Cypress CY7C1382C User Manual

CY7C1380C  
CY7C1382C  
18-Mb (512K x 36/1M x 18) Pipelined SRAM  
Features  
Functional Description[1]  
• Supports bus operation up to 250 MHz  
• Available speed grades are 250, 225, 200,166 and  
133MHz  
• Registered inputs and outputs for pipelined operation  
• 3.3V core power supply  
• 2.5V / 3.3V I/O operation  
• Fast clock-to-output times  
— 2.6 ns (for 250-MHz device)  
— 2.8 ns (for 225-MHz device)  
— 3.0 ns (for 200-MHz device)  
— 3.4 ns (for 166-MHz device)  
— 4.2 ns (for 133-MHz device)  
• Provide high-performance 3-1-1-1 access rate  
User-selectable burst counter supporting Intel  
Pentium interleaved or linear burst sequences  
• Separate processor and controller address strobes  
• Synchronous self-timed writes  
The CY7C1380C/CY7C1382C SRAM integrates 524,288 x 36  
and 1,048,576 x 18 SRAM cells with advanced synchronous  
peripheral circuitry and a two-bit counter for internal burst  
operation. All synchronous inputs are gated by registers  
controlled by a positive-edge-triggered Clock Input (CLK). The  
synchronous inputs include all addresses, all data inputs,  
address-pipelining Chip Enable (  
), depth-expansion Chip  
CE  
1
[2]  
Enables (CE and  
), Burst Control inputs (  
,
,
CE  
2
ADSC ADSP  
3
), Write Enables (  
ADV  
, and  
), and Global Write  
and  
BW  
BWE  
X
(
). Asynchronous inputs include the Output Enable (  
GW  
)
OE  
and the ZZ pin.  
Addresses and chip enables are registered at rising edge of  
clock when either Address Strobe Processor ( ) or  
ADSP  
) are active. Subsequent  
Address Strobe Controller (  
ADSC  
burst addresses can be internally generated as controlled by  
the Advance pin ( ).  
®
ADV  
Address, data inputs, and write controls are registered on-chip  
to initiate a self-timed Write cycle.This part supports Byte Write  
operations (see Pin Descriptions and Truth Table for further  
details). Write cycles can be one to two or four bytes wide as  
• Asynchronous output enable  
controlled by the byte write control inputs.  
when active  
GW  
• Single Cycle Chip Deselect  
• Offered in JEDEC-standard 100-pin TQFP, 119-ball BGA  
and 165-Ball fBGA packages  
• IEEE 1149.1 JTAG-Compatible Boundary Scan  
• “ZZ” Sleep Mode Option  
causes all bytes to be written.  
LOW  
The CY7C1380C/CY7C1382C operates from a +3.3V core  
power supply while all outputs may operate with either a +2.5  
or +3.3V supply. All inputs and outputs are JEDEC-standard  
JESD8-5-compatible.  
Selection Guide  
250 MHz  
225 MHz  
2.8  
200 MHz  
3.0  
167 MHz  
3.4  
133 MHz  
4.2  
Unit  
ns  
Maximum Access Time  
2.6  
350  
70  
Maximum Operating Current  
325  
300  
275  
245  
mA  
mA  
Maximum CMOS Standby Current  
Shaded areas contain advance information.  
70  
70  
70  
70  
Please contact your local Cypress sales representative for availability of these parts.  
Notes:  
1. For best–practices recommendations, please refer to the Cypress application note System Design Guidelines on www.cypress.com.  
2. CE , CE are for TQFP and 165 fBGA package only. 119 BGA is offered only in 1 Chip Enable.  
3
2
Cypress Semiconductor Corporation  
Document #: 38-05237 Rev. *D  
3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Revised February 26, 2004  
   
CY7C1380C  
CY7C1382C  
Pin Configurations  
100-pin TQFP Pinout  
DQPC  
1
DQPB  
NC  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
A
NC  
NC  
VDDQ  
VSSQ  
NC  
DQPA  
DQA  
DQA  
VSSQ  
VDDQ  
DQA  
DQA  
VSS  
NC  
1
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DQC  
2
DQB  
NC  
2
DQc  
VDDQ  
VSSQ  
DQC  
DQB  
NC  
3
4
5
3
VDDQ  
VDDQ  
4
VSSQ  
VSSQ  
5
DQB  
NC  
6
6
DQC  
7
DQB  
NC  
7
DQC  
8
DQB  
DQB  
8
9
DQC  
9
DQB  
DQB  
VSSQ  
10  
VSSQ  
VSSQ  
10  
VDDQ  
11  
VDDQ  
VDDQ  
11  
DQC  
12  
DQB  
DQB  
12  
13  
14  
15  
DQC  
13  
DQB  
DQB  
NC  
14  
VSS  
NC  
NC  
VDD  
VDD  
15  
CY7C1382C  
(1M x 18)  
CY7C1380C  
(512K X 36)  
NC  
16  
VDD  
NC  
16  
VDD  
ZZ  
VSS  
17  
ZZ  
DQA  
VSS  
DQB  
17  
18  
19  
DQD  
18  
DQA  
DQA  
VDDQ  
VSSQ  
DQA  
DQA  
NC  
DQD  
19  
DQA  
DQB  
VDDQ  
20  
VDDQ  
VDDQ  
20  
VSSQ  
21  
VSSQ  
VSSQ  
21  
DQD  
22  
DQA  
DQB  
22  
23  
24  
25  
DQD  
23  
DQA  
DQA  
DQB  
DQPB  
DQD  
24  
DQD  
25  
DQA  
NC  
NC  
VSSQ  
26  
VSSQ  
VSSQ  
26  
VSSQ  
VDDQ  
NC  
NC  
NC  
VDDQ  
27  
VDDQ  
VDDQ  
27  
DQD  
28  
DQA  
NC  
28  
DQD  
29  
DQA  
NC  
29  
DQPD  
30  
DQPA  
NC  
30  
Document #: 38-05237 Rev. *D  
Page 3 of 36  
CY7C1380C  
CY7C1382C  
Pin Configurations (continued)  
119-ball BGA (1 Chip Enable with JTAG)  
CY7C1380C (512K x 36)  
1
2
3
4
5
6
7
V
A
A
A
A
V
DDQ  
A
ADSP  
ADSC  
DDQ  
B
C
NC  
NC  
A
A
A
A
A
A
A
A
NC  
NC  
V
DD  
DQ  
DQP  
V
NC  
CE  
V
DQP  
DQ  
B
D
E
F
C
C
SS  
SS  
SS  
SS  
SS  
SS  
B
DQ  
DQ  
DQ  
V
V
V
V
DQ  
DQ  
DQ  
B
C
C
1
B
V
V
DDQ  
OE  
ADV  
GW  
DDQ  
C
B
DQ  
DQ  
DQ  
V
BW  
V
BW  
V
DQ  
DQ  
V
DQ  
G
H
J
C
C
C
C
B
B
B
B
DQ  
DQ  
C
SS  
SS  
B
V
NC  
V
NC  
V
DDQ  
DDQ  
DD  
DD  
DD  
DQ  
DQ  
V
CLK  
NC  
V
DQ  
DQ  
K
D
D
D
SS  
SS  
A
A
A
L
M
N
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
BW  
BW  
D
D
D
A
A
A
D
A
V
V
V
V
V
V
DDQ  
BWE  
A1  
DDQ  
SS  
SS  
SS  
SS  
DQ  
DQ  
D
A
P
R
DQ  
DQP  
A
V
A0  
V
DQP  
A
DQ  
D
D
SS  
SS  
A
NC  
NC  
MODE  
V
NC  
A
NC  
DD  
T
NC / 72M  
TMS  
A
A
A
NC / 36M  
NC  
ZZ  
U
V
TDI  
TCK  
TDO  
V
DDQ  
DDQ  
CY7C1382C (512K x 18)  
2
A
1
3
A
A
A
4
5
A
A
A
6
A
A
A
7
A
B
C
D
E
F
V
V
DDQ  
ADSP  
ADSC  
DDQ  
NC  
A
NC  
NC  
A
V
NC  
NC  
DD  
DQ  
NC  
V
NC  
CE  
V
DQP  
A
B
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
NC  
DQ  
V
V
V
V
V
V
NC  
DQ  
DQ  
B
A
1
V
NC  
V
DDQ  
OE  
ADV  
GW  
DDQ  
A
G
H
J
NC  
DQ  
NC  
DQ  
DQ  
A
BW  
V
B
B
DQ  
NC  
NC  
V
DDQ  
B
SS  
A
V
V
NC  
V
NC  
V
DDQ  
DD  
DD  
DD  
NC  
DQ  
V
CLK  
NC  
V
NC  
DQ  
DQ  
K
L
B
SS  
SS  
A
DQ  
NC  
DQ  
V
NC  
BW  
B
SS  
A
A
V
V
V
V
V
NC  
DQ  
V
DDQ  
M
N
P
BWE  
A1  
DDQ  
B
SS  
SS  
SS  
SS  
DQ  
NC  
V
NC  
DQ  
B
SS  
A
NC  
DQP  
V
A0  
NC  
B
SS  
A
R
T
NC  
A
A
MODE  
A
V
NC  
A
A
A
NC  
ZZ  
DD  
NC / 72M  
NC / 36M  
TCK  
U
V
TMS  
TDI  
TDO  
NC  
V
DDQ  
DDQ  
Document #: 38-05237 Rev. *D  
Page 4 of 36  
CY7C1380C  
CY7C1382C  
Pin Configurations (continued)  
165-ball fBGA  
CY7C1380C (512K x 36)  
1
NC / 288M  
NC  
2
3
4
5
6
7
8
9
10  
A
11  
NC  
A
B
C
D
CE1  
BWC  
BWD  
VSS  
VDD  
BWB  
BWA  
VSS  
VSS  
CE  
ADSC  
A
BWE  
GW  
VSS  
ADV  
ADSP  
VDDQ  
VDDQ  
3
A
CE2  
VDDQ  
VDDQ  
CLK  
VSS  
VSS  
A
NC / 144M  
DQPB  
DQB  
OE  
VSS  
VDD  
DQPC  
DQC  
NC  
NC  
DQC  
VSS  
DQB  
DQC  
DQC  
DQC  
DQC  
VSS  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
DQB  
DQB  
DQB  
NC  
DQB  
E
F
DQC  
DQC  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DQB  
DQB  
ZZ  
G
H
J
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
K
L
DQD  
DQPD  
NC  
DQD  
NC  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
A
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
DQA  
DQPA  
A
M
N
P
NC / 72M  
TDI  
A1  
TDO  
A0  
MODE NC / 36M  
A
A
TMS  
TCK  
A
A
A
A
R
CY7C1382C (1M x 18)  
1
NC / 288M  
NC  
2
A
3
4
5
NC  
6
7
8
9
10  
A
11  
A
A
BWB  
NC  
CE  
CE1  
CE2  
BWE  
GW  
VSS  
ADSC  
OE  
ADV  
ADSP  
VDDQ  
VDDQ  
3
A
BWA  
VSS  
VSS  
CLK  
VSS  
VSS  
A
NC / 144M  
DQPA  
DQA  
B
C
D
NC  
NC  
VDDQ  
VDDQ  
VSS  
VDD  
VSS  
NC  
NC  
NC  
DQB  
VSS  
VDD  
NC  
DQB  
DQB  
DQB  
VSS  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
NC  
NC  
DQA  
E
F
NC  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DQA  
DQA  
ZZ  
NC  
G
H
J
NC  
NC  
DQB  
DQB  
DQB  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQA  
DQA  
DQA  
NC  
NC  
NC  
K
L
NC  
NC  
DQB  
DQPB  
NC  
NC  
NC  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
A
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
NC  
NC  
A
M
N
P
NC / 72M  
TDI  
A1  
TDO  
MODE NC / 36M  
A
A
TMS  
A0  
TCK  
A
A
A
A
R
Document #: 38-05237 Rev. *D  
Page 5 of 36  
CY7C1380C  
CY7C1382C  
CY7C1380C–Pin Definitions  
Name  
A , A , A  
TQFP  
BGA  
fBGA  
I/O  
Description  
Address Inputs used to select one of the  
37,36,32,  
33,34,35,  
42,43,44,45,  
46,47,48,  
49,50,81,  
82,99,100  
P4,N4,  
A2,B2,  
C2,R2,  
R6,P6,A2,  
A10,B2,  
B10,N6,P3,P4,  
P8,P9,P10,  
Input-  
0
1
Synchronous 256Kaddresslocations. Sampledattherising  
edge of the CLK if  
or  
is active  
are sampled  
ADSP ADSC  
[2]  
A3,B3,C3,  
T3,T4,A5,B5, P11,R3,R4,R8,  
C5,  
T5,A6,B6,C6,  
R6  
LOW, and CE , CE , and CE  
1
2
3
active. A1: A0 are fed to the two-bit counter.  
