Cypress CY7C1381D User Manual

CY7C1381D, CY7C1381F  
CY7C1383D, CY7C1383F  
18-Mbit (512K x 36/1M x 18) Flow-Through SRAM  
Features  
Functional Description [1]  
• Supports 133 MHz bus operations  
• 512K × 36 and 1M × 18 common IO  
The CY7C1381D/CY7C1383D/CY7C1381F/CY7C1383F is a  
3.3V, 512K x 36 and 1M x 18 synchronous flow through  
SRAMs,  
designed  
to  
interface  
with  
high-speed  
• 3.3V core power supply (V  
)
DD  
microprocessors with minimum glue logic. Maximum access  
delay from clock rise is 6.5 ns (133 MHz version). A 2-bit  
on-chip counter captures the first address in a burst and  
increments the address automatically for the rest of the burst  
access. All synchronous inputs are gated by registers  
controlled by a positive edge triggered clock input (CLK). The  
synchronous inputs include all addresses, all data inputs,  
• 2.5V or 3.3V IO supply (V  
• Fast clock-to-output time  
)
DDQ  
— 6.5 ns (133 MHz version)  
• Provides high performance 2-1-1-1 access rate  
®
®
• User selectable burst counter supporting Intel Pentium  
address pipelining chip enable (CE ), depth-expansion chip  
1
interleaved or linear burst sequences  
• Separate processor and controller address strobes  
• Synchronous self-timed write  
enables (CE and CE  
), burst control inputs (ADSC, ADSP,  
2
3
and ADV), write enables (BW , and BWE), and global write  
x
(GW). Asynchronous inputs include the output enable (OE)  
and the ZZ pin.  
• Asynchronous output enable  
The  
CY7C1381D/CY7C1383D/CY7C1381F/CY7C1383F  
• CY7C1381D/CY7C1383D available in JEDEC-standard  
allows interleaved or linear burst sequences, selected by the  
MODE input pin. A HIGH selects an interleaved burst  
sequence, while a LOW selects a linear burst sequence. Burst  
accesses can be initiated with the processor address strobe  
(ADSP) or the cache controller address strobe (ADSC) inputs.  
Address advancement is controlled by the address  
advancement (ADV) input.  
Pb-free 100-pin TQFP, Pb-free and non Pb-free 165-ball  
FBGA package. CY7C1381F/CY7C1383F available in  
Pb-free and non Pb-free 119-ball BGA package  
• IEEE 1149.1 JTAG-Compatible Boundary Scan  
• ZZ sleep mode option  
Addresses and chip enables are registered at rising edge of  
clock when address strobe processor (ADSP) or address  
strobe controller (ADSC) are active. Subsequent burst  
addresses can be internally generated as controlled by the  
advance pin (ADV).  
The  
CY7C1381D/CY7C1383D/CY7C1381F/CY7C1383F  
operates from a +3.3V core power supply while all outputs  
operate with a +2.5V or +3.3V supply. All inputs and outputs  
are JEDEC-standard and JESD8-5-compatible.  
Selection Guide  
133 MHz  
100 MHz  
8.5  
Unit  
ns  
Maximum Access Time  
6.5  
210  
70  
Maximum Operating Current  
Maximum CMOS Standby Current  
175  
mA  
mA  
70  
Notes:  
1. For best practices or recommendations, please refer to the Cypress application note AN1064, SRAM System Design Guidelines on www.cypress.com.  
2. CE CE are for TQFP and 165 FBGA packages only. 119 BGA is offered only in 1 chip enable.  
3,  
2
Cypress Semiconductor Corporation  
Document #: 38-05544 Rev. *F  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised Feburary 07, 2007  
   
