  
cause motor armature current to begin at a  
magnitude proportional to the pre-torque  
command to prevent elevator motion or  
rollback when the elevator brake is released.  
The pre-torque signal will be from either an  
analog (wired at A6TB1-18 and A6TB1-19) or  
serial link digital source as selected by  
programming PRETORQUE SOURCE (C1). If  
Pre-Torque is not used, leave PRETORQUE  
SOURCE (C1) at the defaulted value of none.  
An EXT TORQUE BIAS (A1) and an EXT  
TORQUE MULT (A1) are available to scale the  
pre-torque signal. Ten volts = rated motor  
current with a multiplier of 1 and a bias of zero.  
Analog Velocity Follower  
The elevator car controller provides an analog  
velocity reference to the drive at A6TB1-15  
and A6TB1-16. The signal may be bi-polar +/-  
10 VDC to indicate speed and travel direction,  
or a positive only unipolar signal with the  
direction of travel selected by logic commands.  
In most cases the signal profile will be adjusted  
by the car controller for precise landing  
positioning. The velocity reference passes  
directly to the closed loop velocity controller,  
except for an internal rate limiter to buffer any  
unexpected electrical noise. Start and Stop  
commands are via 24VDC logic inputs.  
Torque Feed Forward  
Some car controllers may calculate an  
accurate demand for motor torque as required  
to accelerate the connected load as well as  
hold it against gravity. The torque demand  
signal can be programmed to directly drive the  
torque control part of Quattro from either an  
analog or serial link input. EXT TORQ CMD  
SRC (C1) must be set to either analog input or  
serial and SPEED REG TYPE (C1) must be  
set to either pi speed reg, elev spd reg, or  
external reg. The connections for an analog  
external torque command source are A6TB1-  
18 and A6TB1-19. With an accurate torque  
compensating signal, the gain of the PI  
regulator can be reduced, to better ignore and  
not amplify mechanical vibrations of the hoist  
way. Separate adjustments are provided for  
torque signal gain and offset. An EXT  
TORQUE BIAS (A1) and an EXT TORQUE  
MULT (A1) are available to scale the torque  
signal. Ten volts = rated motor current with a  
multiplier of 1 and a bias of zero.  
Calibration of the analog velocity reference  
signal may be adjusted with separate gain and  
offset parameters. To set the Analog Velocity  
Follower, the user must set SPD COMMAND  
SRC (C1) to Analog Input.  
Preset Speed & Profile Generator  
An alternate method of speed control is that  
the elevator car controller provides 24VDC  
logic input commands to select one of 15 pre-  
determined running speeds. The drive  
generates a smooth S-Curve acceleration  
profile to transition between speed selections.  
Either of three separately adjustable ramp  
times may be selected. The direction of travel  
may be determined by either a Run command  
with an Up/Down command signal or by  
separate Run-Up / Run-Down logic  
commands. To set the Analog Velocity  
Follower, the user must set SPD COMMAND  
SRC (C1) to Multi-Step, then adjusting Multi-  
Step Speed Commands in the Multi-Step  
Submenu A3.  
Torque/Current Ramp-Down  
When the drive is told to cease operation by  
removal of the Run logic command, (and after  
Brake Drop time if that function is engaged)  
the armature current reference ramps down to  
zero at a constant rate. This allows the  
mechanical Brake to gently assume elevator  
holding torque, reducing the tendency to  
‘thump’ the brake. When armature current  
ramp-down is complete, the contactor will be  
opened. In the event that the contactor opens  
unexpectedly, as reported by the feedback  
contact or in the event of a severe drive fault,  
Serial Link Follower  
The elevator car controller provides the  
equivalent of an analog reference command  
over a digital serial link. The drive returns  
operating status conditions and messages.  
Primary run command are 24VDC logic for  
redundant safety if wanted. The speed  
sensitivity of the serial velocity reference is  
adjustable. Enabling the serial link follower  
23  
           
Quattro DC Drive Operation and Feature Overview  
there will be no timed delay for current ramp-  
down. This time may be adjusted by the  
function RAMPED STOP TIME (A1).  
Over-Speed Test  
A reference speed multiplier is provided to help  
testing of the elevator governor over-speed  
trip. This feature will automatically return to  
normal at the completion of each elevator run.  
However, to ensure that the drive Over-Speed  
Trip does not interfere with the governor test,  
one must temporarily raise the value set for the  
Drive Over-Speed Trip point to a value higher  
than that of the governor.  
Motor Field Current Control and Field  
weakening  
DC elevator motors have a separately excited  
shunt field. Adjustments include Stand-By  
Current, Full-Field Current and Weak-Field  
Current, all programmed in amperes, and a  
Flux Confirm Level, programmed as a % of  
Full-Field. With no active Full-Field or drive  
Run command motor field current would  
normally be at Stand-By amps. An active  
command to provide Full Field causes field  
current to increase to the Full Field setting.  
When Field current is greater than the Full-  
Field threshold setting (and there are no other  
faults) the DC motor contactor will be enabled  
to pull in when told to do so by an active drive  
Run command. When the motor contactor is  
acknowledged as being closed, the motor  
armature current regulator is released to follow  
the commanded torque reference current  
signal. Motor field current will remain at the  
Full-Field value as long as the per unit (pu)  
reference or measured speed (whichever is  
greater) is less than the pu ratio of WF/FF  
amps. Above that speed motor field current  
will automatically follow the constant CEMF  
profile of WF/FF X 1/spd, where speed is again  
the greater active value of reference or  
Fault & Alarm Reset  
An external Fault Reset command signal from  
the car controller may be applied to a logic  
input or from a serial command link. Or, an  
automatic Fault Reset will occur 5 seconds  
after a drive fault occurs, when enabled to do  
so. Either method may be used to enable the  
car controller to quickly recover from a re-  
settable fault. One Fault will be subtracted  
from a fault count accumulation every 20  
minutes. The maximum number of Auto-  
Resets that can be accumulated is 5. The  
Auto-Reset function will then require a power  
Off/On cycle in order to recover. Faults &  
Alarms may also be cleared by use of the  
Magnetek Operator.  
Electronic Motor Over-Load  
An electronic motor over-load function is  
provided to take the place of heater type power  
components. Motor armature current is  
continuously monitored and the heating effect  
is calculated over time. A motor overload trip  
will not automatically stop the drive, but is an  
important alarm signal to elevator car controller  
to help prevent equipment damage.  
measured speed. When motor speed reduces  
from high speed, motor field current  
automatically increases according to the  
constant CEMF calculated profile. However,  
field current will not increase to be more than  
the Full field ampere setting.  
Armature Voltage Feedback  
DSPR  
This is a temporary ‘construction’ or trial mode  
for proving out direction orientation of the  
motor and operation of the encoder. Motor  
speed regulation is controlled by armature  
voltage feedback with IR compensation.  
Precise speed regulation is not possible.  
Operation above base speed of the motor is  
not possible since the field weakening is  
inhibited. However, it is still possible to  
monitor the feedback from the encoder  
although it will not used for speed regulation.  
Successful operation in this mode may require  
reduced gain settings. This is selectable by  
setting SPD REG TYPE (C1) to CEMF REG.  
While the drive is idle with Stand-By Current  
being applied to the motor field, a second timer  
for Drive Stand-by Power Reduction (DSPR)  
will be running. When/If the DPSR timer  
times-out, motor field current will turn  
completely Off and the main 3-phase power to  
the drive will be removed. This helps save  
electrical energy during long periods of non-  
use. Recovery of this condition will be  
automatic upon the receipt of the next “Full-  
Field” or “Run” command. At that time,  
recovery from a DSPR power OFF condition  
may take several seconds. DSPR TIME can  
be set in the Drive A1 Submenu.  
24  
     
Quattro DC Drive Operation and Feature Overview  
Status Indicator Lights  
MONITOR / Adjust / Set-up Parameters:  
Five status indicator lamps are provided on the  
front panel of the drive.  
The values of all adjustments and set up  
parameters are stored locally in non-volatile  
drive memory. Monitoring of live data status  
and modification of parameter values can be  
accomplished by sequences over the serial  
link or the Magnetek Operator. They can both  
be attached at the same time to modify  
parameters or monitor drive operation.  
Detailed descriptions of all adjustments are  
located in later sections of this manual.  
READY – (GRN) Power is applied to the drive,  
there are no drive Faults and drive is  
ready to Run when requested. The Run  
light will blink slowly when it is in DSPR  
(Drive Standby Power Reduction) Mode  
or not boosting, but three-phase power is  
applied.  
RUN – (GRN) Indicates that the motor  
contactor is closed and the drive is  
following applied references operating to  
control torque and speed  
PROGRAM INVALID – (RED) There is no  
valid program loaded.  
FAULT – (Red) A drive Fault exists that is  
preventing the drive from operating  
CURRENT LIMIT – (YEL) Motor current is  
being limited  
READY  
RUN  
PROGRAM INVALID  
FAULT  
CURRENT LIMIT  
25  
 
Quattro DC Parameters  
Parameters  
Parameter Introduction  
This section describes the parameter menu  
structure of the Magnetek Operator, how to  
navigate this menu structure, and a detailed  
description of each parameter.  
DISPLAY 1 D0  
D1 ELEVATOR DATA  
RUN/FAULT  
SUB MENU  
DATA ENT  
Parameters are grouped under six major  
menus:  
Menus  
ADJUST A0  
CONFIGURE C0  
UTILITY U0  
FAULTS F0  
DISPLAY 1 D0  
DISPLAY 2 D0  
Each menu has a number of sub-menus.  
Following is a listing of the menus:  
ADJUST A0  
CONFIGURE C0  
UTILITY U0  
FAULTS F0  
DISPLAY 1 D0  
DISPLAY 2 D0  
When the SUB-MENU LED is off, the currently  
selected menu is shown on the top line of the  
Digital Operator display and the currently  
selected sub-menu is shown on the bottom line  
of the Digital Operator display.  
Display 1 D0 Adjust A0  
Configure C0 Utility U0  
Faults F0  
Display 2 D0  
Elevator  
Elevator  
Drive A1  
User  
Switches C1  
Password  
Active  
Data D1  
Data D1  
U1  
Faults F1  
S-Curves A2  
MS Power  
MS Power  
Logic Inputs  
Hidden  
Fault  
MultiStep Ref  
Data D2  
Data D2  
C2  
Items U2  
History F2  
A3  
LS Power  
LS Power  
Logic  
Units U3  
Motor side  
Power  
Data D3  
Data D3  
Outputs C3  
Ovrspeed  
Convert A4  
Analog  
Test U4  
Outputs C4  
Line side  
Power  
Restore  
Dflts U5  
Convert A5  
MS Drive  
Motor  
Info U6  
Params A6  
LS Drive  
Info U7  
Hex Monitor  
U8  
Menu/Sub-Menu Tree  
26  
 
Quattro DC Parameters  
Navigation at the Sub-menu Level  
Menu Navigation  
When in the sub-menu level, the SUB-MENU  
LED on the digital operator is lit. At the sub-  
menu level, the positioning keys work slightly  
different than they did at the menu level. The  
up and down arrow keys now select separate  
items in the sub-menu.  
The digital operator keys operate on three  
levels, the menu level, the sub-menu level and  
the entry level. At the menu level, they  
function to navigate between menus or sub-  
menus. At the sub-menu level, they navigate  
between sub-menus or menu items. At the  
entry level, they are used to adjust values or  
select options. Six (6) keys are used for this  
navigation; they are shown below:  
CONTRACT CAR SPD  
A1 0400.0 fpm  
RUN/FAULT  
SUB MENU  
DATA ENT  
At any time pressing the “ESCAPE” key will  
return to the menu level. Upon exiting a sub-  
menu via the “ESCAPE” key, the last item  
number is “remembered”. The next time this  
sub-menu is entered, it is entered at the  
“remembered” item number.  
Up Arrow key  
Left Arrow  
Right Arrow  
ENTER key  
Down Arrow key  
ESCAPE key  
This feature can be used to obtain quick  
access to two monitor values. Two menus one  
labeled Display 1 D0 and one labeled Display  
2 D0 have the same display items. One item  
can be selected one under the Display 1 menu  
and another under the Display 2 menu. The  
left and right arrow keys can then be used to  
move back and forth between these two  
display items. Remember, that the  
Digital Operator Keys  
How these keys operate is dependent on the  
“level” (i.e. menu, sub-menu or entry level.) In  
general, the “ENTER” and “ESCAPE” keys  
control the level. That is the ENTER key is  
used to move to a lower level and the  
ESCAPE key is used to move to a higher level.  
The arrow keys control movement. The up and  
down arrow keys control vertical position and  
the left and right arrow keys control horizontal  
position.  
“remembering” of sub-menus and sub-menu  
items is volatile and is lost at power-down.  
Navigation at the Entry Level  
When in the entry level, the DATA ENT LED  
on the digital operator is lit. At the entry level,  
the function of keys are redefined. The  
“ESCAPE” key remains as the key used to  
move back to the sub-menu level. The left and  
right arrow keys are used as cursor positioning  
keys and the up and down arrow keys are  
used as increment and decrement keys.  
Navigation at the Menu Level  
At the menu level, the up and down arrow keys  
cause the display to show the sub-menus.  
The side arrow keys cause the display to  
select which menu is active. When the end is  
reached (either up, down, left or right),  
pressing the same key will cause a wrap  
around.  
CONTRACT CAR SPD  
A1 0400.0 fpm  
ADJUST A0  
DRIVE  
A1  
RUN/FAULT  
SUB MENU  
DATA ENT  
RUN/FAULT  
SUB MENU  
DATA ENT  
Hidden Parameters  
Each menu will remember the last accessed  
sub-menu. The left and right arrow keys will  
navigate between these last active sub-menus.  
This remembrance of last active sub-menu is  
volatile and will be lost at power down.  
There are two types of parameters: standard  
and hidden. Standard parameters are  
available at all times. Hidden parameters are  
for more advanced functions and are available  
only if activated. Activation of the hidden  
parameters is accomplished by setting of a  
utility parameter, HIDDEN ITEMS U2.  
When any sub-menu is displayed, pressing the  
“ENTER” key will place the operator in the sub-  
menu level.  
27  
 
Quattro DC Parameters  
Parameter Tree  
Display D0  
Adjust A0  
Elevator Data D1  
Speed Command  
Speed Reference  
Speed Feedback  
Speed Error  
Drive A1  
Ana Out 2 Gain  
Flt Reset Delay  
Flt Resets/Hour  
Up To Spd Level  
Run Delay Timer  
AB Zero Spd Level  
AB Off Delay  
Contactor DO Dly  
Trq Lim Msg Dly  
Rollback Gain  
Notch Filter Frq  
Notch Filt Depth  
Stndby Fld Time  
DSPR Time  
Overspeed Time  
Overspeed Mult  
Encoder Pulses  
Spd Dev Lo Level  
Spd Dev Time  
Spd Dev Hi Level  
Spd Command Bias  
Spd Command Mult  
Ext Torque Bias  
Ext Torque Mult  
Zero Speed Level  
Zero Speed Time  
Up/Dwn Threshold  
Ana Out 1 Offset  
Ana Out 2 Offset  
Ana Out 1 Gain  
Contract Car Spd  
Contract Mtr Spd  
Response  
Inertia  
Inner Loop Xover  
Current Limit  
Gain Reduce Mult  
Gain Chng Level  
Tach Filter BW  
Tach Rate Gain  
Spd Phase Margin  
Ramped Stop Time  
Contact Flt Time  
Brake Pick Time  
Brake Hold Time  
Overspeed Level  
Pre-Torque Ref  
Ext-Torque Cmd  
Spd Reg Torq Cmd  
Tach Rate Cmd  
Aux Torque Cmd  
Est Inertia  
Rx Com Status  
Logic Outputs  
Logic Intputs  
Full Field Time  
MS Power Data  
D2  
Arm Current  
S-Curves A2  
Accel Rate 0  
Field Current  
Arm voltage  
MS Bus Voltage  
Motor Mode  
Torque Ref  
Accel Jerk In 1  
Accel Jerk Out 1  
Decel Jerk In 1  
Decel Jerk Out 1  
Accel Rate 2  
Decel Rate 2  
Accel Jerk In 2  
Accel Jerk Out 2  
Decel Jerk In 2  
Decel Jerk Out 2  
Accel Rate 3  
Decel Rate 0  
Accel Jerk In 0  
Accel Jerk Out 0  
Decel Jerk In 0  
Decel Jerk Out 0  
Accel Rate 1  
Decel Rate 3  
Accel Jerk In 3  
Accel Jerk Out 3  
Decel Jerk In 3  
Decel Jerk Out 3  
Est Spd Fdbk  
Encoder Spd  
DS Module Temp  
LS Module Temp  
Highest Temp  
Field IGBT Temp  
Armature Cur Err  
Auto Fld Int  
Auto Fld Prop  
Auto Meas Arm L  
Auto Meas Arm R  
Auto Field Res  
Auto Field TC  
Decel Rate 1  
Multistep Ref A3  
Speed Command 1  
Speed Command 2  
Speed Command 3  
Speed Command 4  
Speed Command 5  
Speed Command 6  
Speed Command 7  
Speed Command 8  
Speed Command 9  
Speed Command 10  
Speed Command 11  
Speed Command 12  
Speed Command 13  
Speed Command 14  
Speed Command 15  
MS Pwr Convert A4  
Arm Resistance  
Arm Inductance  
Mtr Rev Vlt Lim  
If Reg Int Gain  
If Reg Prop Gain  
Auto Tune Motor  
Gain Selection  
Gain Bandwidth A  
Gain Bandwidth F  
PWM Frequency  
Fan Off Delay  
Main Fan Control  
UV Alarm Level  
UV Fault Level  
Fld Carrier Frq  
LS Power Data D2  
LS Pwr Output  
DC Bus Voltage  
DC Bus Volts Ref  
LS Overload  
LS Input Current  
LS D Axis I  
LS Q Axis I  
LS D Axis Volts  
LS Q Axis Volts  
Input Hz  
LS Pwr Convert A5  
SW Bus OV Level  
Bus Vref Source  
PLL Filter Fc  
Id Reg Prop Gain  
Id Reg Intgrl Gn  
Iq Reg Prop Gain  
Iq Reg Intgrl Gn  
DC Bus Reg P Gn  
DC Bus Reg I Gn  
Input L-L Volts  
LS PWM Frequency  
DC Bus V Boost  
Input Vab  
Input Vbc  
LS Module Temp  
Motor A6  
Motor ID  
Weak Fld Amps  
Stndby Field  
Flux Confirm Lev  
Armature IR Drop  
Ovld Start Level  
Ovld Time Out  
Rated Motor Curr  
Armature Volts  
Full Fld Amps  
28  
 
Quattro DC Parameters  
Configure C0  
Utility U0  
Faults F0  
User Switches C1  
Spd Command Src  
Run Command Src  
Field Ena Src  
Password U1  
New Password  
Enter Password  
Active Faults F1  
Display Active Faults  
Reset Active Faults  
Brake Pick Src  
Brake Pick Cnfm  
Brake Hold Src  
Ramped Stop Sel  
Ramped Down En Src  
Brk Pick Flt Ena  
Brk Hold Flt Ena  
Ext Torq Cmd Src  
Dir Confirm  
Password Lockout  
Hi/Lo Gain Src  
Speed Reg Type  
Motor Rotation  
Hidden Items U2  
Hidden Items Enable  
Fault History F2  
Display Fault History  
Clear Fault History  
Encoder Connect  
Spd Ref Release  
Cont Confirm Src  
Tach Filter Enable  
PreTorque Source  
PreTorque Latch  
Ptorq Latch Clck  
Fault Reset Src  
Overspd Test Src  
Units U3  
Units Selection  
Display Fault Counters  
S-curve Abort  
Ovrspeed Test U4  
Overspeed Test?  
Encoder Fault  
Priority Message  
Stopping Mode  
Auto Stop  
Restore Dflts U5  
Restore Motor Defaults  
Restore Drive Defaults  
Resore Utility Defaults  
DSPR Enable  
Logic Inputs C2  
N.C. Inputs  
MS Drive Info U6  
MS Drive Version  
MS Drive Type  
MS S/W Date  
MS S/W Time  
MS FPGA Version  
MS Cube ID  
Logic Input 5 TB1-5  
Logic Input 6 TB1-6  
Logic Input 7 TB1-7  
Logic Input 8 TB1-8  
Logic Input 9 TB1-9  
Logic Input 1 TB1-1  
Logic Input 2 TB1-2  
Logic Input 3 TB1-3  
Logic Input 4 TB1-4  
Logic Outputs C3  
Logic Output 1 TB1-25  
Logic Output 2 TB1-26  
Logic Output 3 TB1-27  
Logic Output 4 TB1-28  
Logic Output 5 TB1-29  
Logic Output 6 TB1-30  
LS Drive Info U7  
LS Drive Version  
LS Drive Type  
LS S/W Date  
LS S/W Time  
LS FPGA Version  
LS Cube ID  
Logic Output 7 TB1-31  
SS Relay 1 TB1-21/22  
SS Relay 2 TB1-23/24  
Relay Coil 1 TB2-1/3/5  
Relay Coil 2 TB2-  
8/10/12  
Hex Monitor U8  
Address  
Analog Outputs C4  
Analog Output 1 TB1-12  
Analog Output 2 TB1-  
14  
29  
Quattro DC Drive Parameters A1  
Adjust A0 menu  
Drive A1 submenu  
Run  
lock  
out  
Hidden  
Item  
Parameter  
Description  
Units  
Default  
Range  
(Contract Car Speed) Adjusts the elevator  
contract speed in feet per minute (fpm) or  
meters per second (m/s).  
fpm  
m/s  
400.0  
2.000  
0.0 – 1500.0  
0.00 – 8.00  
CONTRACT  
CAR SPD  
N
Y
(Contract Motor Speed) Sets motor rpm  
when commanded to run at elevator  
contract speed. The speed regulator  
actually regulates RPM x Encoder PPR  
pulses per second. Trim this value to fine  
tune actual elevator speed.  
CONTRACT  
MTR SPD  
rpm  
1130.0  
30.0 – 3000.0  
N
Y
(Response) Sets the sensitivity of the  
drive’s speed regulator in terms of the  
speed regulator bandwidth in radians. The  
responsiveness of the drive as it follows  
the speed reference will increase as this  
number increases. If the number is too  
large, the motor current and speed will be  
jittery. If this number is too small, the  
motor will be sluggish.  
(Per Unit System Inertia) This parameter is  
the inertia/torque ratio as seen by the  
drive. It affects internal gain of the speed  
regulator. This time in seconds is the time  
it would take the motor to accelerate a  
load-balanced elevator to contract speed  
at rated torque.  
RESPONSE  
rad/sec  
10.0  
1.0 – 20.0  
N
N
N
N
INERTIA  
sec  
2.00  
0.25 – 50.00  
(Inner Loop Crossover) This parameter is  
used as a stiffness factor. Higher settings  
make the drive more responsive to load  
changes and can help minimize rollback.  
Because of the amount of responsiveness  
due to a high setting, the drive is more  
sensitive to speed disturbances and this  
parameter can affect ride quality. Note:  
this parameter is only used when SPEED  
REG TYPE (C1) = ELEV SPD REG. See  
SPD PHASE MARGIN (A1) if using PI  
REG.  
INNER LOOP  
XOVER  
rad/sec  
2.0  
0.1 – 20.0  
N
N
(Armature Current Limit) This parameter  
sets armature current limit for DC motor  
applications.  
(Gain Reduce Multiplier) This parameter  
is the percent of ‘response’ the speed  
regulator should use in the ‘low gain’  
CURRENT  
LIMIT  
%
%
200.0  
100  
0.0 – 275.0  
10 – 100  
N
Y
N
N
GAIN REDUCE mode. This value reduces the  
MULT  
RESPONSE value when the drive is in  
‘low gain’ mode. (i.e. setting this  
parameter to 100% equals no reduction in  
gain in the ‘low gain’ mode)  
(Gain Change Level) When the HI/LO  
GAIN SRC in submenu C1 is set to  
internal, the drive will control the high/low  
gain switch. This parameter sets the  
speed reference level, above which, the  
drive is in ‘low gain’ mode. Units in  
percent of rated speed.  
GAIN CHNG  
LEVEL  
%
100.0  
0.0 – 100.0  
Y
N
For more information, see GAIN CHNG  
LEVEL on page 36.  
30  
   