.
R9,R10,R11  
93,94,95,  
96  
L5,G5,  
G3,L3  
B5,A5,A4,  
B4  
Input-  
Synchronous  
Byte Write Select Inputs, active LOW.  
Qualified with BWE to conduct byte writes to the  
SRAM. Sampled on the rising edge of CLK.  
BW BW  
A,  
B
BW BW  
C,  
D
H4  
B7  
Input-  
Global Write Enable Input, active LOW.  
88  
GW  
Synchronous When asserted LOW on the rising edge of CLK,  
a global write is conducted (ALL bytes are  
written, regardless of the values on BW and  
X
BWE).  
87  
89  
M4  
K4  
A7  
B6  
Input-  
Byte Write Enable Input, active LOW. Sam-  
BWE  
CLK  
Synchronous pled on the rising edge of CLK. This signal must  
be asserted LOW to conduct a byte write.  
Input-  
Clock  
Clock Input. Used to capture all synchronous  
inputs to the device. Also used to increment the  
burst counter when ADV is asserted LOW,  
during a burst operation.  
98  
E4  
A3  
Input-  
Chip Enable 1 Input, active LOW. Sampled on  
CE  
1
Synchronous the rising edge of CLK. Used in conjunction with  
CE and CE to select/deselect the device.  
2
3
ADSP is ignored if CE is HIGH.  
1
[2]  
CE  
CE  
97  
92  
-
-
B3  
A6  
Input-  
Chip Enable 2 Input, active HIGH. Sampled  
2
3
Synchronous on the rising edge of CLK. Used in conjunction  
with CE and CE to select/deselect the device.  
1
3
Input-  
Synchronous the rising edge of CLK. Used in conjunction with  
CE and CE to select/deselect the device.Not  
Chip Enable 3 Input, active LOW. Sampled on  
[2]  
1
2
available for AJ package version.  
Not  
connected for BGA. Where referenced, CE is  
3
assumed active throughout this document for  
BGA.  
86  
83  
F4  
B8  
A9  
Input-  
Output Enable, asynchronous input, active  
OE  
Asynchronous LOW. Controls the direction of the I/O pins.  
When LOW, the I/O pins behave as outputs.  
When deasserted HIGH, I/O pins are tri-stated,  
and act as input data pins. OE is masked during  
the first clock of a read cycle when emerging  
from a deselected state.  
G4  
Input-  
Advance Input signal, sampled on the rising  
ADV  
Synchronous edge of CLK, active LOW. When asserted, it  
automatically increments the address in a burst  
cycle.  
Document #: 38-05237 Rev. *D  
Page 6 of 36  
CY7C1380C  
CY7C1382C  
CY7C1380C–Pin Definitions (continued)  
Name  
TQFP  
BGA  
fBGA  
I/O  
Description  
Address Strobe from Processor, sampled  
84  
A4  
B9  
Input-  
ADSP  
Synchronous on therisingedgeof CLK, activeLOW. When  
asserted LOW, addresses presented to the  
device are captured in the address registers.  
A1: A0 are also loaded into the burst counter.  
When ADSP and ADSC are both asserted, only  
ADSP is recognized. ASDP is ignored when  
CE is deasserted HIGH.  
1
B4  
T7  
A8  
Input-  
AddressStrobefromController, sampledon  
85  
64  
ADSC  
Synchronous the rising edge of CLK, active LOW. When  
asserted LOW, addresses presented to the  
device are captured in the address registers.  
A1: A0 are also loaded into the burst counter.  
When ADSP and ADSC are both asserted, only  
ADSP is recognized.  
ZZ  
H11  
Input-  
ZZ “sleep” Input, active HIGH. When  
Asynchronous asserted HIGH places the device in a  
non-time-critical “sleep” condition with data  
integrity preserved. For normal operation, this  
pin has to be LOW or left floating. ZZ pin has an  
internal pull-down.  
52,53,56,  
57,58,59,  
62,63,68,  
69,72,73,  
74,75,78,  
79,2,3,6,7,8,9,  
12,13,18,19,22  
,
K6,L6,  
M6,N6,  
K7,L7,  
N7,P7,  
E6,F6,  
G6,H6,  
D7,E7,  
G7,H7,  
D1,E1,  
G1,H1,  
E2,F2,  
G2,H2,  
K1,L1,  
N1,P1,  
K2,L2,  
M2,N2,  
P6,D6,  
D2,P2  
M11,L11,  
K11,J11,  
I/O-  
Bidirectional Data I/O lines. As inputs, they  
DQs, DQPs  
Synchronous feed into an on-chip data register that is  
triggered by the rising edge of CLK. As outputs,  
they deliver the data contained in the memory  
location specified by the addresses presented  
J10,K10,  
L10,M10,  
D10,E10,  
F10,G10,  
D11,E11,  
F11,G11,  
D1,E1,F1,  
G1,D2,E2,F2,  
G2,J1,  
during the previous  
clock rise of the read cycle.  
The direction of the pins is controlled by OE.  
When OE is asserted LOW, the pins behave as  
23,24,25,  
28,29,51,  
80,1,30  
outputs. When HIGH, DQs and DQP are  
X
placed in a tri-state condition.  
K1,L1,M1,  
J2,K2,L2,  
M2,N11,  
C11,C1,N1  
V
V
15,41,65,  
91  
J2,C4,J4,R4, D4,D8,E4,E8, Power Supply Power supply inputs to the core of the de-  
DD  
J6  
F4,F8,  
G4,G8,H4,H8,  
J4,J8,  
vice.  
K4,K8,L4,  
L8,M4,M8  
17,40,67,  
90  
D3,E3,  
F3,H3,  
K3,M3,  
N3,P3,  
D5,E5,  
F5,H5,  
K5,M5,  
N5,P5  
C4,C5,C6,C7,  
C8,D5,D6,D7,  
E5,E6,E7,F5,  
F6,F7,G5,G6,  
G7,H2,H5,H6,  
H7,J5,J6,J7,  
K5,K6,K7,  
Ground  
Ground for the core of the device.  
SS  
L5,L6,L7,  
M5,M6,M7,N4,  
N8  
Document #: 38-05237 Rev. *D  
Page 7 of 36  
CY7C1380C  
CY7C1382C  
CY7C1380C–Pin Definitions (continued)  
Name  
TQFP  
BGA  
fBGA  
I/O  
Description  
V
5,10,21,26,55,  
60,71,  
-
-
I/O Ground Ground for the I/O circuitry.  
SSQ  
76  
V
4,11,20,27,54, A1,F1,J1,M1, C3,C9,D3,D9,  
I/O Power  
Supply  
Power supply for the I/O circuitry.  
DDQ  
61,70,  
77  
U1,  
A7,F7,J7,M7,  
U7  
E3,E9,F3,F9,G  
3,  
G9,J3,J9,  
K3,K9,L3,  
L9,M3,M9,N3,  
N9  
MODE  
31  
R3  
R1  
Input-  
Static  
Selects Burst Order. When tied to GND  
selectslinearburstsequence. WhentiedtoV  
or left floating selects interleaved burst  
DD  
sequence. This is a strap pin and should remain  
static during device operation. Mode Pin has an  
internal pull-up.  
TDO  
TDI  
-
-
-
-
U5  
U3  
U2  
P7  
P5  
R5  
JTAG serial Serial data-out to the JTAG circuit. Delivers  
output data on the negative edge of TCK. If the JTAG  
Synchronous feature is not being utilized, this pin should be  
disconnected. This pin is not available onTQFP  
packages.  
JTAG serial Serial data-In to the JTAG circuit. Sampled  
input  
on the rising edge of TCK. If the JTAG feature  
Synchronous is not being utilized, this pin can be discon-  
nected or connected to V . This pin is not  
DD  
available on TQFP packages.  
