Intel Cpu Xeon CM8063501292204 User Manual

Intel® Xeon® Processor E5-1600  
v2/E5-2600 v2 Product Families  
Datasheet - Volume One of Two  
September 2013  
Reference Number: 329187-001  
Table of Contents  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
3
4
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
10.1.2 Intel Thermal Solution STS200C  
10.1.3 Intel Thermal Solution STS200P and STS200PNRW  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
5
Figures  
1-2  
Intel® Xeon® Processor E5-2600 v2 Product Family on the 2 Socket  
6
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
7-8  
BCLK{0/1} Single Ended Clock Measurement Points for Absolute Cross Point  
Tables  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
7
2-6  
RdPkgConfig() & WrPkgConfig() DRAM Thermal and Power Optimization  
RdPkgConfig() & WrPkgConfig() CPU Thermal and Power Optimization  
2-8  
8
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
§
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
9
Revision History  
Revision  
Number  
Description  
Revision Date  
001  
Initial Release  
September 2013  
§
10  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
Overview  
1 Overview  
1.1  
Introduction  
The Intel® Xeon® processor E5-1600 v2/E5-2600 v2 product families datasheet-  
Volume One provides DC electrical specifications, signal integrity, differential signaling  
specifications, land and signal definitions, and an overview of additional processor  
feature interfaces.  
This document is intended to be distributed as a part of the complete document which  
consists of two volumes. The structure and scope of the two volumes are provided in  
The Intel® Xeon® processor E5-1600 v2/E5-2600 v2 product families are the next  
generation of 64-bit, multi-core enterprise processors built on 22-nanometer process  
technology. Throughout this document, the Intel® Xeon® processor E5-1600 v2/E5-  
2600 v2 product families may be referred to as simply the processor. Where  
information differs between the EP SKUs, this document uses specific Intel® Xeon®  
processor E5-1600 v2 product family and Intel® Xeon® processor E5-2600 v2 product  
family notation. Based on the low-power/high performance 3rd Generation Intel®  
Core™ Processor Family microarchitecture, the processor is designed for a two-chip  
platform as opposed to the traditional three-chip platforms (processor, MCH, and ICH).  
The two-chip platform consists of a processor and the Platform Controller Hub (PCH)  
and enables higher performance, easier validation, and improved x-y footprint.  
This generation of processor introduces the High-Core count (HCC), Mid-Core count  
(MCC), and Low-Core count (LCC) die size terminology to the SKU models. The table  
below summarizes the die size associated with the processor TDP, Model Number, and  
Core Count.  
Table 1-1.  
HCC, MCC, and LCC SKU Table Summary  
Die Size  
TDP (W)  
Model Number  
Core Count  
High-Core Count  
130W 1U  
115W 1U  
E5-2697 v2  
E5-2695 v2  
12  
12  
Mid-Core Count  
150W WS  
130W 1U  
130W 2U  
E5-2687W v2  
E5-2690 v2  
8
10  
8
E5-2687W v2  
E5-2667 v2  
130W 2U  
115W 1U  
E5-2643 v2  
6
E5-2680 v2  
E5-2670 v2  
10  
95W 1U  
95W 1U  
E5-2660 v2  
10  
8
E5-2650 v2  
E5-2640 v2  
70W 1U  
E5-2650L v2  
10  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
11  
       
Overview  
Table 1-1.  
HCC, MCC, and LCC SKU Table Summary  
Die Size  
Low-Core Count  
TDP (W)  
Model Number  
Core Count  
130W 2U  
130W 1S  
E5-2637 v2  
4
6
E5-1660 v2  
E5-1650 v2  
130W 1S  
95W 1U  
80W 1U  
E5-1620 v2  
E5-2630 v2  
4
6
6
E5-2630 v2  
E5-2620 v2  
80W 1U  
60W 1U  
E5-2609 v2  
E5-2603 v2  
4
6
E5-2630L v2  
Some processor features are not available on all platforms. Refer to the Intel® Xeon®  
Processor E5 v2 Product Family Specification Update for details of each processor SKU.  
The Intel® Xeon® processor E5-1600 v2/E5-2600 v2 product families support these  
segments.  
• The Intel® Xeon® processor E5-1600 v2 product family is designed for single  
processor Workstation platforms only.  
• The Intel® Xeon® processor E5-2600 v2 product family is designed for dual  
processor Workstation, Efficient Performance server and HPC platforms.  
These processors feature per socket, two Intel® QuickPath Interconnect point-to-point  
links capable of up to 8.0 GT/s, up to 40 lanes of PCI Express* 3.0 links capable of  
8.0 GT/s, and 4 lanes of DMI2/PCI Express* 2.0 interface with a peak transfer rate of  
5.0 GT/s. The processor supports up to 46 bits of physical address space and 48-bit of  
virtual address space.  
Included in this family of processors is an integrated memory controller (IMC) and  
integrated I/O (IIO) (such as PCI Express* and DMI2) on a single silicon die. This single  
die solution is known as a monolithic processor.  
Figure 1-1 shows the processor 2-socket platform configuration. The “Legacy CPU” is  
the boot processor that is connected to the PCH component, this socket is set to  
NodeID[0].  
Table 1-2.  
Volume Structure and Scope (Sheet 1 of 2)  
Volume 1: Electrical, Mechanical and Thermal Specification  
Overview  
Interfaces  
Technologies  
Power Management  
Thermal Management Specifications  
Signal Descriptions  
Electrical Specifications  
Processor Land Listing  
Package Mechanical Specifications  
Boxed Processor Specifications  
Volume 2: Register Information  
12  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
 
Overview  
Table 1-2.  
Volume Structure and Scope (Sheet 2 of 2)  
Configuration Process and Registers  
Processor Integrated I/O (IIO) Configuration Registers  
Processor Uncore Configuration Registers  
Figure 1-1. Intel® Xeon® Processor E5-1600 v2 Product Family on the 1 Socket  
Platform  
ethernet  
Processor  
SATA  
“Legacy”  
PCIe  
DMI2  
PCH  
PCIe  
B
I
O
S
x16  
x16  
x8  
Figure 1-2. Intel® Xeon® Processor E5-2600 v2 Product Family on the 2 Socket  
Platform  
ethernet  
QPI  
Processor  
Processor  
SATA  
PCIe  
PCIe  
“Legacy”  
“Peer”  
QPI  
DMI2  
PCH  
B
I
O
S
x16  
x16  
x16  
x16  
x8  
x8  
x4  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
13  
   
Overview  
1.1.1  
Processor Feature Details  
• Up to 12 execution cores  
• Each core supports two threads (Intel® Hyper-Threading Technology), up to 24  
threads per socket  
• 46-bit physical addressing and 48-bit virtual addressing  
• 1 GB large page support for server applications  
• A 32-KB instruction and 32-KB data first-level cache (L1) for each core  
• A 256-KB shared instruction/data mid-level (L2) cache for each core  
• Up to 30 MB last level cache (LLC): up to 2.5 MB per core instruction/data last level  
cache (LLC), shared among all cores  
1.1.2  
Supported Technologies  
• Intel® Virtualization Technology (Intel® VT)  
• Intel® Virtualization Technology for Directed I/O (Intel® VT-d)  
• APIC Virtualization (APICv)  
• Intel® Virtualization Technology Processor Extensions  
• Intel® Trusted Execution Technology (Intel® TXT)  
• Intel® 64 Architecture  
• Intel® Streaming SIMD Extensions 4.1 (Intel® SSE4.1)  
• Intel® Streaming SIMD Extensions 4.2 (Intel® SSE4.2)  
• Intel® Advanced Vector Extensions (Intel® AVX)  
• Intel® AVX Floating Point Bit Depth Conversion (Float 16)  
• Intel® Hyper-Threading Technology  
• Execute Disable Bit  
• Intel® Turbo Boost Technology  
• Intel® Intelligent Power Technology  
• Enhanced Intel SpeedStep® Technology  
• Intel® Dynamic Power Technology (Memory Power Management)  
• Intel® Secure Key, formerly known as Digital Random Number Generator (DRNG)  
• Intel® OS Guard, formerly known as Supervisor Mode Execution Protection Bit  
(SMEP)  
1.2  
Interfaces  
1.2.1  
System Memory Support  
• Intel® Xeon® processor E5-1600 v2/E5-2600 v2 product families supports 4 DDR3  
channels  
• Unbuffered DDR3 and registered DDR3 DIMMs  
• LR DIMM (Load Reduced DIMM) for buffered memory solutions demanding higher  
capacity memory subsystems  
14  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
       
Overview  
• Independent channel mode or lockstep mode  
• Data burst length of eight cycles for all memory organization modes  
• Memory DDR3 data transfer rates of 800, 1066, 1333, 1600, and 1866 MT/s  
• 64-bit wide channels plus 8-bits of ECC support for each channel  
• DDR3 standard I/O Voltage of 1.5 V and DDR3 Low Voltage of 1.35 V  
• 1-GB, 2-GB, and 4-GB DDR3 DRAM technologies supported for these devices:  
— UDIMMs x8, x16  
— RDIMMs x4, x8  
— LRDIMM x4, x8 (2-Gb and 4-Gb only) LR-DIMMs are supported only on server  
specific SKUs (Intel® Xeon® processor E5-1600 v2/E5-2600 v2 product  
families). LR-DIMMs are not supported in workstation specific SKUs such as the  
Intel® Xeon® processor E5-1600 v2 product family.  
• Up to 8 ranks supported per memory channel: 1, 2 or 4 ranks per DIMM  
• Open with adaptive idle page close timer or closed page policy  
• Per channel memory test and initialization engine can initialize DRAM to all logical  
zeros with valid ECC (with or without data scrambler) or a predefined test pattern  
• Isochronous access support is not available on any CPU model containing two home  
agents.  
• Minimum memory configuration: independent channel support with 1 DIMM  
populated  
• Integrated dual SMBus master controllers  
• Command launch modes of 1n/2n  
• RAS Support (including and not limited to):  
Note: RAS support depends on processor SKU. For example, Workstation SKUs do  
not support sparing or tagging, lockstep mode, mirroring mode, channel  
mirroring mode within a socket, error containment.  
— Rank Level Sparing and Device Tagging  
— Demand and Patrol Scrubbing  
— DRAM Single Device Data Correction (SDDC) for any single x4 or x8 DRAM  
device failure. Independent channel mode supports x4 SDDC. x8 SDDC  
requires lockstep mode  
— Lockstep mode where channels 0 & 1 and channels 2 & 3 are operated in  
lockstep mode  
— The combination of memory channel pair lockstep and memory mirroring is not  
supported  
— Data scrambling with address to ease detection of write errors to an incorrect  
address.  
— Error reporting via Machine Check Architecture  
— Read Retry during CRC error handling checks by iMC  
— Channel mirroring within a socket  
— Channel Mirroring mode is supported on memory channels 0 & 1 and channels  
2 & 3  
— Error Containment Recovery  
• Improved Thermal Throttling with dynamic Closed Loop Thermal Throttling (CLTT)  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
15  
Overview  
• Memory thermal monitoring support for DIMM temperature via two memory  
signals, MEM_HOT_C{01/23}_N  
1.2.2  
PCI Express*  
• The PCI Express* port(s) are fully-compliant to the PCI Express* Base  
Specification, Revision 3.0 (PCIe 3.0)  
• Support for PCI Express* 3.0 (8.0 GT/s), 2.0 (5.0 GT/s), and 1.0 (2.5 GT/s)  
• Up to 40 lanes of PCI Express* interconnect for general purpose PCI Express*  
devices at PCIe* 3.0 speeds that are configurable for up to 10 independent ports  
• 4 lanes of PCI Express* at PCIe* 2.0 speeds when not using DMI2 port (Port 0),  
also can be downgraded to x2 or x1  
• Negotiating down to narrower widths is supported, see Figure 1-3:  
— x16 port (Port 2 & Port 3) may negotiate down to x8, x4, x2, or x1.  
— x8 port (Port 1) may negotiate down to x4, x2, or x1.  
— x4 port (Port 0) may negotiate down to x2, or x1.  
— When negotiating down to narrower widths, there are caveats as to how lane  
reversal is supported.  
• Non-Transparent Bridge (NTB) is supported by PCIe Port3a/IOU1. For more details  
on NTB mode operation refer to PCI Express Base Specification - Revision 3.0:  
— x4, x8 or x16 widths and at PCIe* 1.0, 2.0, 3.0 speeds  
Two usage models; NTB attached to a Root Port or NTB attached to another  
NTB  
— Supports three 64-bit BARs  
— Supports posted writes and non-posted memory read transactions across the  
NTB  
— Supports INTx, MSI and MSI-X mechanisms for interrupts on both side of NTB  
in upstream direction only  
• Address Translation Services (ATS) 1.0 support  
• Hierarchical PCI-compliant configuration mechanism for downstream devices.  
Traditional PCI style traffic (asynchronous snooped, PCI ordering).  
• PCI Express* extended configuration space. The first 256 bytes of configuration  
space aliases directly to the PCI compatibility configuration space. The remaining  
portion of the fixed 4-KB block of memory-mapped space above that (starting at  
100h) is known as extended configuration space.  
• PCI Express* Enhanced Access Mechanism. Accessing the device configuration  
space in a flat memory mapped fashion.  
• Automatic discovery, negotiation, and training of link out of reset.  
• Supports receiving and decoding 64 bits of address from PCI Express*.  
— Memory transactions received from PCI Express* that go above the top of  
physical address space (when Intel VT-d is enabled, the check would be against  
the translated HPA (Host Physical Address) address) are reported as errors by  
the processor.  
— Outbound access to PCI Express* will always have address bits 63 to 46  
cleared.  
• Re-issues Configuration cycles that have been previously completed with the  
Configuration Retry status.  
16  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
 
Overview  
• Power Management Event (PME) functions.  
• Message Signaled Interrupt (MSI and MSI-X) messages  
• Degraded Mode support and Lane Reversal support  
• Static lane numbering reversal and polarity inversion support  
• Support for PCIe* 3.0 atomic operation, PCIe 3.0 optional extension on atomic  
read-modify-write mechanism  
• Additional read buffers for point-point transfers. This increases the number of  
outstanding transactions in point-point transfers across same processor sockets,  
from previous generation of 16 to 64 in this generation.  
Figure 1-3. PCI Express* Lane Partitioning and Direct Media Interface Gen 2 (DMI2)  
Port 1  
(IOU2)  
PCIe  
Port 2  
(IOU0)  
PCIe  
Port 3  
(IOU1)  
PCIe  
Port 0  
DMI / PCIe  
Transaction  
Link  
Transaction  
Transaction  
Transaction  
Link  
Link  
Link  
Physical  
0…3  
Physical  
Physical  
Physical  
0…3  
4…7  
X4  
4…7  
8…11 12..15  
X4  
4…7  
8…11 12..15  
X4  
X4  
X4  
X4  
X4  
X4  
X4  
X4  
X4  
DMI  
Port 1a Port 1b  
Port 2a Port 2b Port 2c Port 2d  
Port 3a Port 3b Port 3c Port 3d  
X8  
X8  
X8  
X8  
X8  
Port 1a  
Port 2a  
Port 2c  
Port 3a  
Port 3c  
X16  
X16  
Port 2a  
Port 3a  
1.2.3  
Direct Media Interface Gen 2 (DMI2)  
• Serves as the chip-to-chip interface to the Intel® C600 Chipset  
• The DMI2 port supports x4 link width and only operates in a x4 mode when in DMI2  
• Operates at PCI Express* 1.0 or 2.0 speeds  
Transparent to software  
• Processor and peer-to-peer writes and reads with 64-bit address support  
• APIC and Message Signaled Interrupt (MSI) support. Will send Intel-defined “End of  
Interrupt” broadcast message when initiated by the processor.  
• Downstream System Management Interrupt (SMI), SCI, and SERR error indication  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
17  
   
Overview  
• Static lane numbering reversal support  
• Supports DMI2 virtual channels VC0, VC1, VCm, and VCp  
1.2.4  
Intel® QuickPath Interconnect (Intel® QPI)  
• Compliant with Intel QuickPath Interconnect v1.1 standard packet formats  
• Implements two full width Intel QPI ports  
• Full width port includes 20 data lanes and 1 clock lane  
• 64 byte cache-lines  
• Isochronous access support is not available on any CPU model containing two home  
agents.  
Note: RAS support depends on processor SKU. For example, Workstation SKUs do  
not support sparing or tagging, lockstep mode, mirroring mode, channel  
mirroring mode within a socket, error containment.  
• Home snoop based coherency  
• 4-bit Node ID  
• 46-bit physical addressing support  
• No Intel QuickPath Interconnect bifurcation support  
• Differential signaling  
• Forwarded clocking  
• Up to 8.0 GT/s data rate (up to 16 GB/s direction peak bandwidth per port)  
— All ports run at same operational frequency  
— Reference Clock is 100 MHz  
— Slow boot speed initialization at 50 MT/s  
• Common reference clocking (same clock generator for both sender and receiver)  
• Intel® Interconnect Built-In-Self-Test (Intel® IBIST) for high-speed testability  
• Polarity Inversion and Lane reversal (Rx side only)  
1.2.5  
Platform Environment Control Interface (PECI)  
The PECI is a one-wire interface that provides a communication channel between a  
PECI client (the processor) and a PECI master (the PCH).  
• Supports operation at up to 2 Mbps data transfers  
• Link layer improvements to support additional services and higher efficiency over  
PECI 2.0 generation  
• Services include CPU thermal and estimated power information, control functions  
for power limiting, P-state and T-state control, and access for Machine Check  
Architecture registers and PCI configuration space (both within the processor  
package and downstream devices)  
• PECI address determined by SOCKET_ID configuration  
• Single domain (Domain 0) is supported  
18  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
   
Overview  
1.3  
Power Management Support  
1.3.1  
Processor Package and Core States  
• ACPI C-states as implemented by the following processor C-states:  
— Package: PC0, PC1/PC1e, PC2, PC3, PC6 (Package C7 is not supported)  
— Core: CC0, CC1, CC1E, CC3, CC6 (Processor Core C7 is not supported)  
• Enhanced Intel SpeedStep® Technology  
1.3.2  
1.3.3  
System States Support  
• S0, S1, S3, S4, S5  
Memory Controller  
• Multiple CKE power down modes  
• Multiple self-refresh modes  
• Memory thermal monitoring via MEM_HOT_C01_N and MEM_HOT_C23_N Signals  
1.3.4  
1.3.5  
PCI Express*  
• L0s is not supported  
• L1 ASPM power management capability  
Intel® QPI  
• L0s is not supported  
• L0p and L1 power management capabilities  
1.4  
Thermal Management Support  
• Digital Thermal Sensor with multiple on-die temperature zones  
• Adaptive Thermal Monitor  
• THERMTRIP_N and PROCHOT_N signal support  
• On-Demand mode clock modulation  
• Open and Closed Loop Thermal Throttling (OLTT/CLTT) support for system memory  
in addition to Hybrid OLTT/CLTT mode  
• Fan speed control with DTS  
Two integrated SMBus masters for accessing thermal data from DIMMs  
• New Memory Thermal Throttling features via MEM_HOT_C{01/23}_N signals  
• Running Average Power Limit (RAPL), Processor and DRAM Thermal and Power  
Optimization Capabilities  
1.5  
Package Summary  
The processor socket type is 52.5 x 45 mm or 52.5 x 51 mm FCLGA12 package  
(LGA2011-0).  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
19  
               
Overview  
1.6  
Terminology  
Term  
Description  
ASPM  
BMC  
Cbo  
Active State Power Management  
Baseboard Management Controllers  
Cache and Core Box. It is a term used for internal logic providing ring interface to  
LLC and Core.  
DDR3  
Third generation Double Data Rate SDRAM memory technology that is the  
successor to DDR2 SDRAM  
DMA  
DMI  
DMI2  
DTS  
ECC  
Direct Memory Access  
Direct Media Interface  
Direct Media Interface Gen 2  
Digital Thermal Sensor  
Error Correction Code  
Enhanced Intel  
SpeedStep® Technology  
(EIST)  
Allows the operating system to reduce power consumption when performance is  
not needed.  
Execute Disable Bit  
The Execute Disable bit allows memory to be marked as executable or non-  
executable, when combined with a supporting operating system. If code  
attempts to run in non-executable memory the processor raises an error to the  
operating system. This feature can prevent some classes of viruses or worms  
that exploit buffer overrun vulnerabilities and can thus help improve the overall  
security of the system. See the Intel® 64 and IA-32 Architectures Software  
Developer's Manuals for more detailed information.  
Flit  
Flow Control Unit. The Intel QPI Link layer’s unit of transfer; 1 Flit = 80-bits.  
Functional Operation  
Refers to the normal operating conditions in which all processor specifications,  
including DC, system bus, signal quality, mechanical, and thermal, are satisfied.  
IMC  
The Integrated Memory Controller. A Memory Controller that is integrated in the  
processor die.  
IIO  
The Integrated I/O Controller. An I/O controller that is integrated in the  
processor die.  
Intel® ME  
Intel® Management Engine (Intel® ME)  
Intel® QuickData  
Technology  
Intel QuickData Technology is a platform solution designed to maximize the  
throughput of server data traffic across a broader range of configurations and  
server environments to achieve faster, scalable, and more reliable I/O.  
Intel® QuickPath  
Interconnect (Intel® QPI)  
A cache-coherent, link-based Interconnect specification for Intel processors,  
chipsets, and I/O bridge components.  
Intel® 64 Technology  
64-bit memory extensions to the IA-32 architecture. Further details on Intel 64  
architecture and programming model can be found at  
http://developer.intel.com/technology/intel64/.  
Intel® Turbo Boost  
Technology  
Intel® Turbo Boost Technology is a way to automatically run the processor core  
faster than the marked frequency if the part is operating under power,  
temperature, and current specifications limits of the Thermal Design Power  
(TDP). This results in increased performance of both single and multi-threaded  
applications.  
Intel® TXT  
Intel® Trusted Execution Technology  
Intel® Virtualization  
Technology (Intel® VT)  
Processor virtualization which when used in conjunction with Virtual Machine  
Monitor software enables multiple, robust independent software environments  
inside a single platform.  
Intel® VT-d  
Intel® Virtualization Technology (Intel® VT) for Directed I/O. Intel VT-d is a  
hardware assist, under system software (Virtual Machine Manager or OS)  
control, for enabling I/O device virtualization. Intel VT-d also brings robust  
security by providing protection from errant DMAs by using DMA remapping, a  
key feature of Intel VT-d.  
20  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
 
Overview  
Term  
Description  
Intel® Xeon® processor  
Intel’s 22-nm processor design, is the follow-on to the 3rd Generation Intel®  
E5-1600 v2 product family Core™ Processor Family design. It is the next generation processor for use in  
Intel® Xeon® processor E5-1600 v2/E5-2600 v2 product families-based  
platforms. Intel® Xeon® processor E5-1600 v2 product family supports  
workstation platforms only.  
Intel® Xeon® processor  
Intel’s 22-nm processor design, is the follow-on to the 3rd Generation Intel®  
E5-2600 v2 product family Core™ Processor Family design. It is the next generation processor for use in  
Intel® Xeon® processor E5-1600 v2/E5-2600 v2 product families-based  
platforms. Intel® Xeon® processor E5-2600 v2 product family supports  
workstation, Efficient Performance server, and HPC platforms.  
Integrated Heat Spreader  
(IHS)  
A component of the processor package used to enhance the thermal  
performance of the package. Component thermal solutions interface with the  
processor at the IHS surface.  
Jitter  
Any timing variation of a transition edge or edges from the defined Unit Interval  
(UI).  
IOV  
I/O Virtualization  
LGA2011-0 Socket  
The LGA2011-0 land FCLGA12 package mates with the system board through  
this surface mount, LGA2011-0 contact socket.  
LLC  
Last Level Cache  
LRDIMM  
NCTF  
Load Reduced Dual In-line Memory Module  
Non-Critical to Function: NCTF locations are typically redundant ground or non-  
critical reserved, so the loss of the solder joint continuity at end of life conditions  
will not affect the overall product functionality.  
NEBS  
PCH  
Network Equipment Building System. NEBS is the most common set of  
environmental design guidelines applied to telecommunications equipment in the  
United States.  
Platform Controller Hub. The next generation chipset with centralized platform  
capabilities including the main I/O interfaces along with display connectivity,  
audio features, power management, manageability, security and storage  
features.  
PCU  
Power Control Unit  
PCI Express* 3.0  
The third generation PCI Express* specification that operates at twice the speed  
of PCI Express* 2.0 (8 Gb/s); however, PCI Express* 3.0 is completely backward  
compatible with PCI Express* 1.0 and 2.0.  
PCI Express 3  
PCI Express 2  
PCI Express  
PECI  
PCI Express* Generation 3.0  
PCI Express* Generation 2.0  
PCI Express* Generation 2.0/3.0  
Platform Environment Control Interface  
Phit  
Physical Unit. An Intel® QPI terminology defining units of transfer at the physical  
layer. 1 Phit is equal to 20 bits in ‘full width mode’ and 10 bits in ‘half width  
mode’  
Processor  
The 64-bit, single-core or multi-core component (package)  
Processor Core  
The term “processor core” refers to silicon die itself which can contain multiple  
execution cores. Each execution core has an instruction cache, data cache, and  
256-KB L2 cache. All execution cores share the L3 cache. All DC and signal  
integrity specifications are measured at the processor die (pads), unless  
otherwise noted.  
RDIMM  
Rank  
Registered Dual In-line Module  
A unit of DRAM corresponding four to eight devices in parallel, ignoring ECC.  
These devices are usually, but not always, mounted on a single side of a DDR3  
DIMM.  
SCI  
System Control Interrupt. Used in ACPI protocol.  
Intel® Streaming SIMD Extensions (Intel® SSE)  
SSE  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
21  
Overview  
Term  
Description  
SKU  
A processor Stock Keeping Unit (SKU) to be installed in either server or  
workstation platforms. Electrical, power and thermal specifications for these  
SKU’s are based on specific use condition assumptions. Server processors may  
be further categorized as Efficient Performance server, workstation and HPC  
SKUs. For further details on use condition assumptions, please refer to the latest  
Product Release Qualification (PRQ) Report available via your Customer Quality  
Engineer (CQE) contact.  
SMBus  
System Management Bus. A two-wire interface through which simple system and  
power management related devices can communicate with the rest of the  
system. It is based on the principals of the operation of the I2C* two-wire serial  
bus from Philips Semiconductor.  
Storage Conditions  
A non-operational state. The processor may be installed in a platform, in a tray,  
or loose. Processors may be sealed in packaging or exposed to free air. Under  
these conditions, processor landings should not be connected to any supply  
voltages, have any I/Os biased or receive any clocks. Upon exposure to “free air”  
(that is, unsealed packaging or a device removed from packaging material) the  
processor must be handled in accordance with moisture sensitivity labeling  
(MSL) as indicated on the packaging material.  
TAC  
Thermal Averaging Constant  
Thermal Design Power  
TDP  
TSOD  
UDIMM  
Uncore  
Thermal Sensor on DIMM  
Unbuffered Dual In-line Module  
The portion of the processor comprising the shared cache, IMC, HA, PCU, UBox,  
and Intel QPI link interface.  
Unit Interval  
Signaling convention that is binary and unidirectional. In this binary signaling,  
one bit is sent for every edge of the forwarded clock, whether it be a rising edge  
or a falling edge. If a number of edges are collected at instances t1, t2, tn,...., tk  
then the UI at instance “n” is defined as:  
UI n = t n - t n - 1  
V
V
V
Processor core power supply  
Processor ground  
CC  
SS  
_01, VCCD_23  
Variable power supply for the processor system memory interface. VCCD is the  
generic term for VCCD_01, VCCD_23.  
CCD  
x1  
Refers to a Link or Port with one Physical Lane  
Refers to a Link or Port with four Physical Lanes  
Refers to a Link or Port with eight Physical Lanes  
Refers to a Link or Port with sixteen Physical Lanes  
x4  
x8  
x16  
1.7  
Related Documents  
Refer to the following documents for additional information.  
Table 1-3.  
Referenced Documents (Sheet 1 of 2)  
Document  
Document Number/ Location  
Intel® Xeon® Processor E5 v2 Product Family Processor Datasheet, http://www.intel.com  
Volume Two: Registers  
Intel® Xeon® Processor E5-1600/2600/4600 v1 and v2 Product  
Families Thermal / Mechanical Design Guide  
http://www.intel.com  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families – http://www.intel.com  
Boundary Scan Description Language (BSDL) File  
Intel® C600 Series Chipset Datasheet  
http://www.intel.com  
Advanced Configuration and Power Interface Specification 3.0  
PCI Local Bus Specification 3.0  
22  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
     
Overview  
Table 1-3.  
Referenced Documents (Sheet 2 of 2)  
Document  
Document Number/ Location  
PCI Express Base Specification - Revision 2.1 and 1.1  
PCI Express Base Specification - Revision 3.0  
System Management Bus (SMBus) Specification  
DDR3 SDRAM Specification  
Low (JESD22-A119) and High (JESD-A103) Temperature Storage  
Life Specifications  
Intel® 64 and IA-32 Architectures Software Developer's Manuals  
Volume 1: Basic Architecture  
Volume 2A: Instruction Set Reference, A-M  
Volume 2B: Instruction Set Reference, N-Z  
Volume 3A: System Programming Guide  
Volume 3B: System Programming Guide  
Intel® 64 and IA-32 Architectures Optimization Reference Manual  
Intel® Virtualization Technology Specification for Directed I/O  
Architecture Specification  
http://download.intel.com/technology/computin  
Intel® Trusted Execution Technology Software Development Guide  
National Institute of Standards and Technology NIST SP800-90  
1.8  
1.9  
Statement of Volatility (SOV)  
Intel® Xeon® processor E5-1600 v2/E5-2600 v2 product families do not retain any  
end-user data when powered down and/or the processor is physically removed from  
the socket.  
State of Data  
The data contained within this document is the most accurate information available by  
the publication date of this document.  
§
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
23  
   
Overview  
24  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
Interfaces  
2 Interfaces  
This chapter describes the interfaces supported by the processor.  
2.1  
System Memory Interface  
2.1.1  
System Memory Technology Support  
The Integrated Memory Controller (IMC) supports DDR3 protocols with four  
independent 64-bit memory channels with 8 bits of ECC for each channel (total of  
72-bits) and supports 1 to 3 DIMMs per channel depending on the type of memory  
installed. The type of memory supported by the processor is dependent on the target  
platform:  
• Intel® Xeon® processor E5-1600 v2/E5-2600 v2 product families platforms  
support:  
— ECC registered DIMMs: with a maximum of three DIMMs per channel allowing  
up to eight device ranks per channel.  
— ECC and non-ECC unbuffered DIMMs: with a maximum of two DIMMs per  
channel thus allowing up to four device ranks per channel. Support for mixed  
non-ECC with ECC un-buffered DIMM configurations.  
2.1.2  
System Memory Timing Support  
The IMC supports the following DDR3 Speed Bin, CAS Write Latency (CWL), and  
command signal mode timings on the main memory interface:  
• tCL = CAS Latency  
• tRCD = Activate Command to READ or WRITE Command delay  
• tRP = PRECHARGE Command Period  
• CWL = CAS Write Latency  
• Command Signal modes = 1n indicates a new command may be issued every clock  
and 2n indicates a new command may be issued every 2 clocks. Command launch  
mode programming depends on the transfer rate and memory configuration.  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
25  
       
Interfaces  
2.2  
PCI Express* Interface  
This section describes the PCI Express* 3.0 interface capabilities of the processor. See  
the PCI Express* Base Specification for details of PCI Express* 3.0.  
2.2.1  
PCI Express* Architecture  
Compatibility with the PCI addressing model is maintained to ensure that all existing  
applications and drivers operate unchanged. The PCI Express* configuration uses  
standard mechanisms as defined in the PCI Plug-and-Play specification.  
The PCI Express* architecture is specified in three layers: Transaction Layer, Data Link  
Layer, and Physical Layer. The partitioning in the component is not necessarily along  
these same boundaries. Refer to Figure 2-1 for the PCI Express* Layering Diagram.  
Figure 2-1. PCI Express* Layering Diagram  
Transaction  
Transaction  
Data Link  
Data Link  
Physical  
Logical Sub-Block  
Electrical Sub-Block  
Physical  
Logical Sub-Block  
Electrical Sub-Block  
RX  
TX  
RX  
TX  
PCI Express* uses packets to communicate information between components. Packets  
are formed in the Transaction and Data Link Layers to carry the information from the  
transmitting component to the receiving component. As the transmitted packets flow  
through the other layers, they are extended with additional information necessary to  
handle packets at those layers. At the receiving side, the reverse process occurs and  
packets get transformed from their Physical Layer representation to the Data Link  
Layer representation and finally (for Transaction Layer Packets) to the form that can be  
processed by the Transaction Layer of the receiving device.  
26  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
     
Interfaces  
Figure 2-2. Packet Flow through the Layers  
Sequence  
Number  
Framing  
Header  
Date  
ECRC  
LCRC  
Framing  
Transaction Layer  
Data Link Layer  
Physical Layer  
2.2.1.1  
2.2.1.2  
Transaction Layer  
The upper layer of the PCI Express* architecture is the Transaction Layer. The  
Transaction Layer's primary responsibility is the assembly and disassembly of  
Transaction Layer Packets (TLPs). TLPs are used to communicate transactions, such as  
read and write, as well as certain types of events. The Transaction Layer also manages  
flow control of TLPs.  
Data Link Layer  
The middle layer in the PCI Express* stack, the Data Link Layer, serves as an  
intermediate stage between the Transaction Layer and the Physical Layer.  
Responsibilities of Data Link Layer include link management, error detection, and  
error correction.  
The transmission side of the Data Link Layer accepts TLPs assembled by the  
Transaction Layer, calculates and applies data protection code and TLP sequence  
number, and submits them to Physical Layer for transmission across the Link. The  
receiving Data Link Layer is responsible for checking the integrity of received TLPs and  
for submitting them to the Transaction Layer for further processing. On detection of TLP  
error(s), this layer is responsible for requesting retransmission of TLPs until information  
is correctly received, or the Link is determined to have failed. The Data Link Layer also  
generates and consumes packets which are used for Link management functions.  
2.2.1.3  
Physical Layer  
The Physical Layer includes all circuitry for interface operation, including driver and  
input buffers, parallel-to-serial and serial-to-parallel conversion, PLL(s), and impedance  
matching circuitry. It also includes logical functions related to interface initialization and  
maintenance. The Physical Layer exchanges data with the Data Link Layer in an  
implementation-specific format, and is responsible for converting this to an appropriate  
serialized format and transmitting it across the PCI Express* Link at a frequency and  
width compatible with the remote device.  
2.2.2  
PCI Express* Configuration Mechanism  
The PCI Express* link is mapped through a PCI-to-PCI bridge structure.  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
27  
   
Interfaces  
PCI Express* extends the configuration space to 4096 bytes per-device/function, as  
compared to 256 bytes allowed by the Conventional PCI Specification. PCI Express*  
configuration space is divided into a PCI-compatible region (which consists of the first  
256 bytes of a logical device's configuration space) and an extended PCI Express*  
region (which consists of the remaining configuration space). The PCI-compatible  
region can be accessed using either the mechanisms defined in the PCI specification or  
using the enhanced PCI Express* configuration access mechanism described in the PCI  
Express* Enhanced Configuration Mechanism section.  
The PCI Express* Host Bridge is required to translate the memory-mapped PCI  
Express* configuration space accesses from the host processor to PCI Express*  
configuration cycles. To maintain compatibility with PCI configuration addressing  
mechanisms, it is recommended that system software access the enhanced  
configuration space using 32-bit operations (32-bit aligned) only.  
See the PCI Express* Base Specification for details of both the PCI-compatible and PCI  
Express* Enhanced configuration mechanisms and transaction rules.  
2.3  
DMI2/PCI Express* Interface  
Direct Media Interface 2 (DMI2) connects the processor to the Platform Controller Hub  
(PCH). DMI2 is similar to a four-lane PCI Express* supporting a speed of 5 GT/s per  
lane. This interface can be configured at power-on to serve as a x4 PCI Express* link  
based on the setting of the SOCKET_ID[1:0] and FRMAGENT signal for processors not  
connected to a PCH.  
Note:  
Only DMI2 x4 configuration is supported.  
2.3.1  
DMI2 Error Flow  
DMI2 can only generate SERR in response to errors, never SCI, SMI, MSI, PCI INT, or  
GPE. Any DMI2 related SERR activity is associated with Device 0.  
2.3.2  
2.3.3  
Processor/PCH Compatibility Assumptions  
The processor is compatible with the PCH and is not compatible with any previous MCH  
or ICH products.  
DMI2 Link Down  
The DMI2 link going down is a fatal, unrecoverable error. If the DMI2 data link goes to  
data link down, after the link was up, then the DMI2 link hangs the system by not  
allowing the link to retrain to prevent data corruption. This is controlled by the PCH.  
Downstream transactions that had been successfully transmitted across the link  
prior to the link going down may be processed as normal. No completions from  
downstream, non-posted transactions are returned upstream over the DMI2 link after a  
link down event.  
2.4  
Intel® QuickPath Interconnect (Intel® QPI)  
The Intel® QuickPath Interconnect is a high speed, packetized, point-to-point  
interconnect used in the 3rd Generation Intel® Core™ Processor Family. The narrow  
high-speed links stitch together processors in distributed shared memory and  
integrated I/O platform architecture. It offers much higher bandwidth with low latency.  
28  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
         
Interfaces  
The Intel® QuickPath Interconnect has an efficient architecture allowing more  
interconnect performance to be achieved in real systems. It has a snoop protocol  
optimized for low latency and high scalability, as well as packet and lane structures  
enabling quick completions of transactions. Reliability, availability, and serviceability  
features (RAS) are built into the architecture.  
The physical connectivity of each interconnect link is made up of twenty differential  
signal pairs plus a differential forwarded clock. Each port supports a link pair consisting  
of two uni-directional links to complete the connection between two components. This  
supports traffic in both directions simultaneously. To facilitate flexibility and longevity,  
the interconnect is defined as having five layers: Physical, Link, Routing, Transport,  
and Protocol.  
The Physical layer consists of the actual wires carrying the signals, as well as  
circuitry and logic to support ancillary features required in the transmission and  
receipt of the 1s and 0s. The unit of transfer at the Physical layer is 20-bits, which  
is called a Phit (for Physical unit).  
The Link layer is responsible for reliable transmission and flow control. The Link  
layer’s unit of transfer is 80-bits, which is called a Flit (for Flow control unit).  
The Routing layer provides the framework for directing packets through  
the fabric.  
The Transport layer is an architecturally defined layer (not implemented in  
the initial products) providing advanced routing capability for reliable  
end-to-end transmission.  
The Protocol layer is the high-level set of rules for exchanging packets of data  
between devices. A packet is comprised of an integral number of Flits.  
The Intel® QuickPath Interconnect includes a cache coherency protocol to keep the  
distributed memory and caching structures coherent during system operation. It  
supports both low-latency source snooping and a scalable home snoop behavior. The  
coherency protocol provides for direct cache-to-cache transfers for optimal latency.  
2.5  
Platform Environment Control Interface (PECI)  
The Platform Environment Control Interface (PECI) uses a single wire for self-clocking  
and data transfer. The bus requires no additional control lines. The physical layer is a  
self-clocked one-wire bus that begins each bit with a driven, rising edge from an idle  
level near zero volts. The duration of the signal driven high depends on whether the  
bit value is a logic ‘0’ or logic ‘1. PECI also includes variable data transfer rate  
established with every message. In this way, it is highly flexible even though underlying  
logic is simple.  
The interface design was optimized for interfacing to Intel processor and chipset  
components in both single processor and multiple processor environments. The single  
wire interface provides low board routing overhead for the multiple load connections in  
the congested routing area near the processor and chipset components. Bus speed,  
error checking, and low protocol overhead provides adequate link bandwidth and  
reliability to transfer critical device operating conditions and configuration information.  
The PECI bus offers:  
• A wide speed range from 2 Kbps to 2 Mbps  
• CRC check byte used to efficiently and atomically confirm accurate data delivery  
• Synchronization at the beginning of every message minimizes device timing  
accuracy requirements  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
29  
   
Interfaces  
Generic PECI specification details are out of the scope of this document. What follows is  
a processor-specific PECI client definition, and is largely an addendum to the PECI  
Network Layer and Design Recommendations sections for the PECI specification.  
Note:  
The PECI commands described in this document apply primarily to the Intel® Xeon®  
processor E5-1600 v2/E5-2600 v2 product families. The processors utilizes the  
capabilities described in this document to indicate support for four memory channels.  
Refer to Table 2-1 for the list of PECI commands supported by the processors.  
Table 2-1.  
Summary of Processor-specific PECI Commands  
Command  
Supported on the Processor  
Ping()  
GetDIB()  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
GetTemp()  
RdPkgConfig()  
WrPkgConfig()  
RdIAMSR()  
WrIAMSR()  
RdPCIConfig()  
WrPCIConfig()  
RdPCIConfigLocal()  
WrPCIConfigLocal()  
Yes  
No  
Yes  
Yes  
2.5.1  
PECI Client Capabilities  
The processor PECI client is designed to support the following sideband functions:  
• Processor and DRAM thermal management  
• Platform manageability functions including thermal, power, and error monitoring  
— The platform ‘power’ management includes monitoring and control for both the  
processor and DRAM subsystem to assist with data center power limiting.  
2.5.1.1  
Thermal Management  
Processor fan speed control is managed by comparing Digital Thermal Sensor (DTS)  
thermal readings acquired via PECI against the processor-specific fan speed control  
reference point, or T  
. Both T  
and DTS thermal readings are accessible  
CONTROL  
CONTROL  
via the processor PECI client. These variables are referenced to a common  
temperature, the TCC activation point, and are both defined as negative offsets from  
that reference.  
PECI-based access to the processor package configuration space provides a means for  
Baseboard Management Controllers (BMCs) or other platform management devices to  
actively manage the processor and memory power and thermal features. Details on the  
list of available power and thermal optimization services can be found in  
2.5.1.2  
Platform Manageability  
PECI allows read access to certain error registers in the processor MSR space and  
status monitoring registers in the PCI configuration space within the processor and  
downstream devices. Details are covered in subsequent sections.  
30  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
   
Interfaces  
PECI permits writes to certain Memory Controller RAS-related registers in the processor  
PCI configuration space. Details are covered in Section 2.5.2.10.  
2.5.2  
Client Command Suite  
PECI command requires at least one frame check sequence (FCS) byte to ensure  
reliable data exchange between originator and client. The PECI message protocol  
defines two FCS bytes that are returned by the client to the message originator. The  
first FCS byte covers the client address byte, the Read and Write Length bytes, and all  
bytes in the write data block. The second FCS byte covers the read response data  
returned by the PECI client. The FCS byte is the result of a cyclic redundancy check  
(CRC) of each data block.  
2.5.2.1  
Ping()  
Ping() is a required message for all PECI devices. This message is used to enumerate  
devices or determine if a device has been removed, been powered-off, and so forth. A  
Ping() sent to a device address always returns a non-zero Write FCS if the device at the  
targeted address is able to respond.  
2.5.2.1.1  
Command Format  
The Ping() format is as follows:  
Write Length: 0x00  
Read Length: 0x00  
Figure 2-3. Ping()  
Byte #  
0
1
2
3
Write Length  
0x00  
Read Length  
0x00  
Client Address  
FCS  
Byte  
Definition  
An example Ping() command to PECI device address 0x30 is shown below.  
Figure 2-4. Ping() Example  
Byte #  
0
1
2
3
Byte  
0x30  
0x00  
0x00  
0xe1  
Definition  
2.5.2.2  
GetDIB()  
The processor PECI client implementation of GetDIB() includes an 8-byte response and  
provides information regarding client revision number and the number of supported  
domains. All processor PECI clients support the GetDIB() command.  
2.5.2.2.1  
Command Format  
The GetDIB() format is as follows:  
Write Length: 0x01  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
31  
         
Interfaces  
Read Length: 0x08  
Command: 0xf7  
Figure 2-5. GetDIB()  
Byte #  
0
1
2
3
4
Write Length  
0x01  
Read Length  
0x08  
Cmd Code  
0xf7  
Client Address  
FCS  
Byte  
Definition  
5
6
7
8
9
Revision  
Number  
Device Info  
Reserved  
Reserved  
Reserved  
10  
11  
12  
13  
Reserved  
Reserved  
Reserved  
FCS  
2.5.2.2.2  
Device Info  
The Device Info byte gives details regarding the PECI client configuration. At a  
minimum, all clients supporting GetDIB will return the number of domains inside the  
package via this field. With any client, at least one domain (Domain 0) must exist.  
Therefore, the Number of Domains reported is defined as the number of domains in  
addition to Domain 0. For example, if bit 2 of the Device Info byte returns a ‘1, that  
would indicate that the PECI client supports two domains.  
Figure 2-6. Device Info Field Definition  
Byte# 5  
7 6 5 4 3 2 1 0  
Reserved  
# of Domains  
Reserved  
2.5.2.2.3  
Revision Number  
All clients that support the GetDIB command also support Revision Number reporting.  
The revision number may be used by a host or originator to manage different command  
suites or response codes from the client. Revision Number is always reported in the  
second byte of the GetDIB() response. The ‘Major Revision’ number in Figure 2-7  
always maps to the revision number of the PECI specification that the PECI client  
processor is designed to. The ‘Minor Revision’ number value depends on the exact  
command suite supported by the PECI client as defined in Table 2-2.  
32  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
   
Interfaces  
Figure 2-7. Revision Number Definition  
Byte# 6  
7
4
0
3
Major Revision#  
Minor Revision#  
Table 2-2.  
Minor Revision Number Meaning  
Minor Revision  
Supported Command Suite  
0
1
2
3
Ping(), GetDIB(), GetTemp()  
Ping(), GetDIB(), GetTemp(), WrPkgConfig(), RdPkgConfig()  
Ping(), GetDIB(), GetTemp(), WrPkgConfig(), RdPkgConfig(), RdIAMSR()  
Ping(), GetDIB(), GetTemp(), WrPkgConfig(), RdPkgConfig(), RdIAMSR(),  
RdPCIConfigLocal(), WrPCIConfigLocal()  
4
5
6
Ping(), GetDIB(), GetTemp(), WrPkgConfig(), RdPkgConfig(), RdIAMSR(),  
RdPCIConfigLocal(), WrPCIConfigLocal(), RdPCIConfig()  
Ping(), GetDIB(), GetTemp(), WrPkgConfig(), RdPkgConfig(), RdIAMSR(),  
RdPCIConfigLocal(), WrPCIConfigLocal(), RdPCIConfig(), WrPCIConfig()  
Ping(), GetDIB(), GetTemp(), WrPkgConfig(), RdPkgConfig(), RdIAMSR(),  
RdPCIConfigLocal(), WrPCIConfigLocal(), RdPCIConfig(), WrPCIConfig(), WrIAMSR()  
For the processor PECI client, the Revision Number it returns will be ‘0011 0100b.  
2.5.2.3  
GetTemp()  
The GetTemp() command is used to retrieve the die temperature from a target PECI  
address. The temperature is used by the external thermal management system to  
regulate the temperature on the die. The data is returned as a negative value  
representing the number of degrees Celsius below the processor DTS temperature  
(T  
) at which PROCHOT_N asserts. The PECI temperature value of zero  
Prochot  
corresponds to T  
. This also represents the minimum temperature at which the  
Prochot  
processor Thermal Control Circuit activates. The actual value that the thermal  
management system uses as a control set point (T ) is also defined as a  
CONTROL  
negative number below T  
. T  
may be extracted from the processor by  
Prochot  
CONTROL  
issuing a PECI RdPkgConfig() command as described in Section 2.5.2.4 or using a  
RDMSR instruction. T application to fan speed control management is defined in  
CONTROL  
the Intel® Xeon® Processor E5-1600/2600/4600 v1 and v2 Product Families Thermal /  
Mechanical Design Guide.  
Please refer to Section 2.5.7 for details regarding PECI temperature data formatting.  
2.5.2.3.1  
Command Format  
The GetTemp() format is as follows:  
Write Length: 0x01  
Read Length: 0x02  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
33  
     
Interfaces  
Command: 0x01  
Description: Returns the highest die temperature for addressed processor PECI client.  
Figure 2-8. GetTemp()  
Byte #  
0
1
2
3
Write Length  
0x01  
Read Length  
0x02  
Cmd Code  
0x01  
Client Address  
Byte  
Definition  
4
5
6
7
FCS  
Temp[7:0]  
Temp[15:8]  
FCS  
Example bus transaction for a thermal sensor device located at address 0x30 returning  
a value of negative 10 counts is show in Figure 2-9.  
Figure 2-9. GetTemp() Example  
Byte #  
0
1
2
3
Byte  
0x30  
0x01  
0x02  
0x01  
Definition  
4
5
6
7
0xef  
0x80  
0xfd  
0x4b  
2.5.2.3.2  
Supported Responses  
The typical client response is a passing FCS and valid thermal data. Under some  
conditions, the client’s response will indicate a failure. GetTemp() response definitions  
are listed in Table 2-3. Refer to Section 2.5.7.4 for more details on sensor errors.  
Table 2-3.  
GetTemp() Response Definition  
Response  
Meaning  
1
General Sensor Error (GSE)  
Bad Write FCS  
Thermal scan did not complete in time. Retry is appropriate.  
Electrical error  
Abort FCS  
Illegal command formatting (mismatched RL/WL/Command Code)  
Processor is running at its maximum temperature or is currently being reset.  
1
0x0000  
All other data  
Valid temperature reading, reported as a negative offset from T  
.
Prochot  
Notes:  
1.  
This response will be reflected in Bytes 5 & 6 in Figure 2-9.  
2.5.2.4  
RdPkgConfig()  
The RdPkgConfig() command provides read access to the package configuration space  
(PCS) within the processor, including various power and thermal management  
functions. Typical PCS read services supported by the processor may include access to  
temperature data, energy status, run time information, DIMM temperatures and so on.  
Refer to Section 2.5.2.6 for more details on processor-specific services supported  
through this command.  
34  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
       
Interfaces  
2.5.2.4.1  
Command Format  
The RdPkgConfig() format is as follows:  
Write Length: 0x05  
Read Length: 0x05 (dword)  
Command: 0xa1  
Description: Returns the data maintained in the processor package configuration  
space for the PCS entry as specified by the ‘index’ and ‘parameter’ fields. The ‘index’  
field contains the encoding for the requested service and is used in conjunction with the  
‘parameter’ field to specify the exact data being requested. The Read Length dictates  
the desired data return size. This command supports only dword responses on the  
processor PECI clients. All command responses are prepended with a completion code  
that contains additional pass/fail status information. Refer to Section 2.5.5.2 for details  
regarding completion codes.  
Figure 2-10. RdPkgConfig()  
Note: The 2-byte parameter field and 4-byte read data field defined in Figure 2-10 are sent in standard PECI ordering with LSB  
first and MSB last.  
2.5.2.4.2  
Supported Responses  
The typical client response is a passing FCS, a passing Completion Code and valid data.  
Under some conditions, the client’s response will indicate a failure.  
Table 2-4.  
RdPkgConfig() Response Definition  
Response  
Meaning  
Bad Write FCS  
Abort FCS  
CC: 0x40  
Electrical error  
Illegal command formatting (mismatched RL/WL/Command Code)  
Command passed, data is valid.  
CC: 0x80  
Response timeout. The processor is not able to generate the required response in a timely  
fashion. Retry is appropriate.  
CC: 0x81  
CC: 0x90  
Response timeout. The processor is not able to allocate resources for servicing this  
command at this time. Retry is appropriate.  
Unknown/Invalid/Illegal Request  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
35  
   
Interfaces  
Table 2-4.  
RdPkgConfig() Response Definition  
Response  
Meaning  
CC: 0x91  
PECI control hardware, firmware or associated logic error. The processor is unable to  
process the request.  
CC: 0x93  
CC: 0x94  
Pcode MCA - PECI access allowed, but PECI access cannot be completed.  
Pcode MCA - PECI access allowed and access completes. Will respond with the data along  
with the response code.  
2.5.2.5  
WrPkgConfig()  
The WrPkgConfig() command provides write access to the package configuration space  
(PCS) within the processor, including various power and thermal management  
functions. Typical PCS write services supported by the processor may include power  
limiting, thermal averaging constant programming and so on. Refer to Section 2.5.2.6  
for more details on processor-specific services supported through this command.  
2.5.2.5.1  
Command Format  
The WrPkgConfig() format is as follows:  
Write Length: 0x0a(dword)  
Read Length: 0x01  
Command: 0xa5  
AW FCS Support: Yes  
Description: Writes data to the processor PCS entry as specified by the ‘index’ and  
‘parameter’ fields. This command supports only dword data writes on the processor  
PECI clients. All command responses include a completion code that provides  
additional pass/fail status information. Refer to Section 2.5.2.2 for details regarding  
completion codes.  
The Assured Write FCS (AW FCS) support provides the processor client a high degree  
of confidence that the data it received from the host is correct. This is especially  
critical where the consumption of bad data might result in improper or non-recoverable  
operation.  
36  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
Interfaces  
Figure 2-11. WrPkgConfig()  
Note: The 2-byte parameter field and 4-byte write data field defined in Figure 2-11 are sent in standard PECI  
ordering with LSB first and MSB last.  
2.5.2.5.2  
Supported Responses  
The typical client response is a passing FCS, a passing Completion Code and valid data.  
Under some conditions, the client’s response will indicate a failure.  
Table 2-5.  
WrPkgConfig() Response Definition  
Response  
Meaning  
Bad Write FCS  
Abort FCS  
CC: 0x40  
Electrical error or AW FCS failure  
Illegal command formatting (mismatched RL/WL/Command Code)  
Command passed, data is valid.  
CC: 0x80  
Response timeout. The processor was not able to generate the required response in a  
timely fashion. Retry is appropriate.  
CC: 0x81  
Response timeout. The processor is not able to allocate resources for servicing this  
command at this time. Retry is appropriate.  
CC: 0x90  
CC: 0x91  
Unknown/Invalid/Illegal Request  
PECI control hardware, firmware or associated logic error. The processor is unable to  
process the request.  
2.5.2.6  
Package Configuration Capabilities  
Table 2-6 combines both read and write services. Any service listed as a “read” would  
use the RdPkgConfig() command and a service listed as a “write” would use the  
WrPkgConfig() command. PECI requests for memory temperature or other data  
generated outside the processor package do not trigger special polling cycles on the  
processor memory or SMBus interfaces to procure the required information.  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
37  
     
Interfaces  
2.5.2.6.1  
DRAM Thermal and Power Optimization Capabilities  
DRAM thermal and power optimization (also known as RAPL or “Running Average Power  
Limit”) services provide a way for platform thermal management solutions to program  
and access DRAM power, energy and temperature parameters. Memory temperature  
information is typically used to regulate fan speeds, tune refresh rates and throttle the  
memory subsystem as appropriate. Memory temperature data may be derived from a  
variety of sources including on-die or on-board DIMM sensors, DRAM activity  
information or a combination of the two. Though memory temperature data is a byte  
long, range of actual temperature values are determined by the DIMM specifications  
and operating range.  
Note:  
DRAM related PECI services described in this section apply only to the memory  
connected to the specific processor PECI client in question and not the overall platform  
memory in general. For estimating DRAM thermal information in closed loop throttling  
mode, a dedicated SMBus is required between the CPU and the DIMMs. The processor  
PCU requires access to the VR12 voltage regulator for reading average output current  
information through the SVID bus for initial DRAM RAPL related power tuning.  
Table 2-6 provides a summary of the DRAM power and thermal optimization capabilities  
that can be accessed over PECI on the processor. The Index values referenced in  
Table 2-6 are in decimal format.  
Table 2-6 also provides information on alternate inband mechanisms to access similar  
or equivalent information through register reads and writes where applicable. The user  
should consult the Intel® Xeon® Processor E5 v2 Product Family Processor Datasheet,  
Volume Two: Registers for exact details on MSR or CSR register content.  
Table 2-6.  
RdPkgConfig() & WrPkgConfig() DRAM Thermal and Power Optimization  
Services Summary (Sheet 1 of 2)  
Parameter  
Value  
(word)  
RdPkgConfig()  
Data  
WrPkgConfig()  
Data  
Alternate  
Inband  
MSR or CSR  
Access  
Index  
Value  
(decimal)  
Service  
Description  
(dword)  
(dword)  
DRAM  
DRAM Thermal  
Estimation  
N/A  
Read the DRAM  
Thermal  
CSR:  
Thermal  
Configuration  
Data  
MEM_TRML_ESTIMATION_  
Configuration Data  
Estimation  
CONFIG  
0x0000  
0x0000  
15  
15  
configuration  
parameters.  
DRAM  
N/A  
N/A  
DRAM Thermal  
Estimation  
Configuration  
Data  
Configure the  
DRAM Thermal  
Estimation  
CSR:  
Thermal  
Configuration  
Data  
MEM_TRML_ESTIMATION_  
CONFIG  
parameters.  
DRAM Rank  
Absolute  
temperature in  
Degrees Celsius  
for ranks 0, 1, 2  
& 3  
Write  
N/A  
temperature  
for each rank  
within a single  
DIMM.  
Channel  
Index &  
DIMM Index  
18  
14  
DIMM  
Temperature  
Read  
Absolute  
N/A  
Read  
temperature of  
each DIMM  
within a  
CSR: DIMMTEMPSTAT_[0:2]  
temperature in  
Degrees Celsius for  
DIMMs 0, 1, & 2  
Channel  
Index  
channel.  
38  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
 
Interfaces  
Table 2-6.  
RdPkgConfig() & WrPkgConfig() DRAM Thermal and Power Optimization  
Services Summary (Sheet 2 of 2)  
Parameter  
Value  
(word)  
RdPkgConfig()  
Data  
WrPkgConfig()  
Data  
Alternate  
Inband  
MSR or CSR  
Access  
Index  
Value  
(decimal)  
Service  
Description  
(dword)  
(dword)  
DIMM  
N/A  
Absolute  
temperature in  
Degrees C to be  
used as ambient  
temperature  
reference  
Write ambient  
temperature  
reference for  
activity-based  
rank  
temperature  
estimation.  
N/A  
N/A  
N/A  
Temperature  
0x0000  
19  
DIMM  
Temperature  
Absolute  
temperature in  
Degrees C to be  
used as ambient  
temperature  
N/A  
Read ambient  
temperature  
reference for  
activity-based  
rank  
temperature  
estimation.  
0x0000  
0x0000  
19  
22  
reference  
DRAM  
Maximum of all  
rank temperatures  
for each channel in  
Degrees Celsius  
N/A  
N/A  
Read the  
maximum  
DRAM channel  
temperature.  
Temperature  
Accumulated  
DRAM energy  
consumed by the  
DIMMs  
Read the DRAM  
energy  
consumed by  
all the DIMMs  
in all the  
channels or all  
the DIMMs  
within a  
MSR 619h:  
DRAM_ENERGY_STATUS  
CSR: DRAM_ENERGY_STATUS  
Channel  
Index  
0x00FF - All  
Channels  
CSR:  
DRAM_ENERGY_STATUS_CH[  
04  
1
0:3]  
specified  
channel.  
Typical and  
minimum DRAM  
power settings  
N/A  
N/A  
Read DRAM  
power settings  
info to be used  
by power  
MSR 61Ch:  
DRAM_POWER_INFO  
CSR: DRAM_POWER_INFO  
0x0000  
0x0000  
35  
36  
limiting entity.  
Maximum DRAM  
power settings &  
maximum time  
window  
Read DRAM  
power settings  
info to be used  
by power  
MSR 61Ch:  
DRAM_POWER_INFO  
CSR: DRAM_POWER_INFO  
limiting entity  
DRAM Power  
N/A  
DRAM Plane  
Write DRAM  
Power Limit  
Data  
MSR 618h:  
Power Limit Data  
DRAM_POWER_LIMIT  
34  
34  
0x0000  
0x0000  
CSR:  
DRAM_PLANE_POWER_LIMIT  
DRAM Power  
DRAM Plane Power  
Limit Data  
N/A  
N/A  
Read DRAM  
Power Limit  
Data  
MSR 618h:  
DRAM_POWER_LIMIT  
CSR:  
DRAM_PLANE_POWER_LIMIT  
DRAM Power  
Performance  
AccumulatedDRAM  
throttle time  
Read sum of all  
time durations  
for which each  
DIMM has been  
throttled  
CSR:  
DRAM_RAPL_PERF_STATUS  
0x0000  
38  
Notes:  
1.  
Time, energy and power units should be assumed, where applicable, to be based on values returned by a read of the  
PACKAGE_POWER_SKU_UNIT MSR or through the Package Power SKU Unit PCS read service.  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
39  
Interfaces  
2.5.2.6.2  
DRAM Thermal Estimation Configuration Data Read/Write  
This feature is relevant only when activity-based DRAM temperature estimation  
methods are being utilized and would apply to all the DIMMs on all the memory  
channels. The write allows the PECI host to configure the ‘β’ and ‘θ’ variables in  
Figure 2-12 for DRAM channel temperature filtering as per the equation below:  
T = β ∗ T -1 + θ ∗ ΔEnergy  
N
N
T and T  
are the current and previous DRAM temperature estimates respectively in  
N
N-1  
degrees Celsius, ‘β’ is the DRAM temperature decay factor, ΔEnergy’ is the energy  
difference between the current and previous memory transactions as determined by  
the processor power control unit and ‘θ’ is the DRAM energy-to-temperature translation  
coefficient. The default value of ‘β’ is 0x3FF. θ’ is defined by the equation:  
θ = (1 - β) ∗ (Thermal Resistance) ∗ (Scaling Factor)  
The ‘Thermal Resistance’ serves as a multiplier for translation of DRAM energy changes  
to corresponding temperature changes and may be derived from actual platform  
characterization data. The ‘Scaling Factor’ is used to convert memory transaction  
information to energy units in Joules and can be derived from system/memory  
configuration information. Refer to the Intel® 64 and IA-32 Architectures Software  
Developer’s Manual for methods to program and access ‘Scaling Factor’ information.  
Figure 2-12. DRAM Thermal Estimation Configuration Data  
20 19  
31  
10  
9
0
RESERVED  
THETA VARIABLE  
Memory Thermal Estimation Configuration Data  
BETA VARIABLE  
2.5.2.6.3  
DRAM Rank Temperature Write  
This feature allows the PECI host to program into the processor, the temperature for all  
the ranks within a DIMM up to a maximum of four ranks as shown in Figure 2-13. The  
DIMM index and Channel index are specified through the parameter field as shown in  
Table 2-7. This write is relevant in platforms that do not have on-die or on-board DIMM  
thermal sensors to provide memory temperature information or if the processor does  
not have direct access to the DIMM thermal sensors. This temperature information is  
used by the processor in conjunction with the activity-based DRAM temperature  
estimations.  
Table 2-7.  
Channel & DIMM Index Decoding  
Index Encoding  
Physical Channel#  
Physical DIMM#  
000  
001  
010  
011  
0
1
2
3
0
1
2
Reserved  
40  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
       
Interfaces  
Figure 2-13. DRAM Rank Temperature Write Data  
31  
24 23  
16 15  
8 7  
0
Rank# 3  
Absolute Temp  
(in Degrees C)  
Rank# 2  
Absolute Temp  
(in Degrees C)  
Rank# 1  
Absolute Temp  
(in Degrees C)  
Rank# 0  
Absolute Temp  
(in Degrees C)  
Rank Temperature Data  
15  
6 5  
3
2
0
Reserved  
DIMM Index  
Parameter format  
Channel Index  
2.5.2.6.4  
DIMM Temperature Read  
This feature allows the PECI host to read the temperature of all the DIMMs within a  
channel up to a maximum of three DIMMs. This read is not limited to platforms using a  
particular memory temperature source or temperature estimation method. For  
platforms using DRAM thermal estimation, the PCU will provide the estimated  
temperatures. Otherwise, the data represents the latest DIMM temperature provided  
by the TSOD or on-board DIMM sensor and requires that CLTT (closed loop throttling  
mode) be enabled and OLTT (open loop throttling mode) be disabled. Refer to Table 2-7  
for channel index encodings.  
Figure 2-14. The Processor DIMM Temperature Read / Write  
31  
24 23  
16 15  
8
7
0
DIMM# 2  
Absolute Temp  
(in Degrees C)  
DIMM# 1  
Absolute Temp  
(in Degrees C)  
DIMM# 0  
Absolute Temp  
(in Degrees C)  
Reserved  
DIMM Temperature Data  
15  
3
2
0
Reserved  
Parameter format  
Channel Index  
2.5.2.6.5  
DIMM Ambient Temperature Write/Read  
This feature allows the PECI host to provide an ambient temperature reference to be  
used by the processor for activity-based DRAM temperature estimation. This write is  
used only when no DIMM temperature information is available from on-board or on-die  
DIMM thermal sensors. It is also possible for the PECI host controller to read back the  
DIMM ambient reference temperature.  
Since the ambient temperature may vary over time within a system, it is recommended  
that systems monitoring and updating the ambient temperature at a fast rate use the  
‘maximum’ temperature value while those updating the ambient temperature at a slow  
rate use an ‘average’ value. The ambient temperature assumes a single value for all  
memory channel/DIMM locations and does not account for possible temperature  
variations based on DIMM location.  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
41  
     
Interfaces  
Figure 2-15. Ambient Temperature Reference Data  
31  
8
7
0
Ambient  
Temperature  
(in Degrees C)  
Reserved  
Ambient Temperature Reference Data  
2.5.2.6.6  
DRAM Channel Temperature Read  
This feature enables a PECI host read of the maximum temperature of each channel.  
This would include all the DIMMs within the channel and all the ranks within each of the  
DIMMs. Channels that are not populated will return the ‘ambient temperature’ on  
systems using activity-based temperature estimations or alternatively return a ‘zero’  
for systems using sensor-based temperatures.  
Figure 2-16. Processor DRAM Channel Temperature  
31  
24 23  
16 15  
8 7  
0
Channel 2  
Maximum  
Temperature  
Channel 1  
Maximum  
Temperature  
Channel 0  
Maximum  
Temperature  
Channel 3  
Maximum  
Temperature  
(in Degrees C)  
(in Degrees C)  
(in Degrees C)  
(in Degrees C)  
Channel Temperature Data  
2.5.2.6.7  
Accumulated DRAM Energy Read  
This feature allows the PECI host to read the DRAM energy consumed by all the DIMMs  
within all the channels or all the DIMMs within just a specified channel. The parameter  
field is used to specify the channel index. Units used are defined as per the Package  
Power SKU Unit read described in Section 2.5.2.6.11. This information is tracked by a  
32-bit counter that wraps around. The channel index in Figure 2-17 is specified as per  
the index encoding described in Table 2-7. A channel index of 0x00FF is used to specify  
the “all channels” case. While Intel requires reading the accumulated energy data at  
least once every 16 seconds to ensure functional correctness, a more realistic polling  
rate recommendation is once every 100 mS for better accuracy. This feature assumes a  
200W memory capacity. In general, as the power capability decreases, so will the  
minimum polling rate requirement.  
When determining energy changes by subtracting energy values between successive  
reads, Intel advocates using the 2’s complement method to account for counter  
wraparounds. Alternatively, adding all ‘F’s (‘0xFFFFFFFF’) to a negative result from the  
subtraction will accomplish the same goal.  
42  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
       
