| CY7C1440AV33   CY7C1442AV33   CY7C1446AV33   36-Mbit (1M x 36/2M x 18/512K x 72)   Pipelined Sync SRAM   Features   Functional Description[1]   • Supports bus operation up to 250 MHz   The CY7C1440AV33/CY7C1442AV33/CY7C1446AV33 SRAM   integrates 1M x 36/2M x 18 and 512K x 72 SRAM cells with   advanced synchronous peripheral circuitry and a two-bit   counter for internal burst operation. All synchronous inputs are   gated by registers controlled by a positive-edge-triggered   Clock Input (CLK). The synchronous inputs include all   addresses, all data inputs, address-pipelining Chip Enable   • Available speed grades are 250, 200 and 167 MHz   • Registered inputs and outputs for pipelined operation   • 3.3V core power supply   • 2.5V/3.3V I/O power supply   • Fast clock-to-output times   (CE ), depth-expansion Chip Enables (CE and CE ), Burst   1 2 3 Control inputs (ADSC, ADSP, and ADV), Write Enables (BW   X — 2.6 ns (for 250-MHz device)   and BWE), and Global Write (GW). Asynchronous inputs   include the Output Enable (OE) and the ZZ pin.   • Provide high-performance 3-1-1-1 access rate   ® • User-selectable burst counter supporting Intel   Addresses and chip enables are registered at rising edge of   clock when either Address Strobe Processor (ADSP) or   Address Strobe Controller (ADSC) are active. Subsequent   burst addresses can be internally generated as controlled by   the Advance pin (ADV).   ® Pentium interleaved or linear burst sequences   • Separate processor and controller address strobes   • Synchronous self-timed writes   • Asynchronous output enable   Address, data inputs, and write controls are registered on-chip   to initiate a self-timed Write cycle.This part supports Byte Write   operations (see Pin Descriptions and Truth Table for further   details). Write cycles can be one to two or four bytes wide as   controlled by the byte write control inputs. GW when active   • Single Cycle Chip Deselect   • CY7C1440AV33, CY7C1442AV33 available in lead-free   100-pin TQFP package, lead-free and non-lead-free   165-ball FBGA package. CY7C1446AV33 available in   lead-free and non-lead-free 209-ball FBGA package   causes all bytes to be written.   LOW   The   CY7C1440AV33/CY7C1442AV33/CY7C1446AV33   • Also available in lead-free packages   • IEEE 1149.1 JTAG-Compatible Boundary Scan   • “ZZ” Sleep Mode Option   operates from a +3.3V core power supply while all outputs may   operate with either a +2.5 or +3.3V supply. All inputs and   outputs are JEDEC-standard JESD8-5-compatible.   Selection Guide   250 MHz   2.6   200 MHz   3.2   167 MHz   3.4   Unit   ns   Maximum Access Time   Maximum Operating Current   Maximum CMOS Standby Current   475   425   375   mA   mA   120   120   120   Note:   1. For best-practices recommendations, please refer to the Cypress application note System Design Guidelines on www.cypress.com.   Cypress Semiconductor Corporation   Document #: 38-05383 Rev. *E   • 198 Champion Court   • San Jose, CA 95134-1709   • 408-943-2600   Revised June 23, 2006   CY7C1440AV33   CY7C1442AV33   CY7C1446AV33   Logic Block Diagram – CY7C1446AV33 (512K x 72)   ADDRESS   REGISTER   A0, A1,A   A[1:0]   MODE   Q1   ADV   CLK   BINARY   COUNTER   CLR   Q0   ADSC   ADSP   DQH, DQPH   WRITE DRIVER   DQH, DQPH   WRITE DRIVER   BWH   BWG   BWF   BWE   BWD   BWC   DQG, DQPG   WRITE DRIVER   DQF, DQPF   WRITE DRIVER   DQF, DQPF   WRITE DRIVER   DQF, DQPF   WRITE DRIVER   DQE, DQPE   WRITE DRIVER   DQE, DQPE   WRITE DRIVER   MEMORY   ARRAY   DQD, DQPD   WRITE DRIVER   DQD, DQPD   WRITE DRIVER   DQC, DQPC   WRITE DRIVER   DQC, DQPC   WRITE DRIVER   OUTPUT   BUFFERS   OUTPUT   REGISTERS   SENSE   AMPS   DQs   DQPA   DQPB   DQPC   DQPD   DQPE   DQPF   DQPG   DQPH   E DQB, DQPB   WRITE DRIVER   DQB, DQPB   WRITE DRIVER   BWB   DQA, DQPA   WRITE DRIVER   DQA, DQPA   WRITE DRIVER   BWA   BWE   INPUT   REGISTERS   GW   CE1   CE2   CE3   OE   ENABLE   REGISTER   PIPELINED   ENABLE   SLEEP   CONTROL   ZZ   Document #: 38-05383 Rev. *E   Page 3 of 31   CY7C1440AV33   CY7C1442AV33   CY7C1446AV33   Pin Configurations   100-pin TQFP Pinout   DQPC   1 DQPB   DQB   DQB   VDDQ   VSSQ   DQB   DQB   DQB   DQB   VSSQ   VDDQ   DQB   DQB   VSS   80   79   78   77   76   75   74   73   72   71   70   69   68   67   66   65   64   63   62   61   60   59   58   57   56   55   54   53   52   51   NC   NC   NC   VDDQ   VSSQ   NC   A NC   NC   VDDQ   VSSQ   NC   DQPA   DQA   DQA   VSSQ   VDDQ   DQA   DQA   VSS   NC   1 2 3 4 5 6 7 8 80   79   78   77   76   75   74   73   72   71   70   69   68   67   66   65   64   63   62   61   60   59   58   57   56   55   54   53   52   51   DQC   2 DQc   VDDQ   VSSQ   DQC   3 4 5 6 DQC   7 NC   DQC   8 DQB   DQB   VSSQ   VDDQ   DQB   DQB   NC   VDD   NC   VSS   DQB   DQB   VDDQ   VSSQ   DQB   DQB   DQPB   NC   DQC   9 10   11   9 VSSQ   VDDQ   DQC   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   12   DQC   13   NC   14   VDD   15   NC   VDD   ZZ   CY7C1442AV33   (2M x 18)   CY7C1440AV33   (1M x 36)   NC   16   VDD   ZZ   VSS   17   DQD   18   DQA   DQA   VDDQ   VSSQ   DQA   DQA   DQA   DQA   VSSQ   VDDQ   DQA   DQA   DQPA   DQA   DQA   VDDQ   VSSQ   DQA   DQA   NC   DQD   19   20   21   VDDQ   VSSQ   DQD   22   DQD   23   DQD   24   DQD   25   26   27   NC   VSSQ   VDDQ   DQD   DQD   29   VSSQ   VDDQ   NC   NC   NC   VSSQ   VDDQ   NC   NC   NC   28   DQPD   30   Document #: 38-05383 Rev. *E   Page 4 of 31   CY7C1440AV33   CY7C1442AV33   CY7C1446AV33   Pin Configurations (continued)   165-ball FBGA (15 x 17 x 1.4 mm) Pinout   CY7C1440AV33 (1M x 36)   1 2 3 4 5 6 7 8 9 10   A 11   NC   NC/288M   NC/144M   DQPC   A B C D CE1   BWC   BWD   VSS   VDD   BWB   BWA   VSS   VSS   CE   ADSC   OE   A BWE   GW   VSS   VSS   ADV   ADSP   VDDQ   VDDQ   3 A CE2   VDDQ   VDDQ   CLK   VSS   VSS   A NC/576M   DQPB   DQB   NC   VSS   VDD   NC/1G   DQB   DQC   DQC   DQC   DQC   DQC   NC   DQC   DQC   DQC   NC   VDDQ   VDDQ   VDDQ   NC   VDD   VDD   VDD   VDD   VDD   VDD   VDD   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VDD   VDD   VDD   VDD   VDD   VDD   VDD   VDDQ   VDDQ   VDDQ   NC   DQB   DQB   DQB   NC   DQB   DQB   DQB   ZZ   E F G H J DQD   DQD   DQD   DQD   DQD   DQD   VDDQ   VDDQ   VDDQ   VDDQ   VDDQ   VDDQ   DQA   DQA   DQA   DQA   DQA   DQA   K L DQD   DQPD   NC   DQD   NC   VDDQ   VDDQ   A VDD   VSS   A VSS   NC   VSS   A VSS   NC   VDD   VSS   A VDDQ   VDDQ   A DQA   NC   A DQA   DQPA   A M N P NC/72M   TDI   A1   TDO   A0   MODE   A A A TMS   TCK   A A A A R CY7C1442AV33 (2M x 18)   1 2 A 3 4 5 NC   6 7 8 9 10   A 11   A NC/288M   NC/144M   NC   A B C D BWB   NC   CE   CE1   CE2   BWE   GW   VSS   VSS   ADSC   OE   ADV   ADSP   VDDQ   VDDQ   3 A BWA   VSS   VSS   CLK   VSS   VSS   A NC/576M   DQPA   DQA   NC   VDDQ   VDDQ   VSS   VDD   VSS   NC/1G   NC   NC   DQB   VDD   NC   NC   DQB   DQB   DQB   NC   VDDQ   VDDQ   VDDQ   NC   VDD   VDD   VDD   VDD   VDD   VDD   VDD   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VDD   VDD   VDD   VDD   VDD   VDD   VDD   VDDQ   VDDQ   VDDQ   NC   NC   NC   DQA   DQA   DQA   ZZ   E F NC   NC   G H J NC   NC   DQB   DQB   DQB   NC   VDDQ   VDDQ   VDDQ   VDDQ   VDDQ   VDDQ   DQA   DQA   DQA   NC   NC   NC   K L NC   NC   DQB   DQPB   NC   NC   NC   VDDQ   VDDQ   A VDD   VSS   A VSS   NC   VSS   A VSS   NC   VDD   VSS   A VDDQ   VDDQ   A DQA   NC   A NC   NC   A M N P NC/72M   TDI   A1   TDO   MODE   A A A TMS   A0   TCK   A A A A R Document #: 38-05383 Rev. *E   Page 5 of 31   CY7C1440AV33   CY7C1442AV33   CY7C1446AV33   Pin Configurations (continued)   209-ball FBGA (14 x 22 x 1.76 mm) Pinout   CY7C1446AV33 (512K × 72)   1 2 3 4 5 6 7 8 9 10   11   A B C D E F A CE   DQG   DQG   DQG   DQG   ADSC   BW   A ADSP   ADV   A CE   2 DQB   DQB   DQB   DQB   DQB   3 BWS   NC/288M   NC/144M   BWS   BWS   F BWS   B C G DQG   DQG   DQG   DQG   NC/576M   GW   BWS   NC   BWS   CE   BWS   A BWS   E DQB   DQB   D 1 H V NC/1G OE   V NC   V SS   DQB   SS   DQPG DQPC   V V V V V V DDQ   DDQ   DDQ   SS   DDQ   DD   DD   DD   DQPF DQPB   DQC   DQC   V V V DQF   DQF   V V NC   NC   NC   NC   V V SS   SS   SS   SS   DD   SS   G H J DQC   DQC   V DQC   V V DDQ   V DD   V V DDQ   DQF   DQF   DDQ   DDQ   V V V V V V V DQC   DQC   NC   DQF   DQF   SS   SS   SS   SS   SS   SS   DQC   NC   V V V DDQ   V V DDQ   DD   DD   DDQ   DDQ   DQF   NC   DQF   NC   K L CLK   V V NC   V SS   SS   SS   NC   NC   DQH   DQH   DQH   V V V NC   NC   NC   ZZ   V V V DDQ   DD   SS   DD   DDQ   DDQ   DQA   DQA   DQA   DDQ   M N P R T V V V V DQH   DQH   DQH   V V SS   SS   SS   SS   SS   DQA   DQA   DQA   V V V DDQ   DQH   DQH   DQPD   DQD   DQD   V V V V V V DD   DD   DDQ   DDQ   DDQ   DQA   DQA   DQPA   DQE   DQE   V V V V V V V SS   SS   SS   SS   SS   SS   V V V DQPH   DQD   DQD   DQD   DQD   DDQ   DD   DD   DDQ   DDQ   SS   DDQ   DD   DQPE   DQE   DQE   DQE   DQE   NC   V NC   A NC   NC   A MODE   A SS   U V W A A A NC/72M   A A A1   A DQD   DQD   A A A DQE   DQE   TDI   TDO   TCK   A A0   A TMS   Pin Definitions   Name   I/O   Description   Address Inputs used to select one of the address locations. Sampled at the rising edge   A , A , A   Input-   Synchronous   0 1 [2]   of the CLK if ADSP or ADSC is active LOW, and CE , CE , and CE are sampled active.   