Quattro DC Drive Parameters A1  
Run  
lock  
out  
Hidden  
Item  
Parameter  
Description  
Units  
Default  
100  
Range  
1 – 100  
TACH FILTER (Tach Filter Bandwidth) Breakpoint of  
BW  
rad/sec  
Y
N
tachometer / encoder feedback signal.  
(Tach Rate Gain) Used to help reduce the  
effects of rope resonance. It should be  
adjusted only after the INERTIA and  
RESPONSE have been set correctly.  
(Speed Phase Margin) This parameter  
sets the phase margin of the speed  
regulator assuming a pure inertial load.  
This parameter is only in affect if SPEED  
REG TYPE (C1) is set to PI REG. See  
INNER LOOP XOVER (A1) if using ELEV  
SPD REG.  
TACH RATE  
GAIN  
none  
0.0  
0.0 – 30.0  
Y
Y
N
SPD PHASE  
MARGIN  
degs  
80  
45 – 90  
N
(Ramped Stop Time) This parameter is  
used only by the torque ramp down  
function during a stop and sets the time to  
decrease motor torque from rated torque  
to zero. After the elevator comes to a halt  
at a landing the brake is applied and the  
drive is told to turn off. However,  
components of the mechanical brake must  
‘set’ ever so slightly in order to generate  
enough torque to hold the car. This small  
movement can cause a significant ‘bump’  
if the transfer of torque occurs too quickly.  
This effect is essentially eliminated by the  
Torque Ramp Down function.  
RAMPED STOP  
TIME  
sec  
0.20  
0.00 – 2.50  
Y
N
The Ramped Stop Select function is  
enabled at (RAMPED STOP SEL(C1)).  
The Ramped Stop Time Parameter  
determines the rate of motor torque decay  
with ramped stop enabled. RAMPED  
STOP TIME(A1) determines the amount of  
time it would take for the drive to ramp  
from rated torque to zero torque. The  
actual time for torque decay to occur on a  
typical stop will depend on the actual  
amount of torque required to hold the car.  
(Contactor Fault Time) Determines  
allowable time for motor contactor  
feedback to be out of sync with  
CONTACT FLT  
TIME  
sec  
0.50  
0.10 – 5.00  
Y
N
commanded state before a CONTACTOR  
FLT occurs.  
(Brake Pick Time) If BRAKE PICK CNFM  
is set to INTERNAL TIME this parameter  
sets the internal time the drive waits until it  
assumes the brake has been picked. If  
BRAKE PICK CNFM is set to EXTERNAL  
TB, this parameter sets the time the drive  
waits until it receives a brake pick  
confirmation or a BRK PICK FLT will be  
declared.  
BRAKE PICK  
TIME  
sec  
sec  
1.00  
0.20  
0.00 – 5.00  
0.00 – 5.00  
Y
Y
N
N
(Brake Hold Time) Determines the time  
BRAKE HOLD the drive will wait until a BRK HOLD FLT is  
TIME  
declared if a logic input is set to MECH  
BRK HOLD  
31  
Quattro DC Drive Parameters A1  
Run  
lock  
out  
Hidden  
Item  
Parameter  
Description  
Units  
%
Default  
115.0  
Range  
(Over speed Level) Sets the percentage  
of rated speed the drive uses (in  
conjunction with OVERSPEED TIME,  
below) to determine when an  
OVERSPEED  
LEVEL  
90.0 – 150.0  
Y
N
OVERSPEED fault occurs. Units in  
percent of contract speed  
(Over speed Time) Sets the time that the  
drive can be at or above the OVERSPEED  
LEVEL (A1), before the drive declares an  
OVERSPEED FLT.  
(Over Speed Multiplier) Sets the  
percentage of CONTRACT CAR SPD (A1)  
for the OVERSPEED TEST (U4).  
OVERSPEED  
TIME  
sec  
%
1.00  
0.00 – 9.99  
Y
Y
N
N
OVERSPEED  
MULT  
125.0  
100.0 – 150.0  
(Encoder Pulses per Revolution, PPR)  
This parameter sets the pulses per  
revolution (per channel) the drive receives  
from the encoder. Set this value to agree  
with the pulses per revolution on the  
encoder nameplate if the tachometer is  
directly coupled to the motor shaft. If  
tachometer connected to rider roll to  
measure linear velocity, then this should  
be a calculated value equal to the counts  
expected from the encoder when the  
motor makes exactly one revolution.  
(Speed Deviation Lo Level) Range around  
the speed reference for speed deviation  
low logic output. Units are in percent of  
contract speed. See SPD DEV LO LEVEL  
and SPD DEV HI LEVEL on page 37.  
(Speed Deviation Time) This parameter  
defines the time the speed feedback  
needs to be in the range around the speed  
reference defined by SPD DEV LO LEVEL  
(A1) before the Speed Deviation Low logic  
output is true.  
ENCODER  
PULSES  
PPR  
5000  
600 – 10000  
N
Y
SPD DEV LO  
LEVEL  
%
10.0  
0.50  
0.1 – 20.0  
Y
Y
N
N
SPD DEV TIME  
sec  
0.00 – 9.99  
(Speed Deviation High Level) Level for  
declaring speed deviation alarm. Units are  
in percent of contract speed. See SPD  
DEV LO LEVEL and SPD DEV HI LEVEL  
SPD DEV HI  
LEVEL  
%
10.0  
0.00  
0.0 – 99.9  
Y
Y
N
Y
(Speed Command Bias) This parameter  
subtracts an effective voltage to the actual  
analog speed command voltage signal.  
SPD  
COMMAND  
BIAS  
volts  
0.00 – 6.00  
analog  
channel#1  
input  
signal  
drive  
software  
uses  
SPD  
COMMAND  
BIAS  
SPD  
COMMAND  
MULT  
×
=
voltage  
(Speed Command Multiplier) This  
parameter scales the analog speed  
command.  
SPD  
COMMAND  
MULT  
none  
1.00  
0.90 – 5.00  
Y
Y
analog  
channel#1  
input  
signal  
drive  
SPD  
COMMAND  
BIAS  
SPD  
COMMAND  
MULT  
×
=
software  
uses  
voltage  
32  
Quattro DC Drive Parameters A1  
Run  
lock  
out  
Hidden  
Item  
Parameter  
Description  
Units  
volts  
Default  
Range  
(External Torque Bias) This parameter  
subtracts an effective voltage to the actual  
analog pre torque / torque command  
(channel 2) voltage signal. Note: Drive  
automatically limits current at 300% or the  
value in CURRENT LIMIT (A1). For more  
information, see Analog Inputs on page 18  
and Pre-Torque / Torque Feed Forward on  
EXT TORQUE  
BIAS  
0.00  
-6.00 – +6.00  
Y
Y
analog  
channel#2  
input  
signal  
drive  
software  
uses  
EXT  
TORQUE  
BIAS  
EXT  
TORQUE  
MULT  
×
=
voltage  
(External Torque Multiplier) This  
parameter scales the analog pretorque /  
torque command (channel 2). If this  
function is set to 1.00, a 10V signal will call  
for 100% torque. Note: Drive  
automatically limits current at 300% or the  
value in CURRENT LIMIT (A1). For more  
information, see Analog Inputs on page 18  
and Pre-Torque / Torque Feed Forward on  
EXT TORQUE  
MULT  
-10.00 –  
+10.00  
none  
1.00  
Y
Y
analog  
channel#2  
input  
signal  
drive  
EXT  
TORQUE  
BIAS  
EXT  
TORQUE  
MULT  
×
=
software  
uses  
voltage  
(Zero Speed Level) This parameter sets  
the threshold for zero speed detection.  
This is only used to generate the zero  
speed logic output.  
Note: if DIR CONFIRM (C1) is enabled,  
this parameter also sets the threshold for  
the termination of the test to confirm the  
polarity of the analog speed command.  
Unites in percent of contract speed  
(Zero Speed Time) This parameter sets  
the time at which the drive is at the ZERO  
SPEED LEVEL (A1) before zero speed  
logic output is true.  
ZERO SPEED  
LEVEL  
%
1.00  
0.00 – 99.99  
Y
Y
ZERO SPEED  
TIME  
sec  
%
0.10  
1.00  
0.00 – 9.99  
0.00 – 9.99  
Y
Y
Y
Y
(Directional Threshold) This parameter  
sets the threshold for the direction sense  
logic outputs. If speed feedback does not  
reach this level, the drive will not detect a  
directional change. This is only used to  
generate the direction sense logic outputs  
(car going up and car going down). Units  
in percent of contract speed.  
UP/DWN  
THRESHOLD  
(Digital to Analog #1 Output Offset) Offset  
for scaling Analog Output Channel #1.  
signal  
analog  
channel  
output  
ANA OUT 1  
OFFSET  
ANA  
OUT  
ANA  
× OUT =  
GAIN  
%
%
0.0  
0.0  
-99.9 – 99.9  
-99.9 – 99.9  
Y
Y
N
N
drive  
software  
creates  
OFFSET  
voltage  
(Digital to Analog #2 Output Offset) Offset  
for scaling Analog Output Channel #2.  
signal  
analog  
channel  
output  
ANA OUT 2  
OFFSET  
ANA  
OUT  
ANA  
× OUT =  
GAIN  
drive  
software  
creates  
OFFSET  
voltage  
33  
Quattro DC Drive Parameters A1  
Run  
lock  
out  
Hidden  
Item  
Parameter  
Description  
Units  
none  
Default  
1.0  
Range  
(Digital to Analog #1 Output Gain) Adjusts  
the scaling for the Analog Output Channel  
#1.  
NOTE: value of 1.0 = 0 to 10VDC signal.  
ANA OUT 1  
GAIN  
0.0 – 10.0  
Y
Y
N
N
signal  
analog  
channel  
output  
ANA  
OUT  
ANA  
× OUT =  
GAIN  
drive  
software  
creates  
OFFSET  
voltage  
(Digital to Analog #2 Output Gain) Adjusts  
the scaling for the Analog Output Channel  
#2.  
NOTE: value of 1.0 = 0 to 10VDC signal.  
ANA OUT 2  
GAIN  
none  
1.0  
0.0 – 10.0  
signal  
analog  
channel  
output  
ANA  
OUT  
ANA  
× OUT =  
GAIN  
drive  
software  
creates  
OFFSET  
voltage  
(Fault Reset Delay) When the drive is set  
for automatic fault reset, this is the time  
before a fault is automatically reset.  
FLT RESET  
DELAY  
sec  
5
3
0 – 120  
0 – 10  
Y
Y
N
N
(Fault Resets per Hour) When the drive is  
FLT RESETS / set for automatic fault reset, this is the  
faults  
HOUR  
number of faults allowed to be  
automatically reset per hour.  
(Up to Speed Level) This parameter sets  
the threshold for the up to speed logic  
output. This is only used to generate the  
up to speed logic output. Units in percent  
of contract speed.  
(Run Recognition Delay Timer) Allows the  
user to delay the drive’s recognition of the  
RUN signal therefore allow more time for  
the motor contactor to set. For more  
information, see RUN DELAY TIMER on  
UP TO SPD.  
LEVEL  
%
80.00  
0.00  
0.00 –110.00  
0.00 – 0.99  
Y
Y
N
Y
RUN DELAY  
TIMER  
sec  
(Auto Brake Zero Speed Level) Sets the  
speed point that will be considered as zero  
speed for the auto brake function. The  
units are % of contract speed.  
In order to use the Auto Brake Function, a  
AB ZERO SPD logic output needs to be configured for  
%
0.00  
0.00 – 2.00  
Y
Y
LEV  
AUTO BRAKE (C3), the parameter SPD  
COMMAND SRC(C1) = MULTI-STEP, the  
parameter SPD REF RELEASE (C1) =  
BRAKE PICKED, and the parameter  
BRAKE PICK CFRM(C1) = EXTERNAL  
TB1.  
(Auto Brake Off Delay) Determines the  
time after zero speed is reached (level  
AB OFF DELAY determined by the AB ZERO SPD LEV  
(A1) parameter) that the Auto Brake logic  
output goes false.  
sec  
sec  
0.00  
0.00  
0.00 – 9.99  
0.00 – 5.00  
Y
Y
Y
Y
(Contactor Drop-Out Delay) When the  
drive controls the motor contacts via  
CLOSE CONTACT logic output, this  
CONTACTOR  
parameter allows the user to delay the  
DO DLY  
drive’s dropout of the motor contactor.  
The delay time starts when the speed  
regulator release signal goes false.  
34  
Quattro DC Drive Parameters A1  
Run  
lock  
out  
Hidden  
Item  
Parameter  
Description  
Units  
sec  
Default  
0.50  
Range  
(Torque Limit Message Delay) This  
parameter determines the amount of time  
the drive is in torque limit before the “HIT  
TORQUE LIMIT” alarm message is  
displayed.  
TRQ LIM MSG  
DLY  
0.00 – 10.00  
Y
Y
Y
(Rollback Gain) This parameter increases  
the sensitivity (or gain) of the speed  
regulator during the start in the interval  
between “Speed Regulator Release” and  
“Reference Release”. The parameter acts  
as a multiplier to the existing speed  
regulator gain. For more information, see  
ROLLBACK GAIN on page 37.  
ROLLBACK  
GAIN  
none  
1
1 – 99  
Y
(Notch Filter Frequency) Determines the  
NOTCH FILTER notch filter center frequency. For more  
Hz  
%
20  
0
5 – 60  
Y
Y
Y
Y
FRQ  
information, see NOTCH FILTER FRQ on  
(Notch Filter Depth) Determines notch  
filter maximum attenuation.  
Note: A filter depth setting of zero  
(NOTCH FILT DEPTH (A1) = 0) removes  
the filter.  
NOTCH FILT  
DEPTH  
0 – 100  
(Standby Field Delay Time) Determines  
the time the drive will continue to supply  
Full Field current after stopping and  
turning motor armature current control  
OFF. Motor field current will drop to  
standby amps after this time delay.  
(Drive Standby Power Reduction Time)  
Determines how long the drive will remain  
energized with motor field current at  
Standby amps before progressing to  
complete drive shutdown and utility side  
disconnection. Only used when DPSR  
ENABLE (C1) is set to ENABLE  
(Full Field Time) Determines the  
maximum time the drive can remain at Full  
Field without actually running. If logically  
held in that condition for longer than the  
Full field Time, a Fault will be declared to  
prevent potential burnout of the motor  
field.  
STNDBY FLD  
TIME  
sec  
min  
30  
0 – 999  
0 – 999  
Y
Y
Y
Y
DSPR TIME  
120  
FULL FIELD  
TIME  
min  
5
0 - 99  
Y
Y
Table 2: Drive A1 Submenu  
35  
Quattro DC Drive Parameters A1  
Detailed descriptions  
HPV 900 Parameter Settings  
HI/LO GAIN SRC = internal  
GAIN REDUCE MULT = 80%  
GAIN CHNG LEVEL = 10 %  
RESPONSE = 10.0 rad/sec  
GAIN CHNG LEVEL  
(Gain Change Level )  
Response of  
Speed Regulator  
8.0 rad/sec  
Works in conjunction with HI/LO GAIN SRC in  
menu C0. When the gain control source is set  
to internal, this parameter sets the speed  
reference level that controls the Hi/Lo gain  
switch. The velocity regulator will use normal  
‘high gain’ when the reference speed is below  
this value, or ‘low gain’ settings when the  
speed reference is above this value.  
100%  
contract  
speed  
speed reference  
10%  
contract  
speed  
10%  
contract  
speed  
On some elevators when the speed response  
(gain) is set to high levels as required for good  
velocity tracking during acceleration, the  
resonant characteristics of the elevator ropes  
can cause car vibration while running at steady  
state speed. To reduce this problem, the  
response (gain) of the speed regulator is  
effectively reduced to a lower value so that the  
resonant characteristics of the ropes are not  
continuously excited. The High/Low gain  
switch modifies the sensitivity or response of  
the speed regulator via the gain reduce  
multiplier.  
low gain  
mode  
Response of  
Speed Regulator  
8.0 rad/sec  
0%  
contract  
speed  
0%  
contract  
speed  
Response of  
Speed Regulator  
10.0 rad/sec  
Response of  
Speed Regulator  
10.0 rad/sec  
The Gain Reduce Multiplier adjusts how much  
gain reduction will occur at higher speeds.  
The Gain Change Level (or external  
command) determines when the gain change  
will occur.  
High / Low Gain Example  
High / low gain switching may be controlled  
either externally or internally. The high / low  
gain source parameter (HI/LO GAIN SRC) in  
Configuration menu C0 allows for an external  
or automatic internal gain switch selection.  
The high/low gain switch may be controlled by  
either:  
a logic input  
the serial channel  
the gain change level parameter (GAIN CHNG  
LEVEL), which defines a percentage of  
contract speed  
36  
 
Quattro DC Drive Parameters A1  
RUN DELAY TIMER  
SPD DEV LO LEVEL and SPD DEV HI  
LEVEL  
This parameter allows the user to delay the  
drive’s recognition of the RUN signal  
(Speed Deviation Low / High Level)  
These two functions are available to indicate  
how the speed feedback is tracking the speed  
reference.  
internal connection  
internal connection  
READY TO RUN  
FLUX CONFIRM (logic output)  
(logic output)  
software ready  
no faults  
drive boosting  
flux level 90%  
Drive Internal  
Speed Deviation Low – indicates that the  
speed feedback is tracking the speed  
reference within a defined range.  
Speed Deviation High – indicates that the  
speed feedback is failing to properly track  
the speed reference.  
Signals  
Speed  
Regulator  
and  
Reference  
Release  
RUN or  
RUN UP or RUN  
DOWN (logic  
input)  
The Speed Deviation Low function has the  
ability to set a configurable logic output. The  
logic output will be true, when the speed  
feedback is tracking the speed reference within  
a defined range around the speed reference  
The defined range is determined by the Speed  
Deviation Low Level parameter (SPD DEV LO  
LEVEL) and the defined time is determined by  
the Speed Deviation Time parameter (SPD  
DEV TIME).  
DRIVE  
ENABLE (logic  
input)  
Drive Internal Signal  
Run Confirm  
CONTACT  
CFIRM  
(logic input)  
(if used)  
Run recognition  
delay  
ROLLBACK GAIN  
The Speed Deviation High function  
Note: this function is only for use with multi-  
step speed commands (SPD COMMAND SRC  
(C1) = MULTI-STEP)  
During the start, this function can help the  
drive re-establish the torque to help control  
rollback (or roll forward).  
annunciates a Speed Deviation Alarm, and has  
the ability to set a configurable logic output.  
The alarm will be annunciated and the logic  
output will be true, when the speed feedback is  
not properly tracking the speed reference and  
is outside a defined range around the speed  
reference (see Figure 13). The defined range  
is determined by the Speed Deviation High  
Level parameter  
Set-up: In order to use the Anti-Rollback  
function, the following parameters must be set:  
SPD REF RELEASE(C1)=BRAKE PICKED  
and BRAKE PICK CFRM(C1)=INTERNAL  
TIME. With the these settings for SPD REF  
RELEASE(C1) and BRAKE PICK CFRM(C1),  
the BRAKE PICK TIME (A1) parameter  
determines the amount of time the drive will  
command zero speed after the Run command  
is given and the amount of time the drive will  
command zero speed after the Run command  
is removed.  
Speed Deviation High  
(Speed Deviation Alarm)  
Speed Deviation Low  
Speed Reference  
At the start, the ROLLBACK GAIN parameter  
will increase the speed regulator gain during  
the time determined by BRAKE PICK TIME  
parameter when the drive is commanding zero  
speed (i.e. the time between the speed  
regulator is released and the speed reference  
is released). During this BRAKE PICK TIME,  
the mechanical brake should be picked (either  
by the car controller or drive).  
Speed Feedback  
Speed Deviation High  
Adjustment: Start at ROLLBACK GAIN=1 and  
increase in increments of 1 to help control  
rollback.  
(Speed Deviation Alarm)  
Figure 13: Speed Deviation Example  
IMPORTANT: too high a setting for this  
parameter can lead to drive instability.  
37  
       
Quattro DC Drive Parameters A1  
NOTCH FILTER FRQ  
Notch Filter Example settings:  
NOTCH FILTER FRQ (A1) = 20Hz  
NOTCH FILT DEPTH (A1) = 50% and 100%  
(Notch Filter Center Frequency)  
Although originally created for gearless  
applications where elevator rope resonance is  
sometimes an issue, this filter affects the  
torque command output of the speed regulator  
and will filter out specific frequencies. By  
filtering a specific frequency, the speed  
regulator will avoid exciting a mechanical  
resonance if one exists at that frequency.  
0
-5  
-10  
There is attenuation across a range of  
frequencies, not just at the set frequency, but  
also to a lesser degree. The filter starts  
attenuation at frequencies lower than the notch  
frequency set point. When the notch  
frequency is set to low values (less than 10  
Hz), the filter can interfere with the desired  
response of the drive. This can be exhibited  
by minor increase in the rollback of the drive at  
start and some deterioration in the ability of the  
drive to track an s-curve reference. Generally,  
this would not be an issue if the notch  
Attenuation  
-15  
-20  
-25  
-30  
(dB)  
1
10  
100  
Frequency  
(Hz)  
frequency were set at or above 10 Hz.  
38  
   
Quattro DC Drive S-Curves A2  
There are four S-curve patterns available in  
the drive and each S-curve is customized by  
six parameters:  
S-Curves A2 submenu  
The drive speed command is passed through  
an internal S-curve in order to produce the  
speed reference. In general, the S curve  
function takes an arbitrary speed command  
and generates a speed reference subject to  
the conditions that the maximum accel, decel  
and jerk rates not be exceeded. The speed  
command is typically the target speed that the  
reference is headed to.  
Parameters for S-curve-0 (SC0):  
ACCEL RATE 0, DECEL RATE 0, ACCEL  
JERK IN 0, ACCEL JERK OUT 0, DECEL  
JERK IN 0, and DECEL JERK OUT 0  
Parameters for S-curve-1 (SC1):  
ACCEL RATE 1, DECEL RATE 1, ACCEL  
JERK IN 1, ACCEL JERK OUT 1, DECEL  
JERK IN 1, and DECEL JERK OUT 1  
If the user gives the drive a speed dictation,  
either analog or serial, the S-Curve will act as  
a slew rate limiter on the externally generated  
speed dictation. For this purpose, set the jerk  
rates associated with the S-Curve (see Table 3  
for determining which s-curve is used) to zero  
and the Accel Rate and Decel Rate to values  
faster than the maximum expected rated  
provided in the dictation signal.  
Parameters for S-curve-2 (SC2):  
ACCEL RATE 2, DECEL RATE 2, ACCEL  
JERK IN 2, ACCEL JERK OUT 2, DECEL  
JERK IN 2, DECEL JERK OUT 2  
Parameters for S-curve-3 (SC3):  
ACCEL RATE 3, DECEL RATE 3, ACCEL  
JERK IN 3, ACCEL JERK OUT 3, DECEL  
JERK IN 3, DECEL JERK OUT 3  
S-Curve Pattern Selection  
Below shows the six parameters associated  
with an S-Curve data set:  
The default S-curve pattern is S-curve-0  
(SC0). To make the other patterns available,  
the user must assign S-CURVE SEL 0 and/or  
S-CURVE SEL 1 as logic input(s). The logic  
input(s) can then be used to select one of the  
S-curve patterns, as follows:  
Accel - Maximum allowed acceleration rate  
(ft/s2 or m/s2)  
Decel - Maximum allowed deceleration rate  
(ft/s2 or m/s2)  
Accel Jerk In - Maximum allowed change in  
acceleration towards Accel (ft/s3 or m/s3)  
Accel Jerk Out - Maximum allowed change  
in acceleration from Accel (ft/s3 or m/s3)  
Decel Jerk In - Maximum allowed change in  
deceleration towards Decel (ft/s3 or m/s3)  
Decel Jerk Out - Maximum allowed change  
in deceleration from Decel (ft/s3 or m/s3)  
Logic Inputs  
Assigned  
S-curves  
Available  
None  
SC0 only  
SC0 or SC1  
SC0 or SC2  
SEL 0 only  
SEL 1 only  
SEL 0 & SEL 1  
SC0, SC1,  
SC2 or SC3  
The S-curves are specified by four parameters:  
acceleration rate (ft/s2 or m/s2 ), deceleration  
rate (ft/s2 or m/s2), leveling jerk rate (ft/s3 or  
m/s3 ), and jerk rate (ft/s3 or m/s3 ).  
Table 3: S-Curve Availability  
Since an adjustable jerk rate is helpful for  
smooth landings, the jerk rates are split for  
ease in elevator fine-tuning. The jerk rate  
parameters specify: acceleration from the floor  
(ACCEL JERK IN), jerk out of acceleration  
(ACCEL JERK OUT), jerk into deceleration  
(DECEL JERK IN), and the leveling into the  
floor (DECEL JERK OUT).  
logic input  
S-CURVE  
S-curve  
selected  
SEL 1  
SEL 0  
0
0
1
1
0
1
0
1
SCO  
SC1  
SC2  
SC3  
Table 4: Selecting S-Curves  
S-Curve  
39  
     
Quattro DC Drive S-Curves A2  
Run  
lock  
out  
Hidden  
Item  
Parameter  
Description  
Units Default  
Range  
ft/s2  
m/s2  
ft/s2  
m/s2  
ft/s3  
m/s3  
ft/s3  
m/s3  
ft/s3  
m/s3  
ft/s3  
m/s3  
ft/s2  
m/s2  
ft/s2  
m/s2  
ft/s3  
m/s3  
ft/s3  
m/s3  
ft/s3  
m/s3  
ft/s3  
m/s3  
ft/s2  
m/s2  
ft/s2  
m/s2  
ft/s3  
m/s3  
ft/s3  
m/s3  
ft/s3  
m/s3  
ft/s3  
m/s3  
ft/s2  
m/s2  
ft/s2  
m/s2  
ft/s3  
m/s3  
ft/s3  
m/s3  
ft/s3  
m/s3  
ft/s3  
m/s3  
7.99  
2.435  
7.99  
2.435  
0.0  
0.00 – 7.99  
0.000 – 3.999  
0.00 – 7.99  
0.000 – 3.999  
0.0 – 29.9  
ACCEL  
RATE 0  
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Acceleration rate limit  
Deceleration rate limit  
DECEL  
RATE 0  
ACCEL  
JERK IN 0  
Rate of increase of acceleration, up to ACCEL  
RATE, when increasing elevator speed  
0.000  
0.0  
0.000 – 9.999  
0.0 – 29.9  
ACCEL  
Rate of decrease of acceleration to zero when  
JERK OUT 0 approaching contract elevator speed  
0.000  
0.0  
0.000 – 9.999  
0.0 – 29.9  
DECEL  
JERK IN 0  
Rate of increase of deceleration, up to DECEL  
RATE, when decreasing elevator speed  
0.000  
0.0  
0.000 – 9.999  
0.0 – 29.9  
DECEL  
Rate of decrease of deceleration to zero when  
JERK OUT 0 slowing the elevator to leveling speed  
0.000  
7.00  
2.134  
3.00  
0.090  
8.0  
0.000 – 9.999  
0.00 – 7.99  
0.000 – 3.999  
0.00 – 7.99  
0.000 – 3.999  
0.0 – 29.9  
ACCEL  
Acceleration rate limit  
RATE 1  
DECEL  
Deceleration rate limit  
RATE 1  
ACCEL  
JERK IN 1  
Rate of increase of acceleration, up to ACCEL  
RATE, when increasing elevator speed  
2.400  
8.0  
0.000 – 9.999  
0.0 – 29.9  
ACCEL  
Rate of decrease of acceleration to zero when  
JERK OUT 1 approaching contract elevator speed  
2.400  
8.0  
0.000 – 9.999  
0.0 – 29.9  
DECEL  
JERK IN 1  
Rate of increase of deceleration, up to DECEL  
RATE, when decreasing elevator speed  
2.400  
8.0  
0.000 – 9.999  
0.0 – 29.9  
DECEL  
Rate of decrease of deceleration to zero when  
JERK OUT 1 slowing the elevator to leveling speed  
2.400  
3.00  
0.090  
3.00  
0.090  
8.0  
0.000 – 9.999  
0.00 – 7.99  
0.000 – 3.999  
0.00 – 7.99  
0.000 – 3.999  
0.0 – 29.9  
ACCEL  
Acceleration rate limit  
RATE 2  
DECEL  
Deceleration rate limit  
RATE 2  
ACCEL  
JERK IN 2  
Rate of increase of acceleration, up to ACCEL  
RATE, when increasing elevator speed  
2.400  
8.0  
0.000 – 9.999  
0.0 – 29.9  
ACCEL  
Rate of decrease of acceleration to zero when  
JERK OUT 2 approaching contract elevator speed  
2.400  
8.0  
0.000 – 9.999  
0.0 – 29.9  
DECEL  
JERK IN 2  
Rate of increase of deceleration, up to DECEL  
RATE, when decreasing elevator speed  
2.400  
8.0  
0.000 – 9.999  
0.0 – 29.9  
DECEL  
Rate of decrease of deceleration to zero when  
JERK OUT 2 slowing the elevator to leveling speed  
2.400  
3.00  
0.090  
3.00  
0.090  
8.0  
0.000 – 9.999  
0.00 – 7.99  
0.000 – 3.999  
0.00 – 7.99  
0.000 – 3.999  
0.0 – 29.9  
ACCEL  
Acceleration rate limit  
RATE 3  
DECEL  
Deceleration rate limit  
RATE 3  
ACCEL  
JERK IN 3  
Rate of increase of acceleration, up to ACCEL  
RATE, when increasing elevator speed  
2.400  
8.0  
0.000 – 9.999  
0.0 – 29.9  
ACCEL  
Rate of decrease of acceleration to zero when  
JERK OUT 3 approaching contract elevator speed  
2.400  
8.0  
0.000 – 9.999  
0.0 – 29.9  
DECEL  
JERK IN 3  
Rate of increase of deceleration, up to DECEL  
RATE, when decreasing elevator speed  
2.400  
8.0  
0.000 – 9.999  
0.0 – 29.9  
DECEL  
Rate of decrease of deceleration to zero when  
JERK OUT 3 slowing the elevator to leveling speed  
2.400  
0.000 – 9.999  
Table 5: S-Curves A2 Submenu  
40  
Quattro DC Multistep Ref A3 Submenu  
Multistep Ref A3 submenu  
The multi-step speed reference function is one  
possible way for the drive to accept speed  
command. To use this function, the user can  
enter up to fifteen speed commands (CMD1 –  
CMD15) and assign four logic inputs as speed  
command selections.  
An example of the use of the multi-step  
command is as follows:  
All speed commands are positive.  
CMD0 specifies zero speed.  
CMD1 specifies leveling speed.  
CMD2 specifies inspection speed.  
CMD3 specifies an overspeed limit.  
CMD4 – CMD15 specify different top  
speeds depending on number of floors in  
the run.  
Note: CMD0 is reserved for zero speed,  
therefore is not accessible to the user for  
programming.  
During operation, the user will encode a binary  
signal on the four logic inputs that determines  
which speed command the software should  
use. The user need not use all four speed  
command selection bits; if no logic input is  
specified for one of the selection bits, that bit is  
always zero. For instance, if no logic input is  
specified for the most significant bit (B3), that  
bit will be zero and the user can select from  
CMD0 - CMD7.  
For typical use, the user will have all speed  
commands to be positive, in which case logic  
inputs (UP/DWN or RUNUP & RUNDOWN)  
must also be specified to determine up or  
down direction. It is possible for the user to  
specify both positive and negative values for  
CMD1 - CMD15, in which case logic input  
bit(s) are not needed.  
IMPORTANT  
Since these speed commands are selected  
with external contacts, a new command  
selection must be present for 50ms before it is  
recognized.  
logic input  
STEP REF  
multi-step  
speed  
B3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
B2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
B1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
B0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
command  
CMD0  
CMD1  
CMD2  
CMD3  
CMD4  
CMD5  
CMD6  
CMD7  
CMD8  
CMD9  
CMD10  
CMD11  
CMD12  
CMD13  
CMD14  
CMD15  
Multi-step Selection  
41  
   