Interfaces  
Figure 2-17. Accumulated DRAM Energy Data  
31  
0
Accumulated DRAM Energy  
Accumulated DRAM Energy Data  
15  
3
2
0
Reserved  
Channel Index  
Parameter format  
2.5.2.6.8  
DRAM Power Info Read  
This read returns the minimum, typical and maximum DRAM power settings and the  
maximum time window over which the power can be sustained for the entire DRAM  
domain and is inclusive of all the DIMMs within all the memory channels. Any power  
values specified by the power limiting entity that is outside of the range specified  
through these settings cannot be guaranteed. Since this data is 64 bits wide, PECI  
facilitates access to this register by allowing two requests to read the lower 32 bits and  
upper 32 bits separately as shown in Table 2-6. Power and time units for this read are  
defined as per the Package Power SKU Unit settings described in Section 2.5.2.6.11.  
The minimum DRAM power in Figure 2-18 corresponds to a minimum bandwidth  
setting of the memory interface. It does ‘not’ correspond to a processor IDLE or  
memory self-refresh state. The ‘time window’ in Figure 2-18 is representative of the  
rate at which the power control unit (PCU) samples the DRAM energy consumption  
information and reactively takes the necessary measures to meet the imposed power  
limits. Programming too small a time window may not give the PCU enough time to  
sample energy information and enforce the limit while too large a time window runs the  
risk of the PCU not being able to monitor and take timely action on energy excursions.  
While the DRAM power setting in Figure 2-18 provides a maximum value for the ‘time  
window’ (typically a few seconds), the minimum value may be assumed to be  
~100 mS.  
The PCU programs the DRAM power settings described in Figure 2-18 when DRAM  
characterization has been completed by the memory reference code (MRC) during boot  
as indicated by the setting of the RST_CPL bit of the BIOS_RESET_CPL register. The  
DRAM power settings will be programmed during boot independent of the ‘DRAM Power  
Limit Enable’ bit setting. Please refer to the Intel® Xeon® Processor E5 v2 Product  
Family Processor Datasheet, Volume Two: Registers for information on memory energy  
estimation methods and energy tuning options used by BIOS and other utilities for  
determining the range specified in the DRAM power settings. In general, any tuning of  
the power settings is done by polling the voltage regulators supplying the DIMMs.  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
43  
   
Interfaces  
Figure 2-18. DRAM Power Info Read Data  
63  
55 54  
48  
47  
46  
32  
Maximum Time  
Window  
Reserved  
Reserved  
Maximum DRAM Power  
DRAM_POWER_INFO (upper bits)  
31  
Reserved  
30  
16  
15  
14  
0
TDP DRAM Power  
(Typical Value)  
Minimum DRAM Power  
Reserved  
DRAM_POWER_INFO (lower bits)  
2.5.2.6.9  
DRAM Power Limit Data Write/Read  
This feature allows the PECI host to program the power limit over a specified time or  
control window for the entire DRAM domain covering all the DIMMs within all the  
memory channels. Actual values are chosen based on DRAM power consumption  
characteristics. The units for the DRAM Power Limit and Control Time Window are  
determined as per the Package Power SKU Unit settings described in  
Section 2.5.2.6.11. The DRAM Power Limit Enable bit in Figure 2-19 should be set to  
activate this feature. Exact DRAM power limit values are largely determined by platform  
memory configuration. As such, this feature is disabled by default and there are no  
defaults associated with the DRAM power limit values. The PECI host may be used to  
enable and initialize the power limit fields for the purposes of DRAM power budgeting.  
Alternatively, this can also be accomplished through inband writes to the appropriate  
registers. Both power limit enabling and initialization of power limit values can be done  
in the same command cycle. All RAPL parameter values including the power limit value,  
control time window, and enable bit will have to be specified correctly even if the intent  
is to change just one parameter value when programming over PECI.  
The following conversion formula should be used for encoding or programming the  
‘Control Time Window’ in bits [23:17].  
‘y’  
Control Time Window (in seconds) = ([1 + 0.25 * ‘x’] * 2 ) * ‘z’ where  
‘x’ = integer value of bits[23:22]  
‘y’ = integer value of bits[21:17]  
‘z’ = Package Power SKU Time Unit[19:16] (see Section 2.5.2.6.13 for details on  
Package Power SKU Unit)  
For example, using this formula, a control time value of 0x0A will correspond to a  
‘1-second’ time window. A valid range for the value of the ‘Control Time Window’ in  
Figure 2-19 that can be programmed into bits [23:17] is 250 mS - 40 seconds.  
From a DRAM power management standpoint, all post-boot DRAM power management  
activities (also referred to as ‘DRAM RAPL’ or ‘DRAM Running Average Power Limit’)  
should be managed exclusively through a single interface like PECI or alternatively an  
inband mechanism. If PECI is being used to manage DRAM power budgeting activities,  
BIOS should lock out all subsequent inband DRAM power limiting accesses by setting  
bit 31 of the DRAM_POWER_LIMIT MSR or DRAM_PLANE_POWER_LIMIT CSR to ‘1.  
44  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
   
Interfaces  
Figure 2-19. DRAM Power Limit Data  
14  
0
31  
24 23  
17  
16  
15  
DRAM  
Power Limit  
Enable  
Control Time  
Window  
RESERVED  
RESERVED  
DRAM Power Limit  
DRAM_POWER_LIMIT Data  
2.5.2.6.10  
DRAM Power Limit Performance Status Read  
This service allows the PECI host to assess the performance impact of the currently  
active DRAM power limiting modes. The read return data contains the sum of all the  
time durations for which each of the DIMMs has been operating in a low power state.  
This information is tracked by a 32-bit counter that wraps around. The unit for time is  
determined as per the Package Power SKU Unit settings described in  
Section 2.5.2.6.11. The DRAM performance data does not account for stalls on the  
memory interface.  
In general, for the purposes of DRAM RAPL, the DRAM power management entity  
should use PECI accesses to DRAM energy and performance status in conjunction with  
the power limiting feature to budget power between the various memory sub-systems  
in the server system.  
Figure 2-20. DRAM Power Limit Performance Data  
0
31  
Accumulated DRAM Throttle Time  
DRAM Power Limit Performance  
2.5.2.6.11  
CPU Thermal and Power Optimization Capabilities  
Table 2-8 provides a summary of the processor power and thermal optimization  
capabilities that can be accessed over PECI.  
Note:  
The Index values referenced in Table 2-8 are in decimal format.  
Table 2-8 also provides information on alternate inband mechanisms to access similar  
or equivalent information for register reads and writes where applicable. The user  
should consult the appropriate Intel® Xeon® Processor E5 v2 Product Family Processor  
Datasheet, Volume Two: Registers for exact details on MSR or CSR register content.  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
45  
       
Interfaces  
Table 2-8.  
RdPkgConfig() & WrPkgConfig() CPU Thermal and Power Optimization  
Services Summary (Sheet 1 of 3)  
Parameter RdPkgConfig  
WrPkgConfig  
()  
Data  
(dword)  
Alternate  
Inband  
MSR or CSR  
Access  
Index  
Value  
(decimal)  
()  
Value  
(word)  
Service  
Description  
Data  
(dword)  
Package  
00  
0x0000  
CPUID  
Information  
Returns processor-  
specific information  
including CPU family,  
model and stepping  
information.  
Execute CPUID instruction to get  
processor signature  
0x0001  
0x0002  
0x0003  
0x0004  
Platform ID  
Used to ensure  
microcode update  
compatibility with  
processor.  
MSR 17h: IA32_PLATFORM_ID  
CSR: DID  
PCU Device ID  
Max Thread ID  
Returns the Device  
ID information for  
the processor Power  
Control Unit.  
Returns the  
MSR: RESOLVED_CORES_MASK  
CSR: RESOLVED_CORES_MASK  
maximum ‘Thread  
ID’ value supported  
by the processor.  
CPU Microcode  
Update  
Revision  
Returns processor  
microcode and PCU  
firmware revision  
information.  
MSR 8Bh: IA32_BIOS_SIGN_ID  
CSR: MCA_ERR_SRC_LOG  
0x0005  
0x0000  
MCA Error  
Source Log  
Returns the MCA  
Error Source Log  
Package  
30  
Time, Energy  
and Power  
Units  
N/A  
Read units for power,  
energy and time  
used in power  
MSR 606h:  
PACKAGE_POWER_SKU_UNIT  
CSR:  
control registers.  
PACKAGE_POWER_SKU_UNIT  
Package  
28  
0x0000  
PackagePower  
SKU[31:0]  
N/A  
Returns Thermal  
Design Power and  
minimum package  
power values for the  
processor SKU.  
MSR 614h:  
PACKAGE_POWER_SKU  
CSR: PACKAGE_POWER_SKU  
Package  
29  
0x0000  
PackagePower  
SKU[64:32]  
N/A  
Returns the  
MSR 614h:  
maximum package  
power value for the  
processor SKU and  
the maximum time  
interval for which it  
can be sustained.  
PACKAGE_POWER_SKU  
CSR: PACKAGE_POWER_SKU  
“Wake on  
PECI” Mode  
bit Write /  
Read  
05  
05  
0x0001 -  
Set  
0x0000 -  
Reset  
N/A  
“Wake on  
PECI” mode bit pop-up to C2 to  
service PECI  
Enables package  
N/A  
PCIConfig() accesses  
if appropriate.  
“Wake on  
PECI” Mode  
bit Write /  
Read  
0x0000  
“Wake on  
PECI” mode  
bit  
N/A  
Read status of  
“Wake on PECI”  
mode bit  
N/A  
Accumulated  
Run Time  
Read  
31  
02  
0x0000  
0x00FF  
Totalreference  
time  
N/A  
N/A  
Returns the total run  
time.  
MSR 10h:  
IA32_TIME_STAMP_COUNTER  
Package  
Processor  
package  
Temperature  
Returns the  
maximum processor  
die temperature in  
PECI format.  
MSR 1B1h:  
IA32_PACKAGE_THERM_STATUS  
46  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
 
Interfaces  
Table 2-8.  
Service  
RdPkgConfig() & WrPkgConfig() CPU Thermal and Power Optimization  
Services Summary (Sheet 2 of 3)  
Parameter RdPkgConfig  
WrPkgConfig  
()  
Alternate  
Inband  
MSR or CSR  
Access  
Index  
Value  
()  
Value  
Description  
Data  
(word)  
Data  
(decimal)  
(dword)  
(dword)  
Per Core DTS  
Temperature  
Read  
09  
0x0000-  
0x0007  
Per core DTS  
maximum  
temperature  
N/A  
Read the maximum  
DTS temperature of  
a particular core or  
the System Agent  
within the processor  
die in relative PECI  
temperature format  
MSR 19Ch:  
IA32_THERM_STATUS  
(cores 0-7)  
0x00FF -  
System  
Agent  
Temperature  
Target Read  
16  
20  
0x0000  
0x0000  
Processor  
N/A  
N/A  
Returns the  
PROCHOT_N  
assertion  
MSR 1A2h:  
T
and  
TEMPERATURE_TARGET  
Prochot  
T
CONTROL  
CSR: TEMPERATURE_TARGET  
temperature and  
processor T  
.
CONTROL  
Package  
Thermal  
Status Read /  
Clear  
Thermal  
Status  
Register  
Read the thermal  
MSR 1B1h:  
IA32_PACKAGE_THERM_STATUS  
status register and  
optionally clear any  
log bits. The register  
includes status and  
log bits for TCC  
activation,  
PROCHOT_N  
assertion and Critical  
Temperature.  
Thermal  
21  
21  
32  
0x0000  
0x0000  
0x0000  
Thermal  
Averaging  
Constant  
N/A  
Reads the Thermal  
Averaging Constant  
N/A  
N/A  
N/A  
Constant  
Thermal  
N/A  
Thermal  
Averaging  
Constant  
Writes the Thermal  
Averaging Constant  
Constant  
Thermally  
Constrained  
Time Read  
Thermally  
Constrained  
Time  
N/A  
Read the time for  
which the processor  
has been operating  
in a lowered power  
state due to internal  
TCC activation.  
Current Limit  
Read  
17  
03  
0x0000  
Current Limit  
per power  
plane  
N/A  
N/A  
Reads the current  
limit on the VCC  
power plane  
CSR:  
PRIMARY_PLANE_CURRENT_  
CONFIG_CONTROL  
Accumulated  
Energy Status  
Read  
0x0000 -  
VCC  
0x00FF -  
CPU  
package  
Accumulated  
CPU energy  
Returns the value of  
the energy  
MSR 639h: PP0_ENERGY_  
STATUS  
CSR: PP0_ENERGY_STATUS  
consumed by just  
the VCC power plane  
or entire CPU  
package.  
MSR 611h:  
PACKAGE_ENERGY_STATUS  
CSR: PACKAG_ENERGY_STATUS  
Power Limit  
for the VCC  
Power Plane  
Write / Read  
25  
25  
26  
0x0000  
0x0000  
0x0000  
N/A  
Power Limit  
Data  
Program power limit  
for VCC power plane  
MSR 638h: PP0_POWER_LIMIT  
CSR: PP0_POWER_LIMIT  
Power Limit  
for the VCC  
Power Plane  
Write / Read  
Power Limit  
Data  
N/A  
Read power limit  
data for VCC power  
plane  
MSR 638h: PP0_POWER_LIMIT  
CSR: PP0_POWER_LIMIT  
Package  
N/A  
Power Limit 1  
Data  
Write power limit  
data 1 in multiple  
turbo mode.  
MSR 610h:  
PACKAGE_POWER_LIMIT  
CSR: PACKAGE_POWER_LIMIT  
for Multiple  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
47  
Interfaces  
Table 2-8.  
RdPkgConfig() & WrPkgConfig() CPU Thermal and Power Optimization  
Services Summary (Sheet 3 of 3)  
Parameter RdPkgConfig  
WrPkgConfig  
()  
Data  
(dword)  
Alternate  
Inband  
MSR or CSR  
Access  
Index  
Value  
(decimal)  
()  
Value  
(word)  
Service  
Description  
Data  
(dword)  
Package  
27  
26  
27  
08  
0x0000  
0x0000  
0x0000  
N/A  
Power Limit 2  
Data  
Write power limit  
data 2 in multiple  
turbo mode.  
MSR 610h:  
for Multiple  
PACKAGE_POWER_LIMIT  
CSR: PACKAGE_POWER_LIMIT  
Package  
Power Limit 1  
Data  
N/A  
N/A  
N/A  
Read power limit 1  
data in multiple  
turbo mode.  
MSR 610h:  
PACKAGE_POWER_LIMIT  
CSR: PACKAGE_POWER_LIMIT  
for Multiple  
Package  
Power Limit 2  
Data  
Read power limit 2  
data in multiple  
turbo mode.  
MSR 610h:  
PACKAGE_POWER_LIMIT  
CSR: PACKAGE_POWER_LIMIT  
for Multiple  
Package  
0x00FF -  
CPU  
package  
Accumulated  
CPU throttle  
time  
Read the total time  
for which the  
processor package  
was throttled due to  
power limiting.  
CSR:  
Power Limit  
Performance  
Status Read  
PACKAGE_RAPL_PERF_STATUS  
Efficient  
Performance  
Indicator Read  
06  
33  
0x0000  
0x0000  
Number of  
productive  
processor  
cycles  
N/A  
Read number of  
productive cycles for  
power budgeting  
purposes.  
N/A  
N/A  
ACPI P-T  
Notify Write &  
Read  
N/A  
New p-state  
equivalent of  
P1 used in  
conjunction  
with package  
Notify the processor  
PCU of the new p-  
state that is one  
state below the  
turbo frequency as  
power limiting specified through the  
last ACPI Notify  
ACPI P-T  
Notify Write &  
Read  
33  
39  
0x0000  
New p-state  
equivalent of  
P1 used in  
conjunction  
with package  
power limiting  
N/A  
Read the processor  
PCU to determine  
the p-state that is  
one state below the  
turbo frequency as  
specified through the  
last ACPI Notify  
N/A  
N/A  
Caching Agent  
TOR Read  
Cbo Index,  
TOR Index,  
Bank#;  
Caching Agent  
(Cbo) Table of  
Requests  
N/A  
Read the Cbo TOR  
data for all enabled  
cores in the event of  
a 3-strike timeout.  
Can alternatively be  
used to read ‘Core  
ID’ data to confirm  
that IERR was  
(TOR) data;  
Read Mode  
Core ID &  
associated  
valid bit  
caused by a core  
timeout  
Thermal  
Margin Read  
10  
0x0000  
Thermal  
margin to  
processor  
N/A  
Read margin to  
processor thermal  
load line  
N/A  
thermal profile  
or load line  
2.5.2.6.12  
Package Identifier Read  
This feature enables the PECI host to uniquely identify the PECI client processor. The  
parameter field encodings shown in Table 2-8 allow the PECI host to access the  
relevant processor information as described below.  
48  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
 
Interfaces  
CPUID data: This is the equivalent of data that can be accessed through the  
CPUID instruction execution. It contains processor type, stepping, model and  
family ID information as shown in Figure 2-21.  
Figure 2-21. CPUID Data  
4
3
0
31  
28 27  
20 19  
16 15  
14 13  
12 11  
8
7
Extended  
Family ID  
Extended  
Model  
Processor  
Type  
RESERVED  
RESERVED  
Family ID  
Model  
Stepping ID  
CPU ID Data  
Platform ID data: The Platform ID data can be used to ensure processor  
microcode updates are compatible with the processor. The value of the Platform ID  
or Processor Flag[2:0] as shown in Figure 2-22 is typically unique to the platform  
type and processor stepping. Refer to the Intel® 64 and IA-32 Architectures  
Software Developer’s Manual for more information.  
Figure 2-22. Platform ID Data  
31  
0
3
2
Processor  
Flag  
Reserved  
Platform ID Data  
PCU Device ID: This information can be used to uniquely identify the processor  
power control unit (PCU) device when combined with the Vendor Identification  
register content and remains constant across all SKUs. Refer to the appropriate  
register description for the exact processor PCU Device ID value.  
Figure 2-23. PCU Device ID  
16 15  
31  
0
RESERVED  
PCU Device ID  
PCU Device ID Data  
Max Thread ID: The maximum Thread ID data provides the number of supported  
processor threads. This value is dependent on the number of cores within the  
processor as determined by the processor SKU and is independent of whether  
certain cores or corresponding threads are enabled or disabled.  
Figure 2-24. Maximum Thread ID  
31  
4
3
0
Max Thread  
ID  
Reserved  
Maximum Thread ID Data  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
49  
       
Interfaces  
CPU Microcode Update Revision: Reflects the revision number for the microcode  
update and power control unit firmware updates on the processor sample. The  
revision data is a unique 32-bit identifier that reflects a combination of specific  
versions of the processor microcode and PCU control firmware.  
Figure 2-25. Processor Microcode Revision  
31  
0
CPU microcode and PCU firmware revision  
CPU code patch revision  
Machine Check Status: Returns error information as logged by the MCA Error  
Source Log register. See Figure 2-26 for details. The power control unit will assert  
the relevant bit when the error condition represented by the bit occurs. For  
example, bit 29 will be set if the package asserted MCERR, bit 30 is set if the  
package asserted IERR and bit 31 is set if the package asserted CAT_ERR_N. The  
CAT_ERR_N may be used to signal the occurrence of a MCERR or IERR.  
Figure 2-26. Machine Check Status  
31  
30  
29  
28  
0
CATERR  
IERR MCERR  
Reserved  
MCA Error Source Log  
2.5.2.6.13  
Package Power SKU Unit Read  
This feature enables the PECI host to read the units of time, energy and power used in  
the processor and DRAM power control registers for calculating power and timing  
parameters. In Figure 2-27, the default value of the power unit field [3:0] is 0011b,  
energy unit [12:8] is 10000b and the time unit [19:16] is 1010b. Actual unit values are  
calculated as shown in Table 2-9.  
Figure 2-27. Package Power SKU Unit Data  
31  
20 19  
16 15  
13 12  
8
7
4
3
0
Reserved  
Time Unit  
Reserved  
Energy Unit  
Reserved  
Power Unit  
Table 2-9.  
Power Control Register Unit Calculations  
Unit Field  
Value Calculation  
Default Value  
TIME UNIT  
10  
Time  
Energy  
Power  
1s / 2  
1s / 2 = 976 µs  
ENERGY UNIT  
16  
1J / 2  
1J / 2 = 15.3 µJ  
POWER UNIT  
3
1W / 2  
1W / 2 = 1/8 W  
50  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
         
Interfaces  
2.5.2.6.14  
Package Power SKU Read  
This read allows the PECI host to access the minimum, Thermal Design Power and  
maximum power settings for the processor package SKU. It also returns the maximum  
time interval or window over which the power can be sustained. If the power limiting  
entity specifies a power limit value outside of the range specified through these  
settings, power regulation cannot be guaranteed. Since this data is 64 bits wide, PECI  
facilitates access to this register by allowing two requests to read the lower 32 bits and  
upper 32 bits separately as shown in Table 2-8. Power units for this read are  
determined as per the Package Power SKU Unit settings described in  
‘Package Power SKU data’ is programmed by the PCU firmware during boot time based  
on SKU dependent power-on default values set during manufacturing. The TDP  
package power specified through bits [14:0] in Figure 2-28 is the maximum value of  
the ‘Power Limit1’ field in Section 2.5.2.6.26 while the maximum package power in bits  
[46:32] is the maximum value of the ‘Power Limit2’ field.  
The minimum package power in bits [30:16] is applicable to both the ‘Power Limit1’ &  
‘Power Limit2’ fields and corresponds to a mode when all the cores are operational and  
in their lowest frequency mode. Attempts to program the power limit below the  
minimum power value may not be effective since BIOS/OS, and not the PCU, controls  
disabling of cores and core activity.  
The ‘maximum time window’ in bits [54:48] is representative of the maximum rate at  
which the power control unit (PCU) can sample the package energy consumption and  
reactively take the necessary measures to meet the imposed power limits.  
Programming too large a time window runs the risk of the PCU not being able to  
monitor and take timely action on package energy excursions. On the other hand,  
programming too small a time window may not give the PCU enough time to sample  
energy information and enforce the limit. The minimum value of the ‘time window’ can  
be obtained by reading bits [21:15] of the PWR_LIMIT_MISC_INFO CSR using the PECI  
RdPCIConfigLocal() command.  
Figure 2-28. Package Power SKU Data  
63  
55 54  
48  
47  
46  
32  
Maximum Time  
Window  
Reserved  
Reserved  
Maximum Package Power  
Package Power SKU (upper bits)  
31  
Reserved  
30  
16  
15  
14  
0
Minimum Package Power  
Reserved  
TDP Package Power  
Package Power SKU (lower bits)  
2.5.2.6.15  
“Wake on PECI” Mode bit Write / Read  
Setting the “Wake on PECI” mode bit enables successful completion of the  
WrPCIConfigLocal(), RdPCIConfigLocal(), WrPCIConfig() and RdPCIConfig() PECI  
commands by forcing a package ‘pop-up’ to the C2 state to service these commands if  
the processor is in a low-power state. The exact power impact of such a ‘pop-up’ is  
determined by the product SKU, the C-state from which the pop-up is initiated and the  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
51  
   
Interfaces  
negotiated PECI bit rate. A ‘reset’ or ‘clear’ of this bit or simply not setting the “Wake  
on PECI” mode bit could result in a “timeout” response (completion code of 0x82) from  
the processor indicating that the resources required to service the command are in a  
low power state.  
Alternatively, this mode bit can also be read to determine PECI behavior in package  
states C3 or deeper.  
2.5.2.6.16  
2.5.2.6.17  
Accumulated Run Time Read  
This read returns the total time for which the processor has been executing with a  
resolution of 1mS per count. This is tracked by a 32-bit counter that rolls over on  
reaching the maximum value. This counter activates and starts counting for the first  
time at RESET_N de-assertion.  
Package Temperature Read  
This read returns the maximum processor die temperature in 16-bit PECI format. The  
upper 16 bits of the response data are reserved. The PECI temperature data returned  
by this read is an exponential moving average of the maximum sensor temperature  
(max [core and uncore sensors]), updated once every ms. The equation for the update  
is:  
tn  
255  
Tn = Tn – 1  
×
+
------ ------  
256 256  
Where: T is the current average value  
n
T
is the last average value  
n-1  
t is the current maximum sensor temperature  
n
Figure 2-29. Package Temperature Read Data  
31  
16  
15  
14  
6
5
0
Sign  
Bit  
PECI Temperature  
(Integer Value)  
PECI Temperature  
(Fractional Value)  
RESERVED  
Note:  
This value is not the value as returned by the PECI GetTemp() described in  
2.5.2.6.18  
Per Core DTS Temperature Read  
This feature enables the PECI host to read the maximum value of the DTS temperature  
for any specific core within the processor. Alternatively, this service can be used to read  
the System Agent temperature. Temperature is returned in the same format as the  
Package Temperature Read described in Section 2.5.2.6.17. Data is returned in relative  
PECI temperature format.  
Reads to a parameter value outside the supported range will return an error as  
indicated by a completion code of 0x90. The supported range of parameter values can  
vary depending on the number of cores within the processor. The temperature data  
returned through this feature is the instantaneous value and not an averaged value. It  
is updated once every 1 mS.  
52  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
   
Interfaces  
2.5.2.6.19  
Temperature Target Read  
The Temperature Target Read allows the PECI host to obtain the target DTS  
temperature (T  
) for PROCHOT_N assertion in degrees Celsius. This is the  
Prochot  
minimum temperature at which the processor thermal control circuit (TCC) activates.  
The actual temperature of TCC activation may vary slightly between processor units  
due to manufacturing process variations. The Temperature Target read also returns the  
processor T  
value. T  
is returned in standard PECI temperature format  
CONTROL  
CONTROL  
and represents the threshold temperature used by the thermal management system  
for fan speed control.  
Figure 2-30. Temperature Target Read  
2.5.2.6.20  
Package Thermal Status Read / Clear  
The Thermal Status Read provides information on package level thermal status. Data  
includes:  
• Thermal Control Circuit (TCC) activation  
• Bidirectional PROCHOT_N signal assertion  
• Critical Temperature  
Both status and sticky log bits are managed in this status word. All sticky log bits are  
set upon a rising edge of the associated status bit and the log bits are cleared only by  
Thermal Status reads or a processor reset. A read of the Thermal Status word always  
includes a log bit clear mask that allows the host to clear any or all of the log bits that  
it is interested in tracking.  
A bit set to ‘0’ in the log bit clear mask will result in clearing the associated log bit. If a  
mask bit is set to ‘0’ and that bit is not a legal mask, a failing completion code will be  
returned. A bit set to ‘1’ is ignored and results in no change to any sticky log bits. For  
example, to clear the TCC Activation Log bit and retain all other log bits, the Thermal  
Status Read should send a mask of 0xFFFFFFFD.  
Figure 2-31. Thermal Status Word  
31  
6 5 4 3 2 1 0  
Reserved  
Critical Temperature Log  
Critical Temperature Status  
Bidirectional PROCHOT# Log  
Bidirectional PROCHOT#  
Status  
TCC Activation Log  
TCC Activation Status  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
53  
   
Interfaces  
2.5.2.6.21  
Thermal Averaging Constant Write/Read  
This feature allows the PECI host to control the window over which the estimated  
processor PECI temperature is filtered. The host may configure this window as a power  
5
of two. For example, programming a value of 5 results in a filtering window of 2 or 32  
samples. The maximum programmable value is 8 or 256 samples. Programming a  
value of zero would disable the PECI temperature averaging feature. The default value  
of the thermal averaging constant is 4 which translates to an averaging window size of  
4
2 or 16 samples. More details on the PECI temperature filtering function can be found  
Figure 2-32. Thermal Averaging Constant Write / Read  
31  
4
3
0
PECI Temperature  
Averaging Constant  
RESERVED  
Thermal Averaging Constant  
2.5.2.6.22  
Thermally Constrained Time Read  
This features allows the PECI host to access the total time for which the processor has  
been operating in a lowered power state due to TCC activation. The returned data  
includes the time required to ramp back up to the original P-state target after TCC  
activation expires. This timer does not include TCC activation as a result of an external  
assertion of PROCHOT_N. This is tracked by a 32-bit counter with a resolution of 1mS  
per count that rolls over or wraps around. On the processor PECI clients, the only logic  
that can be thermally constrained is that supplied by VCC.  
2.5.2.6.23  
Current Limit Read  
This read returns the current limit for the processor VCC power plane in 1/8A  
increments. Actual current limit data is contained only in the lower 13 bits of the  
response data. The default return value of 0x438 corresponds to a current limit value of  
135A.  
Figure 2-33. Current Config Limit Read Data  
31  
13 12  
0
RESERVED  
Current Limit for processor VCC  
Current Config Limit Data  
2.5.2.6.24  
Accumulated Energy Status Read  
This service can return the value of the total energy consumed by the entire processor  
package or just the logic supplied by the VCC power plane as specified through the  
parameter field in Table 2-8. This information is tracked by a 32-bit counter that wraps  
around and continues counting on reaching its limit. Energy units for this read are  
determined as per the Package Power SKU Unit settings described in  
54  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
     
Interfaces  
While Intel requires reading the accumulated energy data at least once every 16  
seconds to ensure functional correctness, a more realistic polling rate recommendation  
is once every 100mS for better accuracy. This feature assumes a 150W processor. In  
general, as the power capability decreases, so will the minimum polling rate  
requirement.  
When determining energy changes by subtracting energy values between successive  
reads, Intel advocates using the 2’s complement method to account for counter  
wraparounds. Alternatively, adding all ‘F’s (‘0xFFFFFFFF’) to a negative result from the  
subtraction will accomplish the same goal.  
Figure 2-34. Accumulated Energy Read Data  
0
31  
Accumulated CPU Energy  
Accumulated Energy Status  
2.5.2.6.25  
Power Limit for the VCC Power Plane Write / Read  
This feature allows the PECI host to program the power limit over a specified time or  
control window for the processor logic supplied by the VCC power plane. This typically  
includes all the cores, home agent and last level cache. The processor does not support  
power limiting on a per-core basis. Actual power limit values are chosen based on the  
external VR (voltage regulator) capabilities. The units for the Power Limit and Control  
Time Window are determined as per the Package Power SKU Unit settings described in  
Since the exact VCC plane power limit value is a function of the platform VR, this  
feature is not enabled by default and there are no default values associated with the  
power limit value or the control time window. The Power Limit Enable bit in Figure 2-35  
should be set to activate this feature. The Clamp Mode bit is also required to be set to  
allow the cores to go into power states below what the operating system originally  
requested. In general, this feature provides an improved mechanism for VR protection  
compared to the input PROCHOT_N signal assertion method. Both power limit enabling  
and initialization of power limit values can be done in the same command cycle. Setting  
a power limit for the VCC plane enables turbo modes for associated logic. External VR  
protection is guaranteed during boot through operation at safe voltage and frequency.  
All RAPL parameter values including the power limit value, control time window, clamp  
mode and enable bit will have to be specified correctly even if the intent is to change  
just one parameter value when programming over PECI.  
The usefulness of the VCC power plane RAPL may be somewhat limited if the platform  
has a fully compliant external voltage regulator. However, platforms using lower cost  
voltage regulators may find this feature useful. The VCC RAPL value is generally  
expected to be a static value after initialization and there may not be any use cases for  
dynamic control of VCC plane power limit values during run time. BIOS may be ideally  
used to read the VR (and associated heat sink) capabilities and program the PCU with  
the power limit information during boot. No matter what the method is, Intel  
recommends exclusive use of just one entity or interface, PECI for instance, to manage  
VCC plane power limiting needs. If PECI is being used to manage VCC plane power  
limiting activities, BIOS should lock out all subsequent inband VCC plane power limiting  
accesses by setting bit 31 of the PP0_POWER_LIMIT MSR and CSR to ‘1.  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
55  
 
Interfaces  
The same conversion formula used for DRAM Power Limiting (see Section 2.5.2.6.9)  
should be applied for encoding or programming the ‘Control Time Window’ in bits  
[23:17].  
Figure 2-35. Power Limit Data for VCC Power Plane  
14  
0
31  
24 23  
17  
16  
15  
Control Time  
Window  
Clamp  
Mode  
Power Limit  
Enable  
RESERVED  
VCC Plane Power Limit  
VCC Power Plane Power Limit Data  
2.5.2.6.26  
Package Power Limits for Multiple Turbo Modes  
This feature allows the PECI host to program two power limit values to support multiple  
turbo modes. The operating systems and drivers can balance the power budget using  
these two limits. Two separate PECI requests are available to program the lower and  
upper 32 bits of the power limit data shown in Figure 2-36. The units for the Power  
Limit and Control Time Window are determined as per the Package Power SKU Unit  
settings described in Section 2.5.2.6.13 while the valid range for power limit values are  
determined by the Package Power SKU settings described in w are determined as per  
the Package Power SKU Unit settings described in Section 2.5.2.6.14. Setting the  
Clamp Mode bits is required to allow the cores to go into power states below what the  
operating system originally requested. The Power Limit Enable bits should be set to  
enable the power limiting function. Power limit values, enable and clamp mode bits can  
all be set in the same command cycle. All RAPL parameter values including the power  
limit value, control time window, clamp mode and enable bit will have to be specified  
correctly even if the intent is to change just one parameter value when programming  
over PECI.  
Intel recommends exclusive use of just one entity or interface, PECI for instance, to  
manage all processor package power limiting and budgeting needs. If PECI is being  
used to manage package power limiting activities, BIOS should lock out all subsequent  
inband package power limiting accesses by setting bit 31 of the  
PACKAGE_POWER_LIMIT MSR and CSR to ‘1. The ‘power limit 1’ is intended to limit  
processor power consumption to any reasonable value below TDP and defaults to TDP.  
‘Power Limit 1’ values may be impacted by the processor heat sinks and system air  
flow. Processor ‘power limit 2’ can be used as appropriate to limit the current drawn by  
the processor to prevent any external power supply unit issues. The ‘Power Limit 2’  
should always be programmed to a value (typically 20%) higher than ‘Power Limit 1’  
and has no default value associated with it.  
Though this feature is disabled by default and external programming is required to  
enable, initialize and control package power limit values and time windows, the  
processor package will still turbo to TDP if ‘Power Limit 1’ is not enabled or initialized.  
‘Control Time Window#1’ (Power_Limit_1_Time also known as Tau) values may be  
programmed to be within a range of 250 mS-40 seconds. ‘Control Time Window#2’  
(Power_Limit_2_Time) values should be in the range 3 mS-10 mS.  
The same conversion formula used for the DRAM Power Limiting feature (see  
Section 2.5.2.6.9) should be applied when programming the ‘Control Time Window’ bits  
[23:17] for ‘power limit 1’ in Figure 2-36. The ‘Control Time Window’ for ‘power limit 2’  
can be directly programmed into bits [55:49] in units of mS without the aid of any  
conversion formulas.  
56  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
   
Interfaces  
Figure 2-36. Package Turbo Power Limit Data  
46  
32  
63  
56 55  
49  
48  
47  
Control Time  
Window #2  
Clamp  
Mode #2  
Power Limit  
Enable #2  
RESERVED  
RESERVED  
Power Limit # 2  
Power Limit # 1  
Package Power Limit 2  
14  
0
31  
24 23  
17  
16  
15  
Control Time  
Window #1  
Clamp  
Mode #1  
Power Limit  
Enable #1  
Package Power Limit 1  
2.5.2.6.27  
Package Power Limit Performance Status Read  
This service allows the PECI host to assess the performance impact of the currently  
active power limiting modes. The read return data contains the total amount of time for  
which the entire processor package has been operating in a power state that is lower  
than what the operating system originally requested. This information is tracked by a  
32-bit counter that wraps around. The unit for time is determined as per the Package  
Power SKU Unit settings described in w are determined as per the Package Power SKU  
Unit settings described in Section 2.5.2.6.13.  
Figure 2-37. Package Power Limit Performance Data  
0
31  
Accumulated CPU Throttle Time  
Accumulated CPU Throttle Time  
2.5.2.6.28  
Efficient Performance Indicator Read  
The Efficient Performance Indicator (EPI) Read provides an indication of the total  
number of productive cycles. Specifically, these are the cycles when the processor is  
engaged in any activity to retire instructions and as a result, consuming energy. Any  
power management entity monitoring this indicator should sample it at least once  
every 4 seconds to enable detection of wraparounds. Refer to the Intel® 64 and IA-32  
Architectures Software Developer’s Manual, for details on programming the  
IA32_ENERGY_PERFORMANCE_BIAS register to set the ‘Energy Efficiency’ policy of  
the processor.  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
57  
   
Interfaces  
Figure 2-38. Efficient Performance Indicator Read  
0
31  
Efficient Performance Cycles  
Efficient Performance Indicator Data  
2.5.2.6.29  
ACPI P-T Notify Write & Read  
This feature enables the processor turbo capability when used in conjunction with the  
PECI package RAPL or power limit. When the BMC sets the package power limit to a  
value below TDP, it also determines a new corresponding turbo frequency and notifies  
the OS using the ‘ACPI Notify’ mechanism as supported by the _PPC or performance  
present capabilities object. The BMC then notifies the processor PCU using the PECI  
‘ACPI P-T Notify’ service by programming a new state that is one p-state below the  
turbo frequency sent to the OS via the _PPC method.  
When the OS requests a p-state higher than what is specified in bits [7:0] of the PECI  
ACPI P-T Notify data field, the CPU will treat it as request for P0 or turbo. The PCU will  
use the IA32_ENERGY_PERFORMANCE_BIAS register settings to determine the exact  
extent of turbo. Any OS p-state request that is equal to or below what is specified in  
the PECI ACPI P-T Notify will be granted as long as the RAPL power limit does not  
impose a lower p-state. However, turbo will not be enabled in this instance even if there  
is headroom between the processor energy consumption and the RAPL power limit.  
This feature does not affect the Thermal Monitor behavior of the processor nor is it  
impacted by the setting of the power limit clamp mode bit.  
Figure 2-39. ACPI P-T Notify Data  
31  
8
7
0
Reserved  
New P1 state  
ACPI P-T Notify Data  
2.5.2.6.30  
Caching Agent TOR Read  
This feature allows the PECI host to read the Caching Agent (Cbo) Table of Requests  
(TOR). This information is useful for debug in the event of a 3-strike timeout that  
results in a processor IERR assertion. The 16-bit parameter field is used to specify the  
Cbo index, TOR array index and bank number according to the following bit  
assignments.  
• Bits [1:0] - Bank Number - legal values from 0 to 2  
• Bits [6:2] - TOR Array Index - legal values from 0 to 19  
• Bits [10:7] - Cbo Index - legal values from 0 to 7  
• Bit [11] - Read Mode - should be set to ‘0’ for TOR reads, ‘1’ for Core ID reads  
• Bits [15:12] - Reserved  
58  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
   
Interfaces  
Bit[11] is the Read Mode bit and should be set to ‘0’ for TOR reads. The Read Mode bit  
can alternatively be set to ‘1’ to read the ‘Core ID’ (with associated valid bit as shown in  
Figure 2-40) that points to the first core that asserted the IERR. In this case bits [10:0]  
of the parameter field are ignored. The ‘Core ID’ read may not return valid data until at  
least 1 mS after the IERR assertion.  
Figure 2-40. Caching Agent TOR Read Data  
31  
0
Cbo TOR Data  
Read Mode (bit 11) = ‘0’ (within the Paramenter)  
5
4
3
31  
0
Valid  
Core ID  
RESERVED  
Read Mode (bit 11) = ‘1’ (within the Parameter)  
Note: Reads to caching agents that are not enabled will return all zeroes. Refer to the debug handbook for  
details on methods to interpret the crash dump results using the Cbo TOR data shown in Figure 2-40.  
2.5.2.6.31  
Thermal Margin Read  
This service allows the PECI host to read the margin to the processor thermal profile or  
load line. Thermal margin data is returned in the format shown in Figure 2-41 with a  
sign bit, an integer part and a fractional part. A negative thermal margin value implies  
that the processor is operating in violation of its thermal load line and may be indicative  
of a need for more aggressive cooling mechanisms through a fan speed increase or  
other means. This PECI service will continue to return valid margin values even when  
the processor die temperature exceeds T  
.
Prochot  
Figure 2-41. DTS Thermal Margin Read  
31  
16  
15  
14  
6
5
0
Sign  
Bit  
Thermal Margin  
(Integer Value)  
Thermal Margin  
(Fractional Value)  
RESERVED  
2.5.2.7  
RdIAMSR()  
The RdIAMSR() PECI command provides read access to Model Specific Registers  
(MSRs) defined in the processor’s Intel® Architecture (IA). MSR definitions may be  
found in the Intel® Xeon® Processor E5 v2 Product Family Processor Datasheet,  
Volume Two: Registers. Refer to Table 2-11 for the exact listing of processor registers  
accessible through this command.  
2.5.2.7.1  
Command Format  
The RdIAMSR() format is as follows:  
Write Length: 0x05  
Read Length: 0x09 (qword)  
Command: 0xb1  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
59  
   
Interfaces  
Description: Returns the data maintained in the processor IA MSR space as specified  
by the ‘Processor ID’ and ‘MSR Address’ fields. The Read Length dictates the desired  
data return size. This command supports only qword responses. All command  
responses are prepended with a completion code that contains additional pass/fail  
status information. Refer to Section 2.5.5.2 for details regarding completion codes.  
2.5.2.7.2  
Processor ID Enumeration  
The ‘Processor ID’ field that is used to address the IA MSR space refers to a specific  
logical processor within the CPU. The ‘Processor ID’ always refers to the same physical  
location in the processor silicon regardless of configuration as shown in the example in  
Figure 2-42. For example, if certain logical processors are disabled by BIOS, the  
Processor ID mapping will not change. The total number of Processor IDs on a CPU is  
product-specific.  
‘Processor ID’ enumeration involves discovering the logical processors enabled within  
the CPU package. This can be accomplished by reading the ‘Max Thread ID’ value  
through the RdPkgConfig() command (Index 0, Parameter 3) described in  
Section 2.5.2.6.12 and subsequently querying each of the supported processor  
threads. Unavailable processor threads will return a completion code of 0x90.  
Alternatively, this information may be obtained from the RESOLVED_CORES_MASK  
register readable through the RdPCIConfigLocal() PECI command described in  
Section 2.5.2.9 or other means. Bits [7:0] and [9:8] of this register contain the ‘Core  
Mask’ and ‘Thread Mask’ information respectively. The ‘Thread Mask’ applies to all the  
enabled cores within the processor package as indicated by the ‘Core Mask. For  
the processor PECI clients, the ‘Processor ID’ may take on values in the range 0  
through 23.  
Figure 2-42. Processor ID Construction Example  
Cores 0,1,2...12  
C12  
C11  
C10  
…………………  
C3  
C2  
C1  
C0  
T1 T0 T1 T0 T1 T0 T1 T0 T1 T0 T1 T0 T1 T0 T1 T0  
7
23 22  
21 20 19 18 ………………  
6
5
4
3
2
1
0
Processor  
ID (0...23)  
Thread (0,1) Mask for Core10  
60  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
   
Interfaces  
Figure 2-43. RdIAMSR()  
Note: The 2-byte MSR Address field and read data field defined in Figure 2-43 are sent in standard PECI  
ordering with LSB first and MSB last.  
2.5.2.7.3  
Supported Responses  
The typical client response is a passing FCS, a passing Completion Code and valid data.  
Under some conditions, the client’s response will indicate a failure.  
Table 2-10. RdIAMSR() Response Definition  
Response  
Meaning  
Bad FCS  
Abort FCS  
CC: 0x40  
CC: 0x80  
Electrical error  
Illegal command formatting (mismatched RL/WL/Command Code)  
Command passed, data is valid.  
Response timeout. The processor was not able to generate the required response in a timely  
fashion. Retry is appropriate.  
CC: 0x81  
CC: 0x82  
Response timeout. The processor is not able to allocate resources for servicing this command  
at this time. Retry is appropriate.  
The processor hardware resources required to service this command are in a low power state.  
Retry may be appropriate after modification of PECI wake mode behavior if appropriate.  
CC: 0x90  
CC: 0x91  
Unknown/Invalid/Illegal Request  
PECI control hardware, firmware or associated logic error. The processor is unable to process  
the request.  
2.5.2.7.4  
RdIAMSR() Capabilities  
The processor PECI client allows PECI RdIAMSR() access to the registers listed in  
Table 2-11. These registers pertain to the processor core and uncore error banks  
(machine check banks 0 through 19). Information on the exact number of accessible  
banks for the processor device may be obtained by reading the IA32_MCG_CAP[7:0]  
MSR (0x0179). This register may be alternatively read using a RDMSR RBIOS  
instruction. Please consult the Intel® Xeon® Processor E5 v2 Prodcut Family  
Specification Update for more information on the exact number of cores supported by a  
particular processor SKU. Any attempt to read processor MSRs that are not accessible  
over PECI or simply not implemented will result in a completion code of 0x90.  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
61  
   
Interfaces  
PECI access to these registers is expected only when in-band access mechanisms are  
not available.  
12  
Table 2-11. RdIAMSR() Services Summary  
MSR  
Address  
(dword)  
MSR  
Address  
(dword)  
MSR  
Address  
(dword)  
Processor  
ID (byte)  
Processor  
ID (byte)  
Processor  
ID (byte)  
Meaning  
Meaning  
Meaning  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0400  
0x0280  
0x0401  
0x0402  
0x0403  
0x0404  
0x0281  
0x0405  
0x0406  
0x0407  
0x0408  
0x0282  
0x0409  
0x040A  
0x040B  
0x040C  
0x0283  
0x040D  
0x040E  
0x040F  
0x0410  
0x0284  
0x0411  
0x0412  
0x0413  
0x0414  
0x0285  
0x0415  
0x0416  
0x0417  
0x0418  
0x0286  
0x0419  
0x041A  
IA32_MC0_CTL  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x041B  
0x041C  
0x0287  
0x041D  
0x041E  
0x041F  
0x0420  
0x0288  
0x0421  
0x0422  
0x0423  
0x0424  
0x0289  
0x0425  
0x0426  
0x0427  
0x0428  
0x028A  
0x0429  
0x042A  
0x042B  
0x042C  
0x028B  
0x042D  
0x042E  
0x042F  
0x0430  
0x028C  
0x0431  
0x0432  
0x0433  
0x0434  
0x028D  
0x0435  
IA32_MC6_MISC  
IA32_MC7_CTL  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0-0xF  
0x0436  
0x0437  
0x0438  
0x028E  
0x0439  
0x043A  
0x043B  
0x043C  
0x028F  
0x043D  
0x043E  
0x043F  
0x0440  
0x0290  
0x0441  
0x0442  
0x0443  
0x0444  
0x0291  
0x0445  
0x0446  
0x0447  
0x0448  
0x0292  
0x0449  
0x044A  
0x044B  
0x044C  
0x0293  
0x044D  
0x044E  
0x0179  
0x017A  
0x0178  
IA32_MC13_ADDR  
IA32_MC13_MISC  
IA32_MC14_CTL  
IA32_MC0_CTL2  
IA32_MC0_STATUS  
IA32_MC0_ADDR  
IA32_MC7_CTL2  
IA32_MC7_STATUS  
IA32_MC7_ADDR  
IA32_MC7_MISC  
IA32_MC8_CTL  
IA32_MC14_CTL2  
IA32_MC14_STATUS  
IA32_MC14_ADDR  
IA32_MC14_MISC  
IA32_MC15_CTL  
1
IA32_MC0_MISC  
IA32_MC1_CTL  
IA32_MC1_CTL2  
IA32_MC1_STATUS  
IA32_MC1_ADDR  
IA32_MC1_MISC  
IA32_MC8_CTL2  
IA32_MC8_STATUS  
IA32_MC8_ADDR  
IA32_MC8_MISC  
IA32_MC9_CTL  
IA32_MC15_CTL2  
IA32_MC15_STATUS  
IA32_MC15_ADDR  
IA32_MC15_MISC  
IA32_MC16_CTL  
2
IA32_MC2_CTL  
IA32_MC2_CTL2  
IA32_MC2_STATUS  
IA32_MC9_CTL2  
IA32_MC9_STATUS  
IA32_MC9_ADDR  
IA32_MC9_MISC  
IA32_MC10_CTL  
IA32_MC10_CTL2  
IA32_MC10_STATUS  
IA32_MC10_ADDR  
IA32_MC10_MISC  
IA32_MC11_CTL  
IA32_MC11_CTL2  
IA32_MC11_STATUS  
IA32_MC11_ADDR  
IA32_MC11_MISC  
IA32_MC12_CTL  
IA32_MC12_CTL2  
IA32_MC12_STATUS  
IA32_MC12_ADDR  
IA32_MC12_MISC  
IA32_MC13_CTL  
IA32_MC13_CTL2  
IA32_MC13_STATUS  
2
IA32_MC2_ADDR  
IA32_MC16_CTL2  
IA32_MC16_STATUS  
IA32_MC16_ADDR  
IA32_MC16_MISC  
IA32_MC17_CTL  
2
IA32_MC2_MISC  
IA32_MC3_CTL  
IA32_MC3_CTL2  
IA32_MC3_STATUS  
IA32_MC3_ADDR  
IA32_MC3_MISC  
IA32_MC4_CTL  
IA32_MC17_CTL2  
IA32_MC17_STATUS  
IA32_MC17_ADDR  
IA32_MC17_MISC  
IA32_MC18_CTL  
IA32_MC4_CTL2  
IA32_MC4_STATUS  
2
IA32_MC4_ADDR  
IA32_MC18_CTL2  
IA32_MC18_STATUS  
IA32_MC18_ADDR  
IA32_MC18_MISC  
IA32_MC19_CTL  
2
IA32_MC4_MISC  
IA32_MC5_CTL  
IA32_MC5_CTL2  
IA32_MC5_STATUS  
IA32_MC5_ADDR  
IA32_MC5_MISC  
IA32_MC6_CTL  
IA32_MC19_CTL2  
IA32_MC19_STATUS  
IA32_MC19_ADDR  
IA32_MCG_CAP  
IA32_MC6_CTL2  
IA32_MC6_STATUS  
IA32_MC6_ADDR  
IA32_MCG_STATUS  
IA32_MCG_CONTAIN  
Notes:  
1.  
The MCi_ADDR and MCi_MISC registers for machine check banks 2 & 4 are not implemented on the processors. The MCi_CTL  
register for machine check bank 2 is also not implemented.  
62  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
 
Interfaces  
2.  
3.  
The PECI host must determine the total number of machine check banks and the validity of the MCi_ADDR and MCi_MISC  
register contents prior to issuing a read to the machine check bank similar to standard machine check architecture  
enumeration and accesses.  
The information presented in Table 2-11 is applicable to the processor only. No association between bank numbers and logical  
functions should be assumed for any other processor devices (past, present or future) based on the information presented in  
4.  
5.  
6.  
The processor machine check banks 4 through 19 reside in the processor uncore and hence will return the same value  
independent of the processor ID used to access these banks.  
The IA32_MCG_STATUS, IA32_MCG_CONTAIN and IA32_MCG_CAP are located in the uncore and will return the same value  
independent of the processor ID used to access them.  
The processor machine check banks 0 through 3 are core-specific. Since the processor ID is thread-specific and not core-  
specific, machine check banks 0 through 3 will return the same value for a particular core independent of the thread  
referenced by the processor ID.  
PECI accesses to the machine check banks may not be possible in the event of a core hang. A warm reset of the processor  
may be required to read any sticky machine check banks.  
7.  
8.  
9.  
Valid processor ID values may be obtained by using the enumeration methods described in Section 2.5.2.7.2.  
Reads to a machine check bank within a core or thread that is disabled will return all zeroes with a completion code of 0x90.  
10. For SKUs where Intel QPI is disabled or absent, reads to the corresponding machine check banks will return all zeros with a  
completion code of 0x40.  
11. Greyed out services are reserved: MC6, MC8, MC13, MC14, MC15, MC16  
2.5.2.8  
RdPCIConfig()  
The RdPCIConfig() command provides sideband read access to the PCI configuration  
space maintained in downstream devices external to the processor. PECI originators  
may conduct a device/function/register enumeration sweep of this space by issuing  
reads in the same manner that the BIOS would. A response of all 1’s may indicate that  
the device/function/register is unimplemented even with a ‘passing’ completion code.  
Alternatively, reads to unimplemented registers may return a completion code of 0x90  
indicating an invalid request. Responses will follow normal PCI protocol.  
PCI configuration addresses are constructed as shown in Figure 2-44. Under normal in-  
band procedures, the Bus number would be used to direct a read or write to the proper  
device. Actual PCI bus numbers for all PCI devices including the PCH are programmable  
by BIOS. The bus number for PCH devices may be obtained by reading the CPUBUSNO  
CSR. Refer to the Intel® Xeon® Processor E5 v2 Product Family Processor Datasheet,  
Volume Two: Registers document for details on this register.  
Figure 2-44. PCI Configuration Address  
31  
28 27  
20 19  
15 14  
12 11  
0
Reserved  
Device  
Function  
Register  
Bus  
PCI configuration reads may be issued in byte, word or dword granularities.  
2.5.2.8.1  
Command Format  
The RdPCIConfig() format is as follows:  
Write Length: 0x06  
Read Length: 0x05 (dword)  
Command: 0x61  
Description: Returns the data maintained in the PCI configuration space at the  
requested PCI configuration address. The Read Length dictates the desired data return  
size. This command supports only dword responses with a completion code on the  
processor PECI clients. All command responses are prepended with a completion code  
that includes additional pass/fail status information. Refer to Section 2.5.5.2 for details  
regarding completion codes.  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
63  
 
Interfaces  
Figure 2-45. RdPCIConfig()  
Note: The 4-byte PCI configuration address and read data field defined in Figure 2-45 are sent in standard PECI ordering with  
LSB first and MSB last.  
2.5.2.8.2  
Supported Responses  
The typical client response is a passing FCS, a passing Completion Code and valid data.  
Under some conditions, the client’s response will indicate a failure.  
The PECI client response can also vary depending on the address and data. It will  
respond with a passing completion code if it successfully submits the request to the  
appropriate location and gets a response. Exactly what the receiving agent does with  
the data or how it responds is up to that agent and is outside the scope of PECI 3.0.  
Table 2-12. RdPCIConfig() Response Definition  
Response  
Meaning  
Bad FCS  
Abort FCS  
CC: 0x40  
CC: 0x80  
Electrical error  
Illegal command formatting (mismatched RL/WL/Command Code)  
Command passed, data is valid.  
Response timeout. The processor was not able to generate the required response in a  
timely fashion. Retry is appropriate.  
CC: 0x81  
CC: 0x82  
Response timeout. The processor is not able to allocate resources for servicing this  
command at this time. Retry is appropriate.  
The processor hardware resources required to service this command are in a low power  
state. Retry may be appropriate after modification of PECI wake mode behavior if  
appropriate.  
CC: 0x90  
CC: 0x91  
Unknown/Invalid/Illegal Request  
PECI control hardware, firmware or associated logic error. The processor is unable to  
process the request.  
2.5.2.9  
RdPCIConfigLocal()  
The RdPCIConfigLocal() command provides sideband read access to the PCI  
configuration space that resides within the processor. This includes all processor IIO  
and uncore registers within the PCI configuration space as described in the Intel®  
Xeon® Processor E5 v2 Product Family Processor Datasheet, Volume Two: Registers  
document.  
PECI originators may conduct a device/function enumeration sweep of this space by  
issuing reads in the same manner that the BIOS would. A response of all 1’s may  
indicate that the device/function/register is unimplemented even with a ‘passing’  
64  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
     
Interfaces  
completion code. Alternatively, reads to unimplemented or hidden registers may return  
a completion code of 0x90 indicating an invalid request. It is also possible that reads to  
function 0 of non-existent IIO devices issued prior to BIOS POST may return all ‘0’s  
with a passing completion code. PECI originators can access this space even prior to  
BIOS enumeration of the system buses. There is no read restriction on accesses to  
locked registers.  
PCI configuration addresses are constructed as shown in Figure 2-46. Under normal in-  
band procedures, the Bus number would be used to direct a read or write to the proper  
device. PECI reads to the processor IIO devices should specify a bus number of ‘0000’  
and reads to the rest of the processor uncore should specify a bus number of ‘0001’ for  
bits [23:20] in Figure 2-46. Any request made with a bad Bus number is ignored and  
the client will respond with all ‘0’s and a ‘passing’ completion code.  
Figure 2-46. PCI Configuration Address for local accesses  
23  
20 19  
15 14  
12 11  
0
Bus  
Device  
Function  
Register  
2.5.2.9.1  
Command Format  
The RdPCIConfigLocal() format is as follows:  
Write Length: 0x05  
Read Length: 0x02 (byte), 0x03 (word), 0x05 (dword)  
Command: 0xe1  
Description: Returns the data maintained in the PCI configuration space within the  
processor at the requested PCI configuration address. The Read Length dictates the  
desired data return size. This command supports byte, word and dword responses as  
well as a completion code. All command responses are prepended with a completion  
code that includes additional pass/fail status information. Refer to Section 2.5.5.2 for  
details regarding completion codes.  
Figure 2-47. RdPCIConfigLocal()  
0
1
2
3
Byte #  
Write Length  
0x05  
Read Length  
{0x02,0x03,0x05}  
Cmd Code  
0xe1  
Client Address  
Byte  
Definition  
4
5
6
7
8
Host ID[7:1] &  
Retry[0]  
LSB  
PCI Configuration Address  
MSB  
FCS  
12  
13  
14  
9
10  
11  
Completion  
Code  
LSB  
Data (1, 2 or 4 bytes)  
MSB  
FCS  
Note: The 3-byte PCI configuration address and read data field defined in Figure 2-47 are sent in standard PECI ordering with  
LSB first and MSB last.  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
65  
   
Interfaces  
2.5.2.9.2  
Supported Responses  
The typical client response is a passing FCS, a passing Completion Code and valid data.  
Under some conditions, the client’s response will indicate a failure.  
The PECI client response can also vary depending on the address and data. It will  
respond with a passing completion code if it successfully submits the request to the  
appropriate location and gets a response. Exactly what the receiving agent does with  
the data or how it responds is up to that agent and is outside the scope of PECI 3.0.  
Table 2-13. RdPCIConfigLocal() Response Definition  
Response  
Meaning  
Bad FCS  
Abort FCS  
CC: 0x40  
CC: 0x80  
Electrical error  
Illegal command formatting (mismatched RL/WL/Command Code)  
Command passed, data is valid.  
Response timeout. The processor was not able to generate the required response in a  
timely fashion. Retry is appropriate.  
CC: 0x81  
CC: 0x82  
Response timeout. The processor is not able to allocate resources for servicing this  
command at this time. Retry is appropriate.  
The processor hardware resources required to service this command are in a low power  
state. Retry may be appropriate after modification of PECI wake mode behavior if  
appropriate.  
CC: 0x90  
CC: 0x91  
Unknown/Invalid/Illegal Request  
PECI control hardware, firmware or associated logic error. The processor is unable to  
process the request.  
2.5.2.10  
WrPCIConfigLocal()  
The WrPCIConfigLocal() command provides sideband write access to the PCI  
configuration space that resides within the processor. PECI originators can access this  
space even before BIOS enumeration of the system buses. The exact listing of  
supported devices and functions for writes using this command on the processor is  
defined in Table 2-19. The write accesses to registers that are locked will not take effect  
but will still return a completion code of 0x40. However, write accesses to registers that  
are hidden will return a completion code of 0x90.  
Because a WrPCIConfigLocal() command results in an update to potentially critical  
registers inside the processor, it includes an Assured Write FCS (AW FCS) byte as  
part of the write data payload. In the event that the AW FCS mismatches with the  
client-calculated FCS, the client will abort the write and will always respond with a bad  
write FCS.  
PCI Configuration addresses are constructed as shown in Figure 2-46. The write  
command is subject to the same address configuration rules as defined in  
Section 2.5.2.9. PCI configuration writes may be issued in byte, word or dword  
granularity.  
2.5.2.10.1  
Command Format  
The WrPCIConfigLocal() format is as follows:  
Write Length: 0x07 (byte), 0x08 (word), 0x0a (dword)  
Read Length: 0x01  
Command: 0xe5  
66  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
   
Interfaces  
AW FCS Support: Yes  
Description: Writes the data sent to the requested register address. Write Length  
dictates the desired write granularity. The command always returns a completion code  
indicating pass/fail status. Refer to Section 2.5.5.2 for details on completion codes.  
Figure 2-48. WrPCIConfigLocal()  
0
1
2
3
Byte #  
Write Length  
{0x07, 0x08, 0x0a}  
Read Length  
0x01  
Cmd Code  
0xe5  
Client Address  
Byte  
Definition  
4
5
6
7
Host ID[7:1] &  
Retry[0]  
LSB  
PCI Configuration Address  
MSB  
11  
8
9
10  
LSB  
Data (1, 2 or 4 bytes)  
MSB  
12  
13  
FCS  
14  
15  
Completion  
Code  
AW FCS  
FCS  
Note: The 3-byte PCI configuration address and write data field defined in Figure 2-48 are sent in standard PECI ordering with  
LSB first and MSB last.  
2.5.2.10.2  
Supported Responses  
The typical client response is a passing FCS, a passing Completion Code and valid data.  
Under some conditions, the client’s response will indicate a failure.  
The PECI client response can also vary depending on the address and data. It will  
respond with a passing completion code if it successfully submits the request to the  
appropriate location and gets a response. Exactly what the receiving agent does with  
the data or how it responds is up to that agent and is outside the scope of PECI 3.0.  
Table 2-14. WrPCIConfigLocal() Response Definition (Sheet 1 of 2)  
Response  
Meaning  
Bad FCS  
Abort FCS  
CC: 0x40  
CC: 0x80  
Electrical error or AW FCS failure  
Illegal command formatting (mismatched RL/WL/Command Code)  
Command passed, data is valid.  
Response timeout. The processor was not able to generate the required response in a timely  
fashion. Retry is appropriate.  
CC: 0x81  
CC: 0x82  
Response timeout. The processor is not able to allocate resources for servicing this command  
at this time. Retry is appropriate.  
The processor hardware resources required to service this command are in a low power  
state. Retry may be appropriate after modification of PECI wake mode behavior if  
appropriate.  
CC: 0x90  
Unknown/Invalid/Illegal Request  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
67  
   
Interfaces  
Table 2-14. WrPCIConfigLocal() Response Definition (Sheet 2 of 2)  
Response  
Meaning  
CC: 0x91  
PECI control hardware, firmware or associated logic error. The processor is unable to process  
the request.  
2.5.2.10.3  
WrPCIConfigLocal() Capabilities  
On the processor PECI clients, the PECI WrPCIConfigLocal() command provides a  
method for programming certain integrated memory controller and IIO functions as  
described in Table 2-15. Refer to the Intel® Xeon® Processor E5 v2 Product Family  
Processor Datasheet, Volume Two: Registers for more details on specific register  
definitions. It also enables writing to processor REUT (Robust Electrical Unified Test)  
registers associated with the Intel® QPI, PCIe* and DDR3 functions.  
Table 2-15. WrPCIConfigLocal() Memory Controller and IIO Device/Function Support  
Bus  
Device  
Function  
Offset Range  
Description  
0000  
0001  
0001  
0001  
0-5  
15  
15  
15  
0-7  
0
000-FFFh  
104h-127h  
180h-1AFh  
080h-0CFh  
Integrated I/O (IIO) Configuration Registers  
Integrated Memory Controller 0 MEM_HOT_N Registers  
Integrated Memory Controller 0 SMBus Registers  
0
1
Integrated Memory Controller 0 RAS Registers  
(Scrub/Spare)  
0001  
16  
0, 1, 4, 5  
104h-18Bh  
1F4h-1FFh  
Integrated Memory Controller 0 Thermal Control Registers  
0001  
0001  
0001  
0001  
16  
29  
29  
29  
2, 3, 6, 7  
104h-147h  
104h-127h  
180h-1AFh  
080h-0CFh  
Integrated Memory Controller 0 Error Registers  
Integrated Memory Controller 1 MEM_HOT_N Registers  
Integrated Memory Controller 1 SMBus Registers  
0
0
1
Integrated Memory Controller 1 RAS Registers  
(Scrub/Spare)  
0001  
0001  
30  
30  
0, 1, 4, 5  
2, 3, 6, 7  
104h-18Bh  
1F4h-1FFh  
Integrated Memory Controller 1 Thermal Control Registers  
104h-147h  
Integrated Memory Controller 1 Error Registers  
2.5.3  
Client Management  
2.5.3.1  
Power-up Sequencing  
The PECI client will not be available when the PWRGOOD signal is de-asserted. Any  
transactions on the bus during this time will be completely ignored, and the host will  
read the response from the client as all zeroes. PECI client initialization is completed  
approximately 100 µS after the PWRGOOD assertion. This is represented by the start of  
the PECI Client “Data Not Ready” (DNR) phase in Figure 2-49. While in this phase, the  
PECI client will respond normally to the Ping() and GetDIB() commands and return the  
highest processor die temperature of 0x0000 to the GetTemp() command. All other  
commands will get a ‘Response Timeout’ completion in the DNR phase as shown in  
Table 2-16. All PECI services with the exception of core MSR space accesses become  
available ~500 µS after RESET_N de-assertion as shown in Figure 2-49. PECI will be  
fully functional with all services including core accesses being available when the core  
comes out of reset upon completion of the RESET microcode execution.  
In the event of the occurrence of a fatal or catastrophic error, all PECI services with the  
exception of core MSR space accesses will be available during the DNR phase to  
facilitate debug through configuration space accesses.  
68  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
   
Interfaces  
Table 2-16. PECI Client Response During Power-Up  
Response During  
Command  
Response During  
‘Available Except Core Services’  
‘Data Not Ready’  
Ping()  
Fully functional  
Fully functional  
Fully functional  
Fully functional  
GetDIB()  
GetTemp()  
RdPkgConfig()  
Client responds with a ‘hot’ reading or 0x0000 Fully functional  
Client responds with a timeout completion  
code of 0x81  
Fully functional  
WrPkgConfig()  
RdIAMSR()  
Client responds with a timeout completion  
code of 0x81  
Fully functional  
Client responds with a timeout completion  
code of 0x81  
Client responds with a timeout  
completion code of 0x81  
RdPCIConfigLocal()  
WrPCIConfigLocal()  
RdPCIConfig()  
Client responds with a timeout completion  
code of 0x81  
Fully functional  
Fully functional  
Fully functional  
Client responds with a timeout completion  
code of 0x81  
Client responds with a timeout completion  
code of 0x81  
In the event that the processor is tri-stated using power-on-configuration controls, the  
PECI client will also be tri-stated. Processor tri-state controls are described in  
Section 7.3, “Power-On Configuration (POC) Options”.  
Figure 2-49. The Processor PECI Power-up Timeline()  
PWRGOOD  
RESET_N  
idle  
running  
Core execution  
In Reset  
In Reset  
Reset uCode  
Boot BIOS  
PECI Client  
Status  
Available except core  
services  
Data Not Ready  
Fully Operational  
X
SOCKET ID Valid  
SOCKET_ID[1:0]  
2.5.3.2  
2.5.3.3  
Device Discovery  
The PECI client is available on all processors. The presence of a PECI enabled processor  
in a CPU socket can be confirmed by using the Ping() command described in  
Section 2.5.2.1. Positive identification of the PECI revision number can be achieved by  
issuing the GetDIB() command. The revision number acts as a reference to the PECI  
specification document applicable to the processor client definition. Please refer to  
Section 2.5.2.2 for details on GetDIB response formatting.  
Client Addressing  
The PECI client assumes a default address of 0x30. The PECI client address for the  
processor is configured through the settings of the SOCKET_ID[1:0] signals. Each  
processor socket in the system requires that the two SOCKET_ID signals be configured  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
69  
   