1 2 3 A1: A0 are fed to the two-bit counter.   BW , BW ,   Input-   Synchronous   Byte Write Select Inputs, active LOW. Qualified with BWE to conduct byte writes to the   SRAM. Sampled on the rising edge of CLK.   A B BW , BW ,   C D BW , BW ,   E F BW , BW   G H GW   Input-   Synchronous   Global Write Enable Input, active LOW. When asserted LOW on the rising edge of CLK,   a global write is conducted (ALL bytes are written, regardless of the values on BW and   X BWE).   BWE   CLK   Input-   Synchronous   Byte Write Enable Input, active LOW. Sampled on the rising edge of CLK. This signal   must be asserted LOW to conduct a byte write.   Input-   Clock   Clock Input. Used to capture all synchronous inputs to the device. Also used to increment   the burst counter when ADV is asserted LOW, during a burst operation.   CE   Input-   Synchronous   Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction   1 with CE and CE to select/deselect the device. ADSP is ignored if CE is HIGH. CE is   2 3 1 1 sampled only when a new external address is loaded.   Document #: 38-05383 Rev. *E   Page 6 of 31   CY7C1440AV33   CY7C1442AV33   CY7C1446AV33   Pin Definitions (continued)   Name   I/O   Description   Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK. Used in conjunction   with CE and CE to select/deselect the device. CE is sampled only when a new external   CE   Input-   Synchronous   2 3 1 3 2 address is loaded.   Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction   with CE and CE to select/deselect the device. Not available for AJ package version. Not   CE   Input-   Synchronous   1 2 connected for BGA. Where referenced, CE is assumed active throughout this document   3 for BGA. CE is sampled only when a new external address is loaded.   3 OE   Input-   Output Enable, asynchronous input, active LOW. Controls the direction of the I/O pins.   Asynchronous When LOW, the I/O pins behave as outputs. When deasserted HIGH, I/O pins are tri-stated,   and act as input data pins. OE is masked during the first clock of a read cycle when emerging   from a deselected state.   ADV   Input-   Synchronous   Advance Input signal, sampled on the rising edge of CLK, active LOW. When asserted,   it automatically increments the address in a burst cycle.   ADSP   Input-   Synchronous   Address Strobe from Processor, sampled on the rising edge of CLK, active LOW.   When asserted LOW, addresses presented to the device are captured in the address   registers. A1: A0 are also loaded into the burst counter. When ADSP and ADSC are both   asserted, only ADSP is recognized. ASDP is ignored when CE is deasserted HIGH.   1 ADSC   Input-   Synchronous   Address Strobe from Controller, sampled on the rising edge of CLK, active LOW.   When asserted LOW, addresses presented to the device are captured in the address   registers. A1: A0 are also loaded into the burst counter. When ADSP and ADSC are both   asserted, only ADSP is recognized.   ZZ   Input-   ZZ “sleep” Input, active HIGH. When asserted HIGH places the device in a   Asynchronous non-time-critical “sleep” condition with data integrity preserved. For normal operation, this   pin has to be LOW or left floating. ZZ pin has an internal pull-down.   I/O-   Synchronous   Bidirectional Data I/O lines. As inputs, they feed into an on-chip data register that is   triggered by the rising edge of CLK. As outputs, they deliver the data contained in the   DQs, DQP   X memory location specified by the addresses presented during the previous   clock rise of the   read cycle. The direction of the pins is controlled by OE. When OE is asserted LOW, the   pins behave as outputs. When HIGH, DQs and DQP are placed in a tri-state condition.   X V V V V Power Supply Power supply inputs to the core of the device.   DD   Ground   Ground for the core of the device.   SS   I/O Ground   Ground for the I/O circuitry.   SSQ   DDQ   I/O Power Supply Power supply for the I/O circuitry.   MODE   TDO   TDI   Input-   Static   Selects Burst Order. When tied to GND selects linear burst sequence. When tied to V   DD   or left floating selects interleaved burst sequence. This is a strap pin and should remain   static during device operation. Mode Pin has an internal pull-up.   JTAG serial   output   Synchronous   Serial data-out to the JTAG circuit. Delivers data on the negative edge of TCK. If the   JTAG feature is not being utilized, this pin should be disconnected. This pin is not available   on TQFP packages.   JTAG serial input Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG feature   Synchronous   is not being utilized, this pin can be disconnected or connected to V . This pin is not   DD   available on TQFP packages.   TMS   JTAG serial input Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG feature   Synchronous   is not being utilized, this pin can be disconnected or connected to V . This pin is not   DD   available on TQFP packages.   TCK   NC   JTAG-   Clock   Clock input to the JTAG circuitry. If the JTAG feature is not being utilized, this pin must   be connected to V . This pin is not available on TQFP packages.   SS   – – No Connects. Not internally connected to the die   NC/72M,   NC/144M,   NC/288M,   NC/576M,   NC/1G   No Connects. Not internally connected to the die. NC/72M, NC/144M, NC/288M, NC/576M   and NC/1G are address expansion pins are not internally connected to the die.   Document #: 38-05383 Rev. *E   Page 7 of 31   CY7C1440AV33   CY7C1442AV33   CY7C1446AV33   then the Write operation is controlled by BWE and BW   signals.   Functional Overview   X All synchronous inputs pass through input registers controlled   by the rising edge of the clock. All data outputs pass through   output registers controlled by the rising edge of the clock.   The   CY7C1440AV33/CY7C1442AV33/CY7C1446AV33   provides Byte Write capability that is described in the Write   Cycle Descriptions table. Asserting the Byte Write Enable   input (BWE) with the selected Byte Write (BW ) input, will   selectively write to only the desired bytes. Bytes not selected   during a Byte Write operation will remain unaltered. A   synchronous self-timed Write mechanism has been provided   to simplify the Write operations.   Maximum access delay from the clock rise (t ) is 2.6ns   CO   X (250-MHz device).   The   CY7C1440AV33/CY7C1442AV33/CY7C1446AV33   supports secondary cache in systems utilizing either a linear   or interleaved burst sequence. The interleaved burst order   supports Pentium and i486™ processors. The linear burst   sequence is suited for processors that utilize a linear burst   sequence. The burst order is user selectable, and is deter-   mined by sampling the MODE input. Accesses can be initiated   with either the Processor Address Strobe (ADSP) or the   Controller Address Strobe (ADSC). Address advancement   through the burst sequence is controlled by the ADV input. A   two-bit on-chip wraparound burst counter captures the first   address in a burst sequence and automatically increments the   address for the rest of the burst access.   Because CY7C1440AV33/CY7C1442AV33/CY7C1446AV33   is a common I/O device, the Output Enable (OE) must be   deasserted HIGH before presenting data to the DQs inputs.   