Quattro DC Multistep Ref A3 Submenu  
Hidden  
Item  
Run  
lockout  
Parameter  
Description  
Units  
Default  
Range  
ft/min  
m/sec  
ft/min  
m/sec  
ft/min  
m/sec  
ft/min  
m/sec  
ft/min  
m/sec  
ft/min  
m/sec  
ft/min  
m/sec  
ft/min  
m/sec  
ft/min  
m/sec  
ft/min  
m/sec  
ft/min  
m/sec  
ft/min  
m/sec  
ft/min  
m/sec  
ft/min  
m/sec  
ft/min  
m/sec  
0.0  
0.000  
0.0  
-3000.0 – +3000.0  
-16.000 – +16.000  
-3000.0 – +3000.0  
-16.000 – +16.000  
-3000.0 – +3000.0  
-16.000 – +16.000  
-3000.0 – +3000.0  
-16.000 – +16.000  
-3000.0 – +3000.0  
-16.000 – +16.000  
-3000.0 – +3000.0  
-16.000 – +16.000  
-3000.0 – +3000.0  
-16.000 – +16.000  
-3000.0 – +3000.0  
-16.000 – +16.000  
-3000.0 – +3000.0  
-16.000 – +16.000  
-3000.0 – +3000.0  
-16.000 – +16.000  
-3000.0 – +3000.0  
-16.000 – +16.000  
-3000.0 – +3000.0  
-16.000 – +16.000  
-3000.0 – +3000.0  
-16.000 – +16.000  
-3000.0 – +3000.0  
-16.000 – +16.000  
-3000.0 – +3000.0  
-16.000 – +16.000  
Multi-step speed  
command #1  
SPEED COMMAND 1  
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Multi-step speed  
command #2  
SPEED COMMAND 2  
SPEED COMMAND 3  
SPEED COMMAND 4  
SPEED COMMAND 5  
SPEED COMMAND 6  
SPEED COMMAND 7  
SPEED COMMAND 8  
SPEED COMMAND 9  
SPEED COMMAND 10  
SPEED COMMAND 11  
SPEED COMMAND 12  
SPEED COMMAND 13  
SPEED COMMAND 14  
SPEED COMMAND 15  
0.000  
0.0  
Multi-step speed  
command #3  
0.000  
0.0  
Multi-step speed  
command #4  
0.000  
0.0  
Multi-step speed  
command #5  
0.000  
0.0  
Multi-step speed  
command #6  
0.000  
0.0  
Multi-step speed  
command #7  
0.000  
0.0  
Multi-step speed  
command #8  
0.000  
0.0  
Multi-step speed  
command #9  
0.000  
0.0  
Multi-step speed  
command #10  
0.000  
0.0  
Multi-step speed  
command #11  
0.000  
0.0  
Multi-step speed  
command #12  
0.000  
0.0  
Multi-step speed  
command #13  
0.000  
0.0  
Multi-step speed  
command #14  
0.000  
0.0  
Multi-step speed  
command #15  
0.000  
Table 6: Multi-Step Ref A3 Submenu  
42  
Quattro DC Motor Side Power Convert A4 Submenu  
Motor Side Power Convert A4 submenu  
Run  
lock  
out  
Hidden  
Item  
Parameter  
Description  
Units  
Ohm  
Default  
Range  
(Armature Circuit Resistance)  
Affects tuning of the armature  
current regulator. Load this  
parameter with known or  
measured value. Only used is  
GAIN SELECTION (A4) is set to  
Manual.  
(Armature Circuit Inductance)  
Affects tuning of the armature  
current regulator. Load this  
parameter with known or  
ARM RESISTANCE  
0.5000 0.0001 – 2.9999  
Y
Y
N
N
ARM INDUCTANCE  
mH  
15.00  
0.01 – 327.67  
measured value. Only used is  
GAIN SELECTION (A4) is set to  
Manual.  
(Motor Revolution Voltage Limit)  
Determines crossover point  
during regeneration at low speed  
from using CEMF to reverse  
plugging of motor. If set too high  
there will be a hesitation in  
torque. If set too low, there may  
be an oscillation squeal heard  
from the motor.  
(Field Current Regulator integral  
Gain) The integral gain for the  
current regulation of the motor  
field. Rarely needs to be  
changed from the default.  
(Field Current Regulator  
Proportional) The proportional  
gain for the current regulation of  
the motor field. Rarely needs to  
be changed from the default.  
(Auto Tune Motor)  
Begins the procedure to calculate  
motor parameters. See Auto  
Tune Procedure on page 95.  
(Gain Selection)  
MTR REV VLT LIM  
IF REG INT GAIN  
%
4.80  
0.90  
0.01 – 30.00  
Y
Y
N
N
none  
0.00 – 30.00  
0.00 – 16.38  
IF REG PROP GAIN  
AUTO TUNE MOTOR  
none  
none  
6.07  
-
Y
N
N
Y
Start Auto  
Tune?  
If set to MANUAL, values in ARM  
RESISTANCE (A4), ARM  
INDUCTANCE (A4), If REG INT  
GAIN (A4), and If REG PROP  
GAIN (A4) will be used.  
Autotune  
Manual  
GAIN SELECTION  
none Manual  
N
N
If set to AUTOTUNE, the  
armature regulator gains are set  
using AUTO MEAS ARM L(D2)  
and AUTO MEAS ARM R (D2).  
AUTO FLD INT (D2), and AUTO  
FLD PROP (D2) will be used to  
tune the respective regulators.  
43  
   
Quattro DC Motor Side Power Convert A4 Submenu  
Run  
lock  
out  
Hidden  
Item  
Parameter  
Description  
Units  
Default  
Range  
(Gain Bandwidth Armature) If  
GAIN SELECTION (C1) is set to  
MANUAL, this parameter is used  
to convert ARM RESISTANCE  
(A4) and ARM INDUCTANCE  
(A4) into the integral and  
proportional gains used by the  
current regulator.  
If GAIN SELECTION is set to  
AUTO-TUNE, this parameter is  
used to convert AUTO MEAS  
ARM R (D2) and AUTO MEAS  
ARM L (D2) into the integral and  
proportional gains used by the  
current regulator. The higher the  
setting, the more faithfully the  
regulator will duplicate its input  
command, however, too high of a  
bandwidth can cause problems  
such as a rough ride as the drive  
is more responsive.  
GAIN BANDWIDTH A  
rad/ sec  
500  
100 – 2000  
N
N
(Gain Bandwidth Field) If GAIN  
SELECTION is set to AUTO-  
TUNE, this parameter is used to  
calculate AUTO FLD INT (D2)  
and AUTO FLD PROP (D2) into  
the integral and proportional  
gains used by the field regulator.  
The higher the setting, the more  
faithfully the regulator will  
GAIN BANDWIDTH F  
rad/ sec  
5
1 – 40  
N
N
duplicate its input command,  
however, too high of a bandwidth  
can cause problems such as a  
rough ride as the drive is more  
responsive.  
(PWM Frequency)  
This parameter sets the PWM or  
‘carrier’ frequency of the motor  
armature portion of the drive.  
(Cooling Fan OFF Delay)  
Adjusts OFF delay of all cooling  
fans after drive has stopped  
operating when Main Fan Control  
is set at “Automatic”.  
PWM FREQ  
kHz  
Sec  
6.0  
2.5 – 16.0  
0 – 999  
N
N
N
N
FAN OFF DELAY  
180  
44  
Quattro DC Motor Side Power Convert A4 Submenu  
Run  
lock  
out  
Hidden  
Item  
Parameter  
Description  
Units  
Default  
Range  
(Main Fan Control Select)  
Selects primary method of  
cooling fan control.  
AUTO – All cooling fans turn  
OFF after Fan Off Delay time,  
after DSPR becomes active.  
TEMP – Fan speed is  
responsive to highest  
measured temperature of IGBT  
modules.  
OFF – Manual test mode, all  
fans off  
Auto  
Temp  
Off  
Low  
Medium  
High  
MAIN FAN CONTROL  
none  
Temp  
N
N
LOW – Manual test mode, low  
speed  
MEDIUM – Manual test mode,  
medium speed  
HIGH – Manual test mode,  
high speed  
(Undervoltage Alarm Level)  
This parameter sets the level at  
which an under voltage alarm will  
be declared. Units in percent of L-  
L voltage.  
UV-ALARM LEVEL  
%
90  
80 – 99  
Y
N
(Undervoltage Fault Level)  
This parameter sets the level at  
which an under voltage fault will  
occur. Units in percent of L-L  
voltage.  
(Field Carrier Frequency)  
Allows modification of PWM  
frequency to help eliminate  
acoustic noise.  
UV FAULT LEVEL  
FLD CARRIER FRQ  
%
80  
3
50 – 99  
3 – 10  
Y
Y
N
N
kHz  
Table 7: Motor Side Power Convert A4 Submenu  
45  
Quattro DC Line Side Power Convert A5 Submenu  
Line Side Power Converter A5 submenu  
NOTE: The only parameter that should ever need to be adjusted is INPUT L-L VOLTS. Other  
parameters are for Magnetek Engineering use only.  
Run  
lock  
out  
Hidden  
Item  
Parameter  
Description  
Units Default  
Range  
Proportional gain for out-of-  
phase current regulator  
Integral gain for out-of-  
phase current regulator  
Proportional gain for in-  
phase current regulator  
Integral gain for in-phase  
current regulator  
Proportional gain for bus  
voltage regulator  
Integral gain for bus voltage  
regulator  
Id REG PROP GAIN  
none  
none  
none  
none  
none  
none  
0.30  
10  
0.00 – 9.99  
0 – 999  
N
N
N
N
N
N
N
Id REG INTEGRAL GAIN  
Iq REG PROP GAIN  
N
0.30  
40  
0.00 – 9.99  
0 – 999  
N
Iq REG INTEGRAL GAIN  
DC BUS REG P GAIN  
DC BUS REG I GAIN  
N
3.00  
40  
0 – 9.99  
0 – 999  
N
N
(Input Line to Line Voltage -  
Input Voltage)  
INPUT L-L VOLTS  
This parameter sets the  
input voltage or AC line  
input voltage to the drive.  
(DC bus voltage reference)  
Adjusts the DC bus voltage  
boost above the peak of  
line voltage.  
(Software Bus Overvoltage  
Level) DC bus software  
Overvoltage trip point.  
(Bus Voltage Reference  
Source) Selects the bus  
voltage boost reference.  
Track Line V uses the  
actual line voltage for the  
bus reference.  
volts  
480  
110 – 552  
N
Y
DC BUS V BOOST  
SW BUS OV LEVEL  
Vdc  
Vdc  
30  
15 – 75  
N
N
N
N
850  
100 – 850  
Trk Vin 1=Track Line V  
Param 2=TrkVinParam  
BUS VREF SOURCE  
Recommended for  
none  
N
N
systems with a stiff line.  
Trk Vin Param uses  
INPUT L-L VOLTS (A5)  
for the bus reference.  
Recommended to  
systems with a soft line.  
(Phase Locked Loop Filter  
Frequency) Utility line  
Phase Locked Loop filter  
corner Frequency  
(Line Side PWM  
Frequency) Converter  
PWM Freq  
PLL FILTER FC  
LS PWM FREQ  
Hz  
40.0  
10.0  
0.0 – 150.0  
2.5 – 16.0  
N
N
N
N
kHz  
Table 8: Line Side Power Convert A5  
46  
   
Quattro DC Motor A6 Submenu  
Motor Parameters A6 submenu  
Run  
lock  
out  
Hidden  
Item  
Parameter  
Description  
Units Default  
Range  
-
(Motor Identification) This parameter  
allows for the selection of specific sets of  
motor parameters. This is yet to be  
determined for DC machines.  
(Rated Armature Amps) Motor armature  
amps. Note: value should be obtained  
from the motor nameplate.  
(Rated Armature Voltage) Rated motor  
armature circuit voltage. Note: value  
should be obtained from the motor  
nameplate.  
(Full field Amps) This parameter sets  
motor field amps at low speed. Note:  
value should be obtained from the motor  
nameplate.  
(Weak field Amps) This parameter sets  
the motor field amps at contract. Adjust  
as necessary to obtain rated armature  
volts at contract speed at full load up.  
May be the same as or lower than Full  
field Amps for motor field weakening.  
Motor field current will automatically  
begin to weaken when motor speed is  
Contract Speed x Weak Field/Full Field  
and follow a profile for constant CEMF.  
(Standby field Amps) Motor field current  
during drive standby conditions. Motor  
current will automatically drop to this level amps  
when idle after STNDBY FIELD TIME has  
expired.  
(Flux Confirm Level) Determines the  
minimum motor field current necessary  
before drive is allowed to start. Arranged  
as a percent of Full Field ampere setting.  
This ensures that pre-torque current to  
MOTOR ID  
-
-
0.0  
0
N
Y
Y
N
RATED MOTOR  
CURR  
amps  
amps  
1.0 – 400.0  
55 – 600  
N
N
ARMATURE VOLTS  
FULL FLD AMPS  
amps  
amps  
0.0  
0.0  
1.0 – 40.0  
1.0 – 40.0  
N
N
N
N
WEAK FLD AMPS  
STNDBY FIELD  
0.0  
0.0  
0.0 – 40.0  
N
N
N
N
FLUX CNFRM LEVEL motor will produce adequate torque when  
the elevator Brake is released. A lower  
setting will allow the drive to come alive  
earlier in the start cycle to help prevent  
unnecessary starting delays. Units in  
percent of full field.  
%
25.0 – 99.0  
(Armature IR Drop) Adjusts motor  
armature current regulator for expected  
current x resistance voltage drop of motor  
armature circuit at rated current. Includes  
motor armature, inter-poles and wiring  
resistance. Enter as a percent of rated  
armature volts. This parameter also  
affects the sensitivity of the fault, Encoder  
Fault.  
ARMATURE IR  
DROP  
Note: This equation is only valid after an  
Auto Tune has been done. For  
%
0.0  
0.0 – 25.0  
N
N
information on auto tuning the motor, see  
AUTO  
MEAS  
ARM  
RATED  
MOTOR  
×
ARM  
IR  
CURR(A6)  
R(D2)  
×100=  
DROP  
ARMATURE  
VOLTS (A6)  
(A6)  
47  
   
Quattro DC Motor A6 Submenu  
Run  
lock  
out  
Hidden  
Item  
Parameter  
Description  
Units Default  
Range  
(Motor Overload Start Level)  
This parameter defines maximum current  
at which motor can run continuously  
OVLD START LEVEL without triggering the motor overload.  
One of the two parameters that define the  
motor overload curve. Set as a percent  
of Rated Motor Current.  
%
110  
100 – 150  
N
Y
(Motor Overload Time Out)  
This parameter defines the amount of  
time before a motor overload alarm  
occurs when the motor is running at the  
current level defined below:  
40 %  
OVLD  
START  
LEVEL  
rated  
OVLD TIME OUT  
sec  
60.0  
5.0 – 120.0  
N
Y
+
motor  
current  
:
This is the other parameter used to define  
the overload curve. For more information  
on the motor overload curve, see OVLD  
OVLD TIME OUT  
This is the other parameter used to define the  
overload curve.  
The user can adjust the motor overload  
parameters. Three overload curves are shown  
in the examples below. Curve #1 is the default  
motor overload curve.  
The drive will only declare a motor overload  
and the user is responsible for taking  
appropriate action to protect equipment.  
The motor overload alarm can also be  
assigned to a logic output. See configuration  
sub-menu items, C3.  
OVLD  
OVLD  
START TIME  
LEVEL OUT  
MOTOR OVERLOAD  
curve #1  
curve #2  
curve #3  
110%  
110%  
120%  
60 sec  
40 sec  
70 sec  
D2  
100%  
RUN/FAULT  
SUB MENU  
DATA ENT  
Motor Overload Parameters  
The drive can also be configured so that a  
motor overload event declares a Fault, which  
will automatically cause the drive to stop. If  
this is desirable, the following needs to be  
completed:  
When the motor usage exceeds the user  
defined motor overload curve, the drive will  
declare a motor overload alarm.  
logic output configured to MTR  
OVERLOAD  
logic input configured to EXT FAULT  
wire the EXT FAULT logic input terminal to  
the to MTR OVERLOAD logic output  
terminal  
wire the logic input common terminal to the  
logic output common  
ALARM!  
MTR OVERLOAD  
RUN/FAULT  
SUB MENU  
DATA ENT  
Under the POWER DATA display sub-menu,  
the MOTOR OVERLOAD (D2) value displays  
the accumulated percent of motor overload trip  
level reached. Once this value reaches 100%  
the motor overload will trip and a motor  
With the above set-up, the drive will then  
declare an External Fault on a motor overload.  
overload alarm is declared by the drive.  
48  
 
Quattro DC Motor A6 Submenu  
10,000  
1000  
default  
motor  
overload  
trip time  
(seconds)  
Curve #1  
100  
Curve #2  
curve #3  
OLVD TIME  
OUT = 70 sec  
Curve #3  
curve #1  
OLVD TIME  
OUT = 60 sec  
curve #2  
OLVD TIME  
OUT = 40 sec  
10  
110%  
130  
%
150%  
170%  
190%  
210%  
230%  
250%  
current (percentage of rated motor current)  
curve #3  
OLVD START  
LEVEL = 110% LEVEL = 120%  
curve #2  
OLVD START  
curve #1  
OLVD START  
LEVEL = 110%  
Figure 14: Motor Overload Curve  
.
49  
Quattro DC User Switches C1  
Configure C0 menu  
User Switches C1 submenu  
Run  
lock  
out  
Hidden  
Item  
Parameter  
Description  
Default  
Choices  
(Speed Command Source)  
This parameter designates the source of the  
drive’s speed command. The four possible  
sources for the speed command are following:  
Serial Channel - a RS-422 serial port located  
on the customer interface PCB.  
Analog Channel – a bipolar (±10V) signal.  
Available with the analog channel is a Speed  
Command Multiplier (SPD COMMAND  
MULT(A1)) and Speed Command Bias (SPD  
COMMAND BIAS(A1)). These parameters  
are used to scale the user’s analog speed  
command to the proper range for use by the  
drive software.  
Multi-Step Command - user defined fifteen  
discrete speed commands (CMD1 - CMD15  
in A3 submenu). Four logic inputs are used  
as speed command selections. CMD0 is  
reserved for zero speed, but the user can  
specify CMD1 - CMD15 to be any speed  
command either positive or negative. See  
Multistep Ref A3 on page 41.  
analog input  
serial  
multi-step  
SPD  
COMMAND  
SRC  
MULTI-STEP  
Y
Y
ser mult step  
Ser Mult Step Command - user defined  
fifteen discrete speed commands (CMD1 -  
CMD15 in A3 submenu). Four bits in the  
serial protocol are toggled to run multi-step  
serially. See Multistep Ref A3 on page 41.  
(Run Command Source)  
This parameter allows the user to choose the  
source of the run command from one of the  
following sources: an external run signal from a  
external tb  
serial  
serial+extrn  
RUN  
COMMAND  
SRC  
logic input (external tb), a run signal transferred EXTERNAL  
Y
Y
across a serial channel (serial), or a signal from  
both the serial channel and a logic input  
(serial+extrn). If a signal is required from a logic  
input (either externaltb or serial+extrn), the Run  
signal on TB1 must be selected.  
TB  
(Field Enable Source)  
Enabling the Field Source initially turns on the  
Line Side Boost, than establishes a field. This  
may be done through a logic input (set FIELD  
ENA SOURCE to EXTERNAL TB), serially, (set  
FIELD ENA SOURCE to SERIAL), by the run  
command (set FIELD ENA SOURCE to  
ENABLE ON RUN), or by 2-bit serial. 2-bit  
serial uses two bits given to the drive serially to  
control the field. See the table below for the bit  
options. Bit 1 refers to Full Field bit while Bit 0  
refers to Standby Field Bit. While the motor is  
running, both Boost and Field are on.  
external tb  
serial  
2-bit serial  
enable on  
run  
FIELD ENA  
SOURCE  
ENABLE ON  
RUN  
Y
Y
Bit 1 Bit 0 Boost Field  
0
1
0
~
Off  
On  
Off  
Full Field or Weak Fld  
depending on speed  
Standby  
0
1
On  
50  
   
Quattro DC User Switches C1  
Run  
lock  
out  
Hidden  
Item  
Parameter  
Description  
Default  
Choices  
(High / low gain change switch source)  
This parameter determines the source of the  
high / low gain switch.  
The speed regulator high / low gain function was  
developed in response to high performance  
elevator requirements where the resonant  
nature of the elevator system interferes with the  
speed response of the drive.  
internal  
external tb  
serial  
HI/LO GAIN  
SRC  
INTERNAL  
Y
Y
(Speed Regulator Type)  
This switch toggles between the Elevator Speed  
Regulator (Ereg), the PI Speed Regulator,  
external reg, and cemf reg. Magnetek  
recommends the use of the Elevator Speed  
Regulator for better elevator performance with  
multi-step speed applications or when an active  
torque Feed Forward signal is not available.  
If set to CEMF REG, the drive will not use the  
encoder as feedback, but rather the armature  
voltage. Note: this is only meant for  
maintenance. For more information, see  
Armature Voltage Feedback on page 24.  
If set to External Regulator, the drive will be  
configured as a torque controller. The source of  
the external torque command is determined by  
the EXT TORQ CMD SRC (C1) parameter.  
WARNING  
If using an external speed regulator, which  
produces an analog torque command to  
Quattro (SPEED REG TYPE (C1) =  
elev spd reg  
ELEV SPD pi speed reg  
SPEED REG  
TYPE  
Y
Y
REG  
external reg  
external reg and EXT TORQ CMD SRC  
(C1) = analog input), it is imperative that the  
encoder polarity matches the armature  
voltage. To verify polarity, insert a torque  
command into the analog input. Check  
ENCODER SPD (D2) against ARMATURE  
VOLTAGE (D2). Verify they are the same  
polarity. If not, swap A and /A or change  
the ENCODER CONNECT (C1) parameter.  
cemf reg  
IMPORTANT: This assumes the car controller is  
doing its own closed-loop speed regulation. (i.e.  
a completely closed outer speed loop with the  
car controller having its own encoder feedback).  
The drive has the following three closed loop  
speed regulation options and an option for  
turning off the internal speed regulator:  
Elevator Speed Regulator (Ereg)(see page 59)  
PI Speed Regulator (see page 60)  
External Speed Regulator  
51  
Quattro DC User Switches C1  
Run  
lock  
out  
Hidden  
Item  
Parameter  
Description  
Default  
Choices  
(Motor Rotation)  
This parameter allows the user to change the  
direction of the motor rotation. As an example, if  
the car controller is commanding the up  
direction and the car is actually going in a down  
direction, this parameter can be changed to  
allow the motor rotation to match the car  
controller command.  
MOTOR  
ROTATION  
forward  
reverse  
FORWARD  
Y
Y
Y
Y
(Encoder Connection)  
ENCODER  
CONNECT  
This parameter allows the user to electronically  
switch A and /A signals from the encoder  
without moving any wiring.  
forward  
reverse  
FORWARD  
(Speed Reference Release)  
The user can select when the Speed Reference  
Release signal is asserted:  
If the user does not want the drive to wait for  
the mechanical brake to be picked then SPD  
REF RELEASE can be made equal to REG  
RELEASE;  
SPD REF  
RELEASE  
REG  
RELEASE  
reg release  
brake picked  
Y
Y
If the user does want the drive to wait for the  
brake to be picked then SPD REF  
RELEASE is not asserted until an internal  
BRAKE PICKED signal becomes true. The  
user must have one logic input set to Mech  
Brk Pick – see page 61.  
(Contactor Confirm Source)  
This switch selects if hardware confirmation of  
motor contactor closure is necessary before  
drive attempts to pass current through motor. If  
hardware confirmation is available set to  
EXTERNAL TB and select the Contact Cfirm  
signal on a logic input terminal – see page 61.  
(Tach Filter)  
CONT  
CONFIRM  
SRC  
external tb  
none  
NONE  
OFF  
Y
Y
Y
Y
TACH  
FILTER  
off  
on  
Determines if encoder feedback is filtered  
(Pre-Torque Source)  
This switch determines the source of a pre  
torque command and how it is used.  
Pre-torque is the value of torque that the drive  
should produce as soon as the speed regulator  
is released to prevent rollback due to  
unbalanced elevator loads.  
This ‘priming’ of the speed regulator is done with  
the pre-torque command, which is used when  
the speed regulator release is asserted.  
none  
analog input  
serial  
The two possible sources for the pre-torque  
command are following:  
PreTorque  
SOURCE  
NONE  
Y
Y
serial channel  
analog channel  
The serial channel is the RS-422 serial port on  
the Customer Interface PCB. The analog pre-  
torque signal is bipolar (±10V). Available with  
the analog channel is a Pre-Torque Command  
Multiplier (PRE TORQUE MULT (A1)) and Pre-  
Torque Bias (PRE TORQUE BIAS(A1)). These  
parameters are used to scale the user’s analog  
pre-torque command to the proper range for use  
by the drive software.  
52  
Quattro DC User Switches C1  
Run  
lock  
out  
Hidden  
Item  
Parameter  
Description  
Default  
Choices  
(PreTorque Latch) If Pre-Torque latching is  
NOT selected, the Pre-Torque signal must be  
valid when the speed regulator is commanded to  
run. For verification on timing, see NORMAL  
operating sequence on page 21.  
Some car controllers send both analog pre-  
torque and speed commands . To facilitate this,  
the Drive has the option of latching the pre-  
torque command.  
If pre-torque latching is selected using the Pre-  
Torque Latch parameter, a FALSE to TRUE  
transition on the pre-torque latch clock latches  
the value on the pre-torque channel into the  
drive. This channel is allowed to change any  
time except during this transition without  
affecting the value of the latched pre-torque  
command.  
PreTorque  
LATCH  
NOT  
LATCHED  
latched  
not latched  
Y
Y
The Pre-Torque Latch Clock controls when the  
pre-torque command is latched. The Pre-Torque  
Latch clock parameter (Ptorq LATCH CLCK)  
determines the source of this latch control. The  
two choices for latch control are the serial  
channel or a logic input (EXTERNAL TB).  
The speed regulator uses the latched pre-torque  
command when the internal Speed Regulator  
Release signal is asserted. Once the pre-torque  
command is used, the latch and the pre-torque  
command are cleared.  
(Pre-Torque Latch Clock) If the PRE-TORQUE  
LATCH has been set to LATCHED, then this  
parameter chooses the source for latch control.  
If set to EXTERNAL TB1, the Pre-Torq Latch  
signal on TB1 must be selected.  
Ptorq  
LATCH  
CLCK  
EXTERNAL external tb  
Y
Y
TB  
serial  
(Fault Reset Source)  
This parameter determines the source of the  
drive’s external fault reset from one of the  
following sources: an external fault reset signal  
from a logic input (external tb), a fault reset  
signal transferred across a serial channel  
(serial), or the drive automatically resets the  
faults (automatic). The user also has the option  
to reset faults directly through the operator.  
Automatic Fault Reset: If the fault reset source  
is set to automatic, the faults will be reset  
according to the setting of the FLT RESET  
DELAY (A1) and FLT RESETS/HOUR (A1)  
parameters. When a logic input is defined as  
“fault reset” and this logic input signal is  
transitioned from false to true: an active fault will  
be reset and automatic fault reset counter  
(defined by FLT RESETS/HOUR(A1)) will be  
reset to zero.  
external tb  
serial  
automatic  
FAULT  
RESET SRC  
EXTERNAL  
TB  
Y
Y
CAUTION: If the run signal is asserted at the  
time of a fault reset, the drive will immediately  
go into a run state. Unless using the auto-fault  
reset function (FAULT RESET SRC (C1) =  
automatic), then the run command needs to be  
cycled to be reset automatically, but will reset if  
initiated by a logic input without cycling the run  
command.  
53  
Quattro DC User Switches C1  
Run  
lock  
out  
Hidden  
Item  
Parameter  
Description  
Default  
Choices  
(Overspeed Test Source)  
This switch determines the source of the  
overspeed test. Operation of the overspeed test  
function is specified by the OVRSPEED MULT  
(A1) parameter. Regardless of the setting of  
this parameter, the user can call for the  
overspeed test via the Digital Operator.  
(Brake Pick Source)  
If the BRAKE PICK SRC (C1) is set to  
INTERNAL, the Drive will attempt to pick (lift)  
the brake when magnetizing current has been  
developed in the motor.  
OVERSPD  
TEST SRC  
EXTERNAL external tb  
Y
Y
Y
Y
TB  
serial  
BRAKE PICK  
SRC  
internal  
serial  
INTERNAL  
(Brake Pick Confirm)  
If this switch is set to EXTERNAL TB, the Drive  
BRAKE PICK will wait for brake pick confirmation before  
none  
external tb  
internal time  
NONE  
Y
Y
Y
Y
CNFM  
releasing the speed reference. When set to  
EXTERNAL TB, the MECH BRK PICK signal on  
TB1 must also be selected.  
(Brake Hold Source)  
BRAKE  
HOLD SRC  
If set to internal, the drive will command the  
mechanical brake to hold mode after  
confirmation of brake picked exists.  
(Ramp Stop Select)  
internal  
serial  
INTERNAL  
This parameter allows the selection of the  
Torque Ramp Down Stop function. This  
function is used to gradually remove the torque  
command after the elevator has stopped and the  
mechanical brake has been set. This prevents a  
shock and possible ‘bump’ felt in the elevator  
from the torque signal going to zero too quickly.  
For more information, see Ramp Stop Select on  
RAMPED  
STOP SEL  
none  
ramponstop  
NONE  
Y
Y
(Ramp Down Enable Source)  
If RUN LOGIC is selected, the user can remove  
the run command and the drive will delay in  
dropping the run command until torque ramp  
down stop function is complete.  
If EXTERNAL TB or SERIAL is selected, the  
user must keep the run command while allowing  
the Torque Ramp Down Stop function to be  
completed.  
external tb  
run logic  
serial  
RAMP  
DOWN EN  
SRC  
EXTERNAL  
TB  
Y
Y
(Brake Pick Fault Enable)  
When this parameter is set to ENABLE, the  
brake pick command and confirmation must  
match within the specified time determined by  
the BRK PICK TIME (A1) parameter or a brake  
pick fault is declared.  
BRK PICK  
FLT ENA  
disable  
enable  
DISABLE  
DISABLE  
Y
Y
Y
Y
(Brake Hold Fault Enable)  
When this parameter is set to ENABLE, the  
BRK HOLD brake hold command and confirmation must  
disable  
enable  
FLT ENA  
match within the specified time determined by  
the BRK HOLD TIME (A1) parameter or a brake  
hold fault is declared.  
54  
Quattro DC User Switches C1  
Run  
lock  
out  
Hidden  
Item  
Parameter  
Description  
Default  
Choices  
(Torque Command Source)  
Sets the source of an external torque command,  
if any. Selections are:  
NONE: no external torque command used  
SERIAL: supplied via the serial link  
ANALOG: supplied via an analog input  
channel  
WARNING  
If using an external torque command  
(SPEED REG TYPE (C1) = external reg and  
EXT TORQ CMD SRC (C1) = analog input),  
it is imperative that the encoder polarity  
matches incoming torque command polarity.  
To verify polarity, insert a positive torque  
command into the analog input. Check  
ENCODER FEEDBACK (D1) to verify it is  
also a positive value. If not, swap A and /A  
or change the ENCODER CONNECT (C1)  
parameter.  
none  
serial  
analog input  
EXT TORQ  
CMD SRC  
NONE  
Y
Y
NOTE:  
if SPEED REG TYPE (C1) is set to external  
reg and EXT TORQ CMD SRC (C1) is set to  
serial or analog, the drive is a torque  
controller  
if SPEED REG TYPE (C1) is set for a speed  
regulator (either pi speed reg or elev spd reg)  
and EX TORQ CMD SRC (C1) is set to either  
analog or serial, the torque command will be  
used as an auxiliary torque command (torque  
feedforward command)  
(Direction Confirm)  
When enabled, the function allows confirmation  
of the polarity of the initial analog speed  
command via the Run Up or Run Down logic  
input commands.  
If the Run Up logic input is selected and true  
with the polarity of the analog signal positive,  
then the analog speed command is accepted  
unchanged.  
If the logic input Run Down logic input is  
selected and true with the polarity of the  
analog speed command negative, the analog  
speed command is accepted unchanged.  
If however, the logic input Run Up is true and  
the polarity is negative or the logic input Run  
Down is true and the polarity is positive, then  
the speed command is held at zero.  
DIR  
CONFIRM  
disabled  
enabled  
DISABLED  
Y
Y
55  
Quattro DC User Switches C1  
Run  
lock  
out  
Hidden  
Item  
Parameter  
Description  
Default  
Choices  
(S-Curve Abort)  
This parameter, S-CURVE ABORT (C1),  
addresses how the S-Curve Speed Reference  
Generator handles a reduction in the speed  
command before the S-Curve Generator has  
reached its target speed.  
Disabled: With a normal S-curve function, a  
change in the speed command is never allowed  
to violate the defined acceleration or jerk rates.  
If a reduction in the speed command is issued  
before the S-Curve generator has reached its  
target speed, then the jerk rate dictates what  
speed is reached before the speed may be  
reduced.  
S-CURVE  
ABORT  
disabled  
enabled  
DISABLED  
Y
Y
Enabled: The optional S-Curve abort has been  
selected. In this case when the speed command  
is reduced, the speed reference immediately  
starts to reduce violating the jerk limit (thus no  
jerk out phase), which could be felt in the  
elevator.  
For optional S-Curve abort to be active requires  
that:  
The speed command source must be  
selected as Multi-step (SPD COMMAND  
SRC=multi-step).  
The S-curve Abort function must be  
ENABLED (S-CURVE ABORT = enabled).  
(Encoder Fault Enable)  
This parameter allows the user to temporarily  
disable the Encoder Fault. Adding this feature  
allows the user to temporarily disable the  
Encoder Fault during the initial start-up process,  
when the motor model (defined by the A6 Motor  
Parameters) is not clearly defined.  
When the Encoder Fault is disabled (ENCODER  
FAULT (C1) = disabled), the drive will display  
the warning message “EncoderFault OFF”,  
every time the RUN command is removed.  
ENCODER  
FAULT  
disable  
enable  
ENABLE  
Y
Y
IMPORTANT: After the motor parameters in A6  
have been established, the Encoder Fault  
should be enabled (ENCODER FAULT (C1) =  
enabled).  
Note: the default for the ENCODER FAULT (C1)  
parameter is enabled.  
(Priority Message Enabling)  
With Priority Message disabled the user will not  
see priority messages meaning faults and  
alarms will not be displayed on the operator, but  
the faults will be placed into the fault history and  
active fault lists with the Fault LED on. Leave  
Priority Message enabled when drive is not  
being worked on.  
PRIORITY  
MESSAGE  
enable  
disable  
ENABLE  
Y
Y
56  
Quattro DC User Switches C1  
Run  
lock  
out  
Hidden  
Item  
Parameter  
Description  
Default  
Choices  
(Multi-step Stopping Mode Selection)  
When the speed command source is set to  
multi-step (SPD COMMAND SRC (C1)=multi-  
step), the parameter, STOPPING MODE (C1),  
determines the stopping mode of the Drive. The  
two selectable methods for the Stopping Mode  
parameter are “Immediate” and “Ramp to stop”.  
Note: If the SPD COMMAND SRC (C1)  
parameter is set to any other definition other  
than “multi-step”, the drive will behave to the  
“immediate” stopping mode (independent of the  
setting of the STOPPING MODE (C1)  
parameter).  
STOPPING  
MODE  
immediate  
ramp to stop  
IMMEDIATE  
Y
Y
The “Immediate” stopping mode requires the  
drive to be at zero speed prior to removing the  
“Run” command. The “Immediate“ selection is  
how the drive has traditionally behaved prior to  
the addition of this parameter.  
The “Ramp to stop” stopping mode is intended  
for use when removing the “Run” command prior  
to the drive reaching zero speed (as defined by  
the AB ZERO SPD LEV (A1) parameter). When  
the “Run” command is removed and the speed  
reference is above zero speed, the speed  
reference will ramp to zero speed following the  
selected s-curve.  
57  
Quattro DC User Switches C1  
Run  
lock  
out  
Hidden  
Item  
Parameter  
Description  
Default  
Choices  
(Auto Stop Function Enable)  
When the speed command source is set to  
multi-step or serial (SPD COMMAND SRC  
(C1)=multi-step or serial), the parameter  
determines the stopping mode of the drive. The  
two selectable methods for the STOPPING  
MODE (C1)* parameter are “Immediate” and  
“Ramp to stop”.  
The Auto Stop function determines how the  
drive logic will respond to a zero or non-zero  
speed command. The function will only work  
when the speed command source is either mult-  
step or serial (SPD COMMAND SRC  
(C1)=multi-step or serial).  
Disabled: When the Auto Stop function is  
disabled, the magnitude of the speed command  
plays no part in the logical starting or stopping of  
the drive.  
disable  
enable  
AUTO STOP  
DISABLE  
Y
Y
Enabled: When the Auto Stop function is  
enabled and the speed command source is  
either multi-step or serial, the following changes  
occurs to the start and stop sequence:  
Both a Run command and a non-zero  
speed command are required to start the  
drive  
Either the removal of the Run command or  
the setting the speed command to zero will  
initiate a stop.  
Remember, when the auto stop function is  
enabled (AUTO STOP (C1)=enabled) both a  
non-zero multi-step/serial speed command AND  
the run command are required to start the drive.  
It makes no difference which signal is enabled  
first, the drive does not start until both are  
present. When initiating a stop, which signal is  
removed first does make a difference.  
(DSPR Enable)  
Turns Drive Standby Power Reduction (DSPR)  
feature ON or OFF.  
The choices are:  
ON – Drive will turn motor field current off, shut  
down the input rectifier and open AC line input  
contactor after being in a Standby condition for  
longer than [DSPR Time] minutes.  
DSPR  
ENABLE  
disable  
enable  
DISABLE  
Y
Y
OFF – DPSR function not active. Drive will  
remain in Standby condition with utility input  
contactor closed until commanded to re-start.  
If DSPR is active, the drive will close the utility  
input contactor and re-start when a valid run or  
field enable command is received. A delay of  
several seconds may elapse while power control  
sections of the drive are re-started.  
Table 9: User Switches C1 Submenu  
58  
 