TMS  
JTAG serial Serial data-In to the JTAG circuit. Sampled  
input  
on the rising edge of TCK. If the JTAG feature  
Synchronous is not being utilized, this pin can be discon-  
nected or connected to V . This pin is not  
DD  
available on TQFP packages.  
TCK  
NC  
U4  
R7  
JTAG-Clock Clock input to the JTAG circuitry. If the JTAG  
feature is not being utilized, this pin must be  
connected to V . This pin is not available on  
SS  
TQFP packages.  
14,16,66,  
39,38  
B1,C1,  
A11,B1,C2,C1  
-
No Connects. Not internally connected to the  
die  
R1,T1,T2,J3, 0,H1,H3,H9,  
D4, H10,  
L4,J5,R5,6T, N2,N5,N7,N10  
6U,  
B7,C7,  
R7  
,P1,A1,B11,P2  
,R2,N6  
Document #: 38-05237 Rev. *D  
Page 8 of 36  
CY7C1380C  
CY7C1382C  
CY7C1382C:Pin Definitions  
Name  
A , A , A  
TQFP  
BGA  
fBGA  
I/O  
Description  
Address Inputs used to select one of the 512K  
37,36,32,  
33,34,35,  
42,43,44,  
45,46,47,  
48,49,50,  
80,81,82,  
99,100  
P4,N4,  
A2,B2,  
C2,R2,  
T2,A3,  
B3,C3,  
T3,A5,  
B5,C5,  
T5,A6,  
B6,C6,  
R6,T6  
R6,P6,A2,  
A10,A11,  
B2,B10,P3,P4,  
N6,P8,P9,  
P10,P11,  
R3,R4,R8,R9,  
R10,  
Input-  
0
1
Synchronous address locations. Sampled at the rising edge of  
the CLK if or is active LOW, and CE ,  
ADSP ADSC  
CE , and CE are sampled active. A1: A0 are fed  
1
2
3
to the two-bit counter.  
.
R11  
93,94  
88  
G3,L5  
B5,A4  
B7  
Input-  
Synchronous  
Byte Write Select Inputs, active LOW. Qualified  
BW BW  
A,  
B
with BWE to conduct byte writes to the SRAM.  
.
Sampled on the rising edge of CLK  
H4  
Input-  
Global Write Enable Input, active LOW. When  
GW  
Synchronous asserted LOW on the rising edge of CLK, a global  
write is conducted (ALL bytes are written,  
regardless of the values on BW and BWE).  
X
87  
89  
M4  
K4  
A7  
B6  
Input-  
Byte Write Enable Input, active LOW. Sampled  
BWE  
CLK  
Synchronous on the rising edge of CLK. This signal must be  
asserted LOW to conduct a byte write.  
Input-  
Clock  
Clock Input. Used to capture all synchronous  
inputs to the device. Also used to increment the  
burst counter when ADV is asserted LOW, during a  
burst operation.  
98  
E4  
A3  
Input-  
Chip Enable 1 Input, active LOW. Sampled on the  
CE  
1
Synchronous rising edge of CLK. Used in conjunction with CE  
2
and CE to select/deselect the device. ADSP is  
3
ignored if CE is HIGH.  
1
[2]  
CE  
CE  
97  
92  
-
-
B3  
A6  
Input-  
Synchronous the rising edge of CLK. Used in conjunction with  
CE and CE to select/deselect the device.  
Chip Enable 2 Input, active HIGH. Sampled on  
2
3
1
3
Input-  
Chip Enable 3 Input, active LOW. Sampled on the  
Synchronous rising edge of CLK. Used in conjunction with CE  
1
andCE toselect/deselectthedevice. Notavailable  
2
for AJ package version.  
Not connected for BGA.  
Where referenced, CE is assumed active  
3
throughout this document for BGA.  
86  
83  
F4  
B8  
A9  
Input-  
Output Enable, asynchronous input, active  
OE  
Asynchronous LOW. Controls the direction of the I/O pins. When  
LOW, the I/O pins behave as outputs. When  
deasserted HIGH, I/O pins are tri-stated, and act as  
input data pins. OE is masked during the first clock  
of a read cycle when emerging from a deselected  
state.  
G4  
Input-  
Advance Input signal, sampled on the rising  
ADV  
Synchronous edge of CLK, active LOW. When asserted, it  
automatically increments the address in a burst  
cycle.  
Document #: 38-05237 Rev. *D  
Page 9 of 36  
CY7C1380C  
CY7C1382C  
CY7C1382C:Pin Definitions (continued)  
Name  
TQFP  
BGA  
fBGA  
I/O  
Description  
Address Strobe from Processor, sampled on  
84  
A4  
B9  
Input-  
ADSP  
Synchronous the rising edge of CLK, active LOW. When  
asserted LOW, addresses presented to the device  
are captured in the address registers. A1: A0 are  
also loaded into the burst counter. When ADSP and  
ADSC are both asserted, only ADSP is recognized.  
ASDP is ignored when CE is deasserted HIGH.  
1
P4  
T7  
A8  
Input-  
AddressStrobefromController, sampledonthe  
85  
64  
ADSC  
Synchronous rising edge of CLK, active LOW. When asserted  
LOW, addresses presented to the device are  
captured in the address registers. A1: A0 are also  
loaded into the burst counter. When ADSP and  
ADSC are both asserted, only ADSP is recognized.  
ZZ  
H11  
Input-  
ZZ “sleep” Input, active HIGH. When asserted  
Asynchronous HIGH places the device in a non-time-critical  
“sleep” condition with data integrity preserved. For  
normal operation, this pin has to be LOW or left  
floating. ZZ pin has an internal pull-down.  
58,59,62,  
63,68,69,  
72,73,8,9,  
12,13,18,  
19,22,23,  
74,24  
P7,K7,  
G7,E7,  
F6,H6,L6,N6,  
D1,  
J10,K10,  
L10,M10,  
D11,E11,  
I/O-  
Bidirectional Data I/O lines. As inputs, they feed  
DQs,  
DQPs  
Synchronous into an on-chip data register that is triggered by the  
rising edge of CLK. As outputs, they deliver the data  
contained in the memory location specified by the  
F11,G11,J1,K1  
,L1,M1,D2,E2,  
F2,  
H1,L1,  
N1,E2,  
G2,K2,  
M2,D6,  
P2  
addresses presented during the previous  
clock rise  
of the read cycle. The direction of the pins is  
controlled by OE. When OE is asserted LOW, the  
pins behave as outputs. When HIGH, DQs and  
G2,C11,N1  
DQP are placed in a tri-state condition.  
X
V
V
15,41,65,  
91  
C4,J2,J4,J6, D4,D8,E4,E8, Power Supply Power supply inputs to the core of the device.  
DD  
R4  
F4,F8,  
G4,G8,H4,  
H8,J4,J8,  
K4,K8,L4,  
L8,M4,M8  
17,40,67,  
90  
D3,D5,  
H2,C4,C5,C6,  
Ground  
Ground for the core of the device.  
SS  
E5,E3,F3,F5, C7,C8,D5,D6,  
G5,  
H3,H5,  
K3,K5,L3,M3,  
M5,  
D7,E5,E6,E7,  
F5,F6,F7,  
G5,G6,G7,  
H5,H6,H7,J5,J  
6,J7,  
K5,K6,K7,  
L5,L6,L7,  
M5,M6,M7,N4,  
N8  
N3,N5,  
P3,P5  
V
5,10,21,26,55,  
60,71,  
-
-
I/O Ground Ground for the I/O circuitry.  
SSQ  
76  
Document #: 38-05237 Rev. *D  
Page 10 of 36  
CY7C1380C  
CY7C1382C  
CY7C1382C:Pin Definitions (continued)  
Name  
TQFP  
BGA  
fBGA  
I/O  
Description  
V
4,11,20,27,54, A1,A7,F1,F7, C3,C9,D3,D9, I/O Power Sup- Power supply for the I/O circuitry.  
DDQ  
61,70,  
77  
J1,J7,M1,M7,  
U1,U7  
E3,E9,  
F3,F9,G3,  
G9,J3,J9,  
K3,K9,L3,  
L9,M3,M9,N3,  
N9  
ply  
MODE  
TDO  
TDI  
31  
R3  
U5  
U3  
R1  
P7  
P5  
Input-  
Static  
Selects Burst Order. When tied to GND selects  
linear burst sequence. When tied to V or left  
DD  
floating selects interleaved burst sequence. This is  
a strap pin and should remain static during device  
operation. Mode Pin has an internal pull-up.  
-
JTAG serial Serial data-out to the JTAG circuit. Delivers data  
output on the negative edge of TCK. If the JTAG feature is  
Synchronous not being utilized, this pin should be left uncon-  
nected. This pin is not available on TQFP  
packages.  
-
JTAG serial Serial data-In to the JTAGcircuit. Sampled on the  
input  
Synchronous utilized, this pin can be left floating or connected to  
through a pull up resistor. This pin is not avail-  
rising edge of TCK. If the JTAG feature is not being  
V
DD  
able on TQFP packages.  
TMS  
TCK  
NC  
-
-
U2  
U4  
R5  
R7  
JTAG serial Serial data-In to the JTAGcircuit. Sampled on the  
input  
rising edge of TCK. If the JTAG feature is not being  
Synchronous utilized, this pin can be disconnected or connected  
to V . This pin is not available on TQFP packages.  
DD  
JTAG-Clock Clock input to the JTAG circuitry. If the JTAG  
feature is not being utilized, this pin must be  
connected to V . This pin is not available on TQFP  
SS  
packages.  
1,2,3,6,7,  
14,16,25,  
28,29,30,  
38,39,  
51,52,53,  
56,57,66,  
75,78,79,  
95,96  
B1,B7,  
C1,C7,  
D2,D4,  
D7,E1,  
E6,H2,  
F2,G1,  
G6,H7,  
J3,J5,K1,  
A5,B1,B4,  
C1,C2,C10,D1  
,D10,  
E1,E10,F1,  
F10,G1,  
G10,H1,H3,H9  
,H10,J2,J11,  
K2,  
-
No Connects. Not internally connected to the die.  