Doing so will tri-state the output drivers. As a safety   precaution, DQs are automatically tri-stated whenever a Write   cycle is detected, regardless of the state of OE.   Single Write Accesses Initiated by ADSC   ADSC Write accesses are initiated when the following condi-   tions are satisfied: (1) ADSC is asserted LOW, (2) ADSP is   deserted HIGH, (3) CE , CE , CE are all asserted active, and   (4) the appropriate combination of the Write inputs (GW, BWE,   and BW ) are asserted active to conduct a Write to the desired   byte(s). ADSC-triggered Write accesses require a single clock   cycle to complete. The address presented to A is loaded into   the address register and the address advancement logic while   being delivered to the memory array. The ADV input is ignored   during this cycle. If a global Write is conducted, the data   presented to the DQs is written into the corresponding address   location in the memory core. If a Byte Write is conducted, only   the selected bytes are written. Bytes not selected during a   Byte Write operation will remain unaltered. A synchronous   self-timed Write mechanism has been provided to simplify the   Write operations.   Byte Write operations are qualified with the Byte Write Enable   1 2 3 (BWE) and Byte Write Select (BW ) inputs. A Global Write   X Enable (GW) overrides all Byte Write inputs and writes data to   all four bytes. All writes are simplified with on-chip   synchronous self-timed Write circuitry.   X Three synchronous Chip Selects (CE , CE , CE ) and an   1 2 3 asynchronous Output Enable (OE) provide for easy bank   selection and output tri-state control. ADSP is ignored if CE   1 is HIGH.   Single Read Accesses   This access is initiated when the following conditions are   satisfied at clock rise: (1) ADSP or ADSC is asserted LOW,   (2) CE , CE , CE are all asserted active, and (3) the Write   1 2 3 signals (GW, BWE) are all deserted HIGH. ADSP is ignored if   Because CY7C1440AV33/CY7C1442AV33/CY7C1446AV33   is a common I/O device, the Output Enable (OE) must be   deasserted HIGH before presenting data to the DQs inputs.   Doing so will tri-state the output drivers. As a safety   precaution, DQs are automatically tri-stated whenever a Write   cycle is detected, regardless of the state of OE.   CE is HIGH. The address presented to the address inputs (A)   1 is stored into the address advancement logic and the Address   Register while being presented to the memory array. The   corresponding data is allowed to propagate to the input of the   Output Registers. At the rising edge of the next clock the data   is allowed to propagate through the output register and onto   the data bus within 2.6 ns (250-MHz device) if OE is active   LOW. The only exception occurs when the SRAM is emerging   from a deselected state to a selected state, its outputs are   always tri-stated during the first cycle of the access. After the   first cycle of the access, the outputs are controlled by the OE   signal. Consecutive single Read cycles are supported. Once   the SRAM is deselected at clock rise by the chip select and   either ADSP or ADSC signals, its output will tri-state immedi-   ately.   Burst Sequences   The   CY7C1440AV33/CY7C1442AV33/CY7C1446AV33   provides a two-bit wraparound counter, fed by A1: A0, that   implements either an interleaved or linear burst sequence. The   interleaved burst sequence is designed specifically to support   Intel Pentium applications. The linear burst sequence is   designed to support processors that follow a linear burst   sequence. The burst sequence is user selectable through the   MODE input. Asserting ADV LOW at clock rise will automati-   cally increment the burst counter to the next address in the   burst sequence. Both Read and Write burst operations are   supported.   Single Write Accesses Initiated by ADSP   This access is initiated when both of the following conditions   are satisfied at clock rise: (1) ADSP is asserted LOW, and   Sleep Mode   (2) CE , CE , CE are all asserted active. The address   1 2 3 presented to A is loaded into the address register and the   address advancement logic while being delivered to the   The ZZ input pin is an asynchronous input. Asserting ZZ   places the SRAM in a power conservation “sleep” mode. Two   clock cycles are required to enter into or exit from this “sleep”   mode. While in this mode, data integrity is guaranteed.   Accesses pending when entering the “sleep” mode are not   considered valid nor is the completion of the operation   guaranteed. The device must be deselected prior to entering   memory array. The Write signals (GW, BWE, and BW ) and   X ADV inputs are ignored during this first cycle.   ADSP-triggered Write accesses require two clock cycles to   complete. If GW is asserted LOW on the second clock rise, the   data presented to the DQs inputs is written into the corre-   sponding address location in the memory array. If GW is HIGH,   the   “sleep” mode. CE , CE , CE , ADSP, and ADSC must   1 2 3 remain inactive for the duration of t   returns LOW.   after the ZZ input   Page 8 of 31   ZZREC   Document #: 38-05383 Rev. *E   CY7C1440AV33   CY7C1442AV33   CY7C1446AV33   Interleaved Burst Address Table   (MODE = Floating or VDD   Linear Burst Address Table (MODE = GND)   ) First   Second   Address   A1: A0   Third   Address   A1: A0   Fourth   Address   A1: A0   First   Second   Address   A1: A0   Third   Address   A1: A0   Fourth   Address   A1: A0   Address   A1: A0   Address   A1: A0   00   01   10   11   01   10   11   00   10   11   00   01   11   00   01   10   00   01   10   11   01   00   11   10   10   11   00   01   11   10   01   00   ZZ Mode Electrical Characteristics   Parameter   Description   Sleep mode standby current   Device operation to ZZ   ZZ recovery time   Test Conditions   ZZ > V – 0.2V   Min.   Max.   100   Unit   mA   ns   I t t t t DDZZ   DD   ZZ > V – 0.2V   2t   ZZS   DD   CYC   ZZ < 0.2V   2t   ns   ZZREC   ZZI   CYC   ZZ Active to sleep current   This parameter is sampled   This parameter is sampled   2t   ns   CYC   ZZ Inactive to exit sleep current   0 ns   RZZI   Truth Table [2, 3, 4, 5, 6, 7]   Operation   Add. Used CE   CE   X L CE ZZ ADSP ADSC ADV WRITE OE CLK   DQ   1 2 3 Deselect Cycle, Power Down   Deselect Cycle, Power Down   Deselect Cycle, Power Down   Deselect Cycle, Power Down   Deselect Cycle, Power Down   Sleep Mode, Power Down   READ Cycle, Begin Burst   READ Cycle, Begin Burst   WRITE Cycle, Begin Burst   READ Cycle, Begin Burst   READ Cycle, Begin Burst   READ Cycle, Continue Burst   READ Cycle, Continue Burst   READ Cycle, Continue Burst   READ Cycle, Continue Burst   WRITE Cycle, Continue Burst   WRITE Cycle, Continue Burst   READ Cycle, Suspend Burst   None   None   H L X X H X H X L L L L L L H L L L L L L L L L L L L X L L X X L X X X X X X X X X X X L X X X X X X X X L X X X X X X L L-H Tri-State   L-H Tri-State   L-H Tri-State   L-H Tri-State   L-H Tri-State   None   L X L L None   L H H X L None   L X X H H H H H X X X X X X X L None   X L X X X L X Tri-State   Q External   External   External   External   External   Next   L-H   L L L H X L L-H Tri-State   L L H H H H H X X H X H L-H   L-H   D Q L L L H H H H H H L L L L H L L-H Tri-State   L-H   L-H Tri-State   L-H   L-H Tri-State   X X H H X H X X X X X X X X H H H H H H H Q Next   L H L Next   L Q Next   L H X X L Next   L L-H   L-H   L-H   D D Q Next   L L Current   H H Notes:   2. X = “Don't Care.” H = Logic HIGH, L = Logic LOW.   3. WRITE = L when any one or more Byte Write enable signals and BWE = L or GW = L. WRITE = H when all Byte write enable signals, BWE, GW = H.   4. The DQ pins are controlled by the current cycle and the signal. is asynchronous and is not sampled with the clock.   OE   OE   5. CE , CE , and CE are available only in the TQFP package. BGA package has only 2 chip selects CE and CE .   1 2 3 1 2 6. The SRAM always initiates a read cycle when ADSP is asserted, regardless of the state of GW, BWE, or BW . Writes may occur only on subsequent clocks   X after the ADSP or with the assertion of ADSC. As a result, OE must be driven HIGH prior to the start of the write cycle to allow the outputs to tri-state. OE is a   don't care for the remainder of the write cycle.   7. OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle all data bits are Tri-State when OE is   inactive or when the device is deselected, and all data bits behave as output when OE is active (LOW).   Document #: 38-05383 Rev. *E   Page 9 of 31   CY7C1440AV33   CY7C1442AV33   CY7C1446AV33   [2, 3, 4, 5, 6, 7]   Truth Table (continued)   Operation   Add. Used CE   CE   X CE ZZ ADSP ADSC ADV WRITE OE CLK   DQ   1 2 3 READ Cycle, Suspend Burst   READ Cycle, Suspend Burst   READ Cycle, Suspend Burst   WRITE Cycle, Suspend Burst   WRITE Cycle, Suspend Burst   Current   Current   Current   Current   Current   X H H X H X X X X X L L L L L H X X H X H H H H H H H H H H H H H L H L L-H Tri-State   X L-H   Q X H X X L-H Tri-State   X L-H   L-H   D D X L Truth Table for Read/Write[4,8,9]   Function (CY7C1440AV33)   GW   H H H H H H H H H H H H H H H H H L BWE   H L BW   X H H H H H H H H L BW   BW   X H H L BW   A D C B Read   Read   X H H H H L X H L Write Byte A – (DQ and DQP )   L A A Write Byte B – (DQ and DQP )   L H L B B Write Bytes B, A   Write Byte C – (DQ and DQP )   L L L H H L H L C C Write Bytes C, A   Write Bytes C, B   Write Bytes C, B, A   L L L L H L L L L Write Byte D – (DQ and DQP )   L H H H H L H H L H L D D Write Bytes D, A   Write Bytes D, B   Write Bytes D, B, A   Write Bytes D, C   L L L L H L L L L L L H H L H L Write Bytes D, C, A   Write Bytes D, C, B   Write All Bytes   L L L L L L H L L L L L Write All Bytes   X X X X X Truth Table for Read/Write[4, 8, 9]   Function (CY7C1442AV33)   GW   H BWE   BW   X BW   A B Read   Read   H L L L L L X X H L H H H L Write Byte A – (DQ and DQP )   H A A Write Byte B – (DQ and DQP )   H H L B B Write Bytes B, A   Write All Bytes   Write All Bytes   H L H L L L X X Notes:   8. BW represents any byte write signal. To enable any byte write BW , a Logic LOW signal should be applied at clock rise.Any number of bye writes can be enabled   x x at the same time for any given write.   9. Table only lists a partial listing of the byte write combinations. Any combination of BW is valid. Appropriate write will be done based on which byte write is active.   X Document #: 38-05383 Rev. *E   Page 10 of 31   CY7C1440AV33   CY7C1442AV33   CY7C1446AV33   Truth Table for Read/Write[4, 8, 9]   Function (CY7C1446AV33)   GW   H BWE   BW   X Read   Read   H L L L X X H All BW = H   Write Byte x – (DQ and DQP )   H L All BW = L   X x x Write All Bytes   Write All Bytes   H L Test Access Port (TAP)   IEEE 1149.1 Serial Boundary Scan (JTAG)   Test Clock (TCK)   The CY7C1440AV33/CY7C1442AV33/CY7C1446AV33 incor-   porates a serial boundary scan test access port (TAP). This   part is fully compliant with IEEE Standard 1149.1. The TAP   operates using JEDEC-standard 3.3V or 2.5V I/O logic levels.   The test clock is used only with the TAP controller. All inputs   are captured on the rising edge of TCK. All outputs are driven   from the falling edge of TCK.   The CY7C1440AV33/CY7C1442AV33/CY7C1446AV33 contains   a TAP controller, instruction register, boundary scan register,   bypass register, and ID register.   Test MODE SELECT (TMS)   The TMS input is used to give commands to the TAP controller   and is sampled on the rising edge of TCK. It is allowable to   leave this ball unconnected if the TAP is not used. The ball is   pulled up internally, resulting in a logic HIGH level.   Disabling the JTAG Feature   It is possible to operate the SRAM without using the JTAG   feature. To disable the TAP controller, TCK must be tied LOW   Test Data-In (TDI)   (V ) to prevent clocking of the device. TDI and TMS are inter-   SS   nally pulled up and may be unconnected. They may alternately   The TDI ball is used to serially input information into the   registers and can be connected to the input of any of the   registers. The register between TDI and TDO is chosen by the   instruction that is loaded into the TAP instruction register. TDI   is internally pulled up and can be unconnected if the TAP is   unused in an application. TDI is connected to the most signif-   icant bit (MSB) of any register. (See Tap Controller Block   Diagram.)   be connected to V through a pull-up resistor. TDO should be   DD   left unconnected. Upon power-up, the device will come up in   a reset state which will not interfere with the operation of the   device.   TAP Controller State Diagram   TEST-LOGIC   1 RESET   0 Test Data-Out (TDO)   1 1 1 The TDO output ball is used to serially clock data-out from the   registers. The output is active depending upon the current   state of the TAP state machine. The output changes on the   falling edge of TCK. TDO is connected to the least significant   bit (LSB) of any register. (See Tap Controller State Diagram.)   RUN-TEST/   IDLE   SELECT   DR-SCAN   SELECT   IR-SCAN   0 0 0 1 1 CAPTURE-DR   CAPTURE-IR   0 0 SHIFT-DR   0 SHIFT-IR   0 TAP Controller Block Diagram   1 1 0 1 1 EXIT1-DR   EXIT1-IR   Bypass Register   0 0 2 1 0 0 0 PAUSE-DR   0 PAUSE-IR   0 Selection   Circuitry   Instruction Register   31 30 29   Identification Register   1 1 Selection   Circuitry   TDI   TDO   0 0 . . . 2 1 EXIT2-DR   1 EXIT2-IR   1 UPDATE-DR   UPDATE-IR   x . . . . . 2 1 1 0 1 0 Boundary Scan Register   TCK   TMS   The 0/1 next to each state represents the value of TMS at the   rising edge of TCK.   TAP CONTROLLER   Document #: 38-05383 Rev. *E   Page 11 of 31   CY7C1440AV33   CY7C1442AV33   CY7C1446AV33   Performing a TAP Reset   TAP Instruction Set   A RESET is performed by forcing TMS HIGH (V ) for five   DD   Overview   rising edges of TCK. This RESET does not affect the operation   of the SRAM and may be performed while the SRAM is   operating.   Eight different instructions are possible with the three bit   instruction register. All combinations are listed in the   Instruction Codes table. Three of these instructions are listed   as RESERVED and should not be used. The other five instruc-   tions are described in detail below.   At power-up, the TAP is reset internally to ensure that TDO   comes up in a High-Z state.   TAP Registers   Instructions are loaded into the TAP controller during the   Shift-IR state when the instruction register is placed between   TDI and TDO. During this state, instructions are shifted   through the instruction register through the TDI and TDO balls.   To execute the instruction once it is shifted in, the TAP   controller needs to be moved into the Update-IR state.   Registers are connected between the TDI and TDO balls and   allow data to be scanned into and out of the SRAM test   circuitry. Only one register can be selected at a time through   the instruction register. Data is serially loaded into the TDI ball   on the rising edge of TCK. Data is output on the TDO ball on   the falling edge of TCK.   IDCODE   Instruction Register   The IDCODE instruction causes a vendor-specific, 32-bit code   to be loaded into the instruction register. It also places the   instruction register between the TDI and TDO balls and allows   the IDCODE to be shifted out of the device when the TAP   controller enters the Shift-DR state.   Three-bit instructions can be serially loaded into the instruction   register. This register is loaded when it is placed between the   TDI and TDO balls as shown in the Tap Controller Block   Diagram. Upon power-up, the instruction register is loaded   with the IDCODE instruction. It is also loaded with the IDCODE   instruction if the controller is placed in a reset state as   described in the previous section.   The IDCODE instruction is loaded into the instruction register   upon power-up or whenever the TAP controller is given a test   logic reset state.   When the TAP controller is in the Capture-IR state, the two   least significant bits are loaded with a binary “01” pattern to   allow for fault isolation of the board-level serial test data path.   SAMPLE Z   The SAMPLE Z instruction causes the boundary scan register   to be connected between the TDI and TDO pins when the TAP   controller is in a Shift-DR state. The SAMPLE Z command puts   the output bus into a High-Z state until the next command is   given during the “Update IR” state.   