Quattro DC User Switches C1  
Detailed descriptions  
HPV 900 Parameter Settings  
HI/LO GAIN SRC  
HI/LO GAIN SRC = internal  
GAIN REDUCE MULT = 80%  
GAIN CHNG LEVEL = 10 %  
RESPONSE = 10.0 rad/sec  
Response of  
Speed  
Regulator  
8.0 rad/sec  
(High / Low Gain Source)  
This parameter determines the source of the  
high / low gain switch.  
100%  
contract  
speed  
The speed regulator high / low gain function  
was developed in response to high  
performance elevator requirements where the  
resonant nature of the elevator system  
interferes with the speed response of the drive.  
speed  
reference  
10%  
contract  
speed  
10%  
contract  
speed  
low gain  
mode  
When the speed response (gain) is set to high  
levels, the resonant characteristics created by  
the spring action of the elevator ropes can  
cause car vibration. To solve this problem, the  
speed regulator is set to a low enough  
Response of  
Speed Regulator  
8.0 rad/sec  
0%  
contract  
speed  
0%  
contract  
speed  
response (gain) so that the resonant  
characteristics of the ropes are not excited.  
Response of  
Speed Regulator  
10.0 rad/sec  
This is accomplished by controlling the  
sensitivity or response of the speed regulator  
via the high / low gain switch and gain reduce  
multiplier.  
Response of  
Speed Regulator  
10.0 rad/sec  
By using the gain reduce multiplier, the user  
can specify a lower response (gain) for the  
speed regulator when the drive is at higher  
speeds. The gain reduce multiplier (GAIN  
REDUCE MULT(A1)) tells the software how  
much lower, as a percentage, the speed  
regulator response (gain) should be.  
High / Low Gain Example  
Elevator Speed Regulator (Ereg)  
The use of the Elevator Speed Regulator  
allows the overall closed loop response  
between speed reference and speed to be  
ideal for elevator applications. The desirable  
features of the Elevator Speed Regulator are:  
The high / low gain switch determines when  
the drive is in ‘low gain’ mode. In the ‘low gain’  
mode, the gain reduce multiplier has an effect  
on the speed regulator’s response (gain).  
no overshoot at the end of accel period  
no overshoot at the end of decel period  
The drive allows for the high / low gain switch  
to be controlled either externally or internally.  
The high / low gain source parameter (HI/LO  
GAIN SRC) allows for this external or internal  
selection.  
One characteristic of the Elevator Speed  
Regulator is that during the accel / decel  
period the speed feedback does not match the  
speed reference creating a speed error or  
tracking delay. As an example, the Elevator  
Speed Regulator’s speed response is shown  
for a ramped speed reference below.  
The high / low gain switch can be controlled  
externally by either:  
a logic input  
the serial channel.  
no  
overshoot  
commanded  
speed  
speed  
The high / low gain switch can also be  
controlled internal by:  
speed  
reference  
the gain change level parameter (GAIN  
CHNG LEVEL), which defines a  
percentage of contract speed.  
speed error  
speed  
With the drive set to internal control, the speed  
regulator will go into ‘low gain’ mode when the  
drive senses the motor is above a defined  
speed level. The defined speed level is  
determined by the gain change level  
parameter.  
feedback  
tracking delay  
time  
Ereg Example  
The Elevator Speed Regulator is tuned by:  
System Inertia parameter (INERTIA(A1)),  
which is easy to obtain by using the drive  
software to estimate the system inertia.  
An example of internal high / low gain control  
is shown below.  
59  
   
Quattro DC User Switches C1  
PI Speed Regulator to define the phase  
margin of the speed regulator.  
Response parameter (RESPONSE(A1)),  
which is the overall regulator bandwidth in  
radians per sec. This parameter defines  
the responsiveness of the speed regulator.  
Ramp Stop Select  
This parameter allows the selection of the  
Torque Ramp Down Stop function. This  
function is used to gradually remove the torque  
command after the elevator has stopped and  
the mechanical brake has been set. This  
prevents a shock and possible ‘bump’ felt in  
the elevator from the torque signal going to  
zero too quickly.  
The tracking delay shown is defined as  
(1/RESPONSE) seconds. The tracking delay  
is not effected by the gain reduce multiplier.  
The inner loop crossover parameter (INNER  
LOOP XOVER(A1)) should not need to be  
changed. But if the number is changed, it  
must satisfy the following formula:  
inner  
gain  
response × reduce  
multiplier  
A function unique to elevators involves the  
interaction between the motor torque and the  
mechanical brake that holds the elevator.  
Under full load conditions at the end of a run, if  
the brake is set and the motor torque is  
removed quickly, some brake slippage may  
occur. Therefore, the option of gradually  
reducing the motor torque is provided by the  
Torque Ramp Down Stop function.  
loop  
crossover  
PI Speed Regulator  
When the Proportional plus Integral (PI) speed  
regulator is used, the response to a speed  
reference is different. As an example, the PI  
Speed Regulator’s speed response is shown  
below for a ramped speed reference. With the  
PI speed regulator, the end of each accel and  
decel period, there will be an overshoot. The  
amount of overshoot will be a function of the  
defined phase margin and response  
Upon being enabled by the Ramped Stop  
Select Parameter (RAMPED STOP SEL(C1)),  
the torque command is linearly ramped to zero  
from the value that was present when the  
‘Ramp Down Enable’ was selected.  
parameters.  
The Ramp Down Enable has the following  
three possible sources:  
Because of this overshoot, the PI regulator is  
not recommended for elevator control by itself.  
However, the PI regulator is the proper choice  
when a live torque demand signal is available  
from the car controller as an always-active  
Feed-Forward compensating signal. See  
EXTERNAL TORQ SRC (C1).  
An input logic bit (EXTERNAL TB)  
The run logic – initiated by the removal of  
the run command  
The serial channel  
The Ramp Down Enable Source parameter  
(RAMP DOWN EN SRC(C1)) is used to select  
one of the above options.  
commanded  
speed  
overshoot  
speed  
A method of providing the Ramp Down Enable  
would be with a logic signal (EXTERNAL TB)  
that is dedicated to that function. The Ramp  
Down Enable would be asserted while the Run  
command is still present and remain there until  
the ramp is completed, after which the Run  
command would be removed.  
speed  
reference  
zero tracking delay  
speed  
feedback  
The RUN LOGIC option to trigger the Ramp  
Down Enable from the Run command is  
provided. In this case, removal of the Run  
command enables the Ramp Down Stop  
Function.  
time  
PI Speed Regulator Example  
The PI Speed Regulator is tuned by:  
The time it takes for the Drive to perform its  
ramped stop is determined by the Ramped  
Stop Time Parameter. The Ramped Stop  
Time parameter (RAMPED STOP TIME(A1))  
selects the amount of time it would take for the  
drive to ramp from the rated torque to zero  
torque.  
System Inertia parameter (INERTIA(A1)),  
which is easy to obtain by using the drive  
software to estimate the system inertia.  
Response parameter (RESPONSE(A1)),  
which is the overall regulator bandwidth in  
radians per sec. This parameter defines  
the responsiveness of the speed regulator.  
Speed Phase Margin parameter (SPD  
PHASE MARGIN(A1)) is used only by the  
60  
   
Quattro DC Logic Inputs C2 Submenu  
Logic Inputs C2 submenu  
(Logic Inputs 1-9)  
This parameter defines the function of the logic  
inputs.  
NOTE: The user can assign particular  
functions to each input terminal. Only one  
function per terminal is allowed and multiple  
terminals cannot have the same function  
(except “No Function”). When a function is  
assigned to an input terminal, it is removed  
from the list of possible selections for  
subsequent terminals. To re-assign a  
function to a different terminal one must  
first assign “No Function” to the original  
terminal so that the desired function is  
returned to the list of selections and can be  
assigned to a different new terminal.  
NOTE: The current setting of each parameter  
is displayed in all caps; all other choices in the  
list are displayed in lower case.  
Run  
lock  
out  
Hidden  
Item  
Parameter  
Description  
Default  
(Normally Closed Inputs) All Logic Inputs may  
be configured for use with Normally Open or  
Normally Closed external contacts. The  
numeric entry is a hexadecimal  
representation of a binary control bit for each  
channel. A binary 0 means Normally Open.  
A binary 1 indicates a Normally Closed  
external switch. Logic Input #1 is the least  
significant bit. The defaulted value of 0001  
indicates logic input 1 is normally closed.  
most significant  
byte  
least significant  
byte  
Binary 0000, 0000, 0000, 0000  
Logic Input #1  
Logic Input #9  
See table below for converting binary to hex:  
N.C. INPUTS  
0001  
Y
Y
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Hex  
0
0
0
0
0
0
0
0
1
1
0
0
1
0
2
0
0
1
1
3
0
1
0
0
4
0
1
0
1
5
0
1
1
0
6
0
1
1
1
7
1
0
0
0
8
1
0
0
1
9
1
1
1
1
1
1
0
0
1
1
1
1
1
1
0
0
1
1
0
1
0
1
0
1
A
B
C
D
E
F
logic input #1 note: drive comes pre-wired  
for logic input #1 to be CONTACT CFIRM  
logic input #2 note: drive comes pre-wired  
for logic input #2 to be CTR PWR SENSE  
LOGIC INPUT 1 TB1(1)  
LOGIC INPUT 2 TB1(2)  
Y
Y
Y
Y
CONTACT CFIRM  
CTR PWR SENSE  
LOGIC INPUT 3 TB1(3) logic input #3  
LOGIC INPUT 4 TB1(4) logic input #4  
LOGIC INPUT 5 TB1(5) logic input #5  
LOGIC INPUT 6 TB1(6) logic input #6  
LOGIC INPUT 7 TB1(7) logic input #7  
LOGIC INPUT 8 TB1(8) logic input #8  
LOGIC INPUT 9 TB1(9) logic input #9  
NO FUNCTION  
DRIVE ENABLE  
RUN  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
UP/DWN  
STEP REF B0  
STEP REF B1  
FAULT RESET  
61  
   
Quattro DC Logic Inputs C2 Submenu  
choices  
(Contactor closed) Feedback from an auxiliary contact on the motor contactor. Default is that the drive  
contact cfirm  
ctr pwr sense  
drive enable  
expects a normally closed contact to energize the input when the contactor is not pulled in.  
(Contactor Power Sensing) Energized when AC power is available to energize the motor contactor.  
Power to this circuit is control by elevator relay logic. This circuit must be energized before the drive  
will be allowed to start. If power is not available when told to start, or while running, a Fault will occur  
for diagnostic purposes.  
(Drive Enable) Enables drive to run. This signal must be asserted to permit drive to run. This does not  
initiate run, just permits initiation.  
extrn fault 1  
extrn fault 2  
extrn fault 3  
(External Fault 1) User input fault #1.  
Closure of this contact will cause the drive to declare a  
(External Fault 2) User input fault #2.  
fault and perform a fault shutdown.  
(External Fault 3) User input fault #3.  
(External Fault 4) User input fault #4. Opening of this contact will cause the drive to declare a fault and  
perform a fault shutdown.  
extrn /flt 4  
(Fault Reset) Asserting this input attempts to reset faults. If the FAULT RESET SRC (C1) switch is set  
to EXTERNAL TB, the drive’s fault circuit will be reset when this signal is true. If the FAULT RESET  
SRC (C1) switch is set to AUTOMATIC, the drive’s fault circuit will be reset when this signal is true and  
the automatic fault reset counter (defined by FLT RESETS/HOUR) will be reset to zero. *This input is  
edge sensitive and the fault is reset on the transition from false to true.  
fault reset  
(Field Enable) If FIELD ENA SOURCE (C1) switch is set to EXTERNAL TB, the field is enabled when  
this signal is true.  
(Low Gain Select) If the HI/LO GAIN SRC (C1) switch is set to EXTERNAL TB, the low gain mode is  
chosen for the speed regulator when this signal is true.  
field enable  
low gain sel  
mech brk  
hold  
(Mechanical Brake Hold) Auxiliary contact closures confirming when the mechanical brake is in the hold  
mode (engaged).  
(Mechanical Brake Pick) Closure of auxiliary contacts confirming the mechanical brake has been picked  
(lifted).  
(No Function) When this setting is selected for one of the TB1 input terminals, any logic input  
connected to that terminal will have no effect on drive operation.  
mech brk pick  
no function  
(Overspeed Test Source) This function works only if the OVRSPEED TEST SRC (C1) switch is set to  
EXTERNAL TB. A true signal on this input applies the OVERSPEED MULT to the speed command for  
the next run. After the run command has dropped, the drive returns to ‘normal’ mode and must be re-  
ospd test src configured to perform the overspeed function again. The OVERSPEED FLT level is also increased by  
the OVERSPEED MULT, allowing the elevator to overspeed without tripping out on an overspeed fault.  
NOTE: This input must be taken false then true each time that an overspeed test is run. If the input is  
left in the true, it is ignored after the first overspeed test.  
(Pre-Torque Latch) Closing a contact between this input and ground latches the pre torque command  
present on the analog channel #2.  
pre-trq latch  
run  
(Run) If drive is enabled through the DRIVE ENABLE logic input, this function will start drive operation.  
(Run Down) If drive is enabled through the DRIVE ENABLE logic input, this function will start drive  
operation with negative speed commands.  
Note: if both RUN UP and RUN DOWN are true then the run is not recognized.  
Note: if DIR CONFIRM (C1) is enabled, this input will not change the polarity of the speed command  
and will be used to confirm the polarity of the analog speed command as well as starting the operation  
of the drive.  
run down  
(Run Up) If drive is enabled through the DRIVE ENABLE logic input, this function will start drive  
operation with positive speed commands.  
run up  
Note: if both RUN UP and RUN DOWN are true then the run is not recognized.  
Note: if DIR CONFIRM (C1) is enabled, this input is also used to confirm the polarity of the analog  
speed command as well as starting the operation of the drive.  
s-curve sel 0 Bit 0 of S-curve selection  
s-curve sel 1 Bit 1 of S-curve selection  
These two bits are used to select one of four s-curve selections. For  
more information, see S-Curves A2 submenu on page 39.  
(Serial Mode 2 Inspection Enable) Used only with custom serial protocol (mode 2)  
Defines the logic input to be used as one of the two sources of inspection run command when using  
serial mode 2. This input must be true as well as a comparable inspection run command sent serially  
for the drive to run in inspection mode.  
ser2 insp ena  
step ref b0  
step ref b1  
step ref b2  
step ref b3  
trq ramp  
Bit 0 of multi-step speed command selection  
Bit 1 of multi-step speed command selection  
Bit 2 of multi-step speed command selection  
Bit 3 of multi-step speed command selection  
(Torque Ramp Down Signal) This function works only if the RAMP STOP SEL (C1) switch is set to  
RAMP TO STOP and RAMP DOWN EN SRC (C1) is set to EXTERNAL TB.  
Four inputs, which must be used together as a 4-  
bit command for multi-step speed selection. For  
more information, see Multistep Ref A3 submenu  
down  
(Up/Down Signal) This signal is used to change the sign of the speed command. Default is FALSE;  
therefore, positive commands are for the up direction and negative speed command are for the down  
direction. Making this input true reverses the car’s direction.  
up/dwn  
Table 10: Logic Inputs C2 Submenu  
62  
Quattro DC Logic Outputs C3 Submenu  
Logic Outputs C3 submenu  
LOGIC OUTPUT x  
RELAY COIL x  
(Logic Outputs 1-4)  
(Relay Logic Outputs 1-2)  
This parameter defines the function of the logic  
outputs.  
This parameter defines the function of the  
relay logic outputs.  
NOTE: The current setting of each parameter  
is displayed in all caps; all other choices in the  
list are displayed in lower case.  
NOTE: The current setting of each parameter  
is displayed in all caps; all other choices in the  
list are displayed in lower case.  
Run  
lock  
out  
Hidden  
Item  
Parameter  
Description  
Defaults  
logic output #1  
LOGIC OUTPUT 1 (TB1-25)  
note: drive comes pre-wired for logic  
output #1 to be CLOSE CONTACT  
CLOSE CONTACT  
Y
Y
LOGIC OUTPUT 2 (TB1-26)  
LOGIC OUTPUT 3 (TB1-27)  
LOGIC OUTPUT 4 (TB1-28)  
LOGIC OUTPUT 5 (TB1-29)  
LOGIC OUTPUT 6 (TB1-30)  
LOGIC OUTPUT 7 (TB1-31)  
RELAY COIL 1 (TB1-21/22)  
RELAY COIL 2 (TB1-23/24)  
SSR1 (TB1-1/3/5)  
RUN COMMANDED  
MTR OVERLOAD  
ENCODER FLT  
FAULT  
SPEED REG RLS  
SPEED REG RLS  
NO FUNCTION  
NO FUNCTION  
NO FUNCTION  
NO FUNCTION  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
logic output #2  
logic output #3  
logic output #4  
logic output #5  
logic output #6  
logic output #7  
relay output #1  
relay output #2  
solid State Relay 1  
solid State Relay 2  
SSR2 (TB1-8/10/12)  
choices  
alarm  
(Alarm) The output is true when an alarm is declared by the drive.  
alarm+flt  
(Alarm and/or Fault) The output is true when a fault and/or an alarm is declared by the drive.  
(Auto Brake) The output is controlled by the Auto Brake function and is used to open the  
mechanical brake. (only multi-step speed commands)  
auto brake  
(Brake Hold) The output is true when the brake pick confirmation is received. It is used to  
show the mechanical brake is remaining open. This function is used with brakes that need to  
have less than 100% voltage to hold the brake open.  
brake hold  
(Brake Pick) The output is true when the speed regulator is released and is used to open the  
mechanical brake.  
brake pick  
(Brake Hold Fault) The output is true when the brake hold command and the brake feedback  
do not match for the user specified time.  
brk hold flt  
(Brake Pick Fault) The output is true when the brake pick command and the brake feedback do  
not match for the user specified time.  
brk pick flt  
(Car Going Down) The output is true when the motor moves in negative direction faster than  
the user specified speed.  
(Car Going Up) The output is true when motor moves in positive direction faster than user  
specified speed.  
car going dwn  
car going up  
(Charging Fault)  
charge fault  
The output is true when the DC bus voltage has not stabilized above the voltage fault level or  
the charge contactor has not closed after charging.  
(Close Motor Contactor) The output is true when the run command is given, the drive is  
enabled, the software has initialized, and no faults are present.  
(Contactor Fault) The output is true when the command to close the contactor and the  
contactor feedback do not match before the user specified time.  
(Current Regulator Fault) The output is true when the actual current measurement does not  
match commanded current.  
(Drive Overload) The output is true when the drive has exceeded the drive overload curve.  
(Encoder Fault) The output is true when the encoder is disconnected or not functioning, while  
attempting to run  
(Fault) The output is true when a fault is declared by the drive.  
(Motor Flux Confirmation) The output is true when the drive has confirmed there is enough  
motor field current (flux) to issue a speed regulator release. Threshold is set by measured  
motor field current being greater than that set at Motor parameter A6, Flux Confirm Level.  
close contact  
contactor flt  
curr reg flt  
drv overload  
encoder flt  
fault  
flux confirm  
63  
   
Quattro DC Logic Outputs C3 Submenu  
choices continued  
(Ground Fault) The output is true when the sum of all phase current exceeds 50% of rated  
current of the drive.  
(In Low Gain) The output is true when the speed regulator is in “low gain” or response mode.  
(Motor Torque Limit) The output is true when the torque limit has been reached while the drive  
is in the motoring mode. The motoring mode is defined as the drive delivering energy to the  
motor.  
ground fault  
in low gain  
motor trq lim  
mtr overload  
(Motor Overload) The output is true when the motor has exceeded the user defined motor  
overload curve.  
(No Function) This setting indicates that the terminal or relay will not change state for any  
operating condition; i.e. the output signal will be constantly false.  
(Not Alarm) The output is true when an alarm is NOT present.  
(Motor overload current fault) The output is true when the phase current has exceeded 300%  
of rated current.  
no function  
not alarm  
over curr flt  
(Overspeed Fault) The output is true when the motor has gone beyond the user defined  
percentage contract speed for a specified amount of time.  
overspeed flt  
(Heatsink Over Temperature Fault) The output is true when the drive’s heatsink has exceeded  
90°C (194°F).  
(Over Voltage Fault) The output is true when the DC bus voltage exceeds 825VDC.  
(Over Temperature Alarm) The output is true when the drive’s heatsink temperature has  
exceeded 80°C (176°F).  
overtemp flt  
overvolt flt  
ovrtemp alarm  
phase fault  
(Phase Loss) The output is true when the drive senses an open motor phase.  
(Ramp Down Enable)  
The output is true after a torque ramp down stop has been initiated by either a logic input, the  
serial channel, or internally by the drive. When this output is true the torque is being ramped to  
zero.  
ramp down ena  
(Ready to Start) The output is true when the drive’s software has been initialized, no faults are  
present and the drive is not boosting.  
(Ready to Run) The output is true when the drive’s software has been initialized, no faults are  
present and the drive is boosting.  
ready 2 start  
ready to run  
(Regeneration Torque Limit) The output is true when the torque limit has been reached while  
the drive is in the regenerative mode. The regenerative mode is defined as when the motor is  
returning energy to the drive. When the drive is in regenerative mode, the energy is dissipated  
via the dynamic brake circuitry (internal brake IGBT and external brake resistor).  
regen trq lim  
run commanded (Run Commanded) The output is true when the drive is being commanded to run.  
(Run Command Confirm) The output is true after the software has initialized, no faults are  
run confirm  
speed dev  
present, the drive has been commanded to run, the contactor has closed and the IGBTs are  
firing.  
(Speed Deviation) The output is true when the speed feedback is failing to properly track the  
speed reference. The speed deviation needs to be above a user defined level. (Speed Dev. =  
reference - feedback)  
(Speed Deviation Low Level) The output is true when the speed feedback is properly tracking  
the speed reference. The speed deviation needs to be within a user-defined range for a user-  
defined period of time. (Speed Dev. = reference - feedback)  
(Speed Reference Release) The output is true when the flux is confirmed and drive is NOT in  
DC injection.  
speed dev low  
speed ref rls  
speed reg rls  
(Speed Regulator Release) The output is true when the flux is confirmed at 75% and brake is  
commanded to be picked (if used)  
(Low Voltage Fault) The output is true when the DC bus voltage drops below the user specified  
percent of the input line-to-line voltage.  
(Up to Speed) The output is true when the motor speed is above the user specified speed  
(Under Voltage Alarm) The output is true when the DC bus voltage drops below the user  
specified percent of the input line-to-line voltage.  
undervolt flt  
up to speed  
uv alarm  
(Zero Speed) The output is true when the motor speed is below the user specified speed for  
the user specified time.  
zero speed  
Table 11: Logic Outputs C3 Submenu  
64  
Quattro DC Analog Outputs C4 Submenu  
Analog Outputs C4 submenu  
With a gain of 1.0 and an offset of 0.0, 10V will  
indicate 100% or full value based on  
Whereas a 0V signal on the same Analog  
Output would indicate 0% of rated current.  
programmed values. For example, with the  
above scenario of a gain of 1.0 and an offset of  
0.0, a 10V signal an Analog Output set to arm  
current would indicate 100% of rated current.  
Any value over 100% will cause the analog  
channel to saturate.  
Run  
Hidden  
Item  
Parameter  
Description  
Default  
lock  
out  
Y
ANALOG OUTPUT 1  
ANALOG OUTPUT 2  
analog output #1  
analog output #2  
SPEED REF  
SPEED FEEDBK  
Y
Y
Y
choices  
description  
D/A units  
arm current  
arm voltage  
(Motor Armature Current) Measured motor armature current  
(Motor Armature Voltage) Measured motor armature voltage  
(Auxiliary Torque Command) Additional torque command from  
auxiliary source  
% rated current  
% of rated volts  
aux torq cmd  
% rated torque  
bus voltage  
est motor spd  
field current  
(DC Bus Voltage Output) Measured DC bus voltage  
(Estimated Motor Speed) Estimated speed of the motor  
(Motor Field Current) Measured motor field current  
(Armature Current Error) Measures the difference between the  
reference current and the measured current  
(PreTorque Reference) Pre-torque reference  
(Motor Mode) Voltage level switches to indicate the mode the  
current regulator is operating in.  
% of peak in  
RPM  
% of rated (Full Field)  
iarm error  
Amps  
pretorque ref  
% base torque  
1) Forward motoring (~ 9.7V)  
2) Forward regeneration (high CEMF) (~ 4.4V)  
3) Forward plugging (regeneration at low CEMF) (~ 1.3V)  
4) Reverse plugging (regeneration at low CEMF) (~ -1.3V)  
5) Reverse regeneration (high CEMF) (~ -4.4V)  
6) Reverse motoring (~ -9.7V)  
motor mode  
-
(Speed Regulator Torque Command) Torque command from  
speed regulator  
spd rg tq cmd  
% base torque  
speed command (Speed Command) Speed command before S-Curve  
% rated speed  
% rated speed  
% rated speed  
% rated speed  
speed error  
speed feedbk  
speed ref  
(Speed Error) Speed reference minus speed feedback  
(Speed Feedback) Speed feedback used by speed regulator  
(Speed Reference) Speed reference after S-Curve  
(Tachometer Rate Command) Torque command from tach rate  
gain function  
tach rate cmd  
% base torque  
(Tachometer / Encoder Speed) Bi-directional signal representing  
velocity measured by the encoder.  
(Torque Reference) Torque reference used by vector control  
tach speed  
torque ref  
ft/min or m/sec  
% base torque  
Table 12: Analog Outputs C4 Submenu  
65  
   