CY7C1381D, CY7C1381F  
CY7C1383D, CY7C1383F  
Pin Configurations  
100-pin TQFP Pinout (3 Chip Enable)  
DQPC  
1
DQPB  
DQB  
DQB  
VDDQ  
VSSQ  
DQB  
DQB  
DQB  
DQB  
VSSQ  
VDDQ  
DQB  
DQB  
VSS  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
NC  
NC  
VDDQ  
VSSQ  
NC  
A
NC  
NC  
VDDQ  
VSSQ  
NC  
DQPA  
DQA  
DQA  
VSSQ  
VDDQ  
DQA  
DQA  
VSS  
NC  
1
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DQC  
2
DQC  
VDDQ  
VSSQ  
DQC  
3
4
5
6
DQC  
7
NC  
DQC  
8
DQB  
DQB  
VSSQ  
VDDQ  
DQB  
DQB  
VSS/DNU  
VDD  
DQC  
9
10  
11  
9
VSSQ  
VDDQ  
DQC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
12  
DQC  
13  
VSS/DNU  
14  
VDD  
15  
NC  
VDD  
ZZ  
CY7C1383D  
(1M x 18)  
CY7C1381D  
(512K x 36)  
NC  
16  
NC  
VSS  
VDD  
ZZ  
VSS  
17  
DQD  
18  
DQA  
DQA  
VDDQ  
VSSQ  
DQA  
DQA  
DQA  
DQA  
VSSQ  
VDDQ  
DQA  
DQA  
DQPA  
DQB  
DQB  
VDDQ  
VSSQ  
DQB  
DQB  
DQPB  
NC  
VSSQ  
VDDQ  
NC  
NC  
NC  
DQA  
DQA  
VDDQ  
VSSQ  
DQA  
DQA  
NC  
DQD  
19  
20  
21  
VDDQ  
VSSQ  
DQD  
22  
DQD  
23  
DQD  
24  
DQD  
25  
26  
27  
NC  
VSSQ  
VDDQ  
DQD  
DQD  
29  
VSSQ  
VDDQ  
NC  
NC  
NC  
28  
DQPD  
30  
Document #: 38-05544 Rev. *F  
Page 3 of 29  
CY7C1381D, CY7C1381F  
CY7C1383D, CY7C1383F  
Pin Configurations (continued)  
119-Ball BGA  
Pinout  
CY7C1381F (512K x 36)  
1
2
3
4
5
6
7
A
V
A
A
A
A
V
DDQ  
ADSP  
ADSC  
DDQ  
NC/288M  
NC/144M  
A
A
A
A
A
A
A
A
NC/576M  
NC/1G  
B
C
V
DD  
D
E
F
DQ  
DQ  
DQP  
DQ  
V
NC  
V
DQP  
DQ  
DQ  
DQ  
C
C
C
SS  
SS  
SS  
SS  
SS  
SS  
B
B
B
V
V
V
V
CE  
C
B
1
V
DQ  
DQ  
V
DDQ  
OE  
ADV  
GW  
DDQ  
C
B
G
H
J
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
BW  
V
BW  
V
C
C
C
C
B
B
B
C
B
DQ  
DQ  
SS  
SS  
B
V
V
NC  
V
NC  
V
V
DDQ  
DDQ  
DD  
DD  
DD  
K
DQ  
DQ  
DQ  
DQ  
DQ  
V
CLK  
NC  
V
DQ  
DQ  
DQ  
DQ  
DQ  
D
D
D
SS  
SS  
A
A
A
DQ  
DQ  
L
M
N
BW  
V
BW  
A
D
D
D
A
A
A
D
V
V
V
V
DDQ  
BWE  
A1  
DDQ  
SS  
SS  
SS  
DQ  
V
V
DQ  
D
SS  
A
P
R
DQ  
DQP  
A
A0  
V
DQP  
A
DQ  
D
D
SS  
SS  
A
NC  
NC  
MODE  
V
NC  
A
NC  
DD  
NC/72M  
TMS  
A
A
A
NC/36M  
NC  
ZZ  
T
U
V
TDI  
TCK  
TDO  
V
DDQ  
DDQ  
CY7C1383F (1M x 18)  
2
A
1
3
A
A
A
4
5
A
A
A
6
7
V
A
V
DDQ  
A
B
C
D
E
F
ADSP  
ADSC  
DDQ  
NC/288M  
A
NC/576M  
A
A
NC/144M  
A
V
NC/1G  
NC  
DD  
DQ  
NC  
V
NC  
CE  
V
DQP  
B
SS  
SS  
SS  
SS  
SS  
SS  
A
NC  
DQ  
V
V
V
V
NC  
DQ  
B
A
1
V
NC  
DQ  
V
OE  
ADV  
GW  
DDQ  
A
DDQ  
NC  
DQ  
NC  
NC  
DQ  
G
H
J
BW  
V
B
A
B
DQ  
NC  
V
DQ  
NC  
B
SS  
SS  
A
V
V
NC  
V
V
V
NC  
DDQ  
DD  
DD  
DD  
DDQ  
K
NC  
DQ  
V
CLK  
NC  
V
NC  
DQ  
A
B
SS  
SS  
L
M
N
P
DQ  
NC  
DQ  
NC  
DQ  
NC  
BW  
B
A
A
V
V
V
V
V
NC  
V
DDQ  
BWE  
A1  
DDQ  
B
SS  
SS  
SS  
SS  
DQ  
NC  
V
V
DQ  
A
NC  
B
SS  
SS  
NC  
DQP  
A0  
NC  
DQ  
B
A
R
T
NC  
A
A
MODE  
A
V
NC  
A
A
A
NC  
ZZ  
DD  
NC/72M  
NC/36M  
TCK  
U
V
TMS  
TDI  
TDO  
NC  
V
DDQ  
DDQ  
Document #: 38-05544 Rev. *F  
Page 4 of 29  
CY7C1381D, CY7C1381F  
CY7C1383D, CY7C1383F  
Pin Configurations (continued)  
165-Ball FBGA Pinout(3 Chip Enable)  
CY7C1381D (512K x 36)  
1
2
A
3
CE1  
4
BWC  
5
BWB  
6
CE  
7
8
9
ADV  
10  
A
11  
NC  
NC/288M  
NC/144M  
DQPC  
BWE  
GW  
VSS  
VSS  
ADSC  
A
B
C
D
3
A
CE2  
VDDQ  
VDDQ  
BWD  
VSS  
BWA  
VSS  
VSS  
CLK  
VSS  
VSS  
OE  
VSS  
VDD  
ADSP  
VDDQ  
VDDQ  
A
NC/576M  
DQPB  
DQB  
NC  
DQC  
NC/1G  
DQB  
DQC  
VDD  
DQC  
DQC  
DQC  
NC  
DQC  
DQC  
DQC  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
DQB  
DQB  
DQB  
NC  
DQB  
DQB  
DQB  
ZZ  
E
F
G
H
J
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
K
L
DQD  
DQPD  
NC  
DQD  
NC  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
A
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
DQA  
DQPA  
A
M
N
P
NC/72M  
TDI  
A1  
TDO  
A0  
MODE NC/36M  
A
A
TMS  
TCK  
A
A
A
A
R
CY7C1383D (1M x 18)  
1
2
A
3
CE1  
4
BWB  
5
NC  
6
CE  
7
8
9
ADV  
10  
A
11  
A
NC/288M  
NC/144M  
NC  
BWE  
GW  
VSS  
VSS  
ADSC  
A
B
C
D
3
A
CE2  
NC  
BWA  
VSS  
VSS  
CLK  
VSS  
VSS  
OE  
VSS  
VDD  
ADSP  
VDDQ  
VDDQ  
A
NC/576M  
DQPA  
DQA  
NC  
VDDQ  
VDDQ  
VSS  
VDD  
NC/1G  
NC  
NC  
DQB  
NC  
NC  
DQB  
DQB  
DQB  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
NC  
NC  
DQA  
DQA  
DQA  
ZZ  
E
F
NC  
NC  
G
H
J
VSS  
DQB  
DQB  
DQB  
NC  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQA  
DQA  
DQA  
NC  
NC  
NC  
K
L
NC  
NC  
DQB  
DQPB  
NC  
NC  
NC  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
A
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
NC  
NC  
A
M
N
P
NC/72M  
TDI  
A1  
TDO  
MODE NC/36M  
A
A
TMS  
A0  
TCK  
A
A
A
A
R
Document #: 38-05544 Rev. *F  
Page 5 of 29  
CY7C1381D, CY7C1381F  
CY7C1383D, CY7C1383F  
Pin Definitions  
Name  
IO  
Description  
Address inputs used to select one of the address locations. Sampled at the rising edge  
A ,  
Input-  
Synchronous  
A ,  
A
0
1
of the CLK if ADSP or ADSC is active LOW, and CE , CE , and CE  
are sampled active.  
1
2
3
A
feed the 2-bit counter.  
[1:0]  
BW , BW  
Input-  
Synchronous  
Byte write select inputs, active LOW. Qualified with BWE to conduct byte writes to the  
SRAM. Sampled on the rising edge of CLK.  
A
B
BW , BW  
C
D
GW  
Input-  
Synchronous  
Global write enable input, active LOW. When asserted LOW on the rising edge of CLK, a  
global write is conducted (all bytes are written, regardless of the values on BW  
and BWE).  
[A:D]  
CLK  
Input-  
Clock  
Clock input. Used to capture all synchronous inputs to the device. Also used to increment  
the burst counter when ADV is asserted LOW, during a burst operation.  
CE  
CE  
CE  
Input-  
Synchronous  
Chip enable 1 input, active LOW. Sampled on the rising edge of CLK. Used in conjunction  
1
2
3
[2]  
with CE and CE  
to select or deselect the device. ADSP is ignored if CE is HIGH. CE  
2
3
1
1
is sampled only when a new external address is loaded.  
Input-  
Synchronous  
Chip enable 2 input, active HIGH. Sampled on the rising edge of CLK. Used in conjunction  
with CE and CE  
to select or deselect the device. CE is sampled only when a new  
1
3
2
external address is loaded.  
Input-  
Synchronous  
Chip enable 3 input, active LOW. Sampled on the rising edge of CLK. Used in conjunction  
with CE and CE to select or deselect the device. CE is sampled only when a new external  
1
2
3
address is loaded.  
OE  
Input-  
Asynchronous  
Output enable, asynchronous input, active LOW. Controls the direction of the IO pins.  
When LOW, the IO pins behave as outputs. When deasserted HIGH, IO pins are tri-stated,  
and act as input data pins. OE is masked during the first clock of a read cycle when emerging  
from a deselected state.  
ADV  
Input-  
Synchronous  
Advance input signal. Sampled on the rising edge of CLK. When asserted, it automatically  
increments the address in a burst cycle.  
ADSP  
Input-  
Synchronous  
Address strobe from processor, sampled on the rising edge of CLK, active LOW.  
When asserted LOW, addresses presented to the device are captured in the address  
registers. A  
are also loaded into the burst counter. When ADSP and ADSC are both  
[1:0]  
asserted, only ADSP is recognized. ASDP is ignored when CE is deasserted HIGH.  
1
ADSC  
Input-  
Synchronous  
Address strobe from controller, sampled on the rising edge of CLK, active LOW.  
When asserted LOW, addresses presented to the device are captured in the address  
registers. A  
asserted, only ADSP is recognized  
are also loaded into the burst counter. When ADSP and ADSC are both  
[1:0]  
.
BWE  
ZZ  
Input-  
Synchronous  
Byte write enable input, active LOW. Sampled on the rising edge of CLK. This signal  
must be asserted LOW to conduct a byte write.  
Input-  
Asynchronous  
ZZ sleep input. This active HIGH input places the device in a non-time critical sleep  
condition with data integrity preserved. For normal operation, this pin has to be LOW or left  
floating. ZZ pin has an internal pull down.  
IO-  
Bidirectional data IO lines. As inputs, they feed into an on-chip data register that is  
triggered by the rising edge of CLK. As outputs, they deliver the data contained in the  
DQ  
s
Synchronous  
memory location specified by the addresses presented during the previous  
clock rise of the  
read cycle. The direction of the pins is controlled by OE. When OE is asserted LOW, the  
pins behave as outputs. When HIGH, DQ and DQP are placed in a tri-state condition.The  
s
X
outputs are automatically tri-stated during the data portion of a write sequence, during the  
first clock when emerging from a deselected state, and when the device is deselected,  
regardless of the state of OE.  
IO-  
Bidirectional data parity IO lines. Functionally, these signals are identical to DQ . During  
DQP  
s
X
Synchronous  
write sequences, DQP is controlled by BW correspondingly.  
X
X
Document #: 38-05544 Rev. *F  
Page 6 of 29  
CY7C1381D, CY7C1381F  
CY7C1383D, CY7C1383F  
Pin Definitions (continued)  
Name  
MODE  
IO  
Description  
Selects burst order. When tied to GND selects linear burst sequence. When tied to V  
Input-Static  
DD  
or left floating selects interleaved burst sequence. This is a strap pin and must remain static  
during device operation. Mode pin has an internal pull up.  
V
V
V
V
Power Supply Power supply inputs to the core of the device.  
DD  
IO Power Supply Power supply for the IO circuitry.  
DDQ  
SS  
Ground  
Ground for the core of the device.  
IO Ground  
Ground for the IO circuitry.  
SSQ  
TDO  
JTAG serial output Serial data-out to the JTAG circuit. Delivers data on the negative edge of TCK. If the  
Synchronous  
JTAG feature is not being utilized, this pin can be left unconnected. This pin is not available  
on TQFP packages.  
TDI  
JTAG serial input Serial data-in to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG feature  
Synchronous  
is not being utilized, this pin can be left floating or connected to V through a pull up  
DD  
resistor. This pin is not available on TQFP packages.  
TMS  
JTAG serial input Serial data-in to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG feature  
Synchronous  
is not being utilized, this pin can be disconnected or connected to V . This pin is not  
DD  
available on TQFP packages.  
TCK  
NC  
JTAG-  
Clock  
Clock input to the JTAG circuitry. If the JTAG feature is not being utilized, this pin must  
be connected to V . This pin is not available on TQFP packages.  
SS  
No connects. Not internally connected to the die. 36M, 72M, 144M, 288M, 576M, and 1G  
are address expansion pins and are not internally connected to the die.  
V
/DNU  
Ground/DNU  
This pin can be connected to ground or can be left floating.  
SS  
selection and output tri-state control. ADSP is ignored if CE  
is HIGH.  
Functional Overview  
1
All synchronous inputs pass through input registers controlled  
by the rising edge of the clock. Maximum access delay from  
Single Read Accesses  
the clock rise (t  
) is 6.5 ns (133 MHz device).  
CDV  
A single read access is initiated when the following conditions  
The  
CY7C1381D/CY7C1383D/CY7C1381F/CY7C1383F  
are satisfied at clock rise: (1) CE , CE , and CE  
are all  
1
2
3
supports secondary cache in systems utilizing a linear or  
interleaved burst sequence. The interleaved burst order  
supports Pentium and i486™ processors. The linear burst  
asserted active, and (2) ADSP or ADSC is asserted LOW (if  
the access is initiated by ADSC, the write inputs must be  
deasserted during this first cycle). The address presented to  
the address inputs is latched into the address register and the  
burst counter and/or control logic, and later presented to the  
memory core. If the OE input is asserted LOW, the requested  
data will be available at the data outputs with a maximum to  
®
sequence is suited for processors that utilize a linear burst  
sequence. The burst order is user selectable, and is  
determined by sampling the MODE input. Accesses can be  
initiated with the processor address strobe (ADSP) or the  
controller address strobe (ADSC). Address advancement  
through the burst sequence is controlled by the ADV input. A  
two-bit on-chip wraparound burst counter captures the first  
address in a burst sequence and automatically increments the  
address for the rest of the burst access.  
t
after clock rise. ADSP is ignored if CE is HIGH.  
CDV  
1
Single Write Accesses Initiated by ADSP  
This access is initiated when the following conditions are  
satisfied at clock rise: (1) CE , CE , CE  
are all asserted  
1
2
3
active, and (2) ADSP is asserted LOW. The addresses  
presented are loaded into the address register and the burst  
Byte write operations are qualified with the byte write enable  
(BW ) and byte write select (BW ) inputs. A global write  
E
X
inputs (GW, BW , and BW ) are ignored during this first clock  
E
X
enable (GW) overrides all byte write inputs and writes data to  
all four bytes. All writes are simplified with on-chip  
synchronous self-timed write circuitry.  
cycle. If the write inputs are asserted active (see Truth Table  
on page 10 for appropriate states that  
indicate a write) on the next clock rise, the appropriate data will  
be latched and written into the device. Byte writes are allowed.  
All IOs are tri-stated during a byte write. As this is a common  
IO device, the asynchronous OE input signal must be  
Three synchronous chip selects (CE , CE , CE  
3
) and an  
1
2
asynchronous output enable (OE) provide for easy bank  
Document #: 38-05544 Rev. *F  
Page 7 of 29  
CY7C1381D, CY7C1381F  
CY7C1383D, CY7C1383F  
deasserted and the IOs must be tri-stated prior to the presen-  
tation of data to DQs. As a safety precaution, the data lines are  
tri-stated once a write cycle is detected, regardless of the state  
of OE.  
Sleep Mode  
The ZZ input pin is an asynchronous input. Asserting ZZ  
places the SRAM in a power conservation sleep mode. Two  
clock cycles are required to enter into or exit from this sleep  
mode. While in this mode, data integrity is guaranteed.  
Accesses pending when entering the sleep mode are not  
considered valid nor is the completion of the operation  
guaranteed. The device must be deselected prior to entering  
the sleep mode. CE , CE , CE  
remain inactive for the duration of t  
returns LOW.  
Single Write Accesses Initiated by ADSC  
This write access is initiated when the following conditions are  
satisfied at clock rise: (1) CE , CE , and CE  
are all  
1
2
3
asserted active, (2) ADSC is asserted LOW, (3) ADSP is  
deasserted HIGH, and (4) the write input signals (GW, BWE,  
, ADSP, and ADSC must  
1
2
3
after the ZZ input  
ZZREC  
and BW ) indicate a write access. ADSC is ignored if ADSP is  
X
active LOW.  
Interleaved Burst Address Table  
(MODE = Floating or VDD  
The addresses presented are loaded into the address register  
and the burst counter, the control logic, or both, and delivered  
)
to the memory core The information presented to DQ  
be written into the specified address location. Byte writes are  
allowed. All IOs are tri-stated when a write is detected, even a  
will  
First  
Address  
A1: A0  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
[A:D]  
byte write. Since this is  
asynchronous OE input signal must be deasserted and the IOs  
must be tri-stated prior to the presentation of data to DQ . As  
a safety precaution, the data lines are tri-stated once a write  
cycle is detected, regardless of the state of OE.  
a
common IO device, the  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
s
Linear Burst Address Table (MODE = GND)  
Burst Sequences  
First  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
The  
provides an on-chip two-bit wraparound burst counter inside  
the SRAM. The burst counter is fed by A , and can follow  
either a linear or interleaved burst order. The burst order is  
determined by the state of the MODE input. A LOW on MODE  
will select a linear burst sequence. A HIGH on MODE will  
select an interleaved burst order. Leaving MODE unconnected  
will cause the device to default to a interleaved burst  
sequence.  
CY7C1381D/CY7C1383D/CY7C1381F/CY7C1383F  
Address  
A1: A0  
[1:0]  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
ZZ Mode Electrical Characteristics  
Parameter  
Description  
Sleep mode standby current  
Device operation to ZZ  
ZZ recovery time  
Test Conditions  
ZZ > V – 0.2V  
Min  
Max  
Unit  
mA  
ns  
I
t
t
t
t
80  
DDZZ  
ZZS  
DD  
ZZ > V – 0.2V  
2t  
DD  
CYC  
CYC  
ZZ < 0.2V  
2t  
ns  
ZZREC  
ZZI  
CYC  
ZZ active to sleep current  
ZZ inactive to exit sleep current  
This parameter is sampled  
This parameter is sampled  
2t  
ns  
0
ns  
RZZI  
Document #: 38-05544 Rev. *F  
Page 8 of 29  
CY7C1381D, CY7C1381F  
CY7C1383D, CY7C1383F  
Truth Table [4, 5, 6, 7, 8]  
ADDRESS  
Used  
Cycle Description  
CE CE CE ZZ  
ADSP  
ADSC ADV WRITE OE CLK  
DQ  
1
2
3
Deselected Cycle, Power  
Down  
None  
None  
None  
None  
None  
H
L
L
L
X
X
X
X
H
X
X
L
L
L
L
L
X
L
X
X
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
L-H Tri-State  
L-H Tri-State  
L-H Tri-State  
L-H Tri-State  
L-H Tri-State  
Deselected Cycle, Power  
Down  
L
L
L
Deselected Cycle, Power  
Down  
X
L
Deselected Cycle, Power  
Down  
H
H
Deselected Cycle, Power  
Down  
X
L
Sleep Mode, Power Down  
Read Cycle, Begin Burst  
Read Cycle, Begin Burst  
Write Cycle, Begin Burst  
Read Cycle, Begin Burst  
Read Cycle, Begin Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Write Cycle, Continue Burst  
Write Cycle, Continue Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Write Cycle, Suspend Burst  
Write Cycle, Suspend Burst  
None  
External  
External  
External  
External  
External  
Next  
X
L
X
H
H
H
H
H
X
X
X
X
X
X
X
X
X
X
X
X
X
L
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
L
X
X
X
L
X
X
X
X
X
X
L
X
X
X
L
X
L
X
Tri-State  
Q
L-H  
L
L
L
H
X
L
L-H Tri-State  
L
L
H
H
H
H
H
X
X
H
X
H
H
X
X
H
X
L-H  
L-H  
D
Q
L
L
L
H
H
H
H
H
H
L
L
L
L
H
L
L-H Tri-State  
L-H  
L-H Tri-State  
L-H  
L-H Tri-State  
X
X
H
H
X
H
X
X
H
H
X
H
X
X
X
X
X
X
X
X
X
X
X
X
H
H
H
H
H
H
H
H
H
H
H
H
Q
Next  
L
H
L
Next  
L
Q
Next  
L
H
X
X
L
Next  
L
L-H  
L-H  
L-H  
D
D
Q
Next  
L
L
Current  
Current  
Current  
Current  
Current  
Current  
H
H
H
H
H
H
H
H
H
H
L
H
L
L-H Tri-State  
L-H  
L-H Tri-State  
Q
H
X
X
L-H  
L-H  
D
D
L
Notes:  
4. X=Don't Care, H = Logic HIGH, L = Logic LOW.  
5. WRITE = L when any one or more byte write enable signals, and BWE = L or GW = L. WRITE = H when all byte write enable signals, BWE, GW = H.  
6. The DQ pins are controlled by the current cycle and the signal. is asynchronous and is not sampled with the clock.  
OE  
OE  
must be driven HIGH prior to the start of the write cycle to allow the outputs to tri-state.  
7. The SRAM always initiates a read cycle when ADSP is asserted, regardless of the state of GW, BWE, or BW . Writes may occur only on subsequent clocks after  
X
the  
or with the assertion of  
. As a result,  
is a don't  
OE  
ADSC  
care for the remainder of the write cycle.  
is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle all data bits are tri-state when  
OE  
ADSP  
8.  
is  
OE  
OE  
inactive or when the device is deselected, and all data bits behave as output when  
is active (LOW).  
OE  
Document #: 38-05544 Rev. *F  
Page 9 of 29  
           