K6,L4,L2,L7, K11,L2,L1,M2,  
M6, M11,  
N2,L7,P1,P6, N2,N10,N5,N7  
R1,  
R5,R7,  
T1,T4,U6  
N11,P1,A1,  
B11,  
P2,R2  
Document #: 38-05237 Rev. *D  
Page 11 of 36  
CY7C1380C  
CY7C1382C  
Functional Overview  
All synchronous inputs pass through input registers controlled  
by the rising edge of the clock. All data outputs pass through  
output registers controlled by the rising edge of the clock.  
presented to A is loaded into the address register and the  
address advancement logic while being delivered to the  
memory array. The Write signals (GW, BWE, and BW ) and  
X
Maximum access delay from the clock rise (t ) is 3.0ns  
ADV inputs are ignored during this first cycle.  
CO  
(200-MHz device).  
ADSP-triggered Write accesses require two clock cycles to  
complete. If GW is asserted LOW on the second clock rise, the  
data presented to the DQs inputs is written into the corre-  
sponding address location in the memory array. If GW is HIGH,  
The CY7C1380C supports secondary cache in systems  
utilizing either a linear or interleaved burst sequence. The  
interleaved burst order supports Pentium and i486™  
processors. The linear burst sequence is suited for processors  
that utilize a linear burst sequence. The burst order is user  
selectable, and is determined by sampling the MODE input.  
Accesses can be initiated with either the Processor Address  
Strobe (ADSP) or the Controller Address Strobe (ADSC).  
Address advancement through the burst sequence is  
controlled by the ADV input. A two-bit on-chip wraparound  
burst counter captures the first address in a burst sequence  
and automatically increments the address for the rest of the  
burst access.  
then the Write operation is controlled by BWE and BW  
X
signals. The CY7C1380C provides Byte Write capability that  
is described in the Write Cycle Descriptions table. Asserting  
the Byte Write Enable input (BWE) with the selected Byte  
Write (BW ) input, will selectively write to only the desired  
X
bytes. Bytes not selected during a Byte Write operation will  
remain unaltered. A synchronous self-timed Write mechanism  
has been provided to simplify the Write operations.  
Because the CY7C1380C is a common I/O device, the Output  
Enable (OE) must be deserted HIGH before presenting data  
to the DQs inputs. Doing so will tri-state the output drivers. As  
a safety precaution, DQs are automatically tri-stated whenever  
a Write cycle is detected, regardless of the state of OE.  
Byte Write operations are qualified with the Byte Write Enable  
(BWE) and Byte Write Select (BW ) inputs. A Global Write  
Enable (GW) overrides all Byte Write inputs and writes data to  
all four bytes. All writes are simplified with on-chip  
synchronous self-timed Write circuitry.  
X
Single Write Accesses Initiated by ADSC  
ADSC Write accesses are initiated when the following condi-  
tions are satisfied: (1) ADSC is asserted LOW, (2) ADSP is  
deserted HIGH, (3) CE , CE , CE are all asserted active, and  
Three synchronous Chip Selects (CE , CE , CE ) and an  
asynchronous Output Enable (OE) provide for easy bank  
1
2
3
selection and output tri-state control. ADSP is ignored if CE  
1
2
3
1
(4) the appropriate combination of the Write inputs (GW, BWE,  
is HIGH.  
and BW ) are asserted active to conduct a Write to the desired  
X
Single Read Accesses  
byte(s). ADSC-triggered Write accesses require a single clock  
cycle to complete. The address presented to A is loaded into  
the address register and the address advancement logic while  
being delivered to the memory array. The ADV input is ignored  
during this cycle. If a global Write is conducted, the data  
presented to the DQs is written into the corresponding address  
location in the memory core. If a Byte Write is conducted, only  
the selected bytes are written. Bytes not selected during a  
Byte Write operation will remain unaltered. A synchronous  
self-timed Write mechanism has been provided to simplify the  
Write operations.  
This access is initiated when the following conditions are  
satisfied at clock rise: (1) ADSP or ADSC is asserted LOW, (2)  
CE , CE , CE are all asserted active, and (3) the Write  
1
2
3
signals (GW, BWE) are all deserted HIGH. ADSP is ignored if  
CE is HIGH. The address presented to the address inputs (A)  
1
is stored into the address advancement logic and the Address  
Register while being presented to the memory array. The  
corresponding data is allowed to propagate to the input of the  
Output Registers. At the rising edge of the next clock the data  
is allowed to propagate through the output register and onto  
the data bus within 3.0 ns (200-MHz device) if OE is active  
LOW. The only exception occurs when the SRAM is emerging  
from a deselected state to a selected state, its outputs are  
always tri-stated during the first cycle of the access. After the  
first cycle of the access, the outputs are controlled by the OE  
signal. Consecutive single Read cycles are supported. Once  
the SRAM is deselected at clock rise by the chip select and  
either ADSP or ADSC signals, its output will tri-state immedi-  
ately.  
Because the CY7C1380C is a common I/O device, the Output  
Enable (OE) must be deserted HIGH before presenting data  
to the DQs inputs. Doing so will tri-state the output drivers. As  
a safety precaution, DQs are automatically tri-stated whenever  
a Write cycle is detected, regardless of the state of OE.  
Burst Sequences  
The CY7C1380C provides a two-bit wraparound counter, fed  
by A1: A0, that implements either an interleaved or linear burst  
sequence. The interleaved burst sequence is designed specif-  
ically to support Intel Pentium applications. The linear burst  
sequence is designed to support processors that follow a  
linear burst sequence. The burst sequence is user selectable  
through the MODE input.  
Single Write Accesses Initiated by ADSP  
This access is initiated when both of the following conditions  
are satisfied at clock rise: (1) ADSP is asserted LOW, and  
(2) CE , CE , CE are all asserted active. The address  
1
2
3
Document #: 38-05237 Rev. *D  
Page 12 of 36  
CY7C1380C  
CY7C1382C  
Asserting ADV LOW at clock rise will automatically increment  
the burst counter to the next address in the burst sequence.  
Both Read and Write burst operations are supported.  
Sleep Mode  
The ZZ input pin is an asynchronous input. Asserting ZZ  
places the SRAM in a power conservation “sleep” mode. Two  
clock cycles are required to enter into or exit from this “sleep”  
mode. While in this mode, data integrity is guaranteed.  
Accesses pending when entering the “sleep” mode are not  
considered valid nor is the completion of the operation  
guaranteed. The device must be deselected prior to entering  
Interleaved Burst Address Table  
(MODE = Floating or VDD  
)
First  
Address  
A1: A0  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
the  
“sleep” mode. CE , CE , CE , ADSP, and ADSC must  
1
2
3
remain inactive for the duration of t  
returns LOW  
after the ZZ input  
ZZREC  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
Linear Burst Address Table  
(MODE = GND)  
First  
Address  
A1: A0  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
.
ZZ Mode Electrical Characteristics  
Parameter  
Description  
Snooze mode standby current  
Device operation to ZZ  
ZZ recovery time  
Test Conditions  
ZZ > V – 0.2V  
Min.  
Max.  
60mA  
Unit  
mA  
ns  
I
t
t
t
t
DDZZ  
DD  
ZZ > V – 0.2V  
2t  
ZZS  
DD  
CYC  
ZZ < 0.2V  
2t  
ns  
ZZREC  
ZZI  
CYC  
ZZ Active to snooze current  
This parameter is sampled  
This parameter is sampled  
2t  
ns  
CYC  
ZZ Inactive to exit snooze current  
0
ns  
RZZI  
Truth Table[ 3, 4, 5, 6, 7, 8]  
Operation  
Add. Used  
None  
CE  
X
L
CE  
WRITE  
CLK  
DQ  
CE  
H
L
ZZ ADSP ADSC ADV  
OE  
X
X
X
X
X
X
L
2
3
1
Deselect Cycle,Power Down  
Deselect Cycle,Power Down  
Deselect Cycle,Power Down  
Deselect Cycle,Power Down  
Deselect Cycle,Power Down  
Snooze Mode,Power Down  
READ Cycle, Begin Burst  
READ Cycle, Begin Burst  
WRITE Cycle, Begin Burst  
READ Cycle, Begin Burst  
READ Cycle, Begin Burst  
READ Cycle, Continue Burst  
READ Cycle, Continue Burst  
READ Cycle, Continue Burst  
X
X
H
X
H
X
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
X
L
L
X
X
L
X
X
X
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
X
X
L
L-H Tri-State  
L-H Tri-State  
L-H Tri-State  
L-H Tri-State  
L-H Tri-State  
None  
None  
L
X
L
L
None  
L
H
H
X
L
None  
L
X
X
H
H
H
H
H
X
X
X
L
None  
X
L
X
X
X
L
X
Tri-State  
Q
External  
External  
External  
External  
External  
Next  
L-H  
L
L
L
H
X
L
L-H Tri-State  
L
L
H
H
H
H
H
X
L-H  
L-H  
D
Q
L
L
L
H
H
H
H
H
L
L
L
H
L
L-H Tri-State  
L-H  
L-H Tri-State  
L-H  
X
X
H
X
X
X
H
H
H
Q
Next  
L
H
L
Next  
L
Q
Document #: 38-05237 Rev. *D  
Page 13 of 36  
CY7C1380C  
CY7C1382C  
Truth Table[ 3, 4, 5, 6, 7, 8]  
Operation  
Add. Used  
Next  
CE  
X
CE  
X
WRITE  
CLK  
DQ  
CE  
ZZ ADSP ADSC ADV  
OE  
2
3
1
READ Cycle, Continue Burst  
WRITE Cycle, Continue Burst  
WRITE Cycle, Continue Burst  
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
WRITE Cycle,Suspend Burst  
H
L
L
L
L
L
L
L
L
L
X
H
X
H
H
X
X
H
X
H
H
H
H
H
H
H
H
H
L
L
H
H
L-H Tri-State  
Next  
X
H
X
X
H
H
X
H
X
X
L
L
X
X
L
L-H  
L-H  
L-H  
D
D
Q
Next  
X
X
L
Current  
Current  
Current  
Current  
Current  
Current  
X
X
H
H
H
H
H
H
H
H
H
H
L
X
X
H
L
L-H Tri-State  
L-H  
L-H Tri-State  
X
X
Q
X
X
H
X
X
X
X
L-H  
L-H  
D
D
WRITE Cycle,Suspend Burst  
X
X
L
Notes:  
3. X = “Don't Care.” H = Logic HIGH, L = Logic LOW.  
4. WRITE = L when any one or more Byte Write enable signals and BWE = L or GW= L. WRITE = H when all Byte write enable signals , BWE, GW = H.  