Quattro DC Display Data D0 Menu  
Display D0 menu  
Elevator Data D1 submenu  
Hidden  
Item  
Parameter  
Description  
Units  
(Speed Command) Monitors the speed command before the  
speed reference generator (input to the S-Curve). This command  
comes from either multi-step references, speed command from  
analog channel, or the serial channel.  
SPEED  
COMMAND  
ft/min or m/s  
N
N
(Speed Reference) Monitors the speed reference being used by  
the drive. This is the speed command after passing through the  
speed reference generator (which uses a S-Curve).  
(Speed Feedback) Monitors the speed feedback coming from the  
encoder. It is based on contract speed, motor rpm and encoder  
pulses per revolution. The drive converts from motor RPM to  
linear speed using the relationship between the CONTRACT CAR  
SPD (A1) and CONTRACT MTR SPD (A1) parameters.  
(Speed Error) Monitors the speed error between the speed  
reference and the speed feedback. It is equal to the following  
equation:  
SPEED  
REFERENCE  
ft/min or m/s  
ft/min or m/s  
SPEED  
FEEDBACK  
N
N
SPEED ERROR  
ft/min or m/s  
speed  
speed  
speed  
error  
=
reference  
feedback  
PRE-TORQUE  
REF  
EXT-TORQUE  
CMD  
(Pre-Torque Reference) Monitors the pre torque reference,  
coming from either analog channel #2 or the serial channel.  
(External Torque Command) Monitors the Torque Feed Forward  
Command when used.  
% rated  
torque  
% of rated  
current  
N
N
(Speed Regulator Torque Command) Monitors the speed  
regulator’s torque command. This is the torque command before  
it passes through the tach rate gain function or the auxiliary torque  
command. It is the torque required for the motor to follow the  
speed reference.  
SPD REG TORQ  
CMD  
% rated  
torque  
Y
Y
(Tachometer Rate Command) Monitors the torque command from  
the tach rate gain function, (if used).  
% rated  
torque  
TACH RATE CMD  
AUX TORQUE  
CMD  
EST INERTIA  
(Auxiliary Torque Command) Monitors the feedforward torque  
command from auxiliary source, when used.  
(Estimated Inertia) Estimated elevator system inertia.  
(Serial Communications Status)  
% rated  
torque  
seconds  
Y
N
RX COM STATUS  
D1 000000000000000  
RUN/FAULT  
SUB MENU  
Bit 15  
Bit 0  
DATA ENT  
Bit Severity Name Description/Reason  
RX COM STATUS  
(continued on  
next page)  
1=true  
0=false  
0
1
2
3
4
Info  
RX_INVALID_SETUP_ID Invalid setup id on setup  
message  
N
Info  
RX_SETUP_IN_RUN A setup message to write was  
received while the serial run bit was set.  
RX_TIMEOUT A COMM Fault was declared  
because of a communication time-out.  
RX_INVALID_CHECKSUM If COMM FAULT was  
declared because of bad message checksums.  
RX_INVALID_MESSAGE Invalid header character  
in message.  
Fatal  
Info /  
Fatal  
Info  
5
6
Info  
Info  
RX_FIFO_OVERRUN Overflow has occurred.  
RX_INVALID_RUN_ID Set if the Cmd_Id sent in the  
RUN MESSAGE is not in range.  
66  
 
Quattro DC Display Data D0 Menu  
Hidden  
Parameter  
Description  
Units  
Item  
Bit Severity Name Description/Reason  
Info  
RX_INVALID_MONITOR_ID  
7
(Not available in Mode 2) Set if the Monitor_Id  
received in the run message is not in range.  
RX_INVALID_FAULT_ID Set if the Fault_Id sent in  
the setup message is not in range.  
RX_FAULT_DETECTED COMM FAULT has been  
detected  
8
9
Info  
Info  
10 Info  
11 Info  
12 Info  
Fault_Mode_1  
(Not available in Mode 1) Immediate Shutdown  
Mode  
RX COM STATUS  
(continued)  
1=true  
0=false  
N
Fault_Mode_2  
(Not available in Mode 1)  
Run Removal Shutdown Mode  
Fault_Mode_3  
(Not available in Mode 1)  
Rescue Shutdown Mode  
N/a  
13  
14  
N/a  
15 Fatal  
RX_COMM_FAULT COMM FAULT has been  
declared by the drive  
(Logic Outputs Status) This display shows the condition of the  
logic outputs. (1=true 0=false)  
LOGIC OUTPUTS  
D1 00000000000  
1=true  
0=false  
LOGIC OUTPUTS  
N
Logic output 1  
RN/AULT  
SUB MENU  
DENT  
Relay output 2  
Logic output 7  
Solid State Relay 1  
Solid State Relay 2  
Relay output 1  
(Logic Inputs Status) This display shows the condition of the logic  
inputs. (1=true 0=false)  
1=true  
0=false  
LOGIC INPUTS  
N
LOGIC INPUTS  
D1  
000000000  
N/FAULT  
MENU  
Logic Input 9  
Logic Input 1  
TA ENT  
Table 13: Elevator Display Data D1 Submenu  
67  
Quattro DC Display Data D0 Menu  
MS Power Data D2 submenu  
Hidden  
Item  
Parameter  
Description  
Units  
ARM CURRENT (Armature Current) Measured motor armature current  
FIELD CURRENT (Field Current) Measured motor field current  
ARM VOLTAGE (Armature Voltage) Measured motor armature voltage  
amps  
volts  
volts  
N
N
N
MS BUS  
VOLTAGE  
(Motor Side Bus Voltage) Measured Motor Side DC bus voltage  
volts  
none  
%
N
Y
N
(Motor Mode) Tells the user is the motor is motoring, regening, CEMF  
braking, or idle.  
(Torque Reference) This is the output of the speed regulator plus any  
torque feed forwards from the car controller  
MOTOR MODE  
TORQUE REF  
(Estimated Speed Feedback) Estimated speed based on voltage  
readings. When running the CEMF regulator, the ES SPD FDBK will  
equal the speed reference. When running in tach feedback mode, EST  
EST SPD FDBK  
m/sec  
N
SPD FDBK will estimate the speed based on voltages.  
ENCODER SPD (Encoder Speed) Give the speed of the encoder in meters / second.  
m/sec  
°C  
N
N
DS MODULE  
TEMP  
LS MODULE  
TEMP  
(Drive Side Module Temperature) Indicates the hottest of the drive side  
IGBT module and the line side IGBT module and the Field IGBT.  
(Line Side Module Temperature) Indicates the hottest of the line side  
converter IGBT module temperature.  
°C  
°C  
N
N
(Highest Measured Temperature) Declares the highest temperature  
measured on the drive.  
HIGHEST TEMP  
(Field IGBT Temperature) Monitors temperature of IGBT module that  
controls motor field current as indicated by an internal thermistor.  
Reported in degrees C.  
FIELD IGBT  
TEMP  
°C  
N
N
N
ARMATURE CUR  
ERR  
(Armature Current Error) Measured Motor Armature Current in amperes.  
amps  
none  
(Auto-tune Field Integral Gain) Measured field regulator integral gain as  
calculated by the auto-tune (in GAIN SELECTION (C1)) after an auto-  
tune has been done.  
AUTO FLD INT  
(Auto-tune Field Proportional Gain) Measured field regulator proportional  
AUTO FLD PROP gain as calculated by the auto-tune (in GAIN SELECTION (C1)) after an  
none  
mH  
N
N
N
N
N
auto-tune has been done.  
(Auto-tune Measured Armature Inductance) Measured Motor Armature  
Inductance as calculated by the auto-tune (in GAIN SELECTION (C1))  
after an auto-tune has been done.  
AUTO MEAS  
ARM L  
(Auto-tune Measured Armature Resistance) Measured Motor Armature  
Resistance as calculated by the auto-tune (in GAIN SELECTION (C1))  
after an auto-tune has been done.  
AUTO MEAS  
ARM R  
ohm  
ohm  
sec  
(Auto-tune Measured Field Resistance) Measured Field Resistance as  
AUTO FIELD RES calculated by the auto-tune (in GAIN SELECTION (C1)) after an auto-  
tune has been done.  
(Auto-tune Measured Field Time Constant) Measured Field Time  
AUTO FIELD TC Constant as calculated by the auto-tune (in GAIN SELECTION (C1))  
after an auto-tune has been done.  
Table 14: Power Data D2 Submenu  
68  
 
Quattro DC Display Data D0 Menu  
LS Power Data D3 submenu  
Hidden  
Units  
Parameter  
Description  
(Line Side Power Output) Estimated power transfer to and from the AC  
Item  
LS PWR OUTPUT Line. Value is positive when drive is pulling power from the line, and  
kW  
N
N
negative when drive is delivering power back to the line.  
(DC Bus Voltage) Measured DC Bus voltage as seen by the line side  
controller.  
DC BUS VOLTAGE  
Volts  
(DC Bus Voltage Reference) Calculated applied DC Bus Voltage  
DC BUS VOLTS  
REF  
reference as the peak of the AC line voltage plus the amount to boost.  
For more information, see Line Side Power Convert A5 Submenu on  
Volts  
N
LS OVERLOAD  
LS INPUT  
CURRENT  
(Line Side Overload)  
(Line Side Input Current) Measured input line current as the average  
of the three phases.  
%
N
N
Amps  
(Line Side D Axis Current) Percent of rated current in the D axis.  
Note: This is reactive power producing current.  
(Line Side Q Axis Current) Percent of rated current in the Q axis.  
Note: This is power producing current.  
(Line Side D Axis Voltage) Percent of rated voltage in the Q axis.  
Note: This is reactive power producing voltage.  
(Line Side Q Axis Voltage) Percent of rated voltage in the Q axis.  
Note: This is power-producing voltage.  
LS D AXIS I  
%
%
%
N
N
N
LS Q AXIS I  
LS D AXIS VOLTS  
LS Q AXIS VOLTS  
INPUT HZ  
%
Hz  
N
N
N
(Input Frequency) Measured input line frequency.  
(Input Voltage A-B Phase) Measured input line-to-line voltage phase  
A-B.  
INPUT Vab  
Volts  
(Input Voltage C-A Phase) Measured input line-to-line voltage phase  
C-A.  
(Line Side Module Temp) Indicates the hottest of the line side  
converters IGBT modules.  
INPUT Vca  
Volts  
°C  
N
N
LS MODULE TEMP  
Table 15: LS Power Data D2 Submenu  
69  
 
Quattro DC Utility U0 Menu  
Utility U0 menu  
Run  
lock  
out  
Hidden  
Item  
U0  
U1  
Parameter  
Description  
Default  
Choices  
PASSWORD  
For more information, see PASSWORD on page 71.  
Allows the user to  
enter in a password  
Used to change the  
established password  
ENTER PASSWORD  
012345  
N
N
N
N
NEW PASSWORD  
Used to enable and  
disable password  
lockout  
PASSWORD  
LOCKOUT  
disabled  
enabled  
DISABLED  
N
N
U2  
U3  
U4  
U5  
HIDDEN ITEMS  
HIDDEN ITEMS  
UNITS  
For more information, see HIDDEN ITEMS on page 71.  
Selects if the “hidden”  
parameters will be  
displayed on the  
Digital Operator.  
enabled  
disabled  
ENABLED  
N
N
For more information, see UNITS on page 71.  
Choose either Metric  
units or standard  
English  
english  
metric  
UNITS SELECTION  
OVRSPEED TEST  
OVERSPEED TEST?  
RESTORE DFLTS  
ENGLISH  
N
Y
Y
measurements units  
Allows for Overspeed  
Test to be enabled  
via the digital  
operator  
no  
yes  
NO  
N
N
Resets all parameters  
in the A menu to  
default values except  
RESTORE DRIVE  
DEFAULTS?  
Y
parameters in  
MOTOR A6  
Resets the  
parameters in the  
MOTOR A6  
RESTORE MOTOR  
DEFAULTS?  
N
N
Y
Y
Resets the  
parameters in the U  
menu  
RESTORE UTILITY  
DEFAULTS  
U6  
U7  
U8  
MS DRIVE INFO  
MS TYPE  
For more information, see MS DRIVE INFO on page 73.  
Read Only Data  
Read Only Data  
Read Only Data  
Read Only Data  
Read Only Data  
Read Only Data  
N
N
N
N
N
N
N
N
N
N
N
N
MS CODE VERSION  
MS S/W DATE  
MS S/W TIME  
MS FPGA VERSION  
MS CUBE ID  
LS DRIVE INFO  
LS TYPE  
LS CODE VERSION  
LS S/W DATE  
LS S/W TIME  
For more information, see LS DRIVE INFO on page 74.  
Read Only Data  
Read Only Data  
Read Only Data  
Read Only Data  
Read Only Data  
N
N
N
N
N
N
N
N
N
N
N
N
N
N
LS FPGA VERSION  
LS CUBE ID  
HEX MONITOR  
Read Only Data  
For more information see HEX MONITOR on page 75.  
70  
 
Quattro DC Utility U0 Menu  
ENTER PASSWORD Screen  
Detailed Description  
This screen allows the user to enter in a  
password. A valid password must be entered  
before enabling or disabling the password  
lockout or changing to a new password.  
PASSWORD  
(Password Function)  
The following three different screens are used  
by the password function:  
NEW PASSWORD Screen  
ENTER PASSWORD  
NEW PASSWORD  
PASSWORD LOCKOUT  
This screen is used to change the established  
password.  
NOTE: Remember that a valid password must  
be entered at the ENTER PASSWORD screen  
before the established password can be  
changed.  
Password Function  
The password function allows the user to  
select a six-digit number for a password. The  
password function allows the user to lockout  
changes to the parameters until a valid  
password is entered.  
PASSWORD LOCKOUT Screen  
This screen is used to enable and disable  
password lockout. The factory default for  
password lockout is DISABLED.  
And with the password lockout enabled, all  
parameters and display values will be able to  
be viewed but no changes to the parameters  
will be allowed until a correct password is  
entered.  
NOTE: Remember that a valid password must  
be entered at the ENTER PASSWORD screen  
before the password lockout condition can be  
changed.  
Parameter Protection  
HIDDEN ITEMS  
If the password lockout is enabled, the  
following message will appear on the display  
when attempting to change a parameter.  
(Hidden Items Function)  
The HIDDEN ITEMS sub-menu allows the user  
to select whether or not “hidden” parameters  
will be displayed on the Digital Operator.  
There are two types of parameters, standard  
and hidden. Standard parameters are  
available at all times. Hidden parameters are  
available only if activated. The default for this  
function is ENABLED (meaning the hidden  
parameters are visible).  
Password  
Protected  
RUN/FAULT  
SUB MENU  
DATA ENT  
In order to change a parameter after password  
UNITS  
lockout has been enabled, the following two  
steps must be followed in the PASSWORD  
sub-menu:  
1) A valid password must be entered in the  
ENTER PASSWORD screen.  
(Units Selection Function)  
When the UNITS SELECTION sub-menu is  
displayed, the user can choose either Metric  
units or Standard English measurements units  
for use by the drive’s parameters.  
2) The password lockout must be DISABLED  
in the PASSWORD LOCKOUT screen.  
IMPORTANT  
The unit’s selection must be made before  
entering any setting values into the  
parameters. The user cannot toggle between  
units after drive has been programmed.  
PASSWORD Sub-menu Protection  
The following message will appear when in the  
PASSWORD sub-menu, if you are trying to:  
Enable or disable the password lockout  
without a valid password being entered.  
Enter a new password without a valid  
password being entered.  
OVERSPEED TEST  
(Overspeed Test Function)  
The speed command is normally limited by  
Overspeed Level parameter (OVERSPEED  
LEVEL(A1)), which is set as a percentage of  
the contract speed (100% to 150%). But in  
order to allow overspeed tests during elevator  
inspections, a means is provided to multiply  
the speed command by the Overspeed  
Multiplier parameter (OVERSPEED  
MULT(A1)).  
PLEASE ENTER  
PASSWORD FIRST  
RUN/FAULT  
SUB MENU  
DATA ENT  
71  
       
Quattro DC Utility U0 Menu  
An overspeed test can be initiated by:  
The value in the Overspeed Mult (A1)  
parameter is applied to the speed reference  
and the overspeed level, so that the elevator  
can be operated at greater than contract speed  
and not trip on an Overspeed Fault.  
When the Run command is remove after the  
overspeed test, overspeed test reverts back to  
its default of NO. In order to run another  
overspeed test via the Digital Operator, the  
above steps must be repeated again.  
an external logic input  
the serial channel  
directly from the digital operator  
Overspeed Test via Logic Input  
The external logic input can be used by:  
setting the Overspeed Test Source  
parameter to external tb1.  
defining a logic input terminal to ospd test src  
NOTE: This logic input requires a transition  
from false to true to be recognized - this  
prevents the overspeed function from being  
permanently enabled if left in the true state.  
RESTORE DFLTS  
(Restore Parameter Defaults)  
Three different functions are included in this  
sub-menu.  
Overspeed Test via Serial Channel  
Restore Drive Defaults  
The serial channel can be used by setting  
Overspeed Test Source (C1) parameter to  
serial.  
This function resets all parameters to their  
default values except the parameters in the  
MOTOR A6 sub-menu.  
Overspeed Test via Operator  
The following shows how to restore the drive  
defaults:  
The Digital Operator can also initiate the  
overspeed test by performing the following:  
While the Digital Operator display shows  
RESTORE DRIVE  
U4  
DEFAULTS?  
UTILITY U0  
RUN/FAULT  
OVRSPEED TEST U4  
SUB MENU  
DATA ENT  
RUN/FAULT  
SUB MENU  
DATA ENT  
Press the enter key  
Press the ENTER key. The sub-menu LED will  
turn on, and the Digital Operator will display:  
PRESS ENTER TO  
CONFIRM REQUEST  
RUN/FAULT  
SUB MENU  
DATA ENT  
OVERSPEED TEST?  
U4  
NO  
Press the enter key again  
RUN/FAULT  
SUB MENU  
DATA ENT  
Press the ENTER key again. The sub  
menu LED will go out and data ent LED  
will turn on.  
DEFAULT RESTORED  
PUSH ANY KEY  
RUN/FAULT  
SUB MENU  
DATA ENT  
Press the up arrow or down arrow key and  
the display will change to:  
If the esc key is pressed, instead the reset  
action will be aborted  
OVERSPEED TEST?  
U4  
YES  
NO ACTION TAKEN  
PUSH ANY KEY  
RUN/FAULT  
SUB MENU  
DATA ENT  
RUN/FAULT  
SUB MENU  
DATA ENT  
Press the ENTER key to begin the  
overspeed test.  
72  
 
Quattro DC Utility U0 Menu  
Restore Motor Defaults  
This function resets the parameters in the  
MOTOR A6 sub-menu to the defaults. The  
following shows how to restore the motor  
defaults:  
PRESS ENTER TO  
CONFIRM REQUEST  
RUN/FAULT  
SUB MENU  
DATA ENT  
RESTORE MOTOR  
U5 DEFAULTS?  
Press the enter key again  
RUN/FAULT  
SUB MENU  
DATA ENT  
DEFAULT RESTORED  
PUSH ANY KEY  
Press the enter key  
RUN/FAULT  
SUB MENU  
DATA ENT  
PRESS ENTER TO  
CONFIRM REQUEST  
If the esc key is pressed, instead the reset  
action will be aborted  
RUN/FAULT  
SUB MENU  
DATA ENT  
Press the enter key again  
NO ACTION TAKEN  
PUSH ANY KEY  
RUN/FAULT  
SUB MENU  
DATA ENT  
DEFAULT RESTORED  
PUSH ANY KEY  
RUN/FAULT  
SUB MENU  
DATA ENT  
MS DRIVE INFO  
(Motor Side Drive Information)  
Six different screens are included in this sub-  
menu, each display an identification number.  
If the esc key is pressed, instead the reset  
action will be aborted  
MS TYPE Screen  
Shows the type of drive the software is  
installed in:  
NO ACTION TAKEN  
PUSH ANY KEY  
RUN/FAULT  
SUB MENU  
DATA ENT  
MS TYPE  
U6 STD. DC Drv.  
RUN/FAULT  
SUB MENU  
DATA ENT  
Restore Utility Defaults  
This function resets the parameters in the  
Utility U0 menu to the defaults. The following  
shows how to restore the utility defaults:  
MS CODE VERSION  
Shows the version of code located in the Motor  
Side portion of the drive.  
RESTORE UTILITY  
U5 DEFAULTS?  
MS CODE VERSION  
U6 A4420-DU0004  
RUN/FAULT  
SUB MENU  
DATA ENT  
RUN/FAULT  
SUB MENU  
DATA ENT  
Press the enter key  
73  
 
Quattro DC Utility U0 Menu  
MS S/W DATE Screen  
Gives the date of the released motor side code  
version.  
LS TYPE  
U7  
GENERIC  
RUN/FAULT  
SUB MENU  
DATA ENT  
MS S/W DATE  
U6 Oct 4 2006  
LS CODE VERSION  
Shows the version of code located in the Line  
Side portion of the drive.  
RUN/FAULT  
SUB MENU  
DATA ENT  
MS S/W TIME Screen  
Displays the time of the released motor side  
code version.  
LS CODE VERSION  
U7 A4410-L00001  
RUN/FAULT  
SUB MENU  
DATA ENT  
MS S/W TIME  
U6  
07:38:32  
LS S/W DATE Screen  
RUN/FAULT  
Gives the date of the released Line side code  
version.  
SUB MENU  
DATA ENT  
MS FPGA REV Screen  
Gives the revision number for the motor side  
FPGA.  
LS S/W DATE  
U7 Oct 4 2006  
RUN/FAULT  
SUB MENU  
DATA ENT  
MS FPGA REV  
U6  
26  
RUN/FAULT  
SUB MENU  
DATA ENT  
LS S/W TIME Screen  
Displays the time of the released Line side  
code version.  
MS CUBE ID Screen  
Displays the cube identification number of the  
drive. This number identifies specific drive  
ratings related to detected equipment  
hardware.  
LS S/W TIME  
09:10:11  
U7  
RUN/FAULT  
SUB MENU  
DATA ENT  
MS CUBE ID  
U6  
60  
LS FPGA REV Screen  
Gives the revision number for the Line side  
FPGA.  
RUN/FAULT  
SUB MENU  
DATA ENT  
LS DRIVE INFO  
(Drive Information)  
Six different screens are included in this sub-  
menu, each display an identification number.  
LS FPGA REV  
U7  
27  
RUN/FAULT  
SUB MENU  
DATA ENT  
LS TYPE Screen  
Shows the type of drive the software is  
installed in:  
74  
 
Quattro DC Utility U0 Menu  
LS CUBE ID Screen  
HEX MONITOR  
Displays the cube identification number of the  
drive. This number identifies specific drive  
ratings related to detected equipment  
hardware.  
(Hex Monitor)  
The hex monitor was designed for fault and  
parameter diagnostics. It is intended for use  
by Magnetek personnel only.  
LS CUBE ID  
U7  
59  
RUN/FAULT  
SUB MENU  
DATA ENT  
75  
 
Quattro DC Fault F0 Menu  
Fault F0 menu  
This menu also allows for clearing of active  
faults in order to get the drive ready to return to  
operation after a fault shutdown.  
The FAULTS F0 menu does not access  
settable parameters; instead, it provides a  
means of examining the drive’s active faults  
and the fault history.  
F0 Parameter  
Description  
Hidden  
Item  
Run  
lock  
out  
F1 ACTIVE FAULTS  
DISPLAY ACTIVE  
FAULTS?  
Contains a list of the active faults  
Allows for reset of active faults  
N
N
N
N
RESET ACTIVE  
FAULTS?  
F2 FAULT HISTORY  
DISPLAY FAULT  
HISTORY?  
Contains a list of up to the last sixteen faults  
N
N
N
N
N
N
CLEAR FAULT  
HISTORY?  
DISPLAY FAULT  
COUNTERS?  
Allows for the clearing of the fault history and fault counters  
Contains list of faults and the number of times they  
occurred  
Detailed Descriptions  
ACTIVE FAULTS  
operator, regardless of the setting of the Fault  
Reset Source parameter (see User Switches  
(Active Faults)  
While the Digital Operator display shows:  
This sub-menu contains a list of the active  
faults. This sub-menu also allows the user to  
reset the active faults.  
Active Faults List  
FAULTS F0  
ACTIVE FAULTS F1  
The active fault list displays and records the  
active faults. The faults will remain on the fault  
list until a fault reset is initiated.  
RUN/FAULT  
SUB MENU  
DATA ENT  
Press the ENTER key. The sub-menu LED  
will turn ON, and the Digital Operator will  
display:  
DISPLAY ACTIVE  
F1  
FAULTS?  
RUN/FAULT  
SUB MENU  
DATA ENT  
RESET ACTIVE  
Press the enter key to enter the active fault list.  
Use the up and down arrow keys to scroll  
through the active faults.  
F1  
FAULTS?  
RUN/FAULT  
SUB MENU  
DATA ENT  
Press the ENTER key again to begin the fault  
reset procedure. The sub-menu LED will go  
out and the data ent LED will turn on.  
ACTIVE FAULTS  
F1 CHARGE FAULT  
RUN/FAULT  
SUB MENU  
DATA ENT  
RESET ISSUED  
PUSH ANY KEY  
Resetting Active Faults  
The Reset Active Faults function allows the  
user to initiate a fault reset via the digital  
RUN/FAULT  
SUB MENU  
DATA ENT  
76  
 