Bypass Register   To save time when serially shifting data through registers, it is   sometimes advantageous to skip certain chips. The bypass   register is a single-bit register that can be placed between the   TDI and TDO balls. This allows data to be shifted through the   SRAM with minimal delay. The bypass register is set LOW   SAMPLE/PRELOAD   SAMPLE/PRELOAD is a 1149.1 mandatory instruction. When   the SAMPLE/PRELOAD instructions are loaded into the in-   struction register and the TAP controller is in the Capture-DR   state, a snapshot of data on the inputs and output pins is cap-   tured in the boundary scan register.   (V ) when the BYPASS instruction is executed.   SS   Boundary Scan Register   The boundary scan register is connected to all the input and   bidirectional balls on the SRAM.   The user must be aware that the TAP controller clock can only   operate at a frequency up to 20 MHz, while the SRAM clock   operates more than an order of magnitude faster. Because   there is a large difference in the clock frequencies, it is possi-   ble that during the Capture-DR state, an input or output will   undergo a transition. The TAP may then try to capture a signal   while in transition (metastable state). This will not harm the   device, but there is no guarantee as to the value that will be   captured. Repeatable results may not be possible.   The boundary scan register is loaded with the contents of the   RAM I/O ring when the TAP controller is in the Capture-DR   state and is then placed between the TDI and TDO balls when   the controller is moved to the Shift-DR state. The EXTEST,   SAMPLE/PRELOAD and SAMPLE Z instructions can be used   to capture the contents of the I/O ring.   The Boundary Scan Order tables show the order in which the   bits are connected. Each bit corresponds to one of the bumps   on the SRAM package. The MSB of the register is connected   to TDI, and the LSB is connected to TDO.   To guarantee that the boundary scan register will capture the   correct value of a signal, the SRAM signal must be stabilized   long enough to meet the TAP controller's capture set-up plus   hold times (t and t ). The SRAM clock input might not be   Identification (ID) Register   CS   CH   captured correctly if there is no way in a design to stop (or   slow) the clock during a SAMPLE/PRELOAD instruction. If this   is an issue, it is still possible to capture all other signals and   simply ignore the value of the CK and CK captured in the   boundary scan register.   The ID register is loaded with a vendor-specific, 32-bit code   during the Capture-DR state when the IDCODE command is   loaded in the instruction register. The IDCODE is hardwired   into the SRAM and can be shifted out when the TAP controller   is in the Shift-DR state. The ID register has a vendor code and   other information described in the Identification Register   Definitions table.   Once the data is captured, it is possible to shift out the data by   putting the TAP into the Shift-DR state. This places the bound-   ary scan register between the TDI and TDO pins.   PRELOAD allows an initial data pattern to be placed at the   latched parallel outputs of the boundary scan register cells pri-   or to the selection of another boundary scan test operation.   Document #: 38-05383 Rev. *E   Page 12 of 31   CY7C1440AV33   CY7C1442AV33   CY7C1446AV33   The shifting of data for the SAMPLE and PRELOAD phases   can occur concurrently when required—that is, while data   captured is shifted out, the preloaded data can be shifted in.   The boundary scan register has a special bit located at, bit #89   (for 165-FBGA package) or bit #138 (for 209-FBGA package).   When this scan cell, called the “extest output bus tri-state”, is   latched into the preload register during the “Update-DR” state   in the TAP controller, it will directly control the state of the   output (Q-bus) pins, when the EXTEST is entered as the   current instruction. When HIGH, it will enable the output   buffers to drive the output bus. When LOW, this bit will place   the output bus into a High-Z condition.   BYPASS   When the BYPASS instruction is loaded in the instruction   register and the TAP is placed in a Shift-DR state, the bypass   register is placed between the TDI and TDO pins. The   advantage of the BYPASS instruction is that it shortens the   boundary scan path when multiple devices are connected   together on a board.   This bit can be set by entering the SAMPLE/PRELOAD or   EXTEST command, and then shifting the desired bit into that   cell, during the “Shift-DR” state. During “Update-DR”, the value   loaded into that shift-register cell will latch into the preload   register. When the EXTEST instruction is entered, this bit will   directly control the output Q-bus pins. Note that this bit is   pre-set HIGH to enable the output when the device is   powered-up, and also when the TAP controller is in the   “Test-Logic-Reset” state.   EXTEST   The EXTEST instruction enables the preloaded data to be   driven out through the system output pins. This instruction also   selects the boundary scan register to be connected for serial   access between the TDI and TDO in the shift-DR controller   state.   EXTEST OUTPUT BUS TRI-STATE   Reserved   IEEE Standard 1149.1 mandates that the TAP controller be   able to put the output bus into a tri-state mode.   These instructions are not implemented but are reserved for   future use. Do not use these instructions.   TAP Timing   1 2 3 4 5 6 Test Clock   (TCK)   t t t TH   CYC   TL   t t t t TMSS   TDIS   TMSH   Test Mode Select   (TMS)   TDIH   Test Data-In   (TDI)   t TDOV   t TDOX   Test Data-Out   (TDO)   DON’T CARE   UNDEFINED   Document #: 38-05383 Rev. *E   Page 13 of 31   CY7C1440AV33   CY7C1442AV33   CY7C1446AV33   [10, 11]   TAP AC Switching Characteristics Over the operating Range   Parameter   Clock   Description   Min.   Max.   Unit   t t t t TCK Clock Cycle Time   TCK Clock Frequency   TCK Clock HIGH time   TCK Clock LOW time   50   ns   MHz   ns   TCYC   TF   20   20   20   TH   ns   TL   Output Times   t t TCK Clock LOW to TDO Valid   TCK Clock LOW to TDO Invalid   10   ns   ns   TDOV   TDOX   0 Set-up Times   t t t TMS Set-up to TCK Clock Rise   TDI Set-up to TCK Clock Rise   Capture Set-up to TCK Rise   5 5 5 ns   ns   ns   TMSS   TDIS   CS   Hold Times   t t t TMS Hold after TCK Clock Rise   TDI Hold after Clock Rise   5 5 5 ns   ns   ns   TMSH   TDIH   CH   Capture Hold after Clock Rise   3.3V TAP AC Test Conditions   2.5V TAP AC Test Conditions   Input pulse levels ............................................... V to 3.3V   Input pulse levels.................................................V to 2.5V   SS   SS   Input rise and fall times...................... ..............................1ns   Input timing reference levels...........................................1.5V   Output reference levels...................................................1.5V   Test load termination supply voltage...............................1.5V   Input rise and fall time .....................................................1 ns   Input timing reference levels................... ......................1.25V   Output reference levels .................. ..............................1.25V   Test load termination supply voltage .................... ........1.25V   3.3V TAP AC Output Load Equivalent   2.5V TAP AC Output Load Equivalent   1.5V   1.25V   50Ω   50Ω   TDO   TDO   ZO= 50Ω   ZO= 50Ω   20pF   20pF   Notes:   10. t and t refer to the set-up and hold time requirements of latching data from the boundary scan register.   CS   CH   11. Test conditions are specified using the load in TAP AC test Conditions. t /t = 1 ns.   R F Document #: 38-05383 Rev. *E   Page 14 of 31   CY7C1440AV33   CY7C1442AV33   CY7C1446AV33   TAP DC Electrical Characteristics And Operating Conditions   [12]   (0°C < TA < +70°C; V = 3.135 to 3.6V unless otherwise noted)   DD   Parameter   Description   Test Conditions   Min.   2.4   2.0   2.9   2.1   Max.   