5. The DQ pins are controlled by the current cycle and the signal. is asynchronous and is not sampled with the clock.  
OE  
OE  
6. CE , CE , and CE are available only in the TQFP package. BGA package has only 2 chip selects CE and CE .  
1
2
3
1
2
7. The SRAM always initiates a read cycle when ADSP is asserted, regardless of the state of GW, BWE, or BW . Writes may occur only on subsequent clocks  
X
after the  
or with the assertion of  
. As a result,  
ADSC  
must be driven HIGH prior to the start of the write cycle to allow the outputs to tri-state.  
is a  
OE  
OE  
ADSP  
don't care for the remainder of the write cycle  
8.  
is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle all data bits are Tri-State when  
is  
OE  
OE  
.
inactive or when the device is deselected, and all data bits behave as output when  
is active (LOW)  
OE  
Truth Table for Read/Write[5]  
Function (CY7C1380C)  
BW  
BW  
X
H
H
H
H
L
BW  
X
H
H
L
BW  
A
GW  
H
BWE  
H
D
C
B
Read  
Read  
X
H
H
H
H
H
H
H
H
L
X
H
L
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
Write Byte A – ( DQ and DQP )  
A
A
Write Byte B – ( DQ and DQP )  
H
L
B
B
Write Bytes B, A  
Write Byte C – ( DQ and DQP )  
L
H
H
L
H
L
C
C
Write Bytes C, A  
Write Bytes C, B  
Write Bytes C, B, A  
L
L
H
L
L
L
Write Byte D – ( DQ and DQP )  
H
H
H
H
L
H
H
L
H
L
D
D
Write Bytes D, A  
Write Bytes D, B  
Write Bytes D, B, A  
Write Bytes D, C  
Write Bytes D, C, A  
Write Bytes D, C, B  
Write All Bytes  
L
L
H
L
L
L
L
H
H
L
H
L
L
L
L
L
H
L
L
L
L
Write All Bytes  
X
X
X
X
Truth Table for Read/Write[5]  
Function (CY7C1382C)  
BW  
X
BW  
A
GW  
H
BWE  
B
Read  
Read  
H
L
L
L
L
L
X
X
H
L
H
H
H
H
H
L
H
H
L
Write Byte A – ( DQ and DQP )  
A
A
Write Byte B – ( DQ and DQP )  
H
L
B
B
Write Bytes B, A  
Write All Bytes  
Write All Bytes  
L
L
L
X
X
Document #: 38-05237 Rev. *D  
Page 14 of 36  
           
CY7C1380C  
CY7C1382C  
Test MODE SELECT (TMS)  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. It is allowable to  
leave this ball unconnected if the TAP is not used. The ball is  
pulled up internally, resulting in a logic HIGH level.  
The CY7C1380C incorporates a serial boundary scan test  
access port (TAP). This port operates in accordance with IEEE  
Standard 1149.1-1990 but does not have the set of functions  
required for full 1149.1 compliance. These functions from the  
IEEE specification are excluded because their inclusion  
places an added delay in the critical speed path of the SRAM.  
Note that the TAP controller functions in a manner that does  
not conflict with the operation of other devices using 1149.1  
fully compliant TAPs. The TAP operates using  
JEDEC-standard 3.3V or 2.5V I/O logic levels.  
Test Data-In (TDI)  
The TDI ball is used to serially input information into the  
registers and can be connected to the input of any of the  
registers. The register between TDI and TDO is chosen by the  
instruction that is loaded into the TAP instruction register. For  
information on loading the instruction register, see Figure . TDI  
is internally pulled up and can be unconnected if the TAP is  
unused in an application. TDI is connected to the most signif-  
icant bit (MSB) of any register. (See Tap Controller Block  
Diagram.)  
The CY7C1380C contains a TAP controller, instruction  
register, boundary scan register, bypass register, and ID  
register.  
Disabling the JTAG Feature  
Test Data-Out (TDO)  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, TCK must be tied  
LOW(VSS) to prevent clocking of the device. TDI and TMS are  
internally pulled up and may be unconnected. They may alter-  
nately be connected to VDD through a pull-up resistor. TDO  
should be left unconnected. Upon power-up, the device will  
come up in a reset state which will not interfere with the  
operation of the device.  
The TDO output ball is used to serially clock data-out from the  
registers. The output is active depending upon the current  
state of the TAP state machine. The output changes on the  
falling edge of TCK. TDO is connected to the least significant  
bit (LSB) of any register. (See Tap Controller State Diagram.)  
TAP Controller Block Diagram  
TAP Controller State Diagram  
0
Bypass Register  
TEST-LOGIC  
1
RESET  
0
2
1
0
0
0
1
1
1
Selection  
Circuitry  
RUN-TEST/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
Instruction Register  
31 30 29  
Identification Register  
0
Selection  
Circuitry  
TDI  
TDO  
0
0
.
.
.
2
1
1
1
CAPTURE-DR  
CAPTURE-IR  
0
0
x
.
.
.
.
.
2
1
SHIFT-DR  
0
SHIFT-IR  
0
Boundary Scan Register  
1
1
1
1
EXIT1-DR  
EXIT1-IR  
TCK  
TMS  
0
0
TAP CONTROLLER  
PAUSE-DR  
0
PAUSE-IR  
0
1
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
Performing a TAP Reset  
A RESET is performed by forcing TMS HIGH (VDD) for five  
rising edges of TCK. This RESET does not affect the operation  
of the SRAM and may be performed while the SRAM is  
operating.  
UPDATE-DR  
UPDATE-IR  
1
0
1
0
At power-up, the TAP is reset internally to ensure that TDO  
comes up in a High-Z state.  
The 0/1 next to each state represents the value of TMS at the  
rising edge of TCK.  
TAP Registers  
Test Access Port (TAP)  
Test Clock (TCK)  
Registers are connected between the TDI and TDO balls and  
allow data to be scanned into and out of the SRAM test  
circuitry. Only one register can be selected at a time through  
the instruction register. Data is serially loaded into the TDI ball  
on the rising edge of TCK. Data is output on the TDO ball on  
the falling edge of TCK.  
The test clock is used only with the TAP controller. All inputs  
are captured on the rising edge of TCK. All outputs are driven  
from the falling edge of TCK.  
Instruction Register  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the  
Document #: 38-05237 Rev. *D  
Page 15 of 36  
CY7C1380C  
CY7C1382C  
TDI and TDO balls as shown in the Tap Controller Block  
Diagram. Upon power-up, the instruction register is loaded  
with the IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state as  
described in the previous section.  
To execute the instruction once it is shifted in, the TAP  
controller needs to be moved into the Update-IR state.  
EXTEST  
EXTEST is a mandatory 1149.1 instruction which is to be  
executed whenever the instruction register is loaded with all  
0s. EXTEST is not implemented in this SRAM TAP controller,  
and therefore this device is not compliant to 1149.1. The TAP  
controller does recognize an all-0 instruction.  
When the TAP controller is in the Capture-IR state, the two  
least significant bits are loaded with a binary “01” pattern to  
allow for fault isolation of the board-level serial test data path.  
Bypass Register  
When an EXTEST instruction is loaded into the instruction  
register, the SRAM responds as if a SAMPLE/PRELOAD  
instruction has been loaded. There is one difference between  
the two instructions. Unlike the SAMPLE/PRELOAD  
instruction, EXTEST places the SRAM outputs in a High-Z  
state.  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain chips. The bypass  
register is a single-bit register that can be placed between the  
TDI and TDO balls. This allows data to be shifted through the  
SRAM with minimal delay. The bypass register is set LOW  
(VSS) when the BYPASS instruction is executed.  
IDCODE  
Boundary Scan Register  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the instruction register. It also places the  
instruction register between the TDI and TDO balls and allows  
the IDCODE to be shifted out of the device when the TAP  
controller enters the Shift-DR state.  
The boundary scan register is connected to all the input and  
bidirectional balls on the SRAM. The SRAM has a 75-bit-long  
register.  
The boundary scan register is loaded with the contents of the  
RAM I/O ring when the TAP controller is in the Capture-DR  
state and is then placed between the TDI and TDO balls when  
the controller is moved to the Shift-DR state. The EXTEST,  
SAMPLE/PRELOAD and SAMPLE Z instructions can be used  
to capture the contents of the I/O ring.  
The IDCODE instruction is loaded into the instruction register  
upon power-up or whenever the TAP controller is given a test  
logic reset state.  
SAMPLE Z  
The SAMPLE Z instruction causes the boundary scan register  
to be connected between the TDI and TDO balls when the TAP  
controller is in a Shift-DR state. It also places all SRAM outputs  
into a High-Z state.  
The Boundary Scan Order tables show the order in which the  
bits are connected. Each bit corresponds to one of the bumps  
on the SRAM package. The MSB of the register is connected  
to TDI, and the LSB is connected to TDO.  
SAMPLE/PRELOAD  
Identification (ID) Register  
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. The  
PRELOAD portion of this instruction is not implemented, so  
the device TAP controller is not fully 1149.1 compliant.  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired  
into the SRAM and can be shifted out when the TAP controller  
is in the Shift-DR state. The ID register has a vendor code and  
other information described in the Identification Register  
Definitions table.  
When the SAMPLE/PRELOAD instruction is loaded into the  
instruction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the inputs and bidirectional balls  
is captured in the boundary scan register.  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 10 MHz, while the SRAM clock  
operates more than an order of magnitude faster. Because  
there is a large difference in the clock frequencies, it is  
possible that during the Capture-DR state, an input or output  
will undergo a transition. The TAP may then try to capture a  
signal while in transition (metastable state). This will not harm  
the device, but there is no guarantee as to the value that will  
be captured. Repeatable results may not be possible.  
TAP Instruction Set  
Overview  
Eight different instructions are possible with the three bit  
instruction register. All combinations are listed in the  
Instruction Codes table. Three of these instructions are listed  
as RESERVED and should not be used. The other five instruc-  
tions are described in detail below.  
The TAP controller used in this SRAM is not fully compliant to  
the 1149.1 convention because some of the mandatory 1149.1  
instructions are not fully implemented.  