Quattro DC Fault F0 Menu  
FAULT HISTORY  
(Fault History)  
Press the enter key to enter the fault history.  
Use the up and down arrow keys to scroll  
through the faults.  
This sub-menu contains a list of up to the last  
sixteen faults.  
NOTE: The fault history is not affected by the  
fault reset or a power loss. The fault history  
can only be cleared by a function in this sub-  
menu.  
01 CHARGE FAULT  
F2  
0.0097 hrs  
RUN/FAULT  
SUB MENU  
DATA ENT  
Fault History  
All faults are placed in the fault history. The  
fault history displays the last 16 faults that  
have occurred and a time stamp indicating  
when each happened.  
Clearing Fault History  
The fault history is not affected by the fault  
reset or a power loss. The fault history can  
only be cleared via the user function described  
below. Clearing the Fault History will also  
clear the Fault Counters.  
Enter the submenu in F2 by pressing the  
ENTER key. The sub-menu LED will turn ON,  
and the Digital Operator will display:  
DISPLAY FAULT  
F2  
HISTORY?  
RUN/FAULT  
SUB MENU  
DATA ENT  
Press the enter key to enter the fault history.  
Use the up and down arrow keys to scroll  
through the faults.  
CLEAR FAULT  
F2  
HISTORY?  
RUN/FAULT  
SUB MENU  
DATA ENT  
01 CHARGE FAULT  
Press the ENTER key again to begin the  
fault reset procedure.  
F2  
0.0097 hrs  
RUN/FAULT  
The active faults must be cleared in order to  
clear the fault history. If not the following  
message will appear when trying to clear the  
fault history.  
SUB MENU  
DATA ENT  
FAULT COUNTERS  
(Fault Counters)  
This sub-menu contains a list of all the faults  
and the numbers of times they occurred.  
RST FAULTS FIRST  
PUSH ANY KEY  
NOTE: The fault counters list is not affected by  
the fault reset or a power loss. The fault  
counters can only be cleared by a clear fault  
history  
RUN/FAULT  
SUB MENU  
DATA ENT  
Fault Counter  
The sub-menu LED will go out and the data  
ent LED will turn on.  
All faults possible are located in the Fault  
Counter. The fault counter shows each fault  
and the number of times it occurred until  
cleared by the Clear Fault History function.  
RESET ISSUED  
PUSH ANY KEY  
RUN/FAULT  
SUB MENU  
DATA ENT  
DISPLAY FAULT  
F2  
COUNTERS?  
RUN/FAULT  
SUB MENU  
DATA ENT  
77  
Quattro DC Maintenance  
Maintenance  
WARNING  
Maintenance Overview  
Hazardous voltages may exist in the drive  
circuits even with drive circuit breaker in off  
position. NEVER attempt preventive  
maintenance unless incoming power and  
control power is disconnected and locked out.  
Also, ensure the DC Bus charge light is out.  
Preventive maintenance is primarily a matter of  
routine inspection and cleaning. The most  
important maintenance factors are the  
following:  
Is there sufficient airflow to cool the drive?  
Has vibration loosened any connections?  
Drive Servicing  
Remember when servicing the Drive:  
Hazardous voltages may exist in the drive  
circuits even with drive circuit breaker in off  
position.  
The Drive needs to have sufficient air flow for  
long, reliable operation. Accumulated dust and  
dirt accumulation can reduce airflow and cause  
the heat sinks to overheat. The heat sinks can  
be kept clean by brushing, while using a  
vacuum cleaner.  
IMPORTANT  
Use extreme caution: Do not touch any circuit  
board, the drive, or motor electrical  
connections without making sure that the unit  
is properly grounded and that no high voltage  
is present.  
NEVER attempt maintenance unless the  
incoming three phase power and control power  
is disconnected and locked out.  
Periodically, check air filters on enclosure  
doors, clean if dirty and replace as necessary.  
Periodically, clean the cooling fans to prevent  
dirt buildup. At the same time, check that the  
impellers are free and not binding in the  
housing.  
Also, ensure the DC Bus charge light is out,  
verify with a voltmeter that no voltage exists  
between the (+) and (-) terminals.  
Periodically, check all mounting and electrical  
connections. Any loose hardware should be  
tightened.  
78  
 
Quattro DC Troubleshooting  
not be able to run until all active faults are  
cleared.  
Troubleshooting  
Faults and Alarms  
ACTIVE FAULTS  
F1 CHARGE FAULT  
Two classes of warnings are reported by the  
Drive; these are identified as Faults and  
Alarms.  
RUN/FAULT  
SUB MENU  
DATA ENT  
An Alarm is a drive condition worth noting that  
may or may not require immediate attention,  
but the condition is not severe enough to stop  
operating the drive. In many cases, Alarms  
will automatically clear when the condition  
returns to normal or when the drive is stopped  
and restarted.  
3. The fault will be placed on the fault history.  
The fault history displays the last 16 faults and  
a time stamp indicating when each happened.  
The fault history IS NOT affected by an active  
fault reset or a power loss. The fault history  
can be cleared via a user-initiated function.  
Faults and Fault Annunciation  
A Fault is a severe failure condition that will  
stop a drive if it has been running and prevent  
the drive from starting as long as it is present.  
All faults require some type of action by the  
user to clear.  
01 CHARGE FAULT  
F2  
0.0097 hrs  
RUN/FAULT  
SUB MENU  
DATA ENT  
There are four means of fault annunciation:  
1. A priority message will be seen on the  
Digital Operator:  
4. The user can assign a fault to an external  
logic output. Refer to configuration submenu  
item C3.  
FAULT!  
CHARGE FAULT  
Fault Clearing  
Performing a fault reset can clear most faults.  
The fault reset can be initiated by:  
RUN/FAULT  
SUB MENU  
DATA ENT  
an external logic input  
the serial channel  
automatically by the drive  
A priority message will overwrite what ever is  
currently displayed. The user can clear this  
message by pressing any key on the Digital  
Operator keypad. If another fault is present,  
the next fault will appear as a priority message.  
CAUTION  
If the run signal is asserted at the time of a  
fault reset, the drive could immediately go into  
a run state. However, if the auto-fault reset  
function is enabled (FAULT RESET  
SRC(C1)=automatic) then the run command  
needs to be cycled.  
NOTE: Clearing the fault priority message  
from the display DOES NOT clear the fault  
from the active fault list. The faults must be  
cleared by a fault reset before the drive will  
run. Setting PRIORITY MESSAGE (C1) to  
DISABLE can disable priority Messages.  
A fault reset can also be performed manually  
via the Digital Operator.  
2. The fault will be placed on the active fault  
list which will record and display currently  
active faults. The faults will remain on the fault  
list until an active fault reset is initiated. The  
drive will  
79  
 
Quattro DC Troubleshooting  
Drive Faults, Alarms, and operator messages along with possible causes and corrective actions are  
listed below.  
Note:  
fault - a severe failure that will stop a drive if it has been running and prevent the drive from  
starting as long as it is present. All faults require some type of action by the user to clear.  
alarm - only meant for annunciation. It will NOT stop the operation of the drive or prevent the  
drive from operating.  
operator message - operator communications message. It will NOT stop the operation of the  
drive or prevent the drive from operating.  
Name  
Description  
Possible Causes & Corrective Action  
Drive Control PCB Failure  
A to D Fault  
The Analog to Digital  
conversion on the drive control Replace Drive Control board  
board is not working properly.  
BAD SRL  
More than two messages with Electronic noise interference  
CHKSM (alarm) bad checksums have been Verify there is no electronic noise interference  
received over the serial  
channel.  
Baud rate mismatch  
Baud rate mismatch is between drive and car  
controller. Verify baud rate settings.  
Bridge Ground A ground fault has been  
Check Motor Wiring  
detected by the hardware on Check motor wiring and motor for insulation  
the motor side. The current  
going to A1 armature motor  
breakdown or unintentional contact to other  
objects  
lead does not match the Ensure proper connection of shield drain wires  
current returning from the  
motor armature lead A2.  
to chassis  
Bad Current Sensor  
Brk Hold Flt  
The brake hold command and Check Parameter Settings  
the brake feedback did not Check the correct logic input is configured for  
match for the time specified  
with Brake Hold Time  
parameter.  
the correct TB1 terminal and set to MECH  
BRK HOLD (C2)  
Check BRAKE HOLD SRC (C1) parameter for  
the correct source of brake pick feedback  
Check BRAKE HOLD TIME (A1) parameter for  
the correct brake hold time  
Wrong assignment of Normally Closed contact  
mask (C2)  
Increase BRAKE HOLD TIME (A1)  
Check BRK HOLD FLT ENA (C1)  
Verify Brake Settings  
If drive is controlling brake, verify a logic output  
is set to BRAKE HOLD (C3)  
Check for an open circuit between the brake  
pick pilot relay and the logic output assigned to  
brake pick control  
Mechanical Brake Hold Signal Wiring  
Defective Brake Hold Coil  
Defective Brake Hold Auxiliary contactor used  
for sensing the brake state  
If nuisance fault, the fault can be disabled by BRK  
HOLD FLT ENA (C1) parameter.  
80  
Quattro DC Troubleshooting  
Name  
Description  
Possible Causes & Corrective Action  
Brk Pick Flt  
The brake pick command and Check Parameter Settings  
the brake feedback did not Check the correct logic input is configured for  
match for the time specified  
with Brake Pick Time  
parameter.  
the correct TB1 terminal and set to MECH  
BRK PICK (C2)  
Check BRAKE PICK SRC (C1) parameter for  
the correct source of brake pick feedback  
Check BRAKE PICK TIME (A1) parameter for  
the correct brake hold time  
Wrong assignment of Normally Closed contact  
mask (C2)  
Increase BRAKE PICK TIME (A1)  
Verify Brake Settings  
If drive is controlling brake, verify a logic output  
is set to BRAKE PICK (C3)  
Check for an open circuit between the brake  
pick pilot relay and the logic output assigned to  
brake pick control  
Mechanical Brake Pick Signal Wiring  
Defective Brake Pick Coil  
Defective Brake Pick Auxiliary contactor used  
for sensing the brake state  
If nuisance fault, the fault can be disabled by BRK  
PICK FLT ENA (C1) parameter.  
Check Setup  
Comm Fault  
This fault is logged when a  
Invalid Parameter Setup  
new program is loaded to the This is an advisory fault indicating that the user  
motor side processor, and the should verify the drive’s parameters  
default data is loaded for the Or upload a valid parameter set using  
parameter values. Magnetek Explorer  
The drive is being operated by Bad Serial Connection  
serial communications and Remove and re-seat the RS-422 serial cable  
one of the following has Check car controller serial driver board  
occurred:  
Communication time-out –  
Check the serial cable connected to the drive’s  
RS-422 port  
The drive did not receive a The Customer I/O PCB on the drive may need  
valid run-time message in the  
allowed time while running  
Bad message checksum –  
Drive has detected too many  
consecutive bad message  
checksums  
to be replaced.  
Comm Fault  
Invalid  
The operator received four  
consecutive invalid messages Remove and re-seat the operator in its cradle  
Noise or Bad Connector Connection  
Checksum  
(operator)  
If re-seating the operator did not work, the  
operator or the drive’s control board may need  
to be replaced  
Comm Fault No The operator lost  
Bad Connector Connection  
Drv Handshake communications with the Remove and re-seat the operator in its cradle  
(operator)  
drive’s control board.  
If re-seating the operator did not work, the  
operator or the drive’s control board may need  
to be replaced  
Connector Off  
The power interface board has  
detected a missing or loose  
connector on the motor side.  
Missing Connector  
Verify connectors are connected  
Verify connectors are properly seated  
81  
Quattro DC Troubleshooting  
Name  
Description  
Possible Causes & Corrective Action  
Cont Pwr Lost  
Motor contactor power was  
Improper drive On-Run-Stop sequencing  
removed while the drive was Verify Safety Chain operation  
commanding it to be  
energized.  
Verify Safety Chain timing  
Contactor Flt  
The command to close the  
Check parameter settings and contactor  
contactor and the contactor Check CONTACT FLT TIME (A1) parameter  
feedback do not match for the for the correct contactor fault time.  
time specified by the Contact Verify wiring to logic input 1 (CONTACT  
Flt Time parameter  
CFIRM (C2) is correct  
Contactor hardware problem  
Cube data Flt  
Cube ID Fault  
The cube data for the motor  
Parameters Corrupted  
side processor is invalid. Re-enter parameters and power-cycle  
If re-occurs, replace Drive Control board  
Hardware Problem  
number for the motor side is Power cycle the drive.  
The cube identification  
invalid.  
Verify the Cube I.D. is properly connected and  
fully seated  
If re-occurs, replace Drive Control board  
Curr Reg Flt  
Measured current does not  
Problem with Motor Contactor  
match the command current. Verify that motor contactor is closing  
Verify motor contactor is not opening  
unexpectedly  
Faulty current feedback signals  
Verify that reported drive current is zero when  
drive is not operating  
Verify connections to current transducers  
Loss of gate power supply  
Verify base block jumper is in place  
Incorrect DC Bus Voltage reading  
Measure the dc bus with a meter  
Compare that with the value on the digital  
operator, DC BUS VOLTAGE (D2)  
Inaccurate Motor Parameters  
Verify motor nameplate values (A6) are  
entered correctly  
DCU Data Flt  
The DCU parameters  
Parameters Corrupted  
checksum is invalid on the Check & re-enter parameters and power cycle  
motor side.  
the drive  
If re-occurs, replace Drive Control board  
Dir Conflict  
Declared when the speed  
Check Parameter Settings  
(alarm)  
command is held at zero due Sensitivity determined by the ZERO SPEED  
conflict with the analog speed LEVEL (A1)  
command polarity and the run Confirm Speed Command Polarity  
up / run down logic  
DIR CONFIRM (C1) must be  
enabled.  
Check polarity of the analog speed command  
on analog channel #1  
Compare that with the RUN UP (positive) and  
RUN DOWN (negative) logic input status  
If nuisance, the function can be disabled by DIR  
CONFIRM (C1) parameter.  
82  
Quattro DC Troubleshooting  
Name  
Description  
Possible Causes & Corrective Action  
Excessive Field Weakening  
Verify Weak Field motor parameter (A5)  
Accurate Motor Parameters  
Drive Ovrload  
The drive has exceeded the  
drive overload curve.  
Verify motor nameplate values are entered  
correctly  
Excessive Current Draw  
Decrease accel/decel rate  
Mechanical brake not releasing properly  
Motor Problem  
Check for motor failure  
Drive Sizing  
Verify drive sizing with motor ampere  
requirements. May need a larger capacity  
drive  
Encoder Flt  
The drive is in a run condition Encoder Phasing Should Match Motor Rotation  
and the encoder is:  
not functioning  
If Reversed Tach Fault is indicated the  
encoder rotation is backwards  
or  
Swap two encoder wires (A and /A)  
not connected.  
or  
Encoder Power Supply Loss  
Check 12 or 5 volt supply on terminal strip  
phasing direction is not proper Accurate Parameters  
with motor rotation.  
Verify motor nameplate values are entered  
correctly  
Verify encoder PPR value is correct  
Verify ARMATURE IR DROP (A6) is entered  
correctly according to the equation found on  
If problem still occurs, increase the value of  
ARMATURE IR DROP (A6)  
Response of Speed Regulator  
Enter accurate INERTIA (A1) parameter  
Increase RESPONSE (A1) parameter  
Encoder Coupling Sloppy or Broken  
Check encoder to motor coupling  
Excessive Noise on Encoder Lines  
Check encoder connections. Separate  
encoder leads from power wiring (cross power  
lead at 90°)  
Ensure that encoder shaft and frame are  
electrically isolated from the motor  
Hardware Problem  
Replace customer Interface PCB.  
Check Parameter Settings  
EncoderFault  
OFF  
When the Encoder Fault is  
disabled (ENCODER FAULT Check the setting of parameter ENCODER  
(alarm)  
(C1) = disabled), the drive will  
display the warning message  
“EncoderFault OFF”, every  
time the RUN command is  
removed.  
FAULT (C1)  
Extrn Fault 1  
User defined external logic  
fault input  
Check Parameter Settings and External Fault  
Signal Wiring  
...Closure of this contact will Check the correct logic input is configured for  
cause the drive to declare the  
fault  
the correct TB1 terminal and set to EXTRN  
FAULT 1 (C2)  
Verify the source of the external fault signal.  
83  
Quattro DC Troubleshooting  
Name  
Description  
Possible Causes & Corrective Action  
Extrn Fault 2  
User defined external logic  
fault input  
Check Parameter Settings and External Fault  
Signal Wiring  
...Closure of this contact will Check the correct logic input is configured for  
cause the drive to declare the  
fault  
the correct TB1 terminal and set to EXTRN  
FAULT 2 (C2)  
Verify the source of the external fault signal.  
Extrn Fault 3  
Extrn / Fault 4  
Field Ground  
User defined external logic  
fault input  
...Closure of this contact will Check the correct logic input is configured for  
cause the drive to declare the  
fault  
Check Parameter Settings and External Fault  
Signal Wiring  
the correct TB1 terminal and set to EXTRN  
FAULT 3 (C2)  
Verify the source of the external fault signal.  
User defined external logic  
fault input  
...Opening of this contact will Check the correct logic input is configured for  
cause the drive to declare the  
fault  
Check Parameter Settings and External Fault  
Signal Wiring  
the correct TB1 terminal and set to EXTRN  
/FLT 4 (C2)  
Verify the source of the external fault signal.  
The hardware has detected a  
ground fault in the field circuit.  
The current going into the field  
coil F1 does not match the  
current returning from the field  
coil F2.  
Check Motor Field wiring  
Check motor field wiring and motor field for  
insulation breakdown, unintentional contact to  
other objects, or shorts  
Ensure proper connection of shield drain wires  
to chassis  
Possible bad current sensor  
Field I REG  
Measured field current does  
Check Parameter Settings  
not match commanded field Verify parameter settings for motor field control  
current. OR no data update  
between processor PCBs.  
Check Motor Field Current Sensing  
Verify accuracy of motor field current sensing  
with a separate DC current ammeter  
Replace Field Control Module if there are  
significant differences  
If re-occurs or there are not significant  
differences increase stand-by field current  
setting to reduce current decay time  
Replace main processor PCBs if data updates  
to operator do not occur  
External Relay Timing  
Check for improper external relay timing  
Check Wiring  
Missing jumper wire at Customer Interface  
Board PCB, TB2  
Check motor field and wiring  
Field IGBT  
Field LOSS  
A de-saturation condition has  
been detected on a field  
power bridge IGBT.  
Verify motor field and motor wirings are not  
shorted  
If re-occurs and the motor field and wirings are  
okay, suspect a defective field module IGBT  
The field voltage has been  
above 25% of rated and the  
field current below 2% of rated  
for 1.5 seconds  
Check motor field and wiring  
Verify motor field and motor wirings are not  
open  
84  
Quattro DC Troubleshooting  
Name  
Description  
Possible Causes & Corrective Action  
Field  
Overcurrent  
An over current condition has  
been detected in the field  
circuit by the hardware.  
Check Parameter Settings  
Verify parameter settings for motor field control  
Check motor field and wiring  
Check motor field and wiring for short circuits  
Incorrect Start Timing  
Full Fld Time  
Drive was commanded to  
provide Full Field current but  
not told to Start for longer than  
the time set in FULL FIELD  
TIME (A1)  
Check for proper drive Start sequencing  
signals  
Verify FULL FIELD TIME (A1)  
Hit Current Limit The drive is or was being  
Incorrect Wiring  
(alarm)  
limited by the motor current Verify motor armature circuit wiring  
limit setting. This can limit Verify motor field current is correct  
acceleration rates and cause Drive and/or Motor is Undersized  
subsequent velocity tracking Verify drive and/or motor sizing. May need a  
errors.  
larger capacity Drive and / or motor.  
Check Parameter Settings  
Check the torque limit parameter MTR  
TORQUE LIMIT (A1)  
Check speed regulator parameters  
RESPONSE and INERTIA (A1)  
Alarm sensitivity - TRQ LIM MSG DELAY (A1)  
parameter determines the amount of time the  
drive is in torque limit before the alarm  
message is displayed.  
HW/SW  
Mismatch  
Line side software is installed  
in the motor side control  
board.  
Incorrect Software in Motor Side Board  
Replace A2 board with correct software for  
board location or program correct software into  
Motor Side Board  
Invalid  
The operator received four  
consecutive invalid messages.  
Noise or Bad Connector Connection  
Checksum  
(operator serial  
link error)  
Remove and re-seat the operator in its cradle.  
If re-occurs, the operator or the drive’s control  
board may need to be replaced.  
IP Comm  
A fault has occurred in the  
communications channel  
between the Line side and  
Motor side processors. This  
was detected on the motor  
side.  
Communication problem  
Reset drive  
Verify Line Side software and Motor Side  
software is compatible.  
If re-occurs, replace Main Processor PCBs  
Line HI Volts  
LS A to D  
Line voltage is greater than  
552 VAC. (480 x 115%)  
Monitored via the DC Bus.  
Line Voltage is too High  
Verify DC Bus is reading voltage correctly  
Verify Line voltage is set correctly  
The Analog to Digital  
conversion on the line side  
control board is not working  
properly.  
Line Side Analog to Digital Conversion  
incorrect  
Replace Line Side Main and Power Interface  
PCBs  
LS AC CNTCR  
The main AC power contactor  
is not following the  
commanded state within 1  
second.  
AC Power Contactor Problem  
Check for faulty UTM contactor coil or  
interlocking aux contact blocks on PCM or  
UTM  
Verify that pilot relay K2 on PCB A8 is working  
properly  
CAUTION: Do not manually engage the UTM  
contactor with power applied.  
85  
Quattro DC Troubleshooting  
Name  
Description  
Possible Causes & Corrective Action  
IGBT Breakdown  
LS BRDG GND  
The hardware has detected a  
ground fault on the line side  
power bridge.  
Inspect and measure for physical voltage  
breakdown damage on IGBTs and DC bus  
LS Charge  
The DC bus did not charge up  
within the expected time.  
DC Bus did not charge within expected time  
Verify that the setting for INPUT L-L VOLTS  
(A5) is correct  
Verify that the PCM contactor is activated  
during a pre-charge attempt  
Verify that pilot relay K1 on PCB A8 is  
functioning  
CAUTION: There may be a short circuit on the DC  
bus. Inspect for physical damage.  
LS CHK Setup  
LS Conn Off  
This fault is logged when a  
new program is loaded to the  
line side processor, and the  
default data is loaded for the  
parameter values.  
The power interface board has  
detected a missing or loose  
connector on the line side.  
Inconsistent Parameter Settings  
Verify Parameters settings in menu A1, A2,  
A3, A4, and A6 are correct  
Missing Connector  
Verify connectors are connected  
Verify connectors are properly seated  
LS Cube Data  
LS Cube ID  
The cube data for the line side Invalid Cube ID  
processor is invalid.  
Verify LS Cube ID is seated correctly and not  
damaged  
The generation of this fault is Invalid Cube ID  
indicative of a bad processor Indicates a bad processor board  
board.  
LS Curr Reg  
Measured current does not  
Problem with Motor Contactor  
match the command current. Verify that motor contactor is closing  
Verify motor contactor is not opening  
unexpectedly  
Faulty current feedback signals  
Verify that reported drive current is zero when  
drive is not operating  
Verify connections to current transducers  
Loss of gate power supply  
Check gate power supply  
Incorrect DC Bus Voltage reading  
Measure the dc bus with a meter  
Compare that with the value on the digital  
operator, DC BUS VOLTAGE (D2)  
Inaccurate Motor Parameters  
Verify motor nameplate values (A6) are  
entered correctly  
External Relay Timing  
Check for improper external relay timing  
Check Wiring  
Missing jumper wire at Customer Interface  
Board PCB, TB2  
Parameters Corrupted  
checksum is invalid on the line Check & re-enter Line Side parameters and  
side. power cycle the drive  
LS DCU Data  
The DCU parameters  
86  
Quattro DC Troubleshooting  
Name  
Description  
Possible Causes & Corrective Action  
LS Hit Current  
The line side is or was being Improper Line Side Menu Parameters (A5)  
LMT (alarm)  
limited by the motoring current Verify and correct all Line side (A5) parameter  
limit or regenerative current  
limit setting. This can limit  
current into the dc bus leading  
to an under-voltage condition,  
or limit current into the line  
leading to a bus over-voltage  
condition.  
data  
Low Line Voltage  
Input line voltage is too low causing current to  
be too high for the operating power level  
Verify INPUT L-L VOLTAGE (A5)  
LS HW/SW  
Motor side software is  
Improper software  
installed in the line side control Replace Line Side A1 Board with correct  
board.  
software or reprogram Line Side A1 board with  
correct program  
LS IGBT 1,2,3  
LS IP Comm  
A de-saturation condition has Faulty IGBT or momentary short  
been detected on the specified Recycle Power on Drive  
line side IGBT module.  
A fault has occurred in the  
communications channel Verify proper software installed in Line Side  
between the Line side and and Motor Side processors  
Miscommunication problem  
Motor side processors. This If re-occurs, replace PCB A2  
was detected on the line side.  
LS Overcurr  
The hardware has detected an Overcurrent Problem  
over-current condition on the Check for a possible short circuit in motor or  
line side power converter.  
external power wiring.  
Poor Regulator Tuning  
Check parameters  
Lower value in PLL FILTER Fc (A5)  
Noise Glitch  
Power Cycle drive  
If re-occurs, check wiring for EMC Compliance  
LS Overload  
An overload condition has  
Excessive Field Weakening  
been detected on the line side Verify Weak Field motor parameter (A5)  
power bridge.  
Accurate Motor Parameters  
Verify motor nameplate values are entered  
correctly  
Excessive Current Draw  
Decrease accel/decel rate  
Mechanical brake not releasing properly  
Motor Problem  
Check for motor failure  
Drive Sizing  
Verify drive sizing with motor ampere  
requirements. May need a larger capacity  
drive  
87  
Quattro DC Troubleshooting  
Name  
Description  
Possible Causes & Corrective Action  
Overtemperature Problems  
LS Overtemp  
(fault)  
One or more of the IGBT  
modules on the line side  
power bridge has exceeded  
105°C (221°F).  
Manually verify 3-speed blower has correct  
operation  
Inspect and clean air intake filters  
Verify ambient temperature is less than 45°C  
Inspect IGBT modules for proper mounting  
Verify drive is sized correctly  
Possible defective temperature sensor  
Excessive Current Draw  
Decrease Accel / Decel rates  
Mechanical brake not releasing properly  
Excessive Field Weakening  
Verify Weak Field Motor Parameters (A5)  
Overtemperature Problems  
LS Over Temp  
(alarm)  
One or more of the IGBT  
modules on the line side  
power bridge has exceeded  
95°C (203°F).  
Manually verify 3-speed blower has correct  
operation  
Inspect and clean air intake filters  
Verify ambient temperature is less than 45°C  
LS Overvolt  
The line side power converter  
has detected an over-voltage  
condition.  
Low Input Voltage  
Check INPUT L-L VOLTS (A5) and UV FAULT  
LEVEL (A4)  
Verify proper input voltage and increase, if  
necessary, the input AC voltage within the  
proper range  
Check for missing input phase  
Check power line disturbances due to starting  
of other equipment  
Line Converter Problem  
Verify the line converter did not shutdown  
while the motor controller was in process of  
regeneration  
Check Parameter Settings  
Bad tuning of either the line side regulators  
Contactor Problem  
Verify motor contactor did not open while  
motoring  
88  
Quattro DC Troubleshooting  
Name  
Description  
PCU parameters checksum is Parameters Corrupted  
Possible Causes & Corrective Action  
LS PCU Data  
invalid on the line side.  
Check & re-enter Line Side parameters and  
power cycle the drive  
LS Phase  
LS Size  
The line side converter has  
detected the loss of one or  
more phases of the AC line.  
Input Line to Line Phase Loss  
Verify all 3 AC line phases are correct  
Verify wiring to / from contactor UTM  
Verify 3 phase signal wiring to PCB A8  
If re-occurs, replace A8  
The line side power converter  
has detected that the power  
bridge and current sensors, do  
not match.  
Hardware Mismatch  
Size of the power bridge does not match the  
rating as defined on the cube ID board.  
Check for correct Cube ID board located on A3  
board  
LS Undr Voltg  
(alarm)  
The DC Bus has fallen below  
the under voltage alarm level.  
The alarm level is set by UV  
Alarm Level parameter.  
Low Input Voltage  
Check INPUT L-L VOLTS (A5) and UV  
ALARM LEVEL (A4)  
Verify proper input voltage and increase, if  
necessary, the input AC voltage within the  
proper range  
Check for missing input phase  
Check power line disturbances due to starting  
of other equipment  
Drive Accurately Reading the DC Bus  
Measure the DC bus with a meter  
Compare that with the value on the digital  
operator, BUS VOLTAGE (D2)  
Poor Tuning of Line Side Parameters  
Verify Parameters  
Line Converter Problem  
Verify the line converter did not shutdown  
while the motor controller was in process of  
regeneration  
LS Undrvolt  
(fault)  
The DC Bus has fallen below  
the under voltage fault level.  
The fault level is set by UV  
FAULT Level parameter.  
Low Input Voltage  
Check INPUT L-L VOLTS (A5) and UV FAULT  
LEVEL (A4)  
Verify proper input voltage and increase, if  
necessary, the input AC voltage within the  
proper range  
Check for missing input phase  
Check power line disturbances due to starting  
of other equipment  
Drive Accurately Reading the DC Bus  
Measure the DC bus with a meter  
Compare that with the value on the digital  
operator, BUS VOLTAGE (D2)  
Poor Tuning of Line Side Parameters  
Verify Parameters  
Line Converter Problem  
Verify the line converter did not shutdown  
while the motor controller was in process of  
regeneration  
89  
Quattro DC Troubleshooting  
Name  
Description  
Possible Causes & Corrective Action  
Contactor Problem  
ME Cont Pwr  
Motor contactor power was  
removed while the drive was Check motor contactor power  
commanding it to be  
energized.  
ME Pwr Avail  
Motor contactor power was  
Contactor Problem  
not available when the drive Check motor contactor power  
was commanded to start.  
Module x IGBT  
A de-saturation condition has  
been detected on the specified  
motor side IGBT module.  
Incorrect Parameter Settings  
Check RATED MOTOR CURR (A6),  
ARMATURE VOLTS (A6), FULL FLD AMPS  
(A6), WEAK FLD AMPS (A6), and FLUX  
CONFIRM LEVEL  
Motor Problem  
Check motor armature and wiring for short  
circuits  
Software Problem  
Re-load proper software into both processors  
Monitor Rev  
MS Size  
The revision level of the  
monitor data structure shared  
between the line and motor  
side processors does not  
match.  
The motor side power  
converter has detected that  
the power bridge and current  
sensors, do not match.  
Hardware Mismatch  
Size of the power bridge does not match the  
rating as defined on the cube ID board.  
Check for correct Cube ID board located on A4  
board  
MTR Data Flt  
Motor parameters checksum Parameters Corrupted  
is invalid.  
Check & re-enter Motor Side (A4) parameters  
and power cycle the drive  
If re-occurs, replace Drive Control board A2  
Mtr Overload  
The motor had exceeded the Verify Overload Curve Parameters  
(alarm)  
user defined motor overload Check both OVLD START LEVEL (A5) and  
curve.  
OVLD TIME OUT (A5) parameters.  
Excessive Field Weakening  
Verify that FULL FLD AMPS (A5) and WAEK  
FLD AMPS (A5) are set correctly so that motor  
can produce rated torque  
Verify that motor armature voltage is correct  
for applied speed and load  
Accurate Motor Parameters  
Verify motor nameplate values are entered  
correctly  
Excessive Current Draw  
Decrease accel/decel rate  
Verify elevator counterweights  
Verify mechanical release of elevator brake  
Motor Problem  
Check for motor failure  
Check for faulty motor wiring  
No Drv  
The operator lost  
communications with the  
drive’s control board.  
Bad Connector Connection  
Handshake  
(operator serial  
link error)  
Remove and re-seat the operator in its cradle.  
If re-occurs, the operator or the drive’s control  
board may need to be replaced.  
90  
Quattro DC Troubleshooting  
Name  
Description  
Possible Causes & Corrective Action  
No Field Cable  
A disconnected field cable has  
been detected.  
Missing Cable  
Check for defective of missing field cable  
Open Armature Armature current reference  
has remained above 10% of  
rated, but the armature current  
has remained below 2% of  
Contactor Problem  
Verify correct operation of power poles on  
motor armature contactor  
Motor Problem  
rated for 1 second.  
Verify motor is wired correctly  
This fault could indicate an open armature in  
motor  
This fault could also indicate a brush problem  
in the motor  
Overcurr Flt  
An IGBT power module is  
sensing an over-current or  
over-temperature condition  
Overcurrent Problem  
Check for a possible short circuit in motor or  
external power wiring.  
Poor Regulator Tuning  
Check parameters  
Noise Glitch  
Overspeed Flt  
Generated when the motor  
has gone beyond the user  
defined percentage contract  
speed for a specified amount  
of time.  
Check Parameter Settings  
Check OVERSPEED LEVEL (A1) parameter  
for the correct level.  
Check OVERSPEED TIME (A1) parameter for  
the correct time.  
Poor Regulator Tuning  
Check Parameters for speed regulator tuning  
Speed Request  
Excessive speed dictation signal from car  
controller  
Improper feed forward signal  
Note: This fault is defined by Overspeed Level  
parameter and Overspeed Time parameter.  
Overtemp Flt  
One or more of the IGBT  
modules on the drive side  
power bridge has exceeded  
105°C (221°F).  
Overtemperature Problems  
Manually verify 3-speed blower has correct  
operation  
Inspect and clean air intake filters  
Verify ambient temperature is less than 45°C  
Inspect IGBT modules for proper mounting  
Verify drive is sized correctly  
Possible defective temperature sensor  
Excessive Current Draw  
Decrease Accel / Decel rates  
Mechanical brake not releasing properly  
Excessive Field Weakening  
Verify Weak Field Motor Parameters (A5)  
91  
Quattro DC Troubleshooting  
Name  
Description  
Possible Causes & Corrective Action  
Low Input Voltage  
Overvolt Flt  
The DC bus voltage has  
exceeded the maximum  
allowed value.  
Check INPUT L-L VOLTS (A5) and UV FAULT  
LEVEL (A4)  
Verify proper input voltage and increase, if  
necessary, the input AC voltage within the  
proper range  
Check for missing input phase  
Check power line disturbances due to starting  
of other equipment  
Line Converter Problem  
Verify the line converter did not shutdown  
while the motor controller was in process of  
regeneration  
Check Parameter Settings  
Bad tuning of either the motor side regulators  
Contactor Problem  
Verify motor contactor did not open while  
motoring  
Ovrtemp Alarm One or more of the IGBT  
Excessive Heat  
(alarm)  
modules on the drive side  
power bridge has exceeded  
95°C (203°F).  
Reduce Ambient Temperature  
Clean heat sink  
Check for cooling fan failure  
Param rev  
The revision level for  
Software Incompatibility  
Contact Factory  
parameter data shared  
between the line side and  
motor side processors does  
not match.  
PCU data Flt  
PCU parameters checksum is  
invalid on the motor side.  
Parameters Corrupted  
Check parameters and power cycle  
If re-occurs, replace Main Control PCB A2  
Ready, Waiting The operator is waiting to  
Normal, if displayed momentarily  
For Drive  
(operator)  
establish communications with  
the drive’s control board.  
No action is required, if the message  
disappears shortly after power-up of the  
operator  
Bad Connector Connection  
Remove and re-seat the operator in its cradle  
If re-seating of the operator does not work, the  
operator may need to be replaced  
Reverse Tach  
See ENCODER FLT  
See ENCODER FLT  
S-Chain Event  
(alarm)  
Elevator Safety Chain opened  
while the drive was running.  
Safety Chain Problem  
Safety Chain was opened during a run  
Verify correct Safety-Chain operation and  
timing  
Setup Fault 4  
This fault is declared if the  
contract motor speed (in rpm)  
and encoder pulses/revolution  
do not satisfy:  
Check Parameters Settings:  
Check ENCODER PULSES (A1) parameter for  
correct setting  
Check CONTRACT MTR SPD (A1) parameter  
for correct setting  
contract  
encoder  
pulses  
300,000motor  
18,000,0  
speed  
92  
Quattro DC Troubleshooting  
Name  
Description  
Possible Causes & Corrective Action  
Setup Fault 6  
This fault is declared if the  
multi-step speed references  
have exceeded a defined limit,  
which is defined in terms of a  
percentage of contract speed  
(CONTRACT CAR SPD  
parameter).  
Check Parameters Settings  
Check SPEED COMMAND1-16 (A3)  
parameters, if greater than 110% of  
CONTRACT CAR SPD (A1) parameter  
Setup Fault 7  
This fault is declared if the run  
logic inputs are defined  
incorrectly. You can either  
choose group #1 (RUN and  
UP/DWN) or group #2 (RUN  
UP and RUN DOWN). But  
you cannot mix and match or  
this fault will be declared.  
This fault is declared if the DIR  
CONFIRM (C1) parameter is  
enabled and any of the  
following conditions are not  
met:  
Check Parameters Settings  
Check configurations of logic inputs (C2) –  
either RUN & UP/DWN or RUN UP & RUN  
DOWN  
Setup Fault 8  
Check Parameters Settings:  
Check configurations of logic inputs (C2) for  
two logic input defined as RUN UP & RUN  
DOWN  
Verify SPD COMMAND SRC (C1) is set to  
ANALOG INPUT  
If nuisance fault and not using Up-Down  
Confirm, function disabled by setting the DIR  
CONFIRM (C1) parameter to DISABLED  
A logic input (C2) must be  
assigned to RUN UP.  
A logic input (C2) must be  
assigned to RUN DOWN.  
The SPD COMMAND SRC  
(C1) parameter must be set to  
ANALOG INPUT  
... Confirms proper set-up of  
Analog Speed Command  
direction confirm function  
The speed feedback is failing  
to properly track the speed  
reference.  
Sensitivity determined by SPD  
DEV HI LEVEL (A1)  
parameter.  
Speed Dev  
(alarm)  
Any active faults?  
Check if any active faults in F1 sub-menu  
Check Parameters Settings:  
Verify SPD DEV HI LEVEL (A1) is set to the  
proper level.  
Does “Hit CURRENT Limit” message appear?  
If message appears during running, verify a  
fault has not occurred.  
Then, increase the torque limit parameters  
MTR TORQUE LIMIT and REGEN TORQ  
LIMIT (A1) – maximum 250%  
SRL TIMEOUT  
(alarm)  
A timeout condition has  
occurred on the serial  
communications channel  
between the car controller and  
the drive.  
Serial Timeout  
Verify serial cable connections  
Verify proper operation of car controller  
communications  
93  
Quattro DC Troubleshooting  
Name  
Description  
Possible Causes & Corrective Action  
Low Input Voltage  
Undervolt Flt  
Generated during a run  
condition when the DC bus  
voltage drops below the user  
specified percent of the DC  
link voltage. The fault level is  
specified by the UV Fault  
Level parameter.  
Check INPUT L-L VOLTS (A5) and UV FAULT  
LEVEL (A4)  
Verify proper input voltage and increase, if  
necessary, the input AC voltage within the  
proper range  
Check for missing input phase  
Check power line disturbances due to starting  
of other equipment  
Drive Accurately Reading the DC Bus  
Measure the DC bus with a meter  
Compare that with the value on the digital  
operator, BUS VOLTAGE (D2)  
Poor Tuning of Line Side Parameters  
Check DC BUS REG P GN (A5), DC BUS  
REG I GN (A5), DC BUS V BOOST (A5), and  
BUS VREF SOURCE (A5)  
Line Converter Problem  
Verify the line converter did not shutdown  
while the motor controller was in process of  
regeneration  
UV Alarm  
Generated during a run  
condition when the DC bus  
voltage drops below the user  
specified percent of the dc link  
voltage. The fault level is  
specified by the UV Alarm  
Level parameter.  
Low Input Voltage  
Check INPUT L-L VOLTS (A5) and UV  
ALARM LEVEL (A4)  
(alarm)  
Verify proper input voltage and increase, if  
necessary, the input AC voltage within the  
proper range  
Check for missing input phase  
Check power line disturbances due to starting  
of other equipment  
Drive Accurately Reading the DC Bus  
Measure the DC bus with a meter  
Compare that with the value on the digital  
operator, BUS VOLTAGE (D2)  
Poor Tuning of Line Side Parameters  
Check DC BUS REG P GN (A5), DC BUS REG  
I GN (A5), DC BUS V BOOST (A5), and BUS  
VREF SOURCE (A5)  
Table 16: Troubleshooting Guide  
94  
Appendix – Auto Tune Procedure  
Appendix  
If there are no faults present, the drive will  
display:  
Auto Tune Procedure  
The following details the procedure on how to  
run auto tune on a Quattro DC drive. The  
purpose of auto tune allows the drive to  
calculate the following motor parameters:  
PRESS ENTER TO  
CONFIRM REQUEST  
Armature Inductance  
Armature Resistance  
Field Resistance  
Field Time Constant  
Armature Resistance Voltage Drop at  
Motor Rated Current  
RUN/FAULT  
SUB MENU  
DATA ENT  
Press “enter” to start. Operator will display:  
Armature Regulation Gains  
Field Regulation Gains  
IT IS TUNING  
PUSH ANY KEY  
IMPORTANT: Brake must be set while auto  
tune is running for valid data.  
RUN/FAULT  
SUB MENU  
DATA ENT  
To run Auto tune by use of the operator, use  
the AUTO TUNE MOTOR in the A4 menu. The  
Operator will display:  
The run light will turn on while current is  
flowing into the motor. After Auto tune is  
finished, the operator will display:  
AUTO TUNE MOTOR  
A4 START TUNE ?  
RUN/FAULT  
SUB MENU  
DATA ENT  
AUTO TUNE FINISH  
PUSH ANY KEY  
RUN/FAULT  
SUB MENU  
DATA ENT  
Press the “enter” key. If there are any active  
faults on the drive, “Not Available at This Time”  
will display and Auto Tune will not run:  
Quattro DC will not use the values measured  
or calculated by auto tune unless GAIN  
SELECTION (A4) is set to Auto tune.  
There are two parameters located in A4 that  
set the bandwidth for the Armature Regulation  
gain and the Field Regulation gain. GAIN  
BANDWIDTH A (A4) determines the  
bandwidth used in the calculation of the  
Armature Regulation Gains. Similarly, GAIN  
BANDWIDTH F (A4) determines the bandwidth  
used in the calculation of the Field Regulation  
Gains.  
Not Available at  
This Time  
RUN/FAULT  
SUB MENU  
DATA ENT  
95  
   