Interfaces  
to a different PECI addresses. Strapping the SOCKET_ID[1:0] pins results in  
the client addresses shown in Table 2-17. These package strap(s) are evaluated  
at the assertion of PWRGOOD (as depicted in Figure 2-49). Refer to the appropriate  
Platform Design Guide for recommended resistor values for establishing non-default  
SOCKET_ID settings.  
The client address may not be changed after PWRGOOD assertion, until the next power  
cycle on the processor. Removal of a processor from its socket or tri-stating a processor  
will have no impact to the remaining non-tri-stated PECI client addresses. Since each  
socket in the system should have a unique PECI address, the SOCKET_ID strapping is  
required to be unique for each socket.  
Table 2-17. SOCKET ID Strapping  
SOCKET_ID[1] Strap  
SOCKET_ID[0] Strap  
PECI Client Address  
Ground  
Ground  
VTT  
Ground  
VTT  
0x30  
0x31  
0x32  
0x33  
Ground  
VTT  
VTT  
2.5.3.4  
C-states  
The processor PECI client may be fully functional in most core and package C-states.  
• The Ping(), GetDIB(), GetTemp(), RdPkgConfig() and WrPkgConfig() commands  
have no measurable impact on CPU power in any of the core or package C-states.  
• The RdIAMSR() command will complete normally unless the targeted core is in a C-  
state that is C3 or deeper. The PECI client will respond with a completion code of  
0x82 (see Table 2-22 for definition) for RdIAMSR() accesses in core C-states that  
are C3 or deeper.  
• The RdPCIConfigLocal(), WrPCIConfigLocal(), and RdPCIConfig() commands will  
not impact the core C-states but may have a measurable impact on the package C-  
state. The PECI client will successfully return data without impacting package C-  
state if the resources needed to service the command are not in a low power state.  
— If the resources required to service the command are in a low power state, the  
PECI client will respond with a completion code of 0x82 (see Table 2-22 for  
definition). If this is the case, setting the “Wake on PECI” mode bit as described  
in Section 2.5.2.6 can cause a package ‘pop-up’ to the C2 state and enable  
successful completion of the command. The exact power impact of a pop-up to  
C2 will vary by product SKU, the C-state from which the pop-up is initiated and  
the negotiated PECI bit rate.  
Table 2-18. Power Impact of PECI Commands vs. C-states (Sheet 1 of 2)  
Command  
Ping()  
Power Impact  
Not measurable  
Not measurable  
Not measurable  
Not measurable  
Not measurable  
GetDIB()  
GetTemp()  
RdPkgConfig()  
WrPkgConfig()  
RdIAMSR()  
Not measurable. PECI client will not return valid data in core C-state that is C3 or  
deeper  
RdPCIConfigLocal()  
May require package ‘pop-up’ to C2 state  
70  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
   
Interfaces  
Table 2-18. Power Impact of PECI Commands vs. C-states (Sheet 2 of 2)  
Command  
Power Impact  
WrPCIConfigLocal()  
RdPCIConfig()  
May require package ‘pop-up’ to C2 state  
May require package ‘pop-up’ to C2 state  
2.5.3.5  
S-states  
The processor PECI client is always guaranteed to be operational in the S0 sleep state.  
• The Ping(), GetDIB(), GetTemp(), RdPkgConfig(), WrPkgConfig(),  
RdPCIConfigLocal() and WrPCIConfigLocal() will be fully operational in S0 and S1.  
Responses in S3 or deeper states are dependent on POWERGOOD assertion status.  
• The RdPCIConfig() and RdIAMSR() responses are guaranteed in S0 only. Behavior  
in S1 or deeper states is indeterminate.  
• PECI behavior is indeterminate in the S3, S4 and S5 states and responses to PECI  
originator requests when the PECI client is in these states cannot be guaranteed.  
2.5.3.6  
Processor Reset  
The processor PECI client is fully reset on all RESET_N assertions. Upon deassertion of  
RESET_N where power is maintained to the processor (otherwise known as a ‘warm  
reset’), the following are true:  
• The PECI client assumes a bus Idle state.  
• The Thermal Filtering Constant is retained.  
• PECI SOCKET_ID is retained.  
• GetTemp() reading resets to 0x0000.  
• Any transaction in progress is aborted by the client (as measured by the client no  
longer participating in the response).  
• The processor client is otherwise reset to a default configuration.  
PECI commands that utilize processor resources being reset will receive a ‘resource  
unavailable’ response till the reset sequence is completed.  
2.5.3.7  
System Service Processor (SSP) Mode Support  
Sockets in SSP mode have limited PECI command support. Only the following PECI  
commands will be supported while in SSP mode. Other PECI commands are not  
guaranteed to complete in this mode.  
• Ping  
• RdPCIConfigLocal  
• WrPCIConfigLocal (all uncore and IIO CSRs within the processor PCI configuration  
space will be accessible)  
• RdPkgConfig (Index 0 only)  
Sockets remain in SSP mode until the “Go” handshake is received. This is applicable to  
the following SSP modes.  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
71  
Interfaces  
2.5.3.7.1  
2.5.3.7.2  
BMC INIT Mode  
The BMC INIT boot mode is used to provide a quick and efficient means to transfer  
responsibility for uncore configuration to a service processor like the BMC. In this  
mode, the socket performs a minimal amount of internal configuration and then waits  
for the BMC or service processor to complete the initialization.  
Link Init Mode  
In cases where the socket is not one QPI hop away from the Firmware Agent socket, or  
a working link to the Firmware Agent socket cannot be resolved, the socket is placed in  
Link Init mode. The socket performs a minimal amount of internal configuration and  
waits for complete configuration by BIOS.  
2.5.3.8  
Processor Error Handling  
Availability of PECI services may be affected by the processor PECI client error status.  
Server manageability requirements place a strong emphasis on continued availability of  
PECI services to facilitate logging and debug of the error condition.  
• Most processor PECI client services are available in the event of a CAT_ERR_N  
assertion though they cannot be guaranteed.  
• The Ping(), GetDIB(), GetTemp(), RdPkgConfig() and WrPkgConfig() commands will  
be serviced if the source of the CAT_ERR_N assertion is not in the processor power  
control unit hardware, firmware or associated register logic. Additionally, the  
RdPCIConfigLocal() and WrPCIConfigLocal() commands may also be serviced in this  
case.  
• It is recommended that the PECI originator read Index 0/Parameter 5 using the  
RdPkgConfig() command to debug the CAT_ERR_N assertion.  
— The PECI client will return the 0x91 completion code if the CAT_ERR_N  
assertion is caused by the PCU hardware, firmware or associated logic errors.  
In such an event, only the Ping(), GetTemp() and GetDIB() PECI commands  
may be serviced. All other processor PECI services will be unavailable and  
further debug of the processor error status will not be possible.  
— If the PECI client returns a passing completion code, the originator should use  
the response data to determine the cause of the CAT_ERR_N assertion. In such  
an event, it is also recommended that the PECI originator determine the exact  
suite of available PECI client services by issuing each of the PECI commands.  
The processor will issue ‘timeout’ responses for those services that may not be  
available.  
— If the PECI client continues to return the 0x81 completion code in response to  
multiple retries of the RdPkgConfig() command, no PECI services, with the  
exception of the Ping(), GetTemp() and GetDIB(), will be guaranteed.  
• The RdIAMSR() command may be serviced during a CAT_ERR_N assertion though it  
cannot be guaranteed.  
2.5.3.9  
Originator Retry and Timeout Policy  
The PECI originator may need to retry a command if the processor PECI client responds  
with a ‘response timeout’ completion code or a bad Read FCS. In each instance, the  
processor PECI client may have started the operation but not completed it yet. When  
the 'retry' bit is set, the PECI client will ignore a new request if it exactly matches a  
previous valid request.  
72  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
Interfaces  
The processor PECI client will not clear the semaphore that was acquired to service the  
request until the originator sends the ‘retry’ request in a timely fashion to successfully  
retrieve the response data. In the absence of any automatic timeouts, this could tie up  
shared resources and result in artificial bandwidth conflicts.  
2.5.3.10  
Enumerating PECI Client Capabilities  
The PECI host originator should be designed to support all optional but desirable  
features from all processors of interest. Each feature has a discovery method and  
response code that indicates availability on the destination PECI client.  
The first step in the enumeration process would be for the PECI host to confirm the  
Revision Number through the use of the GetDIB() command. The revision number  
returned by the PECI client processor always maps to the revision number of the PECI  
specification that it is designed to. The Minor Revision Number as described in Table 2-2  
may be used to identify the subset of PECI commands that the processor in question  
supports for any major PECI revision.  
The next step in the enumeration process is to utilize the desired command suite in a  
real execution context. If the Write FCS response is an Abort FCS or if the data  
returned includes an “Unknown/Invalid/Illegal Request” completion code (0x90), then  
the command is unsupported.  
Enumerating known commands without real, execution context data, or attempting  
undefined commands, is dangerous because a write command could result in  
unexpected behavior if the data is not properly formatted. Methods for enumerating  
write commands using carefully constructed and innocuous data are possible, but are  
not guaranteed by the PECI client definition.  
This enumeration procedure is not robust enough to detect differences in bit definitions  
or data interpretation in the message payload or client response. Instead, it is only  
designed to enumerate discrete features.  
2.5.4  
Multi-Domain Commands  
The processor does not support multiple domains, but it is possible that future products  
will, and the following tables are included as a reference for domain-specific definitions.  
Table 2-19. Domain ID Definition  
Domain ID  
Domain Number  
0b01  
0
0b10  
1
Table 2-20. Multi-Domain Command Code Reference (Sheet 1 of 2)  
Domain 0  
Code  
Domain 1  
Code  
Command Name  
GetTemp()  
RdPkgConfig()  
WrPkgConfig()  
RdIAMSR()  
0x01  
0xa1  
0xa5  
0xb1  
0x61  
0xe1  
0x02  
0xa2  
0xa6  
0xb2  
0x62  
0xe2  
RdPCIConfig()  
RdPCIConfigLocal()  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
73  
     
Interfaces  
Table 2-20. Multi-Domain Command Code Reference (Sheet 2 of 2)  
Domain 0  
Code  
Domain 1  
Code  
Command Name  
WrPCIConfigLocal()  
0xe5  
0xe6  
2.5.5  
Client Responses  
2.5.5.1  
Abort FCS  
The Client responds with an Abort FCS under the following conditions:  
• The decoded command is not understood or not supported on this processor (this  
includes good command codes with bad Read Length or Write Length bytes).  
• Assured Write FCS (AW FCS) failure. Under most circumstances, an Assured Write  
failure will appear as a bad FCS. However, when an originator issues a poorly  
formatted command with a miscalculated AW FCS, the client will intentionally abort  
the FCS in order to guarantee originator notification.  
2.5.5.2  
Completion Codes  
Some PECI commands respond with a completion code byte. These codes are designed  
to communicate the pass/fail status of the command and may also provide more  
detailed information regarding the class of pass or fail. For all commands listed in  
Section 2.5.2 that support completion codes, the definition in the following table  
applies. Throughout this document, a completion code reference may be abbreviated  
with ‘CC.  
An originator that is decoding these commands can apply a simple mask as shown in  
Table 2-21 to determine a pass or fail. Bit 7 is always set on a command that did not  
complete successfully and is cleared on a passing command.  
Table 2-21. Completion Code Pass/Fail Mask  
0xxx xxxxb  
1xxx xxxxb  
Command passed  
Command failed  
Table 2-22. Device Specific Completion Code (CC) Definition  
Completion  
Description  
Code  
0x40  
Command Passed  
CC: 0x80  
Response timeout. The processor was not able to generate the required response in a timely  
fashion. Retry is appropriate.  
CC: 0x81  
CC: 0x82  
Response timeout. The processor was not able to allocate resources for servicing this  
command. Retry is appropriate.  
The processor hardware resources required to service this command are in a low power  
state. Retry may be appropriate after modification of PECI wake mode behavior if  
appropriate.  
CC: 0x83-8F  
CC: 0x90  
Reserved  
Unknown/Invalid/Illegal Request  
CC: 0x91  
PECI control hardware, firmware or associated logic error. The processor is unable to process  
the request.  
CC: 0x92-9F  
Reserved  
74  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
       
Interfaces  
Note:  
The codes explicitly defined in Table 2-22 may be useful in PECI originator response  
algorithms. Reserved or undefined codes may also be generated by a PECI client  
device, and the originating agent must be capable of tolerating any code. The Pass/Fail  
mask defined in Table 2-21 applies to all codes, and general response policies may be  
based on this information. Refer to Section 2.5.6 for originator response policies and  
recommendations.  
2.5.6  
Originator Responses  
The simplest policy that an originator may employ in response to receipt of a failing  
completion code is to retry the request. However, certain completion codes or FCS  
responses are indicative of an error in command encoding and a retry will not result in  
a different response from the client. Furthermore, the message originator must have a  
response policy in the event of successive failure responses. Refer to Table 2-22 for  
originator response guidelines.  
Refer to the definition of each command in Section 2.5.2 for a specific definition of  
possible command codes or FCS responses for a given command. The following  
response policy definition is generic, and more advanced response policies may be  
employed at the discretion of the originator developer.  
Table 2-23. Originator Response Guidelines  
Response  
After 1 Attempt  
After 3 Attempts  
Fail with PECI client device error.  
Bad FCS  
Retry  
Retry  
Abort FCS  
Fail with PECI client device error if command was not illegal or  
malformed.  
CC: 0x8x  
CC: 0x9x  
Retry  
The PECI client has failed in its attempts to generate a response.  
Notify application layer.  
Abandon any further  
attempts and notify  
application layer  
n/a  
None (all 0’s)  
Force bus idle (drive  
Fail with PECI client device error. Client may not be alive or may be  
low) for 1 mS and retry otherwise unresponsive (for example, it could be in RESET).  
CC: 0x4x  
Good FCS  
Pass  
Pass  
n/a  
n/a  
2.5.7  
DTS Temperature Data  
2.5.7.1  
Format  
The temperature is formatted in a 16-bit, 2’s complement value representing a number  
of 1/64 degrees Celsius. This format allows temperatures in a range of ±512°C to be  
reported to approximately a 0.016°C resolution.  
Figure 2-50. Temperature Sensor Data Format  
MSB  
Upper nibble  
MSB  
Lower nibble  
LSB  
Upper nibble  
LSB  
Lower nibble  
S
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Sign  
Integer Value (0-511)  
Fractional Value (~0.016)  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
75  
         
Interfaces  
2.5.7.2  
Interpretation  
The resolution of the processor’s Digital Thermal Sensor (DTS) is approximately 1°C,  
which can be confirmed by a RDMSR from the IA32_THERM_STATUS MSR where it is  
architecturally defined. The MSR read will return only bits [13:6] of the PECI  
temperature sensor data defined in Figure 2-50. PECI temperatures are sent through a  
configurable low-pass filter prior to delivery in the GetTemp() response data. The  
output of this filter produces temperatures at the full 1/64°C resolution even though  
the DTS itself is not this accurate.  
Temperature readings from the processor are always negative in a 2’s complement  
format, and imply an offset from the processor TProchot (PECI = 0). For example, if the  
processor TProchot is 100°C, a PECI thermal reading of -10 implies that the processor is  
running at approximately 10°C below TProchot or 90°C. PECI temperature readings are  
not reliable at temperatures above TProchot since the processor is outside its operating  
range and hence, PECI temperature readings are never positive.  
The changes in PECI data counts are approximately linear in relation to changes in  
temperature in degrees Celsius. A change of ‘1’ in the PECI count represents roughly a  
temperature change of 1 degree Celsius. This linearity is approximate and cannot be  
guaranteed over the entire range of PECI temperatures, especially as the offset from  
the maximum PECI temperature (zero) increases.  
2.5.7.3  
Temperature Filtering  
The processor digital thermal sensor (DTS) provides an improved capability to monitor  
device hot spots, which inherently leads to more varying temperature readings over  
short time intervals. Coupled with the fact that typical fan speed controllers may only  
read temperatures at 4Hz, it is necessary for the thermal readings to reflect thermal  
trends and not instantaneous readings. Therefore, PECI supports a configurable low-  
pass temperature filtering function that is expressed by the equation:  
T = (1-α) * T  
+ α * T  
SAMPLE  
N
N-1  
where T and T  
are the current and previous averaged PECI temperature values  
N
N-1  
respectively, T  
is the current PECI temperature sample value and the variable  
SAMPLE  
X
α’ = 1/2 , where ‘X’ is the ‘Thermal Averaging Constant’ that is programmable as  
described in Section 2.5.2.6.21.  
2.5.7.4  
Reserved Values  
Several values well out of the operational range are reserved to signal temperature  
sensor errors. These are summarized in Table 2-24.  
Table 2-24. Error Codes and Descriptions  
Error Code  
Description  
0x8000  
0x8001  
0x8002  
General Sensor Error (GSE)  
Reserved  
Sensor is operational, but has detected a temperature below its operational range  
(underflow)  
0x8003-0x81ff  
Reserved  
§
76  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
     
Technologies  
3 Technologies  
3.1  
Intel® Virtualization Technology (Intel® VT)  
Intel® Virtualization Technology (Intel® VT) makes a single system appear as multiple  
independent systems to software. This allows multiple, independent operating systems  
to run simultaneously on a single system. Intel VT comprises technology components  
to support virtualization of platforms based on Intel architecture microprocessors and  
chipsets.  
Intel® Virtualization Technology (Intel® VT) for Intel® 64 and IA-32  
Intel® Architecture (Intel® VT-x) adds hardware support in the processor to  
improve the virtualization performance and robustness. Intel VT-x specifications  
and functional descriptions are included in the Intel® 64 and IA-32 Architectures  
http://www.intel.com/products/processor/manuals/index.htm  
Intel® Virtualization Technology (Intel® VT) for Directed I/O  
(Intel® VT-d) adds processor and uncore implementations to support and  
improve I/O virtualization performance and robustness. The Intel VT-d spec and  
other Intel VT documents can be referenced at  
3.1.1  
Intel® VT-x Objectives  
Intel VT-x provides hardware acceleration for virtualization of IA platforms. Virtual  
Machine Monitor (VMM) can use Intel VT-x features to provide improved reliable  
virtualized platform. By using Intel VT-x, a VMM is:  
Robust: VMMs no longer need to use para-virtualization or binary translation. This  
means that they will be able to run off-the-shelf OS’s and applications without any  
special steps.  
Enhanced: Intel VT enables VMMs to run 64-bit guest operating systems on IA x86  
processors.  
More reliable: Due to the hardware support, VMMs can now be smaller, less  
complex, and more efficient. This improves reliability and availability and reduces  
the potential for software conflicts.  
More secure: The use of hardware transitions in the VMM strengthens the isolation  
of VMs and further prevents corruption of one VM from affecting others on the  
same system.  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
77  
     
Technologies  
3.1.2  
Intel® VT-x Features  
The processor core supports the following Intel VT-x features:  
• Extended Page Tables (EPT)  
— hardware assisted page table virtualization  
— eliminates VM exits from guest OS to the VMM for shadow page-table  
maintenance  
• Virtual Processor IDs (VPID)  
— Ability to assign a VM ID to tag processor core hardware structures (for  
example, TLBs)  
— This avoids flushes on VM transitions to give a lower-cost VM transition time  
and an overall reduction in virtualization overhead.  
• Guest Preemption Timer  
— Mechanism for a VMM to preempt the execution of a guest OS after an amount  
of time specified by the VMM. The VMM sets a timer value before entering a  
guest  
— The feature aids VMM developers in flexibility and Quality of Service (QoS)  
guarantees  
• Descriptor-Table Exiting  
— Descriptor-table exiting allows a VMM to protect a guest OS from internal  
(malicious software based) attack by preventing relocation of key system data  
structures like IDT (interrupt descriptor table), GDT (global descriptor table),  
LDT (local descriptor table), and TSS (task segment selector).  
— A VMM using this feature can intercept (by a VM exit) attempts to  
relocate these data structures and prevent them from being tampered by  
malicious software.  
• Pause Loop Exiting (PLE)  
— PLE aims to improve virtualization performance and enhance the scaling of  
virtual machines with multiple virtual processors  
— PLE attempts to detect lock-holder preemption in a VM and helps the VMM to  
make better scheduling decisions  
• APIC Virtualization (APICv)  
— APICv adds hardware support in the processor to reduce the overhead of virtual  
interrupt processing (APIC accesses and interrupt delivery). This benefits  
mostly interrupt intensive workloads.  
— In a virtualized environment the virtual machine manager (VMM) must emulate  
nearly all guest OS accesses to the advanced programmable interrupt  
controller (APIC) registers which requires “VM exits” (time-consuming  
transitions to the VMM for emulation and back). These exits are a major source  
of overhead in a virtual environment. Intel's Advanced Programmable Interrupt  
Controller virtualization (APICv) reduces the number of exits by redirecting  
most guest OS APIC reads/writes to a virtual-APIC page to allow most reads to  
occur without VM exits.  
3.1.3  
Intel® VT-d Objectives  
The key Intel VT-d objectives are domain-based isolation and hardware-based  
virtualization. A domain can be abstractly defined as an isolated environment in a  
platform to which a subset of host physical memory is allocated. Virtualization allows  
for the creation of one or more partitions on a single system. This could be multiple  
78  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
   
Technologies  
partitions in the same operating system, or there can be multiple operating system  
instances running on the same system – offering benefits such as system  
consolidation, legacy migration, activity partitioning or security.  
3.1.3.1  
Intel VT-d Features Supported  
The processor supports the following Intel VT-d features:  
• Root entry, context entry, and default context  
• Support for 4-K page sizes only  
• Support for register-based fault recording only (for single entry only) and support  
for MSI interrupts for faults  
— Support for fault collapsing based on Requester ID  
• Support for both leaf and non-leaf caching  
• Support for boot protection of default page table  
— Support for non-caching of invalid page table entries  
• Support for hardware based flushing of translated but pending writes and pending  
reads upon IOTLB invalidation.  
• Support for page-selective IOTLB invalidation.  
• Support for ARI (Alternative Requester ID - a PCI SIG ECR for increasing the  
function number count in a PCIe device) to support IOV devices.  
• Improved invalidation architecture  
• End point caching support (ATS)  
• Interrupt remapping  
3.1.4  
Intel® Virtualization Technology Processor Extensions  
The processor supports the following Intel VT Processor Extensions features:  
• Large Intel VT-d Pages  
— Adds 2 MB and 1 GB page sizes to Intel VT-d implementations  
— Matches current support for Extended Page Tables (EPT)  
— Ability to share CPU's EPT page-table (with super-pages) with Intel VT-d  
— Benefits:  
• Less memory foot-print for I/O page-tables when using super-pages  
• Potential for improved performance - Due to shorter page-walks, allows  
hardware optimization for IOTLB  
Transition latency reductions expected to improve virtualization performance  
without the need for VMM enabling. This reduces the VMM overheads further and  
increase virtualization performance.  
3.2  
Security Technologies  
3.2.1  
Intel® Trusted Execution Technology  
Intel TXT defines platform-level enhancements that provide the building blocks for  
creating trusted platforms.  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
79  
     
Technologies  
The Intel TXT platform helps to provide the authenticity of the controlling environment  
such that those wishing to rely on the platform can make an appropriate trust decision.  
The Intel TXT platform determines the identity of the controlling environment by  
accurately measuring and verifying the controlling software.  
Another aspect of the trust decision is the ability of the platform to resist attempts to  
change the controlling environment. The Intel TXT platform will resist attempts by  
software processes to change the controlling environment or bypass the bounds set by  
the controlling environment.  
Intel TXT is a set of extensions designed to provide a measured and controlled launch  
of system software that will then establish a protected environment for itself and any  
additional software that it may execute.  
These extensions enhance two areas:  
• The launching of the Measured Launched Environment (MLE).  
• The protection of the MLE from potential corruption.  
The enhanced platform provides these launch and control interfaces using Safer Mode  
Extensions (SMX).  
The SMX interface includes the following functions:  
• Measured/Verified launch of the MLE.  
• Mechanisms to ensure the above measurement is protected and stored in a secure  
location.  
• Protection mechanisms that allow the MLE to control attempts to modify itself.  
For more information refer to the Intel® Trusted Execution Technology Software  
3.2.2  
Intel® Trusted Execution Technology – Server Extensions  
• Software binary compatible with Intel® Trusted Execution Technology –  
Server Extensions  
• Provides measurement of runtime firmware, including SMM  
• Enables run-time firmware in trusted session: BIOS and SSP  
• Covers support for existing and expected future Server RAS features  
• Only requires portions of BIOS to be trusted, for example, Option ROMs need not  
be trusted  
• Supports S3 State without teardown: Since BIOS is part of the trust chain  
3.2.3  
AES Instructions  
These instructions enable fast and secure data encryption and decryption, using the  
Advanced Encryption Standard (AES) which is defined by FIPS Publication number 197.  
Since AES is the dominant block cipher, and it is deployed in various protocols, the new  
instructions will be valuable for a wide range of applications.  
80  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
   
Technologies  
The architecture consists of six instructions that offer full hardware support for AES.  
Four instructions support the AES encryption and decryption, and the other two  
instructions support the AES key expansion. Together, they offer a significant increase  
in performance compared to pure software implementations.  
The AES instructions have the flexibility to support all three standard AES key lengths,  
all standard modes of operation, and even some nonstandard or future variants.  
Beyond improving performance, the AES instructions provide important security  
benefits. Since the instructions run in data-independent time and do not use lookup  
tables, they help in eliminating the major timing and cache-based attacks that threaten  
table-based software implementations of AES. In addition, these instructions make AES  
simple to implement, with reduced code size. This helps reducing the risk of  
inadvertent introduction of security flaws, such as difficult-to-detect side channel leaks.  
3.2.4  
Execute Disable Bit  
Intel's Execute Disable Bit functionality can help prevent certain classes of malicious  
buffer overflow attacks when combined with a supporting operating system.  
• Allows the processor to classify areas in memory by where application code can  
execute and where it cannot.  
• When a malicious worm attempts to insert code in the buffer, the processor  
disables code execution, preventing damage and worm propagation.  
3.3  
Intel® Secure Key  
This was formerly known as Digital Random Number Generator (DRNG).  
The processor supports an on-die digital random number generator (DRNG). This  
implementation is based on the ANSI X9.82 2007 draft and the NIST SP800-90  
specification.  
The X9.82 standard describes two components necessary to generate high quality  
random numbers: an Entropy Source and a Deterministic Random Bit Generator  
(DRBG). The Entropy Source is also referred to as a Non-Deterministic Random Bit  
Generator (NRBG).  
3.4  
3.5  
Intel® OS Guard  
This was formerly known as Supervisor Mode Execution Protection (SMEP)  
Supervisor Mode Execution Protection Bit (SMEP) prevents execution and calls to the  
operating system by compromised application in the user mode or code pages. This  
also allows additional malware protection over existing Intel XD bit technology.  
Intel® Hyper-Threading Technology  
The processor supports Intel® Hyper-Threading Technology (Intel® HT Technology),  
which allows an execution core to function as two logical processors. While some  
execution resources such as caches, execution units, and buses are shared, each  
logical processor has its own architectural state with its own set of general-purpose  
registers and control registers. This feature must be enabled via the BIOS and requires  
operating system support.  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
81  
       
Technologies  
For more information on Intel Hyper-Threading Technology, see  
3.6  
Intel® Turbo Boost Technology  
Intel Turbo Boost Technology is a feature that allows the processor to opportunistically  
and automatically run faster than its rated operating frequency if it is operating below  
power, temperature, and current limits. The result is increased performance in multi-  
threaded and single threaded workloads. It should be enabled in the BIOS for the  
processor to operate with maximum performance.  
3.6.1  
Intel® Turbo Boost Operating Frequency  
The processor’s rated frequency assumes that all execution cores are running an  
application at the thermal design power (TDP). However, under typical operation, not  
all cores are active. Therefore most applications are consuming less than the TDP at the  
rated frequency. To take advantage of the available TDP headroom, the active cores can  
increase their operating frequency.  
To determine the highest performance frequency amongst active cores, the processor  
takes the following into consideration:  
• The number of cores operating in the C0 state.  
• The estimated current consumption.  
• The estimated power consumption.  
• The die temperature.  
Any of these factors can affect the maximum frequency for a given workload. If the  
power, current, or thermal limit is reached, the processor will automatically reduce the  
frequency to stay with its TDP limit.  
Note:  
Intel Turbo Boost Technology is only active if the operating system is requesting the P0  
state. For more information on P-states and C-states refer to Section 4, “Power  
3.7  
Enhanced Intel SpeedStep® Technology  
The processor supports Enhanced Intel SpeedStep® Technology as an advanced means  
of enabling very high performance while also meeting the power-conservation needs of  
the platform.  
Enhanced Intel SpeedStep Technology builds upon that architecture using design  
strategies that include the following:  
Separation between Voltage and Frequency Changes. By stepping voltage up  
and down in small increments separately from frequency changes, the processor is  
able to reduce periods of system unavailability (which occur during frequency  
change). Thus, the system is able to transition between voltage and frequency  
states more often, providing improved power/performance balance.  
Clock Partitioning and Recovery. The bus clock continues running during state  
transition, even when the core clock and Phase-Locked Loop are stopped, which  
allows logic to remain active. The core clock is also able to restart more quickly  
under Enhanced Intel SpeedStep Technology.  
For additional information on Enhanced Intel SpeedStep Technology see Section 4.2.1.  
82  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
     
Technologies  
3.8  
Intel® Intelligent Power Technology  
Intel® Intelligent Power Technology conserves power while delivering advanced power-  
management capabilities at the rack, group, and data center level. Providing the  
highest system-level performance per watt with “Automated Low Power States” and  
“Integrated Power Gates. Improvements to this processor generation are:  
• Intel Network Power Management Technology  
• Intel Power Tuning Technology  
3.9  
Intel® Advanced Vector Extensions (Intel® AVX)  
Intel® Advanced Vector Extensions (Intel® AVX) is a 256-bit vector SIMD extension of  
Intel Architecture that continues with the 3rd Generation Intel® Core™ Processor  
Family. Intel AVX accelerates the trend of parallel computation in general purpose  
applications like image, video, and audio processing, engineering applications such as  
3D modeling and analysis, scientific simulation, and financial analysts.  
Intel AVX is a comprehensive ISA extension of the Intel 64 Architecture. The main  
elements of Intel AVX are:  
• Support for wider vector data (up to 256-bit) for floating-point computation.  
• Efficient instruction encoding scheme that supports 3 operand syntax and  
headroom for future extensions.  
• Flexibility in programming environment, ranging from branch handling to relaxed  
memory alignment requirements.  
• New data manipulation and arithmetic compute primitives, including broadcast,  
permute, fused-multiply-add, and so forth.  
• Floating point bit depth conversion (Float 16)  
• A group of 4 instructions that accelerate data conversion between 16-bit  
floating point format to 32-bit and vice versa.  
• This benefits image processing and graphical applications allowing  
compression of data so less memory and bandwidth is required.  
The key advantages of Intel AVX are:  
Performance - Intel AVX can accelerate application performance via data  
parallelism and scalable hardware infrastructure across existing and new  
application domains:  
— 256-bit vector data sets can be processed up to twice the throughput of 128-bit  
data sets.  
— Application performance can scale up with number of hardware threads and  
number of cores.  
— Application domain can scale out with advanced platform interconnect fabrics,  
such as Intel QPI.  
Power Efficiency - Intel AVX is extremely power efficient. Incremental power is  
insignificant when the instructions are unused or scarcely used. Combined with the  
high performance that it can deliver, applications that lend themselves heavily to  
using Intel AVX can be much more energy efficient and realize a higher  
performance-per-watt.  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
83  
   
Technologies  
Extensibility - Intel AVX has built-in extensibility for the future vector extensions:  
— OS context management for vector-widths beyond 256 bits is streamlined.  
— Efficient instruction encoding allows unlimited functional enhancements:  
• Vector width support beyond 256 bits  
• 256-bit Vector Integer processing  
• Additional computational and/or data manipulation primitives.  
Compatibility - Intel AVX is backward compatible with previous ISA extensions  
including Intel SSE4:  
— Existing Intel® SSE applications/library can:  
• Run unmodified and benefit from processor enhancements  
• Recompile existing Intel® SSE intrinsic using compilers that generate  
Intel AVX code  
• Inter-operate with library ported to Intel AVX  
— Applications compiled with Intel AVX can inter-operate with existing Intel SSE  
libraries.  
3.10  
Intel® Dynamic Power Technology  
Intel® Dynamic Power technology (Memory Power Management) is a platform feature  
with the ability to transition memory components into various low power states based  
on workload requirements. The Intel® Xeon® processor E5-1600 v2/E5-2600 v2  
product families platform supports Dynamic CKE (hardware assisted) and Memory Self  
Refresh (software assisted). For further details refer to the ACPI Specifications for  
Memory Power Management document.  
§
84  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
 
Power Management  
4 Power Management  
This chapter provides information on the following power management topics:  
• ACPI States  
• System States  
• Processor Core/Package States  
• Integrated Memory Controller (IMC) and System Memory States  
• Direct Media Interface Gen 2 (DMI2)/PCI Express* Link States  
• Intel QuickPath Interconnect States  
4.1  
ACPI States Supported  
The ACPI states supported by the processor are described in this section.  
4.1.1  
System States  
Table 4-1.  
System States  
State  
Description  
G0/S0  
Full On  
G1/S3-Cold  
G1/S4  
G2/S5  
G3  
Suspend-to-RAM (STR). Context saved to memory.  
Suspend-to-Disk (STD). All power lost (except wakeup on PCH).  
Soft off. All power lost (except wakeup on PCH). Total reboot.  
Mechanical off. All power removed from system.  
4.1.2  
Processor Package and Core States  
Table 4-2 lists the package C-state support as: 1) the shallowest core C-state that  
allows entry into the package C-state, 2) the additional factors that will restrict the  
state from going any deeper, and 3) the actions taken with respect to the Ring Vcc, PLL  
state and LLC.  
Table 4-3 lists the processor core C-states support.  
Table 4-2.  
Package C-State Support (Sheet 1 of 2)  
LLC  
Package  
C-State  
Core  
States  
Retentionand  
PLL-Off  
1
Limiting Factors  
Fully  
Notes  
Flushed  
PC0 -  
Active  
CC0  
CC3-CC6  
N/A  
No  
No  
No  
2
2
PC2 -  
Snoopable  
Idle  
PCIe/PCH and Remote Socket  
Snoops  
PCIe/PCH and Remote Socket  
Accesses  
Interrupt response time  
requirement  
VccMin  
Freq = MinFreq  
PLL = ON  
DMI Sidebands  
Configuration Constraints  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
85  
             
Power Management  
Table 4-2.  
Package C-State Support (Sheet 2 of 2)  
LLC  
Package  
C-State  
Core  
States  
Retentionand  
PLL-Off  
1
Limiting Factors  
Fully  
Notes  
Flushed  
PC3 - Light at least  
Core C-state  
Snoop Response Time  
Interrupt Response Time  
Non Snoop Response Time  
Vcc = retention  
PLL = OFF  
No  
2,3,4, 5  
2,3,4, 5  
Retention  
one Core  
in C3  
PC6 -  
CC6-  
LLC ways open  
Vcc = retention  
PLL = OFF  
No  
Deeper  
Retention  
Snoop Response Time  
Non Snoop Response Time  
Interrupt Response Time  
Notes:  
1.  
2.  
Processor Core and Package C7 is not supported.  
All package states are defined to be “E” states - such that they always exit back into the LFM point upon  
execution resume  
3.  
4.  
The mapping of actions for PC3, and PC6 are suggestions - microcode will dynamically determine which  
actions should be taken based on the desired exit latency parameters.  
CC3/CC6 will all use a voltage below the VccMin operational point; The exact voltage selected will be a  
function of the snoop and interrupt response time requirements made by the devices (PCIe* and DMI) and  
the operating system.  
5.  
The processor supports retention voltage during package C3 and package C6.  
Table 4-3.  
Core C-State Support  
Core C-State  
CC0  
Global Clock  
PLL  
L1/L2 Cache  
Core VCC  
Context  
Running  
Stopped  
Stopped  
Stopped  
Stopped  
On  
On  
On  
On  
Off  
Coherent  
Coherent  
Active  
Active  
Maintained  
Maintained  
CC1  
CC1E  
CC3  
CC6  
Coherent  
Request LFM  
Request Retention  
Power Gate  
Maintained  
Flushed to LLC  
Flushed to LLC  
Maintained  
Flushed to LLC  
4.1.3  
Integrated Memory Controller States  
Table 4-4.  
System Memory Power States (Sheet 1 of 2)  
State  
Description  
Power Up/Normal Operation CKE asserted. Active Mode, highest power consumption.  
CKE Power Down Opportunistic, per rank control after idle time:  
Active Power Down (APD) (default mode)  
— CKE de-asserted. Power savings in this mode, relative to active idle  
state is about 55% of the memory power. Exiting this mode takes 3  
– 5 DCLK cycles.  
Pre-charge Power Down Fast Exit (PPDF)  
— CKE de-asserted. DLL-On. Also known as Fast CKE. Power savings in  
this mode, relative to active idle state is about 60% of the memory  
power. Exiting this mode takes 3 – 5 DCLK cycles.  
Pre-charge Power Down Slow Exit (PPDS)  
— CKE de-asserted. DLL-Off. Also known as Slow CKE. Power savings in  
this mode, relative to active idle state is about 87% of the memory  
power. Exiting this mode takes 3 – 5 DCLK cycles until the first  
command is allowed and 16 cycles until first data is allowed.  
Register CKE Power Down:  
— IBT-ON mode: Both CKE’s are de-asserted, the Input Buffer  
Terminators (IBTs) are left “on.  
— IBT-OFF mode: Both CKE’s are de-asserted, the Input Buffer  
Terminators (IBTs) are turned “off.  
86  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
     
Power Management  
Table 4-4.  
System Memory Power States (Sheet 2 of 2)  
State  
Self-Refresh  
Description  
CKE de-asserted. In this mode, no transactions are executed and the system  
memory consumes the minimum possible power. Self refresh modes apply to  
all memory channels for the processor.  
IO-MDLL Off: Option that sets the IO master DLL off when self refresh  
occurs.  
PLL Off: Option that sets the PLL off when self refresh occurs.  
In addition, the register component found on registered DIMMs (RDIMMs) is  
complemented with the following power down states:  
— Clock Stopped Power Down with IBT-On  
— Clock Stopped Power Down with IBT-Off  
4.1.4  
DMI2/PCI Express* Link States  
Table 4-5.  
DMI2/PCI Express* Link States  
State  
Description  
L0  
L1  
Full on – Active transfer state.  
Lowest Active State Power Management (ASPM) - Longer exit latency.  
Note: L1 is only supported when the DMI2/PCI Express* port is operating as a PCI Express* port.  
4.1.5  
Intel® QuickPath Interconnect States  
Table 4-6.  
Intel® QPI States  
State  
Description  
L0  
Link on. This is the power on active working state,  
L0p  
L1  
A lower power state from L0 that reduces the link from full width to half width  
A low power state with longer latency and lower power than L0s and is  
activated in conjunction with package C-states below C0.  
4.1.6  
G, S, and C State Combinations  
Table 4-7.  
G, S and C State Combinations  
Processor  
Core  
(C) State  
Global (G)  
State  
Sleep  
(S) State  
Processor  
State  
System  
Clocks  
Description  
G0  
G0  
G0  
G0  
S0  
C0  
Full On  
On  
On  
On  
On  
Full On  
S0  
S0  
S0  
C1/C1E  
C3  
Auto-Halt  
Auto-Halt  
Deep Sleep  
Deep Sleep  
C6  
Deep Power  
Down  
Deep Power Down  
G1  
G1  
G2  
G3  
S3  
Power off  
Power off  
Power off  
Power off  
Off, except RTC Suspend to RAM  
Off, except RTC Suspend to Disk  
Off, except RTC Soft Off  
S4  
S5  
N/A  
Power off  
Hard off  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
87  
           
Power Management  
4.2  
Processor Core/Package Power Management  
While executing code, Enhanced Intel SpeedStep® Technology optimizes the  
processor’s frequency and core voltage based on workload. Each frequency and voltage  
operating point is defined by ACPI as a P-state. When the processor is not executing  
code, it is idle. A low-power idle state is defined by ACPI as a C-state. In general, lower  
power C-states have longer entry and exit latencies.  
4.2.1  
Enhanced Intel SpeedStep® Technology  
The following are the key features of Enhanced Intel SpeedStep® Technology:  
• Multiple frequency and voltage points for optimal performance and power  
efficiency. These operating points are known as P-states.  
• Frequency selection is software controlled by writing to processor MSRs. The  
voltage is optimized based on temperature, leakage, power delivery loadline and  
dynamic capacitance.  
— If the target frequency is higher than the current frequency, VCC is ramped up  
to an optimized voltage. This voltage is signaled by the SVID Bus to the voltage  
regulator. Once the voltage is established, the PLL locks on to the target  
frequency.  
— If the target frequency is lower than the current frequency, the PLL locks to the  
target frequency, then transitions to a lower voltage by signaling the target  
voltage on the SVID Bus.  
— All active processor cores share the same frequency and voltage. In a multi-  
core processor, the highest frequency P-state requested amongst all active  
cores is selected.  
— Software-requested transitions are accepted at any time. The processor has a  
new capability from the previous processor generation, it can preempt the  
previous transition and complete the new request without waiting for this  
request to complete.  
• The processor controls voltage ramp rates internally to ensure glitch-free  
transitions.  
• Because there is low transition latency between P-states, a significant number of  
transitions per second are possible.  
4.2.2  
Low-Power Idle States  
When the processor is idle, low-power idle states (C-states) are used to save power.  
More power savings actions are taken for numerically higher C-states. However, higher  
C-states have longer exit and entry latencies. Resolution of C-states occurs at the  
thread, processor core, and processor package level. Thread level C-states are  
available if Intel Hyper-Threading Technology is enabled. Entry and exit of the C-States  
at the thread and core level are shown in Figure 4-2.  
88  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
       
Power Management  
Figure 4-1. Idle Power Management Breakdown of the Processor Cores  
T h re a d 0  
T h re a d 1  
T h re a d 0  
T h re a d 1  
C o re 0 S ta te  
C o re N S ta te  
P ro c e s s o r P a c k a g e S ta te  
Figure 4-2. Thread and Core C-State Entry and Exit  
C0  
MWAIT(C1), HLT  
MWAIT(C6),  
P_LVL3 I/O Read  
MWAIT(C3),  
P_LVL2 I/O Read  
MWAIT(C1), HLT  
(C1E Enabled)  
C1  
C1E  
C3  
C6  
While individual threads can request low power C-states, power saving actions only  
take place once the core C-state is resolved. Core C-states are automatically resolved  
by the processor. For thread and core C-states, a transition to and from C0 is required  
before entering any other C-state.  
4.2.3  
Requesting Low-Power Idle States  
The core C-state will be C1E if all actives cores have also resolved a core C1 state or  
higher.  
The primary software interfaces for requesting low power idle states are through the  
MWAIT instruction with sub-state hints and the HLT instruction (for C1 and C1E).  
However, software may make C-state requests using the legacy method of I/O reads  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
89  
     
Power Management  
from the ACPI-defined processor clock control registers, referred to as P_LVLx. This  
method of requesting C-states provides legacy support for operating systems that  
initiate C-state transitions via I/O reads.  
For legacy operating systems, P_LVLx I/O reads are converted within the processor to  
the equivalent MWAIT C-state request. Therefore, P_LVLx reads do not directly result in  
I/O reads to the system. The feature, known as I/O MWAIT redirection, must be  
enabled in the BIOS.  
Note:  
The P_LVLx I/O Monitor address needs to be set up before using the P_LVLx I/O read  
interface. Each P-LVLx is mapped to the supported MWAIT(Cx) instruction as follows.  
Table 4-8.  
P_LVLx to MWAIT Conversion  
P_LVLx  
P_LVL2  
MWAIT(Cx)  
Notes  
MWAIT(C3)  
The P_LVL2 base address is defined in the PMG_IO_CAPTURE MSR,  
described in the Intel® Xeon® Processor E5 v2 Product Family  
Processor Datasheet, Volume Two: Registers.  
P_LVL3  
MWAIT(C6)  
C6. No sub-states allowed.  
The BIOS can write to the C-state range field of the PMG_IO_CAPTURE MSR to restrict  
the range of I/O addresses that are trapped and emulate MWAIT like functionality. Any  
P_LVLx reads outside of this range does not cause an I/O redirection to MWAIT(Cx) like  
request. They fall through like a normal I/O instruction.  
Note:  
When P_LVLx I/O instructions are used, MWAIT substates cannot be defined. The  
MWAIT substate is always zero if I/O MWAIT redirection is used. By default, P_LVLx I/O  
redirections enable the MWAIT 'break on EFLAGS.IF’ feature which triggers a wakeup  
on an interrupt even if interrupts are masked by EFLAGS.IF.  
4.2.4  
Core C-states  
The following are general rules for all core C-states, unless specified otherwise:  
• A core C-State is determined by the lowest numerical thread state (e.g., Thread 0  
requests C1E while Thread 1 requests C3, resulting in a core C1E state). See  
• A core transitions to C0 state when:  
— an interrupt occurs.  
— there is an access to the monitored address if the state was entered via an  
MWAIT instruction.  
• For core C1/C1E, and core C3, an interrupt directed toward a single thread wakes  
only that thread. However, since both threads are no longer at the same core  
C-state, the core resolves to C0.  
• An interrupt only wakes the target thread for both C3 and C6 states. Any interrupt  
coming into the processor package may wake any core.  
4.2.4.1  
4.2.4.2  
Core C0 State  
The normal operating state of a core where code is being executed.  
Core C1/C1E State  
C1/C1E is a low power state entered when all threads within a core execute a HLT or  
MWAIT(C1/C1E) instruction.  
90  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
   
Power Management  
A System Management Interrupt (SMI) handler returns execution to either Normal  
state or the C1/C1E state. See the Intel® 64 and IA-32 Architecture Software  
Developer’s Manual, Volume 3A/3B: System Programmer’s Guide for more information.  
While a core is in C1/C1E state, it processes bus snoops and snoops from other  
threads. For more information on C1E, see Section 4.2.5.2, “Package C1/C1E”.  
To operate within specification, BIOS must enable the C1E feature for all installed  
processors. Please refer to the Intel® Xeon® Processor E5 v2 Product Family Processor  
Datasheet, Volume Two: Registers for more details.  
4.2.4.3  
4.2.4.4  
4.2.4.5  
Core C3 State  
Individual threads of a core can enter the C3 state by initiating a P_LVL2 I/O read to  
the P_BLK or an MWAIT(C3) instruction. A core in C3 state flushes the contents of its  
L1 instruction cache, L1 data cache, and L2 cache to the shared L3 cache, while  
maintaining its architectural state. All core clocks are stopped at this point. Because the  
core’s caches are flushed, the processor does not wake any core that is in the C3 state  
when either a snoop is detected or when another core accesses cacheable memory.  
Core C6 State  
Individual threads of a core can enter the C6 state by initiating a P_LVL3 I/O read or an  
MWAIT(C6) instruction. Before entering core C6, the core will save its architectural  
state to a dedicated SRAM. Once complete, a core will have its voltage reduced to zero  
volts. In addition to flushing core caches core architecture state is saved to the uncore.  
Once the core state save is completed, core voltage is reduced to zero. During exit, the  
core is powered on and its architectural state is restored.  
Delayed Deep C-States  
The Delayed Deep C-states (DDCst) feature on this processor replaces the “C-state  
auto-demotion” scheme used in the previous processor generation. Deep C-states are  
defined as CC3 through CC6 (refer to Table 4-3 for supported deep c-states).  
The Delayed Deep C-states are intended to allow a staged entry into deeper C-states  
whereby the processor enters a lighter, short exit-latency C-state (core C1) for a period  
of time before committing to a long exit-latency deep C-state (core C3 and core C6).  
This is intended to allow the processor to get past the cluster of short-duration idles,  
providing each of those with a very fast wake-up time, but to still get the power benefit  
of the deep C-states on the longer idles.  
4.2.5  
Package C-States  
The processor supports C0, C1/C1E, C2, C3, and C6 power states. The following is a  
summary of the general rules for package C-state entry. These apply to all package  
C-states unless specified otherwise:  
• A package C-state request is determined by the lowest numerical core C-state  
amongst all cores.  
• A package C-state is automatically resolved by the processor depending on the  
core idle power states and the status of the platform components.  
— Each core can be at a lower idle power state than the package if the platform  
does not grant the processor permission to enter a requested package C-state.  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
91  
 
Power Management  
— The platform may allow additional power savings to be realized in the  
processor.  
• For package C-states, the processor is not required to enter C0 before entering any  
other C-state.  
The processor exits a package C-state when a break event is detected. Depending on  
the type of break event, the processor does the following:  
• If a core break event is received, the target core is activated and the break event  
message is forwarded to the target core.  
— If the break event is not masked, the target core enters the core C0 state and  
the processor enters package C0.  
— If the break event is masked, the processor attempts to re-enter its previous  
package state.  
• If the break event was due to a memory access or snoop request.  
— But the platform did not request to keep the processor in a higher package  
C-state, the package returns to its previous C-state.  
— And the platform requests a higher power C-state, the memory access or snoop  
request is serviced and the package remains in the higher power C-state.  
The package C-states fall into two categories: independent and coordinated.  
C0/C1/C1E are independent, while C2/C3/C6 are coordinated.  
Package C-states are based on exit latency requirements which are accumulated from  
the PCIe* devices, PCH, and software sources. The level of power savings that can be  
achieved is a function of the exit latency requirement from the platform. As a result,  
there is no fixed relationship between the coordinated C-state of a package, and the  
power savings that will be obtained from the state. Coordinated package C-states offer  
a range of power savings which is a function of the guaranteed exit latency requirement  
from the platform.  
There is also a concept of Execution Allowed (EA), when EA status is 0, the cores in a  
socket are in C3 or a deeper state, a socket initiates a request to enter a coordinated  
package C-state. The coordination is across all sockets and the PCH.  
Table 4-9 shows an example of a dual-core processor package C-state resolution.  
Figure 4-3 summarizes package C-state transitions with package C2 as the interim  
between PC0 and PC1 prior to PC3 and PC6.  
Table 4-9.  
Coordination of Core Power States at the Package Level  
Core 1  
Package C-State  
C0  
C1  
C3  
C6  
C0  
C0  
C0  
C0  
C0  
C1  
C3  
C6  
1
1
1
C0  
C0  
C0  
C1  
C1  
C1  
C1  
C3  
C3  
C1  
C3  
C6  
1
1
1. The package C-state will be C1E if all actives cores have resolved a core C1 state or higher.  
92  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
 
Power Management  
Figure 4-3. Package C-State Entry and Exit  
C0  
C1  
C2  
C3  
C6  
4.2.5.1  
4.2.5.2  
Package C0  
The normal operating state for the processor. The processor remains in the normal  
state when at least one of its cores is in the C0 or C1 state or when the platform has  
not granted permission to the processor to go into a low power state. Individual cores  
may be in lower power idle states while the package is in C0.  
Package C1/C1E  
No additional power reduction actions are taken in the package C1 state. However, if  
the C1E substate is enabled, the processor automatically transitions to the lowest  
supported core clock frequency, followed by a reduction in voltage. Autonomous power  
reduction actions which are based on idle timers, can trigger depending on the activity  
in the system.  
The package enters the C1 low power state when:  
• At least one core is in the C1 state.  
• The other cores are in a C1 or lower power state.  
The package enters the C1E state when:  
• All cores have directly requested C1E via MWAIT(C1) with a C1E sub-state hint.  
• All cores are in a power state lower that C1/C1E but the package low power state is  
limited to C1/C1E via the PMG_CST_CONFIG_CONTROL MSR.  
• All cores have requested C1 using HLT or MWAIT(C1) and C1E auto-promotion is  
enabled in POWER_CTL.  
No notification to the system occurs upon entry to C1/C1E.  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
93  
   
Power Management  
4.2.5.3  
Package C2 State  
Package C2 state is an intermediate state which represents the point at which the  
system level coordination is in progress. The package cannot reach this state unless all  
cores are in at least C3.  
The package will remain in C2 when:  
• it is awaiting for a coordinated response  
• the coordinated exit latency requirements are too stringent for the package to take  
any power saving actions  
If the exit latency requirements are high enough the package will transition to C3 or C6  
depending on the state of the cores.  
4.2.5.4  
Package C3 State  
A processor enters the package C3 low power state when:  
• At least one core is in the C3 state.  
• The other cores are in a C3 or lower power state, and the processor has been  
granted permission by the platform.  
• L3 shared cache retains context and becomes inaccessible in this state.  
• Additional power savings actions, as allowed by the exit latency requirements,  
include putting Intel QPI and PCIe* links in L1, the uncore is not available, further  
voltage reduction can be taken.  
In package C3, the ring will be off and as a result no accesses to the LLC are possible.  
The content of the LLC is preserved.  
4.2.5.5  
Package C6 State  
A processor enters the package C6 low power state when:  
• At least one core is in the C6 state.  
• The other cores are in a C6 or lower power state, and the processor has been  
granted permission by the platform.  
• L3 shared cache retains context and becomes inaccessible in this state.  
• Additional power savings actions, as allowed by the exit latency requirements,  
include putting Intel QPI and PCIe* links in L1, the uncore is not available, further  
voltage reduction can be taken.  
In package C6 state, all cores have saved their architectural state and have had their  
core voltages reduced to zero volts. The LLC retains context, but no accesses can be  
made to the LLC in this state, the cores must break out to the internal state package C2  
for snoops to occur.  
94  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
Power Management  
4.2.6  
Package C-State Power Specifications  
The table below lists the processor package C-state power specifications for various  
processor SKUs. For details on processor SKU information, see Table 1-1, “HCC, MCC,  
Table 4-10. Package C-State Power Specifications  
1
2
3
3
TDP SKUs  
150W WS (8cores)  
C1E (W)  
C3 (W)  
C6 (W)  
58  
47  
47  
53  
53  
53  
53  
47  
47  
47  
48  
27  
22  
22  
35  
28  
28  
28  
22  
22  
22  
22  
14  
15  
14  
14  
14  
13  
13  
15  
14  
14  
14  
130W 1U (12-cores)  
130W 1U (10-cores)  
130W 1U and 2U (8cores)  
130W 2U (6-cores)  
130W 2U (4-cores)  
130W 1S WS (6/4-cores)  
115W (12-cores)  
115W (10-cores)  
95W (10cores)  
95W (8cores)  
18 (E5-2640 v2)  
95W (6/4-cores)  
80W (6/4-cores)  
47  
42  
22  
30  
13  
13  
21 (E5-2620 v2)  
21 (E5-2603 v2)  
70W (10cores)  
39  
38  
47  
39  
21  
20  
20  
22  
20  
13  
13  
12  
14  
13  
12  
60W (6cores)  
LV95W (10cores)  
LV70W (10/8-cores)  
LV50W (6cores)  
Notes:  
1.  
SKU’s are subject to change. Please contact your Intel Field Representative to obtain the latest SKU  
information.  
o
2.  
3.  
Package C1E power specified at Tcase=60 C  
o
Package C3/C6 power specified at Tcase = 50 C  
4.2.7  
Processor Package Power Specifications  
Processor package power, Pmax, is defined by the maximum instantaneous power at the  
socket and is reported by the PACKAGE_POWER_SKU MSR/CSR Registers. For details  
on processor SKU information, see Table 1-1, “HCC, MCC, and LCC SKU Table  
Table 4-11. Processor Package Power Pmax  
TDP SKUs  
P
(W)  
max  
150W WS (8cores)  
230  
130W 1U (12/10/8-cores)  
130W 2U (8-cores)  
200  
200  
175  
190  
130W 2U (6/4-cores)  
130W 1S WS (6-cores)  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
95  
       
Power Management  
Table 4-11. Processor Package Power Pmax  
TDP SKUs  
P
(W)  
max  
130W 1S WS (4-cores)  
115W (12/10-cores)  
95W (10/8-cores)  
95W (6/4-cores)  
80W (6/4-cores)  
70W (10-cores)  
175  
180  
150  
130  
110  
120  
100  
150  
120  
75  
60W (6-cores)  
LV95W (10-cores)  
LV70W (10/8-cores)  
LV50W (6-cores)  
4.3  
System Memory Power Management  
The DDR3 power states can be summarized as the following:  
• Normal operation (highest power consumption).  
• CKE Power-Down: Opportunistic, per rank control after idle time. There may be  
different levels.  
— Active Power-Down.  
— Precharge Power-Down with Fast Exit.  
— Precharge power Down with Slow Exit.  
• Self Refresh: In this mode no transaction is executed. The DDR consumes the  
minimum possible power.  
4.3.1  
CKE Power-Down  
The CKE input land is used to enter and exit different power-down modes. The memory  
controller has a configurable activity timeout for each rank. Whenever no reads are  
present to a given rank for the configured interval, the memory controller will transition  
the rank to power-down mode.  
The memory controller transitions the DRAM to power-down by de-asserting CKE and  
driving a NOP command. The memory controller will tri-state all DDR interface lands  
except CKE (de-asserted) and ODT while in power-down. The memory controller will  
transition the DRAM out of power-down state by synchronously asserting CKE and  
driving a NOP command.  
When CKE is off the internal DDR clock is disabled and the DDR power is significantly  
reduced.  
The DDR defines three levels of power-down:  
• Active power-down: This mode is entered if there are open pages when CKE is de-  
asserted. In this mode the open pages are retained. Existing this mode is 3 - 5  
DCLK cycles.  
• Precharge power-down fast exit: This mode is entered if all banks in DDR are  
precharged when de-asserting CKE. Existing this mode is 3 - 5 DCLK cycles.  
Difference from the active power-down mode is that when waking up all page-  
buffers are empty.  
96  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
   
Power Management  
• Precharge power-down slow exit: In this mode the data-in DLL’s on DDR are off.  
Existing this mode is 3 - 5 DCLK cycles until the first command is allowed, but  
about 16 cycles until first data is allowed.  
4.3.2  
Self Refresh  
The Power Control Unit (PCU) may request the memory controller to place the DRAMs  
in self refresh state. Self refresh per channel is supported. The BIOS can put the  
channel in self-refresh if software remaps memory to use a subset of all channels. Also  
processor channels can enter self refresh autonomously without PCU instruction when  
the package is in a package C0 state.  
4.3.2.1  
Self Refresh Entry  
Self refresh entrance can be either disabled or triggered by an idle counter. Idle counter  
always clears with any access to the memory controller and remains clear as long as  
the memory controller is not drained. As soon as the memory controller is drained, the  
counter starts counting, and when it reaches the idle-count, the memory controller will  
place the DRAMs in self refresh state.  
Power may be removed from the memory controller core at this point. But VCCD supply  
(1.5 V or 1.35 V) to the DDR IO must be maintained.  
4.3.2.2  
Self Refresh Exit  
Self refresh exit can be either a message from an external unit (PCU in most cases, but  
also possibly from any message-channel master) or as reaction for an incoming  
transaction.  
Here are the proper actions on self refresh exit:  
• CK is enabled, and four CK cycles driven.  
• When proper skew between Address/Command and CK are established, assert  
CKE.  
• Issue NOPs for tXSRD cycles.  
• Issue ZQCL to each rank.  
• The global scheduler will be enabled to issue commands.  
4.3.2.3  
DLL and PLL Shutdown  
Self refresh, according to configuration, may be a trigger for master DLL shut-down  
and PLL shut-down. The master DLL shut-down is issued by the memory controller  
after the DRAMs have entered self refresh.  
The PLL shut-down and wake-up is issued by the PCU. The memory controller gets a  
signal from PLL indicating that the memory controller can start working again.  
4.3.3  
DRAM I/O Power Management  
Unused signals are tristated to save power. This includes all signals associated with an  
unused memory channel.  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
97  
   
Power Management  
The I/O buffer for an unused signal should be tristated (output driver disabled), the  
input receiver (differential sense-amp) should be disabled. The input path must be  
gated to prevent spurious results due to noise on the unused signals (typically handled  
automatically when input receiver is disabled).  
4.4  
DMI2/PCI Express* Power Management  
Active State Power Management (ASPM) support using L1 state, L0s is not supported.  
§
98  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
 
Thermal Management Specifications  
5 Thermal Management  
Specifications  
5.1  
Package Thermal Specifications  
The processor requires a thermal solution to maintain temperatures within operating  
limits. Any attempt to operate the processor outside these limits may result in  
permanent damage to the processor and potentially other components within the  
system, see Section 7.7.1, “Storage Condition Specifications.Maintaining the proper  
thermal environment is key to reliable, long-term system operation.  
A complete solution includes both component and system level thermal management  
features. Component level thermal solutions can include active or passive heatsinks  
attached to the processor integrated heat spreader (IHS). Typical system level thermal  
solutions may consist of system fans combined with ducting and venting.  
This section provides data necessary for developing a complete thermal solution. For  
more information on designing a component level thermal solution, refer to the Intel®  
Xeon® Processor E5-1600/2600/4600 v1 and v2 Product Families Thermal /  
Mechanical Design Guide.  
5.1.1  
Thermal Specifications  
To allow optimal operation and long-term reliability of Intel processor-based systems,  
the processor must remain within the minimum and maximum case temperature  
(TCASE) specifications as defined by the applicable thermal profile. Thermal solutions  
not designed to provide sufficient thermal capability may affect the long-term reliability  
of the processor and system. For more details on thermal solution design, please refer  
to the Intel® Xeon® Processor E5-1600/2600/4600 v1 and v2 Product Families  
Thermal / Mechanical Design Guide.  
The processors implement a methodology for managing processor temperatures which  
is intended to support acoustic noise reduction through fan speed control and to assure  
processor reliability. Selection of the appropriate fan speed is based on the relative  
temperature data reported by the processor’s Platform Environment Control Interface  
If the DTS value is less than TCONTROL, then the case temperature is permitted to  
exceed the Thermal Profile, but the DTS value must remain at or below TCONTROL.  
For TCASE implementations, if DTS is greater than TCONTROL, then the case  
temperature must meet the TCASE based Thermal Profiles.  
For DTS implementations:  
• TCASE thermal profile can be ignored during processor run time.  
• If DTS is greater than Tcontrol then follow DTS thermal profile specifications for fan  
speed optimization.  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
99  
       
Thermal Management Specifications  
The temperature reported over PECI is always a negative value and represents a delta  
below the onset of thermal control circuit (TCC) activation, as indicated by PROCHOT_N  
(see Chapter 7, “Electrical Specifications”). Systems that implement fan speed control  
must be designed to use this data. Systems that do not alter the fan speed need to  
guarantee the case temperature meets the thermal profile specifications.  
The processor thermal profiles for planned SKUs are summarized in Section 5.1.3,  
“Processor Operational Thermal Specifications.Thermal profiles ensure adherence to  
Intel reliability requirements.  
Thermal Profile 2U is representative of a volumetrically unconstrained thermal solution  
(that is, industry enabled 2U heatsink). With adherence to the thermal profile, it is  
expected that the Thermal Control Circuit (TCC) would be activated for very brief  
periods of time when running the most power intensive applications.  
Thermal Profile 1U is indicative of a constrained thermal environment (that is, 1U form  
factor). Because of the reduced cooling capability represented by this thermal solution,  
the probability of TCC activation and performance loss is increased. Additionally,  
utilization of a thermal solution that does not meet Thermal Profile 1U will violate the  
thermal specifications and may result in permanent damage to the processor. Refer to  
the Intel® Xeon® Processor E5-1600/2600/4600 v1 and v2 Product Families Thermal /  
Mechanical Design Guide for details on system thermal solution design, thermal profiles  
and environmental considerations.  
The upper point of the thermal profile consists of the Thermal Design Power (TDP) and  
the associated TCASE value. It should be noted that the upper point associated with  
Thermal Profile 1U.  
(x = TDP and y = TCASE_MAX_B @ TDP) represents a thermal solution design point. In  
actuality the processor case temperature will not reach this value due to TCC  
activation.  
For Embedded Servers, Communications and storage markets Intel has plan SKU’s that  
support Thermal Profiles with nominal and short-term conditions for products intended  
for NEBS level 3 thermal excursions. For these SKU’s operation at either the nominal or  
short-term thermal profiles should result in virtually no TCC activation. Thermal Profiles  
Intel recommends that complete thermal solution designs target the Thermal Design  
Power (TDP). The Adaptive Thermal Monitor feature is intended to help protect the  
processor in the event that an application exceeds the TDP recommendation for a  
sustained time period. To ensure maximum flexibility for future requirements, systems  
should be designed to the Flexible Motherboard (FMB) guidelines, even if a processor  
with lower power dissipation is currently planned. The Adaptive Thermal Monitor  
feature must be enabled for the processor to remain within its specifications.  
100  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
Thermal Management Specifications  
5.1.2  
T
and DTS Based Thermal Specifications  
CASE  
To simplify compliance to thermal specifications at processor run time, the processor  
has added a Digital Thermal Sensor (DTS) based thermal specification. Digital Thermal  
Sensor reports a relative die temperature as an offset from TCC activation  
temperature. TCASE thermal based specifications are used for heat sink sizing and DTS  
based specs are used for acoustic and fan speed optimizations. For the processor  
family, firmware (for example, BMC or other platform management devices) will have  
DTS based specifications for all SKUs programmed by the customer. Some SKUs at a  
sharing the same TDP may share a common TCASE thermal profile but they will have  
separate TDTS based thermal profiles.  
The processor fan speed control is managed by comparing DTS thermal readings via  
PECI against the processor-specific fan speed control reference point, or Tcontrol. Both  
Tcontrol and DTS thermal readings are accessible via the processor PECI client. At a  
one time readout only, the Fan Speed Control firmware will read the following:  
• TEMPERATURE_TARGET MSR  
Tcontrol via PECI - RdPkgConfig()  
• TDP via PECI - RdPkgConfig()  
• Core Count - RdPCIConfigLocal()  
DTS PECI commands will also support DTS temperature data readings. Please see  
Section 2.5.7, “DTS Temperature Data” for PECI command details.  
Also, refer to the Intel® Xeon® Processor E5-1600/2600/4600 v1 and v2 Product  
Families Thermal / Mechanical Design Guide for details on DTS based thermal solution  
design considerations.  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
101  
 
Thermal Management Specifications  
5.1.3  
Processor Operational Thermal Specifications  
Each SKU has a unique thermal profile that ensures reliable operation for the intended  
form factor over the processor’s service life. These specifications are based on final  
silicon characterization.  
The 130W 1S WS SKUs, which are part of the Intel® Xeon® processor E5-1600 v2  
product family, are intended for single processor workstations and utilize workstation  
specific use conditions for reliability assumptions.  
The 150W WS SKU, which is part of the Intel® Xeon® processor E5-2600 v2 product  
family, is intended for dual processor workstations and utilizes workstation specific use  
conditions for reliability assumptions.  
5.1.3.1  
5.1.3.2  
Minimum operating case temperature  
Minimum case operating temperature is specified at 5°C for every processor SKU.  
Maximum operating case temperature thermal profiles  
Temperature values are specified at VCC_MAX for all processor frequencies. Systems  
must be designed to ensure the processor is not to be subjected to any static VCC and  
ICC combination wherein VCC exceeds VCC_MAX at specified ICC. Please refer to the  
electrical loadline specifications in Chapter 7.  
Thermal Design Power (TDP) should be used for processor thermal solution design  
targets. TDP is not the maximum power that the processor can dissipate. TDP is  
measured at specified maximum TCASE  
.
Power specifications are defined at all VID values found in Table 7-3. The processor  
may be delivered under multiple VIDs for each frequency. Implementation of a  
specified thermal profile should result in virtually no TCC activation. Furthermore,  
utilization of thermal solutions that do not meet the specified thermal profile will result  
in increased probability of TCC activation and may incur measurable performance loss.  
Refer to the Intel® Xeon® Processor E5-1600/2600/4600 v1 and v2 Product Families  
Thermal / Mechanical Design Guide for system and environmental implementation  
details.  
Each case temperature thermal profile is unique to each TDP and core count  
combination. These TCASE profiles are fully defined by the simple linear equation:  
T
= PSI * P + T  
CA LA  
CASE  
Where:  
PSICA is the Case-to-Ambient thermal resistance of the processor thermal solution.  
LA is the Local Ambient temperature.  
T
P is the processor power dissipation.  
Table 5-1 provides the PSICA and TLA parameters that define TCASE thermal profile for  
each TDP/Core count combination. Figure 5-1 illustrates the general form of the  
resulting linear graph resulting from T  
= PSI * P + T .  
CASE  
CA LA  
102  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
   