CY7C1381D, CY7C1381F  
CY7C1383D, CY7C1383F  
Truth Table for Read/Write [4, 9]  
Function (CY7C1381D/CY7C1381F)  
GW  
H
BWE  
BW  
X
BW  
X
BW  
X
BW  
A
D
C
B
Read  
Read  
H
L
L
L
L
L
L
L
L
X
H
L
H
H
H
H
H
H
L
H
H
L
Write Byte A (DQ , DQP )  
H
H
A
A
Write Byte B(DQ , DQP )  
H
H
H
L
B
B
Write Bytes A, B (DQ , DQ , DQP , DQP )  
H
H
L
A
B
A
B
Write Byte C (DQ , DQP )  
H
H
H
H
L
H
L
C
C
Write Bytes C, A (DQ , DQ DQP , DQP )  
H
H
L
C
A,  
C
A
Write Bytes C, B (DQ , DQ DQP , DQP )  
H
H
L
H
L
C
B,  
C
B
Write Bytes C, B, A (DQ , DQ , DQ DQP ,  
H
H
L
L
C
B
A,  
C
DQP , DQP )  
B
A
Write Byte D (DQ , DQP )  
H
H
H
H
L
L
L
L
L
L
L
L
H
H
H
H
H
H
L
H
L
D
D
Write Bytes D, A (DQ , DQ DQP , DQP )  
D
A,  
D
A
Write Bytes D, B (DQ , DQ DQP , DQP )  
H
L
D
A,  
D
A
Write Bytes D, B, A (DQ , DQ , DQ DQP ,  
L
D
B
A,  
D
DQP , DQP )  
B
A
Write Bytes D, B (DQ , DQ DQP , DQP )  
H
H
L
L
L
L
L
L
H
H
H
L
D
B,  
D
B
Write Bytes D, B, A (DQ , DQ , DQ DQP ,  
D
C
A,  
D
DQP , DQP )  
C
A
Truth Table for Read/Write [4, 9]  
Function (CY7C1383D/CY7C1383F)  
Write Bytes D, C, A (DQ , DQ , DQ DQP ,  
GW  
BWE  
BW  
BW  
A
B
H
L
L
L
D
B
A,  
D
DQP , DQP )  
B
A
Write All Bytes  
Write All Bytes  
Read  
H
L
L
X
H
L
L
X
X
H
H
L
L
X
X
H
L
H
H
H
H
H
L
Read  
Write Byte A – (DQ and DQP )  
L
A
A
Write Byte B – (DQ and DQP )  
L
H
L
B
B
Write All Bytes  
Write All Bytes  
L
L
X
X
X
Note:  
9. Table only lists a partial listing of the byte write combinations. Any combination of BW is valid. Appropriate write will be done based on which byte write is active.  
X
Document #: 38-05544 Rev. *F  
Page 10 of 29  
   