Appendix – Inertia Calculation  
Appendix  
Inertia Calculation  
The Quattro DC software can be used to  
calculate the inertia of the entire elevator,  
which is used for accurate tuning of the speed  
regulator.  
EST INERTIA  
D1 1.95 seconds  
The following is a step-by-step procedure for  
using the Quattro DC to estimate the elevator  
system inertia.  
RUN/FAULT  
SUB MENU  
DATA ENT  
Average the two values and enter the  
DRIVE A1 parameter.  
Using the Software to Estimate the  
System’s Inertia  
With a balanced car, run the car at 100%  
contract speed from top floor to the bottom  
floor then back to the top floor.  
INERTIA  
01.95 sec  
A1  
RUN/FAULT  
SUB MENU  
DATA ENT  
Observe the EST INERTIA under DISPLAY  
MENU - ELEVATOR DATA D1 for both the  
down and up direction.  
96  
 
Appendix – EMC Compliance  
Appendix  
Method 1:  
EMC Compliance  
1. Use rigid conduit combined with  
appropriate conduit couplings for an  
acceptable metallic bond to the conduit  
plate. Note: The conduit can only contain  
the armature and field lines. No  
The Quattro DC drive requires EMC  
Compliance (EN12015 and EN12016) to  
function at the highest performance level  
possible. The following pages will provide the  
user with an installation guideline for field  
personnel regarding proper metallic bonding  
for EMC compliance. All necessary metallic  
bonding within the Quattro cabinet will be  
performed at the factory.  
In order to be compliant with conducted and  
radiated emissions standards, it is critical that  
the motor leads are coupled correctly to the  
chassis of the Quattro product. Ensuring  
proper connections through the conduit plate  
does this. The conduit plate is located on the  
upper right hand corner of the cabinet.  
communication or encoder feedback wires  
can be run through this conduit.  
2. Verify the M5 screws, as seen in Figure  
15, are tight and securing the conduit plate  
to the top-hat  
3. Verify the M8 screws, as seen in Figure 16  
are properly connected and secure.  
Method 2:  
1. Use braided, shielded leads for the DC  
armature and for the motor field  
connections. Note: When shielded multi-  
conductor wire is used, it is very important  
to use termination couplings that are  
designed for this type of installation.  
These couplings are designed to make a  
bond to the braid, which will complete the  
metallic connection to the chassis.  
(8) M5 Screws  
connecting  
conduit plate to  
top-hat  
2. Verify the M5 screws, as seen in Figure  
15, are tight and securing the conduit plate  
to the top hat.  
3. Verify the M8 screws, as seen in Figure 16  
are properly connected and secure.  
Proper bonding on encoder cables and  
communication wiring may be seen in Figure  
17. All shielded multi-conductor cables used  
for communications or for the encoder  
feedback must be the braided type.  
Figure 15: External view of Conduit Plate  
There are several places along the edge of the  
lower part on the card cage near the customer  
I/O board to mount a braided clamp.  
(3) M8 fasteners  
complete the  
bond from the  
conduit plate to  
Braided cable  
clamp  
Figure 16: Internal view of Conduit Plate  
Proper bonding on motor wiring can be  
achieved by using one of the following two  
methods:  
Figure 17: Clamp Connectors for Encoder  
Shielding  
97  
         
Appendix – Re-Assembly Procedure  
Appendix  
Re-Assembly Procedure for 200A /  
250A drives  
The followings tools are required to properly  
reconnect the two cabinets:  
Socket wrench and ratchet with 150mm  
(6.0”) extension  
10mm hex socket  
#2 Phillips screwdriver, 50mm (2.0”) shaft  
#2 Phillips screwdriver, 180mm (7.0”) shaft  
Flat screwdriver, 3mm x 100mm (1/8” x 4”)  
8mm (5/16”) Allen hex key, any length  
½” Allen hex key, any length  
13mm open / box end wrench  
Figure 19: Enclosures Together  
The following details the connection  
procedure:  
2. Next, install the braided electrical ground  
plate between the two cabinets. The Line  
Side Converter comes pre-wired with the  
ground plate pre-attached. See Figure 20  
for details on where the ground plates are  
located. Attach the ground plate to the  
Motor Side Inverter using the provided four  
(4) M5 x 9.5mm screws. Use a 8mm hex  
socket with extension, or #2 Phillips  
screwdriver with 50-180mm (2-7”) shaft.  
Torque these connections to 4.75-5.20 N-  
m (42-46 in-lbs).  
1. The U-Channels, as seen in Figure 18, are  
factory bolted onto the Line Side Converter.  
Verify the U-Channels are torqued between  
1.81-2.26 N-m (16-20 in-lbs) on the Line  
Side Enclosure  
U-Channels  
3-Phase  
Input Power  
Motor Voltage  
Feedback Bd (A8)  
230 VAC Control  
Power Input F1  
& F2  
Ground Plate  
Figure 18: Enclosure Connections  
Push cabinets tightly together as seen in  
Figure 9. The U-channels will lock into place  
on the Motor Side Enclosure. Once the  
cabinets are tightly together and placed  
correctly, secure the U-channel onto the Motor  
Side Enclosure using the provided four (4) M8  
bolts with split lock washers. Use an open or  
box end 13mm wrench to torque the four (4)  
hex cap screws to 1.81-2.26 N-m (16-20 in-  
lbs).  
Line Side  
Converter  
Figure 20: Line Side Module Position  
98  
         
Appendix – Re-Assembly Procedure  
Motor Field  
Controller  
(A24)  
Motor  
Contactor  
Contactor  
Control Bd (A9)  
Motor Side  
Inverter  
Figure 22: DC Bus Connections  
4. Next, connect the wire harness JCC1  
coiled up on the right side of the Line Side  
Converter to the Contactor Control Board  
(A9). Dress and secure all cables.  
Connect wire A9/TB1/1 to A9-TB1 pin 1  
and A9/TB1/4 to A9-TB1 pin 4 of the  
Contactor Control Board (A9) in the Motor  
Side Inverter. Use a 1/8” x 4” flat  
screwdriver for the TB1 terminals. Torque  
to 0.23-0.28 N-m (2-2.5 in-lbs).  
Figure 21: Motor Side Module Position  
See Figure 23 for reference.  
3. Make the following electrical connections  
from the DC Bus Board in the Line Side  
Converter enclosure flowing straight  
across to the PWM DC Bus Board in the  
Motor Side Inverter enclosure. See Figure  
22 for more information.  
JCC1  
Use a 10mm hex socket with extension to  
connect a M6 nut, lock washer, and flat  
washer torqued to 7.9 N-m (70 in-lbs).  
The connections are as follows:  
Wire  
Number  
From DC To PWM Reference  
TB1-1  
TB1-4  
Bus  
DC Bus  
Board  
Name  
Board  
80  
80A  
81  
A17-E16 A18-E22  
A17-E15 A18-E21  
A17-E18 A18-E24  
A17-E17 A18-E23  
A17-E13 A18-E19  
+Bus  
+Bus  
-Bus  
Figure 23: Contactor Control Board (A9)  
5. Next, connect the wire harness A24J1  
coiled up on the right side of the Line Side  
Converter to J1 on the Field Control  
Module (A24) and A24J3 coiled up on the  
right side of the Line Side Converter to J3  
on the Field Control Module (A24). J1 and  
J3 are located on the bottom right hand  
corner of the Field Supply Board. Dress  
and secure all cables.  
81A  
82  
-Bus  
Neutral  
Table 17: DC Bus Connections  
Connect appropriately sized wires for the  
intended motor field current directly to the  
99  
   
Appendix – Re-Assembly Procedure  
PCB power terminals at the Field Control  
Module (A24).  
CT5  
CT6  
The positive voltage for F1 is located on  
A24-TB1-2 (labeled SW OUT). The  
negative voltage for F2 is located on A24-  
TB1-3 (labeled DC- OUT). Use a #2  
Phillips screwdriver with 50mm (2”) shaft to  
tighten connections to 2.0 N-m (17.5 in-  
lbs).  
Cable assembly is in  
converter cabinet  
JG4  
power  
supply  
JG3  
DC  
bus  
See Figure 24 for reference.  
JG2  
JG1  
DC- OUT (F2-)  
SW OUT (F1+)  
TB1  
Figure 25: Dual Gate Drive PCB  
7. Connect the interface cable labeled J5A  
coiled-up on the Line Side Converter to the  
corresponding connector J5 in the Motor  
Side Inverter enclosure. Figure 26  
J1  
indicates proximity to the cabinet blower.  
J3  
Plug inverter  
cabinet fan in here  
Figure 24: Motor Field Supply (A24)  
6. Next, connect the Gate Driver Interface  
Cables to the Dual Gate Driver PCB on the  
Motor Side Inverter enclosure.  
Fan cable J5A  
Connect the cable labeled JG1 to the plug  
labeled JG1 on the Dual Gate Driver PCB.  
Figure 26: Cooling Blower Control  
Connect the cable labeled JG2 to the plug  
labeled JG2 on the Dual Gate Driver PCB.  
8. Next, connect the wires for the Motor  
Voltage Feedback. The cables wires are  
coiled-up in the Motor Side Inverter  
Connect the cable labeled JG3 to the plug  
labeled JG3 on the Dual Gate Driver PCB.  
enclosure. Dress and secure the cable  
from the Motor Side Inverter to the Line  
Control and Voltage Feedback PCB (A8) in  
the Line Side Converter enclosure. See  
Figure 20 for location of PCB A8. Connect  
the wires by the following table torqued to  
0.23-0.28 N-m (2-2.5 in-lbs). For location  
Connect the cable labeled JG4 to the plug  
labeled JG4 on the Dual Gate Driver PCB.  
Connect the cable labeled CT5 to the  
respective plug labeled CT5 located above  
the Dual Gate Driver PCB.  
In Addition, connect the cable labeled CT6  
to the respective plug labeled CT6 located  
above the Dual Gate Driver PCB.  
Wire Number  
A8 connections  
TB2-1  
See Figure 25 for reference.  
19  
16  
25  
26  
TB2-2  
TB2-3  
TB2-4  
100  
     
Appendix – Re-Assembly Procedure  
Motor Side drive panel. See EMC  
Compliance on page 97.  
Torque the motor terminals and ground  
terminals to 31.0 N-m (275 in-lbs) using a  
8mm (5/16”) Allen hex key.  
TB2-1  
Tie wrap the two rubber boots to the output  
terminal blocks A1 and A2 after wiring the  
motor armature.  
26 25 16 19  
11. Finally, connect the incoming 3-phase  
power wires and PE building ground to the  
main power terminals at the top of the Line  
Side Converter enclosure. View Figure 29  
for locations of terminals.  
To motor  
contactor  
Figure 27: Motor Contactor Connections  
Use the following torque specs when  
tighten the screws and lugs down:  
9. Using a flat screwdriver, 3mmx100mm  
(1/8”x4”), torque the following auxiliary  
terminals to 2.0 N-m (17.5 in-lbs) on the  
right side of the motor contactor. See  
Figure 28 for location of auxiliaries.  
Wire References  
Power Terminals  
Torque Specs  
56.6 N-m (500 in-lbs)  
Plastic Cover Screws 0.23-0.28 N-m (2-2.5 in-lbs)  
Wire Number  
AJ9CC1-2  
AJ9CC1-4  
Auxiliary Connection  
Ground Terminals  
31.0 N-m (275 in-lbs)  
31  
32  
Incoming  
Power  
Terminals  
#A9JCC1-2 to 31  
#A9JCC1-2 to 32  
Grounding  
lug  
Plastic  
Safety  
Cover  
Figure 28: Right side of Motor Contactor  
10. For Motor Armature Connections, place  
rubber boots over wires first, then connect  
those appropriately sized wires from the  
motor armature directly to the motor  
contactor (ME) compression lug terminals  
(1) and (3). Also connect a properly sized  
frame to t ground continuity wire from the  
motor he PE grounding terminal on the  
Figure 29: Power Terminals  
101  
     
Appendix – Power Ratings  
Appendix  
Control Power Consumption  
Control Power (230VAC) consumption (max)*  
Drive Model Number  
kVA  
Watts  
700  
Current (Amps)  
QDC125-xxxx-xxx  
QDC200-xxxx-xxx  
QDC250-xxxx-xxx  
0.800  
1.250  
1.250  
3.5  
5.4  
5.4  
1100  
1100  
*Note: Does not include the Elevator Brake  
Watts Loss  
Total System Power Loss (max)**  
Drive Model Number  
Watts  
BTU  
QDC125-xxxx-xxx  
QDC200-xxxx-xxx  
QDC250-xxxx-xxx  
2150  
3350  
3550  
7342  
11440  
12123  
**Note: Includes both Control Power and 3-Phase Input Power Consumption  
Input / Output Ratings  
Input  
Voltage (V)  
Output (rated max)  
Drive Model Number  
Current (A) Voltage (V)  
Current (A)  
125  
Power (HP)  
QDC125-xxxx-xxx  
QDC200-xxxx-xxx  
QDC250-xxxx-xxx  
200 – 480  
200 – 480  
200 – 480  
80  
50 – 550  
50 – 550  
50 – 550  
92  
130  
180  
200  
147  
184  
250  
102  
 
Appendix – Wire Terminal Specs  
Appendix  
Wire Terminal Specs  
English / Imperial Units  
Control Power  
Terminals  
(F1 & F2)  
Control Wiring  
Terminals  
TB1  
Control Wiring  
Terminals  
TB2  
Power  
Terminals  
Ground Terminals  
230VAC  
Drive Model  
Number  
Wire  
Wire  
Torque  
Size  
range  
(in-lb)  
(AWG)  
Wire  
Torque  
Size  
range  
(in-lb)  
(AWG)  
Wire  
Torque  
Size  
range  
(in-lb)  
(AWG)  
Wire  
Torque  
Size  
range  
(in-lb)  
(AWG)  
Torque  
Spec  
(in-lb)  
Size  
range  
(AWG)  
Spec  
Spec  
Spec  
Spec  
#6-350  
MCM  
#8-310  
2-2.5  
QDC125-xxxx-xxx  
QDC200-xxxx-xxx  
QDC250-xxxx-xxx  
500  
500  
500  
#10-#18 3 - 7 #16-#24 1.8-2.2 #14-#24 3.6-4.4  
#10-#18 3 - 7 #16-#24 1.8-2.2 #14-#24 3.6-4.4  
#10-#18 3 - 7 #16-#24 1.8-2.2 #14-#24 3.6-4.4  
MCM  
#6-500  
MCM  
#8-310  
2-2.5  
MCM  
#6-500  
MCM  
#8-310  
2-2.5  
MCM  
Metric Units  
Control Power  
Control Wiring  
Terminals  
TB2  
Control Wiring  
Terminals  
TB1  
Power  
Terminals  
Terminals  
(F1 & F2)  
230VAC  
Ground Terminals  
Drive Model  
Number  
Wire  
Wire  
Torque  
Size  
range  
(N-m)  
(mm2)  
Wire  
Wire  
Torque  
Size  
range  
(N-m)  
(mm2)  
Wire  
Torque  
Size  
range  
(N-m)  
(mm2)  
Torque  
Spec  
(N-m)  
Torque  
Spec  
(N-m)  
Size  
range  
(mm2)  
Size  
range  
(mm2)  
Spec  
Spec  
Spec  
QDC125-xxxx-xxx 16-180 56.6  
QDC200-xxxx-xxx 16-250 56.6  
QDC250-xxxx-xxx 16-250 56.6  
10-160 0.23-0.28 6-0.75 0.3-0.8 0.2-1.5 0.2-0.25 0.2-2.5 0.4-0.5  
10-160 0.23-0.28 6-0.75 0.3-0.8 0.2-1.5 0.2-0.25 0.2-2.5 0.4-0.5  
10-160 0.23-0.28 6-0.75 0.3-0.8 0.2-1.5 0.2-0.25 0.2-2.5 0.4-0.5  
103  
 
Appendix – Dimensions and Weights  
Appendix  
Dimensions / Weights  
Excluding customer I/O panel  
Dimensions*  
Width  
inches  
Weight  
Drive Model  
Number  
Height  
inches  
Depth  
inches  
mm  
mm  
565  
mm  
459  
459  
459  
lbs  
kg  
QDC125-xxxx-xxx  
QDC200-xxxx-xxx  
QDC250-xxxx-xxx  
88  
88  
88  
2244  
2244  
2244  
22  
44  
44  
18  
18  
18  
600  
272  
453  
453  
1130  
1130  
1000  
1000  
With Optional Customer I/O panel  
Dimensions**  
Width  
Weight  
Drive Model  
Height  
Depth  
Number  
inches  
88  
mm  
inches  
mm  
inches  
19  
mm  
187  
187  
187  
lbs  
kg  
QDC125-xxxx-xxx  
QDC200-xxxx-xxx  
QDC250-xxxx-xxx  
2244  
2244  
2244  
32  
54  
54  
816.6  
1372.8  
1372.8  
700  
320  
501  
501  
88  
19  
1100  
1100  
88  
19  
*Note: Dimensions reflected are without the optional Dynamic Braking Resistor Cage or optional  
Customer I/O panel.  
**Note: Dimensions reflected are without the optional Dynamic Braking Resistor Cage but including  
the optional Customer I/O panel.  
104  
   
Appendix – Dimensions and Weights  
Figure 30: 125A unit Dimensions without optional Customer I/O Panel  
105  
Appendix – Dimensions and Weights  
Figure 31: 200A and 250A unit dimensions without optional Customer I/O Panel  
106  
Appendix – Dimensions and Weights  
Optional  
System  
Panel  
Figure 32: 125A unit Dimensions with Optional System Panel  
107  
Appendix – Dimensions and Weights  
Optional  
System  
Panel  
Figure 33: 200 / 250 A unit Dimensions with Optional System Panel  
108  
Appendix – Component Locations  
Appendix  
Component Locations  
Motor Field Control  
Module (A24)  
3-Phase AC  
PE (Ground)  
Input  
Contactor Control  
Board (A9)  
AC Power  
EMI Filter  
Motor  
Contactor (ME)  
Motor Voltage  
Feedback Board (A8)  
UTM  
PCM  
Control Power  
EMI Filter  
Bus Discharge  
Relay  
230VAC Control  
Power Fuses  
(F1 & F2)  
Magnetek  
Operator  
Line Side  
Converter, Motor  
Side Inverter, and  
Control  
Status LEDS  
Electronics  
Cooling Fan  
AC Capacitor  
Assembly  
AC Power  
Input Filter  
Inductor  
Cooling Fan  
Figure 34: 125A Component Locations  
109  
 