Unit   V V V V V V V Output HIGH Voltage   I I I = –4.0 mA, V   = –1.0 mA, V   = –100 µA   = 3.3V   = 2.5V   OH1   OH   OH   OH   DDQ   DDQ   V Output HIGH Voltage   Output LOW Voltage   Output LOW Voltage   Input HIGH Voltage   Input LOW Voltage   Input Load Current   V V V V V V V V V V = 3.3V   = 2.5V   = 3.3V   = 2.5V   = 3.3V   = 2.5V   = 3.3V   = 2.5V   = 3.3V   = 2.5V   V OH2   OL1   OL2   IH   DDQ   DDQ   DDQ   DDQ   DDQ   DDQ   DDQ   DDQ   DDQ   DDQ   V I I I = 8.0 mA   = 1.0 mA   = 100 µA   0.4   0.4   0.2   0.2   V OL   OL   OL   V V V 2.0   1.7   V V + 0.3   V DD   DD   + 0.3   V –0.3   –0.3   –5   0.8   V IL   0.7   5 V I GND < V < V   DDQ   µA   X IN   Identification Register Definitions   CY7C1440AV33 CY7C1442AV33 CY7C1446AV33   Instruction Field   (1M x 36)   (2M x 18)   (512K x 72)   Description   Revision Number (31:29)   000   000   000   Describes the version number.   Reserved for Internal Use   [13]   Device Depth (28:24)   01011   01011   01011   Architecture/Memory Type(23:18)   000000   000000   000000   Defines memory type and   architecture   Bus Width/Density(17:12)   100111   010111   110111   Defines width and density   Cypress JEDEC ID Code (11:1)   00000110100   00000110100   00000110100 Allows unique identification of   SRAM vendor.   ID Register Presence Indicator (0)   1 1 1 Indicates the presence of an ID   register.   Scan Register Sizes   Register Name   Bit Size (x36)   Bit Size (x18)   Bit Size (x72)   Instruction   Bypass   ID   3 1 3 1 3 1 32   89   – 32   89   – 32   – Boundary Scan Order (165-ball FBGA package)   Boundary Scan Order (209-ball FBGA package)   138   Identification Codes   Instruction   EXTEST   Code   000   Description   Captures the I/O ring contents.   IDCODE   001   Loads the ID register with the vendor ID code and places the register between TDI and   TDO. This operation does not affect SRAM operations.   SAMPLE Z   RESERVED   010   011   Captures I/O ring contents. Places the boundary scan register between TDI and TDO.   Forces all SRAM output drivers to a High-Z state.   Do Not Use: This instruction is reserved for future use.   Notes:   12. All voltages referenced to V (GND).   SS   13. Bit #24 is “1” in the ID Register Definitions for both 2.5V and 3.3V versions of this device.   Document #: 38-05383 Rev. *E   Page 15 of 31   CY7C1440AV33   CY7C1442AV33   CY7C1446AV33   Identification Codes (continued)   Instruction   Code   Description   SAMPLE/PRELOAD   100   Captures I/O ring contents. Places the boundary scan register between TDI and TDO.   Does not affect SRAM operation.   RESERVED   RESERVED   BYPASS   101   110   111   Do Not Use: This instruction is reserved for future use.   Do Not Use: This instruction is reserved for future use.   Places the bypass register between TDI and TDO. This operation does not affect SRAM   operations.   165-ball FBGA Boundary Scan Order [14,15]   CY7C1440AV33 (1M x 36), CY7C1442AV33 (2M x 18)   Bit #   1 ball ID   Bit #   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   ball ID   E11   D11   G10   F10   E10   D10   C11   A11   B11   A10   B10   A9   Bit #   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   ball ID   A3   A2   B2   C2   B1   A1   C1   D1   E1   F1   Bit #   76   77   78   79   80   81   82   83   84   85   86   87   88   89   ball ID   N1   N6   N7   2 N2   3 N10   P11   P8   P1   4 R1   5 R2   6 R8   P3   7 R9   R3   8 P9   P2   9 P10   R10   R11   H11   N11   M11   L11   K11   J11   M10   L10   K10   J10   H9   R4   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   P4   G1   D2   E2   F2   N5   P6   B9   R6   C10   A8   Internal   G2   H1   H3   J1   B8   A7   B7   B6   K1   L1   A6   M1   J2   B5   A5   A4   B4   B3   H10   G11   F11   K2   L2   M2   Notes:   14. Balls that are NC (No Connect) are preset LOW.   15. Bit# 89 is preset HIGH.   Document #: 38-05383 Rev. *E   Page 16 of 31   CY7C1440AV33   CY7C1442AV33   CY7C1446AV33   [14, 16]   209-ball FBGA Boundary Scan Order   CY7C1446AV33 (512K x 72)   Bit #   1 ball ID   Bit #   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   ball ID   Bit #   71   ball ID   Bit #   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   ball ID   K3   F6   K8   W6   V6   H6   C6   B6   A6   A5   B5   C5   D5   D4   C4   A4   B4   C3   B3   A3   A2   A1   B2   B1   C2   C1   D2   D1   E1   E2   F2   F1   G1   G2   H2   H1   J2   2 72   K4   3 U6   K9   73   K6   4 W7   V7   K10   J11   J10   H11   H10   G11   G10   F11   F10   E10   E11   D11   D10   C11   C10   B11   B10   A11   A10   C9   74   K2   5 75   L2   6 U7   76   L1   7 T7   77   M2   M1   N2   N1   P2   8 V8   78   9 U8   79   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   T8   80   V9   81   U9   82   P1   P6   83   R2   R1   T2   W11   W10   V11   V10   U11   U10   T11   T10   R11   R10   P11   P10   N11   N10   M11   M10   L11   L10   K11   M6   84   85   86   T1   87   U2   U1   V2   88   89   90   V1   91   W2   W1   T6   92   93   B9   94   U3   V3   A9   95   D7   96   T4   C8   97   T5   B8   98   U4   V4   A8   99   D8   100   101   102   103   104   105   5W   5V   C7   B7   5U   Internal   A7   J1   L6   D6   K1   N6   J6   G6   Note:   16. Bit# 138 is preset HIGH.   Document #: 38-05383 Rev. *E   Page 17 of 31   CY7C1440AV33   CY7C1442AV33   CY7C1446AV33   DC Input Voltage ................................... –0.5V to V + 0.5V   Maximum Ratings   DD   Current into Outputs (LOW)......................................... 20 mA   (Above which the useful life may be impaired. For user guide-   lines, not tested.)   Static Discharge Voltage.......................................... > 2001V   (per MIL-STD-883, Method 3015)   Storage Temperature .................................–65°C to +150°C   Latch-up Current.................................................... > 200 mA   Ambient Temperature with   Power Applied.............................................–55°C to +125°C   Operating Range   Supply Voltage on V Relative to GND........ –0.3V to +4.6V   DD   Ambient   Supply Voltage on V   Relative to GND ......–0.3V to +V   Range   Temperature   V V DDQ   DDQ   DD   DD   DC Voltage Applied to Outputs   in Tri-State........................................... –0.5V to V   Commercial 0°C to +70°C 3.3V –5%/+10% 2.5V – 5%   + 0.5V   to V   DDQ   DD   Industrial   –40°C to +85°C   [17, 18]   Electrical Characteristics Over the Operating Range   DC Electrical Characteristics Over the Operating Range   Parameter   Description   Power Supply Voltage   I/O Supply Voltage   Test Conditions   Min.   3.135   3.135   2.375   2.4   Max.   Unit   V V 3.6   DD   V V V V V I for 3.3V I/O   for 2.5V I/O   V V DDQ   DD   2.625   V Output HIGH Voltage   Output LOW Voltage   for 3.3V I/O, I = −4.0 mA   V OH   OL   IH   OH   for 2.5V I/O, I = −1.0 mA   2.0   V OH   for 3.3V I/O, I = 8.0 mA   0.4   0.4   V OL   for 2.5V I/O, I = 1.0 mA   V OL   [17]   Input HIGH Voltage   for 3.3V I/O   for 2.5V I/O   for 3.3V I/O   for 2.5V I/O   2.0   1.7   V V + 0.3V   V DD   DD   + 0.3V   V [17]   Input LOW Voltage   –0.3   –0.3   –5   0.8   V IL   0.7   5 V Input Leakage Current GND ≤ V ≤ V   except ZZ and MODE   µA   X I DDQ   Input Current of MODE Input = V   –30   –5   µA   µA   SS   Input = V   5 DD   Input Current of ZZ   Input = V   Input = V   µA   SS   30   5 µA   DD   I I Output Leakage Current GND ≤ V ≤ V   Output Disabled   –5   µA   OZ   I DDQ,   V Operating Supply   V f = f   = Max., I   = 0 mA,   4-ns cycle, 250 MHz   5-ns cycle, 200 MHz   6-ns cycle, 167 MHz   All speeds   475   425   375   225   mA   mA   mA   mA   DD   DD   DD   OUT   = 1/t   MAX CYC   Current   I I I I Automatic CE   Power-down   Current—TTL Inputs   V = Max, Device Deselected,   DD   SB1   SB2   SB3   SB4   V ≥ V or V ≤ V   IN   IH   IN   IL   f = f   = 1/t   MAX CYC   Automatic CE   Power-down   Current—CMOS Inputs f = 0   V V = Max, Device Deselected,   ≤ 0.3V or V > V – 0.3V,   All speeds   120   200   135   mA   mA   mA   DD   IN   IN   DDQ   Automatic CE   Power-down   Current—CMOS Inputs f = f   V = Max, Device Deselected, or All speeds   DD   V ≤ 0.3V or V > V   – 0.3V   IN   IN   DDQ   = 1/t   MAX   CYC   Automatic CE   Power-down   Current—TTL Inputs   V V = Max, Device Deselected,   All speeds   DD   ≥ V or V ≤ V , f = 0   IN   IH IN IL   Notes:   17. Overshoot: V (AC) < V +1.5V (Pulse width less than t   /2), undershoot: V (AC) > –2V (Pulse width less than t /2).   CYC   IH   DD   CYC   IL   18. T   : Assumes a linear ramp from 0V to V (min.) within 200 ms. During this time V < V and V   < V   Power-up   DD   IH   DD   DDQ DD.   