CY7C1381D, CY7C1381F  
CY7C1383D, CY7C1383F  
registers. The register between TDI and TDO is chosen by the  
instruction that is loaded into the TAP instruction register. TDI  
is internally pulled up and can be unconnected if the TAP is  
unused in an application. TDI is connected to the most  
significant bit (MSB) of any register. (See TAP Controller Block  
Diagram.)  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
The  
CY7C1381D/CY7C1383D/CY7C1381F/CY7C1383F  
incorporates a serial boundary scan test access port  
(TAP).This part is fully compliant with 1149.1. The TAP  
operates using JEDEC-standard 3.3V or 2.5V IO logic levels.  
The  
CY7C1381D/CY7C1383D/CY7C1381F/CY7C1383F  
Test Data-Out (TDO)  
contains a TAP controller, instruction register, boundary scan  
register, bypass register, and ID register.  
The TDO output ball is used to serially clock data-out from the  
registers. The output is active depending upon the current  
state of the TAP state machine. The output changes on the  
falling edge of TCK. TDO is connected to the least significant  
bit (LSB) of any register. (See TAP Controller State Diagram.)  
Disabling the JTAG Feature  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, TCK must be tied LOW  
(V ) to prevent clocking of the device. TDI and TMS are  
internally pulled up and may be unconnected. They may  
SS  
TAP Controller Block Diagram  
alternately be connected to V  
through a pull up resistor.  
DD  
TDO may be left unconnected. Upon power up, the device will  
come up in a reset state, which will not interfere with the  
operation of the device.  
0
Bypass Register  
2
1
0
0
0
Selection  
Circuitry  
TAP Controller State Diagram  
Instruction Register  
31 30 29  
Identification Register  
S
election  
TDI  
TDO  
Circuitr  
y
.
.
.
2
1
TEST-LOGIC  
1
RESET  
0
1
1
1
RUN-TEST/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
x
.
.
.
.
.
2
1
0
0
0
Boundary Scan Register  
1
1
CAPTURE-DR  
CAPTURE-IR  
0
0
TCK  
SHIFT-DR  
0
SHIFT-IR  
0
TMS  
TAP CONTROLLER  
1
1
1
1
EXIT1-DR  
EXIT1-IR  
0
0
PAUSE-DR  
1
0
PAUSE-IR  
1
0
Performing a TAP Reset  
0
0
EXIT2-DR  
1
EXIT2-IR  
1
A Reset is performed by forcing TMS HIGH (V ) for five rising  
DD  
edges of TCK. This Reset does not affect the operation of the  
SRAM and may be performed while the SRAM is operating. At  
power up, the TAP is reset internally to ensure that TDO  
comes up in a High-Z state.  
UPDATE-DR  
UPDATE-IR  
1
0
1
0
TAP Registers  
Registers are connected between the TDI and TDO balls and  
allow data to be scanned in and out of the SRAM test circuitry.  
Only one register can be selected at a time through the  
instruction registers. Data is serially loaded into the TDI ball on  
the rising edge of TCK. Data is output on the TDO ball on the  
falling edge of TCK.  
The 0 or 1 next to each state represents the value of TMS at  
the rising edge of TCK.  
Test Access Port (TAP)  
Test Clock (TCK)  
The test clock is used only with the TAP controller. All inputs  
are captured on the rising edge of TCK. All outputs are driven  
from the falling edge of TCK.  
Instruction Register  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the  
TDI and TDO balls as shown in the TAP Controller Block  
Diagram. Upon power up, the instruction register is loaded  
with the IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state as  
described in the previous section.  
Test MODE SELECT (TMS)  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. This pin may be left  
unconnected if the TAP is not used. The ball is pulled up inter-  
nally, resulting in a logic HIGH level.  
When the TAP controller is in the Capture-IR state, the two  
least significant bits are loaded with a binary ‘01’ pattern to  
allow for fault isolation of the board level serial test path.  
Test Data-In (TDI)  
The TDI ball is used to serially input information into the  
registers and can be connected to the input of any of the  
Document #: 38-05544 Rev. *F  
Page 11 of 29  
   