To guarantee that the boundary scan register will capture the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controller’s capture setup plus  
t
t
The TAP controller cannot be used to load address data or  
control signals into the SRAM and cannot preload the I/O  
buffers. The SRAM does not implement the 1149.1 commands  
EXTEST or INTEST or the PRELOAD portion of  
SAMPLE/PRELOAD; rather, it performs a capture of the I/O  
ring when these instructions are executed.  
hold time ( CS plus CH).  
The SRAM clock input might not be captured correctly if there  
is no way in a design to stop (or slow) the clock during a  
SAMPLE/PRELOAD instruction. If this is an issue, it is still  
possible to capture all other signals and simply ignore the  
value of the CLK captured in the boundary scan register.  
Instructions are loaded into the TAP controller during the  
Shift-IR state when the instruction register is placed between  
TDI and TDO. During this state, instructions are shifted  
through the instruction register through the TDI and TDO balls.  
Once the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the  
boundary scan register between the TDI and TDO balls.  
Document #: 38-05237 Rev. *D  
Page 16 of 36  
CY7C1380C  
CY7C1382C  
Note that since the PRELOAD part of the command is not  
implemented, putting the TAP to the Update-DR state while  
performing a SAMPLE/PRELOAD instruction will have the  
same effect as the Pause-DR command.  
register is placed between the TDI and TDO balls. The  
advantage of the BYPASS instruction is that it shortens the  
boundary scan path when multiple devices are connected  
together on a board.  
Reserved  
BYPASS  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
When the BYPASS instruction is loaded in the instruction  
register and the TAP is placed in a Shift-DR state, the bypass  
TAP Timing  
1
2
3
4
5
6
Test Clock  
(TCK)  
t
t
t
TH  
CYC  
TL  
t
t
t
t
TMSS  
TDIS  
TMSH  
Test Mode Select  
(TMS)  
TDIH  
Test Data-In  
(TDI)  
t
TDOV  
t
TDOX  
Test Data-Out  
(TDO)  
DON’T CARE  
UNDEFINED  
TAP AC Switching Characteristics Over the operating Range[9, 10]  
Parameter  
Symbol  
Min  
Max  
Units  
Clock  
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH time  
TCK Clock LOW time  
Output Times  
t
100  
ns  
MHz  
ns  
TCYC  
t
10  
20  
TF  
t
40  
40  
TH  
t
ns  
TL  
TCK Clock LOW to TDO Valid  
t
t
ns  
ns  
TDOV  
TCK Clock LOW to TDO Invalid  
Setup Times  
0
TDOX  
TMS Set-Up to TCK Clock Rise  
TDI Set-Up to TCK Clock Rise  
Capture Set-Up to TCK Rise  
Hold Times  
t
10  
10  
10  
ns  
ns  
TMSS  
t
TDIS  
t
CS  
TMS hold after TCK Clock Rise  
TDI Hold after Clock Rise  
t
10  
10  
10  
ns  
ns  
ns  
TMSH  
t
TDIH  
Capture Hold after Clock Rise  
t
CH  
Notes:  
t
t
9. CS and CH refer to the setup and hold time requirements of latching data from the boundary scan register.  
10. Test conditions are specified using the load in TAP AC test Conditions. t /t = 1ns.  
R
F
Document #: 38-05237 Rev. *D  
Page 17 of 36  
   
CY7C1380C  
CY7C1382C  
3.3V TAP AC Test Conditions  
2.5V TAP AC Test Conditions  
Input pulse levels ........ ........................................VSS to 3.3V  
Input rise and fall times...................... ..............................1ns  
Input timing reference levels...........................................1.5V  
Output reference levels...................................................1.5V  
Test load termination supply voltage...............................1.5V  
Input pulse levels...............................................VSS to 2.5V  
Input rise and fall time ......................................................1ns  
Input timing reference levels................... ......................1.25V  
Output reference levels .................. ..............................1.25V  
Test load termination supply voltage .................... ........1.25V  
3.3V TAP AC Output Load Equivalent  
2.5V TAP AC Output Load Equivalent  
1.5V  
1.25V  
50  
50  
TDO  
TDO  
ZO= 50Ω  
ZO= 50Ω  
20pF  
20pF  
TAP DC Electrical Characteristics And Operating Conditions  
[11]  
(0°C < TA < +70°C; Vdd = 3.3V ±0.165V unless otherwise noted)  
PARAMETER  
DESCRIPTION  
TEST CONDITIONS  
MIN  
2.4  
2.0  
2.9  
2.1  
MAX  
UNITS  
V
V
V
V
V
V
V
V
V
V
V
V
µA  
V
V
V
V
V
V
Output HIGH Voltage  
I
I
I
= -4.0 mA,V  
= -1.0 mA,V  
= -100 µA  
= 3.3V  
= 2.5V  
OH1  
OH2  
OL1  
OL2  
IH  
OH  
OH  
OH  
DDQ  
DDQ  
V
= 3.3V  
= 2.5V  
= 3.3V  
= 2.5V  
= 3.3V  
= 2.5V  
= 3.3V  
= 2.5V  
= 3.3V  
= 2.5V  
Output HIGH Voltage  
Output LOW Voltage  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage  
Input Load Current  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
V
V
V
V
V
V
V
V
V
0.4  
0.4  
0.2  
0.2  
I
I
= 8.0 mA  
= 100 µA  
OL  
OL  
2.0  
1.7  
-0.3  
-0.3  
-5  
V
V
+ 0.3  
DD  
DD  
+ 0.3  
0.8  
IL  
0.7  
5
I
GND < V < V  
IN DDQ  
X
Note:  
11. All voltages referenced to VSS (GND).  
Document #: 38-05237 Rev. *D  
Page 18 of 36  
 
CY7C1380C  
CY7C1382C  
Identification Register Definitions  
CY7C1380C  
(512KX36)  
CY7C1382C  
(1MX18)  
DESCRIPTION  
INSTRUCTION FIELD  
010  
0100  
1010  
Revision Number (31:29)  
Device Depth (28:24)  
Describes the version number.  
01010  
Reserved for Internal Use  
000000  
100101  
00000110100  
1
000000  
010101  
00000110100  
1
Device Width (23:18)  
Defines memory type and architecture  
Defines width and density  
Cypress Device ID (17:12)  
Cypress JEDEC ID Code (11:1)  
ID Register Presence Indicator (0)  
Allows unique identification of SRAM vendor.  
Indicates the presence of an ID register.  
Scan Register Sizes  
REGISTER NAME  
BIT SIZE(X36)  
BIT SIZE(X18)  
3
3
Instruction  
1
1
Bypass  
32  
72  
32  
72  
ID  
Boundary Scan Order  
Identification Codes  
INSTRUCTION  
CODE  
DESCRIPTION  
000  
EXTEST  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM outputs to High-Z state. This instruction is not 1149.1 compliant.  
001  
010  
IDCODE  
Loads the ID register with the vendor ID code and places the register between TDI and  
TDO. This operation does not affect SRAM operations.  
SAMPLE Z  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM output drivers to a High-Z state.  
011  
100  
RESERVED  
Do Not Use: This instruction is reserved for future use.  
SAMPLE/PRELOAD  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Does not affect SRAM operation. This instruction does not implement 1149.1 preload  
function and is therefore not 1149.1 compliant.  
101  
110  
111  
RESERVED  
RESERVED  
BYPASS  
Do Not Use: This instruction is reserved for future use.  
Do Not Use: This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not affect  
SRAM operations.  
Document #: 38-05237 Rev. *D  
Page 19 of 36  
CY7C1380C  
CY7C1382C  
119-Ball BGA Boundary Scan Order  
CY7C1380C (512K x 36)  
BIT#  
BALL ID  
BIT#  
BALL ID  
1
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
B2  
K4  
H4  
M4  
F4  
B4  
A4  
G4  
C6  
A6  
D6  
D7  
E6  
G6  
H7  
E7  
F6  
G7  
H6  
T7  
K7  
L6  
2
P4  
3
N4  
4
R6  
5
T5  
6
T3  
7
R2  
8
R3  
9
P2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
P1  
N2  
L2  
K1  
N1  
M2  
L1  
K2  
Not Bonded (Preset to 1)  
H1  
G2  
E2  
N6  
P7  
K6  
L7  
D1  
H2  
G1  
F2  
M6  
N7  
P6  
B5  
B3  
C5  
C3  
C2  
A2  
T4  
B6  
E1  
D2  
A5  
A3  
E4  
Internal  
L3  
G3  
G5  
L5  
Internal  
Document #: 38-05237 Rev. *D  
Page 20 of 36  
CY7C1380C  
CY7C1382C  
119-Ball BGA Boundary Scan Order  
CY7C1382C (1M x 18)  
BIT#  
BALL ID  
BIT#  
BALL ID  
1
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
B2  
K4  
2
P4  
H4  
3
M4  
N4  
4
F4  
R6  
5
B4  
T5  
6
A4  
T3  
7
G4  
R2  
8
C6  
R3  
9
A6  
Not Bonded (Preset to 0)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
T6  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
P2  
D6  
N1  
E7  
M2  
F6  
L1  
G7  
K2  
H6  
Not Bonded (Preset to 1)  
T7  
H1  
K7  
G2  
L6  
E2  
N6  
D1  
P7  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
A5  
B5  
B3  
C5  
C3  
C2  
A2  
T2  
B6  
A3  
E4  
Internal  
Not Bonded (Preset to 0)  
Internal  
G3  
L5  
Internal  
Document #: 38-05237 Rev. *D  
Page 21 of 36  
CY7C1380C  
CY7C1382C  
165-Ball fBGA Boundary Scan Order  
CY7C1380C (512K x 36)  
BIT#  
BALL ID  
BIT#  
BALL ID  
1
B6  
B7  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
N6  
R6  
P6  
R4  
R3  
P4  
P3  
R1  
N1  
L2  
2
3
A7  
4
B8  
5
A8  
6
B9  
7
A9  
8
B10  
A10  
C11  
E10  
F10  
G10  
D10  
D11  
E11  
F11  
G11  
H11  
J10  
K10  
L10  
M10  
J11  
K11  
L11  
M11  
N11  
R11  
R10  
R9  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
K2  
J2  
M2  
M1  
L1  
K1  
J1  
Internal  
G2  
F2  
E2  
D2  
G1  
F1  
E1  
D1  
C1  
A2  
B2  
A3  
B3  
B4  
A4  
A5  
B5  
A6  
R8  
P10  
P9  
P8  
P11  
Document #: 38-05237 Rev. *D  
Page 22 of 36  
CY7C1380C  
CY7C1382C  
165-Ball fBGA Boundary Scan Order  
CY7C1382C (1M x 18)  
BIT#  
BALL ID  
BIT#  
BALL ID  
0
B6  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
N6  
1
B7  
R6  
2
A7  
P6  
3
B8  
R4  
4
A8  
R3  
5
B9  
P4  
6
A9  
P3  
7
B10  
R1  
8
A10  
Not Bonded (Preset to 0)  
9
A11  
Not Bonded (Preset to 0)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
N1  
C11  
M1  
D11  
L1  
E11  
K1  
F11  
J1  
G11  
Internal  
H11  
G2  
J10  
F2  
K10  
E2  
L10  
D2  
M10  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
A2  
R11  
R10  
R9  
B2  
A3  
B3  
R8  
Not Bonded (Preset to 0)  
P10  
P9  
Not Bonded (Preset to 0)  
A4  
B5  
A6  
P8  
P11  
Document #: 38-05237 Rev. *D  
Page 23 of 36  
CY7C1380C  
CY7C1382C  
Current into Outputs (LOW)......................................... 20 mA  
Maximum Ratings  
Static Discharge Voltage........................................... >2001V  
(per MIL-STD-883, Method 3015)  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Latch-up Current..................................................... >200 mA  
Storage Temperature .................................65°C to +150°C  
Ambient Temperature with  
Power Applied.............................................55°C to +125°C  
Operating Range  
Supply Voltage on V Relative to GND........ –0.3V to +4.6V  
DD  
Ambient  
Range  
Temperature  
V
V
DDQ  
DC Voltage Applied to Outputs  
DD  
in Tri-State........................................... –0.5V to V  
+ 0.5V  
Commercial 0°C to +70°C 3.3V – 5%/+10% 2.5V – 5%  
DDQ  
to V  
DC Input Voltage....................................–0.5V to V + 0.5V  
DD  
Industrial  
-40°C to +85°C  
DD  
Electrical Characteristics Over the Operating Range  
Parameter  
Description  
Power Supply Voltage  
I/O Supply Voltage  
Test Conditions  
Min.  