Thermal Management Specifications  
Table 5-1.  
T
Temperature Thermal Specifications  
Case  
Core  
Count  
Minimum  
TCASE (°C)  
Maximum  
TCASE (°C)  
TDP (W)  
Model Number  
TLA (°C)  
PSI (°C/W)  
CA  
150W WS  
130W 1U  
E5-2687W v2  
E5-2697 v2  
E5-2690 v2  
8
12  
10  
8
39.5  
56.5  
56.5  
49.8  
0.217  
0.227  
0.242  
0.186  
5.0  
5.0  
5.0  
5.0  
72.0  
86.0  
88.0  
74.0  
130W 2U  
E5-2687W v2  
E5-2667 v2  
E5-2643 v2  
E5-2637 v2  
6
4
6
50.1  
42.6  
0.199  
0.211  
5.0  
5.0  
76.0  
70.0  
130W 1S  
115W 1U  
95W 1U  
E5-1660 v2  
E5-1650 v2  
E5-1620 v2  
E5-2695 v2  
4
12  
10  
55.0  
54.6  
0.226  
0.239  
5.0  
5.0  
81.0  
82.0  
E5-2680 v2  
E5-2670 v2  
E5-2660 v2  
10  
8
52.0  
0.242  
5.0  
75.0  
E5-2650 v2  
E5-2640 v2  
E5-2630 v2  
6
6
52.6  
50.5  
0.257  
0.257  
5.0  
5.0  
77.0  
71.0  
80W 1U  
E5-2630 v2  
E5-2620 v2  
E5-2609 v2  
E5-2603 v2  
4
70W 1U  
60W 1U  
E5-2650L v2  
E5-2630L v2  
10  
6
48.5  
47.9  
0.236  
0.252  
5.0  
5.0  
65.0  
63.0  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
103  
 
Thermal Management Specifications  
Figure 5-1. TCase Temperature Thermal Profile  
5.1.3.3  
Digital Thermal Sensor (DTS) thermal profiles  
Each DTS thermal profile is unique to each TDP and core count combination. These  
TDTS profiles are fully defined by the simple linear equation:  
T
= PSI * P + T  
PA LA  
DTS  
Where:  
PSIPA is the Processor-to-Ambient thermal resistance of the processor thermal solution.  
LA is the Local Ambient temperature.  
T
P is the processor power dissipation.  
Table 5-2 provides the PSIPA and TLA parameters that define TDTS thermal profile for  
each TDP/Core count combination. Figure 5-2 illustrates the general form of the  
resulting linear graph resulting from T  
= PSI * P + T .  
DTS  
PA LA  
5.1.3.4  
Digital Thermal Sensor (STS) Specifications  
Table 5-2.  
Digital Thermal Sensor (DTS) Specification Summary (Sheet 1 of 2)  
Core  
Count  
Maximum  
TDTS (°C)  
TDP (W)  
Model Number  
TLA (°C)  
PSI (°C/W)  
PA  
150W WS  
130W 1U  
E5-2687W v2  
E5-2697 v2  
E5-2690 v2  
8
39.5  
56.5  
56.5  
0.353  
0.320  
0.353  
92.4  
98.1  
12  
10  
102.4  
104  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
   
Thermal Management Specifications  
Table 5-2.  
Digital Thermal Sensor (DTS) Specification Summary (Sheet 2 of 2)  
Core  
Count  
Maximum  
TDP (W)  
Model Number  
TLA (°C)  
PSI (°C/W)  
PA  
T
DTS (°C)  
130W 2U  
8
49.8  
0.317  
91.0  
E5-2687W v2  
E5-2667 v2  
E5-2643 v2  
E5-2637 v2  
6
4
6
49.8  
50.1  
42.6  
0.359  
0.422  
0.400  
96.5  
105.0  
94.6  
130W 1S  
115W 1U  
E5-1660 v2  
E5-1650 v2  
E5-1620 v2  
E5-2695 v2  
4
42.6  
55.0  
0.480  
0.317  
105.0  
91.4  
12  
10  
10  
8
54.6  
52.0  
52.0  
52.6  
50.5  
50.5  
0.345  
0.348  
0.381  
0.422  
0.416  
0.474  
94.2  
85.1  
88.2  
92.7  
83.7  
88.4  
E5-2680 v2  
E5-2670 v2  
95W 1U  
E5-2660 v2  
E5-2650 v2  
E5-2640 v2  
6
E5-2630 v2  
80W 1U  
6
E5-2630 v2  
E5-2620 v2  
4
E5-2609 v2  
E5-2603 v2  
70W 1U  
60W 1U  
E5-2650L v2  
E5-2630L v2  
10  
6
48.5  
47.9  
0.330  
0.396  
71.6  
71.6  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
105  
Thermal Management Specifications  
Figure 5-2. Digital Thermal Sensor DTS Thermal Profile  
5.1.4  
Embedded Server Thermal Profiles  
Network Equipment Building System (NEBS) is the most common set of environmental  
design guidelines applied to telecommunications equipment in the United States.  
Embedded server SKU’s target operation at higher case temperatures and/or NEBS  
thermal profiles for embedded communications server and storage form factors. The  
term “Embedded” is used to refer to those segments collectively. Thermal profiles in  
this section pertain only to those specific Embedded SKU’s.  
The Nominal Thermal Profile must be used for standard operating conditions or for  
products that do not require NEBS Level 3 compliance.  
The Short-Term Thermal Profile may only be used for short-term excursions to higher  
ambient operating temperatures, not to exceed 96 hours per instance, 360 hours per  
year, and a maximum of 15 instances per year, as intended by NEBS Level 3.  
Operation at the Short-Term Thermal Profile for durations exceeding 360 hours per year  
violate the processor thermal specifications and may result in permanent damage to  
the processor.  
Implementation of the defined thermal profile should result in virtually no TCC  
activation. Refer to the Intel® Xeon® Processor E5-1600/2600/4600 v1 and v2  
Product Families Thermal / Mechanical Design Guide for system and environmental  
implementation details.  
5.1.4.1  
Embedded Operating Case Temperature Thermal Profiles  
Thermal Design Power (TDP) should be used for processor thermal solution design  
targets. TDP is not the maximum power that the processor can dissipate. TDP is  
measured at specified maximum TCASE  
.
106  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
   
Thermal Management Specifications  
Power specifications are defined at all VID values found in Table 7-3. The processor  
may be delivered under multiple VIDs for each frequency. Implementation of a  
specified thermal profile should result in virtually no TCC activation. Failure to comply  
with the specified thermal profile will result in increased probability of TCC activation  
and may incur measurable performance loss. Refer to the Intel® Xeon® Processor  
E5-1600 v2/E5-2600 v2 Product Families Thermal/Mechanical Design Guide for system  
and environmental implementation details.  
Each case temperature thermal profile is unique to each TDP and core count  
combination. These TCASE profiles are fully defined by the simple linear equation:  
T
= PSI * P + T  
CA LA  
CASE  
Where:  
PSICA is the Case-to-Ambient thermal resistance of the processor thermal solution.  
LA is the Local Ambient nominal temperature.  
T
P is the processor power dissipation.  
The Short-Term thermal profile provides for a 15°C rise of temperature above the  
nominal profile due to scenarios such as fan failure or A/C failure. Short-term  
excursions to higher ambient operating temperatures are strictly limited 96 hours per  
instance, 360 hours per year, and a maximum of 15 instances per year as intended by  
NEBS Level 3.  
TLA-ST designates the Local Ambient temperature for Short-Term operation.  
Table 5-3 provides the PSICA and TLA parameters that define TCASE thermal profile for  
each TDP/Core count combination. Figure 5-3 illustrates the general form of the  
resulting linear graph resulting from T  
= PSI * P + T .  
CASE  
CA LA  
Table 5-3.  
Embedded TCase Temperature Thermal Specifications  
Short-  
Term  
Maximum  
TCASE (°C)  
Nominal  
Maximum  
TCASE (°C)  
TDP  
(W)  
Model  
Number  
Core  
Count  
TLA  
(°C)  
TLA-ST  
(°C)  
PSI  
Minimum  
TCASE (°C)  
CA  
(°C/W)  
LV95W  
LV70W  
LV50W  
E5-2658 v2  
E5-2648L v2  
10  
10  
51  
49  
52  
66  
64  
67  
0.235  
5.0  
5.0  
5.0  
73.3  
77.2  
79.1  
88.3  
92.2  
94.1  
0.403  
0.541  
E5-2628L v2  
E5-2618L v2  
8
6
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
107  
 
Thermal Management Specifications  
Figure 5-3. Embedded Case Temperature Thermal Profile  
5.1.4.2  
Embedded Digital Thermal Sensor (DTS) thermal profiles  
The thermal solution is expected to be developed in accordance with the Tcase thermal  
profile. Operational compliance monitoring of thermal specifications and fan speed  
modulation may be done via the DTS based thermal profile.  
Each DTS thermal profile is unique to each TDP and core count combination. These  
TDTS profiles are fully defined by the simple linear equation:  
T
= PSI * P + T  
PA LA  
DTS  
Where:  
PSIPA is the Processor-to-Ambient thermal resistance of the processor thermal solution.  
T
LA is the Local Ambient temperature for the Nominal thermal profile.  
LA-ST designates the Local Ambient temperature for Short-Term operation.  
T
P is the processor power dissipation.  
Table 5-4 provides the PSIPA and TLA parameters that define TDTS thermal profile for  
each TDP/Core count combination. Figure 5-4 illustrates the general form of the  
resulting linear graph resulting from T  
= PSI * P + T .  
DTS  
PA LA  
The slope of a DTS profile assumes full fan speed which is not required over much of  
the power range. Tcontrol is the temperature above which fans must be at maximum  
speed to meet the thermal profile requirements. Tcontrol is different for each SKU and  
may be slightly above or below TDTS-Max of the DTS nominal thermal profile for a  
particular SKU. At many power levels on most embedded SKU’s, temperatures of the  
nominal profile are less than Tcontrol as indicated by the blue shaded region in the DTS  
profile graph of Figure 5-4. As a further simplification, operation at DTS temperatures  
108  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
 
Thermal Management Specifications  
up to Tcontrol is permitted at all power levels. Compliance to the DTS profile is required  
for any temperatures exceeding Tcontrol.  
Table 5-4.  
Embedded DTS Thermal Specifications  
Nominal  
Maximum  
TDTS (°C)  
Short-Term  
Maximum  
TDTS (°C)  
Model  
Number  
Core  
Count  
PSI  
PA  
(°C/W)  
TDP (W)  
TLA (°C)  
TLA-ST (°C)  
LV95W  
LV70W  
E5-2658 v2  
E5-2648L v2  
10  
10  
51  
49  
66  
64  
0.336  
0.489  
82.9  
83.2  
97.9  
98.2  
LV70W  
LV50W  
E5-2628L v2  
E5-2618L v2  
8
6
49  
52  
64  
67  
0.503  
0.644  
84.2  
84.2  
99.2  
99.2  
Figure 5-4. Embedded DTS Thermal Profile  
5.1.5  
Thermal Metrology  
The minimum and maximum case temperatures (TCASE) are measured at the geometric  
top center of the processor integrated heat spreader (IHS). Figure 5-5 illustrates the  
location where TCASE temperature measurements should be made. For detailed  
guidelines on temperature measurement methodology, refer to the Intel® Xeon®  
Processor E5-1600/2600/4600 v1 and v2 Product Families Thermal / Mechanical Design  
Guide.  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
109  
     
Thermal Management Specifications  
Figure 5-5. Case Temperature (TCASE) Measurement Location  
Notes:  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
Figure is not to scale and is for reference only.  
This is an example for package size 52.5 x 45 mm.  
B1: Max = 52.57 mm, Min = 52.43 mm.  
B2: Max = 45.07 mm, Min = 44.93 mm.  
C1: Max = 43.1 mm, Min = 42.9 mm.  
C2: Max = 42.6 mm, Min = 42.4 mm.  
C3: Max = 2.35 mm, Min = 2.15 mm.  
5.2  
Processor Core Thermal Features  
5.2.1  
Processor Temperature  
A new feature in the processor is a software readable field in the  
TEMPERATURE_TARGET MSR register that contains the minimum temperature at which  
the TCC will be activated and PROCHOT_N will be asserted. The TCC activation  
temperature is calibrated on a part-by-part basis and normal factory variation may  
result in the actual TCC activation temperature being higher than the value listed in the  
register. TCC activation temperatures may change based on processor stepping,  
frequency or manufacturing efficiencies.  
5.2.2  
Adaptive Thermal Monitor  
The Adaptive Thermal Monitor feature provides an enhanced method for controlling the  
processor temperature when the processor silicon reaches its maximum operating  
temperature. Adaptive Thermal Monitor uses Thermal Control Circuit (TCC) activation  
to reduce processor power via a combination of methods. The first method  
(Frequency/SVID control) involves the processor adjusting its operating frequency (via  
the core ratio multiplier) and input voltage (via the SVID signals). This combination of  
110  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
       
Thermal Management Specifications  
reduced frequency and voltage results in a reduction to the processor power  
consumption. The second method (clock modulation) reduces power consumption by  
modulating (starting and stopping) the internal processor core clocks. The processor  
intelligently selects the appropriate TCC method to use on a dynamic basis. BIOS is not  
required to select a specific method.  
The Adaptive Thermal Monitor feature must be enabled for the processor to be  
operating within specifications. Snooping and interrupt processing are performed in  
the normal manner while the TCC is active.  
With a properly designed and characterized thermal solution, it is anticipated that the  
TCC would be activated for very short periods of time when running the most power  
intensive applications. The processor performance impact due to these brief periods of  
TCC activation is expected to be so minor that it would be immeasurable. An under-  
designed thermal solution that is not able to prevent excessive activation of the TCC in  
the anticipated ambient environment may cause a noticeable performance loss, and in  
some cases may result in a TC that exceeds the specified maximum temperature which  
may affect the long-term reliability of the processor. In addition, a thermal solution that  
is significantly under-designed may not be capable of cooling the processor even when  
the TCC is active continuously. Refer to the Intel® Xeon® Processor E5-  
1600/2600/4600 v1 and v2 Product Families Thermal / Mechanical Design Guide for  
information on designing a compliant thermal solution.  
The duty cycle for the TCC, when activated by the Thermal Monitor, is factory  
configured and cannot be modified. The Thermal Monitor does not require any  
additional hardware, software drivers, or interrupt handling routines.  
5.2.2.1  
Frequency/SVID Control  
The processor uses Frequency/SVID control whereby TCC activation causes the  
processor to adjust its operating frequency (via the core ratio multiplier) and VCC input  
voltage (via the SVID signals). This combination of reduced frequency and voltage  
results in a reduction to the processor power consumption.  
This method includes multiple operating points, each consisting of a specific operating  
frequency and voltage. The first operating point represents the normal operating  
condition for the processor. The remaining points consist of both lower operating  
frequencies and voltages. When the TCC is activated, the processor automatically  
transitions to the new lower operating frequency. This transition occurs very rapidly (on  
the order of microseconds).  
Once the new operating frequency is engaged, the processor will transition to the new  
core operating voltage by issuing a new SVID code to the VCC voltage regulator. The  
voltage regulator must support dynamic SVID steps to support this method. During the  
voltage change, it will be necessary to transition through multiple SVID codes to reach  
the target operating voltage. Each step will be one SVID table entry (see Table 7-3,  
execute instructions during the voltage transition. Operation at the lower voltages  
reduces the power consumption of the processor.  
A small amount of hysteresis has been included to prevent rapid active/inactive  
transitions of the TCC when the processor temperature is near its maximum operating  
temperature. Once the temperature has dropped below the maximum operating  
temperature, and the hysteresis timer has expired, the operating frequency and  
voltage transition back to the normal system operating point via the intermediate  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
111  
Thermal Management Specifications  
SVID/frequency points. Transition of the SVID code will occur first, to insure proper  
operation once the processor reaches its normal operating frequency. Refer to  
Figure 5-6 for an illustration of this ordering.  
Figure 5-6. Frequency and Voltage Ordering  
5.2.2.2  
Clock Modulation  
Clock modulation is performed by alternately turning the clocks off and on at a duty  
cycle specific to the processor (factory configured to 37.5% on and 62.5% off for TM1).  
The period of the duty cycle is configured to 32 microseconds when the TCC is active.  
Cycle times are independent of processor frequency. A small amount of hysteresis has  
been included to prevent rapid active/inactive transitions of the TCC when the  
processor temperature is near its maximum operating temperature. Once the  
temperature has dropped below the maximum operating temperature, and the  
hysteresis timer has expired, the TCC goes inactive and clock modulation ceases. Clock  
modulation is automatically engaged as part of the TCC activation when the  
Frequency/SVID targets are at their minimum settings. It may also be initiated by  
software at a configurable duty cycle.  
5.2.3  
On-Demand Mode  
The processor provides an auxiliary mechanism that allows system software to force  
the processor to reduce its power consumption. This mechanism is referred to as “On-  
Demand” mode and is distinct from the Adaptive Thermal Monitor feature. On-Demand  
mode is intended as a means to reduce system level power consumption. Systems  
must not rely on software usage of this mechanism to limit the processor temperature.  
If bit 4 of the IA32_CLOCK_MODULATION MSR is set to a ‘1, the processor will  
immediately reduce its power consumption via modulation (starting and stopping) of  
the internal core clock, independent of the processor temperature. When using On-  
112  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
   
Thermal Management Specifications  
Demand mode, the duty cycle of the clock modulation is programmable via bits 3:0 of  
the same IA32_CLOCK_MODULATION MSR. In On-Demand mode, the duty cycle can  
be programmed from 6.25% on / 93.75% off to 93.75% on / 6.25% off in 6.25%  
increments. On-Demand mode may be used in conjunction with the Adaptive Thermal  
Monitor; however, if the system tries to enable On-Demand mode at the same time the  
TCC is engaged, the factory configured duty cycle of the TCC will override the duty  
cycle selected by the On-Demand mode.  
5.2.4  
PROCHOT_N Signal  
An external signal, PROCHOT_N (processor hot), is asserted when the processor core  
temperature has reached its maximum operating temperature. If Adaptive Thermal  
Monitor is enabled (note it must be enabled for the processor to be operating within  
specification), the TCC will be active when PROCHOT_N is asserted. The processor can  
be configured to generate an interrupt upon the assertion or de-assertion of  
PROCHOT_N. Refer to the Intel® Xeon® Processor E5 v2 Product Family Processor  
Datasheet, Volume Two: Registers for specific register and programming details.  
The PROCHOT_N signal is bi-directional in that it can either signal when the processor  
(any core) has reached its maximum operating temperature or be driven from an  
external source to activate the TCC. The ability to activate the TCC via PROCHOT_N can  
provide a means for thermal protection of system components.  
As an output, PROCHOT_N will go active when the processor temperature monitoring  
sensor detects that one or more cores has reached its maximum safe operating  
temperature. This indicates that the processor Thermal Control Circuit (TCC) has been  
activated, if enabled. As an input, assertion of PROCHOT_N by the system will activate  
the TCC, if enabled, for all cores. TCC activation due to PROCHOT_N assertion by the  
system will result in the processor immediately transitioning to the minimum frequency  
and corresponding voltage (using Freq/SVID control). Clock modulation is not activated  
in this case. The TCC will remain active until the system de-asserts PROCHOT_N.  
PROCHOT_N can allow voltage regulator (VR) thermal designs to target maximum  
sustained current instead of maximum current. Systems should still provide proper  
cooling for the VR, and rely on PROCHOT_N as a backup in case of system cooling  
failure. The system thermal design should allow the power delivery circuitry to operate  
within its temperature specification even while the processor is operating at its Thermal  
Design Power.  
With a properly designed and characterized thermal solution, it is anticipated that  
PROCHOT_N will be asserted for very short periods of time when running the most  
power intensive applications. An under-designed thermal solution that is not able to  
prevent excessive assertion of PROCHOT_N in the anticipated ambient environment  
may cause a noticeable performance loss. Refer to the appropriate platform design  
guide and for details on implementing the bi-directional PROCHOT_N feature.  
5.2.5  
THERMTRIP_N Signal  
Regardless of whether Adaptive Thermal Monitor is enabled, in the event of a  
catastrophic cooling failure, the processor will automatically shut down when the silicon  
has reached an elevated temperature (refer to the THERMTRIP_N definition in  
Chapter 6, “Signal Descriptions”). At this point, the THERMTRIP_N signal will go active  
and stay active. THERMTRIP_N activation is independent of processor activity and does  
not generate any Intel® QuickPath Interconnect transactions. If THERMTRIP_N is  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
113  
   
Thermal Management Specifications  
asserted, all processor supplies (VCC, VTTA, VTTD, VSA, VCCPLL, VCCD) must be  
removed within the timeframe provided. The temperature at which THERMTRIP_N  
asserts is not user configurable and is not software visible.  
5.2.6  
Integrated Memory Controller (IMC) Thermal Features  
5.2.6.1  
DRAM Throttling Options  
The Integrated Memory Controller (IMC) has two, independent mechanisms that cause  
system memory throttling:  
• Open Loop Thermal Throttling (OLTT) and Hybrid OLTT (OLTT_Hybrid)  
• Closed Loop Thermal Throttling (CLTT) and Hybrid CLTT (CLTT_Hybrid)  
5.2.6.1.1  
Open Loop Thermal Throttling (OLTT)  
Pure energy based estimation for systems with no BMC or Intel® Management Engine  
(Intel® ME). No memory temperature information is provided by the platform or  
DIMMs. The CPU is informed of the ambient temperature estimate by the BIOS or by a  
device via the PECI interface. DIMM temperature estimates and bandwidth control are  
monitored and managed by the PCU on a per rank basis.  
5.2.6.1.2  
5.2.6.1.3  
Hybrid Open Loop Thermal Throttling (OLTT_Hybrid)  
Temperature information is provided by the platform (for example, BMC or Intel ME)  
through PECI and the PCU interpolates gaps with energy based estimations.  
Closed Loop Thermal Throttling (CLTT)  
The processor periodically samples temperatures from the DIMM TSoD devices over a  
programmable interval. The PCU determines the hottest DIMM rank from TSoD data  
and informs the integrated memory controller for use in bandwidth throttling decisions.  
5.2.6.2  
Hybrid Closed Loop Thermal Throttling (CLTT_Hybrid)  
The processor periodically samples temperature from the DIMM TSoD devices over a  
programmable interval and interpolates gaps or the BMC/Intel ME samples a  
motherboard thermal sensor in the memory subsection and provides this data to the  
PCU via the PECI interface. This data is combined with an energy based estimations  
calculated by the PCU. When needed, system memory is then throttled using CAS  
bandwidth control. The processor supports dynamic reprogramming of the memory  
thermal limits based on system thermal state by the BMC or Intel ME.  
5.2.6.3  
MEM_HOT_C01_N and MEM_HOT_C23_N Signal  
The processor includes a pair of new bi-directional memory thermal status signals  
useful for manageability schemes. Each signal presents and receives thermal status for  
a pair of memory channels (channels 0 & 1 and channels 2 & 3).  
• Input Function: The processor can periodically sense the MEM_HOT_{C01/C23}_N  
signals to detect if the platform is requesting a memory throttling event.  
Manageability hardware could drive this signal due to a memory voltage regulator  
thermal or electrical issue or because of a detected system thermal event (for  
example, fan is going to fail) other system devices are exceeding their thermal  
target. The input sense period of these signals are programmable, 100 us is the  
default value. The input sense assertion time recognized by the processor is  
programmable, 1 us is the default value. If the sense assertion time is programmed  
114  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
 
Thermal Management Specifications  
to zero, then the processor ignores all external assertions of  
MEM_HOT_{C01/C23}_N signals (in effect they become outputs).  
• Output Function: The output behavior of the MEM_HOT_{C01/C23}_N signals  
supports Level mode. In this mode, MEM_HOT_{C01/C23}_N event temperatures  
are programmable via TEMP_OEM_HI, TEMP_LOW, TEMP_MID, and TEMP_HI  
threshold settings in the iMC. In Level mode, when asserted, the signal indicates to  
the platform that a BIOS-configured thermal threshold has been reached by one or  
more DIMMs in the covered channel pair.  
5.2.6.4  
Integrated Dual SMBus Master Controllers for System Memory  
Interface  
The processor includes two integrated SMBus master controllers running at 100 KHz for  
dedicated PCU access to the serial presence detect (SPD) devices and thermal sensors  
(TSoD) on the DIMMs. Each controller is responsible for a pair of memory channels and  
supports up to eight SMBus slave devices. Note that clock-low stretching is not  
supported by the processor. To avoid design complexity and minimize package C-state  
transitions, the SMBus interface between the processor and DIMMs must be connected.  
The SMBus controllers for the system memory interface support the following SMBus  
protocols/commands:  
• Random byte Read  
• Byte Write  
• I2C* Write to Pointer Register  
• I2C Present Pointer Register Word Read  
• I2C Pointer Write Register Read.  
Refer to the System Management Bus (SMBus) Specification, Revision 2.0 for standing  
timing protocols and specific command structure details.  
§
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
115  
Thermal Management Specifications  
116  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
Signal Descriptions  
6 Signal Descriptions  
This chapter describes the processor signals. They are arranged in functional groups  
according to their associated interface or category.  
6.1  
System Memory Interface Signals  
Table 6-1.  
Memory Channel DDR0, DDR1, DDR2, DDR3  
Signal Name  
Description  
Bank Address. Defines the bank which is the destination for the  
current Activate, Read, Write, or Precharge command.  
DDR{0/1/2/3}_BA[2:0]  
DDR{0/1/2/3}_CAS_N  
Column Address Strobe.  
Clock Enable.  
DDR{0/1/2/3}_CKE[5:0]  
DDR{0/1/2/3}_CLK_DN[3:0]  
DDR{0/1/2/3}_CLK_DP[3:0]  
Differential clocks to the DIMM. All command and control signals  
are valid on the rising edge of clock.  
Chip Select. Each signal selects one rank as the target of the  
command and address.  
DDR{0/1/2/3}_CS_N[9:0]  
DDR{0/1/2/3}_DQ[63:00]  
Data Bus. DDR3 Data bits.  
Data strobes. Differential pair, Data/ECC Strobe. Differential  
strobes latch data/ECC for each DRAM. Different numbers of  
strobes are used depending on whether the connected DRAMs are  
x4,x8. Driven with edges in center of data, receive edges are  
aligned with data edges.  
DDR{0/1/2/3}_DQS_DP[17:00]  
DDR{0/1/2/3}_DQS_DN[17:00]  
Check bits. An error correction code is driven along with data on  
these lines for DIMMs that support that capability  
DDR{0/1/2/3}_ECC[7:0]  
DDR{0/1/2/3}_MA[15:00]  
Memory Address. Selects the Row address for Reads and writes,  
and the column address for activates. Also used to set values for  
DRAM configuration registers.  
DDR{0/1/2/3}_MA_PAR  
DDR{0/1/2/3}_ODT[5:0]  
Odd parity across Address and Command.  
On Die Termination. Enables DRAM on die termination during Data  
Write or Data Read transactions.  
DDR{0/1/2/3}_PAR_ERR_N  
DDR{0/1/2/3}_RAS_N  
DDR{0/1/2/3}_WE_N  
Parity Error detected by Registered DIMM (one for each channel).  
Row Address Strobe.  
Write Enable.  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
117  
       
Signal Descriptions  
Table 6-2.  
Memory Channel Miscellaneous  
Signal Name  
Description  
System memory reset: Reset signal from processor to DRAM  
devices on the DIMMs. DDR_RESET_C01_N is used for memory  
channels 0 and 1 while DDR_RESET_C23_N is used for memory  
channels 2 and 3.  
DDR_RESET_C01_N  
DDR_RESET_C23_N  
SMBus clock for the dedicated interface to the serial presence  
detect (SPD) and thermal sensors (TSoD) on the DIMMs.  
DDR_SCL_C01 is used for memory channels 0 and 1 while  
DDR_SCL_C23 is used for memory channels 2 and 3.  
DDR_SCL_C01  
DDR_SCL_C23  
SMBus data for the dedicated interface to the serial presence  
detect (SPD) and thermal sensors (TSoD) on the DIMMs.  
DDR_SDA_C1 is used for memory channels 0 and 1 while  
DDR_SDA_C23 is used for memory channels 2 and 3.  
DDR_SDA_C01  
DDR_SDA_C23  
Voltage reference for system memory reads.  
DDR_VREFDQRX_C01 is used for memory channels 0 and 1 while  
DDR_VREFDQRX_C23 is used for memory channels 2 and 3.  
DDR_VREFDQRX_C01  
DDR_VREFDQRX_C23  
Voltage reference for system memory writes.  
DDR_VREFDQTX_C01 is used for memory channels 0 and 1 while  
DDR_VREFDQTX_C23 is used for memory channels 2 and 3. These  
signals are not connected and there is no functionality provided on  
these two signals. They are unused by the processor.  
DDR_VREFDQTX_C01  
DDR_VREFDQTX_C23  
System memory impedance compensation. Impedance  
compensation must be terminated on the system board using a  
precision resistor.  
DDR{01/23}_RCOMP[2:0]  
DRAM_PWR_OK_C01  
DRAM_PWR_OK_C23  
Power good input signal used to indicate that the VCCD power  
supply is stable for memory channels 0 & 1 and channels 2 & 3.  
6.2  
PCI Express* Based Interface Signals  
PCI Express* Ports 1, 2 and 3 Signals are receive and transmit differential pairs.  
PCI Express* Port 1 Signals  
Note:  
Table 6-3.  
Signal Name  
Description  
PE1A_RX_DN[3:0]  
PE1A_RX_DP[3:0]  
PCIe Receive Data Input  
PCIe Receive Data Input  
PCIe Transmit Data Output  
PCIe Transmit Data Output  
PE1B_RX_DN[7:4]  
PE1B_RX_DP[7:4]  
PE1A_TX_DN[3:0]  
PE1A_TX_DP[3:0]  
PE1B_TX_DN[7:4]  
PE1B_TX_DP[7:4]  
Table 6-4.  
PCI Express* Port 2 Signals (Sheet 1 of 2)  
Signal Name  
Description  
PE2A_RX_DN[3:0]  
PE2A_RX_DP[3:0]  
PCIe Receive Data Input  
PE2B_RX_DN[7:4]  
PE2B_RX_DP[7:4]  
PCIe Receive Data Input  
PCIe Receive Data Input  
PE2C_RX_DN[11:8]  
PE2C_RX_DP[11:8]  
118  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
       
Signal Descriptions  
Table 6-4.  
PCI Express* Port 2 Signals (Sheet 2 of 2)  
Signal Name  
Description  
PE2D_RX_DN[15:12]  
PE2D_RX_DP[15:12]  
PCIe Receive Data Input  
PCIe Transmit Data Output  
PCIe Transmit Data Output  
PCIe Transmit Data Output  
PCIe Transmit Data Output  
PE2A_TX_DN[3:0]  
PE2A_TX_DP[3:0]  
PE2B_TX_DN[7:4]  
PE2B_TX_DP[7:4]  
PE2C_TX_DN[11:8]  
PE2C_TX_DP[11:8]  
PE2D_TX_DN[15:12]  
PE2D_TX_DP[15:12]  
Table 6-5.  
PCI Express* Port 3 Signals  
Signal Name  
Description  
PE3A_RX_DN[3:0]  
PE3A_RX_DP[3:0]  
PCIe Receive Data Input  
PCIe Receive Data Input  
PCIe Receive Data Input  
PCIe Receive Data Input  
PCIe Transmit Data Output  
PCIe Transmit Data Output  
PCIe Transmit Data Output  
PCIe Transmit Data Output  
PE3B_RX_DN[7:4]  
PE3B_RX_DP[7:4]  
PE3C_RX_DN[11:8]  
PE3C_RX_DP[11:8]  
PE3D_RX_DN[15:12]  
PE3D_RX_DP[15:12]  
PE3A_TX_DN[3:0]  
PE3A_TX_DP[3:0]  
PE3B_TX_DN[7:4]  
PE3B_TX_DP[7:4]  
PE3C_TX_DN[11:8]  
PE3C_TX_DP[11:8]  
PE3D_TX_DN[15:12]  
PE3D_TX_DP[15:12]  
Table 6-6.  
PCI Express* Miscellaneous Signals (Sheet 1 of 2)  
Signal Name  
Description  
This input is used to control PCI Express* bias currents. A 50 ohm  
1% tolerance resistor must be connected from this land to VSS by  
the platform. PE_RBIAS is required to be connected as if the link is  
being used even when PCIe* is not used.  
PE_RBIAS  
Provides dedicated bias resistor sensing to minimize the voltage  
drop caused by packaging and platform effects. PE_RBIAS_SENSE  
is required to be connected as if the link is being used even when  
PCIe* is not used.  
PE_RBIAS_SENSE  
PE_VREF_CAP  
PEHPSCL  
PCI Express* voltage reference used to measure the actual output  
voltage and comparing it to the assumed voltage. A 0.01uF  
capacitor must be connected from this land to VSS.  
PCI Express* Hot-Plug SMBus Clock: Provides PCI Express* hot-  
plug support via a dedicated SMBus interface. Requires an external  
general purpose input/output (GPIO) expansion device on the  
platform.  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
119  
   
Signal Descriptions  
Table 6-6.  
PCI Express* Miscellaneous Signals (Sheet 2 of 2)  
Signal Name  
Description  
PCI Express* Hot-Plug SMBus Data: Provides PCI Express* hot-  
plug support via a dedicated SMBus interface. Requires an external  
general purpose input/output (GPIO) expansion device on the  
platform.  
PEHPSDA  
6.3  
DMI2/PCI Express* Port 0 Signals  
Table 6-7.  
DMI2 and PCI Express Port 0 Signals  
Signal Name  
Description  
DMI_RX_DN[3:0]  
DMI_RX_DP[3:0]  
DMI2 Receive Data Input  
DMI2 Transmit Data Output  
DMI_TX_DP[3:0]  
DMI_TX_DN[3:0]  
6.4  
Intel® QuickPath Interconnect Signals  
Table 6-8.  
Intel QPI Port 0 and 1 Signals  
Signal Name  
Description  
Reference Clock Differential Input. These pins provide the PLL  
reference clock differential input. The Intel QPI forward clock  
frequency is half the Intel QPI data rate.  
QPI{0/1}_CLKRX_DN/DP  
Reference Clock Differential Output. These pins provide the PLL  
reference clock differential input. The Intel QPI forward clock  
frequency is half the Intel QPI data rate.  
QPI{0/1}_CLKTX_DN/DP  
QPI{0/1}_DRX_DN/DP[19:00]  
QPI{0/1}_DTX_DN/DP[19:00]  
Intel QPI Receive data input.  
Intel QPI Transmit data output.  
Table 6-9.  
Intel QPI Miscellaneous Signals  
Signal Name  
Description  
This input is used to control Intel QPI bias currents. QPI_RBIAS is  
required to be connected as if the link is being used even when  
Intel QPI is not used.  
QPI_RBIAS  
Provides dedicated bias resistor sensing to minimize the voltage  
drop caused by packaging and platform effects.  
QPI_RBIAS_SENSE is required to be connected as if the link is  
being used even when Intel QPI is not used.  
QPI_RBIAS_SENSE  
QPI_VREF_CAP  
Intel QPI voltage reference used to measure the actual output  
voltage and comparing it to the assumed voltage.  
120  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
         
Signal Descriptions  
6.5  
PECI Signal  
Table 6-10. PECI Signals  
Signal Name  
Description  
PECI  
PECI (Platform Environment Control Interface) is the serial  
sideband interface to the processor and is used primarily for  
thermal, power and error management. Details regarding the PECI  
electrical specifications, protocols and functions can be found in  
the Platform Environment Control Interface Specification.  
6.6  
System Reference Clock Signals  
Table 6-11. System Reference Clock (BCLK{0/1}) Signals  
Signal Name  
Description  
BCLK{0/1}_D[N/P]  
Reference Clock Differential input. These pins provide the PLL  
reference clock differential input into the processor. 100 MHz  
typical BCLK0 is the QPI reference clock (system clock) and BCLK1  
is the PCI Express* reference clock.  
6.7  
JTAG and TAP Signals  
Table 6-12. JTAG and TAP Signals  
Signal Name  
Description  
Breakpoint and Performance Monitor Signals: I/O signals from the  
processor that indicate the status of breakpoints and  
programmable counters used for monitoring processor  
performance. These are 100 MHz signals.  
BPM_N[7:0]  
EAR_N  
External Alignment of Reset, used to bring the processor up into a  
deterministic state. This signal is pulled up on the die, refer to  
Table 7-6 for details.  
Probe Mode Ready is a processor output used by debug tools to  
determine processor debug readiness.  
PRDY_N  
PREQ_N  
TCK  
Probe Mode Request is used by debug tools to request debug  
operation of the processor.  
TCK (Test Clock) provides the clock input for the processor Test  
Bus (also known as the Test Access Port).  
TDI (Test Data In) transfers serial test data into the processor. TDI  
provides the serial input needed for JTAG specification support.  
TDI  
TDO (Test Data Out) transfers serial test data out of the processor.  
TDO provides the serial output needed for JTAG specification  
support.  
TDO  
TMS (Test Mode Select) is a JTAG specification support signal used  
by debug tools.  
TMS  
TRST_N (Test Reset) resets the Test Access Port (TAP) logic.  
TRST_N must be driven low during power on Reset.  
TRST_N  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
121  
           
Signal Descriptions  
6.8  
Serial VID Interface (SVID) Signals  
Table 6-13. SVID Signals  
SVIDALERT_N  
SVIDCLK  
Serial VID alert.  
Serial VID clock.  
Serial VID data out.  
SVIDDATA  
6.9  
Processor Asynchronous Sideband and  
Miscellaneous Signals  
Table 6-14. Processor Asynchronous Sideband Signals (Sheet 1 of 3)  
Signal Name  
Description  
BIST Enable Strap. Input which allows the platform to enable or  
disable built-in self test (BIST) on the processor. This signal is  
pulled up on the die, refer to Table 7-6 for details.  
BIST_ENABLE  
BMC Initialization Strap. Indicates whether Service Processor Boot  
Mode should be used. Used in combination with FRMAGENT and  
SOCKET_ID inputs.  
0: Service Processor Boot Mode Disabled. Example boot  
modes: Local PCH (this processor hosts a legacy PCH with  
firmware behind it), Intel QPI Link Boot (for processors one  
hop away from the FW agent), or Intel QPI Link Init (for  
processors more than one hop away from the firmware agent).  
BMCINIT  
1: Service Processor Boot Mode Enabled. In this mode of  
operation, the processor performs the absolute minimum  
internal configuration and then waits for the Service Processor  
to complete its initialization. The socket boots after receiving a  
“GO” handshake signal via a firmware scratchpad register.  
This signal is pulled down on the die, refer to Table 7-6 for details.  
Indicates that the system has experienced a fatal or catastrophic  
error and cannot continue to operate. The processor will assert  
CAT_ERR_N for nonrecoverable machine check errors and other  
internal unrecoverable errors. It is expected that every processor  
in the system will wire-OR CAT_ERR_N for all processors. Since  
this is an I/O land, external agents are allowed to assert this land  
which will cause the processor to take a machine check exception.  
This signal is sampled after PWRGOOD assertion.  
CAT_ERR_N  
On the processor, CAT_ERR_N is used for signaling the following  
types of errors:  
Legacy MCERR’s, CAT_ERR_N is asserted for 16 BCLKs.  
Legacy IERR’s, CAT_ERR_N remains asserted until warm or  
cold reset.  
CPU_ONLY_RESET  
ERROR_N[2:0]  
Reserved, not used.  
Error status signals for integrated I/O (IIO) unit:  
0 = Hardware correctable error (no operating system or  
firmware action necessary)  
1 = Non-fatal error (operating system or firmware action  
required to contain and recover)  
2 = Fatal error (system reset likely required to recover)  
Bootable Firmware Agent Strap. This input configuration strap  
used in combination with SOCKET_ID to determine whether the  
socket is a legacy socket, bootable firmware agent is present, and  
DMI links are used in PCIe* mode (instead of DMI2 mode).  
FRMAGENT  
The firmware flash ROM is located behind the local PCH attached to  
the processor via the DMI2 interface.This signal is pulled down on  
the die, refer to Table 7-6 for details.  
122  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
       
Signal Descriptions  
Table 6-14. Processor Asynchronous Sideband Signals (Sheet 2 of 3)  
Signal Name  
Description  
Memory throttle control. MEM_HOT_C01_N and MEM_HOT_C23_N  
signals have two modes of operation – input and output mode.  
Input mode is externally asserted and is used to detect external  
events such as VR_HOT# from the memory voltage regulator and  
causes the processor to throttle the appropriate memory channels.  
MEM_HOT_C01_N  
MEM_HOT_C23_N  
Output mode is asserted by the processor known as level mode. In  
level mode, the output indicates that a particular branch of  
memory subsystem is hot.  
MEM_HOT_C01_N is used for memory channels 0 & 1 while  
MEM_HOT_C23_N is used for memory channels 2 & 3.  
Power Management Sync. A sideband signal to communicate  
power management status from the Platform Controller Hub (PCH)  
to the processor.  
PMSYNC  
PROCHOT_N will go active when the processor temperature  
monitoring sensor detects that the processor has reached its  
maximum safe operating temperature. This indicates that the  
processor Thermal Control Circuit has been activated, if enabled.  
This signal can also be driven to the processor to activate the  
Thermal Control Circuit. This signal is sampled after PWRGOOD  
assertion.  
PROCHOT_N  
If PROCHOT_N is asserted at the deassertion of RESET_N, the  
processor will tristate its outputs.  
Power Good is a processor input. The processor requires this signal  
to be a clean indication that BCLK, VTTA/VTTD, VSA, VCCPLL, and  
VCCD_01 and VCCD_23 supplies are stable and within their  
specifications.  
“Clean” implies that the signal will remain low (capable of sinking  
leakage current), without glitches, from the time that the power  
supplies are turned on until they come within specification. The  
signal must then transition monotonically to a high state.  
PWRGOOD can be driven inactive at any time, but clocks and  
power must again be stable before a subsequent rising edge of  
PWRGOOD. PWRGOOD transitions from inactive to active when all  
supplies except VCC are stable. VCC has a VBOOT of zero volts and  
is not included in PWRGOOD indication in this phase. However, for  
the active to inactive transition, if any CPU power supply (VCC,  
VTTA/VTTD, VSA, VCCD, or VCCPLL) is about to fail or is out of  
regulation, the PWRGOOD is to be negated.  
PWRGOOD  
The signal must be supplied to the processor; it is used to protect  
internal circuits against voltage sequencing issues. It should be  
driven high throughout boundary scan operation.  
Note: VCC has a Vboot setting of 0.0V and is not included in the  
PWRGOOD indication and VSA has a Vboot setting of 0.9V. Refer to  
the compatible VR12.0 PWM controller.  
Asserting the RESET_N signal resets the processor to a known  
state and invalidates its internal caches without writing back any of  
their contents. Note some PLL, Intel QuickPath Interconnect and  
error states are not effected by reset and only PWRGOOD forces  
them to a known state.  
RESET_N  
RESERVED. All signals that are RSVD must be left unconnected on  
the board. Refer to Section 7.1.10, “Reserved or Unused Signals”  
for details.  
RSVD  
Safe mode boot Strap. SAFE_MODE_BOOT allows the processor to  
wake up safely by disabling all clock gating, this allows BIOS to  
load registers or patches if required. This signal is sampled after  
PWRGOOD assertion. The signal is pulled down on the die, refer to  
Table 7-6 for details.  
SAFE_MODE_BOOT  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
123  
Signal Descriptions  
Table 6-14. Processor Asynchronous Sideband Signals (Sheet 3 of 3)  
Signal Name  
Description  
Socket ID Strap. Socket identification configuration straps for  
establishing the PECI address, Intel® QPI Node ID, and other  
settings. This signal is used in combination with FRMAGENT to  
determine whether the socket is a legacy socket, bootable  
firmware agent is present, and DMI links are used in PCIe* mode  
(instead of DMI2 mode). Each processor socket consumes one  
Node ID, and there are 128 Home Agent tracker entries. This  
signal is pulled down on the die, refer to Table 7-6 for details.  
SOCKET_ID[1:0]  
Test[4:0] must be individually connected to an appropriate power  
source or ground through a resistor for proper processor  
operation.  
TEST[4:0]  
Assertion of THERMTRIP_N (Thermal Trip) indicates one of two  
possible critical over-temperature conditions: One, the processor  
junction temperature has reached a level beyond which permanent  
silicon damage may occur and Two, the system memory interface  
has exceeded a critical temperature limit set by BIOS.  
Measurement of the processor junction temperature is  
accomplished through multiple internal thermal sensors that are  
monitored by the Digital Thermal Sensor (DTS). Simultaneously,  
the Power Control Unit (PCU) monitors external memory  
temperatures via the dedicated SMBus interface to the DIMMs. If  
any of the DIMMs exceed the BIOS defined limits, the PCU will  
signal THERMTRIP_N to prevent damage to the DIMMs. Once  
activated, the processor will stop all execution and shut down all  
PLLs. To further protect the processor, its core voltage (VCC),  
VTTA, VTTD, VSA, VCCPLL, VCCD supplies must be removed  
following the assertion of THERMTRIP_N. Once activated,  
THERMTRIP_N remains latched until RESET_N is asserted. While  
the assertion of the RESET_N signal may de-assert THERMTRIP_N,  
if the processor's junction temperature remains at or above the  
trip level, THERMTRIP_N will again be asserted after RESET_N is  
de-asserted. This signal can also be asserted if the system  
memory interface has exceeded a critical temperature limit set by  
BIOS. This signal is sampled after PWRGOOD assertion.  
THERMTRIP_N  
Intel® Trusted Execution Technology (Intel® TXT) Agent Strap.  
0 = Default. The socket is not the Intel® TXT Agent.  
1 = The socket is the Intel® TXT Agent.  
In non-Scalable DP platforms, the legacy socket (identified by  
SOCKET_ID[1:0] = 00b) with Intel® TXT Agent should always set  
the TXT_AGENT to 1b.  
TXT_AGENT  
On Scalable DP platforms the Intel TXT AGENT is at the Node  
Controller.  
Refer to the appropriate Platform Design Guide for more details.  
This signal is pulled down on the die, refer to Table 7-6 for details.  
Intel® Trusted Execution Technology (Intel® TXT) Platform Enable  
Strap.  
0 = The platform is not Intel® TXT enabled. All sockets should be  
set to zero. Scalable DP (sDP) platforms should choose this setting  
if the Node Controller does not support Intel TXT.  
TXT_PLTEN  
1 = Default. The platform is Intel® TXT enabled. All sockets should  
be set to one. In a non-Scalable DP platform this is the default.  
When this is set, Intel TXT functionality requires user to explicitly  
enable Intel TXT via BIOS setup.  
This signal is pulled up on the die, refer to Table 7-6 for details.  
124  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
Signal Descriptions  
Table 6-15. Miscellaneous Signals  
Signal Name  
Description  
IVT_ID_N  
This output can be used by the platform to determine if the installed  
processor is an Intel® Xeon® processor E5-1600 v2 product family, Intel®  
Xeon® processor E5-2600 v2 product family or Intel® Xeon® processor E5-  
1600/E5-2600 product families.  
This is pulled to ground on the processor package.This signal is also used by  
the VCCPLL and VTT rails to switch their output voltage to support future  
processors.  
SKTOCC_N  
SKTOCC_N (Socket occupied) is used to indicate that a processor is present.  
This is pulled to ground on the processor package; there is no connection to  
the processor silicon for this signal.  
6.10  
Processor Power and Ground Supplies  
Table 6-16. Power and Ground Signals (Sheet 1 of 2)  
Signal Name  
Description  
Variable power supply for the processor cores, lowest level caches  
(LLC), ring interface, and home agent. It is provided by a  
VRM/EVRD 12.0 compliant regulator for each CPU socket. The  
output voltage of this supply is selected by the processor, using the  
serial voltage ID (SVID) bus.  
VCC  
Note: VCC has a Vboot setting of 0.0V and is not included in the  
PWRGOOD indication. Refer to the compatible VR12.0  
PWM controller.  
VCC_SENSE and VSS_VCC_SENSE provide an isolated, low  
impedance connection to the processor core power and ground.  
These signals must be connected to the voltage regulator feedback  
circuit, which insures the output voltage (that is, processor  
voltage) remains within specification. Please see the applicable  
platform design guide for implementation details.  
VCC_SENSE  
VSS_VCC_SENSE  
VSA_SENSE and VSS_VSA_SENSE provide an isolated, low  
impedance connection to the processor system agent (VSA) power  
plane. These signals must be connected to the voltage regulator  
feedback circuit, which insures the output voltage (that is,  
processor voltage) remains within specification. Please see the  
applicable platform design guide for implementation details.  
VSA_SENSE  
VSS_VSA_SENSE  
VTTD_SENSE and VSS_VTTD_SENSE provide an isolated, low  
impedance connection to the processor I/O power plane. These  
signals must be connected to the voltage regulator feedback  
circuit, which insures the output voltage (that is, processor  
voltage) remains within specification. Please see the applicable  
platform design guide for implementation details.  
VTTD_SENSE  
VSS_VTTD_SENSE  
Variable power supply for the processor system memory interface.  
Provided by two VRM/EVRD 12.0 compliant regulators per CPU  
socket. VCCD_01 and VCCD_23 are used for memory channels 0,  
1, 2, & 3 respectively. The valid voltage of this supply (1.50V or  
1.35V) is configured by BIOS after determining the operating  
voltages of the installed memory. VCCD_01 and VCCD_23 will also  
be referred to as VCCD.  
VCCD_01 and VCCD_23  
Note: The processor must be provided VCCD_01 and VCCD_23  
for proper operation, even in configurations where no  
memory is populated. A VRM/EVRD 12.0 controller is  
recommended, but not required.  
Fixed power supply (1.7V) for the processor phased lock loop  
(PLL).  
VCCPLL  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
125  
     
Signal Descriptions  
Table 6-16. Power and Ground Signals (Sheet 2 of 2)  
Signal Name  
Description  
Variable power supply for the processor system agent units. These  
include logic (non-I/O) for the integrated I/O controller, the  
integrated memory controller (iMC), the Intel® QPI agent, and the  
Power Control Unit (PCU). The output voltage of this supply is  
selected by the processor, using the serial voltage ID (SVID) bus.  
Note: VSA has a Vboot setting of 0.9V. Refer to the compatible  
VR12.0 PWM controller.  
VSA  
VSS  
Processor ground node.  
Combined fixed analog and digital power supply for I/O sections of  
the processor Intel QPI interface, Direct Media Interface Gen 2  
(DMI2) interface, and PCI Express* interface. These signals will  
also be referred to as VTT.  
VTTA  
VTTD  
§
126  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
Electrical Specifications  
7 Electrical Specifications  
7.1  
Processor Signaling  
The processor includes 2011 lands, which use various signaling technologies. Signals  
are grouped by electrical characteristics and buffer type into various signal groups.  
These include DDR3 (Reference Clock, Command, Control, and Data), PCI Express*,  
DMI2, Intel® QuickPath Interconnect, Platform Environmental Control Interface (PECI),  
System Reference Clock, SMBus, JTAG and Test Access Port (TAP), SVID Interface,  
Processor Asynchronous Sideband, Miscellaneous, and Power/Other signals. Refer to  
Table 7-5 for details.  
Detailed layout, routing, and termination guidelines corresponding to these signal  
groups can be found in the applicable platform design guide (Refer to Section 1.7,  
Intel strongly recommends performing analog simulations of all interfaces. Please refer  
to Section 1.7, “Related Documents” for signal integrity model availability.  
7.1.1  
System Memory Interface Signal Groups  
The system memory interface utilizes DDR3 technology, which consists of numerous  
signal groups. These include: Reference Clocks, Command Signals, Control Signals,  
and Data Signals. Each group consists of numerous signals, which may utilize various  
signaling technologies. Please refer to Table 7-5 for further details. Throughout this  
chapter the system memory interface maybe referred to as DDR3.  
7.1.2  
7.1.3  
PCI Express Signals  
The PCI Express Signal Group consists of PCI Express* ports 1, 2, and 3, and PCI  
Express miscellaneous signals. Please refer to Table 7-5 for further details.  
DMI2/PCI Express Signals  
The Direct Media Interface Gen 2 (DMI2) sends and receives packets and/or commands  
to the PCH. The DMI2 is an extension of the standard PCI Express Specification. The  
DMI2/PCI Express Signals consist of DMI2 receive and transmit input/output signals  
and a control signal to select DMI2 or PCIe* 2.0 operation for port 0. Please refer to  
Table 7-5 for further details.  
7.1.4  
Intel® QuickPath Interconnect  
The processor provides two Intel QPI port for high speed serial transfer between other  
processors. Each port consists of two uni-directional links (for transmit and receive). A  
differential signaling scheme is utilized, which consists of opposite-polarity (DP, DN)  
signal pairs.  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
127  
             
Electrical Specifications  
7.1.5  
Platform Environmental Control Interface (PECI)  
PECI is an Intel proprietary interface that provides a communication channel between  
Intel processors and chipset components to external system management logic and  
thermal monitoring devices. The processor contains a Digital Thermal Sensor (DTS)  
that reports a relative die temperature as an offset from Thermal Control Circuit (TCC)  
activation temperature. Temperature sensors located throughout the die are  
implemented as analog-to-digital converters calibrated at the factory. PECI provides an  
interface for external devices to read processor temperature, perform processor  
manageability functions, and manage processor interface tuning and diagnostics.  
The PECI interface operates at a nominal voltage set by VTTD. The set of DC electrical  
specifications shown in Table 7-16 is used with devices normally operating from a VTTD  
interface supply.  
7.1.5.1  
Input Device Hysteresis  
The PECI client and host input buffers must use a Schmitt-triggered input design for  
improved noise immunity. Please refer to Figure 7-1 and Table 7-16.  
Figure 7-1. Input Device Hysteresis  
V
TTD  
Maximum VP  
Minimum VP  
PECI High Range  
PECI Low Range  
Minimum  
Valid Input  
Hysteresis Signal Range  
Maximum VN  
Minimum VN  
PECI Ground  
7.1.6  
System Reference Clocks (BCLK{0/1}_DP,  
BCLK{0/1}_DN)  
The processor core, processor uncore, Intel® QuickPath Interconnect link, PCI  
Express* and DDR3 memory interface frequencies) are generated from BCLK{0/1}_DP  
and BCLK{0/1}_DN signals. There is no direct link between core frequency and Intel  
QuickPath Interconnect link frequency (for example, no core frequency to Intel  
QuickPath Interconnect multiplier). The processor maximum core frequency, Intel  
QuickPath Interconnect link frequency and DDR memory frequency are set during  
manufacturing. It is possible to override the processor core frequency setting using  
software. This permits operation at lower core frequencies than the factory set  
maximum core frequency.  
The processor core frequency is configured during reset by using values stored within  
the device during manufacturing. The stored value sets the lowest core multiplier at  
which the particular processor can operate. If higher speeds are desired, the  
appropriate ratio can be configured via the IA32_PERF_CTL MSR (MSR 199h); Bits  
[15:0].  
128  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
     
Electrical Specifications  
Clock multiplying within the processor is provided by the internal phase locked loop  
(PLL), which requires a constant frequency BCLK{0/1}_DP, BCLK{0/1}_DN input, with  
exceptions for spread spectrum clocking. DC specifications for the BCLK{0/1}_DP,  
BCLK{0/1}_DN inputs are provided in Table 7-17. These specifications must be met  
while also meeting the associated signal quality specifications outlined in Section 7.9.  
7.1.6.1  
PLL Power Supply  
An on-die PLL filter solution is implemented on the processor. Refer to Table 7-11 for  
DC specifications.  
7.1.7  
JTAG and Test Access Port (TAP) Signals  
Due to the voltage levels supported by other components in the JTAG and Test Access  
Port (TAP) logic, Intel recommends the processor be first in the TAP chain, followed by  
any other components within the system. Please refer to the Intel® Xeon® Processor  
E5-1600 v2/E5-2600 v2 Product Families – Boundary Scan Description Language  
(BSDL) File for more details. A translation buffer should be used to connect to the rest  
of the chain unless one of the other components is capable of accepting an input of the  
appropriate voltage. Two copies of each signal may be required with each driving a  
different voltage level.  
7.1.8  
Processor Sideband Signals  
The processor include asynchronous sideband signals that provide asynchronous input,  
output or I/O signals between the processor and the platform or Platform Controller  
Hub. Details can be found in Table 7-5 and the applicable platform design guide.  
All Processor Asynchronous Sideband input signals are required to be  
asserted/deasserted for a defined number of BCLKs in order for the processor to  
recognize the proper signal state. Refer to Section 7.9 for applicable signal  
integrity specifications.  
7.1.9  
Power, Ground and Sense Signals  
Processors also include various other signals including power/ground and sense points.  
Details can be found in Table 7-5 and the applicable platform design guide.  
7.1.9.1  
Power and Ground Lands  
All VCC, VCCPLL, VSA, VCCD, VTTA, and VTTD lands must be connected to their respective  
processor power planes, while all VSS lands must be connected to the system ground  
plane. For clean on-chip power distribution, processors include lands for all required  
voltage supplies. These are listed in Table 7-1.  
Table 7-1.  
Power and Ground Lands (Sheet 1 of 2)  
Power and  
Ground Lands  
Number of  
Lands  
Comments  
Each V land must be supplied with the voltage determined by the  
CC  
SVID Bus signals. Table 7-3 defines the voltage level associated with  
each core SVID pattern.Table 7-11, Figure 7-2, and Figure 7-4  
V
V
208  
3
CC  
represent V static and transient limits. VCC has a VBOOT setting of  
CC  
0.0V.  
Each V  
land is connected to a 1.70 V supply, power the Phase  
CCPLL  
Lock Loop (PLL) clock generation circuitry. An on-die PLL filter  
solution is implemented within the processor.  
CCPLL  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
129  
       
Electrical Specifications  
Table 7-1.  
Power and Ground Lands (Sheet 2 of 2)  
Power and  
Ground Lands  
Number of  
Lands  
Comments  
Each V  
land is connected to a switchable 1.50 V and 1.35 V supply,  
CCD  
V
V
provide power to the processor DDR3 interface. These supplies also  
power the DDR3 memory subsystem. V is also controlled by the  
CCD_01  
CCD_23  
51  
CCD  
CCD_01  
SVID Bus. V  
is the generic term for V  
, V  
.
CCD  
CCD_23  
V
V
14  
19  
V
lands must be supplied by a fixed 1.0V supply.  
lands must be supplied by a fixed 1.0V supply.  
TTA  
TTD  
TTA  
TTD  
V
Each V land must be supplied with the voltage determined by the  
SA  
SVID Bus signals, typically set at 0.940V. VSA has a VBOOT setting of  
0.9V.  
V
V
25  
SA  
SS  
548  
Ground  
7.1.9.2  
Decoupling Guidelines  
Due to its large number of transistors and high internal clock speeds, the processor is  
capable of generating large current swings between low and full power states. This may  
cause voltages on power planes to sag below their minimum values if bulk decoupling is  
not adequate. Large electrolytic bulk capacitors (CBULK), help maintain the output  
voltage during current transients, for example coming out of an idle condition. Care  
must be taken in the baseboard design to ensure that the voltages provided to the  
processor remain within the specifications listed in Table 7-11. Failure to do so can  
result in timing violations or reduced lifetime of the processor.  
7.1.9.3  
Voltage Identification (VID)  
The Voltage Identification (VID) specification for the VCC, VSA, VCCD voltage are defined  
by the compatible VR12.0 PWM controller. The reference voltage or the VID setting is  
set via the SVID communication bus between the processor and the voltage regulator  
controller chip. The VID settings are the nominal voltages to be delivered to the  
processor's VCC, VSA, VCCD lands. Table 7-3 specifies the reference voltage level  
corresponding to the VID value transmitted over serial VID. The VID codes will change  
due to temperature and/or current load changes in order to minimize the power and to  
maximize the performance of the part. The specifications are set so that a voltage  
regulator can operate with all supported frequencies.  
Individual processor VID values may be calibrated during manufacturing such that two  
processor units with the same core frequency may have different default VID settings.  
The processor uses voltage identification signals to support automatic selection of VCC,  
VSA, and VCCD power supply voltages. If the processor socket is empty (SKTOCC_N  
high), or a “not supported” response is received from the SVID bus, then the voltage  
regulation circuit cannot supply the voltage that is requested, the voltage regulator  
must disable itself or not power on. Vout MAX register (30h) is programmed by the  
processor to set the maximum supported VID code and if the programmed VID code is  
higher than the VID supported by the VR, then VR will respond with a “not supported”  
acknowledgement. See the compatible VR12.0 PWM controller for further details.  
7.1.9.3.1  
SVID Commands  
The processor provides the ability to operate while transitioning to a new VID setting  
and its associated processor voltage rails (VCC, VSA, and VCCD). This is represented by a  
DC shift. It should be noted that a low-to-high or high-to-low voltage state change may  
result in as many VID transitions as necessary to reach the target voltage. Transitions  
above the maximum specified VID are not supported. The processor supports the  
following VR commands:  
130  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
 
Electrical Specifications  
• SetVID_fast (10 mV/µs for VSA/VCCD),  
• SetVID_slow (2.5 mV/µs for VSA/VCCD), and  
• Slew Rate Decay (downward voltage only and it’s a function of the output  
capacitance’s time constant) commands. Table 7-3 and Table 7-20 includes SVID  
step sizes and DC shift ranges. Minimum and maximum voltages must be  
maintained as shown in Table 7-11.  
The VRM or EVRD utilized must be capable of regulating its output to the value  
defined by the new VID. The compatible VR12.0 PWM controller contains further  
details.  
Power source characteristics must be guaranteed to be stable whenever the supply to  
the voltage regulator is stable.  
7.1.9.3.2  
SetVID Fast Command  
The SetVID-fast command contains the target VID in the payload byte. The range of  
voltage is defined in the VID table. The VR should ramp to the new VID setting with a  
fast slew rate as defined in the slew rate data register. Typically 10 to 20 mV/µs  
depending on platform, voltage rail, and the amount of decoupling capacitance.  
The SetVID-fast command is preemptive, the VR interrupts its current processes and  
moves to the new VID. The SetVID-fast command operates on 1 VR address at a time.  
This command is used in the processor for package C6 fast exit and entry.  
7.1.9.3.3  
SetVID Slow Command  
The SetVID-slow command contains the target VID in the payload byte. The range of  
voltage is defined in the VID table. The VR should ramp to the new VID setting with a  
“slow” slew rate as defined in the slow slew rate data register. The SetVID_Slow is 1/4  
slower than the SetVID_fast slew rate.  
The SetVID-slow command is preemptive, the VR interrupts its current processes and  
moves to the new VID. This is the instruction used for normal P-state voltage  
change. This command is used in the processor for the Intel Enhanced SpeedStep  
Technology transitions.  
7.1.9.3.4  
7.1.9.3.5  
SetVID Decay Command  
The SetVID-Decay command is the slowest of the DVID transitions. It is only used for  
VID down transitions. The VR does not control the slew rate, the output voltage  
declines with the output load current only.  
The SetVID- Decay command is preemptive, that is, the VR interrupts its current  
processes and moves to the new VID.  
SVID Power State Functions: SetPS  
The processor has three power state functions and these will be set seamlessly via the  
SVID bus using the SetPS command. Based on the power state command, the SetPS  
commands sends information to VR controller to configure the VR to improve efficiency,  
especially at light loads. For example, typical power states are:  
• PS(00h): Represents full power or active mode  
• PS(01h): Represents a light load 5A to 20A  
• PS(02h): Represents a very light load <5A  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
131  
 
Electrical Specifications  
The VR may change its configuration to meet the processor’s power needs with greater  
efficiency. For example, it may reduce the number of active phases, transition from  
CCM (Continuous Conduction Mode) to DCM (Discontinuous Conduction Mode) mode,  
reduce the switching frequency or pulse skip, or change to asynchronous regulation.  
For example, typical power states are 00h = run in normal mode; a command of 01h=  
shed phases mode, and an 02h=pulse skip.  
The VR may reduce the number of active phases from PS(00h) to PS(01h) or PS(00h)  
to PS(02h) for example. There are multiple VR design schemes that can be used to  
maintain a greater efficiency in these different power states, please work with your VR  
controller suppliers for optimizations.  
The SetPS command sends a byte that is encoded as to what power state the VR  
should transition to.  
If a power state is not supported by the controller, the slave should acknowledge with  
command rejected (11b)  
Note the mapping of power states 0-n will be detailed in the compatible VR12.0 PWM  
controller.  
If the VR is in a low power state and receives a SetVID command moving the VID up  
then the VR exits the low power state to normal mode (PS0) to move the voltage up as  
fast as possible. The processor must re-issue low power state (PS1 or PS2) command if  
it is in a low current condition at the new higher voltage. See Figure 7-2 for VR power  
state transitions.  
Figure 7-2. VR Power-State Transitions  
PS0  
PS1  
PS2  
7.1.9.3.6  
SVID Voltage Rail Addressing  
The processor addresses 4 different voltage rail control segments within VR12  
(VCC, VCCD_01, VCCD_23, and VSA). The SVID data packet contains a 4-bit  
addressing code:  
Table 7-2.  
SVID Address Usage (Sheet 1 of 2)  
PWM Address (HEX)  
Processor  
00  
01  
V
V
cc  
sa  
132  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
   