CY7C1381D, CY7C1381F  
CY7C1383D, CY7C1383F  
Bypass Register  
The IDCODE instruction is loaded into the instruction register  
upon power up or whenever the TAP controller is given a test  
logic reset state.  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain chips. The bypass  
register is a single-bit register that can be placed between the  
TDI and TDO balls. This allows data to be shifted through the  
SRAM with minimal delay. The bypass register is set LOW  
SAMPLE Z  
The SAMPLE Z instruction causes the boundary scan register  
to be connected between the TDI and TDO balls when the TAP  
controller is in a Shift-DR state. The SAMPLE Z command  
places all SRAM outputs into a High-Z state.  
(V ) when the BYPASS instruction is executed.  
SS  
Boundary Scan Register  
The boundary scan register is connected to all the input and  
bidirectional balls on the SRAM.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. When  
the SAMPLE/PRELOAD instructions are loaded into the  
instruction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the inputs and output pins is  
captured in the boundary scan register.  
The boundary scan register is loaded with the contents of the  
RAM input and output ring when the TAP controller is in the  
Capture-DR state and is then placed between the TDI and  
TDO balls when the controller is moved to the Shift-DR state.  
The EXTEST, SAMPLE/PRELOAD, and SAMPLE  
Z
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 20 MHz, while the SRAM clock  
operates more than an order of magnitude faster. Because  
there is a large difference in the clock frequencies, it is  
possible that during the Capture-DR state, an input or output  
will undergo a transition. The TAP may then try to capture a  
signal while in transition (metastable state). This will not harm  
the device, but there is no guarantee as to the value that will  
be captured. Repeatable results may not be possible.  
instructions can be used to capture the contents of the input  
and output ring.  
The boundary scan order tables show the order in which the  
bits are connected. Each bit corresponds to one of the bumps  
on the SRAM package. The MSB of the register is connected  
to TDI, and the LSB is connected to TDO.  
Identification (ID) Register  
The ID register is loaded with a vendor-specific 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired  
into the SRAM and can be shifted out when the TAP controller  
is in the Shift-DR state. The ID register has a vendor code and  
other information described in Identification Register  
To guarantee that the boundary scan register will capture the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controller's capture setup plus  
hold times (t and t ). The SRAM clock input might not be  
CS  
CH  
captured correctly if there is no way in a design to stop (or  
slow) the clock during a SAMPLE/PRELOAD instruction. If this  
is an issue, it is still possible to capture all other signals and  
simply ignore the value of the CK and CK captured in the  
boundary scan register.  
TAP Instruction Set  
Overview  
Once the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the  
boundary scan register between the TDI and TDO pins.  
Eight different instructions are possible with the three bit  
instruction register. All combinations are listed in Identification  
Codes on page 15. Three of these instructions are listed as  
RESERVED and must not be used. The other five instructions  
are described in detail below.  
PRELOAD allows an initial data pattern to be placed at the  
latched parallel outputs of the boundary scan register cells  
prior to the selection of another boundary scan test operation.  
Instructions are loaded into the TAP controller during the  
Shift-IR state, when the instruction register is placed between  
TDI and TDO. During this state, instructions are shifted  
through the instruction register through the TDI and TDO balls.  
To execute the instruction once it is shifted in, the TAP  
controller needs to be moved into the Update-IR state.  
The shifting of data for the SAMPLE and PRELOAD phases  
can occur concurrently when required; that is, while data  
captured is shifted out, the preloaded data is shifted in.  
BYPASS  
When the BYPASS instruction is loaded in the instruction  
register and the TAP is placed in a Shift-DR state, the bypass  
register is placed between the TDI and TDO balls. The  
advantage of the BYPASS instruction is that it shortens the  
boundary scan path when multiple devices are connected  
together on a board.  
EXTEST  
The EXTEST instruction enables the preloaded data to be  
driven out through the system output pins. This instruction also  
selects the boundary scan register to be connected for serial  
access between the TDI and TDO in the Shift-DR controller  
state.  
EXTEST Output Bus Tri-State  
IEEE standard 1149.1 mandates that the TAP controller be  
able to put the output bus into a tri-state mode.  
IDCODE  
The IDCODE instruction causes a vendor-specific 32-bit code  
to be loaded into the instruction register. It also places the  
instruction register between the TDI and TDO balls and allows  
the IDCODE to be shifted out of the device when the TAP  
controller enters the Shift-DR state.  
The boundary scan register has a special bit located at bit #85  
(for 119-BGA package) or bit #89 (for 165-fBGA package).  
When this scan cell, called the “extest output bus tri-state,” is  
latched into the preload register during the Update-DR state in  
the TAP controller, it will directly control the state of the output  
Document #: 38-05544 Rev. *F  
Page 12 of 29  
CY7C1381D, CY7C1381F  
CY7C1383D, CY7C1383F  
(Q-bus) pins, when the EXTEST is entered as the current  
instruction. When HIGH, it will enable the output buffers to  
drive the output bus. When LOW, this bit will place the output  
bus into a High-Z condition.  
directly control the output Q-bus pins. Note that this bit is  
preset HIGH to enable the output when the device is powered  
up, and also when the TAP controller is in the Test-Logic-Reset  
state.  
This bit can be set by entering the SAMPLE/PRELOAD or  
EXTEST command, and then shifting the desired bit into that  
cell, during the Shift-DR state. During Update-DR, the value  
loaded into that shift-register cell will latch into the preload  
register. When the EXTEST instruction is entered, this bit will  
Reserved  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
TAP Timing  
1
2
3
4
5
6
Test Clock  
(TCK)  
t
t
t
TH  
CYC  
TL  
t
t
t
t
TMSS  
TDIS  
TMSH  
Test Mode Select  
(TMS)  
TDIH  
Test Data-In  
(TDI)  
t
TDOV  
t
TDOX  
Test Data-Out  
(TDO)  
DON’T CARE  
UNDEFINED  
TAP AC Switching Characteristics  
Over the Operating Range  
Parameter  
Clock  
Description  
Min  
Max  
Unit  
t
t
t
t
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH time  
TCK Clock LOW time  
50  
ns  
MHz  
ns  
TCYC  
TF  
20  
20  
20  
TH  
ns  
TL  
Output Times  
t
t
TCK Clock LOW to TDO Valid  
TCK Clock LOW to TDO Invalid  
10  
ns  
ns  
TDOV  
TDOX  
0
Setup Times  
t
t
t
TMS Setup to TCK Clock Rise  
TDI Setup to TCK Clock Rise  
Capture Setup to TCK Rise  
5
5
5
ns  
ns  
ns  
TMSS  
TDIS  
CS  
Hold Times  
t
t
t
TMS Hold after TCK Clock Rise  
TDI Hold after Clock Rise  
5
5
5
ns  
ns  
ns  
TMSH  
TDIH  
CH  
Capture Hold after Clock Rise  
Notes:  
10. t and t refer to the setup and hold time requirements of latching data from the boundary scan register.  
CS  
CH  
11. Test conditions are specified using the load in TAP AC test conditions. t /t = 1 ns.  
R
F
Document #: 38-05544 Rev. *F  
Page 13 of 29  
   
CY7C1381D, CY7C1381F  
CY7C1383D, CY7C1383F  
3.3V TAP AC Test Conditions  
2.5V TAP AC Test Conditions  
Input pulse levels.................................................V to 3.3V  
Input pulse levels.................................................V to 2.5V  
SS  
SS  
Input rise and fall times................................................... 1 ns  
Input timing reference levels...........................................1.5V  
Output reference levels...................................................1.5V  
Test load termination supply voltage...............................1.5V  
Input rise and fall time .....................................................1 ns  
Input timing reference levels ........................................ 1.25V  
Output reference levels ................................................ 1.25V  
Test load termination supply voltage ............................ 1.25V  
3.3V TAP AC Output Load Equivalent  
2.5V TAP AC Output Load Equivalent  
1.5V  
1.25V  
50  
50  
TDO  
TDO  
ZO= 50 Ω  
20pF  
ZO= 50 Ω  
20pF  
TAP DC Electrical Characteristics And Operating Conditions  
(0°C < TA < +70°C; V = 3.3V ±0.165V unless otherwise noted)  
DD  
Parameter  
Description  
Conditions  
= 3.3V  
Min  
2.4  
2.0  
2.9  
2.1  
Max  
Unit  
V
V
V
V
V
V
V
Output HIGH Voltage  
Output HIGH Voltage  
Output LOW Voltage  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage  
Input Load Current  
I
I
I
= –4.0 mA  
= –1.0 mA  
= –100 µA  
V
V
V
V
V
V
V
V
V
V
V
V
OH1  
OH  
OH  
OH  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
= 2.5V  
= 3.3V  
= 2.5V  
= 3.3V  
= 2.5V  
= 3.3V  
= 2.5V  
= 3.3V  
= 2.5V  
= 3.3V  
= 2.5V  
V
V
OH2  
OL1  
OL2  
IH  
V
I
I
I
= 8.0 mA  
= 8.0 mA  
= 100 µA  
0.4  
0.4  
0.2  
0.2  
V
OL  
OL  
OL  
V
V
V
2.0  
1.7  
V
V
+ 0.3  
V
DD  
DD  
+ 0.3  
V
–0.3  
–0.3  
–5  
0.8  
V
IL  
0.7  
5
V
I
GND < V < V  
DDQ  
µA  
X
IN  
Note:  
12. All voltages referenced to V (GND).  
SS  
Document #: 38-05544 Rev. *F  
Page 14 of 29  
 