Document #: 38-05383 Rev. *E   Page 18 of 31   CY7C1440AV33   CY7C1442AV33   CY7C1446AV33   Capacitance[19]   100 TQFP   Max.   165 FBGA 209 FBGA   Parameter   Description   Input Capacitance   Test Conditions   Max.   Max.   Unit   pF   C T = 25°C, f = 1 MHz,   6.5   3 7 7 6 5 5 7 IN   A V = 3.3V   = 2.5V   DD   C C Clock Input Capacitance   Input/Output Capacitance   pF   CLK   I/O   V DDQ   5.5   pF   Thermal Resistance[19]   100 TQFP   Package   165 FBGA 209 FBGA   Unit   Parameter   Description   Test Conditions   Package   Package   Θ Θ Thermal Resistance   (Junction to Ambient)   Test conditions follow standard   test methods and procedures   for measuring thermal   25.21   20.8   25.31   °C/W   JA   Thermal Resistance   (Junction to Case)   2.28   3.2   4.48   °C/W   JC   impedance, per EIA/JESD51.   AC Test Loads and Waveforms   3.3V I/O Test Load   R = 317Ω   3.3V   OUTPUT   OUTPUT   ALL INPUT PULSES   90%   VDDQ   90%   10%   Z = 50Ω   0 10%   R = 50Ω   L GND   5 pF   R = 351Ω   INCLUDING   JIG AND   SCOPE   ≤ 1ns   ≤ 1ns   V = 1.5V   T (a)   (b)   (c)   2.5V I/O Test Load   R = 1667Ω   2.5V   OUTPUT   R = 50Ω   OUTPUT   ALL INPUT PULSES   90%   VDDQ   GND   90%   10%   Z = 50Ω   0 10%   L 5 pF   R = 1538Ω   INCLUDING   JIG AND   SCOPE   ≤ 1ns   ≤ 1ns   V = 1.25V   T (a)   (b)   (c)   Note:   19. Tested initially and after any design or process change that may affect these parameters.   Document #: 38-05383 Rev. *E   Page 19 of 31   CY7C1440AV33   CY7C1442AV33   CY7C1446AV33   [24, 25]   Switching Characteristics Over the Operating Range   –250   –200   –167   Parameter   Description   Min.   Max   Min. Max. Min.   Max   Unit   [20]   t V (Typical) to the first Access   1 1 1 ms   POWER   DD   Clock   t t t Clock Cycle Time   Clock HIGH   4.0   1.5   1.5   5 6 ns   ns   ns   CYC   CH   2.0   2.0   2.4   2.4   Clock LOW   CL   Output Times   t t t t t t t Data Output Valid After CLK Rise   Data Output Hold After CLK Rise   2.6   3.2   3.4   ns   ns   ns   ns   ns   ns   ns   CO   1.0   1.0   1.5   1.3   1.5   1.5   DOH   CLZ   [21, 22, 23]   Clock to Low-Z   [21, 22, 23]   Clock to High-Z   2.6   2.6   3.0   3.0   3.4   3.4   CHZ   OEV   OELZ   OEHZ   OE LOW to Output Valid   [21, 22, 23]   OE LOW to Output Low-Z   0 0 0 [21, 22, 23]   OE HIGH to Output High-Z   2.6   3.0   3.4   Set-up Times   t t t t t t Address Set-up Before CLK Rise   ADSC, ADSP Set-up Before CLK Rise   ADV Set-up Before CLK Rise   1.2   1.2   1.2   1.2   1.2   1.2   1.4   1.4   1.4   1.4   1.4   1.4   1.5   1.5   1.5   1.5   1.5   1.5   ns   ns   ns   ns   ns   ns   AS   ADS   ADVS   WES   DS   GW, BWE, BW Set-up Before CLK Rise   X Data Input Set-up Before CLK Rise   Chip Enable Set-up Before CLK Rise   CES   Hold Times   t t t t t t Address Hold After CLK Rise   ADSP, ADSC Hold After CLK Rise   ADV Hold After CLK Rise   0.3   0.3   0.3   0.3   0.3   0.3   0.4   0.4   0.4   0.4   0.4   0.4   0.5   0.5   0.5   0.5   0.5   0.5   ns   ns   ns   ns   ns   ns   AH   ADH   ADVH   WEH   DH   GW, BWE, BW Hold After CLK Rise   X Data Input Hold After CLK Rise   Chip Enable Hold After CLK Rise   CEH   Notes:   20. This part has a voltage regulator internally; t   is the time that the power needs to be supplied above V (minimum) initially before a read or write operation   DD   POWER   can be initiated.   21. t   , t   ,t   , and t   are specified with AC test conditions shown in (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.   CHZ CLZ OELZ   OEHZ   22. At any given voltage and temperature, t   is less than t   and t   is less than t   to eliminate bus contention between SRAMs when sharing the same   OEHZ   OELZ   CHZ   CLZ   data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed   to achieve High-Z prior to Low-Z under the same system conditions.   23. This parameter is sampled and not 100% tested.   24. Timing reference level is 1.5V when V   = 3.3V and is 1.25V when V   = 2.5V.   DDQ   DDQ   25. Test conditions shown in (a) of AC Test Loads unless otherwise noted.   Document #: 38-05383 Rev. *E   Page 20 of 31   CY7C1440AV33   CY7C1442AV33   CY7C1446AV33   Switching Waveforms   [26]   Read Cycle Timing   t CYC   CLK   t t CL   CH   t t ADH   ADS   ADSP   ADSC   t t ADH   ADS   t t AH   AS   A1   A2   A3   ADDRESS   Burst continued with   new base address   t t WEH   WES   GW, BWE,   BWx   Deselect   cycle   t t CEH   CES   CE   t t ADVH   ADVS   ADV   OE   ADV   suspends   burst.   t t OEV   CO   t t OEHZ   t t CHZ   OELZ   DOH   t CLZ   t Q(A2)   Q(A2 + 1)   Q(A2 + 2)   Q(A2 + 3)   Q(A2)   Q(A2 + 1)   Q(A1)   Data Out (Q)   High-Z   CO   Burst wraps around   to its initial state   Single READ   BURST READ   DON’T CARE   UNDEFINED   Note:   26. On this diagram, when CE is LOW: CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH: CE is HIGH or CE is LOW or CE is HIGH.   1 2 3 1 2 3 Document #: 38-05383 Rev. *E   Page 21 of 31   CY7C1440AV33   CY7C1442AV33   CY7C1446AV33   Switching Waveforms (continued)   [26, 27]   Write Cycle Timing   t CYC   CLK   t t CL   CH   t t ADH   ADS   ADSP   ADSC extends burst   t t ADH   ADS   t t ADH   ADS   ADSC   t t AH   AS   A1   A2   A3   ADDRESS   Byte write signals are   ignored for first cycle when   ADSP initiates burst   t t WEH   WES   BWE,   BWX   t t WEH   WES   GW   CE   t t CEH   CES   t t ADVH   ADVS   ADV   OE   ADV suspends burst   t t DH   DS   Data In (D)   D(A2)   D(A2 + 1)   D(A2 + 1)   D(A2 + 2)   D(A2 + 3)   D(A3)   D(A3 + 1)   D(A3 + 2)   D(A1)   High-Z   t OEHZ   Data Out (Q)   BURST READ   Single WRITE   BURST WRITE   Extended BURST WRITE   DON’T CARE   UNDEFINED   Note:   27.   Full width write can be initiated by either GW LOW; or by GW HIGH, BWE LOW and BW LOW.   X Document #: 38-05383 Rev. *E   Page 22 of 31   CY7C1440AV33   CY7C1442AV33   CY7C1446AV33   Switching Waveforms (continued)   [26, 28, 29]   Read/Write Cycle Timing   t CYC   CLK   t t CL   CH   t t ADH   ADS   ADSP   ADSC   t t AH   AS   A1   A2   A3   A4   A5   A6   ADDRESS   t t WEH   WES   BWE,   BWX   t t CEH   CES   CE   ADV   OE   t t DH   t CO   DS   t OELZ   Data In (D)   High-Z   High-Z   D(A3)   D(A5)   D(A6)   t t OEHZ   CLZ   Data Out (Q)   Q(A1)   Q(A2)   Q(A4)   Q(A4+1)   Q(A4+2)   Q(A4+3)   Back-to-Back READs   Single WRITE   BURST READ   Back-to-Back   WRITEs   DON’T CARE   UNDEFINED   Notes:   28. The data bus (Q) remains in high-Z following a Write cycle, unless a new read access is initiated by ADSP or ADSC.   29. GW is HIGH.   Document #: 38-05383 Rev. *E   Page 23 of 31   CY7C1440AV33   CY7C1442AV33   CY7C1446AV33   Switching Waveforms (continued)   [30, 31]   ZZ Mode Timing   CLK   t t ZZ   ZZREC   ZZ   t ZZI   I SUPPLY   I DDZZ   t RZZI   ALL INPUTS   (except ZZ)   DESELECT or READ Only   Outputs (Q)   High-Z   DON’T CARE   Notes:   30. Device must be deselected when entering ZZ mode. See Cycle Descriptions table for all possible signal conditions to deselect the device.   31. DQs are in high-Z when exiting ZZ sleep mode.   Document #: 38-05383 Rev. *E   Page 24 of 31   CY7C1440AV33   CY7C1442AV33   CY7C1446AV33   Ordering Information   Not all of the speed, package and temperature ranges are available. Please contact your local sales representative or   Speed   (MHz)   Package   Diagram   Operating   Range   Ordering Code   Part and Package Type   167 CY7C1440AV33-167AXC   CY7C1442AV33-167AXC   CY7C1440AV33-167BZC   CY7C1442AV33-167BZC   51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free   Commercial   51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)   CY7C1440AV33-167BZXC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Lead-Free   CY7C1442AV33-167BZXC   CY7C1446AV33-167BGC 51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)   CY7C1446AV33-167BGXC   CY7C1440AV33-167AXI   CY7C1442AV33-167AXI   CY7C1440AV33-167BZI   CY7C1442AV33-167BZI   209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Lead-Free   51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free   lndustrial   51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)   CY7C1440AV33-167BZXI 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Lead-Free   CY7C1442AV33-167BZXI   CY7C1446AV33-167BGI   CY7C1446AV33-167BGXI   200 CY7C1440AV33-200AXC   CY7C1442AV33-200AXC   CY7C1440AV33-200BZC   CY7C1442AV33-200BZC   