Electrical Specifications  
Table 7-2.  
SVID Address Usage (Sheet 2 of 2)  
PWM Address (HEX)  
Processor  
02  
03  
04  
05  
V
CCD_01  
+1 not used  
V
CCD_23  
+1 not used  
Notes:  
1.  
2.  
3.  
Check with VR vendors for determining the physical address assignment method for their controllers.  
VR addressing is assigned on a per voltage rail basis.  
Dual VR controllers will have two addresses with the lowest order address, always being the higher  
phase count.  
4.  
For future platform flexibility, the VR controller should include an address offset, as shown with +1  
not used.  
Table 7-3.  
VR12.0 Reference Code Voltage Identification (VID) (Sheet 1 of 2)  
VCC, VSA,  
VCCD  
VCC, VSA,  
VCCD  
VCC, VSA,  
VCCD  
VCC, VSA,  
VCCD  
VCC, VSA,  
VCCD  
VCC, VSA,  
VCCD  
HEX  
HEX  
HEX  
HEX  
HEX  
HEX  
00  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
0.00000  
0.50000  
0.50500  
0.51000  
0.51500  
0.52000  
0.52500  
0.53000  
0.53500  
0.54000  
0.54500  
0.55000  
0.55500  
0.56000  
0.56500  
0.57000  
0.57500  
0.58000  
0.58500  
0.59000  
0.59500  
0.60000  
0.60500  
0.61000  
0.61500  
0.62000  
0.62500  
0.63000  
0.63500  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
0.67000  
0.67500  
0.68000  
0.68500  
0.69000  
0.69500  
0.70000  
0.70500  
0.71000  
0.71500  
0.72000  
0.72500  
0.73000  
0.73500  
0.74000  
0.74500  
0.75000  
0.75500  
0.76000  
0.76500  
0.77000  
0.77500  
0.78000  
0.78500  
0.79000  
0.79500  
0.80000  
0.80500  
0.81000  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
8A  
8B  
8C  
8D  
8E  
8F  
90  
91  
92  
93  
94  
0.84500  
0.85000  
0.85500  
0.86000  
0.86500  
0.87000  
0.87500  
0.88000  
0.88500  
0.89000  
0.89500  
0.90000  
0.90500  
0.91000  
0.91500  
0.92000  
0.92500  
0.93000  
0.93500  
0.94000  
0.94500  
0.95000  
0.95500  
0.96000  
0.96500  
0.97000  
0.97500  
0.98000  
0.98500  
9B  
9C  
9D  
9E  
9F  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
AF  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
1.02000  
1.02500  
1.03000  
1.03500  
1.04000  
1.04500  
1.05000  
1.05500  
1.06000  
1.06500  
1.07000  
1.07500  
1.08000  
1.08500  
1.09000  
1.09500  
1.10000  
1.10500  
1.11000  
1.11500  
1.12000  
1.12500  
1.13000  
1.13500  
1.14000  
1.14500  
1.15000  
1.15500  
1.16000  
BE  
BF  
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
CA  
CB  
CC  
CD  
CE  
CF  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
DA  
1.19500  
1.20000  
1.20500  
1.21000  
1.21500  
1.22000  
1.22500  
1.23000  
1.23500  
1.24000  
1.24500  
1.25000  
1.25500  
1.26000  
1.26500  
1.27000  
1.27500  
1.28000  
1.28500  
1.29000  
1.29500  
1.30000  
1.30500  
1.31000  
1.31500  
1.32000  
1.32500  
1.33000  
1.33500  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
EA  
EB  
EC  
ED  
EE  
EF  
F0  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
FA  
FB  
FC  
FD  
1.37000  
1.37500  
1.38000  
1.38500  
1.39000  
1.39500  
1.40000  
1.40500  
1.41000  
1.41500  
1.42000  
1.42500  
1.43000  
1.43500  
1.44000  
1.44500  
1.45000  
1.45500  
1.46000  
1.46500  
1.47000  
1.47500  
1.48000  
1.48500  
1.49000  
1.49500  
1.50000  
1.50500  
1.51000  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
133  
   
Electrical Specifications  
Table 7-3.  
VR12.0 Reference Code Voltage Identification (VID) (Sheet 2 of 2)  
VCC, VSA,  
VCCD  
VCC, VSA,  
VCCD  
VCC, VSA,  
VCCD  
VCC, VSA,  
VCCD  
VCC, VSA,  
VCCD  
VCC, VSA,  
VCCD  
HEX  
HEX  
HEX  
HEX  
HEX  
HEX  
4F  
50  
51  
52  
53  
54  
0.64000  
0.64500  
0.65000  
0.65500  
0.66000  
0.66500  
72  
73  
74  
75  
76  
77  
0.81500  
0.82000  
0.82500  
0.83000  
0.83500  
0.84000  
95  
96  
97  
98  
99  
9A  
0.99000  
0.99500  
1.00000  
1.00500  
1.01000  
1.01500  
B8  
B9  
BA  
BB  
BC  
BD  
1.16500  
1.17000  
1.17500  
1.18000  
1.18500  
1.19000  
DB  
DC  
DD  
DE  
DF  
E0  
1.34000  
1.34500  
1.35000  
1.35500  
1.36000  
1.36500  
FE  
FF  
1.51500  
1.52000  
Notes:  
1.  
2.  
3.  
4.  
00h = Off State  
VID Range HEX 01-32 are not used by the processor.  
For VID Ranges supported see Table 7-11.  
VCCD is a fixed voltage of 1.35V or 1.5V.  
7.1.10  
Reserved or Unused Signals  
All Reserved (RSVD) signals must not be connected. Connection of these signals to VCC,  
VTTA, VTTD, VCCD, VCCPLL, VSS, or to any other signal (including each other) can result in  
component malfunction or incompatibility with future processors. See Chapter 8,  
“Processor Land Listing” for a land listing of the processor and the location of all  
Reserved signals.  
For reliable operation, always connect unused inputs or bi-directional signals to an  
appropriate signal level. Unused active high inputs should be connected through a  
resistor to ground (VSS). Unused outputs maybe left unconnected; however, this may  
interfere with some Test Access Port (TAP) functions, complicate debug probing, and  
prevent boundary scan testing. A resistor must be used when tying bi-directional  
signals to power or ground. When tying any signal to power or ground, a resistor will  
also allow for system testability. Resistor values should be within ± 20% of the  
impedance of the baseboard trace, unless otherwise noted in the appropriate platform  
design guidelines.  
7.2  
Signal Group Summary  
Signals are grouped by buffer type and similar characteristics as listed in Table 7-5. The  
buffer type indicates which signaling technology and specifications apply to the signals.  
Table 7-4.  
Signal Description Buffer Types (Sheet 1 of 2)  
Signal  
Description  
Analog reference or output. May be used as a threshold voltage or for buffer  
compensation  
Analog  
1
Asynchronous  
CMOS  
Signal has no timing relationship with any system reference clock.  
CMOS buffers: 1.0 V or 1.5 V tolerant  
DDR3  
DDR3 buffers: 1.5 V and 1.35 V tolerant  
Direct Media Interface Gen 2 signals. These signals are compatible with PCI Express*  
2.0 and 1.0 Signaling Environment AC Specifications.  
DMI2  
Current-mode 6.4 GT/s and 8.0 GT/s forwarded-clock Intel QuickPath Interconnect  
signaling  
Intel® QPI  
Open Drain CMOS  
Open Drain CMOS (ODCMOS) buffers: 1.0V tolerant  
134  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
     
Electrical Specifications  
Table 7-4.  
Signal Description Buffer Types (Sheet 2 of 2)  
Signal  
Description  
PCI Express* interface signals. These signals are compatible with PCI Express 3.0  
Signalling Environment AC Specifications and are AC coupled. The buffers are not  
3.3-V tolerant. Refer to the PCIe specification.  
PCI Express*  
Reference  
SSTL  
Voltage reference signal.  
Source Series Terminated Logic (JEDEC SSTL_15)  
1.  
Qualifier for a buffer type.  
Table 7-5.  
Signal Groups (Sheet 1 of 3)  
Differential/Single  
Ended  
1
Buffer Type  
Signals  
2
DDR3 Reference Clocks  
Differential  
SSTL Output  
DDR{0/1/2/3}_CLK_D[N/P][3:0]  
2
DDR3 Command Signals  
DDR{0/1/2/3}_BA[2:0]  
DDR{0/1/2/3}_CAS_N  
DDR{0/1/2/3}_MA[15:00]  
DDR{0/1/2/3}_MA_PAR  
DDR{0/1/2/3}_RAS_N  
DDR{0/1/2/3}_WE_N  
SSTL Output  
Single ended  
CMOS1.5v Output  
DDR_RESET_C{01/23}_N  
2
DDR3 Control Signals  
DDR{0/1/2/3}_CS_N[9:0]  
DDR{0/1/2/3}_ODT[5:0]  
DDR{0/1/2/3}_CKE[5:0]  
CMOS1.5v Output  
Single ended  
Reference Output  
Reference Input  
DDR_VREFDQTX_C{01/23}  
DDR_VREFDQRX_C{01/23}  
DDR{01/23}_RCOMP[2:0]  
2
DDR3 Data Signals  
Differential  
SSTL Input/Output  
SSTL Input/Output  
DDR{0/1/2/3}_DQS_D[N/P][17:00]  
DDR{0/1/2/3}_DQ[63:00]  
DDR{0/1/2/3}_ECC[7:0]  
Single ended  
SSTL Input  
DDR{0/1/2/3}_PAR_ERR_N  
2
DDR3 Miscellaneous Signals  
CMOS1.5v Input  
DRAM_PWR_OK_C{01/23}  
Single ended  
PCI Express* Port 1, 2, & 3 Signals  
PE1A_RX_D[N/P][3:0]  
PE1B_RX_D[N/P][7:4]  
PE2A_RX_D[N/P][3:0]  
PE2B_RX_D[N/P][7:4]  
PE2C_RX_D[N/P][11:8]  
PE2D_RX_D[N/P][15:12]  
PE3A_RX_D[N/P][3:0]  
PE3B_RX_D[N/P][7:4]  
PE3C_RX_D[N/P][11:8]  
PE3D_RX_D[N/P][15:12]  
Differential  
PCI Express* Input  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
135  
 
Electrical Specifications  
Table 7-5.  
Signal Groups (Sheet 2 of 3)  
Differential/Single  
Ended  
1
Buffer Type  
Signals  
PE1A_TX_D[N/P][3:0]  
PE1B_TX_D[N/P][7:4]  
PE2A_TX_D[N/P][3:0]  
PE2B_TX_D[N/P][7:4]  
PE2C_TX_D[N/P][11:8]  
PE2D_TX_D[N/P][15:12]  
PE3A_TX_D[N/P][3:0]  
PE3B_TX_D[N/P][7:4]  
PE3C_TX_D[N/P][11:8]  
PE3D_TX_D[N/P][15:12]  
Differential  
PCI Express* Output  
PCI Express* Miscellaneous Signals  
Analog Input  
Single ended  
PE_RBIAS_SENSE  
PE_RBIAS  
PE_VREF_CAP  
Reference Input/Output  
DMI2/PCI Express* Signals  
DMI2 Input  
DMI2 Output  
DMI_RX_D[N/P][3:0]  
DMI_TX_D[N/P][3:0]  
Differential  
Intel® QuickPath Interconnect (QPI) Signals  
QPI{0/1}_DRX_D[N/P][19:00]  
QPI{0/1}_CLKRX_D[N/P]  
Intel® QPI Input  
Differential  
QPI{0/1}_DTX_D[N/P][19:00]  
QPI{0/1}_CLKTX_D[N/P]  
Intel® QPI Output  
Analog Input  
Single ended  
QPI_RBIAS_SENSE  
QPI_RBIAS  
Analog Input/Output  
Platform Environmental Control Interface (PECI)  
Single ended  
PECI  
PECI  
System Reference Clock (BCLK{0/1})  
Differential  
CMOS1.0v Input  
BCLK{0/1}_D[N/P]  
SMBus  
DDR_SCL_C{01/23}  
DDR_SDA_C{01/23}  
PEHPSCL  
Open Drain CMOS  
Input/Output  
Single ended  
PEHPSDA  
JTAG & TAP Signals  
CMOS1.0v Input  
TCK, TDI, TMS, TRST_N  
PREQ_N  
CMOS1.0v Input/Output  
CMOS1.0v Output  
PRDY_N  
Single ended  
BPM_N[7:0]  
EAR_N  
Open Drain CMOS  
Input/Output  
Open Drain CMOS Output  
TDO  
Serial VID Interface (SVID) Signals  
CMOS1.0v Input  
SVIDALERT_N  
SVIDDATA  
Open Drain CMOS  
Single ended  
Input/Output  
Open Drain CMOS Output  
SVIDCLK  
136  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
Electrical Specifications  
Table 7-5.  
Signal Groups (Sheet 3 of 3)  
Differential/Single  
Ended  
1
Buffer Type  
Signals  
Processor Asynchronous Sideband Signals  
BIST_ENABLE  
BMCINIT  
FRMAGENT  
PWRGOOD  
PMSYNC  
RESET_N  
CMOS1.0v Input  
SAFE_MODE_BOOT  
SOCKET_ID[1:0]  
TXT_AGENT  
TXT_PLTEN  
Single ended  
CAT_ERR_N  
MEM_HOT_C{01/23}_N  
PROCHOT_N  
Open Drain CMOS  
Input/Output  
ERROR_N[2:0]  
THERMTRIP_N  
Open Drain CMOS Output  
Miscellaneous Signals  
IVT_ID_N  
SKTOCC_N  
N/A  
Output  
Power/Other Signals  
Power / Ground  
V
, V  
V
V
V
V
V
V
CC  
TTA, TTD, CCD_01, CCD_23, CCPLL, SA and SS  
VCC_SENSE  
VSS_VCC_SENSE  
VSS_VTTD_SENSE  
VTTD_SENSE  
Sense Points  
VSA_SENSE  
VSS_VSA_SENSE  
1.  
2.  
Refer to Chapter 6, "Signal Descriptions" for signal description details.  
DDR{0/1/2/3} refers to DDR3 Channel 0, DDR3 Channel 1, DDR3 Channel 2 and DDR3 Channel 3.  
Table 7-6.  
Signals with On-Die Termination  
Pull Up /Pull  
Signal Name  
Rail  
Value  
Units  
Notes  
Down  
DDR{0/1}_PAR_ERR_N  
DDR{2/3}_PAR_ERR_N  
BMCINIT  
Pull Up  
Pull Up  
VCCD_01  
VCCD_23  
VSS  
65  
65  
2K  
2K  
2K  
2K  
2K  
2K  
2K  
2K  
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Pull Down  
Pull Down  
Pull Down  
Pull Down  
Pull Down  
Pull Up  
1
1
1
1
1
1
1
2
FRMAGENT  
VSS  
TXT_AGENT  
VSS  
SAFE_MODE_BOOT  
SOCKET_ID[1:0]  
BIST_ENABLE  
TXT_PLTEN  
VSS  
VSS  
VTT  
Pull Up  
VTT  
EAR_N  
Pull Up  
VTT  
Notes:  
1.  
Refer to Table 7-19 for details on the R  
(Buffer on Resistance) value for this signal.  
ON  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
137  
 
Electrical Specifications  
7.3  
Power-On Configuration (POC) Options  
Several configuration options can be configured by hardware. The processor samples  
its hardware configuration at reset, on the active-to-inactive transition of RESET_N, or  
upon assertion of PWRGOOD (inactive-to-active transition). For specifics on these  
options, please refer to Table 7-7.  
The sampled information configures the processor for subsequent operation. These  
configuration options cannot be changed except by another reset transition of the  
latching signal (RESET_N or PWRGOOD).  
Table 7-7.  
Power-On Configuration Option Lands  
Configuration Option  
Output tri state  
Land Name  
Notes  
PROCHOT_N  
BIST_ENABLE  
BMCINIT  
1
2
3
3
Execute BIST (Built-In Self Test)  
Enable Service Processor Boot Mode  
Enable Intel® Trusted Execution Technology (Intel®  
TXT) Platform  
TXT_PLTEN  
Power-up Sequence Halt for ITP configuration  
Enable Bootable Firmware Agent  
EAR_N  
3
3
3
FRMAGENT  
Enable Intel Trusted Execution Technology  
(Intel TXT) Agent  
TXT_AGENT  
Enable Safe Mode Boot  
Configure Socket ID  
SAFE_MODE_BOOT  
SOCKET_ID[1:0]  
3
3
Notes:  
1.  
Output tri-state option enables Fault Resilient Booting (FRB), for FRB details see Section 7.4. The signal  
used to latch PROCHOT_N for enabling FRB mode is RESET_N.  
2.  
3.  
BIST_ENABLE is sampled at RESET_N de-assertion (on the falling edge).  
This signal is sampled after PWRGOOD assertion.  
7.4  
Fault Resilient Booting (FRB)  
The processor supports both socket and core level Fault Resilient Booting (FRB), which  
provides the ability to boot the system as long as there is one processor functional in  
the system. One limitation to socket level FRB is that the system cannot boot if the  
legacy socket that connects to an active PCH becomes unavailable since this is the path  
to the system BIOS. See Table 7-8 for a list of output tri-state FRB signals.  
Socket level FRB will tri-state processor outputs via the PROCHOT_N signal. Assertion  
of the PROCHOT_N signal through RESET_N de-assertion will tri-state processor  
outputs. Note, that individual core disabling is also supported for those cases where  
disabling the entire package is not desired.  
The processor extends the FRB capability to the core granularity by maintaining a  
register in the uncore so that BIOS or another entity can disable one or more specific  
processor cores.  
138  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
     
Electrical Specifications  
Table 7-8.  
Fault Resilient Booting (Output Tri-State) Signals  
Output Tri-State Signal Groups  
Signals  
QPI0_CLKTX_DN[1:0]  
QPI0_CLKTX_DP[1:0]  
QPI0_DTX_DN[19:00]  
QPI0_DTX_DP[19:00]  
QPI1_CLKTX_DN[1:0]  
QPI1_CLKTX_DP[1:0]  
QPI1_DTX_DN[19:00]  
QPI1_DTX_DP[19:00]  
Intel QPI  
DDR_SCL_C01  
DDR_SDA_C01  
DDR_SCL_C23  
DDR_SDA_C23  
PEHPSCL  
SMBus  
PEHPSDA  
CAT_ERR_N  
ERROR_N[2:0]  
BPM_N[7:0]  
PRDY_N  
Processor Sideband  
THERMTRIP_N  
PROCHOT_N  
PECI  
SVID  
SVIDCLK  
7.5  
Mixing Processors  
Intel supports and validates two and four processor configurations only in which all  
processors operate with the same Intel® QuickPath Interconnect frequency, core  
frequency, power segment, and have the same internal cache sizes. Mixing  
components operating at different internal clock frequencies is not supported and  
will not be validated by Intel. Combining processors from different power segments  
is also not supported.  
Note:  
Processors within a system must operate at the same frequency per bits [15:8] of the  
FLEX_RATIO MSR (Address: 194h); however this does not apply to frequency  
transitions initiated due to thermal events, Extended HALT, Enhanced Intel SpeedStep  
Technology transitions signal. Please refer to the Intel® Xeon® Processor E5 v2  
Product Family Processor Datasheet, Volume Two: Registers for details on the  
FLEX_RATIO MSR and setting the processor core frequency.  
Not all operating systems can support dual processors with mixed frequencies. Mixing  
processors of different steppings but the same model (as per CPUID instruction) is  
supported provided there is no more than one stepping delta between the processors,  
for example, S and S+1.  
S and S+1 is defined as mixing of two CPU steppings in the same platform where one  
CPU is S (stepping) = CPUID.(EAX=01h):EAX[3:0], and the other is S+1 =  
CPUID.(EAX=01h):EAX[3:0]+1. The stepping ID is found in EAX[3:0] after executing  
the CPUID instruction with Function 01h.  
Details regarding the CPUID instruction are provided in the AP-485, Intel® Processor  
Identification and the CPUID Instruction application note, also refer to the Intel®  
Xeon® Processor E5 v2 Product Family Specification Update.  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
139  
   
Electrical Specifications  
7.6  
7.7  
Flexible Motherboard Guidelines (FMB)  
The Flexible Motherboard (FMB) guidelines are estimates of the maximum values the  
processor will have over certain time periods. The values are only estimates and  
actual specifications for future processors may differ. Processors may or may not  
have specifications equal to the FMB value in the foreseeable future. System  
designers should meet the FMB values to ensure their systems will be compatible with  
future processors.  
Absolute Maximum and Minimum Ratings  
Table 7-9 specifies absolute maximum and minimum ratings. At conditions outside  
functional operation condition limits, but within absolute maximum and minimum  
ratings, neither functionality nor long-term reliability can be expected. If a device is  
returned to conditions within functional operation limits after having been subjected to  
conditions outside these limits, but within the absolute maximum and minimum  
ratings, the device may be functional, but with its lifetime degraded depending on  
exposure to conditions exceeding the functional operation condition limits.  
Although the processor contains protective circuitry to resist damage from Electro-  
Static Discharge (ESD), precautions should always be taken to avoid high static  
voltages or electric fields.  
Table 7-9.  
Processor Absolute Minimum and Maximum Ratings  
Symbol  
Parameter  
Min  
Max  
Unit  
V
V
V
Processor core voltage with respect to Vss  
Processor PLL voltage with respect to Vss  
Processor IO supply voltage for DDR3  
-0.3  
-0.3  
-0.3  
1.4  
2.0  
V
V
V
CC  
CCPLL  
CCD  
1.85  
(standard voltage) with respect to V  
SS  
V
V
Processor IO supply voltage for DDR3L (low  
Voltage) with respect to V  
-0.3  
1.7  
V
CCD  
SS  
Processor SA voltage with respect to V  
-0.3  
-0.3  
1.4  
1.4  
V
V
SA  
SS  
V
V
Processor analog IO voltage with respect to  
TTA  
TTD  
V
SS  
Notes:  
1.  
For functional operation, all processor electrical, signal quality, mechanical, and thermal specifications must  
be satisfied.  
2.  
Overshoot and undershoot voltage guidelines for input, output, and I/O signals are outlined in  
Section 7.9.5. Excessive overshoot or undershoot on any signal will likely result in permanent damage to  
the processor.  
7.7.1  
Storage Condition Specifications  
Environmental storage condition limits define the temperature and relative humidity  
limits to which the device is exposed to while being stored in a Moisture Barrier Bag.  
The specified storage conditions are for component level prior to board attach (see  
notes in Table 7-10 for post board attach limits).  
Table 7-10 specifies absolute maximum and minimum storage temperature limits which  
represent the maximum or minimum device condition beyond which damage, latent or  
otherwise, may occur. The table also specifies sustained storage temperature, relative  
humidity, and time-duration limits. These limits specify the maximum or minimum  
140  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
         
Electrical Specifications  
device storage conditions for a sustained period of time. At conditions outside sustained  
limits, but within absolute maximum and minimum ratings, quality & reliability may be  
affected.  
Table 7-10. Storage Condition Ratings  
Symbol  
Parameter  
Min  
Max  
Unit  
T
The minimum/maximum device storage temperature  
beyond which damage (latent or otherwise) may  
occur when subjected to for any length of time.  
-25  
125  
°C  
absolute storage  
T
The minimum/maximum device storage temperature  
for a sustained period of time.  
-5  
40  
85  
°C  
°C  
sustained storage  
T
The ambient storage temperature (in shipping media)  
for a short period of time.  
-20  
short term storage  
RH  
The maximum device storage relative humidity for a  
sustained period of time.  
60% @ 24  
°C  
sustained storage  
Time  
A prolonged or extended period of time; typically  
associated with sustained storage conditions  
Unopened bag, includes 6 months storage time by  
customer.  
0
30  
months  
sustained storage  
Time  
A short period of time (in shipping media).  
0
72  
hours  
short term storage  
Notes:  
1.  
Storage conditions are applicable to storage environments only. In this scenario, the processor must not  
receive a clock, and no lands can be connected to a voltage bias. Storage within these limits will not affect  
the long-term reliability of the device. For functional operation, please refer to the processor case  
temperature specifications.  
2.  
3.  
4.  
These ratings apply to the Intel component and do not include the tray or packaging.  
Failure to adhere to this specification can affect the long-term reliability of the processor.  
Non-operating storage limits post board attach: Storage condition limits for the component once attached  
to the application board are not specified. Intel does not conduct component level certification assessments  
post board attach given the multitude of attach methods, socket types and board types used by customers.  
Provided as general guidance only, Intel board products are specified and certified to meet the following  
temperature and humidity limits (Non-Operating Temperature Limit: -40C to 70C & Humidity: 50% to 90%,  
non condensing with a maximum wet bulb of 28C).  
5.  
Device storage temperature qualification methods follow JEDEC High and Low Temperature Storage Life  
Standards: JESD22-A119 (low temperature) and JESD22-A103 (high temperature).  
7.8  
DC Specifications  
DC specifications are defined at the processor pads, unless otherwise noted.  
DC specifications are only valid while meeting specifications for case temperature  
(TCASE specified in Chapter 5), clock frequency, and input voltages. Care should be  
taken to read all notes associated with each specification.  
7.8.1  
Voltage and Current Specifications  
Table 7-11. Voltage Specification (Sheet 1 of 2)  
Voltage  
Plane  
1
Symbol  
VID  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
V
V
V
VID Range  
0.6  
1.35  
V
2, 3  
CC  
CC  
Retention Voltage  
VID in package C3  
and C6 states  
Retention  
0.65  
V
V
2, 3  
VID  
Core Voltage  
(Launch - FMB)  
3, 4, 7, 8,  
12, 14, 18  
V
V
CC  
CC  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
141  
       
Electrical Specifications  
Table 7-11. Voltage Specification (Sheet 2 of 2)  
Voltage  
Plane  
1
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
V
VID_STEP  
VID step size during  
a transition  
5.0  
1.7  
1.5  
mV  
V
10  
(Vcc, Vsa,  
Vccd)  
11, 12, 13,  
17  
V
PLL Voltage  
V
0.955*V  
1.045*V  
CCPLL  
CCPLL  
CCPLL_TYP  
CCPLL_TYP  
CCD_TYP  
V
I/O Voltage for  
DDR3 (Standard  
Voltage)  
CCD  
11, 13, 14,  
16, 17  
V
V
0.95*V  
0.95*V  
1.05*V  
V
(
CCD_01,  
CCD_23)  
CCD  
CCD_TYP  
V
V
I/O Voltage for  
DDR3L (Low  
Voltage)  
CCD  
11, 13, 14,  
16, 17  
V
V
1.35  
1.075*V  
CCD_TYP  
V
(
CCD_01.  
CCD_23)  
CCD  
CCD_TYP  
V
V
VTTD)  
V
Uncore Voltage  
(Launch - FMB)  
3, 5, 9, 12,  
13  
TT ( TTA,  
V
0.957*V  
1.00  
1.043*V  
TT_TYP  
V
V
TT  
TT_TYP  
V
Vsa VID Range  
V
0.6  
0.940  
1.25  
2, 3, 14, 15  
SA_VID  
SA  
SA  
System Agent  
Voltage  
(Launch - FMB)  
3, 6, 12,  
14, 19  
V
V
V
- 0.057  
V
V + 0.057  
SA_VID  
V
SA  
SA_VID  
SA_VID  
Notes:  
1.  
2.  
3.  
4.  
Unless otherwise noted, all specifications in this table apply to all processors. These specifications are based on final silicon  
characterization.  
Individual processor VID values may be calibrated during manufacturing such that two devices at the same speed may have  
different settings.  
These voltages are targets only. A variable voltage source should exist on systems in the event that a different voltage is  
required.  
The V voltage specification requirements are measured across the remote sense pin pairs (VCC_SENSE and  
CC  
VSS_VCC_SENSE) on the processor package. Voltage measurement should be taken with a DC to 100 MHz bandwidth  
oscilloscope limit (or DC to 20 MHz for older model oscilloscopes), using a 1.5 pF maximum probe capacitance, and 1M Ω  
minimum impedance. The maximum length of the ground wire on the probe should be less than 5 mm to ensure external  
noise from the system is not coupled in the scope probe.  
5.  
6.  
The V  
and V  
voltage specification requirements are measured across the remote sense pin pairs (VTTD_SENSE and  
TTA,  
TTD  
VSS_VTTD_SENSE) on the processor package. Voltage measurement should be taken with a DC to 100 MHz bandwidth  
oscilloscope limit (or DC to 20 MHz for older model oscilloscopes), using a 1.5 pF maximum probe capacitance, and 1M Ω  
minimum impedance. The maximum length of the ground wire on the probe should be less than 5 mm to ensure external  
noise from the system is not coupled in the scope probe.  
The V voltage specification requirements are measured across the remote sense pin pairs (VSA_SENSE and  
SA  
VSS_VSA_SENSE) on the processor package. Voltage measurement should be taken with a DC to 100 MHz bandwidth  
oscilloscope limit (or DC to 20 MHz for older model oscilloscopes), using a 1.5 pF maximum probe capacitance, and 1M Ω  
minimum impedance. The maximum length of the ground wire on the probe should be less than 5 mm to ensure external  
noise from the system is not coupled in the scope probe.  
7.  
8.  
The processor should not be subjected to any static V level that exceeds the V  
associated with any particular current.  
CC  
CC_MAX  
Failure to adhere to this specification can shorten processor lifetime.  
Minimum V and maximum I are specified at the maximum processor case temperature (T ) shown in Chapter 5.  
CC  
CC  
CASE  
I
is specified at the relative V  
point on the V load line. The processor is capable of drawing I  
for up to 5  
CC_MAX  
CC_MAX  
CC  
CC_MAX  
seconds. Refer to Figure 7-4 for further details on the average processor current draw over various time durations.  
The processor should not be subjected to any static V level that exceeds the V associated with any particular  
9.  
V
TTA, TTD  
TT_MAX  
current. Failure to adhere to this specification can shorten processor lifetime.  
10. This specification represents the V reduction or V increase due to each VID transition, see Section 7.1.9.3, “Voltage  
CC  
CC  
Identification (VID)”. AC timing requirements for VID transitions are included in Table 7-23.  
11. Baseboard bandwidth is limited to 20 MHz.  
12. FMB is the flexible motherboard guidelines. See Section 7.6 for FMB details.  
13. DC + AC + Ripple = Total Tolerance  
14. For Power State Functions see Section 7.1.9.3.5.  
15.  
16.  
V
V
does not have a loadline, the output voltage is expected to be the VID value.  
SA_VID  
CCD  
17. The V  
tolerance at processor pins. Tolerance for VR at remote sense is ±3.3%*V  
.
CCD  
, V  
, V  
voltage specification requirements are measured across vias on the platform. Choose V  
,
CCPLL  
CCD01  
CCD23  
CCPLL  
V
, or V  
vias close to the socket and measure with a DC to 100MHz bandwidth oscilloscope limit (or DC to 20MHz for  
CCD01  
CCD23  
older model oscilloscopes), using 1.5 pF maximum probe capacitance, and 1M Ω minimum impedance. The maximum length  
of the ground wire on the probe should be less than 5 mm to ensure external noise from the system is not coupled in the  
scope probe.  
18. VCC has a Vboot setting of 0.0V and is not included in the PWRGOOD indication. Refer to the compatible VR12.0 PWM  
controller.  
19. VSA has a Vboot setting of 0.9V. Refer to the compatible VR12.0 PWM controller.  
142  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
Electrical Specifications  
Table 7-12. Processor Current Specifications  
Parameter Symbol and  
Processor TDP / Core Count  
Definition  
1
TDC (A)  
Max (A)  
Notes  
I
2, 5, 6  
TT  
20  
24  
I/O Termination Supply,  
Processor Current on V /V  
TTA TTD  
I
SA  
20  
3
24  
4
System Agent Supply,  
Processor Current on V  
SA  
I
CCD_01  
DDR3 Supply, Processor  
Current V  
CCD_01  
All Intel® Xeon® processor E5-1600  
v2/E5-2600 v2 product families  
I
CCD_23  
3
4
DDR3 Supply, Processor  
Current V  
CCD_23  
I
CCPLL  
2
2
PLL Supply, Processor Current  
on V  
CCPLL  
I
CCD_S3  
Total processor current on  
/V  
--  
0.5  
7
V
CCD_01 CCD_23  
in System S3 Standby State  
150W (WS) 8-core  
155  
135  
185  
165  
2, 5, 6  
130W 1U 12/10/8-core, 130W 1S WS 6-  
core  
130W 2U 8-core (E5-2667 v2)  
130W 2U 6/4-core, 130W 1S WS 4-core  
115W 12/10-core  
95W 10/8/6/4-core  
80W 6/4-core  
135  
115  
135  
115  
80  
165  
150  
165  
135  
100  
100  
85  
I
CC  
Core Supply, Processor Current  
on V  
CC  
70W 10-core  
80  
60W 6-core  
70  
LV95W-10C  
115  
80  
135  
100  
80  
LV70W-10C, LV70W-8C  
LV50W-6C  
60  
Notes:  
1.  
Unless otherwise noted, all specifications in this table apply to all processors. These specifications are based on final silicon  
characterization.  
2.  
3.  
Launch to FMB, this is the flexible motherboard guidelines. See Section 7.6 for FMB details.  
CC_TDC  
indefinitely and should be used for the voltage regulator thermal assessment. The voltage regulator is responsible for  
monitoring its temperature and asserting the necessary signal to inform the processor of a thermal excursion. Please refer to  
the compatible VR12.0 PWM controller for further details.  
I
(Thermal Design Current) is the sustained (DC equivalent) current that the processor is capable of drawing  
4.  
5.  
Specification is at T  
= 50°C. Characterized by design and not tested.  
CASE  
I
and I  
refers only to the processor’s current draw and does not account for the current consumption by  
CCD_01_MAX  
CCD_23_MAX  
the memory devices. This only applies to Intel® Xeon® processor E5-1600 v2/E5-2600 v2 product families.  
6.  
Minimum V and maximum I are specified at the maximum processor case temperature (T  
) shown in Chapter 5,  
CC  
CC  
CASE  
is specified at the relative V  
point on the V load line. The processor is  
CC_MAX  
CC_MAX CC  
capable of drawing I  
over various time durations.  
for up to 5 seconds. Refer to Figure 7-4 for further details on the average processor current draw  
CC_MAX  
7.  
8.  
9.  
Memory Standby Current is characterized by design and not tested.  
Refer to Table 1-1 for the model numbers of each processor based on TDP and core count.  
To determine which SKUS are for workstation platforms, refer to Section 5.1.3.  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
143  
 
Electrical Specifications  
Table 7-13. Processor VCC Static and Transient Tolerance  
I
(A)  
V
(V)  
V
(V)  
V (V)  
CC_MIN  
Notes  
CC  
CC_MAX  
CC_TYP  
0
VID + 0.015  
VID + 0.011  
VID + 0.007  
VID + 0.003  
VID + 0.000  
VID - 0.005  
VID - 0.009  
VID - 0.013  
VID - 0.017  
VID - 0.021  
VID - 0.025  
VID - 0.029  
VID - 0.033  
VID - 0.037  
VID - 0.041  
VID - 0.045  
VID - 0.049  
VID - 0.053  
VID - 0.057  
VID - 0.061  
VID - 0.065  
VID - 0.069  
VID - 0.073  
VID - 0.077  
VID - 0.081  
VID - 0.085  
VID - 0.089  
VID - 0.093  
VID - 0.097  
VID - 0.101  
VID - 0.105  
VID - 0.109  
VID - 0.113  
VID - 0.117  
VID - 0.121  
VID - 0.125  
VID - 0.129  
VID - 0.133  
VID - 0.000  
VID - 0.004  
VID - 0.008  
VID - 0.012  
VID - 0.015  
VID - 0.020  
VID - 0.024  
VID - 0.028  
VID - 0.032  
VID - 0.036  
VID - 0.040  
VID - 0.044  
VID - 0.048  
VID - 0.052  
VID - 0.056  
VID - 0.060  
VID - 0.064  
VID - 0.068  
VID - 0.072  
VID - 0.076  
VID - 0.080  
VID - 0.084  
VID - 0.088  
VID - 0.092  
VID - 0.096  
VID - 0.100  
VID - 0.104  
VID - 0.108  
VID - 0.112  
VID - 0.116  
VID - 0.120  
VID - 0.124  
VID - 0.128  
VID - 0.132  
VID - 0.136  
VID - 0.140  
VID - 0.144  
VID - 0.148  
VID - 0.015  
VID - 0.019  
VID - 0.023  
VID - 0.027  
VID - 0.030  
VID - 0.035  
VID - 0.039  
VID - 0.043  
VID - 0.047  
VID - 0.051  
VID - 0.055  
VID - 0.059  
VID - 0.063  
VID - 0.067  
VID - 0.071  
VID - 0.075  
VID - 0.079  
VID - 0.083  
VID - 0.087  
VID - 0.091  
VID - 0.095  
VID - 0.099  
VID - 0.103  
VID - 0.107  
VID - 0.111  
VID - 0.115  
VID - 0.119  
VID - 0.123  
VID - 0.127  
VID - 0.131  
VID - 0.135  
VID - 0.139  
VID - 0.143  
VID - 0.147  
VID - 0.151  
VID - 0.155  
VID - 0.159  
VID - 0.163  
1,2,3,4,5,6  
1,2,3,4,5,6  
1,2,3,4,5,6  
1,2,3,4,5,6  
1,2,3,4,5,6  
1,2,3,4,5,6  
1,2,3,4,5,6  
1,2,3,4,5,6  
1,2,3,4,5,6  
1,2,3,4,5,6  
1,2,3,4,5,6  
1,2,3,4,5,6  
1,2,3,4,5,6  
1,2,3,4,5,6  
1,2,3,4,5,6  
1,2,3,4,5,6  
1,2,3,4,5,6  
1,2,3,4,5,6  
1,2,3,4,5,6  
1,2,3,4,5,6  
1,2,3,4,5,6  
1,2,3,4,5,6  
1,2,3,4,5,6  
1,2,3,4,5,6  
1,2,3,4,5,6  
1,2,3,4,5,6  
1,2,3,4,5,6  
1,2,3,4,5,6  
1,2,3,4,5,6  
1,2,3,4,5,6  
1,2,3,4,5,6  
1,2,3,4,5,6  
1,2,3,4,5,6  
1,2,3,4,5,6  
1,2,3,4,5,6  
1,2,3,4,5,6  
1,2,3,4,5,6  
1,2,3,4,5,6  
5
10  
15  
19  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
90  
95  
100  
105  
110  
115  
120  
125  
130  
135  
140  
145  
150  
155  
160  
165  
170  
175  
180  
185  
Notes:  
1.  
2.  
3.  
The loadline specification includes both static and transient limits.  
This table is intended to aid in reading discrete points on graph in Figure 7-3.  
The loadlines specify voltage limits at the die measured at the VCC_SENSE and VSS_VCC_SENSE lands.  
Voltage regulation feedback for voltage regulator circuits must also be taken from processor VCC_SENSE  
144  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
 
Electrical Specifications  
and VSS_VCC_SENSE lands. Refer to the compatible VR12.0 PWM controller for loadline guidelines and VR  
implementation details.  
4.  
The Vcc_min and Vcc_max loadlines represent static and transient limits. Please see Chapter 6 for Vcc  
Overshoot specifications.  
The Adaptive Loadline Positioning slope is 0.8 mΩ.  
5.  
6.  
Figure 7-3. Processor VCC Static and Transient Tolerance Loadlines  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
145  
 
Electrical Specifications  
7.8.2  
Die Voltage Validation  
Core voltage (VCC) overshoot events at the processor must meet the specifications in  
Table 7-14 when measured across the VCC_SENSE and VSS_VCC_SENSE lands.  
Overshoot events that are < 10 ns in duration may be ignored. These measurements of  
processor die level overshoot should be taken with a 100 MHz bandwidth limited  
oscilloscope.  
Figure 7-4. Load Current Versus Time  
Notes:  
1.  
2.  
3.  
4.  
The peak current for any 5 second sample does not exceed Icc_max.  
The average current for any 10 second sample does not exceed the Y value at 10 seconds.  
The average current for any 20 second period or greater does not exceed Icc_tdc.  
Turbo performance may be impacted by failing to meet durations specified in this graph. Ensure that the  
platform design can handle peak and average current based on the specification.  
5.  
6.  
Processor or voltage regulator thermal protection circuitry should not trip for load currents greater than  
I
.
CC_TDC  
Not 100% tested. Specified by design characterization.  
7.8.2.1  
V
Overshoot Specifications  
CC  
The processor can tolerate short transient overshoot events where VCC exceeds the VID  
voltage when transitioning from a high-to-low current load condition. This overshoot  
cannot exceed VID + VOS_MAX (VOS_MAX is the maximum allowable overshoot above  
VID). These specifications apply to the processor die voltage as measured across the  
VCC_SENSE and VSS_VCC_SENSE lands.  
Table 7-14. VCC Overshoot Specifications  
Symbol  
Parameter  
Min  
Max  
Units  
Figure  
Notes  
V
T
Magnitude of V overshoot above VID  
CC  
65  
25  
mV  
OS_MAX  
Time duration of V overshoot above VccMAX  
CC  
value at the new lighter load  
μs  
OS_MAX  
146  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
     
Electrical Specifications  
Figure 7-5. VCC Overshoot Example Waveform  
VOS_MAX  
VID + VOS_MAX  
VccMAX (I1)  
TOS_MAX  
0
5
10  
15  
20  
25  
Time [us]  
Notes:  
1.  
2.  
3.  
4.  
V
is the measured overshoot voltage.  
is the measured time duration above VccMAX(I1).  
OS_MAX  
OS_MAX  
T
Istep: Load Release Current Step, for example, I2 to I1, where I2 > I1.  
VccMAX(I1) = VID - I1*RLL + 15mV  
7.8.3  
Signal DC Specifications  
DC specifications are defined at the processor pads, unless otherwise noted.  
DC specifications are only valid while meeting specifications for case temperature  
(TCASE specified in Chapter 5), clock frequency, and input voltages. Care should be  
taken to read all notes associated with each specification.  
Table 7-15. DDR3 and DDR3L Signal DC Specifications (Sheet 1 of 2)  
1
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Notes  
I
Input Leakage Current  
-1.4  
+1.4  
mA  
10  
IL  
Data Signals  
V
V
R
Input Low Voltage  
Input High Voltage  
0.43*V  
31  
V
V
Ω
2, 3  
IL  
CCD  
0.57*V  
21  
2, 4, 5  
6
IH  
ON  
CCD  
DDR3 Data Buffer On  
Resistance  
Data ODT  
On-Die Termination for Data  
Signals  
45  
90  
55  
110  
Ω
Ω
8
PAR_ERR_N ODT  
On-Die Termination for Parity  
Error Signals  
59  
72  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
147  
     
Electrical Specifications  
Table 7-15. DDR3 and DDR3L Signal DC Specifications (Sheet 2 of 2)  
1
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Notes  
Reference Clock Signals, Command, and Data Signals  
(V  
CCD  
V
V
Output Low Voltage  
Output High Voltage  
V
V
2, 7  
/ 2)* (R  
OL  
ON  
/(R +R  
))  
ON  
VTT_TERM  
V
CCD  
- ((V  
CCD  
2, 5, 7  
OH  
/ 2)*  
(R /(R +R  
ON  
ON  
RM  
VTT_TE  
))  
Reference Clock Signal  
DDR3 Clock Buffer On  
Resistance  
R
21  
31  
Ω
6
ON  
Command Signals  
DDR3 Command Buffer On  
Resistance  
R
16  
25  
24  
75  
Ω
Ω
V
6
6
ON  
DDR3 Reset Buffer On  
Resistance  
R
ON  
Output Low Voltage, Signals  
DDR_RESET_ C{01/23}_N  
V
0.2*V  
1,2  
OL_CMOS1.5v  
OH_CMOS1.5v  
CCD  
Output High Voltage, Signals  
DDR_RESET_ C{01/23}_N  
V
I
0.9*V  
V
1,2  
1,2  
CCD  
Input Leakage Current  
-100  
+100  
μA  
IL_CMOS1.5v  
Control Signals  
DDR3 Control Buffer On  
Resistance  
R
21  
31  
Ω
6
ON  
DDR01_RCOMP[0]  
DDR01_RCOMP[1]  
DDR01_RCOMP[2]  
DDR23_RCOMP[0]  
DDR23_RCOMP[1]  
DDR23_RCOMP[2]  
COMP Resistance  
COMP Resistance  
COMP Resistance  
COMP Resistance  
COMP Resistance  
COMP Resistance  
128.7  
25.839  
198  
130  
26.1  
200  
130  
26.1  
200  
131.3  
26.361  
202  
Ω
Ω
Ω
Ω
Ω
Ω
9,12  
9,12  
9,12  
9,12  
9,12  
9,12  
128.7  
25.839  
198  
131.3  
26.361  
202  
DDR3 Miscellaneous Signals  
Input Low Voltage  
DRAM_PWR_OK_C{01/23}  
0.55*VCCD +  
0.2  
2, 3,  
V
V
V
IL  
11, 13  
Input High Voltage  
DRAM_PWR_OK_C{01/23}  
0.55*VCCD  
+ 0.3  
2, 4, 5,  
11, 13  
V
IH  
Notes:  
1.  
2.  
The voltage rail V  
processor.  
3.  
4.  
5.  
V
V
V
IL  
IH  
IH  
specifications. Refer to Section 7.9.  
6.  
This is the pull down driver resistance. Refer to processor signal integrity models for I/V characteristics. Reset drive does not  
have a termination.  
VTT_TERM  
The minimum and maximum values for these signals are programmable by BIOS to one of the pairs.  
COMP resistance must be provided on the system board with 1% resistors. DDR01_RCOMP[2:0] and DDR23_RCOMP[2:0]  
resistors are terminated to VSS.  
7.  
8.  
9.  
R
is the termination on the DIMM and not controlled by the processor. Please refer to the applicable DIMM datasheet.  
10. Input leakage current is specified for all DDR3 signals.  
148  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
Electrical Specifications  
11. DRAM_PWR_OK_C{01/23} must have a maximum of 30 ns rise or fall time over VCCD * 0.55 +300 mV and -200 mV and the  
edge must be monotonic.  
12. The DDR01/23_RCOMP error tolerance is ±15% from the compensated value.  
13. DRAM_PWR_OK_C{01/23}: Data Scrambling must be enabled for production environments. Disabling Data scrambling can be  
used for debug and testing purposes only. Running systems with Data Scrambling off will make the configuration out of  
specification. For details, please reference these documents: Intel® Xeon® Processor E5 v2 Product Family Processor  
Datasheet, Volume Two: Registers.  
Table 7-16. PECI DC Specifications  
1
Symbol  
Definition and Conditions  
Input Voltage Range  
Min  
Max  
Units Figure Notes  
V
V
V
V
-0.150  
0.100 * V  
0.275 * V  
0.550 * V  
-6.0  
V
V
V
In  
TT  
Hysteresis  
Hysteresis  
TT  
TT  
TT  
Negative-edge threshold voltage  
Positive-edge threshold voltage  
High level output source  
0.500 * V  
0.725 * V  
V
V
2
2
N
TT  
TT  
P
I
mA  
SOURCE  
V
= 0.75 * V  
TT  
OH  
I
High impedance state leakage to V  
OL  
(V  
leak  
=
Leak+  
TTD  
50  
200  
µA  
3
V
)
R
C
V
Buffer On Resistance  
20  
N/A  
36  
10  
N/A  
4
Ω
ON  
Bus capacitance per node  
pF  
4,5  
Bus  
Signal noise immunity above 300 MHz  
Output Edge Rate (50 ohm to VSS, between V  
0.100 * V  
V
p-p  
Noise  
TT  
1.5  
V/ns  
IL  
and V  
)
IH  
Notes:  
1.  
2.  
V
supplies the PECI interface. PECI behavior does not affect V  
min/max specification  
TTD  
TTD  
It is expected that the PECI driver will take into account, the variance in the receiver input thresholds and consequently, be  
able to drive its output within safe limits (-0.150 V to 0.275*V  
high level).  
for the low level and 0.725*V  
to V  
+0.150 V for the  
TTD  
TTD  
TTD  
3.  
4.  
The leakage specification applies to powered devices on the PECI bus.  
One node is counted for each client and one node for the system host. Extended trace lengths might appear as additional  
nodes.  
5.  
Excessive capacitive loading on the PECI line may slow down the signal rise/fall times and consequently limit the maximum bit  
rate at which the interface can operate.  
Table 7-17. System Reference Clock (BCLK{0/1}) DC Specifications  
Unit Figure Notes1  
Symbol  
Parameter  
Signal  
Min  
Max  
V
V
V
Differential Input High Voltage  
Differential Input Low Voltage  
Absolute Crossing Point  
Differential  
Differential  
0.150  
N/A  
V
V
BCLK_diff_ih  
BCLK_diff_il  
-0.150  
(abs)  
cross  
Single Ended  
Single Ended  
0.250  
0.550  
V
V
2, 4, 7  
V
(rel)  
Relative Crossing Point  
0.250 +  
0.550 +  
cross  
0.5*(VH  
-
0.5*(VH  
-
3, 4, 5  
6
avg  
avg  
0.700)  
0.700)  
ΔV  
V
Range of Crossing Points  
Threshold Voltage  
Single Ended  
Single Ended  
N/A  
N/A  
0.140  
V
V
cross  
Vcross - 0.1  
0.9  
Vcross + 0.1  
1.50  
TH  
I
Input Leakage Current  
Pad Capacitance  
μA  
pF  
8
IL  
C
N/A  
1.2  
pad  
Notes:  
1.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies. These specifications are specified at  
the processor pad.  
2.  
Crossing Voltage is defined as the instantaneous voltage value when the rising edge of BCLK{0/1}_DN is equal to the falling  
edge of BCLK{0/1}_DP.  
3.  
4.  
5.  
6.  
7.  
V
is the statistical average of the VH measured by the oscilloscope.  
Havg  
The crossing point must meet the absolute and relative crossing point specifications simultaneously.  
V
V
can be measured directly using “Vtop” on Agilent* and “High” on Tektronix oscilloscopes.  
is defined as the total variation of all crossing voltages as defined in Note 3.  
Havg  
CROSS  
The rising edge of BCLK{0/1}_DN is equal to the falling edge of BCLK{0/1}_DP.  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
149  
   
Electrical Specifications  
8.  
For Vin between 0 and Vih.  
Table 7-18. SMBus DC Specifications  
Symbol  
Parameter  
Input Low Voltage  
Min  
Max  
Units  
Notes  
V
V
V
V
R
I
0.3*V  
V
V
IL  
TT  
Input High Voltage  
Hysteresis  
0.7*VTT  
0.1*VTT  
IH  
V
Hysteresis  
Output Low Voltage  
Buffer On Resistance  
Leakage Current  
0.2*V  
14  
V
OL  
TT  
4
Ω
ON  
50  
200  
0.6  
μA  
V/ns  
L
Output Edge Rate (50 ohm to V , between V  
0.05  
TT  
IL  
and V  
)
IH  
Table 7-19. JTAG and TAP Signals DC Specifications  
Symbol  
Parameter  
Input Low Voltage  
Min  
Max  
Units  
Notes  
V
V
V
V
V
V
R
0.3*V  
0.4*V  
0.2*V  
V
V
V
V
V
V
Ω
IL  
TT  
TT  
TT  
Input High Voltage  
0.7*V  
0.8*V  
IH  
TT  
TT  
TT  
Input Low Voltage: PREQ_N  
Input High Voltage: PREQ_N  
Output Low Voltage  
Hysteresis  
IL  
IH  
OL  
0.1*V  
4
Hysteresis  
ON  
Buffer On Resistance  
14  
BPM_N[7:0], PRDY_N, TDO  
I
Input Leakage Current  
50  
200  
μA  
IL  
Input Edge Rate  
Signals: BPM_N[7:0], EAR_N, PREQ_N, TCK,  
TDI, TMS, TRST_N  
0.05  
V/ns  
1, 2  
1
Output Edge Rate (50 ohm to V  
)
0.2  
1.5  
V/ns  
TT  
Signal: BPM_N[7:0], PRDY_N, TDO  
Note:  
1.  
2.  
These signals are measured between VIL and VIH.  
The signal edge rate must be met or the signal must transition monotonically to the asserted state.  
Table 7-20. Serial VID Interface (SVID) DC Specifications (Sheet 1 of 2)  
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Notes  
V
V
CPU I/O Voltage  
VTT - 3%  
1.0  
VTT + 3%  
V
V
TT  
Input Low Voltage  
Signals SVIDDATA, SVIDALERT_N  
0.4*V  
1
1
1
IL  
TT  
V
V
Input High Voltage  
Signals SVIDDATA, SVIDALERT_N  
0.7*V  
V
V
IH  
TT  
Output Low Voltage  
Signals SVIDCLK, SVIDDATA  
0.3*V  
14  
OL  
TT  
V
R
Hysteresis  
0.05*V  
4
V
1
2
Hysteresis  
TT  
Buffer On Resistance  
Ω
ON  
Signals SVIDCLK, SVIDDATA  
150  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
     
Electrical Specifications  
Table 7-20. Serial VID Interface (SVID) DC Specifications (Sheet 2 of 2)  
Symbol  
Parameter  
Input Leakage Current  
Min  
Typ  
Max  
Units  
Notes  
I
+/-50  
0.05  
±200  
μA  
3,4  
IL  
Input Edge Rate  
V/ns  
5, 6  
Signal: SVIDALERT_N  
Output Edge Rate (50 ohm to V  
)
0.20  
1.5  
V/ns  
5
TT  
Notes:  
1.  
2.  
3.  
4.  
5.  
V
refers to instantaneous V .  
TT TT  
Measured at 0.31*V  
TT  
Vin between 0V and V  
TT  
These are measured between VIL and VIH.  
The signal edge rate must be met or the signal must transition monotonically to the asserted state.  
Table 7-21. Processor Asynchronous Sideband DC Specifications  
Symbol  
Parameter  
Min  
Max  
Units  
Notes  
CMOS1.0v Signals  
V
V
V
I
Input Low Voltage  
0.3*V  
V
V
1,2  
1,2  
1,2  
1,2  
IL_CMOS1.0v  
IH_CMOS1.0v  
Hysteresis  
TT  
Input High Voltage  
Hysteresis  
0.7*V  
0.1*V  
50  
TT  
TT  
V
Input Leakage Current  
200  
μA  
IL_CMOS1.0v  
Open Drain CMOS (ODCMOS) Signals  
V
Input Low Voltage  
Signals:  
MEM_HOT_C01/23_N,  
PROCHOT_N  
0.3*V  
V
1,2  
IL_ODCMOS  
IL_ODCMOS  
TT  
V
Input Low Voltage  
0.4*V  
V
1,2  
TT  
Signals: CAT_ERR_N  
V
V
V
Input High Voltage  
Output Low Voltage  
Hysteresis  
0.7*V  
V
V
V
1,2  
1,2  
1,2  
IH_ODCMOS  
OL_ODCMOS  
Hysteresis  
TT  
0.2*V  
0.1*V  
TT  
TT  
Signals:  
MEM_HOT_C01/23_N,  
PROCHOT_N  
V
I
Hysteresis  
Signal: CAT_ERR_N  
0.05*V  
V
1,2  
Hysteresis  
TT  
Input Leakage Current  
Buffer On Resistance  
Output Edge Rate  
50  
4
200  
14  
μA  
Ω
Leak  
R
1,2  
3
ON  
0.05  
0.60  
V/ns  
Signal:MEM_HOT_C{01/23}_  
N, ERROR_N[2:0],  
THERMTRIP, PROCHOT_N  
Output Edge Rate  
0.2  
1.5  
V/ns  
3
Signal: CAT_ERR_N  
Notes:  
1.  
2.  
3.  
This table applies to the processor sideband and miscellaneous signals specified in Table 7-5.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
These signals are measured between VIL and VIH.  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
151  
 
Electrical Specifications  
Table 7-22. Miscellaneous Signals DC Specifications  
Symbol  
Parameter  
Min  
Typical  
Max  
Units  
Notes  
IVT_ID_N Signal  
V
I
Output Absolute Max Voltage  
Output Current  
1.10  
1.80  
0
V
1
O_ABS_MAX  
μA  
1, 3  
O
SKTOCC_N Signal  
V
Output Absolute Max Voltage  
Output Max Current  
3.30  
3.50  
1
V
1
2
O_ABS_MAX  
I
mA  
OMAX  
Notes:  
1. IVT_ID_N land is pulled to ground on the package.  
7.8.3.1  
7.8.3.2  
7.8.3.3  
PCI Express* DC Specifications  
The processor DC specifications for the PCI Express* are available in the PCI Express  
Base Specification - Revision 3.0. This document will provide only the processor  
exceptions to the PCI Express Base Specification - Revision 3.0.  
DMI2/PCI Express* DC Specifications  
The processor DC specifications for the DMI2/PCI Express* are available in the PCI  
Express Base Specification 2.0 and 1.0. This document will provide only the processor  
exceptions to the PCI Express Base Specification 2.0 and 1.0.  
Intel® QuickPath Interconnect DC Specifications  
Intel QuickPath Interconnect specifications are defined at the processor lands. Please  
refer to the appropriate platform design guidelines for specific implementation details.  
In most cases, termination resistors are not required as these are integrated into the  
processor silicon.  
7.8.3.4  
Reset and Miscellaneous Signal DC Specifications  
For a power-on Reset, RESET_N must stay active for at least 3.5 millisecond after VCC  
and BCLK{0/1} have reached their proper specifications. RESET_N must not be kept  
asserted for more than 100 ms while PWRGOOD is asserted. RESET_N must be held  
asserted for at least 3.5 millisecond before it is deasserted again. RESET_N must be  
held asserted before PWRGOOD is asserted. This signal does not have on-die  
termination and must be terminated on the system board.  
152  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
 
Electrical Specifications  
Figure 7-6. BCLK{0/1} Differential Clock Crosspoint Specification  
650  
600  
550  
550 mV  
500  
450  
400  
350  
300  
250  
200  
550 + 0.5 (VHavg - 700)  
250 + 0.5 (VHavg - 700)  
250 mV  
660 670 680 690 700 710 720 730 740 750 760 770 780 790 800 810 820 830 840 850  
VHavg (mV)  
Figure 7-7. BCLK{0/1} Differential Clock Measurement Point for Ringback  
VRB-Differential  
T STABLE  
V = +150 mV  
IH  
VRB = +100 mV  
0.0V  
VRB = -100 mV  
V = -150 mV  
IL  
REFCLK +  
T STABLE  
VRB-Differential  
Figure 7-8. BCLK{0/1} Single Ended Clock Measurement Points for Absolute Cross Point  
and Swing  
VMAX = 1.40V  
BCLK_DN  
VCROSS MAX = 550mV  
VCROSS MIN = 250mV  
BCLK_DP  
VMIN = -0.30V  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
153  
     
Electrical Specifications  
7.9  
Signal Quality  
Data transfer requires the clean reception of data signals and clock signals. Ringing  
below receiver thresholds, non-monotonic signal edges, and excessive voltage swings  
will adversely affect system timings. Ringback and signal non-monotonicity cannot be  
tolerated since these phenomena may inadvertently advance receiver state machines.  
Excessive signal swings (overshoot and undershoot) are detrimental to silicon gate  
oxide integrity, and can cause device failure if absolute voltage limits are exceeded.  
Overshoot and undershoot can also cause timing degradation due to the build up of  
inter-symbol interference (ISI) effects.  
For these reasons, it is crucial that the designer work towards a solution that provides  
acceptable signal quality across all systematic variations encountered in volume  
manufacturing.  
This section documents signal quality metrics used to derive topology and routing  
guidelines through simulation. All specifications are specified at the processor die (pad  
measurements).  
Specifications for signal quality are for measurements at the processor core only and  
are only observable through simulation. Therefore, proper simulation is the only way to  
verify proper timing and signal quality.  
7.9.1  
DDR3 Signal Quality Specifications  
Overshoot (or undershoot) is the absolute value of the maximum voltage above or  
below VSS. The overshoot/undershoot specifications limit transitions beyond specified  
maximum voltages or VSS due to the fast signal edge rates. The processor can be  
damaged by single and/or repeated overshoot or undershoot events on any input,  
output, or I/O buffer if the charge is large enough (that is, if the over/undershoot is  
great enough). Baseboard designs which meet signal integrity and timing requirements  
and which do not exceed the maximum overshoot or undershoot limits listed in  
Table 7-23 will insure reliable IO performance for the lifetime of the processor.  
7.9.2  
7.9.3  
I/O Signal Quality Specifications  
Signal Quality specifications for PCIe Signals are included as part of the PCIe DC  
specifications.  
Intel® QuickPath Interconnect Signal Quality  
Specifications  
Signal Quality specifications for Differential Intel® QuickPath Interconnect Signals are  
included as part of the Intel QuickPath Interconnect signal quality specifications.  
Various scenarios have been simulated to generate a set of layout guidelines which are  
available in the appropriate Platform Design Guide (PDG).  
7.9.4  
Input Reference Clock Signal Quality Specifications  
Overshoot/Undershoot and Ringback specifications for BCLK{0/1}_D[N/P] are found in  
Table 7-23. Overshoot/Undershoot and Ringback specifications for the DDR3 Reference  
Clocks are specified by the DIMM.  
154  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
         
Electrical Specifications  
7.9.5  
Overshoot/Undershoot Tolerance  
Overshoot (or undershoot) is the absolute value of the maximum voltage above or  
below VSS, see Figure 7-9. The overshoot/undershoot specifications limit transitions  
beyond VCCD or VSS due to the fast signal edge rates. The processor can be damaged  
by single and/or repeated overshoot or undershoot events on any input, output, or I/O  
buffer if the charge is large enough (that is, if the over/undershoot is great enough).  
Determining the impact of an overshoot/undershoot condition requires knowledge of  
the magnitude, the pulse direction, and the activity factor (AF). Permanent damage to  
the processor is the likely result of excessive overshoot/undershoot.  
Baseboard designs which meet signal integrity and timing requirements and which do  
not exceed the maximum overshoot or undershoot limits listed in Table 7-23 will insure  
reliable IO performance for the lifetime of the processor.  
Table 7-23. Processor I/O Overshoot/Undershoot Specifications  
Minimum  
Undershoot  
Maximum  
Overshoot  
Overshoot  
Duration  
Undershoot  
Duration  
Signal Group  
Notes  
Intel QuickPath Interconnect  
DDR3  
-0.2 * VTT  
1.2 * VTT  
39 ps  
15 ps  
1,2  
1,2,3  
1,2  
4
-0.2 * V  
1.2 * V  
0.25*T  
0.1*T  
CH  
CCD  
CCD  
CH  
System Reference Clock (BCLK{0/1})  
PWRGOOD Signal  
-0.3V  
1.15V  
N/A  
N/A  
N/A  
-0.420V  
VTT + 0.28  
N/A  
Notes:  
1.  
2.  
3.  
4.  
These specifications are measured at the processor pad.  
Refer to Figure 7-9 for description of allowable Overshoot/Undershoot magnitude and duration.  
TCH is the minimum high pulse width duration.  
For PWRGOOD DC specifications see Table 7-21.  
7.9.5.1  
Overshoot/Undershoot Magnitude  
Overshoot/Undershoot magnitude describes the maximum potential difference between  
a signal and its voltage reference level. For the processor, both overshoot and  
undershoot magnitude are referenced to VSS. It is important to note that the overshoot  
and undershoot conditions are separate and their impact must be determined  
independently.  
The pulse magnitude and duration, and activity factor must be used to determine if the  
overshoot/undershoot pulse is within specifications.  
7.9.5.2  
Overshoot/Undershoot Pulse Duration  
Overshoot/undershoot pulse duration describes the total amount of time that an  
overshoot/undershoot event exceeds the overshoot/undershoot reference voltage. The  
total time could encompass several oscillations above the reference voltage. Multiple  
overshoot/undershoot pulses within a single overshoot/undershoot event may need to  
be measured to determine the total pulse duration.  
Note:  
Oscillations below the reference voltage cannot be subtracted from the total  
overshoot/undershoot pulse duration.  
7.9.5.3  
Activity Factor  
Activity factor (AF) describes the frequency of overshoot (or undershoot) occurrence  
relative to a clock. Since the highest frequency of assertion of any common clock signal  
is every other clock, an AF = 0.1 indicates that the specific overshoot (or undershoot)  
waveform occurs every other clock cycle.  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
155  
   
Electrical Specifications  
The specification provided in the table shows the maximum pulse duration allowed for a  
given overshoot/undershoot magnitude at a specific activity factor. Each table entry is  
independent of all others, meaning that the pulse duration reflects the existence of  
overshoot/undershoot events of that magnitude ONLY. A platform with an  
overshoot/undershoot that just meets the pulse duration for a specific magnitude  
where the AF < 0.1, means that there can be no other overshoot/undershoot events,  
even of lesser magnitude (note that if AF = 0.1, then the event occurs at all times and  
no other events can occur).  
7.9.5.4  
Reading Overshoot/Undershoot Specification Tables  
The overshoot/undershoot specification for the processor is not a simple single value.  
Instead, many factors are needed to determine the over/undershoot specification. In  
addition to the magnitude of the overshoot, the following parameters must also be  
known: the width of the overshoot and the activity factor (AF). To determine the  
allowed overshoot for a particular overshoot event, the following must be done:  
1. Determine the signal group a particular signal falls into.  
2. Determine the magnitude of the overshoot or the undershoot (relative to VSS).  
3. Determine the activity factor (How often does this overshoot occur?).  
4. Next, from the appropriate specification table, determine the maximum pulse  
duration (in nanoseconds) allowed.  
5. Compare the specified maximum pulse duration to the signal being measured. If  
the pulse duration measured is less than the pulse duration shown in the table,  
then the signal meets the specifications.  
Undershoot events must be analyzed separately from overshoot events as they are  
mutually exclusive.  
7.9.5.5  
Determining if a System Meets the Overshoot/Undershoot  
Specifications  
The overshoot/undershoot specifications listed in the table specify the allowable  
overshoot/undershoot for a single overshoot/undershoot event. However most systems  
will have multiple overshoot and/or undershoot events that each have their own set of  
parameters (duration, AF and magnitude). While each overshoot on its own may meet  
the overshoot specification, when you add the total impact of all overshoot events, the  
system may fail. A guideline to ensure a system passes the overshoot and undershoot  
specifications is shown below.  
1. If only one overshoot/undershoot event magnitude occurs, ensure it meets the  
over/undershoot specifications in the following tables, OR  
2. If multiple overshoots and/or multiple undershoots occur, measure the worst case  
pulse duration for each magnitude and compare the results against the AF = 0.1  
specifications. If all of these worst case overshoot or undershoot events meet the  
specifications (measured time < specifications) in the table (where AF= 0.1), then  
the system passes.  
156  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
Electrical Specifications  
Table 7-24. Processor Sideband Signal Group Overshoot/Undershoot Tolerance  
Absolute Maximum Overshoot  
(V)  
Absolute Maximum Undershoot  
(V)  
Pulse Duration (ns)  
AF=0.1  
Pulse Duration (ns)  
AF=0.01  
1.3335 V  
1.2600 V  
0.2835 V  
0.210 V  
3 ns  
5 ns  
5 ns  
5 ns  
Figure 7-9. Maximum Acceptable Overshoot/Undershoot Waveform  
Over Shoot  
Over Shoot  
Duration  
Under Shoot  
Duration  
VSS  
Under Shoot  
§
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
157  
   