CY7C1381D, CY7C1381F  
CY7C1383D, CY7C1383F  
Identification Register Definitions  
CY7C1381D/CY7C1381F CY7C1383D/CY7C1383F  
Instruction Field  
(512K × 36)  
(1M × 18)  
Description  
Describes the version number.  
Reserved for internal use.  
Revision Number (31:29)  
000  
000  
Device Depth (28:24)  
01011  
01011  
Device Width (23:18) 119-BGA  
Device Width (23:18) 165-FBGA  
101001  
101001  
Defines the memory type and  
architecture.  
000001  
000001  
Defines the memory type and  
architecture.  
Cypress Device ID (17:12)  
100101  
010101  
Defines the width and density.  
Cypress JEDEC ID Code (11:1)  
00000110100  
00000110100  
Allows unique identification of SRAM  
vendor.  
ID Register Presence Indicator (0)  
1
1
Indicates the presence of an ID  
register.  
Scan Register Sizes  
Register Name  
Bit Size (×36)  
Bit Size (×18)  
Instruction Bypass  
3
3
Bypass  
ID  
1
1
32  
85  
89  
32  
85  
89  
Boundary Scan Order (119-ball BGA package)  
Boundary Scan Order (165-ball fBGA package)  
Identification Codes  
Instruction  
EXTEST  
Code  
Description  
000  
Captures Input/Output ring contents. Places the boundary scan register between TDI and  
TDO. Forces all SRAM outputs to High-Z state.  
IDCODE  
001  
010  
Loads the ID register with the vendor ID code and places the register between TDI and TDO.  
This operation does not affect SRAM operations.  
SAMPLE Z  
Captures Input/Output ring contents. Places the boundary scan register between TDI and  
TDO. Forces all SRAM output drivers to a High-Z state.  
RESERVED  
011  
100  
Do Not Use. This instruction is reserved for future use.  
SAMPLE/PRELOAD  
Captures Input/Output ring contents. Places the boundary scan register between TDI and  
TDO. Does not affect SRAM operation.  
RESERVED  
RESERVED  
BYPASS  
101  
110  
111  
Do Not Use. This instruction is reserved for future use.  
Do Not Use. This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not affect SRAM  
operations.  
Note:  
13. Bit #24 is “1” in the register definitions for both 2.5V and 3.3V versions of this device.  
Document #: 38-05544 Rev. *F  
Page 15 of 29  
     
CY7C1381D, CY7C1381F  
CY7C1383D, CY7C1383F  
119-Ball BGA Boundary Scan Order [14, 15]  
Bit #  
1
Ball ID  
Bit #  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
Ball ID  
F6  
Bit #  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
Ball ID  
G4  
A4  
G3  
C3  
B2  
B3  
A3  
C2  
A2  
B1  
C1  
D2  
E1  
F2  
Bit #  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
Ball ID  
L1  
H4  
T4  
T5  
T6  
R5  
L5  
2
E7  
D7  
H7  
G6  
E6  
D6  
C7  
B7  
C6  
A6  
C5  
B5  
G5  
B6  
D4  
B4  
F4  
M2  
N1  
3
4
P1  
5
K1  
6
L2  
7
R6  
U6  
R7  
T7  
P6  
N7  
M6  
L7  
N2  
P2  
8
9
R3  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
T1  
R1  
T2  
L3  
R2  
K6  
P7  
N6  
L6  
G1  
H2  
D1  
E2  
G2  
H1  
J3  
T3  
L4  
N4  
P4  
K7  
J5  
M4  
A5  
K4  
E4  
Internal  
H6  
G7  
2K  
Notes:  
14. Balls which are NC (No Connect) are pre-set LOW.  
15. Bit# 85 is pre-set HIGH.  
Document #: 38-05544 Rev. *F  
Page 16 of 29  
   
CY7C1381D, CY7C1381F  
CY7C1383D, CY7C1383F  
165-Ball BGA Boundary Scan Order [14, 16]  
Bit #  
1
Ball ID  
N6  
Bit #  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
Ball ID  
D10  
C11  
A11  
B11  
A10  
B10  
A9  
Bit #  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
Ball ID  
G1  
D2  
E2  
2
N7  
3
N10  
P11  
P8  
4
F2  
5
G2  
H1  
H3  
J1  
6
R8  
7
R9  
8
P9  
B9  
9
P10  
R10  
R11  
H11  
N11  
M11  
L11  
K11  
J11  
M10  
L10  
K10  
J10  
H9  
C10  
A8  
K1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
L1  
B8  
M1  
J2  
A7  
B7  
K2  
B6  
L2  
A6  
M2  
N1  
N2  
P1  
B5  
A5  
A4  
B4  
R1  
R2  
P3  
B3  
A3  
A2  
R3  
P2  
H10  
G11  
F11  
E11  
D11  
G10  
F10  
E10  
B2  
C2  
R4  
P4  
B1  
A1  
N5  
P6  
C1  
D1  
R6  
Internal  
E1  
F1  
Note:  
16. Bit# 89 is pre-set HIGH.  
Document #: 38-05544 Rev. *F  
Page 17 of 29  
 
CY7C1381D, CY7C1381F  
CY7C1383D, CY7C1383F  
DC Input Voltage ................................... –0.5V to V + 0.5V  
Maximum Ratings  
DD  
Current into Outputs (LOW) ........................................ 20 mA  
Exceeding the maximum ratings may impair the useful life of  
the device. For user guidelines, not tested.  
Static Discharge Voltage........................................... > 2001V  
(per MIL-STD-883, Method 3015)  
Storage Temperature .................................65°C to +150°C  
Latch-up Current .................................................... > 200 mA  
Ambient Temperature with  
Power Applied.............................................55°C to +125°C  
Operating Range  
Supply Voltage on V Relative to GND ....... –0.3V to +4.6V  
DD  
Ambient  
Supply Voltage on V  
Relative to GND ...... –0.3V to +V  
Range  
Temperature  
V
V
DDQ  
DDQ  
DD  
DD  
DC Voltage Applied to Outputs  
in Tri-State........................................... –0.5V to V  
Commercial 0°C to +70°C 3.3V –5%/+10% 2.5V – 5%  
+ 0.5V  
to V  
DDQ  
DD  
Industrial  
–40°C to +85°C  
Electrical Characteristics  
Over the Operating Range  
Parameter  
Description  
Test Conditions  
Min  
Max  
Unit  
V
Power Supply Voltage  
IO Supply Voltage  
3.135  
3.135  
2.375  
2.4  
3.6  
V
V
DD  
V
V
V
V
V
I
for 3.3V IO  
for 2.5V IO  
for 3.3V IO, I = –4.0 mA  
V
DD  
DDQ  
2.625  
V
Output HIGH Voltage  
Output LOW Voltage  
V
OH  
OL  
IH  
OH  
for 2.5V IO, I = –1.0 mA  
2.0  
V
OH  
for 3.3V IO, I = 8.0 mA  
0.4  
0.4  
V
OL  
for 2.5V IO, I = 1.0 mA  
V
OL  
Input HIGH Voltage  
Input LOW Voltage  
for 3.3V IO  
for 2.5V IO  
for 3.3V IO  
for 2.5V IO  
2.0  
1.7  
V
V
+ 0.3V  
V
DD  
+ 0.3V  
V
DD  
–0.3  
–0.3  
–5  
0.8  
V
IL  
0.7  
5
V
Input Leakage Current GND V V  
except ZZ and MODE  
µA  
X
I
DDQ  
Input Current of MODE Input = V  
–30  
–5  
µA  
µA  
µA  
µA  
µA  
mA  
mA  
mA  
SS  
Input = V  
5
DD  
Input Current of ZZ  
Input = V  
Input = V  
SS  
DD  
30  
5
I
I
Output Leakage Current GND V V  
Output Disabled  
–5  
OZ  
I
DD,  
V
Operating Supply  
V
f = f  
= Max, I  
= 0 mA,  
7.5-ns cycle, 133 MHz  
10-ns cycle, 100 MHz  
7.5-ns cycle, 133 MHz  
10-ns cycle, 100 MHz  
210  
175  
140  
120  
DD  
DD  
DD  
OUT  
CYC  
Current  
= 1/t  
MAX  
I
I
I
I
Automatic CE  
Power Down  
Current—TTL Inputs  
Max V , Device Deselected,  
DD  
SB1  
V
V or V V , f = f  
IN IH IN IL MAX,  
inputs switching  
Automatic CE  
Power Down  
Current—CMOS Inputs f = 0, inputs static  
Max V , Device Deselected,  
All speeds  
70  
mA  
SB2  
SB3  
SB4  
DD  
V
V – 0.3V or V 0.3V,  
IN  
DD IN  
Automatic CE  
Power Down  
Current—CMOS Inputs f = f  
Max V , Device Deselected,  
7.5-ns cycle, 133 MHz  
10-ns cycle, 100 MHz  
130  
110  
mA  
mA  
DD  
V
V  
– 0.3V or V 0.3V,  
IN  
DDQ IN  
, inputs switching  
MAX  
Automatic CE  
Power Down  
Current—TTL Inputs  
Max V , Device Deselected,  
All Speeds  
80  
mA  
DD  
V
V – 0.3V or V 0.3V,  
IN DD IN  
f = 0, inputs static  
Notes:  
17. Overshoot: V (AC) < V +1.5V (pulse width less than t  
/2), undershoot: V (AC) > –2V (pulse width less than t /2).  
CYC  
IH  
DD  
CYC  
IL  
18. T  
: Assumes a linear ramp from 0v to V (min) within 200 ms. During this time V < V and V  
< V  
.
power up  
DD  
IH  
DD  
DDQ  
DD  
Document #: 38-05544 Rev. *F  
Page 18 of 29  
   