51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)   209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Lead-Free   51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free   Commercial   51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)   CY7C1440AV33-200BZXC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Lead-Free   CY7C1442AV33-200BZXC   CY7C1446AV33-200BGC 51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)   CY7C1446AV33-200BGXC   CY7C1440AV33-200AXI   CY7C1442AV33-200AXI   CY7C1440AV33-200BZI   CY7C1442AV33-200BZI   209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Lead-Free   51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free   lndustrial   51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)   CY7C1440AV33-200BZXI 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Lead-Free   CY7C1442AV33-200BZXI   CY7C1446AV33-200BGI   CY7C1446AV33-200BGXI   51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)   209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Lead-Free   Document #: 38-05383 Rev. *E   Page 25 of 31   CY7C1440AV33   CY7C1442AV33   CY7C1446AV33   Ordering Information (continued)   Not all of the speed, package and temperature ranges are available. Please contact your local sales representative or   Speed   (MHz)   Package   Diagram   Operating   Range   Ordering Code   Part and Package Type   250 CY7C1440AV33-250AXC   CY7C1442AV33-250AXC   CY7C1440AV33-250BZC   CY7C1442AV33-250BZC   51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free   Commercial   51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)   CY7C1440AV33-250BZXC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Lead-Free   CY7C1442AV33-250BZXC   CY7C1446AV33-250BGC 51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)   CY7C1446AV33-250BGXC   CY7C1440AV33-250AXI   CY7C1442AV33-250AXI   CY7C1440AV33-250BZI   CY7C1442AV33-250BZI   209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Lead-Free   51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free   Industrial   51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)   CY7C1440AV33-250BZXI 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Lead-Free   CY7C1442AV33-250BZXI   CY7C1446AV33-250BGI   CY7C1446AV33-250BGXI   51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)   209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Lead-Free   Document #: 38-05383 Rev. *E   Page 26 of 31   CY7C1440AV33   CY7C1442AV33   CY7C1446AV33   Package Diagrams   100-pin TQFP (14 x 20 x 1.4 mm) (51-85050)   16.00 0.20   1.40 0.05   14.00 0.10   100   81   80   1 0.30 0.08   0.65   TYP.   12° 1°   (8X)   SEE DETAIL   A 30   51   31   50   0.20 MAX.   1.60 MAX.   R 0.08 MIN.   0.20 MAX.   0° MIN.   SEATING PLANE   STAND-OFF   0.05 MIN.   0.15 MAX.   NOTE:   0.25   1. JEDEC STD REF MS-026   GAUGE PLANE   2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH   MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE   R 0.08 MIN.   0.20 MAX.   BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH   3. DIMENSIONS IN MILLIMETERS   0°-7°   0.60 0.15   0.20 MIN.   51-85050-*B   1.00 REF.   DETAIL   A Document #: 38-05383 Rev. *E   Page 27 of 31   CY7C1440AV33   CY7C1442AV33   CY7C1446AV33   Package Diagrams (continued)   PIN 1 CORNER   BOTTOM VIEW   165-ball FBGA (15 x 17 x 1.4 mm) (51-85165)   TOP VIEW   Ø0.05 M C   PIN 1 CORNER   Ø0.25 M C A B   Ø0.45 0.05(165X)   1 2 3 4 5 6 7 8 9 10   11   11 10   9 8 7 6 5 4 3 2 1 A B A B C D C D E E F F G G H J H J K K L L M M N P R N P R A 1.00   5.00   10.00   B 15.00 0.10   0.15(4X)   51-85165-*A   SEATING PLANE   C Document #: 38-05383 Rev. *E   Page 28 of 31   CY7C1440AV33   CY7C1442AV33   CY7C1446AV33   Package Diagrams (continued)   209-ball FBGA (14 x 22 x 1.76 mm) (51-85167)   51-85167-**   i486 is a trademark, and Intel and Pentium are registered trademarks of Intel Corporation. PowerPC is a trademark of IBM   Corporation. All product and company names mentioned in this document are the trademarks of their respective holders.   Document #: 38-05383 Rev. *E   Page 29 of 31   © Cypress Semiconductor Corporation, 2006. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use   of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be   used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its   products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress   products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.   CY7C1440AV33   CY7C1442AV33   CY7C1446AV33   Document History Page   Document Title: CY7C1440AV33/CY7C1442AV33/CY7C1446AV33 36-Mbit (1M x 36/2M x 18/512K x 72) Pipelined Sync   SRAM   Document Number: 38-05383   Orig. of   REV.   **   ECN NO. Issue Date Change   Description of Change   124437   254910   03/04/03   See ECN   CJM   SYT   New data sheet   *A   Part number changed from previous revision. New and old part number differ   by the letter “A”   Modified Functional Block diagrams   Modified switching waveforms   Added Boundary scan information   Added Footnote #14 (32-Bit Vendor ID Code changed)   Added I , I and I values in the DC Electrical Characteristics   DD   X SB   Added t   specifications in Switching Characteristics table   POWER   Removed 119 PBGA package   Changed 165 FBGA package from BB165C (15 x 17 x 1.20 mm) to BB165   (15 x 17 x 1.40 mm)   Changed 209-Lead PBGA BG209 (14 x 22 x 2.20 mm) to BB209A (14 x 22   x 1.76 mm)   *B   306335   See ECN   SYT   Changed H9 pin from V   FBGA on Page # 6   to V on the Pin Configuration table for 209   SSQ SS   Changed t from 3.0 to 3.2 ns and t   from 1.3 ns to 1.5 ns for 200 Mhz   DOH   CO   speed bin on the Switching Characteristics table on Page # 19   Changed ΘJA and ΘJC from TBD to 25.21 and 2.58 °C/W respectively for   TQFP Package on Pg # 19   Replaced ΘJA and ΘJC from TBD to respective Values for 165 BGA and 209   FBGA Packages on the Thermal Resistance Table   Added lead-free information for 100-pin TQFP, 165 FBGA and 209 FBGA   Packages   Changed IDD from 450, 400 and 350 mA to 475, 425 and 375 mA for   frequencies of 250, 200 and 167 MHz respectively   Changed ISB1 from 190, 180 and 170 mA to 225 mA for frequencies of 250,   200 and 167 MHz respectively   Changed ISB2 from 80 to 100 mA   Changed ISB3 from 180, 170 and 160 mA to 200 mA for frequencies of 250,   200 and 167 MHz respectively   Changed ISB4 from 100 to 110 mA   *C   332173   See ECN   SYT   Modified Address Expansion balls in the pinouts for 165 FBGA and 209   FBGA Package as per JEDEC standards   Modified V   Changed C , C   V test conditions   and C to 7, 7and 6 pF from 5, 5 and 7 pF for 165 FBGA   I/O   OL, OH   IN CLK   Package   Changed I   and I   from 100 and 110 mA to 120 and 135 mA respectively   SB4   SB2   Added Industrial Temperature Grade   Included the missing 100 TQFP Package Diagram   Updated the Ordering Information by Shading and Unshading MPNs as per   availability   *D   417547   See ECN   RXU   Converted from Preliminary to Final   Changed address of Cypress Semiconductor Corporation on Page# 1 from   “3901 North First Street” to “198 Champion Court”   Changed I current value in MODE from –5 & 30 µA to –30 & 5 µA respec-   X tively and also Changed I current value in ZZ from –30 & 5 µA to –5 & 30   X µA respectively on page# 18   Modified test condition in note# 8 from V < V to V < V   IH   DD   IH   DD   Modified “Input Load” to “Input Leakage Current except ZZ and MODE” in the   Electrical Characteristics Table   Replaced Package Name column with Package Diagram in the Ordering   Information table   Replaced Package Diagram of 51-85050 from *A to *B   Updated the Ordering Information   Document #: 38-05383 Rev. *E   Page 30 of 31   CY7C1440AV33   CY7C1442AV33   CY7C1446AV33   Document Title: CY7C1440AV33/CY7C1442AV33/CY7C1446AV33 36-Mbit (1M x 36/2M x 18/512K x 72) Pipelined Sync   SRAM   Document Number: 38-05383   Orig. of   REV.   ECN NO. Issue Date Change   Description of Change   *E   473650   See ECN   VKN   Added the Maximum Rating for Supply Voltage on V   Relative to GND.   DDQ   Changed t , t from 25 ns to 20 ns and t   from 5 ns to 10 ns in TAP   TH TL   TDOV   AC Switching Characteristics table.   Updated the Ordering Information table.   Document #: 38-05383 Rev. *E   Page 31 of 31   |