Electrical Specifications  
158  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
Processor Land Listing  
8 Processor Land Listing  
This chapter provides sorted land list in Section 8.1 and Section 8.2. Table 8-1 is a  
listing of all processor lands ordered alphabetically by land name. Table 8-2 is a listing  
of all processor lands ordered by land number.  
8.1  
Listing by Land Name  
Table 8-1.  
Land Name (Sheet 2 of 50)  
Table 8-1.  
Land Name (Sheet 1 of 50)  
Land Name  
Land No.  
Buffer Type  
Direction  
Land Name  
Land No.  
Buffer Type  
Direction  
DDR0_CKE[1]  
CM18  
CH20  
CP18  
CF20  
CE19  
CF24  
CE23  
CE21  
CF22  
CH24  
CG23  
CG21  
CH22  
CN25  
CH26  
CC23  
CB28  
CG27  
CF26  
CB26  
CC25  
CL27  
CK28  
CC7  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
O
O
BCLK0_DN  
CM44  
CN43  
BA45  
AW45  
AT48  
AL47  
AR43  
AT44  
AU43  
AV44  
BB44  
AW43  
BA43  
AY44  
CC51  
AN43  
CB18  
AE27  
CY42  
U43  
CMOS  
CMOS  
I
DDR0_CKE[2]  
BCLK0_DP  
I
DDR0_CKE[3]  
O
BCLK1_DN  
CMOS  
I
DDR0_CKE[4]  
O
BCLK1_DP  
CMOS  
I
DDR0_CKE[5]  
O
BIST_ENABLE  
BMCINIT  
CMOS  
I
DDR0_CLK_DN[0]  
DDR0_CLK_DN[1]  
DDR0_CLK_DN[2]  
DDR0_CLK_DN[3]  
DDR0_CLK_DP[0]  
DDR0_CLK_DP[1]  
DDR0_CLK_DP[2]  
DDR0_CLK_DP[3]  
DDR0_CS_N[0]  
DDR0_CS_N[1]  
DDR0_CS_N[2]  
DDR0_CS_N[3]  
DDR0_CS_N[4]  
DDR0_CS_N[5]  
DDR0_CS_N[6]  
DDR0_CS_N[7]  
DDR0_CS_N[8]  
DDR0_CS_N[9]  
DDR0_DQ[00]  
DDR0_DQ[01]  
DDR0_DQ[02]  
DDR0_DQ[03]  
DDR0_DQ[04]  
DDR0_DQ[05]  
DDR0_DQ[06]  
DDR0_DQ[07]  
DDR0_DQ[08]  
DDR0_DQ[09]  
O
CMOS  
I
O
BPM_N[0]  
ODCMOS  
ODCMOS  
ODCMOS  
ODCMOS  
ODCMOS  
ODCMOS  
ODCMOS  
ODCMOS  
ODCMOS  
ODCMOS  
CMOS1.5v  
CMOS1.5v  
ODCMOS  
ODCMOS  
ODCMOS  
ODCMOS  
DC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
O
BPM_N[1]  
O
BPM_N[2]  
O
BPM_N[3]  
O
BPM_N[4]  
O
BPM_N[5]  
O
BPM_N[6]  
O
BPM_N[7]  
O
CAT_ERR_N  
CPU_ONLY_RESET  
DDR_RESET_C01_N  
DDR_RESET_C23_N  
DDR_SCL_C01  
DDR_SCL_C23  
DDR_SDA_C01  
DDR_SDA_C23  
O
O
O
O
O
I/O  
I/O  
I/O  
I/O  
I
O
O
CW41  
R43  
O
O
DDR_VREFDQRX_C0  
1
BY16  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
DDR_VREFDQRX_C2  
3
J1  
DC  
I
CD8  
CK8  
DDR_VREFDQTX_C01  
DDR_VREFDQTX_C23  
DDR0_BA[0]  
CN41  
P42  
DC  
O
O
O
O
O
O
O
CL9  
DC  
BY6  
CM28  
CN27  
CM20  
CL29  
CL19  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
CA7  
DDR0_BA[1]  
CJ7  
DDR0_BA[2]  
CL7  
DDR0_CAS_N  
CB2  
DDR0_CKE[0]  
CB4  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
159  
       
Processor Land Listing  
Table 8-1.  
Land Name (Sheet 3 of 50)  
Table 8-1.  
Land Name (Sheet 4 of 50)  
Land Name  
Land No.  
Buffer Type  
Direction  
Land Name  
Land No.  
Buffer Type  
Direction  
DDR0_DQ[10]  
DDR0_DQ[11]  
DDR0_DQ[12]  
DDR0_DQ[13]  
DDR0_DQ[14]  
DDR0_DQ[15]  
DDR0_DQ[16]  
DDR0_DQ[17]  
DDR0_DQ[18]  
DDR0_DQ[19]  
DDR0_DQ[20]  
DDR0_DQ[21]  
DDR0_DQ[22]  
DDR0_DQ[23]  
DDR0_DQ[24]  
DDR0_DQ[25]  
DDR0_DQ[26]  
DDR0_DQ[27]  
DDR0_DQ[28]  
DDR0_DQ[29]  
DDR0_DQ[30]  
DDR0_DQ[31]  
DDR0_DQ[32]  
DDR0_DQ[33]  
DDR0_DQ[34]  
DDR0_DQ[35]  
DDR0_DQ[36]  
DDR0_DQ[37]  
DDR0_DQ[38]  
DDR0_DQ[39]  
DDR0_DQ[40]  
DDR0_DQ[41]  
DDR0_DQ[42]  
DDR0_DQ[43]  
DDR0_DQ[44]  
DDR0_DQ[45]  
DDR0_DQ[46]  
DDR0_DQ[47]  
DDR0_DQ[48]  
DDR0_DQ[49]  
DDR0_DQ[50]  
DDR0_DQ[51]  
CH4  
CJ5  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
DDR0_DQ[52]  
CC37  
CE37  
CC41  
CB42  
CH38  
CK38  
CH42  
CK42  
CJ37  
CL37  
CJ41  
CL41  
CG7  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
DDR0_DQ[53]  
CA1  
DDR0_DQ[54]  
CA3  
DDR0_DQ[55]  
CG3  
DDR0_DQ[56]  
CG5  
DDR0_DQ[57]  
CK12  
CM12  
CK16  
CM16  
CG13  
CL11  
CJ15  
CL15  
BY10  
BY12  
CB12  
CD12  
BW9  
CA9  
DDR0_DQ[58]  
DDR0_DQ[59]  
DDR0_DQ[60]  
DDR0_DQ[61]  
DDR0_DQ[62]  
DDR0_DQ[63]  
DDR0_DQS_DN[00]  
DDR0_DQS_DN[01]  
DDR0_DQS_DN[02]  
DDR0_DQS_DN[03]  
DDR0_DQS_DN[04]  
DDR0_DQS_DN[05]  
DDR0_DQS_DN[06]  
DDR0_DQS_DN[07]  
DDR0_DQS_DN[08]  
DDR0_DQS_DN[09]  
DDR0_DQS_DN[10]  
DDR0_DQS_DN[11]  
DDR0_DQS_DN[12]  
DDR0_DQS_DN[13]  
DDR0_DQS_DN[14]  
DDR0_DQS_DN[15]  
DDR0_DQS_DN[16]  
DDR0_DQS_DN[17]  
DDR0_DQS_DP[00]  
DDR0_DQS_DP[01]  
DDR0_DQS_DP[02]  
DDR0_DQS_DP[03]  
DDR0_DQS_DP[04]  
DDR0_DQS_DP[05]  
DDR0_DQS_DP[06]  
DDR0_DQS_DP[07]  
DDR0_DQS_DP[08]  
DDR0_DQS_DP[09]  
DDR0_DQS_DP[10]  
DDR0_DQS_DP[11]  
CE3  
CH14  
CD10  
CE33  
CL33  
CB40  
CH40  
CE17  
CF8  
CH10  
CF10  
CE31  
CC31  
CE35  
CC35  
CD30  
CB30  
CD34  
CB34  
CL31  
CJ31  
CL35  
CJ35  
CK30  
CH30  
CK34  
CH34  
CB38  
CD38  
CE41  
CD42  
CD4  
CL13  
CC11  
CB32  
CH32  
CE39  
CL39  
CF16  
CH8  
CF4  
CK14  
CE11  
CC33  
CJ33  
CD40  
CK40  
CC17  
CE7  
CC5  
CJ13  
160  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
Processor Land Listing  
Table 8-1.  
Land Name (Sheet 5 of 50)  
Table 8-1.  
Land Name (Sheet 6 of 50)  
Land Name  
Land No.  
Buffer Type  
Direction  
Land Name  
Land No.  
Buffer Type  
Direction  
DDR0_DQS_DP[12]  
DDR0_DQS_DP[13]  
DDR0_DQS_DP[14]  
DDR0_DQS_DP[15]  
DDR0_DQS_DP[16]  
DDR0_DQS_DP[17]  
DDR0_ECC[0]  
DDR0_ECC[1]  
DDR0_ECC[2]  
DDR0_ECC[3]  
DDR0_ECC[4]  
DDR0_ECC[5]  
DDR0_ECC[6]  
DDR0_ECC[7]  
DDR0_MA_PAR  
DDR0_MA[00]  
DDR0_MA[01]  
DDR0_MA[02]  
DDR0_MA[03]  
DDR0_MA[04]  
DDR0_MA[05]  
DDR0_MA[06]  
DDR0_MA[07]  
DDR0_MA[08]  
DDR0_MA[09]  
DDR0_MA[10]  
DDR0_MA[11]  
DDR0_MA[12]  
DDR0_MA[13]  
DDR0_MA[14]  
DDR0_MA[15]  
DDR0_ODT[0]  
DDR0_ODT[1]  
DDR0_ODT[2]  
DDR0_ODT[3]  
DDR0_ODT[4]  
DDR0_ODT[5]  
DDR0_PAR_ERR_N  
DDR0_RAS_N  
CB10  
CD32  
CK32  
CC39  
CJ39  
CD16  
CE15  
CC15  
CH18  
CF18  
CB14  
CD14  
CG17  
CK18  
CM26  
CL25  
CR25  
CG25  
CK24  
CM24  
CL23  
CN23  
CM22  
CK22  
CN21  
CK26  
CL21  
CK20  
CG29  
CG19  
CN19  
CE25  
CE27  
CH28  
CF28  
CB24  
CC27  
CC21  
CE29  
CN29  
CA17  
CC19  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
Analog  
Analog  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
DDR01_RCOMP[2]  
DDR1_BA[0]  
CB20  
DB26  
DC25  
DF18  
CY30  
CT20  
CU19  
CY18  
DA17  
CR19  
CT18  
CV20  
CV22  
CY24  
DA21  
CY20  
CY22  
CV24  
DC21  
DB24  
CU23  
CR23  
CR27  
CU25  
CT24  
DA29  
CT26  
CR21  
DA27  
CP4  
Analog  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
I
O
DDR1_BA[1]  
O
DDR1_BA[2]  
O
DDR1_CAS_N  
O
DDR1_CKE[0]  
DDR1_CKE[1]  
DDR1_CKE[2]  
DDR1_CKE[3]  
DDR1_CKE[4]  
DDR1_CKE[5]  
DDR1_CLK_DN[0]  
DDR1_CLK_DN[1]  
DDR1_CLK_DN[2]  
DDR1_CLK_DN[3]  
DDR1_CLK_DP[0]  
DDR1_CLK_DP[1]  
DDR1_CLK_DP[2]  
DDR1_CLK_DP[3]  
DDR1_CS_N[0]  
DDR1_CS_N[1]  
DDR1_CS_N[2]  
DDR1_CS_N[3]  
DDR1_CS_N[4]  
DDR1_CS_N[5]  
DDR1_CS_N[6]  
DDR1_CS_N[7]  
DDR1_CS_N[8]  
DDR1_CS_N[9]  
DDR1_DQ[00]  
DDR1_DQ[01]  
DDR1_DQ[02]  
DDR1_DQ[03]  
DDR1_DQ[04]  
DDR1_DQ[05]  
DDR1_DQ[06]  
DDR1_DQ[07]  
DDR1_DQ[08]  
DDR1_DQ[09]  
DDR1_DQ[10]  
DDR1_DQ[11]  
DDR1_DQ[12]  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
CP2  
O
CV4  
O
CY4  
O
CM4  
O
CL3  
O
CV2  
O
CW3  
DA7  
I
O
DC7  
DDR0_WE_N  
O
DC11  
DE11  
CY6  
DDR01_RCOMP[0]  
DDR01_RCOMP[1]  
I
I
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
161  
Processor Land Listing  
Table 8-1.  
Land Name (Sheet 7 of 50)  
Table 8-1.  
Land Name (Sheet 8 of 50)  
Land Name  
Land No.  
Buffer Type  
Direction  
Land Name  
Land No.  
Buffer Type  
Direction  
DDR1_DQ[13]  
DDR1_DQ[14]  
DDR1_DQ[15]  
DDR1_DQ[16]  
DDR1_DQ[17]  
DDR1_DQ[18]  
DDR1_DQ[19]  
DDR1_DQ[20]  
DDR1_DQ[21]  
DDR1_DQ[22]  
DDR1_DQ[23]  
DDR1_DQ[24]  
DDR1_DQ[25]  
DDR1_DQ[26]  
DDR1_DQ[27]  
DDR1_DQ[28]  
DDR1_DQ[29]  
DDR1_DQ[30]  
DDR1_DQ[31]  
DDR1_DQ[32]  
DDR1_DQ[33]  
DDR1_DQ[34]  
DDR1_DQ[35]  
DDR1_DQ[36]  
DDR1_DQ[37]  
DDR1_DQ[38]  
DDR1_DQ[39]  
DDR1_DQ[40]  
DDR1_DQ[41]  
DDR1_DQ[42]  
DDR1_DQ[43]  
DDR1_DQ[44]  
DDR1_DQ[45]  
DDR1_DQ[46]  
DDR1_DQ[47]  
DDR1_DQ[48]  
DDR1_DQ[49]  
DDR1_DQ[50]  
DDR1_DQ[51]  
DDR1_DQ[52]  
DDR1_DQ[53]  
DDR1_DQ[54]  
DB6  
DB10  
DF10  
CR7  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
DDR1_DQ[55]  
CV40  
DE37  
DF38  
DD40  
DB40  
DA37  
DC37  
DA39  
DF40  
CT4  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
DDR1_DQ[56]  
DDR1_DQ[57]  
DDR1_DQ[58]  
CU7  
DDR1_DQ[59]  
CT10  
CP10  
CP6  
DDR1_DQ[60]  
DDR1_DQ[61]  
DDR1_DQ[62]  
CT6  
DDR1_DQ[63]  
CW9  
DDR1_DQS_DN[00]  
DDR1_DQS_DN[01]  
DDR1_DQS_DN[02]  
DDR1_DQS_DN[03]  
DDR1_DQS_DN[04]  
DDR1_DQS_DN[05]  
DDR1_DQS_DN[06]  
DDR1_DQS_DN[07]  
DDR1_DQS_DN[08]  
DDR1_DQS_DN[09]  
DDR1_DQS_DN[10]  
DDR1_DQS_DN[11]  
DDR1_DQS_DN[12]  
DDR1_DQS_DN[13]  
DDR1_DQS_DN[14]  
DDR1_DQS_DN[15]  
DDR1_DQS_DN[16]  
DDR1_DQS_DN[17]  
DDR1_DQS_DP[00]  
DDR1_DQS_DP[01]  
DDR1_DQS_DP[02]  
DDR1_DQS_DP[03]  
DDR1_DQS_DP[04]  
DDR1_DQS_DP[05]  
DDR1_DQS_DP[06]  
DDR1_DQS_DP[07]  
DDR1_DQS_DP[08]  
DDR1_DQS_DP[09]  
DDR1_DQS_DP[10]  
DDR1_DQS_DP[11]  
DDR1_DQS_DP[12]  
DDR1_DQS_DP[13]  
DDR1_DQS_DP[14]  
CV10  
CR13  
CU13  
CR17  
CU17  
CT12  
CV12  
CT16  
CV16  
CT30  
CP30  
CT34  
CP34  
CU29  
CR29  
CU33  
CR33  
DA33  
DD32  
DC35  
DA35  
DA31  
CY32  
DF34  
DE35  
CR37  
CU37  
CR41  
CU41  
CT36  
CV36  
CT40  
DC9  
CV8  
CR15  
CT32  
CY34  
CR39  
DE39  
DE15  
CR1  
DB8  
CT8  
CP14  
CR31  
DE33  
CT38  
CY38  
DB14  
CR3  
DE9  
CU9  
CU15  
CP32  
DB34  
CU39  
DC39  
DC15  
CT2  
DD8  
CP8  
CT14  
CU31  
DC33  
162  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
Processor Land Listing  
Table 8-1.  
Land Name (Sheet 9 of 50)  
Table 8-1.  
Land Name (Sheet 10 of 50)  
Land Name  
Land No.  
Buffer Type  
Direction  
Land Name  
Land No.  
Buffer Type  
Direction  
DDR1_DQS_DP[15]  
DDR1_DQS_DP[16]  
DDR1_DQS_DP[17]  
DDR1_ECC[0]  
DDR1_ECC[1]  
DDR1_ECC[2]  
DDR1_ECC[3]  
DDR1_ECC[4]  
DDR1_ECC[5]  
DDR1_ECC[6]  
DDR1_ECC[7]  
DDR1_MA_PAR  
DDR1_MA[00]  
DDR1_MA[01]  
DDR1_MA[02]  
DDR1_MA[03]  
DDR1_MA[04]  
DDR1_MA[05]  
DDR1_MA[06]  
DDR1_MA[07]  
DDR1_MA[08]  
DDR1_MA[09]  
DDR1_MA[10]  
DDR1_MA[11]  
DDR1_MA[12]  
DDR1_MA[13]  
DDR1_MA[14]  
DDR1_MA[15]  
DDR1_ODT[0]  
DDR1_ODT[1]  
DDR1_ODT[2]  
DDR1_ODT[3]  
DDR1_ODT[4]  
DDR1_ODT[5]  
DDR1_PAR_ERR_N  
DDR1_RAS_N  
DDR1_WE_N  
CP38  
DB38  
CY14  
DE13  
DF14  
DD16  
DB16  
DA13  
DC13  
DA15  
DF16  
DE25  
DC23  
DE23  
DF24  
DA23  
DB22  
DF22  
DE21  
DF20  
DB20  
DA19  
DF26  
DE19  
DC19  
DB30  
DB18  
DC17  
CT22  
DA25  
CY26  
CV26  
CU27  
CY28  
CU21  
DB28  
CV28  
R17  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
DDR2_CKE[1]  
DDR2_CKE[2]  
DDR2_CKE[3]  
DDR2_CKE[4]  
DDR2_CKE[5]  
DDR2_CLK_DN[0]  
DDR2_CLK_DN[1]  
DDR2_CLK_DN[2]  
DDR2_CLK_DN[3]  
DDR2_CLK_DP[0]  
DDR2_CLK_DP[1]  
DDR2_CLK_DP[2]  
DDR2_CLK_DP[3]  
DDR2_CS_N[0]  
DDR2_CS_N[1]  
DDR2_CS_N[2]  
DDR2_CS_N[3]  
DDR2_CS_N[4]  
DDR2_CS_N[5]  
DDR2_CS_N[6]  
DDR2_CS_N[7]  
DDR2_CS_N[8]  
DDR2_CS_N[9]  
DDR2_DQ[00]  
DDR2_DQ[01]  
DDR2_DQ[02]  
DDR2_DQ[03]  
DDR2_DQ[04]  
DDR2_DQ[05]  
DDR2_DQ[06]  
DDR2_DQ[07]  
DDR2_DQ[08]  
DDR2_DQ[09]  
DDR2_DQ[10]  
DDR2_DQ[11]  
DDR2_DQ[12]  
DDR2_DQ[13]  
DDR2_DQ[14]  
DDR2_DQ[15]  
DDR2_DQ[16]  
DDR2_DQ[17]  
DDR2_DQ[18]  
T26  
U27  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
O
O
AD24  
AE25  
AE23  
Y24  
O
O
O
O
Y22  
O
W21  
W23  
AB24  
AB22  
AA21  
AA23  
AB20  
AE19  
AD16  
AA15  
AA19  
P18  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
AB16  
Y16  
O
O
O
O
W17  
AA17  
T40  
O
O
O
O
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
V40  
O
P36  
O
T36  
O
R41  
O
U41  
O
R37  
O
U37  
O
AE41  
AD40  
AA37  
AC37  
AC41  
AA41  
AF38  
AE37  
U33  
O
O
I
O
O
DDR2_BA[0]  
O
DDR2_BA[1]  
L17  
O
DDR2_BA[2]  
P24  
O
DDR2_CAS_N  
DDR2_CKE[0]  
T16  
O
R33  
AA25  
O
W29  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
163  
Processor Land Listing  
Table 8-1.  
Land Name (Sheet 11 of 50)  
Table 8-1.  
Land Name (Sheet 12 of 50)  
Land Name  
Land No.  
Buffer Type  
Direction  
Land Name  
Land No.  
Buffer Type  
Direction  
DDR2_DQ[19]  
DDR2_DQ[20]  
DDR2_DQ[21]  
DDR2_DQ[22]  
DDR2_DQ[23]  
DDR2_DQ[24]  
DDR2_DQ[25]  
DDR2_DQ[26]  
DDR2_DQ[27]  
DDR2_DQ[28]  
DDR2_DQ[29]  
DDR2_DQ[30]  
DDR2_DQ[31]  
DDR2_DQ[32]  
DDR2_DQ[33]  
DDR2_DQ[34]  
DDR2_DQ[35]  
DDR2_DQ[36]  
DDR2_DQ[37]  
DDR2_DQ[38]  
DDR2_DQ[39]  
DDR2_DQ[40]  
DDR2_DQ[41]  
DDR2_DQ[42]  
DDR2_DQ[43]  
DDR2_DQ[44]  
DDR2_DQ[45]  
DDR2_DQ[46]  
DDR2_DQ[47]  
DDR2_DQ[48]  
DDR2_DQ[49]  
DDR2_DQ[50]  
DDR2_DQ[51]  
DDR2_DQ[52]  
DDR2_DQ[53]  
DDR2_DQ[54]  
DDR2_DQ[55]  
DDR2_DQ[56]  
DDR2_DQ[57]  
DDR2_DQ[58]  
DDR2_DQ[59]  
DDR2_DQ[60]  
U29  
T34  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
DDR2_DQ[61]  
V4  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
DDR2_DQ[62]  
AF2  
P34  
DDR2_DQ[63]  
AE3  
V30  
T30  
DDR2_DQS_DN[00]  
DDR2_DQS_DN[01]  
DDR2_DQS_DN[02]  
DDR2_DQS_DN[03]  
DDR2_DQS_DN[04]  
DDR2_DQS_DN[05]  
DDR2_DQS_DN[06]  
DDR2_DQS_DN[07]  
DDR2_DQS_DN[08]  
DDR2_DQS_DN[09]  
DDR2_DQS_DN[10]  
DDR2_DQS_DN[11]  
DDR2_DQS_DN[12]  
DDR2_DQS_DN[13]  
DDR2_DQS_DN[14]  
DDR2_DQS_DN[15]  
DDR2_DQS_DN[16]  
DDR2_DQS_DN[17]  
DDR2_DQS_DP[00]  
DDR2_DQS_DP[01]  
DDR2_DQS_DP[02]  
DDR2_DQS_DP[03]  
DDR2_DQS_DP[04]  
DDR2_DQS_DP[05]  
DDR2_DQS_DP[06]  
DDR2_DQS_DP[07]  
DDR2_DQS_DP[08]  
DDR2_DQS_DP[09]  
DDR2_DQS_DP[10]  
DDR2_DQS_DP[11]  
DDR2_DQS_DP[12]  
DDR2_DQS_DP[13]  
DDR2_DQS_DP[14]  
DDR2_DQS_DP[15]  
DDR2_DQS_DP[16]  
DDR2_DQS_DP[17]  
DDR2_ECC[0]  
T38  
AD38  
W31  
AA33  
AC11  
AB8  
AC35  
AE35  
AE33  
AF32  
AA35  
W35  
AB32  
AD32  
AC13  
AE13  
AG11  
AF10  
AD14  
AA13  
AB10  
AD10  
V6  
U11  
AC3  
AB28  
W39  
AC39  
T32  
AB34  
AD12  
AA7  
V12  
AD4  
AD28  
V38  
Y6  
AB38  
U31  
AF8  
AG7  
U7  
AC33  
AE11  
AC7  
W7  
AD8  
AE7  
R13  
U13  
T10  
W11  
AB4  
AC27  
U39  
AB40  
V32  
V10  
T14  
Y34  
V14  
R9  
AB12  
Y8  
U9  
T12  
W3  
AC5  
Y4  
AC29  
AF30  
AF28  
Y26  
AF4  
AE5  
U3  
DDR2_ECC[1]  
DDR2_ECC[2]  
164  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
Processor Land Listing  
Table 8-1.  
Land Name (Sheet 13 of 50)  
Table 8-1.  
Land Name (Sheet 14 of 50)  
Land Name  
Land No.  
Buffer Type  
Direction  
Land Name  
Land No.  
Buffer Type  
Direction  
DDR2_ECC[3]  
DDR2_ECC[4]  
DDR2_ECC[5]  
DDR2_ECC[6]  
DDR2_ECC[7]  
DDR2_MA_PAR  
DDR2_MA[00]  
DDR2_MA[01]  
DDR2_MA[02]  
DDR2_MA[03]  
DDR2_MA[04]  
DDR2_MA[05]  
DDR2_MA[06]  
DDR2_MA[07]  
DDR2_MA[08]  
DDR2_MA[09]  
DDR2_MA[10]  
DDR2_MA[11]  
DDR2_MA[12]  
DDR2_MA[13]  
DDR2_MA[14]  
DDR2_MA[15]  
DDR2_ODT[0]  
DDR2_ODT[1]  
DDR2_ODT[2]  
DDR2_ODT[3]  
DDR2_ODT[4]  
DDR2_ODT[5]  
DDR2_PAR_ERR_N  
DDR2_RAS_N  
DDR2_WE_N  
AB26  
AB30  
AD30  
W27  
AA27  
M18  
AB18  
R19  
U19  
T20  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
Analog  
Analog  
Analog  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
I/O  
I/O  
I/O  
I/O  
I/O  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
I
DDR3_CKE[4]  
DDR3_CKE[5]  
DDR3_CLK_DN[0]  
DDR3_CLK_DN[1]  
DDR3_CLK_DN[2]  
DDR3_CLK_DN[3]  
DDR3_CLK_DP[0]  
DDR3_CLK_DP[1]  
DDR3_CLK_DP[2]  
DDR3_CLK_DP[3]  
DDR3_CS_N[0]  
DDR3_CS_N[1]  
DDR3_CS_N[2]  
DDR3_CS_N[3]  
DDR3_CS_N[4]  
DDR3_CS_N[5]  
DDR3_CS_N[6]  
DDR3_CS_N[7]  
DDR3_CS_N[8]  
DDR3_CS_N[9]  
DDR3_DQ[00]  
DDR3_DQ[01]  
DDR3_DQ[02]  
DDR3_DQ[03]  
DDR3_DQ[04]  
DDR3_DQ[05]  
DDR3_DQ[06]  
DDR3_DQ[07]  
DDR3_DQ[08]  
DDR3_DQ[09]  
DDR3_DQ[10]  
DDR3_DQ[11]  
DDR3_DQ[12]  
DDR3_DQ[13]  
DDR3_DQ[14]  
DDR3_DQ[15]  
DDR3_DQ[16]  
DDR3_DQ[17]  
DDR3_DQ[18]  
DDR3_DQ[19]  
DDR3_DQ[20]  
DDR3_DQ[21]  
R25  
R27  
J23  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
O
O
O
J21  
O
M20  
K22  
L23  
L21  
K20  
M22  
G19  
J19  
O
O
O
O
O
O
P20  
O
U21  
R21  
P22  
O
F14  
G15  
K18  
G17  
F16  
E15  
D16  
K16  
B40  
A39  
C37  
E37  
F40  
D40  
F38  
A37  
N39  
L39  
L35  
J35  
O
O
T22  
O
R23  
T18  
O
O
U23  
T24  
O
O
R15  
W25  
U25  
Y20  
O
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
W19  
AD18  
Y18  
AD22  
AE21  
AD20  
U17  
P16  
O
O
I
DDR23_RCOMP[0]  
DDR23_RCOMP[1]  
DDR23_RCOMP[2]  
DDR3_BA[0]  
U15  
AC15  
Y14  
I
M40  
K40  
K36  
H36  
A35  
F34  
D32  
F32  
E35  
C35  
I
A17  
E19  
O
O
O
O
O
O
O
O
DDR3_BA[1]  
DDR3_BA[2]  
B24  
B14  
K24  
M24  
J25  
DDR3_CAS_N  
DDR3_CKE[0]  
DDR3_CKE[1]  
DDR3_CKE[2]  
DDR3_CKE[3]  
N25  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
165  
Processor Land Listing  
Table 8-1.  
Land Name (Sheet 15 of 50)  
Table 8-1.  
Land Name (Sheet 16 of 50)  
Land Name  
Land No.  
Buffer Type  
Direction  
Land Name  
Land No.  
Buffer Type  
Direction  
DDR3_DQ[22]  
DDR3_DQ[23]  
DDR3_DQ[24]  
DDR3_DQ[25]  
DDR3_DQ[26]  
DDR3_DQ[27]  
DDR3_DQ[28]  
DDR3_DQ[29]  
DDR3_DQ[30]  
DDR3_DQ[31]  
DDR3_DQ[32]  
DDR3_DQ[33]  
DDR3_DQ[34]  
DDR3_DQ[35]  
DDR3_DQ[36]  
DDR3_DQ[37]  
DDR3_DQ[38]  
DDR3_DQ[39]  
DDR3_DQ[40]  
DDR3_DQ[41]  
DDR3_DQ[42]  
DDR3_DQ[43]  
DDR3_DQ[44]  
DDR3_DQ[45]  
DDR3_DQ[46]  
DDR3_DQ[47]  
DDR3_DQ[48]  
DDR3_DQ[49]  
DDR3_DQ[50]  
DDR3_DQ[51]  
DDR3_DQ[52]  
DDR3_DQ[53]  
DDR3_DQ[54]  
DDR3_DQ[55]  
DDR3_DQ[56]  
DDR3_DQ[57]  
DDR3_DQ[58]  
DDR3_DQ[59]  
DDR3_DQ[60]  
DDR3_DQ[61]  
DDR3_DQ[62]  
DDR3_DQ[63]  
A33  
B32  
M32  
L31  
M28  
L27  
L33  
K32  
N27  
M26  
D12  
A11  
C9  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
DDR3_DQS_DN[00]  
DDR3_DQS_DN[01]  
DDR3_DQS_DN[02]  
DDR3_DQS_DN[03]  
DDR3_DQS_DN[04]  
DDR3_DQS_DN[05]  
DDR3_DQS_DN[06]  
DDR3_DQS_DN[07]  
DDR3_DQS_DN[08]  
DDR3_DQS_DN[09]  
DDR3_DQS_DN[10]  
DDR3_DQS_DN[11]  
DDR3_DQS_DN[12]  
DDR3_DQS_DN[13]  
DDR3_DQS_DN[14]  
DDR3_DQS_DN[15]  
DDR3_DQS_DN[16]  
DDR3_DQS_DN[17]  
DDR3_DQS_DP[00]  
DDR3_DQS_DP[01]  
DDR3_DQS_DP[02]  
DDR3_DQS_DP[03]  
DDR3_DQS_DP[04]  
DDR3_DQS_DP[05]  
DDR3_DQS_DP[06]  
DDR3_DQS_DP[07]  
DDR3_DQS_DP[08]  
DDR3_DQS_DP[09]  
DDR3_DQS_DP[10]  
DDR3_DQS_DP[11]  
DDR3_DQS_DP[12]  
DDR3_DQS_DP[13]  
DDR3_DQS_DP[14]  
DDR3_DQS_DP[15]  
DDR3_DQS_DP[16]  
DDR3_DQS_DP[17]  
DDR3_ECC[0]  
B38  
L37  
G33  
P28  
B10  
L11  
J7  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L3  
G27  
G39  
K38  
B34  
M30  
G11  
M12  
H6  
E9  
F12  
B12  
F10  
A9  
K4  
H28  
D38  
J37  
E33  
N29  
D10  
N11  
K6  
J13  
L13  
J9  
L9  
K14  
M14  
K10  
M10  
E7  
M4  
E27  
E39  
M38  
D34  
N31  
E11  
K12  
G7  
F6  
N7  
P6  
C7  
D6  
L7  
M6  
G3  
J3  
H2  
F28  
G29  
J29  
E25  
C25  
F30  
H30  
N3  
P4  
DDR3_ECC[1]  
F4  
DDR3_ECC[2]  
H4  
DDR3_ECC[3]  
L1  
DDR3_ECC[4]  
M2  
DDR3_ECC[5]  
166  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
Processor Land Listing  
Table 8-1.  
Land Name (Sheet 17 of 50)  
Table 8-1.  
Land Name (Sheet 18 of 50)  
Land Name  
Land No.  
Buffer Type  
Direction  
Land Name  
Land No.  
Buffer Type  
Direction  
DDR3_ECC[6]  
DDR3_ECC[7]  
DDR3_MA_PAR  
DDR3_MA[00]  
DDR3_MA[01]  
DDR3_MA[02]  
DDR3_MA[03]  
DDR3_MA[04]  
DDR3_MA[05]  
DDR3_MA[06]  
DDR3_MA[07]  
DDR3_MA[08]  
DDR3_MA[09]  
DDR3_MA[10]  
DDR3_MA[11]  
DDR3_MA[12]  
DDR3_MA[13]  
DDR3_MA[14]  
DDR3_MA[15]  
DDR3_ODT[0]  
DDR3_ODT[1]  
DDR3_ODT[2]  
DDR3_ODT[3]  
DDR3_ODT[4]  
DDR3_ODT[5]  
DDR3_PAR_ERR_N  
DDR3_RAS_N  
DDR3_WE_N  
F26  
H26  
B18  
A19  
E21  
F20  
B20  
D20  
A21  
F22  
B22  
D22  
G23  
D18  
A23  
E23  
A13  
D24  
F24  
L19  
F18  
E17  
J17  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
PCIEX  
PCIEX  
PCIEX  
PCIEX  
PCIEX  
PCIEX  
PCIEX  
PCIEX  
PCIEX  
PCIEX  
PCIEX  
PCIEX  
PCIEX  
PCIEX  
I/O  
I/O  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
I
DMI_TX_DP[2]  
DMI_TX_DP[3]  
TXT_PLTEN  
B44  
C45  
V52  
CW17  
L15  
PCIEX  
PCIEX  
O
O
I
CMOS  
DRAM_PWR_OK_C01  
DRAM_PWR_OK_C23  
EAR_N  
CMOS1.5v  
CMOS1.5v  
ODCMOS  
ODCMOS  
ODCMOS  
ODCMOS  
CMOS  
I
I
CH56  
BD50  
CB54  
BC51  
AT50  
AH42  
AK52  
CB22  
E13  
I/O  
O
O
O
I
ERROR_N[0]  
ERROR_N[1]  
ERROR_N[2]  
FRMAGENT  
IVT_ID_N  
O
I
TXT_AGENT  
CMOS  
ODCMOS  
ODCMOS  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
MEM_HOT_C01_N  
MEM_HOT_C23_N  
PE_RBIAS  
I/O  
I/O  
I/O  
I
AH52  
AF52  
AJ43  
E51  
PE_RBIAS_SENSE  
PE_VREF_CAP  
PE1A_RX_DN[0]  
PE1A_RX_DN[1]  
PE1A_RX_DN[2]  
PE1A_RX_DN[3]  
PE1A_RX_DP[0]  
PE1A_RX_DP[1]  
PE1A_RX_DP[2]  
PE1A_RX_DP[3]  
PE1A_TX_DN[0]  
PE1A_TX_DN[1]  
PE1A_TX_DN[2]  
PE1A_TX_DN[3]  
PE1A_TX_DP[0]  
PE1A_TX_DP[1]  
PE1A_TX_DP[2]  
PE1A_TX_DP[3]  
PE1B_RX_DN[4]  
PE1B_RX_DN[5]  
PE1B_RX_DN[6]  
PE1B_RX_DN[7]  
PE1B_RX_DP[4]  
PE1B_RX_DP[5]  
PE1B_RX_DP[6]  
PE1B_RX_DP[7]  
PE1B_TX_DN[4]  
I/O  
I
F52  
I
F54  
I
G55  
C51  
D52  
D54  
E55  
I
I
I
D14  
M16  
G21  
B16  
A15  
E47  
D48  
E49  
D50  
C47  
B48  
C49  
B50  
D42  
E43  
D44  
E45  
B42  
C43  
I
I
K42  
L43  
O
O
O
O
O
O
O
O
I
O
O
I
K44  
L45  
DMI_RX_DN[0]  
DMI_RX_DN[1]  
DMI_RX_DN[2]  
DMI_RX_DN[3]  
DMI_RX_DP[0]  
DMI_RX_DP[1]  
DMI_RX_DP[2]  
DMI_RX_DP[3]  
DMI_TX_DN[0]  
DMI_TX_DN[1]  
DMI_TX_DN[2]  
DMI_TX_DN[3]  
DMI_TX_DP[0]  
DMI_TX_DP[1]  
I
H42  
J43  
I
I
H44  
J45  
I
I
L53  
I
M54  
L57  
I
I
I
O
O
O
O
O
O
M56  
J53  
I
I
K54  
J57  
I
I
K56  
K46  
I
O
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
167  
Processor Land Listing  
Table 8-1.  
Land Name (Sheet 19 of 50)  
Table 8-1.  
Land Name (Sheet 20 of 50)  
Land Name  
Land No.  
Buffer Type  
Direction  
Land Name  
Land No.  
Buffer Type  
Direction  
PE1B_TX_DN[5]  
PE1B_TX_DN[6]  
PE1B_TX_DN[7]  
PE1B_TX_DP[4]  
PE1B_TX_DP[5]  
PE1B_TX_DP[6]  
PE1B_TX_DP[7]  
PE2A_RX_DN[0]  
PE2A_RX_DN[1]  
PE2A_RX_DN[2]  
PE2A_RX_DN[3]  
PE2A_RX_DP[0]  
PE2A_RX_DP[1]  
PE2A_RX_DP[2]  
PE2A_RX_DP[3]  
PE2A_TX_DN[0]  
PE2A_TX_DN[1]  
PE2A_TX_DN[2]  
PE2A_TX_DN[3]  
PE2A_TX_DP[0]  
PE2A_TX_DP[1]  
PE2A_TX_DP[2]  
PE2A_TX_DP[3]  
PE2B_RX_DN[4]  
PE2B_RX_DN[5]  
PE2B_RX_DN[6]  
PE2B_RX_DN[7]  
PE2B_RX_DP[4]  
PE2B_RX_DP[5]  
PE2B_RX_DP[6]  
PE2B_RX_DP[7]  
PE2B_TX_DN[4]  
PE2B_TX_DN[5]  
PE2B_TX_DN[6]  
PE2B_TX_DN[7]  
PE2B_TX_DP[4]  
PE2B_TX_DP[5]  
PE2B_TX_DP[6]  
PE2B_TX_DP[7]  
PE2C_RX_DN[10]  
PE2C_RX_DN[11]  
PE2C_RX_DN[8]  
L47  
K48  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
O
O
O
O
O
O
O
I
PE2C_RX_DN[9]  
PE2C_RX_DP[10]  
PE2C_RX_DP[11]  
PE2C_RX_DP[8]  
PE2C_RX_DP[9]  
PE2C_TX_DN[10]  
PE2C_TX_DN[11]  
PE2C_TX_DN[8]  
PE2C_TX_DN[9]  
PE2C_TX_DP[10]  
PE2C_TX_DP[11]  
PE2C_TX_DP[8]  
PE2C_TX_DP[9]  
PE2D_RX_DN[12]  
PE2D_RX_DN[13]  
PE2D_RX_DN[14]  
PE2D_RX_DN[15]  
PE2D_RX_DP[12]  
PE2D_RX_DP[13]  
PE2D_RX_DP[14]  
PE2D_RX_DP[15]  
PE2D_TX_DN[12]  
PE2D_TX_DN[13]  
PE2D_TX_DN[14]  
PE2D_TX_DN[15]  
PE2D_TX_DP[12]  
PE2D_TX_DP[13]  
PE2D_TX_DP[14]  
PE2D_TX_DP[15]  
PE3A_RX_DN[0]  
PE3A_RX_DN[1]  
PE3A_RX_DN[2]  
PE3A_RX_DN[3]  
PE3A_RX_DP[0]  
PE3A_RX_DP[1]  
PE3A_RX_DP[2]  
PE3A_RX_DP[3]  
PE3A_TX_DN[0]  
PE3A_TX_DN[1]  
PE3A_TX_DN[2]  
PE3A_TX_DN[3]  
PE3A_TX_DP[0]  
AM58  
AJ57  
AR57  
AH56  
AK58  
BB54  
BA51  
AY52  
BA53  
AY54  
AW51  
AV52  
AW53  
AV58  
AT56  
BA57  
BB56  
AT58  
AP56  
AY58  
AY56  
AY50  
BA49  
AY48  
BA47  
AV50  
AW49  
AV48  
AW47  
AH44  
AJ45  
AH46  
AC49  
AF44  
AG45  
AF46  
AA49  
K50  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
I
I
L49  
I
H46  
I
J47  
I
H48  
O
O
O
O
O
O
O
O
I
J49  
N55  
V54  
I
V56  
I
W55  
L55  
I
I
T54  
I
T56  
I
U55  
I
I
AR49  
AP50  
AR51  
AP52  
AN49  
AM50  
AN51  
AM52  
AD54  
AD56  
AE55  
AF58  
AB54  
AB56  
AC55  
AE57  
AJ53  
AK54  
AR53  
AT54  
AG53  
AH54  
AN53  
AP54  
AL57  
AU57  
AK56  
O
O
O
O
O
O
O
O
I
I
I
I
I
I
I
O
O
O
O
O
O
O
O
I
I
I
I
I
I
I
I
I
O
O
O
O
O
O
O
O
I
I
I
I
I
I
I
O
O
O
O
O
L51  
U47  
I
T48  
I
H50  
168  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
Processor Land Listing  
Table 8-1.  
Land Name (Sheet 21 of 50)  
Table 8-1.  
Land Name (Sheet 22 of 50)  
Land Name  
Land No.  
Buffer Type  
Direction  
Land Name  
Land No.  
Buffer Type  
Direction  
PE3A_TX_DP[1]  
PE3A_TX_DP[2]  
PE3A_TX_DP[3]  
PE3B_RX_DN[4]  
PE3B_RX_DN[5]  
PE3B_RX_DN[6]  
PE3B_RX_DN[7]  
PE3B_RX_DP[4]  
PE3B_RX_DP[5]  
PE3B_RX_DP[6]  
PE3B_RX_DP[7]  
PE3B_TX_DN[4]  
PE3B_TX_DN[5]  
PE3B_TX_DN[6]  
PE3B_TX_DN[7]  
PE3B_TX_DP[4]  
PE3B_TX_DP[5]  
PE3B_TX_DP[6]  
PE3B_TX_DP[7]  
PE3C_RX_DN[10]  
PE3C_RX_DN[11]  
PE3C_RX_DN[8]  
PE3C_RX_DN[9]  
PE3C_RX_DP[10]  
PE3C_RX_DP[11]  
PE3C_RX_DP[8]  
PE3C_RX_DP[9]  
PE3C_TX_DN[10]  
PE3C_TX_DN[11]  
PE3C_TX_DN[8]  
PE3C_TX_DN[9]  
PE3C_TX_DP[10]  
PE3C_TX_DP[11]  
PE3C_TX_DP[8]  
PE3C_TX_DP[9]  
PE3D_RX_DN[12]  
PE3D_RX_DN[13]  
PE3D_RX_DN[14]  
PE3D_RX_DN[15]  
PE3D_RX_DP[12]  
PE3D_RX_DP[13]  
PE3D_RX_DP[14]  
J51  
R47  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
O
O
O
I
PE3D_RX_DP[15]  
PE3D_TX_DN[12]  
PE3D_TX_DN[13]  
PE3D_TX_DN[14]  
PE3D_TX_DN[15]  
PE3D_TX_DP[12]  
PE3D_TX_DP[13]  
PE3D_TX_DP[14]  
PE3D_TX_DP[15]  
PECI  
AN45  
AC45  
AB44  
AA43  
P44  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PECI  
I
O
O
O
O
O
O
O
O
I/O  
I/O  
I/O  
I
P48  
AB50  
AB52  
AC53  
AC51  
Y50  
I
I
AA45  
Y44  
I
I
AC43  
T44  
Y52  
I
AA53  
AA51  
T52  
I
BJ47  
BH48  
BF48  
K52  
I
PEHPSCL  
ODCMOS  
ODCMOS  
CMOS  
CMOS  
CMOS  
ODCMOS  
CMOS  
Analog  
Analog  
QPI  
O
O
O
O
O
O
O
O
I
PEHPSDA  
U51  
PMSYNC  
T50  
PRDY_N  
R53  
O
I/O  
I/O  
I
U49  
PREQ_N  
U53  
P52  
PROCHOT_N  
BD52  
BJ53  
CE53  
CC53  
CU51  
BM58  
BK58  
CG45  
CE45  
BJ51  
BH52  
BG53  
BG55  
BH56  
BH54  
BH50  
BF58  
BG57  
BN57  
BP56  
BN55  
BP54  
BN53  
BP52  
BR51  
BP50  
BJ49  
R51  
PWRGOOD  
P50  
QPI_RBIAS  
I/O  
I
R49  
QPI_RBIAS_SENSE  
QPI_VREF_CAP  
QPI0_CLKRX_DN  
QPI0_CLKRX_DP  
QPI0_CLKTX_DN  
QPI0_CLKTX_DP  
QPI0_DRX_DN[00]  
QPI0_DRX_DN[01]  
QPI0_DRX_DN[02]  
QPI0_DRX_DN[03]  
QPI0_DRX_DN[04]  
QPI0_DRX_DN[05]  
QPI0_DRX_DN[06]  
QPI0_DRX_DN[07]  
QPI0_DRX_DN[08]  
QPI0_DRX_DN[09]  
QPI0_DRX_DN[10]  
QPI0_DRX_DN[11]  
QPI0_DRX_DN[12]  
QPI0_DRX_DN[13]  
QPI0_DRX_DN[14]  
QPI0_DRX_DN[15]  
QPI0_DRX_DN[16]  
QPI0_DRX_DN[17]  
AH50  
AJ49  
AH48  
AJ51  
AF50  
AG49  
AF48  
AG51  
U45  
I/O  
I
I
QPI  
I
QPI  
I
I
QPI  
O
O
I
I
QPI  
I
QPI  
I
QPI  
I
I
QPI  
I
O
O
O
O
O
O
O
O
I
QPI  
I
AB46  
T46  
QPI  
I
QPI  
I
AC47  
R45  
QPI  
I
QPI  
I
Y46  
QPI  
I
P46  
QPI  
I
AA47  
AJ47  
AR47  
AP46  
AR45  
AG47  
AN47  
AM46  
QPI  
I
QPI  
I
I
QPI  
I
I
QPI  
I
I
QPI  
I
I
QPI  
I
I
QPI  
I
I
QPI  
I
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
169  
Processor Land Listing  
Table 8-1.  
Land Name (Sheet 23 of 50)  
Table 8-1.  
Land Name (Sheet 24 of 50)  
Land Name  
Land No.  
Buffer Type  
Direction  
Land Name  
Land No.  
Buffer Type  
Direction  
QPI0_DRX_DN[18]  
QPI0_DRX_DN[19]  
QPI0_DRX_DP[00]  
QPI0_DRX_DP[01]  
QPI0_DRX_DP[02]  
QPI0_DRX_DP[03]  
QPI0_DRX_DP[04]  
QPI0_DRX_DP[05]  
QPI0_DRX_DP[06]  
QPI0_DRX_DP[07]  
QPI0_DRX_DP[08]  
QPI0_DRX_DP[09]  
QPI0_DRX_DP[10]  
QPI0_DRX_DP[11]  
QPI0_DRX_DP[12]  
QPI0_DRX_DP[13]  
QPI0_DRX_DP[14]  
QPI0_DRX_DP[15]  
QPI0_DRX_DP[16]  
QPI0_DRX_DP[17]  
QPI0_DRX_DP[18]  
QPI0_DRX_DP[19]  
QPI0_DTX_DN[00]  
QPI0_DTX_DN[01]  
QPI0_DTX_DN[02]  
QPI0_DTX_DN[03]  
QPI0_DTX_DN[04]  
QPI0_DTX_DN[05]  
QPI0_DTX_DN[06]  
QPI0_DTX_DN[07]  
QPI0_DTX_DN[08]  
QPI0_DTX_DN[09]  
QPI0_DTX_DN[10]  
QPI0_DTX_DN[11]  
QPI0_DTX_DN[12]  
QPI0_DTX_DN[13]  
QPI0_DTX_DN[14]  
QPI0_DTX_DN[15]  
QPI0_DTX_DN[16]  
QPI0_DTX_DN[17]  
QPI0_DTX_DN[18]  
QPI0_DTX_DN[19]  
BN49  
BM48  
BG51  
BF52  
BE53  
BE55  
BF56  
BF54  
BF50  
BD58  
BE57  
BL57  
BM56  
BL55  
BM54  
BL53  
BM52  
BN51  
BM50  
BG49  
BR49  
BP48  
BW49  
BW51  
BW53  
BY54  
BW55  
BV58  
BW47  
BW57  
BY56  
BW45  
CF46  
BY52  
CA47  
CA49  
CG47  
CF48  
CF50  
CF52  
CG51  
CG49  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
I
I
QPI0_DTX_DP[00]  
QPI0_DTX_DP[01]  
QPI0_DTX_DP[02]  
QPI0_DTX_DP[03]  
QPI0_DTX_DP[04]  
QPI0_DTX_DP[05]  
QPI0_DTX_DP[06]  
QPI0_DTX_DP[07]  
QPI0_DTX_DP[08]  
QPI0_DTX_DP[09]  
QPI0_DTX_DP[10]  
QPI0_DTX_DP[11]  
QPI0_DTX_DP[12]  
QPI0_DTX_DP[13]  
QPI0_DTX_DP[14]  
QPI0_DTX_DP[15]  
QPI0_DTX_DP[16]  
QPI0_DTX_DP[17]  
QPI0_DTX_DP[18]  
QPI0_DTX_DP[19]  
QPI1_CLKRX_DN  
QPI1_CLKRX_DP  
BV50  
BV52  
BU53  
BV54  
BU55  
BT58  
BV48  
BU57  
BV56  
BV46  
CD46  
CA51  
BY48  
BY50  
CE47  
CD48  
CD50  
CD52  
CE51  
CE49  
CU55  
CR55  
CY54  
DB54  
CE55  
CF56  
CF54  
CL55  
CM56  
CM54  
CT58  
CU57  
CV56  
CL53  
CM52  
CR53  
CT52  
CL51  
CK50  
CL49  
CM48  
CN47  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
QPI1_CLKTX_DN  
O
O
I
QPI1_CLKTX_DP  
QPI1_DRX_DN[00]  
QPI1_DRX_DN[01]  
QPI1_DRX_DN[02]  
QPI1_DRX_DN[03]  
QPI1_DRX_DN[04]  
QPI1_DRX_DN[05]  
QPI1_DRX_DN[06]  
QPI1_DRX_DN[07]  
QPI1_DRX_DN[08]  
QPI1_DRX_DN[09]  
QPI1_DRX_DN[10]  
QPI1_DRX_DN[11]  
QPI1_DRX_DN[12]  
QPI1_DRX_DN[13]  
QPI1_DRX_DN[14]  
QPI1_DRX_DN[15]  
QPI1_DRX_DN[16]  
QPI1_DRX_DN[17]  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
170  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
Processor Land Listing  
Table 8-1.  
Land Name (Sheet 25 of 50)  
Table 8-1.  
Land Name (Sheet 26 of 50)  
Land Name  
Land No.  
Buffer Type  
Direction  
Land Name  
Land No.  
Buffer Type  
Direction  
QPI1_DRX_DN[18]  
QPI1_DRX_DN[19]  
QPI1_DRX_DP[00]  
QPI1_DRX_DP[01]  
QPI1_DRX_DP[02]  
QPI1_DRX_DP[03]  
QPI1_DRX_DP[04]  
QPI1_DRX_DP[05]  
QPI1_DRX_DP[06]  
QPI1_DRX_DP[07]  
QPI1_DRX_DP[08]  
QPI1_DRX_DP[09]  
QPI1_DRX_DP[10]  
QPI1_DRX_DP[11]  
QPI1_DRX_DP[12]  
QPI1_DRX_DP[13]  
QPI1_DRX_DP[14]  
QPI1_DRX_DP[15]  
QPI1_DRX_DP[16]  
QPI1_DRX_DP[17]  
QPI1_DRX_DP[18]  
QPI1_DRX_DP[19]  
QPI1_DTX_DN[00]  
QPI1_DTX_DN[01]  
QPI1_DTX_DN[02]  
QPI1_DTX_DN[03]  
QPI1_DTX_DN[04]  
QPI1_DTX_DN[05]  
QPI1_DTX_DN[06]  
QPI1_DTX_DN[07]  
QPI1_DTX_DN[08]  
QPI1_DTX_DN[09]  
QPI1_DTX_DN[10]  
QPI1_DTX_DN[11]  
QPI1_DTX_DN[12]  
QPI1_DTX_DN[13]  
QPI1_DTX_DN[14]  
QPI1_DTX_DN[15]  
QPI1_DTX_DN[16]  
QPI1_DTX_DN[17]  
QPI1_DTX_DN[18]  
QPI1_DTX_DN[19]  
CM46  
CN45  
CC55  
CD56  
CD54  
CJ55  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
I
I
QPI1_DTX_DP[00]  
QPI1_DTX_DP[01]  
QPI1_DTX_DP[02]  
QPI1_DTX_DP[03]  
QPI1_DTX_DP[04]  
QPI1_DTX_DP[05]  
QPI1_DTX_DP[06]  
QPI1_DTX_DP[07]  
QPI1_DTX_DP[08]  
QPI1_DTX_DP[09]  
QPI1_DTX_DP[10]  
QPI1_DTX_DP[11]  
QPI1_DTX_DP[12]  
QPI1_DTX_DP[13]  
QPI1_DTX_DP[14]  
QPI1_DTX_DP[15]  
QPI1_DTX_DP[16]  
QPI1_DTX_DP[17]  
QPI1_DTX_DP[18]  
QPI1_DTX_DP[19]  
RESET_N  
CT48  
CT50  
CU49  
DA53  
DD52  
CU47  
DC51  
DD50  
CT46  
DC49  
DB48  
CU45  
DE47  
DB46  
CT44  
DE45  
DB44  
CU43  
DE43  
DB42  
CK44  
A53  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
CMOS  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
I
I
I
I
I
CK56  
CK54  
CP58  
CR57  
CT56  
CJ53  
I
I
I
I
I
I
CK52  
CU53  
CV52  
CN51  
CM50  
CN49  
CK48  
CL47  
CK46  
CL45  
CV48  
CV50  
CW49  
DC53  
DB52  
CW47  
DE51  
DB50  
CV46  
DE49  
DD48  
CW45  
DC47  
DD46  
CV44  
DC45  
DD44  
CW43  
DC43  
DD42  
I
I
I
I
I
I
I
I
I
I
RSVD  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
RSVD  
AB48  
AJ55  
AL55  
AM44  
AP48  
AR55  
AU55  
AV46  
AY46  
B46  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
BC47  
BD44  
BD46  
BD48  
BE43  
BE45  
BE47  
BF46  
BG43  
BG45  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
171  
Processor Land Listing  
Table 8-1.  
Land Name (Sheet 27 of 50)  
Table 8-1.  
Land Name (Sheet 28 of 50)  
Land Name  
Land No.  
Buffer Type  
Direction  
Land Name  
Land No.  
Buffer Type  
Direction  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
BH44  
BH46  
BJ43  
BJ45  
BK44  
BL43  
BL45  
BM44  
BM46  
BN47  
BP44  
BP46  
BR43  
BR47  
BT44  
BU43  
BY46  
C53  
RSVD  
J15  
K58  
RSVD  
RSVD  
M48  
RSVD  
W15  
Y48  
RSVD  
SAFE_MODE_BOOT  
SKTOCC_N  
SOCKET_ID[0]  
SOCKET_ID[1]  
SVIDALERT_N  
SVIDCLK  
SVIDDATA  
TCK  
DA55  
BU49  
CY52  
BC49  
CR43  
CB44  
BR45  
BY44  
BW43  
CA43  
DB4  
CMOS  
I
O
I
CMOS  
CMOS  
I
CMOS  
I
ODCMOS  
ODCMOS  
CMOS  
O
I/O  
I
TDI  
CMOS  
I
TDO  
ODCMOS  
O
O
O
O
O
I
TEST0  
TEST1  
TEST2  
TEST3  
TEST4  
THERMTRIP_N  
TMS  
CW1  
F2  
CA45  
CD44  
CE43  
CF44  
CG11  
CP54  
CY46  
CY48  
CY56  
CY58  
D46  
D4  
BA55  
BL47  
BV44  
CT54  
AG19  
AG25  
AG27  
AG29  
AG31  
AG33  
AG35  
AG37  
AG39  
AG41  
AL1  
ODCMOS  
CMOS  
CMOS  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
O
I
TRST_N  
VCC  
I
VCC  
VCC  
VCC  
VCC  
VCC  
D56  
VCC  
DA57  
DB56  
DC55  
DD54  
DE55  
E53  
VCC  
VCC  
VCC  
VCC  
VCC  
AL11  
AL13  
AL15  
AL17  
AL3  
VCC  
E57  
VCC  
F46  
VCC  
F56  
VCC  
F58  
VCC  
AL5  
H56  
VCC  
AL7  
H58  
VCC  
AL9  
172  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
Processor Land Listing  
Table 8-1.  
Land Name (Sheet 29 of 50)  
Table 8-1.  
Land Name (Sheet 30 of 50)  
Land Name  
Land No.  
Buffer Type  
Direction  
Land Name  
Land No.  
Buffer Type  
Direction  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AM10  
AM12  
AM14  
AM16  
AM2  
AM4  
AM6  
AM8  
AN1  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AW1  
AW11  
AW13  
AW15  
AW17  
AW3  
AW5  
AW7  
AW9  
AY10  
AY12  
AY14  
AY16  
AY2  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
AN11  
AN13  
AN15  
AN17  
AN3  
AN5  
AY4  
AN7  
AY6  
AN9  
AY8  
AP10  
AP12  
AP14  
AP16  
AP2  
BA1  
BA11  
BA13  
BA15  
BA17  
BA3  
AP4  
AP6  
BA5  
AP8  
BA7  
AU1  
BA9  
AU11  
AU13  
AU15  
AU17  
AU3  
BB10  
BB12  
BB14  
BB16  
BB2  
AU5  
BB4  
AU7  
BB6  
AU9  
BB8  
AV10  
AV12  
AV14  
AV16  
AV2  
BE1  
BE11  
BE13  
BE15  
BE17  
BE3  
AV4  
AV6  
BE5  
AV8  
BE7  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
173  
Processor Land Listing  
Table 8-1.  
Land Name (Sheet 31 of 50)  
Table 8-1.  
Land Name (Sheet 32 of 50)  
Land Name  
Land No.  
Buffer Type  
Direction  
Land Name  
Land No.  
Buffer Type  
Direction  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
BE9  
BF10  
BF12  
BF14  
BF16  
BF2  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
BK8  
BN1  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
BN11  
BN13  
BN15  
BN17  
BN3  
BF4  
BF6  
BN5  
BF8  
BN7  
BG1  
BG11  
BG13  
BG15  
BG17  
BG3  
BG5  
BG7  
BG9  
BH10  
BH12  
BH14  
BH16  
BH2  
BH4  
BH6  
BH8  
BJ1  
BN9  
BP10  
BP12  
BP14  
BP16  
BP2  
BP4  
BP6  
BP8  
BR1  
BR11  
BR13  
BR15  
BR17  
BR3  
BR5  
BR7  
BR9  
BJ11  
BJ13  
BJ15  
BJ17  
BJ3  
BT10  
BT12  
BT14  
BT16  
BT2  
BJ5  
BT4  
BJ7  
BT6  
BJ9  
BT8  
BK10  
BK12  
BK14  
BK16  
BK2  
BU1  
BU11  
BU13  
BU15  
BU17  
BU3  
BK4  
BK6  
BU5  
174  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
Processor Land Listing  
Table 8-1.  
Land Name (Sheet 33 of 50)  
Table 8-1.  
Land Name (Sheet 34 of 50)  
Land Name  
Land No.  
Buffer Type  
Direction  
Land Name  
Land No.  
Buffer Type  
Direction  
VCC  
BU7  
BU9  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
VCCD_01  
VCCD_01  
VCCD_01  
VCCD_01  
VCCD_01  
VCCD_23  
VCCD_23  
VCCD_23  
VCCD_23  
VCCD_23  
VCCD_23  
VCCD_23  
VCCD_23  
VCCD_23  
VCCD_23  
VCCD_23  
VCCD_23  
VCCD_23  
VCCD_23  
VCCD_23  
VCCD_23  
VCCD_23  
VCCD_23  
VCCD_23  
VCCD_23  
VCCD_23  
VCCD_23  
VCCD_23  
VCCD_23  
VCCD_23  
VCCD_23  
VCCPLL  
VCCPLL  
VCCPLL  
VSA  
DD18  
DD20  
DD22  
DD24  
DD26  
AC17  
AC19  
AC21  
AC23  
AC25  
C15  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
VCC  
VCC  
BV10  
BV12  
BV14  
BV16  
BV2  
VCC  
VCC  
VCC  
VCC  
VCC  
BV4  
VCC  
BV6  
VCC  
BV8  
VCC  
BY18  
BY26  
BY28  
BY30  
BY32  
BY34  
BY36  
BY38  
BY40  
CA25  
CA29  
BW3  
VCC  
C17  
VCC  
C19  
VCC  
C21  
VCC  
C23  
VCC  
G13  
VCC  
H16  
VCC  
H18  
VCC  
H20  
VCC  
H22  
VCC  
H24  
VCC_SENSE  
VCCD_01  
VCCD_01  
VCCD_01  
VCCD_01  
VCCD_01  
VCCD_01  
VCCD_01  
VCCD_01  
VCCD_01  
VCCD_01  
VCCD_01  
VCCD_01  
VCCD_01  
VCCD_01  
VCCD_01  
VCCD_01  
VCCD_01  
VCCD_01  
VCCD_01  
VCCD_01  
O
N15  
CD20  
CD22  
CD24  
CD26  
CD28  
CJ19  
CJ21  
CJ23  
CJ25  
CJ27  
CP20  
CP22  
CP24  
CP26  
CP28  
CW19  
CW21  
CW23  
CW25  
CW27  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
N17  
N19  
N21  
N23  
V16  
V18  
V20  
V22  
V24  
BY14  
CA13  
CA15  
AE15  
AE17  
AF18  
AG15  
AG17  
AH10  
AH12  
AH14  
VSA  
VSA  
VSA  
VSA  
VSA  
VSA  
VSA  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
175  
Processor Land Listing  
Table 8-1.  
Land Name (Sheet 35 of 50)  
Table 8-1.  
Land Name (Sheet 36 of 50)  
Land Name  
Land No.  
Buffer Type  
Direction  
Land Name  
Land No.  
Buffer Type  
Direction  
VSA  
VSA  
VSA  
VSA  
VSA  
VSA  
VSA  
VSA  
VSA  
VSA  
VSA  
VSA  
VSA  
VSA  
VSA  
VSA  
VSA  
VSA_SENSE  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AH16  
AH2  
AH4  
AH6  
AH8  
AJ1  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AD36  
AD42  
AD44  
AD46  
AD48  
AD50  
AD52  
AD6  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
AJ11  
AJ13  
AJ3  
AE29  
AE31  
AE39  
AE43  
AE47  
AE49  
AE51  
AE9  
AJ5  
AJ7  
AJ9  
B54  
G43  
G49  
N45  
N51  
AG13  
A41  
AF12  
AF16  
AF20  
AF26  
AF34  
AF36  
AF40  
AF42  
AF54  
AF56  
AF6  
O
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
A43  
A45  
A47  
A49  
A5  
A51  
A7  
AA11  
AA29  
AA3  
AA31  
AA39  
AA5  
AA55  
AA9  
AB14  
AB36  
AB42  
AB6  
AC31  
AC9  
AD26  
AD34  
AG1  
AG3  
AG43  
AG5  
AG55  
AG57  
AG9  
AH58  
AJ15  
AJ17  
AK10  
AK12  
AK14  
AK16  
AK2  
176  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
Processor Land Listing  
Table 8-1.  
Land Name (Sheet 37 of 50)  
Table 8-1.  
Land Name (Sheet 38 of 50)  
Land Name  
Land No.  
Buffer Type  
Direction  
Land Name  
Land No.  
Buffer Type  
Direction  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AK4  
AK42  
AK44  
AK46  
AK48  
AK50  
AK6  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AV42  
AV54  
AV56  
AW55  
AW57  
B36  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
B52  
AK8  
B6  
AL43  
AL45  
AL49  
AL51  
AL53  
AM56  
AN55  
AN57  
AP42  
AP44  
AP58  
AR1  
B8  
BB42  
BB46  
BB48  
BB50  
BB52  
BB58  
BC1  
BC11  
BC13  
BC15  
BC17  
BC3  
AR11  
AR13  
AR15  
AR17  
AR3  
BC43  
BC45  
BC5  
BC53  
BC55  
BC57  
BC7  
AR5  
AR7  
AR9  
AT10  
AT12  
AT14  
AT16  
AT2  
BC9  
BD10  
BD12  
BD14  
BD16  
BD2  
AT4  
AT46  
AT52  
AT6  
BD4  
BD54  
BD56  
BD6  
AT8  
AU45  
AU47  
AU49  
AU51  
BD8  
BE49  
BE51  
BF42  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
177  
Processor Land Listing  
Table 8-1.  
Land Name (Sheet 39 of 50)  
Table 8-1.  
Land Name (Sheet 40 of 50)  
Land Name  
Land No.  
Buffer Type  
Direction  
Land Name  
Land No.  
Buffer Type  
Direction  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
BF44  
BG47  
BH58  
BJ55  
BJ57  
BK42  
BK46  
BK48  
BK50  
BK52  
BK54  
BL1  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
BW1  
BW11  
BW13  
BW15  
BW17  
BW5  
BW7  
BY24  
BY4  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
BY42  
BY58  
BY8  
BL11  
BL13  
BL15  
BL17  
BL3  
C11  
C13  
C3  
C33  
C39  
BL49  
BL5  
C41  
C5  
BL7  
C55  
BL9  
CA11  
CA19  
CA27  
CA31  
CA33  
CA35  
CA37  
CA39  
CA41  
CA5  
BM10  
BM12  
BM14  
BM16  
BM2  
BM4  
BM6  
BM8  
BN43  
BN45  
BP58  
BR53  
BR57  
BT46  
BT48  
BT50  
BT52  
BT54  
BT56  
BU45  
BU51  
CA55  
CA57  
CB16  
CB36  
CB46  
CB48  
CB50  
CB52  
CB56  
CB6  
CB8  
CC13  
178  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
Processor Land Listing  
Table 8-1.  
Land Name (Sheet 41 of 50)  
Table 8-1.  
Land Name (Sheet 42 of 50)  
Land Name  
Land No.  
Buffer Type  
Direction  
Land Name  
Land No.  
Buffer Type  
Direction  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
CC29  
CC3  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
CJ11  
CJ17  
CJ29  
CJ3  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
CC43  
CC47  
CC49  
CC9  
CJ43  
CJ45  
CJ47  
CJ51  
CJ9  
CD18  
CD36  
CD6  
CE13  
CE5  
CK10  
CK36  
CK4  
CE9  
CF12  
CF14  
CF30  
CF32  
CF34  
CF36  
CF38  
CF40  
CF42  
CF6  
CK6  
CL17  
CL43  
CL5  
CM10  
CM14  
CM30  
CM32  
CM34  
CM36  
CM38  
CM40  
CM42  
CM6  
CG15  
CG31  
CG33  
CG35  
CG37  
CG39  
CG41  
CG43  
CG53  
CG9  
CM8  
CN11  
CN13  
CN15  
CN17  
CN3  
CH12  
CH16  
CH36  
CH44  
CH46  
CH48  
CH50  
CH52  
CH54  
CH6  
CN31  
CN33  
CN35  
CN37  
CN39  
CN5  
CN53  
CN55  
CN57  
CN7  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
179  
Processor Land Listing  
Table 8-1.  
Land Name (Sheet 43 of 50)  
Table 8-1.  
Land Name (Sheet 44 of 50)  
Land Name  
Land No.  
Buffer Type  
Direction  
Land Name  
Land No.  
Buffer Type  
Direction  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
CN9  
CP12  
CP16  
CP36  
CP40  
CP42  
CP44  
CP46  
CP48  
CP50  
CP52  
CP56  
CR11  
CR35  
CR47  
CR49  
CR5  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
CW37  
CW39  
CW5  
CW51  
CW53  
CW55  
CW57  
CW7  
CY10  
CY12  
CY16  
CY2  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
CY36  
CY40  
CY44  
CY50  
CY8  
CR9  
D2  
CT28  
CT42  
CU1  
D26  
D36  
D8  
CU11  
CU3  
DA11  
DA3  
CU35  
CU5  
DA41  
DA43  
DA45  
DA47  
DA5  
CV14  
CV18  
CV30  
CV32  
CV34  
CV38  
CV42  
CV54  
CV58  
CV6  
DA51  
DA9  
DB12  
DB2  
DB32  
DB36  
DB58  
DC3  
CW11  
CW13  
CW15  
CW29  
CW31  
CW33  
CW35  
DC41  
DC5  
DD10  
DD12  
DD14  
DD34  
180  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
Processor Land Listing  
Table 8-1.  
Land Name (Sheet 45 of 50)  
Table 8-1.  
Land Name (Sheet 46 of 50)  
Land Name  
Land No.  
Buffer Type  
Direction  
Land Name  
Land No.  
Buffer Type  
Direction  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DD36  
DD38  
DD6  
DE17  
DE41  
DE53  
DE7  
DF12  
DF36  
DF42  
DF44  
DF46  
DF48  
DF50  
DF52  
DF8  
E1  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
H12  
H14  
H32  
H34  
H38  
H40  
H52  
H54  
H8  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
J11  
J27  
J31  
J33  
J39  
J41  
J5  
J55  
K2  
E29  
E3  
K26  
K28  
K30  
K34  
K8  
E31  
E41  
E5  
F36  
F42  
L25  
L29  
L41  
L5  
F44  
F48  
F50  
F8  
M34  
M36  
M42  
M44  
M46  
M50  
M52  
M8  
G1  
G25  
G31  
G35  
G37  
G41  
G45  
G47  
G5  
N13  
N33  
N35  
N37  
N41  
N43  
N47  
G51  
G53  
G57  
G9  
H10  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
181  
Processor Land Listing  
Table 8-1.  
Land Name (Sheet 47 of 50)  
Table 8-1.  
Land Name (Sheet 48 of 50)  
Land Name  
Land No.  
Buffer Type  
Direction  
Land Name  
Land No.  
Buffer Type  
Direction  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
N49  
N5  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VSS  
W33  
W37  
W41  
W43  
W45  
W47  
W5  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VSS  
N53  
N9  
VSS  
VSS  
P10  
P12  
P14  
P26  
P30  
P32  
P38  
P40  
P54  
P56  
P8  
VSS  
VSS  
VSS  
VSS  
W51  
W53  
W9  
VSS  
VSS  
VSS  
Y10  
VSS  
Y12  
VSS  
Y28  
VSS  
Y30  
VSS  
Y32  
R11  
R29  
R3  
VSS  
Y36  
VSS  
Y38  
VSS  
Y40  
R31  
R35  
R39  
R5  
VSS  
Y42  
VSS  
Y56  
VSS_VCC_SENSE  
VSS_VSA_SENSE  
VSS_VTTD_SENSE  
VTTA  
BY2  
O
O
O
AF14  
BT42  
AE45  
AE53  
AM48  
AM54  
AU53  
CA53  
CC45  
CG55  
CJ49  
CR45  
CR51  
DA49  
W49  
Y54  
R55  
R7  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
T28  
T4  
VTTA  
VTTA  
T42  
T6  
VTTA  
VTTA  
T8  
VTTA  
U35  
U5  
VTTA  
VTTA  
V26  
V28  
V34  
V36  
V42  
V44  
V46  
V48  
V50  
V8  
VTTA  
VTTA  
VTTA  
VTTA  
VTTA  
VTTA  
VTTD  
VTTD  
VTTD  
VTTD  
VTTD  
AF22  
AF24  
AG21  
AG23  
AM42  
W13  
182  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
Processor Land Listing  
Table 8-1.  
Land Name (Sheet 49 of 50)  
Table 8-1.  
Land Name (Sheet 50 of 50)  
Land Name  
Land No.  
Buffer Type  
Direction  
Land Name  
Land No.  
Buffer Type  
Direction  
VTTD  
VTTD  
VTTD  
VTTD  
VTTD  
VTTD  
VTTD  
VTTD  
AT42  
AY42  
BD42  
BH42  
BK56  
BL51  
BM42  
BR55  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
VTTD  
BU47  
BV42  
BY20  
BY22  
CA21  
CA23  
BP42  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
VTTD  
VTTD  
VTTD  
VTTD  
VTTD  
VTTD_SENSE  
O
8.2  
Listing by Land Number  
Table 8-2.  
Land Number (Sheet 2 of 49)  
Table 8-2.  
Land Number (Sheet 1 of 49)  
Land No.  
Land Name  
Buffer Type  
Direction  
Land No.  
Land Name  
Buffer Type  
Direction  
AA25  
AA27  
AA29  
AA3  
DDR2_CKE[0]  
DDR2_ECC[7]  
VSS  
SSTL  
SSTL  
GND  
O
A11  
A13  
A15  
A17  
A19  
A21  
A23  
A33  
A35  
A37  
A39  
A41  
A43  
A45  
A47  
A49  
A5  
DDR3_DQ[33]  
DDR3_MA[13]  
DDR3_WE_N  
DDR3_BA[0]  
DDR3_MA[00]  
DDR3_MA[05]  
DDR3_MA[11]  
DDR3_DQ[22]  
DDR3_DQ[16]  
DDR3_DQ[07]  
DDR3_DQ[01]  
VSS  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
I/O  
O
I/O  
O
VSS  
GND  
O
AA31  
AA33  
AA35  
AA37  
AA39  
AA41  
AA43  
AA45  
AA47  
AA49  
AA5  
VSS  
GND  
O
DDR2_DQS_DN[03]  
DDR2_DQ[28]  
DDR2_DQ[10]  
VSS  
SSTL  
SSTL  
SSTL  
GND  
I/O  
I/O  
I/O  
O
O
I/O  
I/O  
I/O  
I/O  
DDR2_DQ[13]  
PE3D_TX_DN[14]  
PE3D_TX_DP[12]  
PE3C_TX_DP[9]  
PE3A_RX_DP[3]  
VSS  
SSTL  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
GND  
I/O  
O
O
O
VSS  
I
VSS  
VSS  
AA51  
AA53  
AA55  
AA7  
PE3B_RX_DP[7]  
PE3B_RX_DP[6]  
VSS  
PCIEX3  
PCIEX3  
GND  
I
I
VSS  
VSS  
A51  
A53  
A7  
VSS  
DDR2_DQS_DN[14]  
VSS  
SSTL  
GND  
I/O  
RSVD  
AA9  
VSS  
GND  
SSTL  
GND  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
AB10  
AB12  
AB14  
AB16  
AB18  
AB20  
AB22  
AB24  
DDR2_DQ[38]  
DDR2_DQS_DP[13]  
VSS  
SSTL  
SSTL  
GND  
I/O  
I/O  
A9  
DDR3_DQ[39]  
VSS  
I/O  
AA11  
AA13  
AA15  
AA17  
AA19  
AA21  
AA23  
DDR2_DQ[37]  
DDR2_CS_N[3]  
DDR2_CS_N[9]  
DDR2_CS_N[4]  
DDR2_CLK_DP[2]  
DDR2_CLK_DP[3]  
I/O  
O
DDR2_CS_N[6]  
DDR2_MA[00]  
DDR2_CS_N[0]  
DDR2_CLK_DP[1]  
DDR2_CLK_DP[0]  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
O
O
O
O
O
O
O
O
O
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
183  
   