3.135  
3.135  
2.375  
2.4  
Max.  
Unit  
V
V
3.6  
DD  
V
V
V
V
V
I
V
V
V
V
V
V
V
V
V
V
= 3.3V  
= 2.5V  
V
DD  
V
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
2.625  
V
Output HIGH Voltage  
Output LOW Voltage  
= 3.3V, V = Min., I = –4.0 mA  
V
OH  
OL  
IH  
DD  
OH  
= 2.5V, V = Min., I = –1.0 mA  
2.0  
V
DD  
OH  
= 3.3V, V = Min., I = 8.0 mA  
0.4  
0.4  
V
DD  
OL  
= 2.5V, V = Min., I = 1.0 mA  
V
DD  
OL  
Input HIGH Voltage  
= 3.3V  
= 2.5V  
= 3.3V  
= 2.5V  
2.0  
1.7  
V
V
+ 0.3V  
V
DD  
DD  
+ 0.3V  
V
Input LOW Voltage  
–0.3  
–0.3  
–5  
0.8  
V
IL  
0.7  
5
V
Input Load Current ex- GND V V  
cept ZZ and MODE  
µA  
X
I
DDQ  
Input Current of MODE Input = V  
–30  
–30  
–5  
µA  
µA  
SS  
Input = V  
5
DD  
Input Current of ZZ  
Input = V  
Input = V  
µA  
SS  
DD  
5
µA  
I
I
Output Leakage Current GND V V  
Output Disabled  
5
µA  
OZ  
I
DDQ,  
V
Operating Supply  
V
f = f  
= Max., I  
= 0 mA,  
4.0-ns cycle, 250 MHz  
4.4-ns cycle, 225 MHz  
5.0-ns cycle, 200 MHz  
6.0-ns cycle, 167 MHz  
7.5-ns cycle, 133 MHz  
4.0-ns cycle, 250 MHz  
4.4-ns cycle, 225 MHz  
5.0-ns cycle, 200 MHz  
6.0-ns cycle, 167 MHz  
7.5-ns cycle, 133 MHz  
All speeds  
350  
325  
300  
275  
245  
120  
110  
100  
90  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
DD  
DD  
DD  
OUT  
= 1/t  
MAX CYC  
Current  
I
I
Automatic CE  
Power-down  
Current—TTL Inputs  
V = Max, Device Deselected,  
DD  
SB1  
SB2  
V
V or V V  
IN  
IH  
IN  
IL  
f = f  
= 1/t  
MAX CYC  
85  
Automatic CE  
Power-down  
Current—CMOS Inputs f = 0  
V
V
= Max, Device Deselected,  
0.3V or V > V – 0.3V,  
70  
DD  
IN  
IN  
DDQ  
Document #: 38-05237 Rev. *D  
Page 24 of 36  
CY7C1380C  
CY7C1382C  
[12, 13] (continued)  
Electrical Characteristics Over the Operating Range  
Parameter  
Description  
Automatic CE  
Power-down  
Test Conditions  
Min.  
Max.  
105  
100  
95  
Unit  
mA  
mA  
mA  
mA  
mA  
mA  
I
V
= Max, Device Deselected, or 4.0-ns cycle, 250 MHz  
DD  
SB3  
V
0.3V or V > V  
– 0.3V  
IN  
IN  
DDQ  
4.4-ns cycle, 225 MHz  
5.0-ns cycle, 200 MHz  
6.0-ns cycle, 167 MHz  
7.5-ns cycle, 133 MHz  
All speeds  
Current—CMOS Inputs f = f  
= 1/t  
MAX  
CYC  
85  
80  
I
Automatic CE  
Power-down  
Current—TTL Inputs  
V
V
= Max, Device Deselected,  
80  
SB4  
DD  
V or V V , f = 0  
IN  
IH IN IL  
Shaded areas contain advance information.  
Notes:  
12. Overshoot: V (AC) < V +1.5V (Pulse width less than t  
/2), undershoot: V (AC) > -2V (Pulse width less than t  
/2).  
IH  
DD  
CYC  
IL  
CYC  
< V  
DD\  
13. TPower-up: Assumes a linear ramp from 0v to V (min.) within 200ms. During this time V < V and V  
DD  
IH  
DD  
DDQ  
Thermal Resistance[14]  
TQFP  
Package  
BGA  
Package  
fBGA  
Package  
Parameter  
Description  
Test Conditions  
Unit  
ΘJA  
Thermal Resistance  
(Junction to Ambient)  
Test conditions follow standard  
test methods and procedures  
for measuring thermal  
31  
45  
46  
°C/W  
ΘJC  
Thermal Resistance  
(Junction to Case)  
6
7
3
°C/W  
impedence, per EIA / JESD51.  
Capacitance[14]  
TQFP  
BGA  
fBGA  
Parameter  
Description  
Input Capacitance  
Test Conditions  
Package  
Package  
Package  
Unit  
pF  
C
C
C
T = 25°C, f = 1 MHz,  
5
5
5
8
8
8
9
9
9
IN  
A
V
V
= 3.3V.  
DD  
Clock Input Capacitance  
Input/Output Capacitance  
pF  
CLK  
I/O  
= 2.5V  
DDQ  
pF  
Notes:  
14. Tested initially and after any design or process change that may affect these parameters  
Document #: 38-05237 Rev. *D  
Page 25 of 36  
     
CY7C1380C  
CY7C1382C  
AC Test Loads and Waveforms  
3.3V I/O Test Load  
R = 317Ω  
3.3V  
OUTPUT  
ALL INPUT PULSES  
90%  
VDD  
OUTPUT  
90%  
10%  
Z = 50Ω  
0
R = 50Ω  
10%  
L
GND  
5 pF  
R = 351Ω  
1ns  
1ns  
V = 1.5V  
L
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
2.5V I/O Test Load  
R = 1667Ω  
2.5V  
OUTPUT  
R = 50Ω  
OUTPUT  
ALL INPUT PULSES  
90%  
VDD  
90%  
10%  
Z = 50Ω  
0
10%  
L
GND  
5 pF  
R =1538Ω  
1ns  
1ns  
V = 1.25V  
L
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
Document #: 38-05237 Rev. *D  
Page 26 of 36  
CY7C1380C  
CY7C1382C  
Switching Characteristics Over the Operating Range  
250 MHz  
225 MHz  
200 MHz  
167 MHz  
133 MHz  
Parameter  
Description  
Min. Max  
Min. Max Min. Max Unit  
t
V
(Typical) to the first Access  
1
1
1
1
1
ms  
POWER  
DD  
Clock  
t
t
t
Clock Cycle Time  
Clock HIGH  
4.0  
1.7  
1.7  
4.4  
2.0  
2.0  
5
6
7.5  
2.5  
2.5  
ns  
ns  
ns  
CYC  
CH  
2.0  
2.0  
2.2  
2.2  
Clock LOW  
CL  
Output Times  
t
t
t
t
t
t
t
Data Output Valid After CLK Rise  
Data Output Hold After CLK Rise  
2.6  
1.0  
2.8  
1.0  
3.0  
1.3  
3.4  
4.2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CO  
1.3  
1.3  
1.3  
1.3  
DOH  
CLZ  
Clock to Low-Z  
1.0  
1.0  
1.3  
Clock to High-Z  
2.6  
2.8  
3.0  
3.4  
3.4  
3.4  
4.2  
CHZ  
OEV  
OELZ  
OEHZ  
2.6  
2.8  
3.0  
OE LOW to Output Valid  
0
0
0
0
0
LOW to Output Low-Z  
OE  
2.6  
2.8  
3.0  
3.4  
4.0  
OE HIGH to Output High-Z  
Setup Times  
t
t
Address Set-up Before CLK Rise  
1.2  
1.2  
1.4  
1.4  
1.4  
1.4  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
AS  
,
ADSC ADSP Set-up Before CLK  
ADS  
Rise  
t
t
1.2  
1.2  
1.4  
1.4  
1.4  
1.4  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ADV Set-up Before CLK Rise  
ADVS  
Set-up Before CLK  
GW, BWE, BW  
Rise  
WES  
X
t
t
Data Input Set-up Before CLK Rise  
1.2  
1.4  
1.4  
1.4  
1.4  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
DS  
Chip Enable Set-Up Before CLK Rise 1.2  
CES  
Hold Times  
t
t
t
t
t
t
Address Hold After CLK Rise  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
AH  
,
Hold After CLK Rise  
ADH  
ADVH  
WEH  
DH  
ADSP ADSC  
ADV Hold After CLK Rise  
,
,
GW BWE BW Hold After CLK Rise  
X
Data Input Hold After CLK Rise  
Chip Enable Hold After CLK Rise  
CEH  
Shaded areas contain advance information.  