CY7C1381D, CY7C1381F  
CY7C1383D, CY7C1383F  
Capacitance [19]  
100 TQFP  
Package  
119 BGA  
Package  
165 FBGA  
Package  
Parameter  
Description  
Test Conditions  
T = 25°C, f = 1 MHz,  
Unit  
pF  
C
C
C
Input Capacitance  
5
5
5
8
8
8
9
9
9
IN  
A
V
V
= 3.3V.  
DD  
Clock Input Capacitance  
Input/Output Capacitance  
pF  
CLK  
IO  
= 2.5V  
DDQ  
pF  
Thermal Resistance [19]  
100 TQFP  
Package  
119 BGA  
Package  
165 FBGA  
Package  
Parameter  
Description  
Test Conditions  
Unit  
ΘJA  
Thermal Resistance  
(Junction to Ambient)  
Test conditions follow standard  
test methods and procedures  
for measuring thermal  
impedance, in accordance with  
EIA/JESD51.  
28.66  
23.8  
20.7  
°C/W  
ΘJC  
Thermal Resistance  
(Junction to Case)  
4.08  
6.2  
4.0  
°C/W  
AC Test Loads and Waveforms  
3.3V IO Test Load  
R = 317Ω  
3.3V  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
GND  
OUTPUT  
90%  
10%  
Z = 50Ω  
0
R = 50Ω  
10%  
L
5 pF  
R = 351Ω  
1 ns  
1 ns  
INCLUDING  
JIG AND  
SCOPE  
V = 1.5V  
T
(a)  
(b)  
(c)  
2.5V IO Test Load  
R = 1667Ω  
2.5V  
OUTPUT  
R = 50Ω  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
GND  
90%  
10%  
Z = 50Ω  
0
10%  
L
5 pF  
R = 1538Ω  
1 ns  
1 ns  
INCLUDING  
JIG AND  
SCOPE  
V = 1.25V  
T
(a)  
(b)  
(c)  
Note:  
19. Tested initially and after any design or process change that may affect these parameters.  
Document #: 38-05544 Rev. *F  
Page 19 of 29  
   
CY7C1381D, CY7C1381F  
CY7C1383D, CY7C1383F  
Switching Characteristics  
Over the Operating Range  
133 MHz  
100 MHz  
Parameter  
Description  
(Typical) to the first Access  
DD  
Min  
Max  
Min  
Max  
Unit  
t
V
1
1
ms  
POWER  
Clock  
t
t
t
Clock Cycle Time  
Clock HIGH  
7.5  
2.1  
2.1  
10  
2.5  
2.5  
ns  
ns  
ns  
CYC  
CH  
Clock LOW  
CL  
Output Times  
t
t
t
t
t
t
t
Data Output Valid After CLK Rise  
Data Output Hold After CLK Rise  
6.5  
8.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CDV  
DOH  
CLZ  
2.0  
2.0  
0
2.0  
2.0  
0
Clock to Low-Z  
Clock to High-Z  
4.0  
3.2  
5.0  
3.8  
CHZ  
OEV  
OELZ  
OEHZ  
OE LOW to Output Valid  
OE LOW to Output Low-Z  
OE HIGH to Output High-Z  
0
0
[23, 24, 25]  
4.0  
5.0  
Setup Times  
t
t
t
t
t
t
Address Setup Before CLK Rise  
ADSP, ADSC Setup Before CLK Rise  
ADV Setup Before CLK Rise  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
AS  
ADS  
ADVS  
WES  
DS  
GW, BWE, BW  
Setup Before CLK Rise  
[A:D]  
Data Input Setup Before CLK Rise  
Chip Enable Setup  
CES  
Hold Times  
t
t
t
t
t
t
Address Hold After CLK Rise  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
AH  
ADSP, ADSC Hold After CLK Rise  
ADH  
WEH  
ADVH  
DH  
GW, BWE, BW  
Hold After CLK Rise  
[A:D]  
ADV Hold After CLK Rise  
Data Input Hold After CLK Rise  
Chip Enable Hold After CLK Rise  
CEH  
Notes:  
20. Timing reference level is 1.5V when V  
= 3.3V and is 1.25V when V  
= 2.5V.  
DDQ  
DDQ  
21. Test conditions shown in (a) of AC Test Loads unless otherwise noted.  
22. This part has a voltage regulator internally; t  
is the time that the power needs to be supplied above V (minimum) initially, before a read or write operation  
POWER  
DD  
can be initiated.  
23. t  
, t  
,t  
, and t  
are specified with AC test conditions shown in part (b) of AC Test Loads and Waveforms on page 19. Transition is measured ± 200  
CHZ CLZ OELZ  
OEHZ  
mV from steady-state voltage.  
24. At any given voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same  
OEHZ  
OELZ  
CHZ  
CLZ  
data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed to  
achieve High-Z prior to Low-Z under the same system condition.  
25. This parameter is sampled and not 100% tested.  
Document #: 38-05544 Rev. *F  
Page 20 of 29  
           
CY7C1381D, CY7C1381F  
CY7C1383D, CY7C1383F  
Timing Diagrams  
Read Cycle Timing  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
ADH  
ADS  
t
t
AH  
AS  
A1  
A2  
ADDRESS  
t
t
WES  
WEH  
GW, BWE,BW  
X
Deselect Cycle  
t
t
CES  
CEH  
CE  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV suspends burst  
t
t
t
CDV  
OEV  
OELZ  
t
t
OEHZ  
CHZ  
t
DOH  
t
CLZ  
Q(A2)  
Q(A2 + 1)  
Q(A2 + 2)  
Q(A2 + 3)  
Q(A2)  
Q(A2 + 1)  
Q(A2 + 2)  
Q(A1)  
Data Out (Q)  
High-Z  
t
CDV  
Burst wraps around  
to its initial state  
Single READ  
BURST  
READ  
DON’T CARE  
UNDEFINED  
Note:  
26. On this diagram, when CE is LOW: CE1 is LOW, CE2 is HIGH and CE3 is LOW. When CE is HIGH: CE1 is HIGH or CE2 is LOW or CE3 is HIGH.  
Document #: 38-05544 Rev. *F  
Page 21 of 29  
 
CY7C1381D, CY7C1381F  
CY7C1383D, CY7C1383F  
Timing Diagrams (continued)  
Write Cycle Timing  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC extends burst  
t
t
ADH  
ADS  
t
t
ADH  
ADS  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
ADDRESS  
Byte write signals are ignored for first cycle when  
ADSP initiates burst  
t
t
WEH  
WES  
BWE,  
BW  
X
t
t
WEH  
WES  
GW  
t
t
CEH  
CES  
CE  
t
t
ADVH  
ADVS  
ADV  
ADV suspends burst  
OE  
t
t
DH  
DS  
Data in (D)  
High-Z  
D(A2)  
D(A2 + 1)  
D(A2 + 1)  
D(A2 + 2)  
D(A2 + 3)  
D(A3)  
D(A3 + 1)  
D(A3 + 2)  
D(A1)  
t
OEHZ  
Data Out (Q)  
BURST READ  
BURST WRITE  
Extended BURST WRITE  
Single WRITE  
DON’T CARE  
UNDEFINED  
Note:  
27.  
Full width write can be initiated by either GW LOW; or by GW HIGH, BWE LOW and BW LOW.  
X
Document #: 38-05544 Rev. *F  
Page 22 of 29  
 
CY7C1381D, CY7C1381F  
CY7C1383D, CY7C1383F  
Timing Diagrams (continued)  
[26, 28, 29]  
Read/Write Cycle Timing  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
A4  
A5  
A6  
ADDRESS  
t
t
WEH  
WES  
BWE, BW  
X
t
t
CEH  
CES  
CE  
ADV  
OE  
t
t
DH  
DS  
t
OELZ  
t
High-Z  
D(A3)  
D(A5)  
D(A6)  
Data In (D)  
t
OEHZ  
CDV  
Data Out (Q)  
Q(A1)  
Q(A2)  
Q(A4)  
Q(A4+1)  
Q(A4+2)  
Q(A4+3)  
Back-to-Back  
WRITEs  
Back-to-Back READs  
Single WRITE  
BURST READ  
DON’T CARE  
UNDEFINED  
Notes:  
28. The data bus (Q) remains in high-Z following a WRITE cycle, unless a new read access is initiated by ADSP or ADSC.  
29.  
GW is HIGH.  
Document #: 38-05544 Rev. *F  
Page 23 of 29  
   
CY7C1381D, CY7C1381F  
CY7C1383D, CY7C1383F  
Timing Diagrams (continued)  
ZZ Mode Timing  
CLK  
ZZ  
t
t
ZZ  
ZZREC  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
Notes:  
30. Device must be deselected when entering ZZ mode. See Truth Table  
31. DQs are in high-Z when exiting ZZ sleep mode.  
on page 9 for all possible signal conditions to deselect the device.  
Document #: 38-05544 Rev. *F  
Page 24 of 29  
   