Processor Land Listing  
Table 8-2.  
Land Number (Sheet 3 of 49)  
Table 8-2.  
Land Number (Sheet 4 of 49)  
Land No.  
Land Name  
Buffer Type  
Direction  
Land No.  
Land Name  
Buffer Type  
Direction  
AB26  
AB28  
AB30  
AB32  
AB34  
AB36  
AB38  
AB4  
DDR2_ECC[3]  
DDR2_DQS_DN[08]  
DDR2_ECC[4]  
DDR2_DQ[30]  
DDR2_DQS_DN[12]  
VSS  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
AC53  
AC55  
AC7  
PE3B_RX_DN[6]  
PE2B_RX_DP[6]  
DDR2_DQS_DP[05]  
VSS  
PCIEX3  
PCIEX3  
SSTL  
GND  
I
I
I/O  
AC9  
AD10  
AD12  
AD14  
AD16  
AD18  
AD20  
AD22  
AD24  
AD26  
AD28  
AD30  
AD32  
AD34  
AD36  
AD38  
AD4  
DDR2_DQ[39]  
DDR2_DQS_DN[13]  
DDR2_DQ[36]  
DDR2_CS_N[2]  
DDR2_ODT[2]  
DDR2_PAR_ERR_N  
DDR2_ODT[4]  
DDR2_CKE[3]  
VSS  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
GND  
I/O  
I/O  
I/O  
O
DDR2_DQS_DP[01]  
DDR2_DQS_DP[07]  
DDR2_DQS_DP[10]  
VSS  
SSTL  
SSTL  
SSTL  
GND  
I/O  
I/O  
I/O  
AB40  
AB42  
AB44  
AB46  
AB48  
AB50  
AB52  
AB54  
AB56  
AB6  
O
I
PE3D_TX_DN[13]  
PE3C_TX_DN[11]  
RSVD  
PCIEX3  
PCIEX3  
O
O
O
O
PE3B_RX_DN[4]  
PE3B_RX_DN[5]  
PE2B_RX_DP[4]  
PE2B_RX_DP[5]  
VSS  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
GND  
I
I
I
I
DDR2_DQS_DN[17]  
DDR2_ECC[5]  
DDR2_DQ[31]  
VSS  
SSTL  
SSTL  
SSTL  
GND  
I/O  
I/O  
I/O  
VSS  
GND  
AB8  
DDR2_DQS_DN[05]  
DDR2_DQS_DN[04]  
DDR2_DQ[32]  
DDR23_RCOMP[1]  
VCCD_23  
SSTL  
I/O  
I/O  
I/O  
I
DDR2_DQS_DN[01]  
DDR2_DQS_DN[16]  
DDR2_DQ[09]  
VSS  
SSTL  
SSTL  
SSTL  
GND  
I/O  
I/O  
I/O  
AC11  
AC13  
AC15  
AC17  
AC19  
AC21  
AC23  
AC25  
AC27  
AC29  
AC3  
SSTL  
SSTL  
AD40  
AD42  
AD44  
AD46  
AD48  
AD50  
AD52  
AD54  
AD56  
AD6  
Analog  
PWR  
VSS  
GND  
VCCD_23  
PWR  
VSS  
GND  
VCCD_23  
PWR  
VSS  
GND  
VCCD_23  
PWR  
VSS  
GND  
VCCD_23  
PWR  
VSS  
GND  
DDR2_DQS_DP[08]  
DDR2_DQS_DP[17]  
DDR2_DQS_DN[07]  
VSS  
SSTL  
I/O  
I/O  
I/O  
PE2B_RX_DN[4]  
PE2B_RX_DN[5]  
VSS  
PCIEX3  
PCIEX3  
GND  
I
I
SSTL  
SSTL  
AC31  
AC33  
AC35  
AC37  
AC39  
AC41  
AC43  
AC45  
AC47  
AC49  
AC5  
GND  
AD8  
DDR2_DQ[46]  
DDR2_DQS_DP[04]  
DDR2_DQ[33]  
VSA  
SSTL  
SSTL  
SSTL  
PWR  
I/O  
I/O  
I/O  
DDR2_DQS_DP[03]  
DDR2_DQ[24]  
DDR2_DQ[11]  
DDR2_DQS_DN[10]  
DDR2_DQ[12]  
PE3D_TX_DP[14]  
PE3D_TX_DN[12]  
PE3C_TX_DN[9]  
PE3A_RX_DN[3]  
DDR2_DQS_DP[16]  
PE3B_RX_DN[7]  
SSTL  
I/O  
I/O  
I/O  
I/O  
I/O  
O
AE11  
AE13  
AE15  
AE17  
AE19  
AE21  
AE23  
AE25  
AE27  
AE29  
AE3  
SSTL  
SSTL  
SSTL  
VSA  
PWR  
SSTL  
DDR2_CS_N[1]  
DDR2_ODT[5]  
DDR2_CKE[5]  
DDR2_CKE[4]  
DDR_RESET_C23_N  
VSS  
SSTL  
SSTL  
SSTL  
SSTL  
CMOS1.5v  
GND  
O
O
O
O
O
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
SSTL  
O
O
I
I/O  
I
AC51  
PCIEX3  
DDR2_DQ[63]  
SSTL  
I/O  
184  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
Processor Land Listing  
Table 8-2.  
Land Number (Sheet 5 of 49)  
Table 8-2.  
Land Number (Sheet 6 of 49)  
Land No.  
Land Name  
Buffer Type  
Direction  
Land No.  
Land Name  
Buffer Type  
Direction  
AE31  
AE33  
AE35  
AE37  
AE39  
AE41  
AE43  
AE45  
AE47  
AE49  
AE5  
VSS  
DDR2_DQ[26]  
DDR2_DQ[25]  
DDR2_DQ[15]  
VSS  
GND  
SSTL  
SSTL  
SSTL  
GND  
AF56  
AF58  
AF6  
VSS  
GND  
PCIEX3  
GND  
I/O  
I/O  
I/O  
PE2B_RX_DN[7]  
I
VSS  
AF8  
DDR2_DQ[42]  
SSTL  
GND  
I/O  
AG1  
VSS  
DDR2_DQ[08]  
VSS  
SSTL  
GND  
I/O  
AG11  
AG13  
AG15  
AG17  
AG19  
AG21  
AG23  
AG25  
AG27  
AG29  
AG3  
DDR2_DQ[34]  
SSTL  
I/O  
O
VSA_SENSE  
VTTA  
PWR  
VSA  
PWR  
PWR  
VSS  
GND  
VSA  
VSS  
GND  
VCC  
PWR  
DDR2_DQ[59]  
VSS  
SSTL  
GND  
I/O  
VTTD  
PWR  
AE51  
AE53  
AE55  
AE57  
AE7  
VTTD  
PWR  
VTTA  
PWR  
VCC  
PWR  
PE2B_RX_DN[6]  
PE2B_RX_DP[7]  
DDR2_DQ[47]  
VSS  
PCIEX3  
PCIEX3  
SSTL  
GND  
I
I
VCC  
PWR  
VCC  
PWR  
I/O  
VSS  
GND  
AE9  
AG31  
AG33  
AG35  
AG37  
AG39  
AG41  
AG43  
AG45  
AG47  
AG49  
AG5  
VCC  
PWR  
AF10  
AF12  
AF14  
AF16  
AF18  
AF2  
DDR2_DQ[35]  
VSS  
SSTL  
GND  
I/O  
O
VCC  
PWR  
VCC  
PWR  
VSS_VSA_SENSE  
VSS  
VCC  
VCC  
PWR  
GND  
PWR  
PWR  
VSA  
VCC  
PWR  
DDR2_DQ[62]  
VSS  
SSTL  
GND  
I/O  
VSS  
GND  
AF20  
AF22  
AF24  
AF26  
AF28  
AF30  
AF32  
AF34  
AF36  
AF38  
AF4  
PE3A_RX_DP[1]  
PE3D_RX_DP[12]  
PE3C_RX_DP[11]  
VSS  
PCIEX3  
PCIEX3  
PCIEX3  
GND  
I
I
I
VTTD  
PWR  
VTTD  
PWR  
VSS  
GND  
DDR2_ECC[1]  
DDR2_ECC[0]  
DDR2_DQ[27]  
VSS  
SSTL  
SSTL  
SSTL  
GND  
I/O  
I/O  
I/O  
AG51  
AG53  
AG55  
AG57  
AG7  
PE3C_RX_DP[9]  
PE2B_TX_DP[4]  
VSS  
PCIEX3  
PCIEX3  
GND  
I
O
VSS  
GND  
VSS  
GND  
DDR2_DQ[43]  
VSS  
SSTL  
GND  
I/O  
DDR2_DQ[14]  
DDR2_DQ[58]  
VSS  
SSTL  
SSTL  
GND  
I/O  
I/O  
AG9  
AH10  
AH12  
AH14  
AH16  
AH2  
VSA  
PWR  
AF40  
AF42  
AF44  
AF46  
AF48  
AF50  
AF52  
AF54  
VSA  
PWR  
VSS  
GND  
VSA  
PWR  
PE3A_RX_DP[0]  
PE3A_RX_DP[2]  
PE3C_RX_DP[8]  
PE3C_RX_DP[10]  
PE_RBIAS_SENSE  
VSS  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
GND  
I
I
I
I
I
VSA  
PWR  
VSA  
PWR  
AH4  
VSA  
PWR  
AH42  
AH44  
AH46  
IVT_ID_N  
PE3A_RX_DN[0]  
PE3A_RX_DN[2]  
O
I
PCIEX3  
PCIEX3  
I
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
185  
Processor Land Listing  
Table 8-2.  
Land Number (Sheet 7 of 49)  
Table 8-2.  
Land Number (Sheet 8 of 49)  
Land No.  
Land Name  
Buffer Type  
Direction  
Land No.  
Land Name  
Buffer Type  
Direction  
AH48  
AH50  
AH52  
AH54  
AH56  
AH58  
AH6  
PE3C_RX_DN[8]  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
GND  
I
I
AL1  
AL11  
AL13  
AL15  
AL17  
AL3  
VCC  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
GND  
GND  
CMOS  
GND  
PWR  
GND  
GND  
PE3C_RX_DN[10]  
VCC  
PE_RBIAS  
I/O  
O
VCC  
PE2B_TX_DP[5]  
VCC  
PE2C_RX_DP[8]  
I
VCC  
VSS  
VCC  
VSA  
PWR  
AL43  
AL45  
AL47  
AL49  
AL5  
VSS  
AH8  
VSA  
PWR  
VSS  
AJ1  
VSA  
PWR  
BMCINIT  
I
AJ11  
AJ13  
AJ15  
AJ17  
AJ3  
VSA  
PWR  
VSS  
VSA  
PWR  
VCC  
VSS  
GND  
AL51  
AL53  
AL55  
AL57  
AL7  
VSS  
VSS  
GND  
VSS  
VSA  
PWR  
RSVD  
AJ43  
AJ45  
AJ47  
AJ49  
AJ5  
PE_VREF_CAP  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PWR  
I/O  
PE2C_RX_DN[10]  
PCIEX3  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
I
PE3A_RX_DN[1]  
I
I
I
VCC  
PE3D_RX_DN[12]  
AL9  
VCC  
PE3C_RX_DN[11]  
AM10  
AM12  
AM14  
AM16  
AM2  
VCC  
VSA  
VCC  
AJ51  
AJ53  
AJ55  
AJ57  
AJ7  
PE3C_RX_DN[9]  
PCIEX3  
PCIEX3  
I
VCC  
PE2B_TX_DN[4]  
O
VCC  
RSVD  
VCC  
PE2C_RX_DP[10]  
PCIEX3  
PWR  
I
AM4  
VCC  
VSA  
AM42  
AM44  
AM46  
AM48  
AM50  
AM52  
AM54  
AM56  
AM58  
AM6  
VTTD  
AJ9  
VSA  
PWR  
RSVD  
AK10  
AK12  
AK14  
AK16  
AK2  
VSS  
GND  
PE3D_RX_DP[14]  
PCIEX3  
PWR  
I
VSS  
GND  
VTTA  
VSS  
GND  
PE2A_TX_DP[1]  
PCIEX3  
PCIEX3  
PWR  
O
O
VSS  
GND  
PE2A_TX_DP[3]  
VSS  
GND  
VTTA  
AK4  
VSS  
VSS  
GND  
VSS  
GND  
AK42  
AK44  
AK46  
AK48  
AK50  
AK52  
AK54  
AK56  
AK58  
AK6  
GND  
PE2C_RX_DN[9]  
PCIEX3  
PWR  
I
VSS  
GND  
VCC  
VSS  
GND  
AM8  
VCC  
PWR  
VSS  
GND  
AN1  
VCC  
PWR  
VSS  
GND  
AN11  
AN13  
AN15  
AN17  
AN3  
VCC  
PWR  
TXT_AGENT  
PE2B_TX_DN[5]  
PE2C_RX_DN[8]  
PE2C_RX_DP[9]  
VSS  
CMOS  
PCIEX3  
PCIEX3  
PCIEX3  
GND  
I
O
I
VCC  
VCC  
PWR  
PWR  
VCC  
PWR  
I
VCC  
PWR  
AN43  
AN45  
CPU_ONLY_RESET  
PE3D_RX_DP[15]  
ODCMOS  
PCIEX3  
I/O  
I
AK8  
VSS  
GND  
186  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
Processor Land Listing  
Table 8-2.  
Land Number (Sheet 9 of 49)  
Table 8-2.  
Land Number (Sheet 10 of 49)  
Land No.  
Land Name  
Buffer Type  
Direction  
Land No.  
Land Name  
Buffer Type  
Direction  
AN47  
AN49  
AN5  
PE3D_RX_DP[13]  
PCIEX3  
PCIEX3  
PWR  
I
AR9  
AT10  
AT12  
AT14  
AT16  
AT2  
VSS  
GND  
GND  
PE2A_TX_DP[0]  
O
VSS  
VCC  
VSS  
GND  
AN51  
AN53  
AN55  
AN57  
AN7  
PE2A_TX_DP[2]  
PCIEX3  
PCIEX3  
GND  
O
O
VSS  
GND  
PE2B_TX_DP[6]  
VSS  
GND  
VSS  
VSS  
GND  
VSS  
GND  
AT4  
VSS  
GND  
VCC  
PWR  
AT42  
AT44  
AT46  
AT48  
AT50  
AT52  
AT54  
AT56  
AT58  
AT6  
VTTD  
PWR  
AN9  
VCC  
PWR  
BPM_N[1]  
ODCMOS  
GND  
I/O  
AP10  
AP12  
AP14  
AP16  
AP2  
VCC  
PWR  
VSS  
VCC  
PWR  
BIST_ENABLE  
CMOS  
CMOS  
GND  
I
I
VCC  
PWR  
FRMAGENT  
VCC  
VCC  
PWR  
VSS  
PWR  
PE2B_TX_DN[7]  
PCIEX3  
PCIEX3  
PCIEX3  
GND  
O
I
AP4  
VCC  
PWR  
PE2D_RX_DN[13]  
AP42  
AP44  
AP46  
AP48  
AP50  
AP52  
AP54  
AP56  
AP58  
AP6  
VSS  
GND  
PE2D_RX_DP[12]  
I
VSS  
GND  
VSS  
VSS  
PE3D_RX_DN[14]  
RSVD  
PCIEX3  
I
AT8  
GND  
AU1  
VCC  
PWR  
PE2A_TX_DN[1]  
PE2A_TX_DN[3]  
PE2B_TX_DP[7]  
PE2D_RX_DP[13]  
VSS  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
GND  
O
O
O
I
AU11  
AU13  
AU15  
AU17  
AU3  
VCC  
PWR  
VCC  
PWR  
VCC  
PWR  
VCC  
PWR  
VCC  
PWR  
VCC  
PWR  
AU43  
AU45  
AU47  
AU49  
AU5  
BPM_N[2]  
VSS  
ODCMOS  
GND  
I/O  
AP8  
VCC  
PWR  
AR1  
VSS  
GND  
VSS  
GND  
AR11  
AR13  
AR15  
AR17  
AR3  
VSS  
GND  
VSS  
GND  
VSS  
GND  
VCC  
PWR  
VSS  
GND  
AU51  
AU53  
AU55  
AU57  
AU7  
VSS  
GND  
VSS  
GND  
VTTA  
RSVD  
PE2C_RX_DN[11]  
VCC  
PWR  
VSS  
GND  
AR43  
AR45  
AR47  
AR49  
AR5  
BPM_N[0]  
PE3D_RX_DN[15]  
PE3D_RX_DN[13]  
PE2A_TX_DN[0]  
VSS  
ODCMOS  
PCIEX3  
PCIEX3  
PCIEX3  
GND  
I/O  
I
PCIEX3  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
GND  
I
I
AU9  
VCC  
O
AV10  
AV12  
AV14  
AV16  
AV2  
VCC  
VCC  
AR51  
AR53  
AR55  
AR57  
AR7  
PE2A_TX_DN[2]  
PE2B_TX_DN[6]  
RSVD  
PCIEX3  
PCIEX3  
O
O
VCC  
VCC  
VCC  
PE2C_RX_DP[11]  
VSS  
PCIEX3  
GND  
I
AV4  
VCC  
AV42  
VSS  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
187  
Processor Land Listing  
Table 8-2.  
Land Number (Sheet 11 of 49)  
Table 8-2.  
Land Number (Sheet 12 of 49)  
Land No.  
Land Name  
Buffer Type  
Direction  
Land No.  
Land Name  
Buffer Type  
Direction  
AV44  
AV46  
AV48  
AV50  
AV52  
AV54  
AV56  
AV58  
AV6  
BPM_N[3]  
RSVD  
ODCMOS  
I/O  
AY6  
AY8  
VCC  
VCC  
PWR  
PWR  
PE2D_TX_DP[14]  
PE2D_TX_DP[12]  
PE2C_TX_DP[8]  
VSS  
PCIEX3  
PCIEX3  
PCIEX3  
GND  
O
O
O
B10  
B12  
B14  
B16  
B18  
B20  
B22  
B24  
B32  
B34  
B36  
B38  
B40  
B42  
B44  
B46  
B48  
B50  
B52  
B54  
B6  
DDR3_DQS_DN[04]  
DDR3_DQ[37]  
DDR3_CAS_N  
DDR3_RAS_N  
DDR3_MA_PAR  
DDR3_MA[03]  
DDR3_MA[07]  
DDR3_BA[2]  
DDR3_DQ[23]  
DDR3_DQS_DN[11]  
VSS  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
GND  
I/O  
I/O  
O
O
VSS  
GND  
O
PE2D_RX_DN[12]  
VCC  
PCIEX3  
PWR  
I
O
O
AV8  
VCC  
PWR  
O
AW1  
VCC  
PWR  
I/O  
I/O  
AW11  
AW13  
AW15  
AW17  
AW3  
VCC  
PWR  
VCC  
PWR  
VCC  
PWR  
DDR3_DQS_DN[00]  
DDR3_DQ[00]  
DMI_TX_DP[0]  
DMI_TX_DP[2]  
RSVD  
SSTL  
SSTL  
PCIEX  
PCIEX  
I/O  
I/O  
O
VCC  
PWR  
VCC  
PWR  
AW43  
AW45  
AW47  
AW49  
AW5  
BPM_N[5]  
BCLK1_DP  
PE2D_TX_DP[15]  
PE2D_TX_DP[13]  
VCC  
ODCMOS  
CMOS  
PCIEX3  
PCIEX3  
PWR  
I/O  
I
O
O
DMI_RX_DP[1]  
DMI_RX_DP[3]  
VSS  
PCIEX  
PCIEX  
GND  
I
I
O
AW51  
AW53  
AW55  
AW57  
AW7  
PE2C_TX_DP[11]  
PE2C_TX_DP[9]  
VSS  
PCIEX3  
PCIEX3  
GND  
O
O
VSA  
PWR  
VSS  
GND  
B8  
VSS  
GND  
VSS  
GND  
BA1  
BA11  
BA13  
BA15  
BA17  
BA3  
BA43  
BA45  
BA47  
BA49  
BA5  
BA51  
BA53  
BA55  
BA57  
BA7  
BA9  
BB10  
VCC  
PWR  
VCC  
PWR  
VCC  
PWR  
AW9  
VCC  
PWR  
VCC  
PWR  
AY10  
AY12  
AY14  
AY16  
AY2  
VCC  
PWR  
VCC  
PWR  
VCC  
PWR  
VCC  
PWR  
VCC  
PWR  
VCC  
PWR  
VCC  
PWR  
BPM_N[6]  
BCLK1_DN  
PE2D_TX_DN[15]  
PE2D_TX_DN[13]  
VCC  
ODCMOS  
CMOS  
PCIEX3  
PCIEX3  
PWR  
I/O  
I
VCC  
PWR  
AY4  
VCC  
PWR  
O
AY42  
AY44  
AY46  
AY48  
AY50  
AY52  
AY54  
AY56  
AY58  
VTTD  
PWR  
O
BPM_N[7]  
RSVD  
ODCMOS  
I/O  
PE2C_TX_DN[11]  
PE2C_TX_DN[9]  
TEST4  
PCIEX3  
PCIEX3  
O
O
I
PE2D_TX_DN[14]  
PE2D_TX_DN[12]  
PE2C_TX_DN[8]  
PE2C_TX_DP[10]  
PE2D_RX_DP[15]  
PE2D_RX_DP[14]  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
O
O
O
O
I
PE2D_RX_DN[14]  
VCC  
PCIEX3  
PWR  
I
VCC  
PWR  
I
VCC  
PWR  
188  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
Processor Land Listing  
Table 8-2.  
Land Number (Sheet 13 of 49)  
Table 8-2.  
Land Number (Sheet 14 of 49)  
Land No.  
Land Name  
Buffer Type  
Direction  
Land No.  
Land Name  
Buffer Type  
Direction  
BB12  
BB14  
BB16  
BB2  
VCC  
VCC  
PWR  
PWR  
BD48  
BD50  
BD52  
BD54  
BD56  
BD58  
BD6  
RSVD  
ERROR_N[0]  
ODCMOS  
ODCMOS  
GND  
O
VCC  
PWR  
PROCHOT_N  
I/O  
VCC  
PWR  
VSS  
BB4  
VCC  
PWR  
VSS  
GND  
BB42  
BB44  
BB46  
BB48  
BB50  
BB52  
BB54  
BB56  
BB58  
BB6  
VSS  
GND  
QPI0_DRX_DP[07]  
QPI  
I
BPM_N[4]  
VSS  
ODCMOS  
GND  
I/O  
VSS  
GND  
BD8  
VSS  
GND  
VSS  
GND  
BE1  
VCC  
PWR  
VSS  
GND  
BE11  
BE13  
BE15  
BE17  
BE3  
VCC  
PWR  
VSS  
GND  
VCC  
PWR  
PE2C_TX_DN[10]  
PE2D_RX_DN[15]  
VSS  
PCIEX3  
PCIEX3  
GND  
O
I
VCC  
PWR  
VCC  
PWR  
VCC  
PWR  
VCC  
PWR  
BE43  
BE45  
BE47  
BE49  
BE5  
RSVD  
BB8  
VCC  
PWR  
RSVD  
BC1  
VSS  
GND  
RSVD  
BC11  
BC13  
BC15  
BC17  
BC3  
VSS  
GND  
VSS  
GND  
PWR  
GND  
QPI  
VSS  
GND  
VCC  
VSS  
GND  
BE51  
BE53  
BE55  
BE57  
BE7  
VSS  
VSS  
GND  
QPI0_DRX_DP[02]  
I
I
I
VSS  
GND  
QPI0_DRX_DP[03]  
QPI  
BC43  
BC45  
BC47  
BC49  
BC5  
VSS  
GND  
QPI0_DRX_DP[08]  
QPI  
VSS  
GND  
VCC  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
GND  
GND  
RSVD  
SOCKET_ID[1]  
VSS  
BE9  
VCC  
CMOS  
GND  
I
BF10  
BF12  
BF14  
BF16  
BF2  
VCC  
VCC  
BC51  
BC53  
BC55  
BC57  
BC7  
ERROR_N[2]  
VSS  
ODCMOS  
GND  
O
VCC  
VCC  
VCC  
VSS  
GND  
VSS  
GND  
BF4  
VCC  
VSS  
GND  
BF42  
BF44  
BF46  
BF48  
BF50  
BF52  
BF54  
BF56  
BF58  
BF6  
VSS  
BC9  
VSS  
GND  
VSS  
BD10  
BD12  
BD14  
BD16  
BD2  
VSS  
GND  
RSVD  
VSS  
GND  
PEHPSDA  
ODCMOS  
QPI  
I/O  
VSS  
GND  
QPI0_DRX_DP[06]  
QPI0_DRX_DP[01]  
QPI0_DRX_DP[05]  
QPI0_DRX_DP[04]  
QPI0_DRX_DN[07]  
VCC  
I
I
I
I
I
VSS  
GND  
QPI  
VSS  
GND  
QPI  
BD4  
VSS  
GND  
QPI  
BD42  
BD44  
BD46  
VTTD  
RSVD  
RSVD  
PWR  
QPI  
PWR  
PWR  
BF8  
VCC  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
189  
Processor Land Listing  
Table 8-2.  
Land Number (Sheet 15 of 49)  
Table 8-2.  
Land Number (Sheet 16 of 49)  
Land No.  
Land Name  
Buffer Type  
Direction  
Land No.  
Land Name  
Buffer Type  
Direction  
BG1  
BG11  
BG13  
BG15  
BG17  
BG3  
VCC  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
BJ47  
BJ49  
BJ5  
PECI  
PECI  
QPI  
I/O  
I
VCC  
QPI0_DRX_DN[17]  
VCC  
VCC  
PWR  
QPI  
VCC  
BJ51  
BJ53  
BJ55  
BJ57  
BJ7  
QPI0_DRX_DN[00]  
I
I
VCC  
PWRGOOD  
CMOS  
GND  
GND  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
GND  
VCC  
VSS  
BG43  
BG45  
BG47  
BG49  
BG5  
RSVD  
VSS  
RSVD  
VCC  
VSS  
GND  
QPI  
BJ9  
VCC  
QPI0_DRX_DP[17]  
I
BK10  
BK12  
BK14  
BK16  
BK2  
VCC  
VCC  
PWR  
QPI  
VCC  
BG51  
BG53  
BG55  
BG57  
BG7  
QPI0_DRX_DP[00]  
I
I
I
I
VCC  
QPI0_DRX_DN[02]  
QPI  
VCC  
QPI0_DRX_DN[03]  
QPI  
VCC  
QPI0_DRX_DN[08]  
QPI  
BK4  
VCC  
VCC  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
BK42  
BK44  
BK46  
BK48  
BK50  
BK52  
BK54  
BK56  
BK58  
BK6  
VSS  
BG9  
VCC  
RSVD  
BH10  
BH12  
BH14  
BH16  
BH2  
VCC  
VSS  
GND  
GND  
GND  
GND  
GND  
PWR  
QPI  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
BH4  
VCC  
VTTD  
BH42  
BH44  
BH46  
BH48  
BH50  
BH52  
BH54  
BH56  
BH58  
BH6  
VTTD  
QPI0_CLKRX_DP  
I
RSVD  
VCC  
PWR  
PWR  
GND  
GND  
GND  
GND  
GND  
GND  
RSVD  
BK8  
VCC  
PEHPSCL  
ODCMOS  
QPI  
I/O  
BL1  
VSS  
QPI0_DRX_DN[06]  
I
I
I
I
BL11  
BL13  
BL15  
BL17  
BL3  
VSS  
QPI0_DRX_DN[01]  
QPI  
VSS  
QPI0_DRX_DN[05]  
QPI  
VSS  
QPI0_DRX_DN[04]  
QPI  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
RSVD  
RSVD  
GND  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
BL43  
BL45  
BL47  
BL49  
BL5  
RSVD  
BH8  
RSVD  
BJ1  
THERMTRIP_N  
VSS  
ODCMOS  
GND  
GND  
PWR  
QPI  
O
BJ11  
BJ13  
BJ15  
BJ17  
BJ3  
VSS  
BL51  
BL53  
BL55  
BL57  
BL7  
VTTD  
QPI0_DRX_DP[13]  
QPI0_DRX_DP[11]  
QPI0_DRX_DP[09]  
VSS  
I
I
I
QPI  
BJ43  
BJ45  
QPI  
GND  
190  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
Processor Land Listing  
Table 8-2.  
Land Number (Sheet 17 of 49)  
Table 8-2.  
Land Number (Sheet 18 of 49)  
Land No.  
Land Name  
Buffer Type  
Direction  
Land No.  
Land Name  
Buffer Type  
Direction  
BL9  
BM10  
BM12  
BM14  
BM16  
BM2  
VSS  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
PWR  
BP44  
BP46  
BP48  
BP50  
BP52  
BP54  
BP56  
BP58  
BP6  
RSVD  
VSS  
RSVD  
VSS  
QPI0_DRX_DP[19]  
QPI  
QPI  
I
I
I
I
I
VSS  
QPI0_DRX_DN[16]  
VSS  
QPI0_DRX_DN[14]  
QPI  
VSS  
QPI0_DRX_DN[12]  
QPI  
BM4  
VSS  
QPI0_DRX_DN[10]  
QPI  
BM42  
BM44  
BM46  
BM48  
BM50  
BM52  
BM54  
BM56  
BM58  
BM6  
VTTD  
VSS  
GND  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
RSVD  
VCC  
RSVD  
BP8  
VCC  
QPI0_DRX_DN[19]  
QPI  
QPI  
I
I
I
I
I
I
BR1  
VCC  
QPI0_DRX_DP[16]  
BR11  
BR13  
BR15  
BR17  
BR3  
VCC  
QPI0_DRX_DP[14]  
QPI  
VCC  
QPI0_DRX_DP[12]  
QPI  
VCC  
QPI0_DRX_DP[10]  
QPI  
VCC  
QPI0_CLKRX_DN  
QPI  
VCC  
VSS  
GND  
GND  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
GND  
GND  
BR43  
BR45  
BR47  
BR49  
BR5  
RSVD  
BM8  
VSS  
SVIDDATA  
ODCMOS  
I/O  
BN1  
VCC  
RSVD  
BN11  
BN13  
BN15  
BN17  
BN3  
VCC  
QPI0_DRX_DP[18]  
QPI  
PWR  
QPI  
I
I
VCC  
VCC  
VCC  
BR51  
BR53  
BR55  
BR57  
BR7  
QPI0_DRX_DN[15]  
VCC  
VSS  
GND  
PWR  
GND  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
VCC  
VTTD  
BN43  
BN45  
BN47  
BN49  
BN5  
VSS  
VSS  
VSS  
VCC  
RSVD  
BR9  
VCC  
QPI0_DRX_DN[18]  
QPI  
PWR  
QPI  
I
BT10  
BT12  
BT14  
BT16  
BT2  
VCC  
VCC  
VCC  
BN51  
BN53  
BN55  
BN57  
BN7  
QPI0_DRX_DP[15]  
I
I
I
I
VCC  
QPI0_DRX_DN[13]  
QPI  
VCC  
QPI0_DRX_DN[11]  
QPI  
VCC  
QPI0_DRX_DN[09]  
QPI  
BT4  
VCC  
VCC  
VCC  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
BT42  
BT44  
BT46  
BT48  
BT50  
BT52  
BT54  
BT56  
BT58  
VSS_VTTD_SENSE  
O
BN9  
RSVD  
BP10  
BP12  
BP14  
BP16  
BP2  
VCC  
VSS  
GND  
GND  
GND  
GND  
GND  
GND  
QPI  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VSS  
VCC  
BP4  
VCC  
VSS  
BP42  
VTTD_SENSE  
O
QPI0_DTX_DP[05]  
O
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
191  
Processor Land Listing  
Table 8-2.  
Land Number (Sheet 19 of 49)  
Table 8-2.  
Land Number (Sheet 20 of 49)  
Land No.  
Land Name  
Buffer Type  
Direction  
Land No.  
Land Name  
Buffer Type  
Direction  
BT6  
BT8  
VCC  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
BW43  
BW45  
BW47  
BW49  
BW5  
TDI  
CMOS  
QPI  
I
VCC  
QPI0_DTX_DN[09]  
QPI0_DTX_DN[06]  
QPI0_DTX_DN[00]  
VSS  
O
O
O
BU1  
VCC  
QPI  
BU11  
BU13  
BU15  
BU17  
BU3  
VCC  
QPI  
VCC  
GND  
QPI  
VCC  
BW51  
BW53  
BW55  
BW57  
BW7  
QPI0_DTX_DN[01]  
QPI0_DTX_DN[02]  
QPI0_DTX_DN[04]  
QPI0_DTX_DN[07]  
VSS  
O
O
O
O
VCC  
QPI  
VCC  
QPI  
BU43  
BU45  
BU47  
BU49  
BU5  
RSVD  
QPI  
VSS  
GND  
PWR  
GND  
SSTL  
SSTL  
SSTL  
PWR  
DC  
VTTD  
BW9  
DDR0_DQ[28]  
DDR0_DQ[24]  
DDR0_DQ[25]  
VCCPLL  
I/O  
I/O  
I/O  
SKTOCC_N  
O
BY10  
BY12  
BY14  
VCC  
PWR  
GND  
QPI  
BU51  
BU53  
BU55  
BU57  
BU7  
VSS  
QPI0_DTX_DP[02]  
O
O
O
BY16  
BY18  
BY2  
DDR_VREFDQRX_C01  
I
QPI0_DTX_DP[04]  
QPI  
VCC  
PWR  
QPI0_DTX_DP[07]  
QPI  
VSS_VCC_SENSE  
O
VCC  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
CMOS  
QPI  
BY20  
BY22  
BY24  
BY26  
BY28  
BY30  
BY32  
BY34  
BY36  
BY38  
BY4  
VTTD  
PWR  
PWR  
GND  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
GND  
PWR  
GND  
CMOS  
BU9  
VCC  
VTTD  
BV10  
BV12  
BV14  
BV16  
BV2  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
BV4  
VCC  
VTTD  
VCC  
BV42  
BV44  
BV46  
BV48  
BV50  
BV52  
BV54  
BV56  
BV58  
BV6  
VCC  
TMS  
I
VCC  
QPI0_DTX_DP[09]  
QPI0_DTX_DP[06]  
QPI0_DTX_DP[00]  
QPI0_DTX_DP[01]  
QPI0_DTX_DP[03]  
QPI0_DTX_DP[08]  
QPI0_DTX_DN[05]  
VCC  
O
O
O
O
O
O
O
VSS  
QPI  
BY40  
BY42  
BY44  
BY46  
BY48  
BY50  
BY52  
BY54  
BY56  
BY58  
BY6  
VCC  
VSS  
QPI  
QPI  
TCK  
I
QPI  
RSVD  
QPI  
QPI0_DTX_DP[12]  
QPI0_DTX_DP[13]  
QPI0_DTX_DN[11]  
QPI0_DTX_DN[03]  
QPI0_DTX_DN[08]  
VSS  
QPI  
QPI  
O
O
O
O
O
QPI  
PWR  
PWR  
GND  
GND  
GND  
GND  
GND  
QPI  
BV8  
VCC  
QPI  
BW1  
BW11  
BW13  
BW15  
BW17  
BW3  
VSS  
QPI  
VSS  
GND  
SSTL  
GND  
GND  
GND  
VSS  
DDR0_DQ[04]  
VSS  
I/O  
VSS  
BY8  
VSS  
C11  
VSS  
VCC_SENSE  
O
C13  
VSS  
192  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
Processor Land Listing  
Table 8-2.  
Land Number (Sheet 21 of 49)  
Table 8-2.  
Land Number (Sheet 22 of 49)  
Land No.  
Land Name  
Buffer Type  
Direction  
Land No.  
Land Name  
Buffer Type  
Direction  
C15  
C17  
VCCD_23  
VCCD_23  
VCCD_23  
VCCD_23  
VCCD_23  
DDR3_ECC[3]  
VSS  
PWR  
PWR  
CA47  
CA49  
CA5  
QPI0_DTX_DN[12]  
QPI0_DTX_DN[13]  
VSS  
QPI  
QPI  
O
O
C19  
PWR  
GND  
C21  
PWR  
CA51  
CA53  
CA55  
CA57  
CA7  
QPI0_DTX_DP[11]  
VTTA  
QPI  
O
C23  
PWR  
PWR  
C25  
SSTL  
GND  
I/O  
VSS  
GND  
C3  
VSS  
GND  
C33  
VSS  
GND  
DDR0_DQ[05]  
DDR0_DQ[29]  
DDR0_DQS_DP[12]  
DDR0_DQ[26]  
DDR0_ECC[4]  
VSS  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
C35  
DDR3_DQ[21]  
DDR3_DQ[02]  
VSS  
SSTL  
SSTL  
GND  
I/O  
I/O  
CA9  
C37  
CB10  
CB12  
CB14  
CB16  
CB18  
CB2  
C39  
C41  
VSS  
GND  
C43  
DMI_TX_DP[1]  
DMI_TX_DP[3]  
DMI_RX_DP[0]  
DMI_RX_DP[2]  
VSS  
PCIEX  
PCIEX  
PCIEX  
PCIEX  
GND  
O
O
I
C45  
DDR_RESET_C01_N  
DDR0_DQ[08]  
DDR01_RCOMP[2]  
MEM_HOT_C01_N  
DDR0_ODT[4]  
DDR0_CS_N[6]  
DDR0_CS_N[3]  
DDR0_DQ[37]  
DDR0_DQS_DN[13]  
DDR0_DQ[39]  
VSS  
CMOS1.5v  
SSTL  
Analog  
ODCMOS  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
GND  
O
I/O  
I
C47  
C49  
I
CB20  
CB22  
CB24  
CB26  
CB28  
CB30  
CB32  
CB34  
CB36  
CB38  
CB4  
C5  
I/O  
O
C51  
PE1A_RX_DP[0]  
RSVD  
PCIEX3  
I
C53  
O
C55  
VSS  
GND  
SSTL  
SSTL  
SSTL  
GND  
O
C7  
DDR3_DQ[52]  
DDR3_DQ[34]  
DDR0_DQ[12]  
VSS  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
C9  
CA1  
CA11  
CA13  
CA15  
CA17  
CA19  
CA21  
CA23  
CA25  
CA27  
CA29  
CA3  
CA31  
CA33  
CA35  
CA37  
CA39  
CA41  
CA43  
CA45  
VCCPLL  
PWR  
DDR0_DQ[48]  
DDR0_DQ[09]  
DDR0_DQS_DN[06]  
DDR0_DQ[55]  
SVIDCLK  
SSTL  
SSTL  
SSTL  
SSTL  
ODCMOS  
GND  
I/O  
I/O  
I/O  
I/O  
O
VCCPLL  
PWR  
DDR01_RCOMP[0]  
VSS  
Analog  
GND  
I
CB40  
CB42  
CB44  
CB46  
CB48  
CB50  
CB52  
CB54  
CB56  
CB6  
VTTD  
PWR  
VTTD  
PWR  
VSS  
VCC  
PWR  
VSS  
GND  
VSS  
GND  
VSS  
GND  
VCC  
PWR  
VSS  
GND  
DDR0_DQ[13]  
VSS  
SSTL  
GND  
I/O  
ERROR_N[1]  
VSS  
ODCMOS  
GND  
O
VSS  
GND  
VSS  
GND  
VSS  
GND  
CB8  
VSS  
GND  
VSS  
GND  
CC11  
CC13  
CC15  
CC17  
CC19  
DDR0_DQS_DN[12]  
VSS  
SSTL  
GND  
I/O  
VSS  
GND  
VSS  
GND  
DDR0_ECC[1]  
DDR0_DQS_DP[08]  
DDR01_RCOMP[1]  
SSTL  
SSTL  
Analog  
I/O  
I/O  
I
TDO  
ODCMOS  
O
RSVD  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
193  
Processor Land Listing  
Table 8-2.  
Land Number (Sheet 23 of 49)  
Table 8-2.  
Land Number (Sheet 24 of 49)  
Land No.  
Land Name  
Buffer Type  
Direction  
Land No.  
Land Name  
Buffer Type  
Direction  
CC21  
CC23  
CC25  
CC27  
CC29  
CC3  
DDR0_PAR_ERR_N  
DDR0_CS_N[2]  
DDR0_CS_N[7]  
DDR0_ODT[5]  
VSS  
SSTL  
SSTL  
SSTL  
SSTL  
GND  
I
CD48  
CD50  
CD52  
CD54  
CD56  
CD6  
QPI0_DTX_DP[15]  
QPI0_DTX_DP[16]  
QPI0_DTX_DP[17]  
QPI1_DRX_DP[02]  
QPI1_DRX_DP[01]  
VSS  
QPI  
QPI  
O
O
O
I
O
O
O
QPI  
QPI  
QPI  
I
VSS  
GND  
GND  
SSTL  
SSTL  
GND  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
CC31  
CC33  
CC35  
CC37  
CC39  
CC41  
CC43  
CC45  
CC47  
CC49  
CC5  
DDR0_DQ[33]  
DDR0_DQS_DP[04]  
DDR0_DQ[35]  
DDR0_DQ[52]  
DDR0_DQS_DP[15]  
DDR0_DQ[54]  
VSS  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
CD8  
DDR0_DQ[01]  
DDR0_DQS_DP[03]  
VSS  
I/O  
I/O  
CE11  
CE13  
CE15  
CE17  
CE19  
CE21  
CE23  
CE25  
CE27  
CE29  
CE3  
DDR0_ECC[0]  
DDR0_DQS_DN[08]  
DDR0_CKE[5]  
DDR0_CLK_DN[2]  
DDR0_CLK_DN[1]  
DDR0_ODT[0]  
DDR0_ODT[1]  
DDR0_RAS_N  
DDR0_DQS_DN[01]  
DDR0_DQ[32]  
DDR0_DQS_DN[04]  
DDR0_DQ[34]  
DDR0_DQ[53]  
DDR0_DQS_DN[15]  
DDR0_DQ[50]  
RSVD  
I/O  
I/O  
O
O
VTTA  
PWR  
O
VSS  
GND  
O
VSS  
GND  
O
DDR0_DQS_DP[10]  
CAT_ERR_N  
QPI_RBIAS_SENSE  
QPI1_DRX_DP[00]  
DDR0_DQ[00]  
VSS  
SSTL  
ODCMOS  
Analog  
QPI  
I/O  
I/O  
I
O
CC51  
CC53  
CC55  
CC7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
CE31  
CE33  
CE35  
CE37  
CE39  
CE41  
CE43  
CE45  
CE47  
CE49  
CE5  
I
SSTL  
GND  
I/O  
CC9  
CD10  
CD12  
CD14  
CD16  
CD18  
CD20  
CD22  
CD24  
CD26  
CD28  
CD30  
CD32  
CD34  
CD36  
CD38  
CD4  
DDR0_DQS_DN[03]  
DDR0_DQ[27]  
DDR0_ECC[5]  
DDR0_DQS_DP[17]  
VSS  
SSTL  
SSTL  
SSTL  
SSTL  
GND  
I/O  
I/O  
I/O  
I/O  
QPI0_CLKTX_DP  
QPI0_DTX_DP[14]  
QPI0_DTX_DP[19]  
VSS  
QPI  
QPI  
O
O
O
VCCD_01  
PWR  
QPI  
VCCD_01  
PWR  
GND  
QPI  
VCCD_01  
PWR  
CE51  
CE53  
CE55  
CE7  
QPI0_DTX_DP[18]  
QPI_RBIAS  
O
I/O  
I
VCCD_01  
PWR  
Analog  
QPI  
VCCD_01  
PWR  
QPI1_DRX_DN[00]  
DDR0_DQS_DP[09]  
VSS  
DDR0_DQ[36]  
DDR0_DQS_DP[13]  
DDR0_DQ[38]  
VSS  
SSTL  
SSTL  
SSTL  
GND  
I/O  
I/O  
I/O  
SSTL  
GND  
SSTL  
GND  
GND  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
I/O  
CE9  
CF10  
CF12  
CF14  
CF16  
CF18  
CF20  
CF22  
CF24  
DDR0_DQ[31]  
VSS  
I/O  
DDR0_DQ[49]  
DDR0_DQS_DN[10]  
DDR0_DQS_DP[06]  
DDR0_DQ[51]  
RSVD  
SSTL  
SSTL  
SSTL  
SSTL  
I/O  
I/O  
I/O  
I/O  
VSS  
DDR0_DQS_DN[17]  
DDR0_ECC[3]  
DDR0_CKE[4]  
DDR0_CLK_DN[3]  
DDR0_CLK_DN[0]  
I/O  
I/O  
O
CD40  
CD42  
CD44  
CD46  
O
QPI0_DTX_DP[10]  
QPI  
O
O
194  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
Processor Land Listing  
Table 8-2.  
Land Number (Sheet 25 of 49)  
Table 8-2.  
Land Number (Sheet 26 of 49)  
Land No.  
Land Name  
Buffer Type  
Direction  
Land No.  
Land Name  
Buffer Type  
Direction  
CF26  
CF28  
CF30  
CF32  
CF34  
CF36  
CF38  
CF4  
DDR0_CS_N[5]  
DDR0_ODT[3]  
VSS  
SSTL  
SSTL  
GND  
GND  
GND  
GND  
GND  
SSTL  
GND  
GND  
O
O
CG53  
CG55  
CG7  
VSS  
VTTA  
GND  
PWR  
SSTL  
GND  
SSTL  
GND  
SSTL  
GND  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
GND  
SSTL  
SSTL  
SSTL  
SSTL  
GND  
GND  
GND  
GND  
GND  
GND  
ODCMOS  
GND  
SSTL  
GND  
SSTL  
SSTL  
GND  
PWR  
PWR  
PWR  
PWR  
PWR  
GND  
GND  
DDR0_DQS_DN[00]  
VSS  
I/O  
I/O  
I/O  
VSS  
CG9  
VSS  
CH10  
CH12  
CH14  
CH16  
CH18  
CH20  
CH22  
CH24  
CH26  
CH28  
CH30  
CH32  
CH34  
CH36  
CH38  
CH4  
DDR0_DQ[30]  
VSS  
VSS  
VSS  
DDR0_DQS_DN[02]  
VSS  
DDR0_DQS_DP[01]  
VSS  
I/O  
CF40  
CF42  
CF44  
CF46  
CF48  
CF50  
CF52  
CF54  
CF56  
CF6  
DDR0_ECC[2]  
DDR0_CKE[2]  
DDR0_CLK_DP[3]  
DDR0_CLK_DP[0]  
DDR0_CS_N[1]  
DDR0_ODT[2]  
DDR0_DQ[45]  
DDR0_DQS_DN[14]  
DDR0_DQ[47]  
VSS  
I/O  
O
VSS  
RSVD  
O
QPI0_DTX_DN[10]  
QPI0_DTX_DN[15]  
QPI0_DTX_DN[16]  
QPI0_DTX_DN[17]  
QPI1_DRX_DN[02]  
QPI1_DRX_DN[01]  
VSS  
QPI  
QPI  
O
O
O
O
I
O
O
QPI  
O
QPI  
I/O  
I/O  
I/O  
QPI  
QPI  
I
GND  
SSTL  
CF8  
DDR0_DQS_DN[09]  
RSVD  
I/O  
I/O  
DDR0_DQ[56]  
DDR0_DQ[10]  
DDR0_DQS_DN[07]  
DDR0_DQ[58]  
VSS  
I/O  
I/O  
I/O  
I/O  
CG11  
CG13  
CG15  
CG17  
CG19  
CG21  
CG23  
CG25  
CG27  
CG29  
CG3  
DDR0_DQ[20]  
VSS  
SSTL  
GND  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
QPI  
CH40  
CH42  
CH44  
CH46  
CH48  
CH50  
CH52  
CH54  
CH56  
CH6  
DDR0_ECC[6]  
DDR0_MA[14]  
DDR0_CLK_DP[2]  
DDR0_CLK_DP[1]  
DDR0_MA[02]  
DDR0_CS_N[4]  
DDR0_MA[13]  
DDR0_DQ[14]  
VSS  
I/O  
O
VSS  
O
VSS  
O
VSS  
O
VSS  
O
VSS  
O
EAR_N  
I/O  
I/O  
I/O  
VSS  
CG31  
CG33  
CG35  
CG37  
CG39  
CG41  
CG43  
CG45  
CG47  
CG49  
CG5  
CH8  
DDR0_DQS_DP[00]  
VSS  
VSS  
CJ11  
CJ13  
CJ15  
CJ17  
CJ19  
CJ21  
CJ23  
CJ25  
CJ27  
CJ29  
CJ3  
VSS  
DDR0_DQS_DP[11]  
DDR0_DQ[22]  
VSS  
I/O  
I/O  
VSS  
VSS  
VSS  
VCCD_01  
VSS  
VCCD_01  
QPI0_CLKTX_DN  
QPI0_DTX_DN[14]  
QPI0_DTX_DN[19]  
DDR0_DQ[15]  
QPI0_DTX_DN[18]  
O
O
VCCD_01  
QPI  
VCCD_01  
QPI  
O
VCCD_01  
SSTL  
QPI  
I/O  
O
VSS  
CG51  
VSS  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
195  
Processor Land Listing  
Table 8-2.  
Land Number (Sheet 27 of 49)  
Table 8-2.  
Land Number (Sheet 28 of 49)  
Land No.  
Land Name  
Buffer Type  
Direction  
Land No.  
Land Name  
Buffer Type  
Direction  
CJ31  
CJ33  
CJ35  
CJ37  
CJ39  
CJ41  
CJ43  
CJ45  
CJ47  
CJ49  
CJ5  
DDR0_DQ[41]  
DDR0_DQS_DP[05]  
DDR0_DQ[43]  
DDR0_DQ[60]  
DDR0_DQS_DP[16]  
DDR0_DQ[62]  
VSS  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
GND  
GND  
GND  
PWR  
SSTL  
GND  
QPI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
CK8  
CL11  
CL13  
CL15  
CL17  
CL19  
CL21  
CL23  
CL25  
CL27  
CL29  
CL3  
DDR0_DQ[02]  
DDR0_DQ[21]  
DDR0_DQS_DN[11]  
DDR0_DQ[23]  
VSS  
SSTL  
SSTL  
SSTL  
SSTL  
GND  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
GND  
QPI  
I/O  
I/O  
I/O  
I/O  
DDR0_CKE[0]  
DDR0_MA[11]  
DDR0_MA[05]  
DDR0_MA[00]  
DDR0_CS_N[8]  
DDR0_CAS_N  
DDR1_DQ[05]  
DDR0_DQ[40]  
DDR0_DQS_DN[05]  
DDR0_DQ[42]  
DDR0_DQ[61]  
DDR0_DQS_DN[16]  
DDR0_DQ[63]  
VSS  
O
O
VSS  
O
VSS  
O
VTTA  
O
DDR0_DQ[11]  
VSS  
I/O  
O
CJ51  
CJ53  
CJ55  
CJ7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
QPI1_DRX_DP[09]  
QPI1_DRX_DP[03]  
DDR0_DQ[06]  
VSS  
I
I
CL31  
CL33  
CL35  
CL37  
CL39  
CL41  
CL43  
CL45  
CL47  
CL49  
CL5  
QPI  
SSTL  
GND  
GND  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
GND  
SSTL  
GND  
SSTL  
SSTL  
CMOS  
QPI  
I/O  
CJ9  
CK10  
CK12  
CK14  
CK16  
CK18  
CK20  
CK22  
CK24  
CK26  
CK28  
CK30  
CK32  
CK34  
CK36  
CK38  
CK4  
VSS  
DDR0_DQ[16]  
DDR0_DQS_DP[02]  
DDR0_DQ[18]  
DDR0_ECC[7]  
DDR0_MA[12]  
DDR0_MA[08]  
DDR0_MA[03]  
DDR0_MA[10]  
DDR0_CS_N[9]  
DDR0_DQ[44]  
DDR0_DQS_DP[14]  
DDR0_DQ[46]  
VSS  
I/O  
I/O  
I/O  
I/O  
O
QPI1_DRX_DP[19]  
QPI1_DRX_DP[17]  
QPI1_DRX_DN[15]  
VSS  
I
I
I
QPI  
QPI  
O
GND  
QPI  
O
CL51  
CL53  
CL55  
CL7  
QPI1_DRX_DN[13]  
QPI1_DRX_DN[09]  
QPI1_DRX_DN[03]  
DDR0_DQ[07]  
DDR0_DQ[03]  
VSS  
I
I
O
QPI  
O
QPI  
I
I/O  
I/O  
I/O  
SSTL  
SSTL  
GND  
SSTL  
GND  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
GND  
GND  
GND  
GND  
I/O  
I/O  
CL9  
CM10  
CM12  
CM14  
CM16  
CM18  
CM20  
CM22  
CM24  
CM26  
CM28  
CM30  
CM32  
CM34  
CM36  
DDR0_DQ[17]  
VSS  
I/O  
DDR0_DQ[57]  
VSS  
I/O  
DDR0_DQ[19]  
DDR0_CKE[1]  
DDR0_BA[2]  
DDR0_MA[07]  
DDR0_MA[04]  
DDR0_MA_PAR  
DDR0_BA[0]  
VSS  
I/O  
O
CK40  
CK42  
CK44  
CK46  
CK48  
CK50  
CK52  
CK54  
CK56  
CK6  
DDR0_DQS_DP[07]  
DDR0_DQ[59]  
RESET_N  
I/O  
I/O  
O
I
I
I
I
I
I
I
O
QPI1_DRX_DP[18]  
QPI1_DRX_DP[16]  
QPI1_DRX_DN[14]  
QPI1_DRX_DP[10]  
QPI1_DRX_DP[05]  
QPI1_DRX_DP[04]  
VSS  
O
QPI  
O
QPI  
O
QPI  
QPI  
VSS  
QPI  
VSS  
GND  
VSS  
196  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
Processor Land Listing  
Table 8-2.  
Land Number (Sheet 29 of 49)  
Table 8-2.  
Land Number (Sheet 30 of 49)  
Land No.  
Land Name  
Buffer Type  
Direction  
Land No.  
Land Name  
Buffer Type  
Direction  
CM38  
CM4  
VSS  
DDR1_DQ[04]  
VSS  
GND  
SSTL  
GND  
GND  
CMOS  
QPI  
CP12  
CP14  
CP16  
CP18  
CP2  
VSS  
DDR1_DQS_DN[12]  
VSS  
GND  
SSTL  
GND  
SSTL  
SSTL  
PWR  
PWR  
PWR  
PWR  
PWR  
SSTL  
SSTL  
SSTL  
GND  
SSTL  
SSTL  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
I/O  
I/O  
CM40  
CM42  
CM44  
CM46  
CM48  
CM50  
CM52  
CM54  
CM56  
CM6  
VSS  
DDR0_CKE[3]  
DDR1_DQ[01]  
VCCD_01  
O
BCLK0_DN  
QPI1_DRX_DN[18]  
QPI1_DRX_DN[16]  
QPI1_DRX_DP[14]  
QPI1_DRX_DN[10]  
QPI1_DRX_DN[05]  
QPI1_DRX_DN[04]  
VSS  
I
I
I
I
I
I
I
I/O  
CP20  
CP22  
CP24  
CP26  
CP28  
CP30  
CP32  
CP34  
CP36  
CP38  
CP4  
QPI  
VCCD_01  
QPI  
VCCD_01  
QPI  
VCCD_01  
QPI  
VCCD_01  
QPI  
DDR1_DQ[33]  
DDR1_DQS_DP[04]  
DDR1_DQ[35]  
VSS  
I/O  
I/O  
I/O  
GND  
GND  
GND  
GND  
GND  
GND  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
GND  
GND  
GND  
GND  
GND  
GND  
DC  
CM8  
VSS  
CN11  
CN13  
CN15  
CN17  
CN19  
CN21  
CN23  
CN25  
CN27  
CN29  
CN3  
VSS  
VSS  
DDR1_DQS_DP[15]  
DDR1_DQ[00]  
VSS  
I/O  
I/O  
VSS  
VSS  
CP40  
CP42  
CP44  
CP46  
CP48  
CP50  
CP52  
CP54  
CP56  
CP58  
CP6  
DDR0_MA[15]  
DDR0_MA[09]  
DDR0_MA[06]  
DDR0_CS_N[0]  
DDR0_BA[1]  
DDR0_WE_N  
VSS  
O
O
O
O
O
O
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
RSVD  
CN31  
CN33  
CN35  
CN37  
CN39  
VSS  
VSS  
GND  
QPI  
VSS  
QPI1_DRX_DP[06]  
DDR1_DQ[20]  
DDR1_DQS_DP[11]  
DDR1_DQS_DN[09]  
VSS  
I
VSS  
SSTL  
SSTL  
SSTL  
GND  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
I/O  
I/O  
I/O  
VSS  
CP8  
VSS  
CR1  
CN41  
CN43  
CN45  
CN47  
CN49  
CN5  
DDR_VREFDQTX_C01  
BCLK0_DP  
QPI1_DRX_DN[19]  
QPI1_DRX_DN[17]  
QPI1_DRX_DP[15]  
VSS  
O
I
CR11  
CR13  
CR15  
CR17  
CR19  
CR21  
CR23  
CR25  
CR27  
CR29  
CR3  
CMOS  
QPI  
DDR1_DQ[24]  
DDR1_DQS_DN[03]  
DDR1_DQ[26]  
DDR1_CKE[4]  
DDR1_CS_N[8]  
DDR1_CS_N[2]  
DDR0_MA[01]  
DDR1_CS_N[3]  
DDR1_DQ[37]  
DDR1_DQS_DP[00]  
DDR1_DQS_DN[13]  
DDR1_DQ[39]  
I/O  
I/O  
I/O  
O
I
QPI  
I
QPI  
I
GND  
QPI  
O
CN51  
CN53  
CN55  
CN57  
CN7  
QPI1_DRX_DP[13]  
VSS  
I
O
GND  
GND  
GND  
GND  
GND  
SSTL  
O
VSS  
O
VSS  
I/O  
I/O  
I/O  
I/O  
VSS  
CN9  
VSS  
CR31  
CR33  
CP10  
DDR1_DQ[19]  
I/O  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
197  
Processor Land Listing  
Table 8-2.  
Land Number (Sheet 31 of 49)  
Table 8-2.  
Land Number (Sheet 32 of 49)  
Land No.  
Land Name  
Buffer Type  
Direction  
Land No.  
Land Name  
Buffer Type  
Direction  
CR35  
CR37  
CR39  
CR41  
CR43  
CR45  
CR47  
CR49  
CR5  
VSS  
GND  
SSTL  
SSTL  
SSTL  
CMOS  
PWR  
GND  
GND  
GND  
PWR  
QPI  
CT6  
DDR1_DQ[21]  
DDR1_DQS_DN[11]  
VSS  
SSTL  
SSTL  
GND  
GND  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
GND  
SSTL  
SSTL  
GND  
SSTL  
SSTL  
SSTL  
QPI  
I/O  
I/O  
DDR1_DQ[48]  
DDR1_DQS_DN[06]  
DDR1_DQ[50]  
SVIDALERT_N  
VTTA  
I/O  
I/O  
I/O  
I
CT8  
CU1  
CU11  
CU13  
CU15  
CU17  
CU19  
CU21  
CU23  
CU25  
CU27  
CU29  
CU3  
VSS  
DDR1_DQ[25]  
DDR1_DQS_DP[03]  
DDR1_DQ[27]  
DDR1_CKE[1]  
DDR1_PAR_ERR_N  
DDR1_CS_N[1]  
DDR1_CS_N[4]  
DDR1_ODT[4]  
DDR1_DQ[36]  
VSS  
I/O  
I/O  
I/O  
O
VSS  
VSS  
VSS  
I
CR51  
CR53  
CR55  
CR57  
CR7  
VTTA  
O
QPI1_DRX_DN[11]  
QPI1_CLKRX_DP  
QPI1_DRX_DP[07]  
DDR1_DQ[16]  
VSS  
I
I
O
QPI  
O
QPI  
I
I/O  
SSTL  
GND  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
GND  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
GND  
QPI  
I/O  
CR9  
CU31  
CU33  
CU35  
CU37  
CU39  
CU41  
CU43  
CU45  
CU47  
CU49  
CU5  
DDR1_DQS_DP[13]  
DDR1_DQ[38]  
VSS  
I/O  
I/O  
CT10  
CT12  
CT14  
CT16  
CT18  
CT2  
DDR1_DQ[18]  
DDR1_DQ[28]  
DDR1_DQS_DP[12]  
DDR1_DQ[30]  
DDR1_CKE[5]  
DDR1_DQS_DP[09]  
DDR1_CKE[0]  
DDR1_ODT[0]  
DDR1_CS_N[5]  
DDR1_CS_N[7]  
VSS  
I/O  
I/O  
I/O  
I/O  
O
DDR1_DQ[49]  
DDR1_DQS_DP[06]  
DDR1_DQ[51]  
QPI1_DTX_DP[17]  
QPI1_DTX_DP[11]  
QPI1_DTX_DP[05]  
QPI1_DTX_DP[02]  
VSS  
I/O  
I/O  
I/O  
O
I/O  
O
CT20  
CT22  
CT24  
CT26  
CT28  
CT30  
CT32  
CT34  
CT36  
CT38  
CT4  
QPI  
O
O
QPI  
O
O
QPI  
O
O
GND  
QPI  
CU51  
CU53  
CU55  
CU57  
CU7  
QPI_VREF_CAP  
QPI1_DRX_DP[11]  
QPI1_CLKRX_DN  
QPI1_DRX_DN[07]  
DDR1_DQ[17]  
DDR1_DQS_DP[02]  
DDR1_DQ[23]  
DDR1_DQ[29]  
VSS  
I/O  
I
DDR1_DQ[32]  
DDR1_DQS_DN[04]  
DDR1_DQ[34]  
DDR1_DQ[52]  
DDR1_DQS_DN[15]  
DDR1_DQS_DN[00]  
DDR1_DQ[54]  
VSS  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
QPI  
QPI  
I
QPI  
I
SSTL  
SSTL  
SSTL  
SSTL  
GND  
SSTL  
GND  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
I/O  
I/O  
I/O  
I/O  
CU9  
CV10  
CV12  
CV14  
CV16  
CV18  
CV2  
CT40  
CT42  
CT44  
CT46  
CT48  
CT50  
CT52  
CT54  
CT56  
CT58  
QPI1_DTX_DP[14]  
QPI1_DTX_DP[08]  
QPI1_DTX_DP[00]  
QPI1_DTX_DP[01]  
QPI1_DRX_DN[12]  
TRST_N  
O
O
O
O
I
DDR1_DQ[31]  
VSS  
I/O  
QPI  
QPI  
DDR1_DQ[06]  
DDR1_CLK_DN[0]  
DDR1_CLK_DN[1]  
DDR1_CLK_DP[2]  
DDR1_ODT[3]  
DDR1_WE_N  
I/O  
O
QPI  
CV20  
CV22  
CV24  
CV26  
CV28  
QPI  
O
CMOS  
QPI  
I
O
QPI1_DRX_DP[08]  
QPI1_DRX_DN[06]  
I
O
QPI  
I
O
198  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
Processor Land Listing  
Table 8-2.  
Land Number (Sheet 33 of 49)  
Table 8-2.  
Land Number (Sheet 34 of 49)  
Land No.  
Land Name  
Buffer Type  
Direction  
Land No.  
Land Name  
Buffer Type  
Direction  
CV30  
CV32  
CV34  
CV36  
CV38  
CV4  
VSS  
VSS  
GND  
GND  
GND  
SSTL  
GND  
SSTL  
SSTL  
GND  
QPI  
CW53  
CW55  
CW57  
CW7  
CW9  
CY10  
CY12  
CY14  
CY16  
CY18  
CY2  
VSS  
VSS  
GND  
GND  
VSS  
VSS  
GND  
DDR1_DQ[53]  
VSS  
I/O  
VSS  
GND  
DDR1_DQ[22]  
VSS  
SSTL  
GND  
I/O  
DDR1_DQ[02]  
DDR1_DQ[55]  
VSS  
I/O  
I/O  
CV40  
CV42  
CV44  
CV46  
CV48  
CV50  
CV52  
CV54  
CV56  
CV58  
CV6  
VSS  
GND  
DDR1_DQS_DP[17]  
VSS  
SSTL  
GND  
I/O  
O
QPI1_DTX_DN[14]  
QPI1_DTX_DN[08]  
QPI1_DTX_DN[00]  
QPI1_DTX_DN[01]  
QPI1_DRX_DP[12]  
VSS  
O
O
O
O
I
QPI  
DDR1_CKE[2]  
VSS  
SSTL  
GND  
QPI  
QPI  
CY20  
CY22  
CY24  
CY26  
CY28  
CY30  
CY32  
CY34  
CY36  
CY38  
CY4  
DDR1_CLK_DP[0]  
DDR1_CLK_DP[1]  
DDR1_CLK_DN[2]  
DDR1_ODT[2]  
DDR1_ODT[5]  
DDR1_CAS_N  
DDR1_DQ[45]  
DDR1_DQS_DN[05]  
VSS  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
GND  
O
O
QPI  
GND  
QPI  
O
QPI1_DRX_DN[08]  
VSS  
I
O
GND  
GND  
SSTL  
O
VSS  
O
CV8  
DDR1_DQS_DN[02]  
TEST1  
I/O  
O
I/O  
I/O  
CW1  
CW11  
CW13  
CW15  
VSS  
GND  
GND  
GND  
CMOS1.5v  
PWR  
PWR  
PWR  
PWR  
PWR  
GND  
SSTL  
GND  
GND  
GND  
GND  
GND  
ODCMOS  
QPI  
VSS  
DDR1_DQS_DN[16]  
DDR1_DQ[03]  
VSS  
SSTL  
SSTL  
GND  
I/O  
I/O  
VSS  
CW17  
CW19  
CW21  
CW23  
CW25  
CW27  
CW29  
CW3  
DRAM_PWR_OK_C01  
VCCD_01  
VCCD_01  
VCCD_01  
VCCD_01  
VCCD_01  
VSS  
I
CY40  
CY42  
CY44  
CY46  
CY48  
CY50  
CY52  
CY54  
CY56  
CY58  
CY6  
DDR_SCL_C01  
VSS  
ODCMOS  
GND  
I/O  
RSVD  
RSVD  
VSS  
GND  
CMOS  
QPI  
SOCKET_ID[0]  
QPI1_CLKTX_DN  
RSVD  
I
DDR1_DQ[07]  
VSS  
I/O  
O
CW31  
CW33  
CW35  
CW37  
CW39  
CW41  
CW43  
CW45  
CW47  
CW49  
CW5  
VSS  
RSVD  
VSS  
DDR1_DQ[12]  
VSS  
SSTL  
GND  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
GND  
SSTL  
SSTL  
I/O  
VSS  
CY8  
VSS  
D10  
DDR3_DQS_DP[04]  
DDR3_DQ[32]  
DDR3_ODT[4]  
DDR3_CS_N[8]  
DDR3_MA[10]  
VSS  
I/O  
I/O  
O
DDR_SDA_C01  
QPI1_DTX_DN[17]  
QPI1_DTX_DN[11]  
QPI1_DTX_DN[05]  
QPI1_DTX_DN[02]  
VSS  
I/O  
O
D12  
D14  
QPI  
O
D16  
O
QPI  
O
D18  
O
QPI  
O
D2  
GND  
GND  
D20  
DDR3_MA[04]  
DDR3_MA[08]  
O
O
CW51  
VSS  
D22  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
199  
Processor Land Listing  
Table 8-2.  
Land Number (Sheet 35 of 49)  
Table 8-2.  
Land Number (Sheet 36 of 49)  
Land No.  
Land Name  
Buffer Type  
Direction  
Land No.  
Land Name  
Buffer Type  
Direction  
D24  
D26  
DDR3_MA[14]  
VSS  
SSTL  
GND  
SSTL  
SSTL  
GND  
SSTL  
O
DA55  
DA57  
DA7  
SAFE_MODE_BOOT  
RSVD  
CMOS  
I
D32  
DDR3_DQ[18]  
DDR3_DQS_DP[11]  
VSS  
I/O  
I/O  
DDR1_DQ[08]  
VSS  
SSTL  
GND  
SSTL  
GND  
SSTL  
SSTL  
SSTL  
GND  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
GND  
SSTL  
GND  
SSTL  
I/O  
I/O  
D34  
DA9  
D36  
DB10  
DB12  
DB14  
DB16  
DB18  
DB2  
DDR1_DQ[14]  
VSS  
D38  
DDR3_DQS_DP[00]  
TEST3  
I/O  
O
D4  
DDR1_DQS_DN[17]  
DDR1_ECC[3]  
DDR1_MA[14]  
VSS  
I/O  
I/O  
O
D40  
DDR3_DQ[05]  
DMI_TX_DN[0]  
DMI_TX_DN[2]  
RSVD  
SSTL  
PCIEX  
PCIEX  
I/O  
O
D42  
D44  
O
D46  
DB20  
DB22  
DB24  
DB26  
DB28  
DB30  
DB32  
DB34  
DB36  
DB38  
DB4  
DDR1_MA[08]  
DDR1_MA[04]  
DDR1_CS_N[0]  
DDR1_BA[0]  
DDR1_RAS_N  
DDR1_MA[13]  
VSS  
O
O
O
O
O
O
D48  
DMI_RX_DN[1]  
DMI_RX_DN[3]  
PE1A_RX_DP[1]  
PE1A_RX_DP[2]  
RSVD  
PCIEX  
PCIEX  
I
I
I
I
D50  
D52  
PCIEX3  
PCIEX3  
D54  
D56  
D6  
DDR3_DQ[53]  
VSS  
SSTL  
GND  
GND  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
GND  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
GND  
GND  
GND  
GND  
PWR  
GND  
GND  
QPI  
I/O  
D8  
DDR1_DQS_DP[05]  
VSS  
I/O  
DA11  
DA13  
DA15  
DA17  
DA19  
DA21  
DA23  
DA25  
DA27  
DA29  
DA3  
VSS  
DDR1_ECC[4]  
DDR1_ECC[6]  
DDR1_CKE[3]  
DDR1_MA[09]  
DDR1_CLK_DN[3]  
DDR1_MA[03]  
DDR1_ODT[1]  
DDR1_CS_N[9]  
DDR1_CS_N[6]  
VSS  
I/O  
I/O  
O
DDR1_DQS_DP[16]  
TEST0  
I/O  
O
DB40  
DB42  
DB44  
DB46  
DB48  
DB50  
DB52  
DB54  
DB56  
DB58  
DB6  
DDR1_DQ[59]  
QPI1_DTX_DP[19]  
QPI1_DTX_DP[16]  
QPI1_DTX_DP[13]  
QPI1_DTX_DP[10]  
QPI1_DTX_DN[07]  
QPI1_DTX_DN[04]  
QPI1_CLKTX_DP  
RSVD  
SSTL  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
QPI  
I/O  
O
O
O
O
O
O
O
O
O
O
O
O
O
DA31  
DA33  
DA35  
DA37  
DA39  
DA41  
DA43  
DA45  
DA47  
DA49  
DA5  
DDR1_DQ[44]  
DDR1_DQ[40]  
DDR1_DQ[43]  
DDR1_DQ[60]  
DDR1_DQ[62]  
VSS  
I/O  
I/O  
I/O  
I/O  
I/O  
VSS  
GND  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
GND  
DDR1_DQ[13]  
DDR1_DQS_DN[10]  
DDR1_DQ[10]  
DDR1_ECC[5]  
DDR1_DQS_DP[08]  
DDR1_MA[15]  
DDR1_MA[12]  
DDR1_CLK_DP[3]  
DDR1_MA[00]  
DDR1_BA[1]  
VSS  
I/O  
I/O  
I/O  
I/O  
I/O  
O
DB8  
DC11  
DC13  
DC15  
DC17  
DC19  
DC21  
DC23  
DC25  
DC3  
VSS  
VSS  
VSS  
O
VTTA  
O
VSS  
O
DA51  
DA53  
VSS  
O
QPI1_DTX_DP[03]  
O
200  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
Processor Land Listing  
Table 8-2.  
Land Number (Sheet 37 of 49)  
Table 8-2.  
Land Number (Sheet 38 of 49)  
Land No.  
Land Name  
Buffer Type  
Direction  
Land No.  
Land Name  
Buffer Type  
Direction  
DC33  
DC35  
DC37  
DC39  
DC41  
DC43  
DC45  
DC47  
DC49  
DC5  
DDR1_DQS_DP[14]  
DDR1_DQ[42]  
DDR1_DQ[61]  
DDR1_DQS_DP[07]  
VSS  
SSTL  
SSTL  
SSTL  
SSTL  
GND  
QPI  
I/O  
I/O  
I/O  
I/O  
DE19  
DE21  
DE23  
DE25  
DE33  
DE35  
DE37  
DE39  
DE41  
DE43  
DE45  
DE47  
DE49  
DE51  
DE53  
DE55  
DE7  
DDR1_MA[11]  
DDR1_MA[06]  
DDR1_MA[01]  
DDR1_MA_PAR  
DDR1_DQS_DN[14]  
DDR1_DQ[47]  
DDR1_DQ[56]  
DDR1_DQS_DN[07]  
VSS  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
GND  
QPI  
O
O
O
O
I/O  
I/O  
I/O  
I/O  
QPI1_DTX_DN[18]  
QPI1_DTX_DN[15]  
QPI1_DTX_DN[12]  
QPI1_DTX_DP[09]  
VSS  
O
O
O
O
QPI  
QPI  
QPI  
GND  
QPI  
QPI1_DTX_DP[18]  
QPI1_DTX_DP[15]  
QPI1_DTX_DP[12]  
QPI1_DTX_DN[09]  
QPI1_DTX_DN[06]  
VSS  
O
O
O
O
O
DC51  
DC53  
DC55  
DC7  
QPI1_DTX_DP[06]  
QPI1_DTX_DN[03]  
RSVD  
O
O
QPI  
QPI  
QPI  
QPI  
DDR1_DQ[09]  
DDR1_DQS_DN[01]  
VSS  
SSTL  
SSTL  
GND  
GND  
GND  
SSTL  
PWR  
PWR  
PWR  
PWR  
PWR  
SSTL  
GND  
GND  
GND  
SSTL  
QPI  
I/O  
I/O  
QPI  
DC9  
GND  
DD10  
DD12  
DD14  
DD16  
DD18  
DD20  
DD22  
DD24  
DD26  
DD32  
DD34  
DD36  
DD38  
DD40  
DD42  
DD44  
DD46  
DD48  
DD50  
DD52  
DD54  
DD6  
RSVD  
VSS  
VSS  
GND  
SSTL  
SSTL  
GND  
VSS  
DE9  
DDR1_DQS_DP[01]  
DDR1_DQ[15]  
VSS  
I/O  
I/O  
DDR1_ECC[2]  
VCCD_01  
I/O  
DF10  
DF12  
DF14  
DF16  
DF18  
DF20  
DF22  
DF24  
DF26  
DF34  
DF36  
DF38  
DF40  
DF42  
DF44  
DF46  
DF48  
DF50  
DF52  
DF8  
VCCD_01  
DDR1_ECC[1]  
DDR1_ECC[7]  
DDR1_BA[2]  
DDR1_MA[07]  
DDR1_MA[05]  
DDR1_MA[02]  
DDR1_MA[10]  
DDR1_DQ[46]  
VSS  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
GND  
I/O  
I/O  
O
VCCD_01  
VCCD_01  
VCCD_01  
O
DDR1_DQ[41]  
VSS  
I/O  
O
O
VSS  
O
VSS  
I/O  
DDR1_DQ[58]  
QPI1_DTX_DN[19]  
QPI1_DTX_DN[16]  
QPI1_DTX_DN[13]  
QPI1_DTX_DN[10]  
QPI1_DTX_DP[07]  
QPI1_DTX_DP[04]  
RSVD  
I/O  
O
DDR1_DQ[57]  
DDR1_DQ[63]  
VSS  
SSTL  
SSTL  
GND  
I/O  
I/O  
QPI  
O
QPI  
O
QPI  
O
VSS  
GND  
QPI  
O
VSS  
GND  
QPI  
O
VSS  
GND  
VSS  
GND  
VSS  
GND  
SSTL  
SSTL  
SSTL  
SSTL  
GND  
VSS  
GND  
DD8  
DDR1_DQS_DP[10]  
DDR1_DQ[11]  
DDR1_ECC[0]  
DDR1_DQS_DN[08]  
VSS  
I/O  
I/O  
I/O  
I/O  
VSS  
GND  
DE11  
DE13  
DE15  
DE17  
E1  
VSS  
GND  
E11  
DDR3_DQS_DP[13]  
MEM_HOT_C23_N  
DDR3_CS_N[7]  
SSTL  
ODCMOS  
SSTL  
I/O  
I/O  
O
E13  
E15  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
201  
Processor Land Listing  
Table 8-2.  
Land Number (Sheet 39 of 49)  
Table 8-2.  
Land Number (Sheet 40 of 49)  
Land No.  
Land Name  
Buffer Type  
Direction  
Land No.  
Land Name  
Buffer Type  
Direction  
E17  
E19  
E21  
E23  
E25  
E27  
E29  
E3  
DDR3_ODT[2]  
DDR3_BA[1]  
DDR3_MA[01]  
DDR3_MA[12]  
DDR3_ECC[2]  
DDR3_DQS_DP[08]  
VSS  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
GND  
O
O
F40  
F42  
F44  
F46  
F48  
F50  
F52  
F54  
F56  
F58  
F6  
DDR3_DQ[04]  
SSTL  
GND  
GND  
I/O  
VSS  
O
VSS  
O
RSVD  
VSS  
I/O  
I/O  
GND  
GND  
VSS  
PE1A_RX_DN[1]  
PE1A_RX_DN[2]  
RSVD  
PCIEX3  
PCIEX3  
I
I
VSS  
GND  
E31  
E33  
E35  
E37  
E39  
E41  
E43  
E45  
E47  
E49  
E5  
VSS  
GND  
DDR3_DQS_DP[02]  
DDR3_DQ[20]  
DDR3_DQ[03]  
DDR3_DQS_DP[09]  
VSS  
SSTL  
SSTL  
SSTL  
SSTL  
GND  
I/O  
I/O  
I/O  
I/O  
RSVD  
DDR3_DQ[49]  
VSS  
SSTL  
GND  
GND  
SSTL  
PWR  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
GND  
SSTL  
SSTL  
SSTL  
GND  
SSTL  
GND  
GND  
SSTL  
GND  
PWR  
GND  
GND  
PWR  
GND  
GND  
GND  
PCIEX3  
GND  
SSTL  
GND  
GND  
I/O  
I/O  
F8  
G1  
VSS  
G11  
G13  
G15  
G17  
G19  
G21  
G23  
G25  
G27  
G29  
G3  
DDR3_DQS_DN[13]  
VCCD_23  
DDR3_CS_N[3]  
DDR3_CS_N[5]  
DDR3_CS_N[0]  
DDR3_PAR_ERR_N  
DDR3_MA[09]  
VSS  
DMI_TX_DN[1]  
DMI_TX_DN[3]  
DMI_RX_DN[0]  
DMI_RX_DN[2]  
VSS  
PCIEX  
PCIEX  
PCIEX  
PCIEX  
GND  
O
O
I
O
O
O
I
I
E51  
E53  
E55  
E57  
E7  
PE1A_RX_DN[0]  
RSVD  
PCIEX3  
I
I
O
PE1A_RX_DP[3]  
RSVD  
PCIEX3  
DDR3_DQS_DN[08]  
DDR3_ECC[0]  
DDR3_DQ[56]  
VSS  
I/O  
I/O  
I/O  
DDR3_DQ[48]  
DDR3_DQ[35]  
DDR3_DQ[38]  
DDR3_DQ[36]  
DDR3_CS_N[2]  
DDR3_CS_N[6]  
DDR3_ODT[1]  
TEST2  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
I/O  
I/O  
I/O  
I/O  
O
E9  
G31  
G33  
G35  
G37  
G39  
G41  
G43  
G45  
G47  
G49  
G5  
F10  
F12  
F14  
F16  
F18  
F2  
DDR3_DQS_DN[02]  
VSS  
I/O  
I/O  
VSS  
O
DDR3_DQS_DN[09]  
VSS  
O
O
VSA  
F20  
F22  
F24  
F26  
F28  
F30  
F32  
F34  
F36  
F38  
F4  
DDR3_MA[02]  
DDR3_MA[06]  
DDR3_MA[15]  
DDR3_ECC[6]  
DDR3_DQS_DP[17]  
DDR3_ECC[4]  
DDR3_DQ[19]  
DDR3_DQ[17]  
VSS  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
GND  
SSTL  
SSTL  
O
VSS  
O
VSS  
O
VSA  
I/O  
I/O  
I/O  
I/O  
I/O  
VSS  
G51  
G53  
G55  
G57  
G7  
VSS  
VSS  
PE1A_RX_DN[3]  
VSS  
I
DDR3_DQS_DP[15]  
VSS  
I/O  
DDR3_DQ[06]  
DDR3_DQ[60]  
I/O  
I/O  
G9  
H10  
VSS  
202  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
Processor Land Listing  
Table 8-2.  
Land Number (Sheet 41 of 49)  
Table 8-2.  
Land Number (Sheet 42 of 49)  
Land No.  
Land Name  
Buffer Type  
Direction  
Land No.  
Land Name  
Buffer Type  
Direction  
H12  
H14  
H16  
H18  
H2  
VSS  
VSS  
GND  
GND  
J35  
J37  
J39  
J41  
J43  
J45  
J47  
J49  
J5  
DDR3_DQ[11]  
DDR3_DQS_DP[01]  
VSS  
SSTL  
SSTL  
I/O  
I/O  
VCCD_23  
PWR  
GND  
VCCD_23  
PWR  
VSS  
GND  
DDR3_DQ[57]  
VCCD_23  
SSTL  
PWR  
I/O  
PE1A_TX_DP[1]  
PE1A_TX_DP[3]  
PE1B_TX_DP[5]  
PE1B_TX_DP[7]  
VSS  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
GND  
O
O
O
O
H20  
H22  
H24  
H26  
H28  
H30  
H32  
H34  
H36  
H38  
H4  
VCCD_23  
PWR  
VCCD_23  
PWR  
DDR3_ECC[7]  
DDR3_DQS_DN[17]  
DDR3_ECC[5]  
VSS  
SSTL  
SSTL  
SSTL  
GND  
I/O  
I/O  
I/O  
J51  
J53  
J55  
J57  
J7  
PE3A_TX_DP[1]  
PE1B_RX_DP[4]  
VSS  
PCIEX3  
PCIEX3  
GND  
O
I
VSS  
GND  
PE1B_RX_DP[6]  
DDR3_DQS_DN[06]  
DDR3_DQ[42]  
DDR3_DQ[46]  
DDR3_DQS_DP[14]  
DDR3_DQ[44]  
DDR3_CS_N[9]  
DDR3_CS_N[4]  
VSS  
PCIEX3  
SSTL  
I
DDR3_DQ[15]  
VSS  
SSTL  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
J9  
SSTL  
DDR3_DQ[61]  
VSS  
SSTL  
GND  
K10  
K12  
K14  
K16  
K18  
K2  
SSTL  
H40  
H42  
H44  
H46  
H48  
H50  
H52  
H54  
H56  
H58  
H6  
SSTL  
PE1A_TX_DP[0]  
PE1A_TX_DP[2]  
PE1B_TX_DP[4]  
PE1B_TX_DP[6]  
PE3A_TX_DP[0]  
VSS  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
GND  
O
O
O
O
O
SSTL  
SSTL  
SSTL  
O
GND  
K20  
K22  
K24  
K26  
K28  
K30  
K32  
K34  
K36  
K38  
K4  
DDR3_CLK_DP[2]  
DDR3_CLK_DN[3]  
DDR3_CKE[0]  
VSS  
SSTL  
O
O
O
SSTL  
VSS  
GND  
SSTL  
RSVD  
GND  
RSVD  
VSS  
GND  
DDR3_DQS_DN[15]  
VSS  
SSTL  
GND  
DC  
I/O  
I
VSS  
GND  
H8  
DDR3_DQ[29]  
VSS  
SSTL  
I/O  
J1  
DDR_VREFDQRX_C23  
VSS  
GND  
J11  
J13  
J15  
J17  
J19  
J21  
J23  
J25  
J27  
J29  
J3  
GND  
SSTL  
DDR3_DQ[14]  
DDR3_DQS_DN[10]  
DDR3_DQS_DN[16]  
DDR3_DQ[13]  
PE1A_TX_DN[0]  
PE1A_TX_DN[2]  
PE1B_TX_DN[4]  
PE1B_TX_DN[6]  
PE3A_TX_DN[0]  
PMSYNC  
SSTL  
I/O  
I/O  
I/O  
I/O  
O
DDR3_DQ[40]  
RSVD  
I/O  
SSTL  
SSTL  
DDR3_ODT[3]  
DDR3_CS_N[1]  
DDR3_CLK_DN[1]  
DDR3_CLK_DN[0]  
DDR3_CKE[2]  
VSS  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
GND  
SSTL  
SSTL  
GND  
GND  
O
O
O
O
O
K40  
K42  
K44  
K46  
K48  
K50  
K52  
K54  
K56  
K58  
SSTL  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
CMOS  
PCIEX3  
PCIEX3  
O
O
O
O
DDR3_ECC[1]  
DDR3_DQS_DP[16]  
VSS  
I/O  
I/O  
I
PE1B_RX_DP[5]  
PE1B_RX_DP[7]  
RSVD  
I
J31  
J33  
I
VSS  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
203  
Processor Land Listing  
Table 8-2.  
Land Number (Sheet 43 of 49)  
Table 8-2.  
Land Number (Sheet 44 of 49)  
Land No.  
Land Name  
Buffer Type  
Direction  
Land No.  
Land Name  
Buffer Type  
Direction  
K6  
K8  
DDR3_DQS_DP[06]  
VSS  
SSTL  
GND  
I/O  
M30  
M32  
M34  
M36  
M38  
M4  
DDR3_DQS_DN[12]  
DDR3_DQ[24]  
VSS  
SSTL  
SSTL  
GND  
GND  
SSTL  
SSTL  
SSTL  
GND  
GND  
GND  
I/O  
I/O  
L1  
DDR3_DQ[62]  
DDR3_DQS_DN[05]  
DDR3_DQ[41]  
SSTL  
I/O  
I/O  
I/O  
I
L11  
L13  
SSTL  
VSS  
SSTL  
DDR3_DQS_DP[10]  
DDR3_DQS_DP[07]  
DDR3_DQ[12]  
VSS  
I/O  
I/O  
I/O  
L15  
L17  
L19  
L21  
L23  
L25  
L27  
L29  
L3  
DRAM_PWR_OK_C23  
DDR2_BA[1]  
CMOS1.5v  
SSTL  
O
M40  
M42  
M44  
M46  
M48  
M50  
M52  
M54  
M56  
M6  
DDR3_ODT[0]  
DDR3_CLK_DP[1]  
DDR3_CLK_DP[0]  
VSS  
SSTL  
O
SSTL  
O
VSS  
SSTL  
O
VSS  
GND  
RSVD  
DDR3_DQ[27]  
VSS  
SSTL  
I/O  
VSS  
GND  
GND  
PCIEX3  
PCIEX3  
SSTL  
GND  
SSTL  
GND  
PWR  
PWR  
PWR  
PWR  
PWR  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
GND  
GND  
GND  
SSTL  
GND  
GND  
PWR  
GND  
GND  
GND  
PWR  
GND  
PCIEX3  
GND  
VSS  
DDR3_DQS_DN[07]  
DDR3_DQ[25]  
DDR3_DQ[28]  
DDR3_DQ[10]  
DDR3_DQS_DN[01]  
DDR3_DQ[09]  
VSS  
SSTL  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PE1B_RX_DN[5]  
PE1B_RX_DN[7]  
DDR3_DQ[55]  
VSS  
I
I
L31  
L33  
L35  
L37  
L39  
L41  
L43  
L45  
L47  
L49  
L5  
SSTL  
SSTL  
I/O  
SSTL  
M8  
SSTL  
N11  
N13  
N15  
N17  
N19  
N21  
N23  
N25  
N27  
N29  
N3  
DDR3_DQS_DP[05]  
VSS  
I/O  
SSTL  
GND  
VCCD_23  
VCCD_23  
VCCD_23  
VCCD_23  
VCCD_23  
DDR3_CKE[3]  
DDR3_DQ[30]  
DDR3_DQS_DP[03]  
DDR3_DQ[58]  
DDR3_DQS_DP[12]  
VSS  
PE1A_TX_DN[1]  
PE1A_TX_DN[3]  
PE1B_TX_DN[5]  
PE1B_TX_DN[7]  
VSS  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
GND  
O
O
O
O
O
L51  
L53  
L55  
L57  
L7  
PE3A_TX_DN[1]  
PE1B_RX_DN[4]  
PE2A_RX_DP[0]  
PE1B_RX_DN[6]  
DDR3_DQ[54]  
DDR3_DQ[43]  
DDR3_DQ[47]  
DDR3_DQS_DN[14]  
DDR3_DQ[45]  
DDR3_ODT[5]  
DDR2_MA_PAR  
DDR3_DQ[63]  
DDR3_CLK_DN[2]  
DDR3_CLK_DP[3]  
DDR3_CKE[1]  
DDR3_DQ[31]  
DDR3_DQ[26]  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
SSTL  
O
I
I/O  
I/O  
I/O  
I/O  
I
I
N31  
N33  
N35  
N37  
N39  
N41  
N43  
N45  
N47  
N49  
N5  
I/O  
I/O  
I/O  
I/O  
I/O  
O
L9  
SSTL  
VSS  
M10  
M12  
M14  
M16  
M18  
M2  
SSTL  
VSS  
SSTL  
DDR3_DQ[08]  
VSS  
I/O  
SSTL  
SSTL  
VSS  
SSTL  
O
VSA  
SSTL  
I/O  
O
VSS  
M20  
M22  
M24  
M26  
M28  
SSTL  
VSS  
SSTL  
O
VSS  
SSTL  
O
N51  
N53  
N55  
VSA  
SSTL  
I/O  
I/O  
VSS  
SSTL  
PE2A_RX_DN[0]  
I
204  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
Processor Land Listing  
Table 8-2.  
Land Number (Sheet 45 of 49)  
Table 8-2.  
Land Number (Sheet 46 of 49)  
Land No.  
Land Name  
Buffer Type  
Direction  
Land No.  
Land Name  
Buffer Type  
Direction  
N7  
DDR3_DQ[50]  
VSS  
SSTL  
GND  
I/O  
R35  
R37  
R39  
R41  
R43  
R45  
R47  
R49  
R5  
VSS  
DDR2_DQ[06]  
VSS  
GND  
SSTL  
N9  
I/O  
P10  
P12  
P14  
P16  
P18  
P20  
P22  
P24  
P26  
P28  
P30  
P32  
P34  
P36  
P38  
P4  
VSS  
GND  
GND  
VSS  
GND  
DDR2_DQ[04]  
DDR_SDA_C23  
PE3C_TX_DP[10]  
PE3A_TX_DP[2]  
PE3B_TX_DP[7]  
VSS  
SSTL  
I/O  
I/O  
O
VSS  
GND  
ODCMOS  
PCIEX3  
PCIEX3  
PCIEX3  
GND  
DDR2_WE_N  
DDR2_CS_N[5]  
DDR2_MA[04]  
DDR2_MA[07]  
DDR2_BA[2]  
VSS  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
GND  
O
O
O
O
O
O
O
R51  
R53  
R55  
R7  
PE3B_TX_DP[5]  
PRDY_N  
PCIEX3  
CMOS  
GND  
O
O
DDR3_DQS_DN[03]  
VSS  
SSTL  
GND  
I/O  
VSS  
VSS  
GND  
VSS  
GND  
R9  
DDR2_DQ[54]  
DDR2_DQ[50]  
DDR2_DQS_DP[15]  
DDR2_DQ[52]  
DDR2_CAS_N  
DDR2_MA[10]  
DDR2_MA[03]  
DDR2_MA[08]  
DDR2_MA[12]  
DDR2_CKE[1]  
VSS  
SSTL  
I/O  
I/O  
I/O  
I/O  
O
DDR2_DQ[21]  
DDR2_DQ[02]  
VSS  
SSTL  
SSTL  
GND  
I/O  
I/O  
T10  
T12  
T14  
T16  
T18  
T20  
T22  
T24  
T26  
T28  
T30  
T32  
T34  
T36  
T38  
T4  
SSTL  
SSTL  
SSTL  
DDR3_DQ[59]  
VSS  
SSTL  
GND  
I/O  
SSTL  
P40  
SSTL  
O
P42  
P44  
P46  
P48  
P50  
P52  
P54  
P56  
P6  
DDR_VREFDQTX_C23  
PE3D_TX_DN[15]  
PE3C_TX_DP[8]  
PE3A_TX_DP[3]  
PE3B_TX_DP[6]  
PE3B_TX_DP[4]  
VSS  
DC  
O
O
O
O
O
O
SSTL  
O
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
GND  
SSTL  
O
SSTL  
O
SSTL  
O
GND  
DDR2_DQ[23]  
DDR2_DQS_DN[11]  
DDR2_DQ[20]  
DDR2_DQ[03]  
DDR2_DQS_DN[00]  
VSS  
SSTL  
I/O  
I/O  
I/O  
I/O  
I/O  
SSTL  
VSS  
GND  
SSTL  
DDR3_DQ[51]  
VSS  
SSTL  
GND  
I/O  
SSTL  
P8  
SSTL  
R11  
R13  
R15  
R17  
R19  
R21  
R23  
R25  
R27  
R29  
R3  
VSS  
GND  
GND  
DDR2_DQ[48]  
DDR2_MA[13]  
DDR2_BA[0]  
DDR2_MA[01]  
DDR2_MA[06]  
DDR2_MA[09]  
DDR3_CKE[4]  
DDR3_CKE[5]  
VSS  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
GND  
I/O  
O
T40  
T42  
T44  
T46  
T48  
T50  
T52  
T54  
T56  
T6  
DDR2_DQ[00]  
VSS  
SSTL  
I/O  
GND  
O
PE3D_TX_DP[15]  
PE3C_TX_DN[8]  
PE3A_TX_DN[3]  
PE3B_TX_DN[6]  
PE3B_TX_DN[4]  
PE2A_RX_DP[1]  
PE2A_RX_DP[2]  
VSS  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
PCIEX3  
GND  
O
O
O
O
O
I
O
O
O
O
O
I
VSS  
GND  
R31  
R33  
VSS  
GND  
T8  
VSS  
GND  
DDR2_DQ[17]  
SSTL  
I/O  
U11  
DDR2_DQS_DN[06]  
SSTL  
I/O  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
205  
Processor Land Listing  
Table 8-2.  
Land Number (Sheet 47 of 49)  
Table 8-2.  
Land Number (Sheet 48 of 49)  
Land No.  
Land Name  
Buffer Type  
Direction  
Land No.  
Land Name  
Buffer Type  
Direction  
U13  
U15  
U17  
U19  
U21  
U23  
U25  
U27  
U29  
U3  
DDR2_DQ[49]  
DDR23_RCOMP[0]  
DDR2_RAS_N  
DDR2_MA[02]  
DDR2_MA[05]  
DDR2_MA[11]  
DDR2_MA[15]  
DDR2_CKE[2]  
DDR2_DQ[19]  
DDR2_DQ[60]  
DDR2_DQS_DP[02]  
DDR2_DQ[16]  
VSS  
SSTL  
Analog  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
GND  
I/O  
I
V40  
V42  
V44  
V46  
V48  
V50  
V52  
V54  
V56  
V6  
DDR2_DQ[01]  
VSS  
SSTL  
GND  
I/O  
O
VSS  
GND  
O
VSS  
GND  
O
VSS  
GND  
O
VSS  
GND  
O
TXT_PLTEN  
PE2A_RX_DN[1]  
PE2A_RX_DN[2]  
DDR2_DQ[40]  
VSS  
CMOS  
PCIEX3  
PCIEX3  
SSTL  
GND  
I
I
O
I/O  
I/O  
I/O  
I/O  
I
I/O  
U31  
U33  
U35  
U37  
U39  
U41  
U43  
U45  
U47  
U49  
U5  
V8  
W11  
W13  
W15  
W17  
W19  
W21  
W23  
W25  
W27  
W29  
W3  
DDR2_DQS_DP[06]  
VSS  
SSTL  
GND  
I/O  
DDR2_DQ[07]  
DDR2_DQS_DP[09]  
DDR2_DQ[05]  
DDR_SCL_C23  
PE3C_TX_DN[10]  
PE3A_TX_DN[2]  
PE3B_TX_DN[7]  
VSS  
SSTL  
SSTL  
SSTL  
ODCMOS  
PCIEX3  
PCIEX3  
PCIEX3  
GND  
I/O  
I/O  
I/O  
I/O  
O
RSVD  
DDR2_CS_N[8]  
DDR2_ODT[1]  
DDR2_CLK_DN[2]  
DDR2_CLK_DN[3]  
DDR2_MA[14]  
DDR2_ECC[6]  
DDR2_DQ[18]  
DDR2_DQ[56]  
DDR2_DQS_DN[02]  
VSS  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
GND  
SSTL  
GND  
SSTL  
GND  
GND  
GND  
GND  
PWR  
O
O
O
O
O
O
O
I/O  
I/O  
I/O  
I/O  
U51  
U53  
U55  
U7  
PE3B_TX_DN[5]  
PREQ_N  
PCIEX3  
CMOS  
PCIEX3  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
PWR  
O
I/O  
I
W31  
W33  
W35  
W37  
W39  
W41  
W43  
W45  
W47  
W49  
W5  
PE2A_RX_DP[3]  
DDR2_DQ[44]  
DDR2_DQ[55]  
DDR2_DQ[51]  
DDR2_DQS_DN[15]  
DDR2_DQ[53]  
VCCD_23  
I/O  
I/O  
I/O  
I/O  
I/O  
DDR2_DQ[29]  
VSS  
I/O  
I/O  
U9  
V10  
V12  
V14  
V16  
V18  
V20  
V22  
V24  
V26  
V28  
V30  
V32  
V34  
V36  
V38  
V4  
DDR2_DQS_DN[09]  
VSS  
VSS  
VSS  
VCCD_23  
PWR  
VSS  
VCCD_23  
PWR  
VTTA  
VCCD_23  
PWR  
VSS  
GND  
GND  
GND  
PCIEX3  
SSTL  
GND  
GND  
GND  
Analog  
SSTL  
VCCD_23  
PWR  
W51  
W53  
W55  
W7  
VSS  
VSS  
GND  
VSS  
VSS  
GND  
PE2A_RX_DN[3]  
DDR2_DQ[45]  
VSS  
I
DDR2_DQ[22]  
DDR2_DQS_DP[11]  
VSS  
SSTL  
SSTL  
GND  
I/O  
I/O  
I/O  
W9  
Y10  
Y12  
Y14  
Y16  
VSS  
VSS  
GND  
VSS  
DDR2_DQS_DP[00]  
DDR2_DQ[61]  
SSTL  
SSTL  
I/O  
I/O  
DDR23_RCOMP[2]  
DDR2_CS_N[7]  
I
O
206  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
Processor Land Listing  
Table 8-2.  
Land Number (Sheet 49 of 49)  
Land No.  
Land Name  
Buffer Type  
Direction  
Y18  
Y20  
Y22  
Y24  
Y26  
Y28  
Y30  
Y32  
Y34  
Y36  
Y38  
Y4  
DDR2_ODT[3]  
DDR2_ODT[0]  
DDR2_CLK_DN[1]  
DDR2_CLK_DN[0]  
DDR2_ECC[2]  
VSS  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
GND  
O
O
O
O
I/O  
VSS  
GND  
VSS  
GND  
DDR2_DQS_DP[12]  
VSS  
SSTL  
GND  
I/O  
I/O  
VSS  
GND  
DDR2_DQ[57]  
VSS  
SSTL  
GND  
Y40  
Y42  
Y44  
Y46  
Y48  
Y50  
Y52  
Y54  
Y56  
Y6  
VSS  
GND  
PE3D_TX_DP[13]  
PE3C_TX_DP[11]  
RSVD  
PCIEX3  
PCIEX3  
O
O
PE3B_RX_DP[4]  
PE3B_RX_DP[5]  
VTTA  
PCIEX3  
PCIEX3  
PWR  
I
I
VSS  
GND  
DDR2_DQ[41]  
DDR2_DQS_DP[14]  
SSTL  
I/O  
I/O  
Y8  
SSTL  
§
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
207  
Processor Land Listing  
208  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
Package Mechanical Specifications  
9 Package Mechanical  
Specifications  
The processor is packaged in a Flip-Chip Land Grid Array (FCLGA12) package that  
interfaces with the baseboard via an LGA2011-0 socket. The package consists of a  
processor mounted on a substrate land-carrier. An integrated heat spreader (IHS) is  
attached to the package substrate and core and serves as the mating surface for  
processor component thermal solutions, such as a heatsink. Figure 9-1 shows a sketch  
of the processor package components and how they are assembled together. Refer to  
the Intel® Xeon® Processor E5-1600/2600/4600 v1 and v2 Product Families Thermal /  
Mechanical Design Guide for complete details on the LGA2011-0 socket.  
The package components shown in Figure 9-1 include the following:  
1. Integrated Heat Spreader (IHS)  
2. Thermal Interface Material (TIM)  
3. Processor core (die)  
4. Package substrate  
5. Capacitors  
Figure 9-1. Processor Package Assembly Sketch  
TIM  
Die  
IHS  
Substrate  
Capacitors  
LGA2011-0 Socket  
System Board  
Note:  
1. Socket and baseboard are included for reference and are not part of the processor package.  
9.1  
Package Size and SKUs  
The processor is supported in two package sizes:  
• Package A: 52.5 mm x 45 mm and  
• Package B: 52.5 mm x 51 mm  
Below is a table that shows the associated processor SKUs with the package sizes. For  
details on processor SKU information, see Table 1-1, “HCC, MCC, and LCC SKU Table  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families,  
Datasheet Volume One of Two  
209  
     