Appendix – Component Locations  
3-Phase  
PE (Ground)  
Input Power  
Motor Field  
Controller (A24)  
AC Power  
EMI Filter  
Motor Contactor  
Motor Voltage  
Feedback Board (A8)  
UTM  
Contactor Control  
Board (A9)  
Control Power  
EMI Filter  
PCM  
Bus Discharge  
Relay  
Motor Side  
Inverter  
Control Power  
Fuses (F1 & F2)  
Line Side Converter  
and Control  
Electronics  
Status LEDs and  
Operator  
Cooling Fan  
Cooling Fan  
AC Capacitor  
Assembly  
Power Input Filter  
Inductor Cooling  
Fan  
Figure 35: 200 / 250 A Component Locations  
110  
Appendix – Component Locations  
Line Side Main  
Control Board (A1)  
Line Side Product  
Interface Board  
(A3)  
Line Side Cube I.D.  
(A25A3JP10)  
Magnetek  
Operator  
Status LEDs  
Motor Side Cube  
I.D. (A26A4JP10)  
Power Distribution  
PCB (A10)  
Motor Side Main  
Control Board (A2)  
Motor Side Product  
Interface Board (A4)  
Customer Interface PCB  
(A6)  
Figure 36: 125A Circuit Board Locations  
111  
Appendix – Component Locations  
Pre-Charge  
PCB  
Current  
Transducers  
Bus Discharge  
Resistor  
IGBT / Gate  
Assembly  
DC Bus  
Capacitor PCB  
Assembly  
Figure 37: 125A IGBT Heatsink Assembly  
Note: The Power Section sits under the Main Control Board Assembly  
112  
Appendix – Component Locations  
Line Side Main  
Control Board (A1)  
Line Side Product  
Interface Board  
(A3)  
Line Side Cube I.D.  
(A25A3JP10)  
Magnetek  
Operator  
Status LEDs  
Motor Side Cube  
I.D. (A26A4JP10)  
Power Distribution  
PCB (A10)  
Motor Side Product  
Interface Board (A4)  
Motor Side Main  
Control Board (A2)  
Customer Interface PCB  
(A6)  
Figure 38: 200 / 250 A Circuit Board Locations  
113  
Appendix – Component Locations  
Pre-Charge  
PCB  
Current  
Transducers  
IGBT / Gate  
Assembly  
DC Bus  
Capacitor PCB  
Assembly  
Figure 39: 200 / 250 A Motor Side Power Section  
114  
Appendix – Component Locations  
A1  
A2  
1
5(+)  
3
Optional Dynamic  
Braking Resistor  
2
6(-)  
4
To Motor Inverter  
Figure 40: Motor Contactor Connections  
One of the troubleshooting tools provided by Quattro DC, is the  
ability to view the Logic Inputs and Outputs by use of the LEDs on  
the Customer I/O Board. The LED lit indicates a Logic Input of 1.  
This does not take into consideration whether the input is set as  
Normal Closed (see Submenu C2).  
Logic  
Logic  
Logic  
Logic  
Output 7  
Input 1  
Input 9  
Output 1  
TB2-14  
TB2-8  
TB1-48  
TB1-25  
TB1-1  
TB1-24  
TB2-7  
RS422  
TB1  
TB2-1  
TB2  
Figure 41: Customer Input / Output Connections  
115  
Appendix – Spare Parts List  
Appendix  
Spare Parts Quattro DC Drive  
Quantity  
Per  
Drive  
Drive Reference  
Rating Designator  
Magnetek kit  
Number  
Description  
Description  
Main Control PCB  
(Line Side)  
Controls line side  
power conversion  
ALL  
ALL  
A1  
A2  
LA46S03776-2110  
LA46S03776-0110  
1
Main Control PCB  
(Motor Side)  
Controls Motor Side  
Conversion  
1
Product Interface  
PCB  
1. Kit contains 1.0  
PCB  
2. These PCB's are  
interchangeable  
except for the  
cube I.D's  
Converts signals from  
the respective main  
control boards to  
drive hardware  
ALL  
A3, A4  
LA46S03954-0010  
2
Provides low voltage  
control power  
Power Supply  
ALL  
ALL  
A5  
A6  
LA05P00090-0668  
LA46S03950-0010  
1
1
Customer Interface Contains customer  
PCB  
inputs and outputs  
Contains line and  
Voltage Feedback motor sense and Pre-  
ALL  
A8  
LA46S03963-0010  
1
PCB  
charge control relay  
logic  
Contactor Control  
PCB  
Controls the Motor  
Contactor (ME)  
ALL  
ALL  
A9  
LA46S03799-0010  
LA46S03862-0010  
1
1
Distributes voltage  
from the Power  
Supply (A5)  
Power Distribution  
PCB  
A10  
Bus Filter Capacitors  
125A  
200A  
250A  
A17  
LA46S03766-0010  
LA46S03766-0010  
LA46S03766-0010  
1
2
2
DC Bus Cap Board  
A17, A18  
A17, A18  
Contains circuitry for  
the Pre-charge  
Precharge PCB  
ALL  
ALL  
A23  
A24  
LA46S03802-0010  
LA46S03829-0010  
1
1
Field Control  
Module  
Motor Shunt Field  
Regulator  
Defines size of drive  
and gives the Product  
Interface Board (A3)  
its identification  
125A  
200A  
250A  
A25A3JP10 LA46S03842-2590  
A25A3JP10 LA46S03842-2610  
A25A3JP10 LA46S03842-2630  
1
1
1
Cube ID PCB (Line  
Side)  
116  
 
Appendix – Spare Parts List  
Quantity  
Drive Reference  
Rating Designator  
Magnetek kit  
Per  
Description  
Description  
Number  
Drive  
Defines size of drive  
and gives the Product  
Interface Board (A4)  
its identification  
125A  
A26A4JP10 LA46S03842-0600  
A26A4JP10 LA46S03842-0620  
A26A4JP10 LA46S03842-0640  
1
1
1
Cube ID PCB  
(Motor Side)  
200A  
250A  
Along with the L1  
Inductor, creates a  
filter to minimize  
harmonics and better  
the power factor  
125A  
200A  
250A  
A29  
A29  
A29  
LA46S03948-0010  
LA46S03948-0020  
LA46S03948-0030  
1
1
1
AC Capacitor  
Assembly  
230VAC Control  
Power Fuses  
Control Fuses  
(Kit will contain 2.0  
fuses)  
ALL  
ALL  
F1, F2  
F1, F2  
LA05P00017-0565  
LA05P00019-0163  
2
2
230VAC Control  
Fuse Fuse Blocks  
Control Fuse Fuse  
Blocks  
(Kit will contain 2.0  
blocks)  
Along with the AC  
Capacitor Assembly,  
creates a filter to  
minimize harmonics  
and better the power  
factor  
125A  
200A  
L1  
L1  
LA05P00010-0567  
LA05P00010-0566  
1
1
Inductor  
250A  
L1  
LA05P00010-0566  
1
Filter for reduction of  
RFI/EMI to and from  
the drive and the line  
utility  
125A  
200A  
250A  
L2  
L2  
L2  
LA46S03855-0010  
LA46S03855-0020  
LA46S03855-0020  
1
1
1
AC Input EMI Filter  
Filter for reduction of  
RFI/EMI to and from  
the drive and the  
230VAC Control  
Power  
Control Power EMI  
Filter  
ALL  
ALL  
L3  
LA05P00010-0586  
LA05P00032-0176  
1
1
Contactor used to  
discharge the bus  
when the drive is no  
longer boosting  
DC bus discharge  
contactor  
DCHG  
Motor Armature  
Contactor (ME)  
125A  
200A  
250A  
ME  
ME  
ME  
LA05P00032-0154  
LA05P00032-0154  
LA05P00032-0155  
1
1
1
DC Output  
Contactor  
Precharge  
Contactor  
Pre-charge Contactor  
ALL  
PCM  
LA05P00032-0163  
1
230VAC Control  
Power Line Contactor  
125A  
200A  
250A  
UTM  
UTM  
UTM  
LA05P00032-0158  
LA05P00032-0159  
LA05P00032-0159  
1
1
1
Line Contactor  
117  
Appendix – Spare Parts List  
Quantity  
Per  
Drive  
Drive Reference  
Rating Designator  
Magnetek kit  
Number  
Description  
Description  
Prewired control tray  
with power supply  
and interfacing  
cables. Consists of:  
A1, A2, A3, A4, A5,  
A6, A10, A25, and  
A26.  
125A  
LA46S03828-1110  
LA46S03828-1150  
LA46S03828-1130  
Control Tray  
Includes:  
1. Fully tested door  
assembly with  
cables.  
Control Tray  
200A  
1
250A  
Line/Motor  
Includes power  
section without the  
Control Tray.  
125A  
Side  
LA46S03848-1010  
LA46S03848-2050  
1
1
1
1
1
200A  
200A  
250A  
250A  
Line Side  
IGBT Heatsink  
Assembly  
Includes:  
1. Power section  
without door  
section.  
Included are:  
heatsink, IGBT’s with  
Gate Drive Boards,  
Current Transducers  
with rubber boots,  
and DC Bus  
Motor Side LA46S03848-0050  
Line Side LA46S03848-2030  
Capacitor board  
(A17, A18)  
Motor Side LA46S03848-0030  
Line/Motor  
LA46S03825-1110  
Side  
Includes power  
section, the Control  
Tray, Heatsink  
Assembly, and Fan  
Module.  
125A  
200A  
200A  
250A  
250A  
1
1
1
1
1
Complete Power  
Section  
Includes:  
1. Control tray  
2. IGBT Heatsink  
Assembly  
Line Side  
Motor Side LA46S03825-0150  
Line Side LA46S03825-2130  
LA46S03825-2150  
3. Fan Module  
Motor Side LA46S03825-0130  
LA46S03826-0010  
3-Speed Cooling Fan 125A  
1
2
2
1
2
2
1
2
2
1
Blower Module  
FAN1  
200A  
250A  
LA46S03826-0010  
LA46S03826-0010  
LA05P00089-0197  
LA05P00089-0197  
LA05P00089-0197  
LA05P00089-0199  
LA05P00089-0199  
LA05P00089-0199  
LA05P00089-0198  
Disposable air filter  
located in the door  
125A  
200A  
250A  
125A  
200A  
250A  
200A  
Door Filter, 12 x 24  
Door Filter, 8 x 8  
FLTR1  
Disposable air filter  
located in the door  
FLTR2  
FLTR3  
Door Filter, 12 x 12 Disposable air filter  
Used in the 22in  
load side  
located in the door  
250A  
LA05P00089-0198  
1
Cools heatsink of the  
Field Supply  
Field module fan  
Inductor fan  
ALL  
ALL  
ALL  
FAN3  
FAN2  
LA05P00016-0086  
LA05P00016-0088  
ELEV-ELOP  
1
1
1
Inductor Fan  
Drive Programming  
Tool  
Operator Keypad  
118  
Index  
BRK PICK FLT ENA user switch .................. 54  
BRK PICK FLT logic output .......................... 63  
BUS VOLTAGE analog output...................... 65  
BUS VOLTAGE display value....................... 68  
BUS VREF SOURCE parameter.................. 46  
A
A to D Fault....................................................80  
A0 - Adjust Menu.....................................30–49  
A1 - Drive Submenu ................................30–38  
A3 - Multistep Ref Submenu ...................41–42  
A5 - Line Side Power Convert Submenu.......46  
A6 - Motor Parameters Submenu............47–49  
AB OFF DELAY parameter ...........................34  
AB ZERO SPD LEV parameter.....................34  
ACCEL JERK IN parameters ........................40  
ACCEL JERK OUT parameters ....................40  
ACCEL RATE parameters.............................40  
ALARM logic output.......................................63  
ALARM+FLT logic output ..............................63  
ANA OUT x GAIN parameter.........................33  
ANA OUT x OFFSET parameter...................33  
Analog Velocity Follower ...............................23  
ARM CURRENT analog output.....................65  
ARM CURRENT display value......................68  
ARM INDUCTANCE parameter ....................43  
ARM RESISTANCE parameter.....................43  
ARM VOLTAGE analog output......................65  
ARM VOLTAGE display value.......................68  
ARMATURE IR DROP parameter.................47  
Armature Voltage Feedback..........................24  
ARMATURE VOLTS parameter....................47  
ARMAUTRE CUR ERR display value...........68  
ATUO STOP user switch...............................58  
AUTO BRAKE logic output............................63  
AUTO FIELD RES display value...................68  
AUTO FIELD TC display value......................68  
AUTO FLD INT display value........................68  
AUTO FLD PROP display value....................68  
AUTO MEAS ARM L display value ...............68  
AUTO MEAS ARM R display value...............68  
Auto Tune Procedure ....................................95  
Automatic Fault Reset ...................................53  
AUX TORQ CMD analog output....................65  
AUX TORQUE CMD display value................66  
C
C2 – Logic Inputs Submenu ................... 61–62  
C3 - Logic Outputs Submenu ................. 63–64  
CAR GOING DWN logic output .................... 63  
CAR GOING UP logic output........................ 63  
Center Frequency - Notch Filter ................... 38  
Changing Carrier Frequency ........................ 44  
CHARGE FAULT logic output....................... 63  
Check Setup Flt ............................................ 81  
Circuit Board Locations - 125A................... 111  
Circuit Board Locations - 200 / 250 A......... 113  
CLOSE CONTACT logic output.................... 63  
Comm Fault .................................................. 81  
Component Locations - 125A ..................... 109  
Component Locations - 200 / 250 A........... 110  
Configure C0 Menu................................. 50–65  
Connector Off Flt........................................... 81  
CONT CONFIRM SRC user switch .............. 52  
Cont Pwr Lost Flt .......................................... 82  
CONTACT CFIRM logic input....................... 62  
CONTACT FLT TIME parameter.................. 31  
CONTACTOR D0 DLY parameter................ 34  
CONTACTOR FLT logic output .................... 63  
CONTRACT CAR SPD parameter ............... 30  
CONTRACT MTR SPD parameter ............... 30  
Control Power Consumption....................... 102  
CTR PWR SENSE logic input....................... 62  
Cube Data Flt................................................ 82  
Cube ID Fault................................................ 82  
Curr Reg Flt .................................................. 82  
CURR REG FLT logic output........................ 63  
CURRENT LIMIT parameter......................... 30  
Customer I/O Board.................................... 115  
Customer Input/Output Connections .......... 115  
B
D
Bad Srl Chksm Alarm ....................................80  
BRAKE...........................................................54  
BRAKE HOLD logic output............................63  
BRAKE HOLD TIME parameter ....................31  
BRAKE PICK CNFM user switch ..................54  
BRAKE PICK logic output..............................63  
BRAKE PICK SRC user switch .....................54  
BRAKE PICK TIME parameter......................31  
Bridge Ground Fault ......................................80  
Brk Hold Flt....................................................80  
BRK HOLD FLT ENA user switch .................54  
BRK HOLD FLT logic output .........................63  
Brk Pick Flt ....................................................81  
D0 - Display D0 Menu............................. 66–69  
D1 - Elevator Data Submenu.................. 66–67  
DC BUS REG I GAIN parameter .................. 46  
DC BUS REG P GAIN parameter................. 46  
DC BUS V BOOST parameter...................... 46  
DC BUS VOLTAGE display value ................ 69  
DC BUS VOLTS REF display value ............. 69  
DCU Data Flt................................................. 82  
DECEL JERK IN parameters........................ 40  
DECEL JERK OUT parameters.................... 40  
DECEL RATE parameters............................ 40  
Dimensions ............................................. 102–6  
DIR CONFIRM user switch........................... 55  
119  
 
Dir Conflict.....................................................82  
DRIVE ENABLE logic input ...........................62  
Drive Ovrload.................................................83  
DRV OVERLOAD logic output ......................63  
DS MODULE TEMP display value ................68  
DSPR ENABLE user switch ..........................58  
DSPR TIME parameter..................................35  
FULL FLD AMPS parameter......................... 47  
Full Fld Time Fault ........................................ 85  
G
GAIN BANDWIDTH A parameter ................. 44  
GAIN BANDWIDTH F parameter.................. 44  
Gain Change Level....................................... 36  
GAIN CHNG LEVEL parameter.................... 30  
GAIN REDUCE MULT parameter................. 30  
GAIN SELECTION parameter ...................... 43  
GROUND FAULT logic output...................... 64  
E
Elevator Speed Regulator .............................59  
EMC Compliance...........................................97  
ENCODER CONNECT user switch...............52  
Encoder Fault OFF........................................83  
ENCODER FAULT user switch.....................56  
Encoder Flt ....................................................83  
ENCODER FLT logic output..........................63  
ENCODER PULSES parameter....................32  
ENCODER SPD display value ......................68  
EReg.................See Elevator Speed Regulator  
EST INERTIA display value...........................66  
EST MOTOR SPD analog output..................65  
EST SPD FDBK display value.......................68  
EX TORQ CMD SRC user switch .................55  
EXT TORQUE BIAS......................................32  
EXT TORQUE MULT parameter...................33  
Extern Fault 2 ................................................84  
Extrn Fault 1 ..................................................83  
Extrn Fault 3 ..................................................84  
Extrn Fault 4 ..................................................84  
EXTRN FAULT logic input.............................62  
H
HI/LO GAIN SRC user switch....................... 51  
High / Low Gain Source................................ 59  
Hit Torque Limit............................................. 85  
HW/SW Mismatch Fault................................ 85  
I
ID REG INTEGRAL GAIN parameter........... 46  
ID REG PROP GAIN parameter................... 46  
IF REG INT GAIN parameter........................ 43  
IF REG PROP GAIN parameter ................... 43  
IN LOW GAIN logic output............................ 64  
Inertia Calculation......................................... 96  
INERTIA parameter ...................................... 30  
INNER LOOP XOVER parameter................. 30  
INPUT HZ display value ............................... 69  
INPUT L-L VOLTS parameter....................... 46  
INPUT Vab display value.............................. 69  
INPUT Vca display value.............................. 69  
Internal Preset Speed & Profile Generator... 23  
Invalid Checksum.......................................... 85  
IP Comm Fault.............................................. 85  
IQ REG INTEGRAL GAIN parameter........... 46  
IQ REG PROP GAIN parameter................... 46  
F
F0 - Fault Menu .......................................76–77  
F1 - Active Faults Submenu..........................76  
F2 - Fault History...........................................77  
FAN OFF DELAY parameter.........................44  
FAULT logic output........................................63  
Fault Reset ....................................................53  
FAULT RESET logic input.............................62  
FAULT RESET SRC user switch ..................53  
Faults, Troubleshooting Guide ................80–94  
FIELD CURRENT analog output...................65  
FIELD CURRENT display value....................68  
FIELD ENA SOURCE user switch ................50  
FIELD ENABLE logic input............................62  
Field Ground Fault.........................................84  
Field I Reg Fault ............................................84  
Field IGBT Fault ............................................84  
Field Loss Fault .............................................84  
Field Overcurrent Fault..................................85  
FLD CARRIER FRQ parameter ....................45  
FLT RESET / HOUR parameter....................34  
FLT RESET DELAY parameter.....................34  
FLUX CNFRM LEVEL parameter..................47  
FLUX CONFIRM logic output........................63  
FULL FIELD TIME parameter........................35  
L
LEDs - Front Cover....................................... 25  
Line Hi Volts Fault......................................... 85  
LOGIC INPUT parameters............................ 61  
Logic Input Wiring......................................... 17  
LOGIC INPUTS display ................................ 67  
Logic Output Wiring ...................................... 19  
LOGIC OUTPUTS display ............................ 67  
LOW GAIN SEL logic input........................... 62  
LS A to D Fault.............................................. 85  
LS AC Cntcr Fault......................................... 85  
LS Bridge Gnd Fault ..................................... 86  
LS Charge Fault............................................ 86  
LS Chk Setup Fault....................................... 86  
LS Conn Off Fault ......................................... 86  
LS Cube Data Fault ...................................... 86  
LS Cube ID Fault .......................................... 86  
LS Curr Reg Fault......................................... 86  
120  
LS DCU Data Fault........................................86  
LS Hit Current Lmt Alarm ..............................87  
LS HW/SW Fault ...........................................87  
LS IGBT Fault................................................87  
LS IP Comm Fault .........................................87  
LS MODULE TEMP display value.................68  
LS Overcurr Fault ..........................................87  
LS Overload Fault..........................................87  
LS Overtemp .................................................88  
LS Overvolt Fault...........................................88  
LS PCU Data Flt............................................89  
LS Phase Fault..............................................89  
LS Power Data D3 submenu.........................69  
LS PWM FREQ parameter............................46  
LS PWR OUTPUT display value...................69  
LS Size Fault .................................................89  
LS Undr Voltg Alarm......................................89  
LS Undrvolt Fault...........................................89  
OVER CURR FLT logic output ..................... 64  
Overcurr Flt................................................... 91  
OVERSPD TEST SRC user switch .............. 54  
Overspeed Flt ............................................... 91  
OVERSPEED FLT logic output..................... 64  
OVERSPEED LEVEL parameter.................. 31  
OVERSPEED MULT parameter ................... 32  
OVERSPEED TIME parameter .................... 32  
Overtemp Flt ................................................. 91  
OVERTEMP FLT logic output....................... 64  
Overvolt Flt.................................................... 92  
OVERVOLT FLT logic output ....................... 64  
OVLD START LEVEL parameter.................. 48  
OVLD TIME OUT parameter ........................ 48  
Ovrtemp Alarm.............................................. 92  
OVRTEMP ALARM logic output ................... 64  
P
Param Rev Flt............................................... 92  
Parameter Reference ................................. 3–8  
Parameter Tree................................. 26, 28–29  
PCU Data Flt................................................. 92  
PHASE FAULT logic output.......................... 64  
PI Speed Regulator ...................................... 60  
PLL FILTER FC parameter........................... 46  
Power Section - 125 A................................ 112  
Power Section - 200 / 250A........................ 114  
PRETORQUE LATCH user switch ............... 53  
PRETORQUE REF analog output................ 65  
PRE-TORQUE REF display value................ 66  
PRETORQUE SOURCE user switch............ 52  
PRE-TRQ LATCH logic input........................ 62  
PRIORITY MESSAGE user switch............... 56  
PTROQ LATCH CLCK user switch............... 53  
PWM FREQ parameter................................. 44  
M
MAIN FAN CONTROL parameter .................45  
Maintenance, General ...................................78  
ME Cont Pwr Fault ........................................90  
ME Pwr Avail Fault ........................................90  
MECH BRK HOLD logic input .......................62  
MECH BRK PICK logic input.........................62  
Menus............................................................26  
Module x IGBT...............................................90  
Monitor Rev ...................................................90  
Motor Contactor Connections......................115  
MOTOR ID parameter ...................................47  
MOTOR MODE analog output ......................65  
MOTOR MODE display value........................68  
MOTOR OVERLOAD display........................48  
MOTOR ROTATION user switch ..................52  
Motor Side Power Data D2 Submenu ...........68  
MOTOR TRQ LIM logic output......................64  
MS Size Fault ................................................90  
Mtr Data Fault................................................90  
Mtr Overload..................................................90  
MTR OVERLOAD logic output ......................64  
MTR REV VLT LIMparameter .......................43  
Multi-Step Speed Command Debounce........41  
Multi-Step Speed Command Selection .........41  
R
RAMP DOWN EN SRC user switch ............. 54  
RAMP DOWN ENA logic output ................... 64  
RAMPED STOP SEL user switch................. 54  
RAMPED STOP TIME parameter................. 31  
RATED MOTOR CURR parameter .............. 47  
READY TO RUN logic output ....................... 64  
Ready, Waiting for Drive............................... 92  
REGEN TRQ LIM logic output...................... 64  
Relay Coils.................................................... 63  
RESPONSE parameter ................................ 30  
Reversed Tach Fault .................................... 83  
Rollback Gain................................................ 37  
ROLLBACK GAIN parameter ....................... 35  
RUN COMMAND SRC user switch .............. 50  
RUN COMMANDED logic output.................. 64  
RUN CONFIRM logic output......................... 64  
Run Delay Timer........................................... 37  
RUN DELAY TIMER parameter.................... 34  
RUN DOWN logic input ................................ 62  
RUN logic input............................................. 62  
N
No Drv Handshake ........................................90  
NO FUNCTION logic input ............................62  
NO FUNCTION logic output ..........................64  
NOT ALARM logic output ..............................64  
NOTCH FILT DEPTH parameter...................35  
Notch Filter ....................................................38  
NOTCH FILTER FRQ parameter ..................35  
O
Open Armature Flt.........................................91  
OSPD TEST SRC logic input ........................62  
121  
RUN UP logic input........................................62  
TACH FILTER ENABLE user switch ............ 52  
TACH RATE CMD analog output ................. 65  
TACH RATE CMD display value .................. 66  
TACH RATE GAIN parameter ...................... 31  
TACH SPEED analog output........................ 65  
TORQUE REF analog output ....................... 65  
TORQUE REF display value ........................ 68  
Torque Specs.............................................. 103  
Troubleshooting ...................................... 79–94  
TRQ LIM MSG DLY parameter..................... 34  
TRQ RAMP DOWN logic input ..................... 62  
S
S-Chain Event ...............................................92  
S-CURVE ABORT user switch......................56  
S-CURVE SEL logic input .............................62  
Selecting Logic Input Definitions ...................61  
SER2 INSP ENA logic input ..........................62  
Serial Link Follower .......................................23  
Setup Flt ........................................................92  
Solid State Relays .........................................63  
SPD COMMAND BIAS parameter ................32  
SPD COMMAND MULT parameter...............32  
SPD DEV HI LEVEL parameter ....................32  
SPD DEV LO LEVEL parameter ...................32  
SPD DEV TIME parameter............................32  
SPD PHASE MARGIN parameter.................31  
SPD REF RELEASE user switch ..................52  
SPD REG TORQ CMD display value............66  
SPD REG TYPE user switch.........................51  
SPD RG TQ CMD analog output...................65  
SPEED COMMAND analog output ...............65  
SPEED COMMAND parameters...................42  
SPEED DEV logic output...............................64  
SPEED DEV LOW logic output .....................64  
Speed Dev Low/High Level...........................37  
SPEED ERROR analog output .....................65  
SPEED ERROR display value ......................66  
SPEED FEEDBACK display value................66  
SPEED FEEDBK analog output....................65  
SPEED REF analog output ...........................65  
SPEED REF RLS logic output.......................64  
SPEED REFERENCE display value .............66  
SPEED REG RLS logic output......................64  
Srl Timeout ....................................................93  
Startup Guide ................................................12  
Status LEDs...................................................25  
STEP REF Bx logic input...............................62  
STNDBY FIELD parameter ...........................47  
STNDBY FLD TIME parameter.....................35  
STOPPING MODE user switch.....................57  
SW BUS OV LEVEL parameter ....................46  
U
U0 - Utility Menu ..................................... 70–76  
U1 - Password Submenu.............................. 71  
U2 - Hidden Items Submenu ........................ 71  
U3 - Units Submenu ..................................... 71  
U4 - Overspeed Test Submenu.................... 71  
U5 - Restore Parameter Defaults Submenu. 72  
U6 - Drive Info Submenu ........................ 73, 74  
U7 - Hex Monitor Submenu .......................... 75  
Undervolt Flt.................................................. 94  
UNDERVOLT FLT logic output..................... 64  
UP TO SPD LEVEL parameter..................... 34  
UP TO SPEED logic output .......................... 64  
UP/DWN logic input...................................... 62  
UP/DWN THRESHOLD parameter............... 33  
User Switches C1 Submenu................... 50–60  
Utility U0 Menu................ See U0 - Utility Menu  
UV Alarm....................................................... 94  
UV ALARM LEVEL parameter...................... 45  
UV ALARM logic output................................ 64  
UV FAULT LEVEL parameter....................... 45  
W
Watts Loss .................................................. 102  
WEAK FLD AMPS parameter....................... 47  
Weights....................................................... 104  
Wire Terminal Specs .................................. 103  
Z
ZERO SPEED LEVEL parameter................. 33  
ZERO SPEED logic output ........................... 64  
ZERO SPEED TIME parameter.................... 33  
T
TACH FILTER BW parameter.......................30  
122  
QUATTRO DC  
Data subject to change without notice. Quattro is a trademark of Magnetek, Inc.  
Magnetek Elevator Products  
N50 W13775 Overview Drive  
Magnetek Elevator Products - Europe  
20 Drake Mews, Crownhill  
Menomonee Falls, Wisconsin 53051  
(800) 236-1705, (262) 252-6999, FAX (262) 790-4142  
http://www.elevatordrives.com  
Milton Keynes, Bucks MK8 0ER UK  
+44(0) 1908 261427, FAX +44(0) 1908 261674  
TM7310 © 2007 Magnetek, Inc. 5/07 rev 01  

Intel IB850 User Manual
JVC LCT2574 001A H User Manual
KitchenAid KGCS166G User Manual
Lindy 70542 User Manual 1
Mitsubishi Electronics 1770G User Manual
Nokia HS 69 User Manual
Nvidia Corp Computer Hardware nVIDIA GeForce 256 User Manual
Philips 20TP2482 User Manual
Philips 47PFL4606H User Manual
Philips 170B6CS User Manual