Notes:  
15. This part has a voltage regulator internally; t  
is the time that the power needs to be supplied above V ( minimum) initially before a read or write operation  
DD  
POWER  
can be initiated.  
16. t  
, t  
,t  
, and t  
are specified with AC test conditions shown in part (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.  
CHZ CLZ OELZ  
OEHZ  
17. At any given voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same  
CLZ  
OEHZ  
OELZ  
CHZ  
data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed  
to achieve High-Z prior to Low-Z under the same system conditions  
18. This parameter is sampled and not 100% tested.  
19. Timing reference level is 1.5V when V  
= 3.3V and is 1.25V when V  
= 2.5V.  
DDQ  
DDQ  
20. Test conditions shown in (a) of AC Test Loads unless otherwise noted.  
Document #: 38-05237 Rev. *D  
Page 27 of 36  
           
CY7C1380C  
CY7C1382C  
Switching Waveforms  
Read Cycle Timing  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
ADH  
ADS  
t
t
AH  
AS  
A1  
A2  
A3  
ADDRESS  
Burst continued with  
new base address  
t
t
WEH  
WES  
GW, BWE,  
BWx  
Deselect  
cycle  
t
t
CEH  
CES  
CE  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV  
suspends  
burst.  
t
t
OEV  
CO  
t
t
OEHZ  
t
t
CHZ  
OELZ  
DOH  
t
CLZ  
t
Q(A2)  
Q(A2 + 1)  
Q(A2 + 2)  
Q(A2 + 3)  
Q(A2)  
Q(A2 + 1)  
Q(A1)  
Data Out (Q)  
High-Z  
CO  
Burst wraps around  
to its initial state  
Single READ  
BURST READ  
DON’T CARE  
UNDEFINED  
Notes:  
21. On this diagram, when CE is LOW: CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH: CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
22.  
Full width write can be initiated by either GW LOW; or by GW HIGH, BWE LOW and BW LOW.  
X
Document #: 38-05237 Rev. *D  
Page 28 of 36  
   
CY7C1380C  
CY7C1382C  
Switching Waveforms (continued)  
Write Cycle Timing  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC extends burst  
t
t
ADH  
ADS  
t
t
ADH  
ADS  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
ADDRESS  
Byte write signals are  
ignored for first cycle when  
ADSP initiates burst  
t
t
WEH  
WES  
BWE,  
BWX  
t
t
WEH  
WES  
GW  
CE  
t
t
CEH  
CES  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV suspends burst  
t
t
DH  
DS  
Data In (D)  
D(A2)  
D(A2 + 1)  
D(A2 + 1)  
D(A2 + 2)  
D(A2 + 3)  
D(A3)  
D(A3 + 1)  
D(A3 + 2)  
D(A1)  
High-Z  
t
OEHZ  
Data Out (Q)  
BURST READ  
Single WRITE  
BURST WRITE  
Extended BURST WRITE  
DON’T CARE  
UNDEFINED  
Document #: 38-05237 Rev. *D  
Page 29 of 36  
CY7C1380C  
CY7C1382C  
Switching Waveforms (continued)  
Read/Write Cycle Timing  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
A4  
A5  
A6  
ADDRESS  
t
t
WEH  
WES  
BWE,  
BWX  
t
t
CEH  
CES  
CE  
ADV  
OE  
t
t
DH  
t
CO  
DS  
t
OELZ  
Data In (D)  
High-Z  
High-Z  
D(A3)  
D(A5)  
D(A6)  
t
t
OEHZ  
CLZ  
Data Out (Q)  
Q(A1)  
Q(A2)  
Q(A4)  
Q(A4+1)  
Q(A4+2)  
Q(A4+3)  
Back-to-Back READs  
Single WRITE  
BURST READ  
Back-to-Back  
WRITEs  
DON’T CARE  
UNDEFINED  
Note:  
23.  
24. GW is HIGH.  
.
The data bus (Q) remains in high-Z following a WRITE cycle, unless a new read access is initiated by  
ADSP or ADSC  
Document #: 38-05237 Rev. *D  
Page 30 of 36  
   
CY7C1380C  
CY7C1382C  
Switching Waveforms (continued)  
[25, 26]  
ZZ Mode Timing  
CLK  
t
t
ZZ  
ZZREC  
ZZ  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
Notes:  
25. Device must be deselected when entering ZZ mode. See Cycle Descriptions table for all possible signal conditions to deselect the device.  
26. DQs are in high-Z when exiting ZZ sleep mode  
Document #: 38-05237 Rev. *D  
Page 31 of 36  
   
CY7C1380C  
CY7C1382C  
Ordering Information  
Speed  
(MHz)  
Package  
Name  
Operating  
Range  
Ordering Code  
Part and Package Type  
250  
CY7C1380C-250AC  
CY7C1382C-250AC  
A101  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
Commercial  
CY7C1380C-250BGC  
CY7C1382C-250BGC  
BG119 119 PBGA  
BB165A 165 fBGA  
CY7C1380C-250BZC  
CY7C1382C-250BZC  
225  
200  
CY7C1380C-225AC  
CY7C1382C-225AC  
A101  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
CY7C1380C-225BGC  
CY7C1382C-225BGC  
BG119 119 PBGA  
BB165A 165 fBGA  
CY7C1380C-225BZC  
CY7C1382C-225BZC  
CY7C1380C-200AC  
CY7C1382C-200AC  
A101  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
CY7C1380C-200BGC  
CY7C1382C-200BGC  
CY7C1380C-200BZC  
CY7C1382C-200BZC  
BG119 119 PBGA  
BB165A 165 fBGA  
167  
CY7C1380C-167AC  
CY7C1382C-167AC  
A101  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
CY7C1380C-167BGC  
CY7C1382C-167BGC  
BG119 119 PBGA  
CY7C1380C-167BZC  
CY7C1382C-167BZC  
BB165A 165 fBGA  
133  
167  
CY7C1380C-133AC  
A101  
A101  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
CY7C1380C-167AI  
CY7C1382C-167AI  
Industrial  
CY7C1380C-167BGI  
CY7C1382C-167BGI  
BG119 119 PBGA  
BB165A 165 fBGA  
CY7C1380C-167BZI  
CY7C1382C-167BZI  
Shaded areas contain advance information.  
Please contact your local sales representative for availability of these parts.  
Document #: 38-05237 Rev. *D  
Page 32 of 36  
CY7C1380C  
CY7C1382C  
Package Diagrams  
100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A101  
DIMENSIONS ARE IN MILLIMETERS.  
16.00 0.20  
14.00 0.10  
1.40 0.05  
100  
81  
80  
1
0.30 0.08  
0.65  
TYP.  
12° 1°  
(8X)  
SEE DETAIL  
A
30  
51  
31  
50  
0.20 MAX.  
1.60 MAX.  
R 0.08 MIN.  
0.20 MAX.  
0° MIN.  
STAND-OFF  
0.05 MIN.  
0.15 MAX.  
SEATING PLANE  
0.25  
GAUGE PLANE  
R 0.08 MIN.  
0.20 MAX.  
0°-7°  
0.60 0.15  
0.20 MIN.  
1.00 REF.  
51-85050-*A  
DETAIL  
A
Document #: 38-05237 Rev. *D  
Page 33 of 36  
© Cypress Semiconductor Corporation, 2004. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  
CY7C1380C  
CY7C1382C  
Package Diagrams (continued)  
119-Lead PBGA (14 x 22 x 2.4 mm) BG119  
51-85115-*B  
Document #: 38-05237 Rev. *D  
Page 34 of 36  
CY7C1380C  
CY7C1382C  
Package Diagrams (continued)  
165-Ball FBGA (13 x 15 x 1.2 mm) BB165A  
51-85122-*C  
i486 is a trademark, and Intel and Pentium are registered trademarks of Intel Corporation. PowerPC is a trademark of IBM  
Corporation. All product and company names mentioned in this document are the trademarks of their respective holders.  
Document #: 38-05237 Rev. *D  
Page 35 of 36  
CY7C1380C  
CY7C1382C  
Document History Page  
Document Title: CY7C1380C/CY7C1382C 18-Mb (512K x 36/1M x 18) Pipelined SRAM  
Document Number: 38-05237  
Orig. of  
REV.  
**  
ECN NO. Issue Date Change  
Description of Change  
116277  
121540  
08/27/02  
11/21/02  
SKX  
DSG  
New Data Sheet  
*A  
Updated package diagrams 51-85115 (BG119) to rev. *B and 51-85122  
(BB165A) to rev. *C  
*B  
*C  
121797  
128904  
11/21/02  
09/11/03  
CJM  
DPM  
Added 7C1380C-133 spec  
Updated Ordering Information  
Changed ordering of notes  
Updated JTAG Boundary Scan order  
Removed Pipelined Read/Write Timing diagram  
Added t  
specification in Switching Characteristics table  
POWER  
*D  
206081  
02/13/04  
RKF  
Final Datasheet  
Document #: 38-05237 Rev. *D  
Page 36 of 36  

GE Built In Gas s JGP963 User Manual
Electrolux Thermaline WLWWAAOOOO User Manual
Electrolux E36GC65ESS User Manual
Electrolux 260723 User Manual
Eizo EIZO FlexScan T960 User Manual
Cypress CY7C1148V18 User Manual
Brother BRUKSANVISNING MFC 410CN User Manual
Blodgett Convection Steamers None User Manual
AT T SL82518 User Manual
Asus E45M1 I DELUXE Desktop Motherboard E45M1 I Deluxe User Manual