Package Mechanical Specifications  
Table 9-1.  
Processor Package Sizes  
1
Package Size and Processor TDP SKU  
Notes  
Package A: MCC and LCC die size  
150W (8-core)  
130W 1U (10/8-core)  
130W 2U (8/6/4-core)  
130W 1S WS (6/4-core)  
115W (10-core)  
2
95W (10/8/6/4-core)  
80W (6/4-core)  
70W (10-core)  
60W (6-core)  
LV95W-10C  
LV70W-10C and LV70W-8C  
LV50W-6C  
Package B: HCC die size  
130W (12-core)  
115W (12-core)  
95W (8-core)  
Notes:  
2
1.  
2.  
Processor SKU’s are subject to change and any processor SKU can be supported in either package size.  
These SKUs are an Intel® Xeon® processor E5-1600 v2 product family.  
9.2  
Package Mechanical Drawing (PMD)  
The package mechanical drawings are shown as package A size 52.5 mm x 45 mm,  
Figure 9-2 and Figure 9-3, and package B size 52.5 mm x 51 mm Figure 9-4 and  
Figure 9-5. The drawings include dimensions necessary to design a thermal solution for  
the processor. These dimensions include:  
1. Package reference with tolerances (total height, length, width, and so forth)  
2. IHS parallelism and tilt  
3. Land dimensions  
4. Top-side and back-side component keep-out dimensions  
5. Reference datums  
6. All drawing dimensions are in mm.  
7. Guidelines on potential IHS flatness variation with socket load plate actuation and  
installation of the cooling solution is available in the Intel® Xeon® Processor E5-  
1600/2600/4600 v1 and v2 Product Families Thermal / Mechanical Design Guide.  
210  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
   
Package Mechanical Specifications  
Figure 9-2. Processor PMD Package A (52.5 x 45 mm) Sheet 1 of 2  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families,  
Datasheet Volume One of Two  
211  
 
Package Mechanical Specifications  
Figure 9-3. Processor PMD Package A (52.5 x 45 mm) Sheet 2 of 2  
212  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
 
Package Mechanical Specifications  
Figure 9-4. Processor PMD Package B (52.5 x 51 mm) Sheet 1 of 2  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families,  
Datasheet Volume One of Two  
213  
 
Package Mechanical Specifications  
Figure 9-5. Processor PMD Package B (52.5 x 51 mm) Sheet 2 of 2  
214  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
 
Package Mechanical Specifications  
9.3  
Processor Component Keep-Out Zones  
The processor may contain components on the substrate that define component  
keep-out zone requirements. A thermal and mechanical solution design must not  
intrude into the required keep-out zones. Do not contact the Test Pad Area with  
conductive material. Decoupling capacitors are typically mounted to either the topside  
or land-side of the package substrate. See Figure 9-3 through Figure 9-4 for keep-out  
zones. The location and quantity of package capacitors may change due to  
manufacturing efficiencies but will remain within the component keep-in.  
9.4  
Package Loading Specifications  
Table 9-2 provides load specifications for the processor package. These maximum  
limits should not be exceeded during heatsink assembly, shipping conditions, or  
standard use condition. Exceeding these limits during test may result in component  
failure. The processor substrate should not be used as a mechanical reference or load-  
bearing surface for thermal solutions.  
.
Table 9-2.  
Processor Loading Specifications  
Parameter  
Maximum  
Notes  
Static Compressive Load  
Dynamic Load  
890 N [200 lbf]  
540 N [121 lbf]  
1, 2, 3, 5  
1, 3, 4, 5  
Notes:  
1.  
2.  
These specifications apply to uniform compressive loading in a direction normal to the processor IHS.  
This is the maximum static force that can be applied by the heatsink and Independent Loading Mechanism  
(ILM).  
3.  
4.  
5.  
These specifications are based on limited testing for design characterization. Loading limits are for the  
package constrained by the limits of the processor socket.  
Dynamic loading is defined as an 11 ms duration average load superimposed on the static load  
requirement.  
See Intel® Xeon® Processor E5-1600/2600/4600 v1 and v2 Product Families Thermal / Mechanical Design  
Guide for minimum socket load to engage processor within socket.  
9.5  
Package Handling Guidelines  
Table 9-3 includes a list of guidelines on package handling in terms of recommended  
maximum loading on the processor IHS relative to a fixed substrate. These package  
handling loads may be experienced during heatsink removal.  
Table 9-3.  
Package Handling Guidelines  
Parameter  
Maximum Recommended  
Notes  
Shear  
Tensile  
Torque  
80 lbs (36.287 kg)  
35 lbs (15.875 kg)  
35 in.lbs (15.875 kg-cm)  
9.6  
Package Insertion Specifications  
The processor can be inserted into and removed from an LGA2011-0 socket 15 times.  
The socket should meet the LGA2011-0 requirements detailed in the Intel® Xeon®  
Processor E5-1600/2600/4600 v1 and v2 Product Families Thermal / Mechanical Design  
Guide.  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families,  
Datasheet Volume One of Two  
215  
           
Package Mechanical Specifications  
9.7  
Processor Mass Specification  
The typical mass of the processor is currently 45 grams. This mass [weight] includes all  
the components that are included in the package.  
9.8  
Processor Materials  
Table 9-4 lists some of the package components and associated materials.  
Table 9-4.  
Processor Materials  
Component  
Material  
Integrated Heat Spreader (IHS)  
Substrate  
Nickel Plated Copper  
Halogen Free, Fiber Reinforced Resin  
Gold Plated Copper  
Substrate Lands  
9.9  
Processor Markings  
Figure 9-6 shows the topside markings on the processor. This diagram is to aid in the  
identification of the processor.  
Figure 9-6. Processor Top-Side Markings  
Legend:  
Mark Text (Production Mark):  
i{M}{C}YY  
SUB-BRAND PROC#  
SSPEC SPEED  
XXXXX  
{FPO} {e4}  
GRP1LINE1:  
GRP1LINE2:  
GRP1LINE3:  
GRP1LINE4:  
GRP1LINE5:  
GRP1LINE1  
GRP1LINE2  
GRP1LINE3  
GRP1LINE4  
GRP1LINE5  
LOT NO S /N  
0  
Notes:  
1.  
2.  
XXXXX = Country of Origin  
SPEED Format = X.XXGHz and no rounding  
§
216  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
           
Boxed Processor Specifications  
10 Boxed Processor Specifications  
10.1  
Introduction  
Intel boxed processors are intended for system integrators who build systems from  
components available through distribution channels. The Intel® Xeon® processor E5-  
2600 v2 product family (LGA2011-0) processors will be offered as Intel boxed  
processors, however the thermal solutions will be sold separately.  
Boxed processors will not include a thermal solution in the box. Intel will offer boxed  
thermal solutions separately through the same distribution channels. Please reference  
Section 10.1.1 - Section 10.1.3 for a description of Boxed Processor thermal solutions.  
10.1.1  
Available Boxed Thermal Solution Configurations  
Intel will offer three different Boxed Heat Sink solutions to support LGA2011-0  
Boxed Processors:  
• Boxed Intel® Thermal Solution STS200C(Order Code BXSTS200C): A Passive /  
Active Combination Heat Sink Solution that is intended for processors with a TDP  
up to 150W in a pedestal or 130W in 2U+ chassis with appropriate ducting.  
• Boxed Intel® Thermal Solution STS200P(Order Code BXSTS200P): A 25.5 mm Tall  
Passive Heat Sink Solution that is intended for processors with a TDP of 130W or  
lower in 1U, or 2U chassis with appropriate ducting. Check with Blade manufacturer  
for compatibility.  
• Boxed Intel® Thermal Solution STS200PNRW (Order Code BXSTS200PNRW): A  
25.5 mm Tall Passive Heat Sink Solution that is intended for processors with a TDP  
of 130W or lower in 1U, or 2U chassis with appropriate ducting. Compatible with  
the narrow processor integrated load mechanism. Check with Blade manufacturer  
for compatibility.  
10.1.2  
Intel Thermal Solution STS200C  
(Passive/Active Combination Heat Sink Solution)  
The STS200C, based on a 2U passive heat sink with a removable fan, is intended for  
use with processors with TDP’s up to 150W in active configuration and 130W in passive  
configuration. This heat pipe-based solution is intended to be used as either a passive  
heat sink in a 2U or larger chassis, or as an active heat sink for pedestal chassis.  
Figure 10-1 and Figure 10-2 are representations of the heat sink solution. Although the  
active combination solution with the removable fan installed mechanically fits into a 2U  
keepout, its use has not been validated in that configuration.  
The STS200C in the active fan configuration is primarily designed to be used in a  
pedestal chassis where sufficient air inlet space is present. The STS200C with the fan  
removed, as with any passive thermal solution, will require the use of chassis ducting  
and are targeted for use in rack mount or ducted pedestal servers. The retention  
solution used for these products is called ILM Retention System (ILM-RS).  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
217  
       
Boxed Processor Specifications  
Figure 10-1. STS200C Passive/Active Combination Heat Sink (with Removable Fan)  
Figure 10-2. STS200C Passive/Active Combination Heat Sink (with Fan Removed)  
The STS200C utilizes a fan capable of 4-pin pulse width modulated (PWM) control. Use  
of a 4-pin PWM controlled active thermal solution helps customers meet acoustic  
targets in pedestal platforms through the baseboard’s ability to directly control the RPM  
of the processor heat sink fan. See Section 10.3 for more details on fan speed control.  
Also see Section 2.5, “Platform Environment Control Interface (PECI)” for more on the  
PWM and PECI interface along with Digital Thermal Sensors (DTS).  
10.1.3  
Intel Thermal Solution STS200P and STS200PNRW  
(Boxed 25.5 mm Tall Passive Heat Sink Solutions)  
The STS200P and STS200PNRW are available for use with boxed processors that have  
TDP’s of 130W and lower. These 25.5 mm Tall passive solutions are designed to be used  
in SSI Blades, 1U, and 2U chassis where ducting is present. The use of a 25.5 mm Tall  
heatsink in a 2U chassis is recommended to achieve a lower heatsink TLA and more  
flexibility in system design optimization. Figure 10-3 is a representation of the heat  
218  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
     
Boxed Processor Specifications  
sink solutions. The retention solution used for the STS200P Heat Sink Solution is called  
the ILM Retention System (ILM-RS).The retention solution used for the STS200PNRW  
Narrow Heat Sink Solution is called the Narrow ILM Retention System (Narrow ILM-RS).  
Figure 10-3. STS200P and STS200PNRW 25.5 mm Tall Passive Heat Sinks  
10.2  
Mechanical Specifications  
This section documents the mechanical specifications of the boxed processor solution.  
10.2.1  
Boxed Processor Heat Sink Dimensions and Baseboard  
Keepout Zones  
The boxed processor and boxed thermal solutions will be sold separately. Clearance is  
required around the thermal solution to ensure unimpeded airflow for proper cooling.  
Baseboard keepout zones are Figure 10-4 - Figure 10-7. Physical space requirements  
and dimensions for the boxed processor and assembled heat sink are shown in  
Figure 10-8 and Figure 10-9. Mechanical drawings for the 4-pin fan header and 4-pin  
connector used for the active fan heat sink solution are represented in Figure 10-10  
and Figure 10-11.  
None of the heat sink solutions exceed a mass of 550 grams. Note that this is per  
processor, a dual processor system will have up to 1100 grams total mass in the heat  
sinks. See Section 9.7 for details on the processor mass test.  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
219  
     
Boxed Processor Specifications  
Figure 10-4. Boxed Processor Motherboard Keepout Zones (1 of 4)  
220  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
 
Boxed Processor Specifications  
Figure 10-5. Boxed Processor Motherboard Keepout Zones (2 of 4)  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
221  
 
Boxed Processor Specifications  
Figure 10-6. Boxed Processor Motherboard Keepout Zones (3 of 4)  
222  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
 
Boxed Processor Specifications  
Figure 10-7. Boxed Processor Motherboard Keepout Zones (4 of 4)  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
223  
 
Boxed Processor Specifications  
Figure 10-8. Boxed Processor Heat Sink Volumetric (1 of 2)  
224  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
 
Boxed Processor Specifications  
Figure 10-9. Boxed Processor Heat Sink Volumetric (2 of 2)  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
225  
 
Boxed Processor Specifications  
Figure 10-10.4-Pin Fan Cable Connector (For Active Heat Sink)  
226  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
 
Boxed Processor Specifications  
Figure 10-11.4-Pin Base Baseboard Fan Header (For Active Heat Sink)  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
227  
 
Boxed Processor Specifications  
10.2.2  
Boxed Processor Retention Mechanism and Heat Sink  
Support (ILM-RS)  
Baseboards designed for use by a system integrator should include holes that are in  
proper alignment with each other to support the boxed processor.  
The standard and narrow ILM-RSs are designed to extend air-cooling capability through  
the use of larger heat sinks with minimal airflow blockage and bypass. ILM-RS  
retention transfers load to the baseboard via the ILM Assembly. The ILM-RS spring,  
captive in the heatsink, provides the necessary compressive load for the thermal  
interface material. For specific design details on the standard and narrow ILM-RS and  
the Backplate please refer to the Intel® Xeon® Processor E5-1600/2600/4600 v1 and  
v2 Product Families Thermal / Mechanical Design Guide.  
All components of the ILM-RS heat sink solution will be captive to the heat sink and will  
only require a Phillips screwdriver to attach to the ILM Backplate Assembly. When  
installing the ILM-RS the screws should be tightened until they will no longer turn  
easily. This should represent approximately 8 inch-pounds of torque. More than that  
may damage the retention mechanism components.  
10.3  
Fan Power Supply [STS200C]  
The 4-pin PWM controlled thermal solution is being offered to help provide better  
control over pedestal chassis acoustics. This is achieved through more accurate  
measurement of processor die temperature through the processor’s Digital Thermal  
Sensors. Fan RPM is modulated through the use of an ASIC located on the baseboard  
that sends out a PWM control signal to the 4th pin of the connector labeled as Control.  
This thermal solution requires a constant +12 V supplied to pin 2 of the active  
thermal solution and does not support variable voltage control or 3-pin PWM control.  
See Figure 10-12 and Table 10-1 for details on the 4-pin active heat sink solution  
connectors.  
The fan power header on the baseboard must be positioned to allow the fan heat sink  
power cable to reach it. The fan power header identification and location must be  
documented in the suppliers platform documentation, or on the baseboard itself. The  
baseboard fan power header should be positioned within 177.8 mm [7 in.] from the  
center of the processor socket.  
Table 10-1. PWM Fan Frequency Specifications For 4-Pin Active Thermal Solution  
Description  
Min Frequency  
Nominal Frequency  
Max Frequency  
Unit  
PWM Control Frequency  
Range  
21,000  
25,000  
28,000  
Hz  
Table 10-2. PWM Fan Characteristics for Active Thermal Solution  
Max  
Steady  
Max  
Startup  
Description  
Min  
Typical  
Unit  
+12V: 12-Volt Supply  
IC: Fan Current Draw  
10.8  
N/A  
12  
12  
13.2  
2.2  
V
A
1.25  
1.5  
Pulses per fan  
revolution  
Sense Pulse Frequency  
2
228  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
       
Boxed Processor Specifications  
Figure 10-12.Fan Cable Connector Pin Out For 4-Pin Active Thermal Solution  
Table 10-3. PWM Fan Connector Pin and Wire Description  
Pin Number  
Signal  
Wire Color  
1
2
3
4
Ground  
Black  
Yellow  
Green  
Blue  
Power (+12V)  
Sense: 2 pulse per revolution  
Control: 21KHz - 28KHz  
10.3.1  
Boxed Processor Cooling Requirements  
As previously stated the boxed processor will have three thermal solutions available.  
Each configuration will require unique design considerations. Meeting the processor’s  
temperature specifications is also the function of the thermal design of the entire  
system, and ultimately the responsibility of the system integrator. The processor  
temperature specifications are found in Chapter 5, “Thermal Management  
Specifications” of this document.  
10.3.1.1  
STS200C (Passive / Active Combination Heat Sink Solution)  
The active configuration of the combination solution is designed to help pedestal  
chassis users to meet the thermal processor requirements without the use of processor  
chassis ducting. However, it is strongly recommended to implement some form of air  
duct to meet memory cooling and processor TLA temperature requirements. Please  
reference the Intel® Xeon® Processor E5-1600 v2/E5-2400 v2/E5-2600 v2 Product  
Families and Intel® C600 Chipset Platform Controller Hub (PCH) in a Pedestal Server  
System Design Guide for an example of system ducting designed to be used with the  
active configuration. Use of the active configuration in a 2U rackmount chassis is not  
recommended.  
In the passive configuration it is assumed that a chassis duct will be implemented.  
For a list processor and thermal solution boundary conditions, such as Psica, TLA,  
airflow, flow impedance, and so forth, see Table 10-4. It is recommended that the  
ambient air temperature outside of the chassis be kept at or below 35 °C. Meeting the  
processor’s temperature specification is the responsibility of the system integrator.  
This thermal solution is for use with processor SKUs no higher than 150W (10 Core) or  
130W (6, 8, and 10 core).  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
229  
     
Boxed Processor Specifications  
10.3.1.2  
STS200P and STS200PNRW (25.5mm Tall Passive Heat Sink Solution)  
(Blade + 1U + 2U Rack)  
These passive solutions are intended for use in SSI Blade, 1U or 2U rack configurations.  
It is assumed that a chassis duct will be implemented in all configurations.  
For a list processor and thermal solution boundary conditions, such as Psica, TLA,  
airflow, flow impedance, and so forth, see Table 10-4. It is recommended that the  
ambient air temperature outside of the chassis be kept at or below 35 °C. Meeting the  
processor’s temperature specification is the responsibility of the system integrator.  
These thermal solutions are for use with processor SKUs no higher than 130W (8 and  
10Core), or 80W (6 Core).  
Note:  
Please refer to the Intel® Xeon® Processor E5-1600/2600/4600 v1 and v2 Product  
Families Thermal / Mechanical Design Guide for detailed mechanical drawings of the  
STS200P and STS200PNRW.  
Table 10-4. Server Thermal Solution Boundary Conditions (Sheet 1 of 2)  
Delta P  
(inch of  
Heatsink  
Volumetric  
(mm)  
2
3
ΨCA  
(˚C/W)  
Airflow  
(CFM)  
1
4
TDP  
Thermal Solution  
T
(˚C)  
LA  
H O)  
2
150W - 8 Core  
STS200C (with fan)  
STS200C (with fan)  
STS200P  
0.208  
40.8  
59.0  
53.2  
59.0  
61.2  
53.2  
51.7  
61.2  
47.1  
47.1  
47.2  
47.2  
41.3  
33.2  
31.8  
41.3  
41.4  
41.4  
57.2  
59.4  
57.2  
58.9  
51.8  
50.5  
58.9  
Max RPM  
Max RPM  
16  
NA  
NA  
91.5x91.5x64  
91.5x91.5x64  
130W - 12 Core  
130W - 12 Core  
130W - 12 Core  
130W - 10/8 Core  
130W - 10/8 Core  
130W - 10/8 Core  
130W - 10/8 Core  
130W - 8 Core (2U)  
130W - 8 Core (2U)  
130W - 6 Core (2U)  
130W - 6 Core (2U)  
130W - 1S 4 Core  
130W - 1S 4 Core  
130W - 1S 4 Core  
130W - 1S 4 Core  
130W - 4 Core (2U)  
130W - 4 Core (2U)  
115W - 12 Core  
115W - 12 Core  
115W - 12 Core  
115W - 10 Core  
115W - 10 Core  
115W - 10 Core  
115W - 10 Core  
0.208  
0.252  
0.406  
0.14  
NA  
91.5x91.5x25.5  
91.5x91.5x64  
91.5x91.5x64  
91.5x91.5x25.5  
70x106x25.5  
91.5x91.5x64  
91.5x91.5x64  
91.5x91.5x64  
91.5x91.5x64  
91.5x91.5x64  
91.5x91.5x64  
91.5x91.5x25.5  
70x106x25.5  
91.5x91.5x64  
91.5x91.5x64  
91.5x91.5x64  
91.5x91.5x64  
91.5x91.5x25.5  
91.5x91.5x64  
91.5x91.5x64  
91.5x91.5x25.5  
70x106x25.5  
91.5x91.5x64  
STS200C (without fan) 0.208  
26  
STS200C (with fan)  
STS200P  
0.206  
0.268  
0.279  
Max RPM  
16  
0.406  
0.347  
0.14  
NA  
STS200PNRW  
14  
STS200C (without fan) 0.206  
STS200C (with fan) 0.207  
STS200C (without fan) 0.207  
STS200C (with fan) 0.206  
STS200C (without fan) 0.206  
26  
Max RPM  
26  
0.14  
NA  
Max RPM  
26  
0.14  
NA  
STS200C (with fan)  
STS200P  
0.221  
0.283  
0.294  
Max RPM  
16  
0.406  
0.347  
0.14  
NA  
STS200PNRW  
14  
STS200C (without fan) 0.221  
STS200C (with fan) 0.220  
STS200C (without fan) 0.220  
26  
Max RPM  
26  
0.14  
NA  
STS200C (with fan)  
STS200P  
0.207  
0.188  
Max RPM  
16  
0.406  
0.14  
NA  
STS200C (without fan) 0.207  
26  
STS200C (with fan)  
STS200P  
0.201  
0.263  
0.274  
Max RPM  
16  
0.406  
0.347  
0.14  
STS200PNRW  
14  
STS200C (without fan) 0.201  
26  
230  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
 
Boxed Processor Specifications  
Table 10-4. Server Thermal Solution Boundary Conditions (Sheet 2 of 2)  
Delta P  
(inch of  
Heatsink  
Volumetric  
(mm)  
2
3
ΨCA  
(˚C/W)  
Airflow  
(CFM)  
1
4
TDP  
Thermal Solution  
T
(˚C)  
LA  
H O)  
2
95W - 10/8 Core  
95W - 10/8 Core  
95W - 10/8 Core  
95W - 10/8 Core  
95W - 6/4 Core  
95W - 6/4 Core  
95W - 6/4 Core  
95W - 6/4 Core  
80W - 6/4 Core  
80W - 6/4 Core  
80W - 6/4 Core  
80W - 6/4 Core  
70W - 10 Core  
70W - 10 Core  
70W - 10 Core  
70W - 10 Core  
60W - 6 Core  
STS200C (with fan)  
STS200P  
0.201  
55.9  
50.0  
49.0  
55.9  
55.8  
49.9  
48.9  
55.8  
53.2  
48.2  
47.3  
53.2  
51.1  
46.7  
46.0  
51.1  
50.0  
46.3  
45.6  
50.0  
48.5  
58.9  
58.9  
66.7  
Max RPM  
NA  
91.5x91.5x64  
0.263  
0.274  
16  
0.406  
0.347  
0.14  
91.5x91.5x25.5  
70x106x25.5  
STS200PNRW  
14  
STS200C (without fan) 0.201  
26  
91.5x91.5x64  
91.5x91.5x64  
91.5x91.5x25.5  
70x106x25.5  
STS200C (with fan)  
STS200P  
0.223  
0.285  
0.296  
Max RPM  
NA  
16  
0.406  
0.347  
0.14  
STS200PNRW  
14  
STS200C (without fan) 0.223  
26  
91.5x91.5x64  
91.5x91.5x64  
91.5x91.5x25.5  
70x106x25.5  
STS200C (with fan)  
STS200P  
0.223  
0.285  
0.296  
Max RPM  
NA  
16  
0.406  
0.347  
0.14  
STS200PNRW  
14  
STS200C (without fan) 0.223  
26  
91.5x91.5x64  
91.5x91.5x64  
91.5x91.5x25.5  
70x106x25.5  
STS200C (with fan)  
STS200P  
0.199  
0.261  
0.272  
Max RPM  
16  
NA  
0.406  
0.347  
0.14  
STS200PNRW  
14  
STS200C (without fan) 0.199  
26  
91.5x91.5x64  
91.5x91.5x64  
91.5x91.5x25.5  
70x106x25.5  
STS200C (with fan)  
STS200P  
0.217  
0.279  
0.290  
Max RPM  
16  
NA  
60W - 6 Core  
0.406  
0.347  
0.14  
60W - 6 Core  
STS200PNRW  
14  
60W - 6 Core  
STS200C (without fan) 0.217  
26  
91.5x91.5x64  
91.5x91.5x25.5  
91.5x91.5x25.5  
91.5x91.5x25.5  
91.5x91.5x25.5  
5
5
LV95W - 10 Core  
LV70W - 10 Core  
STS200P  
STS200P  
STS200P  
STS200P  
0.261  
0.259  
0.262  
0.276  
16  
0.406  
0.406  
0.406  
0.406  
16  
16  
5
LV50W - 6 Core  
16  
Notes:  
1.  
Local ambient temperature of the air entering the heatsink or fan. System ambient and altitude are assumed 35C and sea  
level.  
2.  
3.  
4.  
5.  
Max target (mean + 3 sigma) for thermal characterization parameter.  
Airflow through the heatsink fins with zero bypass. Max target for pressure drop (dP) measured in inches H O.  
2
Dimensions of heatsinks do not include socket or processor.  
This is a tray product only. Alternate thermal profiles are available with higher T , see specific processor specifications for  
LA  
details.  
6.  
Refer to Table 1-1 for the model numbers of each processor based on TDP and core count.  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
231  
Boxed Processor Specifications  
10.4  
Boxed Processor Contents  
The Boxed Processor and Boxed Thermal Solution contents are outlined below.  
Boxed Processor  
• Intel® Xeon® processor E5-2600 v2 product family  
• Installation and warranty manual  
• Intel Inside Logo  
Boxed Thermal Solution  
• Thermal solution assembly  
• Thermal interface material (pre-applied)  
• Installation and warranty manual  
§
232  
Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families  
Datasheet Volume One of Two  
 

Intel Bx80601930 User Manual
JVC AV 32F485 User Manual
LG Electronics U 42PZ44 User Manual
Mediasonic Computer Hardware MS9200 User Manual
NEC MultiSync LCD1525S User Manual
Panasonic CT G3353 User Manual
Philips 29PT 8306 User Manual
Philips 33PT912B User Manual
Philips 192EL2SB User Manual
Philips GL1316 User Manual