CY7C1381D, CY7C1381F  
CY7C1383D, CY7C1383F  
Ordering Information  
Not all of the speed, package and temperature ranges are available. Please contact your local sales representative or  
visit www.cypress.com for actual products offered.  
Speed  
(MHz)  
Package  
Diagram  
Operating  
Range  
Ordering Code  
Part and Package Type  
133 CY7C1381D-133AXC  
CY7C1383D-133AXC  
CY7C1381F-133BGC  
CY7C1383F-133BGC  
CY7C1381F-133BGXC  
CY7C1383F-133BGXC  
CY7C1381D-133BZC  
CY7C1383D-133BZC  
CY7C1381D-133BZXC  
CY7C1383D-133BZXC  
CY7C1381D-133AXI  
CY7C1383D-133AXI  
CY7C1381F-133BGI  
CY7C1383F-133BGI  
CY7C1381F-133BGXI  
CY7C1383F-133BGXI  
CY7C1381D-133BZI  
CY7C1383D-133BZI  
CY7C1381D-133BZXI  
CY7C1383D-133BZXI  
100 CY7C1381D-100AXC  
CY7C1383D-100AXC  
CY7C1381F-100BGC  
CY7C1383F-100BGC  
CY7C1381F-100BGXC  
CY7C1383F-100BGXC  
CY7C1381D-100BZC  
CY7C1383D-100BZC  
CY7C1381D-100BZXC  
CY7C1383D-100BZXC  
CY7C1381D-100AXI  
CY7C1383D-100AXI  
CY7C1381F-100BGI  
CY7C1383F-100BGI  
CY7C1381F-100BGXI  
CY7C1383F-100BGXI  
CY7C1381D-100BZI  
CY7C1383D-100BZI  
CY7C1381D-100BZXI  
CY7C1383D-100BZXI  
51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
Commercial  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Pb-Free  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm) Pb-Free  
51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
lndustrial  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Pb-Free  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm) Pb-Free  
51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
Commercial  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Pb-Free  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm) Pb-Free  
51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
lndustrial  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Pb-Free  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm) Pb-Free  
Document #: 38-05544 Rev. *F  
Page 25 of 29  
CY7C1381D, CY7C1381F  
CY7C1383D, CY7C1383F  
Package Diagrams  
Figure 1. 100-Pin Thin Plastic Quad Flat pack (14 x 20 x 1.4 mm) (51-85050)  
16.00 0.20  
14.00 0.10  
1.40 0.05  
100  
81  
80  
1
0.30 0.08  
0.65  
TYP.  
12° 1°  
(8X)  
SEE DETAIL  
A
30  
51  
31  
50  
0.20 MAX.  
1.60 MAX.  
R 0.08 MIN.  
0.20 MAX.  
0° MIN.  
SEATING PLANE  
STAND-OFF  
0.05 MIN.  
0.15 MAX.  
NOTE:  
1. JEDEC STD REF MS-026  
0.25  
GAUGE PLANE  
2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH  
MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE  
R 0.08 MIN.  
0.20 MAX.  
BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH  
3. DIMENSIONS IN MILLIMETERS  
0°-7°  
0.60 0.15  
0.20 MIN.  
51-85050-*B  
1.00 REF.  
DETAIL  
A
Document #: 38-05544 Rev. *F  
Page 26 of 29  
CY7C1381D, CY7C1381F  
CY7C1383D, CY7C1383F  
Package Diagrams (continued)  
Figure 2. 119-ball BGA (14 x 22 x 2.4 mm) (51-85115)  
51-85115-*B  
Document #: 38-05544 Rev. *F  
Page 27 of 29  
CY7C1381D, CY7C1381F  
CY7C1383D, CY7C1383F  
Package Diagrams (continued)  
Figure 3. 165-ball FBGA (13 x 15 x 1.4 mm) (51-85180)  
BOTTOM VIEW  
PIN 1 CORNER  
TOP VIEW  
Ø0.05 M C  
PIN 1 CORNER  
Ø0.25 M C A B  
-0.06  
Ø0.50  
(165X)  
+0.14  
1
2
3
4
5
6
7
8
9
10  
11  
11 10  
9
8
7
6
5
4
3
2
1
A
A
B
B
C
D
C
D
E
E
F
F
G
G
H
J
H
J
K
K
L
L
M
M
N
P
R
N
P
R
A
A
1.00  
5.00  
10.00  
13.00 0.10  
B
B
13.00 0.10  
0.15(4X)  
NOTES :  
SOLDER PAD TYPE : NON-SOLDER MASK DEFINED (NSMD)  
PACKAGE WEIGHT : 0.475g  
JEDECREFERENCE : MO-216 / DESIGN 4.6C  
PACKAGE CODE : BB0AC  
SEATING PLANE  
C
51-85180-*A  
Intel and Pentium are registered trademarks, and i486 is a trademark of Intel Corporation. All product and company names  
mentioned in this document are the trademarks of their respective holders.  
Document #: 38-05544 Rev. *F  
Page 28 of 29  
© Cypress Semiconductor Corporation, 2006-2007. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for  
the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended  
to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
CY7C1381D, CY7C1381F  
CY7C1383D, CY7C1383F  
Document History Page  
Document Title: CY7C1381D/CY7C1383D/CY7C1381F/CY7C1383F 18-Mbit (512K x 36/1M x 18) Flow-Through SRAM  
Document Number: 38-05544  
Orig. of  
REV.  
**  
ECN NO. Issue Date Change  
Description of Change  
254518  
288531  
See ECN  
See ECN  
RKF  
SYT  
New data sheet  
*A  
Edited description under “IEEE 1149.1 Serial Boundary Scan (JTAG)” for  
non-compliance with 1149.1  
Removed 117-MHz Speed Bin  
Added Pb-free information for 100-Pin TQFP, 119 BGA and 165 FBGA  
package  
Added comment of ‘Pb-free BG packages availability’ below the Ordering Infor-  
mation  
*B  
326078  
See ECN  
PCI  
Address expansion pins/balls in the pinouts for all packages are modified as  
per JEDEC standard  
Added description on EXTEST Output Bus Tri-State  
Changed description on the Tap Instruction Set Overview and Extest  
Changed Device Width (23:18) for 119-BGA from 000001 to 101001  
Added separate row for 165 -FBGA Device Width (23:18)  
Changed Θ and Θ for TQFP Package from 31 and 6 °C/W to 28.66 and  
JA  
JC  
4.08 °C/W respectively  
Changed Θ and Θ for BGA Package from 45 and 7 °C/W to 23.8 and 6.2  
JA  
JC  
°C/W respectively  
Changed Θ and Θ for FBGA Package from 46 and 3 °C/W to 20.7 and 4.0  
JA  
JC  
°C/W respectively  
Modified V  
V
test conditions  
OL, OH  
Removed comment of ‘Pb-free BG packages availability’ below the Ordering  
Information  
Updated Ordering Information Table  
Changed from Preliminary to Final  
*C  
*D  
351895  
416321  
See ECN  
See ECN  
PCI  
Updated Ordering Information Table  
NXR  
Changed address of Cypress Semiconductor Corporation on Page# 1 from  
“3901 North First Street” to “198 Champion Court”  
Changed the description of I from Input Load Current to Input Leakage  
X
Current on page# 18  
Changed the I current values of MODE on page # 18 from –5 µA and 30 µA  
X
to –30 µA and 5 µA  
Changed the I current values of ZZ on page # 18 from –30 µA and 5 µA  
X
to –5 µA and 30 µA  
Changed V < V to V < V on page # 18  
IH  
DD  
IH  
DD  
Replaced Package Name column with Package Diagram in the Ordering  
Information table  
Updated Ordering Information Table  
*E  
*F  
475009  
776456  
See ECN  
See ECN  
VKN  
VKN  
Added the Maximum Rating for Supply Voltage on V  
Relative to GND  
DDQ  
Changed t , t from 25 ns to 20 ns and t  
from 5 ns to 10 ns in TAP AC  
TH TL  
TDOV  
Switching Characteristics table.  
Updated the Ordering Information table.  
Added Part numbers CY7C1381F and CY7C1383F and its related information  
Added footnote# 3 regarding Chip Enable  
Updated Ordering Information table  
Document #: 38-05544 Rev. *F  
Page 29 of 29  

Hobart HGC60 User Manual
Hanns G Computer Monitor HW191 User Manual
Fisher Paykel CG603, CG903 User Manual
Elo TouchSystems Elo Entuitive 3000 Series 1529L User Manual
Diamond Multimedia Viper X700PCIE256 CN User Manual
DCS RGS 364GD User Manual
CyberResearch GDR 15L User Manual
AT T Voice Terminal 8510T User Manual
Asus A8V User Manual
Acer V193 User Manual